
ABSTRACT

BRAVO, NIKOLAS BILY. Synthesis of Uncertainty Quantification, Surrogate Modeling, and
Robust Control Design for PZT Bimorph Actuators. (Under the direction of Dr. Ralph Smith).

In this dissertation, we synthesize surrogate modeling, uncertainty quantification, and

robust control design for a high fidelity model of a Lead Zirconate Titanate (PZT) bimorph

actuator used for micro-air vehicles. This includes the Harvard Microrobotic Fly, also known

as RoboBee. We quantify the high-fidelity actuator dynamics using the homogenized energy

model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent

behavior inherent to PZT in dynamic operating regimes. We then identify the influential

parameters using local and global sensitivity measures. We discuss the development of

a local sensitivity method, which allows comparison between parameters having differ-

ent orders of magnitude. Once the identifiable parameters are determined, we perform

Bayesian inference on those parameters to determine the uncertainty in the parameters.

We then propagate the uncertainty through the model to quantify the uncertainty in the tip

displacement of the beam. To synthesize uncertainty quantification and control design, we

investigate the extension of dynamic mode decomposition with control via interpolation

to create a parameter and control-dependent surrogate model. Finally, we quantify uncer-

tainty in different controllers to determine their robustness under parameter uncertainty.

In this manner, we design a control that is robust to the parameter uncertainty.
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CHAPTER

1

INTRODUCTION

Lead Zirconate Titanate (PZT) bimorph actuators are utilized as the driving mechanisms in

a number of micro-air vehicles (MAVs). Developed by Dr. Robert Woods, Harvard Micro-

robotic Fly, or RoboBee, was designed for autonomous pollination using PZT bimorphs

actuators. The Harvard Microrobotic Fly is an insect-size flapping-winged MAV as shown

in Figure 1.1 [42]. This MAV can be used for hazardous terrain exploration, to aide in search

and rescue missions, or intelligence gathering. These vehicles face many challenges to fly

outside a controlled environment. Due to the MAV’s small size, one of the most signifi-

cant challenges is designing a control that is robust to turbulence and other uncertainties.

Figure 1.2 is an image of the controlled flight of Dr. Wood’s MAV [23]. We note that the

MAV does not track the target trajectory with the desired accuracy. One objective of our

research is to improve the control of these MAVs by understanding the uncertainty in the

PZT bimorph actuator model and use the quantified uncertainty to develop robust control

algorithms. Note we do not address the control of the MAV with regard to turbulence and

wind.

PZT bimorph actuators can be driven at moderate to high frequencies and are energy

1



Figure 1.1 (a) Design of RoboBee and (b) picture of RoboBee from [42].

efficient while exhibiting moderate work densities and high set-point precision. This makes

PZT bimorphs an excellent choice to drive MAVs [42]. When driven in dynamic regimes, PZT

bimorph actuators exhibit nonlinear, hysteretic, and rate-dependent behavior including

creep, saturation, and stress-based effects. These properties are inherent to ferroelectric

materials including PZT and can be observed in Figure 1.3. To accurately quantify the

nonlinear behavior inherent to ferroelectric material; i.e., PZT, we need to use a nonlinear

model for a PZT bimorph [43]. We use a homogenized energy model (HEM) framework to
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Figure 1.2 The controlled flight of Robobee from [23].

quantify the rate-dependent and hysteretic nature of the strain and polarization in PZT [17,

35].

Due to the MAVs’ small size, nonlinear models of the strain and polarization are neces-

3



(a)

(b) (c)

Figure 1.3 Nonlinear effects of PZT (a) Hysteresis loop [11], (b) Hysteresis butterfly from [11] and
(c) rate dependence from [35].

sary for model-based control designs in MAVs’ dynamical regimes [23]. In [11], we demon-

strated the implementation of a HEM for these actuators to quantify the nonlinearities.

The actuator for the MAVs can be modeled as an Euler-Bernoulli cantilever beam, where

the bending moment is comprised of active and passive parts [33]. We note that the HEM

can be numerically inverted and implemented in real time for certain control regimes [12,

25, 27].

Understanding the uncertainty in the HEM model is necessary to develop a robust con-

trol. These uncertainties come from model limitations, parameters, and the data [34]. We

use Bayesian inference to quantify the uncertainties from the observations and parameters.
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In a Bayesian framework, parameters are taken to be random variables with associated

distributions. Then, we propagate those uncertainties through to model to construct pre-

diction and credible intervals for the quantity of interest, or the physically value that is

being measured. For our application, the quantity of interest is the tip displacement of the

bimorph. A 95% prediction interval represents the region where the next data sample will

be located with a 95% probability. For our model, we consider 18 parameters as listed in

Table 1.1. Depending on the information content of the data, all of the parameters cannot

be inferred by the data. Therefore, before we perform uncertainty quantification, we need

to determine the identifiable parameters in the model.

We use five different methods to determine the influential parameters, so we can fix

the other parameters for Bayesian inference. The results of the five different methods

will be compared with the results of our proposed method, scaled subset selection. We

investigated two local sensitivity measures: Quaiser and Monnigmann’s parameter subset

selection [29] and Bank’s, et al., parameter subset selection [2]. To distinguish between the

two, we will call Quaiser and Monnigmann’s method ‘subset selection’ and Bank’s, et al.,

method ‘parameter subset selection.’ Subset selection does not work well when parameters

are on different scales, so we created a scaled subset selection technique to determine

the identifiable parameters for our model. The other four methods used were to verify the

scaled subset selection results. We then used two global techniques to support our results

from the local sensitivity analysis. The global techniques used were Pearson correlation

[41] and Morris screening [26]. We finally use a technique to find an influential subspace in

the parameter space called active subspaces [9]. Using the subspace, we can create activity

scores to determine the most influential parameters [10]. For these methods, we considered

the same parameter space as the one used for scaled subset selection. We determined four

parameters to be identifiable and ran our uncertainty quantification on those parameters.

To improve computational efficiency, we also develop a data-driven model based on a

dynamic mode decomposition (DMD), which approximates the Koopman operator [18, 19].

We employ an extension of DMD termed DMD with control (DMDc) for control problems.

This method can be used to approximate the nonlinear control system as a discrete linear

system [28]. Once we obtain the DMDc, we are able to design controls for the surrogate

model [4, 6].

DMDc does not specifically accommodate the parameters, so the resulting surrogate

model works for only one set of parameters. We developed an extension of DMDc, which

5



Table 1.1 Nominal parameters values after model was fitted to data.

Parameter Description

γ Air damping coefficient (kg/s)

ρc f Density of the CF layer (kg/m3)

ρs Density of the S2 Glass (kg/m3)

ρp z t Density of the PZT actuators (kg/m3)

Yc f Elastic modulus of CF (Pa)

Ys Elastic modulus of S2 Glass (Pa)

cc f Damping coefficient for CF(kg/s)

cs Damping coefficient for S2 Glass (kg/s)

cp z t Damping coefficient for PZT (kg/s)

s E Elastic compliance (1/Pa)

d± Piezoelectric coupling coefficient for α=± (m/V)

ε±R Remanent strain for α=± (%)

ε90
R Remanent strain for α= 90 (%)

P ±R Remanent polarization for α=± (C/m2)

χσ Ferroelectric susceptibility (F/m)

τ90 Relaxation time for 90◦ switching (s)

τ180 Relaxation time for 180◦ switching (s)

γp z t Inverse of relative thermal energy (m3/J)

allows DMDc to be parameter and control-dependent by means of interpolation. This

method was developed for projection-based surrogate models such as Proper Orthogonal

Decomposition [13]. With this extension, we can perform robust control design, optimiza-

tion and uncertainty quantification with DMDc.

Lastly, we synthesize our uncertainty quantification and control design. Specifically,

we investigate uncertainty in optimal tracking problem. We specify the control as our

quantity of interest to propagate the uncertainty in the model through the control problem

to quantify the robustness with respect to the parameters of the control. We performed

6



this analysis on the optimal control tracking problem and a controller comprised of a

combination of an optimal control and PI control.

In Chapter 2, we summarize the model for the HEM and beam model for the RoboBee.

Chapter 3 consists of the sensitivity analysis followed by the uncertainty quantification

results in Chapter 4. Chapter 5 introduces DMD and DMDc algorithms along with the

development of DMDc with parameter interpolation. We discuss the synthesis of control

design and uncertainty quantification in Chapter 6. Finally, we present conclusions and

future work in Chapter 7. With the work accomplished in this dissertation, we contributed:

1. Employed the HEM framework model the bimorph actuator for RoboBee

2. Performed global and local sensitivity analysis on the HEM.

3. Created a local sensitivity analysis method for models with parameters that are on

drastically different orders of magnitude.

4. Performed Bayesian inference on the identifiable parameters and propagated the

uncertainties through the HEM.

5. Created DMDip which is a control and parameter-dependent surrogate model that

can be used in parameter estimation of control systems and control design.

6. Developed a robust control algorithm for the HEM and quantified robustness of the

controller under parameter uncertainty.

7



CHAPTER

2

MODEL DEVELOPMENT

2.1 Homogenized Energy Model

The homogenized energy model (HEM) quantifies the strains and polarization generated

by applied electric fields in the PZT [35]. The HEM uses energy relations at the domain

and grain levels to describe the macro-scale behavior of the material. The structure of the

domain and grains of PZT are displayed in Figure 2.1. To begin, we use the Helmholtz and

Gibbs energy densities,

ψα(P,ε) =
1

2
ηεα(P −P α

R )
2+

1

2
Y P
α (ε− ε

α
R )

2+hα(P −P α
R )(ε− ε

α
R ), (2.1)

Gα(E ,σ; P,ε) =ψα(P,ε)−E P −σε, (2.2)

to derive the constitutive relations at the domain-level for the α = 90,±180-wells. Here,

ηεα is the α-variant of the inverse susceptibility at constant strain, Y P
α is the α-variant of

the elastic stiffness at constant polarization, and hα is the α-variant piezoelectric constant.

Note that P α
R , εαR are the remanent polarization of the α-variant and remanence strain of
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↵ = ±180

1

↵ = 90

1

Figure 2.1 The grain and domain structure of PZT.

the α-variant, respectively. We set ∂G
∂ P =

∂G
∂ ε = 0 and solve for P and ε to obtain

P α
m =χ

σ
α E +dασ+P α

R ,

εαm = dαE + s E
α σ+ ε

α
R

as the polarization and strain that minimize the Gibbs energy density. It thus follows that

χσα =
Y P
α

Y P
α η

ε
α−h 2

α

, dα =
−hα

Y P
α η

ε
α−h 2

α

, s E
α =

ηεα
Y P
α η

ε
α−h 2

α

.

Here, χσα is the α-variant ferroelectric susceptibility inverse at constant stress, s E
α is the

α-variant elastic compliance at constant field, and dα is theα-variant Piezoelectric coupling

coefficient. The corresponding minimum Gibbs energy density is

Gαm =−
1

2
χσα E 2−

1

2
s E
α σ

2−dαEσ−E P α
R −σε

α
R ,

which we will use to define the probability of the transition from an α-well to another

β -well. Note we will use± to designate±180-wells and 90 for the 90-wells for the remainder

of the dissertation. Note that 90-wells are caused by applied stresses. Each of the units cells

associated with each well are displayed in Figure 2.2.

The strain and polarization associated with each well can be interpreted as the integral

averages of the strain and polarization in the energy minima. We use the low thermal

activation approximations P α
m and εαm to be the strain and polarization associated with each

well for computational efficiency. The polarization and strain kernels are take to be

P̄ =
∑

α=±,90

xαP α
m , ε̄ =

∑

α=±,90

xαε
α
m ,

9
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Figure 2.2 The unit cell of PZT in a (a) +180-well, (b) −180-well, and (c) 90-well.

where xα is the dipole fraction associated with the α-well. The evolution of dipole fractions

is modeled as

ẋ− =−(p−90+p−++p90−)x−+ (p+−−p90−)x++p90−,

ẋ+ = (p−+−p90+)x−− (p+90+p+−+p90+)x++p90+.

Here we utilize the fact x++ x−+ x90 = 1. Note that pαβ is the probability of transitioning

from the α-well to the β-well as modeled by

pαβ =
1

ταβ
e −∆G a

αβ (E ,σ) V
k T .

Here ταβ is the relaxation time for α to β switching and k T
V is the relative thermal energy.

Note that T is the temperature, k is the Boltzmann’s constant, and V is a constant volume.

The activation energy∆G a
αβ (E ,σ) is given by

∆G a
αβ (E ,σ) =







∆G0

�

1− Gαm−Gβm

fc

�2
, Gαm −Gβm ≤ fc ,

0 , Gαm −Gβm > fc .

Note that the activation energy represents the energy between the stable and unstable

equilibrium of Gibbs energy density (2.2). Therefore, when the thermodynamic driving

force, Gαm −Gβm , is smaller than the critical driving force fc , then α-well stable equilibrium

10



is less than the unstable equilibrium, meaning the larger the activation energy, the less

switching from a α-well to a β -well will occur. In contrast, when Gαm −Gβm > fc , the α-well

equilibrium does not exists, so more switching to β-well will occur in order to achieve a

stable state. The energy barrier at zero driving force∆G0 is given by

∆G0 =







1
4 fc , 180◦Switching,

1
16 fc , 90◦Switching,

where we define fc = 2Ec PR . Here Ec is the coercive field. The coercive field is the electric

field where the material begins to depolarize.

As in [35], the observed material behavior allows for the assumptions

χσ+ =χ
σ
− =χ

σ
90 =χ

σ,

s E
+ = s E

− = s E
90 = s E ,

P 90
R = 0, P +R =−P −R ,ε+R = ε

−
R ,

d90 = 0, d− = d+,

τ90− =τ−90 =τ90+ =τ+90 =τ90, τ−+ =τ+− =τ180.

