
ABSTRACT

WADDELL, CLEVELAND ALEXANDER. Parametric Linear System Solving with
Error Correction. (Under the direction of Dr. Erich Kaltofen).

Consider solving a black box linear system, A(u)x = b(u), where the entries are polynomials

in u over a field K, and A(u) is full rank. The solution, x = 1
g(u)f(u), where g is always the

least common monic denominator, can be recovered even if some evaluations are erroneous. In

[Boyer and Kaltofen, Proc. SNC 2014] the problem is solved with an algorithm that generalizes

Welch/Berlekamp decoding of an algebraic Reed-Solomon code. Their algorithm requires the

sum of a degree bound for the numerators plus a degree bound for the denominator of the

solution. We describe an algorithm that given the same inputs uses possibly fewer evaluations

to compute the solution.

We introduce a second count for the number of evaluations required to recover the solution

based on work by Stanley Cabay. The Cabay count includes bounds for the highest degree

polynomial in the coefficient matrix and right side vector, but does not require solution degree

bounds. Instead our algorithm iterates until the Cabay termination criterion is reached. At this

point our algorithm returns the solution. Assuming we have the actual degrees for all necessary

input parameters, we give the criterion that determines when the Cabay count is fewer than

the generalized Welch/Berlekamp count.

We then specialize the algorithm for parametric linear system solving to the recovery of a

vector of rational functions, 1
g(u)f(u). If the rational function vector is the solution to a full

rank linear system our early termination strategy applies and we may recover it from fewer

evaluations than generalized Welch/Berlekamp decoding. We then show that if entries in our

rational function vector are polynomials, then the vector can be viewed as an interleaved Reed-

Solomon code. Thus if the errors occur in bursts we can again do better than generalized

Welch/Berlekamp decoding.

The aforementioned algorithms do not work when the matrix of the system, A(u)x = b(u), is

rank deficient and some evaluations cause errors. We next present an algorithm for solving black

box linear systems where the entries are polynomials over a field and the matrix of the system

is rank deficient. The algorithm first locates and removes all errors, after which it computes a

solution that satisfies the input degree bounds.

Finally we view the recovery of a vector of polynomials as the decoding of interleaved Reed-

Solomon codes. It is known that interleaved schemes improve the error correction capabilities

of codes when errors occur in bursts. If we consider that the evaluations of the polynomials

in the vector are done one at a time and that the errors are dependent then it is likely that

errors occur in consecutive evaluations (bursts). An error model that considers consecutive

entries in the vector to be wrong is a burst error model. We show how to encode and transmit

data (polynomials) so that the data (polynomials) transmitted can be recovered with fewer

evaluations than is required by Generalized Welch/Berlekamp decoding.

© Copyright 2019 by Cleveland Alexander Waddell

All Rights Reserved

Parametric Linear System Solving with Error Correction

by
Cleveland Alexander Waddell

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2019

APPROVED BY:

Dr. Terrence Blackman
External Member

Dr. Ernie Stitzinger

Dr. Hoon Hong Dr. Kailash Misra

Dr. Erich Kaltofen
Chair of Advisory Committee

DEDICATION

To my grandfather the late Rev. Wilford Alexander Morris, my first formal teacher, his sister

Zephreen Moriah for takig such good care of me as an infant. And to mother Bridget Marilyn

Morris my father Dr. Clairmont Alexis Waddell,

ii

BIOGRAPHY

Cleveland Alexander Waddell, the last of my four children, the second of two boys, was born in

1987, September 28. His early education, Kindergarten - High School, was initiated and com-

pleted in Guyana, South America, At the Pre-Kindergarten level he was ready and enthusiastic

about attending school, especially the one his cousin was already attending. Pre-High School

days, Cleveland is known to have been very playful yet evidenced a capability to balance play

with sporting, church-related activities, and academic prowess.

It might be apt to say that Mathematics took a hold of him for classmates at high school

sought his help with key concepts, he tutored students in his community, and he was decisive in

his desire to pursue, abroad, a university level education and consequent qualification. Medgar

Evers College afforded him such baccalaureate opportunity and he firmly grasped the challenge

and honed his skill and aptitude in the Computer Science and Mathematics.That unwavering

focus on scoring in cricket and basketball, and striding ahead of competitors in track events was

applied to Graduate studies at North Carolina State University. The many Awards represent

the acknowledgement and recognition of his scholarship.

Cleveland is, presently, part of a group that is promoting proficiency in Mathematics during

the Summertime in Guyana. In his view, Mathematics could be fun. If my son had tutored me,

I would have done better in Chemistry and Mathematics!

This young man, his learning taken in hand at an early age by his grand-father, understands

the need for recreation to help manage the demands of academic pursuits, and add to a rounded

persona.The pages of his life are but a fraction written, the rest is open and waiting to be

punctuated by variables, so to speak.

iii

ACKNOWLEDGEMENTS

I wish to acknowledge the support by the National Science Foundation.

I would like to thank my adviser, Prof. Erich Kaltofen, for his problem, time and patience.

This document would not be what it is without his guidance and support throughout the writing

process. I would also like to express my gratitude to my committee members for sharing with

me their wisdom and experience.

I would like to thank the academic support staff of the Department of Mahtematics during

my tenure at the University for their help in ensuring all necessary administrative actions were

taken in a timely manner. Your professionalism meant that I could focus my attention on

finishing this document.

Graduate school can at times be a source of great stress. I am lucky to have the love and

support of many family members, friends and well wishers. Some of whom have listened to me

talk through problems even though they didn’t quite follow. I am appreciative of the many

conversations, board games, sporting events, baked goods, bike rides, dinners, gym time, and

other fun activities that kept me grounded. I would especially like to thank my good friend Dr.

Terrance Pendleton whose assistance and advice were invaluable when times got tough.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 Preface . 1

Chapter 2 Early Termination in Parametric Linear System Solving with Error
Correction for Full Rank Systems . 4

2.1 Introduction . 4
2.2 Exact Vector of Function Solving . 7
2.3 Early Termination . 9
2.4 Cabay Early Termination . 14
2.5 Combined Early Termination . 20
2.6 Summary . 22

Chapter 3 Rational Vector Recovery with Error Correction as a Specializa-
tion of Parametric Linear System Solving 23

3.1 Introduction . 23
3.2 Rational Vector Recovery . 24
3.3 Cabay Early Termination with poles . 26
3.4 Summary . 28

Chapter 4 Parametric Linear System Solving with Error Correction for Rank
Deficient Systems . 29

4.1 Introduction . 29
4.2 Exact Vector-of-Functions Solving - Rank Deficient

Systems . 32
4.3 Removing Matrix Error . 36

4.3.1 The Algorithm . 45
4.4 Removing Right Side Vector Errors . 48

4.4.1 The Algorithm . 49
4.5 Returning a degree bounded solution in the Rank Deficient Case 51

4.5.1 The Algorithm . 51
4.6 Summary . 52

Chapter 5 Polynomial Vector Recovery with Burst Errors 53
5.1 Introduction . 53
5.2 Reducing the size of the system . 54
5.3 Summary . 63

Chapter 6 Modeling Polynomial Vector Recovery as a Burst Error Correcting
Code . 64

6.1 Introduction . 64

v

6.2 Problem Description . 66
6.3 The Interleaving Scheme . 69
6.4 Data Transmission . 73
6.5 Performance on a Simplified Gilbert Channel . 76

6.5.1 Double Interleaving . 77
6.5.2 Experimental Results . 78

6.6 Summary . 82

Chapter 7 Conclusion . 83

Chapter 8 Future Work . 86

References . 88

APPENDIX . 90
Appendix A Maple Programs . 91

vi

LIST OF TABLES

Table 6.1 Evaluated vectors before (m− 1)Ebrst many evaluations are removed . . . 66
Table 6.2 Evaluated vectors after (m− 1)Ebrst many evaluations are removed 67
Table 6.3 Evaluated vectors to be transmitted . 67
Table 6.4 Evaluated vectors interleaved for transmission 68
Table 6.5 Evaluated vectors interleaved for transmission 74
Table 6.6 Channel Burst Length . 74
Table 6.7 Evaluated vectors interleaved for transmission 77
Table 6.8 Experiment Parameters . 78
Table 6.9 Stack + Burst Only + Minimal Interleave 79
Table 6.10 Not Stack + Burst Only + Minimal Interleave 80
Table 6.11 Stack + Burst Only + Not Minimal Interleave 80
Table 6.12 Not Stack + Burst Only + Not Minimal Interleave 81
Table 6.13 Stack + Not Burst Only + Not Minimal Interleave 81
Table 6.14 Not Stack + Not Burst Only + Not Minimal Interleave 81

vii

LIST OF FIGURES

Figure 6.1 Gilbert Model for Burst Errors . 76

viii

Chapter 1

Preface

The need to store, compress and transmit digital data without the introduction of errors is as

important today as it as ever been, if not more. If too many errors get into data then it may

become corrupted, sometimes to the point where we can no longer gather useful information

from it. While it is important to guard against errors, in some instances errors are inevitable.

It may then be helpful to add redundant or parity data to the original data so that it can be

recovered if errors are introduced. The process of adding redundant data so as to be able to

recover the original data, if errors occur, is called error correcting codes. Error correcting codes

is an essential tool in helping to mitigate the effects of noise and other issues that may introduce

errors into data. They have been, and continue to be, used in a wide variety of applications

from returning images from deep space, to ensuring clean crisp playback on optical disks. Big

data analysis is a rapidly growing field of which the first step is to ”clean up” the data. Error

correcting decoding will then be an essential tool for any data scientist. Given that successful

communication requires unambiguity, exact solutions are required whenever possible. Thus,

symbolic computation and computer algebra systems provide the best framework for doing

error correction.

In January 2015 the author joined a research project that was focused on Parametric Linear

System Solving with Error Correction. At that time the method being employed was a gen-

eralization of the [Gemmell and Sudan 1992] description of the [Welch and Berlekamp 1986]

decoder for [Reed and Solomon 1960] codes. The main results of the work done prior to the au-

thor joining the research project can be found in [Boyer and Kaltofen 2014] Symbolic Numeric

Computation (SNC) paper. The author along with collaborators continued the work presented

in [Boyer and Kaltofen 2014]. The main results of the continuation along with the answers to

some of the questions that were raised as result of continuing the work of [Boyer and Kaltofen

2014] are the subjects of this document (the author’s dissertation).

Chapter 2 gives an overview of the [Boyer and Kaltofen 2014] algorithm found in their

1

SNC paper. The algorithm computes the unique solution of a parametric linear system by

first evaluating the system, then interpolating the parametric solution from the evaluation.

See [McClellan 1973]. This algorithm is a generalization of the [Gemmell and Sudan 1992]

description of the [Welch and Berlekamp 1986] decoder for [Reed and Solomon 1960] codes. The

systems [Boyer and Kaltofen 2014] considered are full rank and overdetermined. The solution to

such systems is a vector of rational functions. To enforce uniqueness, the solution is restricted

to the one with the least common monic denominator. As mentioned in their SNC paper, there

are two ways to view this algorithm. The first, and the main focus of the SNC paper, is numeric.

That is the algorithm uses error correcting code techniques to account for ill-conditioned scalar

matrices that result after the parametric systems have been evaluated. The second view is as a

black box linear system solver that can correct true errors. True errors are scalar linear systems

returned by the black box that do not agree with the evaluated solution. We will only consider

the latter view in Chapter 2.

Chapter 2 continues with a description our early termination algorithms for parametric lin-

ear systems solving with error correction. This work is published in the proceedings of the 2017

International Symposium for Symbolic and Algebraic Computation (ISSAC). See [Kaltofen,

Pernet, Storjohann, and Waddell 2017]. As mentioned earlier the [Boyer and Kaltofen 2014]

algorithm is a generalization of the [Gemmell and Sudan 1992] description of the [Welch and

Berlekamp 1986] decoder for [Reed and Solomon 1960] codes. Thus this algorithm requires the

sum of a degree bound for the numerators plus a degree bound for the denominator of the

solution. It is possible that the degree bounds that are input to the algorithm are much larger

than the actual degrees. We thus describe an algorithm, that given the same inputs may com-

pute the solution from fewer evaluations. Later in Chapter 2 we introduce a second count that

can be used to recover the solution of black box parametric linear systems with errors. This

new count is based on the work by [Cabay 1971]. See also [Olesh and Storjohann 2007]. The

Cabay count does not rely on degree bounds for the solution, rather it uses degree bounds for

the parametric system. The algorithms iterates until the Cabay Criterion is reached. At which

point it returns the solution. We then compare the two counts and say exactly when the Cabay

count is fewer than the generalized Welch/Berlekamp count. Next we combine our two early

terminations strategies into one general early termination algorithm. We also use an error rate

as well as a rank drop rate instead of fixed bounds for the number of errors and rank drops

respectively. This allows for further reduction in the number of queries to the black box. A

similar strategy can be found in [Kaltofen and Yang 2013] and [Kaltofen and Yang 2014].

The [Boyer and Kaltofen 2014] algorithm for parametric linear system solving with errors

for full rank systems can be specialized to rational function vector recovery with errors. This

idea is the subject of the Chapter 3. This work can also be found in our ISSAC 2017 paper. We

show that if the rational function vector is the solution to a full rank linear system then our

2

early terminations strategies apply. Thus we are sometimes able to recover the rational function

vector using fewer evaluations than generalized Welch/Berlekamp decoding. If evaluations at

poles (roots of the denominator) are allowed there are examples where the Cabay count is

insufficient to recover the rational function vector. We show that if in addition to indicating

that an evaluation is a pole the black box also gives information about the numerators of the

solution then we are able to recover the solution.

In chapter 4 we describe an algorithm for parametric linear systems solving with error

correction when the matrix of the system is rank deficient. Such systems have multiple solutions.

We wish to compute a solution that agrees with the input degree bounds. In the full rank case

the solution is unique and the solution of minimum degree has the error locator polynomial (a

polynomial that has the error locations as its roots) as a factor. Unfortunately, this algorithm

does not always return a solution that agrees with the degree bounds in the rank deficient case.

The issue is that while the common monic denominator of minimum degree is unique there are

many solutions with this denominator. The algorithm then does not always return a solution

with the error locator polynomial as a factor. We know that if no errors occur the full rank

algorithm works. The algorithm we describe for rank deficient systems first locates and removes

the errors and we then able to compute a solution that agrees with the input degree bounds.

In the error model we used in Chapter 3 an errors means that one or more of the entries in

the evaluated vector are wrong. While this model is reasonable, it is possible that errors affect

the entire vector. We show in Chapter 5 that if errors affect the entire vector then we can solve

an underdetermined system to find the solution and error locations simultaneously. We further

show that if errors affect the entire vector then there is no need to assume that the erroneous

values are random field elements.

In Chapter 6 we view the recovery of a vector of polynomials as the decoding of interleaved

Reed-Solomon codes. It is known that interleaved schemes improve the error correction capa-

bilities of codes when errors occur in bursts. See [Bleichenbacher, Kiayias, and Yung 2003] and

[Schmidt, Sidorenko, and Bossert 2009]. We design a method for encoding a message as the

coefficients of polynomials that is able to capitalize on the savings we describe in Chapter 5.

We then test our technique on a Simplified Gilbert Channel, see [Yee and Weldon 1995], and

present our initial findings

Chapter 7 contains as summary of the dissertation and Chapter 8 talks about possible

future directions. The Appendix A that follow contain Maple programs that implement of our

algorithms.

3

Chapter 2

Early Termination in Parametric

Linear System Solving with Error

Correction for Full Rank Systems

2.1 Introduction

Consistent linear systems of the form A(u)x = b(u), where A(u) ∈ K[u]m×n and full rank, b(u) ∈
K[u]m, m ≥ n, and K is a field, have as their solution rational functions xi = f [i](u)/g[i](u),

1 ≤ i ≤ n. In particular there is a solution 1
g(u)f(u),1 where g(u) is the monic, least common

denominator, that is

GCD(f, g)
def
= GCD(GCDi(f

[i]), g) = 1.

The solution of such a system can be determined by evaluating the system at distinct points

ξ` ∈ K and interpolating the evaluated solution [McClellan 1973]. The solution can be found

even if some evaluations are erroneous. The matrices of the systems we consider have full

column rank, so their solution in the form 1
g(u)f(u) is unique. Note that for full rank matrices

with univariate polynomial entries there are finitely many ξ` ∈ K that may cause the evaluated

matrix to be rank deficient. If for each evaluation that causes the matrix with scalar entries to be

rank deficient an extra evaluation is included, then techniques from algebraic error correcting

codes can be used to compute the solution [Olshevsky and Shokrollahi 2003; Kaltofen and

Pernet 2013; Kaltofen and Yang 2013, 2014; Boyer and Kaltofen 2014]. Furthermore in [Boyer

and Kaltofen 2014] it is shown that for non-erroneous evaluation points, ξ`, it is not necessary

to have A(ξ`) and b(ξ`) in order to interpolate the solution. Rather it is enough to have a scalar

1We write 1
g
f if f is a vector of polynomials and 1

g
a rational function scalar.

4

matrix Â[`] and right side vector b̂[`] that have the evaluated solution 1
g(ξ`)

f(ξ`) as a solution.

Consider the following model. Suppose there exists an oracle, which we will refer to as the

black box. If we supply the black box with a value, ξ`, from the field K the black box returns to

us Â[`] and b̂[`] with entries from the field K. The scalar matrix, Â[`], and right side vector, b̂[`],

which are returned may not be A(ξ`) and b(ξ`). Nevertheless, if we query the black box L times

we assume that ≤ E times we get Â[λ] and b̂[λ] such that Â[λ]f(ξλ) 6= g(ξλ)b̂[λ]. Such evaluations

are considered to be erroneous. Furthermore we assume that fewer than R times the black box

returns Â[`] and b̂[`] such that Â[`]f(ξ`) = g(ξ`)b̂
[`] but rank(Â[`]) < n. The objective is to find

the solution x = 1
g(u)f(u) of the system A(u)x = b(u) from as few queries of the black box as

possible.

The count for the number of ξ`

L ≥ Lbk

def
= df + dg +R+ 2E + 1 (2.1)

is employed by [Boyer and Kaltofen 2014] to recover the solution 1
g(u)f(u). The input parameters

must satisfy the following specifications:

df ≥ deg(f)
def
= max

1≤i≤m
{deg(f [i])}, dg ≥ deg(g), (2.2)

E ≥
∣∣ {λ | Â[λ]f(ξλ) 6= g(ξλ)b̂[λ] for 0 ≤ λ ≤ L− 1 }

∣∣, 2 (2.3)

R ≥
∣∣ { ` | Â[`]f(ξ`) = g(ξ`)b̂

[`]

and rank(Â[`]) < n for 0 ≤ ` ≤ L− 1 }
∣∣. (2.4)

Here | · | denotes the cardinality of a set. The bounds E and R can be derived from an error and

singularity rate; see below. If n = m = 1 and Â[`] = I1 and b̂[`] = 1
g(ξ`)

f(ξ`) the algorithm is

Welch/Berlekamp decoding of an algebraic (rational function) Reed-Solomon code [Welch and

Berlekamp 1986]. We prove that for the vector rational function case if the input bounds in

(2.2, 2.3, 2.4) are exact then the bound Lbk is tight; see Lemma 1.

If the bounds df and dg on input significantly overestimate the degrees, by early termination

we can reduce the number of required evaluations to

L∗
bk

def
= max{df + deg(g), dg + deg(f)}+ 2E∗ +R∗ + 1, (2.5)

2Note that the condition (2.3) on the error bound E rules out inconsistent systems.

5

where

E∗ ≥
∣∣ {λ | Â[λ]f(ξλ) 6= g(ξλ)b̂[λ] for 0 ≤ λ ≤ L∗

bk − 1 }
∣∣, (2.6)

R∗ ≥
∣∣ { ` | Â[`]f(ξ`) = g(ξ`)b̂

[`]

and rank(Â[`]) < n for 0 ≤ ` ≤ L∗
bk − 1 }

∣∣. (2.7)

The number of evaluations L∗
bk in (2.5) is determined iteratively, without deg(f) and deg(g) as

input, but has to meet the conditions (2.6, 2.7) for the number of erroneous and rank-deficient

systems at evaluation points ξ`. One can use the estimate E∗ = E and R∗ = R from (2.3,2.4)

before, but we will show in Algorithm 2 below how to dynamically adjust E∗ and R∗ from an

error and singularity rate associated with the black box for Â[`], b̂[`], as is originally suggested

in [Kaltofen and Yang 2014, Remark 1.1].

Following Stanely Cabay’s [Cabay 1971] early termination strategy (see also [Olesh and

Storjohann 2007]), we can derive a second count of number of evaluations. The new input

parameters are specified as follows:

dA ≥ deg(A)
def
= max1≤i≤m,1≤j≤n{deg(ai,j)},

db ≥ deg(b)
def
= max1≤i≤m{deg(bi)}.

 (2.8)

Because in our algorithms we do not reconstruct A and b, for the bounds dA and db we can use

that pair (A(u), b(u)) with A(u)f(u) = g(u)b(u) with a minimum deg(A). We derive a second

evaluations count,

L∗
cab = max{dA + deg(f), db + deg(g)}+ 2E∗ +R∗ + 1, (2.9)

for recovering the solution. Here E∗ and R∗ bound from above the corresponding counts for

erroneous and singular systems in (2.3, 2.4) with L∗
cab replacing L∗

bk. We prove that if all input

parameter bounds are exact and deg(g) > deg(A) then L∗
cab < L∗

bk.

Next we combine the L∗
bk count and the L∗

cab count into a general early termination strategy.

This algorithm computes the solution using as few evaluations as possible when it is unclear

how the deg(g) compares to the deg(A).

6

2.2 Exact Vector of Function Solving

We describe and prove an early termination algorithm for the exact vector of function solving

algorithm in [Boyer and Kaltofen 2014]. Their algorithm solves a system of linear equations

A(u) x = b(u) (2.10)

where A(u) ∈ K[u]m×n, b(u) ∈ K[u]m,m ≥ n and K is a field. The system is assumed to have a

unique solution

x =


...

1
g(u)f

[i](u)
...

 ∈ K(u)n, g 6= 0, (2.11)

where g is the monic least common denominator. If for all i, f [i] = 0 then g is set to 1. The

solution vector x is computed by:

1. Selecting L = df + dg +R+ 1 distinct elements ξ` ∈ K where

(a) 0 ≤ ` ≤ L− 1 and ξ`1 6= ξ`2 for `1 6= `2.

(b) df ≥ deg(f).

(c) dg ≥ deg(g).

(d) R ≥
∣∣{` | rank(A(ξ`)) < n = rank(A(u))}

∣∣.
2. Solving the homogeneous linear system

A(ξ`)


...

Φ[i](ξ`)
...

−Ψ(ξ`)b(ξ`) = 0, (2.12)

where for all i,deg(Φ[i]) ≤ df and deg(Ψ) ≤ dg. The system (2.12) is linear in the coefficients

of Φ[i](u) and Ψ(u). There are n(df + 1) + dg + 1 unknown coefficients for Φ[i] and Ψ and mL

equations.

Theorem 1 [Boyer and Kaltofen 2014] We suppose that for ≥ df + dg + 1 of the ξ` we have

rank(A(ξ`)) = rank(A(u)) = n. Let Ψmin be the denominator component of a solution of (2.12)

with Ψmin 6= 0 and scaled to have leading coefficient 1 in u, and of minimal degree of all such

solutions, and let Φ
[i]
min be the corresponding numerator components of that solution. Then for

all i we have Φ
[i]
min = f [i] and Ψmin = g.

7

The linear system (2.12) uses evaluations of A(u) and b(u) to solve for x = 1
gf . The authors in

[Boyer and Kaltofen 2014] show that it is not necessary to have the evaluations of A(u) and b(u)

in order to solve (2.10). Rather it is enough, for each ξ`, to have a scalar matrix Â[`] ∈ Km×n

and right side vector b̂[`] ∈ Km such that Â[`]f(ξ`) = g(ξ`)b̂
[`]. They also show that the solution

can be computed even if some of the scalar matrices Â[`] and/or right side vectors b̂[`] are

erroneous. That is for some 0 ≤ λ ≤ L− 1,

Â[λ]f(ξλ) 6= g(ξλ)b̂[λ]. (2.13)

The solution is computed by:

1. Selecting L ≥ Lbk = df + dg +R+ 2E + 1 distinct elements ξ` ∈ K where

(a) R ≥
∣∣{` | rank(A(ξ`)) < n and Â[`]f(ξ`) = g(ξ`)b̂

[`], 0 ≤ ` ≤ L− 1}
∣∣, that is (2.4).

(b) E ≥
∣∣{λ | Â[λ]f(ξλ) 6= g(ξλ)b̂[λ], 0 ≤ λ ≤ L− 1}

∣∣, that is (2.3).

2. Solving the homogeneous linear system

Â[`]


...

Φ[i](ξ`)
...

−Ψ(ξ`)b̂
[`] = 0, 1 ≤ i ≤ m, 0 ≤ ` ≤ L− 1, (2.14)

where for all i,deg(Φ[i]) ≤ df + E and deg(Ψ) ≤ dg + E. The system (4.12) is linear in the

coefficients of Φ[i](u) and Ψ(u). There are n(df + E + 1) + dg + E + 1 unknown coefficients of

Φ[i](u) and Ψ(u) and mLbk equations.

Theorem 2 [Boyer and Kaltofen 2014] We suppose that for ≤ E of the ξ` we have Â[`]f(ξ`) 6=
g(ξ`)b̂

[`] and for ≥ df + dg + E + 1 of the ξ` we have rank(Â[`]) = n and Â[`]f(ξ`) = g(ξ`)b̂
[`].

Let Ψmin be the denominator component of a solution of (4.12) with Ψmin 6= 0 and scaled

to have leading coefficient 1 in u, and of minimal degree of all such solutions, and let

Φ
[i]
min be the corresponding numerator components of that solution. Furthermore, let Λ(u) =∏
µ subj. to (2.13)(u − ξλµ) be an error locator polynomial. Then for all i we have Φ

[i]
min = Λf [i]

and Ψmin = Λg.

Remark 1 We assume we have a black box that we can probe with ξ`’s. For each ξ` the black

box returns Â[`] and b̂[`]. The scalar matrix Â[`] and scalar right-side vector b̂[`] may not be

A(ξ`) nor b(ξ`) respectively, but we are guaranteed that fewer than E are subject to condition

(2.13). By Theorem 2, we can find the solution x = 1
gf as well as an error locator polynomial

Λ(u) that has as its roots the ξλ’s that satisfy inequation (2.13). 2

8

2.3 Early Termination

In the black box model it is not possible to determine degree bounds for the solution a-priori.

Thus it is possible that the degree bounds df and dg are much larger than max1≤i≤n deg(f [i]) and

deg(g) respectively. We describe next an algorithm that either finds the solution or determines

that we need more evaluations. This allows us to design Algorithm 2, that computes the solution

with possibly fewer evaluations than is required by the Lbk bound.

Algorithm 1: Compute 1
gf and Λ or determine degree bounds are too small.

Input: df ≥ deg(f), dg ≥ deg(g), 0 ≤ d∗f ≤ df , 0 ≤ d∗g ≤ dg,
R∗ ≥

∣∣ { ` | Â[`]f(ξ`) = g(ξ`)b̂
[`]

and rank(Â[`]) < n for 0 ≤ ` ≤ L∗
bk − 1 }

∣∣,
E∗ ≥

∣∣ {λ | Â[λ]f(ξλ) 6= g(ξλ)b̂[λ] for 0 ≤ λ ≤ L∗
bk−1 }

∣∣,
with L∗

bk from Step 1 below,

a stream (Â[`], b̂[`]), ` = 0, 1, . . . which is static on multiple calls and extensible in length

on demand.

Output: 1
gf and Λ or “deg(f) > d∗f and/or deg(g) > d∗g.”

1: L∗
bk ← max{df + d∗g, dg + d∗f}+R∗ + 2E∗ + 1

2: Determine the null space of

Â[`]Φ∗(ξ`)−Ψ∗(ξ`)b̂
[`] = 0, ` = 0, 1, . . . , L∗

bk − 1, (2.15)

where deg(Φ∗) ≤ d∗f + E∗,deg(Ψ∗) ≤ d∗g + E∗

3: if only trivial solution then

return “deg(f) > d∗f and/or deg(g) > d∗g”; end if

4: Compute a basis, B, for the null space.

5: Compute the column echelon form for B,CEF(B).

Retrieve the last column,

CEF(B)∗,r ←



−−−→
Ψ∗

min−−→
Φ
∗ [1]
min
...

−−−→
Φ
∗ [m]
min

 , which has Ψ∗
min 6= 0.

Here~· are coefficient vectors.

6: Λ∗ ← GCD(Φ∗
min,Ψ

∗
min); k∗ ← deg(Λ∗).

7: (f∗, g∗)← (1
Λ∗ Φ∗

min,Ψ
∗
min/Λ

∗).

8: if deg(f∗) > d∗f or deg(g∗) > d∗g or k∗ > E∗ then

9

return “deg(f) > d∗f and/or deg(g) > d∗g”; end if

9: return f ← f∗, g ← g∗, Λ← Λ∗; end if

Observe that Algorithm 1 is similar to the algorithm implied by Theorem 2. The main difference

is that it uses the L∗
bk ≤ Lbk count. Recall that Theorem 2 requires ≥ Lbk evaluations to find

the solution. We use the results of Theorem 2 to prove the correctness of our algorithm. That is

our algorithm either determines that we just computed an interpolant of the evaluation points

or that we have indeed found the solution. Recall that we assume there exists a unique solution

to equation (2.10).

In Step 2 we compute a solution similar to (4.12). The difference being that we use the

starred bounds. Observe that if deg(f) ≤ d∗f and deg(g) ≤ d∗g and we were to substitute

df = d∗f , dg = d∗g in Lbk, then with L∗
bk ≥ d∗f + d∗g + 2E∗ +R∗ by Theorem 2 we are guaranteed

to find the solution (Λf,Λg). So if B indicates there is only the trivial solution then it must be

the case that deg(f) > d∗f and/or deg(g) > d∗g.

In Step 5 we compute a non-zero polynomial Ψ∗ of minimal degree (Ψ∗
min 6= 0). We claim

that the last column of CEF(B) contains Ψ∗
min. The fact that the degree of Ψ∗

min is minimum

is clear from the form of the CEF(B). To see why Ψ∗
min 6= 0, assume that Ψ∗

min = 0. Then

for all ξ`, Â
[`]Φ∗

min(ξ`) = Ψ∗
min(ξ`)b̂

[`] = 0m. On ≥ max{df + d∗g, dg + d∗f}+ E∗ + 1 evaluations

rank(Â[`]) = n, that is Φ∗
min(ξ`) = 0, which implies by deg(Φ∗

min) ≤ d∗f +E∗ that Φ∗
min = 0. This

cannot be since CEF(B) is a basis for the solution space of equation (2.15) and thus cannot

contain the zero vector. Hence Ψ∗
min 6= 0.

In Step 7 we define 1
g∗ f

∗ = 1
Ψ∗

min
Φ∗

min. We think of 1
g∗ f

∗ as our candidate solution. Next

in Step 8 we check if the candidate solution agrees with our starred bounds. We know from

Theorem 2 that if d∗f ≥ deg(f) and d∗g ≥ deg(g) the bounds for the minimal solutions must be

satisfied, so if they fail at least one bound is wrong.

