ABSTRACT

CRIFO, SUZANNE ELISE. Some Maximal Dominant Weights and Their Multiplicities for
Affine Lie Algebra Representations. (Under the direction of Kailash Misra).

It is known that there are finitely many maximal dominant weights for an integrable highest
weight module of an affine Lie algebra g. However, a description for these maximal dominant
weights is known in only select cases. For example, Jayne and Misra studied the maximal
dominant weights of the AP modules V((k—1)Ao+As) where 0 < s < n. In this thesis we give
an explicit description of all maximal dominant weights for the g-module V' (kAg) where g is any
other affine Lie algebra. After determining the maximal dominant weights, another interesting
area to explore is the corresponding weight space. Specifically, we would like to determine the
dimension of the corresponding weight space, which is also known as the weight’s multiplicity.
Using crystal base theory, we determine multiplicities for some of the maximal dominant weights

we have found.
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Chapter 1
Introduction

Sophus Lie discovered Lie algebras in the 19th century while studying the symmetries of solu-
tions of differential equations. Since then, Lie algebras have been studied extensively and have
been shown to have many connections to other areas in mathematics and mathematical physics.
By the end of the 19th century, Wilhelm Killing and Elie Cartan had classified all simple finite-
dimensional complex Lie algebras [4]. Independently and simultaneously, Victor Kac [10] and
Robert Moody [21] discovered Kac-Moody algebras. Kac-Moody algebras are a generalization
of finite dimensional complex semisimple Lie algebras. Kac-Moody algebras are divided into
three subcategories: finite dimensional semisimple Lie algebras, infinite dimensional affine Lie
algebras of polynomial growth, and infinite dimensional algebras of exponential growth. This
thesis is concerned with the second subcategory, which are called affine Lie algebras.

In 1974, Kac [11] introduced the notion of an integrable highest-weight representation, al-
lowing the representation theory of finite dimensional semisimple Lie algebras to expand from
the finite dimensional case to affine Lie algebras. To describe the structure of an integrable
highest-weight representation, one needs to describe its maximal dominant weights. The max-
imal weights form a type of “ceiling” to the set of all weights. Any other weight lies on an
infinite string off a maximal weight. Any maximal weight is Weyl group conjugate to a maxi-
mal dominant weight.

It is known there are finitely many maximal dominant weights for any integrable highest
weight representation of an affine Lie algebra. However, determining these maximal dominant
weights is a nontrivial task. Tsuchioka found all maximal dominant weights for modules of the
form V(Ap+As) where 0 < s < p for type Al(yl_)1 [23]. This work was generalized in 2014 by Jayne
and Misra, who found all maximal dominant weights for modules of the form V((k—1)Ag+ As)
where 0 < s < n — 1 for type Agll_)l [7]. In 2017, Kim, Lee, and Oh determined all maximal
dominant weights for V(A) where A is of level 2 for types BT(LD, Dg), Agi)fl, Aéi), Dfﬁl, and of
level 1 for CSV [18].

Once the maximal dominant weights have been determined, another question arises. Specif-
ically, given a maximal dominant weight, what is the dimension of the corresponding weight

space? The dimension of a weight space is known as the multiplicity of that weight. These



multiplicities can be studied using a combinatorial tool that comes out of studying quantum
groups. Quantum groups (which are not actually groups), were introduced independently by
Drinfel’d [2] and Jimbo [9] in 1985. The quantum group is a g-deformation of the univer-
sal enveloping algebra of a symmetrizable Kac-Moody algebra. Lusztig [19] proved that the
representation theory of this quantum group is the same as the representation theory of the
corresponding Kac-Moody algebra. This means that the weight spaces (and their dimensions)
are invariant under this deformation.

The representation theory of quantum groups is more easily studied than that of Kac-Moody
algebras due to those combinatorial tools we hinted at earlier. The notion of a crystal basis was
introduced by Kashiwara [17] in 1990 and is the same as Lusztig’s [20] canonical base at ¢ = 0.
Crystals allow us to study these multiplicities. Specifically, we use perfect crystals, whose theory
is given in [15] and [14]. These perfect crystals give rise to a path realization [15], [14] of crystals
for integrable highest weight modules of affine Lie algebras. This path model obtains a colored,
oriented graph, called the crystal graph, for irreducible highest weight modules over affine Lie
algebras, allowing us to find the multiplicities of maximal dominant weights by counting the
number of vertices corresponding to each weight.

This dissertation expands on the results listed above by finding maximal dominant weights
for the remaining affine Lie algebras in the case of V(kAp) and some of the multiplicities of
these weights. Chapter 2 gives the background necessary to find the maximal dominant weights,
which are found in Chapter 3. We also include the relevant results from [7] for type Ag) and
prove our findings are the same as [18] in the case k = 2 for the appropriate affine Lie algebras in
Chapter 3. Chapter 4 then gives the information needed to study path realizations of integrable
highest weight modules. In Chapter 5, we include the results from [15] that are used to study
the path realizations of V(kAp) in types B7(L1),C7(11), and Dg), as well as the relevant results
from [7] in the case of ALY,



Chapter 2

Kac-Moody Algebras and their

Representations

In this chapter, we discuss Kac-Moody algebras and their representations. As noted below,
Kac-Moody algebras fall into three classes. Of the three classes, we will focus on affine Lie

algebras and their representations. Unless otherwise noted, we will assume the field is C.

2.1 Lie Algebras

Definition 2.1.1. A Lie algebra over C is a vector space L equipped with a product, called a
Lie bracket, [-,] : L x L — L that satisfies the following properties:

e Bilinearity: [ax + by, z] = a[z, z] + bly, 2] and [z, ay + bz] = a[z,y] + bz, 2],
e Alternativity: [z,z] =0,
e Jacobi Identity: [z, [y, z]] = [[z,y], 2] + [y, [z, 2]].

for all z,y,z € L and a,b € C.

Note that because the Lie bracket is both bilinear and alternative, one can show that it is
also skew-symmetric, or [z,y] = —[y,z] for all z,y € L.
While there are many examples of finite dimensional Lie algebras, a familiar one is R? with

the cross product of vectors serving as the Lie bracket.

Ezample 2.1.2. For any vector space V', the set of linear operators on V' is a Lie algebra, denoted
gl(V) with the Lie bracket defined by [z,y] = x oy — y o © where x o y is the composition of
linear operators. If V' has finite dimension n, the elements of this Lie algebra can be thought
of as n X n matrices.
Ezample 2.1.3. Let L = {2 x 2 matrices with trace 0} C C2*2

a b 1 0 01

=a
c —a 0 -1 00

+b +c

00
10



Then

e R FH R P

is a basis for L. L is closed under the commutator bracket: [z,y] = zy — yx for all z,y € L

where zy is matrix multiplication.

[h,e]:2€, [ha.ﬂ :_va [evf]:h

L is a Lie algebra, called the special linear Lie algebra, s((2,C).

Definition 2.1.4. A subalgebra of a Lie algebra L is a subspace M of L such that [z,y] € M
for all z,y € M.

As an example, s[(2,C) is a subalgebra of the Lie algebra L = gl(n,C) = {2 x 2 matrices
over C}, equipped with the commutator bracket. Within s(2, C), the span of h, or the set of all
diagonal matrices, is itself a subalgebra. We will return to this important type of subalgebra,

called a Cartan subalgebra, denoted by b.

Definition 2.1.5. An ideal of a Lie algebra is a subspace I of L such that [z,y] € I for all
rx€Landyel.

As an example, given any Lie algebra L, the derived algebra of L, [L, L] is an ideal of L.
Ezample 2.1.6. Let L = gl(n,C), the set of all n x n matrices with entries in C equipped with

the commutator bracket, also called the general linear Lie algebra. Then the derived algebra of

L can be found using basis vectors as follows:
[Eij, Ey] = 0 Eq — 0y

Then if j # k,i # 1, [Eij, Er] = 0, ifj = k,i # 1, [Eij, Ex] = Eq, if j # ki =1, [Eij, Ep] =
—FEy;, and if j = k,i = [ then [E;;, Ey] = Ei; — Ejy. Therefore, the derived algebra of gl(n,C)
is sl(n,C), the special linear Lie algebra, which is the set of all n x n matrices with entries in
C and with trace 0.

Definition 2.1.7. A Lie algebra is called simple if it is nonabelian (meaning there exist some
elements x,y € L such that [z,y] # 0) and has no nontrivial proper ideals. A Lie algebra is

called semisimple if it is the direct sum of simple Lie algebras

s[(2,C) is a simple Lie algebra, while gl(n,C) is not a simple Lie algebra, since sl(n,C) =

[gl(n,C), gl(n,C)] is an example of a nontrivial proper ideal.

Definition 2.1.8. A (Lie algebra) homomorphism ¢ : L — M is a linear map such that
o[z, y]) = [6(x), ¢(y)] for all 2,y € L.

For a Lie algebra L and any element x € L, the linear operator ad, € gl(L) where ad,(y) =

[x,y] gives rise to a linear map ad: L — gl(L) where ad(z) =ad,, which is a homomorphism.



Ezample 2.1.9. If L = sl(2,C) with basis {h,e, f}, we can represent ad, as a 3 x 3 matrix for
every z € sl(2,C). We do so for the basis vectors below.

00 O 0 0 1 0 -1 0
adp,=10 2 0|, ade=|-2 0 0|, ads=1(0 0 0
00 -2 0 0 0 2 0 0

2.1.1 Representations and Modules

Definition 2.1.10. A representation of a Lie algebra L on a vector space V' is a homomorphism
p: L — gl(V). The representation gives rise to an action of L on V defined by x-v = p(z)v € V
forallze Landv e V.

ad:L — gl(L), introduced earlier, is called the adjoint representation. It is a representation

of the Lie algebra L on itself. The corresponding adjoint action is the same as the Lie bracket.

Ezample 2.1.11. Taking L = sl[(2,C), we see the action of h, for example, under the adjoint
representation on each of the basis vectors of s[(2,C). In order to do so, we use the ordered
basis {h,e, f}.

0 0 O 1 0
h-h=ad(h)h=10 2 0| 0| =]0] =0

0 0 =210 0

0 0 0 0
h-e=ad(h)e= 10 2 0 1| = (2] =2e

0 0 —-2]10 0

0 0 O 0 0
h-f=adh)f=10 2 0] |0f=]|0|==2f

0 0 —-2] |1 -2

Definition 2.1.12. An L-module V is a vector space equipped with a bilinear map LxV — V
such that [z,y] - v=2-(y-v) —y-(z-v) forall z,y € L and v € V.

Note that the module action can be thought of as the action of L on V arising from a
representation p:

p(lz,y)v=[z,y]-v=2-(y-v) —y- (z-v) = p@)p(y)v — p(y)p(z)v = [p(z), p(y)] - v

Then the concepts are equivalent. We often use them interchangeably, though the term “rep-
resentation” refers to the map while “module” refers to the vector space on which L is acting.

In the above example, sl(2,C) is itself a s[(2, C) module under the adjoint representation.

Definition 2.1.13. A submodule of an L-module V is a subspace U of V that is closed under



the action of L, so xu € U for all x € L and v € U. V is called irreducible if it has no nontrivial

proper submodules.

Returning to the adjoint representation, ad: L — gl(L), the corresponding adjoint action is
x -y = ad(z)y = [z,y]. Then a submodule of L is a subspace U of L such that z-u = [z,u] € U
for all x € L and u € U. That is, the submodules of L are the ideals of L. Therefore, the adjoint

representation of a Lie algebra L is irreducible if and only if L is simple.

2.2 Kac-Moody Algebras

As detailed in [12], a Lie algebra can be generalized to what is called a Kac-Moody algebra.
There are three types of such algebras, finite, affine, and indefinite, as classified in Theorem 4.3
in [12].

Theorem 2.2.1. [12] Let A be an integral, indecomposable (n+ 1) X (n+ 1) matriz satisfying
e a;; <0 fori# j,
e a;; = 0 implies that aj; = 0,
then one and only one of the following three possibilities holds for A and AT :
e (Fin) det A # 0; there exists u > 0 such that Au > 0; Av > 0 implies v > 0 or v =0,
e (Aff) corank A = 1; there exists u > 0 such that Au=0; Av > 0 implies Av =0,
e (Ind) there exists u > 0 such that Au < 0; Av > 0,v > 0 imply v = 0.

This thesis will focus on the second type, which gives rise to what are called affine Lie algebras.
Note that a square matrix A is called symmetrizable if there exists a diagonal matrix D of the
same size with all positive entries on the diagonal such that DA is symmetric. We will assume

that all matrices are symmetrizable. For our purposes, we have the following definition:

Definition 2.2.2. An integral, symmetrizable (n + 1) x (n + 1) matrix A is a Cartan matriz

of affine type if it satisfies the following conditions:
e a;=2fori=0,1,...,n,
e a;; are nonpositive integers for i # j,
e a;; = 0 implies aj; = 0,
e corank(A)=1.

Every Cartan matrix has a corresponding oriented graph called a Dynkin diagram, defined

as follows.



Definition 2.2.3. The graph I'(A) associated with an affine Cartan matrix A is called a Dynkin

diagram and is constructed as follows.
e Begin with n + 1 nodes
e For i # j, connect vertices i and j by max{|a;;|,|a;j|} edges.

e For i # j, if |a;;| # |aji|, add an arrow across the edges connecting vertex i and vertex j

pointing toward vertex ¢ if |a;;| > 1.

Ezample 2.2.4. Here we show the affine Cartan matrix and corresponding Dynkin diagram
associated with the affine Lie algebra g = B,(Ll). The rows and columns of the Cartan matrix
correspond to the n+1 node, starting with row (or column) 0 and ending with row (or column)
n. Notice that the second node is connected to the Oth, 1st, and 3rd node, as indicated by the

corresponding ag; = a;2 entries. The n — 1st and nth node are connected by two edges, since

apn—1 = —2 with an arrow across the edges pointing toward the nth node.
2 0 -1 0 0 0
0o 2 -1 0 O 0 O
-1 -1 2 -1 0 0 1
o o -1 2 -1 0
| oO—0—0——0=—0
o 0 -1 2 -1| ! 2 2 2 2

A realization of an (n+1)x (n+1) affine Cartan matrix A is a triple (b, I, II") where b, called
the Cartan subalgebra, is a complex vector space of dimension n+2, IT = {«ag, a1, ..., an} C b¥,
and II" = {ho,h1,...,hy} C b such that II and II" are linearly independent and (h;, ;) =
a;j(hi) = a;;. Let I ={0,1,...,n} be the index set. Following the terminology from the theory
of finite-dimensional Lie algebras, II is the set of simple roots and II” the set of simple coroots.
Then Q = Y7, Za; is called the root lattice. We also designate Q1 = Y1 Z>oc;. With this
notation, we have the partial ordering > on h* that A > pif A —pu € Q4.

Definition 2.2.5. Let A be an affine Cartan matrix and let (h,II,II") be a realization of A.
Then the associated affine Lie algebra, g has generators e;, f; (i € I) and b satisfying the

following conditions.
o [ej, fj] = 0ijh; for i, j € 1,
o [h,h] =0 for all h,h' € B,
o [h,e;] = ajjej for i,j €1,

° [hﬁfj] = —aijfj for i,j S I,



e (ad(e;)) ™ %ie; =0 for i # j,

o (ad(f;))' =% f; =0 for i # j.

For convenience, we reproduce the tables of Dynkin diagrams associated with all affine Lie
algebras from [12]. We give the corresponding Cartan matrix for each affine Lie algebra in the

respective section of Chapter 3.

Table Aff 1
Agl) o e)
1 1
1
/O
Al(l)(l>2) 0O—O0——0—0
1 1 1 1
o)
‘ 1
Bl(l)(ZZB) 0O—O0—0—"—0=—0
1 2 2 2 2
Cl(l)(lz2) 0—0——0+0
1 2 2 1
0 o}
1 1
Dl(l)(l>4) 0O—0—0—"—0—0
1 2 2 2 1
Ggl) O0—0=0
1 2 3
F4(1) O—0—0—0—0
1 2 3 4 2
o)
‘ 1
o)
‘ 2
Eél) O—0—0—0—0
1 2 3 2 1
0
‘2
E(l)
™ 0O—0—0—0—0—0—0
1 2 3 4 3 2 1
o)
3
Eél) 0O—0—0—0—0—0—0—0

1 2 3 4 5 6 4 2



Table Aff 2

2 1

2
Ag) 0<4=o0
9 2 2 2 1
A()(l>2) O+—0———0+=0
21\ = a
1
o
g
@) 1 9 2 2 1
Al (1=3) 0O—0—0—+—0«—0
ay [e5] asg a1 e
(2) 1 1 1 1
D (1> 2) O«—0—+—0—0
ap ap a1 ap
1 2 3 2 1
2
Eé) O—O0—0«—0—0
Table Aff 3
1 2 1
3
Dz(L) O—0<«=0

g ay s

Given an affine Lie algebra g, let a; be the labeling of the nodes in each Dynkin diagram.
a; is the labeling in the diagram of the corresponding dual algebra, which is found by reversing
all arrows in the Dynkin diagram of g. For example, if g = Bg), then its dual algebra is Aéi)—l-
Notice if u is the vector with entries a; then Au = 0 where A is the associated Cartan matrix.

For example, in the case g = B,(LI):

2 0 -1 0 O 0 1 0
0o 2 -1 0 O 0 1 0
-1 -1 2 -1 0 0 2 0
Au=]10 0 -1 2 -1 0 21 =10
0 -1 2 -1 2 0

0 0 -2 2

As in the finite case, an important subalgebra of g is the Cartan subalgebra, h. For every a € Q)
we associate a root space, go = {x € g | [h,z] = a(h)z for all h € h}. Then a # 0 is called a
root if g, # 0. Associated with g is its Weyl group, W. W is the subgroup of GL(h*) generated

by the following reflections on h*.

ri(A) = A = A(hi)a; for A € b*



The r; are called the fundamental reflections [12].

The center of g is one dimensional and is spanned by the canonical central element ¢ =
S o alhi. Because g is affine, by Theorem 5.6 in [12], which establishes the presence of imag-
inary roots in affine Lie algebras, we have the null root § =Y " ja;a; € Q. A root « is called
imaginary if there does not exist a w € W such that w(«) is a simple root. Every imaginary
root in g is a nonzero integer multiple of §. Finally, we have the derivation d € h such that
(aj,dy =0fori=1,...,n and (ap,d) = 1.

We now have all components necessary to define the nondegenerate symmetric bilinear form

(1) on

(hilh;) = ﬁaij i,j €1,
(hild) = 0 i=1,...n,
(h0|d)_a0,

(d|d) =

\

This can be extended to a bilinear form on g by defining Ag € b* by (Ao, h;) = dg; for i € I and
(Ao, d) = 0. With Ag, {ap,...,an, Ao} forms a basis of h* and so we define the extension of the
bilinear form on g using this basis:

(aley) = %az‘j ij el
(ailAo) = i=1...,n
(aolho) = o

(AplAo) =0

Finally, we define the universal enveloping algebra, U(g), to which we will return in Chapter
4. Let U(g) be an associative algebra together with a Lie algebra homomorphism j : g — U(g)
satisfying the following universal property. If (A, ¢) is any pair where A is an associative algebra
and ¢ is a Lie algebra homomorphism (¢ : g — A) then there exists a unique associative algebra

homomorphism 1) such that ¢¥j = ¢. This is shown in the following diagram.

g ——— U(g)
J

2.2.1 Integrable Highest Weight Modules

We now introduce the main object of our study, integrable highest weight modules of affine Lie

algebras. To do so, we need to define several notions. We continue with an affine Lie algebra g,
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index set I ={0,1,...,n}, and Cartan subalgebra b. Its weight lattice is
P={xeb" | (\h;j) €Zforicl}.

Elements of the weight lattice are called integral weights. The dual weight lattice, P¥ has basis
{h; e I} U{d}. Pt ={\ € P | (\h;) > 0fori € I} is the set of dominant integral weights.
Recall that since (o, hi) = a;; € Z, the root lattice, @) is contained within P. We have the
fundamental weights A; for i =0,1,...,n defined by A;(h;) = ;5. We define the level, k, of any
Aeb* by k= (\¢) =>" ,a’A(h;) where ¢ is the canonical central element.

Recall that V is a g-module if the following conditions hold for all z,y € g,v,w € V and
a,beF:

o (ax +by) -v=alx-v)+bly-v),
e - (av+bw)=a(x-v)+b(z-w),
o [z,yl v=x-y-v—y -z 0.

Definition 2.2.6. A g-module V is a weight module if it admits a weight space decomposition
V = ®uepVy where V, = {v € V|h-v=p(h)v ¥V h € h}. p € b* is called a weight if V, # {0}.

In particular, we are interested in integrable highest weight modules.

Definition 2.2.7. A weight module is a highest weight module with highest weight X\, denoted
V(A), if there exists vy # 0 in V(\) such that

d L{(g)-v,\:V,
e ¢;-vy=0foralliel,
e h-vy = Ah)vy for all h €bh.

Definition 2.2.8. A weight module V of g is called integrable if e; and f; for i € I are locally
nilpotent. That is, for every v € V and ¢ € I, there exists an N € N dependent on v and ¢ such
that eNv = 0 and fNv = 0.

We use the following important fact:
Lemma 2.2.9 ( [12]). The g-module V (A) is integrable if and only if A € PT.

For A € P there exists a unique (up to isomorphism) irreducible, integrable highest weight
module V(A) generated by a highest weight vector vy.

Fix A € P*. Let P(A) be the set of all weights of V/(A). If A € P(A) then A= A—3"7" by
where b; € Z>o.

Definition 2.2.10. A weight A € P(A) is called mazimal if A+ § ¢ P(A). Denote the set of

all maximal weights as max(A).
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Then according to [12],

PN = |J {A-nilnez}.
A€max(A)

That is, the set of maximal weights form a roof to the set of all weights, from which any
other weight can be found by subtracting positive integer multiples of 6. Any A € max(A) is W-
conjugate to some p € max(A)NPT, which is known to be a finite set [12]. Then by determining
max(A)NPT, one can describe all of max(A) and so all of P(A). However, only partial results for
an explicit description of this set are known. We determine explicit descriptions of max(kAg) N

Pt for every affine Lie algebra in Chapter 3.
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Chapter 3

Maximal Dominant Weights of
V(kAg)

3.1 Introduction

In the following, we will go through each affine Lie algebra g and give the corresponding index set
and affine Cartan matrix A. Unless otherwise stated, we have the following notation. Let P, PV
be the weight lattice and dual weight lattice respectively and Pt = {\ € P|A(h;) > 0 for all i €
I} the set of dominant integral weights. For A € P, V(A) is the integrable highest weight g-
module of level k = A(c). We know that for any p € h* to be a weight of V(A), we must have
that the corresponding weight space, V(A), = {v € V(A) | h-v = u(h)v, for all h € h} # {0}.
Then g is of the form = A — 3. bijoy; where b; € Zxq for all i € I and we say that € P(A)
where P(A) is the set of all weights of V(A).

A weight A\ € V(A) is called a mazimal weight if A + 0 is not a weight of V' (A). We call
the set of all maximal weights of V(A), max(A). This set is important in describing the set
of all weights of V/(A) because P(A) = Uycmax(a){A — nd | 7 € Z>o}. That is, the set of all
maximal weights is like the top of a jellyfish, with all the other weights of V' (A) coming off those
maximal weights in strings, or tentacles. If we can describe the set of all maximal weights, then
we have a description for the set of all weights. Note that any A € max(A) is W-conjugate to
some maximal dominant weight, or u € max(A) NPT, where W is the Weyl group of the affine
Lie algebra g. Then we need only describe these maximal dominant weights and wish to do so
explicitly. To do so, we need to introduce a map . First, b is the linear span of hq,...,h, over
C (while 6R is the same notion over R.) The duals, f)* and [O]]’li, are defined similarly. Then for
any subset S of h*, we have its orthogonal projection S on h* and the following formula for the

map:
A=A~ (A c)Ag+ (A|[Ag)6 where X € b*

Now we can use Proposition 12.6 in [12]:

Proposition. [12] The map X\ — X defines a bijection from maz(A)NPT onto kCyurN(A+Q).
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In particular, the set of dominant mazimal weights of V(A) is finite.

Therefore, we can find the set kCyp N (A + Q) and use the inverse of the orthogonal projection
map ~ to determine the set of maximal dominant weights of V(A). We focus specifically on
the integrable highest weight module V' (kAg), of level k. From Kac [12], we know that kCqy =
{\e Giﬁ(hi) > 0 for all i € I,(\#) < k}. Therefore, to find all maximal dominant weights
of V(A), we need only solve those defining inequalities. Let A be a weight of V(A). Then
A=A=3" bioy = kAg — D bj; where b; € Z> for all i € I. Then

X = kAo - Zn: biOéi
=0

n n n
= k‘AO - Z biOéi - <k‘A0 - Z biOéi, C>A0 - (k‘Ao - Z bZOé,L|A0)5
=0 =0 =0

= — Z biov; + bo(z aiai)
i=0 i=0
= Zn:(aibo —bi)o
=1

For convenience, we represent each \ € kCqy with an n-tuple x5 = (21,2, ...,2,) € ZZ, where
x; = a;bg — b;. The defining inequalities can then be described succinctly as

Ax >0

No) <k

where A is the n x n matrix obtained by removing row 0 and column 0 from A. Note that
(M) < k will have different manifestations in the x vectors for different affine Lie algebras.
We will find all solutions to the set of defining inequalities for each type in terms of x and
then use the definition of each z; to find all maximal dominant weights of V' (kAg). Before we
find the solutions, we can make a few observations about the system of inequalities. We know
that x; € Z for all i € I since the x; are linear combinations of the b;. Because A is of finite
type, by Theorem 4.3 in [12], which was presented in Chapter 2, then Ax >0 implies that
x > 0 or x = 0. Then x = 0 is one solution, though we will concern ourselves with finding the

nontrivial solutions.

3.2 Type A,(f)

In this section, we describe the results of Jayne and Misra [7] in the case of V(kAg). We begin
with the affine Lie algebra g = Ag) where n > 2 with index set I = {0,1,...,n} and Cartan
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matrix

2 -1 0 O -1
-1 2 -1 0
o -1 2 -1

A=
0 o -1 2 -1
-1 0O 0 -1 2

Jayne and Misra explicitly determined the maximal dominant weights for the integrable highest
weight modules V ((k — 1)Ag + A5),0 < s <n,k > 2 and so for our case, we take s = 0.

In this case, the defining inequalities are

Ax >0
T+ Xy Sk
or
2371—%2 ZO
—x1 + 229 — T3 >0

—Zp—2 + 25671—1 —ZTn 2 0

—Xp—1 + 22, 0

(21 + Zn <k

where x; = by — b;. Jayne and Misra showed that the x vectors follow a particular pattern in
this case. As the entries in x move from left to right, they increase to a maximum element, I.
The value of [ may repeat in the entries, and then the entries decrease from [ moving to the
end of the vector. We list some examples of x vectors and corresponding maximal dominant
weights in tables 3.1, 3.2, and 3.3.

3.3 Type BT(LD

Now we begin discussing our results for explicit descriptions of maximal dominant weights for
other affine Lie algebras. We begin with g = BT(«LI) for n > 3, index set I = {0,1,...,n}, and
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Table 3.1: x vectors and maximal dominant weights for g = Agl)
k | x vector | Element of max(kAg) NPT
2 (0,0) 2Ag
(1,1) 2A0 —

3 (0,0) 3Ag
(1,1) 3A0 —
(2,1) 3A0 - 20&0 — Q9
(1,2) 3A0 — 2@0 — 1

4 (0,0) 4Ag
(1,1) 4A0 —
(2,1) 4A0 — 2@0 — Q9
(1,2) 4AQ — 20&0 — (]
(2,2) 4A0 - 2040

) (0,0) 5A¢
(1,1) 5A0 — Q)
(2,1) 5A0 — 2040 — Q9
(1,2) 5A¢ — 2ap — a1
(2,2) 5A0 — 20
(3,2) 5Ag — 3ap — a
(2,3) 5A0 — 3040 — a1

Table 3.2: x vectors and maximal dominant weights for g = Aél

)

x vector | Element of max(kAg) N P || k | x vector | Element of max(kAg) N P
(0,0,0) 2A0 5 (0,0,0) 5A0
(1,1,1) 2A0 — o (1,1,1) 5A0 —
(1,2,1) 2A0 — 2&0 — 1] — Q3 (1,2,1) 5A0 - 20[0 — ] — Qa3
(0,0,0) 3A0 (1,2,2) 5A0 - 20[0 — X1
(1,1,1) 3Ao — o (2,2,1) 5A¢ — 200 — a3
(1,2,1) 3A0 - 2050 — ] — Q3 (2,2,2) 5A0 - 2050
(1,2,2) 3A0 - 20(0 — Q] (2,3,2) 5A0 — 3040 — ] — Q3
(2,2,1) 3Ay) — 209 — a3 (2,4,2) 5Ny — 4oy — 2001 — 203
(0,0,0) 4A0 (1,2,3) 5A0 - 30&0 — 2&1 — Q2
(1,1,1) 4Ao — o (3,2,1) 5A¢ — 3ap — ag — 203
(1,2,1) 4A0 — 2&0 — 1] — Qa3 (2,3,3) 5A0 — 3040 — 1
(1,2,2) 4A0 - 20[0 — (2,4,3) 5A0 — 4a0 — 2(11 — Q3
(2,2,1) 4A0 — 20&0 — a3 (3,3,2) 5A0 — 30&0 — Qa3
(2,2,2) 4A0 — 2040 (3,4,2) 5A0 — 4a0 — Q] — 20[3
(2,3,2) 4A0 - 30&0 — ] — Q3
(2,4,2) 4o — dag — 207 — 203
(1,2,3) 4A0 - 30[0 - 20&1 — Q9
(3,2,1) 4A0 — 3040 — 09 — 2043
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Table 3.3: x vectors and maximal dominant weights for g = Agl)

x vector | Element of max(kAg) NPT || k | x vector | Element of max(kAg) N P

) 2Ao 5 [ (0,0,0,0) 5A0

) 2A0 — (1,1,1,1) 5A0 —

) 2A0 — 2a0 — ] — Oy (1,2,2,1) 5A0 — 2@0 — ] — Oy

) 3A0 (1,2,2,2) 5A0 - 20[0 —

) 3A0 — Q) (1,2,3,2) 5A0 — 3040 — 20(1 — Q2 — Oy

) 3A) — 200 — a1 — ay (2,2,2,1) 5A0 — 2ap — iy

) 3A0 — 2040 — Q1 (2,3,2,1) 5A0 — 30(0 — ] — Qa3 — 2044

) | 3Ap —3ap — 201 —ag — ay (2,2,2,2) 5Ag — 2

) 3A0 — 20&0 — Oy (2,3,3,2) 5A0 — 3050 — 01 — Oy

) 3A0 - 30[0 — ] — Qg3 — 2044 (2,3,4,2) 5A0 - 4040 - 20[1 — Qg — 2a4

) 4A0 (2,4,3,2) 5A0 - 40(0 — 207 — a3 — 204

) 4A0 — (2,4,4,2) 5A0 - 4040 - 2041 — 2044

) 4A0 - 20[0 — ] — Oy (1,2,3,3) 5A0 - 30[0 - 20[1 — Q9

) 4A0 — 2040 — Q1 (3,3,2,1) 5A0 — 30&0 — Q3 — 2@4

) 4A0 - 30[0 - 20&1 — g — Oy (1,2,3,4) 5A0 - 40&0 - 30[1 - 20[2 — Q3

) 4A0 - 2040 — Qy (2,3,3,3) 5A0 — 3040 — 1

) | 4Ap —3ap — a1 — a3 — 24 (2,3,4,3) | 5Ap —4ap — 201 — g — ay

) 4A0 — 2040 (2,4,4,3) 5A0 - 40&0 - 20&1 — QY

) 4Ay — 3oy — a1 — ay (2,4,5,3) | 5Ag — by — 31 — ag — 24

) 4A0 - 4040 - 2041 — g — 2054 (2,4,6,3) 5A0 - 6&0 - 4&1 - 2&2 - 3044

) 4A0 — 4a0 — 2(11 — 3 — 20[4 (3,3,3,2) 5A0 — 30&0 — Qg

) 4A0 — 4040 — 2(11 — 2(14 (3,4,3,2) 5A0 — 4040 — ] — a3 — 20&4

) 4A0 - 3040 - 2041 — (9 (3,4,4,2) 5A0 — 4a0 — ] — 20[4

) 4A0 - 30[0 — Q3 — 20[4 (3,5,4,2) 5A0 - 50&0 - 20[1 — Q3 — 30[4
(3,6,4,2) 5A0 — 60&0 — 3@1 — 2@3 — 4@4
(4,3,2,1) 5A0 - 40&0 — Qg — 20[3 - 30[4
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Cartan matrix

2 0 -1 0 0 0
0 2 -1 0
-1 -1 2 -1 0
A=|l0 0 -1 2 -1 0
0 0o 0 -1 2 -1
0 0 0 -2 2

The defining inequalities are equivalent to

AXZO

T < k
where £1 = by — b1 and x; = 2by — b; for 2 < i < n. That is,

21’1 — X2
—x1 + 219 — 23

—x9 + 213 — T4 >0

—Tp-3+2Tp—2—Tp-1 =0

—Tp_9+2Tp_1 — Ty >0
—QIn_l + 2-Tn > 0
T2 S k

\

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
by > by and by > % for 2 <i < n.

Lemma 3.3.1. Let x be a solution to

Then x; < xj41 for 1 <i <n—1. In addition, x; — x;—1 > Tit+1 — T;.

Proof. Assume, for the sake of contradiction, that there exists a 2 < j < n such that z; < z;_1.
If j # n, then since —x;_1 + 2x; — xj41 > 0, we have z; — xj41 > xj_1 —x; > 0 by our
assumption and so x; > x;41. Therefore, if the coordinates were to decrease at any point, they
would continue to do so up to n, forcing x,—1 > x,. However, by (Ax)n >0, 2z, > 2x,_1,
and so x,, > 1. Thus, the coordinates never decrease. Additionally, observe that the amount

of increase from x; to x;11 is never more than that from z;_1 to z; for 2 < ¢ < n — 1, since
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—Zi—1 + 2x; — xj41 > 0, implying that x; — x;—1 > xj41 — 5. ]

Lemma 3.3.2. The set of solutions to

18

x=0}U{x=(z1,29,...,2,) €EZ%; | 1 <29 <k,
>0

T = {%—‘ +04,0<h < L%Ja

i
r; = o+ lev
=3

0l < | T~ 0t Shy Slya - Sl <l for all 3< i < ).