(2.3)

These assumptions do not reduce the generality of the model. The model is still capable

of quantifying the behavior of many different materials. Under these assumptions, the

governing equations become

P̄ (E ,σ) = d̄ (E ,σ)σ+χσE + P̄i r r (E ,σ),

ε̄(E ,σ) = s Eσ+ d̄ (E ,σ)E + ε̄i r r (E ,σ),

where

P̄i r r (E ,σ) =
∑

α=±,90

P α
R xα(E ,σ),

ε̄i r r (E ,σ) =
∑

α=±,90

εαR xα(E ,σ),

d̄ (E ,σ) =
∑

α=±,90

dαxα(E ,σ).
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To complete the HEM, we take the average of the kernels over the grains and domains

to obtain the constitutive relations

P (E ,σ) = d (E ,σ)σ+χσE +Pi r r (E ,σ),

ε(E ,σ) = s Eσ+d (E ,σ)E + εi r r (E ,σ).

The macroscopic piezoelectric coupling is given by

d (E ,σ0) =

∫ ∞

0

∫ ∞

−∞
d
�

E (t ) +EI ,σ0; fc

�

νc ( fc )νI (EI )d EI d fc . (2.4)

The irreversible strain function is

εi r r (E ,σ0) =

∫ ∞

0

∫ ∞

−∞
εi r r

�

E (t ) +EI ,σ0; fc

�

νc ( fc )νI (EI )d EI d fc , (2.5)

and the irreversible polarization function is

Pi r r (E ,σ0) =

∫ ∞

0

∫ ∞

−∞
P i r r

�

E (t ) +EI ,σ0; fc

�

νc ( fc )νI (EI )d EI d fc .

As in [35], the average incorporates the effects of polycrystallinity, material nonhome-

geneties, and variable interaction. The interaction field, EI , quantifies how the different

grains and domain interact with each other and determines the effective field, Ee = E (t )+EI ,

on each domain. A constant interaction field would describe that all grains and domains

interact the same, but having an underlying distribution for the interaction field will allow

different interactions to be modeled. Averaging over the critical driving force, fc = 2Ec PR ,

allows the varying coercive fields over the domain to be represented in the model. Note,

the coercive field, Ec , is the applied electric field where the material begins to depolarize.

Figure 2.3 demonstrates how the coercive fields vary across domains and how they produce

different material behavior.

The density functions

νc ( fc ) =
1

c1

K fc
∑

k=1

γkφk ( fc ),

νI (EI ) =
1

c2

KEI
∑

k=1

ηkφk (EI ),
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are taken to be linear combinations of lognormal, φk ( fc ), and normal density functions,

ψk (EI ) [35]. We chooseφk ( fc ) to be log-normal, because the domain of fc is [0,∞] and the

distribution needs to decay exponentially. As for ψ(EI )k being normal distributions, we

desire a density function that decays exponentially and that is symmetric to reproduce

the effects of low-field Rayleigh loops [35]. Therefore, lognormal and normal densities are

natural choices. Here c1 and c2 are coefficients that ensure the density function integrates to

unity and the coefficients γk andηk were found through least square fits to data as displayed

in Figure 2.4 from [17]. The integrals can be calculated using composite Gaussian quadrature

techniques. Note, we can reduce the domain to a finite region due to the exponential decay

of the densities.

2.2 Beam Model

Figures 2.5 and 2.6 depict the PZT bimorph actuators under consideration. Following the

development in [33], the actuator can be modeled as an Euler-Bernoulli cantilever beam

ρ(x )
∂ 2w (x , t )
∂ t 2

+γ
∂ w (x , t )
∂ t

−
∂ 2M (x , t )
∂ x 2

= 0, (2.6)

with x ∈ [0, x4], t ≥ 0 and boundary conditions

w (0, t ) =
∂ w

∂ x
(0, t ) =M (x4, t ) =

∂M

∂ x
(x4, t ) = 0.

EC

EC

EC EC

Figure 2.3 The different material behavior across the domains of PZT.
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Figure 2.4 (a),(b) The fit to data and (b) the densities from [17].

Figure 2.5 Bimorph schematic.

Here w (x , t ) is the transverse displacement, ρ(x ) is the composite linear density, γ is the

air damping coefficient, M (x , t ) is the moment and L is the length of the beam.

Let hc f , bc f , and ρc f denote the height, width, and density of the carbon fiber (CF)

beam, hp z t , bp z t , and ρp z t are the height, width, and density of the PZT patches, and hs ,

bs , andρs are the height, width, and density of the S2 Glass. Note that the χp z t (x ) describes

where the PZT patch is located and χs (x ) describes location and quantifies number of

pieces of S2 Glass components. The composite linear density is

ρ(x ) = hc f bc f (x )ρc f +2χp z t (x )hp z t bp z t (x )ρp z t +χs (x )hs b1ρs ,

14



Figure 2.6 Cross-sectional view of bimorph.

where

bc f (x ) =















b0, x < x1

b0− (b0− b1)
x−x1
x3−x1

, x1 ≤ x ≤ x3

b1, x > x3,

χp z t (x ) =

(

1, x1 ≤ x ≤ x3

0, else,

bp z t (x ) = b0− (b0− b1)
x − x1

x3− x1
,

and

χs (x ) =















0, x ≤ x2

2, x2 ≤ x ≤ x3

4, x > x3.

Note that x1 = 1 mm, x2 = 5.5 mm, x3 = 6.5 mm, x4 = 10 mm, hc f = 0.1778 mm, hs =

31.75 µm, hp z t = 0.127 mm, b0 = 1.5 mm and b1 = 1 mm.

The moment can be separated into its active MA(x , t ) and passive MP (x , t ) components

M (x , t ) =MA(x , t ) +MP (x , t ).

The passive component is due to the carbon fiber beam and the S2 Glass. To compute the

moments, we simplify the geometry in the manner depicted in Figure 2.7, so the two spaces

between the two pieces of S2 glass are removed to decrease computation complexity. The

15



moment due to the carbon fiber is

Mc f =

∫ hc f /2

−hc f /2

bc f (x ) (z − zN )σc f d z , (2.7)

where the stress in the carbon fiber,σc f , is given by

σc f = Yc f ε+ cc f

∂ ε

∂ t
.

Here, Yc f is the elastic Young’s modulus of carbon fiber, and cc f is the Kelvin-Voigt damping

coefficient. The moment due to the S2 Glass is given by

Ms =

∫ hp z t+hs

hp z t

b1 (z − zN )σsχs 1(x )d z +

∫ hp z t

−hp z t−hs

b1 (z − zN )σsχs 1(x )d z

+

∫ h c f +2hs

hc f

b1 (z − zN )σsχs 2(x )d z +

∫ −hc f

−h c f −2hs

b1 (z − zN )σsχs 2(x )d z ,

(2.8)

where

χs 1(x ) =

(

1, x2 ≤ x ≤ x3

0, else,

χs 2(x ) =

(

1, x > x3

0, else,

and

σs = Ysε+ cs

∂ ε

∂ t
.

Note that χs 1(x ) isolates the portion of the beam where the S2 Glass rests on top of the PZT

patch and χs 2(x ) is the characteristic function for the portion of the S2 Glass that rests on

top of the carbon fiber beam.

The active moment due to the PZT is patch given by

MA =

∫ hp z t+hc f /2

hc f /2

bp z t (x ) (z − zN )σp z t ,1χp z t (x )d z

+

∫ −hc f /2

−hp z t−hc f /2

bp z t (x ) (z − zN )σp z t ,2χp z t (x )d z .

(2.9)
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Figure 2.7 Simplified glass geometry for moment calculation.

The stress in the PZT actuators is modeled using the nonlinear constitutive relationship

σp z t ,1 = 1
s E [ε−d (E1(t ),σ0)E1(t )− εi r r (E1(t ),σ0)] +

1
s E εi r r (0,σ0) + cp z t

∂ ε
∂ t ,

σp z t ,2 = 1
s E [ε−d (E2(t ),σ0)E2(t )− εi r r (E2(t ),σ0)] +

1
s E εi r r (0,σ0) + cp z t

∂ ε
∂ t .

(2.10)

Here s E is the elastic compliance under constant field and cp z t is the Kelvin-Voigt damping

coefficient. The macroscopic nonlinear and hysteretic piezoelectric coupling coefficient

and irreversible strain function are described in (2.4) and (2.5), respectively.

In Figure 2.8, we display the drive schematics for the actuator. The bimorph actuators

are driven with a simultaneous, dual-source mechanism [44]. The outside of one actuator

receives a constant voltage Vmax and the outside of the other actuator is grounded. The

carbon fiber beam serves as a third electrode and is driven with voltage Vb (t ), where 0≤
Vb (t ) ≤ Vmax. The applied electric fields in the actuators are related to the voltage by the

Figure 2.8 Drive mechanism for bimorph actuators.
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relations

E1(t ) =
Vmax−Vb (t )

hp z t
, E2(t ) =

Vb (t )
hp z t

.

Note, that the static neutral position of the actuator occurs when Vb (t ) =Vmax/2.

The elastic strain is modeled using the Kirchhoff relation

ε(z ) = κ (z − zN ) , (2.11)

where the curvature κ is approximated by

κ=−
∂ 2w (x , t )
∂ x 2

.

Using the fact that zN = 0 due to symmetry, the Kirchhoff hypothesis (2.11), and evaluating

the integrals (2.7) - (2.10), yields the moment relations

Mc f =
1

12 bc f (x )h 3
c f

�

−Yc f
∂ 2w (x ,t )
∂ x 2 − cc f

∂ 3w (x ,t )
∂ t ∂ x 2

�

,

Ms =
2
3 b1

�

χs 1

�

(hp z t +hs )3−h 3
p z t

�

+χs 2

�

(hc f +2hs )3−h 3
c f

��

·
�

−Ys
∂ 2w (x ,t )
∂ x 2 − cs

∂ 3w (x ,t )
∂ t ∂ x 2

�

,

MA =
2
3 bp z t (x )χp z t (x )

�

(hp z t +
1
2 hc f )3− 1

8 h 3
c f

��

− 1
s E
∂ 2w (x ,t )
∂ x 2 − cp z t

∂ 3w (x ,t )
∂ t ∂ x 2

�

+ 1
2 bp z t (x )χp z t (x )

1
s E

�

�

hp z t +
1
2 hc f

�2− 1
4 h 2

c f

�

·
�

−d (E1(t ),σ0)E1(t ) +d (E2(t ),σ0)E2(t )− εi r r (E1(t ),σ0) + εi r r (E2(t ),σ0)
�

.

(2.12)

Finally, the total moment in (2.6) is given by

M (x , t ) =−Y I (x )
∂ 2w (x , t )
∂ x 2

− c I (x )
∂ 3w (x , t )
∂ t ∂ x 2

+ f (x , t ), (2.13)

where
Y I (x ) = Yc f Ic f (x ) +Ys Is (x ) +

1
s E Ip z t (x ),

c I (x ) = cc f Ic f (x ) + cs Is (x ) + cp z t Ip z t (x ),

Ic f (x ) =
1

12 bc f (x )h 3
c f ,

Is (x ) =
2
3 b1

�

χs 1

�

(hp z t +hs )3−h 3
p z t

�

+χs 2

�

(hc f +2hs )3−h 3
c f

��

,

Ip z t (x ) =
2
3 bp z t (x )χp z t (x )

�

(hp z t +
1
2 hc f )3− 1

8 h 3
c f

�

(2.14)
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and

f (x , t ) = c1
s E χp z t (x )

·
�

−d (E1(t ),σ0)E1(t ) +d (E2(t ),σ0)E2(t )− εi r r (E1(t ),σ0) + εi r r (E2(t ),σ0)
�

,

c1 =
1
2 bp z t (x )

�

�

hp z t +
1
2 hc f

�2− 1
4 h 2

c f

�

.

(2.15)

2.2.1 Numerical Solution

To compute a numerical solution for the beam model, we substitute (2.13) into (2.6). We then

multiply (2.6) by a test function,φ(x ), and integrate by parts to yield the weak formulation,

∫ x4

0

�

ρ(x ) ∂
2w (x ,t )
∂ t 2 φ(x ) +γ ∂ w (x ,t )

∂ t φ(x )

+Y I (x ) ∂
2w (x ,t )
∂ x 2 φ′′(x ) + c I (x ) ∂

3w (x ,t )
∂ t ∂ x 2 φ′′(x )− f (x , t )φ′′(x )

�

d x = 0.
(2.16)

A Galerkin method is used to approximate the weak solution. Let the approximate solution

be of the form

w N (x , t ) =
N+1
∑

k=1

wk (t )φk (x ), (2.17)

where N is the number of subintervals of the domain [0, x4]used to approximate the solution

and φk are basis functions. Here N was selected by convergence study of the numerical

solution. The solution with N test functions was compared with the solution with 2N

test functions by calculating the difference between the two. We doubled N until the two

solutions varied by less than 1% to prove the solution has converged.

We chose the basis functions,

φk (x ) =

(

Òφ0−2Òφ−1−2Òφ1, k = 1

Òφk , k = 2, . . . , N +1
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Figure 2.9 Cubic spline used for numerical solution.

where

Òφk (x ) =
1

h 3



































(x − x̂k−2)3, x ∈ [x̂k−2, x̂k−1)

h 3+3h 2(x − x̂k−1) +3h (x − x̂k−1)2−3(x − x̂k−1)3, x ∈ [x̂k−1, x̂k )

h 3+3h 2(x̂k+1− x ) +3h (x̂k+1− x )2−3(x̂k+1− x )3, x ∈ [x̂k , x̂k+1)

(x̂k+2− x )3, x ∈ [x̂k+1, x̂k+2]

0, otherwise

to be the cubic spline in Figure 2.9. Here h = x4
N . We selected these cubic splines, because

they form a basis for our test function space H 2
0 (0, x4) = {H 2(0, x4)|φ(0) =φ′(0) = 0} with the

inner product of

〈φ,ψ〉=
∫ x4

0

Y I (x )φ′′ψ′′d x .

We next solve for wk (t ).

Substituting (2.17) into (2.16), we obtain the system

M
d 2w (t )

d t 2
+Q

d w (t )
d t

+K w (t ) = f (t ),
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where

[M ]i j =

∫ x4

0

ρ(x )φiφ j d x ,

[Q ]i j =

∫ x4

0

�

γφiφ j + c I (x )φ′′i φ
′′
j

�

d x ,

[K ]i j =

∫ x4

0

Y I (x )φ′′i φ
′′
j d x ,

�

f (t )
�

i
=

∫ x4

0

f (x , t )φ′′i d x .

