
ABSTRACT

COLEMAN, KAYLA DANIELLE. Active Subspace Techniques, Bayesian Inference and Uncertainty
Propagation for Nuclear Neutronics and Chemistry Models. (Under the direction of Ralph C. Smith.)

As the emphasis on complex physical models having quantified uncertainties increases, the

field of uncertainty quantification (UQ) is increasingly employed by engineers and scientists. In

this dissertation, we address four aspects of the UQ process: (i) input space reduction, (ii) surrogate

model construction, (iii) Bayesian model calibration, and (iv) uncertainty propagation.

We first address input space reduction via active subspace construction. Active subspace con-

struction relies on the fact that the responses tend to vary more prominently in a few dominant

directions defined by linear combinations of the original inputs, allowing for a rotation of the

coordinate axis and a consequent transformation of the parameters. In the first part of this disser-

tation, we develop and implement a gradient-free active subspace algorithm that is feasible for

high-dimensional parameter spaces where finite-difference techniques are impractical. We intro-

duce an initialization algorithm to identify lower-dimensional subspaces of influential directions

to seed the gradient-free algorithm for high-dimensional problems, and we analyze dimension

selection criteria to verify the methods. We illustrate the initialized gradient-free active subspace

algorithm for a neutronics example implemented with SCALE6.1, for input dimensions up to 7700.

We then discuss extensions to the initialization algorithm. These extensions improve the con-

vergence of the algorithm to the analytic or adjoint gradient, thus, reducing the number of function

evaluations. The extended initialization algorithm is used to approximate the gradients needed to

construct active subspaces for neutronics, thermal hydraulics, fuels and chemistry models with

moderate (10-100) or high (> 100) input dimensions. We illustrate the extended initialization algo-

rithm for linearly and nonlinearly parameterized models having analytic gradients, a discretized

elliptic PDE, and the neutronics code SCALE6.1.

We also discuss the use of frequentist and Bayesian lasso (least absolute shrinkage and selection

operator) techniques for parameter selection in nonlinearly parameterized models employed for

input space reduction. It is necessary to isolate the subset of identifiable or influential parameters,

which can be uniquely calibrated from experimental data. We survey the performance of existing

algorithms and present a new Bayesian lasso implementation based on the DRAM algorithm. We

compare the novel DRAM implementation to the existing Gibbs sampler implementation.

To maximize fuel performance in next generation light water reactors, researchers are exploring

the properties and effects of the deposition of corrosion products known as crud on the nuclear

core. Deposits with high concentrations of boron species produce a shift in the core power distri-

bution known as the axial offset anomaly (AOA) or a crud induced power shift (CIPS). The crud

simulation code MPO Advanced Model for Boron Analysis (MAMBA), developed by the Consortium



for Advanced of Simulated Light Water Reactors (CASL), simulates three-dimensional crud growth

along the surface of a single fuel rod using information from the WALT test loop data. Calibration

of the crud thermal conductivity and the chimney heat transfer coefficient are needed to improve

the accuracy of the crud growth simulations in MAMBA. MAMBA simulations can then be used

to make predictions of CIPS for a wide range of operating conditions for nuclear cores. In this

dissertation, we construct a physics-based surrogate model for MAMBA and calibrate the chimney

heat transfer coefficient and crud thermal conductivity using Bayesian inference and the WALT loop

data. We then identify the set of identifiable parameters that is uniquely determined by the data via

parameter subset selection (PSS). We calibrate the identifiable set of parameters using the Delayed

Rejection Adaptive Metropolis (DRAM) algorithm and the WALT test loop data. After quantifying

the uncertainties in the parameters, we forward propagate the uncertainties through the MAMBA

model via prediction intervals.
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CHAPTER

1

OVERVIEW OF TOPICS

The rapid growth of uncertainty quantification (UQ) as an interdisciplinary field can be attributed

to factors such as increasing emphasis on models having quantified uncertainties and novel com-

putational designs that facilitate implementation of new algorithms [53]. We motivate uncertainty

quantification for physical models in the context of nuclear neutronics and chemistry models. In

this dissertation, we address four steps in the UQ process for these models. In Chapters 2, 3 and 4,

we address the first step, input space reduction, via active subspace construction and least absolute

shrinkage and selection operator (lasso) techniques [16, 44, 57]. We employ these methods for

moderate- to high-dimensional input spaces to reduce the number of required input parameters,

which as a result, reduces the number of function evaluations. For complex physical models that are

computationally expensive, this reduction in the number of function evaluations makes response

surface construction computationally feasible.

We next address surrogate model construction. We employ mathematical and statistical surro-

gate models in the neutronics examples we discuss in Chapters 2 and 3. Additionally, we employ

physics-based surrogate models for crud deposition in Chapter 5. The use of surrogate models for

Bayesian model calibration, which is the next step in the UQ process, is necessary for high-fidelity

codes that take hours to days to run. Prior to Bayesian model calibration, we perform parameter

subset selection (PSS) to determine the identifiable set of parameters [8]. Once the identifiable set of

parameters is determined, we employ the Delayed Rejection Adaptive Metropolis (DRAM) algorithm

for Bayesian model calibration of the physics-based surrogate model and the MPO Advanced Model
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for Boron Analysis (MAMBA) heat and mass transfer model discussed in Chapter 5. Lastly, we address

uncertainty forward propagation in Chapter 5. We determine uncertainty bounds for the cladding

temperature by computing uncertainty bounds for the model parameters and forward propagating

the the model parameter uncertainties and measurement errors through the MAMBA model. We

employ prediction intervals for the uncertainty forward propagation [53].

There are several symbols that appear multiple times throughout this dissertation. For clarity,

we summarize the common symbols employed in this dissertation in Table 1.1.

Table 1.1 Summary of notation.

Symbol Meaning
χ Independent variable
X Sensitivity matrix
x Active subspace parameters
θ General model parameters
Υ Random variable for measurements
υ Realized measurements of Υ

1.1 Gradient-Free Active Subspace Construction

Physical models employed in neutronics, thermal hydraulics, fuels and chemistry codes typically

have a moderate (10-100) or high (> 100) number of inputs – comprised of parameters, initial or

boundary conditions, or exogenous forces – many of which are nonidentifiable or noninfluential

in the sense that they are not uniquely determined by the data [53]. Furthermore, the associated

simulation codes are often too computationally complex to permit coupled multiphysics simula-

tions, design, uncertainty quantification, or risk analysis. Additionally, the high-dimensionality of

their parameter spaces can impact the computational cost of a parameter study. Thus, we often

require the construction and verification of more cost-efficient surrogate models that can accurately

predict the model behavior in the regime of interest, while utilizing fewer computations. Prior to the

construction of the response surface, it is often crucial to perform some type of dimension reduction

to reduce the number of required input parameters; otherwise the construction of the response

surface can quickly become prohibitively expensive itself, due to the “curse of dimensionality" [53].

For example, neutronics models can contain input spaces with dimensions on the order of tens of

thousands to millions of parameters, a size that makes the construction of a response surface or

surrogate model infeasible without first redefining a smaller subspace of influential parameters.
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One method for dimension reduction of the input space is active subspace construction [4,

16, 31]. This method relies upon the fact that responses often vary most prominently in directions

that are not aligned with the coordinates of the original input space. Instead, directions of greatest

variability may be linear combinations of the original inputs, and the coordinates of the input space

may be rotated to align with these significant directions. The eigenspace of a matrix C, defined as

the average of the outer product of the gradient with respect to itself—termed the “active subspace"

due to its containment of the majority of the function’s variability [49]—results in a reduction of the

input dimension.

Previously, gradient-based methods have been employed to construct the active subspace, as

detailed in [4, 16, 17] and outlined in [34]. These methods rely on Monte Carlo sampling of the input

space, evaluation of the gradient at the sampled points, and approximation of the eigenvectors of

interest through a singular value decomposition of the resulting gradient matrix. Our gradient-free

method, initially developed in [34], relies upon the employment of elementary effects from Morris

screening [41] to approximate the columns of the gradient matrix. The efficiency of the algorithm

is augmented by employing adaptive step sizes and directions in the construction of these coarse

derivative approximations. Throughout the algorithm, the current active subspace information is

used to define important directions in the input space that quantify the majority of the variability in

the function. By exploiting this information at each iteration, we significantly reduce the number of

required function evaluations by terminating when the directional derivatives in the remaining input

directions are essentially zero and no longer contribute significant information. The advantage

to this method is that the active subspace can still be constructed in problems where gradient

information or adjoint capabilities are not available.

Since our gradient-free algorithms initially require m +1 function evaluations per column of

the approximated gradient matrix for m input parameters—a cost comparable to that of a finite-

difference approximation—use of these techniques is often infeasible for high-dimensional prob-

lems. In this dissertation, we introduce an initialization algorithm that permits efficient approxima-

tion of the first few gradient vectors to initialize the gradient-free methods with a few important

directions. These gradient approximations are based upon maximizing the linear approximation of

the function over great circles or ellipses on a ball centered around the initial sample point with

radii chosen to ensure that local linearity is trusted. The initialization algorithm provides a subspace

of reduced dimension based on the rough gradient estimates, after which the adaptive gradient-free

method can be used for further reduction in the rotated coordinate space.

Another significant issue that we address in this dissertation is the determination of how many

directions should be retained in the active subspace to obtain an accurate response surface. We

incorporate a variety of dimension selection criteria from varying sources to verify our gradient-free

algorithms. These include visual-based criteria [16, 35], error-based criteria [26, 55], a criterion

based upon the stopping algorithm used in principal component analysis [29], and a criterion based
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upon observing errors in response surfaces constructed for each of the possible dimensions [16].

We include the dimensions specified by each of these criteria for both the gradient-based and

gradient-free methods for additional verification.

We include examples that arise when modeling neutron transport for a nuclear reactor fuel rod

under several sets of conditions to illustrate the use of gradient-free methods with and without the

use of the initialization algorithm. For each situation, we utilize the SCALE6.1 simulation software,

developed at Oak Ridge National Laboratory [46], to simulate neutron transport in pressurized

water reactor pin cells and fuel rods. We begin with a relatively low-dimensional example having

an input space of 44 dimensions to verify that our gradient-free algorithm performs comparably

with and without the use of the adaptive step sizes and directions. In our second example, we

consider a moderate 132-dimensional input space to compare its efficiency to that of the gradient-

free algorithm on the full input space. Finally, we illustrate a high-dimensional problem having

7700 inputs, for which the construction of the active subspace is infeasible without the use of the

initialization algorithm. In all three cases, the gradient-free results are compared to gradient-based

results obtained from the use of the SAMS module in the SCALE6.1 software.

In Chapter 2, we extend the algorithms presented in [34] in three ways: (i) the introduction of an

initialization algorithm used to seed the adaptive Morris algorithm with important directions in the

case where the input dimension is too large to allow for analysis on the full space, (ii) incorporation

of various dimension selection criteria for the verification of our gradient-free algorithms, and (iii)

the inclusion of a high-dimensional neutronics example to demonstrate applications of our active

subspace methods.

1.1.1 SCALE6.1 Examples

To demonstrate the attributes of our proposed gradient-free algorithm for dimension reduction

in complex models, we apply our methods to an application in nuclear reactor design, focusing

in particular on a neutron transport model. In all nuclear reactors, heat is produced by controlled

nuclear fission in the reactor core. The reactor core contains fuel rods consisting of uranium or

uranium dioxide pellets, control rods, and water-filled coolant channels. In a pressurized water

reactor (PWR), coolant is circulated throughout the core under high pressure. This heated coolant

generates steam, which is used to drive the turbines. The coolant also performs a second task of

acting as a neutron moderator; hydrogen atoms present in the coolant water collide with the fast

fission neutrons, slowing them to a velocity that allows for a sustainable chain reaction. Since the

neutron densities and energies drive the reactions occurring in the reactor core, it is essential that

we are both able to quantify the neutron distributions and model the interactions between the fuel

and coolant at any given time.

