
ABSTRACT

ZAJACZKOWSKI, CLAIRE CHRISTINE. Surgery Obstructions for Seifert Fibered Homology
Spheres. (Under the direction of Tye Lidman.)

We examine surgeries on knots in S3 to find surgery obstructions to Seifert fibered integral

homology spheres. Specifically, we find classes of Seifert fibered integral homology spheres which

cannot result from surgery on knots of a particular genus. Our obstructions come from utilizing

the toroidal structure of our manifolds, which for Seifert fibered integral homology spheres, is

the number of singular fibers.

This dissertation begins by examining graded roots: objects that naturally encode Heegaard

Floer homology of Seifert fibered integral homology spheres. We prove a necessary and sufficient

condition for graded roots such that the U -action of the reduced Heegaard Floer homology is

non-zero. We use this to make a general statement about how the associated U -action behaves

on the reduced Heegaard Floer homology based on the number of singular fibers.

Next we examine Seifert fibered integral homology spheres with 5 singular fibers. We use

our graded root result to show that the U -action of the reduced Heegaard Floer homology is

non-zero.

To conclude the dissertation, we study the mapping cone which provides an easy way to

compute the Heegaard Floer homology of surgery on a knot in S3. We show that for 1/n-surgery

a genus 1 knot, the U -action on the reduced Heegaard Floer homology is always 0. Furthermore,

we show that for ±2-surgery on a genus 2 knot, the action of U2 on the reduced Heegaard Floer

homology is also 0.
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Chapter 1

Introduction

1.1 Background

Consider a knot k in a closed oriented 3-manifold M . We can perform Dehn surgery on k in M

by cutting M open along the neighborhood of our knot and gluing back in a solid torus [28]. The

neighborhood of our knot is a solid torus, which we denote D2 × S1, where D2 is the disk, and

S1 the circle. The space resulting from this construction is a closed oriented manifold, generally

different from M . For this thesis we will only be considering surgery on knots in S3. Lickorish

and Wallace showed that every closed orientable 3-manifold can be obtained by integral surgery

on a link in S3 [16, 32]. Due to this result, Dehn surgery has become a fundamental method of

representing 3-manifolds [1]. It is then natural to ask which manifolds can be represented by

surgery on a knot in S3, as opposed to a link.

Knots can be partitioned into three categories: torus, satellite and hyperbolic. Many surgery

problems are understood for torus and satellite knots. For example, Moser completely classified

surgery on torus knots in S3 [18], and Gabai was able to first prove the Property P conjecture

for satellite knots in [7]. (The Property P conjecture has since been completely proved by

Kronheimer and Mrowka [15].) Since surgeries on torus and satellite knots are well understood,

the most interesting surgeries to consider are those on hyperbolic knots. Surgeries on hyperbolic

knots that do not yield hyperbolic manifolds are called exceptional. Exceptional surgeries are

reducible, toroidal, or Seifert fibered. Thurston’s hyperbolic Dehn surgery theorem says that

there are only finitely many exceptional surgery slopes on a hyperbolic knot [31]. We call Dehn

surgery Seifert fibered, toroidal or reducible if it yields a Seifert fibered, toroidal or reducible

manifold respectively [12].

Since exceptional surgeries have remained the most elusive, there has been much work put

into their study. Dean introduced a condition on knots in S3 that guarantees a hyperbolic

surgery [5], while Eudave-Muñoz extended this to include surgeries producing Seifert fibered

manifolds with a projective plane orbit surface and two exceptional fibers [6]. In this same paper

Eudave-Muñoz finds a collection of hyperbolic knots that yield toroidal Seifert fibered manifolds

[6, Proposition 4.5]. It can be checked that these knots will never yield Seifert fibered integral
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homology 3 spheres. Teragaito showed that any positive integers can arise as the toroidal surgery

slope of a hyperbolic knot in [30], and Wu classified toroidal surgeries on length 3 Montesinos

knots [35]. For further general discussions of exceptional surgeries we suggest [3, 13, 19].

In particular we are interested in toroidal, Seifert fibered, integral homology 3-sphere surg-

eries, so let us explore these specifics further. Gordon and Luecke showed that the denominator

ofa toroidal surgery slope is at most 2 for hyperbolic knots in [9], and Miyazaki and Motegi built

on this result to show that if K is a hyperbolic, periodic knot with period 2, only an integer

coefficient can yield a toroidal surgery [17]. Boyer and Zhang proved that toroidal Seifert fibered

spaces cannot arise by non-integer surgery on a hyperbolic knot in S3, a result also implied by

the work of Gordon and Luecke [2, 10]. Ichihara and Jong showed there is no toroidal, Seifert

fibered surgery on pretzel knots except for the trefoil in [12]. Ozsváth and Szabó showed that the

family of Kinoshita-Terasaka knots KRr,n with |r| ≥ 2 and n 6= 0 cannot yield integral Seifert

fibered homology 3-spheres [24]. Wu found the only three large arborescent knots that yield

exceptional toroidal surgeries in [34]. Wu also found the Montesinos knots that yield toroidal

Seifert fibered surgeries in [33].

1.2 Results

1.2.1 Overview

In this dissertation our goal is to find obstructions to which knots in S3 yield integral Seifert

fibered homology spheres. Seifert fibered integral homology spheres are a result of exceptional

surgery [28]. One of the main tools used is Heegaard Floer homology, and the knot invariant:

knot Floer homology. Ozsváth and Szabó and many others have used Heegaard Floer homology

to find such obstructions [24, 33, 34]. Here, however we use the number of singular fibers of a

Seifert fibered integral homology sphere to find obstructions. This is using the toroidal structure

of the manifold, as Seifert fibered homology spheres are toroidal if and only if they have 4 or

more singular fibers.

The other tools used in this dissertation are Némethi’s graded root [21], and Ozsváth and

Szabó’s mapping cone formula [26]. The graded root is a combinatorial object that allows us

to compute Heegaard Floer homology more easily. This always exists when looking at Hee-

gaard Floer homology of Seifert fibered homology spheres, making it a very useful tool for our

purposes. The mapping cone formula allows us to more easily compute the Heegaard Floer

homology of manifolds resulting from surgery on knots in S3 [8].

Our general strategy is to examine the reduced Heegaard Floer homologies of both integral

homology spheres and surgeries on knots. Specifically we observe how each of these behave

under the U-action. We use Némethi’s graded root to analyze this for Seifert fibered integral

homology spheres and the mapping cone formula to analyze this for surgeries on knots. Then

we compare these results in order to establish obstructions to surgeries on knots yielding Seifert

fibered integral homology spheres.
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1.2.2 Obstructions

Before we give our obstructions, we must introduce some notation. HF+(Y ) is the Heegaard

Floer homology of a 3-manifold Y ; HFred(Y ) is the reduced Heegaard Floer homology of Y .

Note that HFred(Y ) ∼= HFred(−Y ) up to grading shift, so our results about HFred will apply

to Seifert fibered integral homology spheres of any orientation. Our most general result is the

following.

Theorem 1.2.1. No surgery on a knot K in S3 of genus g can yield a Seifert fibered integral

homology sphere with l or more singular fibers if g ≤ 24l−103
90 .

The proof of this is easy to follow given the following general result, which is proved in

Section 2.

Lemma 1.2.2. Let Y = Σ(p1, p2, . . . , p`) be a Seifert fibered integral homology sphere with `

singular fibers. Then if

0 ≤ k < 1

2

(
`− 2−

l∑
i=1

1

pi

)
,

Uk ·HFred(Y ) 6= 0.

Proof of Theorem 1.2.1. Gainullin’s Theorem 3 in [8] tells us that for any knot K ⊂ S3,

U
g(K)+

⌈
g4(K)

2

⌉
· HFred

(
S3
p
q
(K)

)
= 0 where g(K) is the genus of the knot K, and g4(K) is

the four ball genus of K. Using that g4(K) ≤ g(K) we have the following:

g(K) +

⌈
g4(K)

2

⌉
≤ g(K) +

g4(K) + 1

2

≤ g(K) +
g(K) + 1

2

=
3g(K) + 1

2
.

By Lemma 1.2.2 we have that Uk ·HFred(Y ) 6= 0 for

0 ≤ k < 1

2

(
`− 2−

l∑
i=1

1

pi

)
,

thus if

0 ≤ 3g(K) + 1

2
<

1

2

(
`− 2−

l∑
i=1

1

pi

)
,

we will have a contradiction, and K will not yield a Seifert fibered integral homology sphere

3



with ` or more singular fibers in this case. Now we use that

l∑
i=1

1

pi
<

l∑
i=1

1

qi
<

1

2
+

1

3
+
`− 2

5
,

where qi is the ith prime to simplify the following.

g <
24`− 103

90
1

2
+

1

3
+
l − 2

5
< `− 3− 3g(K)

l∑
i=1

1

pi
< `− 2− 3g − 1

l∑
i=1

1

pi
+ 3g(K) + 1 < `− 2

3g(K) + 1 < `− 2−
l∑

i=1

1

pi

3g(K) + 1

2
<

1

2

(
`− 2−

l∑
i=1

1

pi

)
.

Thus our proof is complete.

We also have the following result for genus 1 knots.

Theorem 1.2.3. No surgery on a genus 1 knot in S3 can yield a Seifert fibered integral homology

sphere with 5 or more singular fibers.

To prove this we need the following results: the first is proved in Chapter 3, the second is

proved in Chapter 4.

Theorem 1.2.4. Let Y = Σ(p1, p2, p3, p4, p5). Then

U ·HFred(Y ) 6= 0.

Theorem 1.2.5. For a genus 1 knot K and n ∈ Z we have that U ·HFred(S3
1/n(K)) = 0.

Proof of Theorem 1.2.3. By Lemma 1.2.2 we have that U ·HFred(Y ) 6= 0 when

1 <
1

2

(
`− 2−

l∑
i=1

1

pi

)
,

4



and Y is a Seifert fibered integral homology sphere with ` of more singular fibers. We now show

this condition is satisfied for ` ≥ 6.

6∑
i=1

1

pi
<

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+

1

13

6∑
i=1

1

pi
< 2

0 < 2−
6∑
i=1

1

pi

2 < 4−
6∑
i=1

1

pi

1 <
1

2

(
6− 2−

6∑
i=1

1

pi

)
.

Now by Theorem 1.2.5 we have that U ·HFred(S3
1/n(K)) = 0 for a genus 1 knot K. It follows

that surgery on a genus 1 knot cannot yield a Seifert fibered integral homology sphere with 6

or more singular fibers. Then by applying Theorem 1.2.4 our proof is complete.

We were also able to improve on Gainullin’s Theorem 3 in [8] for ±2 surgery on genus 2

knots.

Theorem 1.2.6. Let K be a genus 2 knot in S3, then the following holds for any Spinc-structure

i.

U2 ·HFred
(
S3
±2(K), i

)
= 0.

1.3 Dehn Surgery

A link is a finite collection of smoothly embedded disjoint closed curves in a closed orientable

3-manifold. A one component link is called a knot. Two links, L and L′, in a manifold M , are

equivalent if there is a smooth orientation preserving automorphism h : M → M that satisfies

h(L) = L′.
Every link L ⊂ M can be thickened to get its tubular neighborhood, N(L). This neigh-

borhood will be a collection of smoothly embedded disjoint solid tori, D2 × S1, one for each

component. The core of each of these tori, {0} × S1, form the link L.

In this thesis we will predominantly be dealing with knots in S3. Links in S3 can be thought

of as links in R3. Given a link L in R3, we can project our link L onto a plane P ⊂ R3. This

is given by the orthogonal projection map p : R3 → P . We say that p is a regular projection

5



Figure 1.1: A regular projection for the left handed trefoil.

N(k) K = Knot Exterior

Figure 1.2: Solid torus and knot exterior

for L if for every link p−1(x), x ∈ P , intersects L in 2 or fewer points, and the Jacobian has

rank one at every intersection point y ∈ p−1(x). Every link admits a regular projection, and so

knots and links are often drawn as smooth curves in the plane with under or over crossings at

each double point, see Figure 1.1.

Now we let us explore the specifics of Dehn surgery. The idea behind this is taking a link

L ⊂M , cutting out a tubular neighborhood of L, and gluing a solid torus back in its place under

some mapping. This gives us a new manifold M ′. The space resulting from this construction

is a closed oriented manifold, generally different from M . For this dissertation we will only be

considering surgery on knots in S3.

Next we give the formal construction for Dehn surgery. Since we will be dealing with

surgery on knots in S3, we will give our construction for knots instead of links, but it can easily

be extended to links. Let K be a knot in a closed orientable 3-manifold M , and let N(K)

be its tubular neighborhood. Then we cut open M along the 2-torus ∂N(K). This results in

two manifolds; the knot exterior E(K) = M \ intN(K), and the solid torus N(K), see Figure

1.2. We will identify N(K) as the standard solid torus D2 × S1. It follows that E(K) is a

manifold with torus boundary, and M = E(K)∪ (D2×S1). We now can use a homeomorphism

h : ∂D2×S1 → ∂E(K), to glue the solid torus back in to E(K). The new manifold we get from

this construction is M ′ = E(K) ∪h (D2 × S1). We say that M ′ is obtained from M by surgery

along the knot K.

This new manifold M ′ depends on the homeomorphism h. This homeomorphism, h, is

completely determined by where h sends the meridian of the solid torus. We can think of

6



n

l
m

Figure 1.3: Induced orientation on ∂(K)

this meridian as ∂D2 × {?}, and the image of this as some curve c = h(∂D2 × {?}) on the

boundary of K. To see why this completely determines h, we can think of attaching the solid

torus D2 × S1 = (D2 × I) ∪ D3 in two steps. First we glue in D2 × I, for I some segment

of S1. Then we attach the 3-ball, D3, along its boundary S2. Since all orientation preserving

homeomorphisms of S2 are isotopic to the identity this second gluing is unimportant. Thus the

image of the meridian determines the homeomorphism h.