Note w (t ) = [w1(t ), . . . , wn+1(t )]T . We obtain a first-order different equation by letting z1(t ) =

w (t ) and z2(t ) =
d w
d t (t ) to yield

d z

d t
= Az +B (t ), (2.18)

where

A =

�

0 I

−M −1K −M −1Q

�

, B (t ) =

�

0

−M −1 f (t )

�

.

Here 0 and I are the zero matrix and identity matrix, respectively, and z (t ) = [z1(t ), z2(t )]T .

We note from (2.15) that f (t ) is nonlinearly dependent on the applied electric field, E1(t )

and E2(t ). Through these applied fields, we will develop control algorithms for the non-

linear system. We solve (2.18) with a numerical ordinary differential equation solver. We

implemented implicit Euler for the numerical solution, because it is highly efficient. We

used gaussian elimination to solve the system at each step in implicit Euler. We validated

the numerical solution by comparing it with MATLAB’s stiff solver ode15s.

2.3 Inverse Problem

The solution to the deterministic inverse problem will be employed as the nominal values

for our model. These nominal values will be utilized as initial values for Delayed Rejection

Adaptive Metropolis (DRAM), the algorithm used to perform Bayesian inference. We avoid

nondimensionalizing the problem, because the physical parameter values are informative

of material properties and are important to identify individually. The data used was collected

from Figure 5(a) in [43]. We used the MATLAB function digitize2.m to collect the data from
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the image. We sampled one full wingbeat from the image at 41 evenly spaced points letting

the first and last point be the same point. We then assumed that the frequency of the

wingbeat is 110 Hz, which is the resonant frequency [42]. When we compare the data and

the model output of the transverse tip displacement, we allow the bimorph to complete

4.5 cycles before using the output of the model. By doing this, we eliminate the influence

of the initial conditions of the dipole fractions from the output. The data set accurately

informs the HEM component of the model, but we are not able to learn about the damping

behavior from this particular data set. This is due to the sinusoidal behavior of the electric

field.

With the assumptions in (2.3), we list the remaining 18 parameters in Table 2.1 along with

their nominal values. The nominal values were determined using MATLAB’s fminsearch.m

to develop an initial value for MATLAB’s fmincon.m, where we minimize the square errors

of the difference of the model predictions and the data. We employed fminsearch.m for 500

iteration before stopping to checking the parameter values were physically reasonable. If

the parameters values were reasonable, then we continued with fminsearch.m for another

500 iterations. Once parameters were no longer physically reasonable, we stop and used

the result of fminsearch.m from the previous 500 iterations. We used these parameters

values as initial values for fmincon.m and ±20% of the initial values as the bounds for the

problem. We used default options for fmincon.m which uses the finite-difference method

to compute the gradient and the ‘interior-point’ algorithm. The algorithm converged to a

possible local minimizer, because the step-size of the current step was smaller than the

tolerance of 10−4. We note that we will use Bayesian inference to determine the global

minimizer. These optimal values which we will define as our nominal values will be provide

initial values for further analysis. Figure 2.10 displays the model’s fit to the data with the

nominal parameter values. We used the values in Table 2.1 for the rest of the dissertation

unless stated otherwise.
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Table 2.1 Nominal parameter values after the model was fitted to data.

Parameter Description Value

γ Air damping coefficient (kg/s) 0.0015

ρc f Density of the CF layer (kg/m3) 2.27×103

ρs Density of the S2 Glass (kg/m3) 1.81×103

ρp z t Density of the PZT actuators (kg/m3) 1.22×103

Yc f Elastic modulus of CF (Pa) 4.57×1011

Ys Elastic modulus of S2 Glass (Pa) 8.65×1011

cc f Damping coefficient for CF (kg/s) 1.25×104

cs Damping coefficient for S2 Glass (kg/s) 6.66×103

cp z t Damping coefficient for PZT (kg/s) 1.32×103

s E Elastic compliance (1/Pa) 1.12×10−11

d± Piezoelectric coupling coefficient for α=± (m/V) 8.79×10−10

ε±R Remanent strain for α=± (%) 0.1771

ε90
R Remanent strain for α= 90 (%) −8.12×10−13

P ±R Remanent polarization for α=± (C/m2) 0.1208

χσ Ferroelectric susceptibility (F/m) 1.24×10−6

τ90 Relaxation time for 90◦ switching (s) 1.50×10−6

τ180 Relaxation time for 180◦ switching (s) 9.25×10−13

γp z t Inverse of relative thermal energy (m3/J) 0.0853
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Figure 2.10 Model fit to data from [5].
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CHAPTER

3

SENSITIVITY ANALYSIS

3.1 Introduction

Before performing Bayesian inference and uncertainty quantification on the model, we

must determine the identifiable or influential parameters. As defined in [34], identifiable

parameters are the parameters that are uniquely determined by the data. More rigorously,

let y denote the map

y = f (q ),

where q ∈U ⊂Rp . Note U is the feasible parameter space. The parameters q are identifiable

at q ∗ if f (q ) = f (q ∗) implies that q = q ∗ for q ∗ ∈U . Influential parameters are the parameters

that cause a noticeable change in the output; i.e., we say q ∈U ⊂Rp are a non-influential

set of parameters if |y (q )− y (q ∗)|<ε for all q , q ∗ ∈U and some ε<<O (y (q )).

We determine the influential parameters, or in some cases the non-influential parame-

ters through sensitivity analysis. There are two types of sensitivity analysis: local and global.

A local sensitivity measure determines the parameters that are influential around a specific

set of parameters, q0. The two local methods we consider exploit the partial derivative with
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respect to the parameters at the point q0 to determine the identifiable parameters. These

methods examine which parameters cause the most change to the quantity of interest

around the nominal values. Alternatively, global sensitivity methods explore the entire

parameter space to determine the influential parameters. These methods quantify how

the uncertainties in the quantity of interest are apportioned to uncertainties in parame-

ters. There are global methods that compare the correlation between the parameters and

the quantity of interest, average the local sensitivities across the parameter space, and

some variance based method. There are many different techniques to calculate sensitivi-

ties, but we will focus on five different methods: Quaiser and Monnigmann’s parameter

subset selection, Bank’s, et al., parameter subset selection, Pearson correlation, Morris

screening, and activity scores from active subspaces. We did not use any variance-based

methods like, Sobol indices [37], because these tend to be more sensitive to the assumption

of independent parameters, which is violated by our model.

We investigate two local methods that employ the nominal values from Section 2.3. The

first is an adaptation of Quaiser and Monnigmann’s parameter subset selection [29]. We

will show that the algorithm has difficulties when the scales of the parameter values are

drastically different. We propose a scaled adaptation of the method to produce accurate

results. The Q-M’s method uses the eigenstructure of a scaled Fischer information matrix to

determine the non-influential parameters. The second method is the Bank’s, et al., parame-

ter subset selection [2]which, given a data set, determines an identifiable set of parameters

that minimizes uncertainty; i.e., the asymptotic standard error. This method determines

a set of parameters for a given size of the set. We can determine the appropriate size by

calculating the rank of the covariance matrix. Bank’s, et al., parameter subset selection is

capable of comparing parameter that are on drastically different scales. We note to distin-

guish between to two methods, we will call Quaiser and Monnigmann’s method ‘subset

selection’ and Bank’s, et al., method ‘parameter subset selection.’

The other three methods are global methods. The first method we consider is Pearson

correlation [41], because parameters on drastically different scales are normalized within

the method. Pearson correlation is used to describe the correlation between two random

variables. If we let both our parameters and output be random variables, then we can

determine how correlated a parameter is to our quantity of interest. If the correlation value

is large, then the parameters are determined to be influential to the quantity of interest.

Next, we will use active subspaces to determine the identifiable parameters [9]. The active
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subspace method is not a global sensitivity analysis method, but can be used to create a

global sensitivity metric through activity scores [10]. Active subspace methods determine

an influential subspace of the parameter space. Note that the subspace consist of linear

combinations of parameters. We determine the set of influential parameters by calculating

activity scores for the parameter in the active subspace. Finally, we investigate the derivative-

based global sensitivity measure of Morris screening [26]. The Morris screening method

approximates the average partial derivative for each parameter across the parameter space.

Morris screening is a derivative-based global method that compares naturally with the

scaled subset selection. This determines a ranking for the influential parameters. It also

determines the variance as an additional measure to compare the parameters, so we can

see how the derivatives vary more across the parameter space. We will compare the results

of the five methods to select which set of parameters to use while performing Bayesian

inference and uncertainty propagation.

3.2 Scaled Subset Selection

3.2.1 Subset Selection

We first determine the partial derivatives evaluates at the parameter values in Table 2.1 to

create the Fischer information matrix. This matrix can be used to determine the identifiable

parameters.

Following the development of subset selection detailed in [29], we define the functional

J (q ) =
1

N

N
∑

n=1

[yn − f (tn , q )]2,

where q = [q1, . . . , qp ] is the vector of parameters, yn is the observed tip displacement at

t = tn , and f is the model output. We then Taylor expand the model around the optimal q ∗

to obtain

J (q )≈
1

N

N
∑

n=1

[yn −
�

f (tn , q ∗) +∇ f (tn , q ∗)∆q
�

]2.

Assuming that q ∗ is the minimizer, this yields yn ≈ f (tn , q ∗) and

J (q )≈ J (q ∗+∆q ) =
1

N

N
∑

n=1

[∇ f (tn , q ∗)∆q ]2.
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We define

χ =







∂ f
∂ q1
(t1, q ∗) · · · ∂ f

∂ qm
(t1, q ∗)

...
...

...
∂ f
∂ q1
(tN , q ∗) · · · ∂ f

∂ qm
(tN , q ∗)






.

We then can write

J (q ∗+∆q ) =
1

N
∆q TχTχ∆q .

If we let∆q be an eigenvector of χTχ with eigenvalue λ, we obtain

J (q ∗+∆q ) =
1

N
λ||∆q ||22.

If λ is small, then the eigenvector has very little influence on the cost functional. We note

that the eigenvectors components quantify the amount of change in each parameter.

We implemented Algorithm 1 the subset selection algorithm from [29] to determine

the identifiable parameters. To compute the partial derivatives, we use a finite-difference

technique to approximate derivatives with a step size of 1×10−4% of the nominal value. The

rank of χTχ is five during the first iteration. We decided to make ε= 10−8 in step (3) and (4)

from Algorithm 1, because it is the square root of machine precision. Table 3.1 displays the

results of subset selection given the data and the normalized eigenvalues that we associated

with the parameter when it was removed from χ . The influential parameters are τ180, d±,

and S E .

3.2.2 Bayesian Inference on τ180

We ran Bayesian inference on the model to find the uncertainty of each of the identifiable

parameters. As detailed in Chapter 4, we used the Delayed Rejection Adaptive Metropolis

(DRAM) algorithm to calculate the posterior distributions [16]. The algorithm produces

posterior probability distributions for each of the parameters and the distributions need

to converge in the probabilistic sense. The data does not inform the prior, so the algo-

rithm does not converge when we used all three identifiable parameters. We then ran

Bayesian inferences for only τ180 to show that subset selection algorithm does not produce

an identifiable set of parameters. Here τ180 is not informed by the data.

We used the nominal parameters from Table 2.1 as initial values for the τ180 and fixed

the other parameters. We ran the algorithm for 30,000 samples with 10,000 samples used as
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1. Determine or approximate

χ =







∂ f
∂ q1
(t1, q ∗) · · · ∂ f

∂ qm
(t1, q ∗)

...
...

...
∂ f
∂ q1
(tN , q ∗) · · · ∂ f

∂ qm
(tN , q ∗)






.

2. Compute the smallest eigenvalue, λ, and corresponding eigenvector, v, of
χTχ . Also, compute the largest eigenvalue, λma x .

3. If λ
λma x

>ε, then stop. The parameters that correspond to the
remaining columns of χ are the identifiable parameters

4. If λ
λma x

<ε, then identify the largest component in magnitude, vi , of v where
v = (vi )18

i=1.
Remove the corresponding column of χ and repeat steps 2 - 4.

Algorithm 1: Quaiser and Monnigmann’s parameter subset selection algorithm [29].

burn-in. Burn-in is the samples we collect to ensure that the algorithm has converged before

generating the chains of the posterior distribution. We used samples after the burn-in to

create marginal distribution for the identifiable parameter. Figure 3.1 displays the chain

and marginal density created from the results. The chains explore the entire space, but the

posterior distribution is the same as the prior, which we took as a uniform distribution.

This means that all values of τ180 are equally likely, causing τ180 to be unidentifiable. It

appeared to be a sensitive parameter when using parameter subset selection, because the

order of magnitude of the nominal value. Therefore, the subset selection did not select the

identifiable parameters due to the vast differences in scaling. This motivates the use of a

scaled subset selection.

3.2.3 Scaled Subset Selection

We note that the parameters which were selected as identifiable in the subset selection

were of very small magnitude. This causes division by numbers on the order of 10−19. It is

also difficult to compare parameters or derivatives that are on different scales and have

different units. We need to normalized the parameters to have accurate subset selection

results.
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Table 3.1 The normalized eigenvalue associated with the parameter as it gets removed from the
set of parameters.

Parameter Description λ

γ Air damping coefficient(kg/s) 5.30×10−30

ρc f Density of the CF layer (kg/m3) 4.84×10−36

ρs Density of the S2 Glass (kg/m3) 2.16×10−36

ρp z t Density of the PZT actuators (kg/m3) 3.41×10−40

Yc f Elastic modulus of CF (Pa) −3.05×10−55

Ys Elastic modulus of S2 Glass (Pa) 4.27×10−57

cc f Damping coefficient for CF (kg/s) 3.35×10−45

cs Damping coefficient for S2 Glass(kg/s) 5.45×10−45

cp z t Damping coefficient for PZT (kg/s) 3.19×10−42

s E Elastic compliance (1/Pa) 1.00

d± Piezoelectric coupling coefficient for α=± (m/V) 3.65×10−6

ε±R Remanent strain for α=± (%) 1.21×10−18

ε90
R Remanent strain for α= 90 (%) 8.16×10−9

P ±R Remanent polarization for α=± (C/m2) 3.66×10−24

χσ Ferroelectric susceptibility (F/m) 4.55×10−25

τ90 Relaxation time for 90◦ switching (s) 5.13×10−14

τ180 Relaxation time for 180◦ switching (s) 4.89×10−5

γp z t Inverse of relative thermal energy (m3/J) −1.42×10−20

Our original model is of the form

f (tn , q ) :R×Rp 7→R.

