
ABSTRACT

STADNYK, GRACE ELIZABETH. Lexicographic Shellability, the Enriched Tamari Poset, and
the Edge-Product Space of Phylogenetic Trees. (Under the direction of Patricia Hersh).

We study the combinatorics and topology of the edge-product space of phylogenetic trees,

a topological space arising in evolutionary biology and one that is closely related to a family

of topological spaces called toric cubes. Both the edge-product space of phylogenetic trees and

toric cubes are known to be regular CW complexes. We explore the question of whether these

CW decompositions are shellable by determining whether their face posets are lexicographically

shellable.

In doing so, we introduce a new poset that is closely related to the well-known Tamari

lattice. We call this poset the enriched Tamari poset and determine some of its properties. The

elements of the enriched Tamari poset are the maximal elements of the Tuffley poset, which is

isomorphic to the face poset of the edge-product space of phylogenetic trees. Initially, it was

our hope that the enriched Tamari poset would give a partial order on the maximal elements

of the Tuffley poset such that any linear extension of this partial order would be compatible

with a shelling order of the edge-product space itself. However, we show that in fact, there is

no shelling order of the edge-product space of phylogenetic trees by showing that the Tuffley

poset is not dual CL-shellable.

Throughout this exploration, we have wondered whether we could develop generalizations

of some of the well-known and commonly used tools in topological combinatorics to help us

answer these questions. To this end, we introduce the notion of a generalized recursive atom

ordering. We show that a poset admits a generalized recursive atom ordering if and only if it

is CC-shellable, which is analogous to the useful result of Björner and Wachs’ stating that a

poset admits a (traditional) recursive atom ordering if and only if it is CL-shellable.
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Chapter 1

Introduction

Our research began with a family of topological spaces called toric cubes. Toric cubes are subsets

B of standard cubes defined by binomial inequalities such that B is equal to the closure of its

strictly positive points (see Definition 1.4.3). Engström, Hersh and Sturmfels showed in [10]

that n−dimensional toric cubes are the images of d-cubes under maps f : [0, 1]d → [0, 1]n given

by monomials. They also showed that toric cubes have a CW-decomposition. Basu, Gabrielov

and Vorobjov showed in [2] that these CW-decompositions are regular. A natural question we

ask is whether the face posets of these CW-decompositions are shellable. We thus begin with

background on CW complexes, posets, shellability, and poset shellability in Sections 1.1 and

1.2 of Chapter 1.

Our study focuses on a particular class of toric cubes whose monomial maps are determined

by trees. The union of all toric cubes derived from trees with a fixed number of leaves labeled

by a finite set X defines a topological space that arises in evolutionary biology. We study the

combinatorics and topology of this space, which is called the edge-product space of phylogenetic

trees on X leaves and which is denoted E(X) (see Definition 1.4.11). In Section 1.4 of Chapter

1, we present necessary background on toric cubes and the edge-product space of phylogenetic

trees. Moulton and Steel showed in [21] that E(X) has a CW structure with face poset isomor-

phic to the Tuffley poset, denoted S(X) (see Definition 1.4.14). Taking X = [n] and motivated

by the question of finding a dual lexicographic shelling of the Tuffley poset, we present a partial

order on the maximal elements of S([n]) called the enriched Tamari poset in Chapter 2.

The enriched Tamari poset is a natural extension of the Tamari lattice, a lattice of brack-

etings of integers from 1 to n. A subset of the cover relations in the enriched Tamari poset

are cover relations in the Tamari lattice (see Section 1.5). Instead of requiring the leaves to

always be ordered from 1 to n in counterclockwise order, as in the Tamari lattice, this new

poset is “enriched” with cover relations that yield different orderings of the leaves. We define

the enriched Tamari poset and prove it is, in fact, a poset, in Section 2.2. In Section 2.3, we
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present some immediate basic properties of this poset.

The initial motivation for introducing the enriched Tamari poset was as a means of giving

the maximal elements of the Tuffley poset, S([n]), an ordering that is compatible with a recur-

sive coatom ordering. In doing so we aimed to show that E([n]) was shellable in the sense of

Definition 1.2.11. However, in Chapter 3, we prove that S([n])∪{0̂, 1̂} is not dual CL-shellable.

In particular, we show in Section 3.3 that there does not exist a recursive coatom ordering of

S([n])∪{0̂, 1̂}. By a result of Björner (see Theorem 1.2.24), this fact shows that the edge-product

space E([n]) is not shellable. This is a somewhat surprising result for two main reasons. First,

E([n]) is gallery-connected (see Definition 3.2.4), a fact we prove using the enriched Tamari

poset in Section 3.2. Second, the existence of a shelling of intervals in S([n]) ∪ {0̂} was proven

by Gill, Linusson, Moulton, and Steel in [12] and an explicit shelling of intervals in S([n])∪{0̂}
is given via an EC-labeling of the uncrossing poset introduced by Hersh and Kenyon in [16].

We describe the relationship between the uncrossing poset and the Tuffley poset in Section 3.1

and use this to show in Theorem 3.1.22 that intervals in S([n])∪{0̂} are isomorphic to principal

order ideals in the uncrossing poset, Pn. This fact also implies that the face poset of any toric

cube arising from a tree is shellable.

We look at lexicographic shellability in more detail in Chapter 4. In particular, we modify

the notion of a recursive atom ordering to define what we call a generalized recursive atom

ordering (see Definition 4.1.4). The main result of this chapter is Theorem 4.1.9, which states

that a poset admits a generalized recursive atom ordering if and only if it is CC-shellable. This

result is analogous to a result of Björner and Wachs in [5] which states that a poset admits a

(traditional) recursive atom ordering if and only if it is CL-shellable.

The remainder of Chapter 4 presents partial order generalizations of shellability results

originally given by Björner in [3]. In particular, when a natural total order on facets is not

apparent, we wonder whether a partial order on facets with the codimension one property

(see Definition 3.2.6) might be enough to give information about the topology of the space. For

example, though E([n]) is not shellable, a partial order on its facets satisfying certain conditions

might be enough to determine the topology of E([n]). As a first step towards this goal, we look

in particular at a generalization of a result of Björner’s (see Theorem 4.2.6) in Section 4.2. It

turns out that partial orders satisfying certain conditions can give insight into the topology of

a space, but these types of partial orders always extend to shelling orders.

1.1 Preliminaries on CW complexes and posets

We begin with background on some of the basic structures that encode mathematical informa-

tion in combinatorics and topology. We will then describe how these structures relate to each

other in the realm of topological combinatorics and what their interaction can tell us about the

2



underlying mathematical objects they encode. We begin by defining partially ordered sets and

several concepts that will help us discuss the posets that will appear in later chapters.

Definition 1.1.1. A poset or partially ordered set is a pair (P,≤) where P is a set and ≤
is an order relation on the elements of P satisfying

(i) antisymmetry: If a ≤ b and b ≤ a, then a = b.

(ii) reflexivity: a ≤ a for every a ∈ P .

(iii) transitivity: If a ≤ b and b ≤ c, then a ≤ c.

Definition 1.1.2. If a ≤ b and there is no c such that a ≤ c ≤ b, then we write al b and we

say b covers a. If a ≤ b or b ≤ a, then we say a and b are comparable. Otherwise, a and b are

incomparable.

Definition 1.1.3. The Hasse diagram of a poset (P,≤) is a graph such that

(i) elements of P are vertices,

(ii) there is an edge between a and b if al b or if bl a,

(iii) if a < b, then b is placed higher in the plane than a.

When the order relation ≤ is understood, we will sometimes denote the poset (P,≤) simply

by P .

Definition 1.1.4. A chain is a totally ordered subset of P . The length of a chain is one less

than the number of elements in the chain. If all maximal chains in P are of the same length,

the poset is said to be pure.

Definition 1.1.5. A poset is bounded if it has both a unique least element (denoted 0̂) and

a unique greatest element (denoted 1̂).

Definition 1.1.6. A poset is graded if it is bounded and pure.

Definition 1.1.7. A poset P is connected if for every pair a, b ∈ P , there is a sequence

a = c0, c1, c2, . . . cn = b such that ci and ci+1 are comparable for 0 ≤ i ≤ n− 1 and ci ∈ P .

One especially interesting and well-behaved type of poset is a lattice, which we describe

next.

Definition 1.1.8. Let P be a poset and u, v ∈ P . The meet of u and v, if it exists, is the

unique greatest common lower bound of u and v. It is denoted u ∧ v. The join of u and v, if it

exists, is the unique least common upper bound of u and v. It is denoted u ∨ v.

3



∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.1: The Boolean lattice B3.

Definition 1.1.9. A meet-semilattice is a poset in which every pair of elements of P has a

meet. A join-semilattice is a poset in which every pair of elements has a join. A lattice is a

poset in which every pair of elements has both a meet and a join.

Example 1.1.10. The Boolean lattice Bn is a poset whose elements are subsets of the integers

from 1 to n. It is bounded. The top element is 1̂ = [n] = {1, 2, . . . n} and the bottom element

is 0̂ = ∅. It is also a lattice. If a and b are elements of Bn, their meet is a ∧ b = a ∩ b, the set

of integers in both a or b. Their join is a ∨ b = a ∪ b, the set of integers in either a and b. See

Figure 1.1 for the Hasse diagram of B3.

We can use the following theorem to determine if a poset P is a lattice:

Proposition 1.1.11. A finite join-semilattice P with a 0̂ is a lattice. A finite meet-semilattice

P with a 1̂ is a lattice.

We will need the notion of isomorphic posets in Chapter 3:

Definition 1.1.12. Posets (P,≤P ) and (Q,≤Q) are isomorphic if there exists a bijection

f : P → Q such that xlP y if and only if f(x)lQ f(y).

We now define a basic topological structure called a simplicial complex and the more general

notion of a CW complex. In this thesis and in topological combinatorics in general, we often

try to elicit information about a topological space that can be decomposed as a simplicial or

CW complex using combinatorial data about these decompositions.
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Definition 1.1.13. An abstract simplicial complex ∆ on a finite vertex set V is a nonempty

collection of subsets of V such that

(i) {v} ∈ ∆ for all v ∈ V and

(ii) if G ∈ ∆ and F ⊆ G, then F ∈ ∆.

Definition 1.1.14. A d-dimensional geometric simplex Γ in Rn is the convex hull of d+ 1

affinely independent points in Rn called vertices. For c < d, a c-dimensional face of Γ is the

convex hull of any c+ 1 vertices of Γ.

Definition 1.1.15. A geometric simplicial complexK is a nonempty collection of geometric

simplices such that

(i) if F is a face of G and G ∈ K, then F ∈ K and

(ii) if F1, F2 ∈ K, then F1 ∩ F2 is a face of both F1 and F2.

Theorem 1.1.16. For every abstract simplicial complex ∆, there is a geometric simplicial

complex K such that taking the faces of K as vertex sets yields ∆. In this case, K is called a

geometric realization of ∆.

Because of the previous theorem, we will generally not specify whether a simplicial complex

is an abstract simplicial complex or a geometric realization.

CW complexes are generalizations of simplicial complexes first formally introduced by J.H.C.

Whitehead (see [29]). The basic building block of a CW complex is the open m-cell:

Definition 1.1.17. An open m−cell is any topological space homeomorphic to the interior

of an m−ball Bm. An open 0−cell is a point.

Next, we present the definition of a CW complex. This is an inductive definition given by

Hatcher in [13], where the CW complex is constructed by gluing progressively higher dimensional

m−cells to the collection of previously added, lower dimensional cells. This definition uses a set

of continuous functions called maps.

Definition 1.1.18. A CW complex is defined inductively as follows:

(i) Begin with a discrete set X0 whose points are regarded as 0-cells.

(ii) Form the n−skeleton Xn from Xn−1 by attaching open n−cells, enα, via maps φα : Sn−1 →
Xn−1. These maps are called attaching maps. Each cell enα has a characteristic map

Φα : Bn
α → X which extends the attaching map φα and is a homeomorphism from the

interior of Bn
α onto enα.

5
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Figure 1.2: The tetrahedron on the left is a regular CW complex. The CW complex on the
right is not regular.

Definition 1.1.19. A CW complex K is called regular if the closure of each cell of K is

homeomorphic to a closed ball. In particular, this implies regular cell complexes have attaching

maps that are injective.

Example 1.1.20. The tetrahedron on the left in Figure 1.2 is a regular CW complex. However,

RP2, shown on the right in Figure 1.2, is not a regular CW complex because the attaching map

corresponding to the cell denoted e2 is not injective. Thus the cell e2 is not homeomorphic to

a closed ball.

If a regular CW complex has maximal cells that are all of the same dimension, then this

CW complex is more specifically a d-CW complex:

Definition 1.1.21. A finite, regular CW complex K is a d-CW complex if every closed cell is

a face of a d-dimensional cell. For a cell σ of the d-CW complex K, let δσ denote the (d−1)-CW

complex consisting of all proper cells of σ.

We now describe connections between posets and CW complexes arising in the world of

topological combinatorics. In general, when a topological property is used to describe a poset,

we mean that a simplicial complex derived from the poset, called the order complex of P , has

this topological property. We describe the construction of the order complex and introduce

some related definitions next.

Definition 1.1.22. Given any poset P , the order complex of P is the abstract simplicial

complex with k−faces corresponding to the chains of length k of P . It is denoted ∆(P ).

Definition 1.1.23. Given any CW complex K, its face poset P (K) consists of the cells

(sometimes called faces) of K ordered by inclusion with a 0̂ adjoined. The augmented face
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0̂

Figure 1.3: The face poset for both a CW decomposition of the real projective plane and a
CW decomposition of the 3-ball.

poset, P̂ (K), is P (K) with a 1̂ adjoined, provided that P (K) does not already have a unique

maximal element.

If K is a regular CW complex, then ∆(P (K)− 0̂) ∼= K. Thus the incidence relations of cells

as given in P (K) determines the topology of K. This is not true of all CW complexes. See [4]

for more details.

Example 1.1.24. Figure 1.3 shows the face poset for a (non-regular) CW decomposition of the

real projective plane RP 2 consisting of one 0-cell, one 1-cell, and one 2-cell. It is also the face

poset for a non-regular CW decomposition of the ball B3 consisting of one 0-cell, one 2-cell,

and one 3-cell.

Simplicial complexes are regular CW complexes. Given a simplicial complex K, the order

complex ∆(P (K) − 0̂) is another simplicial complex, specifically the barycentric subdivision

of K, sd(K). A simplicial complex is homeomorphic to its barycentric subdivision, thus K ∼=
sd(K) ∼= ∆(P (K)− 0̂).

If K is a simplicial complex, one interesting subcomplex of K is the link of a face, F .

Definition 1.1.25. Suppose K is a simplicial complex and F a face of K. The link of F is

lk(F ) = {G ∈ K : F ∪G ∈ K,F ∩G = ∅}

Proposition 1.1.26. The order complex ∆(u, v) of (u, v) is the link of some face F in ∆([0̂, v]).

Proof. For F ∈ ∆(0̂, v), lk(F ) = {G ∈ ∆(0̂, v) : F ∪ G ∈ ∆(0̂, v), F ∩ G = ∅}. Let u ≤ v.

Consider any saturated chain from 0̂ to u and add the element v. Let F be the face of ∆([0̂, v])

corresponding to this chain. If G is any chain in the open interval (u, v), G ∪ F is a chain in

[0̂, v] and thus corresponds to a face in ∆([0̂, v]). Furthermore, F ∩G = ∅ by construction. Thus

∆(u, v) is the link of F .
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A question one might ask is when a poset is the face poset of a simplicial complex or a CW

complex. This question led Björner to the notion of a CW poset. See [4] for more details on

CW posets.

Definition 1.1.27. A poset P is said to be a CW poset if the following conditions hold:

(i) P has a least element 0̂.

(ii) P is nontrivial i.e. P has more than one element.

(iii) for all x ∈ P − {0̂}, the open interval (0̂, x) is homeomorphic to a sphere.

Proposition 1.1.28 (Proposition 3.1 [4]). A poset P is a CW poset if and only if it is isomor-

phic to the face poset of a regular CW complex.

The following proposition provides criteria that helps us to determine when a poset is a CW

poset.

Proposition 1.1.29 (Proposition 2.2 [4]). Let P be a nontrivial poset such that

(i) P has a least element 0̂,

(ii) every interval [x, y] of length two has cardinality four (i.e. has the diamond property), and

(iii) for x ∈ P , every interval [0̂, x] is finite and shellable.

Then P is a CW poset.

The last condition of the previous proposition concerns the shellability of lower intervals in

a poset. We give the necessary background on shellability in Section 1.2.

1.2 Shellability

Some of the main results of this thesis surround questions regarding poset shellability. As such,

we review the basics of polytopal complex shellability and poset shellability next. Parts of this

background on shellability are used in Chapter 3, where we examine whether the face poset of

the edge-product space of phylogenetic trees is dual CL-shellable, and in Chapter 4, where we

look at extensions of some of the tools introduced in this section.

Definition 1.2.1. A polytopal complex is a finite, nonempty collection C of polytopes in

Rd such that

(i) if F is a face of P ∈ C, then F ∈ C and
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(ii) if P1, P2 ∈ C, then P1 ∩ P2 is a face of both P1 and P2.

A polytopal complex C is of dimension k, denoted dim(C) = k, if the largest dimension of a

polytope in C is k. A polytopal complex C is pure if each of its faces is contained in a face of

dimension dim(C). A facet of a polytopal complex C is a polytope that is properly contained

in no other polytope of C.

Note that by definition, a simplicial complex K is a polytopal complex such that every

polytope in K is a simplex.

Definition 1.2.2. Given a polytope P , its boundary complex is the complex consisting of

all proper faces of P . It is denoted δ(P ). Let P be the polytopal complex consisting of P and

all its faces.

Definition 1.2.3. Let C be a pure, k−dimensional polytopal complex. A shelling of C is a

linear ordering F1, F2, . . . , Fs of the facets of C such that either C is 0-dimensional (so all facets

are points), or it satisfies the following conditions:

(i) The boundary complex δF1 has a shelling.

(ii) For 1 < j ≤ s, the intersection of the facet Fj with the union of the previous facets is

nonempty and is the beginning segment of a shelling of the (k− 1)-dimensional boundary

complex of Fj , that is,

Fj
⋂(

j−1⋃
i=1

Fi

)
= G1 ∪G2 ∪ . . . ∪Gr

for some shelling G1, G2, . . . , Gr, . . . , Gt of δFj where 1 ≤ r ≤ t. In particular, this requires

that Fj ∩
(
∪j−1
i=1Fi

)
has a shelling, so it must be pure (k− 1)-dimensional, and connected

for k > 1.

A polytopal complex is shellable if it is pure and has a shelling.

Every simplex is shellable. Since every face (and thus facet) of a simplicial complex is a

simplex, if F1, F2, . . . Fs is a shelling of the simplicial complex K, condition (i) of Definition

1.2.3 is automatically satisfied. Furthermore, every order of the facets of a simplex is a shelling

order. Thus Fj ∩ (∪j−1
i=1Fi) is necessarily the beginning segment of a shelling of δFj . Thus

condition (ii) of Definition 1.2.3 is satisfied as long as, for 1 < j ≤ s, the intersection of Fj with

the union of the previous facets is nonempty and pure (k− 1)−dimensional. Thus for simplicial

complexes, we can specialize Definition 1.2.3 to the following:
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Definition 1.2.4. Let K be a simplicial complex. Then K is shellable if the facets of K can

be ordered F1, F2, . . . Fs such that for 1 < j ≤ s

Fj
⋂ ⋃

1≤i≤j−1

Fi


is nonempty and pure (dim(Fj)− 1)-dimensional.

Note that in the above definition, K need not be a pure simplicial complex though simplicial

complex shellability was originally defined only for pure complexes. The above generalization

to nonpure simplicial complexes was introduced by Björner and Wachs in [6].

We now turn to the shellability of polytopes.

Definition 1.2.5. A polytope is shellable if and only if the boundary complex δ(P ) is shellable.

In [8], Bruggesser and Mani proved that polytopes are shellable using a shelling order

construction commonly known as a line shelling or a rocket shelling, which is used in

Theorem 1.2.8.

Definition 1.2.6. Given a polytope P , a facet F ⊆ P is visible from x if for every y ∈ F the

closed line segment [x, y] ∩ P = y.

Definition 1.2.7. A point x ∈ Rd is in general position (or admissible) with respect to a

polytope P if x /∈ aff(F ) for every face F ∈ P , where aff(F ) is the affine hull of F .

Theorem 1.2.8 (Proposition 2 [8]). Let P ⊆ Rd be a d-polytope and let x ∈ Rd be a point

outside P . If x lies in general position (i.e. not in the affine hull of any facet of P ), then the

boundary complex δP has a shelling in which the facets of P that are visible from x come first.

Shellability is not a topological property in general. In other words, if two complexes A and

B are homeomorphic, it is possible that A is shellable and B is not shellable. For example, there

exist several triangulations of a 3-ball (and more generally, an n-ball) that are not shellable,

while there are other triangulations that are shellable (see [30], for example). Likewise, there are

simplicial complexes whose underlying spaces are homeomorphic to the 3-sphere that are not

shellable (for example as constructed in [27]). The tetrahedron, on the other hand, is a simplicial

complex also homeomorphic to the 3-sphere and it is shellable since it is the boundary complex

of a polytope.

In particular, though ∆(P (K) − {0̂}) = sd(K) ∼= K for a simplicial complex K, ∆(P (K))

being shellable does not imply K is shellable (see [28]). However, we do have the following

result:
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Theorem 1.2.9. A pure, shellable, d-dimensional simplicial complex has the homotopy type of

a wedge of d-spheres.

We also have the following generalization when K is a nonpure and shellable simplicial

complex:

Theorem 1.2.10 (Theorem 4.1 [6]). A shellable simplicial complex has the homotopy type of

a wedge of spheres (in varying dimensions), where for each i, the number of i-spheres is the

number of i-facets whose entire boundary is contained in the union of the earlier facets.

In the previous theorem, any i-facet whose boundary is a subcomplex of the union of earlier

facets is called a homology facet. These are the facets whose attachments change the homology

of the complex. This is most easily seen (and Theorem 1.2.10 is most easily proved) with discrete

Morse theory (see Section 1.6).

Homotopy type, however, is a topological property and is thus preserved under homeomor-

phism. Since a simplicial complex (or regular CW complex) K is homeomorphic to sd(K), if

∆(P (K)− 0̂) is shellable, then K has the homotopy type of a wedge of spheres.

