
ABSTRACT

RANDALL, ERIC BENJAMIN. Mathematical Analysis of Autonomic Control of Blood Pressure and
Heart Rate. (Under the direction of Mette S. Olufsen.)

Autonomic dysfunction (AD) is characterized by inadequate regulation of the parasympathetic

and sympathetic nervous systems hindering the ability of the cardiovascular system to maintain

homeostasis. The most prevalent AD conditions of the cardiovascular system cause a wide array

of disorders affecting the reflexive control of heart rate and blood pressure, including orthostatic

intolerance, postural orthostatic tachycardia syndrome, and orthostatic hypotension. Diagnosis of

AD is complicated by the inherent difficulty in measuring neural signals. As a result, AD function

is typically assessed indirectly by interpreting measurements of heart rate and blood pressure.

One method for assessing AD is the Valslava maneuver (VM), a clinical test where the subject

forcibly expires against a resistance while maintaining an open glottis. The VM affects heart rate

and blood pressure by imposing an increased intrathoracic pressure, which elicits a signaling

cascade modulating the autonomic response. We focus on the mathematical modeling of the

parasympathetic and sympathetic outflow in response to the VM.

This study develops a mechanistic open-loop neurological control model taking systolic blood

pressure and thoracic pressure as inputs and predicting heart rate. This open-loop formulation

provides the basis for a model-based analysis of a cohort of 34 control subjects and 5 patients

with AD. The model is a system of ordinary and delay differential equations with 6 states and 26

parameters. Results indicate that modeling the VM is essential in the pathological characterization

of AD patients.

The model is analyzed using local and global sensitivity analyses and stability analysis. Local

sensitivity analysis (LSA) gives information about the sensitivity of the model output with respect to

the parameters evaluated at given parameter values. We conduct LSA to determine a subset of pa-

rameters to optimize to determine patient-specific outcomes via the structured correlation method.

Global sensitivity analysis (GSA) assesses parameter influence by exploring the physiological param-

eter space. To conduct this analysis, we develop a new metric for assessing time-dependent model

outputs that incorporates fast, transient deviations from baseline behavior, termed limited-memory

Sobol’ indices, which is used to inform a model reduction and selection protocol. Lastly, we use

stability analysis to study the behavior of the model solutions. We found that two parameters, the

sympathetic delay Ds and the sympathetic time-scale τs , are related, and simultaneous adjustment

of these parameters can result in unstable modes.

Lastly, we develop a closed-loop model coupling a cardiovascular model to the open-loop

neurological model that predicts blood pressure, heart rate, and autonomic responses to the VM.

We develop four submodels analyzing the behavior of a control subject and three patients with



AD. The patients exhibit the M, N, and V responses categorized by Palamarchuk et al. [94] believed

to represent three distinct AD pathophysiologies. The M response is hypothesized to be caused

by overactive parasympathetic and sympathetic activity, N by delayed and sustained sympathetic

activity, and V by diminished parasympathetic and sympathetic activity.
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CHAPTER

1

INTRODUCTION

Autonomic nervous system dysfunction (AD) is a broad term referring to disorders associated with

the regulation of the parasympathetic and sympathetic nervous systems. These systems maintain

homeostasis in humans through complex interactions of positive and negative feedback mecha-

nisms. When one or both are impaired, serious complications arise, involving expensive health

care costs and decreased quality of life. AD can occur concomitantly with other diseases, such as

diabetes mellitus and Parkinson’s disease [75, 95], be idiopathic [132], or be induced by other factors,

e.g., in young females receiving the human papillomavirus (HPV) vaccine [18]. The most prevalent

AD conditions affect the cardiovascular system [40], causing:

• Orthostatic intolerance (OI) characterized by decreased fidelity of the cardiovascular control

during posture changes [132].

• Postural orthostatic tachycardia syndrome (POTS) characterized by a substantial increase in

heart rate due to posture changes [139].

• Orthostatic hypotension (OH), or in more severe case pure autonomic failure (PAF), charac-

terized by a decrease in blood pressure in response to posture changes [19].

Diagnosis of specific AD disorders is difficult clinically due to the myriad of shared symptoms, e.g.,

fatigue, widespread pain, dizziness, and syncope. Since measuring neural activity directly requires in-

vasive techniques and anesthetization, which impairs autonomic function, AD is commonly studied
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and assessed indirectly by analyzing patterns in blood pressure, heart rate, and electrocardiogram

measurements.

Pattern recognition [94] and spectral techniques [12, 122] are clinical methods typically used

for data analysis. The former provides classifications for patient outcomes but cannot explain why

these patterns arise. The latter are useful in assessing frequency-based responses but are unable to

characterize signal transduction processes via specific pathways. In this study, we explore a model-

based analysis approach to infer the underlying neurological mechanisms and provide hypotheses

for the etiologies of patients with AD. We develop simple yet informative models that interrogate

hypotheses of how these disorders manifest and compare simulations to data. A major focus of this

work is in rendering the models patient-specific as opposed targeting the average individual [64, 69,

91]. While the latter are excellent at understanding population behavior, the former is powerful as it

can provide insight into the AD of an individual patient.

Specific tests evaluating the function of the autonomic nervous system include deep breathing,

active standing, head-up tilt, and the Valsalva maneuver (VM) [48]. This dissertation primarily

focuses on the latter, in which the subject forcibly exhales against a resistance increasing intratho-

racic pressure [41]. We choose to analyze the VM because of its unique ability to affect both the

parasympathetic and sympathetic nervous systems via the baroreceptor reflex (baroreflex) and its

reproducibility in the clinical setting [102].

There are many ways to analyze the behavior of a model. In this study, we use local sensitivity

analysis to determine parameter influence on the model output and subset selection to determine

parameters that can be estimated given the model and data [87, 100]. We perform a global sensitivity

analysis on the model assessing the influence of the parameters through exploration of the physio-

logical parameter space. Due to the transient nature of the VM, we develop a new metric termed

limited-memory Sobol’ indices for problems with fast, yet significant, disturbances. Additionally,

we employ stability analysis to determine the types of solutions our model can generate, providing

constraints on the system to ensure appropriate model behavior.

An overarching theme of this work is the analysis of discrepancies between healthy control

subjects and patients with AD. To this end, we have three goals.

1. Development of physiological models to analyze the autonomic response to the VM:

(a) Open-loop neurological model predicting heart rate as a function of systolic blood

pressure and thoracic pressure.

(b) Closed-loop model coupling a cardiovascular model and the open-loop model that pre-

dicts heart rate and blood pressure in a control subject and patients with AD exhibiting

M, N, and V responses.
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2. Patient-specific modeling using parameter estimation to predict responses for 34 control

subjects and 5 patients with AD exhibiting V responses.

3. Model analysis investigating the effects of model components and parameters on the model

output via local and global sensitivity analyses and stability analysis.

Overview of dissertation

This work is the culmination of four studies at various stages of preparation.

• Chapter 2 discusses the physiological background focusing on the control mechanisms mod-

ulating the cardiovascular system.

• Chapter 3 explains the data acquisition protocol and numerical preprocessing of the data.

• Chapter 4 develops and analyzes a patient-specific open-loop neurological model of the

autonomic response to the Valsalva maneuver predicting heart rate as a function of blood

pressure and thoracic pressure. This chapter also conducts a local sensitivity analysis and

determines a subset of parameters to optimize, which is compared across 34 control subjects

and 5 patients with AD. (currently under review)

• Chapter 5 performs a stability analysis on the open-loop model and determines regions of

instability.

• Chapter 6 implements a global sensitivity analysis (GSA) using Sobol’ indices on the open-loop

model. This chapter compares scalar Sobol’ indices to the performance of three methods of

computing time-varying Sobol’ indices: pointwise, generalized, and limited-memory (new).

This chapter also describes a GSA-informed model reduction and selection protocol.

• Chapter 7 develops a lumped-parameter cardiovascular model coupled to the open-loop

model, predicting the effects of the baroreflex for a control subject and 3 subjects with AD

exhibiting the M, N, and V responses, respectively.
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CHAPTER

2

PHYSIOLOGICAL BACKGROUND

This chapter provides an overview of the physiological function of the cardiovascular system and

its regulation by the autonomic nervous system, focusing on short-term heart rate and blood

pressure regulation and its pathophysiology in patients with autonomic dysfunction (AD). Most

of the physiological facts discussed here are from the texts by Boron and Boulpaep [16] and Hall

[40]. Section 2.1 describes the cardiovascular system. Section 2.2 discusses regulatory mechanisms

impacting the cardiovascular system, including the baroreceptor reflex, the cardiopulmonary reflex,

and the respiratory sinus arrhythmia. Section 2.3 reviews common autonomic tests in clinical

practice. Section 2.4 discusses pathophysiological responses.

2.1 Cardiovascular system

The heart acts as the pump for the cardiovascular system (CVS) bringing blood to the body. The

primary function of the CVS is oxygen (O2) distribution vital for cellular respiration, which gives

off carbon dioxide (CO2) as a waste product.The CVS also transports nutrients used for growth and

repair, neurotransmitters and hormones to the muscles and viscera for signal transduction, and

immune agents to their target areas for defense purposes. As shown in Figure 2.1, the two branches

of the CVS are the systemic circulation, which transports oxygenated blood to the body, and the

pulmonary circulation, which transports deoxygenated blood past the lungs for gas exchange.
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Figure 2.1 The cardiovascular system. The heart pumps oxygenated blood from the left ventricle to the
aorta, which branches into the systemic arteries, arterioles, and capillaries where gas exchange occurs.
Deoxygenated blood travels through the venules, veins, and superior and inferior vena cava, ultimately
draining into the right atrium and ventricle. The right ventricle pumps the blood, albeit at a lower pressure,
to the pulmonary circulation via the pulmonary arteries. Gas exchange occurs at the pulmonary capillaries
and oxygenated blood travels from the lungs to the left atrium via the pulmonary veins. The left atrium
drains into the left ventricle, and the cycle begins again. Reprinted with permission from Basicmedical Key
(https://basicmedicalkey.com/the-circulatory-system-2/).
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Table 2.1 Components of cardiovascular hemodynamics analogous to an electrical circuit.

Cardiovascular System Electrical Circuit

Description Units Symbol Relation Description Units Symbol Relation

Volume mL V Charge C Q

Flow mL sec−1 F F =
dV

dt
Current A I I =

dQ

dt

Pressure mmHg P Voltage V V

Resistance mmHg sec mL−1 R R =
∆P

F
Resistance Ω R R =

∆V

I

Conductance mL mmHg−1 sec−1 G G =
1

R
Conductance S G G =

1

R

Compliance mL mmHg−1 C C =
dV

dP
Capacitance F C C =

dI

dV

Elastance mmHg mL−1 E E =
1

C
Elastance F−1 E E =

1

C

Inertance mmHg sec2 mL−1 L P =−L
dF

dt
Inductance V sec A−1 L V =−L

dI

dt

Electrical circuit units: C - coulomb, A - ampere, V - volt, Ω - Ohm, S - siemens, F - farad
The resistance relation is given by Ohm’s Law.
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The left ventricle contracts, pumping O2-rich blood to the systemic circulation via the aorta,

which branches into the arteries, arterioles, and capillaries. Gas exchange occurs in the capillary beds,

transporting O2 to and receiving CO2 from the tissues. The venules, veins and vena cava transport

the CO2-rich blood to the right atrium, which drains into the right ventricle. After contraction, the

right ventricle pumps CO2-rich blood to the pulmonary circulation via the main pulmonary artery,

which branches rapidly into the small arteries, arterioles, and capillaries surrounding the alveoli of

the lungs. At this level, gas exchange occurs and O2 diffuses into the capillaries and CO2 diffuses into

the alveoli. The oxygenated blood passes through the small veins into the pulmonary veins, which

drain into the left atrium. The left atrium drains into the left ventricle, and the cycle starts again.

2.1.1 Arterial and venous hemodynamics

The CVS can be thought of an analog to and electrical RC circuit (summarized in Table 2.1) in which

current is analogous to flow (F , mL sec−1), voltage to pressure (P , mmHg), charge to volume (V ,

mL), and capacitance to compliance (C , ml mmHg−1), while resistance (R , mmHg sec mL−1) is the

same in both formulations. Under the steady flow assumption, the CVS obeys Ohm’s Law

∆P = F R , (2.1)

P , F , and R vary over time and R changes depending on location in the vasculature. According to

Poiseuille’s Law for a rigid tube of small diameter, the resistance is related to the radius (r , cm) of

the blood vessel via

R =
8ηl

πr 4
, (2.2)

where η (mmHg s cm3 mL−1) is the viscosity and l (cm) is the length of the vessel. To determine

overall resistance across a vascular bed (Rt o t , mmHg sec mL−1), we use electrical circuit theory to

condense n resistances in series via

Rt o t =R1+R2+ · · ·+Rn (2.3)

and in parallel
1

Rt o t
=

1

R1
+

1

R2
+ · · ·+

1

Rn
. (2.4)

This analog forms the basis of the cardiovascular modeling approach discussed in Chapter 7.

The pressure generated to move the blood through the systemic circulation is far greater than

that of the pulmonary circulation. The high-pressure system is comprised of the contracted left

heart, systemic arteries, and arterioles, maintaining a mean arterial blood pressure (MBP) of ∼95

mmHg in the large arteries and oscillating between a maximal systolic blood pressure (SBP) of

∼120 mmHg and a minimal diastolic blood pressure (DBP) of ∼80 mmHg. The MBP decreases
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slightly from the aorta to the systemic arteries. When the blood reaches the systemic arterioles, MBP

substantially reduces. Clinically, a typical approximation relates these three quantities as

MBP=
1

3
SBP+

2

3
DBP. (2.5)

The arterioles are surrounded by smooth muscle cells that, when stimulated, vasoconstrict and

increase vascular resistance and pressure while flow remains constant. Given a total blood volume

of ∼5 L in a 70 kg man, the system arteries contain ∼15% of the total blood volume.

The pulmonary circulation operates under a MBP of ∼15 mmHg, ∼10 mmHg in the pulmonary

capillaries, ∼5 mmHg in the pulmonary veins. Similar to the high-pressure system, the low-pressure

system encompasses the systemic capillaries (∼25 mmHg), systemic veins (∼3-15 mmHg), pul-

monary circulation, left atrium, and a relaxed left ventricle. The low-pressure system contains

approximately 80% of the total blood volume with the remaining 5% belonging to the heart. The

systemic veins act as a blood reservoir containing ∼65% of the total blood volume.

The blood vessels are elastic tubes with three layers: the intimia, media, and adventitia. These

layers consist of endothelial cells, elastic fibers (composed of elastin and microfibrils), collagen,

and smooth muscle cells. The elastic fibers contribute the most to the distensibility of the vessel.

Compliance (C , mL mmHg−1) is a measure of vessel distensibility given as the derivative of the

pressure-volume curve

C =
dV

dP
(2.6)

as listed in Table 2.1. The compliance of the arteries accommodates large changes in arterial blood

pressure as volume increases. In the elastic arteries (e.g., the aorta), an increase in arterial pressure

increases vessel radius, which has a negligible effect on the resistance (equation (2.2)). Hence, the

arteries approximately have a stable resistance and compliance. The veins are highly compliant

as small increases in pressure result in large increases in volume. This is due to the ellipsoidal

configuration of the vessel operating at very low pressures. As pressure increases, the ellipsoidal

cross-sectional area becomes circular, which is able to receive a large amount of blood. However,

the veins are resistant to stretching at high pressures, resulting in a dynamic compliance. In a

similar manner equations (2.3) and (2.4), we calculate the total compliance (Ct o t , mL mmHg−1) of

n compliances in series as
1

Ct o t
=

1

C1
+

1

C2
+ · · ·+

1

Cn
(2.7)

and in parallel

Ct o t =C1+C2+ · · ·+Cn . (2.8)

The volume (V ) of a CVS region is related to the P . As the vessels fill with blood, the amount of

blood necessary to fill the vessel to achieve a zero pressure (P = 0) is the unstressed volume (Vu ),
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which is interpreted as the y -intercept of the line given in the pressure-volume loop (Figure 2.3).

The volume needed to increase P > 0 is the stressed volume (Vs t r ). For the arterial regions, Vs t r is

∼30% of the total volume [11]. For the venous regions, Vs t r is ∼10% of the total volume [11].

The microcirculation is critical to the CVS, serving as the main site for the exchange of gases,

nutrients, water, and waste products. However, for the purposes of this dissertation, we will not

address the capillaries here. Information regarding these processes can be found in [16, 40].

2.1.2 The heart

The heart is divided into four chambers: the left atrium and ventricle and the right atrium and

ventricle (shown in Figure 2.1). The heart has four valves that are at the inlet and outlet of each

ventricle designed to prevent the backflow into the preceding chamber. The atrioventricular valves

are between the atria and the ventricles, the mitral valve for the left heart and tricuspid valve for the

right. The semilunar valves are between the ventricles and the arteries, the aortic valve for the left

heart and the pulmonary valve for the right.

2.1.2.1 Cardiac cycle

The heart chambers work together due to excitation-contraction coupling, the excitation of car-

diomyocytes resulting in cardiac contraction. The sinoatrial (SA) node is a group of cells in the

right atrium that serve as the pacemaker of the heart. As the cytosol of the cells in the SA node

becomes progressively less negative, it reaches a threshold and rapidly depolarizes, causing an

action potential that is propagated from the SA node through the atrioventicular (AV) node and

splits at the bundle of His to the Purkinje fibers of the left and right heart. This depolarization causes

an influx of calcium ions, which stimulates atrial contraction and a delayed ventricular contraction

due to the action potential passing through the AV ring. Should the SA node fail, the AV node’s

intrinsic pacemaker ability can take over. Should both the SA and AV nodes fail, the Purkinje fibers

can initiate heart beats, though this excitation-contraction coupling mechanism is very slow.

The electrocardiogram (ECG) measures the electrical activity of the heart. An example ECG is

shown in Figure 2.2. A typical cardiac cycle as shown in the ECG is comprised of the P-wave, the

QRS-complex, and the T-wave. An ECG cannot detect the electrical activity of the conducting fibers

themselves, but rather the activity of the atria and ventricles. The P-wave corresponds to atrial

depolarization. The QRS-complex marks ventricular depolarization as the upward and downward

reflections denote the propagation of the current throughout the ventricles. The T-wave occurs due

to repolarization of both the left and right ventricles. Heart rate is measured as the inverse of the

timespan between consecutive R-waves. For a healthy individual at rest, a cardiac cycle lasts ∼0.8

sec corresponding to ∼75 bpm.

The valves dictate four phases of the cardiac cycle, as they depend solely upon the pressure

9



I II III IV

Figure 2.2 An example Wigger’s diagram. First plot: traces for the aortic pressure (blue), left ventricular
pressure (purple), and left atrial pressure (green). Valve openings and closing are indicated with vertical
lines. The a-, c-, and v-waves in the left atrial pressure are denoted. Second plot: Left ventricular volume.
Third plot: Electrocardiogram trace with P-wave, QRS complex, and T-waves indicated. Fourth plot: Phono-
cardiogram with first, second and third heart sounds indicated. Reprinted with permission from [76].

gradient across the valve. For a healthy individual, there never occurs a time at which both valves

are open simultaneously as shown in the example Wigger’s diagram in Figure 2.2, which includes

pressure and volume traces, an ECG, and a phonocardiogram. For the purposes of this study, the

pressure, volume, and ECG curves will be the primary focus. We will illustrate the four phases of the

cardiac cycle with the left heart as follows:

I. Ventricular filling: Due to decreased left ventricular pressure, the mitral valve opens and the

ventricle fills rapidly. During filling, the aortic valve is closed. As time evolves, ventricular filling

slows, a period known as diastasis. As pressure between the atrium and ventricle equilibrate

with the atrial pressure only slightly higher, atrial excitation results in the P-wave of the ECG.

The atrium contracts and fills the left ventricle. The ventricles begin to depolarize (QRS-

complex of the ECG) causing ventricular pressure to rise above the atrial pressure. The mitral

valve closes.
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II. Isovolumetric contraction: With both valves closed, the ventricle contracts significantly in-

creasing the pressure in the ventricle, which exceeds the aortic pressure.

III. Ejection: The aortic valve opens, and the ventricle rapidly ejects blood into the aorta and

ventricular volume decreases. Aortic pressure increases above the ventricular pressure, but

the aortic valve remains open for a short time due to the inertia of the blood. Ejection rate de-

creases, causing a reduction in both the aortic and left ventricular pressures. Blood flow across

the aortic valve slows considerably, resulting in negative flow. The left ventricle repolarizes

(T-wave of the ECG).

IV. Isovolumetric relaxation: The aortic valve closes and blood flow normalizes in the aorta. The

result is the dicrotic notch, which propagates through the circulation. The ventricle relaxes

while both valves are closes and left ventricular pressure drops dramatically to below the left

atrial pressure.

Systolic blood pressure (SBP) is associated with the ventricular contraction and diastolic blood

pressure (DBP) is associated with ventricular relaxation and filling. The difference between SBP and

DBP is the pulse pressure (PP). Since cardiac output is similar in both the left and right hearts, these

phases also apply to the right heart with the associated components.

2.1.2.2 Cardiac output

Cardiac output (CO, L min−1) is the amount of blood pumped by the heart per cardiac cycle given as

CO=H SV, (2.9)

where H (bpm) and SV (mL) are the heart rate and stroke volume, respectively. SV is the difference

in end-diastolic volume (EDV), the maximal volume of the ventricle at the end of diastole (∼120

mL), and end-systolic volume, the ventricular volume at the end of systole (∼50mL). EDV and SV are

related by the Frank-Starling mechanism, an empirical law that states that an increase in ventricular

filling causes an increase in the tension of the cadiac myocytes (preload), which in turn induces

a more forceful contraction of the ventricle. This mechanism functions primarily to maintain the

approximately equal CO (∼5 L/min ≈ 83 mL/sec) of both the right and left heart though both sides

operate under different pressures. As the heart ejects blood, the tension in the contracting myocytes

must overcome the opposing arterial pressure (afterload).

2.1.2.3 Cardiac contractility

The Frank-Starling mechanism is a nonlinear relationship between myocyte tension and end-

diastolic volume. This is most notably evident during an increase in contractility, or the ability of
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Figure 2.3 Pressure-volume (PV) loop of the effect of increasing contractility while preload and afterload
remain constant. The line e indicates the end-systolic pressure-volume relation. As contractility increases
(from e to e ∗), stoke volume (SV) increases (from SV to SV∗). Reprinted with permission from [68].

the heart muscle to contract. This metric is clinically relevant as it is an intrinsic property of the

cardiomyocytes. Contractility is the slope of the line describing the end-systolic pressure-volume

relation (ESPVR) on a pressure-volume loop plot (Figure 2.3). The ESPVR is the line going through

the points of the theoretical maximal isovolumetric pressure (if the valves did not open) and the end-

systolic pressure. Increasing contractility results in an increase in stroke volume. The y -intercept of

the ESPVR is the unstressed volume (Vu ).

2.2 Regulation of the cardiovascular system

This section focuses on describing the regulatory mechanisms impacting the cardiovascular system

(CVS). Cardiovascular control is mediated by the autonomic nervous system (ANS) both neurally

and hormonally, occurring on several time-scales, which include:

• Fast: (seconds or minutes) mediated by the ANS in response to rapid fluctuations in blood

pressure and volume.

• Intermediate: (hours) mediated by the microcirculation shifting volume to and from the

interstitial fluid and by endocrine and paracrine factors regulating local vasomotor control.

• Slow: (days or weeks) mediated by the renin-angiotensin-aldosterone system of the kidney to

regulate blood volume globally.
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Figure 2.4 Schematic of autonomic nervous system functions. Sympathetic nervous function (left) passes
through the sympathetic ganglia chain along the spine, delaying signal transduction. Parasympathetic
ganglia are close to the target, resulting in fast responses. Cardiovascular control by the sympathetic (green
arrow) and parasympathetic (magenta arrow) nervous systems are indicated. Adapted from the Merck
Manual Consumer Version (Known as the Merck Manual in the US and Canada and the MSD Manual in
t5he rest of the world), edited by Robert Porter. Copyright (2019) by Merck Sharp & Dohme Corp., a sub-
sidiary of Merck & Co., Inc., Kenilworth, NJ. Available at http://www.merckmanuals.com/home. Accessed
(2019).
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Figure 2.4 shows a schematic of the ANS target sites. The systems are complex, so here we discuss

the effects of short-term regulation via the ANS sensing blood pressure and blood volume via several

receptor types. Afferent signals are transmitted to the medulla, where integration of these signals

induces the appropriate response. Efferent neural pathways relay the response to the target via a

two-neuron pathway, the pre-ganglionic and post-ganglionic neurons.

The ANS efferents have two main parts, the parasympathetic nervous system (PNS) and sym-

pathetic nervous system (SNS), that work in tandem to maintain homeostasis. The PNS regulates

heart and respiratory rates, sexual arousal, salivation, digestion, and excretion. The parasympathetic

ganglia (neural clusters) are close to their targets with short post-ganglionic neurons that synapse

on the target, secreting acetylcholine (ACh) to bind to muscarinic receptors. The SNS is tonically

active at rest but increases in response to various stimuli. Sympathetic pre-ganglionic fibers synapse

in the sympathetic ganglia chain that runs along the spinal column. Post-ganglionic neurons extend

from the sympathetic ganglia chain to the target, secreting norepinephrine (Nor) at the synaptic

cleft which binds to adrenergic receptors.

2.2.1 Autonomic control mechanisms

Several control mechanisms affect the CVS, including the baroreceptor reflex (baroreflex), the car-

diopulmonary reflex, and respiratory sinus arrhythmia (RSA). The baroreflex and cardiopulmonary

reflex stabilize changes in blood pressure and blood volume, respectively. The RSA synchronizes

heart rate and blood pressure with the respiratory rate inducing heart rate variability [31]. Figure 2.5

summarizes these processes. We note that the ANS also senses and regulates partial pressures of

dissolved gases (e.g., O2 and CO2) via the chemoreceptors. However, this is not discussed in detail

since we focus on the ANS impact on blood pressure and heart rate.

2.2.1.1 Baroreceptor reflex

Baroreceptor neurons are mechanoreceptors embedded in the adventitia of the arterial walls. They

respond to stretch of the arterial wall as mechanical distortion of the receptors upon distention

opens sodium ion channels and propagates action potentials [16]. The baroreflex modulates heart

rate via the PNS and SNS and system-wide vasomotor control via the SNS only. For heart rate at

rest, parasympathetic outflow contributes to about 80% percent of the neural control of heart rate

and sympathetic contributes 20% [60]. As the arterial wall deforms, the baroreflex maintains mean

blood pressure (MBP) by causing vasodilation and bradycardia (decreased heart rate) when MBP

increases and vasoconstriction and tachycardia (increased heart rate) when MBP decreases [77].

Afferent stimulation: The primary sites for the high-pressure baroreceptors are in the carotid sinus

and the aortic arch, highly distensible arterial regions (Figure 2.5). These bundles of myelinated
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Figure 2.5 Schematic of the cardiovascular control mechanisms discussed in this chapter, including the
baroreceptor reflex (baroreflex), the Bainbridge reflex, and the respiratory sinus arrhythmia (RSA). High-
pressure baroreceptors (HPB) in the aortic arch and carotid sinus sense changes in blood pressure and
relay the signal to the medulla. The baroreflex sends a parasympathetic (para) and sympathetic (symp)
response controlling heart rate via the sinoatrial node. The sympathetic response also increases cardiac
contractility and modulates vasomotor control. Low-pressure baroreceptors (LPB) in the right atrium
sense changes in blood volume and relay the signal to the medulla, where the Bainbridge reflex and RSA
signals are propagated to the sinoatrial node. Other systemic effects of these reflexes are not shown.

15



(a) (b)

Figure 2.6 Baroreflex effect on (a) heart rate (HR) and (b) renal sympathetic nervous activity (RSNA) as
blood pressure increases in rats. Saturation of the signal occurs at excessively high and low pressures.
Adapted from [77].

(A-fiber) and unmyelinated (C-fiber) neurons are surrounded by collagen in the adventitia, which

causes a viscoelastic deformation of the receptors. Afferent signals from the carotid baroreceptors

transduce via the glossopharyngeal nerve and from the aortic baroreceptors via the vagal nerve.

These fibers synapse in the nucleus tractus solitarius, which integrates the signals and transmits the

appropriate efferent response.

Parasympathetic stimulation: Parasympathetic CVS control is mediated via the nucleus ambiguus

and the dorsal motor nucleus in the medulla and signals are propagated through the vagus nerve.

The PNS primarily controls heart rate, as denervation of the vagal pathway to the SA node accel-

erates heart rate to ∼100 bpm from a resting rate of ∼60-80 bpm. Increased MBP stimulates the

baroreceptors and hence the PNS, releasing ACh into the extracellular matrix that binds to mus-

carinic receptors at the SA node (Figure 2.5). The net effect is bradycardia and vasodilation. The

opposite occurs when MBP decreases, inhibiting the PNS and resulting in the fast degradation of

extracellular ACh by acetylcholinesterase, which increases heart rate. As MBP decreases or increases

excessively, the signal saturates as shown in Figure 2.6a. Since heart rate is primarily controlled by

vagal stimulation, Figure 2.6a is assumed to be an assessment of parasympathetic outflow.

Sympathetic stimulation: Sympathetic CVS control is modulated by the rostral ventrolateral medulla,

where inhibitory interneurons tonically promote vasoconstriction. These signals are transduced

through the sympathetic ganglia chain, causing a delay and synapsing on the heart and blood

vessels. The sympathetic delay has been found empirically as 1.7 seconds in dogs [12], 1.06 seconds
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in rabbits [14], and 3 seconds in humans [69, 133]. Stimulation of the sympathetic outflow increases

extracellular Nor, resulting in an increase in heart rate, cardiac contractility and arteriolar resistance

and a decrease in venous compliance (Figure 2.5). Very low or very high MBP causes signal saturation

as shown in Figure 2.6b.

2.2.1.2 Cardiopulmonary reflex

The cardiopulmonary reflex relies on the excitation of low-pressure baroreceptors found in the main

pulmonary artery, the veno-atrial junctions, the atria, and the ventricles. Since they are barorecep-

tors, they also respond to stretch of the innervated tissue, which largely depends on distention of the

vessels due to venous return to the heart [40]. Therefore, these low-pressure baroreceptors primarily

regulate blood volume and cardiac output, which indirectly maintains MBP.

Afferent stimulation: The atrial receptors consist of A- and B-fibers detecting changes in heart

rate and central venous pressure, respectively. An increase in blood volume causes an increase in

venous blood pressure, which mechanically stretches the vessel walls and deforms the baroreceptors.

Afferent signals are sent via the vagus nerve to the nucleus tractus solitarius (Figure 2.5).

Efferent effects: Efferent signals are propagated in a similar manner with a similar time-scale as

those mentioned in Section 2.2.1.1. The cardiopulmonary receptors inhibits the PNS, which causes

a reflexive increase heart rate (opposite of the baroreflex), which is called the Bainbridge reflex

(Figure 2.5). Stimulation of the cardiopulmonary receptors results in sympathetic inhibition only in

the kidney, causing vasodilation and increasing urine production [78]. Other effects of atrial barore-

ceptor stimulation include the inhibition of neurons in the hypothalamus that secrete antidiuretic

hormone and the release of atrial natriuretic peptide, a vasodilator, from the atrial myocytes that

causes diuresis. Overall, the result of stimulation of the low-pressure baroreceptors due to increased

central venous pressure (i.e., increased blood volume) is the elimination of fluid to reduce MBP.

Coordination with the baroreflex: When MBP decreases, particularly during respiratory challenges

such as the Valsalva maneuver (discussed in Section 2.3), an increase in intrathoracic pressure

can cause collapsing of the vena cava. Venous return is diminished and the tonic firing of the

cardiopulmonary receptors is greatly reduced. This imposes mild bradycardia but acts against the

tachycardia of the stimulated baroreflex. The baroreflex primarily regulates cardiac output (CO) at

low volumes, while the Bainbridge reflex regulates CO at high volumes.
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2.2.1.3 Respiratory sinus arrhythmia

Respiratory sinus arrhythmia (RSA) is the synchrony of heart rate variability and respiration, causing

a shortening of the R-R interval in the ECG during inspiration and a lengthening during expiration

[138]. Since the cardiovascular and respiratory control centers are in close proximity in the medulla,

these centers interact strongly [40]. RSA has been poorly understood since its discovery, though it

seems to play an important physiological role in the effectiveness of gas exchange in the lungs. Many

factors influence RSA, including breathing pattern, body position, age, sex, etc. The cardiopulmonary

receptors discussed in Section 2.2.1.2 also play a role in modulation of RSA [138]. The response

is mediated by the vagal nerve synapsing on the SA node [16] (Figure 2.5). During inspiration,

parasympathetic activity is inhibited, causing a natural increase in heart rate. During expiration,

parasympathetic activity returns to rest, passively decreasing heart rate. The difference between the

maximum heart rate at the end of inspiration and the minimal heart rate at the end of expiration is

a clinically significant metric used to assess heart rate variability.

2.3 Autonomic testing

Measuring autonomic activity directly is challenging, as procedures are costly and invasive. There-

fore, autonomic dysfunction (AD) is commonly diagnosed via indirect methods analyzing blood

pressure and heart rate measurements in response to various autonomic tests assessing the neuro-

logical responses to postural and respiratory challenges. Within the last decade, there has been a

push to standardize protocols associated with evaluating and diagnosing the various forms of AD

through these indirect assessments [83, 132, 139].

This section reviews some typical clinical tests of autonomic cardiovascular control. Heart rate

control mechanisms are assessed using deep breathing (DB) in which the subject breathes deeply at

a rate of 6 breaths per minute (Figure 2.7a and 2.7b) and the Valsalva maneuver (VM) in which the

subject forcefully expires against a resistance for 15 seconds (Figure 2.8a). Blood pressure control

mechanisms are assessed via the VM (Figure 2.8b), active standing (AS) in which the subject moves

from supine to upright (Figure 2.7c and 2.7d), and head-up tilt (HUT) in which the subject is tilted

from supine to 60◦ (Figure 2.7e and 2.7f). HUT and AS also evaluate the HR response but to a lesser

extent than the blood pressure. Tests involving the assessment of HR response to postural change (AS

and HUT) versus HR response to respiratory challenges (DB and VM) are not correlated, suggesting

these tests stimulate different neurological mechanisms [31]. For each test, clinical indices are

discussed and representative data sets are shown.
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Figure 2.7 Heart rate (bpm, left column) and blood pressure (mmHg, right column) during deep breathing
(DB, top row), active standing (AS, middle row), and head-up tilt (HUT, bottom row). (a) and (b): For DB,
the vertical lines denote the beginning and end time of the test. (c) and (d): For AS, the alternating gray
and light gray boxes denote the initial, early, and late phases of the test. (e) and (f) For HUT, the gray and
light gray boxes denote the early and late phases.
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2.3.1 Deep breathing

At rest heart rate is not constant but rather oscillates about a mean value. This relatively simple

phenomenon is rooted in complex interactions between the parasympathetic and sympathetic

nervous systems, creating a tenuous balance to maintain homeostasis [132]. Fluctuations occur as

the result of periodic behavior associated with heart or respiratory rate, circadian rhythm, or even

seasonal impulses [16]. As a result, variability in heart rate encodes a bevy of information that is

difficult to interpret.

