GUPTA, ARSHITA. Attentive Query Network. (Under the direction of Dr. Tianfu Wu).

Scene understanding is an important problem in modern high-level computer vision. Currently a lot of effort is being put in developing algorithms that will help in the 3D reconstruction of an entire scene. Various present solutions proposed require human annotation like masking thus increasing the dependency of these algorithms on humans. Further, once this masking is applied, they focus only on one object in the entire scene. We wish to not only create a 3D representation of the object but generate the entire scene from any user defined viewpoint different than the previously observed viewpoints. This work takes a deep dive into the novel idea of scene rendering using query networks [6] and further adds onto it a spatial attention mechanism. Unlike the other techniques, this method relies entirely on the self-sufficient learning of the machine and removes any involvement from humans.

The original Generative Query Network (GQN), although quite appreciable, takes millions of iterations to converge as it works towards generating the entire scene at every iteration step. Generally, the walls, ground and sky occupy most of the image, the network spends most of its time refining their representation and hardly focuses on the more important objects in the room. We, therefore, introduce an attention mechanism that will help to direct the focus on the objects of interest and give less attention to the monotonous walls, thus rendering a refined scene which converges faster than the original method. This attention mechanism will learn to put more importance on the foreground objects in the image by providing with more weight and simultaneously assigning less weight to the redundant information in the image. We believe that with the addition of this technique, we can improve the performance originally stated in GQN.
Attentive Query Network

by
Arshita Gupta

A thesis submitted to the Graduate Faculty of
North Carolina State University
in partial fulfillment of the
requirements for the Degree of
Master of Science

Electrical Engineering

Raleigh, North Carolina

2019

APPROVED BY:

_________________________ _________________________
Dr. Edgar Lobaton Dr. Xu Xu

Dr. Tianfu Wu
Chair of Advisory Committee
DEDICATION

To my parents, my brother, my mentor and myself.
BIOGRAPHY

Arshita Gupta is a M.S. student in the Department of Electrical and Computer Engineering at North Carolina State University. She pursued her Masters Thesis under the guidance of Dr. Tianfu Wu, where she conducted research on generative network for 3D scene understanding and rendering. Prior to joining NCSU, Arshita graduated with a B.Tech from Veermata Jijabai Technological Institute, Maharashtra, India.
ACKNOWLEDGEMENTS

I firstly extend my gratitude to my advisor, Dr. Tianfu Wu, who has played a major role in this research. Due to his ideas and encouragement to think outside the box, I was able to complete this work. I thank Dr. Wu for his time and knowledge that he has shared with me. He allowed this paper to be my own work, but directed me in the right direction whenever I needed any help.

I would like to thank my committee members Dr. Xu Xu and Dr. Edgar Lobaton for their generous support and time in supervising my thesis. A special thanks to Dr. Edgar Lobaton with whom I spent many hours pondering over the specifics of my thesis work as well as coming up with a robust pipeline to bring sanity to this work.

I am extremely grateful for the open-access research papers and software which has allowed me to learn, study and experiment with algorithms present in this modern research period.

Last but not the least, I would like to express my very profound gratitude to my parents and my brother for providing me with love, support and continuous encouragement throughout my years of study and research. This accomplishment would not have been possible without their support.
TABLE OF CONTENTS

List of Figures .. vii

Chapter 1 INTRODUCTION ... 1
 1.1 Motivation .. 1
 1.2 Structure ... 2

Chapter 2 BACKGROUND .. 3
 2.1 Related Work ... 3
 2.2 Introduction to GQN ... 4
 2.3 Architecture of GQN ... 5
 2.3.1 Representation Network ... 5
 2.3.2 Generative Network .. 7
 2.3.3 Inference Network .. 8
 2.4 Use of LSTM over CNN for generation .. 9
 2.5 Convolutional LSTM .. 10
 2.6 Skip Connections .. 11
 2.7 Working of GQN ... 12
 2.8 Drawbacks of GQN ... 13

Chapter 3 ATTENTION MECHANISM ... 14
 3.1 Types of attention ... 14
 3.1.1 Hard Attention Mechanism: Stochastic Learning 14
 3.1.2 Soft Attention Mechanism: Deterministic Learning 15

Chapter 4 METHODOLOGY .. 16
 4.1 Working of AQN .. 16
 4.2 Loss Function .. 19
 4.3 Experimental Setup ... 20
 4.3.1 Data set .. 20
 4.3.2 Hyper-parameter setup for training ... 21
 4.3.3 Optimizer and Scheduler ... 22
 4.3.4 Hardware Details .. 22

Chapter 5 RESULTS .. 23
 5.1 Experiment 1 ... 23
 5.2 Experiment 2 ... 25
 5.3 Experiment 3 ... 26

Chapter 6 CONCLUSIONS ... 28
 6.1 Summary ... 28
 6.2 Future Work .. 28
LIST OF FIGURES

