
ABSTRACT

LYNCH, MOLLY ELIZABETH. Topological and Algebraic Combinatorics of Crystal Posets.
(Under the direction of Patricia Hersh).

Crystal bases were introduced by Kashiwara when studying modules of quantum groups.

These crystals are combinatorial structures that mirror representations of Lie algebras. Each

crystal base has an associated crystal graph. These are edge-colored, directed graphs that give

information about representations such as weight space multiplicities and branching rules. Each

directed edge in the graph encodes the action of a crystal operator. We study the combinatorics

of crystal graphs given by highest weight representations. Much of the structure in these crystal

graphs has been revealed by local relations given by Stembridge and Sternberg. However, it has

been previously shown that not all relations among crystal operators are generated by these so-

called Stembridge and Sternberg relations. In this thesis, we aim to understand and in certain

cases, characterize relations that exist among crystal operators.

Crystals coming from highest weight representations have a natural partial order associated

to them. Therefore, in this case we often refer to crystal graphs as crystal posets. We use a tool

from poset topology known as lexicographic discrete Morse functions to establish a connection

between the Möbius function µ of an interval in a crystal poset to the types of relations that

can exist among crystal operators within this interval. More specifically, we show that if there

is an interval with µ(u, v) 6= {−1, 0, 1}, then there is a relation among crystal operators within

the interval [u, v] that is not implied by Stembridge or Sternberg relations. We present new

relations in doubly laced crystals using this result. In the simply laced case, we prove that any

new relation must involve at least three distinct crystal operators. We show via example that

this result does not carry over to the doubly laced case.

Crystals corresponding to rank two algebras are often of interest. It is known that crystal

posets corresponding to highest weight representations of type A2 are lattices, while in general

crystals of type An are not lattices. We show that crystal posets coming from highest weight

representations of type B2 and C2 are not lattices.

We provide an in depth study of crystal graphs of type An coming from highest weight

representations with highest weight given by λ = (λ1, λ2) and λ = (λ1, 1, · · · 1). We refer to

these as two rowed shape crystals and hook shape crystals, respectively. In both cases, we give

a characterization of when certain Stembridge relations will occur in the crystal. In hook shape

crystals of type An, we conjecture that all relations among crystal operators are implied by

Stembridge relations. For two rowed shape crystals, we prove that in rank three intervals, all

relations among crystal operators are implied by Stembridge relations. It is known that this

does not hold for arbitrary rank intervals in two rowed shape crystals of type An.



© Copyright 2019 by Molly Elizabeth Lynch

All Rights Reserved



Topological and Algebraic Combinatorics of Crystal Posets

by
Molly Elizabeth Lynch

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2019

APPROVED BY:

Ricky Ini Liu Kailash Misra

Nathan Reading Carla Savage

Patricia Hersh
Chair of Advisory Committee



DEDICATION

To my family.

ii



BIOGRAPHY

Molly grew up in Wethersfield, Connecticut and studied mathematics as an undergraduate at

the College of the Holy Cross in Worcester, Massachusetts. Following graduation, she began her

graduate studies in mathematics at North Carolina State University. When not doing math,

she is most likely hanging out with her dog, Mookie. Next year, she will be a Visiting Assistant

Professor at Hollins University in Roanoke, Virginia.

iii



ACKNOWLEDGEMENTS

The author thanks her advisor, Patricia Hersh, for many useful conversations and editorial

suggestions without which this thesis would not exist. The author also thanks the rest of her

committee members, Ricky Liu, Kailiash Misra, Nathan Reading, and Carla Savage, for their

valuable input and insights. The author thanks her incredible professors at the College of the

Holy Cross, in particular Cristina Ballantine and David Damiano, without whom she would not

have pursued a career in mathematics. The author thanks her family for their ongoing support

and encouragement. Finally, the author thanks her friends and especially Mike for his help in

editing this dissertation and endless support.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Crystal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Stembridge axioms and Sternberg relations . . . . . . . . . . . . . . . . . 6
1.2 Partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Discrete Morse theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Discrete Morse functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Lexicographic discrete Morse functions . . . . . . . . . . . . . . . . . . . . 15

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2 Understanding relations among crystal operators . . . . . . . . . . . 24
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Consequences of the Stembridge axioms . . . . . . . . . . . . . . . . . . . . . . . 27
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Chapter 1

Introduction

Crystal bases are combinatorial structures that mirror representations of Lie algebras. They

were introduced independently by two sources around 1990. Lusztig introduced canonical bases

from a geometric perspective in [18,19] and Kashiwara introduced crystal bases when studying

modules of quantum groups [15–17]. In this thesis, we use the notion of crystals introduced by

Kashiwara. Associated to each crystal base is a directed, edge-colored graph called a crystal

graph. In many cases, these graphs are acyclic and have a natural partial order associated with

them. Crystals are of interest because one can deduce important information regarding the

corresponding representation of the Lie algebra. This includes branching rules, tensor products,

and the character.

The main focus of this thesis is to understand the combinatorial structure of crystal graphs

(or crystal posets). Each edge in a crystal graph encodes the action of a so-called crystal

operator. We can study relations among crystal operators by studying the structure of these

crystal posets. Stembridge gave a local characterization of crystal graphs of highest weight

representations in the simply laced case in [23]. This characterization implies certain relations

that must exist among crystal operators in the crystal graph. Sternberg proved in [24] that

additional relations among crystal operators exist in crystals of highest weight representations

in the doubly laced case. Although these relations dictate much of the structure of the crystal

graph, in [11], Hersh and Lenart proved that there exist relations among crystal operators that

are not implied by the Stembridge or Sternberg relations.

In this thesis, we use lexicographic discrete Morse functions to prove a connection between

the Möbius function µ of an interval in a crystal poset and the relations that exist among

crystal operators within that interval. Namely, we prove that for any interval [u, v] such that

µ(u, v) /∈ {−1, 0, 1}, there must exist a relation among crystal operators within [u, v] that is not

implied by Stembridge or Sternberg relations. This was first proven in the simply laced case

in [11]. However, the proof given does not extend to the doubly laced case. We give a new proof
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using discrete Morse theory that holds in the simply and doubly laced case. Using this result,

we find new relations among crystal operators in types Bn and Cn.

We then carry out an in depth study of certain families of crystal posets. Specifically, we

look at hook shape crystals and two rowed shape crystals in type An. We use a well known

combinatorial model to realize these crystal graphs of type An where vertices of the graph

are semistandard Young tableaux. We use the structure of semistandard Young tableaux to

characterize when various types of relations exist among crystal operators. Additionally, we

prove that any relation not implied by Stembridge relations in the simply laced case must

involve at least three distinct crystal operators. However, we show via example that this result

regarding relations needing three distinct operators does not carry over to the doubly laced

case.

In the remainder of Chapter 1, we give an introduction to the main objects of study in this

thesis. We define crystals, partially ordered sets, and give an introduction to lexicographic dis-

crete Morse functions. We then conclude the chapter by giving further motivation for studying

relations among crystal operators.

In Chapter 2, we prove a connection between the Möbius function of an interval in a crystal

poset and the relations that exist among crystal operators within that interval. We do so by

constructing a lexicographic discrete Morse function on the order complex of the interval. We

prove that this discrete Morse function can have at most one critical cell if all relations among

crystal operators within the interval are implied by Stembridge or Sternberg relations. We also

prove that crystal posets of type B2 and C2 are not lattices. We end the chapter by giving

examples of relations that exist among crystal operators in the doubly laced case that are not

implied by Stembridge or Sternberg relations.

In Chapter 3, we study hook shape crystals and two rowed shape crystals of type An. We use

the signature of a tableau to characterize when we have a degree two Stembridge relation versus

a degree four Stembridge relation upward from a vertex. We prove that hook shape crystals are

not in general lattices, although we nonetheless conjecture that Stembridge relations imply all

relations among crystal operators in this case. For two rowed shape crystals, we prove that all

rank three intervals have the property that no relations exist that are not implied by degree

two Stembridge relations. Finally, we give further results regarding the intervals of arbitrary

rank that were introduced in [11].

1.1 Crystal bases

In this thesis, we undertake a study of crystals corresponding to highest weight representations

of Kac-Moody algebras. In these cases, the directed graphs given by the crystals are acyclic

and have a natural partial order associated to them. One of the main goals of this thesis is to
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understand the structure of these so-called crystal posets.

Let V be a Euclidean space and 〈 , 〉 the corresponding inner product. For a nonzero vector

α ∈ V , we define the reflection rα in the hyperplane orthogonal to α as:

rα(x) = x− 〈x, α∨〉α, where α∨ =
2α

〈α, α〉
.

Definition 1.1.1. A root system Φ in V is a nonempty finite set of nonzero vectors in V such

that span(Φ) = V that satisfy the following:

1. rα(Φ) = Φ for all α ∈ Φ,

2. 〈α, β∨〉 ∈ Z for all α, β ∈ Φ,

3. If β ∈ Φ is a multiple of a α ∈ Φ, then β = ±α.

The elements of Φ are called roots, while elements of Φ∨ = {α∨|α ∈ Φ} are called coroots.

A root system is simply laced if every root has the same length. If not all roots have the same

length, then the root system is either doubly laced or triply laced depending on the angles

between roots. All root systems in this thesis will be either simply laced or doubly laced.

Given a root system Φ in V , a weight lattice is a lattice Λ such that Λ spans V and Φ ⊂ Λ.

If λ ∈ Λ and α ∈ Φ, then 〈λ, α∨〉 ∈ Z. The elements of Λ are called weights.

For a root system Φ, choose a hyperplane through the origin that does not intersect Φ. We

call the roots on one side of this hyperplane positive, denoted Φ+, and those on the other side

are called negative denoted Φ−. A positive root α ∈ Φ+ is called simple if it cannot be expressed

as a sum of the other positive roots. The set of simple roots {αi | i ∈ I} form a basis for V . Let

Λ+ = {λ ∈ Λ | 〈λ, α∨i 〉 ≥ 0 for all i ∈ I}. An element of Λ+ is called a dominant weight. For

more background on root systems, see [3, 13].

Each crystal is associated with a root system Φ that has an index set I and weight lattice

Λ. Let {αi}i∈I be the set of simple roots.

Definition 1.1.2. For a fixed root system Φ with index set I and weight lattice Λ, a Kashiwara

crystal (crystal for short) of type Φ is a nonempty set B together with maps

ei, fi : B → B t {0},

εi, ϕi : B → Z t {−∞},

wt : B → Λ,

where i ∈ I and 0 /∈ B is an auxilliary element satisfying the following:
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(A1) If x, y ∈ B, then ei(y) = x if and only if fi(x) = y. Here, we require

wt(y) = wt(x)− αi, εi(y) = εi(x) + 1, ϕi(y) = ϕi(x)− 1

(A2) We require that

ϕi(x) = 〈wt(x), α∨i 〉+ εi(x)

for all x ∈ B and i ∈ I. In particular, if ϕi(x) = −∞, then εi(x) = −∞ as well. If

ϕi(x) = −∞ then we require ei(x) = fi(x) = 0.

The map wt is the weight map, the operators ei and fi are called Kashiwara or crystal

operators, and the maps ϕi and εi are called string lengths. For all crystals in this thesis, we

have the following:

ϕi(x) = max{k ∈ Z≥0|fki (x) 6= 0},

εi(x) = max{k ∈ Z≥0|eki (x) 6= 0}.

In this case, we say the crystal is seminormal.

Definition 1.1.3. A crystal graph associated to a crystal B is a directed, edge-colored (from

some index set I) graph with vertex set B such that:

(S1) Every monochromatic path has finite length,

(S2) For a given vertex x, there is at most one incoming edge colored i and at most one outgoing

edge colored i.

We draw an edge colored i from x to y whenever y = fi(x).

Since our focus is on crystals given by highest weight representations, let us briefly recall a

few basics of Lie algebras and Kac-Moody algebras.

Definition 1.1.4. A Lie algebra g over C is a vector space equipped with a bilinear product

g× g→ g denoted by (x, y) 7→ [x, y] called the bracket, that satisfies the following:

• [x, x] = 0 for all x ∈ g,

• [x, [y, z]] = [[x, y], z] + [y, [x, z]] for all x, y, z ∈ g.

A Lie algebra is semisimple if it is a direct sum of simple Lie algebras. The irreducible repre-

sentations of semisimple Lie algebras are classified by their highest weights. Roughly speaking,

these highest weight representations are generated by a single highest weight element. For ev-

ery dominant weight, there exists a finite dimensional irreducible representation whose highest
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weight is that dominant weight. A fundamental result in the representation theory of Lie al-

gebras is that every finite dimensional module can be written as a direct sum of irreducible

modules. Kac-Moody algebras are generalizations of finite dimensional semisimple Lie algebras.

Many properties related to the structure of a Lie algebra such as its root system and irreducible

representations have natural analogs in the setting of Kac-Moody algebras. For a more detailed

background on Lie algebras and Kac-Moody algebras, see [9, 13]. For more on the connections

between representation theory and crystals, see [4, 12].

When referring to the crystal (or crystal graph) corresponding to the irreducible highest

weight representation with highest weight λ, we will say the crystal (or crystal graph) of type

Φ of shape λ.

For crystals of finite, classical Cartan type there is a combinatorial model, developed in [17],

where the vertices of the crystal graph are represented by tableaux. We describe this realization

for type An as the tableaux model is explicitly used for proofs in Chapter 3. For crystals of

types Bn, Cn, and Dn, vertices can be represented by Kashiwara-Nakashima tableaux. For a

description of these tableaux see e.g [4, 17].

For crystals of type An, each dominant weight λ can be viewed as a partition, i.e. λ =

(λ1, λ2, ..., λn) where λ1 ≥ λ2 ≥ · · · ≥ λn. To each partition, we can associate a Young diagram.

A Young diagram of shape λ is a finite collection of boxes, arranged in left-justified rows

such that there are λi boxes in row i. We can represent the vertices of the crystal graph by

semistandard Young tableaux. A semistandard Young tableau of shape λ is a filling of a Young

diagram of shape λ where entries across rows read from left to right are weakly increasing, and

entries read up columns from top to bottom are strictly increasing. Given a tableau T , the

weight of T is:

wt(T ) = (τ1, τ2, ..., τn+1),

where τi is the number of occurrences of i in T .

Definition 1.1.5. The reading word of T , denoted r(T ), is the word obtained by reading each

column from bottom to top and reading columns from left to right.

Definition 1.1.6. The i-signature of T , denoted σi(T ), is the subword of r(T ) consisting of

only the letters i and i+ 1.

We describe the action of the crystal operators fi and ei on a given tableau via a combi-

natorial rule called the signature rule. Let B be a crystal of type An and let x be a vertex of

B.

We replace each appearance of i in the i-signature with the symbol − and each appearance

of i+ 1 with the symbol +. Then we repeatedly remove any adjacent pairs of (+−) as long as

this is possible. In the end, we are left with the reduced i-signature of x, denoted ρi(x), which
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is of the form:

ρi(x) = −− · · ·−︸ ︷︷ ︸
a

+ + · · ·+︸ ︷︷ ︸
b

.

If a > 0 we obtain fi(x) from x by changing the i in x that corresponds to the rightmost − in

ρi(x) to an i+ 1. If a = 0, then fi(x) = 0. Similarly, if b > 0, then ei(x) is obtained by changing

the i + 1 in x that corresponds to the leftmost + in ρi(x) to an i. If b = 0, then ei(x) = 0.

For other types, the signature rule for the applications of fi and ei are similar. For details see

e.g. [4, 12].

Example 1.1.7. Let λ = (9, 6) and x =
1 1 2 2 2 2 3 3 4

2 3 3 4 4 5
. We will calculate f2(x)

and e2(x). We have r(x) = 213132424252334 and σ2(x) = 233222233. This gives

−+ +−−−−+ +.

After removing all (+−) pairs

−+ +−︸︷︷︸−︸ ︷︷ ︸−−++

we are left with

ρ2(x) = −−−+ +,

where the rightmost minus sign corresponds to the final appearance of 2 in the first row of x

and the leftmost plus sign corresponds to the first appearance of 3 in the first row of x. Then

f2(x) =
1 1 2 2 2 3 3 3 4

2 3 3 4 4 5
,

and

e2(x) = 1 1 2 2 2 2 2 3 4

2 3 3 4 4 5
.

1.1.1 Stembridge axioms and Sternberg relations

In [23], Stembridge gives a local characterization of crystals coming from integrable highest

weight representations in the simply laced case. In doing so, he provides a list of local relations

that exist among crystal operators. He shows that these relations also hold in the doubly laced

case, but do not give a complete characterization. In [24], Sternberg shows that for crystals of

doubly laced type coming from a highest weight representation, there are additional relations

among crystal operators other than those given by the Stembridge axioms. For a complete

characterization of doubly laced crystals see [7, 25]. Now, we introduce some notation and the
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axioms as seen in [23].

Throughout this section we will let A = (aij)i,j∈I be the Cartan matrix of a Kac-Moody

algebra g, where I is a finite index set. We recall the following from [23].

We define the i-string through x to be:

f−di (x)→ · · · → f−1i (x)→ x→ fi(x)→ · · · → f ri (x).

We can then define the i-rise of x to be ϑi(x) := r and the i-depth of x to be δi(x) := −d. To

measure the effect of the crystal operators ei and fi on the j-rise and j-depth of each vertex,

we define the difference operators ∆i and ∇i to be:

∆iδj(x) = δj(ei(x))− δj(x), ∆iϑj(x) = ϑj(ei(x))− ϑj(x),

whenever ei(x) is defined, and

∇iδj(x) = δj(x)− δj(fi(x)), ∇iϑj(x) = ϑj(x)− ϑj(fi(x)),

whenever fi(x) is defined.

Definition 1.1.8. We say that an edge-colored, directed graph, X, is A-regular if the axioms

(S1) and (S2) from Definition 1.1.3 hold as well as (S3)-(S6) and (S5′)-(S6′).

(S3) For a fixed x ∈ X and i, j ∈ I such that ei(x) is defined, we require ∆iδj(x) + ∆iϑj(x) =

aij ,

(S4) For a fixed x ∈ X and i, j ∈ I such that ei(x) is defined, we require ∆iδj(x) ≤ 0 and

∆iϑj(x) ≤ 0.

(S5) For a fixed x ∈ X such that ei(x) and ej(x) are both defined, we require that ∆iδj(x) = 0

implies eiej(x) = ejei(x) 6= 0 and ∇jϑi(y) = 0 where y = eiej(x) = ejei(x).

(S6) For a fixed x ∈ X such that ei(x) and ej(x) are both defined, we require that ∆iδj(x) =

∆jδi(x) = −1 implies eie
2
jei(x) = eje

2
i ej(x) 6= 0 and ∇iϑj(y) = ∇jϑi(y) = −1 where

y = eie
2
jei(x) = eje

2
i ej(x).

Dually, we have the additional two requirements for X to be A-regular,

(S5′) For a fixed x ∈ X, ∇iϑj(x) = 0 implies fifj(x) = fjfi(x) 6= 0 and ∆jδi(y) = 0 where

y = fifj(x) = fjfi(x).

(S6′) For a fixed x ∈ X, ∇iϑj(x) = ∇jϑi(x) = −1 implies fif
2
j fi(x) = fjf

2
i fj(x) 6= 0 and

∆iδj(y) = ∆jδi(y) = −1 where y = fif
2
j fi(x) = fjf

2
i fj(x).
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In [23], Stembridge proves the following:

Theorem 1.1.9 ([23]). The crystal graph corresponding to any highest weight representation

is A-regular. These axioms characterize crystal graphs in the simply laced case.

All crystals studied in this thesis are such that the Stembridge axioms hold. The axioms

only give a complete characterization in the simply laced case.

Definition 1.1.10. If we have x ∈ B such that

fifj(x) = fjfi(x) 6= 0,

then we say there is a degree two Stembridge relation upward from x. Similarly, if we have x ∈ B
such that

fif
2
j fi(x) = fjf

2
i fj(x) 6= 0,

then we say that there is a degree four Stembridge relation upward from x. Dually, when these

relations occur involving the ei crystal operators, we say we have a degree two or degree four

Stembridge relation downward from x, the degree coming from the number of operators.

See Figure 1.1 for visualizations of the degree two and degree four Stembridge relations.

(a)

x

i j

j i

(b)

x

i j

j i

j i

i j

Figure 1.1: (a) The degree two Stembridge relation, and (b) the degree four Stembridge relation

We now consider the doubly laced case, i.e. crystals corresponding to the root systems of

type Bn and Cn. In [24], Sternberg proves a conjecture of Stembridge by providing a description

of the local structure of crystals arising from highest weight representations in the doubly laced

case.

Theorem 1.1.11 ([24]). Let B be a crystal coming from a highest weight representation of

doubly laced type. Let x be a vertex of B such that fi(x) 6= 0 and fj(x) 6= 0 where fi and fj are

two distinct crystal operators. Then exactly one of the following is true:

8



1. fifj(x) = fjfi(x),

2. fif
2
j fi(x) = fjf

2
i fj(x),

3. fif
3
j fi(x) = fjfifjfifj(x) = f2j f

2
i fj(x),

4. fif
3
j f

2
i fj(x) = fif

2
j fifjfifj(x) = fjf

2
i f

3
j fi(x) = fjfifjfif

2
j fi(x).

