
Abstract

HOSSAIN, CHETAK. Quotients Derived from Posets in Algebraic and Topological Combinatorics. (Under the direction of Patricia Hersh and Nathan Reading.)

The sequence OEIS A071356 is the coefficient sequence of an ordinary generating function similar to the Catalan numbers. We show using generating function arguments that the sequence counts several families of combinatorial objects. Specifically, a family of underdiagonal lattice paths, a family of pattern avoiding permutations, and a family of pattern avoiding inversion sequences. Furthermore, we construct bijections between the families. More specifically, we construct two surjective maps from all permutations to the lattice paths, whose fibers are intervals in the weak order and the equivalence classes of an equivalence relation on posets defined using pattern avoidance. In one case, the bottom elements of the intervals are the pattern avoiding permutations in question. In the other case, the reverse Lehmer codes of the top elements of the intervals are the pattern avoiding inversion sequences.

The family of pattern avoiding permutations has the structure of a quotient lattice of the weak order and is the basis for a Hopf algebra. We use a bijection between the permutations and lattice paths to impose a lattice and Hopf algebra structure on the lattice paths. Specifically, we find a description of the cover relations in the lattice of the lattice paths. We give a complete description of the product of the Hopf algebra of lattice paths.

We also consider the type B partition lattice Π_{n}^{B}. The type B Coxeter group S_{n}^{B} acts in a natural way on the order complex $\Delta\left(\Pi_{n}^{B}\right)$. We consider the resulting quotient complex $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$. We show that the resulting quotient complex is not Cohen-Macaulay nor shellable for large enough n. We do this by demonstrating via geometric constructions that the link of a face of the quotient complex has nontrivial homology at a particular rank. We also describe a combinatorial model for the cells of the quotient complex that may be used to eventually give a $C C$-labeling for $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$.

(C) Copyright 2019 by Chetak Hossain

All Rights Reserved

Quotients Derived from Posets in
Algebraic and Topological Combinatorics

by
Chetak Hossain

A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Mathematics

Raleigh, North Carolina
2019

APPROVED BY:

Ricky Liu
Seth Sullivant

Patricia Hersh
Co-chair of Advisory Committee

Nathan Reading
Nathan Reading Co-chair of Advisory Committee

DEDICATION

For Warsong Commander and Ice Block.

BIOGRAPHY

Chetak grew up in Wilmington, Delaware. He earned a B.A. in mathematics and a B.S. in electrical engineering and computer science from the University of California, Berkeley. After spending a semester in Budapest, he started graduate studies in mathematics at North Carolina State University. In his spare time, he enjoys playing Hearthstone, cooking, and sleeping (usually not at the same time).

ACKNOWLEDGEMENTS

Many thanks to Patricia Hersh and Nathan Reading for spending many hours helping this thesis come to life.

I would like to thank Emily Barnard, Emily Meehan, Shira Viel, Shirley Law, Ruth Davidson, and Alex Chandler for the many helpful conversations about math and not math throughout the past several years.

I would like to also thank Lew, Spurr, Ben, Calenmir, parrotparrot, surfSoljah13, Corbin, Mick, tyfoon, thelastchamp, Ace103, StormFever, HonestZaib, Aviously, Bass, Rain, Tris, and Tues for keeping me sane throughout graduate school.

And of course, I would like to thank my parents Murshed Hossain and Sufia Khatun.

TABLE OF CONTENTS

LIST OF FIGURES vi
Chapter 1 Introduction 1
Chapter 2 Combinatorics of the Boolean-Catalan Numbers 4
2.1 Introduction 4
2.2 Background 6
2.2.1 Pattern Avoidance 6
2.2.2 Equivalence Relations on Posets using Moves on the Weak Order 7
2.2.3 Regular Labelings 7
2.2.4 Lattice Paths 8
2.2.5 Inversion Sequences 9
2.3 Enumerative Combinatorics 10
2.3.1 Generating Function for $\mathcal{R S P}{ }_{n}$ 10
2.3.2 Generating Function for Pattern Avoiding Permutations 11
2.3.3 Generating Function for $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$ 16
2.4 Permutations and Dyck paths 19
2.5 Bijective Combinatorics of Pattern Avoiding Permutations 30
2.6 Bijective Combinatorics of Inversion Sequences 37
2.7 Permutation and Dyck Path Statistics 50
Chapter 3 The Hopf Algebra of Restricted Schröder Paths 54
3.1 Introduction 54
3.2 Cover Relations 60
3.3 Product 70
Chapter 4 Towards a Partitioning of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ 72
4.1 Introduction 72
4.2 Background 72
4.2.1 Shellability, Partitioning, Cohen-Macaulay Properties 72
4.2.2 Lexicographic Shellability 74
4.2.3 Type B Specifics 77
4.3 A combinatorial model of the elements of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ 80
4.4 An obstruction to shelling $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ 85
References 91

LIST OF FIGURES

Figure 2.1 An example of a Dyck path 8
Figure 2.2 Building the noncrossing diagram corresponding to 532986741 12
Figure 2.3 An example of one correspondence under the bijection specified in Proposition 2.3.5 13
Figure 2.4 An example of the correspondence given in Proposition 2.3.6 14
Figure 2.5 Left: The inversions of 641532 (with Dyck inversions boxed). Right: τ (641532). 20
Figure 2.6 The edge labeling of a Dyck path 21
Figure 2.7 The base boxes and box labeling of a Dyck path 22
Figure 2.8 A Dyck path $q, G_{\tau}(q)$, linear extensions of $P_{\tau}(q)$ or equivalently, $\tau^{-1}(q)$ 26
Figure 2.9 The principal order ideal of b in $P_{\tau}(q)$. Every east and north step label below the dotted line is an element of the ideal. 28
Figure $2.10 \tau(641532)$ and $\rho(641532)$ 31
Figure $2.11 G_{\rho}(p)$ for the all p that have the inner Dyck path as in the previous figures, and their linear extensions 32
Figure 2.12 A principal order ideal of b in $P_{\tau}(p)$. Every north and east step on the inner Dyck path q below the dotted lines lies in the ideal. 34
Figure 2.13 The $N E E^{+}$, atomic, and decreasing elements of 641532 and $\tau(641532)$ 39
Figure $2.14 \tau(641532)$ and $\omega(641532)$, note that $\left(b_{0}, a_{1}, b_{1}, a_{2}, b_{3}\right)=(1,2,4,5,6)$, $\gamma(4)=6, \gamma(1)=6$ 40
Figure $2.15 G_{\omega}(p)$ for the all p that have the inner Dyck path as in the previous figures, and their linear extensions 42
Figure 2.16 A list describing at least one witness type in all sixteen cases 46
Figure 3.1 Unital associative algebra commutative diagrams 56
Figure 3.2 Counital coassociative algebra commutative diagrams 56
Figure 3.3 Bialgebra commutative diagrams 56
Figure 3.4 Hopf algebra commutative diagram 57
Figure 3.5 The elements covered by $\tau(146532)$ in the Tamari lattice, $\tau(146523) \lessdot$ $\tau(146532), \tau(146352) \lessdot \tau(146532), \tau(145632) \lessdot \tau(146532)$ 59
Figure 3.6 A triangle shift cover $\rho(643215) \lessdot \rho(643251)$, a triangle neutral cover$\rho(634251) \lessdot \rho(643251)$, a triangle create cover $\rho(642351) \lessdot \rho(643251)$,and a triangle destroy cover $\rho(463251) \lessdot \rho(643251)$. Note that the$N N$ factor labeled with $(6,5)$ is not stable, so does not correspondwith a cover.62
Figure 4.1 The faces in the closure of a facet of $\Delta\left(S_{4}^{B}\right) / \Pi_{4}^{B}$ in the tree model convention. 81

Figure 4.2 The faces in the closure of a facet of $\Delta\left(S_{4}^{B}\right) / \Pi_{4}^{B}$ in the ball and splitter model convention.82

Figure 4.3 The link of the chain of Example 4.4.1. 86
Figure 4.4 A perspective of the link of the face of Example 4.4 .1 where examine the half of S_{2} with center given by vertex $\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 3\right|_{7} 4\right|_{7} 5\right|_{7} 6\right|_{7} 78 . . .87$
Figure 4.5 A perspective of the link of the face of Example 4.4.1 where we look at the half of S_{2} with center given by vertex $\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 34\right|_{7} 5\right|_{7} 6\right|_{7} 7\right|_{7} 8.88$
Figure 4.6 The chain orbit of the action of S_{8}^{B} on the link of the face from Example 4.4.1. Close analysis of the picture reveals the chain orbit is homeomorphic to $\mathbb{R P}_{2}$.89

Chapter 1

Introduction

In Chapter 2 of this thesis, we will give bijections between three families of combinatorial objects. Let us now define these objects before further elaborating our results.

Definition 1.0.1. A permutation, or pattern, π is said to be contained in another permutation σ, if σ has a subsequence whose terms are order isomorphic to (i.e. have the same relative ordering as) π. If σ does not contain π, we say that σ avoids π.

Definition 1.0.2. A vincular pattern is a pattern with certain entries underlined as a way of specifying adjacency conditions. In this thesis, we will consider the special vincular patterns that have exactly one pair of adjacent entries underlined. Given a pattern $\pi=\pi_{1} \cdots \pi_{n}$, suppose that $\pi_{i} \pi_{i+1}$ is underlined. Suppose that σ contains a the pattern π with instance $\sigma_{j_{1}} \sigma_{j_{2}} \cdots \sigma_{j_{n}}$. We say that σ contains the vincular pattern π if $j_{i}+1=j_{i+1}$.

Definition 1.0.3. A Dyck path of semilength n is a lattice path from (0,0) to (n, n) that stays on or below the line segment from $(0,0)$ to (n, n) and consists of north and east steps of length 1 . Let \mathcal{D}_{n} be defined as the set of all Dyck paths of semilength n.

Definition 1.0.4. A Schröder path of semilength n is a lattice path from $(0,0)$ to (n, n) that stays on or below the line segment from $(0,0)$ to (n, n) and consists of north and east steps of length 1 and diagonal northeast (length $\sqrt{2}$) steps . Let $\mathcal{S P}{ }_{n}$ be defined as the set of Schröder paths of semilength n.

Definition 1.0.5. Let $\mathcal{R S P}{ }_{n}$ be the set of Schröder paths of semilength n with no diagonal steps on the line segment from $(0,0)$ to (n, n), and such that every diagonal step is followed by an east step. We call these restricted Schröder paths.

Definition 1.0.6. The set of inversion sequences of length $n \geq 0$ is

$$
I_{n}=\left\{\left(e_{1}, e_{2}, \cdots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leq e_{i} \leq i-1\right\} .
$$

Definition 1.0.7. A pattern in an inversion sequence is a subsequence of length m that satisfies $m-1$ binary relations. The binary relations can come from the set $\{<\rangle,, \leq, \geq$ $,=, \neq\}$. We will consider inversion sequences that avoid certain patterns and we will use the following notation. Given one binary relation ρ, one can define $I_{n}\left(e_{i} \rho e_{j}\right)$ as the set of inversion sequences of length n that have no subsequence of the form $e_{i} \rho e_{j}$ for all $1 \leq i<j \leq n$. Given two binary relations, ρ_{1}, ρ_{2}, one can define $I_{n}\left(e_{i} \rho_{1} e_{j} \rho_{2} e_{k}\right)$ as the set of inversion sequences of length n that have no subsequence of the form (e_{i}, e_{j}, e_{k}) satisfying $e_{i} \rho_{1} e_{j}$ and $e_{j} \rho_{2} e_{k}$ for all $1 \leq i<j<k \leq n$.

In Chapter 2, we consider the following three families of combinatorial objects. The first family is the restricted Schröder paths as defined above. The second family is the set $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{41} 23, \underline{41} 32)$ of permutations avoiding the patterns $2 \underline{41} 3,3 \underline{412}, \underline{4123}$, and $\underline{4132}$. The third family is the set of pattern avoiding inversion sequences $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$. We show that these families are all counted by the sequence OEIS A071356 in Section 2.3. Furthermore, we develop an explicit bijection between the first and second families at the end of Section 2.5. We develop an explicit bijection between the first and third families at the end of Section 2.6.

In Chapter 3, we use the bijection between the first and second families to impose algebraic structures on the set of restricted Schröder paths. The symmetric group is known to have a lattice structure called the weak order. In [26], Reading shows that the elements of $S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{4132})$ are special representatives of the congruence classes of a quotient lattice of the weak order. The bijection allows us to transfer a lattice structure onto the set of restricted Schröder paths. In Section 3.2 we explicitly describe the cover relations in this lattice.

For a fixed field \mathbb{K}, let the permutations of S_{n} serve as the basis for an n !-dimensional vector space, which we denote as $\mathbb{K}\left[S_{n}\right]$. The graded vector space $\oplus_{n \geq 0} \mathbb{K}\left[S_{n}\right]$ has a combinatorial Hopf algebra structure known as the Malvenuto-Reutenauer Hopf algebra of permutations (MR). Let $\mathrm{Av}_{n}=S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{4132})$, and let $\oplus_{n \geq 0} \mathbb{K}\left[\mathrm{Av}_{n}\right]$ be the vector space with basis $\cup_{n=0}^{\infty} A v_{n}$. In [26, Section 9], Reading shows that $\oplus_{n \geq 0} \mathbb{K}\left[\mathrm{Av}_{n}\right]$ embeds as a sub-Hopf algebra of MR. We use the bijection between the first and second families to impose a Hopf algebra structure on the set of restricted Schröder paths.

Specifically, in Section 3.3, we give an intrinsic description of the product.
In Chapter 4, we undertake a study of a family of quotient cell complexes of poset order complexes. Specifically, we consider the quotient complex obtained from the order complex of the type B_{n} partition lattice by letting the cells be the orbits of a group action of the hyperoctahedral group on poset chains, namely on faces of the order complex. We prove that the resulting quotient complex for $n \geq 8$ is not shellable nor homotopy CohenMacaulay in Section 4.4. To do this we use a geometric construction involving a certain model of the chain orbits that make up the quotient complex. In [17], Hultman develops a model using labeled trees. In Section 4.3, we develop a different model using balls and labeled splitters and show how it corresponds to Hultman's model. This new model is maybe convenient for potential future work on giving a partitioning of the quotient complex.

Chapter 2

Combinatorics of the Boolean-Catalan Numbers

2.1 Introduction

The sequence OEIS A071356 has been associated with many families of combinatorial objects. These include trees [1], underdiagonal lattice paths [1], pattern avoiding permutations [26], inversion sequences [22], outerplanar maps [13], and preimages of pattern avoiding permutations under the classic stack sorting algorithm [12]. Here we focus on Schröder paths with the restriction that every diagonal step is followed by an east step $\left(\mathcal{R S} \mathcal{P}_{n}\right)$, pattern avoiding permutations avoiding four vincular patterns $\left(\operatorname{Av}_{n}\right)$, and pattern avoiding inversion sequences that are almost unimodular $\left(I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)\right)$.

The sequence OEIS A071356 is the coefficient sequence of an ordinary generating function similar to the Catalan numbers. Specifically, the generating function is

$$
\begin{equation*}
A(x)=\frac{1+2 x-\sqrt{1-4 x-4 x^{2}}}{4 x} . \tag{2.1}
\end{equation*}
$$

We propose the name Boolean-Catalan numbers for the coefficients of the ordinary generating function $A(x)$ for two related reasons. One reason is that $2 A(x)+2 x+1$ is equal to $\sum_{s=0}^{\infty} c_{s} x^{s}(x+1)^{s+1}$ for the Catalan numbers c_{s}. The second reason is that each restricted Schröder path counted by the sequence has a fingerprint Dyck path, and the number of restricted Schröder paths that have the same fixed fingerprint Dyck path is 2^{k} for some integer k. In Section 2.3, we give proofs that three families of combinatorial
objects are counted by the Boolean-Catalan numbers. In Section 2.3.1, we give a direct proof of a fact noted by Aguiar and Moreira that Equation (2.1) is the generating function for certain underdiagonal lattice paths. In Section 2.3.2, we prove that Equation (2.1) is the generating function for the family of pattern avoiding permutations described above. In Section 2.3.3, we prove that Equation (2.1) is the generating function for the family of pattern avoiding inversion sequences described above, answering a question of Martinez and Savage [22].

In Section 2.4, we construct a surjective map τ from S_{n} to all Dyck paths whose fibers agree with a map from [8]. Moreover, the fibers of τ are intervals in the weak order and coincide with a lattice congruence on S_{n}. In Section 2.5, we construct a surjective map ρ from S_{n} to restricted Schröder paths whose fibers are intervals in the weak order and coincide with a different lattice congruence on S_{n}. When ρ is restricted to the bottom or top elements of the interval, we get a bijection between the pattern avoiding permutations and restricted Schröder paths.

In Section 2.6, we construct a different surjective map ω from S_{n} to the restricted Schröder paths. We prove that the fibers of ω are intervals in the weak order. While the fibers of ω do not coincide with a lattice congruence on the weak order, they do refine the fibers of τ. We show that the reverse Lehmer codes of the top elements of the intervals are elements of $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$. So ω restricted to the top elements is the desired bijection.

In Section 2.7, we rephrase the results of the previous sections using the language of permutation statistics.

Sections 2.4, 2.5, and 2.6 follow the same general strategy. We start with a map from all permutations to lattice paths (Dyck paths for Section 2.4 and restricted Schröder paths for Sections 2.5, and 2.6) .

1. For each lattice path in the codomain of the map, construct a directed graph.
2. Show that the directed graph is acyclic.
3. Consider the poset corresponding to the transitive closure of the acyclic graph.
4. Show that the linear extensions of the poset are precisely the fiber of the lattice path. (In particular, this shows the map is surjective)
5. Show that each poset is regular labeled (See Section 2.2.3 for details) to conclude that the fibers are intervals on the weak order.
6. Show that the fibers are equivalence classes of an equivalence relation on the weak order based on pattern avoidance.
7. Use the equivalence relation to identify the top and bottom elements of each interval as a pattern avoiding permutation.
8. Show that the number pattern avoiding permutations is the same as the number of lattice paths.
9. Conclude that the map restricted to the top or bottom elements gives a bijection from permutations to lattice paths.

2.2 Background

2.2.1 Pattern Avoidance

Definition 2.2.1. A permutation, or pattern, π is said to be contained in another permutation σ, if σ has a subsequence whose terms are order isomorphic to (i.e. have the same relative ordering as) π. If σ does not contain π, we say that σ avoids π.

Example 2.2.2. The permutation 314592687 contains 1423 because the subsequence 4968 (among others) is ordered in the same way as 1423 . The permutation 314592687 avoids 3241 since it has no subsequence ordered in the same way as 3241 .

Definition 2.2.3. A vincular pattern specifies adjacency conditions. A vincular pattern is written as a permutation where terms that must be adjacent are underlined.

Example 2.2.4. The permutation 314265 contains two occurrences of $2 \underline{314}$ (3426 and 3425) and a single occurrence of $2 \underline{314}$ (3426), but avoids $\underline{23} \underline{14}$ (3425 and 3425 are nonexamples because the 3 and 4 are not adjacent in 314265).

Definition 2.2.5. The weak order on S_{n} is the partial order on permutations where $x \leq y$ if and only if the set of inversions of x is a subset of the inversions of y. Cover relations in the weak order are the relations $x \lessdot y$ such that $x=x_{1} \cdots x_{n}$ and $y=x_{1} \cdots x_{j+1} x_{j} \cdots x_{n}$ and $x_{j+1}>x_{j}$ (That is, y is the same as x except for introducing exactly one more inversion via transposing adjacent terms).

2.2.2 Equivalence Relations on Posets using Moves on the Weak Order

Definition 2.2.6. Fix a vincular pattern π with exactly one adjacency condition on $\pi_{j} \pi_{j+1}$ where $\pi_{j}<\pi_{j+1}$. Let the partner vincular pattern of π, π^{\prime} be the same pattern as π but with π_{j} and π_{j+1} swapped. Let $\sigma \lessdot \sigma^{\prime}$ or $\sigma \gtrdot \sigma^{\prime}$ in the weak order with $\sigma^{\prime}=$ $\sigma_{1} \cdots \sigma_{i} \sigma_{i+1}, \cdots \sigma_{n}$. We say we apply a $\pi \rightarrow \pi^{\prime}$ move on σ at π if $\sigma_{i}=\pi_{j}$ and $\sigma_{i+1}=\pi_{j+1}$ for a pattern π in σ and a pattern π^{\prime} in σ^{\prime}.

Definition 2.2.7. Let Θ_{π} be an equivalence relation on S_{n} defined as follows. Two permutations $x, y \in S_{n}$ are equivalent if and only if there exists a sequence of $\pi \rightarrow \pi^{\prime}$ and $\pi^{\prime} \rightarrow \pi$ moves that transform x into y.

Example 2.2.8. Consider $\Theta_{\underline{\underline{132}}}$. Then $341265 \equiv 134625$ since $341265 \equiv \mathbf{3 1 4 2 6 5} \equiv 134265 \equiv$ 134625.

Definition 2.2.9. Let $\Theta_{\pi_{1}, \cdots, \pi_{k}}$ be the equivalence relation on S_{n} where two permutations are equivalent if we can perform a sequence of $\pi_{i}^{\prime} \rightarrow \pi_{i}$ or $\pi_{i} \rightarrow \pi_{i}^{\prime}$ moves for any choices of $1 \leq i \leq k$. (The index i is allowed to vary within the sequence).

2.2.3 Regular Labelings

Many posets in this paper have base set $[n]=\{1,2, \cdots, n\}$. To minimize confusion, < is the standard total order on the integers and < will refer to partial orders.

Definition 2.2.10. Suppose that $P=([n],<)$ is a poset. P is regularly labeled if for all $x<z$ and $y \in P$, if $x<y<z$ or $z<y<x$, then $y<z$ or $x<y$.

Definition 2.2.11. Let $\mathcal{L}(P)$ be the set of linear extensions of a poset P.
The following is a rephrasing of a result of Björner and Wachs [7, Theorem 6.8].
Theorem 2.2.12. Let $U \subseteq S_{n}$ and $|U| \geq 1$. The following conditions are equivalent:

- U is an interval in the weak order.
- $U=\mathcal{L}(P)$ for some regularly labeled poset P.

Figure 2.1: An example of a Dyck path

2.2.4 Lattice Paths

Definition 2.2.13. Let \mathcal{D}_{n} be the set of Dyck paths of semilength n, that is, underdiagonal paths from $(0,0)$ to (n, n) that use north and east steps of length 1 .

Definition 2.2.14. Let $\mathcal{S P}{ }_{n}$ be the set of Schröder paths of semilength n, that is, underdiagonal paths from $(0,0)$ to (n, n) that use north and east steps of length 1 and and diagonal northeast (length $\sqrt{2}$) steps.

Definition 2.2.15. Let $\mathcal{R S P}{ }_{n}$ be the set of Schröder paths of semilength n with no diagonal steps on the main diagonal, and such that every diagonal step is followed by an east step.

Definition 2.2.16. Each of these lattice paths can be transformed into a word using the alphabet $\{N, E, D\}$ where we record the type of each step as we transverse the path from $(0,0)$ to (n, n).

Definition 2.2.17. A factor of a lattice path is a subword of adjacent steps that appears in the word of the path. A $N E E$ factor of a lattice path is centered at column i, if the left east step of the factor lies in column i.

Example 2.2.18. The word for the lattice path in Figure 2.1 is ENEEENEENNNN. It has $N E E$ factors centered at columns 2 and 5 .

Definition 2.2.19. For fixed $p \in \mathcal{R S} \mathcal{P}_{n}$, we define the inner Dyck path of p to be the following Dyck path. We start with the word for p and transform each $D E$ factor into a $N E E$ factor. The resulting word will correspond to the desired Dyck path.

2.2.5 Inversion Sequences

Recent progress has been made in problems in permutation patterns by analyzing the inversion sequences of permutations [11, 21].

Definition 2.2.20. The set of inversion sequences of length $n \geq 0$ is

$$
I_{n}=\left\{\left(e_{1}, e_{2}, \cdots, e_{n}\right) \in \mathbb{Z}^{n} \mid 0 \leq e_{i} \leq i-1\right\} .
$$

Definition 2.2.21. Inversion sequences are naturally in bijection with permutations. One bijection is to use the tuple $e_{i}=\mid\left\{j \mid j<i\right.$ and $\left.\pi_{j}>\pi_{i}\right\} \mid$, which is called the inversion code of a permutation. Another bijection is to take the tuple $e_{i}=\mid\left\{j \mid j>i\right.$ and $\left.\pi_{j}<\pi_{i}\right\} \mid$ and reverse it, which is called the reverse Lehmer code of a permutation.

Definition 2.2.22. Patterns can be defined on inversion sequences using binary relations. The binary relations can come from the set $\{<,>, \leq, \geq,=, \neq\}$. A pattern in an inversion sequence is a subsequence of length m that satisfies $m-1$ binary relations. Given one binary relation ρ, one can define $I_{n}\left(e_{i} \rho e_{j}\right)$ as the set of inversion sequences of length n that have no subsequence of the form $e_{i} \rho e_{j}$ for all $1 \leq i<j \leq n$. Given two binary relations, ρ_{1}, ρ_{2}, one can define $I_{n}\left(e_{i} \rho_{1} e_{j}, e_{j} \rho_{2} e_{k}\right)$ as the set of inversion sequences of length n that have no subsequence of the form $\left(e_{i}, e_{j}, e_{k}\right)$ satisfying $e_{i} \rho_{1} e_{j}$ and $e_{j} \rho_{2} e_{k}$ for all $1 \leq i<j<k \leq n$.

Example 2.2.23. In the inversion sequence ($0,1,2,0,3,5$), the subsequence $(2,0,5)$ (among others) is an instance of the pattern $e_{i}>e_{j} \leq e_{k}$. The inversion sequence $(0,0,2,3,3,5)$ avoids the pattern $e_{i}>e_{j} \leq e_{k}$ since no subsequence of the tuple has entries that satisfy the desired inequalities.

The main families of pattern avoiding inversion sequences in this paper are the following.
Definition 2.2.24. $I_{n}\left(e_{i}>e_{j}\right)$ is the set of weakly increasing inversion sequences of length n.

Definition 2.2.25. $I_{n}\left(e_{i}>e_{j}, e_{j} \leq e_{k}\right)$, (which we abbreviate $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$) is the set of inversion sequences of length n that avoid the pattern $e_{i}>e_{j} \leq e_{k}$.

2.3 Enumerative Combinatorics

2.3.1 Generating Function for $\mathcal{R S P}{ }_{n}$

The set $\mathcal{R S P}{ }_{n}$ is considered by Aguiar and Moreira in [1]. They find that elements of $\mathcal{R S P}{ }_{n}$ are in bijection with rooted ordered trees with $n+1$ leaves such that each internal node has at least two children and only the left and right children of a node are allowed to be leaves [1, Appendix A]. Let us call such trees $A M$-trees. Aguiar noted that Equation (2.1) is the ordinary generating function for $A M$-trees. We now give a generating function proof of this fact.

Proposition 2.3.1. Equation (2.1) is the ordinary generating function for AM-trees.
Proof. Let s_{n} be the number of $A M$-trees with $n+1$ leaves. We desire to find $S(x)=$ $\sum_{n=0}^{\infty} s_{n} x^{n}$. We note that $x S(x)$ is the generating function for $A M$-trees weighted by the number of leaves. Furthermore, an $A M$-tree with at least two leaves has a composite structure. Given an $A M$-tree such that the root has degree d, we can create a d-tuple of $A M$-trees where the i th tree in the tuple is the subtree rooted by the i th child of the root of the original tree. The first and last elements of the tuple can be the one-element tree, while all other entries can be arbitrary $A M$-trees with more than one node. Let $S_{d}(x)$ be the generating function for $A M$-trees whose root has degree d.

$$
\begin{aligned}
x S(x) & =\sum_{d=0}^{\infty} S_{d}(x) \\
& =S_{0}(x)+S_{1}(x)+\sum_{i=2}^{\infty} S_{d}(x) \\
& =x+0+\sum_{d=2}^{\infty}(x S(x))[x(S(x)-1)]^{d-2}(x S(x)) \\
& =x+(x S(x))^{2} \sum_{j=0}^{\infty}[x(S(x)-1)]^{j} \\
& =x+\frac{(x S(x))^{2}}{1-[x(S(x)-1)]}
\end{aligned}
$$

Solving for $S(x)$ and noting that $x S(x)$ should be 0 at $x=0$, we find that:

$$
S(x)=\frac{1+2 x-\sqrt{1-4 x-4 x^{2}}}{4 x}
$$

By the bijection given in [1, Appendix A] we can produce a restricted Schröder path from any $A M$-tree. Start with a $A M$-tree and do a depth first search of the tree. Produce a word during the depth first search, by recording E for a left child, D for an internal child, and N for a right child. The resulting word will correspond with a restricted Schröder path [1]. We conclude that Equation (2.1) is the ordinary generating function for $\mathcal{R S P}{ }_{n}$. Corollary 2.3.2. The ordinary generating function for $\mathcal{R S P}{ }_{n}$ is Equation (2.1).

For another proof of 2.3.2, see Corollary 2.7.4.