Figure 2.1 i^{th} scene .. 5
Figure 2.2 Tower Representation Network 6
Figure 2.3 Generative Network 7
Figure 2.4 Iterative construction of a painting 9
Figure 2.5 Inner structure of ConvLSTM 10
Figure 2.6 Residual learning with Skip connection 11
Figure 2.7 Complete structure of GQN 12
Figure 2.8 GQN results after equal interval 13

Figure 3.1 Visualization for attention. Top: Soft Attention, Bottom: Hard Attention .. 15

Figure 4.1 Attention Mechanism 17
Figure 4.2 Attentive Query Network 19
Figure 4.3 Attentive Query Network 20
Figure 4.4 Images from scene 1 with 1 object in the scene: Figure (a) to (e). Images from scene 2 with 2 objects in the scene: Figure (f) to (j). Images from scene 3 with 3 objects in the scene: Figure (k) to (o) 21

Figure 5.1 Comparing results of GQN and AQN after approximately 2500 steps .. 23
Figure 5.2 Plot of Test MSE Loss vs epochs for GQN and AQN .. 24
Figure 5.3 Comparing results of GQN and AQN + L_{α} after approximately 2500 steps 25
Figure 5.4 Plot of Test MSE Loss vs epochs for GQN and AQN + L_{α} .. 26
Figure 5.5 Comparing results of GQN and AQN + L_{β} after approximately 2500 steps .. 27
Figure 5.6 Plot of Test MSE Loss vs epochs for GQN and AQN + L_{β} .. 27
Chapter 1

INTRODUCTION

1.1 Motivation

In 2018, DeepMind introduced Generative Query Network (GQN) [6], a framework to represent scenes using only the extrinsic parameters of a camera and thus removing any reliance on human defined labels, annotations or masking. The main idea of GQN is to take images from different viewpoints as inputs, construct a representation that best describes the scene using all the images, and predict the image of the scene from a different viewpoint which has not been observed earlier. The representation of the scene is generated using a convolutional network while the core of this architecture consists of an encoder and decoder pair of convolutional LSTMs. Without any prior domain knowledge, the model is not only able to represent the object in the scene from any unobserved viewpoint, but is able to reconstruct an accurate representation of the entire scene from that unobserved view. It also learns about the texture and color of the wall, ground, sky and additionally also includes the shadow due to any light source which may be present in the scene.

Although GQN is one of the best techniques available for reconstruction/generation today, the downside of using GQN is that the network takes millions of step to generate the perfect image. The simple argument here is that GQN takes a single sweep at the entire image from all the viewpoints and tries to work on refining the entire output. In a normal scene, many of the pixels in the image captures the three most frequently occurring elements that is, the wall, ground and sky. Only a few pixels capture the objects present in the scene. Due to this, the network spends most of its time refining the texture and color of the three most frequently occurring elements and only then starts focusing
on bringing clarity in the object like structures present in the scene. Thus, the main challenge for such sequential models is learning exactly where to look at a given time in order to get an adequate representation of the entire scene.

Therefore, we introduce here an additional attention module that typically selects where to read at any instance. The reading mechanism works by considering 2D Gaussian filters which is inspired by DRAW (A Recurrent Neural Network For Image Generation) [8]. This mechanism, when applied to the original image, fits a grid of Gaussian filter over the entire image thus giving more weight to the important areas and less weight to the irrelevant regions. At every time step, it attends to the image and focuses on the most important feature that will help in refining the generated image to as close to the original image as possible. This task is challenging as images from all viewpoints have to be given attention at different locations. With this extra attention, we observe that the original network is able to capture object like structure present in the scene alongside the wall, ground and sky. Though not perfect, but a better representation of the scene can be observed much faster than the original GQN.

1.2 Structure

The rest of the thesis work goes as follows: Chapter 2 first covers the general related work that has been done in 3D reconstruction. Next, we dive deep into the work that this thesis is heavily based on which is Deepmind’s Generative Query Network (GQN) [6]. We discuss, in detail, the architecture of GQN, followed by its working. We then raise our concern on why this technique is slow and takes time to converge.

In our 3rd chapter, we talk about an attention mechanism that can help us assist a more efficient GQN. We go in detail with the different kind of attention techniques available and which one will assist us the best.

In Chapter 4, we talk about our new methodology which uses attention to give weight to important features in our image. We explain in detail how we use this mechanism with the original GQN. Further, we talk about our experimental setup where we discuss our data set and hardware details required.

We then take our reader to the result section in Chapter 5. We talk about the promising nature of our new method and additionally introduce another technique that can assist in a better training of the original GQN.

We end our thesis with conclusion and future goals.
Chapter 2

BACKGROUND

2.1 Related Work

GQN outperforms many algorithms that have been previously implemented for a similar purpose. Traditional object reconstruction methods [27], [24] requires human annotators to specify a mask around the object that has to be reconstructed. They also provide with a very generalized gray scale 3D reconstruction. GQN learns a more realistic reconstruction of the entire scene including the color of object, texture and color of the walls and ground.