When we consider M = S3, a simple closed curve on ∂E(K) is given by a pair of relatively

prime integers, up to isotopy. A meridian of N(K) is a generator of H1(E(K)); we will call this

curve m on ∂K. The canonical longitude is a curve l on ∂E(K), that is homologically trivial in

E(K). This curve is unique up to isotopy. The two curves m and l form a basis for H1(∂E(K))

which is unique up to isotopy and orientation reversals of m and l. We fix an orientation by

choosing the standard orientation on S3, this induces an orientation on E(K). Then we orient

m and l, such that the triple 〈m, l, n〉 is positively oriented, where n is a normal vector to

∂E(K) pointing inside E(K).

Now we have that any simple closed curve c on ∂K is isotopic to a curve of the form pm+ql.

Since the orientation of c does not matter for determining h, the pairs (p, q) and (−p,−q) define

the same curve c. We will think of the pair (p, q) as the reduced fraction p/q. Then there is a

correspondence between the isotopy classes of non-trivial simple closed curves on ∂K and the

set of reduced fractions p/q. We need to add in the fraction 1/0 = ∞, which gives us the curve

m. We call p/q surgery a rational surgery. If q = ±1 we call p/q integral surgery.

Example 1.3.1. Let k be the unknot in S3. (The unknot is equivalent to the circle.) Performing

1/0 surgery on k gives us S3 again. In fact, performing 1/0 surgery on any knot in S3, will give

us S3 again. Now consider 0/1 surgery on k, this will give us S1 × S2.

One key type of manifold is lens spaces. These manifolds are more easily understood via

surgery. For p ≥ 2, the lens space L(p, q) can be obtained by gluing together two solid tori. The

gluing homeomorphism sends the meridian of the first torus, µ1, to the curve −qµ2 + p · λ2 on

the second torus.

Alternatively, we can think of L(p, q) as surgery on the unknot. If you think of the second

torus as the trivial knot exterior, we then send the meridian µ1 to the curve ql − pm. Thus

L(p, q) is given by −p/q surgery on the unknot in S3.
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−x1 −x2 −x3 −xn−1 −xn

Figure 1.4: Lens space surgery description

−x1 −x2 −xn

Figure 1.5: Plumbing graph for a lens Space

L(p, q) can also be represented as surgery on a link. Let p/q = [x1, . . . , dn] denote a continued

fraction decomposition of p/q. Then L(p, q) is surgery on a chain of linked unknots with surgery

coefficients xi. This can be seen in Figure 1.4

We can also represent surgeries as plumbing graphs. These are graphs where each vertex

represents an unknot, and two vertices are connected by an edge if those unknots are linked as

in Figure 1.4. Thus L(p, q) can be described as the plumbing graph in Figure 1.5

Another important class of manifolds are Seifert fibered manifolds. A Seifert fibered man-

ifold is a manifold together with a decomposition into a disjoint union of circles, called fibers,

such that each fiber has a tubular neighborhood, that forms a standard fibered torus. A stan-

dard fibered torus is the surface bundle of the automorphism of a disk given by rotation by 2πb/a,

where a > 0, and a and b are relatively prime. The central fiber of a standard fibered torus is

called a singular fiber. A Seifert manifold, written M((a1, b1), . . . , (an, bn)) has n singular fibers.

This manifold has a surgery description shown in Figure 1.6, if the base orbifold is S2. It can

also be described with plumbing graph shown in Figure 1.7, where ai/bi = [xi1, . . . , xim].

A Siefert fibered integral homology 3-sphere is a Seifert fibered manifold with the

same homolgy as S3 where we take our coefficients in Z. The surgery description presented in

Figure 1.6 yields a Seifert fibered homology sphere if each pair pi and pj relatively prime and

we chose the qi’s such that ∑ qi
pi

=
1

p1 · · · p`
.

1.4 Heegaard Floer Homology

Heegaard Floer homology is an invariant of closed 3 manifolds, introduced by Ozsváth and

Szabó. This invariant is isomorphic to Seiberg-Witten Floer Homology [25]. Heegaard Floer

homology assigns an F[U ] module to each Spinc-structure of a 3-manifold. We will take F = Z2

for the remainder of this dissertation.

In order to construct Heegaard Floer homology we must first introduce some preliminaries.

A genus g handlebody is an orientable 3-manifold given by the union of the 3-ball, B3, with g
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0

a1/b1
a2/b2

an/bn

Figure 1.6: Surgery description of a Seifert fibered manifold.

0

x11 x12 x1m1

x21 x22 x2m2

xn1 xn2 xnmn

Figure 1.7: Plumbing graph for Seifert fibered manifolds

many 1-handles, D2× [−1, 1]. These one handles are solid cyllinders, and are glued to B3 via a

map that sends the 2g ends of the g many cyllinders, to 2g disjoint disks in ∂B3. The resulting

manifold is orientable. The boundary of a genus g handlebody is homeomorphic to a Riemann

surface of genus g.

Any closed orientable 3-manifold can be obtained by gluing two handlebodies together.

These handlebodies must have the same genus, g. We call the decomposition of the manifold

M into genus g handlebodies the genus g Heegaard splitting, or Heegaard decomposition, of

M . It is easy to convince yourself of the existence of these Heegaard splittings by considering

a triangulation of M . The union of the vertices and edges gives some graph Y . Thickening this

graph gives us a handlebody U0. It is clear that M − U0 is also a handlebody, thus we have a

Heegaard splitting of M .

It should be clear that a manifold M has many different Heegaard splittings, thus we

want a way to get between different splittings of M . If we have a genus g splitting of M ,

denoted M = U0 ∪Σ U1, we can get a genus g + 1 splitting of M . This is constructed by taking

two points in Σ and connecting them by some unknotted arc γ in U1. Then U ′0 is U0 and a

tubular neighborhood of γ, called N . Similarly U ′1 = U1 − N . We have a new decomposition,
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α

β

Figure 1.8: Heegaard Diagram for S3.

α

β

Figure 1.9: Heegaard diagram for S1 × S2.

M = U ′0∪Σ′U
′
1, which is called the stabilization of M = U0∪ΣU1. A result by Singer [29] gives

us that any two Heegaard decompositions of M can be connected by a series of stabilizations,

or destabilizations, up to diffeomorphism.

For a manifold M with genus g Heegaard splitting (Σg, U0, U1), a compatible Heegaard

diagram is given by Σg with a collection of curves α = (α1, . . . , αg) and β = β1, . . . , βg. We

require that α is a set of attaching circles for U0, and β is a set of attaching circles for U1. A

set of attaching circles, (γ1, . . . , γg) for U is a collection of closed embedded curves in Σg such

that the γi’s are all disjoint, Σg − γ1 − · · · − γg is connected, the γi’s bound disjoint embedded

disks in U [25].

Example 1.4.1. The Heegaard diagrams for 1/0 =∞ and 0/1 surgery on the unknot in S3 can

be seen in Figures 1.8 and 1.9 respectively.

Since one Heegaard splitting can emit many compatible Heegaard diagrams, we need a way

to move between various diagrams. This comes in the form of the Heegaard moves: isotopy,

handle slide and stabilization. These moves on Heegaard diagrams do not change the un-

derlying three manifold. Consider a set of attaching circles, (γ1, . . . , γg), for a handlebody U .

An isotopy moves the attaching circles in a one parameter family such that the curves remain

disjoint. A handle slide takes two curves, say γ1 and γ2, and replaces γ1 with γ′1 where γ′1, γ1

and γ2 bound an embedded pair of pants in Σ− γ3 − · · · − γg.
Stabilization comes from making Σ′ = Σ#E, where E is a genus 1 surface. Then we replace

(α1, . . . , αg) with (α1, . . . , αg, αg+1), and similarly with the βi’s. The curves αg+1 and βg+1 are

supported in E and meet transversally at a single point.

Now we must introduce the concept of pointed Heegaard diagrams, (Σg, α, β, z). Here

z ∈ Σg is our basepoint, and must be disjoint from the α and β curves. There are pointed

Heegaard moves defined similarly to those above. We now allow for isotopy of the basepoint
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x y

Figure 1.10: A whitney disk from x to y

and require that z is disjoint from the curves we isotopy. For a handle slide we require that z

is not in the pair of pants region defined in the handle slide.

Our generators for Heegaard Floer homology live in the ambient space Symg(Σg), so let us

explore those specifics further. Inside Symg(Σg), the attaching circles for our Heegaard diagram

induce a pair of smoothly embedded, g-dimensional tori,

Tα = α1 × · · · × αg, and Tβ = β1 × · · · × βg.

A Whitney disk is a way to get a relationship between points in Tα ∩Tβ. Let D be the unit

disk in C, and let e1 and e2 be the arcs in ∂D with Re(z) ≥ 0, and Re(z) ≤ 0 respectively.

Given a pair of intersection points x,y ∈ Tα ∩ Tβ, a Whitney disk connecting x and y is a

continuous map

u : D→ Symg(Σg).

We require u(−i) = x, u(i) = y, u(e1) ⊂ Tα, and u(e2) ⊂ Tβ. Let π2(x,y) be the set of

homotopy classes of Whitney disks connecting x and y. We also have a multiplicative structure,

which we can think of as a way to glue disks from x to y and from y to z to get a disk from x

to z. Thus the multiplication is as follows:

? : π2(x,y)× π2(y, z)→ π2(x, z).

Since it is hard to picture disks in Symg(Σg), it is helpful to think of their “shadow” in Σg.

For any two intersection points x,y ∈ Tα ∩Tβ and some point w ∈ Σ in the complement of the

α and β curves, let nw denote the algebraic intersection number

nw(φ) = #φ−1({w} × Symg−1(Σg)),

for φ ∈ π2(x,y). Now we are ready to define domains, the shadow of disks in Σg. Let D1, . . . Dm

denote the closures of the components of Σ−α1−· · ·−αg−β1−· · ·−βg. Then for φ ∈ π2(x,y)

the domain associated to φ is given by:

D(φ) =
m∑
i=1

nzi(φ)Di,

where zi are points in the interior of Di.

We must introduce the concept of Spinc-structures. We know that every closed oriented
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3-manifold Y admits a nowhere vanishing vector field. Two nowhere vanishing vector fields,

v1 and v2, on Y are homologous if there is a ball B in Y such that v1|Y−B is homotopic to

v2|Y−B. Then we define Spinc structures as equivalence classes of nowhere vanishing vector

fields modulo this equivalence relation. As stated earlier, Heegaard Floer homology assigns an

F[U ]-module to each Spinc-structure of a manifold. Seifert fibered homology spheres only have

one Spinc-structure, and thus this concept will only become important in discussions in Chapter

4.

We know that a suitable complex structure on Σ induces a complex structure on Symg(Σg).

For a homotopy class φ ∈ π2(x,y) letM(φ) denote the space of holomorphic representatives of

φ. The spaceM(φ) admits an R action that corresponds to complex automorphisms of the unit

disk that preserve i and −i. We can divideM(φ) by this R action and define the unparametrized

moduli space

M̂(φ) =
M(φ)

R
.

The expected dimension of the moduli spaceM(φ) is called the Maslov index and is denoted

µ(φ). The Maslov index is additive, µ(φ1 ? φ2) = µ(φ1) + µ(φ2), and for the homotopy class of

the constant map µ = 0.

We are finally ready to define the Floer chain complexes. Let Y be a rational homology

3-sphere with compatible pointed Heegaard diagram (Σ, α, β, z). Choose a Spinc structure t ∈
Spinc(Y ). Let ĈF(α, β, t) denote the free Abelian group generated by x ∈ Tα ∩ Tβ in Spinc

structure t. Then we can define the boundary map

∂ : ĈF (α, β, t)→ ĈF (α, β, t),

as

∂x =
∑

y∈Tα∩Tβ ,φ∈π2(x,y),µ(φ)=1|nz(φ)=0

c(φ) · y.

We define c(φ) to be the signed number of points in M̂ if µ(φ) = 1. The Heegaard Floer

homology groups ĤF (Y, t) are the homology groups of (ĈF (α, β, t), ∂).

Let CF∞(α, β, t) be the free abelian group generated by pairs [x, i], where x is in t ∈ Spinc,

and i ∈ Z. We define the boundary map as follows:

∂[x, i] =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)

c(φ) · [y, i− nz(φ)].

Additionally, we have an isomorphism U on CF∞(α, β, t) given by U([x, i]) = [x, i−1], that de-

creases the grading by 2. We can define CF−(α, β, t), as the subgroup of CF∞(α, β, t) generated

by the pairs [x, i] where i < 0. Then

CF+(α, β, t) = CF∞(α,β,t)/CF−(α,β,t).
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Then the Floer homology groups HF+(Y ), HF−(Y ) and HF∞(Y ) are the homology groups

of (CF+(α, β, t), ∂), (CF−(α, β, t), ∂) and (CF∞(α, β, t), ∂) respectively. We also define the

primary object of this thesis,

HFred = HF+/UdHF+, for d >> 0.

The Heegaard Floer chain complexes are equivalent under Heegaard moves. Thus these

chain complexes, and therefore the Heegaard Floer homologies, are invariants for 3-manifolds.

In practice, computing Heegaard Floer homology is not too difficult to compute. To see this

process we will compute HF∞(S3) using two different Heegaard diagrams in Example 1.4.2.

Example 1.4.2. Figure 1.8 is a Heegaard diagram for S3. We know Heegaard Floer homology

is generated by the intersection points of Tα ∩ Tβ. Since we only have one such intersection

point, called x, we see that HF+(S3) = Z2[U−1]〈x〉. Alternatively, we could use the Heegaard

diagram for S3 pictured in Figure 1.11. Here we have three intersection points, x, y and z. Thus

our generators are [x, i], [y, i] and [z, i]. There is a disk from y to x that crosses the basepoint

w and there is a disk from y to z, which gives us a differential. Thus we have the following

differentials:

∂[x, i] = 0, ∂[y, i] = [z, i] + [x, i− 1], ∂[z, i] = 0.

Thus we have that HF+(S3) = Z2[U−1] as expected.

α

β

w

z

x

y

Figure 1.11: Alternate Heegaard diagram for S3.