2.3.2 Generating Function for Pattern Avoiding Permutations

Consider the set $S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{41} 32)=\mathrm{Av}_{n}$. We show in this section that the coefficient sequence $\left|A v_{n}\right|$ has ordinary generating function given by Equation (2.1). To prove this we make use of certain noncrossing arc diagrams that are in bijection with permutations.

Definition 2.3.3. A noncrossing (arc) diagram is a certain configuration of points and arcs. Start with n distinct points on a vertical line. Label them with the points [n] with 1 at the bottom. Each diagram consists of some (or no) curves called arcs connecting the points. Each arc must satisfy the following requirements.

1. The arc connects a point p to a strictly higher point q, moving monotone upwards from p to q and passing to the left or to the right of each point between p and q. The arc may pass to the left of some points and to the right of others.
2. No two arcs intersect, except possibly at their endpoints.
3. No two arcs share the same upper endpoint or the same lower endpoint.

Construction 2.3.4. Permutations are in bijection [27, Theorem 3.1] with noncrossing diagrams. The bijection from permutations to noncrossing diagrams is given by the following construction. For a permutation $x \in S_{n}$, start by plotting the points $\left(i, x_{i}\right)$ in \mathbb{R}^{2} for all $1 \leq i \leq n$. Draw a line between $\left(i, x_{i}\right)$ and $\left(i+1, x_{i+1}\right)$ if $x_{i}>x_{i+1}$ for all $1 \leq i<n$. Homotope the lines and points so that the points form a vertical line. By definition, if the permutation has k descents, than the noncrossing diagram will have k arcs. See Figure 2.2 for an example.

Figure 2.2: Building the noncrossing diagram corresponding to 532986741

Let A_{n} be the set of noncrossing diagrams corresponding to Av_{n} and $a_{n}=\left|\operatorname{Av}_{n}\right|=\left|A_{n}\right|$. Converting the forbidden patterns into forbidden subdiagrams, we see that A_{n} is the set of noncrossing diagrams such that any arc that passes two or more vertices must pass to the right of all of them. Let B_{n} be the subset of A_{n} such that 3 and 2 are endpoints of an arc and 4 and 1 are endpoints of an arc and $b_{n}=\left|B_{n}\right|$. Let $C_{n, k}$ be the subset of A_{n} such that k and 1 are endpoints of an arc for $n \geq k>1$ and $\left|C_{n, k}\right|=c_{n, k}$. Let $C_{n, 1}=\left\{x \in A_{n} \mid x(1)=1\right\}$.

Proposition 2.3.5.

$$
c_{n, k}=\left\{\begin{array}{ccc}
a_{n-1} & \text { if } & k \leq 3 \\
a_{k-2} \cdot b_{n-(k-4)} & \text { if } & k \geq 4
\end{array}\right.
$$

Proof. Let $\alpha_{n, 1}: C_{n, 1} \rightarrow \operatorname{Av}_{n-1}$ be the map that takes a permutation in $C_{n, 1}$, removes the first entry and subtracts 1 from the remaining entries. Let $\beta_{n, 1}: \mathrm{Av}_{n-1} \rightarrow C_{n, 1}$ be the map that takes a permutation y in Av_{n-1} adds 1 to every entry and inserts a 1 at the beginning. Let $\alpha_{n, 2}: C_{n, 2} \rightarrow \mathrm{Av}_{n-1}$ be the map that takes a permutation in $C_{n, 2}$, removes the 1 and subtracts 1 from the remaining entries. Let $\beta_{n, 2}: \mathrm{Av}_{n-1} \rightarrow C_{n, 2}$ be the map that takes a permutation y in Av_{n-1} adds 1 to every entry and inserts a 1 immediately after the new 2. Let $\alpha_{n, 3}: C_{n, 3} \rightarrow \mathrm{Av}_{n-1}$ be the map that takes a permutation in $C_{n, 3}$, removes the 1 and subtracts 1 from the remaining entries. Let $\beta_{n, 3}: \operatorname{Av}_{n-1} \rightarrow C_{n, 3}$ be the map that takes a permutation y in Av_{n-1} adds 1 to every entry and inserts a 1 immediately after the new 3. The map $\alpha_{n, k} \circ \beta_{n, k}$ is the identity map on Av_{n-1} and $\beta_{n, k} \circ \alpha_{n, k}$ is the identity map on $C_{n, k}$ for $1 \leq k \leq 3$. We conclude that $\left|C_{n, k}\right|=\left|\mathrm{Av}_{n-1}\right|$ for $1 \leq k \leq 3$.

Now suppose $k \geq 4$. We consider the following two maps. We define a map $\alpha_{n, k}$: $C_{n, k} \rightarrow A_{k-2} \times B_{n-k+4}$. Given an element z of $C_{n, k}$, let x be the subdiagram of z induced on the points 2 to $k-1$. Let y be the noncrossing diagram obtained by collapsing x to

Figure 2.3: An example of one correspondence under the bijection specified in Proposition 2.3.5.
two adjacent points with an arc between them. Define $\alpha_{n, k}(z)$ to be (x, y). See Figure 2.3 for an example. Let $\beta_{n, k}: A_{k-2} \times B_{n-k+4} \rightarrow C_{n, k}$ be the map that takes a tuple (x, y) and maps to the following noncrossing diagram z. The noncrossing diagram z is built by starting with y, deleting the arc from 2 to 3 and those points, and placing the arcs of x onto $k-2$ new points replacing the deleted points. We find that $\alpha_{n, k} \circ \beta_{n, k}$ is the identity mapping on $A v_{k-2} \times B_{n-k-4}$ and $\beta_{n, k} \circ \alpha_{n, k}$ is the identity mapping on $C_{n, k}$. Thus, $\left|C_{n, k}\right|=\left|A_{k-2}\right| \cdot\left|B_{n-k-4}\right|$ for $n \geq k \geq 4$.

Let $D_{n, k}$ be the subset of B_{n} such that 5 and 3 are endpoints of an arc and k and 4 are endpoints of an arc for $n \geq k \geq 5$. Let $D_{n, 4}$ be the subset of B_{n} such that 5 and 3 are endpoints of an arc and 4 is not the bottom endpoint of any arc for $n \geq 5$. Let $D_{n, 3}$ be the subset of B_{n} such that no arc connects 5 to 3 for $n \geq 4$. Let $\left|D_{n, k}\right|=d_{n, k}$.

Proposition 2.3.6.

$$
d_{n, k}=\left\{\begin{array}{cc}
a_{n-3} & \text { if } \quad k=3 \\
a_{n-4} & \text { if } \quad k=4 \\
0 & \text { if } \quad k=5 \\
a_{k-5} \cdot b_{n-(k-4)} & \text { if } \quad k \geq 6
\end{array}\right.
$$

Proof. Given $x \in D_{n, 3}$, remove the arcs below 4 and obtain a noncrossing diagram corresponding to an avoider on $n-3$ dots. Given $x \in D_{n, 4}$, remove the arcs below 5 , and obtain a noncrossing diagram corresponding to an avoider on $n-4$ dots. The set $D_{n, 5}$ is empty, because no two arcs can share the same upper endpoint by definition. We now consider

$711986532121041 \longleftrightarrow(35421,532641)$
Figure 2.4: An example of the correspondence given in Proposition 2.3.6
$D_{n, k}$ for $n \geq k \geq 6$. We consider the following two maps. Let $\alpha_{n, k}: D_{n, k} \rightarrow A_{k-5} \times B_{n-(k-4)}$ be defined as follows. Given $z \in D_{n, k}$, let x be the subdiagram of z induced on the points 5 to $k-1$. Let y be the noncrossing diagram obtained by collapsing x to two adjacent points with an arc between them and deleting the arcs for 53, 41, 32 and deleting the bottom 3 points. Then $\alpha_{n, k}$ sends z to (x, y). See Figure 2.4 for an example. Let $\beta_{n, k}: A_{k-5} \times B_{n-k+4} \rightarrow D_{n, k}$ be defined as the following map. For fixed $(x, y) \in A_{k-5} \times B_{n-k+4}$, we build a noncrossing diagram $z \in D_{n, k}$ as follows. We begin with y, delete the arc from 2 to 3 , replace these two points with $k-5$ new points, place x onto the $k-5$ points, add 3 points below, and add arcs for $53,41,32$. We find that $\alpha_{n, k} \circ \beta_{n, k}$ is the identity map on $\operatorname{Av}_{k-5} \times B_{n-k-4}$ and $\beta_{n, k} \circ \alpha_{n, k}$ is the identity map on $D_{n, k}$. Thus, $\left|D_{n, k}\right|=\left|A_{k-5}\right| \cdot\left|B_{n-k-4}\right|$ for $n \geq k \geq 6$.

Proposition 2.3.7. The ordinary generating function for $S_{n}(2 \underline{14} 3,3 \underline{142}, \underline{14} 23, \underline{14} 32)$ is Equation (2.1).

Proof. As before, let $a_{n}=\left|\operatorname{Av}_{n}\right|$. Write $A(x)$ for $\sum_{n=0}^{\infty} a_{n} x^{n}$. By Proposition 2.3.5,

$$
a_{n}=\sum_{k=1}^{n} c_{n, k}=3 a_{n-1}+\sum_{k=4}^{n} a_{k-2} b_{n-k+4}=3 a_{n-1}+\sum_{k=2}^{n-2} a_{k} b_{n+2-k} .
$$

Thus,

$$
\begin{aligned}
\sum_{n=4}^{\infty} a_{n} x^{n} & =3 x \sum_{n=4}^{\infty} a_{n-1} x^{n-1}+x^{-2} \sum_{n=4}^{\infty} \sum_{k=2}^{n-2} a_{k} x^{k} b_{n+2-k} x^{n+2-k} \\
& =3 x \sum_{n=3}^{\infty} a_{n} x^{n}+x^{-2} \sum_{n=4}^{\infty} \sum_{k+j=n+2} a_{k} x^{k} b_{j} x^{j} \\
& =3 x \sum_{n=3}^{\infty} a_{n} x^{n}+x^{-2} \sum_{k=2}^{\infty} a_{k} x^{k} \sum_{j=4}^{\infty} b_{j} x^{j}
\end{aligned}
$$

Let $B(x)=\sum_{n=4}^{\infty} b_{n} x^{n}$. Since $a_{0}=1, a_{1}=1, a_{2}=2, a_{3}=6$, our calculation above becomes:

$$
A(x)-1-x-2 x^{2}-6 x^{3}=3 x\left(A(x)-1-x-2 x^{2}\right)+x^{-2}(A(x)-1-x) B(x)
$$

We solve for $B(x)$ to obtain

$$
\begin{equation*}
B(x)=\frac{x^{2} A(x)-3 x^{3} A(x)-x^{2}+2 x^{3}+x^{4}}{A(x)-1-x} \tag{2.2}
\end{equation*}
$$

By Proposition 2.3.6, we find that:

$$
b_{n}=\sum_{k=3}^{n} d_{n, k}=\left\{\begin{array}{ccc}
a_{1} & \text { if } n=4 \\
a_{2}+a_{1} & \text { if } n=5 \\
a_{n-3}+a_{n-4}+\sum_{k=6}^{n} a_{k-5} b_{n-(k-4)} & \text { if } & n \geq 6
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
\sum_{n=4}^{\infty} b_{n} x^{n} & =x^{3} \sum_{n=4}^{\infty} a_{n-3} x^{n-3}+x^{4} \sum_{n=5}^{\infty} a_{n-4} x^{n-4}+x \sum_{n=6}^{\infty} \sum_{k=6}^{n} a_{k-5} x^{k-5} b_{n-(k-4)} x^{n-(k-4)} \\
& =x^{3} \sum_{n=1}^{\infty} a_{n} x^{n}+x^{4} \sum_{n=1}^{\infty} a_{n} x^{n}+x \sum_{n=6}^{\infty} \sum_{i+j=n-1} a_{i} x^{i} b_{j} x^{j} \\
& =\left(x^{3}+x^{4}\right) \sum_{n=1}^{\infty} a_{n} x^{n}+x \sum_{i=1}^{\infty} a_{i} x^{i} \sum_{j=4}^{\infty} b_{j} x^{j}
\end{aligned}
$$

We have shown that

$$
B(x)=\left(x^{3}+x^{4}\right)(A(x)-1)+x(A(x)-1) B(x)
$$

and we solve to obtain

$$
B(x)=\frac{\left(x^{3}+x^{4}\right)(A(x)-1)}{1-x(A(x)-1)}
$$

By equating this to (2.2), and solving for $A(x)$, we obtain:

$$
A(x)=\frac{1+2 x \pm \sqrt{1-4 x-4 x^{2}}}{4 x}
$$

Given that $4 x(A(x)-1)$ should equal 0 when $x=0$, we choose the minus sign.

2.3.3 Generating Function for $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$

We now show that $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$ has ordinary generating function given by Equation (2.1).

Definition 2.3.8. Let $C_{s}=I_{s}\left(e_{i}>e_{j}\right) \subseteq I_{s}$ be weakly increasing inversion sequences, i.e of the form:

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{s}
$$

for $s \geq 1$ such that $0 \leq e_{i} \leq i-1$.

It is not hard to see that the reverse Lehmer codes of weakly increasing inversion sequences are elements of $S_{n}(132)$, thus are counted by the Catalan numbers c_{n} (Using the convention $c_{0}=c_{1}=1, c_{2}=2$).

Definition 2.3.9. Let $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right) \subseteq I_{n}$ be the inversion sequences of the following form for some $t \geq 1$.

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{t}>e_{t+1}>\cdots>e_{n}
$$

Definition 2.3.10. For fixed $\left(e_{1}, \cdots, e_{n}\right) \in I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$, let its peak be t as in the previous definition. That is, the peak is the index where the sequence switches from weakly increasing to strictly decreasing.

Lemma 2.3.11. For fixed $\left(e_{1}, \cdots, e_{n}\right) \in I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$, if $n \geq 2$, then its peak t satisfies $t \geq 2$.

Proof. If $t=1$, then $0=e_{1}>e_{2}$, which is impossible.

For $s, k \geq 1$, let

$$
I_{s, k}=\left\{\left(\left(e_{1}, \ldots, e_{s}\right),\left(e_{s+1}, \ldots, e_{s+k}\right)\right) \mid\left(e_{1}, \ldots, e_{s}\right) \in C_{s}, s \geq e_{s+1}>\ldots>e_{s+k}\right\}
$$

Let $I_{s, 0}=C_{s}$.
Note that if $\left(\left(e_{1}, \cdots, e_{s}\right),\left(e_{s+1}, \cdots, e_{s+k}\right)\right) \in I_{s, k}$, then $\left(e_{1}, \cdots, e_{s+k}\right) \in I_{s+k}$.

Let

$$
I_{s, k}^{>}=\left\{\left(\left(e_{1}, \ldots, e_{s}\right),\left(e_{s+1}, \ldots, e_{s+k}\right)\right) \in I_{s, k} \mid e_{s}>e_{s+1}\right\}
$$

for $s \geq 1$ and $k \geq 1$. Let $I_{s, 0}^{>}=C_{s}$.
Let

$$
I_{s, k}^{\leq}=\left\{\left(\left(e_{1}, \ldots, e_{s}\right),\left(e_{s+1}, \ldots, e_{s+k}\right)\right) \in I_{s, k} \mid e_{s} \leq e_{s+1}\right\}
$$

for $s \geq 1$ and $k \geq 1$.
Lemma 2.3.12. $I_{s, k}$ is the disjoint union of $I_{s, k}^{>}$and $I_{s, k}^{\leq}$for $s \geq 2$ and $k \geq 1$.
We can count the size of $I_{s, n-s}$.
Lemma 2.3.13. $\left|I_{s, k}\right|=c_{s}\binom{s+1}{k}$
Proof. Since the left half of the sequence is a weakly increasing sequence of length s, they are counted by the Catalan numbers. Since the right half is a strictly decreasing sequence of length k with largest part bounded above by s, they are counted by subsets of $[0, s]$ of size k.

Theorem 2.3.14. Equation (2.1) is the ordinary generating function for $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$.
Proof. Given an inversion sequence of length $n \geq 2$ and peak t, we can break the sequence into two pieces at the right of the peak so that the left piece is weakly increasing and the right piece is strictly decreasing. In other words, $a_{n}=\sum_{t=1}^{n}\left|I_{t, n-t}^{>}\right|$. But by Lemma 2.3.11, $a_{n}=\sum_{t=2}^{n}\left|I_{t, n-t}^{>}\right|$. Similarly, we can break the sequence at the left of the peak, which yields $a_{n}=\sum_{t=2}^{n}\left|I_{t-1, n-t+1}^{\leq}\right|$. Thus, for $n \geq 2$:

$$
\begin{aligned}
\sum_{n=2}^{\infty} a_{n} x^{n}+\sum_{n=2}^{\infty} a_{n} x^{n} & =\sum_{n=2}^{\infty} \sum_{t=2}^{n}\left|I_{t, n-t}^{>}\right| x^{n}+\sum_{n=2}^{\infty} \sum_{t=2}^{n}\left|I_{t-1, n-t+1}^{\leq}\right| x^{n} \\
& =\sum_{t=2}^{\infty} \sum_{n=t}^{\infty}\left|I_{t, n-t}^{>}\right| x^{n}+\sum_{t=2}^{\infty} \sum_{n=t}^{\infty}\left|I_{t-1, n-t+1}^{\leq}\right| x^{n} .
\end{aligned}
$$

Reindexing, we obtain:

$$
\begin{aligned}
2 \sum_{n=2}^{\infty} a_{n} x^{n} & =\sum_{s=2}^{\infty} \sum_{n=s}^{\infty}\left|I_{s, n-s}^{>}\right| x^{n}+\sum_{s=1}^{\infty} \sum_{n=s+1}^{\infty}\left|I_{s, n-s}^{\leq}\right| x^{n} \\
& =\sum_{s=2}^{\infty}\left|I_{s, 0}^{>}\right| x^{s}+\sum_{s=2}^{\infty}\left(\sum_{n=s+1}^{\infty}\left(\left|I_{s, n-s}^{>}\right|+\left|I_{s, n-s}^{\leq}\right|\right) x^{n}\right)+\sum_{n=2}^{\infty}\left|I_{1, n-1}^{\leq}\right| x^{n} .
\end{aligned}
$$

By Lemma 2.3.12,

$$
2 \sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{s=2}^{\infty}\left|I_{s, 0}^{>}\right| x^{s}+\sum_{s=2}^{\infty} \sum_{n=s+1}^{\infty}\left|I_{s, n-s}\right| x^{n}+\sum_{n=2}^{\infty}\left|I_{1, n-1}^{\leq}\right| x^{n}
$$

Since an element $\left(\left(e_{1}\right),\left(e_{2}, \cdots, e_{n}\right)\right)$ of $I_{1, n-1}^{\leq}$has $1 \geq e_{2}>e_{3}>\cdots>e_{n} \geq 0, \sum_{n=2}^{\infty}\left|I_{1, n-1}^{\leq}\right| x^{n}=$ $\sum_{n=2}^{3}\left|I_{1, n-1}^{\leq}\right| x^{n}=2 x^{2}+x^{3}$, so

$$
2 \sum_{n=2}^{\infty} a_{n} x^{n}=2 x^{2}+x^{3}+\sum_{s=2}^{\infty}\left|I_{s, 0}^{>}\right| x^{s}+\sum_{s=2}^{\infty} \sum_{n=s+1}^{\infty}\left|I_{s, n-s}\right| x^{n}
$$

By Lemma 2.3.13 and because $I_{s, 0}^{>}=C_{s}$,

$$
\begin{aligned}
2 \sum_{n=2}^{\infty} a_{n} x^{n} & =2 x^{2}+x^{3}+\sum_{s=2}^{\infty} c_{s} x^{s}+\sum_{s=2}^{\infty} \sum_{n=s+1}^{\infty} c_{s}\binom{s+1}{n-s} x^{n} \\
& =2 x^{2}+x^{3}+\sum_{s=2}^{\infty} c_{s} x^{s}+\sum_{s=2}^{\infty} \sum_{k=1}^{\infty} c_{s}\binom{s+1}{k} x^{s+k} \\
& =2 x^{2}+x^{3}+\sum_{s=2}^{\infty} c_{s} x^{s}+\sum_{s=2}^{\infty} c_{s} x^{s} \sum_{k=1}^{\infty}\binom{s+1}{k} x^{k} \\
& =2 x^{2}+x^{3}+\sum_{s=2}^{\infty} c_{s} x^{s} \sum_{k=0}^{\infty}\binom{s+1}{k} x^{k} \\
& =2 x^{2}+x^{3}+\sum_{s=2}^{\infty} c_{s} x^{s}(x+1)^{s+1} \\
& =\left(\sum_{s=0}^{\infty} c_{s} x^{s}(x+1)^{s+1}\right)-2 x-1
\end{aligned}
$$

Since $a_{0}=a_{1}=1$ and $\sum_{s=0}^{\infty} c_{s} y^{s}$ is well known to be $\frac{1-\sqrt{1-4 y}}{2}$

$$
2(A(x)-1-x)=(x+1) \frac{1-\sqrt{1-4 x(x+1)}}{2 x(x+1)}-2 x-1
$$

Rearranging, we obtain:

$$
A(x)=\frac{1+2 x-\sqrt{1-4 x-4 x^{2}}}{4 x}
$$

2.4 Permutations and Dyck paths

We construct a map from all permutations to Dyck paths that will be vital to constructing explicit bijections alluded to by the previous section. In this section, for a permutation $x \in S_{n}$, let $x_{1} \cdots x_{n}$ be its one-line notation.

Definition 2.4.1. We call a pair $\left(x_{i}, x_{j}\right)$ an inversion of x if $i<j$ and $x_{i}>x_{j}$.
Definition 2.4.2. A non-Dyck inversion of a permutation $x \in S_{n}$ is an inversion $\left(x_{i}, x_{j}\right)$ such that there exists some x_{k} where $i<j<k$ and $x_{j}<x_{k}<x_{i}$. A Dyck inversion of a permutation $x \in S_{n}$ is an inversion $\left(x_{i}, x_{j}\right)$ that is not a non-Dyck inversion.

Definition 2.4.3. The height of an east step of a Dyck path $p \in \mathcal{D}_{n}$ is its distance from the southern boundary of the $n \times n$ box.

Definition 2.4.4. Let $\tau: S_{n} \rightarrow \mathcal{D}_{n}$ be the following map. For $1 \leq i \leq n$, define

$$
d_{i}=\mid\left\{x_{j} \mid\left(x_{i}, x_{j}\right) \text { is a Dyck inversion }\right\} \mid
$$

We define $\tau(x)$ to be the unique Dyck path where the east step in the i th column occurs at height $i-1-d_{i}$. See Figure 2.5 for an example.

Remark 2.4.5. The map τ is inspired by [2]. In fact, when τ is restricted to $S_{n}(312)$, we recover the main bijection of [2].

Definition 2.4.6. Let $x \in S_{n}$. For fixed x_{i}, define $B_{x_{i}}=\left\{x_{j} \mid\left(x_{i}, x_{j}\right)\right.$ is a Dyck inversion $\}$.
Definition 2.4.7. Let $x \in S_{n}$. For fixed x_{j}, define $D_{x_{j}}=\left\{x_{i} \mid\left(x_{i}, x_{j}\right)\right.$ is a Dyck inversion $\}$.

Figure 2.5: Left: The inversions of 641532 (with Dyck inversions boxed). Right: τ (641532).

Proposition 2.4.8. The map τ is well-defined.
Proof. We need to verify for fixed $x \in S_{n}$, that $\tau(x)$ is a legitimate Dyck path. Since x_{i} is a part of at most $x_{i}-1$ inversions of the form $\left(x_{i}, x_{j}\right), i-1-d_{i} \geq 0$. What remains to show is that the height of $x_{i}+1$ is greater than or equal to the height of x_{i} for all $1 \leq i<n$. There are two cases to consider.
Case 1: \quad Suppose that x_{i} occurs to the left of $x_{i}+1$ in the one-line notation of x. We claim that $B_{x_{i}+1} \subseteq B_{x_{i}}$. If $\left(x_{i}+1, x_{j}\right)$ is a Dyck inversion, all intermediate values between x_{j} and $x_{i}+1$ occur to the left of x_{j}. Therefore, all intermediate values between x_{j} and x_{i} are to the left of x_{j}, i.e $\left(x_{i}, x_{j}\right)$ is a Dyck inversion, which proves the claim. Since $B_{x_{i}+1} \subseteq B_{x_{i}}$, the height of $x_{i}+1$ is greater than the height of x_{i} (the heights cannot be equal in Case 1 because ($x_{i}+1, x_{i}$) is not a Dyck inversion).
Case 2: \quad Similarly, in the case that x_{i} occurs to the right of $x_{i}+1$, we get $B_{x_{i}} \subseteq B_{x_{i}+1}$. However in this case, we claim that $\left(B_{x_{i}+1} \backslash\left\{x_{i}\right\}\right) \subseteq B_{x_{i}}$. We see that no x_{j} located between $x_{i}+1$ and x_{i} can form a Dyck inversion with $x_{i}+1$ because then $\left(x_{i}+1\right) x_{j} x_{i}$ would be a 312 pattern. Therefore, $\left(B_{x_{i}+1} \backslash\left\{x_{i}\right\}\right)=B_{x_{i}}$. We conclude that in this case, $x_{i}+1$ and x_{i} have the same height.

Definition 2.4.9. Let left (a, b) be whichever of a and b appears first in x in the one-line notation of x.

The proof of Proposition 2.4.8 also establishes the following Lemma.
Lemma 2.4.10. Suppose $x \in S_{n}$ and $q \in \mathcal{D}_{n}$ satisfy $\tau(x)=q$. Then $\operatorname{left}\left(x_{j}, x_{j}+1\right)=x_{j}$ if and only if $x_{j}+1$ has height strictly greater than x_{j} in $\tau(x)$. Also, $\operatorname{left}\left(x_{j}, x_{j}+1\right)=x_{j}+1$ if and only if $x_{j}+1$ has the same height as x_{j} in $\tau(x)$.

Dyck inversions satisfy the following useful properties.

Proposition 2.4.11. Let $x \in S_{n}$. For fixed x_{j}, if $D_{x_{j}}$ is nonempty, then $D_{x_{j}}=\left\{x_{j}+1, x_{j}+2, \cdots, M\right\}$ for some M.

Proof. If $D_{x_{j}}$ is nonempty, its maximum exists which we call M. Let x_{i} be a number such that $x_{j}+1 \leq x_{i} \leq M$. We must show that $\left(x_{i}, x_{j}\right)$ is a Dyck inversion. In the one-line notation of x, x_{i} must lie to the left of x_{j} because otherwise x_{i} would serve as a witness for $\left(M, x_{j}\right)$ not being a Dyck inversion. Thus, $\left(x_{i}, x_{j}\right)$ is an inversion. Also, there can exist no witness x_{k} for $\left(x_{i}, x_{j}\right)$ to not be a Dyck inversion, because again, x_{k} would serve as a witness for $\left(M, x_{j}\right)$ not being a Dyck inversion.

Definition 2.4.12. Each Dyck path has a natural edge labeling as follows. We label the unique east edge in the i th column with i. To label a north edge, travel southwest from the center of the edge until we hit the path again, necessarily on an east edge. Label the north edge to agree with that east edge. See Figure 2.6 for an example.

Figure 2.6: The edge labeling of a Dyck path

We note that a natural statistic on Dyck paths is area.
Definition 2.4.13. The area of a Dyck path is the number of boxes (unit squares) that can be packed below the diagonal and above the path.

We note that if an east step in the i th column has height $i-1-d_{i}$, then there are d_{i} boxes above the step in the column. Equivalently, the map τ is statistic preserving, sending the number of Dyck inversions to area. Furthermore, if $\tau(x)=q$, we can specify

Figure 2.7: The base boxes and box labeling of a Dyck path
which box in the area of q corresponds to which Dyck inversion of x using the following box labeling, which is closely related to its edge labeling.

Definition 2.4.14. Suppose that $q \in \mathcal{D} \mathcal{P}_{n}$ with edge labeling as in Definition 2.4.17. We define the following box labeling recursively. Let a box making up the area of q be a base $b o x$ if its southern edge is the right E step of a $E E$ factor of q. For each $E E$ factor of q, suppose that the left E step is labeled with d. Label the base box whose southern edge coincides with the right E step with d. We now describe recursively how to label the boxes making up the area of q that are non-base boxes. For non-base box \mathcal{B}, there will be another neighbor box \mathcal{A} whose northeast corner coincides with the southwest corner of \mathcal{B}. Label \mathcal{B} to match the label of its neighbor box. If we continually take neighbor boxes of neighbor boxes of a non-base box, we will eventually hit a base box. Thus, this labeling is well-defined and constant on diagonals of neighbor boxes. See Figure 2.7 for an example.

Proposition 2.4.15. Suppose that $q \in \mathcal{D} \mathcal{P}_{n}$ is edge and box labeled by the above definitions. For a fixed column, the box labels decrease going up.