Many techniques focusing on 3D reconstruction rely on depth sensors or stereo cameras for reconstruction of images [10]. GQN does not require any additional hardware other than the camera that moves through the scene collecting images.

A few of these techniques require extra information from the image such as the vanishing line of a reference plane or vanishing point in a direction other than the one parallel to the plane [4]. Similar methods [17], [9] put restrictions on the reconstructed objects by placing various kinds of bounds on it. GQN, on the other hand, does not require any scene understanding before hand.

General reconstruction algorithms [12], [7] focus more on the generation of observed images and currently does not hold any straightforward technique for generation of images from unobserved views. The simple reason is that the features extracted in the first stage of these techniques are not sufficient to give a wholesome understanding of the entire scene.

Currently several researchers are seen putting efforts in cross view Image synthesis. In some of the recent ones, Conditional GANs [19] was being used to generate street view images from their top view. A few [26] have worked using aerial images to predict the
semantic layout of ground images. Several others have tried relating the problem between
the relation of aerial and ground images in [23], [13]. However these methods are highly
specific as they generate images only from one particular direction.

There has been some work done in multi view synthesis from single objects [22]. Most
of the techniques that use CNN to generate [5], [28] generate image at once indicating
that all the pixels are conditioned on a single latent space. GQN on the other hand uses
Convolutional LSTM. This helps in generating images at every time step thus refining
the image on from the previously generated image.

2.2 Introduction to GQN

The concept of Generative Query Networks (GQN) was released by DeepMind in 2018
[6]. The idea behind this technique is that any 3D scene i can be represented by K 2D
images, denoted by x^k_i, which are taken from K different viewpoints, denoted by v^k_i.
GQN takes these x^k_i images and v^k_i viewpoints as inputs and, as an intermediate step,
constructs a representation r that best describes all the images and viewpoints for that
scene. After simple element-wise aggregation of these representations is done, GQN uses
this aggregated representation to predict an 2D image x^q of the scene from a different
query viewpoint v^q_i that has not been previously observed. Generally, it is not easy to
generate image from an unobserved viewpoint as objects obstruct other objects and
even block some parts of themselves. GQN handles this problem by training stochastic
generators using conditional generative models. The prior knowledge that is learnt while
training leads to credible images being sampled out while testing.

As mentioned earlier, the input training dataset comprises a combination of the view-
points v^k_i and their corresponding images x^k_i from those viewpoints. This can be best
represented by D where:

$$D = \{(x^k_i, v^k_i)\}$$ (2.1)

$i \in \{1, ..., N\}$ where N is the number of scenes in the data set.

$k \in \{1, ..., K\}$ where K is the number of views for each scene.

v^k_i is a viewpoint parametrized by a 5-dimensional vector (w, y, p) where w is the
three-dimensional position of the camera, y is the yaw and p is the pitch. The viewpoint
can be given by

$$v^k = (w^k, \cos(y^k), \sin(y^k), \cos(p^k), \sin(p^k))$$ (2.2)
2.3 Architecture of GQN

The entire Generative Query Network can be broken into 3 major parts. Each part has been explained in detail below:

2.3.1 Representation Network

DeepMind has given three possible choices for the architecture of representation network for GQN. We look closely at the tower representation architecture, given in Fig. 2.2, as they claimed to have found this architecture to learn the fastest across data sets. We will also be working with this architecture for this entire thesis work.

The representation network $f(x^{1,...,M},v^{1,...,M})$ can be defined by the following equa-
\[r^k = \psi(x^k, \hat{v}^k) \]

(2.3)

where \(\psi(x^k, \hat{v}^k) \) is convolutional network.

\[r = \sum_{k=1}^{M} r^k \]

(2.4)

Figure 2.2: Tower Representation Network

For every image corresponding to each viewpoint in the scene, a representation \(r \) is generated. As you can see from the Tower architecture shown in Fig. 2.2, the summary of corresponding viewpoint to the image is concatenated in the middle of the representation network. All the representations for a given scene, obtained from the Representation architecture, are element wise added to one another represented by \(R \). Though the technique might seem very simple, it works great due to the fact that all the networks are jointly trained.

Another technique that could have been used here, instead of element wise addition, is to concatenate all the representations \(r^k \). However, this representation would be of a size \(16 \times 16 \times (256 \times k) \) size. As this is too large, it would not be feasible to use this representation anywhere further in the GQN model.
2.3.2 Generative Network

The Generative network uses a Convolutional LSTM, detailed explanation of Convolutional LSTM is given in section 2.5, to generate images in a sequential manner. The intuition behind using LSTM instead of Convolutional Neural network can be read from section 2.7. Coming back to the GQN model, there is an additional Skip connection [3] added in the ConvLSTM, detailed explanation given in section 2.6, to assist uninterrupted gradient flow. This network, architecture given by Fig. 2.3, performs the bulk of the computations. The equations used in original GQN paper [6] are reiterated below:
Prior factor:

$$\pi_{\theta}(\cdot|v^q, r, z_{<t}) = \mathcal{N}(\cdot|\eta_{\theta}^q(h_t^q))$$ (2.5)

where the latent variable z is split into L latent variables and the convolutional network $\eta_{\theta}^q(h_t^q)$ map the respective images to a Gaussian density.