Proof. As stated above, since A is of finite type, x > 0 or x = 0 and so x5 = 0 gives the solution
x = 0. Now, fix 9 such that 1 < x9 < k. Then by (/ix)l >0, z1 > 3. Since each x; must be
an integer, this implies z; > [%] We have observed that the first n coordinates of x do not
decrease, therefore x1 < x5. Then [‘%2] < x1 < 29 and so we can write 1 = [%] + l; where
0<l < L%J We will prove the pattern for the remaining coordinates by induction. First, as a
base case, we show the expression for x3. Again, since the coordinates do not decrease, xo < x3
and from the previous lemma, x3 — xo < 29 — x1. Then 23 — x9 < x9 — ([%] +1h)= L%?J — 1.
Therefore, zo < z3 < 29 + L‘%QJ — 11 and so x3 = x9 + I3 where 0 < I3 < L%QJ — l1. Now,
assume that z; is of the form z; = x5 + Zé‘:s [ for all 3 < ¢ < p < n where l; = x; —xj_4
and so 0 <1, <lp,—1 <--- <y <l3 by the second result of Lemma 3.3.1. By the same lemma,
zp < xpy1 < 2z, — xp—1. Applying the induction hypothesis, we have xo + Z?:g l; <appq <
2wo+ 30 _y 1) — (w2 + 3025 1) = wo+ (Xh_3 i) +1p. Then wpi1 = @+ (7_3 1) +1p41 where
0 <lp41 < lp. Therefore, z; = x2 + 23:3 l; where 0 <[,, <1, 1 <--- <y <l3 and so [; is the

amount of increase from x;_1 to x; where 3 < i <n. O

Theorem 3.3.3. Let n > 3, A = kAo, k > 2. Then max(A) NPT = {A} U{A —lapg — (I —
([%2—‘ +11))ag — (21 — o)y — (2?23(% — (z2 + 2;23 lj))ai> where

.1§J}‘2§k7

[ = max{zy, 2]},

e 0< 1y < 2],
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Proof. By Proposition 12.6 in [12], the map A + X is a bijection from max(A) N Pt onto
kCap N (A4 Q). We first find all elements of kCyr N (A + Q) and use this bijection to then find
all elements of max(A) N P*. By definition,

kCop N (A+Q) = {X € hi[A(hi) >0 for all i € I,(X|0) < k}.

We found the set of solutions to these inequalities in Lemma 3.3.2. Recall that by the bijection,
A=A—-3" bia; € max{A} NPT, with b; € Z>q for all 0 < i < n, maps to A = > 1| x5 €
kCup N (A + Q). The map gives that x1 = by — by and x; = 2by — b; for 2 < i < n. Then
(bo, b1, .. bn) = (bo, by — x1,2bg — x2,...,2by — x,). Then if we can determine by, we will have
the set of all maximal dominant weights since we have already found the pattern for all z;. By
definition, the b; > 0 for 0 < 7 < n. Therefore, the following must be true:

bp >0
bo—l’lzo
2[)0—1‘220
2b0—$n20

It is clear that bp > x1 where z1 = ([%ﬂ + ;). We have already proven that the first n
coordinates of x never decrease. Therefore, z,, = maxj<;<,{x;} and so for the inner inequalities
it is sufficient to say that by > %" Since x, may be odd and the b; are integers, we need
by > {%"] Then let | = max{x, {%"]} and so by > [. We claim that by = [. For the sake of

contradiction, suppose by = [ + r where r € Z~g. Then
A+o=A—(1+r—Dag—({+r—az1—1ag — 2l +2r—za—2)ag — - — (2l +2r — z, — 2)a,.

Then if each of the subtracted coefficients of the «;,0 < i < n is greater than or equal to 0,
we will have A\ +6 < Aand A +6 € PT. First, [+ —1 > 0 since [ > x; > 1 and we assume
r >0 thenl+r—1> 0. Second, since I > x; and r > 1 we have [ +r — z; — 1 > 0. Finally,
since [ > [%"1, we have 21 > 2[%”] which means 21 > z,, if z,, is even or 21 > z, + 1 if z,
is odd. Either way, 2l > z, > z; for all 2 < 4 < n. Since r > 1 then 2r > 2 and we have
204+ 2r —x; —2 >0 for all 2 <4 < n. Then A+ 4 is a weight of V(A) which contradicts that
A € max{A}. Therefore, r =0and A=A —lag — (I —z1)a; — (2l —x2)og — - -+ — (21 — ) ..
Combining this with our solutions for the x; from Lemma 3.3.2, we have the pattern given

above. O

To better understand this theorem, consider some examples for various values of both k£ and
n. We include two examples of k& = 2 so that the reader may check that our results match those

found in [18]. For ease in our future examples, define Xy, ,, = {(z1,...,25) | Ax>0,1< 25 < k}.
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Table 3.4: x vectors and maximal dominant weights for the g = Bél)—module V(2A0)

To | l1,13,14,15 X vector l Element of max(3Ag) NPT

0 | 0,000 |(0,0,0,0,0) |0 2Ao

1 0,0,0,0 (1,1,1,1,1) 1 2A0 — 0y — 0 — QO3 — 04 — 05

2 | 0,000 |(1,2,22,2) |1 20 — o

2 0,1,0,0 (1,2 3 3 3) 2 2A0 —20[0 — 1 —20&2 — 3 — 04 — Q5
2| 01,1,0 |(1,2,3,4,4) |2 20 — 200 — a1 — 209 — 3

2 0,1,1,1 (1 2 3 4 5) 3 2A0 - 30[0 - 20[1 - 4&2 - 30&3 - 20&4 — Q5
2 | 1,000 |(2,2222) ]2 2N — 200 — 200 — 203 — 2004 — 205

Note that X;, C X}, whenever [ < k.

Ezample 3.3.4. Bé ), V(A) = V(2Ay). Using the theorem, we have that

max(240) N P+ = {2A0} U {2A0—lag — (I — ([%} Fh))ar — (20— z2)as — (20 — (22 + 13))as

— (2l — (952 + 13 + l4))0{4 — (2l — (332 + 3+ 14+ l5))0{5}.

Since 1 < x9 < k and k = 2, then we have x5 = 1 or zo = 2. First, consider x5 = 1. Then
0<lh < L%J = 0. Then [; = 0 and so z1 = [%1 +0 =1 and 0 < I3 < 0. This implies that
l4 = l5 = 0. Therefore, we obtain the x vector (1,1,1,1,1). Then [ = 1, giving the maximal
dominant weight 2Ag — ag — a — ag — ag — as.

The only choice we made (and so the only value we can change) was that for x3. Then
consider xo = 2. This implies that 0 < I3 < 1. Once more, we have a choice. First, let I; = 0.
Then 1 = 1 and 0 < l3 < 1. First, choose I3 = 0, which implies that I4 = l5 = 0. This gives
the x vector (1,2,2,2,2). By the theorem, this corresponds to the maximal dominant weight
2Ag — g since | = 1 = x1 = [%51 Next, we consider I3 = 1. Then 0 < I35 < Iy < 1. We
choose l4 = 0, which implies I5 = 0. This gives the x vector (1,2,3,3,3), and so | = [%W = 2.
The resulting maximal dominant weight is 2A¢g — 2ag — @1 — 20 — a3 — g — a5. If Iy = 1,
then I5 = 0 or 5 = 1. 5 = 0 gives the x vector (1,2,3,4,4) and l5 = 1 gives the x vector
(1,2,3,4,5). The corresponding maximal dominant weights are 2Ag — 2ap — a1 — 202 — a3
and 2Ag — 3ag — 2a1 — 4as — 3az — 2a4 — a5 respectively. We have exhausted all possible
choices for [; = 0. Now, consider I; = 1. Then 0 < I3 < L%J — 1 = 0, which implies that
I3 =1y = l5 = 0. This gives the x vector (2,2,2,2,2) with corresponding maximal dominant
weight 2Ag — 2ap — 2a0 — 2a3 — 24 — 2a5. We list these results in Table 3.4. One can check
that this set corresponds to that of [18],

{200, Ao + Ay — 6, As — 8, Ay — 26, Ay — 25, 2A5 — 36,271 — 26}.
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Table 3.5: x vectors and maximal dominant weights for the g = Bél)—module V(2A0)

o | 11,13, 14,15, X vector l Element of max(3A¢) NPT

0 0,0,0,0,0 (0,0,0,0,0,0) | O 2o

1 0,0,0,0,0 (1,1,1,1,1,1) 1 2A0 — ) — g — Q3 — 04 —O5 — O

2 | 00000 (1,222,272 |1 200 — o

2 0,1,0,00 |(1,2,3,3,3,3) | 2| 2Ag— 200 — o1 — 209 — a3 — g — a5 — Qg
2 0,1,1,0,0 | (1,2,3,4,4,4) | 2 20 — 200 — a1 — 20 — 3

2 0,1,1,1,0 (1,2,3,4,5,5) 3 2A0*30¢0 *20[1 *40&2 *30&3 *20[4*0[5 — Qg
2 0,1,1,1,1 (1,2,3,4,5,6) 3 2A0 —30&0 — 201 — 4dae —3@3—20&4—0&5

2 1,0,000 |(2,2,2,2,2,2) | 2|  2Ag — 2a0 — 203 — 203 — 204 — 205 — 20

Ezample 3.3.5. Bél), V(A) = V(2Ay). By the theorem, we have

2
2
— (2l — (xz + I3 + l4))0¢4 — (2[ — (wg + 13+ 14+ l5))0¢5

— (2l — (.772 + 13+ 14+ 15+ l6))056}-

max(QAg) NPt = {2A0} U {2A0 —lag — (l - ([ —| + ll))al — (2l - .TQ)O[Q — (2[ - (1'2 + l3))a3

2 =1:Then 0 <]; <0andso0<lI3<0-—0,implying I; =l3 =--- =lg = 0 giving the x
vector (1,1,1,1,1,1) with corresponding maximal dominant weight 2Ag — ag — ag — a3 — ay —
as — Qg.
xo =2:Then 0< [ <1.
Consider 1 = 0. Then z;y =1 and 0 <3 < 1.
First, consider I3 = 0. Then 3 = x9 = 2 and 0 < lg < l5 < Iy < 0. This gives the x
vector (1,2,2,2,2,2) with corresponding maximal dominant weight 2Ag — ayp.
Now consider I3 = 1. Then xg =3 and 0 < g <5 <y < 1.
If Iy = 0, we obtain the x vector (1,2, 3, 3,3, 3) with corresponding maximal dominant
weight 2Ag — 2ap — a1 — 29 — a3 — g — @5 — Q-
If [y = 1 and [5 = 0, we obtain the x vector (1,2,3,4,4,4) with corresponding
maximal dominant weight 2Ag — 2ap — a1 — 200 — Q3.
If iy =15 =1 and lg = 0, we have (1,2,3,4,5,5) with maximal dominant weight
2A0 — 3ap — 2001 — 4dag — 3oz — 204 — 5 — G-
If iy =15 = lg = 1, we have (1,2,3,4,5,6) with maximal dominant weight 2Ay —
3ap — 201 — 4o — 3ag — 204 — as.
Finally, consider [y = 1. Then 0 < I3 < 0 implies that 0 =[5 = [4 = [5 = lg. This gives the x
vector and maximal dominant weight (2, 2,2,2,2,2) and 2A¢ — 200 —2a2 — 203 — 20y — 205 — 206.
We list these results in Table 3.5.

We show that our formulation for the maximal dominant weights of V' (kAg) correspond to

that of [18] for the case k = 2 for arbitrary n > 3. We can simplify our formulation, splitting it
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into sets according to level, in the case of k = 2 to the following:

max(2A) N P ={2A0} U{2A0 — a0 — Y _ o}
=2

U {280 —lag = (I = (1+h))ar = (21 = 2)ay = (3 _(24 = (2+ 3 1y)eu)}

=3

According to [18], the set of maximal dominant weights for V(2A¢) is

1
{(1+52u—1,n>1\2u—1—u5\2§us{ ; J}U{(1+52un)A2u—u5|l<u< EJ}

U {A() + A — (5} U {2A0, 2A1 — 2(5}

To prove that the two formulations are the same, we first write our formulation in terms of the

fundamental dominant weights, A;. Note that we must use the entries of the Cartan matrix

corresponding to Aéi)_l as the coefficients of the A;, in order to satisfy that > ;" ;a;oy = 6 and

a;(h;) = a;j. We have the following:

ag=2MAg — Ay + 9

a1 = 2A1 — Ay

ag = —Ng — A1 +2A9 — As
ag = —Ay+2A35 — Ay

Ap—1 = _An—2 + 2An—1 - 2An
ap = —Ap—1 +2A,

Then our formulation becomes:

X :{2A0} @) {2A0 — (2A0 — Ay + 5) - (—AO — Ay +2A5 — Ag)
n—2

— (YoM 280 = A1) — (A + 2801 — 280) — (—An1 +20,)}
=3

U{200 —1(2A0 — Ao +6) — (I = (1 + 1)) (201 — Ag) — (20 — 2)(—Ag — Ay + 2A3 — A3)
(Z (20 — ( 2+Zl Aio1 +2A; — Am))

(21— ( 2+Zl —Ap—2z +2An—1 — 2An)

2+Zl —Ap_1+2A,)}
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‘We now show that

1
X ={(1+d2u-1,n)A2u—1 —ud |2<u < V;J FU{(1 + d2un)Aoy —ud | 1 <u < gJ}

U {AO + A — (5} @] {2[\0, 2A1 — 2(5}

2A¢ is included in both sets so we move on to the remaining weights. Consider the level 1
weight 2A0 — (2Ag — Ao +0) — (—Ap — A1 +2A3 — A3) — Z?;??(—Ai_l +2N; — A1) — (—Ap—2+
2A -1 —2A,) — (—An—1 +2A,). We immediately see that we have A9+ Aj — 0 coming from the
first three summands. One can check that all other terms cancel, leaving us with Ag + A; — 0,
matching another of the weights in [18].

We now consider the general term in our expression for W. Since x2 = 2, [; can be 0 or 1. If
l1 = 1, this implies that l,, = l,,—1 = --- = I3 = 0 which gives the x vector (2,2,...,2), meaning
[ = 2. Simplifying the general expression, we obtain 2Ag —2(2Ag — A2 +0) —2(—Ag — A1 +2A2 —
Ag) = S 22(=Asq 4+ 20 — Aiy) — 2(—Ano + 20,1 — 2A,) — 2(—Ap_1 + 2A,,). Simplifying
this further, we obtain 2A; — 2§, completing the fourth set in the description in [18].

Now consider if I; = I3 = 0. This implies I,, = l,_1 = --- = l4 = l3 = 0, giving x vector
(1,2,...,2). In this case, | = 1 and we consider our general term once more: 2Ag—(2Ag—Aa+9) =
Ay — 4. This corresponds to the weight in second set for [18] where u = 1.

Finally, we consider the remaining weights. Let {; = 0 and k be the smallest integer between
4 and n such that I = 0. This implies I3 =14 = --- =l =1land [y = g1 =--- =1, = 0.

k—1

Then since | = max{z1, (%”]} and the x vector is nondecreasing by Lemma 3.3.1, [ = [?]

Then our general expression becomes

m—ﬁ‘ 1-‘(2/\0 — Ay +0) — (V;ﬂ ~1)(201 - o)
- <2 V;l—‘ - 2) (—Ao — A1 +2A5 — Ag)
b=l i
- Z <2 [2-‘ -2+ Z 1)) (=Ai—1 + 20 — Aigr)
i=3 Jj=3
n—2

- (2 F{;;lw —(2+ kZi 1)) (—Aic1 +2A; — Aipa)
: =

E_1 k—1
2 [-‘ -2+ 1)) (—An—2+2A, 1 —2A,)
k—
k—1
2 [w —(2+ 1))(—An_1 +2A,)
If £k — 1 is even, we have the following:
k-1 (k

-1
200—"5— (280 — A2 +0) — (5~ - 1)(2A1 —Ag) — (k—1—2)(=Ag — Ay + 245 — A3)
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— (I{Z— 1-— (2—|—i1))(—A1_1 +2Ai_Ai+1)

=3 7=3
n—2 k—1
i=k 7=3

k—1
—(k=1=Q2+> D) (—Ap2+20n 1 —20,) — (k= 1— (24> 1))(—An_1 +2A,)
7=3

N
—

<.
Il
w

Collecting like terms, we have

2Ap — (k‘ - 1)A0 + (k‘ - 3)A0 — (k‘ — 3)A1 + (k‘ — 3)A1

k- k 3
+ 5 AQ + Ay — Q(k’ 3)A2 + (li? 4)A
— k-1
+ 37 (=)A= 20k = (i + D)A+ (k= (i + 2)As) + Ay = =50
=3
k-1
= Ay = T

This corresponds to the second set we have listed except for when u = L%J and n is even. Notice

we have also left out the case in which n is even and [, = 1 for all 3 < k < n. These two cases

correspond as we show below. In this situation, | = max{z, [%|} = max{1,%} =%
n n
2Ag — *(2A0 — Ao+ 5) — (5 — 1) (2A1 — AQ) — (n — 2)(—A0 — A +2A5 — Ag)

n—2

Zn— 2+Z N1+ 2N — AZ+1 n_ 2+Z —Ap—o +2A,— 1_2A)
1=3

(n— 2+Z —Ap—1 4 2A,,)

Collecting like terms, this becomes

2A0 — nAg + (n — 2)/\0 — (n — 2)/\1 + (n — 2>A1
+ gAg + (g “ 1A — 2(n — 2)As + (n — 3)As

£3 ((n= (=)A= 20 = DA + (0= (i + 1)AL) + 28, = 76
— A, — g(s

Similarly, we obtain the following if £ — 1 is odd and k is the smallest integer between 4 and n
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such that [, = 0:

k k
2A0—7(2A0 — Ay +0) — (5 —1)(2A1 — Ag) — (K —2)(—Ao — A1 + 2A9 — A3)
k—1 7
2—1—21 N1+ 20 — Aigq)
z:3
n—2 k—1

=) (k=24 ) 1)(—Ai1+2A;i — A1)

@
Il

S
<
Il

w

o
—

k—1
— (k= 2+ 1)) (~An2+ 201 —20) — (k= (2+ D 1))(~An1 +2A,)
=3

<.
Il
w

=2Ag — kAo + (k —2)Ay — (k — 2)A1 + (k —2)\y
k k

+ 5 A+ (5 = DA = 2(k = 2)As + (k= 3)As
k—2 k
+ ((k: — (= 1) —2(k —i)As + (k— (i + 1))Ai) + 2081 = 281 4 Mgy — 56
=3
k
== Ak_l - 56

This corresponds to the first set we have listed, except for the final term when u = L”TIJ and n is
odd. This is the case when n is odd and [, = 1 for all 3 < k < n. Then | = max{xz1, [ |} = ol
This gives

1 1

P 900 — Ao+ 6) — (P2 1)(2A1 — Ao) — (n+ 1 —2)(=Ag — Ay + 270 — Ag)
n—2 7
=Y 1= (24> D) (A1 + 20 — Aiga)

i=3 j:3

—(n+1—( 2+Z —Ap_o+2A, 1 —2A,)

—(n+1—( 2+Z A1 +2A,)

=2Ag — (n -+ 1)A0 + (n — 1)A0 — (TL — 1)A1 + (n — 1)A1

+1 +1
n2 A2+(n

— 1)1\2 — 2(n — 1)A2 + (n — 2)A2

+ 3 (04 1= (= 1)A =2+ 1= A+ (n+ 1= (i + 1)As)

n—+1

+4A, — 20, — 0

n—+1

=27, — )
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Table 3.6: x vectors and maximal dominant weights for the g = Bél)—module V(3Ao)

To | l1,13,14,15 X vector l Element of max(3Ag) NPT

0 | 0,000 |(0,0,0,0,0) |0 3Ao

1 0,0,0,0 (1,1,1,1,1) 1 3A0 — ) — g — Q3 — Oy — Q5

2 | 0,000 |(1,2,22,2) |1 3Mo — ag

2 0,1,0,0 (1,2 3 3 3) 2 3A0 —20[0 — 1 —20&2 — 3 — 04 — Q5
2 0,1,1,0 (1,2 3 4 4) 2 3A0—20zo—0¢1 —2042 — Q3

2 0,1,1,1 (1 2 3 4 5) 3 3A0 - 30[0 - 20[1 - 4&2 - 30&3 - 20&4 — Q5
2 | 1,000 |(2,2222) ]2 3Ag — 200 — 200 — 203 — 2004 — 205
3 0,0,0,0 (2,3,3,3,3) | 2 3N — 200 — g — a3 — g — iy

3 0,1,0,0 (2, 3 4 4 4) 2 3A0 - 2040 — 9

3 0,1,1,0 (2,3,4,5,5) | 3| 3Ag—3ap— a1 —3ay —2a3 —ay — as
3 0,1,1,1 (2 3 4 ) 6) 3 3A0 - 3040 — a1 — 3ag — 2053 — Q4

3 1,0,0,0 (3,3,3,3,3) | 3 3Ao — 3ap — 3ag — 3a3 — 3ay — 3as

This finishes the right hand side of the equation. Therefore, the two sets are equal and our
formulation matches that of [18] for k£ = 2.

We include several more examples for different values of k£ below.
Ezample 3.3.6. Bél), V(A) = V(3Ay). According to Theorem 3.3.3,
max(A) N P+ = {AYU{A — lag — (I — ([%] F1))ar — (20 — x2)as — (21 — (22 + I3))as

— 2= (223 +la))as — (20— (22 + 13+ la + 15))as

where 1 < x5 < 3 and the restrictions on [ and the [; are as listed in the theorem statement.
We obtain the results in Table 3.6.

Ezample 3.3.7. Bél), V(A) = V(3Ay). According to Theorem 3.3.3,

max(A) N P = {AYU{A — lag — (I — ([%] F1))ar — (20 — x2)as — (21 — (22 + I3))as

— (2l — (332 + 13 + l4))0¢4 — (2[ — (1‘2 + s+ 14+ l5))0¢5
— (2l — (1‘2 + i3+ 14+ 15+ 16))046

where 1 < 9 < 3 and the restrictions on [ and the [; are as listed in the theorem statement.
We obtain the results in Table 3.7.

Ezample 3.3.8. Bél), V(A) = V(4Ay). According to Theorem 3.3.3,

max(A) N P = {AYU{A — lag — (I — ([%] Fl))ar — (20 — x)as — (21 — (29 + I3))as

— (2 = (w2 + 3+ 1a))os — (2 = (w2 + I3+ 1la + 15))s

where 1 < x9 < 4 and the restrictions on [ and the [; are as listed in the theorem statement.
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Table 3.7: x vectors and maximal dominant weights for the g = Bél)—module V(3Ao)

ro | l1,13,14,15,1 X vector l Element of max(3A¢) NPT

0 0,0,0,0,0 (0,0,0,0,0,0) | O 3Ao

1 0,0,0,0,0 (1,1,1,1,1,1) 1 3A0—O¢0—042—043—Oé4—045—046

2 | 00000 |(1,2,2222)]|1 3Mo — ag

2 0,1,0,0,0 (1, 2 3, 3, 3, 3) 2 3A0 - 20[0 — o1 — 20 — a3 — 04 — 05 — Qg
2 0,1,1,00 | (1,2,3,4,4,4) | 2 3Ag — 200 — a1 — 209 — i3

2 0,1,1,1,0 (1 2 3 4 5 5) 3 3A073a072a1 *40&2*30&3*20[4*0[5*0[6
2 0,1,1,1,1 (1, 2, 3 4 5 6) 3 3A0 - 30&0 — 201 —4dag — 3@3 — 204 — (073

2 1,0,0,00 |(2,2,2,2,2,2) | 2 3Ag — 200 — 200 — 203 — 204 — 2005 — 20

3 0,0,0,0,0 (2 3 3 3 3 3) 2 3A0 — 2040 — Q9 — (g3 — g — 05 — Qp

30 0,1,000 |(23,4,4,4,4) |2 3o — 200 — Qs

3 0,1,1,0,0 (2 3 4 5 5 5) 3 3A0—3O&0—O&1 —3@2—2&3—@4—&5—&6
3 0,1,1,1,0 ( 3 4 5 6 6) 3 3A0—3a0—a1—3a2—2a3—a4

3 0,1,1,1,1 (2 3 4 5 6 7) 4 3A0—4040—2041—50&2—40&3—30&4—20&5—0&6
3 1,0,0,0,0 (3,3,3,3,3,3) | 3 3Ao — 3ap — 3ag — 3z — 3 — 3as — 3

We obtain the results in Table 3.8.

Example 3.3.9. Bél),V(A) =

max(A) N P+ = {A}U{A —lag — (I — ([%] +1))ag —

V(4Ap). According to Theorem 3.3.3,

(20 — 22)ag — (21 — (22 + 13)) s

— 2= (2 +l3+UL)as— 2l — (x2+ I3+l +15))as
— (20— (wo+ls+1la+15+16))as

where 1 < z9 < 4 and the restrictions on [ and the {; are as listed in the theorem statement.
We obtain the results in Table 3.9.

3.4 Type C,gl)

We now consider g = Cq(ll) for n > 2, index set I = {0,1,...,n}, and Cartan matrix

2 -1 0 0 0 ... O
-2 2 -1 0
o -1 2 -1

A= :
0 0 -1 2 -1 0
0 o 0 -1 2 =2
0 0 0 -1 2
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Table 3.8: x vectors and maximal dominant weights for the g = Bél)—module V(4A0)

To | l1,13,14,15 X vector l Element of max(4Ag) NPT

0| 0000 | (0,0,00,0) |0 4A,

1 0,0,0,0 (1,1,1,1,1) 1 4A0 — Q) — Qg — Q3 — 04 — Q5

2| 0000 | (1,2,2,2,2) |1 4Ag — ag

2 0,1,0,0 (1, 2, 3, 3, 3) 2 4A0 — 204() — ] — 2042 — Q3 — 0y — Q5
2 0,1,1,0 (1,2,3,4,4) 2 4A0 —20&0 — 1] — 20&2 — Qa3

2 0,1,1,1 (1,2,3,4, 5) 3 4A0 —3C¥0 — 201 — 4o —3043 — 20y — Q5
2| 1,000 | (2,2,2,2,2) |2 4Mo — 20 — 209 — 2003 — 2004 — 205

3 0,0,0,0 (2, 3, 3, 3, 3) 2 4A0 - 20&0 — Qg — (3 — 04 — Q5

30 01,00 | (2,3,4,4,4) |2 4Ag — 200 — az

3 0,1,1,0 (2, 3, 4, 5, 5) 3 4A0 - 30&0 — a1 — 3ag — 20&3 — 04 — Q5
3 0,1,1,1 (2,3,4,5,6) | 3 4Ag — 3ag — a1 — 3ag — 23 — ay

3| 1,000 | (3,3,3,3,3) | 3| 4Ao—3ap— 302 — 3as — 3as — 3as

41 0,000 | (2,4,4,4,4) |2 4o — 200

4 0,1,0,0 (2, 4, 5, 5, 5) 3 4A0 - 30[0 — a1 — 209 — a3 — 04 — Q5
4 0,1,1,0 (2, 4, 5, 6, 6) 3 4A0 - 3&0 — o) — 209 — a3

4 0,1,1,1 (2, 4, 5, 6, 7) 4 4AU - 40[[) - 20[1 - 40&2 - 30[3 - 20[4 — Q5
41 0200 | (2,4,6,6,6) |3 4N — 3ap — o — 209

4 0,2,1,0 (2, 4, 6, 7, 7) 4 4A0 - 40(0 - 2051 - 40(2 - 20[3 — Oy — (O
41 0211 | (2,4,6,7,8) | 4 4Ny — dag — 201 — das — 203 — Ay

41 0220 | (2,4,6,8,8) | 4 4N — dag — 20 — das — 203

4 0,2,2,1 (2, 47 6, 8, 9) ) 4A0 - 5040 — 31 — 6ag — 40&3 — 204 — s
41 0222 |(2,4,6,8,10) |5 4N — Bag — 3aq — 6oy — dag — 20

4 1,0,0,0 (3, 4, 4, 4, 4) 3 4A0 - 30(0 — 2aig — 2043 — 20 — 20&5

4 1,1,0,0 (3, 4, 5, 5, 5) 3 4A0 - 3040 - 2042 — Q3 — 04 — Q5

4 1,1,1,0 (3, 4, 5, 6, 6) 3 4A0 - 30&0 — 2aig — a3

4 1,1,1,1 (3,4,5,6,7) 4 4A0—4040—C¥1 — 4oy —3043 —2044—045
4 2,0,0,0 (4, 4, 4, 4, 4) 4 4A0 - 40&0 - 40[2 - 40[3 - 40(4 - 40(5

29




Table 3.9: x vectors and maximal dominant weights for the g = Bél)—module V(4Ao)

o | 11,13,14,15 x vector l Element of max(4Aq) N P+

0 | 0,0,0,0,0 | (0,0,0,0,0,0) |0 4A,

1 | 0,0,0,0,0 (1,1,1,1,1,1) |1 4Ng — g — o — a3 — g — a5 — Qg

2 10,0000 | (1,2,2,2,2,2) |1 4Ag — ap

2 | 0,1,0,0,0 (1,2,3,3,3,3) |2 4Ng — 200 — a1 — 209 — a3 — ay — Q5 — Qg
2 1 0,1,1,00 | (1,2,3,4,4,4) |2 4Ay — 200 — o — 2000 — g

2 0,1,1,1,0 (1 2 3,4,5,5) 3 4A0 —3a0 —2a1 —40[2 —3043 —2(1’4—045 — Qg
2 0,1,1,1,1 (1 2 3 4 5) 6) 3 4A0 — 30[0 — 2011 — 4042 — 30[3 — 20(4 — Q5

2 11,0000 | (2,2,2,222) |2 4hg — 20 — 209 — 203 — 2004 — 2005 — 206

3 0,0,0,0,0 (2 3 3 3 3 3) 2 4A0 - 20[0 — g — (3 — 04 — 05 — Qg

3 01,000 | (2,3,4,4,4,4) |2 4Ag — 209 — g

3 071,1,0,0 (2 3 4 5 5 5) 3 4A0—3a0—a1 —30[2—20[3—0(4—0[5—0[6
3 0,1,1,1,0 (2 3 4 5 6 6) 3 4A0 - 30&0 — a1 — 3ag — 2043 — Q4

31 011,11 (2,3,4,5,6,7) | 4 | 4Ao — 4oy — 201 — Hag — das — 3y — 205 —
31,0000 | (3,3,3,3,3,3) |3 4Ny — 30 — g — 33 — 3 — 3as — 3a

41 00,000 | (2,4,4,4,4,4) |2 4o — 200

4 0,1,0,0,0 (2 4 5 5 5 5) 3 4A0 — 3040 — 1] — 20&2 — Q3 — 04 — a5 — Qg
4 0,1,1,0,0 ( 4 5 6 6 6) 3 4A0 - 3040 — o] — 2a2 — Q3

4 0,1,1,1,0 (2 4 5 6 7 7) 4 41\0—40&0—20[1 —40[2—3013—20&4—0&5—0&6
4 0,1,1,1,1 (2 4 5 6 7 8) 4 4A0 - 4040 — 201 — 4dag — 3043 — 20y — (073

41 02000 | (2,4,6,6,6,6) |3 4o — 3ap — o1 — 209

4 0,2,1,0,0 (2 4 6 7 7 7) 4 4A0 — 4@0 — 2@1 — 4&2 — 2053 — 04 — 5 — Of
4 072,1,1,0 ( 4 6 7 8 8) 4 4A0 - 40(0 - 2051 - 40(2 - 20[3 — Q4

4 0,2,1,1,1 (2 4 6 7 8 9) 5 4A0 — 5040 — 3041 — 6042 — 40(3 — 30&4 — 20&5 — Qg
4102200 | (2,4,6,8,8,8) |4 4Ng — dag — 201 — das — 203

4 0,2,2,1,0 (2, 4, 6, 8, 9, 9) 5 4A0 - 50&0 — 3a1 — 6ag — 4&3 — 20 — a5 — Qg
4102211 | (2,4,6,8,9,10) | 5 4N — bag — 3o — 6o — dag — 20 — s

4 0,2,2,2,0 (2, 4, 6, 8, 10, 10) ) 4A0 - 50é0 — 31 — 6ag — 40(3 — 20y
4102221 | (2,4,6,8,10,11) | 6 | 4Ag — 6ag — 4ag — 8a — 6ag — 4oy — 205 — g
4 0,2,2,2,2 (2, 4, 6, 8, 10, 12) 6 4A0 - 6040 - 40(1 — 8ag — 60&3 - 40[4 - 20[5

4 1,0,0,0,0 (3, 4, 4, 4, 4, 4) 3 4A0 — 3&0 — 2a2 — 2a3 - 2a4 - 2045 - 2046

4 1,1,0,0,0 (3, 4, 5, 5, 5, 5) 3 4A0 - 30[0 - 20[2 — Qa3 — 04 — a5 — Qg

4] 1,1,1,00 | (3,4,5,6,6,6) |3 4N — 3ag — 209 — a3

4 1,1,1,1,0 (3,4,5,6,7, 7) 4 4A0—40[0—051 —40(2—30(3—20[4—0[5 — O
4 1,1,1,1,1 (3,4,5,6,7, 8) 4 4A0—40zo—041 — 4oy —30&3 —20&4—045

4] 20000 | (4,4,4,4,4,4) |4 4hg — dag — Aoy — dag — Aoy — das — dag
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The defining inequalities are equivalent to

AXZO

1 <k
where z; = 2by — b; for 1 <i<n —1, and z,, = by — b,,. That is,

2%1 — X9
—x1 + 219 — 23

—T9 + 213 — x4 >0

—Tp-3+2r, 2—2p1 20
—Tp_2 + 2wy 1 — 21y >0

—Tp_1+ 2y >0

T1 Sk

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
boz%forlgign—landbOan.

Lemma 3.4.1. Let n > 3 and x be a solution to

Then z; < 241 for 1 <i<n—2. In addition, ©; — x;—1 > Ti+1 — Tj.

Proof. This proof is essentially the same as that of Lemma 3.3.1 with the coordinates non-
decreasing until n — 2 rather than n — 1. In this case we arrive at the contradiction using both
(AX),_1 > 0 and (Ax), > 0. O

Lemma 3.4.2. Let n > 3 and x be a solution to

Then x; = x;_1 implies x; = 2m for some integer m and for 2 <i<n —1.