In [4], Björner introduces a notion of shellability for d-CW complexes which we will reference

in Chapter 3. It is the following:

Definition 1.2.11. An ordering σ1, σ2, . . . σn of the d-cells of a d-CW complex K is a shelling

if d = 0 or if d > 0 and

(i) δσ1 has a shelling

(ii) δσj ∩ (∪i<jδσi) is a (d− 1)-CW complex for j = 2, 3, . . . n

(iii) δσj has a shelling in which the (d− 1)-cells of δσj ∩ (∪i<jδσi) come first for j = 2, 3, . . . n.

1.2.1 Poset shellability

We now turn to the idea of poset shellability.

Definition 1.2.12. A poset P is said to be shellable if its order complex ∆(P ) is shellable.

One tool used to prove that a poset is shellable is lexicographic shellability, of which there

are several flavors. Each requires us to come up with an edge labeling (or chain-edge labeling)

of the cover relations in the Hasse diagram of the poset and this labeling must satisfy certain

conditions.

Let P be a graded poset and let E(P ) be the set of edges in the Hasse diagram of P .

An edge labeling of P is a map λ : E(P ) → Q where Q is some poset (usually the set of
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integers). Each saturated chain of length k of P corresponds to a label sequence of length

k. In particular, if m is the saturated chain x0 l x1 . . . l xk, then we associate to m the label

sequence λ(x0, x1), λ(x1, x2), . . . λ(xk−1, xk) where λ(xi−1, xi) represents the label on the edge

from xi−1 to xi in the Hasse diagram of P . If λ(x0, x1) ≤ λ(x1, x2) ≤ . . . ≤ λ(xk−1, xk) then

we say the chain is increasing. We can order the maximal chains of P by lexicographically

ordering the label sequences associated to the maximal chains.

Definition 1.2.13. An edge labeling is called an EL-labeling (or edge lexicographical label-

ing) if for every interval [x, y] ∈ P

(i) there is a unique increasing maximal chain c in [x, y] and

(ii) the label sequence associated to c lexicographically precedes the label sequences associated

to all other maximal chains in [x, y].

If a graded poset P has such a labeling, then P is said to be EL-shellable.

The following result of Björner’s from [3] is a fundamental result in topological combinatorics

and poset topology.

Theorem 1.2.14 (Theorem 2.3 [3]). If P is a graded poset with an EL-labeling, then the

lexicographic order of the maximal chains of P is a shelling of ∆(P ).

In other words, if P is EL-shellable, then P is shellable.

In [6] and [7], Björner and Wachs introduce the idea of shellability for nonpure posets. In

this case, we simply drop the requirement that P is pure in the definitions for edge-labelings.

Example 1.2.15. Let Bn be the Boolean algebra that has as its elements subsets of [n]. It is a

poset (in particular a lattice) with order given by subset containment. A natural EL-labeling of

Bn is to label the cover relation SlT by the unique element i ∈ [n] such that i ∈ T ∩([n]\{S}).
For any interval [S,U ], the unique increasing chain that is lexicographically first is the chain

with the label sequence i1, i2, i3, . . . , ik where ij is the jth least element in U that is not in S.

The two shaded facets in Figure 1.4 come first in the shelling order of ∆(B3).

We now define the notion of CL-shellability, a more general version of EL-shellability and

one that figures prominently in this thesis. For a graded poset P of length n, let E∗(P )

be the set of edges of maximal chains in the Hasse diagram of P i.e. E∗(P ) = {(c, x, y) :

c is a maximal chain, x, y ∈ c, xl y}.

Definition 1.2.16. Let P and Q be posets. A chain-edge labeling of P (or CE-labeling) is

a map λ : E∗(P ) → Q, that satisfies the following condition: If two maximal chains coincide

along their first d edges, then their labels also coincide along these edges. In other words, if c

is the chain 0̂ = x0 l x1 l . . . l xn = 1̂ and c′ is the chain 0̂ = x′0 l x′1 l . . . l x′n = 1̂, then

λ(c, xi−1, xi) = λ(c′, x′i−1, x
′
i) whenever xi = x′i for i = 0, 1, . . . , d.
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Figure 1.4: On the left, the Boolean lattice B3 with the EL-labeling described in Example
1.2.15. On the right, the order complex of B3 with the facets corresponding to the lexicograph-
ically first two maximal chains shaded.

Definition 1.2.17. If [x, y] is an interval in P and r is a saturated chain from 0̂ to x, then the

pair ([x, y], r) is called a rooted interval with root r. It is denoted [x, y]r.

As with edge labelings, given a chain-edge labeling λ of P , each maximal chain of P can be

associated with a label sequence. If m = (0̂ = x0 l x1 l . . . l xn = 1̂) the corresponding label

sequence is σ(m) = λ(m,x0, x1), λ(m,x1, x2), . . . λ(m,xn−1, xn). By definition of a chain-edge

labeling, any maximal chain containing the root r from 0̂ to x and the saturated chain c in

the interval [x, y] will associate the same label sequence to c, which we denote σr(c). Note that

c may be associated to a different label sequence when contained in a maximal chain with a

different root r′. This brings us to the following definition:

Definition 1.2.18. A maximal chain c in a rooted interval [x, y]r is increasing if the word

σr(c) is increasing.

Definition 1.2.19. A chain-edge labeling λ is called a CL-labeling (chain lexicographical

labeling) if for every rooted interval [x, y]r in P ,

(i) there is a unique increasing maximal chain c in [x, y]r in P and

(ii) the word associated to c lexicographically precedes the words associated to all other

maximal chains in [x, y]r.
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Figure 1.5: A CE-labeling (left) and a CL-labeling (right) of a poset P .

If a graded poset P admits such a labeling, then P is said to be CL-shellable.

Example 1.2.20. Figure 1.5 contains two copies of the poset P , which has 4 maximal chains.

The labeling of P on the left is a CE-labeling, but it is not a CL-labeling because given root

r = a l x l d, [d, y]r has no increasing maximal chain. The labeling of P on the right is a

CL-labeling.

Note that EL-shellability implies CL-shellability but not conversely. Both EL-shellability

and CL-shellability imply shellability.

If P is CL-shellable, then taking maximal chains of P in lexicographic order according to the

CL-labeling gives a shelling order of ∆(P ). Since ∆(P ) = ∆(P ∗), it suffices to find a CL-labeling

of P ∗ in order to find a shelling of ∆(P ). A CL-labeling of P ∗ is called a dual CL-labeling

and a poset that admits such a labeling is called dual CL-shellable.

One helpful way of showing that a poset is CL-shellable is to instead find a recursive atom

ordering. The notion of recursive atom (and coatom) orderings was introduced by Björner and

Wachs in [5] and reflects the recursive nature of shellability.

Definition 1.2.21. A recursive atom ordering of a graded poset P is an ordering a1, a2, . . . at

of the atoms of P satisfying:

(i) For all j = 1, . . . , t, [aj , 1̂] admits a recursive atom ordering. For j 6= 1, the atoms that

come first in the ordering are those covering some ak for k < j.

(ii) For all i < j and y > ai, aj , there exists a k < j and an element z such that z m ak, aj

and y > z.

Definition 1.2.22. A poset P admits a recursive coatom ordering if its dual poset P ∗

admits a recursive atom ordering.
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The following theorem of Björner and Wachs from [5] makes explicit the connection between

recursive atom orderings and CL-shellable posets.

Theorem 1.2.23 (Theorem 3.2 [5]). A graded poset P admits a recursive atom ordering if and

only if P is CL-shellable.

It immediately follows that P admits a recursive coatom ordering if and only if P is dual

CL-shellable.

In [4], Björner proves the following result about the shellability of d-CW complexes (see

Definition 1.1.21 and Definition 1.2.11):

Proposition 1.2.24 (Proposition 4.2 [4]). A d-CW complex K is shellable if and only if its

augmented face poset P̂ (K) is dual CL-shellable.

Another even more general version of poset shellability is called EC-shellability. This method,

along with the even more general notion of CC-shellability, was developed by Kozlov in [20].

We use a characterization and language introduced by Hersh in [14] to describe this idea.

Definition 1.2.25. Let λ be an edge labeling on the cover relations of a poset. Let ul vlw.

A topological ascent is a pair of labels (λ(u, v), λ(v, w)) that is lexicographically earlier than

all other pairs of labels on all other saturated chains from u to w. If (λ(u, v), λ(v, w)) is not a

topological ascent, then it is a topological descent. If c is a saturated chain consisting entirely

of topological ascents, then we say that c is topologically ascending.

For the following two definitions, we suppose that Q is an arbitrary poset.

Definition 1.2.26. An EC-labeling of P is an edge labeling λ : E(P ) → Q on the cover

relations of P such that every interval [x, y] has a unique saturated chain consisting entirely of

topological ascents. If P has an EC-labeling, then P is said to be EC-shellable.

Definition 1.2.27. A CC-labeling of a poset P is a chain-edge labeling λ : E∗(P )→ Q such

that every rooted interval [u, v]r has a unique saturated chain consisting entirely of topological

ascents. If P admits a CC-labeling, then P is said to be CC-shellable.

As with EL-shellable and CL-shellable posets, an EC-shellable (respectively CC-shellable)

poset P is shellable. The shelling order on the facets of ∆(P ) is given by taking the maximal

chains in lexicographic order according to their label sequences. The previous definition of CC-

shellability by Hersh (from [14]) is a reformulation of the original definition first introduced by

Kozlov in [20]. We also include Kozlov’s original definition, though we will typically use the

language in Definition 1.2.27 when discussing CC-shellability in this thesis.

Definition 1.2.28 (Definition 3.6 [20]). A CC-labeling of a poset P is a chain-edge labeling

λ : E∗(P )→ Q such that in any interval
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i) all maximal chains have different sequences of labels and

ii) for any maximal chain c in the rooted interval [u, v]r and any x, y ∈ c such that u < x <

y < v, if c |[u,y] is lexicographically first in [u, y]r and c |[x,v] is lexicographically first in

[x, v]r′ , then c is lexicographically first in [u, v]r, where r′ = r ∪ c |[u,x].

Definition 1.2.29. Let P be a poset and P ∗ its dual poset. If P ∗ admits an EC-labeling

(respectively CC-labeling), then P is said to be dual EC-shellable (respectively dual CC-

shellable).

In Chapter 4, we develop a new type of atom ordering of the poset P . As we will see, P

admits this new atom ordering if and only if P is CC-shellable, just as P admits a recursive

atom ordering if and only if P is CL-shellable.

1.3 The Möbius function of posets

One characteristic of a poset P is its Möbius function µP . The Möbius function of P is useful

in part because it gives us the reduced Euler characteristic of the order complex of P as we will

see shortly in Proposition 1.3.3. For more information on the Möbius function, see [26].

Definition 1.3.1. The Möbius function µp of a poset P is defined recursively on intervals of

P as follows:

µ(x, x) = 1 for all x ∈ P

µ(x, y) = −
∑
x≤z<y

µ(x, z) for all x < y ∈ P

Definition 1.3.2. The reduced Euler characteristic of the simplicial complex ∆ is

χ̃(∆) :=

dim∆∑
i=−1

(−1)ifi(∆)

where fi(∆) is the number of i−faces of ∆.

Proposition 1.3.3 (Proposition 3.8.5 [26]; Philip Hall’s Theorem). For any poset P , let

P̂ = P ∪{0̂, 1̂}, even if P already has a top and bottom element. Let ci be the number of chains

0̂ = t0 < t1 < . . . < ti = 1̂ of length i between 0̂ and 1̂. Then

µ(P̂ ) = c0 − c1 + c2 − c3 + . . . = χ̃(∆(P ))
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The Möbius function of P arises as counting coefficients in inclusion-exclusion formulas. For

example, in lexicographically shellable posets, the Möbius function counts maximal chains with

certain labelings. See [3] for more on the connection between lexicographic shellability and the

Möbius function.

Definition 1.3.4. Given a poset P with EL-labeling λ and a chain xlylz, there is a descent

at y if λ(x, y) > λ(y, z). A chain c = x0 < x1 < . . . < xn has descent set D(c) = {i ∈ [n− 1] :

λ(xi−1, xi) > λ(xi, xi+1)}.

Definition 1.3.5. Let P be a graded poset of length n. For any subset S ⊆ {1, . . . , n − 1},
the rank-selected subposet PS is defined as PS = {x ∈ P : ρ(x) ∈ S ∪ {0, n}}, where ρ(x)

denotes the rank of the element x ∈ P .

Theorem 1.3.6 (Theorem 2.7 [3]). Let P be a graded poset of length n with an EL-labeling.

Then µ(PS) = (−1)|S|+1 · #{maximal chains in P with descent set S}. In particular, µ(P̂ ) =

(−1)rk(P ) ·#{maximal decreasing chains in P}.

Finally, the Möbius function can be used to define Eulerian posets, which are generalizations

of face posets of convex polytopes. See [25] and [26] for more on Eulerian posets.

Definition 1.3.7. A finite graded poset P is said to be Eulerian if µP (s, t) = (−1)l(s,t) for

s ≤ t, where l(s, t) is the length of the interval [s, t].

Proposition 1.3.8. If P is a CW poset and has a unique maximal element, then P is Eulerian.

1.4 Toric cubes

The initial question motivating this research was about the shellability of toric cubes. In this

section, we present some preliminaries on toric cubes, which were first introduced by Engström,

Hersh, and Sturmfels in [10]. We describe a CW decomposition of this family of topological

spaces also from [10]. Toric cubes can be defined as a subset of the standard n-cube satisfying a

collection of binomial inequalities and closure requirements. Alternatively, they can be defined

as the image of a d-cube under a monomial map i.e. a map whose coordinates are given by

monomials in d variables. We present the former definition first, though we will use the latter

definition when we consider in more detail those toric cubes defined by trees.

Definition 1.4.1. A binomial inequality is an inequality of the form

xc11 x
c2
2 · · ·x

cn
n ≤ x

d1
1 x

d2
2 · · ·x

dn
n

where for 1 ≤ i ≤ n, xi are variables and ci, di are nonnegative integers.
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Definition 1.4.2. A toric precube is a subset of the cube [0, 1]n that satisfies a finite set B
of binomial inequalities.

Definition 1.4.3. A toric cube is a toric precube B such that the closure of the strictly

positive points of B is equal to B. In other words, B = B ∩ (0, 1]n.

It is proven in [10] that toric cubes can alternatively be defined as the images of monomial

maps with variables restricted to [0, 1]. Let A = (ai,j) ∈ Zn×d and x ∈ [0, 1]d. Define Ax =

(xa1 ,xa2 , . . . ,xan) where xai = x
ai,1
1 x

ai,2
2 . . . x

ai,d
d is a monomial in d variables.

Theorem 1.4.4 (Theorem 1 [10]). Toric cubes are the images of d-cubes under a monomial

map

f : [0, 1]d → [0, 1]n

(x1, x2, . . . , xd) = (xa1 ,xa2 , . . .xan)

= (m1,m2, . . .mn)

As shown by Engström, Hersh, and Sturmfels in [10], every toric cube can be decomposed

as a CW complex. Let f : [0, 1]d → [0, 1]n be a monomial map. For (m1,m2, . . .mn) ∈ (0, 1]n,

define

g : (0, 1]n → Rn

(m1,m2, . . .mn) 7→ (− ln(m1),− ln(m2), . . . ,− ln(md))

The image of g ◦ f |(0,1]d is a cone, C. In particular it is the conical hull of the set of rays

{λrk : λ ≥ 0}1≤k≤d, where rk = (a1,k, a2,k, . . . , an,k). A cross section of C is a polytope T with

vertices given as vectors rk in Rd. If T is simplicial, then g ◦ f is a homeomorphism from (0, 1]n

onto C. In this case, f suffices as the characteristic map for the n−ball in a CW decomposition

of the toric cube given by f . More commonly, however, C is not simplicial in which case f is

not injective. In this case, subdividing the cone C into smaller, simplicial cones (as first shown

in [10] and outlined below) yields a new map sd(f) that serves as the characteristic map for

the n−ball.

Let P (T ) be the face poset of T . If σj is a face of T , it is the convex hull of some subset

of vectors {rj1 , rj2 , . . . rjk}. Let {j1, j2, . . . jk} denote the element in P (T ) corresponding to this

face σj of T .

Construct a new complex C ′ of simplicial cones (i.e. cones with simplicial cross section) as

follows. For σ ∈ P (T )\∅, define r′σ = Σi∈σri. Note that the barycenter of σ ∈ T is λr′σ for some

λ ∈ R. We let r′∅ = 0 as a convention. The elements in a maximal chain c of P (T )\∅ correspond
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to a set of vectors {r′σ}σ∈c. The vectors {r′σ}σ∈c are the vertices of a (d− 1)-simplex, Sc, since

the barycentric subdivision of a polytope T yields a triangulation of T . Hence⋃
c∈P (T )\∅

Sc ∼= T

For σ ∈ T , consider the ray R′σ = {λr′σ : λ ≥ 0}. Since for any maximal chain c ∈ P (T )\∅,
{r′σ}σ∈c are the vertices of a (d− 1)-simplex, {R′σ}σ∈c is the set of extremal rays of a simplicial

d-cone. Call the union of all such simplicial cones C ′. Then C ′ is a collection of simplicial cones

such that C ′ ∼= C.

Example 1.4.5. Let f : R5 → R3 be a monomial map defined by

f(x1, x2, x3, x4, x5) = (x1x2x3, x3x4x5, x
2
1x2x4x

2
5)

Note that f is not injective. For example, f(e−1, 1, 1, e−1, 1) = f(1, e−1, 1, 1, e−1), though

(e−1, 1, 1, e−1, 1) 6= (1, e−1, 1, 1, e−1) in R5. The monomial map f : [0, 1]5 → [0, 1]3 can be given

using a matrix A as :

f


x1

x2

x3

x4

x5

 =

 1 1 1 0 0

0 0 1 1 1

2 1 0 1 2


︸ ︷︷ ︸

A


x1

x2

x3

x4

x5



=

 x1x2x3

x3x4x5

x2
1x2x4x

2
5


The image of f |(0,1]5 is homeomorphic to

g ◦ f |(0,1]5 = − ln(f |(0,1]5)

= l1(1, 0, 2) + l2(1, 0, 1) + l3(1, 1, 0) + l4(0, 1, 1) + l5(0, 1, 2)

where li = − ln(xi). In particular, the image of C = g ◦ f |(0,1]5 is a (non-simplicial) cone with

a pentagonal cross section. The vertices of a cross section of C are r1 = (1, 0, 2), r2 = (1, 0, 1),

r3 = (1, 1, 0), r4 = (0, 1, 1), and r5 = (0, 1, 2). Note that ri is given by the ith column of A.

The face poset (with the empty set removed) of this pentagonal cross section is given in

Figure 1.6. As an example, consider the maximal chain {2}l{2, 3}l{1, 2, 3, 4, 5}. This maximal
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{1} {2} {3} {4} {5}

{1, 5} {1, 2} {2, 3} {3, 4} {4, 5}

{1, 2, 3, 4, 5}

Figure 1.6: The poset P (T )\∅ of the cross section T of the non-simplicial cone as in Example
1.4.5.

chain corresponds to a simplicial cone that, for all λ ≥ 0, has as extremal rays:

R{2} = λr′{2}

= λ(1, 0, 1)

= λ(r2)

R{2,3} = λr′{2,3}

= λ(2, 1, 1)

= λ(r2 + r3)

R{1,2,3,4,5} = λr′{1,2,3,4,5}

= λ(3, 3, 6)

= λ(r1 + r2 + r3 + r4 + r5)

In general, sd(f) : [0, 1]12 → [0, 1]3 is given by the matrix A′ shown below, where the column
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corresponding to tj1,j2,...jk is [rj1 + rj2 + . . .+ rjk ]T .

sd(f)



t{1}

t{2}

t{3}

t{4}

t{5}

t{1,2}

t{1,5}

t{2,3}

t{3,4}

t{4,5}

t{1,2,3,4,5}



=

 1 1 1 0 0 2 1 2 1 0 3

0 0 1 1 1 0 1 1 2 2 3

2 1 0 1 2 3 4 1 1 3 6


︸ ︷︷ ︸

A



t{1}

t{2}

t{3}

t{4}

t{5}

t{1,2}

t{1,5}

t{2,3}

t{3,4}

t{4,5}

t{1,2,3,4,5}



=


t{1}t{2}t{3}t

2
{1,2}t

2
{1,5}t

2
{2,3}t{3,4}t

3
{1,2,3,4,5}

t{3}t{4}t{5}t{1,5}t
2
{2,3}t

2
{3,4}t

2
{4,5}t

3
{1,2,3,4,5}

t2{1}t{2}t{4}t
2
{5}t

3
{1,2}t

4
{1,5}t{2,3}t

3
{3,4}t

3
{4,5}t

6
{1,2,3,4,5}



=

 x1x2x3

x3x4x5

x21x2x4x
2
5

 = f


x1

x2

x3

x4

x5



1.4.1 The edge-product space of phylogenetic trees and the Tuffley poset

One class of toric cube consists of those whose monomial maps are determined by trees. As

these types of toric cubes have CW decompositions whose face posets are already known and

are easily described, we restrict our attention to this class for this thesis. Given a tree T , each

point of the toric cube derived from T corresponds to a set of weights (which can be viewed as

probabilities) between 0 and 1 on the edges of T . Taking the union of all toric cubes determined

in this way by trees with leaves in bijection with a finite set X, we construct a topological space

that arises in evolutionary biology called the edge-product space of phylogenetic trees (see

Definition 1.4.11). A natural question we ask is whether the edge-product space is shellable. In

other words, if we adjoin a 1̂ to the face poset of the edge-product space of phylogenetic trees,

is this poset lexicographically shellable? We address this question in Chapter 3. We present

the necessary background on the edge-product space of phylogenetic trees in this section. The

following definitions and CW complex decomposition were originally presented by Moulton and
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Steel in [21].

Let T be a tree with vertex set V (T ) and edge set E(T ).

Definition 1.4.6. An X-tree T is a pair (T, φ) consisting of a tree T and a map φ : X → V (T )

such that all vertices in V (T ) − φ(X) are of degree greater than 2. An X-forest is a set

F = {(A, TA) : A ∈ π} where π is a set partition of X and TA = (TA, φA) is an A-tree for every

block A ∈ π.

Definition 1.4.7. Let T = (T, φ) be an X-tree and v ∈ V (T ). If v = φ(x) for some x ∈ X,

then we say v is labeled. Otherwise v is unlabeled.

Given an X-tree T = (T, φ), there is a corresponding closed ball B(T ) = [0, 1]E(T ) and a

corresponding open ball Int(B(T )) = (0, 1)E(T ). We present several maps next which we use

to formally define the edge-product space of phylogenetic trees.