Prior Sample:

$$z_t \sim \pi_{\theta}(\cdot|v^q, r, z_{<t})$$ (2.6)

Convolutional LSTM state update:

$$(c_{t+1}^q, h_{t+1}^q) = \text{ConvLSTM}^q_{\phi}(v^q, r, c_t^q, h_t^q, z_t)$$ (2.7)

where v^q and r corresponds to query viewpoint and the combined representation respectively, c_t^q and h_t^q are standard LSTM state variables.

Skip connection state update:

$$u_{t+1} = u_t + \Delta(h_{t+1}^q)$$ (2.8)

Observation sample:

$$x \sim \mathcal{N}(x^q|\mu = \eta_\phi^q(u_L), \sigma = \sigma_t)$$ (2.9)

where $\eta_\phi^q(u_L)$ maps the inputs to the mean of Gaussian density.

Posterior Sample:

$$z_t \sim q_{\phi_t}(\cdot|x^q, v^q, r, z_{<t})$$ (2.10)

2.3.3 Inference Network

The Inference network comprising of a standard Convolutional LSTM, shown below, is dedicated entirely to the inference process.

$$(c_{t+1}^e, h_{t+1}^e) = \text{ConvLSTM}^e_{\phi}(x^q, v^q, r, c_t^e, h_t^e, h_t^q, u_t)$$ (2.11)

where x^q is the query image that we are trying to predict. The other equations used in original GQN paper are reiterated below:

Posterior factor:

$$q_{\phi_t}(\cdot|x^q, v^q, r, z_{<t}) = \mathcal{N}(\cdot|\eta_\phi^q(h_t^e))$$ (2.12)

where $\eta_\phi^q(h_t^e)$ maps the inference network state to the variational posterior for z_t.

8
Posterior sample:

\[z_t \sim q_{\phi_l}(\cdot | x^q, v^q, r, z_{<t}) \] (2.13)

The Generator state update can now be written as:

\[(c^q_{t+1}, h^q_{t+1}, u_{t+1}) = C^q(\theta, v^q, r, c^q_t, h^q_t, u_t, z_t) \] (2.14)

2.4 Use of LSTM over CNN for generation

Many image generation approaches available today like in [18], generate the entire image at once. This thus implies that all the pixels of the generated image will be conditioned on one latent distribution. Basically, in most of these generation methods, the network consists of a number of deconvolution layers stacked together. These map one single latent distribution to bigger matrix at every deconvolution step and finally to an image.

Use of an LSTM network, like the ones used in [8] and [1], thus differs from the ‘one shot’ generation networks in the sense that it constructs parts on the image and thus the image is refined at every step. At every step the model improves upon its previously generated image. Such a network thus follows a more natural form of image generation similar to a real scenario where a person is drawing or painting a scene. The painter starts with rough outlines of the scene and then gradually replaces it with precise lines and shapes similar to the steps shown in Fig. 2.4

![Figure 2.4: Iterative construction of a painting](image-url)
2.5 Convolutional LSTM

As mentioned in Generative Network in section 2.3, GQN uses a Convolutional LSTM [21] to generate the query image x^q. A convolutional LSTM is suitable for this task as we are dealing with generation of images. It combines the advantages of both LSTM and convolutional networks. The LSTM method helps to iteratively construct images through an accumulation of modifications produced by the decoder at every step, each of which is observed by the encoder. The convolutional method, on the other hand, preserves the local correlative structure present within the images.

![Inner structure of ConvLSTM](image)

Figure 2.5: Inner structure of ConvLSTM

The key equations of Convolutional LSTM have been mentioned below:

\begin{align*}
i_t &= \sigma(W_{xi} * X_t + W_{hi} * H_{t-1} + W_{ci} * C_{t-1} + b_i) \quad (2.15) \\
f_t &= \sigma(W_{xf} * X_t + W_{hf} * H_{t-1} + W_{cf} * C_{t-1} + b_f) \quad (2.16) \\
C_t &= f_t \circ C_{t-1} + i_t \circ \tanh(W_{xc} * X_t + W_{hc} * H_{t-1} + b_c) \quad (2.17) \\
o_t &= \sigma(W_{xo} * X_t + W_{ho} * H_{t-1} + W_{co} * C_t + b_o) \quad (2.18) \\
H_t &= o_t \circ \tanh(C_t) \quad (2.19)
\end{align*}

The most noticeable difference between this network and the usual LSTM is that all the inputs $X_1, ..., X_t$, cell outputs $C_1, ..., C_t$, hidden states $H_1, ..., H_t$, and gates $i_t, f_t,
of the ConvLSTM are 3D tensors whose last two dimensions are spatial dimensions.