Proof. Assume, for the sake of contradiction, that z; = x;41 = 2m + 1 for some m € Z>( and
for some 1 <4 < n—2. Then by Lemma 3.4.1, x; = 2m +1 for all ¢ < j < n — 1. Therefore, the
last two inequalities in Ax > 0 give —(2m + 1) + 2(2m + 1) > 2z, and z,, > (2] = + 1
(since the x; are integers). Therefore, we have 2m + 1 > 2z, > 2(m + 1) = 2m + 2. This is a
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contradiction and so odd numbers cannot repeat. Note however, that even numbers do repeat.
Let x; = ;11 = 2m for some m and for some 1 < ¢ < n — 2. By the same reasoning as above,
we have —2m + 4m > 2z, and x,, > m. This gives 2m > 2z, > 2m which means x,, = m in
this case. O

Lemma 3.4.3. The set of solutions to

/leZO

l‘lfk‘
18
(2
{x=0}U{x=(z1,72,...,7,) € ZY, | 1§z1§k,xi:x1+2lj for2<i<n-1,

J=2

0<lb<21,0< 11 <lpo <--- <3 <o,

[%;—1" <zp < {:Bn_l;_ln_lJ forn >3, and {%—‘ < xy <1 forn=2}.
Proof. As stated above, since A is of finite type, x > 0 or x = 0 and so 1 = 0 gives the solution
x = 0. Now, fix 1 such that 1 < x7 < k. We prove the pattern for x5 through x,,_; by induction.
First, by (zZlX)1 > 0, z9 < 2x1. We have observed in Lemma 3.4.1 that the first n — 1 coordinates
of x do not decrease, therefore x9 > x1. Then x1 < x9 < 2x7 implies that z9 = x1 + I where
0 <ly < x1. Now, assume z; is of the form x; = x1 + 23‘:2 [ for all 2 <i <p < n—1 where
lj=z;—xj-1and so 0 <[, <1l, 1 <--- <3 <y by the second result of Lemma 3.4.1. By the
same lemma, z, < 2,11 < 2x,—2x,—1. Applying the induction hypothesis, we have $1+Z§:2 l; <
Tpr1 < 21+ X5 ) — (21 4+ X525 1) = 14+ (Ch_p 1) +1p- Then @41 = w1+ (5o 1) +lpra
where 0 < I,1 <. Therefore, z; = x1 + 2322 l; where 0 <[, 1 <[, 2 <--- <3<l < a2
and so [; is the amount of increase from x;_1 to x; where 2 < ¢ < n—1. Finally, we need to prove
the restrictions on x,. (/ix)n_l > 0 implies that 2z, < —x,_2 + 22,—1. Using what we just
showed, we have 2x,, < — (1 —1—2?:_22 lj)+2(x +E;L:_21 i) =x1+1lh1 —I—Z?:_QI lj =zp_1+1l—1.

: . . +30 . .
(Ax), > 0 gives x, > 5. Or, with what we found, we have z, > M%“ Since z,, is an
integer, we have [m";l} <zxp < L“%Hn*lj The description for zo in the case n = 2 follows
directly from Ax > 0. O

Theorem 3.4.4. Let n > 3, A = kAo, k > 2. Then max(A) NPT = {A} U{A — lag — (20 —
xr1)ag — (Z?:_Ql(% — (21 + Z;":z lj))ai) where

L4 1Sl’1§k7
.0§l2§$17

0 0<l,1 <lpo< - <l3< g,
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o [E5t] <is [t

When n = 2, max(A)NPT = {AJU{A—lag—(2l—z1)a1 } where 1 < x1 < k and {%1 << 2.

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that
Tr; = 2b0 — bz‘ for 1 < 1 <n-— 1 and Tn = bo — bn. Then (bo,bl,...,bn) = (b0,2bo — 331,2[)0 —
x9y...,2bp — Tp_1,bg — x,). By definition, the b; > 0 for 0 < ¢ < n. Therefore, the following

must be true:

bp > 0
2b0—.7}120
2b0—.7}220

2b0 — Tp—1 Z 0

bQ—IL‘nZO

We begin with the case n > 3. We have already proven that the first n — 1 coordinates of x
never decrease. Therefore, x,,—1 = maxj<j<p—1{x;} and so for the first n — 1 inequalities it is
sufficient to say that by > “%-*. Since z,—; may be odd, we need by > [*%-]. We showed in
Lemma 3.4.3 that [*%52] < 2, < {%J Then since by > z, > [*%52] > %2, we need

2
only say by > x,. Then let [ = z,, and so by > [. Showing by = [ is similar to the method used

in the proof of Theorem 3.3.3 and we have A\ = A —log — (20 — 1)y — (2l — z2)ag — - - — (21 —
ZTp—1)n-1 — (I — zp)ay,. Combining this with our solutions for the z; from Lemma 3.4.3, we
have the pattern given above.

When n = 2, we showed in Lemma 3.4.3 that zo > (%] Then the above holds where
bg = I = x2. We can again combine this with the solution from Lemma 3.4.3, giving the pattern

above. O

To better understand this theorem, consider some examples for various values of both k and
n. For ease in our future examples, define Xy, = {(z1,...,2n) | Ax > 0,1 < 21 < k}. Note
that X;, C X}, whenever [ < k.

Ezample 3.4.5. Cél), V(A) = V(2A0). By Theorem 3.4.4, any element of max(2Ao) NPT other
than 2Ag is of the form

20Ag —lag — (2l — z1)ag — (21 — (x1 + 12))ae — (20 — (21 + l2 + 3)) a3
— (2 = (w1 + 2+ 13+ ls))os + (I — x5) 5.

We list the x vectors and corresponding values for [, 2,13, and l4 in addition to the resulting

maximal dominant weight in Table 3.10.
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Table 3.10: x vectors and maximal dominant weights for the g = Cél)—module V(2A0)

x vector | I | lg, 13,14 Element of max(2Ag) NPT
0,0,0,00) | 0] 0,0,0 27,

(1,2,2,2,1) | 1| 1,00 2o — ag — ay
(1234,2) | 2| 1,1,1 2o — 200 — 37 — 209 — a3
(2,2,2,2,1) | 1| 0,00 92A0 — g

(2.34,42) | 2| 1,1,0 2o — 200 — 201 — 2
(2,3,4,5,3) 3 1,1,1 2A0 - 30[0 - 4&1 - 30&2 - 20&3 — Oy
(24,4,42) | 2| 2,00 92 — 200 — 201
(2,4,5,6,3) | 3| 2,1,1 2A0 — 3ag — 4a; — 2a — a3
(24,6,6,3) | 3| 2,2,0 2o — 3ap — day — 209
(24,6,7,4) | 4| 2,21 | 2Ag — dag — 6a; — das — 2a3 — ay
(2,4,684) | 4| 2,2,2 9o — dag — 6ay — das — 20
(2,4,6,8,5) ) 2,2,2 2A0 - 50(0 - 8041 — 6042 — 4a3 — 20[4

Ezample 3.4.6. CSV, V(A) = V(2Ag). By Theorem 3.4.4, an element of max(2Ag) N PT other
than 2Ag is of the form

2A0 — lOé(] — (2l — .%‘1)0[1 — (2l — (:El =+ lg)ag — (2l — (1‘1 + 12 + lg))ag
— (2l — (331 + 1o+ 13 + l4))0{4 — (2l — (331 +lo+ 13+ 14 + l5))0¢5 — (l — xg)oz@;.

We list the x vectors and corresponding values for [, l2, I3, 4, and [5 in addition to the resulting

maximal dominant weight in Table 3.11.

Ezample 3.4.7. C(l), V(A) = V(3Ag). By Theorem 3.4.4, any element of max(3Ag) NPT other
than 3Ag is of the form

3Ag — lag — (2l — xl)al — (2l — (.T1 + lg))ag — (2l — (xl + 1y + lg))ag
— (2l — (.T1 +lo+ 13+ 14))044.

We list the x vectors and corresponding values for [, s, I3, and 4 in addition to the resulting

maximal dominant weight in Table 3.12.

Ezample 3.4.8. C’él), V(A) = V(3Ag). By Theorem 3.4.4, an element of max(3Ag) N PT other
than 3Ag is of the form

3Ag — lag — (2[ — a:l)ozl — (2l — (1‘1 + lg)az — (2[ — (Z’l + 1y + l3))0¢3
— (2= (v1+l2+1l3+la))os — (20 = (w1 + 2 + 3+ la + 15))as.

We list the x vectors and corresponding values for [, s, 3,14, and I5 in addition to the resulting

maximal dominant weight in Table 3.13.
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Table 3.11: x vectors and maximal dominant weights for the g = Cél)—module V(2A0)

x vector U] lg,13,1l4,15 Element of max(2Ag) N P*
(0,0,0,0,0,0) | 0| 0,0,0,0 2o
(1,2,2,2,21) | 1| 1,0,0,0 2Ng — g —
(1,2,3442) | 2| 1,1,1,0 2o — 200 — 301 — 202 — a3
(1,2,3,4,5,3) 3 1,1,1,1 2A0 - 30&0 —daq — 40[2 - 30&3 — 20 — (073
(2,2,2221) | 1| 0,0,0,0 2N — g
(2,34,442) | 2| 1,1,0,0 2N — 20 — 20 — @z
(2,3,4,5,6,3) 3 1,1,1,1 2A0 — 3040 - 40z1 - 30(2 - 20&3 — Qy
(24,4,442) | 2| 20,00 2o — 200 — 201
(2,4,5,6,6,3) | 3| 21,10 2o — 3ap — doy — 202 — a
(2,4,5,6,74) | 4| 21,11 20\g — 4ag — 6oy — das — 3ag — 20 — s
(2,4,6,6,6,3) | 3| 22,00 20\g — 3ap — 4o — 20
(2,4,6,7,84) | 4| 2211 200 — 4oy — 6aq — das — 203 —
(2,4,6,884) | 4| 2220 2\ — dag — 6oy — 4 — 203
(2,4,6,8,9,5) ) 2,2,2,1 2A0 - 5040 - 8041 - 60[2 - 40[3 - 2044 — Q5
(2,4,6,8,10,5) ) 2,2,2,2 2A0 - 50[0 — 8ap — bag — 40&3 — 20y
(2,4,6,8,10,6) 6 2,2,2,2 21\0 - 60[0 — 10a; — 8ag — 60[3 — 4oy — 2045

3.5 Type szl)

Let g = DS) for n > 4, index set I = {0,1,...,n}, and Cartan matrix

2 0 -1 0 0 0
0 2 -1 0 0 0
-1 -1 2 -1 0 O 0
o 0 -1 2 -1 0 0
A=
o ... 0 -1 2 -1 0 0
o ... 0 0 -1 2 -1 -1
0O ... 0 O -1 2 0
0O ... 0 O -1 0 2
The defining inequalities are equivalent to
Ax >0
xZ9 S k
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Table 3.12: x vectors and maximal dominant weights for the g = Cél)—module V(3Ao)

x vector | 1 | lo, 13,14 Element of max(3Ag) NPT
(0,0,0,0,0) 0| 0,00 3A0

(1,2,22,1) | 1| 1,00 3Ag — ap — 1

(1,2,34,2) | 2| 1,11 3Ay) — 200 — 31 — 2019 — a3
(2,2,22,1) | 1| 0,00 3Ag — apg

(2,34,4,2) | 2| 1,1,0 3Ag — 200 — 201 — Qo
(23453) 3 1,1,1 3A0—30¢0—40¢1—30¢2—20&3—0&4
(2,4,44,2) | 2| 20,0 3N — 200 — 201
(24563) 3 2,1,1 3A0—30&0—40&1 —20&2—0&3

(2 4 6 6 3) 3 2,2,0 3A0 — 3a0 — 4&1 — 2042
(246 74) 4 2,2,1 3A0 —40[0 —60&1 —40&2 —20[3 — Oy
(2,4,6,84) | 4| 222 3Ag — 4ap — 6oy — 4o — 203

(2 4 6 8 5) 5) 2,2,2 3A0 - 50[0 - 8&1 - 60&2 - 40&3 - 20[4
(344,42) | 2| 1,00 3Ag — 200 — a1
(3,4,5,6,3) | 3| 1,1,1 3Ag — 3ag — 31 — 209 — a3
(35,6,6,3) | 3| 21,0 3A — 3 — 3 — Az
(3,5,6,7,4) | 4| 21,1 3Ag — 4oy — bap — 3an — 203 — vy
(3 5 7 8 4) 4 2,2,1 3A0 — 40[0 — 50&1 — 3a2 — Q3

(3 5 7 9 5) 5 2,2,2 3A() - 5040 - 70[1 - 5@2 - 3&3 — Qg
(3,6,6,6,3) | 3| 3,00 3Ag — 3 — 3
(36784) 4 3,1,1 3A0—4a0—5a1 —2a2—a3
(3,6,884) | 4| 320 3Ao — dag — oy — 200

(3 6 8 9 5) 5 3,2,1 3A0 — 504() - 704() — 40[2 — 2043 o7
(3,6,8,10,5) 5) 3,2,2 3A0 - 50[0 - 70(1 - 40(2 - 2053
(3,6,8,10,6) | 6 | 3,22 | 3A¢—6ag — 91 — 6oy — dag — 24
(3,6,9,10,5) | 5| 3,3,1 3MAg — Hag — Tay — 4oy — ag
(3,6,9,11,6) 6 3,3,2 3A0 — 6050 — 9041 — 6042 — 3043 — Oy
(3,6,9,12,6) | 6 | 3,3,3 3Ap — 6ap — 91 — 6 — 3z
(3,6,9,12,7) 7 3,3,3 3A0 — 70&0 — 110&1 — 80&2 — 50&3 — 20&4
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Table 3.13: x vectors and maximal dominant weights for the g = Cél)—module V(3A)

X vector 1| 1a,13,14,l5 Element of max(3Ag) NPT
(0,0,0,0,0,0) | 0| 0,0,0,0 3A
(1,22,221) | 1| 1,000 3Mg — ap —
(1,2,34,42) | 2| 1,1,1,0 3Ag — 200 — 30 — 200 — 3
(1,2,3,4,5,3) 3 1,1,1,1 3A0 - 3040 —da1 — 4oy — 30(3 — 204 — s
(2,2,2,22,1) | 1| 0,0,0,0 3Ao — o
(2,34442) | 2| 1,1,0,0 3A — 200 — 201 — s
(2,3,4,5,6,3) | 3 1,1,1,1 3Ag — 3ap — 4oy — 3ag — 203 — oy
(2,44442) | 2| 20,00 3Ag — 200 — 201
(2,4,5,6,6,3) | 3 2,1,1,0 3Ag — 3ag — 4o — 2a — a3
(2,4,5,6,7,4) 4 2,1,1,1 3A0 - 40&0 — 6 — dag — 3043 — 204 — a5
(2,4,6,6,63) | 3| 2200 3A0 — 30 — day — 2009
(2,4,6,7,8,4) 4 2,2,1,1 3A0 - 4&0 — 6oy — 40&2 - 20&3 — Oy
(2,4,6,8,84) | 4| 2220 3Ng — 4ag — 6o — das — 203
(2,4,6,8,9,5) ) 2,2,2,1 3A0 - 50[0 - 80(1 - 60(2 - 40(3 - 20[4 — Q05
(2,4,6,8,10,5) ) 2,2,2,2 3A0 - 5040 — 8ay — 6 — 40&3 — 20y
(2,4,6,8,10,6) 6 2,2,2,2 3A0 - 60[0 - 100&1 - 8052 - 60(3 - 40[4 - 20[5
(344442) | 2| 1,000 3Ag — 200 — a1
(3,4,5,6,6,3) | 3 1,1,1,0 3Ag — 3ag — 3a1 — 2a — a3
(3,4,5,6,7,4) 4 1,1,1,1 3A0 - 4040 —5a1 —4dag — 30(3 — 20 — a5
(3,5,6,6,6,3) | 3| 21,00 3Mg — 3 — 301 —
(3,5,6,7,8,4) 4 2,1,1,1 3A0 - 40&0 - 50&1 - 3042 - 2053 — QY
(3,5,7,8,8,4) 4 2,2,1,0 3A0 - 40(0 - 5041 - 30(2 — Qa3
(3,5,7,8,9,5) ) 2,2,1,2 3A0 - 50&0 - 7041 — 50&2 — 3043 — 20&4 — Q5
(3,5,7,9,10,5) 5} 2,2,2,1 3A0 - 56!0 — 7041 — 5042 - 30[3 — Oy
(3,5,7,9,11,6) 6 2,2,2,2 3A0 - 60[0 - 90(1 - 7052 - 50(3 - 30[4 — Q5
(3,6,6,6,6,3) | 3| 3,000 3Ao — 300 — 3oy
(3,6,7,8,8,4) 4 3,1,1,0 3A0 - 40(0 - 50(1 - 2052 — Q3
(3,6,7,8,9,5) ) 3,1,1,1 3A0 — 5040 — 7041 — 4042 - 3043 - 20(4 — Q5
(3,6,8884) 4| 3,200 3A0 — 4o — Bag — 200
(3,6,8,9,105) | 5| 321, 3Ag — Hag — Tag — dag — 203 — ay
(3,6,8,10,10,5) | 5 | 32,20 3Mg — 5oy — Tay — dag — 203
(3,6,3,10,11,6) | 6 | 3,2,2,1 3Ag — 6 — 9 — 6y — dag — 204 — s
(3,6,8,10,12,6) 6 3,2,2,2 3A0 - 6040 - 9a1 - 60[2 — 4a3 — 2(14
(3,6,8,10,12,7) 7 3,2,2,2 3A0 — 70&0 — 110&1 — 80&2 — 6043 — 40&4 - 20&5
(3,6,9,10,10,5) | 5 3,3,1,0 3Ao — g — Tayy — 4oy — a3
(3,6,9,10,11,6) | 6 | 3,3,1,1 3Ag — 6 — 9 — 6y — g — 204 — s
(3,6,9,11,12,6) 6 3,3,2,1 3A0 — 6040 — 9@1 — 6@2 — 3043 — Q4
(3,6,9,11,13,7) 7 3,3,2,2 3A0 - 70[[) - 110[1 - 80&2 - 50&3 - 30[4 — Q5
(3,6,9,12,12,6) | 6 | 3,3,3,0 3Ag — 6 — 9y — 6 — 3as
(3,6,9,12,13,7) | 7 3,3,3,1 3Ag — Tag — 11a; — 8as — Hag — 204 — a5
(3,6,9,12,14,7) | 7| 3,3,3,2 3Ag — Tag — 11ag — 8as — bas — 2ay4
(3,6,9,12,14,8) | 8 3,3,3,2 3Ag — 8ap — 13a; — 10y — Tz — 4oy — 205
(3,6,9,12,15.8) | 8 | 3,333 | 3A¢— 8ap — 13a; — 10ay — Tavg — 4oy — a5
(3,6,9,12,15,9) | 9 3,3,3,3 3Ao — 9ap — 1501 — 1209 — 9ag — 6as — 35
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where 1 = by — by, x; = 2bg — b; for 2 <i<n-—2, zp,_1 = by — b,_1, and x,, = by — b, and
x; € Z for i € I. That is,

21’1 — T2 0
—x1 + 229 — 73

—x9 + 2x3 — X4 >0

—Tp_4+ 2Tp_3 — Tp_2 >0
—Tp-3+2rp20—Tp1—Ty, >0
—Tp—2 + 2Tp1

—Xp—9 + 22, 0

X9 <k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
bo > b1,b,_1 and b, and by > % for2<i<n-—2.

Lemma 3.5.1. Let x be a solution to

AXZO

T2 S k
Then x; < i1 for 1 <4 <n—3. In addition, x; — x;—1 > Titr1 — T;5.

Proof. This proof is essentially the same as that of Lemma 3.3.1 with the coordinates non-
decreasing until n — 3 rather than n — 1. We arrive at the contradiction using (/ix)n_g > 0 and
(AX)y_1. > 0. O

Lemma 3.5.2. Let x be a solution to

AXZO

Ty < k

Then xo # 1.

Proof. Assume, for the sake of contradiction, that zo = 1. Then by (/le)1 >0,z > % Then
(/iX)g > 0 implies that 2 — 1 > x3 which implies z1 = 1 since as stated earlier, x > 0 and the
x; are integers. We show that this would imply z; = 1 for 1 <1 < n — 2 by induction. We have
the base case 1 = x9 = 1. Assume that z;_1 = z; =1 for all j <p < n — 2. We wish to show
ZTp+1 = 1. (AX)p41 > 0 implies that —1 + 2 > x,1; which gives x,;1 = 1. Then we have that
x; =1 for 1 < i < n— 2. However, by (/iX)n—Q >0,—-14+2>x,_1+xy,. Then either x,_1 =0
or x, = 0, which contradicts that x = 0 or x > 0 since A is of finite type. O
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Lemma 3.5.3. Let x be a solution to

foleO

ng;k
Then x; = x;—1 implies x; = 2m for some integer m and for 2 <i<n — 2.

Proof. This proof is essentially the same as Lemma 3.4.2 using the last three inequalities to

arrive at a contradiction. OJ

Lemma 3.5.4. The set of solutions to

Ax >0

ng;k

18

x=0tU{x=(z1,22,...,7n) €Ly | 2<z2 < k711 = [%-‘ +1,0< < L%J,
i 2
ri=wy+ » 1;,0< 13 < L2J —0,0<lh o<l 3<--<l4<l3

j=3
wheren > 5,3 <i<n—2,x, 1+ %, < Tpo+ly_2,

Tp—2

min{x,_1,zn} > [ —‘ and lo = xg — x1 for n = 4}.
Proof. As stated above since A is of finite type, x > 0 or x = 0 and so z2 = 0 gives the solution
x = 0. We have shown that zo # 1.

Now, fix x5 such that 2 < x9 < k. Then by (/le)l >0, 1 > %. Since each x; must be an
integer, this implies x; > [%] . We have observed in Lemma 3.5.1 that the first n—2 coordinates
of x do not decrease, therefore z1 < x3. Then {%ﬂ < 1 < 9 implies that x1 = {%ﬂ + 1y where
0<h< |z

We prove the pattern for x3 through z,,_s by induction. First, by Lemma 3.5.1, zo < x3
and z3 — 22 < 9 — x1. Then z3 — 9 < 29 — ([%21 +1) = L%?J — l1. Therefore, z9 < 23 <
To+ L%J —1; and so we have x3 = x5 +13 where 0 < [3 < L%ZJ —11. Now assume z; is of the form
x; ::c2+z;.:3lj forall3<i<p<n—-2wherel; =x;—xj_1andso0<1, <1l 1 <--- <13
by the second result of Lemma 3.5.1. By the same lemma, z, < zp41 < 22, — z,—1. Applying
the induction hypothesis, we have xa + > 0_51; < 2p1 < 2(x2 + 325 _31;) — (w2 + Z?;; lj) =
xy + (3% _31j) + lp. Then xpp1 = zo + (3°5_31;) + lpp1 where 0 < 11 < I,. Therefore,
T; = X9 + 2323 l; where 0 <1[,,_9 < --- <l4 <3 and so [; is the amount of increase from z;_;
to x; where 3 <i<n—2.

Finally, we need to prove the restrictions on x,_1 and x,. (}ix)n_g > 0 implies that z,,_1 +

Ty < —Zp_3+2x, 9. Using what we just showed, we have z,,_1+x, < —(x2—|—2?;§’ Li)+2(ze+
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Z?;?? ;) = xp—2 + ly—2. The last two inequalities give x,,—1, z, > I”Q‘Q. With what we found,

x2+27;32 lj IQJFZ?;E lj—‘
2 2 .

we have x,,_1,x, > . Since x,,_1, T, are integers, we have x,_1, T, > {

In the case n = 4, the descriptions for z3, x4, and lo follow directly from Ax > 0. O

Theorem 3.5.5. Letn > 5, A = kMg, k > 2,m € Z>o. Then max(A) NPT = {A}U{A —lag —
(l — ( [%] +l1))a1 — (2l —xg)ag — (Z?:_SQ(QZ — (.’EQ =+ 2323 lj))ai) — (l —xn_l)an_l — (l — xn)ocn}

where
o 2 S T2 S k?

o [ = max{xl,wn—hil?n}:

°
)
A
s
no
A
s
&
IA
IA
~
IA
&

e Ty 1+ xy < xp_o+ly_o,
e min{z,_1,z,} > FEHQ;Q—‘

When n = 4, max(A) NPT = {A}U{A —lag— (I — ([2] + L))o — (2L — z2)as — (I — z3)r3 —

(I — x4)ay} where
o 2 S xT9 S k;}
e | = max{w1,xs3,24},

e 0<1) < |%] lp=mx— 1,

23+ x4 < 2 + o,

min{zg, 24} > [%].

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives
that 21 = bg — b1, 2; = 2bg — b; for 2 < i <n—2,2,_1 = by — by_1 and z,, = by — b,. Then
(b, b1,---,bn) = (bo,bo — 1,200 — x2,...,2bg — Tp—2,b0 — Tp—1,b9 — xy). By definition, the
b; > 0 for 0 < i < n. Therefore, the following must be true:

bp >0
bo—xlzo
2b0—x220

2b0 — Tp—2 Z 0
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Table 3.14: x vectors and maximal dominant weights for the g = Dél)—module V(2A0)

x vector | 1 Element of max(A) NPT
0,0,0,0,0) | 0 A,
(1,2,2,1,1) | 1 2A0 — g
( 2322) 2 2A0—2a0—a1—2a2—a3
(2,2,2,1,1) | 2 | 2A0 — 2a0 — 2as — 203 — a4 — as
bo —xp—1 >0
b(] — Tnp Z 0

Note that by > max{z1, 2,1, 2.} where x1 = ([%] + [1) by Lemma 3.5.4. We have already
proven that the first n — 2 coordinates of x never decrease in Lemma 3.5.1. Therefore, x,,_o =
maxj<j<n—2{;} and so for the inequalities involving x; where 2 < i < n—2 it is sufficient to say
that by > *%-2. Note that due to the n— 1st and nth rows of Ax >0, 21, 20 > [%52]. We let

| = max{x1,xn_1,%,} and so by > . Showing by = [ is similar to the method used in the proof of

Theorem 3.3.3 and we have A = A—lag—(I—z1)on—(2l—z2)og—- - - —(l—zp—1)an—1—(I—2pn) .
Combining this with our solutions for the x; from Lemma 3.5.4, we have the pattern given
above. O

To better understand this theorem, consider some examples for various values of both k and
n. We include two examples of k& = 2 so that the reader may check that our results match those
of [18]. For ease in our future examples, define Xy, = {(x1,...,2,) | Ax > 0,2 < 25 < k}.
Note that X;, C X}, whenever | <k.

Ezample 3.5.6. Dél), V(A) = V(2Ay). According to Theorem 3.5.5,

max(2A) N P* = {2A0} U {2A0 — lag — (I — ([%] F1))ar — (20— z2)as — (21 — (22 + I))as

— (l — 1'4)&4 — (l — 335)045}.

We list the x vectors, the corresponding [, and the resulting maximal dominant weight in Table

3.14. One can check that our set of maximal dominant weights corresponds to that of [18],
{2A0, A2 — 0, Ay + A5 — 25,2A1 — 26}

by rewriting all «; in terms of the fundamental weights, A;.

Ezample 3.5.7. DSV, V(A) = V(2A0). According to Theorem 3.5.5,

max(QAg) NPt = {QA()} U {2A0 —lag — (l - ([%1 + ll))al — (2l - 332)@2 — (2[ - (1’2 + 13))043

— (2l — (2 + 13+ 1g))as — (I — xz5)a5 — (I — xg)ag}-
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Table 3.15: x vectors and maximal dominant weights for the g = Dél)—module V(2A0)

x vector l Element of max(A) NPT
(0,0,0,0,0,0) | 0 2o
(1,2,2,2,1,1) | 1 2\ — g
(,23422) 2 2A0—2a0—a1—2a2—a3
(1,2,3,4,2,3) | 3 | 2A0 — 3ap — 2a1 — dag — 3z — 204 — a5
(1,2 3,4,3 2) 3 2A0—3a3—2a1—4a2—3a3—2a4—a6
(222211) 2 2A0*20[0*20&2*20&3*20&4*O&5*Oé6

We now list the x vectors, their corresponding values of [ and maximal dominant weights in
Table 3.15. Once more, one can check that our set of maximal dominant weights matches that
of [18],

{2A0, Ao — 0, Ay — 20,2A¢ — 36,2A5 — 30,2A1 — 25}

One can show that our formulation for the maximal dominant weights of V' (kA¢) correspond
to that of [18] for the case k = 2 for arbitrary n > 4. According to [18], the set of maximal
dominant weights for V' (2A¢) is {2A0, 2A1 =26 U {Ag, —ud|1 < u < [ 252 | JU{2A, — 26, 2Ap 1 —
25| n even} U{An_1+ A, — 2515| n odd}. To show that the two formulations are the same, we
write our formulation in terms of the fundamental dominant weights, A;. Our formulation then

becomes
X ={200—1(2Mog — A2+ 6) — (I — (1 4+ 11))(2A1 — A2) — (21 — 2)(—Ao — A1 + 2A5 — A3)

(Z 2+Zl) Aict + 205 — Ajey)
-

20 — 2—|—Zl ) A3+ 2A,_ 2—An_1_An)
—(I— xn_l)(—An_g +2M-1) — (I — zp) (—Ap—2 + 2A,) }.

Showing this formulation corresponds to the maximal dominant weights found in [18] is similar

to how we showed the same for type Bg).

Ezample 3.5.8. DV V(A) = V(3A¢). According to Theorem 3.5.5,

max(3A0) N P+ = {3A0} U {3A¢ — lag — (I — ([%] +1))ar — (20 — z9)as — (20 — (2 + 13))as

— (l — .1'4)@4 — (l — 335)045}.

We list the x vectors, the corresponding [, and the resulting maximal dominant weight in Table

3.16. Recall that we can collect the x vectors from X5 5 when finding X3 5.
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Table 3.16: x vectors and maximal dominant weights for the g = Dél)—module V(3Ao)

x vector | 1 Element of max(A) NPT
(0,0,0,0,0) | 0 3Ao

(1,2,2,1,1) | 1 3Ao — o

( 2322) 2 3A0—2a0—a1—2a2—a3
(2221,1) 2 3A0—20[0—2052—2053—Oé4—045
(2 3 4 2,2) 2 3/\0—20(0—&2
(23423) 3 3A0*30[0*0¢1*3CM2*20&3*O&4
(23432) 3 3/\0—3040—0&1—30&2—2&3—045

Table 3.17: x vectors and maximal dominant weights for the g = Dél)-module V(3Ao)

x vector 1 Element of max(A) N P+
(0,0,0,0,0,0) | O 3Ag
(1,2,2,2,1,1) | 1 3A0 — ag
(123422) 2 3A0—2a0—a1—2a2—a3
(123423) 3 3A0—30¢0—20¢1—40[2—30&3—20&2—0&5
(,2343 ) 3 3A0—30zo—20¢1—40[2—30[3—2042—0[6
(2,2,2,2,1,1) | 2 | 3Ag—2ap — 209 — 2c03 — 204 — a5 —
(2,3,4,4,2,2) | 2 3Ay — 29 — aip
(2,3,4,5,3,3) | 3 3Ag — 3ap — a1 — 3ag — 2a3 — oy

Ezample 3.5.9. Dél), V(A) = V(3Ap). According to Theorem 3.5.5,

max(3A0) N P+ = {3A0} U {3A¢ — lag — (I — ([%} Fl))ar — (20 — z2)as — (20 — (2 + 13))as

— (20— (2 +1l3+1a))as — (I —x5)a5 — (I — x6)as}-

We list the x vectors, the corresponding [, and the resulting maximal dominant weight in Table

3.17. Recall that we can collect the x vectors from X5 g when finding X3 6.
Ezample 3.5.10. Dél), V(A) = V(4Ap). According to Theorem 3.5.5,

max(4Ag) N Pt = {4Ao} U {4Ag — lag — (I — ([%

— (Il = zg)og — (I — z5)as}.

} 4 1)1 — (21 — z9)as — (20 — (22 + 13))as

We list the x vectors and the resulting maximal dominant weight in Table 3.18. Recall that we

can collect the x vectors from X35 when finding X} 5.

Ezample 3.5.11. Dél), V(A) = V(4Ay). According to Theorem 3.5.5,

max(4Ao) NPT = {4Ao} U {4Aq — lag — (I — ([%} F1))ar — (20 — z2)as — (20 — (2 + 13))as

— (2l — (582 + I3+ l4))a4 — (l — 1‘5)(15 — (l — .TG)()(G}.
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Table 3.18: x vectors and maximal dominant weights for the g = Dél)—module V(4A0)

x vector Element of max(A) NPT
(0,0,0,0,0) 47,
(1,2,2,1,1) 4A0 —
(1,2,3,2,2) 4A0 - 2a0 — 1 —2042 — Qa3
(2,2,2,1,1) | 4Ap —2ap — 209 — 2003 — g — Qi35
(2,3,4,2,2) 4Ny — 20 —
(2, 3, 4, 2, 3) 4A0 - 30[0 — ] — 30[2 - 20[3 — Oy
(2, 3, 47 3, 2) 4A0 — 3050 — ] — 30&2 — 20&3 — Q5
(2,4,4,2,2) 4hg — 20
(2, 4, 5, 3, 3) 4A0 - 30&0 — o1 — 209 — a3
(2,4,6,3,3) 4Ag — 3ag — a1 — 20
(2, 4, 6, 3, 4) 4A0 — 4040 — 2061 — 4052 — 2053 — Oy
(2, 4, 6, 3, 5) 4A0 — 5040 — 3a1 - 6a2 - 4a3 - 2(14
(2, 4, 6, 5, 3) 4A0 - 50&0 — 31 — b6ag — 40&3 - 20&5
(2, 4, 6, 4, 3) 4A0 - 4&0 - 2041 - 40[2 — 20[3 — Qs
(2, 4, 6, 4, 4) 4A0 - 40[0 - 20&1 - 40&2 - 20[3
(3, 47 4, 2, 2) 4A0 — 3040 — 2042 - 2043 — 04 — Q5
(3, 4, 5, 3, 3) 4A0 - 30[0 - 20[2 — (3
(4, 4, 47 2, 2) 4A0 — 4040 - 40(2 - 4(13 — 20&4 — 2(15

We list the x vectors, the corresponding [, and the resulting maximal dominant weight in Table

3.19. Recall that we can collect the x vectors from X3 when finding X4 6.

3.6 Type GS)

Let g = Ggl), index set I ={0,1,2}, and Cartan matrix

2 -1 0
A=1-1 2 -1
0 -3 2
The defining inequalities are equivalent to
Ax >0
X1 S k

where x1 = 2by — b1 and xo = 3bg — by. That is,

21’1 — T2 Z 0
—3r1+229 >0

X1 Sk

44



Table 3.19: x vectors and maximal dominant weights for the g = Dél)—module V(4A0)

X vector maximal dominant weight
(0,0,0,0,0,0) 4A,
(1,2,2,2,1,1) 4Ay — ap
(1,2,3,4,2,2) 4A0 — 2040 — Q] — 20&2 — Q3
(1,2,3,4,3,2) | 4A0 — 3 — 21 — 4ag — 3a3 — 204 —
(1,2,3,4,2,3) 4A0 - 3&0 — 207 — 4042 - 3053 — 20 — s
(2,2,2,2,1,1) | 4Ap — 2ap — 29 — 203 — 204 — a5 —
(2,3,4,5,3,3) 4A0 - 3@0 — a1 — 3ag — 2043 — Oy
(2,3,4,4,2,2) 4Ag — 200 — Qs
(2,4,4,4,2,2) 4A0 - 20(0
(2,4,5,6,3,3) 4A0 - 3040 — a1 — 209 — (6%
(2,4,5,6,4,3) 4A0 - 40&0 - 2041 - 40[2 - 30&3 - 20&4 — O
(2,4,5,6,3,4) 4A0 - 4@0 — 201 —4dag — 3@3 — 204 — (073
(2,4,6,6,3,3) 4A0 - 30(0 — 1] — 20&2
(2,4,6,7,4,4) 4A0 — 4050 — 2041 — 40[2 — 20&3 — Oy
(2,4,6,8,4,4) 4Ng — dag — 20 — das — 203
(2,4,6,8,5,4) 4A0 - 5&0 — 3a1 — 6ag — 4053 — 20 — (07
(2,4,6,8,4,5) | 4Ag — by — 3y — 6ag — daz — 204 —
(2,4,6,8,5,5) 4A0 - 5&0 — 31 — bag — 4043 — 20y
(2,4,6,8,6,4) 4A0 — 6040 - 4a1 - 8a2 - 6a3 - 40[4 - 2046
(2,4,6,8,4,6) 4A0 - 60&0 - 40&1 — 8ag — 60[3 - 40[4 - 2015
(3,4,4,4,2,2) 4A0 - 3040 —2a9 — 2043 — 204 — a5 — Qg
(3,4,5,6,3,3) 4A0 - 30(0 — 20[2 — (3
(3,4,5,6,4,3) 4A0 - 4040 — a1 —4dag — 30&3 — 204 — g
(3,4,5,6,3,4) 4A0 - 40&0 — ] — 40[2 - 30[3 - 2044 — Q5
(4,4,4,4,2,2) 4/\0 — 4040 — 40{2 — 4@3 — 40&4 — 2@5 — 2&6
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Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
boz%andboz%.

