
ABSTRACT

RUDDY, MICHAEL GERARD. The Equivalence Problem and Signatures of Algebraic Curves.
(Under the direction of Irina Kogan and Cynthia Vinzant).

In this thesis we study the application of the differential signature construction to the group

equivalence problem for complex algebraic curves under the projective action and its subgroups.

Given such an action G, a signature map assigns to a generic algebraic curve an irreducible

polynomial, called the signature polynomial, with the property that two curves are G-equivalent

if and only if they have the same, up to scaling, signature polynomial. We show that for any action

of G, one can construct a pair of rational differential invariants, called classifying invariants, that

define a signature map. Given a pair of classifying invariants, elimination algorithms allow one to

straightforwardly compute a curve’s signature polynomial. In practice, however, these algorithms

are computationally intensive, and determination of properties of signature polynomials without

their explicit computation is of interest. We derive a formula for the degree of the signature

polynomial of a curve in terms of the curve’s degree, the size of its symmetry group, and some

quantities depending on the choice of classifying invariants. We show that for a given set of

classifying invariants and a generic curve of fixed degree, the signature polynomials share the

same degree, which is an upper bound. We also show that they share the same monomial support

and the same genus. For the projective group and five of its subgroups (the affine, special affine,

similarity, Euclidean, and special Euclidean groups), we give sets of classifying invariants and

use the degree formula to derive the degree of the signature polynomial for a generic curve as a

quadratic function of the curve’s degree.
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CHAPTER 1

Introduction

In the view of the Felix Klein Erlangen program, geometry is the study of properties invariant

under some group of transformations. For example, one can consider Euclidean geometry as the

study of properties invariant under rigid motions. From this perspective, the problem of deciding

equivalence of objects under a group of transformations G, is akin to asking the question: “when

are two object really the ‘same’ with respect to some group G?” Many problems in mathematics

and applications can be reformulated in this manner, and equivalence problems are closely

related to many important classification problems.

In this thesis, we study the application of the differential signature construction to the

equivalence problem of planar algebraic curves under the action of the projective group and its

subgroups. This topic falls into both the domain of differential geometry and classical invariant

theory, which studies polynomials under linear changes of variables (see [27] or [46]).

The differential signature construction originated from Cartan’s method for solving equiva-

lence problems for smooth manifolds under Lie group actions [13]. In [11], the authors proposed

the use of signatures of smooth curves for object recognition, and it has subsequently been used

in a variety of applications. For example, in [7] and [1] numerical schemes that approximate

signatures using joint invariants are studied, and these numerical methods are used in [34] to

develop a method to automatically solve jigsaw puzzles. In [24] the authors use signature curves

of the contours of melanomas and benign moles to examine their global and local symmetries.

The differential signature construction for smooth planar curves consists of the following

steps: (1) an action of a group on a plane is prolonged to the jet space of curves of sufficiently

high order; (2) on this jet space, a pair of independent differential invariants is constructed; (3)
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the restriction of this pair to a given a curve parametrizes the signature curve. In this way one

can assign to each smooth curve another planar curve, the curve’s signature. Since the signature

curve is constructed using invariants, two G-equivalent curves will have the same signature.

In principle, a pair of independent differential invariants can always be found using the

Fels-Olver moving frame method [21, 48], a modern generalization of the classical moving frame

method formulated by Cartan [12]. However, these methods are local in nature; the invariants

are often only locally defined and give rise to signatures which can only determine when two

smooth curves contain segments that are G-equivalent. In the case of smooth curves under rigid

motions, these issues are well-studied and demonstrate the challenges of using signatures to

solve the group equivalence problem for smooth curves [32, 33, 44]. For analytic curves local

equivalence implies global equivalence, and hence the equality of curves’ signatures is sufficient

to conclude that the curves are equivalent.

In the case of irreducible algebraic curves local equivalence also implies global equivalence.

Therefore, when restricting to the class of algebraic curves, under some mild conditions two

curves are G-equivalent if and only if they have the same signature [10]. Additionally, when the

differential invariants are rational, the map between a curve and its signature is a rational map.

In this case the signature of an irreducible algebraic curve is itself an irreducible algebraic curve,

and one can use computational algebraic geometry methods such as Gröbner basis algorithms

and numerical algebraic geometry to study signature curves. In particular one can use elimination

to compute the signature polynomial of a curve, the minimal polynomial vanishing on the curve’s

signature.

In [10] the authors provide an elimination algorithm to compute the signature polynomial

of an algebraic curve as well as study the application of signature curves to deciding whether

a planar curve is the image of a given spatial curve under a central or parallel projection. In

practice, elimination algorithms are computationally intensive, and directly computing signature

polynomials is generally only feasible for curves of low degree. For this reason it is advantageous

to determine properties of signature polynomials without their explicit computation. Not only can

prior knowledge of signature curves help distinguish inequivalent curves, but it can potentially be

used to construct signature polynomials and to take advantage of exciting, ongoing developments

in computational algebraic geometry to study signature curves.

Given an unknown polynomial, a natural first question to ask is, “what is the polynomial’s

degree?” Answering this question for signature polynomials is the main focus of this thesis, but

along the way we also note other interesting properties of signature polynomials. In particular

we see that for a generic algebraic curve of fixed degree, the signature polynomials share many

properties. We restrict our attention to irreducible algebraic curves and the actions of the

projective group and its subgroups on the plane. Studying the curves under these actions is

related to problems of classical invariant theory and also relevant to problems in image science.
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Many of the results here appear in [38].

The thesis is structured as follows. In Chapter 2 we detail the group equivalence problem for

curves and review some of the previous work on using differential invariants to study smooth

curves under Lie group actions. We also cover some basic facts about algebraic geometry,

algebraic curves, and algebraic groups, as well as prove some general results about the degree of

the image of an algebraic curve under a rational map.

In Chapter 3 we first establish the existence of a rational classifying set of differential

invariants that defines a signature map which characterizes equivalence classes of non-exceptional

algebraic curves. We show that a generic algebraic curve is non-exceptional. We then derive a

formula for the degree of the signature polynomial of a given non-exceptional algebraic curve.

The chapter concludes with the study of monomial support and genus of signature polynomials

of a generic algebraic curve of fixed degree and some illustrative examples.

In Chapter 4 we provide explicit sets of classifying invariants for the projective group and

a selection of its subgroups. We show that one can then use the degree formula established in

Chapter 3 to determine explicit upper bounds of the degree of the curve’s signature polynomial,

which are tight for a generic algebraic curve. We also explore the signatures of the class of

algebraic curves known as Fermat curves. In Chapter 5 we discuss some future directions for

exploration, including possible applications to invariant theory.
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CHAPTER 2

Background

In this chapter we discuss the differential signature construction for smooth curves and cover

some of the necessary algebraic geometry background with an emphasis on algebraic curves and

groups.

Section 2.1 starts with a description of the group equivalence problem for curves. We then

follow the classical construction of Euclidean and affine curvature using moving frames. This was

generalized by Cartan to solve equivalence problems of submanifolds under Lie group actions

[13]. Its modern generalization is the Fels-Olver moving frame method [21]. For planar curves

under the action of a Lie group G, this method can be used to construct G-invariant curvature,

which is the starting point for the differential siganture construction for smooth curves [11]. We

discuss this construction and how it can be used to study the group equivalence for smooth

curves.

The next section covers some introductory algebraic geometry, highlighting Bezout’s theorem

and Bertini’s theorem on smoothness and their role in studying the intersection mutliplicities of

algebraic curves. We use both of these theorems to prove results about the degree of the image

of an irreducible algebraic curve under a rational map. Finally we conclude with some basic

facts about algebraic groups and the associated ring of rational invariants. In Section 2.3.1 we

introduce the main group actions of study in Chapter 4: the action of the projective, affine,

special affine, similarity, Euclidean, and special Euclidean groups on C2.
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2.1 Equivalence problem and differential signatures

Definition 2.1.1. A map Φ : G× S → S defines an action of the group G on the set S if it

satisfies the following two properties:

1. Φ(e, p) = p, for all p ∈ S, where e is the identity in G, and

2. Φ(h,Φ(g, p)) = Φ(h · g, p), for all h, g ∈ G and p ∈ S.

We use the following abbreviation Φ(g, p) = g · p for the action when the context is clear.

Definition 2.1.2. A group G is a Lie group if G is a smooth manifold, and the group

multiplication and inverse maps are smooth.

Definition 2.1.3. A group G is an algebraic group if G is an algebraic variety, and the group

multiplication and inverse maps are regular maps.

A smooth manifold is a topological space that is locally diffeomorphic to Euclidean space (for a

precise definition see [42, pg. 13]). We review the definitions of an algebraic variety and regular

maps in Section 2.2.

Definition 2.1.4. A map between sets f : S → R is invariant under the action of G on S if

f(g · p) = f(p) for all p ∈ S, g ∈ G. If R is a field, we call f an invariant function.

In this thesis, we will mainly be concerned with the actions of these two types of groups: Lie

groups and algebraic groups. For each, we impose certain restrictions on the set S and the group

action map Φ. While we define many of the following objects generally, it is helpful to keep in

mind the motivating cases of the actions of Lie and algebraic groups.

Group G Set S Action Φ Invariants I

Lie group Smooth manifolds Smooth map Smooth functions

Algebraic group Varieties Rational map Polynomial/rational functions

If S is topological space and G is a topological group (see [42, pg. 151]) we can consider the

local action of G on S.

Definition 2.1.5. A topological group G acts locally on a topological space S via the map

Φ : Ω→ S if Ω ⊃ {e} × S is an open subset of G× S and Φ satisfies

1. Φ(e, p) = p, for all p ∈ S and

2. Φ(h,Φ(g, p)) = Φ(h · g, p), for all p ∈ S and g, h ∈ G such that (g, p) and (h · g, p) lie in Ω.
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Remark 2.1.6. The rational action of an algebraic group on a variety, when the base field is R
or C, is a specific instance of the local action of a Lie group. Here open subsets are defined by

the Zariski-topology, but an algebraic group can still be given a smooth structure of a Lie group

[52, Ch. 3, Sec. 2.1.2].

As we are primarily concerned with this scenario, we limit discussion to this special case (see

Section 2.3). In the smooth case, we consider examples of globally defined actions on Euclidean

space, namely subgroups of the general linear group of real matrices GL(n,R).

Example 2.1.7. The group of n× n invertible matrices is the general linear group GL(n,R).

The natural action of GL(n,R) on Rn is given by A · x for A ∈ GL(n,R) and x ∈ Rn.

Considering the action of G on a particular element p ∈ S, yields two important sets, the

stabilizer and the orbit of p. The former denotes the set of elements of G that fix p, and the

latter the image of the map Φ : G→ S defined by Φ(g) = Φ(g, p).

Definition 2.1.8. For an action of G on a set S and an element p ∈ S, the stabilizer of p is

a subgroup of G given by

Gp = {g ∈ G | g · p = p},

while the orbit of p is the set

Gp = {q ∈ S | ∃g ∈ G, g · p = q}.

An action is said to be transitive if there is only one orbit, i.e. Gp = S for all p ∈ S.

Definition 2.1.9. The action of G on S is said to be effective if GS = ∩p∈SGp = {e} and

free if Gp = {e} for all p ∈ S.

In other words an action is effective if the only element of G that fixes each element S is the

identity and free if the only element of G that fixes any element of S is the identity. Clearly a

free action is also effective.

Particularly important are maps on the space that are invariant (Definition 2.1.4) or equiv-

ariant under the action of G. Note that invariant maps are necessarily constant on the orbits of

G in S.

Invariant functions are useful in determining equivalence under the action of G, as for any

two points p, q ∈ S if f(p) 6= f(q) then p and q lie in different orbits. However f(p) = f(q) does

not in general imply that p and q lie in the same orbit. A set of invariants that has this property

is called separating.
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Definition 2.1.10. A set of invariants I = {f1, . . . , fs} is separating on a subset U ⊂ S for

the action of G on S if for any p, q ∈ U ,

q ∈ Gp ⇔ fi(p) = fi(q), i = 1, . . . , s.

Definition 2.1.11. For the action of G on sets S and R, a G-equivariant map f : S → R is

a map such that the following diagram commutes:

R R

S S

g·

f

g·
f

Example 2.1.12. The subgroup of GL(2,R) of orthogonal matrices with determinant one,

SO(2,R) =

{[
cos(θ) sin(θ)

− sin(θ) cos(θ)

] ∣∣∣∣∣ θ ∈ R
}
,

has an effective an action on R2 defined by the map

Φ(g, x, y) 7→ (cos(θ)x+ sin(θ)y,− sin(θ)x+ cos(θ)y).

The group SO(2,R) is isomorphic to the group of rotations of R2. The set of orbits of the action

consists of the origin along with circles centered at the origin, and hence is not transitive. This

action is effective on R2 and free on the subset R2\{(0, 0)}.
The function on R2 given by f(x, y) = x2 + y2 is an invariant function for the action of

SO(2,R). It is also fundamental in the sense that any other invariant for this action can be

written as a smooth function of f . This invariant is also separating; two points lie in the same

orbit if and only if they have the same image under f .

Example 2.1.13. The subgroup of GL(3,R),

SE(2,R) =


 cos(θ) sin(θ) a

− sin(θ) cos(θ) b

0 0 1


∣∣∣∣∣∣∣ a, b, θ ∈ R

 ,

has an effective an action on R2 defined by the map

Φ(g, x, y) 7→ (cos(θ)x+ sin(θ)y + a,− sin(θ)x+ cos(θ)y + b).

The group SE(2,R) is isomorphic to the group of orientation-preserving rigid motions of the

real plane, called the special Euclidean group of transformations of R2, which is generated by

rotations and translations of the plane.
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Example 2.1.14. The subgroup of GL(3,R),

SA(2,R) =


a1 a2 a3

a4 a5 a6

0 0 1


∣∣∣∣∣∣∣ a1a5 − a2a4 = 1, ai ∈ R, 1 ≤ i ≤ 6

 ,

has an effective an action on R2 defined by the map

Φ(g, x, y) 7→ (a1x+ a2y + a3, a4x+ a5y + a6).

The group SA(2,R) is isomorphic to the group of area-preserving transformations of R2, known

as the special affine group.

The actions on R2 defined in Examples 2.1.13 and 2.1.14 on are transitive, and hence the only

invariant maps on R2 are constant.

Classical invariant theory was concerned with determining equivalence classes of homogeneous

polynomials under a linear change of variables, as well as computing generating sets of the

ring of polynomial invariants and the field of rational invariants for this action [46]. The next

example is a simple illustration of a problem of this type.

Example 2.1.15. A conic in R2 is given by the zero set of the polynomial

F (x, y) = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00, (2.1)

where aij ∈ R, 0 ≤ i, j ≤ 2. Any linear change of coordinates preserves the degree of a polynomial,

and thus sends conics to conics. In particular, we can consider the action of SE(2,R) on the

space of such polynomials. The polynomial F can be represented as a matrix where

F (x, y) =
[
x y 1

]
A

xy
1

 ,
where

A =

 a20 a11/2 a10

a11/2 a02 a01/2

a10/2 a01/2 a00

 .
Then for g ∈ SE(2,R) the action can be defined as
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F (x, y) = F (g · (x, y))

=

 cos(θ)x+ sin(θ)y + a

− sin(θ)x+ cos(θ)y + b

1


T

A

 cos(θ)x+ sin(θ)y + a

− sin(θ)x+ cos(θ)y + b

1



=
[
x y 1

]
A

xy
1

 .
Denote the upper left 2x2 submatrix of A as B. One can check that the functions det(A), det(B),

and tr(B) are invariant under the action of SE(2,R). We will show that I = {det(A),det(B), tr(B)}
is a separating set of invariants on the Zariski-open subset defined by det(B) 6= 0. Let F (x, y)

be any conic where det(B) 6= 0. Apply the transformation g to F (x, y), given by

(x, y) 7→
(
x+

a11a01 − 2a02a10
4 det(B)

, y +
a11a10 − 2a20a01

4 det(B)

)
,

which yields

F (g · (x, y)) = F (x, y) = a20x
2 + a11xy + a02y

2 + µ,

where µ = det(A)
det(B) . Since B is a symmetric real matrix, for some θ ∈ R, we can write[

cos(θ) − sin(θ)

sin(θ) cos(θ)

]
·B ·

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
=

[
λ1 0

0 λ2

]
,

where λ1 ≥ λ2, which corresponds to the action of a rotation g ∈ SE(2,R) such that F (g ·(x, y)) =

F̃ (x, y) where

F̃ (x, y) = λ1x
2 + λ2y

2 + µ. (2.2)

The values λ1, λ2 are the zeros of the characteristic equation

λ2 − tr(B)λ+ det(B) = 0.

Thus any polynomial of the form (2.1) where det(B) 6= 0 can be transformed to the form (2.2)

by a transformation in SE(2,R), where λ1, λ2, and µ are completely determined by the values of

det(A), det(B), and tr(B). Thus for two polynomials F1 and F2 where det(B1), det(B2) 6= 0, if
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det(A1) = det(A2), det(B1) = det(B2), tr(B1) = tr(B2)

they must lie in the same orbit, showing that I is separating. The set of invariants I is not

separating for such polynomials where det(B) = 0. Consider

F1(x, y) = x2 + x

F2(x, y) = x2 + 2x.

We can evaluate the invariants in I for each:

det(A1) = det(A2) = 0 det(B1) = det(B2) = 0tr(B1) = tr(B2) = 1

Thus the polynomials take the same values for each invariant in I, however, one can check that

they are not equivalent under SE(2,R).

2.1.1 Equivalence problem for curves and classical moving frames

Given the action of a group G on the real or complex plane, there is an induced action on the

set of planar curves.

Definition 2.1.16. Two curves X and X ′ are said to be G-equivalent, under a group G

acting on the curve’s ambient space, if there exists g ∈ G such that g ·X = X ′. We denote this

X ∼=G X
′.

In this language the equivalence problem for curves can be stated as: given two curves X and

X ′, determine if they are G-equivalent.

Example 2.1.17. Consider the action of SE(2,R) on R2 defined in Example 2.1.13. Each

element of SE(2,R) is an automorphism of R2, and thus maps curves to curves. The question,

‘When are two curves related by a rigid motion?’ can be translated to ‘When are two curves

SE(2,R)-equivalent?’

The elements of G that map X to itself are the self-equivalences or symmetries of X and form a

subgroup of G.

Definition 2.1.18. The symmetry group of X under G is given by the subgroup

Sym(X,G) = {g ∈ G | g ·X = X}.
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While many of the group actions on R2 are transitive, in the smooth case, the space of curves

is infinite-dimensional. However, the equivalence problem can be studied in finite dimensional

jet space, by considering the action of SE(2,R) on the derivatives of a curve. This is a topic

of classical differential geometry. In this section we will review the classical construction of a

Frenet frame for the action of SE(2,R) to derive the invariant Euclidean curvature and discuss

some of its generalizations.

Here we will refer to a curve X in the plane as smooth if there exists a smooth function

γ : I → R2 for some interval I ⊂ R where X = γ(I). We say that γ(t) is a parameterization of

the curve X. If γ̃(t) : I ′ → I is any diffeomorphism between intervals of R, then X = γ(γ̃(I ′)),

and hence γ(γ̃(t)) defines the same curve. From this one can see that for any curve X, there

are infinitely many parameterizations of X. For this reason, it is useful to choose a particular

representative from the set of parameterizations of a curve X.

Since we are considering curves under SE(2,R), we choose a parameterization that is preserved

under translations and rotations of the curve.

Definition 2.1.19. The parameterization γ : [0, L]→ R2 defined by γ(s) = (x(s), y(s)) is said

to an arc length parameterization of a curve X if the tangent vector γ′(s) = (x′(s), y′(s)) is

always a unit vector, i.e.
√
x′(s)2 + y′(s)2 = 1 for all s ∈ [0, L].

The requirement that the curve’s tangent vector be a unit vector is a property that is preserved

under the action of SE(2,R) on the curve. This is an immediate consequence of the fact that

interpoint distance is a Euclidean invariant. Note that if γ is an arbitrary parameterization of a

curve then

s =

∫ τ

0
|γ′(τ)|dτ.

Remark 2.1.20. Given an initial point (x0, y0) on a directed, smooth curve X, there is unique

arc length parameterization γ(s) such that γ(0) = (x0, y0) and γ(s) traces out the curve

exactly once. The choice of initial point and direction are important, as a closed smooth curve

may have infinitely many different arc length parameterizations and two different arc length

parameterizations with the same initial point.

A planar Cartesian system of coordinates is defined by a point and two orthonormal vectors.

For example, the origin (0, 0) and the basis for R2 given by {e1, e2} = {(1, 0), (0, 1)} are the

standard choices for a planar system of coordinates. At each point of a smooth curve γ(s) ∈ X
parameterized by arc length, the unit tangent vector T (s) = (x′(s), y′(s)) and the unit normal

vector N(s) = (−y′(s), x′(s)) define a system of coordinates with f(s) as the new origin and

new axes defined by T (s) and N(s).
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Thus at each point of the curve X, there exists a basis that changes as one moves along the

curve, known as the classical Frenet frame. This system of coordinates is uniquely determined

by a rotation and translation of the vectors {e1, e2}. The frame matrix given by

A(s) =

[
x′(s) y′(s)

−y′(s) x′(s)

]
(2.3)

takes the basis {e1, e2} to {T (s), N(s)}, i.e.

[
T (s)

N(s)

]
= A(s)

[
e1

e2

]
. Note that, for an arc length

parametrization, the derivative of the tangent vector T ′(s) = (x′′(s), y′′(s)) is orthogonal to

T (s), and thus parallel with N(s). Similarly N ′(s) is orthogonal to N(s) and hence parallel with

T (s). The relationship between the basis {T ′(s), N ′(s)} and {T (s), N(s)} is given by[
T ′(s)

N ′(s)

]
= A′(s) = A′(s)A−1(s)A(s) = A′(s)A−1(s)

[
T (s)

N(s)

]
, (2.4)

where

A′(s)A−1(s) =

[
0 x′(s)y′′(s)− y′(s)x′′(s)

−x′(s)y′′(s) + y′(s)x′′(s) 0

]
=

[
0 κ(s)

−κ(s) 0

]
.

Thus, from above and (2.4), κ(s) is the function satisfying the Frenet equations

T ′(s) = κ(s)N(s)

N ′(s) = −κ(s)T (s).

The function κ(s) is known as the Euclidean curvature and is a differential invariant for the

action of SE(2,R) on curves. For an arbitrary parameterization γ(t) of a curve the Euclidean

curvature is given by

κ(t) =
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t)2 + y′(t)2)3/2
.

Euclidean curvature generates the algebra of differential invariants in the following sense:

Theorem 2.1.21. Any differential invariant of planar curves under the action of SE(2,R) can

be written as a smooth function of Euclidean curvature and its derivatives with respect to arc

length.
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Euclidean curvature also provides a way of establishing SE(2,R)-equivalence:

Theorem 2.1.22. If two smooth curves have the same Euclidean curvature as a function of

arc length, then they are SE(2,R)-equivalent.

The above two theorems can be found in [25].

Remark 2.1.23. The converse of Theorem 2.1.22 does not always hold. As discussed in Remark

2.1.20 the same curve X may have many different arc length parameterizations, and hence

different Euclidean curvatures as a function of arc length. This parameterization depends on

the initial point chosen, as well as the direction if X is a closed curve. Later we discuss the

construction of a signature in Section 2.1 which avoids these issues.

Similarly we can define a frame for the action of the special affine group SA(2,R) (see Example

2.1.14) on R2. The arc length parameterization of a curve is not invariant under all transformations

g ∈ SA(2,R) since distance is not preserved under the action of SA(2,R).

This action does, however, preserve area. One can instead choose a parameterization γ(t)

such that the parallelogram defined by the vectors γ′(t) and γ′′(t) has unit area. In other words

a parameter α, known as affine arc length such that

|γ′(α)× γ′′(α)| = 1, (2.5)

where × denotes cross product. This corresponds to the parallelogram defined by γ′(α) and

γ′′(α) having unit area. Here the frame matrix is given by A(α) =

[
γ′(α)

γ′′(α)

]
. Then the matrix

A′(α)A−1(α) =

[
0 1

−(x′′(α)y′′′(α)− x′′′(α)y′′(α)) 0

]
=

[
0 1

−µ(α) 0

]
has the property that [

γ′(α)

γ′′′(α)

]
= A′(α)A−1(α)

[
γ′(α)

γ′′(α)

]
.

The function µ(α) is the affine curvature of X and is a differential invariant for the action of

SA(2,R) on curves [6]. For an arbitrary parameterization γ(t) the affine curvature is given by

µ(t) =
−(5/9)(x′(t)y′′′(t)− x′′′(t)y′(t))2

(x′(t)y′′(t)− x′′(t)y′(t))8/3
+

(x′′(t)y′′′(t)− x′′′(t)y′′(t)) + (x′(t)y′′′(t)− x′′′(t)y′(t))
(x′(t)y′′(t)− x′′(t)y′(t))5/3

.

As in the Euclidean case, the following theorems hold for affine curvature and affine arc length

(See [46, Ex. 8.48] and [25, Thm. 7-27] respectively).
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Theorem 2.1.24. Any differential invariant of planar curves under the action of SA(2,R) can

be written as a smooth function of affine curvature and its derivatives with respect to affine arc

length.

Theorem 2.1.25. If two smooth curves have the same affine curvature as a function of affine

arc length, then they are SA(2,R)-equivalent.

This frame construction was generalized by Cartan to solve a variety of equivalence problems of

submanifolds of varying dimension [13]. Using this method one can show that for planar curves

under any smooth, transitive action of a Lie group there exists a similar notion of G-invariant

arc length and G-invariant curvature [46].

Theorem 2.1.26. Let G be an ordinary1 Lie group acting smoothly on R2. Then there exists

an invariant parameter s, called G-invariant arc length, and a differential invariant κ(s), called

G-invariant curvature, such that any differential invariant of planar curves under G can be

written as a smooth function of κ(s) and its derivatives with respect to s.

Note that the Euclidean frame {T (s), N(s)} centered at a point f(s) on the curve X is completely

determined by a translation and rotation of the standard basis {e1, e2} centered at the origin. A

rotation and translation of X also rotates and translates the frame.

In this way we can view the Frenet frame an as an SE(2,R)-equivariant map from X to

SE(2,R) for the action of SE(2,R) on X and on itself via left multiplication. The frame defined

by A(α) at a point γ(α) similarly defines an SA(2,R)-equivariant map from X to SA(2,R).

In [21] Fels and Olver generalized Cartan’s method to any smooth action of a finite-dimensional

Lie group G on a manifold M by defining a moving frame as a G-equivariant map from M into

G. With a moving frame map in hand, one can then use a cross-section (a submanifold that

transversely intersects each orbit exactly once) to the orbits of G to construct a generating set

of local invariants for the action of G on M . For an algebraic formulation of the Fels-Olver

construction see [35].

2.1.2 Differental signature curves

In the previous section we saw issues with using G-invariant curvature to study the equivalence

problem. Choice of two different initial points will result in two G-invariant curvatures as

functions of G-invariant arc length, related by translation. Additionally, computing G-invariant

arc length often requires (usually non-trivial) integration.

1Most smooth actions on the plane, including all the ones considered in this thesis, are ordinary. For a precise
definition see [46, pg. 175]
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Definition 2.1.27. For a smooth curve X the signature curve of X with respect to the action

of G is the curve SX parameterized by (K1,K2), where K1 and K2 are functionally independent

differential invariants for the action of G on R2. We call the map σX : X → SX , defined by

σX = (K1,K2), the signature map of X with respect to the action of G.

In [11], the authors introduced the notion of a signature curve using K1 = κ, G-invariant

curvature, and K2 = κs, the derivative of κ with respect to G-invariant arc length. This gives a

method to study the equivalence problem for plane curves while avoiding the issues mentioned

above. The signature curve is a special case of the classifying manifold introduced by Cartan

[13]. For most actions of a Lie Group G on R2, Theorem 2.1.26 guarantees the existence of the

two invariants κ and κs.

Two G-equivalent curves will clearly have the same signature curve, as the signature map is

constructed using differential invariants for the action of G. The converse of this statement is

true only under certain regularity conditions (see [11]), which are not satisfied by closed curves.

The most one can say about two smooth curves with equal signatures is that there exists a

segment of one curve G-equivalent to a segment of the other curve.

In the case of analytic and algebraic curves, this local equivalence is enough to establish

global equivalence. For a given group of transformations G, determining the set of smooth curves

for which their signature curves establish global equivalence is an open problem. In [44] and [32],

the authors explored this question for G = SE(2,R), and it was shown that an infinite family

of smooth curves could be constructed with equal Euclidean signatures, none of which were

SE(2,R)-equivalent. It was noted that curve segments of constant curvature, such as straight

lines or circular arcs, could be inserted in smooth curves without changing the curve’s Euclidean

signature.

Example 2.1.28. For the action of the special Euclidean group SE(2,R) on R2, G-invariant

curvature and arc length are given by the familiar notions of Euclidean curvature and arc length.

Euclidean curvature and its derivative with respect to arc length define the signature map

σSEX = (κ, κs) from the curve X to its Euclidean signature, which we denote SSEX . Similarly

affine curvature and its derivative with respect to affine arc length define the signature map

σSAX = (µ, µα) for the action of SA(2,R).
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Figure 2.1: Three algebraic curves.

In Figure 2.1 are three algebraic curves; the two curves in red are clearly SE(2,R)-equivalent,

while the curve in blue is inequivalent to either of the red curves. However, all three curves

are equivalent under the action of SA(2,R). In Figture 2.2 each curve’s Euclidean and special

affine signature is plotted. The Euclidean signature distinguishes the blue from the red curves.