Deep metronomic breathing (DB) assesses RSA discussed in Section 2.2.1.3 [31]. Heart rate

accelerates during inspiration and decelerates during expiration under normal conditions [48].

The increase in heart rate during inspiration is primarily due to an inhibition of parasympathetic

tone, which passively returns to baseline during expiration [31]. DB is primarily an assessment of

parasympathetic function, as stimulation of the vagal nerve modulates RSA and anticholinergic

agents blunt the response [132]. The procedure initially requires the patient to breathe normally at

rest in supine position for at least one minute. Then, the patient inhales for 5 seconds and exhales

for 5 seconds, a cyclical routine of 6 breaths per minute [83]. DB must be performed with caution

because prolonged activity can lead to hyperventilation and hypercapnia [132]. It has been found

that heart rate variability due to DB declines with age [116]. Figures 2.7a and 2.7b display the heart

rate and blood pressure responses, respectively, during DB.

Table 2.2 Ranges for deep breathing

Age EmI EdI Reference
(years) (bpm) (dimensionless)

Normal Abnormal Normal Abnormal

< 30 ∼15 ≤ 10 ≥ 1.2 < 1.2 [48, 83, 116, 139]
30-70 ∼10 ≤ 5 ≥ 1.1 < 1.1 [83, 116]
> 70 ∼7 ≤ 5 ≥ 1.06 < 1.06 [48, 83, 116]

EdI - expiratory-inspiratory difference. EmI - expiratory-inspiratory ratio.

There are two primary biomarkers calculated during DB [48, 139]:

1. The expiratory-inspiratory difference (EmI), that is,

EmI=HM −Hm (2.10)

for HM and Hm the maximal heart rate at the beginning of expiration and the minimal heart

rate at the beginning of inspiration, respectively.
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2. The expiratory-inspiratory ratio (EdI)

EdI=
HM

Hm
. (2.11)

Normal and abnormal ranges for DB indices are tabulated in Table 2.2.

DB can also be analyzed in the frequency domain, using spectral analysis methods to split the

signal into its many underlying oscillatory components [132]. Clinicians divide these signals in the

following manner:

• High frequency (HF) range, 0.15-0.4 Hz, mainly influenced by the parasympathetic system

incorporating control from the RSA and blood pressure changes.

• Low frequency (LF) range, 0.04-0.15 Hz, characterized as a combination of both sympathetic

and parasympathetic modulation of heart rate incorporating control from the baroreflex.

• Very low frequency (VLF) range, ≤ 0.04 Hz, whose interpretation is unclear but may relate to

baroreflex activity over longer time periods.

The ratio LF/HF band power is frequently used to assess “sympatho-vagal balance", as it takes

into account effects from both autonomic nervous systems [132]. A healthy individual has a DB

frequency of ∼0.25 Hz (0.15 - 0.8 Hz) [138].

2.3.2 Active standing

Active standing (AS), also known as the Ewing maneuver, is an orthostatic test assessing the cardio-

vascular response from a supine position to a sudden upright position, causing 300-800 milliliters

of blood to be redistributed the central compartments to the lower extremities [31]. This blood

redistribution results in decreased venous return and stroke volume [139]. AS activates muscle

groups in the legs and abdomen most likely causing an “exercise reflex" that initially increases heart

rate [31]. AS is very sensitive to whether the patient stands rapidly or in stages, complicating data

reproducibility. This orthostatic test can be divided into three phases:

I. Initial phase (30-45 seconds): the subject stands and activation of the abdominal muscles

compresses the vessels in the abdomen, increasing venous return and cardiac output. However,

this increase does not compensate for the loss of blood volume to the lower extremities, and

hence, blood pressure transiently drops, triggering the baroreflex. Heart rate increases abruptly

due to parasympathetic withdrawal and muscular activation for ∼3 seconds followed by a

slower increase in heart rate due to delayed sympathetic activation, peaking∼10 seconds. The

rapid reduction in blood volume triggers the cardiopulmonary reflex. Blood pressure declines

initially, returns to baseline, and typically overshoots in healthy patients.
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II. Early phase (1-2 minutes): this is a stabilization phase marked by an increase in DBP by ∼10

mmHg and sympathetically mediated increase in heart rate by ∼10 bpm.

III. Late phase (5-10 minutes): there is a prolonged response to orthostasis. Heart rate and blood

pressure remain stable as sympathetic outflow becomes constant. Humoral mechanisms are

triggered to contribute to the regulation of blood pressure.

Figure 2.7c and 2.7d display the heart rate and blood pressure responses, respectively, to AS. Initial,

early, and late phases are indicated with alternating gray and light gray boxes. In the initial and

early phases, the baroreflex governs heart rate and blood pressure control. The sharp decrease in

blood pressure triggers a compensatory tachycardia (due to parasympathetic withdrawal and the

subsequent increase in sympathetic outflow), an increase in arteriolar resistance, and decrease in

venous compliance [31]. The late phase is characterized by continued sympathetic activation with

humoral mechanisms helping to maintain blood pressure [48].

AS is used primarily to assess autonomic issues during the initial phase of the challenge, since

the later phases are better assessed via head-up tilt (discussed in the next section) [48]. Clinical

indices used for AS are:

1. The 30:15 ratio (r30:15):

r30:15 =
HM ,15

Hm ,30
, (2.12)

where HM ,15 and Hm ,30 are the the maximum heart rate after 15 seconds and the minimum

heart rate after 30 seconds, respectively.

2. The 30-15 difference (d30:15):

d30:15 =HM ,15−Hm ,30. (2.13)

For healthy individuals, the r30:15 > 1.04 is considered normal, though this value is age-dependent

[139]. The d30:15 should not exceed 20 bpm for young individuals (<15 years) and 11 bpm for elderly

individuals (>70 years) [48]. A decrease in SBP >20 mmHg or DBP >10 mmHg is abnormal [139].

2.3.3 Head-up tilt

Head-up tilt (HUT) is a passive postural assessment that monitors blood pressure and heart rate

as the patient moves from a supine to an upright position on a moving table. Tilting the table at

an angle of 60◦ over 20 seconds ensures there is no muscle contraction [48], though some methods

use a 70◦ angle [83]. HUT is easily controllable, readily reproducible, and better for patients with

suspected autonomic dysfunction [31]. The tilt is maintained for up to 45 minutes, until syncope, or

until other “intolerable outcomes" are achieved [97]. HUT can be divided two phases as shown in

Figure 2.7e and 2.7f, including:
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I. Early phase (1-2 minutes): the gradual change from supine to upright shifts blood from the

upper body to the lower body without triggering muscle contraction to resist the pooling.

Heart rate and DBP gradually increase while SBP remains relatively constant.

II. Late phase (5-10 minutes): there is a prolonged response to orthostasis. Venous pressure in

the lower body increases from ∼10 mmHg to ∼90 mmHg as blood continues to pool at the

feet, decreasing venous return, stroke volume, and cardiac output. Blood pressure decreases,

triggering the baroreflex to increase heart rate, which counteracts the reduced cardiac output

moderately.

2.3.4 The Valsalva maneuver

The Valsalva maneuver (VM) is the process associated with forced exhalation against an external

resistance keeping the glottis open [41]. The subject maintains an expiratory force for 15 seconds,

increasing the ITP to 40 mmHg, which in turn reduces venous return to the heart [83, 102]. The

reduced filling of the heart decreases stroke volume, decreasing both the blood volume sensed

by low-pressure baroreceptors in the veno-atrial junctions, the right atrium, and the pulmonary

artery as well as the blood pressure sensed by the aortic and carotid high pressure baroreceptors

[131]. The tonic firing of the nerves conducting signals from these receptors to the brain stem is

reduced, causing a shift in the output from the cardiovascular control centers. The net effect is

a fast withdrawal of parasympathetic activity to the heart and a slower increase in sympathetic

activity to the heart and blood vessels. The efferent response induces cardiac acceleration and

vasoconstriction. The four distinct phases of the VM marked with alternating gray and light gray

boxes in Figure 2.8 are:

I. At the onset of the VM, the subject takes a deep breath and initiates the forced expiration. This

increases the ITP, causing a sudden increase in blood pressure due to increased transmural

pressure on the heart and large arteries. The deep exhalation and subsequent deep inhalation

of the breath results in a transient reduction of ITP just before the maneuver, contributing to

a temporary decrease in heart rate.

II. As the breath is held, the respiratory-mediated parasympathetic activity decreases. Increased

ITP impedes venous blood return to the heart. Blood pressure falls, triggering the baroreflex,

which in turn decreases baroreflex-mediated parasympathetic activity. Heart rate initially

rises due to parasympathetic withdrawal (early phase II) and continues to rise as sympathetic

outflow increases (late phase II). Despite the decreased stroke volume, blood pressure gradu-

ally returns to pretest levels due to increases in peripheral vascular resistance mediated by

sympathetic activity.
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Figure 2.8 (a) Heart rate (H, bpm), (b) blood pressure (BP, mmHg), (c) electrocardiogram (ECG, mV), and
(d) thoracic pressure (Pt h , mmHg) during a Valsalva maneuver. The four phases are indicated with alternat-
ing gray (I and III) and light gray (II and IV) boxes. Early and late phase II are designated with the vertical
dashed line.
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Figure 2.9 Depiction of (a) α as the slope of the line of regression of the systolic blood pressure (SBP) in
late phase II and the SBP overshoot in phase IV used to calculated β as in equation (2.15) and (b) γ as the
ratio of the maximum heart rate in phase III (Hma x ,I I I ) and minimum heart rate in phase IV (Hmi n ,I V ).

III. Upon release of the ITP, the subject typically exhales forcefully. This causes a transient increase

in ITP, which further impedes cardiac filling, and hence the preload. The result is a sudden drop

in blood pressure. Then, the ITP returns to normal and blood returns to the heart unimpeded.

IV. After normalization of venous return to the heart, the stabilized stroke volume is expelled

against an increased vascular resistance causing blood pressure to temporarily overshoot. This

overshoot causes a rapid fall in heart rate as the parasympathetic system activates. Breathing

returns to normal.

Clinicians extract a number of quantities from the SBP and heart rate to determine “normal

ranges" for autonomic function for healthy control subjects [83]:

1. Vasoconstrictive capacity (α) given as

SBP=αt + b , t ∈ [tSBPmi n ,I I
, tSBPma x ,I I

], (2.14)

where α and b are the slope and the intercept of the regression, respectively, and tSBPmi n ,I I
and

tSBPma x ,I I
are the time points for the minimum and maximum SBP in late phase II, respectively.

Figure 2.9a depicts the calculation of α. We interpret α as an estimate of the vasoconstrictive

capacity of the systemic vasculature. A previous study has hypothesized the that the use of a

metric assessing sympathetic function in late phase II of the VM should be considered [93].

To our knowledge, this is the first instance of using α as an approximation of sympathetic

nervous function.
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2. Baroreflex sensitivity (β ) [83, 84, 111] given as

β =
max R-R−min R-R

max SBP−baseline SBP
, (2.15)

where the numerator is the difference in maximum and minimum R-R intervals in milliseconds

and the denominator describes the extent of the overshoot of the SBP (Figure 2.9a). β is a

measure of heart rate change given a change in blood pressure [139]. It should be noted that

β does not elucidate how changes in the SBP or R-R interval arise. An increase in β can be

contributed to an increase in parasympathetic activity, a decrease in sympathetic activity, or a

combination of the two [125].

3. The Valsalva ratio (γ) [83, 111] given as

γ=
Hma x ,I I I

Hmi n ,I V
, (2.16)

where Hma x ,I I I is the maximum heart rate in phase III and Hmi n ,I V is the minimum heart

rate in phase IV (Figure 2.9b). γ is typically interpreted as a measure of vagal function with

abnormal values below 1.1 [31].

2.4 Autonomic dysfunction

Disorders associated with autonomic nervous system dysfunction (AD) or failure are prevalent

but frequently overlooked or misdiagnosed, especially since the autonomic nervous system affects

virtually all organs. Often, autonomic neuropathy is secondary to other more prominent maladies,

such as Parkinson’s disease and diabetes mellitus, where symptoms emerge concomitantly with

disease [75]. However, AD often occurs without an apparent cause [19].

The tests described in the previous section are used to diagnose various forms of AD. Deep

breathing (DB) primarily assesses parasympathetic function and AD associated with DB is due

to failure of the parasympathetic nervous to induce heart rate variability. Head-up tilt (HUT) and

active standing (AS) primarily test sympathetic function, where numerous disorders arise due to

either overstimulation or blunting of the sympathetic response. Since the Valsalva maneuver (VM)

elicits both parasympathetic and sympathetic responses, we focus on analyzing this test in more

detail in the following section.

2.4.1 The Valsalva maneuver and autonomic dysfunction

The VM is used to detect AD in conjunction with the tests discussed above. An interesting observation

made by Palamarchuk et al. [94] discusses that pathological VM data sets have patterns dictated by
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the morphology of the SBP. The data tend to fall into specific categories that are reproducible upon

repeated VM trials. Figure 2.10 displays representative patients exhibiting each of the following:

• M pattern: characterized by two SBP overshoots, one in late phase II where SBP rises promi-

nently above baseline and the other during phase IV. The overshoot in phase IV rapidly declines

to baseline within 5 seconds. It has been hypothesized that the M pattern is result of increased

or overactive autonomic (parasympathetic and sympathetic) activity [93, 94] (Figure 2.10a).

• N pattern: characterized by a sustained SBP overshoot in phase IV for longer than 10 seconds.

It is hypothesized that the N pattern is due to sympathetic hypersensitivity, yielding a delayed

response while maintaining a high SBP for an extended period of time [94] (Figure 2.10b).

• V pattern: characterized by an absent increase in SBP in late phase II leading to a prolonged

decrease in SBP, an altered phase III, and an absent SBP overshoot in phase IV. It has been

hypothesized that the V pattern is a result of sympathetic dysfunction, as adrenergic activity

contributes to late phase II and phase IV of the VM [94] (Figure 2.10c).

A primary focus of the work in Chapter 4 is the investigation of 5 AD patients exhibiting the V

behavior with different diseases in comparison to 34 control subjects, using a model-based analysis

of the data to help determine parasympathetic and sympathetic dysfunction. A focus of the work

presented in Chapter 7 is modeling a representative control subject and AD patients exhibiting the

M, N, and V behaviors. Our goal is to provide mathematical support for the physiological hypotheses

of these behaviors given above.
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Figure 2.10 Heart rate and blood pressure responses during a Valsalva maneuver for patients with autonomic dysfunction exhibiting (a)
an M response, (b) an N response, and (d) a V response. The boxes are assigned in accordance with [94].
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CHAPTER

3

DATA

The modeling efforts in this body of work were analyzed and validated against data for control

subjects and patients with autonomic dysfunction (AD) conducting multiple iterations of the Val-

salva maneuver (VM). Data for the control subjects were collected by Dr. Louise Brinth and Anna

Billeschou at the Department of Clinical Physiology and Nuclear Medicine at Bispebjerg Hospital in

Frederiksberg, Denmark. The protocol, “Method study in the Valsalva maneuver" (H-16036257),

was approved by the Ethics Committee of the Capital Region, Denmark. The measurements from

the patients with AD are from a previous experiment with a similar protocol. This chapter discusses

the study population (Section 3.1), describes the acquisition of the data (Section 3.2), and provides

details about the numerical methods involved in data preprocessing (Section 3.3).

3.1 Study population

The study in Chapter 4 analyzes electrocardiogram (ECG)-derived heart rate and respiratory signals,

blood pressure, and intrathoracic pressure (ITP) data from 37 control subjects (24 females and 13

males) and 5 AD patients with different diseases exhibiting the V behavior (1 female and 4 males) as

discussed in Section 2.4.1. All subjects gave written consent to participate in the study. Of the 37

control subjects, data from 34 (21 females and 13 males) were analyzed in this study. Two subjects

were excluded due to pregnancy and one subject was excluded due to data collection error. Table

3.1 summarizes control subject population statistics. The 5 AD patients exhibiting the V behavior
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categorized by Palamarchuk et al. have various diseases and broad age range. Patient 1 (16 years

old) is diagnosed with postural orthostatic tachycardia syndrome (POTS), Patient 2 (79 years old) is

diagnosed with orthostatic hypotension (OH), Patients 3 (71 years old) and 4 (83 years old) have

Parkinson’s disease (PD), and Patient 5 (75 years old) is diagnosed with pure autonomic failure (PAF).

Figure 3.1a - 3.1d shows a VM data set containing ITP, ECG, blood pressure, and heart rate data for a

representative control subject. Figure 3.1e - 3.1h shows the VM response from Patient 3. Table 3.2

summarizes the patient descriptions.

The study in Chapter 7 analyzes the blood pressure and heart rate from one control subject and

three patients diagnosed with postural orthostatic tachycardia syndrome (POTS), i.e., their heart

rate increased more than 30 bpm in response to posture change. While all patients have the same

diagnosis, they display different blood pressure responses categorized as the M, N, and V behavior

[94]. Figure 3.2 displays the heart rate and blood pressure data for the four subjects of this study.

In the figure, the control subject (Figure 3.2a) has resting heart rate (70 bpm) and blood pressure

(70 mmHg) values much lower than the POTS patients (∼100 bpm and ∼100 mmHg). Table 3.3

summarizes the subject descriptions.

Table 3.1 Population statistics from the characteristic Valsalva maneuver for 34 con-
trol subjects.

Description Symbol Units Population Statistics

Age years 32 ± 12
Baseline systolic blood pressure sw mmHg 123 ± 20
Baseline heart rate H̄ bpm 79 ± 13
Intrinsic heart rate HI bpm 100 ± 7
Maximal heart rate HM pbm 185 ± 7
Length of breath hold sec 14 ± 0.7
Max forced expiration mmHg 37 ± 1

Table 3.2 Descriptions of patients with autonomic dysfunction displaying a V response for the
study in Chapter 4.

Patient Sex Age Diagnosis Abbreviation

1 Female 16 Postural orthostatic tachycardia syndrome POTS
2 Male 79 Orthostatic hypotension OH
3 Male 71 Parkinson’s disease PD
4 Male 83 Parkinson’s disease PD
5 Male 75 Pure autonomic failure PAF
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Figure 3.1 Valsalva maneuver (VM) data for the study in Chapter 4 for a representative control subject (a -
d) and patient (e - h) with the V behavior as categorized by Palarmarchuk et al. [94]. Alternating gray and
light gray boxes indicate phases I-IV of the VM. Early and late phases II are divided with a vertical dotted
black line. Panels (a) and (e): Electrocardiogram (ECG, mV) trace. Panels (b) and (f): Blood pressure (BP,
mmHg) trace with interpolated systolic blood pressure (SBP, thick blue curve) and baseline SBP (dotted
blue line). Panels (c) and (g): Heart rate (H , bpm) trace with baseline H (dotted blue line). Panels (d) and
(h): Intrathoracic pressure (ITP, mmHg) trace. Panel (d) shows the measured ITP of the control subject
from which the VM start and end times, ts and te respectively, were extracted. Panel (h) shows the manu-
factured ITP calculated in equation (3.1).
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Figure 3.2 Valsalva maneuver (VM) data for the study in Chapter 7. Heart rate (H , top row) and blood pressure (BP, bottom row) for (a)
control, (b) M response, (c) N response, (d) V response categorized by Palamarchuk et al. [94].

323232



Table 3.3 Descriptions of subjects studied in Chapter 7.

Patient Sex Age Diagnosis Behavior

1 Female 32 Control
2 Female 36 POTS M
3 Female 15 POTS N
4 Female 39 POTS V

POTS - postural orthostatic tachycardia syndrome.

3.2 Data acquisition

All tests were performed between 8:00 a.m. and 3:00 p.m. under a non-fasting state at standard room

temperature. ECG and blood pressure signals were measured continuously sampled at 1,000 Hz

from a precordial ECG-lead and by Finometer equipment (Finapres Medical Systems BV, Amsterdam,

The Netherlands), respectively. Analog data acquisition was performed, and data were converted to

digital format and stored using the LabChart software (LabChart, AD Instruments Inc., Colorado

Springs, CO, USA).

All tests were performed with the subject in sitting position. The subjects were asked to rest for

5 minutes before initiating the VM. A mouthpiece was connected to a mercury manometer by a

rubber hose with an intercalated differential pressure transmitter (DTP-7000-R8, HK Instruments,

Muurame, Finland). The subjects were asked to take a deep inspiration and then blow into the

mouthpiece trying to reach and maintain a steady forced expiration at 40 mmHg for 15 seconds.

For the control subjects, ITP was measured continuously. For the AD patients, ITP was measured

and verified by visual inspection. We assume the patients maintain a constant expiratory force of 40

mmHg for the duration of the breath hold, given as

ITP j =

¨

40 ts ≤ t j ≤ te

0 otherwise,
(3.1)

where ITP j is the intrathoracic pressure at time t j , ts is the start time of the breath hold determined

by the sharp increase in SBP in phase I, and te is the time the breath hold is released in phase III. Each

subject performed multiple repetitions of the VM with 2 minutes between maneuvers. Time-series

ECG, blood pressure, ITP, and heart rate signals were extracted from LabChart for all viable VMs,

that is, a data set in which the VM was performed correctly (the subject reached approximately 40

mmHg immediately and held that pressure steady with ±5 mmHg). All subjects with the exception

of control subject 20 and patients 2 and 4 had more than one VM data set. Heart rate was computed

from R-R intervals using LabChart cyclic detection for human ECG.
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Figure 3.3 Systolic blood pressure (SBP, mmHg). (a) SBP (red) determined from the pulse pressure sig-
nal (blue) as the interpolation of the apex of each wave form per cardiac cycle (black circles). (b) Plot of
splines through consecutive SBP points (black circles) using piecewise linear splines (red), piecewise cubic
Hermite interpolating polynomial (blue), and piecewise cubic splines (green). Red ovals indicate areas of
significant variation.

3.3 Data prepocessing

The open-loop model to be discussed in Chapter 4 uses systolic blood pressure (SBP) and thoracic

pressure (Pt h ) signals as inputs. SBP and Pt h distinguish between baroreceptor stimulation of the

aortic arch and carotid sinus regions. Since the model is comprised of a system of differential

equations, we compute the solutions using a variable-step solver RADAR5 [36], which evaluates the

equations at any time point t within the domain. SBP data are sparse in time, which requires an

appropriate interpolation method. Pt h is determined using both the ITP data and an ECG-derived

respiratory signal. This section discusses the numerical techniques and algorithms associated with

determining these signals.

3.3.1 Systolic blood pressure

Systolic blood pressure (SBP) for one cardiac cycle is the apex of the pulse pressure signal in Figure

3.3a in one heartbeat. To determine a continuous SBP signal, we interpolate consecutive pulse pres-

sure maxima. As shown, the SBP points are sparse in time, and hence, the method of interpolation

may change the result. Commonly used splines have certain limitations.

• Piecewise linear (PL) splines are not differentiable at every data point [32].

• Piecewise cubic (PC) splines are differentiable at the nodes, but for data sparse in time they

often induce artificial oscillations, overestimating the activity between nodes [32].
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Figure 3.4 Electrocardiogram (ECG, mV) with R- and Q-points indicated with red and blue circles, respec-
tively. A representative QRS-complex amplitude and R-R interval are denoted in green.

• Piecewise cubit Hermite interpolating polynomial (PCHIP) splines specify the value and the

derivative at the nodes, which ensures differentiability at the nodes, maintains monotonicity,

and preserves the shape of the data [32].

Figure 3.3b compares the performance these splines. The PL (red) and PCHIP (blue) splines are

indistinguishable for most of the time span, while the PC spline (green) overestimates the behavior

between the nodes significantly at the locations circled. The third oval is of particular note, where

the PL spline draws a direct line between the nodes, the PCHIP spline curves slightly underneath the

PL spline, and the PC spline dramatically fluctuates between the nodes. The PL spline is sufficient

between the nodes, but the spline at the nodes themselves is not differentiable. The PC spline

does not maintain the monotonic behavior between the two nodes and induces a false minimum.

The PCHIP spline does ensure monotonicity and differentiability of the nodes. Therefore, for our

purposes, PCHIP is the best interpolation method.

In the open-loop model discussed in Chapter 4, we use the SBP as an input to the model since

the clinical ratios for the Valsalva maneuver are computed using the SBP, as shown in Section 2.3.4.

However, Arndt et al. [5] showed that SBP, diastolic blood pressure, or mean arterial pressure (MAP)

contain the similar information in the signals. Therefore, we could have used MAP in place of SBP

as the input to this model. In the closed-loop model discussed in Chapter 7, we model the mean

arterial blood pressure (MAP) instead of the SBP, since (i) SBP and MAP signals contain the similar

information and (iI) MAP is modeled in previous studies [69, 88].
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Figure 3.5 Step-by-step depiction of the algorithm deriving the respiration signal from the electrocardio-
gram (ECG) signal as described in algorithm 1. (a) ECG signal (black) with median filters of 200 ms (red)
and 600 ms (blue). (b) Baseline-corrected ECG signal (black) with Savitsky-Golay filter (red). (c) Filtered
baseline ECG. (d) Original ECG signal (black) with R- (blue circles) and Q- (red circles) points indicated.
(e) Interpolation (black) of QRS-complex amplitude nodes (red circles). (f) Interpolation (black) of end
of inspiration (red circles) and end of expiration (blue circles). The interpolation was filtered (green) to
disregard false breaths. (e) Final respiration signal.
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3.3.2 Effect of respiration on intrathoracic pressure

The amplitude of the ECG gives an indication of the depth of the breath. As the subject inhales, the

chest expands and the electrodes on the skin move away from the heart. An ECG-derived respiratory

signal can be determined from the interpolation of the amplitude of the QRS-complex in the ECG as

shown in Figure 3.4. We developed a protocol employing algorithms from previous studies [105, 128,

134]. Widjaja et al. [134] validated this procedure against a measured reference respiratory signal at

rest and under mental stress. We found local optima (i.e., the R- and Q-points) to determine the

amplitude of each QRS-complex and interpolated the values. Similar to the SBP, the QRS-complex

occurs once per cardiac cycle, and the sparsity of the data requires a careful choice in interpolation

scheme. Therefore, the only deviation we made from the developed algorithms is using PCHIP

splines with a similar justification as given in Section 3.3.1. The resulting interpolated QRS-complex

amplitude is assumed to be the mechanical breathing signal. Algorithm 1 gives the details for the

algorithm for the processing of the ECG signal to obtain the respiration signal. Figure 3.5 depicts

the step-by-step protocol for the algorithm.

Since the ECG-derived respiratory signal may miss obstructive apnea episodes, as in during

the VM [46], we combined the respiratory signal at rest and the ITP data as shown in the schematic

given in Figure 3.6 during the breath hold to obtain the thoracic pressure (Pt h ). The relationship

between respiratory sinus arrhythmia and tidal volume is linear [59]. For simplicity, we assume

the tidal volume and ITP are also linear. ITP is typically -4±2 mmHg and breathing amplitudes are

typically 3.5-6 mmHg at rest [40]. To avoid sign errors, we scaled Pt h to oscillate about 4 mmHg (the

absolute value of the resting ITP) and incorporated the correct sign in the model. In this study, we

combined both the ITP and the respiratory signal, R , to obtain

Pt h , j =







ITP j ts ≤ t j < te
6−3.5

R̄I − R̄E
R j + (3.5− R̄E ) otherwise,

(3.2)

where R̄I and R̄E are the mean amplitudes for end of inspiration and end of expiration, respectively,

and ts and te are the start and end times of the VM extracted directly from the ITP signal as the

times of greatest increase and decrease in ITP, respectively. This signal was then filtered using the

movmean command in MATLAB® 2018a, which calculates a moving average over a specified window.

For the thoracic pressure, we used a window of one second.
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Algorithm 1 Processing of electrocardiogram (ECG) signal to obtain a respiratory signal.

1. Remove baseline wander.

(a) Apply a median filter with a window of 200 milliseconds (ms) to the ECG signal, E , to
filter out P-waves and QRS-complexes (Figure 3.5a blue curve) [105]. Then, the filtered
signal is

Ẽ = ECG−Median filter of 200 ms. (3.3)

(b) Apply a median filter with a window of 600 ms to Ẽ to filter out T-waves (Figure 3.3a red
curve) [105]. Then, the baseline-corrected signal is

baseline-corrected ECG= Ẽ −Median filter of 600 ms. (3.4)

The baseline-corrected signal is shown as the black curve in Figure 3.5b.

2. Filter out extraneous noise by applying a Savitsky-Golay (SG) filter to the baseline-corrected
ECG with a window of 150 ms (Figure 3.3b red curve). Then, the filtered baseline signal (Figure
3.5c) is

filtered baseline ECG= baseline-corrected ECG−SG filtered signal. (3.5)

3. Detect the times at which the R- and Q-points occur.

(a) The R-points are the most accentuated peaks and should be a minimum of 200 ms apart.
However, smaller peaks that do not correspond to R-points will be detected. To avoid
this, find all local maxima with a minimum peak distance of 200 ms. Then,

i. Find the mean of peaks, µall.

ii. Find all the local maxima again in the filtered baseline ECG signal with a minimum
peak height of µall and a minimum peak distance of 200 ms. These are the R-points.

iii. Find the mean of the R-points, µR.

iv. Remove any of the detected peaks that are< .25µR or> 2µR to remove false R-points.

v. Save the time points TR at which the R-points occur.

(b) Repeat for the Q-points with the negative of the filtered baseline ECG signal. Save the
time points TQ at which the Q-points occur.

4. Use TR and TQ to locate the R- and Q-points on the original ECG signal. Figure 3.5d shows the
R- (blue circles) and Q- (red-circles) points on the original ECG signal (black).

5. Find the amplitude of the QRS-complex by subtracting the R- from the Q-points when their
times are within 100 ms of each other.

6. Interpolate the QRS-complex amplitudes using a piecewise cubic Hermite interpolating
polynomial (PCHIP) spline (Figure 3.5e). This gives the respiratory signal where peaks indicate
end of inspiration and valleys indicate end of expiration.
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Algorithm 1 Processing of electrocardiogram (ECG) signal to obtain a respiratory signal (continued).

7. Filter out false respiratory cycles.

(a) Detect the end of inspiration peaks of the QRS-complex amplitude signal and institute a
minimum peak distance of 1.5 seconds [134].

(b) Repeat for the end of expiration valleys with the negative of the respiratory signal.

8. Remove amplitudes that are less than 15% of the difference of the previous and following
amplitudes (Figure 3.5f). For an amplitude vector a of length n and i a vector of indexes,

1: Let i be an empty vector.
2: for j = 2 to n −1 do
3: if a j ≥ 0.85(a j+1−a j−1) then
4: i← [i j ]
5: end if
6: end for
7: Concatenate [a1 i an ].
8: The filtered amplitude vector ã= a(i).

9. Interpolate ã to obtain the respiratory signal (Figure 3.5g).
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Figure 3.6 Thoracic pressure (Pt h ) input schematic. QRS-complexes are detected in the electrocardiogram
(ECG, mV) trace (panel a). Amplitudes of consecutive QRS-complexes are interpolated using a piecewise
cubic Hermite interpolating polynomial (PCHIP). This signal is filtered to produce the respiration signal
(panel b), which is in turn scaled linearly given in equation (3.2). The intrathoracic pressure (ITP, mmHg)
trace (panel c) is combined with the scaled respiration curve and filtered using the movmean command in
MATLAB® 2018a to produce Pt h (panel d).
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CHAPTER

4

NEUROLOGICAL CONTROL MODEL IN

RESPONSE TO THE VALSALVA

MANEUVER

This chapter is accepted for publication in the Journal of Applied Physiology with the title “A model-

based analysis of autonomic nervous function in response to the Valsalva maneuver" with co-authors

Anna Billeschou, Louise S. Brinth, Jesper Mehlsen, and Mette S. Olufsen. My contributions included all

facets of the work except data collection, conducted by Billeschou and Brinth. Certain sections of this

manuscript have been moved to other chapters, including the description of the Valsalva maneuver

given in Section 2.3.4, the experimental protocol given in Section 3.2, and the processing of the data

given in Section 3.3. All information that is relegated to an appendix in the manuscript has been

moved to the body of this chapter.

Abstract

The Valsalva maneuver (VM) is a diagnostic protocol examining sympathetic and parasympathetic

activity in patients with autonomic dysfunction (AD) impacting cardiovascular control. Since direct

measurement of these signals is costly and invasive, AD is typically assessed indirectly by analyzing

heart rate and blood pressure response patterns. This study introduces a mathematical model
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that can predict sympathetic and parasympathetic dynamics. Our model-based analysis includes

two control mechanisms: respiratory sinus arrhythmia (RSA) and the baroreflex. The RSA model

integrates an electrocardiogram-derived respiratory signal with intrathoracic pressure, and the

baroreflex model differentiates aortic and carotid baroreceptor regions. Patient-specific afferent

and efferent signals are determined for 34 control subjects and 5 AD patients estimating parameters

fitting the model output to heart rate data. Results show that inclusion of RSA and distinguishing

aortic/carotid regions are necessary to model the heart rate response to the VM. Comparing control

subjects to patients shows that RSA and baroreflex responses are significantly diminished. This

study compares estimated parameter values from the model-based predictions to indices used in

clinical practice. Three indices are computed determining adrenergic function from the slope of

the systolic blood pressure in phase II (α - a new index), the baroreceptor sensitivity (β ), and the

Valsalva ratio (γ). Results show that these indices can distinguish between normal and abnormal

states, but model-based analysis is needed to differentiate pathological signals. In summary, the

model simulates various VM responses and, by combining indices and model predictions, we study

the pathologies for 5 AD patients.

New and noteworthy

We introduce a patient-specific model analyzing heart rate and blood pressure during a Valsalva

maneuver (VM). The model predicts autonomic function incorporating the baroreflex and respira-

tory sinus arrhythmia (RSA) control mechanisms. We introduce a novel index (α) characterizing

sympathetic activity, which can distinguish control and abnormal patients. However, we assert that

modeling and parameter estimation are necessary to explain pathologies. Finally, we show aortic

baroreceptors contribute significantly to the VM and RSA affects early VM.

4.1 Introduction

Patients with autonomic nervous system dysfunction (AD) affecting the cardiovascular control

system exhibit a wide array of symptoms including dizziness, syncope, and widespread pain, com-

plicating intervention protocols and potentially leading to incorrect diagnoses [75]. Given the

complex interaction of stimuli arising from multiple centers, understanding the mechanisms that

cause AD is challenging. Autonomic nervous system (ANS) function is commonly studied indirectly

by observing changes in blood pressure and heart rate in a controlled setting in response to postural

or respiratory challenges or drug intervention [1, 17, 34, 51, 60, 107]. The objective of this study

is to build a mathematical model that can analyze autonomic function for subjects undergoing a

Valsalva maneuver (VM), a clinical test used to assess the ability to compensate for acute changes in

central blood volume and pressure [60, 114].
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In this study, we focus on the VM, which activates both parasympathetic and sympathetic

branches of the ANS in sitting patients, inducing short-term changes in autonomic activity [60, 99].