Proof. Assume for the sake of contradiction there exists a column c with a box labeled a above a box labeled b with $a>b$. Then $a+1>b+1$, so the leftmost column with a box labeled with a is to the left of the leftmost column with a box labeled with b. Let M_{b} be the rightmost column with a box labeled with b. Then by construction, Definition 2.4.14 tells us there is a box labeled with b in the column a, since $b+1 \leq a<c \leq M_{b}$. But if $a>b$, then the east step labeled a is above the box labeled with b, which is impossible for a Dyck path, since the boxes making up the area of a Dyck path of a fixed column are supposed to be above the east step of that column.

This box labeling plays well with Dyck inversions.

Proposition 2.4.16. Let $x \in S_{n}$ and $q \in \mathcal{D}_{n}$ with $\tau(x)=q$. Then (c, d) is a Dyck inversion of x if and only if there is a box labeled with d in the cth column of q.

Proof. We write $\tau_{n}: S_{n} \rightarrow \mathcal{D}_{n}$ to emphasize the dependence of τ on n. We will prove the forward direction by induction on n. The statement is clear for $n=1$. Let $x \in S_{k+1}$. Consider the permutation $x^{\prime} \in S_{k}$ obtained by removing the $k+1$ from x. We note that $\tau_{k}\left(x^{\prime}\right)$ is the Dyck path formed by deleting the $(k+1)$ th column of $\tau_{k+1}(x)$. The statement is true for x^{\prime} and $\tau\left(x^{\prime}\right)$ by induction. Thus, the statement is true for Dyck inversions of x of the form $(e,$.$) for e<k+1$. Consider a Dyck inversion $(k+1, d)$ of x (It may be useful to look back at Definition 2.4.6 and the proof of Proposition 2.4.8 before reading the remaining paragraphs).

If $d<k$, since $B_{k+1} \backslash\{k\} \subseteq B_{k}$, there will be a Dyck inversion (k, d) of x^{\prime}. Furthermore, $\left\{y \in B_{k+1} \mid y \leq d\right\}=\left\{y \in B_{k} \mid y \leq d\right\}$. Let $u=\left|\left\{y \in B_{k} \mid y \leq d\right\}\right|$. By the inductive hypothesis and Proposition 2.4.15, the highest u boxes in the k th column of $\tau_{k}\left(x^{\prime}\right)$ will be labeled with the elements of $\left\{y \in B_{k} \mid y \leq d\right\}$ in increasing order from top to bottom. By the definition of τ there are at least u boxes in the $(k+1)$ th column of $\tau_{k+1}(x)$. By Definition 2.4.14 and the fact that $\left\{y \in B_{k+1} \mid y \leq d\right\}=\left\{y \in B_{k} \mid y \leq d\right\}$, there will be a box labeled with d in the $(k+1)$ th column.

If $d=k$, then k and $k+1$ are labels of an $E E$ factor of q, thus there will be a base box in the $(k+1)$ th column labeled with k. This completes the induction.

We will prove the backward direction by induction on n. The statement is clear for $n=1$. Let $q \in \mathcal{D}_{k+1}$. Let $q^{\prime} \in \mathcal{D}_{k}$ be the Dyck path created by deleting the $(k+1)$ th column of q. Let $x^{\prime} \in S_{k}$ be as previously defined. Clearly, $\tau\left(x^{\prime}\right)=q^{\prime}$. The statement is true for boxes of q not in the $(k+1)$ th column by the inductive hypothesis on q^{\prime} and x^{\prime}. Let \mathcal{A} be a box in the $(k+1)$ th column of q.

If \mathcal{A} is labeled with a number $d<k$, then by Definition 2.4.14, there is a box labeled with d in the k th column. By the inductive hypothesis, (k, d) is a Dyck inversion of x^{\prime} and x. We claim that $(k+1, d)$ is a Dyck inversion of x. It suffices to show that $(k+1, d)$ is an inversion, because then $\left\{y \in B_{k+1} \mid y \leq d\right\}=\left\{y \in B_{k} \mid y \leq d\right\}$. Let $u=\left|\left\{y \in B_{k} \mid y \leq d\right\}\right|$. If $(k+1, d)$ were not an inversion, then since $B_{k+1} \subseteq B_{k}$, k would have fewer than u Dyck inversions. But this would contradict the existence of the box \mathcal{A} labeled with d. This gives the desired result.

If \mathcal{A} is labeled with k, then it is a base box, which implies that $(k+1)$ has k Dyck inversions, which can only happen if $k+1$ is to the left of k. In other words, $(k+1, k)$ is
a Dyck inversion of x. This completes the induction.
Definition 2.4.17. Let $q \in \mathcal{D} \mathcal{P}_{n}$ with edge labeling as defined in Definition 2.4.12. For each instance of $N N$, suppose the lower north step is labeled with c and the upper north step is labeled with d. Let $c<_{N N} d$ be called a $N N$ relation. Similarly, for each instance of $N E$, let the north step be labeled with a and the east step be labeled with b. Let $a<_{N E} b$ be called a $N E$ relation. Let the label of the highest north step of q be called the root.

Proposition 2.4.18. For fixed $q \in \mathcal{D} \mathcal{P}_{n}$, the transitive closure of the $N N$ and $N E$ relations form a poset, which we call $P_{\tau}(q)$.

Proof. Let $G_{\tau}(q)$ be the directed graph on [n] with directed edges for each $N N$ and $N E$ relation (as described in Definition 2.4.12) with a directed to b if and only if $a<_{N N} b$ or $a<_{N E} b$. There are $n-1$ north steps with a step after them, so the graph has $n-1$ edges. We claim that $G_{\tau}(q)$ is connected. More specifically, if the root is labeled with r, every $s \in[n] \backslash r$ has a directed path to r. We note that the outdegree of every $s \in[n] \backslash r$ is 1 using whichever relation corresponds to the north step labeled with s. If we start with s and travel in the graph along the unique directed path out of s, we always run into labels whose corresponding north steps in the Dyck path have larger heights, so eventually we will hit the north step labeled with r. This proves that the undirected $G_{\tau}(q)$ is connected. Since $G_{\tau}(q)$ is a connected graph with n vertices and $n-1$ edges, it is a tree, and thus is acyclic.

Remark 2.4.19. $G_{\tau}(q)$ is the Hasse diagram of $P_{\tau}(q)$ (This will not be true for other graphs/posets in later sections). $G_{\tau}(q)$ is a binary tree on $[n]$, and can be embedded in the plane in a nice way. See Figure 2.8 for an example. See [20, Section 3.1] for more details.

We note that a permutation $x \in S_{n}$ can be viewed as a total order on [n] where x_{i} is lower than x_{j} if and only if x_{i} precedes x_{j} in x.

Lemma 2.4.20. Let $q \in \mathcal{D} \mathcal{P}_{n}$. Let $x \in S_{n}$ with x viewed as a total order $x_{1}<\cdots<x_{n}$ on [n]. Fix a $N N$ factor of q and consider its corresponding $N N$ relation, $c<_{N N} d$ of $P_{\tau}(q)$. Suppose that the vertical line containing the north steps labeled by cand d is contained in the western boundary of the bth column. We claim that if x is a linear extension of $P_{\tau}(q)$, then $b-1$ is the largest entry i of x such that (i, d) is a Dyck inversion of x.

Proof. By examining the east step labeled by b, we find that $d<_{N N} \cdots<_{N N} w<_{N E} b$, where w is the highest north step vertically above d. Since $b>d$, this shows that (b, d) is not an inversion of x, so cannot be a Dyck inversion of x. By definition of edge labeling, the lowest north step vertically below c is labeled $b-1$. We know that $b-1<_{N N} \cdots<_{N N} c<_{N N} d$, i.e. $(b-1, d)$ is an inversion of x.

Assume by way of contradiction that $(b-1, d)$ is not a Dyck inversion of x. That is, there exists an e such that $d<e<b-1$ and $d<e$. If we consider the unique directed path from e to the root in $G_{\tau}(q)$, we see that $e \rightarrow \cdots \rightarrow c \rightarrow d$ (That is if q is a valid Dyck path, going up from e will eventually hit a north step in the western boundary of column $b)$. But then, $e<d$, which contradicts $d<e$. Thus, $(b-1, d)$ is a Dyck inversion of x. By Proposition 2.4.11, we conclude that the set of entires that form Dyck inversions of the form (\cdot, d) for x is $\{d+1, d+2, \cdots, b-1\}$.

Theorem 2.4.21. Let $q \in \mathcal{D} \mathcal{P}_{n}$. Let $x \in S_{n}$ with x viewed as a total order $x_{1}<\cdots<x_{n}$ on [n]. Then x is a linear extension of $P_{\tau}(q)$ if and only if $\tau(x)=q$.

Proof. We first prove the forward direction. This amounts to showing that, if x is a linear extension of $P_{\tau}(q)$, then $\tau(x)$ and q have the same set of box labels in each column (but a priori we don't assume these two Dyck paths are the same, that's what this paragraph is trying to prove). Fix a $N N$ factor of q, and consider its corresponding $N N$ relation, $c<_{N N} d$ of $P_{\tau}(q)$. By the Lemma 2.4.20, the columns of $\tau(x)$ that have boxes labeled with d are $\{d+1, \cdots, b-1\}$ (so in particular, the set of columns is nonempty). We note that by definition of edge and box labelings, the set of boxes labeled with d will be nonempty and is $\{d+1, \cdots, b-1\}$. Fix a $E N$ factor of q where the E and N are labeled a. By definition of box labeling, there are no boxes labeled a in q. Assume for the sake of contradiction that x has a Dyck inversion of the form (g, a). It is impossible for $a=n$. If $g=a+1$, then we would have a contradiction since $a<_{N N} \cdots<_{N N} f<_{N E} a+1=g$. If $a \neq n$ and $g>a+1$, then in x we would still have $a<_{N N} \cdots<_{N N} f<_{N E} a+1$. But then $a+1$ would be a witness for (g, a) not being a Dyck inversion. Thus, we conclude that $\tau(x)$ also has no boxes labeled with a. Since we have systematically gone through every north step label (The $N N$ factors give rise to the same sets of nonempty boxes, and the $E N$ factors give rise to no boxes), the two Dyck paths have the same box labelings, and we conclude that $\tau(x)=q$.

Now we prove the backward direction. Suppose $x \in S_{n}$ with $\tau(x)=q$. Fix a $N N$ factor

Figure 2.8: A Dyck path $q, G_{\tau}(q)$, linear extensions of $P_{\tau}(q)$ or equivalently, $\tau^{-1}(q)$
of q and consider its corresponding $N N$ relation, $c<_{N N} d$, in $P_{\tau}(q)$. By definition of box labeling, we know that the lowest box in the c th column is labeled with a d, i.e. (c, d) is a Dyck inversion, so in particular is an inversion. That is, $\operatorname{left}(c, d)=c$. Fix a $N E$ relation, $a<_{N E} b$, in $P_{\tau}(q)$. We note that if the lowest box in the b th column is labeled with f, then by definition of box labels, the lowest box in the a th column is also labeled with f. Therefore, $f \neq a$, i.e. (b, a) is not a Dyck inversion. We claim that (b, a) is not a non-Dyck inversion. Assume for the sake of contradiction that the set $\{u \mid a<u<b, \operatorname{left}(a, u)=a\}$ is nonempty. Since this set is finite it has a maximum, $u_{\max }$. But then $\left(b, u_{\max }\right)$ would have to be a Dyck inversion. But since $u_{\max }>a>f$, this contradicts f being the largest Dyck inversion of b. Thus the set of witnesses for (b, a) being an inversion but not a Dyck inversion is empty. Thus, we conclude that (b, a) is not an inversion, i.e $\operatorname{left}(a, b)=a$. We have shown that x satisfies all generating relations of $P_{\tau}(q)$, thus is a linear extension of it. This completes the proof of the backwards direction.

Since every poset has at least one linear extension, we have the following corollary of Theorem 2.4.21.

Corollary 2.4.22. The map $\tau: S_{n} \rightarrow \mathcal{D P}_{n}$ is surjective.
We can describe the principal order ideals of $P_{\tau}(q)$ directly from q.

Proposition 2.4.23. Fix $q \in \mathcal{D} \mathcal{P}_{n}$. Suppose $b \in[n]$ and the N step in q labeled with b is part of the eastern boundary of the M th column. Suppose the lowest box in the bth column is labeled with d. Then the principal order ideal of b in $P_{\tau}(q)$, is $\{d+1, \cdots, M\}$.

Proof. By definition of box and edge labelings, $d+1 \leq b \leq M$. Let $e \in[n]$. Clearly if $e=b$, e is in the principal order ideal of b. It may be helpful to refer to Figure 2.9 while reading the rest of the proof.
Suppose that $d+1 \leq e<b$. Since $d+1 \leq e<b$, by definition of box labeling, there is a box labeled with d in column $b-1$. There is necessarily a relation of the form $w_{l}<_{N E} b$, where w_{l} is the label on the eastern side of the box labeled with d in column $b-1$ (w_{l} is also the north step of the $N E$ factor whose east step is labeled with b). We claim that e is in the principal order ideal of b. We prove this by strong induction on $b-e$. If $b-e=1$, then the claim is true since by examining the north step labeled with e, we see that $e<_{N N} \cdots<_{N N} w_{l}<_{N E} b$. Suppose that $b-e>1$. If we consider the east step labeled by e, by definition of edge labeling, the vertical step labeled by e will be in the western boundary of a column f with $e<f \leq b$. By examining the vertical step labeled by e, we see that $e<_{N N} \cdots<_{N N} w_{f}<_{N E} f$ where w_{f} is the label of the north step that forms a $N E$ factor with the east step labeled with f. If $f=b$, we see that $e<f=b$. Otherwise, by definition of edge labeling, f satisfies $b-f<b-e$, so by the inductive hypothesis is in the order ideal of b. But then $e<f<b$, and we conclude that e is in the order ideal of b. Similarly, suppose that $b<e \leq M$. By definition of edge labeling, there will be an east step in column $b+1$ at the same height as the east step in column b. Furthermore, the east step in column $b+1$ will be the southern side of the base box labeled by b. By definition of box labeling, there will be a box labeled by b directly below the box labeled by d in column M. Let w_{r} the label of the north step that forms the eastern side of this box labeled by b in column M. Then we know that $w_{r}<_{N N} b$. We can use a similar strong induction argument to show that $e<w_{r}<_{N N} b$.
Suppose that $e \in[n]$ and $e \notin[d+1, M]$. Assume for the sake of contradiction that $e<b$ in $P_{\tau}(q)$. Then there will exist a chain consisting of $N N$ and $N E$ relations $e<y_{1}<y_{2}<$ $\cdots y_{n}<b$. Let i be the largest index such that $y_{i} \notin[d+1, M]$ and $y_{j} \in[d+1, M]$ for all $j>i$. Consider the relation $y_{i}<y_{i+1}$.
If $y_{i}<_{N E} y_{i+1}$, then by definition of edge labeling, $y_{i}<y_{i+1} \leq M$. Let a be the label of the lowest box in column y_{i+1}. By definition of box labeling, the lowest box in column y_{i} will also be labeled with a, so in particular, $a<y_{i}$. By definition of $i, y_{i} \leq d$, so we find that

Figure 2.9: The principal order ideal of b in $P_{\tau}(q)$. Every east and north step label below the dotted line is an element of the ideal.
$a<d$. But then in column y_{i+1}, we have a box labeled with d above a box labeled with a, contradicting Proposition 2.4.15.
If $y_{i}<{ }_{N N} y_{i+1}$, then by definition of edge labeling, $y_{i}>y_{i+1} \geq d+1$. We note that $y_{i+1} \epsilon$ $[d+1, M]$, there is a chain $y_{i+1}<_{N N} \cdots<b$. So in particular, the north step labeled by y_{i+1} is in the eastern boundary of a column weakly to the left of column M. But this means the north step labeled by y_{i} is also in a column weakly to the left of column M, which implies that the east step labeled by y_{i} is weakly to the left of column M. But then, $d+1<y_{i} \leq M$, contradicting the definition of i. We conclude that no such i can exist, thus for all $e \notin[d+1, M], e$ is not in the principal order ideal of b.

Corollary 2.4.24. Fix $q \in \mathcal{D} \mathcal{P}_{n}$. Then $P_{\tau}(q)$ is regularly labeled.
Proof. Fix $z \in[n]$. Suppose the principal order ideal of z in $P_{\tau}(q)$ is $\{d+1, \cdots, M\}$. Suppose that $x<z$ in $P_{\tau}(q)$. If $x<z$, suppose y is such that $x<y<z$. But then $d+1 \leq x<y<z \leq M$, so y is in the principal order ideal of z in $P_{\tau}(q)$, or in other words, $y<z$. If $x>z$, suppose y is such that $x>y>z$. But then $M>y>x>z$, so y is in the principal order ideal of z in $P_{\tau}(q)$, or in other words, $y<z$. This proves the proposition.

Remark 2.4.25. Since we have shown that for any y numerically between x and $z, y<z$, we have also shown that $P_{\tau}(q)$ has what Björner and Wachs call a recursive labeling [7].

Recalling Theorem 2.2.12, we now get the following corollary.

Corollary 2.4.26. The fibers of τ are intervals in the weak order.
The rest of this section is closely related to [8, Section 9].
Proposition 2.4.27. Let $x \lessdot y$ in the weak order. Then $\tau(x)=\tau(y)$ if and only if y is obtained from x by a $\underline{132}$ to $\underline{312}$ move.

Proof. If $x \lessdot y$ in the weak order, $y=x_{1} \cdots x_{j+1} x_{j} \cdots x_{n}$ for some $1 \leq j \leq n$. Since $\tau(x)=\tau(y)$, $\left(x_{j+1}, x_{j}\right)$ is a non-Dyck inversion, so there must exist some witness x_{k} with $k>j+1$ and $x_{j}<x_{k}<x_{j+1}$. But then y is obtained from x by the desired move since where x_{j}, x_{k}, x_{j+1} play the roles of the $1,2,3$ of the move. Conversely, performing a $132 \rightarrow 312$ move creates exactly one non-Dyck inversion. Since the move does not destroy Dyck inversions, $\tau(x)=\tau(y)$.

By applying transitivity to the cover relations within a fiber, we get the following corollary. We remind the reader of Definition 2.2.7.

Corollary 2.4.28. τ is constant on classes of $\Theta_{\underline{132}}$.
Corollary 2.4.29. A permutation is a bottom element of a fiber of τ if and only if it is an element of $S_{n}(\underline{312)}$. A permutation is a top element of a fiber of τ if and only if it is an element of $S_{n}(\underline{132)}$.

Proof. The forward directions follow from Corollary 2.4.26 and Corollary 2.4.28. To prove the backward directions, we first note that by Corollary 2.4.28, each fiber is a union of equivalence classes. It is well known that $S_{n}(\underline{312}), S_{n}(\underline{132})$, and $\mathcal{D} \mathcal{P}_{n}$ are counted by the Catalan numbers. In other words, the number of classes is equal to the number of fibers, so the classes and fibers coincide.

The previous propositions give us the desired bijection.
Corollary 2.4.30. The restriction of τ to the bottom elements of its fibers gives a bijection between the elements of $S_{n}\left(\underline{312)}\right.$ and $\mathcal{D P}_{n}$. The restriction of τ to the top elements of its fibers gives a bijection between the elements of $S_{n}\left(\underline{132)}\right.$ and $\mathcal{D} \mathcal{P}_{n}$.

2.5 Bijective Combinatorics of Pattern Avoiding Permutations

We now mimic the strategy used in the previous section to construct a bijection between $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{41} 32)$ and $\mathcal{R S P}{ }_{n}$. We first provide the background necessary to define a map $\rho: S_{n} \rightarrow \mathcal{R S} \mathcal{P}_{n}$. We then prove that the fibers of ρ are the linear extensions of regularly labeled posets. Finally, we show that the fibers of ρ are the congruence classes of $\Theta_{2 \underline{143,3 \underline{142}, \underline{4} 23, \underline{4} 32}}$ to prove that certain restrictions of ρ give us the desired bijections.

Definition 2.5.1. Let $x \in S_{n}$ be fixed. A strong 312 pattern of x is a subsequence $x_{i} x_{j} x_{k}$ where $i<j<k$ and $x_{j}+1=x_{k}=x_{i}-1$. A strong 132 pattern of x is defined analogously.

Proposition 2.5.2. Let $x \in S_{n}$ be fixed. If x_{j} is the '2' of a strong 312 or strong 132 pattern of x, then the east step of $\tau(x)$ labeled with x_{j} is the middle east step of a NEE factor of $\tau(x)$.

Proof. This follows from applying Lemma 2.4.10 to the non-inversion $\left(x_{j}-1, x_{j}\right)$ and the inversion $\left(x_{j}+1, x_{j}\right)$ and the east steps labeled with $x_{j}-1, x_{j}$, and $x_{j}+1$.

Definition 2.5.3. Fix $q \in \mathcal{D} \mathcal{P}_{n}$. We say a $N E E$ factor of q is centered at i, if the middle E step of the factor is labeled with i.

Definition 2.5.4. Fix $p \in \mathcal{R} \mathcal{S P}_{n}$. If a column has a D, we say that the column has a triangle and the column is triangle-positive. If a column does not have a D, we say the column is triangle-free

Definition 2.5.5. Fix $x=x_{1} \cdots x_{n} \in S_{n}$. If x_{i} is the 2 of a strong 312 pattern, we say x_{i} is triangle-positive. If x_{i} is not the 2 of a strong 312 pattern, we say x_{i} is triangle-free.

Definition 2.5.6. Let $\rho: S_{n} \rightarrow \mathcal{R S P}{ }_{n}$ be the following map. Let $x \in S_{n}$. Start with $\tau(x)$. If x_{j} is the ' 2 ' of a strong 312 pattern, then Proposition 2.5.2 says that $\tau(x)$ has a $N E E$ factor centered at x_{j}. Replace that $N E E$ factor by a $D E$ factor. The resulting path is $\rho(x)$. See Figure 2.10 for an example.

Proposition 2.5.7. The map ρ is well-defined.
Proof. Fix $x \in S_{n}$. Since $\tau(x)$ is underdiagonal, $\rho(x)$ will have no diagonal steps on the main diagonal. Each diagonal step is followed by an east step by construction.

Figure 2.10: $\tau(641532)$ and $\rho(641532)$

Definition 2.5.8. Let $p \in \mathcal{R S P}(n)$. For each fixed instance of $N E E$ or $D E$ in the inner Dyck path, suppose the right E step is labeled with e. For each $N E E$ factor of p, let $e-2<_{N E E} e$ be called a $\rho-N E E$ relation. For each $D E$ factor of p, let $e<_{D E} e-2$ be called a $\rho-D E$ relation.

Proposition 2.5.9. For fixed $p \in \mathcal{R S} \mathcal{P}_{n}$, let $q \in \mathcal{D} \mathcal{P}_{n}$ be its inner Dyck path. Then the transitive closure of the $N N$ and $N E$ relations of q and the $\rho-N E E$ and $\rho-D E$ relations of p is a poset, which we call $P_{\rho}(p)$.

Proof. Let $G_{\rho}(p)$ be the directed graph on [n] with directed edges for each of the relations above. We claim that $G_{\rho}(p)$ is acyclic. Suppose we have a cycle $y_{1} \rightarrow y_{2} \rightarrow \cdots \rightarrow y_{k} \rightarrow y_{1}$ in $G_{\rho}(p)$. The cycle cannot consist of entirely of $N N$ and $N E$ relations because that would contradict the acyclicity of $G_{\tau}(q)$. The cycle cannot consist of entirely of $N E E$ relations since the elements would be monotonically decreasing numerically. Similarly, the cycle cannot consist of entirely $D E$ relations.

We note that by Definition 2.5.8, if $a<_{N E E} b$, then $a<b$, and if $a<_{D E} b$, then $a>b$. Suppose the cycle has at least one $D E$ relation. Without loss of generality, let y_{1} be the largest among all such $D E$ relations $y_{1}<_{D E} y_{2}$. (or equivalently the label y_{1} of the E of the rightmost $D E$ factor of p). We can color each vertex w of the cycle with L or R based on whether w is in the principal order ideal of y_{1} in $P_{\tau}(q)$ or not. Since y_{2} is colored R and y_{1} is colored L, there exists some edge of the cycle $y_{i} \rightarrow y_{i+1}$ (or possibly the edge $\left.y_{k} \rightarrow y_{1}\right)$ such that y_{i} is colored R and y_{i+1} is colored L. We note that $y_{i} \rightarrow y_{i+1}$ cannot come from a $N N$ or $N E$ relation since y_{i} and y_{i+1} are colored differently. We see that $y_{i} \rightarrow y_{i+1}$ cannot come from a $N E E$ relation because by Proposition 2.4.23, the only possible $N E E$ relation that satisfies the necessary colors would be $y_{2}<_{N E E} y_{1}$, which is impossible by the original assumption that $y_{1}<_{D E} y_{2}$. Let $M_{y_{1}}$ be the numerically largest element of the principal order ideal of y_{1} in $P_{\tau}(q)$. We see that $y_{i} \rightarrow y_{i+1}$ cannot come
from a $D E$ relation because by Proposition 2.4.23, the only possible $D E$ relation that satisfies the necessary colors would be $M_{y_{1}}+2{<_{D E}}^{{ }_{D}} M_{y_{1}}$. But $M_{y_{1}}+2$ contradicts the maximality of y_{1} being the largest among all $D E$ relations. Therefore there exist no $D E$ relations in the cycle.

Similarly, we can rule out cycles that have at least one $N E E$ relation using an analogous coloring argument. This rules out any possible cycle, and we conclude the graph $G_{\rho}(p)$ is acyclic.

Figure 2.11: $G_{\rho}(p)$ for the all p that have the inner Dyck path as in the previous figures, and their linear extensions

Theorem 2.5.10. Let $p \in \mathcal{R S P}(n)$. Let $x \in S_{n}$ with x viewed as a total order $x_{1}<\cdots<x_{n}$ on [n]. Then x is a linear extension of $P_{\rho}(p)$ if and only if $\rho(x)=p$.

Proof. We first prove the forward direction. Let x be a linear extension of $P_{\rho}(p)$. Let q
be the inner Dyck path of p. Since $P_{\rho}(p)$ is an extension of $P_{\tau}(q)$, by Theorem 2.4.21, the inner Dyck path of $\rho(x)$ will be q. If p has a $N E E$ factor centered at column $e+1$, then $e<_{N E E} e+2$, so e precedes $e+2$ in x. We know that $e+2$ precedes $e+1$ (since $e+2$ is in the principal order ideal of $e+1$), so we conclude that $(e)(e+2)(e+1)$ is a strong 132 pattern, which implies that $\rho(x)$ also has a $N E E$ factor centered at $e+1$. Similarly, if p has a $D E$ factor centered at column $e+1$, then $e+2<_{D E} e$, so $e+2$ precedes e in x. We know that e precedes $e+1$ through $N E$ and $N N$ relations, so we conclude that $(e+2)(e)(e+1)$ is a strong 312 pattern, which implies that $\rho(x)$ also has a $D E$ factor centered at $e+1$. Since $\rho(x)$ and p have the same inner Dyck path q and the same $N E E$ and $D E$ factors, we conclude that $\rho(x)=p$.

We now prove the backward direction. Suppose that $x \in S_{n}$ satisfies $\rho(x)=p$. By Theorem 2.4.21, since the inner Dyck path of $\rho(x)$ and p are both q, x will satisfy all $N E$ and $N N$ relations of $P_{\rho}(p)$. Suppose that $e<_{N E E} e+2$ is a $N E E$ relation of $P_{\rho}(p)$. Then there will be a $N E E$ factor of p centered at $e+1$ by Proposition 2.5.2. But by definition of $\rho,(e)(e+2)(e+1)$ form a strong 132 pattern, so e precedes $e+2$ in x. Suppose that $e+2<_{D E} e$ is a $D E$ relation of $P_{\rho}(p)$. Then there will be a $D E$ factor of p whose corresponding $N E E$ factor is centered at $e+1$. But by definition of $\rho,(e+2)(e)(e+1)$ form a strong 312 pattern, so $e+2$ precedes e in x. Thus, x satisfies every generating relation for $P_{\rho}(p)$, so x is a linear extension of $P_{\rho}(p)$.

Since every poset has at least one linear extension, we have the following corollary of Theorem 2.5.10.

Proposition 2.5.11. ρ is surjective.
Definition 2.5.12. Fix $p \in \mathcal{R} \mathcal{S} \mathcal{P}_{n}$. Let q be the inner Dyck path of p. Let $g_{i} \in[n]$ be called $D E$-open if the east step labeled with g_{i} is the middle E of a $N E E$ factor of q and there is a triangle in column g_{i}. Let $g_{i} \in[n]$ be called $N E E$-open if the east step labeled with g_{i} is the middle E of a $N E E$ factor of q and there is no triangle in column g_{i}.