Finally, we claim that if Algorithm 1 returns at Step 9 then we have computed the solution
1
gf . Of the L∗

bk points ξ` at Step 9 we discard ≤ R∗ “good” rank drops and ≤ E∗ erroneous

points for the solution (f, g) and ≤ k∗ = deg(Λ∗) ≤ E∗ points ξ` that have Λ∗(ξ`) = 0. The

remaining ≥ max{df + d∗g, dg + d∗f}+ 1 distinct ξ` satisfy

1. rank(Â[`]) = n,

2. Â[`]f(ξ`) = g(ξ`)b̂
[`],

3. Â[`]f∗(ξ`) = g∗(ξ`)b̂
[`], because

Â[`]Φ∗
min(ξ`) = Â[`]Λ∗(ξ`)f

∗(ξ`)

= Ψ∗
min(ξ`)b̂

[`] = Λ∗(ξ`)g
∗(ξ`)b̂

[`],

10

and Λ∗(ξ`) 6= 0.

From Items 2 and 3 we get Â[`](g(ξ`)f
∗(ξ`)−g∗(ξ`)f(ξ`)) = 0 which by Item 1 yields g(ξ`)f

∗(ξ`)−
g∗(ξ`)f(ξ`) = 0, that for at least max{df +d∗g, dg+d∗f}+1 distinct ξ`. The vector (gf∗−g∗f)(u)

has polynomials of degree ≤ max{df + d∗g, d
∗
f + dg} and is therefore equal 0, which proves

1
g∗ f

∗ = 1
gf .

We observe that d∗f ≤ df and d∗g ≤ dg implies that L∗
bk ≤ Lbk. Now Algorithm 1 guarantees

that with L∗
bk many evaluations we either compute the solution 1

gf or we determine that

deg(f) > d∗f and/or deg(g) > d∗g. Thus L∗
bk count can be used in an early termination strategy.

We give the details in the following algorithm.

Algorithm 2: Early Termination Strategy.

Input: df ≥ deg(f), dg ≥ deg(g),

ρE < 1/2, a rational number with denominator qE ,

the error rate.

ρR < 1− 2ρE , a rational number with denominator qR,

the rank drop rate, see Remark 2.

qE = qR =∞ is permissible but may require

more evaluations.

Output: 1
gf and Λ.

1: d∗f ← 0; d∗g ← 0.

2: D ← max{df+d∗g, dg+d
∗
f}+1.

3: E∗ ← bĒ∗c;R∗ ← bR̄∗c with

Ē∗ =
1

1−2ρE−ρR

(
ρE
(
D+1− 1

qR

)
+(1−ρR)

(
1− 1

qE

))
. (2.16)

R̄∗ =
1

1−2ρE−ρR

(
ρR
(
D+2− 2

qE

)
+(1−2ρE)

(
1− 1

qR

))
. (2.17)

4: if Algorithm 1(df , dg, d
∗
f , d

∗
g, E

∗, R∗) returns at Step 9

then return 1
gf ; end if

5: while(true) D ← D + 1.

returns below for D = max{df+ deg(g), dg+ deg(f)}+1

6: Reassign E∗, R∗ as in Step 3 using the updated D in (2.16, 2.17).

7: for all (d∗f , d
∗
g) with D = max{df + d∗g, dg + d∗f}+ 1 do

8: if Algorithm 1(df , dg, d
∗
f , d

∗
g, E

∗, R∗)

returns at Step 9 then return (f, g,Λ); end if

end for end while

11

Remark 2 Algorithm 2 saves evaluations is two ways. The first way we save evaluations is by

probabilistic computation of E∗ and R∗ based on the size of D rather than using fixed bounds.

Like [Kaltofen and Yang 2013] we view evaluations as probing a black box, thus we can also

relate the error rate of the black box to E∗. Also given the number of evaluation and a strategy

for choosing the evaluation points one may have a rate at which the problem drops rank. Such

a rate for the rank drop can then be related to R∗. If there is no such rate then R from the Lbk

count can always be substituted for R∗ without affecting Algorithm 2.

We make the following assumption on the input error rates:

Assumption 1 Suppose that for L ≥ Lmin
E the number of erroneous evaluations, kE, always

satisfies kE ≤ dρELe, and also for L ≥ Lmin
R : kR ≤ dρRLe evaluations give rise to valid but

rank deficient systems.

Here Lmin
E and Lmin

R are sufficiently large numbers of evaluations for which the assumptions

on kE and kR are sensible. Let Lmin = max{Lmin
E , Lmin

R }, then Lmin is a minimum on the number

of evaluations our algorithm can work with. Assumption 1 differs from the rate assumptions in

[Kaltofen and Yang 2013, Remark 1.1] and [Kaltofen and Yang 2014, Remark 1.1, Lemma 3.1]

in that there we suppose kE ≤ bρELc, which implies no error for L < 1/ρE . Our assumption

here allows 1 error. Note that for ρR = 0, qR = ∞ and ρE = 1/qE we get Ē∗ = D/(qE − 2) +

qE/(qE − 2) whereas in [Kaltofen and Yang 2013, 2014] we have Ē∗ = D/(qE − 2). In [Kaltofen

and Yang 2014, Remark 1.1] the assumptions are probabilistically validated by adjusting the

error rate upwards and bounding the probability of failure via Chernoff bounds.

We now show that Assumption 1 and the computation of E∗ and R∗ in (2.16, 2.17) guarantee

the input specifications for Algorithm 1. We have

L̄∗ = D + 2
(
ρEL̄

∗ + 1− 1

qE

)
+ ρRL̄

∗ + 1− 1

qR

=
1

1−2ρE−ρR
(
D + 3− 2

qE
− 1

qR

)
and for Ē∗, R̄∗ in (2.16,2.17) we have

Ē∗ = ρEL̄
∗ + 1− 1

qE
, R̄∗ = ρRL̄

∗ + 1− 1

qR
, L̄∗ = D + 2Ē∗ + R̄∗.

12

Therefore we have

k∗E ≤ dρEL∗
bke = dρE(D + 2E∗ +R∗)e

≤ ρE(D + 2E∗ +R∗) + 1− 1

qE

≤ ρE(D + 2Ē∗ + R̄∗) + 1− 1

qE

= ρEL̄
∗ + 1− 1

qE
= Ē∗,

which implies by the integrality of k∗E that k∗E ≤ bĒ∗c = E∗, as is required by Algorithm 1.

Similarly, one proves k∗R ≤ R∗.

We discuss now the second way Algorithm 2 saves evaluations. The algorithm initializes d∗f
and d∗g to zero. Thus L∗

bk ≤ Lbk. The fewest number of evaluations we can use in Algorithm

1 is D + R∗ + E∗ where D = max{df , dg}+ 1. Note this is the first bound used by Algorithm

2. We assume that D ≥ L, we can always adjust df and/or dg so that D ≥ L. If L∗
bk has

too few evaluations to return the solution, D is incremented by 1 and R∗ and E∗ are adjusted

if needed. The algorithm then tries all possible combinations of d∗f and d∗g such that D =

max{df +d∗g, dg+d∗f}+1. Thus we find the solution while incrementing D as slowly as possible.

2

13

2.4 Cabay Early Termination

We now describe the count L∗
cab that incorporates degree bounds for the system being solved.

The count is based on work in [Cabay 1971] (see also [Olesh and Storjohann 2007]). In The-

orem 3, given exact values for degree parameters, we give the criteria and proof for when

L∗
cab < L∗

bk.

Consider another count L∗
cab,

L∗
cab = max{dA + d∗f , db + d∗g}+R∗ + 2E∗ + 1,

where dA ≥ deg(A) and db ≥ deg(b). See (2.8) for the definitions of deg(A) and deg(b). Similar

to Algorithm 1 we present next an algorithm that uses the L∗
cab bound and either determines

one of the starred bounds is too small or returns the solution.

Algorithm 3: Cabay Early Termination

Input: dA ≥ deg(A), db ≥ deg(b),

d∗f , d∗g, with 0 ≤ d∗f ≤ deg(f), 0 ≤ d∗g ≤ deg(g)

same as in Algorithm 1

R∗ ≥
∣∣ { ` | Â[`]f(ξ`) = g(ξ`)b̂

[`]

and rank(Â[`]) < n for 0 ≤ ` ≤ L∗
cab − 1 }

∣∣,
E∗ ≥

∣∣ {λ | Â[λ]f(ξλ) 6= g(ξλ)b̂[λ] for 0 ≤ λ ≤ L∗
cab−1 }

∣∣,
Output: 1

gf and Λ or ”deg(f) > d∗f and/or deg(g) > d∗g”.

1: L∗
cab ← max{dA + d∗f , db + d∗g}+R∗ + 2E∗ + 1.

2: Determine the null space of the system

Â[`]Φ∗(ξ`)−Ψ∗(ξ`)b̂
[`] = 0, ` = 0, 1, . . . , L∗

cab − 1, (2.18)

where deg(Φ∗) ≤ d∗f + E∗,deg(Ψ∗) ≤ d∗g + E∗.

3: if only the trivial solution then

4: return deg(f) > d∗f and/or deg(g) > d∗g; end if

5: Compute a basis, B, for the null space

6: Compute the column echelon form for B,CEF(B). See Step 7 in Algorithm 1.

7: Λ∗ ← GCD(Φ∗
min,Ψ

∗
min); k∗ ← deg(Λ∗).

8: (f∗, g∗)← (1
Λ∗ Φ∗

min,Ψ
∗
min/Λ

∗).

9: return f ← f∗, g ← g∗, and Λ← Λ∗.

In Step 2 we again compute a similar object to (4.12) using our new starred degree bounds

. We now justify Steps 3 and 4. We prove that if the computation in Step 2 produces only the

14

trivial solution then deg(f) > d∗f and/or deg(g) > d∗g. Assume deg(f) ≤ d∗f and deg(g) ≤ d∗g.

Then (Φ∗,Ψ∗) = (Λf,Λg) solves (2.18). Thus equation (2.18) cannot only contain the trivial

solution. This implies that if (2.18) has only the trivial solution then deg(f) > d∗f and/or

deg(g) > d∗g.

We now justify Step 9. We prove that 1
g∗ f

∗ is the solution of our system. Furthermore, the

GCD(Φ∗
min,Ψ

∗
min) is the error locator polynomial. If we are at Step 9 of our algorithm then

we have that on at least max{dA + d∗f , d
∗
g + db} + E∗ + 1 evaluations Â[`]f(ξ`) = g(ξ`)b̂

[`] and

rank(Â[`]) = n. The latter implies that g(ξ`) 6= 0, for otherwise f(ξ`) = 0 and 1
gf would not be

reduced. For those ` we have computed Φ∗ and Ψ∗ such that Â[`]Φ∗(ξ`) = Ψ∗(ξ`)b̂
[`].

We show first that Â[`]Φ∗(ξ`) = Ψ∗(ξ`)b̂
[`] implies A(ξ`)Φ

∗(ξ`) = Ψ∗(ξ`)b(ξ`). If Ψ(ξ`) = 0

then Φ(ξ`) = 0 because Â[`] has linearly independent columns. If on the other hand Ψ(ξ`) 6= 0

we get Φ∗(ξ`)/Ψ
∗(ξ`) = f(ξ`)/g(ξ`) since the solution is unique. Now A(ξ`)(f(ξ`)/g(ξ`)) =

A(ξ`)(Φ
∗(ξ`)/Ψ

∗(ξ`)) = b(ξ`). So the computed Φ∗ and Ψ∗ must satisfy A(ξ`)Φ
∗(ξ`) =

Ψ∗(ξ`)b(ξ`).

Since A(u)Φ∗(u)−Ψ∗(u)b(u) is a polynomial vector of degree ≤ max{dA+d∗f , db+d∗g}+E∗

it is uniquely determined by max{dA + d∗f , db + d∗g} + E∗ + 1 distinct evaluation points so we

have A(u)Φ∗(u) = Ψ∗(u)b(u). So 1
gf = 1

Ψ∗
min

Φ∗
min = 1

g∗ f
∗. This implies there is a polynomial

Λ∗(u) with Λ∗f = Φ∗
min and Λ∗g = Ψ∗

min. For each λ we have Â[λ]f(ξλ) 6= g(ξλ)b̂[λ] and

Â[λ](Λ∗f)(ξλ) = Â[λ]Φ∗
min(ξλ) = Ψ∗

min(ξλ)b̂[λ] = (Λ∗g)(ξλ)b̂[λ] which implies Λ∗(ξλ) = 0. Thus

Λ = Λ∗.

Remark 3 Any non-zero solution computed in Step 5 of the previous algorithm has the prop-

erty 1
gf = 1

Ψ∗ Φ∗. Nevertheless, only the pair (Φ∗
min,Ψ

∗
min) = (Λf,Λg). So if there is no need to

compute the error locator polynomial then Step 6 is unnecessary.

Remark 4 If we implement Algorithm 2 replacing Algorithm 1 with Algorithm 3 then we then

get an early termination strategy for Cabay Termination. 2

Remark 5 The matrix A(u) having full rank implies by Cramer’s rule that we can set df =

(n− 1)dA + db and dg = ndA. So Lcab ≥ ndA + db +R+ 2E + 1 = df + dg/n+R+ 2E + 1 in

comparison to Theorem 2, which has Lbk ≥ df + dg +R+ 2E + 1. In Theorem 3 we generalize

when Lcab is better than Lbk. 2

Theorem 3 If all bounds are exact then Lcab < Lbk if and only if deg(g) > deg(A).

Proof. Af = gb implies deg(Af) = deg(gb) = deg(g) + deg(b). Since some terms can cancel due

to the matrix vector multiplication, Af , we have deg(Af) ≤ deg(A)+ deg(f). This implies that

deg(g) + deg(b) ≤ deg(A) + deg(f).

15

Assume deg(g) + deg(b) < deg(A) + deg(f). Then Lcab = deg(f) + deg(A) + R + 2E + 1 <

Lbk = deg(f) + deg(g) +R+ 2E + 1if and only if deg(g) > deg(A).

Now assume deg(g) + deg(b) = deg(A) + deg(f), then there are two cases.

Case 1: Lcab = deg(f) + deg(A) +R+ 2E + 1.

Case 2: Lcab = deg(g) + deg(b) +R+ 2E + 1.

We have already dealt with case 1. Consider case 2, Lcab = deg(g) + deg(b) + R + 2E + 1 <

Lbk = deg(f)+deg(g)+R+2E+1 if and only if deg(b) < deg(f). This implies deg(g) > deg(A)

since we assumed that deg(g) + deg(b) = deg(A) + deg(f). 2

Remark 6 If n = m = 1 then the Cramer rule bound in Remark 5 yields, in the exact case,

Lcab = Lbk. In fact the linear system A(u)x = b(u) is actually of the form a(u)x = b(u)

where a(u), b(u) ∈ K[u]. This implies x = b(u)/a(u) = f/g which implies a(u) = h(u)g(u)

and b(u) = h(u)f(u), where h(u) ∈ K[u]. Thus if we use the exact degrees for our bounds

we get Lbk ≤ Lcab, since in this case deg(g) ≤ deg(A). Furthermore, if one uses fewer than

L = deg(f) + deg(g) + 2k + 1 evaluations then one loses the guarantee of a unique solution. In

Lemma 1 below, given only L = deg(f) + deg(g) + 2k we construct a second solution. 2

Lemma 1 Let n = m = 1 and K a field. For all f, g ∈ K[u] with deg(g) ≥ 1 and GCD(f, g) = 1

and for all ξ0, . . . , ξL−1 with L = deg(f)+deg(g)+2k, ξ` 6= 0, ξ`1 6= ξ`2 for `1 6= `2, 0 ≤ `, `1, `2 ≤
L − 1 and g(ξ`) 6= 0 for all ` with 0 ≤ ` ≤ deg(f) + deg(g) − 1 and for all k ≥ 0 we have: if

|K| ≥ 2(deg(f) + deg(g) + k) + 1 then there exist f̄ , ḡ ∈ K[u] and there exist â[`], b̂[`] ∈ K for all

` with 0 ≤ ` ≤ L− 1 such that

1. f/g 6= f̄ /ḡ, GCD(f̄ , ḡ) = 1, deg(f) = deg(f̄) and deg(g) = deg(ḡ).

2. ḡ(ξ`) 6= 0 for all ` with 0 ≤ ` ≤ deg(f) + deg(g)− 1.

3. â[`]f(ξ`) = g(ξ`)b̂
[`] for all ` with 0 ≤ ` ≤ deg(f) + deg(g) + k − 1,

â[`]f̄ (ξ`) = ḡ(ξ`)b̂
[`] for all ` with 0 ≤ ` ≤ deg(f) + deg(g)− 1 or deg(f) + deg(g) + k ≤ ` ≤

L− 1.

4. â[`1]f(ξ`1) 6= g(ξ`1)b̂[`1] for all `1 with deg(f) + deg(g) + k ≤ `1 ≤ L− 1 and

â[`2]f̄ (ξ`2) 6= ḡ(ξ`2)b̂[`2] for all `2 with deg(f) + deg(g) ≤ `2 ≤ deg(f) + deg(g) + k − 1.

Proof. Recall the system we solve is given by equation (4.12) and we solve â[`]Φ(ξ`) = Ψ(ξ`)b̂
[`].

Let

Φ(u) = ydu
d + yd−1u

d−1 + . . .+ y0 and

Ψ(u) = ue + ze−1u
e−1 + . . .+ z0,

16

where d = deg(f) + k and e = deg(g) + k. For all ` such that 0 ≤ ` ≤ deg(f) + deg(g) − 1 let

â[`] = g(ξ`) and b̂[`] = f(ξ`). Assume first k = 0, i.e., there are no errors. We set up and solve

the non-homogeneous linear system

â[`]Φ(ξ`)−Ψ∗(ξ`)b̂
[`] = b̂[`]ξe` , (2.19)

where Ψ∗ = ze−1u
e−1 + ze−2u

e−2 + . . .+ z0.

Let B

[
y

z∗

]
= v be the matrix representation of our system in (2.19). We have for the right

side vector v that v 6= 0 since b̂[`] = f(ξ`) cannot be zero for all 0 ≤ ` ≤ deg(f) + deg(g) − 1

since deg(g) ≥ 1 and ξ` 6= 0 for all 0 ≤ ` ≤ L− 1. Our system then has L equations and L+ 1

unknowns, so B ∈ KL×(L+1). By construction

[
f

g∗

]
is a solution to our system. Since our system

is underdetermined there must be other solutions[
f̄c

ḡ∗c

]
=

[
f

g∗

]
+ cw

where w 6= 0 is in the null space of B and c 6= 0. Let p = resu(f+cwf , g+cwg∗), p is a polynomial

in c, p 6= 0 since p(0) 6= 0. Note deg(p) ≤ deg(f) + deg(g) and |K| ≥ 2(deg(f) + deg(g) + k) + 1.

Thus there must be c1 ∈ K such that c1 6= 0, p(c1) 6= 0 and lc(f) 6= −lc(c1wf). Consider f̄ = f̄c1

and ḡ = ḡc1 . Then by construction deg(f) = deg(f̄) and deg(g) = deg(ḡ). Also since p(c1) 6= 0

we have that GCD(f̄ , ḡ) = 1.

Next we show that f/g 6= f̄ /ḡ. We show first that

[
f

g∗

]
and

[
f̄

ḡ∗

]
are linearly inde-

pendent. Assume

[
f

g∗

]
and

[
f̄

ḡ∗

]
are linearly dependent, then there exits α 6= 0 such that

α

[
f

g∗

]
=

[
f̄

ḡ∗

]
, which implies α

[
f

g∗

]
=

[
f

g∗

]
+ c1w , which further implies (α − 1)

[
f

g∗

]
=

c1w , α 6= 1 since c1 6= 0 and w 6= 0. So α−1
c1

[
f

g∗

]
= w , but 0 6= α−1

c1
v = α−1

c1
B

[
f

g∗

]
= Bw =

0, which is a contradiction. Thus

[
f

g∗

]
and

[
f̄

ḡ∗

]
are linearly independent, which implies that[

f

g

]
,

[
f̄

ḡ

]
are linearly independent. Which further implies that f/g 6= f̄ /ḡ.

To see why ḡ(ξ`) 6= 0 for all ` with 0 ≤ ` ≤ deg(f) + deg(g) − 1, assume ḡ(ξ`) = 0 for

all ` with 0 ≤ ` ≤ deg(f) + deg(g) − 1. Since GCD(f̄ , ḡ) = 1 and â[`]f̄ (ξ`) = ḡ(ξ`)b̂
[`] then

ḡ(ξ`) = 0 implies that â[`] = 0. This is a contradiction since â[`] = g(ξ`) 6= 0 for all ` with

17

0 ≤ ` ≤ deg(f) + deg(g)− 1. Thus ḡ(ξ`) 6= 0 for all ` with 0 ≤ ` ≤ deg(f) + deg(g)− 1.

Now assume k > 0. By construction for all ` with 0 ≤ ` ≤ deg(f) + deg(g) − 1 we have

â[`]f(ξ`) − g(ξ`)b̂
[`] = 0 and â[`]f̄ (ξ`) − ḡ(ξ`)b̂

[`] = 0. Thus â[`](ḡ(ξ`)f(ξ`) − g(ξ`)f̄ (ξ`)) = 0.

Since â[`] 6= 0 it must be that ḡ(ξ`)f(ξ`) − g(ξ`)f̄ (ξ`) = 0. Since f/g 6= f̄ /ḡ, and GCD(f, g) =

GCD(f̄ , ḡ) = 1 then ḡf − gf̄ ∈ K[u] is not identically zero. Since deg(f) = deg(f̄) and deg(g) =

deg(ḡ) and (ḡf − gf̄)(ξ`) = 0 for all ` with 0 ≤ ` ≤ deg(f) + deg(g) − 1 we must have

that deg(ḡf − gf̄) = deg(f) + deg(g). Observe that ξ` for 0 ≤ ` ≤ deg(f) + deg(g) − 1 are

deg(f) + deg(g) distinct roots of (ḡf − gf̄)(u), so (ḡf − gf̄)(u) can have no other roots. Let

â[`] = g(ξ`) and b̂[`] = f(ξ`) for all ` with deg(f) + deg(g) ≤ ` ≤ deg(f) + deg(g) + k − 1.

Then for all ` with 0 ≤ ` ≤ deg(f) + deg(g) + k − 1 we have â[`] = g(ξ`) and b̂[`] = f(ξ`) and

therefore â[`]f(ξ`)− g(ξ`)b̂
[`] = 0. By construction â[`]f̄ (ξ`)− ḡ(ξ`)b̂

[`] = 0 for all ` with 0 ≤ ` ≤
deg(f)+deg(g)−1. Let â[`] = ḡ(ξ`) and b̂[`] = f̄ (ξ`) for all ` with deg(f)+deg(g)+k ≤ ` ≤ L−1

then have we have â[`]f̄ (ξ`)− ḡ(ξ`)b̂
[`] = 0 for all ` with deg(f) + deg(g) + k ≤ ` ≤ L− 1.

Assume there exist ξ` for some ` with deg(f) + deg(g) ≤ ` ≤ deg(f) + deg(g) + k − 1 such

that â[`]f̄ (ξ`)− ḡ(ξ`)b̂
[`] = 0. Then (ḡf − gf̄)(ξ`) = 0 for that ξ`. Which is a contradiction since

we have already shown that if ξ` is a root of (ḡf − gf̄)(u) then ` < deg(f) + deg(g). Thus for

all ` with deg(f) + deg(g) ≤ ` ≤ deg(f) + deg(g) + k − 1 we must have â[`]f̄ (ξ`) 6= ḡ(ξ`)b̂
[`].

A similar argument shows that for all ` with deg(f) + deg(g) + k ≤ ` ≤ L − 1 we have

â[`]f(ξ`) 6= g(ξ`)b̂
[`]. Thus â[`1]f(ξ`1) 6= g(ξ`1)b̂[`1] for all `1 with deg(f)+deg(g)+k ≤ `1 ≤ L−1

and â[`2]f̄ (ξ`2) 6= ḡ(ξ`2)b̂[`2] for all `2 with deg(f) + deg(g) ≤ `2 ≤ deg(f) + deg(g) + k − 1. 2

We now show that if the solution 1
gf is such that f [i1] = f [i2] 6= 0 for all 1 ≤ i1 < i2 ≤ n then

deg(g) ≤ deg(A). Thus, by Theorem 3, if our parameters are exact we have that Lbk ≤ Lcab.

Lemma 2 If A is full rank, and the vector f has the property that f [i1] = f [i2] 6= 0 for all

1 ≤ i1 < i2 ≤ n, and Af = gb then b 6= 0m.

Proof. A full rank implies rank(A(u)) = n. Assume b = 0m, this implies f [1]
∑n

j=1 ai,j = 0, i =

1, . . . ,m. Since f 6= 0 this is equivalent to
∑n

j=1Aj = 0, which implies the columns of A are

linearly dependent. Thus A is not full rank, which is a contradiction. 2

Corollary 1 If A is full rank and f [i1] = f [i2] 6= 0 for all 1 ≤ i1 < i2 ≤ n then deg(g) ≤ deg(A),

thus by Theorem 3 in the exact case Lbk ≤ Lcab.

Proof. Let A full rank and A(1
gf) = b, g 6= 0. This implies Af = gb, which further implies

f [1]
∑

j ai,j = gbi for all i. We know by Lemma 2 that bi 6= 0 for all i. Recall that if 1
gf is the

solution to Ax = b then GCD(f, g) = 1. Thus f [1]
∑

j ai,j = gbi implies g divides
∑

j ai,j for

all i. For those i such that bi 6= 0, deg(g) ≤ deg (
∑
ai,j) ≤ max1≤i≤m,1≤j≤n deg(ai,j) = deg(A).

Thus deg(g) ≤ deg(A). 2

18

We now have two counts that we can use to solve the problem we describe in Remark 1.

Theorem 3 tells us that whenever deg(g) > deg(A) then the Lcab count uses fewer evaluations

than the Lbk count if all parameter values are exact. Lemma 1 shows however, that if n = m = 1

we cannot do better than the Lbk count. Lemma 2 and Corollary 1 tell us that if the solution 1
gf

is such that f [i1] = f [i2] for all 1 ≤ i1 < i2 ≤ n then it must be the case that the deg(A) > deg(g).

In the following section we combine the two counts to get a general early termination strategy.

Such a termination strategy would be useful when little is known about the degree of the system

and/or solution, since in such cases it is likely that the bounds one chooses are much larger

than the actual value of the parameters.

19

2.5 Combined Early Termination

We now describe an algorithm that combines the early termination strategy for the Lbk count

with early termination strategy for the Lcab count. This strategy can be implemented when

we are unsure how the deg(g) compares to the deg(A) and we suspect that our degree bounds

significantly overestimates the actual values of their respective parameters.

Algorithm 4: Early Termination with L∗
bk and L∗

cab

Input: df ≥ deg(f), dg ≥ deg(g), dA ≥ deg(A), db ≥ deg(b)

ρE < 1/2, a rational number with denominator qE ,

the error rate

ρR < 1− 2ρE , a rational number with denominator qR,

the rank drop rate, see Remark 2.

Output: f, g, and Λ.

1: d∗f ← 0; d∗g ← 0.

2: D ← min
{

max{df + d∗g, dg + d∗f},max{dA + d∗f , db + d∗g}
}

+ 1.

3: E∗ ← bĒ∗c;R∗ ← bR̄∗c where Ē∗ and R̄∗ are as defined in equations (2.16) and (2.17)

respectively.

4: if max{df + d∗g, dg + d∗f} ≤ max{dA + d∗f , db + d∗g} then

5: if Algorithm 1(df , dg, d
∗
f , d

∗
g, E

∗, R∗)

returns at Step 9 then return (f, g,Λ); end if

else

6: if Algorithm 3(dA, db, d
∗
f , d

∗
g, E

∗, R∗)

returns at Step 9 then return (f, g,Λ); end if

end if

7: while(true) D ← D + 1.

8: Reassign E∗, R∗ as in Step 3 using the updated D in equations

(2.16) and (2.17) respectively.

9: for all (d∗f , d
∗
g) with D = min

{
max{df + d∗g, dg + d∗f},

max{dA + d∗f , db + d∗g}
}

+ 1 do

10: if D = max{df + d∗g, dg + d∗f} then

11: if Algorithm 1(df , dg, d
∗
f , d

∗
g, E

∗, R∗)

returns at Step 9 then return (f, g,Λ); end if

else

12: if Algorithm 3(dA, db, d
∗
f , d

∗
g, E

∗, R∗)

returns at Step 9 then return (f, g,Λ); end if

end if; end for; end while

20

Remark 7 The justification for Algorithm 4 follows from the justification for Algorithm 2.

If values for dA and db are not known they can be set to infinity and Algorithm 4 becomes

Algorithm 2. Similarly if values for df and dg are not known they can be set to infinity and

Algorithm 4 is the Cabay early termination algorithm.

21

2.6 Summary

[Boyer and Kaltofen 2014] give an algorithm that can be used to solve a black box parametric

linear system in one variable. The algorithm works even if for some queries to the black box

return erroneous results. Their algorithm uses the generalized Welch/Berlekamp count. The

generalized Welch/Berlekamp count requires the sum of an upper bound for the common de-

nominator and an upper bound for the corresponding numerators of the solution in order to

determine the number of queries to the black box that are necessary to recover the solution.

Thus, if one or both of the degree bounds are much larger than the actual degrees then the

algorithm will make that much more queries to the black box, which in addition may cause

an increase in the number of expected errors and places where the scalar matrices are rank

deficient. Though their algorithm does not tell us precisely what happens if the degree bounds

are not met, we showed that the algorithm can always diagnose if the degrees that are input

to the algorithm do not bound the actual degrees of the solution. With this property, we can

start with any degrees on input and increment them if the algorithm reports that they are too

low. The algorithm terminates once the input degrees bound the actual degrees of the solution.

If there is an error rate and/or a rank drop rate then the upper bounds for the number of

errors and/or number of rank drops can be adjusted respectively each time the input degrees

are incremented. This may cause further reduction of the number of queries to the black box.

We then showed how to compute another count for the number of queries to the black box

that can be used to recover the solution even if for some queries the black box return erroneous

results. The second count, based on work by [Cabay 1971] and later [Olesh and Storjohann

2007], though it requires an upper bound for the common denominator as well as an upper

bound for the corresponding numerators it does not require their sum. Instead, it also requires

knowledge of an upper bound for degree of the polynomials in the matrix as well as an upper

bound for the degree of the polynomials in the right side vector. Like with the generalized

Welch/Berlekamp count the algorithm can diagnose if the input degrees for the denominator

and numerator do not bound from above the actual degrees of the solution. Thus the early

termination strategy applies for Cabay count as well. We also showed that if our bounds are

exact then the Cabay count is smaller than the generalized Welch/Berlekamp count only if the

degree of the matrix is smaller than the degree of the common denominator. Thus if the degree

of the solution is high relative to the degree of the system then the Cabay count would require

fewer evaluations than the generalized Welch/Berlekamp count to recover the solution.

Finally we presented an algorithm that uses both bounds so as to achieve early termination

regardless of the relationship between the degree of the system and its solution.

22

Chapter 3

Rational Vector Recovery with

Error Correction as a Specialization

of Parametric Linear System Solving

3.1 Introduction

Rational function vector recovery with errors is a special case of the algorithm in [Boyer and

Kaltofen 2014] for parametric linear system solving with errors. If we consider b̂[`] = 1
g(ξ`)

f(ξ`)

and Â[`] = In then we can recover the rational function vector 1
g(u)f(u) from its evaluations,

when some evaluations are erroneous, using the [Boyer and Kaltofen 2014] algorithm. Thus we

can apply our early termination algorithms to the problem of rational function vector recovery

with errors. There is just one caveat; for rational functions 1
g(u)f(u) where the deg(g) > deg(A)

we need more information at poles (when ξ` is a root of g). There are examples where it is not

enough to just indicate that an evaluation point is a pole when attempting early termination.

