
ABSTRACT

STANLEY, CAPRICE RAYN. Markov Chain Mixing Times. (Under the direction of Seth
Sullivant).

A Markov chain is a random process that satisfies the memoryless property, that is, the

conditional distribution of future states depends only on the present state and not on any events

occurring prior. The mixing time of a Markov chain is the number of steps of the chain required

in order for the t-step distribution to be close to its stationary distribution. Markov chains

appear in many application areas including Monte Carlo simulations, sampling algorithms, and

approximate counting algorithms. In this thesis, we consider two distinct problems that are

connected by the common theme of Markov chain mixing times.

In Chapter 2, we seek to determine the mixing behavior for a family of random walks

associated to a linear recurrence. Let (Gi)
∞
i=1 be a positive integer sequence satisfying a linear

recurrence Gn =
∑d

i=1 αiGn−i, with G1 = 1. For each n we have a random walk whose state

space is ZGn = {0, 1, 2, . . . , Gn − 1} and where the state xt+1 ≡ xt + z mod Gn for z chosen

randomly from {0, 1, G2, . . . , Gn−1}.
We show that for general linear recurrences with exponential growth, the mixing time is

bounded above by κ1n
2 and below by κn/ log n, where κ1 and κ2 are constants that depend

on the sequence. We further show that in the special case of first order recurrences that the

mixing time is between γ1n and γ2n log n, where γ1 and γ2 are also constants that depend on

the sequence.

In Chapters 3 and 4 we consider the problem of generating uniform samples from F = P∩Zn

where P is a polytope. The motivation for this sampling problem arises from independence

testing in statistics. In Chapter 3, which is joint work with Tobias Windisch, the approach taken

is to define a structure on F , and using a Markov basis, define a Markov chain on F called the

simple fiber walk. We prove that the simple fiber walk does not enjoy good mixing behavior.

We also briefly discuss modifications to the graph structure that might improve mixing.

In Chapter 4 we consider a relaxation of the problem of sampling the lattice points F that

follows the strategies of Morris [22] and Dyer, Kannan, and Mount [12]. There we implement a

continuous sampling algorithm on a polytope P̃ that contains P , and then round to the nearest

lattice point, repeating the process until a point in F is generated. For this approach, there are

choices to be made about P̃ and the continuous sampling algorithm. We discuss those choices,

prove a result to bound the rejection rate, and implement the algorithms in R.
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Chapter 1

Introduction

This thesis covers two projects whose unifying theme is that of Markov chains. Put briefly, in

the first project, covered in Chapter 2, we look at a certain family of Markov chains associated

to an integer sequence and investigate the time required for the chain to converge to its long-

term distribution. In the second project, covered in Chapters 3 and 4, we consider the problem

of sampling from a discrete subset of a convex continuous set in Rn. The approach in Chapter

3 involves defining a graph structure on the discrete set and then using that structure to

construct a Markov chain with a desired long-term distribution. In Chapter 4, the approach is

to use Markov chains to sample from the continuous set first, then round to the nearest element

of the discrete set. In both settings we analyze the time required for convergence.

In this chapter we introduce Markov Chains as a special instance of Markov processes. What

we present here is necessary to make sense of the problems under consideration and results,

but is not by any stretch an exhaustive survey. Where they are either nice or short, we have

included the proofs of fundamental results. And we refer the reader to Chapters 1,4, and 12 in

[20] and to Chapters 1 in [23] for a more involved proofs and a complete treatment of Markov

chains.

1.1 Markov Chains

A Markov process is a model for a random process through time. The time at which observations

of the process are made can occur at either discrete or continuous intervals. The state space

Ω of points x represents the possible observations. The possible events for which a probability

is well-defined are elements of a Borel-algebra A of subsets of Ω. Acting as the generating

mechanism of a Markov process is its transition probability function or kernel κt(x,A) which

can either change or remain stable with time. What distinguishes a Markov process from other

random processes is the property of being memoryless in the sense that the future distribution

1



of the process, given the present and past states, only depends on the present state, and not

the realized path of states taken to arrive at the present state. This distinguishing property is

called the Markov property. When a Markov process occurs in discrete time, we refer to it as a

Markov chain. In this thesis, the Markov chains that we encounter will be time-homogeneous,

in that the kernel is stable, and have either continuous or discrete state spaces.

Definition 1.1.1. A time-homogeneous Markov chain with continuous state space Ω is a se-

quence (Xt)t=0,1,2,... of random variables taking on values in Ω. The probability of transitioning

from x ∈ Ω to a Borel-measurable set A ⊂ Ω is given by the kernel κ(x,A) and is independent

of time. Additionally for all x0, x1, . . . , xt ∈ Ω and measurable A ⊂ Ω, Equation 1.1 is satisfied.

Pr (Xt+1 ∈ A | Xt = xt, Xt−1 = xt−1, . . . , X0 = x0) = Pr (Xt+1 ∈ A | Xt = xt) = κ(x,A) (1.1)

When Ω is countable or finite the definition is analogous. The Markov property is stated in

terms of one-step transition probabilities between pairs of states: For all x, y, x0, . . . , xt−1 ∈ Ω

and for all t ≥ 0, the following equation holds:

Pr (Xt+1 = y | Xt = x,Xt−1 = xt−1, . . . , X0 = x0) = Pr (Xt+1 = y | Xt = x).

Further if Ω is finite, then the one-step transition probabilities Pr (Xt+1 = y | Xt = x) are

stored in an |Ω| × |Ω| transition matrix P , that is P (x, y) = Pr (Xt+1 = y | Xt = x). With

this construction, we can easily derive general t-step transition probabilities. The next result

demonstrates that for a transition matrix P , the (x, y)-entry of the matrix P t is the probability

that the Markov chain transitions from state x to state y in exactly t steps.

Theorem 1.1.2 (Chapman-Kolmogorov). Let P be the transition matrix of a time-homogenous

Markov chain with finite Ω. Then P t(x, y) = Pr(Xt = y | X0 = x).

Proof. Proceeding by induction, notice that the t = 1 case holds by construction. Now suppose

P k(x, y) = Pr(Xk = y | X0 = x) holds for all 0 ≤ k < t. Observe the following equalities:

Pr (Xt = y | X0 = x) =
∑
z∈Ω

Pr (Xt−1 = z | X0 = x) Pr(Xt = y | Xt−1 = z)

=
∑
z∈Ω

P t−1(x, z)P (z, y)

= P t(x, y).

For the rest of this section, unless otherwise noted, we will assume the Markov chains we

consider are time-homogeneous with finite state space. In these cases we often identify the

Markov chain by its transition matrix alone, since all of the important information about

2



A B

C D

Figure 1.1: The underlying directed graph of the Markov chain in Example 1.1.3

the dynamics is stored there. At times we may find it advantageous to visually represent the

Markov chain. For this we look at its underlying directed graph. We will see more about graphs

in Section 1.1.1. The visual representation of a Markov chain consists of a collection of vertices

each representing a state in Ω and an arrow from state x to state y when the probability P (x, y)

is positive.

Example 1.1.3. Consider the Markov chain with state space Ω = {A,B,C,D} and transition

matrix given below:

P =

A B C D

A 1
6 0 1

2
1
3

B 0 1
3

1
3

1
3

C 0 0 0 1

D 1
2

1
2 0 0

Suppose at step t in the Markov chain that the current state is Xt = A. Then in the next step

the possible states are A,C, and D taken with the probabilities 1
6 ,

1
2 , and 1

3 respectively. Notice

that the sum of each row in P is one. In general such matrices, namely nonnegative, square,

with rows summing to one, are called stochastic matrices. When the sum of each column is

also one, then the matrix is called doubly stochastic.

Another notable feature of this example is that the Markov chain is in a sense “connected”.

Notice that from the state A the probability of transitioning to state B in one time step is 0,

however, the probability of transitioning to state B in exactly two time steps is positive, in

fact the probability is 1
6 . It is more easily seen from the underlying directed graph in Figure

1.1 that between any two states there is a directed path of edges of positive probability. This

connected property is a desirable property for Markov chains that will be enjoyed by the chains

we encounter. We formalize the notion with a definition.

Definition 1.1.4. A Markov chain is irreducible if for any two states x, y ∈ Ω there exists an

integer t such that P t(x, y) > 0.

In addition to being irreducible, the Markov chains we consider will also have the property

of being aperiodic.

3



A B

C D

Figure 1.2: The underlying directed graph of the Markov chain in Example 1.1.8

Definition 1.1.5. Let τ(x) := {t ≥ 1 : P t(x, x) > 0} be the set of times when it is possible for

the chain to return to starting position x. The period of state x is gcd τ(x).

Lemma 1.1.6. If P is irreducible, then gcd τ(x) = gcd τ(y) for all x, y ∈ Ω.

Definition 1.1.7. For an irreducible chain, the period of the chain is the period which is

common to all states. The chain is aperiodic if all states have period 1. If a chain is not

aperiodic, then it is periodic.

The Markov chain in Example 1.1.3 is irreducible and aperiodic.

Example 1.1.8. Consider the Markov chain on {A,B,C,D } whose transition matrix is

P =

A B C D

A 0 1
2 0 1

2

B 1
2 0 1

2 0

C 0 1
2 0 1

2

D 1
2 0 1

2 0

.

The period of the state A is two, since from state A, the chain can return in two or some

multiple of 2 steps. We can demonstrate that this Markov chain is irreducible by looking at the

underlying graph. This Markov chain experiences periodic behavior. The period of each state

is two.

Next we define probability distributions, which we use to describe the distribution of the

random variable Xt in a Markov chain. Put another way, probability distributions will be used

to describe the relative likelihood of observing a particular state of the chain at the t-th step.

Definition 1.1.9. A probability distribution µ on Ω is a function µ : Ω→ [0, 1] such that∑
x∈Ω

µ(x) = 1.

4



Example 1.1.10. The vector µ = 1
n11×n represents the uniform probability distribution on Ω

whenever |Ω| = n.

As a side note, when the state space Ω ⊂ R is a continuous set, the object analogous to a

distribution is a probability density function f defined on R. The function f : R→ (0,∞) is a

probability density function if
∫
R fdx = 1.

Definition 1.1.11. Let P be a transition matrix and µ0 be a probability distribution on Ω.

The t-step distribution µt of a Markov chain with initial distribution µ0, is the distribution of

the random variable Xt, given the distribution of X0 is µ0. The distribution µt is computed by

the product, µt = µ0P
t.

Definition 1.1.12. A distribution π on Ω is stationary if π = πP .

The next couple of results are well known and detail conditions on the spectrum of P .

We will see in Section 1.2 that these results play an important role in bounding the distance

between the t-step and stationary π distributions. Proofs are included when nice.

Lemma 1.1.13. If λ is an eigenvalue for a transition matrix P , then |λ| ≤ 1.

The strategy of the proof is from [20].

Proof. First we show that for a function f : Ω → R, the infinity norm ‖f‖∞ := maxx∈Ω |f(x)|
satisfies

‖Pf‖∞ ≤ ‖f‖∞ .

Observe the sequence of inequalities

‖Pf‖∞ = max
x∈Ω
|Pf(x)|

= max
x∈Ω
|
∑
y∈Ω

P (x, y)f(y)|

≤ max
x∈Ω

∑
y∈Ω

P (x, y)|f(y)|

where the last inequality follows since P (x, y) ≥ 0 for all x, y ∈ Ω. Now suppose y∗ ∈ Ω such

that ‖f‖∞ = |f(y∗)|. Then

‖Pf‖∞ ≤ max
x∈Ω

∑
y∈Ω

P (x, y)|f(y∗)|

≤ ‖f‖∞

since
∑

x∈Ω P (x, y) = 1. Now suppose (u, λ) is an eigenpair for P . It follows that ‖λu‖∞ =

‖Pu‖∞ ≤ ‖u‖∞ . Hence |λ| ‖u‖∞ ≤ ‖u‖∞ which implies that |λ| ≤ 1 as desired.

5



Lemma 1.1.14. If P is a transition matrix, then 1 is an eigenvalue with right eigenvector

1 = (1, 1, . . . , 1)T .

Continuing with Example 1.1.3, we can check that the distribution

π =

(
6

29
,
15

58
,
11

58
,
10

29

)
is stationary and is, in fact, the only stationary distribution. With little effort we can fur-

ther show that the eigenvalues of P are λ = 1,−0.3814211 ± 0.5265428i, and 0.2628422 with

magnitudes |λ| = 1, 0.403055, 0.403055, and 0.2628422, respectively.

The following result guarantees nice properties for the Markov chain considered in this

thesis.

Theorem 1.1.15. Let P be the transition matrix for an aperiodic, irreducible Markov chain.

1. Then there exists a unique probability distribution π on Ω such that π = πP and π(x) > 0

for all x ∈ Ω, this is the left eigenvalue πP = π with eigenvalue 1.

2. The value 1 is an eigenvalue and the corresponding eigenspace is 1 dimensional.

3. There are no other eigenvalues λ whose magnitude |λ| = 1.

Theorem 1.1.15 follows from Perron-Frobenius theorem for an |Ω| × |Ω| nonnegative, aperi-

odic, irreducible matrix with spectral radius ρ = 1.

1.1.1 Random Walk on a Graph

In this section we present a classic type of Markov chain called a random walk on a graph.

Markov chains of this type arise in many different contexts. One interesting example that we

will see at the end of the section models card shuffles.

An undirected finite graph G = (V,E) is a collection of vertices V = {x1, x2, . . . , xn} along

with a finite collection of edges xixj ∈ E joining the vertices in some configuration. A graph is

often represented either visually or by its associated adjacency matrix AG, which captures the

graph’s structure. The rows and columns of AG are indexed by the vertices of G and the (i, j)-

entry of AG is the number of edges whose endpoints are exactly xi and xj . By construction,

AG is a symmetric matrix. The degree of a vertex xi ∈ V , denoted deg(xi), is the total number

of edges incident to xi. In terms of the adjacency matrix deg(xi) =
∑n

j=1AG(i, j).

A walk in the graph G is an alternating sequence of vertices and edges that starts and

ends at a vertex and where each edge in the sequence is preceded and succeeded by its two

endpoints. A path is a walk with no repeated vertices or edges. We say that G is connected

if there exists a path from xi to xj for any pair of vertices. The distance d(xi, xj) between

6
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Figure 1.3: A visual representation of the graph from Example 1.1.16

vertices xi and xj is the number of edges in a path of shortest length that starts at xi and ends

at xj . If no such path exists, then by convention we set d(xi, xj) = ∞. The diameter of G is

diam(G) = maxxi,xj∈V d(xi, xj), that is, the maximum distance over all pairs of vertices in V .

Example 1.1.16. Suppose G is the graph displayed in Figure 1.3. Then G has as its vertex set

V = {a, b, c, d, e, f, g, h}, has 11 edges, and is connected. Notice that if the edge de is removed,

then the resulting graph is disconnected. The sequence (a, ac, c, cd, d, de, e) is a path from a to

e. The adjacency matrix of G is

AG =



0 1 2 0 0 0 0 0

1 0 1 1 0 0 0 0

2 1 0 1 0 0 0 0

0 1 1 0 1 0 0 0

0 0 0 1 0 1 1 0

0 0 0 0 1 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0


.

Suppose G is a connected graph with vertex set V = {x1, . . . , xn}. We can define a Markov

chain with state space V , where from the current state xi ∈ V , the next state is generated by

choosing an edge incident to xi uniformly at randomly then traversing that edge. The one-step

transition probabilities are given by P (xi, xj) = AG(i,j)
deg(xi)

. It follows from the connectivity of the

7



graph that the Markov chain is irreducible. The equations

(πP )(xi) =
n∑
j=1

π(xj)P (j, i)

=
n∑
j=1

deg(xj)

2|E|
P (j, i)

=
1

2|E|

n∑
j=1

deg(xj)
AG(j, i)

deg(xj)

=
deg(xi)

2|E|

(1.2)

demonstrate that the distribution π(xi) = deg(xi)
2|E| is stationary.

Example 1.1.17 (Card Shuffles). A sequence of card shuffles can by modeled as a random walk

on a graph. Let σ = (c1, c2, . . . , cN ) represent a deck of N cards. A simple way to generate from

σ a random permutation σ′ of the deck is to choose a pair of indices 1 ≤ i, j ≤ N at random

then transpose cards ci and cj . By repeating this process many times, the deck of cards will

be slowly shuffled and the initial ordering of the deck forgotten. Let GN be the graph whose

vertex set consists of the N ! permutations of the deck, and where σi and σj are adjacent if

there exists a transposition that takes σi to σj . Then this method of shuffling cards corresponds

to the random walk on GN . This random walk is irreducible, aperiodic, and the stationary

distribution is uniform over all permutations. It is shown in Chapter 8 Section 2 of [20], using

techniques that involve strong stationary times, that the number of transpositions required for

the ordering of the deck to be near uniformly distributed over all possible permutations, in

other words mixing time of the random walk, is at most on the order of N logN .

A more natural way to shuffle cards is via riffle shuffles. To do a riffle shuffle, we choose

a location 1 ≤ i ≤ N , at random and split the deck between the i-th and i + 1-st cards,

resulting in two smaller decks. Then, alternating between the decks, we drop a number of cards

from the bottom of each into one pile and repeat. This method of generating card shuffles can

also be characterized as a random walk on graph. However, in this case, edges exist between

permutations σi and σj if either, σi can be obtained by applying a riffle shuffle to σj , or vice-

versa, and modifications are made to include appropriate edge weights as, from a particular

permutation σi of the deck, the set of adjacent permutations are not equally likely.

Anyone who has played with a deck of cards as a leisurely past-time or a serious professional,

has been confronted with the question: “How many riffle-shuffles are sufficient to shuffle the

deck?” It was shown in [3] that for a standard deck of 52 cards, the answer is more or less 7

and after that, more riffle shuffles does not increase the randomness.

8



Section 1.1.2 demonstrates another important application of Markov chains.

1.1.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo refers to a class of algorithms for sampling from a target probability

distribution. For more details see [20] and [24]. Suppose we have a countable set Ω of states,

some irreducible Markov chain with transition matrix P , and a target distribution π on Ω from

which we would like to sample. A new Markov chain, often called the Metropolis chain, whose

long-term distribution is the target π, can be constructed. The idea is that from some current

state Xt = x, we choose a state y according to the distribution P (x, ·). Instead of moving

immediately, we accept y with a certain probability that depends only on the pair of states x

and y, and reject otherwise. The transition matrix Q for the Metropolis chain is given by

Q(x, y) =

P (x, y) min
{
π(y)P (y,x)
π(x)P (x,y) , 1

}
if y 6= x

1−
∑

z 6=x P (x, z) min
{

π(z)P (z,x)
π(x)P (x,z) , 1

}
otherwise.

(1.3)

Markov Chain Monte Carlo is a powerful tool that can be used in statistical settings and

for numerical approximations. For example, we find Markov chain Monte Carlo appearing in

hill climb algorithms for optimizing functions. Suppose f is a real-valued function defined on a

finite state space Ω. Letting λ > 1 be some fixed parameter, we can specify a target distribution

π(x) = λf(x)∑
y∈Ω λ

f(y) whose mass is centered on the maximizers of f . Replacing the acceptance

probability π(y)P (y,x)
π(x)P (x,y) with λf(y)P (y,x)

λf(x)P (x,y)
in Equation 1.3, the Markov chain defined by Q can be

implemented to search for states that optimize f . Similar to the question posed in Example

1.1.17, a very important question to ask is: “How many steps of the Metropolis chain are needed

before the distribution is near π?” The question is developed more in the next section.

1.2 Mixing Times of Markov Chains

In this section, we discuss the long-term behavior of irreducible, aperiodic Markov chains. Recall

that by Theorem 1.1.15, for such Markov chains there exist a unique stationary distribution

π. The distribution π is stable in the sense that if the chain moves forward one step starting

from a state chosen randomly from π, then the distribution of the new state is again π. In

this section, we will see that regardless of the initial state, as the chain progresses the t-step

distribution converges to π. From there, we formalize the notion of mixing time, the theme of

this thesis, which is concerned with the rate at which the t-step distribution converges to the

stationary distribution. The importance of mixing time is appreciated when we need to sample

from or approximate target distributions as suggested in Section 1.1.2 on Markov chain Monte
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Carlo or Example 1.1.17 on card shuffles. To see this in action, we revisit the simpler situation

from Example 1.1.3.

Example 1.2.1 (Continuing 1.1.3). Suppose we need to generate a random variable from the

set {A,B,C,D} according to the distribution π =
(

6
29 ,

15
58 ,

11
58 ,

10
29

)
. One way to proceed is to run

the Markov chain from Example 1.1.3 from some arbitrary starting state X0 for some prescribed

number of steps τ . Then take the state Xτ returned after τ steps to be the random variable.

To ensure that Xτ has the desired distribution we need to determine a reasonable choice for τ.

Recall that given an initial distribution µ0 the t- step distribution is µ0P
t. If we let the initial

state X0 = A then µ0 = (1, 0, 0, 0) and the sequence of distributions after the first five time

steps are given, along with the ‖·‖2-norm distance to π, in the table below.

t µ0P
t

∥∥µ0P
t − π

∥∥
2

1 (0.16667, 0, 0.5, 0.33333) 0.40614

2 (0.19444, 0.16667, 0.08333, 0.55556) 0.25362

3 (0.31019, 0.33333, 0.15278, 0.20370) 0.19372

4 (0.15355, 0.21296, 0.26620, 0.36728) 0.10628

5 (0.20923, 0.25463, 0.14776, 0.38837) 0.06063
...

...
...

From the table, we see that the t- step distribution gets closer and closer to π with each time

step. This is not surprising since the Markov chain is irreducible and aperiodic. Depending on

the level of tolerance acceptable for the application, we may take X5 as the generated random

variable since its distance to π is less than 0.1.

In Example 1.1.3 where the problem is small and discrete, there are more attractive ways

to generate a random variable with the desired distribution. But the strategy described can

be applied in any context where one wishes to sample according to a target distribution. In

Chapter 4, we see that it becomes particularly useful when we need to generate random vectors

supported on convex, continuous sets in higher dimensions with intricate geometries. For the

purposes of practical implementation, we will need an understanding of the chain’s mixing time.

The main goal of this thesis is to analyze the mixing time of certain Markov chains and also to

understand how mixing times play a major role in the efficiency of sampling algorithms. In this

section, we develop the notion of mixing time formally and present some common tools that

are often used to analyze mixing time.

We arbitrarily chose to use the ‖·‖2-norm in Example 1.2.1 to compare the t-step and the

stationary distributions. However, there is a particular metric that is more commonly used to

measure the distance between two probability distributions.
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Definition 1.2.2. The total variation distance between probability distributions µ and η de-

fined on Ω is

‖µ− η‖TV = max
A⊂Ω
|µ(A)− η(A)|. (1.4)

In other words, the total variation distance is the maximum difference in probability that

µ and η assign to a fixed event A. It follows that ‖µ− η‖TV is always at most one. There is an

equivalent formulation of Equation 1.4 that expresses the total variation distance as a scaled

‖·‖1-distance. This alternate formulation is often easier to use.

Proposition 1.2.3. The total variation distance between probability distributions µ and η de-

fined on Ω is

‖µ− η‖TV =
1

2

∑
x∈Ω

|µ(x)− η(x)|.

Proof. First we show that 1
2

∑
x∈Ω |µ(x)−η(x)| ≤ maxA⊂Ω |µ(A)−η(A)|. Observe the following

inequalities:

∑
x∈Ω

|µ(x)− η(x)| =

∣∣∣∣∣∣
∑

x:µ(x)≥η(x)

µ(x)− η(x)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

x:µ(x)<η(x)

µ(x)− η(x)

∣∣∣∣∣∣
≤ 2 ·max


∣∣∣∣∣∣

∑
x:µ(x)≥η(x)

µ(x)− η(x)

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

∑
x:µ(x)<η(x)

µ(x)− η(x)

∣∣∣∣∣∣


≤ 2 ·max
A⊂Ω
|µ(A)− η(A)|.

To finish the proof we show that the inequality also goes the other way. For any set A ⊂ Ω,

|µ(A)− η(A)| ≤

∣∣∣∣∣∣
∑

x∈Ω:µ(x)≥η(x)

µ(x)− η(x)

∣∣∣∣∣∣ =
∑

x∈Ω:µ(x)≥η(x)

|µ(x)− η(x)|

and

|η(A)− µ(A)| ≤

∣∣∣∣∣∣
∑

x∈Ω:µ(x)<η(x)

η(x)− µ(x)

∣∣∣∣∣∣ =
∑

x∈Ω:µ(x)≥η(x)

|η(x)− µ(x)|.

By adding both sides, we conclude 2|µ(A)−η(A)| ≤
∑

x∈Ω |µ(x)−η(x)|. The result follows.

Instead of taking the supremum of the value |µ(A) − ν(A)| over all subsets A ⊂ Ω in

Definition 1.4, when Ω is a continuous subset of R we let A range over measurable sets and µ

and ν are replaced with probability measures.
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Before we are able to determine how quickly the distribution of a Markov chain approaches

its stationary distribution we must first guarantee that the distribution actually converges.

Theorem 1.2.4 (Convergence Theorem). Suppose that P is irreducible and aperiodic with

stationary distribution π. Then there exists constants α ∈ (0, 1) and C > 0 such that

max
x∈Ω
||P t(x, ·)− π||TV ≤ Cαt.

Theorem 1.2.4 states that regardless of the starting state, the total variation distance be-

tween the t-step distribution and the stationary distribution converges to zero. It also states

that as a function of t, the rate that the total variation distance decreases is bounded by an

exponential function. The mixing time of an irreducible and aperiodic Markov chain is the first

time t that the t-step distribution P t(x, ·) is “ε-close’” to the stationary distribution π.

Definition 1.2.5. For an irreducible and aperiodic Markov chain with transition matrix P and

some small parameter 0 < ε < 1, the mixing time is

tmix(ε) := min
t∈Z

{
max
x∈Ω

∥∥∥P t(x, ·)− π∥∥∥
TV
≤ ε

}
,

where π is the stationary distribution.

The parameter ε in Definition 1.2.5 is a user-defined tolerance, which quantifies how close to

the stationary distribution is “close” enough. It is common practice to let ε = 1
4 and abbreviate

the mixing time as tmix = tmix(1
4).

Also notice that Definition 1.2.5 is used to describe the convergence of a single Markov

chain. There are contexts in which we have a collection of related Markov chains and would

like to describe how the mixing time behaves with respect to the size of the chains. We can

imagine this being relevant if, for example, we decide to implement a Markov chain Monte Carlo

algorithm to generate a sequence of random vectors X ∈ Rn with increasing parameter n. In a

business setting, for this task it would be greatly beneficial to have an understanding of how

mixing time of the chain grows with n as time and storage costs are relevant considerations.

The next definition says that a family of Markov chains has fast mixing if the mixing time

grows at most polynomially with respect to the size of the state space.

Definition 1.2.6. Suppose there is a family of Markov chains indexed by I with transition

matrices (Pi)i∈I and state spaces (Ωi)i∈I . Letting τi be the mixing time for Pi, we say that the

family (Pi)i∈I is rapidly mixing if there exists a polynomial p ∈ Q≥0[t] such that τi ≤ p(log |Ωi|).

From here we pivot to discuss common techniques and tools that have been developed in

order to look at mixing times. Perhaps the most important tool that we will see and actually

use relies on the knowledge of the spectrum of the transition matrix P .
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In Section 1.1 we saw that 1 is an eigenvalue of any transition matrix P and all the eigen-

values λ are bounded in magnitude by one. By Theorem 1.1.15, when P is irreducible and

aperiodic then the multiplicity of the eigenvalue 1 is one, and the magnitude of all non-trivial

eigenvalues is strictly less than one. The mixing time of an irreducible aperiodic Markov chain

is determined by the non-trivial eigenvalues.