2.6 Skip Connections

![Residual learning with Skip connection](image)

The most notable work using skip connection was done in Residual Neural Network [11]. Shown in Fig. 2.6 the skip connection is represented by the curved arrow. This arrow adds the input x to the output $F(x)$. Now, the overall output of this entire section is $F(x) + x$. Addition of this skip connection allows for uninterrupted flow between any layers. Many other techniques like [20] and [14] utilize such skip connections to allow for later layers to learn simple features that were captured in the initial layers.

The motivation to use skip connections in the convolutional LSTM is to avoid any problem that might arise due to vanishing gradients. This simple technique neither adds extra parameters nor increases any kind of complexity. It works by using activations from the previous layer until the weights of next layer have been learnt. This, thus, speeds up learning during training by reducing the influence of vanishing gradients as there are less layers to propagate through. As the network approaches the end of the training, it gradually restores the skipped layer.

2.7 Working of GQN

The basic working of GQN can be understood from Fig. 2.7.

![Diagram of GQN](image)

Figure 2.7: Complete structure of GQN

At each gradient step, a batch of B scenes with M observations is sampled out. A representation \(r^k \) is formed from the images and their corresponding viewpoints through the representation network by using the Eq. 2.3. All the representations are aggregated together to form one single representation \(r \) that best defines the entire 3D scene given by Eq. 2.7. The generative network uses this representation of the 3D scene to generate an image from an unobserved viewpoint using equations in section 2.3.2 and 2.3.3.

GQN uses a standard variational approximations consisting of two main terms, that is, the reconstruction likelihood and a regularization term and uses adaptive gradient descent for optimisation.

\[
F(\theta, \phi) = \mathbb{E}_{(x,v) \sim D, z \sim q_\phi} \left[- \ln \mathcal{N}(x^d | \eta^d_\theta(u_L)) + \sum_{l=1}^{L} KL[\mathcal{N}(\cdot | \eta^d_\theta(h^e_l)) || \mathcal{N}(\cdot | \eta^d_\phi(h^e_l))] \right] \tag{2.20}
\]

where the KL divergence term is computed sequentially at every step.
2.8 Drawbacks of GQN

Although GQN allows for a clean representation of images from unobserved viewpoints, it needs millions of steps to converge. If we observe the images collected from the different viewpoints, we can undoubtedly conclude that the ratio of pixels describing the three basic elements that is the sky, walls and ground is higher than the pixels that represent the object of interest in these images. Although GQN works well for such simulated scenes, it can fail dramatically in real life scenarios where the ratio, mentioned above, is very high. The reason for this behaviour is the simple fact that GQN reads the entire image from all the viewpoints in one single swipe and forms a representation of it. It now tries to generate an output and tries to rectify this output based on the representation collected at the first step. Because the network forms a representation of the entire image, the aggregated representation finally formed consists high information from the three basic elements with little knowledge of the objects present.

![Figure 2.8: GQN results after equal interval.](image)

We implemented GQN with the exact same specification provided in [6] and found the results given in Fig. 2.8 which shows the generated query image for a test sample. All the images above in Fig. 2.8a, 2.8b, 2.8c have each been generated at an interval of 750 iteration steps. As you can observe from this figure, the images Fig. 2.8b and 2.8c generated show very little improvement from their previous image. There is also a lot of blurring in these images.

Looking at these results, we therefore feel the need of an additional attention module that can help to focus on the important objects present in the foreground in every image, thus forming a more meaningful representation of these objects of interest in the original image.
Chapter 3

ATTENTION MECHANISM

Attention is required in order to focus onto particular objects which hold more importance than the rest of the scene. This helps us to filter out irrelevant or highly repetitive features from scene thus assisting us to bring out supreme image features from localized areas. Lately attention mechanisms are being applied in many deep learning problems especially computer vision. [25]. Many other [2] and [15] have explored the other forms of attention mechanisms. Let’s look at two major types of attention.

3.1 Types of attention

3.1.1 Hard Attention Mechanism: Stochastic Learning

This mechanism selects a patch of image to attend at each particular instance. The mechanism does a hard assignment where images that are considered not important are given a value of 0 while the rest retain their pixel values. The parameters of Hard attention mechanism are learnt and can be represented by a multinoulli distribution. The location where the model decides to focus needs to be sampled out from this multinoulli distribution. For hard attention mechanism in images, this location is given by the bounding box. Every pixel outside the box is made 0 while all the pixels inside the box retain their values. Now, because of the sampling technique used here, the gradient has to be computed to Monte Carlo and is subject to high variance. Therefore, many tricks are required to train such hard attention mechanisms and there is very little regularity across implementations. Recently work has been in the implementing of Hard Attention Learning Visual Question Answering [16]
3.1.2 Soft Attention Mechanism: Deterministic Learning

Learning stochastic attention (Hard attention mechanism) requires sampling the attention location at each time, instead we can formulate a deterministic attention model. This deterministic model can be computed using a soft attention weighted annotation vector. This entire mechanism is deterministic and therefore an end-to-end training is possible using standard back propagation. In short, Soft attention method allows for a weighted mask over the image. What this means is that, soft attentions computes weight w_{ij} for every pixel x_{ij} in image x. This weight tells us how relevant a cell is. By applying these set of weights over the image, this mechanism gives less credit to irrelevant regions of the image while higher weight to important areas that contain some relevant features.
Chapter 4

METHODOLOGY

In our second chapter, we mentioned the challenge that we could face while training our Generative Query Network proposed in [6]. In this chapter we introduce our attention techniques to tackle the problems mentioned earlier.