If we are to recover the rational function vector when some evaluations are poles then we need

the black box to provide information about the numerators of the solution. We discuss in detail

the additional information we require from the black box when it indicates that an evaluation

is a pole.

23

3.2 Rational Vector Recovery

Suppose that there is a vector of rational functions 1
gf we wish to recover, and assume that

this vector of rational functions is the unique solution to a system of linear equations

A(u) x = b(u), A(u) ∈ K[u]m×n, b(u) ∈ K[u]m,

where K is a field. See (2.10).

Let

γ
[`]
i =

f [i](ξ`)/g(ξ`) if g(ξ`) 6= 0

∞ if g(ξ`) = 0.

We further assume that we have a black box that takes ξ` ∈ K as inputs and returns vectors β
[`]
i

such that β
[`]
i = γ

[`]
i for ` /∈ {λ1, . . . , λk} and all 1 ≤ i ≤ n and β

[`]
i 6= γ

[`]
i for ` ∈ {λ1, . . . , λk} on

at least one i, 1 ≤ i ≤ n. The remaining m−n entries of the vector is filled with zeros. We show

that using the model in [Boyer and Kaltofen 2014] as defined in Section 2.2, one can recover

the rational vector 1
gf . Recall that in the model Â[`] and b̂[`] do not necessarily equal A(ξ`) or

b(ξ`) respectively. We only need on sufficiently many evaluations to have Â[`]f(ξ`) = g(ξ`)b̂
[`],

and rank(Â[`]) = n.

Thus if we let

Â[`] =


In

0 . . . 0
...
. . .

...

0 . . . 0

 and b̂[`] =



β
[`]
1
...

β
[`]
n

0
...

0


, (3.1)

for all ξ` such that g(ξ`) 6= 0, and

Â[`] = 0m×n and b̂[`] =


1

0
...

0

 , (3.2)

whenever g(ξ`) = 0 we can recover the vector of rational functions. We shall call the ξ`’s such

that g(ξ`) = 0 the poles of the rational function. If none of our black box evaluations indicate

that we have evaluated at a pole then Â[`] is always full rank. We know that we can recover the

24

rational vector with L = df + dg + 2E + R + 1 and L = max{df + dA, dg + db} + 2E + R + 1

evaluations respectively. Note R = 0 since rank(Â[`]) = n for all 0 ≤ ` ≤ L − 1. Now there

must be a matrix A(u) of minimal degree for which the vector 1
gf is the solution of the system

A(u)x = b(u). We have proved in Theorem 3 that in the cases where the deg(g) > deg(A),

L = max{deg(f) + deg(A), deg(g) + deg(b)}+ 2k+ 1 < L = deg(f) + deg(g) + 2k+ 1 so we can

achieve Cabay early termination.

Suppose that on some evaluations of ξ`’s the black box indicates, by the value ∞, that we

have encountered a pole. We show that the count L = df + dg + 2E + 1 evaluations suffices to

recover the rational function vector. Ideally, we would like to say that this follows directly from

Theorem 2, however we cannot guarantee that we have rank(Â[`]) = n on ≥ df + dg + E + 1

many points for which Â[`]f(ξ`) = g(ξ`)b̂
[`], one of the assumptions of Theorem 2. This full

rank assumption is used in the proof of Theorem 2 only to establish that the vector of field

elements Ψ(ξ`)f(ξ`)− g(ξ`)Φ(ξ`) = 0. Thus if we can establish that the vector of field elements

Ψ(ξ`)f(ξ`)− g(ξ`)Φ(ξ`) = 0 without using the fact that the rank(Â[`]) = n on ≥ df +dg +E+ 1

many points we would establish our claim as all other assumptions of Theorem 2 remain the

same.

Proof. There are two possibilities on non-erroneous evaluations of ξ`, that is ` /∈ {λ1, . . . , λk}:

1. g(ξ`) = 0 which implies Ψ(ξ`) = 0. See (3.2).

2. g(ξ`) 6= 0 which implies Φ(ξ`) = Ψ(ξ`)
1

g(ξ`)
f(ξ`).

Recall that we solve equation (4.12). Note that in both cases we indeed have the vector of field

elements Ψ(ξ`)f(ξ`)− g(ξ`)Φ(ξ`) = 0. Thus our claim is established. 2

Remark 8 The system formed by using Â[`] and b̂[`] as described in (3.1) and (3.2) above is

overdetermined. We show in Lemma 1 that without additional information about the errors

we can always construct a second solution that has the same characteristics as the actual

solution. Nevertheless, given appropriate assumptions about the error locations one can reduce

the number of necessary equations. For instance, in decoding interleaved Reed-Solomon codes

it is assumed that the errors occur in bursts, that is errors occur in blocks [Bleichenbacher,

Kiayias, and Yung 2003; Schmidt, Sidorenko, and Bossert 2009]. In a forthcoming paper we

will give the analysis for a semi-deterministic scenario, that is where the actual errors do not

need to be random field elements. Note that Theorem 3 describes a second scenario where the

number of evaluations is less for interleaved codes, namely when the vector encodes a rational

function that is the solution to a parametric linear system (see also [Pernet 2014]). 2

25

3.3 Cabay Early Termination with poles

Suppose deg(g) > deg(A) and that on evaluation at some ξ`’s, ` /∈ {λ1, . . . , λk}, the black box

indicates that g(ξ`) is a pole. There are examples where Lcab = max{df +dA, dg +db}+ 2E+ 1

evaluations are not sufficient to recover the rational function vector using our current model for

rational vector recovery. To prove that Lcab was sufficient to recover the rational function vector
1
gf we needed the rank(Â[`]) = n for all ξ`, ` /∈ {λ1, . . . , λk}. We needed this to establish that

A(ξ`)Φ(ξ`) = Ψ(ξ`)b(ξ`) and the pair (Λf,Λg) is a solution to our linear system, where Λ(u)

is the error locator polynomial. However in our rational vector recovery model we set Â[`] = 0

whenever g(ξ`) = 0 for all `, see (3.2). Note that in the current rational vector recovery model

when g(ξ`) = 0 we set Ψ(ξ`) = 0 and lose all information about Φ(ξ`), see (3.2). Consequently

we may not be able to recover 1
gf as we may not have enough information about f . To remedy

the lack of information we adjust our black box output to gain some information about f at

poles. Let

γ
[`]
i =



1
g(ξ`)

f(ξ`) if g(ξ`) 6= 0

w [1], . . . ,w [r`], a basis for the

null space of A(ξ`),

or

c`f(ξ`), a non-zero scalar multiple

of the evaluated numerator vector,

both with an indication that g(ξ`) = 0


if g(ξ`) = 0

be what the black box returns. We show that if at the poles we add the equations Φ(ξ`) =

Θ`,1w [1] + . . .+ Θ`,r`w
[r`], or Φ(ξ`) = Θ`c`f(ξ`), c` 6= 0, to the set of equations produced by the

original rational vector recovery model then we can recover 1
gf with Lcab = max{df + dA, dg +

db}+ 2E + 1 evaluations, where Θj ∈ K for all j are new unknowns.

Theorem 4 Suppose that for ≥ max{df + dA, dg + db} + E + 1, ξ` we have β
[`]
i = γ

[`]
i for all

i. If we add

Ψ(ξ`) = 0 and (3.3)

Φ(ξ`) = Θ`,1w [1] + . . .+ Θ`,r`w
[r`] or (3.4)

Φ(ξ`) = Θ`c`f(ξ`), c` 6= 0. (3.5)

to the system we solve, whenever γ
[`]
i = ∞ for all i, 1 ≤ i ≤ m, and if Φ ∈ K[u]n,Ψ ∈ K[u],

and Θ`,1, . . . ,Θ`,r` ∈ K, or Θ` ∈ K is a solution of the system, then for the pair (Φ,Ψ) that we

compute we have A(ξ`)Φ(ξ`) = Ψ(ξ`)b(ξ`), and (Λf,Λg) solve (3.3), and (3.4) or (3.5).

26

Proof. Note that the black box can return w [1], . . . ,w [r`] for some poles and c`f(ξ`), c` 6= 0

for others. If g(ξ`) = 0 then we add two sets of equations, (3.3), and (3.4) or (3.5). Clearly

Ψ(ξ`)b(ξ`) = 0m, and for (3.4) we have

A(ξ`)Φ(ξ`) = A(ξ`)(Θ`,1w [1] + . . .+ Θ`,r`w
[r`])

= Θ`,1A(ξ`)w
[1] + . . .+ Θ`,r`A(ξ`)w

[r`] = 0m,

or for (3.5) we have

A(ξ`)Φ(ξ`) = A(ξ`)(Θ`c`f(ξ`))

= Θ`c`A(ξ`)f(ξ`) = g(ξ`)b(ξ`) = 0m.

Thus we indeed have A(ξ`)Φ(ξ`) = Ψ(ξ`)b(ξ`) whenever g(ξ`) = 0. Consider Λ(ξ`)A(ξ`)f(ξ`) =

Λ(ξ`)g(ξ`)b(ξ`) = 0m. We always have A(ξ`)f(ξ`) = g(ξ`)b(ξ`) = 0m when g(ξ`) = 0. This

implies that f(ξ`) must be in the null space of A(ξ`). Thus f(ξ`) =
∑

j d`,jw
[j], d`,j ∈ K. So if

at a pole we add equation (3.4), then Λ(ξ`)f(ξ`) = Λ(ξ`)
∑

j d`,jw
[j], so Θ`,j = Λ(ξ`)d`,j implies

that Λ(ξ`)f(ξ`) solves (3.4). If we add (3.5) at a pole, observe that Λ(ξ`)f(ξ`) = Θ`c`f(ξ`)

implies Θ` = Λ(ξ`)/c`. So Λ(ξ`)f(ξ`) solves (3.5). Clearly Λ(ξ`)g(ξ`) is a solution to (3.3). 2

27

3.4 Summary

The recovery of a black box vector rational functions from its evaluation when some evaluations

maybe erroneous is a specialization of the algorithm for full rank parametric linear system

solving with error correction. In chapter 2 we discussed early termination strategies for full rank

parametric linear system algorithm. We showed in this chapter that rational vector recovery

with errors is a special case of the problem of finding a solution to parametric system when some

evaluations are erroneous. Since rational vector recovery is just a special case of the parametric

linear system problem our early termination strategies apply. If we allow some evaluations of the

rational function vector to be poles (roots of the common denominator) then some additional

information is required if the Cabay count is used. See section 3.3 for a full discussion of the

problem that poles present as well as the additional information we require to recover the

rational function vector.

28

Chapter 4

Parametric Linear System Solving

with Error Correction for Rank

Deficient Systems

4.1 Introduction

Consider consistent linear systems of the form A(u)x = b(u), where A(u) ∈ K[u]m×n, m ≥ n

and rank(A(u)) = r < n. That is, A(u) is rank deficient. The right side vector b(u) ∈ K[u]m

and K is a field. Such systems have as their solutions rational function vectors x (u) with entries

xi(u) = f [i](u)/g[i](u), 1 ≤ i ≤ n. We consider solutions, 1
g(u)f(u), to be such that g(u) is the

monic least common denominator, that is

GCD(f, g)
def
= GCD(GCDi(f

[i]), g) = 1.

Since the matrices of the systems we consider are rank deficient a solution that has g(u) as

the denominator is not unique like in the full rank case discussed in Chapter 2. See also [Boyer

and Kaltofen 2014]. As in the full rank case, however, the solutions of such systems can be

determined by evaluating the system at distinct points, ξ`, from the field K and interpolating

the evaluated solution [McClellan 1973]. Like the full rank case a degree bounded solution can

be found even if some evaluations are erroneous. Once again for a non-erroneous evaluation

point, ξ`, it is not necessary to have evaluations of the matrix, A(ξ`), and right side vector,

b(ξ`), in order to interpolate the solution. We require only a scalar matrix, Â[`] ∈ Km×n, and

right side vector, b̂[`] ∈ Km, that agrees with any evaluated solution. That is for all x ∈ Kn such

that A(ξ`)x = b(ξ`) we have Â[`]x = b̂[`]. Though a polynomial matrix is rank deficient it has

29

a fixed rank, and like in the full rank case there are finitely many evaluations which may cause

the evaluated matrix to drop below the true rank.

Consider the following model. Suppose there exists an oracle, which we will refer to as the

black box. If we supply the black box with a value, ξ`, from the field K the black box returns

to us Â[`] ∈ Km×n and b̂[`] ∈ Km. The scalar matrix, Â[`], and right side vector, b̂[`], that are

returned may not be A(ξ`) and b(ξ`). Nevertheless, if we query the black box L times we assume

that ≤ E times we get a scalar matrix, Â[λ], and right side vector b̂[λ] such that there exists

a solution of the evaluated system that is not a solution to the scalar system returned by the

black box. That is ≤ E times the black box returns a scalar system such that there exists x

such that A(ξλ)x = b(ξλ), but Â[λ]x 6= b̂[λ]. Such evaluations are considered to be erroneous.

Furthermore, we assume that ≤ R times the black box returns a scalar matrix, Â[`], and right

side vector, b̂[`], such that there are no errors but the rank(Â[`]) < r. The objective is to find a

degree bounded solution, x (u) = 1
g(u)f(u), of the system A(u)x (u) = b(u). The degree bounds

for the solution are known a-priori and are inputs to the algorithm. Observe that this model is

a generalization of the model for full rank systems.

Unlike in the full rank case our algorithm does not simultaneously compute the error locator

polynomial along with a degree bounded solution. Our algorithm instead identifies and removes

the errors before computing the solution. In order to identify the errors we separate all possible

errors into two categories. The first category of errors we refer to as Matrix Errors. Matrix

Errors occur if the scalar matrix, Â[λ], returned by the black box is such that there is no scalar

right vector that would make the scalar system consistent for all solutions of the evaluated

system. See Definition 2. A key observation is that Matrix Errors occur at an evaluation, ξλ, if

and only if the null space of the evaluated matrix, A(ξλ), is not equal to the null space of the

scalar matrix, Â[λ]. Thus, we identify and remove all Matrix Errors by essentially interpolating

the null space of A(u) from the scalar matrices returned by the black box.

The second category of errors we refer to as Right Side Vector Errors. Right Side Vector

Errors occur if the scalar matrix, Â[λ], returned by the black box is such that there exists a

scalar right side vector, b̃, for which the scalar system in not erroneous, however the scalar

right side vector, b̂[λ], returned by the black box is not equal to b̃. See Definition 6. Notice that

because the solution is unique in the full rank case all errors are Right Side Vector Errors.

Thus to locate right side vector errors we identify linearly independent columns of the scalar

systems and run the full rank algorithm. Recall that the full rank algorithm computes an

error locator polynomial and solution simultaneously. We may not be able to use the solution

computed because it may not be bounded by our input degree bounds. Nevertheless, we are

able to identify all Ride Side Vector Errors.

Since any error is either a Matrix Error or a Right Side Vector Error we can identify and

30

remove all errors. Thus allowing us to solve an error free system. The solutions to the error free

system are bounded by the input degree bounds.

31

4.2 Exact Vector-of-Functions Solving - Rank Deficient

Systems

We solve a system of linear equations

A(u) x (u) = b(u), A(u) ∈ K[u]m×n, b(u) ∈ K[u]m, (4.1)

where K is a field and m ≥ n. We shall assume that the system is rank deficient, but consistent.

Any solution x (u) of the system can be expressed in the form

x (u) =


...

1
g(u)f

[i](u)
...

 ∈ K(u)n, g 6= 0, (4.2)

where g is a least common (monic) denominator, whose leading coefficient in u is 1.

Unlike the full rank case discussed in [Boyer and Kaltofen 2014] and [Kaltofen, Pernet,

Storjohann, and Waddell 2017], a solution with particular degree in g is not unique. So we

compute one solution from the set of degree-bounded solutions namely,

1

g
f ∈ Sdf ,dg{(y, z) | Ay = zb, y ∈ K[u]m,∀ i : deg(yi) ≤ df , z ∈ K[u], z 6= 0,deg(z) ≤ dg}

Definition 1 Let gmin be a monic least common denominator with minimal degree.

Theorem 5 If 1
gmin

f is a solution to equation (4.1) then gmin is unique.

Proof. Assume 1
g1
f and 1

g2
f̄ are solutions of our linear system such that g1 and g2 are monic, of

minimal degree, and g1 6= g2. Then we have Af = g1b and Af̄ = g2b. So that Af−Af̄ = g1b−g2b.

We then have that A(f − f̄) = (g1− g2)b. Let f − f̄ = f∗ and g1− g2 = g∗ 6= 0, then Af∗ = g∗b

implies 1
g∗ f

∗ is another solution to our linear system such that deg(g∗) < deg(g1) = deg(g2).

This contradicts the assumption that deg(g1) = deg(g2) is minimal. Thus gmin is unique. 2

Since the matrices of the systems we are solving are rank deficient a solution with minimal

degree in the denominator is not unique among all solutions. Nevertheless, by theorem 5 we

know that the monic denominator of minimal degree is unique among all solutions. Once again

we do not have access to the matrix A(u) and right side vector b(u). We do, however, have

access to a black box. The black box when supplied with a value, ξ`, from the field K returns

a scalar matrix Â[`] ∈ Km×n and scalar right side vector b̂[`] ∈ Km. The scalar matrix Â[`] and

right side vector b̂[`] are not necessarily A(ξ`) and b(ξ`) respectively.

32

Let W` = {w ∈ Kn | A(ξ`)w = b(ξ`)} and Ŵ` = {ŵ ∈ Kn | Â[`]ŵ = b̂[`]}. There is an error

at ξλ if there exists w ∈Wλ such that w /∈ Ŵλ. That is Wλ * Ŵλ. If we query the black box L

times then errors occur at ≤ E many evaluations.

The matrix A(u) has a definitive rank r < n. Like in the full rank case there are finitely

many evaluations that may cause the rank to drop below r. Nonetheless, with high probability

the rank of A(ξ`) = r, [Storjohann and Villard 2005]. We assume that ≤ R many queries, ξ`,

to the black box returns Â[`] and b̂[`] such that no error occurs but the rank(Â[`]) < r.

Theorem 6 If the rank(A(u)) = r and gmin(ξ`) = 0 then the rank(A(ξ`)) < r.

Proof. The rank(A(u)) = r implies that A has at least one r × r non singular submatrix. Let

qr be the determinant of any such a submatrix, qr ∈ K[u] and qr 6= 0. By Cramer’s rule there

always exist solutions such that the common denominator g is a factor of some qr. Let 1
gr
fr

be a solution where gr is a factor of some qr. Note that the deg(gr) ≥ deg(gmin). Let cr be

the quotient when we divide gr by gmin. Observe that 1
crgmin

crf is a solution to our system. So

we have Afr = grb and Acrf = crgminb. This implies that A(fr − crf) = (gr − crgmin)b. Now

gr− crgmin is the remainder when gr is divided by gmin, thus deg(gr− crgmin) < deg(gmin). This

would then imply that 1
gr−crgmin

(fr − crf) is a solution to our system that has denominator

degree less than gmin, which is a contradiction. Thus gr − crgmin = 0 and gmin|gr. This further

implies that gmin|qr. Since gmin(ξ`) = 0 then it must be that qr(ξ`) = 0, so rank(A(ξ`)) < r.

2

It should be possible to compute a solution vector 1
gmin

f from scalar matrices, Â[`], and

right side vectors b̂[`] where Â[`] and b̂[`] are not necessarily A(ξ`) and b(ξ`) respectively as

long as errors occur at ≤ E evaluations. We should also be able to compute an error locator

polynomial, Λ, without having to check the solution against all the systems returned by the

black box. One idea is to use the full rank algorithm with the rank deficient interpretation of

E and R. That is, let

Lcab = max{df + dA, dg + db}+ 2E +R+ 1 (4.3)

where

E ≥ |{λ |Wλ 6⊆ Ŵλ for 0 ≤ λ ≤ Lcab − 1}|, (4.4)

and

R ≥ |{` |W` ⊂ Ŵ` for 0 ≤ ` ≤ Lcab − 1}|. (4.5)

The bounds df , dg, R and E are input to the algorithm. The required number of evaluations are

named for [Cabay 1971], see also [Olesh and Storjohann 2007]. Recall that we solve the linear

33

system

Â[`]


...

Φ[i](ξ`)
...

−Ψ(ξ`)b̂
[`] = 0, deg(Φ[i]) ≤ df +E,deg(Ψ) ≤ dg +E, 0 ≤ ` ≤ Lcab − 1. (4.6)

in the unknown coefficients Φ[i](u) and Ψ(u). The linear system (4.6) has n(df+E+1)+dg+E+1

unknown coefficients for Φ[i](u) and Ψ(u) and mLcab equations.

Lemma 3 If the rank(A(ξ`)) = rank(Â[`]) and W` ⊆ Ŵ` then W` = Ŵ`.

Proof. The general solution of any nonhomogeneous linear system consists of a particular so-

lution for the nonhomogeneous system plus the general solution of the corresponding homoge-

neous system. We know that the solutions to the homogeneous systems are exactly the entries

in the null space of the matrix. While the null space of a matrix is a vector space, the set

of all solutions of a nonhomogeneous linear system is not a vector space. Instead the set of

all solutions to a nonhomogeneous linear system forms an affine subspace that is a transla-

tion of the null space. The dimension of the affine space is equal to the dimension of the

translated space. So for linear systems the dimension of the space containing all solutions is

equal to the dimension of the null space of the matrix. Thus the dim(W`) = dim(N(A(ξ`))).

Since we assume rank(A(ξ`)) = rank(Â[`]) then by the Rank Plus Nullity Theorem we know

that the dim(N(A(ξ`))) = dim(N(Â[`])). Since the dim(N(Â[`])) = dim(Ŵ`) we have that the

dim(W`) = dim(Ŵ`). Since W` ⊆ Ŵ` it must be that W` = Ŵ`. 2

Lemma 4 If W` = Ŵ` then the N(A(ξ`)) = N(Â[`]).

Proof. Consider v̂ ∈ N(Â[`]), then ŵ + v̂ ∈ Ŵ` and thus ŵ + v̂ ∈ W`. So A(ξ`)(ŵ + v̂) = b(ξ`).

Now ŵ ∈ Ŵ` implies that ŵ ∈ W` so A(ξ`)(ŵ + v̂ − ŵ) = b(ξ`) − b(ξ`) = 0, which implies v̂ ∈
N(A(ξ`)). Thus the N(Â[`]) = N(A(ξ`)). 2

Theorem 7 Suppose that for ≤ E of the ξ` we have W` 6= Ŵ` and for ≥ max{df + dA, dg +

db}+ E + 1 of the ξ` we have W` = Ŵ` then (Λf,Λgmin) is in the set of solutions to (4.6).

Proof. Consider Ψ(ξ`) 6= 0 we have Â[`]Φ(ξ`) = Ψ(ξ`)b̂
[`] implies that Â[`](Φ(ξ`)/Ψ(ξ`)) = b̂[`]

which implies Φ(ξ`)/Ψ(ξ`) ∈ Ŵ`. Thus Φ(ξ`)/Ψ(ξ`) ∈ W` which implies A(ξ`)(Φ(ξ`)/Ψ(ξ`)) =

b(ξ`) which further implies A(ξ`)Φ(ξ`) = Ψ(ξ`)b(ξ`). Now for Ψ(ξ`) = 0 we have Â[`]Φ(ξ`) = 0

which implies that Φ(ξ`) ∈ N(Â[`]). In Lemma 4 we show that the N(A(ξ`)) = N(Â[`]). So if

Â[`]Φ(ξ`) = 0 then A(ξ`)Φ(ξ`) = 0, so for all ξ` such that ` /∈ {λ1, . . . , λk}, Â[`]Φ(ξ`) = Ψ(ξ`)b̂
[`]

implies A(ξ`)Φ(ξ`) = Ψ(ξ`)b(ξ`). Since A(u)Φ(u) − Ψ(u)b(u) is a polynomial vector of degree

34

≤ max{df + dA, dg, db}+E that vanishes at max{df + dA, dg + db}+E + 1 distinct points we

have A(u)Φ(u) = Ψ(u)b(u). Observe that the pair (Φ,Ψ) = (Λf,Λgmin) solves (4.6) where Λ(u)

is the error locator polynomial. Thus (Λf,Λgmin) is in the space of solutions to (4.6). 2

Theorem 7 tells us that solutions of the type we are after are contained in the set of solutions

to equation (4.6). We compute a basis for the solution space of equation (4.6), however it is

difficult to extract (Λf,Λgmin). Unlike the full rank case, Ψmin is not necessarily Λgmin.We

know that if there are no errors then we can recover a degree bounded solution 1
gmin

f . Thus the

strategy we employ is to exploit the properties and structure of rank deficient matrices in order

to locate and remove all erroneous evaluations. Once all erroneous evaluations are removed we

can utilize the algorithm from [Boyer and Kaltofen 2014], see also [Kaltofen, Pernet, Storjohann,

and Waddell 2017], with the, Lcab, to recover the degree bounded solution. That is we solve

the linear system

Â[`]


...

Φ[i](ξ`)
...

−Ψ(ξ`)b̂
[`] = 0, deg(Φ[i]) ≤ df , deg(Ψ) ≤ dg, 0 ≤ ` ≤ Lcab − 1. (4.7)

in the unknown coefficients Φ[i](u) and Ψ(u). The linear system (4.7) has n(df + 1) + dg + 1

unknown coefficients for Φ[i](u) and Ψ(u) and mLcab equations. Observe that any solution to

equation (4.7) is in Sdf ,dg . That is the solutions are bounded by the input degree bounds. Thus

once all errors are removed me can compute a degree bounded solution.

Errors that occur are one of two types. We shall refer to these two types of errors as Matrix

Errors and Right Side Vector Errors. We will discuss these two types of errors and how they

are removed in the two sections that follow.

35

4.3 Removing Matrix Error

Recall that W` = {w ∈ Kn | A(ξ`)w = b(ξ`)} and Ŵ` = {ŵ ∈ Kn | Â[`]ŵ = b̂[`]}. Also recall

that there is an error at ξλ if there exists w ∈Wλ such that w /∈ Ŵλ. That is, Wλ * Ŵλ.

Definition 2 Matrix Error: For all b̃ ∈ Kn there exists w ∈Wλ such that Â[λ]w 6= b̃.

Theorem 8 There is no matrix error at ξ` if and only if N(A(ξ`)) ⊆ N(Â[`]).

Proof. If there is no matrix error then N(A(ξ`)) ⊆ N(Â[`]).

If there is no matrix error we know that there exists b̃ ∈ Kn such that for all w ∈ W` we have

Â[`]w = b̃. Assume that b̂[`] = b̃. Then W` ⊆ Ŵ`. So if w ∈W` then w ∈ Ŵ`. Let v ∈ N(A(ξ`))

then w + v ∈W` and w + v ∈ Ŵ`. Now consider

Â[`](w + v − w) = b̂[`] − b̂[`]

= 0.

Thus v ∈ N(Â[`]). So if there is no matrix error then N(A(ξ`)) ⊆ N(Â[`]). 2

Proof. If N(A(ξ`)) ⊆ N(Â[`]) then there is no matrix error.

Let

{v [`]
1 , v

[`]
2 , . . . , v [`]

ρ }, where ρ = n− rank(A(ξ`)),

be a basis for the N(A(ξ`)). Then for all w such that A(ξ`)w = b(ξ`),

w = x0 +

ρ∑
i=1

αiv
[`]
i where αi ∈ K and x0 is such that A(ξ`)x0 = b(ξ`).

Then

Â[`]w = Â[`]

(
x0 +

ρ∑
i=1

αiv
[`]
i

)

= Â[`]x0 +

ρ∑
i=1

αiÂ
[`]v

[`]
i

= Â[`]x0

since N(A(ξ`)) ⊆ N(Â[`]). Thus if N(A(ξ`)) ⊆ N(Â[`]) then there exists b̃ = Â[`]x0 such that for

all w such that A(ξ`)w = b(ξ`) we have that Â[`]w = b̃. Therefore, if N(A(ξ`)) ⊆ N(Â[`]) then

there is no matrix error. 2

From Theorem 8 we know that if the black box returned Â[λ] and b̂[λ], the rank(Â[λ]) =

rank(A(ξλ)) and it is the case that a Matrix Error occurred, then it must be that the N(A(ξλ)) 6=

36

N(Â[λ]). Since A(u) ∈ K[u]m×n and the rank(A(u)) = r < n we must have that rank(A(ξλ)) ≤ r.
So N(A(ξλ)) 6= ∅. We then can remove Matrix Errors by identifying all evaluations, ξλ, such

that the N(A(ξλ)) 6= N(Â[λ]). We shall now describe our method for removing matrix errors.

Definition 3 Non Essential Column: Let A↓∗,j be the matrix that results if column

j is removed from A. The column A∗,j is a Non Essential Column of A if and only if

colsp(A) = colsp(A↓∗,j).

Definition 4 Minimally Linearly Dependent Set: A set of vectors, S, is a Minimally

Linearly Dependent Set of vectors if and only if S is a linearly dependent set and no proper

subset of S is a linearly dependent set.

Definition 5 Right Most Minimally Linearly Dependent Set of Columns: Let M ∈
Km×n such that rank(M) < n. Beginning with the right most column, ignoring any zero columns,

and proceeding left one column at a time we add the columns to a set. Each time we add a column

to the set we check whether the set of columns are linearly dependent. If the set has become

linearly dependent we stop adding columns and find the minimal linear dependent subset. The

vectors in the minimal linear dependent subset we refer to as the Right Most Minimally Linearly

Dependent Set of Columns of M .

Example 1

M =


3 2 1 4

4 2 1 5

5 2 1 6

6 2 1 7



The set


2

2

2

2

,

1

1

1

1

 is the Right Most Minimally Linearly Dependent Set of Columns of M.

Lemma 5 The non zero entries in the last column of a column echelon form for a basis for

the N(M) corresponds to the Right Most Minimally Linearly Dependent Set of Columns of M .

Proof. The N(M) must contain a vector that only has non zero entries that correspond to the

Right Most Minimally Linearly Dependent Set of Columns of M . Observe that by definition

this vector will have the maximum number of zero entries above the first non-zero entry in the

vector. Recall that the last column of a column echelon form for a basis of a vector space has

the following shape:

37



∗ 0 0 . . . 0

∗ ∗ 0 . . . 0

∗ ∗ ∗ . . . 0
...

...
...

...

∗ ∗ ∗ . . . 0

∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
...

...
...

...

∗ ∗ ∗ . . . ∗


Note that the last vector in the column echelon form for the basis of a vector space has the

maximum zero entries before the first non zero entry in the vector. We know that all null space

vectors are a linear combination of the basis vectors. Observe that this implies that the last

column in a column echelon form for a basis of a vector space always has the same number of

zeros above the first non zero entry. Furthermore, this number of zeros is greater than or equal

to all other counts for the number of zeros that precede the first non zero entry for all null

space vectors. Thus the non zero entries in the last column of a column echelon form for a basis

for the N(M) corresponds to the Right Most Minimally Linearly Dependent Set of Columns of

M . 2

Remark 9 Observe that in Example 1 the matrix M is square of dimension 4. The rank(M) =

2, so that n− r = 4− 2 = 2. If we solve the equation MΩ = 0 then a matrix Ω that contains a

basis for the solution in column echelon form is

Ω =


1 0

0 1

1 −2

−1 0

 .

Notice that the non zero entries in Ω∗,2 correspond to the Right Most Minimally Linearly

Dependent Set of Columns (see definition 5) of the matrix M in Example 1. 2

Lemma 6 Let M ∈ Km×n such that rank(M) < n.

Let M∗,j be a Non Essential Column of M .

There exists a permutation matrix, P , such that M∗,j is in the Right Most Minimally Linearly

Dependent Set of Columns of MP .