Definition 1.2.7. For a transition matrix P , the second largest eigenvalue modulus (SLEM)

is λ∗ = max{|λ| : λ 6= 1, λ is an eigenvalue of P }.

With the next definitions and results, we build up to a decomposition of certain transition

matrices in terms of their eigenvalues and eigenfunctions f ∈ R|Ω|. We refer the reader to

Chapter 12 in [20] for more details.

Definition 1.2.8. A Markov chain with transition matrix P is reversible with respect to the

distribution π if for all x, y ∈ Ω,

π(x)P (x, y) = π(y)P (y, x).

When P is reversible with respect to π then if an initial state X0 = x0 is chosen according

to π then the probability of any realization of the chain is equal to the probability of its time-

reversal. That is, we can show inductively that

π(x0)P (x0, x1) . . . P (xn−1, xn) = π(xn)P (xn, xn−1) . . . P (x1, x0).

Proposition 1.2.9. Let P be reversible with respect to π. Then π(x0)P (x0, x1) . . . P (xn−1, xn) =

π(xn)P (xn, xn−1) . . . P (x1, x0).

Proof. By definition of reversible, π(x0)P (x0, x1) = π(x1)P (x1, x0). Now suppose that

π(x0)P (x0, x1) . . . P (xn−1, xn) = π(xn)P (xn, xn−1) . . . P (x1, x0).

Then

π(x0)P (x0, x1) . . . P (xn−1, xn)P (xn, xn+1) = P (xn, xn+1)π(xn)P (xn, xn−1) . . . P (x1, x0)

= π(xn+1)P (xn+1, xn)P (xn, xn−1) . . . P (x1, x0).

13
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Figure 1.4: A graph on four nodes for Example 1.2.10.

Also when P is reversible with respect to π, by the equations

(πP )(x) =
∑
y∈Ω

π(y)P (y, x)

=
∑
y∈Ω

π(x)P (x, y)

= π(x)

(1.5)

it follows that π is stationary. Thus if P is additionally aperiodic and irreducible, then π is

the unique stationary distribution. The converse is not true. Example 1.1.3 is aperiodic and

irreducible with unique stationary distribution π = ( 6
29 ,

15
58 ,

11
58 ,

10
29). Substituting x = A, and

y = B in the equation π(x)P (x, y) = π(y)P (y, x) we see that P is not reversible with respect

to the stationary distribution.

Example 1.2.10. The following matrix P is the transition matrix for the random walk on the

graph displayed in Figure 1.4. Let π = (0.25, 0.25, 0.25, 0.25) be the uniform distribution. Since

P is symmetric it is clear that P is reversible with respect to π.

P =


1
3

1
3

1
3 0

1
3 0 1

3
1
3

1
3

1
3 0 1

3

0 1
3

1
3

1
3


In this next result we consider the inner product space (RΩ, 〈·, ·〉π) with the following inner

product

〈f, g〉π =
∑
x∈Ω

π(x)f(x)g(x).

Lemma 1.2.11. Let P be reversible with respect to π. Then

1. The inner product space (RΩ, 〈·, ·〉π) has an orthonormal basis of real-valued eigenfunctions

{fj}|Ω|j=1 corresponding to real eigenvalues {λj}.
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2. The matrix P can be decomposed as

P t(x, y)

π(y)
=

Ω∑
j=1

fj(x)fj(y)λtj .

3. The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be the constant

vector 1, in which case

P t(x, y)

π(y)
= 1 +

Ω∑
j=2

fj(x)fj(y)λtj .

Definition 1.2.12. A Markov chain with transition matrix P is transitive if for any pair

x, y ∈ Ω there exists a permutation σx,y : Ω → Ω that maps x to y and preserves the one step

transition probabilities. In other words, σx,y(x) = y and for all u, v ∈ Ω,

P (u, v) = P (σx,y(u), σx,y(v)).

We can think of a transitive Markov chain as one whose underlying directed graph is regular

and, if labels on the vertices are ignored, the same configuration occurs at each vertex. Notice

that the periodic Markov chain from Example 1.1.8 is transitive. For transitive chains, since

the dynamics are the same at any state, the stationary distribution is uniform over the states.

Lemma 1.2.13. Let P be a reversible transition matrix, with eigenvalues

1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1

and associated eigenfunctions {fj}, orthonormal with respect to 〈·, ·〉π. Then

4
∥∥∥P t(x, ·)− π∥∥∥2

TV
≤

∥∥∥∥∥P t(x, ·)π(·)
− 1

∥∥∥∥∥
2

2

=

|Ω|∑
j=2

fj(x)2λ2t
j .

If the chain is transitive, then

4
∥∥∥P t(x, ·)− π∥∥∥2

TV
≤

∥∥∥∥∥P t(x, ·)π(·)
− 1

∥∥∥∥∥
2

2

=

|Ω|∑
j=2

λ2t
j .

Lemmas 1.2.11 and 1.2.13 will be used in Chapter 2 when we look at a certain random

walk on a finite abelian group. The Markov chain itself will not be reversible necessarily but

we will still have an orthonormal basis of eigenfunctions. The main take away from Lemmas

1.2.11 and 1.2.13 is an upper bound on the total variation distance to stationarity in terms of

the non-trivial eigenvalues of the transition matrix.
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For the Markov chains seen in Chapter 2 we would like to sandwich the mixing times with

both an upper and lower bound. Some tools that we will use to determine lower bounds involve

some knowledge of the spectral gap and relaxation time.

Definition 1.2.14. For a Markov chain with transition matrix P the absolute spectral gap

denoted γ∗ is the difference between 1 and the SLEM. That is, γ∗ = 1− λ∗.

Recall by Theorem 1.1.15, when P is the transition matrix for an aperiodic and irreducible

Markov chain then λ 6= −1 is not an eigenvalue. In which case the absolute spectral gap is

positive.

Definition 1.2.15. The relaxation time trel of a reversible Markov chain with absolute spectral

gap γ∗ is trel = (γ∗)
−1.

The relaxation time is inversely proportional to the distance between the SLEM and 1, so

when the SLEM is small, for instance, trel is large.

Theorem 1.2.16. Suppose that λ 6= 1 is an eigenvalue for the transition matrix P of an

irreducible and aperiodic Markov chain. Then

tmix(ε) ≥
(

1

1− |λ|
− 1

)
log

(
1

2ε

)
.

If P is also reversible then

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
.

Proof. (Follows [20] ) Since P is irreducible and aperiodic we can let f be an eigenfunction of

P with eigenvalue λ 6= 1 such that Pf = λf . Since the eigenfunctions are orthonormal with

respect to 〈·, ·〉π and 1 is an eigenfunction, then

〈f,1〉π =
∑
x∈Ω

π(x)f(x) = 0.

Observe the following inequalities

|λtf(x)| = |P tf(x)|

=

∣∣∣∣∣∣
∑
y∈Ω

P t(x, y)f(y)−
∑
y∈Ω

π(y)f(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈Ω

[P t(x, y)− π(y)]f(y)

∣∣∣∣∣∣
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≤
∑
y∈Ω

∣∣∣P t(x, y)− π(y)
∣∣∣ |f(y)|

≤
∑
y∈Ω

∣∣∣P t(x, y)− π(y)
∣∣∣ ‖f‖∞

≤ 2d(t) ‖f‖∞ ,

where d(t) = maxx∈Ω

{
1
2

∑
y∈Ω

∣∣P t(x, y)− π(y)
∣∣ }. Choosing x ∈ Ω such that |f(x)| = ‖f‖∞

it follows that |λ|t ≤ 2d(t). By substituting t = tmix(ε) we obtain |λ|tmix(ε) ≤ 2d(tmix(ε)) = 2ε.

From which it follows that

tmix(ε)

(
1

|λ|
− 1

)
≥ tmix(ε) log

(
1

|λ|

)
≥ log

(
1

2ε

)
.

Then by dividing through by the quantity
(

1
|λ| − 1

)
we arrive at the lower bound

tmix(ε) ≥
(

1

1− |λ|
− 1

)
log

(
1

2ε

)
.

Finally, if P is irreducible then we can choose λ such that |λ| = λ∗, to obtain

tmix(ε) ≥ (trel − 1) log

(
1

2ε

)
.

The connection between mixing time and SLEM can be used to characterize the rapid

mixing property of a family of Markov chains as a statement about the growth of the corre-

sponding SLEM. By Theorem 1.2.4 and Lemma 1.2.13, we have that for Markov chains that

are irreducible, aperiodic, and reversible, the total variation distance to stationarity can be

bounded

max
x∈Ω

∥∥∥P t(x, ·)− π∥∥∥
TV
≤ Cλt∗,

where C > 0 is some constant. If we force the right-hand side to be bounded above by ε and

rearrange, then we see that

tmix(ε) ≤ log

(
C

ε

)
1

log( 1
λ∗

)
.

If we let C ′ 1
log( 1

λ∗
)

serve as a proxy for the mixing time, and use the fact that log( 1
x) ∼ 1 − x

when x ∈ [0, 1], then we get the following characterization of rapid mixing:

Definition 1.2.17. Let the sequence of transition matrices (Pi)i∈I represent a family of ir-

reducible, aperiodic, and reversible Markov chains and suppose (λi∗)i∈I represents the corre-

sponding SLEMs. Then the family (Pi)i∈I of Markov chains is rapidly mixing if there exists a
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polynomial p ∈ Q≥0[t] such that λi∗ ≤ 1− 1
p(log |Ωi|) .

We conclude this section by introducing the final tool that we will use to analyze mixing

time of Markov chains. Suppose that there is a set A ⊂ Ω of the states where the probability of

transitioning from A to Ω\A is low. Then if the Markov chain lands in A we would expect for

the chain to bounce around within A for a while before escaping. In which case we refer to A as

a “bottleneck” and the effect is that the convergence to the stationary distribution is slowed.

On the other hand, if for any subset A ⊂ Ω of states, there is a high probability of transitioning

to Ω\A, then we would expect good mixing properties.

Definition 1.2.18. Let P be the transition matrix for an irreducible and aperiodic Markov

chain whose stationary distribution is π. For a set A ⊂ Ω let Ac = Ω\A. The bottleneck ratio

or conductance of the Markov chain is

Φ∗ := min
A⊂Ω,π(A)≤ 1

2

∑
x∈A,y∈Ac π(x)P (x, y)

π(A)
.

Example 1.2.19. Let G be a finite graph that is d- regular, that is, each vertex has degree

d. We can compute the conductance of the simple random walk defined on G, as described in

Section 1.1.1. Recall that the stationary distribution π is uniform on Ω. Then the conductance,

Φ∗ = min
A⊂Ω,π(A)≤ 1

2

∑
x∈A,y∈Ac π(x)P (x, y)

π(A)

= min
A⊂Ω,

0<2|A|≤|Ω|

∑
x∈A,y∈Ac,

x∼y

1

d|A|

= min
A⊂Ω,

0<2|A|≤|Ω|

∑
x∈A,y∈Ac,

x∼y

1

d|A|

=
1

d
min
A⊂Ω,

0<2|A|≤|Ω|

e(A,Ac)

|A|
,

where e(A,Ac) is the number of edges with exactly one endpoint in A and the other in Ac.

Notice that in this case Φ∗ = 1
dh(G), where h(G) is the edge expansion of G.

Lemma 1.2.20 shows that the diameter of a d- regular graph G and the conductance of the

random walk on G are related. We will make use of this fact in Chapter 3. The proof of Lemma

1.2.20 we follow is from [18] Chapter 4 Section 2.

Lemma 1.2.20. Let G = (V,E) be a finite connected d- regular graph. The conductance Φ∗ of
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the random walk on G satisfies the following inequality:

diam(G) ≤ 2 log |V |
log(1 + Φ∗)

Proof. First observe that for any set S ⊂ V of vertices such that 0 < |S| < 1
2 |V | the number of

edges e(S, Sc) across S is at least d|S|Φ∗. Moreover the number of neighbors

|
{
y ∈ Sc : d(x, y) = 1 for some x ∈ S

}
|

is at least |S|Φ∗ since G is d- regular.

For a vertex x ∈ V , let Br(x) :=
{
y ∈ V | d(x, y) ≤ r

}
be the closed ball of radius r

centered at x. It follows from the observation that if rx is the least positive integer such that

|Brx(x)| > 1
2 |V | then we must have that |Brx−1(x)| ≤ 1

2 |V | and so |Brx(x)| ≥ (1 + Φ∗)
rx .

Now for any y ∈ V with x 6= y, let ry be analogously defined. Then the intersection

Brx(x) ∩ Bry(y) 6= ∅. Say w ∈ Brx(x) ∩ Bry(y) then a path from x to y can be constructed by

joining a path from x to w and a path from w to y. So the graph distance between x and y

satisfies the following:

d(x, y) ≤ rx + ry ≤
log |Brx(x)|
log(1 + Φ∗)

+
log |Bry(y)|
log(1 + Φ∗)

≤ 2 log |V |
log(1 + Φ∗)

.

The result follows since the choice of x and y are arbitrary.

Finally, the conductance of a Markov chain is related to its mixing time.

Theorem 1.2.21. If Φ∗ is the conductance of an irreducible aperiodic Markov chain then,

tmix ≤ 1
4Φ∗

.

For proof of Theorem 1.2.21 see Chapter 7 of [20].

1.3 Polytopes

In this section we introduce polytopes and related tools in preparation for Chapters 3 and 4.

Here we see that a polytope is a convex set in Rn with flat sides that can be described by

vertices and by a finite collection of half-spaces of Rn.

Definition 1.3.1. For a pair of points x, y ∈ Rn the line segment xy is the set

xy = {λx+ (1− t)y | λ ∈ [0, 1]}.

Definition 1.3.2. A set S is convex if for any pair of points x, y ∈ S, xy is contained is S.
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Given a point set in Rn, we can consider its convex hull, which as the name suggests, is a

convex set.

Definition 1.3.3. Let X be a point set in Rn. The convex hull of X , denoted conv(X ), is the

intersection of all convex sets containing X .

When X is a finite point set then conv(X ) is equivalently represented by the set of all convex

combinations of the points in X . In symbols, if X = {x1, . . . , xd} then,

conv(X ) =


d∑
i=1

λixi | λi ≥ 0 for all i and
d∑
i=1

λi = 1

 .

In addition to the convex hull we define the affine hull of a set X . The affine hull is an affine

subspace and we borrow the notion of dimension of affine subspace to later define dimension of

a polytope.

Definition 1.3.4. The affine hull of a set X is the set of all affine combinations of its points:

aff(X ) =


d∑
i=1

λixi | d > 0 and
d∑
i=1

λi = 1

 .

There are two complementary ways to represent, and therefore define, a polytope.

Definition 1.3.5 (V- Representation). A V-polytope P is the convex hull of a finite point set

V . If each point in V is necessary, meaning conv(V − {v}) ( conv(V ) for all v ∈ V , then V is

the vertex set of P , denoted vert(P ) = V .

Example 1.3.6. Let V = {(−1, 11), (1, 4), (2, 3), (5, 0), (6, 6), (7, 7), (8,−2)} be a finite point set

in the plane. The convex hull of V, displayed in Figure 1.5 is a pentagon. Notice that the vertices

of the pentagon are present in V along with some additional points. The points (2, 3) and (6, 6)

can be removed from V with no consequence. Let V ′ = {(−1, 11), (1, 4), (5, 0), (7, 7), (8,−2)}
then conv(V) = conv(V ′). If any points are further removed from V ′ then the resulting convex

hull is a proper subset of conv(V). Hence V ′ is the vertex set of the polytope conv(V).

Definition 1.3.7. An H-polyhedron P is the solution set of finitely many linear inequalities

and thus can be represented as

P = P (A, b) = {x ∈ Rn | Ax ≤ b},

for some m× n matrix A and vector b ∈ Rm. The prefix H- refers to the fact that the solution

set is also the intersection of finitely many half-spaces.
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Figure 1.5: The convex hull of the set V from Example 1.3.6.

Example 1.3.8. Let the matrix A ∈ R3×2 and vector b ∈ R3 be the following.

A =

 1 2

−7 −2

−2 −3

 , b =

 21

−15

−10


Then the polyhedron P = P (A, b) is the solution to the system of linear equations Eq 1.6.

x+ 2y ≤ 21

−7x− 2y ≤ −15

−2x− 3y ≤ −10

(1.6)

Geometrically, the polyhedron is the shaded region in Figure 1.6. From the figure we observe

that P is a convex set with “flat sides”. This feature is common to all polyhedra. We further

notice that P is unbounded since it contains a ray, in particular {(4, 4) + t(1,−1), t ≥ 0}, which

is also displayed in Figure 1.6. Later in Chapters 3 and 4 we will be concerned with bounded

polyhedron and look at Markov chain-based methods to sample from these sets.

Definition 1.3.9 (H-Representation). An H-polytope P is a bounded H-polyhedron.
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Figure 1.6: The shaded region is the polyhedron P (A, b) from Example 1.3.8. The polyhedron
contains a ray, in particular (4, 4) +λ(1,−2) for λ ≥ 0, therefore the polyhedron is unbounded.

Example 1.3.10. Suppose we add rows to the matrix A and vector b from Example 1.3.8. Let

A′ =



1 2

−7 −2

−2 −3

−1 −1

9 1


, b′ =



21

−15

−10

−5

70


.

By graphing the corresponding system of inequalities we find that P = P (A′, b′) is a bounded

set, therefore P is an H-polytope. Also P is the same as the V-polytope in Figure 1.5 from

Example 1.3.6.

It is no coincidence that the V-polytope in Example 1.3.6 can also be represented as the

H-polytope in Example 1.3.10. Rather, it is an instance of the Minkowski-Weyl Theorem, a

fundamental result in the theory of polyhedra, which implies that any subset of Rn that can be

represented as a V-polytope can also be represented as an H-polytope, and vice versa.

Definition 1.3.11. For a point set X the cone denoted cone(X ) is the set of all nonnegative

combinations of the points in X , that is,

cone(X ) =


d∑
i=1

λixi : d > 0, xi ∈ X , λi ≥ 0

 .
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Definition 1.3.12. The Minkowski sum of two sets P and Q in Rn is

P +Q = {x+ y | x ∈ P and y ∈ Q}.

Theorem 1.3.13 (Minkowski- Weyl Theorem). For a subset P of Rn, the following statements

are equivalent:

1. P = P (A, b) for some A ∈ Rm×n and b ∈ Rm.

2. There exist vectors x1, . . . , xk and v1, . . . , vs ∈ Rn such that

P = conv({x1, . . . , xk}) + cone({v1, . . . , vs}).

We refer the reader to [29] for a detailed proof of this result and for a more complete theory

of polytopes. In Chapters 3 and 4, our work will include both representations of polytopes

depending on which is more convenient. For the H-representation of a polytope we will often

assume that the system of linear inequalities that defines a polytope does not contain any

redundant inequalities. At times we may refer to those inequalities individually. Let aTi represent

the i-th row vector of the matrix A.

Definition 1.3.14. For a matrix A ∈ Rm×n and vector b ∈ Rm, the i-th inequality aTi x ≤ bi of

the system Ax ≤ b is redundant if P (A, b) = P (A−i, b−i), where A−i and b−i are the result of

removing the i-th row from A and b respectively. A system Ax ≤ b is irredundant if it contains

no redundant inequalities.

At times we will refer to the dimension of a polytope. In these cases the notion of dimension

is consistent with the usual notion of dimension for a convex subset of Rn.

Definition 1.3.15. The dimension, denoted dim(P ), of a polytope P is the dimension of its

affine hull.

Most of the polytopes that we work with are full-dimensional, meaning that their dimen-

sion is equal to the dimension of the ambient space being considered. We may refer to an n-

dimensional polytope as an n-polytope.

The most significant features of a polytope, that determine its combinatorial and geometrical

structure are called faces. Informally, the faces of a 2- polytope, like the one in Figure 1.5,

include its vertices and the edges. For a 3-polytope, the faces include the vertices, edges, and

2-dimensional sides.

Definition 1.3.16. A linear inequality cx ≤ d is valid for P if it is satisfied by all points x ∈ P .
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Definition 1.3.17. A face F of a polytope P is any set of the form F = P ∩{x ∈ Rn | cx = d}
for any valid inequality cx ≤ d for P .

For any polytope P the inequality 0x ≤ 1 is valid and the set P ∩ {x ∈ Rn | 0x = 1} is

empty. Hence ∅ is always a face of P. On the other extreme, the inequality 0x ≤ 0 is valid and

the set P ∩ {x ∈ Rn | 0x = 0} = P . Hence P is also always a face of P .

Suppose P = P (A, b) is a polytope and F = P ∩ {x ∈ Rn : cx = d} is a face of P . Then

F is represented by the system in Equation 1.7. Consequently, F is itself a polytope. We can

further show that the vertices of F are exactly the vertices of P contained in F . Ac
−c

x ≤
bd
d

 (1.7)

For an n-polytope it is standard practice to refer to the 0-, 1−, (n − 2)−, and (n − 1)-

dimensional faces as vertices, edges, ridges, and facets, respectively. We often refer to any

inequality cx ≤ d that defines a facet as facet-defining and the solution to the corresponding

equation cx = d as a facet-defining hyperplane. For a polytope P = P (A, b) if the system Ax ≤ b
is irredundant then each inequality aTi x ≤ bi is facet-defining.

Example 1.3.18. Let C3 be the unit cube situated in the positive octant of R3. It is straightfor-

ward to see that C3 is a 3-polytope since it can be represented as the convex hull conv({0, 1}3)

and by P (A, b) with the following matrix and vector:

A =

 I3

−I3

 , b =

13

03


In addition to ∅ and C3, the faces of C3 include 8 vertices enumerated by {0, 1}3, 12 edges

corresponding to the valid inequalities displayed in Equation 1.8 for 1 ≤ i < j ≤ 3, and 6 facets

corresponding to the valid inequalities 0 ≤ xi ≤ 1 for i = 1, 2, 3.

xi + xj ≤ 2

−xi + xj ≤ 1,

xi − xj ≤ 1,

−xi − xj ≤ 0

(1.8)

The problem addressed in Chapters 3 and 4 concerns algorithms for sampling from poly-

topes. For the most part, we attempt to keep arbitrary polytopes in mind, however, the motiva-

tion for our work comes from the specific class of polytopes that arise from contingency tables.
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The next example is a small taste of these polytopes that we revisit in Chapters 3 and 4.

Example 1.3.19. Consider the set P3,4(r, c) of 3 × 4 matrices with nonnegative real values

and whose row and columns sums are given by the vectors r = (4, 12, 10) and c = (7, 7, 6, 6),

respectively. Then P3,4(r, c) represents a polytope in R12, which we can demonstrate with the

appropriate H-representation. For X ∈ P3,4(r, c), X satisfies the following:

Xij ≥ 0 for all 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, (1.9)

3∑
i=1

Xij = cj for all 1 ≤ j ≤ 4,

4∑
j=1

Xij = ri for all 1 ≤ 1 ≤ 3.

(1.10)

Notice though, that due to the equalities of the latter two statements, those matrices sat-

isfying Equation 1.10 form a 6-dimensional set in R12. So P3,4(r, c) can be realized as a full-

dimensional polytope in the ambient space R6. To do so, notice that for X ∈ P3,4(r, c) the

last row and column of X can be expressed in terms of the entries Xij , with 1 ≤ i < 3 and

1 ≤ j < 4:

X3j = cj −X1j −X2j for 1 ≤ j < 4

Xi4 = ri −
3∑
j=1

Xij for i = 1, 2

X34 = c4 − r1 − r2 +
3∑
j=1

X1j +
3∑
j=1

X2j

Then in R6 we can represent P3,4(r, c) by the irredundant system

−Xij ≤ 0 for all 1 ≤ i < 3, 1 ≤ j < 4

X1j +X2j ≤ cj for 1 ≤ j < 4

3∑
j=1

Xij ≤ ri for i = 1, 2

−
3∑
j=1

X1j −
3∑
j=1

X2j ≤ c4 − r1 − r2.
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Remark 1.3.20. If we let the matrix

A =



1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1


and reformat matrices to vectors, then each point X ∈ P3,4(r, c) is a nonnegative solution

to AX = (r, c)T . Looking ahead to Chapter 3, we call A the configuration matrix for 3 × 4

contingency tables.

1.4 Survey of Results in Thesis

In this thesis we look at a few settings where Markov chains arise and we explore this mixing

time question. In Chapter 2 we seek to determine the mixing behavior for a family of random

walks associated to a linear recurrence. Let {Gi}∞i=1 be a positive integer sequence satisfying a

linear recurrence Gn =
∑d

i=1 αiGn−i, with G1 = 1. For each n we have a random walk whose

state space is ZGn = {0, 1, 2, . . . , Gn − 1}, and whose transition probabilities given by

P (x, y) =


1
n if (y − x) ∈ {0, 1, G2, . . . , Gn−1}

0 otherwise.

We show that for general linear recurrences with exponential growth, the mixing time is bounded

above by κ1n
2 and below by κn/ log n, where κ1 and κ2 are constants that depend on the

sequence. We further show that in the special case of first order recurrences that the mixing

time is between γ1n and γ2n log n, where γ1 and γ2 are also constants that depend on the

sequence.

Random walks on the integers modulo p have been examined most notably as it relates to

the problem of pseudo-random number generation. In such cases the dynamics of these random

walks are given by the recurrence Xt+1 = aXt + b mod p where p is some prime number

and a and b can be given by a variety of schemes. For example, [6] shows that if a = 1 and

b = 0,−1, or 1 each with probability 1
3 then the mixing times is bounded by κp2. The situation

improves, mixing time is bounded by κ log p log log p if a = 2 and again b = 0,−1, or 1 with

equal probability. Our setting differs since the number of available moves at each step grows
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with n.

Chapters 3 and 4 concern the problem of sampling lattice points of polytope. The approach

of Chapter 3 is to define a fiber graph on the points in question, and define a Markov basis,

called the simple fiber walk on the lattice points. By analyzing the diameter of the underlying

graphs, we show the simple fiber walk does not exhibit rapid mixing.

In Chapter 4 we consider a relaxation of the problem of sampling the lattice points F that

follows the strategies of Morris [22] and Dyer, Kannan, and Mount [12]. There we implement a

continuous sampling algorithm on a polytope P̃ that contains P , and then round to the nearest

lattice point, repeating the process until a point in F is generated. For this approach, there are

choices to be made about P̃ and the continuous sampling algorithm. We discuss those choices,

prove a result to bound the rejection rate, and implement the algorithms in R.

1.5 Notation

We make every attempt to maintain consistent notation throughout this thesis. The set of

natural numbers N := { 1, 2, 3, . . . } does not include zero. For a number n ∈ N, the set [n] :=

{ 1, 2, . . . , n }. For logarithmic functions log(x) = log10(x) denotes the common logarithm while

ln(x) is used to denote the natural logarithm. The vector 11×n and 01×n represents the all-ones

vector and all-zeroes vector, and dimensions are given by context. When describing the limiting

behavior of a real-valued function f , we say that f is dominated by the function g and write

f(x) = O(g(x)) if there exists a constant c and x0 ∈ R such that for all x ≥ x0, we have

|f(x)| ≤ cg(x). We say that f is asymptotically bound below by the function g if there exists

a constant c and x0 ∈ R such that for all x ≥ x0, f(x) ≥ c · g(x). At times, we also adopt

the soft-O notation, as used in [11]. We write f(x) = O∗(g(x)) when f(x) = O(g(x)), where

logarithmic factors of x have been suppressed.
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Chapter 2

Linear Recurrence Random Walk

2.1 Introduction

Let (Gn)n≥1 be a positive increasing integer sequence given by the linear recurrence with con-

stant coefficients

Gn = α1Gn−1 + α2Gn−2 + · · ·+ αdGn−d, (2.1)

and G1 = 1. This sequence determines a family of random walks.