To specify the neutron distribution, we consider the angular neutron fluxφ(r, E ,Ω, t ), where r =
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(x , y , z ) is the position vector, v is the velocity,Ω= v /|v | is the solid angle that specifies the direction

of motion, and E is the energy level at time t [21]. To construct the neutron transport equation,

we balance neutron sources and loss mechanisms for an arbitrary volume V . The neutron sources

include fission, neutrons entering V , and neutrons entering the state (E ,Ω) from scattering reactions,

which we denote by E ′→ E ,Ω′→Ω. Losses are due to neutrons leaving V and neutrons suffering a

collision. A balance of the source and loss terms yields the 3-D neutron transport equations

1

|v |
∂ φ

∂ t
+ Ω ·∇φ+Σt (r, E )φ(r, E ,Ω, t )

=

∫

4π

dΩ′
∫ ∞

0

d E ′Σs (E
′→ E ,Ω′→Ω)φ(r, E ′,Ω′, t ) (1.1)

+
χ(E )

4π

∫

4π

dΩ′
∫ ∞

0

d E ′v (E ′)Σ f (E
′)φ(r, E ′,Ω′, t ),

where Σt ,Σ f are macroscopic total and fission cross-sections—defined as the ratio of the reaction

rate (s−1) to incident flux (cm−2s−1)when a beam of particles impinges on a nucleus. The double

differential scattering cross-section Σs characterizes scatter from (E ′,Ω′) to (E ,Ω) in the cone dΩ.

Finally, χ(E ) and v (E ′) respectively denote the fission spectrum and average number of fission

neutrons produced by fission resulting from neutrons with energy E ′. Here we consider a neutronics

example under three sets of conditions. Construction setups for each of our neutron transport

examples are depicted in Figure 1.1.
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(b)

Figure 1.1 (a) PWR pin cell construction for the 44-input neutron transport example. (b) Material composi-
tion of the PWR quarter fuel lattice for the 132- and 7700-input neutron transport examples.
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1.2 Initialization Algorithm for Gradient-Free Active Subspace Construc-

tion

We introduce an extended initialization algorithm that efficiently approximates the gradient for

moderate- to high-dimensional parameter spaces where gradients or adjoints are not available. This

gradient approximation is based upon maximizing the linear approximation of the function over an

ellipsoid centered around the initial sample point with volume chosen to ensure local linearity. The

proposed initialization algorithm approximates the gradient vector at a pointχ0 by exploiting the

fact that within the ellipsoid, the output function does not significantly vary in directions within

the subspace S orthogonal to the direction of the steepest ascent, which we refer to as “the space

of no change”. The initialization algorithm approximates a number of gradient samples on the

original parameter space with `�m function evaluations required for each column, where m is the

dimension of the parameter vector. After computing the SVD of this gradient estimate, we can select

the set of directions constituting the active subspace according to a dimension selection method.

In Chapter 3, we include several numerical examples to illustrate the effectiveness of the gradient-

free active subspace method via the initialization algorithm. We illustrate examples with known

analytic gradients to verify the accuracy and efficiency of our algorithm. Additionally, we include an

elliptic PDE example as described in [17]. We employ the MATLAB codes provided in [15, 18, 37]

to solve the elliptic PDE, and we compare the adjoint gradient to the gradient-free results. We also

include the SCALE6.1 44-dimensional example that models neutron transport for a nuclear reactor

fuel rod.

1.3 Frequentist and Bayesian Lasso Techniques

The calibration of physical models employed for control design is critical to ensure that control efforts

are directed toward desired stabilization or tracking objectives rather than primarily compensating

for model discrepancy due to inaccurate parameters. For complex models, which depend nonlinearly

on the parameters, many parameters are typically unidentifiable in the sense that they cannot be

uniquely determined from data or non-influential in the sense that parameter variations produce

marginal variations in responses. Hence it is important to isolate subsets of identifiable or influential

parameters prior to model calibration and subsequent control design.

As detailed in [53], local or global sensitivity analysis techniques provide one option for isolating

subsets of influential parameters. The parameter subset selection (PSS) techniques detailed in [8]

provide a second alternative that utilizes standard errors estimated from data. Whereas affective for

many problems, these techniques do not provide the capability to employ L 1 or prior information

regarding parameters.
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We investigate, in Chapter 4, the use of frequentist and Bayesian lasso (least absolute shrinkage

and selection operator) techniques for parameter selection [57]. In this approach, shrinkage tech-

niques are employed to reduce estimates for least influential parameters to zero. This can introduce

some degree of bias but has the advantage that one can reduce the prediction variance and the mean

squared error (MSE) of the prediction. Although shrinkage is most useful for high-dimensional

problems, it can be applied to a moderate number of dimensions when sparsity is desired. As

illustrated in [56], in the context of linear regression models, lasso techniques can be employed for

both shrinkage and automatic parameter selection.

We demonstrate the implementation of Bayesian lasso, with sampling based on a Delayed Re-

jection Adaptive Metropolis (DRAM) algorithm and Gibbs sampler, for linearly and nonlinearly

parameterized problems. We illustrate the effectiveness of the algorithms through numerical exam-

ples.

1.4 MAMBA and the WALT Test Loop

To achieve the goal of maximizing fuel performance in next generation light water reactors, re-

searchers are exploring the properties and effects of the deposition of corrosion products known as

crud on the nuclear core. There are numerous fuel performance issues that are associated with the

formation of crud on nuclear fuel rods.

Deposits with high concentrations of boron species produce a shift in the core power distribution.

This is known as the axial offset anomaly (AOA) or a crud induced power shift (CIPS). If the crud

deposits are sufficiently thick, it may cause crud induced localized corrosion (CILC) which is a

result of fuel rod surface dry-out. To support the industry goal of zero fuel failures, the Electric

Power Research Institute (EPRI) has published several guidelines for improving fuel performance in

Pressurized Water Reactors (PWRs) and developed a fuel performance code called Boron-Induced

Offset Anomaly (BOA) to assess risks associated with crud deposition [52].

In October 2005, a single rod crud thermal-hydraulic test facility was built as part of the effort

directed at understanding crud properties at the Westinghouse facility in Churchill, PA. The testing

facility was named Westinghouse Advanced Loop Tester (WALT) and, since 2005, numerous updates

have been made to the facility. In the WALT test loop, simulated crud can be deposited on the heater

rod surface so the thermal properties of the crud can then be investigated. The characteristics of

the simulated crud in the WALT test loop are similar to what has been observed in PWRs [58]. In

early 2009, EPRI initiated a program to better define the thermal conductivity of simulated crud

deposits. The crud thermal conductivity was obtained via evaluations of the measured data from

the WALT test facility.

In 2011, the EPRI laboratory program improved the WALT test loop methods to get better in-

formation for estimating crud thermal conductivity under a variety of conditions experienced in a
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PWR fuel assembly. They tested a wider range of crud thicknesses and developed new techniques

to make sure that the crud properties were measured at the precise location where the thermal

measurements were taken. More information about the thermal conductivity was necessary to

allow more accurate predictions of fuel rod surface temperatures in the presence of crud. These

improved surface temperature predictions are used to enhance the nuclear industry’s ability to

determine margin to potential cladding failure due to crud induced localized corrosion (CILC). The

crud thermal conductivity results are also useful for improving the BOA model, particularly in regard

to cladding temperature increases due to crud. The prediction of this cladding temperature increase

is crucial in CILC risk assessment, and in accurately predicting the corrosion rate of cladding at high

burnup [52].

1.4.1 The WALT Test Loop

The Westinghouse Advanced Loop Tester (WALT) at the George Westinghouse Science and Tech-

nology Center (STC) is a single heater rod that is used to explore the effects of crud deposits on the

cladding of a fuel pin. In addition to the crud thermal conductivity program, this test loop is also

used to evaluate how plant chemistry changes may affect crud deposition under pressurized water

reactor (PWR) operating conditions [52].

1.4.1.1 The WALT Loop Design

The test loop consists of a heater rod, a pressure vessel, valves, pumps, heat exchangers, a flow meter,

a pressure control system, and a protection system. The thermocouples, flow meters, pressure

gauges, and DC current and voltage meters are reset and recorded for each test. Note that all

thermocouples are isolated from the power supply. Figure 1.2 provides a detailed diagram of the

WALT test loop. The legend for the diagram is shown in Figure 1.3.

The WALT test loop is controlled by a pressure control system and an independent pressurizing

pump. The pressure control system controls the system pressure with a large mark-up tank as

shown in Figure 1.2. The pressure is measured by a pressure gauge connected to the nitrogen line. A

nitrogen line and a safety relieve line are used to prevent too much pressure in the system. The fluid

conditions are controlled by a heat exchanger with an air-blown cooler. The flow meter measures

the flow rate of the fluids in the main loop. The autoclave is surrounded by electrical heaters, or

pre-heaters, that control the temperature of the coolant entering the inner chimney tube. Note

that the heat loss from inside to outside the chimney entrance is negligible. Two thermocouples

are used to measure the coolant temperature at the chimney entrance inside the autoclave. The

thermocouple wires are passed through the seals and are connected to the recorder through the top

end of the autoclave. By adjusting the DC current, one can control the power of the heater rod. The

power calculation is based on the electric resistivity and dimensions of the heater rod. Typically, the
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power distribution is uniform in the axial direction in the heater rod. Note that the heater rods are

constructed from standard PWR fuel cladding tubes. Under these conditions, the WALT test loop

can simulate typical PWR operating conditions.

Additionally, the WALT test loop has a rapid power shutdown system to maintain the integrity of

the test loop and to preserve the heater rod for post test examination. This power shutdown is based

on the measured heater rod cladding temperature, pressure, power, inlet temperature, and flow rate

that should immediately trip the power supply to the heater rod when the conditions are met.
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Figure 1.2 Diagram of the WALT Loop [52].
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Figure 1.3 Legend for the WALT Loop diagram [52].
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1.4.1.2 The Experiment

The following operating procedure, as outlined in [52], is recommended for normal operation of the

WALT loop.

1. Prepare and make the heater rod.

2. Assemble the heater rod with the test section.

3. Put the test section into the WALT loop, seal the loop, and put the insulation material on

piping and all equipment.

4. Connect all the thermocouples with the data acquisition system, then connect the power

supply cable from the rectifier power supply to the heater rod.

5. Start the data acquisition computer system.

6. Pressurize the heater rod to 10.3 MPa (gage pressure), or 1500 psig.

7. Fill the WALT loop system with water and start the main pump and the pressurizing pump.

8. Start the pre-heater to heat up the test loop to desired high temperature.

9. When the WALT loop system is reaching steady state, turn off the heater rod power temporarily

in order to calibrate the thermocouples at isothermal conditions.

10. Restart the heater rod power step-by-step in order to get a boiling curve at different power

levels. If a boiling curve is not desired, turn on the heater rod power, and then gradually

increase the power to the desired power level for steady state operation. The speed of the

air-blown fan can be adjusted for different power levels of the heater rod.

11. Open the valves to initiate the boron and lithium supply.

12. When the WALT loop is in steady state operation, inject crud solution periodically in order to

generate a crud layer on the heater rod surface.

13. Inject zinc from a separate tank.

14. Inject crud solution with Ethylenediaminetetraacetic acid (EDTA). After seeing the cladding

temperature reaching a desired value, stop crud injection.

15. Continue running the WALT loop for a desired time.

16. A boiling curve shall be obtained at the end of the WALT loop operation.
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17. Shutdown the heater rod supply, then shutdown the main pump immediately.

18. Quickly blow down all water from the WALT system in order to preserve the heater and crud

layer.

19. Let the WALT loop cool down overnight.

20. Open up the test section, and carefully disassemble the heater rod for the test section.

To disassemble the heater rod, first the thermocouples are removed from the thermo walls and

the rod pressurization tube is cut. Then, the vessel head is removed from the vessel along with

the heater rod. The heater rod’s electrical connection is unbolted, and the tube creating the flow

channel is removed carefully so that it doesn’t touch or scrape the rod’s surface. The rod is then

unscrewed from the pressure vessel head. Finally, it is labeled, photographed, and placed in a v-block

for microscopic examination.

1.4.1.3 Post Test Examination

A VHX Keyence digital microscope is employed with white light illumination to obtain a color micro-

graph of the deposit at 200X magnification at the axial location where temperature measurements

were taken. The light micrographs are taken at 200X magnification so that a large area of the deposit

surface can be scanned and the chimneys can be counted. Features of the deposits can be measured

to the nearest micron at this magnification level. In some cases, multiple micrographs were taken at

different focal lengths so that a three-dimensional image could be created. The Keyence software

was used to create the 3-D image and select a region of interest (ROI).

Using the light microscopy, the boiling chimneys in the region of interest are counted and the

diameter of each chimney are measured. Larger chimneys that contain joined tributary chimneys

are counted as a single chimney when the chimney mouth is perceived to be deeper than its diameter.