Proof. Since M∗,j is a Non Essential Column of M we know that M∗,j is in the span of the

38

other columns of M . Consider a basis for the column space of M↓∗,j . Observe that if that basis

along with M∗,j are the last columns of MP then they form the Right Most Minimally Linearly

Dependent Set of Columns of MP . 2

From Lemma 6 we know that every Non Essential Column of A(u) is a member of at least

one Minimally Linearly Dependent subset of columns of A(u). Consider a particular Minimally

Linearly Dependent Set that is a subset of the columns of A(u). We know that there are vectors

in the N(A(u)) that are non zero only in the entries that correspond to the columns in the

Minimally Linearly Dependent Set. For vectors in the null space that only are only non zero

in the entries that correspond to the columns in the Minimally Linearly Dependent Set there

must be a vector of minimal degree.

Let {ν1(u), ν2(u), . . . , νη(u)} be a linearly independent set of columns in colsp(A↓∗,j (u))

such that

A∗,j(u) =
1

c0(u)

η∑
i=1

ci(u)νi(u).

where A↓∗,j is a Non Essential Column of A(u).

d
[non.ess.]
j

def
= min

ν1(u),ν2(u),...,νη(u)
(max
0≤i≤η

(deg(ci(u))).

dΩ

def
= max{d[non.ess.]

j } ∪ {df} (4.8)

Let

Lsing = dA + dΩ +R+ 2E + 1.

We shall compute a degree bounded basis for the N(A(u)), with respect to K that has degree

equal to dΩ + E.

Consider the homogeneous system of linear equations

A(u)y = 0m, A(u) ∈ K[u]m×n, rank(A(u)) = r < n (4.9)

where y is a degree bounded vector in the N(A(u)).

We then solve

Â[`]


...

Ω[i](ξ`)
...

 = 0m, deg(Ω[i]) ≤ dΩ + E, 0 ≤ ` ≤ Lsing − 1. (4.10)

The homogeneous linear system (4.10) has n(dΩ +E+1) unknown coefficients for the Ω[i](u)

39

and m(dA + dΩ + 2E +R+ 1) many equations.

Theorem 9 We suppose that ≤ E of the the evaluations, ξλ, are erroneous. Therefore for

≥ dA + dΩ + E + 1 of the evaluations, ξ`, the rank(Â[`]) = r and there are no errors. Then a

basis for the solutions of Equation (4.10) forms a degree bounded subspace of the N(A(u)) over

K.

Proof. The solutions of equation (4.10) are vectors of the form:



ω
[1]
dA+dΩ+E

ω
[1]
dA+dΩ+E−1

...

ω
[1]
0

ω
[2]
dA+dΩ+E

ω
[2]
dA+dΩ+E−1

...

ω
[2]
0
...

ω
[n]
dA+dΩ+E

ωndA+dΩ+E−1
...

ω
[n]
0



.

The component ω
[i]
j is the uj

th
coefficient in the polynomial Ω[i](u). We have that for all

evaluations, ξ`, such that 0 ≤ ` ≤ dA + dΩ + E we have that the N(A(ξ`)) = N(Â[`]). Take

any solution vector for equation (4.10) converted to polynomial vector Ω(u) and compute the

polynomial vector A(u)Ω(u). Observe that the deg(A(u)Ω(u)) ≤ dA + dΩ + E but for at least

dA + dΩ +E+ 1 evaluation, ξ`, we have that Â[`]Ω(ξ`) = 0m. Since for at least dA + dΩ +E+ 1

evaluation N(Â[`]) = N(A(ξ`)) we have that A(ξ`)Ω(ξ`) = 0m. This implies that A(u)Ω(u) = 0m.

Thus for all solutions of Ω in equation (4.10) we have that Ω(u) is in the N(A(u)). Therefore

a basis for the solutions of equation (4.10) forms a degree bounded subspace over K for the

N(A(u)). 2

From a basis for the solutions of equation (4.10) we can create a matrix, where the columns

are basis vectors for the solution of equation (4.10). We shall refer to this matrix as the Ω-

Solution Space Matrix. We then can compute the column echelon form of the Ω-Solution Space

Matrix. Since the columns in the Ω-Solution Space Matrix are linearly independent then the

40

last column in the column echelon form is not the zero vector.

Let Ωlast be the last vector in the column echelon form of the Ω-Solution Space Matrix.

Lemma 7 The nonzero polynomials in Ωlast correspond to the Last Set of Linearly Dependent

Columns of A(u).

Proof. Again recall that the column echelon form for a matrix with linearly independent columns

has the following shape 

∗ 0 0 . . . 0

∗ ∗ 0 . . . 0

∗ ∗ ∗ . . . 0
...

...
...

...

∗ ∗ ∗ . . . 0

∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
...

...
...

...

∗ ∗ ∗ . . . ∗


The vectors, Ω(u), that we compute in equation (4.10) are in the right N(A(u)). This means

that they represent linear combinations of the columns of A(u) that produce the zero vector.

Note that all Essential Columns of A(u) will correspond to the zero polynomial in the N(A(u)),

where as the Non Essential Columns may correspond to non zero polynomials in the N(A(u)).

Consider the Right Most Minimally Linearly Dependent Set of Columns of A(u). Recall that

there exist a vector in the null space of A(u) such that the only non zero entries correspond to

the columns in the Right Most Minimally Linearly Dependent Set of Columns of A(u) and dΩ,

see equation (4.8), is an upper bound on its degree. Therefore a null space vector that is non

zero only in the entries that correspond to the columns in the Right Most Minimally Linearly

Dependent Set of Columns of A(u) is in the span of the Ω-Solution Space Matrix. Furthermore,

among all vectors in the span of the Ω-Solution Space Matrix with the property that they are

non zero only in the entries that correspond to the Right Most Minimally Linearly Dependent

Set of Columns of A(u); there must be a vector with minimal degree in the first polynomial.

Observe that you cannot combine Ωlast with the other columns in the Ω-Solution Space Matrix

with out making one of the zero entries above the first non zero entry in Ωlast non zero. Assume

that the non zero polynomials in Ωlast do not correspond to the Right Most Minimally Linearly

Dependent Set of Columns of A(u). Then the null space vector contained in the column span

of the Ω-Solution Space with the following properties:

1. The only non zero polynomials are the polynomials that correspond to the Right Most

Minimally Linearly Dependent Set of Columns of A(u)

41

2. The degree of the polynomial that corresponds to the left most vector in the Right Most

Minimally Linearly Dependent Set of Columns of A(u) is minimal

cannot be found by a linear combination over K of the columns of the Ω-Solution Space Matrix.

This is a contradiction. Hence, the non zero polynomials in Ωlast correspond to the Right Most

Minimally Linearly Dependent Set of Columns of A(u). 2

Theorem 10 We suppose that for ≥ dA + dΩ + E + 1 of the evaluation points, ξ`, there are

no errors. And that ≤ E of the evaluations, ξλ, are erroneous. We know that if some errors

are Matrix Errors then one or more of the linear dependencies that exist among the columns in

A(ξλ) does not exist among the columns in Â[λ]. See Definition 2 and Theorem 8. The linear

dependence that occurs among the Right Most Minimally Linearly Dependent Set of Columns

of A(ξλ) does not exist among the Right Most Minimally Linearly Dependent Set of Columns

of Â[λ] if and only if Ωlast has (u− ξλ) as a factor.

Proof. By Theorem 9 the degree bounded Ω-Solution Space Matrix is not the zero matrix.

Consider, Ωlast, the last column in the column echelon form of the Ω-Solution Space Matrix.

Note that Ωlast is non zero since the matrix contains linearly independent columns, because the

columns form a basis for a degree bounded subspace for N(A(u)) with respect to K. By the

shape of the column echelon form we know that Ωlast contains the minimum degree of the first

non zero polynomial in the column. See Lemma 7. We show first that if there are common root,

ξλ, of the polynomials in Ωlast(u) then a matrix error occurred.

Assume there is a common root, ξλ, in Ωlast(u), but a matrix error did not occur. Since a

matrix error did not occur we know that the same column dependencies that exist A(ξλ) also

exists in Â[λ]. We know, from Lemma 7, that the non zero entries in Ωlast(u) correspond to the

Right Most Minimally Linearly Dependent Set of Columns of A(u). Note that the Right Most

Minimally Linearly Dependent Set of Columns of A(u) always forms the Right Most Minimally

Linearly Dependent Set of Columns in A(ξλ) when the rank(A(ξλ)) = r. Since the columns are

linearly dependent there must exist a solution where all of the non zero polynomials in Ωlast(u)

would evaluate to a non zero value at ξλ. Therefore, there is another solution such that for

all evaluations, except the evaluation at ξλ, the new solution agrees with Ωlast(u). However, at

ξλ the solution gives a non zero linear combination that makes the dependent set of columns

in A(ξλ) that correspond to the Right Most Minimally Linearly Dependent Set of Columns

of A(u) equal zero. Observe that by interpolation this solution has degree no more than the

corresponding polynomials in Ωlast(u). But by Lemma 7 the new solution cannot be a linear

combination of degree bounded subspace which is a contradiction. Thus if there is a common

root among all polynomials in Ωlast(u) then a matrix error has occurred.

42

Next we show that if a matrix error occurs because the relationship among the Right Most

Minimally Linearly Dependent Set of Columns of A(ξλ) does not exist among that corresponding

columns in Â[λ] then there is a common factor u − ξλ in Ωlast(u). If a matrix error occurs at

ξλ then the N(A(ξλ)) 6= N(Â[λ]). So we know there is a difference in one or more column

dependencies. Assume that the column dependency differs due to one or more of the columns

that correspond to the Right Most Minimally Linearly Dependent Set of Columns of A(u).

Then the same non zero linear combination cannot cause the Right Most Minimally Dependent

Set of Columns of A(ξλ) and the Right Most Minimally Linear Dependent Set of Columns of

Â[λ]to be zero. We know we compute a degree bounded subspace for the N(A(u)). Therefore

A(ξλ)Ωlast(ξλ) = 0. By construction we always have that Â[λ]Ωlast(ξλ) = 0. Thus Ωlast(ξλ) = 0.

Therefore u− ξλ is a common factor in Ωlast. 2

Remark 10 Matrix errors occur if one or more of the column dependencies that exists among

the Non Essential Columns in A(ξλ) does not exist as a column dependency among the columns

Â[λ]. The proof of Theorem 10 suggests an algorithm for removing matrix errors that occur

because a column dependency that exists among the Right Most Minimally Linearly Dependent

Set of Columns of A(u) does not exist among the corresponding columns of Â[λ]. It is possible,

however, that the column dependency that exists in A(ξλ) but does not exist in Â[λ] occurs

among linearly dependent sets of columns that do not correspond to the Right Most Minimally

Linearly Dependent Set of Columns of A(u). We thus need to find a way to remove matrix

errors that occur among linearly dependent sets of columns that do not correspond to the

Right Most Minimally Linearly Dependent Set Columns of A(u). The idea we implement is to

make every linearly dependent set of columns the Right Most Minimally Linearly Dependent

Set of Columns. Recall that dΩ is an upper bound on the degree of some polynomial vector that

only has non zero entries in the columns that correspond to Minimally Linearly Dependent Sets

of columns for all Minimally Linearly Dependent Sets of Columns of A(u). See Equation (4.8).

We know that column operations affect the null space of a matrix, however column interchanges

only result in a corresponding interchange of the entries in the null space vector.

Example 2 1 2 8

2 4 16

3 6 24


 4

2

−1

 =

0

0

0


2 8 1

4 16 2

6 24 3


 2

−1

4

 =

0

0

0


Notice that the reordering of the columns resulted in the corresponding reordering of the entries

in the null space vector. This is due to the fact that multiplying a matrix, A, by a vector, x ,

on the right results in a vector, b, such that the entries in b are a linear combination of the

columns in the matrix, and the coefficients of the linear combination are the entries in x .

43

Example 3 [
a b

c d

][
e

f

]
=

[
ae+ bf

ce+ df

]
= e

[
a

c

]
+ f

[
b

d

]
We apply this idea to solving equation (4.10). Notice that in the implementation we do not

have to reorder the columns of the individual Â[`]’s. We can simply reorder the Ω’s in equation

(4.10). What we now need is a method to locate all the different Minimally Linearly Dependent

Sets of Columns. One idea would be to consider all combinations of two or more columns as the

last set of columns. Note that for every check we will discover a Right Most Minimally Linearly

Dependent Set of Columns. The Right Most Minimally Linearly Dependent Set of Columns we

discover may not be a new set, therefore it would be a good idea to memoize so that we do not

check a set that we already know is Minimally Linearly Dependent Set of Columns.

We currently do know in the worst case how many different Minimally Linearly Dependent

Sets of columns a matrix with n columns and of rank = r my contain. We conjecture that

the number of Minimally Linearly Dependent Set of Columns of a matrix with n columns is

polynomial in n. Which would imply that there is polynomial time algorithm for finding all

Matrix Errors. Further more because the intersection of some Minimally Linearly Dependent

Sets are non empty and that Minimally Linearly Dependent Sets of Columns only contain

Non Essential Columns we conjecture that we do not need to check all possible Minimally

Linearly Dependent Sets of Columns. The idea is that we can describe some Minimally Linearly

Dependent Sets using a combination of other Minimally Linearly Dependent Sets. We describe

an algorithm, without proof, that is polynomial in n and works for all our examples. 2

44

4.3.1 The Algorithm

Algorithm 5: Compute Matrix Errors

Input: a stream (Â[`], b̂[`]), ` = 0, 1, . . . , Lsing # the scalar matrices and right side vectors

returned from the black box

Output: Λ̄ # a factor of Λ

1: Ξ← {ξ0, ξ2, . . . , ξLsing}
2: count ← 0 # counts the number of different permutations of the columns that have

been checked

3: Λ̄← 1

4: Solve

Â[`]Ω(ξ`) = 0, (4.11)

for all ξ` ∈ Ξ and deg(Ω) ≤ dΩ + E

5: compute CEF(Ω)

6: Ωlast ← last column in CEF(Ω)

7: first Ω0(u)← first nonzero polynomial in Ωlast

8: Λ̄← Λ̄GCD(Ωlast(u))

9: if first entry in Ωlast(u) is not zero then # this implies that there is only one dependence

relationship among the columns

10: count ← n # skip the while loop

11: end if

12: move first Ω0(u) to be first in Ω(u)

13: while count < n do

14: compute CEF(Ω)

15: Ωlast ← last column in CEF(Ω)

16: Ω0(u)← first nonzero polynomial in Ωlast

17: Λ̄← Λ̄GCD(Ωlast(u))

18: if first entry in Ωlast(u) is not zero then

19: break

20: end if

21: move Ω0(u) to be first in Ω(u)

22: count ← count+1

23: if first Ω0(u) is again Ω0(u) then # checked all minimally linearly dependent sets

that involve columns to the right of the columns that refer Ω0(u)

24: Ω(u)← Ω(u) with the Ω(u)[i]’s to the right if Ω0(u) removed

45

25: end if

26: end while

27: return Λ̄

46

Remark 11 Algorithm 5 takes as input a stream of scalar matrices, Â[`], and right side vectors

b̂[`], that are returned by the black box when queried with the ξ`’s and outputs a polynomial Λ̄

a factor of the error locator polynomial Λ. The roots of the polynomial Λ̄ are the evaluations

that cause matrix errors.

The algorithms begins by solving the homogeneous system Â[`]Ω(ξ`) = 0, for all ξ` ∈ Ξ and

deg(Ω) ≤ dΩ + E. In order to diagnose if matrix errors occurred Algorithm 5 first computes

the column echelon form of, Ω, the solution of the homogeneous system Â[`]Ω(ξ`) = 0. We then

examine the last column, Ωlast, in the column echelon form of Ω. By Theorem 10 we know

that common roots among the polynomials in Ωlast are exactly the places were matrix error

occur. Further recall that Ωlast corresponds to the Right Most Minimally Linearly Dependent

Set of Columns in A(u). See Lemma 7. To find other matrix errors not exposed by the Right

Most Minimally Linearly Dependent Column of A(u) we change the order of the polynomials

in Ω(u). Observe that changing the order of the polynomials is essentially changing the order of

the columns in A(u). We change the order in such a way to force a different Minimally Linearly

Dependent Set of Columns in A(u) to be the Right Most Minimally Linearly Dependent Set

of Columns of the matrix with the corresponding change in the column order of A(u). Because

changing the column order of a matrix only changes the order of the entries in the null space

the common roots of the polynomials in the new Ωlast are also matrix errors.

To reorder the polynomials in Ω record the first nonzero polynomial in the initial Ωlast

then move it to the first position in Ω. Next compute a new Ωlast and check whether the first

nonzero polynomial is the polynomial we recorded. If it is we restart the process of checking

for matrix errors using only the polynomial we stored initially and those to the left of it in Ω,

otherwise the first nonzero polynomial of the new Ωlast is moved to the first position in Ω and

we restart the process of checking for matrix error with all of Ω. We claim, without proof, that

if the interchanges are done in the manner described then no more than n− 1 interchanges are

necessary for computing all matrix errors, though there may be more than n − 1 Minimally

Linearly Dependent Sets of Columns in A(u). 2

Remark 12 Matrix errors are specific to the rank deficient case. There are only right side

vector errors in the full rank case. In the full rank case the solution, 1
gf , is unique. Thus for

all full rank scalar matrices, Â[`] returned by the black box there is a right side vector, namely

b̂[`] = Â[`] 1
g(ξ`)

f(ξ`), for which the solution works. 2

47

4.4 Removing Right Side Vector Errors

Definition 6 Right Side Vector Error: There exists w ∈ Wλ such that w /∈ Ŵλ for the

given Â[λ] and b̂[λ], but there exists a scalar right side vector such that there is no error.

In the previous section we discussed how to identify evaluated matrices Â[λ] that have matrix

errors. Once these scalar matrices have been identified they can be removed. In this section we

discuss how to identify errors in the right side vector. Recall that right side vector errors are

exactly the type of errors that affect full rank systems. See Remark 12. The algorithm in [Boyer

and Kaltofen 2014], see also [Kaltofen, Pernet, Storjohann, and Waddell 2017], tell us how to

identify these errors when the system is full rank.

We now solve the system

Ψ(ξ`)b̂
[`] − Â[`]Φ(ξ`) = 0 for all ξ` that remain in Ξ (4.12)

where deg(Ψ) ≤ dg + E and deg(Φ) ≤ df + E.

Since we have removed all matrix errors we know that the scalar matrices that remain are all

row equivalent. Row operations preserve the linear relationships that exist among the columns of

a matrix. Thus, the reduced row echelon form of row equivalent matrices are identical. This fact

is proven in most linear algebra text books. If we perform the row operations on the augmented

system the solution is preserved. This is essentially Gaussian Elimination. Another benefit of

the row echelon form is that it makes it easy to identify the linearly independent columns and

hence the linearly dependent columns. In the row echelon form the columns that contain the

pivots are linearly independent. Since we can identify the columns that are with out pivots we

can remove those columns along with the corresponding Φ[i]’s. We then solve a system that has

linearly independent columns. From [Boyer and Kaltofen 2014] we know that the roots of the

GCD(Ψmin,Φmin) are errors in the right side vector. See also [Kaltofen, Pernet, Storjohann, and

Waddell 2017]. The solution produced by this reduced system is not guaranteed to be bounded

by our input degree bounds. Nevertheless, we are able to find the errors that remain among the

scalar systems returned by the black box.

Note that we need not scan equation 4.12 and remove the Φ[i]’s that correspond to non pivot

columns. Instead, in our implementation, see Appendix A, we add the equation Φ[i](ξ`) = 0

if column i does not have a pivot in the reduced row echelon form. We should also note that

we do not compute the rank(A(u)) so we cannot just use the row echelon form of one scalar

matrix returned by the black box in order to determine the pivot columns. If a random scalar

matrix is chosen to determine the pivot columns without first computing the rank then the

algorithm is Monte Carlo. Nevertheless, we can gain speed in our algorithm by checking the

rank of R + 1 many scalar matrices and using a matrix with maximum rank to determine the

48

column dependencies. Note that if rank(Â[λ]) > r then a matrix error occurred by the rank plus

nullity theorem. Thus any Â[λ] such that rank(Â[λ]) > r is removed. Another consequence of

not computing the rank a-priori is that is possible that on some evaluations the pivot columns

along with the right side vector may evaluate to zero, causing a common root in Φmin and Ψmin

which would indicate a false error. To correct this we remove one such linear factor from both

Φmin and Ψmin before computing the error.

4.4.1 The Algorithm

Algorithm 6: Compute Right Side Vector Errors

Input: df ≥ deg(f), dg ≥ deg(gmin), dA ≥ deg(A(u)),

a stream (Â[`], b̂[`]), # the ones that were not found to be erroneous by

Algorithm 5

Λ̄ # returned by Algorithm 5

R ≥
∣∣{` | Â[`]f(ξ`) = g(ξ`)b̂

[`] and rank(Â[`]) < r, 0 ≤ ` ≤ Lcab − 1}
∣∣,

E ≥
∣∣{λ | Â[λ]f(ξλ) 6= gmin(ξλ)b̂[λ], 0 ≤ λ ≤ Lcab − 1}

∣∣
Output: Λ

1: E ← E − deg(Λ̄) # Λ̄ was computed in Algorithm 5

2: Lcab ← max{dA + df , db + dg}+R+ 2E + 1

3: Find all dependent columns of the REF(Â[`]) for all ξ` remaining in Ξ

4: Solve simultaneously:

Ψ(ξ`)b̂
[`] − Â[`]Φ(ξ`) = 0 for all ξ` ∈ Ξ

and

Φ[j](ξ`) = 0

for Lcab many ξ` ∈ Ξ where deg(Φ) ≤ df + E and deg(Ψ) ≤ dg + E

and where column j is a pivot less column in REF(Â[`])

5: for the Lcab many ξ` ∈ Ξ do

6: if b̂[`] is the zero vector and Â[`] contains zero columns then

7: if u− ξ` | Ψmin(u) and Φmin(u)[j] for all j such that j is a zero column in Â[`] then

ξ` is a non erroneous factor of the GCD(Ψmin,Φmin)

so remove one factor of u− ξ`
8: Remove a factor of u− ξ` from Ψmin(u) and Φmin(u)[j]

9: end if

10: end if

49

11: end loop

12: Λ← Λ̄ ·GCD(Ψmin(u),Φmin(u))

13: return Λ

50

4.5 Returning a degree bounded solution in the Rank Deficient

Case

In Section 4.3 we describe how to detect and thus remove all systems containing matrix errors

from the set of scalar systems returned by the black box. Then in Section 4.4 we describe how

to identify and then remove all systems that contain right side vector errors. Observe that all

possible errors belong to either matrix errors or right side vector errors. Thus, using the ideas

presented in Sections 4.3 and 4.4 we can remove all erroneous evaluations and then solve

Ψ(ξ`)b̂
[`] − Â[`]Φ(ξ`) = 0 for all ξ` that remain in Ξ, (4.13)

where deg(Ψ) ≤ dg and deg(Φ) ≤ df in order to compute a degree bounded solution.

4.5.1 The Algorithm

Algorithm 7: Compute 1
gmin

f

Input: df ≥ deg(f), dg ≥ deg(gmin), dA ≥ deg(A(u)),

a stream (Â[`], b̂[`]) # the one that were not found to be erroneous by

Algorithm 6

R ≥
∣∣{` | Â[`]f(ξ`) = g(ξ`)b̂

[`] and rank(Â[`]) < r, 0 ≤ ` ≤ Lcab − 1}
∣∣,

E ≥
∣∣{λ | Â[λ]f(ξλ) 6= gmin(ξλ)b̂[λ], 0 ≤ λ ≤ Lcab − 1}

∣∣
Output: 1

gmin
f

1: Lcab ← max{dA + df , db + dg}+R+ 1

2: Solve

Ψ(ξ`)b̂
[`] − Â[`]Φ(ξ`) = 0 (4.14)

where deg(Φ) ≤ df and deg(Ψ) ≤ dg
3: gmin ← Ψmin # such that Ψmin 6= 0

4: f ← Φmin # the Φ that correspond the Ψmin

5: return 1
gmin

f

51

4.6 Summary

In chapter 2 we discuss early termination strategies of an algorithm solving full rank para-

metric linear systems in one variable. The algorithm we consider in the subject of the [Boyer

and Kaltofen 2014] Symbolic Numeric Computation paper. The algorithm works well for full

rank systems even if some evaluations return erroneous results. The algorithms determines si-

multaneously a degree bounded solution for the parametric linear system as well as the error

locations. This algorithm however, fails when applied to parametric linear systems where the

matrix of the system is rank deficient and some evaluations are erroneous . In this chapter we

present an algorithm for computing a degree bounded solution as well as the error locations for

the rank deficient case.

Unlike the algorithm for the full rank case our algorithm does not determine the error

locations at the same time that it computes the degree bounded solution. For the rank deficient

algorithm we first determine the error locations. Once we locate the error(s) we can apply the

full rank algorithm to the error free system in order to determine a degree bounded solution.

The main idea for locating the errors is separate all errors into two mutually exclusive sets.

An evaluation is in the first set of errors if the null space of the scalar matrix is not identical

to the null space of the evaluated matrix. We term such errors Matrix Errors. We show that

matrix errors occur at an evaluation if and only if the scalar matrix returned by the black box

does not have the same null space as the evaluated matrix. We thus discover these errors by

interpolating degree bounded solutions for a subspace of the null space of original matrix via

the null space of the scalar matrices returned by the black box.

An evaluation point is in the second set of errors if the scalar matrix returned by the black

box has the same null space as the evaluated matrix but the right side vector causes and an

error. That is there exists a right side vector that would render the evaluation point error free,

but the black box did not return that vector. Such errors we term Right Side Vector Errors.

Recall that in the full rank case unlike the rank deficient case the solution of minimal degree

in the denominator and monic is unique. Since we compute a unique solution for the full rank

case then every error in the full rank case is a Right Side Vector Error. Thus the full rank

algorithm works well to compute Right Side Vector Errors. So for the rank deficient algorithm

our strategy is to first determine the set of linear independent columns of the scalar matrices

then apply the full rank system algorithm in order to determine the Right Side Vector Errors.

There is some work to be done when some columns along with the right side vector evaluates

to zero in order to ensure there are no false positives in our error reporting. We say how this

is done in Step 5 to 11 of Algorithm 6. Once the errors are discovered they can be removed.

Thus we can apply the full rank algorithm to an error free system in order to compute a degree

bounded solution. See Algorithm 7.

52

Chapter 5

Polynomial Vector Recovery with

Burst Errors

5.1 Introduction

So far we have considered the error locations to be random. That is, the errors we have consid-

ered are independent of each other. It is possible, however, that error locations are dependent

and errors are likely to occur successively. For instance, in the polynomial vector recovery case

it is possible that when an evaluation causes an error it affects the entire vector and not just a

single entry in the vector. We will refer to errors that occur in succession as burst errors. Such

errors patterns are the subject of this chapter and the next.

We have shown that if an erroneous evaluation may only affect one entry in the vector

then for every entry in the vector we need an extra evaluation for each possible error in order

to recover the vector. Hence the 2E in both the Generalized Welch/Berlekamp count and the

Cabay count. See [Boyer and Kaltofen 2014], [Kaltofen, Pernet, Storjohann, and Waddell 2017].

So the system we solved is overdetermined. We show here that if the errors were to affect the

entire vector then we only need an extra evaluation for one of the entries in the vector. The

system we then solve is no longer overdetermined.

It is possible that some errors are burst errors while some are not. We show that if we have

a bound for the burst errors as well as a bound for the non burst errors we can reduce the size

of the system needed to recover the vector.

53

5.2 Reducing the size of the system

Let f =


f [1](u)

f [2](u)
...

f [m](u)

 be a black box vector of polynomials over a field K. That is, for all i : 1 ≤

i ≤ m we have f [i] ∈ K[u]. Let γ
[`]
i = f [i](ξ`). We assume we can query the black box with values

ξ` ∈ K and the black box returns a vector of scalars β[`]. We further assume that for kerr values

ξλ1 , ξλ2 , . . . , ξλkerr , we have that β
[λj]
i 6= γ

[λj]
i for all i : 1 ≤ i ≤ m and for all j : 1 ≤ j ≤ kerr.

The evaluations ξλj are erroneous evaluations. Errors that affect the entire vector as previously

described are burst errors.

Consider the equation

γ
[`]
i Ψ(ξ`)− β

[`]
i Ψ(ξ`) = 0, (5.1)

where Ψ(u) is a polynomial multiple of the error locator polynomial, Λ(u). The error locator

polynomial Λ(u) is such that for all 1 ≤ j ≤ kerr, Λ(ξλj) = 0.

Let L ≥ df + 2kerr + 1, be the number of queries to the black box. Then for each i, we have

a Reed-Solomon problem

Φ[i](ξ`)− β
[`]
i Ψ(ξ`) = 0, (5.2)

where deg(Φ) = df + kerr and deg(Ψ) = kerr.

Equation (5.2) is linear in the coefficients of Φ and Ψ. There are m(df +kerr +1) unknowns

for Φ, kerr + 1 unknowns for Ψ, and mL equations. Consider the following matrices

V =


1 ξ0 . . . ξ

df+kerr
0

1 ξ1 . . . ξ
df+kerr
1

...
...

. . .
...

1 ξL−1 . . . ξ
df+kerr
L−1

 , Wi =


β

[0]
i β

[0]
i ξ0 . . . β

[0]
i ξ

kerr
0

β
[1]
i β

[1]
i ξ1 . . . β

[1]
i ξ

kerr
0

...
...

. . .
...

β
[L−1]
i β

[L−1]
i ξL−1 . . . β

[L−1]
i ξkerrL−1

 .

Then the matrix

A =


V 0 . . . 0 −W1

0 V . . . 0 −W2

...
...

. . .
...

...

0 0 . . . V −Wm


is the coefficient matrix for equation (5.2). We select a sub-matrix, denoted by A∗ from A by

removing kerr(m−1) many rows from all but one Reed-Solomon problem. For instance we form

the sub-matrix A∗ by removing kerr rows from all but the rows corresponding to the first block

of A.

54

Lemma 8 Let V ∈ Km×n be a Vandermonde matrix, where m > n, that is Vi,j = ξj−1
i .

Let W1 ∈ Km×p and W1i,j = f(ξi)ξ
j−1
i .

Let f ∈ K[u], such that deg(f) = k ≤ n− p.

Then rank(V |W1) = rank(V).

Proof. Any square Vandermonde matrix is invertible. This implies that any of the last m − n
rows of V can be written as a linear combination of the first n rows of V . We will show that

any of the last m− n rows of (V | W1) is a linear combinations of its first n rows. In fact, the

same combination that works for a row k > n in V also works for the corresponding row in

(V |W1). It is enough to show that if Vk,∗ =
∑n

i=1 ciVi,∗ then W1k,∗ =
∑n

i=1 ciW1i,∗ .

Vk,∗ =
n∑
i=1

ciVi,∗

= c1

[
ξ0

1 ξ1
1 . . . ξn−1

1

]
+ c2

[
ξ0

2 ξ1
2 . . . ξn−1

2

]
+ . . .+ cn

[
ξ0
n ξ1

n . . . ξn−1
n

]
=
[
ξ0
k ξ1

k . . . ξn−1
k

]
.