This study develops a new mechanistic mathematical model providing a hypothesis for interactions

of both the afferent and efferent neural pathways. Mathematical modeling used in this study and by

others [20, 53, 65, 69] is advantageous as it enables us to analyze explicitly the effect of hypothesized

pathways and predict responses to interventions by changing parameters or pathways in the model.

Another common method for analyzing physiological signals is using signal processing methods

[12, 122], which are excellent for determining changes in frequency-based responses but unable to

describe signal transmission via specific pathways or predict responses to interventions.

Several deterministic mathematical models have been proposed to explain the autonomic

response to the VM. These can be split into two categories: closed-loop models simulating blood

pressure and heart rate dynamics simultaneously [53, 64, 69, 101]; and open-loop models that either

(a) take blood pressure as an input computing heart rate as an output or (b) take heart rate as

an input computing blood pressure as an output [20, 61]. In this study, we pursue the open-loop

approach, predicting changes in heart rate in response to the VM. Our model distinguishes between

the baroreceptor reflex (baroreflex) and respiratory sinus arrhythmia (RSA) control mechanisms.

Others have modeled the interaction between the respiratory and cardiovascular systems [6, 66, 69].

However, these studies have respiratory models that are embedded in closed-loop cardiovascular

models and the breathing mechanics are not patient-specific. Our model accounts for individual

patient respiration and its effect on heart rate with the incorporation of an electrocardiogram

(ECG)-derived respiratory signal, employing algorithms motivated by previous studies [105, 134].

We introduce a novel mathematical model of RSA and baroreflex control mechanisms, modulat-

ing heart rate and predicting parasympathetic and sympathetic responses to the VM. The primary

objective for this study is to develop a model that can provide a robust description of the varied inter-

subject dynamics of 34 control subjects ans 5 patients with AD observed during the VM. Though they

have different pathologies, the 5 AD patients exhibit the V behavior as categorized by Palamarchuck

et al. [94], which we hypothesize is due to diminished parasympathetic and sympathetic activity. We

aime to explain the V behavior as it arises in these subjects.

The mathematical techniques used here provide a model-based analysis of the data inferring

changes in neurological signaling over time. For patient-specificity, our study uses the subject’s

intrathoracic pressure (ITP) combined with their ECG-derived respiratory signal to determine

thoracic pressure. The thoracic pressure (a) modulates heart rate due to respiration and (b) delineates

between the aortic and carotid high-pressure baroreceptor (HPB) regions. To our knowledge, this

concept has only been used in one previous study [61]. We estimate a subset of model parameters

fitting the model to individual subject heart rate data, determining a patient-specific neural outflow.

While the use of subset selection and parameter estimation is not new [87], to our knowledge no

previous VM studies have taken advantage of these numerical methods. We also compare model-
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Figure 4.1 Schematic of the model with the systolic blood pressure (SBP, mmHg) and thoracic pressure
(Pt h , mmHg) as inputs. The baroreflex mechanism (solid arrows) and respiratory sinus arrhythmia (RSA,
dotted arrows) are shown. Afferent signals are transmitted to the medulla via the carotid baroreceptor
strain (εb ,c ), stimulated solely by the SBP, and the aortic baroreceptor strain (εb ,a ), stimulated by the differ-
ence in the SBP and Pt h . The signals from the carotid sinus and aortic arch are integrated in the medulla
via the neural integration, n . The baroreflex activates parasympathetic (Tp ,b ) and sympathetic (Ts ) efferent
signals, which modulate the heart rate output (H ). Pt h also acts modulates H during normal breathing via
RSA.

derived quantities with indices extracted directly from the measured systolic blood pressure (SBP)

and heart rate data [82, 83], which comprise the baroreceptor sensitivity (β ), the Valsalva ratio (γ)

[55, 82, 111], and a novel index (α), which we hypothesize is a measure of the subject’s sympathetic

function. Finally, inspired by previous studies [64, 69, 89], we employ a discrete delay to account

for the time it takes to transmit sympathetic signals from the medulla to the effector (heart rate in

this case). To our knowledge, this is the first attempt to use this mechanistic modeling approach to

analyze autonomic function associated with the VM.

4.2 Materials and methods

This section describes the physiological motivation for the mathematical model and its param-

eterization. The model takes systolic blood pressure (SBP) and thoracic pressure (Pt h ) as inputs

predicting heart rate and parasympathetic and sympathetic signals in response to the Valsalva

maneuver (VM). Section 4.2.2 discusses the techniques used to analyze the model, including local

sensitivity analysis and subset selection via the structured correlation methods. Moreover, this

section describes the method used to determine a characteristic data set for each subject.
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4.2.1 Model development

The model developed in this study (Figure 4.1) takes SBP and Pt h as inputs and generates heart rate

(H ) as the output. The model encoding two control mechanisms, the baroreflex and RSA, has four

major components: (a) an afferent baroreflex component, inspired by [72]; (b) a neural integration

component, combining aortic and carotid afferent signals; (c) an efferent baroreflex component,

encompassing the baroreflex-mediated parasympathetic and sympathetic outflows; and (d) an

efferent respiratory component, modulating parasympathetic outflow. These components combine

to determine H . The model developed below has 6 interacting state variables with 26 parameters.

4.2.1.1 Pressure signals

Increased ITP and forceful exhalation characterize the VM. Previous studies have posed mathe-

matical models for inducing ITP by using a discrete step function [47, 69] or piecewise-continuous

functions [53, 101]. In this study, we use the Pt h given in equation (3.2). Since the arterial blood

pressure data is from the finger (outside the thorax), we assume that it does not account for effects

of the fluctuating ITP. Since the model is zero-dimensional (i.e., the equations only depend on

time), we neglect the reflected waves, which augment arterial SBP [81]. Therefore, we assign the

continuous interpolated SBP to be the blood pressure sensed by the carotid sinus (Pc ). We assume

the pressure exerted on the tissues as the thoracic cavity inflates is negligible. Conversely, the aortic

baroreceptors are inside the thorax and do experience increased ITP. We express the aortic blood

pressure (Pa ) as the difference between the SBP and Pt h . These interactions are summarized as

Pc = SBP and Pa = SBP−Pt h , (4.1)

where SBP denotes the interpolated SBP and Pt h is as in equation (3.2).

4.2.1.2 Arterial wall deformation

High pressure baroreceptors (HPBs) are embedded in the tunica externa of the arterial wall sur-

rounded by collagen fibers and supported by elastic laminae [16]. Blood pressure and change in

blood pressure deform and distend the arterial wall, causing HPBs to fire. Strain increases as pressure

increases [129]. Since HPBs are found in both carotid and aortic regions with little to no variation

between cells, we model the arterial wall strain (εw , j ) as

εw , j = 1−

√

√

√ 1+ e −qw (Pj−sw )

A+ e −qw (Pj−sw )
, (4.2)
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Figure 4.2 Voigt body element of the baroreceptor strain, ε j , for j = c or a indicating carotid and aortic
regions, respectively, as they deform due to the arterial wall strain, εw , j . The baroreflex strain is predicted
using one Voigt body element and a spring in series with spring proportionality constants, µ0 and µ1, and
dashpot proportionality constant, η1.

where Pj is the pressure sensed by the arterial wall for j = a or c for aortic or carotid, respectively.

The parameters qw (mmHg−1) and sw (mmHg) denote the steepness and half-saturation value of

the sigmoidal relationship in equation (4.2). A (dimensionless) denotes the maximum to unstressed

cross-sectional area ratio [72].

4.2.1.3 High-pressure baroreceptor stimulation

Carotid baroreceptor nerve fibers form bundles of myelinated and unmyelinated fibers embedded

in the collagen. As the vessel wall deforms, the HPBs stretch and return to rest. Collagen gives

rise to viscoelastic deformation [129]. Given that the baroreceptor nerve endings are embedded in

collagen,we hypothesize that baroreceptor deformation exhibits hysteresis, i.e., the baroreceptors

respond differently to an increase in wall strain as opposed to a decrease [37].

To model this behavior, we compute baroreceptor strain (εb , j ) using a Voigt body element

represented by a dashpot and resistor in parallel, mimicking the viscoelastic properties of the

arterial wall [33]. A schematic of one Voigt body element is shown in Figure 4.2, where the Voigt

body deforms due to pressure-dependent changes in arterial wall strain εw , j . Inspired by previous

studies [20, 72], we model the stress-strain relationship as

η1

dεb , j

dt
+µ1εb , j =µ0εw , j , (4.3)

whereµ0 (dimensionless) is the spring proportionality constant for the spring in series with the Voigt

body and η1 (sec) and µ1 (dimensionless) are the dashpot and spring proportionality constants,

respectively, for j = c or a . Assuming µ0, µ1, and η1 are not region-specific, the baroreceptor nerve

fibers are inherently the same in both regions. Similar to previous studies [20, 64, 69], we simplify

equation (4.3) by combining parameters and obtaining a linear differential equation predicting εb , j

as a function of εw , j of the form
dεb , j

dt
=
−εb , j +Kb εw , j

τb
, (4.4)
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where Kb =µ0/µ1 (dimensionless) and τb =η1/µ1 (sec) are the gain and time constant of the HPB

strain, respectively.

4.2.1.4 Neural integration

Carotid baroreceptors transduce signals via the glossopharyngeal nerve and the aortic baroreceptors

via the vagal nerve [16]. The nerves synapse in the nucleus of the solitary tract which integrates

and transmits the signals to the appropriate medullary region to elicit an efferent response [16].

Little is known about how the information from various regions of the vasculature are integrated

and whether the medulla prefers one signal type to another. We do not model firing of individual

neurons, but rather define neural integration (n) as a convex combination of the transduced HPB

signals in response to the relative strain of each component, i.e.,

n = B (εw ,c − εb ,c ) + (1−B )(εw ,a − εb ,a ), B ∈ [0, 1]. (4.5)

If B = 1, the model output depends solely on carotid HPB stimulation and aortic for B = 0.

4.2.1.5 Efferent baroreflex response

The nucleus ambiguus is the primary determinant of the fast baroreflex-mediated parasympathetic

response (Tp ,b ), sending efferent signals via the vagal nerve to the heart [16]. The rostral ventrolateral

medulla governs the baroreflex-mediated sympathetic response (Ts ) via the sympathetic ganglia

chain to the heart. Though previous studies have found an empirical sympathetic delay of 1.7

seconds in dogs [12] and 1.06 seconds in rabbits [14], previous modeling studies have used a 3 [69,

133] and 4 [63] second delay for humans. We chose to remain consistent with these modeling studies,

using a delay of 3 seconds. Tp ,b arrives at the sinoatrial node much faster than Ts , and we assume

the delay for Tp ,b is negligible. To maintain the inherent nonlinearity and hysteretic behavior of the

neural outflows, we employ sigmoid functions of the form

Gp ,b =
1

1+ e −qp ,b (n−sp ,b )
and Gs =

1

1+ e qs (n−ss )
, (4.6)

where n (sec−1) is as in equation (4.5) and ql (sec) and sl (sec−1) are the steepness parameter and

half-saturation value with l = p , b or s for parasympathetic and sympathetic baroreflex effects,

respectively. We compute Tp ,b and Ts as the solutions to the first-order linear differential equations

dTp ,b

dt
=
−Tp ,b +Kp ,b Gp ,b

τp ,b
and

dTs

dt
=
−Ts (t −Ds ) +Ks Gs

τs
, (4.7)
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where K j (dimensionless) and τ j (sec) are the gain and time constants. Ds (sec) is the delay in signal

transmission of the sympathetic outflow. Tp ,b and Ts are dimensionless quantities modeling the

outflow of the autonomic nervous activity in response to the afferent baroreflex firing rate.

4.2.1.6 Efferent respiratory pathway

The control centers of the respiratory muscles and heart rate are in close proximity in the brain stem

and interact strongly [112]. One such mechanism is respiratory sinus arrhythmia (RSA), or heart rate

variability in synchrony with respiration [138]. RSA is most prominent at rest, mediated via the vagal

nerve synapsing on the sinoatrial node [139]. Many factors influence RSA, one being low-pressure

baroreceptors (LPBs) known to modulate heart rate at rest [16]. Note that LPBs do not give rise to

RSA but may modify its effects. LPBs deactivate during phases I and II, reactivate in phase III, and

help return heart rate to baseline in phase IV. LPBs sense changes in central blood volume in the

vena cava and right atrium [16]. However, since these volume measurements are difficult to acquire

without performing invasive experiments, we used the ECG-derived respiratory signal in lieu of

modeling LPBs explicitly.

The respiratory center receives stimuli from autonomic afferents and from the cerebral cortex.

Therefore, respiration can be controlled both voluntarily and involuntarily. Consequently, the model

has a solely efferent respiratory-mediated component with Pt h as the input modeled as a decreasing

sigmoid to account for the saturation of the thoracic pressure during large breaths in the form

Gp ,r =
1

1+ e qp ,r (Pt h−sp ,r )
, (4.8)

where qp ,r (mmHg−1) and sp ,r (mmHg) are the steepness and half-saturation value of the sigmoid, re-

spectively. The respiratory-mediated parasympathetic outflow (Tp ,r ) is the solution of the differential

equation
dTp ,r

dt
=
−Tp ,r +Kp ,r Gp ,r

τp ,r
, (4.9)

where Kp ,r (dimensionless) and τp ,r (sec) are the gain and time constants, respectively. The respira-

tory center relays sympathetic signals, but these signals do not synapse on the sinoatrial node [139].

Therefore, a respiratory-mediated sympathetic efferent is not included in this study.

4.2.1.7 Heart rate

Based on our previous studies [87–89], we model the resting heart rate as a linear combination of

the efferent responses as

H̃ =HI (1−Hp ,b Tp ,b +Hp ,r Tp ,r +Hs Ts ), (4.10)
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where HI (min−1) is the intrinsic heart rate, Hp ,b and Hs (dimensionless) are scaling parameters for

the baroreflex-mediated parasympathetic and sympathetic heart rate components, respectively, and

Hp ,r (dimensionless) is the scaling parameter for the respiratory-mediated parasympathetic heart

rate component. Previous models included a multiplicative term, incorporating the cancellation

that occurs with both the parasympathetic and sympathetic baroreflex-mediated signals [69, 92].

However, simulations (not shown) indicate that this term does not affect the model output substan-

tially. The intrinsic heart rate is the natural beating frequency of the denervated heart calculated as

a function of age [52]. RSA-mediated parasympathetic activity only acts to increase H , as resting

expiration is passive; hence, the positive sign before Hp ,r in equation (4.10). In response to a stressor,

such as the VM, the dynamic heart rate is the solution to the differential equation

dH

dt
=
−H + H̃

τH
, (4.11)

where τH (sec) is the time constant for the response.

In summary, the model defined above is a system of stiff delay differential equations of the form

dx

dt
= f (t , x (t ), x (t −Ds );θ ), (4.12)

where x = [εb ,c ,εb ,a , Tp ,b , Tp ,r , Ts , H ]T denotes the vector of 6 model states, Ds denotes the discrete

sympathetic delay, and θ ∈R26 denotes the vector of model parameters, including

θ = [A, B , Kb , Kp ,b , Kp ,r , Ks ,τp ,b ,τb ,τp ,r ,τs ,τH ,

qw , qp ,b , qp ,r , qs , sw , sp ,b , sp ,r , ss , HI , Hp ,b , Hp ,r , Hs , Ds , ts , te ]
T . (4.13)

The inputs are the SBP and Pt h signals and the output is the heart rate state H .

4.2.1.8 Initial conditions

The initial conditions were calculated analytically using the systolic blood pressure (SPB), thoracic

pressure (Pt h ), and heart rate data values at the initial time point t0. The model was parameterized

to ensure it began in steady-state conditions. The initial conditions for the arterial wall strain for

both the carotid and aortic regions are

εw ,c (t0) = 1−

√

√ 1+ e −qw (Pc (t0)−sw )

A+ e −qw (Pc (t0)−sw ))
(4.14)

and

εw ,a (t0) = 1−

√

√ 1+ e −qw (Pa (t0)−sw )

A+ e −qw (Pa (t0)−sw ))
, (4.15)

49



which yields the initial conditions for the baroreceptors

εb , j (t0) = Kb εw , j (t0), (4.16)

where j = c or a for carotid and aortic, respectively. The initial neural integration is

n (t0) = B (εw ,c (t0)− εb ,c (t0))+ (1−B )(εw ,a (t0)− εb ,a (t0)). (4.17)

The initial condition for the baroreflex-mediated parasympathetic outflow is

Tp ,b (t0) = Kp ,b Gp ,b (t0) =
Kp ,b

1+ e −qp ,b (n (t0)−sp ,b )
(4.18)

and the history for the delayed sympathetic outflow is set constant to the initial condition

Ts (t0) = Ks Gs (t0) =
Ks

1+ e −qs (n (t0)−ss )
(4.19)

for simplicity. The initial condition for the respiratory-mediated parasympathetic outflow is

Tp ,r (t0) = Kp ,r Gp ,r (t0) =
Kp ,r

1+ e qp ,r (Pt h (t0)−sp ,r )
. (4.20)

The initial condition for the heart rate ODE is

H (t0) =Hdata(t0). (4.21)
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Table 4.1 Summary of parameter values and their descriptions, units, source (if any), and nominal values.

Description and Symbol Units Source This Study
Mahdi Lu Ottesen Olufsen Wesseling
(2013) (2001) (2000) (2006) (1992)

Cross-sectional area ratio A 5 5
Neural scaling factor B sec−1 0.5
ODE Afferent baroreceptor Kb 1∗ 3.06∗ 0.1
Gains Baroreflex parasympathetic Kp ,b 0.8∗ 1∗ 0.83∗ 5

Respiratory parasympathetic Kp ,r 1.42 1
Baroreflex sympathetic Ks 1∗ 1∗ 0.48∗ 5

Heart Intrinsic heart rate HI min−1 35∗ 100 100 ± 7 (4.25)
rate Baroreflex parasympathetic Hp ,b 32∗ 0.45 0.5 ± 0.2 (4.29)
gains Respiratory parasympathetic Hp ,r 0.3 ± 0.4 (4.28)

Baroreflex sympathetic Hs 140∗ 0.99 0.3 ± 0.4 (4.27)
ODE Baroreceptor strain τb sec 1 0.5 0.6 0.9
time Baroreflex parasympathetic τp ,b sec 1.8 1.32 1.8 1.8
constants Respiratory sympathetic τp ,r sec 6 6

Baroreflex sympathetic τs sec 10 0.72∗ 10 10
Heart rate τH sec 1 0.5

Sigmoid Arterial wall strain qw mmHg−1 5∗ 0.04
steepness Baroreflex parasympathetic qp ,b sec 0.04∗ 10

Respiratory parasympathetic qp ,r mmHg−1 1
Baroreflex sympathetic qs sec 0.09∗ 10

Half- Arterial wall strain sw mmHg 145 123 ± 20 (4.22)
saturation Baroreflex parasympathetic sp ,b sec−1 110∗ 0.54 ± 4e-4 (6.3a)
values Respiratory parasympathetic sp ,r mmHg 4.88 ± 0.21 (4.22)

Baroreflex sympathetic ss sec−1 100∗ 0.05 ± 4e-4 (4.24)
Sympathetic delay Ds sec 3 6.12 3 3
Valsalva start time ts data
Valsalva end time te data

ODE - ordinary differential equation. An empty entry in the Units column indicates the parameter is dimensioneless. Some parame-
ters are calculated a priori and the equation reference is provided. Data refers to quantities extracted directly from intrathoracic
pressure data.
∗ denotes parameter values from models that are scaled differently from the model in this study.
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4.2.1.9 Nominal parameter values

Some parameters are calculated a priori to calibrate the model to each individual subject. The

half-saturation values of the sigmoidal relationships for the arterial wall strain, sw , and the efferent

respiratory pathway, sp ,r , can be interpreted as the baseline SBP and baseline Pt h , respectively,

determined as the average value over 15 seconds of rest, i.e.,

sw = P̄ and sp ,r = P̄t h . (4.22)

The half-saturation values of the baroreflex-mediated parasympathetic and sympathetic sigmoids,

sp ,b and ss , are calculated assuming the parasympathetic activity contributed 80% of the baroreflex

control of the heart rate at rest, while the sympathetic activity contributed 20% [25, 107]. The bars in

the following calculations indicate average values calculated from the SBP, Pt h , and heart rate data

(P̄ , P̄t h , H̄ ). The half-saturation values are given by

P̄c = P̄

P̄a = P̄ − P̄t h

ε̄w , j = 1−

√

√

√ 1+ e −qw (P̄j−sw )

A+ e −qw (P̄j−sw ))

ε̄b , j = Kb ε̄w , j

n̄ = B (ε̄w ,c − ε̄b ,c ) + (1−B )(ε̄w ,a + ε̄b ,a )

sp ,b = n̄ +
1

qp ,b
ln
�Kp ,b

Tp ,b
−1

�

(4.23)

ss = n̄ −
1

qs
ln
�Ks

Ts
−1

�

, (4.24)

where T̄p ,b = 0.8 and T̄s = 0.2 and j = c or a .

We calculate the intrinsic heart rate, HI , as a function of age

HI = 118−0.57age (4.25)

[52]. We calculate the sympathetic coefficient for heart rate, Hs , by determining the maximal heart

rate possible based on age using the equation from Tanaka et al. [127]

HM = 208−0.7age. (4.26)

To attain the maximal heart rate, we assume sympathetic activity should be at its highest value and
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parasympathetic activity at its lowest value, i.e., Gp ,b =Gp ,r = 0 and Gs = 1. Then,

HM =HI (1+Hs Ks ) ⇒ Hs =
1

Ks

�HM

HI
−1

�

. (4.27)

The nominal value for the respiratory-mediated parasympathetic scaling factor for heart rate, Hp ,r ,

is calculated by finding the largest value in the heart rate data due to respiration during rest, HR ,M ,

and the lowest value, HR ,m , i.e.,

Hp ,r =
HR ,M −HR ,m

HI

1

T̄p ,r
, (4.28)

where T̄p ,r is the steady-state respiratory-mediated parasympathetic outflow set at 0.5 sec−1. The

baroreflex-mediated parasympathetic outflow parameter is reverse-engineered from the resting

heart rate equation using the baseline heart rate, H̄ , which yields

Hp ,b =
1+

H̄

HI
+Hp ,r T̄p ,r +Hs T̄s

T̄p ,b
. (4.29)

4.2.1.10 Numerical methods

The model was solved using the RADAR5 algorithm, a stiff delay differential equations solver, in

Fortran developed by Guglielmi and Hairer [36]. This system is stiff due to the steep, fast changing

sigmoidal relationships given in equations (4.2), (4.6), and (4.8) and the time constants (τb , τp ,b ,

τp ,r , τs , and τH ) varying significantly in magnitude. RADAR5 is an extension of Radau IIA methods,

which use explicit Runge-Kutta methods that are suitable for stiff delay differential equation systems.

This is a variable-step solver, in which the solution is not necessarily computed at the same times as

the experimental data. Hence, the model output was numerically interpolated at the time points of

the heart rate data.

4.2.2 Model analysis

4.2.2.1 Local sensitivity analysis

We performed a local analysis to determine how the model output H responds to variations in

parameter evaluated at their nominal values [28, 30, 71, 72]. To analyze how the model deviates from

the data, we compute the sensitivity matrix (S) with respect to the residual (r) at time t j given by

r(t j ) =
H (t j ;θ )−Hdata(t j )

Hdata

1
p

N
, (4.30)
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Figure 4.3 Ranked relative sensitivities calculated in equation (4.32) for all parameters excluding the start
and end VM times, ts and te , respectively. The most sensitive parameter is on the left and the sensitivities
decrease accordingly. All parameters are above the sensitivity threshold of 10−3.

where H (t j ;θ ) and Hdata(t j ) denote the heart rate model output and data at time t j , respectively, and

N is the number of data points. Due to the variation in magnitude of the parameters, we compute

the sensitivity of the model to the logarithm of parameter θi at time t j as

Si j =
dr(t j )

d log(θi )
=

d

dθi

H (t j )−Hdata(t j )

Hdata(t j )
θi =

dH (t j )

dθi

θi

Hdata(t j )
. (4.31)

The columns of S are vectors with measurements of the model sensitivity to parameter θi for all t j . It

is useful to rank the parameters based on their degree of influence. This ranking can help determine

whether certain parameters are noninfluential. In this study, we compute the Euclidean norm on

each column of the relative sensitivity matrix

si = ||Si ||2 (4.32)

for i the column index. Dividing the column indices by the maximal index yields the most influential

parameter with sensitivity 1 and the others decreasing accordingly. The integration tolerance for

these models was set toφ = 10−8. The most sensitive parameters are above the sensitivity threshold

10
p

φ = 10−3 [100].

We did not include times extricated from data, ts and te in the sensitivity analysis. Naturally, the

model is very sensitive to changes in these parameters, but we set them constant to ensure patient-

specificity. Thus, we only consider 24 parameters in the sensitivity analysis. Figure 4.3 displays
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the ranked relative sensitivities for these model parameters. All of the parameters were above the

sensitivity threshold of 10−3. We determined sp ,b , sw , HI , and A were the most sensitive parameters.

Since these parameters are highly sensitive, small fluctuations cause large changes in the model

output. Changes in the least sensitive parameters, qp ,r and τb , show a negligible change in model

output.

4.2.2.2 Correlation analysis and subset selection

Many methods exist to perform subset selection to obtain a set of parameters to optimize, including

subspace selection [115] and singular value decomposition of S followed by a Q-R factorization

[87]. In this study, we perform a local structured correlation analysis to determine possible pairwise

correlations between sensitive parameters [28, 136]. We compute the covariance matrix C= (ST S)−1

with corresponding correlation matrix c as

ci j =
Ci j

Æ

Ci i C j j

, (4.33)

which is symmetric where |ci i |= 1 and |ci j | ≤ 1. For this study, we assumed two parameters were

correlated if |ci j | ≥ 0.95.

We analyzed pairwise correlations between only a subset of parameters. The sigmoid half-

saturation values, sw , sp ,r , sp ,b , and ss , are calculated as shown above. The half-saturation values

are difficult to optimize, as the optimized result can force the model to produce a linear relation

where nonlinearity occurs physiologically. Estimating the sigmoid steepness parameters, qw , qp ,r ,

qp ,b , and qs , pose similar challenges, producing neural signals that are not physiological. Thus, we

left these parameters fixed. As with the sensitivity analysis, we excluded the time parameters from

the correlation analysis. The new subset of parameters includes

θ̂ = [A, B , Kb , Kp ,b , Kp ,r , Ks ,τb ,τp ,b ,τp ,r ,τs ,τH , HI , Hp ,b , Hp ,r , Hs , Ds ]
T . (4.34)

We performed a structured correlation analysis on θ̂ . When pairwise correlations arise, we remove

the least influential parameter from θ̂ based on the local sensitivity analysis. The resulting subset of

parameters to optimize free of pairwise correlations is

θ̃ = [B ,τp ,b ,τp ,r ,τs , HI , Hp ,b , Hp ,r , Hs ]
T (4.35)

in which the parameters are above the sensitivity threshold 10−3 and are not pairwise correlated.

Furthermore, we confirmed this subset with a global sensitivity analysis using delayed rejection

adaptation metropolis (DRAM). DRAM combines the delayed rejection and adaptive metropolis

algorithms to improve the efficiency of the Metropolis-Hastings algorithm [39]. While correlation
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analysis is significantly less computationally expensive than DRAM, it only calculates a first-order

linearization of the parameter interactions, and therefore, does not take into account the higher

order parameter interactions. In this regard, DRAM is much more suited for capturing the nuances of

nonlinear parameter interactions and ensures our subset was identifiable. Moreover, we conducted

a cross-validation of the parameters by altering the nominal parameter values and re-optimizing.

We then analyzed 10 re-optimization iterations and found that the coefficient of variation (σ/µ for

σ the standard deviation and µ the mean) wasσ/µ< 0.15 for all parameters in this set.

We estimated θ̃ using nonlinear least squares optimization, since the problem is nonlinear with

respect to the parameters. This method minimizes the cost functional

J = rT r+

�max
j

H (t j )−max
j

Hdata(t j )

max
j

Hdata(t j )

�2

, (4.36)

where r is the residual vector given in equation (4.30) and the secdon term ensures that the maximal

heart rate attained during the VM is modeled accurately. To account for the wide variation in

magnitude of the parameters and to ensure positivity, we optimized the logarithm of the parameters.

We used a Levenberg-Marquardt scheme by Kelley [57].

4.2.2.3 Characteristic Valsalva maneuver

Since almost every subject has multiple viable VM data sets, we identify a characteristic VM defined

as the VM with estimated and calculated parameter values closest to the intra-subject mean for the

subject. The following algorithm determines the characteristic VM for each subject:

1. For each viable VM data set j of the i th subject, we consider the subset

Θi , j = [θ̃
T , sw , sp ,r , H̄ ]T = [B ,τp ,b ,τp ,r ,τs , HI , Hp ,b , Hp ,r , Hs , sw , sp ,r , H̄ ]T , (4.37)

which includes the optimized parameter set θ̃ , the baseline blood pressure and Pt h values (sw

and sp ,r ), and the baseline heart rate (H̄ ). sw , sp ,r , and H̄ are used since they are calculated

directly from the data and are patient-specific. If an optimized parameter hit a lower or upper

bound, that value was excluded. We calculate the intra-subject means of these parameters, Θ̄i .

2. Since the parameters vary in scale, we compare the logarithm of the parameters. We determine

which VM data set is characteristic for that subject by

min
j
|| log Θ̄i − logΘi , j ||2. (4.38)

3. The viable VM data set with Θi , j closest to the mean is the “characteristic VM" for that subject.
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Figure 4.4 Data, model fit, and model predictions for control subject 2 (column 1) and the five patients with autonomic dysfunction
(columns 2-6). Each column is designated with their particular pathology: postural orthostatic tachycardia syndrome (POTS), ortho-
static hypotension (OH), Parkinson’s disease (PD), and pure autonomic failure (PAF). The rows in order: (1) the inputs with the interpo-
lated systolic blood pressure (SBP) plotted from the left y -axis and thoracic pressure (Pt h ) plotted from the right y -axis; (2) predicted
baroreceptor strain for the carotid (purple) and aortic (teal) baroreceptors; (3) efferent baroreflex response signals for the parasympa-
thetic (Tp ,b , magenta) and sympathetic (Ts , green) outflows; (4) efferent respiratory response (Tp ,r ); (5) and the model fit (red) to heart
rate data (blue). The phases of the Valsalva are designated with alternating gray and light gray boxes. The vertical dashed line delineates
between early and late sections of phase II.
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Table 4.2 Clinical ratios for the control
group (34 subjects) and for the 5 patients
with autonomic dysfunction (patholo-
gies listed in Table 3.2) with means and
standard deviations reported.

Clinical Ratios

α β γ

Control 5 ± 3 15 ± 13 1.7 ± 0.4

Patient

1 -0.6∗ 19 2.8∗

2 0∗ 3 1∗

3 0∗ 13 1.1∗

4 0∗ 18 1∗

5 0.5∗ 3∗ 1∗

∗ indicates clinical ratio is outside of one
standard deviation.

4.3 Results

We have validated our model against 34 control subjects and 5 AD patients with V behavior cate-

gorized by Palamarchuk et al. [94]. For each subject, we fitted the model to every VM data set and

identified a characteristic VM. We used the Levenberg-Marquardt optimization algorithm [57] to

estimate the parameter subset θ̃ given in equation (4.35) minimizing the least squares error given

in equation (4.36). Table 4.2 lists the population means and standard deviations of the clinical ratios

for the control subjects, calculated from the characteristic VM for each subject, and the clinical

ratios for each AD patient. Table 4.3 lists the population means and standard deviations for the

estimated parameter values for the control subjects along with the values for the 5 AD patients .

To test identifiability of the parameters in subset θ̃ , we varied the nominal parameter values

in equation (4.35) by ±20% for 10 optimization iterations for control subject 2. The mean (µ) and

standard deviations (σ) were calculated across the iterations. The coefficient of variation (σ/µ) for

each parameter in subset θ̃ did not exceed 0.14 . This was performed on the characteristic VM for

each subject with similar results, indicating the scheme has reached an individual minimum.
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Table 4.3 Means and standard deviations of the cost functional and estimated parameter values for the
characteristic Valsalva maneuver for 34 control subjects and 5 patients with autonomic dysfunction
(pathologies listed in Table 3.2)

Cost Estimated Parameters

J (10−3) B τp ,b τp ,r τs Hp ,b Hp ,r Hs

Control 8 ± 5 0.4 ± 0.3 6.5 ± 5.7 9.6 ± 10.8 14 ± 8 0.5 ± 0.2 0.3 ± 0.2 0.3 ± 0.2

Patient

1 12 0.04∗ 0.2∗ 47∗ 5 0.4 0.05∗ 0.1

2 0.5 0.5 17∗ 41∗ 36∗ 0.5 0.4 0.5

3 0.4 0.5 13∗ 2 16 0.2∗ 0.07∗ 0.1

4 0.2 0.5 2 4 13 0.1∗ 0.09∗ 0.3

5 0.6 0.09∗ 23∗ 4 37∗ 0.4 0.03∗ 0.3

∗ indicates clinical ratio is outside of one standard deviation.

4.3.1 Qualitative behavior

Figures 4.4 displays the model performance (computed with optimized patient-specific parameters)

for a representative control subject (subject 2) and all 5 AD patients. Figure 4.4, column 1, panel 1

displays the input signals SPB and Pt h used to distinguish the afferent HPB strains of the carotid

sinus (purple) and aorta (teal) (column 1, panel 2). These signals modulate the efferent baroreflex-

mediated parasympathetic (Tp ,b , magenta) and sympathetic (Ts , green) responses (column 1, panel

3). The ordinates of the plot can be interpreted as a percentage of the autonomic outflow. Column

1, panel 4 displays the respiratory-mediated parasympathetic outflow (Tp ,r ). The model output H

(red) is effectively calibrated to the heart rate data (blue) both at rest and during the VM (column 1,

panel 5). The large oscillations in the heart rate data are due to deep inhalations of the subject prior

to the VM, which are captured by the respiratory model component. All signals begin in steady-state

when the subject is at rest. Since the model output is continuous and the data are discrete, inevitably

there will be discrepancies between each individual heart period and the model output.

The 5 AD patients all have different pathologies, noted at the top of columns 2-6, that result in

different control responses from the baroreflex and RSA. Patient 1 is diagnosed with POTS, as shown

with the substantial increase in heart rate. By comparing column 1 panel 3 (control) to column

2 panel 3 (POTS), the model predicts overactive parasympathetic and sympathetic behavior. Tp ,b

(magenta) oscillates significantly more at steady-state and decreases to zero during the VM. Ts

(green) increases substantially during late phase II of the VM, then decreases sharply in phase III,
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and undershoots in phase IV. Dynamic regulation from RSA is minimal (column 2, panel 4) as Tp ,r is

a smooth curve with minor fluctuations.

In comparison, patients 2-5 (columns 3-6, panel 3) have a suppressed parasympathetic response

to the control subject and patient 1 (column 1-2, panel 3). Since these patients are much older

than the control subject and patient 1, they are expected to have decreased Tp ,b activity [96]. The

traces for Ts behave similarly to the control subject. This is surprising, especially for patient 5 as

PAF typically displays substantial adrenergic sensitivity [19]. These results suggest that for these

patients there is a substantial decrease in parasympathetic, while their sympathetic activity to the

sinoatrial is normal.