The equivalent statement with the crystal operators ei and ej also holds.

Definition 1.1.12. If we have x ∈ B such that

fif
3
j fi(x) = fjfifjfifj(x) = f2j f

2
i fj(x),

then we say there is a degree five Sternberg relation upward from x. Similarly, if we have x ∈ B
such that

fif
3
j f

2
i fj(x) = fif

2
j fifjfifj(x) = fjf

2
i f

3
j fi(x) = fjfifjfif

2
j fi(x),

then we say that there is a degree seven Sternberg relation upward from x. Dually, when these

relations occur involving the ei’s, we say we have a degree five or degree seven Sternberg relation

downward from x.

See Figure 1.2 for visualizations of the degree five and degree seven Sternberg relations.

(a)

x

i

j

j

j

i

j

i

ij

ji

j

(b)

x

i

j

j

ji

j i

i

j

j

i

ij

ji

j

j

i

Figure 1.2: (a) The degree five Sternberg relation, and (b) the degree seven Sternberg relation
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We remark that for both Stembridge and Sternberg relations, there are exactly two distinct

crystal operators used. Later we will see there exist relations among three or more distinct

crystal operators as well.

1.2 Partially ordered sets

We will now give a brief overview of partially ordered sets, as the main objects of study in this

thesis are crystal posets.

Definition 1.2.1. A partially ordered set P (or poset) is a set P together with a binary relation

≤ such that for all s, t, u ∈ P we have:

1. reflexivity: s ≤ s.

2. antisymmetry: if s ≤ t and t ≤ s, then s = t.

3. transitivity: if s ≤ t and t ≤ u, then s ≤ u.

We call “≤” a partial order.

Given a subset Q ⊆ P , we say that Q is a subposet of P if for s, t ∈ Q, we have s ≤ t in

Q if and only if s ≤ t in P . We say that u is covered by v (or v covers u), denoted by u l v

if u < v and there is no element w ∈ P such that u < w < v. We call these cover relations.

For finite posets (and more generally for locally finite posets), P is generated by such relations.

An interval [u, v] is a subposet of P defined by [u, v] = {s ∈ P : u ≤ s ≤ v} whenever u < v,

Similarly, an open interval (u, v) is defined by (u, v) = {s ∈ P : u < s < v}. A poset P is locally

finite if each interval [u, v] is finite. We say that P has a minimum element, denoted 0̂, if there

exists an element 0̂ ∈ P such that 0̂ ≤ u for all u ∈ P . Similarly, P has a maximum element,

denoted 1̂, if there exists an element 1̂ ∈ P such that u ≤ 1̂ for all u ∈ P . A chain is a poset

in which any two elements x and y are comparable (i.e. x ≤ y or y ≤ x). A subset C of P is

a chain if it is a chain when considered as a subposet of P . A saturated chain from u to v is a

series of cover relations u = u0 l u1 l · · · l uk = v. We say that a finite poset is graded if for

all u ≤ v, every saturated chain from u to v has the same number of cover relations, and we

call this number the rank of the interval [u, v]. The rank of an element x ∈ P is the rank of the

interval [0̂, x]. The Hasse diagram of a finite poset P is the graph whose vertices are elements

of P with an edge drawn upward from x to y whenever xl y.

For s, t ∈ P , an upper bound of s and t is an element v in P such that v ≥ s and v ≥ t.

Similarly, a lower bound of s and t is an element u such that u ≤ s and u ≤ t. A least upper

bound for s and t is an element v such that for any w where s ≤ w ≤ v and t ≤ w ≤ v, we must

have v = w. We define a greatest lower bound similarly. If two elements have a unique least

10



upper bound it is called a join. Similarly, if two elements have a unique greatest lower bound,

it is called a meet. We denote by s∨ t the join of s and t and s∧ t the meet of s and t. A poset

L in which every two elements have a meet and a join is a lattice.

Example 1.2.2. Consider the set of subsets of the numbers {1, 2, 3} ordered by inclusion. This

gives the Boolean lattice seen in Figure 1.3. The minimal element is 0̂ = ∅ and the maximal

element is 1̂ = {1, 2, 3}. We have, for example, that {1} ∨ {3} = {1, 3} and {1, 3} ∧ {2} = ∅.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.3: Boolean lattice on three elements

The Möbius function, µ of a poset P is a function µ : P × P → Z defined recursively as

follows: µ(u, u) = 1, for all u ∈ P , µ(u, v) = −
∑

u≤t<v µ(u, t), for all u < v ∈ P , and µ(u, v) = 0

otherwise. Given a poset P , the order complex ∆(P ) is the abstract simplicial complex whose

i-dimensional faces are the chains x0 < x1 < · · · < xi of P . Let ∆(u, v) denote the order

complex of the subposet consisting of the open interval (u, v).

Example 1.2.3. In Figure 1.4 we have a poset on six elements and its corresponding order

complex. Each saturated chain corresponds to a facet of the order complex. For example, the

saturated chain 0̂l a1 l a2 l 1̂ corresponds to the tetrahedron with vertices {0̂, a1, a2, 1̂}.

One reason to be interested in the order complex of a poset is the connection between the

Möbius function of a poset P and the Euler characteristic of the order complex ∆(P ), discussed

e.g. in [21,26].

Theorem 1.2.4. Let P be a poset with 0̂ and 1̂. Then µ(0̂, 1̂) = χ̃(∆(P )).

The posets that we study in this thesis come from crystals. More specifically, we study

the crystal graphs of crystals of highest weight representations. We view these crystal graphs

as posets with exactly the cover relations u l v for v = fi(u) for some i ∈ I. This extends

transitively to a partial order on the crystal graph, namely u ≤ v whenever there is a directed

11



P

0̂

a1 b1

a2 b2

1̂

∆(P )

0̂

1̂a1

a2

b1

b2

Figure 1.4: A poset P and its order complex ∆(P )

path from u to v. We color the edge of the covering relation given by fi(u) = v with the color

i. This gives the structure of an edge-colored poset. We call these posets crystal posets. Note

that the crystal graph is the Hasse diagram of the crystal poset. The following definition will

be useful later.

Definition 1.2.5. Given [u, v] ⊆ B, for B a crystal poset, let C = ul x1 l · · ·l xm l v be a

saturated chain from u to v. The edge label sequence of C is the tuple (β(ulx1), ..., β(xml v))

where β(xk l xk+1) = i if xk+1 = fi(xk).

Example 1.2.6. Consider the type A3 crystal graph of shape λ = (2, 1, 1). In Figure 1.5 we have

the Hasse diagram of the crystal poset. This interval has the following edge label sequences:

(1, 2, 3, 3, 2, 1), (1, 3, 2, 2, 3, 1), (1, 3, 2, 2, 1, 3), (3, 1, 2, 2, 3, 1), (3, 1, 2, 2, 1, 3) and (3, 2, 1, 1, 2, 3).

1.3 Discrete Morse theory

Discrete Morse theory was introduced in [8] by Forman as a tool to study the homotopy type and

homology groups of (primarily finite) CW complexes. The main idea of discrete Morse theory

is that for a given CW complex or simplicial complex ∆, we can construct a more efficient CW

complex, while retaining many topological properties of the original complex.

1.3.1 Discrete Morse functions

In this thesis, we will apply discrete Morse theory to simplicial complexes associated to crystal

posets. Let ∆ be a simplicial complex.

Definition 1.3.1. A discrete Morse function on a simplicial complex ∆ is a function f : ∆→ R
such that for each d-dimensional simplex, α ∈ ∆,

12
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1 3
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4

1 4

3

4

2 3

3

4

2 4

3

4

13

21 32

321

321

2312

13

Figure 1.5: Type A3 crystal poset of shape λ = (2, 1, 1)

1. |{β ⊇ α | dim β = d+ 1 and f(β) ≤ f(α)}| ≤ 1,

2. |{γ ⊆ α | dim γ = d− 1 and f(γ) ≥ f(α)}| ≤ 1.

In [5], Chari gave a combinatorial reformulation for discrete Morse functions in the case of

regular CW complexes. This reformulation is in terms of acyclic matchings on the face posets

of the CW complexes, which is what we will use here. A matching is a set of edges in a graph

with no common vertices. We say a matching on the Hasse diagram of a face poset is acyclic if

the directed graph obtained by directing matching edges upward and all other edges downward

has no directed cycles. It is known, (for example see [10]), that whenever a face poset has an

acyclic matching, then there is a nonempty set of associated discrete Morse functions on the

corresponding complex. We will be interested in the so-called critical cells of a discrete Morse
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function.

Definition 1.3.2. For a discrete Morse function f on a simplicial complex ∆, a simplex α ∈ ∆

is called a critical cell if |{β ⊇ α | dim β = d + 1 and f(β) ≤ f(α)}| = 0 and |{γ ⊆ α |
dim γ = d − 1 and f(γ) ≥ f(α)}| = 0. Equivalently, a simplex α is called a critical cell if it is

left unmatched by the matching on the face poset.

Example 1.3.3. Consider the Boolean lattice from Figure 1.3. This is the face poset of the two

dimensional simplex ∆2. In Figure 1.6 we demonstrate a matching on this face poset. We match

S with S \ {1} if 1 ∈ S and S ∪ {1} othewise. We denote the matching edges in bold. As every

vertex is matched, the corresponding discrete Morse function would have no critical cells.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.6: Matching on Boolean lattice

The following theorem of Forman illustrates the usefulness of discrete Morse functions.

Theorem 1.3.4 ([8]). Suppose ∆ is a simplicial complex with a discrete Morse function f .

Then ∆ is homotopy equivalent to a CW-complex with exactly one cell of dimension d for each

critical cell in ∆ of dimension d with respect to f .

This theorem tells us that discrete Morse functions provide a method of taking a complicated

simplicial complex and creating a new simpler one from critical cells that is homotopy equivalent

to the original.

We deviate slightly from Forman’s conventions in a way that is typical in combinatorics.

We allow the empty set to be in the domain of our discrete Morse function f , as well as in the

face posets on which we construct acyclic matchings. By doing so, we must express our results

in terms of reduced Euler characteristic and reduced homology.

Remark 1.3.5. From Theorem 1.3.4, rephrased to use reduced Betti numbers and Morse num-

bers, we can immediately deduce that if a discrete Morse function has exactly one critical cell
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of dimension i and no other critical cells, then our original simplicial complex is homotopy

equivalent to an i-dimensional sphere.

1.3.2 Lexicographic discrete Morse functions

In [1], Babson and Hersh introduced lexicographic discrete Morse functions as a tool to study

the topology of order complexes of partially ordered sets with 0̂ and 1̂. This is what we will use

to study crystal posets.

Before we describe how to construct lexicographic discrete Morse functions, we explain some

of the useful properties they have. Since we attach the facets by lexicographic order on saturated

chains, the lexicographic discrete Morse functions will have relatively few critical cells. If the

attachment of the facet corresponding to some saturated chain does not change the homotopy

of the subcomplex of our order complex built so far, then this step does not introduce any

critical cells. Additionally, each facet can contribute at most one critical cell. We describe these

critical cells using minimal skipped intervals, which will be discussed shortly.

We will now review lexicographic discrete Morse functions in general. This will rely on a

notion of rank within a chain that does not require the poset to be graded. However, the crystal

posets we are interested in are graded, as seen in Lemma 2.3.1, simplifying the grading in a

chain.

Given a graded poset P of rank n, let β be an integer labeling on the edges of the Hasse

diagram of P such that β(ul v) 6= β(ulw) whenever v 6= w. Each facet of ∆(P ) corresponds

to a saturated chain, 0̂l u1 l · · ·l uk l 1̂ in P . For each saturated chain we read off the label

sequence (β(0̂l u1), β(u1l u2), · · · , β(uk l 1̂)) and order these lexicographically. This labeling

gives rise to a total order on the facets F1, ..., Fk of the order complex. By virtue of the fact

that we attach facets in a lexicographic order, each maximal face in F j ∩ (∪i<jF i) has rank set

of the form 1, ..., i, j, ..., n for j > i + 1 i.e. it omits a single interval of consecutive ranks. We

call this rank interval [i+ 1, j − 1] a minimal skipped interval of Fj with support i+ 1, ..., j − 1

and height j − i − 1. For a given facet Fj , we call the collection of minimal skipped intervals

the interval system of Fj .

Remark 1.3.6. In order to determine the minimal skipped intervals for a given saturated chain

C corresponding to some facet Fj , we consider each cover relation ul v as we travel up C. At

each cover relation u l v, we check if there is a lexicographically earlier cover relation u l v′

upward from u. If so, we obtain a maximal face in F j ∩ (∪i<jF i), and hence a minimal skipped

interval, by taking the intersection of F j with the closure of any facet Fi′ that includes ul v′,
that agrees with Fj below u and agrees with Fj above w ∈ Fj for some w > v′ of minimal rank.

See Figure 1.7.

When our poset has some natural labeling, like that of our crystal posets, it is often possible
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Figure 1.7: Interval system example

to classify its minimal skipped intervals.

Any face in F j \ (∪i<jF i) must include at least one rank from each of the minimal skipped

intervals of Fj . For each j, an acyclic matching on the set of faces in F j \(∪i<jF i) is constructed

in [1] in terms of the interval system. The union of these matchings is acyclic on the entire Hasse

diagram of the face poset of the order complex of P , and therefore give rise to a family of discrete

Morse functions. We describe this acyclic matching after giving a description of the truncation

algorithm.

A facet Fj will contribute a critical cell if and only if the interval system of Fj covers

all ranks in Fj after the truncation algorithm described below. In this case we say that the

corresponding saturated chain is fully covered. The dimension of such a critical cell is one

less than the number of minimal skipped intervals in the interval system after the truncation

algorithm. This truncation algorithm is needed when the interval system of some facet Fj covers

all ranks but there are overlapping minimal skipped intervals, i.e. two minimal skipped intervals

both cover a common rank. Otherwise the truncated system equals the original system.

Remark 1.3.7. In actuality, we study the order complexes of the proper parts of our posets; if P

has a 0̂ and 1̂, then ∆(P ) is contractible as it is a cone. We use the 0̂ and 1̂ in the lexicographic

discrete Morse functions in a bookkeeping role. More specifically, 0̂ and 1̂ are needed to record

the labels of covering relations upward from 0̂ and upward towards 1̂. In particular, when we

refer to fully covered saturated chains, the ranks of 0̂ and 1̂ are not covered.

For the truncation algorithm, we begin with our interval system, I, and initialize the trun-

cated system, which we call J , to be the empty set. Then, we repeatedly move the minimum

interval in I to the truncated system J and truncate all other elements of I to eliminate any
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overlap with the minimum interval in I being moved to J at this step (by minimum we mean

the minimal skipped interval containing the element of lowest rank). Next, remove any inter-

vals in I that are no longer minimal. Repeat this until there are no longer any minimal skipped

intervals in I. We call the truncated, minimal skipped intervals obtained by this algorithm

the J-intervals of Fj . By construction, these are non-overlapping. If the J-intervals cover all

ranks of Fj , then Fj contributes a critical cell. We get this critical cell by taking the lowest

rank element of each of the J-intervals. Otherwise Fj does not contribute any critical cells. See

Example 1.3.8.

We now give a description of the acyclic matching on Fj \ ∪i<jFi. If the interval system I

does not cover all ranks of the saturated chain Fj then we match by including and excluding

the lowest rank element not covered by I. If the interval system I does cover all ranks, then

we consider the interval system J . If J covers all ranks, then we get a critical cell by taking

the lowest rank element from each J-interval. We then match any cell that differs from the

critical cell on some J-interval by looking at the lowest rank J-interval for which it differs. We

match by including and excluding the element of lowest rank in this lowest rank J-interval. If

the J-interval system does not cover all ranks, then we match by including and excluding the

lowest rank element uncovered by J .

Example 1.3.8. Here we give an example of the interval system of the saturated chain bolded in

blue with label sequence (3, 7, 4, 3, 2, 9) seen in Figure 1.8. Following the idea in Remark 1.3.6,

we have three minimal skipped intervals in our interval system I: I1 covers ranks {2, 3, 4}, I2
covers ranks {4, 5}, and I3 covers rank {6}. As I1 and I2 overlap, we perform the truncation

algorithm to get three J-intervals, J1 = {2, 3, 4}, J2 = {5}, and J3 = {6}. As all proper ranks

are covered, the facet Fj would contribute a critical cell coming from the lowest rank elements

of each J-interval.

The following example illustrates that it is possible to have a saturated chain that is fully

covered by the I-interval system but fails to be fully covered after the truncation algorithm.

Example 1.3.9. We consider the I-interval system I = {I1, I2, I3} seen in Figure 1.9. The

interval I1 covers the first and second rank which we denote by I1 = {1, 2}. Similarly, we have

I2 = {2, 3} and I3 = {3, 4}. In order to see if the saturated chain in blue with edge label

sequence (5, 3, 4, 2, 6) is fully covered, we must truncate the I-intervals. We set J1 = I1 and

truncate I2 to remove overlap with I1 so I ′2 = {3}. However, now I ′2 ⊆ I3 implying that I3 is

no longer minimal. As a result, we remove this interval and set J2 = I ′2. Hence, the J-intervals

are J1 = {1, 2} and J2 = {3} and the vertex of rank 4 is uncovered.

In Section 2.3, we prove that under certain conditions, if the I-interval system fully covers

all ranks, then the J-interval system does as well.
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Figure 1.8: Minimal skipped intervals and truncation algorithm
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Figure 1.9: Interval system with I fully covering where J-intervals do not fully cover

1.4 Motivation

Much of the inspiration for this work stems from a paper by Hersh and Lenart [11]. Here we

recall some of the key definitions and results from their paper as a way to motivate the work

done in this thesis.

Definition 1.4.1. A Stembridge move on a simply laced crystal is either the replacement of

the saturated chain x l fi(x) l fj(fi(x)) by the saturated chain x l fj(x) l fi(fj(x)) in the

case where fifj(x) = fjfi(x) or the replacement of the saturated chain

xl fi(x)l fj(fi(x))l fj(fjfi(x))l fi(fjfjfi(x))
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by the saturated chain

xl fj(x)l fi(fj(x))l fi(fifj(x))l fj(fififj(x))

in the case where fifjfjfi(x) = fifjfjfi(x).

See Figure 1.10 for an illustration of these moves where we replace the saturated chain in

blue with the saturated chain in red or vice versa.

(a)

x

i j

j i

(b)

x

i j

j i

j i

i j

Figure 1.10: Stembridge moves

In [11], they prove the following statement.

Theorem 1.4.2 ([11]). In the simply laced case, any two saturated chains from 0̂ to v in a

lower interval [0̂, v] are connected by a series of Stembridge moves. In addition, in finite type,

the same result holds for upper intervals [v, 1̂].

They remark that the proof will carry over to the doubly laced case. For completeness, we

give the proof in the doubly laced case here. To begin, we define a Sternberg move.

Definition 1.4.3. A degree five Sternberg move on a doubly laced crystal is the replacement

of the saturated chain

xl fi(x)l fj(fi(x))l fj(fjfi(x))l fj(fjfjfi(x))l fi(fjfjfjfi(x))

with either the saturated chain

xl fj(x)l fi(fj(x))l fj(fifj(x))l fi(fjfifj(x))l fj(fifjfifj(x))

or the saturated chain

xl fj(x)l fi(fj(x))l fi(fifj(x))l fj(fififj(x))l fj(fjfififj(x))
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in the case where there is a degree five Sternberg relation upward from x.

See Figure 1.11 for an illustration of these moves where we replace the saturated chain in

blue with one of the saturated chains in red seen in (a) and (b).

(a)

x

i

j

j

j

i

j

i

ij

ji

j

(b)

x

i

j

j

j

i

j

i

ij

ji

j

Figure 1.11: Degree five Sternberg move

Definition 1.4.4. A degree seven Sternberg move on a doubly laced crystal is the replacement

of the saturated chain

xl fi(x)l fj(fi(x))l fj(fjfi(x))l fj(f2j fi(x))l fi(f3j fi(x))l fi(fif3j fi(x))l fj(f2i f3j fi(x))

or

xlfi(x)lfj(fi(x))lfj(fjfi(x))lfi(f2j fi(x))lfj(fif2j fi(x))lfi(fjfif2j fi(x))lfj(fifjfif2j fi(x))

by either the saturated chain

xlfj(x)lfi(fj(x))lfj(fifj(x))lfi(fjfifj(x))lfj(fifjfifj(x))lfj(fjfifjfifj(x))lfi(f2j fifjfifj(x))

or

xlfj(x)lfi(fj(x))lfi(fifj(x))lfj(f2i fj(x))lfj(fjf2i fj(x))lfj(f2j f2i fj(x))lfi(f3j f2i fj(x))

in the case where there is a degree seven Sternberg relation upward from x.

See Figure 1.12 for an illustration of these moves where we replace one of the saturated
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chains in blue with one of the saturated chains in red. In essence, we can replace any maximal

chain with a different maximal chain that only agrees at the end points.
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Figure 1.12: Degree seven Sternberg move

With the Sternberg moves defined, we now prove the analogue of Theorem 1.4.2 for doubly

laced type. This proof relies on the fact that crystal posets are ranked which we will prove in

Lemma 2.3.1.