Definition 2.1.1. The linear recurrence random walk associated to the sequence (Gn)n≥1 is

the Markov chain (Xt)t≥0 whose state space is Ω = ZGn . The initial state is X0 = 0 and from

the current state Xt, the next state is

Xt+1 ≡ Xt + zt mod Gn,

where zt is chosen from the set M = {G1, G2, . . . , Gn} uniformly at random. The transition

matrix P for the linear recurrence random walk is

P (x, y) =


1
n if y − x ≡ Gi mod Gn for some 1 ≤ i ≤ n

0 otherwise.

So for each n we have a random walk on the finite abelian group (ZGn ,+). By the assumption

G1 = 1, the set M generates the group and hence the random walk is irreducible. Further as

Gn ∈ M, the walk is aperiodic. The stationary distribution π, to which the random walk

converges, is uniform over Ω. In this chapter, we seek to answer the following question.
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Problem 2.1.2. What is the mixing time of the linear recurrence random walk associated to

the sequence (Gn)n≥1?

Our approach to Problem 2.1.2 is to leverage the relationship between the mixing time and

the second largest eigenvalue modulus of the transition matrix. In Section 2.4 we use explicit

formulas for the eigenvalues of the transition matrix to prove that for a random walk arising

from (Gn)n≥1 subject to certain conditions, at most κn2 steps will suffice where κ is some

constant that depends on (Gn)n≥1. Section 2.5 focuses on random walks arising from first order

recurrences. In that case we show that γn log n steps will suffice, where γ is also some constant

that depends on (Gn)n≥1.

Our results on the eigenvalues of these Markov chains also allow us to derive lower bounds

on the mixing times in the case that Gn grows like an exponential function. For general linear

recurrences of exponential growth, we have the lower bound of the form κn/ log n and in the

first order case we get a lower bound of the form κn.

Though we have proven these upper and lower bounds on the mixing times we suspect from

simulations that the mixing time grows like n instead of n log n or n2. The table below displays

the mixing times for random walks arising from three integer sequences.

Mixing Times for Three Sequences

n Gn = 2n−1 tmix Gn = 3n−1 tmix Gn = 3Gn−1−Gn−2 tmix

1 1 0 1 0 1 0

2 2 1 3 2 3 2

3 4 2 9 3 8 3

4 8 2 27 3 21 3

5 16 3 81 4 55 3

6 32 3 243 4 144 4

7 64 3 729 4 377 4

8 128 4 2187 5 987 4

9 256 4 6561 5 2584 4

Random walks on the integers modulo some n have been studied frequently, as they are a

prototypical example of a Markov chain on a group, and are amenable to techniques based on

discrete Fourier analysis. In his review article [25], Saloff-Coste considers random walks on Zn
given by Xt+1 ≡ Xt + zt mod n where Pr(zt = a) = Pr(zt = b) = 1

2 for some choice of a, b ∈ Zn.

Hildebrand [14] considers walks on Zn given by the Xt+1 ≡ Xt + zt mod n where zt is uniform

on a set of k random elements of Zn. He shows that if n is prime then it suffices to take κn2/(k−1)

steps to be close to uniformly distributed for almost all choices of k elements. Hildebrand also

considers the case where the size of the random step set grows with n, and the situation studied
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in this paper provides an interesting deterministic boundary case between Theorems 3 and 4 of

[14]. Diaconis [8] discusses various random walks on Zn given by the Xt+1 ≡ atXt + zt mod n,

where at and zt are subject to various restrictions. Our work seems to be the first that considers

a family of steps in the Markov chain on Zn where the set of possible steps increases with n.

2.2 Generalization of the Abelian Sandpile Markov Chain

Our attention to Problem 2.1.2 arose from a project in which we set out to generalize the abelian

sandpile Markov chain introduced in [15] by Jerison, Levine, and Pike. We first summarize the

relevant results and then outline our trajectory.

Let G = (V,E) be a simple connected graph on n vertices and identify a special sink vertex

vs. A sandpile on G is a distribution of “sand grains” over the vertices of G. A configuration

of the sandpile is a function σ : V \{vs} → N. The configuration is stable if σ(v) < deg(v) for

all v ∈ V \{vs}. Any configuration can be stabilized by iteratively “toppling” non-sink vertices

where σ(v) ≥ deg(v).

In [15] the authors introduce a Markov chain on the set of stable configurations of the

sandpile. From current state σt, pick a vertex v ∈ V uniformly at random. Add one grain

of sand at v and then stabilize the configuration to obtain the next state σt+1. The chain is

irreducible, aperiodic, and the stationary distribution is uniform over the set of recurrent states.

The recurrent states of the chain form a finite abelian group called the abelian sandpile group

of (G, vs). The abelian sandpile Markov chain is the result of restricting the state space of the

aforementioned chain to the abelian sandpile group.

The abelian sandpile Markov chain can also be recognized as a random walk on a lattice.

Let ∆ be the reduced Laplacian of G. That is, ∆ is an (n− 1)× (n− 1) integer matrix whose

rows and columns are indexed by the non-sink vertices of the graph and

∆ij =


deg(vi) if i = j

−1 if vi ∼ vj
0 else.

Letting ∆Zn−1 = {∆z : z ∈ Zn−1}, the chain can be characterized as having as its state space

the quotient Zn−1/∆Zn−1. The dynamics of the chain are restated: From the current state

xt, to generate the next state choose some z from the set {e1, e2, . . . , en−1,0} uniformly at

random, where ei’s are the standard basis vectors and ei = ei + ∆Zn−1. The next state is then

xt+1 = xt + z. In [15], the mixing time of various instances of these chains were analyzed. For

example, when G = Cn is the cycle graph on n vertices, the chain enjoys very fast mixing,
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Figure 2.1: Elements of the quotient Q = Z2/A0Z2 from Example 2.2.1

in particular, the chain reaches stationarity after one step. On the other hand, when G = Kn

is the complete graph on n vertices the order of the mixing time is kn3 log n, hence the chain

exhibits significantly slower mixing behavior.

We were interested in determining what type of mixing behavior is exhibited by a variation of

these chains. Let A be an invertible n×n matrix and consider the lattice quotient Q := Zn/AZn.

Then elements of Q are the integer points of the parallelepiped
{
Ax : x ∈ [0, 1)n

}
and for

arbitrary x ∈ Zn, we let [x] denote the equivalence class x + AZn. The size of the quotient Q
is given by the magnitude of the determinant |det(A)|. Addition on Q is given by usual coset

addition, that is, [x] + [y] = [x+ y] for all x, y ∈ Zn. Then (Q,+) forms a finite abelian group.

Example 2.2.1. For the invertible matrix A0 =

3 1

1 2

, the quotientQ = Z2/A0Z2, illustrated

in Figure 2.1, is given byQ = {(0, 0), (1, 1), (2, 1), (2, 2), (3, 2)}. The Cayley table, which displays

the group structure, is

+ (0,0) (1,1) (2,1) (2,2) (3,2)

(0,0) (0,0) (1,1) (2,1) (2,2) (3,2)

(1,1) (1,1) (2,2) (3,2) (2,1) (0,0)

(2,1) (2,1) (3,2) (1,1) (0,0) (2,2)

(2,2) (2,2) (2,1) (0,0) (3,2) (1,1)

(3,2) (3,2) (0,0) (2,2) (1,1) (2,1) .

We can define a Markov chain on Q, that is analogous to the abelian sandpile Markov chain,

by letting the equivalence classes represented by each standard basis vector and the zero vector

represent moves, roughly giving us a way to walk around within a cell of the integer lattice.

Definition 2.2.2. For an invertible n × n matrix A, the lattice walk on Q = Zn/AZn is the
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Markov chain with transition matrix

P ([x], [y]) =


1

n+1 if x− y ∈ AZn

1
n+1 if x− y ∈ ei +AZn for some i = 1, . . . , n

0 otherwise.

It is clear that the lattice walk is aperiodic since P ([x], [x]) > 0. The lattice walk is irreducible

since for any [x], [y] ∈ Q, there exists a representative [x′] = [x] such that the difference x′−y is

a positive integer combination of the standard basis vectors. The stationary distribution of the

lattice walk is uniform. Arguments in Section 2 of [15] can be modified appropriately in order

to get a formula for the eigenvalues of the transition matrix for the lattice walk. For a function

h : [n]→ D, where D is an arbitrary set, we use the shorthand hi to denote the function value

h(i). Also, recall that we let T denote the unit circle in the complex plane.

Definition 2.2.3. Let Ai denote the i-th column of the matrix A. Then a function h : [n]→ T
is harmonic with respect to A if hA

+
i = hA

−
i for all i = 1, . . . , n. Let HA denote the set of

harmonic functions with respect to A.

Given a function h ∈ HA, we can define a homomorphism χh : Q → T, where

χh([x]) =

n∏
i=1

hxii . (2.2)

Using the correspondence defined in Equation 2.2, we can show that the harmonic functions

for a matrix A are in 1-1 correspondence with the elements of the dual group Q̂ = Hom(Q,T),

which consists of homomorphism from the group Q to T.

Proposition 2.2.4. Let P be the transition matrix for the lattice walk on Q. Then P has

an orthonormal basis {χh : h ∈ HA} of eigenfunctions and the corresponding eigenvalues are

λh = µ̂(χh) :=
∑

[x]∈Q µ([x])χh([x]) for each h ∈ HA. Further, λh = 1
n+1(

∑n
i=1 hi + 1).

Proof. The first statement is Lemma 2.1 of [15], which only relies on the finite abelian structure

ofQ. The latter holds by the 1-1 correspondence betweenHA and Q̂ defined in Equation 2.2.

The significant takeaway from Proposition 2.2.4 is the characterization of the eigenvalues in

terms of the harmonic functions HA. It is worth mentioning that in certain cases, the formula

for the eigenvalues can be arrived in another way. Due to the structure, the lattice walk on Q
is equivalent to a random walk on a finite abelian group where moves are generated uniformly

from the set { e1, e2, . . . , en,0 } . If the equivalent group is cyclic, then the transition matrix of

the lattice walk is a circulant matrix, the eigenvalues of which can be described nicely.
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Definition 2.2.5. An n×n matrix A is circulant if each row is a circular shift of the first row.

In other words, A has the form

A =


a1 a2 · · · an−1 a0

a0 a1 · · · an−2 an−1

. . .
. . .

a2 a3 · · · a1

 .

For a vector a, the matrix circ(a) is the circulant matrix whose first row is a.

Lemma 2.2.6. Suppose a = (a1, a2, . . . , an−1, a0) ∈ Rn. For j = 0, 1, . . . , n − 1, let ξj =

exp (2πj
n i) be an n-th root of unity. (Here i is the imaginary unit, not an index). Then the

eigenvalues of the matrix circ(a) are

λj =

n∑
i=1

ai( mod n)ξ
i−1
j , for j = 0, 1, . . . , n− 1

and the corresponding eigenvectors are fj = (1, ξj , ξ
2
j , . . . , ξ

n−1
j ).

Proof. Let A = circ(a). Then the k-th entry of the vector (Afj) is

(Afj)k =
n∑
i=1

ai−k+1( mod n)ξ
i−1
j

= ξk−1
j ·

n∑
i=1

ai−k+1( mod n)ξ
i−k
j

Since ξj is an n-th root of unity we have that, for each 1 ≤ k ≤ n, the list (ai−k+1( mod n)ξ
i−k
j )ni=1

is a circular shift of the list (ai( mod n)ξ
i−1
j )ni=1. The result follows.

Example 2.2.7. Let Tn be the n × n tridiagonal matrix with 3’s on the diagonal, −1’s on

the super- and sub-diagonals, and zeros elsewhere. The lattice walk on Zn/TnZn is a natural

generalization of the sandpile random walk for the cycle graph, whose reduced Laplacian is the

matrix with 2’s on the diagonal and −1’s on super- and sub-diagonals.

The size |Zn/TnZn| of the state space of the lattice walk is F2n, the 2n-th Fibonacci number,

where we assume the seed values F0 = 1 and F1 = 2. This fact can be shown inductively by

computing the determinant of the matrix Tn. First observe that det(T0) = 1 and det(T1) =

3. For n ≥ 2, by expanding the determinant along the first row it follows that det(Tn) =

3(−1)(1+1)dn1,1−1(−1)(1+2)dn1,2, where dni,j is the determinant of the (n−1)× (n−1) sub-matrix

of Tn obtained by removing the i-th row and j-th column. Then, det(Tn) = 3dn1,1 + dn1,2 =
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3 det(Tn−1) − det(Tn−2), where the last equality comes from expanding the determinant dn1,2
along the first column of the appropriate sub-matrix.

Using the Structure Theorem for Finitely Generated Modules over a PID, we can classify

the quotient Zn/TnZn. For convenience, we let the sequence (Dn)n∈N denote the bisection of

the Fibonacci sequence given by the recurrence Dn+1 = 3Dn − Dn−1. Then Dn = F2n for all

n ∈ Z≥0.

Let ϕ : Zn → Zn be the map given by ϕ(z) = Tnz. Then the image of ϕ is the set of

generators of TnZn. The matrix representation of ϕ with respect to the standard basis E is

Tn. Computing the Smith normal form of Tn reveals bases B and C with respect to which the

matrix of ϕ is diagonal. If R and S are the n× n unimodular matrices,

R =



0 −1 0 0 . . . 0

0 0 −1 0 . . . 0
. . .

0 0 0 0 . . . −1

1 3 8 21 . . . Dn−1


S =



1 3 8 21 . . . Dn−1

0 1 3 8 . . . Dn−2

0 0 1 3 . . . Dn−3

. . .

0 0 0 0 . . . 1


,

then RTnS = In + (Dn − 1)ene
T
n is diagonal and by interpreting R and S as change of basis

matrices, it follows that R = [id]C,E and S = [id]E,B where the bases B and C can be expressed

in terms of E :

B := {b1 = e1, b2 = 3e1 + e2, . . . , bn = Dn−1e1 +Dn−2e2 + . . .+ en} and,

C := {c1 = 3e1 − e2, c2 = 8e1 − e3, . . . , cn−1 = Dn−1e1 − en, cn = e1}.

The map ϕ sends bi to ci for i = 1, . . . , n − 1 and bn to Dncn. By the Structure Theorem,

the group TnZn is isomorphic to { 0 }
⊕
· · ·
⊕
{ 0 }

⊕
ZDn and so the quotient Zn/TnZn is

isomorphic to Z/DnZ.

To see the latter isomorphism explicitly, for each x ∈ Zn, let x =
∑n

i=1 xici give the coor-

dinates of x with the respect to the C basis. Then the function φ([x]) := xn mod (Dn) is an

isomorphism. In particular, φ maps the standard basis vectors φ([ei]) = Di−1 mod Dn. Hence

the lattice walk on Zn/TnZn can be characterized simply as the random walk on Z/DnZ with

moves chosen from {0, 1, D2, D3, . . . , Dn−1}. The main problem studied in this chapter is in-

spired by this connection. With this nicer characterization of the lattice walk we can easily

derive the following proposition.

Proposition 2.2.8. The transition matrix for the lattice walk on Zn/TnZn with moves gener-

ated from the set { e1, e2, . . . , en,0 } is the Dn ×Dn circulant matrix whose first row is given

by the vector 1
n+1(1, 1, 0, 1, 0, . . . , 0) where the nonzero entries are in positions 1 +Di(modDn)

34



for i = 0, 1, 2, . . . , n.

The eigenvalues follow from Lemma 2.2.6. Let ξDn be a primitive Dn-th root of unity. The

eigenvalues λn1 , λ
n
2 , . . . , λ

n
Dn

of the transition matrix for the lattice walk on Zn/TnZn are given

by

λnk =
1

n+ 1

n∑
j=0

ξ
k·Dj
Dn

. (2.3)

2.3 Preliminary Results

This section collects additional results that will be applied to prove results about the linear

recurrence random walk. We explicitly state the formula for the eigenvalues of the transition

matrix, we recall a theorem about the growth of an integer sequence given by certain linear

recurrences, and we state a bounds on the mixing time for Markov chains on groups. More

details on the importance of the group structure for analyzing eigenvalues of Markov chains

appear in [8].

Lemma 2.3.1. Let (Pn)n≥1 be the sequence of transition matrices of the linear recurrence ran-

dom walk associated to the positive increasing integer sequence (Gn)n≥1 that satisfies Equation

2.1 and G1 = 1. Let ξkGn = exp(2πk
Gn

i) be a primitive Gn-th root of unity, where i =
√
−1. Then

the eigenvalues of Pn are

λk =
1

n

n∑
j=1

ξ
kGj
Gn

for k = 1, 2, . . . , Gn. (2.4)

Proof. The rows and columns of Pn are indexed by the elements of the cyclic group ZGn . If we

let the vector g(n) ∈ Rn be defined by

g
(n)
j =


1
n if j − 1 mod Gn ∈ { 0, 1, G2, . . . , Gn−1 }

0 otherwise,

then we can let Pn = circ(g(n)). By Lemma 2.2.6, the eigenvalue λk is

λk =

Gn∑
j=1

g
(n)
j( mod Gn)ξ

k·(j−1)
Gn

.

Since the coordinates of g(n) are nonzero, in fact they are 1
n , exactly when j−1 ∈ { 0, 1, G2, . . . , Gn−1 } ,

then λk = 1
n

∑n
j=1 ξ

kGj
Gn

.
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A standard theorem of elementary combinatorics characterizes the solutions of linear recur-

rence relations (see, e.g. [27, Chapter 4]):

Theorem 2.3.2. The sequence {Gn}n≥1 satisfies

Gn − α1Gn−1 − α2Gn−2 − · · · − αdGn−d = 0

exactly when for all n ≥ 0,

Gn =
l∑

i=1

Pi(n)γni

where 1 − α1x − α2x
2 − · · · − αdxd =

∏l
i=1(1 − γix)di, the γi’s are distinct and nonzero, and

each Pi(n) is a polynomial of degree less than di.

A consequence, of which we make frequent use, is that there exists a κ1 > 0 such that

logGn ≤ κ1n for all n. We say that the sequence (Gn)n∈N exhibits exponential growth if there

exists κ2 > 0 such that κ2n ≤ logGn for all sufficiently large n.

The following lemma is a rephrasing of the Upper Bound Lemma which allows us to use a

sum involving the eigenvalues of the transition matrix as an approximation for the distance to

stationarity at time t.

Lemma 2.3.3 (Upper Bound Lemma, [10]). Let P t0 be the t-step distribution of the linear

recurrence random walk associated to (Gn)n≥1 and let π be the uniform distribution over ZGn.

Then,

‖P t0 − π‖2TV ≤
1

4

Gn−1∑
k=1

|λk|2t,

where λk’s are nontrivial eigenvalues of the transition matrix of the random walk.

Lemma 2.3.3, combined with bounds on the eigenvalues of the transition matrices can be

used to get upper bounds on the mixing times of random walks over our finite group. Similarly,

lower bounds on the largest nontrivial eigenvalue modulus can give lower bounds on the mixing

time:

Lemma 2.3.4. For the linear recurrence random walk associated to (Gn)n≥1 with transition

matrix P ,

tmix(ε) ≥ ( 1
1−λ∗ − 1) log( 1

2ε)

where λ∗ = max{|λ| : λ is an eigenvalue of P, λ 6= 1}.

Lemma 2.3.4 is a special case of Theorem 1.2.16. Proof that the result of Theorem 1.2.16

holds for reversible, irreducible, aperiodic Markov chains can be found in [20]. As noted in
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[15], the proof from [20] also applies to the linear recurrence random walk since P has an

orthonormal basis of eigenfunctions with respect to the standard complex inner product 〈f, g〉 =
1
Gn

∑
x∈ZGn

f(x)g(x).

2.4 General Linear Recurrences

In this section, we prove bounds on nontrivial eigenvalue moduli for linear recurrence relations

of arbitrary order. From this we are able to deduce lower and upper bounds on the mixing

time of the Markov chain. In the next section, we specialize to the case of first order linear

recurrences, where we are able to prove stronger upper and lower bounds.

The main result of this section is the following:

Theorem 2.4.1. For the random walk determined by the linear recurrence {Gn}n≥1 with G1 =

1, the mixing time satisfies:

tmix(ε) ≤ κn log(Gn − 1)− κn log(4ε2), where κ =
1

4− 4 cos( π
s+1)

.

Note that for large n, there is a constant κ1 such that log(Gn − 1) ≤ κ1n. So from this

bound we have the following corollary.

Corollary 2.4.2. For the random walk determined by the linear recurrence {Gn}n≥1 with

G1 = 1, tmix ≤ γn2 for some γ.

The overall strategy to prove Theorem 2.4.1 is to bound the modulus of the eigenvalues of

the transition matrix and then appeal to Lemma 2.3.3. We first establish a few lemmas.

Lemma 2.4.3. Let a > 0 be some real number. If θ ∈ [ 2π
a+1 ,

2πa
a+1 ] then

|1 + exp(θi)| ≤ |1 + exp( 2πi
a+1)|.

Proof. If θ ∈ [ 2π
a+1 ,

2πa
a+1 ] then cos(θ) ≤ cos( 2π

a+1) so

|1 + exp(θi)| =
√

2 + 2 cos(θ)

≤
√

2 + 2 cos( 2π
a+1)

= |1 + exp( 2πi
a+1)|.

Now for each Gi we identify a subset Ai of [0, 2π]. Let

Ai :=

Gi−1⋃
m=0

[
2π

(s+ 1)Gi
+

2πm

Gi
,

2πs

(s+ 1)Gi
+

2πm

Gi

]
, where s =

∑
j:αj>0

αj .

37



Notice that each Ai satisfies the property that if the angle 2πk
Gn

is in Ai, then 2πkGi
Gn

mod 2π ∈
[ 2π
s+1 ,

2πs
s+1 ].

Lemma 2.4.4. If A = ∪n−1
i=1 Ai then A =

[
2π

(s+1)Gn−1
, 2π((s+1)Gn−1−1)

(s+1)Gn−1

]
.

Proof. First note that A1 = [ 2π
(s+1)G1

, 2πs
(s+1)G1

]. Now suppose ∪mi=1Ai is an interval, for some

1 ≤ m < n. Since Gi ≤ Gi+1 and Gi+1 ≤ sGi+1 for all i, then inequalities (2.5) and (2.6) hold:

2π
(s+1)Gi+1

≤ 2π
(s+1)Gi

≤ 2πs
(s+1)Gi+1

≤ 2πs
(s+1)Gi

(2.5)

2π
(s+1)Gi+1

+ 2π(Gi−1)
Gi

≤ 2π
(s+1)Gi

+ 2π(Gi+1−1)
Gi+1

≤ 2πs
(s+1)Gi+1

+ 2π(Gi−1)
Gi

≤ 2πs
(s+1)Gi

+ 2π(Gi+1−1)
Gi+1

.

(2.6)

It follows that the first and last intervals in the set Am+1 extend the endpoints of the interval

∪mi=1Ai.

Lemma 2.4.5. The angle 2πk
Gn

mod 2π is in A = ∪n−1
i=1 Ai for each k = 1, 2, . . . , Gn − 1.

Proof. It suffices to show that [ 2π
Gn
, 2π(Gn−1)

Gn
] ⊂ A. Since Gn ≤ (s + 1)Gn−1, then inequality

(2.7) holds:
2π

(s+1)Gn−1
≤ 2π

Gn
≤ 2π(Gn−1)

Gn
≤ 2πs

(s+1)Gn−1
+ 2π(Gn−1−1)

Gn−1
. (2.7)

Lemma 2.4.6. For n ≥ 2 and each k = 1, 2, . . . , Gn − 1, the eigenvalue modulus |λk| satisfies

the following:

|λk| ≤ 1− 2
n(1− |cos( π

s+1)|) where s =
∑
j:αj>0

αj .

Proof. We will show that for each k there exists some j ∈ {1, 2, . . . , n− 1} such that

|ξkGjGn
+ 1| ≤

√
2 + 2 cos(2π/s+ 1). (2.8)

Then assuming (2.8) holds it follows that

|λk| = 1
n |

n∑
i=1

ξkGiGn
|

≤ 1
n

|ξkGjGn
+ ξkGnGn

|+
∑
i 6=j,n
|ξkGiGn

|


≤ 1

n

(
n− 2 +

√
2 + 2 cos( 2π

s+1)

)
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= 1− 2
n

(
1− |cos( π

s+1)|
)
.

Thus it only remains to show that (2.8) holds. By Lemma 2.4.3 it suffices to show that

there exists some j ∈ {1, 2, . . . , n− 1} such that
2πkGj
Gn

mod 2π is in the interval [ 2π
s+1 ,

2πs
s+1 ]. By

Lemma 2.4.5, the angle 2πk
Gn

mod 2π is in A therefore we can let j be the integer such that

1 ≤ j < n and 2πk
Gn

is in Aj . Then we have
2πkGj
Gn

mod 2π ∈ [ 2π
s+1 ,

2πs
s+1 ] and hence |ξkGjGn

+ 1| ≤√
2 + 2 cos( 2π

s+1).

We now prove Theorem 2.4.1.

Proof of Theorem 2.4.1. By Lemma 2.3.3, the distance to stationarity after t steps is less than

ε when
∑Gn−1

k=1 |λk|2t ≤ 4ε2. If κ = 1
4−4 cos( π

s+1
) then by Lemma 2.4.6,

Gn−1∑
k=1

|λk|2t ≤
Gn−1∑
k=1

(1− 1
2κn)2t ≤ (Gn − 1) exp(− t

κn). (2.9)

Notice the right hand side of (2.9) is bounded above by 4ε2 when t ≥ nκ log(Gn−1
4ε2

).

To conclude this section, we prove a lower bound for tmix in the case of general linear

recurrences where (Gn) satisfies the exponential growth condition.

Theorem 2.4.7. For the random walk determined by the linear recurrence (Gn)n≥1 with G1 =

1, satisfying the exponential growth condition, if n > 1

tmix(ε) ≥ n− γ log n

γ log n
log( 1

2ε)

where γ is some constant.

Proof. We will show that λ∗ satisfies the inequality λ∗ ≥ 1− γ logn
n then appeal to Lemma 2.3.4.

Let m : N→ N ∪ {0} be the function

m(n) =

maxj∈{1,...,n−1}{
Gn−j
Gn

> 1
n} if Gn−1

Gn
> 1

n

0 otherwise

Recall that one of the eigenvalues λ1 has the form:

λ1 =
1

n

n∑
i=1

ξGiGn .
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We will use the function m(n) to give a lower bound on |λ1|. The modulus of λ1 is bounded

from below by the real part of λ1. This real part is

n∑
i=1

cos

(
2πGi
Gn

)
.

We can bound this sum from below to see that

|λ1| ≥
1 + (n−m(n)− 1) cos(2π

n )−m(n)

n

by replacing all summands cos
(

2πGi
Gn

)
where Gi/Gn < 1/n by cos(2π

n ) and replacing all sum-

mands where Gi/Gn > 1/n by −1.

Further, since cos(x) ≥ 1− x2

2 , it follows that

|λ1| ≥ 1− 2m(n)

n
− 2π2

n2
+

2π2(m(n) + 1)

n3

≥ 1− 2m(n)

n
− 2π2

n2
.

Now let η1, η2 > 1 be constants and p be a polynomial such that ηn1 p(n) ≤ Gn ≤ ηn2 p(n) for

all n. Then we observe that
Gn−j
Gn

> 1
n holds when the inequality

η
(n−j)
1 p(n−j)
ηn2 p(n) ≥ 1

n holds.