Since the curves are algebraic, equality of the red curves’ signature is enough to guarantee

equivalence. Similarly all the equality of all three curves’ special affine signatures imply they are

all SA(2,R)-equivalent.

Figure 2.2: The Euclidean and special affine signatures respectively of the curves in Figure 2.1.

A useful property of signature curves is that curves with ‘close’ signature curves often are

‘almost equivalent.’ How to best formally define ‘close’ and ‘almost equivalent,’ i.e. develop a

metric on signature curves and equivalence classes of curves, is an open question. However, in

practice, signature curves perform well under noise when appropriate smoothing is applied as

evidenced in [33, 34].

16



The signature curve for smooth curves does, however, contain more information than local

G-equivalence. The next theorem, which appears in [11], shows that the dimension of the image

of the signature map characterizes curves with finite symmetry groups.

Theorem 2.1.29. A curve X has constant G-invariant curvature if and only if Sym(X,G) has

positive dimension. In this case the signature curve of X with respect to G is zero-dimensional.

2.2 Algebraic Geometry

Algebraic geometry can be thought of as the study of polynomial systems and the geometric

objects they define. In this section we will introduce some of the basic objects of study in

algebraic geometry and some results specific to algebraic curves. Here K will denote an arbitrary

field of characteristic zero, which we do not assume to be algebraically closed unless otherwise

stated. For a more in-depth, introductory treatment of this topic see [17], [30], or [50].

Definition 2.2.1. The ring of polynomials in x1, . . . , xn with coefficients in K is denoted

K[x1, . . . , xn]. For any finite collection of polynomials F1, . . . , Fs ∈ K[x1, . . . , xn], we denote the

ideal generated by F1, . . . , Fs as 〈F1, . . . , Fs〉.

Remark 2.2.2. We will denote the collection of n-tuples of elements of K as Kn or n-dimensional

affine space. The name affine emphasizes that we are concerned with the geometric properties of

Kn, rather than its properties as a vector space with a designated origin.

Note that any point lying in the zero set of {F1, . . . , Fs} (i.e. the points p ∈ Kn such that

F1(p) = F2(p) = . . . = Fs(p) = 0) also lies in the zero set of H ∈ 〈F1, . . . , Fs〉. Thus there is a

natural identification of the zero set of a collection of polynomials with the ideal they generate.

Definition 2.2.3. A variety is a subset X ⊂ Kn such that there exists a collection of polyno-

mials {F1, . . . , Fs} where X is the set of points where F1, . . . , Fs all vanish, which is denoted

V (F1, . . . , Fs). The variety of a collection of polynomials {F1, . . . , Fs} is the set V (F1, . . . , Fs).

If I = 〈F1, . . . , Fs〉, one can check that V (F1, . . . , Fs) = V (I).

Definition 2.2.4. For a set S ⊂ Kn, the ideal of polynomials vanishing on S is defined

I(S) = {F ∈ K[x1, . . . , xn] |F (s) = 0, for all s ∈ S}.

By the Hilbert Basis Theorem [30, pg. 19], which states that every ideal of K[x1, . . . , xn] is finitely

generated, for any S ⊂ Kn we can write I(S) = 〈F1, . . . , Fs〉 for some Fi ∈ K[x1, . . . xn], i =

1, . . . , s. Note that many subsets S ⊂ Kn are not varieties, and hence, S is often a proper subset

of V (I(S)).
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Example 2.2.5. TakingK = R, consider any infinite, proper subset S ⊂ R. Then any polynomial

F ∈ R[x] vanishing on S has infinitely many roots, and hence I(S) = 〈0〉. Since V (〈0〉) = R,

clearly S 6= V (I(S)).

The set of varieties in Kn define a topology called the Zariski-topology on affine space [30].

Proposition 2.2.6. The set of Zariski closed subsets of Kn define a topology on Kn, i.e.

1. ∅,Kn are Zariski closed.

2. If S1, S2 are Zariski closed, then S1 ∪ S2 is Zariski closed.

3. Any countable intersection of Zariski closed sets is Zariski closed.

The smallest variety containing S is called the Zariski closure of S and is denoted S. Thus we

can say that V (I(S)) = S. Unless otherwise stated, when we refer to the closure of a set, we

mean its Zariski closure.

Definition 2.2.7. A variety is said to be irreducible if cannot be written as a union of proper,

Zariski closed subsets.

Similarly, the ideals I(V (I)) and I are not always equal. For I = 〈F1, . . . , Fs〉 ⊂ K[x1, . . . , xn],

the ideal J = 〈Fm1
1 , . . . , Fms

s 〉 defines the same variety for any m1, . . . ,ms ∈ Z+, and hence

I(V (I)) = I(V (J)). This motivates the definition of the radical of an ideal.

Definition 2.2.8. For any ideal I ⊂ K[x1, . . . , xn], the radical of I is the ideal given by

√
I = {F ∈ K[x1, . . . , xn] |Fm ∈ I for somem ∈ Z+}.

An ideal is said to be radical if
√
I = I.

Example 2.2.9. Take K = R. The variety of I = 〈x3 + y3 − 1, y〉 is given by the single point

V (I) = {(1, 0)}. Geometrically this can be interpreted as the intersection of the x-axis with the

cubic defined by x3 + y3 − 1 = 0. We can also start with V (I) and write the ideal vanishing on

the set as I(V (I)) = 〈x− 1, y〉. While I is a radical ideal, it is still the case that I(V (I)) 6= I.

However if we take K = C, then V (I) = {(1, 0), (ω1, 0), (ω2, 0)}, where 1, ω1, ω2 are the third

roots of unity, and I(V (I)) = 〈(x− 1)(x− ω1)(x− ω2), y〉 = I.

The above example illustrates how working over the field of complex numbers can be advantageous.

As opposed to the real numbers, C is algebraically closed, meaning every non-constant, univariate

polynomial F ∈ C[x], has a root in C. The theorem below and many other basic results in

algebraic geometry are only true over algebraically closed fields such as C [30].
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Hilbert’s Nullstellensatz. If K is an algebraically closed field and I is an ideal of K[x1, . . . , xn]

then I(V (I)) =
√
I.

Definition 2.2.10. The space of points [a0 : a1 : . . . : an], where ai ∈ K for i = 0, . . . , n and ai

not all zero, under the equivalence relation

[a0 : a1 : . . . : an] ∼ [λa0 : λa1 : . . . : λan], λ 6= 0

is defined as projective n-space and denoted KPn. When K is R or C, we denote this RPn

and CPn respectively.

The space Kn can be embedded in KPn via the map (a1, . . . , an) 7→ [1 : a1 : . . . : an]. Thus we

can think of Kn as the affine points of KPn, and the points where a0 = 0 as the points at infinity.

This distinction is coordinate dependent as we can map Kn into KPn by setting any coordinate

ai = 1.

We can similarly define many of the previous objects in KPn and recover their affine

counterpart by setting a0 = 1.

Definition 2.2.11. The projective variety of a collection of homogeneous polynomials

F1, . . . ,Fs ∈ K[x0, x1, . . . , xn] is the set of points in KPn where F1, . . . ,Fs all vanish and

is denoted V (F1, . . . ,Fs).

For an affine variety V (F1, . . . , Fs) we can obtain the associated projective variety by homoge-

nizing each polynomial Fi.

Definition 2.2.12. The homogenization of the polynomial F ∈ K[x1, . . . , xn] is the defined

as the homogeneous polynomial F = x
deg(F )
0 F

(
x1
x0
, . . . , xnx0

)
∈ K[x0, x1, . . . , xn]. The dehomog-

enization with respect to xi of the homogeneous polynomial F ∈ K[x0, x1, . . . , xn] is given

by F = F(x0, . . . , xi−1, 1, xi+1, . . . , xn) ∈ K[x0, . . . , xi−1, xi+1, . . . , xn].

In this language, V (F1, . . . , Fs) is the set of affine points of the projective variety V (F1, . . . ,Fs)

where Fi denotes the homgenization of Fi. This correspondence allows us to seamlessly switch

between working over Kn and KPn.

Remark 2.2.13. Projective varieties inherit many of the properties of their associated affine

variety. For instance we say S is a Zariski closed subset of KPn if S ∩ Ui is Zariski closed for

each i = 0, . . . , n, where Ui is the open subset of KPn isomorphic to Kn one obtains by setting

ai = 1. Thus a Zariski closed subset of KPn is a projective variety.

More generally one can consider open subsets of projective varieties, called quasi-projective

varities.
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Definition 2.2.14. A quasi-projective variety is a subset of KPn that is open in its Zariski

closure.

Note that all affine varieties can be considered quasi-projective varieties, as they are Zariski

dense in the associated projective variety.

Remark 2.2.15. Often we will discuss properties that hold outside of a Zariski closed subset of

a variety (or Kn). We say that a generic point in a Zariski closed set V has a property if there

exists a quasi-projective subvariety U ⊂ V where the property holds.

2.2.1 Rational maps and their images

In this section we will introduce the notion of rational maps between varieties, as well as Gröbner

bases, one of the fundamental symbolic computational tools in algebraic geometry, and then

discuss how this tool can help us study the image of a rational map. Let K(x1, . . . , xn) denote

the fraction field of K[x1, . . . , xn] consisting of rational functions on Kn.

Definition 2.2.16. A rational map on Kn is a map φ : Kn 99K Km given by

φ = (φ1, . . . , φm)

for some φ1, . . . , φm ∈ K(x1, . . . , xn). Two rational maps on Kn are equivalent if there exists an

open subset of Kn where both maps are defined and agree.

A rational map φ on Kn induces a corresponding rational map φ : KPn 99K KPm given by a

vector of homogeneous polynomials of the same degree [φ0,φ1, . . . ,φm], where φ0,φ1, . . . ,φm ∈
K[x0, x1, . . . , xn], and(

φ1(1, x1, . . . , xn)

φ0(1, x1, . . . , xn)
, . . . ,

φm(1, x1, . . . , xn)

φ0(1, x1, . . . , xn)

)
= (φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn)) .

Thus φ and φ agree on affine points of KPn where they are both defined. Note that this

representation is not unique as, for any non-zero, homogeneous H ∈ K[x0, x1, . . . , xn], the vector

Hφ = [Hφ0,Hφ1, . . . ,Hφm] defines an equivalent rational map on KPn when both functions

are defined.

Definition 2.2.17. A vector φ = [φ0,φ1, . . . ,φm] whose entries φ0,φ1, . . . ,φm ∈ K[x0, x1, . . . , xn]

are homogeneous polynomials of the same degree d is called a homogeneous vector of degree

d and the notation deg(φ) = d is used. The base locus of φ is the set of points at which all its

components are zero. It is the projective variety

Bl(φ) = V (φ0,φ1, . . . ,φm).
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Note that a polynomial function on a variety V = V (F1, . . . , Fs) does not have a unique

representation, as for any point p ∈ V and polynomial H ∈ K[x1, . . . , xn], H(p) = (H + F )(p)

where F ∈ 〈F1, . . . , Fs〉.

Definition 2.2.18. Given a variety V = V (F1, . . . , Fs) ⊂ Kn, the coordinate ring of V is

the quotient ring defined by k[V ] = K[x1, . . . , xn]�I(V ).

The coordinate ring of a variety defines an equivalence relation on K[x1, . . . , xn], where two

polynomials are equivalent if and only if they define the same function on V . The fraction field

of k[V ], denoted k(V ), is known as the ring of rational functions on the variety V .

Definition 2.2.19. For a variety V = V (F1, . . . , Fs) ⊂ Kn, the ring of rational functions

K(V ) is given by

K(V ) =

{
F

G
|F,G ∈ K[V ], Gnot a zero divisor

}
.

The condition that the denominator not be a zero divisor in K[V ] ensures the rational function

is defined on a Zariski dense subset of V . Two rational maps φ1 and φ2 define the same map

on a variety V , if they are both defined on V and their component functions φ11, . . . , φ
1
m and

φ21, . . . , φ
2
m give the same elements in K(V ).

Definition 2.2.20. The rational map φ : V 99K Km is regular if for each p ∈ V ⊂ Kn there

exists φ1, . . . , φm ∈ k(x1, . . . , xn) such that φ(p) = (φ1(p), . . . , φm(p)).

Remark 2.2.21. Often we will conflate the restriction of a rational map on a variety V , which

is an equivalence class of rational functions, with a particular representation φ : V 99K Km. This

distinction can be avoided in many cases as any two representations of the rational map will

agree on a Zariski dense subset of V . Similarly the images of two different representations will

be equivalent up to differences by smaller dimensional subsets; in particular they will have the

same Zariski closure.

A rational map on a variety V = V (F1, . . . , Fs), given by φ : V 99K Km, also induces a

corresponding rational map on the associated projective variety V = V (F1, . . . ,Fs) given by

any homogeneous vector of degree d, φ = [φ0,φ1, . . . ,φm], that defines a projective extension

of φ.

Definition 2.2.22. For any rational map on a variety φ : V 99K Km, the rational map

φ : KPn 99K KPm given by the homogeneous vector of degree d, φ = [φ0 : φ1 : . . . : φm] is a

projective extension of φ if

φ(1, a1, . . . , an) =

(
φ1(1, a1, . . . , an)

φ0(1, a1, . . . , an)
, . . . ,

φm(1, a1, . . . , an)

φ0(1, a1, . . . , an)

)
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and (1, a1, . . . , an) /∈ Bl(φ) for a Zariski dense set of points (1, a1, . . . , an) ∈ V where φ is

defined.

Remark 2.2.23. For any projective extension φ of the rational map φ : V 99K Km, the set of

affine points of φ(V) is exactly the Zariski-closure of the image of V under φ, i.e.

(
φ(V) ∩ {a0 = 1}

)
= φ(V ).

Note that a polynomial F ∈ K[x1, . . . , xm] vanishes on the image of φ : V 99K Km if

F (φ1, . . . , φm) = 0 for all points in V , or equivalently F (φ1, . . . , φm) = 0 in K(V ). When

the target variety W ∈ Km is clear, we make this explicit by writing φ : V 99KW .

Definition 2.2.24. A rational map between (projective) varieties φ : V 99KW is dominant if

φ(V ) = W .

For irreducible varieties, rational maps can give a notion of ismorphism between open subsets of

the varieties called birational equivalence.

Theorem 2.2.25. Let φ : V 99KW be a dominant rational map between (projective) varieties.

If V is an irreducible (projective) variety then W is an irreducible (projective) variety.

Definition 2.2.26. A rational map φ : V 99K W between irreducible (projective) varieties

is birational if there exists a rational map ψ : W 99K V such that φ ◦ ψ, ψ ◦ φ are identity

mappings (where defined), φ(V ) is Zariski dense in W , and ψ(W ) is Zariski dense in V . In this

case we say that V and W are birational or birationally equivalent.

The following theorem due to Chevalley [28] again illustrates why working over an algebraically

field is advantageous.

Theorem 2.2.27. Let K be an algebraically closed field. If φ : V 99K W is a dominant rational

map between projective varieties, then φ(V) contains an open subset of W.

When simply given a rational map on a variety φ : V 99K Km, determining the polynomials that

vanish on its image (and thereby the image’s Zariski closure) is a difficult problem, known as

implicitization. One can use elimination algorithms to determine these polynomials; the following

appears in [30]:

Proposition 2.2.28. Let φ : V 99K Km be a rational map on V = V (F1, . . . , Fs) given by

φ =
(
H1
G1
, . . . , Hm

Gm

)
and G = Πm

i=1Gi. Then the graph of φ is given by the ideal

J = 〈G1y1 −H1, . . . , Gmym −Hm, F1, . . . , Fs, zG− 1〉,

and φ(V ) = V (J ∩K[y1, . . . , ym]).
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One can also use elimination to saturate an ideal I by a polynomial F , meaning that we remove

the component of V (I), corresponding to V (F ). This saturation ideal can be found by adding

the generator zF − 1 to I, which removes points corresponding to V (F ), and then eliminating z.

In particular saturation is important for the algorithms we propose in Appendix A.

Definition 2.2.29. The saturation ideal of I by F is given by the ideal

(I : F∞) = {G ∈ I |G · FN ∈ I for N sufficiently large}.

Proposition 2.2.30. For an ideal I ⊂ K[x1, . . . , xn] and a polynomial F ∈ K[x1, . . . , xn],

V (I : F∞) = V (I)\V (F ).

See [16] for the above proposition. One of the most powerful tools to eliminate are Gröbner bases,

which is a particular generating set for the polynomial ideal depending on a chosen monomial

ordering (for a precise definition see [30]). Gröbner bases were first introduced by Buchberger

who gave an algorithm (known as Buchberger’s algorithm) to construct a Gröbner basis from

any polynomial basis [9].

A Gröbner basis for a polynomial ideal makes it easier to answer certain questions about

the ideal and thereby the ideal’s associated variety. A polynomial F lies in a polynomial ideal

I ⊂ K[x1, . . . , xn] if and only if the Division Algorithm yields 0 when dividing by a Gröbner

basis. A Gröbner basis can also help determine the dimension of V (I) and, over an algebraically

closed field, the number of points in V (I) when V (I) is zero dimensional. In particular, with an

appropriate choice of monomial ordering, V (J ∩K[y1, . . . , ym]) in Proposition 2.2.28 above is

generated by B ∩K[y1, . . . , ym] where B = {P1, . . . , Pk} is a Gröbner basis for J .

While many of the algorithms involving Gröbner bases are relatively straightforward, in

general it can very computationally intensive to find a Gröbner base for a polynomial ideal,

especially as the number of variables and the degree of the polynomials grow. For this reason it

can be advantageous to study properties of polynomial ideals without computing a Gröbner

basis or to instead study a more manageable ideal. For example, in certain cases such as zero

dimensional ideals, there exist algorithms that can more efficiently compute a Gröbner basis.

2.2.2 Algebraic curves and intersection multiplicity

We will start by discussing one of the main objects of study in this thesis, plane algebraic curves,

and then introduce the idea of multiplicity and intersection multiplicity in this context before

defining it in a more general setting. We will end with one of the most well known theorems in

algebraic geometry about curves, Bezout’s Theorem.

23



Definition 2.2.31. A plane algebraic curve X ⊂ C2 is the curve in the complex plane

defined by the zero set over C of some polynomial F (x, y) ∈ C[x, y].

In this section and throughout, X will refer to a planar algebraic curve. The associated projective

curve will be denoted X = V (F), where F(x0, x1, x2) ∈ C[x0, x1, x2] is the homogenization of

F (x, y). Later we will restrict our attention to irreducible algebraic curves.

Remark 2.2.32. An algebraic curve X = V (F ) is irreducible if and only if F (x, y) is irreducible.

In this case F (x, y) uniquely defines the curve up to scaling.

The term multiplicity often first appears when discussing univariate polynomials. By the

Fundamental Theorem of Algebra, a univariate polynomial f(x) ∈ C[x] can be factored as

f(x) = (x− a1)r1(x− a2)r2 . . . (x− as)rs ,

where ri denotes the multiplicity of the root ai for i = 1, . . . , s. This implies that dk

dxk
(f)(ai)

vanishes for k < ri and is non-zero for k = ri. Equivalently one can take this as the definition of

multiplicity for a univariate polynomial; a value a ∈ C has multiplicity r if dk

dxk
(f)(a) is zero for

all k < r and non-zero when k = r. Particularly if a is not a root of f(x), then the multiplicity

is zero. This definition also generalizes to other smooth, univariate functions.

For algebraic curves we can similarly define the multiplicity at a point in terms of the partials

of F (x, y).

Definition 2.2.33. Given an algebraic curve X = V (F ), the multiplicity of X at a point

p ∈ C2 is denoted by mp(F ) and is the highest order for which all partial derivatives of F (x, y)

of lower order vanish at p, i.e.

dk

dxidyj
(F ) (p) = 0, i+ j = k

when 0 ≤ k < mp(F ) and not when k = mp(F ). If mp(F ) > 1 then we say that p is a singular

point of X and non-singular if mp(F ) = 1. We say that a curve is non-singular if it contains

no singular points.

Note that this definition of multiplicity is translation invariant, meaning if F (x, y) = F (x+a, y+b)

for some fixed a, b ∈ C then dk

dxidyj

(
F
)

(x, y) = dk

dxidyj
(F ) (x, y). For this reason it is instructive

to consider m(0,0)(F ); equivalently one can define m(0,0)(F ) and extend this definition to any

p ∈ C2. The following proposition appears in [23]:

Proposition 2.2.34. For an algebraic curve X = V (F ) of degree d, let F = Fm+Fm+1+. . .+Fd,

where Fi denotes a homogeneous form of degree i. Then m(0,0)(F ) = m.
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When two distinct curves X = V (F ) and Y = V (G) intersect, at each point of intersection

p ∈ X ∩ Y we can assign a positive integer called the intersection multiplicity of X and Y

at p. Intuitively, we can think of G as defining a function on X that is zero at each point of

intersection, and the intersection multiplicity of Y and X being the multiplicity of the zero of G

at p.

Example 2.2.35. Let X = V (F ) where F =
∑

i,j aijx
iyj , aij ∈ C, and L = V (αy − βx),

α, β ∈ C, be a line through the origin. We can parameterize the line L by (x(t), y(t)) = (αt, βt).

Then the restriction of F to L is given by

F (αt, βt) = a00 + (a10α+ a01β)t+ (a20α
2 + a11αβ + a02β

2)t2 + h(t)

where h(t) is a polynomial where the lowest degree in t is ≥ 3. Let the multiplicity of the root

t = 0 be the intersection multiplicity of X and L at the origin.

From this we can see that the intersection multiplicity is zero if and only if the curve doesn’t

contain the origin, i.e. a00 6= 0. If a00 = 0 then the intersection multiplicity of L and X is one if

and only if a10α + a01β 6= 0. In this case if the origin is a non-singular point of X, then this

condition implies that L is not tangent to X at the origin.

Since aij = 0 if and only if dk

dxidyj
(F ) (0, 0) = 0, it is easy to see that the intersection

multiplicity is bounded below by the multiplicity of X at the origin.

More generally we can define the multiplicity of a zero-dimensional ideal at a point, using local

rings.

Definition 2.2.36. The local ring of Kn at p, denoted Op(Kn), is the set of rational functions

on Kn that are defined at p ∈ Kn, i.e. Op(Kn) is the subring of K(x1, . . . , xn) of elements
P
Q ∈ K(x1, . . . , xn) such that Q(p) 6= 0.

Definition 2.2.37. Given a zero-dimensional ideal I ⊂ K[x1, . . . , xn], the multiplicity of I

at a point p ∈ V (I) is given by

mp(I) = dimK

(
Op(Kn)�I · Op(Kn)

)
,

where I · Op(Kn) denotes the ideal generated by I in Op(Kn).

Proposition 2.2.38. If K is an algebraically closed field and I ⊂ K[x1, . . . , xn] is a zero-

dimensional ideal, then

∑
p∈V (I)

mp(I) = dimK

(
K[x1, . . . , xn]�I

)
.
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See [16] for the above proposition. In the context of curves, this definition might seem unintuitive

at first. Similar to Fulton’s introduction of this concept in [23] we will start by defining the

intersection multiplicity of two curves X = V (F ) and Y = V (G) at p in terms of the properties

we would want this number to have and then claim that it matches the above definition for

I = 〈F,G〉.

Definition 2.2.39. For two curves X = V (F ) and Y = V (G) the interesection multiplicity

of X and Y at p, denoted mp(F,G), is a quantity that satisfies the following

1. When X and Y do not share a common component, mp(F,G) is a nonnegative integer.

Otherwise mp(F,G) =∞.

2. mp(F,G) = 0 if and only if p /∈ X ∩ Y .

3. Let F (x, y) = F (g · (x, y)) and G(x, y) = G(g · (x, y)) for some g ∈ A(2). Then

mp(F,G) = mg·p(F ,G).

4. mp(F,G) = mp(G,F ).

5. mp(F,G) ≥ mp(F )mp(G), with equality occuring if and only if F and G have no tangent

lines in common at p.

6. If F = Πk
i=1F

ri
i and G = Πl

j=1G
sj
j for some polynomials F rii , G

sj
j ∈ C[x, y] where ri, sj ∈ N,

then

mp(F,G) =
∑
i,j

risjmp(Fi, Gj).

7. mp(F,G) = mp(F,G+HF ) for any H ∈ C[x, y].

Theorem 2.2.40. For any two curves X = V (F ) and Y = V (G) and points p ∈ C2, there is a

unique number mp(F,G) satisfying conditions (1)-(7) in Definition 2.2.39. Furthermore

mp(F,G) = mp(〈F,G〉).

We can also connect the intersection multiplicity to the initial notion of the multiplicity of the

zero at p, for the function defined by restricting one curve to another. To do this we locally

parameterize a curve by Taylor series or, more generally, Laurent series.
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Definition 2.2.41. A Laurent series is a power series that includes terms of negative degree

which converges for all nonzero t in a neighborhood around t = 0, i.e. a series α(t) =
∑∞

i=k ait
i,

for some k ∈ Z. The valuation of α, denoted val(α), is the smallest power of t with nonzero

coefficient.

Theorem 2.2.42. Suppose that X = V (F ) is an irreducible curve and Y = V (G) is a curve,

which may or may not be irreducible. Then at each nonsingular point p = (p1, p2) of X,

there exists a parametrization α(t) = (p1 + t, p2 +
∑∞

i=1 ait
i) when Fy(p) 6= 0 or α(t) =

(p1 +
∑∞

i=1 ait
i, p2 + t) when Fx(p) 6= 0 such that

1. F (α(t)) = 0 for all t ∈ U , where U is a neighborhood of t = 0, and

2. mp(F,G) = val(G(α)).

Proof. Without loss of generality assume that Fy(p) 6= 0. By the implicit function theorem, in a

neighborhood of p = (p1, p2) in X the curve agrees with the graph y = f(x) for some analytic

function f , meaning F (x, f(x)) = 0. Thus in a neighborhood U ⊂ C of p1, there exists a power

series expansion

∞∑
i=1

aj(x− p1)j = f(x)

where aj = f (j)(p2)
j! . Letting t = x − p1 proves (1). For the claim that (2) holds and a more

detailed proof of the theorem, see [22].

Each method of computing mp(F,G) for two curves has advantages and drawbacks in different

situations. We will make use of both of these to prove our results and to compute these

numbers for specific examples. For projective varieties and curves we can also define intersection

multiplicity at a point by dehomogenizing to the correct affine chart.

Remark 2.2.43. For a zero-dimensional projective variety defined by the homogeneous poly-

nomial ideal J ⊂ K[x0, x1, . . . , xn] and p ∈ V (J) ⊂ KPn, the multiplicity of J at p is given

by

mp(J) = mp(I)

where I is the dehomogenization of J with respect to a nonzero coordinate of p. Similarly the

intersection multiplicity of a point p ∈ X ∩Y where X = V (F),Y = V (G) ⊂ CP2 is given by

mp(F,G) = mp(F,G)

where F and G are dehomogenized with respect to a nonzero coordinate of p.
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With this in hand, we can now state Bezout’s theorem, which characterizes the sum of the

intersection multiplicities of two curves in terms of their degree [30].

Theorem 2.2.44. Suppose that X = V (F) and Y = V (G) are two projective curves in CP2 of

degree n and m respectively with no common factors. Then

∑
p∈V (F)∩V (G)

mp(F,G) = m · n.

2.2.3 Image of an algebraic curve under a rational map

In this section, an irreducible, projective curve X = V (F) refers to a curve in CP2. We

discuss the special case of the image of an irreducible, projective curve under the rational map

φ : CP2 99K CP2 defined by a vector of homogeneous polynomials φ = [φ0,φ1,φ2]. In particular,

we show that one can find the degree, as well as the highest degree in each variable, of the

minimal polynomial vanishing on φ(X). To do this we use a well-known result due to Bertini as

it appears in [50]:

Bertini’s Theorem on Generic Smoothness. Let U ∈ CPn be a nonsingular, quasi-

projective variety and φ : U → Y be a dominant, regular rational map between U and a

quasi-projective variety Y ⊂ CPm. Then there exists a dense open subset V ⊂ Y such that the

fiber φ−1(y) is nonsingular for every y ∈ V .

More specifically, a particular case is invoked. For a homogeneous vector of polynomials φ =

[φ0,φ1, . . .φm] denote the polynomial defined by a = [a0 : a1 : . . . : am] as

φ∗a = a0φ0 + a1φ1 + . . .+ amφm.

We show that the following corollary is a direct consequence of Bertini’s theorem.

Corollary 2.2.45. Let X = V (F) ⊂ C2 be an irreducible projective variety and φ =

[φ0,φ1, . . . ,φm] be a homogeneous vector of polynomials in C[x0, x1, x2], m ≥ 1. Then for

a generic choice of a = [a0 : a1 : . . . : am] ∈ CPm, φ∗a intersects X transversely outside of the

base locus of φ, i.e.

mp(F,φ∗a) = 1

for all p ∈ V (F) ∩ (V (φ∗a)\Bl(φ)).