Theorem 1.4.5. In the doubly laced case, any two saturated chains from 0̂ to v in a lower

interval [0̂, v] are connected by a sequence of Stembridge and Sternberg moves.

Proof. We induct on the rank of v. Consider maximal chains C1 and C2 with xlv in C1 colored

i and yl v in C2 colored j. Denote by x∧ y the unique element that either (a) is covered by x

and y with fi(x∧ y) = y and fj(x∧ y) = x, (b) is less than both x and y with fififj(x∧ y) = y

and fjfjfi(x∧ y) = x, (c) is less than both x and y with f3j fi(x∧ y) = x and fjf
2
i fj(x∧ y) = y,

or (d) is less than both x and y with f2i f
3
j fi(x ∧ y) = y and f3j f

2
i fj(x ∧ y) = x. We know these

are the only possibilities due to the results of Stembridge and Sternberg.

We have 0̂ ≤ x∧y, so let C be any saturated chain from 0̂ to x∧y. Then let C3 be a saturated

chain from 0̂ to v which includes xl v and C. Let C4 be a saturated chain from 0̂ to v which

includes ylv and C. By induction on the rank of v, we know that C1 is connected by Stembridge

and Sternberg moves to C3 and that C2 is connected by Stembridge and Sternberg moves to

21



C4. By construction, we know that C3 is connected to C4 by a single Stembridge or Sternberg

move. This implies that C1 is connected to C2 by Stembridge and Sternberg moves.

However, Hersh and Lenart go on to prove that this result does not carry over to arbitrary

intervals.

Theorem 1.4.6 ([11]). No finite set of moves suffices to connect the sets of maximal chains in

all closed intervals [u,v] of type An crystal posets for n ≥ 1. In particular, there are disconnected

open intervals (u,v) of arbitrarily large rank.

To show this, Hersh and Lenart constructed an infinite family of intervals of arbitrary rank

with the property that not all saturated chains were connected by a sequence of Stembridge

moves. We construct this infinite family of intervals in Example 1.4.7.

Example 1.4.7. Consider the tableaux u and v shown below as vertices in the type An crystal

poset of shape (n+ 1, n). Here we have that u ≤ v and in the interval [u, v], there are saturated

chains that are not connected by a sequence of Stembridge moves.

u :=
1 1 1 2 · · · n− 2 n− 1

2 3 4 5 · · · n + 1

, v :=
1 1 2 · · · n− 2 n− 1 n

3 4 5 · · · n + 1 n + 1

,

To get from u to v we must increment each of the entries 1, 2, ..., n− 1, in the first row exactly

once (here we mean the rightmost 1), and the entries 2, 3, ..., n in the second row exactly once.

It was shown in [11] that the saturated chain with label sequence

(1, 2, 2, 3, 3, ..., n− 1, n− 1, n)

is not connected to the saturated chain with label sequence

(n, n− 1, n− 1, ..., 3, 3, 2, 2, 1).

In fact, they prove that every saturated chain in the connected component containing the chain

with edge label sequence (1, 2, 2, 3, 3, ..., n − 1, n − 1, n) begins with the edge label 1 and ends

with the edge label n.

In the case when n = 3, we get the interval seen in Figure 1.13.

The relation seen in Figure 1.13 appears frequently in crystal graphs among the crystal

operators fi−1, fi and fi+1 but was not known to exist until the paper of [11]. This motivated

a more in depth study of relations among crystal operators in all types.

Definition 1.4.8. Let B be the crystal of a highest weight representation. If for x ∈ B, we have

fi+1f
2
i fi−1(x) = fifi+1fi−1fi(x) = fifi−1fi+1fi(x) = fi−1fi2fi+1(x),
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1 1 1 2
2 3 4

1 1 2 2
2 3 4

1 1 1 2
3 3 4

1 1 1 2
2 4 4

1 1 2 3
2 3 4

1 1 1 2
3 4 4

1 1 2 2
3 3 4

1 1 1 3
2 4 4

1 1 2 3
3 3 4

1 1 2 2
3 4 4

1 1 1 3
3 4 4

1 1 2 3
3 4 4

1 2 3

2 3 1 2

2 1 3 2

3 2 1

Figure 1.13: Interval when n = 3

then we say there is an HL relation upward from x. It is possible that only the first three or

the final three equalities hold. In this case, we say there is a partial HL relation upward from

x.
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Chapter 2

Understanding relations among

crystal operators

In this chapter, we study relations among crystal operators in crystal graphs given by highest

weight representations. We begin by giving an overview of the main ideas and results presented

in this chapter. We then use the Stembridge axioms introduced in Section 1.1.1 to deduce

information about how distinct crystal operators fi and fj interact. We use the Sternberg

relations to prove that crystals of types B2 and C2 are not lattices. In Section 2.3, we prove

a connection between the Möbius function of an interval and the relations that exist among

crystal operators within that interval. Finally, we use this result as a tool to search for new

relations in crystals of doubly laced type that are not implied by Stembridge or Sternberg

relations. We end by giving some open questions.

2.1 Introduction

As seen in Section 1.1.1, Stembridge provides a characterization of crystal graphs coming from

highest weight representations in the simply laced case. These axioms imply a list of relations

that exist among crystal operators (as seen in Definition 1.1.10). These relations also hold in

crystal graphs of doubly laced type. However, in this case, in addition to Stembridge relations

we have the Sternberg relations seen in Definition 1.1.12. Nevertheless, we saw in Section 1.4

that when viewing these crystal graphs as posets, there exist intervals within the poset where

Stembridge relations do not determine the structure of the interval. What this means is that

within the interval, there exist saturated chains that are not connected by a sequence of Stem-

bridge moves as defined in Definition 1.4.1. In this chapter, we provide a connection between

relations among crystal operators in an interval and the Möbius function of that interval.

The question of what types of relations can exist among crystal operators has been previously
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studied by Hersh and Lenart in [11] in the simply laced case. They show that for arbitrary

intervals in crystals of simply laced type, there exist relations among crystal operators not

implied by Stembridge relations (see Section 1.4). More generally, Hersh and Lenart prove that

whenever there is an interval [u, v] in a crystal of finite, simply-laced type with the Möbius

function µ(u, v) /∈ {−1, 0, 1}, then within [u, v] there exists a relation among crystal operators

not implied by Stembridge relations. However, the proof technique that is used does not extend

to the doubly laced case.

Here, we prove the analogue of this result for crystals of finite, doubly laced type using

lexicographic discrete Morse functions (see Section 1.3.2). These functions have been previously

used to study certain classes of posets, see e.g. [20, 27]. By using lexicographic discrete Morse

functions for crystal posets, we also give a new proof of the result in the simply laced case. More

specifically, we show that if we have an interval [u, v] in a crystal poset coming from a highest

weight representation of finite Cartan type such that all relations among crystal operators are

implied by Stembridge or Sternberg relations, then the Möbius function of this interval must be

equal to −1, 0, or 1. We do so by constructing a discrete Morse function on the order complex,

∆(u, v), that has at most one critical cell. We give a procedure for both determining if [u, v] has

a critical cell, and for finding this cell, when it exists. If the discrete Morse function has exactly

one critical cell, this results in the Möbius function of the interval equalling ±1, otherwise the

Möbius function equals 0.

Danilov, Karzanov, and Koshevoy in [6, 7] studied crystal posets in the case when n = 2.

They showed that crystals of highest weight representations of type A2 are lattices. In this

chapter, by studying the structure of the Sternberg relations, we prove that crystals of highest

weight representations of types B2 and C2 are not lattices. Additionally, using SAGE, we are

able to search for intervals in crystal posets with Möbius function not equal to −1, 0, or 1. As

an example, we present new relations among crystal operators in crystals of types B3 and C3.

We will now describe and illustrate the main ideas of this chapter, through an example.

The interval [u, v] in Figure 2.1 is a subposet of the crystal of type A4 of shape (3, 1).

We order the saturated chains in our interval according to lexicographic order on their edge

label sequences. The critical cells in our lexicographic discrete Morse function come from fully

covered saturated chains in the interval as defined in Section 1.3.2. Informally, we have a fully

covered saturated chain C from u to v when each rank along C, excluding that of u and v, is

covered by a “minimal skipped interval”. Roughly speaking, we have a skipped interval from

some vertex u′ to vertex v′ consisting of all elements strictly between u′ and v′ along C if there is

a lexicographically earlier chain C ′ from u′ to v′. If there are no strictly smaller (in the sense of

number of ranks covered) skipped intervals between u′ and v′, then we have a minimal skipped

interval. The technique we are using is a generalization of a lexicographic shelling. It differs

from lexicographic shellings as we allow our minimal skipped intervals to cover more than one
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4
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4v =

3 4 2

2 4 3 2 4 3

4 22 33 4

2 4 3 2 4 3

3 4 2

Figure 2.1: Subposet of type A4 crystal with highest weight λ = (3, 1, 0, 0)

rank.

Consider the chain in bold in our example. This chain has edge label sequence (4, 3, 2, 2, 3).

We can see that this saturated chain is fully covered by looking at it’s minimal skipped intervals.

For our first minimal skipped interval, instead of traveling up this chain via the edges labeled

4 and 3, we could have traveled up the lexicographically earlier segment via the edges labeled

3 and then 4. Similarly, instead of traveling along the edges labeled by the sequence (3, 2, 2, 3),

we could have traveled up the lexicographically earlier segment labeled (2, 3, 3, 2). These two

minimal skipped intervals cover all proper ranks of our interval. Therefore, the chain with edge

label sequence (4, 3, 2, 2, 3) is fully covered. This is the only fully covered saturated chain within

[u, v]. As having a fully covered saturated chain gives rise to a critical cell in our discrete Morse

function, we are able to deduce that the Möbius function of the interval, µ(u, v) = −1.

We will work in the setting of crystals of highest weight representations where all relations

among crystal operators are implied by Stembridge or Sternberg relations. We give an algorithm

for finding a fully covered saturated chain from u to v when one exists. In doing so, we prove

that there is at most one fully covered saturated chain from u to v. We note that when a fully
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covered saturated chain exists, it is not always the lexicographically last chain, though often it

is. For such an instance, see Example 2.3.16. We will use this to prove the result regarding the

Möbius function. We end by giving new relations in crystals of doubly laced type.

2.2 Consequences of the Stembridge axioms

In this section, we deduce consequences of the Stembridge axioms regarding relations among

crystal operators in both the simply laced and doubly laced cases. The axioms give restrictions

on which Stembridge/Sternberg relations can occur among two given crystal operators for

crystals coming from highest weight representations. In addition, we prove that crystals of

types B2 and C2 are not lattices due to the asymmetry of the degree five Sternberg relation.

Throughout this section, we will let A = (aij)i,j∈I be the Cartan matrix of a symmetrizable

Kac-Moody algebra g, where I is some finite index set. We first will work with finite simply

laced Kac-Moody algebras, namely An, Dn, E6, E7, and E8. The Cartan matrices for these types

can be seen in Figures 2.2, 2.3, 2.4, 2.5 and 2.6.

A =



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2


Figure 2.2: Cartan matrix of type An

A =



2 −1 0 . . . 0 0 0 0
−1 2 −1 . . . 0 0 0 0
0 −1 2 . . . 0 0 0 0
...

...
...

. . .
...

...
...

...
0 0 0 . . . 2 −1 0 0
0 0 0 . . . −1 2 −1 −1
0 0 0 . . . 0 −1 2 0
0 0 0 . . . 0 −1 0 2


Figure 2.3: Cartan matrix of type Dn
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A =



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2


Figure 2.4: Cartan matrix of type E6

A =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 −1
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0
0 0 −1 0 0 0 2


Figure 2.5: Cartan matrix of type E7

For the Cartan matrix of type An, we note that ai,i+1 = ai+1,i = −1 and all other off

diagonal entries are zero. In particular, aij = 0 for all i, j ∈ [n] such that |i− j| > 1. Therefore,

using axioms (S3) and (S4), we have that for any vertex x with ei(x) 6= 0 and |i − j| > 1 in a

crystal graph of type An, ∆iδj(x) = ∆iϑj(x) = 0. Similarly, we have ∆jδi(x) = ∆jϑi(x) = 0.

As a result, for all x with fi(x) 6= 0 and fj(x) 6= 0, we have the following statement regarding

degree two and degree four Stembridge relations.

Proposition 2.2.1. Let B by a crystal of type An. Let x ∈ B such that fi(x) 6= 0 and fj(x) 6= 0.

Then we have:

1. If |i− j| > 1, then fifj(x) = fjfi(x).

2. If |i− j| = 1, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

The statement remains true if we replace fi and fj with the crystal operators ei and ej.

Now, consider the Cartan matrix for type Dn from Figure 2.3. We have that ai,i+1 = ai+1,i =

−1 for all 1 ≤ i ≤ n− 2. In addition, we also have an−2,n = an,n−2 = −1. All other off diagonal

entries are equal to zero. In particular, an−1,n = an,n−1 = 0, which differs from the Cartan

matrix of type An. Hence, using axioms (S3) and (S4), we get the following result.

Proposition 2.2.2. Let B be a crystal of type Dn. Let x ∈ B such that fi(x) 6= 0 and fj(x) 6= 0.

Then we have:

1. If |i− j| > 1 and {i, j} 6= {n− 2, n}, then fifj(x) = fjfi(x).
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A =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2


Figure 2.6: Cartan matrix of type E8

2. If {i, j} = {n− 1, n}, then fifj(x) = fjfi(x).

3. If |i−j| = 1 and {i, j} 6= {n−1, n}, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

4. If {i, j} = {n− 2, n}, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

The statement remains true if we replace fi and fj with the crystal operators ei and ej.

Finally, we consider the exceptional types E6, E7 and E8. For the Cartan matrix of type

E6, we have ai,i+1 = ai+1,i = −1 for all i except when i = 5. We also have a3,6 = a6,3 = −1. All

other off diagonal entries are equal to 0. As a result, we have the following.

Proposition 2.2.3. Let B be a crystal coming from a highest weight representation of type E6.

Let x ∈ B such that fi(x) 6= 0 and fj(x) 6= 0. Then we have:

1. If |i− j| > 1 and {i, j} 6= {3, 6}, then fifj(x) = fjfi(x).

2. If {i, j} = {5, 6}, then fifj(x) = fjfi(x).

3. If |i− j| = 1 and {i, j} 6= {5, 6} then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

4. If {i, j} = {3, 6}, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

The Cartan matrix of type E7 is similar to that of E6 except that here we have ai,i+1 =

ai+1,i = −1 for all i except i = 6 and a3,7 = a7,3 = −1. All other off diagonal entries are equal

to zero. As a result, we have the following.

Proposition 2.2.4. Let B be a crystal coming from a highest weight representation of type E7.

Let x ∈ B such that fi(x) 6= 0 and fj(x) 6= 0. Then we have:

1. If |i− j| > 1 and {i, j} 6= {3, 7}, then fifj(x) = fjfi(x).

2. If {i, j} = {6, 7}, then fifj(x) = fjfi(x).
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3. If |i− j| = 1 and {i, j} 6= {6, 7} then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

4. If {i, j} = {3, 7}, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

We can similarly study the Cartan matrix of type E8 to see the following:

Proposition 2.2.5. Let B be a crystal coming from a highest weight representation of type E8.

Let x ∈ B such that fi(x) 6= 0 and fj(x) 6= 0. Then we have:

1. If |i− j| > 1 and {i, j} 6= {5, 8}, then fifj(x) = fjfi(x).

2. If {i, j} = {7, 8}, then fifj(x) = fjfi(x).

3. If |i− j| = 1 and {i, j} 6= {7, 8} then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

4. If {i, j} = {5, 8}, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

We now move on to consider the doubly laced case. We recall the Cartan matrices of type

Bn and type Cn in Figures 2.7 and 2.8.

A =



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 −2
0 0 0 0 . . . −1 2


Figure 2.7: Cartan matrix of type Bn

A′ =



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 −1
0 0 0 0 . . . −2 2


Figure 2.8: Cartan matrix of type Cn

For the Cartan matrix A = (aij)i,j∈I of type Bn, note that an−1,n = −2 and for the Cartan

matrix A = (aij)i,j∈I of type Cn, we have an,n−1 = −2. All the remaining superdiagonal entries
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ai,i+1 and remaining subdiagonal entries ai+1,i in A of type Bn and Cn are equal to −1. The

remaining off diagonal entries in each Cartan matrix are all zero. Therefore, since crystal graphs

of type Bn and Cn are A−regular, for {i, j} 6= {n − 1, n}, by axioms (S3) and (S4) we have

that for any vertex x, there are only three possibilities for the triples (aij ,∆iδj(x),∆iϑj(x)),

namely (0, 0, 0), (−1,−1, 0) or (−1, 0,−1). Hence, by axioms (S5)-(S6) and (S5′)-(S6′), we have

the following result.

Proposition 2.2.6. Let B be a crystal of type Bn or Cn. Let x ∈ B such that fi(x) 6= 0 and

fj(x) 6= 0. Then we have:

1. If |i− j| > 1, then fifj(x) = fjfi(x).

2. If |i−j| = 1 and {i, j} 6= {n−1, n}, then either fifj(x) = fjfi(x) or fif
2
j fi(x) = fjf

2
i fj(x).

3. If {i, j} = {n− 1, n}, then any of the Stembridge or Sternberg relations are possible.

Therefore, for crystal graphs of doubly laced type, the degree four Stembridge relations can

only occur among crystal operators fi and fi+1 as in type An, and the degree five and degree

seven Sternberg relations can only occur among the crystal operators fn−1 and fn.

Crystals of rank two algebras are often of particular interest. This is due to the result seen

in [14] which says that a crystal graph with a unique maximal vertex is the crystal graph of some

representation if and only if it decomposes as the disjoint union of crystals of representations

relative to the rank two subalgebras corresponding to each pair of edge colors. Therefore, we

now consider crystals of type B2 and C2. In [6], it is shown that crystals of type A2 are lattices.

We show that this result does not carry over to the doubly laced case.

Theorem 2.2.7. Crystals of highest weight representations of types B2 and C2 are not lattices.

Proof. This follows from the asymmetry of the degree five Sternberg relations. Let B be the

crystal of a highest weight representation of type B2 or C2. Let x ∈ B such that there is a

degree five Sternberg relation upward from x. Then we have y ∈ B such that

y = f1f
3
2 f1(x) = f2f1f2f1f2(x) = f22 f

2
1 f2(x),

or

y = f2f
3
1 f2(x) = f1f2f1f2f1(x) = f21 f

2
2 f1(x).

In either case, we have that e1(y) 6= 0 and e2(y) 6= 0. As a result, there must be a Stembridge or

Sternberg relation downward from y. Hence, e1(y) and e2(y) will have two distinct, incomparable

greatest lower bounds, one coming from the Stembridge or Sternberg relation downward from

y and the other being x.
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Similarly, if there exists y ∈ B such that there is a degree five Sternberg relation downward

from y, then there will exist two vertices that have two distinct, incomparable least upper

bounds. Hence, highest weight representations of types B2 and C2 are not lattices.

2.3 Connections between the Möbius function of a poset and

relations among crystal operators

In this section we consider crystal posets coming from highest weight representations of simply

and doubly laced Cartan type. We prove that whenever there is an interval [u, v] in such a

crystal poset whose Möbius function, µ(u, v), is not equal to −1, 0 or 1, then there must be a

relation among crystal operators within [u, v] not implied by Stembridge or Sternberg relations.

We do so by proving the contrapositive. By “implied” we mean that there exists two saturated

chains that are not connected by a sequence of Stembridge or Sternberg moves. Hersh and

Lenart showed this result in [11] for crystals of highest weight representations of finite simply

laced type. However, the proof used there does not extend to the doubly laced case. In this

chapter, we extend the result to crystals of finite doubly laced type, and in doing so, give a new

proof for crystals of finite simply laced type. We first develop properties of crystal graphs.

Lemma 2.3.1. Let B be the crystal graph of a crystal of type Φ given by a highest weight

representation. Let u, v ∈ B such that u < v. Any saturated chain from u to v uses the same

multiset of edge labels. Moreover, we can determine this multiset from wt(u) and wt(v).

Proof. Recall that if y = fi(x) then wt(y) = wt(x) − αi where αi is the ith simple root of the

root system Φ. Since u < v, there exists some sequence of crystal operators fi1 , fi2 , ..., fik such

that v = fik · · · fi2fi1(u). Then we have,

wt(v) = wt(u)−
k∑
j=1

αij .

Suppose by way of contradiction that there exists another distinct sequence of crystal operators

fl1 , fl2 , ..., flm such that v = flm · · · fl2fl1(u). Then we have

wt(u)− wt(v) =
k∑
j=1

αij =

m∑
n=1

αln .

Since the set of simple roots {αi}i∈I is a basis, we must have that {αi1 , ..., αik} = {αl1 , ..., αlm}.
Therefore, the same crystal operators are used with the same multiplicities along any saturated

chain from u to v. In addition, by writing the vector wt(u)− wt(v) as a linear combination of
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the simple roots, we can see exactly how many times each crystal operator fi is applied along

any saturated chain from u to v.