Observe that f(u) = a0 + a1u+ . . .+ aku
k.

n∑
i=1

ciW1i,∗ = c1f(ξ1)
[
ξ0

1 ξ1
1 . . . ξp−1

1

]
+ c2f(ξ2)

[
ξ0

2 ξ1
2 . . . ξp−1

2

]
+ . . .+ cnf(ξn)

[
ξ0
n ξ1

n . . . ξp−1
n

]
= c1(a0 + a1ξ1 + . . .+ akξ

k
1)
[
ξ0

1 ξ1
1 . . . ξp−1

1

]
+ c2(a0 + a1ξ2 + . . .+ akξ

k
2)
[
ξ0

2 ξ1
2 . . . ξp−1

2

]
+ . . .+ cn(a0 + a1ξn + . . .+ akξ

k
n)
[
ξ0
n ξ1

n . . . ξp−1
n

]
= c1

[
k∑
j=0

ajξ
j
1

k∑
j=0

ajξ
j+1
1 . . .

k∑
j=0

ξj+p−1
1

]
+ c2

[
k∑
j=0

ajξ
j
2

k∑
j=0

ajξ
j+1
2 . . .

k∑
j=0

ξj+p−1
2

]

+ . . .+ cn

[
k∑
j=0

ajξ
j
n

k∑
j=0

ajξ
j+1
n . . .

k∑
j=0

ξj+p−1
n

]

=

[
k∑
j=0

aj

(
n∑
i=1

ciξ
j
i

)
k∑
j=0

aj

(
n∑
i=1

ciξ
j+1
i

)
. . .

k∑
j=0

aj

(
n∑
i=1

ciξ
j+p−1
i

)]

=

[
k∑
j=0

ajξ
j
k

k∑
j=0

ajξ
j+1
k . . .

k∑
j=0

ajξ
j+p−1
k

]
=
[
f(ξk) ξkf(ξk) . . . ξp−1

k f(ξk)
]

= f(ξk)
[
ξ0
k ξk . . . ξp−1

k

]
= W1k,∗ .

55

2

Lemma 9 Let V ∈ Kn+p×n be such that Vi,j = ξj−ii−1 and let W1 ∈ Kn+p×p be such that W1i,j =

βiξ
j−i
i−1, where the ξi’s are distinct. Let f ∈ K[u] such that deg(f) = d ≤ n− p, where p is such

that 1 ≤ p ≤ n− 1. Assume that for p many ξλ’s we have that βλ 6= f(ξλ). Let Y be an n× n
submatrix of V where the entries are such that βi = f(ξi). Let Z be the p × p submatrix of

W1 where the corresponding entries in W1 are such that βλ 6= f(ξλ). Then the determinant of

(V | βW1) is

(−1)pdet(Y)det(Z)

p∏
i=1

(βλi − f(ξλi)).

56

Proof. Let Y ∈ Kn×n and X ∈ Kn×p such that

Y =



1 ξ0 ξ2
0 . . . ξn−1

0

1 ξ1 ξ2
1 . . . ξn−1

1

1 ξ2 ξ2
0 . . . ξn−1

2
...

... . . .
...

...

1 ξn−1 ξ2
n−1 . . . ξn−1

n−1


and

X =



f0 + f1ξ0 + f2ξ
2
0 + . . .+ fdξ

d
0 f0ξ0 + f1ξ

2
0 + f2ξ

3
0 + . . .+ fdξ

d+1
0 . . . f0ξ

p−1
0 + f1ξ

p
0 + f2ξ

p+1
0 + . . .+ fdξ

d+p−1
0

f0 + f1ξ1 + f2ξ
2
1 + . . .+ fdξ

d
1 f0ξ1 + f1ξ

2
1 + f2ξ

3
1 + . . .+ fdξ

d+1
1 . . . f0ξ

p−1
1 + f1ξ

p
1 + f2ξ

p+1
1 + . . .+ fdξ

2p−1
1

f0 + f1ξ2 + f2ξ
2
2 + . . .+ fdξ

d
2 f0ξ2 + f1ξ

2
2 + f2ξ

3
2 + . . .+ fdξ

d+1
2 . . . f0ξ

p−1
2 + f1ξ

p
2 + f2ξ

p+1
2 + . . .+ fdξ

d+p−1
2

...
... . . .

...

f0 + f1ξn−1 + f2ξ
2
n−1 + . . .+ fdξ

d
n−1 f0ξn−1 + f1ξ

2
n−1 + f2ξ

3
n−1 + . . .+ fdξ

d+1
n−1 . . . f0ξ

p−1
n−1 + f1ξ

p
n−1 + f2ξ

p+1
n−1 + . . .+ fp−1ξ

d+p−1
n−1


Let U ∈ Kp×n and Z ∈ Kp×p such that

U =



1 ξn ξ2
n . . . ξn−1

n

1 ξn+1 ξ2
n+1 . . . ξn−1

n+1

1 ξn+2 ξ2
n+2 . . . ξn−1

n+2
...

...
... . . .

...

1 ξn+p−1 ξ2
n+p−1 . . . ξn−1

n+p−1


and Z =



1 ξλ1 ξ2
λ1

. . . ξn−1
λ1

1 ξλ2 ξ2
λ2

. . . ξn−1
λ2

1 ξλ3 ξ2
λ3

. . . ξn−1
λ3

...
...

... . . .
...

1 ξλp ξ2
λp

. . . ξn−1
λp



57

Observe that

(V | βW) =

[
Y X

U βZ

]

So the det((V | βW)) = det(Y)det(βZ − UY −1X). Let S ∈ Kn×d+p and T ∈ Kd+p×p such

that

S =



1 ξ0 ξ2
0 . . . ξd+p−1

0

1 ξ1 ξ2
1 . . . ξd+p−1

1

1 ξ2 ξ2
0 . . . ξd+p−1

2
...

... . . .
...

...

1 ξn−1 ξ2
n−1 . . . ξd+p−1

n−1


and T =



f0 0 0 . . . 0

f1 f0 0 . . . 0

f2 f1 f0 . . . 0
...

...
... . . . 0

fd−1 fd−2 fd−3 . . . 0

fd fd−1 fd−2 . . . 0

0 fd fd−1 . . . 0
...

...
... . . .

...

0 0 0 . . . fd


Observe that X = ST . So the det((V | βW1)) = det(Y)det(βZ − UY −1ST).

Since d+ p ≤ n and matrix multiplication is associative we have that

Y −1S =

[
I

0

]
∈ Kn×d+p

where I ∈ Kd+p×d+p. Then

Y −1ST =

[
T

0

]
∈ Kn×p

Then

UY −1ST =



f(ξλ1) f(ξλ1)ξλ1 f(ξλ1)ξ2
λ1

. . . f(ξλ1)ξn−1
λ1

f(ξλ2) f(ξλ2)ξλ2 f(ξλ2)ξ2
λ2

. . . f(ξλ2)ξn−1
λ2

f(ξλ3) f(ξλ3)ξλ3 f(ξλ3)ξ2
λ3

. . . f(ξλ3)ξn−1
λ3

...
...

... . . .
...

f(ξλp) f(ξλp)ξλp f(ξλp)ξ
2
λp

. . . f(ξλp)ξ
n−1
λp


∈ Kp×p

58

and

βZ − UY −1ST =



βλ1 − f(ξλ1) (βλ1 − f(ξλ1))ξλ1 (βλ1 − f(ξλ1))ξ2
λ1

. . . (βλ1 − f(ξλ1))ξn−1
λ1

βλ2 − f(ξλ2) (βλ2 − f(ξλ2))ξλ2 (βλ2 − f(ξλ2))ξ2
λ2

. . . (βλ2 − f(ξλ2))ξn−1
λ2

βλ3 − f(ξλ3) (βλ3 − f(ξλ3))ξλ3 (βλ3 − f(ξλ3))ξ2
λ3

. . . (βλ3 − f(ξλ3))ξn−1
λ3

...
...

... . . .
...

βλp − f(ξλp) (βλp − f(ξλp))ξλp (βλp − f(ξλp))ξ
2
λp

. . . (βλp − f(ξλp))ξ
n−1
λp


∈ Kp×p

Thus

det(βZ − UY −1X) = (−1)pdet(Z)

p∏
i=1

(βλi − f(ξλi)).

Therefore,

det(V | βW1) = (−1)pdet(Y)det(Z)

p∏
i=1

(βλi − f(ξλi)).

2

Corollary 2 The solution of a Reed-Solomon system where kerr = E is unique.

59

Lemma 10 If for all i : 1 ≤ i ≤ m the ordered pair (Φ[i](u),Ψ(u)) is a solution to equation

(5.2) then we have that Λ | Φ[i].

Proof. Observe that the first L rows of the remaining system, A∗, is a complete Reed-Solomon

system with exactly the deg(Ψ) many errors. Thus, by corollary 2, the system in the first block

has a unique solution for Φ[1] and Ψ. So for our reduced system, with matrix A∗, the coefficients

of Φ[1] and Ψ are determined and we have f [1] = Φ[1]/Ψ. In fact, Ψ(u) = Λ(u) =
∏kerr
j=1(x− ξλj),

see [Boyer and Kaltofen 2014; Kaltofen, Pernet, Storjohann, and Waddell 2017]. Next we show

that for all i : 1 ≤ i ≤ m we have that Λ | Φ[i]. We already have this for i = 1. For all

i : 1 < i ≤ m, we have Φ[i](ξ`) − β
[`]
i Ψ(ξ`) = 0, so Φ[i](ξ`) = β

[`]
i Ψ(ξ`). Since Ψ(u) = Λ(u) we

have that Φ[i](ξ`) = β
[`]
i Λ(ξ`). Now for all i : 1 < i ≤ m we have that ≥ df + E + 1 evaluations

are such that Φ[i](ξ`) = γ
[`]
i Λ(ξ`), so Φ[i](ξ`) = f [i](ξ`)Λ(ξ`). Since for all i : 1 < i ≤ m we have

deg(f [i](u)Λ(u)) ≤ df +E and deg(Φ[i]) ≤ df +E it must be that Φ[i](u) = f [i](u)Λ(u). Hence

Λ(u) | Φ[i](u) for all i : 1 ≤ i ≤ m. 2

Remark 13 For our proof we do not need an erroneous evaluation, ξλj , to affect the entire

vector β[λj]. We only need that for all erroneous evaluations, ξλj , we have β
[λj]
1 6= γ

[λj]
1 . In other

words if there is an evaluation that causes the ith entry of β[λ] to be wrong, then the 1st entry

of β[λ] is also wrong. One way to enforce this is to interleave the polynomials we wish to recover

rather than trying to recover them individually. We save evaluations because we only need an

extra good evaluation for each erroneous evaluation in the first block. Thus kerr evaluations can

be removed from all other Reed-Solomon problems. This is possible because, as we demonstrate

in the proof of lemma 10, the error locator polynomial is uniquely determined by the first block

and shared with all other blocks. 2

Now let’s assume we do not know the number of burst errors, kerr, that occurred. We

assume, however, that we have an upper bound, Ebrst, for the number of burst errors. Let

L ≥ df + 2Ebrst + 1, be the number of evaluations. Then for each i we have a Reed-Solomon

problem

Φ[i](ξ`)− β
[`]
i Ψ(ξ`) = 0, (5.3)

where deg(Φ) = df + Ebrst and deg(Ψ) = Ebrst.

Equation (5.3) is linear in the coefficient of Φ and Ψ. There are m(df +Ebrst +1) unknowns

for Φ, Ebrst + 1 unknowns for Ψ, and mL equations.

60

Consider the following matrices

M =


1 ξ0 . . . ξ

df+Ebrst

0

1 ξ1 . . . ξ
df+Ebrst

1
...

...
. . .

...

1 ξL−1 . . . ξ
df+Ebrst

L−1

 , Wi =


β

[0]
i β

[0]
i ξ0 . . . β

[0]
i ξ

Ebrst
0

β
[1]
i β

[1]
i ξ1 . . . β

[1]
i ξ

Ebrst
1

...
...

. . .
...

β
[L−1]
i β

[L−1]
i ξL−1 . . . β

[L−1]
i ξEbrst

L−1

 .

Then the matrix

A =


M 0 . . . 0 −W1

0 M . . . 0 −W2

...
...

. . .
...

...

0 0 . . . M −Wm


is the coefficient matrix for equation (5.3). We create a sub-matrix of A∗ of A by removing

the last Ebrst(m− 1) rows from all but the first block A.

Lemma 11 If for all i : 1 ≤ i ≤ m the ordered pair (Φ[i](u),Ψ(u)) is a solution to equation

(5.3) then the ordered pair (Φmin,Ψmin) = (fΛ,Λ). The polynomial Ψmin has minimum degree

among the denominators of all solutions to (5.3) and Φmin is the corresponding numerator.

Proof. We again have a complete Reed - Solomon system in the first block, however deg(Ψ) ≥
deg(Λ). By construction the minimum degree that Ψ can be is kerr, the degree of Λ. We know

that if we have two or more solutions for (5.3) then any linear combination of those solutions

will produce another solution. Thus the is only one monic polynomial Ψ of degree kerr We

know from Theorem 10 that there exists a square submatrix of A∗
Ebrst

for which (fΛ,Λ) is the

unique solution. Observe that this solution accounts for all erroneous evaluations in equation

(5.3) and that for all other evaluations (fΛ,Λ) is a solution to equation (5.3). Thus (fΛ,Λ)

solves equation (5.3). Since this solution is unique among all other solutions of equation (5.3)

we have that (Φmin,Ψmin) = (fΛ,Λ). 2

Corollary 3 We can always reduce the size of the system we need to solve if we have a bound

for the number of burst errors.

Remark 14 We know that we can recover a rational function vector from L = df +dg+2E+1

many evaluations by solving the linear system

Φ[i](ξ`)− β
[`]
i Ψ(ξ`) = 0, (5.4)

where for all i : deg(Φ[i]) = df + E and deg(Ψ) = dg + E. See [Kaltofen, Pernet, Storjohann,

and Waddell 2017]. Thus we can recover a polynomial vector from L = df + 2E + 1 many

61

evaluations and solve equation (5.4) since for a polynomial vector deg(g) = 0. Suppose we

know that some errors are burst errors and we can divide our error bound into two types of

errors Ebrst and Enbrst such that Ebrst + Enbrst = E. Then we can remove Ebrst many rows

from all but one block in equation (5.4) before solving for the coefficients of Φ and Ψ. Thus

we recover the polynomial vector from a solution of a smaller system than that used in [Boyer

and Kaltofen 2014] and [Kaltofen, Pernet, Storjohann, and Waddell 2017], where burst errors

are not considered. The proof follows from lemmas 10 and 11 and Theorem 2.2 in [Boyer and

Kaltofen 2014]. 2

62

5.3 Summary

For errors that affect every entry in the vector we only need an extra true evaluation for one

of the entries in the vector to ensure we always recover the entries in the vector. It does not

matter which entry we choose as long as it is the same entry for each possible error. It should

be noted that we not need to first find the error locations before we can recover the vector. Our

algorithm simultaneously recovers the vectors and locates the errors.

For errors that do not affect the entire vector we need a extra good evaluation for every

entry in the vector for all such errors in order to ensure that we can recover the vector.

63

Chapter 6

Modeling Polynomial Vector

Recovery as a Burst Error

Correcting Code

6.1 Introduction

In the previous chapter we have shown that when errors occur in bursts we can reduce the size of

the linear system necessary to recover the polynomials as well as the error locator polynomial.

This implies that we can recover the polynomials from fewer evaluations. The problem we

present in this chapter, though related to that of the previous chapter, is different. In this

setting we think of the coefficients of the polynomials we wish to recover as components of a

message that was sent over a noisy network that produces burst errors. In this setting polynomial

recovery is a type of Reed-Solomon Error Correcting Code and polynomial vector recovery can

be thought of as interleaved Reed-Solomon Codes. It is known that interleaved codes are useful

for decoding on channels that produce burst errors. In fact,[Leung and Welch 1981; Yee and

Weldon 1995; Wolf 1998], interleaved Reed-Solomon codes are among the best known burst

error correcting codes. The problem we solve in this chapter is as follows: given a message and

information about the burst errors decide on an interleaving scheme. The interleaving scheme

must take advantage of the fact that the channel produces burst errors and allow for fewer data

to be sent than would be required if each polynomial was recovered individually or there were

no burst errors. We know that when errors occur in bursts we are able to use fewer evaluation

to recover the polynomial vector. This means that we can send fewer data across the network

than we would be able to if they were no burst errors or if we were recovering the polynomials

individually. The idea is to reduce the redundancy in the codeword.

Recall that the system we solve in order to recover a polynomial vector is over determined.

64

That is there are more rows than there are columns. In order to reduce the size of the system

we remove Ebrst many rows from all but one polynomial. Recall that each row constitutes one

evaluation of a polynomial in the vector. The idea is that, in the error correcting code setting,

we would like to transmit only the evaluations that remain after Ebrst many evaluations have

been removed from all but one of the polynomials in polynomial vector recovery setting. See

tables 6.1, 6.2, and 6.3. This means that we always send more data that pertains to one of the

polynomials. Since the error occurs in bursts we cannot send the extra data for that polynomial

sequentially because if there are too many errors in that polynomial then we will not be able to

recover the vector. We must then design our interleave, table 6.4, so that errors to do accumulate

in one particular polynomial. In order to enforce this we require as much distance as possible

between transmissions of the same polynomial and a constant interleave depth. This ideas are

illustrated in the tables of Section 6.2.

65

6.2 Problem Description

Definition 7 Error Correcting Code: An error correcting code is a process of adding re-

dundant or parity data to a message so that it can be recovered by a receiver even if errors are

induced during transmission.

Definition 8 Codeword: A codeword is the message plus the redundant or parity data added

to the message in order to aid in recovery of the message by the receiver.

Definition 9 Received word: The received word is what the receiver gets.

Definition 10 Errors: An error is any place where the codeword differs from the received

word.

Definition 11 Burst Error Model: A scheme in which errors are likely to occur successively.

Consider:

1. the coefficients of the polynomials to be the message,

2. the true evaluations of the polynomials to be the codewords,

3. the evaluations returned by the black box to be the received word

then each polynomial in the polynomial vector recovery problem can be viewed as a Reed-

Solomon code. Therefore polynomial vector recovery is essentially an interleaved Reed-Solomon

code.

Example 4 For ease of explanation assume that only burst errors occur. Later we will discuss

situations where we have a mix of burst and non-burst errors. Further assume that given a

message and an upper bound for the number of burst errors, say Ebrst = 4, we computed

the degree of the polynomials needed for our interleave scheme to be deg(f) = 3. Then the

generalized Welch/Berlekamp bound Lbk = deg(f) + 2Ebrst + 1 = 12. Recall that γ
[`]
i = f [i](ξ`).

Table 6.1: Evaluated vectors before (m− 1)Ebrst many evaluations are removed

γ
[0]
1 γ

[1]
1 γ

[2]
1 γ

[3]
1 γ

[4]
1 γ

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1 γ

[9]
1 γ

[10]
1 γ

[11]
1

γ
[0]
2 γ

[1]
2 γ

[2]
2 γ

[3]
2 γ

[4]
2 γ

[5]
2 γ

[6]
2 γ

[7]
2 γ

[8]
2 γ

[9]
2 γ

[10]
2 γ

[11]
2

γ
[0]
3 γ

[1]
3 γ

[2]
3 γ

[3]
3 γ

[4]
3 γ

[5]
3 γ

[6]
3 γ

[7]
3 γ

[8]
3 γ

[9]
3 γ

[10]
3 γ

[11]
3

γ
[0]
4 γ

[1]
4 γ

[2]
4 γ

[3]
4 γ

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4 γ

[8]
4 γ

[9]
4 γ

[10]
4 γ

[11]
4

66

Table 6.1 refers to example 4. It shows the outputs of the polynomials at Lbk many evalu-

ations. Each row is a Reed-Solomon codeword that corresponds to a polynomial in the vector.

Table 6.2: Evaluated vectors after (m− 1)Ebrst many evaluations are removed

γ
[0]
1 γ

[1]
1 γ

[2]
1 γ

[3]
1 γ

[4]
1 γ

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1 γ

[9]
1 γ

[10]
1 γ

[11]
1

γ
[0]
2 γ

[1]
2 γ

[2]
2 γ

[3]
2 γ

[4]
2 γ

[5]
2 γ

[6]
2 γ

[7]
2

γ
[0]
3 γ

[1]
3 γ

[2]
3 γ

[3]
3 γ

[4]
3 γ

[5]
3 γ

[6]
3 γ

[7]
3

γ
[0]
4 γ

[1]
4 γ

[2]
4 γ

[3]
4 γ

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4

In example 4 there are only burst errors. We assume that a burst error affects every entry in

the vector. There are no more than Ebrst = 4 many such errors. Thus we remove Ebrst many

evaluations from all but one polynomial in the vector. In this case we remove 4 evaluations from

all but the first polynomial. This is shown in table 6.2.

Table 6.3: Evaluated vectors to be transmitted

γ
[0]
1 γ

[1]
1 γ

[2]
1 γ

[3]
1 γ

[4]
1 γ

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1

γ
[0]
2 γ

[1]
2 γ

[2]
2 γ

[3]
2 γ

[4]
2 γ

[5]
2 γ

[6]
2 γ

[7]
2 γ

[9]
1

γ
[0]
3 γ

[1]
3 γ

[2]
3 γ

[3]
3 γ

[4]
3 γ

[5]
3 γ

[6]
3 γ

[7]
3 γ

[10]
1

γ
[0]
4 γ

[1]
4 γ

[2]
4 γ

[3]
4 γ

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4 γ

[11]
1

We have removed evaluations not necessary to recover the polynomial vector. This is done

before transmission, so there are no errors. Note that the order in which the data is transmitted

is always from the top of the vector to the bottom. For instance in example 4 the evaluations

are transmitted in the following order:

γ
[0]
1 , γ

[0]
2 , . . . , γ

[0]
4 , γ

[1]
1 , . . . , γ

[1]
4 , . . . , γ

[9]
1 , γ

[10]
1 , γ

[11]
1

Observe that at the tail of the transmission, evaluations of the same polynomial are transmitted

consecutively. If burst errors occur before and during the tail of the transmission then there

maybe 5 or more errors in the first polynomial. This violates the assumptions of lemma 11 and

we may not be able to recover the vector.

Table 6.4 shows an interleave scheme that contains the same information as table 6.3, but

does not repeat any polynomial in the same column. Observe that the separation between

67

Table 6.4: Evaluated vectors interleaved for transmission

γ
[0]
1 γ

[1]
1 γ

[2]
1 γ

[3]
1 γ

[4]
1 γ

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1 γ

[9]
1 γ

[10]
1 γ

[11]
1

γ
[0]
2 γ

[1]
2 γ

[2]
2 γ

[3]
2 γ

[4]
2 γ

[5]
2 γ

[6]
2 γ

[7]
2 γ

[8]
3 γ

[9]
3 γ

[10]
3 γ

[11]
3

γ
[0]
3 γ

[1]
3 γ

[2]
3 γ

[3]
3 γ

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4 γ

[8]
4 γ

[9]
4 γ

[10]
4 γ

[11]
4

evaluations of the same polynomial is always constant.

68

6.3 The Interleaving Scheme

In the interleaving scheme there is always one complete Reed-Solomon codeword. This accounts

for deg(f)+2Ebrst+1 many evaluations. Since we remove Ebrst many evaluations from the other

codewords, each will have deg(f) + Ebrst + 1 many evaluations remaining. In order to ensure

that the separation between transmission of the same Reed-Solomon codeword be constant we

must have that the total number of transmissions is a multiple of deg(f) + 2Ebrst + 1. The

interleaving scheme suggests the following equation.

deg(f) + 2Ebrst + 1 + c(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1) (6.1)

Theorem 11 If Ebrst > 0 then c ≥ 3

Proof. First observe that c ∈ Z>0. We first show that c > 1. Assume c = 1 this implies that

deg(f) + 2Ebrst + 1 + deg(f) + Ebrst + 1 = ĉ(deg(f) + 2Ebrst + 1) =⇒ ĉ 6= 0

deg(f) + Ebrst + 1 = (ĉ− 1)(deg(f) + 2Ebrst + 1) =⇒ ĉ 6= 1

this implies ĉ ∈ Z≥2. This implies however, deg(f) +Ebrst + 1 ≥ deg(f) + 2Ebrst + 1. This

is a contradiction since Ebrst > 0. Thus c > 1.

Next we show that c > 2. Observe that

deg(f) + 2Ebrst + 1

2
< deg(f) + Ebrst + 1 < deg(f) + 2Ebrst + 1 (6.2)

Assume that c = 2 this implies that

deg(f) + 2Ebrst + 1 + 2(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1)

2(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1)

deg(f) + Ebrst + 1 = (ĉ− 1)
deg(f) + 2Ebrst + 1

2

Recall ĉ ∈ Z≥2. If ĉ = 2 then deg(f)+Ebrst+1 = deg(f)+2Ebrst+1 which is a contradiction.

If ĉ > 2 then deg(f) + Ebrst + 1 ≥ deg(f) + 2Ebrst + 1 which is also a contradiction. Thus

c > 2.

Let deg(f) = 0 and Ebrst = 1 then for

69

(deg(f) + 2Ebrst + 1) + c(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1)

3 + 3(2) = 3(3)

thus c = 3. Thus if Ebrst > 0 then c ≥ 3. 2

By construction c is one less that the number of polynomials needed to transmit a message.

Thus by Theorem 11 the interleaving scheme requires four or more polynomials.

Theorem 12 If Ebrst > 0 then ĉ ≤ c.

Proof. Assume that ĉ > c. We know that

deg(f) + 2Ebrst + 1 + c(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1)

c(deg(f) + Ebrst + 1) = (ĉ− 1)(deg(f) + 2Ebrst + 1)

c(deg(f) + Ebrst + 1) ≥ c(deg(f) + 2Ebrst + 1)

deg(f) + Ebrst + 1 ≥ deg(f) + 2Ebrst + 1

This is a contradiction. Thus if Ebrst > 1 then ĉ ≤ c 2

Theorem 13 c = ĉ if and only if Ebrst | (deg(f) + 1).

Proof.

deg(f) + 2Ebrst + 1 + c(deg(f) + Ebrst + 1) = c(deg(f) + 2Ebrst + 1)

(c+ 1) deg(f) + (c+ 2)Ebrst + c+ 1 = cdeg(f) + 2cEbrst + c

deg(f) + (2− c)Ebrst + 1 = 0

cEbrst = deg(f) + 2Ebrst + 1

c =
deg(f) + 1

Ebrst
+ 2 2

Corollary 4 c = ĉ = 3 if and only if Ebrst = deg(f) + 1.

Proof. This follows from the previous theorem. 2

Lemma 12 ĉ is the depth of the interleave.

70

Proof. Observe that

deg(f) + 2Ebrst + 1 + c(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1)

ĉ =
deg(f) + 2Ebrst + 1 + c(deg(f) + Ebrst + 1)

deg(f) + 2Ebrst + 1

by construction c(deg(f) +Ebrst + 1) is the number of evaluations of the second through to the

last polynomial. Since deg(f) + 2Ebrst + 1 is the length of the interleave c(deg(f) + Ebrst +

1)/(deg(f) + 2Ebrst + 1) must be the depth of the polynomials f [2] to f [m]. This is one less

than the total depth. Observe that

c = 1 +
c(deg(f) + Ebrst + 1)

deg(f) + 2Ebrst + 1
2

Observe that

c(deg(f) + Ebrst + 1) = (ĉ− 1)(deg(f) + 2Ebrst + 1)

So the left hand side (LHS) is a multiple of deg(f) + 2Ebrst + 1 and the right hand side

(RHS) is a multiple of deg(f) + Ebrst + 1. Since the LHS = RHS we must have that the

LHS and RHS is a common multiple of deg(f) + 2Ebrst + 1 and deg(f) +Ebrst + 1. Then the

smallest value for LHS and RHS is the LCM(deg(f) + 2Ebrst + 1,deg(f) + Ebrst + 1). This

gives the following algorithm for computing c and ĉ.

Algorithm 8: Algorithm for Computing c and ĉ.

Input: deg(f), Ebrst

Output: c, ĉ

1: lcm← LCM(deg(f) + 2Ebrst + 1, deg(f) + Ebrst + 1)

2: c← lcm/(deg(f) + Ebrst + 1)

3: ĉ← (lcm + deg(f) + 2Ebrst + 1)/(deg(f) + 2Ebrst + 1)

4: return c, ĉ

Proof.

deg(f) + 2Ebrst + 1 + c(deg(f) + Ebrst + 1) = ĉ(deg(f) + 2Ebrst + 1)

deg(f) + 2Ebrst + 1 +
lcm

deg(f) + Ebrst + 1
(deg(f) + Ebrst + 1) =

(lcm + deg(f) + 2Ebrst + 1)

deg(f) + 2Ebrst + 1

(deg(f) + 2Ebrst + 1)

deg(f) + 2Ebrst + 1 + lcm = lcm + deg(f) + 2Ebrst + 1

71

This shows that our algorithm works and that the c and ĉ it computes is as small all possible. 2

72

6.4 Data Transmission

In the previous section we considered only burst errors. While this made the description of the

interleaving scheme less cumbersome, it is only practical in the black box setting. In the black

box setting we evaluate vectors so it is practical that an error affects every entry in the vector.

Recall that for our algorithm to decode successfully a burst error must affect the complete Reed-

Solomon codeword. This would mean, however, that all burst errors must affect the complete

Reed-Solomon codeword. In example 4 the complete codeword is evaluations of the polynomial

f [1](u). In the data transmission setting, however, it is more likely that after transmission we

have a mixture of burst and non-burst errors.

Suppose we can divide our error bound E into burst errors Ebrst and non-burst errors Enbrst

such that E = Ebrst+Enbrst. We have shown that we can uniquely decode from (c)(Ebrst) fewer

polynomial evaluations than the generalized Welch/Berlekamp algorithm. Thus we employ our

interleaving strategy in order to transmit (c)(Ebrst) fewer polynomial evaluations. This suggests

the following equation.

deg(f)+2(Ebrst+Enbrst)+1+c(deg(f)+Ebrst+2Enbrst+1) = ĉ[deg(f)+2(Ebrst+Enbrst)+1]

(6.3)

The value for c and ĉ are computed as described by algorithm 8, with the following change:

deg(f)+E+1 is replaced by deg(f)+Ebrst +2Enbrst +1. The values of c and ĉ depend on how

E is splint into Ebrst and Enbrst and a small change in the split of E can cause a significant

change in the value of c and ĉ.

Given a message that is to be sent across a network that produces burst errors we need to

decide how to encode the message. Let’s assume that channel is likely to produce burst errors of

length CBL. Recall that for the interleaving scheme any error that affects the complete Reed-

Solomon codeword is burst error denoted by Ebrst. Depending on the interleave depth, ĉ, a

channel burst of CBLmay produce one or more burst errors, Ebrst, and/or non-burst errors,

Enbrst. If we choose the interleave depth, ĉ, to the length CBL then channel bursts are likely to

produce, at most one burst error and one non-burst error. See 6.6. So given CBL and a bound

for the number of bursts, CBN, that occur we can compute values for Ebrst and Enbrst.

In order to ensure that burst errors of length ĉ always affects the complete Reed-Solomon

codeword and at least one other codeword we place it in the middle of the interleave. For

example the interleave in example 4 becomes

The evaluations β
[j]
i in table 6.6 represents an erroneous evaluation. Let’s assume that

ĉ = CBL = 3. Observe that no matter where the channel burst begins there is always one

burst error (an error in a column that affect the complete Reed-Solomon codeword) and at

most one non burst error (an error in a column that does not affect the complete Reed-Solomon

73

Table 6.5: Evaluated vectors interleaved for transmission

γ
[0]
2 γ

[1]
2 γ

[2]
2 γ

[3]
2 γ

[4]
2 γ

[5]
2 γ

[6]
2 γ

[7]
2 γ

[8]
3 γ

[9]
3 γ

[10]
3 γ

[11]
3

γ
[0]
1 γ

[1]
1 γ

[2]
1 γ

[3]
1 γ

[4]
1 γ

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1 γ

[9]
1 γ

[10]
1 γ

[11]
1

γ
[0]
3 γ

[1]
3 γ

[2]
3 γ

[3]
3 γ

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4 γ

[8]
4 γ

[9]
4 γ

[10]
4 γ

[11]
4

Table 6.6: Channel Burst Length

β
[0]
2 γ

[1]
2 γ

[2]
2 β

[3]
2 γ

[4]
2 β

[5]
2 γ

[6]
2 γ

[7]
2 γ

[8]
3 γ

[9]
3 γ

[10]
3 γ

[11]
3

β
[0]
1 γ

[1]
1 β

[2]
1 γ

[3]
1 γ

[4]
1 β

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1 γ

[9]
1 γ

[10]
1 γ

[11]
1

β
[0]
3 γ

[1]
3 β

[2]
3 γ

[3]
3 β

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4 γ

[8]
4 γ

[9]
4 γ

[10]
4 γ

[11]
4

codeword).