Proof. Consider the quasi-projective variety

V =
{

(p,a) ∈ CP2 × CPm |p ∈ V (F,φ∗a), p 6∈ Bl(φ) ∪ V (F)sing
}
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where V (F)sing denotes the variety V ( ∂F∂x0 ,
∂F
∂x1

, ∂F∂x2 ). A point (p,a) ∈ V is a singular point of V

if and only if the Jacobian matrix[
∂F
∂x0

∂F
∂x1

∂F
∂x2

0 . . . 0
∂φ∗a
∂x0

∂φ∗a
∂x1

∂φ∗a
∂x2

φ0 . . . φm

]
drops rank. Thus the removal of V (F)sing and Bl(φ) ensures that V is nonsingular. The

projection π : V → CPm defined by π(p,a) = a is a dominant, regular rational map and

Bertini’s Theorem says there exists an open subset U ⊂ CPm where a generic fiber of this map

is nonsingular. The hypotheses of Bertini’s Theorem further imply that the induced map on

the tangent spaces d(p,a)π : TV,(p,a) → TCPm,a which takes (q,b) ∈ TV,(p,a) to b ∈ TCPm,a is

surjective for each (p,a) ∈ π−1(U) [50, Ch. 2, Sec. 6]. The tangent space TV,(p,a) is given by

TV,(p,a) = {(q,b) ∈ CP2 × CPm | ∇F(p) · q = 0, ∇φ∗a(p) · q + φ(p) · b = 0},

where ∇ denotes the gradient of a polynomial and · indicates dot product. If p is a singular

point of φ∗a or if ∇F(p) and ∇φ∗a(p) are linearly dependent, then for any (q,b) ∈ TV,(p,a),
φ(p) · b = 0, implying the map d(p,a)π is not surjective. Thus mp(F,φ∗a) = 1 whenever a ∈ U
and (p,a) ∈ V.

We can further assume that for each a ∈ U , V (F) ∩ (V (φ∗a)\Bl(φ)) contains no singular

points of X since this is a generic condition on CPm. Therefore for a ∈ U , each point p ∈
V (F) ∩ (V (φ∗a)\Bl(φ)) is an element of V, proving the theorem.

The Corollary above characterizes mp(F,φ∗a) for points outside of Bl(φ), for a generic choice of

a parameter a ∈ CPm. When X = V (F) is a curve, we can also say something about mp(F,φ∗a)

when p ∈ Bl(φ).

Lemma 2.2.46. Let X = V (F) be an irreducible algebraic curve and φ = [φ0,φ1, . . . ,φm] be a

homogeneous vector defined on X where m ≥ 1. For p ∈ X∩Bl(φ), the minimum of mp(F,φ∗a)

over all a = [a0 : a1 : . . . : am] ∈ CPm is achieved generically.

Proof. Suppose that p is a non-singular point of X. By Theorem 2.2.42 there exists a local

parameterization of X about p, denoted α where mp(F,φ∗a) = val(φ∗a(α)). The expression φ∗a(α)

is a power series in t, which each coefficient of t a linear form in C[a0, a1, . . . , am]. Thus the

condition that mp(F,φ∗a) ≥ n for any n ∈ Z+ is a linear condition on a ∈ CPm.

Now suppose p is a singular point of X. Consider a non-singular model Y of the curve with

birational map ψ : Y → X (see [23, Ch. 7]). Let ψ∗a denote the pullback of φ∗a under ψ given

by φ∗a(ψ0,ψ1,ψ2). Then mp(F,φ∗a) equals
∑

q∈ψ−1(p)mq(Y,ψ∗a) [23, Ch. 7, Prop. 2]. As in

the non-singular case, one can locally parameterize the curve Y to determine the intersection

multiplicity of Y and ψ∗a at q. This reduces to the non-singular case.
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Remark 2.2.47. The minimum multiplicity in Lemma 2.2.46 will reappear frequently and we

denote it by

multp(F,φ) = min
a∈CPm

mp(F,φ∗a).

The following bounds can be useful for computing this intersection multiplicity:

Proposition 2.2.48. Let X = V (F) be an irreducible algebraic curve and φ = [φ0,φ1, . . . ,φm]

be a homogeneous vector defined on X where m ≥ 1. For p ∈ X ∩Bl(φ) and any a = [a0 : a1 :

. . . : am] ∈ CPm,

mp(〈F,φ0,φ1, . . . ,φm〉) ≤ multp(F,φ) ≤ mp(F, φ∗a),

where the right inequality is tight for generic a ∈ CPm.

Proof. For the first inequality, note that for any a ∈ CPm, φ∗a = a0φ0 + a1φ1 + . . . + amφm

belongs to the ideal 〈φ0,φ1, . . . ,φm〉. By definition, larger ideals have smaller multiplicities.

More precisely, for homogeneous ideals I ⊂ J ⊂ C[x0, x1, x2] and a point p ∈ CP2, we have that

mp(I) ≥ mp(J). Therefore for every point p ∈ CP2, mp(F,φ∗L) ≥ mp(〈F,φ0,φ1, . . . ,φm〉).
The inequality then follows from a generic choice of a ∈ CP2 and Remark 2.2.47.

The second inequality follows directly from the definition of multp(F,φ), and tightness

follows from Lemma 2.2.46.

One can see, by Theorem 2.2.25 and Chevalley’s Theorem, that the image of an irreducible

algebraic curve X = V (F) under the rational map defined by φ = [φ0,φ1, . . . ,φm] is all but

finitely many points of another irreducible algebraic curve. By Bezout’s Theorem the number of

intersection points of a generic line with this image will be the curve’s degree.

Let the line in the image space defined by a be given by La = a0y0 + a1y1 + a2y2. Then the

pullback of this line under the rational map defined by φ is given by φ∗a. We can deduce much

information from φ∗a about the irreducible polynomial vanishing on φ(X).

Remark 2.2.49. For an irreducible algebraic curve X and a homogeneous vector φ =

[φ0,φ1, φ2], we say that φ is defined on X if Bl(φ) doesn’t contain X, i.e. Bl(φ) ∩ X con-

sists of finitely many points. Furthermore we say that φ is non-constant on X if the induced

rational map φ : CP2 99K CP2 is not constant when restricted to X.

Lemma 2.2.50. Let X = V (F) be an irreducible algebraic curve and φ = [φ0,φ1,φ2] be a

homogeneous vector defined and non-constant on X. For a generic linear form La = a0y0 +

a1y1 + a2y2 ∈ C[y0, y1, y2],

(a) V (φ∗a) = φ−1(V (La)) ∪Bl(φ)
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(b) F and φ∗a have no common factors, and

(c) if p ∈ V (F) ∩ (V (φ∗a)\Bl(φ)) then mp(F,φ∗a) = 1.

Proof. (a) If p 6∈ Bl(φ), then φ is defined at p. Then φ(p) belongs to V (La) if and only if p

belongs to V (φ∗a). If p belongs to Bl(φ), then it clearly also belongs to V (φ∗a.

(b) Since F is irreducible, φ∗a and F have a common factor if and only if F divides φ∗a. The set

of a ∈ CP2 for which F divides φ∗a is Zariski-closed in CP2 (When deg(F ) ≤ deg(φ), consider

the intersection of the subspaces F · C[x0, x1, x2]deg(φ)−deg(F ) and φ∗a in C[x0, x1, x2]deg(φ)).

Since φ is defined on F, there is some φj not divisible by F, and hence this set is not all of

CP2. Therefore there is a nonempty Zariski-open set of a ∈ CP2 for which F and φ∗a have no

common factors.

(c)This follows from Corollary 2.2.45.

Lemma 2.2.51. Let X = V (F) be an irreducible algebraic curve and φ = [φ0,φ1,φ2] be a

homogeneous vector defined and non-constant on X. Denote φ0 = [φ1,φ2], p0 = [1 : 0 : 0], and

the linear form L0
b = b1y1 + b2y2 where b ∈ CP1, and define φi,pi, and Lib similarly for i = 1, 2.

Then for a generic choice of b the following hold for i = 0, 1, 2:

(a) V ((φi)∗b) = φ−1
(
V (Lib)\pi

)
∪Bl(φi)

(b) F and φ∗b have no common factors, and

(c) if p ∈ V (F) ∩
(
V ((φi)∗b)\Bl(φi)

)
then mp(F, (φi)∗b) = 1.

Proof. (a) By the proof of Lemma 2.2.50(a), q ∈ V ((φi)∗b) if and only if either q ∈ φ−1(V (Lib))

or q ∈ Bl(φ). Along with the fact that Bl(φi) = Bl(φ) ∪ φ−1(pi), this proves the equality in

(a).

(b) Since φ is not constant on X, no pair of polynomials in φ can simultaneously contain F as a

factor. The rest of the proof follows similarly as in Lemma 2.2.50(b).

(c) This follows from Corollary 2.2.45.

When φ = [φ0,φ1,φ2] defines a generically n : 1 map on a curve X, we can translate degree

counts in the image space to degree and multiplicity counts in the domain space. The following

results show the relationship between the degree of φ(X) and the intersection of X with the

pullback of a line under φ.
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Theorem 2.2.52. Let X = V (F) be an irreducible algebraic curve and φ = [φ0,φ1,φ2] be

a homogeneous vector defined and non-constant on X such that the induced rational map

φ : CP2 99K CP2 is generically n : 1 on X. Let P ∈ C[y0, y1, y2] denote the minimal polynomial

vanishing on the image φ(X). Then

n · deg(P) = deg(F) · deg(φ)−
∑

p∈Bl(φ)

multp(F,φ). (2.6)

Proof. For a generic linear form La = a0y0 + a1y1 + a2y2 ∈ C[y0, y1, y2], Bezout’s Theorem and

Lemma 2.2.50(a) give that

deg(F) · deg(φ∗a) =
∑
p

mp(F,φ∗a) =
∑

p∈φ−1(V (La))

mp(F,φ∗a) +
∑

p∈Bl(φ)

mp(F,φ∗a).

By the genericity of the choice of La and Lemma 2.2.46, for every p, mp(F,φ∗a) equals

multp(F,φ).

Genericity also ensures that φ∗a is nonzero and its degree equals deg(φ). By Lemma 2.2.50(c),

for each point p ∈ V (F) ∩ φ−1(V (La)), the intersection multiplicity mp(F,φ∗a) equals one.

Since φ is generically n : 1, there are at most finitely many points p ∈ V (F) for which

|φ−1(φ(p)) ∩ V (F)| 6= n, meaning that the generic line V (La) will not contain the image φ(p)

of any of these points. Therefore for every point p ∈ φ−1(V (La)) ∩ V (F), there are exactly n

points of V (F) in the set φ−1(φ(p)). Putting this all together gives that∑
p∈φ−1(V (La))

mp(F,φ∗a) = |V (F) ∩ φ−1(V (La))| = n · |φ(V (F)) ∩ V (La)|.

By Chevalley’s Theorem, the image φ(V (F)) is all but finitely many points of its Zariski closure

V (P). The genericity of La ensures that every point in V (La)∩V (P) belongs to V (L)∩φ(V (F))

and that the number of these points equals deg(P). This proves equality in (2.6).

For an irreducible, homogeneous polynomial P ∈ K[x0, x1, . . . , xn] denote the highest degree of

xi appearing in P as degxi(P).

Theorem 2.2.53. Let X = V (F) be an irreducible algebraic curve and φ = [φ0,φ1,φ2] be

a homogeneous vector defined and non-constant on X such that the induced rational map

φ : CP2 99K CP2 is generically n : 1 on X. Let P ∈ C[y0, y1, y2] denote the minimal polynomial

vanishing on the image φ(X). Denote φ0 = [φ1,φ2] and define φ1,φ2 similarly. Then for

i = 0, 1, 2

n · degyi(P) = deg(F) · deg(φ)−
∑

p∈Bl(φi)

multp(F,φi). (2.7)
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Proof. For any projective curve given by V (P) for P ∈ C[y0, y1, y2], the highest degree of yi

is given by degyi(P) = deg(P) −mpi(P) (see Proposition 2.2.34). By Bezout’s Theorem and

Corollary 2.2.45, for a generic choice of b ∈ CP1,

deg(P) = mpi(P) + |V (P) ∩
(
V (Lib)\pi

)
|

degyi(P) = |V (P) ∩
(
V (Lib)\pi

)
|.

The genericity of Lb and Chevalley’s Theorem also ensures that each point in V (P)∩
(
V (Lib)\pi

)
lies in φ(V (F)) and has exactly n pre-images. Thus

|V (F) ∩ φ−1
(
V (Lib)\pi

)
| = n · |V (P) ∩

(
V (Lib)\pi

)
| = n · degyi(P). (2.8)

Similarly as in the proof of Theorem 2.2.52 and by Lemma 2.2.51,

deg(F) · deg((φi)∗b) = deg(F) · deg(φ)

=
∑
p

mp(F, (φi)∗b)

=
∑

p∈φ−1(V (Li
b)\pi)

mp(F, (φi)∗b) +
∑

p∈Bl(φi)

mp(F, (φi)∗b)

= |V (F) ∩ φ−1
(
V (Lib)\pi

)
|+

∑
p∈Bl(φi)

multp(F,φi).

This and (2.8) prove the equality in (2.7).

While the previous theorems give an explicit formula for the degree of φ(X) and its highest

degree in each variable, for any particular choice of a = [a0 : a1 : a2], there is no guarantee

that we’ve chosen generically. However, using Proposition 2.2.48 we can compute bounds for

these quantities. For further discussion of how this can be implemented in symbolic computation

software see Appendix A.

2.3 Actions and invariants of algebraic groups

In Section 2.1 we introduced groups, invariants, and the equivalence problem for curves in the

most general context, before restricting attention to smooth curves. In doing so, we also assumed

that the group had a smooth structure and the map defining the group action was smooth.

Similarly when we consider the equivalence problem for algebraic curves, we will require that G

be an algebraic group acting rationally.
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Definition 2.3.1. A group G is an algebraic group if G can be expressed as an algebraic

variety, and the maps defining group multiplication and inverse are regular maps.

Definition 2.3.2. The action of an algebraic group G on an affine or projective variety Y is

rational if the map defining the group action (see Definition 2.1.1) given by Φ : G×Y 99K Y is

a rational map. The action is regular if Φ is a regular map.

Example 2.3.3. The general linear group of invertible n× n matrices over a field K, denoted

GL(n,K), is an algebraic group. The set GL(n,K) can be viewed as an algebraic variety in Kn2+1

defined by

{(X, t) ∈ Kn2+1 | det(X) · t− 1 = 0, X ∈ GL(n,K)}.

The natural action of GL(n,K) on KPn is given by Φ(X,p) = X · [x0 : x1 : . . . : xn]T for

X ∈ GL(n,K) and p ∈ KPn. This action is regular and induces a rational action of GL(n,K) on

Kn−1 given by the corresponding rational map of Φ on Kn−1.

Remark 2.3.4. The group SO(2,R) acting on R2 in Example 2.1.12 is another example of an

algebraic group acting rationally on R2. It can be viewed as the subset of GL(3,R)

SO(2,R) =


1 0 0

0 c s

0 −s c

 ∈ GL(3,R)

∣∣∣∣∣∣∣ c, s ∈ R, c2 + s2 − 1 = 0}

 ,

with the same action as defined in Example 2.3.3. Similarly one can view SE(2,R) and SA(2,R)

from Examples 2.1.13 and 2.1.14 as algebraic groups acting rationally on R2.

Many results on algebraic groups are only true over an algebraic closed field of characteristic

zero, and thus we assume for the remainder of Section 2.3 that the ground field is C. Unless

otherwise stated, we additionally assume that “action” refers to a rational action and that “open”

and “closed” refer to the Zariski topology. See [54] for more details:

Proposition 2.3.5. For an algebraic group G acting on an affine or projective variety Y the

following hold:

1. For any p ∈ Y, the stabilizer Gp is a closed algebraic subgroup of G.

2. The orbit Gp is a quasi-projective variety and

dimGp = dimG− dimGp.
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3. If Y is irreducible then the set of all points whose orbit dimension is less than maximal

(equivalently the dimension of the stabilizer group is greater than minimum) lies in a

closed, proper subset of Y.

4. Finally, if G is irreducible, then for all p ∈ Y the closure of the orbit Gp is irreducible.

For actions of algebraic groups on a variety Y we consider rational functions on Y that are

invariant under G.

Definition 2.3.6. A rational function K ∈ C(Y) on Y is G-invariant if K(g · p) = K(p),

whenever both sides are defined. The set of all G-invariant rational function on Y is denoted

C(Y)G and is a subfield of C(Y).

Definition 2.3.7. A subset I ⊂ C(Y)G is called separating if there exists a nonempty open

subset W ⊂ Y such that I is separating on W (see Definition 2.1.10). The set W is called a

domain of separation for I.

Any domain of separation is a G-invariant set, as it is a union of orbits. A sequence of increasing

(with respect to inclusion) domains of separation gives rise to an ascending chain of polynomial

ideals defining their complement. Since any polynomial ring over C is Noetherian, there exists a

maximal domain of separation.

The following proposition details several important properties and non-trivial results about

the structure of C(Y)G that can be found in [54].

Proposition 2.3.8.

1. The field C(Y)G is finitely generated over C.

2. A subset I ⊂ C(Y)G is generating if and only if it is separating.

3. The transcendental degree of C(Y)G equals to dimY −max
p∈Y

dimGp.

4. If the field C(Y) is rational2 and the transcendental degree of C(Y)G over C equals to 1 or

2, then C(Y)G is rational over C.

2.3.1 Algebraic curves

Since we are concerned with algebraic curves X = V (F) ⊂ CP2, in this section and in subsequent

chapters we consider only regular actions of algebraic groups G on CP2. In this case, each

element of g ∈ G is an automorphism of CP2 and the action induces a homomorphism from G

into the automorphism group of CP2 given by Aut(CP2) = PGL(3,C) [29]. For this reason, we

2i.e. isomorphic to a field of rational functions of a finite number of independent variables.
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can view any algebraic group G acting regularly on CP2 as a closed subgroup of the projective

general linear group PGL(3,C).

Definition 2.3.9. The projective general linear group, denoted PGL(3,K), is the quotient

group GL(3,K)\{λI} where λ ∈ K is non-zero and I is the identity matrix. When K = C we

will also denote the projective general linear group by PGL(3).

In what follows we assume that G is a closed subgroup of PGL(3). An element g ∈ G can be

represented by a 3 × 3 non-singular complex matrix Ag, which is defined up to scaling. For

p = [x0 : x1 : x2] ∈ CP2, the action of G on CP2 is defined by:

g · p = [φ0(g,p) : φ1(g,p) : φ2(g,p)], where

 φ0(g,p)

φ1(g,p)

φ2(g,p)

 = Ag

 x0

x1

x2

 . (2.9)

On C2, we use coordinates (x, y). For an affine point p = (x, y) ∈ C2, we use an abbreviation

[1 : p] = [1 : x : y] to denote the corresponding projective point. The action (2.9) induces a

rational action Φ : G× C2 99K C2 given by

g · p =

(
φ1(g, [1 : p])

φ0(g, [1 : p])
,
φ2(g, [1 : p])

φ0(g, [1 : p])

)
. (2.10)

Example 2.3.10. An important subgroup of PGL(3) is the special Euclidean group, denoted

SE(2), and is given by

SE(2) =


1 0 0

a c s

b −s c


∣∣∣∣∣∣∣ a, b, c, s ∈ C, c2 + s1 = 1

 .

When restricted to matrices with real entries, this is isomorphic to the group of translations and

rotations of R2, SE(2,R), given in Example 2.1.13. Via (2.10) one can check that the action of

SE(2) on C2 is given by

(x, y) 7→ (cx+ sy + a,−sx+ cy + b).

In addition to SE(2), we also consider other important subgroups of PGL(3) in this thesis.

Definition 2.3.11. Two subgroups of PGL(3) are the Euclidean group, denoted E(2), and

the similarity group, denoted S(2). The Euclidean group is given by
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E(2) =


1 0 0

a c s

b −s c

 or

1 0 0

a c s

b s −c


∣∣∣∣∣∣∣ a, b, c, s ∈ C c2 + s2 = 1

 .

The similarity group is given by

S(2) =


1 0 0

a c s

b −s c


∣∣∣∣∣∣∣ a, b, c, s ∈ C

 .

Both contain SE(2) as a subgroup. When restricted to matrices with real entries, E(2) corresponds

to the group of rotations and translations SE(2,R) along with reflections, while S(2) adds scaling

transformations to SE(2).

Definition 2.3.12. The affine group, denoted A(2), is the subgroup of PGL(3) that fixes the

line of points [x0 : x1 : x2] with x0 = 0, i.e. the group of matrices

A(2) =


 1 0 0

a3 a1 a2

a6 a3 a5


∣∣∣∣∣∣∣ ai ∈ C, a1a5 − a2a4 6= 0

 .

The special affine group, SA(2) is the subgroup of A(2) such that a1a5 − a2a4 = 1. When

restricted to real matrices, this gives the group of area-preserving transformations of R2 (see

Example 2.1.14).

The action of G on CP2 will send irreducible, projective curves to irreducible, projective curves.

However the action on C2 may not be everywhere defined on a curve X ⊂ C2. Thus we consider

the closure of an affine curve’s image under a transformation g ∈ G, denoted g ·X.

Definition 2.3.13. We say that an algebraic curve X ⊂ C2 is G-equivalent to an algebraic

curve Y ⊂ C2 if there exists g ∈ G such that X = g · Y .

Remark 2.3.14. When X is an irreducible curve with deg(X) > 1, the action of an element

g ∈ G is defined on an open subset of X, and hence the image g ·X is an open subset of g ·X.

Then clearly X is G-equivalent to Y if and only if X is G-equivalent to Y .

Similarly as in Definition 2.1.18 we define the symmetry group of an algebraic curve under G.

Definition 2.3.15. The symmetry group of X with respect to G is given by the set of

self-equivalences (or symmetries) of X in G:

Sym(X,G) = {g ∈ G | X = g ·X}.
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Note that Sym(X,G) is a closed algebraic subgroup of G.

Definition 2.3.16. The set of symmetries of X that fix every point of the curve forms the

stabilizer group of X with respect to G:

Stab(X,G) =
⋂
p∈X

Gp.

One can show that this is a normal subgroup of Sym(X,G).

As evidenced Remark 2.3.14, it is advantageous to restrict our attention to irreducible curves of

degree greater than one. In this case, the stabilizer group is the trivial subgroup of the symmetry

group.

Proposition 2.3.17. For an irreducible curve X ⊂ C2 of degree greater than one, the stabilizer

group Stab(X,G) consists of only the identity.

Proof. For g ∈ G and let Ag ∈ GL(3) be any of its representatives. Then a point p ∈ C2 is fixed

by g if and only if (1, p) is an eigenvector of Ag. Therefore, the set C2
g of points fixed by g is the

intersection of the affine plane {x0 = 1} with the union of the eigenspaces of the matrix Ag.

There are three possibilities: (1) Ag has three linearly independent eigenvectors, then C2
g

consists of at most3 three distinct points, (2) Ag has an eigenspace of dimension 2 and an

eigenspace of dimension 1, then C2
g consists of at most a line and a point, (3) Ag has an eigenspace

of dimension 3, then C2
g = C2.

If g ∈ Stab(X,G), then X ⊂ C2
g. Since X is irreducible of degree > 1, it follows that C2

g = C2.

This implies that Ag is a scalar multiple of the identity matrix and g is the identity element of

PGL(3).

For this particular class of curves, we further show that the orbits of Sym(X,G) in X are

well-behaved.

Proposition 2.3.18. If X is irreducible of degree greater than one, then |Sym(X,G)| is infinite

if and only if there exists a point p ∈ X whose orbit under Sym(X,G) is dense in X.

Proof. Let H = Sym(X,G). This is an algebraic group acting on X.

(⇒) Assume |H| is infinite. Then since H is algebraic, dimH > 0. Let H0 denote the connected

component of H containing the origin. By [52, Ch.1 Prop. 2.2.2], this is a closed normal subgroup

of H of finite index and so dimH0 > 0. By Proposition 2.3.5, for any p ∈ X the orbit H0p is an

irreducible quasi-affine subvariety of X.

3“At most” because an eigenspace may be parallel to the {x0 = 1} plane.
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Since dimX = 1, the dimension of H0p is either zero or one. If for all p ∈ X, dimH0p = 0,

then H0p = {p} for all p ∈ X since H0p is irreducible. In this case, Stab(X,G) contains H0,

contradicting the statement of Proposition 2.3.17. Therefore, there exists p ∈ X such that

dimH0p = 1. Since X is irreducible of dimension 1, this implies H0p = X.

(⇐) Assume there exists a point p ∈ X whose orbit under H is dense in X. Then dimHp = 1.

By Proposition 2.3.5, dimHp ≤ dimH. Therefore dimH > 0 and so |H| is infinite.

Proposition 2.3.19. If X is irreducible of degree greater than one and |Sym(X,G)| = n <∞,

then for all but finitely many points p ∈ X the orbit under Sym(X,G) consists of exactly n

distinct points.

Proof. Let H = Sym(X,G). For g ∈ H, define Xg = {p ∈ X | g · p = p}. From the proof of

Proposition 2.3.17 it follows that if g 6= e, then Xg is either empty or finite. Consider the

set Eg = {p ∈ X | g · p is undefined}, which is also empty or finite. Since |H| is finite, the set

∆ = ∪g∈H(Eg ∪Xg) is empty or finite. For all p ∈ X\∆, g · p is defined for all g ∈ H and the

stabilizer Hp = {e}. Then |Hp| = |H|/|Hp| = n.

In fact the symmetry group of a generic algebraic curve of degree greater than four is trivial.

The following proposition follows from [51, Corollary 2.10, Ch. 2] and [51, Theorem 2.8, Ch. 2].

Proposition 2.3.20. For a generic algebraic curve X such that deg(X) ≥ 4 the subgroup

Sym(X,G) of G consists of only the identity. For a generic curve X of degree 3, Sym(X,G) is

finite.
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CHAPTER 3

Differential signatures of algebraic curves

We start the chapter by introducing the notion of a classifying pair of rational differential

invariants and establish their existence for the action of the projective group and its subgroups

on C2 given by (2.10). We show that a classifying pair of rational differential invariants allows

one to construct a signature map for non-exceptional, irreducible algebraic curves. The Zariski

closure of the image of a curve under the signature map is the curve’s signature curve, and its

implicit equation is the signature polynomial. A curve’s signature curve, and hence its signature

polynomial, characterizes the curve’s equivalence class, i.e. two curves are G-equivalent if and

only if they have the same signature curve. We show that the signature map is related to the

size of a curve’s symmetry group: the signature map is generically n : 1 when the symmetry

group is finite and constant when it is infinite.

In Section 3.2 we derive a formula for the degree of the signature polynomial and also provide

bounds for this degree. We also provide a formula and bounds for the degree of the signature

polynomial in each variable. Given a set of classifying invariants, for a generic curve of fixed

degree we show that the signature polynomials share the same monomial support and genus.

In particular there exists a ‘generic degree’ and ‘generic genus’ of the signature polynomials of

curves of fixed degree. The chapter concludes with a discussion of how the results shown here

connect to the group equivalence problem for real algebraic curves and some examples of using

the degree formula and bounds to study signatures of algebraic curve.

In this chapter we make the following assumptions when referring to groups G or curves X:

1. A group G is a closed subgroup of PGL(3) with dimG > 0.
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2. The rational action of G on C2 is defined by (2.9) and (2.10).

3. X ⊂ C2 is an irreducible algebraic curve of degree greater than one.

3.1 Signatures of algebraic curves

3.1.1 Differential invariants and algebraic curves

To define differential invariants and the action of a group on the derivatives of a curve, we

introduce the notion of the jet space of planar curves. Since we assume that a curve X ⊂ C2

is of degree greater than one, any curve will have finitely many vertical tangencies, and the

derivatives of y with respect to x are well-defined on an open subset of X, i.e. for all but finitely

many points of X.

Explicitly, for X = V (F ) and any point p = (p1, p2) ∈ X where Fy(p) 6= 0, the curve X

agrees in some neighborhood of p with the graph of an analytic function y = f(x). Then for a

positive integer n, we can define y
(n)
X (p) = f (n)(p1) to be the n-th derivative of f(x) at x = p1.

Remark 3.1.1. For each n ∈ Z+, y
(n)
X is a rational function on X that, using the implicit

differentiation, can be written as a rational function of partial derivatives of F . For example,

F (x, y) = 0

(⇒)
d

dx
(F (x, y)) = 0

(⇒) Fx(x, y) + Fy(x, y)y(1) = 0

(⇒) y
(1)
X =

−Fx
Fy

.

By again differentiating both sides assuming y as a function of x, and using the fact that

y
(1)
X = −Fx

Fy
we find that

y
(2)
X =

−FxxF 2
y + 2FxyFxFy − FyyF 2

x

F 3
y

.

One can continue this process to find y
(n)
X as a rational function of the partial derivatives of F

for any n ∈ Z+. In fact one can check that each derivative function can be written as

y(n)|X =
Pn(x, y)

(Fy)
2n−1 where Pn ∈ Q

[
∂i+jF

∂xi∂yj
: i+ j ≤ n

]
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and Pn(x, y) is a polynomial of degree (2n− 1)d− (3n− 2).

The coordinate functions on the n-th jet space of planar curves Jn are denoted by (x, y, y(1), . . . , y(n)).

Although formally y(k) is viewed as an independent coordinate function, we can think of Jn as

Cn+2, since y
(n)
X is defined on an open subset of X and we can safely ignore the points where X

has a vertical tangency.

Definition 3.1.2. The n-th jet of a curve X ⊂ C2, denoted X(n), is the algebraic closure of

the image of X under the rational map jnX : X 99K Jn, where for p ∈ X,

jnX(p) = (x(p), y(p), y
(1)
X (p), . . . , y

(n)
X (p)).

In this way we can consider a curve X ⊂ C2 as a curve in the higher dimensional space Jn. The

action of G on planar curves induces a prolonged action of G on Jn.