Similarly, we expect Tp ,r (the respiratory outflow) to exhibit minimal dynamics. However, for

patients 3, 4, and 5, Tp ,r fluctuates similar to the control subject. The trace for Tp ,r must be taken

in conjunction with the RSA gain for the heart rate Hp ,r (Table 4.3). Even though Tp ,r is dynamic

for patients 3, 4, and 5, Hp ,r is 0.02, 0.09, and 0.03, respectively, indicating little to no effect of RSA

on heart rate. Hence, the model is able to produce a trace for RSA, which can represent respiratory

effects in these patients that are not reflected in the heart rate.

4.3.2 Quantitative results

4.3.2.1 Clinical ratios

Table 4.2 lists the means and standard deviations of the clinical ratios for the characteristic VMs

for all 34 control subjects and 5 AD patients. To test if extracted clinical ratios vary with age or sex,

we divided the control group by sex (male versus female) and age (≤40 years versus >40 years). No

statistical differences were detected when accounting for sex, age, or their interactions via a two-way

ANOVA (results not included). Thus, the analysis in this study combines all control subjects in one

group. The mean value for β agrees with normal baroreceptor sensitivity indices for control subjects

in previous studies [55, 84]. The mean value with one standard deviation for the Valsalva ratio γ also

agrees with previous standards [83].

All 5 AD patients were chosen because they exhibit V behavior, which we quantify by a value of

α� 1. Since there was no monotonic increase of SBP back to baseline for patient 1, the regression

was done over the entire late phase II interval, yielding a negative α value (α=−0.6). Patients 2-4

show no change in SBP in late phase II (α= 0). For Patient 5, α= 0.5 remains below one standard

deviation of the mean of the control subjects.

The baroreflex sensitivity index β is within normal range for patients 1, 3, and 4. Patients 2 and 5

are also within normal range but an order of magnitude smaller (β = 3) than the mean of the control

subjects. This is to be expected for patients with OH, as the change in heart rate is small in relation

to the change in SBP.

The Valsalva ratio γ for patient 1 was greater than the mean of the control subjects, indicating
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Table 4.4 Relative autonomic activity of the 5 patients with autonomic
dysfunction exhibiting V behavior compared to the control subject.

Control Pathway Symbol Patient
Mechanism 1 2 3 4 5

Baroreflex Parasympathetic Tp ,b ↑ ↓ ↓ ↓ ↓
Sympathetic Ts ↑ ↓ ↓

RSA Parasympathetic Tp ,r ↓ ↓ ↓ ↓ ↓
Agree with V hypothesis? N Y N N Y

Blank spaces indicate no change.
Y - yes. N - no.

a substantial drop in heart rate from phase III to phase IV. This is to be expected for patients with

POTS as the heart rate has increased significantly during the VM. Patients 2-5 show γ≈ 1, indicating

abnormal behavior with little to no change in heart rate in the late phases of the VM.

4.3.2.2 Estimated parameter values

Table 4.3 displays the mean and standard deviation of the nonlinear least squares cost and the

estimated parameters of the characteristic VM for all 34 control subjects and 5 AD patients. Again,

no statistical differences were detected via a two-way ANOVA accounting for sex and age (results

not included). No correlations were found between the clinical ratios and the estimated parameters,

which is to be expected since the model is not informed by the clinical ratios. Also, no correlations

were found between the calculated parameters in Table 4.1 and the clinical ratios. This is surprising

since we expected the parameters calculated directly from the data to correlate with the ratios. This

could be due to the fact that the clinical ratios reflect transient changes in heart rate and blood

pressure, while the calculated model parameters are determined from baseline values. The Valsalva

ratio in particular is not dependent on baseline values [31]. The following paragraphs describe the

results from the estimated parameters and the predicted autonomic function of each patient. Table

4.4 summarizes these results with arrows signifying either an increase or decrease in function.

For Patient 1 (POTS), the optimized B value is an order of magnitude smaller than the mean of

the control subjects, signifying that the aortic baroreceptors contribute the most to the heart rate.

The time-scale τp ,b is an order of magnitude smaller than the mean of the control subjects as well,

signifying that the baroreflex-mediated parasympathetic response is overactive. The time-scale τs

is outside of one standard deviation of the mean of the control subjects, indicating an increased

sympathetic outflow, while Hs is within its normal range. The combination of these parameter

values implies an increased parasympathetic and sympathetic activity to the sinoatrial node, which

contradicts our hypothesis of diminished parasympathetic and sympathetic activity due to the

baroreflex. This is surprising since the V behavior is typically seen in subjects with adrenergic failure.
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Hp ,r associated with RSA is approximately zero, signifying the effect from RSA is negligible.

Patients 3 and 4 (PD) have parameter values that fall in similar ranges. The parasympathetic

parameters, Hp ,b and Hp ,r , are outside of one standard deviation off the mean of the control subjects.

This is to be expected as PD tends to drastically affect the parasympathetic nervous system, whereas

declines in sympathetic activity occur much later. These subjects also do not coincide with the

hypothesis for the V behavior, as only the parasympathetic activity has decreased but the sympathetic

activity is within normal range.

The parameter values for patient 2 (OH) and patient 5 (PAF) fall in ranges that are indicative

of their diagnoses. The B value is an order of magnitude smaller than the mean of the controls,

skewing the effect of the baroreceptors on the heart rate to the aortic arch. For patient 5, Hp ,r is lower

than one standard deviation from the mean, indicating little to no effect of the parasympathetic

outflow on heart rate from RSA. Furthermore,τs is very large for both (τs > 30) relative to the control

subjects, indicating a much longer effect of the sympathetic control on heart rate. The combination

of these parameter values signifies the dysfunction of both the parasympathetic and sympathetic

pathways, which agrees with our hypothesis of the V behavior.

4.4 Discussion

This study presents a mathematical model of the autonomic nervous control of heart rate before,

during, and after the Valsalva maneuver (VM) through two control mechanisms: respiratory sinus

arrhythmia (RSA) and the baroreflex. Since autonomic activity is difficult to measure in vivo and,

therefore, must be analyzed indirectly, modeling sympathetic and parasympathetic signals yields

both a quantitative and qualitative assessment of autonomic function. The model in conjunction

with parameter estimation fits many different kinds of heart rate responses to the VM. The model

was effectively validated against 34 control subjects and 5 AD patients, varying widely in age and

baseline blood pressure and heart rate values. Several other studies have attempted to model the

VM [20, 47, 53, 64, 69, 101]. However, our model provides novel facets, such as the (a) inclusion of

two input signals SBP and Pt h ; (b) delineation between the aortic and carotid baroreceptor centers;

(c) combination of both the ITP and the respiratory signal to determine Pt h ; and (d) incorporation

of a sympathetic delay. The estimated parameters can help explain and differentiate etiologies for

AD pathologies not captured by the data and/or clinical ratios alone. In summary, the model in

conjunction with parameter estimation supplements existing data analysis protocols by provid-

ing time-series for various neurological pathways and interpretable parameter values for disease

classification.
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4.4.1 Neural signals

Since fluctuations in SBP affect the parasympathetic outflow, we expect the baroreflex-mediated

parasympathetic outflow (Tp ,b ) to oscillate with SBP at rest if large changes in SBP occur. During

the VM, Tp ,b accurately depicts parasympathetic withdrawal in phase II, a second, less dramatic,

parasympathetic withdrawal in phase III, and an overshoot in phase IV, known to occur in control

subjects [102, 114]. The model captures all of these behaviors for the control subject. The sympa-

thetic outflow should remain relatively constant, or with minor oscillations, at rest. During the VM,

the decrease in blood pressure sensed by the HPBs activates the sympathetic nervous system. Ts

accurately exhibits a delayed increase in sympathetic activity in phase II and a delayed decrease in

activity in phases III and IV. The model in conjunction with parameter estimation depicts all of these

behaviors. In Figure 4.4, for patients 2-5 Tp ,b does not fluctuate as dramatically as the control subject

while Ts follows a similar trajectory as the control subject. Since the baseline baroreflex-mediated

parasympathetic control and baroreflex-mediated sympathetic activation are known to both decline

with age and disease [79], the model distinguishes between these differences. However, since our

study does not include data for elderly control subjects, we currently cannot differentiate behavior

attributed to age or disease.

4.4.2 Aortic and carotid bodies

Our study supports the hypothesis that the baroreceptors of the aortic body are necessary to calibrate

the model for each subject and effectively capture the VM behavior. Though the values vary widely

between subjects, the neural scaling factor B has a mean value of 0.4± 0.3 sec−1 for the control

subjects, skewing towards the aortic baroreceptors. Kosinski et al. [61] showed that in their model

the combined effects of both the carotid and aortic baroreceptor regions is necessary to capture

the dynamics of the VM. Our study not only agrees with this finding but emphasizes that the aortic

baroreceptors may play a larger role than previously thought in the VM.

4.4.3 Respiratory sinus arrhythmia

Figure 4.5 displays the optimized fit of the model output for the baroreflex-only (black dotted curve)

and the joint baroreflex-RSA output (red solid curve). At baseline, the efficacy of the model fit to

the heart rate data depends strongly on the RSA, which coincides with previous studies [10, 26]. By

incorporating RSA, these oscillations can be effectively captured. During the VM, the baroreflex-

only and joint baroreflex-RSA model outputs fit the data well in late phase II and phases III and IV.

However, it should be noted that the discrepancy in phase I and early phase II implies the baroreflex-

only signal cannot simulate the initial heart rate drop caused primarily by the sharp inspiration.

This discrepancy also occurs in the heart rate fits to data in Kosinski et al. [61]. With the inclusion of

RSA, our model can capture this sudden drop in heart rate.
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Figure 4.5 Respiratory sinus arrhythmia (RSA) effects on the model output for the baroreflex-only (dotted
black curve) and the joint baroreflex-RSA (solid red curve).

4.4.4 Clinical ratios

The clinical ratios α, β , and γwere calculated in this study. A novel component of our analysis is

the definition of the index α, the slope of the increase in blood pressure during late phase II, as a

measure of sympathetic nervous activity. In the original study by Korner et al. [60], it was shown that

the late phase II blood pressure increase depended solely on sympathetic activity. To our knowledge,

no other studies have used α to approximate sympathetic function. Though αmay be affected by

an increased cardiac output in late phase II due to the stabilization of stroke volume at a lower level,

we propose that α relates to the effectiveness of the sympathetic response to SBP recovery. The 5 AD

patients display little to no ability to recover baseline SBP during late phase II (α≈ 0 as shown in

Table 4.2). Increased arteriolar resistance due to sympathetic activation largely contributes to the

return of SBP to baseline in late phase II and the overshoot in phase IV [102]. Thus, in the absence of

sympathetic activation, the peripheral resistance does not increase and as a result SBP does not

return to baseline, leading to α≈ 0. This analysis supports using α to indicate sympathetic function.

The values of β , the baroreceptor sensitivity, for patients 1-4 are within normal range, while

patient 5 has a significantly diminished value. Though this index is common [55, 98, 125], interpre-

tation of the ratio is inconclusive. Since this index is a ratio of R-R interval to SBP, various factors

can contribute to lower or higher β values. For example, a low β value could be the result of: a

marginal change in R-R interval from phase III to phase IV, which could be due to a decrease in

parasympathetic activity; a drastic SBP overshoot in phase IV, which could be due to a substantial

and sustained increase in sympathetic activity; or a combination of these. Due to the ambiguous

nature of this index, we recommend using the parameters estimated from the proposed model in

this study to supplement the explanation of β value. We expand upon this notion in the next section.

The Valsalva ratio γ typically associated with vagal function is abnormal when γ≤ 1.1 [31]. We

observe what is traditionally determined as “abnormal" behavior for patients 2-5, but γ is very
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high (γ= 2.3) for patient 1 (POTS) and outside of the normal range. Expanding on the definition of

abnormal vagal behavior using this index would be very useful clinically. We propose the following

delineation for clarity and ease of use:

• γ≤ 1.1 - abnormal with diminished parasympathetic activity.

• 1.1<γ≤ 2 - normal range.

• γ> 2 - abnormal with overactive parasympathetic activity.

4.4.5 Model-based analysis of autonomic dysfunction

As discussed in the previous section, β only describes the relationship between changes in R-R inter-

val and SBP but does not explain how those changes arise. Abnormally low or high values of β could

be the result of many combinations of parasympathetic and sympathetic dysfunction [125]. Further-

more, β could be within the “normal range" but only describes that the compensatory decrease in

heart rate is proportional to the overshoot in SBP. Employing the estimated parameters determined

by the methods introduced in this study in comparison to the β value would greatly enhance the

interpretative power for these patients. The following discusses each AD patient and compares their

clinical ratios to the estimated parameters. Table 4.4 tabulates the relative parasympathetic and

sympathetic responses of the AD patients to the control subjects.

Patient 1 (POTS) has a large increase in heart rate in relation to the SBP overshoot, yielding a β

value within normal range range and a high γ value. POTS is known to occur without orthostatic

hypotension, which is not observed in this patient [75]. Though β is normal, this patient clearly

has an abnormal VM trace given the V behavior and an increase in heart rate of ≥ 30 bpm. To

characterize the AD contributing to this abnormal behavior, estimated model parameters show

overactive baroreflex-mediated parasympathetic (lowτp ,b and normal Hp ,b values) and sympathetic

(low τs and normal Hs values) outflows. Therefore, this patient experiences abnormal changes in

the activity of both autonomic sectors to the sinoatrial node, contributing to the substantial increase

in heart rate.

Patients 2 (OH) and 5 (PAF) maintain a high blood pressure with a sharp decline during the VM

without a substantial compensatory heart rate increase, a key factor in their diagnoses, without

a substantial compensatory heart rate increase [75]. Though the β value for these patients is low,

it is still within normal range. The estimated parameters for patient 2 show that all time-scales

have increased substantially (high τp ,b , τp ,r , and τs values) with normal heart rate gains (Hp ,b ,

Hp ,r , and Hs ). These indicate that the baroreflex tone has significantly decreased for this patient for

both parasympathetic and sympathetic branches. Patient 5 displays increased τp ,b and τs values,

indicating decreased parasympathetic and sympathetic outflow due to the baroreflex, respectively.

Furthermore, parameters associated with RSA control are outside of their normal range (high τp ,r
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for patient 2 and low Hp ,r for patient 5) decreasing the effect of Tp ,r on heart rate, which occurs with

age [138]. The etiologies for these patients coincide with the hypothesis of the V behavior.

Patients 3 and 4 (PD) both have normal β values while exhibiting almost no change in heart

rate in phase IV (γ = 1) and the V behavior. In regard to the estimated parameter values, both

patients show decreased parasympathetic activity. Patient 3 has a high τp ,b with low Hp ,b and Hp ,r ,

and patient 4 has low values for heart rate gains Hp ,b and Hp ,r . Therefore, both PD patients exhibit

impaired vagal function for both the baroreflex and RSA, while adrenergic function operates normally

(τs and Hs within normal range). This coincides with PD patients who experience orthostatic

hypotension without orthostatic intolerance [95]. Hence, the sympathetic outflow for the PD patients

may still affect heart rate but not blood pressure. Further investigation is required to substantiate

this hypothesis.

The different causes eliciting the V response for these 5 AD patients leads us to conclude that

the hypothesis for the V behavior should be expanded. Pattern recognition alone is not sufficient to

explain the etiologies for each of the patients, and therefore, we can develop subcategories which

encompass these explanations. Further investigation into this phenomenon with a larger cohort of

subjects exhibiting the V behavior is needed to develop these subcategories.

4.4.6 Model limitations

ITP data was not recorded for the 5 AD patients. We used equation (3.1) to obtain an ITP signal,

assuming that they maintained an expiratory force of 40 mmHg throughout the breath hold. Moving

forward, we suggest the inclusion of time-varying measurements of ITP in all protocols examining

the response to the VM. WE computed an ECG-derived respiratory signal in lieu of respiratory

data, which was not collected for the subjects. For increased patient-specificity, we recommend

measuring respiration in future studies. Since the model uses only the SBP as an input, the Voigt

body of equation (4.3) truly responds to the systolic max arterial wall strain, due to the interpolation

of the SBP as a continuous input. In actuality, these Voigt bodies respond to the continuous pulse

pressure throughout the cardiac cycle. We do not explicitly model action potential generation but

rather a collective neural outflow of the baroreceptors in response to the SBP. The model may benefit

from a more explicit neuron model, but this may induce unnecessary complexity by significantly

increasing the number of model states and parameters.

An important control mechanism activated in response to the VM is the explicit effect of LPBs,

which sense changes in central blood volume in the vena cava and right atrium junctions. The

effect of these baroreceptors is difficult to model without either (a) available data for right atrial

volume/pressure or (b) the use of a closed-loop cardiovascular model coupled to the presented

neurological model. We plan to couple these models in Chapter 7.

The conclusions made in this study are limited by the relatively small group of control subjects.
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Though these individuals do not exhibit AD in response to the VM, they may experience other

conditions not accounted for in this study. We used the patients with AD as a mode of comparison

to the control subjects, but we are limited by the availability of patients that exhibit the V behavior.

We would benefit from a larger patient cohort to perform a more extensive statistical analysis.

4.5 Conclusions

This study proposes a mathematical model of respiratory sinus arrhythmia and the baroreflex in

response to the Valsalva maneuver. The model uses systolic blood pressure and thoracic pressure in-

puts to delineate the aortic and carotid baroreceptor centers. The model is calibrated to a measured

heart rate, simultaneously providing an approximation of respiratory-mediated parasympathetic

activity and baroreflex-mediated parasympathetic and sympathetic nervous activity, which can-

not be measured noninvasively. Our model performs well, validating it against 34 controls and 5

AD patients. We emphasize the necessity of modeling the two baroreceptor regions to accurately

depict the dynamics during the VM, the efferent respiratory pathway to indirectly model effects

of low-pressure baroreceptors during the VM, and the delay in sympathetic nervous activity. We

have also introduced a new index α, which quantifies the sympathetic gain in late phase II of the

VM. Furthermore, our results support the categorization of the V behavior should be divided into

subcategories based on the etiology described by the estimated model parameters. We have found

no correlation between the clinical ratios studied and the model outputs, indicating the model

includes quantities not measured by these clinical ratios. In summary, this model in conjunction

with parameter estimation can be used to effectively analyze autonomic cardiovascular control.
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CHAPTER

5

TWO-PARAMETER BIFURCATION AND

STABILITY ANALYSIS

The model developed in Chapter 4 is formulated using a system of nonlinear ordinary and delay

differential equations. This model type can be analyzed with a number of techniques, including

stability and sensitivity analyses. In Chapter 4, we used local sensitivity analysis (LSA) to examine

parameter influence on the model output at given values and determined a subset of parameters

to optimize. In this chapter, we conduct a stability analysis with particular focus on the delay

differential equation as delays are known to cause instability in dynamical systems [113]. In chapter

6, we conduct a global sensitivity analysis (GSA) to explore the parameter space (Ωp ) and inform a

model reduction protocol.

LSA has the advantage that it is fast and informative but it requires evaluation of the partial

derivatives at the nominal parameter values, which only allows us to characterize model behavior in

a small neighborhood about the nominal value. GSA, on the other hand, uses sampling methods to

explore Ωp , from the assigned lower to upper bounds. However, GSA is computationally expensive

and should be restricted to investigate model dynamics in the region of interest. Moreover, the most

popular GSA method (based on Sobol’ indices) make assumptions about the parameter interactions

(i.e., independence) that are not satisfied in complex nonlinear models. Finally, though not discussed

in literature, GSA are derived under the assumption that the model does not change behavior (i.e.,

that it does not undergo bifurcations) as it exploresΩp . To investigate this in more detail, we conduct
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an analytical and numerical stability analysis of the model developed in Chapter 4. Using this

approach, we aim to find constraints on Ωp to ensure the model does not produce unstable or

unphysiological behavior.

5.1 Introduction

Analysis of the dynamics of differential equations models can shed light on the model prediction

outcomes reflecting healthy versus disease states. Model predictions of normal and abnormal

behavior often require either changes in the nominal parameter values or a change of dynamic

pathways. For the former, healthy model predictions can be a result of operating in stable region of

the parameter space, while diseased outcomes can be a result of a change to a parameter regime,

which is inherently unstable or has a bifurcation to a new stable equilibrium. To explore this further,

we conduct a stability analysis to determine if the behavior of the proposed model persists, allowing

us to better characterize how to construct a parameter space (Ωp ) over which the model behavior

should be explored.

Since the disease state may represent a different part of the parameter space than the healthy

state, local sensitivity analysis (LSA) methods are insufficient in quantifying parameter importance

[87, 100]. In Chapter 4, we use LSA in the diseased parameter regime and compare the results to the

healthy case, yet the usefulness of this approach is unclear as the LSA output are not comparable

as the model is evaluated at different parameter values. One way to gain more insight is to sample

throughout the entire parameter space, evaluating the model and categorizing its predictions.

However, since the upper and lower bounds for each parameter are set by the researcher based

on prior knowledge, system intuition, literature, or empirical studies, these ranges may result in

parameter regimes that are not physically or biologically sensible for the system. In other words, the

physiological parameter regions may contain sub-regions where the predictions change behavior.

The model used in this study is formulated using nonlinear delay differential equations (DDEs),

which are common in the study of many real-world systems [8, 56, 80, 130, 135]. DDEs are known to

change the dynamical behavior, causing bistability or instability in some systems [15, 27, 106, 113]

and broadening the stable region of others [113]. Physically, delays are often used to avoid adding

equations describing the process causing the delay. In our case, the process is the transmission of

the sympathetic response along the sympathetic ganglia chain. Given DDEs are known to generate

instability [113], it is important to analyze whether a delay is critical to model the system and to test

alternative formulations, such as distributed delays, which impose chains of differential equations

with varying time-scales [85]. Often, distributed delays garner a similar effect as a discrete DDE

without the added computational expenditure but at the cost of increasing the dimension of the state

and parameter spaces. The choice to use distributed versus discrete delays is problem-dependent.

We use a discrete delay in the Chapter 4 model to not increase the dimension of the state space.
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Figure 5.1 Plots of the heart rate model output (H , bpm) for varying values of (a) τs , the sympathetic
time-scale parameter, and (b) Ds , the delay parameter. All other parameters were held constant at their
optimized values.

Numerical tools for bifurcation analysis of DDEs exist, e.g., DDE-Biftool [29] and knut [126].

The former is a powerful collection of MATLAB® routines for autonomous DDEs with constant and

state-dependent delays, which has been used in two-parameter bifurcation analyses previously [62,

70, 73]. However, in this study, we analyze a nonautonomous system of DDEs, which DDE-Biftool
currently cannot accommodate. Furthermore, our model is a system of stiff DDEs solved with

RADAR5 [36], a stiff DDE solver. DDE-Biftool uses the built-in MATLAB delay solver dde23, which

does not account for stiff systems with multiple time-scales. knut [108, 126] is a bifurcation analysis

package in C++ that allows periodic forcing functions. However, the nonhomogeneous system

considered here is not periodic. To remedy this problem, we evaluated the forward model throughout

the parameter space and categorized the model output into categories analogous to the harmonic

oscillator: critically damped sink, overdamped sink, stable focus, limit cycle, and unstable focus.

Unstable modes arise in many physical and biological systems naturally and avoiding these

modes is of particular interest in recent years [15, 24, 106, 135]. In regard to physiological processes,

at rest the body is mainly operating via negative feedback mechanisms that maintain homeostasis,

e.g., the baroreceptor reflex (baroreflex) modulating blood pressure and heart rate. However, it is

known that in some disease states the negative feedback mechanisms fail and are overridden by

positive feedback mechanisms, e.g., Bezold-Jarisch reflex invoking cardioinhibition during vasovagal

syncope, which causes the system to transition to an unstable state (syncope) [40]. The Bezold-

Jarisch reflex normally responds as a negative feedback to distention of the ventricular wall causing

reflexive bradycardia but can transition to a positive feedback when the left ventricular volume

is reduced below a certain threshold, e.g., in response to excessive blood pooling in the legs. This

change can cause left ventricular hyperactivity, which results in a reflexive decrease in heart rate,
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cardiac contractility, blood pressure, and cardiac output [23, 50]. In this chapter, the objective is to

characterize the stability regions important to autonomic dysfunction in patient data (Section 2.4.1).

More specifically, we investigate the persistent instability as a result of the baroreflex response to

the Valsalva maneuver.

In the model presented in Chapter 4, the sympathetic tone has a discrete delay (Ds ) and its

interactions with other parameters in the model can lead to unstable modes. As shown in Figure 5.1,

when changing parameters τs , the sympathetic time-scale (Figure 5.1a), and Ds (Figure 5.1b), we

observe oscillatory behavior that emerges. We aim to categorize disease and healthy states based on

a two-parameter bifurcation analysis of these parameters. We will show τs and Ds are intrinsically

linked and certain parameter interactions can cause oscillations and unstable behavior. The use

of bifurcation analysis to examine effects of the baroreflex has been done in one other study by

Ottesen [90]. This study performed a two-parameter bifurcation analysis and showed that if the time

delay is varied over its physiological range, stability switches arise. However, oscillatory modes were

not compared to patient data. We compare the sympathetic outflow and heart rate responses of two

control subjects and a patient with autonomic dysfunction (AD) exhibiting the M response to the

Valsalva maneuver (VM) as categorized by Palamarchuk et al. [94] (Figure 5.10), determining param-

eter regimes where instability occurs. The M behavior is hypothesized as overactive sympathetic

and parasympathetic activity. In this study, we analytically determine the locations of the different

stability regimes by solving and comparing the homogeneous DDE to numerical simulations of the

associated heterogeneous system and discuss the effects of the forcing function on the stability. In

addition, we connect these results to physiological data where some instability is seen.

5.2 Model development

This study analyzes the neurological control model of the autonomic nervous response to the Val-

salva maneuver (VM) developed in Chapter 4. Utilizing blood pressure, electrocardiogram (ECG),

and intrathoracic pressure (ITP) data as inputs, the model predicts heart rate by computing barore-

ceptor strain and approximating the sympathetic and parasympathetic nervous system responses.

Further details can be found in Section 4.2.1. Due to the nature of the sympathetic response, the

model incorporates a delay into the differential equation modeling sympathetic tone. Overall,

the model consists of 6 differential state equations and 26 parameters with one delay differential

equation (DDE). The model has the general form

dx

dt
= f (t , x(t ), x(t −Ds );θ ), x(t ) = x0, t ∈ [−D , 0], (5.1)

where f is the right hand side of the DDE, x ∈ Rn is a vector of n states, x0 ∈ Rn is the constant

history vector, Ds is the delay, and θ ∈Ωp is the parameter vector of length p .
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To facilitate the analysis of the effect of the DDE in this chapter, we reduced the model to

two states, the baroreflex-mediated sympathetic tone Ts and heart rate H . We make the following

simplifications based on the physiology of the system, which is achieved in three steps:

1. We first remove the components of the model associated with the respiratory sinus arrhythmia

(RSA). The RSA pathway solely has a parasympathetic efferent in this model with no delay.

Moreover, the RSA is not affected by the baroreflex-mediated sympathetic delay Ds . Therefore,

we set

Tp ,r (t ) = 0 and
dTp ,r

dt
(t ) = 0. (5.2)

By removing the RSA component, the model solely depends on the contribution from the

baroreflex mechanism, which is activated during the Valsalva maneuver. Therefore, we assume

the blood pressure is constant at its mean value at rest. We recalibrate the nominal value for

Hp ,b to accommodate this reduced model as

Hp ,b =
1− H̄ /HI +Hs Ts (0)

Tp ,b (0)
. (5.3)

2. The baroreflex-mediated parasympathetic tone Tp ,b is also not affected by the sympathetic

delay. We reformulate the differential equation as

dTp ,b

dt
(t ) =

−Tp ,b (t ) +Kp ,b Gp ,b (t )

τp ,b
⇒ τp ,b

dTp ,b

dt
(t ) =−Tp ,b (t ) +Kp ,b Gp ,b (t ). (5.4)

To remove this differential equation, we take advantage of the fact that the time-scale τp ,b is

small. Setting τp ,b = 0, we solve for Tp ,b obtaining

Tp ,b (t ) = Kp ,b Gp ,b (t ). (5.5)

We make a similar simplification of the states modeling the baroreceptor strains (εb , j ), taking

advantage of small time-scale τb . Thus,

εb , j (t ) = Kb εw , j (t ), (5.6)

where j = c or a for carotid or aortic, respectively.

3. The increased thoracic pressure (Pt h ) induces the response to the VM, so we accentuate this

effect by eliminating the carotid pathway. Hence, the model depends solely on the effects of
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the aortic baroreceptors, that is, we set B = 0 and

n (t ) = εw ,a (t )− εb ,a (t ) = (1−Kb )εw ,a (t ) = (1−Kb )

�

1−

√

√ 1+ e −qw (Pa (t )−sw )

A+ e −qw (Pa (t )−sw )

�

. (5.7)

The resulting model is a system of two states, Ts and H of the form



















dTs

dt
=
−Ts (t −Ds ) +Ks Gs (t )

τs
, Ts (t ) = T0, t ∈ [−Ds , 0]

dH

dt
=
−H (t ) +HI (1−Hp ,b Kp ,b Gp ,b (t ) +Hs Ts (t ))

τH
, H (t ) =H0, t ∈ [−Ds , 0].

(5.8)

In this system, the saturation function Gi (t ) for i = p , b or s denoting parasympathetic and sympa-

thetic, respectively, is a sigmoidal relation of the form

Gi (t ) =
1

1+ e qi (n (t )−si )
, (5.9)

where qi and si are the steepness and half-saturation values, respectively, and n is as in equation

(5.7). This system is in the form of equation (5.1) where x= [T , H ]T , Ds is a discrete delay, and θ ∈R14

is the vector of parameters

θ = [A, Kp ,b , Ks ,τs ,τH , qw , qp ,b , qs , sw , sp ,b , ss , HI , Hp ,b , Hs ]
T . (5.10)

A comparison of the model output for the full model (red) discussed in Chapter 4 and the reduced

model (black) are shown in Figure 5.2.
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Figure 5.2 Full (red) and reduced two-state (black) model fits to heart rate data (blue).
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The model in equation (5.8) is linear with respect to the states. Reformulating the system yields

d

dt

�

Ts (t )

H (t )

�

=







−
1

τs
Ts (t −Ds ) + f (t )

−
1

τH
H (t ) +

HI Hs

τH
Ts (t ) + g (t )






(5.11)

with constant initial function vector

�

Ts (t )

H (t )

�

=

�

T0

H0

�

, t ∈ [−Ds , 0]. (5.12)

The forcing functions f (t ) and g (t ) for Ts and H , respectively, are given by

f (t ) =
Ks

τs
Gs (n (Pa (t ))) (5.13)

and

g (t ) =
HI

τH

�

1−Hp ,b Kp ,b

�

Gp ,b

�

n (Pa (t ))
�

�

�

. (5.14)

This is a nonhomogeneous, nonautonomous delay differential equation system. Forcing functions

f (t ) and g (t ) represent the dynamics induced by the blood pressure responses to the VM. Since

the forcing functions use blood pressure data as an input, they are not necessarily smooth at every

point, complicating the analysis. To ensure smoothness, the data was filtered using a moving mean

with a window of one second. Then, we fit a 10th degree polynomial to the filtered signal, that is, the

coefficients ai of a polynomial P (t ) =
10
∑

i=0
ai x i were optimized to fit the filtered signal. Polynomials

of orders >10 produced high frequency oscillatory behavior at the baseline. We artificially extended

the baseline blood pressure value before and after the curve to ensure the model began in steady-

state. Figure 5.3a compares the original blood pressure data (blue), the moving mean (red), and the

fitted polynomial P (t ) (yellow). Figures 5.3b and 5.3c display the forcing functions f (t ) and g (t ),

respectively.

In summary, we consider the system

dx

dt
=Ax+BxDs

+ f, x(t ) = x0 for t ∈ [−Ds , 0], (5.15)

where xDs
= x(t −Ds ) is the vector of delayed states, A and B are constant matrices given as

A=





0 0
HI Hs

τH
−

1

τH



 (5.16)
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Figure 5.3 Forcing functions. (a) Comparison of the blood pressure data (blue), data filtered with a moving
mean (red), and a 10th degree polynomial fitted to the moving mean (yellow). Forcing function (b) f (t ) for
Ts (t ) and (c) g (t ) for H (t ).

and

B=





−
1

τs
0

0 0



 , (5.17)

and f is the forcing vector

f=

�

f (t )

g (t )

�

. (5.18)

5.3 Stability analysis

The stability of the delay differential equation (DDE) system in equation (5.15) depends both the

homogeneous solution and the effect of the forcing function. In this section, we analytically explore

the homogeneous equation by classifying the roots of the characteristic equationφ. We numerically

categorize the behavior of the nonhomogeneous, nonautonomous system using an algorithm that

takes advantage of the gradient of the solution after the Valsalva maneuver (VM) occurs.

5.3.1 Homogeneous system

To analyze the stability of system (5.11), we follow the typical practice of considering the homoge-

neous equation
dx

dt
=Ax+BxDs

, x(t ) = x0 for t ∈ [−Ds , 0]. (5.19)
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Then, the homogeneous system is

dTs

dt
(t ) =−

1

τs
Ts (t −Ds ), Ts (t ) = T0, t ∈ [−Ds , 0] (5.20)

dH

dt
(t ) =

1

τH

�

−H (t ) +HI Hs Ts (t )
�

, H (t ) =H0, t ∈ [−Ds , 0]. (5.21)

In this system, the origin is a critical point. If another critical point exists, then from equation (5.21)

0=
1

τH
(−H (t ) +HI Hs Ts (t )) ⇒ H (t ) =HI Hs Ts (t ). (5.22)

From (5.20), we have

0=
1

τs
Ts (t −Ds ) ⇒ Ts (t ) = 0. (5.23)

Therefore, the origin is the only critical point of the system in (5.19).

Since equation (5.20) solely depends on the delayed state Ts (t −D ), we assume its solution to be

an exponential of the form

Ts (t ) = c e λt , (5.24)

where c is a scaling factor and λ is the growth factor [9, 109]. We make this assumption since the

DDE can reduce to an ordinary differential equation (ODE) in steady-state. Hence, we can find an

explicit solution to equation (5.21) as

dH

dt
=−

1

τH
H +

HI Hs

τH
Ts

⇒
dH

dt
+

1

τH
H =

HI Hs

τH
Ts

⇒
∫

�

e
1
τH

t H
�′

dt =
HI Hs

τH

∫

Ts e
1
τH

t dt

⇒ e
1
τH

t H =
HI Hs

τH

∫

c e λt e
1
τH

t dt

=
HI Hs

τH

∫

c e (λ+
1
τH
)t dt

=
HI Hs

τH (λ+
1
τH
)
c e (λ+

1
τH
)t +k

=
HI Hs

τHλ+1
Ts (t )e

1
τH

t +k (5.25)

for integration constant k . When t = 0, we can solve for k as

k =H0−
HI Hs

τHλ+1
T0. (5.26)
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Then,

H (t ) =
HI Hs

τHλ+1
Ts (t ) +

�

H0−
HI Hs

τHλ+1
T0

�

e −
1
τH

t . (5.27)

Therefore, H linearly related to Ts . As t →∞, the exponential goes to zero, that is, for large t , H is

proportional to Ts , i.e., the stability of H depends explicitly on the stability of Ts . Thus, by analyzing

Ts , we inherently know the behavior of H . By substituting equation (5.24) into equation (5.20), we

obtain

λc e λt =−
1

τs
c e λ(t−Ds ) ⇒ c e λt (τsλ+ e −λDs ) = 0. (5.28)

Trivially, if c = 0, then Ts (t ) = 0 is a solution to equation (5.28). Considering the portion of (5.28) in

parentheses, we obtain the characteristic equation

φ(λ) =τsλ+ e −λDs = 0. (5.29)

Note that Ds > 0 and τs > 0. Several curves plotted forφ in Figure 5.4.φ can have 2 real roots (yellow

curve), 1 real root (red curve), or infinitely many complex roots. Plotted are examples of solutions

with complex roots, that is, for λ ∈C, λ=α±β i for β > 0. When α< 0 (green curve), the solutions

are stable. For α= 0 (orange curve), a limit cycle emerges about the origin. When α> 0, solutions

are unstable.