The individual tributary chimneys are counted individually when the chimney mouth appears to be

shallow.

When the addition of crud deposits in WALT is being considered, the deposit thickness is mea-

sured. A needle is used to dig a thin trench in deposit until the underlying white zirconium oxide is

revealed. The distance from the top of the deposit to the oxide is measured by varying a calibrated

focus micrometer on a light microscope at 200X magnification. This distance is then recorded as

the deposit thickness.

After the light microscopies are performed, the tube is prepared for deposit cross-sectioning and

characterization within an electron microscope. As outlined in [52], the deposit cross-sectioning is

consists of the following steps:
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1. The bottom end of the heater rod is removed with a tube cutter, making sure that there is no

damage done to the deposit in the area of interest.

2. The distance from the cut to the end of the thermowells is measured with a depth gauge.

3. The heater rod is held with a mounting cup so that thermowell terminations are toward the

bottom of the cup.

4. The cup is filled with epoxy so that 2-3 inches of the tube are submerged. The epoxy used for

mounting is Loctite Hysol Resin RE2038 with Loctite Hardener HD3404.

5. A vacuum is drawn on the inside of the heater rod using the pressurization tube to insure that

the epoxy flows into the tube.

6. The epoxy is allowed to cure at a temperature of 125řF for a period of at least 12 hours.

7. The epoxy mount is marked so that the original orientation of sections can be maintained

after the cross sectioning.

8. The epoxy mount with deposit is cut to expose the deposit at the axial location where the

thermowells terminated. In cases where two different thermowell lengths are used to access

two locations on the heater rod, two different cuts are made.

9. The identity of each sectioned thermowell is determined by pressurizing the thermowells still

attached to the top of the rod in sequential fashion. The cut surface is wetted so that bubbling

can be observed. The thermowell positions are then marked on both sides of the cut surfaces.

10. Additional cuts are made as necessary to separate the mount from the tube.

11. The epoxy mount is ground on a high speed wheel to flatten the mount and to adjust the

observation plane to the end of the thermowells.

12. The ground surface is polished to a 1200 grit finish with a series of silicon carbide papers,

followed by a 0.5 micron diamond finish.

13. The samples are coated with a light coating of carbon to reduce surface charging.

The cross-sectioned deposits are then examined with a scanning electron microscope (SEM).

Note that a Carl Zeiss SUPRA 40 SEM was used for all samples except for those from Rod 92. The

samples from Rod 92 were examined with an APEX Personal SEM. Images of the cross-sectioned

deposits are collected in both the backscattered and secondary electron mode. After the SEM images

are obtained, the images are imported into ImageJ, a public domain image analysis program from

the National Institutes of Health [42]. Each image is converted to 8-bit grayscale format and a
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representative region of interest (ROI) covering the entire deposit thickness is defined. An intensity

threshold is selected to distinguish between pores and particles. Percent porosity is then calculated

for the ROI as 100*pore area / total area. If there appears to be a change in porosity between layers

another ROI is selected and the porosity measurements are repeated. Note that it is reasonable to

assume that the random cross-section pore area ratio is representative for the 3-D porosity since

the same method is used in porosity measurements for crud from nuclear power plants [52].

1.4.2 Walt Loop Calibration for MAMBA

The crud simulation code MPO Advanced Model for Boron Analysis (MAMBA), developed by the

Consortium for Advanced Simulation of Light Water Reactors (CASL), simulates three-dimensional

crud growth along the surface of a single fuel rod using information from BOA and the WALT test loop

data. Calibration of the crud thermal conductivity, the chimney heat transfer coefficient, and the

chimney vapor fraction are necessary to improve the accuracy of the crud simulations in MAMBA.

In Chapter 5, we calibrate the crud thermal conductivity, the chimney heat transfer coefficient, and

the chimney vapor fraction using the Delayed Rejection Adaptive Metropolis (DRAM) algorithm

and the WALT test loop data for a surrogate heat transfer model and the MAMBA heat and mass

transfer model. Additionally, we determine an identifiable set of parameters using parameter subset

selection [8]. We then compute uncertainty bounds on the parameters via credible intervals. We

forward propagate the uncertainty in the parameters through the model via prediction intervals to

quantify the uncertainty in our quantity of interest, cladding temperature.
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CHAPTER

2

GRADIENT-FREE CONSTRUCTION OF

ACTIVE SUBSPACES FOR DIMENSION

REDUCTION IN COMPLEX MODELS

WITH APPLICATIONS TO NEUTRONICS

2.1 Active Subspace Construction

We summarize here fundamental concepts pertaining to gradient-based active subspace construc-

tion [16]. Consider the function

f = f (x), x= [x1, ..., xm ]
T ∈ Γ

where the random variable x has an associated probability density function ρ :Rm →R+ with











ρ(x)> 0 x ∈ Γ

ρ(x) = 0 x /∈ Γ .
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Here Γ is the image of the parameter space, and we assume that f is continuous and square-

integrable with respect to the probability density function ρ.

We denote the gradient vector of f by ∇x f (x) =
�

∂ f
∂ x1
· · · ∂ f
∂ xm

�T
and use this to construct the

expected value of the outer product of the gradient with itself,

C=

∫

(∇x f )(∇x f )Tρ d x. (2.1)

Since C is symmetric and positive semi-definite, it admits an eigenvalue decomposition

C=WΛWT , Λ= diag(λ1, ...,λm ), λ1 ≥ · · · ≥λm ≥ 0.

The eigenvectors W define a rotation of Rm and consequently the domain of f . With the eigen-

values in decreasing order, we partition the eigenvalues and eigenvectors into two sets

Λ=

�

Λ1

Λ2

�

, W= [W1 W2], (2.2)

where Λ1 = diag(λ1, . . . ,λn )with λn >λn+1 for some n <m , and W1 contains the first n eigenvectors

[17]. We then define rotated coordinates y ∈Rn and z ∈Rm−n by

y=WT
1 x, z=WT

2 x,

noting that f varies more along y directions than along z, since the eigenvalues corresponding to

W1 are strongly dominant.

Monte Carlo integration is typically employed to approximate the high-dimensional integrals in

the construction of the matrix C with parameter samples x j drawn from the associated probability

density function ρ(x). One then computes the gradient vector at each sample point,

∇x f j ≡∇x f (x j ), x j ∈ X , j = 1, ..., M ,

and constructs the matrix C=GGT in terms of the gradient matrix,

G=
1
p

M

�

∇x f 1 · · ·∇x f M
�

. (2.3)

The matrix G ∈ Rm×M admits a singular value decomposition G = W̃
p

Λ̃VT where the rotation

matrix W̃ can be interpreted as the uncentered principal directions obtained from a set of gradient

evaluations [29]. This forms the basis for the gradient-based method employed in [4, 16, 17].
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As suggested in [16], M is chosen large enough to satisfy M ≥αk log(m ), for an oversampling

factor α ∈ [2,10] and the number of active subspace dimensions k of interest. This lower bound

ensures that the accuracy in the first k eigenvalues is unaffected by the finite sampling of the gradient

matrix; see [16, Corollary 3.5] for motivation.

2.1.1 Gradient-Free Active Subspace Methods

Whereas the gradient-based methods of [4, 16, 17] are both accurate and efficient for determining a

low-dimensional active subspace for dimension reduction, it is commonly the case that gradient or

adjoint information cannot easily be obtained. This is the motivation behind the gradient-free active

subspace method developed in [34], which we summarize here. The finite-difference algorithm is

outlined in Section 2.1.1.1 and the full algorithm with use of adaptive step sizes and directions is

given in Section 2.1.1.2.

In contrast to the gradient-based algorithm, there are now two sources of error that must be

considered when using (2.3) to estimate the matrix C of (2.1). In addition to errors resulting from

the Monte Carlo sampling, where we assume

∫

(∇x f )(∇x f T )ρ d x≈
1

M

M
∑

i=1

(∇x fi )(∇x f T
i ),

we must also account for errors resulting from the approximation of the gradient vectors via finite-

difference or adaptive Morris methods. Error bounds for both of these error sources are discussed in

[16]. It is essential that we obtain a good approximation to the eigenspace of C since a poor estimate

of the eigenspace can have a large effect on the response surface approximation.

2.1.1.1 Finite-Difference Morris Active Subspace Construction

The goal is to form an approximation to the gradient matrix G of Section 2.1. Random initial vectors

x∗j ∈R
m , j = 1, ..., M , are chosen from a specified probability density ρ(x) designated for the input

space. From each initial point, we take a step in each of the original coordinate directions as depicted

in Figure 2.1(a) for a two-dimensional example. Function evaluations at each step are used to

construct a set of elementary effects, given by

di (x
∗
j ) =

f (x ∗1, j , . . . , x ∗i−1, j , x ∗i , j +∆, x ∗i+1, j , . . . , x ∗m , j )− f (x∗j )

∆
=

f (x∗j +∆ ·ei )− f (x∗j )

∆
(2.4)

for the i th parameter, a step size∆, and a sample point x∗ drawn from ρ(x). Here ei is a unit vector

with one in the i th component and zeros elsewhere. This set of m effects becomes the j th column

of our approximated gradient matrix, which we will denote by G̃. We provide additional details in

Algorithm 1.
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Algorithm 1 Gradient Approximation Using Finite-Difference Morris Method [41, 53]

(1) Let m be the number of input parameters, M be the number of desired columns, and specify
a step size∆.

for j = 1 : M

(2) Let Dm×1 be a column vector where each element is equal to ±∆, chosen randomly. Let
x∗m×1 be a randomly selected vector from the admissible parameter space.

(3) Evaluate the function at each step and compute the corresponding elementary effect:
for i = 1 : m

g i =
f (x∗+Di ·ei )− f (x∗)

Di
,

end
where ei is the standard basis column vector with a one in the i th position and zeros
elsewhere.

(4) Let G̃(:, j ) = 1p
M

g where g= (g1, . . . , gm )T .

end	

x1	

x2	

x*	 x1	

x2	

	
	

x1	

x2	

x*	

x2	

x1	

(a) (b)

Figure 2.1 Examples of steps on a two-dimensional input grid with a random initial point x∗. One elemen-
tary effect is computed per direction, for a total of m +1 function evaluations. (a) Finite-difference Morris
steps where step sizes are constant and step directions are aligned with the input space. (b) Adaptive Mor-
ris steps where steps are taken in the primary directions of the active subspace with step sizes determined
by the significance of the corresponding eigenvalues.
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2.1.1.2 Adaptive Morris Active Subspace Construction

Although missing gradient information can always be supplied by finite-difference algorithms,

as in Section 2.1.1.1, these are computationally inefficient, since the approximation of a single

gradient vector requires m +1 function evaluations. Developing a more efficient means of gradient

approximation is therefore critical for high-dimensional problems. Recently, Constantine et al. [18]

presented promising results employing the concept of gradient sketching. Alternatively, we address

the goal of improving efficiency by exploiting the active subspace at each iteration to decrease the

number of function evaluations required per gradient vector.

In classical Morris screening and the finite-difference algorithm of Section 2.1.1.1, each step

from the initial point changes only in a single component. Here, we allow step directions that

are linear combinations of the input parameters and step sizes of varying magnitudes in order to

adequately explore the parameter space while still obtaining reasonable accuracy in directions to

which the function is highly sensitive. The algorithm exploits information from the SVD factorization

at each iteration to determine new step sizes and directions based upon the current active subspace.

These alterations are the basis for the adaptive Morris algorithm in Algorithm 2. A more detailed

summary can be found in [34]. A comparison of finite-difference and adaptive Morris steps for a

two-dimensional example is illustrated in Figure 2.1.

As in [34], we truncate the function evaluations once we have obtained over 99% of the infor-

mation from the eigenvalue spectrum, given by λi =Λ(i , i ), i = 1, ..., m . That is, for the j th iteration,

j = 1, ..., M , we determine the first n j < j −1 for which
n j
∑

i=1
λi /

j−1
∑

i=1
λi ≥ 0.99, and then use steps only

in the first n j directions. We assume that the remainder of the directional derivatives are equal to

zero. If no such n j exists, we set n j = j −1 and use all j −1 directions. Therefore, the total number

of function evaluations needed to approximate the gradient is N =
∑M

j=1[n j + 1]. This provides

a significant reduction in the number of function evaluations required to construct the gradient

approximation G̃ for functions that exhibit rapid eigenvalue decay. It is important to note that this

is not the case for all functions. For example, this method does not reduce function evaluations for

Karhunen-Loève expansions with correlation lengths close to zero [53]. We also note that we cannot

be certain that quantifying 99% of the estimated energy also achieves 99% of the energy from C in

(2.1). However, in general, we will achieve 99% of the energy from C.