Definition 1.4.8. Let λ : E(T )→ [0, 1] be a map and λ(E(T )) be the vector in [0, 1]E(T ) whose

ei entry is λ(ei). For any map λ : E(T )→ [0, 1], λ(E(T )) is called an edge-weight vector.

For a tree T with leaves labeled by the set X, let pxy denote the set of edges in the unique

path between the leaf labeled x and the leaf labeled y in T .

Definition 1.4.9. For λ : E(T )→ [0, 1] be a map. Define the map f(T,λ) :
(
X
2

)
→ [0, 1] as

f(T,λ) :

(
X

2

)
→ [0, 1]

(x, y) 7→
∏
e∈pxy

λ(e)

Let f(T,λ)

(
X
2

)
be the vector in [0, 1](

X
2 ) whose xy entry is f(T,λ)((x, y)). For any edge-weight

vector λ, call f(T,λ)

(
X
2

)
an edge-product vector.

See Figure 1.7 for an example of how f(T,λ)(x,y) is calculated for a pair of leaves x, y in a

tree with leaves labeled by the set [6] and an edge-weighting λ.

Definition 1.4.10. Define ΛT as the map that sends each edge-weight vector to the corre-

sponding edge-product vector:

ΛT : [0, 1]E(T ) → [0, 1](
X
2 )

λ(E(T )) 7→ f(T,λ)

(
X

2

)
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0.46

0.02

0.25

0.65

0.35

0.52

0.4

0.82

0.67

Figure 1.7: A [6]−tree T with an edge-weighting λ. The product of the edge weights on the
bold edges gives f(T ,λ)(2, 3).

Definition 1.4.11. Let E(X,T ) be the image of the map ΛT . Let T(X) be the set of all trees

with leaves labeled bijectively by X. The edge-product space for trees on X is

E(X) =
⋃

T∈T(X)

E(X,T )

Several of the above definitions can be naturally extended to forests, as follows: For the

X−forest F = {(A, TA) : A ∈ π} with π a set partition of X,

B(F) = ΠA∈πB(TA)

and

Int(B(F)) = ΠA∈πInt(B(TA)).

Let E = {E(TA) : (A, TA) ∈ F)} and let λ : E → [0, 1] so λ(E) ∈ [0, 1]E . Let P be the set

of pairs of leaves in F . If we have x, y ∈ A for some block A ∈ π, then we define pxy to be the

set of edges in the unique path between the leaf labeled x and the leaf labeled y in TA. Define

the map ΛF as

ΛF : B(F)→ [0, 1](
X
2 )

λ(E) 7→ f(F ,λ)(P ) (1.4.1)

where

f(F ,λ) :

(
X

2

)
→ [0, 1]
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(x, y) 7→

{ ∏
e∈pxy λ(e) if ∃A ∈ π with x, y ∈ A

0 otherwise
(1.4.2)

The edge-product space of phylogenetic trees has a CW decomposition with face poset

that is isomorphic to the Tuffley poset. The Tuffley poset has X-forests as elements and cover

relations given by operations on X-forests called edge contraction and safe edge deletion, as we

describe next.

Definition 1.4.12. Let u, v be adjacent vertices in the X-forest F . Let e = [u, v] be the edge

between them. A contraction of the edge e is the elimination of the edge e in F with the

identification of the vertices u and v. If e ∈ TA = (TA, φA), the resulting vertex is labeled

φ−1
A (u) ∪ φ−1

A (v), i.e. the resulting vertex is labeled by the union of labels on u and v in F .

Definition 1.4.13. Let u, v be adjacent vertices in the X-forest F . Let e = [u, v] be the edge

between them. A deletion of the edge e is the elimination of edge e in F with no changes to

the vertex set of TA for any TA ∈ F . The map of φA is unchanged for any (TA, φA) ∈ F . The

deletion of edge e = [u, v] is called a safe edge deletion if both u and v are either labeled or

of degree greater than 3.

Definition 1.4.14. Let F = {(A, TA) : A ∈ π} and F ′ = {(B, TB) : B ∈ π′} be X-forests.

Define a partial order ≤ on X-forests so that F ′ ≤ F if F ′ can be obtained from a sequence of

contractions and safe deletions of edges of F . The poset (S(X),≤) is called the Tuffley poset.

The following theorem of Moulton and Steel from [21] gives a set of properties of the Tuffley

poset S(X), some of which are used extensively throughout the remainder of this thesis.

Theorem 1.4.15 (Theorem 4.2 [21]). Let X be a finite set and F ,F ′ ∈ S(X). Let π be a

partition of X and E(F), E(F ′) be the set of edges in the X-forests F and F ′ respectively. The

following hold:

(i) F ′ ≤ F if and only if F ′ can be obtained from F by some sequence of contraction and

deletion operations. Given this sequence of contraction and deletion operations, F ′ can be

obtained from F even if this sequence of operations is reordered so that all contractions

occur first and all subsequent deletions are safe.

(ii) F ′ is a coatom of F if and only if F ′ can be obtained from F by a single elementary

operation.

(iii) S(X) is pure. The rank of F = {(A, TA) : A ∈ π} ∈ S(X) is ρ(F) = |E(F)|.

(iv) S(X) is thin.
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Figure 1.8: The Tuffley poset S([3]).
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(v) The maximal elements of S(X) are the elements F for which F = {(X, T )} and |E(T )| =
2|X| − 3.

(vi) The minimal elements of S(X) are the elements F for which F = {(A, TA) : A ∈ π} for

some partition π of X and E(TA) = ∅ for all A ∈ π.

We can use this theorem in particular to determine the intersection of certain maximal

elements of S(X), as our next two results show. From Theorem 1.4.15, we know an element x

covers an element w (i.e. w is a codimension one face of x) in S(X) if and only if w can be

obtained from x by contracting or deleting a single edge. We can say more about the elements

covered by a maximal element Ci of S(X), as in the following propositions. Both of these

propositions are important to proving results in Chapter 3.

Proposition 1.4.16. Let Ci be a maximal element of S(X). Any element w ∈ S(X) covered

by Ci is obtained by contracting an edge of Ci.

Proof. Since Ci is a maximal element of S(X), each internal vertex is of degree exactly 3 and

is unlabeled. This means that there are no safe edge deletions in Ci, since deleting any edge

results in an unlabeled vertex of degree 2. Thus any element of S(X) covered by Ci is obtained

by contracting an edge of Ci.

The proof of the following lemma describes the full set of maximal elements of S(X) covering

the element w, where w is obtained by contracting an edge of the maximal element Ci of S(X).

Lemma 1.4.17. Let Ci be a maximal element of S(X). If w is obtained from Ci by contracting

an internal edge, then two other maximal elements of S(X), Cj and Ck, also cover w. If w is

obtained from Ci by contracting a leaf edge, then only Ci covers w.

Proof. If w is obtained from Ci by contracting an internal edge e, then w has a unique, degree 4,

unlabeled vertex v. The maximal element Cj (respectively Ck) is obtained from w by replacing

the unique degree 4 vertex, v, with two vertices, v1 and v2, and adding a new edge e between

them such that v1 and v2 both have degree 3 and such that Cj 6= Ci (respectively Ck 6= Ci). If

v is adjacent to edges e1, e2, e3, and e4, then e can be added in any of the three following ways:

(i) e1 and e2 are adjacent to vertex v1, and e3 and e4 are adjacent to vertex v2

(ii) e1 and e3 are adjacent to vertex v1, and e2 and e4 are adjacent to vertex v2

(iii) e1 and e4 are adjacent to vertex v1, and e2 and e3 are adjacent to vertex v2
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One of the above ways of adding e yields Ci. The other two ways yield Cj and Ck.

If w is obtained from Ci by contracting a leaf edge, then all but one internal vertex of w

are of degree 3 and unlabeled. There is precisely one internal vertex v of w that is of degree 2

and labeled. The only maximal element covering w is the element obtained by adding an edge

between v and a new leaf, and labeling this new leaf by the label on v in w. This element is

Ci.

The following definition and proposition will be necessary in the proof of Proposition 3.3.13

and ultimately Theorem 3.3.25 in Chapter 3.

Definition 1.4.18. Let w be an X-tree and let x, y be leaves in w. The distance between x

and y is the number of edges in the unique path between x and y in w. It is denoted dw(x, y).

Proposition 1.4.19. Let Ci and Cj be maximal elements of S(X). Let w be an X-tree and

w < Ci, Cj. For any pair of leaves x, y, we have dw(x, y) ≤ min{dCi(x, y), dCj (x, y)}.

Proof. Without loss of generality, assume min{dCi(x, y), dCj (x, y)} = dCi(x, y). If w is an X-

tree and w < Ci, then w is obtained from Ci by contracting a subset of edges in Ci. Contracting

an edge in Ci reduces the distance between some pair of leaves x, y. If dw(x, y) > dCi(x, y), then

there is no way to contract a subset of edges in Ci to obtain the element w. This contradicts

the fact that w < Ci.

We conclude this section by stating the theorem from Moulton and Steel (Theorem 3.3

of [21]) that is the foundation of the questions explored in Chapters 2 and 3.

Theorem 1.4.20 (Theorem 3.3 [21]). The edge-product space E(X) is a finite CW-complex

with cell decomposition {B(F),ΛF ) : F ∈ S(X)}. The Tuffley poset (S(X),≤) is isomorphic to

the face poset of E(X) via the map F 7→ ΛF (B(F)).

1.5 The Tamari lattice

One of the primary results of this thesis is the introduction of the enriched Tamari poset (see

Chapter 2, Section 2.2), which can be viewed as an extension of the Tamari lattice. There are

many ways to describe the Tamari lattice: we give several here. One natural question is whether

the enriched Tamari poset possesses some of the same properties as the Tamari lattice, so we

briefly mention some of the interesting properties of the Tamari lattice in this section as well.

Definition 1.5.1. The Tamari lattice Tn is defined as the set of all binary bracketings on a

fixed sequence of n+ 1 symbols ordered so that ((a, b), c)l (a, (b, c)), where a, b, and c are each

themselves either symbols or binary bracketings of symbols.
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Figure 1.9: A right tree rotation on vertex v in tree T (left) yields tree T ′ (right).

Remark 1.5.2. Note that the order relation can alternatively be defined by shifting a pair of

brackets (or parentheses) to the left instead of to the right, yielding an isomorphic poset.

The Tamari lattice can also be defined in terms of tree rotation operators on full binary

trees, as we describe next.

Definition 1.5.3. A full binary tree is a tree such that every internal vertex has two children.

In a full binary tree T , any internal vertex v has a left child lv and a right child rv.

The left child is the vertex of T adjacent to v that is drawn below and to the left of v. The

right child is the vertex of T adjacent to v that is drawn below and to the right of v. The left

child (respectively right child) of v is the highest vertex of a maximal subtree of Ci called the

left subtree (respectively right subtree) of Ci, denoted ↓ lv (respectively ↓ rv). It consists

of all vertices below lv (respectively rv) and all edges between them. The vertex v is called the

parent of lv and rv. Any leaf in either the left subtree or right subtree of the internal vertex v

is called a descendent of v.

Definition 1.5.4. Let T be a full binary tree. Let v be an internal vertex with left child lv and

right child rv. A right tree rotation replaces vertex v with vertex lv and replaces vertex rv

with vertex v. The right child of lv becomes the left child of v, while all other vertex incidences

remain the same.

Note that a tree rotation operator maintains the order on the leaves of T . This fact corre-

sponds to the fact that the Tamari lattice can be equivalently defined as an order on bracketings

of a fixed sequence of symbols. Figure 1.9 gives an example of right tree rotation.

The characterization of the Tamari lattice in terms of binary trees and tree rotation is

closely related to one given by Pallo in [22] and described below.

Definition 1.5.5. The elements of the Tamari lattice Tn are integer n−tuples (w1, w2, . . . , wn)

such that
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(i) 1 ≤ wi ≤ i for 1 ≤ i ≤ n

(ii) i− wi ≤ k − wk for i− wi + 1 ≤ k ≤ i.

If wi ≥ w′i for all i = 1, 2, . . . n, then (w1, w2, . . . wn) < (w′1, w
′
2, . . . , w

′
n).

The integer n−tuple (w1, w2, . . . , wn) can be viewed as corresponding to a binary tree T

with n internal nodes and with leaves labeled from 1 to n + 1, where wi gives the number of

leaves in the largest subtree of T for which the leaf labeled i is the rightmost leaf. This sequence

is called the weight sequence of T . It can also be obtained by labeling each internal vertex

v of T by the number of leaves in the left subtree of v and ordering the internal vertices by

inorder. The inorder on internal vertices of T is v1, v2, . . . vn and is defined recursively so that

if vi is in the left subtree of vj then i < j and if vk is in the right subtree of vj , then j < k.

Pallo provides an algorithm in [22] for obtaining all n-tuples (w1, w2, . . . , wn) corresponding to

binary trees. A similar construction is considered in [7], though the sequence of integers is given

by the size of the right subtree (instead of the left subtree) of the internal vertices of T ordered

by inorder.

Finally, a fourth description of the Tamari lattice is as a poset of triangulations of a convex

(n + 2)-gon, G, ordered by a flip operation that exchanges one diagonal of the triangulation

with another. In particular, we label the vertices of G from 0 to n + 1 clockwise from the

top right vertex. We require that vertex labeled 0 and the vertex labeled n + 1 be connected

by a horizontal line (an edge of G) and that all other vertices lie below this horizontal line.

Additionally, we require that the vertex labeled i is strictly to the right of the vertex labeled

i+1, where 0 ≤ i ≤ n. To obtain a triangulation of an (n+2)-gon G, we draw n distinct chords

(also known as diagonals) between vertices across the interior of G so no pair of chords are

crossing. Cover relations in this characterization of the Tamari lattice are given by diagonal

flips. A diagonal flip is an operation on a triangulation T where we remove one chord and

reinsert it in the only other possible way that yields a triangulation. See Figure 1.10 for an

example. Given two triangulations T and T ′, T lT ′ if T ′ can be obtained from T by a diagonal

flip and if the chord on which the diagonal flip is performed (i.e. the chord that is removed in

T and reinserted to obtain T ′) has a higher slope in T ′ than in T . See [23] for more on this

characterization.

The Tamari lattice has a number of interesting properties. For one, it was shown to be a

lattice by Huang and Tamari (in [17]) and by Pallo (in [22]). We give a version of Pallo’s proof

of this result next.

Theorem 1.5.6 (Corollary to Theorem 2 [22]). The Tamari lattice Tn is a lattice.

Proof. We will use the weight sequence characterization of the Tamari lattice. It is a bounded

poset with 0̂ = (1, 2, . . . , n) and 1̂ = (1, 1, . . . 1). Given elements w = (w1, w2, . . . , wn) and
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Figure 1.10: A diagonal flip.

v = (v1, v2, . . . vn), we will show w∨v = (m1,m2, . . .mn) where mi = min{wi, vi}. By definition

of the cover relations in the Tamari lattice, it is clear that w < w ∨ v and v < w ∨ v. If there

were some weight sequence p = (p1, p2, . . . pn) such that p < w ∨ v and p > w, p > v, then

pi < mi for some i. However, since mi = min{wi, vi} for all i, this would imply that p 6> w

or p 6> w ∨ v. Thus there can be no p < w ∨ v that is a common upper bound of w and v.

It remains to show that w ∨ v = (m1,m2, . . .mn) is a weight sequence. Since 1 ≤ wi ≤ i and

1 ≤ vi ≤ i for 1 ≤ i ≤ n, then 1 ≤ min{wi, vi} = mi ≤ i. We must now show that if k is such

that i−mi+ 1 ≤ k ≤ i, then i−mi ≤ k−mk. Without loss of generality, assume that mi = wi.

Then for k such that i − mi + 1 ≤ k ≤ i, we have i − mi = i − mk ≤ k − wk. If wk = mk,

then we have i −mi ≤ k −mk. If vk = mk, then k − wk ≤ k − vk = k −mk. Thus we have

i−mi ≤ k − wk ≤ k −mk. Thus m = (m1,m2, . . .mn) is a weight sequence.

Theorem 1.5.7. The number of elements in the Tamari lattice Tn is the Catalan number

Cn = 1
2n+1

(
2n
n

)
.

One especially interesting property is that the Tamari lattice is nonpure shellable, as shown

by Björner and Wachs. Using Pallo’s characterization of the Tamari lattice, we include a version

of Björner’s and Wachs’ labeling and the proof that it is a CL-labeling below, after we introduce

two lemmas that will be helpful in the proof.

Lemma 1.5.8. Let w = (w1, w2, . . . wn) and v = (v1, v2, . . . vn) be elements of Tn such that

w < v. Let D = {j : wj 6= vj} = {j1, j2, . . . jd}, where j1 < j2 < . . . < jd. Suppose for k < d, uk

is obtained from w by replacing wj1 , wj2 , . . . wjk with vj1 , vj2 , . . . vjk respectively. Then uk is an

element of Tn.

Proof. We will check that uk = (uk1 , uk2 , . . . ukn) satisfies the two conditions in Definition

1.5.5. Since uki = wi or uki = vi and w and v satisfy condition (i), then 1 ≤ uki ≤ i for

1 ≤ i ≤ n. Observe that uk coincides with v up to vjk and uk coincides with w after vjk . Then
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Figure 1.11: The Tamari lattice T4.

31



for 1 ≤ i ≤ jk, i− uki = i− vi ≤ l − vl = l − ukl since v satisfies condition (ii). Now consider i

where jk + 1 ≤ i ≤ n. Observe that if ukl = vl, then i− uki = i−wi ≤ i− vi ≤ l− vl. The first

inequality holds since wi ≥ vi by definition of the order relation and the second inequality holds

since v satisfies condition (ii). If, on the other hand, ukl = wl, then i− uki = i− wki ≤ l − wkl
since w satisfies condition (ii).

Lemma 1.5.9. Let w = (w1, w2, . . . wn) and v = (v1, v2, . . . vn) be elements of Tn such that

w l v. Then wi 6= vi for exactly one i, where 1 ≤ i ≤ n.

Proof. Let i = min{j : wj 6= vj}. Assume k is such that k > i and wk 6= vk. The element

u = (v1, v2, . . . vi, wi+1, wi+2, . . . wn) ∈ Tn by Lemma 1.5.8. By definition of the order relation

in Tn, w < u < v. This is a contradiction of w l v.

Note that the converse is not true. If w = (w1, w2, . . . wn), v = (v1, v2, . . . vn) and wj 6= vj

for exactly one j, we have w < v but it is not necessarily true that w l v.

Theorem 1.5.10 (Theorem 9.2 [7]). The Tamari lattice admits an EL-labeling.

Proof. Let w = (w1, w2, . . . wn) and v = (v1, v2, . . . vn) be elements in Tn and let w l v. By

Lemma 1.5.9, there exists a unique i where 1 ≤ i ≤ n such that wi 6= vi. Define an edge-labeling

λ by λ(w l v) = (i, n− vi), ordered lexicographically.

Let r = (r1, r2, . . . , rn), s = (s1, s2, . . . , sn) be elements in Tn such that r < s. Let D = {i :

ri 6= si} = {i1, i2, . . . id} and let i1 < i2 < . . . < id. Let rk be the element in Tn obtained from

r by replacing ri1 , ri2 , . . . rik with si1 , si2 , . . . sik respectively. By Lemma 1.5.8, rk is an element

of Tn.

Consider the (not necessarily saturated) chain r = r0 < r1 < r2 < . . . < rd−1 < rd = s.

Since ri−1 and ri coincide except at one coordinate, the interval [ri−1, ri] must consist of a single,

saturated chain. Since the coordinate at which ri−1 and ri differ must decrease as we move up

the chain, the label sequence on the chain is increasing. Concatenating the chains [ri−1, ri] for

1 ≤ i ≤ d yields a saturated chain m whose label sequence is increasing.

Assume there is another increasing, maximal chain m′ 6= m in the interval [r, s]. Any in-

creasing chain from r to s must be obtained by first choosing elements that differ from r only

in coordinate i1. Any element that coincides with r except with a smaller entry at coordinate

i1 must be in the interval [r, r1]. Since there is only one saturated chain in the interval [r, r1],

m and m′ must coincide on this interval. Any increasing chain from r1 to s must be obtained

by first choosing elements that differ from r1 only in coordinate i2. Any element that coincides

with r1 except with a smaller entry at coordinate i2 must be in the interval [r1, r2]. Again, since

there is only one saturated chain in the interval [r1, r2], m and m′ must coincide on this inter-

val. Continuing in this way, we see that m and m′ coincide in their entirety. This contradicts

m 6= m′. Thus there is a unique, increasing maximal chain in the interval [r, s].
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This result implies that open intervals in the Tamari lattice are either contractible or ho-

motopy equivalent to a sphere and hence the Möbius function of any interval [r, s] is µ(r, s) ∈
{−1, 0, 1}.

1.6 Discrete Morse theory

Discrete Morse theory was developed by Robin Forman as a way to help determine the topology

of CW complexes. In [9], Chari introduced a combinatorial method for utilizing the principal

results of discrete Morse theory in the special case of regular CW complexes. It is well known

that a lexicographically shellable poset has open intervals that correspond to cells that are either

contractible or isomorphic to spheres, but it is is much more straightforward to prove this fact

using discrete Morse theory, as we will see in Corollary 1.6.8. We also use discrete Morse theory

to attempt to generalize some results on shellable simplicial complexes in Section 4.2. Note that

although Forman developed these tools for all CW complexes, we will only consider those CW

complexes that are regular.

Definition 1.6.1. Let K be a regular CW complex and σd denote a cell of dimension d of K.

A function f : K → R is a discrete Morse function if for every cell σd,

(i) |A| = |{τd−1 ⊆ σd : f(τd−1) ≥ f(σd)}| ≤ 1

(ii) |B| = |{τd+1 ⊇ σd : f(τd+1) ≤ f(σd)}| ≤ 1

Since these conditions apply to all cells in K, then if either A or B has cardinality 1, the

other necessarily has cardinality 0.

Example 1.6.2. The cell complex on the left of Figure 1.12 is labeled with a discrete Morse

function. The same cell complex on the right is labeled with a function that fails to be a

discrete Morse function because the 2-cell (labeled 4) has two lower-dimensional cells in its

boundary that are labeled with labels greater than or equal to 4.

Definition 1.6.3. Given a discrete Morse function f , a cell σd is a critical cell with respect

to f if both

(i) |A| = |{τd−1 ⊆ σd : f(τd−1) ≥ f(σd)}| = 0

(ii) |B| = |{τd+1 ⊇ σd : f(τd+1) ≤ f(σd)}| = 0

Otherwise σd is called non-critical.

One of the key results arising from discrete Morse theory is the following by Forman from

[11].
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Figure 1.12: A cell complex with a discrete Morse function (left) and the same complex with
a function that fails to be a discrete Morse function (right).