Firstly, we introduce our Attentive Query Network, which uses an attention mechanism to restrict the representation networks input to only a limited region from every image in that scene. Thus at every step, the network decides what to read. It achieves this task by applying grid of 2D Gaussian filters, similar to the attention mechanism used in DRAW [8], on every image from the scene. At every step, the attention mechanism uses the hidden state, of the generator network, to learn the parameters needed to highlight important regions from an image. Combined with the corresponding viewpoint of the image, it is able to learn parameters that assists it to attend the required area for the given viewpoint. Thus at every step, the representation network focuses on a particular region of the image.

4.1 Working of AQN

The basic working of Attentive Query Networks can be understood from Fig. 4.1. At every time step, attention is given to the input images x_i^k individually. h_i^p from the previous time step is concatenated with the corresponding v_i^k for a given image x_i^k. This concatenated vector is then used to learn the grid parameters $(g_x, g_y, \log \sigma^2, \log \gamma)$. Our method differs from the original DRAW [8] in the fact that we are using both h_i^p and v_i^k for attention. Additionally, unlike in DRAW, where a patch of image is extracted, we apply soft attention mechanism, given in detail in Chapter 3, by applying a grid of
gaussian filters \((F_x, F_y, \gamma)\), obtained from grid parameters, over the entire image. This filter puts large weight on important objects and less weight on the redundant regions.

We do not extract patches like in the original DRAW paper as we fear that extracting small patches and zooming in will cause blurring in the generated image. As the original GQN already faces the issue of blurring, we think its better to work with the entire image than just a patch. Also, we do face situations where we have 2-3 objects at different locations in the scene. Extracting patches from the image will lead to complete ignorance of other objects in the image. Instead of completely removing a second object, while attending the first object, we give this second object some little weight that will help to further strengthen the spatial relationship between all the objects in the scene. Additionally, this ensures that the input to the representation model is of constant shape, which indirectly will result in a better learning of the representation layer.

We want our readers to note two things: 1. Firstly, we are currently assuming that we are only working with one scene and therefore the subscript \(i\) has been removed for simplicity. 2. Secondly, although we have mentioned that we are using grid of gaussian filters, we have shown just one 2D gaussian filter in the figure 4.1 and 4.2 for simplicity.

Let’s take a closer look into the ‘attention’ mechanism of our network:

Given an input image \(x^k\), all four attention parameters are dynamically determined at each time step via a linear transformation \(L\) of the generator hidden output \(h^g\) concatenated with the corresponding viewpoint \(v^k\) given in fig. 4.1
\[[g_x, g_y, \log \sigma^2, \log \gamma] = \mathcal{L}[h^g||v^k] \] (4.1)

where \(g_x \) and \(g_y \) are the grid centres. \(\sigma^2 \) is the isotropic variance of the Gaussian filters and \(\gamma \) that multiplies the filter response.

Once we have the grid centres, we can use it to find the mean of gaussian filter for every pixel in the image using the equations mentioned below.

\[\mu_X^i = g_X + (i - A/2 - 0.5) \] (4.2)

\[\mu_Y^i = g_Y + (i - B/2 - 0.5) \] (4.3)

where \(A \) and \(B \) is the shape of the \(x^k \). \(\mu_X^i \) and \(\mu_Y^i \) are the mean locations of the filter at row \(i \) and column \(j \).

Given the attention parameters, the horizontal and vertical filter matrices \(F_X \) and \(F_Y \) can be defined as:

\[F_X[i, a] = \frac{1}{Z_X} \exp \left(-\frac{(a - \mu_X^i)^2}{2\sigma^2} \right) \] (4.4)

\[F_Y[i, b] = \frac{1}{Z_Y} \exp \left(-\frac{(b - \mu_Y^i)^2}{2\sigma^2} \right) \] (4.5)

here \(a, b \) is a point in the input image.

We finally get our context image:

\[x_{\text{att}}^k = \gamma[F_Y, x^k, F_X^T] \] (4.6)

We should note that the filter is applied to every channel in the input image \(x^k \) individually. The final \(x_{\text{att}}^k \) is obtained by concatenating these three channels in the end.

This is the the new input image that is sent through representation layer. The next steps followed are similar to GQN mentioned in Chapter 2, section 2.3.