To obtain parameters on the same scale, we map them to [0, 1]p . We define the scaled model

as

h (tn ,θ ) :R× [0, 1]p 7→R,
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Figure 3.1 Results from DRAM (a) chains, and (b) marginal densities.

such that

h (tn ,θ ) = f (tn , g (θ )),

where

g : [0, 1]p 7→Rp

is the map from the interval [0, 1]p to the physical parameter space. We consider the map

gk (θk ) = (0.8+0.4θk )q
∗
k

in our analysis. We note that gk maps to ±20% of the nominal parameter value q ∗k from

Table 2.1. We define g (θ ) = [g (θ1), . . . , g (θp )]T . With this map, correlated parameters will

still be correlated, but the correlation coefficients will be scaled. This produces a scaled

derivative that allows a comparison of the parameters local sensitivities for parameters on
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drastically different scales. For p = 1, the approximate derivative is

h ′(θ )≈
h (θ +∆)−h (θ )

∆
,

=
f (g (θ +∆))− f (g (θ ))

∆
,

≈
f (g (θ ) +∆g ′(θ ))− f (g (θ ))

∆
,

≈
f (g (θ ))+∆g ′(θ ) f ′(g (θ ))− f (g (θ ))

∆
,

≈ f ′(g (θ ))g ′(θ ),

where∆ is the step size. We use the Algorithm 1, but with the model h (tn ,θ ). The results

are displayed in Table 3.2. We have four identifiable parameters, d±, γp z t , P ±R , and ε±R .

Note that τ180 is no longer determined to be an identifiable parameter. We will perform

Bayesian inference on these four parameters in Chapter 4. For these results, we chose only

four parameter to be identifiable, because the results in Section 3.2.1 indicated only three

parameters where selected and the rank of the sensitivity matrix in Section 3.2.1 was five.

When we selected five parameters, the DRAM was not converging. In future work, we will

investigate why the chains are not converging.

3.3 Parameter Subset Selection

To verify the results from the scaled subset selection, we also consider other local and global

sensitivity measures. The other local sensitivity method is parameter subset selection from

[2]. The object of the method is to determine an identifiable set of parameters, which

minimizes uncertainty for the inverse problem given a data set. The uncertainty that is

being minimized is the asymptotic standard error. The goal is to minimize

α(qI ) = ||ν(qI )||2,

where the coefficients of variation for qi ∈ qI = {qi1
, . . . , qin

}with 1≤ i1 < · · ·< in ≤ p is

ν(qi ) =
Standard Error(qi )

qi
.
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Table 3.2 The normalized eigenvalue associated with the parameter as it gets removed from the
set of parameters with the scaled derivative.

Parameter Description λ

γ Air damping coefficient (kg/s) 8.21×10−23

ρc f Density of the CF layer (kg/m3) −4.31×10−18

ρs Density of the S2 Glass (kg/m3) 1.25×10−13

ρp z t Density of the PZT actuators (kg/m3) 2.56×10−13

Yc f Elastic modulus of CF (Pa) 3.96×10−8

Ys Elastic modulus of S2 Glass (Pa) −3.17×10−19

cc f Damping coefficient for CF (kg/s) 3.40×10−18

cs Damping coefficient for S2 Glass (kg/s) 1.74×10−23

cp z t Damping coefficient for PZT (kg/s) 9.37×10−15

s E Elastic compliance (1/Pa) 1.51×10−6

d± Piezoelectric coupling coefficient for α=± (m/V) 5.38×10−4

ε±R Remanent strain for α=± (%) 1

ε90
R Remanent strain for α= 90 (%) 4.89×10−22

P ±R Remanent polarization for α=± (C/m2) 0.01

χσ Ferroelectric susceptibility (F/m) −7.12×10−23

τ90 Relaxation time for 90◦ switching (s) 8.87×10−8

τ180 Relaxation time for 180◦ switching (s) 6.87×10−10

γp z t Inverse of relative thermal energy (m3/J) 0.08

The method is only able to select a subset of n parameters from the full parameter set.

We can use the rank of the covariance matrix with all of the parameters to choose n . The

method calculates α(qI ) for all

�

p

n

�

subsets of the parameters. We used Algorithm 2 from

[2] to determine the set of size n that minimize the asymptotic standard error.

We again use a finite-difference technique to approximate the partial derivatives with a

step size of 0.01% of the nominal value. We do not need to scale the derivatives, because we
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divide by the parameter value when computing the coefficients of variation. The numerical

rank of χTχ with all of the parameters is five. Table 3.3 displays the identifiable subset

of parameters given the data for sets of size n = 1, . . . ,5. The subsets of size n = 1, ,2, 3

are all subsets from the scaled parameter subset selection results from Section 3.2.3. The

set of size four has three parameters from the scaled subset selection results, ε±R , P ±R , and

γp z t , but also contains τ90 which is not listed as one of the parameters selected from

Section 3.2.3. However, τ90 was one of the last parameters removed from the set and its

associated eigenvalue is 8.87×10−8, which is on the order of the square root of machine

epsilon. The subset of size five did not have any parameters from the scaled subset selection

1. Pre-determine the nominal parameter values, q0, and error variance

σ2
0 =

1

N −p

N
∑

k=1

(Yk − f (tk ; q0))
2.

2. Calculate
ÒV (q̂I ) =σ

2
0(χ(q̂I )

Tχ(q̂I ))
−1

where

χ(q̂I ) =







∂ f
∂ q̂i1
(t1, q̂I ) · · ·

∂ f
∂ qm
(t1, q̂in

)
...

...
...

∂ f
∂ qi1
(tN q̂I ) · · ·

∂ f
∂ qm
(tN , q̂in

)






.

3. Compute the coefficients of variation,

ν j (q̂I ) =

Æ

V (q̂I ) j , j

(q̂I ) j
, for j = 1, . . . , n

4. Calculate the sensitivity score,

α(qI ) = ||ν(qI )||2,

5. Repeat 2-4 for all subsets of size n where the rank of χ(q̂I ) = n to find the
smallest α(qI ).

Algorithm 2: Banks, et al, parameter subset selection algorithm from [2]where N is
the size of the data set and n is the size of the desired subset.
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Table 3.3 Identifiable subset of parameters given the data for sets of size n = 1, . . . , 5 with unscaled
partial derivatives.

Parameter Description 1 2 3 4 5

γ Air damping coefficient (kg/s)

ρc f Density of the CF layer (kg/m3) X

ρs Density of the S2 Glass (kg/m3) X

ρp z t Density of the PZT actuators (kg/m3) X

Yc f Elastic modulus of CF (Pa) X

Ys Elastic modulus of S2 Glass (Pa)

cc f Damping coefficient for CF (kg/s)

cs Damping coefficient for S2 Glass (kg/s)

cp z t Damping coefficient for PZT (kg/s) X

s E Elastic compliance (1/Pa)

d± Piezoelectric coupling coefficient for α=± (m/V) X

ε±R Remanent strain for α=± (%) X X X

ε90
R Remanent strain for α= 90 (%)

P ±R Remanent polarization for α=± (C/m2) X X

χσ Ferroelectric susceptibility (F/m)

τ90 Relaxation time for 90◦ switching (s) X

τ180 Relaxation time for 180◦ switching (s)

γp z t Inverse of relative thermal energy (m3/J) X X X

results. This is likely due to sensitivity of the covariance matrices of size five. This helps

verify the results from the scaled subset selection, because d±, γp z t , P ±R , and ε±R were all

determined to be in an identifiable subset for a set of size four or less.

We also tested using the scaled finite-difference technique to approximate derivatives

with a step size of h = 1× 10−4. Although we do not need to use the scaled derivatives

from Section 3.2.3, we wanted to test the method with the scaled derivatives to see if it

would produce different results. The rank of χTχ with all of the parameters is 11, but
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we will only report the n = 1, . . . ,5, since the rank of non-scaled χTχ was 5. The larger

rank is likely due using the scaled finite-difference technique from Section 3.2.3. Scaled

finite-difference technique produces relative derivatives not physical derivatives which are

necessary to determine the size of the identifiable set. Table 3.4 displays the identifiable

subset of parameters given the data for sets of size n = 1, · · · , 5. The subsets of size n = 1, 2, 4

are all subsets from the scaled parameter subset selection results from Section 3.2.3. When

n = 5, the parameter Yc f was included along with the parameters from the scaled subset

selection results, d±, γp z t , P ±R , and ε±R . However, it also selected cs which has one of the

smallest relative eigenvalues associated with it from Section 3.2.3. This may be due to the

correlation of the parameters which made other sets not full rank or have larger standard

error. Overall, the results are consistent with the scaled subset selection results. We conclude

that parameters, d±, γp z t , P ±R , and ε±R are identified as an identifiable set of parameters and

corroborate the results from the scaled subset selection.

3.4 Pearson Correlation

Pearson correlation discussed in [41], quantifies the correlation between two random

variables. It compares the covariance of the two random variables and each of their standard

deviations. For random variables X and Y, the Pearson correlation is given by

ρ(X , Y ) =
cov(X , Y )
σXσY

.

The values are on the interval [−1, 1]where−1 and 1 represent a negative and positive linear

algebraic relationship and 0 represents two random variables with no correlation.

The quantity of interest must be a scalar value. We considered the L2 norm of the tip

displacement, y(t),

Y =

√

√

√

∫ T

0

y (t )2d t ,

which will be one random variable. The other random variable is a parameter, qi . Table 3.5

displays the results for each parameter. We report the results from 10,000 samples out of

uniform distributions with support of ±20% of the nominal parameter values to compute

the correlation values. We also tested 5,000 samples to compare for convergence analysis.

The three parameters with the largest absolute value for its Pearson correlation are also
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Table 3.4 Identifiable subset of parameters given the data for sets of size n = 1, . . . ,5 with the
scaled partial derivatives.

Parameter Description 1 2 3 4 5

γ Air damping coefficient (kg/s)

ρc f Density of the CF layer (kg/m3)

ρs Density of the S2 Glass (kg/m3)

ρp z t Density of the PZT actuators (kg/m3)

Yc f Elastic modulus of CF (Pa) X

Ys Elastic modulus of S2 Glass (Pa)

cc f Damping coefficient for CF (kg/s)

cs Damping coefficient for S2 Glass (kg/s) X

cp z t Damping coefficient for PZT (kg/s)

s E Elastic compliance (1/Pa)

d± Piezoelectric coupling coefficient for α=± (m/V) X X X X

ε±R Remanent strain for α=± (%) X X X

ε90
R Remanent strain for α= 90 (%)

P ±R Remanent polarization for α=± (C/m2) X X X

χσ Ferroelectric susceptibility (F/m)

τ90 Relaxation time for 90◦ switching (s)

τ180 Relaxation time for 180◦ switching (s)

γp z t Inverse of relative thermal energy (m3/J) X X X

selected using scaled subset selection, d±, γp z t , and ε±R . P ±R ,is the sixth most correlated

parameter with Yc f and s E being more sensitive. This may be due to the fact that our quan-

tity of interest is the L2 norm of the tip displacement instead of just the tip displacement.

The Pearson correlation results support the results from the scaled subset selection by

identifying, d±, γp z t , P ±R , and ε±R to be influential parameters. Note, the other parameter

values are at least an order of magnitude smaller than the six largest values.
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Table 3.5 The Pearson correlation values for Y =
r

∫ T

0
y (t ; q )2d t and the parameter X with the

identifiable parameters from the scaled subset selection results in bold.

Parameter Description ρ(X , Y )

γ Air damping coefficient (kg/s) 0.0077

ρc f Density of the CF layer (kg/m3) -0.0158

ρs Density of the S2 Glass (kg/m3) 0.0053

ρp z t Density of the PZT actuators (kg/m3) 0.0141

Yc f Elastic modulus of CF (Pa) -0.2528

Ys Elastic modulus of S2 Glass (Pa) -0.0059

cc f Damping coefficient for CF (kg/s) 0.0101

cs Damping coefficient for S2 Glass (kg/s) -0.0135

cp z t Damping coefficient for PZT (kg/s) 0.0051

s E Elastic compliance (1/Pa) -0.2753

d± Piezoelectric coupling coefficient for α=± (m/V) 0.6305

ε±R Remanent strain for α=± (%) 0.5650

ε90
R Remanent strain for α= 90 (%) -0.0057

P ±R Remanent polarization for α=± (C/m2) -0.1781

χσ Ferroelectric susceptibility (F/m) -0.0108

τ90 Relaxation time for 90◦ switching (s) -0.0542

τ180 Relaxation time for 180◦ switching (s) -0.0023

γp z t Inverse of relative thermal energy (m3/J) -0.3024

3.5 Active Subspaces

The active subspace is not a global sensitivity method, but can be used to create a global

sensitivity metric through activity scores [10]. Active subspace methods determine an

influential subspace of the parameter space. Note that the active subspace consist of linear

combinations of parameters. We determine the set of influential parameters by calculating

activity scores for the parameter.
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As in [9], we begin our discussion of active subspaces by defining the matrix,

C =

∫

(∇q f )(∇q f )Tρd q ,

as the average of the outer products of the gradient over the parameter space. Here f (q ) is

the quantity of interest and ρ is the probability density for our parameters. We note that C

is symmetric, positive semi-definite, which implies that it has a eigenvalue decomposition

with real eigenvalues,

C =W ΛW T ,

where W is an orthogonal matrix whose columns are eigenvectors. We can exploit the

eigenstructure of C to define active and inactive subspaces. The eigenvalue matrix can be

separated into

Λ=

�

Λ1

Λ2

�

,

whereλ1 >>λ2 forλ1 ∈Λ1 andλ2 ∈Λ2. Similarly for the eigenvector matrix can be separated

as

W =
�

W1 W2

�

.

We then define the active subspace as W1 ∈Rp×n and the inactive subspaces as W2 ∈Rp×(p−n ).

We then create new variables

y =W T
1 x ∈Rn and z =W T

2 x ∈Rp−n .

Note, we can express

x =W1 y +W2z ,

where the W1 direction of x has a much larger influence on f (x ). To decide where to

separate the eigenvalues, we select the first difference in three orders of magnitude between

eigenvalues to separate the active and inactive subspaces.