-3

0

2

4

(
)

0 3

Figure 5.4 The characteristic equationφ(λ) given in equation (5.29) with several curves plotted showing
the various types of solutions. Real solutions: λ1,λ2 ∈ Rwhere λ1 6= λ2 (yellow) and λ1 = λ2 = λ ∈ R (red).
Infinitely many solutions: λ=α±β i ∈C for β ∈R,β > 0 where α< 0 (green), α= 0 (orange), and α> 0 (blue).
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Case 1: Real Roots. We consider the case where the characteristic equationφ(λ) in equation (5.29)

has real roots, i.e.,

λ=λ1,λ2 ∈R. (5.30)

Observing the behavior ofφ in Figure 5.4,φ has real roots if and only if the absolute minimum ofφ

is less than or equal to zero, that is, for a minimizer λ∗ ofφ,φ(λ∗)≤ 0 ⇔φ has real roots. Taking

the derivative and setting it to zero, we obtain

φ′(λ) =τs −Ds e −λDs = 0, (5.31)

which yields the minimizer

λ∗ =−
1

Ds
ln
�

τs

Ds

�

.

Substituting λ∗ into equation (5.29) and settingφ(λ)≤ 0 yields

φ(λ∗) =
τs

Ds

�

− ln
�

τs

Ds

�

+1

�

≤ 0.

Since parameters τs , Ds > 0, we have

− ln
�τs

Ds

�

+1≤ 0 (5.32)

and

e Ds ≤τs . (5.33)

When equation (5.33) is an equality,φ(λ) has one real root and solutions to the DDE are critically

damped, analogous to the harmonic oscillator. Otherwise, there are two real solutions toφ that are

overdamped. Hence, the solutions that obey the constraint given in equation (5.33) are stable.

Case 2: Complex Roots. We consider λ= α±β i for α,β ∈R and β > 0. Without loss of generality,

we consider λ=α+β i . Then,

0=φ(λ)

=τs (α+β i ) + e −Ds (α+β i )

=
�

ατs + e −Dsα cos(Dsβ )
�

+ i
�

βτs − e −Dsα sin(Dsβ )
�

. (5.34)

Sinceφ(λ) = 0, both the real and imaginary parts ofφ(λ)must also equal to 0. Thus,

0=Re(φ(λ)) =ατs + e −Dsα cos(Dsβ ) (5.35)
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and

0= Im(φ(λ)) =βτs − e −Dsα sin(Dsβ ). (5.36)

Dividing Equation (5.35) by Equation (5.36), yields

α=−β cot(Dsβ ). (5.37)

Therefore, it is guaranteed that α < 0 as long as 0+ kπ < Dsβ ≤ π
2 + kπ for k ∈ Z. For α < 0, the

solutions are asymptotically stable and the solutions spiral into the origin.

When α= 0, we have from equation (5.35)

cos(Dsβ ) = 0 (5.38)

and, therefore,

Dsβ =
π

2
+kπ for k ∈Z. (5.39)

Since Ds > 0 and β > 0,

0<Dsβ =
π

2
+kπ ⇒ k >−

1

2
. (5.40)

Hence, k ∈W. Moreover, substituting equation (5.39) into equation (5.36) yields,

0=βτs − sin(Dsβ )

=
π

2Ds
τs − sin

�

π

2
+kπ

�

⇒
π

2Ds
τs = sin

�

π

2
+kπ

�

, (5.41)

which only has a solution when k is even since Ds > 0 and τs > 0. Therefore, k = 2(l −1) for l ∈N
When k = 0, Dsβ = π/2. Substituting this relation into equation (5.36) and solving for Ds , we

obtain

Ds =
π

2
τs . (5.42)

This line is where λ crosses the imaginary axis, resulting in a limit cycle. Therefore, theoretically

we observe a Hopf bifurcation about the origin in the states. We restrict our analysis to only the

solutions when k = 0, even though there are more roots for increasing values of β ; however, these

result in highly unstable modes which are not seen physiologically. Figure 5.5 shows a plot of several

complex roots toφ(λ).

In conclusion, we have shown that for the homogeneous system in equation (5.19) there exist

two lines across which the behavior of the solutions changes: one at e Ds =τs where the solutions

to the characteristic equation change from real to imaginary, and one at Ds =τsπ/2 where the the

imaginary roots cross the imaginary axis. These lines are shown in Figure 5.8a. The former results in
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Figure 5.5 Complex roots of the characteristic equationφ(λ) in equation (5.29).

a change in the origin (which is a critical point) from a sink to a stable focus and the latter results in

a Hopf bifurcation, producing a limit cycle about the origin, as shown in Figure 5.6a. We classify

each each solution as one of the following types with the corresponding color from the contour in

Figure 5.8a:

• Sink - overdamped (yellow): when e Ds <τs ,φ has two real solutions λ1,λ2 < 0.

• Sink - critically damped (red): when e Ds =τs ,φ has one real solution λ< 0.

• Stable focus (green): when
1

e
τs <Ds <

π

2
τs , (5.43)

φ has complex solutions λ=α±β i and α< 0.

• Limit cycle (orange): when

Ds =
π

2
τs , (5.44)

φ has complex solutions λ=±β i (i.e., α= 0) and a limit cycle emerges due a Hopf bifurcation

about the critical point.

• Unstable (blue): when

Ds >
π

2
τs , (5.45)

φ has complex solutions λ=α±β i for α> 0 and solutions grow exponentially.
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Figure 5.6 Hopf bifurcation observed in (a) the homogeneous system in equation (5.19) and (b) the non-
homogeneous system in equation (5.15). Limit cycle (orange) with solutions spiraling out from the critical
point (green) and into the critical point (blue).

5.3.2 Nonhomogeneous system

The inclusion of the forcing function, f, complicates the analysis, and as discussed in Section 5.1,

tools such as DDE-Biftool [29] and knut [126] are not suitable for the nonautonomous, stiff system

given in equation (5.15). As shown in Figures 5.3b and 5.3c, f is a polynomial fitted to blood pressure

data with baseline extended before and after the dynamic behavior. This forcing function ensures

that at rest the system is stable. A disturbance caused by this function, such as by the Valsalva

maneuver, can result in undesirable model behavior and instability. Moreover, the perturbation

of this control system may cause persistent instability, that is, instability caused by a disturbance

of a forcing function resulting in oscillatory behavior that either remains unstable, oscillates with

constant amplitude, or takes a long time to dampen in relation to the stimulus.

In the previous section, we determined regions of the parameter space where the five different

behaviors arise for the homogeneous solution. We do not expect these regions to be the same for the

nonhomogeneous solutions, especially since forcing functions can stabilize and destabilize systems

[113]. However, we do expect analogous regions corresponding to the behaviors given above.

This numerical experiment explores the effects of sudden, transient effects of the forcing function

on the stability of the system in (5.15) given a specified parameter range. For this analysis we

consider only the effects of the interactions between Ds and τs . We chose these parameters to

investigate based on the analysis of the homogeneous system, which created stability subregions in

the parameter space (equations (5.33) and (5.42)). We assume changing these parameters will also

cause instability in the nonhomogeneous system. The parameter space for τs and Ds is [0.1, 10]×
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Figure 5.7 Plots denoting different stages in algorithm 2. (a) Representative solution of Ts exhibiting a sta-
ble focus with local extrema occurring after the Valsalva maneuver (green circles). The red circle indicates
an excluded point if the difference between it and the preceding extremum is ≤ 10−8. (b)∇Ts with zeros in-
dicating local extrema (black circles). (c) Consecutive amplitudes (red dots) and a line of regression (black
line) with the r 2 value indicated.

[0.1, 10]with a discretized mesh of step-size h = 10−1 with all other parameters remaining constant

at their nominal values. The model was evaluated iteratively at every point in the mesh. Since the

instability is most prominent after the maneuver and during the recovery, we only consider the

stability of the signal after the breath hold of the VM was over.

Numerically, we have developed an algorithm to determine the type of solution summarized in

Algorithm 2. Of particular note are the thresholds η1, η2 and µ. η1 = 0.5 is the maximum threshold

and η2 =−10−2 is the minimum threshold for the slope of the regression line to determine a limit

cycle. µ = 0.8 is a threshold for the r 2 value determining the goodness of fit of the regression

line to determine a limit cycle. These thresholds ensure that the amplitudes of the limit cycle are

approximately equal, the slope of the regression line of consecutive amplitudes is approximately

zero, and the regression line fits well (r 2 ≈ 1).

Solutions for the homogeneous and nonhomogeneous equations were calculated using the stiff,

delay differential equation solver RADAR5 [36]. This is a variable-step solver that employs collocation

methods to calculate the history of the delayed states. All initial conditions were assigned such that

the system begins in steady-state.

5.4 Results and discussion

Stability analysis is important for understanding the kinds of outputs the model can produce.

Moreover, bifurcation analysis explores where changes in parameter values impact the system.

In this study, we have analyzed a system of nonautonomous, stiff, delay differential equations

(DDEs) that can be written as the sum of a homogeneous system (equation (5.19)) and its associated
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Algorithm 2 Determine the type of solution behavior for Ts .

1. Calculate∇Ts (Figure 5.7b). Only consider the behavior of∇Ts after the Valsalva maneuver
end time te .

2. Determine where∇Ts crosses the x -axis (Figure 5.7b).

3. Filter out local extrema if the distance between consecutive points is < 0.1 sec.

4. 1: Let Mi and mi be a local maximum and minimum, respectively, at index i and N be the
number of maxima.

2: for i = 1 to N do
3: if |Mi −mi |< 10−8 then
4: Remove Mi and mi .
5: end if
6: end for

5. Determine the amplitude vector a by finding the difference in maxima and minima.

6. Assign solution behavior.

1: if a is empty then
2: Ts is a sink.
3: else if a has 1 entry then
4: Ts spirals in.
5: else
6: Fit a regression line through the entries of a, y = b0+ b1 x , for b0 the y -intercept and
7: b1 the slope (Figure 5.7c).
8: Calculate the r 2 value of the regression line.
9: if η2 ≤ b1 ≤η1 then

10: if r 2 >µ then
11: Ts is a limit cycle.
12: else
13: Ts spirals in.
14: end if
15: else if b1 >η1 then
16: Ts spirals out.
17: else
18: Ts spirals in.
19: end if
20: end if
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Figure 5.8 Bifurcation diagrams of the behavior of Ts for varying values of Ds ∈ [0.1,10] and τs ∈ [0.1,10]
evaluating the (a) homogeneous system (5.20) and (b) nonhomogeneous system (5.8). Solutions types are
denoted as overdamped (yellow), critically damped (red line), stable focus (green), limit cycle (orange line),
and unstable (blue). The red line indicated in panel (b) denotes the analytically derived line τs = e Ds for
comparison to show the increased sink region (yellow).
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Figure 5.9 Representative solutions of Ts ((a) and (b)) and H ((c) and (d)) for the homogeneous equation
(5.20) ((a) and (c)) and nonhomogeneous system (5.8) ((b) and (d)) from each of the different stability
regions given in Figure 5.8 with corresponding colors: overdamped (yellow), critically damped (red line),
stable focus (green), limit cycle (orange line), and unstable (blue). (e) Simulations of heart rate from the
full model in Chapter 4 for a control subject varying τs and holding Ds = 3 constant. Colors correspond
to the contour plot in Figure 5.8b. Sink (yellow) τs = 7.5. Stable focus (green) τs = 4. Limit cycle (orange)
τ= 1.9. Unstable (blue) τ= 1.8.
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nonhomogeneous component including the forcing function f given in equation (5.18). Figure

5.8 displays the results of the stability analysis with a two-parameter bifurcation diagram plotted

for both the homogeneous system (Figure 5.8a) and the nonhomogeneous system (Figure 5.8b in

equation (5.8)) denoted with the following colors:

• Sink - overdamped (yellow): The inclusion of the forcing function f increases the range of the

stable region within the parameter space, that is, the yellow region extends beyond the red

line in Figure 5.8b.

• Sink - critically damped (red): There is a shift in the red line denoting critical dampening from

the homogeneous contour to the nonhomogeneous contour, as the sink region expands. This

relation is no longer a line but a curve between the sink and stable focus regions.

• Stable focus (green): The stable focus region shrinks with the inclusion of the forcing func-

tion, resulting in an oscillatory contour that is steeper than the red line predicted in the

homogeneous system.

• Limit cycle (orange): The limit cycle occurs in the same location in both the homogeneous

and the nonhomogeneous bifurcation contours. This is most likely due to the fact that the

large amplitude oscillations begin dominate the signal.

• Unstable (blue): The unstable region is the same in both the homogeneous and nonhomo-

geneous contours. This is to be expected as the complex roots to the characteristic equation

(5.29) have positive real part and solutions diverge.

Figure 5.9 displays representative curves from each region mentioned above for both Ts (Figure 5.9a

and 5.9b) and H (Figure 5.9c and 5.9d). For the nonhomogeneous system (Figures 5.9b and 5.9d),

the solutions begin in steady-state and the forcing function f induces the Valsalva maneuver (VM),

causing some of the responses to have oscillatory behavior. Figure 5.9e shows similar simulations of

the full model from Chapter 4 with the systolic blood pressure data as the input. Holding Ds constant

at its nominal value, we varied τs showing that as τs decreases, we see a shift in the behavior of the

model output from sink (yellow) to stable focus (green) to limit cycle (orange) to unstable (blue).

Hence, the simplifications in Section 5.2 were able to still categorize the behavior of the system

appropriately. Furthermore, with the data as an input, we observe that though Ds and τs are within

their individual physiological ranges, their interactions cause persistent instability for decreasing

values ofτs . Therefore, to ensure that the model produces physiologically relevant results, restricting

the parameter space to remain in the sink and stable focus regions is necessary.

Bifurcation packages, e.g., DDE-Biftool [29], are insufficient in the analysis of the nonau-

tonomous, stiff system of delay differential equations discussed here. Moreover, the forcing function
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Table 5.1 Parameter values for control subjects and AD
patient with M behavior.

Subject Ds τs Stability region Color

Control 5.5 8 Sink Yellow
Control 6 5 Stable focus Green
AD patient 8.5 8 Stable focus Green

AD - autonomic dysfunction

is not periodic, so packages, such as knut [126], cannot be utilized to analyze equation (5.8). There-

fore, we developed our own algorithm to qualitatively assess the behavior of the solutions propagated

after the implementation of the Valsala maneuver (VM). This algorithm uses the gradient of the

solutions to classify the behavior starting after the transient VM stimulus. With this algorithm, we

were able to effectively categorize the solutions and determine the boundary between the sink and

stable focus regions.

Figure 5.10 shows blood pressure and heart rate data for control subjects exhibiting sink and

stable focus behaviors in the Ts state given the model fit to the heart rate data. The bottom row

shows the model fit for a patient with autonomic dysfunction (AD) exhibiting the M behavior as

categorized by Palamarchuk et al. [94]. The last blood pressure point of the data was repeated for

30 seconds to extend the signal. Parameter values and where they fall in the bifurcation diagram

are given in Table 5.1. As shown in Figures 5.10c and 5.10f, control subjects can have both sink

and stable focus behavior. This could be due to the fact that some subjects have naturally higher

baseline sympathetic activity or due to undiagnosed autonomic dysfunction. Though both signals

are stable, the oscillatory behavior of the stable focus control subject attains a slightly negative

outflow, which could be interpreted as a switch in behavior from a negative feedback to positive

feedback mechanism. The AD patient also exhibits this slightly negative outflow.

As described in Chapter 2, the M behavior is hypothesized to be the result of overactive sympa-

thetic and parasympathetic activity. Figure 5.10f demonstrates that the baroreflex control mech-

anism is very sensitive for this subject, causing oscillatory dynamics that are generally not seen

in control subjects. In Chapter 4, we showed that the model can distinguish between control and

patients with the V behavior. In the stability analysis conducted in this chapter, we are able to

characterize the dynamics of the M behavior as well and support that the M behavior may be due to

instability in the negative feedback control of the baroreflex stimulating a sympathetic response.

This concept is important for the assumptions made in Chapter 7 regarding modeling patients with

M behavior.

We do not see limit cycles or unstable modes in practice. This is most likely due to the fact that

when one system becomes inordinately overactive, there are many other redundancies in place

87



0 12060
Time (sec)

50

125

200

S
B

P
 (

m
m

H
g

)

(a)

0 12060
Time (sec)

50

100

150

H
 (

b
p

m
)

(b)

0 12060
Time (sec)

0

0.5

1

T
s

(c)

0 12060
Time (sec)

50

125

200

S
B

P
 (

m
m

H
g

)

(d)

0 12060
Time (sec)

50

100

150

H
 (

b
p

m
)

(e)

0 12060
Time (sec)

0

0.5

1

T
s

(f )

0 12060
Time (sec)

50

125

200

S
B

P
 (

m
m

H
g

)

(g)

0 12060
Time (sec)

50

100

150

H
 (

b
p

m
)

(h)

0 12060
Time (sec)

0

0.5

1

T
s

(i)

Figure 5.10 Control subjects exhibiting sink (top row) and stable focus (middle row) behaviors and a
patient with autonomic dysfunction with M behavior (bottom row). Left column: systolic blood pres-
sure (SBP, mmHg). Middle column: heart rate data (blue) and model fit (red). Right column: baroreflex-
mediated sympathetic tone (Ts , green). Solutions are calculated using the two-dimensional nonhomoge-
neous system (5.8). The end pressure is extended artificially to show dynamic behavior.
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to reset the body, such as inducing syncope [16]. However, we can classify each of these stability

regions not only on the basis of their mathematical properties but of their clinical relevance. These

categories are:

• Sink: Healthy/control behavior within the “normal" range.

• Stable focus: Potential dysfunction caused by overactive sympathetic behavior.

• Limit cycle: Unphysiological steady pulsation of sympathetic activity.

• Unstable: Sympathetic positive feedback that may be unphysiological (or if it is physiological,

it may be corrected via other regulatory mechanisms or, in a worst case scenario, cause death).

In this study, we physiologically reduced the full model to a system of two differential equations

that can be solved analytically. This simplified both the model and the analysis and proved to be a

reasonable reduction of the system (Figure 5.2). However, numerically, we could have analyzed the

full model as opposed to the reduced two-state model. We considered the two-state model for both

the homogeneous and nonhomogeneous analyses to facilitate interpretability and comparison.

5.5 Conclusions

In this chapter, we analyzed the effect of the delay differential equation system and categorized

the various types of behavior that can result from the interaction of the delay parameter Ds and

the time-scale τs . Moreover, we classified regions both mathematically and physiologically in a

two-parameter bifurcation contour. Motivated by oscillatory behavior that arises in the data, we

have determined a numerical relationship between parameters Ds and τs . The model supports part

of the hypothesis for the M behavior, as we have shown that oscillatory behavior in Ts gives rise to

overactive sympathetic activity.

In Chapter 6, we discuss global sensitivity analysis, which uses sampling-based methods that

explore the entire parameter space. However, as shown in this analysis, if the parameter space

includes regions where unstable modes arise, the analysis is skewed. Therefore, we restrict the

parameter space in the global sensitivity analysis to ensure the solutions are in the stable region.
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CHAPTER

6

GLOBAL SENSITIVITY ANALYSIS FOR

MODEL REDUCTION AND SELECTION

This study develops a methodology for model reduction and selection using global sensitivity

analysis. We apply this protocol to the open-loop neurological control model described in Chapter

4 that takes blood pressure and intrathoracic pressure data as an input and predicts heart rate in

response to the Valsalva maneuver (VM), a clinical test characterized by forced expiration against

a closed airway. In this study, we Sobol’ indices to quantify the parameter influence of the model

output heart rate. There is a need for GSA methods that take into account transient disturbances

from rest, e.g., when analyzing models of the VM. We develop limited-memory Sobol’ indices to

quantify time correlations and incorporate the history of the variance of the model output via a

moving integration window approach, which inform a model reduction study reducing the original

model from 6 states and 26 parameters to 4 states and 24 parameters. We also analyze the necessity

of modeling both the aortic and carotid baroreceptor regions in response to the VM. The three

analytically reduced models considered are (i) aortic-only, (ii) carotid-only, or (iii) both aortic and

carotid models. Model selection using the Akaike Information Criterion with correction and the

Bayesian Information Criterion in conjunction with a qualitative analysis determined that the

aortic-only model is sufficient to model the VM.

90



6.1 Introduction

Mathematical models of human physiological processes are becoming increasingly more prevalent,

simulating functions that are either impossible to perform clinically or difficult to measure without

costly and invasive methods. These models clearly have many advantages, but as they become

more complex, the number of parameters rises. A versatile model with many components may

indeed capture the behavior of a quantity of interest (QoI), but a similar result might be achieved

with a simpler model. This begs the question: is it necessary to use a more complex mathematical

model for a physiological system when a simpler one may suffice? Can we ensure that this simpler

model still produces the same behavior as the original without losing its dynamics and predictive

capabilities? If so, does removing or fixing the components that do not affect the QoI change the

interpretation of the model predictions? The answer to these questions is problem-dependent,

requiring careful analysis of how model components affect the QoI.

Most physiological models are nonlinear and may have parameter interactions not easily de-

termined analytically. To analyze the effects of the parameters on the QoI, many studies use local

sensitivity analysis (LSA) [28, 74, 87], calculating partial derivatives of the model states with respect

to the parameters. These derivatives are typically computed using sensitivity equations [115], finite

differences [136], automatic differentiation [104], or the complex-step method [7]. The parameter

values are perturbed one at a time, quantifying the effect of each parameter individually on the

QoI, without accounting for parameter interactions. On the other hand, global sensitivity analysis

(GSA) [115] takes into account both the effect of an individual parameter and its interactions on the

QoI, computed using Sobol’ indices [119], Morris screening [115], generalized sensitivity functions

[54], active subspaces [115], and moment-independent importance measures [49]. These methods

examine the behavior over a “global" region of interest, that is, each parameter is assigned an upper

and lower bound set by the researcher typically based on physiological intuition, empirical studies,

or literature. Morris screening is computationally feasible but results are first-order approximations

that do not take into account higher order interactions [86]. Generalized sensitivity functions restrict

the time-varying influence trajectories to have an end value of one, assuming every parameter has

the same influence at that point [54]. Moment-independent importance measures are intractable

for larger systems [49].

In this study, we perform a variance-based GSA using Sobol’ indices [110, 119], which apportion

relative contributions of the overall effect on the QoI to each parameter. This method is widely used

to quantify influence of model parameters to the variance of the model outputs [22, 58, 67, 124].

Sobol’ indices were developed to study models with scalar outputs [119] and we shall refer to them as

scalar Sobol’ indices. For time-dependent model outputs, pointwise Sobol’ indices are traditionally

computed at every time point individually to assess model sensitivity to the parameters over time

[3, 58]. However, this approach neglects the time correlation structure. To remedy this limitation,
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Alexandarian et al. [4] proposed a method incorporating time dependence via generalized Sobol’

indices, which calculate the ratio of the integral of the variance due to both the parameter and

the model output over the entire time interval. Though this method has many applications for

models with time-dependent outputs, integrating over the entire time interval averages the effects

of parameters that influence the model output over a relatively short time frame. In this study, we

propose a modification to this approach, termed limited-memory Sobol’ indices, that incorporates

the effects of transient disturbances in the model behavior. This approach accounts for parameter

interactions, time correlations, and the history of the variance within a moving integration window

of width∆.

The limited-memory Sobol’ indices are used to inform a model reduction and selection protocol.

By analyzing parameter influence, we can select parameters that are noninfluential for the entire time

interval and remove the associated model components. “Remove" in this case refers to one of two

processes: (i) analytical excision of the mathematical equations associated with the noninfluential

parameter [28]; or (ii) fixing the noninfluential parameters at their nominal value [119]. We will make

use of both approaches in this model reduction. This process generates a set of reduced models,

upon which we can perform a model selection protocol. Metrics, such as the Akaike Information

Criterion with correction (AICc) and Bayesian Information Criterion (BIC), are popular choices

[137]. In this study, we analyze the behavior of the reduced models using both these criteria and a

qualitative approach. To our knowledge, this is the first study using GSA to inform a model reduction

and selection protocol for physiological modeling.

Since the acquisition of neural data is difficult, clinicians use the Valsalva maneuver (VM) to

indirectly assess autonomic nervous system integrity by analyzing patterns in easily obtainable

blood pressure and heart rate data [139]. To supplement these protocols, mathematical modeling can

provide time series predictions of parasympathetic and sympathetic nervous function based on the

data available. The VM stimulates the baroreceptor reflex (baroreflex) triggered by the deformation

of baroreceptors in the aortic arch and carotid sinus sensing changes in blood pressure [132]. These

signals are integrated in the medulla, eliciting parasympathetic and sympathetic nervous system

responses that modulate heart rate and blood pressure. The physiological importance of modeling

both the aortic and carotid baroreceptors has been supported in Chapter 4 and Kosinski et al. [61]. In

this study, we consider modeling both regions from a sensitivity analysis point of view, determining

mathematically whether both model components are necessary. We hypothesize that the aortic and

carotid baroreceptors are both necessary to model the VM.

This chapter is organized as follows: Section 6.2 presents the mathematical methods, including

the limited-memory Sobol’ indices, the GSA-informed model reduction protocol, and the model

selection; Section 6.3 compiles the results of the GSA and the application of the model reduction and

selection protocol; Section 6.4 discusses key findings; and, finally, Section 6.5 states our conclusions.
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Figure 6.1 Workflow diagram illustrating the steps in this procedure. From left to right: A model is devel-
oped and nominal parameter values are set from literature or knowledge of the system. Forward model
evaluations produce outputs, which are analyzed via a chosen global sensitivity analysis (GSA) method.
The results from the GSA are used to reduce the model (orange arrow) iteratively, which produces an array
of M reduced models. For each model, a subset of parameters is estimated to fit data. Finally, the reduced
model that captures the aspects of the original model both qualitatively and quantitatively is selected. Iter-
ative Model Reduction Step (orange insert): From the GSA, parameters are ranked based on their influence
on the model output. The components of the model associated with the noninfluential parameters are
removed or fixed. Nominal parameter values are recomputed and rescaled appropriately. Forward model
evaluations are conducted and a GSA is performed again.

6.2 Methods

We develop methodology for model selection and reduction motivated by a global sensitivity analysis

(GSA). We apply this procedure to a first-order delay differential equation model of autonomic

function and heart rate dynamics in response to the Valsalva maneuver (VM). This model has 6

states and 26 parameters. Figure 6.1 shows the workflow used in this study. Main components

include:

1. Forward model analysis: Determine nominal parameter values and evaluate the scalar or

time-varying quantity of interest (QoI) using forward simulations. In this study, the QoI is

the residual of the model output to the data r(t j ;θ ) given in equation (4.30) dependent upon

a parameter vector θ ∈ Ωp ⊆ Rp and the heart rate data at time t j , respectively. Ωp is the

prescribed parameter space of dimension p .

2. Global sensitivity analysis: Determine the effect of the input parameters on the QoI using the

desired GSA method. We compute scalar Sobol’ indices with respect to the Euclidean norm of

the residual (||r||2.) and time-varying (pointwise, generalized, and limited-memory) Sobol’

indices with respect to r.

(a) Parameter influence: Rank the parameters from most to least influential in relation to

the prescribed QoI. Noninfluential parameters are below a preset threshold.
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(b) Model reduction: Test noninfluential parameters to ensure that changing them does not

affect the QoI significantly. Remove or fix the least influential parameter from system.

This step is inherently problem-dependent, as it may not be feasible to remove certain

model components from highly complex systems.

(c) Model recalibration: Recompute or rescale model parameters appropriately, ensuring

that the reduced model produces a similar result as the original. Again, this step is

problem-dependent.

(d) Global sensitivity analysis: Conduct the GSA again on the reduced model to test that all

parameters are above the threshold. The removal of model components can enhance

interactions between the remaining parameters. Repeat this iteratively until the desired

set of reduced models is achieved.

3. Reduced models: Create a space of modelsM = {m0, m1, . . . mM }, where m0 is the original

model and mk are the reduced models for k = 1, . . . , M .

4. Parameter estimation of reduced models: Fit the reduced models to data using a desired

optimization method. We determine a subset of parameters (θ̂ ) to optimize by computing a

Fisher Information Matrix and analyzing parameter correlations via structured correlation

analysis [86, 87, 100]. A limitation of this method is that it is local in nature, since it evaluates

the model at specific parameter values.

5. Model selection: Select the reduced model that best fits the data and predicts other model

outputs. We use the Akaike Information Criterion with correction (AICc) and Bayesian In-

formation Criterion (BIC) to perform model selection and also compare the behavior of the

predicted signals from a qualitative standpoint to ensure the reduced models produce similar

outputs within physiologically acceptable ranges to the original model.

The remainder of this section discusses first-order and total effect limited-memory Sobol’ indices

(Section 6.2.2.2), compares their effectiveness against other common methods [4, 110] (Sections

6.2.2.1 and 6.2.2.2), reduces the original model (Section 6.2.4.2), and develops and assesses a set of

reduced models, both statistically and qualitatively (Section 6.2.4.3). The summary of the model,

local sensitivity analysis methods, and parameter subset selection estimation techniques can be

found in Chapter 4. The data analyzed in this chapter are from a 21-year-old female healthy volunteer

who gave consent to participate. The experimental protocol follows that described in Section 3.2.
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6.2.1 Model overview

The model used in this study (summarized in detail in Chapter 4) is a system of ordinary and delay

differential equations of the form

dx

dt
= f (t , x(t ), x(t −Ds );θ ), x(0) = x0, (6.1)

where x= [εb ,c ,εb ,a , Tp ,b , Tp ,r , Ts , H ]T is the vector of states, f is the right hand side of the system,

Ds is the discrete delay, and θ ∈R26 is a vector of parameters, including

θ = [A, B , Kb , Kp ,b , Kp ,r , Ks ,τb ,τp ,b ,τp ,r ,τs ,τH , qw , qp ,b , qp ,r , qs ,

sp ,b , sp ,r , ss , HI , Hp ,b , Hp ,r , Hs , Ds , ts , te ]
T . (6.2)

Upper and lower parameter bounds were assigned as shown in Table 6.1. For parameters that

are calculated from the data, the bounds were set to the mean value ± 2 standard deviations with

the exception of τs , which interacts with the delay parameter Ds and causes instability (as shown

in Chapter 5). For parameters found in literature, the bounds were set to encompass all possible

literature values, given in Table 4.1. Parameter B is the convex combination parameter and varies

from zero to one. The remaining parameters were varied by ±50% of their nominal values. Due to

the large variation in the magnitude of the parameter values, the GSA and the parameter estimation

methods act on the logarithm of the parameters. Therefore, we enforce positivity by setting the

lower bounds that became negative to 0.01.

95



Table 6.1 Parameter bounds.

Parameter Nominal value Physiological range Lower bound Upper bound Description
Description Symbol (Mean ± SD)

Cross-sectional ratio A 5 2.5 7.5 Nominal ± 50%
Convex combination B 0.5 0.01 1
Gains Kb 0.1 0.01 10 Allowed to vary to contain literature values

Kp ,b 5 0.01 10 Allowed to vary to contain literature values
Kp ,r 1 0.01 10 Allowed to vary to contain literature values
Ks 5 0.01 10 Allowed to vary to contain literature values

Time-scales τb 0.9 0.1 1.5 Allowed to vary to contain literature values
τp ,b 1.8 6.5 ± 5.7∗ 0.01 17.9 Mean ± 2 SD
τp ,r 6 9.6 ± 10.8∗ 0.01 31.2 Mean ± 2 SD
τs 10 14 ± 8∗ 5 15 Nominal ± 50%∗∗

τH 0.5 0.01 10 Allowed to vary to contain literature values
Sigmoid qw 0.04 0.02 0.06 Nominal ± 50%
Steepnesses qp ,b 10 5 15 Nominal ± 50%

qp ,r 1 0.5 1.5 Nominal ± 50%
qs 10 5 15 Nominal ± 50%

Half-saturation sw 123 ± 20 83 163 Mean ± 2 SD
Values sp ,b 0.54 ± 0.005 0.53 0.55 Mean ± 2 SD

sp ,r 4.88 ± 0.21 4.46 5.3 Mean ± 2 SD
ss 0.05 ± 0.005 0.04 0.06 Mean ± 2 SD

Heart rate HI 100 ± 7 86 114 Mean ± 2 SD
Gains Hp ,b 0.5 ± 0.2 0.1 0.9 Mean ± 2 SD

Hp ,r 0.3 ± 0.4 0.01 1.1 Mean ± 2 SD
Hs 0.3 ± 0.4 0.01 1.1 Mean ± 2 SD

Delay Ds 3 1 5 Allowed to vary to contain literature values

SD - standard deviation.
∗ denotes parameter range from optimized parameter values from Chapter 4.
∗∗ Bounds restricted to remain in the stable region as determined in Chapter 5.
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6.2.2 Global sensitivity analysis

We use the variance-based Sobol’ indices for our GSA [110, 119]. This section discusses four differ-

ent methods of computing Sobol’ indices: scalar [110], pointwise [3], generalized [4], and limited-

memory (new) Sobol’ indices.

6.2.2.1 Scalar Sobol’ indices

Consider a mathematical model f with a scalar output y and dependent on θ ∈Ωp ⊆Rp , a vector

of p uncertain model parameters with a prescribed parameter space Ωp ; that is,

y = f (θ ). (6.3)

We can allocate to each θi for i = 1. . . p its contribution to the variance of y [118, 119]. Assuming

that the parameters θi are independent, the first-order effect of varying θi on f is

Si ( f ) =
Vθi
(Eθ∼i

[ f |θi ])
V( f )

, (6.4)

where V(·) and E[·] denote the variance and expectation operators and θ∼i is the vector θ without

parameter θi , that is,

θ∼i = [θ1,θ2, . . . ,θi−1,θi+1, . . . ,θp ]
T . (6.5)

The total effect index, which takes into account first and higher order effects of θi , is

Ti ( f ) =
Eθ∼i
[Vθi
( f |θ∼i )]
V( f )

= 1−
Vθ∼i
(Eθi
[ f |θ∼i ])
V( f )

. (6.6)

6.2.2.2 Time-varying Sobol’ indices

Equations (6.4) and (6.6) give the classically defined scalar Sobol’ indices, useful when the model

output is a scalar value, time-independent, or time-dependent but in steady-state. A limitation of

this formulation however is that it may average or neglect changes in parameter influence over time.