Remark 2.3.2. This implies that crystal posets are graded since every saturated chain in a given

interval [u, v] will have the same length.

With Lemma 2.3.1 in mind, we have the following definition.

Definition 2.3.3. Let B be the crystal graph of a crystal of type Φ given by a highest weight

representation and let [u, v] ⊆ B. The multiset of edge labels of [u, v] is the multiset of edge

labels of any saturated chain C from u to v.

To prove our main result, we will show that for intervals [u, v] ⊆ B of simply laced (re-

spectively, doubly laced) type with the property that all relations among crystal operators are

implied by Stembridge (respectively, Stembridge or Sternberg) relations, we must have that

µ(u, v) ∈ {−1, 0, 1}. We do so by constructing a lexicographic discrete Morse function on the

order complex ∆(u, v) that has at most one critical cell. Recall that a saturated chain from u

to v contributes a critical cell for ∆(u, v) if and only if it is fully covered. Therefore, we will

give a method to find the unique fully covered saturated chain in the given interval [u, v] when

such a chain exists. We lexicographically order the edge label sequences of saturated chains in

order to construct the lexicographic discrete Morse function.

Definition 2.3.4. Let B be the crystal of a highest weight representation and let [u, v] ⊆ B.

If B is of simply laced type and all relations among crystal operators within [u, v] are implied

by Stembridge relations, then we say that [u, v] is a Stembridge only interval. Similarly, if B is

of doubly laced type and all relations among crystal operators are implied by Stembridge or

Sternberg relations, then we say that [u, v] is a Stembridge and Sternberg only interval.

Throughout this section, we assume that all intervals are either Stembridge only or Stem-

bridge and Sternberg only intervals. Doing so allows us to control the structure of minimal

skipped intervals and construct lexicographic discrete Morse functions. We have that each min-

imal skipped interval (as described in Remark 1.3.6) in a lexicographic discrete Morse function

will arise from a Stembridge or Sternberg relation. Hence, all minimal skipped intervals will be

of the forms seen in Figure 2.9 and Figure 2.10.

In the case where B is the crystal of a highest weight representation of simply laced type,

all minimal skipped intervals are of the form seen in Figure 2.9. Assume i < j. The saturated

chain in red, namely the chain xl u0l y in the left figure and xl u0l u1l u2l y in the right

figure, represent the pieces of the Stembridge relation that may be on a fully covered saturated

chain. This is because it is the lexicographically second chain. The lexicographically earlier

chain, (with vertices labeled by the vi,) will give rise to a minimal skipped interval. In the left
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figure, the minimal skipped interval covers the single rank corresponding to the vertex u0. In

the right figure, the minimal skipped interval covers the ranks corresponding to the vertices

u0, u1, and u2.

x

v0 u0

y

(i)

i j

j i

x

v0 u0

v1 u1

v2 u2

y

(ii)

i j

j i

j i

i j

Figure 2.9: Structure of minimal skipped intervals in simply laced case

When a minimal skipped interval arises from a Stembridge relation (as in Figure 2.9), we

say the minimal skipped interval involves the crystal operators fi and fj , (e.g. the minimal

skipped intervals in Figure 2.9 involves the crystal operators fi and fj). We remark that the

possible values for i and j depend on the type of the crystal. For example, if the crystal is of

type An, then a degree four Stembridge relation can only involve fi and fi+1. We discussed in

Section 2.2 when a degree four Stembridge relation can occur for the different types, i.e. the

possible values of i and j for our minimal skipped intervals.

When B is the crystal of a highest weight representation of doubly laced type, in addition

to the Stembridge relations, minimal skipped intervals may also arise from the degree five or

degree seven Sternberg relations. By Proposition 2.2.6, we know the degree five and degree seven

Sternberg relations can only occur upward from some vertex x if fn−1(x) 6= 0 and fn(x) 6= 0.

Therefore, we say that minimal skipped intervals arising from Sternberg relations involve the

crystal operators fn−1 and fn. The possible Sternberg relations are shown below. The saturated

chains with vertices labeled by the ui (which we marked with red), represent the piece of the

Sternberg relation that may be on a fully covered saturated chain, as described above in the

simply laced case.

Remark 2.3.5. Note that, unlike in the simply laced case, the chain within the Sternberg re-

lations that is a candidate to be a part of a fully covered saturated chain is not always lexi-

cographically last. This is due to the degree two Stembridge relations sitting inside the degree

five and degree seven Sternberg relations.
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Definition 2.3.6. Let x be a vertex along a saturated chain C in [u, v] such that there is a

minimal skipped interval for the interval system of C involving the crystal operators fi and fl

beginning at x, where the edge created by applying fi to x is along C. Let I ′ be the multiset

of indices of crystal operators that need to be applied along C from fi(x) to v. We say that fj

is the maximal operator for fi at x if

j = max{k | k ∈ I ′ and k < i}.

Remark 2.3.7. This is well defined since there is a finite choice of crystal operators and we can

always determine which crystal operators will be used along any saturated chain by Lemma

2.3.1. It should be noted that j need not equal l.

Definition 2.3.8. We define a saturated chain C to be greedily maximal if given any x along

C where the edge created by applying fi to x along C is the start of a minimal skipped interval

involving the crystal operators fi and fj , we have that fj is the maximal operator for fi at x.

In order to prove our main result connecting the Möbius function of an interval [u, v] with

relations among crystal operators within this interval, we first prove a series of lemmas. We

begin by proving the following lemma for crystals of highest weight representations of all types.

The main idea from this proof is used in several proofs throughout the rest of this chapter.

Lemma 2.3.9. Let [u, v] ⊆ B be a Stembridge only or a Stembridge and Sternberg only interval,

for B the crystal of a highest weight representation. Let j = max{k | k is in the label sequence of

(u, v)}, then fj must be the first operator applied along a fully covered saturated chain, i.e. j

must be the first label in the edge label sequence of any fully covered saturated chain.
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Figure 2.10: Additional minimal skipped intervals in doubly laced case

Proof. Suppose by way of contradiction that there is a fully covered saturated chain, C, from

u to v such that fj is not the first operator applied along C. Consider the first occurrence

of the crystal operator fj as we proceed upward along C from u towards v, namely the first

edge colored j. By definition of j, the label k on the edge immediately preceding the edge

colored j on C satisfies k < j. Since all Stembridge and Sternberg relations involve exactly two

crystal operators and all minimal skipped intervals in [u, v] arise from Stembridge or Sternberg

relations, the rank corresponding to the vertex labeled x (see Figure 2.11) on the fully covered

saturated chain C will not be covered by any minimal skipped intervals, as we justify next. If

C :
u

· · ·
x

· · ·
v

k j

Figure 2.11

the rank corresponding to the vertex labeled x was covered by some minimal skipped interval,

the corresponding Stembridge or Sternberg relation must involve the crystal operators fk and

fj . However, since k < j, this piece of the Stembridge or Sternberg relation along C will be

lexicographically earlier than the piece with edge label sequence (j, k). Hence, we will not have

a minimal skipped interval covering the rank corresponding to the vertex x. This contradicts

the saturated chain C being fully covered.

The interval systems for crystals of simply laced types behave differently than those for
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doubly laced types. Namely, no minimal skipped intervals will overlap in the simply laced case,

but this does not carry over to the doubly laced case. We first focus on results for simply laced

types and then generalize to the doubly laced type.

Lemma 2.3.10. Let [u, v] ⊆ B where B is the crystal of a highest weight representation of

simply laced type. Assume [u, v] is a Stembridge only interval. Then no two minimal skipped

intervals overlap, i.e. no two minimal skipped intervals cover a common rank.

Proof. Let C be a saturated chain from u to v and let I be the interval system for C. Any

minimal skipped interval in I is of the form seen in Figure 2.9. The first type of minimal skipped

interval coming from the degree two Stembridge relation covers exactly one rank. Therefore,

any minimal skipped interval arising from this relation cannot overlap with another minimal

skipped interval. Hence, we restrict our attention to minimal skipped intervals that arise from

the degree four Stembridge relation fifjfjfi(x) = fjfififj(x) where i < j.

Suppose we have a vertex x ∈ C such that there is a minimal skipped interval for the

interval system of C beginning at x coming from a degree four Stembridge relation. If there

exists another minimal skipped interval that overlaps with the one arising from the degree four

Stembridge relation beginning at x, then using the notation from Figure 2.9, it must either

begin at the vertex u0 or the vertex u1. Since [u, v] is a Stembridge only interval, if we have a

minimal skipped interval beginning at u0 or u1, it must come from a degree two or degree four

Stembridge relation involving fi and fj . In fact, it must come from a degree four Stembridge

relation. If not, the minimal skipped interval arising from the degree four Stembridge relation

beginning at x for the interval system of C would not be minimal.

However, we cannot have a minimal skipped interval beginning at u0 because the lexico-

graphically last chain in a degree four Stembridge relation does not have an edge label sequence

beginning with i, i, j. We also cannot have a minimal skipped interval beginning at u1 since we

have fi being applied before fj and therefore we would only see the lexicographically earlier piece

of a Stembridge relation on C. As a result, this will not give rise to a minimal skipped interval.

Therefore, no two minimal skipped intervals in the interval system of C will overlap.

Remark 2.3.11. Lemma 2.3.10 tells us that if we have a fully covered saturated chain in a

Stembridge only interval in a crystal of a highest weight representation of simply laced type,

then the truncation algorithm will not need to be performed.

Now, we prove that any fully covered saturated chain must be greedily maximal, in the

sense of Definition 2.3.8. However, for type Dn and the exceptional types E6, E7 and E8, we

must amend our definition of “greedily maximal” slightly. We will use this to prove that if there

is a fully covered saturated chain in a given interval, then this chain is unique.
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Lemma 2.3.12. Let B be the crystal of a highest weight representation of type An and [u, v] ⊆ B
be a Stembridge only interval, then any fully covered saturated chain in [u, v] is greedily maximal.

Proof. Let C be a fully covered saturated chain from u to v and let x ∈ C such that the rank of

x is the last rank covered by some minimal skipped interval in the interval system for C. Since

C is fully covered, by Lemma 2.3.10, x must be the start of a new minimal skipped interval

for the interval system of C. Suppose the first edge along C in this minimal skipped interval is

labeled i. Let j be the index such that fj is the maximal operator for fi at x. Assume by way of

contradiction that the minimal skipped interval upward from x involves fi and fk where k 6= j.

Since fk is not the maximal operator for fi at x, we know that k < j.

We note that since i > j > k, we cannot have k = i− 1. This implies the minimal skipped

interval involving fi and fk arises from a degree two Stembridge relation, fkfi(x) = fifk(x).

Therefore, the next time there is an edge colored j upward from x to v along C, the edge below

it on C will have label strictly less than j by definition of maximal operator. This contradicts C

being fully covered via the same argument as the proof of Lemma 2.3.9. Namely, there will exist

a vertex along the saturated chain C that is not contained in any minimal skipped interval.

Remark 2.3.13. The idea for crystals of type Dn, E6, E7, and E8 will be similar, but will require

some extra care. For example, for crystals of type Dn, the Stembridge relations that can occur

among the crystal operators fn−2, fn−1 and fn are different than those that occur in type An.

Namely, fn−1 and fn can only be involved in a degree two Stembridge relation, while it is

possible to have a degree four Stembridge relation involving fn−2 and fn. This is the content

of Lemma 2.3.15. See Example 2.3.16 for an illustration of this remark.

Definition 2.3.14. Let B be the crystal of a highest weight representation of type Dn. Let

[u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on a saturated chain C from u to

v. We say that x is an (n,n-2)-special vertex in C if there is an edge labeled n, upward from x

along C which is the start of a minimal skipped interval for the interval system of C and there

is another edge labeled n on a saturated chain from fn(x) to v.

We will now show that any fully covered saturated chain in an interval in a type Dn crystal

is greedily maximal.

Lemma 2.3.15. Suppose that [u, v] ⊆ B is a Stembridge only interval, for B a crystal of a

highest weight representation of type Dn. Let C be a fully covered saturated chain from u to v.

For any (n, n−2)-special vertex x along C, let fn−2 be the maximal operator for fn at x. Under

this condition, C is greedily maximal.

Proof. For crystals coming from highest weight representations of type Dn, for all y such that

fn(y) 6= 0 and fi(y) 6= 0, we have that fnfi(y) = fifn(y) unless i = n− 2. In the case i = n− 2,

it is possible we have fnf
2
n−2fn(y) = fn−2f

2
nfn−2(y).

38



Suppose by way of contradiction that the fully covered saturated chain C is not greedily

maximal. Therefore, there exists a vertex x that is the start of a minimal skipped interval

involving fi and fj with i > j, where fj is not the maximal operator for fi at x. As can be

seen in Proposition 2.2.2, each crystal operator fk can be involved in a degree four Stembridge

relation with at most one crystal operator fl, where l < k. Additionally, with the exception

of fn and fn−2, all degree four Stembridge relations involve consecutively indexed operators,

i.e. fk and fk+1. Therefore, the case where x is a (n, n − 2)-special vertex needs to be treated

separately.

Assume x is a (n, n− 2)-special vertex in C and the minimal skipped interval upward from

x involves fn and fj . Since we are assuming for contradiction that C is not greedily maximal,

we must have that fn−2 is not the maximal operator for fn at x (i.e. j 6= n − 2). Then the

minimal skipped interval must arise from a degree two Stembridge relation since fn commutes

with all other operators. Consider the next edge labeled n proceeding upwards along C. Since

n is the largest possible edge label occurring on saturated chains from u to v, the edge in C

below the edge colored n will have label k for some k ∈ [n − 1]. By the nature of Stembridge

relations, the rank of the vertex between the k edge and the n edge must be uncovered as seen

in the proof of Lemma 2.3.9.

Therefore, the only way to have C be a fully covered saturated chain is if the maximal

operator for fn at x is fn−2. This is because if the minimal skipped interval for C beginning

at x comes from a degree four Stembridge relation involving fn and fn−2, then the next time

there is a vertex y on C such that fn(y) is also along C, it is the start of a new minimal skipped

interval and the rank of y is contained in a previous minimal skipped interval. Hence, in order

to have a fully covered saturated chain in this case, fn−2 must be the maximal operator for fn.

If fn−2 is the maximal operator for fn being applied to an (n, n − 2)-special vertex, then the

proof of a fully covered saturated chain C being greedily maximal is analogous to the type An

case from Lemma 2.3.12.

We now demonstrate via example the ideas of Lemma 2.3.15.

Example 2.3.16. Consider the type D3 crystal B of shape (2, 1, 1) and the interval [u, v] shown

in Figure 2.12 where

u = 1 2

3

3

, v = 2 2

3

1

.

One can check that [u, v] is a Stembridge only interval. By Lemma 2.3.9, we know any fully

covered saturated chain begins with the application of f3. By weight considerations, it follows

that f3 needs to be applied again to get from f3(u) to v. Hence, u is a (3, 1)-special vertex,
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so f1 is the maximal operator for f3 at u. Therefore, the fully covered saturated chain begins

u l f3(u) l f1f3(u). The first minimal skipped interval comes from the Stembridge relation

f1f
2
3 f1(u) = f3f

2
1 f3(u). The next minimal skipped interval comes from the Stembridge rela-

tion f2f3(f
2
1 f3(u)) = f3f2(f

2
1 f3(u)). Therefore, the chain C with label sequence (3, 1, 1, 3, 2)

is fully covered. We note that C is not the lexicographically last chain in this interval. The

lexicographically last chain has edge label sequence (3, 2, 1, 1, 3).
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Figure 2.12: Type Dn greedily maximal saturated chain

The same care that was taken with type Dn must also be used for the exceptional types

E6, E7 and E8. In each of these cases, we specify special vertices that have certain maximal

operators associated with them and prove that any fully covered saturated chain is greedily

maximal under this special condition. We begin with type E6.

Definition 2.3.17. Let B be the crystal of a highest weight representation of type E6. Let

[u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on a saturated chain C from u to

40



v. We say that x is a (6,3)-special vertex if there is an edge labeled 6 upward from x along C

which is the start of a minimal skipped interval for the interval system of C and there exists

an edge on a saturated chain from f6(x) to v labeled 6.

With this definition in mind, we prove that fully covered saturated chains in Stembridge

only intervals in crystals of type E6 are greedily maximal.

Lemma 2.3.18. Suppose that [u, v] ⊆ B is a Stembridge only interval, for B a crystal of a

highest weight representation of type E6. Let C be a fully covered saturated chain from u to

v. For any (6, 3)-special vertex x along C, f3 is the maximal operator for f6 at x. Under this

condition, C is greedily maximal.

Proof. For crystals arising from highest weight representations of type E6, for all y such that

f6(y) 6= 0 and fi(y) 6= 0, we have that fif6(y) = f6fi(y) unless i = 3. In the case i = 3, it is

possible we have f6f
2
3 f6(y) = f3f

2
6 f3(y).

Suppose by way of contradiction that the fully covered saturated chain C is not greedily

maximal. Therefore, there exists a vertex x that is the start of a minimal skipped interval

involving fi and fj with i > j, where fj is not the maximal operator for fi at x. As can be seen

in Proposition 2.2.3, each crystal operator fk can be in a degree four Stembridge relation with

at most one crystal operator, fl where l < k. Additionally, with the exception of f6 and f3, all

degree four Stembridge relations involve consecutively indexed operators i.e. fk and fk+1. The

case where x is a (6, 3)-special vertex needs to be treated separately.

We begin with the case where the minimal skipped interval beginning at x involves the

crystal operators f6 and fj , where x is a (6, 3)-special vertex. Recall we are assuming that f3 is

the maximal operator for f6 for any (6, 3)-special vertex. Since we are assuming for contradiction

that C is not greedily maximal, we must have that f3 is not the maximal operator for f6 at

x (i.e. j 6= 3). Then the minimal skipped interval must arise from a degree two Stembridge

relation since f6 commutes with all other operators. However, in this case, if we consider the

next time f6 is applied along our saturated chain, we will get have an uncovered rank as seen

in the proof of Lemma 2.3.9. This means C is not fully covered.

If the vertex x is not a (6, 3)-special vertex, then the proof is analogous to the type An case

from Lemma 2.3.12.

As a result, if we have a fully covered saturated chain, it must be greedily maximal.

We now consider highest weight crystals of type E7. The arguments will be analogous to

those for crystals of type E6.

Definition 2.3.19. Let B be the crystal of a highest weight representation of type E7. Let

[u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on a saturated chain C from u to
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v. We say that x is a (7,3)-special vertex if there is an edge labeled 7 upward from x along C

which is the start of a minimal skipped interval for the interval system of C and there exists

an edge on a saturated chain from f7(x) to v labeled 7.

As we have seen in types Dn and E6, in order to prove a fully covered saturated chain is

greedily maximal in type E7, we must treat (7, 3)-special vertices as a separate case.

Lemma 2.3.20. Suppose that [u, v] ⊆ B is a Stembridge only interval, for B a crystal of a

highest weight representation of type E7. Let C be a fully covered saturated chain from u to

v. For any (7, 3)-special vertex x along C, f3 is the maximal operator for f7 at x. Under this

condition, C is greedily maximal.

Proof. This proof is analogous to the proof of Theorem 2.3.18 with (7, 3)-special vertices playing

the role of (6, 3)-special vertices.

Finally, we consider type E8 crystals.

Definition 2.3.21. Let B be the crystal of a highest weight representation of type E8. Let

[u, v] ⊆ B be a Stembridge only interval. Let x be a vertex on a saturated chain C from u to

v. We say that x is a (8,5)-special vertex if there is an edge labeled 8 upward from x along C

which is the start of a minimal skipped interval for the interval system of C and there exists

an edge on a saturated chain from f8(x) to v labeled 8.

We give the lemma for type E8 analogous to Lemma 2.3.18 for type E6 and Lemma 2.3.20

for type E7.

Lemma 2.3.22. Suppose that [u, v] ⊆ B is a Stembridge only interval, for B a crystal of a

highest weight representation of type E8. Let C be a fully covered saturated chain from u to

v. For any (8, 5)-special vertex x along C, f5 is the maximal operator for f8 at x. Under this

condition, C is greedily maximal.

Proof. This proof is analogous to the proof of Theorem 2.3.18 with (8, 5)-special vertices playing

the role of (6, 3)-special vertices.

The five previous lemmas say that for all finite simply laced types, any fully covered sat-

urated chain is greedily maximal. We now give a description of how to find the unique fully

covered saturated chain in crystals of finite simply laced type, when it exists.

Theorem 2.3.23. Let [u, v] ⊆ B be a Stembridge only interval, for B the crystal of a high-

est weight representation of finite simply laced type. Then, there is at most one fully covered

saturated chain in [u, v].
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Proof. From Lemma 2.3.9, we know that in order to have a fully covered saturated chain, the

chain must start with the application of the crystal operator fk where

k = max{i | i is in the multiset of edge labels of [u, v]}.

Moreover, this says that if fk(u) = 0, then there is no fully covered saturated chain in [u, v].