In some cases, we can directly compute C and then perform the eigenvalue decomposi-

tion. However, in many cases, the analytical gradient cannot be computed analytically [8].

Also, if p is large, then the integral may be too computationally intensive to compute. We

use a Monte Carlo method to approximate the integral and compute the active subspace.

We implemented Algorithm 3 from [9] to determine the active subspace. If the analytic gra-
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1. Draw independent samples, qk
M
k=1, from the density ρ.

2. Compute
∇q fk =∇q f (qk ) ∀ k ∈ 1, . . . , M .

3. Take the SVD of
1
p

M

�

∇q f1 · · ·∇q fM

�

= W̃
p

Λ̃Ṽ

Algorithm 3: The active subspace algorithm from [9].

dient is unavailable, we can use the finite-difference method for the scaled derivative as in

Section 3.2.3 to compute the gradient. Note we could use the gradient-free construction of

active subspace method outlined in [8]. When the distribution,ρ, is unknown, one typically

samples from a uniform distribution.

To determine the influential parameters, we need to define a global sensitivity metric.

We use activity scores as discussed in [10]. An activity score is computed for each parameters

using the relation

αqk
=

n
∑

j=1

λ j w 2
k , j .

Here λ j is the j t h eigenvalue Λ1 and wk , j is the entry in the k t h row and j t h column of

W1. Note that the square is used to remove the information of the sign from the metric. As

proved in [10], activity scores are bounded above by

αqk
≤
∫

�

∂ f

∂ qk
(q )

�2

ρ(q )d q

a global derivative-based sensitivity method that averages local sensitivities. The global

derivative-based method was studied in [38]. These two methods produce comparable

rankings for the parameters’ sensitivities. The parameters with the larger activity scores are

the more influential parameters. This provides a system to determine the non-influential

parameters.
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Figure 3.2 The singular values from the activity subspace results, which are used to determine the
active and inactive subspaces.

It is necessary to have a scalar quantity of interest, so we considered

h (θ ) =

√

√

√

∫ T

0

y (t ;θ )2d t .

We used m = 1, 000 samples to compute the results. We used a uniform distribution with a

support of ±25% of the nominal parameter values. We display our results in Figure 3.2 and

Table 3.6. The singular values at most drop two orders of magnitude at a time, so there is no

clear cut-off from the active subspace and the non-active subspace. We decide to include

all of the eigenvectors in the active subspaces since we are only looking for a ranking of the

parameters’ influence and not developing a surrogate model. The activity scores rank the

top six influential parameters in order as d±, ε±R , γp z t , P ±R , s E , and Yc f . We observe that the

four parameters with the largest activity scores are the same set of parameters that were

selected from results from scaled subset selection in Section 3.2.3, d±, γp z t , P ±R , and ε±R . s E ,

and Yc f were identified as influential by Pearson correlation, so the results from the activity

scores support the results from the other methods; especially the scaled subset selection.
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Table 3.6 The activity scores of the parameters for the quantity of interest h (θ ) =
r

∫ T

0
y (t ;θ )2d t .

Parameter Description Activity Scores

γ Air damping coefficient (kg/s) 9.57×10−24

ρc f Density of the CF layer (kg/m3) 1.67×10−16

ρs Density of the S2 Glass (kg/m3) 1.05e ×10−17

ρp z t Density of the PZT actuators (kg/m3) 3.16×10−17

Yc f Elastic modulus of CF (Pa) 6.02×10−11

Ys Elastic modulus of S2 Glass (Pa) 1.10×10−14

cc f Damping coefficient for CF (kg/s) 1.82×10−22

cs Damping coefficient for S2 Glass (kg/s) 2.66×10−27

cp z t Damping coefficient for PZT (kg/s) 3.16×10−22

s E Elastic compliance (1/Pa) 6.22×10−11

d± Piezoelectric coupling coefficient for α=± (m/V) 3.33×10−10

ε±R Remanent strain for α=± (%) 2.75×10−10

ε90
R Remanent strain for α= 90 (%) 5.78×10−33

P ±R Remanent polarization for α=± (C/m2) 2.83×10−11

χσ Ferroelectric susceptibility (F/m) 2.05×10−36

τ90 Relaxation time for 90◦ switching (s) 2.45×10−11

τ180 Relaxation time for 180◦ switching (s) 5.16×10−17

γp z t Inverse of relative thermal energy (m3/J) 7.58×10−11

3.6 Morris Screening

Morris screening averages elementary effects over the parameter space to yield a quasi-

global sensitivity measure. To calculate the elementary effects, we will use the scaled deriva-

tive as defined in Section 3.2.3,

d j
i =

∂ h (θ j )
∂ θi

≈
h
�

θ
j

1 , . . . ,θ j
i +∆, . . . ,θ j

p

�

−h
�

θ
j

1 , . . . ,θ j
p

�

∆
,
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where θ j is the j t h parameter sample and∆ is the step size. We take M samples and com-

pute the elementary effects, d j
i , for each parameter at each samples. Then, we calculate the

sensitivity measures for each parameter, θi , by computing the sample mean and variance

µ∗i =
1

M

M
∑

j=1

|d j
i |,

σ2
i =

1

M −1

M
∑

j=1

�

d j
i −µi

�2
,

of the elementary effects. Here

µi =
1

M

M
∑

j=1

d j
i .

The parameters that are more sensitive are the ones with the larger µ∗i andσi values. Note

that Morris screening produce a relative measure of sensitivity, so it only produces a ranking

system for the parameters.

We need the quantity of interest for our model to be a scalar value, so we employ

h (θ ) =

√

√

√

∫ T

0

y (t ;θ )2d t ,

where y (t ;θ ) is the tip displacement. We compile our results in Table 3.7. We report the

results from 1,000 samples out of uniform distributions with support of±25% of the nominal

parameter values to compute the elementary effects. Morris screening determines the non-

influential parameters, which are the parameters with both a small mean and standard

deviation of there elementary effects. The parameters that are determined to be influential

are the ones that we should allow to vary in further analysis. Therefore, we can conclude that

parameters d±, ε±R , γp z t , P ±R , s E , and Yc f are the six most influential parameters since the

parameters’ elementary effects have the largest mean and standard deviation. This supports

the results of the other methods. The parameters from subset selection, d±, ε±R , γp z t , and

P ±R , were determined to be the six most influential parameters. This again supports the

results from Section 3.2.3.
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Table 3.7 The Morris screening’s sensitivity measures for the parameters with the quantity of

interest h (θ ) =
r

∫ T

0
y (t ;θ )2d t .

Parameter Description µ∗ σ

γ Air damping coefficient (kg/s) 3.04×10−12 5.81×10−13

ρc f Density of the CF layer (kg/m3) 1.27×10−8 2.47×10−9

ρs Density of the S2 Glass (kg/m3) 3.18×10−9 6.14×10−10

ρp z t Density of the PZT actuators (kg/m3) 5.51×10−9 1.11×10−9

Yc f Elastic modulus of CF (Pa) 7.64×10−6 1.36×10−6

Ys Elastic modulus of S2 Glass (Pa) 1.03×10−7 2.10×10−8

cc f Damping coefficient for CF (kg/s) 1.33×10−11 2.23×10−12

cs Damping coefficient for S2 Glass (kg/s) 5.06×10−14 9.88×10−15

cp z t Damping coefficient for PZT (kg/s) 1.75×10−11 2.91×10−12

s E Elastic compliance (1/Pa) 7.76×10−6 1.44×10−6

d± Piezoelectric coupling coefficient (m/V) 1.82×10−5 1.43×10−6

ε±R Remanent strain for α=± (%) 1.64×10−5 2.49×10−6

ε90
R Remanent strain for α= 90 (%) 7.53×10−17 2.56×10−17

P ±R Remanent polarization for α=± (C/m2) 4.93×10−6 3.17×10−6

χσ Ferroelectric susceptibility (F/m) 1.48×10−17 1.93×10−17

τ90 Relaxation time for 90◦ switching (s) 1.48×10−6 5.03×10−7

τ180 Relaxation time for 180◦ switching (s) 5.96×10−9 4.03×10−9

γp z t Inverse of relative thermal energy (m3/J) 8.30×10−6 2.65×10−6

3.7 Conclusion of Sensitivity Analysis

Some of the differences between the results of the sensitivity analysis methods is due to the

different quantity of interests. The two local sensitivity measures do not need be have a

scalar quantity of interest as is the case for global methods. Also, Morris screening assumes

that the parameters are independent, but for this problem they are not. For our problem, we

observe that violating the independent parameters assumption did not produce incorrect
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results, because the methods all produce similar results. Other global methods like Sobol

indices [37], also have the same assumption of independence. Shown in [21], violating the

independence assumption for variance based-methods causes failure of the algorithm. We

note, however, that the distribution in Morris screening dictates how we sample rather than

apportion variances, which is typically less pernicious.

After analyzing the results from all methods, there are six parameters which stand out

as the identifiable set, d±, ε±R , γp z t , P ±R , s E , and Yc f . We decided to have four identifiable

parameters, d±, γp z t , P ±R , and ε±R , because the two local methods selected these four as the

identifiable set. Note that the results of the local sensitivity methods were supported by all

of the global methods. We choose to consider only four parameters, because the rank of the

sensitivity matrix from the parameter subset selection was five, but only had reasonable

results for four parameters. Table 3.8 displays the results of all of the methods in a single

table for easy comparison. We will use the parameters, d±, γp z t , P ±R , and ε±R , in our analysis

for the remaining chapters. Although the results indicate five or six influential parameter,

when we ran chains for five parameters, they were not converging. In future work, we will

investigate why the chains for five parameters are not converging and further our attempt

to add s E , or Yc f to the identifiable set of parameters.
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Table 3.8 Local and Global sensitivity results. Parameters used for uncertainty quantification are bold.

q Description λ n4 ρ A.S. µ∗ σ

γ Air damping coefficient (kg/s) 8.21×10−23 0.01 5.96×10−15 3.04×10−12 5.81×10−13

ρc f Density of the CF layer (kg/m3) -4.31×10−18 -0.02 7.65×10−10 1.27×10−8 2.47×10−9

ρs Density of the S2 Glass (kg/m3) 1.25×10−13 0.01 6.05×10−11 3.17×10−9 6.14×10−10

ρp z t Density of the PZT actuators (kg/m3) 2.46×10−13 0.01 2.13×10−10 5.51×10−9 1.11×10−9

Yc f Elastic modulus of CF (Pa) 3.96×10−8 -0.25 3.22×10−6 7.64×10−6 1.36×10−6

Ys Elastic modulus of S2 Glass (Pa) -3.17×10−19 -0.01 1.47×10−8 1.03×10−7 2.10×10−8

cc f Damping coefficient for CF (kg/s) 3.40×10−18 0.01 7.85×10−14 1.33×10−11 2.23×10−12

cs Damping coefficient for S2 Glass (kg/s) 1.74×10−23 -0.01 2.04×10−16 5.06×10−14 9.88×10−15

cp z t Damping coefficient for PZT (kg/s) 9.37×10−15 0.01 1.60×10−13 1.75×10−11 2.91×10−12

s E Elastic compliance (1/Pa) 1.51×10−6 -0.28 3.22×10−6 7.76×10−6 1.44×10−6

d± Piezoelectric coupling coefficient (m/V) 5.38×10−4 X 0.63 1.26×10−5 1.82×10−5 1.43×10−6

ε±R Remanent strain for α=± (%) 1 X 0.57 1.04×10−5 1.64×10−5 2.49×10−6

ε90
R Remanent strain for α= 90 (%) 4.89×10−22 -0.01 2.26×10−17 7.53×10−17 2.56×10−17

P ±R Remanent polarization for α=± (C/m2) 0.01 X -0.18 3.47×10−6 4.93×10−6 3.17×10−6

χσ Ferroelectric susceptibility (F/m) -7.12×10−23 -0.01 1.86×10−17 1.48×10−17 1.93×10−17

τ90 Relaxation time for 90◦ switching (s) 8.87×10−8 -0.05 3.55×10−7 1.48×10−6 5.03×10−7

τ180 Relaxation time for 180◦ switching (s) 6.87×10−10 -0.00 1.83×10−9 5.96×10−9 4.03×10−9

γp z t Inverse of relative thermal energy (m3/J) 0.08 X -0.30 4.72×10−6 8.30×10−6 2.65×10−6
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CHAPTER

4

UNCERTAINTY QUANTIFICATION

4.1 Bayesian Inference

The goal of Bayesian inference is to compute posterior distributions for the parameters

given data. We employ the statistical model

Yk = f (tk ,Q ) +εk k = 1, . . . , n (4.1)

where Yk , Q , and εk are random variables that represent the measurements, parameters,

and measurement errors, respectively. We will assume that εk ∼ N (0,σ2) for some fixed

error varianceσ2 and they are independent and identically distributed. To compute the

posterior distribution for q , a realization of Q, given y , a set of realizations for Yk , we employ

Bayes’ Theorem

π(q |y ) =
π(y |q )π0(q )
π(y )

=
π(y |q )π0(q )

∫

Rp π(y |q )π0(q )d q
,
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where p is the number of parameters and π0(q ) is a prior distribution for Q . We note that

for the statistical model (4.1) the likelihood function is

π(y |q ) =
1

(2πσ2)
n
2

e
−SS (q )

2σ2 ,

where

SS (q ) =
n
∑

k=1

[yk − fk (q )]
2.

Calculating the posterior distributions analytically is typically infeasible. Therefore, we

will use a sampling-based method to calculate the posterior distributions called Delayed

Rejection Adaptive Metropolis. This methods allow p to be large and the likelihood and

prior to be of any form.

4.1.1 DRAM

We used the Delayed Rejection Adaptive Metropolis algorithm (DRAM) to perform Bayesian

inference [16]. The algorithm is a variation of the Metropolis algorithm with two additional

components. The delayed rejection improves the acceptance rate of the samples. If a

sample is rejected, it samples another set of parameters from a tighter proposal distribution

and compares it with both the previous accepted sample and the sample that was just

rejected. The adaptive part of the algorithm means the covariance matrix for the parameter

distribution is updated while sampling. We used an implementation reported in [20]. The

DRAM algorithm is outlined in Algorithm 4 from [16] for a chain with M samples and a

uniform prior. We note that J (q ∗|q k−1) is the proposal distribution N (q k−1|V ). and we can

continue to run delayed rejection with smaller and smaller γ2, but we used only one delayed

rejection step.