Lemma 3.6.1. The set of solutions to

21}1 ] Z 0
—3x1+2x9 >0

I Sk

is {x=0}U{x = (z1,22) | 1 <z <k, [3%1 < x9 < 211}

Proof. Note that since A is of finite type, x > 0 and so z1 > 0 and z1 < k by definition.
Therefore, x1 = 0, which implies x = 0, or 1 > 1. Now, fix 1 such that 1 < z; < k. Then
by (folx)l >0, 9 < 227 and by (folx)g > 0,20 > %xl. Since xo must be an integer, we have
To > (3%1 This describes all possible solutions. O

Theorem 3.6.2. Let A = kAo, k > 2. Then max(A) NPT = {A}U{A —lag — (2] — 1) —

(3l — z2)ay where

o 1 <um <K,

o %3] <az <2y,
X
%
Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that

Tl = 2b0 - bl and Ty = 3b0 - bg. Then (bo, bl, bg) = (bo, 2b0 — T, 3b0 - {L‘Q). By deﬁnition, the
b; > 0 for 0 < i < 2. Therefore, the following must be true:

o

—_

bo >0
2b0—$120
3[)0—.%220

Then by > % and by > 7. However, from (/le)g > 0, we have 2xo > 3z, which implies
% > 5. Then it suffices to say by > %. Then let [ = [:’3—32] and so by > [, since by must be
an integer. Showing by = [ is similar to the method used in the proof of Theorem 3.3.3 and we
have A = A —lag — (21 — x1)aq — (31 — x2) . Combining this with our solutions for the x; from

Lemma 3.6.1, we have the pattern given above. ]

To better understand this theorem, consider some examples for various values of k£ . For
ease in our future examples, define Xy = {(z1,x2) | Ax > 0,1 <z < k}. Note that X; C X},

whenever | < k.
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Table 3.20: x vectors and maximal dominant weights for the g = Ggl)—module V(2A0)

x vector | [ | Element of max(2Ag) N P
00) 10 2h0
(1,2) 1 2A0 — o) — 01 — 9
(2,3) 1 2A0 — Q)
(2,4) 2 2A0 — 20[0 — 20&1 — 20&2

Table 3.21: x vectors and maximal dominant weights for the g = Ggl)—module V(3Ao)

x vector | [ | Element of max(3Ag) N P
0,0) |0 300
(1,2) 1 3N — g — a1 — g
(2,3) 1 3A0 —
(2,4) 2 3Ny — 29 — 201 — 209
(3,5) 2 3A0 — 20&0 — Q] — Q2
(3,6) 2 3A0 — 2a0 — ]

Ezample 3.6.3. Ggl), V(A) = V(2A0). By Theorem 3.6.2, any element of max(2Ag) NPT other
than 2Ag is of the form 2Ag — lag — (21 — x1)an — (31 — z2)ae. We list the x vectors and

corresponding value for [ in addition to the resulting maximal dominant weight in Table 3.20.

Ezample 3.6.4. G(l) ,V(A) = V(3Ag). By Theorem 3.6.2, an element of max(3Ag) N P other
than 3Ag is of the form 3A¢ — lag — (21 — z1)an — (31 — z2)ae. We list the x vectors and

corresponding value for [ in addition to the resulting maximal dominant weight in Table 3.21.

Ezample 3.6.5. Ggl), V(A) = V(4Ag). By Theorem 3.6.2, any element of max(4A) NPT other
than 4Ag is of the form 4Ag — lag — (21 — x1)oq — (31 — z2)as. We list the x vectors and
corresponding value for [ in addition to the resulting maximal dominant weight in Table 3.22.
Notice that we can collect the same x vectors from the case V(3A¢) since, as we said earlier,
W3 C Wy.

Table 3.22: x vectors and maximal dominant weights for the g = Ggl)—module V' (4A)

x vector | [ | Element of max(4Ag) NPT
0,00 |0 47,
(1,2) 1 4A0 — o) — Q1 — Q9
(2,3) |1 4o — ag
(2,4) 2 4A0 — 2&0 — 2@1 — 20&2
(3,5) 2 4Ny — 200 — o] — 9
(3,6) 2 4A0 - 2040 — 1
(4,6) 2 4A() — 204()
(4,7) 3 4A0 — 30&0 — 20&1 — 20&2
(4,8) 3 4A0 - 3040 - 2041 — (9
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Table 3.23: x vectors and maximal dominant weights for the g = Ggl)—module V(6A0)

x vector | [ | Element of max(6Ag) NPT
(0,00 |0 670
(1,2) 1 6A0 — o) — 01 — 9
(2,3) 1 6A0 —
(2,4) 2 6A0 — 20[0 — 20&1 — 2042
(3,5) 2 6A0 — QCMO — Q] — Q9
(3,6) 2 6A0 - 20[0 — (]
(4,6) 2 6A0 — 2@0
(4,7) 3 6A0 — 3ap — 2011 — 209
(4,8) 3 6A0 - 3040 — 2041 — Q9
(5,8) 3 6Ag — 3ag — a1 — g
(5,9) 3 6A0 — 30&0 — ]
(5,10) 4 6A0 — 404() — 3041 - 2042
(6,9) 3 6A0 — 30&0
(6,10) 4 6A0 - 46!0 - 2041 — 2042
(6,11) 4 6A0 - 40&0 - 20[1 — Q9
(6,12) | 4 6Ao — dag — 20y

Ezample 3.6.6. Ggl), V(A) = V(6Ao). By Theorem 3.6.2, any element of max(6Ag) NPT other
than 6Aq is of the form 6Ag — lag — (21 — x1)a; — (3] — w2)ae. We list the x vectors and
corresponding value for [ in addition to the resulting maximal dominant weight in Table 3.23.

Notice that we can collect the same x vectors from the case V(4A¢) since, as we said earlier,
Wy C We.

1
3.7 Type F4( )
Let g = F4(1), index set I ={0,1,2,3,4}, and Cartan matrix

2 -1 0 0 O

-1 2 -1 0 O
A=10 -1 2 -1 0
-2 2 -1

The defining inequalities are equivalent to
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where x1 = 2by — by, x9 = 3bg — by, x3 = 4bg — b3 and x4 = 2by — by. That is,

2.%1 — X2 Z 0
—x1 + 2x9 — T3 >0
—2x9 +2x3—2x4 >0

—x3 4+ 214 >0

I Sk’

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means

X X X X
bo > max{%, 2,58, 5

Lemma 3.7.1. Let x be a solution to

fixZO

l‘lgk

Then z; < xi41 for 1 <i < 2. In addition, x; — x;—1 > x;41 — x; where xg = 0.

Proof. Assume, for the sake of contradiction, that there exists a 2 < j < 3 such that z; < x;_1.
If j = 2, then we have —x1 + 2x9 — x3 > 0, which implies z9 — z3 > 1 — zo > 0, implying
that xo > 3, which gives the same result as if j = 3. Therefore, if the coordinates were not to
increase at any point, they would continue to do so. Then by (/iX)g >0, (x3 — x2) > x4 and
our assumption, z4 < 0. This is a contradiction since the x; = 0 or x; > 0. Then the z; < z;11
for 1 <i<2.

Observe that the amount of increase from z; to z;41 is never more than that from z;_; to x;
for i = 2, since —x1 + 2x9 — x3 > 0, which implies 9 — x1 > x3 — x5. Additionally, 21 > x2 — 21
from the first inequality. O

Lemma 3.7.2. The set of solutions to
21 — T2 >0

—r1+2r2—23 =0

—2x9+2x3—x4 >0

—x3 + 214 >0
T <k
18
: T
{X: O}U{X = ($1,$2,$3,IE4) | 1<z < kvxi = +Zlk fOT’i = 2737 ’7?1—‘ < l2 < Z1,
k=2
l l {
[;] <y <y and [Hzﬁ] < 24 < 2s).
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Proof. As stated earlier, since A is of finite type, x > 0 or x = 0 and so x; = 0 gives the
solution x = 0.

Now, fix z1 such that 1 < z; < k. Then by (fix)l > 0, o < 2x1. We have observed that
the first three coordinates of x increase, therefore 1 < x9. Then z1 < 9 < 2271 and so we can
define x9 = x1 + Iy where 0 < Iy < z1. We've shown that z; < x;41 and z;41 — x; < x5 — -1
for 1 <4 < 2. Therefore, z; = z1 + Z;ZQ l; where 0 < I3 < ls < z7 and so [; is the amount of
increase from x;_1 to x; where 2 <4 < 3.

We must prove the pattern for x4. From /ix;:, > 0, we have x4 < 2(x3 — x2) = 2l3. Now we
can investigate the lower bounds. From fiX4 > 0, we have x4 > % = % Since x4 € Z,

r1+lo+l3
2

we must have xq > { . Combining the two inequalities for x4, we obtain % < 23

which implies % < l3. Since x3 must be an integer, we have {%—‘ < I3. Finally, since
I3 < Iy and combining with our result for the lower bound of I3, we obtain Lgrb <l3 <y
x Z1

which implies 3+ < lo. Again, since x> must be an integer, we have {7] < ly. This describes

all possible solutions. ]

Theorem 3.7.3. Let A = kAo, k > 2. Then max(A) N Pt = {A}U{A — lag — (2l — 21)q —
(Bl — (x1+12))ag — (4l — (1 + I + 13))az — (20 — z4) g where

1§.1‘1§k7

o [F]<l<a,

o] <y <y,

. {7““22”3} < x4 < 23,

c1=T5]
Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives
that x1 = 2bg — by, 29 = 3by — by, x3 = 4bg — b3, and x4 = 2by — by. Then (bo,bl,bg,bg,b4) =
(bo, 2bg — w1, 3bg — w2, 4bg — 3, 2bg — x4). By definition, the b; > 0 for 0 < i < 4. Therefore, the

following must be true:

bop >0
2bp —x1 >0
3bp —x9 >0
4bg —x3 > 0
2bp — x4 > 0

Then by > max{%,%?, %3,%}. Note that since z4 > %3, then %4 > %. From (/olx)g > 0, we

73”42212. Combining this with the above result, we have x3 > %8 4 25 which implies

have z3 >

7 > 7. Finally, by (Ax)y > 0, 29 > 21423 - which we combine with the most recent result to

50



Table 3.24: x vectors and maximal dominant weights for the g = F, 4(1)—module V(2A0)

x vector | [ Element of max(2A¢) NPT
(0,0,0,0) | 0 280

(1,2,3,2) 1 2A0 — Q) — 1 — Qg — Q3
(2,34,2) | 1 200 — ag

(2,4,6,3) | 2 | 2Ap — 20 — 2001 — 2009 — 203 — g
(24,64) | 2| 2A0 — 2a0 — 21 — 209 — 203

Table 3.25: x vectors and maximal dominant weights for the g = F 4(1)—module V(3Ao)

x vector | [ Element of max(3Ag) N P*
(0,0,0,0) | 0 370

(1,2,3,2) 1 3A0 — Q) — Q1 — Qg — Q3
(2,3,4,2) | 1 3Ag — ap

(2,4,6,3) 2 3A0 — 20&0 — 20&1 — 20&2 — 20&3 — Y
(2,4,6,4) 2 3A0 - 20(0 - 2041 - 2042 — 20[3
(3,5,7,4) 2 3A0 - 20&0 — Q] — 0 — Qa3
(3,6,8,4) 2 3A0 — 2a0 — Q]

(3,6,9,5) 3 3A0 - 30&0 - 30&1 - 30&2 - 30&3 — Qg
(3,6,9,6) 3 3A0 — 3040 — 3041 — 3042 - 3a3

obtain xy > % + 2%, giving % > %+ Then it suffices to say by > 5. Then let | = [‘%4] and so
bg > I, since by must be an integer. Showing by = [ is similar to the method used in the proof of
Theorem 3.3.3 and so we have A = A —log — (2l — 1)1 — (3l — o) g — (4l — x3) s — (21 — 4) vy
Combining this with our solutions for the x; from Lemma 3.7.2, we have the pattern given

above. O

To better understand this theorem, consider some examples for various values of k. For ease
in our future examples, define Xy = {(x1, 2, x3,x4) | Ax > 0,1 <z < k}. Note that X; C X},
whenever | < k.
Ezample 3.7.4. F4(1)7 V(A) = V(2A0). By Theorem 3.7.3, any element of max(2A¢) NPT other
than 2Ag is of the form 2Ag — lag — (21 — z1)a; — (31 — wo)avg — (4] — x3)ag — (21 — x4)y. We
list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.24.
Ezample 3.7.5. F4(1), V(A) = V(3Ap). By Theorem 3.7.3, an element of max(3Ag) N PT other
than 3Ay is of the form 3A¢ — lag — (21 — x1)a; — (3l — x2)ag — (4l — x3)ag — (21 — z4)vy. We
list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.25.
Ezample 3.7.6. F4(1), V(A) = V(4Ap). By Theorem 3.7.3, any element of max(4Ag) NPT other
than 4Ag is of the form 4Ag — log — (21 — x1)y — (31 — wo)avg — (41 — w3)ag — (21 — x4)ry. We

list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
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Table 3.26: x vectors and maximal dominant weights for the g = F, 4(1)—module V(4Ao)

x vector | I Element of max(4Ag) NPT
(0,0,0,0) | 0 47,

(1,2,3,2) 1 4A0 — o) — Q1] — Qg — Qa3
(2,3,4,2) | 1 4Ag — ag

(2,4,6,3) 2 4A0 - 20(0 - 20[1 - 20[2 - 20[3 — QY
(2,4,6,4) | 2 4Ny — 200 — 201 — 200 — 203
(3,5,7,4) 2 4A0 - 20&0 — Q] — 0 — Q3
(3,6,8,4) 2 4A0 - 2&0 — Q1

(3,6,9,5) | 3 | 4A0 —3ap — 31 — 3ag — 3z — ay
(3,6,9,6) 3 4A0 - 30&0 - 30&1 — 3&2 — 3043
(4,6,84) | 2 4Ay — 20

(4,7,10,5) 3 4A0 — 3040 — 20[1 - 20&2 - 20£3 — QY
(4,7,10,6) 3 4A0 — 3a0 — 2a1 — 2042 — 2043
(4,8,11,6) 3 4A0 — 30&0 — 20&1 — Q9 — Q3
(4,8,12,6) 3 4A0 - 30(0 — 20[1 — Q3
(4,8,12,7) 4 4A0 - 40(0 - 40[1 - 40[2 - 40[3 — Oy
(4,8,12,8) 4 4A0 - 40[0 — 4oy — 4o — 4@3

weight in Table 3.26. Notice that we can collect the same x vectors from the case V(3Ag) since,

as we said earlier, X3 C Xj4.

3.8 Type E.

Let g = Eél), index set I ={0,1,2,3,4,5,6}, and Cartan matrix

2 -1 0 0 0

0 -1 0 0 O

-1 2 0 -1 0 O
A=]10 -1 0 2 -1 0 O
0 -1 -1 2 -1 O

0 o 0 -1 2 -1

0 o 0 0 -1 2

The defining inequalities are equivalent to
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where T = bo - bl,xg = 2b0 - bg,xg = 2b0 - b3,$4 = 3b0 - b4,fL‘5 = 2b0 - b5, and Te = bo - b6.
That is,

;

2£U1—{L‘3 ZO
2.1‘2—.%'4 ZO
—x1 +2x3 — 14 >0

—x9—x3+2x4—x5 >0

—x4 + 25 — T >0
—x5 + 2T6 >0
T2 <k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means

x X €T x
bO > max{xl, 727 737 ?47 757 xﬁ}'

Lemma 3.8.1. Let x be a solution to

then xo # 1.

Proof. Suppose, for the sake of contradiction, that zo = 1. Then from (AX)Q > 0, we have
x4 < 2. As observed above, 4 > 0. Then 24 = 1 or x4 = 2. Combining (fix)g, > (0 and
(Ax)ﬁ > 0, we have 3z > 2x5 — w6 > x4. Then 26 > %. Using this and (/le)5 > 0, we obtain
25 > 14+ = 4%. Then x5 > 2% Similarly, by combining (fix)l > (0 and (/iX)g > (0 we obtain
71 > % and w3 > 2% From (/ix)4 > 0, we have 2x4 > a0 + 23 + 15 > 1—}—2%4—2% :1—|—4%.
Then x4 > % and so x4 = 2. However, the x; must all be integers. Revisiting (folx)zl > 0, we find
4 =2x4 > 29 +2x3+25 > 1+ 2+ 2 since x3 > % and x5 > % must both be integers. This is a

contradiction and so xg # 1. d
We will need the following:

e For a positive integer n, m € Z>p and 0 < j < n we have

n n

[(n+1)(mn+(n—j))w _ (n+1)[m”+(”_j)1 '

Begin with the left hand side.

[(Wr 1) (mn + (n —j))w

n

[mn2+n2—jn+mn+n—j_‘
n

= [mn+n—j+m+1—‘7-‘
n
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=mn+n—j7+m-+1.
The right hand side is
(”H){WW —j:(n+1)[m+1—i-‘ —j

=m+(m+1)—j
=mn+m+n+1-—7j.

e For a positive integer n, m € Z>g, and 0 < j < n,

n

{(n—n(mnﬂn—mw — 1) Vmﬂn—ﬂ it

Begin with the left hand side.

[(n—l)(mn—l—(n—j))-‘ _ [mn2—mn+n2—n—jn+j1

= [mn—m—l—n—l—j—i—]-‘
n
=mn—m+n—1—7+1

=mn—m-+n—j.
The right hand side is

mn + (n — j)
n

(n—l)’r -‘—j:(n—l)[m+1—i-‘—j+l

—(n—D(m+1)—j+1

=mn—m-+n—j.
Lemma 3.8.2. The set of solutions to

2x1 — x3 >0
2x9 — Ty

—x1 +2x3 — 14

—T9 — X3 + 224 — X5
—x4 + 225 — T¢

—x5 + 276

T2 <k
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18
2
{x =0} U {x = (21,29, 23,24, 75,26) € Z° | 2 < 9 < k,3{%—‘ < x4 < 229, [?—‘ < 3,

2z z
[34—‘ < 5,73 + x5 < 234 — T2, [?3—‘ < a1 < 203 — @,

and [%W < < 2wy — x4}

Proof. As stated earlier, since A is of finite type, x > 0 or x = 0. Therefore, zo = 0, which
implies x = 0, or 2 > 1. By Lemma 3.8.1, x5 # 1. Therefore, xo =0 or 2 < x5 < k.

Now, fix x9 such that 2 < z9 < k. First, notice that by (/olx)g > 0, 4 < 279. From
(jlx)4 >0, (fix)g >0, and (fix)g, >0, we have 2x4 > wy + 23 + 25 > 22 + T + 5+ T+ L.
Then x4 > 9 + %1 + %6 Notice that z1 > %3 > %1 + % and so z1 > %4 from the first and third
inequalities. Similarly, using the fifth and sixth inequalities we obtain x¢ > %'. Then returning
to the lower bound for z4, we have x4 > 9 + 2%4. Rearranging, we obtain x4 > 3% We will
return to this to determine the integer lower bound for x4.

First, let’s consider the lower bounds for 3 and x5. The third inequality gives that zg >
L;r“. Combining this with the first inequality, we have x3 > 5 4+ %&. Then x3 > 2% Similarly,

using the fifth and sixth inequalities, we have x5 > 2%. However, both z3 and x5 are integers.

As we noted above, [2%] =2 [%] for all x4 except x4 = 3n+ 1. We now show that the smaller
of these two, [2%] when x4 = 3n + 1 satisfies the inequalities and is therefore the appropriate

lower bound for both x3 and x5. Since this is a lower bound, we only need to check the third and
fifth inequalities. Checking the third inequality (and the fifth is similar), we have z3 = 2n 4 1
since x4 = 3n + 1. Then 2x3 — x4 = 2(2n +1) =3n+1 > 21 > T = % This becomes
n+l>n+ % Since this is true, this is the appropriate lower bound for x5 and similarly for 5.

Recall that x4 must be an integer and we noted above that the placement of the ceiling
matters when 2 is odd. We now show that when s is odd, z4 # (3%], giving the lower bound
as indicated in the statement. Assume that xo = 2n + 1 and, for the sake of contradiction,
Ty = (3%} = {@1 = (6"—2+3w = 3n+ 2. Then from the note above and the lower bounds we
just found, x3, x5 > 2n + 2. Then the fourth inequality becomes —(2n + 1) — (2n +2) +2(3n +
2) — (2n+2) = —1 > 0. Since this is false, x4 # (3%} If, instead, x4 = 3(%} = 3n + 3, then
x3, x5 > 2n+ 2 and the fourth inequality is —(2n+1) — (2n+2) +2(3n+3) — (2n+2) =1 > 0,
and so this is the appropriate lower bound for xz4.

The upper bound for the sum of x3 and x5 is obtained by rearranging the fourth inequality.
The lower bound for both x1 and xg come from the first and sixth inequality and the fact that
they must both be integers. The upper bounds for both these values are from rearranging the
third and fifth inequality respectively.

This describes all possible solutions. O

Theorem 3.8.3. Let A = kAo, k > 2. Then max(A)N Pt = {A}U{A —lag— (I—x1)o1 — (21 —

x9)ag — (2l — x3)asz — (3l — x4)aq — (20 — x5)a5 — (I — x6) g where
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T3 + x5 < 214 — T2,

o [B] <y < 23— 4,

(2] < @6 < 225 — a4,

| = max{x1,z¢}.

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that
x1 = by — by, 10 = 2bg — by, x3 = 2by — b3, x4 = 3bg — by, x5 = 2by — bs and xg = by — bg. Then
(bo, b1, ba, b3, by, bs, bg) = (bo, bo — 1, 2by — w2, 2by — x3, 3bg — x4, 2bg — x5, by — ). By definition,
the b; > 0 for 0 < ¢ < 6. Therefore, the following must be true:

bp >0
bo—21>0
2bg —x9 >0
2bg —x3 >0
3bp —x4 >0
2bp — x5 > 0
bo—x6>0

Ty x3 Ta TH
272730 2
. Combining the first and third inequalities, we have 2x; > z3 > % and so

Then by > max{z1, x¢}. From the first and sixth inequalities we know that z; > 5”2—3

x5
2

r1 > . Similarly, using the fifth and sixth inequalities, x¢ > %'. Finally, we can show that

and xg >

max{zy,z¢} > %. Combining the third and fifth inequalities, we have 2x3 —x1 4225 — 26 > 214.
Since 2x1 > x3 and 2xg > x5, we have 3z1 + 3xg > 2z4. Substituting the third and fifth
inequalities into the fourth, we have 2x4 > % + ‘”47;”6 + 29 and so x4 > T + T + x2. With
these two results we now have % > % + %6 + x5. Then x1 + x4 > x2. Then we have that
2max{z1,z6} > 1 + 26 > 2 and so max{xy, v} > .

Then it suffices to say by > max{xj,x}. Then let | = max{xi,x¢} and we claim that
bp = l. Showing this is similar to the method used in the proof of Theorem 3.3.3. We obtain
A=A—-lag— (I —z1)a; — (2l — z2)as — (2l — x3)az — (3l — xa) g — (21 — x5)aq — (I — w6) .
Combining this with our solutions for the x; from Lemma 3.8.2, we have the pattern given
above. O
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Table 3.27: x vectors and maximal dominant weights for the g = Eél)—module V(2A0)

(x2,x4) | (21,23, 25,26) | 1 Element of max(2Ag) N PT
(0,0) (0,0,0,0) 0 2A
(273) (1a2a271) 1 2M0 — g
(2,4) (2,3,3,2) 2 2A0 - 204() - 20[2 — Qa3 — 20(4 — Q5

Table 3.28: x vectors and maximal dominant weights for the g = Eél)—module V(3Ao)

(xo,24) | (z1,23,75,76) | [ Element of max(3Ag) NPT
(0,0) (0,0,0,0) 0 3Ao
(2,3) (1,2,21) |1 3A0 — ag
(2,4) (2,3,3,2) 2 3Ag — 209 — 2c09 — 3 — 2004 — v
(3.,6) (2,4,42) |2 3Ao — 200 — g
(3,6) (2,4,5,3) 3| 3Ap—3ag— a1 —3as — 203 — 30y — g
(3,6) (2,4,5,4) 4 3A0 - 40&0 - 2&1 — 5&2 — 4043 — 6054 — 30&5
(3,6) (3,5,4,2) 3 3A0 - 3040 - 30[2 — Q3 — 3044 - 2045 — Qg
(3,6) (4,5,4,2) 4 3A0 — 40&0 — 50&2 — 30&3 — 6(14 — 4&5 — 20(6

To better understand this theorem, consider some examples for various values of k. For ease
in our future examples, define Xy = {(z1,x2, x3, 24, 5, ) | Ax > 0,2 < 29 < k}. Note that
X; C Xj, whenever [ < k.

Ezample 3.8.4. Eél), V(A) = V(2Ag). By Theorem 3.8.3, any element of max(2A) NPT other
than 2Ag is of the form

2A0 - ZOA() - (l - :cl)al - (2l - $2)O[2 - (2l - :1:3)a3 - (Sl - x4)a4 — (21 - 1’5)045 - (l — xg)ag.

We list the x vectors in a particular way to show the pattern and corresponding value for [ in

addition to the resulting maximal dominant weight in Table 3.27.

Ezample 3.8.5. Eél), V(A) = V(3Ap). By Theorem 3.8.3, an element of max(3A¢) N P other
than 3Ag is of the form

3A0 — lOd() — (l — 5131)041 - (2l — xQ)CKQ - (2l — .%'3)6!3 — (3l — .%‘4)044 — (2[ — 1'5)045 — (l — 5136)046.

We list the x vectors in a particular way to show the pattern and corresponding value for [ in
addition to the resulting maximal dominant weight in Table 3.28. Notice that we can collect

the same x vectors from the case V(2Ay) since, as we said earlier, Xo C X3.

Ezample 3.8.6. Eél), V(A) = V(4Ao). By Theorem 3.8.3, any element of max(4Ag) NPT other
than 4Ag is of the form

AN —lag — (I — 1)y — (21 — x9)ag — (21 — x3)az — (3l — x4)aq — (21 — x5)as — (I — x) .
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Table 3.29: x vectors and maximal dominant weights for the g = Eél)—module V(4Ao)

(x2,24) | (21,23, 25,26) | 1 Element of max(4Ag) NPT
(0,0) (0,0,0,0) 0 47,
(2,3) (1,2,2,1) 1 4\ — ag
(2,4) (2,3,3,2) 2 4A0 - 2040 - 20[2 — Qa3 — 2a4 — Q5
(3,6) (2,4,4,2) 2 4A0 - 20[0 — (9
(3,6) (2,4,5,3) 3 4A0 — 3040 — Q] — 3@2 — 2@3 — 3044 — Qs
(3,6) (2,4,5,4) 4 4A0 - 4&0 - 20&1 - 50&2 - 40[3 - 60[4 - 30&5
(3,6) (3,5,4,2) 3 4A0 — 3040 - 3&2 — Q3 — 3@4 — 2@5 — Qg
(3,6) (4,5,4,2) 4 | 4Ag — 4o — bas — 3ag — 6oy — das — 20
(4,6) (2,4,4,2) 2 4Ag — 20
(4,7) (3,5,5,3) 3 4Ag — 3ag — 200 — a3 — 204 — a5
(4,8) (3,6,6,3) 3 4A0 - 30éo - 20&2 — QY
(4,8) (3,6,6,4) 4 4A0 - 40[0 — ] — 40[2 - 20[3 — 4a4 — 2(15
(4,8) (4,6,6,3) 4 4A0 - 40(0 - 40(2 — 20&3 — 40&4 — 20&5 — Qg
(4,8) (4,6,6,4) 4 4A0 - 4040 - 4042 - 2043 — 40(4 — 20[5

We list the x vectors in a particular way to show the pattern and corresponding value for [ in
addition to the resulting maximal dominant weight in Table 3.29. Notice that we can collect

the same x vectors from the case V' (3Ag) since, as we said earlier, X3 C Xy.

3.9 Type Eél)

Let g = Eél), index set I ={0,1,2,3,4,5,6,7}, and Cartan matrix

2 -1 0 0 0O 0 0 O
-1 2 0 -1 0 0O 0 O
o o 2 0 -1 0 0 O
A o -1 0 2 -1 0 0 O
o o0 -1 -1 2 -1 0 0
o 0o o 0 -1 2 -1 0
o o o o0 o -1 2 -1
o 0 o0 o o 0 -1 2

The defining inequalities are equivalent to

fixZO

1 <k
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where 1 = 2b0 - bl,xg = 2b0 - bg,l‘g = 3b0 - bg,a}4 = 4bo - b4,l‘5 = 3b0 - b5,x6 = 2b0 - b6,
and x7 = by — by. That is,

;

2£U1 — X3 > 0
2.1‘2 — X4 =
—x1 +2x3 — 14 >0

—Zo — X3+ 2%4 — I5
—x4 + 25 — T 0
—x5 + 226 — T7

—xg + 277

X1 <k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means

x xT X x X X
bO > max{flv ?27 ?37 f? ?57 ?67‘%7}.

In addition to the ceiling facts we included for Eél), we need the following equality:

e For a positive integer n, m € Z>g, and 0 < 7 <mn,

{(%L 1) (mn + (n—j))J — (n+1) Vm“r (n—J)

J + (n—j).
Begin with the left hand side:

{(Wr 1) (mn + (n —j))J

n

= {mn+nj+m+1]J
n

=mn+n—j+m

=n+1)m+n—j.
The right hand side is
(n+1){"m+7§’”‘—j)J +(n—j) = (n+1){m+1—7‘” +(n— )
=n+1)m+n-—j.
Lemma 3.9.1. Let x be a solution to

AXZO

$1§k

then xg > 3[%]

Proof. First, we add the third, fourth, and fifth inequalities and obtain —z1—xzo—x¢+x3+z5 > 0

99



and so x3 + x5 > x1 + T2 + xg. Similarly, we add the fifth, sixth, and seventh and obtain
—x4+ x5+ 27 > 0 and so x5+ x7 > x4. Notice that combining this with the sixth inequality, we
obtain zg > %4. Now combining the fourth and second inequalities, we have 2x4 > xo+2x3+x5 >
%4 + x3 + x5 and so 3% > x3 + x5. Using our first two results and combining them with the
second inequality again we have 314 > a3+ x5 > 21 +29+x6 > 11 + X2+ x“ >z + 14 —|—
and so %+ > 1. Then visiting the thlrd inequality, we have 23 > 3 + 5 > x1 + 5 = 392”1

Slnce x3 must be an integer, we consider the case when z; is odd. From our celhng notes, we
have to show the appropriate lower bound for x3 is 3 {%1 in this case. Note that if z;1 = 2n+1
then from above x3 > (2"+1) . Assume, for the sake of contradiction, that xg > [w—‘ =
3n 4+ 2. Then there can be a solution where x3 = 3n+ 2. From the fourth and second inequality,
we have 2x4 > To+x3+x5 > 174+x3+x5. From the fifth inequality this becomes 2z4 > %—l—wg—i—
5+ 5. From the previous paragraph we know z¢ > 3+ and so 224 > x4+ 3+ 7. Rearranging,
we obtam x4 > 413 . Now, if z3 = 3n + 2 then we have (3n+2) <24 <23n+2)—(2n+1) by
combining our most recent result with the third inequality. ThlS simplifies to 4n—|—§ <xy < 4n+3
and so x4 = 4n + 3 in this case. Looking at the fifth inequality and combining with zg > % we
have z5 > 5 + % > 35"4 . Then o <214 — 23 — 25 < 214 — 23 — % = % — x5 from the fourth
inequality. Returmng to the case of x4 = 4n + 3, we have T+ < x5 < 5“ — x3 which becomes
4"+3 <xz9 < (4n+3) — (3n +2). Simplifying, this is 2n + 5 S To < 2n+ %. Since z2 must be an
1nteger, this is 1mp0551ble. Then x3 # {w =3n+2.

Note that it is possible for z3 = 3[M1 This means x3 = 3n + 3. Following our above
argument, this means (3"+3) < x4 < 2(3n+3)—(2n+1), which simplifies to 4n+4 < x4 < 4n+5.
In the case of z4 = 4n+4 then 4”+4 < xy < 5(4’“4) — (3n+3) simplifies to 2n+2 < x9 < 2n+2
and so x2 = 2n + 2. In the case of T4 = 4n + 9, then 4”—*"’ <xy < (4n+5) — (3n + 3) simplifies
t02n+§§x2§2n+Iandsoxgcanbe2n—|—3. O

Lemma 3.9.2. Let x be a solution to

then x; # 1.

Proof. Suppose, for the sake of contradiction, that z; = 1. Then from (AX)l > 0, we have
r3 < 2 and from Lemma 3.9.1, we have x3 > 3[%1 = 3. Since this is impossible, 1 # 1. O
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Lemma 3.9.3. The set of solutions to

2:131 — I3 0

2r9 — Ty

Y
o

—T1 + 213 — T4

—T2—T3+2x4—w5 >0

—xz4 + 275 — X >0
—x5 + 2x6 — T7 >0
—xg + 27

T <k

18

X
{x =0} U{x = (x1,29, 73,24, 75,26, 76) €L | 2 <11 < k,iﬁ?l-‘ <z < 2z,

5 3
w < x4 < 2w3 — 77, {%W <2 < {TJ — 3, [Zﬂ < x5 <274 — 22 — T3,

2
[;5-‘ < xg < 2x5 — x4, and {%—‘ < x7 <26 — 5}

where w = {4%] +1ifx3=2 mod 3 and w = (4%] otherwise.

Proof. As stated earlier, since A is of finite type, x > 0 or x = 0. Therefore, x1 = 0, which
implies x = 0, or 1 > 1. By Lemma 3.9.2, 1 # 1. Therefore, x1 =0 or 2 < x; < k.