Assuming now that fk(u) 6= 0, we next need to apply fj where fj is the maximal operator for fk

at u because any fully covered saturated chain is greedily maximal. If a fully covered saturated

chain exists, then it begins with the relations ul fk(u)l fjfk(u). In order for the rank of the

vertex fk(u) to be covered by a minimal skipped interval, the chain u l fk(u) l fjfk(u) must

be contained within a Stembridge relation. In particular, this can only happen if fj(u) 6= 0. If

fj(u) = 0, then there is no fully covered saturated chain in this interval because the rank of the

vertex fk(u) will be uncovered. If fj(u) 6= 0, then C must contain the lexicographically later

chain in the Stembridge relation upward from u, involving fk and fj .

We repeat the process above, beginning at the last uncovered rank. More specifically, this

minimal skipped interval described above either ends with the application of fk (in the case

where we have a degree four Stembridge relation between fk and fj) or fj (in the case where we

have a degree two Stembridge relation between fk and fj). We then see if the maximal operator

for the final operator in the previous relation is contained in a Stembridge relation with the

final operator beginning at the vertex of the last uncovered rank. If not, there is no fully covered

saturated chain in this interval. We continue this process until we reach v. If there is a saturated

chain from u to v that is greedily maximal, then we have a fully covered saturated chain. Note

that since we chose maximal operators at each step, this chain is uniquely described.

Using this result, we can say something about the Möbius function of the interval.

Corollary 2.3.24. For an interval as above, we have µ(u, v) ∈ {−1, 0, 1}.

Proof. This follows from the correspondence of the reduced Euler characteristic of the order

complex of an open interval with the Möbius function of the interval. More specifically, we have

the following:

µ(u, v) = χ̃(∆(u, v)) = χ̃(∆M (u, v)),

where ∆M (u, v) is the CW-complex obtained from the discrete Morse function. Since there is

at most one fully covered saturated chain, the discrete Morse function has at most one critical

cell. In this case, the cell complex is homotopy equivalent to a sphere with the same dimension

as the dimension of the critical cell. Hence, the reduced Euler characteristic will be ±1 when

there is a fully covered saturated chain, and 0 otherwise.

Remark 2.3.25. The converse of Corollary 2.3.24 is not true. There exist intervals [u, v] in
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crystals of highest weight representations of simply laced type such that µ(u, v) ∈ {−1, 0, 1}
where the relations among crystal operators are not implied by Stembridge relations.

In practice, we use the contrapositive of Corollary 2.3.24 to search for new relations among

crystal operators as will be seen for the doubly laced case in Section 2.4. We state it here as a

corollary.

Corollary 2.3.26. Let [u, v] ∈ B, for B the crystal of a highest weight representation of finite

simply laced type. If µ(u, v) /∈ {−1, 0, 1}, then there exists a relation among crystal operators

that is not implied by Stembridge relations.

We now consider crystals of types Bn and Cn. For these crystals, it is possible to have

minimal skipped intervals that overlap.

Lemma 2.3.27. Suppose B is the crystal of a highest weight representation of type Bn or Cn.

Let [u, v] ⊆ B be a Stembridge and Sternberg only interval. If all minimal skipped intervals arise

from Stembridge relations or degree five Sternberg relations, then there is no overlap among

minimal skipped intervals.

Proof. The minimal skipped intervals arising from degree two and degree four Stembridge re-

lations remain non-overlapping in the doubly laced case by the same argument used in Lemma

2.3.10. Therefore, we only need to show that if there is a minimal skipped interval for some sat-

urated chain C that comes from a degree five Sternberg relation, then no other minimal skipped

intervals overlap with it. The argument is analogous to that of the degree four Stembridge case.

First, suppose that there is a minimal skipped interval coming from (i) in Figure 2.10. In this

case, the minimal skipped interval covers the ranks of the vertices {u0, u1, u2, u3}. Therefore, we

just need to show that no minimal skipped intervals begin at u0, u1, or u2. In each of these cases,

the minimal skipped interval would have to involve the crystal operators fn−1 and fn. However,

this cannot happen because no saturated chain within a Stembridge or Sternberg relation

begins with multiple applications of fn−1, i.e. no edge label sequence begins (n − 1, n − 1, ...).

Hence, there is no minimal skipped interval that begins at u0 or u1. In addition, there is no

minimal skipped interval beginning at u2 because any Stembridge or Sternberg relation upward

from u2 must involve fn−1 and fn. However, since fn−1 is being applied before fn, due to the

lexicographic ordering of chains, we would not have a minimal skipped interval here.

Next, we consider case (iii) from Figure 2.10. As with before, the only possibility for overlap

occurs if a minimal skipped interval begins at u0, u1, or u2 and it would need to involve the

crystal operators fn−1 and fn. But as before, no saturated chain within a Stembridge or Stern-

berg relation begins with the repeated application of a single crystal operator so we cannot

have a new minimal skipped interval beginning at u0 or u2. Also, any chain in a Stembridge or

44



Sternberg relation involving the operators fn−1 and fn beginning with fn−1, will be the lexico-

graphically earlier chain within that Stembridge or Sternberg relation. As a result, there will be

no overlap among minimal skipped intervals coming from a degree five Sternberg relation.

While there is no overlap among minimal skipped intervals coming from Stembridge relations

and degree five Sternberg relations, there can be overlap with a minimal skipped interval coming

from a degree seven Sternberg relation. However, we show that if the interval system of a fully

covered saturated chain is overlapping, then the truncated interval system still covers all ranks.

To do so, we prove a general fact about truncated interval systems for lexicographic discrete

Morse functions.

Let P be an edge labeled poset and let [u, v] be an interval in P . We prove that in certain

cases if a saturated chain C from u to v is fully covered by the I-intervals but there is overlap

among minimal skipped intervals, then the J-intervals will also fully cover C. We will order

our I-interval system I = {I1, ..., Im} so that the lowest rank elements sequentially increase in

rank.

Theorem 2.3.28. Let P be an edge labeled poset and let [u, v] ⊆ P . Suppose we have constructed

a lexicographic discrete Morse function on [u, v]. Let C be a saturated chain from u to v that is

fully covered by its I-interval system with the following properties:

(1) Every minimal skipped interval in I either covers exactly one rank or covers at least three

ranks,

(2) For two minimal skipped intervals Ik and Ik+1, either Ik ∩ Ik+1 = ∅ or Ik ∩ Ik+1 contains

exactly one element, i.e. any two minimal skipped intervals can overlap on at most one

rank.

In this case, after truncation the J-intervals fully cover C.

Proof. We aim to prove that after the truncation algorithm, the J-intervals cover all ranks of

C. To do so, we examine what happens at each step of the algorithm. Note that if a minimal

skipped interval Ij covers exactly one rank, it cannot overlap with any other intervals and thus

will also be a J-interval.

To begin, we set J1 = I1 since I1 has the element of minimal rank among all I-intervals.

We then need to truncate any I-intervals that overlap with I1. If I1 ∩ I2 = ∅, then set J2 = I2.

Otherwise, if I1 ∩ I2 6= ∅, then there is exactly one rank in this intersection. In this case, we

remove the vertex of this rank from I2 to get an interval I ′2 with one fewer element than I2.

If I ′2 is still minimal, it becomes a J-interval. We assumed each minimal skipped interval that

may have overlap had at least three elements and can overlap with other elements in at most

one rank. Therefore, |I ′2| ≥ 2 and at most one of these elements is contained in another minimal
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skipped interval. As a result, all remaining minimal skipped intervals in the I-interval system

are still minimal so there are none to throw out. We set J2 = I ′2.

We now repeat the process considering I3. If I2∩I3 = ∅, set J3 = I3. Otherwise, if I2∩I3 6= ∅,
there is at most one element in this intersection. We remove this element from I3 to get I ′3 and

by the same argument as before this is not contained in any other minimal skipped interval in

I.

Continuing this process gives nonoverlapping J-intervals that fully cover the saturated chain

C as desired.

We use this result in the next lemma.

Lemma 2.3.29. Suppose B is the crystal of a highest weight representation of type Bn or Cn.

Let [u, v] ⊆ B be a Stembridge and Sternberg only interval. Let C be a saturated chain from

u to v such that its interval system covers all ranks, but with overlap among minimal skipped

intervals. Then C remains fully covered after the truncation algorithm.

Proof. From Lemma 2.3.10 and Lemma 2.3.27, we know that there is no overlap between

minimal skipped intervals that arise from Stembridge relations or degree five Sternberg relations.

Therefore, we restrict our attention to fully covered saturated chains that have a minimal

skipped interval arising from a degree seven Sternberg relation. Let C be one such fully covered

saturated chain.

Suppose the minimal skipped interval for C coming from the degree seven Sternberg relation

is of the form seen in Figure 2.10 (ii). Say this minimal skipped interval begins at a vertex x ∈ C.

If the number of times fn is applied to get from x to v is greater than three, then in order for C

to be fully covered, there is overlap among minimal skipped intervals. Similarly, if the minimal

skipped interval comes from the degree seven Sternberg relation seen in Figure 2.10 (iv) and

the number of times fn is applied to get from x to v is greater than four, then there is overlap

among minimal skipped intervals. To see why the previous two statements are true, note that

in either case, the label sequence of the degree seven Sternberg relation that is contained in C

ends with n− 1. If fn still needs to be applied along C to reach v, the rank of the first vertex

y in C such that fn(y) is in C is not be contained in a minimal skipped interval unless there is

overlap. This is because the edge along C below y is labeled i for some i ∈ [n − 1]. The rank

of the vertex y is uncovered by the same argument seen in Lemma 2.3.9. To remedy this, there

must exist a minimal skipped interval begin with the application of fn. However, this can only

happen if there is overlap.

In either case, the overlap among minimal skipped intervals will include only the rank of the

vertex u5 from Figure 2.10. The proof of why this is the case is analogous to that seen in Lemma

2.3.27. Since all minimal skipped intervals arise from Stembridge or Sternberg relations, a new
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minimal skipped interval can only arise off of the degree seven Sternberg relation if it starts at

the vertex u4. Depending on how many times fn is applied from u to v, the minimal skipped

interval may be a degree four Stembridge, degree five or degree seven Sternberg relation. Note

that it cannot arise from a degree two Stembridge relation. If this were the case, the original

degree seven minimal skipped interval would not in fact be minimal.

Note that each minimal skipped interval either covers exactly one rank or at least three

ranks. Additionally, any two minimal skipped intervals are either disjoint, or overlap at exactly

one rank. Therefore, by Theorem 2.3.28, if the I-intervals cover all ranks, then the J-intervals

do as well.

The proof that fully covered saturated chains are greedily maximal in the doubly laced case

is analogous to the proof for type An. The only difference is that there are possibly overlapping

intervals. These only occur with degree seven Sternberg relations, which always involve the

crystal operators fn−1 and fn. As a result, in this case, the minimal skipped intervals will

always involve the maximal operator for fn. Therefore, we have the following.

Lemma 2.3.30. Let B be the crystal of a highest weight representation of type Bn or Cn and

[u, v] ⊆ B be a Stembridge and Sternberg only interval. Then any fully covered saturated chain

in [u, v] is greedily maximal.

Proof. As stated above, the proof is analogous to that of Lemma 2.3.12.

We now prove for any interval that is Stembridge and Sternberg only in a highest weight

crystal of doubly laced type, there is at most one fully covered saturated chain. The proof is

analogous to the simply laced type seen in Theorem 2.3.23.

Theorem 2.3.31. Let [u, v] ⊆ B be a Stembridge and Sternberg only interval, for B the crystal

of a highest weight representation of finite doubly laced type. Then there is at most one fully

covered saturated chain in [u, v].

Proof. Let C be a saturated chain from u to v. If there is no overlap among the minimal skipped

intervals in the interval system of C, then the argument from Theorem 2.3.23 applies directly.

The only difference for doubly laced crystals is that overlap can occur with minimal skipped

intervals that arise from degree seven Sternberg relations. Hence, we need only to consider fully

covered saturated chains where there is a minimal skipped interval that arises from a degree

seven Sternberg relation.

Let C be one such chain. Suppose x is a vertex in C such that there is a minimal skipped

interval for the interval system of C beginning at x coming from a degree seven Sternberg

relation. In this case, we check if there is overlap among minimal skipped intervals as described

in Lemma 2.3.29. Recall that this overlap can occur at exactly one place. In this case, we travel
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up C until the end of the last minimal skipped interval with an overlap. From there, we once

again look for the maximal operator as in the proof of Theorem 2.3.23. At each step, there is a

unique choice, therefore a fully covered saturated chain from u to v is unique, if it exists.

Once again, having at most one fully covered saturated chain in a Stembridge and Sternberg

only interval allows us to say something about the Möbius function.

Corollary 2.3.32. For an interval as above, µ(u, v) ∈ {−1, 0, 1}.

Proof. The proof is completely analogous to that of Corollary 2.3.24.

As in the simply laced case, we use the contrapositive of Corollary 2.3.32 to search for new

relations among crystal operators. We state this here as a corollary. For examples illustrating

this result, see Section 2.4.

Corollary 2.3.33. Let [u, v] ∈ B, for B the crystal of a highest weight representation of type

Bn or Cn. If µ(u, v) /∈ {−1, 0, 1}, then there exists a relation among crystal operators that is

not implied by Stembridge or Sternberg relations.

2.4 New relations in highest weight crystals of doubly laced

type

While trying to find new relations among crystal operators is a difficult task, computing the

Möbius function of a given interval is algorithmic and efficient. Specifically, we use SAGE to

search for intervals among crystals of finite type with Möbius function not equal to -1, 0,

or 1. In general, it is not obvious how to search for new relations among crystal operators.

By establishing a relationship between the Möbius function of an interval within our crystal

posets and relations among crystal operators within this interval, we have a computational and

algorithmic tool to find new relations.

We have found multiple new relations among crystal operators in crystals of type Bn and

Cn. We did so by examining intervals where the Möbius function is not equal to −1, 0 or 1.

See Figure 2.13 for an example of a new relation among crystal operators found in the type C3

crystal B of shape λ = (4, 3, 1). Namely we have x ∈ B such that:

f2f
2
3 f

2
2 f1(x) = f2f3f2f3f2f1(x) = f3f

2
2 f3f1f2(x) = f3f2f1f2f3f2(x) = f3f

2
2 f1f3f2(x).

See Figure 2.14 for an example of a new relation among crystal operators found in the

type B3 crystal B of shape λ = (4, 2). Note that the open interval has exactly two connected

components. It is clear from Figure 2.14 that there is no way to move from the saturated
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Figure 2.13: New relation in type C3 crystal B of shape (4,3,1)

chain with edge label sequence (2, 3, 3, 1, 1, 2) to the saturated chain with edge label sequence

(1, 2, 3, 3, 2, 1) using only Stembridge and Sternberg relations. Therefore, this interval gives a

new relation among crystal operators. Namely, we have x ∈ B such that:

f2f
2
1 f

2
3 f2(x) = f1f2f

2
3 f2f1(x)

We note that there are many intervals in crystals of highest weight representations of finite

type whose Möbius function is not equal to −1, 0 or 1. We have only explored a small number

of them. It is likely that there are many unknown relations in the doubly laced case still to be

discovered. This chapter gives a tool to find such relations.

Remark 2.4.1. We note that having an interval [u, v] such that µ(u, v) /∈ {−1, 0, 1} implies that
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Figure 2.14: New relation in type B3 crystal B of shape (4, 2)

there exists a new relation among crystal operators, but does not specify what the relation is

or how to find it.

2.5 Discussion and open questions

In this chapter, we used lexicographic discrete Morse functions to prove a connection between

the Möbius function of an interval and the types of relations that exist among crystal operators.

More specifically, for all simply or doubly laced crystals of finite type, we proved that given an

interval [u, v] with µ(u, v) /∈ {−1, 0, 1}, there exists a relation among crystal operators within

[u, v] not implied by Stembridge or Sternberg relations. We have begun work extending this

result to affine types, which leads to the following question:
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Question 2.5.1. Does µ(u, v) /∈ {−1, 0, 1} for [u, v] ⊆ B imply the existence of a relation

among crystal operators not implied by Stembridge or Sternberg relations for crystals of all

affine types?

While the proof technique used here will likely work for many affine types, it will not work

for type A
(1)
n as the Dynkin diagram for this type is a cycle. However, it is unknown if a result

similar to Corollary 2.3.24 and Corollary 2.3.32 holds in this affine case by using a different

proof method.

Another natural question to ask is whether it is possible to classify all possible relations

among crystal operators.

Question 2.5.2. Is there some finite family of relations among crystal operators that implies

all relations among crystal operators?

In general, this question is likely hard to answer. However, in Chapter 3, we use a specific

combinatorial model for crystals of type An to try and answer this question in certain cases.

In this chapter, we were able to use lexicographic discrete Morse functions because we as-

sumed we had intervals where all relations among crystal operators were implied by Stembridge

and Sternberg relations. This controlled the structure of minimal skipped intervals. At the time

of this thesis, in type An, the only relations apart from Stembridge relations have been those

found in [11] (see Section 1.4). It may be interesting to do a similar analysis of intervals where

we allow these relations as well.

Question 2.5.3. Suppose [u, v] ⊆ B for B a crystal of type An. If all relations among crystal

operators are implied by Stembridge relations and HL relations, can we use lexicographic discrete

Morse functions to analyze the poset topology of these intervals?

We have only briefly thought about this question. Unfortunately, we will no longer be

guaranteed that there is at most one fully covered saturated chain. However, it may still be

possible to classify the structure of fully covered saturated chains and say something about the

topology of the order complex of the interval.

Finally, we may also ask if the value of the Möbius function of an interval gives any more

information about the interval in the crystal poset. We have found intervals with µ(u, v) = 2

and µ(u, v) = 3. This leads to the following question.

Question 2.5.4. Is it possible to have an interval [u, v] in a crystal poset where µ(u, v) = k

for all k ∈ Z, i.e. is every integer the Möbius function of some interval in a crystal poset?

It is possible that studying Question 2.5.3 may give insight into this question.
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Chapter 3

Hook shape and two rowed shape

crystals of type An

One of the main topics of this thesis is studying the structure of crystal posets. We aim to

characterize all relations that occur among crystal operators. However, this is likely very diffi-

cult. In this chapter, we focus on two families of crystals of type An, namely crystals of shape

(λ1, 1, · · · , 1) and those of shape (λ1, λ2). We call a crystal of shape (λ1, 1, ..., 1) a hook shape

crystal. We call a crystal of shape (λ1, λ2) a two rowed shape crystal. Throughout this chapter,

we will explicitly use the tableaux model for crystals of highest weight representations of type

An. This model was discussed in Chapter 1.

Our main results in this chapter concern relations among crystal operators in the simply

laced case. In Theorem 3.1.1, we prove that any new relation among crystal operators in the

simply laced case must involve at least three distinct crystal operators. We note that this result

does not carry over to the doubly laced case as can be seen in Example 3.1.3. We conjecture

that in hook shape crystals of type An, all relations among crystal operators are implied by

Stembridge relations. In particular, we prove that HL relations do not occur in hook shape

crystals. We know that HL relations do occur in two rowed shape crystals, as can be seen in

Figure 1.13. However, in Theorem 3.3.14 we prove that for rank three intervals in two rowed

shape crystals, all relations are implied by the degree two Stembridge relation. We end this

chapter by studying the arbitrary rank intervals introduced in Section 1.4.

3.1 Introduction

Certain relations among crystal operators are already well known and understood, namely

Stembridge relations in the simply laced case and Sternberg relations in the doubly laced case.

As seen in Chapter 2, there exist other relations among crystal operators. In this chapter,

52



we study relations among crystal operators in hook shape crystals of type An and two rowed

shape crystals of type An. Stembridge gave a local characterization of simply laced crystals

that come from representations. Every Stembridge relation involves exactly two distinct crystal

operators, but as seen in the HL relations of [11], there are relations that involve more than

two distinct operators. Using the results of [6, 11, 14], we prove that Stembridge relations are

the only relations that use exactly two distinct crystal operators in the simply laced case.

Theorem 3.1.1. Let B be a crystal of a highest weight representation of finite simply laced type.

Then any relation among crystal operators not implied by Stembridge relations must involve at

least three distinct crystal operators.

Proof. First, recall that by Proposition 2.4.4 of [14], any crystal with a unique maximal vertex

is the crystal of a highest weight representation if and only if it decomposes as a disjoint union

of such crystals relative to the rank two subalgebras corresponding to each pair of edge colors.

In [6], it is shown that crystals of type A2 are lattices. In addition, in [11] we see that Stembridge

upper bounds are least upper bounds. Putting these three results together, it follows that there

are no relations among two crystal operators that are not implied by Stembridge relations.

Remark 3.1.2. We note that Theorem 3.1.1 does not carry over to the doubly laced case. We

know that crystals of type B2 and C2 are not lattices. The following example gives a relation

among crystal operators not implied by Stembridge or Sternberg operators that uses exactly

two distinct crystal operators.

Example 3.1.3. Consider B, the type B2 crystal of shape (2, 2). Let

u = 1 2

2 2

, v = 2 2

2 1

.

Then we have

v = f1f
4
2 f1(u) = f22 f

2
1 f

2
2 (u) = f2f1f

2
2 f1f2(u).