The following formulations are attempts at accounting for this discrepancy.

Pointwise Sobol indices: One method to compute Sobol’ indices for models with time-varying

outputs is to compute the Sobol’ indices at every time point, which we call pointwise Sobol’ indices

[3]. Consider a model f with time-varying output y (t ) on an interval IT = [0, T ] for an end time

T > 0, that is

y (t ) = f (t ;θ ), t ∈ IT . (6.7)
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We define the first-order pointwise Sobol’ index of f at time t as

Si ( f ; t ) =
Vθi
(Eθ∼i

[ f (t ; ·)|θi ])
V( f (t ; ·))

, t ∈ IT (6.8)

and the total effect pointwise Sobol’ index of f at time t as

Ti ( f ; t ) =
Eθ∼i
[Vθi
( f (t ; ·)|θ∼i )]
V( f (t ; ·))

, t ∈ IT . (6.9)

Though the indices in equations (6.8) and (6.9) give a sense of a parameter’s influence at a particular

time point, they ignore time correlations and the history of the time-dependent signal.

Generalized Sobol’ indices: This method proposed by Alexandarian et al. [4] takes into account

correlations with respect to time by integrating the numerators and denominators of equations

(6.8) and (6.9) over time. Let I 0
t = [0, t ] be a time-varying interval. Then, the generalized Sobol’ index

for the main effect of parameter θi on f over the interval I 0
t is

Si ( f ; I 0
t ) =

∫ t

0

Vθi
(Eθ∼i

[ f (τ; ·)|θi ]) dτ

∫ t

0

V( f (τ; ·)) dτ

, t ∈ IT . (6.10)

Similarly, the generalized Sobol’ index for the total effect of θi on f over the interval I 0
t is

Ti ( f ; I 0
t ) =

∫ t

0

Eθ∼i
[Vθi
( f (τ; ·)|θ∼i )] dτ

∫ t

0

V( f (τ; ·)) dτ

, t ∈ IT . (6.11)

The denominator of equations (6.10) and (6.11) is the integral of the total variance, which is mono-

tonically increasing and strictly positive. However, by integrating over I 0
t , these integrals effectively

the effects of dynamic, transient processes over time, especially for problems where an extended

baseline is necessary to obtain steady-state conditions.

Limited-memory Sobol’ indices: We propose the limited-memory Sobol’ indices to analyze param-

eter influence as the QoI responds to fast, significant disturbances in its steady-state behavior. To do

so, we introduce the novel concept of using a moving integration window∆ centered at time t , that

is, t ∈ I ∆t = [t −∆/2, t +∆/2] at every time t ∈ IT−∆ = [∆/2, T −∆/2]. By implementing an integration

window, the domain of t necessarily decreases by∆/2 at the upper and lower bound of IT . However,
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if the model is in steady-state on the intervals [0,∆/2) and (T −∆/2, T ], the change in parameter

influence over these intervals is negligible. The size of the moving window is problem-specific. The

limited-memory Sobol’ index for the main effect of parameter θi on f over the interval I ∆t is

Si ( f ; I ∆t ) =

∫ t+∆/2

t−∆/2
Vθi
(Eθ∼i

[ f (τ; ·)|θi ]) dτ

∫ t+∆/2

t−∆/2
V( f (τ; ·)) dτ

, t ∈ IT−∆. (6.12)

Similarly, the limited-memory Sobol’ index for the total effect of θi on f over the interval I ∆t is

Ti ( f ; I ∆t ) =

∫ t+∆/2

t−∆/2
Eθ∼i
[Vθi
( f (τ; ·)|θ∼i )] dτ

∫ t+∆/2

t−∆/2
V( f (τ; ·)) dτ

, t ∈ IT−∆. (6.13)

This method reduces the window of integration from I 0
t in the generalized Sobol’ indices to I ∆t ,

and therefore, the denominator in equations (6.12) and (6.13) is not necessarily monotonically

increasing but is strictly positive. By integrating the variances within a window about t , we can

capture the transient changes in parameter influence (as in the pointwise Sobol’ indices) but avoid

averaging the signal over time (as in the generalized Sobol’ indices).

We compute a uniform integration window centered around time t j as shown in Figure 6.5a. For

comparison, we also assess the performance of using a Gaussian window. Let N ∆ be the number

of discretized time points in I ∆t . A uniform (rectangular) window treat each point as an equal

contributor to the integration window by assigning unity to the entire observational interval I ∆t
with weights

w (n ) = 1, −
N ∆−1

2
≤ n ≤

N ∆−1

2
(6.14)

[43]. Figure 6.5a illustrates the moving window over the variance of the output (red) and the vari-

ance due to the parameter (blue). A Gaussian window applies a bell curve to I ∆t localizing greater

contribution about the central node with weights

w (n ) = e
− 1

2

�

αn
(N∆−1)/2

�2

, −
N ∆−1

2
≤ n ≤

N ∆−1

2
, (6.15)

where α= 2.5 is the default value [43] .
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6.2.3 Numerical methods

The GSA was performed on all model parameters except ts and te (taken directly from the data)

via Monte Carlo integration, that is, p = 24. We computed L1 = 103(p + 2) resulting in 26,000

function evaluations [44, 67] and tested for convergence using L2 = 104(p +2)with 260,000 function

evaluations, which produced similar results. For the reduced models, we computed L1 evaluations.

To approximate the integrals, we used the weights from the trapezoid quadrature scheme.

To approximate the integrands in equations (6.10)–(6.13), we employed estimators proposed by

Saltelli et al. [110]. Let t j be a time point where j = 1, . . . , N for N the total number of discretized

time points; t1 = 0 and tN = T . Let l = 1, . . . , L1 be the index of model function evaluations. We

approximate the numerator for equation (6.8) and the integrands for the numerators of equations

(6.10) and (6.12) as

Vθi
(Eθ∼i

[ f (t j ; ·)|θi ])≈
1

L

L
∑

j=1

f (t j , B)l ( f (t j , A(i )B )l − f (t j , A)l ) (6.16)

and the numerator for equation (6.9) and the integrands for the numerators of equations (6.11) and

(6.13) as

Eθ∼i
(Vθi
( f (t j ; ·)|θ∼i ))≈

1

2L

L
∑

l=1

f (t j , A)l ( f (t j , A)l − f (t j , A(i )B )l )
2, (6.17)

where A and B are two independent sampling matrices determined quasi-randomly using Sobol’

sets with generic elements al i and bl i for l = 1, . . . , L1 and i = 1, . . . , p . The matrix A(i )B denotes a

matrix that contains all of the columns of A except the i th column, which is swapped with the i th

column of B. The denominators for equations (6.8) and (6.9) and the integrands of the denominators

of (6.10)-(6.13) were approximated using the variance function var in MATLAB® 2018a. Further

information on these computational methods can be found in Saltelli et al. [110].

6.2.4 GSA-informed model reduction

We compare the performance of each of the four indices discussed in Section 6.2.2. The scalar Sobol’

indices are calculated with respect to the Euclidean norm of the residual r, that is,

Si (||r||2) and Ti (||r||2), (6.18)

where r is as in equation (4.30). Using ||r||2 as the scalar model output gives a decent indication of

the sensitivity of the r to the parameters at steady-state, since the Euclidean norm can be considered

an average of the signal over time. However, this disregards the changes in parameter influence as

fast disturbances occur in the model output. Therefore, we simultaneously compute the pointwise,
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generalized and limited-memory Sobol’ indices in response to time-varying r, that is

Si (r; ·) and Ti (r; ·) (6.19)

pointwise, over the interval I 0
t , and over the interval I ∆t , respectively. We also consider several sizes

of the moving window∆ at∆= 5, 10, and 15 seconds.

6.2.4.1 Sensitivity ranking

To identify parameters that do not influence the model output, we use the fact that a parameter θi

is noninfluential if Ti ( f ) = 0 [119] and rank the total effect scalar Sobol’ indices Ti (||r||2) from most

to least influential. The parameters are grouped into three categories: most influential, moderately

influential, and noninfluential. Threshold cutoffs are assigned as η1 = 10−1 and η2 = 10−4 for

moderately influential and noninfluential, respectively. η1 is assigned based on the clear separation

in parameter influence values shown in Figure 6.2. η2 is assigned as η2 =
p

ψ, whereψ= 10−8 is

the integration tolerance. The parameter groups designated by the scalar indices motivated the

grouping used for the time-varying indices (piecewise, generalized, and limited-memory Sobol’

indices). Moreover, analysis of the time-varying indices can show if a parameter shifts to a different

group as time evolves.

Of particular note are the noninfluential parameters determined by this analysis. We define a

parameter θi as noninfluential if

Ti (r; ·)<η2 ∀t . (6.20)

Hence, the model components associated with a noninfluential parameter may not affect the model

output in the given physiological range Ωp and should be either analytically removed or fixed at its

nominal value. The former is inherently problem-dependent, as removing model equations may

not be feasible. When equation removal becomes intractable, the latter may be more appropriate.

In this study, we use both techniques with a goal to obtain the simplest model.

6.2.4.2 Model reduction

Using the sensitivity ranking, we inform a systematic model reduction methodology as shown in

Algorithm 3. We would like to stress that this is an iterative and model-specific process, as there are

many instances where removing model components can be detrimental. Some changes must happen

simultaneously, which we will exemplify in the next section. Alternatively, if model components

cannot be removed, we set the noninfluential parameters fixed at their nominal values [4, 121].
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Algorithm 3 Global sensitivity analysis for model reduction.

Compute Ti ( f ; I ∆t ).
Let j be an empty vector.
for i = 1 to p do

if Parameter i satisfies Ti ( f ; I ∆t )≤η2 ∀ t ∈ IT then
j← [j i ].

end if
end for
for k = 1 to the length of j do

if The model components associated with θj(k ) can be algebraically removed then
Remove model components associated with θj(k ) analytically to obtain the reduced model
f ∗.
Recalibrate parameter values to obtain new parameter vector θ ∗.
Repeat global sensitivity analysis for f ∗(t ;θ ∗).
Model m j = f ∗.

else
Leave θj(k ) fixed at its nominal value.
Repeat global sensitivity analysis for f ∗(t ;θ ∗).
Model m j = f ∗.

end if
end for
Generate space of modelsM .

6.2.4.3 Model selection

To compare model performance between the full and reduced models, we use a statistical measure

that calculates a trade off between how well the model fits the data (goodness of fit) with how

complex the model is (number of estimated parameters) [103]. We compute the Akaike Information

Criterion with correction (AICc) and the Bayesian Information Criterion (BIC) to quantify this

comparison. These criteria calculate a regression between the model output and the data [137]. We

assume that the residual errors are independent and identically distributed (iid) with mean zero

and finite variance. Therefore, we determine these criteria by predicting the maximum likelihood

estimate, which is equivalent to minimizing the least squares error J (equation (4.36)), as

AICc=N log
� J

N

�

+2(p̂ +2)
� N

N − (p̂ +2)−1

�

and (6.21)

BIC=N log
� J

N

�

+ (p̂ +2) log(N ), (6.22)

where N is the number of data points and p̂ the length of the parameter subset vector θ̂ (equation

(4.35)) [21]. We add 2 to p̂ to include the intercept of the regression and the variance of the model fit.
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This statistical technique is useful when determining the goodness of fit to data. However, there

are other predicted model outputs, such as Tp ,b and Ts , that are of clinical importance since they

cannot be measured without costly and invasive procedures that blunt the signals with anesthetiza-

tion. We must also assess the performance qualitatively by assuming the original model predictions

as the true signal. Therefore, our model selection protocol accounts for both model fits to data and

predicted model signals.

6.3 Results

This section presents results from the global sensitivity analysis (GSA), model reduction, and model

selection protocols. We discuss the outcomes from the four Sobol’ indices given in Section 6.2:

scalar, pointwise, generalized and limited-memory Sobol’ indices. The latter is computed using a

moving integration window of width∆. We compare several window widths for this model. Using

outcomes from the limited-memory Sobol’ indices, we inform a systematic model reduction. Lastly,

we conduct a model selection by computing the Akaike Information Criterion with correction (AICc)

and the Bayesian Information Criterion (BIC) from equations (6.21) and (6.22) (Table 6.4) and by

qualitatively examining the predicted model outputs Tp ,b and Ts to ensure the reduced models

maintained physiologically interpretable results (Figure 6.6).

6.3.1 Sobol indices

Section 6.2.2 discusses four computations of Sobol’ indices. In this section, we analyze their effective-

ness and compare the results of the established Sobol’ indices (scalar, pointwise, and generalized) to

the limited-memory Sobol’ indices proposed in this study. The scalar indices are shown in Figure 6.2.

We compare the various ways to calculate time-varying Sobol’ indices in Figure 6.4. The parameters

are divided into three influence groups: most influential, moderately influential, and noninfluential.

6.3.1.1 Scalar Sobol’ indices

Figure 6.2 shows the ranking of the total effect scalar Sobol’ indices in relation to the Euclidean

norm of the model output residual ||r||2, that is, Ti (||r||2). The indices are scaled from 0 to 1 by the

value of the most influential parameter Ks .

Most influential parameters: Figure 6.2 shows the five most influential parameters (Ks , Hs , Kb ,

Hp ,r , and Kp ,r ) with indices above the threshold η1. The upper insert in the figure shows the first

order Sobol’ indices (Si (||r||2)) overlaid atop Ti (||r||2). Since Si (||r||2) (white) does not account for

much of the influence of Ti (||r||2) (blue), this indicates that there are many parameter interactions.
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Figure 6.2 Total effect scalar Sobol’ indices (Ti (||r||2), blue) given in equation (6.6) scaled from 0 to 1 by
the most influential parameter Ks . The influence thresholds are indicated with horizontal dashed lines
(η1 = 10−1 and η2 = 10−4). Insert: Most influential parameters plotted with their respective first-order Sobol’
index (Si (||r||2), white) given in equation (6.4). The remaining parameter indices have similar results (not
shown).

This is to be expected since the model is highly nonlinear.

Moderately influential parameters: The moderately influential set of parameters between the influ-

ence thresholds η1 = 10−1 and η2 = 10−4 encompasses HI , Kp ,b , Hp ,b , A, sp ,r , qs , τp ,r , qp ,b , sw , qp ,r ,

qw , τH , and ss . This group contributes to the heart rate to a lesser extent than the most influential

parameters.

Noninfluential parameters: Six noninfluential parameters are below the threshold η2, that is, the

subset of noninfluential parameters such the Ti (||r||2) is

θN I ,s c a = {sp ,b , B ,τs ,τp ,b , Ds ,τb }. (6.23)

In this analysis, τb is the least influential parameter on r.
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We evaluated the model for each noninfluential parameter at several points within their upper

and lower bounds as shown in Figure 6.3. Even though the scalar Sobol’ indices determined that

these parameters are noninfluential, we observe that they still have a substantial effect on the model

output but in certain time frames. Most notably, varying τb shows almost no variation across the

time interval. It is important to note that the one-at-at-time parameter adjustments are inherently

local in nature, though they do provide useful insight. At rest, most of the noninfluential parameters

show very little effect on the heart rate output, except sp ,b which varies the baseline heart rate. During

the VM, B , τs , τp ,b , and Ds do have a significant effect the heart rate. After the VM, the parameters

exhibit little variation in the heart rate. These results illustrate the need to develop improved metrics

that incorporate time dependencies to determine not only if but when the parameter is influential.
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Figure 6.3 Noninfluential parameters as determined by the total effect scalar Sobol’ indices in Figure 6.2 evaluated throughout the
physiological range given in Table 6.1.
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Figure 6.4 Time-varying Sobol’ indices for the most influential (top row), moderately influential (middle row), and noninfluential
(bottom row) as determined by the scalar Sobol’ indices in Figure 6.4 for the pointwise Sobol indices (left column), generalized Sobol’
indices (middle column), and limited-memory Sobol’ indices (right column). Thresholds η1 = 10−1 and η2 = 10−4 are indicated with
horizontal dashed black lines. The region of the Valsalva maneuver is indicated with vertical dash-dotted black lines. Inserts (red boxes)
indicate zooms of the boxed region.
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6.3.1.2 Pointwise Sobol’ indices

Figures 6.4a, 6.4d, and 6.4g show results from the pointwise Sobol’ indices, for the most, moderately,

and least influential parameters. The total effect pointwise Sobol’ indices (Ti (r; t )) have rapid fluctu-

ations, which are most likely due to their calculation at every time point.

Most influential parameters: The 5 most influential parameters as determined by the scalar Sobol’

indices remain influential over the entire time span, though Kp ,r and Hp ,r dip into the moderately

influential range during the VM (Figure 6.4a).

Moderately influential parameters: The moderately influential parameters show highly oscillatory

behavior at baseline, especially the less influential parameters shown in the insert.

Noninfluential parameters: The noninfluential group from the scalar Sobol’ indices are inconclu-

sive, as their highly oscillatory behavior complicates their analysis (Figure 6.4g). Note that parameters

τs , B , τp ,b , Ds and τb increase in influence above the threshold during the VM while sp ,b remains

below η2 for the entire time interval. In particular, the influence of B , the convex combination

parameter designating the effect from the aortic and carotid regions, is below η2 before and after

the VM but increases into the moderately influential range during the VM.

Many parameters (e.g., Hp ,r , Kp ,r , and B ) change their level of influence as the VM occurs. In

comparison to the scalar indices, the pointwise indices show that there are large fluctuations in

parameter influence as time evolves.

6.3.1.3 Generalized Sobol’ indices

The total effect generalized Sobol’ indices (Figures 6.4c, 6.4e, and 6.4h) remain almost constant with

small fluctuations over the entire time interval, IT . As Ti (r; I 0
t ) integrates to each subsequent time

point, the result is an effective averaging of the behavior for all t ∈ IT . Though there are some minor

fluctuations, the parameter ranking over IT remains relatively constant and generally coincides the

ranking produced by the scalar Sobol’ indices in Figure 6.2 with a couple minor adjustments.

Most influential parameters: All 5 most influential parameters maintain their ranking throughout

the time span.

Moderately influential parameters: This set of parameters maintain a relatively constant ranking

as well with some minor switches in the ranking. Of particular note is the parameter ss , which

remains below η2 for the entire time span, becoming noninfluential.
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Noninfluential parameters: For the noninfluential parameters determined by the scalar Sobol’

indices, this method indicates that over time, parameters τp ,b , τs , and B become moderately

influential towards the end of the time period. For these three parameters, T (r; I 0
t ) shows that

they are only important after the VM has completed. The noninfluential parameters such that

T (r; I 0
t )<η2 for all time t is

θN I ,g e n = {ss , sp ,b , Ds ,τb }. (6.24)

Since the model has control mechanisms that are activated at different times, it is natural to

hypothesize that the parameters associated with those controls should have a greater influence

during the time that the control is active. However, these indices do not support this hypothesis.

Computing the generalized Sobol’ indices provide approximately the same parameter influence at

every time point as the scalar Sobol’ indices over the whole time interval. Notable exceptions are

τp ,b ,τs , and B in Figure 6.4h, which have a delayed increase in influence. This is counterintuitive, as

this analysis shows the parameters associated with activating and deactivating the control pathways

are not influential when the VM occurs but after the VM has concluded.

In comparison to the scalar indices, Tss
(r; I 0

t ) < η2 for all time t ∈ IT , which moves ss to the

noninfluential set. The differences between the pointwise and generalized Sobol’ indices are evident.

The former provides one case where the parameter influence oscillates significantly during dynamic

changes. It does not take into account the history of the variance, and without this history even

the baseline results are difficult to interpret. The latter places too much emphasis on the time-

dependence, and hence, averages the signal over extended periods of baseline activity, washing out

any of the potential transient changes in parameter influence on the model output.

6.3.1.4 Limited-memory Sobol’ indices

The most influential (Figure 6.4c), moderately influential (Figure 6.4f), and noninfluential (Figure

6.4i) total effect limited-memory Sobol’ indices with a window ∆ = 10 are shown. The choice of

∆= 10 is motivated in the next section. These indices provide a balance between these two compu-

tation schemes above by smoothing out the highly oscillatory pointwise index signal, facilitating

analysis and incorporating time correlations, yet retaining some modulation due to the transient

nature of the process. This provides distinct changes in parameter influence rankings from before,

during, and after the VM.

Most influential parameters: As with the other indices, the limited-memory Sobol’ indices main-

tain the most influential parameters throughout the time span, which is to be expected. Similar to

the pointwise indices, Kp ,r and Hp ,r dip below η1.
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Moderately influential parameters: These parameters show a substantial change in parameter

ranking from before, during, and after the VM. Moreover, a collective increase in influence is seen in

the parameters associated with sympathetic function during the VM (qs , and ss ) and a decrease in

parameters associated with the respiratory component (qp ,r and sp ,r ).

Noninfluential parameters: Parameters τp ,b , τs , B and Ds become moderately influential during

the VM and τp ,b displays bimodal behavior. Parameters sp ,b and τb remain noninfluential for the

entire time span, that is, the subset of noninfluential parameters such that Ti (r; I ∆t )<η2 for all time

t is

θN I ,LM = {sp ,b ,τb }. (6.25)

Fluctuations in parameter influence correspond to different control mechanisms that activate

and deactivate during the VM. We expect to observe the change in importance of parameters

associated with activated control mechanisms that affect the heart rate dynamically. Before and

after the VM, the limited-memory indices remain relatively constant. During the VM, they illuminate

a dynamic change in the ranking of the parameter influence over time. We conclude that if the

QoI is operating in steady-state, computing the scalar Sobol’ indices would suffice for the analysis.

However, during a transient disturbance from baseline, limited-memory Sobol’ indices provide a

more informative parameter ranking.

The addition of the moving window increases interpretability of change in parameter influence

over time over the pointwise Sobol’ indices. They take into account some of the history of the

variance over time, as opposed to the generalized Sobol’ indices, which account for changes in the

variance from the initial time point. A major difference between the generalized and limited-memory

Sobol’ indices is that the generalized indices have a denominator that increases monotonically while

the this is not necessarily true for the limited-memory indices. This is evident in the increase in

influence of the parameters τp ,b , τs , B towards the end of the time interval. For the limited-memory

indices, centering the integration window∆ about time t considers the variance about that time

point, and therefore, provides results that correspond to both the mathematical formulation and

the physiology of the system.

Table 6.2 summarizes the subset of noninfluential parameters from the scalar (equation (6.23)),

generalized (equation (6.24)), and limited-memory (equation (6.25)) Sobol’ indices. The pointwise

Sobol indices were not included as their results were inconclusive. The limited-memory indices

determined the smallest subset of noninfluential parameters for the entire time interval with 2.

These 2 parameters, sp ,b and τb , are considered in the model reduction in Section 6.3.2.
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Figure 6.5 Moving window of integration∆ for a generic parameter θi . (a) Calculation of the total effect
limited-memory Sobol’ index in equation (6.13). Integrands of the numerator (red) and denominator
(blue) are plotted. Integrals are approximated with using the trapezoid rule with a moving window of width
∆ for the denominator (light blue) and numerator (striped purple and light blue). As t moves forward in
time, so does the window, i.e., I ∆t = [t −∆/2, t +∆/2]. (b) Comparison of total effect pointwise Sobol’ index
(Ti (r; t )) as in equation (6.9) (red), the total effect generalized Sobol’ index (Ti (r; I 0

t )) where I 0
t = [0, t ] as in

equation (6.11) (black), and total effect limited-memory Sobol’ indices with moving window∆ (Ti (r; I ∆t )
as in equation (6.13) with∆ = 5 seconds (dotted red),∆ = 10 seconds (blue), and∆ = 15 seconds (dotted
blue). These windows were chosen since the breath hold of the Valsalva maneuver occurs over 15 seconds.
(c) Comparison of the using a uniform window (solid) and a Gaussian window (dotted).

111



Table 6.2 Noninfluential parameters from Sobol’ index methods.

Parameter Sobol’ indices
Scalar Generalized Limited-memory
θN I ,s c a θN I ,g e n θN I ,LM

ss Ø
sp ,b Ø Ø Ø

B Ø
τs Ø
τp ,b Ø
Ds Ø Ø
τb Ø Ø Ø

Moving window: In Figure 6.5, we show the time-varying total effect limited-memory Sobol’ in-

dex for a parameter θi with respect to the time-varying model output r, that is, Ti (r; I ∆t ) where

I ∆t = [t −∆/2, t +∆/2]. Figure 6.5a depicts limited-memory Sobol’ indices with a uniform moving

window of width∆. Since the choice of window width is problem-dependent, it is prudent to test∆

appropriately. This model predicts heart rate in response to the Valsalva maneuver, which is induced

for 15 seconds. Hence, we compare values of∆= 5, 10, and 15 seconds to determine an appropriate

window width.

Figure 6.5b displays the trajectories for Ti (r; I 5
t ) (dotted red curve), Ti (r; I 10

t ) (solid blue curve),

and Ti (r; I 15
t ) (dotted blue curve). For reference, the pointwise Sobol’ index Ti (r; t ) (solid red curve)

and the generalized Sobol’ index Ti (r; I 0
t ) (solid black curve) are shown. In comparison to the

pointwise indices,Ti (r; I 5
t ) is slightly smoother than and retains almost all of the dynamics ofTi (r; t ).

Ti (r; I 10
t ) also exhibits similar modulations as Ti (r; t ), but is much smoother, averaging the wide

oscillations in the interval [10, 30] and maintaining the dramatic drop around t = 35.Ti (r; I 15
t ) begins

to dramatically lose the fluctuations of the pointwise indices around t = 20 seconds and does not

drop as significantly around t = 35. As∆ increases,Ti (r; I ∆t )→Ti (r; I 0
t ), which is to be expected since

the integration window will widen until it encapsulates the entire time span. From these results,

we determine that Ti (r; I 10
t ) is sufficiently smooth while retaining the general morphology of the

pointwise indices and incorporating the history of the variance.

Figure 6.5c displays a comparison between a uniform window (solid) and a Gaussian window

(dotted) of width∆= 10 for the chosen index Ti (r; I 10
t ). The weights for the uniform and Gaussian

windows are given in equations (6.14) and (6.15), respectively. We observe a negligible difference

between the two window types, and hence, choose a uniform window for simplicity.
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6.3.2 Model reduction

The limited-memory Sobol’ indices display gradual changes in the ranking of parameter influence.

The two noninfluential parameters determined by this analysis are sp ,b and τb . We begin by consid-

ering the least influential parameter τb for all t ∈ IT−∆. Removing the least influential parameter

and its associated components in the model analytically should have little to no change in the model

outputs. However, this removal causes a fundamental change the model equations. Therefore, we

expect some of the preexisting parameter independences to become more pronounced while others

may diminish. Therefore, we have to redo subset selection for each model to determine the a new

identifiable subset of parameters to optimize. We used the method of structured correlation analysis

given in Section 4.2.1. One limitation of this method is that it is inherently local. Therefore, the

structured correlation analysis should be tested at several locations throughout the parameter space.

Removal of τb : Since 0.1 ≤ τb ≤ 1.5, the domain of τb is small and it is feasible to remove the

differential equations associated with this parameter and then rescale the model parameters. This

should have a negligible effect on the model output, especially given the fact that Tτb
(r; I ∆t )<η2 for

all time t and adjusting between its upper and lower bounds showed little to no effect (Figure 6.3f).

Therefore, we have

dεb , j

dt
=
−εb , j +Kb εw , j

τb
⇒ τb

dεb , j

dt
+ εb , j = Kb εb , j . (6.26)

Tτb
(r; I ∆t )<η2 for all time t implies that we can set τb to be any value within its domain. Moreover,

we assume τb = 0 since its lower bound 0.1� 1 and τb is noninfluential. Then,

ε∗b , j = Kb εw , j , (6.27)

where the asterisk denotes the new equation for εb , j . Since this parameter is a time-scale for two

differential equations, we are able to reduce the number of states of the model by two. Furthermore,

since the parameter Kb is now just a scaling factor as shown in equation (6.27), we can rescale the

nominal parameter values. Substituting the previous equation into equation (4.5) yields

n∗ = B (εw ,c − ε∗b ,c ) + (1−B )(εw ,a − ε∗b ,a )

= B (εw ,c −Kb εw ,c ) + (1−B )(εw ,a −Kb εw ,a )

= (1−Kb )
�

Bεw ,c + (1−B )εw ,a

�

= (1−Kb )n , (6.28)
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which can be propagated through to

G ∗p ,b =
1

1+ e −qp ,b (n∗−sp ,b )
=

1

1+ e −qp ,b ((1−Kb )n−sp ,b )
=

1

1+ e −q ∗p ,b (n−s ∗p ,b )
(6.29)

for rescaled parameters

q ∗p ,b = qp ,b (1−Kb ) and s ∗p ,b = n +
1

q ∗p ,b

ln
�Kp ,b

T̄p ,b
−1

�

, (6.30)

where T̄p ,b is the steady-state value. For the sympathetic sigmoidal parameters, we similarly obtain

q ∗s = qs (1−Kb ) and s ∗s = n −
1

q ∗s
ln
�Ks

T̄s
−1

�

. (6.31)

Therefore, the new system of equations without the baroreceptor strain differential equations is

εw , j = 1−

√

√

√ 1+ e −qw (P̄j−sw )

A+ e −qw (P̄j−sw )
for j = c or a (6.32)

n = Bεw ,c + (1−B )εw ,a (6.33)

Gp ,b =
1

1+ e −q ∗p ,b (n−s ∗p ,b )
and

dTp ,b

dt
=

1

τp ,b
(−Tp ,b +Kp ,b Gp ,b ) (6.34)

Gs =
1

1+ e q ∗s (n−s ∗s )
and

dTs

dt
=

1

τs
(−Ts (t −Ds ) +Ks Gs ) (6.35)

Gp ,r =
1

1+ e −qp ,r (Pt h−sp ,r )
and

dTp ,r

dt
=

1

τp ,r
(−Tp ,r +Kp ,r Gp ,r ) (6.36)

dH

dt
=

1

τH

�

−H +HI (1−Hp ,b Tp ,b +Hp ,r Tp ,r +Hs Ts )
�

. (6.37)

This is a new system ordinary and delay differential equations consisting of 4 states and 24 parame-

ters. By letting ·∗ denote the reduced system, we have

dx∗

dt
= f ∗(t , x∗(t ), x∗(t −Ds );θ

∗), (6.38)

where f ∗ is the right hand side, x∗ = [Tp ,b , Tp ,r , Ts , H ]T ∈R4, and

θ ∗ = [A, B , Kp ,b , Kp ,r , Ks ,τp ,b ,τp ,r ,τs ,τH , qw , q ∗p ,b , qp ,r , q ∗s ,

s ∗p ,b , sp ,r , s ∗s , HI , Hp ,b , Hp ,r , Hs , Ds , ts , te ]
T ∈R24. (6.39)

We shall refer to this reduced model as m1 from this point forward.

To determine a subset of parameters to optimize for m1, we perform subset selection using
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structured correlation analysis and obtain

θ̂m1
= [B ,τp ,b ,τp ,r ,τs , Hp ,b , Hs ]

T . (6.40)

with Hp ,r held at its nominal value. Table 6.3 summarizes the optimized parameters for the full

model and each reduced model with asterisks denoting parameters held at their nominal value.

Fixing sp ,b : We ran the GSA using limited-memory Sobol’ indices for the model in equation (6.38)

and determined that sp ,b remains below the threshold η2 (not shown). Since sp ,b is a half-saturation

of a sigmoid curve, removing this parameter is not feasible. Therefore, we set sp ,b at its nominal

value, which is calculated from data.

Table 6.3 Estimated parameter values.

Symbol Model
m0 m1 m2 m3

B 0.46 0.90 0† 1†

τp ,b 4.80 5.90 3.53 4.58
τp ,r 3.01 1.50 2.75 3.29
τs 8.62 12.36 14.04 11.46

Hp ,b 0.44 0.29 0.46∗ 0.46∗

Hp ,r 0.53 0.20 0.54∗ 0.54∗

Hs 0.27 0.23 0.25 0.56
†The B parameter was held constant at this

value and not included as a part of the subset.
∗Parameter was held constant at its nominal
value as it could not be included in the identi-
fiable subset in the reduced model.

Table 6.4 Statistical analysis for model selection.

Model Cost (J ) Parameters (p ) AICc BIC

m0 0.0039 7 -3100 -3093
m1 0.0039 6 -3102 -3096
m2 0.0045 4 -3068 -3063
m3 0.0048 4 -3052 -3047

AICc - Akaike Information Criterion with correction in equa-
tion (6.21).
BIC - Bayesian Information Criterion in equation (6.22) .
Bold indicates the lowest value.
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Figure 6.6 Plots of full (solid) and reduced models. Reduced model 1 (m1 dotted) - removed 2 states and
two parameters with parameter B estimated. Reduced model 2 (m2, dashed) - same as m1 except with
B = 0. Reduced model 3 (m3, dash-dotted) - same as m1 except with B = 1. (a) Model fits (red) to the
heart rate data (blue). Insert shows a zoom of the heart rate fit in late phase II and phase III of the Valsalva
maneuver. (b) Model predictions of the efferent baroreflex-mediated parasympathetic (Tp ,b , magenta) for
the full and reduced models. (c) Model predictions of the efferent baroreflex-mediated sympathetic (Ts ,
green) for the full and reduced models.
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6.3.3 Carotid versus aortic baroreceptors

In Figure 6.4f, we observe parameter, B , (purple curve) that has zero influence for most of the interval

IT except during the VM. This section analyzes the importance of B and determines the necessity

of including the convex combination given in equation (4.5). Clinically, the analysis of signaling

from the baroreceptors of the aortic arch versus the carotid sinus is important during the baroreflex.

It is unknown how these signals are integrated in the medulla and not clear whether it is sufficient

to model only one of these regions. At rest, B is noninfluential but gains prominence during the VM,

becoming moderately influential after having approximately zero influence at baseline. It can be

shown analytically that B is eliminated at rest. Let ·̄ denote the system at steady-state. Then,

n̄ = B (ε̄w ,c − ε̄b ,c ) + (1−B )(ε̄w ,a − ε̄b ,a )

= B (ε̄w ,c − ε̄b ,c ) + (1−B )(ε̄w ,c − ε̄b ,c )

= (B +1−B )(ε̄w ,c − ε̄b ,c )

= ε̄w ,c − ε̄b ,c . (6.41)

However, during tests that dynamically change one of these signals in relation to the other, such

as the Valsalva maneuver, it is prudent to assess the necessity of modeling each region separately

and together. The aim of the following analysis is to determine whether modeling of both regions is

necessary with regard to this model and its purpose in predicting the response to the VM.

Using m1 derived in the previous section, we can delineate between models containing the

aortic only, carotid only, or both signals via equation (4.5). m1 includes the estimated B parameter,

where 6 of the 7 parameters from θ̂ can be estimated. Reduced model 2 (m2) is the model containing

the aortic baroreceptor signal only, that is, B = 0. After structured correlation analysis, 4 of the 7

parameters could be optimized, i.e.,

θ̂m2
= [τp ,b ,τp ,r ,τs , Hs ]

T , (6.42)

where B was held constant at 0. Reduced model 3 (m3) was obtained when B = 1, that is, only

the carotid signal influences the output. The same parameter set estimated for m2 was also an

identifiable subset for m3, that is θ̂m2
= θ̂m3

. All parameters removed from θ̂ were held at their

nominal values. Table 6.3 tabulates the estimated parameters for each model and their values as

determined via nonlinear least squares using the Levenberg-Marquardt algorithm [57].