By rearranging, this occurs when

j <
log n

log η1
+
n(log η1 − log η2)

log η1
+ log

(
p(n− j)
p(n)

)
(2.10)

≤ log n

log η1
(2.11)

(since the two dropped terms are negative). It follows that m(n) ≤ logn
log η1

and so

|λ1| ≥ 1− 2 log n

n log η1
− 2π2

n2

≥ 1− log n

n
( 2

log η1
+ 2π2

n logn)

For n ≥ 2, the term 2π2

n logn is bounded above by π2

log 2 .

|λ1| ≥ 1− log n

n
( 2

log η1
+ π2

log 2).

This shows that λ∗ ≥ 1 − γ logn
n where γ = 2

log η1
+ π2

log 2 . Then by Lemma 2.3.4, tmix(ε) ≥
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n−γ logn
γ logn log

(
1
2ε

)
.

2.5 First Order Recurrences

This section considers sequences generated by first order recurrences Gn = cGn−1, that is,

geometric series of the form 1, c, c2, c3, . . ., where c > 1 is a positive integer. For these sequences,

we show that the order of the mixing time of associated family of random walks is between n

and n log n. The main result of this section is the following upper bound on mixing time:

Theorem 2.5.1. For the random walk determined by the sequence {cn−1}n≥1, where c > 1 is

an integer,

tmix(ε) ≤ κn log((n− 1)(c− 1))− κn log(log(4ε2 + 1)), where κ = 1
1−cos(π/c) .

The easier lower bound will be proven in Theorem 2.5.4 at the end of the section. The key to

proving Theorem 2.5.1 will be to exploit the following relationship between the eigenvalues of

the n-th random walk and the (n+ 1)-th random walk. Let λ̃n,k denote the k-th unnormalized

eigenvalue of the n-th random walk determined by {cn−1}n≥1. That is,

λ̃n,k =

n∑
i=1

ξkc
i−1

cn−1 =
n−1∑
i=0

ξkci .

Observation. For each k = 1, 2, . . . , Gn, we “lift” the unnormalized eigenvalue λ̃n,k to the set

Ln,k = {λ̃n+1,k+jcn−1 : j = 0, 1, . . . , c− 1}

of c unnormalized eigenvalues in the (n+ 1)-th random walk. Each element of Ln,k is equal to

λ̃n,k plus some value of the form ξNcn . That is,

λ̃n+1,k+jcn−1 =
n∑
i=0

ξk+jcn−1

ci
= λ̃n,k + ξk+jcn−1

cn .

Over the course of the next two lemmas, we use Observation 2.5 and show that each |λ̃n,k|
is bounded above by a value of the form n + m

2 (1 − cos(πc )), for some m ∈ {0, 1, . . . , n − 1}.
Once that is established, to prove Theorem 2.5.1 we will apply the Upper Bound Lemma.

Lemma 2.5.2. Let c > 1 be an integer, z ∈ C, and define sets A and B as follows:

A = {|z + exp(2πji
c )| : j = 0, 1, . . . , c− 1}
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B = {|z|+ 1} ∪ {
√
|z|2 + 2|z| cos( (2j−1)π

c ) + 1 : j = 1, 2, . . . , b c2c}

There exists a function f : A → B such that x ≤ f(x) for all x ∈ A.

Proof. Let α be the angle between z and the vector nearest to z from the set {exp(2πji
c ) : j =

0, 1, . . . , c− 1} in the complex plane. So α satisfies the inequality 0 ≤ α ≤ π
c . We illustrate an

example in Figure 2.2.

v0

v1v2

v3

v4 v5

z

Figure 2.2: Suppose c = 6, vj = exp(πji/3), and z ∈ C as shown. Then α is the angle between
z and v1. Lemma 2.5.2 gives an upper bound on |z + vj | for each j.

When c is even,

A = {
√
|z|2 ± 2|z| cos(α) + 1} ∪ {

√
|z|2 ± 2|z| cos(2jπ

c ± α) + 1 : j = 1, 2, . . . , c2 − 1}.

We define the function f as follows:

f(x) =


|z|+ 1 if x =

√
|z|2 + 2|z| cos(α) + 1,√

|z|2 + 2|z| cos(π − π
c ) + 1 if x =

√
|z|2 − 2|z| cos(α) + 1,√

|z|2 + 2|z| cos( (2j−1)π
c ) + 1 if x =

√
|z|2 ± 2|z| cos( 2jπ

c ± α) + 1, for 1 ≤ j ≤ c
2 − 1.

It is clear that f(A) ⊂ B. Now to check that x ≤ f(x) for each x ∈ A we consider the three

cases. First, since 0 ≤ α ≤ π, then√
|z|2 + 2|z| cos(α) + 1 ≤ |z|+ 1.

Second, since π − α ≥ π − π
c , then − cos(α) = cos(π − α) ≤ cos(π − π

c ). Hence,

√
|z|2 − 2|z| cos(α) + 1 ≤

√
|z|2 + 2|z| cos(π − π

c ) + 1.
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Third, for each j = 1, 2, . . . , c2 − 1, the inequality 2jπ
c ± α ≥

(2j−1)π
c holds. Hence,√

|z|2 ± 2|z| cos(2jπ
c ± α) + 1 ≤

√
|z|2 + 2|z| cos( (2j−1)π

c ) + 1.

When c is odd,

A = {
√
|z|2 + 2|z| cos(α) + 1} ∪ {

√
|z|2 ± 2|z| cos(2jπ

c ± α) + 1 : j = 1, 2, . . . , c−1
2 }.

In this case we define the function f as

f(x) =

|z|+ 1 if x =
√
|z|2 + 2|z| cos(α) + 1,√

|z|2 + 2|z| cos( (2j−1)π
c ) + 1 if x =

√
|z|2 ± 2|z| cos( 2jπ

c ± α) + 1, for 1 ≤ j ≤ c−1
2 .

By the same arguments used in the even case, x ≤ f(x) for all x ∈ A.

Notice that Lemma 2.5.2 still holds when we instead define A = {|z + exp(2π(j+l)i
c )| : j =

0, 1, . . . , c − 1}, for some fixed integer l > 0, since this change corresponds to rotating each

v ∈ {exp(2πji
c ) : j = 0, 1, . . . , c− 1} about the origin through the same fixed angle.

Lemma 2.5.3. For n > 1, define the sets Un and Vn as follows:

Un = {|λ̃n,k| : k = 1, 2, . . . , cn−1}

Vn = {n+ m
2 (cos(πc )− 1) : m = 0, 1, . . . , n− 1}

There exists a function hn : Un → Vn such that,

1. u ≤ hn(u) for all u ∈ Un, and

2. #h−1
n (n+ m

2 (cos(πc )− 1)) =
(
n−1
m

)
(c− 1)m, for m = 0, 1, . . . , n− 1.

Proof. Here we use induction. Let n = 2. By observation 2.5, the set U2 is {|λ̃1,1 + ξ1+j
c | : j =

0, 1, . . . , c− 1}. Note that λ̃1,1 = 1 and

{ξ1+j
c : j = 0, 1, . . . , c− 1} = {exp(

2πji

c
) : j = 0, 1, . . . , c− 1}.

So we can let

f : U2 → {2} ∪ {
√

2 + 2 cos( (2j−1)π
c ) : j = 1, 2, . . . , b c2c}

be as described in proof of Lemma 2.5.2 where u ≤ f(u) for all u ∈ U2 and define h2 as follows:
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h2(u) =

2 if u ∈ f−1(2)

2 + 1
2(cos(πc )− 1) otherwise.

Since #f−1(2) = 1, then #h−1
2 (2) = 1 and #h−1

2 (2 + 1
2(cos(πc )− 1)) = c− 1, so h2 satisfies

condition (2). For u ∈ h−1
2 (2), the inequality u ≤ h2(u) holds by the triangle inequality. If

u ∈ h−1
2 (2 + 1

2(cos(πc )− 1)), then u = |λ̃1,1 + ξ1+j
c | for some j such that the angle between λ̃1,1

and ξ1+j
c , when plotted in the complex plane, is greater than or equal to π

c . As a consequence

of Lemma 2.5.2, u ≤
√

2 + 2 cos(πc ). Now

2 + 2 cos(πc ) ≤ (2 + 1
2(cos(πc )− 1))2

since 1
4(cos(πc )− 1)2 ≥ 0 and hence h2 also satisfies condition (1).

Now suppose the Lemma 2.5.3 holds for some n > 1. We will define a function

hn+1 : {|λ̃n+1,k| : k = 1, 2, . . . , cn} → {n+ 1 + m
2 (cos(πc )− 1) : m = 0, 1, . . . , n}

that satisfies conditions (1) and (2) assuming there exists a function

hn : {|λ̃n,k| : k = 1, 2, . . . , cn−1} → {n+ m
2 (cos(πc )− 1) : m = 0, 1, . . . , n− 1}

that satisfies those conditions.

For each k = 1, 2, . . . , cn−1, let

Un+1,k = {|λ̃n+1,k+jcn−1 | : j = 0, 1, . . . , c− 1}.

Then by Observation 2.5,

Un+1,k = {|λ̃n,k + ξk+jcn−1

cn | : j = 0, 1, . . . , c− 1}

and Un+1 = ∪cn−1

k=1 Un+1,k. For each k, the set

{ξk+jcn−1

cn : j = 0, 1, . . . , c− 1} = {exp(2πki
cn ) exp(2πji

c ) : j = 0, 1, . . . , c− 1}

is a rotation of the set {exp(2πji
c ) : j = 0, 1, . . . , c − 1} about the origin in the complex plane.

So we can let |λ̃n,k + ξk+j′cn−1

cn | be an element of Un+1,k such that the vector nearest to λ̃n,k

from the set {ξk+jcn−1

cn : j = 0, 1, . . . , c− 1} is ξk+j′cn−1

cn . Now set

hn+1(|λ̃n,k + ξk+j′cn−1

cn |) = hn(|λ̃n,k|) + 1
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and for the remaining |λ̃n,k + ξk+jcn−1

cn | ∈ Un+1,k, set

hn+1(|λ̃n,k + ξk+jcn−1

cn |) = hn(|λ̃n,k|) + 1
2(cos(πc ) + 1).

By repeating for each k, we define hn+1 on all of Un+1.

It remains to show that hn+1 satisfies conditions (1) and (2). We first show that u ≤ hn+1(u)

for all u ∈ Un+1:

For u ∈ Un+1, u = |λ̃n,k + ξk+jcn−1

cn | for some k ∈ {1, 2, . . . , cn−1} and some j ∈ {0, 1, . . . , c−
1}. If hn+1(u) = hn(|λ̃n,k|) + 1, then u ≤ hn+1(u) by the triangle inequality. On the other hand

suppose hn+1(u) = hn(|λ̃n,k|) + 1
2(cos(πc ) + 1) and say hn(|λ̃n,k|) = n+ m′

2 (cos(πc )− 1) for some

0 ≤ m′ ≤ n− 1. Then |λ̃n,k|≤ n+ m′

2 (cos(πc )− 1) and hn+1(u) = n+ 1 + m′+1
2 (cos(πc )− 1). As

a corollary to Lemma 2.5.2,

u ≤
√
|λ̃n,k|2 + 2|λ̃n,k| cos(πc ) + 1

≤
√

(n+ m′

2 (cos(πc )− 1))2 + 2(n+ m′

2 (cos(πc )− 1)) cos(πc ) + 1

≤ n+ 1 + m′+1
2 (cos(πc )− 1)

The last step follows since

m′ cos(πc )(cos(πc )− 1) ≤ m′ cos(πc ) + (n+ 1)(cos(πc )− 1) + 2m′+1
4 (cos(πc )− 1).

Finally we show that #h−1
n+1(n+ 1 + m

2 (cos(πc )− 1)) =
(
n
m

)
(c− 1)m, for m = 0, 1, . . . , n. By

inductive hypothesis h−1
n (n+ m

2 (cos(πc )− 1)) =
(
n−1
m

)
(c− 1)m, for m = 0, 1, . . . , n− 1.

We note that #h−1
n+1(n+ 1) = #h−1

n (n) = 1 and for m′ satisfying 1 ≤ m′ ≤ n,

#h−1
n+1(n+ 1 + m

2 (cos(πc )− 1)) = #h−1
n (n+ m

2 (cos(πc )− 1)) + #h−1
n (n+ m−1

2 (cos(πc )− 1)) · (c− 1)

=

(
n− 1

m

)
(c− 1)m +

(
n− 1

m− 1

)
(c− 1)m

= (c− 1)m
(
n

m

)
which concludes the proof.

Proof of Theorem 2.5.1. Recall that λk = 1
n

∑n
i=1 ξ

kci−1

cn−1 is the k-th eigenvalue of the n-th ran-

dom walk. So |λk| = 1
n |λ̃n,k|. By Lemma 2.3.3, to find t such that ‖P t0 − π‖TV ≤ ε, it suffices to

find t such that
∑cn−1−1

k=1 |λk|2t ≤ 4ε2.
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If κ = 1
1−cos(π/c) then by Lemma 2.5.3 we have

cn−1−1∑
k=1

|λk|2t =
cn−1−1∑
k=1

(
1

n
|λ̃n,k|

)2t

≤
n−1∑
m=1

(
n− 1

m

)
(c− 1)m

(
1− m

2κn

)2t
(2.12)

The right hand side of (2.12) can also be bounded above

≤
n−1∑
m=1

(
n− 1

m

)
(c− 1)m exp

(
− t
κn

)m
and by the Binomial Theorem,

=
(
1 + (c− 1) exp(− t

κn)
)n−1 − 1 ≤ exp

(
(c− 1)(n− 1) exp(− t

κn)
)
− 1. (2.13)

Finally, the right hand side of (2.13) ≤ 4ε2 when

t ≥ κn log((n− 1)(c− 1))− κn log(log(4ε2 + 1)).

We conclude this section with a lower bound on mixing time.

Theorem 2.5.4. For the random walk determined by the sequence {cn−1}n≥1, where c > 1 is

an integer,

tmix(ε) ≥ (γn− 1) log( 1
2ε), where γ = 1

1−cos(2π/c) .

Proof. For fixed n > 1, the modulus of the k = cn−2-th eigenvalue satisfies the inequality

|λcn−2 | = 1
n |ξc + n− 1| ≤ 1− 1−cos(2π/c)

n .

So λ∗ = max{|λ| : λ is an eigenvalue of P, λ 6= 1} ≥ 1− 1−cos(2π/c)
n , thus by Lemma 2.3.4,

tmix(ε) ≥
(

n
1−cos(2π/c) − 1

)
log( 1

2ε).

2.6 Conclusion

We have shown that the order of the mixing time of random walks determined by a general

linear recurrence exhibiting exponential growth is between n/ log n and n2. A situation that

requires further study is the special case where the integer sequence defined by the linear

recurrence exhibits polynomial growth instead. This occurs when the characteristic equation

of the recurrence is (1 − x)d for some d ∈ N. For this case, the result and proof of Theorem

2.4.1 still holds and the corresponding upper bound on mixing time is on the order of n log n.
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However based on the computations of certain examples, we expect that the true mixing time

of these random walks are likely bounded by a function of log n.

Proving mixing times results for sequences of polynomial growth seems to be related to

some classic problems in number theory. For example, consider the following special case:

For fixed k ∈ N>1 and n > 1 ranging, describe the mixing behavior of the random walk

(Xt)t≥0 with state space S = Znk , initial state X0 = 0, and where from the current state Xt,

the next state is given by

Xt+1 ≡ Xt + zk mod nk,

with z chosen from the set M = {1, 2, . . . , n} uniformly at random.

The Hilbert-Waring theorem [13] (which says that there is a function g(k) such that every

nonnegative integer can we written as a sum of at most g(k) k-th powers) guarantees that this

Markov chain has a bounded diameter for all n. The mixing time of the Markov chain appears

to be related to the problem of determining the number of ways that a number can be written

as the sum of l k-th powers. This has complicated relations to theta functions.
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Chapter 3

Sampling Lattice Points of

Polytopes via Fiber Walks

3.1 Motivation

We now turn our attention to the problem of sampling lattice points of polytopes. The moti-

vation arises from independence testing in statistics where the task is as follows: Imagine we

would like to explore the relationship between two categorical variables and determine if they

are dependent on each other. To test this we may collect data from a sample population and

from perform a hypothesis test of independence. Example 3.1.1 details this process.

Example 3.1.1. Suppose we have randomly polled 120 people on their favorite color and

favorite board game, and then recorded and organized the count data into the contingency

table seen in Table 3.1.

The rows of Table 3.1 are indexed by the games G = (Monopoly, Catan, Scrabble, Clue) and

the columns are indexed by colors C = (Red, Blue, Green, Black). The entry T oij of the table is

the number of people whose favorite game is gi and whose favorite color cj . The null hypothesis

that we seek to test is that a person’s favorite color is independent of their favorite board game.

Assuming the null hypothesis is true, if a person is randomly chosen then the probability that

their favorite game is gi and favorite color is cj is given by Pr (gi, cj) = Pr (gi) Pr(cj).

Given the null hypothesis, the maximum likelihood estimation of the contingency table is

T eij =
1

N

|C|∑
k=1

T oik

|G|∑
k=1

T okj .

It is clear that the observed table T o and the expected table T e are not identical, and we

would not expect them to be even if the null hypothesis is true, due to the randomness that
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Table 3.1: The 4 × 4 contingency table organizes the observed data from a random sample
from Example 3.1.1.

Game \ Color Red Blue Green Black Total

Monopoly 12 11 6 7 36
Catan 10 8 10 9 37

Scrabble 6 13 5 11 35
Clue 3 5 2 2 12

Total 31 37 23 29 120

Table 3.2: Expected contingency table if a person’s favorite color and favorite board game are
independent

Game \ Color Red Blue Green Black Total

Monopoly 9.3 11.1 6.9 8.7 36
Catan 9.56 11.41 7.09 8.94 37

Scrabble 9.04 10.79 6.71 8.46 35
Clue 3.1 3.7 2.3 2.9 12

Total 31 37 23 29 120

arises from sampling. The question to consider is whether the difference between the two tables

is significant. To this end, we can use the volume test, introduced by Diaconis and Efron [9] as

an alternative to the classical chi-square test for independence. For the volume test, we compute

the chi-square statistic χ2(x) on the observed table to obtain a measure of the distance between

T o and T e, that is,

χ2(T o) =
∑
i,j

(T oij − T eij)2

T eij
.

We then consider all tables T ∈ N4×4 whose row and column sums are (36, 37, 35, 12) and

(31, 37, 23, 29), respectively, and for each compute the statistic χ2(T ). The significance level of

the volume test is the proportion of tables T satisfying χ2(T ) ≥ χ2(T o) to all tables with the

same margins.

Using LattE integrale [2] to count, we see that there are approximately 9.35 billion non-

negative integer tables whose row sums are (36, 37, 35, 12) and column sums are (31, 37, 23, 29),

and in practice, it is infeasible to enumerate each of these for the purposes of computing the chi-

square statistic for each. What we do instead is generate a uniform sample of these contingency

tables to approximate the significance level.

Recall in Example 1.3.19 we saw that the set of contingency tables with specified margins

49



are exactly the integer points P ∩ Zn of a certain polytope P . Chapters 3 and 4 are concerned

with finding efficient methods for sampling near-uniformly from the set of lattice points of

general polytopes.

The approach in this chapter is to define a graph structure on a set F = P ∩ Zn for some

polytope P where edges of the graph correspond to a finite set of moves M. With the graph

in hand, a variation of a random walk on the graph with uniform stationary distribution is

then implemented as a means to sample from the set F . In Section 3.2 we discuss a general

graph construction where lattice points are vertices and edges correspond to moves. In Section

3.3 we define the simple walk on that graph. Though the particular walk is a natural one to

define, we show that in certain instances the mixing behavior is slow. Finally, in Section 3.4,

we explore the heat-bath random walk which can be thought of as the discrete analog of the

hit-and-run random wall which is often used to sample from general convex, continuous sets.

The hit-and-run algorithm is discussed in greater detail in Chapter 4. We will see that moving

to the heat-bath random walk does not necessarily improve the mixing behavior.

3.2 Fiber Graphs

The discussion and results presented in the remaining sections of this chapter are the result

of joint work with Tobias Windisch. The project began with providing an alternate proof of

a result in [28] stating that the simple walk, a Markov chain defined on a fiber graph, is not

rapidly mixing. In this section we formally define fiber graphs.

Definition 3.2.1. Let F ⊂ Zn be a finite set and let M ⊂ Zn be a set of moves. The graph

F(M) has vertex set F and two nodes x, y ∈ F are adjacent if x− y ∈M or y − x ∈M.

Definition 3.2.2. Let F ⊂ Zn and M ⊂ Zn be finite sets. If the graph F(M) is connected

thenM is a Markov basis for F . When P is a collection of finite subsets of Zn, we say thatM
is a Markov basis for P, if for all F ∈ P, the graph F(M) is a connected.

Example 3.2.3. Let Fd = [4]× [d] be the rectangular grid and let P = {Fd : d ∈ N}. The set

M1 = {(0, 1), (1, 0)} is a Markov basis for P. On the other hand the set M2 = {(1, 1)} is not.

In Figure 3.1 we fix d = 3 and display both F3(M1) and F3(M2).

If there exists a polytope P ⊂ Rn such that F = P ∩Zn then the set F is normal. Definition

3.2.5 introduces a particular type of normal set.

Definition 3.2.4. For a matrix A ∈ Zm×n, the set NA consists of all nonnegative integer

combinations of the columns of A. That is, NA := {Az : z ∈ Zn≥0}.
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Figure 3.1: On the left is F3(M1) and on the right is F3(M2) from Example 3.2.3.

Definition 3.2.5. Let A ∈ Zm×n be a matrix and b ∈ NA a vector. The b-fiber of A is the set

FA,b := {x ∈ Nn | Ax = b}. The collection of all b-fibers of A is denoted PA := {FA,b | b ∈ NA}.

The b-fiber of A ∈ Zm×n is normal since it is the set of integer points of the polytope

P = P


 A

−A
−In

 ,
 b

−b
0n


 .

Definition 3.2.6. Let A ∈ Zm×n be a matrix, b ∈ NA a vector, and M ⊂ Zn a set of moves.

The graph FA,b(M) is called a fiber graph.

Example 3.2.7. Suppose we have the matrix A ∈ Z2×5, the vector b ∈ Z2, and set M ⊂ Z5

defined as follows:

A =

1 3 1 4 5

2 −1 1 0 3

 , b =

18

5

 ,
and M = {m1 = (2, 1, 0, 0,−1)T ,m2 = (0, 1, 1,−1, 0)T ,m3 = (2, 3, 2,−2,−1)T }.

Then the b-fiber of A is the set,

FA,b = { x1, x2, . . . , x8 }

=





3

4

3

0

0


,
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3

2

1
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3
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.

Figure 3.2 shows the fiber graph FA,b(M).

For a matrix A ∈ Zm×n, there is at least one set of moves that is a Markov basis for
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x1 x2 x3 x4

x5 x6 x7 x8

Figure 3.2: The fiber graph from Example 3.2.7

the collection PA of b-fibers and thus we can always construct a connected fiber graph. With

the next group of definitions we introduce the Graver basis. Later we will see some properties

satisfied by the Graver basis. For more complete details on the Graver basis and its applications,

we refer the reader to [1].

Definition 3.2.8. The integer kernel of a matrix A ∈ Zm×n is the set

kerZ(A) := { x ∈ Zn : Ax = 0 } .

If x ∈ kerZ(A) then we call x a move of the matrix A.

Definition 3.2.9. For a point x ∈ Zn, the support of x, denoted supp(x) =
{
i : x(i) 6= 0

}
is the set of indices corresponding to nonzero coordinates. The positive part of x, denoted x+,

is the point given coordinate-wise by (x+)i := max(0, xi). Analogously, each coordinate of the

negative part of x, is (x−)i := max(0,−xi).

Definition 3.2.10. The sum x = x1 +x2 + · · ·+xk is conformal if supp(x+) =
⋃k
j=1 supp(x+

j )

and supp(x−) =
⋃k
j=1 supp(x−j ).

For example, (1, 0,−2,−2, 2) = (1, 0,−1,−1, 1) + (0, 0,−1,−1, 1) is a conformal sum while

(1, 1, 0, 0, 0) = (1, 0,−1,−1, 1) + (0, 1, 1, 1,−1) is not.

Definition 3.2.11. Let x be a move of A. We say that x is (conformally) primitive if there

does not exist two nonzero moves y and z of A such that x = y + z is a conformal sum.

Definition 3.2.12. The Graver basis of A ∈ Zm×n, denoted GA, is the set of conformally

primitive moves of A.

Example 3.2.13. Suppose Pm,n(r, c) is the set of m × n contingency tables with row sums

r and column sums c. If we let A be the configuration matrix for m × n contingency tables

(recall Remark 1.3.20) then Pm,n(r, c) represents the nonnegative points in the (r, c)-fiber of

the configuration matrix A.

For 2 ≤ k ≤ min {m,n }, let i[k] = (i1, . . . , ik) be a vector of distinct row indices and

j[k] = (j1, . . . , jk) be a vector of distinct column entries. A loop of degree k is a move zk(i[k], j[k]) ∈
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{ 0,±1 }m×n where the nonzero entries are

zi1j1 = zi2j2 = · · · = zikjk = 1

zi1j2 = zi2j3 = · · · = zikj1 = −1.

Then the set of loops of degree k, where 2 ≤ k ≤ min {m,n } forms the Graver basis for A. For

proof see Section 4.6 of [1].

Proposition 3.2.14. For A ∈ Zm×n, the Graver basis GA is finite. Further, for any x, y ∈ Zn

such that Ax = Ay, there exists moves g1, . . . , gk ∈ GA and constants κj ∈ { ±1 } such that

x− y =
∑k

j=1 κjgj .

Proof. If x, y ∈ Zn such that Ax = Ay, then (x− y) is a move of A. So either (x− y) is itself a

primitive move or can be recursively decomposed as a conformal sum of primitive moves. For

proof that GA is finite, see Section 5.4.3 in [1] of Hilbert Basis Theorem.

By Proposition 3.2.14, if we have x and y in the set of lattice points F = { x ∈ Zn : Ax = b },
then using a sequence of moves in the Graver basis of A we can walk from x and y. Later with

Proposition 3.3.9, we also see that the sequence of moves can be chosen so that at each step

the walk remains in F , thus proving that GA is a Markov basis.

3.3 Simple Fiber Walk

By implementing a random walk on the graph FA,b(M) we can explore and sample from the set

FA,b. The simple walk, which we formally define for arbitrary F ⊂ Zn next, is the random walk

on F where from the current state x, a move m ∈ M is chosen at random. If x+ m ∈ F then

the chain moves there. Otherwise the chain remains at x. The simple walk is a slight variation

of the random walk on a graph described in Section 1.1.1 in that the probability of remaining

at a point x can be positive even if 0 6∈ M.

Definition 3.3.1. Let F ⊂ Zn and M ⊂ Zn be two finite sets with 0 6∈ M. The simple walk

is the Markov chain with state space F whose transition probabilities are given as follows:

P (x, y) =


1

|±M| if x− y ∈ ±M,

|{m∈±M:x+m/∈FA,b}|
|±M| if x = y

0 otherwise

for all x, y ∈ F .
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· · ·

Figure 3.3: A sequence of fiber graphs FA,ib(M) where i ∈ N ranges.