The interval [u, v] is seen in Figure 3.1. The saturated chain with edge label sequence (1, 2, 2, 2, 2, 1)

cannot be connected to the saturated chains with edge label sequences (2, 1, 2, 2, 1, 2) and

(2, 2, 1, 1, 2, 2) by a sequence of Stembridge or Sternberg relations.

Let B be a crystal of a highest weight representation of type An realized using the tableaux

model. Recall the following definitions introduced in Section 1.1.

Definition 3.1.4. Let T be a tableau. The reading word of T , denoted r(T ) is the word obtained

by reading each column bottom to top and reading columns from left to right.

Definition 3.1.5. Let T be a tableau. The i-signature of T , denoted σi(T ), is the subword of

r(T ) consisting of only the letters i and i+ 1.
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Figure 3.1: New relation in type B2 crystal B of shape (2, 2)

We illustrate these definitions in the following example.

Example 3.1.6. Let λ = (6, 3) and x = 1 1 2 2 3 4
2 3 3 4

. Then r(x) = 2131324234 and σ2(x) =

233223.

The application of a crystal operator fi can only affect certain j-signatures as explained in

Remark 3.1.7.

Remark 3.1.7. The application of the crystal operator fi affects σi−1(x), σi(x), and σi+1(x).

That is to say that σj(x) equals σj(fi(x)) unless j = i − 1, i or i + 1. To see this, note that

applying fi changes exactly one i to i + 1. In terms of σi−1(x), there will be one fewer i in

σi−1(fi(x)) than in σi−1(x). For σi(x), there will be one fewer occurrence of i and one more

occurrence of i + 1 in σi(fi(x)) compared to that of σi(x). Similarly, we will have one more

occurrence of i + 1 in σi+1(fi(x)) compared to that of σi(x). These are the only signatures in

which i or i+ 1 occur.

We will use the i-signature to help understand the relations among crystal operators in hook

shape and two rowed shape crystals.
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3.2 Structure of hook shape crystals of type An

In this section, we study relations among crystal operators in hook shape crystals of type An.

In particular, we work towards showing that in this case, all relations among crystal operators

are implied by Stembridge relations.

Remark 3.2.1. When referencing a hook shape tableau T , we refer to the boxes in row one of

T as the row of T . Similarly, we refer to the boxes in column one of T as the column of T .

We propose the following conjecture.

Conjecture 3.2.2 (Lynch). Suppose B is a hook shape crystal of type An coming from a highest

weight representation. Then all relations among crystal operators are implied by Stembridge

relations.

Using the tableaux model for the crystal graph, we make use of the rigid structure of

semistandard Young tableaux and the effect this structure has on the i-signature of a vertex.

While we do not yet have a proof for Conjecture 3.2.2, we use this section to provide evidence

of this conjecture.

3.2.1 Results towards a proof of Conjecture 3.2.2

Let B be a crystal of a highest weight representation of type An. We saw in Chapter 2 that given

a vertex x ∈ B, such that fi(x) 6= 0 and fj(x) 6= 0, we have fifj(x) = fjfi(x) whenever |i−j| > 1.

If fi(x) 6= 0 and fi+1(x) 6= 0, then either fifi+1(x) = fi+1fi(x) or fif
2
i+1fi(x) = fi+1f

2
i fi+1(x).

However, whether we have a degree two or degree four Stembridge relation depends on the

location of the vertex x in the crystal. Nevertheless, for hook shape crystals of type An, we can

characterize when there is a degree two versus a degree four Stembridge relation upward from

some vertex x solely from the combinatorics of the semistandard Young tableau for x.

Theorem 3.2.3. Suppose B is a hook shape crystal of type An. Let x ∈ B such that fi(x) 6= 0

and fi+1(x) 6= 0. Then there is a degree four Stembridge relation involving fi and fi+1 upward

from x if and only if σi(x) is weakly decreasing.

Proof. Note that since fi(x) 6= 0 and fi+1(x) 6= 0, there must be at least one i in x and at

least one i + 1 in x. Suppose that σi(x) is weakly decreasing. This implies that we must have

exactly one occurrence of i+ 1 in the column of x and no other occurrences of i+ 1 in x. Since

fi(x) 6= 0, there is at least one i in the row of x. This is because if there is an i in the column

it is paired in the i-signature of x with the i + 1 from the column, but fi(x) 6= 0. Therefore,

applying fi to x will change the rightmost i in the row to i+ 1. As there is only one i+ 1 in x,

applying fi+1 to x will change the i+ 1 in the column of x to i+ 2.
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However, when we apply fi+1 to fi(x), the newly created i + 1 in the row of fi(x) will be

changed to i + 2. Since this changes a different i + 1 than when we apply fi+1 to x, we have

fifi+1(x) 6= fi+1fi(x). Hence, by Stembridge axioms we have that fif
2
i+1fi(x) = fi+1f

2
i fi+1(x)

as desired.

We show the other direction by proving the contrapositive. Here we will show that tthe

boxes that are changed by fi and fi+1 are the same regardless of the order the operators are

applied. Assume x is such that σi(x) is not weakly decreasing, and fi(x) 6= 0 and fi+1(x) 6= 0.

In this case, there must be an i+ 1 that occurs after all i in σi(x). This can only occur if there

is at least one i+ 1 in the row of x. Therefore, applying fi+1 to x changes the rightmost i+ 1

in the row of x. By the signature rule, the i that is changed when fi is applied to fi+1(x) is the

same i changed when fi is applied to x since the new i+ 1 occurs after all i’s in the i-signature.

Applying fi to x will change the rightmost i in σi(x) to i+1. However, this i+1 will be to the

left of the i+1 that is changed when applying fi+1 to x. Hence, we get that fi+1fi(x) = fifi+1(x).

This gives the result.

This characterization of when a degree four Stembridge relation can occur allows us to

say something about the relations between fi−1, fi, and fi+1 upward from a vertex x. This is

especially useful as we know by Theorem 3.1.1 that any new relation among crystal operators

must involve at least three distinct crystal operators.

Proposition 3.2.4. Let B be a hook shape crystal of type An and let x ∈ B. Suppose that

fi−1(x) 6= 0, fi(x) 6= 0, and fi+1(x) 6= 0. Then there can be at most one degree four Stem-

bridge relation upward from x involving the crystal operator fi, i.e. it is not the case that both

fi−1f
2
i fi−1(x) = fif

2
i−1fi(x) and fi+1f

2
i fi+1(x) = fi+1f

2
i fi+1(x).

Proof. Suppose by way of contradiction that there exists a vertex x ∈ B such that fi−1f
2
i fi−1(x) =

fif
2
i−1fi(x) and fi+1f

2
i fi+1(x) = fi+1f

2
i fi+1(x). Then by Theorem 3.2.3, we must have that

σi−1(x) is weakly decreasing and σi(x) is weakly decreasing. However, this is not possible as

σi−1(x) weakly decreasing implies that there are zero occurrences of i in the row of x, but since

σi(x) is weakly decreasing and fi(x) 6= 0, it follows that the number of occurrences of i in the

row of x is strictly greater than zero. The result follows.

As of now, the only relations observed in crystal posets of type An, besides Stembridge

relations are the HL relations described in Section 1.4. We now prove that in hook shape

crystals, HL relations cannot occur.

Theorem 3.2.5. Let B be a hook shape crystal of type An. Then there are no HL relations

among crystal operators in B.
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Proof. Recall, given x such that fi−1(x) 6= 0, fi(x) 6= 0, and fi+1(x) 6= 0, we say there is a full

HL relation upward from x if

fi+1f
2
i fi−1(x) = fifi+1fi−1fi(x) = fifi−1fi+1fi(x) = fi−1f

2
i fi+1(x)

is a least upper bound for fi−1(x), fi(x) and fi+1(x). In this case, we must have a degree four

Stembridge relation upward from x involving the crystal operators fi−1 and fi as well as a

degree four Stembridge relation upward from x involving the crystal operators fi and fi+1. By

Proposition 3.2.4, this is not possible. As a result, there are no full HL relations among crystal

operators in a hook shape crystal of type An.

Similarly, given x such that fi−1(x) 6= 0, fi(x) 6= 0, and fi+1(x) 6= 0, we say there is a partial

HL relation upward from x if

fi+1f
2
i fi−1(x) 6= fifi+1fi−1fi(x) = fifi−1fi+1fi(x) = fi−1f

2
i fi+1(x), (3.1)

is a least upper bound for fi(x) and fi+1(x), or

fi+1f
2
i fi−1(x) = fifi+1fi−1fi(x) = fifi−1fi+1fi(x) 6= fi−1f

2
i fi+1(x). (3.2)

is a least upper bound for fi(x) and fi−1(x).

We will show that neither of these will occur in hook shape crystals. We focus on the

equalities in (3.1) first. In order for this relation among crystal operators to exist and not be

implied by degree two Stembridge relations, there must be a degree four Stembridge relation

upward from x involving the crystal operators fi and fi+1. This implies that σi(x) is weakly

decreasing. Since fi+1(x) 6= 0, there is an i + 1 in the column of x. Since f2i fi+1(x) 6= 0, there

are at least two occurrences of i in x. For any saturated chain upward from x that begins with

the label i, the signature rule implies that the i + 1 in the column cannot change until after

the newly created i+ 1 in the row has been changed. This says that along any saturated chain

beginning xl fi(x), fi+1 must be applied twice in order to meet up with any saturated chain

beginning xl fi+1(x). As a result, there cannot be any partial HL relations of type (3.1) in a

hook shape crystal.

Next, we focus on the equalities in (3.2). In this case, we must have that there is a degree

four Stembridge relation upward from x involving the crystal operators fi−1 and fi. This implies

that σi−1(x) is weakly decreasing and that there is exactly one occurrence of i in x and this

occurrence is in the column of x. Since fi(x) 6= 0, there must be no appearance of i+ 1 in the

column of x. We split the proof into two cases: fi+1(x) = 0, and fi+1(x) 6= 0.

If fi+1(x) = 0, then the application of fi+1 to fi(x) will change the i + 1 in the column

created by applying fi to x. However, the application of fi+1 to (f2i fi−1)(x) will change the

57



i + 1 in the row. Hence, fi+1f
2
i fi−1(x) 6= fifi−1fi+1fi(x) as in each chain different boxes with

i+ 1 are changed.

Now suppose fi+1(x) 6= 0. Then we must have fifi+1(x) = fi+1fi(x) and fi−1fi+1(x) =

fi+1fi−1(x). We know that σi(x) is not weakly decreasing and therefore σi(fi−1(x)) is also not

weakly decreasing. Hence, there is a degree two Stembridge relation upward from fi−1(x) involv-

ing fi and fi+1, i.e. fi+1fi(fi−1(x)) = fifi+1(fi−1(x)). Similarly, we must have that σi(fifi−1(x))

is not weakly decreasing implying that there is a degree two Stembridge relation upward from

fifi−1(x) involving fi and fi+1, i.e. fi+1fi(fifi−1(x)) = fifi+1(fifi−1(x)). However, this implies

that fifi−1(x) = fi−1fi(x) which contradicts the assumption that there is a degree four Stem-

bridge relation. As a result, we have no partial HL relations in hook shape crystals of type

An.

Recall that we are trying to show that all relations among crystal operators in a hook shape

crystal of type An are implied by Stembridge relations. So far, we have shown that there are no

HL relations in these crystal posets. We know that type An crystals are not lattices in general

as seen in [11]. This is proven via example by showing that there exist two elements which have

two distinct incomparable least upper bounds, namely one arising from a Stembridge relation

and one arising from an HL relation. Therefore, since HL relations do not occur in hook shape

crystals of type An, it is natural to ask whether this subclass of crystal posets are lattices.

However, we see in Example 3.2.6 that this is not the case.

Example 3.2.6. Consider the type A3 crystal B of shape λ = (3, 1, 1). Let

x1 = 1 1 2
2
4

and x2 = 1 1 3
2
3

.

Then x1 and x2 have two distinct, incomparable least upper bounds, namely

y1 = 1 1 4
3
4

and y2 = 1 3 4
2
4

.

Therefore, x1 and x2 do not have a join. See Figure 3.2. We note that for y1 and y2 to be

comparable, we would need y2 = f1(y1). However, this is not the case. The application of f1

to u creates a new 2 in the tableau. This results in a different sequence of 2’s being changed

in the degree four Stembridge relation upward from x than those changed in the degree four

Stembridge relation upward from f1(x).

Note that both least upper bounds from Example 3.2 come from some sequence of Stem-

bridge relations, i.e. all saturated chains in [u, y1] and [u, y2] are connected by a sequence of

Stembridge moves. Therefore, even though hook shape crystals of type An are not lattices, it
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u = 1 1 2
2
3

x1 = 1 1 2
2
4

1 2 2
2
3

1 1 3
2
3

= x2

1 1 3
2
4

1 2 2
2
4

1 1 4
2
3

1 2 3
2
3

1 1 3
3
4

1 2 3
2
4

1 1 4
2
4

1 2 4
2
3

y1 = 1 1 4
3
4

1 3 3
2
4

1 2 4
2
4

y2 = 1 3 4
2
4

213

2 1 3 2 3 1

2 1 2 3 1 3

3 2 2 1 3

3
2

Figure 3.2: Hook shape crystals are not lattices

is still possible that Stembridge relations imply all other relations among crystal operators. We

aim to generalize the phenomena seen in Example 3.2.6 and give criteria for when two elements

x1 and x2 that cover a common element x do not have a unique least upper bound.

Lemma 3.2.7. Let B be a hook shape crystal of type An with x ∈ B such that fi(x) 6= 0 and

fi+1(x) 6= 0. Assume that σi(x) is weakly decreasing. If σi(x) = i + 1 i i, with the leftmost i

coming from the column of x and fi−1(x) 6= 0, then y = fif
2
i+1fi(x) = fi+1f

2
i fi+1(x) is not the

join of fi(x) and fi+1(x).

Proof. Since σi(x) is weakly decreasing, by Theorem 3.2.3 we know that there is a degree four

Stembridge relation upward from x. Therefore,

y = fif
2
i+1fi(x) = fi+1f

2
i fi+1(x) 6= 0

is a least upper bound for fi(x) and fi+1(x). We will show that there must exist a distinct,
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incomparable upper bound for fi(x) and fi+1(x). We claim that

y′ = fif
2
i+1fifi−1(x) = fi+1f

2
i fi+1fi−1(x)

is such an upper bound.

To begin, we note that y′ 6= 0 since applying fi−1 to x changes an i − 1 in the row to an

i. As a result, σi(fi−1)(x) is weakly decreasing and there is a degree four Stembridge relation

upward from fi−1(x) involving fi and fi+1. Second, as every saturated chain has the same label

sequence, the only way to have y ≤ y′ is if y′ = fi−1(y).

Since fi−1(x) 6= 0, by Proposition 3.2.4 we know σi−1(x) is not weakly decreasing and

fifi−1(x) = fi−1fi(x). We also must have fi−1fi+1(x) = fi+1fi−1(x). Therefore, we have that

fi(x) ≤ y′ and fi+1(x) ≤ y′ implying that y′ is an upper bound for fi(x) and fi+1(x).

Therefore, all that remains to be shown is that y and y′ are incomparable. By a rank

argument, we cannot have y′ ≤ y, so we only need to prove that y � y′. As we are assuming

σi(x) = i+ 1 i i where the leftmost i is in the column of x, to get from x to y we must change

the i in the row to i + 1 and then to i + 2, change the i + 1 in the column to i + 2, and the i

in the column to i+ 1. However, to get from fi−1(x) to y′, both i’s that are changed are in the

row. Hence, fi−1(y) 6= y′ implying y � y′ as desired.

Corollary 3.2.8. For n ≥ 3, hook shape crystals of type An are not lattices.

We would like to prove the converse of Lemma 3.2.7 to characterize when a degree four

Stembridge upper bound is not a join.

Conjecture 3.2.9 (Lynch). Let B be a type An hook shape crystal with x ∈ B such that

fi(x) 6= 0 and fi+1(x) 6= 0 with σi(x) weakly decreasing. If fif
2
i+1fi(x) = fi+1f

2
i fi+1(x) is not

the join of fi(x) and fi+1(x), then fi−1(x) 6= 0 and σi(x) = i+ 1 i i where the leftmost i comes

from the column of x.

At the time of this thesis, Example 3.2.6 is the only scenario where we have two elements

that cover a common element and do not have a unique least upper bound in hook shape

crystals of type An. It is plausible that this is the only scenario in which two elements who

cover a common element do not have a unique least upper bound. Recall Lemma 2.1 from [2].

Lemma 3.2.10 ([2]). Let P be a bounded poset of finite rank such that for any x and y in P ,

if x and y both cover an element z then the join x ∨ y exists. Then P is a lattice.

Conjecture 3.2.9 together with Lemma 3.2.7 would prove that the only time two elements,

x1 and x2, cover a common element x such that there is a degree four Stembridge relation above

x, where x1 and x2 have two distinct incomparable least upper bounds is if:
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(1) σi(x) = i+ 1 i i, where the leftmost i comes from the column of x, and

(2) fi−1(x) 6= 0.

Here we are assuming that x1 = fi(x) and x2 = fi+1(x). In order for there to exist an x

that satisfies (1) and (2) above, there needs to be at least two occurrences of i− 1 but at most

one of these occurrences is in the column. Therefore, the length of the row of λ must be greater

than or equal to three. This leads to the following conjecture.

Conjecture 3.2.11 (Lynch). Let B be a type An crystal with λ = (2, 1, · · · , 1). Then B is a

lattice.

To prove this, we would also need to show that in this setting, degree two Stembridge upper

bounds are joins. This is not true in general as can be seen in the arbitrary rank intervals

introduced in [11]. Using SAGE, it can be seen that Conjecture 3.2.11 is true for all hook shape

crystals B of type An where the hook is λ = (2, 1, · · · , 1) for n ≤ 10.

3.3 Structure of two rowed shape crystals of type An

We now undertake a similar study of two rowed shape crystals of type An. As with hook shape

crystals, the i-signature will be useful in determining which Stembridge relation can occur

upward from a given vertex. Unlike in hook shape crystals, it is known that HL relations occur

in two rowed shape crystals (see Figure 1.13). We aim to characterize when these relations occur.

Additionally, we prove that for any rank three interval in a two rowed shape crystal of type An,

all relations among crystal operators are implied by degree two Stembridge relations. Finally,

we end the section by further studying the intervals of arbitrary rank introduced in [11]. These

are the intervals used to show that there are relations among crystal operators of arbitrary

degree.

3.3.1 Stembridge and HL relations in two rowed shape crystals

Let B be a two rowed shape crystal of type An. Let x ∈ B. We now introduce statistics that

will be important for upcoming results.

Definition 3.3.1. Let θi(x) be the largest subword of σi(x) that begins with the first appear-

ance of i+ 1 and ends with the last appearance of i. Let Ai(x) be the number of appearances

of i in θi(x) and let Bi(x) be the number of appearances of i+ 1 in θi(x).

We say that θi(x) is empty if there either are no occurrences of i in x, no occurrences of

i + 1 in x, or the first occurrence of i + 1 happens after the last occurrence of i. We illustrate

these statistics in the following example.
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Remark 3.3.2. We note that if there are no occurrences of i in x, then fi(x) = 0. Similarly, if

there are no occurrences of i + 1 in x, then fi+1(x) = 0. If the first occurrence of i + 1 occurs

after the last occurrence of i in σi(x), then we will necessarily have fifi+1(x) = fi+1fi(x) as can

be seen by the signature rule. Therefore, the cases where θi(x) are empty are well understood.

Example 3.3.3. Let x = 1 1 2 2 2 3 4
2 2 3 3 4

. Then

σ2(x) = 2 2 3 2 3 2 2 3,

and θ2(x) = 32322. Therefore, A2(x) = 3 and B2(x) = 2.

We use the statistics Ai and Bi on a tableau x to determine whether we have a degree two

or a degree four Stembridge relation upward from x, provided that fi(x) 6= 0 and fi+1(x) 6= 0.

Assuming that Ai(x) 6= 0 and Bi(x) 6= 0, we can translate these statistics from general

statements about the reading word to the locations of i and i+ 1 in the tableau.

Lemma 3.3.4. Let B be a two rowed shape crystal of type An. If x ∈ B such that Ai(x) 6= 0

and Bi(x) 6= 0, then Ai(x) counts the number of times i appears in the first row of x and Bi(x)

counts the number of times i+ 1 appears in the second row of x.

Proof. Since Ai(x) 6= 0, the first appearance of i+ 1 when read in the order of the i-signature

must appear in the second row of x as rows in a semistandard Young tableau are weakly

increasing. Similarly, since Bi(x) 6= 0, the last appearance of i when read in the order of the

i-signature occurs in row one of x. As any appearance of i in row two comes before the first

appearance of i + 1 in row two, these i’s will not be recorded by θi(x). Therefore, Ai(x) will

only count occurrences of i in row one. Similarly, since all appearances of i+ 1 in row one occur

after the last i in row one, Bi(x) only counts the number of occurrences of i+ 1 in the second

row.

The relative ordering of Ai(x) and Bi(x) tells us how the crystal operator fi acts on x.

Lemma 3.3.5. Let B be a two rowed shape crystal of type An. Let x ∈ B such that fi(x) 6= 0.