The structured correlation analysis determined that there certain parameters we could not

optimize in the reduced models. This is most likely due to the fact that removing model components

can change the relationship between the remaining components. One such parameter is Hp ,b , which

was not estimable for m2 or m3. However, the nominal value (Hp ,b = 0.46) is close to the optimized
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value for m0 and m1 (Hp ,b = 0.44). Hp ,r was not estimable for any of the reduced models, but the

nominal value (Hp ,r = 0.54) is close to the optimized value for m0 (Hp ,r = 0.53). This implies that

the nominal values for Hp ,b and Hp ,r are close to the optimal values.

6.3.4 Model selection

We conduct the model selection protocol both quantitatively and qualitatively. The quantitative

approach involves computing the Akaike Information Criterion with correction (AICc) and the

Bayesian Information Criterion (BIC), assessing the model fit to the data. Qualitatively, we assess

the behavior of the model predicted quantities, Tp ,b and Ts , as they evolve in time. A goal of this

model is not only to fit the data but also to predict the neural tones in a physiologically relevant

manner. Thus, we compare the reduced model neural signal trajectories to m0.

6.3.4.1 Goodness of fit analysis

For the goodness of fit analysis, we computed AICc and BIC values for each of the models assuming

the residuals are independent and identically distributed. Though there are methods to compute

the covariance matrix to account for the nonconstant covariance structure of the residuals, they

are very computationally expensive [103]. From Table 6.4, we observe that m2 and m3 have the

lowest AICC and BIC values. Since they are highly dependent on the data set used, we computed the

AICc and BIC values for other control subjects from Chapter 4 and saw that the values for m2 and

m3 were similar, with m2 the best fit in some cases and m3 in others. Therefore, the AICc and BIC

prefer m2 and m3. This is not surprising, however, since these criteria favor estimating fewer model

parameters [137].

6.3.4.2 Qualitative assessment

Figure 6.6 shows the effect of using either m2 (dashed curve) or m3 (dash-dotted curve). The model

fits to heart rate data (Figure 6.6a) are all very similar, which is to be expected since the model is

calibrated to this representative data set. The least squares costs of the fits are of the same magnitude

as m0 and m1 (Table 6.4). There is some variation in the steady-state region before phase I, but

overall the traces have a similar morphology. Interestingly, m2 is the only model that is able to fit

phase III of the data (Figure 6.6a insert), suggesting from a qualitative standpoint that m2 captures

the most features of the heart rate data. Figure 6.6b displays the predicted Tp ,b trace for the models.

m1 is very similar to the full model, except for a slightly lower overshoot in phase IV. m2 has a more

oscillatory trajectory than the full model and m1, decreasing late phase II and increasing phase IV

more substantially. m3 has less of an effect in phase II than the other models and agrees with m0 in

phase IV. Figure 6.6c shows the trajectories for Ts , exhibiting the greatest deviation from m0. m1 has

a similar morphology to m0 but increases sharply in late phase II and undershoots in phase IV. m2
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coincides with the full model through phase III and has a delayed return back to baseline in phase IV.

m3 also has a similar morphology as the others but has a maximum peak about half of m0 and m2.

Since traces for heart rate and Tp ,b for all four models are similar, we use Ts to compare the

reduced models to the full model. In particular, we want to ensure the reduced model produces a

similar amount of sympathetic stimulation. Using the infinity norm, we define the metric

arg min
i
||m0−mi ||∞ i = 1, 2, 3, (6.43)

which yields m2 as the model of choice, as shown in Figure 6.6c. This result gives credence to the

assertion that the aortic baroreceptors play a role in the prediction of heart rate in conjunction with

the carotid sinus. Therefore, in regard to the sympathetic components, modeling the aortic arch

baroreceptors only is sufficient.

In summary, we conclude that m2 is the best model for the biological questions investigated

here. The AICc and BIC values were relatively small, the model can fit the heart rate data in phase II

when others cannot, and the sympathetic output has the closest resemblance to the original model.

6.4 Discussion

This study performs model reduction and selection using a global sensitivity analysis (GSA). Fol-

lowing the workflow in Figure 6.1, we have used a neural model predicting parasympathetic (Tp ,b )

and sympathetic (Ts ) nervous outflow and heart rate (H ) in response to the Valsalva maneuver as

an example. We used Sobol’ indices, conducting our analysis with respect to a scalar output (the

Euclidean norm of the heart rate residual, ||r||2) and a time-varying output (the vector r). Compu-

tation for the scalar Sobol indices [110] was with respect to ||r||2 and the time-varying pointwise

[3], generalized [4], and limited-memory Sobol indices to r. We introduced limited-memory Sobol’

indictes using a moving integration window of width∆motivated by the transient process analyzed

with the neural model. The scalar Sobol’ indices determined a ranking of parameter influence on the

model output averaged over the entire time interval. Furthermore, we were able to categorize param-

eters based on their influence on the model output into three groups: most influential, moderately

influential, and noninfluential. The limited-memory Sobol’ indices informed a model reduction

protocol that generated three reduced models, m1, m2, and m3, which were included in the model

selection procedure. We analyzed the performance of these models both qualitatively, comparing

the model predicted signals to the original model m0, and quantitatively, calculating the Akaike

Information Criterion with correction (AICc) and the Bayesian Information Criterion (BIC) for each

model. Statistically, either m2 or m3 are the better models, while qualitative comparison to the

predicted signals Tp ,b and Ts show that m2 is the best performing reduced model.
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6.4.1 Local versus global sensitivity analysis

This study has focused on the use of a GSA to analyze the sensitivity of the model output to the input

parameters. However, these methods are computationally expensive, whereas a local sensitivity

analysis (LSA) method may suffice. In Chapter 4, we performed a LSA on the neural model presented

here. LSA is useful in its relative ease in computation, especially using approximations of derivatives

with forward or central differences [57], and in its ability to calculate time-varying sensitivities. In

steady-state with nominal parameters close to their optimal value, LSA is very useful in ranking

parameter influence as shown in our previous work [28, 71, 74, 87]. For comparison, the parameter

ranking generated by calculating the sensitivity matrix with respect to ||r||2 and evaluating the

derivatives at the nominal values is very similar to the ranking generated with Sobol’ indices in

Figure 6.2. This is surprising since the GSA explores the entire parameter space Ωp . Others have also

found agreement in the calculation of the local and global parameter sensitivities [67]. However, there

exist a number of issues complicating the interpretation of a time-varying parameter sensitivities

calculated from LSA: (i) choosing a specific point in the parameter space to evaluate the model, (ii)

performing LSA one parameter at a time without varying all parameters or a subset of parameters

simultaneously, and (iii) interpreting traces with negative sensitivity values. Some of these issues

can be circumvented, such as (i) by evaluating the LSA at various points within the parameter space

and (iii) by taking the absolute value of the signals. Others are inherently challenging to overcome,

such as issue (ii), but a benefit of our GSA method of choice is the ability to vary many parameters

simultaneously.

6.4.2 Time-dependent Sobol’ indices

In this study, we have chosen to use Sobol’ indices for our GSA. Though there are many other

methods that explore the parameter space, such as Morris screening [86] and derivative-based GSA

methods [120], we use this approach due to its broad applications. Furthermore, we developed

limited-memory Sobol’ indices for the analysis of this model by including a moving window of width

∆, since the VM induces fast, transient changes in the steady-state behavior. Moving windows have

been used in signal processing for decades and relatively recently in sensitivity analysis for graphical

analysis of parameter sensitivities throughout the space [49, 123]. However, these methods have

difficulty capturing the effects between parameters. The limited-memory Sobol’ indices mitigate

this issue by incorporating both parameter interactions and the history of the variance in the model

output. Furthermore, these techniques can be used for virtually any modeling effort for which

the analysis of parameter sensitivity over time. One such study is that of Calvo et al. [22], which

calculated Sobol’ indices at specific times for parameters of a cardiovascular model studying head-

up tilt at rest and during the tilt. This study would have benefited from using our time-varying

analysis to determine how parameter influence changes over time. Another is a study using insulin
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signaling model by Sumner et al. [124], which claims to analyze time-dependent sensitivities with

Sobol’ indices. However, QoI for this model is the state involving glycogen synthase kinase evaluated

when t = 60, which is a scalar value. For the sensitivity analysis protocol to be time-dependent, we

propose using limited-memory Sobol’ indices to quantify parameter influence as it changes over the

entire time span. The clear advantage of using limited-memory Sobol indices is its inherent adaptive

nature as time evolves, particularly for processes with negative feedback control mechanisms.

6.4.3 Parameter space

This analysis is highly dependent on the choice of the parameter space. Parameter sampling distri-

butions are typically uniform if little is known about the parameter [3]. Upper and lower bounds

for uniform distributions may be determined from literature, physiological intuition, or empirical

studies. If there is no information about the bounds of the parameter value, it is standard to vary the

nominal parameter value by ±20%. Table 6.1 lists the upper and lower bounds for the parameters

analyzed. In this study, we perform the GSA on the logarithm of the parameter since the parameters

vary widely in magnitude, which is similar to other approaches done previously [87, 92]. Therefore,

for parameters without a physiological range, such as the parameters calculated from data, we

choose upper and lower bounds by varying the nominal values by ±50%.

6.4.4 Model reduction

Mathematical representations of biological systems tend to be highly overparameterized with many

states. Due to the overall complexity of such models, understanding the biological implications of

the results and parameter interactions can be difficult. Therefore, model reduction can simplify

these interactions and still retain its inherent predictive power. Many model reduction techniques

exist from engineering and control theory [13], aiming to reduce large numbers of state variables

with many nonlinearities by attempting to mitigate the same inherent problem we address here:

to what extent do the input parameters affect the output. Our method of using GSA to inform an

analytical model reduction uses this idea to make appropriate choices for the exclusion of certain

model components, as opposed to other model reductions methods, such as balanced truncation

[117], that solely approximate the input-output relationship without considering the other predicted

model quantities. To our knowledge, there are no previous studies who inform a model reduction

based on GSA methods for physiological models. Though we acknowledge that the Sobol’ indices

may be impractical for very large differential equation systems with hundreds of state variables and

parameters, such as pharmacokinetics models, we suggest using a different GSA method such as

Morris screening [86], to determine influential versus noninfluential model parameters. Analyzing

the noninfluential model components can help determine which components may be removed

and which can remain constant. In the model reduction formulation proposed by Snowden et al.
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[117], we propose our GSA-informed model reduction methodology as an alternative approach to

the balanced truncation method using Morris screening.

6.4.5 Model selection

To our knowledge, no previous studies have performed a model selection protocol for cardiovascular

or neurological models in response to the Valsalva maneuver. In this study, we employ AICc and

BIC scores to compare the model fits to data. However, we must also consider the effect of reducing

the full model on the other predicted quantities for which data is difficult to acquire. Therefore,

we combine quantitative and qualitative approaches to select whether the delineation between

the baroreceptors of the carotid sinus and the aortic arch is necessary to model, and, if not, which

pathway should be modeled. Along with Chapter 4, a recent study supports modeling both regions

[61]. We perform our analysis by considering the parameter B , which dictates the convex combina-

tion of the aortic and carotid signals. LetM = {m0, m1, m2, m3} be the set of models where m0 is

the original model, m1 optimizes B , m2 sets B = 0 considering the aortic contribution only, and m3

sets B = 1 considering the carotid contribution only. The statistical analysis shows m3 fit the data

best with the lowest AICc and BIC scores compared to the other models. However, the AICc and

BIC values for m2 are very close to m3. Since these indices are data-dependent, it is important to

assess other data sets to see if this value changes, from which we determined m2 or m3 suffice. This

implies that it is necessary to only model either the carotid or the aortic baroreceptors to predict

heart rate but not both. For the predicted states, Tp ,b and Ts , we used the infinity norm to compare

model performance to the Ts trace m0, since the traces for Tp ,b are similar for all models. Ultimately,

we conclude that m2 is the best model to fit the data and to predict the modeled quantities. Though

our previous work supports the inclusion of both the carotid and aortic bodies, the added model

complexity may not be as essential for certain problems. Previous studies have modeled stimulation

of only the carotid region with useful results [64, 69]; however, our model selection protocol supports

eliminating the carotid pathway in favor of the simpler aortic-only model.

6.4.6 Limitations

We would like to emphasize certain limitations of this analysis. The global sensitivity analysis method

of choice is highly dependent on the model formulation and the quantity of interest (QoI). Choosing

a computationally expensive GSA may not be feasible for models with long evaluation times, and

the GSA results will differ based on the choice of QoI. Since model reduction was the focus of this

study, we chose to take the analytical reduction approach, though we could have fixed τb at a

constant value. Furthermore, analytical model reduction may also be impractical for very large

systems with many parameters. In this case, setting the parameters to their nominal values may be

more reasonable. Lastly, the results of the statistical analysis using AICc and BIC scores is highly
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dependent on the available data. If a very different heart data set had been used, there is a possibility

that the outcome of the model selection protocol could have been different. However, we conducted

this analysis on three representative control subjects and achieved similar results as those produced

in Section 6.3.

6.5 Conclusions

In this study, we have performed a model reduction and selection process informed by global sensi-

tivity analysis on a neurological model predicting heart rate and autonomic nervous function in

response to the Valsalva maneuver. This analysis employed Sobol’ indices, which apportion the

variance in the model input to the variance of the output. The main mathematical contribution

of this study is the development of limited-memory Sobol’ indices for time-dependent processes,

incorporating a moving window, which takes into the account the transient nature of the Valsalva

maneuver. Moreover, we analyzed the performance of the Sobol’ indices, ranking parameter influ-

ence and determining the least influential parameters. This lead to an analytical model reduction,

where we compared the incorporation of carotid, aortic, or both baroreceptor regions. Our selec-

tion procedure determined that modeling the aortic baroreceptors only is sufficient to achieve the

appropriate dynamics of the Valsalva maneuver.
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CHAPTER

7

COUPLED

CARDIOVASUCLAR-NEUROLOGICAL

CONTROL MODEL

The primary focus of this dissertation up to this point has been the regulation of heart rate in response

to changes in blood pressure accounting for the baroreflex and respiratory sinus arrhythmia. The

mathematical model in Chapter 4 provides an open-loop formulation that we used to analyze data

from both healthy subjects and patients with autonomic dysfunction. Physiologically, the baroreflex

operates via a negative feedback responding to changes in respiration, blood volume, and blood

pressure modulating heart rate, vascular resistance and compliance, and cardiac contractility, which

in turn impact blood pressure and volume. The open-loop model is able to predict heart rate and

indirectly account for changes in peripheral resistance and contractility as it uses the blood pressure

as an input. However, it does not model this negative feedback loop, since it cannot influence the

blood pressure. To remedy this limitation, we develop a closed-loop cardiovascular model which we

then couple to the open-loop model, simultaneously predicting both heart rate and blood pressure.

This chapter develops and parameterizes an 8-compartment lumped parameter cardiovascular

model, which is coupled to the neurological control model modulating heart rate developed and

analyzed in Chapters 4-6. The sympathetic branch of the neurological model is expanded to include

control of peripheral resistance and compliance and cardiac contractility.
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7.1 Introduction

Precision medicine provides a patient-specific approach addressing the etiology of disease, treat-

ment, and prevention by taking into account individual patient health. This is in contrast to more

universal protocols which focus on developing treatment regimes that target the average person.

Though providing patient-specific care is a relatively common practice clinically, there are various

physiological quantities that are difficult to measure without costly and invasive medical procedures.

In the cardiovascular system, arterial blood pressure and heart rate can be measured noninvasively,

while atrial pressure and venous volume can only be measured invasively with right heart catheter-

ization [35]. To reduce patient discomfort and expense, mathematical modeling can be used in

precision medicine to predict hemodynamic responses that are otherwise unmeasurable without

these invasive techniques.

Mathematical modeling of the cardiovascular system and its control has been extensively studied

using a range of approaches from highly complex systems of ordinary differential equations with

hundreds of state variables [38] to more simplified lumped parameter compartment models focusing

on either the systemic or pulmonary circulations [74, 100] or the entire cardiovascular system [28,

64, 69, 88]. Localized studies have been conducted analyzing the fluid dynamics of blood in the

vasculature, typically involving one- or three-dimensional partial differential equation models [103,

112]. However, in this study, we use ordinary differential equation (ODE) models to model systemic

effects. Cardiovascular ODE models are typically formulated using an electrical circuit analog where

current is analogous to flow, voltage to pressure, and charge to volume. Most models rely on RCL-

circuits where R denotes resistance, C denotes compliance (analogous to capacitance), and L

denotes inertance (analogous to inductance) (as detailed in Table 2.1). While ODE models are easy

to solve and couple with control models, a disadvantage is that they typically are overparameterized.

Cardiovascular control models of the baroreceptor reflex (baroreflex), the Bainbridge reflex, and

respiratory sinus arrhythmia (RSA) accompany cardiovascular compartment models. The baroreflex

has been modeled extensively, especially in response to respiratory and postural challenges [64,

69, 89, 133, 136]. Though these models offer valuable insight into cardiovascular dynamics, they

are not patient-specific. In Chapter 4, we analyzed the baroreflex response of heart rate to the

Valsalva maneuver (VM), a clinical test inducing an increase in intrathoracic pressure to elicit

parasympathetic and sympathetic nervous responses. However, due to the nature of the open-loop

model with systolic blood pressure and intrathoracic pressure data as inputs and heart rate as an

output, the sympathetic effects on vasomotor control and cardiac contractility were ignored. These

effects include an increase in resistance and cardiac contractility and a decrease in compliance [16].

The control of these quantities requires coupling to a closed-loop cardiovascular model, which can

elicit the system-wide effects of fluctuations in cardiovascular dynamics. Therefore, mathematical

modeling of both heart rate and blood pressure simultaneously can provide critical insight into
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potential individual responses to treatment protocols.

In this study, the simplified neurological model from Chapter 6 has been integrated with a

closed-loop cardiovascular model, predicting pressure, volume, and heart rate. This integrative

modeling approach has been used previously to study the response to posture changes [88] and

the VM [64, 69]. We also include the sympathetic control of the vascular in a similar manner as

[2, 69, 101]. A major difference of this work from these theoretical models is the careful attention

paid to the calculation of nominal parameter to ensure the model output is patient-specific. With

this model, we analyze one control response and three types of pathological responses to the VM

designated as the M, N, and V responses as posed by Palamarchuk et al. [94] (shown in Figure 3.2).

7.2 Methods and materials

This section develops an 8-compartment lumped parameter cardiovascular model predicting blood

pressure and heart rate in response to the Valsalva maneuver (VM). The baroreflex response has

been implemented to account for modulation of heart rate, resistance, compliance, and cardiac

contractility. This model operates via a negative feedback loop, working to maintain homeostasis.

Due to the large number of model components, this section is divided into subsections describing

the cardiovascular model and the neurological model components.

Table 7.1 Subscripts for the cardiovascular model.

Subscript Description Notes

Pressures l h Left heart Left ventricle
& Volumes a o Aorta Thoracic aorta and large arteries inside the thorax

s a Systemic arteries Distal aorta, large and small arteries outside the thorax,
arterioles, and capillaries

s v Systemic veins Venules, small and large veins outside the thorax
v c Vena cava Superior and inferior vena cava and right atrium
r h Right heart Right ventricle

p ua Pulmonary arteries Large and small pulmonary arteries and pulmonary capillaries
p u v Pulmonary veins Large and small pulmonary veins and left atrium

Resistances m v Mitral valve
& Flows a v Aortic valve

a o Aorta Flow from inside the thorax to outside
s a Systemic arterioles
s v Systemic veins Flow from outside the thorax to inside
t v Tricuspid valve
p v Pulmonary valve
p a Pulmonary arterioles
t h Thoracic arterioles
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Figure 7.1 Schematic of the 8-compartment cardiovascular model formulated using an analog to an elec-
trical circuit predicting pressure (P , mmHg) and volume (V , mL). All subscripts are summarized in Table
7.1. Six compartments are inside the thorax, the pulmonary arteries (p a ) and veins (p v ), left (l h) and
right (r h) heart, aorta (a o ), and vena cava (v c ), which experience an external compressive force Pt h as the
thorax inflates. The two compartments outside the thorax, the systemic arteries (s a ) and veins (s v ), are
connected to ground, that is, an exterior pressure of zero. Nonlinear resistances (R ) and compliances are
denoted with arrows. Heart and venous valves are given as triangles, denoting their function as diodes.
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7.2.1 Cardiovascular model development

Figure 7.1 displays a schematic of the cardiovascular model, which is formulated using an RC

electrical circuit analogy, where pressure (P , mmHg) is analogous to voltage, flow (F , mL sec−1) to

current, volume (V , mL) to charge, and compliance (C mL mmHg−1) to capacitance. Resistance (R ,

mmHg sec mL−1) is the same in both formulations. Table 2.1 gives a summary of the relationship

between the cardiovascular system and analogous electrical circuit. Each compartment consists

of a pressure and a volume with a capacitor in parallel (compliance). Since the volume Vi inside a

compartment i exacts a pressure Pi on the vessel wall, the pressure and volume are related as

Pi −Pe x t = fi (Vi −Vi ,u ) = fi (Vi ,s t r ), (7.1)

where Pe x t is an external pressure exerting a force on the compartment (at rest Pe x t = 0), Vi ,u is the

unstressed volume (i.e., the volume at which Pi = 0), Vi ,s t r is the stressed volume, and fi :R→R
is a one-to-one function relating Vi ,s t r to Pi . Table 7.1 summarizes the subscripts used in the

cardiovascular model. The flow F from one compartment to the next is proportional to the pressure

gradient between compartments given by Ohm’s Law as

R j =
∆P

Fj
=

Pi n −Po u t

Fj
, (7.2)

where R j is the resistance of the vessels and Fj is the flow across resistance R j . Since the cardiovas-

cular model forms a closed system, the total volume (Vt o t ) is conserved, i.e.,

Vt o t =Vl h +Va o +Vs a +Vs v +Vv c +Vr h +Vp a +Vp v (7.3)

and from Kirchoff’s Law
dVi

dt
=
∑

Fi n −
∑

Fo u t . (7.4)

For an average human of ∼70 kg, Vt o t = 5 L [16].

The atrioventricular and semilunar valves operate as diodes, restricting blood flow when the

valve is closed and ensuring there is no “negative" or reverse flow. There are also valves in the veins

of the lower extremities preventing backflow [16]. The flow across a valve either in the heart or in

the systemic veins is given by

Fv =







Pi n −Po u t

Rv
if Pi n > Po u t

0 otherwise,
(7.5)

where the subscript v = s v, m v, a v, t v, or p v for systemic veins, mitral valve, aortic valve, tricuspid

valve, and pulmonary valve, respectively.
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Lastly, we assume that the resistances in the aorta, systemic veins, and vena cava (via the tricuspid

valve) are volume-dependent. The aorta is highly elastic, able to accommodate the large fluctuations

in arterial volume pumped by the heart. On the other hand, the systemic veins and vena cava operate

at low pressures. These highly compliant vessels deform as volume decreases, increasing resistance.

If we assume these vessels are rigid tubes (which they are not), we take advantage of Poiseuille’s law

R =
8ηl

πr 4
, (7.6)

where η is the viscosity of blood, l is the length of the vessel, and r is the radius. Thus, the resistance

is proportional to the radius, i.e.,

R ∝
1

r 4
∝

1

V 2
. (7.7)

Since R is proportional to the square of the volume, the volume-dependent resistances are

Ri =
κi

V 2
i

+Ri ,0, (7.8)

where i = a o , s v and t v , κi is a scaling parameter, and Ri ,0 is an offset parameter. It should be noted

that all vessel resistances are volume-dependent; for simplicity, we assume that the resistances of

the pulmonary circulation are constant.

The schematic in Figure 7.1 results in a system of 8 ordinary differential equations (ODEs).

Beginning with the left heart, we have

dVl h

dt
= Fm v − Fa v , (7.9)

dVa o

dt
= Fa v − Fa o − Ft h , (7.10)

dVs a

dt
= Fa o − Fs a , (7.11)

dVs v

dt
= Fs a − Fs v , (7.12)

dVv c

dt
= Fs v − Ft v + Ft h , (7.13)

dVr h

dt
= Ft v − Fp v , (7.14)

dVp a

dt
= Fp v − Fp a , and (7.15)

dVp v

dt
= Fp a − Fm v . (7.16)
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The 9 flows in this model beginning with the mitral valve are

Fm v =







Pp v −Pl h

Rm v
if Pp v > Pl h

0 otherwise,
(7.17)

Fa v =







Pl h −Pa o

Ra v
if Pl h > Pa o

0 otherwise,
(7.18)

Fa o =
Pa o −Ps a

Ra o
, (7.19)

Fs a =
Ps a −Ps v

Rs v
, (7.20)

Fs v =
Ps v −Pv c

Rv c
, (7.21)

Ft v =







Pv c −Pr h

Rt v
if Pv c > Pr h

0 otherwise,
(7.22)

Fp v =







Pr h −Pp a

Rp v
if Pr h > Pp a

0 otherwise,
(7.23)

Fp a =
Pp a −Pp v

Rp a
, and (7.24)

Ft h =
Pa o −Pv c

Rt h
. (7.25)

The 3 nonlinear, time-varying resistances are

Ra o =
κa o

V 2
a o
+Ra o ,0, (7.26)

Rs v =
κs v

V 2
s v
+Rs v,0, and (7.27)

Rt v =
κt v

V 2
v c
+Rt v,0. (7.28)

7.2.1.1 Thoracic pressure

Since intrathoracic pressure data was not collected for the autonomic dysfunction (AD) patients

exhibiting M, N, and V behaviors, we chose to artificially induce the maneuver in all four subjects.
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Figure 7.2 Plot of the thoracic pressure (Pt h , blue) with the start (ts ) and end (te ) times for the Valsalva
maneuver indicated by the vertical dashed lines.

We define the thoracic pressure as the square function

Pt h =

¨

40 if ts ≤ t ≤ te

0 otherwise,
(7.29)

where ts and te are the start and end times of the VM, respectively, determined from the data as

shown in Figure 7.2. It should be noted that respiratory input is not superimposed on Pt h in this

study, and therefore, Pt h = 0 at rest. This limitation will be included in future studies.

7.2.1.2 Pressure-volume relations

To close the system of equations, we relate pressure P and V via linear and nonlinear relationships.

Linear pressure-volume relationships are of the form

Pi −Pe x t =
Vi ,s t r

Ci
, (7.30)

where Ci is the constant compliance of the compartment. For this model, Pe x t = Pt h given in Section

7.2.1.1. The linear P-V relations in terms of the stressed volume are given by

Pa o =
Va o ,s t r

Ca o
+Pt h , (7.31)

Ps a =
Vs a ,s t r

Cs a
, (7.32)

Pp a =
Vp a ,s t r

Cp a
+Pt h , and (7.33)

Pp v =
Vp v,s t r

Cp v
+Pt h . (7.34)
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The compartments of the systemic veins, vena cava, and heart have nonlinear P-V relations discussed

in more detail below.

Due to the high compliance of the systemic veins and the large fluctuations in compliance

within physiological pressure ranges, we model these compartments with nonlinear relationships.

Following [42, 101], we assume that the vessel compliance decreases linearly as total vessel volume

increases, that is
dVs v

dPs v
=Cs v = γs v (Vs v ,M −Vs v ), (7.35)

where Vi ,M is the maximal volume of the compartment and γs v is a constant. To formulate equation

(7.35) in terms of stressed volume, consider

Vs v ,M −Vs v =Vs v ,M −Vs v ,u +Vs v ,u −Vs v

= (Vs v ,M −Vs v ,u )− (Vs v −Vs v ,u )

=Vs v ,M ,s t r −Vs v ,s t r , (7.36)

where Vs v,u is the unstressed volume of the compartment and Vs v ,M ,s t r is the maximal stressed

volume. Inserting equation (7.36) into equation (7.35), we obtain

dVs v ,s t r

dPs v
= γs v (Vs v ,M ,s t r −Vs v ,s t r ). (7.37)

We integrate (7.37) using separation of variables, giving

1

γs v

∫

1

Vs v ,M ,s t r −Vs v ,s t r
dVs v ,s t r =

∫

dPs v

⇒
1

γs v

�

− ln(Vs v ,M ,s t r −Vs v ,s t r ) + ln(Vs v ,M ,s t r − Ṽ )
�

= Ps v − P̃

⇒
1

γs v
ln

�

Vs v ,M ,s t r − Ṽ

Vs v ,M ,s t r −Vs v ,s t r

�

= Ps v − P̃ , (7.38)

where Ṽ and P̃ are integration constants. When the volume reaches the unstressed volume, the

pressure is zero, that is, when Vs v ,s t r = 0, Ps v = 0. Therefore,

1

γs v
ln

�

Vs v ,M ,s t r − Ṽ

Vs v ,M ,s t r

�

=−P̃ . (7.39)

Substituting (7.39) into (7.38), we obtain the pressure-volume relation for the systemic veins in

terms of the stressed volume given by

Ps v =
1

γs v
ln

�

Vs v ,M ,s t r

Vs v ,M ,s t r −Vs v ,s t r

�

. (7.40)
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Under resting conditions, the vena cava operates similarly to the systemic veins. Hence, the

P-V relation for the vena cava is similar to equation (7.40) when Vv c ,s t r ≥ 0. However, during the

Valsalva maneuver, increased intrathoracic pressure can cause vessel collapse as the volume of the

compartment drops below the unstressed volume, that is, when Vv c ,s t r < 0. In a similar manner

as Pstras et al. [101], we assume that the vena cava attains its maximal compliance (Cv c ,M ) when

Vv c ,s t r = 0. For most of the volume range below the unstressed volume, we assume the vena cava

maintains Cv c ,M . When the volume reaches its minimal volume (Vv c ,m ), the volume drops steeply

to a near-zero value. We model the compliance of the vena cava under negative stressed pressures

with an increasing sigmoidal relationship as

dVv c ,s t r

dPv c
=Cv c =

Cv c ,M

1+ e −(Vv c ,s t r−sv c )
, (7.41)

where sv c is the half-saturation value. For simplicity, the steepness of the sigmoid was set to 1. Using

separation of variables, we obtain

∫

1+ e −(Vv c ,s t r−sv c ) dVv c ,s t r =

∫

Cv c ,M dPv c

⇒ (Vv c ,s t r − Ṽ )−
�

e −(Vv c ,s t r−sv c )− e −(Ṽ −sv c )
�

=Cv c ,M (Pv c − P̃ ), (7.42)

where P̃ and Ṽ are integration constants. Using the condition that Pv c = 0 when Vv c ,s t r = 0, we

obtain

P̃ =
1

Cv c ,M

�

Ṽ +
�

e sv c − e −(Ṽ −sv c )
�

�

. (7.43)

Substituting equation (7.43) into (7.42), we obtain

Pv c =
1

Cv c ,M

�

Vv c ,s t r + e sv c
�

1− e −Vv c ,s t r
�

�

, Vv c ,s t r < 0. (7.44)

Therefore, since the vena cava compartment is inside the thorax, the pressure volume relation for

the vena cava is

Pv c =











1

γv c
ln

�

Vv c ,M ,s t r

Vv c ,M ,s t r −Vv c ,s t r

�

+Pt h if Vv c ,s t r ≥ 0

1

Cv c ,M

�

Vv c ,s t r + e sv c

�

1− e −Vv c ,s t r

�

�

+Pt h if Vv c ,s t r < 0.
(7.45)

7.2.1.3 Time-varying elastance model

To model the beating heart, we use an asymmetric elastance function similar to previous studies

[28, 45, 74]. As noted in Table 2.1, elastance is the inverse of compliance, that is, Ei = 1/Ci . Using
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Figure 7.3 Plot of nonlinear elastance function defined in equation (7.47). Vertical lines indicate the times
for end-systole, TS , and end-diastole, TR .

this terminology, we model the pressure-volume relation of the left and right heart as

Pi −Pe x t = Ei Vi ,s t r , (7.46)

for i = l h and r h , where the elastance Ei for a heart with time-varying heart period T is given as

Ei =



















Ei ,m +
Ei ,M −Ei ,m

2

�

1− cos
�πt

TM

�

�

if 0≤ t ≤ kTM
T

Ei ,m +
Ei ,M −Ei ,m

2

�

1− cos
�π(t −TM )

TR −TM

�

�

if kTM
T < t ≤ kTR

T

Ei ,m otherwise,

(7.47)

where Ei ,M and Ei ,m are the maximal and minimal elastances, respectively. kTM
= TM /H̄ and kTR

=

TR/H̄ , where H̄ is the baseline heart rate and TM and TR are the times for the maximal systolic

elastance and end of isovolumetric relaxation, respectively. Figure 7.3 shows the elastance function

for one heart period.

7.2.1.4 Summary

In summary, the closed-loop cardiovascular model can be formulated as a system of ordinary

differential equations of the form

dxc

dt
= fc (t , xc ;θc ), xc (0) = x0 (7.48)

yc = gc (xc ;θc ), (7.49)
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where xc ∈R8 denotes the vector of states for the cardiovascular model, fc denotes the right hand side

of the ODE system, θc ∈R28 is a vector of parameters, and gc relates the states to the observable yc .

The states are formulated as stressed volumes and from here on we will suppress the s t r subscript.

The state and parameter vectors are

xc = [Vl h , Va o , Vs a , Vs v , Vv c , Vr h , Vp a , Vp v ]
T and (7.50)

θc = [El h ,M , El h ,m , Er h ,M , Er h ,m , Ca o , Cs a , Cp a , Cp v , Cv c ,M . . .

. . . Rm v , Ra v , Rs a , Rp v , Rp a , Rt h , Ra o ,0,κa o , Rs v,0,κs v , Rt v,0,κt v . . .

. . .γs v , Vs v,M ,γv c , Vv c ,M , sv c , kTM
, kTR
]T , (7.51)

respectively. The observable yc of the cardiovascular model is the prediction of systemic arterial

blood pressure, Ps a .

7.2.1.5 Initial conditions

The initial conditions of the cardiovascular model are calculated such that the model begins at

end-diastole to coincide with the initialization of the elastance function in equation (7.47). Hence,

Vl v and Vr v are maximal. Since the equations are formulated in terms of stressed volumes, Beneken

and DeWit [11] determined that the stressed volumes for the arterial and venous components were

∼30% and ∼10%, respectively, of the total volume for that compartment. Table 7.2 tabulates the

volume distribution for the cardiovascular model, assuming the subject has a total blood volume

Vt o t = 5000 mL [16]. Therefore, the initial conditions for the stressed volumes of each compartment

are

Vi ,0 = di Vt o t , (7.52)

where di is a percentage calculated by multiplying across the rows in Table 7.2.
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Table 7.2 Stressed volume distribution percent-
ages at end-diastole.

Compartment Vt o t % Vs t r % di

[16] [11]

Vl h 2.5 0.025
Va o 5 30 0.015
Vs a 8 30 0.024
Vs v 65 10 0.065
Vv c 5 10 0.005
Vr h 2.5 0.025
Vp a 5 30 0.015
Vp v 5 10 0.005

Table 7.3 Calculations for parameters associated with the pressure-
volume relations for the systemic veins and vena cava.