In step (b) of Algorithm 4, we chose the proposal distributions, N (q k−1|V ), to improve

the efficiency of DRAM. Sampling around the previous sample, q k−1, proposes a sample,

q ∗, that is appropriately scaled. The covariance matrix ensures that the variance are not too

large or small. If the variance of the proposal distribution is too small, then the acceptance

rate is too large and the space is not adequately explored. In contrast, if the variance is

too large, chain will stagnate due to a large rejection rate. Additionally, the covariance

matrix incorporates the underlying correlation structure of the parameters to improve the

proposed parameters [34].
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1. Set design parameters M , ns ,σ2
s , sp , k0, and γ2

2. Determine initial values for q0, the error variance s 2
0 , and covariance matrix

V via a least squares fit to the data.

3. For k = 1, . . . , M

(a) Sample zk ∼N (0, I )

(b) Construct q ∗ = q k−1+ chol(V )zk

(c) Set SSq ∗ = SS (q ∗)

(d) Sample dα ∼U (0, 1)

(e) Compute

α(q ∗|q k−1) =min

�

1, e
−[SSq∗ −SSk−1]

2s 2
k−1

�

(f) If α> dα, set q k = q ∗ and SSk = SSq ∗ ; else, delayed rejection:

i. Sample zk ∼N (0, I )
ii. Construct q ∗2 = q k−1+γ2chol(V )zk

iii. Compute

α2(q
∗2|q k−1) =min

�

1,
π(q ∗2|y )J (q ∗|q ∗2)

�

1−α(q ∗|q ∗2)
�

π(q k−1|y )J (q ∗|q k−1)
�

1−α(q ∗|q k−1)
�

�

iv. Sample dα ∼U (0, 1)
v. If α2 > dα, set q k = q ∗ and SSk = SSq ∗ ; else set q k = q k−1 and

SSk = SSq k−1

(g) Sample s 2
k ∼ Γ

−1(a (ns , n ), b (SSk , ns ,σ2
s ))

(h) If mod(k , k0) = 1, Update V = sp cov(q 0, . . . , q k )

Algorithm 4: Delayed Rejection Adaptive Metropolis algorithm from [16].
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Algorithm 4 step (f)iii. determines the acceptance probability of the delayed rejection

proposal. We achieve this expression by satisfying the detailed balance condition,

π(q k−1|v )pk−1,k =π(q
k |v )pk ,k−1, (4.2)

where q k = q ∗2. Here the pk−1,k is the probability of accepting q k given q k−1. We note that

before we accept q k we must reject q ∗. Therefore, we obtain

pk−1,k = P (proposing q ∗)P (rejecting q ∗)P (proposing q k )P (accepting q k )

= J (q ∗|q k−1)[1−α(q ∗|q k−1)J2(q k |q k−1, q ∗)α2(q k |q k−1, q ∗),
(4.3)

where J2 is the proposal distribution N (q k−1γ2|V ). A similar formulation is used for

pk ,k−1. Substituting (4.3) in the detail balanced condition (4.2) and solving forα2(q k |q k−1, q ∗),

yields

α2(q
k |q k−1, q ∗) =min

�

1,
π(q ∗2|y )J (q ∗|q ∗2)

�

1−α(q ∗|q ∗2)
�

π(q k−1|y )J (q ∗|q k−1)
�

1−α(q ∗|q k−1)
�

�

.

Here we enforce the natural condition α2(q k |q k−1, q ∗)≤ 1.

4.2 Uncertainty Propagation

After performing Bayesian inference, which is often termed inverse uncertainty quan-

tification, we want to quantify the uncertainty of our statistical quantity of interest. We

accomplish this through uncertainty propagation and constructing credible and prediction

intervals. A 95% credible interval is the interval that there is a 95% probability the true

value is within the region. The 95% prediction interval is the interval such that if another

sample is collected, there is a 95% probability that the data point will be within the bounds.

The construction of credible and prediction intervals are created through propagating the

parameter and observation uncertainty through the model [34].

There are many methods to propagate uncertainty through the model, that we will not

utilize including stochastic Galerkin, collocation, and discrete projection as detailed in [34].

These methods are used to reduce the number of model runs compared to the sampling-

based method that we utilized. A sampling-based method is infeasible for complex models

with long computation times without a surrogate. For our problem, one model evaluation

is on the order of a second, so we can apply a sampling method. We calculated a 95%
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credible interval by sampling out of the posterior distributions to calculate M realizations

of the model and used the responses to determine the bounds for the credible interval. To

construct the prediction interval, we added the estimated error variance, s 2, to the credible

interval.

4.3 Results

We ran Bayesian inference with the four identifiable parameters, d±, γp z t , P ±R , and ε±R . ,

from Chapter 3. The nominal parameters from Table 2.1 were used as initial values for the

identifiable parameters and fixed for the unidentifiable parameters. We ran the algorithm

for 70,000 samples. We used 10,000 samples as burn-in and the remaining 60,000 were used

as samples to create the posterior distribution. Burn-in are the samples that are taken to

ensure that the algorithm has converged to the posterior distribution before taking samples.

Figure 4.1 displays the chains, pairwise plots, and marginal densities created from the

results. The last 10,000 samples were used to create the plots in Figure 4.1. The chains

have have explored the parameter space and are well mixed, so the chains have converged.

We could also use the Gelman-Rubin method from [15] to support that the chains have

converged, however we did not perform the analysis. From the pairwise plots, we conclude

that the parameters are correlated.

We then took the results and propagated the quantified uncertainty through the model

to create 95% prediction and credible intervals of the quantity of interest [20]. We used

1,000 of the final 10,000 samples from the DRAM results to calculate the intervals. Figure 4.2

displays the prediction and credible intervals. We plotted the intervals with respect to

time. Since range of the prediction and credible intervals are small using this data set, the

uncertainty is minimal in the model. The lack of uncertainty is due to the periodic or steady

state response. We would expect to observe more uncertainty for an impulse response,

because impulse response excites all frequencies causing more uncertainty to be present.

We will use the uncertainty analysis to develop more robust and efficient control algorithms.
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Figure 4.1 Results from DRAM (a) chains, (b) pairwise plots, and (c) marginal densities.
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Figure 4.2 (a)95% credible intervals and prediction intervals and (b) magnification of (a).
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CHAPTER

5

PARAMETER-DEPENDENT DYNAMIC

MODE DECOMPOSITION

5.1 Dynamic Mode Decomposition

The Homogenized Energy Model (HEM) model is computationally intensive, which moti-

vates the construction of a surrogate model for control design and real-time control imple-

mentation. We investigated using a dynamic mode decomposition (DMD) as a surrogate

model. DMD is used when the dynamics are too complex to quantify using physics-based

models or models are too computationally expensive to permit real-time solutions for

design and control [19].

DMD approximates the Koopman Operator,A , that describes the nonlinear dynamics

of a system. The Koopman operator is an infinite dimensional linear operator that acts

on the Hilbert space, H , which contains all observable functions g :Rn 7→Rn of the state

vector xk . Let xk ∈Rn and F :Rn 7→Rn be a flow map such that xk+1 = F (xk ). We note that

the range is the same space as the domain. Here the Koopman operator,A , is known as
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the composition operator, such that

A g (xk ) = g (F (xk )) = g (xk+1).

In other words, the operator from one observation to the next. In our case, the observations

are the state vectors, xk , that describe the displacement the beam.

An example from [19], consider the system

d x

d t
=−µx ,

with the initial condition x (0) = x0. The continuous solution is x (t ) = x0e −µt . The solution

at time tk+1 is

x (tk+1) = xk+1 = x0e −µtk+1

We define the observation functional as g (xk ) = xk+1; i.e., the state vector. The Koopman

operator is the linear operator on g (xk ) such that

A g (xk ) = g (x0e −µtk+1) = x0e −µtk+1 = xk+1

Thus, the dynamics of a continuous nonlinear nonlinear system can be expressed by apply-

ing the Koopman operator to the observable function g (xk ) = xk ,

xk+1 =A g (xk ) =A xk .

Our objective is to approximate the Koopman operator by a finite dimensional matrix A.

To show the historical formulation of DMD as in [32], we combine observations with

step size∆t in a matrix as columns,

X M−1
1 = [x1, x2, ..., xM−1].

Note that new research in [7, 19, 39] has been able to relax the assumption of periodic

observations. Data can be sparse in both the time and spatial domain and sampled at

non-periodic time intervals. We consider the case where∆t is constant. The span of the

columns of

X M−1
1 = [x1, Ax1, ..., AM−2 x1]
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is a Krylov subspace. We can express the final observation, xM , as a linear combination of

the Krylov basis and a residual term, r , that is orthogonal to the Krylov space:

xM =
M−1
∑

k=1

sk xk + r.

Note that

X M
2 = AX M−1

1 . (5.1)

Using the expression for xM , we obtain

X M
2 = X M−1

1 Ã+ r e(M−1),

where e(M−1) is the (M −1)t h unit vector and Ã is the companion matrix with the si terms in

the final column. We note that A is the finite-dimensional tangential approximation of the

Koopman Operator; i.e., the eigenvectors and eigenvalues of A approximate the Koopman

modes and eigenvalues. Therefore, we approximate the Koopman with a finite-dimensional

matrix, A, that is a companion matrix of Ã.

We define the DMD modes or dynamic modes as the eigenvectors of

A = X M
2

�

X M−1
1

�†
.

where † denotes the Moore-Penrose inverse. This approximation minimizes the Frobenius

norm of the error between the approximation and the output, or

min
A

√

√

√

n
∑

i=1

m
∑

j=1

�

[X ′]i j − [AX ]i j

�2
.

To compute the dynamic modes, we use Algorithm 5 from [19]. In step 2, we utilize the

data matrix having low rank by taking an SVD of X M−1
1 with rank r. We truncate the SVD

of X M−1
1 by retaining the r largest singular values and the corresponding singular vectors.

The columns of Φ are the dynamic modes or the eigenvectors of A with corresponding

eigenvalues

Λ=







λ1 0 0

0
... 0

0 0 λr






.
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Once the dynamic modes are computed, we can approximate, x (t ), for all time t with the

formula,

x (t ) =Φe Ωt b , (5.2)

where b =Φ† x1, Ω= ln(Λ)
∆t , and

ln(Λ) =







ln(λ1) 0 0

0
... 0

0 0 ln(λr )






.

For predictions on evenly spaced intervals∆t , we also can use

xk+1 =ΦΛ
k b .

This is simply the relation

xk+1 = Ak x1 = Axk .

Note, if the condition number for A is large, then the problem is ill-conditioned, which

causes the approximation to not be accurate. Using (5.2) projects the Koopman approx-

imation down to the proper orthogonal decomposition (POD) modes which improves

the condition number which allows for more accurate approximations when the A is ill-

conditioned.

We note that DMD and POD have many similarities. They are both reduced-order

models that utilize the low-dimensionality of the data to make low-rank approximations for

a complex dynamical system. The primary component for each algorithm is the SVD of the

data matrix. The primary difference between DMD and POD is that DMD is equation free.

DMD is a data-driven method that requires no additionally work to make future predictions.

However, POD requires a projecting the full-order system onto the POD modes to generate a

reduced-order model. This is often accomplished by using Galerkin projection, which often

generates a simpler dynamical equation that need to be solved to make future predictions.

These POD-Galerkin reduced-order models can still be computationally intensive to solve

[19] and can produce unstable systems [30].
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1. Construct the data matrix,

X M−1
1 = [x1, x2, ..., xM−1],

and output matrix,
X M

2 = [x2, x3, ..., xM ].

2. Determine the reduced SVD of X M−1
1 ,

X M−1
1 ≈UΣV ∗

with rank r.

3. Compute
Ã =U ∗X M

2 V Σ−1,

4. Calculate the eigenvalue decomposition of Ã,

ÃW =W Λ

5. Determine dynamic modes by calculating,

Φ= X M
2 V Σ−1W .

Note that the dynamic modes are the columns of Φ.

Algorithm 5: Dynamic Mode Decomposition algorithm from [19].

5.1.1 Examples

We implemented the DMD algorithm on steady state data generated from the HEM from

Chapter 2. For an impulse response with the HEM, the time steps need to be extremely

small to quantify the high frequency information. We decided to investigate the simplest

case first.

We first used the HEM code for PZT bimorph actuation to create data for the algorithm.

We make observations along the beam beginning at x = 0 m with step size hx = 6.25×10−4 m

and ending at x = 0.01 m. We let t ∈ [0,3.5] and take the sampling rate to be ht = 0.002.

We drove the beam with the signal Vb (t ) = 150+ 150sin(4πt ). Figure 5.1 shows that the

DMD approximation fits the data well. In the figure, the DMD approximation was created
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(a) (b)

(c) (d)

Figure 5.1 DMD for the HEM driven by Vb (t ) = 150 + 150sin(4πt ) at fixed spatial points: (a)
x = 0.0025m, (b) x = 0.005m, (c) x = 0.0075m, and (d) x = 0.01m.

using seven singular values and vectors from Σ from step (2) of Algorithm 5. Table 5.1

displays a size of the singular values ofΣ calculated during the DMD. We tested the different

truncating at different sigmas. The most accurate approximation was produced when we

truncated after seven singular values. We note that the relative value for all of singular

values are a magnitude larger than machine epsilon.

Figure 5.2 shows that the DMD approximations where only the first 0.875 seconds of the

data was used to construct the DMD. In the figure, the DMD approximation was created

using seven singular values and vectors. Table 5.2 displays first eight singular values of Σ

calculated during the DMD. We used DMD to predict actuation for a length of 3.5 seconds,
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so using the DMD to extrapolate from 0.875-3.5 seconds. The error of our approximations

seems to grow the longer we extrapolate, but we are able extrapolate for over two seconds

while maintain a relative error of less than 15%. We can use less than one second worth of

data to model 3.5 seconds of the actuation.

We are able to approximate the HEM using DMD when we consider a steady response.