Prior to the construction of our approximated gradient matrix, we normalize the inputs so

that they are centered at zero and have equal ranges. The rescaling ensures that inputs with large

values do not dominate smaller inputs in multi-scale codes. This is especially important for the

neutronics examples that we investigate in Section 2.4 since we observe differences of up to 18

orders of magnitude in parameter samples. In addition, we require that input distributions be

centered at zero so that rotations defined by the active subspace revolve about the origin. For the

examples of Section 2.4, we normalized all input distributions to U [−1,1]m from their original
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distributionsU [x`, xu ], for m×1 lower and upper bound vectors x` and xu , prior to the construction

of our gradient matrices. Here xu and x` are chosen to be 10% above and below the nominal values,

respectively. The m ×1 normalized parameter vector z is computed via the linear transformation

z=Rx+ r,

where x is the m × 1 physical parameter vector, R = 2 ·diag((xu ,i − x`,i )−1) for i = 1, ..., m , and r =

Algorithm 2 Gradient Approximation Using Adaptive Morris Method

(1) Let m be the number of input parameters, M be the number of desired columns, and specify
an interval of possible step sizes [δmin,δmax]. Compute the first column of the gradient matrix
approximation G̃ with one iteration of Algorithm 1.

for j = 2 : M

(2) Compute the SVD factorization of the existing gradient approximation: G̃=U
p
ΛVT .

(3) Assign step sizes to the directions specified by the eigenvectors in matrix U via the
transformation

δi =δmin+
Λ(1, 1)−Λ(i , i )

Λ(1, 1)−Λ( j −1, j −1)
(δmax−δmin)

for i = 1, . . . , j −1. Let δi =δmax for i = j , . . . , m .

(4) Define a vector∆= [±δ1, ...,±δm ]T where the sign preceding each δi is chosen randomly.
Let x∗ be a randomly selected vector from the admissible parameter space.

(5) Evaluate the function at each step and compute the corresponding elementary effect:
for i = 1 : n j

g̃ i =
f (x∗+∆i ·U(:,i ))− f (x∗)

∆i

end

where n j < j − 1 and
n j
∑

i=1
λi /

j−1
∑

i=1
λi ≥ 0.99. Let g̃ i = 0 for n j < i ≤m . If no such n j exists,

we set n j = j −1 and use all j −1 directions.

(6) Transform the new set of elementary effects back to the original input space and append
to the existing gradient approximation:

G̃(:, j ) =
1
p

M
Ug̃

where g̃= (g̃1, . . . , g̃m )T .

end
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−(Rx`+1m ) where 1m is the m-vector of ones. Define g (z) = f (R−1(z− r)) and z∗ = Rx∗+ r. In this

case, the elementary effects g̃ i in Step (5) of Algorithm 2 are computed as

g̃ i =
g (z∗+∆i U(:, i ))− g (z∗)

∆i
=

f (x∗+∆i R−1U(:, i ))− f (x∗)
∆i

.

The remainder of Algorithm 2 proceeds as previously described.

We include one final note on the effect of the early termination of function evaluations on the

eigenvalue spectrum. As seen in the examples of Section 2.4, our adaptive Morris gradient matrices

tend to be of rank n , where we have terminated all function evaluations for directions n +1, ..., m .

The following serves as an intuitive explanation of why this phenomenon occurs.

Suppose we are about to begin the (n +2)nd iteration of Algorithm 2; that is, we are at Step (2)

with j = n + 2. We determine that starting with this (n + 2)nd column, we will use only the first n

directions; the (n +1)st eigenvalue is determined to be insignificant according to our termination

criteria. Our current gradient matrix approximation G̃ is of size m × (n +1) and has singular value

decomposition G̃=Um×m
p

Λm×n+1VT
n+1×n+1. We start by constructing the column of elementary

effects,

g̃m×1 =
�

g̃1 g̃2 . . . g̃n 0 . . . 0
�T

,

where we assume the directional derivatives for directions n +1, ..., m are equal to zero as a useful

heuristic. Following Step (6) of Algorithm 2, we transform this column back to the original space

before adding it to the current gradient matrix.

G̃(:, n +2) = Ug̃

= g̃1u∗1+ g̃2u∗2+ ...+ g̃n u∗n .

Therefore, the new column G̃(:, n +2), and any column formed from here on, is a linear combination

of the first n vectors of U. Thus, rank(G̃) never exceeds n .

2.2 Determining the Dimension of the Active Subspace

As noted in Section 2.1, active subspace methods utilize partitions of the eigenvalue spectrum to

define potential reductions in the input space. A number of methods for order determination have

recently been proposed, some of which rely on visual gaps in the spectrum [16, 35], and some of which

include enough dimensions to satisfy a user-defined error tolerance [26, 55]. Here we summarize

four dimension selection criteria: gap-based [16], error-based [26], one based on concepts from

principal component analysis [29], and a final method where we choose the dimension based on
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the errors in constructed response surfaces [16].

We summarize these algorithms in terms of the gradient matrix G but note that the algorithms

are equally valid for the approximated gradient matrix G̃. We emphasize that these methods are

utilized to determine the final active subspace dimension for response surface construction based

on the full gradient matrix constructed via the gradient-based, finite-difference Morris, or adaptive

Morris algorithms. We note that these dimension selection methods differ from the method used to

determine the proper dimension for reduction within the adaptive Morris gradient construction as

discussed in Section 2.1.1.2.

2.2.1 Gap-Based Dimension Selection

The most straight-forward of the dimension selection criteria is the gap-based criteria employed in

[16]. In this approach, one determines the appropriate active subspace dimension by identifying

where the largest gap in magnitude in the eigenvalue spectrum occurs if one exists. Though easy to

implement and justify visually, we note that using dimension choices based on visual indicators

provides no measure by which to determine whether one has quantified enough of the variation in

the function without the construction of response surfaces to test function behavior for the chosen

active subspace. Additionally, defining the “correct” dimension based on the largest gap in the

eigenvalues can be misleading in cases where the eigenvalue decay is very gradual. A large gap in

the eigenvalue spectrum implies that the Monte Carlo method and other gradient approximations

have a better chance of estimating the active subspace [16, Corollary 3.10, Theorem 3.14]. As we

will observe in Section 2.4, the eigenvalue spectrums tend to exhibit rapid decay after the first

eigenvalue for the gradient-based and finite-difference Morris methods. It is important to note

that this behavior is specific to our applications and not a universal property of the estimation

methods. As a result, determination of the active subspace dimension via this method results in the

selection of one dimension for all examples, even when a single dimension is clearly insufficient

for the construction of a response surface that is able to quantify input-output properties of the

function.

2.2.2 Error-Based Dimension Selection

We also utilize an error-based criterion proposed in [26] and used in [4, 31] to determine the dimen-

sion of the active subspace. The process is summarized in Algorithm 3. In this algorithm, the user

defines a tolerance εtol for the problem based on the importance of accuracy and the computational

time and available resources. For each possible rank, an error upper bound is computed and com-

pared to the user-defined tolerance. The error upper bound of Algorithm 3 is guaranteed with a

probability of 1−10−p [26], where p is the number of standard Gaussian vectors employed in the

construction of the bound. We employ p = 10 vectors for the examples in Section 2.4, and note that
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Algorithm 3 Error-Based Dimension Selection [26]

(1) Specify a tolerance εtol, and let Gm×k be the gradient matrix obtained using Algorithm 1 or 2.
Compute the SVD: G=U

p
ΛVT .

for j = 1 : m

(a) Draw a sequence of p standard Gaussian vectors {ωi }pi=1,ωi ∼N (0, I).

(b) Let Ũm× j be the first j columns of U.

(c) Let ε
j
upp = 10

q

2
π max

i=1...p
||(I− ŨŨT )Gωi ||.

end

(2) The active subspace dimension is the first j for which ε
j
upp < εtol. If no such j exists, add

another column to G using Algorithm 1 or 2 and repeat (1).

the number of samples used may be altered depending on the problem and the level of certainty

desired in the error upper bound. Once the upper bound has decreased beyond the value of εtol, the

algorithm is terminated and the current rank is deemed to be sufficient for the active subspace.

Of the methods considered in this investigation, this error-based method tends to be the most

conservative, retaining the largest number of dimensions for response surface construction. The

increased cost of constructing these higher-dimensional response surfaces is offset by the decreased

errors in the resulting surface as compared to the full model; see Section 2.4. However, one dis-

advantage of this method is its extreme dependency on the eigenvalue spectrum. This causes

disagreements in ‘correct’ dimension between the gradient-based and adaptive Morris methods,

since the termination of function evaluations beyond a certain threshold in the adaptive Morris

algorithm results in more rapid decay of eigenvalues compared to the gradient-based spectrum.

This tends to be the case among many of the error-based algorithms, including the one proposed in

[55], where the required construction of a mapping of a set of vectors to its active subspace may rely

heavily upon the configuration of the eigenvalue spectrum, particularly in cases where the input

distribution ρ has compact support as in our examples in Section 2.4.

2.2.3 PCA Dimension Selection

The goal of principal component analysis (PCA) is to reduce the dimensionality of a data set while

retaining the majority of the variability of the function through use of a variable transformation [29].

Therefore, we employ the dimension selection algorithm used in PCA to provide further verification

for our gap-based and error-based methods. This method relies upon a user-specified percentage

of total variation, 100t ∗, that is to be included in the reduced subset. Typically, chosen values for t ∗
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range between 0.75−0.99, depending on the available computational resources and the required

accuracy. The required number of dimensions is then the smallest value of j for which the ratio of

the sum of the energy content for the eigenvector set containing eigenvectors i = 1, ..., j over the

total sum of the eigenvalues exceeds the specified percentage t ∗. The details of this method are

provided in Algorithm 4.

Algorithm 4 PCA-Based Dimension Selection [29]

(1) For the gradient matrix Gm×n , calculate the sample mean u (i ) = 1
n

n
∑

j=1
G(i , j ).

Let h be an n ×1 column vector of ones.

(2) Compute the deviations from the mean using the vector of sample means u:
B=G−uhT .

(3) Compute the covariance matrix by taking the outer product of B with itself:
C= 1

n−1 BBT .

(4) Compute the eigen-decomposition of the covariance matrix: C=VDVT , where D is the diago-
nal matrix containing the eigenvalues of C.

(5) Compute the cumulative ‘energy’ content for each subset of j eigenvectors, quantifying the

variance contained in each set: g ( j ) =
∑ j

k=1 D(k , k ), for j = 1, ..., m .

(6) The active subspace dimension is the smallest j such that g ( j )
g (m ) ≥ t ∗, for some user-specified

percentage 100t ∗.

2.2.4 Response Surface Dimension Selection

The final considered dimension selection criterion involves the construction of response surfaces,

which can be used to approximate the function. We are ultimately interested in employing re-

sponse surfaces in place of expensive physical models, and so this is a natural measure to utilize.

By comparing the function evaluations on the low-dimensional response surfaces to the true func-

tion evaluations, we can select the necessary active subspace dimension depending on the error

tolerance. To exploit the active subspace for response surface construction, we use Algorithm 5.

For this investigation, we use multivariate polynomial regression to construct a function denoted

by g (y). To avoid overfitting the data, we utilize the Akaike Information Criterion (AIC) [32] to

determine an appropriate polynomial order. The AIC rewards a maximized likelihood function—

indicated by a small residual sum-of-squares value—while penalizing any increase in the number
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of parameters required to specify the polynomial. The formula is given by

AI C = 2k −2 log
�

1

N1
SSR

�

, (2.5)

where k is the number of parameters, N1 is the number of data points υi used for the fit, and SSR is

the residual sum-of-squares function, defined for this situation by

SSR=
N1
∑

i=1

�

υi − g (yi )
�2

.

To choose the most appropriate polynomial model for our response surfaces, we calculated the AIC

value for each polynomial order in consideration and selected the model with the lowest AIC score.

To confirm that an appropriate choice was made for the polynomial order, we also calculated values

for the Bayesian Information Criterion (BIC) [32]. In all cases, the choices suggested by the AIC and

BIC criterion were in agreement.