Now, fix x1 such that 2 < x1 < k. We found the lower bound for x3 in Lemma 3.9.1
and the upper bound comes from the first inequality. The remaining bounds fall out from the
inequalities and are best discovered from the end.

The bounds for x7 come from the sixth and seventh inequalities and the fact that x7 must
be an integer.

The upper bound for xg comes from the fifth inequality while the lower bound combines
the sixth and seventh: zg > % + & > 2 4 % and so xg > 2% Recall that xg must be an
integer. As noted earlier, {2%] =2 {%5] except when x5 = 3n + 1. We claim that in that case,
the smaller of the two options is the true lower bound for zg. Since this is a lower bound, we
need only check the sixth inequality. We have that zg > {2%] = {w—‘ = 2n + 1. Then
z7 > [2H] =n+1and —25+226 = —(3n+1)+2(2n+1) = n+1 > 27. So this is a possible
value for xg with x7 = n + 1.

The upper bound for x5 comes from the fourth inequality and the lower bound combines the
lower bound for x¢ with the fifth inequality: x5 > 5 +% > St +% . This implies x5 > %. Recall
that x5 must be an integer and from above, {%] <3 Pﬂfﬂ when x4 = 4n+1 or x4 = 4n+ 2 for
some n € Z>¢. Then we need to check that the lower of the two, [%1 satisfies the inequalities

in both of these cases.
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Case 1: z4 = 4n + 1. Then x5 > Fﬂ%w = 3n + 1. Since this is a lower bound, we need only

check the fifth inequality: —(4n + 1) + 2(3n + 1) > xg gives 2n + 1 > xg. From our bounds for

Tg we have {%-‘ =2n+ 1 < xg. Then g = 2n 4+ 1 and the inequalities are satisfied.

Case 2: ©4 = 4n + 2. Then x5 > [%] = 3n + 2. Since this is a lower bound, we need only
check the fifth inequality: —(4n + 2) + 2(3n + 2) > w4 gives 2n + 2 > x¢. From our bounds for
Tg we have {MW =2n+ 2 < x¢. Then x4 = 2n + 2 and the inequalities are satisfied.
Therefore, the lower bound for x5 is as given in the statement of the lemma.
The lower bound for x5 comes from the second inequality and the fact that xo must be an
integer. We use the fourth inequality and the lower bound for x5 to obtain the upper bound
3z4

for xo: 29 <24 — 23 — x5 < 2214 — T3 — t Once more, we must determine the correct upper

bound since x5 must be an integer. Since this is an upper bound and we claim that the larger
b5x4

of the two options, LTJ , is the correct choice, we need only show that the bounds for x5 (and

so the fourth inequality) are satisfied in this case. We need to check for each of the cases when
%54 #5%].

Case 1: x4 = 4n + 1. Then x5 < L%J =b5n+1— z3. Then when x9 = 5n + 1 — 3 we have
3n+1 <5 <24n+1)— (bn+1—x3) —x3 =3n+ 1. Then x5 = 3n + 1 and the bounds are
satisfied.

Case 2: x4 = 4n + 2. Then x5 < L%J =5n+ 2 — x3. Then when x9 = 5n + 2 — x3 we have
3n+2<xz5 <2(4n+2)— (5n+2 —x3) — 3 =3n+ 2. Then x5 = 3n + 2 and the bounds are
satisfied.

Case 3: x4 = 4n + 3. Then x5 < L%J =5n+ 3 — x3. Then when x9 = 5n + 3 — x3 we have
3n+3 <5 <2M4n+3)— (bn+3 —x3) — x3 = 3n + 3. Then x5 = 3n + 3 and the bounds are
satisfied.

Therefore, the upper bound for x5 is as given.

The upper bound for x4 comes directly from the third inequality. The lower bound combines
the fourth and second inequality with the lower bound for x5: x4 > 2 + 3 +5 > 9+ 5+ 3%4,
giving x4 > 4%. Again, since we need x4 to be an integer and this is a lower bound, we need
to check the least value x4 takes on based on the placement of the ceiling. Unfortunately, as
stated in Lemma 3.9.1, this depends on the remainder of x3 when divided by 3. We check the

appropriate lower bound based on the bounds for x-.

Case 1: If 23 = 3n for n € Z>y, (4%
T4 > (4%1 in this case.

Case 2: If 3 = 3n+1, then if x4 = [4%] = 4n+ 2 we have {#] < x9 < LWJ —(3n+1)
which simplifies to 2n + 1 < z9 < 2n 4+ 1. Then 9 = 2n 4+ 1 and the bounds are satisfied. In
this case, x4 > [4%]

Case 3: If x3 =3n+2and if x4 = {4%} = 4n + 3, we have [4”2—*% <1x9 < LWJ —(3n+2)
which simplifies to 2n + 2 < x9 < 2n + 1. Then there is no possible value for xo. However, if
we have x4 = 4[3%2] = 4n + 4 then {%] <z < L5(4+M)J — (3n + 2), which simplifies to

2n 42 < x9 < 2n+ 3. Then 9 = 2n 4+ 2 or 9 = 2n + 3. Note that in this case, x4 = [4%] +1

] = 4[“3—31, so we need not check this. We can then say
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since x3 = 2 mod 3, as stated in the claim. ]

Theorem 3.9.4. Let A = kAo, k > 2. Then max(A) N Pt = {A}U{A — lag — (21 — z1)1 —
(20 — z2)ag — (3l — x3)ag — (4l — x4)g — (3l — x5)a5 — (21 — x6)ag + (I — x7)7 where

'2§£C1§k3,

3[%H] < w3 < 2m1,

o W= [4%1 +1ifxs3=2 mod 3 and w = [4%] otherwise,

w < xy < 2w3 — 11,

| = max{%, x7}.

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that
x1 = 2bg — by,x0 = 2by — by, x3 = 3bg — by, x4 = 4by — by, x5 = 3bg — b5, x5 = 2by — bg and
x7 = bg — by. Then (bo, b1, b2, bs, ba, bs, b, b7) = (bg, 2by — x1,2by — w2, 3by — x3,4by — x4,3by —
x5,2by — x6, bp — by). By definition, the b; > 0 for 0 < i < 7. Therefore, the following must be

true:

bop >0
2bp —x1 >0
2bp —x9 >0
3bg —x3>0
4bg — x4 >0
3bg — x5 >0
2bg —xg > 0
bo—x7>0

Then by > max{%, %, %, 4, %, % w7} We use the inequalities from kCyy N (A + Q) to
eliminate some of these options. From the seventh inequality, we know that x7 > . Combining
the seventh and sixth inequalities we have 4x7; > 2x¢ > x5 + x7 and so z7 > % We add the
fifth, sixth, and seventh inequalities to obtain x5 + x7 — x4 > 0 and using this with the last

sentence we have 4x7 > x5 + x7 > x4, giving 27 > %, Using the lower bound (though perhaps

63



Table 3.30: x vectors and maximal dominant weights for the g = Eél)—module V(2A0)

(1,2, x3, 24, 5, Tg,T7) | | Element of max(2A¢) NPT
(0,0,0,0,0,0,0) 0 20
(2,2,3,4,3,2,1) 1 2MAg — ag
(2,3,4,6,5,4,2) 2 2A0 - 20[0 - 2041 — Qg — 20[3 - 2a4 — Q5
(2,3,4,6,5,4,3) 3 2A0 — 30[0 — 40&1 — 30[2 — 50[3 — 60&4 — 40&5 — 20&6

not the greatest lower bound) for x4 we have z7 > % > %%, Finally, using the lower bound for
r3 we have x7 > % > 5.

Notice that there is an instance when P—ﬂ > x7. If 13 = 2 mod 3 then 3 = 3n+2 for some

2
n € Z>o. Then by the claim, x4 = 4n + 4 and we can have z3 = L%J —x3 = 2n + 3. Allowing

x5, xg, and xy to take their lower bounds, we get x5 = {%W =3n+ 3,z = (2%’] = 2n + 2,
and x7 = [%61 =n+ 1. Then [%] =n+2> x7.

Then it suffices to say by > max{[%],z7}. Then let | = max{[%],z7} and we claim
that by = [. Showing this is similar to the method used in the proof of Theorem 3.3.3. Then
A= A-lo—(2l—z1) o1 — (2l —z2) o — (3l—x3)ag— (4l —z4) g — (3l —x5) vy — (2l —x6) g — (I —x7) 7.
Combining this with our solutions for the x; from Lemma 3.9.3, we have the pattern given

above. O

To better understand this theorem, consider some examples for various values of k. For ease
in our future examples, define Xy = {(z1,x2, 3, T4, x5, ¢, T7) | Ax>0,2<z; < k}. Note that
X; C X, whenever [ < k.

Ezample 3.9.5. Eél), V(A) = V(2A0). By Theorem 3.9.4, any element of max(2Ag) NPT other
than 2Ag is of the form

2A0 — lOé(]—(Ql — 33‘1)041 — (2l — 1‘2)012 — (3l — .%3)0&3 — (4l — $4)Oé4
— (8l —x5)as — (21 — xg)ag — (I — z7)ay.
We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.30.

Ezample 3.9.6. Eél), V(A) = V(3Ap). By Theorem 3.9.4, an element of max(3A¢) NPT other
than 3Ag is of the form

3Ao — lapg— (20 — z1)aqg — (21 — z2)ag — (3l — z3)ag — (4l — z4)y

— Bl —x5)as — (21 — xg) g — (I — x7) vy

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.31. Notice that we can collect the same x vectors from the case V(2Ag) since,

as we said earlier, Xs C X3.
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Table 3.31: x vectors and maximal dominant weights for the g = Eél)—module V(3Ao)

(1,2, x3, 24, 5, Tg,T7) | | Element of max(3A¢) NPT
(0,0,0,0,0,0,0) 0 3Ao
(2,2,3,4,3,2,1) 1 3Ao — ag
(2,3,4,6,5,4,2) 2 3A0 - 20[0 - 2041 — Qg — 20[3 — 2a4 — Q5
(2,3,4,6,5,4,3) 3 3A0 - 30[0 - 40&1 - 30[2 - 50[3 - 60&4 - 40&5 - 20&6
(3,4,6,8,6,4,2) P 3Ao — 200 — oy
(3,5,6,9,7,5,3) 3] 3Ap—3ag—3a1 —as —3a3 — 3ag — 205 — o

Table 3.32: x vectors and maximal dominant weights for the g = Eél)—module V(4Ao)

(1,2, 13, T4, x5, Tg, T7) | | Element of max(4Aq) N P
(0,0,0,0,0,0,0) 0 4A,
(2,2,3,4,3.2,1) 1 4Ag — ap
(2,3,4,6,5,4,2) 2 4A0 — 2050 — 20&1 — g — 20&3 - 20&4 — Q5
(2,3,4,6,5,4,3) 3 4A0 — 304() — 4041 - 3042 - 50[3 - 6a4 - 40[5 - 20(6
(3,4,6,8,6,4,2) 2 4A0 - 2040 — ]
(3,5,6,9,7,5,3) 3 4A0 — 30[0 - 3a1 — Qg — 30[3 — 30[4 — 2045 — Qg
(4,4,6,8,6,4,2) 2 4Ay — 2ap
(4,5,7,10,8,6,3) 3 4A0 — 30[0 — 20[1 — Qg — 20(3 - 2a4 — Q5
(4,5,7,10,8,6,4) 4 4A0 - 40&0 - 40&1 - 30[2 - 50&3 - 60&4 - 40[5 - 20[6
(4,6,8,12,9,6,3) 3 4Ag — 3 — 201 — as
(4,6,8,12,10,7,4) 4 4Ao — 4oy — dog — 2009 — davg — by — 205 — Qg
(4,6,8,12,10,8,4) 4 4A0 - 4050 - 4041 - 20[2 - 4053 - 40é4 - 2045
(4,6,8,12,10,8,5) 5 4Ag — bag — 6y — dag — Tag — 8ay — Sy — 20
(4,6,8,12,10,8,6) 6 4A0 — 60&0 — 80&1 — 60&2 — 10053 — 12&4 — 8045 — 4046
(4,7,8,12,9,6,3) 4 4A() - 4040 - 40[1 — Oy — 4a3 - 4a4 — 3a5 — 2a6 — Q7

Ezample 3.9.7. Eél), V(A) = V(4Ao). By Theorem 3.9.4, any element of max(4Ag) NPT other
than 4Ag is of the form

4A0 — lOzo—(2l — xl)ozl — (2l — iL'Q)Oég — (3l — $3)043 — (4l — .1‘4)054

— Bl —x5)as — (21 — xg) g — (I — w7)avr.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.32. Notice that we can collect the same x vectors from the case V(3Ay) since,

as we said earlier, X3 C Xj.
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3.10 Type E\"

Let g = Eél), index set I ={0,1,2,3,4,5,6,7,8}, and Cartan matrix

2 0 0 0 o0 O 0 0 -1
o 2 0 -1 0 0 0 0 O
o o0 2 0 -1 0 0 0 O
o -1 0 2 -1 0 0 0 O
A=l0 0O -1 -1 2 -1 0 0 ©0
o o o0 0 -1 2 -1 0 O
o o0 o o o0 -1 2 -1 0
0O 0 0 0 0o -1 2 -1
-1 0 0 O 0o -1 2

The defining inequalities are equivalent to
Ax >0
g < k

where T = 2b0 —bl,l'g = 3[)0—()2,333 = 4[)0—[)3,.%'4 = 6b0 —b4,$5 = 5b0—b5,$6 = 4bo—b6,$7 =
3b[) - b7 and xrg — 2b0 — bg. That iS,

;

211 — X3 >0
2T9 — x4 >0
—x1 + 23 — 14 >0
—X9 — T3+ 2x4 —T5 >

—x4 + 225 — x4 >0
—x5 + 2x6 — X7 >0
—xg + 227 — x38 >0
—x7 + 278 >

s <k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means

T1 X2 T3 T4 Tz Te T7 T8
bo > max{ 3, 3, B T, 2, T A L

We will once more require the ceiling and floor facts we obtained in the discussion for types

EY" and EWV.
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Lemma 3.10.1. The set of solutions to

(
2r1 — x3 0

2x9 — Ty

Y
o

—T1 + 213 — T4

—T2—T3+2x4—w5 >0

—24 + 275 — X >0
—x5 + 206 — T7 >0
—x¢ + 227 — 238 >0
—x7 + 278

rs <k

18

4
a < w6 < 2r7 — 18,0 < w5 < 26 — 7, ¢ < 14 < 25 — X, {%W =TS {?J o
2
where
Lo JAE] ifer=3nt2 5[] dfae=dn+3
(4%] otherwise [%] otherwise
and

6[%] ifzs=5n+4

[6%1 otherwise

Proof. As stated earlier, since A is of finite type, x > 0 or x = 0. Therefore, xg = 0, which
implies x = 0, or g > 1. We will prove at the end zg # 1.

Now, fix xg such that 2 < zg < k. The bounds for 7 come from the first and third
inequalities and the fact that z1 must be an integer.

The upper bound for x3 comes from the fourth inequality while the lower bound combines
the third and the lower bound for z1: 2z3 > x4 + 1 > x4 + % Then x3 > 2% Recall that x3
must be an integer. As noted earlier, [2%] = 2[””3—41 except when x4 = 3n + 1. We claim that
in that case, the smaller of the two options is the true lower bound for z3. Since this is a lower
bound, we need only check the third inequality. We have that x5 > [2%] = [W—‘ =2n+1.
Then z1 > [2”—2“'1] =n+1land —z4+223=—-Bn+1)+22n+1)=n+1>z;. So thisis a
possible value for x5 with x1 =n + 1.

The lower bound for zs comes from the second inequality and the fact that xo must be
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an integer. The upper bound combines the lower bound for x3 with the fourth inequality:

To < 204 — a3 — x5 < 214 — 2% — x5 = 4% — x5. Recall that zo must be an integer and
from earlier L%J = 4[%‘% + (24 mod 3). Then we need to check that the greater of the two,

L%J satisfies the inequalities in both of the cases for z4 % 0 mod 3. We return to this after

establishing the bounds for the other variables.
The upper bound for x4 comes from the fifth inequality. We use the fourth inequality and the
lower bounds for x5 and x3 to obtain the lower bound for z4: 224 > o+ 23+ x5 > %4 + 2% +x5.

This gives x4 > 6%. Once more, we must determine the correct lower bound since x4 must be

an integer. From earlier, we claim that the smaller value, [6%1 is the greatest lower bound

except in the case x5 = 4n + 4. Since this is a lower bound, we need to show that the fourth

inequality is satisfied in this case. We need to check for each of the cases when x5 #% 0 mod 5.
6(5n+1)

Case 1: x5 = 5n+ 1. Then z4 > [?—‘ =6n+2 S02ry >12n+4>x9+23+ (Bn+1) >

{6”;2] + 2(67?2) + (5n+1) = 12n+4. Then when x4 = 6n+ 2,29 = 3n+ 1 and 3 = 4n + 2,

satisfying the inequalities.

[6(5n+2) ]

Case 2: x5 =5n+2. Then vy > | =%~ | =6n+3.S02x4 > 12n+6 > x2 + 23+ (5n+2) >

{6”;3] + _2(6?;3)_ + (5n+2) = 12n 4+ 6. Then when x4 = 6n+ 3,22 = 3n+2 and z3 = 4n + 2,
satisfying the inequalities.

Case 3: x5 = 5n + 3. Then x4 > _6(57?3)_ =6n+4.S02x4 > 12n+8 > a9+ 23+ (5n+3) >

{6";4] + [2(67;+4)-| + (5n+3) = 12n+ 8. Then when x4 = 6n+4, 29 = 3n+2 and z3 = 4n + 3,
satisfying the inequalities.
Case 4: x5 = 5n + 4. Consider the smaller of the two values. Then x4 > [M} = 6n + 5.

80 224 > 120 +10 > 25 + 7 + (5 + 4) > [5] + [205)] 4 (50 + 4) = 120 + 11, This is
impossible. Instead, we consider the lower bound being 6[ 2% ]. Then z4 > 6(n + 1) = 6n + 6.
So 2w4 > 120+ 12 > o + a3 + (5n + 4) > [62407 4 {2(6’;*6)]} + (5n+4) = 12n + 11. Then
x9 and x3 can take on various values. Considering the bounds for each we have 3n 4+ 3 < x5 <
LWJ —(5n+4)=3n+4and dn+4 < x3 < 2(6n+6) — (bn+4) —x9 = Tn+8 — x9. Then
when x4 = 6n + 6, we can have 2o = 3n+3 and x3 =4n+4 or z3 =4n+ 5, or x9 = 3n+ 4

and xz3 = 4n + 4. In each case, the inequalities are satisfied.

The upper bound for x5 comes directly from the sixth inequality. The lower bound combines
the fifth inequality with the lower bound for z4: 2z5 > x4 + x¢ > 6% + xg, giving x5 > 5”%6.
Again, since we need x5 to be an integer and this is a lower bound, we need to check the least
value x5 takes on based on the placement of the ceiling. Unfortunately, this depends on the
remainder of xg when divided by 4. Since this is a lower bound, we need to show that the fifth
inequality is satisfied for each case when zg # 0 mod 4.

Case 1: ¢ = 4n + 1. Then z5 > {W-‘ =5n+2.S02x5 >10n+4> x4+ (dn+1) >

{W-‘ + (4n+1) = 10n + 4. Then when z5 = 5n+ 2, x4 = 6n + 3 satisfying the inequalities.

Case 2: g = 4n + 2. Then z5 > {w-‘ =5n+3.502x5 > 10n+6 > x4+ (dn +2) >
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{W—‘ + (4n+2) = 10n + 6. Then when x5 = 5n + 3, x4 = 6n + 4 satisfying the inequalities.

Case 3: xg = 4n + 3. Consider the smaller of the two values. Then x5 > {WW =5n + 4.
So 2x5 > 10n+8 > x4+ (4n+3) > 6[5”5—%1 + (4n +3) = 10n + 9, using the bound we proved
for x4 above. This is impossible. Instead, we consider the lower bound being 5{47%3]. Then
25 > 5(n+ 1) = 5n +5. So 2z5 > 100 + 10 > 24 + (dn + 3) > [W] + (4n+3) = 10n + 9.
Then when x5 = 5n + 5, we can have x4 = 6n + 6 or x4 = 6n + 7. In each case, the inequalities
are satisfied.

The upper bound for xg comes directly from the seventh inequality. The lower bound com-

bines the sixth inequality with the lower bound for x5: 2z¢ > z5+x7 > %4—367, giving xg > 4’%7.
Again, since we need zg to be an integer and this is a lower bound, we need to check the least
value xg takes on based on the placement of the ceiling. This depends on the remainder of x7
when divided by 3. Since this is a lower bound, we need to show that the sixth inequality is
satisfied for each case when x7 # 0 mod 3.
Case 1: 7 = 3n + 1. Then x4 > {%1 =4n+2. 502z >8n+4> x5+ Bn+1) >
{W-‘ + (3n+ 1) = 8n+ 4. Then when z¢ = 4n + 2, x5 = 5n + 3 satisfying the inequalities.
Case 2: x7 = 3n + 2. Consider the smaller of the two values. Then zg > {@1 = 4n + 3.
So 2z > 8n + 6 > x5 + (3n +2) > 5[4%3] + (3n + 2) = 8n + 7, using the bound we proved
for x5 above. This is impossible. Instead, we consider the lower bound being 4(%] Then
w6 > 4(n+1) = dn+4. So 206 > 8n+8 > x5+ (3n+2) > [W] +(3n+2) = 8n+7. Then
when zg = 4n + 4, we can have x5 = 5n + 5 or x5 = 5n + 6. In each case, the inequalities are
satisfied.

The upper bound for 7 comes directly from the eighth inequality. The lower bound combines
the seventh inequality with the lower bound for xg: 227 > xg + g > 4% + xg, giving x7 > 3%
Since z7 must be an integer, we need to check the placement of the ceiling when zg is odd.

3(2n+1)

Let g = 2n + 1. Consider if z7 = {T-‘ = 3n + 2. Then the seventh inequality becomes

2(3n+2) = 6n+4 > 4[32] +(2n+1) = 6n+5. This is false. Instead, if z7 = 3[ 25| = 3n+3,
the seventh inequality holds: 2(3n + 3) = 6n + 6 > [W} + (2n+ 1) = 6n + 5, allowing z¢
to be either 4n 4+ 4 or 4n 4+ 5. As a result, xg # 1 since then the bounds for z7 give 3 < x7 < 2.
Therefore, xg > 2.

We revisit the upper bound for xo to ensure it is an integer. First, note that since xzg >
2,x7 > 3,26 > 4,25 > 5, and so x4 > 6. Recall that we wish to show that the greater of the
two possible values for xo, V‘%J — x5 satisfies the inequalities and is therefore the upper bound
for xo. Consider the bounds for xo: (%W < a9 < 4% — x5. Following all of our bounds we have
established, this becomes {’%41 <z9 < 4% —x5 < 4% — % < 4% — 5—? < 4% — 5% < 4% —b.
Since we are testing the upper bound for x5, we need only show that the second inequality, or
its lower bound, is satisfied.

Case 1: 4 = 3n + 1. Then {%] <z < {%J —5=4n—4. Then 3n+1 < 8 — §,

giving n > % Since n > 2 because x4 > 6, this is satisfied.
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Case 2: z4 = 3n + 2. Then {#] < x9 < [WJ — 5 =14n — 3. Then 3n+ 2 < 8n — 6,
giving n > %. Since n > 2 because x4 > 6, this is satisfied.

Therefore, the greater value is acceptable as an upper bound for xs. O

Theorem 3.10.2. Let A = kAo, k > 2. Then max(A) NPT = {A}U{A —lap — (20 — 1)1 —
(3l — x9)ag — (41 — x3)ag — (61 — x4)g — (5l — z5)a5 — (4l — wg)ag + (31 — x7)ar — (31 — x8)ag

where

o A[2] ifx3:3n+2’

{4%] otherwise
) 5{%} if g = 4n + 3

[ frd ,
{%1 otherwise

oo 6[%] z'f:c5:5n+47
(6%} otherwise

e a < xg < 2w7 — g,

e b< x5 <26 — 27,

e c <1y < 2x5 — T,

o [B] <y <2m3— a4,

o 1= max{[%], [%]).

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that
x1 = 2bg—b1, 10 = 3bg—bo, x3 = 4by — b3, x4 = 6bg— b4, x5 = Hbyg—bs, Tg = 4bg—bg, 7 = 3by— b7,
and xg = 2by — bg. Then (bg, b1, ba, bs, ba, bs, b, b7,bg) = (bo, 2by — x1,3bg — x2,4by — 3,6by —
x4,5by — x5, 4by — x4, 3bg — by, 2bg — bs). By definition, the b; > 0 for 0 < i < 8. Therefore, the

following must be true:

bop >0
2bp —x1 >0
3bg —x2 >0
4bg —x3 >0
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Table 3.33: x vectors and maximal dominant weights for the g = Eél)—module V(2A0)

(x1...,78) l Element of max(2Ag) N P*
(0,0,0,0,0,0,0,0) | O 2Ag
(2,3,4,6,5,4,3,2) | 1 2A o — g
(4,5,7,10,8,6,4,2) 2 2A0 — 204() — g — Q3 — 2a4 — 26!5 — 2046 — 2047 - 20[8

6bg — x4 >0
5bp — x5 > 0
4bg — x> 0
3bp —x7 >0
2bp —xg > 0

Then by > max{%, %2, %, %, 2, % 0 1 We use the lower bounds from the lemma to
eliminate some of these options. Combining all of the lower bounds we have % > % > %4 >
B> 5 > 5 > 8. Similarly, 3 > % and the rest of the line follows.

Notice that it is possible for 2 > . If 21 = 3 = % (e.g. #1 = 10,23 = 20,74 = 30) and

To = 4% — x5, then x9 = 421 —x5. Following the chain of inequalities in the previous paragraph,
is i jeg T2 — 4z x5 > da Sy _om
this implies ¢ = =5 T > -3 =5

Then it suffices to say by > max{[%], [%]}. Then let I = max{[%|, [%2]} and we claim
that by = [. To show this, the same method is used as in the proof of Theorem 3.3.3. Then
A=A—lag— (2l —x1)ag — (3l — x2)ag — (4l — x3) g — (61 — x4) g — (5l — w5) g — (4] — x6) g —
(3l — x7)ar — (21 — xg)ag. Combining this with our solutions for the z; from Lemma 3.10.1, we

have the pattern given above. O

To better understand this theorem, consider some examples for various values of k. For ease
in our future examples, define Xy = {(z1, z2, x3, T4, 5, Tg, T7, X8) | Ax > 0,2 < xg < k}. Note
that X; C X, whenever [ < k.

Ezample 3.10.3. Eél), V(A) = V(2A0). By Theorem 3.10.2, any element of max(2A¢) NP other
than 2Ag is of the form

2A0 — lao—(2l — xl)al - (Sl - :L’Q)ag — (4l - 333)043 — (6l - 334)@4
- (5l - .735)0[4 - (4l — x6)a6 - (3l — .CC7)O(7 - (2l - (lig)ag.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.33.

Ezample 3.10.4. ESY, V(A) = V(3Ao). By Theorem 3.10.2, an element of max(3A) N P+ other
than 3Ag is of the form

3Ao — lag—(20 — z1)an — (3l — z2)ag — (4l — z3)ag — (61 — z4) 0y
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Table 3.34: x vectors and maximal dominant weights for the g = Eél)—module V(3Ao)

(x1,...,28) Element of max(3Ag) N P*
0,0,0,0,0,0,0,0) 3R,
(2,3,4,6,5,4,3,2) 3A0 —

(4,5,7,10,8,6,4,2)
(4,6,8,12,10,8,6,3)
(5,8,10,15,12,9,6,3)

3A0 — 2a0 — g — Q3 — 2044 — 20[5 — 2a6 — 2a7 — 2a8
3A0 — 20[0 — Qg
3A0 — 30[0 — ] — Qg — 2@3 — 3@4 — 3045 — 30[6 — 3047 - 3048

W NN = O~

Table 3.35: x vectors and maximal dominant weights for the g = Eél)—module V(4Ao)

(x1,...,28) Element of max(4A) N P+
(0,0,0,0,0,0,0,0) 4Ag
(2,3,4,6,5,4,3,2) 4Ay — ap

(4,5,7,10,8,6,4,2)
(4,6,8,12,10,8,6,3)
(4,6,8,12,10,8,6,4)
(5,8,10,15,12,9,6,3)

(6,8,11,16,13,10,7,4)
(6,9,12,18,15,12,8,4)
(7,10,14,20,16,12,8,4)
(8,10,14,20,16,12,8,4)

4o — 200 — a9 — a3 — 204 — 205 — 2006 — 2007 — 208
4A0 — 20&0 — Qg
4Ao — 20
4A0 — 30&0 — ] — Q9 — 20&3 — 30&4 — 30&5 — 30&6 - 30&7 - 30&8
4A0 - 3040 — Qg — (3 — 2044 - 2045 - 2046 — 2047 — 2048
4A0 — 30[0 — a7 — 20&8
4A0 - 4a0 — Q] — 2042 — 2043 — 4044 — 40[5 — 4046 - 4047 - 4048
4N — dag — 2090 — 203 — 4oy — das — dag — dar — dog

R W W WD NN R O~

- (5l — .1‘5)0(4 - (4l — 376)046 — (3l — .%'7)0(7 — (2l — $8)Oé8.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.34. Notice that we can collect the same x vectors from the case V' (2Ay) since,

as we said earlier, Xo C X3.

Ezample 3.10.5. Eél), V(A) = V(4Ag). By Theorem 3.10.2, any element of max(4A) NPT other
than 4Ag is of the form

4A0 - lao—(2l - xl)al - (Sl - :L’Q)ag - (4l - $3)Oz3 - (6[ - 374)044
— (5l — z5)aq — (41 — x6)as — (3l — z7)ar — (21 — z3)as.

We list the x vectors and corresponding value for / in addition to the resulting maximal dominant
weight in Table 3.35. Notice that we can collect the same x vectors from the case V' (3Ay) since,

as we said earlier, X3 C X}.
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3.11 Type A

Let g = Agi) for n > 2, index set I = {0,1,...,n}, and Cartan matrix
2 =2 0 0 0 0
-1 2 -1 0
o -1 2 -1
A=
0 1 2 -1 0
0 0 -1 2 -2
0 0 -1 2

The defining inequalities are equivalent to

AXZO

201 < k

where z; = by — b; for 1 <i<n -1, and z,, = %bo — by,. That is,

)
2131—$2 >0

—x1 + 232 — T3

—X9 + 213 — x4 >0

—Tp—3+2Tp0—THp—1 >0
—Tp—2 + 2Tp_1 — 27y, >0

—Tp-1+ 2z, >0

2:61 S k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
bo > b; for 1 <i<n-—1and by > 2b,.
Lemma 3.11.1. Let x be a solution to
Ax >0
201 < k
Then z; < 241 for 1 <i<n—2. In addition, ©; — x;—1 > Ti+1 — Tj.

Proof. This proof is essentially the same as that of Lemma 3.3.1 with the coordinates non-
decreasing until n — 2 rather than n — 1. We arrive at the contradiction using (fix)n—l >0 and
(Ax), > 0. O
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Lemma 3.11.2. Let x be a solution to

/iXZO

2$1 S k
Then x; = x;—1 implies x; = 2m for some integer m and for 2 <i<n—1.
Proof. This proof is essentially the same as Lemma 3.4.2. O

Lemma 3.11.3. The set of solutions to

AXZO

2x1§k

is the same as those to
Ax >0

23)1§k‘—1

if k is odd.

Proof. Assume k is odd. Notice that the only difference between the two sets of inequalities is

the last in each: 21 < k and 2x7 < k — 1. Since k is odd, in the first set we have 2z; < k

which implies z1 < g, and since 1 must be an integer, we have z1 < L%J = % Then since

the solution for 1 are the same in both sets and the x; never decrease by Lemma 3.11.1, the

solution sets must be the same. O

Lemma 3.11.4. Given A the Cartan matriz for type C,, of finite type, the set of solutions to

fixZO

201 < k
18

i i
{X:O}U{x:(xl,:cg,...,xn)GZTZLO 1<z < {QJ’xi:xl—i_le for2<i<n-—1,
j=2

n— n— Ly
0l <a1,0 Sy Shyg € Slg Sy [ 50 Sy < rl;lJ

where l,—1 = x1 for n = 2}.

Proof. As stated above, since A is of finite type, x > 0 or x = 0. Therefore, 1 = 0, which
implies x = 0, or z1 > 1.

Now, fix x1 such that 1 < z1 < LgJ We prove the pattern for zs through x,,_1 by induction.
First, by (Ax); > 0, 29 < 2z;. We have observed that the first n — 1 coordinates of x do not
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decrease, therefore xo > x1. Then x1 < xo < 227 implies that zo = 1 + lo where 0 < Iy < 3.
Now assume z; is of the form x; = 21 + 2322 ljforall 2 <i<p<mn—1wherel; =2; —x;_1
and so 0 <[, <[, < --- <z by the second result of Lemma 3.11.1. By the same lemma,
zp < Tpy1 < 2y — xp—1. Applying the induction hypothesis, we have x; + Z?:Q l; <appq <
2w+ 220 0 0) — (w1 +20,00) = @1+ ( : b _olj) +1p. Then zpy1 = x1 4+ (359 1) +lp1 Where
0 < lp+1 < 1. Therefore, x; = 1 + Z;ZQ l; where 0 < [, 1 < --- <y <3 and so [; is the
amount of increase from x;_1 to x; where 2 <3 <n — 1.