Next we describe how to compute a suitable value for deg(f). Observe

c(deg(f) + Ebrst + 2Enbrst + 1) = (ĉ− 1)(deg(f) + 2(Ebrst + 2Enbrst) + 1)

=⇒ deg(f) =
(2Ebrst + 2Enbrst + 1)ĉ− (Ebrst + 2Enbrst + 1)c− (2Ebrst + 2Enbrst + 1)

c− ĉ+ 1

Algorithm 9: Computing deg(f).

Input: CBL,CBN,ML

Output: deg(f)

1: ĉ← CBL

2: Ebrst ← CBN

3: Enbrst ← CBN

4: c← ĉ

5: deg(f)← (2Ebrst + 2Enbrst + 1)ĉ− (Ebrst + 2Enbrst + 1)c− (2Ebrst + 2Enbrst + 1)

6: return deg(f)

The message we wish to send has a particular length, denoted by ML. Once we compute

deg(f) we know that the message will be divided into blocks of size (c + 1)(deg(f) + 1). It is

then possible that ML mod (c+ 1)(deg(f) + 1) is small relative to (c+ 1)(deg(f) + 1). So we

may wish to reduce the size of deg(f). The value deg(f) is a function of c. The part of the

function we are concerned with is to the right of the vertical asymptote until it is no longer

positive. The root of the function is

c =
(ĉ− 1)(2Ebrst + 2Enbrst + 1)

Ebrst + 2Enbrst + 1

74

To have an idea how many times we increment c we compute how far the root is from the

asymptote

(ĉ− 1)(2Ebrst + 2Enbrst + 1)

Ebrst + 2Enbrst + 1
− (ĉ− 1) =

Ebrst(ĉ− 1)

Ebrst + 2Enbrst + 1

Any increment that produces an integer, for the value of deg(f) gives a different interleave.

75

6.5 Performance on a Simplified Gilbert Channel

Now that we have a description of our interleaving technique we will examine its performance

on a specific channel model known to produce burst errors. The channel model we will use is

known as the simplified Gilbert model.

Figure 6.1: Gilbert Model for Burst Errors

The [Gilbert 1960] model is a two state Markov model. The two states are referred to as

“good” and “bad”. The probability that an error occurs while in the “good” state, PG, is equal

to zero. For the general Gilbert channel the probability, PB, that an errors on the “bad” state

may vary [Gilbert 1960; Mushkin and Bar-David 1989; Wolf 1998], where as in the Simplified

Gilbert Channel [Yee and Weldon 1995] PB = 1. Figure 6.1 is an illustration of the Gilbert

model for a burst error channel. The probability of remaining in the “good” state is denoted

by PGG, while the probability of transitioning from the “good” state to the “bad” state is

denoted by PGB. The probability of remaining in the “bad” state is denoted by PBB, while the

probability of transitioning from the “bad” state to the “good” state is PBG. Markov models

are stochastic, so PGB = 1 − PGG and PBG = 1 − PBB. The transition probability matrix is

then

P =

[
PGG 1− PGG

1− PBB PBB

]
(6.4)

The steady state probabilities of being in the “good” state and the “bad” state are

πG = 1−PBB
1−PBB+1−PGG and πB = 1−PGG

1−PBB+1−PGG
(6.5)

respectively. For the Simplified Gilbert Channel

CBL =
1

1− PBB
. (6.6)

76

Let ρ be the average symbol error rate then

ρ =
1− PGG

1− PBB + 1− PGG
. (6.7)

So that

CBN = ρML/CBL. (6.8)

For our experiments we set Ebrst = 2dCBNe.

6.5.1 Double Interleaving

Given the message length, ML, we subdivide the message into interleaved blocks of depth ĉ.

We may consider each of these blocks to be an interleaved Reed-Solomon codeword. We can

then stack the blocks one on top the other and then transmit the columns from top to bottom.

We call this strategy double interleaving. If ĉ = 3 then table 6.7 depicts the result of double

interleaving.

Table 6.7: Evaluated vectors interleaved for transmission

γ
[0]
2 γ

[1]
2 γ

[2]
2 γ

[3]
2 γ

[4]
2 γ

[5]
2 γ

[6]
2 γ

[7]
2 γ

[8]
3 γ

[9]
3 γ

[10]
3 γ

[11]
3

γ
[0]
1 γ

[1]
1 γ

[2]
1 γ

[3]
1 γ

[4]
1 γ

[5]
1 γ

[6]
1 γ

[7]
1 γ

[8]
1 γ

[9]
1 γ

[10]
1 γ

[11]
1

γ
[0]
3 γ

[1]
3 γ

[2]
3 γ

[3]
3 γ

[4]
4 γ

[5]
4 γ

[6]
4 γ

[7]
4 γ

[8]
4 γ

[9]
4 γ

[10]
4 γ

[11]
4

γ
[0]
6 γ

[1]
6 γ

[2]
6 γ

[3]
6 γ

[4]
6 γ

[5]
6 γ

[6]
6 γ

[7]
6 γ

[8]
7 γ

[9]
7 γ

[10]
7 γ

[11]
7

γ
[0]
5 γ

[1]
5 γ

[2]
5 γ

[3]
5 γ

[4]
5 γ

[5]
5 γ

[6]
5 γ

[7]
5 γ

[8]
5 γ

[9]
5 γ

[10]
5 γ

[11]
5

γ
[0]
7 γ

[1]
7 γ

[2]
7 γ

[3]
7 γ

[4]
8 γ

[5]
8 γ

[6]
8 γ

[7]
8 γ

[8]
8 γ

[9]
8 γ

[10]
8 γ

[11]
8

...
...

...
...

...
...

...
...

...
...

...
...

γ
[0]
m−2 γ

[1]
m−2 γ

[2]
m−2 γ

[3]
m−2 γ

[4]
m−2 γ

[5]
m−2 γ

[6]
m−2 γ

[7]
m−2 γ

[8]
m−1 γ

[9]
m−1 γ

[10]
m−1 γ

[11]
m−1

γ
[0]
m−3 γ

[1]
m−3 γ

[2]
m−3 γ

[3]
m−3 γ

[4]
m−3 γ

[5]
m−3 γ

[6]
m−3 γ

[7]
m−3 γ

[8]
m−3 γ

[9]
m−3 γ

[10]
m−3 γ

[11]
m−3

γ
[0]
m−1 γ

[1]
m−1 γ

[2]
m−1 γ

[3]
m−1 γ

[4]
m γ

[5]
m γ

[6]
m γ

[7]
m γ

[8]
m γ

[9]
m γ

[10]
m γ

[11]
m

Observe that there is no more than 2 transmissions between complete Reed-Solomon code-

words. If E does indeed bound the number of bursts and they aren’t many burst of length

≤ 2 we will be able to decode. One should also observe that we can increase the depth of the

individual blocks. This would allow us to transmit fewer data. The draw back is, however, that

there will be more separation between complete Reed-Solomon codewords.

77

6.5.2 Experimental Results

We designed an experiment in order to test our ideas. In the experiment we simulate sending

messages across a Simplified Gilbert Channel and record our successes after 100 trials. We com-

pare strategies that utilize double interleaving against ones that do utilize double interleaving.

The results of out experiments are presented in the tables that follow.

Table 6.8: Experiment Parameters

analytic actual analytic actual analytic actual
PGG PBB symbol error symbol error mean burst mean burst mean num mean num

rate rate length length of bursts of bursts

0.9 0.000999 0.001647 10.00 12.45 0.15 0.20
0.9999 0.85 0.000666 0.000972 7.00 5.25 0.14 0.28

0.8 0.000500 0.000595 5.00 4.50 0.15 0.20

0.9 0.009901 0.012626 10.00 10.72 1.50 1.78
0.999 0.85 0.006623 0.007282 7.00 6.15 1.43 1.79

0.8 0.004975 0.005681 5.00 4.67 1.50 1.84

0.9 0.090909 0.091898 10.00 9.85 13.75 14.11
0.99 0.85 0.062500 0.060337 7.00 6.22 13.50 14.66

0.8 0.047619 0.048505 5.00 5.08 14.40 14.44

Table 6.8 details how our simulations of the Gilbert Model compares to the theory. Table

6.8 is computed along with Table 6.9 and shows how the symbol error rate, mean burst length

as well as the mean number of bursts computed compare to their respective theoretical values.

In Table 6.9, as in Section 6.3, we consider on only burst errors. The codeword is doubly

interleaved and we choose our interleave depth to be the 3, which is the minimum. We compare

there results with those of Table 6.10 where the only difference is that we do not doubly

interleave the codewords. As expected this method does not work as well as double interleaving.

The double interleave strategy extends the depth of the code, see Table 6.5, and allows for the

decoding of longer bursts. This corroborated by observing the last column of Tables 6.9 and

6.10.

In Table 6.11 and 6.12 we again only consider burst error, but this time we do not choose

the interleave depth to be the minimum. Instead we compute the ceiling of the channel busts

length, see Equation (6.6), and use this as the depth of the interleave. In Table 6.11 we employ

the double interleaving strategy, where as in Table 6.12 we do not. We again observe that double

interleaving strategy is able to correct more burst as well as longer bursts.

78

Observe that the results in Table 6.11 while they aren’t better than those in Table 6.9

they are quite close. Observe, however, that the difference between the message length and the

codeword length is significantly smaller in Table 6.11 than in Table 6.9 We speculate the results

in Table 6.9 are slightly better than those in Table 6.11 because using the minimum interleaving

depths means that the complete Reed-Solomon codewords are always 2 evaluations apart, see

Table 6.7. Where as in Table the values for ĉ are 10, 7, and 5. So the complete Reed-Solomon

codewords are 9, 6 and 4 evaluations apart respectively. Thus we are more likely to correct

shorter bursts in Table 6.9 than in Table 6.11.

Table 6.9: Stack + Burst Only + Minimal Interleave

c = ĉ = 3; ML = 672; CL = 1, 512

Pct of Total Total Num Max Max burst
PGG PBB df Ebrst Correct Num Bursts Burst Length

Decoding Bursts Corrected Length Corrected

0.9 1 2 99.00 20.00 19.00 48.00 48.00
0.9999 0.85 1 2 96.00 28.00 22.00 11.00 10.00

0.8 1 2 100.00 20.00 20.00 12.00 12.00

0.9 1 2 73.00 178.00 91.00 48.00 48.00
0.999 0.85 1 2 69.00 179.00 86.00 25.00 25.00

0.8 1 2 63.00 184.00 72.00 26.00 19.00

0.9 13 14 18.00 1411.00 198.00 72.00 42.00
0.99 0.85 11 12 5.00 1466.00 45.00 45.00 24.00

0.8 13 14 4.00 1444.00 54.00 29.00 19.00

79

Table 6.10: Not Stack + Burst Only + Minimal Interleave

c = ĉ = 3; ML = 672; CL = 1, 512

Pct of Total Total Num Max Max burst
PGG PBB df Ebrst Correct Num Bursts Burst Length

Decoding Bursts Corrected Length Corrected

0.9 1 2 80.00 29.00 3.00 48.00 5.00
0.9999 0.85 1 2 88.00 20.00 5.00 11.00 5.00

0.8 1 2 87.00 24.00 7.00 12.00 2.00

0.9 1 2 22.00 178.00 8.00 48.00 5.00
0.999 0.85 1 2 19.00 179.00 4.00 25.00 4.00

0.8 1 2 29.00 191.00 17.00 15.00 5.00

0.9 13 14 0.00 1491.00 0.00 60.00 0.00
0.99 0.85 11 12 0.00 1483.00 0.00 45.00 0.00

0.8 13 14 0.00 1467.00 0.00 36.00 0.00

Table 6.11: Stack + Burst Only + Not Minimal Interleave

c = ĉ;Ebrst = 2

Message Code Pct of Total Total Num Max Max Burst
PGG PBB df c Length Length Correct Num Bursts Burst Length

Decoding Bursts Corrected Length Corrected

0.9 15 10 528 600 97.00 11.00 7.00 26.00 26.00
0.9999 0.85 9 7 640 784 94.00 15.00 8.00 11.00 10.00

0.8 5 5 684 950 96.00 17.00 12.00 12.00 12.00

0.9 15 10 528 600 74.00 72.00 28.00 41.00 41.00
0.999 0.85 9 7 640 784 62.00 100.00 36.00 25.00 25.00

0.8 5 5 684 950 56.00 119.00 37.00 26.00 26.00

Given the description of our experiment if we consider burst errors and non burst errors

with the minimum interleave depth then df is less than zero. So we cannot consider this case

with the current experiment parameters. We are however able to conduct our experiment in

most cases when we set the interleave depth to be the ceiling of the channel burst length. See

Table 6.13 and Table 6.14. As expected these Tables contain the best results as the account for

burst errors as well a non burst errors. Recall that we expect channel burst that are the channel

burst length to produce one burst error and one one burst error. See Tables 6.5 and 6.6.

80

Table 6.12: Not Stack + Burst Only + Not Minimal Interleave

c = ĉ;Ebrst = 2

Message Code Pct of Total Total Num Max Max burst
PGG PBB df c Length Length Correct Num Bursts Burst Length

Decoding Bursts Corrected Length Corrected

0.9 15 10 528 600 90.00 11.00 0.00 26.00 0.00
0.9999 0.85 9 7 640 784 89.00 15.00 2.00 11.00 10.00

0.8 5 5 684 950 89.00 17.00 5.00 12.00 7.00

0.9 15 10 528 600 56.00 72.00 7.00 41.00 20.00
0.999 0.85 9 7 640 784 45.00 98.00 8.00 25.00 7.00

0.8 5 5 684 950 41.00 117.00 16.00 26.00 9.00

Table 6.13: Stack + Not Burst Only + Not Minimal Interleave

c = ĉ;Ebrst = Enbrst = 2

Message Code Pct of Total Total Num Max Max Burst
PGG PBB df c Length Length Correct Num Bursts Burst Length

Decoding Bursts Corrected Length Corrected

0.9999 0.9 11 10 660 1000 100.00 18.00 18.00 48.00 48.00
0.85 5 7 672 1372 100.00 19.00 19.00 11.00 11.00

0.999 0.9 11 10 660 1000 100.00 125.00 125.00 45.00 45.00
0.85 5 7 672 1372 98.00 156.00 146.00 25.00 25.00

0.99 0.85 35 7 576 1176 98.00 1151.00 1109.00 45.00 45.00

Table 6.14: Not Stack + Not Burst Only + Not Minimal Interleave

c = ĉ;Ebrst = Enbrst = 2

Message Code Pct of Total Total Num Max Max Burst
PGG PBB df c Length Length Correct Num Bursts Burst Length

Decoding Bursts Corrected Length Corrected

0.9999 0.9 11 10 660 1000 98.00 17.00 13.00 48.00 26.00
0.85 5 7 672 1372 100.00 19.00 19.00 11.00 11.00

0.999 0.9 11 10 660 1000 85.00 125.00 86.00 45.00 34.00
0.85 5 7 672 1372 85.00 156.00 104.00 25.00 24.00

0.99 0.85 35 7 576 1176 87.00 1151.00 937.00 45.00 45.00

81

6.6 Summary

In this chapter we present an application of polynomial vector recovery. The application we

present is polynomial vector recovery as an interleaved Reed-Solomon Code. We view the co-

efficients of the polynomials as components of a message that is sent over a channel known to

produce burst errors. Rather than sending evaluation of one polynomial sequentially we inter-

leave the evaluations in such away that we have maximum separation between evaluations of

the same polynomial.

Burst error correcting codes have better error correcting capabilities than non burst error

correcting codes. The same is true for polynomial vector recovery when errors occur in bursts.

We use the idea of Chapter 5 to design an interleaving scheme that would allow us to decode

from fewer evaluations than would be necessary if we did not use interleaving. We showed that

the minimum interleaving depth is 3.

Recall that in our setting the burst error correcting code comprises of a single complete

Reed-Solomon codeword. It is known that combining multiple burst error correcting codes also

improves the error correcting capabilities of the code. This fact motivated us to fix the depth

of the interleave and subdivide the message into subdivision of that depth. Each individual

subdivision comprises of depth plus one many polynomials. We can the then stack all the

subdivisions to create a deeper interleave that has as many complete Reed-Solomon codewords

as there are subdivisions. We tested our idea on a simplified Gilbert Channel and present some

preliminary results.

82

Chapter 7

Conclusion

In this thesis we begin with a review of the [Boyer and Kaltofen 2014] algorithm for solving

full rank parametric linear systems with error correction. The algorithm works by interpolating

the solution from scalar linear systems, given by a black box procedure. Using techniques

from Coding Theory the algorithm works even if some of the scalar systems are erroneous. By

erroneous we mean that the evaluated solution, of the parametric system, is not the solution

of the scalar system returned by the black box. The algorithm simultaneously computes the

solution and an error locator polynomial. We then present two early termination strategies

that can we used to compute the solution from fewer evaluations. We then combine our two

early termination strategies to create a general early termination strategy for solving full rank

parametric linear systems with error correction.

We then show that the problem of recovering a black box vector of rational functions

from its evaluations, where some evaluations may be erroneous, is a special case of the [Boyer

and Kaltofen 2014] algorithm for parametric linear system solving with errors. Thus our early

terminations strategies apply. To ensure uniqueness of the rational function we consider the

common monic denominator of minimal degree. For early termination if roots of the common

denominator, are allowed then we need extra information about the numerator of the solutions

at places were the black box indicates that the common denominator is zero.

The thesis continues with the development of theory that leads to an algorithm for finding

low degree solutions for rank deficient parametric linear systems with error correction. Like the

algorithm for full rank systems the rank deficient algorithm works by interpolating the solution

from scalar linear systems given by a black box. The algorithm works even some scalar systems

returned by the black box are erroneous. By erroneous we mean that one or more of the evaluated

solutions of the parametric linear system is not a solution to the scalar system returned by the

black box. Unlike the algorithm for the full rank case, our algorithms for the rank deficient

case does not compute an error locator polynomial and low degree solution simultaneously.

83

Instead, our algorithm for the rank deficient case first computes the error locator polynomial,

then removes the erroneous systems returned by the black box. Finally the algorithm computes

a low degree solution from the error free systems.

Note that a scalar system returned by the black box can have the same solution as the

evaluated parametric linear system only if their respective matrices have the same null space.

We are able to remove all erroneous systems by first classifying all errors as one of two types:

1. Matrix Errors, are errors that occur because the null space of the scalar matrix returned

by the black box is not equal to the null space of the evaluated matrix for the parametric

linear system. Such an error indicates one or more of the relationships among the columns

in the evaluated matrix of the parametric system does not exist among the columns in

the scalar matrix returned by the black box. We show that we can locate all such errors

by examining a canonical basis for the null space of scalar systems returned by the black

box.

2. Right Side Vector Errors, are errors that occur when the null space of the scalar matrix

returned by the black box is equal to the null space of the evaluated matrix for the

parametric linear system, but the scalar right side vector returned by the black box is

such that one or more of the solutions of the evaluated parametric system is not a solution

to the scalar system returned by the black box. A key observation is that all error in the

full rank case can be classified as Right Side Vector Errors. Thus we are able to identify

all such errors by first finding a set linearly independent columns in the matrix of the

parametric system and using only those columns with the algorithm for the full rank

case.

Once we have identified and removed all erroneous systems returned by the black box we are

then able to use the error free systems to compute a low degree solution.

The thesis ends with a discussion of solving a black box vector of polynomials and its

connection to interleaved Reed-Solomon Codes for decoding messages transmitted over channels

that cause burst errors. For the polynomial recovery problem we consider an error model where

if the black box returns an error then then a particular entry in the vector is bad. This entry

is a part of what he term the complete Reed-Solomon codeword. Note that a model where an

error affects all entries satisfies the condition that a particular entry is always affected. We show

that for this error model we can solve a smaller system than is required for the error model

where an error may not affect a particular entry in the vector. We further show that there is no

need to assume that the errors are random and that the solution and error locations can still

be found simultaneously.

In Coding Theory code interleaving is a technique used correcting errors when errors occur

in bursts. If the vector being recovered is 1 dimensional, that is there is only one polynomial,

84

then the algorithm is the [Gemmell and Sudan 1992] description of the [Welch and Berlekamp

1986] decoder for [Reed and Solomon 1960] codes. Polynomial vector recovery then can be

viewed as an interleaving of Reed-Solomon codes. Given that we can reduce the size of the

system we solve when a particular entry in the vector is bad we devise a strategy to take

advantage of this on a burst error channel. The idea is to be able to send fewer data than is

required by the Generalized Welch/Berlekamp Algorithm across the channel while maintaining

a high probability of decoding. We give a description of the strategy, discuss some limitations

and finally test our ideas on a Simplified [Gilbert 1960] Channel, which is a common model

used in Coding Theory for testing burst error correcting codes.

85

Chapter 8

Future Work

In Chapter 2 we presented early termination strategies for parametric linear system solving with

error correction for full rank systems. Where as, in Chapter 4 we presented the first algorithm for

parametric linear system solving with error correction for rank deficient systems. The algorithm

that we prove is exponential in the size of the matrix. We later conjectured an algorithm, 5 that

is linear in the size of the matrix, but we do no prove that it is always correct. I would like to

supply a proof of the correctness our conjectured algorithm. I also plan to investigate whether

the early termination strategies for full rank systems apply in the rank deficient case. If not,

then what improvements are possible for our initial algorithm for rank deficient systems.

In Chapter 3 we showed that rational vector recovery with error correction is specialization

of parametric linear system solving with error correction for full rank systems. Two natural

question are:

1. Are there any more application for the full rank algorithm.

2. What are some applications for the rank deficient algorithm.

I plan to investigate these questions along with other questions that may result from the quest

for their answers.

In Chapter 5 we discussed polynomial vector recovery with burst error and then in Chapter

6 we showed how it could be used as a Reed-Solomon burst error correcting code. There exists

extensive research on error correcting codes and error correcting codes has many practical use.

I think it would be interesting to see how our findings are related to what is already known

about burst error correcting Reed-Solomon codes. Does our work add any insight to the ongoing

research of Coding Theory?

It may be possible that error correction can be used as an algorithmic paradigm, like Divide

and Conquer or Early Termination. Say in the execution of program there are some computa-

tions which take very long, while others are fast. Perhaps we can place dummy values for the

86

output of the slow computations and use error correction to find their values later and cheaper.

This is a interesting idea that I believe deserves some attention.

Coding Theory and Cryptography are closely related, see [Kiayias and Yung 2002] and

[Kiayias and Yung 2008]. It may be possible to a public key encryption protocol based on the

idea of error correction. I intend to devote some time trying to find such a protocol.

87

REFERENCES

Bleichenbacher, Daniel, Kiayias, Aggelos, and Yung, Moti. Decoding of interleaved reed solomon
codes over noisy data. In International Colloquium on Automata, Languages, and Program-
ming, pages 97–108. Springer, 2003.

Boyer, Brice B. and Kaltofen, Erich L.. Numerical linear system solving with parametric
entries by error correction. In Verschelde, Jan and Watt, Stephen M., editors, SNC’14
Proc. 2014 Internat. Workshop on Symbolic-Numeric Comput., pages 33–38, New York,
N. Y., 2014. Association for Computing Machinery. URL: http://www.math.ncsu.edu/

~kaltofen/bibliography/14/BoKa14.pdf.

Cabay, Stanley. Exact solution of linear equations. In Proceedings of the Second ACM Sympo-
sium on Symbolic and Algebraic Manipulation, SYMSAC ’71, pages 392–398, New York, NY,
USA, 1971. ACM. URL http://doi.acm.org/10.1145/800204.806310.

Gemmell, Peter and Sudan, Madhu. Highly resilient correctors for polynomials. Information
processing letters, 43(4):169–174, 1992.

Gilbert, Edgar N. Capacity of a burst-noise channel. Bell Labs Technical Journal, 39(5):
1253–1265, 1960.

Kaltofen, Erich and Pernet, Clément. Cauchy interpolation with errors in the values, December
2013.

Kaltofen, Erich and Yang, Zhengfeng. Sparse multivariate function recovery from values with
noise and outlier errors. In Kauers, Manuel, editor, ISSAC 2013 Proc. 38th Internat. Symp.
Symbolic Algebraic Comput., pages 219–226, New York, N. Y., 2013. Association for Comput-
ing Machinery. URL: http://www.math.ncsu.edu/~kaltofen/bibliography/13/KaYa13.
pdf.

Kaltofen, Erich L. and Yang, Zhengfeng. Sparse multivariate function recovery with a high
error rate in evaluations. In Nabeshima, Katsusuke, editor, ISSAC 2014 Proc. 39th Internat.
Symp. Symbolic Algebraic Comput., pages 280–287, New York, N. Y., 2014. Association for
Computing Machinery. URL: http://www.math.ncsu.edu/~kaltofen/bibliography/14/
KaYa14.pdf.

Kaltofen, Erich L., Pernet, Clément, Storjohann, Arne, and Waddell, Cleveland. Early termi-
nation in parametric linear system solving and rational function vector recovery with error
correction. In Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation, pages 237–244. ACM, 2017.

Kiayias, Aggelos and Yung, Moti. Cryptographic hardness based on the decoding of reed-
solomon codes. In International Colloquium on Automata, Languages, and Programming,
pages 232–243. Springer, 2002.

Kiayias, Aggelos and Yung, Moti. Cryptographic hardness based on the decoding of reed–
solomon codes. IEEE Transactions on Information Theory, 54(6):2752–2769, 2008.

88

http://www.math.ncsu.edu/~kaltofen/bibliography/14/BoKa14.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/14/BoKa14.pdf
http://doi.acm.org/10.1145/800204.806310
http://www.math.ncsu.edu/~kaltofen/bibliography/13/KaYa13.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/13/KaYa13.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/14/KaYa14.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/14/KaYa14.pdf

Leung, Kon and Welch, L. Erasure decoding in burst-error channels. IEEE Transactions on
Information Theory, 27(2):160–167, 1981.

McClellan, M. T. The exact solution of systems of linear equations with polynomial coefficients.
J. ACM, 20:563–588, 1973.

Mushkin, Mordechai and Bar-David, Israel. Capacity and coding for the gilbert-elliott channels.
IEEE Transactions on Information Theory, 35(6):1277–1290, 1989.

Olesh, Zach and Storjohann, Arne. The vector rational function reconstruction problems.
In Proc. Waterloo Workshop on Computer Algebra: devoted to the 60th birthday of Sergei
Abramov (WWCA), pages 137–149, 2007.

Olshevsky, V. and Shokrollahi, M. A. A displacement approach to decoding algebraic codes.
In Algorithms for Structured Matrices: Theory and Applications, volume 323, pages 265–292.
American Math. Soc., 2003.

Pernet, Clément. High Performance Algebraic Reliable Computing. Habilitation thesis, Univ.
Joseph Fourier (Grenoble 1), November 2014.

Reed, Irving S and Solomon, Gustave. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

Schmidt, Georg, Sidorenko, Vladimir, and Bossert, Martin. Collaborative decoding of inter-
leaved Reed-Solomon codes and concatenated code designs. IEEE Transactions on Informa-
tion Theory, 55:2991 – 3012, 2009.

Storjohann, Arne and Villard, Gilles. Computing the rank and a small nullspace basis of a
polynomial matrix. In Proceedings of the 2005 international symposium on Symbolic and
algebraic computation, pages 309–316. ACM, 2005.

Welch, L. R. and Berlekamp, E. R. Error correction of algebraic block codes. US Patent
4,633470, 1986. See http://patft.uspto.gov/.

Wolf, JK. Ecc performance of interleaved rs codes with burst errors. IEEE Transactions on
Magnetics, 34(1):75–79, 1998.

Yee, James R and Weldon, Edward J. Evaluation of the performance of error-correcting codes
on a gilbert channel. IEEE transactions on Communications, 43(8):2316–2323, 1995.

89

http://patft.uspto.gov/

APPENDIX

90

Appendix A

Maple Programs

Start of code

#Implementation of the algorithms for Numerical Linear System Solving

With Parametric Entries By Error Correction

ParmLinSolvWithErrors := module()

export KP_Lin_Solv #Solves linear equations using the KP bound.

,COS_Lin_Solv #Solves linear eqauations using the COS bound.

;

local Lin_Solv;

option package;

interface(rtablesize=infinity);

Lin_Solv := proc({BB:=Ex1 #Bloack Box matrix.

, L::integer:=0 #The number of evaluations.

,df::integer:=0 #bound for numerator degree.

,dg::integer:=0 #bound for denominator degree.

, R::integer:=0 #rank drop bound.

, E::integer:=0 #error bound.

})

#---

Output: x, the solution to the system A(u)x = b(u).

91

#---

local xi #Set of evalution points.

,A #Black box matrix.

,b #Black box vector.

,m #Row dimension of A.

,n #Column dimension of A.

,AOfXi #Evaluated matrix.

,gOfU #Denominator of the solution.

,vectPhiOfU #Vector of unknown coefficient phi.

,psiOfU #Polynomial in unknown coefficient psi.

,vectOfEqns #Vector of equations in unknowns phi and psi.

,listOfEqns #Vector of equations converted to list.

,coefMat #Coefficient matrix of linear system.

,sol #Nullspace space of coefficient matrix.

,x #Solution in the form f^[i](u)/g(u).

,i #Index.

,j #Index.

,k #Accumulation of ranks drops.

,err #Error loactor polynomial.

,xLambda #Solution before factoring error polynomial.

,solVect #Solution vector.

,solIndex #Index.

,scaleFact #Scaling factor that makes g(u) monic.

,solCheck #Check that the solution computed is correct.

,gaussElimMat#get low degree solution.

,Ell #The number of evaluations minus the rank drops.