Systemic Veins Vena Cava

Parameter Calculation Parameter Calculation

Vs v,m 1.01 Vs v,0 Vv c ,m 1.01 Vv c ,0

γs v
Cs v,n

Vs v,M −Vs v,0
γv c

Cv c ,n

Vv c ,M −Vv c ,0

Cv c ,M γv c Vv,M

Vv c ,m 0.02(0.9)(0.05)Vt o t

sv c Vv c ,m + ln

�

Cv c ,M

Cv c ,0
−1

�

Cs v,n and Cv c ,n are taken from literature [101].
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Table 7.4 Pressure scaling factors for baseline mean, systolic, and diastolic pressure values for each compartment, where applica-
ble.

Reference Compartment

Pressure Pl h Pa o Ps a Ps v Pv c Pr h Pp a Pp v

Mean 95 ka o =
98

95
ks a = 1 ks v =

6

95
kv c =

4

95
kp a =

15

95
kp v =

6

95

Systolic 120 kl h ,s =
125

120
ka o ,s =

125

120
ks a ,s = 1 kr h ,s =

30

120
kp a ,s =

25

120

Diastolic 80 kl h ,d =
10

80
ka o ,d =

85

80
ks a ,d = 1 kr h ,d =

6

80
kp a ,d =

3

80
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Table 7.5 Pressure scaling factors for baseline mean, systolic, and diastolic pressure values for each compartment,
where applicable.

Parameter Calculation Parameter Calculation Parameter Calculation

R ∗a o

P̄a o − P̄s a

.9 CO
=

ka o −ks a

.9 CO
P̄ Ca o

Va o ,0

P̄a o
=

Va o ,0

ka o P̄
El h ,M

Pl h ,M

0.1 Vl h ,0
=

kl h ,s

0.1 Vl h ,0
P̄s

R ∗s a

P̄s a − P̄s v

.9 CO
=

ks a −ks v

.9 CO
P̄ C ∗s a

Vs a ,0

P̄s a
=

Vs a ,0

ks a P̄
E ∗l h ,m

Pl h ,m

Vl h ,0
=

kl h ,d

Vl h ,0
P̄d

R ∗s v

P̄s v − P̄v c

.9 CO
=

ks v −kv c

.9 CO
P̄ Cp a

Vp a ,0

P̄p a
=

Vp a ,0

kp a P̄
Er h ,M

Pr h ,M

0.1 Vr h ,0
=

kr h ,s

0.1 Vr h ,0
P̄s

Rp a

P̄p a − P̄p v

CO
=

kp a −kp v

CO
P̄ Cp v

Vp v,0

P̄p v
=

Vp v,0

kp v P̄
Er h ,m

Pr h ,m

Vr h ,0
=

kr h ,d

Vr h ,0
P̄d

Rt h
P̄a o − P̄v c

.1 CO
=

ka o −kv c

.1 CO
P̄

CO - cardiac output. Values for ki can be found in Table 7.4. Values for Vi ,0 can be found in Table 7.2.
P̄ , P̄s , and P̄d are the mean, mean systolic, and mean diastolic blood pressures, respectively.
An asterisk indicates this value is not used in the model, but used to calculate other nominal parameter values or initial

conditions.
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7.2.1.6 Nominal parameter values

To ensure the model output is patient-specific, careful attention is paid to the assignment of nominal

parameter values. In this section, we discuss assumptions associated with calculating the nominal

parameter values from data using baseline mean blood pressure (P̄ ), mean systolic blood pressure

(P̄s ), and mean diastolic blood pressure (P̄d ). The compartment pressures are scaled from the data

using the reference pressures MBP = 95, SBP = 120, and DBP = 80, as shown in Table 7.4. The

numerators for every scaling factor ki was taken as the population blood pressure value given in

[16].

The nominal parameter values associated with the the P-V relation of the systemic veins are

calculated under the assumption that under unphysiologically high pressures the veins have a

relatively small compliance [16]. Therefore, we assume the maximal stressed volume of the systemic

veins is marginally larger than the initial value, that is,

Vs v,M = 1.01 Vs v,0. (7.53)

Furthermore, the compliance of the systemic veins is taken from literature. The literature compliance

value of the systemic veins Cs v,n = 70 ml mmHg−1 [102]. Then, from equation (7.35), we have

γs v =
Cs v,n

Vs v,M −Vs v,0
. (7.54)

The parameters for the P-V relation of the veins where Vv c ,s t r ≥ 0 can be found in a similar manner

with Cv c ,n = 32 ml mmHg−1 [101]. For the vena cava where Vv c ,s t r < 0, there are two parameters.

Cv c ,M , the maximal compliance that occurs when Vv c ,s t r = 0, is calculated from equation (7.35) as

Cv c ,M = γv c Vv c ,M . (7.55)

The sigmoid half-saturation value sv c is determined from the assumption that when Vv c ,s t r =

Vv c ,m < 0 where Vv c ,m is the minimal volume of the vena cava compartment, the compliance

decreases to zero. We assume a near zero value is Cv c ,0 = 0.01. Then,

Cv c ,0 =
Cv c ,M

1+ e −(Vv c ,m−s ) ⇒ s =Vm + ln
�

Cv c ,M

Cv c ,0
−1

�

. (7.56)

In the same manner as [101], we assume Vv c ,m is 20% of the unstressed volume. From Beneken

and DeWit [11], the unstressed volume of the vena cava is 90% of the total volume of the vena cava.

Hence, from Table 7.2,

Vv c ,m = 0.02(0.9)(0.05)Vt o t . (7.57)

For the parameters associated with the time-varying elastance function, TM and TR are calculated
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directly from data. TM is the time to maximal systolic elastance, which corresponds to the time

it takes for the blood pressure data to reach its maximal systolic pressure. TR is the time of end

isovolumetric relaxations, which corresponds to the time it takes for the blood pressure to drop

below P̄ from the systolic pressure. These time parameters are calculated for and averaged over

10 cardiac cycles. Hence, the scaling factors kTM
and kTR

are calculated as described in Section

7.2.1.3. The maximum elastance occurs when the blood pressure is maximal and the volume is

minimal and the minimal elastance when the blood pressure is minimal but the volume is maximal.

Maximum and minimum pressures of the left and right heart are scaled from P̄s and P̄d , respectively.

We assume that the minimal volume of the heart compartment is 10% of the end-diastolic volume.

Hence,

Ei ,M =
Pi ,M

0.1Vi ,0
and Ei ,m =

Pi ,m

Vi ,0
, (7.58)

where Pi ,M = ki ,s P̄s and Pi ,m = ki ,d P̄d for ki a scaling factor given in Table 7.4. The nominal compli-

ances are calculated as

Ci =
Vi ,0

P̄i
=

Vi ,0

ki P̄
. (7.59)

The compliance values and elastance function parameter calculations are given in Table 7.5.

For the nominal resistance parameters, we calculate based on Ohm’s Law using average pressure

values, that is,

R j =
P̄i n − P̄o u t

Fj
, (7.60)

where the mean pressures are determined using the ratios ki given in Table 7.4 and Fj is a percentage

of the cardiac output (CO). For the systemic circulation, we assume that 90% of the CO is distributed

to the systemic arteries and 10% through the thoracic arteries to the vena cava. The pulmonary

circulation receives 100% of the CO. These calculations are tabulated in Table 7.5. The nominal

parameter values for the heart valves is set to 10−4 for all valves except the tricuspid valve, which

will be discussed next.

The parameters associated with the nonlinear resistances are calculated in the following manner.

From Table 7.5, the average resistance of the aorta is given as R ∗a o , i.e.,

P̄a o − P̄s a

.9 CO
=R ∗a o =

κa o

V ∗a o
2 +Ra o ,0, (7.61)

where V ∗a o is the corresponding blood volume when pressure is an average, that is, V ∗a o =Ca o P̄a o =

Ca o ka o P̄ . Similarly, we also have a relation at the systolic and diastolic pressures; however, for this

study, we use the diastolic pressure-volume relation, that is,

P̄a o ,d − P̄s a ,d

.9 CO
=Ra o ,d =

κa o

Va o ,d
2 +Ra o ,0, (7.62)
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where Va o ,d =Ca o P̄a o ,d =Ca o ka o ,d P̄d . Solving the system in equations (7.61) and (7.62) for κa o and

Ra o ,0 yields

κa o = (R
∗
a o −Ra o ,d )

V ∗a o
2Va o ,d

2

Va o ,d
2−V ∗a o

2 (7.63)

and

Ra o ,0 =R ∗a o −
κa o

V ∗a o
2 . (7.64)

Similar calculations can be made for the venous nonlinear resistance relations. For the systemic

venous resistance Rs v , we have

P̄s v − P̄v c

0.9 CO
=R ∗v c =

κs v

V ∗s v
2 +Rs v,0, (7.65)

where P̄s v = ks v P̄ . To determine V ∗s v , we use equation (7.40) to obtain

P̄s v =
1

γs v
ln
�

Vs v,M

Vs v,M −V ∗s v

�

⇒ V ∗s v =Vs v,M (1− e −γs v P̄s v ) =Vs v,M (1− e −γs v ks v P̄ ). (7.66)

Since we do not have a suitable diastolic pressure and volume relationship as with the aortic

compartment, we assume that at 90% of the mean pressure of the systemic veins compartment, we

have a corresponding reduction in resistance and, hence, volume. Therefore,

0.9
P̄s v − P̄v c

0.9 CO
= 0.9R ∗v c =R ∗∗v c =

κs v

V ∗∗s v
2 +Rs v,0. (7.67)

Using (7.40) again, we obtain

V ∗∗s v =Vs v,M (1− e −0.9γv c ks v P̄ ). (7.68)

Solving the system given in equations (7.65) and (7.67) gives

κs v = (R
∗
s v −R ∗∗s v )

V ∗s v
2V ∗∗s v

2

V ∗∗s v
2−V ∗s v

2

= 0.1R ∗s v

V ∗s v
2V ∗∗s v

2

V ∗∗s v
2−V ∗s v

2 (7.69)

and

Rs v,0 =R ∗s v −
κs v

V ∗s v
2 . (7.70)

The parameters for the nonlinear resistance of the tricuspid valve dependent on the volume of the
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vena cava are calculated in a similarly, giving

κt v = 0.1R ∗t v

V ∗v c
2V ∗∗v c

2

V ∗∗v c
2−V ∗v c

2 , (7.71)

Rt v,0 =R ∗t v −
κt v

V ∗v c
2 , (7.72)

V ∗v c =Vv c ,M (1− e γv c kv c P̄ ), and (7.73)

V ∗∗v c =Vv c ,M (1− e 0.9γv c kv c P̄ ). (7.74)

7.2.2 Neurological model development

The neurological model implemented in this study is the reduced heart rate control model from

Chapter 6. We omit the respiratory sinus arrhythmia model, that is, the model solely responds to

baroreflex stimulation. The arterial wall strain of the aorta deforms due to the mean blood pressure.

We approximate the mean arterial blood pressure (MAP) of the aorta as a differential equation of

the form
d

dt
MAP=

−MAP+Pa o

τP
(7.75)

for time-scale τP and Pa o from equation (7.31). Then, the the arterial wall stain in the aorta is

εw = 1−

√

√ 1+ e −qw (MAP−sw )

A+ e −qw (MAP−sw )
, (7.76)

which stimulates the baroreflex-mediated parasympathetic (Tp ,H ) and sympathetic (Tp ,H ) heart

rate responses modeled as solutions to the differential equations

dTp ,H

dt
=
−Tp ,H +Kp ,H Gp ,H

τp ,H
and

dTs ,H

dt
=
−Ts ,H (t −DH ) +Ks ,H Gs ,H

τs ,H
, (7.77)

where Kl ,H and τl ,H are the gain and time-scale, respectively, for l = p or s for parasympathetic

and sympathetic, respectively, The Gl ,H are the sigmoidal functions

Gp ,H =
1

1+ e −qp ,H (εw−sp ,H )
and Gs ,H =

1

1+ e qs ,H (εw−ss ,H )
, (7.78)

where ql ,H and sl ,H are the sigmoid steepness and half-saturation values, respectively. The heart

rate is modeled as a linear differential equation of the form

dH

dt
=
−H + H̃

τH
(7.79)
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for heart rate time-scale τH where

H̃ =HI (1−Hp Tp ,H +Hs Ts ,H ) (7.80)

for scaling parameters Hp and Hs . HI denotes the intrinsic heart rate, the heart rate when the

sinoatrial node is denervated, calculated from the age of the subject [52].

During the Valsalva maneuver, stimulation of the sympathetic nervous system causes an increase

in peripheral resistance, an increase in cardiac contractility, and a decrease in compliance. The

baroreflex decreases venous compliance; however, since the cardiovascular model is a closedcircuit,

we can mode any of the compliances dynamically. In this study, we choose to model the compliance

of the systemic arteries with a delay differential equation to coincide with the blood pressure data.

When the baroreflex activates, vasoconstriction of the vascular smooth muscle surrounding the

systemic arterioles overrides the elastic properties of the vessels. We model this relation in a similar

manner to the heart rate response model given above. Sympathetically mediated changes in systemic

arteriolar resistance and compliance are given as solutions to delay differential equations

dRs a

dt
=
−Rs a (t −DR ) + R̃

τR
and

dCs a

dt
=
−Cs a (t −DC ) + C̃

τC
(7.81)

for time-scale τm and discrete delay Dm for m =R or C for resistance or compliance, respectively,

and

R̃ = aR GR + bR and C̃ = aC GC + bC , (7.82)

where am and bm are the scaling factor and offset parameters of the sigmoid curve Gm given as

GR =
1

1+ e qR (εw−sR )
and GC =

1

1+ e −qC (εw−sC )
(7.83)

for steepness parameter qm and half-saturation value sm where εw is as in equation (7.76).

Similarly, cardiac contractility increases as sympathetic activity increases due to a decrease in

pressure. We model an increase in contractility as a decrease in the minimal elastance of the left

heart, El h ,m , which is held constant in the cardiovascular model. It should be noted that we could

have chosen to model El h ,M instead, which is equivalent. The minimal left heart elastance is the

solution to the delay differential equation

dEl h ,m

dt
=
−El h ,m (t −DE ) + Ẽ

τE
(7.84)

for time-scale τE and discrete delay DE , where

Ẽ = aE GE + bE (7.85)
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for scaling factor aE and offset parameter bE . As pressure decreases, El h ,m decreases, and hence,

arterial wall strain and minimal elastance have an increasing sigmoidal relationship, that is,

GE =
1

1+ e −qE (εw−sE )
(7.86)

for steepness qE and half-saturation value sE .

7.2.2.1 Initial conditions

The initial conditions of the parasympathetic and sympathetic tones controlling heart rate are based

on the assumption that at rest parasympathetic activity contributes to 80% of the neural control

of heart rate and sympathetic contributes 20% [60]. Hence, the initial condition for Tp ,H and the

constant history function for Ts ,H are given as

Tp ,H (0) = Tp ,H ,0 = 0.8 and (7.87)

Ts ,H (t ) = Ts ,H ,0 = 0.2, t ∈ [−DH , 0]. (7.88)

The initial condition for heart rate and mean aortic blood pressure are set as functions of the the

mean heart rate and blood pressure values from the data, that is,

H (0) = H̄ and (7.89)

MAP(0) = ka o P̄ . (7.90)

The initial conditions of the systemic arteriolar resistance and compliance and minimal left heart

elastance are calculated such that at rest they sustain the average value given in Table 7.5, that is,

the constant history function for each is

Rs a (t ) =Rs a ,0 =
ks a −ks v

0.9 CO
P̄ , t ∈ [−DR , 0], (7.91)

Cs a (t ) =Cs a ,0 =
Vs a ,0

ks a P̄
, t ∈ [−DC , 0], and (7.92)

El h ,m (t ) = El h ,m ,0 =
kl h ,d

Vl h ,0
P̄ , t ∈ [−DE , 0]. (7.93)
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Table 7.6 Nominal parameter values for the heart rate model.

Parasympathetic Sympathetic Heart Rate

Parameter Value Parameter Value Parameter Value

Kp ,H 5 Ks ,H 5 τH 0.5

τp ,H 1.8 τs ,H 10 HI 118−0.57age

Hp
1− H̄ /HI +Hs Ts ,H ,0

Tp ,H ,0
Hs (HM /HI −1)/Ks ,H HM 208−0.7age

qp ,H 9 qs ,H 9

sp ,H εw (0) + ln(Kp ,H /Tp ,H ,0−1) sp ,H εw (0)− ln(Kp ,H /Tp ,H ,0−1)

DH 3
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Table 7.7 Nominal parameter values for sympathetic effectors.

Resistance Compliance Elastance

Parameter Value Parameter Value Parameter Value

qR
2

ε̄w − εw ,m
ln
�

1

GC ,0
−1

�

qC
2

ε̄w − εw ,m
ln
�

1

GC ,0
−1

�

qE
2

ε̄w − εw ,m
ln
�

1

GC ,0
−1

�

sR
1

2
(ε̄w + εw ,m ) sC

1

2
(ε̄w + εw ,m ) sE

1

2
(ε̄w + εw ,m )

aR
Rs a ,0−Rs a ,M

GR ,0−GR ,M
aC

Cs a ,0−Cs a ,m

GC ,0−GC ,m
aE

El h ,m ,0−El h ,m ,m

GE ,0−GE ,m

bR Rs a ,0−aR GR ,0 bC Cs a ,0−aC GC ,0 bE El h ,m ,0−aE GE ,0

τR 6 τC 6 τE 10

DR 3 DC 3 DE 3

ε̄w = εw (P̄ ) and εw ,m = εw (P̄m ).
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7.2.2.2 Nominal parameter values

Nominal parameter values for the heart rate response are given in Chapter 4. Table 7.6 lists the nom-

inal parameter values and calculations based on the assumptions given above. For the sympathetic

effectors, Rs a , Cs a , and El h ,m , the time-scales and delay parameter values are from Lu et al. [69].

Arterial compliance influences the width of the oscillations of the arterial pulse pressure (PP)

defined as the difference in systolic and diastolic pressures. The mean pulse pressure is

P̄P= P̄s − P̄d . (7.94)

P̄P and Cs a are inversely proportional, i.e.,

Cs a ,0P̄P=Cs a ,m PPm ⇒ Cs a ,m =
P̄P

PPm
Cs a0

, (7.95)

where Cs a ,0 is as in equation (7.92) and PPm is the minimal pulse pressure calculated directly from

the data. To determine the nominal parameter values for aC , bC , qC , and sC , at rest we have the

mean blood pressure P̄ from the data the baseline compliance Cs a ,0 and we assume that this point

is sufficiently high on the increasing sigmoidal curve in equation (7.83) so that a drop in pressure

induces a significant decrease in compliance. For this study, we assign a value of 80% to denote

“sufficiently high", that is,

GC ,0 =
1

1+ e −qC (ε̄w−sC )
, (7.96)

where Gc ,0 = 0.8 and

ε̄w = εw (P̄ ). (7.97)

The minimal compliance Cs a ,m occurs approximately when the mean blood pressure is minimal.

Furthermore, we assume this minimal value occurs at 20% of the curve in equation (7.83). For

εw ,m = εw (P̄m ), we have

GC ,m =
1

1+ e −qC (εw ,m−sC )
, (7.98)

where GC ,m = 0.2. Solving the system given by equations (7.96) and (7.98) for qC and sC yields

sC =
1

2
(ε̄w + εw ,m ) and (7.99)

qC =
2

ε̄w − εw ,m
ln
�

1

GC ,0
−1

�

. (7.100)
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Using these assumptions, we can set up the system

Cs a ,0 = aC GC ,0+ bC and (7.101)

Cs a ,m = aC GC ,m + bC . (7.102)

Solving this system for aC and bC gives

aC =
Cs a ,0−Cs a ,m

Gc ,0−Cc ,m
and (7.103)

bC =Cs a ,0−aC GC ,0. (7.104)

Calculation of the minimal left heart elastance parameters follows a similar methodology with the

points (ε̄, El h ,m ,0) for GE ,0 = 0.8 and (εw ,m , El h ,m ,m ) for GE ,m = 0.2, where El h ,m ,m is the minimal

value the minimal left heart elastance can attain. We assume El h ,m ,m = 0.5El h ,m ,0. Since the arteriolar

resistance involves an increasing sigmoid, we have the points (ε̄, Rs a ,0) for GR ,0 = 0.2 and (εw ,m , Rs a ,M )

for GR ,M = 0.8 to ensure a dramatic increase in resistance as pressure drops. We assume Rs a ,m =

2Rs a ,0. Calculations for the sympathetic effector nominal parameter values are listed in Table 7.7.

7.2.3 Summary

In summary, the coupled cardiovascular-neurological control model incorporating the parasym-

pathetic and sympathetic effects of the baroreflex is a system of ordinary and delay differential

equations of the form

dx

dt
= f (t , x, x(t −DH ), x(t −DR ), x(t −DC ), x(t −DE );θ ) (7.105)

y = g (x, x(t −DH ), x(t −DR ), x(t −DC ), x(t −DE );θ ), (7.106)

where x ∈R15 denotes the vector of states for the cardiovascular model, f denotes the right hand

side of the system, θ ∈R57 is a vector of parameters, and g relates the states to the observable y .

The state vector is given as

x= [Vl h , Va o , Vs a , Vs v , Vv c , Vr h , Vp a , Vp v , . . .

. . . H , MAP, Tp ,H , Ts ,H , Rs a , Cs a , El h ,m ]
T (7.107)
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and the parameter vector as

θ = [El h ,M , Er h ,M , Er h ,m , Ca o , Cp a , Cp v , Cv c ,M . . .

. . . Rm v , Ra v , Rp v , Rp a , Rt h , Ra o ,0,κa o , Rs v,0,κs v , Rt v,0,κt v . . .

. . .γs v , Vs v,M ,γv c , Vv c ,M , sv c , TM , TR , . . .

. . . A, Kp ,H , Ks ,H ,τp ,H ,τs ,H ,τH ,τR ,τC ,τE . . .

. . . qp ,H , qs ,H , qR , qC , qE , sp ,H , ss ,H , sR , sC , sE , . . .

. . . HI , Hp ,H , Hs ,H , aR , aC , aE , bR , bC , bE , . . .

. . . DH , DR , DC , DE ]
T . (7.108)

The observable y of the cardiovascular model is the prediction of systemic arterial blood pressure,

Ps a , and heart rate H .
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Table 7.8 Assumptions for pathological subjects.

Behavior System Assumption Effector Implementation

M Parasympathetic Increased Heart rate τp ,H ≈ 0

Sympathetic Increased Heart rate ↑ qs ,H

Resistance ↑Rs a

Compliance ↓Cs a

Contractility ↓ El h ,m

N Parasympathetic No change Heart rate

Sympathetic Delayed Heart rate ↑DH

Resistance ↑Rs a and ↑DR

Compliance ↑DE

Contractility ↑DE

V Parasympathetic Diminished Heart rate ↓ qp ,H

Sympathetic Diminished Heart rate
dTs ,H

dt
= 0

Resistance
dRs a

dt
= 0

Compliance
dCs a

dt
= 0

Contractility
dEl h ,m

dt
= 0
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Figure 7.4 Heart rate (top row) and blood pressure (bottom row) data (blue) and model fits (red) in response to a Valsalva maneuver
with different etiologies: (a) control. (b) M pattern. (c) N pattern. (d) V pattern.
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7.3 Results and discussion

The results from the methodology presented in Section 7.2 are presented in Figure 7.4. The upper

and lower traces display heart rate and blood pressure responses to the Valsalva maneuver (VM)

for a control subject and three AD patients exhibiting M, N, and V responses. The nominal model

parameter values and initial conditions were calculated to ensure a patient-specific model output.

It should be noted that careful consideration of nominal parameter values allow us to predict

qualitative behavior of heart rate response without optimization. We develop a qualitative model

for each case of the data presented in Figure 3.2 by changing the assumptions on the model. Section

2.4 discusses the hypotheses for the M, N, and V patients, and we adjusted each model accordingly.

7.3.1 Control model

The nominal model outputs for the heart rate and blood pressure (Figure 7.4a) of the healthy subject

fits the baseline values and the regions controlled by the baroreflex well. For the heart rate, this is

due to the effort expended in calculating nominal parameter values for the baroreflex effectors. For

blood pressure control, Ps a fits the blood pressure data in phases I, III, and IV of the VM. However,

in late phase II, the diastolic pressure of the model output rises quicker than the data. This could be

due to an effect of too much stimulation from the sympathetically-mediated cardiac contractility

component controlling the minimal elastance.

7.3.2 Pathophysiological models

To predict dynamics for the POTS patients, we modified the model according to the hypotheses

associated with the pathophysiology for each subject as described in Section 2.4.1. The assumptions

regarding the M, N, and V patterns are summarized in Table 7.8.

7.3.2.1 M model

The M pattern has two SBP overshoots, one in late phase II and another during phase IV, and

the overshoot in phase IV rapidly declines to baseline within 5 seconds [94]. We hypothesize that

the M pattern is generated by increased sympathetic and parasympathetic activity. To model this

pathophysiology, we

• increase the effect of the parasympathetic tone on heart rate by decreasing the time-scale

τp ,H to near zero (τp ,H = 0.01), which resulted in a faster parasympathetic withdrawal in early

phase II and a sharper increase in heart rate.

• double the sigmoid steepness for the sympathetic heart rate effects, inducing a further increase

in heart rate.
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• increase arteriolar resistance by increasing nominal pressure-resistance relationship from

20% to 30% of the sigmoid curve.

• decrease Cs a and El h ,m by reducing the nominal sigmoidal relationship from 80% to 70% of

the sigmoid curve.

These nominal assumption adjustments yield the resulting M behavior seen in the data (Figure

7.4b). Though the baseline oscillations are slightly broader than the data, the VM region of the signal

fits the blood pressure well. In phase IV, fast parasympathetic recovery causes a sharper decrease in

blood pressure than in the data.

7.3.2.2 N model

The N pattern has a delayed increase in SBP in late phase II and a sustained SBP overshoot in phase IV

for longer than 10 seconds [94]. We hypothesize that the N pattern is a result of a delayed sympathetic

response, causing an prolonged increase in peripheral resistance. To model this behavior we

• multiply the delay parameters by a scaling factor ξ. The effect seen in Figure 7.4c is a result of

multiplying all of the delays by ξ= 1.5 except for DE (ξE = 2).

• increase arteriolar resistance by increasing nominal pressure-resistance relationship from

20% to 30% of the sigmoid curve.

This effectively produced the expected outcome for both heart rate and blood pressure. However, in

phase II in Figure 7.4c, the diastolic blood pressure is higher in the model than the data. This may

be due to increased cardiac contractility, as seen in the healthy control subject.

7.3.2.3 V model

The V pattern has an absent increase in SBP in late phase II causing a prolonged decrease in SBP, an

altered phase III, and an absent SBP overshoot in phase IV [94]. It has been hypothesized that the V

pattern is a result of sympathetic dysfunction, as adrenergic activity contributes to late phase II and

phase IV of the VM. However, we showed that it may be more likely that the V behavior is a result of

diminished sympathetic and parasympathetic activity in Chapter 4. To decrease the parasympathetic

response, we

• halve the sigmoid steepness parameter qp ,H .

• set all of the differential equations for the systemic effectors to zero to simulate complete

sympathetic blockade.

The result is the V behavior that fits the data both at baseline and during the VM. The large heart rate

drops before and after the maneuver are due to deep breaths, which are not modeled in this study.
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Figure 7.5 Schematic of the neurological control model coupled to the lumped parameter compartment
cardiovascular model from Figure 7.1. Dashed curves represent afferent signals from the cardiovascular
system stimulating the appropriate control mechanism: respiratory sinus arrhythmia (gray), the Bain-
bridge reflex (orange), and the baroreflex (pink). Efferent parasympathetic response affects heart rate
(light green). Efferent sympathetic response affects heart rate (light green), cardiac contractility (purple),
arteriolar resistance (light blue), and venous compliance (dark blue).

154



7.3.3 Limitations and future work

Without the implementation of other control mechanisms, such as the cardiopulmonary reflex

and respiratory sinus arrhythmia (RSA), the model currently provides an incomplete depiction.

Figure 7.5 shows a schematic of the future modeling efforts incorporating the effects of RSA and the

Bainbridge reflex that are both influenced by the cardiopulmonary receptors. At baseline, the clearly

oscillatory behavior of both the heart rate and blood pressure is due to respiration. The dramatic

drops in heart rate in the M (Figure 7.4b) and V (Figure 7.4d) patients are due to large breaths, which

the model cannot fit without a respiratory component. The incorporation of RSA would provide

better predictions at baseline and during phase I of the VM (as determined in Chapter 4 that RSA

may play a slight role in the early VM phases).

Implementation of control mechanisms influenced by the cardiopulmonary receptors could be

achieved in a variety of ways. The Bainbridge reflex can be implemented using the volume of the

vena cava compartment as the input to the negative feedback submodel, as shown in Figure 7.5.

Vv c could also be one of the inputs for respiratory sinus arrhythmia. We can impose RSA by altering

the baseline of the thoracic pressure as well. Some suggestions for future studies include:

• using an ECG-derived respiratory signal as an input similar to the open-loop approach of

Chapter 4 in which the model would no longer be closed-loop but more patient-specific.

• defining an explicit oscillatory respiratory signal analytically and integrating it with the tho-

racic pressure, Pt h in which the model may or may not oscillate with the same frequency as

the data.

• fitting an analytical oscillatory function to the respiratory data first and then incorporating this

signal into Pt h , which has the potential to maintain the closed-loop and be patient-specific.

• developing or adapting a physiologically-motivated submodel accounting for the reflex, such

as the model developed by Ben-Tal et al. [10].

7.4 Conclusions

From the present preliminary analysis, this model has great potential. The baroreflex modeling

component performs admirably and the methodology used to calculate nominal parameter values

provides patient-specific outcomes. The M, N, and V patterns are characteristics of blood pressure.

In Chapter 4, we were able to characterize the V pattern, but by coupling the neurological model to

a cardiovascular model, we were able to support the clinical hypotheses posed for all three patterns.
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CHAPTER

8

CONCLUDING REMARKS

In this study, we have developed and analyzed models of the autonomic response to the Valsalva ma-

neuver (VM), a clinical test that elicits both a parasympathetic and sympathetic response. The open-

loop model incorporates cardiovascular control mechanisms of the baroreceptor reflex (baroreflex)

and the respiratory sinus arrhythmia, analyzing their contribution to the control of HR during

the VM. We have validated this model against control subject data and assessed its effectiveness

in predicting heart for patients with autonomic dysfunction characterized by a V behavior from

Palamarchuk et al. [94].

Development of physiologically models

Open-loop model: We have developed an open-loop model motivated by the physiological mech-

anisms and clinical hypotheses to predict the parasympathetic and sympathetic nervous system

responses, which cannot be measured (a) without costly or invasive techniques which fundamen-

tally comprise the autonomic system or (b) without anesthetization which also blunts the nervous

response. The model predicts baroreflex-mediated parasympathetic and sympathetic function and

respiratory-mediated parasympathetic function to control heart rate. In conjunction with parameter

estimation in an inverse problem framework., we showed that this open-loop approach can explore

dysfunction of the VM arising in the V response [94]. We determined that the V pattern hypothesis is

incomplete and subcategories should be used to classify different etiologies.
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A limitation of this model is its restriction to using the blood pressure as an input, which assumes

that blood pressure changes stimulating the baroreflex and respiratory sinus arrhythmia are the

only contributors to heart rate control. However, heart rate regulation is governed by many factors,

including the cardiopulmonary receptors that respond to changes in blood volume. The model

does not incorporate the Bainbridge reflex initiated by the cardiopulmonary receptors since blood

volume data was not available. Coupling the neurological model to a cardiovascular model can

elicit the volume changes necessary to model the Bainbridge reflex effectively. Future studies should

explore the contributions of these receptors.

Closed-loop model: We have developed a lumped parameter compartment model of the cardiovas-

cular system and coupled this model with the open-loop neurological control model. Though this

work is preliminary, the outlook is promising given that the development of a control submodel and

submodels for each of the M, N, and V patterns nominally fit the morphology of the data. A limitation

of using a zero-dimensional lumped parameter model is the assumption that the compartments are

homogeneous and the flow is steady. At rest, these assumptions may be valid, but it is not unlikely

that patients suffering from autonomic dysfunction violate these assumptions more readily than

healthy control subjects.

Patient-specific modeling

To ensure the model output was patient-specific, we calculated nominal parameter values from

data and analytical initial conditions so that the model was in steady-state. We implemented various

physiological assumptions in regard to the M, N, and V patterns, which supported their clinical

hypotheses. We used subset selection and parameter estimation to identify a subset of parameters

to optimize, fitting the model heart rate output to data. Using parameter estimation, we conducted a

model-based data analysis for 34 healthy control subjects and 5 patients with AD. We also developed

an algorithm for patient-specific respiratory sinus arrhythmia derived from an electrocardiogram.

Model analysis

Several mathematical techniques were applied to this model, analyzing the influence of the pa-

rameters on the model output via local and global sensitivity analysis and analyzing the stability

of the system with bifurcation analysis. The stability analysis showed that defining an appropriate

parameter regime can ensure the model’s resting state is asymptotically stable. The extent to which

instability, including dampened oscillations, limit cycles, and unstable modes, persists in the model

solution after deviating from the critical point may be related to diseased outcomes, such as the M

patient, due to overstimulation of the system.

Local and global sensitivity analyses were conducted to assess the influence of the model’s param-
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eters on the output. We used global sensitivity analysis to motivate a model reduction and selection

protocol. This analysis required the development of a new metric that we call limited-memory

Sobol’ indices, which incorporate the time-dependent variance within a moving window centered

about a time point t . These indices were found to be useful for interpreting the time-dependent

parameter influence on the model output, as the dynamic changes in parameter influence were

averaged out by other methods.

In conclusion, the modeling efforts in this study provide a mathematical framework for the

analysis of autonomic control of blood pressure and heart rate. Furthermore, this approach com-

bined many different mathematical techniques for analysis of both the model and data. This work

has shown to provide important insight clinically by supporting hypotheses of how autonomic

dysfunction impacts the cardiovascular system.

Future work

There is still much work to be done investigating these areas. Mathematically, a more rigorous

derivation of the limited-memory Sobol’ indices and time-dependent GSA in general is necessary.

Determining the “yardstick" by which to measure is still an open and active area of research. More-

over, it would be useful to investigate these indices on smaller problems to ensure we obtain useful

and interpretable results overall. However, it should be noted that these small problems must exhibit

similar properties to this model, that is, they must also have fast transient behavior for the results to

be meaningful.

In regard to the modeling efforts, parameter subset selection and optimization is the natural

next step to from Chapter 7. The submodels for the disease patients should also be included in these

efforts, as it would be interesting to see if the optimization scheme can determine disease parameter

regimes that correspond to the type of dysfunction response. Furthermore, implementation of

the cardiopulmonary receptors and RSA in the coupled cardiovascular is an immediate follow-

up to this work. The cardiopulmonary response to blood volume has been modeled previous [69,

133], but these models are not patient-specific and the cardiopulmonary feedback loops are not

physiologically-motivated (but rather by transfer functions in the frequency domain).
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