Theorem 1.6.4 (Corollary 3.5 [11]). Let K be a regular CW complex with a discrete Morse

function. Then K is homotopy equivalent to a CW complex M that has a d-dimensional cell

for every d−dimensional critical cell of K and no other cells.

Observe that non-critical cells come in pairs σd, τd+1 where σd and τd+1 are critical because

f(σd) > f(τd+1). A discrete Morse function therefore induces a natural matching on the non-

critical cells of K. Given any matching on pairs of codimension 1 cells of K, we will represent this

matching on the Hasse diagram of the face poset of K by directing those edges corresponding

to a matching up and directing all other edges down. The result is a directed graph.

Definition 1.6.5. A matching is acyclic if the directed graph obtained from the Hasse diagram

has no directed cycles.

Note that if a matching is obtained from a discrete Morse function, then it is always acyclic.

This is because as we follow each directed edge, the discrete Morse function decreases. This is

impossible if we were to start and end at the same cell. Also note that any acyclic matching

corresponds to a matching that arises from some discrete Morse function. This fact is used in

the next corollary, which follows from Theorem 1.6.4.

Corollary 1.6.6. Let K be a simplicial complex and F (K) its face poset. If F (K) has an acyclic

matching where the only unmatched cells of K are facets, then K is homotopy equivalent to a

wedge of spheres.

The following lemma appeared independently in both [15] and [18] and is used to prove

Corollary 1.6.8. We follow the notation and proof of Hersh in [15]. It is referred to as the

Cluster Lemma in [18].

Lemma 1.6.7 (Lemma 4.1 [15]). Let K be a regular CW complex and P a poset with a unique

minimal element. Let D = {Kσ}σ∈P be a set of collections of cells of K satisfying:
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(i) Each cell of K belongs to exactly one Kσ.

(ii) For each σ ∈ P ,
⋃
τ≤σKτ is a subcomplex of K.

Let Mσ be an acyclic matching on the subposet of F (K) consisting of all cells in Kσ. Then⋃
σ∈P Mσ is an acyclic matching on F (K).

Proof. We will call both the elements of D and the corresponding subposets of F (K) compo-

nents. Let G(K) be the directed graph obtained from the Hasse diagram of the face poset of

K by orienting edges between matched cells upward and all other edges downward. Assume

that for some pair σ, τ ∈ P where σ 6= τ , there is an edge e oriented downward from a cell in

Kσ to a cell in Kτ . Since
⋃
τ≤σKτ is a subcomplex of K, then τ < σ. Since G(K) is obtained

by taking a union of acyclic matchings on the components of D and all matching edges are

oriented upwards, there is no upward oriented edge between components in F (K). Thus there

is no way for a directed path containing e to return to the component Kσ. Thus
⋃
σ∈P Mσ is

an acyclic matching on F (K).

We will also want the following well-known corollary.

Corollary 1.6.8. Let F1, F2, . . . Fn be a shelling order on the facets of a simplicial complex K.

Then there is an acyclic matching on F (K) whose critical cells are the homology facets of the

shelling.

Proof. Given the shelling order F1, F2, . . . Fn, consider the filtration K1 ⊆ K2 ⊆ . . .Kn where

Kj\Kj−1 = Fj\ (∪i<jFi). Note that Kj\Kj−1 is a collection of simplices such that F (Kj\Kj−1)

is a Boolean lattice. Recall a Boolean lattice Bn has as elements all the subsets of a set consisting

of the integers from 1 to n. For r ≥ 1, a Boolean lattice Br admits a natural acyclic matching

where any cell corresponding to a set s not containing 1 is matched with the cell corresponding

to the set s ∪ {1}. Thus taking D = {K1,K2, . . .Kn}, we can apply Lemma 1.6.7 to obtain

an acyclic matching of F (K). By construction, any unmatched cell is unmatched because Kj

consists of a single cell. This occurs only if for some Fj and for all σ ⊂ Fj , σ ⊂ Fi for some

i < j. Thus any unmatched cell much be a facet.

It is worth noting that in [1], Eric Babson and Patricia Hersh introduced a method for con-

structing a nice discrete Morse function for the order complex of any finite bounded poset using

any lexicographic order on its saturated chains. They call these types of discrete Morse func-

tions lexicographic discrete Morse functions. One question for further research is whether

this method will help to determine the topology of the edge-product space of phylogenetic trees,

though the face poset of this space is not shellable in its entirety as we show in Chapter 3.
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Figure 1.13: A shelling order on a simplicial complex K (shown on the left) yields an acyclic
matching on F (K) (shown on the right). There are no critical cells (i.e. unmatched cells).
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Figure 1.14: A decomposition of the simplicial complex K shown in Figure 1.13. A union of
acyclic matchings on the face posets of the components of the decomposition yield an acyclic
matching on F (K).
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Chapter 2

The enriched Tamari poset

In this chapter, we introduce a new partial order whose elements are the maximal elements of

the Tuffley poset S(X). To do so, we first establish a canonical way of embedding the maximal

elements of the Tuffley poset in the plane and then describe how we can generate all maximal

elements of S(X) from two types of local operations. The initial hope was that we could extend

this partial order to a total order that was compatible with a recursive coatom ordering, thereby

proving that the augmented Tuffley poset (the Tuffley poset with 0̂ and 1̂) was shellable in its

entirety. As we will see in Chapter 3, there is no dual CL-shelling of the augmented Tuffley poset.

However, given that the enriched Tamari poset is a natural extension of the Tamari lattice, this

seems to be an interesting poset to explore in its own right. After defining the enriched Tamari

poset (see Definition 2.2.8) and proving it is indeed a poset (see Theorem 2.2.7), we turn to

discussing its structure.

2.1 New notions and establishing a framework for them

From Theorem 1.4.15, we know the maximal elements of the Tuffley poset, S(X), are the trees

with |X| leaves such that every internal vertex has degree 3. Let the set of maximal elements of

S(X) be denoted CX . If we adjoin a unique minimal element 0̂ and a unique maximal element

1̂ to S(X), the elements in CX are the coatoms of S(X) ∪ {0̂, 1̂}. For simplicity, we will let

X = [n] = {1, 2, . . . , n} for the remainder of this thesis.

Definition 2.1.1. Let x ∈ S([n]). A subforest of x is any [n]−forest that can be obtained from

x by deleting a subset of edges and vertices and contracting a subset of edges of x. A subtree of

x is a subforest that can be obtained from x without deleting any edges. A maximal subtree

of x is a subtree of x that can be obtained from x without contracting any edges.

Note that a subforest (respectively subtree) is a forest (respectively tree), but need not be

an A-forest (respectively A-tree) for some subset A ⊆ [n]. In particular, there are no restrictions
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Figure 2.1: A maximal element Ci of S([6]) (left) and a subtree of Ci (right).

on the degree of the unlabeled vertices of a subforest (respectively subtree). Also note that a

subforest of x is commonly known as a minor of x. See Figure 2.1 for an example of a subtree

of an element of S([6]).

We now describe a standard embedding of any maximal element of S([n]) which will aid in

our description of the enriched Tamari poset.

Definition 2.1.2. Let Ci ∈ C[n]. The leaf labeled n is called the maximal leaf of Ci. The

unique internal vertex adjacent to the maximal leaf of Ci is called the maximal internal

vertex and is denoted v̂. The edge between the maximal leaf and the maximal internal vertex

of Ci we call the maximal edge.

Definition 2.1.3. The standard planar embedding of Ci ∈ C[n], is as follows: The maximal

leaf is placed highest in the plane and the maximal internal vertex v̂ is drawn directly below it.

There are two other edges, e1 and e2, adjacent to v̂. Let v1 (respectively v2) be the endpoint

other than v̂ of e1 (respectively e2). Each of e1 and e2 connects v̂ to a subtree, say S1 and S2

respectively. Choose S1 to be the subtree among S1 and S2 that contains the smallest leaf label

among all labels on vertices of Ci. Draw e1 downward and to the left and e2 downward and

to the right. Repeat this process on the pair of edges adjacent to v1 and v2. Continue until all

edges in the tree have been drawn either downward and to the left or downward and to the

right.

When Ci is depicted with the standard planar embedding, the maximal leaf of Ci is the

highest vertex of Ci in the plane and the maximal internal vertex is the highest internal vertex

of Ci in the plane, hence the decision to call these vertices maximal. See Figure 2.3 for an

example.

Every internal vertex v of Ci ∈ C[n] has two children. In particular, v has a left child lv

and a right child rv. The left child is the vertex of Ci below and to the left of v in the standard

planar embedding described above. The right child is the vertex of Ci below and to the right

of v. In the standard planar embedding of Ci, the left child (respectively right child) of v is the
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Figure 2.2: A maximal element of S([6]). The subtree ↓ v is indicated with bold edges.

highest vertex of a maximal subtree of Ci called the left subtree (respectively right subtree)

of v. The left subtree of v is denoted ↓ lv. It consists of all vertices below lv and all edges between

them in the standard planar embedding of Ci. The right subtree of v, denoted ↓ rv, consists of

all vertices below rv and all edges between them in the standard planar embedding of Ci. The

vertex v is called the parent of lv and rv. For v an internal vertex of Ci, the downgraph of v

is v with its left subtree and right subtree. It is denoted ↓ v. See Figure 2.2 for an example.

The following proposition says that instead of considering the set of maximal elements of

S([n]), it suffices to consider instead the set of isomorphism classes of full binary trees (see

Definition 1.5.3) with leaves labeled by elements of [n− 1].

Proposition 2.1.4. The maximal elements of S([n]) are in bijection with the set of isomor-

phism classes of full binary trees with leaves labeled by elements of [n− 1].

Proof. Let Ci ∈ C[n] and let C̃[n] denote the set of isomorphism classes of full binary trees with

leaves labeled by elements of [n− 1]. Define the map ψ : C[n] → C̃[n] as ψ(Ci) = C̃i where C̃i is

obtained by removing the maximal leaf and edge in Ci. Since the maximal internal vertex is the

highest internal vertex in the standard planar embedding of Ci (see Definition 2.1.3) and every

internal vertex has degree 3, removing the the maximal leaf of Ci results in a tree such that

every internal vertex but v̂, has a parent and two children. The maximal internal vertex, v̂, has

two children and no parent. Thus C̃i ∈ C̃[n]. The map ψ : C[n] → C̃[n] is a bijection with inverse

ψ−1 : C̃[n] → C[n] defined as follows: ψ−1(C̃i) = Ĉi where Ĉi is obtained by adding a vertex

labeled n and adding an edge between this new vertex and v̂, where v̂ is the unique degree 2

internal vertex. It is clear that Ĉi = Ci. Thus ψ : C[n] → C̃[n] is a bijection.
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2.1.1 Encoding maximal elements of the Tuffley poset with words

The following definitions from graph theory are used to define what we call the word of the

maximal element Ci of S([n]) (see Definition 2.1.9). This word encodes the entire structure of

Ci, as we prove in Proposition 2.1.14. It is used to define lexicographic moves and Tamari moves

(see Section 2.2) and to prove that the enriched Tamari poset is indeed a poset.

Definition 2.1.5. The star graph or n-star is a tree with n vertices, one of which has degree

n− 1 and the other n− 1 of which have degree 1.

Definition 2.1.6. Let Ci be a maximal element of S([n]) and let v be an internal vertex of Ci.

If v is such that ↓ v is a star graph, then we call ↓ v a star subgraph of Ci.

Note that since internal vertices of Ci have degree 3, then if ↓ v is a star subgraph of Ci for

some internal vertex v, then ↓ v is more specifically a 3-star.

Definition 2.1.7. If l is a leaf of the maximal element Ci and l is contained in a star subgraph

of Ci, then l is called a star leaf.

Any full binary tree with leaves labeled in 1-1 correspondence by elements of [n− 1] can be

represented by a parenthesization of a permuation of the integers 1 through n− 1. We present

a specific parenthesization of C̃i next.

Definition 2.1.8. A pair of parentheses is a left parenthesis with its corresponding right

parenthesis.

Definition 2.1.9. Let Ci ∈ C[n]. The word of Ci is a word in the alphabet [n−1]∪{(}∪{)}∪{, },
obtained recursively as follows. For every internal vertex v, there is a pair of parentheses, denoted

pv, that contains two entries separated by a comma. The first entry of pv is the parenthesization

of ↓ lv and the second entry is the parenthesization of ↓ rv. If ↓ lv (respectively ↓ rv) consists of

a single leaf then the parenthesization of ↓ lv (respectively ↓ rv) is the leaf label. The word of

Ci is obtained recursively by starting at the non-maximal star leaves of Ci. It is denoted w(Ci).

For an internal vertex v, we let w(↓ v) denote the word of the downgraph of v, ↓ v. This

is well-defined since ↓ v is a full binary tree. If we are specifically considering the word of the

downgraph of v in Ci and Ci is not implied by context, then we write w(↓ v)(Ci).

Definition 2.1.10. A subword of w(Ci) is any ordered subset of (not necessarily adjacent)

letters in the word w(Ci).

Example 2.1.11. The standard planar embedding of a maximal element Ci in S([6]) is shown in

Figure 2.3. The only star subgraph of Ci is ↓ v. Since v has left child labeled 3 and right child

labeled 4, w(Ci) is formed starting with w(↓ v) = (3, 4) and continuing as follows:
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Figure 2.3: A maximal element Ci of S([6]) and w(Ci).
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2.1.2 Statistics obtained from w(Ci)

Definition 2.1.12. The word w(Ci) has a subword consisting only of the letters in X. This is

called the X-subword of w(Ci) and is denoted wX(Ci).

Since we consider only when X = [n] in this thesis, we will refer to this statistic as the [n]-

subword. The [n]-subword can be read from the standard planar embedding of Ci by reading

the labels on the nonmaximal leaves of Ci from left to right. Also note that by definition of the

standard planar embedding, the [n]-subword of w(Ci) is lexicographically as early as possible.

In other words, there is no way to embed Ci in the plane in such a way that reading off the

non-maximal leaf labels in order counterclockwise would give an earlier word in the alphabet

[n].

Definition 2.1.13. The ith letter in w(Ci) is said to be in the ith position. The word consisting

of the positions of open parentheses from left to right in w(Ci) is called the skew of Ci and is

denoted Sk(Ci).

Proposition 2.1.14. A maximal element Ci of S([n]) is determined by Sk(Ci) and w[n](Ci).

Proof. Given Sk(Ci) and w[n](Ci), the word for the maximal element Ci of S([n]) can be

recovered by filling the 4n− 7 entries of w(Ci) as follows. If i ∈ Sk(Ci), place a left parenthesis

in the ith entry of w(Ci). If the entry before any left parenthesis is available, place a comma in

the entry that immediately precedes the left parenthesis. We then start inserting the letters of

w[n](Ci) = w1w2 . . . wn. We start by placing w1 in the first available entry from the left. Then:
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(i) If the next entry after w1 is blank and if w1 is not preceded by a comma, then place a

comma in this next entry.

(ii) If the next entry after w1 is blank and w1 is preceded by a comma, place a right parenthesis

in this next entry.

(a) If a right parenthesis is placed and corresponds to a left parenthesis that is immedi-

ately preceded by a comma, place another right parenthesis.

(b) If not, place a comma.

(iii) If the next entry after w1 is not blank, do nothing.

Then continue by placing w2 according to the same rules. Continue until all letters of w[n](Ci)

have been placed. In the final entry, place a right parenthesis.

Example 2.1.15. Let w[n](Ci) = 1, 3, 4, 2, 5 and Sk(Ci) = 1, 2, 5, 12. The process below shows

how we fill the 4(6)− 7 = 17 entries of w(Ci) and thus determine Ci:

( ( ( (

( ( , ( , (

( ( 1 , ( , (

( ( 1 , ( 3 , , (

( ( 1 , ( 3 , 4 ) ) , (

( ( 1 , ( 3 , 4 ) ) , ( 2 ,

( ( 1 , ( 3 , 4 ) ) , ( 2 , 5 )

( ( 1 , ( 3 , 4 ) ) , ( 2 , 5 ) )

2.2 The enriched Tamari poset

As described in Section 1.5, the Tamari lattice can be viewed as a partial order on the set of full

binary trees. Equivalently, it is a partial order on the parenthesizations (or bracketings) of the

integers from 1 to n. We can naturally extend this partial order to isomorphism classes of full

binary trees with leaves labeled in 1-1 correspondence with the set [n− 1] (i.e. to the maximal

elements of S([n])) as we will describe in this section.

First, we define a total order on any disjoint set of downgraphs in Ci ∈ C[n]. This is necessary

to define the cover relations in what we will call the enriched Tamari poset.
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1 3 4 2 5

6

v

w(Ci) = (((1, (3, 4)), 2), 5)
Sk(Ci) = 1, 2, 3, 6

Figure 2.4: A maximal element Ci of the Tuffley poset S([6]).

Definition 2.2.1. Let u and v be internal vertices of Ci such that ↓ u and ↓ v are disjoint. The

lexicographic order on disjoint downgraphs is <lex where u <lex v if the smallest integer in

w(↓ u) is less than the smallest integer in w(↓ v).

Equivalently, u <lex v if the smallest leaf label in the subtree ↓ u is less than the smallest

leaf label in ↓ v.

The enriched Tamari poset has two types of cover relations, which we define next. The first

is called a Tamari move since cover relations in the Tamari lattice are defined similarly. Let

Ci be a maximal element of S([n]) with the standard planar embedding. Let v′ be an internal

vertex and v be its left child. Let a and b be the words of the left and right subtrees of v,

respectively. Let (a, b) and c be the words of the left and right subtrees of v′, respectively.

Definition 2.2.2. Let b <lex c. A Tamari move on v in Ci changes the subword ((a, b), c) of

w(Ci) to (a, (b, c)).

A Tamari move on v in w(Ci) yields the word w(C ′i) where C ′i is a maximal element of

S([n]). Note that v must be the left child of v′ in Ci in order for a Tamari move to be applied to

v. We can alternatively characterize a Tamari move by the resulting change in edges adjacent

to vertices v and v′, as shown in Figure 2.5. If edges x and y are adjacent via vertex v (with x

left of y in the standard planar embedding) and edges z and w are adjacent via vertex v′ (with

z below w in the standard planar embedding), a Tamari move on v results in a tree such that x

and w are adjacent and y and z are adjacent. All other edge adjacencies are the same between

Ci and C ′i.

Proposition 2.2.3. If w(C ′i) is obtained from w(Ci) by a Tamari move, then Sk(Ci) < Sk(C ′i)

and the X-subword of w(C ′i) equals the X-subword of w(Ci).
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1 3 4 2 5

v
v′

6

1 3 4 2 5

v′

6

v

w(Ci) = ((((1, 3), 4), 2), 5) w(Ci′) = (((1, (3, 4)), 2), 5)

Figure 2.5: A Tamari move on vertex v in Ci (left) yields C ′i (right).

Proof. Assume that w(C ′i) is obtained from w(Ci) by applying a Tamari move to the vertex v

with parent v′. Assume that w(↓ v′)(Ci) is ((a, b), c) where a <lex b <lex c. Applying a Tamari

move to vertex v yields w(C ′i) where the subword w(↓ v)(Ci) is (a, (b, c)). Since in both w(Ci)

and w(C ′i), a comes to the left of b and b comes to the left of c, then the X−subword of w(Ci)

equals the X−subword of w(C ′i). However, the position of the open parenthesis for v in w(C ′i)

is greater than the position of the open parenthesis for v in w(Ci). Since the positions of all

other pairs of parentheses remain the same between w(Ci) and w(C ′i), Sk(Ci) < Sk(C ′i).

We introduce a new type of move on parenthesizations of a subset of permutations of the

integers from 1 to n− 1. Together with the Tamari move, this type of move generates the set of

maximal elements of S([n]). As before, let Ci be a maximal element of S([n]) with the standard

planar embedding. Let v′ be an internal vertex and v be its left child. Let a and c be the words

of the left and right subtrees of v, respectively. Let (a, c) and b be the words of the left and

right subtrees of v′, respectively.

Definition 2.2.4. Let a <lex b <lex c. A lexicographic move on v changes the subword

((a, c), b) of w(Ci) to ((a, b), c).

As with a Tamari move, a lexicographic move on v in w(Ci) yields the word w(C ′i) where

C ′i ∈ C[n]. The lexicographic move on v swaps the right subtree of v with the right subtree of v′

when the right subtree of v is lexicographically later than the right subtree of v′.

As with a Tamari move, a lexicographic move can be characterized by the resulting change

in edges that are adjacent to vertices v and v′, as in Figure 2.6. If edges x and y are adjacent

via vertex v (with x left of y in the standard planar embedding) and edges z and w are adjacent

via vertex v′ (with z below w in the standard planar embedding), a lexicographic move on v

yields a tree such that x and z are adjacent and y and w are adjacent.
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1 4 3 2 5

v
v′

6

1 3 4 2 5

v′

6

v

w(Ci) = ((((1, 4), 3), 2), 5) w(C ′i) = ((((1, 3), 4), 2), 5)

Figure 2.6: A lexicographic move on vertex v in w(Ci) (left) yields w(C ′i) (right).

1 2 5 3 4

v′

v

6

1 2 3 4 5

v′

v

6

w(Ci) = (1, ((2, 5), (3, 4))) w(Ci′) = (1, ((2, (3, 4)), 5))
wX(Ci) = 1, 2, 5, 3, 4 wx(C ′i) = 1, 2, 3, 4, 5

Sk(Ci) = 1, 3, 4, 7, 8, 11, 12, 13 Sk(Ci′) = 1, 3, 4, 6, 9, 10, 12, 13

Figure 2.7: A lexicographic move on v in Ci (left) yields a coatom Ci′ (right) such that
wX(Ci′) < wX(Ci) but such that Sk(Ci) > Sk(Ci′).

Proposition 2.2.5. A lexicographic move on Ci yields a coatom C ′i such that the X-word of

C ′i is lexicographically earlier than the X-word of Ci.

Proof. Since ((a, b), c) = w(C ′i) and ((a, c), b) = w(Ci), the result follows from the fact that

b <lex c.

Note that a lexicographic move on v in w(Ci) yields some w(C ′i) where any one of the

following holds:

1. Sk(C ′i) < Sk(Ci) (as in Figure 2.7)

2. Sk(C ′i) = Sk(Ci)

3. Sk(C ′i) > Sk(Ci).
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Definition 2.2.6. Let Ci and Cj be maximal elements of S([n]). There is a relation ≤ETn
among the maximal elements of S([n]) given by the following: Ci <ETn Cj if w(Cj) is obtained

from w(Ci) by a sequence of Tamari moves and lexicographic moves.