Definition 3.1.3. Let G act on C2. For g ∈ G, let (x, y) = g · (x, y). The prolongation of the

G-action from C2 to Jn is a rational action defined by

g · (x, y, y(1), . . . , y(n)) = (x, y, y(1), . . . , y(n))

where

y(1) =
d
dx [y(g, x, y)]
d
dx [x(g, x, y)]

and y(k+1) =
d
dx

[
y(k)(g, x, y, y(1), . . . , y(k))

]
d
dx [x(g, x, y)]

for k = 1, . . . , n− 1.

The operator d
dx is the total derivative operator. This is the unique C-linear operator mapping

C(Jn) → C(Jn+1) for n ≥ 0 satisfying the product rule, d
dx(x) = 1, and d

dx(y(k)) = y(k+1) for

k ≥ 0. Here we use the convention that y = y(0) and coordinate functions of g are considered to

be constant with respect to x.

This action is defined so that the following fundamental property holds:

jng·X(g · p) = g · jnX(p) for all g ∈ G and p ∈ X where g · p is defined. (3.1)

In particular, the n-th jet of the image of X under the action of g ∈ G coincides with the image

of the n-th jet of X under the prolonged action of g:

g ·X(n) = (g ·X)(n). (3.2)

The n-th jet of a curve X gives us a way to restrict differential functions, particularly differential

invariants to X.

42



Definition 3.1.4. A rational function K(x, y, y(1), . . . , y(n)) on Jn is called a rational dif-

ferential function. The differential order of K is the maximal k, such that K explicitly

depends on y(k):

ord(K) = max
i

{
i
∣∣∣ ∂K
∂y(i)

6= 0

}
.

If K is invariant under the prolonged action it is called a rational differential invariant.

Note that if ord(K) = k, then K ∈ C(Jn) for all n ≥ k.

Definition 3.1.5. For a curve X, the restriction of a differential function K to X is denoted

K|X and defined by the composition, K|X = K ◦ jnX .

If K is a rational differential function on Jn, then K|X is a rational function on X, and we

can obtain the explicit formula for K|X as a rational function of x and y by substituting the

expressions y
(1)
X , . . . , y

(n)
X obtained as in Remark 3.1.1 for coordinates y(1), . . . , y(n). This also

shows that K|X is a rational function of the partial derivatives of F for X = V (F ).

3.1.2 Classifying differential invariants

For smooth curves Theorem 2.1.26 guarantees the existence of G-invariant curvature, a differential

invariant which is a smooth function on the jet space of the curve. G-invariant curvature and its

derivative with respect to G-invariant arc length then define a signature map as in Definiton

2.1.27.

Our goal in this section will be to show the existence of two rational differential invariants

that define a signature map for algebraic curves in CP2 under the regular action of an algebraic

group G. We use the same definition as was given in [10, Section 4, Definition 7] in the real case

for a classifying pair of differential invariants that we will use to construct the signature map.

Definition 3.1.6. Let r-dimensional algebraic group G act on C2 and K1,K2 be rational

differential invariants of orders k ≤ r − 1 and r, respectively. The set I = {K1,K2} is called

classifying if K1 is separating on Jk and I is separating on Jr.

We start by showing, in Theorem 3.1.9, that the field C(Jr)G of rational invariants of the order

at most r = dimG has a very simple structure. The following is a formulation in our context of

an important result originally due to Ovsiannikov [49] (see also [45, Theorem 5.11]).1

1This result is true under the assumption that G is a closed subgroup of PGL(3) with action on C2 defined
in (2.10), implying that this action is effective. For general actions of algebraic groups on algebraic varieties
one needs to assume local effectiveness of the action (the set of elements in G with a trivial action is finite).
The theorem was originally stated for Lie groups acting on smooth (non-algebraic) real manifolds, and in this
setting, as was shown in [47], a stronger assumption of local effectiveness on all open subsets is required. The
proof remains valid over C.
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Proposition 3.1.7. Let a group G of dimension r act on C2. Then there exists a k ≥ 0 such

that, for all n ≥ k, the maximal orbit dimension of the prolonged action on Jn is r.

The following lemma shows that we can build higher order differential invariants from lower

order invariants.

Lemma 3.1.8. Assume K1 and K2 are two algebraically independent rational differential

invariants, such that max {ord(K1), ord(K2)} = k. Then

dK2

dK1
:=

dK2
dx
dK1
dx

is a rational differential invariant of order k + 1.

Proof. From [45, Prop. 5.15], the lemma is true for functionally independent differential invariants.

The result then follows from the Jacobian criterion of independence, which states that polynomials

over an algebraically closed field are algebraically independent if and if only their Jacobian is

generically of full rank (this implies that K1 and K2 are functionally independent).

Consider the collection of polynomials F = {f1, . . . , fs} ⊂ C[x1, . . . , xn]. If F is algebraically

dependent then there exists some F ∈ C[x1, . . . , xs] such that F (f1, . . . , fs) = 0. Let JF denote

the Jacobian of F ; then by the chain rule JF (p) · ∇F (p) for any p ∈ Cn. If F is an algebraically

independent set, then the image of the regular map f = (f1, . . . fs) is dense in Cs. This implies

that the differential map dxf is surjective on an open subset of Cn, further implying the Jacobian

is generically of full rank [50, Ch. 2, Sec. 6].

Theorem 3.1.9. Let dimG = r, then the field of C(Jr)G of rational invariants on Jr is a

rational field of transcendental degree two. In other words, there exists two rational invariants

K1 and K2 such that

C(Jr)G = C(K1,K2). (3.3)

Moreover K1 and K2 can be chosen so that K1 is of differential order k, strictly less than r,

and K2 is of differential order r. In addition, the field C(Jk)G of rational invariants on Jk is a

rational field of transcendental degree one and

C(Jk)G = C(K1). (3.4)

Proof. The dimension of an orbit can not exceed the dimension of the group. Therefore,

since dim Jr−1 = r + 1, the transcendental degree of C(Jr−1)G is at least 1 by Part 3. of

Proposition 2.3.8. Thus there exists a rational invariant K1 such that ord(K1) = k1 < r. We

may assume that the order k1 of K1 is minimal among all such invariants. Similarly, since

dim Jr = r + 2, the transcendental degree of C(Jr−1)G is at least 2, and there exists a rational
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invariant K2, algebraically independent from K1, such that ord(K2) = k2 ≤ r. By the minimality

assumption on k1, we have k1 ≤ k2. Assume that k2 < r. By Proposition 3.1.8, invariant

H1 = dK2
dK1

is of order k2 + 1. For i > 1, we define invariants Hi = dHi−1

dK1
.

The n+2 invariants K1,K2, H1, H2, . . . ,Hn are of orders k1, k2, k2 +1, . . . k2 +n, respectively.

Since K1 and K2 are independent, and each subsequent invariant contains a new jet variable,

the gradients of these invariants as functions on Jk2+n are independent, and hence the invariants

are independent. Therefore the maximal orbit dimension on Jk2+n does not exceed dim Jk2+n −
(n+ 2) = k2. Since n can be arbitrary large, it follows from Proposition 3.1.7 that k2 = r. In

summary, we proved so far

k1 < k2 = r

and that there are no differential invariants of orders strictly less than k1, or strictly between k1

and r.

Assume that there is an invariant K3 of order r, independent of K1 and K2. Then by similar

argument as in the above paragraph, the n+ 3 invariants K1,K2,K3, H1, H2, . . . ,Hn of orders

k1, r, r, r + 1, . . . r + n, respectively, are independent for all n. It follows that the maximal orbit

dimension on Jr+n does not exceed dim Jr+n − (n + 3) = r − 1 for all n. This contradicts

Proposition 3.1.7.

We conclude that the transcendental degree of C(Jk)G is 1 and the transcendental degree of

C(Jr)G is 2. Then (3.3) and (3.4) follow from Part 4 of Proposition 2.3.8.

Remark 3.1.10. In fact, from Theorem 5.24 in [45] and Sophus Lie’s classification of all

infinitesimal group actions on the plane (see Table 5 in [45]) it follows that there are only

three possibilities for the differential order k of the lower order classifying invariant K1, namely

k = r − 1, k = r − 2 and k = 0.

For most of the actions (and all actions considered in Chapter 4) k = r − 1. The case k = 0

occurs if and only if the action G is intransitive on C2. An example of such action is the action

of a 2-dimensional subgroup of PGL(3), given by (x, y)→ (λx+ a, y), where λ ∈ C∗ is non-zero

and a ∈ C.

Among subgroups of PGL(3), the third possibility, k = r− 2 6= 0, occurs only for two actions:

(1) a three-dimensional subgroup acting by (x, y)→ (λx+ a, λy + b), where λ ∈ C∗ and a, b ∈ C
and (2) a four-dimensional subgroup acting by (x, y)→ (λx+ a, cx+ λ2y + b), where λ ∈ C∗

and a, b, c ∈ C

Theorem 3.1.11. For any action of G on C2 there exists a classifying set I = {K1,K2} of

differential invariants. Moreover the set I is classifying if and only if I generates the field

C(Jr)G of rational differential invariants of order r = dimG and K1 generates the field C(Jk)G

of rational invariants of order k < r .
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Proof. This result follows immediately from Theorem 3.1.9 and Part 2 of Proposition 2.3.8.

Proposition 3.1.12. Let I = {K1,K2} be a classifying set of differential invariants for the

action of G on C2. Then K̃1 is of the form

K̃1 =
aK1 + b

cK1 + d
(3.5)

and K̃2 is of the form

K̃2 =
α(K1)K2 + β(K1)

γ(K1)K2 + δ(K1)
, (3.6)

for some a, b, c, d ∈ C and α, β, γ, δ ∈ C(K1) such that ad− bc, α(K1)δ(K1)−β(K1)γ(K1) 6= 0 if

and only if Ĩ = {K̃1, K̃2} is a classifying set of differential invariants for the action of G on C2.

Proof. Note that by Part 4 of Proposition 2.3.8 and Theorem 3.1.11, then I = {K1,K2} is a

classifying pair of differential invariants if and only if C(K1) = C(Jk)G and C(K1,K2) = C(Jr)G

for some k < r where r = dim(G).

We start with the reverse direction. If Ĩ is also a classifying pair of differential invariants,

then C(K̃1) = C(Jk)G = C(K1). Since C(K1) ∼= C(K̃1), there exists an automorphism φ of

C(K1), fixing C, such that φ(K1) = K̃1. In this case φ is given by (3.5) (see [36, Example, Sec.

5.2] or [18, Exer. 14.1.8]). A similar argument along with the fact that C(K1)(K2) = C(K1,K2)

shows that K̃2 must be of the form given in (3.6).

The forward direction follows from the fact that (3.5) and (3.6) define automorphisms of

C(K1) and C(K1,K2) respectively.

3.1.3 Signature Map

We will now show that from a classifying pair of invariants, whose existence is guaranteed in

Theorem 3.1.11, we can build a signature map for what we call non-exceptional algebraic curves.

In this section we assume that dim(G) = r and that I = {K1,K2} are a classifying set of

differential invariants with ord(K1) = k < r = ord(K2).

Definition 3.1.13. Let I = {K1,K2} be a classifying set of rational differential invariants for

a group G of dimension r. Let ord(K1) = k and let W1 ⊂ Jk be a maximal domain of separation

for {K1} and W2 ⊂ Jr be a maximal domain of separation for I. Then, for X ⊂ C2, a point

p ∈ X is called I-regular if

(a) jrX(p) is defined;

(b) jkX(p) ∈W1 and jrX(p) ∈W2;
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(c) ∂K1

∂yk
|jkX(p) 6= 0 if K1 is constant on X, and ∂K2

∂y(r)
|jrX(p) 6= 0 otherwise.

The condition that jrX(p) is defined can equivalently be stated as Fy(p) 6= 0 where F (x, y) is the

polynomial whose zero set equals X. Thus singular points of X are not I-regular.

Definition 3.1.14. A complex algebraic curve X ⊂ C2 is called non-exceptional with respect

to a classifying set of differential invariants, I, if all but a finite number of its points are I-regular.

True to their name, the set of non-exceptional curves of fixed degree d is dense in the set of all

curves of degree d.

Lemma 3.1.15. Let d, n be positive integers satisfying n ≤
(
d+2
2

)
− 2. For a generic point

a = (a0, . . . , an) ∈ Cn+1, there exists an algebraic curve X ⊂ C2 of degree d for which (0, a0) ∈ X
and j

(n)
X (0, a0) = (0, a0, . . . , an).

Proof. Consider the subset Y of P(C[x, y]≤d) × Cn+1 consisting of pairs ([F ], a) for which F

is irreducible of degree d, F (0, a0) = 0, Fy(0, a0) 6= 0, and j
(n)
V (F )(0, a0) = (0, a0, . . . , an). Since

j
(n)
V (F ) is a rational function of both the points of V (F ) and the coefficients of F , as seen in

Remark 3.1.1, this is a quasi-projective variety. The conditions F (0, a0) = 0 and ak = y
(k)
X (0, a0)

are algebraically independent, since each involves a new variable, ak.

From this, it follows that Y has codimension n+ 1 in P(C[x, y]≤d)×Cn+1 and thus dimension(
d+2
2

)
− 1. The projection of Y onto Cn+1 is therefore an open subset of an affine variety. It

either contains a nonempty Zariski-open set or is contained in a hypersurface in Cn+1. We need

to rule out the latter when n ≤
(
d+2
2

)
− 2.

Suppose for the sake of contradiction that for some n ≤
(
d+2
2

)
− 2, there is a polynomial

relation P (y, y(1), . . . , y(n)) = 0 that holds for every point on the image of X ∩ V (x) under j
(n)
X

for every irreducible curve X of degree d. Without loss of generality, we can assume that n is

the minimal integer for which this holds and that the polynomial P is irreducible.

Then, by Bertini’s theorem, for generic a0, . . . , an−1 ∈ C, P (a0, . . . , an−1, y
(n)) is a non-zero

polynomial in y(n) with simple roots, around which y(n) is an analytic function of a0, . . . , an−1.

Due to the uniqueness theorem for the solutions of complex ODEs [37], for any such a0, . . . , an−1

and an with P (a0, . . . , an) = 0, there exists a unique solution y = f(x) to the differential equation

P (y, y(1), . . . , y(n)) = 0 satisfying the initial conditions x = 0, f(0) = a0, and f (k)(0) = ak for

k = 1, . . . , n.

If there exists an irreducible polynomial F ∈ C[x, y] of degree d for which F (x, f(x)) is

identically zero, then F is unique up to scaling. This means that every point in the projection

of Y onto Cn+1 has at most one preimage. Since the projection has dimension ≤ n, this implies

that the dimension of Y is also at most n, which contradicts the calculation that dim(Y) equals(
d+2
2

)
− 1 > n. Therefore the projection of Y onto Cn+1 must be Zariski-dense.
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Theorem 3.1.16. Let I be a G-classifying set of rational differential invariants for the action

of a group G. Then for d ∈ Z+ with
(
d+2
2

)
− 2 ≥ dim(G), a generic plane curve of degree d is

non-exceptional with respect to I.

Proof. For an irreducible curve X, the I-regular points form a Zariski-open subset of X, as

seen in Definition 3.1.13. Either this is all but finitely-many points of X, in which case X

is non-exceptional, or empty, meaning that no points of X are I-regular. In particular, if all

intersection points of X with V (x) are I-regular, then X is non-exceptional.

Indeed, the condition that a point p is I-regular on X is equivalent to the jet j
(r)
X (p) belonging

to a Zariski-open subset U of Jr ∼= Cr+2, where r = dim(G). Consider the quasi-projective

variety Y defined in the proof of Lemma 3.1.15 with n = r. Its intersection with P(C[x, y]≤d)×U
is an open subset of Y, which is nonempty by Lemma 3.1.15.

Furthermore, the projection of Y onto P(C[x, y]≤d) is dominant (i.e. the image in Zariski-

dense). Specifically, consider the open dense set of irreducible polynomials F ∈ C[x, y]≤d for which

F (0, y) has a simple root y = a0 at which Fy(0, a0) is nonzero. For any such F , ([F ], a) belongs

to Y , where j
(r)
V (F )(0, a0) = (0, a). It follows that the projection of the set Y ∩ (P(C[x, y]≤d)× U)

onto P(C[x, y]≤d) is also dominant. Therefore, for a generic plane curve of degree d, the points

X ∩ V (x) are I-regular in X, and thus X is non-exceptional.

Furthermore the set of non-exceptional curves for a given set of classifying invariants I is a

G-invariant set.

Lemma 3.1.17. If X is non-exceptional then so is Y = g ·X for all g ∈ G.

Proof. We check that if conditions (a) – (c) in Definition 3.1.13 are satisfied by all but finitely

many points on X, then the same is true for Y .

(a) Assume that there are at most finitely many points p ∈ X, such that jrX(p) is undefined

(equivalently Fy(p) = 0, where F is a defining polynomial of X). This is, in fact, true for any

irreducible curve of degree greater than 1. Since the action of G preserves these properties, there

are at most finitely many points p ∈ Y , such that jrY (p) is undefined.

(b) Assume that there are at most finitely many points p ∈ X, such that jkX(p) /∈ W1 and

jrX(p) /∈ W2. From the G-invariance of W1 and W2 and (3.1), combined with the fact that

Y \(g ·X) is a finite set, it follows that there are at most finitely many points p ∈ Y such that

jkY (p) /∈W1 and jrY (p) /∈W2.

(c) We start by showing that if K is a differential invariant of order n, then the set of points

p(n) ∈ Jn where ∂K
∂y(n) (p

(n)) 6= 0 is G-invariant. Since K is invariant, K(p(n)) = K(g · p(n)),
whenever both sides are defined, and the differentiation with respect y(n)using the chain rule
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yields:

∂K

∂y(n)

(
p(n)

)
=
∂K

∂x

(
g · p(n)

) ∂x

∂y(n)

(
p(n)

)
+
∂K

∂y

(
g · p(n)

) ∂y

∂y(n)

(
p(n)

)
+ . . .+

∂K

∂y(n)

(
g · p(n)

) ∂y(n)
∂y(n)

(
p(n)

)
=

∂K

∂y(n)

(
g · p(n)

) ∂y(n)
∂y(n)

(
p(n)

)
.

The last equality follows from the fact that the functions x, y, and y(i), given in Definition 3.1.3,

do not depend on y(n) for i = 1, . . . , n− 1. Thus if ∂K
∂y(n) (p

(n)) 6= 0, so does every point in the

orbit of p(n).

Condition (c) states that, if K1 is constant on X, then for all but finitely many p ∈ X,
∂K1

∂yk
|jkX(p) 6= 0, otherwise for all but finitely many p ∈ X, ∂K2

∂yr |jrX(p) 6= 0, where k = ord(K1) and

r = ord(K2). Due to (3.1), and G-invariance property showed above, the same is true for Y .

For a non-exceptional algebraic curve X ⊂ C2, we define the signature and signature map in a

similar manner as in the case of smooth curves (see Definition 2.1.27).

Definition 3.1.18. Let I = {K1,K2} be a classifying set of rational differential invariants

with respect to the action G, and let X ⊂ C2 be a non-exceptional curve. Then the rational

map σX : X 99K C2 with coordinates (K1|X ,K2|X) is called the signature map. The image of

SX = σX(X) is called the signature of X.

Note that since X is irreducible, then the closure SX is also an irreducible variety of dimension

0 or 1. If dim(SX) = 0, then it is a single point and, therefore, σX is a constant map. If

dim(SX) = 1, then it is an irreducible planar curve, which we call the signature curve of X. An

irreducible polynomial vanishing on SX is called a signature polynomial and is denoted by SX

and it is unique up to scaling by a non-zero constant. Since the signature map is constructed

using differential invariants, the following proposition may not be surprising.

Proposition 3.1.19. Assume that X,Y ⊂ C2 are G-equivalent and non-exceptional with

respect to a classifying set of rational differential invariants I = {K1,K2}. Then SX = SY .

Proof. If X and Y are G-equivalent, then there exists g ∈ G such that Y = g ·X. Due to the

fundamental property of prolongation (3.1), we have jrY (q) = g · jrX(p), for any p ∈ X where

q = g · p is defined. Since K1 and K2 are invariant, we have

K1(j
r
X(p)) = K1(j

r
Y (q)) and K2(j

r
X(p)) = K2(j

r
Y (q)).

This implies σX(p) = σY (q). Since g · p is defined for all but finitely many points in X and g ·X
is dense in Y , this implies that SX = SY .
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We will gradually work towards proving the converse of the above statement. This will show

that the Zariski closure of the signatures, and thus the signature polynomials, characterize the

equivalence classes of curves. We will also show the relationship between the cardinality of the

preimage of a generic point under a signature map and the cardinality of the symmetry group.

For both of these results we need several lemmas.

Lemma 3.1.20. Let I = {K1,K2} be a classifying set of rational differential invariants with

respect to the action G, and let X,Z ⊂ C2 be two non-exceptional curves, such that the

restrictions of K1 to both curves equal to the same constant function:

K1|X = K1|Z = c.

If there exists p ∈ X ∩ Z such that

1. jkX(p) = jkZ(p), where k = ord(K1),

2. p is not exceptional for X,

then X = Z.

Proof. Since p is non-singular for both X and Z, in some neighborhood of p, curves X and

Z coincide with the graphs of analytic functions y = f(x) and y = g(x), respectively. Both

y = f(x) and y = g(x) are solutions of the differential equation

K1(x, y, y
(1), . . . , y(k)) = c, (3.7)

with the same initial condition described by the point jkX(p) = jkZ(p). Since p is non-exceptional,
∂K1

∂yk
|jkX(p) 6= 0, and so using the implicit function theorem, (3.7) can be rewritten as y(k) =

H(x, y, y(1), . . . , y(k−1)) in a neighborhood of jkX(p), where H is an analytic function of the jet

coordinates. We can now invoke the uniqueness theorem for the solutions of complex ODEs [37]

to conclude that f(x) = g(x). Therefore X and Z coincide on a positive dimensional subset.

Since they are irreducible X = Z.

Lemma 3.1.21. Let I = {K1,K2} be a classifying set of rational differential invariants with

respect to the action G, and let X,Z ⊂ C2 be two non-exceptional curves with the same

signature curves, SX = SZ . If there exists p ∈ X ∩ Z such that

1. jrX(p) = jrZ(p),

2. p is not exceptional for X

3. if dimSX > 0 and SX(κ1, κ2) is the signature polynomial, then ∂S
∂κ2
|σX(p) 6= 0,
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then X = Z.

Proof. If σX (and, therefore, σZ) is a constant map, then there exists c ∈ C, such that K1|X = c

andK1|Z = c. Then we are in the situation of Lemma 3.1.20 and the conclusion follows. Otherwise,

σX and, σZ define the same signature polynomial SX(κ1, κ2) = SZ(κ1, κ2) := S(κ1, κ2). Since p

is non-singular for both X and Z, in some neighborhood of p, curves X and Z coincide with the

graphs of analytic functions y = f(x) and y = g(x), respectively. Both y = f(x) and y = g(x)

are solutions of the differential equation

S
(
K1(x, y, y

(1), . . . , y(k)),K2(x, y, y
(1), . . . , y(r))

)
= 0 (3.8)

with the same initial condition described by the point jrX(p) = jrZ(p). By assumption, ∂S
∂κ2
|σX(p)

and ∂K2

∂y(r)
|jrX(p) are both nonzero. Then using the implicit function theorem, (3.8) can be rewritten

as y(r) = H(x, y, y(1), . . . , y(r−1)) in a neighborhood of jrX(p), where H is an analytic function

of the jet coordinates. As in the previous lemma, we invoke the uniqueness theorem for the

solutions of ODEs, to conclude X = Z.

Lemma 3.1.22. Let I = {K1,K2} be a classifying set of rational differential invariants with

respect to the action G, and let X be a non-exceptional curve. Let p, q ∈ X be two non-exceptional

points, such that

1. σX(p) = σX(q)

2. if dimSX > 0 and SX(κ1, κ2) is the signature polynomial, then ∂S
∂κ2
|σX(p) 6= 0.

Then there exists g ∈ Sym(X,G), such that q = gp.

Proof. Since, σX(p) = σX(q) we have

K1(j
r
X(p)) = K1(j

r
X(q)) and K2(j

r
X(p)) = K2(j

r
X(q)).

Since I is a separating set, and p and q are non-exceptional, there exists g ∈ G, such that

jrX(p) = g ·jrX(q). Consider a curve Z = g ·X. By Lemma 3.1.17, Z is non-exceptional. Condition

SX = SZ holds due to Proposition 3.1.19. Due to the fundamental property of prolongation

(3.1) we have jrZ(p) = g · jrX(q). This implies p = g · q ∈ Z and jrZ(p) = jrX(p). We verified

that X and Z satisfy all conditions of Lemma 3.1.21. Then X = Z = g ·X and, therefore

g ∈ Sym(X,G).

Lemma 3.1.23. Suppose that X is a non-exceptional curve with respect to a classifying set of

rational differential invariants I = {K1,K2}. Then the following are equivalent:

(1) K1|X is a constant function on X,
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(2) H = Sym(X,G) is infinite,

(3) the signature SX consists of a single point.

Proof. (1)⇒ (2) Assume K1|X = c is a constant function on X. Fix a non-exceptional point p.

We will show that any non-exceptional point on X belongs to the orbit Hp. Since non-exceptional

points are dense in X, the conclusion would follow from Proposition 2.3.18.

Let q be a non-exceptional point on X. Then K1(j
k
X(p)) = K1(j

k
X(q)) = c where k equals

ord(K1). Since K1 is separating on Jk, there exists g ∈ G, such that jkX(p) = g · jkX(q). Consider

a curve Z = g ·X. By Lemma 3.1.17, Z is non-exceptional. Condition SX = SZ holds due

to Proposition 3.1.19. Therefore K1|Z is the same constant function as K1|X . Due to the

fundamental property of prolongation (3.1) we have jrZ(p) = g · jrX(q). This implies p = g · q ∈ Z
and jrZ(p) = jrX(p). We verified that X and Z satisfy all conditions of Lemma 3.1.20. Then

X = Z = g ·X and, therefore g ∈ H and so q ∈ Hp.
(2) ⇒ (3) Let p be a non-exceptional point. For any q ∈ Hp, there exists g ∈ H, such that

p = g · q and X = g ·X. If q is non-exceptional, it follows from (3.1) that jkX(p) = g · jkX(q).

Since K1 is a differential invariant, K1|X(g · jkX(q)) = K1|X(jkX(q)). Then

K1|X(jkX(p)) = K1|X(jkX(q)) for all non-exceptional q ∈ Hp.

Since H is infinite, from Proposition 2.3.18, it follows the orbit Hp is dense in X. The set of

non-exceptional points is also dense in X. Thus K1|X is a constant rational function on a dense

subset of X and, therefore, is constant on X.

(3)⇒ (1) Obvious from the definition of SX .

We are now ready to prove the converse of the Proposition 3.1.19.

Proposition 3.1.24. If algebraic curves X,Y ⊂ C2 are non-exceptional with respect to a

classifying set of rational differential invariants I = {K1,K2} under an action of G on C2 and

their signature curves are equal, SX = SY , then X and Y are G-equivalent.

Proof. Then S := SX = SY is an irreducible curve, and let S(κ1, κ2) be its defining polynomial.

If ∂S
∂κ2

were identically zero, then K1|X would be constant and Lemma 3.1.23 would imply that

S is a single point. Therefore ∂S
∂κ2
|s is nonzero for all but finitely many points s ∈ S. Moreover,

since X and Y are non-exceptional, for all but finitely many such points s ∈ S, none of the

points in the preimage σ−1X (s) are exceptional in X and none of the points in the preimage

σ−1Y (s) are exceptional in Y . By Chevalley’s Theorem (2.2.27), the images SX and SY are open

subsets of S, and thus all but at most finitely many points of S. We fix a point s ∈ S with these

desired properties, a point p ∈ σ−1X (s) and a point q ∈ σ−1Y (s). Otherwise SX (and, therefore,

SY ) is a single point, and we let p and q be any non-exceptional points on X and Y , respectively.
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In both cases, σX(p) = σY (q), meaning that

K1(j
r
X(p)) = K1(j

r
Y (q)) and K2(j

r
X(p)) = K2(j

r
Y (q)).

Since I is separating and p and q are non-exceptional, there exists a group element g ∈ G for

which jrX(p) equals g · jrY (q).

Consider a curve Z = g · Y . By Lemma 3.1.17, Z is non-exceptional. Condition SX = SZ holds

due to Proposition 3.1.19. Due to the fundamental property of prolongation (3.1), we have

jrZ(p) = g · jrX(q). Therefore, p = g · q ∈ Z and jrZ(p) = jrX(p). We verified that X and Z satisfy

all conditions of Lemma 3.1.21. Then X = Z = g · Y .

Combining Lemma 3.1.23 with Propositions 3.1.19 and 3.1.24 we get the following corollary.

Corollary 3.1.25. If X and Y have a finite symmetry group, then X and Y are G-equivalent

if and only if their signature polynomials SX , SY are equal up to a non-zero constant factor.

We can now combine the results in this section to establish, for the action of each G ⊂ PGL(3),

the existence of a pair of classifying invariants that characterize the equivalence classes of generic

irreducible algebraic curves.

Theorem 3.1.26. Let r-dimensional group G ⊂ PGL(3) act on C2. Then there exists a pair

of differential invariants I = {K1,K2} of differential order at most r, such that for all integers

d, where
(
d+2
2

)
− 2 ≥ r, there exists a Zariski open subset Pd ⊂ C[x, y]≤d such that any curves

X,Y whose defining polynomials lie in Pd satisfy:

X ∼=
G
Y ⇐⇒ SX = SY , (3.9)

where SX and SY are signatures of X and Y based on invariants I, as given by Definition 3.1.18.