The error metric used to evaluate the accuracy of the response surfaces in this investigation is

the root squared mean error

RMSE=

√

√

√

√

1

N2

N2
∑

i=1

�

υ̃i − g (ỹi )
�2

(2.6)

using a new set of verification points {x̃i , υ̃i }, for i = 1, ..., N2, where ỹi =WT
1 x̃i .

As a visual metric, we construct the response surface using the AIC criterion for dimensions one

and two. Close clustering of testing points about the constructed response surface indicates that the

chosen dimension is sufficient to quantify the majority of variability in the function. For dimensions

beyond the first two, we rely on the errors given by (2.6) to choose an appropriate active subspace

Algorithm 5 Construction of Response Surfaces [16]

(1) Begin with training pairs {xi ,υi }, i = 1, ..., N1, of inputs xi and their corresponding responses
υi .

(2) For each xi , compute the corresponding transformed inputs by projecting onto the active
subspace: yi =WT

1 xi .

(3) Fit a response surface g (y) via regression using the pairs {yi ,υi }, where υi ≈ g (yi ).

(4) Approximate the original function behavior by f (x)≈ g (WT
1 x).
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dimension. We note that the root mean squared error penalizes large errors, therefore, making it

sensitive to error outliers [6, 59]. One way to quantify this behavior is to determine the distribution,

and associated relative frequencies, of squared errors for each active subspace dimension. Once the

distribution is determined, we consider its variance. If the variance of the frequency distribution of

squared errors increases for a particular active subspace dimension, the RMSE will also increase.

For the examples in Section 2.4, the variances of the frequency distributions are on the order of

machine epsilon, but are sufficiently sensitive to reflect the behavior of small values of the root

mean squared errors.

We note that this process of constructing the response surface results in two primary sources

of error: error occurring from the elimination of columns not used in the selected subspace, and

approximation errors resulting from our gradient approximation techniques of Section 2.1.

2.3 Initialization Algorithm

For models with inputs numbering in the thousands to millions, it will typically be infeasible to

employ the gradient-free adaptive Morris algorithm without first identifying a smaller subset of

directions for steps. Here we introduce an initialization algorithm that approximates a number of

gradient samples on the original parameter space with only `�m function evaluations required

for each column. Once a smaller subset of important directions has been identified, the adaptive

Morris algorithm can be used for further reduction using a rotated input space.

The initialization algorithm approximates the gradient vector at a point x0 by assuming local

linearity on a ball centered at x0 and maximizing the function evaluation over its surface. We begin

by constructing a ball centered at x0, with radius
p
δ within which local linearity is trusted. The

surface of the ball is defined as

z ∈Rm such that (z−x0)T (z−x0) =δ.

We choose points z= x and z= y on the surface of the ball such that x and y are not colinear with x0,

and evaluate the function at x0, x, and y.

We consider the great circle through the points x and y as illustrated in Figure 2.2. Given that

the great circle is the intersection of a plane through the center x0 of the ball, we can express any

point z on the circumference of the great circle as z= x0+a (x−x0)+b (y−x0), for constants a and b ,

subject to (z−x0)T (z−x0) =δ. Our local linearity assumption yields f (z) = f (x0) + (z−x0)Tβ, for an
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unknown gradient vector β. It thus follows that

f (z) = a (x−x0)Tβ+ b (y−x0)Tβ+ f (x0)

= a [ f (x)− f (x0)]+ b [ f (y)− f (x0)]+ f (x0)

= a r + b s + f (x0),

where we define r ≡ f (x)− f (x0) and s ≡ f (y)− f (x0). Our maximization problem is now a constrained

optimization problem, which can be formulated as

max
a ,b
(a r + b s ) subject to [a (x−x0) + b (y−x0)]T [a (x−x0) + b (y−x0)] =δ.

Exploiting the fact that (x− x0)T (x− x0) = (y− x0)T (y− x0) = δ, we have the great circle relation

a 2 + 2a b p + b 2 = 1 for p = 1
δ (x − x0)T (y − x0). The use of a Lagrange multiplier to enforce the

constraint yields the constrained maximization problem

max
a ,b
φ =max

a ,b
(a r + b s −λ[a 2+2a b p + b 2−1]).
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Figure 2.2 (a) First iteration of Algorithm 6. Points x and y are chosen on the unit m-sphere centered at
x0. The maximum function evaluation over the great circle defined by x and y occurs at the point z+. (b)
Second iteration of Algorithm 6. The point x has been updated to the value z+ from the previous iteration.
A new y is chosen, and the function is optimized over the new great circle.
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Algorithm 6 Initialization Method for Adaptive Morris Algorithm [40]

(1) Let m be the number of input parameters, ` be the number of function evaluations, and x0 be
a randomly chosen point from the admissible parameter space.

(2) Choose an initial point x that lies on the surface of the ball centered at x0.
Let r = f (x)− f (x0).

(3) Begin iteration to update x:
for i = 1 : `

(a) Choose a point y that lies on the surface of the ball centered at x0.
Let s = f (y)− f (x0).

(b) Solve for the two extreme points on the great circle defined by x and y.

(i) Define the quantities:

p = 1
δ (x−x0)T (y−x0)

λ=±
p
(r−p s )2+2(r−p s )(s−p r )p+(s−p r )2

2(1−p 2)

a = r−p s
2λ(1−p 2)

b = s−p r
2λ(1−p 2)

(ii) Let (a+, b+) denote a and b evaluated at the positive solution for λ. Then

z+ = x0+a+(x−x0) + b+(y−x0)

is the approximate location of the output maximum on the great circle.

(iii) Set x= z+and replace r ← a+r + b+s .

end

(4) The approximation to the gradient at point x0 is given by x−x0. This gradient approximation
comprises one column in the constructed gradient matrix.

Solving∇a ,bφ = 0 yields the values

a ∗ =
r −p s

2λ(1−p 2)
, b ∗ =

s −p r

2λ(1−p 2)
(2.7)

for the coefficients. To solve for λ we return to the great circle relation a 2 + 2a b p + b 2 = 1 and
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employ the relations in (2.7) for a and b to obtain

λ=±
p

(r −p s )2+2(r −p s )(s −p r )p + (s −p r )2

2(1−p 2)
.

This optimization determines the extrema z− and z+ on the great circle, corresponding to the

two solutions for λ. We replace x with the extremum z+ that maximizes our function, obtained by

employing the λ> 0 solution, choose a new point y on our ball, and repeat. This process is repeated

for a total of ` iterations, after which the vector x−x0 is established to be a rough approximation

to the gradient vector at x0. The first two iterations of the initialization process are illustrated in

Figure 2.2 and the algorithm is summarized in Algorithm 6. Note that each choice of x0 yields a

single column of the gradient matrix; that is, Algorithm 6 is repeated for each gradient column, using

a different sample point x0. It is important to note that the vector x−x0 points in the same direction

as the gradient at x0, but may not have the same magnitude. The result is a re-weighted version of C

that gives similar response surface dimension selection results as C for the numerical examples in

Section 2.4.

We employ a termination scheme similar to that used for the adaptive Morris algorithm to decide

how many columns to compute via this initialization algorithm. We continue constructing columns

using Algorithm 6 until we have obtained over 99% of the information from the eigenvalue spectrum

with a strict subset of the existing columns. The SVD of this subset provides our starting directions

for the adaptive Morris algorithm; all other directions are assumed to have a derivative equal to zero.

The omission of function evaluations in these directions is crucial for our method to be feasible for

models with extremely large input dimensions. Further reduction will occur within Algorithm 2 as

the algorithm improves upon the rough gradient approximations from Algorithm 6. We note that a

primary distinction between the initialization algorithm and adaptive Morris is that the initialization

algorithm builds its own vector space by randomly adding dimensions and adaptive Morris accepts

guidance from the current G̃ based on previous iterations.

2.4 Numerical Examples

We begin with a simple 44-input neutron transport model, for which we can easily employ both the

finite-difference Morris and adaptive Morris algorithms to compare their performance. The second

example is slightly larger having 132 inputs. It is important to note here that the 132-dimensional

example is not an extension of the 44-dimensional example. These are different problems with

different cross-section values. The 44-dimensional example is a simple pin cell construction with

only four materials while the 132-dimensional example is a more complex lattice scenario with more

materials. Finally, we consider a high-dimensional example with 7700 inputs, where it is infeasible

to use our gradient-free algorithm without the use of the initialization algorithm. For all of these
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examples, we verify our results using gradient-based techniques summarized in Section 2.1. For both

gradient-based and gradient-free techniques we rely on response surface dimension selection to

determine our active subspace dimension since we are interested in employing surrogate response

surfaces.

For each of the examples, our scalar response is the effective multiplication factor keff, which is

defined as the ratio of neutrons produced by fission in one generation to the number of neutrons

lost through absorption and leakage in the previous generation. Thus, a keff value equal to one

represents a self-sustaining chain reaction. For each example, a set of materials and reactions under

consideration are specified. For the initial sample points, we generate cross-section perturbations

for these materials and reactions of up to±10% from the nominal values reported in the SCALE6.1 44-

energy group cross-section library. All other cross sections are considered to be fixed at their reference

values. As discussed in Section 2.1.1.2, prior to the construction of our gradient approximations, we

map all input distributions toU [−1, 1]. The transport calculations are performed using the SCALE6.1

module NEWT, a multigroup discrete ordinates radiation transport code [46]. The perturbations

of the cross section libraries are computed via a C++ based toolkit for Reduced Order Modeling

based Uncertainty/Sensitivity Estimation (ROMUSE) [30]. To create the gradient-based matrices for

comparison, we perturb the cross section inputs uniformly with a range of up to ±10% from the

reference values given by the cross section library, and use the provided sensitivity information from

the SAMS module in SCALE6.1 [46] to measure the gradient vector with respect to the keff value. It

is important to note that while we consider the adjoint gradient from the SAMS module to be the

“true” gradient, gradient vectors may vary depending on the user-specified convergence criteria.

Additionally, convergence can be difficult to achieve and verify in some cases.

2.4.1 Example 1: 44-Dimensional Input Space

We begin by considering a relatively low-dimensional neutron transport application to demonstrate

the capabilities of our gradient-free algorithm. Figure 1.1(a) depicts the construction of the two

dimensional PWR pin cell. The fuel is UO2, separated from the Zircaloy-4 cladding material by a

small helium gap, and the moderator is boron-infused H2O. We consider the effect of perturbations

of the fission cross sections,Σ f , for the 235
92U isotope for a discretization of 44 energy groups, yielding

a 44-dimensional input space. All cross sections for other materials and reactions are considered

to be fixed at their reference values provided by the 44-energy group cross-section library. We

construct an active subspace for our 44-input example with three methods: gradient-based, finite-

difference Morris, and adaptive Morris. For each case, the gradient, or approximated gradient, matrix

is constructed with 200 columns to satisfy the lower bound proposed in Section 3.4 of [16].

As discussed previously, each sample starting point is taken to be a perturbation within 10% of

the reference values. For the finite-difference Morris method, we subsequently step in the direc-
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Figure 2.3 (a) Eigenvalues for the 44-input example for each of the three active subspace methods. (b)
Response surface RMSE values for various active subspace dimensions. (c) Error upper bounds given by
Algorithm 3 for the 44-input example.

tions of the original 44 input parameters with step sizes of∆= 0.01, when scaled to [−1,1], from

the initial starting point. For the adaptive Morris computation, we allow steps in directions that

are linear combinations of the original parameters, and vary the step sizes between δmin = 0.01

and δmax = 0.05 depending on the significance of the corresponding eigenvalue. For the adaptive

Morris computations, we observe that by the construction of the second column, 99% of the eigen-

value information can be incorporated using only the first direction. Therefore, only two function

evaluations are needed for each subsequent column, compared to the 45 evaluations required

for each finite-difference Morris column. This results in a nearly 92% decrease in the number of

required function evaluations, since adaptive Morris requires 686 total function evaluations and

finite-difference Morris requires 9,000 in order to compute 200 columns of the approximated gradi-

ent matrix. Figure 2.3(a) shows the eigenvalues for each of the three methods. The sudden decrease

in the eigenvalue magnitude in the adaptive Morris plots indicate that only the first direction was

used for the construction of the gradient matrix. The gradient-based and finite-difference Morris

spectrums are very similar.

Table 2.1 Active subspace dimension selections for gap-based criteria [16], principal component analysis
with varying threshold values [29], error-based criteria with varying tolerances [26], and response surface
error-based criteria with varying tolerances [16] for the 44-input example.