Finally, we need to prove the restrictions on z,,. By (/olx)n,l >0, 2z, < —xp_2+ 2x,1.
Using what we just showed, we have 2z, < —(z1 + Z;L:_g )+ 2(z1 + Z?;; L) =214 l—1+
Z?;; lj = Tp—1 + lp—1. The last inequality gives , > %+, Or, with what we found, we have
14+

2

>

n . Since x,, is an integer, we have {‘T"T_ﬂ <z, < {WJ O

Theorem 3.11.5. Let n > 2, A = kAo, k > 2,m € Z>o. Then max(A) NPT = {A} U {A —
lag — (I = z1)an — (Z?le(l — (214X lj))%') where

e 1<u < |5,

e 0 <1y <,

e 0<] 1 <lp o< - <Il3< s and lp_1 = x1 forn =2,

o [mpt] <i< |Pemgher],

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that
zi =by—bifor 1 <i <n—1andz, = iby — by,. Then (b, b1,...,b,) = (bo,bo — 1,bp —
T9,...,bp — Tpn_1, %bo — Zp). By definition, the b; > 0 for 0 < i < n. Therefore, the following

must be true:

bo >0
b0—$120
bo—l’gZO

bo — xp—1 >0

%bo — Ip Z 0
We have already proven in Lemma 3.11.1 that the first n — 1 coordinates of x never decrease.
Therefore, £,—1 = maxj<i<np—1{x;} and so for the first n — 1 inequalities it is sufficient to say
that by > x,_1. We showed in Lemma 3.11.4 that ["E”T*l] <z, < {WJ Then since
bo > 2x, > 2- [“T*l] > xn—1, we need only say by > 2x,. Then let | = 2x, and so by > [.
One can show by = [ using the same method as that used in the proof of Theorem 3.3.3. Then
A=A—lag—(I—z1)on — (I—x2)as — - — (I = Tp_1)ay_1 — (1 — ). Combining this with
our solutions for the x; from Lemma 3.11.4, we have the pattern given above. O
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Table 3.36: x vectors and maximal dominant weights for the g = A%)—module V(2A0)

x vector | [ | lg,l3,l4 | Element of max(2Ag) NPT
(0,0,0,00) | 0] 0,0,0 27,

(1,2,2,2,1) | 1| 1,00 9A0 — 2ag — a
(1234,2) | 2| 1,11 | 240 — 4ap — 301 — 200 — a3

Table 3.37: x vectors and maximal dominant weights for the g = Ag)—module V(2A0)

x vector U 1o, 13,1415 Element of max(2A¢) NPT
(0,0,0,0,0,0) | 0| 0,0,0,0 20
(1,2,2,2,2,1) | 1| 1,0,0,0 2A0 — 200 —
(1,2,3,4,4,2) | 2 1,1,1,0 2Ag — 4ap — 31 — 200 — a3
(1,2,3,4,5,3) 3 1,1,1,1 2/\0 - 6040 — 5o — 40&2 - 3@3 — 204 — as

To better understand this theorem, consider some examples for various values of both k and
n. For ease in our future examples, define Xy, = {(z1,...,2n) | Ax > 0,2 < 2 < k}. Note
that X, C X}, whenever [ < k.

Ezample 3.11.6. A(l%), V(A) = V(2Ap). By Theorem 3.11.5, any element of max(2A9) NP+ other
than 2A¢ is of the form

2Ag — log — (l — xl)al — (l — (951 + lz))ag — (l — (561 + 1y + lg))ag — (l — (951 + 1o+ 13 + l4))a4.

We list the x vectors and corresponding values for [, 9,13, and l4 in addition to the resulting

maximal dominant weight in Table 3.36.

Ezample 3.11.7. A(IQQ), V(A) = V(2A0). By Theorem 3.11.5, an element of max(2A¢) N P other
than 2Ag is of the form

2Ag — lao—(l — xl)al — (l . (xl + lg))ozg — (l — (.731 + 1y + l3))0¢3
—(l—(m1+lb+l3+h)ay—(I—(z1+l+1l3+1ls+15))as.

We list the x vectors and corresponding values for [, s, 3,14, and [5 in addition to the resulting

maximal dominant weight in Table 3.37.

One can show that our formulation for the maximal dominant weights of V' (kAg) correspond
to that of [18] for the case k = 2 for arbitrary n > 3. According to [18], the set of maximal
dominant weights for V(2A¢) is {(1 + 2umn—1)A2u —2ud | 0 < u < |%]}. We run into an
issue for both v = 0 and u = %‘1 though we propose this is due to a small generalization
error in [18]. Instead, we prove that our set matches what we expect should be the set in [18]:
{2M0} U{A2, —2ud | 1 < u < |2]}. To show that the two formulations are the same, we write

our formulation in terms of the fundamental dominant weights, A;. With this conversion, we
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Table 3.38: x vectors and maximal dominant weights for the g = A%)—module V(3Ao)

x vector | [ | la,l3,l4 | Element of max(3Ag) N P+
(0,0,0,00) | 0] 0,0,0 37,

(1,2,2,2,1) | 1| 1,00 3Ao — 209 — a
(1234,2) | 2| 1,1,1 | 3A0 — 4ap — 301 — 200 — a3

Table 3.39: x vectors and maximal dominant weights for the g = Ag)—module V(3Ao)

x vector U lo,13,14,15 Element of max(3Ag) NPT
(0,0,0,0,0,0) | 0| 0,0,0,0 3Ao
(1,2,2,22,1) [ 1| 1,0,0,0 3Ao — 200 — a1
(1,2,3,4,4,2) 2 1,1,1,0 3A0 - 40(0 —3a1 — 209 — a3
(1,2,3,4,5,3) 3 1,1,1,1 3A0 - 60[0 - 50[1 - 40[2 - 30&3 - 20&4 — Q5

have

X = {200} U{2A0 — I(2A0 — A1 +6) — (1 = (1))(—=2A0 + 2A1 — A)

n—1
_ (Z(l - (14 Zb))) (—Aim1 + 20 — A1)}
=2 J

9

Showing this set corresponds to the expected set from [18] is similar to how we showed the
same for type Bq(ll).

Ezxample 3.11.8. A%), V(A) = V(3Ag). By Theorem 3.11.5, any element of max(3A¢)NPT other
than 3Ag is of the form

3ho —lag— (Il —z1)ar — (I — (x1 + 12)as — (I — (w1 + la+ 13))ag — (I — (z1 + la + I3+ 14))ay.

We list the x vectors and corresponding values for [, 2,13, and 4 in addition to the resulting

maximal dominant weight in Table 3.38.

Ezample 3.11.9. Ag), V(A) = V(3Ag). By Theorem 3.11.5, an element of max(3Ag) NPT other
than 3Ag is of the form

3o —lag—(l —z1)ar — (I — (1 + 12))ae — (I — (21 + l2 + 13)) a3
— (l — ($1 +1ls+ 13+ l4))0¢4 — (l — (wl +lo+13+ 14+ 15))045.

We list the x vectors and corresponding values for [, lo, I3, [4, and [5 in addition to the resulting

maximal dominant weight in Table 3.39.

Ezample 3.11.10. A% V(A) = V(4A¢). By Theorem 3.11.5, any element of max(4A¢) N P+
other than 4Ag is of the form

4hg —lag — (I —x1)a; — (I — (1 + 12))ag — (I — (1 + o+ 13))az — (I — (x1 + o + I3+ 1)) ay.
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Table 3.40: x vectors and maximal dominant weights for the g = A%)—module V(4A0)

x vector | [ | lg, 13,14 Element of max(4Ag) NPT
(0,0,0,0,0) | 0| 0,0,0 4A¢

(1,2,2,2,1) | 1| 1,00 4Ao — 200 — ay
(1,2,3,4,2) | 2 1,1,1 4Ny — 4oy — 31 — 20090 — g
(2,2,2,2,1) | 1| 0,00 4Ag — 2aq

(2,34,42) | 2| 1,1,0 4Mg — dag — 20y — as
(23453) 3 1,1,1 4A0*60¢0 *4&1 *30&2 *20&3 — Oy
(24,442 | 2| 2,00 4Ny — dag — 20,
(2,4,5,6,3) | 3| 2,1,1 4Ay — 6ag — 4oy — 2ai9 — a3
(24,6,6,3) | 3| 2,2,0 4Ag — 6ag — 4oy — 209
(2,4,6,7,4) | 4 2,2,1 4Ay — 8ag — 6a; — dag — 2003 — g
(2 4 6 8 4) 4 2,2,2 4A0 - 8&0 — 6&1 — 4042 — 2053
(2 4 6 8 5) 5 2,2,2 4A0 — 10a0 — 8a1 — 6042 — 4043 - 2044

We list the x vectors and corresponding values for [, 9,13, and l4 in addition to the resulting
maximal dominant weight in Table 3.40. Notice that we can collect the same x vectors from

the case V(3Ap) since, as we said earlier, X35 C Xy 5.

Ezample 3.11.11. Ag), V(A) = V(4Ao). By Theorem 3.11.5, an element of max(4Ag) NP+ other
than 4Ag is of the form

4Ag — lao—(l — xl)oq - (l — (xl + lg))ozg — (l — (561 + 1o + 13))053
—(=(1+la+l3+l))as— (= (v1+ 2+ 13+ 1ls+15))as

We list the x vectors and corresponding values for [, s, 13,14, and 5 in addition to the resulting
maximal dominant weight in Table 3.41. Note again that since X3¢ C X4, we can collect the

x vectors from the example of Ag), V(3Ao).

3.12 Type Aéi)_l

Let g = Agi)_l for n > 3, index set I = {0,1,...,n}, and Cartan matrix

2 0 -1 0
0 2 -1 0
-1 -1 2 -1 0 0
o o0 -1 2 -1 0
A=
0 -1 2 -1 0
0 0o -1 2 =2
0 0o 0 0 -1 2
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Table 3.41: x vectors and maximal dominant weights for the g = Ag)—module V(4A0)

x vector U] la,l3,14,15 Element of max(4Ag) NPT
(0,0,0,0,0,0) | 0] 0,0,0,0 47,
(1,2,2,22,1) | 1| 1,0,0,0 4Ay — 200 —
(1,2,3442) | 2| 1,1,1,0 4N — dag — 3o — 200 — g
(1,2,3,4,5,3) 3 1,1,1,1 4A0 - 60&0 —daq — 40[2 - 30&3 — 20 — (073
(2,2,2,22,1) | 1| 0,0,0,0 4Ay — 20
(2,3,4,4,4,2) 2 1,1,0,0 4A0 - 40[0 - 20[1 — (9
(2,3,4,5,6,3) 3 1,1,1,1 4A0 — 6040 - 40z1 - 30(2 - 20&3 — Qy
(2,4,4,442) | 2| 20,00 4Ag — dag — 201
(2,4,5,6,6,3) | 3| 21,1,0 4N — 6ag — 4oy — 200 — g
(2,4,5,6,7,4) | 4 2,1,1,1 4Ag — 8ay — 6y — 4das — 3az — 204 —
(2,4,6,6,6,3) | 3| 2,2,0,0 4N — 6ap — 4oy — 200
(2,4,6,7.84) | 4| 2211 4Ag — 8ag — 6 — day — 203 — A
(2,4,6,8,8,4) 4 2,2,2,0 4A0 - 80&0 — 6o — 40&2 - 20&3
(2,4,6,8,9,5) ) 2,2,2,1 4A0 - 10040 - 8041 - 6042 - 40(3 - 20[4 — Q5
(2,4,6,8,10,5) | 5 | 2,2,2,2 4Ag — 10ap — 8a1 — 6ag — dag — 204
(2,4,6,8,10,6) 6 2,2,2,2 4A0 - 12&0 — 10a; — 8ap — 6a3 — 4oy — 20(5

The defining inequalities are equivalent to

where £1 = by — b1, x; = 2bg — b; for 2 < i <n —1, and x,, = bg — b,. That is,

r
2x1 — 9 >0

—x1 + 229 — T3

—T9 + 213 — x4 >0

—Tp-3+2r, 92—2Tp—1 20
—ZTn_9o+2rp_1—2x, >0

—Tp_1+ 2z, >0

To Sk

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
bo > bi,by > by, and by > % for 2 <i<n-—1.
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Lemma 3.12.1. Let x be a solution to
Ax >0
ng;k
Then x; < 41 for 1 <1 <n—2. In addition, x; — x;—1 > Titr1 — T5.

Proof. This proof is essentially the same as that of Lemma 3.3.1 using (Ax)n—l > 0 and

(Ax),, > 0 to arrive at a contradiction. O

Lemma 3.12.2. Let x be a solution to

o

Ax >0

$2§;k
Then xo # 1.
Proof. This proof is essentially the same as that of Lemma 3.5.2 using (fix)n—l > 0 to arrive
at the contradiction. O
Lemma 3.12.3. Let x be a solution to

Ax >0

ng;k
Then x; = x;—1 implies that x; = 2m for some integer m and for 2 <1 <n — 1.

Proof. This proof is essentially the same as that of Lemma 3.4.2.
Lemma 3.12.4. The set of solutions to

AXZO

Ty < k

18
{x:O}U{X:(xl,:cg,...,xn)EZgo | 2 <o <k,z1 = [%-‘ +0,0<h < L%J,

i
m::cg—{—le for3<i<n-—1,
=3

0l < | 2] ~0,0S 1 Shho <o <L <y forn>3,

Tn—1+lp—1
2

Tp—1

J where l,—1 = x9 — x1 for n = 3}.

(md{ ngng
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Proof. As stated above, since A is of finite type, x > 0 or x = 0. Therefore, xo = 0, which
implies x = 0, or x5 > 2 by Lemma 3.12.2.
Now, fix xo such that 2 < z9 < k. Then by (AX)1 >0, 21 > %2 Since each x; must be an

integer, this implies x; > [%] We have observed that the first n — 1 coordinates of x do not
decrease, therefore x1 < x5. Then (%W < z1 < x9 and so we can say ] = {%ﬂ + 11 where
0<h < L%J We prove the pattern for xg through z,,_1 by induction. We’ve shown that

T9 < x3 and 3 — 9 < 29 — x1. Then x3 — 29 < 29 — ([%2] +04)= L%J — l1. Therefore, x9 <

r3 < 19+ L%J — 11 and so x3 = 29+ 13 where 0 < I3 < L%J — 1. Now assume z; = $2+Z;:3 l;
forall 3 <i<p<n-—1wherel; =x; —x;—1 andso0<1[, <l,_1 <--- <3 by the second
result of Lemma 3.12.1. By the same lemma, z, < x,+1 < 2z, — x,—1. Applying the induction
hypothesis, we have z2+> 0 _31; < xp1 < 2(x2+377 5 lj)—(xg—i—zg?;; l) = xa+ (253 1j) +1p
Then zp1 = x2 + (2:1;:3 ;) + lp41 where 0 < lp41 < I,. Therefore, z; = xo + 22:3 l; where
0<l,—1<---<ly<l3and so(; is the amount of increase from x;_1 to x; where 3 <i<n-—1.

Finally, we need to prove the restrictions on x,. (fix)nfl > 0 gives that 2z, < —x,_o +

2xy,—1. Using what we just showed, we have 2z, < —(z3 + Z?:_g ;) + 2(x2 + Z;:; ;) =
Tp—1

To+1,—1 +Z?;§ lj = xp—1+1lp—1. The last inequality gives z;, > =%~ Or, with what we found,
2243173
2

we have z, > . Since z,, is an integer, we have [“%1] < &, < {%J O

Theorem 3.12.5. Let n > 3, A = kAo, k > 2,m € Z>o. Then max(A) NPT = {A} U {A —
lag — (L= ([2] +1))ar — (2l — z2)as — (Z?:_31(2l — (22 + 2753 lj))oci) — (I = zp) v, where

OQSZL'QSI{:,

= max{wy, 2},
co<n<[%)

e 0<I3<[%] -1 forn>3,

e 0<l, 1 <lp9<--<ly<l3, lo=1x9 —x1 forn=3,ls =0 else,
¢ {%Tiw <z, < {%J

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives
that x; = by — by, x; = 2bg — b; for 2 < i < n —1, and z,, = by — by,. Then (bg,b1,...,b,) =
(bo, b — x1,2bg — x2, . .., 2bg — Tp—_1,bo — xy). By definition, the b; > 0 for 0 < ¢ < n. Therefore,

the following must be true:

bp > 0
bo—xlzo
2b0—x220
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Table 3.42: x vectors and maximal dominant weights for the g = Ag)—module V(2A0)

x vector | [ | I1,l3,14 Element of max(2Ag) NPT
0,0,0,0,0) | 0] 0,0,0 27,

(1,2,2,2,1) | 1| 0,00 2o — ag

(1,2,3 4 2) 2 0,1,1 2A0 - 20(0 — o1 — 2042 — Qa3
(2,2,2,2,1) | 2| 1,00 | 2A0 — 200 — 209 — 203 — 2a4 — as

2b0 — Tp—1 Z 0

bg—xnzo

It is clear that by > x7 where x1 = ({%ﬂ + [l1). We have already proven that the first n —

1 coordinates of x never decrease. Therefore, x,_1 = maxj<j<,—1{z;} and so for the inner

Tn—1

inequalities it is sufficient to say that by > . Since x,_1 may be odd, we need by > ["ELQ*I]

We showed in Lemma 3.12.4 that [*%2] < 2, < {%J Then since by > z, > [Z%2],

we need only say by > x, to satisfy the last n — 1 inequalities. Then let [ = max{z1, z,} and so

by > 1. We claim that by = [. This can be shown using the same method as that used in the proof

of Theorem 3.3.3. Then A = A—lag—(l—z1)ag — (2l —z2)ag —- - - — (2l —zp—1)an—1 — (I — )y
Combining this with our solutions for the z; from Lemma 3.12.4, we have the pattern given
above. O

To better understand this theorem, consider some examples for various values of both k
and n. We include two examples of kK = 2 and prove that our results match those of Lee’s. For
ease in our future examples, define Xy, = {(z1,...,2n) | Ax > 0,2 < 25 < k}. Note that
Xin € Xjn whenever [ < k.

Ezample 3.12.6. AY) V(A) = V(2A¢). By Theorem 3.12.5,
maX(QAo) NPt = {2A0} U {2A0—la0 - (l — ([%1 + l1))a1 — (2l - mg)ag — (2l - (332 + lg))ag
— (2l = (xe+ 13+ 14))ag + (I — x5) 5.

We list the x vectors and corresponding values for [, 11,13, and I4 in addition to the resulting

maximal dominant weight in Table 3.42.

Ezample 3.12.7. Aﬁ), V(A) = V(2Ay). By the theorem,

max(2A0) N P* = {2A0} U {2A0 — lag — (I — ([%] F1))ag — (20— z2)as — (21 — (22 + I3))as

— (2l — (332 + 13 + l4))CK4 — (2l — (wg + 13+ 14+ l5))CK5 — (l — 1'6)046-

We list the x vectors and corresponding values for [, 1, 13,14, and [5 in addition to the resulting

maximal dominant weight in Table 3.43.

One can show that our formulation for the maximal dominant weights of V' (kA¢) correspond
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Table 3.43: x vectors and maximal dominant weights for the g = Aﬁ)—module V(2A0)

x vector U] 1,13, 14,15 Element of max(2A¢) NPT
0,0,0,0,0,0) [ 0] 0,0,0,0 2ho
(1,2,2,2,2,1) | 1| 0,0,0,0 920 — ag
(1,2:34,4,2) | 2| 0,1,1,0 2o — 200 — Ay — 2009 — a3
(1,2,34,5,3) | 3| 01,11 | 2A0 — 30 — 2a1 — 4as — 3as — 204 — as
(222221) | 2| 1.0.0.0 | 2A0 — 200 — 205 — 205 — 204 — 205 — ag

to that of [18] for the case k = 2 for arbitrary n > 3. According to [18], the set of maximal
dominant weights for V(2A¢) is {Ag 4+ Ay — ud|0 < u < [ 2|} U{2A; — 26}. We run into an in
issue with the first set for u > 0, though we propose this is due to a small generalization error
n [18]. For example, for u = 1, the paper gives the maximal dominant weight Ay + Ag — J,
which is of level 3. Since it is in V' (2Ag), it must be of level 2. Instead, we expect the intended
set in [18] is: {2A0} U {A2y — ud|0 < u < | 2]} U {2A; — 20}. To prove that this formulation
matches ours, first write our formulation in terms of the fundamental dominant weights, A;.

This conversion gives
X ={2A¢ — l(2A0 —No+0)— (I —(1+1))(2A1 — A2) — (20l — 2)(—Ap — A1 +2A2 — A3)

Z 2+Zl ) N1+ 20 — Aigq)

920 — 2+Zz ) Ans 4285 — Ap_1 — Ay)
- gcn,l)(—An,2 200 1) — (I — 2n)(—Ap_s + 2A,)).

To show the two sets are the same, the process is similar to that used when showing the same

for type Bgl) .

Ezample 3.12.8. A? V(A) = V(3A,). By Theorem 3.12.5,
max(3Ap) N Pt = {3A0} U {3/\0—[040 —(I— ([%1 +1))ar — (20 — z2)ag — (21 — (x2 + 13))as
— (2l — (x'Q + I3+ l4))C¥4 + (l — $5)Oé5.

We list the x vectors and corresponding values for [, 1,13, and 4 in addition to the resulting
maximal dominant weight in Table 3.44. Notice that we can collect the same x vectors from

the case V(2A¢) since, as we said earlier, X2, C X3,

Example 3.12.9. A%? V(A) = V(3A). By Theorem 3.12.5,

max(3A0) NPT = {3A0} U {3A¢ — lag — (I — ([%} +1))ar — (20 — z2)as — (21 — (22 + I3))as

— (2l — (:L'z + I3 + l4))044 — (2[ — (:Ez + I3+ 14+ l5))045 — (l - $6)Oz6.

83



Table 3.44: x vectors and maximal dominant weights for the g = Ag)—module V(3Ao)

x vector | [ | I1,l3,14 Element of max(3Ag) N P+
(0,0,0,0,0) | 0 | 0,0,0 3Ao
(1,2,22,1) | 1| 0,0,0 3A0 — g
(1,2,3,4,2) 2 0,1,1 3A0 - 20(0 — o1 — 2042 — Q3
(2,2,22,1) | 2| 1,00 | 3Ag — 200 — 200 — 203 — 204 — @5
(2,34,42) | 2| 01,0 3A0 — 200 — 2
(2,3,4,5,3) 3 0,1,1 3A0 - 30[0 — 1] — 30(2 - 20[3 — Oy
Table 3.45: x vectors and maximal dominant weights for the g = Aﬁ)—module V(3Ao)
x vector 1| 1h,13,14,15 Element of max(3Aq) N P*
(0,0,0,0,0,0) | 0 | 0,0,0,0 3Ao
(1,2,2,22,1) | 1 | 0,0,0,0 3Ao — o
(1,2,3,4,4,2) 2 0,1,1,0 3A0 - 2040 — a1 — 20 — a3
(1,2,3,4,5,3) 3 0,1,1,1 3A0 - 3a0 - 2a1 - 4a2 - 3(13 - 2044 — Q5
(2,2,22,21) [ 2| 1,000 | 3Ag— 200 — 2as — 205 — 204 — 205 — ag
(2,34,442) | 2| 0,1,0,0 3Ao — 200 — a2
(2,3,4,5,6,3) 3 0,1,1,1 3A0 - 30&0 — ] — 30[2 - 2043 — Oy

We list the x vectors and corresponding values for [, [1,l3, 4, and [5 in addition to the resulting
maximal dominant weight in Table 3.45. Note again that since X»¢ C X3¢, we can collect the

x vectors from the example of Aﬁ), V(2A0).

Ezample 3.12.10. A, V(A) = V(4A¢). By Theorem 3.12.5,
T2
2
— (20— (zo + I3+ 1g))as + (I — x5) .

max(4Ao) N P+ = {3A0} U {3Ag—lag — (I — ([ } Fh))ar — (20— z2)as — (20 — (22 + 13))as

We list the x vectors and corresponding values for I, 11,13, and l4 in addition to the resulting
maximal dominant weight in Table 3.46. Notice that we can collect the same x vectors from

the case V(3A¢) since, as we said earlier, X35 C Xy 5.

Ezample 3.12.11. A% V(A) = V(4A,). By Theorem 3.12.5,
2
2
— 2l = (2 +ls+1lg))as— 2l — (xo+ I3+ 1y + 15))as — (I — x6) .

max(380) N P = {300} U {880 — lag — (1= (| 2] + ) — (2 = w2)as — (2 = (w2 + Is))es

We list the x vectors and corresponding values for [, 11, 13,14, and [5 in addition to the resulting
maximal dominant weight in Table 3.46. Note again that since X3¢ C X4, we can collect the

x vectors from the example of Aﬁ), V(3Ao).
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Table 3.46: x vectors and maximal dominant weights for the g = Ag)—module V(4Ao)

x vector | [ | I1,l3,14 Element of max(4Ag) NPT
(0,0,0,0,0) [ 0| 0,0,0 47,

(1,2,2,21) | 1| 0,0,0 4Ag — ag

(1,2,342) | 2| 01,1 4N — 200 — o — 202 — a3
(2,2,221) | 2| 1,0,0 | 4Ag — 200 — 209 — 203 — 2004 — a5
(2,34,42) | 2| 01,0 4Ag — 20 — a
(2,3,4,5,3) 3 0,1,1 4A0 — 30&0 — 1 — 30&2 — 20&3 — Oy
(2,4,442) | 2| 0,00 4o — 20

(2,4,5,6,3) 3 0,1,1 4A0 - 30[0 — 1] — 20[2 — Qa3
(2,4,6,6,3) | 3| 0,20 4N — 3ap — a1 — 20z
(2,4,6,7,4) 4 0,2,1 4A0 - 40[0 - 2&1 - 40&2 — 20&3 — Oy
(2,4,6,84) | 4| 0,22 4Ag — dag — 20 — dag — 203
(2,4,6,8,5) | 5| 0,2,2 | 4Ag — bap — 31 — 6ag — dag — 20y
(3,4,4,4,2) 3 1,0,0 4A0 - 30&0 — 209 — 2&3 — 204 — a5
(3,4,5,6,3) | 3| 1,1,1 4N — 3ag — 209 — a3
(44,4,42) | 4| 2,00 | 4Ag — dog — dag — dag — day — 205

Table 3.47: x vectors and maximal dominant weights for the g = Aﬁ)—module V(4Ao)

x vector 1| 1h,13,14,15 Element of max(4Ag) NPT
(0,0,0,0,0,0) | 0] 0,0,0,0 4A,
(1,22,221) | 1| 00,00 4\ — ap
(1,2,3,4,4,2) 2 0,1,1,0 4A0 - 20&0 — a1 — 209 — a3
(1,2,3,4,5,3) 3 0,1,1,1 4A() - 304() - 2041 - 40[2 - 3043 - 20[4 — Q5
(2,2,2,22.1) | 2| 1,000 | 4Ag—2a0 — 200 — 203 — 204 — 2005 — g
(2,34,442) | 2 0,1,0,0 40Ny — 2ap — 2
(2,3,4,5,6,3) 3 0,1,1,1 4A0 - 30[0 — ] — 30[2 - 20[3 — Oy
(2,4,4,44,2) | 2| 0,0,0,0 4Ay — 20
(2,4,5,6,6,3) 3 0,1,1,0 4A0 - 30(0 — o] — 20&2 — Q3
(2,4,5,6,7,4) 4 0,1,1,1 4A0 - 4@0 — 201 — dag — 3043 — 204 — a5
(2,4,6,6,6,3) | 3| 0,2,0,0 4No — 3o — o — 209
(2,4,6,784) | 4| 0,21,1 4Ny — dag — 201 — das — 203 — Ay
(2,4,6,8,84) | 4| 0,2,2,0 4Ng — dag — 20 — das — 203
(2,4,6,8,9,5) 5 0,2,2,1 4A0 - 5&0 — 3a1 — 6ag — 40&3 — 20 — s
(2,4,6,8,10,5) 5 0,2,2,2 4A0 - 50[0 - 3@1 - 6&2 - 40(3 — 2054
(2,4,6,8,10,6) 6 0,2,2,2 4A0 - 60&0 - 40&1 — 8ag — 60&3 - 40&4 - 20&5
(3,4,4,4,4,2) 3 1,0,0,0 4A0 - 3040 - 2042 - 20[3 - 20[4 - 2045 — Qg
(3,4,5,6,6,3) | 3| 1,1,1,0 4Ag — 3ap — 209 —
(3,4,5,6,7,4) 4 1,1,1,1 4A0 - 4040 — a1 —4dag — 30&3 — 204 — a5
(4,4,4,4,4,2) 4 2,0,0,0 4A0 - 40[0 - 40[2 - 40[3 - 40&4 - 40&5 - 20[6
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2
3.13 Type D,

Let g = Dfﬁl for n > 2, index set I = {0,1,...,n}, and Cartan marix

2 -2 0 0
-1 2 -1 0 0 0
0 -1 2 -1
A=
0 -1 2 -1 0
0 -1 2 -1
0O -~ 0 0 0 -2 2

The defining inequalities are equivalent to

Ax >0
201 < k
where x; = by — b; for 1 < i < n. That is,
(2301 — T9 >0
—x1 + 2x2 — x3 >0
—x9 + 2x3 — X4 >0

—Tp-2+ 205 1—2, =0
—2Tp_1 + 2z, >0
2:B1 S k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
bozbiforlgz'gn.

Lemma 3.13.1. Let x be a solution to

/ixZO

21’1 S k
Then z; < 241 for 1 <i<n—1. In addition, ©; — x,—1 > Ti+1 — Ti.

Proof. This proof is essentially the same as that of Lemma 3.3.1 using (Ax)n > 0 to arrive at

the contradiction. O
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Lemma 3.13.2. The set of solutions to

Ax >0
201 < k
1s the same as those to
Ax >0
2.%'1 S k—1
if k is odd.
Proof. This proof is essentially the same as that of Lemma 3.11.3. O
Lemma 3.13.3. The set of solutions to
Ax >0
21’1 S k

18

Ek %
{(x=0}U{x=(21,22,...,7,) €Z% | 1 <1 < L2J,xi:x1+21j,ogz2 < 1,
j=2

0<lp<lp1< - <l3<ly where2 <i<n}.

Proof. As stated above, since A is of finite type, x > 0 or x = 0 and so if z; = 0 then x = 0.
Now, fix 1 such that 1 < z1 < L%J since 1 must be an integer. We prove the pattern for
the remaining coordinates by induction. First, by (fiX)1 >0, x2 < 2x1. We have observed that
the coordinates of x do not decrease, therefore z1 < xo. Then 21 < 29 < 221 and so we can
say 9 = o1 + lg where 0 < Iy < z1. Now assume x; = x1 + Zé‘:g [jforall2 <i<p<n
where l; = xz; — 21 and so 0 < [, < [,—1 < --- < I3 by the second result of Lemma
3.13.1. By the same lemma, z, < z,41 < 2z, — 2,—1. Applying the induction hypothesis,
we have @1 + 30,1 < @prr < 20w + YFL,0) — (o1 + 55 0) = @1+ (I k) +
Then xp41 = 1 + (Z?:z lj) + lp+1 where 0 < l,4q < l,. Therefore, z; = 1 + Z;‘:Q l; where

0<l,<---<lI3<ly and so [; is the amount of increase from x;_1 to x; where 2 <i <n. [O

Theorem 3.13.4. Let n > 2, A = kAo, k > 2,m € Z>o. Then max(A) NPT = {A} U {A —
lag — (I — 1) — (Z?ZQ(Z — (1 + 2;22 lj))az) where
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.Oglngln—1§§l4§l3

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives that
Ty = bo - bl for 1 <1< n. Then (bo,bl,...,bn) = (bo,bo —Jll,bo —l‘g,...,bo —:L‘nfl,bo —l‘n).
By definition, the b; > 0 for 0 < i < n. Therefore, the following must be true:

bo >0
bo—wlzo
bo—wgzo
bo —xp—1 >0
bo—.I‘nZO

We have already proven that the coordinates of x never decrease. Therefore, z,, = maxj<j<p{z;}
and so it is sufficient to say that by > x,. We claim that by = [. One can show this using the
same method that is used in the proof of Theorem 3.3.3. Then A = A —lag — (I — z1)aq — (I —
x9)ag — -+ — (I — xp—1)an—1 — (I — zp) . Combining this with our solutions for the z; from

Lemma 3.13.3, we have the pattern given above. O

To better understand this theorem, consider some examples for various values of both k&
and n. We include two examples of k = 2 and prove that our results match those of [18]. For
ease in our future examples, define Xy, = {(x1,...,2y) | Ax > 0,1 <y < L%J} Note that

Xin © Xg,n whenever | < k and Xy, ,, = X1, whenever k is even.

Ezample 3.13.5. D), V(A) = V(2Ao). By Theorem 3.13.4,

maX(QAQ) N P+ = {2/\0} U {2A0—l0¢0 — (l — (:Jcl))oq - (l - (1'1 + 12))062
— (= (1 4+l +13))as — (I — (21 + 2+ 13+ 14)) o
—(l=(r14+l+ls+ls+15))as.

We list the x vectors and corresponding values for [, s, 3,14, and 5 in addition to the resulting

maximal dominant weight in Table 3.48.

Ezample 3.13.6. D\ V(A) = V(2Ao). By Theorem 3.13.4,

max(?Ao) NPT = {2A0} U {2A0 —log — (l — 1'1)041 — (l — (1‘1 + lz))ag
— (l — (xl + 1y + l3))0¢3 — (l — (131 + 1o+ 13+ 14))044
— (l— (acl +l2+l3+l4+l5))a5 — (l— (1'1 +l2+13+l4+l5+l6))046-

We list the x vectors and corresponding values for [, ls, I3, l4, l5, and lg in addition to the resulting

maximal dominant weight in Table 3.49.
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Table 3.48: x vectors and maximal dominant weights for the g = D((f)—module V(2A0)

x vector | [ | lg, 13,104,135 Element of max(2Ag) N P*
(0,0,0,0,0) | 0 0,0,0,0 2Ag
(1,1,1,1,1) | 1 0,0,0,0 2M0 — g
(1,2,2,22) | 2 1,0,0,0 2A0 — 209 —
(1 2 3 3 3) 3 1,1,0,0 2A0 - 30(0 - 20[1 — (g
(1,2,3,4,4) | 4 1,1,1,0 2Ag — 4o — 31 — 200 — 3
(1,2,3,4,5) | 5 1,1,1,1 2Ag — bay — 4oy — 3ag — 203 — oy
Table 3.49: x vectors and maximal dominant weights for the g = Dg)—module V(2A0)
x vector U lo,13,14,15, 16 Element of max(2Ag) NPT
(0,0,0,0,0,0) | O 0,0,0,0,0 2Ap
(1,1,1,1,1,1) | 1 0,0,0,0,0 20 — ap
(1,2,2,2,2,2) | 2 1,0,0,0,0 200 — 209 — 1
(1,2,3,3,3,3) | 3 1,1,0,0,0 2A0 — 3ap — 201 — g
(1,2,3,4,4,4) 4 1,1,1,0,0 2A0 - 4040 — 301 — 2aig — a3
(1,2,3,4,5,5) | 5 1,1,1,1,0 2A0 — 5oy — 4oy — 3ag — 2a3 — ay
(1,2,3,4,5,6) 6 1,1,1,1,1 2A0 - 60&0 —da1 — 40&2 - 30(3 — 204 — as

One can show that our formulation for the maximal dominant weights of V (kAg) correspond
to that of [18] for the case k = 2 for arbitrary n > 2. According to [18], the set of maximal
dominant weights for V(2Ag) is {1 + dynAy — 260 < uw < n}. We run into an issue since
for v = 0 the maximal dominant weight is Ag, not 2Agy, though we propose this is due to a
small generalization error in [18]. To show that this formulation matches ours, first write our
formulation in terms of the fundamental dominant weights, A;. With this conversion, our set

becomes

X = {200} U{2A0 — 1(2M0 — Ay + 6) — (1 — 1)(=2A0 + 2A; — Ay)

—(Z(l +Zl ) AN+ 20N — A1)

n—1

— (1= U+ 3 0)) (Ana + 2801 = 24
j=2

- (l - (1 + i lj))(_Anfl + 2An)
j=2

(1)

Showing these two sets are the same is very similar to how we showed the same for type By,

Ezample 3.13.7. D), V(A) = V(3A¢). By Theorem 3.13.4,

max(?)Ao) NP = {3A0} U {3A0—la0 — (l - (l‘l))al — (l — (I‘l + lg))OQ

89



Table 3.50: x vectors and maximal dominant weights for the g = D((f)—module V(3Ao)

x vector | [ | lg, 13,104,135 Element of max(3Ag) N P*
(0,0,0,0,0) | 0 0,0,0,0 3Ao
(1,1,1,1,1) | 1 0,0,0,0 3Ao — o
(1,2,2,22) | 2 1,0,0,0 3Ag — 209 —
(1 2 3 3 3) 3 1,1,0,0 3A0 - 30(0 - 20[1 — (g
(1,2 3,4,4) 4 1,1,1,0 3A0 - 4@0 — 301 — 2a9 — (0%}
(1,2,3,4,5) | 5 1,1,1,1 3Ag — bag — 4a; — 3ae — 203 — g
Table 3.51: x vectors and maximal dominant weights for the g = Dg)—module V(3A0)
x vector U lo,13,14,15, 16 Element of max(2Ag) NPT
(0,0,0,0,0,0) | O 0,0,0,0,0 3Ao
(1,1,1,1,1,1) | 1 0,0,0,0,0 3Ny — ap
(1,2,2,2,2,2) | 2 1,0,0,0,0 3Ag — 200 — g
(1,2,3,3,3,3) | 3 1,1,0,0,0 3Ag — 3ap — 201 — g
(1,2,3,4,4,4) 4 1,1,1,0,0 3A0 - 4040 — 301 — 2aig — a3
(1,2,3,4,5,5) ) 1,1,1,1,0 3A0 - 5040 - 4041 - 3042 - 20[3 — Q4
(1,2,3,4,5,6) 6 1,1,1,1,1 3A0 - 60&0 —da1 — 40&2 - 30(3 — 204 — as

— (l — (ml + 1+ 13))043 — (l — ($1 + 1o+ 13+ l4))044
— (l — (1’1 +lo+1l3+1y +l5))a5

Recall that the set of x vectors for V' (3Ag) is the same as that for V(2Ap). Then we have the
results listed in Table 3.50.