Proof. From Theorem 3.1.11 we know that there exists a classifying set I of rational differential

invariants of order at most r. By Propositions 3.1.19 and 3.1.24, the statement (3.9) is valid

for all I-non-exceptional curves. By Theorem 3.1.16, for any d, such that
(
d+2
2

)
− 2 ≥ r, there

exists a Zariski open subset Pd ⊂ C[x, y]≤d, such that all curves whose defining polynomials lie

in Pd are non-exceptional.

Analagous to a similar property observed in smooth curves [11], when Sym(X,G) is a finite

subgroup of G of size n, a signature map on X is also generically n : 1. This result will play a

crucial role in Section 3.2, where we study the algebraic properties of the signature polynomial.

Theorem 3.1.27. Suppose that X is a non-exceptional curve with respect to a classifying set

of rational differential invariants I = {K1,K2} for action G. Then |Sym(X,G)| = n if and only

if the map σX is generically n : 1.
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Proof. (⇒) We need to show that there exists a dense subset S0 ⊂ SX , such that |σ−1X (s)| = n

for all s ∈ S0. Denote H := Sym(X,G). Since H is finite, from Lemma 3.1.23, it follows that

SX is an irreducible curve and its defining polynomial S(κ1, κ2) depends non-trivially on κ2.

Therefore the set S1 =
{
s ∈ SX

∣∣∣ ∂S
∂κ2

∣∣∣
s
6= 0
}

is dense in SX . Due to Proposition 2.3.19 for

all but maybe finitely many points p ∈ X, the orbit Hp consists of exactly n distinct points.

Moreover, since X has only finitely many exceptional points, the set of points

X0 = {p ∈ X |Hp consists of exactly n non-exceptional points}

is dense in X. Then its image S2 = σX(X0) is dense in SX . It follows that the intersection

S0 := S1 ∩ S2 is dense in SX . For any s ∈ S0, let p ∈ σ−1X (s). By Lemma 3.1.22, σ−1X (s) = Hp

and so |σ−1X (s)| = n.

(⇐) Suppose that the map σX is generically n : 1. Then, by Lemma 3.1.23, Sym(X,G) is finite.

By the forward implication, n = Sym(X,G).

Example 3.1.28. Consider the special Euclidean group SE(2) of complex translations and

rotations of C2 (see Example 2.3.10). The set ISE = {K1,K2}, where K1 = κ2, the square

of Euclidean curvature, and K2 = κs its derivative with respect to Euclidean arc-length, is

classifying (see Proposition 4.1.1). Indeed, one can check directly that ISE separates orbits on

the SE-invariant open subset

W2 =

{(
x, y, y(1), y(2), y(3)

)
|
(
y(1)
)2

+ 1 6= 0

}
and K1 separates orbits on an open set W1 = π(W2) ⊂ J2 under the standard projection

π : J3 → J2. Thus the conditions of Definition 3.1.6 are satisfied. According to Theorem 3.1.11

we conclude that

C(J3)SE(2) = C(K1,K2) and C(J2)SE(2) = C(K1).

By Theorem 3.1.16, a generic curve of degree ≥ 2 is non-exceptional with respect to ISE . In fact,

a careful consideration of the conditions in Definition 3.1.13 shows that there are no irreducible

curves of degree greater than one that are ISE -exceptional.

We will now compute the signature polynomial for the ellipse X defined by the zero set of

F (x, y) = x2 + y2 + xy − 1.
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The signature map σX = (K1|X ,K2|X) : X → C2 is explicitly defined by

K1|X(x, y) = 36
(x2 + xy + y2)2

(5x2 + 8xy + 5y2)3
and K2|X(x, y) = 54

(y4 − x4 + xy3 − x3y)

(5x2 + xy + y2)3
.

Under the SE(2)-action the ellipse has a symmetry group of cardinality two generated by the

180◦-degree rotation. We observe that in agreement with Theorem 3.1.27, σX is generically a

2: 1 map on X. One can use a Gröbner basis elimination algorithm to compute a signature

polynomial of X, that is an irreducible polynomial vanishing on the image of rational map σX :

SX(κ1, κ2) = 2916κ61 + 972κ41κ
2
2 + 108κ21κ

4
2 + 4κ62 − 13608κ51 + 1944κ31κ

2
2 + 2187κ41.

Any curve SE(2)-equivalent to X will have the same signature polynomial. For most degree

three algebraic curves, it takes much longer to compute their signature polynomials under SE(2)

actions, and for higher degree curves it is rarely possible in practice. For this reason, it is of

interest to determine properties, such as the degree, of signature polynomials for curves without

their explicit computation, which we discuss in Section 3.2.

3.2 Properties of signature polynomials

In Section 3.1.1 we showed the existence of signature map, whose image characterized equivalence

classes of generic irreducible algebraic curves. The closure of this image, the signature curve, is

defined by an irreducible polynomial called the signature polynomial. In this section we explore

properties of signature polynomials and signature curves. For the action of G ⊂ PGL(3) we fix a

classifying pair of differential invariants I = {K1,K2}, and we denote the signature map defined

by I restricted to an algebraic curve X ⊂ C2 as σX .

3.2.1 Degree of signature polynomials

In Section 2.2.3 we considered the image of a rational map on an irreducible projective curve in

CP2 and showed how one can determine the degree of the irreducible polynomial vanishing on

this image. To use these results, for a signature map σX : X 99K C2, non-constant on X, we

consider a projective extension (see Definition 2.2.22) σ : CP2 99K CP2. Note that while we will

drop X from the notation, the map σ still heavily depends on the original curve X.

Theorem 3.2.1. Let X ⊂ C2 be a non-exceptional algebraic curve defined by an irreducible

polynomial F , and let n = |Sym(X,G)|. Then for any homogeneous vector σ, defining a

projective extension σ : CP2 99K CP2 of the signature map σX , the degree of the signature
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polynomial SX satisfies

n · deg(SX) = deg(F) · deg(σ)−
∑

p∈Bl(σ)

multp(F,σ). (3.10)

Here F ∈ C[x0, x1, x2] denotes the homogenization of F .

Proof. From Theorem 3.1.27 we know that σX : X 99K C2 is generically n : 1 map. Then σ is

defined and generically n : 1 on V (F), which is the Zariski-closure of X in CP2. Since F , and thus

F, is irreducible, the minimal polynomial P vanishing on the image σ(V (F)) is also irreducible.

Its dehomogenezation is exactly the signature polynomial SX . The result then follows from

Theorem 2.2.52.

Theorem 3.2.2. Let X ⊂ C2 be a non-exceptional algebraic curve defined by an irreducible

polynomial F , and let n = | Sym(X,G)|. For any homogeneous vector σ, defining a projective

extension σ : CP2 99K CP2 of the signature map σX , denote σ0 as the vector [σ1,σ2] and σ1,σ2

similarly. Then the degree of the signature polynomial SX ∈ C[κ0, κ1, κ2] in each variable κi

satisfies

n · degκi(SX) = deg(F) · deg(σ)−
∑

p∈Bl(σi)

multp(F,σi). (3.11)

Here F ∈ C[x0, x1, x2] denotes the homogenization of F .

Proof. Similarly as in the proof of Theorem 3.2.1, the result follows from Theorem 2.2.53.

In each case, the last term of (3.10) and (3.11) appears to be difficult to obtain, as we recall

from Remark 2.2.47, for a vector of homogeneous polynomials φ, multp(F,φ) is defined as the

minimal multiplicity over a ∈ CP2. However, from Proposition 2.2.48, we can compute bounds

for the multiplicities, and thus bounds for the degree of the signature polynomial. Moreover,

for a generic choice of a ∈ CP2, the upper bound is tight, giving a randomized algorithm to

compute this degree.

Corollary 3.2.3. Under the hypotheses of Theorem 3.2.2, for any a ∈ CP2 and b ∈ CP1, we

have

n · deg(SX) ≥ deg(F) · deg(σ)−
∑

p∈Bl(σ)

mp(F,σ∗a), (3.12)

n · degκi(SX) ≥ deg(F) · deg(σi)−
∑

p∈Bl(σi)

mp(F, (σi)∗b) (3.13)
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with equality holding for a generic a and b. In addition:

n · deg(SX) ≤ deg(F) · deg(σ)−
∑

p∈Bl(σ)

mp(〈F,σ0,σ1,σ2〉), (3.14)

n · degκi(SX) ≤ deg(F) · deg(σi)−
∑

p∈Bl(σi)

mp(J i) (3.15)

where J0 = 〈F,σ1,σ2〉 and J1, J2 are defined similarly.

Proof. This is a direct corollary of Proposition 2.2.48, Theorem 3.2.1, and Theorem 3.2.2.

For more on computing signature polynomials and bounds of their degree see Appendix A.

3.2.2 Generic monomial support and genus

The existence of a signature map for a generic algebraic curve of sufficiently high degree leads

to question, “What properties are shared by the signature curves or signature polynomials for a

generic algebraic curve?” In this subsection, for the action of a group G where dim(G) = r, we

assume that the degree d of an algebraic curve satisfies
(
d+2
2

)
− 2 ≥ r. This ensures the existence

of a non-empty open subset of C[x, y]≤d for each d where the signature map characterizes

equivalence classes.

From Proposition 2.3.20 and Lemma 3.1.23 we can immediately see that for a generic curve

X, where deg(X) ≥ 3, dim(SX) = 1. Thus a signature polynomial can be associated with a

generic curve.

The genus of a smooth curve X, denoted χ(X) is determined by d = deg(X). It is given by

the well-known genus-degree formula χ(X) = (d−1)(d−2)
2 [23].

Each singularity of X reduces χ(X). For any choice of classifying invariants, we show below

in Theorem 3.2.4 that the signature map preserves the genus of a generic curve. In Chapter 4

we investigate the degree of the signature polynomial of X under certain subgroups of PGL(3)

and show that deg(SX) is often much higher than deg(X). Thus, in these cases, χ(S) = χ(X)

implies that S is a highly singular curve.

Theorem 3.2.4. A generic curve X of fixed degree d ≥ 4, is birationally equivalent to its

signature curve SX . In this case the genus of SX is equal to the genus of X, i.e.

χ(SX) = χ(X). (3.16)

Proof. By Theorem 3.1.27 and Proposition 2.3.20, the signature map σX is generically one to

one, which implies that σX is birational (see [51, pg. 99]). Then (3.16) follows from the fact that

birationally equivalent curves have the same genus.
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Remark 3.2.5. Since a generic curve is smooth, the genus-degree formula (d−1)(d−2)
2 also gives

the genus of the signature curve SX for generic X of degree d.

The signature polynomials of generic curves also have the same monomial support, which further

implies that the polynomials have the same degree. This “generic degree” provides an upper

bound for the degree of the signature polynomial for any non-exceptional curve with finite

symmetry group.

Definition 3.2.6. Given a curve X = V (F ) defined by F =
∑

i,j aijx
iyj where 1 ≤ i, j ≤ d,

the monomial support of F is the set of points in R2 given by M = {(i, j) | aij 6= 0}. The

convex hull of M is the Newton polytope of F .

Theorem 3.2.7. For a generic curve X of fixed degree d ≥ 3, the signature polynomials SX

have the same monomial support. In particular, the signature polynomials have the same degree

and Newton polytope.

Proof. Let a denote the point [a00 : a10 : . . . : a0d] ∈ CPN where N =

(
d+ 2

2

)
− 1, and consider

the polynomial F (x, y,a) =
∑

i,j aijx
iyj where 0 ≤ i, j ≤ d. For a particular value ã ∈ CPN ,

Fã = F |a=ã defines a curve V (Fã) = Xã. For a generic choice of ã, this is an irreducible,

non-exceptional curve of degree d by Theorem 3.1.16.

The rational map jnX induces a map jn : CPN × C2 99K Cn+2 defined by the rational

functions of the partials of F as in Remark 3.1.1. For a differential function K let K|F = K ◦ jn

denote the restriction of K to an arbitrary curve of degree d. Consider the rational map

σ : CPN × C2 99K CPN × C2 defined by σ = (a,K1|F ,K2|F ).

Since F is irreducible over C[x, y,a], there exists an irreducible polynomial P ∈ C[κ1, κ2,a]

vanishing on the image of V (F ) under σ. By Chevalley’s Theorem, this image is an open

dense subset of V (P ), i.e. there exists a variety H ⊂ V (P ) such that σ(V (F )) ⊃ V (P )\H and

dim(H) ≤ N .

Consider the regular projection map π : V (P )→ CN given by π(a, κ1, κ2) = a. We claim that

dim(π−1(a)∩H) ≤ 0 for a generic a. Suppose π(H) = CN ; otherwise for a generic a, π−1(a)∩H
is empty. Then, for a generic choice of a, the dimension of π−1(a) ∩H is given by dim(H)−N ,

meaning dim(π−1(a) ∩H) ≤ 0 [50, Ch. 1, Sec 6.3, Theorem 7].

Suppose we take a generic point ã. Then there exists an irreducible signature polynomial

SXã
such that V (SXã

) ⊂ V (Pã) where Pã = P (κ1, κ2,a)|a=ã. If Pã is reducible then Pã =

SXã
(κ1, κ2)Hã(κ1, κ2). By genericity, points of the form (ã, p) where p ∈ V (Hã) necessarily lie

outside the image of σ, meaning (ã, p) ∈ π−1(ã)∩H. However, dim(π−1(ã)∩H) ≤ 0, and hence

there can only be finitely many points p ∈ V (Hã) which contradicts the fact that Pã is reducible.

Therefore the polynomial Pa is irreducible for a generic value of a, implying SXa = Pa.

In this case the monomial support of SXa equals the monomial support of Pa. We can write
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P =
∑

i,j bijκ
i
1κ
j
2 where 1 ≤ i, j ≤ D = degκ1,κ2(P ) and bij ∈ C[a]. The point (i, j) being in the

monomial support of Pa is equivalent to the condition that bij(a) 6= 0, and hence is an open

condition on a.

Theorem 3.2.8. Suppose that X is a curve of degree less than or equal to d (where d ≥ 4)

non-exceptional with respect to the classifying set I and with finite symmetry group. Then

deg(SX) ≤ sd where sd is the degree of the signature curve for a generic curve of degree d.

Proof. For each
(
d+2
2

)
− 2 ≥ r where r = dim(G), the existence of sd is proved in Theorem 3.2.7.

Let X = V (F ) be any non-exceptional curve of degree ≤ d with finite symmetry group and H

be a generic choice of polynomial in C[x, y]≤d; consider the pencil defined by F + λH. Since

a generic curve is non-exceptional with finite symmetry group (Theorem 3.1.16), for all but

finitely many values of λ0 ∈ C, F + λ0H is an irreducible non-exceptional curve with finite

symmetry group. One can check that F + λH is irreducible over C[x, y, λ].

Similarly as in the proof of Theorem 3.2.7, let σ : C3 99K C3 be the map defined by

σ = (K1|F+λH ,K2|F+λH , λ), defined for all but perhaps finitely many values of λ. Denote the

irreducible polynomial vanishing on the image σ(V (F + λH)) as P ∈ C[κ1, κ2, λ]. Then, for any

value of λ0 where F + λ0H is non-exceptional, SV (F+λ0H) ⊂ V (P |λ=λ0).

For a generic choice of λ, the polynomial P |λ=λ0 is of degree sd (by a similar argument as

in Theorem 3.2.7). Since P is irreducible it does not contain the plane λ = 0, and hence the

signature polynomial SX is a factor of P |λ=λ0 . In particular it is of degree less than or equal to

sd.

If one considers the set of curves X of degree d under G, then the above results restrict the

possible curves that can arise as signature curves for X. This could aide in developing different

methods to compute or approximate the signature polynomial as discussed in Section 5.4.

Note, however, that the generic monomial support and upper bound on the degree of SX

depend on the set of classifying invariants. Using a different classifying pair of invariants may

result in a different generic degree for SX . The relationship between different classifying pairs of

invariants is discussed in Section 5.2.

3.2.3 Real signature curves

For any algebraic curve X = V (F ), we can consider the zero set of F over R denoted VR(F ).

When this is non-empty, there is an associated real algebraic curve XR = VR(F ) given by

the real points of X. With any real algebraic curve XR = VR(F ), we can always consider the

corresponding algebraic curve in C2 given by X = V (F ). Similarly there is a correspondence

between an algebraic group G ⊂ PGL(3,C) and the subgroup GR ⊂ PGL(3,R) corresponding to
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real elements of G. In this section we discuss the relationship between the signatures of algebraic

curves X and the real part of X.

Suppose that GR ⊂ PGL(3,R) acts on R2 as defined in (2.10). In [10] the authors showed

that a classifying pair of rational differential invariants defined a signature map, whose image

characterized equivalence classes for non-exceptional real algebraic curves under this action. The

terms “classifying”’ and “non-exceptional” are defined as they are in this thesis, but over the

real numbers.

Suppose a set of rational differential invariants I = {K1,K2} is classifying for both the action

of GR on R2 and G on C2. Since the curves X and XR are defined by the same polynomial

F , the rational map defined by σX = (K1|X ,K2|X) is the signature map for both X and XR.

The real part of the image SX contains the signature of XR. Thus, when Sym(X,G) is finite

and dim(XR) = 1, the minimal polynomial vanishing on the signature of XR is the signature

polynomial SX .

This shows that even if one is only concerned with real algebraic curves, the results derived here

for signature polynomials of curves X ⊂ C2 are relevant. However, there are some differences: in

the case of complex curves, the Zariski closure of the signature and thus the signature polynomial

characterizes equivalence classes of X under G, while the equivalence classes of real curves XR

under GR are characterized by their image under σX . In fact, two real curves XR and YR may

have the same signature polynomial S := SX = SY , but different images under σX and hence

different signatures (see Example 3.2.12).

In [10] the authors provided examples of classifying pairs of invariants for A(2,R), and

PGL(3,R). In Section 4.1.1 we show that these same invariants are also classifying for A(2,C),

and PGL(3,C) respectively. An interesting question is whether the existence of a classifying pair

of invariants for the action of GR is guaranteed, i.e. a similar statement to Theorem 3.1.11 is

true over the real numbers.

Remark 3.2.9. Many properties of the field of rational invariants that were integral to the

proof of Theorem 3.1.11 no longer hold when the ground field is R. For instance, the second

part of Proposition 2.3.8 is not true over R.

For example, the field of rational invariants for the action of the group R∗ (non-zero real

numbers under multiplication) on R2 defined by (x, y) 7→ (λ2x, λ2y) is generated by K = x
y , but

K is not separating. Conversely, for the translation action of R on R2 defined by (x, y) 7→ (x+a, y),

the invariant K = y3 is separating but not generating.

The invariant K = x
y also generates the ring of invariants for the action of C∗ on C2 defined

by (x, y) 7→ (λ2x, λ2y). Therefore this invariant is separating for this action, but not for the

associated action of R∗ on R2. Conversely, for the translation action of R on R2 defined by

(x, y) 7→ (x + a, y), the invariant K = y3 is separating but not generating. Thus it is not

60



generating for the associated action of C on C2, meaning it cannot separate orbits for this action.

A more ambitious goal would be to establish the existence of a single classifying pair of rational

differential invariants for both G and GR. As seen in the previous remark, invariants may separate

orbits of GR, but not the orbits of G and vice versa.

3.2.4 Examples

In this section, we present some examples, illustrating the degree formula (3.10), the bounds we

established in Corollary 3.2.3, as well as other properties of signature polynomials. We use pairs

of classifying invariants introduced in Section 4.1. The algorithms used to compute the signature

polynomial, degree bounds for the signature polynomial, and other quantities are detailed in

Appendix A.

Example 3.2.10. Consider the curve X defined by the zero set of the irreducible cubic

F (x, y) = x2y + y2 + y +
64

121

under the action of the affine group A(2) on C2. If we restrict the classifying invariants to

X and cancel common factors, then we can construct a projective extension σ of σX where

deg(σ) = 26.

In Figure 3.1 in red, on the left, the real affine points of X are shown, while on the right,

the real affine points of its signature curve SX . In blue, on the right, is the line V (L) defined

by a = [5 : 1 : 1] and on the left its pullback V (σ∗a). Under the action of the affine group of

transformations on the plane, X has a symmetry group of size two. Then by Theorem 3.1.27,

the map σ is generically 2 : 1 on X.

A direct computation of the rightmost terms in (3.12) and (3.14) give that∑
p∈Bl(σ)

mp(F, 5σ0 + σ1 + σ2) =
∑

p∈Bl(σ)

mp(F,σ0,σ1,σ2) = 30

This allows us to conclude that
∑

p∈Bl(σ) multp(F,σ) = 30. Thus by Theorem 3.2.1 the degree

of the signature curve equals deg(SX) = (3 · 26− 30)/2 = 24.

61



Figure 3.1: X and SX intersected with V (σ∗a) and V (L) respectively.

We now show that a line L̃ defined by ã = [1 : −6 : 1] does not provide us with exact

degree count (the corresponding pictures are given by Figure 3.2). For this choice of line,∑
p∈Bl(σ)mp(F,σ0 − 6σ1 + σ2) = 32 and Corollary 3.2.3 tells us only that 23 ≤ deg(SX) ≤ 24

and that ã is non-generic. Indeed, V (L̃) intersects SX at the point [0 : 6 : 1] which is not in SX ,

a property that must be avoided by generic lines.

Figure 3.2: X and SX intersected with with V (σ∗ã) and V (L̃) respectively.

Example 3.2.11. Let X denote the curve defined by the zero set of the elliptic curve

F (x, y) = y2 − x(x+ 1)(x+ 2),
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and consider X under the action of the special Euclidean group SE(2). A direct computation of

the rightmost terms in (3.12) and (3.14) using a = [−7 : 5 : 3] give that 24 ≤ deg(SX) ≤ 24.

One can compute the signature polynomial directly to verify this.

The length of this signature polynomial illustrates how the signature polynomial, even for

a simple elliptic curve, can be quite complicated. In fact, a first attempt at graphing the real

affine points of V (SX) in Maple yields the “Snowman-like” figure:

Figure 3.3: The elliptic curve X and a plot of V (SX).

However, this figure is misleading; the plotter in Maple has difficulty plotting around the singular

points of V (SX) on the x-axis. To obtain a more accurate representation of the real affine points

of V (SX), we can use bertini real, a software that numerically decomposes and visualizes the

real part of algebraic curves and surfaces [8].
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Figure 3.4: The real affine points of V (SX) in bertini real.

The software also allows us to zoom in closer to interesting parts of the curve. In Figure 3.5, the

blue dots represent critical points of the curve. Note that there are four isolated points of V (SX).

In particular, the two points to the left of the y-axis are the image of complex points of X.
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Figure 3.5: A closer look around the origin.

Observations seem to indicate that two similar isolated critical points appear in most cubic’s

Euclidean signature. An interesting question is whether these two points have any geometric

significance. In Figure 3.6, we see that there exists a very small oval near the origin.
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Figure 3.6: An even closer look around the origin.

From the above figures, we can see that the signature polynomial has a high degree of singularity.

Example 3.2.12. Consider the two cubics

F1(x, y) = x3 − y2 + 1

F2(x, y) = x3 − y2 − 1

under the action of the affine group A(2). These two curves have the same signature polynomial,

and hence are Af(2)-equivalent by Proposition 3.1.24. However, one can verify directly that these

curves are not A(2,R)-equivalent. Thus the real part of the images of σX1 and σX2 correspond

to different subsets of V (SX1)R = V (SX2)R.

Example 3.2.13. Prior knowledge of the degree of a signature polynomial can distinguish

inequivalent curves. Consider the two quintics
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F1(x, y) = x5 + xy + x− y + 1

F2(x, y) = (x+ 2y)5 + y3 + y2 + x2 + x+ 1

under the action of the affine group A(2). At first one might compute the size of the two curves’

symmetry groups under A(2), as two curves X1 and X2 are A(2)-equivalent if and only if

|Sym(X1,A(2))| = | Sym(X2,A(2))|. However, in this case, both symmetry groups are trivial,

yielding no new information.

Using a = [1 : 1 : 1] to compute the bounds (3.12) and (3.14) give that

30 ≤deg(SX1) ≤ 35

216 ≤deg(SX1) ≤ 216,

implying that the curves cannot have the same signature polynomial, and hence are inequivalent

under A(2). Note that the degrees of both signature polynomials are quite large, indicating that

direct computation using Gröbner basis algorithms would be difficult.

Example 3.2.14. Consider the class of plane curves defined by the zero set of

F (x, y) = y2 − f(x)

where f(x) is a univariate polynomial of degree > 4. In the case that f(x) is a polynomial

with no multiple roots and deg(f) is odd, X = V (F ) is known as a hyperelliptic curve [50].

The restrictions of the classifying invariants for the projective PGL(3) and affine A(2) actions

yield projective extensions of the form σ = [σ0(y
2, x),σ1(y

2, x),σ2(y
2, x)]. In fact each σi is a

polynomial in y2 and the partial derivatives of f(x).

Therefore we can write the signature polynomial as the image of a rational map on CP1,
implying that SX is rational and the genus of SX is χ(SX) = 0. When deg(f) = 2n+ 1 for some

integer n ≥ 2, the genus of the curve is χ(X) = n [50]. This implies that there exists a class of

curves with arbitrarily high genus, but rational signature polynomial. An interesting problem

would be to use the degree formula (3.10) to investigate the degree of signature polynomials of

hyperelliptic curves.
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CHAPTER 4

Classical subgroups of the projective general linear group

In Chapter 4 we illustrate the results derived in Chapter 3 for the actions of the projective,

affine, special affine, similarity, Euclidean, and special Euclidean groups on C2. We show that

one can use classical differential invariants to build rational pairs of invariants and that these

invariants are classifying. For the projective and affine actions, we use the same classifying

invariants as in [10] for real algebraic curves.

For all of these groups we use the degree formula (3.10) to compute degree of the signature

polynomial for a generic algebraic curve of fixed degree d. We do this by constructing projective

extensions of the signature map for each group, and then computing each term in (3.10) for a

generic curve. We conclude by examining the class of curves, known as Fermat curves, of the

form X = V (xd + yd + 1) for some positive integer d ≥ 2. Under the projective and affine groups,

we show that the degree of the signature polynomial remains constant for d ≥ 3, and explicitly

compute the signature polynomials for all Fermat curves of degree greater than three.

4.1 Classifying invariants

Here we introduce rational classifying pairs of invariants for the actions of PGL(3) and some of

its well-known subgroups: the affine group A(2), the special affine group SA(2), the similarity

group S(2), the Euclidean group E(2), and the special Euclidean group SE(2). For descriptions

of each of these groups see Section 2.3.1; their actions on CP2 and C2 are given by (2.9) and

(2.10).

In [10], the authors used classical differential invariants to build two lowest order rational
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invariants for the projective and affine groups and directly proved that they satisfy conditions

of Definition 3.1.6 for classifying invariants over R (see Theorem 4 in [10]). Using the same

line of argument, we can show that these invariants are classifying over C, and also produce

classifying pairs for the actions of the special affine, Euclidean, and special Euclidean groups

over C. Additionally we provide a pair of classifying invariants for the action of the similarity

group over C.

The following inductive expressions [19, 40] for classical differential invariants are useful for

expressing these pairs in a concise manner. We start with the classical Euclidean curvature and

arc-length:

κ =
y(2)

(1 + [y(1)]2)3/2
, ds =

√
1 + [y(1)]2dx. (4.1)

We can then express the special affine curvature and arc-length in terms of them:

µ =
3κ(κss + 3κ3)− 5κ2s

9κ8/3
, dα = κ1/3ds,

where these expressions agree with the notion of special affine curvature and arc-length in

Section 2.1.1. In a similar manner, the projective curvature and arc-length are

η =
6µαααµα − 7µ2αα − 9µ2αµ

6µ
8/3
α

, dρ = µ1/3α dα.

From these expressions we can construct the following pairs of invariants:

Group SE(2) E(2) S(2) SA(2) A(2) PGL(3)

K1 κ2 κ2
κs
κ2

µ3
µ2α
µ3

η3

K2 κs κ2s
κss
κ3
− 3 µα

µαα
µ2

ηρ

(4.2)

We can also express the invariants in terms of the jet coordinates. Refer to Table 4.1 for the

explicit formulas of the Θ’s.
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Group SE(2) E(2) S(2) SA(2) A(2) PGL(3)

K1
(Θ2)

2

(Θ1)3
(Θ2)

2

(Θ1)3
Θ3

(Θ2)2
(Θ4)

3

(Θ2)8
(Θ5)

2

(Θ4)3
(Θ7)

3

(Θ5)8

K2
Θ3

(Θ1)3
(Θ3)

2

(Θ1)6
Θ9

(Θ2)3
Θ5

(Θ2)4
Θ6

(Θ4)2
Θ8

(Θ5)4

(4.3)

Θ1 = u21 + 1 Θ2 = u2 Θ3 = u3Θ1 − 3u1Θ2
2

Θ4 = 3u4u2 − 5u23 Θ5 = 9u5u
2
2 − 45u4u3u2 + 40u33

Θ6 = 9u6u
3
2 − 63u5u3u

2
2 − 45u24u

2
2 + 255u4u

2
3u2 − 160u43

Θ8 = (9/2)
[
18u7u

4
2(Θ5)− 189u26u

6
2 + 126u6u

4
2(9u5u3u2 + 15u24u2 − 25u4u

2
3)

− 189u25u
4
2(4u23 + 15u2u4) + 210u5u3u

2
2(63u24u

2
2 − 60u4u

2
3u2 + 32u43)

−525u4u2(9u34u
3
2 + 15u24u

2
3u

2
2 − 60u4u

4
3u2 + 64u63) + 11200u83

]
Θ8 = (243/2)(u42)

[
2u8u2(Θ5)2 − 8u7(Θ5)(9u6u

3
2 − 36u5u3u

2
2 − 45u24u

2
2

+ 120u4u
2
3u2 − 40u43) + 504u36u

5
2 − 504u26u

3
2(9u5u3u2 + 15u24u2 − 25u4u

2
3)

+ 28u6(432u25u
2
3u

3
2 + 243u25u4u

4
2 − 1800u5u4u

3
3u

2
2 − 240u5u

5
3u2 + 540u5u

2
4u3u

3
2

+ 6600u24u
4
3u2 − 2000u4u

6
3 − 5175u34u

2
3u

2
2 + 1350u44u

3
2)− 2835u45u

4
2

+ 252u35u3u
2
2(9u4u2 − 136u23)− 35840u25u

6
3 − 630u25u4u2(69u24u

2
2 − 160u43 − 153u4u

2
3u2)

+2100u5u
2
4u3(72u43 + 63u24u

2
2 − 193u4u

2
3u2)− 7875u44(8u24u

2
2 − 22u4u

2
3u2 + 9u43)

]
Θ9 = u4Θ2

1 − 5u1u2(u3Θ1 + Θ3)

Table 4.1: Differential functions in uk = y(k) used construct invariants

4.1.1 Invariants are Separating

In this section we will work towards showing that each pair of invariants in (4.3) is a classifying

pair of invariants for the associated action. We use the ISE = {KSE1 ,KSE2 } to refer to the pair of

invariants in (4.3) for the prolonged action of SE(2), and similarly denote the pairs of invariants

for the prolonged actions of the other groups.