Gap PCA Error Tolerance Response Surface
Method 0.75 0.90 0.95 0.99 10−2 10−3 10−4 10−2 10−3 10−4

Gradient-Based 1 5 8 12 19 38 42 43 1 1 44
Finite Diff. Morris 1 1 3 4 10 39 44 44 1 1 2
Adaptive Morris 1 1 1 1 2 2 3 3 1 1 2
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Figure 2.4 Standard deviation of the distribution of squared errors.

In Table 2.1, we record the number of dimensions suggested by the dimension selection criteria

of Section 2.2. Whereas the gap-based criterion suggests that a one-dimensional active subspace is

sufficient, the PCA and error-based criteria tend to require more dimensions depending on both

the decay of the eigenvalue spectrum and the value of the threshold or user-defined tolerance

specified. The low dimensions suggested by the PCA and error-based criteria for the adaptive Morris

method are due to the early decrease of the eigenvalues, as discussed in Section 2.1.1.2 and seen in

Figure 2.3(a). The error upper bounds calculated via Algorithm 3 are plotted in Figure 2.3(c) and the

RMSE, calculated via (2.6), are shown in Figure 2.3(b). Once again, the early decay of the eigenvalues

for the adaptive Morris method are reflected in the drop-off of error upper bounds. The RMSE for

each active subspace dimension is shown in Figure 2.3(b). For each active subspace dimension, we

determine the distribution quantifying the frequency with which squared errors occur and then

compute the standard deviation and variance of the distribution, as discussed in Section 2.2.4.

We observe that the gradient-based RMSE increases after dimension 5 due to the increase in the

standard deviation and variance of the frequency distribution of the squared errors as shown in

Figure 2.4.

Based on the gap-based predictions, we create response surfaces using a one-dimensional

active subspace for each of the three methods. These surfaces were constructed via multivariate

polynomial regression using training points from the input space as discussed in Section 2.2.4. For

this particular example, the AIC criterion indicates that a 1st-order multivariate polynomial is most

appropriate for the surface construction. Summary plots developed by Cook [19] are plots of the

responses as a function of a linear combination of the inputs. The summary plots are shown in

Figure 2.5 for each method. Here y2 is the vector of testing points projected onto the active subspace.

The response surface root mean squared error (2.6) is on the order of 10−4 for all three methods. The

close clustering of testing points about the response surface indicates that a one-dimensional active
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Figure 2.5 Comparison of keff responses at testing points and constructed response surface for a one-
dimensional active subspace for the (a) gradient-based, (b) finite-difference Morris, and (c) adaptive
Morris methods for the 44-input example.

subspace is sufficient to quantify the majority of the variability in the function; in this case, there is

no need to use the more conservative dimensions suggested by the PCA and error-based criteria.

2.4.2 Example 2: 132-Dimensional Input Space

We now consider a moderate dimensional neutron transport application to compare the perfor-

mance of the adaptive Morris algorithm to a gradient-based approach. Figure 1.1(b) depicts the

material construction of the PWR quarter fuel lattice for the assembly model.

We consider the effect of perturbations of the fission cross sections Σ f , the density of fission

neutrons ν, and the fission spectrum χ , for the 235
92U nuclide. The SCALE6.1 cross section libraries

provide reference values for an energy spectrum discretization of 44 energy groups, resulting in an

input space of total dimension 132. Again, our scalar response is the effective multiplication factor

keff.

We construct an active subspace for our 132-input example using the gradient-based and adap-

tive Morris methods. Because of the very quick reduction that was possible in this example, the

number of function evaluations needed to approximate 500 gradient columns using the adaptive

Morris algorithm was 1,899. The adaptive Morris algorithm provides a significant computational sav-

ings from the 66,500 function evaluations that would be necessary to complete the finite-difference

Morris algorithm. The eigenvalues for each of the methods are plotted in Figure 2.6(a). The magni-

tude drops below 10−5 for the adaptive Morris algorithm, reflecting the fact that only one direction

was utilized for the construction of the elementary effects after the first few columns.

The selected dimensions for the dimension selection criteria are listed in Table 2.2. Once again,

the gap-based criterion opts for retention of a just one direction for both methods. The PCA and

error-based criteria tend to be more conservative, particularly for the gradient-based method, where

the eigenvalue decay is much more gradual. The error upper bounds calculated via Algorithm 3 are
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Figure 2.6 (a) Eigenvalues for the 132-input example. (b) Response surface RMSE values for various active
subspace dimensions. (c) Error upper bounds given by Algorithm 3 for the 132-input example.
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Figure 2.7 Standard deviation of the distribution of squared errors.

illustrated in Figure 2.6(c). In Figure 2.6(b), we observe that adaptive Morris has a larger RMSE than

gradient-based, but is still on the order of 10−5. We also observe that the root mean squared error

increases between active subspace dimensions 50 to 130. We attribute this to the increase in the

standard deviation and variance of the frequency distribution of the squared errors as discussed in

Table 2.2 Active subspace dimension selections for gap-based criteria [16], principal component analysis
with varying threshold values [29], error-based criteria with varying tolerances [26], and response surface
error-based criteria with varying tolerances [16] for the 132-input example.

Gap PCA Error Tolerance Response Surface
Method 0.75 0.90 0.95 0.99 10−2 10−3 10−4 10−2 10−3 10−4 3×10−5

Gradient-Based 1 6 9 12 20 22 45 55 1 4 4 8
Adaptive Morris 1 2 2 2 4 1 4 4 1 1 1 41
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Section 2.2.4 and shown in Figure 2.7.

To decide whether the more conservative estimates are necessary or if a one- or two-dimensional

active subspace is sufficient, we create and plot in Figure 2.8 response surfaces based on the first

two columns specified by the active subspace basis for each method. Based on Algorithm 5 and

the AIC criterion, we again select a 1st-order multivariate polynomial to construct our response

surfaces. In each case, it is clear that these early dimensions are sufficient to quantify the majority

of the variability in the function and later columns of the active subspace basis are not necessary.

The root mean squared errors (2.6) for the plots in Figure 2.8 are approximately 3.7×10−5 for all

methods, supporting the good visual fit.

2.4.3 Example 3: 7700-Dimensional Input Space

Our final example has an input space of dimension 7700, rendering our gradient-free algorithms

computationally infeasible without the use of the initialization algorithm of Section 2.3 since it
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Figure 2.8 Comparison of keff responses at testing points and constructed response surface for one-
dimensional active subspaces for the (a) gradient-based, (b) adaptive Morris, and two-dimensional active
subspaces for the (c) gradient-based, (d) adaptive Morris methods for the 132-input example.
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would require 7,701,000 evaluations to complete the finite-difference Morris method in Algorithm 1.

The considered materials are 1
1H, 6C, 16

8O, 10
5B, 11

5B, 14
7N, 15

7N, 23
11Na, 27

13Al, 14Si, 31
15P, 19K, 55

25Mn, 26Fe,

40Zr, 116
50Sn, 120

50Sn, 234
92U, 235

92U, 236
92U, and 238

92U. The reactions are listed in Table 2.3, along with their

assigned reaction numbers in the SCALE6.1 code and brief descriptions. All other cross-sections are

fixed to their reference values provided by the SCALE6.1 cross-section libraries.

Due to the size of the input space, we use only the initialized adaptive Morris algorithm and

compare our results to the gradient-based results obtained from the SAMS module. To initialize

the adaptive Morris algorithm, we completed `= 140 iterations of Algorithm 6 for 200 initial points.

The initialization algorithm allows us to begin Algorithm 2 with a subset of 55 important directions

rather than approximating directional derivatives in all 7700 original input directions. The adaptive

Morris algorithm is quickly able to improve upon the directions contributed by the initialization

algorithm and reduce the number of important directions to a single direction. The total number

of function evaluations used by the combination of Algorithms 2 and 6 to create 1000 gradient

columns is 31,108 in contrast to the 7,701,000 evaluations that would be required to complete the

finite-difference Morris method in Algorithm 1. This is a mere 0.4% of the total computational cost.

The eigenvalues for both methods are plotted in Figure 2.9(a).

In Table 2.4, we report the dimensions selected by the criteria of Section 2.2. We again observe

Table 2.3 Reaction types and descriptions for the 7700-input example [28, 46].

Reaction MT Description

Σt 1 Neutron total cross-sections

Σe 2 Elastic scattering cross-section for incident particles

(n , n ′) 4 Inelastic scattering; production of one neutron

(n , 2n ) 16 Production of two neutrons and a residual

Σ f 18 Particle-induced fission

Σc 101 Neutron capture (sum of 102-107)

(n ,γ) 102 Radiative capture

(n , p ) 103 Production of a proton plus a residual

(n , d ) 104 Production of a deuteron plus a residual

(n , t ) 105 Production of a triton plus a residual

(n , 3He) 106 Production of a 3He particle plus a residual

(n ,α) 107 Production of an alpha particle plus a residual

ν̄ 452 Average number of neutrons released per fission event

χ 1018 Fission spectrum
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Figure 2.9 (a) First 300 eigenvalues for the 7700-input example. (b) Response surface RMSE values for
the first 450 active subspace dimensions. (c) First 350 error upper bounds given by Algorithm 3 for the
7700-input example.

the first major gaps in the eigenvalue spectrum after the first eigenvalue for both methods. The

PCA and error-based criteria yield more conservative estimates for the gradient-based method. The

error upper bounds are plotted in Figure 2.9(c). We observe a steady decline in the error for the

gradient-based method over the first 350 dimensions. For the initialized adaptive Morris method, the

errors are machine epsilon once the eigenvalues drop off, since the error-based criteria is strongly

related to the decay in the eigenvalue spectrum.

The root mean squared errors (2.6) for the 1st-order multivariate polynomial response surfaces

are plotted in Figure 2.9(b) for the first 450 dimensions. To visually depict the accuracy of the response

surfaces, we plot the observed keff values for 500 testing points versus the predicted outputs using

the 25-, 150-, and 500-dimensional active subspaces for the two methods in Figure 2.10. Here we use

a linear model for the response surface with varying active subspace dimensions. As the number of

dimensions increases, we observe a tighter fit to the diagonal axis that represents a perfect match in

predicted versus observed outputs. In Figure 2.10(b), we find that selecting an active subspace of

dimension 150 produces a RMSE less than 10−4 for both gradient-based and initialized adaptive

Table 2.4 Active subspace dimension selections for gap-based criteria [16], principal component analysis
with varying threshold values [29], error-based criteria with varying tolerances [26], and response surface
error-based criteria with varying tolerances [16] for the 7700-input example.

Gap PCA Error Tolerance Response Surface

Method 0.75 0.90 0.95 0.99 10−3 10−4 10−5 10−3 10−4 2×10−5

Gradient-Based 1 2 5 9 24 2 21 123 1 1 215

Initialized AM 1 1 1 1 1 1 2 2 1 1 266
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Figure 2.10 Observed versus predicted keff values for (a) 25, (b) 150, and (c) 500 active subspace dimen-
sions for the gradient-based (left) and initialized adaptive Morris (right) methods.

Morris which corresponds to the active subspace dimension selections for the response surface

criteria in Table 2.4.
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2.5 Summary

In this chapter, we demonstrated the effectiveness, in terms of model reduction, of the gradient-free

active subspace method for moderate- and high-dimensional parameter spaces. Additionally, we

illustrated the advantages of employing the initialization algorithm to seed the adaptive Morris

algorithm to reduce the number of function evaluations. These results are also reported in [11].

In Chapter 3, we extend the initialization algorithm to efficiently approximate the gradient for

moderate- and high-dimensional numerical examples with analytic and adjoint gradients. We

use the analytic and adjoint gradients to verify the gradient approximation from the extended

initialization algorithm.
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CHAPTER

3

EXTENDING THE INITIALIZATION

ALGORITHM FOR GRADIENT-FREE

ACTIVE SUBSPACE CONSTRUCTION

We note that the work in this chapter is based on an initial manuscript by Max Morris [40].

3.1 Extended Initialization Algorithm

Here we introduce an extended initialization algorithm that approximates gradient samples on

the original parameter space with only `�m function evaluations required for each column. This

algorithm improves Algorithm 6 by guaranteeing convergence to the analytic or adjoint gradient

in m −1 iterations where m is the dimension of the parameter space. The initialization algorithm

approximates the gradient vector at a point x0 in the parameter space by exploiting the fact that

within the unit sphere the output function does not vary significantly in directions within a subspace

S orthogonal to the direction of the steepest ascent.