If M is a Markov basis for F then the simple walk is irreducible. Since F is finite, there

must exist some x ∈ F and m ∈ M such that x + m 6∈ F and so the simple walk is also

aperiodic. Also notice that the transition matrix is symmetric since, for distinct x, y ∈ F , if

±(x − y) 6∈ M then P (x, y) = 0. Otherwise if x and y are connected by a move in M then

P (x, y) = P (y, x) = 1
|±M| . Thus when M is a Markov basis, the stationary distribution π to

which the simple walk converges is uniform on F .
The simple walk provides one way to sample points from F . To actually implement this

random walk requires computationally simple means of randomly generating moves from M
and checking if an arbitrary point x is in F . If F is a normal set expressed as a system of

linear inequalities then the latter can be checked efficiently with matrix- vector products. What

remains is to focus on the mixing behavior of the simple walk. The main theorem in this chapter

states that the simple walk on a sequence of normal sets { Fi }, arising as the set of lattice points

of an integer dilation of a fixed polytope P , does not mix rapidly.

Theorem 3.3.2. Let A ∈ Zm×n with kerZ(A)∩Zn≥0 = {0}, let b ∈ NA, and letM be a Markov

basis for PA. The simple walk on {FA,ib(M)}i∈N is not rapidly mixing.

The proof strategy relies on the growth of the diameter of the underlying graphs of the

random walk, which happens to coincide with the fiber graph. We will see that the diameter

grows linearly then relate the diameter to the conductance of the random walk.

For a finite set M⊂ Zn and any norm ‖·‖ on Rn, let ‖M‖ := maxm∈M‖m‖ .

Lemma 3.3.3. Let F ⊂ Zn and M⊂ Zn be finite sets, then

diam(F(M)) ≥ 1

‖M‖
max

{
‖x− y‖ : x, y ∈ F

}
.

Proof. Let x′, y′ ∈ F such that
∥∥x′ − y′∥∥ = max

{
‖x− y‖ : x, y ∈ F

}
and let p =

∑r
i=1 mi be a

minimal path of length r in F(M) from x′ to y′. Hence y′ = x′+
∑r

i=1 mi. Then by the triangle

inequality
∥∥x′ − y′∥∥ = ‖p‖ ≤

∑r
i=1‖mi‖ moreover

∥∥x′ − y′∥∥ ≤ ∑r
i=1‖mi‖ ≤ r‖M‖ . The result

follows since r is the graph distance d(x′, y′) and so r ≤ diam(F(M)).

Intuitively, Lemma 3.3.3 says that the number of edges in a path between x, y ∈ F is at
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least ‖x− y‖ divided by size of the largest step in M. Using Lemma 3.3.3 we show that the

diameter of the fiber graph Fi(M) where Fi = (i · P ∩ Zn) grows at least linearly with i.

Definition 3.3.4. A polytope P ⊂ Rn is rational if all of its vertices have rational coordinates.

Proposition 3.3.5. Let P ⊂ Rn be a rational polytope with |P∩Zn| > 1 and letM be a Markov

basis for Fi = (i ·P )∩Zn. Then there exists a constant C ∈ Q>0 such that C · i ≤ diam(Fi(M))

for all i ∈ N.

Proof. Since |P ∩Zn| > 1 we can choose distinct x′, y′ in P ∩Zn. Then for all i ∈ N, the points

ix′ and iy′ are in Fi and we have that
∥∥ix′ − iy′∥∥ = i

∥∥x′ − y′∥∥ ≤ max
{
‖x− y‖ : x, y ∈ Fi

}
. By

Lemma 3.3.3 it follows that diam(Fi(M)) ≥ i‖x
′−y′‖
‖M‖ .

Though it is not necessary for the proof of Theorem 3.3.2, we show that if the setM satisfies

further conditions then the diameter of Fi(M) grows at most linearly in i.

Definition 3.3.6. Let P be a collection of finite subsets of Zn. A finite setM⊂ Zn is norm-like

if there exists a constant C ∈ N such that for all F ∈ P and for all x, y ∈ F , d(x, y) ≤ C‖x− y‖.
The set M is ‖·‖-norm-reducing for P if for all F ∈ P and all x, y ∈ F there exists m ∈ M
such that x+ m ∈ F and ‖x+ m− y‖ <‖x− y‖.

The property of being norm-like does not depend on the norm whereas being norm-reducing

does. Norm-reducing sets are always norm-like and norm-like sets are Markov bases, since for

any F and x, y ∈ F the distance d(x, y) < ∞. The converse of each statement is not true in

general.

Example 3.3.7. For i ∈ N consider the normal set Fi = {[2] × [i] × {0}} ∪
{

(2, i, 1)
}

along

with the Markov basisM =
{

(0, 1, 0), (0, 0, 1), (1, 0, 1)
}

. Then the diameter of Fi(M) is equal

to the distance d((1, 1, 0), (2, 1, 0)) = 2i. Hence M is a Markov basis for { Fi : i ∈ N } but it is

not norm-like.

Example 3.3.8. Suppose P ⊂ R2 is the polytope given by the system of inequalities x ≥ 0, y ≥
0, and x+ y ≤ 2 andM =

{
m1 = (1,−1),m2 = (0, 1)

}
. If we let Fi = (i ·P )∩Z2 thenM is a

Markov basis for { Fi : i ∈ N } . Notice that M is not ‖·‖1- norm-reducing since, in particular,

for x = (0, 0) and y = (1, 0), any move from x increases the 1- norm distance to y. The set M
is however norm-like, as we can show that for any i ∈ N and any x, y ∈ Fi the distance d(x, y)

in Fi(M) is at most 2‖x− y‖1.

Proposition 3.3.9. For A ∈ Zm×n, the Graver basis GA is‖·‖1-norm-reducing for the collection

PA =
{
FA,b : b ∈ NA

}
.
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Proof. Suppose x, y ∈ FA,b are points in the same b-fiber of A. Then the difference (x − y) is

a move of A and we can write x − y = g1 + · · · gk as a conformal sum of nonzero elements

of GA. As the sum is conformal, the support of the positive parts and the negative parts are

compatible and so it follows that

‖x− y‖1 =

∥∥∥∥∥∥
k∑
j=1

gj

∥∥∥∥∥∥
1

=

k∑
j=1

∥∥gj∥∥1
.

The point (x − g1) remains in FA,b and we can show that the sum (x − y) − g1 =
∑k

j=2 gj is

also conformal: First note supp(((x− y)− g1)+) ⊆ supp((x− y)+) since x− y = g1 + · · · gk is a

conformal sum. If the index l ∈ supp((x−y)+) but l 6∈ supp(((x−y)−g1)+), then (x−y)l = (g1)l.

This means that supp(((x− y)− g1)+) ⊆
⋃k
j=2 supp(g+

j ), moreover, if index l ∈
⋃k
j=2 supp(g+

j )

then (x− y)l > (g1)l and so supp(((x− y)− g1)+) =
⋃k
j=2 supp(g+

j ). Using a similar argument,

supp(((x− y)− g1)−) =
⋃k
j=2 supp(g−j ). Therefore,

∥∥x− (y + g1)
∥∥

1
=

∥∥∥∥∥∥
k∑
j=2

gj

∥∥∥∥∥∥
1

=

k∑
j=2

∥∥gj∥∥1
< ‖x− y‖1 .

Proposition 3.3.10. Let P ⊂ Rn be a rational polytope with |P ∩ Zn| > 1 and let M be a

Markov basis for Fi = (i · P ) ∩ Zn. If M is norm-like for { Fi : i ∈ N }, then there exists a

constant C ∈ Q>0 such that diam(Fi(M)) ≤ C · i for all i ∈ N.

Proof. If M is norm-like then there exists a constant C such that for all i ∈ N,

diam(Fi(M)) = max
x,y∈Fi

d(x, y) ≤ C max
x,y∈Fi

‖x− y‖ .

Now it suffices to show that there exists a constant C0 such that maxx,y∈Fi‖x− y‖ ≤ C0 ·i for all

i ∈ N. Let v1, . . . vr ∈ Qn such that P = conv(v1, . . . , vr) and define C0 = max
{
‖vs − vt‖ : s 6= t

}
.

Since Fi = (i · P ) ∩ Zn ⊂ conv(iv1, . . . , ivr) for all i ∈ N, we have max
{
‖x− y‖ : x, y ∈ Fi

}
≤

max
{
‖ivs − ivt‖ : s 6= t

}
= C0 · i.

Proposition 3.3.11. Let A ∈ Zm×n with kerZ(A) ∩ Nn = {0}, b ∈ NA, and M be a Markov

basis for PA. There exists constants C,C ′ ∈ Q>0 such that

C ′ · i ≤ diam(FA,ib(M)) ≤ C · i.

Proof. The lower bound follows from Proposition 3.3.5. For the upper bound, we will show that
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M is norm-like for PA. Then the upper bound follows from Proposition 3.3.10.

By Proposition 3.3.9, the Graver basis GA for A is a finite set which is ‖·‖1- norm-reducing

for PA. Let C0 = maxg∈GA diam(FA,Ag+(M)), where g+ is the positive part of g. Now pick

x, y ∈ FA,b arbitrarily and let x = y +
∑r

j=1 gj be a walk from x to y in FA,b(GA) of minimal

length. Since the Graver basis is norm-reducing for FA,b there always exists a path of length at

most ‖x− y‖1 and hence r ≤ ‖x− y‖1. Every gj can be replaced by a path in FA,Ag+
j

(M) of

length at most C0 and these paths stay in FA,b. This gives a path of length C0 · r, hence the

graph distance in FA,b(M) from x to y satisfies d(x, y) ≤ C0‖x− y‖1 .

We conclude this section with the proof of Theorem 3.3.2 which states that the simple walk

on FA,ib(M) is not rapidly mixing. As mentioned previously the proof strategy takes the lower

bound on the diameter of the fiber graph and relates it to the conductance of the simple walk.

Proof of Theorem 3.3.2. The lower bound from Proposition 3.3.11 combined with Lemma 1.2.20

imposes an upper bound on the conductance of the simple walk on FA,ib(M), namely

Φ∗ ≤ exp

(
2 log |FA,ib|

C ′ · i

)
− 1

for some constant C ′. This upper bound on conductance along with Cheeger’s inequality implies

a lower bound on the SLEM of the form λ∗ ≥ 1 − 2Φ∗. By Ehrhart’s theory, the number of

integer points in the i-th dilation of a rational polytope is given by a quasi-polynomial in i.

More specifically, we have |FA,ib| ∈ Ω(in), where n is the dimension of the polytope (see Section

3.7 in [4]). What follows is the bound on the SLEM

λ∗ ≥ 1− 2

[
exp

(
2 log(Cin)

C ′ · i

)
− 1

]
for some constants C and C ′. By Definition 1.2.17, since λ∗ approaches 1 quickly relative to the

size of the state space |FA,ib|, the simple walk is not rapidly mixing.

3.4 Heat-Bath Random Walk

We saw by Theorem 3.3.2 that the simple walk on FA,ib(M) is not rapidly mixing. A natural

question to consider in response is whether the situation improves if more moves are added to

the Markov basis M. In particular, we can consider a variation of the simple walk on F(M)

where from the current state x ∈ F , a move m ∈ M is chosen randomly, then a new state y

is chosen randomly from the ray (x + m · Z) ∩ F . This modification of the simple walk is a

special case of the heat-bath random walk which can be thought of as the discrete version of

a hit-and-run algorithm. Intuitively, if we compare the heat-bath random walk to the simple

57



walk, then we expect for the mixing to improve since at each step in the chain, the pool of

candidates for the next state is increased. Thus the chain should theoretically “see” more states

quickly. In this section, we formally define and explore the heat-bath random walk. As in the

previous section we will also pay attention to the underlying graph.

Definition 3.4.1. Let F ⊂ Zn be a finite set and m ∈ Zn. For x ∈ F , the ray in F through x

along m is the set RF ,m(x) := (x+ m · Z) ∩ F .

Definition 3.4.2. Let F ,M ⊂ Zn be finite sets, and let π : F → (0, 1] and f : M → [0, 1]

be probability distributions. The heat-bath random walk is the Markov chain with state space

F where from the current state Xt = x, a move m ∈ M is chosen with probability f(m). The

next state Xt+1 = y ∈ RF ,m(x) is chosen with probability π(y)
π(RF,m(x)) . Let the matrix

Hπ
F ,m(x, y) =


π(y)

π(RF,m(x)) if y ∈ RF ,m
0 otherwise

describe the transition probability when the chain is restricted to a single move m. Then the

transition matrix for the heat-bath random walk is Hπ,f
F ,M :=

∑
m∈M f(m)Hπ

F ,m.

The desirable properties of Markov chains hold for the heat-bath random walk under mild

conditions. Irreducibility follows when the set {m ∈ M : f(m) > 0} is a Markov basis for

F . The heat-bath random walk is aperiodic since the probability Hπ,f
F ,M(x, x) is positive, for

all x ∈ F . The stationary distribution is π and the heat-bath random walk is reversible with

respect to π. We note here that the underlying graph of the heat-bath random walk is the

compression of the graph F(M), which is essentially F(M) along with additional edges that

arise from allowing scalar multiples of the moves of M.

Definition 3.4.3. Let F ⊂ Zd andM⊂ Zd be finite sets. The compression of the graph F(M)

is the graph Fc(M) := F(Z · M).

Example 3.4.4. Suppose FA,b,M⊂ Z5 are sets as defined in Example 3.2.7. For each x ∈ FA,b
the ray through x along m2 and m3 contains at most two vertices. The compressed graph

FcA,b(M) is displayed in Figure 3.4

When more edges are added to the fiber graph, the diameter is decreased. In fact, the

following theorem says that the diameter of the compressed fiber graph FcA,b(M) can be bounded

by a constant for all b ∈ NA.

Proposition 3.4.5. Let A ∈ Zm×d with kerZ(A) ∩ Nd = {0} and let M be a Markov basis for

PA. There exists a constant C ∈ N such that diam(Fc(M)) ≤ C for all F ∈ PA.
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x1 x2 x3 x4

x5 x6 x7 x8

Figure 3.4: The compressed fiber graph from Example 3.4.4

For proof see Section 3 in [26].

While a low diameter on the underlying graph is necessary for rapid mixing it is not sufficient.

For example, consider the graph Kn +Kn obtained by joining two complete graphs by a single

edge. The diameter of Kn + Kn is 3 however the conductance of the random walk on Kn is

Φ∗ = 1
n2 . That Φ∗ is small implies that the mixing is slow.

In the following example, we demonstrate a case where the heat-bath random walk does not

improve the mixing behavior.

Example 3.4.6. For n ∈ N, consider the set Fn ⊂ Z2×n defined as follows:

Fn :=


0 1 1 · · · 1

1 0 0 · · · 0

 ,
1 0 1 · · · 1

0 1 0 · · · 0

 , . . . ,
1 1 · · · 1 0

0 0 · · · 0 1


 .

We say that Fn is the set of 2×n contingency tables with row sums (n− 1, 1) and columns

sums 1n = (1, . . . , 1). For each n, the set Mn := { x− y : x, y ∈ Fn } \ { 0 } is a Markov basis

for Fn and, by construction, Fn(Mn) = Kn. Suppose that f and π are the uniform distribution

on Mn and Fn, respectively. Since |Mn| = n(n− 1) and 0 6∈ M, the transition matrix for the

simple walk is

Hπ,f
Fn,M =

1

n(n− 1)
1n×n +

(n(n− 1)− n)

n(n− 1)
In,

where 1n×n is the n× n all- ones matrix. Now for any x ∈ Fn and m ∈Mn, the ray RFn,m(x)

through x along m contains only two vertices. Thus it follows that the Fn(Mn) = Fcn(Mn) and

the transition matrices for the heat-bath random walk and the simple walk coincide.

In order to compute the SLEM of the transition matrix we first observe that the matrix

1n×n is diagonalizable, in particular, there exists an invertible n×n matrix S such that 1n×n =

S−1DS where D is the diagonal matrix whose only nonzero entry is Dn,n = n.

Then we can write

Hπ,f
Fn,M = S−1

(
1

n(n− 1)
D +

(n(n− 1)− n)

n(n− 1)
In

)
S.
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With this expression we identify the eigenvalues of Hπ,f
Fn,M as the diagonal entries of the matrix

1
n(n−1)D + (n(n−1)−n)

n(n−1) In. The SLEM of both random walks is λn = 1 − 1
n−1 which can not

be bounded by 1 − 1
p(|Fn|) , where p(x) is a polynomial. Neither the simple fiber walk nor the

heat-bath random walk are rapidly mixing.

Example 3.4.6 shows that implementing the heat-bath random walk does not necessarily

improve the mixing behavior. In Section 4 of [26] it is shown that the SLEM of the heat-bath

random walk can be bounded when more conditions are imposed on M. For the remainder of

this section we briefly mention one of those conditions.

By Proposition 3.4.5, the diameter of the compressed fiber graph Fc(M) is bounded above

by a constant for all F ∈ PA, where A is an integer matrix. Depending on the geometry, paths

between distinct x, y ∈ M may require that a move m be used more than once. Consequently

the diameter may be larger than the number |M| of available moves. When we consider graphs

Fc(M) where for any x, y ∈ F , a path from x to y of minimal length uses each move at most

once, then the upper bound on the diameter is lowered to |M|.

Definition 3.4.7. Suppose F ⊂ Zn andM = {m1, . . . ,md} ⊂ Zn are finite sets. An augment-

ing path of length r between distinct x, y ∈ F is a path in the compressed graph Fc(M) of the

following form,

x→ x+ λi1mi1 → x+ λi1mi1 + λi2mi2 → · · · y = x+
r∑

k=1

λikmik .

An augmenting path from x to y is minimal if there exists no shorter augmenting path in

Fc(M).

Definition 3.4.8. Suppose F ⊂ Zn andM = {m1, . . . ,md} ⊂ Zn is a Markov basis for F . We

say thatM is an augmenting Markov basis if there is an augmenting path between any distinct

x, y ∈ F . The augmentation length AM(F) of an augmenting Markov basisM is the maximum

length of all minimal augmenting paths in Fc(M).

Example 3.4.9. For fixed n, r ∈ N let Cn,r :=
{
x ∈ Zn :‖x‖1 ≤ r

}
be the set of integer

points of the n-dimensional cross-polytope with radius r. First we show that the set Mn =

{ e1, . . . , en } of standard basis vectors is an augmenting Markov basis for Cn,r for any r ∈ N.

For distinct x, y ∈ Cn,r it suffices to show that there exists an intermediate point in Cn,r that

can be obtained from x by changing a single coordinate xi to yi. In other words, we will show

that there exists an index i ∈ [n] such that x + (yi − xi)ei ∈ Cn,r. Let Sxy ⊂ [n] be the set of

indices where x and y differ and let s = r−‖x‖1. If |Sxy| = 1, then the result is clear so suppose

|Sxy| ≥ 2. If the result does not hold then for each i ∈ Sxy, we have
∥∥x+ (yi − xi)ei

∥∥
1
> r and
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so |yi| − |xi| > s. It follows that

‖y‖1 =
∑
i 6∈Sxy

|xi|+
∑
i∈Sxy

|yi| >
∑
i 6∈Sxy

|xi|+
∑
i∈Sxy

(s+ |xi|) = |Sxy|s+‖x‖1 = (|Sxy| − 1)s+ r.

This is a contradiction since we assumed y ∈ Cn,r.

When the heat-bath random walk is implemented with an augmenting Markov basis then,

using the augmentation length and a given distribution on the moves M, the SLEM can be

bounded away from one (see Theorem 5.8 from [26].) As a corollary we get the following result.

Proposition 3.4.10. Let F ⊂ Zn be finite and let M = {m1, . . . ,mk } be an augmenting

Markov basis. Let π be the uniform and f a positive distribution on F and M respectively. For

i ∈ [k], let ri := max
{ ∣∣ RF ,mi(x)| : x ∈ F

}
and suppose that r1 ≥ r2 ≥ · · · ≥ rk. Then

λ(Hπ,fM,F ) ≤ 1− |F| ·min(f)

AM(F ) · AM(F )! · 3AM(F )−1 · 2|M| · r1r2 · · · rAM(F)

.

Example 3.4.11. For a fixed dimension n, let π be uniform on Cn,r and f a positive distribution

on M = { e1, . . . , en }. The size of Cn,r is given by

|Cn,r| =
n∑
j=0

(
r + 1

n− j

)(
n

j

)
2n−j ,

and the binomial inequality (nk )k ≤
(
n
k

)
≤ (nek )k for all 1 ≤ k ≤ n gives |Cn,r| = Θ(rn). For each

ei ∈ M, the size of the largest ray along ei is ri = (2r + 1). Then by Proposition 3.4.10 the

SLEM of the heat-bath walk Hπ,fM,Cn,r
can be bounded away from one as the radius r →∞.
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Chapter 4

Sampling Lattice Points of Polytopes

via Continuous Relaxation

4.1 Introduction

In this chapter, we continue the discussion of sampling lattice points of polytopes. In Chapter

3, the methods for sampling involved first defining a graph structure on the set of lattice points

and then implementing a random walk on that graph. Here we follow the strategy of Morris

[22] and Dyer, Kannan, and Mount [12] in that we leverage continuous sampling algorithms for

convex sets in Rn. The steps of this strategy can be summarized: First sample from a convex

set P̃ that contains P to obtain a point x ∈ P̃ . Round x to the nearest lattice point rd(x). If

rd(x) ∈ P ∩ Zn, then we are done. If not, then discard rd(x) and start again.

One immediate question that arises is, What necessitates the intermediate set P̃? Notice

that if we collect sample points from P directly and round, then lattice points near or on the

boundary of P are less likely to be sampled. Instead, we consider a larger polytope P̃ where

the volume of points in P̃ rounding to a given lattice point x ∈ P is close to one. One of the

two main tasks that we tackle in the chapter is how to determine an appropriate choice of P̃?

Ideally P̃ is large enough so that the volume of points rounding to any one lattice point in P

is close to one but at the same time, P̃ should be as small as possible to reduce the number of

rejections.

The second main task is to decide how to sample from P̃ . While there are many sampling

algorithms on the market, we will focus on two random walk-based sampling algorithms, more

specifically based on the ball walk and Dikin ellipsoid random walk, taking advantage of proven

results about their efficiency. The ball walk is a random walk that can be used to sample from

a general convex set K. From a point xt ∈ K, one step of the ball walk is to first choose a point

y uniformly from the ball γB centered at xt with radius γ > 0 and letting xt+1 = y if y ∈ K.
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To sample from K via the ball walk, this process is repeated for some predetermined number

of steps T , taking xT as the generated sample point. There are some pre-processing steps often

applied to deal with convex sets that have complicated geometries, for instance, tight corners

or long and skinny shapes. In Section 4.4, we follow the version of the ball walk described by

Kannan, Lovász, and Simonovits in [16].

In Section 4.5 we look at the Dikin ellipsoid algorithm introduced by Kannan and Narayanan

in [17]. This is another random walk based method for sampling that is applied specifically to

polytopes of the form P (A,1), where 1 is the all-ones vector. From a point xt, in one step of

the Dikin walk, a candidate point y is chosen uniformly from the Dikin ellipsoid centered at xt.

If xt is contained in the Dikin ellipsoid centered at y, then a transition to xt+1 = y is accepted

with a certain probability. Again, the process is repeated for a predetermine number of steps.

In Sections 4.4 and 4.5, we pin down these sampling schemes more formally. We will see

that the major difference between the random walks lie in the fact that the geometry of the

Dikin ellipsoid centered at x ∈ P depends on the geometry of P and on x, where as the ball

γB, clearly does not. In Sections 4.4 and 4.5 we also present the results on the required number

of steps to obtain a near-uniform sampling. For now, let us assume that we have decided on the

algorithm to do continuous sampling on P̃ . We generically refer to that algorithm as Algorithm

A. Algorithm 4.1.1 formally states the continuous sampling plus round algorithm.

Algorithm 4.1.1 (Continuous Sample plus Round).

• INPUT: matrix A ∈ Rm×n, vectors b ∈ Rm and δ ∈ Rm≥0, and initial point x0 ∈ P (A, b).

• OUTPUT: point x ∈ P (A, b) ∩ Zn.

1. With initial point x0, do Algorithm A on the set P (A, b + δ) to generate a point X ∈
P (A, b+ δ).

2. Round X to the nearest integer point rd(X).

3. If rd(X) ∈ P (A, b), then output rd(X) and stop. Otherwise, return to Step 1.

4.2 How to Choose P̃

This section addresses the task of finding an appropriate polytope P̃ , such that P ⊂ P̃ , on

which we carry out the continuous sampling plus rounding step. Our general strategy follows
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that of Morris in [22], where the polytopes considered are those whose lattice points are the

contingency tables with fixed margins.

Notice that if we do not first choose P̃ , and instead carry out continuous sampling on P ,

then the lattice points near the boundary are less likely to be generated relative to those lattice

points that are sufficiently in the interior of P . The goal is to choose P̃ large enough so that

the volume of points rounding to each lattice point in P is near one.

Recall that the matrix A ∈ Rm×n and vector b ∈ Rm give the H-representation of the

polytope P = P (A, b). Each row vector aTi of A and corresponding entry bi of b encodes one

inequality that is satisfied by points in P , that is, aTi x ≤ bi for all x ∈ P . To define P̃ , we add

a vector δ ∈ Rm≥0 to the right-hand side of the system and say P̃ := P (A, b+ δ). Geometrically,

this change corresponds to pushing each facet of P out by some positive distance. By choosing

δ with arbitrarily large coordinates, we can easily achieve the requirement that the volume

of points rounding to a lattice point in P is one. However, this action would also increase the

rejection rate of the procedure and thus slow down the process. So when choosing a vector δ, we

must balance two competing desires, namely, to obtain a sampling scheme that is near-uniform

over all lattice points of P while simultaneously being time-efficient.

Definition 4.2.1. For x ∈ Zn, the n-dimensional cube centered at x, is the set

cube(x) =

{
y ∈ Rn : −1

2
< xi − yi ≤

1

2
for i = 1, . . . , n

}
.

For x ∈ F , the set cube(x) represents the set of points that round to x.

Problem 4.2.2. For small error parameter 0 < ε0 <
1
2 , find a vector δ such that for all lattice

points x ∈ F = P ∩ Zn, the volume of points in P̃ = P (A, b + δ) rounding to x satisfies

vol(cube(x) ∩ P̃ ) ≥ 1− ε0.

In the remainder of this section we present a method, Proposition 4.2.3, to choose δ that

satisfies the conditions of Problem 4.2.2, we look at a couple of examples to see the method in

action, and we present the proof of Proposition 4.2.3. For a vector c ∈ Rn and constant d ∈ R,

we let H(c, d) denote the hyperplane
{
x ∈ Rn : cTx = d

}
.

Proposition 4.2.3. Suppose A ∈ Rm×n and b ∈ Rm such that P = P (A, b) is a polytope.

• Let I ⊂ [m] be the set of indices corresponding to inequalities of the form ±xj ≤ bi for

some i ∈ [m] and j ∈ [n].

• Let m′ be the maximum number of hyperplanes, none of which corresponding to inequalities

in I, that intersect a fixed cube(x), over all lattice points x ∈ P ∩ Zn. That is,

m′ := max
x∈F

#
{
i ∈ [m] : i 6∈ I, H(aTi , bi) ∩ cube(x) 6= ∅

}
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So m′ ≤ m− |I|.

• Let zi ∼ U(−1
2 ,

1
2) be i.i.d. random variables that are uniform on the interval [−1

2 ,
1
2 ] and

Z = (z1, . . . , zn) a random vector.

If we define the vector δ ∈ Rm coordinate-wise by

δi =


1
2 , i ∈ I

F−1
aTi Z

(1− ε0
m′ ), i 6∈ I,

where FaTi Z
(t) is the cumulative distribution function for the random variable aTi Z, and define

P̃ = P (A, b+ δ), then for all lattice points x ∈ F ,

vol(cube(x) ∩ P̃ ) ≥ 1− ε0.