Fix $p \in \mathcal{R S P}{ }_{n}$. Let q be the inner Dyck path of p. Suppose that the principal order ideal of b in $P_{\tau}(q)$ is $\left[m_{0}, M_{0}\right.$]. If $M_{0}+1$ is $D E$-open, let $g_{1}=M_{0}+1$, and consider the principal order ideal of $M_{0}+2$, which we label as the interval [m_{1}, M_{1}] (necessarily, $m_{1}=M_{0}+2$). If $m_{0}-1$ is $N E E$-open, let $g_{0}=m_{0}-1$, and consider the principal order ideal of $m_{0}-2$, which we label as the interval [m_{-1}, M_{-1}] (necessarily, $M_{-1}=m_{0}-2$). We can continue in each direction naming intervals as long as the g_{i} are $D E$-open on the

Figure 2.12: A principal order ideal of b in $P_{\tau}(p)$. Every north and east step on the inner Dyck path q below the dotted lines lies in the ideal.
right and $N E E$-open on the left. We choose the unique $k \geq 0$ and $-\ell \leq 0$ such that that g_{i} is $D E$-open for $1 \leq i \leq k, M_{k}+1$ is not $D E$-open, g_{i} is $N E E$-open for $-\ell \leq i \leq 0$, and $m_{-\ell}-1$ is not $N E E$-open. See Figure 2.12 for an example.

Proposition 2.5.13. Fix $p \in \mathcal{R S P}{ }_{n}$. Let q be the inner Dyck path of p. Suppose that the principal order ideal of b in $P_{\tau}(q)$ is $\left[m_{0}, M_{0}\right]$. The principal order ideal of b in $P_{\rho}(p)$ is $\left[m_{-\ell}, M_{-\ell}\right] \cup \cdots \cup\left[m_{0}, M_{0}\right] \cup \cdots \cup\left[m_{k}, M_{k}\right]$. See Figure 2.12 for an example.

Proof. Every element e in $\left[m_{0}, M_{0}\right]$ satisfies $e<b$ in $P_{\rho}(p)$ by Proposition 2.4.23. Suppose that e in $\left[m_{i}, M_{i}\right]$ for $i>0$. We note that $\left[m_{i}, M_{i}\right]$ is the principal order ideal of m_{i} in $P_{\tau}(q)$ for $i>0$. We claim that $e<b$ in $P_{\rho}(p)$. We prove this by induction on i. For $i=1$,
we see that for any e in $\left[m_{1}, M_{1}\right], e \leq m_{1}<_{D E} M_{0}<b$. For $j>1$ and e in [m_{j}, M_{j}], we see that $e \leq m_{j}<_{D E} M_{j-1}<m_{j-1}$. But, m_{j-1} is in an interval [m_{j-1}, M_{j-1}], so by the inductive hypothesis, $m_{j-1}<b$, and by transitivity conclude that $e<b$. We can use a similar induction argument to show that e in $\left[m_{j}, M_{j}\right]$ for $-\ell \leq j \leq 0$ using $N E E$ relations and the fact that $\left[m_{i}, M_{i}\right.$] is the principal order ideal of M_{i} in $P_{\tau}(q)$ for $i<0$.

Suppose that $e \in[n]$ and $e \notin\left[m_{\ell}, M_{\ell}\right] \cup \cdots \cup\left[m_{0}, M_{0}\right] \cup \cdots \cup\left[m_{k}, M_{k}\right]=P O I_{\rho}(b)$. Assume for the sake of contradiction that $e<b$ in $P_{\rho}(q)$. Then there will exist a chain consisting of $N N, N E, N E E$, and $D E$ relations $e<y_{1}<y_{2}<\cdots y_{n}<b$. Let i be the largest index such that $y_{i} \notin P O I_{\rho}(b)$ and $y_{j} \in P O I_{\rho}(b)$ for all $j>i$. Consider the relation $y_{i}<y_{i+1}$. Suppose that $y_{i+1} \in\left[m_{j}, M_{j}\right]$.
If $y_{i}<_{N E} y_{i+1}$ or $y_{i}<_{N N} y_{i+1}$, we have a contradiction since $y_{i} \in\left[m_{j}, M_{j}\right] \subseteq P O I_{\rho}(b)$ by Proposition 2.4.23.
If $y_{i}<_{D E} y_{i+1}$, we know that $y_{i}=y_{i+1}-2$. But $y_{i}=y_{i+1}-2$ implies that $y_{i} \in P O I_{\rho}(b)$ unless $y_{i}=g_{j}$. But then m_{j} would have to be $D E$-open, which is impossible because g_{i} and m_{i} form an $E E$ factor (that is, there is no N to form the $N E E$ factor with middle E step labeled by m_{i}).

If $y_{i}<_{N E E} y_{i+1}$, we know that $y_{i}=y_{i+1}+2$. But $y_{i}=y_{i+1}+2$ implies that $y_{i} \in \operatorname{POI} I_{\rho}(b)$ unless $y_{i}=g_{j+1}$. But then M_{j} would have to be $N E E$-open, which is impossible because M_{j} and g_{j+1} are at different heights. We conclude that no such i can exist, thus for all $e \notin P O I_{\rho}(b), e$ is not in the principal order ideal of b in $P_{\rho}(p)$.

Proposition 2.5.14. Fix $p \in \mathcal{R S} \mathcal{P}_{n}$. Then $P_{\rho}(p)$ is regularly labeled.
Proof. Let q be the inner Dyck path of p. Fix $z \in[n]$, and consider the principal order ideal $\operatorname{POI}_{\rho}(z)=\left[m_{-\ell}, M_{\ell}\right] \cup \cdots \cup\left[m_{k}, M_{k}\right]$ of z in $P_{\rho}(p)$. Suppose $x<z$ in $P_{\rho}(p)$. Then $x \in\left[m_{j}, M_{j}\right]$ for some j.

If $x>z$, then $j>0$. If y satisfies $x>y>z$, and $y \in \operatorname{POI}_{\rho}(z)$, then $y<z$ and we are done. The only way that y satisfies $x>y>z$, and $y \notin \operatorname{POI}_{\rho}(z)$ is if $y=g_{s}$ for $0<s \leq j$ using the notation of the previous proposition. Since g_{s} and m_{s} form an $E E$ factor, m_{s} is in the principal order ideal of g_{s} in $P_{\tau}(q)$, or in other words, $m_{s}<g_{s}$. We claim that $x<g_{s}$ for all $0<s \leq j$. To prove this, we will prove the stronger condition $x<m_{s}$ by induction on $j-s$. The base case for $j-s=1$, follows from Proposition 2.4.23. For $j-s>1$, since $s>0,\left[m_{s}, M_{s}\right]$ is the principal order ideal of m_{s} in $P_{\tau}(q)$. We note that M_{s} and m_{s+1} differ by 2 and that the number between them is g_{s}, which labels the middle E step of a $N E E$ of q. We find that $M_{s}<m_{s}$. But then $m_{s+1}<_{D E} M_{s}$. By inductive hypothesis,
$x<m_{s+1}$, and by transitivity, we conclude that $x<m_{s}$. This completes the induction and the proof of regular labeling for the case $x>z$.
If $x<z$, then $j<0$. If y satisfies $x<y<z$, and $y \in \operatorname{POI}_{\rho}(z)$, then $y<z$ and we are done. The only way that y satisfies $x<y<z$, and $y \notin \operatorname{POI}_{\rho}(z)$ is if $y=g_{s}$ for $j<s \leq 0$ using the notation of the previous proposition. By examining q, we see that $M_{s-1}<g_{s}$ since $M_{s-1}<_{N N} \cdots<_{N N} w_{g_{s}}<_{N E} g_{s}$ where $w_{g_{s}}$ is the label on the north step of the NE factor with east step labeled by g_{s}. We claim that $x<g_{s}$ for all $j<s \leq 0$. To prove this, we will prove the stronger condition $x<M_{s-1}$ by induction on $s-j$. The base case $s-j=1$ follows from Proposition 2.4.23. For $s-j>1$, since $s-j>0$, $\left[m_{s-1}, M_{s-1}\right]$ is the principal order ideal of M_{s-1} in $P_{\tau}(q)$. We find that $m_{s-1}<M_{s-1}$. We note that M_{s-2} and m_{s-1} differ by 2 and that the number between them is g_{s-1}, which labels the middle E step of a $N E E$ of q. From this, we conclude that $M_{s-2}<_{N E E} m_{s-1}$. By inductive hypothesis, $x<M_{s-2}$, and by transitivity, we conclude that $x<M_{s-1}$. This completes the induction and the proof of regular labeling for the case $x<z$.

In light of Theorem 2.2.12, we get the following corollary.
Corollary 2.5.15. The fibers of ρ are intervals in the weak order.
See Figure 2.11 for examples of fibers.
Proposition 2.5.16. Let $x \lessdot y$ in the weak order. Then $\rho(x)=\rho(y)$ if and only if y is obtained from x by one of the following moves

1. $\underline{1423}$ to $\underline{4123}$ move
2. $\underline{1432}$ to $\underline{4132 \text { move }}$
3. $2 \underline{143}$ to $2 \underline{413}$ move
4. $3 \underline{142}$ to $3 \underline{112}$ move.

Proof. Suppose that $\rho(x)=\rho(y)$. If $x \lessdot y$ in the weak order, $y=x_{1} \cdot x_{j+1} x_{j} \cdot x_{n}$ for some $1 \leq j \leq n$. Since $\rho(x)=\rho(y)$, we know that $\tau(x)=\tau(y)$, so $\left(x_{j+1}, x_{j}\right)$ is a non-Dyck inversion, so there must exist some witness x_{k} with $k>j+1$ and $x_{j}<x_{k}<x_{j+1}$. But we also know that if $\rho(x)=\rho(y)$, then x_{j+1} and x_{j} cannot be the 3 and the 1 of a strong 312 pattern. Therefore, $x_{j+1}-x_{j} \geq 3$. There must therefore exist some x_{m} with $x_{j}<x_{m}<x_{j+1}$.

If $m<j$, then $x_{m} x_{j+1} x_{j} x_{k}$ will form a $2 \underline{413}$ or $3 \underline{412}$ pattern in y. If $j+1<m$, then $x_{m} \underline{x_{j+1} x_{j}} x_{k}$ will form a $\underline{41} 23$ or $\underline{4132}$ pattern in y. This proves the forward direction.

Conversely, performing one of the four moves creates exactly one inversion and it is not a Dyck inversion since they are all special cases of $\underline{132} \rightarrow \underline{312}$ moves. Since the move does not destroy Dyck inversions, $\tau(x)=\tau(y)$. Since the 1 and the 4 differ by more than 2 , we do not create nor destroy strong 132 patterns nor strong 312 patterns. Therefore, $\rho(x)=\rho(y)$ as desired.

By applying transitivity to the cover relations within a fiber, we get the following corollary.

Proposition 2.5.17. ρ is constant on classes of $\Theta_{2 \underline{143}, 3 \underline{142}, \underline{1423,1 \underline{142}}}$.
Proposition 2.5.18. The congruence classes of $\Theta_{2 \underline{143}, 3 \underline{142}, \underline{1423,1432}}$ correspond with the fibers of ρ.

Proof. By the previous proposition, the fibers are unions of congruence classes. By Theorem 2.3.2, Theorem 2.5.11, and Proposition 2.3.7, the number of classes is equal to the number of fibers, thus we conclude that the classes and fibers coincide.

Corollary 2.5.19. A permutation is a bottom element of a fiber of ρ if and only if it is an element of $S_{n}(2 \underline{14} 3,3 \underline{14} 2, \underline{1423}, \underline{14} 32)$. A permutation is a top element of fiber of ρ if and only if it is an element of $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{41} 32)$.

Proof. This is an immediate consequence of Corollary 2.5.15, Proposition 2.5.16, and Proposition 2.5.18.

The previous propositions give us the desired bijection.
Corollary 2.5.20. The restriction of ρ to the bottom elements of its fibers is a bijection between the elements of $S_{n}(2 \underline{413}, \underline{312}, \underline{4123}, \underline{4132})$ and $\mathcal{R S} \mathcal{P}_{n}$. The restriction of ρ to the top elements of its fibers is a bijection between the elements of $S_{n}(2 \underline{14} 3,3 \underline{142}, \underline{1423}, \underline{1432)}$ and $\mathcal{R S P}{ }_{n}$.

2.6 Bijective Combinatorics of Inversion Sequences

We now mimic the strategy used in the previous section to construct a bijection between a different family of pattern avoiding permutations and $\mathcal{R S P}{ }_{n}$. We first provide the
background necessary to define a map $\omega: S_{n} \rightarrow \mathcal{R} \mathcal{S P}_{n}$. We then prove that the fibers of ω are the linear extensions of regularly labeled posets. We then show that the fibers of ω are the equivalence classes of the family of pattern avoiding permutations. Finally, we show that the reverse Lehmer codes of these permutations are precisely the pattern avoiding inversion sequences we seek to count.

Definition 2.6.1. Fix $x \in S_{n}$ and a with $1<a<n$. We define a to be NEE-positive (abbreviated $N E E^{+}$) if $a-1$ and $a+1$ both precede a in x. We define a to be atomic if $a-1$ and $a+1$ both follow a in x. Additionally, 1 is atomic if 2 follows 1 in x, and n is atomic if $n-1$ follows n in x. We will refer to atomic labels as atoms. We say that a is increasing if $a-1$ precedes a and $a+1$ follows a in x. We say that a is decreasing if $a-1$ follows a and $a+1$ precedes a in x. Additionally, n is increasing if $n-1$ precedes n in x and 1 is decreasing if 2 precedes 1 in x. See Figure 2.13 for an example.

Definition 2.6.2. Fix $q \in \mathcal{D}_{n}$, and let a with $1<a<n$ be the label of a fixed east step. We define a to be $N E E$-positive if the east step labeled with a is the middle E step of a $N E E$ factor of q. We define a to be atomic if the east step labeled with a is the middle E step of a $E E N$ factor of q. Additionally, 1 is atomic if the east step labeled 1 is followed by a north step and n is atomic if the east step labeled n is preceded by an east step. We will refer to atomic edge labels as atoms. We say that a is increasing if the east step labeled with a is the east step of a $N E N$ factor of q. We say that a is decreasing if the east step labeled with a is the east step of a $E E E$ factor of q. Additionally, n is increasing if n labels the E of a $N E$ factor and 1 is decreasing if it is the left E step of an $E E$ factor. See Figure 2.13 for an example.

By applying Lemma 2.4.10 to the pairs of adjacent entries $(a-1, a)$ and $(a, a+1)$ for $1<a<n$, we get the following proposition. See Figure 2.13 for an example.

Proposition 2.6.3. Suppose $x \in S_{n}$ and $q \in \mathcal{D P}_{n}$ satisfy $\tau(x)=q$. Then a is $N E E-$ positive, atomic, increasing, or decreasing in x if and only if the east step labeled with a in $\tau(x)$ is NEE-positive, atomic, increasing, or decreasing.

Proposition 2.6.4. Fix $x \in S_{n}$. Let b_{i} and b_{i+1} be atomic such that $b_{i}<b_{i+1}$ and there is no atomic b_{j} with $b_{i}<b_{j}<b_{i+1}$. Then there exists exactly one element a_{i+1} between b_{i} and b_{i+1} that is NEE-positive.

Figure 2.13: The $N E E^{+}$, atomic, and decreasing elements of 641532 and $\tau(641532)$

Proof. By the previous proposition, it suffices to look at the east steps of $\tau(x)$ labeled with b_{i} and b_{i+1}. There is at least one $N E E^{+}$element between b_{i} and b_{i+1}, namely the label of the leftmost east step at the same height as b_{i+1}. If there were two $N E E^{+}$elements $a_{k}<a_{m}$, then the label of the rightmost east step at the same height as a_{k} would be atomic, contracting the fact that there are no atoms between b_{i} and $b_{i}+1$.

Corollary 2.6.5. Let $x \in S_{n}$ be fixed. If x has $k N E E$-positive instances, then it has $k+1$ atoms. Moreover, if we arrange the NEE-positive and atoms in increasing order as a tuple, they will alternate.

Proof. We note that the label of the rightmost east step at the same height as 1 will be the leftmost atom, so there are no $N E E^{+}$elements to the left of the leftmost atom. There are also no $N E E^{+}$elements to the right of the rightmost atom, because then the rightmost east step at the same height of the E steps of the $N E E$ instance would be an atom, contradicting the claim that the original atom is rightmost.

Definition 2.6.6. Fix $x \in S_{n}$. Let $\left(b_{0}, a_{1}, b_{1}, a_{2} \ldots, b_{k-1}, a_{k}, b_{k}\right)$ be its tuple as in the previous corollary. We recursively define the leader atom function $\gamma_{x}:\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\} \rightarrow$ $\left\{b_{1}, \ldots, b_{k}\right\}$ as follows. Our base case is $\gamma_{x}\left(b_{k-1}\right)=b_{k}$. For $0 \leq m<k-1, \gamma_{x}\left(b_{m}\right)=$

Figure 2.14: $\tau(641532)$ and $\omega(641532)$, note that $\left(b_{0}, a_{1}, b_{1}, a_{2}, b_{3}\right)=(1,2,4,5,6), \gamma(4)=$ 6, $\gamma(1)=6$
$\operatorname{left}\left(b_{m+1}, \gamma_{x}\left(b_{m+1}\right)\right)$. If $\gamma_{x}\left(b_{i}\right)=b_{j}$, we refer to b_{j} as the leader atom of b_{i}. If x is clear from the context, we will omit the x subscript.

Definition 2.6.7. Fix $p \in \mathcal{R S} \mathcal{P}_{n}$ with inner Dyck path $q \in \mathcal{D} \mathcal{P}_{n}$. Suppose q has $k N E E$ positive elements, a_{1}, \cdots, a_{k} (listed in increasing order). Then q has $k+1$ atoms, b_{0}, \cdots, b_{k} with $b_{i-1}<a_{i}<b_{i}$ for $1 \leq i \leq k$. We recursively define the leader atom function γ_{p} : $\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\} \rightarrow\left\{b_{1}, \ldots, b_{k}\right\}$ as follows. Our base case is $\gamma_{p}\left(b_{k-1}\right)=b_{k}$. For $0 \leq m<k-1$, $\gamma_{p}\left(b_{m}\right)=b_{m+1}$ if there is no triangle in column a_{m+1} of p and $\gamma_{p}\left(b_{m}\right)=\gamma_{p}\left(b_{m+1}\right)$ if there is a triangle in column a_{m+1} of p. If $\gamma_{p}\left(b_{i}\right)=b_{j}$, we refer to b_{j} as the leader atom of b_{i}. If p is clear from the context, we will omit the p subscript.

Definition 2.6.8. Let $\omega: S_{n} \rightarrow \mathcal{R} \mathcal{S P}_{n}$ be the following map. Let $x \in S_{n}$. Start with the Dyck path $\tau(x)$. For $0 \leq j \leq k-1$ (with k as defined in Definition 2.6.7), if left $\left(b_{j}, \gamma_{x}\left(b_{j}\right)\right)=$ $\gamma_{x}\left(b_{j}\right)$, transform the $N E E$ factor centered at a_{j+1} to a $D E$ factor. See Figure 2.14 for an example.

From the definition of ω, we immediately get the following lemma.
Lemma 2.6.9. Suppose $x \in S_{n}$ and $p \in \mathcal{R S P} \mathcal{P}_{n}$ satisfy $\omega(x)=p$. Then $\operatorname{left}\left(b_{m}, \gamma_{x}\left(b_{m}\right)\right)=$ b_{m} if and only if there is no triangle in column a_{m+1}. Similarly, left $\left(b_{m}, \gamma_{x}\left(b_{m}\right)\right)=\gamma_{x}\left(b_{m}\right)$ if and only if there is a triangle in column a_{m+1}.

Proposition 2.6.10. Suppose $x \in S_{n}$ and $p \in \mathcal{R S P} \mathcal{P}_{n}$ satisfy $\omega(x)=p$. For atoms b_{i} and $b_{j}, \gamma_{x}\left(b_{i}\right)=b_{j}$ if and only if $\gamma_{p}\left(b_{i}\right)=b_{j}$.

Proof. Suppose x and p have $k+1$ atoms. We prove the proposition by induction on $k+1-m$. The base case for $m=1$ is clear by the base cases for the recursive definitions of the leader atom functions. The inductive step follows from Lemma 2.6.9 and the leader atom function definitions.

Definition 2.6.11. Let $p \in \mathcal{R S P}{ }_{n}$. Suppose there is a $N E E$ factor of q centered at a_{j+1}. If there is also a $N E E$ factor of p centered at a_{j+1}, let $b_{j}<_{N E E} \gamma\left(b_{j}\right)$ be called a $\omega-N E E$ relation. Otherwise, if there is a $D E$ factor of p centered at a_{j+1}, let $\gamma\left(b_{j}\right)<_{D E} b_{j}$ be called a ω - $D E$ relation.

Theorem 2.6.12. For fixed $p \in \mathcal{R S P}_{n}$, let $q \in \mathcal{D} \mathcal{P}_{n}$ be its inner Dyck path. Then the transitive closure of the $N N$ and $N E$ relations of q and the $\omega-N E E$ and $\omega-D E$ relations of p is a poset, which we call $P_{\omega}(p)$.

Proof. We note it is not hard to see that an element of $P_{\tau}(q)$ is minimal if and only if it is an atom. Let $G_{\omega}(p)$ be the directed graph on $[n]$ with directed edges for each of the relations above. We claim that $G_{\omega}(p)$ is acyclic. Suppose we have a cycle $y_{1} \rightarrow y_{2} \rightarrow$ $\ldots \rightarrow y_{k} \rightarrow y_{1}$ in $G_{\omega}(p)$. The cycle cannot consist of entirely of $N N$ and $N E$ relations because that would contradict the acyclicity of $G_{\tau}(q)$. The cycle cannot consist entirely of $\omega-N E E$ and $\omega-D E$ relations, because the subgraph of those relations form a tree (there are $k+1$ atoms/vertices, we add k relations/edges, and every atom is connected to the $\left.\operatorname{root} \operatorname{right}\left(b_{k}, b_{k-1}\right)\right)$.
Thus, without loss of generality, $y_{1}<_{N E E} y_{2}$ or $y_{1}<_{D E} y_{2}$ and neither $y_{k} \chi_{N E E} y_{1}$ nor $y_{k} \not_{D E} y_{1}$. However y_{1} is an atom, meaning $y_{k} \not_{N N} y_{1}$ and $y_{k}{K_{N E}}^{y_{1}}$. Since there is no possible relation that gives rise to the edge $y_{k} \rightarrow y_{1}$, no such cycle can exist. This rules out any possible cycle, and we conclude the graph $G_{\omega}(p)$ is acyclic.

Theorem 2.6.13. Let $p \in \mathcal{R S P}_{n}$. Let $x \in S_{n}$ with x viewed as a total order $x_{1}<\cdots<x_{n}$ on [n]. Then x is a linear extension of $P_{\omega}(p)$ if and only if $\omega(x)=p$.

Proof. We first prove the forward direction. Let x be a linear extension of $P_{\omega}(p)$. Let q be the inner Dyck path of p. By Theorem 2.4.21, the inner Dyck path of $\omega(x)$ will be q. If p has a $N E E$ factor centered at column a_{j+1}, then $b_{j}<_{N E E} \gamma_{p}\left(b_{j}\right)$. Since x is a linear extension of $P_{\omega}(p), b_{j}$ precedes $\gamma_{x}\left(b_{j}\right)$ in x. But by definition of ω, this implies that $\omega(x)$ also has a $N E E$ factor centered at a_{j+1}. Similarly, if p has a $D E$ factor centered at column a_{j+1}, then $\gamma_{p}\left(b_{j}\right)<_{D E} b_{j}$. Since x is a linear extension of $P_{\omega}(p), \gamma_{x}\left(b_{j}\right)$ precedes b_{j} in x. By definition of ω, this implies that $\omega(x)$ also has a $D E$ factor centered at a_{j+1}. Since $\omega(x)$ and p have the same inner Dyck path q and the same $N E E$ and $D E$ factors, we conclude that $\omega(x)=p$.

We now prove the backward direction. Suppose that $x \in S_{n}$ satisfies $\omega(x)=p$. By

Figure 2.15: $G_{\omega}(p)$ for the all p that have the inner Dyck path as in the previous figures, and their linear extensions

Theorem 2.4.21, since inner Dyck path of $\omega(x)$ and p are both q, x will satisfy all $N E$ and $N N$ relations of $P_{\omega}(p)$. Suppose that $b_{j}<_{N E E} \gamma_{p}\left(b_{j}\right)$ is a $N E E$ relation of $P_{\omega}(p)$. Then there will be a $N E E$ factor of p centered at a_{j+1}. By definition of ω, $\operatorname{left}\left(b_{j}, \gamma\left(b_{j}\right)\right)=b_{j}$ (Otherwise, there would be a $D E$ factor centered at a_{j+1}). In other words, b_{j} precedes $\gamma\left(b_{j}\right)$ in x. Suppose that $\gamma\left(b_{j}\right)<_{D E} b_{j}$ is a $D E$ relation of $P_{\omega}(p)$. Then there will be a $D E$ factor of p whose corresponding $N E E$ factor of q is centered at a_{j+1}. But by definition of ω, left $\left(b_{j}, \gamma\left(b_{j}\right)\right)=\gamma\left(b_{j}\right)$, so $\gamma\left(b_{j}\right)$ precedes b_{j} in x. Thus, x satisfies every generating relation for $P_{\omega}(p)$, so x is a linear extension of $P_{\omega}(p)$.

Since every poset has at least one linear extension, we have the following corollary of Theorem 2.6.13.

Proposition 2.6.14. ω is surjective.
We seek to understand the fibers of ω. We first prove the following lemmas that will help us do this.

Lemma 2.6.15. Let $x \in S_{n}$. If $\gamma\left(b_{i}\right)=b_{j}$, then $\gamma\left(b_{u}\right)=b_{j}$ for all $i<u<j$.
Proof. If $j=i+1$, the statement is vacuously true. Assume by way of contradiction there exists a minimal index v such that $i<v<j, \gamma\left(b_{v}\right) \neq b_{j}$ and $\gamma\left(b_{v-1}\right)=b_{j}$. By definition of $\gamma, \gamma\left(b_{v-1}\right)=\operatorname{left}\left(b_{v}, \gamma\left(b_{v}\right)\right)$. In particular, $\gamma\left(b_{v-1}\right)$ is either b_{v} or $\gamma\left(b_{v}\right)$. But since $v<j$, $b_{v} \neq b_{j}$, and by definition, $\gamma\left(b_{v}\right) \neq b_{j}$. Thus, we have a contradiction. We conclude that no such index can exist and that $\gamma\left(b_{u}\right)=b_{j}$ for all $i<u<j$.

Lemma 2.6.16. Let $x \in S_{n}$. If $\gamma\left(b_{i}\right)=b_{j}$, then $\operatorname{left}\left(b_{u}, \gamma\left(b_{u}\right)\right)=\gamma\left(b_{u}\right)$ for all $i<u<j$.
Proof. If $j=i+1$, the statement is vacuously true. Assume by way of contradiction there exists an index v such that $i<v<j$ and $\operatorname{left}\left(b_{v}, \gamma\left(b_{v}\right)\right)=b_{v}$. But by the previous lemma, $\operatorname{left}\left(b_{v}, \gamma\left(b_{v}\right)\right)=\gamma\left(b_{v-1}\right)=b_{j}$, which is a contradiction since $v<j$.

Definition 2.6.17. Let $p \in \mathcal{R S} \mathcal{P}_{n}$. For $j>0$, let b_{j} be called a range atom if $\gamma_{p}\left(b_{i}\right)=b_{j}$ for some atom b_{i}.

Lemma 2.6.18. Let $x \in S_{n}$. For $k>j>0, b_{j}$ is a range atom if and only if $\operatorname{left}\left(b_{j}, \gamma\left(b_{j}\right)\right)=$ b_{j}. If $k>0$, then b_{k} is also a range atom.

Proof. The backward direction is clear because by definition of $\gamma, \gamma\left(b_{j-1}\right)=\operatorname{left}\left(b_{j}, \gamma\left(b_{j}\right)\right)=$ b_{j}. The forward direction follows from Lemma 2.6.15.

Lemma 2.6.19. Let $x \in S_{n}$. If b_{i} is a range atom, then b_{i} precedes b_{w} in the one-line notation of x for all atoms b_{w} such that $w>i$.

Proof. Consider the i th largest range atom. We prove this by induction on $k-i$. For the base case of $k-i=0$, the statement is vacuously true for the largest range atom b_{k}. The inductive step follows from Lemma 2.6.16, Lemma 2.6.18, and transitivity applied to all atoms whose leader atom is the $(k-i)$ th largest leader atom.

Lemma 2.6.20. The indices in this statement refer to the one-line notation of x as opposed to the indices on the set of atoms of x. Let $x \in S_{n}$ be fixed with $x=x_{1} \ldots x_{j} x_{j+1} \ldots x_{n}$ where $x_{j} x_{j+1}$ forms an ascent. If x_{j} and x_{j+1} are both atomic, and $\gamma\left(x_{j}\right)$ is to the right of x_{j}, then $x_{j+1}=\gamma\left(x_{j}\right)$.