Theorem 2.2.7. The set of maximal elements of S([n]) together with the relation ≤ETn com-

prise a partially ordered set.

Proof. Let G([n]) be the directed graph that has elements of C[n] as vertices and a directed edge

from Ci to Cj if and only if Cj is obtained from Ci by a single Tamari or lexicographic move.

We will show that (C[n],≤ETn) is a partial order on the maximal elements of S([n]) by showing

that G([n]) is acyclic.

Assume that there is a nontrivial directed path from Ci to Cj in G([n]). Then there is a

sequence of elements of C[n], Ci = Ci0 lETn Ci1 lETn Ci2 lETn . . .lETn Cit = Cj , such that Cik
is obtained from Cik−1

by either a Tamari move or a lexicographic move, where 1 ≤ k ≤ t.
If this directed path from Ci to Cj is a cycle, then Ci = Cj and thus wX(Ci) = wX(Cj).

If for any k, Cik is obtained from Cik−1
by a lexicographic move, then wX(Cik) < wX(Cik−1

)

by Proposition 2.2.5. Since neither a lexicographic nor a Tamari move yields an element with

a lexicographically later X-word, then for all r ≥ k, wX(Cir) < wX(Cik−1
) ≤ wX(Ci). Thus

the directed path from Ci to Cj is not a cycle if for some k, Cik is obtained from Cik−1
by a

lexicographic move.

If for all k, Cik is obtained from Cik−1
by a Tamari move, then by Proposition 2.2.3,

Sk(Cik) > Sk(Cik−1
) and wX(Cik) = wX(Cik−1

). Then for all k such that 1 ≤ k ≤ t,

wX(Cik) = wX(Ci) but Sk(Cik) > Sk(Ci). In particular, Sk(Cit) = Sk(Cj) > Sk(Ci). Note

that if Ci = Cj then Sk(Ci) = Sk(Cj). Since Sk(Ci) 6= Sk(Cj), we have Cj 6= Ci. This means

there are no cycles in the directed path from Ci to Cj .

Thus G([n]) is a directed acyclic graph and so (C[n],≤ETn) is a partial order on the maximal

elements of S([n]).

Definition 2.2.8. The poset (C[n],≤ETn) is called the enriched Tamari poset and is denoted

ETn.

Remark 2.2.9. The enriched Tamari poset could have been defined in a number of slightly

different ways, yielding a family of interrelated partial orders on the maximal elements of S([n]).

For example, we could have defined a Tamari move so that this type of action on some Ci yields

some C ′i such that w[n](Ci) < w[n](C
′
i). We chose the partial order presented in Definitions 2.2.6

and 2.2.8 because it is bounded.
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2.3 Properties of the enriched Tamari poset

The Tamari lattice has many nice properties. A natural question to ask is whether the enriched

Tamari poset ETn also has these properties. We are able to immediately determine some of the

characteristics of ETn, which we present here.

Remark 2.3.1. The enriched Tamari poset is bounded. The unique minimal element is the

element 0̂ determined by

Sk(0̂) = 1, 2, 3, . . . , n− 2

w[n](0̂) = 1, n− 1, n− 2, . . . 3, 2

The unique maximal element is the element 1̂ determined by

Sk(1̂) = 1, 4, 7, . . . , 1 + 3(n− 2)

w[n](1̂) = 1, 2, 3, . . . , n− 1

Remark 2.3.2. The enriched Tamari poset is not always a lattice.

Example 2.3.3. The elements represented by the words (((1, 2), 3), 4) and ((1, (2, 4)), 3) are

both common least upper bounds for the elements x and y represented by the words

(((1, 2), 4), 3) and (((1, 3), 2), 4), respectively. Since x and y do not have a unique, common,

least upper bound, x and y do not have a join. Thus, the enriched Tamari poset cannot

always be a lattice. See Figure 2.8.

Remark 2.3.4. The enriched Tamari poset is not always shellable.

Example 2.3.5. Any interval in a shellable poset is shellable. However, the interval in ET5

from 0̂ = (((1, 4), 3), 2) to the element represented by the word (((1, 2), 3), 4) contains two

maximal chains of length 3. These two maximal chains correspond to tetrahedra A and B in

the order complex of S([5]). However, these two chains intersect in a chain of length 1. This

chain of length 1 corresponds to a line segment in the order complex of S([5]). Thus the

intersection of A and B is a face of codimension 2. Thus no ordering on these maximal chains

yields a shelling order. See Figure 2.9.

Remark 2.3.6. There are (2n− 5)!! elements in the enriched Tamari poset ETn.

There is one element in ET3 and this tree has three edges. The number of elements in ETn

can be obtained recursively from the number of elements in ETn−1, as we describe next. For

each element of ETn−1 and each edge e of this element, we add a leaf labeled n to obtain a

unique element of ETn, in the following way: add an unlabeled vertex at the midpoint of edge

e, add an isolated vertex labeled n, and then connect the new unlabeled vertex and the new
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(((1,4), 3), 2)

(((1,4),2),3) (((1,3), 4), 2)

(((1,2), 4),3) ((1,4),(2,3)) ((1,(3,4)),2) (((1,3),2),4)

(((1,2),3),4)

((1,3),(2,4))

((1,(2,3)),4)

((1,(2,4)),3)

(1, ((2,3),4)) ((1,2), (3,4))

(1,((2,4),3))

(1,(2,(3,4)))

Figure 2.8: The enriched Tamari poset ET5. The elements represented by the words
(((1, 2), 4), 3) and (((1, 3), 2), 4) have no join.

isolated vertex via a new leaf edge. Since there are 2n− 5 edges in any element of ETn−1, the

number of elements in ETn is

|ETn| = (2n− 5)|ETn−1|

= (2n− 5)(2(n− 1)− 5)|ETn−2|

= (2n− 5)(2n− 7)|ETn−2|
...

= (2n− 5)(2n− 7) . . . 3 · 1

48



(((1,4), 3), 2)

(((1,4),2),3) (((1,3), 4), 2)

(((1,2), 4),3) ((1,4),(2,3)) ((1,(3,4)),2) (((1,3),2),4)

(((1,2),3),4)

((1,3),(2,4))

((1,(2,3)),4)

((1,(2,4)),3)

(1, ((2,3),4)) ((1,2), (3,4))

(1,((2,4),3))

(1,(2,(3,4)))

Figure 2.9: The enriched Tamari poset ET5 is not shellable. The interval marked with bold
edges is not shellable.
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Chapter 3

The Tuffley poset is not dual

CL-shellable

In this chapter, we present one of the primary results of this thesis, which states that the Tuffley

poset is not dual CL-shellable in its entirety. We accomplish this by showing that there is no

partial or total ordering on the maximal elements of the Tuffley poset that is compatible with

a recursive coatom ordering. This is a somewhat surprising result given gallery-connectedness

(see Theorem 3.2.5) together with the fact that all intervals in the Tuffley poset with 0̂ adjoined

are shellable, as first proven by Gill, Linusson, Moulton, and Steel in [12]. In this chapter, we

let S[n] = S([n]) ∪ {0̂, 1̂} and we let S∗[n] = (S([n]) ∪ {0̂, 1̂})∗.

3.1 A shelling for open intervals of the Tuffley poset

This section concerns the uncrossing poset Pn. We show that principal order ideals of the

uncrossing poset are isomorphic to intervals [0̂,Γ] of S([n])∪ {0̂}. Since the uncrossing poset is

dual EC-shellable as proven by Hersh and Kenyon via a labeling they introduced in [16], this

result leads to an explicit shelling of open intervals of S([n]) ∪ {0̂}. Previously, Gill, Linusson,

Moulton and Steel proved in [12] the existence of a shelling for each interval.

3.1.1 The uncrossing poset

We now review the uncrossing poset Pn.

Definition 3.1.1. A wire diagram with n wires is a circle with 2n nodes placed around the

circumference and n wires connecting pairs of nodes such that any node is paired with one and

only one other node.
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We select one node of every wire diagram to be the base point. By convention, we will

label the wires of a wire diagram, D, counterclockwise from 1 to n, where 1 coincides with the

base point.

We will need the following several definitions both for the definition of the uncrossing poset

and for the dual EC-labeling of the uncrossing poset.

Definition 3.1.2. The uncrossing poset Pn is a partial order on isotopy classes of wire

diagrams, where C lD if C is obtained from D by uncrossing a pair i, j of wires in D in such

a way that each wire crosses every other wire in C at most once.

Definition 3.1.3. The minimum crossing number of a wire diagram D is the least number

of wire crossings among all representatives of the isotopy class of D.

Definition 3.1.4. The word of a wire diagram D is the word w(D) with integer letters from 1

to n obtained by reading the labels on the wires counterclockwise starting from the base point.

In doing so, the first instance of an endpoint for wire w is called the initial node of wire w

and the second instance is called the final node of wire w.

Remark 3.1.5. In [16], wires are labeled from 1 to n in clockwise order from the base point

and the word of a wire diagram is calculated by reading the labels in clockwise order. We have

chosen to label wires in counterclockwise order so that both the minimum labels on the vertices

of an [n]-tree and the wire labels are increasing in the same direction.

See Figure 3.1 for an example of a cover relation and of calculating the word for a wire

diagram.

Remark 3.1.6. The uncrossing poset Pn has a unique maximal element whose word is

w(1̂) = 123 . . . n123 . . . n.

The uncrossing poset is an example of a poset that admits a dual EC-labeling. This labeling

was introduced and proven to be an EC-labeling by Hersh and Kenyon in [16]. We describe this

labeling λ next.

Let C,D ∈ P ∗n and suppose D l C. Suppose further that for i < j, w(D) has subsequence

i, j, i, j whereas w(C) does not. Hersh and Kenyon label the cover relation DlC depending on

which of the following cases applies to C and w(C):

(i) If w(C) contains the subsequence i, j, j, i, let λ(D l C) = (i, j).

(ii) If w(C) contains the subsequence i, i, j, j, let λ(D l C) = (j, i).

For any coatom C ∈ P ∗n , let λ(C, 1̂) = L.
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1
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3 34
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l

w(C) = 1231435245

bp=1

4

2

2

3 31

4

5

5

w(D) = 1234135245

Figure 3.1: A cover relation in the uncrossing poset P5.

The labels on the cover relations of P ∗n are ordered according to the following total order

<λ. Suppose i < j as integers. The set of ordered pairs (i, j) are ordered amongst themselves

lexicographically:

(1, 2) <λ (1, 3) <λ< (1, 4) <λ . . . (2, 1) <λ (2, 2) <λ . . . <λ (n− 1, n)

The set of ordered pairs (j, i) are ordered amongst themselves reverse lexicographically according

to the second coordinate, with ties broken by reverse lexicographic order on the first coordinate:

(n, n−1) <λ (n, n−2) <λ (n−1, n−2) <λ (n, n−3) <λ . . . <λ (n, 1) <λ (n−1, 1) <λ . . . <λ (2, 1)

If i < j and m > k, then (i, j) <λ L <λ (m, k).

Theorem 3.1.7 (Theorem 3.18 [16]). The uncrossing poset Pn is dual EC-shellable via the

labeling λ.

3.1.2 The relationship between the uncrossing posets and the Tuffley posets

Now we are ready to describe a relationship between uncrossing posets and Tuffley posets.

This relationship is also essentially in results of Kenyon and Wilson in [19]. We first need the

following definition:

Definition 3.1.8. An abstracted element of S([n]), denoted xa, is obtained by taking an

element x of S([n]) and replacing all labels but the label 1 with variables.
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0̂

1 1 1 1 1

1 1 1 1 1 1

1 1 1

1

Figure 3.2: The uncrossing poset P3 with an artificial 0̂.
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1 l2, l3

l5

l4

Figure 3.3: An abstracted element xa of the Tuffley poset S([5]). Note that there are several
elements x ∈ S([5]) yielding xa.

See Figure 3.3 for an example of an abstracted element of S([n]).

Remark 3.1.9. Cover relations in the Tuffley poset are independent of the specific labels on

vertices of the [n]-forests. In particular, the safe deletion of edge e in x ∈ S([n]) only requires

that the endpoints of e be labeled or of degree greater than 3. The actual labels on the endpoints

of e is irrelevant. It follows that an interval [0̂,Γ] ⊆ S([n])∪{0̂} can be completely determined by

the abstracted element Γa. Thus [0̂,Γ] is isomorphic to the corresponding interval of abstracted

elements with cover relations unchanged i.e. given by edge contractions and safe edge deletions

(see Definition 1.4.13). We call this interval of abstracted elements an abstracted interval

and will denote it [0̂,Γ]a.

We now describe how we can construct a wire diagram f(xa) from an abstracted element

xa of S[n]. We begin by inscribing xa in a circle K so that any labeled vertex is a point on K

and the remainder of xa appears strictly inside K via an embedding. The edges of xa separate

the interior of K into chambers. A chamber is a connected subset of the interior of the circle

whose boundary consists of an arc on K with labeled vertices of xa as endpoints along with a

subset of the edges of xa. See Figure 3.4 for an example of a chamber.

We cross from one chamber to another by crossing some edge e of xa. The edge e has two

endpoints: one to the left as we cross e, say vel , and one to the right as we cross e, say ver . If

vel is adjacent to another edge of xa, say el, then crossing el is called a left crossing. If ver is

adjacent to another edge of xa, say er, then crossing er is called a right crossing. See Figure

3.5 for an example of a left crossing and an example of a right crossing.

Let v be a labeled vertex of xa with m labels. For each label on v, we place a pair of

wire endpoints, or nodes, on K with one node immediately counterclockwise from v and the

other 2m − 1 nodes immediately clockwise from v. As a result, there is a node corresponding

to v that is furthest clockwise from v and there is a node corresponding to v that is furthest

counterclockwise from v. We call these two nodes the outermost nodes corresponding to v.

We call the nodes corresponding to v that are not outermost nodes inner nodes. For each
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1

l2, l4

l3

l5

Figure 3.4: An abstracted element of S([5]) inscribed in a circle K. One of four chambers is
shaded.

ver

vel

ver

vel

Figure 3.5: A left crossing (left) and a right crossing (right).
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labeled vertex of xa, place nodes on K in this manner.

We now draw wires between pairs of nodes as follows. Suppose wi is an outermost node

for the labeled vertex v. If wi is clockwise from v, we draw a wire by starting at wi, crossing

the edge adjacent to v and then alternating between left crossings and right crossings, starting

with a left crossing. If wi is counterclockwise from v, we draw a wire by starting at wi, crossing

the edge adjacent to v and then alternating between left crossings and right crossings, starting

with a right crossing. We continue crossing edges by alternating between a left crossing and a

right crossing until we can no longer perform an alternating crossing. In this case, if our final

edge crossing was a right crossing over edge e, this means vel is on K and we end the wire

at the node furthest clockwise from vel . This node is an outermost node corresponding to the

labeled vertex vel . If our final edge crossing was a left crossing over edge e, then ver is on K

and we end at the node furthest counterclockwise from ver . This node is an outermost node

corresponding to the labeled vertex ver . See Figure 3.6 for an example. We perform this process

on the outermost nodes corresponding to each labeled vertex of xa so each outermost node

is the endpoint of a wire. For a labeled vertex v of xa with more than one label, we connect

remaining pairs of adjacent nodes corresponding to v with wires so that each wire connecting

inner nodes for v crosses no other wire. This wire diagram that has xa superimposed is what

we will call the intermediate diagram of xa. We will denote it I(xa).

Remark 3.1.10. Suppose I(xa) is the intermediate diagram of xa. Suppose some wire w crosses

edge e of xa in I(xa) and then immediately after, crosses edge e′. Then e and e′ are adjacent

by definition of left crossings and right crossings. Because of this, we can view each wire w as

marking the path in xa between the labeled vertices corresponding to the nodes of w.

Remark 3.1.11. If the vertex v has m labels, then there are at least m − 1 (and at most m)

wires that do not cross any other wire and with the property that both nodes of each wire

correspond to the vertex v.

We label the wires counterclockwise in order starting from the node that is clockwise from

the vertex labeled 1. This node is the base point. Suppressing xa, we obtain the wire diagram

f(xa). See Figure 3.11.

Lemma 3.1.12. Let D = f(xa) be a wire diagram arising from the abstracted element xa.

Then D has n wires, each of which crosses any other wire at most once.

Proof. Let w be a wire in f(xa) with nodes wi and wf . The vertices wi and wf each correspond

to a labeled vertex in a tree t in xa. Since t is a tree, there is a unique path in t from the vertex

corresponding to wi to the vertex corresponding to wf . By construction of I(xa), the wire w

crosses each edge of the tree t that is in the path from the vertex corresponding to wi to the

vertex corresponding to wf in I(xa). We will show that any wire in I(xa) crosses any other
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Figure 3.6: We construct a wire diagram f(xa) from the abstracted element xa of S([5]) by
drawing wires. Wire crossings correspond to edges of xa.

wire at most once, i.e. that no pair of wires has a double crossing. Assume to the contrary that

f(xa) has two wires, w1 and w2, that cross at edge e and at edge e′ for e 6= e′. Since there

is exactly one path between any two vertices in xa, then there is exactly one path from an

endpoint v of e to an endpoint v′ of e′. Since both wires w1 and w2 cross edges e and e′, both

wires can be viewed as marking a path in xa that contains both v and v′. There is a unique

path from v to v′ in xa, thus every edge between v and v′ are also in the paths marked by w1

and w2. We will call the set of edges of xa that are crossed by both w1 and w2 in I(xa) mutual

edges. Any vertex v of xa adjacent to two mutual edges, say e1 and e2, must be of degree two

and unlabeled, otherwise w1 and w2 cannot cross both of these mutual edges. In particular, if

w1 crosses e1 with a right crossing, it must then cross w2 with a left crossing. In this case, w2

must cross e1 with a left crossing and then cross e2 with a right crossing. The vertex v being of

degree two and unlabeled contradicts xa being an abstracted element of S([n]). Thus w1 and

w2 cannot cross more than once.

By construction, there are 2n nodes, each of which corresponds to a labeled vertex of xa.

Each wire has two nodes, which are attached by a wire that follows the unique path between

the labeled vertices corresponding to each node. Thus there are n wires.

We will need the following definitions before we can define an inverse for the map f :

Definition 3.1.13. Let D be a wire diagram and K the exterior circle. An arc of K is any

part of K between two adjacent nodes of D.

Definition 3.1.14. Let D be a wire diagram. A segment of a wire w is any part of the wire

between two wire crossings in D.

Observe that the wires of a wire diagram (respectively an intermediate diagram) subdivide

the interior of the circle K.
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Figure 3.7: A wire diagram D = f(xa). The interior subdivisions are marked with an I while
the exterior subdivisions are marked with an E.

Definition 3.1.15. Let D be a wire diagram. A subdivision of D is a connected subset of

the interior of the circle K with a subset of segments of wires and a subset of arcs of K as its

boundary. We will call any subdivision that does not have an arc of K as part of its boundary

an interior subdivision and any subdivision that contains an arc of K in its boundary an

exterior subdivision.

See Figure 3.7 for an example of a wire diagram with the interior and exterior subdivisions

marked.

The following propositions will help to justify our construction for the inverse of f .

Proposition 3.1.16. Let D be a wire diagram and K the exterior circle. There are an even

number of arcs of K.

Proof. Each node is the left endpoint of some arc of K. Since there are an even number of

nodes, there are an even number of arcs of K.

Proposition 3.1.17. Let xa be an abstracted element of S([n]) and let I(xa) be its intermediate

diagram. If S and S′ are adjacent exterior subdivisions, then one and only one of S or S′

contains a vertex.

Proof. Wires are constructed between pairs of nodes, each of which corresponds to a label on

a vertex. If S and S′ are adjacent exterior subdivisions of I(xa), then a single wire w separates

them. Furthermore, there is a single node wd (an endpoint of w) between them. This node must

correspond to a vertex by construction. If S does not contain a vertex, then wd must correspond

to a vertex in S′. If S′ does not contain a vertex, then wd must correspond to a vertex in S.

58



bp

→

1

l2
l3

l4

l5

→

1

l2, l3

l4

l5

Figure 3.8: Adding labeled vertices to K in the construction of g(f(ax)).

Thus at least one of S and S′ contains a vertex. Since a node corresponds to only one vertex,

wd corresponds to either a vertex in S or a vertex in S′, but not both.

Given any wire diagram D = f(xa) arising from an abstracted Tuffley poset element xa,

there is a map g such that g(f(xa)) = xa, defined as follows. Place a vertex in the middle of

the arc whose left endpoint is the base point and label it with a 1. Then place a vertex in the

middle of alternating arcs of K so that for any two adjacent arcs, exactly one contains a vertex.

This is possible by Proposition 3.1.16. Label these vertices with variables. If two vertices are on

the boundary of the same subdivision, identify them and label this new, identified vertex with

the union of the labels on the original vertices. See Figure 3.8 for an example.

Remark 3.1.18. Because there are 2n total arcs in f(xa), we have n total labels.

For any vertex v, v is on the boundary of some exterior subdivision S. Draw an edge e from

v through any crossing of wires in the boundary of S. The edge e is contained in the subdivision

S and some new subdivision S′. If S′ contains a vertex v′, let v′ be the other endpoint of e. Then

repeat the process. If S′ does not contain a vertex, then S′ is an interior subdivision. Place the

other endpoint v′ of e in the center of S′. Draw an edge from v′ through any intersection of

wires contained in the boundary of S′ and repeat the process. Continue until an edge is drawn

through all wire crossings in D. This diagram (with the wire diagram D superimposed) is called

the intermediate diagram of f(xa) and is denoted I(f(xa)). Suppressing D and K we have

the abstracted element g(f(xa)) of S([n]). See Figure 3.11.

Lemma 3.1.19. If xa is an abstracted element of the Tuffley poset, then g(f(xa)) is isomorphic

to xa.

Proof. The base point of f(xa) is the node in I(xa) counterclockwise from the vertex labeled

1. In I(f(xa)), a vertex is placed on the arc of K that has the base point of f(xa) as its left

endpoint. Because of this, Proposition 3.1.17, and the fact that vertices are placed on alternating
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Figure 3.9: A wire diagram f(xa) and its intermediate diagram I(f(xa)). The vertex subdivi-
sions are shaded.

arcs of K in the construction of I(f(xa)), any exterior subdivision of I(xa) that contains a vertex

corresponds to an exterior subdivision of I(f(xa)) that contains a vertex. Suppose an arc of K

in the boundary of the exterior subdivision S contains a labeled vertex v. If there are m arcs of

K in the boundary of S, then v is labeled with m labels: in constructing I(f(xa)), we placed

a vertex labeled with one label on each arc in the boundary of S and then identified these m

vertices.