Proposition 4.1.1. KSE1 separates orbits on the Zariski open set W 2 ⊂ J2 and the set ISE

separates orbits on the Zariski open set W 3 ⊂ J3, where
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W 3 =
{(
x, y, y(1), y(2), y(3)

)
∈ J3 |Θ1 6= 0

}
and W 2 = π32(W 3) ⊂ J2 for the prolonged action of SE(2) on C2.

Proof. Note that W 2,W 3 are invariant subsets of J2, J3 under the prolonged action of SE(2).

Take the point p(2) ∈W 2 ⊂ J2, p(2) =
(
x, y, y(1), y(2)

)
.

First we will show that KSE1 separates orbits on W 2. Through a series of transformations well-

defined for any p(2) ∈W 2, one can find a point on the same orbit of the form p(2) =
(

0, 0, 0, y
(2)
p

)
where y(2) ∈ C. Thus for any two points p(2), q(2) ∈ W 2 where KSE1 (p(2)) = KSE1 (q(2)), we can

instead compare KSE1 (p(2)) = KSE1 (q(2)).

Since p(2) ∈W 2, the equation ω2 = 1 +
(
y(1)
)2

has two solutions over C; let ω̃ 6= 0 be one of

those solutions. Then the transformation gp ∈ SE(2) defined by

c =
1

ω̃
, s =

y(1)

ω̃
, a = −(cx+ sy), b = −(−sx+ cy), (4.4)

brings the point p(n) to

p(2) =
(

0, 0, 0, y(2)p

)
where y

(2)
p ∈ C is the value

y(2)p = −y(2)ω̃.

Now suppose that KSE1 (p(2)) = KSE1 (q(2)) for some q(2) ∈ J2. Since KSE1 is invariant under the

action of SE(2),

KSE1 (p) = KSE1 (p) = KSE1 (q) = KSE1 (q(2)),

for q(2) = gq · q(2) defined similarly as for p(2). This implies, from the formula of KSE1 in terms of

jet coordinates, that
(
y
(2)
p

)2
=
(
y
(2)
q

)2
. Then either y

(2)
p = y

(2)
q or y

(2)
p = −y(2)q .

In the case that p(2) = q(2), p(2) and q(2) are clearly in the same orbit. Denote g−1 ∈ SE(2)

to be the transformation

c = −1, s = 0, a = 0, b = 0.

Then if y
(2)
p = −y(2)q ,

g−1 · p(2) = q(2)
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and hence p(2) and q(2) lie in the same orbit. Thus KSE1 separates orbits on W 2 ⊂ J2. For

p(3), q(3) ∈W 3 ⊂ J3, KSE1 (p(3)) = KSE1 (q(3)), and KSE2 (p(3)) = KSE2 (q(3)), we have shown above

that there exists a representative of each point’s orbit such that

p(3) =
(

0, 0, 0, y(2)p , y(2)p

)
, q(3) =

(
0, 0, 0, y(2)p , y(3)q

)
.

Thus, since KSE2 is constant on each orbit, KSE2 (p(3)) = KSE2 (q(3)), which implies that y
(3)
p = y

(3)
q .

Thus p(3) and q(3) must lie in the same orbit, showing that ISE separates orbits on W 3.

Proposition 4.1.2. KE1 separates orbits on the Zariski open set W 2 ⊂ J2 and the set IE

separates orbits on the Zariski open set W 3 ⊂ J3, where

W 3 =
{(
x, y, y(1), y(2), y(3)

)
∈ J3 |Θ1 6= 0

}
and W 2 = π32(W 3) ⊂ J2 for the action of E(2) on C2.

Proof. Note that W 2,W 3 are invariant subsets of J2, J3 under the prolonged action of E(2).

Since KSE1 = KE1 and SE(2) is a subgroup of E(2), the same argument in the proof of Proposition

4.1.1 shows that KSE1 separates points on W 2. Thus for p(3), q(3) ∈W 3 ⊂ J3, when KE1 (p(3)) =

KE1 (q(3)), there exists a representative of each point’s orbit such that

p(3) =
(

0, 0, 0, y(2)p , y(2)p

)
, q(3) =

(
0, 0, 0, y(2)p , y(3)q

)
,

using the same transformation (4.4). Since KE2 is constant on each orbit, KE2 (p(3)) = KE2 (q(3)),

implies that
(
y
(3)
p

)2
=
(
y
(3)
q

)2
.

Either y
(3)
p = y

(3)
q or y

(3)
p = −y(3)q . In the case that p(3) = q(3), p(3) and q(3) are clearly in the

same orbit. The reflection gR defined by the transformation

gR =

1 0 0

0 −1 0

0 0 1


maps points

(
x, y, y(1)], y(2), y(3)

)
to
(
−x, y,−y(1), y(2),−y(3)

)
. Then if y

(3)
p = −y(3)q ,

gR · p(3) = q(3)

and hence p(3) and q(3) lie in the same orbit. Thus IE separates orbits on W 3 ⊂ J3.

Proposition 4.1.3. KS1 separates orbits on the Zariski open set W 3 ⊂ J3 and the set IS

separates orbits on the Zariski open set W 4 ⊂ J4, where
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W 4 =
{(
x, y, y(1), y(2), y(3), y(4)

)
∈ J4 |Θ1,Θ2 6= 0

}
and W 3 = π43(W 4) ⊂ J3 for the action of S(2) on C2.

Proof. Note that W 3,W 4 are invariant subsets of J3, J4 under the prolonged action of S(2). Let

p(4) =
(
x, y, y(1), . . . , y(3)

)
be a point in W 3 ⊂ J3. Then the transformation gp ∈ S(2) defined by

a =
−y(2)

(
yy(1) + x

)((
y(1)
)2

+ 1
)2 , b =

y(2)
(
xy(1) − y

)((
y(1)
)2

+ 1
)2

c =
y(2)((

y(1)
)2

+ 1
)2 , s =

y(1)y(2)((
y(1)
)2

+ 1
)2 ,

brings the point p(3) to

p(3) =
(

0, 0, 0, 1, y(3)p

)
for some y

(3)
p ∈ C. Now suppose that KS1 (p(3)) = KS1 (q(3)) for some q(3) ∈ J3. Since KS1 is a

differential invariant

KS1 (p(3)) = KS1 (p(3)) = KA1 (q(3)) = KS1 (q(3)),

for q(3) = gq · q(3) defined similarly as for p(3). This implies from the formula of KS1 , that

y
(3)
p = y

(3)
q , and hence p(3) and q(3) lie in the same orbit. Thus KS1 separates orbits on W 3. For

p(4), q(4) ∈ J45, KS1 (p(4)) = KSA1 (q(4)), and KS2 (p(4)) = KS2 (q(4)), we have shown above that

there exists a representative of each point’s orbit such that

p(4) =
(

0, 0, 0, 1, y(3)p , y(4)p

)
, q(4) =

(
0, 0, 0, 1, y(3)p , y(4)q

)
.

Since KS2 is constant on each orbit, KS2 (p(4)) = KS2 (q(4)), which implies that y
(4)
p = y

(4)
q . Thus p

and q must lie in the same orbit, showing that IS separates orbits on W 4.

Proposition 4.1.4. KSA1 separates orbits on the Zariski open set W 4 ⊂ J4 and the set ISA

separates orbits on the Zariski open set W 5 ⊂ J5, where

W 5 =
{
p(5) ∈ J5 | y(2) 6= 0

}
,

and W 4 = π54(W 5) ⊂ J4, for the action of SA(2) on C2.
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Proof. Note that W 4,W 5 are invariant subsets of J4, J5 under the prolonged action of SA(2).

Let p(4) =
(
x, y, y(1), . . . , y(4)

)
be a point in W 4 ⊂ J4. Note the equation ω3 = y(2) has three

solutions over C when p(4) ∈W 4; let ω̃ 6= 0 be one of those solutions. Then the transformation

gp ∈ SA(2) defined by

a1 =
3
(
y(2)
)2 − y(3)y(1)
ω̃5

, a2 =
y(3)

3ω̃5

a3 =
3y(3)y(1)x− 9

(
y(2)
)2
x− y(3)y

ω̃5
, a4 =

−y(1)

ω̃
,

a5 =
1

ω̃
, a6 =

y(1)x− y
ω̃

brings the point p(4) to

p(4) =
(

0, 0, 0, 1, 0, y(4)p

)
for some y

(4)
p ∈ C. Now suppose that KSA1 (p(4)) = KSA1 (q(4)) for some q(4) ∈ J4. Since KSA1 is a

differential invariant

KSA1 (p(4)) = KSA1 (p(4)) = KSA1 (q(4)) = KSA1 (q(4)),

for q(4) = gq · q(4) defined similarly as for p(4). This implies from the formula of KSA1 , that

y
(4)
p = y

(4)
q , and hence p(4) and q(4) lie in the same orbit. Thus KSA1 separates orbits on W 4. For

p(5), q(5) ∈ J5, KSA1 (p(5)) = KSA1 (q(5)), and KSA2 (p(5)) = KSA2 (q(5)), we have shown above that

there exists a representative of each point’s orbit such that

p(5) =
(

0, 0, 0, 1, 0, y(4)p , y(5)p

)
, q(5) =

(
0, 0, 0, 1, 0, y(4)p , y(5)q

)
.

Since KSA2 is constant on each orbit, KSA2 (p(5)) = KSA2 (q(5)), which implies that y
(5)
p = y

(5)
q .

Thus p and q must lie in the same orbit, showing that ISA separates orbits on W 5.

Proposition 4.1.5. KA1 separates orbits on the Zariski open set W 5 ⊂ J5 and the set IA

separates orbits on the Zariski open set W 6 ⊂ J6, where

W 6 =
{
p(6) ∈ J6 |Θ2,Θ4 6= 0

}
and W 5 = π65(W 6) ⊂ J5, for the action of A(2) on C2.

Proof. Note that W 5,W 6 are invariant subsets of J5, J6 under the prolonged action of A(2).

Let p(5) =
(
x, y, y(1), . . . , y(5)

)
be a point in W 5 ⊂ J5. Note the equation ω2 = Θ4 has two
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solutions over C when p(5) ∈ W 5; let ω̃ 6= 0 be one of those solutions. Then for p ∈ W 5, the

transformation gp ∈ A(2) defined by

a1 =
−ω̃

(
y(1)y(3) − 3

(
y(2)
)2)(

9y(2)
)3 , a2 =

ω̃y(3)(
9y(2)

)3
a3 =

ω̃
(
xy(1)y(3) − 3x

(
y(2)
)2 − yy(3))(

9y(2)
)3 , a4 =

−Θ4y
(1)(

9y(2)
)3 ,

a5 =
Θ4(

9y(2)
)3 , a6 =

Θ4

(
xy(1) − y

)(
9y(2)

)3
brings the point p(5) to

p(5) =
(

0, 0, 0, 1, 0, 3, y(5)p

)
for some y

(5)
p ∈ C. Now suppose that KA1 (p(5)) = KA1 (q(5)) for some q(5) ∈ J5. Since KA1 is a

differential invariant

KA1 (p(5)) = KA1 (p(5)) = KA1 (q(5)) = KA1 (q(5)),

for q(5) = gq · q(5) defined similarly as for p(5). This implies from the formula of KA1 , that(
y
(5)
p

)2
=
(
y
(5)
q

)2
. Either y

(5)
p = y

(5)
q or y

(5)
p = −y(5)q . In the case that p(5) = q(5), p(5) and q(5)

are clearly in the same orbit. Denote gR to be the transformation

gR =

1 0 0

0 −1 0

0 0 1

 ,
Then if y

(5)
p = −y(5)q ,

gR · p(5) = q(5)

and hence p(5) and q(5) lie in the same orbit. Thus KA1 separates orbits on W 5. For p(5), q(5) ∈ J6

and KA1 (p(6)) = KA1 (q(6)),KA2 (p(6)) = KA2 (q(6)), we have shown above that there exists a

representative of each point’s orbit such that

p(6) =
(

0, 0, 0, 1, 0, 3, y(5)p , y(6)p

)
, q(6) =

(
0, 0, 0, 1, 0, 3, y(5)p , y(6)q

)
.

Thus, since KA2 is constant on each orbit, KA2 (p(6)) = KA2 (q(6)), which implies that y
(6)
p = y

(6)
q .
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Thus p(6) and q(6) must lie in the same orbit, showing that IA separates orbits on W 6.

Proposition 4.1.6. KP1 separates orbits on the Zariski open set W 7 ⊂ J7 and the set IP

separates orbits on the Zariski open set W 8 ⊂ J8, where

W 8 =
{
p(8) ∈ J8 |Θ1,Θ2,Θ5 6= 0

}
and W 7 = π87(W 8) ⊂ J7, for the action of PGL(3) on C2.

Proof. Note that W 7,W 8 are invariant subsets of J7, J8 under the prolonged action of PGL(3,C).

Let p(7) =
(
x, y, y(1), . . . , y(7)

)
∈ J7. Since SE(2) is a subgroup of PGL(3), using the transforma-

tion in (4.4) we can bring p(7) to the point

p
(7)
1 =

(
0, 0, 0, y

(2)
1 , . . . , y

(7)
1

)
.

Since p
(7)
1 ∈W 7, the equation ξ3 = y

(2)
1 has three solutions over C. Denote one of these as ξ̃ 6= 0.

Define the transformation g1 ∈ PGL(3) by

g1 =


1 0 0

0 ξ̃
y
(3)
1

3ξ̃5

0 0 1
ξ̃

 .
This transformation is defined when y

(2)
1 6= 0. Since y

(2)
1 = 0 if and only if y(2) = 0, g1 is well

defined for all p(7) ∈W 7. Define g1 · p(7)1 = p
(7)
2 . Then

p
(7)
2 =

(
0, 0, 0, 1, 0, y

(4)
2 , . . . , y

(7)
2

)
.

Note that

y
(5)
2 =

Θ5

9
(
y(2)
)4 ((

y(1)
)2

+ 1
)2 ,

and hence the equation ζ3 = y
(5)
2 has three solutions over C. Let ζ̃ 6= 0 be one of those solutions,

and define the transformation g2 ∈ PGL(3) by

g2 =

1 i j

0 h ih

0 0 h2

 ,
where
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h = ζ̃, i =
5
(
y
(4)
2

)2
− y(6)2

3y
(5)
2

, j =

(
y
(6)
2

)2
− 10y

(6)
2

(
y
(4)
2

)2
− 3

(
y
(5)
2

)2
y
(4)
2 + 25

(
y
(4)
2

)4
18
(
y
(5)
2

)2 .

Then g2 · p(7)2 = p(7) where

p(7) =
(

0, 0, 0, 1, 0, 0, 1, 0, y(7)p

)
.

Now suppose that KP1 (p(7)) = KP1 (q(7)) for any p(7), q(7) ∈W 7 ⊂ J7. Since KP1 is a differential

invariant

KP1 (p(7)) = KP1 (p(7)) = KP1 (q(7)) = KP1 (q(7)),

for q(7) defined similarly as p(7). This implies from the formula of KP1 , that
(
y
(7)
p

)3
=
(
y
(7)
q

)3
.

Thus y
(7)
p = ωy

(7)
q where ω is a third root of unity. Let gω ∈ PGL(3) be defined as

gω =

1 0 0

0 ω 0

0 0 1
ω

 .
Then gω · p(7) = q(7). Therefore if KP1 (p(7)) = KP1 (q(7)), p(7) and q(7) lie in the same orbit of the

prolongation of PGL(3). For p(8), q(8) ∈W 8 and KP1 (p(8)) = KP1 (q(8)),KP2 (p(8)) = KP2 (q(8)), we

have shown above that there exists a representative of each point’s orbit such that

p(8) =
(

0, 0, 0, 1, 0, 0, 1, 0, y(7)p , y(8)p

)
, q(8) =

(
0, 0, 0, 1, 0, 0, 1, 0, y(7)p , y(8)q

)
.

Since KP2 is constant on each orbit, KP2 (p(8)) = KP2 (q(8)), which implies that y
(8)
p = y

(8)
q . Thus

p(8) = q(8), meaning p and q must lie in the same orbit, showing that IP separates orbits on

W 8.

Theorem 4.1.7. The pairs of invariants in (4.3) are classifying invariants for the actions of

SE(2), E(2),S(2),SA(2),A(2), and PGL(3) on C2.

Proof. One can see that the invariants are of appropriate orders for each of the groups. Proposi-

tions 4.1.1 - 4.1.6 prove the result.

From the formulas in (4.3) and Definition 3.1.13, we can identify the conditions that characterize

exceptional curves for each of the classifying pairs of invariants.
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Proposition 4.1.8. The exceptional curves with respect to IP , IA, and ISA are lines and

conics. The IS -exceptional curves are lines and circles, while the ISE - and IE -exceptional curves

are lines. In particular, if X = V (F ) is a curve exceptional with respect to the classifying

invariants in (4.3) then F has degree at most two.

Proof. Propositions 2 and 3 from Section 4.3 in [10] show that IA- and IP -exceptional curves

are lines and conics and an analogous argument shows that this is the case for ISA-exceptional

curves as well.

A curve X = V (F ) being ISE - or ISE -exceptional is equivalent to the curve satisfying either

Fy ≡ 0, Θ1 ≡ 0, or Θ2 ≡ 0, all of which imply X must a line. Conversely Θ2 ≡ 0 for any line. A

curve being IS -exceptional is equivalent to either one of the previous conditions or Θ3 ≡ 0. The

result follows from the fact that Θ3 ≡ 0 if and only if X is a line or a circle.

4.2 Generic properties of signature polynomials

For each of the classifying sets of invariants given in (4.3), we derive formulas for the degree of

the signature polynomial of a generic curve in terms of the curve’s degree. To do so we examine

each term in the degree formula (3.10) of Theorem 3.2.1.

4.2.1 Generic degree

We start by looking at the rational functions defining the invariants (4.3).

Lemma 4.2.1. For a generic polynomial F ∈ C[x, y] of degree d ≥ 3, the restrictions of

the differential functions Θi to the curve V (F ) are equal to rational functions of the form

Ti(x, y)/(Fy)
di with deg(Ti) ≤ τi where τi, di are given as follows:

i 1 2 3 4 5 6 7 8 9

τi 2d− 2 3d− 4 6d− 8 8d− 12 12d− 18 16d− 24 32d− 48 48d− 72 9d− 12

di 2 3 6 8 12 16 32 48 9

Proof. Using the form of each derivative function restricted to X = V (F ) as in Remark 3.1.1,

one can evaluate the formulas given for Θ1, . . . ,Θ9 given in Table 4.1.

For example, plugging in the rational expressions for y(n)|X to the differential formula for

Θ4 gives Θ4 =
(
3P4P2 − 5(P3)

2
)
/F 10

y . See B.1 for explicit computations. The numerator has

degree 10d − 14, but it is also divisible by F 2
y . This gives an expression Θ4 = T4(x, y)/(Fy)

8

where Ti has degree less than or equal to 8d − 12. The arguments for the other differential

functions follow similarly.
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Explicit formulas for the polynomials Ti are quite long. A code to compute them can be found

in Appendix B.1. Note that for each of the classifying invariants, the partial derivative function

Fy cancels out and leaves each invariant as a rational function of the polynomials T1, . . . , T9.

In the following lemma, we use homogenizations of T1, . . . , T9 to write down projective

extensions σ of the signature maps for each pair of invariants (4.3).

Lemma 4.2.2. Fix an irreducible polynomial F ∈ C[x, y] of degree d ≥ 3 and let X = V (F ).

For G = SE , E ,S,SA,A,P , let σGX denote the signature map given by the invariants IG in (4.3).

Then

σSE = [T 3
1 : x20T

2
2 : x20T3], σE = [T 6

1 : x20T
3
1 T 2

2 : x40T
2
3 ],

σS = [T 3
2 : T9 : T2T3], σSA = [T 8

2 : x40T
3
4 : x20T

4
2 T5],

σA = [T 3
4 : T 2

5 : T4T6], and σP = [T 8
5 : T 3

7 : T 4
5 T8] (4.5)

are projective extensions of the respective maps σGX , where for each i, Ti equals the homoge-

nization, xτi0 Ti(
x1
x0
, x2x0 ) ∈ C[x0, x1, x2], of the polynomial Ti from Lemma 4.2.1. Moreover,

deg(σSE) = 6d− 6, deg(σE) = 12d− 12,

deg(σS) = 9d− 12, deg(σSA) = 24d− 32,

deg(σA) = 24d− 36, and deg(σP) = 96d− 144.

Proof. First, we note that by Lemma 4.2.1, the coordinates of σG are homogeneous of the

stated degrees and that by Proposition 4.1.8, X is non-exceptional with respect to each of the

classifying sets of invariants in (4.3). Moreover, with G = A, for a point p ∈ X we see that,

σAX(p) =

(
Θ5(p)

2

Θ4(p)3
,

Θ6(p)

Θ4(p)2

)
=

(
T5(p)

2

T4(p)3
,
T6(p)

T4(p)2

)
=

(
σA1 (1, p)

σA0 (1, p)
,
σA2 (1, p)

σA0 (1, p)

)
.

Here the middle equality follows from the fact that the factors of Fy given by the degrees di in

Lemma 4.2.1 all cancel out in the above expressions. If σA(p) is not defined then Θ4(p) = 0,

meaning p is not I-regular. Thus σA(p) is defined at all but finitely many points of X. Analogous

arguments show that for the remaining groups, σG is a projective extension of σGX .

For a generic curve of fixed degree d ≥ 4, Proposition 2.3.20 implies that |Sym(X,G)| = 1 and

from Lemma 4.2.2 we know the degree and form of a projective extension for the signature map

for each of the groups considered.

The remaining term in (3.10) left to examine is the sum of multiplicities of the base locus

points of our chosen projective extensions. We first show that, for each projective extension, all
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base locus points belonging to a generic curve are at infinity.

Lemma 4.2.3. For a generic polynomial F ∈ C[x, y]≤d, the base locii of the maps in (4.5)

contain no points of the form [1 : p] ∈ CP2 where F (p) = 0.

Proof. For any point p ∈ C2, consider the set

VAp =
{
F ∈ C[x, y]≤d : F (p) = 0 and [1 : p] belongs to the base locus of σA

}
.

We consider this condition on the cofficients a polynomial F =
∑

i+j≤d cijx
iyj . Note that a point

[1 : p] belongs to the base locus of the map σA if and only if T4(p) = T5(p) = 0. As discussed in

Lemma 4.2.1, T4 and T5 are polynomials functions of the partial derivatives of F , meaning that

we can consider T4(p) and T5(p) as polynomials in the coefficients cij . This lets us express VAp
as the variety of F (p), T4(p), and T5(p).

For p = (0, 0), we can use computational algebra techniques to find the codimension of

this set. The highest order partial derivative appearing in the expressions for T4 and T5 has

order 5. Therefore T4(0, 0) and T5(0, 0) can be written as polynomials of cij where i + j ≤ 5.

One can check (see B.2) that these three polynomials in Q[cij : i+ j ≤ 5] impose algebraically

independent conditions, meaning that VA(0,0) has codimension 3 in C[x, y]≤d.

Now we claim that for any point p ∈ C2, a polynomial F belongs to VAp if and only if its

image under translation F (x, y) = F (x + p1, y + p2) belongs to VA(0,0). Note that the partial

derivative functions of F are invariant under translation, meaning that for all i, j we have that
∂i+jF
∂xiyj

(x, y) = ∂i+jF
∂xiyj

(x+p1, y+p2). Let T 4, T5 denote the polynomials obtained from Lemma 4.2.1

from F . Since these are functions of the partial derivatives of F , they are also invariant under

translations meaning T i(x, y) = Ti(x+ p1, y + p2).

Then F belongs to VAp if and only if F (p) = F (0, 0) = 0, T4(p) = T4(0, 0) = 0, and

T5(p) = T5(0, 0) = 0, which occurs if and only if F ∈ VA(0,0). This shows that the set of

polynomials not satisfying the condition in the statement of Lemma 4.2.3 can be written as

VA =
⋃
p∈C2

VAp =
{
F (x− p1, y − p2) : F ∈ VA(0,0)

}

Then the dimension of VA is at most dim(VA(0,0)) + 2. Since VA(0,0) has codimension 3 in the space

of polynomials C[x, y]≤d, this means that VA has codimension ≥ 1. This shows that the base

locus of σA contains no point [1 : p] where F (p) = 0.

A similar argument goes through for the other projective extensions. Here a point [1 : p] ∈ CP2
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belongs to the base locus if and only if

T1(p) = T2(p) = T3(p) = 0, T1(p) = T3(p) = 0, T2(p) = T9(p) = 0,

T2(p) = T4(p) = 0, or T5(p) = T7(p) = 0

for σSE , σE , σS , σSA, and σP respectively. The highest order partial derivative appearing in

each expression is y(7). Therefore the evaluations of the polynomials Ti at p = (0, 0) belong to

Q[cij : i+ j ≤ 7].

To follow through an argument analogous to that for σA, it suffices to show that each pair of

polynomials evaluated at p = (0, 0) along with c0,0 are algebraically independent (see B.2). In the

Euclidean case it suffices to show that T1(p), T2(p), and c0,0 are algebraically independent.

To precisely compute intersection multiplicities at the points at infinity, we will parameterize a

neighborhood of each point p = [0 : p] ∈ V (F) using a Laurent series (see Definition 2.2.41).

We can then compute the valuation of the series obtained by evaluating each Θi along this

parameterization.

Lemma 4.2.4. Let F ∈ C[x0, x1, x2]d be a generic homogeneous polynomial of degree d. The

neighborhood of any point p = [0 : p1 : p2] in V (F) can be parametrized by t 7→ [α(t)] where

α =

t, 1, ∞∑
j=0

ajt
j

 ∈ C[[t]]3.

Moreover, for any homogeneous polynomial G ∈ C[x0, x1, x2], the intersection multiplicity of F

and G at p is given by val(G(α)).

Proof. By genericity we can assume that F ∈ C[x0, x1, x2]d has the property that F(0, 0, 1) 6= 0

and the discriminant of the univariate polynomial F (0, 1, x2) is nonzero. Then any point

p ∈ V (F) ∩ V (x0) will have p1 6= 0, meaning that we can take p1 = 1.

Consider the restriction H = F(v, 1, w) ∈ C[v, w] and variety V (H) ⊂ C2, which contains

the point (0, p2). Again by genericity, we can assume that Hw(0, p2) = ∂F
∂x2

(p) is non-zero. The

Lemma then follows from Theorem 2.2.42.

Lemma 4.2.5. For d ≥ 3, the set of points (a0, . . . , a8) that can be extended to the coefficients

a parametrization α for some F ∈ C[x0, x1, x2]d in Lemma 4.2.4 is Zariski-dense in C9.

Proof. Note that (a0, . . . , a8) can be extended to the coefficients of a parametrization α for a

polynomial F ∈ C[x0, x1, x2]d if and only if F(0, 1, a0) = 0, the derivative of F with respect to

x2 at this point in non-zero, and j
(8)
X (0, a0) equals (0, a0, 1!a1, . . . , 8!a8), where X is the plane
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curve defined by F(x0, 1, x2) = 0. If F is irreducible, then it is obtained from F(x0, 1, x2) by

homogenization. The result then follows from Lemma 3.1.15, since
(
d+2
2

)
−2 ≥

(
3+2
2

)
−2 = 8.

Lemma 4.2.6. Let F ∈ C[x, y]≤d be a generic polynomial with degree d ≥ 3 and let α(t) denote

the parametrization given by Lemma 4.2.4 for its homogenezation F. For sufficiently small

t ∈ C∗, the Laurent series β = t−1(α1(t), α2(t)) =
(
t−1,

∑∞
j=0 ajt

j−1
)

parametrizes the curve

V (F ). The differential functions Θi along this parametrization satisfy:

i 1 2 3 4 5 6 7 8 9

val(Θi(β)) 0 3 4 8 15 19 40 60 5

Proof. First let us calculate the image of β in the jet space. For (x, y) = (t−1, tj) with j ≥ 1, the

derivative of y with respect to x equals −jtj+1. Repeated applications of ∂
∂x then yields that

y(k)(x) equals (−1)k
∏k−1
i=0 (i+ j)tj+k. By linearity, for (x, y) = β and k ≥ 2,

y(k)(x) = (−1)k ·
∞∑
j=2

ajt
j+k−1 ·

k−1∏
i=0

(i+ j − 1).