However, there are limitations to DMD. When we attempt to form the DMD of an impulse

response, we were not able to approximate the dynamics with the DMD as shown in Fig-

ure 5.3. Note that we consider the impulse response of a simplified beam model due to

the complexity of the HEM. The beam is longer, `= 0.393 m, height and width are uniform

throughout the beam, and the substrate is a single piece of material. The patch is attached

to the beam at [0.041 m, 0.092 m]. The simplified model uses a single parameter to quantify

the material behavior of PZT given a voltage. The numerical implementation is from [3],

which is based on the beam code from [33]. The DMD approximates the model for less

than a hundredth of a second, before decaying to a steady response. The rapid decay of

the high frequencies are causing the approximation to decay and not quantify the lower

frequencies.

We then attempted to allow the high frequency information to decay out, then produce

the DMD which still did not produce accurate approximations. We allowed two seconds to

pass before sampling the data that is utilized in the DMD. Figure 5.4 displays the approxi-

mation of the DMD, which performs worse than starting the sampling when t = 0. The high

frequency information still affects the approximation even though it appears that most of

Table 5.1 Singular values for HEM Example.

Singular Values
σ1 0.007
σ2 2.807×10−10

σ3 1.274×10−12

σ4 3.156×10−16

σ5 1.900×10−16

σ6 1.700×10−16

σ7 4.823×10−17

σ8 5.847×10−18
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(a) (b)

(c) (d)

Figure 5.2 DMD approximation for the HEM driven by Vb (t ) = 150 + 150sin(4πt ) using the
first 0.8750 seconds of data to create the DMD, then extrapolating with the DMD at fixed spa-
tial points: (a) x = 0.0025m, (b) x = 0.005m, (c) x = 0.0075m, and (d) x = 0.01m.

the high frequencies have decayed to zero. We attempted other methods to achieve better

approximations; i.e., change the sampling frequency and sampled across more points along

the beam. However, we were not able to improve the approximation, so DMD could not

quantify the dynamics of the impulse behavior of a beam.

We will strictly consider a controlled response for the remainder of the chapter. Another

limitation of DMD is that it does not allow for different controls to be applied to the system,

so we investigate an extension of DMD called dynamic mode decomposition with control.
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Table 5.2 Singular values for HEM Example with extrapolation.

Singular Values
σ1 0.003
σ2 2.791×10−10

σ3 6.365×10−13

σ4 2.229×10−16

σ5 9.543×10−17

σ6 4.854×10−17

σ7 1.141×10−17

σ8 1.975×10−18

5.2 Dynamic Mode Decomposition with Control

Dynamic mode decomposition with control (DMDc) take ideas from DMD and applies it

to a control system as detailed in [28]. We can express the dynamics of a control system as

xk+1 = Axk +B uk .

where xk ∈Rn . Here B is the control matrix and uk ∈Rm is the control vector for the k t h

observation. The goal of DMDc is to find approximations for A and B . As in Section 5.1, we

construct the data matrix X m−1
1 and output matrix X m

2 . We additionally define the input

matrix as

Ucont = [u1, u2, . . . , um−1].

As with DMD, we obtain

X M
2 ≈ A = AX M−1

1 +BUcont = [A B ]

�

X M−1
1

Ucont

�

,

This produces an augmented operator matrix,

A=
�

A B
�
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(a) (b)

(c) (d)

Figure 5.3 Impulse response for a simplified beam example at fixed spatial points: (a) x =
0.1500m, (b) x = 0.225m, (c) x = 0.3000m, and (d) x = 0.3750m.

and an augmented data matrix

X=

�

X M−1
1

Ucont

�

.

Note that the system

X M
2 =AX
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(a) (b)

(c) (d)

Figure 5.4 Impulse response for a simplified beam example where sampling started at t0 = 2 secs
at fixed spatial points: (a) x = 0.1500m , (b) x = 0.2250m (c) x = 0.3000m , and (d) x = 0.3750m .

is of the same form as (5.1). We define DMDc as the eigenvectors of A defined by

[A B ] = X M
2

�

X M−1
1

Ucont

�†

.

We calculate the DMDc using Algorithm 6 from [28]. To compute the reduce SVD of
�

X M−1
1

Ucont

�

with rank r and X M
2 with rank r , we truncate the two SVD’s by retaining the r and r ,

largest singular values and their corresponding singular vectors, respectively. The columns
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1. Construct the data matrix,

X M−1
1 = [x1, x2, ..., xM−1],

the output matrix,
X M

2 = [x2, x3, ..., xM ],

and the input matrix,
Ucont = [u1, u2, . . . , um−1].

2. Determine the reduced SVD of the augmented data matrix,

�

X M−1
1

Ucont

�

≈UΣV ∗

with rank r and the reduced SVD of the output matrix,

X M
2 =≈U ΣV

∗
,

with rank r .

3. Compute
Ã =U

∗
X M

2 V Σ−1U ∗
1 U ,

and
B̃ =U

∗
X M

2 V Σ−1U ∗
2 ,

where we split U = [U1 U2], with U1 ∈Rn×r and U1 ∈Rm×r .

4. Calculate the eigenvalue decomposition of Ã,

ÃW =W Λ

5. Determine dynamic modes by calculating,

Φ= X M
2 V Σ−1U ∗

1 U W .

Note the dynamic modes are the columns of Φ.

Algorithm 6: Dynamic Mode Decomposition with control algorithm from [28].

of Φ are the dynamic modes or the eigenvectors of A with corresponding eigenvalues Λ. We

do not create dynamic modes for B .
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Differently from DMD, we do not approximate using the dynamic modes. We predict

future states by using the reduced order system,

x̃k+1 = Ã x̃k + B̃ uk . (5.3)

where xk =U x̃k . If we want to use the full-order system’s state and control matrices in

control design, we also can truncate Algorithm 6 after step 2 to approximate the state matrix

A and control matrix B as

A = X M
2 V Σ−1U ∗

1 ,

and

B = X M
2 V Σ−1U ∗

2 , (5.4)

where we separate U = [U1 U2]. After we compute A and B , we can use the system

xk+1 = Axk +B uk

to predict the behavior of the nonlinear system. Note that depending on the size of the

state vector, it will be computationally more tractable to use the reduced order system. For

the HEM problem, n = 16, so we are able to use either method.

We use the HEM to generate data for the dynamic mode decomposition with control

(DMDc) algorithm. Figure 5.5 displays the HEM data at the tip of the beam used to create

the approximate the system’s A and B matrices as well as the DMD approximation. We

observed that DMDc accurately approximates the data. The data was sampled at a rate

of 500 evenly spaced samples a second. The control input matrix is constructed from the

voltages that are applied to both patches. When we attempt to only use one voltage, the

algorithm failed to produce an accurate surrogate. The DMDc approximation using one

voltage as the control does not quantify the effects of both PZT patches on the system. Thus,

even though the voltages are related, using both voltages in the input matrix is necessary.

We truncated the data and control matrix at r = 3 singular values, because there is a drop-off

on the order of 10−6 in the magnitude of the singular values. Note, we need to have at least

two singular values for the control and at least one for the system, so it is possible to split

U = [U1,U2].
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Figure 5.5 Data that was used to create the approximate the full-order system’s state matrix A and
control matrix B that is utilized in future control design and the DMDc approximation.

5.3 PI Control

With the approximation of state A and control B matrix, we then implemented a PI Con-

troller for the DMD model using the voltage vb (t ) from Section 2.2. Using the Ziegler-Nichols

PI gains tuning technique outlined in [1], we implemented the controller

uk =−(1×105)ek − (1×108)

∫ t

0

ek (s )d s +
Vmax

2
.

Here ek = x obs
k − rk where rk is the target function at time tk and x obs

k is the displacement at

the tip of the beam at time tk . Note that Vmax
2 is added to ensure that the bimorph starts in its

static neutral position. We used Ziegler-Nichols method to achieve initial values and then

adjusted the gains to meet desired performance. The gains seem large, but it is primarily

adjusted for the difference in the order of magnitudes for the tip displacement and the

voltage. We employ a PI control instead of a PID because a fast response is not required for

this system. Figure 5.6 displays the tracking capabilities of the PI controller for the surrogate
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Figure 5.6 (a),(b) The performance of the designed PI controller and the control designed, and
(c),(d) includes 5% noise.

model. We added 5% noise to the state vector that is being used as feedback in the control,

x obs
k = xk + (0.05×10−4)εk ,

where (0.05×10−4) is 5% of the maximum order of magnitude of the tip displacement. Here

εk ∼N (0,1). We observe that the system is able to track the trajectory despite the added

noise.

We next tested how the control would work on the HEM. We applied the control as a

feedforward control to the HEM as outlined in Algorithm 7. Figure 5.7 displays the results
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Figure 5.7 (a) The control from DMDc as a feedforward control in HEM and (b) with 5% noise.

for the feedforward problem. The feedforward problem produces a stable solution, but

tracks the target function less accurately than the feedback problem on the DMDc system,

which we expected. We observed the feedforward control tracks accurately initially until

the oscillations of the target function. The surrogate does not track the target function to

the desired accuracy. We will investigate implementing the PI control as a feedback control.

Last, we employed the PI control designed with the surrogate model as a closed-loop

controller to the HEM. Figure 5.8 displays the results of the PI controller on the high-

fidelity model with 5% noise added to the system. The PI controller adequately tracks a

discontinuous target function.

1. Compute A and B from DMDc to approximate the system,

xk+1 = Axk +B uk

2. Design a PI Control for the DMDc system

3. Use the PI control on the DMDc system and collect uk .

4. Run the HEM with the control uk as the voltage, Vb (t ).

Algorithm 7: Feedforward Algorithm.
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Figure 5.8 (a),(b)The control from DMDc as PI control in the high-fidelity model and (c),(d) with
5% noise.

5.4 Interpolation method

The goal here is to expand DMDc to be parameter-dependent. This allows us to perform

optimization and uncertainty quantification on the surrogate model in lieu of the full-order

model. We can also use DMDc to design a robust control for the full order problem. The

method we employ is an interpolation method discussed in [13]. The method was developed

for projection-based surrogate models like proper orthogonal decomposition (POD).
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We consider the problem

xk+1 = A(q )xk +B (q )uk ,

where x ∈ Rn , B (q ) ∈ Rn×`, and A(q ) ∈ Rn×n . Here n is the number of states and ` is the

number of control inputs. Let

A= {A1, A2, A3 . . . AN },

where Ak = A(q k ) and q k ∈ Rp . Here A will be interpolated elementwise to calculate Ã

corresponding with the parameter q̃ . We accomplish this by using cubic splines. For a

single parameter, we order the q j in monotonically increasing order. If q k ≤ q̃ ≤ q k+1, then

the cubic spline interpolant for the Ãi j is

Ãi j ≈ f ki j (q̃ ) =
3
∑

l=0

α
ki j

l

�

q̃ −q k

q k+1−q k

�l

The coefficients α
ki j

h are determined by the conditions

f ki j (q k ) = Ak
i j ,

f (k−1)i j (q k ) = Ak
i j ,

d f (k−1)i j

d q̃
(q k ) =

d f ki j

d q̃
(q k ),

d 2 f (k−1)i j

d q̃ 2
(q k ) =

d 2 f ki j

d q̃ 2
(q k ).

Initially, we considered a third-level Clenshaw-Curtis grid to prevent Runge’s phe-

nomenon. The Clenshaw-Curtis nodes are defined by

q r
3 =

1

2

�

1− c o s
�

π(r −1)
23−1

��

,

where r = 1, . . . , 23−1+1 as illustrated in Figure 5.9 for a two dimensional case. To interpolate,

we used MATLAB’s interpn function with the cubic spline. The number of nodes increase
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exponentially with the number of parameters for a tensored grid,

number of nodes =
�

23−1+1
�p

,

so we also considered two sparse grids.

The first sparse grid we consider is Smolyak’s sparse grid, proposed in [36]. The nodes

for the Smolyak’s sparse grid are

Θ
p
l =

⋃

|`′|≤l+p−1

Θ1
`1
× · · ·×Θ1

`p
,

where l is the level , p is the number of parameters, and |`′|=
∑p

k=1 `k , . HereΘ1
`1

is the set of

nodes for one parameter at the `1 level from the Lobatto grid. A two dimensional example is

shown in Figure 5.10. The nodes for k t h level Lobatto grid are given by x =±1 and the roots

of d Pk−1
d x where Pk is the k t h Legendre polynomial. As the second method of sparse grids, we

implemented a 200-point latin hyper cube design, from [24], as displayed in Figure 5.10.

Once we have the nodes for the grid, we rotated the nodes using the covariance matrix

from uncertainty quantification results, so the grid aligns with the correlation structure of

the parameters. To interpolate the two different sparse grids, we used MATLAB’s griddatan

function. This is a linear spline interpolator that accommodates scattered or sparse data.

Figure 5.9 Two dimensional level-3 Clenshaw-Curtis grid.
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Figure 5.10 (a)Level-5 Lobatto grid based Smolyak’s sparse grid and (b) Latin hypercube .

5.5 Results

We initially consider the four identifiable parameters, d±, γp z t , P ±R , and ε±R , from Sec-

tion 3.2.3, which were used for performing uncertainty quantification in Section 4.3. The

control was taken to be a ramp up-oscillation-ramp down control. We created oscillations

from two sinusoid frequencies, 110 Hz and 770 Hz, added together. Testing was done by

randomly sampling parameters from their posterior distribution.

In Figure 5.11, we compare the high-fidelity model, the DMD model, and the new DMD

with parameter interpolation (DMDip). For the first two sets of parameters, the DMDip

is comparable to the DMD and the approximations are within 25% of the actual model.

The primary source of error is due to the delayed reaction to the voltage of the surrogate

model. Note that making the oscillation region have only one frequency brings the output

of the model, DMD, and DMDip to within 1% of each other. For the last set of parameters,

we note that in Figure 5.11(e)-(f) that the DMD approximations are more accurate in the

oscillation region, but the DMD and DMDip are clearly different. This may be due to the

number of nodes in the grid. A finer Clenshaw-Curtis grid may solve this problem.

Table 5.3 displays the timing results to compute the full model, DMD, and DMDip

and the number of nodes for each DMDip grid. We observe that we obtain a significant

speedup using the DMD and DMDip-Clenshaw over the full order model. The two sparse
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Figure 5.11 DMD with parameter interpolation results using 5 point Clenshaw-Curtis grid where
each row are results from a different set of randomly drawn parameter values for d±, γp z t , P ±R ,
and ε±R .

grid methods are between 2-3 times faster than the full order mode. We do not see further

speed up with sparse grid because, the griddatan function uses Delaunay triangulation
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algorithm to interpolate, which is an expensive algorithm. Note that the DMD time is the

time needed to perform DMD given that the data was already collected or generated.