1.4.1 Knot Floer Homology

There is a variant of Heegaard Floer homology specifically for knots in 3-manifolds, called knot

Floer homology, [25, 27]. We will specifically be discussing knots in S3. We need a variant

of Heegaard diagrams for knots. For knots K ⊂ S3 this will be a Heegaard diagram for S3,

(Σg, α, β, w, z) with two basepoints, w and z. We then connect w and z by a curve a in Σg −
α1−· · ·−αg, and by a curve b in Σg−β1−· · ·−βg. By pushing a into our first handlebody, and

b into our second, we obtain a knot K ⊂ S3. We say that this diagram is a doubly-pointed

Heegaard diagram compatible with K.
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α

a

b

c

w

z

Figure 1.12: Doubly pointed Heegaard diagram for the left handed trefoil.

The chain complex to compute one flavor of knot Floer homology is CFK∞, also referred

to as the full knot complex. This is a doubly-filtered chain complex. We think of CFK∞ as

freely generated over Z by triples [x, i, j], where x ∈ Tα ∩ Tβ, i ∈ Z, and j ∈ Z is given by

A(x) = j − i, where A(x) is the Alexander grading of x. The triple [x, i, j] corresponds to the

generator U−ix, as the U -action on [x, i, j] yields [x, i− 1, j − 1] or U−i+1x.

We often represent CFK∞ graphically in the xy - plane. Here we represent [x, i, j] as a dot at

(i, j). We draw our differentials in as arrows between these generators. If a disk φ ∈ π2(x,y) gives

us a differential, the change in x-coordinate is −nw(φ), and the change in vertical coordinate

is −nz(φ).

Example 1.4.3. Consider Figure 1.12 as our doubly pointed Heegaard diagram for the left

handed trefoil. We know that [a, i, j], [b, i, j] and [c, i, j] are the generators. We have the following

differentials,

∂[a, i, j] = [b, i, j − 1], ∂[c, i, j] = [b, i− 1, j].

Thus the full knot floer complex can be drawn as in Figure 1.13.

i

j

a

b

c

Figure 1.13: Full knot Floer complex for the left-handed trefoil.

From CFK∞ we can define several auxilary complexes. The subcomplex of CFK∞ where
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i = 0 is exactly ĈF (S3) where the knot filtration is given by the j-coordinate. The chain

complex CFK− corresponds to the subcomplex of CFK∞ where i ≤ 0.

Structure This dissertation is laid out as follows. In Chapter 2 we layout the necessary

background and construction for graded roots. We prove a preliminary Lemma 2.2.1, and then

use this to prove Lemma 1.2.2. In Chapter 3 we prove Theorem 1.2.4. This is first done by using

a corollary to Lemma 1.2.2 to distinguish between finite and infinite cases to prove. Then the

three infinite cases are each proven separately. In Chapter 4 we introduce the mapping cone

for computing Heegaard Floer homology of surgery on a knot. We then improve on Gainullin’s

work in [8] for genus 1 and genus 2 knots.
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Chapter 2

Graded Roots

2.1 Introduction

In this section we introduce Némethi’s graded root [21] and setup the preliminary results nec-

essary for our obstructions. Originally this object was constructed from the plumbing graph for

a plumbed 3-manifold. We will predominantly be following the layout of Can and Karakurt [4].

2.1.1 Setup

First, a graded root is defined as follows:

Definition 2.1.1. (Némethi, [21, Definition 3.1.2]) Let R be an infinite tree with vertices V

and edges E. We denote by [u, v] the edge with end-points u and v. We say that R is a graded

root with grading χ : V → Z if

(a) χ(u)− χ(v) = ±1 for any [u, v] ∈ E,

(b) χ(u) > min{χ(v), χ(w)} for any [u, v], [u,w] ∈ E, and v 6= w,

(c) χ is bounded below, and χ−1(k) is finite for any k ∈ Z and |χ−1(k)| = 1 for k sufficiently

large.

Now we can give the basics for the construction of a graded root for a given Seifert fibered

homology sphere, Y = Σ(p1, . . . , p`), where p1 < p2 < · · · < p`. We define a function ∆: N→ Z
by

∆(n) = 1 + |e0|n−
l∑

i=1

⌈
np′i
pi

⌉
, (2.1)

where (e0, p
′
1, . . . , p

′
`) is the unique solution to

e0p1 · · · p` + p′1p2 · · · p` + p1p
′
2 · · · p` + · · ·+ p1p2 · · · p′` = −1,
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and

0 < p′i ≤ pi − 1 for i = 1, 2, . . . , `.

Note the above equation requires e0 < 0. By [4, Theorem 4.1, (2)] we have that ∆(n) is always

positive for n > N0 and

N0 = p1p2 · · · p`

(
(ell − 2)−

l∑
i=1

1

pi

)
.

The general definition follows.

Definition 2.1.2. (Karakurt-Lidman, [14, Definition 3.1]) A ∆-sequence is a pair (X, δ) where

X is a well ordered finite set, and δ : X → Z \ {0} with δ(x0) > 0 where x0 is the minimum of

X.

For our purposes, we will have the ∆-sequence (X,∆), where ∆(n) is given by (2.1) and

X = {x ∈ N | ∆(x) 6= 0 and x ≤ N0}. We also have that ∆ will be symmetric, as ∆(n) =

−∆(N0 − n) [4, Theorem 4.1, (2)]. For the remainder of this dissertation when we refer to a

∆-sequence we will be referring to the sequence (∆(x0),∆(x1), . . .∆(xk)), where xk is the last

integer that satisfies ∆(xk) < 0, as we will only be using the function defined in (2.1).

Once we have our ∆-sequence, we can define a τ function τ∆ : {0, 1, . . . , k} → Z using

the recurrence relation τ∆(n + 1) − τ∆(n) = ∆(xn) with the initial condition τ∆(0) = 0. Let

{τ∆(0), . . . , τ∆(k)}, be called the τ -sequence.

Now that we know how to get a τ -sequence for a Seifert fibered homology sphere, we can

use this to construct our graded root, following [21, Example 3.1.3]. For every n ∈ Z≥0, let Rn

be the infinite graph with vertex set Z∩ [τ(n),∞) and edge set {[k, k+ 1] : k ∈ Z∩ [τ(n),∞)}.
We then identify all common vertices and edges of Rn and Rn+1. This gets us an infinite tree

Γτ , and we assign a function χ(v) that gives the unique integer corresponding to the grading

of the vertex v.

Example 2.1.3. The construction of Γτ for the τ -sequence {0, 1, 0,−1,−2,−3,−4,−3}, is seen

in Figure 2.1.

2.1.2 Previous Work

Now that we can construct our graded root, we will introduce some properties and terminology.

To any graded root Γ, we associate a Z-graded, F[U ]-module. We let H+(Γ) be the free F vector

space generated by the vertex set of Γ, and the degree of the generator corresponding to the

vertex, v has degree 2χ(v). The U -action on H+(Γ) is a degree −2 endomorphism that sends

each vertex v to the sum of all vertices w connected to v by an edge where χ(w) < χ(x). If

no vertices w satisfy this, then U sends v to zero. We can now define two finitely generated

F[U ]-modules:

Hred(Γ) = Coker(Un), for large n,
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R0 R1 R2 R3 R4 R5 R6 R7

→

Γτ

2

1

0

-1

-2

-3

-4

Figure 2.1: Construction of Γτ

Ĥ(Γ) = Ker(U)⊕ Coker(U)[−1].

We will also refer to the image of Un for large n as the tower, denoted T +, which will eventually

stabilize and become constant. We can then view Hred(Γ), which is the primary focus of this

dissertation, as H+(Γ)/T +.

These groups encode Heegaard Floer homology as follows:

Theorem 2.1.4. (Némethi, [20, Section 11.3]) Let Y be a positively oriented integral homology

sphere, then we have the following isomorphisms of F[U ]-modules up to an overall degree shift:

(1) HF+(−Y ) ∼= H+(Γ),

(2) HFred(−Y ) ∼= Hred(Γ),

(3) ĤF (−Y ) ∼= Ĥ(Γ).

We must introduce the concept of refinements and merges before proceeding. In general,

refinements and merges allow us to get between different ∆-sequences that produce the same

graded roots. This will become particularly important in our discussion of 5 singular fibers in

Chapter 3.

Definition 2.1.5. (Karakurt-Lidman, [14, Section 3]) Let (X,∆) be a ∆-sequence. Let t be a

positive integer and x ∈ X with |∆(x)| ≥ t. From this we construct a new ∆-sequence (X ′,∆′)

as follows. The set X ′ is obtained by removing x from X and putting t consecutive elements

x1, . . . , xt in its place. Now, choose nonzero integers n1, . . . , nt each with the same sign as ∆(x)

such that n1 + · · ·+nt = ∆(x). The new ∆′ agrees with ∆ on X \ {x} and satisfies ∆′(xi) = ni

for i = 1, . . . , t. (X ′,∆′) is called a refinement of (X,∆) at x. Conversely (X,∆) is called a

merge of (X ′,∆′)

Proposition 2.1.6. (Karakurt-Lidman, [14, Proposition 3.6]) Refinements and merges do not

change H+(Γ) or Hred(Γ).

18



2.2 Results

Now we will prove the necessary results about graded roots, which will later be used in our

surgery obstructions.

Lemma 2.2.1. If a ∆-sequence for a graded root Γ contains x such that ∆(x) = k + 1 and

x′ > x such that ∆(x′) = −(k + 1) then

Uk ·Hred(Γ) 6= 0.

Proof. Since ∆(x) = k + 1 we have

τ∆(i+ 1)− τ∆(i) = k + 1

where x is in the ith position in our ∆-sequence. Similarly since ∆(x′) = −(k + 1) we have

τ∆(j)− τ∆(j + 1) = k + 1

where x′ is in the jth position in our ∆-sequence. Since we assumed x′ > x, we know that j > i.

It is also clear that

τ∆(i+ 1) > τ∆(i) and τ∆(j) > τ∆(j + 1).

We now have two cases. First suppose τ∆(i) ≥ τ∆(j + 1). This is shown in Figure 2.2. We have

that

Uk · a = b

in this case, and since a and c are both at grading n+ k, a is not in the image of U z for large

z. Thus a ∈ Hred(Γ) and Uk · a 6= 0 so

Uk ·Hred(Γ) 6= 0.

Now consider when τ∆(i) > τ∆(j+1), which is shown in Figure 2.3. We can proceed exactly

as above to find that

Uk ·Hred(Γ) 6= 0.

Thus our proof is complete.

The ∆(x) = k + 1 condition in Lemma 2.2.1 is equivalent to requiring a sequence of values

(x1, . . . , xj), that give us k + 1 many consecutive +1’s in our ∆-sequence after the appropriate

refinements and merges. Similarly, ∆(x′) = −(k+ 1) gives us k+ 1 consecutive −1’s. Thus after
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n+ k + 3

n+ k + 2

n+ k + 1

n+ k
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m

τ∆(i)

a

b

τ∆(i+ 1)

τ∆(j + 1)

c

Figure 2.2: τ∆(i) > τ∆(j + 1)

n+ k + 3

n+ k + 2

n+ k + 1

n+ k

n+ 1

n

m+ 1

m

τ∆(j + 1)

a

b

τ∆(j)

τ∆(i)

c

Figure 2.3: τ∆(i) < τ∆(j + 1)

all appropriate refinements and merges we have

{. . . , k + 1, . . . ,−(k + 1), . . . }

in our ∆-sequence. There is no need to prove this separately as we know refinements and merges

do not change Hred.

The next Lemma follows easily.

Lemma 1.2.2. Let Y = Σ(p1, p2, . . . , p`) be a Seifert fibered integral homology sphere with `

singular fibers. Then if

0 ≤ k < 1

2

(
`− 2−

l∑
i=1

1

pi

)
,

Uk ·HFred(Y ) 6= 0.

Proof. Consider n = kp1p2 · · · p`. We have that

∆(n) = 1 + |e0|n−
l∑

i=1

np′i
pi

= 1 + |e0|n− k ·
(
p′1p2 · · · p` + p1p

′
2 · · · p` + ·+ p1p2 · · · p′`

)
= 1 + |e0|n− k (−1− e0p1 · · · p`)

= 1 + k + |e0|kp1 · · · p` + ke0p1 · · · p`
= k + 1,

using substitution from the Diophantine equation. By using that ∆(x) = −∆(N0 − x) we have

20



that

∆(N0 − n) = −(k + 1).

Now using our assumptions on k we have the following,

n = kp1 · · · p`

n <
1

2

(
`− 2−

l∑
i=1

1

pi

)
p1 · · · p`

n <
1

2
N0

2n < N0

n < N0 − n.

Thus ∆(n) = k + 1, ∆(N0 − n) = −(k + 1) and N0 − n > n and so the conditions of Lemma

2.2.1 are satisfied and Uk ·HFred(Y ) 6= 0.
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Chapter 3

Five Singular Fibers

3.1 Introduction

The goal of this section is to prove Theorem 1.2.4. Our strategy is to find values such that the

conditions of Lemma 2.2.1 are met. First, this will involve finding exact values x′ > x such that

∆(x) = 2 and ∆(x′) = −2. But this process will not prove all of the necessary cases, so we will

then have to find a sequence of values (x, x+ 1, x+ 2, . . . , x+ j), where x+ j < N0/2 such that

(∆(x),∆(x+ 1), . . . ,∆(x+ j − 1),∆(x+ j)) = (1, 0, . . . , 0, 1).

Then by (2.2.1) we have that

(∆(N0 − x− j),∆(N0 − x− j + 1), . . . ,∆(N0 − x− 1),∆(N0 − x)) = (−1, 0, . . . , 0,−1).

By performing the appropriate merges we have a ∆-sequence as follows

{. . . , 2, . . . ,−2}.

Then the proof of Theorem 1.2.4 follows from Lemma 2.2.1.

First consider the following corollary to Lemma 1.2.2.