Proof. Assume for the sake of contradiction that $x_{j+1} \neq \gamma\left(x_{j}\right)$. If $x_{j}<x_{j+1}<\gamma\left(x_{j}\right)$, then by Lemma 2.6.15, $\gamma\left(x_{j+1}\right)=\gamma\left(x_{j}\right)$. By assumption, x_{j} precedes $\gamma\left(x_{j}\right)$ and by Lemma 2.6.16, $\gamma\left(x_{j}\right)$ precedes x_{j+1}. If $x_{j}<\gamma\left(x_{j}\right)<x_{j+1}$, then by Lemma 2.6.19, $\gamma\left(x_{j}\right)$ precedes x_{j+1}. But x_{j} precedes $\gamma\left(x_{j}\right)$. Thus, in either case, we have that $\gamma\left(x_{j}\right)$ lies between x_{j} and x_{j+1}, contradicting the fact that they are adjacent. Thus, the only remaining possibility is that $x_{j+1}=\gamma\left(x_{j}\right)$.

Lemma 2.6.21. The indices in this statement refer to the one-line notation of x. Let $x \in S_{n}$ be fixed with $x=x_{1} \ldots x_{j} x_{j+1} \ldots x_{n}$ where $x_{j} x_{j+1}$ forms an ascent. If x_{j} and x_{j+1} are both atomic, and $\gamma\left(x_{j}\right)$ is to the right of x_{j}, then $x_{i}<x_{j}$ for all $1 \leq i<j$.

Proof. Assume for the sake of contradiction that there exists an i such that $x_{i}>x_{j}$. Without loss of generality, let x_{i} be the smallest of such witnesses. Suppose x_{i} is an atom. By Lemma 2.6.18, x_{j} is a range atom. By Lemma 2.6.19, x_{j} precedes x_{i}. But this contradicts x_{i} preceding x_{j}.
Suppose that x_{i} is not an atom. If x_{i} were decreasing or $N E E^{+}$, we can consider the principal order ideal of x_{i} in $P_{\tau}(\tau(x))$. By Proposition 2.4.23, there would exist an atom (the label on the rightmost east step at the same height as x_{i}) that precedes it that is numerically bigger. But the previous paragraph shows that such an atom cannot exist. Thus x_{i} must be increasing. This implies that $x_{i}-1$ is to the left of x_{i}. But then, $x_{i}-1$ is an element bigger than x_{j} and preceding x_{j} contradicting the minimality of the choice of x_{i}. Thus no such x_{i} can exist. This completes the proof of the lemma.

Definition 2.6.22. Fix $x \in S_{n}$. Suppose that $x_{i} x_{j} x_{k} x_{m}$ is an instance of a $1 \underline{243}$ pattern or $x_{i} x_{k} x_{j} x_{m}$ is an instance of a $1 \underline{423}$ pattern. We call such a pattern left inversion dense or $L \overline{I D \text { if }}$

$$
\left|\left\{x_{u} \mid i<u, x_{i}>x_{u}\right\}\right| \geq\left|\left\{x_{u} \mid j<u, x_{j}>x_{u}\right\}\right| .
$$

Definition 2.6.23. Fix $x \in S_{n}$. Suppose that $x_{i} x_{j} x_{k} x_{m}$ is an instance of a LID $1 \underline{24} 3$ pattern or $x_{i} x_{k} x_{j} x_{m}$ is an instance of a LID $1 \underline{423}$ pattern. We say that such a pattern is leader atom neutral or LAN if either

- at least one of x_{j} and x_{k} is not atomic
- both x_{j} and x_{k} are atomic and $\gamma\left(x_{j}\right) \neq x_{k}$

Proposition 2.6.24. Let $x \lessdot y$ in the weak order. Then $\omega(x)=\omega(y)$ if and only if y is obtained from x by one of the following moves.

- A $2 \underline{143}$ to $2 \underline{13}$ move
- A 3142 to 3412 move
- A 4132 to $4 \underline{312}$ move
- A $1 \underline{243}$ to $1 \underline{423}$ move where $1 \underline{243}$ is $L A N$ in x and $1 \underline{423}$ is $L A N$ in y

Proof. Let $x=x_{1} \ldots x_{j} x_{j+1} \ldots x_{n}$ and $y=x_{1} \ldots x_{j+1} x_{j} \ldots x_{n}$.
Suppose that $\omega(x)=\omega(y)$. In particular this implies that $\tau(x)=\tau(y)$, so we know that there will always exist some x_{k} with $k>j+1$ and $x_{j}<x_{k}<x_{j+1}$. There are sixteen cases for what the ascent $x_{j} x_{j+1}$ looks like based on the four possibilities in Definition 2.6.1 applied to x_{j} and x_{j+1}. See Figure 2.16 for more details. If x_{j} is $N E E^{+}$or decreasing, then $\left(x_{j}+1\right) x_{j} x_{j+1} x_{k}$ forms a $2 \underline{143}$ pattern. If x_{j+1} is $N E E^{+}$or increasing, then $\left(x_{j+1}-\right.$ 1) $x_{j} x_{j+1} x_{k}$ forms a $3 \underline{14} 2$ pattern. If x_{j+1} is decreasing, then $\left(x_{j+1}+1\right) x_{j} x_{j+1} x_{k}$ forms a $4 \underline{132}$ pattern. If x_{j} is increasing, then $\left(x_{j}-1\right) x_{j} x_{j+1} x_{k}$ forms a $1 \underline{243}$ pattern. Let $x_{i}=x_{j}-1$, and consider the sets $\left\{x_{u} \mid i<u, x_{i}>x_{u}\right\}$ and $\left\{x_{u} \mid j<u, x_{j}>x_{u}\right\}$. Since x_{i} and x_{j} differ by exactly $1,\left\{x_{u} \mid i<u, x_{i}>x_{u}\right\} \supseteq\left\{x_{u} \mid j<u, x_{j}>x_{u}\right\}$. Therefore, $\left(x_{j}-1\right) x_{j} x_{j+1} x_{k}$ forms a $1 \underline{24} 3_{\text {LID }}$ pattern. Since x_{j} is not atomic, $\left(x_{j}-1\right) x_{j} x_{j+1} x_{k}$ forms a $1 \underline{24} 3_{L A N}$ pattern. This shows that if at least one one of x_{j} and x_{j+1} is not atomic, then we can find a witness to the left of x_{j} that forms one of the four desired moves. Suppose that x_{j} and x_{j+1} are both atomic. If $\gamma\left(x_{j}\right)$ is to the left of x_{j}, since $\gamma\left(x_{j}\right)>b_{j}$, we find that $\gamma\left(x_{j}\right) \underline{x_{j} x_{j+1}} x_{k}$ will

x_{j}	x_{j+1}			
	atomic	$N E E^{+}$	increasing	decreasing
atomic	vincular	$3 \underline{142}$	$3 \underline{142}$	$4 \underline{132}$
$N E E^{+}$	$2 \underline{143}$	2143	$2 \underline{143}$	$2 \underline{143}$
increasing	$12433_{\text {LAN }}$	$3 \underline{142}$	$3 \underline{142}$	$4 \underline{132}$
decreasing	$2 \underline{143}$	$2 \underline{143}$	$2 \underline{143}$	$2 \underline{143}$

Figure 2.16: A list describing at least one witness type in all sixteen cases
either form a $2 \underline{14} 3,3 \underline{142}$, or a $4 \underline{132}$. Assume for the sake of contradiction, that $\gamma\left(x_{j}\right)$ is to the right of x_{j}. By Lemma 2.6.20, $x_{j+1}=\gamma\left(x_{j}\right)$. But then, if $x_{j}=b_{w}, \omega(x)$ will have no triangle in column a_{w+1} and $\omega(y)$ will have a triangle in column a_{w+1}, contradicting $\omega(x)=\omega(y)$. This completes the proof of the forward direction in all possible cases.

Conversely, suppose y is obtained from x by one of the above four moves. Clearly all moves preserve Dyck inversions, so $\tau(x)=\tau(y)$. Suppose x and y differ by a $1 \underline{24} 3_{L A N}$ to $1 \underline{42} 3_{L A N}$ move. Since such a move is LAN, if x_{i} and x_{i+1} are both atomic, left $\left(x_{i}, \gamma\left(x_{i}\right)\right)$ and left $\left(x_{i+1}, \gamma\left(x_{i+1}\right)\right)$ do not change when y is obtained from x. We conclude that $\omega(x)=$ $\omega(y)$. If x and y differ by a $2 \underline{143}$ to $2 \underline{413}$ move or a $3 \underline{142}$ to $3 \underline{412}$ move, then the 4 cannot be the leader atom of the 1 since the left witness cannot exist by Lemma 2.6.21. Similarly, if x and y differ by a $4 \underline{132}$ to $4 \underline{312}$ move, the 3 cannot be the leader atom of the 1 since the left witness (the 4) cannot exist by Lemma 2.6.21. Thus all moves preserve $\operatorname{left}\left(b_{j}, \gamma\left(b_{j}\right)\right)$ for $0 \leq j \leq k$, i.e. $\omega(x)=\omega(y)$. This completes the proof of the backwards direction.

Proposition 2.6.25. Fix $p \in \mathcal{R S P}{ }_{n}$. Let q be the inner Dyck path of p. Suppose that the principal order ideal of z in $P_{\tau}(q)$ is $\left[m_{0}, M_{0}\right]$. If $\left[m_{0}, M_{0}\right]$ contains at least one range atom, then let A be the set of all range atoms numerically less than m_{0} and let A be empty if $\left[m_{0}, M_{0}\right]$ contains no range atoms. Let b_{w} be the (numerically) largest atom in [m_{0}, M_{0}]. Let B be $\left\{\gamma_{p}\left(b_{w}\right)\right\}$ if b_{w} is not a range atom and let B be empty if b_{w} is a range atom. The principal order ideal of z in $P_{\omega}(p)$ is $A \cup\left[m_{0}, M_{0}\right] \cup B$.

Proof. Every element e in [m_{0}, M_{0}] satisfies $e<z$ in $P_{\omega}(p)$ by Proposition 2.4.23. If b_{w} is not a range atom, then by Lemma 2.6.18, $\operatorname{left}\left(b_{w}, \gamma\left(b_{w}\right)\right)=\gamma\left(b_{w}\right)$. By Lemma 2.6.9, there is a triangle in column a_{w+1}. By Definition 2.6.11, we conclude that $\gamma_{p}\left(b_{w}\right)<_{D E} b_{w}$. In other words, every element of B is in the principal order ideal of z in $P_{\omega}(p)$.

Suppose that $\left[m_{0}, M_{0}\right.$] contains at least one range atom. Let $b_{u_{0}}$ be the smallest such range atom. Let A consist of the atoms $b_{u_{0}}>b_{u_{1}}>\cdots>b_{u_{|A|-1}}$. By Lemma 2.6.19, $b_{u_{i}}<b_{u_{0}}$ for all $0<i \leq|A|-1$. In other words, every element of A is in the principal order ideal of z in $P_{\omega}(p)$.
Suppose that $e \in[n]$ and $e \notin A \cup\left[m_{0}, M_{0}\right] \cup B$. Assume for the sake of contradiction that $e<z$ in $P_{\omega}(p)$. Then there will exist a chain consisting of $N N, N E, N E E$, and $D E$ relations $e<y_{1}<y_{2}<\cdots y_{n}<z$. Let i be the largest index such that $y_{i} \notin A \cup\left[m_{0}, M_{0}\right] \cup B$. If $y_{i}<_{N E} y_{i+1}$ or $y_{i}<_{N N} y_{i+1}$, we have a contradiction since $y_{i}<z$ by Proposition 2.4.23. Therefore, y_{i} and y_{i+1} have to be atoms.
If $y_{i}<_{D E} y_{i+1}$, we know that $\gamma_{p}\left(y_{i+1}\right)=y_{i}$ and $y_{i}>y_{i+1}$. By Lemma 2.6.9 and Lemma 2.6.18, y_{i+1} is not a range atom and y_{i} is a range atom. Since A and B contain only range atoms, y_{i+1} must lie in $\left[m_{0}, M_{0}\right]$. We note that $y_{i+1} \leq b_{w}$. If $y_{i}>b_{w}$, then by Lemma 2.6.15, $\gamma_{p}\left(b_{w}\right)=y_{i}$. But then $y_{i}=\gamma_{p}\left(b_{w}\right) \in B$, which contradicts the assumption that $y_{i} \notin A \cup\left[m_{0}, M_{0}\right] \cup B$. If $y_{i} \leq b_{w}$, then $y_{i} \in\left[m_{0}, M_{0}\right]$, which contradicts the assumption that $y_{i} \notin A \cup\left[m_{0}, M_{0}\right] \cup B$.
If $y_{i}<_{N E E} y_{i+1}$, we know that $\gamma_{p}\left(y_{i}\right)=y_{i+1}$ and $y_{i}<y_{i+1}$. By Lemma 2.6.9 and Lemma 2.6.18, y_{i} is a range atom and y_{i+1} is a range atom. If y_{i+1} is in A or $\left[m_{0}, M_{0}\right]$, we have a contradiction because then y_{i} is in A or $\left[m_{0}, M_{0}\right]$. If y_{i+1} is in B, we have a contradiction because then y_{i} is in $\left[m_{0}, M_{0}\right.$].
We conclude that no such i can exist, thus for all $e \notin A \cup\left[m_{0}, M_{0}\right] \cup B$, e is not in the principal order ideal of z in $P_{\rho}(p)$.

Theorem 2.6.26. Fix $p \in \mathcal{R S} \mathcal{P}_{n}$. Then $P_{\omega}(p)$ is regularly labeled.
Proof. Suppose that $x<z$ in $P_{\omega}(p)$. In other words (by Proposition 2.6.25), suppose $x \in A \cup\left[m_{0}, M_{0}\right] \cup B$.
If $x \in\left[m_{0}, M_{0}\right]$ then any y numerically between x and z will satisfy $y<z$ by Remark 2.4.25.

Suppose B is nonempty, and let b_{w} be the largest atom in [m_{0}, M_{0}], necessarily a nonrange atom. If $x \in B$, then $x>z$. Suppose y satisfies $x>y>z$. If y is atomic, then by Lemma 2.6.15, $\gamma_{p}(y)=x$. By Lemma 2.6.16, $x<_{D E} y$. If y is decreasing or $N E E^{+}$, then the principal order ideal of y in $P_{\tau}(q)$ contains at least one atom numerically bigger than y. If this atom happens to be x, we are done since $x<y$. Otherwise, call this atom b_{y}. But then, $b_{y}<y$, and by Lemma 2.6.15 and Lemma 2.6.16, $x<_{D E} b_{y}$, so we conclude that $x<y$ by transitivity. If y is increasing, then the principal order ideal of y in $P_{\tau}(q)$
contains at least one atom numerically smaller than y. If this atom happens to be b_{w}, we are done because $x<_{D E} b_{w}<y$. Otherwise, call this atom b_{y}. But then, $b_{y}<y$, and by Lemma 2.6.15 and Lemma 2.6.16, $x<_{D E} b_{y}$, so we conclude that $x<y$. Thus, in all cases, y will satisfy $x<y$.
Suppose A is nonempty. If $x \in A$, then $x<z$ and x is a range atom. Suppose y satisfies $x<y<z$. If y is a range atom, then we are done because then $y \in A$ and therefore $y<z$ by Proposition 2.6.25. If y is a non-range atom, then by Lemma 2.6.15, its leader atom will be a range atom numerically bigger than x and in A. By Lemma 2.6.19, we see that $x<y$. If y is decreasing or $N E E^{+}$, then the principal order ideal of y in $P_{\tau}(q)$ contains at least one atom numerically bigger than y. Either this atom or its leader atom is a range atom bigger than x. By Lemma 2.6.19 and transitivity, we find that $x<y$. If y is increasing, then the principal order ideal of y in $P_{\tau}(q)$ contains at least one atom numerically smaller than y. If the smallest such atom happens to be x, we are done. Otherwise, call this atom b_{y}. But then, $b_{y}<y$, and by Lemma 2.6.19, $x<b_{y}$, so we conclude that $x<y$. Thus, in all cases, y will satisfy $x<y$.

In light of Theorem 2.2.12, we get the following corollary.
Corollary 2.6.27. The fibers of ω are intervals in the weak order.
See Figure 2.15 for an example of fibers. By applying transitivity to the cover relations within a fiber, we get the following corollary.

Proposition 2.6.28. ω is constant on equivalence classes of $\Theta_{2 \underline{143}, 3 \underline{142}, \underline{13} 2,1 \underline{24} 3_{\text {LAN }}}$.
Proposition 2.6.29. The equivalence classes of $\Theta_{2 \underline{143}, 3 \underline{142}, \underline{132} 2,1 \underline{2} \underline{3_{L A N}}}$ correspond with the fibers of ω.

Proof. By the previous proposition, the fibers are unions of equivalence classes. By Theorem 2.3.2, Theorem 2.6.14, and Proposition 2.3.14, the number of classes is equal to the number of fibers, thus we conclude that the classes and fibers coincide.

Corollary 2.6.30. Fix a fiber of ω. A permutation is the top element of a fiber of ω if and only if it is an element of $S_{n}\left(2 \underline{14} 3,3 \underline{14} 2,4 \underline{13} 2,1 \underline{24} 3_{\text {LAN }}\right)$ patterns. A permutation is the bottom element of a fiber of ω if and only if it is an element of $S_{n}\left(2 \underline{413}, 3 \underline{412}, 4 \underline{312}, 1 \underline{42} 3_{\text {LAN }}\right)$ patterns.

Proof. This is an immediate consequence of Corollary 2.6.27, Proposition 2.6.24, and Proposition 2.6.29.

The previous propositions give us a bijection.
Corollary 2.6.31. The restriction of ω to the top elements of its fibers is a bijection between the elements of $S_{n}\left(\underline{13} 2,3 \underline{142}, 2 \underline{143}, 1 \underline{44} 3_{\text {LAN }}\right)$ and $\mathcal{R S P}{ }_{n}$. The restriction of ω to the bottom elements of its fibers is a bijection between the elements of $S_{n}\left(\underline{312}, 3 \underline{412}, 2 \underline{413}, 1 \underline{42} 3_{\text {LAN }}\right)$ and $\mathcal{R S P}{ }_{n}$.

Now we show that this bijection can be used to construct an explicit bijection between $I_{n}\left(e_{i}>e_{j} \leq e_{k}\right)$ and $\mathcal{R S P}{ }_{n}$.

Definition 2.6.32. Let $\operatorname{MIAv}_{n}=S_{n}\left(4 \underline{132}, 3 \underline{142}, 2 \underline{14} 3,1 \underline{24} 3_{\text {LID }}\right)$ be the set of permutations avoiding the vincular patterns $4 \underline{132}, 3 \underline{142}, 2 \underline{143}$ and LID $1 \underline{24} 3$ patterns.

Definition 2.6.33. Let $\mathrm{IAv}_{n}=S_{n}\left(\underline{13} \underline{3} 2,3 \underline{142}, 2 \underline{143}, 1 \underline{24} 3_{\text {LAN }}\right)$ be the set of permutations avoiding the vincular patterns $4 \underline{132}, 3 \underline{142}, 2 \underline{143}$ and LAN $1 \underline{243}$ patterns.

Since $1 \underline{24} 3_{L A N}$ patterns are by definition instances of $1 \underline{24} 3_{\text {LID }}$ patterns, we get the following lemma.

Lemma 2.6.34. $\mathrm{MIAv}_{n} \subseteq \operatorname{IAv}_{n}$.
Recalling Definition 2.2.21, let I_{n}^{R} be the set of reversed inversion sequences and $L: S_{n} \rightarrow$ I_{n}^{R} be the bijection between permutations and Lehmer codes.

Proposition 2.6.35. $L^{-1}\left(I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)\right) \subseteq \operatorname{MIAv}_{n}$
Proof. Fix $\mathbf{e}=\left(e_{1}, \cdots, e_{n}\right) \in I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)$ and let $x \in S_{n}$ be the unique permutation such that the Lehmer code of x is \mathbf{e}. Assume for the sake of contradiction that x has one of the forbidden four subpatterns of MIAv_{n}. Suppose the forbidden subpattern is $x_{i} x_{j} x_{k} x_{m}$. Suppose that the forbidden subpattern is of type $4 \underline{132}, 3 \underline{142}$, or $2 \underline{143}$. We note that in all of these types, $x_{i}>x_{j}$. Since $x_{i}>x_{j}$, we see that $\left\{u \mid u>i\right.$ and $\left.x_{u}<x_{i}\right\} \supseteq$ $\left\{u \mid u>j\right.$ and $\left.x_{u}<x_{j}\right\}$. Or in other words, by definition of Lehmer code, $e_{i} \geq e_{j}$. If the forbidden subpattern is of type $1 \underline{24} 3_{\text {LID }}$, then by definition, $e_{i} \geq e_{j}$.
Since x_{j} and x_{k} form an ascent, we find that
$\left\{u \mid u>j\right.$ and $\left.x_{u}<x_{j}\right\} \subseteq\left\{u \mid u>k\right.$ and $\left.x_{u}<x_{k}\right\}$, or in other words, $e_{j} \leq e_{k}$. We note
that in all types, $x_{j}<x_{m}<x_{k}$. This implies that $m \in\left\{u \mid u>k\right.$ and $\left.x_{u}<x_{k}\right\}$ and $m \notin\{u \mid$ $u>j$ and $\left.x_{u}<x_{j}\right\}$, so we conclude that $e_{j}<e_{k}$. Thus in all four types of subpatterns, we have an instance of the pattern $e_{i} \geq e_{j}<e_{k}$, which contradicts $\mathbf{e} \in I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)$. This gives the desired result.

Corollary 2.6.36. $\operatorname{IAv}_{n}=L^{-1}\left(I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)\right)$
Proof. We note that $\operatorname{IAv}_{n} \supseteq L^{-1}\left(I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)\right)$ by Proposition 2.6.35 and Lemma 2.6.34. By Corollary 2.3.2, Corollary 2.6.31, and Theorem 2.3.14, the two sets have the same size so are equal.

Corollary 2.6.37. The map ω restricts to a bijection between $L^{-1}\left(I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)\right)$ and $\mathcal{R S P}{ }_{n}$.

Proof. This follows from Theorem 2.6.27, Corollary 2.6.30, and Corollary 2.6.36.
Corollary 2.6.38. $L^{-1}\left(I_{n}^{R}\left(e_{i} \geq e_{j}<e_{k}\right)\right)=\operatorname{MIAv}_{n}=\operatorname{IAv}_{n}$

2.7 Permutation and Dyck Path Statistics

Bijections between permutations and lattice paths that are statistic preserving give useful interpretations for bivariate generating functions. For instance, the Narayana numbers (a refinement of the Catalan numbers), nar $_{n, k}$, count the number of permutations in $S_{n}(231)$ with k descents and the number of Dyck paths of semilength n with $k E N$ factors (also called peaks). For a Dyck path q, let $E N(q)$ be the number of $E N$ factors in q.

Theorem 2.7.1 ([24], Chapter 2).

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{k \geq 0} \operatorname{nar}_{n, k} z^{n} t^{k} & =\sum_{n \geq 0} \sum_{w \in S_{n}(231)} z^{n} t^{\mathrm{des}(w)} \\
& =\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{E N(q)} \\
& =\frac{1+z(t-1)-\sqrt{1-2 z(t+1)+z^{2}(t-1)^{2}}}{2 z}
\end{aligned}
$$

Instead of considering $E N$ factors of Dyck paths, one can consider the $E E N$ and $N E E$ factors. For a Dyck path q, let $E E N(q)$ be the number of $E E N$ factors in q. Define $\operatorname{NEE}(q)$ analogously. Work of Barnabei et al. in conjuction with work of Bukata
et al. connects the joint distribution of semilength and nunber of $E E N$ factors to the joint distribution of permutation length and descents of $S_{n}(321)$.

Theorem 2.7.2 ([3, 10]).

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{w \in S_{n}(321)} z^{n} t^{\operatorname{des}(w)} & =\frac{1-\sqrt{1-4 z(1-z+t z)}}{2 z(1-z+t z)} \\
& =\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{E E N(q)}
\end{aligned}
$$

Petersen notes that $\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{N E E(q)}=\sum_{n \geq 0} \sum_{w \in S_{n}(231)} z^{n} t^{\mathrm{pk}(w)}$, where a peak of a permutation is an index i such that $x_{i-1}\left\langle x_{i}\right\rangle x_{i+1}$ [24, Chapter 4]. We can use Corollary 2.6.5 to give a different proof of the generating function for $N E E$ factors. Every $E E N$ factor of a Dyck path corresponds to an atomic label. The only other way to produce an atomic label is if the Dyck path begins with a $E N$ factor.

Theorem 2.7.3.

$$
\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{N E E(q)}=\frac{1+2 z(t-1)-\sqrt{1-4 z(1-z+t z)}}{2 z t}
$$

Proof. Let $A(z, t)$ stand for the generating function in Theorem 2.7.2. Every Dyck path either begins with $E N$ or $E E$, so we decompose $A(z, t)$ into these two parts.

$$
\begin{aligned}
A(z, t) & =\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{E E N(q)} \\
& =\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}, q=E N \ldots} z^{n} t^{E E N(q)}+\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}, q=E E \ldots} z^{n} t^{E E N(q)}
\end{aligned}
$$

By definition of atom, if the Dyck path begins with $E N, 1$ is an atom. For Dyck paths that begin with $E E$, the number of atoms is the number of $E E N$ factors. Thus,

$$
\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{\operatorname{atom}(q)}=t \cdot \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}, q=E N \ldots} z^{n} t^{E E N(q)}+\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}, q=E E \ldots} z^{n} t^{E E N(q)}
$$

We note that $\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}, q=E N \ldots} z^{n} t^{E E N(q)}=1+z A(z, t)$ because adjoining a $E N$ to the beginning of a Dyck path increases the semilength by 1 and does not change the number of $E E N$ factors. Thus, we can rewrite the equation as:

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{\operatorname{atom}(q)}=t(1+z A(z, t))+(A(z, t)-(1+z A(z, t))) \\
& \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{\operatorname{atom}(q)}=t-1+(1-z+t z) A(z, t)
\end{aligned}
$$

By Corollary 2.6.5, the number of atoms is one more than the number of $N E E$ factors.

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{N E E(q)}=\sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{\operatorname{atom}(q)-1} \\
& \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{N E E(q)}=\frac{1}{t} \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{\operatorname{atom}(q)} \\
& \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{N E E(q)}=\frac{t-1+(1-z+t z) A(z, t)}{t} \\
& \sum_{n \geq 0} \sum_{q \in \mathcal{D}_{n}} z^{n} t^{N E E(q)}=\frac{1+2 z(t-1)-\sqrt{1-4 z(1-z+t z)}}{2 z t}
\end{aligned}
$$

Since we can build $\mathcal{R S} \mathcal{P}_{n}$ by making a binary choice of transforming or not transforming each $N E E$ factor into a $D E$ factor, by plugging in $t=2$, we get another proof of Corollary 2.3.2.

Corollary 2.7.4.

$$
\sum_{n \geq 0} \sum_{p \in \mathcal{R S P} \mathcal{P}_{n}} z^{n}=\frac{1+2 z-\sqrt{1-4 z(1+z)}}{4 z}
$$

For $w \in S_{n}$, let $\operatorname{si32(w)}$ and $\sin (w)$ refer to the number of strong 132 patterns and strong 312 patterns respectively. For $w \in S_{n}$, let $\operatorname{al}(w)$ and $\operatorname{ar}(w)$ refer to the number of atoms (that have leader atoms) whose leader atoms are to their left and whose leader atoms are to their right respectively. The bijections of this paper then give a refinement of Theorem 2.7.3 with the substitution $t=x+y$.

Corollary 2.7 .5 .

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{p \in \mathcal{R S P} \mathcal{P}_{n}} z^{n} x^{N E E(p)} y^{D E(p)} & =\sum_{n \geq 0} \sum_{w \in \operatorname{Av}_{n}} z^{n} x^{s 132(w)} y^{s 312(w)} \\
& =\sum_{n \geq 0} \sum_{w \in \mathrm{IAv}_{n}} z^{n} x^{\operatorname{al}(w)} y^{\operatorname{ar}(w)} \\
& =\frac{1+2 z(x+y-1)-\sqrt{1-4 z(1-z+(x+y) z)}}{2 z(x+y)}
\end{aligned}
$$

We end by justifying the name Boolean-Catalan numbers. For fixed $q \in \mathcal{D} \mathcal{P}_{n}$, suppose q has $k N E E$ factors. Then there are 2^{k} elements of $\mathcal{R S P}{ }_{n}$ that have q as their inner Dyck path. Based on the poset constructions, this means that we can partition the fiber of $\tau^{-1}(q)$ into 2^{k} intervals in two different ways by looking at the fibers of ρ or the fibers of τ. See Figures 2.8, 2.11, and 2.15 for an example for $k=2$.

Chapter 3

The Hopf Algebra of Restricted Schröder Paths

3.1 Introduction

In this chapter, we describe the Hopf algebra structure on restricted Schröder paths that is induced from a known Hopf algebra structure on $S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{41} 32)$. We first define a Hopf algebra, describe the Malvenuto-Reutenauer Hopf algebra of permutations, and give some relevant lattice theory background.