We can then evaluate the differential functions Θ1, . . . ,Θ9 on truncations of these formulas,

where aj are indeterminates. (See B.3) For example, evaluating Θ4 and Θ5 give

Θ4(β) = −36 · a2 · t8 + higher order terms, and

Θ5(β) = −4320 · (2a33 − 3a2a3a4 + a22a5) · t15 + higher order terms.

In each case, the leading coefficients are polynomials of a0, . . . , a8. Therefore, by Lemma 4.2.5

and the genericity of F , we may assume that these leading coefficients do not vanish.

Lemma 4.2.7. For a generic homogeneous polynomial F ∈ C[x0, x1, x2]d with d ≥ 3 and a

point p = [0 : p1 : p2] in V (F), we have

multp(F,σSE) = 0, multp(F,σE) = 0, multp(F,σS) = 2,

multp(F,σSA) = 16, multp(F,σA) = 12, and multp(F,σP) = 72,

where for each G, are the maps σG are given by Lemma 4.2.2 for F = F(1, x, y).

Proof. Let α ∈ C[[t]]3 be the local parametrization guaranteed by Lemma 4.2.4. For each index

i = 1, . . . , 9, let vi denote the valuation of Ti(α). By the same lemma and the formulas in
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Lemma 4.2.2, the desired intersection multiplicities are

multp(F,σSE) = min{3v1, 2 + 2v2, 2 + v3}, multp(F,σE) = min{6v1, 2 + 3v1 + 2v2, 4 + 2v3},

multp(F,σS) = min{3v2, v9, v2 + v3}, multp(F,σSA) = min{8v2, 4 + 3v4, 2 + 4v2 + v5},

multp(F,σA) = min{3v4, 2v5, v4 + v6}, and multp(F,σP) = min{8v5, 3v7, 4v5 + v8}.

Let β ∈ C((t))2 be the tuple of Laurent series given by Lemma 4.2.6. Since Ti is homogeneous

of degree τi and α = t · (1, β), we see that

Ti(α) = Ti(t, tβ) = tτiTi(1, β) = tτiTi(β).

By genericity, the coefficient of xd−1 in Fy is nonzero, meaning that the valuation of Fy(β) is

−(d− 1). This and the formulas Ti = Θi · (Fy)di from Lemma 4.2.1 give that

vi = val(Ti(α)) = τi + val(Ti(β)) = τi + val(Θi(β)) + di val(Fy(β))

= τi + val(Θi(β))− di(d− 1).

Then combining the data from Lemmas 4.2.1 and 4.2.6 gives that

v1 = 0, v2 = 2, v3 = 2, v4 = 4, v5 = 9, v6 = 11, v7 = 24, v8 = 36, and v9 = 2.

Then the minimums above are achieved by 3v1 = 0, 6v1 = 0, v9 = 2, 8v2 = 16, 3v4 = 12, and

8v5 = 72.

Theorem 4.2.8. Fix an irreducible polynomial F ∈ C[x, y]≤d of degree d ≥ 4 and let X = V (F ).

Let SGX denote the signature polynomials defined by the invariants in (4.3) for the corresponding

group G. Then, when the symmetry group of X is finite,

deg(SSEX ) ≤ 6d2 − 6d, deg(SEX) ≤ 12d2 − 12d, deg(SSX) ≤ 9d2 − 14d,

deg(SSAX ), deg(SAX) ≤ 24d2 − 48d, and deg(SPX) ≤ 96d2 − 216d.

Furthermore these bounds are tight for generic F ∈ C[x, y]≤d.

Proof. First we calculate the degree of the signature polynomial for generic F ∈ C[x, y]≤d. By

Proposition 4.1.8, the curve X is non-exceptional for each set of invariants and we can apply

Theorem 3.2.1. By Proposition 2.3.20, since X is a general curve of degree ≥ 4, its symmetry

group is trivial, meaning n = 1. Let F ∈ C[x0, x1, x2] denote the homogenization of F and
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X = V (F) ∈ CP2. For each of the signature maps σ, Theorem 3.2.1 states that

deg(SX) = deg(F) · deg(σ)−
∑

p∈Bl(σ)

multp(F,σ).

By genericity, V (F) contains exactly d points with x0 = 0. The multiplicities of the signature

map at each point is given by Lemma 4.2.7. By Lemma 4.2.3, these are the only points of V (F)

in the base locii of each of the projective extensions. All together, this gives

deg(SSEX ) = d · (6d− 6)− d · (0) = 6d2 − 6d,

deg(SEX) = d · (12d− 12)− d · (0) = 12d2 − 12d,

deg(SSX) = d · (9d− 12)− d · (2) = 9d2 − 14d,

deg(SSAX ) = d · (24d− 32)− d · (16) = 24d2 − 48d,

deg(SAX) = d · (24d− 36)− d · (12) = 24d2 − 48d, and

deg(SPX) = d · (96d− 144)− d · (72) = 96d2 − 216d.

By Theorem 3.2.8 these are upper bounds for the degree of any signature polynomial of a curve

of degree d.

We note that for all groups we consider, for generic curves, the degree of the signature curve has

a quadratic dependence on the degree of the original curve. The symmetry group of a generic

curve is trivial, but many interesting and important curves have non-trivial symmetry groups. In

accordance with the degree formula (3.10), these curves have lower degree signature. In Section

4.3, for the Fermat curves family under the projective and affine action, the growth of the

signature curve degree is completely suppressed by the increase in the symmetry group size.

Remark 4.2.9. For the case when G = SE(2), one can follow the proof of Lemma 4.2.3 to show

that, for a generic curve, there are no affine points in V (σSE0 ,σSE1 ), V (σSE1 ,σSE2 ), or V (σSE0 ,σSE2 ).

One can then use the method in Lemma 4.2.7 to determine multp(F, (σi)SE), i = 0, 1, 2, where

(σ0)SE = [σSE1 ,σSE2 ] and (σ1)SE , (σ2)SE are defined similarly.

Thus, using a similar argument as in the proof of Theorem 4.2.8, one can compute the highest

degree in each variable in terms of d for a generic curve of degree d. This already reduces the

monomial support and is a first step towards computing the Newton polytope of the signature

polynomial for a generic curve of fixed degree under SE(2).
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4.3 Fermat curves

In this section, we investigate the signature polynomials for the Fermat family of curves using

the classifying pairs of invariants in (4.3). The d-th degree Fermat curve, denoted in this section

by Xd, is the zero set over C2 of the polynomial Fd(x, y) = xd + yd + 1, whose homogenization

is Fd(x0, x1, x2) = xd0 + xd1 + xd2.

Theorem 4.2.8 gives an upper bound for deg(SXd
) in terms of d. However, for most of the

actions considered in this thesis, deg(SXd
) is much lower than for a generic curve of degree d.

The symmetry group of the Fermat curves is often non-trivial, which lowers deg(SXd
).

Theorem 4.3.1. The symmetry group of the d-th degree Fermat curve with respect to full

projective, affine, special affine, similarity, Euclidean, and special Euclidean groups are:

• Sym(Xd,PGL(3)) = S3 o (Zd × Zd) of cardinality 6d2,

• Sym(Xd,A(2)) = S2 o (Zd × Zd) of cardinality 2d2,

• Sym(Xd,SA(2)) = Sym(Xd,S(2)) =

{
Zd of cardinality d, when d is odd

Z2 × Zd of cardinality 2d, when d is even,

• Sym(Xd, E(2)) =

{
Z2 of cardinality 2, when d is odd

Z2 × Z2 × Z2 of cardinality 8, when d is even,
and

• Sym(Xd,SE(2)) =

{
Z1 of cardinality 1, when d is odd

Z2 × Z2 of cardinality 4, when d is even.

Here Sk is the permutation group over k-elements and Zk is the cyclic groups of k-elements.

Proof. In [53] it has been shown that Sym(Xd,PGL(3)) consists of compositions of permutations

of the homogeneous coordinates [x0 : x1 : x2] and transformations scaling the coordinates by

d-th roots of unity, i.e. [x0 : x1 : x2]→ [x0 : ω1x1 : ω2x2], where ω1 and ω2 are d-th roots of 1.

This shows the first result. Since Sym(Xd,A(2)) is the subgroup of Sym(Xd,PGL(3)) that fixes

the homogenous coordinate x0, in the second result S3 must be replaced with S2. In the third

case, restriction of Sym(Xd,A(2)) to Sym(Xd,SA(2)) adds the condition that ω2 = ω−11 , and

Zd × Zd is replaced with Zd.
In the case of the remaining groups, the size of the symmetry group depends on whether d is

odd or even. The groups Sym(Xd,SA(2)) and Sym(Xd,S(2)) consist of transformations of the

form [x0 : x1 : x2]→ [x0 : ωx1 : ωx2] in the case d is odd, where ω is some d-th root of 1. When

d is even we add the additional generator given by [x0 : x1 : x2]→ [x0 : −x2 : x1].

In the case of the special Euclidean group for odd d there are no non-trivial symmetries,

while for even d the symmetry group is generated by two independent elements, each of
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order two, namely [x0 : x1 : x2] → [x0 : −x2 : x1] and [x0 : x1 : x2] → [x0 : −x1 : −x2].
Finally, for the Euclidean group we add the generator of order two given by the reflection

[x0 : x1 : x2]→ [x0 : x1 : x2] in either case.

For the projective and for the affine groups, the cardinality of the symmetry groups depend

quadratically on d. At the same time Theorem 4.2.8 shows that the degrees of generic signature

curves depend quadratically on d. In fact, these quadratic dependencies cancel, and the degrees

of signatures of the Fermat curves for these actions are independent of d.

Proposition 4.3.2. There exist projective extensions of σPXd
and σAXd

of degrees 6d and 8d

respectively with empty base locus when d ≥ 8.

Proof. We start with the affine group. If we make the substitution a = xd−6 and b = yd−6 to

obtain the polynomial F d = x6a+y6b+1, we can express the polynomials defining the map σAXd
as

polynomials in x, y, a, b and d. In Section C.1 we compute polynomials σ0,σ1,σ2 ∈ Q[x, y, a, b, d]

such that σi evaluated at a = xd−6, b = yd−6 gives σi where σ = [σ0,σ1,σ2] is a projective

extension of σAXd
.

From the formula of σi, we can see that each σi is homogeneous of degree 6d. A point

[1 : p] ∈ Bl(σ) if and only if p lies in the ideal

〈x6a+ y6b+ 1,σ0,σ1,σ2〉.

Computing a Gröbner basis for this ideal yields the condition that d3(d− 3)(d− 2)2 = 0, and

hence it is empty unless d = 0, 2 or 3. The point [0 : p] ∈ Bl(σ) if and only if p lies in the ideal

〈x6a+ y6b,σ0,σ1,σ2〉.

We arrive at the condition that b6y36(1 + d)2 = 0 by again computing a Gröbner basis. This

implies that p2 = 0 for [0 : p1 : p2] ∈ Bl(σ), but [0 : 1 : 0] /∈ V (Fd). Thus Bl(σ) = ∅. The

argument for σPXd
follows similarly, with supporting computations found in Section C.2.

Theorem 4.3.3. The signature of the Fermat curve V (xd + yd + 1) ⊂ C2 has

• degree four for all d ≥ 3 for the PGL(3)-action.

• degree two for d = 3 and degree three for all d ≥ 4 for the A(2)-action.

Proof. For d ≤ 8 the signature polynomais for Xd are computing directly in Section C.1 and

C.2. Denote the signature polynomials for Xd as SAXd
, SPXd

for the affine and projective groups

respectively. By Proposition 4.3.2 and the degree formula in (3.10),

• deg(SAXd
) = d(6d)

2d2
= 3,
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• deg(SPXd
) = d(24d)

6d2
= 4.

We present here the explicit formulas for signatures polynomials and observe that their coefficients

(but not their degrees) depend on d. For the projective group the signature polynomial of the

Fermat curve of degree d > 2 is:

SPXd
(κ1, κ2) = 49392(d− 2)4d3(d+ 1)4(2d− 1)4κ4

2 + 602112(d− 2)4d3(d+ 1)4(2d− 1)4κ1κ
2
2

+ 10584(d− 2)3d2(d+ 1)3(2d− 1)3
(
10d2 − 3d+ 3

) (
34d2 − 27d+ 27

)
κ3
2

+ 1835008(d− 2)4d3(d+ 1)4(2d− 1)4κ2
1 − 9289728(d− 2)3d2(d+ 1)3(2d− 1)3

(
d2 − d+ 1

)2
κ1κ2

+ 61236(d− 2)2d(d+ 1)2(2d− 1)2
(
d2 − d+ 1

) (
10d2 − 3d+ 3

)2 (
16d2 − 9d+ 9

)
κ2
2

− 23328(d− 2)2d(d+ 1)2(2d− 1)2
(
11792d8 − 17376d7 + 28152d6 − 24424d5 + 19473d4 − 8940d3

+3358d2 − 324d+ 81
)
κ1 + 118098(d− 2)(d+ 1)(2d− 1)

(
d2 − d+ 1

)2 (
10d2 − 3d+ 3

)4
κ2

+ 531441d
(
d2 − d+ 1

)3 (
10d2 − 3d+ 3

)4
.

The signature polynomial of the Fermat curve of degree d > 2 under the affine action is:

SAXd
(κ1, κ2) = (d− 3)2(d− 2)d2(d+ 1)(2d− 1)3κ3

2 − (d− 5)3d(2d− 1)2κ2
1

+ 3(d− 5)(d− 2)d(d+ 1)(2d− 1)2(5d− 11)κ1κ2 + 6(d− 2)2d(d+ 1)2(2d− 1)2
(
d2 − 4d+ 6

)
κ2
2

+ 2(d− 2)2(d+ 1)2(2d− 1)
(
15d2 − 10d+ 18

)
κ1 + 12(d− 2)3(d+ 1)3(2d− 1)

(
d2 − 2d+ 3

)
κ2

+ 8(d− 2)4d(d+ 1)4.

For d = 3, the coefficient of κ32 vanishes and the degree of the signature polynomial drops to

two. These expressions raise the interesting question of the significance of SAXd
and SPXd

, when d

is a non-integer rational number greater.
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CHAPTER 5

Further Directions

In this chapter we detail some of the interesting questions and future avenues for exploration

that arose as a consequence of the work in this thesis.

5.1 Numerical methods

The field of numerical algebraic geometry is concerned with numerically computing quantities

associated with algebraic varieties, such as their degree or dimension. See [31] for a brief

introduction or [3] for a more comprehensive description of numerical algebraic methods and

how they are implemented in the software, Bertini [2]. As the main results of this thesis involve

the degree of a signature curve, an algebraic variety, the question naturally arises of how these

methods can be used to understand and compute signature polynomials.

Question. How can one use existing numerical methods to aide in computing the degree of the

signature polynomial, other quantities related to an algebraic curve’s signature, or the signature

polynomial?

The algorithm described in Appendix A still relies largely on Gröbner basis computations.

Many of the steps involve computing the degree of zero-dimensional ideals. Can these steps be

done numerically to decrease the time required to compute the degree bounds? In [15] the authors

propose an algorithm to numerically determine the degree of the image of a rational map, which

was implemented in the Macaulay2 package, Numerical Implicization [14]. A comparison of

methods for use in predicting the degree of signature polynomials would be interesting.
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Prior knowledge of the degree of the signature curve can also aide in constructing a witness

set for the signature curve, or a set of points corresponding to the intersection of a general

linear space with the signature curve. This representation of a variety allows one to numerically

perform various computations such as component sampling or membership testing. Can one use

witness sets to decide whether two algebraic curves have the same signature?

5.2 Choice of classifying invariants

In Chapter 4 we fixed a classifying pair of invariants built from classical differential invariants.

The form of the invariants heavily influenced the computation of the degree of a signature

polynomial of a generic curve. Proposition 3.1.12 gives a description of the possible choices of

classifying invariants based on an initial pair.

Question. What is the relationship between the choice of classifying invariants and the generic

degree of the signature polynomial?

In particular how can one find the “best” choice of invariants, i.e. a pair of invariants giving

the lowest possible generic degree? Given a classifying pair of invariants {K1,K2}, one can also

choose {K1,K
n
1K2} as a classifying pair for n ∈ Z+. Thus an upper bound on the generic degree

seems unlikely for most groups.

While we show the existence of a classifying pair of invariants in Theorem 3.1.11, as detailed

in Section 3.2.3, an interesting question would be to investigate the existence of a real classifying

pair of invariants. As shown in [10] this would give a notion of a signature curve classifying the

real points of algebraic curves under the real elements of subgroups of PGL(3).

5.3 Applications to Invariant Theory

There is a long connection between differential invariants and classical invariant theory. Applica-

tion of differential invariants to the problems in classical invariant theory was first proposed by

Sophus Lie [43]. The differential signature construction, in particular, has also been previously

been used to study such problems. Differential signature constructions for homogeneous polyno-

mials in two variables (binary forms) under linear changes of coordinates were first introduced

by Olver [46] and applied to their symmetry groups computation in [4]. For polynomials in three

variables (ternary forms) under linear changes of coordinates, sets of differential invariants that

characterize equivalence classes were computed and explored in [39] and [26]. An algorithm using

differential invariants is given in [41] to efficiently compute the canonical form and symmetry

group of an arbitrary ternary cubic. In his thesis, Wears [55] considered differential signatures

of polynomials in an arbitrary number of variables.
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As shown in the proof of Theorem 3.2.7, for a polynomial F (x, y,a) =
∑

i,j aijx
iyj , of

fixed degree d there exists a polynomial P (κ1, κ2,a) such that P |a=ã = SXã
for the curve

Xã = V (F |a=ã). We can write P =
∑

i,j bijκ
i
1κ
j
2 where 1 ≤ i, j ≤ D = degκ1,κ2(P ) and

bij ∈ C[a]. Since two curves are G-equivalent if and only if they have the same signature, the set

{bij} is a separating set of polynomial invariants for polynomials of degree d under G.

Question. Understand the relationship between the separating set of polynomial invariants

{bij} and the signature polynomial.

This gives an alternate method to compute a separating set of polynomial invariants for

ternary forms under the action of a subgroup of PGL(3). In practice, however, computing the

image of the signature map on F (x, y,a) would be computationally expensive. For a generic

conic under the action of SE(2) this computation was feasible. The signature polynomial for a

generic conic is given by

SX =2916
(
4 a00a01a20 − a00a112 − a012a20 + a01a10a11 − a01a102

)2
κ6
1

+ 2916 (a01 + a20)
(
4 a01

2 − 4 a01a20 + 3 a11
2 + 4 a20

2)(
4 a00a01a20 − a00a112 − a0,12a20 + a01a10a11 − a01a102

)
κ5
1

+ 972
(
4 a00a01a20 − a00a112 − a012a20 + a01a10a11 − a01a102

)2
κ4
1κ

2
2 + 729

(
4 a01a20 − a112

)3
κ4
1

− 972 (a01 + a20)
(
4 a01a20 − a112

) (
4 a00a01a20 − a0,0a112 − a012a20 + a01a10a11 − a01a102

)
κ3
1κ

2
2

+ 108
(
4 a00a01a20 − a00a112 − a012a20 + a01a10a11 − a01a102

)2
κ2
1κ

4
2

+ 4
(
4 a00a01a20 − a00a112 − a012a20 + a01a10a11 − a01a102

)2
κ6
2

Compare this to the separating set invariants for real conics described in Example 2.1.15. Again

we see det(A),det(B), and tr(B), but also an additional invariant 4a220 − 2a02a20 + 3a211 + 4a220.

These four invariants completely determine the signature polynomial and thus are a separating

set of polynomial invariants.

Unfortunately we also see much redundant information in the signature polynomial. In

particular the invariant det(A) appears in the coefficients multiple times, and is sometimes

squared. Can we use some subset of the monomial support of the signature polynomial to classify

curves?

We can also think of computing the signature polynomial of a degree d curve X as evaluating

this separating set of invariants on X without knowing explicitly what they are. If we can

determine the degree of each bij (through computation over a finite field, perhaps), then by

computing enough signature polynomials, we can interpolate each bij . This gives yet another

way to compute a separating set of polynomial invariants.
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5.4 Other generic properties

Theorem 3.2.7 shows the existence of a particular monomial support of the signature polynomial

for a generic curve of fixed degree. In Chapter 4 we found the degree of the signature polynomial

for a general curve. A natural next step would be determine the Newton polytope of the signature

polynomial for a generic curve. More generally one can ask:

Question. What algebraic curves can appear as a signature polynomial of an algebraic curve?

For a fixed curve X, different classifying pairs of invariants give rise to possible different signature

curves. Proposition 3.1.12 gives a relationship between classifying invariants, and hence between

different signature curves for the same X.

Both determining generic properties and the space of possible signature curves could po-

tentially be useful in computing signature polynomial without Gröbner basis algorithms. For

instance, prior knowledge of the monomial support would aide in interpolating signature polyno-

mials.
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APPENDIX A

Algorithms for Signature Polynomials

In this appendix we provide procedures in Maple 2017 [[5] for the computing signature polynomials

for a given algebraic curve as well as computing the bounds of the signature’s degree in (3.12)

and (3.14). We only include the explicit code for signature polynomials of curves under the

special Euclidean group using the classifying set of invariants in (4.3). For the remaining groups,

the code is easily adaptable by modifying the procedure defining the invariants.

The following procedures rely on a variety of packages: PolynomialIdeals, algcurves, Groebner,

Physics, DifferentialGeometry, JetCalculus, ArrayTools, LinearAlgebra. It is also necessary to

setup a frame using the DGSetup command. For this reason, before running any of the

procedures outlined below execute the following:

> with(PolynomialIdeals,algcurves,Groebner,Physics,DifferentialGeometry):

> with(JetCalculus,ArrayTools,LinearAlgebra):

> Preferences("JetNotation", "JetNotation2"): DGsetup([x], [y], M, 8, verbose):

A.1 Computing the Signature Polynomial

The restriction rational classifying invariants to an algebraic curve is a rational map. The

signature polynomial can then be computed by finding a Gröbner basis for an elimination ideal.

In practice, these methods are computationally intensive and rarely complete within a day in

Maple 2017 for curves of degree four or higher under any of the actions considered in this thesis.

Curves with large symmetry groups seem to be an exception; the size of the symmetry reduces

the degree of the signature polynomial as one can see from (3.10). One can improve this by
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using the FGb package which implements the Faugère F5 algorthim for computing Gröbner

bases [20].

The following procedure produces the first k derivatives of y with respect to x of an algebraic

curve F (x, y).

> ImDiff:=proc(F,k)

> local f,sf,i,Y,ans;

> if evalb(diff(F,y)=0) then

> ans:=[‘exceptional‘];

> else

> f[0] := subs(y=y[0],F);

> for i from 1 to k do

> f[i] := TotalDiff(f[i-1],x);

> sf[i]:= subs({y[0]=y,seq(y[j]=Y[j],j=1..(i-1))},f[i]);
> Y[i] := solve(sf[i],y[i]);

> od;

> ans:=[seq(Y[i],i=1..k)];

> fi;

> return ans;

> end:

We can then compute the invariants κ2 and κs (see (4.2)) restricted to a curve X = V (F ). The

procedure will output “SE-exceptional” if the curve is exceptional with respect to the classifying

set ISE = {κ2, κs}.

> SEInv:=proc(F)

> local t1,t2,k1,k2,Y,ans;

> Y:=ImDiff(F,3);

> if evalb(Y=[‘exceptional‘]) then

> ans:=[‘SE-exceptional‘];

> else

> if Y[1]^2+1=0 or Y[2]=0 then

> ans:=[‘SE-exceptional‘];

> else

> t1:=Y[2]^2/((Y[1]^2+1)^(3));

> t2:=(Y[1]^2*Y[3]-3*Y[1]*Y[2]^2+Y[3])/(Y[1]^2+1)^3;

> k1:=simplify(factor(t1));

> k2:=simplify(factor(t2));

> ans:=[k1,k2];

> fi;

> fi;

> return ans;

> end:
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The following procedure computes the size of Sym(X,SE(2)).

> SESymSize:=proc(F)

> local F1,eq,J1,J2,ans;

> F1:=expand(eval(F,[x=c*x-s*y+a,y=s*x+c*y+b]));

> eq:=F-alpha*F1;

> J1:=<Coefficients(eq,x,y),c^2+s^2-1>;

> if evalb(IsRadical(J1)) then

> ans:=NumberOfSolutions(J1);

> else

> J2:=Radical(J1);

> ans:=NumberOfSolutions(J2);

> fi;

> return ans;

> end:

Putting these together we can compute the signature polynomial SX for a curve X = V (F )

under the action of SE(2). If the curve is reducible, ISE -exceptional, or has infinite symmetry

group, the signature polynomial for X is not defined. As a result the procedure will terminate

and output the reason for terminating.
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> SESig:=proc(F)

> local K,K1,K2,Q,q,eq1,eq2,eq3,J,S,SS,ans;

> if evalb(evala(AIrreduc(F))=false) then

> ans:=‘Curve is reducible‘;

> else

> K:=SEInv(F);

> if evalb(K=[‘SE-exceptional‘]) then

> ans:=‘Curve is SE-exceptional‘;

> else

> SS:=SESymSize(F);

> if evalb(SS=infinity) then

> ans:=‘Zero Dimensional Signature‘;

> else

> K1:=K[1];

> K2:=K[2];

> Q:=Generators(Radical(<lcm(denom(K1),denom(K2))>));

> q:=Q[1];

> eq1:=denom(K1)*kappa[1]-numer(K1);

> eq2:=denom(K2)*kappa[2]-numer(K2);

> eq3:=upsilon*q-1;

> J := <eq1, eq2, eq3, F>;

> S:= Generators(EliminationIdeal(J, kappa[1], kappa[2]));

> ans:=S[1];

> fi;

> fi;

> fi;

> return ans;

> end:

A.2 Computing Degree Bounds

The degree formula in (3.10) is useful for proving many of the results in this thesis. However, it

is difficult to know whether one has chosen a generic value of a = [a0 : a1 : a2]. In particular the

procedures here only work over the real numbers, which are often non-generic with respect to

C2. The bounds on the signature’s degree in (3.12) and (3.14), allow one to choose any value of

a to compute these bounds. Often these bounds coincide, allowing one to determine exactly the

signature polynomial’s degree.

The procedures here to compute these bounds still rely on elimination and Gröbner basis

algorithms, but these are mainly performed on zero-dimensional ideals. In practice computing

the degree bounds for a signature is much quicker than direct computation of the polynomial.

The following determines whether the base locus of the signature map is empty.
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> SEBaseLocus:=proc(F)

> local K,Q,R1,R2,k,F1,s1,s2,s3,J1,J2,J3,h,ans;

> K:=SEInv(F);

> if evalb(K=[‘SE-exceptional‘]) then

> ans:=‘Curve is SE-exceptional‘;

> else

> Q:=lcm(denom(K[1]),denom(K[2]));

> R1:=(Q)/(denom(K[1]));

> R2:=(Q)/(denom(K[2]));

> k:=max(degree(Q,x,y),degree(numer(K[1])*R1,x,y),degree(numer(K[2])*R2,x,y));

> F1:=Homogenize(F, z, x,y);

> s1:=z^(k-degree(numer(K[1])*R1,x,y))*Homogenize(numer(K[1])*R1, z, x,y);

> s2:=z^(k-degree(numer(K[2])*R2,x,y))*Homogenize(numer(K[2])*R2, z, x,y);

> s3:=z^(k-degree(Q,x,y))*Homogenize(Q, z, x,y);

> J1:=<subs(x=1,F1),subs(x=1,s1),subs(x=1,s2),subs(x=1,s3)>;

> J2:=<subs(y=1,F1),subs(y=1,s1),subs(y=1,s2),subs(y=1,s3)>;

> J3:=<subs(z=1,F1),subs(z=1,s1),subs(z=1,s2),subs(z=1,s3)>;

> h:=[IdealMembership(1,J1),IdealMembership(1,J2),IdealMembership(1,J3)];

> if evalb(h=[true, true, true]) then ans:=true else ans:=false fi;

> fi;

> return ans;

> end:

For a particular choice of a the following computes the degree bounds. The procedure first checks

that a signature polynomial is defined. If the base locus is empty, by (3.10), we can compute the

signature polynomial’s degree exactly. Otherwise the sum of the intersection multiplicity of V (F)

and V (σ∗a) is computing by saturating 〈F,σ∗a〉 by 〈σ0,σ1,σ2〉, giving a lower bound. We assume

that 〈F,σ∗a〉 contains no projective points by genericity of a and compute dimC(〈F,σ∗a〉|z=1). In

the event, that this assumption is incorrect, this still provides a lower bound.

The upper bound is computed by estimating dimC(〈F,σ0,σ1,σ2〉) using different affine slices.