Corollary 3.1.1. Let Y = Σ(p1, p2, p3, p4, p5). Then

U ·HFred(Y ) 6= 0,

when one of the following holds,

1. p1 ≥ 4,

2. p1 = 3 and p5 ≥ 17,

3. p1 = 2, p2 = 3, and p3 ≥ 17,
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4. p1 = 2, p2 = 3, p3 = 7 and p4 ≥ 83,

5. p1 = 2, p2 = 3, p3 = 7, p4 = 43, p5 ≥ 1811,

6. p1 = 2, p2 = 3, p3 = 11, p4 ≥ 15 and p5 ≥ 101.

Proof. This simply involves testing that p1p2 · · · p5 ≤ N0/2 in the given cases. Then as

∆(p1p2 · · · p5) = 2

and

∆(N0 − p1p2 · · · p5) = −2

the proposition follows easily.

This does not prove Theorem 1.2.4 entirely as not all cases are covered by Corollary 3.1.1.

We are left with three infinite cases: Σ(2, 3, 5, p, q), Σ(2, 3, 7, p, q), Σ(2, 3, 11, 13, p), and series of

finite cases. The finite cases can be easily checked to satisfy U ·HFred(Y ) 6= 0. Thus to prove

Theorem 1.2.4 we only need to address the following infinite cases: Σ(2, 3, 5, p, q), Σ(2, 3, 7, p, q),

Σ(2, 3, 11, 13, p).

We will address each of these infinite cases separately in the following lemmas, proved later

in this section.

Lemma 3.1.2. Let Y = Σ(2, 3, 5, p, q), for p 6= 7. Then U ·HFred(Y ) 6= 0.

Lemma 3.1.3. Let Y = Σ(2, 3, 5, 7, q). Then U ·HFred(Y ) 6= 0.

Lemma 3.1.4. Let Y = Σ(2, 3, 7, p, q). Then U ·HFred(Y ) 6= 0.

Lemma 3.1.5. Let Y = Σ(2, 3, 11, 13, q). Then U ·HFred(Y ) 6= 0.

With these lemmas, we are ready to prove Theorem 1.2.4.

Theorem 1.2.4. Let Y = Σ(p1, p2, p3, p4, p5). Then

U ·HFred(Y ) 6= 0.

Proof. This follows immediately from Corollary 3.1.1 and Lemmas 3.1.2, 3.1.3, 3.1.4 and 3.4.1.
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3.2 Σ(2, 3, 5, p, q)

3.2.1 Preliminaries

Before we proceed with our proof of Lemmas 3.1.2 and 3.1.3 we must first complete some

algebraic preliminaries. Consider the Seifert fibered homology sphere

Y = Σ(2, 3, 5, p, q),

with Diophantine solutions

D = (e0, 1, a, b, p
′, q′).

Then the Diophantine equation simplifies as follows

−1 = 30pqe0 + 15pq + 10apq + 6bpq + 30p′q + 30pq′.

Reducing this mod 30 we get the following,

29 ≡ 15pq + 10apq + 6bpq mod 30

29 ≡ pq(15 + 10a+ 6b) mod 30

By the requirements of the Diophantine equation we know that a ∈ {1, 2} and b ∈ {1, 2, 3, 4}.
Using this and reducing pq mod 30 we can solve for a and b. That gives us the following,

pq ≡ 1 mod 30 =⇒ D = (e0, 1, 2, 4, p
′, q′), pq ≡ 17 mod 30 =⇒ D = (e0, 1, 1, 2, p

′, q′),

pq ≡ 7 mod 30 =⇒ D = (e0, 1, 2, 2, p
′, q′), pq ≡ 19 mod 30 =⇒ D = (e0, 1, 2, 1, p

′, q′),

pq ≡ 11 mod 30 =⇒ D = (e0, 1, 1, 4, p
′, q′), pq ≡ 23 mod 30 =⇒ D = (e0, 1, 1, 3, p

′, q′),

pq ≡ 13 mod 30 =⇒ D = (e0, 1, 2, 3, p
′, q′), pq ≡ 29 mod 30 =⇒ D = (e0, 1, 1, 1, p

′, q′).

Note in all the above cases, apq ≡ 2 mod 3 and bpq ≡ 4 mod 5.

We can also come up with a bound on e0 using the Diophantine equation:

−1 = 30pqe0 + 15pq + 10apq + 6bpq + 30p′q + 30pq′

−30pqe0 = 15pq + 10apq + 6bpq + 30p′q + 30pq′ + 1

|e0| =
15pq + 10apq + 6bpq + 30p′q + 30pq′ + 1

30pq

|e0| =
1

2
+
a

3
+
b

5
+
p′

p
+
q′

q
+

1

30pq

|e0| <
1

2
+

2

3
+

4

5
+
p

p
+
q

q
+

1

30 · 7 · 11
=

4582

1155
≈ 3.96.
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Therefore e0 = −1,−2,−3.

As stated above, the goal is to find a consecutive sequence of values

(∆(x),∆(x+ 1), . . . ,∆(x+ j − 1),∆(x+ j)) = (1, 0, . . . , 0, 1), such that x+ j < N0/2.

In the majority of cases for Σ(2, 3, 5, p, q) this will be a pair of elements of the form xpq, xpq±1.

With this in mind, consider the following simplification of ∆(xpq + k), for x ∈ Z+ and k ∈ Z.

∆(xpq + k) = 1 + |e0|(xpq + k)−
⌈
xpq + k

2

⌉
−
⌈
a(xpq + k)

3

⌉
−
⌈
b(xpq + k)

5

⌉
−
⌈
p′(xpq + k)

p

⌉
−
⌈
q′(xpq + k)

q

⌉
= 1 + |e0|xpq + k|e0| −

⌈
xpq + k

2

⌉
−
⌈
a(xpq + k)

3

⌉
−
⌈
b(xpq + k)

5

⌉
− xp′q −

⌈
kp′

p

⌉
− xpq′ −

⌈
kq′

q

⌉
= 1 + |e0|xpq + k|e0| −

⌈
xpq + k

2

⌉
−
⌈
a(xpq + k)

3

⌉
−
⌈
b(xpq + k)

5

⌉
−
⌈
kp′

p

⌉
−
⌈
kq′

q

⌉
− x

(
−pqe0 −

pq

2
− apq

3
− bpq

5
− 1

30

)
= 1 + k|e0|+

xpq

2
−
⌈
xpq + k

2

⌉
+
axpq

3
−
⌈
a(xpq + k)

3

⌉
+
bxpq

5
−
⌈
b(xpq + k)

5

⌉
−
⌈
kp′

p

⌉
−
⌈
kq′

q

⌉
+

x

30
.

Using this simplification above we are able to compute ∆(xpq) and ∆(xpq ± 1) for the x

values that satisfy the majority of our Σ(2, 3, 5, p, q) cases. These values are presented in Table

3.1.

3.2.2 Results

Now we are ready to prove Lemma 3.1.2.

Lemma 3.1.2. Let Y = Σ(2, 3, 5, p, q), for p 6= 7. Then U ·HFred(Y ) 6= 0.

As stated above, we wish to find values that provide us with 2 consecutive +1′s in our

∆-sequence that occur prior to N0/2. Then by Lemma 2.2.1 our proof is complete. The values

that satisfy this condition for sufficiently large p and q are found in Tables 3.2, 3.3, 3.4, 3.5 and

3.6. We separate the values in these tables into two cases. Type A are those where the values

are of the form xpq ± k. Type B cases are those that follow a different pattern and are color

coded green.
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Table 3.1: Key values of ∆(xpq) and ∆(xpq ± 1)

a = 1 a = 1 a = 1 a = 1 a = 2 a = 2 a = 2 a = 2
b = 1 b = 2 b = 3 b = 4 b = 1 b = 2 b = 3 b = 4

∆(25pq − 1) 2− |e0| 2− |e0| 2− |e0| 2− |e0| 3− |e0| 3− |e0| 3− |e0| 3− |e0|
∆(25pq) 1 1 1 1 1 1 1 1

∆(25pq + 1) |e0| − 2 |e0| − 2 |e0| − 2 |e0| − 2 |e0| − 3 |e0| − 3 |e0| − 3 |e0| − 3

∆(26pq − 1) 2− |e0| 2− |e0| 2− |e0| 3− |e0| 2− |e0| 2− |e0| 2− |e0| 3− |e0|
∆(26pq) 1 1 1 1 1 1 1 1

∆(26pq + 1) |e0| − 2 |e0| − 3 |e0| − 3 |e0| − 3 |e0| − 2 |e0| − 3 |e0| − 3 |e0| − 3

∆(27pq − 1) 2− |e0| 2− |e0| 3− |e0| 3− |e0| 2− |e0| 2− |e0| 3− |e0| 3− |e0|
∆(27pq) 1 1 1 1 1 1 1 1

∆(27pq + 1) |e0| − 2 |e0| − 2 |e0| − 3 |e0| − 3 |e0| − 2 |e0| − 2 |e0| − 3 |e0| − 3

Proof. Given the values in Tables 3.2, 3.3, 3.4, 3.5 and 3.6, our proof involves checking the value

of ∆ of these numbers, and confirming that they occur before N0/2. For Type A cases, the ∆

function of these numbers can either be found in Table 3.1 or computed using the formula for

∆(xpq + k). Type B cases we will address later.

For the Type A cases it remains to show that these values occur before N0/2. Since it is clear

that

25pq ≤ 26pq ≤ 27pq ≤ 28pq ≤ 28pq + 6

we need only to check that 28pq + 6 ≤ N0/2. It can be easily checked that this holds when

p > 10, and q ≥ 10p+ 4

p− 10
,

which are satisfied in the following cases,

• p = 11, q > 114

• p = 13, q > 43

• p = 17, q > 24

• p = 19, q > 21

• p > 20

The finite cases that do not satisfy these inequalities may be easily checked to satisfy

U ·HFred 6= 0.

Thus it remains to address the following.

1. pq ≡ 1 mod 30, e0 = −3, 1/3 < p′/p < 2/3 and 0 < q′/q < 1/3, and where p′/p and q′/q are

switched.
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Table 3.2: General Cases for Y = Σ(2, 3, 5, p, q), with p and q sufficiently large

e0 = −1 e1 = −2 e0 = −3

pq ≡ 1 mod 30
26pq − 1 26pq − 1 See Table 3.3

26pq 26pq

pq ≡ 7 mod 30
26pq − 1 25pq − 1 27pq

26pq 25pq 27pq + 1

pq ≡ 11 mod 30
25pq − 1 26pq − 1 25pq

25pq 26pq 25pq + 1

pq ≡ 13 mod 30
26pq − 1 25pq − 1 See Table 3.4

26pq 25pq

pq ≡ 17 mod 30
25pq − 1 See Table 3.5 25pq

25pq 25pq + 1

pq ≡ 19 mod 30
26pq − 1 25pq − 1 26pq + 1

26pq 25pq 26pq + 1

pq ≡ 23 mod 30
25pq − 1 27pq − 1 25pq

25pq 27pq 25pq + 1

pq ≡ 29 mod 30
25pq − 1 See Table 3.6 25pq

25pq 25pq + 1

2. pq ≡ 13 mod 30, e0 = −3, 3/5 < p′/p < 4/5 and 3/5 < q′/q < 4/5

3. pq ≡ 17 mod 30, e0 = −2, 1/5 < p′/p ≤ 2/5 and 1/5 < q′/q ≤ 2/5

4. pq ≡ 29 mod 30, e0 = −2, 1/2 < q′/q < 3/5 and 0 < p′/p < 1/2 and where p′/p and q′/q are

switched.

5. pq ≡ 29 mod 30, e0 = −2, 3/5 < p′/p < 1 and 0 < q′/q < 1/2, and where p′/p and q′/q are

switched.

Case 1: Assume that 1/3 < p′/p < 2/3 and 0 < q′/q < 1/3. First we check that ∆(15pq+30pq′) =

1 and ∆(15pq + 30pq′ + 1) = 1.

∆(15pq + 30pq′) = 1 + |e0|(15pq + 30pq′)−
⌈

15pq + 30pq′

2

⌉
−
⌈

2(15pq + 30pq′)

3

⌉
−
⌈

4(15pq + 30pq′)

5

⌉
−
⌈
p′(15pq + 30pq′

p

⌉
−
⌈
q′(15pq + 30pq′

q

⌉
= 1 + 15pq|e0| − 30pq′|e0| −

15pq + 30pq′ + 1

2
− 30pq + 60pq′

3

− 60pq + 120pq′

5
− 15p′q − 30p′q′ − 15pq′ −

⌈
30q′

q
(pq′)

⌉
= 1 + 15pq|e0|+ 30pq′|e0| −

15pq + 30pq′ + 1

2
− 30pq + 60pq′

3

− 60pq − 120pq′

5
− 30p′q′ − 15

(
−pqe0 −

pq

2
− 2pq

3
− 4pq

5
− 1

30

)

27



Table 3.3: pq ≡ 1 mod 30, e0 = −3, , for p and q sufficiently large

p′/p ∈
(
0, 1

3

)
p′/p ∈

(
1
3 ,

1
2

)
p′/p ∈

(
1
2 ,

2
3

)
p′/p ∈

(
2
3 , 1
)

q′/q ∈
(
0, 1

3

) 20pq 15pq + 30pq′ 15pq + 30pq′ 20pq − 3

20pq + 1 15pq + 30pq′ + 1 15pq + 30pq′ + 1
...

20pq + 2 22pq

q′/q ∈
(

1
3 ,

1
2

) 15pq + 30p′q 20pq 22pq − 3 22pq − 3

15pq + 30p′q + 1 20pq + 1
...

...

20pq + 2 22pq 22pq

q′/q ∈
(

1
2 ,

2
3

) 15pq + 30p′q 22pq − 3 22pq − 2 22pq − 3

15pq + 30p′q + 1
... 22pq − 1

...

20pq + 2 22pq 22pq

q′/q ∈
(

2
3 , 1
) 22pq − 3 22pq − 3 22pq − 3 22pq − 2

...
...

...
...