Let \mathbb{K} be a fixed field. All unlabeled arrows in Figures 3.1-3.4 are the obvious isomorphisms. The map I denotes the identity map. A unital associative algebra is a vector space A over a field \mathbb{K} with a product map $m: A \otimes A \rightarrow A$ and another map $\mu: \mathbb{K} \rightarrow A$ that satisfies the commutative diagrams in Figure 3.1. A counital coassociative algebra is a vector space A over a field \mathbb{K} with a coproduct map $\Delta: A \rightarrow A \otimes A$ and another map $\epsilon: A \rightarrow \mathbb{K}$ that satisfies the commutative diagrams in Figure 3.2. Let $T: A \otimes A \rightarrow A \otimes A$ be the map defined by sending basis elements $a \otimes b \mapsto b \otimes a$ and extending linearly. A bialgebra is a vector space A over a field \mathbb{K} that is both a unital associative algebra and a counital coassociative algebra that satisfies the commutative diagrams in Figure 3.3. A Hopf algebra is a bialgebra A with an additional map $S: A \rightarrow A$ that satisfies the commutative diagrams in Figure 3.4. For our purposes, an vector space A is graded if it can be written as $A=\oplus_{n=0}^{\infty} A_{n}$ for a countably infinite family of vector spaces $\left\{A_{i}\right\}_{n=0}^{\infty}$. A graded vector space A can be turned into a graded algebra, by inducing a grading on $A \otimes A$ and a grading on \mathbb{K} and requiring that all of the relevant maps be graded maps.

The nth graded piece of $A \otimes A$ is the direct sum, $\oplus_{p+q=n} A_{p} \otimes A_{q}$. The field \mathbb{K} has the structure of a graded algebra with its 0th component being the one-dimensional \mathbb{K} and trivial component for all other components. A graded algebra is connected if A_{0} is isomorphic to \mathbb{K} as an algebra. By [14, Proposotion 1.4.14], every graded, connected Hopf algebra has an antipode. In this chapter, we consider combinatorial Hopf algebras, which are graded, connected Hopf algebras where the basis elements are a family of combinatorial objects.

Let the permutations of S_{n} serve as the basis for an $n!$-dimensional vector space $\mathbb{K}\left[S_{n}\right]$. We consider the graded vector space $\oplus_{n \geq 0} \mathbb{K}\left[S_{n}\right]$. The vector space $\oplus_{n \geq 0} \mathbb{K}\left[S_{n}\right]$ has a Hopf algebra structure known as the Malvenuto-Reutenauer Hopf algebra of permutations (abbreviated as $M R$). The Hopf algebra $M R$ is a connected, graded Hopf algebra. We now describe the necessary background to define the product and coproduct of $M R$.

Definition 3.1.1. Let $x=x_{1} \cdots x_{v} \in S_{v}$. For fixed $u \in \mathbb{N}$, let $x_{[u]}^{\prime}=\left(x_{1}+u\right) \cdots\left(x_{v}+u\right)$ be the shift of x by u. A permutation $z \in S_{n}$ is a shifted shuffle of $x \in S_{u}$ and $y \in S_{v}$ if $u+v=n$ and x and $y_{[u]}^{\prime}$ are subsequences of z.

Definition 3.1.2. We define the product on $M R$ by describing how it acts on basis elements $x \otimes y$ for $x \in S_{u}$ and $y \in S_{v}$. The general product is then found by extending linearly. Sometimes, we abbreviate $m(x \otimes y)$ as $x \bullet_{M R} y$. The product $x \bullet_{M R} y$ is defined as the sum (formal linear combination) of all shifted shuffles of x and y.

To define the coproduct on MR, we make use of the following definition.
Definition 3.1.3. The map st takes a sequence $v_{1}, v_{2}, \cdots v_{p}$ of p distinct positive numbers and produces the unique permutation $w=w_{1}=w_{1} w_{2} \cdots w_{p} \in S_{p}$ where $w_{i}<w_{j}$ iff $v_{i}<v_{j}$. The resulting permutation is called the standardization of the resulting sequence.

Definition 3.1.4. The coproduct in the Hopf algebra MR is then defined on basis elements $w \in S_{n}$ as

$$
\Delta_{\mathrm{MR}}(w)=\sum_{i=0}^{n} \operatorname{st}\left(w_{1}, \cdots, w_{i}\right) \otimes \operatorname{st}\left(w_{i+1}, \cdots w_{n}\right)
$$

To describe the product of our desired Hopf algebra, we will need some lattice theory. We recall that S_{n} has a poset structure known as the weak order, described in Definition 2.2.5. We now give definitions and results from lattice theory.

Figure 3.1: Unital associative algebra commutative diagrams

Figure 3.2: Counital coassociative algebra commutative diagrams

Figure 3.3: Bialgebra commutative diagrams

Figure 3.4: Hopf algebra commutative diagram

Definition 3.1.5. Given a subset C of a finite poset (P, \leq), an upper bound of C is an element M such that $M \geq c$ for all $c \in C$. A least upper bound or join of a set C is a unique upper bound M of C such that $M \leq M^{\prime}$ for any upper bound M^{\prime} of C. The notions of greatest lower bound and meet are defined analogously. If the join and meet exist for every subset of P, then P is called a lattice. The join of one-element subsets $\{x\}$ and $\{y\}$ is usually notated $x \vee y$ and the meet as $x \wedge y$.

Definition 3.1.6. A lattice congruence is an equivalence relation Θ on L such that if $x_{1} \equiv x_{2}(\Theta)$ and $y_{1} \equiv y_{2}(\Theta)$, then $x_{1} \vee y_{1} \equiv x_{2} \vee y_{2}(\Theta)$ and $x_{1} \wedge y_{1} \equiv x_{2} \wedge y_{2}(\Theta)$.

Definition 3.1.7. A quotient lattice L / Θ is defined as the partial order on equivalence classes of Θ where one class C_{1} is less than another class C_{2} if and only if there exist representatives $x \in C_{1}$ and $y \in C_{2}$ such that $x \leq y$.

Theorem 3.1.8. [25, Proposition 9-5.2] An equivalence relation Θ on a finite lattice L is a lattice congruence if and only if the following three conditions hold.

- Each equivalence class is an interval in L.
- The map $\pi_{\downarrow}^{\Theta}$ mapping each element to the bottom element of its equivalence class is order preserving.
- The map π_{\uparrow}^{Θ} mapping each element to the top element of its equivalence class is order preserving.

Given a lattice congruence Θ on a lattice L, one can consider the induced subposet $\pi_{\downarrow}^{\Theta}(L)$ of bottom elements of congruence classes.

Theorem 3.1.9. [25, Proposition 9-5.5] If L is a finite lattice and Θ is a congruence on L, then $\pi_{\downarrow}^{\Theta}(L)$ is a lattice isomorphic to the quotient lattice L / Θ.

The weak order is known to be a lattice [29, Chapter 3]. Björner and Wachs showed that the set $S_{n}(\underline{312)}$) is isomorphic to the famous Tamari lattice [8]. However, it can also be seen by applying Theorem 3.1.9 to the lattice congruence Θ_{312}. The equivalence relation $\Theta_{2 \underline{413}, 3 \underline{412,4123,4132}}$ is a lattice congruence. Thus, the weak order on its bottom elements is a lattice. In the next section, we work out the lattice structure on restricted Schröder paths induced by the bijection between $S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{4132})$ and $\mathcal{R S P}_{n}$. This lattice structure will help describe the Hopf algebra product on the set of restricted Schröder paths. The combinatorics surrounding $\tau, S_{n}(\underline{312)}$, and Dyck paths is similar. We now describe the analogous results for Dyck paths.

The Tamari lattice can be realized using Dyck paths. The cover relations for this realization of the Tamari lattice are given in [9, Definition 1]. We translate the results of [9] into our conventions. More specifically, we illustrate how the covers are suggested by the lattice theory of the quotient lattice S_{n} / Θ_{312}. The covers for the Tamari lattice are as follows. Let q be a fixed Dyck path. Consider a $N N$ factor of the Dyck path. Draw a line segment of slope 1 starting at the south extremity of the upper N step and travel southwest until it touches q again. Construct q^{\prime} from q by shifting up the portion of the path cut off by the segment by one (This portion of the path fits in a triangular envelope). See Figure 3.5 for an example. A Dyck path q^{\prime} satisfies $q^{\prime} \lessdot q$ iff there exists a $N N$ factor and segment that transforms q into q^{\prime} in this way.

We recall the following useful proposition [19, Proposition 1.2.2], which is a special case of [26, Proposition 2.2] for finding the cover relations for a lattice obtained from a congruence on the weak order. Let $\pi_{\downarrow}: S_{n} \rightarrow S_{n}$ be the map that takes a permutation to the unique avoider of its congruence class.

Proposition 3.1.10. Given Θ, a congruence on the weak order of S_{n}, and $x \in S_{n}$, the map $y \rightarrow[y]_{\Theta}$ restricts to a one-to-one correspondence between elements of the quotient lattice S_{n} / Θ covered by $\pi_{\downarrow}(x)$ and elements of $A v_{n}$ covered by $[x]_{\Theta}$.

Since covers in the weak order are determined by descents, applying the previous proposition to $\Theta_{\underline{312}}$ and the description of covers in the Tamari lattice yields the following

Figure 3.5: The elements covered by $\tau(146532)$ in the Tamari lattice, $\tau(146523) \lessdot$ $\tau(146532), \tau(146352) \lessdot \tau(146532), \tau(145632) \lessdot \tau(146532)$
geometric way to intrinsically "see" descents in a Dyck path.
Corollary 3.1.11. Fix $q \in \mathcal{D}_{n}$. For a given Dyck path, let $\tau_{A v}^{-1}(q)$ be the unique 312 avoider that maps to it under τ. The descents of $\tau_{A v}^{-1}(q)$ are in one-to-one correspondence with the $N N$ factors of q.

Let $\oplus_{n \geq 0} \mathbb{K}\left[S_{n}(\underline{312})\right]$ be the vector space with basis $\cup_{n=0}^{\infty} S_{n}(\underline{312})$. In [26, Section 9], Reading shows that $\oplus_{n \geq 0} \mathbb{K}\left[S_{n}(\underline{312})\right]$ embeds as a sub-Hopf algebra of MR. Reading describes the product $\bullet 312$ (on basis elements) in this sub-Hopf algebra in a compact way. For $x \in S_{u}$ and $y \in S_{v}$, the product is

$$
x \bullet_{312} y=\sum\left[x y_{[u]^{\prime}}, \pi_{\downarrow}^{\Theta_{312}}\left(y_{[u]^{\prime}}^{\prime} x\right)\right]
$$

where $x y_{[u]}^{\prime}$ means concatenation of permutations and $\sum[$,] means take the sum (formal linear combination) of all elements in the interval (of the lattice S_{u+v}). The coproduct of this sub-Hopf algebra is given by taking the ordinary $M R$ coproduct on basis elements of $S_{n}(312)$ and then canceling terms that do not belong to $\mathbb{K}\left[S_{n}(312)\right] \otimes \mathbb{K}\left[S_{n}(312)\right]$.

One can use bijections between $S_{n}(312)$ and other families of combinatorial objects to produce isomorphic Hopf algebras that have cancellation-free formulas for the product and coproduct. Law and Reading do this in [20], by describing a Hopf algebra structure on the set of planar binary trees. Similarly, we can use the τ to help define a Hopf algebra
structure on the set of Dyck paths. This Hopf algebra structure essentially appears in work of Lopez N. et. al [23]. Suppose that $q_{1} \in \mathcal{D} \mathcal{P}_{u}$ and $q_{2} \in \mathcal{D} \mathcal{P}_{v}$ with $\tau(x)=q_{1}$ and $\tau(y)=q_{2}$. Then,

$$
q_{1} \bullet_{D P} q_{2}=\sum\left[\tau\left(x y_{[u]^{\prime}}\right), \tau\left(y_{[u]^{\prime}} x\right)\right] .
$$

To describe the product intrinsically, we borrow the following notation from [23, Definition 2.2].

Definition 3.1.12. Let $q_{1} \in \mathcal{D} \mathcal{P}_{u}$. And suppose that the word for q_{1} ends with $E \underbrace{N \cdots N}_{k}$. Let $q_{2} \in \mathcal{D} \mathcal{P}_{v}$. The i th concatenation (for $0 \leq i \leq k$) of q_{1} and q_{2} is defined to be the path in $\mathcal{D} \mathcal{P}_{u+v}$ corresponding to the word where we take the word for q_{2} and insert it before the i th rightmost N of the word for q_{1}.

One can check that the path $\tau\left(x y_{[u]^{\prime}}\right)$ is the 0th concatenation of $\tau(x)$ and $\tau(y)$ and that the path $\tau\left(y_{[u]^{\prime}} x\right)$ is the k th concatenation of $\tau(x)$ and $\tau(y)$.

Proposition 3.1.13. Let $q_{1} q_{2}^{\prime}$ be the 0th concatenation of the paths. Let $q_{2}^{\prime} q_{1}$ be the k th concatenation of the paths. The product of q_{1} and q_{2} then is the sum over all elements of the interval $\left[q_{1} q_{2}^{\prime}, q_{2}^{\prime} q_{1}\right]$.

In this chapter, we describe the analogous story for $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{4132})$ and $\mathcal{R S P}_{n}$. In Section 3.2, we use ρ to impose a lattice structure on $\mathcal{R S P}{ }_{n}$. The main tool to do this is Proposition 3.1.10. In Section 3.3, we use ρ to describe the product on the Hopf Algebra structure $\oplus_{n \geq 0} \mathbb{K}\left[\mathcal{R S} \mathcal{P}_{n}\right]$.

3.2 Cover Relations

We recall from Section 2.5, that $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{41} 32)$ can be realized as the lower elements of the congruence $\Theta_{2 \underline{413,3412,4123,4132}}$. By [26], $\Theta_{2 \underline{413,3412,4123, \underline{4132}}}$ is a lattice congruence of the weak order. We use ρ to define a lattice structure on $\mathcal{R S P}{ }_{n}$. Specifically, ρ gives a bijection between the quotient lattice S_{n} / Θ and $\mathcal{R S} \mathcal{P}_{n}$. We seek to understand the cover relations in this lattice. We now make some definitions in order to state our main result describing the cover relations.

Definition 3.2.1. Fix an element $p \in \mathcal{R S P} \mathcal{P}_{n}$. Let q be the inner Dyck path of p as defined in Definition 2.2.19. Consider a fixed $N N$ factor of q. Suppose the lower N step of the factor is labeled with c. We call the $N N$ factor stable if the west extremity of the east step labeled with c is not the northeast extremity of a diagonal step in p.

Remark 3.2.2. The phrase stable $N N$ factor is a bit ambiguous because the $N N$ factor is part of the inner Dyck path q, but to figure out if it is stable, we must look at p. For instance, the N of a ND factor of p is the lower N of a $N N$ factor of q. For the rest of the section, we will use the phrase "stable $N N$ factor of p " to mean a NN factor of q that is stable with respect to p.

Theorem 3.2.3. Fix $p_{1} \in \mathcal{R S} \mathcal{P}_{n}$. The elements p_{2} that are covered by p_{1} are governed by the stable $N N$ factors and diagonal steps of p_{1}. Specifically, for a fixed stable $N N$ factor labeled with (c, d), consider the segment connecting the upper extremity of the north step labeled by c and the western extremity of the east step labeled by c. Then there exists a path $p_{2} \in \mathcal{R S P}{ }_{n}$ with $p_{2} \lessdot p_{1}$, where:

- (Triangle Neutral) If c is triangle-free and not the middle E of an EEE factor, construct p_{2} from p_{1} by shifting the portion of the path cut off by the segment up by one.
- (Triangle Create) If c is triangle-free and the middle E of an EEE factor, construct p_{2} from p_{1} by shifting the portion of the path cut off by the segment by one, and add a triangle in column c.
- (Triangle Shift) If c is triangle-positve, construct p_{2} from p_{1} by shifting up the portion of the path cut off by the segment by one and shift up the triangle in column c by one.

For a fixed diagonal step of p_{1},

- (Triangle Destroy) Suppose there is a diagonal step in a column of p_{1}. Construct p_{2} by transforming the DE factor to a NEE factor.

See Figure 3.6 for an example. Triangle shift, triangle neutral, and triangle create covers will also lose boxes with the same label. Triangle destroy covers will not lose boxes. The logic in this section towards proving Theorem 3.2.3 also produces the following result.

Figure 3.6: A triangle shift cover $\rho(643215) \lessdot \rho(643251)$, a triangle neutral cover $\rho(634251) \lessdot \rho(643251)$, a triangle create cover $\rho(642351) \lessdot \rho(643251)$, and a triangle destroy cover $\rho(\mathbf{4 6 3 2 5 1}) \lessdot \rho(\mathbf{6 4 3 2 5 1})$. Note that the $N N$ factor labeled with $(6,5)$ is not stable, so does not correspond with a cover.

Theorem 3.2.4. Fix $p \in \mathcal{R S P}_{n}$. Suppose $\rho(x)=p$ with $x \in S_{n}(2 \underline{41} 3,3 \underline{41} 2, \underline{41} 23, \underline{4132})$. The descents of x are in one-to-one correspondence with the set consisting of the union of the stable $N N$ factors and diagonal steps of p.

We will use Proposition 3.1.10 to prove Theorem 3.2.3. Our first task is to describe the descents of elements of $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{4132})$.
For a fixed $w \in S_{n}$ written in one-line notation as $w=w_{1} \cdots w_{n}$, descents are classically defined as indices i such that $w_{i}>w_{i+1}[29$, Section 1.4]. In this section, we will find it useful to define descents as follows.

Definition 3.2.5. For a fixed $w=w_{1} \cdots w_{n} \in S_{n}$, a descent is a pair $\left(w_{i}, w_{i+1}\right)$ such that $w_{i}>w_{i+1}$.

Definition 3.2.6. For a fixed $w=w_{1} \cdots w_{n} \in S_{n}$, a Dyck descent is a descent $\left(w_{i}, w_{i+1}\right)$ such that $\left(w_{i}, w_{i+1}\right)$ is also a Dyck inversion.

We remind the reader of the notation from Definition 2.4.7 and Proposition 2.4.11. For fixed y_{i+1}, let $M_{y_{i+1}}=M$ as in Proposition 2.4.11.
We see that there is one type of cover in the Tamari lattice. On the level of Dyck paths, we are losing boxes with the same label as we go down. The lattice $\mathcal{R S} \mathcal{P}_{n}$ will turn out
to have four types of covers as given in the Theorem 3.2.3. The proof of Theorem 3.2.3 appears at the end of this section.
In light of Proposition 3.1.10, we characterize the descents of elements in $S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{4132})$. We remind the reader of Definition 2.5.5.

Lemma 3.2.7. Fix an avoider $y \in S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{1132})$. Each descent $\left(y_{i}, y_{i+1}\right)$ of y fits into exactly one of the following six cases. If $\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion, let $M=M_{y_{i+1}}$ be defined as in Proposition 2.4.11.

- $y_{i}-y_{i+1} \geq 2$, $\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion, and y_{i} is the 2 of a strong 312 pattern
- $y_{i}-y_{i+1} \geq 2,\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion, y_{i} is not the 2 of a strong 312 pattern, $M>y_{i}$
- $y_{i}-y_{i+1} \geq 2$, $\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion, y_{i} is not the 2 of a strong 312 pattern, $M=y_{i}$
- $y_{i}-y_{i+1}=2$ and $\left(y_{i}, y_{i+1}\right)$ is not a Dyck inversion
- $y_{i}-y_{i+1}=1$ and $\left(y_{i}+1, y_{i}\right)$ is an inversion
- $y_{i}-y_{i+1}=1$ and $\left(y_{i}+1, y_{i}\right)$ is not an inversion

Proof. We note that if $y_{i}-y_{i+1}>2$ and $\left(y_{i}, y_{i+1}\right)$ is not a Dyck inversion, then we will have a forbidden pattern where the y_{i} is the $4, y_{i+1}$ is the 1 , and the witness for not being a Dyck inversion is the 2 or 3 . But this contradicts $y \in S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{41} 23, \underline{41} 32)$. The Lemma follows by considering the remaining possibilities of $y_{i}-y_{i+1}$.

We organize the types of stable $N N$ factors using in the following Lemma. We remind the reader of Definition 2.5.4.

Lemma 3.2.8. Fix an element $p \in \mathcal{R S P}_{n}$. We can classify stable $N N$ factors of p as follows. For a fixed $N N$ factor, let E_{0} be the corresponding east step in q as defined in Definiton 3.2.1. Suppose E_{0} lies in the column c. Then in q, E_{0} is preceded by a step A and succeeded by a step B. Each stable $N N$ factor of p falls into exactly one of the following five cases.

- $A=E, B=N$
- $A=E, B=E$
- $A=N, B=N, c$ is triangle-free
- $A=N, B=E, c$ is triangle-free
- $A=N, B=E, c$ is triangle-positive

Proof. We note that $A=N, B=N, c$ is triangle-positive is impossible since D steps must be followed by E steps. The lemma follows by considering the remaining cases.

Theorem 3.2.9. Let $x \in S_{n}\left(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{4132)}\right.$) and $p \in \mathcal{R S} \mathcal{P}_{n}$ with $\rho(x)=p$. Then (c, d) is a Dyck descent of x if and only if there exists a stable $N N$ factor of p labeled with (c, d)

Proof. We note that by Proposition 2.4.15 and the definitions of box and edge labelings, that a stable $N N$ factor of p is labeled by (c, d) if and only if the lowest box in column c is labeled with d.

Suppose (c, d) is a Dyck descent of x. By Proposition 2.4.16, there exists a box in column c labeled with d. Assume by way of contradiction that the north step labeled by c is succeeded by an east step (labeled by e). By definition of box labeling and Proposition 2.4.16, there will be a box labeled d in column e, i.e. (e, d) is a Dyck inversion, so in particular e is to the left of d. But since c and e label a $N E$ factor, e should be to the right of c by Definition 2.4.17 and Proposition 2.4.21. But if (c, d) form a descent, then e is also to the right of d, which is a contradiction. Therefore, the north step labeled by c is succeeded by a north step, and by definition of edge labeling, will be labeled with d. The $N N$ factor labeled by (c, d) is stable because otherwise $d=c-1$ and $(c)(c-2)(c-1)$ would form a strong 312 pattern contradicting the fact that c and $d=c-1$ are adjacent.

Suppose there exists a stable $N N$ factor labeled by (c, d). By Proposition 2.4.16, (c, d) is a Dyck inversion. Suppose $y=y_{1} \cdots y_{n}$. Let $c=y_{i}$ and $d=y_{k}$ with $i<k$. Assume for the sake of contradiction that $\left(y_{i}, y_{k}\right)$ is not a descent of x. Then the set $F_{y_{i}}=\left\{y_{j} \mid i<j<k\right\}$ is nonempty.

Assume for the sake of contradiction that $y_{i+1}<y_{i}$. Suppose that $\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion. If $y_{i+1}<y_{k}$, then y_{k} serves as a witness for $\left(y_{i}, y_{i+1}\right)$ not being a Dyck inversion, which is a contradiction. If $y_{i+1}>y_{k}$, there would be a box labeled y_{i+1} in column y_{i} by Proposition 2.4.16. However, then by Proposition 2.4.15, we contradict the assumption
the lowest box in column $c=y_{i}$ is labeled with $d=y_{k}$. Therefore, $\left(y_{i}, y_{i+1}\right)$ is a non-Dyck inversion, i.e there exists a y_{l} with $l>i+1$ and $y_{i+1}<y_{l}<y_{i}$. Since $\left(y_{i}, y_{i+1}\right)$ is not a Dyck inversion, $y_{i}-y_{i+1}>1$. If $y_{i}-y_{i+1}=2$, then $y_{i+1}=y_{i}-2$. Since $\left(y_{i}, y_{i+1}\right)$ is not a Dyck inversion, $y_{i}-1$ must occur to the right of $y_{i}-2$. This implies that $y_{i}\left(y_{i}-2\right)\left(y_{i}-1\right)$ is a strong 312 pattern and that there must be a triangle in column $\left(y_{i}-1\right)$. Since diagonal steps must be followed by east steps, the northeast corner of the diagonal step must coincide with the western corner of the step labeled with y_{i}. But this contradicts the stability of the considered $N N$ factor. If $y_{i}-y_{i+1} \geq 3$, then there exists an element y_{m} such that $y_{m} \in\left\{y_{j} \in \mathbb{Z} \mid y_{i+1}<y_{j}<y_{i}\right\} \backslash y_{l}$. No matter where y_{m} lies in the permutation, y_{i} will be the 4 and y_{i+1} will be the 1 of a forbidden pattern where the y_{m}, y_{l} play the roles of the 2,3 . Thus, we have a contradiction no matter what the difference $y_{i}-y_{i+1}$ is, thus we conclude that $y_{i+1}>y_{i}$.

Assume for the sake of contradiction that $y_{k-1}>y_{k}$. Suppose that $y_{k-1}>y_{i}$ and $\left(y_{k-1}, y_{k}\right)$ is not a Dyck inversion. Then there exists a y_{m} with $m>k$ and $y_{k}<y_{m}<y_{k-1}$. Then the y_{k-1} will serve as the 4 and the y_{k} will serve as the 1 of a forbidden pattern where the y_{m} and y_{i} serve as the 2 and the 3 . Suppose that $y_{k-1}>y_{i}$ and $\left(y_{k-1}, y_{k}\right)$ is a Dyck inversion. Let E_{0} be the east step labeled with y_{i}. Let B be the step immediately succeeding E_{0} and M be the rightmost column left of the stable $N N$ factor. If $B=N$, we have a contradiction because $M=y_{i}$ implies that the rightmost column with a box labeled y_{k} is y_{i}, so there can be no box labeled y_{k} in column y_{k-1}. If $B=E$, then Lemma 2.4.10 implies that $y_{i}+1$ is to the left of y_{i}. However this implies that the lowest box in column $\left(y_{i}+1\right)$ is labeled with y_{i}. Furthermore, every column between column $\left(y_{i}+1\right)$ and column M must have a box labeled y_{i} underneath the box labeled y_{k} by definition of box and edge labeling. In particular, by Proposition 2.4.16, $\left(y_{k-1}, y_{i}\right)$ should be a Dyck inversion. However, this is a contradiction because $\left(y_{k-1}, y_{i}\right)$ is not even an inversion. Suppose that $y_{k}<y_{k-1}<y_{i}$. Then $\left(y_{i}, y_{k-1}\right)$ must be an inversion but not a Dyck inversion (otherwise the lowest box in column y_{i} would not be labeled y_{k}). Thus, there exists a y_{l} with $l>k-1$ such that $y_{k-1}<y_{l}<y_{i}$. But then y_{l} also satisfies $y_{k}<y_{l}<y_{i}$, i.e. it serves as a witness for $\left(y_{i}, y_{k}\right)$ not being a Dyck inversion, which is a contradiction. Thus, we conclude that $y_{k-1}<y_{k}$.

We know by the previous two paragraphs, that $y_{i+1}>y_{i}>y_{k}$ and $y_{k-1}<y_{k}$. Therefore, there is some rightmost descent $\left(y_{u}, y_{u+1}\right)$ in $F_{y_{i}}$ such that $y_{u}>y_{k}$ and $y_{u+1}<y_{k}$. Since $y_{u+1}<y_{k}<y_{u}, y_{k-2}-y_{k-1}>1$. Suppose that $y_{u}-y_{u+1} \geq 3$. Then there exists a $y_{l} \in\left\{y_{j} \in\right.$
$\left.\mathbb{Z} \mid y_{u+1}<y_{j}<y_{u}\right\} \backslash y_{k}$. But then the y_{u} will serve as the 4 and the y_{u+1} will serve as the 1 of a forbidden pattern with the y_{l}, y_{k} serving the roles of the 2,3 . Thus it must be that $y_{u}-y_{u+1}=2$. If this is true, then $y_{u}=y_{k}+1$ and $y_{u+1}=y_{k}-1$. We see that $\left(y_{i}, y_{u}\right)$ is an inversion but not a Dyck inversion (otherwise a box with label $y_{u}=y_{k}+1$ would contradict the lowest box in the column y_{i} is labeled with y_{k}), therefore there exists a y_{l} with $l>u$ and $y_{u}<y_{l}<y_{i}$. But then y_{l} also satisfies $y_{k}<y_{l}<y_{i}$, so in particular, $l>k$ since by definition we picked the rightmost descent with $y_{u}>y_{k}$. This means y_{l} would serve as a witness for $\left(y_{i}, y_{k}\right)$ not being Dyck, which is a contradiction. Thus, we conclude that the set $F_{y_{i}}$ is empty implying that $\left(y_{i}, y_{k}\right)$ is a descent of x.

Proposition 3.2.10. Let $y \in S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{4123}, \underline{41} 32)$ and $p \in \mathcal{R S P}{ }_{n}$ with $\rho(y)=p$. Let $M=M_{y_{i+1}}$ be defined as in Proposition 2.4.11.