Proposition 4.2.3 says that if we have the H-representation of the polytope P , then we can

determine a vector δ so that P̃ satisfies our volume requirement, by solving at most m-many

probability equations. Each of those probability equations involve the computation, or at least

approximation, of the cumulative distribution function for random variables aTi Z. Appendix A

includes an example of computing the cumulative distribution function for a finite sum of zi’s.

Proposition 4.2.3 is demonstrated in Examples 4.2.4 and 4.2.5.

Example 4.2.4. Let P be the triangle with vertices (1,−1), (1,−1), and (1, 21). Then

P = P


 0 −1

1 0

−11 1

 ,
 1

1

10


 .

Observe that the unit cube centered at the lattice point x0 = (1, 19) ∈ P intersects two of the

three facet-defining hyperplanes, namely H2 =
{

(x, y) ∈ R2 : x = 1
}

and

H3 =
{

(x, y) ∈ R2 : −11x+ y = 10
}
.

On the other hand, cube((0,−1)) only intersects H1 =
{

(x, y) ∈ R2 : −y = 1
}

and cube((0, 0))

does not intersect any of the facet-defining hyperplanes. As a result, notice that if we replace

the inequality −y ≤ 1 with −y ≤ 3
2 , then the inequality is satisfied by the entire cube centered

at (0,−1) however this action has no effect on the cube centered as (1, 19). Similarly, replacing

either inequality x ≤ 1 or −11x + y ≤ 10 with x ≤ 1 + c or −11x + y ≤ 10 + c, where c > 0,

will have no effect on the cube centered at the point (0,−1). So if we want to push out a facet
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(1, 19)

(0,−1)

(1, 19)

(0,−1)

Figure 4.1: Pushing out facets of polytope from Example 4.2.4.
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in order to contain the cube centered at a particular lattice point, we only need to consider the

facet-defining hyperplanes that intersect that cube. The second thing we notice, as suggested by

Proposition 4.2.3 refers to the inequalities that impose constraints on exactly one coordinate.

Notice that if we replace x ≤ 1 with x ≤ 3
2 and −y ≤ 1 with −y ≤ 3

2 then points in the new

area are contained in a cube centered at lattice points of P .

Finally, suppose we want to push out the facets so that at least three-quarters of every cube

centered at a lattice point is contained. We determine that the cumulative distribution function

for −11z1 + z2 is

F−11z1+z2(t) =



0 if t ≤ −6

1
22(t+ 6)2 if − 6 ≤ t < −5

1
22(2t+ 11) if − 5 ≤ t < 5

− 1
22(t2 − 12t+ 14) if 5 ≤ t < 6

1 if 6 ≤ t.

According to Proposition 4.2.3, we can let δ3 be the solution to F−11z1+z2(t) = 3
4 , that is let

δ3 = 2.75, and set δ = (1
2 ,

1
2 , 2.75). In this case, the polytope

P̃ = P


 0 −1

1 0

−11 1

 ,


3
2
3
2

12.75




has the property that vol(cube(x)∩ P̃ ) ≥ 3
4 for all lattice points x ∈ P ∩Z2. Both polytopes P

and P̃ are displayed in Figure 4.1.

Example 4.2.5. Suppose P = P (A, b) ⊂ R3 is the polytope with

A =



−1 0 0

0 −1 0

0 0 −1

10 0 1

0 10 1


and b =



0

0

0

10

10


.

First we find a polytope P̃ such that vol(cube(x)∩ P̃ ) = 1 for all x ∈ F = P ∩Z3. Afterwards,

using Proposition 4.2.3, we can compare that to the choice of P̃ if we only require

vol(cube(x) ∩ P̃ ) ≥ 1− ε0
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for some small parameter 0 < ε0 <
1
2 .

Recall that if y ∈ cube(x) then |yj − xj | ≤ 1
2 for each coordinate j = 1, . . . , n. So if we want

to choose P̃ such that cube(x) ⊂ P̃ for each x ∈ F , then it suffices to choose a vector δ ∈ R5
≥0

such that Ay ≤ b+ δ. If we look at each inequality individually, then we require

aTi y ≤ bi + δi, for i = 1, . . . , 5. (4.1)

For y ∈ cube(x), to satisfy Equation 4.1, we need

aTi x+
1

2

n∑
j=1

|(aTi )j | > aTi y ≥ aTi x−
1

2

n∑
j=1

|(aTi )j |

which implies |aTi y − aTi x| ≤ 1
2

∑n
j=1 |(aTi )j |. If we set δ0 = (1

2 ,
1
2 ,

1
2 ,

10
2 ,

10
2 ) and let P̃ 0 =

P (A, b + δ0) then vol(cube(x) ∩ P̃ 0) = 1 for all x ∈ F . We can see how this modification of

the right-hand side of the system of inequalities affects the size of the polytope by computing

the volume of both P and P̃ 0, which we do in LattE integrale, see [2]. By computing the

volumes, we find that vol(P ) = 10
3 and vol(P̃ 0) = 30.87, thus the volume increases by a factor

of 9.261. Given that

vol(cube(x) ∩ P̃ 0) = 1

and by counting the lattice points, we determine that the volume of points in P̃ 0 that do not

round to points in P is 16.87. This means that if Y is a random vector uniform over P̃ 0, then

the probability that rd(Y ) ∈ P is 0.4535.

Now suppose that we loosen the restrictions on P̃ and require vol(cube(x)∩ P̃ ) = 1− ε0 for

all x ∈ F where ε0 = 1
4 . Observe that the first three inequalities of the system that defines P

are non-negativity constraints. Then by Proposition 4.2.3, we can define the vector δ1/4 where

δ
1/4
i = 1

2 for i = 1, 2, 3. To determine the remaining coordinates of δ1/4, we need to determine the

cumulative distribution function F10z1+z2(t) = Pr(10z1 + z2 ≤ t) and solve F10z1+z2(t) = 1− ε0
2

for t.

The function F10z1+z2(t) is obtained by first extracting the density function f10z1+z2(t) from

the moment generating function and then integrating over the support. In Appendix A, this

same process is taken to compute the cumulative distribution function of the sum of random
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variables
∑n

j=1 zj . We find that

F10z1+z2(t) =



0 if t ≤ −11
2

1
80(2t+ 11)2 if − 11

2 ≤ t < −
9
2

1
20(2t+ 10) if − 9

2 ≤ t <
9
2

1− 1
80(2t− 11)2 if 9

2 ≤ t <
11
2

1 if 11
2 ≤ t

,

and since F10z1+z2(3.75) = 7
8 , we can let δ1/4 = (1

2 ,
1
2 ,

1
2 , 3.75, 3.75). In this case the ratio of

volumes is 7.1333.

We conclude this section with the proof of Proposition 4.2.3.

Proof of Proposition 4.2.3. We first point out that the volume can be characterized as a prob-

ability. For x ∈ F , the volume vol(cube(x) ∩ P̃ ) can be expressed as a probability:

vol(cube(x) ∩ P̃ ) = Pr(x+ Z ∈ P̃ ).

Then the equality vol(cube(x)∩ P̃ ) ≥ 1− ε0 is satisfied exactly when Pr(x+Z 6∈ P̃ ) ≤ ε0, that

is, the probability that x+ Z falls outside of P̃ is at most ε0.

The event that x + Z falls outside of P̃ occurs when at least one of the inequalities that

defines P̃ is not satisfied. Hence the event Pr(x + Z 6∈ P̃ ) can be expressed as the union of

events
⋃m
i=1(aTi (x+ Z) > bi + δi).

If the i-th inequality of P has the form ±xj ≤ bi, then ±(xj + zj) ≤ bi + 1
2 . In this case,

we let δi = 1
2 and then x + Z will always satisfy the i-th inequality of P̃ . Now for a lattice

point x, let Hx :=
{
i ∈ [m] : H(aTi , bi) ∩ cube(x) 6= ∅

}
be the set of indices corresponding to
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facet-defining hyperplanes that intersect the cube(x). Then,

Pr(x+ Z 6∈ P̃ ) = Pr

⋃
i∈I

(aTi (x+ Z)i > bi +
1

2
)

+ Pr

⋃
i 6∈I

(aTi (x+ Z)i > bi + δi)


= Pr

⋃
i 6∈I

(aTi (x+ Z)i > bi + δi)


≤

∑
i∈Hx, i 6∈I

Pr(aTi (x+ Z) > bi + δi)

=
∑

i∈Hx, i 6∈I
Pr(aTi Z > (bi − aTi x) + δi)

≤
∑

i∈Hx, i 6∈I
Pr(aTi Z > δi).

(4.2)

The final inequality of Equation 4.2 follows since (bi − aTi x) ≥ 0. The result is obtained if,

for each i 6∈ I, we choose the coordinate δi so that

Pr(aTi Z > δi) =
ε0

max
{ ∣∣ Hx| } : x ∈ P ∩ Zn

.

4.3 Rejection Rate

In this section we assume that δ is chosen and P̃ = P (A, b + δ) is fixed. The focus here is to

measure the efficiency of the sample and round procedure, of which, there are two components.

First, the algorithms we consider for sampling on P̃ involve an implementation of a Markov

chain with a uniform stationary distribution on a continuous state space. As such, we require

some understanding of the mixing time of thes Markov chains that generate a uniform sample

Y from P̃ . These mixing time questions will be addressed in Sections 4.4 and 4.5. The second

component is the rejection rate of the rounded point rd(Y ).

Let τ be the number of times that a point Y ∈ P̃ is generated until rd(Y ) ∈ F . Then τ is

a geometric random variable and the expected value E[τ ] = 1
Pr(rd(Y )∈F) . Let

∑
x∈F

vol(cube(x) ∩ P̃ )
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denote the total volume of points in P̃ that round to a lattice point in F . It follows that

E[τ ] =
vol(P̃ )∑

x∈F vol(cube(x) ∩ P̃ )
.

The expected value E[τ ] can be bounded when P is “closed” under rounding.

Definition 4.3.1. A polytope P is neat if, for all points x in the interior of P , the rounded

point rd(x) remains in P .

Example 4.3.2. Let a ∈ Zn≥0 and b, c ∈ Z(n2)
≥0 be integral vectors indexed by pairs i, j with

1 ≤ i < j ≤ n. The polytope P =
{
x ∈ Rn : 0 ≤ xi ≤ ai, bij ≤ xi − xj ≤ cij

}
is neat. It is

easy to see that if 0 < xi < ai, then 0 ≤ rd(xi) ≤ ai. So suppose there exists a pair of indices

i, j such that bij < xi − xj < cij but rd(xi)− rd(xj) > cij. Then, since cij and rd(xi)− rd(xj)

are both integers,

(rd(xi)− xi) + (xj − rd(xj)) > 1,

which is a contradiction since 0 ≤ |rd(s) − s| ≤ 1
2 for all real numbers s. It follows that if

bij < xi − xj < cij , then we must have rd(xi) − rd(xj) ≤ cij. Using the same arguments, we

can show that if bij < xi − xj < cij then bij ≤ rd(xi)− rd(xj).

When P is neat,

vol(P ) ≤
∑
x∈F

vol(cube(x) ∩ P̃ )

and so the expected value of τ is bounded above by the ratio vol(P̃ )
vol(P ) . Even when P is not neat,

we can still obtain a bound on τ that is a ratio of volumes: If S ⊂ Rn is a full-dimensional set

such that rd(x) ∈ P for all x ∈ S, then vol(P̃ )
vol(S) . For the remainder of this section we work to

prove an upper bound on the expected value of τ. For a vector c ∈ Rn and constant d ∈ R, we

let H(c, d) :=
{
x ∈ Rn : cTx = d

}
be a hyperplane.

Definition 4.3.3. Let P ⊂ Rn be an (n−1)-dimensional polytope contained in the hyperplane

H(c, d) and let x0 ∈ Rn be a point not in H(c, d). The pyramid with base P and peak x0, denoted

pyr(x0, P ) := conv({ x0 } ∪ P ), is the convex hull of x0 taken along with the points in P.

Definition 4.3.4. Let P ⊂ Rn be an (n−1)-dimensional polytope contained in the hyperplane

H(c, d) and let x0 ∈ Rn be a point not in H(c, d). The height of pyr(x0, P ) is the distance from

x0 to the plane H(c, d), that is,

ht(pyr(x0, P )) :=
|cTx0 − d|
||c||2

.
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Example 4.3.5. Consider the line segment P = t(1, 2) + (1− t)(3
2 , 1) for t ∈ [0, 1] in R2 which

is contained in the line 2x+ y = 4. If x0 = (1, 1), then pyr(x0, P ) is the triangle whose vertices

are the points (1, 1), (1, 2), and (3
2 , 1). The height of the triangle with respect to P is 1√

5
.

Example 4.3.6. Suppose P = conv(
{

(1, 1, 0), (1,−1, 0), (−1, 1, 0), (−1,−1, 0)
}

) be the square

in R3 that is contained in the plane z = 0. For x = (0, 0, t), with t 6= 0, the polytope pyr(x0, P )

is the pyramid with square base and whose height is |t|.

Lemma 4.3.7. Let P ⊂ Rn be an (n − 1)- dimensional polytope, with vertex set V (P ) =

{ v1, . . . , vk }, such that P that is contained in the hyperplane H(c, d). Suppose x0 ∈ Rn such

that cTx0 < d. Let Ppyr = pyr(x0, P ) be the pyramid with base P and peak x0 and P̃pyr =

x0 + cone(v1 − x0, . . . , vk − x0) ∩ P (c, d+ δ) where δ > 0. Then

1. P̃pyr is a pyramid, and

2. the ratio of volumes
vol(P̃pyr)
vol(Ppyr)

=
(

1 + δ
d−cT x0

)n
.

During the course of the proof of Lemma 4.3.7, the vertices of the pyramid P̃pyr will be

determined explicitly. Each vertex lies on the ray through x0 and a vertex vj of P. We make a

definition then proceed to the proof of Lemma 4.3.7.

Definition 4.3.8. For points x, y ∈ Rn, let r ~xy denote the ray that begins at x and passes

through y, that is,

r ~xy :=
{

(1− t)x+ ty : t ∈ [0,∞)
}
.

Proof of Lemma 4.3.7. To prove (1) we will find the vertices of P̃pyr: For each vj ∈ V (P ) define

v′j = r ~x0vj ∩H(c, d+ δ) = − δ

d− cTx0
x0 + (1 +

δ

d− cTx0
)vj . (4.3)

Since each v′j ∈ H(c, d+δ), for j = 1, . . . , k, it suffices to show that P̃pyr = conv(
{
x0, v

′
1, . . . , v

′
k

}
).

P̃pyr ⊆ conv(
{
x0, v

′
1, . . . , v

′
k

}
) : Suppose x ∈ P̃pyr. Then

x = x0 +

k∑
j=1

αj(vj − x0), with αj ≥ 0. (4.4)

We can rearrange the right-hand side of Equation 4.3 to write each vector vj − x0 in terms of

v′j and x0:

vj − x0 =
d− cTx0

δ + d− cTx0
(v′j − x0).
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Now substituting into Equation 4.4 we see

x = (1−
k∑
j=1

αj
t

)x0 +

k∑
j=1

αj
t
v′j , where t = 1 +

δ

d− cTx0
.

Since we assumed cTx0 < d and δ > 0, we get that each
αj
t ≥ 0. To show that x ∈

conv
{
x0, v

′
1, . . . , v

′
k

}
, it remains to show that

∑k
j=1

αj
t ≤ 1. For contradiction, suppose that∑k

j=1
αj
t > 1. Then we can let

∑k
j=1

αj
t = 1 + p for some p > 0. Now

cTx = −pcTx0 +
k∑
j=1

αj
t
cT v′j

= −pcTx0 +
k∑
j=1

αj
t

(d+ δ)

= −pcTx0 + (d+ δ)(1 + p)

= d+ δ + p(δ + d− cTx0)

> d+ δ, which is a contradiction.

conv(
{
x0, v

′
1, . . . , v

′
k

}
) ⊆ P̃pyr : Conversely, suppose x ∈ conv

{
x0, v

′
1, . . . , v

′
k

}
. Since each x0

and each v′j are contained in the convex set P (c, d+δ), then x ∈ P (c, d+δ). Also by assumption,

we can write

x = α0x0 +
k∑
j=1

αjv
′
j

where αj ≥ 0 for j = 0, 1, . . . , k and
∑k

j=0 αj = 1. Again using Equation 4.3, we can rewrite

x = α0x0 +

k∑
j=1

αj((1− t)x0 + tvj),

= x0 +

k∑
j=1

αjt(vj − x0),

where, again, t = 1 + δ
d−cT x0

. As t, αj ≥ 0, we have x ∈ P̃pyr, completing the proof of (1). We

note here that P̃pyr = pyr(x0, F
′ =

{
v′1, . . . , v

′
k

}
). For (2), we notice that the pyramid P̃pyr is

a dilation of Ppyr, so the ratio of volumes is given in terms of the scale factor, namely,

vol(P̃pyr)

vol(Ppyr)
=

(
ht(pyr(x0,F

′))

ht(pyr(x0,F))

)n
=

(
|cTx0 − (d+ δ)|
|cTx0 − d|

)n
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The result (2) follows since cTx0 − d < 0 and δ > 0.

Lemma 4.3.7 allows us to bound the expected value of τ , assuming the original polytope,

from which we want to sample, is a pyramid. This situation is actually the worst-case scenario

and can be used to bound the expected value of τ for arbitrary polytopes.

Theorem 4.3.9. Suppose A ∈ Rm×n and b ∈ Rm such that P = P (A, b) is a full dimensional

polytope. Let P̃ = P (A, b + δiei), where δi ≥ 0, be the polytope obtained by modifying the i-th

inequality of the system. Let Fi := P ∩H(aTi , bi) and F̃i := P̃ ∩H(aTi , bi + δi) be the facets of

P and P̃ , respectively, that correspond to the i-th inequality in the defining system. For a fixed

point x0 ∈ P\Fi, let Ppyr = pyr(x0, Fi) and P̃pyr = pyr(x0, F̃i) be the pyramids with bases Fi

and F̃i, respectively. Then vol(P̃ )
vol(P ) ≤

vol(P̃pyr)
vol(Ppyr)

.

Theorem 4.3.9 allows us to bound the ratio of volumes of polytopes where one polytope is

obtained from the other by shifting a single facet. Moreover, the result posits that the worst-case

scenario occurs when the polytopes in question are pyramids.

Example 4.3.10. Let P ⊂ R2 be the polytope from Example 1.3.10 whose H-representation

is given by

A =



1 2

−7 −2

−2 −3

−1 −1

9 1


and b =



21

−15

−10

−5
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.

Let P̃ be the polytope obtained by changing the fifth inequality in Ax ≤ b from 9x1 + x2 ≤ 70

to 9x1 + x2 ≤ 76. In other words, P̃ is obtained when we push the hyperplane H(aT5 , b5)

that defines the facet F5 =
{
t(7, 7) + (1− t)(8,−2) : t ∈ [0, 1]

}
of P outwards. We can write

P̃ = P (A, b+ 6e5). Both P and P̃ are displayed on the left-hand side of Figure 4.2.

Now let x0 = (1, 4), a point in P but not in F5, and consider the following two triangles. The

first, which we call Ppyr = conv(
{
x0, v1 = (7, 7), v2 = (8,−2)

}
) is obtained by taking the convex

hull of x0 together with the vertices of F5. For the second triangle, let v′1 = r ~x0v1
∩H(aT5 , 76) and

v′2 = r ~x0v2
∩H(aT5 , 76) be the intersection points of the rays r ~x0v1

and r ~x0v2
with the hyperplane

H(aT5 , 76), respectively, and set P̃pyr = conv(
{
x0, v

′
1, v
′
2

}
). The triangles Ppyr and P̃pyr are

displayed on the right-hand side of Figure 4.2.

As each of the polytopes live in the plane, their volumes are not difficult to compute. Using

LattE integrale, we compute the exact volumes

vol(P ) =
109

2
, vol(P̃ ) =

51461

850
, vol(Ppyr) =

57

2
, and vol(P̃pyr) =

1323

38
.
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Figure 4.2: Polytopes P and P̃ compared to the pyramids Ppyr and P̃pyr from Example 4.3.10

Therefore vol(P̃ )
vol(P ) = 1.11087 ≤ vol(P̃pyr)

vol(Ppyr)
= 1.22161.

We now prove Theorem 4.3.9.

Proof of Theorem 4.3.9. Since P ⊂ P̃ , we can rewrite the ratio of volumes as

vol(P̃ )

vol(P )
=

vol(P̃ ) + vol(P̃\P )

vol(P )
.

An analogous statement can be written for Ppyr and P̃pyr. The inequality vol(P̃ )
vol(P ) ≤

vol(P̃pyr)
vol(Ppyr)

occurs exactly when

vol(P̃ ) + vol(P̃\P )

vol(P )
≤ vol(P̃pyr) + vol(P̃pyr\Ppyr)

vol(Ppyr)
.

By construction Ppyr ⊆ P , so vol(Ppyr) ≤ vol(P ) and it suffices to show

vol(P̃\P ) ≤ vol(P̃pyr\Ppyr).

If we let V (Fi) = { v1, . . . , vk } denote the vertex set of Fi, then

P̃pyr =
(
x0 + cone({ v1 − x0, . . . , vk − x0 })

)⋂
P (aTi , bi + δi).

Suppose y ∈ P̃\P . Since x0 ∈ P\Fi, the line segment with endpoints x0 and y must

intersect Fi at a point y′. If we let V (Fi) = { v1, . . . , vk } denote the vertex set of Fi then

y′ = (1− t)x0 + ty =
∑k

j=1 αjvj for some t ∈ (0, 1), αj ≥ 0, and
∑k

j=1 αj = 1. By rearranging
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the equation for y, we see that

y =
1

t
y′ − 1− t

t
x0

= x0 +
k∑
j=1

αj
t

(vj − x0),

which means that y ∈ x0 + cone({ v1 − x0, . . . , vk − x0 }). And since y ∈ P̃\P , we have bi <

aTi y < bi + δi, so y ∈ P̃pyr\Ppyr. This shows that P̃\P ⊂ P̃pyr\Ppyr and the result follows.

Theorem 4.3.9 is concerned with the relationship between a pair of polytopes that can be

obtained from each other by shifting a facet. The result can be leveraged to deal with any pair

of polytopes of the form P = P (A, b) and P̃ = P (A, b + δ) since P̃ can be obtained from P

by a sequence of facet shifts. We can define a sequence of polytopes that correspond to these

shifts. In particular, let P0 = P̃ and for each i = 1, . . . ,m, define Pi := Pi−1 ∩ P (aTi , bi). Then

Pm = P and the following containment relationship holds:

P = Pm ⊂ Pm−1 ⊂ · · · ⊂ P1 ⊂ P0 = P̃ .

The ratio of volumes can then be expressed as

vol(P̃ )

vol(P )
=

vol(P̃ )

vol(P1)
· vol(P1)

vol(P2)
· · · vol(Pm−1)

vol(P )
. (4.5)

The next result, Corollary 4.3.11 combines Theorem 4.3.9, Lemma 4.3.7, and Equation 4.5

to bound the ratio vol(P̃ )
vol(P ) . The idea to express the ratio of volumes as the product in Equation

4.5 comes from [22].

Corollary 4.3.11. Suppose A ∈ Rm×n and b ∈ Rm are such that P = P (A, b) is a full-

dimensional neat polytope. Further suppose P̃ = P (A, b + δ), where δ ∈ Rm≥0. For each i =

1, . . . ,m,

• let Fi = P ∩H(aTi , bi) be a facet of P , and

• let yi ∈ P\Fi be a point that maximizes the distance
|aTi x−bi|
||aTi ||2

from the hyperplane H(aTi , bi)

ranging over all x ∈ P\Fi and let hi =
|aTi yi−bi|
||aTi ||2

denote the distance.

Then the expected value of τ is bounded above:

E[τ ] ≤
m∏
i=1

(
1 +

δi
hi

)n
.
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Proof. If we set P0 = P̃ and for each i = 1, . . . ,m, define Pi := Pi−1 ∩ P (aTi , bi), then by

Equation 4.5, it suffices to bound each ratio vol(Pi−1)
vol(Pi)

. Recall that the H-representations are

Pi = P (A, b +
∑m

j=i+1 δjej) and Pi−1 = P (A, b +
∑m

j=i δjej). Let Gi = Pi ∩ H(aTi , bi) be a

facet of Pi and notice that Fi ⊆ Gi. Similarly let G′i = Pi−1 ∩H(aTi , bi + δi) be a facet of Pi−1

that is obtained by pushing the i-th facet of Pi outwards. Let z ∈ Pi be a point such that

aTi z < bi whose distance to the hyperplane H(aTi , bi) is maximized over all points x ∈ Pi. Then

by Theorem 4.3.9 and Lemma 4.3.7

vol(Pi−1)

vol(Pi)
≤ vol(pyr(z,G′i))

vol(pyr(z,Gi))
=

(
1 +

δi

bi − aTi z

)n
.

Since P ⊆ Pi and Fi, Gi ⊂ H(aTi , bi + δ), we have bi − aTi yi ≤ bi − aTi z, and therefore,

vol(Pi−1)

vol(Pi)
≤
(

1 +
δi
hi

)n
.

Example 4.3.12. We saw earlier in Example 4.3.2 the polytope P

P =
{
x ∈ Rn : 0 ≤ xi ≤ ai, bij ≤ xi − xj ≤ cij

}
,

where a ∈ Zn≥0 and b, c ∈ Z(n2)
≥0 are integral vectors. Polytopes of this form are called Alcove

polytopes and they arise from Coxeter arrangements, see [19]. In Example 4.3.2 we showed that

P is neat. So when we choose P̃ and carry out Algorithm 4.1.1, the expected number E[τ ]

of points generated in P̃ before landing in P is bounded above by vol(P̃ )
vol(P ) . Now given a small

parameter 0 < ε0 <
1
2 , we want to choose P̃ such that

vol(cube(x) ∩ P̃ ) ≥ 1− ε0

for all x ∈ P ∩ Zn. Observe that when each inequality 0 ≤ xi ≤ ai is replaced with −1
2 ≤

xi ≤ ai +
1
2 in the description of P , the resulting polytope does not collect “bad area”. In other

words, for

P ′ =

{
x ∈ Rn : −1

2
≤ xi ≤ ai +

1

2
, bij ≤ xi − xj ≤ cij

}
,

if x ∈ int(P ′) then the nearest lattice point rd(x) is in P .

The problem of choosing P̃ reduces to determining how far to push out the facets corre-

sponding to the inequalities bij ≤ xi − xj ≤ cij . Following the proof of Proposition 4.2.3, we
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can let δij be the solution to

Pr(z1 + z2 ≤ δ) = 1− ε0
n(n− 1)

,

where z1, z2 ∼ U(−1
2 ,

1
2) are i.i.d. random variables. The cumulative distribution function of

Z = z1 + z2 is FZ(t) = −1
2(t− 1)2 + 1 for t ∈ (0, 1). So we can let δij = 1−

√
4ε

n2−n , and set

P̃ =

{
X ∈ Rn : −1

2
≤ xi ≤ ai +

1

2
bij − δij ≤ xi − xj ≤ cij + δij

}
.

Finally we note that, with respect to the facet {x ∈ P : xi − xj = cij}, the width of P is
cij−bij√

2
. Thus, by Corollary 4.3.11, the expected value E[τ ] is bounded,

E[τ ] ≤
∏

{i,j}⊂[n]

(
1 +

√
2−

√
8ε/(n2 − n)

cij − bij

)2n

≤ exp

2n ·
∑

{i,j}⊂[n]

√
2−

√
8ε/(n2 − n)

cij − bij

 .