Ezample 3.13.8. D\ V(A) = V(3Ao). By Theorem 3.13.4,

max(3A0) NPT = {31\0} U {3A0 —log — (l — :Ul)oq — (l — (.T1 + lg))QQ
—(l=(r1+l+i3)as— (- (x1+ 12+ 13+ 1))
— (=@ +l+ils+la+ls))as — (1= (z1+ 12+ 13+ 1+ 15+ ls)) e

Recall that the set of x vectors for V(3Ag) is the same as that for V(2A¢). Then we have the
results listed in Table 3.51.

Ezample 3.13.9. Déz),V(A) = V(4Ap). By Theorem 3.13.4, any element of max(4Aq) N P*
other than 4Ag is of the form

max(4A0) N P+ = {4/\0} U {4/\0—[@0 — (l — (l’l))al - (l - (.’L’l + ZQ))OQ
— (l — (:L'l + 1+ 13))043 — (l — ($1 + 1o+ 13+ 14))054
— (l — (ZL’l +lo+13+ 14+ l5))0¢5

We list the x vectors and corresponding values for [, lo, I3, 4, and [5 in addition to the resulting
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Table 3.52: x vectors and maximal dominant weights for the g = D((f)—module V(4A0)

x vector U | 1o, 13,14, 5 Element of max(4A¢) NPT
(0,0,0,00) | 0 | 0,0,0,0 47,

(1,1,1,1,1) | 1 | 0,0,0,0 4Ag — ap

(1,22,22) | 2 | 1,000 4N — 200 — o
(1,2,33,3) | 3 | 1,1,0,0 4Ag — 3o — 201 — Az
(1,2,344) | 4 | 11,10 4Ny — dag — a1 — 200 — a3
(12345) 5} 1,1,1,1 4A0*50&0*40&1 *30&2*20&3*0[4
(2,2,222) | 2 | 00,00 4Ay — 20

(2,3,333) | 3 | 1,0,0,0 4Ao — 30 — o
(2,34,44) | 4 | 11,00 4Ag — 4oy — 200 —
(2,3,4,5,5) | 5 1,1,1,0 4Ag — Sag — 31 — 209 — a3
(23456) 6 1,1,1,1 4A0—60¢0—40¢1 —30&2—2053—0&4
(2,4,444) | 4 | 20,00 4o — dag — 20
(2,4,555) | 5 | 21,0,0 4Ag — Bag — 3oy — az
(24566) 6 2,1,1,0 4A0 —6a0 —4a1 —2&2 — Q3
(24567) 7 2,1,1,1 4A0—7a0—5a1 —30&2—20&3—(14
(2,4,6,66) | 6 | 2200 4Ag — 6o — 4oy — 209
(24677) 7 22,1,0 4A0*70¢0*5CM1 *30&2*0&3
(24678) 8 2,2,1,1 4A0—8040—6041 —4042 —2043—0&4
(2,4,6,8,8) | 8 2,2,2,0 4Ay — 8ag — 6 — 4ag — 2ai3
(2 4 6 8 9) 9 2,2,2,1 4A0 — 9040 — 7041 — 5042 — 30(3 — Qg
(2,4,6,8,10) | 10 | 2,222 | 4A¢ — 10a — 8y — 6ara — davg — 20y

maximal dominant weight in Table 3.52. Note that since X35 C X4 5 and so we include all x

vectors from the previous n = 5 example.

Example 3.13.10. D§2),V(A) = V(4Ap). By Theorem 3.13.4, any element of max(4Ag) N Pt
other than 4Ag is of the form

max(4Ao) NPt = {41\0} U {4A0 —lag — (l — :131)041 — (l — ($1 + lg))ag
— (l — (1,‘1 + 1y + lg))ag — (l — ($1 + 1o+ 13+ 14))014
—(l=(@m+th+ltlt+il)as—((— (1 +l+l3+la+15+1))as

We list the x vectors and corresponding values for [, ls, I3, l4, l5, and g in addition to the resulting
maximal dominant weight in Table 3.53. Note that since X3¢ C X46 and so we include all x

vectors from the previous n = 6 example.
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Table 3.53: x vectors and maximal dominant weights for the g = Dg)-module V(4A0)

x vector | 1o, 13,14,15,16 Element of max(4Ag) NPT
(0,0,0,0,00) | 0 | 0,0,0,0,0 47,
(1,1,1,1,1,1) | 1 0,0,0,0,0 4Ag — apg
(1,22,2,22) | 2 1,0,0,0,0 4N — 200 — o
(1,2,3,3,3,3) | 3 1,1,0,0,0 4Ag — 3ap — 200 — o
(1,2,34,44) | 4 1,1,1,0,0 4Ng — dag — 3o — 209 — a3
(1,2,34,55) | 5 1,1,1,1,0 4Ag — By — 4o — 3o — 203 — Ay
(1,2,3,4,5,6) 6 1,1,1,1,1 4A0 - 6040 —da1 — 4oy — 30(3 — 204 — a5
(2,2,2,22.2) | 2 0,0,0,0,0 4A¢ — 20
(2,3,3,3,3,3) | 3 1,0,0,0,0 4Ag — 3o — oy
(2,3,4,4,44) | 4 1,1,0,0,0 4N — dag — 201 — o
(2,3,4,5,55) | 5 1,1,1,0,0 4Ag — By — 3o — 209 — a3
(2,3,4,5,6,6) 6 1,1,1,1.0 4Ag — 6ag — 4oy — 3ag — 23 — g
(2,3,4,5,6,7) 7 1,1,1,1,1 4A0 — 70(0 — 5041 — 40[2 - 30&3 - 20&4 — Q5
(2,4,4,4.44) | 4 2,0,0,0,0 4Ag — dap — 201
(2,4,5,5,55) | 5 2,1,0,0,0 4N — Bag — 3o — o
(2,4,5,6,6,6) 6 2,1,1,0,0 4A0 - 6040 - 4a1 - 20[2 — Q3
(2,4,5,6,7,7) 7 2,1,1,1,0 4A0 - 70[0 - 50[1 - 30[2 - 20&3 — Oy
(2,4,5,6,7,8) 8 2,1,1,1,1 4A0 - 8040 — 6 — 4oy — 30(3 — 204 — a5
(2,4,6,6,6,6) | 6 2,2,0,0,0 4Ag — Bag — 4oy — 20
(2,4,6,7,7,7) | 7| 221,00 4N — Tag — o — 3as — aig
(2,4,6,7,8,8) 8 2,2,1,1,0 4Ag — 8ag — 6a; — das — 2a3 —
(2,4,6,7,8,9) 9 2,2,1,1,1 4A0 - 9050 - 7041 — dag — 30&3 — 204 — as
(2,4,6,8,8,8) 8 2,2,2,0,0 4Ag — 8ag — 6a; — das — 203
(2,4,6,8,9,9) 9 2,2,2,1,0 4A0 - 9&0 - 7041 — dag — 30&3 — Q4
(2,4,6,8,9,10) | 10 | 2,2,2,1,1 4Ag — 100 — 8a — 6y — davg — 204 — Qg
(2,4,6,8,10,10) 10 2,2,2,2,0 4A0 - 100&0 — 8ap — bag — 40(3 — 20y
(2,4,6,8,10,11) | 11 | 22221 4Ag — 11lag — 9a1 — Tas — Hag — 3au — as
(2,4,6,8,10,12) | 12 | 2,2222 | 4A¢ — 1209 — 100; — 8ary — 6y — dovy — 203
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2
3.14 Type E\”
Let g = Eé2), index set I ={0,1,2,3,4}, and Cartan matrix

2 -1 0 0 O

-1 2 -1 0 O
A=10 -1 2 -2 0
0o -1 2 -1

The defining inequalities are equivalent to

where T = 2b0 — bl,l'g = 3b0 — b2,1‘3 = 2b0 - b3 and T4 = b() - b4. That iS,

;

2(131 — T2 Z 0
—x1+ 219 — 223 >0
—x9 + 213 — T4 >0

—x3 + 274 >0

T <k

Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
bo > max{%, F, 5, w4},

Lemma 3.14.1. The set of solutions to

21‘1 — T2 0
—x1+ 229 — 223 >0
—x9 + 2x3 — X4 >0

—x3 + 214 >0

T <k
18
2
{x=0}U{x = (z1,22,23,24) [ 2< 11 Sk,#%-‘ < 9 < 217, {31’2} <3< 9 — [£17

and [%1 < x4y < 2x3 — 32}

Proof. As stated above, since A is of finite type, x > 0 or x = 0 and so 1 = 0, which implies

93



x = 0, or 1 > 1. Consider the possibility of 1y = 1. Then by (Ax)l > 0, we have x5 < 2.
x9 cannot be 0 as we have observed. If zo = 1, this would force z3 = 0, which leads to a
contradiction as well. Finally, if xo = 2, then x3 = 1, forcing x4 to be 0, another contradiction.
Therefore, z; # 1.

Now, fix x1 such that 2 < x1 < k. First, notice that by (fix)g >0, x3 > % + 5. Combining
this with (folx)4 > 0, we obtain x3 > ”%2 + %. Then 3x3 > 2x5 or %3 > %2 ‘We now can establish
the bounds for x5. By (/ix)l >0, 2o < 2x1. From (fix)g > 0, we have xo > % Since x9

xl—;2a:3"

must be an integer, this is equivalent to x5 > ( . It is a quick calculation to check that

[%2‘/”3] = [%11 + x3. Combining this with our observation above, we obtain xo > [%1 + %1’2.

This implies % > {%11 and so zg > 3{%} as desired. Moving on to the bounds for x3, we
already have the lower bound from our observation; since 3x3 > 2x9 and x3 must be an integer,
we have rz > (%xﬂ From (AX)Q > 0, we obtain 2z3 < 2z9 — 1 and so z3 < P”T_“J since
x3 must be an integer. It is a quick calculation to check that LMT*“J = x9 — [%1 Finally,

we establish the bounds for x4. From (/cix)4 > 0 and the fact that 4 must be an integer, we

3
2

solutions. O

have x4 > ( ] Finally, (AX)g > 0 gives us that x4 < 223 — x9. This describes all possible

Theorem 3.14.2. Let A = kA, k > 2. Then max(A) NPT = {A}U{A — lay — (20 — 1)1 —

(3l — z2)ag — (21 — x3)aeg where

02§:L'1§]€,

Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives
that Tr1 = 2b0 - bl,xg == 3b0 - b2,$3 = 2b0 - bg, and T4 = bg - b4. Then (bo,bl,bg,bg,bzl) =
(bo, 2bg — w1, 3by — 2, 2by — x3,b9 — x4). By definition, the b; > 0 for 0 < ¢ < 4. Therefore, the

following must be true:

bp >0
2bp —x1 >0
3bg —x9 >0
2bg —x3 >0
bo—x4>0

Then by > max{%, %, 5, 24}. Recall that x4 > 5. We also observed in our proof of Lemma

3.14.1 that %} > %2. Finally, we found in the proof of the same lemma that % > {%1 and

so % > %t Then it suffices to say by > z4. Then let | = x4 and we claim that by = .
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Table 3.54: x vectors and maximal dominant weights for the g = Eé2)—m0dule V(2A0)

x vector | [ | Element of max(2Ag) N P
0,0,0,0) | 0 280

(2,3,2,1) | 1 92A0 — ag

(2,4,3,2) 2 2A0 - 2a0 - 2a1 — 2&2 — Q3

Table 3.55: x vectors and maximal dominant weights for the g = Eé2)—module V(3Ao)

x vector | [ | Element of max(3Ag) N P+
(0,0,0,0) | 0 37,

(2,3,2,1) 1 3A0 — Q

(2,4,3,2) | 2 | 3Ap — 2a9 — 2001 — 202 — 3
(3,6,4,2) 2 3A0 - 20&0 — 1

This can be shown using the same method that is used in the proof of Theorem 3.3.3. Then
A=A—-lag— (2l — z1)a; — (3l — x2)ava — (21 — x3)arg — (I — x4)ay. Combining this with our

solutions for the z; from Lemma 3.14.1, we have the pattern given above. ]

To better understand this theorem, consider some examples for various values of k. For ease
in our future examples, define X, = {(x1, z2, x3, x4) | Ax > 0,2 < x; < k}. Note that X; C X

whenever | < k.

Ezample 3.14.3. EéQ), V(A) = V(2Ag). By Theorem 3.14.2, any element of max(2A) NPT other
than 2Ag is of the form

2A0 — lOzo - (2l - 1:1)041 - (3l - :L’Q)az - (2l - 373)(13.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.54.

Ezample 3.14.4. Eé2), V(A) = V(3Ag). By Theorem 3.14.2, an element of max(3Ag) NPT other
than 3Ag is of the form

3A0 — lOéo — (2l — xl)al — (3l — .%'2)0(2 — (2[ - 1'3)043.

We list the x vectors and corresponding value for / in addition to the resulting maximal dominant
weight in Table 3.55.

Ezample 3.14.5. Eéz), V(A) = V(4A0). By Theorem 3.14.2, any element of max(4A¢) NPT other
than 4Ag is of the form

4A0 — lOéo — (2l — 1'1)041 — (3l — .%'2)@2 — <2l - 1’3)@3.

We list the x vectors and corresponding value for / in addition to the resulting maximal dominant
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Table 3.56: x vectors and maximal dominant weights for the g = Eé2)—m0dule V(4Ao)

x vector | [ | Element of max(4Ag) NPT
(0,0,0,0) | 0 e

(2,3,2,1) 1 4A0 — Qg

(2,4,3,2) 2 4A0 - 2a0 - 2a1 — 2&2 — Q3
(3,6,4,2) 2 4A0 - 20[0 — ]
(4,6,4,2) | 2 4Ag — 20

(4,7,5,3) 3 4A0 - 30[0 - 2&1 - 20&2 — (3
(4,8,6,3) 3 4A0 — 3040 — 2041 — (9
(4,8,6,4) | 4 | 4Ag — dag — 4oy — dag — 2a3

weight in Table 3.56. Notice that we can collect the same x vectors from the case V' (3Ay) since,

as we said earlier, X3 C Xj.

3.15 Type D

Let g = Df’), index set I = {0, 1,2}, and Cartan matrix

2 -1 0
A=1-1 2 =3
o -1 2
The defining inequalities are equivalent to
Ax >0
I § k

where I = 2b0 — b1 and T = bo — bg. That iS,

201 — 3z >0
—z1+2x9 >0

T S k
Recall that we are looking for the nontrivial solutions, x > 0. Note as well that this means
b() Z % and b() Z ZI9.

Lemma 3.15.1. The set of solutions to

21‘1 — 31‘2 Z 0
—x1+2x9 >0

I Sk
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18

2
{x:O}U{x:(azl,mg) |2 <z <k, {%W < z9 < {?J}
Proof. As stated earlier, since A is of finite type, x > 0 or x = 0 and so 1 = 0, which implies
x =0, or 1 > 1. However, by (fix)l > 0 and (/ix)g >0, 4 <g9 < %xl and since xo must be
an integer, x7 # 1.
Now, fix x1 such that 2 < z; < k. Then by (/ix)l >0, 20 < %xl and by (fix)g > 0,29 >
T 2z,

%1‘1. Since xo must be an integer, we have [71 < x9 < LTJ This describes all possible

solutions. O

Theorem 3.15.2. Let A = kAo, k > 2. Then max(A) NPt = {A}U{A —lag — (2l — z1)q

where

o 2 S I S ]{ 5

e [ <i< 3]
Proof. Most of this proof is identical to that of Theorem 3.3.3. In this case, the map gives
that 21 = 2bg — b1 and 9 = by — by. Then (bo,bl, bg) = (b0,2b0 —x1,by — .732). Then if we can
determine bg, we will have the set of all maximal dominant weights since we have already found

the pattern for x; and x9. By definition, the b; > 0 for 0 < ¢ < 2. Therefore, the following must

be true:

bp >0
2()0—1‘120
b0*$220

Then by > % and by > x2. However, from (folx)g > 0, we have x5 > 5. Then it suffices to say
bg > x3. Then let | = x2 and so by > [. We claim that by = [. This can be shown using the same
method that is used in the proof of Theorem 3.3.3. Then A = A —lag — (2l —z1)a; — (I — z2) .
Combining this with our solutions for the z; from Lemma 3.15.1, we have the pattern given

above. O

To better understand this theorem, consider some examples for various values of k£ . For
ease in our future examples, define X = {(z1,x2) | A > 0,2 < z; < k}. Note that X; C X},
whenever [ < k.

Ezample 3.15.3. DEP,V(A) = V(2Ag). By Theorem 3.15.2, any element of max(2Aq) N P*
other than 2Ag is of the form
2A0 — lag — (21 — 1) 1.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.57.
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Table 3.57: x vectors and maximal dominant weights for the g = Df')—module V(2A0)

x vector | [ | Element of max(2Ag) N P
00) 10 2h0
(2,1) 1 2A0 —

Table 3.58: x vectors and maximal dominant weights for the g = Dflg)—module V(3Ao)

x vector | [ | Element of max(3Ag) NPT
0,0) |0 38,
(2,1) 1 3A0 —
(3,2) 2 3A0 — 20&0 — ]

Ezample 3.15.4. Df), V(A) = V(3Ag). By Theorem 3.15.2, an element of max(3Ag) N P+ other
than 3Ag is of the form
3A0 - lao - (2l - xl)al.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.58.

Ezample 3.15.5. Df’),V(A) = V(4Ag). By Theorem 3.15.2, any element of max(4Aq) N P*
other than 4Ag is of the form
4A0 — lao — (21 — .%'1)041.

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.59. Notice that we can collect the same x vectors from the case V(3Ag) since,

as we said earlier, X3 C X}.

Ezample 3.15.6. DY V(A) = V(6Aq). By Theorem 3.15.2, any element of max(6Ag) N P+
other than 6Ag is of the form
6Ao — lag — (21 — x1) .

We list the x vectors and corresponding value for [ in addition to the resulting maximal dominant
weight in Table 3.60.

Table 3.59: x vectors and maximal dominant weights for the g = Dfﬁ—module V(4A0)

x vector | [ | Element of max(4Ag) NPT
00) 10 1A,
(2,1) 1 4A0 —
(3,2) 2 4A0 — 2a0 — ]
(4,2) 2 4A0 - 20[0
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Table 3.60: x vectors and maximal dominant weights for the g = Dflg)—module V(6A0)

x vector | [ | Element of max(6Ag) NPT

(0,00 |0 670

( 5 ) 1 6A0 — Q)

(3,2) 2 6A0 — 20&0 — ]

(4,2) 2 6A0 - 2040

(5,3) 3 6A0 — 30&0 — ]

6,3) |3 6A0 — 3a

(6,4) 4 6A0 — 40(0 — 2041
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Chapter 4

Crystal Bases

4.1 Introduction

In Chapter 5, we investigate the dimension of the weight spaces corresponding to some of the
maximal dominant weights we found in Chapter 3. To do so, we introduce a combinatorial
object called a crystal base. We first need the notion of a quantum deformation of the universal
enveloping algebra, U, (g), which is known as a quantum group.

In the following, we let ¢ be an indeterminate such that ¢ # 1 for any nonzero m. A
g-analog is a way to generalize aspects of mathematics such that as the classical limit of ¢
approaches 1, we obtain the original aspect. For example, a g-integer, denoted [n], is defined

to be [n], = L=L. We can check that as ¢ — 1, this expression becomes n.

q9—q
) qn o qfn ) nqnfl 4 annfl
lim ———— = lim
g1 q—q ! g—1 14+q2
_ 2n
2
=n

The first step above is obtained by applying L’Hopital’s rule. Note that we obtain the following;:

mq:l
9 :q”—fgz(q—qﬂxq+q“):q+q4
T g—q! q—q!
3 -3 -1 2 —2
q° —q q—q )¢ +1+g¢q -
[3](1: _1:( )( — ):q2+1+q2
q—q q—q
n__ ,—n i
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A g-factorial is defined as follows:

[n]q! = [n]g[n — 1]gln — 2]4 - - - [2]4[1]4 for all n € Zs

[m]q!
[n]q![m—nlq!
For convenience, we remind the reader of a universal enveloping algebra, which was men-

The g-binomial coefficient is then [(")]q =

tioned in Chapter 2, before introducing the quantum group.

Definition 4.1.1. A wuniversal enveloping algebra of a Lie algebra g is a pair (U(g),j) where
U(g) is an associative algebra with unity over C and j : g — U(g) is a linear map satisfying
J([z,y]) = j(x)j(y) —j(y)j(z) for all x,y € g. If A is any other associative algebra with a linear
map ¢ satisfying ¢([z,y]) = ¢(x)od(y) — d(y)@(x) for all x,y € g then there exists a unique
homomorphism of algebras 1 : U(g) — A such that 1) o j = ¢.

Again, we work with a realization, (h,II,ITIV) of an affine Cartan matrix A, corresponding
weight lattice P, and dual weight lattice PV. Let D = diag(s; € Z,|i € I) be the diagonal

matrix making DA symmetric. Then the quantum deformation of U(g) is defined as follows.

Definition 4.1.2. The quantum group, U,(g), is the associative algebra over C(g) with unity
generated by the elements e;, f;, and ¢" where i € I and h € PV and satisfying the following

relations:
o " =1,¢"¢" =g"",
o ¢"eig " = gy,

" figh =gy,

qi—g "
eifi — fiei = 0i= — 5
T

o« g DM e " ejek = 0 for i # 5,

1—a;; —a;; 1—a;;—k . )

o ol (DRI g f; T fE =0 for i #
where h,h' € PV,i,5 €I, and ¢q; = ¢*.

As in the case of an affine Lie algebra, we can discuss weight modules of U, (g). A Uy(g)-
module V7 is called a weight module if it has a weight space decomposition V¢ = @,ecpV/!
where VI = {v € V7 | ¢"v = ¢*My for all h € PV}. If V) # 0, then p is called a weight of V4,
V! the corresponding weight space, dimV,{ the multiplicity of p, and 0 # u € V! is a p-weight
vector.

A weight module V() is called a highest weight module with highest weight A € P if there

exists a nonzero vy € V9(\) such that

o VI(A) =Uy(g) - vx,
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e ¢ -vy=0foralliel,
o h-vy =g My, forall h e PV.

In this case, vy is called the highest weight vector.
We are interested in U, (g) highest weight modules because of the following theorem from [19]:

Theorem 4.1.3. For A € PT, let VI(\) (V(N)) be the irreducible highest weight Uy(g) (respec-
tively U(g) ) module with highest weight A and highest weight vector vy. Then

ch(VE(A)) = ch(V(N))

This implies that for every p € P, dimV4(\), =dimV ()),. Since the representation theory
of U(g) is the same as that of g, we have dimV?(X), = V(\), where V(X) is considered as a
g-module. Crystal bases, which we will introduce shortly, are combinatorial objects that can
be used to determine the dimensions of weight spaces in the case of VI(\). As a result, we will

know the corresponding dimensions in the case of the g-module V().

4.2 Crystal Bases

The notion of a crystal basis was introduced by Kashiwara [17]. First, let V? = @,cpVy! be an
integrable U, (g)-module such that the dimensions of all the weight spaces are finite and there
exist A1, ..., Ay € P such that the set of all weights of V' is contained within D(A1)U---UD(As)
where D(A) = {p € P | p < A}. Then for each i € I, every vector v € V) can be written in the
form

v =1+ fi(l)vl +-- 4+ fi(N)UN

fk
[Klg; !

where N is a nonnegative integer, vy € V)\qu,miﬂ ker e; for all k=0,1,..., N, and fi(k)

The Kashiwara operators & and f; for i € I on V7 are defined by

N
- k—1
ew=y "V
k=1
N
r k+1
fiv= Zfl( * )'Uk
k=0
They act on the weight spaces of V7 in the following way:

éiV/\q C V)?—{-og

szAq C V)?fai
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Consider the principal ideal domain Ay with C(q) its fraction field:

Ao = {ig l9(q), h(q) € Clg], h(0) # 0}-

Then we have

Definition 4.2.1. [5] Let V¢ be an integrable U, (g)-module. A free Ag-submodule £ of V¢ is

called a crystal lattice if
e L generates V7 as a vector space over C(q)
o L =@)\cpLly where Ly =LN V)f] forall A e P
e GLC L, fiLCcLforallicl
With the notion of a crystal lattice, we can now present the definition of a crystal basis.

Definition 4.2.2. [5] A crystal basis or crystal base of an integrable U,(g)-module V7 is a
pair (£, B) such that

e [ is a crystal lattice of V¢

e Bisa C-basis of L/qL = C®y, L

B = UepBy where By = BN (Lx/qL))

&B c BU{0}, fiBC BU{0} foralli e I

for any b, € B and i € I, we have f;b = ' if and only if b = &b’

To each crystal base we can associate a directed graph. We take B as the set of vertices and

we define I-colored arrows on B by
b2 ¥ if and only if f;b =¥/

The resulting oriented graph with coloring [ is called the crystal graph of V4. This graph allows
us to determine the multiplicities of the maximal dominant weights we found in Chapter 3,

because of the following theorem.

Theorem 4.2.3. [5] Let V¢ be an integrable Uy(g)-module and let (L,B) be a crystal basis of
V4. Then for all A € P,
multA = #B)

To determine the multiplicity of each A\ € max(kAg) N PT, we need only know the number
of elements in By. In order to determine the crystal graph B(kAp), we need to define perfect
crystals, which are used in the path realization of B(kAy).
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To do so, we introduce an alternative way to view the crystal graph, B. We need several

more maps.

wt : B — P so that b € By maps to its corresponding weight, that is, wt(b) = A
g; : B — Z defined by &;(b) = max{k > 0| &b € B} for all i € I
¢; : B— Z defined by ¢;(b) = max{k >0 fFbe B} foralli e I

Definition 4.2.4. Given an (affine) Cartan matrix A with corresponding IT, 1TV, P, PV, a crystal
is a set B together with the maps

wt:B— P
&, fi : B— BU{0}
€i,¢iZB—>ZU{—OO}

for all ¢ € I satisfying the following properties:
o 0;(b) =¢€;(b) + (hi,wt(b)) for all i € I,
o wt(e;b) =wtb + a if é;b € B,
o wt(fib) =wtb — ay if fib € B,
o ci(€;b) =¢;(b) — 1,¢i(é;b) = ¢i(b) + 1 if &;b € B,
o ci(fib) = ei(b) +1,¢i(fib) = ¢i(b) — 1 if fib € B,
o f;b="V if and only if b= &b for b,V € B,i € I,
o if ¢;(b) = —oo for b € B, then &b = fib = 0.

Then we can refer to B as simply a U, (g)-crystal. In this case, By = {b € B | wt(b) = A} so
that B = UyepB.
Later, we will need to consider the tensor product of crystals and the action of the Kashiwara

operators on such an object.

Definition 4.2.5. The tensor product, By ® By, of crystals By and By is the set B; x By with
crystal structure defined by

o wt(by ® ba) =wt(b1)+wt(ba),
° 8i(b1 ® bg) = max(si(bl),ei(bQ) — <hi,Wt(b1)>,

® ¢;(b1 ® ba) = max(e;(b2), ¢i(b1) + (hi,wt(b2)),
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éib ®b if ib ZEib
o cilby @ by) = 1 @by if ¢(b1) (2)7

b1 ® &by if ¢;(b1) < €i(b2)

fibl ® by if (bz(bl) > €i(b2)

° fz‘(bl ® be) = - . .
b ® fz‘bz if d’z‘(bl) < e’;‘i(bg)
We also consider maps between crystals.

Definition 4.2.6. [5] Let Bi, B be crystals. A crystal morphism ¥ : By — Ba is a map
U : By U{0} — By U {0} such that:

e U(0)=0,

o if b€ By and ¥(b) € By, then wt(V(b)) =wt(b),e;(¥(b)) = €;(b), and ¢;(¥ (b)) = ¢;(b) for
alli e[,

o if b1 € By, U(b), (V) € By and fib =1V, then f;¥(b) = U(¥) and () = & (V) for all
iel.

A crystal morphism is called an isomorphism if it is a bijection from B; U {0} to B2 U {0}.

4.3 Perfect Crystals

Consider the subalgebra of U, (g) generated by e;, f;, qzh ‘,and q; hi for i € I, denoted Uy (g). Let
P = Zho®Zh\®---®Zh, and h = (C®ZFV. We consider the o; and A; as linear functionals on
b and define P = ZAg®ZA1 ® - - - B ZA,,. The elements of P are called the classical weights and
L{é(g) is the quantum group associated with A,II, 11V, P and P’ We also consider the classical
dominant weights, P = {Ae P | Xh;) >0forallieI}. A classical dominant weight has level
[ >0if Ac) = 1.

We can define a finite dimensional U, (g)-module, V9, as we did for U,(g)-modules. The
corresponding crystal B is called a classical crystal. Given an element b of a classical crystal B,

we define
e(b) = Zsi(b)Ai
p(b) = Z 9i(b)Ai

Notice that Wt(b) = ¢(b) — £(b). Finally, for | € Zg, let P, ={A € P' | (¢,\) =1}
We now define perfect crystals, which are used to study the path realizations.

Definition 4.3.1. [14], [15] B is a perfect crystal of level [ if it satisfies the following;:

e there exists a finite dimensional U, (g)-module with crystal basis B,
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e B ® B is connected,

e there exists a classical weight Ao such that wt(B) C Ao + 3_, . Z<ooi with #(B),) = 1,
e for any b € B, we have (c,&(b)) >,

e for each \ € F;r there exist unique vectors b* € B and by € B such that ¢(b*) = A = ¢(by).

Given a perfect crystal B, define B™" = {b € B | {(c,e(b)) = I}, making the maps ¢, ¢ :
Bmin ?;r bijections.
We include an example of a perfect crystal, obtained via SageMath [22], in Figure 4.1. Recall

the edge color i corresponds to the action of fz on an element b € B.

4.4 Path Realizations

We now have all the notions required to explore the realization of the U/, (g)-crystal B(\). First,
we fix our level I > 0 and let B be a perfect crystal of level I. It is known [14], [15] that for any

AE F;r, there exists a unique crystal isomorphism
U : B(A) — B(e(by)) ® B given by vy = ve,) @ by
where by is the unique vector in B such that ¢(by) = A\. We set
Ao = A Apg1 = €(by,), bo = bx, bry1 = by,
Then we obtain a sequence
Pr=k)hepg =" Qb ®bec---2 BRBR B,

called the A-ground state path.

Example 4.4.1. In the perfect crystal in Figure 4.1, by = and e(bg) = 2A;. Then
by = . and e(b1) = 2Ap. Then the 2Ap-ground state path is

cel1|1|e|I]|T]e|1]1]e|T]|T]

A A-path in B is a sequence

P= Py =""®@Pp2®@p1®Po

such that p; € B for all k and p; = b; for all j > 0. Let P(X) be the set of all A-paths. Let
B(\) be the crystal associated with V() with highest weight vector vy. We use the following
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Figure 4.1: The Bél) perfect crystal of level 2.
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important fact [14], [15], [5] to realize B(A):

B(A\) = P(N)
U PA=""-®by®b ®by

We use the tensor product rule to determine the edges in the corresponding crystal graph.

We give an example in Figure 4.2 of the part of the beginning of the path realization P(2A¢)
in the case B(2Ag) using the perfect crystal B from Figure 4.1. Because of space constraints,
we only include edges and vertices that lead to maximal dominant weights. Notice that the
weight of a particular path in this path realization is 2Ag — 25’20 b;a;; where b; is the number
of i-arrows required to arrive at the path from the ground state path. This is due to the fact
that the arrows are the action of f; and wt(f;b) =wt(b) — ;. We would like to determine the
weight of any path p for any g without looking at a crystal graph in this way.
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Figure 4.2: Part of the path realization of the Ué(Bél))—crystal, B(2Ao).
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To determine the affine weight of a path p within P(\), we need to introduce another con-
cept. Given a finite dimension U, (g)-module V¢ with crystal basis (£, B), we have the following

definition.

Definition 4.4.2. [14], [15], [5] An energy function on B is a Z-valued function H : BB — Z

satisfying the following conditions:

H(by@by)  iti#0
H(éi(by @ b)) = § H(by @bg) + 1 if i =0,¢0(b1) > eo(ba)
H(by ®@bg) =1 ifi=0,¢0(b1) < eo(b2)

foralli € I, by ® by € B® B with éi(b1®bg)€B®B.

Then the affine weight of p is given by the formula [14], [15]

wt(p) = A+ Y _(Wipy, — wiby)
k=0

_<Z(/€ + 1)(H(Pr+1 ® px) — H(bks1 ® bk)))(5,
k=0

where wt denotes the classical weight. This formula can be used to verify the weight of a given
path. Our goal is to use it to determine the paths corresponding to a specific maximal dominant
weight. Some of the paths listed in Chapter 5 are found using this formula, while others were
found using SageMath [22].
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Chapter 5

Weight Multiplicities

5.1 Introduction

In this chapter, we collect results for some multiplicities of the maximal dominant weights we
found in Chapter 3 of the g-module V' (kAg) for specific affine Lie algebras g. We begin by
including the results in [7], which are found using extended Young diagrams. We then include
the perfect crystal, from [13] required to produce the path realization for V(kAg) in types
B,Sl), 07(11)7 and Dg). The tables of multiplicities for maximal dominant weights were produced
using SageMath [22].