- The tuple (c, d) is a Dyck descent of y with $c-d \geq 2$ and c is the 2 of a strong 312 pattern iff (c, d) labels a stable $N N$ factor of p such that the east step labeled with c is the middle E of a NEE factor and there is a triangle in column c.
- The tuple (c, d) is a Dyck descent of y with $c-d \geq 2, c$ is not the 2 of a strong 312 pattern, $M>c$ iff (c, d) labels a stable $N N$ factor of p such that the east step labeled with c is the middle E of a NEE factor and there is no triangle in column c.
- The tuple (c, d) is a Dyck descent of y with $c-d \geq 2, c$ is not the 2 of a strong 312 pattern, $M=c$ iff (c, d) labels a stable $N N$ factor of p such that the east step labeled with c is the middle E of a NEN factor.
- The tuple (c, d) is a non-Dyck descent of y with $c-d=2$ iff the east step labeled with c is the E of a $D E$ factor of p.
- The tuple (c, d) is a Dyck descent of y with $c-d=1$ and $(c+1, c)$ is an inversion iff (c, d) labels a stable $N N$ factor of p such that the east step labeled with c is the middle E of a EEE factor.
- The tuple (c, d) is a Dyck descent of y with $c-d=1$ and $(c+1, c)$ is not an inversion iff (c, d) labels a stable $N N$ factor of p such that the east step labeled with c is the middle E of a EEN factor.

Proof. Applying the definitions of edge and box labeling to the east steps labeled c and d, we conclude the following. We see that $c-d \geq 2$ if and only if the east step labeled with c is preceded by a north step. Equivalently, $c-d=1$ if and only if the east step labeled with c is preceded by an east step. Applying the definitions of edge and box labeling to the north steps labeled c and d, we conclude the following. We see that $M>c$ if and only if the east step labeled with c is succeeded by an east step. Equivalently, $M=c$ if and only if the east step labeled with c is succeeded by a north step. Note that if c is triangle positive, since D steps must be followed be east steps, the east step labeled by c must be followed by an east step. Note that by Lemma 2.4.10, if $c-d=1$, then $M>c$ if and only if $(c+1, c)$ is an inversion and $M=c$ if and only if $(c+1, c)$ is not an inversion. Every case except the fourth case now follows from Theorem 3.2.9.

Suppose (c, d) is a non-Dyck descent of y with $c-d=2$. Then the witness for not being a Dyck inversion must be $c-1$, meaning $c(c-2)(c-1)$ forms a strong 312 pattern. By definition ρ, we will have a $D E$ factor with E step labeled by c.

Conversely, suppose we have a $D E$ factor of p with E step labeled by c. By definition of ρ, we know that $c(c-2)(c-1)$ forms a strong 312 pattern. Letting $d=c-2$, we see that (c, d) is a non-Dyck inversion. We claim that (c, d) is a descent. Let $c=y_{i}$ and $d=y_{k}$. We mimic the argument of the backwards direction of Theorem 3.2.9.

Assume for the sake of contradiction that the set $F_{y_{i}}=\left\{y_{j} \mid k<j<i\right\}$ is nonempty. We find that if $y_{i+1}<y_{k}$, then $\underline{c y_{i+1}}(c-2)(c-1)$ is a forbidden pattern, so $y_{i+1}>y_{k}$. We see that if $y_{k-1}>y_{i}, c y_{k-1}(c-2)(c-1)$ is a forbidden pattern. We note that $y_{k}<y_{k-1}<y_{i}$ is impossible $\left(y_{i}-1\right.$ is the only number between y_{k} and $\left.y_{i}\right)$. Thus, we conclude that $y_{k-1}<y_{k}$.

We know that $y_{i+1}>y_{k}$ and $y_{k-1}<y_{k}$. Therefore, there is some rightmost descent $\left(y_{u}, y_{u+1}\right)$ in $F_{y_{i}}$ with $y_{u}>y_{k}$ and $y_{u+1}<y_{k}$. Since $y_{u+1}<y_{k}<y_{u}, y_{k-2}-y_{k-1}>1$. Suppose that $y_{u}-y_{u+1} \geq 3$. Then there exists a $y_{l} \in\left\{y_{j} \in \mathbb{Z} \mid y_{u+1}<y_{j}<y_{u}\right\} \backslash y_{k}$. But then the y_{u} will serve as the 4 and the y_{u+1} will serve as the 1 of a forbidden pattern with the y_{l}, y_{k} serving the roles of the 2, 3. Therefore, $y_{u}-y_{u+1}=2$. But then, $y_{u+1}<y_{k}<y_{u}$ implies that $y_{u}=y_{k}+1=c-1$. But this is a contradiction since $c-1$ is to the right of y_{k}. Thus, we have a contradiction and conclude that the set $F_{y_{i}}$ is empty implying that $\left(y_{i}, y_{k}\right)$ is a descent of x.

We now have everything we need to prove Theorem 3.2.3.

Proof of Theorem 3.2.3. Let $y \in S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{4132})$. Suppose $x \in S_{n}$ is covered by y in the weak order. Let $x=y_{1} \cdots y_{i+1} y_{i} \cdots y_{n}$. Specifically, $x_{i}=y_{i+1}<y_{i}=x_{i+1}$. Suppose $\rho(y)=p_{1}$ and $\rho(x)=p_{2}$. If $x \lessdot y$, we claim that p_{2} and p_{1} satisfy for one of the four types listed in Theorem 3.2.3. By Lemma 3.2.7 and Theorem 3.2.10, the descent $\left(y_{i}, y_{i+1}\right)$ falls into one of six cases.

Suppose $\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion. By Proposition 2.4.16, there is a box labeled by y_{i+1} in columns y_{i} through M. If we compare y and x, we notice that in x, y_{i} serves as a witness for every element y_{k} with $y_{i}<y_{k} \leq M$ to not be part of a Dyck inversion of the form $\left(y_{k}, y_{i+1}\right)$ in x. Additionally, $\left(y_{i}, y_{i+1}\right)$ is no longer a Dyck inversion of x. In other words, $\rho(x)$ is missing the boxes labeled by y_{i+1} in columns y_{i} through M when compared to $\rho(y)$. We claim that with regards to boxes, this is the only difference between $\rho(x)$ and $\rho(y)$. This is because y_{i} is too big to serve as a witness for any element whose column is less than y_{i} to not be a Dyck inversion. Additionally the Dyck inversions with lower element y_{i} are the same for x and y since moving y_{i+1} to the left does not affect potential witnesses. In summary, for the five cases where $\left(y_{i}, y_{i+1}\right)$ is a Dyck inversion, we are shifting up the inner Dyck path between columns y_{i} and M by 1 . We now consider how triangles are affected in all cases.

If $y_{i}-y_{i+1} \geq 2$ and y_{i} is not the 2 of a strong 312 pattern, then x and y have $N E E$ and $D E$ factors in the same columns. This is because if y_{i} is not the 2 of a strong 312 pattern, then no triangles are destroyed when going from y to x. Additionally, we see that $y_{i}-y_{i+1} \geq 2$ implies that no triangle is created. Thus, the net effect of losing the boxes labeled by y_{i+1} is to shift up the portion of the path y beneath the y_{i} segment.

If $y_{i}-y_{i+1} \geq 2$ and y_{i} is the 2 of a strong 312 pattern, then x and y have $N E E$ and $D E$ factors in the same columns. This is because switching y_{i} and y_{i+1} preserves the respective strong 312 pattern when going from x to y. Additionally, $y_{i}-y_{i+1} \geq 2$ implies that no triangle is created. Thus, the net effect of losing the boxes labeled by y_{i+1} is to shift up the portion of the path y beneath the y_{i} segment. However in this case, the triangle corresponding to y_{i} is also shifted up one row in x.

If $y_{i}-y_{i+1}=1$ and $\left(y_{i}+1, y_{i}\right)$ is an inversion, then y_{i} will be the 2 of a strong 312 pattern in x and not the 2 of a strong 312 pattern in y. In all other columns, x and y will have the $N E E$ and $D E$ factors in the same columns. This implies that we add a triangle in column y_{i} when going from y to x. The net effect of losing the boxes labeled with y_{i+1} and y_{i} becoming triangle-positive is to shift up the portion of the path y beneath the y_{i}
segment, and add a triangle in column y_{i}.
If $y_{i}-y_{i+1}=1$ and $\left(y_{i}+1, y_{i}\right)$ is not an inversion, then x and y have $N E E$ and $D E$ factors in the same columns. Thus, the net effect of losing the boxes labeled by y_{i+1} is to shift up the portion of the path y beneath the y_{i} segment.

Suppose $\left(y_{i}, y_{i+1}\right)$ is not a Dyck inversion. Then, $y_{i}-y_{i+1}$ is necessarily equal to 2 by Lemma 3.2.7. We see that x and y have the same Dyck inversions. We note that y_{i} will be the 2 of a strong 312 pattern in y and not the 2 of a strong 312 pattern in x. Thus, the only change is the removal of the triangle in column y_{i} when going from y to x.

This completes the proof of that if $x \lessdot y$, then $p_{2} \lessdot p_{1}$ for one of the types listed in Theorem 3.2.3. In summary, cases 2,3 , and 6 of Theorem 3.2.10 correspond with case 1 of this theorem. Case 1 of Theorem 3.2.10 corresponds with case 2 of this theorem. Case 5 of Theorem 3.2.10 corresponds with case 3 of this theorem. Case 4 of Theorem 3.2.10 corresponds with case 4 of this theorem.

We now show that if p_{2} and p_{1} satisfy any of the four cases, that there exists a x such that $\rho(x)=p_{2}$ and $x \lessdot y$. Suppose $\rho(y)=p_{1}$ with $y \in S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{41} 32)$.

Suppose that $p_{2} \lessdot p_{1}$ with respect to a triangle create cover. Then by definition, c is the middle E of a $E E E$ factor of p_{1}. Let d be the label of the lowest box in column c. Then (c, d) labels a stable $N N$ factor of p_{1}. By Proposition 3.2.10, y has a Dyck descent (c, d) with $c-d=1$. Now let x be the permutation where we start with y and turn the descent (c, d) into an ascent (d, c). From the first half of the proof, we showed that $\rho(x)=p_{2}$.

Suppose that $p_{2} \lessdot p_{1}$ with respect to a triangle shift cover. Then by definition, c is triangle positive. Let d be the label of the lowest box in column c. Then (c, d) labels a stable $N N$ factor of p_{1}. By Proposition 3.2.10, y has a Dyck descent (c, d). Now let x be the permutation where we start with y and turn the descent (c, d) into an ascent (d, c). From the first half of the proof, we showed that $\rho(x)=p_{2}$.

Suppose that $p_{2} \lessdot p_{1}$ with respect to a triangle destroy cover in column $c-1$. Then c is the E of a $D E$ factor of p_{1}. By Proposition 3.2.10, y has a non-Dyck descent $(c, c-2)$. Now let x be the permutation where we start with y and turn the descent $(c, c-2)$ into an ascent $(c-2, c)$. From the first half of the proof, we showed that $\rho(x)=p_{2}$.

Suppose that $p_{2} \lessdot p_{1}$ with respect to a triangle neutral cover and c is the middle E of a $N E E$ factor. Then by definition, c is triangle-free and $M>c$. Let d be the label of the lowest box in column c. By Proposition 3.2.10, y has a Dyck descent (c, d) with $c-d \geq 2$
and c is not the 2 of a strong 312 pattern. Now let x be the permutation where we start with y and turn the descent (c, d) into an ascent (d, c). By the first half of the proof, we see that $\rho(x)=p_{1}$. From the first half of the proof, we showed that $\rho(x)=p_{2}$.

Suppose that $p_{2} \lessdot p_{1}$ with respect to a triangle neutral cover and c is the middle E of a $N E N$ factor. Then by definition, c is triangle-free and $M=c$. Let d be the label of the lowest box in column c. By Proposition 3.2.10, y has a Dyck descent (c, d) with $c-d \geq 2$ and c is not the 2 of a strong 312 pattern. Now let x be the permutation where we start with y and turn the descent (c, d) into an ascent (d, c). From the first half of the proof, we showed that $\rho(x)=p_{2}$.

Suppose that $p_{2} \lessdot p_{1}$ with respect to a triangle neutral cover and c is the middle E of a $E E N$ factor. Then $(c+1, c)$ is not a Dyck inversion, so in particular, is not an inversion. Let d be the label of the lowest box in column c. By Proposition 3.2.10, y has a Dyck descent (c, d) with $c-d=1$ and c is not the 2 of a strong 312 pattern. Now let x be the permutation where we start with y and turn the descent (c, d) into an ascent (d, c). From the first half of the proof, we showed that $\rho(x)=p_{2}$. This completes the proof of the theorem.

3.3 Product

By [26, Corollary 1.4], we see that the product in the sub-Hopf algebra $S_{n}(2 \underline{413}, 3 \underline{412}, \underline{4123}, \underline{4132})$ for $x \in S_{u}$ and $y \in S_{v}$ is

$$
x \bullet A v=\sum\left[x y_{[u]^{\prime}}, \pi_{\downarrow}\left(y_{[u]^{\prime}} x\right)\right]
$$

where $\pi_{\downarrow}: S_{n} \rightarrow S_{n}(2 \underline{41} 3,3 \underline{412}, \underline{41} 23, \underline{41} 32)$ is the map taking a permutation to its unique avoider in $\Theta_{2 \underline{413,3412, \underline{4123,4132}}}$ and $\sum[$,$] means take the sum (formal linear combination) of$ all elements in the interval (of the lattice S_{u+v}).

We can use the ρ to help define a product on the Hopf Algebra of Restricted Schröder paths. Suppose that $p_{1} \in \mathcal{R S} \mathcal{P}_{u}$ and $p_{2} \in \mathcal{R S P} \mathcal{P}_{v}$ with $\rho(x)=p_{1}$ and $\rho(y)=p_{2}$. Then since π_{\downarrow} is constant on congruence classes,

$$
p_{1} \bullet_{R S P} p_{2}=\sum\left[\rho\left(x y_{[u]^{\prime}}\right), \rho\left(\pi_{\downarrow}\left(y_{[u]^{\prime}} x\right)\right)\right]=\sum\left[\rho\left(x y_{[u]^{\prime}}\right), \rho\left(y_{[u]}^{\prime} x\right)\right] .
$$

Theorem 3.3.1. Suppose we want to compute the product of $p_{1} \in \mathcal{R S P}{ }_{u}$ and $p_{2} \in \mathcal{R S P}_{v}$. Let p_{3} be the Oth concatenation of the paths p_{1} and p_{2}. Let p_{4} be the k th concatenation of the paths if the largest east step label of p_{1} is not part of a $N E$ factor. Let p_{4} be the k th concatenation of the paths plus a triangle in the rightmost column of p_{1} if the largest east step label of p_{1} is part of a NE factor. The product of p_{1} and p_{2} then is the sum over all elements of the interval $\left[p_{3}, p_{4}\right]$ in the lattice of restricted Schröder paths.

The proof of this theorem consists of proving the following two lemmas.
Lemma 3.3.2. The path $\rho\left(x y_{[u]}{ }^{\prime}\right)$ is the 0 th concatenation of $\rho(x)$ and $\rho(y)$.
Proof. Since every entry of x is to the left of every entry of y_{u}, there will be no box in columns $u+1, \cdots, v$ with label less than $u+1$. In other words, the boxes in columns $1, \cdots, u$ are exactly the boxes of $\rho(x)$ with the same box labels. The boxes in columns $u+1, \cdots, v$ are in bijection with the boxes of $\rho(y)$ but with labels shifted by u. A 0th concatenation (of the inner Dyck paths) cannot create a $N E E$ factor centered at column u. If a $N E E$ factor centered at column $u+1$ is created, then $u(u+2)(u+1)$ forms a strong 132 pattern, so we do not add a triangle. No other strong 132 or 312 patterns are created or destroyed, so any $N E E$ and $D E$ factors that existed in $\rho(x)$ and $\rho(y)$ will also appear in $\rho\left(x y_{[u]^{\prime}}\right)$.

Lemma 3.3.3. Suppose $\rho(x)$ ends with k north steps. If u is not the label of the east step of a NE factor of $\rho(x)$, the path $\rho\left(y_{[u]^{\prime}}^{\prime} x\right)$ is the kth concatenation of $\rho(x)$ and $\rho(y)$. If u is the label of the east step of a NE factor of x, the path $\rho\left(y_{[u]^{\prime}} x\right)$ is the k th concatenation of $\rho(x)$ and $\rho(y)$ with the NEE factor centered at u transformed into a DE factor.

Proof. We see that if (u, x_{i}) is a Dyck inversion of x, then $\left(\cdot, x_{i}\right)$ will be a Dyck inversion for every element of $y_{[u]^{\prime}}$. Therefore, a copy of all boxes in column u will exist in all columns to the right of u. This corresponds to performing a k th concatenation. A k th concatenation (of the inner Dyck paths) cannot produce a $N E E$ factor centered at column $u+1$. A $N E E$ factor centered at column u is created iff u is the label of the east step of a $N E$ factor of $\rho(x)$. If there is a $N E E$ factor centered at column u, we see that $(u+1)(u-1) u$ forms a strong 312 pattern. No other strong 132 or 312 patterns are created or destroyed, so any $N E E$ and $D E$ factors that existed in $\rho(x)$ and $\rho(y)$ will also appear in $\rho\left(x y_{[u]}{ }^{\prime}\right)$. This completes the proof.

Chapter 4

Towards a Partitioning of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$

4.1 Introduction

In [16], Hersh finds a partitioning of the quotient complex $\Delta\left(\Pi_{n}\right) / S_{n}$. She does this by using a certain chain labeling (similar to a $C C$ labeling), and then modifying it into a partitioning. We consider the analogous question of whether $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ is partitionable where Π_{n}^{B} and S_{n}^{B} denote they type B analog of the partition lattice and type B analog of the symmetric group. One way to get a partitioning would be to find a shelling. However, we show that $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ is not shellable in Theorem 4.4.2. Therefore, another method is needed. In Section 4.3, we give a combinatorial model for the cells of the quotient complex. In Section 4.3, we also describe the cover relations in the face poset of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ with respect to this model. We hope that this is a first step towards finding a partitioning of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$. A major motivation of finding this partitioning is that it could give useful information for representation stability.

4.2 Background

4.2.1 Shellability, Partitioning, Cohen-Macaulay Properties

In this section, we describe the background related to necessary conditions for shellabilty that will be violated by our counterexample.

Definition 4.2.1 ([16, Definition 1.2]). A simplicial complex is called shellable if there exists a total ordering F_{1}, \ldots, F_{k} on its facets (maximal faces) such that the intersection
of each fixed intermediate facet F_{j} with the union of the closures of the previous facets, $\bar{F}_{j} \cap \bigcup_{i<j} \bar{F}_{i}$, is pure of codimension one in the intermediate facet, \bar{F}_{j}.

Definition 4.2.2. The face poset $F(\Delta)$ of a simplicial complex Δ is the poset of nonempty faces ordered by inclusion.

Definition 4.2.3 ([28, Section II.4]). A pure simplicial complex Δ is partitionable if the face poset of Δ can be written as a disjoint union

$$
F(\Delta)=\left[G_{1}, F_{1}\right] \cup \cdots \cup\left[G_{s}, F_{s}\right]
$$

where each F_{i} is a facet of Δ and each G_{i} is a face of Δ.
One way to show that a complex is partitionable, is to find a shelling.
Theorem 4.2.4. If a simplicial complex is shellable, then it is partitionable.
Shellable complexes satisfy certain necessary conditions as described below.
Definition 4.2.5. [28, Section II.4] Let Δ be a simplicial complex, then for $F \in \Delta$, define the link

$$
\mathrm{lk}_{\Delta} F=\{G \in \Delta \mid G \cup F \in \Delta, G \cap F=\varnothing\}
$$

Unless otherwise stated, the remaining theorems of this section appear in [30].
Definition 4.2.6. A simplicial complex Δ is k-connected if $\pi_{r}(\Delta)=0$ for all $r \leq k$.
Definition 4.2.7. A simplicial complex Δ is homotopy Cohen-Macaulay if $\mathrm{lk}_{\Delta} F$ is ($\operatorname{dim}_{l_{\Delta}} F-1$)-connected for all $F \in \Delta$.

Definition 4.2.8. A simplicial complex Δ is k-acyclic if $\tilde{H}_{r}(\Delta)=0$ for all $r \leq k$.
Definition 4.2.9. A simplicial complex Δ is Cohen-Macaulay if $\mathrm{lk}_{\Delta} F$ is $\left(\operatorname{dimlk}_{\Delta} F-1\right)$ acyclic for all $F \in \Delta$.

Theorem 4.2.10. If a simplicial complex is pure and shellable, then it is homotopy Cohen-Macaulay.

Theorem 4.2.11. If a simplicial complex Δ is homotopy Cohen-Macaulay, then it is pure and homotopy equivalent to a wedge of top dimensional spheres, $\bigvee \mathbb{S} \operatorname{dim} \Delta$.

Theorem 4.2.12 ([8, Proposition 10.14]). The link of every face of a shellable simplicial complex is shellable.

Corollary 4.2.13. If a simplicial complex Δ is homotopy Cohen-Macaulay, then for every face $F, \mathrm{lk}_{\Delta}(F)$ is pure and homotopy equivalent to a wedge of top dimensional spheres.

Theorem 4.2.14. If a simplicial complex Δ is homotopy Cohen-Macaulay, then it is Cohen-Macaulay.

Corollary 4.2.15. If a simplicial complex Δ is pure and shellable, then it is CohenMacaulay.

Remark 4.2.16. The above background is technically about simplicial complexes. However, much of it also applies to boolean complexes.

4.2.2 Lexicographic Shellability

This section describes background for future work that may lead to a certain labeling of the desired quotient complex.

Definition 4.2.17. [16, Definition 1.3] An EL-labelling of a finite poset P with $\hat{0}$ and $\hat{1}$ is a labeling λ of the edges of its Hasse diagram with positive integers such that

- Each interval $[u, v]$ has a unique saturated chain

$$
u=u_{0} \lessdot u_{1} \lessdot \cdots \lessdot u_{k}=v
$$

whose labels

$$
\lambda\left(u_{0}, u_{1}\right) \leq \lambda\left(u_{1}, u_{2}\right) \leq \cdots \leq \lambda\left(u_{k-1}, u_{k}\right)
$$

are weakly increasing.

- The weakly ascending label sequence on a saturated chain of $[u, v]$ is lexicographically smaller than all other label sequences for saturated chains on $[u, v]$.

These two conditions together constitute the increasing chain condition.
The following theorem was first proved in [4], but we provide a self-contained proof for completeness.

Theorem 4.2.18. If a finite poset P with $\hat{0}$ and $\hat{1}$ has an EL-labeling, then the order complex $\Delta(P \backslash\{\hat{0}, \hat{1}\})$ is shellable. Moreover, every total order extension of the lexicographic order on label sequences for saturated chains from $\hat{0}$ to $\hat{1}$ is a shelling order of the associated facets of $\Delta(P \backslash\{\hat{0}, \hat{1}\})$. If P is graded, $\mu_{P}(u, v)=(-1)^{r k(v)-r k(u)}$. for each $u \leq v$ in P.

Proof. Let F_{1}, \ldots, F_{k} be the facet order for $\Delta(P \backslash\{\hat{0}, \hat{1}\})$ induced by a total order extension of the lexicographic order on label sequences for saturated chains in $\Delta(P \backslash\{\hat{0}, \hat{1}\})$. For any fixed $1<j \leq k$, we consider the subcomplex $C=\bar{F}_{j} \cap\left(\bigcup_{i<j} \bar{F}_{i}\right)$. We claim that C is pure of codimension one in \bar{F}_{j}.
Let σ be a face in C. If σ has codimension one in \bar{F}_{j}, then we are done. Suppose otherwise. Since

$$
\sigma \in C=\bar{F}_{j} \cap\left(\bigcup_{i<j} \bar{F}_{i}\right)=\bigcup_{i<j}\left(\bar{F}_{j} \cap \bar{F}_{i}\right)
$$

there exists some i such that $\sigma \in \bar{F}_{j} \cap \bar{F}_{i}$. We first consider the case that F_{i} and F_{j} differ on more than one interval. We consider the subposet $F_{j} \cup F_{i}$ in the poset P. Let a be the greatest (with respect to the poset relation) vertex in F_{i} such that the saturated subchain $\hat{0} \lessdot \cdots \lessdot a$ in F_{i} is also shared by F_{j}. Let b be the smallest vertex in the saturated subchain $a \lessdot \cdots \lessdot \hat{1}$ in F_{i} strictly greater than a that is shared by F_{i} and F_{j}. Let $F_{i^{\prime}}$ be the facet obtained by combining the saturated subchain $\hat{0} \lessdot \cdots \lessdot b$ in F_{i} with the saturated subchain $b \lessdot \cdots \lessdot \hat{1}$ of F_{j}. Let $a \lessdot c$ in F_{i} and $a \lessdot d$ in F_{j}. Since $F_{i}<l e x F_{j}$, by definition of $a, \lambda(a \lessdot c)<\lambda(a \lessdot d)$. Since a is also the first point that $F_{i^{\prime}}$ and F_{j} differ, by construction of $F_{i^{\prime}}, F_{i^{\prime}}<l e x F_{j}$. Additionally, since F_{i} and F_{j} were assumed to differ on more than one interval, $F_{i} \cap F_{j} \varsubsetneqq F_{i^{\prime}} \cap F_{j}$ (the inclusion is strict since we add the vertices of the open interval(s) other than (a, b) where F_{i} and F_{j} differ). Then, $F_{i^{\prime}}$ differs from F_{j} only on a single interval, namely (a, b). Thus, without loss of generality, for any face $\sigma \in C$ not of codimension one, we can find an i such that $\sigma \in F_{i} \cap F_{j}, F_{i}<_{l e x} F_{j}$, and F_{i} differs from F_{j} only on a single interval.
We consider the interval $[a, b]$ in $F_{i} \cup F_{j}$ with F_{i} having the properties in the previous sentence. Since $[a, b]$ lies in an $E L$-labelable poset, and F_{j} is not lexicographically first, there exists a saturated subchain $u \lessdot u^{\prime} \lessdot v$ in $(a, b) \cap F_{j}$ such that $\lambda\left(u, u^{\prime}\right)>\lambda\left(u^{\prime}, v\right)$. Since $[u, v]$ lies in an $E L$-labelable poset, there exists a unique saturated chain $u \lessdot u^{\prime \prime} \lessdot v$ such that $\lambda\left(u, u^{\prime \prime}\right)<\lambda\left(u^{\prime \prime}, v\right)$. Moreover, the definition of $E L$-labeling also then implies $\lambda\left(u, u^{\prime \prime}\right)<\lambda\left(u, u^{\prime}\right)$ since the ascending chain on (u, v) is lexicographically smallest. We
recall that $F_{j}=\hat{0} \lessdot \cdots \lessdot u \lessdot u^{\prime} \lessdot v \cdots \lessdot \hat{1}$. If we consider $F_{k}=\hat{0} \lessdot \cdots \lessdot u \lessdot u^{\prime \prime} \lessdot v \cdots \lessdot \hat{1}$, then $F_{k} \cap F_{j}=\operatorname{dim} F_{j}-1$, i.e. $F_{k} \cap F_{j}$ is a facet of F_{j}. Thus, $\sigma \subseteq F_{i} \cap F_{j} \subseteq F_{k} \cap F_{j}$ with $F_{k}<l e x F_{j}$. Since the choice of σ is arbitrary, this shows that C is pure of codimension one in F_{j}. Thus, $\Delta(P \backslash\{\hat{0}, \hat{1}\})$ is shellable, as desired.

Definition 4.2.19. [16, p. 228] A chain-labeling is a labeling of poset covering relations such that the label assigned to the covering relation $u \lessdot v$ may depend on the choice of root, namely on the saturated chain $\hat{0} \lessdot u_{1} \lessdot \cdots \lessdot u_{k}=u$ as well as on u and v.

Definition 4.2.20. [16, p. 228] A CL-labeling is a chain-labeling satisfying the increasing chain condition.

The following theorem was first proved in [6], but we provide a self-contained proof for completeness.

Theorem 4.2.21. If a finite poset P with $\hat{0}$ and $\hat{1}$ has a CL-labeling, then the order complex $\Delta(P \backslash\{\hat{0}, \hat{1}\})$ is shellable. Moreover, every total order extension of the lexicographic order on label sequences for saturated chains from $\hat{0}$ to $\hat{1}$ is a shelling order of the associated facets of $\Delta(P \backslash\{\hat{0}, \hat{1}\})$.