By construction, every wire crossing in I(f(xa)) coincides with an edge in I(f(xa)) and

likewise for I(xa). If vertex v is adjacent to vertex v′ in xa, then there is a wire crossing in

I(xa). The wire crossings in I(f(xa)) are obtained from the wire crossings in I(xa). Thus for

an edge in xa from v to v′, there is an edge in I(f(xa)), and thus a vertex corresponding to

v′ in I(f(xa)) by construction of I(f(xa)). Thus every vertex in xa has a corresponding vertex

in g(f(xa)) and if two vertices are adjacent in xa, there are corresponding vertices in g(f(xa))

that are adjacent. Thus xa and g(f(xa)) are isomorphic.

Because xa and g(f(xa)) are isomorphic as graphs, the intermediate diagram of f(xa) and

the intermediate diagram of xa are the same. Thus we will use the term intermediate diagram

to refer to both I(f(xa)) and I(xa).

We will need the following definitions for Theorem 3.1.22 and its proof.

Definition 3.1.20. Let D be an intermediate diagram. Any subdivision of D that contains a

vertex is called a vertex subdivision.

See Figure 3.9 for an example of an intermediate diagram with its vertex subdivisions

shaded.

Definition 3.1.21. Let x ∈ P for some poset P . The principal order ideal generated by x

is I(x) = {y ∈ P : y ≤ x}.
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Figure 3.10: We can obtain a wire diagram D ∈ Pn from any abstracted element of S([n]).
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Figure 3.11: From certain wire diagrams D ∈ Pn, we can obtain an abstracted element of
S([n]).
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Safe edge deletion.

Figure 3.12: Edge contraction and safe edge deletion yield cover relations in the Tuffley poset.
These operations correspond to uncrossing wires in a wire diagram, yielding cover relations in
the uncrossing poset.
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Theorem 3.1.22. Intervals [0̂,Γ] ⊆ S([n])∪{0̂} are isomorphic to principal order ideals of Pn.

Proof. By Remark 3.1.9, the interval [0̂,Γ] ⊆ S([n]) ∪ {0̂} is isomorphic to the interval of

abstracted elements [0̂,Γ]a. The map f is a bijection with inverse g between abstracted elements

of S([n]) and a subset of wire diagrams of Pn by Lemma 3.1.19. We will show that xa ≤ ya

in [0̂,Γ]a if and only if f(xa) ≤ f(ya) in Pn. It suffices to show that xa is obtained from

some abstracted element x′a by an edge contraction or safe edge deletion if and only if f(xa)

is obtained from f(x′a) by uncrossing a pair of wires so that the minimal crossing number in

f(xa) is one less than the minimal crossing number in f(x′a).

Let I(x′a) be the intermediate diagram of x′a and let I(xa) be the intermediate diagram of

xa. Let w1 and w2 be two wires that cross in I(x′a) and whose crossing coincides with the edge

e of x′a. The edge e is contained in two subdivisions, say S and S′, of I(xa), where one endpoint

of e is in S and the other endpoint is in S′. Suppose xa is obtained from x′a by contracting

edge e. We obtain I(xa) from I(x′a) by uncrossing w1 and w2 so that S and S′ merge and then

contracting edge e. Now suppose x is obtained from x′ by a safe deletion of edge e. Then I(xa)

is obtained from I(x′a) by uncrossing wires w1 and w2 so both wires still intersect e and then

deleting edge e. In both cases, since I(xa) has one less edges than I(x′a), f(xa) has exactly one

less crossing than f(x′a). Because xa is an abstracted X−tree, f(xa) has no double crossings

by Lemma 3.1.12. Thus the minimal crossing number in f(xa) is one less than the minimal

crossing number in f(x′a).

On the other hand, consider if f(xa) ≤ f(x′a) in Pn. We want to show that xa ≤ x′a

as abstracted elements of S([n]). It suffices to show that if f(xa) is obtained from f(x′a) by

uncrossing a pair of wires so that the minimal crossing number of f(xa) is precisely one less than

the minimal crossing number of f(x′a), then xa can be obtained from x′a by an edge contraction

or safe edge deletion. Let I(f(xa)) be the intermediate diagram of f(xa) and let I(f(x′a)) be

the intermediate diagram of f(x′a). Suppose f(xa) is obtained from f(x′a) by uncrossing wires

w1 and w2 and suppose the minimal crossing number of f(xa) is precisely one less than the

minimal crossing number of f(x′a). This uncrossing in I(f(x′a)) either

(i) decreases the number of vertex subdivisions by exactly one or

(ii) maintains the number of vertex subdivisions.

If (i) holds, then two vertex subdivisions merge in I(f(x′a)) to obtain I(f(xa)). Each of these

vertex subdivisions contains a vertex and these vertices are adjacent by the edge e. Since the

edge e is entirely contained in a single subdivision in I(f(xa)), we contract edge e to obtain a

valid intermediate diagram. Thus g(f(xa)) = xa is obtained from g(f(x′a)) = x′a by contracting

edge e. See Figure 3.13. If (ii) holds, then g(f(xa)) = xa and g(f(x′a)) = x′a have the same
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w1
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w2w1

→

w2w1

Figure 3.13: If uncrossing wires in I(f(x′a)) decreases the number of vertex subdivisions, this
implies an edge is contracted in x′a.

w2

w1

→

w2

w1

→

w2

w1

Figure 3.14: If uncrossing wires in I(f(x′a)) maintains the number of vertex subdivisions, this
implies an edge is deleted in x′a.

number of vertices but xa has one fewer edge than x′a. Thus xa is obtained from x′a by deleting

an edge. See Figure 3.14. We must show this is a safe edge deletion. We do so by showing that

if the resulting subdivisions after uncrossing are not exterior subdivisions (in which case the

corresponding vertex is labeled), then they have at least three wires (and thus three crossings)

in their boundaries. Assume that instead there is an interior subdivision S with two wires in

its boundary. Then these two wires must cross twice, otherwise S is not bounded by only these

wires. Then this wire diagram has an isotopy class representative in which these wires do not

cross at all. Since the minimum crossing number of f(xa) is at least two less than the minimum

crossing number of f(x′a), this implies f(xa) is not covered by f(x′a), a contradiction.

Figure 3.12 gives an example of how cover relations in Pn correspond to cover relations in

S([n]) ∪ {0̂}.
Theorems 3.1.7 and 3.1.22 together imply that the dual EC-labeling of Pn given by Hersh

and Kenyon gives an explicit dual EC-labeling of intervals in S([n]) ∪ {0̂}:
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Corollary 3.1.23. Intervals [0̂,Γ] ⊆ S([n]) ∪ {0̂} are dual EC-shellable.

3.2 Partially ordering the facets of E([n]) by the enriched Tamari

poset

The initial motivation for developing the enriched Tamari poset was in the hope of finding a

shelling order on the facets of the order complex of S([n]). Thus this next section investigates

whether there is an ordering on the coatoms of S[n] = S([n])∪{0̂, 1̂} that satisfies the conditions

of a recursive coatom ordering. As it turns out, no such ordering exists, as we show in Section

3.3. We also discuss why any linear extension of ETn fails as a shelling order on the edge-product

space of phylogenetic trees (in the sense of Definition 1.1.21). We also describe how ETn can

nonetheless give some insight into the structure of E([n]). In particular, it helps us prove that

E([n]) is gallery-connected (see Definition 3.2.4).

If the order complex of S([n]) is shellable, then the intersection of the closure of any facet

with the closures of the previous facets in the shelling order must be pure and codimension one.

The next definitions and lemma help us describe the intersection of facets of the order complex

of S([n]).

Definition 3.2.1. For x ∈ S([n]), x is the subcomplex of E([n]) consisting of all faces repre-

sented by elements in the principal order ideal generated by x.

Note that x has face poset I(x).

Definition 3.2.2. The intersection of elements x and y in the poset S([n]) is the subcomplex

of E([n]) whose faces correspond to elements in the intersection of the principal order ideal of

x and the principal order ideal of y.

Note that the intersection of principal order ideals of a poset is a poset.

Lemma 3.2.3. Let Ci and Cj be maximal elements of S([n]) such that Cj is obtained from

Ci by a Tamari move. Then I(Ci) ∩ I(Cj) has a unique maximal element, w. Furthermore, w

corresponds to a codimension one face of the faces represented by Ci and Cj in E([n]). The same

holds if Cj is obtained from Ci by a lexicographic move or if Cj is obtained by a lexicographic

move on a vertex v of Ci, followed by a Tamari move on the same vertex v.

Proof. If Cj is obtained from Ci by a Tamari move on v with parent v′, then Ci and Cj differ

only locally. In particular, they differ only by which edges are adjacent to v and which edges

are adjacent to v′. As a result, the intersection of Ci and Cj can be obtained by considering

the intersection of the elements Di and Dj , which are shown below and given by the words

w(Di) = ((1, 2), 3) and w(Dj) = (1, (2, 3)) respectively, where 1, 2, 3, and 4 represent disjoint
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maximal subtrees of Ci. In particular, 1 represents the subtree ↓ lv(Ci), 2 represents the subtree

↓ rv(Ci), 3 represents ↓ r′v(Ci) and 4 represents the subtree obtained from Ci by removing ↓ v′.
Note that the intersection I(Di) ∩ I(Dj) can be calculated by hand to verify this lemma, but

this is tedious.

1 2

v

v′

4

3

Di

1 2

v

v′

4

3

Dj

Suppose y ∈ I(Di)∩I(Dj). Then by Theorem 1.4.15, y can be obtained from Di (respectively

Dj) by a series of contractions and safe edge deletions. Furthermore, by Proposition 1.4.16, at

least one edge must be contracted in Di (respectively Dj) to obtain y. Observe that if an

element y is disconnected and contains an isolated vertex labeled with only one label, say x,

then we can start to obtain y by first contracting edge e = [v, v′] and then deleting the edge

adjacent to the leaf labeled x. The only disconnected elements of S([4]) do not contain at least

one isolated vertex with one label are the following two [4]-forests:

1,2

3,4

;F1 =

1,4

2,3

F2 =

It is clear that neither of these [4]-forests is in the intersection I(Di) ∩ I(Dj). In particular,

F1 ∈ I(Di) but F1 /∈ I(Dj) while F2 ∈ I(Dj) but F2 /∈ I(Di). Thus any element in I(Di)∩I(Dj)

is either disconnected and contains at least one isolated vertex labeled by one label, or is

connected. We claim that if y is connected, then y can be obtained from Di (respectively Dj) if

we first contract edge e = [v, v′]. Assume otherwise. then y would be obtainable by contracting

only some subset of the edges of Dj that are adjacent to leaves. Let zj be the element obtained

from Dj by contracting all edges adjacent to leaves in Dj . Then zj ≤ y and so zj ∈ I(Di)∩I(Dj).

It is not difficult to see, however, that zj ≮ Di in S([4]). This means we must contract edge e

to obtain y from Di (respectively Dj). Thus any element y ∈ I(Di)∩ I(Dj) can be obtained by

first contracting edge e in Di (or Dj). Let w′ be the element obtained by contracting edge e in

Dj . Since w′ is obtained by contracting edge e in Dj and Dj is obtained from Di by a Tamari

move on vertex v, Lemma 1.4.17 says that w′ lDi.
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We have shown that if y ∈ I(Di)∩I(Dj), y can be obtained fromDi orDj by first contracting

edge e. Thus if y ∈ I(Di) ∩ I(Dj), then y < w′. This implies w′ is the unique maximal element

of I(Di) ∩ I(Dj) and thus that I(Ci) ∩ I(Cj) has a unique maximal element w obtained by

contracting edge e = [v, v′] in Ci (or Cj). Since w is obtained by contracting a single edge in

either Ci or Cj , w represents a codimension one face within the faces represented by Ci and Cj .

This same argument holds if Cj is obtained from Ci by a lexicographic move on vertex v

with parent v′. As above, we only need to consider the intersection of the two elements Di and

Dj in S([4]) given by the words w(Di) = ((1, 2), 3) and w(Dj) = (1, (3, 2)), where 1, 2, 3, and

4 represent disjoint maximal subtrees of Ci. In particular, 1 represents the subtree ↓ lv(Ci),
2 represents the subtree ↓ rv(Ci), 3 represents ↓ r′v(Ci) and 4 represents the subtree obtained

from Ci by removing ↓ v′.

1 2

v

v′

4

3

Di

1 3

v

v′

4

2

Dj

This time, the only disconnected elements not contained in I(Di)∩ I(Dj) are the following two

[4]−forests:

1,2

3,4

;F1 =

1,3

2,4

F2 =

Thus any element in I(Di)∩I(Dj) is either disconnected and contains at least one isolated vertex

labeled by one label, or is connected. The rest of the argument is identical to the argument

above.

Finally, assume Cj is obtained from Ci by a lexicographic move followed by a Tamari move

on vertex v with parent v′. As above, we only need consider the intersection of the two elements

Di and Dj in S([4]) given by the words w(Di) = (1, (2, 3)) and w(Dj) = ((1, 3), 2), where 1, 2, 3,

and 4 represent disjoint maximal subtrees of Ci. In particular, 1 represents the subtree ↓ lv(Ci),
2 represents the subtree ↓ r′v(Ci), 3 represents ↓ rv(Ci) and 4 represents the subtree obtained

from Ci by removing ↓ v′.
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1 3

v

v′

4

2

Di

1 2

v

v′

4
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Dj

This time, the only disconnected elements not contained in I(Di)∩ I(Dj) are the following two

[4]-forests:

1,4

2,3

;F1 =

1,3

2,4

F2 =

Thus any element in I(Di) ∩ I(Dj) is either disconnected and contains at least one isolated

vertex labeled by one label, or is connected. The rest of the argument is identical to the first

argument.

One notion that is helpful in determining the structure of a topological space is that of

gallery-connectedness. The following theorem uses Lemma 3.2.3 to show that the edge-product

space of phylogenetic trees is gallery-connected.

Definition 3.2.4. A pure CW-complex ∆ is gallery-connected if for any two d-dimensional

facets Fj and Fk, there exists a sequence Fj = F0, G1, F1, G2, F2, . . . Gr−1, Fr−1, Gr, Fr = Fk

where for 1 ≤ i ≤ r, Fi is d-dimensional, Gi is (d-1)-dimensional and Fi−1 ∩ Fi = Gi.

Theorem 3.2.5. The edge-product space of phylogenetic trees, E([n]), is gallery-connected.

Proof. For this proof, the relation ≤ will denote the relation given by the enriched Tamari

poset. The enriched Tamari poset ETn is a connected partial order on the maximal elements

of the Tuffley poset, S([n]). Since each element of the Tuffley poset represents a face of the

edge-product space of phylogenetic trees, ETn gives a partial order on the facets of E([n]). By

Lemma 3.2.3, if Cx and Cy are such that Cx l Cy ∈ ETn, then I(Cx) ∩ I(Cy) has a unique

maximal element, say Gxy in S([n]). This element Gxy corresponds to a face of E([n]) that is

codimension one within the closures of the faces corresponding to Cx and Cy.

Now let Ci and Cj be elements of ETn that represent any two facets of E([n]). We consider

two cases.
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In case 1, let Ci and Cj be comparable in ETn. Without loss of generality, assume Ci < Cj .

There is a saturated chain from Ci to Cj : CilCi1 lCi2 l . . .lCik−1
lCik = Cj . The sequence

Ci, Gi,i1 , Ci1 , Gi1,i2 , Ci2 . . . Cik−1,j , Cj is the desired sequence.

For case 2, assume Ci and Cj are incomparable in ETn. Since there exists a unique minimal

element in ETn, 0̂, there exists a saturated chain from 0̂ to Ci: 0̂ = Ci0lCi1lCi2l. . .lCiki = Ci.

Likewise there exists a saturated chain from 0̂ to Cj : 0̂ = Cj0 l Cj1 l Cj2 l . . . l Cjkj = Cj .

Then we can walk along the edges of ETn from Ci to 0̂ and then from 0̂ to Cj and we obtain

the desired sequence:

Ci, Giki iki−1
, Ciki−1

, . . . Ci1 , Gi1,i0 , 0̂, Gj0j1 , Cj1 , . . . Gjkj−1jk , Cj .

Now let us introduce a notion we will use repeatedly.

Definition 3.2.6. Let K be a CW complex and P a partial order on its facets. Let Ci, Cj ∈ P .

Then P satisfies the codimension one property if the subcomplex Cj
⋂(
∪i<jCi

)
of K is

pure and codimension one within Cj .

As we see in the next example, ETn does not have the codimension one property when

viewed as an ordering on the facets of the edge-product space of phylogenetic trees.

Example 3.2.7. Figure 3.15 shows a maximal element in the intersection of the maximal elements

Ci and Cj of S([6]). However, F ≮ w in S([6]) for any w with the following properties: w ∈
I(Cj) ∩ I(Ck) for Ck <ETn Cj and w is obtained from Cj by contracting a single edge. Thus

Cj ∩ (∪Ci≤ETnCjCi) is not pure and codimension one with Cj .

Remark 3.2.8. Let≤ETn denote the order on the facets of the edge-product space of phylogenetic

trees given by the enriched Tamari poset. There cannot exist a linear extension ≤ of ≤ETn that

satisfies:

Cj
⋂ ⋃

Ci<Cj

Ci

 = Cj
⋂ ⋃

Ci<ETnCj

Ci

 (3.2.1)

See Example 3.2.9 for an example of why this equality fails for every linear extension of the

enriched Tamari poset.

Example 3.2.9. Let Ci be such that w(Ci) = (((1, 2), 4), 3) and Cj be such that w(Cj) =

(((1, 3), 2), 4). There is an element F ∈ I(Ci)∩I(Cj) that can be obtained from Ci (respectively

Cj) by contracting an internal edge and deleting the edge adjacent to the leaf labeled 3. The

elements Ci, Cj , and F are shown in Figure 3.16.
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Figure 3.15: The enriched Tamari poset ETn does not have the codimension one property. The
face represented by F is not contained in any face that is represented by an element obtained
from Cj by contracting a single edge.
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F
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Figure 3.16: The element F is below the elements Ci and Cj in S([5]). In ET5, Ci and Cj are
incomparable but for any linear extension < of ET5, either Ci < Cj or Cj < Ci.
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Figure 3.17: The subposet of the enriched Tamari poset consisting of all elements below either
Ci or Cj given in Example 3.2.9.

Note that Ci and Cj are not comparable in ET5. For any linear extension ≤ of ≤ETn , either

Ci ≤ Cj or Cj ≤ Ci. The set of elements of ET5 below either Ci or Cj in ETn is shown

in Figure 3.17. It is straightforward to verify that F * I(Ci) ∩ I(Ck) for any Ck <ETn Ci.

Likewise, F * I(Cj) ∩ I(Ck) for any Ck <ETn Cj . Thus for any linear extension ≤ of ETn,

the face represented by F is contained in the subcomplex Cj ∩
(
∪Ci<CjCi

)
. However, F is not

contained in Cj ∩
(
∪Ci<ETnCjCi

)
. Thus 3.2.1 does not hold.

3.3 The poset S[n] does not admit a recursive coatom ordering

This section serves to show that for n ≥ 5, the Tuffley poset with a 0̂ and 1̂ adjoined is not dual

CL-shellable. We will show that for n ≥ 5, there does not exist a total order on the coatoms of

S[n] = S([n])∪ {0̂, 1̂} that satisfies the conditions of a recursive coatom order. In particular, we

show that for any coatom ordering of S[n], (ii) of Definition 1.2.21 fails.

The general idea for this proof is as follows. For n ≥ 5 and for any ordering Ω on the coatoms

of S[n], there must be an element in Figure 3.21 that comes last, say Ci. The two elements

adjacent to Ci in Figure 3.21, say Cj and Ck, are both above an element F (specifically defined

in Lemma 3.3.14). Supposing Cj comes after Ck in Ω, we prove that there is no coatom that

comes before Cj in Ω that covers a common element z with Cj and such that z is above F . This

contradicts (ii) of Definition 1.2.21. Two results that are instrumental in proving this fact are

Lemma 3.3.22 and Proposition 3.3.23 both of which follow from the idea that we can associate

any element that covers F with a vertex of a tree TF . The tree TF has the property that two

elements covering F are associated with adjacent vertices in TF if and only if they are covered

by a common coatom. Lemma 3.3.22 relies on the fact that since TF is a tree, it has no cycles.

Proposition 3.3.23 relies on the fact that since TF is a tree, there is a path between any pair of
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vertices.

We first give a few definitions from elementary graph theory that we will need later in this

section.

Definition 3.3.1. A graph G is a collection of vertices and edges between pairs of vertices.

Definition 3.3.2. A path in the graph G is any sequence of vertices v1, v2, . . . vm such that

adjacent nodes ni, ni+1 in the sequence are connected by an edge G.

Definition 3.3.3. A cycle in the graph G is a path v1, v2, . . . vm where v1 = vm.

Definition 3.3.4. A simple cycle in the graph G is a cycle n1, n2, . . . nm−1, nm = n1 where

no vertex other than the first is repeated in the sequence.

The remainder of the definitions, propositions, and lemmas in this section are used to prove

Theorem 3.3.25. As the proofs and notations are somewhat technical, we provide a complete

example of the argument for S[5] at the end of this section (Example 3.3.26). We also provide

examples throughout the section, especially when new notation is introduced.

We now introduce a graph that will be crucial to proving that S[n] does not admit a recursive

coatom ordering.

Definition 3.3.5. Let H([n]) be the graph that has coatoms of S[n] (i.e. elements of C[n]) as

vertices and an edge between vertex Ci and Cj if and only if Ci and Cj cover a common element

in S([n]).

Note that H([n]) is sometimes called the facet-ridge graph of the CW complex E([n]). See

Figure 3.18 for the graph H([5]). We use the following definitions to say more about H([n]) in

Proposition 3.3.7.

Definition 3.3.6. Let Ci ∈ C[n] and suppose a vertex v′ is the parent of a vertex v in Ci. We

say v is ineligible for a Tamari move if v is the right child of v′. Otherwise, v is eligible

for a Tamari move. The vertex v is ineligible for a lexicographic move if either v is the

right child of v′ or ↓ rv <lex↓ rv′ . Otherwise, v is eligible for a lexicographic move.

Note that if v is ineligible for a Tamari move, then v is also ineligible for a lexicographic

move.

Proposition 3.3.7. If Ci is a vertex of H([n]), then Ci is adjacent to 2(n− 3) other vertices.