We would like to stress on the fact that \textit{read} mechanism in DRAW takes only the \(h^g \) of the previous time step. In contrast to this, we use a simple concatenation of both \(h^g \) and the corresponding viewpoint \(v^k \) for the image \(x^k \). If we omit this concatenation step, then we are basically giving same attention for all the different viewpoints. This could mislead our network as objects of importance can be at different location for images from different viewpoints. Hence, the read mechanism should apply attention at different regions for images from different viewpoints. Despite the simple concatenation technique,
we observe that the model performs well. Since, the representation, generation and attention mechanism are trained jointly, gradients from the generative network encourage the attention network to learn better parameters at every iteration step.

4.2 Loss Function

The original loss function used by GQN has been given by the Eq.2.20. However, we do realise that the query network’s main goal is to be able to generate an image as realistic as possible. To make the our modified AQN model more robust we propose two methods that modify the original loss function in Eq. 2.20

- **Loss \mathcal{L}_α**:

 This new loss can be represented by the following equations mentioned below:

 $\text{Loss} = \text{reconstruction loss} + \text{regularization term} + \mathcal{L}_\alpha$

 where

 $\mathcal{L}_\alpha = \sum_{l=1}^{L}(\text{MSELoss}(\hat{x}_q, x_q))$ \hspace{1cm} (4.7)
This additionally mean square error term is calculated sequentially using images generated at every time step with the target image. We believe that this added extra term will help the network pay more attention on how accurate the generation of the network really is.

- **Loss L_β:**

 This new loss can be represented by the following equations mentioned below:

 $$
 \text{Loss} = \text{reconstruction loss} + \text{regularization term} + L_\beta
 $$

 where

 $$
 L_\beta = \sum_{l=1}^{L} \frac{l}{L} \times MSE\text{Loss}(\hat{x}_q, x_q)
 $$

 This term, like the previous one, is also calculated sequentially at every time step.
 For this particular loss function, we give less weight to the initially generated image and give more weight to the last image generated in the sequence.

4.3 Experimental Setup

4.3.1 Data set

DeepMind has provided with seven different types of data set containing different kinds of scene. This data set has been provided in `.tfrecord` files. In this thesis work, we have
specifically used the 'rooms_ring_camera' data set. This data set consists of several scenes of random objects placed in a square room of size 7x7 units. The scenes differ from one another with respect to the different wall textures (in all 5 different colors possible), floor color (in all 3 colors possible) and even the shape of objects (7 shapes possible) and their different colors that they contain. Another point to keep in mind is that the camera, that is used to capture the images, only moves on a fixed ring and always faces the room center. The rooms had a maximum of 3 objects per scene but less are also possible. An example of scenes containing 1, 2 and 3 objects has been shown in Fig 4.4

Figure 4.4: Images from scene 1 with 1 object in the scene: Figure (a) to (e). Images from scene 2 with 2 objects in the scene: Figure (f) to (j). Images from scene 3 with 3 objects in the scene: Figure (k) to (o)

4.3.2 Hyper-parameter setup for training

We trained all our model using 8 images per scene. Due to our hardware limitations, we were unable to go beyond a batch size of 4. The sequence length of our ConvLSTM was 5. As mentioned earlier, we are using the Tower representation model for feature extraction
from the images and viewpoints. We have trained both the GQN and AQN model under same specifications for about 2500 steps.

4.3.3 Optimizer and Scheduler

We use an Adam optimizer where the learning rate used by the Adam algorithm, varies with the training step \(s \) and is given by the Eq.4.9

\[
\gamma_s = \mu_s \left(\frac{\sqrt{1 - \beta_2^s}}{1 - \beta_1^s} \right)
\]

(4.9)

where \(\beta_1 = 0.9, \beta_2 = 0.999 \) and \(\mu_s \) is the learning rate at training step \(s \) with annealing and is given by the Eq. 4.10

\[
\mu_s = \max \left(\mu_f + (\mu_i - \mu_f) \left(1 - \frac{s}{n} \right), \mu_f \right)
\]

(4.10)

where \(\mu_i = 5 \times 10^{-4} \), \(\mu_f = 5 \times 10^{-5} \) and \(\eta = 1.6 \times 10^6 \)

4.3.4 Hardware Details

The original GQN has been trained on 4 NVidia K80 GPUs. We have trained our model on 1 NVidia Pascal GPU with 4GB frame buffer.
Chapter 5

RESULTS

We now assess the ability of Attentive Query Network to generate images from unobserved view points and compared it with the original Generative Query Network. We have shown three sets of results here. For quantitative analysis, we use Mean Square Error (MSE) Loss on our generated Test data set.

5.1 Experiment 1

![Comparing results of GQN and AQN after approximately 2500 steps.](image)

Figure 5.1: Comparing results of GQN and AQN after approximately 2500 steps.
In our first experiment, we have shown the generated query image from our Test data set using both Generative Query Network Fig. 5.1a and Fig. 5.1d and Attentive Query Network Fig. 5.1b and Fig. 5.1e, generated after approximately 2500 iteration steps, and compared with the target query image Fig. 5.1c and Fig. 5.1f.