22pq 22pq 22pq 22pq

−
⌈

30q′

q

(
−pqe0 −

pq

2
− 2pq

3
− 4pq

5
− 1

30
− p′q

)⌉
= 1

It can be similarly checked that ∆(15pq + 30pq′ + 1) = 1. Now we must check that

15pq + 30pq′ + 1 < N0/2.

It is easily checked that this is satisfied when

q′ <
29pq − 30q − 3p− 2

60p
.

Since q′ < q/3 by assumption, we check when

q

3
<

29pq − 30q − 3p− 2

60p
,

which is satisfied when q > 6. Thus 15pq + 30pq′ + 1 < N0/2 is satisfied for q > 6, which is

trivially true. The case where 1/3 < q′/q < 2/3 and 0 < p′/p < 1/3 can be checked the same way,

and so this case is complete.

The remaining cases can be checked using the same process.

Case 2: Let pq ≡ 13 mod 30, e0 = −3, 3/5 < p′/p, q′/q < 4/5. It is easily checked that

∆(60pq′ − 9pq) = 1 = ∆(60pq′ − 9pq + 3).
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Table 3.4: pq ≡ 13 mod 30, e0 = −3, for p and q sufficiently large

p′/p ∈
(
0, 1

5

)
p′/p ∈

(
1
5 ,

2
5

)
p′/p ∈

(
2
5 ,

3
5

)
p′/p ∈

(
3
5 ,

4
5

)
p′/p ∈

(
4
5 , 1
)

q′/q ∈
(
0, 1

5

) 26pq 26pq 26pq 26pq 26pq
26pq + 1 26pq + 1 26pq + 1 26pq + 1 26pq + 1
26pq + 2 26pq + 2 26pq + 2 26pq + 2 26pq + 2

q′/q ∈
(

1
5 ,

2
5

) 26pq 26pq 26pq 26pq 26pq
26pq + 1 26pq + 1 26pq + 1 26pq + 1 26pq + 1
26pq + 2 26pq + 2 26pq + 2 26pq + 2 26pq + 2

q′/q ∈
(

2
5 ,

3
5

) 26pq 26pq 28pq 28pq 28pq − 4

26pq + 1 26pq + 1
...

...
...

26pq + 2 26pq + 2 28pq + 6 28pq + 6 28pq

q′/q ∈
(

3
5 ,

4
5

) 26pq 26pq 28pq 90pq′ − 3pq 28pq − 4

26pq + 1 26pq + 1
...

...
...

26pq + 2 26pq + 2 28pq + 6 90pq′ − 3pq + 3 28pq

q′/q ∈
(

4
5 , 1
) 26pq 26pq 28pq − 4 28pq − 4 28pq − 4

26pq + 1 26pq + 1
...

...
...

26pq + 2 26pq + 2 28pq 28pq 28pq

∆(60pq′ − 9pq + 1) = 0 = ∆(60pq′ − 9pq + 2).

Note that if
⌈

3p′

p

⌉
= 3, then q > 3

5 , by the Diophantine equation. Since we assumed 3/5 <

q′/q < 4/5, we must have
⌈

3p′

p

⌉
= 2. Also using the Diophantine equation we have that p′/p > 3/5,

implies q′/q < 19/30. We check that

60pq′ − 9pq + 3 < N0/2,

when

q′ <
77pq − 30p− 30q − 6

120p
.

Since q′ < 19q
30 , we check when

19q

30
<

77pq − 30p− 30q − 6

120p
,

which is satisfied when

p > 30, and q >
30p+ 6

p− 30
.

The above inequalities are satisfied in the following cases,

• p > 60

• p = 31, q > 936

• p = 37, q > 159

• p = 41, q > 112
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Table 3.5: pq ≡ 17 mod 30, e0 = −2, for p and q sufficiently large

p′/p ∈
(
0, 1

5

)
p′/p ∈

(
1
5 ,

2
5

)
p′/p ∈

(
2
5 ,

3
5

)
p′/p ∈

(
3
5 ,

4
5

)
p′/p ∈

(
4
5 , 1
)

q′/q ∈
(
0, 1

5

) 28pq 28pq 28pq 26pq − 2 26pq − 2
...

...
... 26pq − 1 26pq − 1

28pq + 3 28pq + 4 28pq + 4 26pq 26pq

q′/q ∈
(

1
5 ,

2
5

) 28pq 51pq − 60pq′ − 3 28pq − 6 26pq − 2 26pq − 2
...

...
... 26pq − 1 26pq − 1

28pq + 4 51pq − 60pq′ 28pq 26pq 26pq

q′/q ∈
(

2
5 ,

3
5

) 28pq 28pq − 6 28pq − 6 26pq − 2 26pq − 2
...

...
... 26pq − 1 26pq − 1

28pq 28pq 28pq 26pq 26pq

q′/q ∈
(

3
5 ,

4
5

) 26pq − 2 26pq − 2 26pq − 2 26pq − 2 26pq − 2
26pq − 1 26pq − 1 26pq − 1 26pq − 1 26pq − 1

26pq 26pq 26pq 26pq 26pq

q′/q ∈
(

4
5 , 1
) 26pq − 2 26pq − 2 26pq − 2 26pq − 2 26pq − 2

26pq − 1 26pq − 1 26pq − 1 26pq − 1 26pq − 1
26pq 26pq 26pq 26pq 26pq

• p = 43, q > 99

• p = 47, q > 83

• p = 53, q > 69

• p = 59, q > 61

We still must address this for p < 30. We check each of these cases individually, using our

restrictions on p′/p, pq mod 30 and the Diophantine equation. In each case we are trying to

show that

q′ <
77pq − 30q − 30p− 3

130p
. (3.1)

• p = 11: Then p′ ∈ {7, 8}. By the Diophantine equation we have q′ ≤ 197q−1
330 , and this

satisfies (3.1) when q > 329
11 .

• p = 13: Then p′ ∈ {8, 9, 10}. By the Diophantine equation we have q′ ≤ 241q−1
390 , and this

satisfies (3.1) when q > 11.

• p = 17: Then p′ ∈ {11, 12, 13}. By the Diophantine equation we have q′ ≤ 299q−1
510 , and

this satisfies (3.1) when q > 55.

• p = 19: Then p′ ∈ {12, 13, 14, 15}. By the Diophantine equation we have q′ ≤ 343q−1
570 , and

this satisfies (3.1) when q > 9.

• p = 23: Then p′ ∈ {14, 15, 16, 17, 18}. By the Diophantine equation we have q′ ≤ 431q−1
690 ,

and this satisfies (3.1) when q > 40.
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Table 3.6: pq ≡ 29 mod 30, e0 = −2, for p and q sufficiently large

p′/p ∈
(
0, 1

2

)
p′/p ∈

(
1
2 ,

3
5

)
p′/p ∈

(
3
5 , 1
)

q′/q ∈
(
0, 1

2

) 26pq 60p′q − 8pq 45pq − 30p′q − 1
26pq + 1 60p′q − 8pq + 1 45pq − 30p′q
26pq + 2 60q′ − 8q + 2

q′/q ∈
(

1
2 ,

3
5

) 60pq′ − 8pq 26pq − 2 26pq − 2
60pq′ − 8pq + 1 26pq − 1 26pq − 1
60pq′ − 8pq + 2 26pq 26pq

q′/q ∈
(

3
5 , 1
) 45pq − 30pq′ − 1 26pq − 2 26pq − 2

45pq − 30pq′ 26pq − 1 26pq − 1
26pq 26pq

• p = 29: Then p′ ∈ {18, 19, 20, 21, 22, 23}. By the Diophantine equation we have q′ ≤
533q−1

870 , and this satisfies (3.1) when q > 12.

The remaining finite cases can be checked by hand, and thus this case is complete.

Case 3: pq ≡ 17 mod 30, e0 = −2, 1/5 < p′/p, q′/q < 2/5.

It is easily checked that

∆(51pq − 60pq′ − 3) = 1 = ∆(51pq − 60pq′).

∆(51pq − 60pq′ − 2) = 0 = ∆(51pq − 60pq′ − 1).

Using our assumptions on p′ and q′ and the Diophantine equation we have that

51pq − 60pq′ < N0/2,

when p > 30, and q > 30p
p−30 . The above inequalities are satisfied in the following cases,

• p > 60

• p = 31, q > 930

• p = 37, q > 158

• p = 41, q > 111

• p = 43, q > 99

• p = 47, q > 82

• p = 53, q > 69

• p = 59, q > 61

We still must address this for p < 30. We check each of these cases individually, using our

restrictions on p′/p, pq mod 30 and the Diophantine equation. In each case we are trying to

show that

q′ >
43pq + 30p+ 30q

120p
. (3.2)
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• p = 11: Then p′ ∈ {3, 4}. By the Diophantine equation we have q′ ≥ 133q−1
210 , and this

satisfies (3.2) when q > 1.

• p = 13: Then p′ ∈ {3, 4, 5}. By the Diophantine equation we have q′ ≥ 149q−1
390 , and this

satisfies (3.1) when q > 1.

• p = 17: Then p′ ∈ {4, 5, 6}. By the Diophantine equation we have q′ ≥ 211q−1
510 , and this

satisfies (3.2) when q > 6.

• p = 19: Then p′ ∈ {12, 13, 14, 15}. By the Diophantine equation we have q′ ≥ 227q−1
570 , and

this satisfies (3.2) when q > 9.

• p = 23: Then p′ ∈ {14, 15, 16, 17, 18}. By the Diophantine equation we have q′ ≥ 259q−1
690 ,

and this satisfies (3.2) when q > 40.

• p = 29: Then p′ ∈ {18, 19, 20, 21, 22, 23}. By the Diophantine equation we have q′ ≥
337q−1

870 , and this satisfies (3.2) when q > 12.

The remaining finite cases can be checked by hand, and thus this case is complete.

Case 4: pq ≡ 29 mod 30, e0 = −2, 1/2 < q′/q < 3/5 and 0 < p′/p < 1/2.

It is easily checked that

∆(60pq′ − 8pq) = 1 = ∆(60pq′ − 8pq + 2),

∆(60pq′ − 8pq + 1) = 0.

Using our assumptions of p′ and q′ and the Diophantine equation we have that

60pq′ − 8pq + 2 < N0/2,

when p > 10 and q > 30p+4
3p−30 . These are satisfied in the following cases,

• p > 20

• p = 11, q > 111

• p = 13, q > 43

• p = 17, q > 25

• p = 19, q > 21

The case where 1/2 < p′/p < 3/5 and 0 < q′/q < 1/2 can be checked similarly, completing this case.
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Case 5: pq ≡ 29 mod 30, e0 = −2, 0 < q′/q < 1/2, 3/5 < p′/p < 1.

It is easily checked that

∆(45pq − 30p′q − 1) = 1 = ∆(45pq − 30p′q).

Using our assumptions on p′ and q′ and the Diophantine equation we have that

45pq − 30p′q < N0/2,

when p > 6 and q > 6p
p−6 . These inequalities are satisfied in the following cases,

• p > 12

• p = 11, q > 13

The case where 0 < p′/p < 1/2, 3/5 < q′/q < 1, can be checked similarly. Thus our proof is

complete.

Now we prove the other case of Σ(2, 3, 5, p, q).

Lemma 3.1.3. Let Y = Σ(2, 3, 5, 7, q). Then U ·HFred(Y ) 6= 0.

Table 3.7: pq ≡ 13 mod 30, p = 7, e0 = −3, for q sufficiently large

p′/p ∈
(
0, 1

5

)
p′/p ∈

(
1
5 ,

2
5

)
p′/p ∈

(
2
5 ,

3
5

)
q′/q ∈

(
0, 1

5

) 26pq 26pq 26pq
26pq + 1 26pq + 1 26pq + 1
26pq + 2 26pq + 2 26pq + 2

q′/q ∈
(

1
5 ,

2
5

) 26pq 26pq 26pq
26pq + 1 26pq + 1 26pq + 1
26pq + 2 26pq + 2 26pq + 2

q′/q ∈
(

2
5 ,

3
5

) 26pq 26pq
26pq + 1 26pq + 1
26pq + 2 26pq + 2

q′/q ∈
(

3
5 ,

4
5

) 26pq 26pq 1420q − 1890q′ − 7

26pq + 1 26pq + 1
...

26pq + 2 26pq + 2 1420q − 1890q′

q′/q ∈
(

4
5 , 1
) 26pq 26pq 520q − 420q′ − 2

26pq + 1 26pq + 1
...

26pq + 2 26pq + 2 520q − 420q′
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Table 3.8: pq ≡ 13 mod 30, p = 7, e0 = −3, for q sufficiently large

p′/p ∈
(

3
5 ,

4
5

)
p′/p ∈

(
4
5 , 1
)

q′/q ∈
(
0, 1

5

) 26pq 26pq
26pq + 1 26pq + 1
26pq + 2 26pq + 2

q′/q ∈
(

1
5 ,

2
5

) 26pq 26pq
26pq + 1 26pq + 1
26pq + 2 26pq + 2

q′/q ∈
(

2
5 ,

3
5

) 280q − 210q′ − 7
...

280q − 210q′

q′/q ∈
(

3
5 ,

4
5

) 60pq′ − 9pq
...

60pq′ − 9pq + 3

q′/q ∈
(

4
5 , 1
)

Proof. Consider Table 3.2. The largest value in this table is 27pq, it is easily checked that for

p = 7, 27pq < N0/2 holds when q > 42. The remaining finite cases can be easily checked and

then we have that Y = Σ(2, 3, 5, 7, q) satisfies U ·HFred(Y ) except for the following cases,

1. pq ≡ 1 mod 30, e0 = −3,

2. pq ≡ 29 mod 30, e0 = −2,

3. pq ≡ 13 mod 30, e0 = −3,

4. pq ≡ 17 mod 30, e0 = −2.

We will now address each of these cases separately.

Case 1: Consider Table 3.3. Excluding Type B cases, the largest value here is 22pq, and this

satisfies 22pq < N0/2 for p = 7 when q > 14
5 . Now it remains to check the Type B cases, but we

have already shown that 15pq + 30pq′ + 1 < N0/2 for q > 6. Thus this case is complete.