If Ai(x) ≤ Bi(x), then applying fi to x changes the rightmost i in the second row of x to i+ 1.

Otherwise, if Ai(x) > Bi(x), then applying fi to x changes the rightmost occurrence of i in the

first row of x to i.

Proof. This follows directly from the signature rule. Specifically, if Ai(x) ≤ Bi(x), then every

i in the first row of x is paired with an i + 1 from the second row and cannot be changed.

However, if Ai(x) > Bi(x), then there is at least one unpaired i in the first row of x and this

will appear further to the right in the i-signature than any i coming from the second row of

x.
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With this in mind, we are able to describe whether we have a degree two or degree four

Stembridge relation upward from some tableau x. We introduce notation regarding the location

of i and i+1 in a tableau. For a two rowed shape tableau x, let βi(x) denote the box containing

the rightmost i in the first row of x and γi(x) denote the box containing the rightmost i in the

second row of x.

Proposition 3.3.6. Let B a two rowed shape crystal of type An and let x ∈ B such that

fi(x) 6= 0 and fi+1(x) 6= 0. Then the following table summarizes when there is a degree two or

degree four Stembridge relation above x.

Ai(x) = Bi(x) Ai(x) > Bi(x) Ai(x) < Bi(x)

Ai+1(x) = Bi+1(x) 4 4 2

Ai+1(x) > Bi+1(x) 2 2 2

Ai+1(x) < Bi+1(x) 4 2 2

Proof. We split the proof into cases. The main idea is to show that the same boxes are affected

as we apply crystal operators, regardless of which chain in the Stembridge relation we consider.

Case 1: Ai(x) = Bi(x), Ai+1(x) ≤ Bi+1(x).

By Lemma 3.3.5, applying fi to x changes the i in γi(x) to i+ 1. Note that,

Ai(fi(x)) = Ai(x),

Bi(fi(x)) = Bi(x) + 1,

Ai+1(fi(x)) = Ai+1(x),

Bi+1(fi(x)) = Bi+1(x).

Next, consider what happens when applying fi+1 to x. By Lemma 3.3.5, fi+1(x) changes

the i+ 1 in γi+1(x) to i+ 2. Therefore,

Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x)− 1,

Ai+1(fi+1(x)) = Ai+1(x),

Bi+1(fi+1(x)) = Bi+1(x) + 1.

We note that changing an i + 1 in the second row to i + 2 results in one fewer pairing of

an i + 1 from row two with an i in row one. Therefore, we can apply fi to fi+1(x) and get
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something nonzero. Since Ai(fi+1(x)) > Bi(fi+1(x)), applying fi will change the i in βi(x) to

i + 1. Similarly, by applying fi+1 to fi(x), we have that fi+1 changes the i + 1 in γi+1(x) to

i+ 2 since Ai+1(fi(x)) ≤ Bi+1(fi(x)).

To get from x to fi+1fi(x) we change the i in γi(x) to i + 1 and the i + 1 in γi+1(x) to

i+ 2. In contrast, to get from x to fifi+1(x) we change the i in βi(x) to i+ 1 and the i+ 1 in

γi+1(x) to i+ 2. Since we change a different set of boxes, we must have fifi+1(x) 6= fi+1fi(x).

Therefore, by the Stembridge axioms we have fif
2
i+1fi(x) = fi+1f

2
i fi+1(x) as desired.

Case 2: Ai(x) = Bi(x), Ai+1(x) > Bi+1(x).

As in Case 1, applying fi to x will change the i in γi(x) to i+ 1. However, since Ai+1(x) >

Bi+1(x), by Lemma 3.3.5 applying fi+1 to x changes the i+ 1 in βi+1(x) to i+ 2. Therefore,

Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x),

Ai+1(fi(x)) = Ai+1(x),

Bi+1(fi(x)) = Bi+1(x).

As a result, applying fi+1 to fi(x) will also change the i + 1 in βi+1(x) to i + 2. Similarly,

applying fi to fi+1(x) will change the i in γi(x) to i + 1. Hence, fifi+1(x) = fi+1fi(x) as

desired. This will happen in any case where the application of fi does not affect the relative or-

der of Ai+1 with Bi+1 and the application of fi+1 does not affect the relative order of Ai with Bi.

Case 3: Ai(x) > Bi(x), Ai+1(x) = Bi+1(x).

By Lemma 3.3.5, applying fi to x changes the i in βi(x) to i + 1. Similarly, applying fi+1

to x changes the i+ 1 in γi+1(x) to i+ 2. Therefore,

Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x)− 1,

Ai+1(fi(x)) = Ai+1(x) + 1,

Bi+1(fi(x)) = Bi+1(x).

Next, we consider applying fi+1 to fi(x). Since Ai+1(fi(x)) > Bi+1(fi(x)), by Lemma 3.3.5,

applying fi+1 changes the i+ 1 in βi+1(x). Similarly, since Ai(fi+1(x)) > Bi(fi+1(x)), applying

fi to fi+1(x) changes the i in βi(x) to i+ 1.

Therefore, to get from x to fi+1fi(x), we change the i in βi(x) and the i + 1 in βi+1(x).

However, to get from x to fifi+1(x), we change the i in βi(x) and the i+ 1 in γi+1(x). Since we
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change a different set of boxes, we must have fifi+1(x) 6= fi+1fi(x). Therefore, by Stembridge

axioms fif
2
i+1fi(x) = fi+1f

2
i fi+1(x) as claimed.

Case 4: Ai(x) > Bi(x), Ai+1(x) < Bi+1(x).

Applying fi to x changes the i in βi(x) to i + 1. Similarly, applying fi+1 to x changes the

i+ 1 in γi+1(x) to i+ 2. As a result,

Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x)− 1,

Ai+1(fi(x)) = Ai+1(x) + 1,

Bi+1(fi(x)) = Bi+1(x).

Therefore, applying fi+1 to fi(x), changes the i+1 in γi+1(x) to i+2. Applying fi to fi+1(x)

changes the i in βi(x) to i+ 1. Hence, fifi+1(x) = fi+1fi(x) as claimed.

Case 5: Ai(x) > Bi(x), Ai+1(x) > Bi+1(x).

By Lemma 3.3.5, applying fi to x changes the i in βi(x) to i + 1, and applying fi+1 to x

changes the i+ 1 in βi+1(x) to i+ 2. Hence,

Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x),

Ai+1(fi(x)) = Ai+1(x) + 1,

Bi+1(fi(x)) = Bi+1(x).

As a result, applying fi to fi+1(x) will change the i in βi(x) to i + 1. Similarly, applying

fi+1 to fi(x) will change the i + 1 in βi+1(x) to i + 2. Since Ai+1(x) > 0, this is not the i + 1

created from the application of fi. Hence, fifi+1(x) = fi+1fi(x) as desired.

Case 6: Ai(x) < Bi(x), Ai+1(x) ≤ Bi+1(x).

If we apply fi to x, we change the i in γi(x) to i+ 1. Similarly, if we apply fi+1 we change

the i+ 1 in γi+1(x) to i+ 2. Then,
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Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x)− 1,

Ai+1(fi(x)) = Ai+1(x),

Bi+1(fi(x)) = Bi+1(x),

Then, applying fi to fi+1(x) will change the i in γi(x) to i + 1 since Ai(fi+1(x)) ≤
Bi(fi+1(x)). Similarly, applying fi+1 to fi(x) changes the i + 1 in the γi+1(x) to i + 2. Since

Bi(x) > 0, this is not the i+ 1 created from the previous application of fi. Hence, we have that

fifi+1(x) = fi+1fi(x).

Case 7: Ai(x) < Bi(x), Ai+1(x) > Bi+1(x).

Applying fi to x will change the i in γi(x) to i+ 1. When applying fi+1 to x we change the

i+ 1 in βi+1(x) to i+ 2. Then we have

Ai(fi+1(x)) = Ai(x),

Bi(fi+1(x)) = Bi(x),

Ai+1(fi(x)) = Ai+1(x),

Bi+1(fi(x)) = Bi+1(x),

The relative order of Ai with Bi and Ai+1 with Bi+1 remains the same. Therefore, applying

fi to fi+1(x) will change the i in γi(x) to i+ 1. Applying fi+1 to fi(x) will change the i+ 1 in

βi+1(x) to i+ 2. Hence, fifi+1(x) = fi+1fi(x).

Remark 3.3.7. As can be seen in Case 1 and Case 3 of Proposition 3.3.6, any degree four

Stembridge relation involving fi and fi+1 is such that the first application of fi+1 along the

chain with edge label sequence (i+1, i, i, i+1) changes the i+1 in γi+1 and the first application

of fi along this chain changes the i in βi. In fact, in Case 1 the chain with edge label sequence

(i+ 1, i, i, i+ 1) changes the following boxes in the following order

(γi+1, βi, γi, γi+1).

The chain with the edge label sequence (i, i+ 1, i+ 1, i) in Case 1 changes the following boxes

in the following order

(γi, γi+1, γi+1, βi).

In contrast, for Case 3 the chain with edge label sequence (i+1, i, i, i+1) changes the following

66



boxes in the following order

(γi+1, βi, βi, βi+1).

The chain in Case 3 with edge label sequence (i, i + 1, i + 1, i) changes the following boxes in

the following order

(βi, βi+1, γi+1, βi).

When B is a two rowed shape crystal of type An, we can use the relative ordering of Ai−1(x)

with Bi−1(x), Ai(x) with Bi(x) and Ai+1(x) with Bi+1(x) to determine when an HL relation

will occur upward from a vertex x.

Proposition 3.3.8. Let B be a two rowed shape crystal of type An. Let x ∈ B such that

Ai(x) = Bi(x) and fi(x) 6= 0, fi+1(x) 6= 0, fi−1(x) 6= 0. Then we have the following:

(a) If Ai+1(x) = Bi+1(x) and Ai−1(x) ≥ Bi−1(x), then

fi−1f
2
i fi+1(x) = fifi−1fi+1fi(x) = fifi+1fi−1fi(x) 6= fi+1f

2
i fi−1(x).

(b) If Ai+1(x) < Bi+1(x) and Ai−1(x) > Bi−1(x), then

fi−1f
2
i fi+1(x) = fifi−1fi+1fi(x) = fifi+1fi−1fi(x) = fi+1f

2
i fi−1(x).

Proof. We begin by proving the equalities in (a). By Lemma 3.3.5, applying fi to x changes

the i in γi(x) to i + 1. As a result, Bi(fi(x)) = Bi(x) + 1 and Bi−1(fi(x)) = Bi−1(x) − 1.

The other quantities remain unchanged. Hence, applying fi+1 to fi(x) changes the i + 1 in

γi+1(x) to i + 2. As a result, Bi(fi+1fi(x)) = Bi(fi(x)) − 1 = Bi(x). Applying fi−1 to fi(x)

changes the i− 1 in βi−1(x) to i. This implies Ai(fi−1fi(x) = Ai(x) + 1. By Proposition 2.2.1,

fi−1fi+1(fi(x)) = fi+1fi−1(fi(x)). Finally, applying fi to fi+1fi−1fi(x) will change the i in βi(x)

as Ai(fi+1fi−1fi(x)) = Ai(x) + 1 and Bi(fi+1fi−1fi(x)) = Bi(x).

We now consider the chain beginning with the application of fi+1. By Lemma 3.3.5, applying

fi+1 to x changes the i+1 in γi+1(x) to i+2. This implies that Bi(fi+1(x)) = Bi(x)−1. Hence,

applying fi to fi+1(x) changes the i in βi(x) to i+1. A second application of fi will then change

the i in γi(x) to i + 1. It follows that Bi−1(f
2
i fi+1(x)) = Bi−1(fifi+1(x)) − 1 = Bi−1(x) − 1.

Therefore, applying fi−1 changes the i−1 in βi−1(x). Hence, fi−1f
2
i fi+1(x) = fifi−1fi+1fi(x) =

fifi+1fi−1fi(x) as the order in which the crystal operators is applied does not change which

entries are changed.

It remains to be seen that fi+1f
2
i fi−1(x) 6= fi−1f

2
i fi+1(x). We split into two cases. First,

suppose that Ai−1(x) > Bi−1(x). Then applying fi−1 to x changes the i − 1 in βi−1(x) to i.

This implies Ai(fi−1(x)) = Ai(x) + 1. Then applying fi to fi−1(x) changes the i in βi(x). A
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second application of fi changes the i in γi(x) to i + 1. Here we have that Ai+1(f
2
i fi−1(x)) >

Bi+1(f
2
i fi−1(x)), so applying fi+1 changes the i + 1 in βi+1(x). This gives the result, as for in

the other three chains, the i+ 1 changed was in γi+1(x).

Now suppose that Ai−1(x) = Bi−1(x). In this case, applying fi−1 to x will change the i− 1

in γi−1(x) to i. This gives the result, as for in the other three chains, the i− 1 changed was in

βi−1(x).

Consider case (b). The proof that fi−1f
2
i fi+1(x) = fifi−1fi+1fi(x) = fifi+1fi−1fi(x) is

the same. Hence, we need to show that if we begin with the crystal operator fi−1 that we

get equality. Since we are assuming that Ai−1(x) > Bi−1(x), applying fi−1 to x changes the

i − 1 in βi−1(x) to i. As a result, Ai(fi−1(x)) = Ai(x) + 1 and Bi(fi−1(x) = Bi(x), implying

Ai(fi−1(x)) > Bi(fi−1(x)). Therefore, applying fi to fi−1(x) changes the i in βi(x) to i + 1.

Then Ai+1(fifi−1(x)) = Ai+1(fi−1(x)) + 1 = Ai+1(x) + 1. Applying fi to fifi−1(x) will change

the i in γi(x) to i + 1. Since Ai+1(f
2
i fi−1(x)) ≤ Bi+1(f

2
i fi−1(x)), applying fi+1 to f2i fi−1(x)

will change the i+ 1 in γi+1(x) to i+ 2. Hence, this sequence of crystal operators matches with

the previous and the result follows.

Proposition 3.3.8 shows that given certain statistics on a tableau, we are guaranteed to have

an HL relation occur. However, it may be possible that there are other circumstances under

which an HL relation occurs in a two rowed shape crystal.

Question 3.3.9. Is it possible to fully characterize when HL relations occur in two rowed

crystals of type An?

To do so, we would need to prove the converse of Proposition 3.3.8.

3.3.2 Rank three intervals in two rowed shape crystals of type An

In this section, we prove that there are no relations among crystal operators in rank three inter-

vals of two rowed shape crystals of type An that are not implied by the degree two Stembridge

relation,

fifj(x) = fjfi(x).

Recall the definition of rank given in Section 1.2.

Definition 3.3.10. Let P be a poset and let u, v ∈ P with u ≤ v. The rank of the interval

[u, v] is the length of the longest saturated chain in [u, v].

Note that in the definition above, if a poset is graded, the rank of an interval [u, v] is the

length of any maximal saturated chain. Crystal posets are graded as seen in Lemma 2.3.1.

Let [u, v] be a rank three interval in a two rowed shape crystal of type An. Suppose that

there exist two saturated chains C1 = u l x1 l x2 l v and C2 = u l y1 l y2 l v, that are not
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connected by a sequence of degree two Stembridge moves, see Figure 3.3. Since any saturated

chain from u to v uses the same multiset of edge labels, there are at most three distinct crystal

operators used along any saturated chain from u to v. The possible edge labelings of C1 and C2

are displayed in Figure 3.4. We will prove that the saturated chains C1 and C2 must actually be

connected by a sequence of degree two Stembridge moves. We split the proof into two lemmas.

u

x1 x2

y1 y2

v

C1 C2

Figure 3.3: Theorem 3.3.14: Rank three interval

Lemma 3.3.11. Let B be a two rowed shape crystal of type An and let [u, v] ⊆ B be such that

rk([u, v]) = 3. Suppose v = fkfjfi(u) = fjfifk(u) as seen in Figure 3.4 (a). Then all saturated

chains from u to v are connected by a sequence of degree two Stembridge moves.

Proof. We note that case (b) in Figure 3.4 is the same as case (a) under the map sending i to

j, j to k and k to i. In order to prove the result, we need to show that fifk(u) = fkfi(u), i.e.

there is an edge missing in the poset in (a). Recall, given any vertex in a crystal graph, there

is at most one outgoing edge labeled i and at most one incoming edge labeled i for any i ∈ [n].

As a result, we must have that i 6= k and j 6= k. However, it is possible that i = j. Suppose for

contradiction that fifk(u) 6= fkfi(u). Then, by Stembridge axioms, we must have

fif
2
kfi(u) = fkf

2
i fk(u).

From here, we have two possibilities to consider: i = j and i 6= j.

First, suppose that i = j. This is displayed in Figure 3.5. This contradicts the result seen

in [11], namely that Stembridge upper bounds are least upper bounds. Hence, in this case we

must have fifk(u) = fkfi(u) as desired.
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(a)

u

x1 x2

y1 y2

v

i k

j i

k j

(b)

u

x1 x2

y1 y2

v

i j

j k

k i

(c)

u

x1 x2

y1 y2

v

i k

j j

k i

Figure 3.4: Possible labelings on rank three intervals

Now, consider the case where i 6= j. Since there is a degree four Stembridge relation above

u, we must have |i− k| = 1. First, suppose that k = i+ 1. By Remark 3.3.7, we know applying

fk to u will change the k in γk(u) and applying fi to fk(u) changes the i in βi(u).

Since fjfifk(u) = fkfjfi(u) by assumption, we must have that applying fi to u changes the

i in βi(u) to i+ 1 and applying fk to fjfi(u) changes k in γk(u). Then applying fk to fi(u) will

change the k in βk(u), as explained in Remark 3.3.7. As a result, we must have that applying

fj to fi(u) causes the application of fk to fjfi(u) to change the k in γk(u). However, since fk

applied to fi(u) changes k in βk(u), we must have

Ak(fi(u)) > Bk(fi(u)),

and similarly,

Ak(fjfi(u)) ≤ Bk(fjfi(u)).

As a result, applying fj to fi(u) must either

1. decrease the number of appearances of k = i+ 1 in the row one, or

2. increase the number of appearances of k + 1 = i+ 2 in row two.

The only way for either of these possibilities to occur is if j = i + 1. This contradicts the fact

that k 6= j. Therefore, we must have fifk(u) = fkfi(u) as desired.

Finally, consider the case where |i − k| = 1 and i = k + 1. Then applying fi to u changes

the i in γi(u) and applying fk to fi(u) changes the k in βk(u). Since fkfjfi(u) = fjfifk(u),

we must have that applying fi to fk(u) changes the the i in γi(u). By Remark 3.3.7, we must
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u

v

i k

i i

k i

k

k

i
k

Figure 3.5: Lemma 3.3.11: Case where i = j

have that applying fk to u changes the k in γk(u). Then as in the previous case, we must have

that the application of fj to fi(u) either decreases the number of k in the first row or increases

the number of k + 1 in the second row. This can only happen if k = j which is not possible.

Therefore, we must have fifk(u) = fkfi(u) as desired.

We now consider the rank three interval seen in Figure 3.4 (c).

Lemma 3.3.12. Let B be a two rowed shape crystal of type An and let [u, v] ⊆ B be such that

rk([u, v]) = 3. Suppose v = fkfjfi(u) = fifjfk(u) as seen in Figure 3.4 (c). Then all saturated

chains from u to v are connected by a sequence of degree two Stembridge moves.

Proof. Recall, every vertex in a crystal graph has at most one incoming edge labeled l and at

most one outgoing edge labeled l. Therefore, we must have that i 6= k. If either i = j or k = j

then the proof is the same as seen in the first case of Lemma 3.3.11. Therefore, assume that

i, j, and k are all distinct. Our aim is to show that

fifk(u) = fkfi(u), and fjfkfi(u) = fjfifk(u) = fkfjfi(u) = fifjfk(u), (3.3)

or

fj(u) 6= 0 and fifk(fj(u)) = fkfi(fj(u)). (3.4)

These two scenarios are displayed in Figure 3.6. If none of i, j and k are consecutive, then the

crystal operators all commute and the result follows.

Suppose that two of the three labels are consecutive and the third is not consecutive with

either of the other two. First, assume that i and j are consecutive. Since i and k are not
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(3.3)

u

x1 x2

y1 y2

v

i k

j j

k i

k i

j

(3.4)

u

x1 x2

y1 y2

v

i k

j j

k i

j

i k

Figure 3.6

consecutive, |i− k| > 1 and fifk(u) = fkfi(u). Similarly, since j and k are not consecutive, we

will have fjfk(fi(u)) = fkfj(fi(u)) and the desired result occurs, namely Equation 3.3 holds

and [u, v] is seen in Figure 3.6 (3.3).

Instead, consider the case where i and k are consecutive. Without loss of generality, assume

k = i+ 1. Suppose that fifk(u) 6= fkfi(u). This implies that fif
2
kfi(u) = fkf

2
i fk(u). In partic-

ular, fi(fk(u)) 6= 0, fj(fk(u)) 6= 0 and fj(fi(u)) 6= 0, fk(fi(u)) 6= 0. Since we are assuming i and

j are not consecutive and k and j are not consecutive, we have fifj(fk(u)) = fjfi(fk(u)) and

fjfk(fi(u)) = fkfj(fi(u)). This then gives the result, i.e. Equation (3.3) holds. Therefore, if we

assume exactly two of the three crystal operators are consecutive, then the result holds.