Even if the procedure does not successfully compute dimC(〈F,σ0,σ1,σ2〉), it still produces an

upper bound for deg(SX).
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> SEDegBound:=proc(F,a1,a2,a0)

> local P1,P2,K,Q,R1,R2,k,SS,L,F1,s1,s2,s3,xF1,yF1,zF1,lb,ub;

> local zs1,zs2,zs3,ys1,ys2,ys3,xs1,xs2,xs3,J,J1,J2,J3,ans,n1,n2,n3;

> if evalb(evala(AIrreduc(F))=false) then

> ans:=‘Curve is reducible‘;

> else

> K:=SEInv(F);

> if evalb(K=[‘SE-exceptional‘]) then

> ans:=‘Curve is SE-exceptional‘;

> else

> SS:=SESymSize(F);

> if evalb(SS=infinity) then

> ans:=‘Zero Dimensional Signature‘;

> else

> Q:=lcm(denom(K[1]),denom(K[2]));

> R1:=(Q)/(denom(K[1]));

> R2:=(Q)/(denom(K[2]));

> P1:=simplify(numer(K[1])*R1);

> P2:=simplify(numer(K[2])*R2);

> k:=max(degree(Q,x,y),degree(P1,x,y),degree(P2,x,y));

> if evalb(SEBaseLocus(F)=true) then

> ans:=[(k*degree(F,x,y))/(SS), ‘exact‘];

> else

> L:=(a1)*P1+(a2)*P2+(a0)*Q;

> J1:=Saturate(<F,L>,P1);

> J2:=Saturate(<F,L>,P2);

> J3:=Saturate(<F,L>,Q);

> J:=PolynomialIdeals[Intersect](J1,J2,J3);

> F1:=Homogenize(F, z, x,y);

> s1:=z^(k-degree(P1,x,y))*Homogenize(P1, z, x,y);

> s2:=z^(k-degree(P2,x,y))*Homogenize(P2, z, x,y);

> s3:=z^(k-degree(Q,x,y))*Homogenize(Q, z, x,y);

102



> zs1:=simplify(subs(z=1,s1));

> zs2:=simplify(subs(z=1,s2))

> zs3:=simplify(subs(z=1,s3))

> ys1:=simplify(subs(y=1,s1))

> ys2:=simplify(subs(y=1,s2))

> ys3:=simplify(subs(y=1,s3))

> xs1:=simplify(subs(x=1,s1))

> xs2:=simplify(subs(x=1,s2))

> xs3:=simplify(subs(x=1,s3))

> xF1:=simplify(subs(z=1,F1))

> yF1:=simplify(subs(y=1,F1))

> zF1:=simplify(subs(z=1,F1))

> n1:=NumberOfSolutions(<zF1,zs1,zs2,zs3>);

> n2:=NumberOfSolutions(<yF1,ys1,ys2,ys3,z^1000>);

> n3:=NumberOfSolutions(<xF1,xs1,xs2,xs3,y^1000,z^1000>);

> lb:=(NumberOfSolutions(J))/(SS);

> ub:=simplify((k*degree(F,x,y)-(n1+n2+n3))/(SS))

> ans:=[lb, ‘<= Degree <=‘, ub];

> fi;

> fi;

> fi;

> fi;

> return ans;

> end:
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APPENDIX B

Details for Proofs in Section 4.2.1

Here we provide justification for many of the computational claims made in the Section 4.2.1.

B.1 T polynomials and Lemma 4.2.1

We first compute the first n derivatives of y with respect to x in terms of the partial derivatives

of F (x, y), and then evaluate each differential polynomial restricted to F (x, y) in terms of those

partials. The output of Θ3 is hidden due to its length.

> PDEtools[declare](F(x,y), quiet);

> Y:=ImDiff(F(x,y),3):

> Theta[1]:=Y[1]^2+1;

> Theta[2]:=Y[2];

> Theta[3]:=Y[3]*Theta[1]-3*Y[1]*Theta[2]^2:

Θ1 :=
F 2
x + F 2

y

F 2
y

Θ2 := −
F 2
xFy,y − 2Fx,yFxFy + Fx,xF

2
y

F 3
y

In each case we can write the differential polynomials as a polynomial in partials of F (x, y) over

F ky for some k ∈ Z+.
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> T[1]:=numer(Theta[1]);

> denom(Theta[1]);

> T[2]:=numer(Theta[2]);

> denom(Theta[2]);

T1 := F 2
x + F 2

y

Fy

T2 := −F 2
xFy,y − 2Fx,yFxFy + Fx,xF

2
y

F 3
y

In the case of Θ3, after some simplification the power of Fy drops.

> T[1]:=numer(Theta[1]);

> denom(Theta[3]);

> Theta[3]:=simplify(Theta[3]):

> denom(Theta[3]);

F 7
y

F 6
y

We can similarly compute the rest of the differential functions below. The output of each function

is hidden, but we can still determine see the power of Fy in each denominator after simplification.

> Theta[4]:=expand(3*Y[4]*Y[2]-5*Y[3]^2):

> denom(Theta[4]);

F 8
y

> Theta[5]:=expand(9*Y[5]*Y[2]^2-45*Y[4]*Y[3]*Y[2]+40*Y[3]^3):

> denom(Theta[5]);

F 12
y

> Theta[6]:=expand(9*Y[6]*Y[2]^3-63*Y[5]*Y[3]*Y[2]^2-45*Y[4]^2*Y[2]^2

> +255*Y[4]*Y[3]^2*Y[2]-160*Y[3]^4):

> denom(Theta[6]);

F 16
y
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> Theta[7]:=(9/2)*expand(18*Y[7]*Y[2]^4*(9*Y[5]*Y[2]^2

> -45*Y[4]*Y[3]*Y[2]+40*Y[3]^3)-189*Y[6]^2*Y[2]^6

> +126*Y[6]*Y[2]^4*(9*Y[5]*Y[3]*Y[2]+15*Y[4]^2*Y[2]-25*Y[4]*Y[3]^2)

> -189*Y[5]^2*Y[2]^4*(4*Y[3]^2+15*Y[2]*Y[4]+210*Y[5]*Y[3]*Y[2]^2

> *(63*Y[4]^2*Y[2]^2-60*Y[4]*Y[3]^2*Y[2]+32*Y[3]^4)

> -525*Y[4]*Y[2]*(9*Y[4]^3*Y[2]^3+15*Y[4]^2*Y[3]^2*Y[2]^2

> -60*Y[4]*Y[3]^4*Y[2]+64*Y[3]^6)+ 11200*Y[3]^8):

> denom(Theta[7]);

2F 32
y

> Theta[8]:=expand(243*Y[2]^4/(2)*(2*Y[8]*Y[2]*(9*Y[5]*Y[2]^2

> -45*Y[4]*Y[3]*Y[2]+40*Y[3]^3)^2-8*Y[7]*(9*Y[5]*Y[2]^2

> -45*Y[4]*Y[3]*Y[2]+40*Y[3]^3)*(9*Y[6]*Y[2]^3

> -36*Y[5]*Y[3]*Y[2]^2-45*Y[4]^2*Y[2]^2+120*Y[4]*Y[3]^2*Y[2]

> -40*Y[3]^4)+504*Y[6]^3*Y[2]^5

> -504*Y[6]^2*Y[2]^3*(9*Y[5]*Y[3]*Y[2]+15*Y[4]^2*Y[2]

> -25*Y[4]*Y[3]^2)+28*Y[6]*(432*Y[5]^2*Y[3]^2*Y[2]^3

> +243*Y[5]^2*Y[4]*Y[2]^4-1800*Y[5]*Y[4]*Y[3]^3*Y[2]^2

> -240*Y[5]*Y[3]^5*Y[2]+540*Y[5]*Y[4]^2*Y[3]*Y[2]^3

> +6600*Y[4]^2*Y[3]^4*Y[2]-2000*Y[4]*Y[3]^6

> -5175*Y[4]^3*Y[3]^2*Y[2]^2+1350*Y[4]^4*Y[2]^3)

> -2835*Y[5]^4*Y[2]^4+252*Y[5]^3*Y[3]*Y[2]^2

> *(9*Y[4]*Y[2]-136*Y[3]^2)-35840*Y[5]^2*Y[3]^6

> -630*Y[5]^2*Y[4]*Y[2]*(69*Y[4]^2*Y[2]^2-160*Y[3]^4

> -153*Y[4]*Y[3]^2*Y[2]+2100*Y[5]*Y[4]^2*Y[3]

> *(72*Y[3]^4+63*Y[4]^2*Y[2]^2-193*Y[4]*Y[3]^2*Y[2])

> -7875*Y[4]^4*(8*Y[4]^2*Y[2]^2-22*Y[4]*Y[3]^2*Y[2]

> +9*Y[3]^4))):

> denom(Theta[8]);

2F 48
y

> Theta[9]:=expand(Y[1]^4*Y[4]-10*Y[1]^3*Y[2]*Y[3]+(15*Y[2]^3+2*Y[4])

> *Y[1]^2-10*Y[1]*Y[2]*Y[3]+Y[4]):

> denom(Theta[9]);

F 9
y

106



B.2 Details for Lemma 4.2.3

The command

> DerivOrigin

first computes each partial derivative of F (x, y) at the origin. It then finds the derivative of y

with respect to x of F at the origin using the partial derivative representation. We can then

evaluate the polynomial T1 obtained from F at the origin.

> T1Origin:=proc(F)

> local FY, Fy, Y, M1, D1;

> Y:=DerivOrigin(F);

> Fy :=diff(F, y);

> FY:= subs(x=0,y=0,Fy);

> D1:=Y[1]^2+1;

> M1:=FY^2*(D1);

> return(simplify(M1))

> end:

The commands to evaluate Ti for i = 2, . . . , 9 are defined similarly. First we define an arbitrary

second degree curve that contains the origin.

> F:=a[1,0]*x+a[0,1]*y+sum(a[i,2-i]*x^i*y^(2-i),i=0..2);

F := a2,0x
2 + a1,1xy + a0,2y

2 + a1,0x+ a0,1y

Since T1 and T2 depend on partials of order ≤ 2, the polynomials T1(0, 0) and T2(0, 0) only

depend on coefficients ai,j where i+ j ≤ 2. Thus we can compute T1(0, 0) and T2(0, 0) and see

that they do not share a common factor for a curve of any degree.

> T[1]:=T1Origin(F);

> T[2]:=T2Origin(F);

> gcd(T[1],T[2]);

T1 := a0,1
2 + a1,0

2

T2 := −2 a2,0a0,1
2 + 2 a1,1a1,0a0,1 − 2 a1,0

2a0,2

1

We can also do this for the other pairs of polynomials discussed in Lemma 4.2.3. The computations

are not included here due to their redundancy and length.
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B.3 Details for Lemma 4.2.6

Here we evaluate the differential functions Θ on truncations of Laurent series, representing

points at infinity on a curve F (x, y), and then compute their valuation. The code first outputs

the coefficient of the lowest degree term of the series and then its degree.

> xt:=(1/t):

> yt:=a[0]/t+a[1]+sum(a[i+1]*t^i,i=1..60):

> y[1]:=expand((diff(yt,t))/(diff(xt,t))):

> y[2]:=expand((diff(y[1],t))/(diff(xt,t))):

> y[3]:=expand((diff(y[2],t))/(diff(xt,t))):

> y[4]:=expand((diff(y[3],t))/(diff(xt,t))):

> y[5]:=expand((diff(y[4],t))/(diff(xt,t))):

> y[6]:=expand((diff(y[5],t))/(diff(xt,t))):

> y[7]:=expand((diff(y[6],t))/(diff(xt,t))):

> y[8]:=expand((diff(y[7],t))/(diff(xt,t))):

> Theta1:=expand(y[1]^2+1):

> tcoeff(Theta1,[t],’ValTheta1’);

> ValTheta1;

a20 + 1

1

> Theta2:=expand(y[2]):

> Theta3:=expand(y[3]*Theta1-3*y[1]*y[2]^2):

> Theta4:=expand(3*y[4]*y[2]-5*y[3]^2):

> tcoeff(Theta2,[t],’ValTheta2’);

> ValTheta2;

> tcoeff(Theta3,[t],’ValTheta3’);

> ValTheta3;

> tcoeff(Theta4,[t],’ValTheta4’);

> ValTheta4;

2a2

t3

−6a20a2 − 6a2

t4

−36a22

t8

108



The following command truncates the series at a given power of t. Note that for each expression

the lowest degree term must be of non-negative degree. Some coefficients are hidden due to

length.

> Truncate:=proc(F,n)

> local i,c,TF;

> for i from 0 to n do

> c[i]:=coeff(F,t,i):

> od;

> TF:=sum(c[j]*t^j,j=0..n);

> return(TF);

> end:

> Theta9:=expand(Truncate(y[1]^4*y[4]-10*y[1]^3*y[2]*y[3]+(15*y[2]^3

> +2*y[4])*y[1]^2-10*y[1]*y[2]*y[3]+y[4],40)):

> Theta5:=expand(Truncate(9*y[5]*y[2]^2-45*y[4]*y[3]*y[2]+40*y[3]^3,40)):

> Theta6:=expand(Truncate(9*y[6]*y[2]^3-63*y[5]*y[3]*y[2]^2

> -45*y[4]^2*y[2]^2+255*y[4]*y[3]^2*y[2]-160*y[3]^4,40)):
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> Theta7:=expand(Truncate((9/2)*(18*y[7]*y[2]^4

> *(9*y[5]*y[2]^2-45*y[4]*y[3]*y[2]

> +40*y[3]^3)-189*y[6]^2*y[2]^6+126*y[6]*y[2]^4

> *(9*y[5]*y[3]*y[2]+15*y[4]^2*y[2]-25*y[4]*y[3]^2)

> -189*y[5]^2*y[2]^4*(4*y[3]^2+15*y[2]*y[4])

> +210*y[5]*y[3]*y[2]^2*(63*y[4]^2*y[2]^2

> -60*y[4]*y[3]^2*y[2]+32*y[3]^4)-525*y[4]*y[2]

> *(9*y[4]^3*y[2]^3+15*y[4]^2*y[3]^2*y[2]^2

> -60*y[4]*y[3]^4*y[2]+64*y[3]^6)+ 11200*y[3]^8),40)):

> Theta8:=expand(Truncate((243*y[2]^4/(2)

> *(2*y[8]*y[2]*(9*y[5]*y[2]^2-45*y[4]*y[3]*y[2]

> +40*y[3]^3)^2-8*y[7]*(9*y[5]*y[2]^2-45*y[4]*y[3]*y[2]

> +40*y[3]^3)*(9*y[6]*y[2]^3-36*y[5]*y[3]*y[2]^2

> -45*y[4]^2*y[2]^2+120*y[4]*y[3]^2*y[2]-40*y[3]^4)

> +504*y[6]^3*y[2]^5-504*y[6]^2*y[2]^3

> *(9*y[5]*y[3]*y[2]+15*y[4]^2*y[2]-25*y[4]*y[3]^2)

> +28*y[6]*(432*y[5]^2*y[3]^2*y[2]^3+243*y[5]^2*y[4]*y[2]^4

> -1800*y[5]*y[4]*y[3]^3*y[2]^2-240*y[5]*y[3]^5*y[2]

> +540*y[5]*y[4]^2*y[3]*y[2]^3+6600*y[4]^2*y[3]^4*y[2]

> -2000*y[4]*y[3]^6-5175*y[4]^3*y[3]^2*y[2]^2

> +1350*y[4]^4*y[2]^3)-2835*y[5]^4*y[2]^4

> +252*y[5]^3*y[3]*y[2]^2*(9*y[4]*y[2]-136*y[3]^2)

> -35840*y[5]^2*y[3]^6-630*y[5]^2*y[4]*y[2]

> *(69*y[4]^2*y[2]^2-160*y[3]^4-153*y[4]*y[3]^2*y[2])

> +2100*y[5]*y[4]^2*y[3]*(72*y[3]^4+63*y[4]^2*y[2]^2

> -193*y[4]*y[3]^2*y[2])-7875*y[4]^4*(8*y[4]^2*y[2]^2

> -22*y[4]*y[3]^2*y[2]+9*y[3]^4))),60)):
> tcoeff(Theta5,[t],’ValTheta5’);

> ValTheta5;

> tcoeff(Theta6,[t],’ValTheta6’);

> ValTheta6;

> tcoeff(Theta7,[t],’ValTheta7’):

> ValTheta7;

> tcoeff(Theta8,[t],’ValTheta8’):

> ValTheta8;

> tcoeff(Theta9,[t],’ValTheta9’);

> ValTheta9;
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−4320a5a
2
2 + 12960a4a2a3 − 8640a33

t15

25920a32a5 − 77760a22a3a4 + 51840a2a
3
3

t19

−36a22

t8

t40

t60

24a40a2 + 48a20a2 + 24a2

t5
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APPENDIX C

Fermat Curve Computations

This appendix contains details for the proofs of Proposition 4.3.2 and Theorem 4.3.3.

C.1 Affine

For 3 ≤ d ≤ 7 we compute the signature polynomial for the Fermat curves Xd under the action

of A(2) directly.

> F:=x^3+y^3+1;

> ASig(F);

F := x3 + y3 + 1

25κ1
2 − 300κ1κ2 + 900κ2

2 + 820κ1 + 960κ2 + 256

> F:=x^4+y^4+1;

> ASig(F);

F := x4 + y4 + 1

13720κ2
3 + 49κ1

2 − 13230κ1κ2 + 176400κ2
2 + 76300κ1 + 231000κ2 + 80000

> F:=x^5+y^5+1;

> ASig(F);
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F := x5 + y5 + 1

225κ2
3 + 1485κ2

2 + 343κ1 + 1944κ2 + 720

> F:=x^6+y^6+1;

> ASig(F);

F := x6 + y6 + 1

2012472κ2
3 − 121κ1

2 + 193116κ1κ2 + 10245312κ2
2 + 1431584κ1 + 13039488κ2 + 4917248

> F:=x^7+y^7+1;

> ASig(F);

F := x7 + y7 + 1

8612240κ2
3 − 1183κ1

2 + 851760κ1κ2 + 38329200κ2
2 + 3551600κ1 + 47424000κ2 + 17920000

The following computes the classifying invariants for A(2) (see (4.3)) restricted to the curve

F = x6a+ y6b+ 1.

> F:=x^d+y^d+1:

> YY:=ImDiff(F,6):

> Y:=[subs(x^d=x^6*a,y^d=y^6*b,YY[1]),subs(x^d=x^6*a,y^d=y^6*b,YY[2]),

> subs(x^d=x^6*a,y^d=y^6*b,YY[3]),subs(x^d=x^6*a,y^d=y^6*b,YY[4]),

> subs(x^d=x^6*a,y^d=y^6*b,YY[5]),subs(x^d=x^6*a,y^d=y^6*b,YY[6])]:

> Delta1:=simplify(3*Y[4]*Y[2]-5*Y[3]^2):

> Delta2:=simplify(9*Y[5]*Y[2]^2-45*Y[4]*Y[3]*Y[2]+40*Y[3]^3):

> K1:= Delta2^2/Delta1^3:

> K2:= 1/Delta1^2*(9*Y[6]*Y[2]^3-63*Y[5]*Y[3]*Y[2]^2

> -45*Y[4]^2*Y[2]^2+255*Y[4]*Y[3]^2*Y[2]-160*Y[3]^4):

> Inv:=[simplify(factor(K1)),simplify(factor(K2))]:

By canceling common factors and clearing denominators, we can construct three polynomials

si = σi ∈ Q[x, y, a, b, d], i = 0, 1, 2 such that σi evaluated at a = xd−6, b = yd−6 gives σi where

σ = [σ0,σ1,σ2] is a projective extension of σAXd
.

> s[0]:=lcm(denom(Inv[1]),denom(Inv[2]));

> s[1]:=simplify(numer(Inv[1])*(s0/denom(Inv[1])));

> s[2]:=simplify(numer(Inv[2])*(s0/denom(Inv[2])));
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s0 := (2 d− 1)
(
x12a2d+ x6ay6bd+ y12b2d− 2x12a2 − 5x6ay6b− 2 y12b2

)3
s1 := −2

(
x6a− y6b

)2 (
x6a+ 2 y6b

)2
(d− 2)2 (1 + d)2

(
x6a+ 1/2 y6b

)2
(d− 1/2) (x12 (d− 2) a2 + bx6y6 (d− 5) a+ b2y12 (d− 2))3

s2 := −
(1 + d) (d− 2)

(
x24 (1 + d) a4 + 2 b (d+ 1/4)x18y6a3 + 3 b2x12y12 (d− 1) a2 + 2 b3 (d+ 1/4)x6y18a+ b4y24 (1 + d)

)
(d− 1/2) (x12 (d− 2) a2 + bx6y6 (d− 5) a+ b2y12 (d− 2))2

The ideal J1 below represents the ideal of affine points [1 : p] ∈ V (Fd) in the base locus of σ.

> J1:=<x^6*a+y^6*b+1,s0,s1,s2>:

> B:=Groebner[Basis](J,plex(x,y,a,b,d)):

> factor(B[1]);

d3 (d− 3) (d− 2)2

The ideal J2 below represents the ideal of points of the form [0 : p] ∈ V (Fd) in the base locus of

σ.

> J2:=<x^6*a+y^6*b,s0,s1,s2>:

> B:=Groebner[Basis](J,plex(x,y,a,b,d));

> factor(B[1]);

b6y36 (1 + d)2

C.2 Projective

For 3 ≤ d ≤ 7 we compute the signature polynomial for the Fermat curves Xd under the action

of PGL(3) directly.

> F:=x^3+y^3+1;

> PSig(F);

F := x3 + y3 + 1

4410000κ2
4 + 53760000κ1κ2

2 + 333396000κ2
3 + 163840000κ1

2−

677376000κ1κ2 + 9451776600κ2
2 − 32006016000κ1 + 119092385160κ2 + 562711519881

> F:=x^4+y^4+1;

> PSig(F);
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F := x4 + y4 + 1

18974430720000κ2
4 + 231307345920000κ1κ2

2 + 1015224011424000κ2
3

+704936673280000κ1
2 − 2153990651904000κ1κ2 + 20367401451742800κ2

2

−66627150406992000κ1 + 181582957508150835κ2 + 607005886527247077

> F:=x^5+y^5+1;

> PSig(F);

F := x5 + y5 + 1

7938000κ2
4 + 96768000κ1κ2

2 + 370851600κ2
3 + 294912000κ1

2

−812851200κ1κ2 + 6494801040κ2
2 − 20705345920κ1 + 50534548092κ2 + 147392431935

> F:=x^6+y^6+1;

> PSig(F);

F := x6 + y6 + 1

1777949697097728κ2
4 + 21674053450334208κ1κ2

2 + 77456469265781760κ2
3

+66054258134351872κ1
2 − 173895072627032064κ1κ2

+1264620282724814400κ2
2 − 3956041407609156096κ1

+9170632023542797500κ2 + 24921490271770524375

> F:=x^7+y^7+1;

> PSig(F);

F := x7 + y7 + 1

302415578010000κ2
4 + 3686589903360000κ1κ2

2 + 12638217612384000κ2
3

+11235321610240000κ1
2 − 28892563225344000κ1κ2 + 197891393481873000κ2

2

−610304534673724800κ1 + 1375912588829959440κ2 + 3583987695327269349

The following computes the classifying invariants for PGL(3) (see (4.3)) restricted to the curve

F = x6a+ y6b+ 1.
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> YY:=ImDiff(F,8):

> Y:=[subs(x^d=x^8*a,y^d=y^8*b,YY[1]),subs(x^d=x^8*a,y^d=y^8*b,YY[2]),

> subs(x^d=x^8*a,y^d=y^8*b,YY[3]),subs(x^d=x^8*a,y^d=y^8*b,YY[4]),

> subs(x^d=x^8*a,y^d=y^8*b,YY[5]),subs(x^d=x^8*a,y^d=y^8*b,YY[6]),

> subs(x^d=x^8*a,y^d=y^8*b,YY[7]),subs(x^d=x^8*a,y^d=y^8*b,YY[8])]:

> Delta2:=simplify(9*Y[5]*Y[2]^2-45*Y[4]*Y[3]*Y[2]+40*Y[3]^3):

> K1:= 729/(8*Delta2^8)*(18*Y[7]*Y[2]^4*Delta2-189*Y[6]^2*Y[2]^6+126*Y[6]*Y[2]^4

> *(9*Y[5]*Y[3]*Y[2]+15*Y[4]^2*Y[2]-25*Y[4]*Y[3]^2)-189*Y[5]^2*Y[2]^4

> *(4*Y[3]^2+15*Y[2]*Y[4]+210*Y[5]*Y[3]*Y[2]^2*(63*Y[4]^2*Y[2]^2

> -60*Y[4]*Y[3]^2*Y[2]+32*Y[3]^4)-525*Y[4]*Y[2]*(9*Y[4]^3*Y[2]^3

> +15*Y[4]^2*Y[3]^2*Y[2]^2-60*Y[4]*Y[3]^4*Y[2]+64*Y[3]^6)+ 11200*Y[3]^8)^3:

> K2:=243*Y[2]^4/(2*Delta2^4)*(2*Y[8]*Y[2]*Delta2^2-8*Y[7]*Delta2

> *(9*Y[6]*Y[2]^3-36*Y[5]*Y[3]*Y[2]^2-45*Y[4]^2*Y[2]^2

> +120*Y[4]*Y[3]^2*Y[2]-40*Y[3]^4)+504*Y[6]^3*Y[2]^5-504*Y[6]^2*Y[2]^3

> *(9*Y[5]*Y[3]*Y[2]+15*Y[4]^2*Y[2]-25*Y[4]*Y[3]^2)+28*Y[6]

> *(432*Y[5]^2*Y[3]^2*Y[2]^3+243*Y[5]^2*Y[4]*Y[2]^4-1800*Y[5]*Y[4]*Y[3]^3*Y[2]^2

> -240*Y[5]*Y[3]^5*Y[2]+540*Y[5]*Y[4]^2*Y[3]*Y[2]^3+6600*Y[4]^2*Y[3]^4*Y[2]

> -2000*Y[4]*Y[3]^6-5175*Y[4]^3*Y[3]^2*Y[2]^2+1350*Y[4]^4*Y[2]^3)

> -2835*Y[5]^4*Y[2]^4+252*Y[5]^3*Y[3]*Y[2]^2*(9*Y[4]*Y[2]-136*Y[3]^2)

> -35840*Y[5]^2*Y[3]^6-630*Y[5]^2*Y[4]*Y[2]*(69*Y[4]^2*Y[2]^2

> -160*Y[3]^4-153*Y[4]*Y[3]^2*Y[2]+2100*Y[5]*Y[4]^2*Y[3]

> *(72*Y[3]^4+63*Y[4]^2*Y[2]^2-193*Y[4]*Y[3]^2*Y[2])-7875*Y[4]^4

> *(8*Y[4]^2*Y[2]^2-22*Y[4]*Y[3]^2*Y[2]+9*Y[3]^4)):

> Inv:=[simplify(factor(K1)),simplify(factor(K2))]:

By canceling common factors and clearing denominators, we can construct three polynomials

si = σi ∈ Q[x, y, a, b, d], i = 0, 1, 2 such that σi evaluated at a = xd−8, b = yd−8 gives σi where

σ = [σ0,σ1,σ2] is a projective extension of σPXd
.

> s[0]:=lcm(denom(Inv[1]),denom(Inv[2]));

> s[1]:=simplify(numer(Inv[1])*(s0/denom(Inv[1])));

> s[2]:=simplify(numer(Inv[2])*(s0/denom(Inv[2])));
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s0 :=8
(
2x8a+ y8b

)8
(d− 2)2

(
x8a+ 2 y8b

)8
(1 + d)2 (2 d− 1)2

(
x8a− y8b

)8
s1 :=

729
(
x16a2 + x8ay8b+ y16b2

)3
128 (x8a+ 1/2 y8b)8 (x8a− y8b)8 (1 + d)2 (x8a+ 2 y8b)8 (d− 2)2 (d− 1/2)2(
x48
(
d2 − d+ 1

)
a6 + 3 bx40y8

(
d2 − d+ 1

)
a5 −

33 b2
(
d2 − d/22 + 1/22

)
x32y16a4

2

−38 b3
(
d2 − 13 d

76
+

13

76

)
x24y24a3 −

33 b4
(
d2 − d/22 + 1/22

)
x16y32a2

2

+3 b5x8y40
(
d2 − d+ 1

)
a+ b6y48

(
d2 − d+ 1

))3
s2 :=−

729 db2
(
x8a+ y8b

)2
x16y16a2

8 (x8a+ 1/2 y8b)4 (x8a− y8b)4 (1 + d) (x8a+ 2 y8b)4 (d− 2) (d− 1/2)(
(d− 1/3) (d+ 1/2)x48a6 + 3 b (d− 1/3) (d+ 1/2)x40y8a5 +

39 a4b2x32y16

4(
d2 − d

78
+

1

78

)
+

29 a3b3x24y24

2

(
d2 − 13 d

174
+

13

174

)
+

39 a2b4x16y32

4(
d2 − d

78
+

1

78

)
+ 3 b5 (d− 1/3) (d+ 1/2)x8y40a+ b6 (d− 1/3) (d+ 1/2) y48

)

The ideal J1 below represents the ideal of affine points [1 : p] ∈ V (Fd) in the base locus of σ.

Thus this ideal is empty for d ≥ 3.

> J1:=<x^8*a+y^8*b+1,s0,s1,s2>:

> B:=Groebner[Basis](J,plex(x,y,a,b,d)):

> factor(B[1]);

d9(d− 2)(2 ∗ d− 1)(1 + d)

The ideal J2 below represents the ideal of points of the form [0 : p] ∈ V (Fd) in the base locus of

σ. We can see that since ideal is empty, since for [0 : p1 : p2] ∈ V (Fd), p1, p2 6= 0.

> J2:=<x^8*a+y^8*b,s0,s1,s2>:

> B:=Groebner[Basis](J,plex(x,y,a,b,d));
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