;

#------------------------------

Initialization of variables

#------------------------------

A:=BB:-Umat(’u’);

b:=BB:-Uvect(’u’);

m:=BB:-Umatdims()[1];

n:=BB:-Umatdims()[2];

92

Ell := L;

xi:={seq(-i,i=1..floor(L/2)),seq(j,j=0..ceil(L/2)-1)};

k:=0;

err:=1;

scaleFact:=1;

#--

Create a vector of polynomials in the unknown coefficent phi

#--

vectPhiOfU := Vector(n,i->sum(phi[i][j]*u^j,j=0..df+E));

#--

Create polynomial in the unknown coefficient psi

#--

psiOfU := sum(psi[j]*u^j,j=0..dg+E);

#-------------------------------------

Make big vector of linear equations

#-------------------------------------

vectOfEqns := eval(LinearAlgebra:-Add(-1*psiOfU*BB:-Uvect(xi[1])[1],

BB:-Umat(xi[1])[1].vectPhiOfU), u=xi[1]);

for i from 2 to Ell do

vectOfEqns := ArrayTools:-Concatenate(1,vectOfEqns,

eval(LinearAlgebra:-Add(-1*psiOfU*BB:-Uvect(xi[i]),

BB:-Umat(xi[i]).vectPhiOfU), u=xi[i]));

od;

#---

Convert vector to list and set each linear equation equal to zero

#---

listOfEqns := convert(vectOfEqns,list);

93

for i from 1 to nops(listOfEqns) do

listOfEqns[i] := vectOfEqns[i] = 0;

od;

#---------------------------------------

Generate coefficient matrix and solve

#---------------------------------------

coefMat := LinearAlgebra:-GenerateMatrix(listOfEqns,[seq(psi[dg+E-j],

j=0..dg+E), seq(seq(phi[i][df+E-j],j=0..df+E),i=1..n)],

augmented=false);

sol := LinearAlgebra:-NullSpace(coefMat[1]);

if sol = {} then

error "No Soltion found, one or more bounds must me increased";

else

gaussElimMat := LinearAlgebra:-GaussianElimination(LinearAlgebra:-

Transpose((convert(convert(sol,list),Matrix))));

solVect := LinearAlgebra:-Row(gaussElimMat,nops(sol));

fi;

gOfU := add(solVect[i]*u^(dg+E+1-i),i=1..dg+E+1);

#---

check whether or not g(u) is zero. If it is then go up further in

row reduced matrix until g(u) is no longer 0

#---

if gOfU = 0 then

solIndex := 1;

fi;

while gOfU = 0 do

solVect := LinearAlgebra:-Row(gaussElimMat,nops(sol)-solIndex);

gOfU := add(solVect[i]*u^(dg+E+1-i),i=1..dg+E+1);

solIndex := solIndex + 1;

94

od;

#--

Solution vector before factoring the error locator polynomial

#--

xLambda :=[Vector(n,[seq(add(solVect[dg+E+1+j+k*(df+E+1)]*u^(df+E+1-j),

j=1..df+E+1),k=0..n-1)]), gOfU]; # Convert solution to polynomial form.

#---

Factoring out the error locator polynomial

#---

err := gcd(xLambda[1][1],gOfU);

for i from 2 to n do

err := gcd(xLambda[1][i],err);

od;

gOfU := simplify(gOfU/err);

#---

If g(u) is not monic then we divide all coeffcients by the

leading coefficient of g(u)

#---

if coeff(gOfU,u,degree(gOfU,u)) <> 1 then

scaleFact := coeff(gOfU,u,degree(gOfU,u));

gOfU := gOfU/coeff(gOfU,u,degree(gOfU,u));

fi;

x := [simplify(err^(-1)*xLambda[1]/scaleFact),gOfU];

#---

#Check that the solution computed is correct

#---

solCheck := simplify(A.(err^(-1)*xLambda[1]/scaleFact) - gOfU*b);

95

for i from 1 to m do

if solCheck[i] <> 0 then

error "The computed solution is incorrect. Look for bugs";

fi;

od;

return x, factor(err);

end proc; #End of linSolv procedure.

KP_Lin_Solv :=

proc({ BBMat:=Ex1

,d_f::integer:=0 #bound for numerator degree.

,d_g::integer:=0 #bound for denominator degree.

,RBd::integer:=0 #rank drop bound.

,EBd::integer:=0 #error bound.

})

#--

Output: x, the solution to equation (5)

#--

local LKP #The number of evalutions.

;

#------------------------------

Initialization of variables

#------------------------------

LKP:=d_f+d_g+RBd+2*EBd+1;

#----------------------------

#Get and return solution

#----------------------------

return Lin_Solv(BB=BBMat, L=LKP, df=d_f, dg=d_g, R=RBd, E=EBd);

96

end proc; #End of KP_Lin_Solv procedure.

COS_Lin_Solv :=

proc({ BBMat:=Ex1

,d_f::integer:=0 #bound for numerator degree.

,d_g::integer:=0 #bound for denominator degree.

,dA::integer:=0 #bound max degree polynomial in A.

,db::integer:=0 #boun max degree polynomila in b.

,RBd::integer:=0 #rank drop bound

,EBd::integer:=0 #error bound.

})

#--

Output: x, the solution to the system A(u)x = b(u).

#---

local LCOS #The number of evalutions.

;

#------------------------------

Initialization of variables

#------------------------------

LCOS:=max(dA+d_f,db+d_g)+2*EBd+RBd+1;

#----------------------------

#Get and return solution

#----------------------------

return Lin_Solv(BB=BBMat, L=LCOS, df=d_f, dg=d_g, R=RBd, E=EBd);

end proc; #End of COS_Lin_Solv procedure.

end module:

End of code

97

Start of code

Sample balck box

Ex11 := module()

export Umat

,Umatdims

,Uvect

;

local A

,A_at_xi

,b

,b_at_xi

;

A := Matrix(2,2,[[u^9+3*u^8+13*u^7-12*u^6-u^4+3*u^3+7*u^2+15*u-7,

u^9+7*u^8-2*u^7-u^6-u^5+u^4+4*u^3+10*u^2+2*u+1],

[-5*u^9-9*u^8-12*u^7-8*u^6-14*u^5+23*u^4+21*u^3-6*u^2+14*u-6,

-4*u^9-6*u^8-11*u^7-19*u^6-u^5+18*u^4+9*u^3+9*u^2+3*u]]);

Umat := proc(xi)

local A_at_xi;

A_at_xi:= map(x -> subs(’u’=xi,x), A);

if xi = 5 then A_at_xi[1,1] := 0; fi; # error at 5

if xi = 4 then A_at_xi[1,2] := -1; fi; #error at 4

return A_at_xi;

end proc;

b := Vector(2,[2*u^10+10*u^9+6*u^8+2*u^7-12*u^6+u^5+5*u^4+16*u^3+

14*u^2+7*u-7, -9*u^10-16*u^9-21*u^8-32*u^7+4*u^6+17*u^5+29*

u^4+23*u^3-u^2+8*u-6]);

Uvect := proc(xi)

local b_at_xi;

b_at_xi := map(x -> subs(’u’=xi,x),b);

return b_at_xi;

end proc;

98

Umatdims := proc()

return 2,2;

end proc;

end module: # end of Ex11

End of code

Start of code

Implementation of the algorithm for Rank Defficeint Linear Systems

This implementation first solve the homegenous system.

RankDefParmLinSolv := module()

export ,SING_Lin_Solv

;

local Rank_Def_Lin_Solv

;

option package

;

interface(rtablesize=infinity);

Rank_Def_Lin_Solv := proc({BB:=BB2 #Bloack Box matrix.

, L::integer:=0 #The number of evaluations.

,df::integer:=0 #bound numerator degree .

,dg::integer:=0 #bound denominator degree.

,dA::integer:=0 #bound max degree polynomial in A.

,db::integer:=0 #bound max degree polynomial in b.

, R::integer:=0 #rank drop bound.

, E::integer:=0 #error bound.

})

#--

Output: x, the solution to the system A(u)x = b(u).

99

#--

local xi #Set of evalution points.

,Ahatsupbrell #matrix returned by the black box.

,bhatsupbrell #right side vector retruned by the black box.

,Ab #Augmentation of Asupbrell and bsupbrell.

,RREFAb #Reduced Row Echelon Form of Ab.

,zeros #bhatsupbrell is zero.

,A #Black box matrix.

,b #Black box vector.

,m #Row dimension of A.

,n #Column dimension of A.

,Phi_U #Polynomial in unknown coefficients phi_i

,Omega_U #Polynomail in unknown coefficients omega_i

,Psi_U #Polynomial in unknown coefficients psi_i

,Lambda_U #Polynomial in unkowwn coefficients lambda_i

,gOfU #Denominator of the solution.

,vectPhiOfU #Vector of unknown coefficient phi.

,psiOfU #Polynomial in unknown coefficient psi.

,vectOfEqns #Vector of equations in unknowns phi and psi.

,listOfEqns #Vector of equations converted to list.

,coefMat #Coefficient matrix of linear system.

,sol #Nullspace space of coefficient matrix.

,i #Index.

,j #Index.

,k #Accumulation of ranks drops.

,l #Index.

,ii #Index.

,jj #Index.

,kk #Index.

,err #Error loactor polynomial.

,xLambda #Solution before factoring error polynomial.

,solVect #Solution vector.

,solIndex #Index.

,scaleFact #Scaling factor that makes g(u) monic.

,solCheck #Check that the solution computed is correct.

,gaussElimMat#Gaussian elimination.

100

,error_set #The set of all erroroneus evaluations.

,phi_index #Index for the Phi polynomials.

,omega_index #Index for the Omega polynomials

,psi_index #Index for the Psi polynomial.

,lam_index #Index the lambda polynomial.

,hat_sys #Ahat and bhat.

,lambda_u #error locator polynomial.

,Err #A replacement for E

,Phi_list #List of solutions for Phi

,Omega_list #List of solutions for Omega

,SqRREFAb #Pad RREFAb with zeros until square

,ToF #True or False?

,bzero #Is right side vector zero?

,colval #Only zero column

,hat_list #list of augemented hatted systems from black box

,non_dep_set #Set of non dependent columns

,pre_piv_col #The previous independent column

,dep_set #Set of dependent columns

,uni_set #Universal set. First n integers

,zero_col #The non-zero column

,omega_ord_list#The order of the phi’s for gaussian elimination.

,old_omega_ord_list #older order of phi for gaussian elimination

,nonzero_omega #The set of nonzero phi’s for homogenous solution.

,zero_omega

,d_fpart #numerator degree bound for particular solution.

,zero_col_Ahat #The columns that evaluate to zero.

,bhat_zero_set #The set of evaluations with bhat equal to zero

,zero_col_list #A list of lists. [[eval pt, zero_col]]

,zero_list #Make the zero col list

,fact #Factor to remove from Phi

,div_counter

,first_element #Omegas that have been first

,perm_counter #number of permuatation checked

,temp

,d_Omega #null space degree bound

;

101

#------------------------------

Initialization of variables

#------------------------------

zeros := {};

A := BB:-Umat;

b := BB:-Uvect;

m:=BB:-mat_dim()[1];

n:=BB:-mat_dim()[2];

error_set := {};

d_Omega := n*dA;

xi := {seq(-i,i=1..floor(L/2)),seq(j,j=0..ceil(L/2)-1)};

k := 0;

err := 1;

Lambda_U := 1;

scaleFact:=1;

hat_list := [];

uni_set := {seq(i, i = 1 .. n)};

bhat_zero_set := {};

zero_col_list := [];

zero_list := [];

fact := 1;

#--

List of points to interpolate to find a matrix row equivalent to A.

#--

Omega_U := Vector(n, i->sum(omega[i][omega_index]*u^omega_index,

omega_index = 0 .. d_Omega + E));

hat_sys := BB:-hat_lin_sys(xi[1]);

Ahatsupbrell := hat_sys[1];

vectOfEqns := eval(Ahatsupbrell.Omega_U, u = xi[1]);

for i from 2 to nops(xi) do

hat_sys := BB:-hat_lin_sys(xi[i]);

102

Ahatsupbrell := hat_sys[1];

vectOfEqns := ArrayTools:-Concatenate(1, vectOfEqns,

eval(Ahatsupbrell.Omega_U ,u = xi[i]));

od;

listOfEqns := convert(vectOfEqns, list);

omega_ord_list := [seq(i, i = 1..n)];

first_element := [1];

perm_counter := 0;

while perm_counter < (n - 1) do

coefMat := LinearAlgebra:-GenerateMatrix(listOfEqns,

[seq(seq(omega[i][d_Omega + E - jj],jj = 0..d_Omega + E),

i = omega_ord_list)], augmented=false);

sol := LinearAlgebra:-NullSpace(coefMat[1]);

if sol = {} then

break;

else

gaussElimMat := LinearAlgebra:-GaussianElimination(LinearAlgebra:-

Transpose(convert(convert(sol,list),Matrix)));

solVect := LinearAlgebra:-Row(gaussElimMat, nops(sol));

fi;

Omega_list := Vector(n,[seq(add(solVect[j+k*(d_Omega+E+1)]*

u^(d_Omega+E+1-j), j = 1..d_Omega + E + 1), k=0..n-1)]);

err := gcd(Omega_list[1],Omega_list[1]);

for i from 2 to n do

err := gcd(Omega_list[i], err);

od;

103

Lambda_U := Lambda_U * err;

if Omega_list[1] <> 0 then

break;

fi;

for i from 2 to (n - 1) do

if Omega_list[i] <> 0 then

temp := Omega_list[1];

Omega_list[1] := Omega_list[perm_counter + 1];

Omega_list[i] := temp;

fi;

for j from 1 to nops(first_element) do

if i = first_element[j] then

omega_ord_list := [seq(omega_ord_list[k], k = 1 .. i)];

i := n - 1;

fi;

od;

od;

perm_counter := perm_counter + 1;

od;

error_set := {RealDomain:-solve(Lambda_U)};

xi := xi minus error_set;

Err := E - nops(error_set);

remove error many more evaluations.

for i from 1 to nops(error_set) do

zeros := {op(zeros), xi[i]};

od;

104

xi := xi minus zeros;

##

#--

List of points to interpolate to find a matrix row equivalent to A.

#--

Phi_U := Vector(n, i->sum(phi[i][phi_index]*u^phi_index,

phi_index = 0 .. df + E));

Psi_U := sum(psi[psi_index]*u^psi_index,psi_index=0..dg + E);

hat_sys := BB:-hat_lin_sys(xi[1]);

Ahatsupbrell := hat_sys[1];

bhatsupbrell := hat_sys[2];

zero_col_Ahat := {};

for j from 1 to n do ### identify the colums that evaluated to zero

ToF := LinearAlgebra:-Equal(LinearAlgebra:-Column(Ahatsupbrell, j),

LinearAlgebra:-ZeroVector(m));

if ToF = true then

zero_col_Ahat := {op(zero_col_Ahat), j};

fi;

od;

RREFAb := LinearAlgebra:-

ReducedRowEchelonForm(<Ahatsupbrell|bhatsupbrell>);

SqRREFAb := RREFAb[1..m,1..n];

if m < n then ### Padd B with zero rows until it is square.

for i from 1 to n-m do

SqRREFAb := ArrayTools:-Concatenate(1, SqRREFAb, LinearAlgebra:-

Transpose(LinearAlgebra:-ZeroVector(n)));

od;

fi;

vectOfEqns := eval(LinearAlgebra:-Add(-1*Psi_U*bhatsupbrell,

105

Ahatsupbrell.Phi_U),u=xi[1]);

ToF := LinearAlgebra:-

Equal(bhatsupbrell, LinearAlgebra:-ZeroVector(m));

Right side evaluates to zero.

if ToF = true then

bhat_zero_set := {op(bhat_zero_set), xi[1]};

if nops(zero_col_Ahat) <> 0 then

zero_list := [op(zero_list), xi[1]];

for i from 1 to nops(zero_Ahat_list) do

zero_list := [op(zero_list), zero_col_Ahat[i]];

od;

zero_col_list := [op(zero_col_list), zero_list];

zero_list := [];

fi;

fi;

#--

Added equations to get a particular soluion.

#--

Find the zero columns

for j from 1 to n do

if LinearAlgebra:-Equal(LinearAlgebra:-Column(SqRREFAb, j),

Vector(m)) then

non_dep_set:= {op(non_dep_set), j};

fi;

od;

Find independent columns

i := 1;

pre_piv_col := 1;

while i <= m do

106

for j from pre_piv_col to n do

if SqRREFAb[i,j] <> 0 then

non_dep_set := {op(non_dep_set), j};

pre_piv_col := j;

break

fi;

od;

i := i + 1;

if j = n then

i := m + 1;

fi;

od:

Find dependent columns

dep_set := uni_set minus non_dep_set;

dep_set := dep_set minus zero_col_Ahat;

Remove Columns that evaluate to zero from the dependent set.

zero_col_Ahat := {};

for i from 1 to nops(dep_set) do

vectOfEqns := ArrayTools:-Concatenate(1, vectOfEqns,

eval(Phi_U[dep_set[i]], u = xi[1]));

od;

empty sets

dep_set := {};

non_dep_set := {};

for k from 2 to nops(xi) do

hat_sys := BB:-hat_lin_sys(xi[k]);

Ahatsupbrell := hat_sys[1];

bhatsupbrell := hat_sys[2];

identify the columns that evaluated to zero.

for j from 1 to n do

ToF := LinearAlgebra:-Equal(LinearAlgebra:-

Column(Ahatsupbrell, j),

LinearAlgebra:-ZeroVector(m));

107

if ToF = true then

zero_col_Ahat := {op(zero_col_Ahat), j};

fi;

od;

Right side evaluates to zero.

ToF := LinearAlgebra:-Equal(bhatsupbrell, LinearAlgebra:-

ZeroVector(m));

if ToF = true then

bhat_zero_set := {op(bhat_zero_set), xi[k]};

if nops(zero_col_Ahat) <> 0 then

zero_list := [op(zero_list), xi[k]];

for i from 1 to nops(zero_Ahat_list) do

zero_list := [op(zero_list), zero_col_Ahat[i]];

od;

zero_col_list := [op(zero_col_list), zero_list];

zero_list := [];

fi;

fi;

RREFAb := LinearAlgebra:-

ReducedRowEchelonForm(<Ahatsupbrell|bhatsupbrell>);

SqRREFAb := RREFAb[1..m,1..n];

if m < n then

for j from 1 to n-m do

SqRREFAb := ArrayTools:-Concatenate(1, SqRREFAb, LinearAlgebra:-

Transpose(LinearAlgebra:-ZeroVector(n)));

od;

fi;

vectOfEqns := ArrayTools:-

Concatenate(1, vectOfEqns, eval(LinearAlgebra:-

Add(-1*Psi_U*bhatsupbrell, Ahatsupbrell.Phi_U),

u=xi[k]));

#--

108

Added equations to get a particular soluion.

#--

zero_col := 0;

for j from 1 to n do

if SqRREFAb[j,j] = 0 then

ToF := LinearAlgebra:-

Equal(LinearAlgebra:-Column(SqRREFAb, j),

LinearAlgebra:-ZeroVector(n));

if ToF = true then

zero_col := zero_col + 1;

colval := j;

fi;

fi;

if zero_col = 1 and j = n then

vectOfEqns := ArrayTools:-Concatenate(1, vectOfEqns,

eval(Phi_U[colval], u = xi[k]));

fi;

od;

Find the zero columns

for j from 1 to n do

if LinearAlgebra:-Equal(LinearAlgebra:-Column(SqRREFAb, j),

Vector(m)) then

non_dep_set:= {op(non_dep_set), j};

fi;

od;

Find independent columns

i := 1;

pre_piv_col := 1;

while i <= m do

for j from pre_piv_col to n do

109

if SqRREFAb[i,j] <> 0 then

non_dep_set := {op(non_dep_set), j};

pre_piv_col := j;

break

fi;

od;

i := i + 1;

if j = n then

i := m + 1;

fi;

od;

Find dependent columns

dep_set := uni_set minus non_dep_set;

zero_col_Ahat := {};

add equations

for i from 1 to nops(dep_set) do

vectOfEqns := ArrayTools:-Concatenate(1, vectOfEqns,

eval(Phi_U[dep_set[i]], u = xi[k]));

od;

empty sets

dep_set := {};

non_dep_set := {};

od;

listOfEqns := convert(vectOfEqns, list);

coefMat := LinearAlgebra:-GenerateMatrix(listOfEqns,[seq(psi[dg+E-ii],

ii=0..dg+E), seq(seq(phi[i][df+E-jj], jj=0..df+E),i=1..n)],

augmented=false);

110

sol := LinearAlgebra:-NullSpace(coefMat[1]);

if sol = {} then

error "No Solution found.";

else

gaussElimMat := LinearAlgebra:-GaussianElimination(LinearAlgebra:-

Transpose(convert(convert(sol,list),Matrix)));

solVect := LinearAlgebra:-Row(gaussElimMat, nops(sol));

fi;

Psi_U := add(solVect[kk]*u^(dg + E - kk + 1), kk = 1..dg + E + 1);

Phi_list := Vector(n,[seq(add(solVect[dg+E+1+j+k*(df+E+1)]*u^(df+E+1-j),

j=1..df+E+1), k=0..n-1)]);

for i from 1 to nops(zero_col_list) do

div_counter := 0;

ToF:=divide((Psi_U), (u-zero_col_list[i, 1]));

if ToF = true then

div_counter := div_counter + 1;

fi;

for j from 2 to nops(zero_col_list[i]) do

ToF:=divide((Phi_list[zero_col_list[i,j]]), (u-zero_col_list[i,1]));

if ToF = true then

div_counter := div_counter + 1;

fi;

od;

if div_counter = nops(zero_col_list[i]) then

Psi_U := quo((Psi_U), (u - zero_col_list[i, 1]), u);

for j from 2 to nops(zero_col_list[i]) do

Phi_list[zero_col_list[i,j]]:=quo((Phi_list[zero_col_list[i,j]]),

(u - zero_col_list[i,1]), u);

od;

fi;

od;

111

err := gcd(Phi_list[1], Psi_U);

for i from 2 to n do

err := gcd(Phi_list[i], err);

od;

Lambda_U := expand(Lambda_U * err);

error_set := {RealDomain:-solve(err)};

xi := xi minus error_set;

Err := Err - nops(error_set);

remove extra evaluations that were added for errors.

for i from 1 to 2*Err do

zeros := {op(zeros), xi[i]};

od;

xi := xi minus zeros; ### removal done here.

###

#--

List of points to interpolate to find a matrix row equivalent to A.

#--

Phi_U := Vector(n, i->sum(phi[i][phi_index]*u^phi_index,

phi_index=0..df));

Psi_U := sum(psi[psi_index]*u^psi_index,psi_index=0..dg);

hat_sys := BB:-hat_lin_sys(xi[1]);

Ahatsupbrell := hat_sys[1];

bhatsupbrell := hat_sys[2];

vectOfEqns := eval(LinearAlgebra:-Add(-1*Psi_U*bhatsupbrell,

Ahatsupbrell.Phi_U),u=xi[1]);

112

for i from 2 to nops(xi) do

hat_sys := BB:-hat_lin_sys(xi[i]);

Ahatsupbrell := hat_sys[1];

bhatsupbrell := hat_sys[2];

vectOfEqns := ArrayTools:-Concatenate(1, vectOfEqns,

eval(LinearAlgebra:-Add(-1*Psi_U*bhatsupbrell,

Ahatsupbrell.Phi_U),u=xi[i]));

od;

listOfEqns := convert(vectOfEqns, list);

coefMat := LinearAlgebra:-GenerateMatrix(listOfEqns,[seq(psi[dg-ii],

ii=0..dg), seq(seq(phi[i][df-jj], jj=0..df),i=1..n)],

augmented=false);

sol := LinearAlgebra:-NullSpace(coefMat[1]);

if sol = {} then

error "No Solution found.";

else

gaussElimMat := LinearAlgebra:-GaussianElimination(LinearAlgebra:-

Transpose(convert(convert(sol,list),Matrix)));

solVect := LinearAlgebra:-Row(gaussElimMat, nops(sol));

fi;

Psi_U := add(solVect[kk]*u^(dg - kk + 1), kk = 1..dg + 1);

#--

check whether or not Psi(u) is zero. If it is then go up further

in row reduced matrix until Psi(u) is no longer 0

#--

if Psi_U = 0 then

solIndex := 1;

113

fi;

while Psi_U = 0 do

solVect := LinearAlgebra:-Row(gaussElimMat,nops(sol)-solIndex);

Psi_U := add(solVect[i]*u^(dg + 1 - i),i = 1..dg + 1);

solIndex := solIndex + 1;

od;

Phi_list := Vector(n,[seq(add(solVect[dg+1+j+k*(df+1)]*u^(df+1-j),

j=1..df + 1),k=0..n-1)]);

#---

If Psi_U in not monic then we divide all coefficients by the

leading coefficient of Psi_U

#---

if coeff(Psi_U, u, degree(Psi_U, u)) <> 1 then

scaleFact := coeff(Psi_U, u, degree(Psi_U, u));

Psi_U := Psi_U/coeff(Psi_U, u, degree(Psi_U,u));

fi;

Phi_list := Phi_list/scaleFact; ### Scale the Phi vector

#---

#Check that the solution computed is correct

#---

solCheck := simplify(A.Phi_list - Psi_U*b);

for i from 1 to m do

if solCheck[i] <> 0 then

error "The computed solution is incorrect. Look for bugs";

fi;

od;

return Psi_U, Phi_list, factor(Lambda_U);

114

end proc; ### End of Lin_Solv procedure.

SING_Lin_Solv :=

proc({ BBMat:=BB2

,d_f::integer:=0 #bound numerator degree.

,d_g::integer:=0 #bound denominator degree.

,d_A::integer:=0 #bound max degree polynomial in A.

,d_b::integer:=0 #bound max degree polynomila in b.

,RBd::integer:=0 #rank drop bound.

,EBd::integer:=0 #error bound.

})

#--

Output: x, the solution to the system A(u)x = b(u).

#--

local LSING #The number of evalutions.

,d_Omega

,n

;

#------------------------------

Initialization of variables

#------------------------------

n:=BBMat:-mat_dim()[2];

d_Omega := n*d_A;

LSING := d_A + d_Omega + RBd + 2*EBd + 1;

#----------------------------

#Get and return solution

#----------------------------

return Rank_Def_Lin_Solv(BB=BBMat, L=LSING, df=d_f, dg=d_g, db=d_b,

dA=d_A, R=RBd, E=EBd);

end proc; #End of COS_Lin_Solv procedure.

115

end module:

End of code

Start of code

Sample black box for the rank deficient case.

BB13 := module() # Rank deficient

export hat_lin_sys ### Accepts xi_ell and returns Ahat and bhat.

,mat_dim ### Returns the dimention of A.

,Umat

,Uvect

;

local A ### The matrix.

,b ### The right side vector.

,Aug ### A and b augmented.

,Aug_at_xi ### Evaluation of Aug.

,RR_Aug_at_xi ### Some row reduction(s) applied to Aug_at_xi.

,Ahat ### The scaler matrix returned by the black box.

,bhat ### scaler right side vector returned by black box.

,m ### The row dimension of A.

,n ### The column dimension of A.

,row_num ### A random fuction to produce random row number.

,row_mul ### A random funcion to produce random multiplier.

;

A := Matrix(2,2,[[’u+1,’u’+3],[’u’^2+3*’u’+ 2, ’u’^2+5*’u’+6]]);

b := Vector(2,[2*’u’^3+12*’u’^2+20*’u’+10,

2*’u’^4+16*’u’^3+44*’u’^2+50*’u’+20]);

Aug := linalg:-augment(A,b);

Aug := convert(Aug, Matrix);

m := LinearAlgebra:-RowDimension(A);

n := LinearAlgebra:-ColumnDimension(A);

Umat := A;

116

Uvect := b;

hat_lin_sys := proc(xi) ### Procedure that returns Ahat and bhat.

local Aug_at_xi

,RR_Aug_at_xi

,Ahat

,bhat

,row_num := rand(1..n)

,row_mul := rand(1..11)

;

Aug_at_xi:= map(x -> subs(’u’=xi,x), Aug);

Introduction of ERRORS to the system.

if xi = 3 then

Aug_at_xi[1,2] := 0;

Aug_at_xi[2,2] := 0;

Aug_at_xi[1,1] := 0;

Aug_at_xi[2,1] := 0;

fi; # error at 3.

if xi = 2 then

Aug_at_xi[1,2] := 0;

Aug_at_xi[2,2] := 0;

fi; #error at 2.

if xi = 1 then

Aug_at_xi[1,3] := 10;

Aug_at_xi[2,3] := 10;

fi; #error at 1.

End of ERRORS.###

Apply some what random row operation to Aug_at_xi.

117

RR_Aug_at_xi := LinearAlgebra:-RowOperation(Aug_at_xi,[row_num(),

row_num()], row_mul());

End of Row Operation.

Ahat := LinearAlgebra:-SubMatrix(RR_Aug_at_xi,[1..m],[1..n]);

bhat := LinearAlgebra:-Column(RR_Aug_at_xi, n+1);

return Ahat

,bhat

;

end proc; ### End of precdure that returns Ahat and bhat.

mat_dim := proc() ### Procedure that returns the dimension of A.

return m, n;

end proc; ### End of procedure that returns the dimension of A.

end module: ### End of the black box module.

End of code

Start code

total_num_bursts_corrected := 0;

total_num_bursts := 0;

max_burst_length_corrected := 0;

max_num_bursts_corrected := 0;

max_num_bursts := 0;

max_burst_length := 0;

success_count := 0;

iival := 1;

error_count := 0;

End code

118

Start of code

Implementation of our interleave h a Gilbert model.

The interleaving is not stacked. We assume there are as many

non burst errors as there are burst errors.