Case 2: Consider Table 3.6, the largest value here is 26pq + 2, excluding Type B cases. It

can be checked that for p = 7, 26pq + 2 < N0/2 is satisfied when q > 214/19. Now it remains to

check the Type B cases. Consider when q′/q < 1/2 and 3/5 < p′/p. We have already shown that

45pq − 30p′q < N0/2 when p > 6 and q > 6p
p−6 . Thus this is satisfied when q > 42 for p = 7. The

case where p′/p < 1/2 and 3/5 < q′/q can be checked similarly. Now consider when 1/2 < q′/q < 3/5
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Table 3.9: pq ≡ 17 mod 30, e0 = −2, p = 7

p′/p ∈
(
0, 1

5

)
p′/p ∈

(
1
5 ,

2
5

)
p′/p ∈

(
2
5 ,

3
5

)
q′/q ∈

(
0, 1

5

) 182q − 2
...

182q

q′/q ∈
(

1
5 ,

2
5

) 51pq − 60pq′ − 3 240q − 210q′ − 10
...

...

51pq − 60pq′ 240q − 210q′ − 10

q′/q ∈
(

2
5 ,

3
5

) 777q − 1260q′ − 7
...

777q − 1260q′

q′/q ∈
(

3
5 ,

4
5

) 26pq − 2 26pq − 2 26pq − 2
26pq − 1 26pq − 1 26pq − 1

26pq 26pq 26pq

q′/q ∈
(

4
5 , 1
) 26pq − 2 26pq − 2 26pq − 2

26pq − 1 26pq − 1 26pq − 1
26pq 26pq 26pq

Table 3.10: pq ≡ 17 mod 30, e0 = −2, p = 7

p′/p ∈
(

3
5 , 1
)

q′/q ∈ (0, 1)
26pq − 2
26pq − 1

26pq

and p′/p < 1/2. Since p = 7, we must have p′ ∈ {1, 2, 3} to satisfy p′/p < 1/2. When p′ = 1 we can

solve the Diophantine equation to find that

q′ =
173q − 1

210

but then q′/q < 173/210 and thus q′/q > 3/5, so this case cannot occur for p = 7 and p′ = 1. For

p′ = 2 we follow the same argument to find that

q′ =
143q − 1

210
,

but again this only satisfies 1/2 < q′/q < 3/5 for 1/38 < q < 1/17. Therefore this case cannot occur

for p = 7 and p′ = 2. For p′ = 3 we check that 60pq′− 8pq+ 2 < N0/2 is satisfied for q > 210
43 and

thus this case is complete. The case where q′/q < 1/2, 1/2 < p′/p < 3/5 can be checked to satisfy

60p′q − 8pq + 2 < N0/2 when q > 214/15. Thus this case is complete.
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Case 3: We proceed as in Case 2 and use the Diophantine equation to limit the possible values

for p′ in each case. Then we check to make sure that q′/q satisfies the desired condition; if not

that cell in the table is left blank and highlighted in red, as this case is not possible for p = 7.

For the cases that are possible, we have found values that give us the desired 2 consecutive

positive ones in our ∆-sequence, presented in Tables 3.7 and 3.8. It remains to check that these

occur before N0/2 in our ∆-sequence:

• 3/5 < p′/p < 4/5, 2/5 < q′/q < 3/5

It follows that p′ = 5, and thus 280q − 210q′ < N0/2 for q > −208
41 .

• 2/5 < p′/p < 3/5, 3/5 < q′/q < 4/5

It follows that p′ = 4, and thus 1420q − 1890q′ − 7 < N0/2 for q > 214
45 .

• 3/5 < p′/p < 4/5, 3/5 < q′/q < 4/5

It follows that p′ = 5, and thus 60pq′ − 9pq + 3 < N0/2 for q > 209
73 .

• 2/5 < p′/p < 3/5, 4/5 < q′/q < 1

It follows that p′ = 3, and thus 520q − 420q′ < N0/2 for q > 214
19 .

Case 4: We proceed exactly as in Case 3 and the values that give us the desired 2 consecutive

positive ones in our ∆-sequence are presented in Tables 3.9 and 3.10. It remains to check that

these occur before N0/2 in our ∆-sequence:

• 2/5 < p′/p < 3/5, 0 < q′/q < 1/5

It is easily checked that 182q < N0/2 for q > 210
19 .

• 1/5 < p′/p < 2/5, 1/5 < q′/q < 2/5

It follows that p′ = 2, and thus 51pq − 60pq′ < N0/2 for q > 2354
2331 .

• 2/5 < p′/p < 3/5, 1/5 < q′/q < 2/5

It follows that p′ = 3, and thus 240q − 210q′ − 10 < N0/2 for q > 64
15 .

• 1/5 < p′/p < 2/5, 2/5 < q′/q < 3/5

It follows that p′ = 2, and thus 777q − 1260q′ < N0/2 for q > 222
41 .
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3.3 Σ(2, 3, 7, p, q)

3.3.1 Preliminaries

We proceed exactly as in the Σ(2, 3, 5, p, q) case. Consider the Diophantine equation for the

Seifert fibered homology sphere

Y = Σ(2, 3, 7, p, q)

with solution

D = (e0, 1, a, b, p
′, q′),

by reducing this modulo 42 we are able to solve for the Diophantine solutions based on pq

mod 42.

pq ≡ 1 mod 42 =⇒ D = (e0, 1, 1, 1, p
′, q′), pq ≡ 23 mod 42 =⇒ D = (e0, 1, 2, 4, p

′, q′),

pq ≡ 5 mod 42 =⇒ D = (e0, 1, 2, 3, p
′, q′), pq ≡ 25 mod 42 =⇒ D = (e0, 1, 1, 2, p

′, q′),

pq ≡ 11 mod 42 =⇒ D = (e0, 1, 2, 2, p
′, q′), pq ≡ 29 mod 42 =⇒ D = (e0, 1, 2, 1, p

′, q′),

pq ≡ 13 mod 42 =⇒ D = (e0, 1, 1, 6, p
′, q′), pq ≡ 31 mod 42 =⇒ D = (e0, 1, 1, 5, p

′, q′),

pq ≡ 17 mod 42 =⇒ D = (e0, 1, 2, 5, p
′, q′), pq ≡ 37 mod 42 =⇒ D = (e0, 1, 1, 4, p

′, q′),

pq ≡ 19 mod 42 =⇒ D = (e0, 1, 1, 3, p
′, q′), pq ≡ 41 mod 42 =⇒ D = (e0, 1, 2, 6, p

′, q′).

Note in all the above cases, apq ≡ 1 mod 3 and bpq ≡ 1 mod 7.

We can also come up with a bound on e0 using the Diophantine equation:

−1 = 42pqe0 + 21pq + 14apq + 6bpq + 42p′q + 42pq′

−42pqe0 = 21pq + 14apq + 6bpq + 42p′q + 42pq′ + 1

|e0| =
21pq + 14apq + 6bpq + 42p′q + 42pq′ + 1

42pq

|e0| =
1

2
+
a

3
+
b

7
+
p′

p
+
q′

q
+

1

42pq

|e0| <
1

2
+

2

3
+

6

7
+
p

p
+
q

q
+

1

42 ∗ 11 ∗ 13
=

4028

1001
≈ 4.023.

Therefore e0 = −1,−2,−3,−4.

Using a similar simplification as we did for Σ(2, 3, 5, p, q) we are able to compute ∆(xpq)

and ∆(xpq ± 1) for the x values that satisfy the majority of our Σ(2, 3, 7, p, q) cases. These

values are presented in Tables 3.11 and 3.12.
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Table 3.11: Key values of ∆(xpq) and ∆(xpq ± 1) for Σ(2, 3, 7, p, q) and a = 1

b = 1, 2 b = 3 b = 4 b = 5, 6

∆(26pq − 1) 1− |e0| 1− |e0| 1− |e0| 2− |e0|
∆(26pq) 1 1 1 1

∆(26pq + 1) |e0| − 2 |e0| − 3 |e0| − 3 |e0| − 3

∆(35pq − 1) 2− |e0| 2− |e0| 2− |e0| 2− |e0|
∆(35pq) 1 1 1 1

∆(35pq + 1) |e0| − 2 |e0| − 2 |e0| − 2 |e0| − 2

∆(36pq − 1) 2− |e0| 2− |e0| 2− |e0| 2− |e0|
∆(36pq) 1 1 1 1

∆(36pq + 1) |e0| − 3 |e0| − 3 |e0| − 3 |e0| − 3

∆(39pq − 1) 2− |e0| 2− |e0| 3− |e0| 3− |e0|
∆(39pq) 1 1 1 1

∆(39pq + 1) |e0| − 2 |e0| − 2 |e0| − 3 |e0| − 3

3.3.2 Results

Now we are ready to prove Lemma 3.1.4.

Lemma 3.1.4. Let Y = Σ(2, 3, 7, p, q). Then U ·HFred(Y ) 6= 0.

As with Lemma 3.1.2, we wish to find values that provide us with 2 consecutive +1′s in our

∆-sequence that occur prior to N0/2. The values that satisfy this condition are found in Tables

3.13 and 3.14.

Proof. We must now show that the values in Tables 3.13 and 3.14 occur before N0/2. Since it is

clear that

26pq ≤ 35pq ≤ 36pq ≤ 39pq < 39pq + 1 < 39pq + 2

we need only to check that 39pq + 1 ≤ N0/2. It can be easily checked that this holds when

p > 6, and q ≥ 42p+ 4

7p− 42
,

which are satisfied in the following cases,

• p = 11, q > 25,

• p > 12.

The finite cases that do not satisfy these inequalities may be easily checked to satisfy

U ·HFred 6= 0.
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Table 3.12: Key values of ∆(xpq) and ∆(xpq ± 1) for Σ(2, 3, 7, p, q) and a = 2

b = 1, 2 b = 3 b = 4 b = 5, 6

∆(26pq − 1) 2− |e0| 2− |e0| 2− |e0| 3− |e0|
∆(26pq) 1 1 1 1

∆(26pq + 1) |e0| − 3 |e0| − 4 |e0| − 4 |e0| − 4

∆(35pq − 1) 3− |e0| 3− |e0| 3− |e0| 3− |e0|
∆(35pq) 1 1 1 1

∆(35pq + 1) |e0| − 3 |e0| − 3 |e0| − 3 |e0| − 3

∆(36pq − 1) 2− |e0| 2− |e0| 2− |e0| 2− |e0|
∆(36pq) 1 1 1 1

∆(36pq + 1) |e0| − 3 |e0| − 3 |e0| − 3 |e0| − 3

∆(39pq − 1) 2− |e0| 2− |e0| 3− |e0| 3− |e0|
∆(39pq) 1 1 1 1

∆(39pq + 1) |e0| − 2 |e0| − 2 |e0| − 3 |e0| − 3

Thus it remains to address the following when pq ≡ 1 mod 42 and e0 = −2. First let

1/2 < p′/p, and q′/q < 1/2. It can be easily checked that

∆(63pq − 42pq′ − 1) = 1 = ∆(63pq − 42pq′).

We must show that 63pq − 42pq′ < N0/2. This is true when

p′ >
41pq + 42p+ 42q

84q
.

Using that 1/2 < p′/p, the above is satisfied when p > 42 and q > 42p
p−42 . These inequalities are

satisfied in the following cases,

• p > 84

• p = 43, q > 1806

• p = 47, q > 394

• p = 53, q > 202

• p = 55, q > 177

• p = 59, q > 145

• p = 61, q > 134

• p = 65, q > 118

• p = 67, q > 112

• p = 71, q > 102

• p = 73, q > 98

• p = 79, q > 89

The case where p′/p < 1/2 and q′/q > 1/2 can be checked similarly. Thus our proof is complete.
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Table 3.13: General Cases for Y = Σ(2, 3, 7, p, q)

e0 = −1 e1 = −2 e0 = −3 e0 = −4

pq ≡ 1 mod 42
26pq − 1 See Table 3.14 26pq 26pq

26pq 26pq + 1 26pq + 1

pq ≡ 5 mod 42
26pq − 1 26pq − 1 39pq 35pq

26pq 26pq 39pq + 1 35pq + 1

pq ≡ 11 mod 42
26pq − 1 26pq − 1 36pq 26pq

26pq 26pq
... 26pq + 1

36pq + 3

pq ≡ 13 mod 42
26pq − 1 26pq − 1 35pq 26pq

26pq 26pq 35pq + 1 26pq + 1

pq ≡ 17 mod 42
26pq − 1 26pq − 1 26pq − 1 35pq

26pq 26pq 26pq 35pq + 1

pq ≡ 19 mod 42
26pq − 1 36pq 35pq 26pq

26pq 36pq + 1 35pq + 1 26pq + 1
36pq + 2

pq ≡ 23 mod 42
26pq − 1 26pq − 1 36pq 35pq

26pq 26pq
... 35pq + 1

36pq + 3

pq ≡ 25 mod 42
26pq − 1 36pq 26pq 26pq

26pq 36pq + 1 26pq + 1 26pq + 1
36pq + 1

pq ≡ 29 mod 42
26pq − 1 26pq − 1 36pq 26pq

26pq 26pq − 1 36pq + 1 26pq + 1

pq ≡ 31 mod 42
26pq − 1 26pq − 1 35pq 26pq

26pq 26pq 35pq + 1 26pq + 1

pq ≡ 37 mod 42
26pq − 1 36pq 35pq 26pq

26pq
... 35pq + 1 26pq + 1

36pq + 3

pq ≡ 41 mod 42
26pq − 1 26pq − 1 26pq − 1 35pq

26pq 26pq 26pq 35pq + 1

Table 3.14: pq ≡ 1 mod 42, e0 = −2

p′/p ∈
(
0, 1

2

)
p′/p ∈

(
1
2 , 1
)

q′/q ∈
(
0, 1

2

) 39pq 63pq − 42p′q − 1
39pq + 1 63pq − 42p′q
39pq + 2

q′/q ∈
(

1
2 , 1
) 63pq − 42pq′ − 1 63pq − 42pq′ − 1

63pq − 42pq′ 63pq − 42pq′
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3.4 Σ(2, 3, 11, 13, p)

3.4.1 Preliminaries

Before we proceed, we must first complete some algebraic preliminaries. This will follow the

general idea of the previous two sections, but we take a slightly different approach. Consider

the Seifert fibered homology sphere

Y = Σ(2, 3, 11, 13, p),

with Diophantine solutions

D = (e0, 1, a, b, c, p
′).