We begin by constructing an ellipsoid around a sample input x0 for which the output function

f (·) can be approximated linearly. In particular, the surface of the ellipsoid associated with positive
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definite scaling matrix S is defined as

z ∈Rm such that (z−x0)T S(z−x0) = 1.

For any input z in this ellipsoid, the linear approximation to f (·) is given by

f (z) = f (x0) + (z−x0)Tβ, (3.1)

where β ∈Rm is the unknown gradient vector. We take

z= x0+a0(x−x0) +
h
∑

i=1

ai (yi −x0),

where x and {y1, . . . , yh} are sampled on the surface of the ellipsoid. Let r = f (x)− f (x0) and si =

f (yi )− f (x0). Assuming (a0, a1, . . . , ah ) are chosen so that z is in the ellipsoid, the linear approximation

(3.1) can be written as

f (z) = f (x0) +yT a,

where y= (r, s1, s2, . . . , sh )T and a= (a0, a1, a2, . . . , ah )T .

An equivalent structure can be established by transforming to the unit sphere. In particular, let

S=RT R, where R is the right triangular Cholesky factor of S. Consider the transformation u=R(z−x0)

for z ∈Rm . Furthermore, define the function g (·) as

g (u) = f (x0+R−1u).

Suppose we take

u= a0w+
h
∑

i=1

ai vi =Ca, (3.2)

where w and {v1, . . . , vh} are sampled on the surface of the unit sphere and collected into the columns

of the matrix C= [w, v1, . . . , vh ]. Using (3.2), the linear approximation of g (·), for (a0, a1, . . . , ah ) chosen

so that u is in the unit sphere, can be written as
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g (u) = g (0) +uTβ (3.3)

= g (0) +a0wTβ+
h
∑

i=1

ai vT
i β

= g (0) +a0[g (w)− g (0)]+
h
∑

i=1

ai [g (vi )− g (0)]

= g (0) +yT a,

where y= (r, sT )T for s= (s1, s2, . . . , sh )T , r = g (w)− g (0), and si = g (vi )− g (0).

We now address which unit vector u maximizes g (u)with respect to (a0, a1, . . . , ah ). The constraint

that u lie on the surface of the unit sphere can be written as

uT u= aT (CT C)a= 1.

The use of a Lagrange multiplier to enforce the constraint yields the constrained maximization

problem

max
a,λ

φ(a,λ) =max
a,λ
{yT a−λ[aT (CT C)a−1]}.

Solving ∂ φ(a,λ)/∂ a= 0 yields the maximizer

a(λ) =
(CT C)

−
y

2λ

for any fixed λ 6= 0, where (CT C)
−

is any generalized inverse of CT C. Noting from (3.3) that y =

CTβ, if the unknown gradient vector β is not an element of the null space of CT , then solving

dφ(a(λ),λ)/dλ= 0 yields two optimizers,

λ=±
1

2

Æ

yT (CT C)−y.

Here the positive solution λ+ yields the constrained maximizer a+ = a(λ+),

a+ =
(CT C)

−
y

p

yT (CT C)−y
. (3.4)

The direction of steepest ascent in the subspace S spanned by the vectors {w, v1, . . . , vh} is

umax = a+0 w+
h
∑

i=1

a+i vi =Ca+. (3.5)
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Substituting y=CTβ into (3.4), (3.5) yields the representation,

umax =
PCβ

||PCβ||
, (3.6)

for PC = C(CT C)
−

CT the projection operator onto S . That is, umax is the normalized projection of

the unknown gradient vector β onto S .

Consider any t ∈ S satisfying t⊥ umax and ||t|| ≤ 1. We represent t as

t= b0w+
h
∑

i=1

bi vi =Cb,

and therefore we obtain

0= tT umax = bT (CT C)a+ =
bT y

p

yT (CT C)−y
, (3.7)

where b= (b0, b1, b2, . . . , bh )T . Hence, (3.7) implies that

bT y= 0.

The linear approximation of g (·), evaluated at t, yields

g (t) = g (0) +bT y= g (0). (3.8)

That is, within the unit sphere the output function does not vary in directions within S orthogonal

to the direction of steepest ascent, a subspace denoted by S⊥.

To reduce the distance between umax and the unknown β, (3.8) indicates that umax must be

restricted to subspaces orthogonal to S⊥. The subspace S⊥ can be represented by a basis of at most

h linearly independent vectors. Compute

C⊥ = (Im −Pumax
)C

where Im is the m ×m identity matrix and

Pumax
= umaxuT

max.

The column space of the matrix C⊥ is equal to S⊥. Let

PC⊥ =C⊥(C
T
⊥C⊥)

−
CT
⊥

denote the projection operator onto S⊥. Iterative refinement of umax can therefore be accomplished

efficiently by repeating the process described previously, setting w = umax and applying the pro-
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jection operator Im −PC⊥ to a new set of vi vectors sampled on the unit sphere and normalizing

appropriately.

Computing the direction of steepest ascent is simplified by observing that the matrix CT C has

full column rank, i.e., h +1, with probability 1. Replacing the generalized inverse (CT C)
−

with the

matrix inverse (CT C)−1 yields

yT (CT C)−1y= r 2+ (s− r p)T (Q−ppT )−1(s− r p)≡ n0,

where p= (p1, p2, . . . , ph )T with pi =wT vi ,Qi i = 1, and Qi j = vT
i v j for i 6= j . The quantity n0 is positive

as long as the unknown gradient vector β is not an element of the null space of CT . Formulating

a+ = (a+0 , (a+1 )
T )T yields

a+0 =
r
p

n0
−pT a+1 , a+1 =

(Q−ppT )−1(s− r p)
p

n0
.

Finally, we note that umax represents the direction of steepest ascent with respect to g (·). The

linear transformation defining u is applied to umax, yielding the direction of steepest ascent

R−1umax/||R−1umax||with respect to f (·). The algorithm is summarized in Algorithm 7.
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Algorithm 7 Extended Initialization Algorithm

(1) Let m be the number of input parameters, ` the number of iterations, h the number of function

evaluations per iteration (h ≤m −1), and x0 a randomly chosen point from the admissible

parameter space (recall g (u) = f (x0+R−1u)where R is the right triangular Cholesky factor of

the positive definite scaling matrix defining the ellipsoid of linearity).

(2) Randomly sample w1 from the surface of the unit sphere. Set r = g (w1)− g (0).

(3) Begin iteration:

for j = 1 : `

(a) If j h >m −1, set h =m − ( j −1)h −1. Randomly sample {ṽ j
1 , . . . , ṽ j

h} from the surface of

the unit sphere.

(b) Define the quantities:

(i) j = 1:

C1⊥ = 0

v1
i = ṽ1

i , i = 1, . . . , h

si = g (v1
i )− g (0) , i = 1, . . . , h

C1 = [w
1, v1

1, . . . , v1
h ]
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Algorithm 7 Extended Initialization Algorithm – Continued

(ii) j > 1:

C j⊥ =
�

C( j−1)⊥; (Im −w j (w j )T )C( j−1)
�

PC j⊥ =C j⊥(C
T
j⊥C j⊥)

−
CT

j⊥

v j
i = (Im −PC j⊥ )ṽ

j
i /||(Im −PC j⊥ )ṽ

j
i || , i = 1, . . . , h

si = g (v j
i )− g (0) , i = 1, . . . , h

C j = [w
j , v j

1 , . . . , v j
h ]

(c) Solve for the unit vector u that maximizes g (u)with respect to (a0, a1, . . . , ah ).

(i) Define the quantities:

pi =
�

w j
�T

v j
i , i = 1, . . . , h

Qi i = 1 , i = 1, . . . , h

Qi k =
�

v j
i

�T
v j

k , i 6= k = 1, . . . , h

n0 = r 2+ (s− r p)T (Q−ppT )−1(s− r p)

a+1 =
(Q−ppT )−1(s− r p)

p
n0

a+0 =
r
p

n0
−pT a+1

(ii) The unit vector

u j
max = a+0 w j +

h
∑

i=1

a+i v j
i

maximizes g (u)with respect to (a0, a1, . . . , ah ). If the total number of function evaluations

is m−1, then terminate the algorithm. Otherwise, set w( j+1) = u j
max, r ← a+0 r +sT a+1 , and

continue.

end

Let j f denote the final value of j at algorithm termination. (Usually j f = `.) Report

R−1u
j f
max/||R−1u

j f
max|| as the best estimate of the normalized gradient with respect to f (·). If m − 1

function evaluations are actually conducted, then R−1u
j f
max/||R−1u

j f
max|| is in fact the normalized

gradient.
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We summarize how we implement active subspace construction in Algorithm 8.

Algorithm 8 Active Subspace Construction via the Initialization Algorithm [10]

(1) Suppose there is a budget B of total allowed function evaluations. Determine M , the number

of independent samples from ρ at which normalized gradients will be approximated for

active subspace construction, with the restriction that B ≥ 3M . Evaluate g (·) at each of the M

samples.

(2) Set ` = 1 and calculate the largest integer h ≤ (m − 1) that satisfies (1+h )M ≤ B −M . Run

Algorithm 7 in parallel at each of the M samples.

(3) Perform an SVD on the resulting approximate normalized gradients. Select an active subspace

using the response surface metric in Algorithm 5 and (2.6).

(4) If a response surface of sufficient quality is not obtained, perform Algorithm 7 at each of the

M samples to iteratively refine each of the current approximate normalized gradients. Repeat

Step (3).

(5) If a response surface of sufficient quality is obtained, exit. Use the active subspace found from

Step (3) for further analysis.

3.1.1 Quality of the Initial Gradient Estimate

The quality of the initialization algorithm’s gradient estimate was developed through personal

communication with Max Morris [40]. For a given number of function evaluations, it is important to

know the probable quality of the normalized gradient approximation produced by the initialization

algorithm. Suppose for simplicity that Algorithm 7 is executed with only one step (` = 1) at the

centered argument x= 0, so that the total number of function evaluations is k = h +1. Our interest

is in knowing how well u1
max approximates the normalized gradient at 0, umax =β/||β||.

In a single iteration, Algorithm 7 generates k unit vectors {w1, v1
1, . . . , v1

h}. These are selected

randomly with uniform coverage on the unit sphere and are independent, and we denote by C1 the

m ×k matrix [w1, v1
1, . . . , v1

h ]. These vectors are a basis for a k -dimensional subspace with associated

projection matrix PC1
= C1(CT

1 C1)
−

CT
1 . The function g is evaluated at each vector, resulting in

y= (g (w1)− g (0), g (v1
1)− g (0), . . . , g (v1

h )− g (0))T =CT
1 β. Importantly, we can compute PC1

β without

knowing β, as C1(CT
1 C1)

−
y. From (3.6), u1

max =PC1
β/||PC1

β||.
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The question of interest is: How close is u1
max to umax? We quantify this by asking about

φ = cos(umax, u1
max) = cos(β, PC1

β) = cos(umax, PC1
umax).

This is a random quantity since C1 is selected randomly. To facilitate characterization of this quantity,

invert the problem and regard umax as random (uniform on the unit sphere), and C1 as a basis for any

fixed k -dimensional subspace. For this construction, it helps to know that unit vectors, uniformly

distributed on a unit sphere, can be generated as normalized vectors from a multivariate normal

distribution with components that have equal variance and are independent:

u= z/||z||, z∼Nm (0, Im ),

e.g., [36]. Hence, we investigate the distribution of

φ =

√

√zT PC1
z

zT z
,

where z is an m-vector of i.i.d. standard normal variates.

Whereas the distribution ofφ isn’t easily characterized directly, its mean and variance can be

approximated via a Taylor series expansion, the so-called “delta method”, given the moments of the

two quadratic forms [40]:

Q1 = zT PC1
and Q2 = zT z

where

E(Q1) = k ,

E(Q2) =m ,

and

var(Q1) = 2k ,

var(Q2) = 2m ,

cov(Q1, Q2) = 2k .

From this, the expectation ofφ can be approximated as:

E(φ)≈
√

√E(Q1)
E(Q2)

=
p

k/m . (3.9)
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The approximation for the variance is constructed as the expectation of a truncated Taylor series

expansion ofφ is

var(φ)≈
§

∂ φ

∂ Q1

ª2

E
var(Q1) +

§

∂ φ

∂ Q2

ª2

E
var(Q2) + 2

§

∂ φ

∂ Q1

ª

E

§

∂ φ

∂ Q2

ª

E
cov(Q1, Q2)

where the subscript E denotes substitution of E(Q1) for Q1 and E(Q2) for Q2 in the derivatives [40].