Proof. We proceed as in the $E L$-labeling case, by trying to find two facets that differ on a single interval. Let $F_{i}, F_{j}, F_{i}^{\prime}, a, b$ be defined as in the $E L$ case. Let $a \lessdot c$ in F_{i} and $a \lessdot d$ in F_{j}. Since $F_{i}<l e x ~ F_{j}$, by definition of $a, \lambda(a \lessdot c, 0 \lessdot \cdots \lessdot a)<\lambda(a \lessdot d, 0 \lessdot \cdots \lessdot a)$. Since a is also the first point that $F_{i^{\prime}}$ and F_{j} differ (with respect to vertices and edge labels), by construction of $F_{i^{\prime}}, F_{i^{\prime}}<l e x F_{j}$. Thus, without loss of generality, for any face $\sigma \in C$ not of codimension one, we can find an i such that $\sigma \in F_{i} \cap F_{j}, F_{i}<l e x ~ F_{j}$, and F_{i} differs from F_{j} only on a single interval.
The search for the codimension one differing facet proceeds essentially the same as in the $E L$-case, but with chains added to labels to assure that the labels are well-defined. We consider the interval $[a, b]$ in $F_{i} \cup F_{j}$ with F_{i} having the desired properties. Since $[a, b]$ lies in an $C L$-labelable poset, and F_{j} is not lexicographically first, there exists a saturated subchain $u \lessdot u^{\prime} \lessdot v$ in $(a, b) \cap F_{j}$ such that $\lambda\left(u \lessdot u^{\prime}, 0 \lessdot \cdots \lessdot u\right)>\lambda\left(u^{\prime} \lessdot v, 0 \lessdot \cdots \lessdot u \lessdot u^{\prime}\right)$. Since $[u, v]$ lies in an $C L$-labelable poset, there exists a unique saturated chain $u \lessdot u^{\prime \prime} \lessdot v$ such that $\lambda\left(u \lessdot u^{\prime \prime}, 0 \lessdot \cdots \lessdot u\right)<\lambda\left(u^{\prime \prime} \lessdot v, 0 \lessdot \cdots \lessdot u \lessdot u^{\prime \prime}\right)$. Moreover, the definition of $C L$-labeling also then implies that $\lambda\left(u \lessdot u^{\prime \prime}, 0 \lessdot \cdots \lessdot u\right)<\lambda\left(u \lessdot u^{\prime}, 0 \lessdot \cdots \lessdot u\right)$ since the
ascending chain on (u, v) is lexicographically smallest. We recall that $F_{j}=\hat{0} \lessdot \cdots \lessdot u \lessdot$ $u^{\prime} \lessdot v \cdots \lessdot \hat{1}$. If we consider $F_{k}=\hat{0} \lessdot \cdots \lessdot u \lessdot u^{\prime \prime} \lessdot v \cdots \lessdot \hat{1}$, then $F_{k} \cap F_{j}=\operatorname{dim} F_{j}-1$, i.e. $F_{k} \cap F_{j}$ is a facet of F_{j}. Thus, $\sigma \subseteq F_{i} \cap F_{j} \subseteq F_{k} \cap F_{j}$ with $F_{k}<l e x ~ F_{j}$. Since the choice of σ is arbitrary, this shows that C is pure of codimension one in F_{j}. Thus, $\Delta(P \backslash\{\hat{0}, \hat{1}\})$ is shellable, as desired.

Definition 4.2.22. [16, Definition 2.3] Fix a poset chain-labeling or edge-labeling. A pair of (rooted) edges $u \lessdot v$ and $v \lessdot w$ constitute a topological ascent if the word consisting of two consecutive labels $\lambda(u, v)$ and $\lambda(v, w)$ is lexicographically smallest on the interval from u to w. Otherwise, the pair of covering relations comprises a topological descent.

Definition 4.2.23. Topological ascents with increasing consecutive labels are called honest ascents and those with decreasing consecutive labels are called swap descents. Similarly, topological descents with decreasing labels are honest descents and all others are called swap ascents.

Definition 4.2.24. [16, p. 228] A poset is EC-shellable (resp. CC-shellable) if each interval (resp. rooted interval) has a unique topologically increasing chain (i.e. a chain consisting entirely of topological ascents) and this chain is lexicographically smallest on the (rooted) interval.

The following theorem was first proved in [18].
Theorem 4.2.25. If a finite poset P with $\hat{0}$ and $\hat{1}$ has an EC-labeling, then the order complex $\Delta(P \backslash\{\hat{0}, \hat{1}\})$ is shellable. Moreover, every total order extension of the lexicographic order on label sequences for saturated chains from $\hat{0}$ to $\hat{1}$ is a shelling order of the associated facets of $\Delta(P \backslash\{\hat{0}, \hat{1}\})$.

4.2.3 Type B Specifics

Definition 4.2.26. The type B analog of the symmetric group, also called the hyperoctahedral group, is the group of permutations of $[-n, n]$ such that $\sigma(-i)=-\sigma(i)$ for all $-n \leq i \leq n$.

Definition 4.2.27. A signed set partition is a set partition of $[-n, n]$ such that B is a block if and only if $-B(\{-x \mid x \in B\})$ is also a block.

Definition 4.2.28. The set of all signed set partitions for fixed n forms a lattice ordered by refinement (that is, $x<y$ if and only if every block of x is contained in a block of y), called the type B partition lattice, Π_{n}^{B}. The partition lattice Π_{n}^{B} is ranked with rank function n - the number of blocks.

Definition 4.2.29. Elements of Π_{n}^{B} can be compactly represented as set partitions of $[0, n]$ where elements of $[1, n]$ can have bars except elements of the block that contains 0 and the smallest element of each block. Using this convention, the cover relations of Π_{n}^{B} are described by the following three cases. Suppose that $\pi_{1} \lessdot \pi_{2}$. Then π_{2} is obtained from π_{1} by merging two blocks B_{1} and B_{2} into a single block B. Without loss of generality, suppose $\min B_{1}<\min B_{2}$. In the first case, if $0 \in B$, then B is the union of B_{1} and B_{2} with all bars removed. If $0 \notin B$, then there are two cases. The second case is that B is the union of B_{1} and B_{2} with all bars intact. The last case (when $0 \notin B$) is that B is the union of B_{1} and B_{2} (that is the block obtained by barring all unbarred elements and unbarring all barred elements). The hyperoctahedral group S_{n}^{B} of signed permutations acts naturally on the elements of Π_{n}^{B}.

Definition 4.2.30. The type B braid arrangement (or type B Coxeter arrangement) consists of the hyperplanes,

$$
H_{i, j}^{+}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{i}=x_{j}\right\}
$$

and

$$
H_{i, j}^{-}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{i}=-x_{j}\right\}
$$

and

$$
H_{i}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{i}=0\right\}
$$

for $1 \leq i<j \leq n$.
The following appears in [30].
Theorem 4.2.31. The intersection lattice of the type B braid arrangement is isomorphic to the type B partition lattice.

Fact 4.2.32. The action of S_{n}^{B} is rank-preserving and order-preserving.
Proof. Since signed permutations are in particular bijections, they will preserve block sizes, so in particular preserve the number of blocks, which gives rank-preservation. We
verify order-preservation by going through the three cases of cover relations listed above. Let $\pi_{1} \lessdot \pi_{2}$ with B, B_{1}, B_{2} using the notation above. If $0 \in B$, then one of B_{1}, B_{2} had to contain 0 . Since every signed permutation sends 0 to $0, g(B)$ will be the zero block of $g\left(\pi_{2}\right)$ (created by merging $g\left(B_{1}\right)$ and $g\left(B_{2}\right)$), thus the comparability is preserved in this case. If B is created by a simple merge of B_{1}, B_{2}, then $g(B)$ will be a simple merge of B_{1} and B_{2}. Thus the comparability is preserved in this case. Similarly, if B is created by a merge of B_{1} and $\overline{B_{2}}$, then $g(B)$ will be a merge of $g\left(B_{1}\right)$ and $g\left(\overline{B_{2}}\right)$. Thus the comparability is preserved in this case.

Definition 4.2.33. Let $\pi_{1}<\pi_{2}<\cdots<\pi_{k}$ be an element of the k th chain group of $\Delta\left(\Pi_{n}^{B}\right)$. We recall that the simplicial boundary map ∂ takes a k-chain and produces the alternating sum of the $(k-1)$-chains obtained by removing exactly one element:

$$
\partial_{k}\left(\pi_{1}<\pi_{2}<\cdots<\pi_{k}\right)=\sum_{i}(-1)^{i}\left(\pi_{1}<\pi_{2}<\cdots<\hat{\pi}_{i}<\cdots<\pi_{k}\right)
$$

Fact 4.2.34. The S_{n}^{B}-action on chains in Π_{n}^{B} commutes with the simplicial boundary map.

Proof. Let $\pi_{1}<\pi_{2}<\cdots<\pi_{k}$ be a generator of the k th chain group of $\Delta\left(\Pi_{n}^{B}\right)$. Let $g \in S_{n}^{B}$. Then, we find that

$$
\begin{aligned}
\partial_{k}\left(\pi_{1}<\pi_{2}<\cdots<\pi_{k}\right) & =\sum_{i}(-1)^{i}\left(\pi_{1}<\pi_{2}<\cdots<\hat{\pi}_{i}<\cdots<\pi_{k}\right) \\
g\left(\partial_{k}\left(\pi_{1}<\pi_{2}<\cdots<\pi_{k}\right)\right) & =g\left(\sum_{i}(-1)^{i}\left(\pi_{1}<\pi_{2}<\cdots<\hat{\pi}_{i}<\cdots<\pi_{k}\right)\right) \\
& =\sum_{i}(-1)^{i}\left(g\left(\pi_{1}\right)<g\left(\pi_{2}\right)<\cdots<\widehat{g\left(\pi_{i}\right)}<\cdots<g\left(\pi_{k}\right)\right) \\
& =\partial_{k}\left(g\left(\pi_{1}<\pi_{2}<\cdots<\pi_{k}\right)\right)
\end{aligned}
$$

The result follows by extending linearly on a basis of generators.
Example 4.2.35. Consider $\{0,2,5,-2,-5\}\{1,-7,9\}\{-1,7,-9\}\{3,4,-6,-8\}\{-3,-4,6,8\}$, which is an element of Π_{9}^{B}. It's corresponding intersection of hyperplanes is $\left\{\mathbf{x} \in \mathbb{R}^{9} \mid x_{2}=\right.$ $\left.x_{5}=0, x_{1}=-x_{7}=x_{9}, x_{3}=x_{4}=-x_{6}=-x_{8}\right\}$. It's compact representation is $025|1 \overline{7} 9| 34 \overline{6} \overline{8}$.

4.3 A combinatorial model of the elements of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$

The order complex $\Delta\left(\Pi_{n}^{B}\right)$ as defined in the previous section, consists of chains of successively coarser signed set partitions. We denote the dual poset to Π_{n}^{B} by $\left(\Pi_{n}^{B}\right)^{*}$. We utilize the fact that $\Delta\left(\Pi_{n}^{B}\right)=\Delta\left(\left(\Pi_{n}^{B}\right)^{*}\right)$. We find the description of faces resulting from the $\Delta\left(\left(\Pi_{n}^{B}\right)^{*}\right)$ viewpoint to be more convenient. We recall that $\Delta\left(\left(\Pi_{n}^{B}\right)^{*}\right)$ consists of successively finer signed set partitions.

We will find it easier to consider $\Delta\left(\Pi_{n}^{B} \backslash\{\hat{0}, \hat{1}\}\right)$. Dropping the order complex cone points of $\hat{0}$ and $\hat{1}$ will not affect whether or not a particular order of the facets is a shelling order. Therefore, we can figure out if $\Delta\left(\Pi_{n}^{B}\right)$ is shellable by figuring out if $\Delta\left(\Pi_{n}^{B}\right) \backslash\{\hat{0}, \hat{1}\}$ is shellable. In order to prove non-shellability, we will need a model for the chain orbits of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$. Since signed set partitions are sign-symmetric, we will model the vertices as simply set partitions of $n+1$ elements with one block designed the zero block by using the appropriate elements of S_{n}^{B} to remove any bars. Hultman develops a model for chain orbits of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ using certain labeled trees [17].

Definition 4.3.1. Let $\hat{0}<\pi_{1}<\cdots<\pi_{k}$ be an element of $\Delta\left(\Pi_{n}^{B}\right)$. We recall each vertex π_{i} of this chain is modeled by a set partition of $n+1$ elements with a special zero block (that we mark with a dot). We can consider the type of each vertex to be the (integer) partition consisting of the cardinalities of the blocks. By convention, we mark the zero block with a dot above it, and record its cardinality as 1 less than the number of elements in it.

Definition 4.3.2. The Hultman tree representing the orbit of the chain $\hat{0}<\pi_{1}<\cdots<\pi_{k}$ is built in the following way. We start with the root labeled with type $(\hat{0})=\dot{n}$. The nodes of the tree at depth i will be labeled by the cardinalities of type $\left(\pi_{i}\right)$. We connect nodes at depth i to nodes at depth $i-1$ based on if the corresponding blocks in π_{i} are built by splitting corresponding blocks in π_{i-1}.

Hultman's above description creates many equivalent tree representatives for the same chain orbit. We will find it convenient to order the children of each tree node in a systematic way to create a unique representative. We note that the cardinality of a block is the number of balls in that block. If a node is not the block with the dotted ball, simply order the children from smallest to largest cardinality from left to right. If the node is

Figure 4.1: The faces in the closure of a facet of $\Delta\left(S_{4}^{B}\right) / \Pi_{4}^{B}$ in the tree model convention.

Figure 4.2: The faces in the closure of a facet of $\Delta\left(S_{4}^{B}\right) / \Pi_{4}^{B}$ in the ball and splitter model convention.
part of a zero block, order its unique child that is also part of a zero block leftmost, and then order the remaining children from smallest to largest cardinality from left to right. Hultman shows that these planar embeddings of trees are in bijection with the chain orbits of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ [17, Proposition 5.2]. For each tree, we can build a certain arrangement of balls and labeled splitters as follows.

Definition 4.3.3. Let $\hat{0}<\pi_{1}<\cdots<\pi_{k}$ be an element of $\Delta\left(\Pi_{n}^{B}\right)$. The ball and splitter model representing the orbit of the chain $\hat{0}<\pi_{1}<\cdots<\pi_{k}$ is built in the following way. We start with $n+1$ balls in a row. We note that each element of π_{i} can be modeled using a set partition of $[0, n]$. We recall that the poset rank of an element of $\pi_{i} \in \Pi_{n}^{B}$ is the number of set partition blocks minus one. For $1 \leq i \leq k$, if the rank of π_{i} is r, we add new splitters such that the cardinalities of the blocks of π_{i} are equal to the number of balls in each block. Additionally, we label the splitters inserted at rank r to create these blocks with r.

There is a map giving a natural correspondence between Hultman's tree model and the ball and splitter model. These maps will allow us to deduce the equivalence of the two
different models for quotient cells.
Definition 4.3.4. Let f be the following map from the set of tree model representatives to the set of ball and splitter model representatives. Start with one of Hultman's trees that is a representative of one of the cells of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ as in the Definition 4.3.4. Let the rank of a node in the tree be one less than the number of nodes at the same depth as the given node. Let d be the maximum depth among nodes in the tree.

- If the root is labeled with \dot{n}, start with $n+1$ balls drawn in a row.
- For depth i from 1 to d :
- For each node with label m at depth i :

1. Go to the corresponding block of m balls (or $m+1$ balls if m is dotted).
2. For each child (with label ℓ) of the node, create a new block of size ℓ (or $\ell+1$ if the block is dotted).
3. Add a new splitter labeled with the rank of the child to the right of the new block.

See Figures 4.1 and 4.2 for many examples.
Definition 4.3.5. Let g be the following map from the set of ball and splitter model representatives to the set of tree model representatives. Start with a representative of a cell encoded using the ball and splitter model. Suppose r_{i} is the i th smallest splitter label for label set $r_{1}<\cdots r_{i} \cdots r_{d}$.

- If there are $n+1$ balls, create a node and label it with \dot{n}
- For i from 1 to d :
- For each block B of size m (or $m+1$ if B has the dotted ball) between splitters labeled with r_{i} :

1. Construct a node N labeled with m (or $m+1$ if B has the dotted ball) at depth i of the tree.
2. Identify the unique block B^{\prime} at depth $i-1$ that refines B, and its corresponding node N^{\prime} in the tree.
3. Let the parent of N be N^{\prime}.

See Figures 4.2 and 4.1 for many examples.
By construction, we see that $f \circ g$ is the identity map on the set of distinguished representatives of ball and splitter models and $g \circ f$ is the identity map on representatives of tree models. By constructing the ball and labeled splitter arrangement corresponding to the unique tree representative of a given chain orbit, we get the following theorem.

Theorem 4.3.6. For each chain orbit arising as a cell of $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$, there exists a welldefined chain orbit representative using balls and marked splitters obtained as follows. The labels on the splitters are the ranks at which we split blocks as we go up a chain in the orbit. By convention, we put the zero block is as far left as possible and each splitter as far left as possible among equivalent choices (in this chain orbit) as we go up the chain.

In order to describe closure relations on cells, it will be necessary to consider other representatives of chain orbits. Hultman describes the closure relations on cells in terms of maps δ_{i} that comprise the unsigned components of the boundary map. Specifically, give a Hultman tree representative, the map δ_{i} deletes all the nodes at depth i, and connects the parents of the deleted nodes to their grandchildren [17, Proposition 5.2]. A cover relation $c_{1} \lessdot c_{2}$ in the face poset is satisfied if and only if there is a tree representative t_{1} of c_{1} and a tree representative t_{2} of c_{2} such that $\delta_{i}\left(t_{2}\right)=t_{1}$ for some i. Compare nodes and their parents in Figure 4.1 for many examples. By translating [17, Proposition 5.2] to the splitter model, we get the following theorem.

Theorem 4.3.7. Consider the distinguished representative of a fixed chain orbit $c \in$ $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ as in Theorem 4.3.6. Suppose the splitters of c have labels from exactly the set $\left\{r_{1}, \cdots, r_{k}\right\}$ with $r_{1}<\cdots<r_{k}$. Then c covers k other chain orbits, one orbit for each possible vertex that can be eliminated from a fixed chain in the orbit. More specifically, if we omit the vertex at rank r_{k}, c covers the orbit representative modeled by starting with the representative of c, and removing all splitters labeled with r_{k}. The chain orbit c also covers the chain orbits modeled by starting with the representative c, fixing a nonmaximal rank r_{i}, and relabeling all splitters labeled r_{i} with r_{i+1}.

All closure relations on cells are found by taking the transitive closure of the cover relations specified in the previous theorem. In other words, f and g (as in Definitions 4.3.4 and 4.3.5) are order preserving. See Figures 4.1 and 4.2 for an example.

4.4 An obstruction to shelling $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$

We now construct the promised counterexample.
Example 4.4.1. This is inspired by a similar example in type A appearing as Example 4.3 in [16]. We consider the following chain in Π_{8}^{B} (written using the notation of Definition 4.2.29),

$$
012345678>0|12345678>0| 1234|5678>0| 1|234| 5|678>0| 1|2| 34|5| 6|78>0| 1|2| 3|4| 5|6| 7 \mid 8
$$

The link of this face in $\Delta\left(\Pi_{8}^{B}\right)$ consists of the following six vertices

$$
\begin{aligned}
& \left.\left.\left.\left.\left.0\right|_{5} 1\right|_{5} 2\right|_{5} 34\right|_{5} 5\right|_{5} 678,\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 3\right|_{7} 4\right|_{7} 5\right|_{7} 6\right|_{7} 78,\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 34\right|_{7} 5\right|_{7} 6\right|_{7} 7\right|_{7} 8
\end{aligned}
$$

with the following eight facets:

$$
\begin{aligned}
& \left.\left.\left.\left.\left.\left.\left.0\right|_{3} 1\right|_{5} 2\right|_{5} 34\right|_{3} 5\right|_{3} 6\right|_{7} 7\right|_{7} 8,\left.\left.\left.\left.\left.\left.\left.0\right|_{3} 1\right|_{5} 2\right|_{5} 3\right|_{7} 4\right|_{3} 5\right|_{3} 6\right|_{7} 78 \text {, } \\
& \left.\left.\left.\left.\left.\left.\left.0\right|_{3} 1\right|_{5} 2\right|_{7} 3\right|_{7} 4\right|_{3} 5\right|_{3} 6\right|_{5} 78,\left.\left.\left.\left.\left.\left.\left.0\right|_{3} 1\right|_{5} 2\right|_{7} 34\right|_{3} 5\right|_{3} 6\right|_{5} 7\right|_{7} 8,
\end{aligned}
$$

and with the addition of 121 -faces, we see that the link is the sphere S^{2}. That is, if we arrange the faces into a two dimensional CW-complex in the right way, we see it is homeomorphic to S^{2} as in Figure 4.3. Now we consider looking at one half of the sphere with center being the vertex $\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 3\right|_{7} 4\right|_{7} 5\right|_{7} 6\right|_{7} 78$ as in Figure 4.4. Similarly, we can look at the opposite half of the sphere with center being the vertex $\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 34\right|_{7} 5\right|_{7} 6\right|_{7} 7\right|_{7} 8$ as in Figure 4.5. We notice that under the group action by S_{8}^{B}, that these two center vertices are in the same orbit. Specifically, the group element $(37)(48)(15)(26)(-3-7)(-4-8)(-1-5)(-2-6)$ sends one center to the other. If we consider each face in the Figure 4.4, we find that the corresponding antipodal face in

Figure 4.3: The link of the chain of Example 4.4.1.

Figure 4.4: A perspective of the link of the face of Example 4.4.1 where examine the half of S_{2} with center given by vertex $\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 3\right|_{7} 4\right|_{7} 5\right|_{7} 6\right|_{7} 78$.

Figure 4.5 is equivalent under the quotient by the group action (in fact, by the earlier group element). In other words, the net effect of acting on this link by S_{8}^{B}, is to apply the antipodal map to S_{2}. Thus, the link of this face in $\Delta\left(\Pi_{8}^{B}\right) / S_{8}^{B}$ is $\mathbb{R} \mathbb{P}_{2}$.

Figure 4.5: A perspective of the link of the face of Example 4.4.1 where we look at the half of S_{2} with center given by vertex $\left.\left.\left.\left.\left.\left.\left.0\right|_{7} 1\right|_{7} 2\right|_{7} 34\right|_{7} 5\right|_{7} 6\right|_{7}\right|_{7} 8$

Figure 4.6: The chain orbit of the action of S_{8}^{B} on the link of the face from Example 4.4.1. Close analysis of the picture reveals the chain orbit is homeomorphic to \mathbb{R}_{2}.

Theorem 4.4.2. The quotient complex $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ is not shellable for $n \geq 8$.
Proof. Consider Example 4.4.1. Since $\mathbb{R}_{\mathbb{P}_{2}}$ has nontrivial homology at dimension 1 (see e.g. [15]), the link of this face is not 1-acyclic, thus we conclude that $\Delta\left(\Pi_{8}\right) / S_{8}^{B}$ is not Cohen-Macaulay. By Theorems 4.2 .10 and 4.2 .14 , this implies that $\Delta\left(\Pi_{8}\right) / S_{8}^{B}$ is not shellable.

We can extend Example 4.4.1 to an example for $n>8$. We construct the example by doing the following. First, for each set partition of Π_{8}^{B} in the example, we can build a set partition of Π_{n}^{B}, by letting i be in the same zero block for all $n \geq i>8$. Then we iteratively split off the smallest element in the zero block. That is, the chain will look like:
$012345678 \cdots n>09 \cdots n|12345678>09 \cdots n| 1234|5678>09 \cdots n| 1|234| 5|678>09 \cdots n| 1|2| 34|5| 6 \mid 78$

$$
\begin{gathered}
>09 \cdots n|1| 2|3| 4|5| 6|7| 8>0|9 \cdots n| 1|2| 3|4| 5|6| 7|8| 9>\cdots>0|9| 10 \cdots n|1| 2|3| 4|5| 6|7| 8 \mid \\
>0|9| 10|\cdots| n|1| 2|3| 4|5| 6|7| 8 \mid
\end{gathered}
$$

Thus, we get a face of codimension 3 in $\Delta\left(\Pi_{n}^{B}\right)$. Observe that this face has the same link as the face of Example 4.4.1 because the chain also skips six vertices, twelve edges, and eight faces at the right ranks. These can be arranged in a $C W$-complex homeomorphic to S^{2} as in Figure 4.3. The group element (37)(48)(15)(26)(-3-7)(-4-8)(-1-$5)(-2-6)$ considered as an element of S_{n}^{B} for any $n \geq 8$ still plays the role of identifying antipodal faces as equivalent under the group action of S_{n}^{B}.

We consider the permutations of S_{n}^{B} written in disjoint cycle notation (see [5, Chapter 8] for details). We see that among faces in the link, that $\{1,2, \cdots, 8\}$ are the only nonnegative elements in nonzero blocks, and $\{0,9, \cdots, n\}$ are the only nonnegative elements in zero blocks. Therefore, any nontrivial cycle that is part of a permutation sending one link face to another cannot contain both nonnegative elements from zero blocks and nonzero blocks. Therefore, we see that the only potential permutations that can identify two faces as equivalent in the link are permutations of the set $[-8,8] \backslash\{0\}$. But all permutations of the set $[-8,8] \backslash\{0\}$ that identify equivalent faces have already been accounted for in Example 4.4.1. Therefore, every quotient face in this link also has only two elements.

Thus the action of S_{n}^{B} on the link still produces $\mathbb{R P}_{2}$. Therefore, we have constructed a copy of a face whose link is $\mathbb{R} \mathbb{P}_{2}$ in $\Delta\left(\Pi_{n}^{B}\right) / S_{n}^{B}$ for $n \geq 8$.

REFERENCES

[1] Marcelo Aguiar and Walter Moreira. Combinatorics of the free Baxter algebra. Electron. J. Combin., 13(1):Research Paper 17, 38 pp. (electronic), 2006.
[2] Jason Bandlow and Kendra Killpatrick. An area-to-inv bijection between Dyck paths and 312-avoiding permutations. Electron. J. Combin., 8(1):Research Paper 40, 16 pp. (electronic), 2001.
[3] Marilena Barnabei, Flavio Bonetti, and Matteo Silimbani. The descent statistic on 123-avoiding permutations. Sém. Lothar. Combin., 63:Art. B63a, 8, 2010.
[4] Anders Björner. Shellable and Cohen-Macaulay partially ordered sets. Trans. Amer. Math. Soc., 260(1):159-183, 1980.
[5] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Graduate Texts in Mathematics. Springer, New York, 2005.
[6] Anders Björner and Michelle Wachs. On lexicographically shellable posets. Trans. Amer. Math. Soc., 277(1):323-341, 1983.
[7] Anders Björner and Michelle L. Wachs. Permutation statistics and linear extensions of posets. J. Combin. Theory Ser. A, 58(1):85-114, 1991.
[8] Anders Björner and Michelle L. Wachs. Shellable nonpure complexes and posets. II. Trans. Amer. Math. Soc., 349(10):3945-3975, 1997.
[9] Mireille Bousquet-Mélou, Guillaume Chapuy, and Louis-François Préville Ratelle. Tamari lattices and parking functions: proof of a conjecture of F. Bergeron, 2011.
[10] M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland. Distributions of Statistics over Pattern-Avoiding Permutations. arXiv 1812.07112, December 2018.
[11] Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch. Patterns in inversion sequences I. Discrete Math. Theor. Comput. Sci., 18(2):Paper No. 2, 21, 2016.
[12] C. Defant. Stack-Sorting Preimages of Permutation Classes. arXiv 1809.03123, September 2018.
[13] Ivan Geffner and Marc Noy. Counting outerplanar maps. Electron. J. Combin., 24(2):Paper 2.3, 8, 2017.
[14] Darij Grinberg and Victor Reiner. Hopf Algebras in Combinatorics. arXiv e-prints, page arXiv:1409.8356, Sep 2014.
[15] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[16] Patricia Hersh. Lexicographic shellability for balanced complexes. J. Algebraic Combin., 17(3):225-254, 2003.
[17] Axel Hultman. Quotient complexes and lexicographic shellability. J. Algebraic Combin., 16(1):83-96, 2002.
[18] Dmitry N. Kozlov. General lexicographic shellability and orbit arrangements. Ann. Comb., 1(1):67-90, 1997.
[19] Shirley Law. Combinatorial realization of certain Hopf algebras of pattern-avoiding permutations. PhD thesis, North Carolina State University, Raleigh, NC, 2013.
[20] Shirley Law and Nathan Reading. The Hopf algebra of diagonal rectangulations. J. Combin. Theory Ser. A, 119(3):788-824, 2012.
[21] Toufik Mansour and Mark Shattuck. Pattern avoidance in inversion sequences. Pure Math. Appl. (PU.M.A.), 25(2):157-176, 2015.
[22] Megan Martinez and Carla Savage. Patterns in inversion sequences II: inversion sequences avoiding triples of relations. J. Integer Seq., 21(2):Art. 18.2.2, 44, 2018.
[23] Daniel López N., Louis-François Préville-Ratelle, and María Ronco. Algebraic structures defined on m-Dyck paths, 2015.
[24] T. Kyle Petersen. Eulerian numbers. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, New York, 2015. With a foreword by Richard Stanley.
[25] N. Reading. Lattice theory of the poset of regions. In Lattice theory: special topics and applications. Vol. 2, pages 399-487. Birkhäuser/Springer, Cham, 2016.
[26] Nathan Reading. Lattice congruences, fans and Hopf algebras. J. Combin. Theory Ser. A, 110(2):237-273, 2005.
[27] Nathan Reading. Noncrossing arc diagrams and canonical join representations. SIAM J. Discrete Math., 29(2):736-750, 2015.
[28] Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, second edition, 1996.
[29] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.
[30] Michelle L. Wachs. Poset topology: tools and applications. In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., pages 497-615. Amer. Math. Soc., Providence, RI, 2007.