We show two examples here. In scene 1, We can observe from the given Fig. 5.1a, while the Generative Query Network is able to get the exact color of the walls, sky and ground, the objects generated in the foreground are very blurred. The three objects, shown in Fig. 5.1c, seem to have been completely merged into one another as shown in Fig. 5.1a. On the other hand, Attentive Query Network shows to have generated a better image, Fig. 5.1b with more clear object as compared to GQN.

In scene 2, we observe that, although GQN is able to detect the blue object in the right, Fig. 5.1d, the generated image seems to have spread the blue object throughout the image. On the other hand, AQN, Fig. 5.1e has been able to create the object in its restricted area. The images generated by AQN resembles the target query image Fig. 5.1f more than the images generated by GQN for both scene 1 and 2.

![Plot of Test MSE Loss vs epochs for GQN and AQN](image)

Figure 5.2: Plot of Test MSE Loss vs epochs for GQN and AQN

Fig. 5.2 shows the change in MSE Loss for test data set with respect to the epochs. (Note that every epoch consists of 50 iteration steps). If we plot a linear trend line for
both GQN (blue) and AQN (red), we observe that although AQN starts with a higher loss, there is a larger slope associated with it. AQN gradually starts performing better than the original GQN.

5.2 Experiment 2

We did a second experiment where we added an additional loss \mathcal{L}_α to the original GQN loss, also explained in section 4.2.

After running this experiment for scene 1 we were able to observe a green rectangle, Fig. 5.3b at the center, similar to the target image Fig. 5.3c. For our second scene, we observe a more concentrated blue object in the generated image, Fig. 5.3e.

Similar to our first experiment, we plot a linear trend line for both GQN (blue) and AQN + \mathcal{L}_α (pink) shown in Fig. 5.4, and once again observe that AQN + \mathcal{L}_α, although starts with a higher loss, gradually starts performing better than the original GQN. There is a larger slope associated with this new technique. We can confidently say that AQN + \mathcal{L}_α was able to outperform both GQN and AQN.

Figure 5.3: Comparing results of GQN and AQN + \mathcal{L}_α after approximately 2500 steps.
5.3 Experiment 3

In our third experiment, we modified our extra loss \mathcal{L}_α to \mathcal{L}_β, explained in section explained in section 4.2. This experiment did not yield expected results, however we still felt the need to show our results as an ablation study so as to help the readers understand how the generative model gets affected with change in loss function.

From Fig. 5.5b, we can observe that there is more blurring than the image generated by original GQN method shown in Fig 5.5a. This could possibly suggest that every image that is being generated in the LSTM sequence is important and a weighted mean square error loss might imbalance this distribution. The brighter tinge at the center of the Fig. 5.5b adds on to the possibility that giving higher value to the image being generated at the end of the sequence, can give unnecessary weight to those pixels and thus cause the distortion in the image generated. We see a similar problem in Fig. 5.5e that was generated for scene 2.

Additionally, we plot a similar linear trend line for both GQN (blue) and AQN + \mathcal{L}_β (yellow) shown in Fig. 5.6. On Observing this plot, this extra weight \mathcal{L}_β does not seem to outperform GQN and instead seems to deteriorate the network.
Figure 5.5: Comparing results of GQN and AQN + \mathcal{L}_β after approximately 2500 steps.

Figure 5.6: Plot of Test MSE Loss vs epochs for GQN and AQN + \mathcal{L}_β
Chapter 6

CONCLUSIONS

6.1 Summary

This thesis talks about a new method Generative Query Networks, introduced by DeepMind [6] in 2018. We demonstrate its ability to generate an image of a scene from an unobserved viewpoint. We argue the fact that original GQN takes time to converge and thus and add an attention mechanism on top of it. This soft attention mechanism using gaussian filters help to give more importance to the relevant features and less weight to the irrelevant and repetitive features. We further add an extra Loss term to its loss function in order to assist better generation of this Query Network. Our method, when trained for the same duration as the GQN seems to slightly improve the network and give better generated results. With such promising results, we strongly believe that with improved hardware, we can generate highly realistic and natural like results.

6.2 Future Work

For this thesis work, we have limited ourselves to the fact every image is linked to its corresponding viewpoint. However, we have not looked into the possibility that there could exist a relation between the different viewpoints that exist in the data set. Building on this, we could formulate a weighted relation of the different viewpoints with the query viewpoint. Weights would be assigned to images in the order of how close the corresponding viewpoints are to the query viewpoint, giving higher weight to the image whose corresponding viewpoint is closest to query viewpoint. This weighted system can help us over the blurring effect by replacing the averaging function applied with an
weighted average function in GQN. We provide a little example to give our readers a little glimpse of this new function. In general, we replace the original function mentioned in Eq. 2.7 by a new weighted averaging function given in Eq. 6.1

\[r = \sum_{k=1}^{M} (w^k \times r^k) \]

(6.1)

where \(w^k \) could be given by a simple equation given 6.2

\[w^k = \frac{\alpha}{d(v^q, v^k)} \]

(6.2)

d can be euclidean distance metric. We strongly believe that a thorough research in this area in our future work can lead to very useful insights and results.
REFERENCES