Note that kAg is a dominant integral weight of level k. As discussed in Chapter 4, the
corresponding crystal, B(kA) is isomorphic to a semi-infinite tensor product of perfect crystals
of level k, - - - ® B, ® By, ® By.. In this isomorphism, the highest weight vector vy, is mapped to
the path - - - ® by ® by ® by where each b; € B = {b € By, | e(b) = k} is given by the following:

Ao = kAo bo = by,
Aj41 =¢€(by;)  bjt1 =10by;y,

where b is the unique vector in B such that ¢(by) = A and ¢, e : BPi" — F? are the bijections
defined in Chapter 4. We will also need the maps é&;, f; : By — BU{0},¢i,¢; : By, — Z, and
wt : B, — P. Recall as well that the affine weight of a path p € P(kAy) is given by the formula

wi(p) = ko + 3 (WElp;) — wi(by)
§=0
(6 + D (H@i1 ©5) — Hlbjr ©b7))ag")s
=0

(2)

o5, » Which is not discussed here.

Notice that ag = 1 in all types except A
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5.2 Type A,(ll)

The multiplicities of maximal dominant weights of the form {kAg— v |1 <1 < L%J} where
yi=lag+ (I =1ar + (I =2)ag + -+ a1+ apyry—i41 + -+ (= 2)ap—1 + (Il — 1)y, were
studied in [7]. They used extended Young diagrams Y = (-1, —1,—I,...,—1,0,0,...), containing
[ instances of —I, and drew a sequence of k — 1 lattice paths, p1,po,...,pr_1. The sequence was
drawn “from the lower left to the upper right corner of the square, moving only up and to
the right in such a way that for each color, the number of colored boxes of that same color
below p; is greater than or equal to the number of colored boxes of that same color below p;_1”
citeJayneMisra. They define tg for 4 > 2 to be the number of j-colored boxes between p;_; and

pi—o. They have the following rules to deem a sequence of lattice paths admissible.
e The first path, p;, cannot not cross the diagonal y = x —[.
e For every i such that 3 <i <k —1,
—d <min{el_ 1 i~ - Xih )

. j j—1 j—2 1 0 . j j+1 42
—forj >0, <t <" <. <t} <tlandfor j < 0,8 <¢7 <7<
o<t

IN

Then they define 77‘7 to be the set of admissible sequences of (k — 1) paths in an [ X [ square.

Theorem 5.2.1. [7] Consider the mazimal dominant weights kAo — v € max(kAg) N PT,
where 1 <1 < VLT_IJ The multiplicity of kAo — v, in V(kAg) is equal to |7;k|

Further study has been done for the multiplicities of other maximal dominant weights in

this type, see [8].

5.3 Type B’
In this case [13],

B = {(x1,...,%n, %0, Tm, T;1, - - - , X7) c 7" x {0,1} | zp =0 or 1,

n n
xi, x; > 0,0 +in + Zx;-: k}.
i=1 i=1

Given an element b = (x1,...,Zpn, To, Tn, ..., 27) € By, the actions of the Kashiwara operators
€i, ﬁ for i =0,1,...,n are defined as follows:
~ (1,20 —1,23,..., 25,27+ 1) if g > a5
éo(b) = _
(1 — L@o,...,25, 25+ L2y) if oo <23
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xl,...,xi—i—l,xiﬂ—1,...,3:T) ifxi+1>a:l-+—1 for 1<i<m—1

T, Tyt Ly =1, zp) i xig <oy
T1,..., T, 20+ L ag—1,...,27) ifxg=0

x1,...,xn+ 1,20 —Lop,...,2y) ifag=1

r1, 22+ 1,3, 25,27 — 1) if 29 > 25

r1,..r— Lwga + 1,00 07) i w2 oy

N for1<i<n-1
$1,...,xm—1,$§+1,...,$T) 1f.’17i+1<1?m

o —Lxog+1,25,...,27) ifzg=0

(

(

(

(

(

(1 + 1L @0,... 25,25 — Lizg) if 2o <23
(21, .

(

(x1,.

(21, .

T1,...,Tn, 20— Lag+1,...,27) ifzg=1

We also define the maps &;, ¢; : By — Z. We use the notation that (y)4 = vy ity = 0'
0 ify<oO
e0(b) = 1 + (w2 — x5) +
¢0(b) = o7+ (x5 — x2)+
ei(b) = o7 + (wir1 — 2777)+
Gi(b) = zi + (777 — Ti1)+
en(b) = 25 + 0
én(b) = 225, + 0

where 1 < ¢ <n — 1. Then we have
) n
B ={(z1,...,2n,0,2p,...,22,27) € 7" x {0} | 1,z > 0,21 +xT+2in =k}
i=2

n
U{(z1,...,zn, 1, 2p, ..., T2, 27) € 7 x {1} | 21,2 > 07$1+xT+QZ$i =k}
=2

So the kAp-ground state path is
- ®(k,0,...,00®(0,...,0,k) ® (k,0,...,0)®(0,...,0,k)

which we can represent with tableaux, as in Chapter 4. In this case, if z; = j, then we have j
boxes colored i and similar for x;.

Finally, we need the formula for the energy function H : By ® By, — Z in this case. Given
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Table 5.1: Elements of max(2A¢) NPT and their corresponding multiplicities and paths for the

Bél)—module V(2A0).

2 | e[ e|T]T]e[1][1]e[T]|T]

280 — ag | ot e|T]T]e[1]1]e]2]T]

2Mo — o — az — ag | e[ e|T|T]e[1]1]e[0]T]
oMo — 200 — a1 —2as—ay | 3 | @ L[]e[T[T]e[1]3]e[2]0]
cel1]1]e|T|T]e|1]2]|e[3]0]
cel1]1]el2|T]e[1]3]|e]0]T]

2Mo—2a0 203 —205 | 3 | - @L[te[T[T]e[1]1]e[1]T]
cef1]1]e[T]T]el[1]1]e]2]2]
cef1]1]e[T]T]e[1]1]e]3]3]

b, b e Bk,

where

Hb®b)=max({6;(b@b),0;(bob) |1<j<n-1}

{nj(0@V),m(beV) [1<j<n—1})

J
;b b) = (a7 — )
J
mi(b@b) = (ag — af) + (2] — )

Nb@Y) = (2] —a) + (x; — %)

The reader can verify the results in Table 5.1 by finding paths corresponding to each maximal

dominant weight in Figure 4.2.
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Table 5.2: Elements of max(2A) NPT and their corresponding multiplicities and paths for the

il)—module V(2A0).

= = = [ [ < [= [ [[o |i= | [i= i | fien ] i< |
[— [a\] (@) (o] (e < (o] [xp] (@) — [a\] [xp) <
IV ¥ [I®¥® & /I’ ® ¥ |I®& & & ®
— — — (ap] a [ap) [xp] (A ™ — — — —
=1 =][=1= === == |=]]=]]~]
. RIVWI¥[I®¥® & /I’ ® ¥B|I®& & ® ®
cma |+ | |+ |+ | | |+ |+ |+ |+ | | [+
A [— [— [— [— [— [a\| [— [— aq [— [— [— | [l—
RIVWI¥[I®¥ & /I’ ¥ ¥B|I®& & & ®
— — — — — — — — — — — — —
=1 =][=1==[=]= == |=]]=]~]
IV I¥I®¥ & /I’ ¥ ¥B|I®& & ® K&
=
= — — — ™ o™ <t
=
N
= _
7 €| 7 g |
_
= o & | g
5 J| N o~ N
g sl S _
o= o N i [\l
gl <| L] 3| 3 | 3
S| N = 1] g o
| I | :
i N =) 3
g | 3 N
& 1 _
= s - =
< [a\]
(o]
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Table 5.3: Elements of max(3A) N PT and their corresponding multiplicities and paths for the Bél) -module V' (3Ay).

f— | = ||l f— =] = =] =] [— ||l [— e | [l
(=N l=Nll=N == Rl =Rl R cRl =R e E=R k=R =]
|+ [} [a) [\ (v o — [ ™ [} [ — [} ™
X IV |I®|I® ¥§& I & ®|® |0 |0 ® &
— — — o [a] o — — — — — — — —
— — — — — — — — — — — — — —
— — — — — — — — — — — — — —

. XY |I® |0 ¥& @ & & ®|® |0 |0 ® &

ma |+ [+ |+ | | [+ |+ |+~ |+ | |+ |+ | |

A |+ [+ |+ | | [+ |+ |+~ |+ | |+ |+ | |
[— [— [— [— [— [aN] [— [— [— [— [— [— [— [—
X I®|I® |0 ¥& & & ®|® |0 |0 ® &
— — — — — — — — — — — — — —
— — — — — — — — — — — — — —
— — — — — — — — — — — — — —
X I®|I® |0 ¥& & & ®|® |0 |0 ® &

=

= — — — (2] el — — o™

=

- )

g i g g

e -

Wc gl o N S )

t & | N

3 sl gl S gl &

il s 1| 1] s ) &

272 o] g I | s

m RCH g N JH ol ™

< ol N | = _

g < 2«

R _ 2 < =

X RCH I < o) <

< < (ap) [xp]

= 3
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5.4 Type C’,gl)

In this case [13],

n n
By = {(z1,. .. T, T, T, - - -, 1) € L2 | xi,x;ZO,Zm—I—ngg 2k,

i=1 =1

n n
Z:C,- +Zx{ € 27Z}.
i=1 i=1

.,x7) € By, define s(b) = >, ;+ i, z7. The actions

Given an element b = (x1,...,Zy, Tq, . .
,n are defined as follows:

of the Kashiwara operators é;, fl fori=0,1,...

(x1 —2,22,...,25,27) if &1 > a7+ 2
eo(b) =< (z1 — L,29,..., 25,07+ 1) ifz; =a27+1
(x1,22,...,05,27 + 2) if &1 <y
T, + 11— 1,0, x7) if za1 > ooy
é:(b) = (@ ' . D LT 1 <i<n—1
(w1, g+ Loy =1, 27) 2 <oy

én(d) = (z1,...,on+Lzg—1,...,27)

(x1 4+ 2,22,...,25,27) if &1 > a7

fob) =< (z1+ Lz9,..., 05,07 — 1) ifz; =271
(1'1,.%'2,...,$§,$T—2) lf.fL‘lS.’IJT—Q

- X1y — L+ 1,000 x7)  if x> a5y

fi(b) = (@ ' o D i Hlofor1<i<n-—1
(xl,...,xm—1,xg—|—1,...,xT) ifl‘i+1<$m

fu®) = (21,... 20 — 1, 27 + L...,z7)

y ify>0
0 ify<0

We also define the maps ;, ¢; : B — Z. We use the notation that (y)+

eo(b) =k — %s(b) +2(z1 — 27)+
Gofb) = k — 55(0) + 2(ag — 1),
ei(b) = z; + (Tip1 — T57)+
$i(b) = m; + (w57 — Tiv1)+
en(b) = o5
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an(b) = Tn

where 1 <4 <n — 1. Then we have

n
BE® = (@1, Ty e2,20) €27 |20 20,3 < k)
=1

Then the kAg-ground state path is

1) o
T(L ). Since our

Again, we can represent paths using tableaux similar to those described in type B
ground state path does not have any entries, we do not color the corresponding tableaux.
Finally, we need the formula for the energy function H : By ® By — Z in this case. Given

b, b e B,

H(b®b') =max({0;(b@),0;(b2b) | 1<j<n}
{nj(o@ V), n;(b@?V) [1<j<n})

where
i-1 1
0;(b@ V) = (wp—af) + 5 (s(t) — (b))
=1
J
0i(b@ b)) = (x) — z1) + 5 (s(b) — s(t))
=1
n(d@ V) = (x7— ) + (2L — z;) + =(s(t)) — 5(b))
=1
J
No@Y) = (a) — @) + (2 — 25) + 5 (s(b) — s(v))
=1
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Table 5.4: Elements of max(2A¢) NPT and their corresponding multiplicities and paths for the
c{P-module V(2Ao).

Maximal Dominant Weight | Mult. Paths
oA ) oo Je] |e] |e] |
2A0—C¥0—OJ1 1 '”®D®D
el Jel| ]

—_

2A0 —

:
i

2A0 — 209 — 201

Table 5.5:  Elements of max(3A¢) NPT and their corresponding multiplicities and paths for the
Cél)—module V(3Ao).

Maximal Dominant Weight | Mult. Paths

34 ) el Jel Jel Jel ]

300 — ap— o | o Jol o[ Jo[1]2]
3A0 — g | ®D®DTDTI%TJ\

3Ag — 200 — 201 P e Je| e

|
o[Jo[J=[Je [ T22]
3Ag — 209 — oy 1 "'®D®D®D® 11112
3Ag — 3ap — 3y 2 ®D®D®‘1|1‘®‘1|2|2|2‘
oo Je| Je| |e[1]1]1]2]2]2]
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Table 5.6: Elements of max(4Ag) NPT and their corresponding multiplicities and paths for the Cél)—module V (4Ao0).

Maximal Dominant Weight | Mult. Paths

1Ag ) el Jel Je] |e] |

4Ny — g — g 1 '®D®D®D® 1]2
thg — o ) el Je| Je] |e[1]1
4Ag — 20 — 201 P ol o |e[1]1]e[2]2]

el Jef |e
4Ay — 209 — q 1 "'®D®D®
4Ay — 3ag — 3ay P INEINE)

47y — 200 . o Je| Je[t]1]1]1
4Ao — 300 — 204 ) e Jo Jeo[1]1]e[1]1]2]2]
o Je| el Je[t]1]1]1]2]2]
4A — dog — day 5 | o ol Jeof Je[1]1]1]1]2]2]2]2]
o Jo| Je[1][1]e[1]1]2]2]2]2]
o Jo| Je[1]1]1]1]e|2][2]2]2]
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Table 5.7: Elements of max(5A0) NPT and their corresponding multiplicities and paths for the Cél)—module V(5A0).

Maximal Dominant Weight | Mult. Paths
5Ag ) ol Je[ Je| [e] ]
5A0 — ag — a1 1 o Jo| Je[ Jo[1]2]
5A0 — ao 1 o Jel Je[ Je[1]1]
5A0 — 200 — 20, 2 o Jel Je[1]1]e[2]2]
ool Je[ el Je[1]1]2]2]
5Aq — 200 — ay . .ol el Je[ Je[1]1]1]2
5A0 — 300 — 3a1 2 ol Jo| Je[1]t]e[1]2]2]2]
ol Je[ Jel Je[1]1]1]2]2]2]
ool el Je[ Je[1]1]1]1]
el Jel Je[i]t]e[1]1]2]2]
el Je[ Je[ Je[1[1]1]1]2]2]
5A¢ — dag — 4oy 3 o Je[ o[ Je[1]1]1]1]2]2]2]2]
el Jel Je[t]1]e[1]1]2]2]2]2]
el Jo| Je[1][1]1]1]e[2]2]2]2]
580 — 5a0 — 5an g | el Jel Jeol Je[n[1]a][1]1]2]2]2]2]2]
el Jeol Je[1]1]e[1]1]1]2]2]2]2]2]
e Je[ Je[i]t]1]1]e[1]2]2]2]2]2]
5A0 — 300 — ! o Jol Je[1[1]1]1]1]2]
ool Je[ Je[1]t]e[1]1]1]2]2]2]
ol el Je[ Je[n]t]1]1]1]2]2]2]

5A0 - 2(10 1

5A¢ — 3ag — 201 2

®

5A0 — 40&0 — 30[1 2
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Table 5.8: Elements of max(2A¢) NPT and their corresponding multiplicities and paths for the
C’él)—module V(2A0).

Maximal Dominant Weight | Mult. Paths
21, 1 o Jo[ Je

2A0 — g — o 1

2/\0 — Q) 1

2A0—20éo—20[1—0[2 2 ®D®D®
2Mg — 200 — 201 2 ol Jo| Je[1

2A0 - 30&0 - 40&1 - 20[2 4

5.5 Type DY

In this case [13],

Given an element b = (x1,...,Zpn, Tn, ..., 27) € By, the actions of the Kashiwara operators €, fz

fort=0,1,..., n are defined as follows:

2o(b) = {(a:17x21,x3 ..... rg, 7+ 1) if 29 > a5
(x1 — 1, za,..., r3, x5+ 1a7) if 29 <y
&i(b) = {(wl ..... i+ Lxig—1,..., ry) if 21 > 2y for1<i<m—2
(x1,..., v+ Lay—1,..., vy) ifzip < wpg
6 1(B) = {(wl ..... Tp1+ 1,2, — 1,27, ..., xz7)  ifa, > 0,25 =0
(x1,..., Tn,on+ 1,z —5—-1,,..., xz7) fz,=0,25>0
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Table 5.9: Elements of max(3A¢) NPT and their corresponding multiplicities and paths for the
C?(,l)—module V(3Ao).

Maximal Dominant Weight | Mult. Paths
30 1 el o[ Jo[ Jof ]

3/\0—040—041 1

3Ay — ap 1

3A072O¢072O&170&2 2 ®D®D®

30 — 200 — 20, 2 e Je[ Je[t]1]e[2]2]
- o[ Je[Je[JeN L]
3Ag — 3ag — 4o — 200 5 e ® ® ®D®’1|1|2|2|3|3‘

e[2][2|e[1]1]3]3]

(2[2]e[1]1]1]2]3]3]

3Ao — dag — 5ay — 2as 5 o Jol Je
o |o| |eo[1]2]e[1]1]2]2]3]3]
o Jo| Jo[1]1]e[1]2]2]2]3]3]
col Je[1]1]e]2]2]e[1]2]3]3]
el Jel Je[1]1][1]2]e[2]2]3]3]
370 — 3a0 — 3a1 — as 3 ~e o Je[ Je[1]1]1]2]2]3]
el Je[ Je[1]2]e[1]1]2]3]
~o Jo Je[1]1]e[1]2]2]3]
3A0 — 3a — 3au 2 o Je[ Je[1]1]e[1]2]2]2]

~el Je[ Je[ Je[1]1]1]2]2]2]

3A0—2a0—a1 1 e ® ®D®D®Mﬂ
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Table 5.10: Elements of max(2A) N PT and their corresponding multiplicities for the C’il)—

module V(2Ay).

Maximal Dominant Weight | Multiplicity
2A 1
2A0 —Qp — 1 1
2A0 — 2040 — 3051 — 2052 — Qa3 3
2A0 — 3040 — 4041 — 2042 — Q3 9
2A0 — Q) 1
2A0 — 2(1() — 2041 — Q9 2
2A0 — 29 — 201 2
2AQ - 40&0 - 60[1 - 40[2 - 20[3 10
2A0 - 30(0 - 40(1 - 20[2 4

Table 5.11: Elements of max(3Ap) N PT and their corresponding multiplicities for the C’il)—
module V(3Ap).

Maximal Dominant Weight | Multiplicity
3Ao 1
3A0 — oy — (1
3A0 — 2040 — 3051 — 20&2 — Q3
3A0 — 3040 — 4041 — 2042 — Q3
3A0 — Q)
3A0 - 2(10 — 2041 — Q9
3Ay — 29 — 201
3AQ - 40&0 - 60[1 - 40[2 - 20[3 16

NN =S| W —

3A0 - 30(0 - 40(1 - 20[2 )
3A0 — 40&0 — 5041 — 20&2 5
3A0 — 3&0 — 3&1 — Q9 3
3A0 — 5040 — 7041 — 4042 — Q3 12
3A0 — 3@0 — 3@1 2

3A0 - 2040 — ] 1

3Ag — 3ag — 31 — 209 — a3 4
3A0 — 6040 - 9@1 - 60[2 - 30&3 23
3A0 - 50&0 - 70[1 - 40[2 - 20&3 18
3A0 - 40&0 — 50&1 - 20&2 — Qa3 7
3A0 — 4040 — 5&1 — 3&2 — Qa3 10
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Table 5.12: Elements of max(4Ag) N PT and their corresponding multiplicities for the C’il)—
module V(4A).

Maximal Dominant Weight Multiplicity

4Ao 1

4A0 —Qp — (1 1

4A0 — 2050 — 30(1 — 20&2 — Qa3 3

4A0 — 3040 — 4051 — 2042 — Q3 6

4A0 — Q) 1

4A0 — 20&0 — 2&1 — Q9 2

4A0 — 20[() — 2041 2

4Ay — 4oy — 60rp — 4oy — 203 17
4A0 - 30(0 - 40(1 - 20[2
4A0 - 40(0 - 50(1 - 20[2

4A0 - 30&0 - 30&1 — 3

4A0 — 50&0 — 70(1 — 40(2 — Q3 17

4A0 — 3@0 — 3041 2

4A0 - 2040 — ] 1

4A0 - 3040 - 3041 - 2042 — Qa3 4

4Ay — 6y — 9ap — 6y — 33 40

4Ay — bag — Tag — dag — 203 24

4A0 - 40[0 - 50[1 - 20&2 — Q3 8

4A0 - 40&0 - 50&1 - 30&2 — Qa3 11

4A0 — 7040 — 10&1 — 6&2 — 3043 50

4A0 — 6050 — 8041 - 4042 11

4A0 — 5050 — 6041 — 20(2 8

4A0 — 4040 — 4041 — 2a2 6

4A0 - 50[0 - 6041 - 2042 — Q3 10

4Ao — Bag — 6y — 3ag — g 15

4AQ - 60&0 - 80[1 - 50[2 - 20[3 34

4AU — 4(10 - 40[1 3

4A0 - 4040 — 4041 — 2042 — Qa3 7

4A0 — 7040 — 100(1 — 60&2 — 2043 44

4A0 — 6@0 — 8041 — 4052 - 2043 31

4A0 - 4(10 — 4@1 — Q9 4

4A0 — 5&0 — 6041 — 3C¥2 8

4A0 — 30[() - 2041 2

4Ag — 6y — 8y — 4oy — g 21

4A0 — 2050 1

4A0 - 50&0 - 6(11 - 40[2 - 20&3 22

4A0 — 8040 — 120&1 — 80&2 — 40&3 66

4A0 - 3&0 — 2041 — Q2 2
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i, &y + Lag, oy —1,...,27) ifx, >0,27 =0

Tl Zp1+ Lo, an—1,...,27) ifx, =0,25 >0

r1, 2+ 1,23,.. ., x5, — 1) if 29 > a5

r1+ 1,20, 25,25 — Lag) if 2o <23

ol for1<i<n-—2
.Tl,...,xm—l,%{‘f‘l,...,l’T) lf$i+1<$m

Tl Tp—1 — Lag + Lag,...,27)  ifx, >0,25=0

Tl Zn, 2y — L=+ 1,,...,27) ifx, =0,25>0

(
(
(
(
(x1,...,xi — Lag + 1, 27) if i > a0y
(
(
(
(x1,...,2n — g,y +1,...,27) ifx,>0,25=0
(

Tl Tyl — L, ap+1,...,27) ifx, =0,27 >0

We also define the maps &;, ¢; : B, — Z. We use the notation that (y)4 = y ify= 0.
0 ify<oO
go(b) = x1 + (x2 — x9)+
¢o(b) = w1 + (23 — x2)4
gi(b) = z; + (Tip1 — T57)+
¢i(b) = mi + (T — ®it1)+
en—1(b) = x5 + xp,
Gn—1(b) = zp_1 + x5
en(b) = 2,1+ 2n
Pn(b) = Tp-1 +2n
where 1 < ¢ <n — 2. Then we have
n—1
B = {(@1, oy @1, 20, 0,801, w2y wy) € 27 | gy mi 2 0,01 4+ 27 +2 ) @i+ @, = K}
e
U{(z1,...,2n-1,0, 27, Tp—1,...,22,27) € 7" | 21, Tm, x> 0,21 + 27 + Zin + a7 =k}
i=2

Then the kAg-ground state path is

which we can represent with tableaux, as with type B,(ll).
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Finally, we need the formula for the energy function H : By ® By — Z in this case. Given
b, b e Bk,

Hbeb) =max({6;(b@b),05(bob) | 1<j<n-2}
{ni(b@ V), mj(b@?) [ 1<j<n}

where

J
Oj(b®b/):Z(g;i_g;%) forj=1,---,n—2

nj(b®b'):Z(xi—x%)+(x%—xj) forj=1,---,n—1

=1
J
né(b@b/):Z(:pg—xl)—k(xj—x;—.) forj=1,---,n—1
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Table 5.13: Elements of max(2Ag) N P* and their corresponding multiplicities and paths for

the Dil)—module V(2A9).

P T S N P PR | P PRV |
[— [\l — (o] ™ || || <H a ™ | |1
R IV I® & ® |80 & |8 & &
— — — — — o™ [} (ap) ™ (o] (ap)
==l === 1[= ===~
. R IV I® & ® |80 /& & |8 & &
Mhta L=l =N =Rl =R =Rl =R LRl LRl =R A
PTI_ f— [ = | = = = = e =] =] ] e
R IV I® & ® |80 & |8 & &
L) i i L L i i i L L L)
==l === 1[= ===~
R IV I® & ® |8 & & |8 & &
=
=) — — o™ [ap) ™
=
g 3 S 3
RS | | |
= S S S
=] | N N
£ S| o | !
o— o 3 — —
2l S| L 3 3
ol = | _
A <
(@] o o o
= 3 3 3
N N N
g | _ |
M o o o
< < <
= ~ ~ N
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Table 5.14: Elements of max(3Ag) N P* and their corresponding multiplicities and paths for the Dfll)—module V(3Ap).

[+ |+ | | [+ |+ |+~ |+ | [+ [+ |+~
B N LB R B~ NS N RS R IE T IS R IR B I B e
[— o — o] o a o <t [a] o || o
¥ I®¥|I® & /&I ® ¥ |& & ®|&
— — — — — [ae] a (el [ap) N [xp] —
— — — — — — — — — — — —
— — — — — — — — — — — —

. ¥ I®|I® & I/ ® ¥ |& & ®|&

uhba [+ |+ | | [+ |+ |+~ |+ | [+ [+ |+

A B L L L L L N R R L e I R L R R L B
[— [— [— [— | [l— [— [— a [— | [l N [—
¥ I®¥W|I® & I/ ®B ¥ |& & ®|&
— — — — — — — — — — — —
— — — — — — — — — — — —
— — — — — — — — — — — —
¥ I®¥|I® & I/ ® ¥ |& & ®|&

=

jm} — — [ap) ™ (ap) —

=

g g g g

RS} _ _ _

= g g g B

= (] [

= o | | | f

= 3 ™ o

. = | 3 = oy 3

g < N 3 3 N

o P = | _ _

< f

D ™ o o o o

= S S S S

< N N N =

E _ ! _

g = = =

= ) > 3
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Table 5.15: Elements of max(2Ag) N P* and their corresponding multiplicities and paths for

the Dél)—module V(2A9).

S e
| [a] — (o] ™ <f (o] ™ <t
RIVWI® ¥ & ® |0 ®& &
— — — — — — [ap) a ™
= [= === {[=][=]][=]]—]
. RIVWI® ¥ & ® |0 ®& &
...hba [ | [+ [+ [ [ | | |+
P,_I_ [+ [— [— [— [— [— [— a
RIVWI® ¥ & ® |0 ®& &
— — — — — — — — —
= [= === {[=][=]][=]]—]
RIVWI® ¥ & ® |80 ®& &
=
= — — <t [ap)
=
0
3
~ _ o
g 3 ;
5}
= ! g
+~ el (&N
= o 3
< 3 (] [
=i
EIR={A g
o An_u g _
A ~| N s
=] _
< N
= g |
" N =
<
= L S
<
a
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Table 5.16: Elements of max(3A) N P* and their corresponding multiplicities and paths for the Dél)—module V(3Ao).

3A, ) el 1|1|e[T[T|T|e|1]|1][1]|e|T|T]T]

30 — a | of1t[t[i]e[T[T[T]elt]1]1]e[2][T]T]

300 — 200 — 20 — 205 —au — a5 | 4 ofi[tfifelt]T][T]e[t][1]1]e[1][1]T]
oft[t[i]e[T]T[T]e[t]1]1]e[2][2]T]
ot[t[1]e[T]T[T]elt]1]1]e][3[3]T]
oft[t[1]e[T]T[T]eft]1]1]e[4][1]T]

300 —200— a1 —2a5—as | 3 ofi[tfifelT]T][T]e[1]1]3]e[2][4]T]
oft[t[1]e[T]T[T]el1]1]2]e][s][4]T]
oft[t]1]el2|T[T]el1]1]3]e[4][T]T]

300 — 200 — as | e [afrfe[T]T]T]elt]1]1]e]2]3]T]
300 — 300 — o1 — 345 — 205 — a5 | 6 o1[1[1fe[T[T][T]e[1]1]4]e]2]3]5]
of1[1[1]e[T[T][T]el1]1]3]e]2]4]5]
of1[1[1]e[s[T][T]e1]1]4]e]2]5]T]
of1[1[1]e[T[T][T]el1]1]2]e]3]4]5]
oft[t[i]el2|T][T]e[1]1]4]e][s][5]1]
of1[t][1]el2|T[T]el[1]1]3]e[4][5]T]

300 — 300 — a1 — 30z — 205 — s | 6 ol1[1[1]e[T[T][T]e1]1]4]e]2]3]5]
of1[1[1]e[T[T][T]el1]1]3]e]2]4]5]
ofi[t[1]els|T[T]e[1]1]4]e][2]5]T]
oft[t[1]e[T|T[T]el1]1]2]e][s][4]5]
oft[t]1]el2|T[T]elt]1]4]e][s]5]T]
oft[t]1]el2|T[T]el[1]1]3]e[4][5]T]
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Table 5.17: Elements of max(2Ag) N Pt and their corresponding multiplicities for the D

module V(2Ay).

Table 5.18: Elements of max(3A¢) N Pt and their corresponding multiplicities for the D

module V(3Ag).

Maximal Dominant Weight Multiplicity
2A 1
2A0 — Q) 1
2/\0—2()40—041—2052—053 3
2/\0—20(0—2(12—2(13—2()&4—@5—056 )
2A0 - 30[0 - 2041 - 4042 - 3&3 — 2044 — QO 10
2A0 - 3040 - 20[1 - 40(2 - 3043 - 2044 — Q5 10

Maximal Dominant Weight Multiplicity
3Ao 1
3A0 — Q) 1
3A0—20¢0—O¢1—2O¢2—O&3 3
3Ag — 200 — 2009 — 2003 — 2004 — Q5 — g 5
3A0 — 20(0 — (9 1
3A0 — 3040 — 2041 — 4042 — 3053 — 2044 — Qg 15
3A0 — 30[0 — 2041 — 4042 - 3043 - 2044 — Q5 15
31\0—30[0—041—3042—20[3—044 6
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module V' (4A).

Maximal Dominant Weight Multiplicity
4Ag 1
4AQ — O 1
4A0—20[0—O&1—2(12—O&3 3
41\0—30&0—0&1—2(12—0&3 3
4A0—2040—2042—20&3—2&4—0&5—0&6 5
4A0 - 2050 — (9 1
4A0 — 2040 1
4A0 - 30[0 - 2041 - 4042 — 3&3 - 2044 — Qg 15
4A0 — 4040 — 2041 - 4042 - 20[3 6
4Ay — 3oy — a1 — 209 1
4A0 - 30&0 - 20[1 - 40[2 - 30(3 - 2054 — Q5 15
4A0 — 40[0 — 20[1 - 40&2 - 2(13 — Oy 10
4A0 — 50(0 — 30&1 — 60&2 — 4043 — 20&4 — Qg 37
4A0 - 3&0 — 2042 — Qa3 1
4A0_3040_2062_2043_2044_045_046 5
4A0 - 4&0 - 20[1 - 4042 - 3043 - 2044 — QO 21
4A0—3a0—a1—3a2—2a3—a4 6
4Ay — bag — 3a; — 6y — dag — 2004 — v 37
4Ag — 4oy — 2001 — 4oy — 3z — 2004 — v 21
4A0 - 60&0 - 40&1 - 80[2 - 60[3 - 40&4 - 20&5 70
4A0 — 40(0 — ] — 4(12 — 30[3 — 20&4 — Q5 10
4A0 - 40&0 - 4&2 - 4&3 - 4&4 - 20(5 — 20(6 15
4/\0 — 40{0 — Q] — 4042 — 3053 — 2054 — O 10
4A0 — 5040 — 3051 — 6042 — 40(3 — 20&4 16
4A0 — 60&0 — 4@1 — 8@2 — 6043 - 40[4 — 2046 70
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Table 5.20: Elements of max(5Ag) N PT and their corresponding multiplicities for the Dél)—
module V(5A0).

Maximal Dominant Weight Multiplicity
5A0 1
5A0 — Q) 1
5/\0—20(0—@1—2042—053 3
5A0 — 3040 — 1041 - 2042 — Q3 3
5A0—2a0—2a2—2a3—2a4—a5—a6 5
5Ag — 209 — ain 1
5Ag — 20 1
5A0 - 30&0 - 20[1 - 40[2 - 30(3 - 20(4 — Qg 15
5A0 — 4010 — 2041 — 40[2 — 20[3 6
5A0 — 30&0 — 1] — 20&2 1
5A0 — 3050 — 2041 — 4052 — 3053 — 2044 — Q5 15
5A0 — 3040 — Q9 1
5A0 — 4C¥0 — 2041 — 4042 — 2043 — Oy 10
5A0 - 5040 - 30[1 - 60(2 - 4043 - 2044 — Qg 46
5A¢ — 3ap — 2a9 — a3 1
5A0 - 30(0 - 20[2 - 20[3 - 2(14 — a5 — Qg
5A0 - 40&0 - 20[1 - 40[2 - 30&3 - 20&4 — Qg 21
5A0—30¢0—Oq—3042—20&3—0¢4 6
5A0 - 5050 — 30&1 — 60(2 — 40(3 — 2044 — Q5 46
5A0 — 4040 — 2041 — 4042 — 3043 - 2044 — Q5 21
5/\0—40(0—681—3@2—043 3
5A0 — 40(0 — Q] — 4042 - 30[3 - 20[4 — Qg 10
5Ag — 4oy — 4oy — dag — 4oy — 205 — 205 15
5Ag — bag — 3a; — 6y — dag — 204 22
5A0 - 40(0 — ] — 40[2 - 30[3 - 20&4 — Q5 10
5A0—40¢0—()é1—30(2—20[3—0&4 6
5A0 — 50(0 — 2041 — 5&2 — 3&3 — 2044 — Qg 28
5A0 — 6&0 — 4&1 — 8042 — 6053 — 4054 — 2055 115
5A0 — 5040 — 2041 — 5042 — 3053 - 2044 — Q5 28
5A0 — 5C¥0 — 20&1 — 5042 — 3@3 — Oy 15
5A0—4a0—3a2—2a3—2a4—a5—a6 5
5Ag — 6y — dap — B8ag — 6y — day — 20 115
5A0 — dag — Bag — 203 — (g 1
5A0 — 6040 — 3041 — 7042 — 50&3 — 30&4 — Q5 70
5A0 — 60&0 — 30&1 — 7042 — 5043 — 30&4 — Qg 70
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