Then the Diophantine equation simplifies as follows

−1 = 858pe0 + 429p+ 286ap+ 78bp+ 66cp+ 858p′.

Reducing this modulo 3, 11 and 13 we get that

qp ≡ 2 mod 3, bp ≡ 10 mod 11, cp ≡ 12 mod 13.

We can also come up with a bound on e0 using the Diophantine equation:

−1 = 858pe0 + 429p+ 286ap+ 78bp+ 66cp+ 858p′

|e0| =
1

2
+
a

3
+

b

11
+

c

13
+
p′

p
+

1

858p

|e0| <
1

2
+

2

3
+

10

11
+

12

13
+
p

p
≈ 3.99

Therefore e0 = −1,−2,−3.

3.4.2 Results

We are now ready to prove the following.

Lemma 3.4.1. Let Y = Σ(2, 3, 11, 13, q). Then U ·HFred(Y ) 6= 0.

Proof. Consider the following,

∆(781p) = 1 + |e0|(781p)−
⌈

781p

2

⌉
−
⌈

781ap

3

⌉
−
⌈

781bp

11

⌉
−
⌈

781cp

13

⌉
−
⌈

781pp′

p

⌉
Using that

qp ≡ 2 mod 3, bp ≡ 10 mod 11, cp ≡ 12 mod 13,

and that

781 ≡ 1 mod 3, 781 ≡ 0 mod 11, 781 ≡ 1 mod 13,
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we know the value of the ceiling functions. Now we solve the Diophantine equation for p′,

p′ =
−1

858
− pe0 −

p

2
− ap

3
− bp

11
− cp

13
.

Now we are able to simplify ∆(781p) fully.

∆(781p) = 1 + |e0|(781p)− 781p+ 1

2
− 781ap+ 1

3
− 71bp− 781cp+ 1

13
− 781p′

= 1 + |e0|(781p)− 781p+ 1

2
− 781ap+ 1

3
− 71bp− 781cp+ 1

13

− 781

(
−1

858
− pe0 −

p

2
− ap

3
− bp

11
− cp

13

)
= 1 + |e0|(781p)− 781p+ 1

2
− 781ap+ 1

3
− 71bp− 781cp+ 1

13

+
781

858
+ 781pe0 +

781p

2
+

781qp

3
+

781bp

11
+

781cp

13

= 1 +
781

858
− 1

2
− 1

3
− 1

13

= 1.

Using this same process we have that

∆(781p+ 1) =


|e0| − 1, a = 1, c = 1

|e0| − 2, a = 1 and c 6= 1, or a = 2, c = 1

|e0| − 3, a = 2, c 6= 1

∆(781p− 1) =


2− |e0|, a = 1, c 6= 12

3− |e0|, a = 1 and c = 12, or a = 2, c 6= 12

4− |e0|, a = 2, c = 12

We can see in Table 3.15 the values that give us two consecutive ones, given conditions on

|e0|, a and c. Since 781p− 1 < 781p < 781p+ 1, we need to show that 781p+ 1 < N0/2. This is

easily checked to be true when p ≥ 6, which is always true for Y = Σ(2, 3, 11, 13, p). It remains

to check the following two cases,

1. |e0| = 2, a = 1, c 6= 1, 12

2. |e0| = 3, a = 1, c 6= 1, 12

Case 1: It can be checked that ∆(1287p − 858p′) = 1 and ∆(2387p − 858p′) = 3 − |e0| = 1.

Now it remains to check that 1287p− 858p′ < N0//2. We use the Diophantine equation to show

that

p′ ≥ 505p− 1

858
,
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Table 3.15: General Cases for Y = Σ(2, 3, 11, 13, p)

e0 = −1 e1 = −2 e0 = −3

a = 1, c = 1
781p− 1 781p 781p

781p 781p+ 1 781p+ 1

a = 1, c = 12
781p− 1 781p− 1 781p

781p 781p 781p+ 1

a = 1, c 6= 1, 12
781p− 1 781p

781p 781p+ 1

a = 2, c = 1
781p− 1 781p− 1 781p

781p 781p 781p+ 1

a = 2, c = 12
781p− 1 781p− 1 781p− 1

781p 781p 781p

a = 2, c 6= 1, 12
781p− 1 781p− 1

781p 781p

and then plug this into our above inequality. We see that 1287p − 858p′ < N0//2 is satisfied

when p > 860
151 ≈ 5.6, which is trivially true, and so this case is complete.

Case 2: It is easily checked that ∆(1573p − 858p′ − 1) = 1 and ∆(1573p − 858p′) = 1. We

find that 1573p− 858p′ < N0/2 when p ≥ 6.
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Chapter 4

Mapping Cone

4.1 Introduction

In this section we give the proper notation and theorems used to set up the mapping cone for

rational surgery on a knot in S3. The mapping cone formula was introduced by Ozsváth and

Szabó in [26], but we follow Gainullin’s general structure in [8].

4.2 Background

4.2.1 Setup

Once we have the full knot complex for a knot, C = CFK∞(K), we use the mapping cone to

compute Heegaard Floer homology of surgery on K. We have that C is homotopy equivalent

as a filtered complex to a complex where all filtration preserving differentials are trivial [27].

Therefore we can replace the group, viewed as a chain complex, with its homology at each

filtration level. We will work with this object, called the reduced complex.

This complex C has an associated U -action, which corresponds to translation by the vector

(−1,−1). C is invariant under this shift, so the group at filtration level (i, j) is the same as the

one at (i− 1, j − 1), and we can view U as the identity map between these. We know that U is

a chain map, and U is invertible, so C is an F[U,U−1] - module. It follows that C is generated

by elements at filtration level i = 0, and we will refer to this complex at filtration level (0, j)

as ĤFK(K, j).

We can now define the following quotient complexes of C.

A+
k (K) = C{i ≥ 0 or j ≥ k}, k ∈ Z,

and

B+ = C{i ≥ 0} ∼= CF+(S3).

We also have two chain maps vk : A+
k (K)→ B+, and hk : A+

k (K)→ B+. The map vk is simply
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projection, sending all generators with i > k to 0, and the identity elsewhere. The map hk first

projects onto C{j ≥ k}, then multiplies by Uk, and then identifies C{j ≥ 0} with C{i ≥ 0}
via a chain homotopy equivalence. This homotopy equivalence exists because both complexes

represent CF+(S3). It is known that vk is an isomorphism if k ≥ g(K) and hk is an isomorphism

if k ≤ −g(K), where g(K) is the genus of the knot [26].

Now we can define chain complexes

A+
i,p/q(K) =

⊕
n∈Z

(n,A+⌊
i+pn
q

⌋(K)),

and

B+ =
⊕
n∈Z

(n,B+).

We use the index n just to distinguish between different copies of the same group, and the index

i represents the Spinc-structure. Then we have a chain map

D+
i,p/q : A+

i,p/q → B
+,

where D+
i,p/q is given by an appropriate sums of vk and hk, which we now define. We require

vk : (n,A+
k (K)→ (n,B+), and hk : (n,A+

k (K)→ (n+ 1, B+). We can define this map explicitly

as follows,

D+
i,p/q({k, ak})k∈Z) = {(k, bk)}k∈Z, where bk = v⌊ i+pk

q

⌋(ak) + h⌊ i+p(k−1)
q

⌋(ak−1).

The complexes A+
k (K) and B+ inherit a relative Z-grading from C. Now let X+

i,p/q denote the

mapping cone of D+
i,p/q. This has a relative Z-grading by requiring D+

i,p/q decreases the grading

by 1.

Theorem 4.2.1 (Ozsváth-Szabó, [26]). There is a relatively graded isomorphism of F[U ]-

modules

H∗

(
X+
i,p/q

)
∼= HF+

(
S3
p/q(K), i

)
.

The picture you should have in your head for the mapping cone is depicted in Figure 4.1 for

2/3 surgery on some knot in S3. We have 3 copies of each A+
i and each B+

i , which the subscripts

denote. We also have that the hk maps will move 2 groups horizontally. For general p/q surgery

we will have q copies of each group and the hk maps will move p groups horizontally, moving

right for positive p and left for negative p.

Since we know that vk is an isomorphism if k ≥ g(K) and hk is an isomorphism if k ≤ −g(K),

when we are working with a specific knot, we know much of the mapping cone is acyclic. We can

delete this acyclic part, which we will refer to as the truncated mapping cone. This truncated

mapping cone is depicted for 2/3 surgery of some genus 2 knot in S3 in Figure 4.2

Now let A+
i,p/q(K) = H∗(A

+
k (K)) and B+ = H∗(B

+), A+
i,p/q(K) = H∗(A+

i,p/q(K)), B+ =
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A+
−2 A+

−1 A+
−1 A+

−1 A+
0 A+

0 A+
0 A+

1 A+
1 A+

1 A+
2

B+
−2 B+

−1 B+
−1 B+

−1 B+
0 B+

0 B+
0 B+

1 B+
1 B+

1 B+
2

· · · · · ·

Figure 4.1: The Mapping cone for 2/3 surgery on a knot K ⊂ S3. The vk maps are red, hk
maps are blue.

A+
−1 A+

−1 A+
−1 A+

0 A+
0 A+

0 A+
1 A+

1 A+
1

B+
−1 B+

0 B+
0 B+

0 B+
1 B+

1 B+
1

Figure 4.2: The truncated mapping cone for 2/3 surgery on a genus 2 knot K ⊂ S3. The vk
maps are red, hk maps are blue.

H∗(B+) and let vk,hk and D+
i,p/q denote the maps induced by vk, hk and D+

i,p/q on homology

respectively.

The short exact sequence

0 −→ B+ ι−→ X+
i,p/q

j−→ A+
i,p/q(K) −→ 0

induces the exact triangle

A+
i,p/q(K) B+

H∗

(
X+
i,p/q

)
∼= HF+

(
S3
p/q(K), i

)
.

D+
i,p/q

ι∗
j∗

All maps above are U -equivariant.

4.2.2 Previous Work

From the exact triangle we have the following,

Corollary 4.2.2. (Gainullin, [8, Section 2]) If the surgery slope p/q is positive, then the map

D+
i,p/q will be surjective, so HF+

(
S3
p/q(K), i

)
∼= ker

(
D+
i,p/q

)
.

We need to establish some important decompositions of the maps given earlier. First we

have that we can decompose A+
k (K) as A+

k (K) ∼= AT
k (K)⊕Ared

k (K), where Ared
k (K) is a finite-

dimensional vector space in the kernel of some power of U , and AT
k (K) ∼= T +. We also have

an isomorphism φ : A+
k (K) → A+

−k(K) that is U -equivariant, grading preserving, and satisfies

vk ◦ φ = hk, where we view vk and hk as maps into CF+(S3), and φ as an isomorphism from
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CF+(S3) to itself [23]. Note, we will often drop K from the above notation and refer to A+
k (K)

as simply A+
k .

We have that

D+
i,p/q = DT

i,p/q ⊕Dred
i,p/q

where the first map is the restriction of D+
i,p/q to ATi,p/q(K) =

⊕
n∈Z T + and the second one is

the restriction to Aredi,p/q(K). Similarly we have restrictions of vk and hk to T + which will just

be multiplication by some non-negative powers of U . These powers of U will be denoted by Vk

and Hk. We will need the following properties of these integers, (see [22, Section 2], [27, Section

7], [11, Lemma 2.5])

Vk ≥ Vk+1 and Hk ≤ Hk+1, ∀k ∈ Z, (4.1)

Vk = H−k, ∀k ∈ Z, (4.2)

Vk → +∞ as k → −∞ and Hk → +∞ as k → +∞ (4.3)

Vk = 0 for k ≥ g(K) and Hk = 0 for k ≤ −g(K), (4.4)

Vk − 1 ≤ Vk+1 ≤ Vk, ∀k ∈ Z, (4.5)

Hk = Vk + k, ∀k ∈ Z. (4.6)

Finally, we state a Corollary of Gainullin that we will reference frequently in the next section.

Corollary 4.2.3. ([8, Corollary 30]) Ug · Aredi,p/q = 0.

4.3 Genus 1 Results

The goal of this section is to prove Theorem 1.2.3. Since we are working with Seifert fibered

integral homology spheres in this section, our spaces will only have one Spinc-structure, thus

we will often drop the index i as it is not important for our purposes. We will also often drop

the p/q subscript if it is clear what surgery we are discussing.

4.3.1 Preliminary Proofs

Before proving Theorem 1.2.5, we must prove some preliminary results about the vk and hk

maps, and subsequently, Vk and Hk.

Lemma 4.3.1. Let K be a knot in S3 with genus g. Then Hi ≤ g when i ≤ g and Vi ≤ g when

i ≥ 0.

Proof. By (4.6) Hg = Vg + g and by (4.4) Vg = 0. Therefore Hg = g. By (4.1) we have that

Hi ≤ g for i ≤ g. Since V0 = H0 by (4.6), and H0 ≤ g, we know that V0 ≤ g. Then by (4.1) we

have that Vi ≤ g when i ≥ 0.
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Lemma 4.3.2. For a genus 1 knot K we have that U ·HFred(S3
±1(K)) = 0.

Proof. By the mapping cone formula HF+(S3
1(K)) = H∗(A

+
0 ) and by Corollary 4.2.3 we have

Ug(K) ·H∗(Ared0 ) = 0,

where g(K) is the genus of K, thus

U ·HFred(S3
1(K)) = 0.

We know that S3
p/q(K) = −S3

−p/q(K), where K denotes the the reflection of K, [24]. Thus it

follows that

S3
+1(K) = −S3

−1(K).