Figure 5.12 displays the relative error,

error=
||yH E M − yD M D i p ||∞

||yH E M ||∞

for 100 randomly sampled set of parameters for each of the three grid types. Note that

the parameter sets were generated from the posterior distributions from the uncertainty

quantification results in Figure 4.1. The control was taken to be a ramp up-oscillation-ramp

down control. We created oscillations from two sinusoid frequencies, 110 Hz and 770 Hz,

added together. The errors are plotted against the value of the parameters used to generate

the responses. We observe that errors are correlated to parameter values. This is due to the

response dependence on the parameters values. Even though, the error is relative to the

magnitude of the response, the magnitude of the response affects the magnitude of the

relative error. The approximations are all within 20% of the model, so they are acceptable

for our application of control design. However, the DMDip is only going to perform as well

as the DMDc, so we also need compared the approximations of DMDc and DMDip.

We plotted the error between the DMDc and DMDip response for each set of parameters

in Figure 5.13. The errors are all less than 3% of the DMD. Our DMDip method produces an

approximation of the DMD response. We note that the sparse grid methods do not exhibit

correlation between the error and the parameter, so the value of the parameter does not

affect the accuracy of DMDip. We decided to use the Smolyak’s sparse Lobatto grid for the

reminder of this analysis, because the results had the least number of errors over 1%. Note

Table 5.3 Time to complete one model run, DMD run with the data already obtained, and DMDip
run. Also, the number of nodes used for each interpolation method for DMDip.

Method Time (s) # of Nodes
Model 65.4 N/A
DMD 0.2 N/A
DMDip-Clenshaw 1.1 625
DMDip-Lobatto Sparse 24.5 401
Latin Hypercube 18.6 200
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that the number of nodes from Table 5.3 are all on the same order of magnitude. However,

the sparse Lobatto grid is more accurate then the Clenshaw-Curtis grid, because it is a

larger level grid. The latin hyper cube has similar results. We could vary the number of

nodes in the latin hyper cube design to achieve a more accurate interpolator, but the results

we obtained are sufficiently accurate.
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Figure 5.12 The relative error between the model andDMDip responses plotted against the pa-
rameters for (a) full Clenshaw grid, (b) Smolyak’s sparse Lobatto grid , and (c) Latin hypercube.
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Figure 5.13 The relative difference between the DMD and DMDip responses plotted against the
parameters for (a) full clenshaw grid, (b) Smolyak’s sparse Lobatto grid , and (c) Latin hypercube.
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CHAPTER

6

SYNTHESIS OF UQ AND CONTROL

6.1 Discrete-Time Tracking Problem

With a parameter and control-dependent surrogate model, we can now use the surrogate

model to develop control algorithms for the full-order model. Our objective is to design

a robust control algorithm, so the tip of the beam tracks a target function. One common

method is to examine the optimal control for the tracking problem. To do this we will

consider the linear quadratic tracking problem for a discrete-time problem as discussed in

[22]. Note that the surrogate model

xk+1 = Axk +B uk

is a linear discrete-time surrogate of a continuous system. We will consider a finite horizon

tracking problem. We define the cost function to be

J0 =
1

2
(C xN − rN )

T P (C xN − rN ) +
1

2

N−1
∑

k=1

(C xk − rk )
T Q (C xk − rk ) +uk R uk ,
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with times t ∈ [t0, . . . , tN ], P , Q , are semi-positive definite matrices and R is a positive

definite matrix. Here P is the penalty for missing the target at the final time, Q is the penalty

for not tracking the target before the final time, and R is the penalty for applying large

voltages. The matrix R insures that the system is efficient with its energy consumption.

Note that the step size from tk to tk+1 must be equal for all k ∈ [0, N ], so DMDc can function

properly. Finally, C = [0, . . . , 1] is the matrix that produces the tip displacement of the beam

when multiplied with the state. To solve the optimal control problem, we utilize Legendre

multipliers to obtain the solution

xk+1 = Axk +B uk ,

λk = ATλk+1+C T Q C xk −C T Q rk ,

uk =−R−1B Tλk+1,

where λk is the costate with the final-time condition

λN =C T P (C xN − rN ),

with initial condition x0 as in [22].

Observe that the control is in terms of the costate and that state and costate are de-

pendent on each other with boundary conditions at initial and final times. Thus, we must

express λk in terms of the state xk . Let

λk = Sk xk − vk ,

where {Sk}Nk=1 and {vk}Nk=1 are sequences of auxiliary matrices and vectors, respectively.

Note that Sk ∈Rn×n and vk ∈Rn . Substituting λk = Sk xk − vk and simplifying, we obtain the
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solution of the form

xk+1 = Axk +B uk ,

Fk = (B
T Sk+1B +R )−1B T Sk+1A,

Sk = AT Sk+1A−AT Sk+1B Fk +C T Q C ,

vk = (A−B Fk )vk+1+C T Q rk ,

F v
k = (B

T Sk+1B +R )−1B T ,

uk =−Fk xk + F v
k vk+1,

with boundary conditions

SN =C T P C ,

vN =C T P rN .

Note that Fk and F v
k are the feedback gain and feedforward gain matrices. We observe that

Fk , Sk , vk , and F v
k are all independent of the state. If we know the tracking function rk , we

can precompute all of these terms. However, this can cause memory problems, because

it is necessary to store long sequences of matrices and vectors. To address the memory

issue, we will consider a suboptimal tracking algorithm by using the infinite-time horizon

solution for Sk .

When we substitute Fk into the equation for Sk , we observe that

Sk = AT Sk+1A−AT Sk+1B (B T Sk+1B +R )−1B T Sk+1A+C T Q C ,

is the Riccati equation. We can use the solution to the algebraic Riccati equation

S = AT S A−AT S B (B T S B +R )−1B T S A+C T Q C ,

to find suboptimal gain matrices. After obtaining the solution to the algebraic Riccati
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equation, S∞, we obtain the gains

F∞ = (B
T S∞B +R )−1B T S∞A,

F v
∞ = (B

T S∞B +R )−1B T .

Then, we can precompute the sequence of vectors

vk = (A−B F∞)vk+1+C T Q rk ,

where vN =C T P rN . Finally, we can compute

xk+1 = Axk +B uk ,

where

uk =−F∞xk + F v
∞vk+1,

With this implementation, we need to store three matrices and a sequence of vectors. If we

want to reduce the number of stored vectors, we can precompute v0 and use

vk+1 = (A−B K∞)
−T vk − (A−B K∞)

−T C T Q rk

to calculate the sequence {vk} as we compute the state.

Figure 6.1 shows the solution to the optimal control problem where

B = BD M D c ×

�

−1

1

�

, R = 1×10−4, P = 5×109, Q = 5×109.

Here BD M D c is (5.4); i.e., the matrix we get from DMDc with Section 5.2 or the interpolated

B matrix from DMDip from Section 5.4. We adjust the control matrix B, so that the solution

of the optimal control will be Vb (t ) from Section 2.2. The control values are physically

reasonable, because they are below Vma x = 300 V. We adjusted R , P, and Q until we tracked

the target to desired accuracy while maintaining a physically reasonable applied voltage.

The tip displacement tracks the target function with less than 1% error. Once the optimal

control was determined for the surrogate model, the optimal control was applied as a

feedforward control, as in Algorithm 7 from Section 5.3, in the full-order HEM model.

Figure 6.2 displays the solution to the optimal control in the full order model. The tracking
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for the full-order model is not as accurate, but it is still less than a 20% error. Therefore,

this is a viable solution to track the target function for many applications. We are able to

use an optimal control designed with DMD to control the HEM. We will be able to run

computational control experiments with the reduced-order problem to approximate and

design controls for the PZT bimorph system.

6.1.1 Uncertainty in the Optimal Control

With a viable optimal control, we use the results from Section 4.3 to quantify the uncertainty

in the solution. We sample from the posterior distributions for the four parameters and

solve the optimal control problem from Section 6.1 with the reduced-order system. We

took 1,500 samples to create the posterior distributions for the control and full order model

displacement of the control. We present these results in Figure 6.3. We plotted 95% credible

intervals; i.e., the mean response is region with a 95% probability. There is little uncertainty

in either the control or displacement. The 95% credible interval has a range of less than

10µm for the tip displacement and less than 10 volts for the voltage. The optimal control is

robust with respect to the parameter uncertainty.
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Figure 6.1 The DMDip (a)optimal trajectory and (b)optimal control with a randomly sampled set
of parameters .
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Figure 6.2 The HEM solution using the optimal control in Figure 6.1 where (a) trajectory and (b)
magnification of (a)

6.2 Combining the Optimal and PI control

When designing a control for the beam, we need to design the control using one set of

parameter values, while keeping it robust enough to accommodate the uncertainty in

the parameter. To illustrate, we employ the optimal control for the mean values of the

results from Section 4.3 with the PI control from Section 5.3. The optimal control would be

implemented as a feedforward control for the system. The feedback control is necessary

to insure accurate tracking of the target function. Figure 6.4 displays the results of the

combination of the feedback and feedforward controller. We observe that the function

tracks the target function while the control is within the normal voltage usage with less

than 1% error.

Next, we tested how robust the new controller is by quantifying the uncertainty in the

control and output. We use the results from Section 4.3 to quantify the uncertainty in the

solution. We sample from posterior distributions for the four parameters to propagate

the uncertainty into the combined control problem. We took 1,000 samples to create the

posterior distributions for the control and full-order model displacement. Figure 6.5 dis-

plays those results. There is little uncertainty in either the control or the displacement. The

displacement uncertainty is less than 1%, while the voltage is within a range of five volts. In

the combined control design, the control tracks the target function even under parameter
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Figure 6.3 The HEM credible intervals of the tracking problem for (a) the control and (b),(c) the
tip displacement.

uncertainty. The combined control is robust with respect to the parameter uncertainty and

maintain voltages on normal levels.
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Figure 6.4 The HEM solution using the optimal control in Figure 6.1 combined with the PI con-
trol from Section 5.3 where (a) trajectory and (b) control.
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Figure 6.5 The HEM credible intervals of the tracking problem with combining the optimal con-
trol and PI control for (a),(b) the control and (c),(d) the tip displacement.
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CHAPTER

7

CONCLUSION

We employed a model for a PZT bimorph actuator that incorporates a Homogenized Energy

Model (HEM) for the strain and polarization of the PZT. The numerical results replicate the

hysteresis loops of the PZT. This is a vast improvement over the linear model, which ignores

the nonlinear effects that are inherent to PZT in highly-dynamic drive regimes. Modeling

these nonlinearities with the HEM will facilitated more efficient control algorithms for

the micro-air vehicles (MAV). We were able to determine nominal parameter values that

allowed the model to fit the data.

With these nominal parameters, we determined using local and global sensitivity anal-

ysis that the fours parameters d±, γp z t , P ±R , and ε±R are identifiable in the sense they are

uniquely determined by the data. We developed a scaled subset selection to determine the

sensitivity measures that is effective for problems with parameters on drastically different

scales. We then compared the results of the scaled subset selection method to four different

methods. With the identifiable set, we fixed the other parameters and performed Bayesian

inference. We then used these parameter uncertainties to propagate them through the

model to construct 95% credible and prediction intervals that can be used to help develop
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a control algorithm.

We observed that we can perform dynamic mode decomposition with control (DMDc)

on the HEM for a bimorph actuator to construct a surrogate model. The surrogate model

can be used to implement a PI controller for the system. When the control developed

from the DMDc is applied to the HEM in a feedforward algorithm, we observe that the

solution is stable, but is less accurate than in the feedback problem on the surrogate model.

When the control developed from the DMDc is applied to the HEM, we observe that the

controller accurately tracks a discontinuous target function even when noise is applied

to the control. We were able to extend DMD using interpolation to make a control and

parameter dependent model. This model provides a significant speed up with an accepted

amount of loss of accuracy.

With a parameter and control-dependent surrogate model, we are capable of developing

control algorithms for the HEM that is robust to uncertainty. We focus on quantifying

the uncertainty in an optimal tracking control. The optimal control was solved using the

surrogate model. The reduced computation time of the surrogate model allowed us to

quantify the robustness of the optimal control. However, the optimal control, when applied

to the full order model as a feedforward control, does not track as well as we desired. To

adjust for this, we implemented a PI control along with the feedforward optimal control to

improve tracking. We designed a robust control with respect to parameter uncertainty that

tracks very well.

In future research, we will quantify uncertainty using a more informative data set, since

the results are limited to the information in the data. It would be optimal to have a data set

that consist of an impulse response which maximizes the amount of information in the data.

This will yield informing more parameters and quantifying more uncertainty. However, to

accomplish this, we need to test our surrogate model under an impulse response. We need

to identify the limitations of the surrogate model. We need to test that we can reproduce

the uncertainty quantification results using the reduced order model. If DMD does not

approximate the results well, we may have to look into active subspace surrogates that are

both time and control dependent.

We should also test if we can perform uncertainty quantification on additional parame-

ters. The sensitivity analysis leads us to believe that there is a possibility for five to seven

influential parameters. It would be interesting to investigate these other influential param-

eters. Additional testing of DMD with parameter interpolation is necessary to assess its
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capability to interpolate over more parameters. Thus, we must further investigate sparse

grid algorithms. MATLAB’s griddatan is not the an efficient algorithm, because griddatan

employs the Delaunay triangulation algorithm. Note that griddatan takes almost half of

the time as the full-order model and when we increase the number of nodes griddatan will

take longer. There are other methods that may improve the speed of DMD with parameter

interpolation. We also could attempt to adjust the griddatan code to compute the Delaunay

triangulation algorithm once and then pass the triangulation as a argument to the inter-

polating part of the code. We should also investigate using the more robust complex step

method when approximating derivatives for the sensitivity analysis. Finally, we should look

into other methods of synthesizing uncertainty quantification and control design. One

method is to consider a game theory problem where the uncertainty of the parameters is

the opponent. This work has laid the foundation for future research.
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