If the sum
∑
{i,j}⊂[n]

1
cij−bij of values cij − bij is Ω( 1

n) then this upper bound on E[τ ] is a

constant.

4.4 Sampling via Ball Walk

In this section, we discuss the ball walk-based algorithm for near-uniform sampling from a con-

vex set K. Here we follow the implementation that comes from Kannan, Lovász, and Simonovits

[16]. Their algorithm is a piece of a larger solution to the problem of determining the volume of

a convex body. The main result and algorithm of [16] to approximate the volume of a convex

body fits in a line of successive improvements on the polynomial time randomized algorithm by

voulme by Dyer, Freize, and Kannan [11]. Their near-uniform sampling subroutine uses O∗(n3)

oracle calls, an improvement over the sampling algorithm by Lovász and Simonovits [21].

Both the ball walk and the Dikin ellipsoid random walk provide an alternative to the also

popular hit-and-run random walk. The basic idea of the hit-and-run random walk is to start

from some point x0 ∈ K, choose a direction L at random, and choose a new point x1 ∈ K from

the line along L through x0, repeating this process for some predetermined number of steps.

The stationary distribution of the hit-and-run walk is uniform and the number of steps required

to get a sample point that is near-uniformly distributed over K is a mixing time question, that

among other things, depends on the geometry of K and the choice of starting point.

Example 4.4.1. We use the following R code to implement the basic hit-and-run algorithm

on the triangle with vertices (−1,−1), (1,−1), and (1, 21). This particular triangle is long and
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skinny. Figure 4.3 plots each step of the hit-and-run walk, where we begin at the origin. We

carry out three separate trials in which we consider N = 100, 500, or 1000 steps. The results of

our trial, displayed in Figure 4.3 suggests that we may have to wait over 1000 steps before we

visit any states in the corner.

unif_ball<-function(n, rad){

u=rnorm(n)

sca=runif(1)^(1/n)

u=(rad*sca*u/norm(u,"2"))

return(rad*sca*u/norm(u,"2"))

}

#

A=matrix(c(0,1,-11,-1,0,1),nrow=3)

b=c(1,1,10)

#x0=c(95/100,20)

x0=c(0,0)

N=1000

x=x0

samples=matrix(0,2,N)

for (i in 1:N){

u=unif_sphere(2,1) #new direction

#

vec=(b-A%*%x)/(A%*%u) #determine length of ray

pos=min(vec[which(vec>0)])

neg=max(vec[which(vec<0)])

sca=runif(1,min=neg,max=pos)

#

x=sca*u+x

samples[,i]=x

}

#

plot(samples[1,],samples[2,],xlab="x",ylab="y",xlim=c(-2,2),

ylim=c(-1,22),pch=20, cex=.5,main=paste(N,"steps",sep=" "))

We focus on the ball walk and the Dikin ellipsoid walk is to address these issues.
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Figure 4.3: Basic Hit-and-Run on a triangle. The number of steps of the random walk con-
sidered are 100, 500, and 1000.

Definition 4.4.2. Let K ⊂ Rn be a convex set that satisfies B ⊂ K ⊂ dB, where

mathcalB :=
{
x ∈ Rn : ‖x‖2 ≤ 1

}
is the unit ball and d > 1 is some fixed constant. The lazy random walk with γ-steps on K is

defined as follows: From the current state xt ∈ K, flip a fair coin. If heads then xt+1 = xt. If

tails, then generate a point u ∈ γB uniformly at random. We let xt+1 = xt + u if xt + u ∈ K
and call this a proper step. Otherwise xt+1 = xt.

For our sampling algorithm we will let the step size γ be a function of the dimension n and

the dilation factor d, and choose γ small enough so that the random walk avoids getting stuck

in a corner of K, but still large enough to cover significant portions of K quickly.

Another walk that we define is the speedy random walk. This random walk and its sta-

tionary distribution, which is called the speedy distribution, is useful as it can be leveraged to

approximate the uniform distribution.

Definition 4.4.3. Let K ⊆ Rn be a convex set that satisfies B ⊂ K ⊂ dB for some constant

d > 1. The speedy random walk with γ-steps on K is defined as follows: From the current state

xt ∈ K, flip a fair coin. If heads, then xt+1 = xt. Otherwise xt+1 is chosen from the uniform

distribution on (xt + γB) ∩K.

As noted in [16], the speedy random walk on K can be implemented by doing the lazy

random walk, where we only choose proper steps that correspond to points that are different
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from the previous point, or those that correspond to flipping heads.

Definition 4.4.4. The speedy distribution Q̂ is the stationary distribution of the speedy random

walk with γ-steps. For a measurable set A, the speedy distribution is

Q̂(A) =

∫
A vol((x+ γB) ∩K)dx∫
K vol((x+ γB) ∩K)dx

.

Theorem 4.4.6 states that we can generate near-uniform, near-independent samples from a

convex set K.

Definition 4.4.5. A collection of random points x1, . . . , xk ∈ K is an ε-good sample for a

distribution µ if

1. for the distribution µi of xi, we have ‖µi − µ‖TV ≤ ε, and

2. for all 1 ≤ i < j ≤ k, the random points xi and xj are ε-independent, meaning that for

any measurable sets A and B,

|Pr(xi ∈ A, xj ∈ B)− Pr(xi ∈ A) Pr(xj ∈ B)| ≤ ε.

Theorem 4.4.6 (Kannan, Lovasz, and Simonovits [16]). Given a convex set K ⊂ Rn satisfying

B ⊂ K ⊂ dB, a positive integer N and ε > 0, we can generate a set of N random points

{ x1, x2, . . . , xN } ⊂ K that are an ε-good sample for the uniform distribution. The algorithm

uses only O∗(n3d2 +Nn2d2) calls on the separation oracle.

The proof of Theorem 4.4.6 (see Section 4 of [16]) contains the steps of the sampling algo-

rithm. The focus here is to present the steps and only sketch the arguments for the proof of

the theorem. First we introduce the M -distance, an alternate way to measure distance between

probability distributions.

Definition 4.4.7. Let P and Q be two probability distributions on the same σ-algebra (Ω,A).

The M-distance from P to Q is

M(P,Q) := sup
S

P (S)−Q(S)√
Q(S)

,

where S ranges over all P - and Q-measurable sets with Q(S) > 0.

Sketch of Proof of Theorem 4.4.6. Let x0 ∈ K be a random point chosen from some distribution

Q0 that satisfies M(Q0, Q̂) <∞. Starting at x0, do the speedy random walk on K with γ-steps.

81



The distribution Qt of the t-th step satisfies

M(Qt, Q̂) ≤M(Q0, Q̂) exp

(
− tγ2

800d2n

)
.

Further, the random points x0 and xt are τ -independent, where

τ = [M(Q0, Q̂) + 1] exp

(
− tγ2

800d2n

)
.

So for the sampling algorithm, we set m = dn log de and 0 < ε < 1
4m , and let x0 ∈ K be a

random point whose distribution Q1 satisfies M(Q1, Q̂) < 2, where Q̂ is the speedy distribution

with

γ =
1

10
√
n logm\ε

.

The first step: Starting from x0, do the lazy random walk with γ-steps on K. Let x1 be the

point obtained immediately after T = d801n ln 5
ε (
d
γ )2e proper steps. From xt, continue the lazy

random walk for T proper steps to obtain xt+1 and repeat this process to obtain the sequence

x1, x2, . . . , x3N .

The collection S = { x1, x2, . . . , x3N } is an ε-good sample for a distribution µ whose total

variation distance to the speedy distribution Q̂ is bounded by ε. For each point xi in the

collection S, if

vi :=
2n

2n− 1
xi ∈ K,

then distribution µ′i of vi satisfies
∥∥µ′i −Q∥∥TV < 10ε, where Q is the uniform distribution on K.

So we take S ′ :=
{
vi = 2n

2n−1xi : xi ∈ S, vi ∈ K
}

to be the sample set. With high probability

|S ′| ≥ N.

Remark 4.4.8. The first step of the algorithm in the proof of Theorem 4.4.6 requires a random

point x0 whose distribution is near the speedy distribution. Once again we refer the reader to

[16] for the details on generating such a point.

The number of proper steps T that pass before we record the state of the chain depends

on the scalar factor d of the ball containing the convex set. It is therefore important if we do

not know d exactly, that we are able to give a tight upper bound on d. When K has a skewed

shape, like in Example 4.4.1, it is beneficial to “round out” the convex set through some affine

transformation, thereby minimizing the smallest bounding ball, before carrying out the ball

walk.

Definition 4.4.9. A convex set K ⊂ Rn is in isotropic position if
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• the mean µK = 1
vol(K)

∫
K xdx is the origin,

• and for each pair of indices i, j, we have

1

vol(K)

∫
K
xixjdx =

1, if i = j

0, if i 6= j

Definition 4.4.9 is based on the notion of isotropic random variables and can be restated: A

convex set K is in isotropic position if, for a random variable X that is uniform over K, the mean

of X is 0 and the covariance matrix of X is the identity In. The Whitening Transformation in

Proposition 4.4.10, which transforms a random variable into white noise, allows us to transform

a convex set K into isotropic position.

Proposition 4.4.10. [Whitening Transformation] Let X be a random vector that is uniform

over the convex set K ⊂ Rn. Let µX and ΣX denote the mean and covariance matrix of

X, respectively. Assuming ΣX is invertible, if R = Σ−
1
2 then the random vector W (X) :=

R(X − E[X]) is isotropic.

Proof. Since expected value is a linear operator,

µW (X) = E[R(X − µX)] = R(E[X]− µX) = 0.

As a result, the covariance matrix

ΣW (X) = E[W (X)((W (X))T ] = E[R(X − µX)(X − µX)TRT ].

Again by linearity of expected value,

ΣW (X) = RΣXR
T .

Finally, since ΣX is an invertible covariance matrix, then it is symmetric and positive definite.

It follows that R is also symmetric and so ΣW (X) = In.

The affine transformation W (x) = R(x−µX) of Proposition 4.4.10 allows us to transform a

polytope P into isotropic position so long as its mean and covariance can be computed. Section

5 of [16] describes an algorithm that takes samples points from the convex set in order to

approximate the Whitening transformation.

Finally, Algorithm 4.4.11 is summary of the ball walk that follows from the proof of Theorem

4.4.6. Here we assume that the input is a polytope.
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Algorithm 4.4.11 (Sampling via ball walk).

• INPUT: Polytope P = P (A, b) satisfying B ⊂ P ⊂ dB and number of proper steps T

• OUTPUT: sample points xT

1. Let m = dn log de, 0 < ε < 1
4m , and γ = 1

10
√
n logm\ε

.

2. Let x0 ∈ P be a random point from a distribution Q0 within M distance 2 of the speedy
distribution Q̂.

3. counter=0

4. While counter < T : Flip a fair coin;

(a) if Heads, then xt+1 = xt.

(b) if Tails, then generate a point u ∈ γB uniformly at random. If xt + u ∈ P then
xt+1 = xt + u and counter= counter+1. Otherwise xt+1 = xt.

5. If 2n
2n−1xt ∈ P then Output xt. Otherwise return to Step 2, continuing the lazy random

walk from xt.

4.5 Sampling via Dikin Ellipsoid Walk

In this section we describe the Dikin ellipsoid walk for uniform sampling from a polytope. This

walk is similar to the ball walk, in the sense that at each step, the next point is generated from

an ellipsoid centered at the current state. The main distinction is that the geometry of the

ellipsoid depends on the center and on the polytope. We consider this particular Markov chain

since it was shown in [17] that the mixing time, when starting from a central point, is strongly

polynomial in the dimension n and the number of inequalities m that define the polytope. We

refer the reader to [17] for more complete details.

Definition 4.5.1. Let A ∈ Rm×n such that P = P (A,1) ⊂ Rn is a full-dimensional polytope.

For a point x ∈ int(P ), let D(x) be the m ×m diagonal matrix with entries dii =

(
1

1−aTi x

)
,

where aTi is the i-th row of A. The Dikin ellipsoid centered at x with radius r is the set

Drx = {y ∈ Rn :
∥∥D(x)A(y − x)

∥∥
2
≤ r}.

The Dikin walk takes polytopes in the form P = P (A,1). However, this does not impose

too rigid of restrictions when P does not have this form, so long as we can easily apply an

appropriate translation to P as a pre-processing step.
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Figure 4.4: The triangle T and the Dikin ellipsoid centered at x0 = (2, 1) form Example 4.5.2.

Example 4.5.2. The matrix A =


1
3 0

−4
3

5
3

−2
9 −5

9

 defines the triangle T = P (A,1) with vertex

set V (T ) =
{

(−2,−1), (3,−3), (3, 3)
}

. Notice the point x0 = (2, 1) is in the interior of T . The

Dikin ellipsoid centered at x0 with radius r = 1 is the set

D
1
2 (x0) =

{
y ∈ R2 :

1

81

[
673(y1 − 2)2 − 1360(y1 − 2)(y2 − 1) + 1000(y2 − 1)2

]
≤ 1

}
,

which is displayed in Figure 4.4.

At each step in the Dikin walk, we generate a candidate point from Drx. Lemma 4.5.3 shows

that the chain will remain in the polytope when the radius is at most one.

Lemma 4.5.3. If x ∈ int(P ) and r ≤ 1, then the Dikin ellipsoid Drx is contained in P .

Proof. The containment Dr1x ⊆ Dr2x holds whenever 0 < r1 ≤ r2 so it suffices to show D1
x ⊂ P.

For y ∈ D1
x, by definition, the value

∥∥D(x)A(y − x)
∥∥2

2
is bounded above by one, which occurs

exactly when

m∑
i=1

(
aTi (y − x)

1− aTi x

)2

≤ 1. (4.6)

Since each summand of Equation 4.6 is nonnegative and aTi x < 1, then for each i = 1, . . . ,m,∣∣∣aTi (y − x)
∣∣∣ ≤ 1− aTi x.

This implies that 2aTi x− 1 ≤ aTi y ≤ 1, for each i = 1, . . . ,m.
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The Dikin walk is a Metropolis chain, recall Section 1.1.2, that modifies a certain Markov

chain by introducing an acceptance probability at each step. For Definitions 4.5.4 and 4.5.5

assume that each ellipsoid Dx has radius r = 1
40 .

Definition 4.5.4. For a polytope P = P (A,1) ⊂ Rn, let p(x, y) be the one-step transition

density function for the following Markov chain on P : from some current state x, flip a fair

coin. If Heads, then remain at x. If tails, then the next state y is chosen uniformly from Dx.

That is, for x 6= y,

p(x, y) =


1

2vol(Dx) if y ∈ Dx,

0 otherwise.

Definition 4.5.5. For a polytope P = P (A,1) ⊂ Rn, the Dikin walk is the Metropolis chain

taking p(x, y) with the uniform density π. The one-step transition density function, for x 6= y,

is

q(x, y) =

min
{

1
2vol(Dx) ,

1
2vol(Dy )

}
if x ∈ Dy and y ∈ Dx

0 otherwise
,

and q(x, x) = 1−
∫
y∈P dp(x, y)dy.

A point x ∈ P is central if ln s, where s is the function defined in Theorem 4.5.6, is poly-

nomial in m. It is noted in [17] that if the Dikin walk starts at a central point of P , then the

chain mixes in time that is strongly polynomial in the arguments.

Theorem 4.5.6 (Kannan and Narayanan). Let n be greater than some universal constant. Let

x0 ∈ P and let

s = sup
pq

|p− x0|
|q − x0|

where the supremum is over all chords pq passing through the point x0 and let ε > 0 be the

desired variation distance to the uniform distribution. Let

T > 7× 108mn(n ln(20s
√
m) + ln(32

ε ))

and let x0, x1, . . . , be a Dikin walk in which the radius is 1
40 . Then for any measurable set S ⊂ P

the distribution of xT satisfies |Pr(xT ∈ S)− vol(S)
vol(P ) | < ε.

Definition 4.5.7. Let P = P (A, b) ⊂ Rn be a polytope. The point x ∈ P is an analytic center

of P if it is a solution to the problem

max
x∈int(P )

m∑
i=1

ln(bi − aTi x).
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Example 4.5.8. The point (4
3 ,−

1
30) is the analytic center of the triangle T from Example

4.5.2.

When we implement the Dikin walk, see Section 4.7, we let the initial state be the analytic

center of P since it can be found simply by solving an optimization problem and, as noted

in [17], the number of steps required to be within ε-total variation distance to stationarity is

O(mn(n logm+ log 1
ε )).

We conclude this section with Algorithm 4.5.9 which outlines the process for near-uniform

sampling via the Dikin walk. For the input polytope P = P (A,1) and x ∈ int(P ), define the

n× n matrix H(x) := ATD2(x)A. Assume that the radius of each Dikin ellipsoid is r = 1
40 .

Algorithm 4.5.9 (Sampling via Dikin Walk).

• INPUT: m× n matrix A, initial solution x0 ∈ P (A,1), number of steps T

• OUTPUT: sample point x

1. For t = 0, 1, . . . , T − 1:

(a) Flip a fair coin. If Heads then xt+1 = xt. If Tails then generate a random point
y ∈ Dxt .

(b) If xt ∈ Dy then accept y, that is set xt+1 = y, with probability
min(1,

√
det(H(y))/ det(H(xt)). Otherwise xt+1 = xt.

2. Return xT

4.6 Sampling from a General Lattice

In this section we outline pre-processing steps that must be taken in order to sample points

from P ∩ Λ where Λ ⊂ Rn, Λ 6= Zn is a general lattice. Notice that if we naively implement

Algorithm 4.1.1 on P then we may generate an integer point that is in P but not in Λ. To

sample lattice points appropriately, we modify the rounding scheme so that sampled points are

rounded to the nearest point in Λ. The motivation for this section comes from situations where

we would like to sample from a d-dimensional polytope in Rn where d < n, which occurs when

the polytope is fully contained in a hyperplane. We begin with an example to demonstrate the

pre-processing steps.
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Figure 4.5: Polytope and lattice from Example 4.6.1

Example 4.6.1. Consider the polytope P = {X ∈ R2 : 0 ≤ xi, 2x1 + 4x2 ≤ 18} and lattice

Λ = {X ∈ R2 : 2x1 + 4x2 ≡ 0 (mod 3)}, as illustrated in Figure 4.5. The set B = {b1 =

(3, 0), b2 = (1, 1)} is a basis for Λ. We partition R2 into cells centered at lattice points in Λ

where each cell is the n-dimensional parallelepiped generated by B. For Y ∈ Λ, let [Y ]B be the

coordinate vector of Y relative to B, then the cell centered at Y is

cell(Y ) = {X ∈ R2 : [Y ]B − [X]B ∈ (−1
2 ,

1
2 ]2}.

Figure 4.6: A partition of R2 into cells centered at points in Λ = {X ∈ R2 : 2x1 + 4x2 ≡ 0
(mod 3)}. The point (2.38, 0.76) is also plotted in red.

When we sample a point X from the interior of P , instead of rounding each coordinate as

usual, we round X to the nearest point in Λ by determining which cell in the partition contains

X. This is achieved by simply rounding the coordinates of X relative to B. For instance, suppose

that the result of sampling in P gives X = (2.38, 0.76). The coordinate vector relative to B is

[X]B = [0.54, 0.76] and the rounded coordinate vector is rd([X]B) = [1, 1] which is the lattice
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point b1 + b2 = (4, 1) ∈ Λ. In other words, the lattice point in Λ nearest to (2.38, 0.76) to which

our algorithm should round is (4, 1). This scenario is illustrated in Figure 4.6

Following Example 4.6.1 we have a general guideline to follow. Given some polytope P =

P (A, b) ⊂ Rn and lattice Λ with basis B, to implement Algorithm 4.1.1 we need to look at a

new polytope P ′ whose points represent the coordinate vectors [X]B relative to B for X ∈ P.
What exactly should P be? Recall that P is given by the inequality CX ≤ d where C ∈ Zm×n

and d ∈ Zm. If Q = [id]B,E is the change of basis matrix that takes the basis B to the standard

basis E , then we can simply let P ′ = P (AQ, b).

Once P ′ is computed and the small parameter ε fixed, the steps to determine P̃ ′ are un-

changed. The remaining step that must be added is that once a point Y is generated from

P ′ ∩Zn, we must take QY in order to obtain point in P ∩Λ. The modified workflow is summa-

rized as follows:

Example 4.6.2. Let P and Λ be as defined in Example 4.6.1. To generate a random point

P ∩Λ note that Q =

3 1

0 1

 is the change of basis matrix that takes the basis B to the standard

basis E so we carry out Algorithm 4.1.1 on the polytope

P ′ = {X ∈ R2 : −3x1 − x2 ≤ 0,−x2 ≤ 0, and 6x1 + 6x2 ≤ 18}

and if for example ε = 0 then we let δ = [2 1
2 6]T . Suppose we generate the point Y = (1, 2)

then QY = (5, 2) is the sampled point in Λ.

The next example comes from [7].

Example 4.6.3. In this example we are interested in sampling from the integer solutions to

a certain knapsack problem. We will see that in this situation the rejection rates for samples

generated by Algorithm 4.1.1 are high.

Let a′ = [12223 12224 36674 61119 85569] and b = 89643482. We are looking for points

X ∈ Zn that satisfy X ≥ 0 and a′X = b. To see the solution set as a full-dimensional polytope,

we project along the first coordinate. Let a = [12224 36674 61119 85569] and consider the

polytope P = {X ∈ R4 : 0 ≤ xi, aX ≤ b}.
When we implement Algorithm 4.1.1 to generate a point Y we will recover the missing

coordinate ym by letting ym = b−aY
12223 . To ensure that ym is an integer we need to consider the

lattice Λ given by aX ≡ 0 (mod b) and sampling from P ∩ Λ.

The set B = {b1 = [12223 0 0 0], b2 = [12218 1 0 0], b3 = [12219 0 1 0], b4 =

[12215 0 0 1], } is a basis of Λ. Using B to construct the change of basis matrix, we deter-

mine that the new polytope P ′ should be given by the system
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−12223 −12218 −12219 12215

0 −1 0 0

0 0 −1 0

0 0 0 −1

149413952 149389506 149426175 149401729




x1

x2

x3

x4

 ≤


0

0

0

0

89643482


.

If we let the parameter ε0 = 0, then to define P̃ ′, the polytope on which we do contin-

uous sampling that contains all cubes centered at a lattice point of interest, we let δε0 =[
24437.5 0.5 0.5 0.5 298815681

]T
. Finally, we use the ratio of volumes vol(P̃ ′)

vol(P ′) = 3454.99

as an estimate for the rejection rate of Algorithm 4.1.1.

4.7 R Codes and Examples

This section contains R scripts to carry out sampling via both the ball walk and the Dikin

ellipsoid walk. In addition, we show these scripts in action through a few examples.

Subsection 4.7.1 contains Algorithm 4.5.9 which outputs sample points from a polytope

P (A,1) when given the matrix A ∈ Rm×n, the analytic center, the number of steps for one trial

of the Dikin walk, and the radius of each Dikin ellipsoid Drx. Appendix B, details the method

for generating a random point uniform on Drx.

Subsection 4.7.2 contains Algorithm 4.4.11 which outputs sample points from a general

polytope P (A, b) when given the matrix A ∈ Rm×n, vector b ∈ Rm, an initial solution x0 ∈
P (A, b), radius d of a ball containing P (A, b), and the number of steps T for one trial of the

ball walk.

In Subsection 4.7.3 we implement Algorithm 4.5.9 on a small two-dimensional example,

particularly the triangle from Example 4.5.2. The purpose is to show that the programs behaves

as we expect. In the remainder of the section, we look at two examples where we perform the

steps of Algorithm 4.1.1, using both the ball walk and the Dikin ellipsoid walk, to generate

a random sample of the lattice points of a polytope. Some things to notice, not only for the

example in Subsection 4.7.3 but also for examples in other subsections, is that in practice we

set the number of steps for each random walk to be significantly lower than what the results

from the literature suggest is required for good mixing.

4.7.1 R Code for Dikin Sampler

Let A ∈ Rm×n be a matrix so that P (A,1) is polytope. Let xac be the analytic center of P (A,1).

Optional parameters are

1. de st is the number of steps of the Dikin walk. By default, this value is 10000
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2. rad is the radius of each Dikin ellipsoid. By default this value is rad= 1
40

3. no samples is the desired number of samples

dikin_sampler<- function(A,x_ac,de_st,rad,no_samples){

m=dim(A)[1] #no. inequalities

n=dim(A)[2] #dimension

b=c(matrix(1,nrow=1,ncol=m))

Dmat<-function(x,A){

diag(c((b-A%*%x)^(-1)))

}

Hx<-function(x){

t(A)%*%Dmat(x,A)^2%*%A

}

if (missing(de_st)){

de_st=10000 #desired number of steps

}

if (missing(rad)){

rad=1/40 #desired radius

}

x=x_ac

samples=matrix(0,n,no_samples)

for (j in 1:no_samples){

step_no=0

while (step_no < de_st){

if (sample.int(2,size=1)==1){

hx=Hx(x)

decomp=eigen(hx,symmetric=TRUE)

R=t(decomp$vectors)

D=diag(decomp$values)

E=sqrt(D)

ER=E%*%R

#

#generate point in ball of radius r

u=rnorm(n)

sca=runif(1)^(1/n)

u=(rad*sca*u/norm(u,"2"))

v=solve(ER,u)
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#

Dy=Dmat(v+x,A)

#ask if v+x in D_y

if (norm(Dy%*%A%*%(-v),"2") <=rad ){

#determine probabilities

dHy=det(Hx(v+x))

dHx=det(hx)

proba=min(1,sqrt(dHy/dHx))

if (sample.int(2,size=1,prob=c(proba,1-proba))==1){

x=v+x

#accept y

}

}

}

step_no=step_no+1

}

samples[,j]=x

}

return(samples)

}

4.7.2 R Code for Ball Walk Sampler

Let P = P (A, b) ⊂ Rn be a polytope such that B ⊂ P ⊂ dB for some constant d > 0. Further

assume that P is close to isotropic position. Other parameters

1. no samples is the desired number of samples

2. T prop is the number of steps of the ball walk before capturing the state

3. x0 is the initial state

kls_ball<- function(A,b,no_samples,d,T_prop,x0){

#set parameters

n=dim(A)[2]

m=ceiling(n*log10(d))

eps=1/(4*m+1)

gamma_ss=(100*n*log10(m/eps))^(-.5)

#
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x=x0

#

samples=matrix(0,n,no_samples)

sf=2*n/(2*n-1)

j=0

while (j < no_samples){

counter=0

while (counter<T_prop){

u=rnorm(n)

sca=runif(1)^(1/n)

u=(gamma_ss*sca*u/norm(u,"2"))

if (prod(A%*%(x+u)<=b)==1){

x=x+u

counter=counter+1

}

}

if (prod(A%*%(sf*x)<=b)==1){

j=j+1

samples[,j]=sf*x

}

}

return(samples)

}

4.7.3 Sampling Points from T

In this subsection we continue Example 4.5.2 by implementing the R codes for the Dikin ellipsoid

and ball walk- based sampling algorithms from Subsections 4.7.1 and 4.7.2. The goal of this

small example is to see the algorithms for continuous sampling in action. After this example,

in Subsection 4.7.4, we put all the pieces together and implement Algorithm 4.1.1 for sampling

lattice points on a couple of examples in higher dimension.

Recall from 4.5.2 that T = P (A,1) is the triangle with vertices (−2,−1), (3,−3), and (3, 3).