Created: 01/28/19

Programmer: Cleveland Waddell

Sim_Pol_Vec_Slv_Bst_Ers := module()

export KW_Interleave_Parameters ### Retrieves user input and computes the

polynomial degree and bounds for the

number of burst and non burst errors

;

local Pol_Vec_Rec_Slv ### Recovers the polynomials

,path_maple_files

,exp_par_list

,exp_header_list

;

##################### For Checkpointing ##############################

global total_num_bursts_corrected

,total_num_bursts

,max_burst_length_corrected

,max_num_bursts_corrected

,max_num_bursts

,max_burst_length

,success_count

,iival

,error_count

,exp_par_tbl_mat

,sta_bol_min_tbl_mat

,not_sta_bol_min_tbl_mat

;

119

option package

;

interface(rtablesize=infinity);

################ Experiment Parameters table intialization #######

exp_par_list :=[seq(i, i = 1..6)];

exp_header_list := [seq(i, i = 1 .. 15)];

Pol_Vec_Rec_Slv := proc(Ebrst, NonEbrst, d_f, P_GG, P_BB, c_hat, c,

Stack, Burst_Only, minimal_interleave, rho,

bl, ml)

local i ### Index

,j ### Index

,k ### Index

,ii ### Index

,jj ### Index

,kk ### Index

,list_of_eqns

,psi_of_u

,E

,df

,m ### Matrix row index

,n ### Matrix columns index

,xi

,coef_mat

,sol

,gauss_elim_mat

,sol_vect

,sol_index

,sol_times_lambda_vect

,depth ### interleave depth

,L ### the number of evaluation

120

,err

,scale_fact

,x

,g_of_u

,success ### True or false

,good_state ### True or false

,P_GB_fraction

,P_BG_fraction

,P_GB

,P_BG

,GB_denom_list

,BG_denom_list

,prob_GG

,prob_BB

,error_value

,GB_transition

,BG_transition

,no_solution_count

,burst_counter

,transed_BG ### Transitioned from the Bad State to the Good State

,transed_GB ### Transitioned from the Good State to the Bad State

,avg_num_bursts

,burst_length

,mean_burst_length

,max_trial_burst_length

,num_trial_bursts

,mean_num_bursts_corrected

,total_pseudo_sols

,pseudo_count ### counts the number of entries in the false vector

that agrees with the original vector

,runs

,row ### table row index

,tbl_id

,exp_tbl_id

;

runs := 100;

121

randomize(ithprime(20419));

pseudo_count := 0;

total_pseudo_sols := 0;

burst_length := 0;

no_solution_count := 0;

error_value := rand(2..100);

P_GB := 1 - P_GG;

P_BG := 1 - P_BB;

prob_GG := P_GG;

prob_BB := P_BB;

good_state := true; #cw 01/30/19

transed_GB := false;

transed_BG := false;

m := LinearAlgebra:-RowDimension(message:-pol_vector);

depth := LinearAlgebra:-RowDimension(message:-phi_interleave);

L := LinearAlgebra:-ColumnDimension(message:-phi_interleave);

xi:={seq(-i, i = 1 .. floor(L/2)), seq(j, j = 0 .. ceil(L/2) - 1)};

E := Ebrst + NonEbrst;

df := d_f;

psi_of_u := sum(psi[j]*u^j, j = 0 .. E);

P_GB_fraction := convert(P_GB, rational);

GB_transition := rand(1 .. denom(P_GB_fraction));

P_BG_fraction := convert(P_BG, rational);

BG_transition := rand(1 .. denom(P_BG_fraction));

path_maple_files := "../Runs/Maple_Files/";

########## Read Checkpoint file and Matrices to store table values ########

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.9999 then

read "./Checkpoint/sbomi1_1_checkpoint.mpl";

read cat(path_maple_files,"exp_par_tbl_3rows.mpl");

read cat(path_maple_files,"sta_bol_min_tbl_3rows.mpl");

fi;

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.999 then

122

read "./Checkpoint/sbomi1_2_checkpoint.mpl";

read cat(path_maple_files,"exp_par_tbl_3rows.mpl");

read cat(path_maple_files,"sta_bol_min_tbl_3rows.mpl");

fi;

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.99 then

read "./Checkpoint/sbomi1_3_checkpoint.mpl";

read cat(path_maple_files,"exp_par_tbl_3rows.mpl");

read cat(path_maple_files,"sta_bol_min_tbl_3rows.mpl");

fi;

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.9999 then

read "./Checkpoint/nsbomi4_1_checkpoint.mpl";

read cat(path_maple_files,"not_sta_bol_min_tbl_3rows.mpl");

fi;

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.999 then

read "./Checkpoint/nsbomi4_2_checkpoint.mpl";

read cat(path_maple_files,"not_sta_bol_min_tbl_3rows.mpl");

fi;

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.99 then

read "./Checkpoint/nsbomi4_3_checkpoint.mpl";

read cat(path_maple_files,"not_sta_bol_min_tbl_3rows.mpl");

fi;

##

for ii from iival to runs do

list_of_eqns := [];

err := 1;

scale_fact := 1;

burst_counter := 0;

123

burst_length := 0;

max_trial_burst_length := 0;

num_trial_bursts := 0;

if Stack then

for j from 1 to L do

for i from 1 to depth do

####################### Transition Check ############################

if good_state and GB_transition()<=numer(P_GB_fraction) then

transed_GB := true;

good_state := false;

burst_counter := burst_counter + 1;

transed_BG := false;

elif good_state then

transed_GB := false;

transed_BG := false;

elif not good_state and BG_transition()<=

numer(P_BG_fraction) then

transed_BG := true; ### tansitioned from bad to good

good_state := true;

transed_GB := false;

else

transed_BG := false;

transed_GB := false;

fi;

###

if good_state = true then

list_of_eqns := [op(list_of_eqns),

eval(-1*psi_of_u*message:-pol_interleave[i, j] +

message:-phi_interleave[i, j], u = xi[j])];

124

else

list_of_eqns := [op(list_of_eqns),

eval(-1*error_value()*psi_of_u +

message:-phi_interleave[i, j], u = xi[j])];

error_count := error_count + 1;

fi;

############ What happens if in the bad state ######################

if not good_state then

burst_length := burst_length + 1;

fi;

What if we transition from the bad state back to the good state?

if good_state and transed_BG and max_burst_length <

burst_length then

max_burst_length := burst_length;

fi;

if good_state and transed_BG and max_trial_burst_length <

burst_length then

max_trial_burst_length := burst_length;

fi;

if not good_state and j=L and i=depth and max_burst_length <

burst_length then

max_burst_length := burst_length;

fi;

if not good_state and j=L and i=depth and

max_trial_burst_length < burst_length then

max_trial_burst_length := burst_length;

fi;

if good_state and transed_BG then

burst_length := 0;

125

fi;

######### Did we transition from the good to the bad state? #############

od:

od:

else ### Not Stack

jj := 1;

for kk from 1 to depth/c_hat do

for j from 1 to L do

for i from jj to kk*c_hat do

if good_state and GB_transition()<=numer(P_GB_fraction) then

transed_GB := true;

good_state := false;

burst_counter := burst_counter + 1;

transed_BG := false;

elif good_state then

transed_GB := false;

transed_BG := false;

elif not good_state and BG_transition() <=

numer(P_BG_fraction) then

transed_BG := true; ### tansitioned from bad to good

good_state := true;

transed_GB := false;

else

transed_BG := false;

transed_GB := false;

fi;

if good_state = true then

126

list_of_eqns := [op(list_of_eqns), eval(-1*psi_of_u*

message:-pol_interleave[i, j] +

message:-phi_interleave[i, j], u=xi[j])];

else

list_of_eqns := [op(list_of_eqns), eval(-1*error_value()*

psi_of_u + message:-phi_interleave[i, j],

u = xi[j])];

error_count := error_count + 1;

fi;

if not good_state then

burst_length := burst_length + 1;

fi;

What if we transition from the bad state back to the good state?

if good_state and transed_BG and max_burst_length <

burst_length then

max_burst_length := burst_length;

fi;

if good_state and transed_BG and max_trial_burst_length <

burst_length then

max_trial_burst_length := burst_length;

fi;

if not good_state and j=L and i=depth and max_burst_length <

burst_length then

max_burst_length := burst_length;

fi;

if not good_state and j = L and i = depth and

max_trial_burst_length < burst_length then

max_trial_burst_length := burst_length;

fi;

127

if good_state and transed_BG then

burst_length := 0;

fi;

######## Did we transition from the good to the bad state? ################

od:

od:

jj := jj + c_hat;

od:

fi;

if max_num_bursts < burst_counter then

max_num_bursts := burst_counter;

fi;

total_num_bursts := total_num_bursts + burst_counter;

coef_mat := LinearAlgebra:-GenerateMatrix(list_of_eqns,

[seq(psi[E - j], j = 0 .. E), seq(seq(phi[i]

[df + E - j],j = 0 .. df + E), i =1 .. m)],

augmented=false);

sol := LinearAlgebra:-NullSpace(coef_mat[1]);

if nops(sol) >= 1 then

gauss_elim_mat := LinearAlgebra:-GaussianElimination

(LinearAlgebra:-Transpose((convert

(convert(sol, list), Matrix))));

sol_vect := LinearAlgebra:-Row(gauss_elim_mat, nops(sol));

fi;

128

g_of_u := add(sol_vect[i]*u^(E + 1 - i), i = 1 .. E + 1);

#---

check whether or not g(u) is zero. If it is then go up further

in row reduced matrix until g(u) is no longer 0

#---

if g_of_u = 0 then

sol_index := 1;

fi;

while g_of_u = 0 do

sol_vect := LinearAlgebra:-Row(gauss_elim_mat, nops(sol) -

sol_index);

g_of_u := add(sol_vect[i]*u^(E + 1 - i), i = 1 .. E + 1);

sol_index := sol_index + 1;

od;

#--

Solution vector before factoring the error locator polynomial

#--

sol_times_lambda_vect := [Vector(m, [seq(add(sol_vect[E+1+j+k*

(df+E+1)]*u^(df+E+1-j),j=1..df

+E+1), k=0..m-1)]), g_of_u];

#---

Factoring out the error locator polynomial

#---

err := gcd(sol_times_lambda_vect[1][1], g_of_u);

for i from 2 to m do

err := gcd(sol_times_lambda_vect[1][i], err);

od;

g_of_u := simplify(g_of_u/err);

#--

129

If g(u) is not monic then we divide all coeffcients by the

leading coefficient of g(u)

#--

if coeff(g_of_u, u, degree(g_of_u, u)) <> 1 then

scale_fact := coeff(g_of_u, u, degree(g_of_u, u));

g_of_u := g_of_u/coeff(g_of_u, u, degree(g_of_u, u));

fi;

x := [simplify(err^(-1)*sol_times_lambda_vect[1]/scale_fact),

g_of_u];

success := ArrayTools:-IsEqual(simplify(x[1]-message:-pol_vector),

Vector(m, 0));

####################### Flatten if statements ###########################

total_num_bursts := total_num_bursts + burst_counter;

if success then

success_count := (success_count + 1);

total_num_bursts_corrected := total_num_bursts_corrected +

burst_counter;

for i from 1 to nops(x[1]) while (degree(x[1][i]) =

degree(message:-pol_vector[i])) do

pseudo_count := pseudo_count + 1;

od:

fi;

pseudo_count := 0;

if success and max_burst_length_corrected<max_trial_burst_length then

max_burst_length_corrected := max_trial_burst_length;

fi;

130

if success and max_num_bursts_corrected < burst_counter then

max_num_bursts_corrected := burst_counter;

fi;

fi;

iival := iival + 1;

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.9999 then

save iival, success_count, total_num_bursts_corrected,

total_num_bursts, max_burst_length_corrected, error_count,

max_num_bursts_corrected, max_num_bursts, max_burst_length,

prob_GG, prob_BB, "./Checkpoint/sbomi1_1_checkpoint.mpl":

fi;

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.999 then

save iival, success_count, total_num_bursts_corrected,

total_num_bursts, max_burst_length_corrected, error_count,

max_num_bursts_corrected, max_num_bursts, max_burst_length,

prob_GG, prob_BB, "./Checkpoint/sbomi1_2_checkpoint.mpl":

fi;

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.99 then

save iival, success_count, total_num_bursts_corrected,

total_num_bursts, max_burst_length_corrected, error_count,

max_num_bursts_corrected, max_num_bursts, max_burst_length,

prob_GG, prob_BB, "./Checkpoint/sbomi1_3_checkpoint.mpl":

fi;

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.9999 then

save iival, success_count, total_num_bursts_corrected,

total_num_bursts, max_burst_length_corrected, error_count,

131

max_num_bursts_corrected, max_num_bursts, max_burst_length,

prob_GG, prob_BB, "./Checkpoint/nsbomi4_1_checkpoint.mpl":

fi;

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.999 then

save iival, success_count, total_num_bursts_corrected,

total_num_bursts, max_burst_length_corrected, error_count,

max_num_bursts_corrected, max_num_bursts, max_burst_length,

prob_GG, prob_BB, "./Checkpoint/nsbomi4_2_checkpoint.mpl":

fi;

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.99 then

save iival, success_count, total_num_bursts_corrected,

total_num_bursts, max_burst_length_corrected, error_count,

max_num_bursts_corrected, max_num_bursts, max_burst_length,

prob_GG, prob_BB, "./Checkpoint/nsbomi4_3_checkpoint.mpl":

fi;

od:

if success_count = 0 then

mean_num_bursts_corrected := 0;

else

mean_num_bursts_corrected:=total_num_bursts_corrected/success_count;

fi;

avg_num_bursts := total_num_bursts/runs;

if total_num_bursts = 0 then

mean_burst_length := 0;

else

mean_burst_length := error_count/total_num_bursts;

fi;

132

########################## Begin Tables ###################################

Code to make the Experiment Parameters table

Note this table is only made when all boolean values are true

This is because the values in this table are the same for all

possible boolean value.

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.9999 then

exp_par_list[1] := rho;

exp_par_list[2] := error_count/(depth*L*runs);

exp_par_list[3] := bl;

exp_par_list[4] := mean_burst_length;

exp_par_list[5] := rho*depth*L/bl;

exp_par_list[6] := avg_num_bursts;

exp_header_list[1] := d_f;

exp_header_list[2] := c;

exp_header_list[3] := c_hat;

exp_header_list[4] := Ebrst;

exp_header_list[5] := NonEbrst;

exp_header_list[6] := ml;

exp_header_list[7] := success_count/runs*100;

exp_header_list[8] := total_pseudo_sols/runs*100;

exp_header_list[9] := max_num_bursts_corrected;

exp_header_list[10] := mean_num_bursts_corrected;

exp_header_list[11] := max_burst_length_corrected;

exp_header_list[12] := total_num_bursts;

exp_header_list[13] := total_num_bursts_corrected;

exp_header_list[14] := max_burst_length;

exp_header_list[15] := max_num_bursts;

if P_BB = 0.9 then

133

row := 1;

elif P_BB = 0.85 then

row := 2;

else

row := 3;

fi;

for i from 1 to nops(exp_par_list) do

exp_par_tbl_mat[row, i] := exp_par_list[i];

od:

for i from 1 to nops(exp_header_list) do

sta_bol_min_tbl_mat[row, i] := exp_header_list[i];

od:

save row, exp_par_tbl_mat, cat(path_maple_files,

"exp_par_tbl_3rows.mpl");

save row, sta_bol_min_tbl_mat, cat(path_maple_files,

"sta_bol_min_tbl_3rows.mpl");

Make_Tbls:-Make_Exp_Par_Tbl();

tbl_id := "sbomi";

Make_Tbls:-Make_Exp_Tbls(tbl_id);

FileTools[Remove]("./Checkpoint/sbomi1_1_checkpoint.mpl");

FileTools[Copy]("./Checkpoint/init_checkpoint.mpl",

"./Checkpoint/sbomi1_1_checkpoint.mpl");

fi; ### end outer if block

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.999 then

exp_par_list[1] := rho;

exp_par_list[2] := error_count/(depth*L*runs);

exp_par_list[3] := bl;

exp_par_list[4] := mean_burst_length;

exp_par_list[5] := rho*depth*L/bl;

exp_par_list[6] := avg_num_bursts;

134

exp_header_list[1] := d_f;

exp_header_list[2] := c;

exp_header_list[3] := c_hat;

exp_header_list[4] := Ebrst;

exp_header_list[5] := NonEbrst;

exp_header_list[6] := ml;

exp_header_list[7] := success_count/runs*100;

exp_header_list[8] := total_pseudo_sols/runs*100;

exp_header_list[9] := max_num_bursts_corrected;

exp_header_list[10] := mean_num_bursts_corrected;

exp_header_list[11] := max_burst_length_corrected;

exp_header_list[12] := total_num_bursts;

exp_header_list[13] := total_num_bursts_corrected;

exp_header_list[14] := max_burst_length;

exp_header_list[15] := max_num_bursts;

if P_BB = 0.9 then

row := 4;

elif P_BB = 0.85 then

row := 5;

else

row := 6;

fi;

for i from 1 to nops(exp_par_list) do

exp_par_tbl_mat[row, i] := exp_par_list[i];

od:

for i from 1 to nops(exp_header_list) do

sta_bol_min_tbl_mat[row, i] := exp_header_list[i];

od:

save row, exp_par_tbl_mat, cat(path_maple_files,

"exp_par_tbl_3rows.mpl");

save row, sta_bol_min_tbl_mat, cat(path_maple_files,

"sta_bol_min_tbl_3rows.mpl");

Make_Tbls:-Make_Exp_Par_Tbl();

135

tbl_id := "sbomi";

Make_Tbls:-Make_Exp_Tbls(tbl_id);

FileTools[Remove]("./Checkpoint/sbomi1_2_checkpoint.mpl");

FileTools[Copy]("./Checkpoint/init_checkpoint.mpl",

"./Checkpoint/sbomi1_2_checkpoint.mpl");

fi; ### end outer if block

if Stack=true and Burst_Only=true and minimal_interleave=true and

P_GG = 0.99 then

exp_par_list[1] := rho;

exp_par_list[2] := error_count/(depth*L*runs);

exp_par_list[3] := bl;

exp_par_list[4] := mean_burst_length;

exp_par_list[5] := rho*depth*L/bl;

exp_par_list[6] := avg_num_bursts;

exp_header_list[1] := d_f;

exp_header_list[2] := c;

exp_header_list[3] := c_hat;

exp_header_list[4] := Ebrst;

exp_header_list[5] := NonEbrst;

exp_header_list[6] := ml;

exp_header_list[7] := success_count/runs*100;

exp_header_list[8] := total_pseudo_sols/runs*100;

exp_header_list[9] := max_num_bursts_corrected;

exp_header_list[10] := mean_num_bursts_corrected;

exp_header_list[11] := max_burst_length_corrected;

exp_header_list[12] := total_num_bursts;

exp_header_list[13] := total_num_bursts_corrected;

exp_header_list[14] := max_burst_length;

exp_header_list[15] := max_num_bursts;

if P_BB = 0.9 then

row := 7;

elif P_BB = 0.85 then

136

row := 8;

else

row := 9;

fi;

for i from 1 to nops(exp_par_list) do

exp_par_tbl_mat[row, i] := exp_par_list[i];

od:

for i from 1 to nops(exp_header_list) do

sta_bol_min_tbl_mat[row, i] := exp_header_list[i];

od:

save row, exp_par_tbl_mat, cat(path_maple_files,

"exp_par_tbl_3rows.mpl");

save row, sta_bol_min_tbl_mat, cat(path_maple_files,

"sta_bol_min_tbl_3rows.mpl");

Make_Tbls:-Make_Exp_Par_Tbl();

tbl_id := "sbomi";

Make_Tbls:-Make_Exp_Tbls(tbl_id);

FileTools[Remove]("./Checkpoint/sbomi1_3_checkpoint.mpl");

FileTools[Copy]("./Checkpoint/init_checkpoint.mpl",

"./Checkpoint/sbomi1_3_checkpoint.mpl");

fi; ### end outer if block

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.9999 then

exp_header_list[1] := d_f;

exp_header_list[2] := c;

exp_header_list[3] := c_hat;

exp_header_list[4] := Ebrst;

exp_header_list[5] := NonEbrst;

exp_header_list[6] := ml;

exp_header_list[7] := success_count/runs*100;

exp_header_list[8] := total_pseudo_sols/runs*100;

137

exp_header_list[9] := max_num_bursts_corrected;

exp_header_list[10] := mean_num_bursts_corrected;

exp_header_list[11] := max_burst_length_corrected;

exp_header_list[12] := total_num_bursts;

exp_header_list[13] := total_num_bursts_corrected;

exp_header_list[14] := max_burst_length;

exp_header_list[15] := max_num_bursts;

if P_BB = 0.9 then

row := 1;

elif P_BB = 0.85 then

row := 2;

else

row := 3;

fi;

for i from 1 to nops(exp_header_list) do

not_sta_bol_min_tbl_mat[row, i] := exp_header_list[i];

od:

save row, not_sta_bol_min_tbl_mat, cat(path_maple_files,

"not_sta_bol_min_tbl_3rows.mpl");

tbl_id := "nsbomi";

Make_Tbls:-Make_Exp_Tbls(tbl_id);

FileTools[Remove]("./Checkpoint/nsbomi4_1_checkpoint.mpl");

FileTools[Copy]("./Checkpoint/init_checkpoint.mpl",

"./Checkpoint/nsbomi4_1_checkpoint.mpl");

fi; ### end outer if block

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.999 then

exp_header_list[1] := d_f;

exp_header_list[2] := c;

exp_header_list[3] := c_hat;

exp_header_list[4] := Ebrst;

138

exp_header_list[5] := NonEbrst;

exp_header_list[6] := ml;

exp_header_list[7] := success_count/runs*100;

exp_header_list[8] := total_pseudo_sols/runs*100;

exp_header_list[9] := max_num_bursts_corrected;

exp_header_list[10] := mean_num_bursts_corrected;

exp_header_list[11] := max_burst_length_corrected;

exp_header_list[12] := total_num_bursts;

exp_header_list[13] := total_num_bursts_corrected;

exp_header_list[14] := max_burst_length;

exp_header_list[15] := max_num_bursts;

if P_BB = 0.9 then

row := 4;

elif P_BB = 0.85 then

row := 5;

else

row := 6;

fi;

for i from 1 to nops(exp_header_list) do

not_sta_bol_min_tbl_mat[row, i] := exp_header_list[i];

od:

save row, not_sta_bol_min_tbl_mat, cat(path_maple_files,

"not_sta_bol_min_tbl_3rows.mpl");

tbl_id := "nsbomi";

Make_Tbls:-Make_Exp_Tbls(tbl_id);

FileTools[Remove]("./Checkpoint/nsbomi4_2_checkpoint.mpl");

FileTools[Copy]("./Checkpoint/init_checkpoint.mpl",

"./Checkpoint/nsbomi4_2_checkpoint.mpl");

fi; ### end outer if block

if Stack=false and Burst_Only=true and minimal_interleave=true and

P_GG = 0.99 then

exp_header_list[1] := d_f;

139

exp_header_list[2] := c;

exp_header_list[3] := c_hat;

exp_header_list[4] := Ebrst;

exp_header_list[5] := NonEbrst;

exp_header_list[6] := ml;

exp_header_list[7] := success_count/runs*100;

exp_header_list[8] := total_pseudo_sols/runs*100;

exp_header_list[9] := max_num_bursts_corrected;

exp_header_list[10] := mean_num_bursts_corrected;

exp_header_list[11] := max_burst_length_corrected;

exp_header_list[12] := total_num_bursts;

exp_header_list[13] := total_num_bursts_corrected;

exp_header_list[14] := max_burst_length;

exp_header_list[15] := max_num_bursts;

if P_BB = 0.9 then

row := 7;

elif P_BB = 0.85 then

row := 8;

else

row := 9;

fi;

for i from 1 to nops(exp_header_list) do

not_sta_bol_min_tbl_mat[row, i] := exp_header_list[i];

od:

save row, not_sta_bol_min_tbl_mat, cat(path_maple_files,

"not_sta_bol_min_tbl_3rows.mpl");

tbl_id := "nsbomi";

Make_Tbls:-Make_Exp_Tbls(tbl_id);

FileTools[Remove]("./Checkpoint/nsbomi4_3_checkpoint.mpl");

FileTools[Copy]("./Checkpoint/init_checkpoint.mpl",

"./Checkpoint/nsbomi4_3_checkpoint.mpl");

fi; ### end outer if block

140

##################### End of Tables #################################

end proc; ### End of Pol_Vec_Rec_Slv

KW_Interleave_Parameters :=

proc({P_GG :: float := 0.00 ### The prob. of staying in the good state

,P_BB :: float := 0.00 ### The prob. of staying in the bad state

,ML :: integer := 0 ### The length of the message

,Stack:: boolean := true ### the interleaves stacked

,Burst_Only :: boolean := true ### only burst error considered

,minimal_interleave :: boolean := true ### inteleave depth is 3

})

local Ebrst ### The upper bound for the number of burst errors

,NonEbrst ### The upper bound for the number of non burst errors

,d_f ### The degree of the polynomilas

,rho ### The symbol error rate

,bl ### The average burst length

,ml ### The message length

,c_hat ### The depth of the interleave

,c ### One less the number of polynomials in the interleave

,wrap_around

,i ### index

;

rho := (1 - P_GG)/(1 - P_BB + 1 - P_GG); ## the symbol error rate

bl := ceil(1/(1 - P_BB)); ### Formula for the average burst length

ml := ML; ### Retrieve the message length input by the user

if minimal_interleave then

c_hat := 3; ### 3 is the shallowest interleave depth with wrap around

else

c_hat := bl; ### The depth of the interleave, or average burst length

141

fi;

c := c_hat;

Ebrst := 2*ceil(rho*ml/bl);

if Burst_Only then

NonEbrst := 0;

else

NonEbrst := Ebrst;

fi;

d_f := (2*Ebrst+2*NonEbrst+)*c_hat- (Ebrst+2*NonEbrst + 1)*c -

(2*Ebrst+2*NonEbrst+1);

for i from 1 to Ebrst while d_f < 0 do

NonEbrst := NonEbrst - 1;

d_f := (2*Ebrst+2*NonEbrst+1)*c_hat-(Ebrst+2*NonEbrst+1)*c -

(2*Ebrst+2*NonEbrst+1);

od:

if d_f < 0 then

error "The polynomial degree is negative";

fi;

for c from c_hat while ((d_f + 2*Ebrst + 2*NonEbrst + 1) +

c*(d_f + Ebrst + 2*NonEbrst + 1) <>

c_hat*(d_f + 2*Ebrst + 2*NonEbrst + 1)) do ### wrap around check

we can increase c if there is no wrap around

142

d_f := (2*Ebrst+2*NonEbrst+1)*c_hat-(Ebrst+2*NonEbrst+1)*(c+1) -

(2*Ebrst+2*NonEbrst+1)/(c+1-c_hat+1);

if d_f < 0 then

error "The polynomial degree is negative";

fi;

if not df::integer then

next;

fi;

od:

message:-Interleaver(d_f, ml, Ebrst, NonEbrst, c_hat, c);

return Pol_Vec_Rec_Slv(Ebrst, NonEbrst, d_f, P_GG, P_BB, c_hat, c,

Stack, Burst_Only, minimal_interleave, rho, bl, ml);

end proc; ### End of KW_Non_Stack_Interleave_Parameters

end module:

End of code

Start of code

This file contains the polynomial vector along with the interleaver

message := module()

export Interleaver ### The function that handles the interleaving

,phi_interleave ### Interleave of the phi_vector

143

,pol_interleave ### Interleave of the pol_vector

,pol_vector ### The message encoded as polynomials.

;

Interleaver := proc(d_f, ml, Ebrst, NonEbrst, c_hat, c)

local ### pol_vector ### The message encoded as polynomials.

phi_vector ### vector of polynomials in the coefficient phi

,i ### used as an index

,j ### used as an index

,k ### used as an index

,num_pol ### Number of polynomials required for the message

,interleave_depth ### The depth of the stacks

,phi_list

,pol_list

,LBK

,counter

;

pol_list := [];

phi_list := [];

print(d_f);

num_pol := ml/(d_f + 1); ### the num of polynomials in the message

phi_vector := Vector(num_pol, i->sum(phi[i][j]*u^j,

j=0..d_f+Ebrst+NonEbrst));

pol_vector := Vector(num_pol);

for i from 1 to num_pol do

randomize(ithprime(i));

pol_vector[i] := randpoly([u], degree = d_f);

od:

LBK := d_f + 2*(Ebrst + NonEbrst) + 1;

144

interleave_depth := c_hat*(ml/((c+1)*(d_f + 1)));

phi_interleave := Matrix(interleave_depth, LBK);

pol_interleave := Matrix(interleave_depth, LBK);

counter := 0;

k := 0;

for i from 1 to num_pol do

if i mod (c+1) = 1 then

for j from 1 to LBK do

pol_list := [op(pol_list), pol_vector[i]];

phi_list := [op(phi_list), phi_vector[i]];

od:

else

for j from 1 to LBK-Ebrst do

pol_list := [op(pol_list), pol_vector[i]];

phi_list := [op(phi_list), phi_vector[i]];

od:

fi;

od:

k := 1;

for i from 1 to interleave_depth do

for j from 1 to LBK do

pol_interleave[i, j] := pol_list[k];

phi_interleave[i, j] := phi_list[k];

k := k + 1;

od:

od:

for i from 1 to interleave_depth - (c_hat - 1) by c_hat do

center complete Reed-Solomon

LinearAlgebra:-RowOperation(pol_interleave, [i, i+1], inplace = true);

LinearAlgebra:-RowOperation(phi_interleave, [i, i+1], inplace = true);

od:

145

end proc; ### End of Interleaver

end module:

End of code

Start of Code

This file contains a module that makes the newcommands for the

experiment tables in the dissertation

Make_Tbls := module()

export Make_Exp_Par_Tbl

,Make_Exp_Tbls

;

local num ### the list one, two, three, etc

;

num := [seq(i, i = 1 .. 9)];

num[1] := "One";

num[2] := "Two";

num[3] := "Three";

num[4] := "Four";

num[5] := "Five";

num[6] := "Six";

num[7] := "Seven";

num[8] := "Eight";

num[9] := "Nine";

Make_Exp_Par_Tbl := proc() ### make Experiment Parameters Table

local col_name_list ### names of the columns in the table

,i ### index

146

,j ### index

;

read("../Runs/Maple_Files/exp_par_tbl_3rows.mpl");

col_name_list := [seq(i, i = 1 .. 6)];

col_name_list[1] := "AnaSymErrRate";

col_name_list[2] := "ActSymErrRate";

col_name_list[3] := "AnaMeanBurstLen";

col_name_list[4] := "ActMeanBurstLen";

col_name_list[5] := "AnaMeanNumBurst";

col_name_list[6] := "ActMeanNumBurst";

fopen("../Runs/Latex_Files/exp_par_tbl_3rows.tex", APPEND);

for j from 1 to 6 do

if j = 1 or j = 2 then

fprintf("../Runs/Latex_Files/exp_par_tbl_3rows.tex",

"%s%s%s%s%f%s\n\n", "\\newcommand{\\",col_name_list[j],

num[row],"}{", exp_par_tbl_mat[row][j], "}");

else

fprintf("../Runs/Latex_Files/exp_par_tbl_3rows.tex",

"%s%s%s%s%0.2f%s\n\n", "\\newcommand{\\",col_name_list[j],

num[row],"}{", exp_par_tbl_mat[row][j], "}");

fi;

od:

fclose("../Runs/Latex_Files/exp_par_tbl_3rows.tex");

end proc; ### End of make the Experiment Parameters Table

Make_Exp_Tbls := proc(tbl_id)

local col_name_list ### names of the columns in the table

,i ### index

,j ### index

;

col_name_list := [seq(i, i = 1 .. 15)];

147

col_name_list[1] := "PolDeg";

col_name_list[2] := "c";

col_name_list[3] := "cHat";

col_name_list[4] := "BrstErr";

col_name_list[5] := "NonBrstErr";

col_name_list[6] := "MessLen";

col_name_list[7] := "PctCorMes";

col_name_list[8] := "PctPsudoVecCom";

col_name_list[9] := "MaxNumBurstCor";

col_name_list[10] := "MeanNumBurstCor";

col_name_list[11] := "MaxBurstLenCor";

col_name_list[12] := "TotNumBursts";

col_name_list[13] := "TotNumBurstsCorrected";

col_name_list[14] := "MaxBurstLength";

col_name_list[15] := "MaxNumBursts";

if tbl_id = "sbomi" then

read("../Runs/Maple_Files/sta_bol_min_tbl_3rows.mpl");

if row = 1 then

fopen("../Runs/Latex_Files/sta_bol_min_tbl_3rows.tex", WRITE);

else

fopen("../Runs/Latex_Files/sta_bol_min_tbl_3rows.tex", APPEND);

fi;

for j from 1 to LinearAlgebra:-ColumnDimension(sta_bol_min_tbl_mat) do

if j < 7 then

fprintf("../Runs/Latex_Files/sta_bol_min_tbl_3rows.tex",

"%s%s%s%s%s%d%s\n\n", "\\newcommand{\\", tbl_id, col_name_list[j],

num[row],"}{", sta_bol_min_tbl_mat[row][j], "}");

else

fprintf("../Runs/Latex_Files/sta_bol_min_tbl_3rows.tex",

"%s%s%s%s%s%0.2f%s\n\n", "\\newcommand{\\", tbl_id,

col_name_list[j], num[row],"}{", sta_bol_min_tbl_mat[row][j],

"}");

fi;

od:

fclose("../Runs/Latex_Files/sta_bol_min_tbl_3rows.tex");

148

else tbl_id = "nsbomi" then

read("../Runs/Maple_Files/not_sta_bol_min_tbl_3rows.mpl");

fopen("../Runs/Latex_Files/not_sta_bol_min_tbl_3rows.tex", APPEND);

for j from 1 to LinearAlgebra:-ColumnDimension

(not_sta_bol_min_tbl_mat) do

if j < 7 then

fprintf("../Runs/Latex_Files/not_sta_bol_min_tbl_3rows.tex",

"%s%s%s%s%s%d%s\n\n", "\\newcommand{\\", tbl_id, col_name_list[j],

num[row],"}{", not_sta_bol_min_tbl_mat[row][j], "}");

else

fprintf("../Runs/Latex_Files/not_sta_bol_min_tbl_3rows.tex",

"%s%s%s%s%s%0.2f%s\n\n", "\\newcommand{\\", tbl_id,

col_name_list[j], num[row],"}{", not_sta_bol_min_tbl_mat[row][j],

"}");

fi;

od:

fclose("../Runs/Latex_Files/not_sta_bol_min_tbl_3rows.tex");

fi;

end proc;

end module:

End of code

149