Since K and K are both genus 1 knots it follows that

U ·HFred(S3
−1(K)) = 0,

by the arguments for +1 surgery.

Before we proceed, we must introduce the concept of levels, a way to refer to the relative

grading of A+
k and B+

k . We define level 0 to contain the bottom of T +, and those elements

that have this same grading, call this grading g. Then level 1 will consist of those elements in

grading g + 2, level 2 will consist of those elements in grading g + 4. Thus in general elements

in grading g+ 2k will be in level k. Elements in different parity of grading will be in half levels.

So an element in grading g + 2k + 1 will be in level 2k+1
2 .

Example 4.3.3. Consider A+
0 in Figure 4.3. The ai’s are the vertices in A+

0 , while the other

elements are in Ared
0 . We see that a0 is the bottom of the tower, and thus is in level 0. The only

generators in different parity of grading are w and z. We can then say all elements are in the

following levels,

Level 0: a0, v, y

Level 1: a1, x

Level 2: a2

Level 3: a3, u

Level 3
2 : w

Level 5
2 : z

Remark 4.3.4. Note that linear combinations of elements in half levels will always be sent to

0 under the U -action by Corollary 4.2.3. Thus elements in half levels can never contribute to

U ·HFred being nonzero, so we need not discuss them to prove Theorem 1.2.3.

Now we use Lemma 4.3.2 to restrict the allowable maps for v0 and h0. Consider Figure 4.4,

which depicts the truncated mapping cone for -1 surgery on a genus 1 knot. This figure shows

the labeling used to refer to elements of AT
0 , BT

0 and BT
−1, where the subscript of the element

refers to the level it is in.
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k + 6

k + 4

k + 2

k

U

a0

a1

a2

a3u

v

w

x

y

z

A+
0

Figure 4.3: Levels of A+
0

A+
0

a0

a1

a2

a3

Ared
0

B+
−1

β0

β1

β2

β3

B+
0

γ0

γ1

γ2

γ3

h0 v0

Figure 4.4: -1 Surgery Mapping Cone

Remark 4.3.5. Note we have only drawn a box to represent Ared
0 , and neither of the B+

complexes have a reduced part as they represent CF+(S3).

Lemma 4.3.6. Let xi be in level i of Ared
0 . Then v0(xi) = 0 = h0(xi) for i ≥ V0 + 1, or i < 0.

Proof. We know that v0 must send xi to an element in level i− V0 of B+
0 , due to the grading

restriction on v0. Therefore if i < 0, v0(xi) = 0 as there are no elements in B+
0 at level i for

negative i. Now consider i ≥ V0 + 1. Assume indirectly that v0(xi) = γi−(V0). Then we have

that

U(v0(xi)) = U · γ(i−V0) = γ(i−V0−1) 6= 0, since i ≥ V0 + 1.

But by the U -equivariance of v0 we also have

U(v0(xi)) = v0(U · xi) = v0(0) = 0.

Thus we have a contradiction so v0(xi) = 0. It can be shown that h0(xi) = 0 using the same

arguments.

Lemma 4.3.7. Let V0 = H0 = 1 and x be in level 1 of Ared
0 . Then v0(x) = 0 = h0(x).
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Proof. Due to the grading restrictions on v0 and h0 we know that v0(x) = 0 or v0(x) = γ0 and

similarly h0(x) = 0 or h0(x) = β0. Thus the following three cases are the only possible maps for

v0 and h0 besides v0(x) = 0 = h0(x). We will show that in each case we get a contradiction,

and thus v0(x) = 0 = h0(x) must hold.

Case 1: Let h0(x) = β0, v0(x) = γ0. Here we have

D+(x+ a1) = 2β0 + 2γ0 = 0.

Since we are working with −1-surgery we have that x+a1 ∈ ker(D+) ∼= HFred. This contradicts

Corollary 4.3.2, and our proof is complete.

Case 2: Let h0(x) = β0, v0(x) = 0. Recall there exists an isomorphism φ : A+
0 → A+

0 that

is U -equivariant, grading preserving, and satisfies v0 ◦ φ = h0. Therefore v0(φ(x)) = γ0, and

h0(φ(x)) = 0. It follows that φ(x) 6= x, and U · φ(x) = 0 by the U -equivariance of φ. Assume

indirectly that φ(x) = a1 + r where r ∈ Ared0 . Then U · (a1 + r) = a0. But this contradicts the

U -equivariance of φ, so φ(x) ∈ Ared0 . Then we have

D+(a1 + x+ φ(x)) = β0 + γ0 + β0 + γ0 = 0.

Since we are working with −1-surgery we have that x+a1 ∈ ker(D+) ∼= HFred. This contradicts

Corollary 4.3.2, and our proof is complete.

Case 3: Let h0(x) = 0, v0 = γ0. This is argued similarly to case 2.

Thus we have shown that the only allowable maps for v0 and h0 must satisfy v0(x) = 0 =

h0(x), for any element x in level 1 of Ared
0 .

Proposition 4.3.8. Let K be a genus 1 knot K in S3, and let x be in level i of Ared
0 . Then

v0(xi) = 0 = h0(xi) for i 6= 0.

Proof. This follows directly from Lemmas 4.3.6 and 4.3.7.

Given these restrictions, we are now ready to prove Theorem 1.2.5. Figure 4.5 depicts the

truncated mapping cone for 1
n surgery on genus 1 knots for positive n. We consider the element

aj(0,i) to be in level j of the ith copy of A+
0 , denoted A+

(0,i). We have a similar notation for bl(0,k)

in level l of B+
0,k.

4.3.2 Proof of Theorem 1.2.5

Now we are ready to prove our main result for genus 1 knots.

Theorem 1.2.5. For a genus 1 knot K and n ∈ Z we have that U ·HFred(S3
1/n(K)) = 0.
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Figure 4.5: 1
n surgery mapping cone for a genus 1 knot

Proof. Assume n > 0. By Proposition 4.3.8, we can write any element of ker(D+
1/n) as A + R

where

A = ai(0,1) + ai(0,2) + · · ·+ ai(0,n)

for i ≥ 0, and R is the sum of elements in Ared. Additionally, any element at level 0 could also

be in ker
(
D+

1/n

)
. We need not consider these elements asU · y for y in level 0 is 0. We know

that A is in the tower as by construction. Thus HFred(S
3
1/n(K)) consists of elements in Ared0 .

Therefore U ·HFred(S3
1/n(K)) = 0 by Corollary 4.2.3, for positive n.

Now consider negative surgery. We know that S3
1/n(K) = −S3

−1/n(K) where K is the mirror

of K. Since K and K are both genus 1 knots it follows that

U ·HFred(S3
−1/n(K)) = 0

by the arguments for positive 1
n surgery above.

Genus 2 Results

4.3.3 Preliminaries

In this section we will work with ±2 surgery on genus 2 knots. For ±2 surgery we will

have two Spinc-structures, which we will call s and t. Specifically, we choose s such that

HF+(S3
+2(K), s) ∼= ker(D+

s ), where ker(D+
s ) is the appropriate sum of h−1 and v1. Then

HF+(S3
+2(K), t) ∼= ker(v0).
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Before we look at the mapping cone, we introduce map factorizations of vk and hk, [22].

The map vk factors through vk+1 via the following,

A+
k

f−→ A+
k+1

v+k+1−−−→ B+.

The map f sends every element [x, i, j] with i ≥ 0 or j ≥ k+1 to itself, and sends everything

else to 0. We have a similar factorization for hk+1 via hk,

A+
k+1

U−→ C{i ≥ −1, j ≥ k} ψ−→ A+
k

h+k−−→ B+.

Here ψ sends everything with i = −1 to 0, and everything else to itself. Now we introduce

an additional subquotient of CFK∞, which we will call the strip, and write as Sk. We define

this as follows,

Sk = {[x, i, j] : j = k, i < 0},

and we refer to the homology of the strip as Hk. It is from the structure CFK∞ that U ·Hk = 0,

regardless of k. We also have a clear inclusion Sk ↪→ Ak as modules. Now using the map

f : Ak → A+
k+1 we have the following short exact sequence,

0→ Sk
ι−→ A+

k

f−→ A+
k+1 → 0,

which induces the following exact triangle,

A+
k A+

k+1

Hk.

f∗

dι∗

Now we are ready to prove some preliminary results. The truncated mapping cone for +2-

surgery on a genus 2 knot is shown in Figure 4.6, and we follow this same notation.

Lemma 4.3.9. Let x ∈ Ared
1 at level i ≥ 2. Then v1(x) = 0.

Proof. Let x ∈ Ared
1 at level i ≥ 2. Assume indirectly that v1(x) 6= 0. By the grading restrictions

of v1, we know that v1(x) = b(−1,i−V1). If V1 = 2, we have that H1 = 3, but this contradicts

Lemma 4.3.1, so we must have V1 ≤ 1.

We know that v2 : A+
2 → B+ is an isomorphism since we are working with genus 2 knots. By

the map factorization above we have that v1(x) = v2(f(x)) = b(−1,i−V1). Thus f(x) = a(2,i−V1),

following the same naming conventions seen in Figure 4.6.

Now consider f(x + a(1,i)). By the grading restrictions this maps to 2a(2,i−V1) = 0 as we

are working over Z2. Thus x + a(1,i) ∈ ker(f). By the exact triangle above it follows that

x+ a(1,i) ∈ Im(ι∗). Thus there exists some element y ∈ Hk, that satisfies ι∗(y) = x+ a(1,i). By

the U equivariance of ι∗ we have that

ι∗(Uy) = Uι∗(y) = U(x+ a(1,i)),
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which is nonzero, because we chose i 6= 0. But thus Uy nonzero for y ∈ Hk. This is a contra-

diction as U ·Hk = 0, and thus our proof is complete.

Lemma 4.3.10. Let x ∈ Ared
−1 at level i ≥ 2. Then h−1(x) = 0.

Proof. Let x ∈ Ared
−1 at level i ≥ 2. Assume indirectly that h+

−1(x) 6= 0. By the grading

restrictions on h−1 we know that h−1(x) = b(−1,i−H−1).

Recall there exists an isomorphism φ : A+
−1 → A+

1 that is U -equivariant, grading preserving,

and satisfies v1 ◦ φ = h−1. Thus we know that v1(φ(x)) = b(−1,i−H−1), and φ(x) occurs at

level i, since V1 = H−1. Since U2 · x = 0 by Corollary 4.2.3, by the U -equivariance of φ we

have that U2 · φ(x) = 0. Assume indirectly that φ(x) = a(1,i) + r where r ∈ Ared0 . Then

U2 · (a(1,i) + r) = a(1,i−2), as we assumed i ≥ 2. But this contradicts the U -equivariance of φ,

so φ(x) ∈ Ared0 . Then we have that v1(φ(x)) = b(−1,i−H−1), which contradicts Lemma 4.3.9 and

so our proof is complete.

h−1 v1

A+
−1

a(−1,0)

a(−1,1)

a(−1,2)

a(−1,3)

Ared
−1

A+
1

a(1,0)

a(1,1)

a(1,2)

a(1,3)

Ared
1

B+
−1

b(−1,0)

b(−1,1)

b(−1,2)

b(−1,3)

Spinc-structure s

A+
0

a(1,0)

a(1,1)

a(1,2)

a(1,3)

Ared
0

Spinc-structure t

Figure 4.6: +2 surgery mapping cone for a genus 2 knot

4.3.4 Results

Lemma 4.3.11. Let K be a genus 2 knot in S3, then

U2 ·HFred
(
S3
±2(K), t

)
= 0.

53



Proof. First we consider +2 surgery on a genus 2 knot. Here we have HF+(S3
2(K), t) = A+

0 ,

and thus HFred(S
3
2(K)) ∼= Ared

0 . Then by Corollary 4.2.3 we have that U2 · HFred(S3
2(K)) =

0, as desired. Now consider −2 surgery on a genus 2 knot, let Y = S3
−2(K). We have that

S3
−2(K) = Y = −S3

2(K), where K is the mirror of K. Thus we have that

U2 ·HFred (Y, t) = U2 ·HFred
(
S3
−2(K), t

)
∼= U2 ·HFred

(
S3

2(K), t
)

= 0.

Lemma 4.3.12. Let K be a genus 2 knot in S3, then

U2 ·HFred
(
S3
±2(K), s

)
= 0.

Proof. Consider +2 surgery on a genus 2 knot. We know that

HF+
(
S3

+2(K), s
)

= ker(D+
i,2),

for positive surgeries. By Lemmas 4.3.9 and 4.3.10, we know that elements of Ared±1 at level i ≥ 2

must be sent to 0.

Consider elements in ker
(
D+
i,2

)
that come from level 2 or above in A+

±1. These elements

consist of sums a+ x, where a = a(1,i) + a(−1,i) and x is the sum of elements in Ared
±1 . Since we

took a and x to be elements that occur at or above level 2, we know U2 · (a+x) = U2 ·a, which

is zero in HFred
(
S3

+2(K), s
)
. Thus U2 ·HFred

(
S3

+2(K), s
)

= 0 in this case.

Now consider elements of the form a + x as above, where these are appropriate sums such

that a + x ∈ ker(D+
i,2) and all elements summed are at level 1 or below. By construction

U2(a+ x) = 0 in this case, as anything in the tower at level 1 or 0 will be sent to 0 by U2, and

any U2 · x = 0 by Corollary 4.2.3. Thus

U2 ·HFred
(
S3

2(K), s
)

= 0.

Now we must address −2 surgery. Let Y = S3
−2(K), where K is a genus 2 knot. We have

that S3
−2(K) = Y = −S3

2(K), where K is the mirror of K. Thus we have that

U2 ·HFred (Y, s) = U2 ·HFred
(
S3
−2(K), s

)
= U2 ·HFred

(
−S3

2(K), s
)

= 0.
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Theorem 1.2.6. Let K be a genus 2 knot in S3, then the following holds for any Spinc-structure

i.

U2 ·HFred
(
S3
±2(K), i

)
= 0.

Proof. This follows directly from Lemmas 4.3.11 and 4.3.12.
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