Finally, assume that i, j, and k are all consecutive. This splits into two cases: (i) k < i < j,

i.e. k = i− 1 and j = i+ 1, and (ii) i < j < k, i.e. i = j − 1 and k = j + 1. See Remark 3.3.13

to see why we do not need to consider the case where j < i < k.

First, we work through Case (i). If fifk(u) = fkfi(u), then we have the desired result since

fk and fj always commute. Therefore, we need to consider for contradiction the case where

fif
2
kfi(u) = fkf

2
i fk(u). The argument needed is identical to that given in the proof of Lemma

3.3.11 where i 6= j. Namely, by Remark 3.3.7, we either must have j = i or j = k. As a result,

we must have fifk(u) = fkfi(u) as desired.

Finally, we work through Case (ii) where the labels i, j, and k are consecutive and i < j < k.

We do so by proving that there is one case in which the equalities in Equation (3.3) do not

hold, but in this case the equalities in Equation (3.4) do hold. In either case, we have that the

two saturated chains are connected by a sequence of degree two Stembridge moves.

Assume that the equations in (3.3) do not hold, namely assume fjf
2
kfj(fi(u)) = fkf

2
j fk(fi(u))
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and fif
2
j fi(fk(u)) = fjf

2
i fj(fk(u)). Then we have the picture seen in Figure 3.7. By Proposition

3.3.6, we must have

Ai(fk(u)) > Bi(fk(u)) and Aj(fk(u)) = Bj(fk(u)),

or

Ai(fk(u)) = Bi(fk(u)) and Aj(fk(u)) ≤ Bj(fk(u)).

(ii)

x y

i

i− 1

i k

j k ji

k

j

ik

k i

j j

Figure 3.7: Lemma 3.3.12: Case (ii)

Since fkfjfi(u) = fifjfk(u), the same box labeled j will be incremented with the application

of fj regardless of the chain. By Remark 3.3.7, for any degree four Stembridge relation

flf
2
mfl(x) = fmf

2
l fm(x),

where l < m has the property that the first application of fm along the chain with label sequence

(m, l, l,m) changes the m in γm(x). In our case, this implies that each crystal operator fj in

the chains fkfjfi(u) = fifjfk(u) changes the j in γj(u). This is because these edges are also in

the chain with the Stembridge relation fjf
2
i fj(u) = fif

2
j fi(u) where j > i.

If we think of the chain in red as part of the chain fkf
2
j fk(x), then the first application
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of fj changes the j in βj(fk(x)) and the second application of fj changes the j in γj(fk(x)).

This implies that Aj(x) = Bj(x) and Ak(x) = Bk(x). The only way to have these same j’s

changed when considering the chain in red as part of the chain fif
2
j fi(y) is if Ai(y) > Bi(y)

and Aj(y) = Bj(y) as can be seen in Remark 3.3.7. Otherwise, we would have that when

considering the chain in red as part of the chain fif
2
j fi(y), the first application of fj changes

the j in γj(fk(x)) where fk(x) = fi(y). Therefore, if Ai(y) ≥ Bi(y) and Aj(y) 6= Bj(y) then

fjfk(x) = fkfj(x) and fjfi(y) = fifj(y) as desired.

Hence, we need to prove that if

Aj(x) = Bj(x) and Ak(x) = Bk(x)

and

Ai(y) > Bi(y) and Aj(y) = Bj(y),

then the equalities in (3.4) hold.

We begin by proving that fj(u) 6= 0. We know applying fi to u changes the i in βi(u)

implying that Aj(u) < Bj(u) since Aj(u) = Aj(x)− 1 and Bj(u) = Bj(x). In order to apply fj

and get something nonzero, there must be a j in the row of u. If there is not, then we would

have fj(fi(u)) = 0 and fj(fk(u)) = 0 since Aj(x) = Bj(x) and Aj(y) = Bj(y). However, we are

assuming fj(fi(u)) 6= 0 and fj(fk(u)) 6= 0 implying that fj(u) 6= 0 as desired.

Therefore, by Proposition 3.3.6, fjfi(u) = fifj(u) since Ai(u) > Bi(u) (because we are

assuming Ai(y) > Bi(y) and y = fk(u)) and Aj(u) < Bj(u). Similarly, fjfk(u) = fkfj(u) since

Aj(u) < Bj(u) and Ak(u) = Bk(u) (because we are assuming Ak(x) = Bk(x) and x = fi(u)).

This completes the proof.

Remark 3.3.13. If we assume that j < i < k where fifjfk(u) = fkfjfi(u) then since |j−k| > 1,

we have that fj(u) 6= 0 since fj(fk(u)) 6= 0. If these saturated chains are not connected by a

sequence of degree two Stembridge moves, then we must have that fi and fj are involved in a

degree four Stembridge relation upward from u. This implies that fi changes i in γi(u) and fj

applied to fi(u) changes the j in βj(u). Similarly, fi and fk must be in a degree four Stembridge

relation upward from u implying that fk applied to u changes the k in γk(u). As a result, we

must have that Ai(u) = Bi(u) and fi applied to fjfk(u) changes the i in βi(u). As a result,

the original degree three relation fifjfk(u) = fkfjfi(u) would not hold. Therefore, in the case

where j < i < k, either all the crystal operators commute, or the original degree three relation

does not hold.

Combining these two lemmas gives the following theorem.

Theorem 3.3.14. Let B be a two rowed shape crystal of type An and let [u, v] ⊆ B be such that

rk([u, v]) = 3. Then all saturated chains from u to v are connected by some sequence of degree
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two Stembridge moves.

In the following theorem, we use the term weak subposet. A weak subposet Q of P is a

subset of the elements of P with a partial ordering such that if x ≤ y in Q, then x ≤ y in P .

Recall, a subposet Q of P is a subset of the elements of P such that x ≤ y in Q if and only if

x ≤ y in P , see [22].

Theorem 3.3.15. Let B be a two rowed shape crystal of type An. Let u, v ∈ B such that [u, v]

is a weak subposet of B where [u, v] is one of the rank three intervals seen in Figure 3.8. Then

as a subposet [u, v] ∼= B3, the Boolean lattice with three atoms.

(a)

u

v

j i k

i k j

k j i

(b)

u

v

j i k

i j k j

k j i

Figure 3.8: Proposition 3.3.15: Rank three intervals isomorphic to B3

Proof. To begin, we will show that if there is a weak subposet as seen in Figure 3.8 (a), then

this implies the additional edge shown in the interval in Figure 3.8 (b). Then it will suffice to

show that if Figure 3.8 (b) is a weak subposet, then [u, v] ∼= B3 as a subposet.

Let i, j, k ∈ [n] be arbitrary. Suppose v = fkfjfi(u) = fifkfj(u) = fjfifk(u). Since there is

at most one outgoing edge labeled i for any i ∈ [n] and at most one incoming edge labeled i for

any i ∈ [n], we have that i, j, and k are distinct. Therefore, at least one pair of the three labels

are not consecutive. Without loss of generality, suppose that |i− j| > 1. Then fifj(u) = fjfi(u)

and the picture becomes that of (b) as desired.

Suppose we are in case (b). If none of i, j and k are consecutive, then the crystal operators

fi, fj , and fk all commute with each other and we have [u, v] ∼= B3 as desired.

Suppose that two of the i, j and k are consecutive but the third is not consecutive with the
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other two. Without loss of generality, suppose |i − k| = 1, |i − j| > 1 and |j − k| > 1. Then

we have fifj(u) = fifj(u) and fjfk(u) = fkfj(u). Similarly, we have eiej(u) = ejei(u). This

immediately implies that fifk(u) = fkfi(u) which gives the result.

Suppose that i, j and k are all consecutive. Then there are two possibilities for what our

picture becomes. These possibilities are j < k < i with k = j + 1, i = j + 2 and i < k < j with

k = i+ 1 and j = i+ 2 as seen in Figure 3.9.

u

j < k < i

y

v

j i k

i j k j

k j i

u

i < k < j

v

i j k

k j i j

j k i

Figure 3.9: Theorem 3.3.15: Case where i, j, and k are all consecutive

While these cases are very similar, there are slightly different proof techniques needed. In

either case, we need to prove that fk commutes with both fi and fj at u.

We begin with the case where j < k < i seen on the left in Figure 3.9, with k = j + 1 and

i = j + 2. Note that since |j − i| = 2 and ei(v) 6= 0 and ej(v) 6= 0, we have eiej(v) = ejei(v).

This directly implies that fifk(u) = fkfi(u).

Next, we show that fkfj(u) = fjfk(u). Suppose by way of contradiction that fkfj(u) 6=
fjfk(u), which implies that fkf

2
j fk(u) = fjf

2
kfj(u). Note that since there is a degree four

Stembridge relation above u involving the crystal operators fj and fk, with j < k we must

have that applying fk to u changes the k in γk(u) by Remark 3.3.7. Since we are assuming

that fkfifj(u) = fifjfk(u), if applying fj to u changes the rightmost j in row m ∈ {1, 2}, then

applying fj to fk(u) changes the same j in the same row m. This implies that applying fj to

u changes the j in βj(u) by Remark 3.3.7.

Let y = fj(u). Then applying fk to y must change the i in βi(y), else we would have

that fkfj(u) = fjfk(u), which we are assuming is not true. Again, as we are assuming that

76



fjfk(u) 6= fkfj(u), there must be a degree four Stembridge relation above y involving the

crystal operators fk and fi. This leads to a contradiction. Consider the action of the crystal

operator fk applied to fi(y) as part of the chain with edge label sequence (j, i, k). Here, we have

fk changes the k in γk(fi(y)). However, considering the action of this crystal operator fk as

part of the chain beginning at y with edge label sequence (k, i, i, k), we see that it changes the

k in βk(fi(y)) by Remark 3.3.7. As these cannot simultaneously occur, our original assumption

must be false and we have fkfj(u) = fjfk(u) as desired.

Now we turn to the case with i < k < j seen on the right in Figure 3.9, with k = i + 1

and j = i + 2. We begin by proving that fkfj(u) = fjfk(u). Suppose for contradiction that

fkfj(u) 6= fjfk(u) implying that fkf
2
j fk(u) = fjf

2
kfj(u). By Remark 3.3.7, this says that the

application of fj to u changes j in γj(u) and the application of fk to fj(u) changes the k in

βk(u). Since we are assuming fkfifj(u) = fifjfk(u), the application of fj to fk(u) also changes

the j in γj(u).

Again, by Remark 3.3.7, this implies that the application of fk to u changes the k in

γk(u). However, we have that fk(fj(u)) 6= 0 and fi(fj(u)) 6= 0 implying there is a Stembridge

relation above fj(u) involving the crystal operators fk and fi. As we know that fk changes

the k in βk(u) and k > i, this Stembridge relation must be degree two. Namely, we have

fkfi(fj(u)) = fifk(fj(u)). However, this can only occur if fjfk(u) = fkfj(u) as desired.

As in the previous case, we have fifk(u) = fkfi(u). This is because ei(v) 6= 0 and ej(v) 6= 0

where |i−j| > 1, implying that eiej(v) = ejei(v). This implies that fifk(u) = fkfi(u) as desired.

Hence, in either case, if the weak subposet [u, v] is that seen in (a) or (b), we have [u, v] ∼= B3

as desired.

3.3.3 Analyzing arbitrary rank intervals

Hersh and Lenart gave an example of a family of intervals of arbitrary rank with disjoint

saturated chains in [11]. We looked at this example briefly in Section 1.4. These intervals come

from a two rowed shape crystal of type An. Now that we have a new way to analyze Stembridge

relations in two rowed shape crystals, we revisit these intervals.

Recall the two rowed shape crystal B of type An crystal with highest weight λ = (n+ 1, n)

and the interval [u, v] ∈ B where

u =
1 1 1 2 · · · n− 2 n− 1

2 3 4 5 · · · n + 1

, v =
1 1 2 · · · n− 2 n− 1 n

3 4 5 · · · n + 1 n + 1

,

Note that to get from u to v, we increment 1, 2, 3, ..., n−1 in the first row once and 2, 3, ..., n−1, n

in the second row once.
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Proposition 3.3.16. Let B be the type An crystal of shape (n+ 1, n) and let u, v be as defined

above. Then the degree four Stembridge relation does not occur in the interval [u, v].

Proof. Let x ∈ [u, v] and suppose that the degree four Stembridge relation holds upward from

x, i.e. fif
2
i+1fi(x) = fi+1f

2
i fi+1(x). We will show that fif

2
i+1fi(x) = fi+1f

2
i fi+1(x) /∈ [u, v].

Since f1 and fn are each applied exactly once along any saturated chain from u to v, we cannot

have i = 1 or i+ 1 = n. Therefore we must have that 2 ≤ i ≤ n− 2. In order to have a degree

four Stembridge relation upward from x, there are three possibilities for the relative values of

Ai(x), Bi(x), Ai+1(x), and Bi+1(x) as seen in Proposition 3.3.6:

1. Ai(x) = Bi(x) and Ai+1(x) = Bi+1(x),

2. Ai(x) = Bi(x) and Ai+1(x) < Bi+1(x),

3. Ai(x) > Bi(x) and Ai+1(x) = Bi+1(x).

For x ∈ [u, v] and j with 2 ≤ j ≤ n−1 there is at most two appearances of j in the first row

of x. Similarly, for any j with 3 ≤ j ≤ n there is at most two appearances of j in the second

row of x.

Suppose we are in the case where Ai(x) = Bi(x) and Ai+1(x) = Bi+1(x). We cannot have

Ai+1(x) = 0 and Bi(x) = 0, as this would imply that fi+1(x) = 0. So at least one of these must

be nonzero. If Ai(x) = Bi(x) = 0, then this implies that fi has been applied along the chain

from u to x. But on any saturated chain from u to v, fi occurs exactly twice. Hence, we cannot

have Ai(x) = Bi(x) = 0. Similarly, we cannot have Ai+1(x) = Bi+1(x) = 0, as this would imply

that fi+1 has been applied somewhere along the chain from u to x, but fi+1 is applied exactly

twice along a saturated chain from u to v. We also cannot have Ai(x) = Bi(x) = 2 since having

two appearances of i+ 1 in the second row would imply that fi has already been applied once

along the saturated chain from u to x. Similarly, we cannot have Ai+1(x) = Bi+1(x) = 2 since

this implies that fi has previously been applied.

As a result, we must have Ai(x) = Bi(x) = 1 and Ai+1(x) = Bi+1(x) = 1. As seen in

Remark 3.3.7, applying fi to x changes the i in γi(x) to i + 1 and applying fi+1 to x changes

the i+ 1 in γi+1(x) to i+ 2. Applying fi+1 to fi(x) changes the i+ 1 in γi+1(x) to i+ 2. When

applying fi+1 for the second time, there would be two appearances of i+ 2 in the second row of

fi+1fi(x) compared to one appearance of i+ 1 in the first row. Therefore by the signature rule,

fi+1 would change the remaining i+ 1 in the second row to i+ 2. This element is no longer in

the interval [u, v]. Therefore, we cannot have Ai(x) = Bi(x) and Ai+1(x) = Bi+1(x) and have a

degree four Stembridge relation that lies entirely in the interval [u, v].

Now, suppose that Ai(x) = Bi(x) and Ai+1(x) < Bi+1(x). As before, we must have Ai(x) =

Bi(x) = 1. There are two possibilities for the relation between Ai+1 and Bi+1. First, we could
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have Ai+1(x) = 0 and Bi+1(x) = 1 or 2. This would imply that fi+1 has been previously applied

changing the i+ 1 in the first row to i+ 2. Else, we could have Ai+1(x) = 1 and Bi+1(x) = 2.

The only way to have two appearances of i + 2 in the second row of x would be for fi+1 to

have been previously applied. In either case, we cannot have the entirety of the degree four

Stembridge relation in the interval [u, v] since fi+1 is applied exactly twice along any saturated

chain.

Finally, assume that Ai(x) > Bi(x) and Ai+1(x) = Bi+1(x). As seen previously, we must

have that Ai+1(x) = Bi+1(x) = 1. If Ai(x) = 1 and Bi(x) = 0, then this implies that fi has

been applied along any saturated chain from u to x. This cannot happen. Instead, assume

Ai(x) = 2 and Bi(x) = 1. Applying fi+1 to x changes the i + 1 in γi+1(x) to i + 2. There are

no occurrences of i + 1 in row two of fi+1(x) so applying fi to fi+1(x) changes the rightmost

i in βi(x) to i + 1. A second application of fi again changes the i in the first row of fifi+1(x)

to i + 1. Then we have f2i fi+1(x) /∈ [u, v]. Therefore, the relation fif
2
i+1fi(x) = fi+1f

2
i fi+1(x)

does not occur within the interval [u, v].

While we still have more to study with this interval, we do know the number of connected

components in the open interval (u, v).

Proposition 3.3.17. For n ≥ 4, there are exactly two connected components in the interval

(u, v) ⊆ B, the crystal of type An of shape (n+ 1, n) for u and v as defined above. One contains

the saturated chain with edge label sequence (1, 2, 2, ..., n − 1, n − 1, n), the other contains the

saturated chain with edge label sequence (n, n− 1, n− 1, ..., 2, 2, 1).

Proof. To begin, we recall that in [11], Hersh and Lenart proved that there are at least two

connected components since the saturated chain with edge label sequence (1, 2, 2, .., n− 1, n−
1, n) is in a distinct component from the saturated chain with edge label sequence (n, n−1, n−
1, ...2, 2, 1). Additionally, they showed that the connected component containing the saturated

chain with edge label sequence (1, 2, 2, ..., n − 1, n − 1, n) only contains saturated chains that

begin with the label 1 and end with the label n.

We will show that for each i ∈ {2, ..., n−1}, every saturated chain whose edge label sequence

begins with i is in the same connected component as saturated chains whose edge label begins

with n. This will show that all saturated chains whose edge label sequence does not begin

with 1 are in the same connected component as the saturated chain with edge label sequence

(n, n− 1, n− 1, ..., 2, 2, 1).

For i ∈ {2, , ..., n − 2}, we have fifn(u) = fnfi(u). Therefore, it suffices to prove that

fifn(u) = fnfi(u) ≤ v for all i ∈ {2, ..., n− 2}. We claim that

(i, n, n− 1, n− 1, ..., i+ 1, i+ 1, i− 1, i− 1, ...2, 2, 1, i)
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is the edge label sequence of a saturated chain from u to v. Applying fi to u will change

the i in γi(u) to i + 1. Similarly, applying fn to fi(u) changes the n in γn(u). For each j ∈
{2, ..., n − 2} with j 6= i, the first application of fj changes βj(u) and the second application

of fj changes γj(u) as can be seen by the signature rule. This includes the application of fi−1

since the i in row two was changed to i + 1 when fi was applied at the beginning of the

chain. Finally, applying f1 changes the 1 in β1(u) and the final application of fi changes i in

βi(u). The resulting tableau is v. Therefore, we have a saturated chain with edge label sequence

(i, n, n−1, n−1, ..., i+1, i+1, i−1, i−1, ...2, 2, 1, i) that is in the same connected component as

the saturated chain with edge label sequence (n, i, n−1, n−1, ..., i+1, i+1, i−1, i−1, ...2, 2, 1, i)

as desired.

The only remaining task is to show that any saturated chain beginning with the label n− 1

is in the same connected component as the saturated chain with label sequence (n, n − 1, n −
1, ..., 2, 2, 1). Using the signature rule, we can see that

fn−1fn−2fnfn−1(u) = fn−2fn−1fn−1fn(u).

Therefore, there exists a saturated chain from u to v with edge label sequence (n− 1, n, n−
2, n− 1, n− 2, n− 3, n− 3, ..., 2, 2, 1). As a result, this interval will have exactly two connected

components.

Note that this result does not hold when n = 3. As can be seen in Figure 1.13, when n = 3,

the interval (u, v) has exactly three connected components.

3.4 Discussion and open questions

In this chapter, we tried to understand relations among crystal operators in two special cases:

hook shape crystals of type An and two rowed shape crystals of type An. Using the combinatorial

tableaux model for crystals, we were able to characterize when different Stembridge relations

occur from information about the semistandard Young tableau. From this, we have the following

natural question.

Question 3.4.1. Are there any other shapes or types for which an in depth study of crystal

graphs is possible?

Additionally, we see that the tableaux model gave more combinatorial data to study, namely

the structure of the semistandard Young tableau. There are various models that can be used

to represent crystals and therefore we ask the following question.

Question 3.4.2. Would other models for crystals provide insight for further results about re-

lations among crystal operators?
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At this time, we have yet to consider the use of other models.

Finally, we looked into whether hook shape crystal posets were lattices. Although we know

that in general, crystals (except type A2) are not lattices, it may be possible that certain classes

of crystal posets are lattices.

Question 3.4.3. Does there exist a list of suitable conditions under which an interval in a

crystal poset is a lattice?

We have conjectured that hook shape crystals with highest weight λ = (2, 1, ..., 1) are

lattices. We hope to prove this and find other instances where certain classes of crystals are

lattices.
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