Proof. The maximal element Ci ∈ S([n]) has (2n − 3) − n = n − 3 internal edges. For each

internal edge e = [v, v′] of Ci, there are two other maximal elements of S([n]) that are adjacent

to Ci in H([n]), which are obtained as follows. Suppose v′ is the parent of v. If v is eligible for
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Figure 3.18: The graph H([5]). The bold edges mark a nontrivial cycle of H([5]).
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a lexicographic move, one element is obtained by performing a lexicographic move on vertex v

and one element is obtained by performing a lexicographic move followed by a Tamari move on

vertex v. If v is ineligible for a lexicographic move but eligible for a Tamari move, one element

is obtained by performing a Tamari move on vertex v and the other element is obtained by

reversing a lexicographic move on vertex v. If v is ineligible for a Tamari move (and thus

also ineligible for a lexicographic move), one element is obtained by reversing a Tamari move

on vertex v and the other element is obtained by reversing a Tamari move on vertex v then

reversing a lexicographic move on vertex v.

Definition 3.3.8. A nontrivial cycle of H([n]) is a simple cycle that contains more than 3

vertices. A trivial cycle is a simple cycle that contains 3 vertices.

Remark 3.3.9. By Lemma 1.4.17, any trivial cycle in H([n]) has three vertices, each of which

is a coatom of S[n] that covers some element w of S[n].

We now relate the graph H([n]) to all possible recursive coatom orderings of S[n].

Definition 3.3.10. A coatom order C1, C2, . . . C(2n−5)!! of S[n] is compatible with H([n]) if

for all j > 1, a coatom Cj is adjacent in H([n]) to some Ci for i < j.

Lemma 3.3.11. If S[n] admits a recursive coatom ordering Ω, then Ω must be compatible with

H([n]).

Proof. Suppose Ω = C1, C2, . . . , C(2n−5)!! is a recursive atom ordering on S∗[n]. Assume Ω is not

compatible with H([n]). Then there is some j > 1 such that Cj is not adjacent to any Ci in

H([n]) for i < j. In other words, there is no z ∈ S∗n such that Cj l z and Ci l z for any i < j.

In particular, though C1 and Cj are both less than 1̂ ∈ S∗, there is no Ck such that k < j and

Ck l z, Cj l z for some z < 1̂ ∈ S∗n. This is a contradiction of the assumption that S[n] admits

a recursive coatom ordering.

We will need the following notation for the Definition 3.3.12: Let Ci be a coatom of S[n]. If

Ci has a leaf labeled x, then the edge adjacent to this leaf is denoted ex.

Definition 3.3.12. A triple {Ci, Cj , Ck} of coatoms of S[n] satisfies the triplet condition if

the following hold:

Triplet Condition:

1. Ci contains a leaf labeled x such that ex is adjacent to two internal edges, say ex1 and ex2

2. Ci and Ck cover Fk obtained by contracting ex1 in Ci

3. Ci and Cj cover Fj obtained by contracting ex2 in Ci.
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See Figure 3.19 for an example of a triple (Ci, Cj , Ck) that satisfies the triplet condition.

Proposition 3.3.13. If {Ci, Cj , Ck} satisfies the triplet condition, then Cj and Ck are not

adjacent in H([n]).

Proof. For leaves x, y in Ci, let dCi(x, y) be the number of edges in the unique path between

x and y. Since {Ci, Cj , Ck} satisfies the triplet condition, there is some leaf labeled x in Ci

that is adjacent to internal edges ex1 and ex2 . Furthermore, Cj covers the element obtained

by contracting ex1 and Ck covers the element obtained by contracting ex2 . Let y be any leaf

for which dCj (x, y) < dCi(x, y) (see Definition 1.4.18). Then dCk
(x, y) = dCj (x, y) + 2. If Cj

and Ck are adjacent in H([n]) then they cover a common element G which can be obtained

by contracting a single edge in Ck. However, since dCk
(x, y) = dCj (x, y) + 2, then dG(x, y) ≤

min{dCk
(x, y), dCj (x, y)} = dCj (x, y) = dCk

(x, y) − 2 by Proposition 1.4.19. Thus at least two

edges must be contracted in Ck to obtain G. Hence Ck does not cover G. This is a contradiction,

so Cj and Ck are not adjacent in H([n]).

Lemma 3.3.14. Suppose Ci, Cj, and Ck satisfy the triplet condition. Then there exists a

maximal element F of I(Cj) ∩ I(Ck) such that F l Fj l Cj and F l Fk l Ck in S[n].

Proof. Since Cj and Ck are not adjacent in H([n]), they do not cover a common element in

S([n]). Thus Fj 6= Fk. By construction, in each of Fj and Fk there exists a leaf labeled x such

that the other vertex of ex has degree 4. Let F be the [n]-forest obtained from either Fj or Fk

by deleting ex. Since F can be obtained by contracting an edge in either Cj or Ck and then

deleting ex, F ∈ I(Cj) ∩ I(Ck). Furthermore, F is maximal since Cj and Ck are not adjacent

in H([n]) by Proposition 3.3.13 and thus do not cover a common element.

See Figure 3.19 for an example of an element F obtained as in the proof of Lemma 3.3.14.

Given F constructed from the triple (Ci, Cj , Ck) as in Lemma 3.3.14, we can determine

those coatoms of S[n] that are adjacent to Ci and that are above F . We do this in the next

lemma, which we will need for the proof of Theorem 3.3.25.

Lemma 3.3.15. Suppose (Ci, Cj , Ck) are coatoms of S[n] that satisfy the triplet condition and

suppose that F is the element of S[n] described as in Lemma 3.3.14. Then there are only four

coatoms of S[n], Cj , Ck, Dj , Dk, that are both adjacent to Ci in H([n]) and that cover F . Fur-

thermore, Cj and Dj are adjacent and Ck and Dk are adjacent in H([n]).

Proof. By definition, Ci and Cj are adjacent in H([n]) because they both cover Fj . Likewise,

Ci and Ck are adjacent in H([n]) because they both cover Fk. By Lemma 1.4.17, Fj is covered

by another coatom Dj and Fk is covered by another coatom Dk. Note that Dj and Cj are

adjacent in H([n]) and Dk and Ck are adjacent in H([n]). Because Fj 6= Fk, Dj does not cover
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Figure 3.19: An interval [F, 1̂] in S5 obtained as described in Lemma 3.3.14. The element F is
a maximal element of I(Cj) ∩ I(Ck), where {Ci, Cj , Ck} satisfies the triplet condition.
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Fk and Dk does not cover Fj . Thus Dk 6= Dj . This means there are at least four coatoms of

S[n] adjacent to Ci in H([n]).

Suppose F ′ ∈ S[n] is such that FlF ′lCi. Then F ′ must be obtained from Ci by contracting

an edge adjacent to ex, otherwise the leaf labeled x in F ′ is not adjacent to a degree 4 or labeled

vertex, and so deleting ex in F ′ would not be a safe deletion. There are only two edges adjacent

to ex: one is ex1 and the other is ex2 . Contracting these edges in Ci yields Fk and Fj respectively.

Thus if F ′ is such that F lF ′lCi, then F ′ = Fj or F ′ = Fk. The only coatoms of S[n] covering

Fj are Cj and Dj and the only coatoms of S[n] covering Fk are Ck and Dk. Thus there are only

four coatoms of S[n] that are both adjacent to Ci in H([n]) and above F in S([n]).

Definition 3.3.16. Let F ∈ S([n]). An F -path is a path in H([n]) all of whose vertices are

coatoms of S[n] that are above F . An F -cycle is an F -path that is a simple cycle.

For the remainder of this section, suppose (Ci, Cj , Ck) are coatoms of S[n] that satisfy the

triplet condition and that F is the element of S[n] obtained from Ci by contracting an edge

adjacent to ex, then deleting ex.

Definition 3.3.17. The element F < Ci consists of an isolated vertex labeled x and an ([n])−
{x})-tree. The tree TF is the ([n]− {x})-tree of F .

The following remark and subsequent definition is crucial for the proofs of Lemma 3.3.22,

Proposition 3.3.23 and Proposition 3.3.24.

Remark 3.3.18. For each coatom A of S[n] above F , there is some F ′ such that F l F ′ l A

where F ′ is obtained from A by contracting an edge of A (see Lemma 1.4.16). If F ′ is obtained

by contracting an internal edge, then there are two other coatoms of S[n] that also cover F ′ by

Lemma 1.4.17. In this case, we associate the element F ′ to the internal vertex v of TF having

the property that adding an edge between v and the vertex labeled x in F yields F ′. If F ′ is

obtained by contracting a leaf edge, we associate the element F ′ to the leaf v of TF , where v is

such that adding an edge between v and the vertex labeled x in F yields F ′. See Figure 3.20

for an example.

Definition 3.3.19. The graph G(F ) is the graph that has elements of S([n]) that cover F as

vertices and an edge between vertices a and b if they are associated to vertices in the tree TF

that are adjacent.

See Figure 3.23 for an example of the graph G(F ).

Proposition 3.3.20. The graph G(F ) is isomorphic to TF .

Proof. Each vertex of G(F ) is an element of S([n]). Any element of S[n] covering F can be

obtained from F by adding an edge between the isolated vertex labeled x and a vertex of TF . If

77



F ′ covers F in S[n], we associate F ′ to the vertex vF ′ of TF with the following property: adding

an edge between the isolated vertex labeled x and vF ′ in F yields F ′. Thus for every vertex of

TF , we have an element of S[n] covering F . By definition of G(F ), vertices of G(F ) are adjacent

precisely when the vertices to which they correspond in TF are adjacent. Thus G(F ) and TF

are isomorphic as graphs.

Remark 3.3.21. Suppose v1 and v2 are adjacent vertices in G(F ). There is an element F1

(respectively F2) of S[n] obtained from F by adding an edge between the isolated vertex labeled

x and the vertex of TF corresponding to v1 (respectively v2). Note F1mF and F2mF . There is

a coatom A of S[n] with the following property: A has two edges adjacent to ex, say e1 and e2,

such that contracting e1 yields F1 and contracting e2 yields F2. Thus if a coatom A covers two

distinct elements above F , say F1 and F2, then A corresponds to the edge in G(F ) between F1

and F2. In other words, edges in G(F ) correspond to coatoms that cover two elements above

F . An example of a coatom with this property is Ci for the triple (Ci, Cj , Ck) satisfying the

triplet condition. In this case, Ci covers two distinct elements, Fj and Fk, both of which cover

F as in Lemma 3.3.14. Thus Ci corresponds to an edge in G(F ).

We will need the following lemma for the proof of Theorem 3.3.25.

Lemma 3.3.22. There are no nontrivial F -cycles in H([n]).

Proof. If Cr and Cs are both maximal elements of S([n]) above F and they are adjacent in

H([n]), then there is a vertex in G(F ) representing the common element they cover in S([n]).

Assume there is a nontrivial F -cycle C1, C2, C3, . . . Cq, Cq+1 = C1 in H([n]). Then for all t

where 1 ≤ t < q, Ct and Ct+1 cover a common element in S([n]) and this element is associated

to a vertex Gt,t+1 in G(F ). Then G1,2, G2,3, . . . Gq,q+1, G1,2 is a cycle in G(F ). Since G(F ) is

isomorphic to TF and TF is a tree, this is a contradiction.

We also have the following proposition which says that any pair of coatoms of S[n] above F

are connected by an F -path in H([n]). This proposition is important for the proof of Theorem

3.3.25

Proposition 3.3.23. Suppose the coatoms A and B of S[n] are both above F . Then there is an

F -path between A and B in H([n]).

Proof. If A is above F , then there is some Fa in S[n] such that Am Fa m F and such that Fa is

obtained from F by contracting an edge of A. Similarly, if B is above F , then there is some Fb

in S[n] such that BmFbmF . The elements Fa and Fb are vertices in G(F ). Since G(F ) is a tree

by Proposition 3.3.20, there is a path from Fa to Fb in G(F ), say Fa = F1, F2, . . . Fq = Fb. For

1 ≤ t < q, Ft and Ft+1 are covered by the element C(t,t+1) ∈ S[n], where C(t,t+1) corresponds to
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Figure 3.20: In the proof of Lemma 3.3.22, we associate every element covering F with a vertex
of TF .

the edge between Ft and Ft+1 in G(F ), as explained in Remark 3.3.21. Then the following is

an F -path from A to B in H([n]): C(1,2), C(2,3), . . . , C(q−2,q−1), C(q−1,q).

Proposition 3.3.24. Let A be a coatom of S[n] above F and suppose (Ci, Cj , Ck) are coatoms

of S[n] that satisfy the triplet condition. If an F -path from A to Ci contains Cj (respectively

Ck), it cannot contain Ck (respectively Cj).

Proof. Since Ci covers both Fj and Fk, Ci is associated to the edge in G(F ) between Fj and Fk

by Remark 3.3.21. Since G(F ) is a tree by Proposition 3.3.20, there is a unique path between

Fj and Fk as vertices in G(F ), namely the path consisting of the edge corresponding to Ci.

Thus any F -path from Cj to Ck must contain Ci. Thus if there is an F -path that contains both

Cj and Ck, it contains Ci. This implies any F -path from A to Ci can contain only one of Cj or

Ck.

We are now ready to prove the main theorem of this chapter:

Theorem 3.3.25. There does not exist a recursive coatom ordering of S[n].

Proof. Suppose that Ω is a recursive coatom ordering of S[n]. Let K be the cycle of H([n])

shown in Figure 3.21. Let Ci be the vertex in K that is latest in Ω. Let Cj be one of the

vertices adjacent to Ci in K and let Ck be the other vertex adjacent to Ci in K. Observe
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that (Ci, Cj , Ck) satisfies the triplet condition. Let F be the maximal element of I(Cj)∩ I(Ck)

described in Lemma 3.3.14. Let A be the earliest coatom in Ω that is above F . Since by Lemma

3.3.15, Ci is adjacent in H([n]) to only four other coatoms that are above F , namely the atoms

we called Cj , Ck, Dj , and Dk, every F -path from A to Ci contains one of these four coatoms. If

an F -path from A to Ci contains Dj (respectively Dk), then there exists an F -path from A to

Ci that contains Cj (respectively Ck) since Dj and Cj (respectively Dk and Ck) are adjacent

in H([n]). Thus there exists an F -path in H([n]) between A and Ci that contains one of Ck or

Cj . By Proposition 3.3.24, no F -path from A to Ci can contain both Cj and Ck. Thus there is

an F -path from A to Ci containing exactly one of Cj or Ck. Without loss of generality, let Ck

be in the F -path from A to Ci. Let B be the earliest coatom after A in Ω that is above F such

that there exists an F -path between B and Ci containing Cj . This B is guaranteed to exist:

Cj is in an F -path from Cj to Ci, but if there is a coatom C∗ that comes before Cj and after

A in Ω such that there exists an F -path from C∗ to Ci containing Cj , then we take this earlier

coatom C∗ to be B.

By definition, A and B are both below F in S∗[n], namely the dual poset to S[n]. By definition

of a recursive coatom ordering (in particular (ii) of Definition 1.2.21), there must exist some

element C <Ω B and some element z ∈ S∗[n] such that C l z,B l z and z < F . Note that there

is no F -path from C to Ci containing Cj , otherwise C (and not B) would have been the first

coatom C∗ after A with the property that there is an F -path from C∗ to Ci containing Cj . Any

C <Ω B is not adjacent to B in H([n]): if C were adjacent to B, this would imply there was a

nontrivial F -cycle in H([n]) consisting of the union of the F -path from Ci to B (containing Cj),

the edge between B and C, and the F -path from C to Ci, contradicting Lemma 3.3.22. Since

B and C are not adjacent, they are not covered by a common element in S∗[n]. Thus no such z

can exist. This is a contradiction to the assumption that Ω is a recursive coatom ordering of

S[n].

Example 3.3.26. Here we provide an example of why a coatom ordering Ω of S[5] fails to be a

recursive coatom ordering. Let K be the cycle in H([5]) shown in Figure 3.18 with bold edges.

Note that this is the same K as in Figure 3.21. Suppose that the element Ci given by the word

w(Ci) = (((1, 4), 2), 3) comes last in Ω among all elements of K. One element adjacent to Ci in

K is the element Cj given by the word w(Cj) = (((1, 4), 3), 2). The other element adjacent to

Ci in K is the element Ck given by the word w(Ck) = (((1, 2), 4), 3). Observe that the triple

(Ci, Cj , Ck) satisfies the triplet condition. There is a maximal element F of I(Cj) ∩ I(Ck) as

described in Lemma 3.3.14. The element F can be seen in Figure 3.19.

The graph shown in Figure 3.22 is the subgraph of H([5]) consisting of all the coatoms of S[5]

that are above F . Let A be the earliest coatom in Ω that is above F . As an example, suppose

A = Ck. There is an F -path (i.e. a path in Figure 3.22) from A = Ck to Ci that contains exactly
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one of Cj or Ck. In particular, it contains Ck. Let B be the first coatom after Ck in Ω that is

above F and such that there exists a path between B and Ci containing Cj . As an example,

suppose B is the coatom given by the word w(B) = ((1, 4), (2, 3)). Note that B is the coatom

at the top left in Figure 3.22.

Both A and B are below F in S∗[5]. If Ω is a recursive coatom ordering, there must exist

some coatom earlier than B in Ω, say C, and some element z ∈ S∗[5] such that C l z,Bl z and

z < F . Based on how we were required to choose B, C must be in an F -path from A to Ci. In

particular, C must be the coatom given by the word ((1, (2, 4)), 3). Note that C is the coatom

at the top right in Figure 3.22. However, B and C are not adjacent in H([5]), thus they cannot

both be covered by an element z in S∗[5]. Thus no such z, C, can exist. It follows that Ω is not

a recursive coatom ordering.

Gill, Moulton, Linnusson, and Steel showed in [12] that intervals [0̂, y] ⊂ S(X) ∪ {0̂} are

shellable. They also used this along with results in geometric topology regarding approximation

maps by homeomorphisms to prove that the edge-product space is a regular CW complex. Since

the edge-product space is pure, the edge-product space is thus a d−CW-complex (see Definition

1.1.21).

Remark 3.3.27. Since there does not exist a recursive coatom ordering of S[n], Proposition 1.2.24

implies that the edge-product space E([n]) is not shellable.
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Figure 3.21: The elements in the set K form a nontrivial cycle in H([n]).
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Figure 3.22: The subgraph of H([5]) consisting of coatoms in S5 above F .
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Figure 3.23: The graph G(F ) consists of elements of S([5]) that cover F . The graph G(F ) is
isomorphic to TF .
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Chapter 4

Generalizing results on shellability

4.1 Generalized recursive atom orderings

In this chapter we give a generalization of a result of Björner and Wachs from [5] regarding

CL-shellable posets by giving a CC-shellable analogue.

Let P be a poset and E(P ) the set of cover relations (i.e. the set of edges in the Hasse

diagram) of P . Let E∗(P ) be the set of pairs (m,xl y) where m is a maximal chain of P and

xl y is a cover relation in the chain m. Let Q be a poset.

Definition 4.1.1. Let λ : E∗(P ) → Q be a CC-labeling of P . Let m be a maximal chain

in P containing u and v. Let r be the saturated chain in the interval [0̂, u] of m and [u, v] =

u l x1 l x2 l . . . l xk−1 l v be the interval in [u, v] of m. The label sequence on m from u

to v is

λ(m,ul x1), λ(m,x1 l x2) . . . , λ(m,xk−1 l v)

If the label sequence on m from u to v is lexicographically earlier than the label sequence on

m′ from u to v for all other maximal chains m′ such that m and m′ coincide with r up to u,

then we say that m is lexicographically first on the rooted interval [u, v]r.

The following lemma and corollary are straightforward but very useful in proving Theorem

4.1.9, the main theorem of the chapter.

Lemma 4.1.2. Let P be CC-shellable and let c be the unique, topologically ascending chain in

[u, v]r. Then c is lexicographically first on the rooted interval [u, v]r.

Proof. Let c be the chain u = u0 l u1 l u2 l . . . l ut = v. Since c is topologically ascending,

then ui−2 l ui−1 l ui is a topological ascent for i = 2, 3, . . . t. Assume the saturated chain c′

given by u = u0 l u′1 l u′2 l . . . u′s = v is lexicographically first in [u, v]r. Let i > 0 be the

least value such that ui 6= u′i. Then u′i−1 l u′i l u′i+1 is a topological ascent since otherwise,
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there would exist a lexicographically earlier saturated chain from u′i−1 to u′i+1, contradicting

the assumption that c′ is the lexicographically earliest chain in [u, v]r. Likewise, u′ilu′i+1lu′i+2

is a topological ascent. Continuing, we see that u′i+j l u′i+j+1 l u′i+j+2 is a topological ascent

for all j such that 0 ≤ j ≤ s − i − 2. If i > 1, then u′i−2 l u′i−1 l u′i is a topological ascent

since otherwise there would be a lexicographically earlier chain in the interval [u′i−2, u
′
i]. For all

2 < j < i, u′j−2lu′j−1lu′j is a topological ascent since c and c′ coincide on the interval [u0, uj ].

Thus c′ consists entirely of topological ascents and is thus a topologically ascending chain in

[u, v]r. This is a contradiction of c being the only such chain.

Corollary 4.1.3. If P is CC-shellable and c is lexicographically first in [u, v]r, then c is topo-

logically ascending.

Proof. If c is lexicographically first but not the unique topologically ascending chain in [u, v]r,

then the unique topologically ascending chain cannot be lexicographically first. This contradicts

Lemma 4.1.2.

Next, we define a generalized recursive atom ordering. As we show in Theorem 4.1.9, giving

a generalized recursive atom ordering for a poset P is equivalent to giving a CC-labeling of P .

This is an analogous result to Theorem 3.2 in [5], which concerns CL-shellability and recursive

atom orderings.

Definition 4.1.4. The bounded poset P admits a generalized recursive atom ordering

(GRAO) if the length of P is 1 or if the length of P is greater than 1 and there is an ordering

on the atoms a1, a2, . . . at of P satisfying:

(i) For all 1 ≤ j ≤ t and w such that aj l x l w for some x, [aj , 1̂] admits a generalized

recursive atom ordering with the following property: if any atom of [aj , w] covers some

i < j, then the first one does.

(ii) For all i < j, if ai, aj < y, then there exists some k < j and an element z such that

ak, aj l z ≤ y.

Example 4.1.5. The ordering of elements given on the left of Figure 4.1 is a generalized recursive

atom ordering but is not a (traditional) recursive atom ordering. In particular, the atom labeled

3 on the left causes (i) of Definition 1.2.21 to fail. The ordering of elements given on the right

is a recursive atom ordering.