Using Latte integrale [2], we determine the true mean and covariance matrix of a random

vector uniformly distributed over T .

1. The mean µ = 1
vol(T )

∫
T xdx = (4/3,−1/3), and
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Table 4.1: This table displays the ‖·‖2-distance between the sample means and the true mean
for both the ball walk and Dikin ellipsoid-based sampling algorithms for various choices of the
step number.

‖·‖2-distance to true mean

10 steps 50 100 500 103 5 ∗ 103 104 5 ∗ 104

γ-ball 0.80589 0.77037 0.58698 0.30993 0.19511 0.02127

dikin 1.29629 0.58828 0.75742 0.19363 0.19329 0.07574

Table 4.2: This table displays the ‖·‖2-distance between the sample covariances and the true
covariance for both the ball walk and Dikin ellipsoid-based sampling algorithms for various
choices of the step number.

‖·‖2-distance to true covariance

10 steps 50 100 500 103 5 ∗ 103 104 5 ∗ 104

hit-and-run 0.84725 0.49005 0.57261 0.27530 0.12151 0.20014

dikin 1.10228 0.41477 0.56815 0.59557 0.35444 0.11613

2. the covariance Cov(x1, x2) =

25/18 5/18

5/18 14/9

 .
In this experiment, we generate 500 random points from T using both the ball walk and

Dikin ellipsoid algorithms. For each algorithm, we consider a range of choices for the number

of steps that pass before recording the state (that is, T prop for the ball walk and de st in the

Dikin walk.)

Theorem 4.5.6 suggests that we should set the number of steps to be 5.939 × 1010. Notice

from Tables 4.1 and 4.2 that when we implement the Dikin walk, we get a sample set whose

mean and covariance are both within 0.25 of the true mean and true covariance taking 5× 104

steps. The ball walk from the proof of Theorems 4.4.6 suggests letting the number of steps be

approximately 4.29× 107. Again notice from Tables 4.1 and 4.2 that we can get a good sample

set whose mean and covariance are near the true values. The plots in Figures 4.8 and 4.7 are

the result of running the R codes and plotting the sample points.

4.7.4 Sampling Lattice Points Examples

In this section we look at two examples where we perform the steps of Algorithm 4.1.1 to

generate a random sample of the lattice points of a polytope. The first polytope that we consider

is a truncated cube in R3 obtained by removing a pair of opposite corners. In the second example,

we seek to generate a sample of contingency tables with given table margins. For both examples,
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Figure 4.7: Plot of 500 sample points from T , using Dikin algorithm, with various number of
step between
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Figure 4.8: Plot of 500 sample points from T , using the ball walk with various number of step
between
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we generate random samples using the ball walk and Dikin ellipsoid walks and, for the sake of

comparison, we consider a range of steps of the random walk taken between sample points. The

general outline for both examples is the following:

Let P = P (A, b) ⊂ Rn be the polytope whose lattice points we would like to sample.

Following Algorithm 4.1.1, we first need to choose a polytope P̃ and choose a method to sample

continuously from P̃ . In our examples we will compare the performance of Algorithm 4.1.1 when

we consider different options:

1. Choice of P̃ : We will choose vectors δ0 and δ
1
4 in Rm≥0 (using Proposition 4.2.3) so that

the polytope P̃0 := P (A, b + δ0) contains each cube centered at any given lattice point

in F and the polytope P̃ 1
4

:= P (A, b + δ
1
4 ) contains at least three-quarters of each cube

centered at a lattice point in F .

2. Choice of sampling algorithm: both the ball (Section 4.4) and the Dikin ellipsoid walk

algorithm (Section 4.5) will be implemented.

3. Number of steps: for both the ball and Dikin ellipsoid walk algorithm, we specify the

number of steps taken by the random walk between sample points. We generate sample

sets using the following number of steps: 100, 500, 1e03, 5e03, 1e04, 5e04, 1e05, and 5e05.

For each choice of parameters, we use the R codes to generate a sample of 500 random lattice

points in F . We then compute the sample mean, sample covariance, the run time to generate

each sample set, and the acceptance rate, that is, the sample size divided by the number of trials

of continuous sampling on P̃ before we have 500 lattice points in F . We have also computed

the true mean and the true covariance of F by enumerating all lattice points of P. The true

mean and true covariance are

µF =
1

|F|
∑
x∈F

x,

ΣF =
1

|F|
∑
x∈F

(x− µF )T (x− µF ).

With this information, the goal is to determine which choice of parameters is optimal. Further,

we would like to obtain a rough estimate for the number of steps required in the random walk

before the sample statistics are near the true statistics.

To use the Dikin algorithm, we first shift P̃ so that the lattice point nearest to the analytic

center becomes the origin. Formally, we transform P̃ to the system

P (A, (b+ δ)−A(rd(xac))) =
{
y ∈ Rn : y + rd(xac) ∈ P̃

}
,
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where xac is the analytic center of P̃ . The purpose of this shift is to work on a polytope that

contains the origin and thus can be expressed as P (A′,1), for some matrix A′. The choice to

shift P̃ by the rounded point rd(xac) is so that lattice points in P̃ correspond to lattice points

in the shifted polytope P (A, (b+ δ)−A(rd(xac))).

For the ball walk, we also shift P̃ so that rd(xac) becomes the origin. Then the scalar

factor d, of the ball containing P̃ , is approximated by solving the optimization problem,

maxx∈P (A,(b+δ)−A(rd(xac))) ‖x‖2 as a pre-processing step.

Example 4.7.1 (Truncated Cube). Suppose we want to sample lattice points in the truncated

cube C, where

C =
{
x ∈ R3 : −10 ≤ x1, x2, x3 ≤ 10, −2 ≤ x1 − x2 ≤ 10

}
.

In other words, C = P (A, b) where

A =


I3

−I3

1 −1 0

−1 1 0

 , b =

10 · 16

10

2

 .

Following Algorithm 4.1.1, we need to choose a larger polytope C̃ such that C ⊆ C̃. If we let

δ0 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1)T then the polytope C̃0 = P (A, b + δ0) has the property that C ⊂ C̃0

and vol(cube(x) ∩ C̃0) = 1 for all x ∈ F .
Using Proposition 4.2.3, we also choose a polytope that satisfies vol(cube(x)∩ C̃) ≥ 3

4 for all

x ∈ F . There are only two inequalities in the defining system of C that do not have the form

±xj ≤ bi. And since the hyperplanes H(aT7 , 10) and H(aT8 , 2) are far enough apart, there are

no cubes centered at a lattice point in F that intersect both hyperplanes. From Appendix A,

we determine that the cumulative distribution function for the sum z1 + z2, where z1, z2 are

independent U(−1
2 ,

1
2) random variables, is given by

Fz1+z2(t) =



0, t ≤ −1

1
2(t+ 1)2, −1 < t ≤ 0

−1
2 t

2 + t+ 1
2 , 0 < t < 1

1, 1 ≤ t

.
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Table 4.3: Truncated Cube: This table displays the ‖·‖2-distance between the sample means
and the true mean for both the ball walk and Dikin ellipsoid-based sampling algorithms for
various choices of the step number.

‖·‖2-distance to true mean

100 500 103 5 ∗ 103 104 5 ∗ 104

ball, ε0 = 0 5.472734 6.754784 5.398435 4.829845 0.9768404 1.954941

ball, ε0 = 1
4 1.271215 4.810954 8.358417 2.306616 3.108179 0.7753852

dikin,ε0 = 0 3.20219 5.70497 1.50822 2.29012 0.98878 0.70390

dikin, ε0 = 1
4 5.73197 8.28852 5.81650 2.13970 1.67759 0.59985

Table 4.4: Truncated Cube: This table displays the ‖·‖2-distance between the sample co-
variances and the true covariance for both the ball walk and Dikin ellipsoid-based sampling
algorithms for various choices of the step number.

‖·‖2-distance to true covariance

100 500 103 5 ∗ 103 104 5 ∗ 104

ball, ε0 = 0 45.57909 41.47734 38.8652 11.92179 5.514269 8.091575

ball, ε0 = 1
4 46.3134 29.89801 43.28793 11.09837 10.27829 3.276207

dikin,ε0 = 0 39.96622 20.53888 29.32092 13.96456 11.80100 5.12891

dikin, ε0 = 1
4 47.29601 43.24955 30.89206 7.16252 7.25398 3.47414

Then by solving the equation Fz1+z2(t) = 3
4 , we find that if we set

δ
1
4 = (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0.293, 0.293)T

and C̃ 1
4

:= P (A, b+ δ
1
4 ), then C ⊂ C̃ 1

4
and vol(cube(x) ∩ C̃ 1

4
) ≥ 3

4 for all x ∈ F . With C̃0 and C̃ 1
4

chosen, we perform Algorithm 4.1.1 for a total of 24 times, each time using different options

for the input to generate a set of 500 random lattice points of C. Those options correspond to

the different combinations of the following choices:

• C̃0 or C̃ 1
4
?

• ball or Dikin ellipsoid random walk?

• 100, 500, 1000, 5000, 1e04, or 5e04 steps

For each generated sample set of lattice points we record the sample mean and the sample

covariance, and we compare those values to the true values that we obtain by enumerating all

lattice points with the following R code:
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Table 4.5: Truncated Cube: This table displays the ‖·‖2-distance between the sample means
and the true mean for both the ball walk and Dikin ellipsoid-based sampling algorithms for
various choices of the step number.

Acceptance Rate

100 500 103 5 ∗ 103 104 5 ∗ 104

ball, ε0 = 0 0.93458 0.95785 0.91575 0.94340 0.94162 0.93110

ball, ε0 = 1
4 1 0.99404 0.99602 0.99206 0.99404 0.99602

dikin,ε0 = 0 1 0.93110 0.97656 0.95238 0.94518 0.93633

dikin, ε0 = 1
4 1 1 1 1 0.95057 0.99206

> #lattice points tcube

> lp=matrix(0,3,1)

> for (I in -10:10){

+ for (J in -10:10){

+ for (K in -10:10){

+ if (I-J<=10){

+ if (I-J>=-2){

+ lp=cbind(lp,c(I,J,K))

+ }

+ }

+ }

+ }

+ }

>

> lattice_points=lp[,2:dim(lp)[2]]

> truemean=apply(lattice_points,1,mean)

> truecov=cov(t(lattice_points))

> truemean

[1] 1.655814 -1.655814 0.000000

> truecov

[,1] [,2] [,3]

[1,] 28.44598 21.93728 0.00000

[2,] 21.93728 28.44598 0.00000

[3,] 0.00000 0.00000 36.67479

For each sample set we also record the acceptance rate which is the sample size, 500, divided

by the number of trials of continuous sampling on C̃ before obtaining those 500 lattice points
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in C. The result of these actions are summarized by Tables 4.3, 4.4, and 4.5.

We first note that the acceptance rates are slightly higher when we perform Algorithm 4.1.1

letting C̃ = C̃ 1
4

instead of C̃0. That the difference is slight is expected since the dimension of the

polytope and the ambient space is not large.

Next, if we just look at the sample statistics for sample sets generated when we let C̃ = C̃ 1
4
,

then it is not clear that either choice of the ball or Dikin ellipsoid walk significantly outperforms

the other. However, Tables 4.3 and 4.4 do suggest that we may be able to generate a sample set

whose sample statistics are near the true values if we let the number of steps be on the order of

5× 104 or 105. We compare this to the results for the Dikin random walk which suggests that

the number of steps should be at least 2.387× 1011, and the results for the ball walk suggests

that we choose at least 1.796× 109 steps.

As a final comment, we noted from Tables 4.3 and 4.4 that it is not clear whether the Dikin

ellipsoid walk performs drastically better than the ball walk for any given choice of parameters

but, we did observe that the computational time for Algorithm 4.1.1 is larger when we use

the Dikin ellipsoid walk to do continuous sampling. For instance, generating the sample set

with 5e04 steps, using the Dikin walk, took 8 hours. On the other hand, generating the sample

set again with 5e04 steps, using the ball walk, took only 3 hours. The reason for the time

differential, is that in each step of the Dikin ellipsoid walk, to generate a point in the Dikin

ellipsoid requires that we construct a matrix and then solve a matrix equation. See Appendix

B.

In this next example, we repeat the process of Example 4.7.1 but for a polytope correspond-

ing to 3× 4 contingency tables with fixed row and column sums.

Example 4.7.2 (Two-way Contingency Table). Suppose we are interested in generating a

sample of 3 × 4 contingency tables with row sums r = (33, 27, 21) and column sums c =

(22, 18, 19, 22). This set of contingency tables is the set of lattice points F = P ∩ Z6 of the

polytope P (A, b) where
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A =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

−1 −1 −1 −1 −1 −1



, b =



0

0

0

0

0

0

33

27

22

18

19

−38



.

We know that this set is nonempty since, for instance, the point (10, 6, 9, 7, 9, 1) is in F . For

this round of test in R, we let P̃0 := P (A, b+ δ0) where the vector δ0 is

δ0 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
2 ,

3
2 , 1, 1, 1, 3).

As in the previous example, this choice of P̃0 contains all cubes centered at a lattice point in F .

Now to choose a polytope P̃ that contains at least 3
4 of every cube centered at a lattice point,

notice that there are 6 defining inequalities that are not of the form ±xj ≤ bi, and so following

Proposition 4.2.3, we can let m′ = 6 be the maximum number of facet-defining hyperplanes,

none of the form
{
x ∈ Rn : ±xj = bi

}
, that intersect any cube centered at a given lattice point

in F . We compute the cumulative distribution function FZn′ (t) for n′ = 2, 3, and 6 where, in

general, the random variable Zn′ =
∑n′

i=1 zi of U(−1
2 ,

1
2) i.i.d random variables. We then solve

each function for 1− ε0
6 = 23

24 . Since,

FZ2(t) =
23

24
=⇒ t = 0.7113

FZ3(t) =
23

24
=⇒ t = 0.87

FZ6(t) =
23

24
=⇒ t = 1.2447,

(4.7)

we can let

δ
1
4 = (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 0.87, 0.87, 0.7113, 0.7113, 0.7113, 1.2247)

and then the polytope P̃ 1
4

:= P (A, b+δ
1
4 ) contains at least three-quarters of each cube centered

at a lattice point in F . See Appendix A for details of Equations 4.7.
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Table 4.6: Two-way Contingency Table: This table displays the ‖·‖2-distance between the
sample means and the true mean for both the Dikin and hit-and-run algorithms for various
choices of the step number.

‖·‖2-distance to true mean

100 500 1e03 5e03 1e04 5e04 1e05 5e05

ball, ε0 = 0 2.9842 3.0877 8.3720 7.8133 3.4329 1.4209 2.9453 0.5585

ball, ε0 = 1
4 4.8949 6.1500 1.6690 2.1058 4.1438 2.0696 1.0708 1.0627

dikin,ε0 = 0 6.8451 4.5846 3.7366 2.3054 2.9069 0.6060 0.5585 0.7492

dikin, ε0 = 1
4 5.7313 8.3500 8.2319 4.2147 2.1128 0.4519 0.6875 0.2813

We generate sample sets consisting of 500 random lattice points using both the ball and

the Dikin ellipsoid walks, we let P̃ be either P̃0 or P̃ 1
4
, and we let the number of steps be 1e03,

5e03, 1e04, 5e04, and 1e05.

We make some observations based on the results reported in Figure 4.9 and Tables 4.6, 4.7,

and 4.8.

First we focus on the sample sets generated when we let P̃ = P̃ 1
4
. From Tables 4.6, 4.7 it

seems that, using the Dikin walk, a sample set of lattice points can be generated if the let the

number of steps of the Dikin walk be on the order of 105 or 106. We compare this to Theorem

4.5.6 which suggests that we should choose at least 2.519 × 1013 steps. And if we use the ball

walk, then the results from Theorem 4.4.6 direct us to choose at least 1.783× 1010 steps. From

the sample statistics in Tables 4.6 and 4.7 it is not clear if we can generate a good sample set

using fewer steps.

The mitigating factor that works in favor of the ball walk is computation time. On average,

generating a sample set via the Dikin walk takes 1.5 times longer than generating a sample set

via the ball walk assuming all other parameters are equal. This time differential is significant

when we set the number of steps of either random walk to be over 105 where the computing

time to generate a sample set takes over an hour. For example, generating a sample set using

5 × 104 steps took 8.12 hours with the Dikin walk, whereas the ball walk only required 3.7

hours.

Finally, Table 4.8 shows that the acceptance rate is significantly larger when we let P̃ = P̃ 1
4

instead of P̃ = P̃0, which speaks to the tangible benefit of relaxing the requirement on P̃ to

vol(cube(x) ∩ P̃ ) ≥ 1− ε0 for all x ∈ F .

.
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Table 4.7: Two-way Contingency Table: This table displays the ‖·‖2-distance between the
sample covariances and the true covariance for both the Dikin and hit-and-run algorithms for
various choices of the step number.

‖·‖2-distance to true covariance

100 500 1e03 5e03 1e04 5e04 1e05 5e05

ball, ε0 = 0 48.3545 46.0120 39.6203 24.8661 25.2947 11.2617 10.3096 10.1980

ball, ε0 = 1
4 48.0543 43.8976 43.2418 32.3943 36.9701 12.9152 19.4854 15.0922

dikin,ε0 = 0 39.6126 33.8709 20.9273 30.8996 8.0076 8.1195 8.0932 10.9406

dikin, ε0 = 1
4 37.4560 28.5128 40.6693 15.2506 11.4101 6.5604 9.1686 9.5600

Table 4.8: Two-way Contingency Table: This table displays the ‖·‖2-distance between the
sample means and the true mean for both the Dikin and hit-and-run algorithms for various
choices of the step number.

Acceptance Rate

100 500 1e03 5e03 1e04 5e04 1e05 5e05

ball, ε0 = 0 0.9960 0.7800 0.5855 0.7364 0.6935 0.6329 0.6859 0.6596306

ball, ε0 = 1
4 0.6337 0.8446 0.8993 0.8278 0.7962 0.8306 0.8026 0.8104

dikin,ε0 = 0 0.9940 0.5787 0.6974 0.7429 0.6614 0.6711 0.6329 0.6150

dikin, ε0 = 1
4 0.9980 0.7072 0.9881 0.8489 0.8503 0.8052 0.8210 0.8210

Figure 4.9: The figure summarizes the results of the codes in R. The plot shows, for different
number of steps, the distance between sample mean and true mean, the distance between sample
covariance and true covariance, and acceptance rate for the Dikin and hit-and-run algorithms,
letting ε0 = 0, and 1

4 .
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Appendix A

The CDF of a Sum of I.I.D Uniform

Random Variables

Let P = P (A, b) ⊂ Rn and P̃ = P (A, b + δ) be polytopes where δ ∈ Rm≥0. In Section 4.2 the

question under consideration is, Given a small parameter 0 < ε0 ≤ 1
2 , how can we choose a

vector δ such that vol(cube(x)∩ P̃ ) ≥ 1− ε0, for all x ∈ P ∩Zn? Recall that aTi is the i-th row

of A, and Z = (z1, . . . , zn) is a random vector whose coordinates zj are i.i.d random variables

uniform on the interval [−1
2 ,

1
2 ]. Proposition 4.2.3 provides a method for choosing δ coordinate

by coordinate and the proof involves solving each equation

Pr(aTi Z ≤ δi) = 1− ε0
m
, (A.1)

for δi. The left hand side of Equation A.1 is the cumulative distribution function FaTi z
(δi) for the

random variable aTi Z. So to solve for δi, we need to derive an algebraic expression for FaTi z
(t).

Lemma A.0.1 gives the cumulative distribution function of
∑n

i=1 zi. The steps in the proof

can be followed to derive the cumulative distribution function for any aTi Z.

Lemma A.0.1. Let zi ∼ U(−1
2 ,

1
2) be i.i.d. random variables uniform on [−1

2 ,
1
2 ]. If Zn =∑n

i=1 zi, then for t ∈ R,

FZn(t) = Pr(Zn ≤ t) =
1

n!

bt+n
2
c∑

j=0

(
n

j

)
(−1)j(t+

n

2
− j)n.

To fully understand the proof requires some knowledge of Laplace transforms. We briefly

comment on Laplace transforms and refer the reader to Chapter 6 of [5] for more complete

details.

Definition A.0.2. For a function f(t) defined for t ≥ 0, the Laplace transform of f , often
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denoted by L{f(t)} or F (s), is

L{f(t)} = F (s) =

∫ ∞
0

exp(−st)f(t)dt,

assuming the integral exists, where s is a complex number.

Example A.0.3. The Laplace transform of f(t) = t is L{t}(s) =
∫∞

0 t exp(−st)dt = 1
s2
.

It follows from linearity of integration that the Laplace transform is a linear operator. That

is, for functions f(t) and g(t) defined for t ≥ 0 and constant c ∈ R, the Laplace transform of

(af + g)(t) is

L{(af + g)(t)}(s) = aL{f(t)}(s) + L{g(t)}(s).

From a transformed function F (s), we can recover the function f by inverting the process.

Table 6.2.1 of [5] contains the Laplace transforms for some elementary functions. This table

is used to quickly invert functions F (s), in other words, to determine the inverse Laplace

transform. Laplace transforms are useful here due to the connection to moment generating

functions of random variables.

Definition A.0.4. For a random variable X with probability density function fX(x), the

moment generating function of X, denoted mX(t), is

mX(t) = E(exp(tX)) =

∫ ∞
−∞

exp(tx)fX(x)dx,

for t ∈ R.

Within probability theory, we refer to L{fX}(s) = E(exp(−sX)) as the Laplace transform of

the random variable X. With the substitution s = −t, the Laplace transform of X is the moment

generating function. So if we know the moment generating function for a random variable X,

then using inverse Laplace transforms, we can recover the probability density function fX(x).

Proof of Lemma A.0.1. For zi ∼ U(−1
2 ,

1
2), the probability density function is fzi(t) = 1 for

t ∈ [−1
2 ,

1
2 ] and fzi(t) = 0 otherwise. Hence the moment generating function is

mzi(t) = E(exp(tzi))

=

∫ ∞
−∞

exp(tz)fzi(z)dz

=

∫ 1
2

− 1
2

exp(tz)dz
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=
exp( t2)− exp(− t

2)

t
.

Since the zi’s are independent random variables, the moment generating function for Zn is

mZn(t) = E(exp(tZn)) =

n∏
i=1

E(exp(tzi)),

which can be expressed in terms of the moment generating function of the zi’s. In particular

mZn(t) =
n∏
i=1

mzi(t) =

(
exp(t/2)− exp(−t/2)

t

)n
.

By substituting t = −s, we obtain the Laplace transform of Zn

mZn(−s) =

(
exp(s/2)− exp(−s/2)

s

)n
=

1

sn

n∑
i=0

(
n

i

)
(−1)i exp

(
s(n− 2i)

2

)
.

We let c = i− n
2 and then by applying inverse Laplace transform (see Table 6.2.1 in [5]) we

recover the probability distribution function fZn(t) for Zn, namely,

fZn(t) =
1

(n− 1)!

n∑
i=0

(
n

i

)
(−1)iuc(t)(t+

n

2
− i)n−1,

where uc(t) is the Heaviside step function, uc(t) = 1 if t ≥ c and uc(t) = 0 otherwise.

Integrating over the probability density function fZn(t) gives the cumulative distribution

function,

FZn(t) =

∫ t

−∞
fZn(z)dz

=

∫ t

−∞

1

(n− 1)!

n∑
i=0

(
n

i

)
(−1)iuc(z)(z +

n

2
− i)n−1dz

=
1

(n− 1)!

n∑
i=0

(
n

i

)
(−1)i

∫ t

−∞
uc(z)(z +

n

2
− i)n−1dz.

Since uc(t) = 1 when t ≥ i− n
2 , equivalently when t+ n

2 ≥ i and uc(t) = 0 otherwise, then

FZn(t) =
1

(n− 1)!

bt+n
2
c∑

i=0

(
n

i

)
(−1)i

∫ t

i−n
2

(z +
n

2
− i)n−1dz
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=
1

n!

bt+n
2
c∑

i=0

(
n

i

)
(−1)i(z +

n

2
− i)n

∣∣z=t
z=i−n

2

=
1

n!

bt+n
2
c∑

i=0

(
n

i

)
(−1)i(t+

n

2
− i)n.
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Appendix B

To Generate a Random Point in a

Dikin Ellipsoid

Let A ∈ Rm×n be a matrix such that P = P (A,1) ⊂ Rn is a polytope. Recall that for a point

x in the interior of P, the Dikin ellipsoid Drx centered at x with radius r is the set

Drx =
{
y ∈ Rn :

∥∥D(x)A(y − x)
∥∥

2
≤ r

}
,

where D(x) = diag( 1
1−aTi x

) is a diagonal m×m matrix. Further recall that each step of the Dikin

walk requires that we choose a point y from Drx uniformly at random. So to sample points from P

via the Dikin walk (Algorithm 4.5.9) we need a practical method for generating such points. For

each y ∈ Drx, we can write y = z+ x where z satisfies
∥∥D(x)Az

∥∥
2
≤ r. This demonstrating that

sampling from Drx is equivalent to sampling from the ellipse E = {z ∈ Rn :
∥∥D(x)Az

∥∥
2
≤ r}.

The underlying idea that allows us to sample from E is the fact that every ellipsoid is the

image of a Euclidean ball under some linear transformation. Suppose ATD2(x)A = RTDR is

an eigenvalue decomposition. Specifically R is an n × n orthogonal matrix and D is a diago-

nal matrix which contains the eigenvalues of ATD2(x)A. By the positive definite structure of

ATD2(x)A, the entries of D are nonnegative and so we can let E =
√
D. For z ∈ E , the image

ERz is contained in the ball rB := {y ∈ Rn :‖y‖2 ≤ r}. In fact, since ER is invertible, it defines

an endomorphism on Rn. It follows that to generate a random point from E :

• Let Xi ∼ N (0, 1) be i.i.d. standard normal random variables and let U ∼ U(0, 1) be a

random variable uniform on the interval [0, 1]. Then

X = rU
1
n · (X1, . . . , Xn)√

X2
1 + · · ·+X2

n

is uniformly distributed over rB ⊂ Rn.
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Figure B.1: Continuing Example 4.5.2, in R, we generated N = 500 random points from D1
x0

where x0 = (2, 1).

• The point Y = (ER)−1X is then uniformly distributed over E .

Example B.0.1. Consider the triangle from Example 4.5.2. Here we use R to generate N = 500

random points uniformly from D1
x0

where x0 = (2, 1). The result is plotted in Figure B.1.

#Generating uniform random points in Dikin Ellipse

A0=matrix(c(1/3,-4/3,-2/9,0,5/3,-5/9),nrow=3)

b=c(1,1,1)

Dmat<-function(x,A){

#Let Ax<=1 define a polytope. Dmat is D(x)

b=c(matrix(1,nrow=1,ncol=dim(A)[1]))

return (diag(c((b-A%*%x)^(-1))))

}

n=dim(A0)[2]

N=500 #number of samples

samples=matrix(0,nrow=N, ncol=n)

rad=1 #radius
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center=c(2,1)

Hx<-function(x){

t(A0)%*%Dmat(x,A0)^2%*%A0

}

#eigendecomp

decomp=eigen(Hx(center),symmetric=TRUE)

R=t(decomp$vectors)

D=diag(decomp$values)

E=sqrt(D)

ER=E%*%R

for (i in 1:N){

u=rnorm(n)

sca=runif(1)^(1/n)

u=(rad*sca*u/norm(u,"2"))

samples[i,]=solve(ER,u)+center

}

#plot sample points

plot(samples[,1],samples[,2],xlim=c(-3,3),ylim=c(-3,3),

main="Sample points from ellipse D_x^1 centered at (2,1)")
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