The main theorem of this chapter is Theorem 4.1.9. Because the proofs are somewhat

technical, we will state each direction of this biconditional as a separate result (Theorem 4.1.6

and Theorem 4.1.8). Both theorems follow Björner and Wachs’ proof of Theorem 3.2 in [5],

with changes being made as necessary to account for topologically ascending chains instead of

increasing chains. In both directions, we use induction on the length of P .
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Figure 4.1: An example of a generalized recursive atom ordering that is not a recursive atom
ordering (left) and a recursive atom ordering (right).

Theorem 4.1.6. If a graded poset P admits a generalized recursive atom ordering, then P is

CC-shellable.

Proof. We will prove the following statement by induction on the length of P :

If P admits a generalized recursive atom ordering a1, a2, . . . at and if λ is an integer labeling of

the bottom edges of P such that λ(0̂, ai) < λ(0̂, aj) for all i < j, then λ extends to an integer

CC-labeling of P .

Any integer labeling on a bounded poset of length 1 is a CC-labeling. Also, any integer

labeling on the t bottom edges of a bounded poset of length 2 by t distinct labels is a CC-

labeling. Thus the statement is true for posets of length 1 and length 2.

Let P be a poset of length greater than 2. By (i) of Definition 4.1.4, for each j = 1, 2, . . . t,

there is a GRAO of [aj , 1̂]. Consider the restriction of this GRAO to the atoms of [aj , w] for

w such that aj l x l w for some x. If any atom of [aj , w] covers an atom of P that comes

earlier than aj in the GRAO of P , then the first one does. Label the bottom edges of [aj , 1̂]

consistently with the GRAO on [aj , 1̂] i.e. so that λ(aj , x) < λ(aj , y) for x < y. We will use λ to

denote both the integer labeling of the bottom edges of P and the labeling of the bottom edges

of [aj , 1̂]. Note that because we are showing that this labeling extends to a chain-edge labeling,

then the labeling on [aj , 1̂] and the labeling on [ak, 1̂] need not be compatible, even if there are

shared cover relations between [aj , 1̂] and [ak, 1̂]. By the induction hypothesis, the labeling λ on

the bottom edges of [aj , 1̂] extends to a CC-labeling of [aj , 1̂]. Extending the labeling at each aj

for j = 1, 2, . . . t, we have a chain-edge labeling of P which restricts to a CC-labeling of [aj , 1̂].
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We must check that there is a unique, topologically ascending chain in any interval [0̂, y].

Let 0̂ l x1 l x2 l . . . l xk = y be the lexicographically first saturated chain in [0̂, y]. Then

x1 l x2 l . . . l xk = y is the lexicographically first saturated chain in [x1, y] and since λ

restricts to a CC-labeling on [x1, 1̂], this chain is topologically ascending by Corollary 4.1.3.

The interval 0̂ l x1 l x2 is lexicographically first in [0̂, x2] so it is a topological ascent. Thus

0̂l x1 l x2 l . . .l xk = y is a topologically ascending chain.

Let 0̂ l x′1 l x′2 l . . . l x′k = y be another topologically ascending chain in [0̂, y]. Since

there is only one topologically ascending chain in [x1, y], we must have x1 6= x′1. Since 0̂l x1 l
x2 l . . . l xk = y is lexicographically first and λ(0̂, ai) < λ(0̂, aj) whenever i < j, x1 comes

before x′1 in the GRAO of P . Since there is a CC-labeling on [x′1, 1̂] by the induction hypothesis,

x′1 l x′2 l . . .l x′k is the lexicographically first maximal chain in [x′1, y] by Lemma 4.1.2. Since

the labeling on the bottom edges of [x′1, 1̂] is consistent with the GRAO on [x′1, 1̂], this means

x′2 is the first atom of [x′1, 1̂] that is less than y in the GRAO of [x′1, 1̂]. Since 0̂ l x′1 l x′2 is

topologically ascending, there is no x′′1 such that 0̂ l x′′1 l x′2 is lexicographically earlier. Thus

x′2 covers no atom of P that comes before x′1 in the GRAO of P . Since x1 comes before x′1 in

the GRAO of P and both x1 and x′1 are below y in P , by (ii) of Definition 4.1.4, there exists

some x′′1 that comes before x′1 and some z such that x′′1, x
′
1l z < y. Likewise, since both x′2 and

z are below y and x′2 comes before z, there exists some z1 that comes before z in the GRAO of

[x′1, 1̂] and some w1 such that z, z1 l w1 < y. Since z covers an atom that comes earlier than

x′1, by (i) of Definition 4.1.4, the first atom of [x′1, w1] must cover some xw1 where xw1 comes

before x′1 in the GRAO of P . Without loss of generality, assume z1 is this first atom of [x′1, w1].

The same argument holds to show that there must exist some z2 that comes before z1 in the

GRAO of [x′1, 1̂] and some w2 such that z1, z2lw2 < y. Since z1 covers xw1 , then the first atom

of [x′1, w2] must cover some xw2 where xw2 also comes before x′1 in the GRAO of P . Without

loss of generality, assume z2 is this first atom of [x′1, w2]. We continue in this way, until we have

some zi such that both zi and x′2 are below y, but the only atom of [x′1, 1̂] that comes before zi

and is below y is x′2. Then zi and x′2 must both be covered by some wi+1. Since zi covers some

xwi where xwi comes before x′1 in the GRAO of P , then the first atom of [x′1, wi+1] must cover

some xwi+1 , where xwi+1 comes before x′1 in the GRAO of P . This contradicts (i) of Definition

4.1.4, since the first atom of [x′1, wi] is x′2, which does not cover an atom of P that comes before

x′1 in the GRAO of P . Thus there is only one topologically ascending chain in any interval [0̂, y].

This shows that if P admits a GRAO, then P is CC-shellable.

We will need the following definition for the proof of Theorem 4.1.8:

Definition 4.1.7. An atom ordering a1, a2, . . . at is compatible with a CC-labeling λ if

a1, a2, . . . at is a linear extension of the partial order on the atoms induced by λ. In other

words, an atom ordering is compatible with λ if whenever (λ(0̂, ai), λ(ai, x)) is lexicographically
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Figure 4.2: If a poset P admits a generalized recursive coatom ordering, then there is a unique
topologically ascending chain in any interval [0̂, y].
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earlier than λ(0̂, aj), λ(aj , x), then i < j.

Theorem 4.1.8. If a graded poset P is CC-shellable, P admits a generalized recursive atom

ordering.

Proof. Let λ : E∗(P ) → Q be a CC-labeling of P where Q is any poset. The CC-labeling λ

induces a partial order on the atoms of P , where ai comes before aj if (λ(0̂, ai), λ(ai, x)) is

lexicographically earlier than (λ(0̂, aj), λ(aj , x)) for some x covering both ai and aj . We will

prove the following statement by induction on the length of P :

If an atom ordering a1, a2, . . . at is compatible with a CC-labeling λ, then the atom ordering

induces a generalized recursive atom ordering.

If P is of length 1, P admits a generalized recursive atom ordering by definition. If the

length of P is 2, then any ordering on the atoms is a generalized recursive atom ordering. Let

P be a poset of length greater than 2. Suppose a1, a2, . . . at is compatible with the CC-labeling

λ of P . We must check it is a GRAO.

We first check that the ordering satisfies (ii) of Definition 4.1.4. Consider any ai, aj < y

for i < j. Let aj l z l . . . l y be the lexicographically first saturated chain in the rooted

interval [aj , y]0̂ (with root 0̂). Call this rooted chain c. Suppose by way of contradiction that

(λ(0̂, aj), λ(aj , z)) is a topological ascent, so 0̂ ∪ c is a topologically ascending chain in [0̂, y].

Let ay be the first atom of P in the atom ordering that is below y and suppose ay l z′ l . . . y
is the lexicographically first chain in [ay, y]0̂. Our choice of ay ensures that (λ(0̂, ay), λ(ay, z))

is a topological ascent. Since there can be only one topologically ascending chain in [0̂, y],

(λ(0̂, aj), λ(aj , z)) must be a topological descent. Then there exists some ak l z such that

(λ(0̂, ak), λ(ak, z)) is a topological ascent. Since the atoms of P are ordered compatibly with λ,

we have k < j. Thus (ii) holds.

We now check (i) of Definition 4.1.4. Since P is CC-shellable via a labeling λ, [aj , 1̂] is CC-

shellable for each j = 1, 2, . . . t also using λ. By the induction hypothesis, any atom ordering of

[aj , 1̂] that is compatible with this CC-labeling is a GRAO. We verify that the atoms of [aj , 1̂]

ordered compatibly with λ (which itself implies this ordering is a GRAO on [aj , 1̂]) gives an

atom ordering also satisfying (i) of Definition 4.1.4. We will do this by showing that for w such

that aj l x l w for some x, if any atom of [aj , w] covers some ai for i < j but y does not,

then (λ(aj , y), λ(y, w)) must be a topological descent. Assume instead under these hypotheses

that (λ(aj , y), λ(y, w)) is a topological ascent. Then for any x 6= y such that xm aj and xl w,

(λ(aj , x), λ(x,w)) is a topological descent. Since a1, a2, . . . at is compatible with λ and y does

not cover any ai for i < j, (λ(0̂, aj), λ(aj , y)) is a topological ascent. This implies that the chain

c given by 0̂l aj l ylw is the unique, topologically ascending chain in the interval [0̂, w]. Let

aw be the first atom of P below w. Since there exists an atom of [aj , w] that covers some ai for
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Figure 4.3: If λ is a CC-labeling of P , then for any atom aj of P , (λ(aj , y), λ(y, w)) must be a
topological descent whenever, for aj l xlw, there exists some x that covers some ai with the
property that (λ(0̂, ai), λ(ai, x)) is lexicographically earlier than (λ(0̂, aj), λ(aj , x)).

i < j, we know that aw 6= aj . Since a1, a2, . . . at is compatible with λ, (λ(0̂, aw), λ(aw, y
′)) is a

topological ascent for any y′ such that aw l y′ l w. By definition of a CC-labeling, there is a

unique, topologically ascending chain in the interval [aw, w]. Let x′ be such that aw l x′ l w

is this topologically ascending chain. Then 0̂ l aw l x′ l w is a topologically ascending chain

in [0̂, w]. This is a contradiction to c being the unique topologically ascending chain in [0̂, w].

Thus it is not possible for (λ(aj , y), λ(y, w)) to be a topological ascent if y does not cover some

ai for i < j. Therefore (λ(aj , y), λ(y, w)) must be a descent. See Figure 4.3. This implies that

[aj , 1̂] admits an atom ordering that is compatible with λ (hence is a GRAO) and that satisfies

(i) of Definition 4.1.4.

Thus if P is CC-shellable, P admits a GRAO.

Theorem 4.1.9. A graded poset P admits a generalized recursive atom ordering if and only if

P is CC-shellable.

Proof. This follows from Theorem 4.1.6 and Theorem 4.1.8.

Reflecting the fact that CC-labelings are more general than CL-labelings, we have the fol-

lowing lemma relating (traditional) recursive atom orderings and generalized recursive atom

orderings:

Lemma 4.1.10. Every recursive atom ordering is a generalized recursive atom ordering.
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Proof. Since part (ii) of Definition 1.2.21 and part (ii) of Definition 4.1.4 are the same, then

we only need to check that part (i) of Definition 4.1.4 holds for a recursive atom ordering

a1, a2, . . . at of P . We do so by induction on the length of P . Since any ordering of the atoms

of a poset of length 1 or 2 is a generalized recursive atom ordering, this holds for posets of

length 1 or 2. Suppose P is a poset of length greater than 2. By the induction hypothesis, the

recursive atom ordering on [aj , 1̂] is a generalized recursive atom ordering for j = 1, 2, . . . t. We

must check that for any w such that aj l xl w for some x, if any atom of [aj , w] covers some

ai for i < j, then the first one does. By part (ii) of Definition 1.2.21, the first atoms of [aj , 1̂]

are those that cover some ai for i < j. Let F (aj) be the set of atoms of [aj , 1̂] that cover some

ai for i < j and let Aw be the set of atoms below w for w such that aj l xlw for some x. We

see that if F (aj) ∩Aw = ∅, then the first atom of [aj , w] covers some ai for i < j.

We can also define generalized recursive coatom orderings, as follows.

Definition 4.1.11. Let P be a graded poset and P ∗ its dual. A generalized recursive

coatom ordering (GRCO) of P is a generalized recursive atom ordering of P ∗.

4.2 A partial order generalization of a result on shelling barycen-

tric subdivisions

In this section, we present a generalization of a result of Björner from [3], namely Theorem

4.2.6 below. While Theorem 4.2.6 concerns shellable simplicial complexes, we wonder whether

the same result holds for simplicial complexes with partial orders on their facets satisfying the

codimension one property (see Definition 3.2.6). For this we will need the following background

and definitions, most of which are from Stanley [24] (see also [3] by Björner).

Definition 4.2.1. Let L be a finite lattice. If x = a∨ b implies x = a or x = b, then x is called

a join-irreducible element of L.

Let I(L) be the set of join-irreducibles of the finite lattice L. Let ω : I(L)→ N be any map

from the set of join-irreducibles of L to the set of positive integers. Then ω induces an edge

labeling λ of L, where

λ(xl y) = min{ω(z) : z ∈ I(L), x < x ∨ z = y}. (4.2.1)

Definition 4.2.2. If λ is such that in every interval [x, y] of P , there is a unique, increasing

saturated chain, then ω is an admissible map.

Definition 4.2.3. A finite lattice L is admissible if it is graded and there exists an admissible

map ω : I(L)→ N.
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Figure 4.4: The Boolean Lattice B3 and the EL-labeling induced by the admissible map ω :
I(B3)→ N given in Example 4.2.5.

Theorem 4.2.4 (Theorem 3.1 [3]). An admissible lattice is lexicographically shellable.

Example 4.2.5. The join-irreducible elements of B∗n, the dual to the Boolean lattice Bn, are

precisely the coatoms of the lattice Bn. In particular, they are the subsets of [n] = {1, 2, . . . n}
that exclude exactly one integer from 1 to n. We can define an admissible map ω : I(B∗3)→ N
by ω(x) = xc where xc is the unique integer in [n] excluded from x. The EL-labeling induced

by ω is given for B∗3 in Figure 4.4. A map similar to ω is used in the proof of Theorem 4.2.7.

Theorem 4.2.6 (Theorem 5.1 [3]). Let K be a shellable simplicial complex. Then the barycen-

tric subdivision sd(K) is shellable.

Our generalization of this result is the following:

Theorem 4.2.7. Let K be a pure simplicial complex with a partial order on its facets satisfying

the codimension one property and with a unique minimal element. Then the barycentric subdi-

vision also has a partial order on facets satisfying the codimension one property (of Definition

3.2.6).

Proof. Let K be a pure simplicial complex. Let T be the set of facets of K. Suppose the facets

of K are arranged in a partial order P = (T,<T ) such that P has the codimension one property

and P has a unique minimal element 0̂. Let F (K) be the face poset of K. We will construct a

partial order Ω on the set M of maximal chains of F (K). Let fi ∈ T and let Mi be the set of
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all maximal chains of F (K) that contain fi. Observe that [0̂, fi] is a finite Boolean lattice on

n atoms, where n = dim(K) + 1. We label the coatoms of [0̂, fi] by the labels ci1, ci2, . . . , cin

in such a way that for some ki, we have the following: whenever 1 ≤ j ≤ ki, cij is covered

by some fe for some e < i but for k + 1 ≤ j ≤ n, this is not the case. In other words, we

label the coatoms of [0̂, fi] so that all coatoms that come before cik are covered by a facet that

comes before fi in P and all those that come after cik are not. Since P has the codimension

one property and has a 0̂, ki ≥ 1. Consider the map ω : cij → j. Since [0̂, fi] is a Boolean

lattice, the only join-irreducible elements of the dual lattice [0̂, fi]
∗ are its atoms. The map ω

is an admissible map from the join irreducible elements of the dual lattice [0̂, fi]
∗ to the set of

positive integers. The edge labeling induced by ω is the natural edge labeling on the dual to a

Boolean lattice (see Example 4.2.5). Thus ω induces an EL-labeling of [0̂, fi]
∗ by Theorem 4.2.4

and thus a shelling order of Mi (see [3]).

Let the elements of Mi be labeled mi1,mi2, . . .min! where the second index is compatible

with the above shelling order ofMi. Repeat this process of labeling maximal chains containing

fi for all fi ∈ T . Consider the partial order Ω on M defined by mij ≤ mkl if and only if one of

the following hold:

1. i = k and j ≤ l

2. i <T k

Observe that this means that mij and mkl are incomparable if and only if fi and fk are

incomparable in P .

We claim that Ω has the codimension one property, as we now show. Suppose that we are

given mi0j0 ∈M and that mi1j1 <Ω mi0j0 . We must show that mi1j1 ∩mi0j0 ⊆ mi0j0 − {x} for

some x ∈ mi0j0 . We consider two cases:

Case 1: i1 = i0 and j1 ≤ j0.

In this case, both mi0j0 ,mi1j1 ∈Mi0 . Since the second index on elements inMi0 gives a shelling

order ofMi0 , there exists some mi0j2 ∈Mi0 such that mi1j1∩mi0j0 ⊆ mi0j2∩mi0j0 = mi0j0−{x}
for some x ∈ mi0j0 .

Case 2: i1 <T i0.

Suppose that mi0j0 is 0̂ = x0 l x1 l . . .l xn−1 l xn = fi0 . Let xn−1 = ci0z. We will subdivide

Case 2 into two additional subcases.

Case 2a: z ≤ ki0 . By definition of ki0 , ci0z is covered by some fi2 where fi2 <T fi0 . Let mi2j2

be 0̂ = x0lx1 . . .lxn−1l fi2 . Observe that mi2j2 <Ω mi0j0 since i2 <T i0. Furthermore, mi2j2

is such that mi1j1 ∩mi0j0 ⊆ mi0j0 ∩mi2j2 = mi0j0 − {fi0}. Note that we have mi1j1 ∩mi0j0 ⊆
mi0j0 ∩mi2j2 because mi2j2 and mi0j0 intersect at every x ≤ xn−1 = ci0z and mi1j1 ∩mi0j0 does

not contain fi0 since otherwise we would have i1 = i0 (Case 1). See Figure 4.5.

93



0̂

x1

x2
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Figure 4.5: Case 2a in the proof of Theorem 4.2.7.

Case 2b: z > ki0 . Let g = max{h : xh ∈ mi1j1 ∩mi0j0}. Note that 0 ≤ g ≤ n − 2 otherwise

we would be in Case 2a. Since P has the codimension one property, there is some ci0d such that

xg < ci0dlfi0 where d ≤ ki0 . Let xg = y0ly1l . . .lyn−g−1 = ci0d be any saturated chain from

xg to ci0d. Let mi0j2 be the chain x0 l x1 l . . .l xg = y0 l . . .l yn−g−1 = ci0d l fi0 . Note that

mi1j1 ∩mi0j0 ⊆ {x0, x1, . . . , xg} ⊆ mi0j2 ∩mi0j0 because mi1j1 agrees with mi0j2 up to xg. Since

d ≤ ki0 and z > ki0 , we have d < z. Thus mi0j2 <Ω mi0j0 . We are now back in Case 1: there exists

some mi0j3 ∈Mi0 such that j3 < j0 and such that mi0j2 ∩mi0j0 ⊆ mi0j3 ∩mi0j0 = mi0j0 − {x}
for some x ∈ mi0j0 . Thus mi0j0 ∩mi1j1 ⊆ mi0j2 ∩mi0j0 ⊆ mi0j3 ∩mi0j0 = mi0j0−{x}. See Figure

4.6. This completes the proof.

If we have a partial order on the facets of a simplicial complex satisfying the codimension

one property and an extra condition on incomparable facets, then any linear extension of this

partial order is a shelling order. We show this next.

Lemma 4.2.8. Let K be a simplicial complex and P be a partial order on the facets of K.

Suppose P has the codimension one property and a unique minimal element 0̂. Suppose that

whenever Fi and Fj are incomparable in P and ∅ 6= G ∈ I(Fi)∩I(Fj), then G ∈ I(Fk) for some

Fk <P Fi or Fk <P Fj. Then any linear extension of P is a shelling order of K.

Proof. Let T be any linear extension of P . We will show that

Fj
⋂ ⋃

i<P j

Fi

 = Fj
⋂ ⋃

i<T j

Fi


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Figure 4.6: Case 2b in the proof of Theorem 4.2.7.

Since P has the codimension one property, proving this equality implies that T is a shelling

order of the facets of K.

By definition of a linear extension, if i ≤P j, then i ≤T j. Thus if G ∈ Fj
⋂(⋃

i<P j
Fi

)
,

then G ∈ Fj
⋂(⋃

i<T j
Fi

)
.

Now consider if G ∈ Fj
⋂(⋃

i<T j
Fi

)
. This means that G ∈ Fj ∩ Fi for some i <T j.

If i <P j, then G ∈ Fj
⋂(⋃

i<P
Fi

)
. If, however, i and j are incomparable in P , then by

hypothesis, G ∈ Fk where k <P i or k <P j. If k <P j , then G ∈ Fk ∩ Fj ⊆ Fj
⋂(⋃

i<P j
Fi

)
.

If k <P i and k and j are incomparable in P , then again by hypothesis, G ∈ Fk1 where k1 <P j

or k1 <P k. We repeat this argument until we have some kn such that G ∈ Fkn and kn <P j,

which must occur since P has a unique minimal element. Then G ∈ Fj
⋂(⋃

i<P j
Fi

)
.

Lemma 4.2.8 gives the following:

Theorem 4.2.9. Let K be a simplicial complex and P be a partial order on the facets of K

with the codimension one property and a unique minimal element. Suppose that whenever Fi

and Fj are incomparable in P and ∅ 6= G ∈ I(Fi) ∩ I(Fj), then G ∈ I(Fk) for some Fk <P Fi

or Fk <P Fj. Then K is homotopy equivalent to a wedge of spheres.

Proof. By Lemma 4.2.8, any linear extension of P is a shelling of K. By Theorem 4.2.10, this

implies that K is homotopy equivalent to a wedge of spheres.
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Figure 4.7: A 2-dimensional simplicial complex K (left) and a partial order on its facets (right)
satisfying the codimension one property. It is not true that K is homotopy equivalent to a wedge
of 2-spheres.

It it natural to ask if we can also generalize the following result to partial orders satisfying

the codimension one property:

Theorem 4.2.10. If the face poset of a simplicial complex K is shellable, then K is homotopy

equivalent to a wedge of spheres.

In particular, it was our hope that we could show that if the face poset of a simplicial

complex K has a partial order on its coatoms that satisfies the codimension one property,

then K is homotopy equivalent to a wedge of spheres. However, this is not always true, as the

example in Figure 4.7 shows.
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