Substitution of the moments for the quadratic form yields

var(φ)≈
m−k

2m2
. (3.10)

On the scale of values of φ, this yields stddev(φ) ≈ 1
m

q

m−k
2 . We have compared these approxi-

mate expressions to results from a limited simulation study, and found that they are very accurate,

especially for larger values of m [10].

This result has two practical implications. First, the error that can be expected in using u1
max is a

simple and intuitive function of k , the dimension of the subspace that has been explored, and m ,

the dimension of the entire vector space. Second, the variation in this error should be expected to

be very small for large m , the situation of primary interest [10].

These results also hold when Algorithm 7 is executed in multiple stages (with ` > 1), with each

stage involving the selection of h random vectors, for a total of k = `h + 1 function evaluations.

In this case, vectors continue to be uniformly sampled on the unit sphere, as with v’s in the first

stage, but then are projected so as to be orthogonal to the hyperplane known to contain only vectors

t for which g (t) is constant, and renormalizing so that they are of length 1. Despite the fact that

the projection step alters the uniform distribution of the chosen vectors, convergence really only

depends on the number of vectors drawn and function evaluations made, either in one stage or

iteratively. That is, even though vectors selected at stages after the first are altered by projection,

the collection of all vectors selected span the same space whether they are selected together or in

batches. Hence, substitution of `h+1 for k , the number of total function evaluations for any number

of stages, in the expressions for the mean and standard deviation of φ given above characterize

convergence for Algorithm 7 [10].

3.2 Numerical Examples

Here we illustrate the extended initialization algorithm for linearly and nonlinearly parameterized

problems with analytic gradients and dimensionality reaching m = 1000. In Section 3.2.5, we

demonstrate the algorithm for a discretized elliptic PDE. In Section 3.2.6, we demonstrate the

initialization algorithm for SCALE6.1 with m = 44 inputs.
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3.2.1 Linear Helmholtz Energy

To demonstrate the initialization algorithm, we first consider a linearly parameterized problem with

an analytic gradient. We consider the Helmholtz energy

ψ(P, x) = x1P 2+ x2P 4+ x3P 6, (3.11)

where P is the polarization and x= [x1, x2, x3]T are parameters. We take the nominal values to be

x1 =−389.4, x2 = 761.3 and x3 = 61.5. Our quantity of interest is

f (x) =

∫ 0.8

0

ψ(P, x)d P = x1
0.83

3
+ x2

0.85

5
+ x3

0.87

7
. (3.12)

We note that the analytic gradient of f (x), with respect to the parameters x, is

∇x f =

�

0.83

3
,

0.85

5
,

0.87

7

�T

. (3.13)

To quantify how close the approximated gradient from our algorithm is to the analytic gradient we

compute the cosine of the angle between the two quantities. The cosine of the angle between the

analytic gradient and the approximate gradient given by Algorithm 7, for a particular x0, can be

expressed as

cos(θ ) =
(R−1w`+1)T∇x f

||R−1w`+1|| ||∇x f ||
. (3.14)

For this example, we create a gradient matrix with 10 columns, so we employ Algorithm 7 for 10

initial points x0. We sample each component of the initial point x0 from U (0,1)mapped to the

interval [x`, xr ] that is 20% above and below the nominal values. First, we define an ellipsoid around

x0 for which f (x) can be approximated linearly. The surface of the ellipsoid is associated with the

positive definite scaling matrix S, where diag(S) = (1/r 2
j ) and r j is the length of the j t h principal

semi-axis. We let h = 1 and terminate the initialization algorithm after ` = 2 iterations. Letting

r j = 10−3, we in fact to obtain the analytic gradient after 2 iterations of Algorithm 7. The average

cosine of the angle between Algorithm 7’s gradient approximation and the analytic gradient over 10

sample points is shown in Figure 3.1.

3.2.2 Nonlinear Helmholtz Energy

Here we consider the Helmholtz energy function

ψ(P, x) = x 2
1 P 2+ x 2

2 P 4+ x 2
3 P 6, (3.15)
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Figure 3.1 Average cosine of the angle between the analytic gradient (3.13) and the gradient approximation
from Algorithm 7.

with two quadratic parameter dependencies. Our quantity of interest is

f (x) =

∫ 0.8

0

ψ(P, x)d P = x 2
1

0.83

3
+ x 2

2

0.85

5
+ x 2

3

0.87

7
, (3.16)

and the analytic gradient is

∇x f =

�

(2x1)
0.83

3
, (2x2)

0.85

5
, (2x3)

0.87

7

�T

. (3.17)

We sample the initial point x0 in the same manner as in the previous linear example. The surface of the

ellipsoid is associated with the positive definite scaling matrix S, where diag(S) = (1/r 2
j ). Here we de-

fine the ellipsoid radius as r j = (1e-3)10L where L = log10(|x no m
j |). Recall xno m = [−389.4, 761.3, 61.5].

We computed the analytic gradient at 10 sample points. The average cosine of the angle between Al-

gorithm 7’s gradient approximation and the analytic gradient over all 10 points is shown in Figure 3.2.

We observe that the average cosine of the angle between the analytic gradient and Algorithm 7’s

gradient approximation is 1 after 2 iterations.

3.2.3 Linear Sine Function

Consider the linearly parameterized function

f (x) =
m
∑

j=1

x j

∫ 1

0

sin( jπt )d t =
m
∑

j=1

x j

� (1− cos( jπ))
jπ

�

. (3.18)
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Figure 3.2 Average cosine of the angle between the analytic gradient (3.17) and the gradient approximation
from Algorithm 7.

We note that the analytic gradient of f (x) is given by

∂ f

∂ x j
=
(1− cos( jπ))

jπ
. (3.19)

We sample components of the nominal values xno m fromU (−1, 1) and sample components of the

initial point x0 fromU (0, 1)mapped to the interval [x`, xr ] that is 20% above and below the nominal

values. Here we define the ellipsoid radius as r j = (1e-3)10L where L = log10(|x no m
j |).

3.2.3.1 Initialization Algorithm to Approximate the Gradient: m = 100

We first take m = 100 and compute an approximated gradient using Algorithm 7 for 50 sample

points with various values of h . We terminate the algorithm when the average cosine of the angle

between the gradient approximation and the analytic gradient is equal to 1. In Figure 3.3, we plot

the average cosine of the angle between the analytic gradient and the gradient approximation from

Algorithm 7 with h = 1,5,10, and 20 over all 50 points. We observed that as we increase h , the

number of iterations required for the cosine to converge to 1 decreases. However, the number of

total function evaluations is the same since h is the number of function evaluations per iteration.

In applications, we balance the choice of h and ` to best approximate the gradient subject to the

constraint that M = h`where M is a fixed number of allowed function evaluations.
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Figure 3.3 Cosine of the angle between the analytic gradient in (3.19) and the gradient approximation from
Algorithm 7 for (a) h = 1, (b) h = 5, (c), h = 10, and (d) h = 20. We have included the mean and ±2σ error
bars on the plots, which we obtained by employing (3.9) and (3.10) in Section 3.1.1.

3.2.3.2 Initialization Algorithm to Approximate the Gradient: m = 1000

We let m = 1000 and compute an approximate gradient for 100 sample points using Algorithm 7

with various values of h . We again terminate the algorithm when the average cosine of the angle

between the gradient approximation and the analytic gradient is equal to 1. In Figure 3.4, we plot the

cosine of the angle between the analytic gradient and the gradient approximation from Algorithm 7

with h = 1,10,50, and 100. We observed that as we increase h the cosine converges to 1 in fewer

iterations, but the same total number of function evaluations.
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Figure 3.4 Cosine of the angle between the analytic gradient in (3.19) and the gradient approximation from
Algorithm 7 for (a) h = 1, (b) h = 10, (c), h = 50, and (d) h = 100. We have included the mean and ±2σ error
bars on the plots, which we obtained by employing (3.9) and (3.10) in Section 3.1.1.

3.2.4 Nonlinear Sine Function

We now consider the nonlinearly parameterized function

f (x) =
m
∑

j=1

x 2
j

∫ 1

0

sin( jπt )d t =
m
∑

j=1

x 2
j

� (1− cos( jπ))
jπ

�

(3.20)

with analytic gradient values
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∂ f

∂ x j
=

2x j (1− cos( jπ))

jπ
. (3.21)

We sample components of the nominal values xno m fromU (−1, 1) and sample components of the

initial point x0 fromU (0, 1)mapped to the interval [x`, xr ] that is 20% above and below the nominal

values. Here we define the ellipsoid radius as r j = (1e-3)10L where L = log10(|x no m
j |).

3.2.4.1 Initialization Algorithm to Approximate the Gradient: m = 100

We let m = 100 and compute an approximated gradient using Algorithm 7 with various values of h .

We terminate when the cosine of the angle between the gradient approximation and the analytic

gradient is greater than or equal to 0.99. We plot in Figure 3.5 the cosine of the angle between

the analytic gradient and the gradient approximation from Algorithm 7 with h = 1,5,10, and 20.

We observed that Algorithm 7 always produces the analytic gradient in m −1 or fewer iterations

depending on h .
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Figure 3.5 Cosine of the angle between the analytic gradient in (3.21) and the gradient approximation from
Algorithm 7 for (a) h = 1, (b) h = 5, (c), h = 10, and (d) h = 20. We have included the mean and ±2σ error
bars on the plots, which we obtained by employing (3.9) and (3.10) in Section 3.1.1.

3.2.4.2 Initialization Algorithm to Approximate the Gradient: m = 1000

We let m = 1000 and compute an approximate gradient using Algorithm 7 with various values of h .

We use the same termination criteria as in the previous case and we plot in Figure 3.6 the cosine

of the angle between the analytic gradient and the gradient approximation from Algorithm 7 with

h = 1, 10, 50, and 100.
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Figure 3.6 Cosine of the angle between the analytic gradient in (3.19) and the gradient approximation from
Algorithm 7. The mean and ±2σ error bars on the plots, which we obtained by employing (3.9) and (3.10)
in Section 3.1.1 are also plotted.

3.2.5 Elliptic PDE

We now consider an elliptic PDE from [17] to verify the results of our initialization algorithm. In this

example, we employ the adjoint-computed gradient to compare to our approximation since it is

available. Let u = u (s, x) satisfy

−∇s · (a (s, x)∇su (s, a (s, x))) = 1, s ∈ [0, 1]2, (3.22)

with homogeneous Dirichlet boundary conditions u = 0 on the left, top, and bottom of the spatial
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domain, denoted by Γ1, and a homogeneous Neumann boundary condition ∂ u
∂ s1
= 0 on the right side,

denoted Γ2. The coefficient a (s, x) is taken to be a log-Gaussian second-order random field with

mean zero and covariance function

C (s, s′) = e β
−1||s−s′||1 . (3.23)

The existence and uniqueness of the solution to the weak form (3.22) can be proven in a stochastic

sense in the Sobolev space {u ∈ L 2(Ω;H 1(D ))|u |Γ1 = 0} for the spatial space D and probability

space Ω, as detailed in [7]. The random field can be expressed in terms of the eigenvalues γi and

orthonormal eigenfunctionsφi ofC using a truncated Karhunen-Loeve (KL) expansion,

log(a (s, x)) =
m
∑

i=1

xi
p

γiφi (s), (3.24)

where xi are independent and identically distributed (iid) N (0, 1) random variables. An elliptic PDE

of this nature can be used to model the steady-state behavior of diffusion processes such as heat

conduction or saturated flow.

As in [17], we choose a parameter input space X =R100 so m = 100 with a standard Gaussian

density function ρ. The scalar-valued response is taken to be

f (x) =
1

|Γ2|

∫

Γ2

u (s, x)d s. (3.25)

We discretize the elliptic problem using a standard finite element method with a mesh containing

1,352 triangles and 729 nodes to obtain function evaluations at a given set of input parameters

x. The eigenfunctions φi = φi (s) are approximated on this mesh for i = 1, . . . , N by solving the

matrix equation Ku = f for u = u(x) at the mesh nodes. The stiffness matrix has elements [K]i j =
∫

Ω
a∇sψi (s) ·∇sψ j (s)d s and [f]i =

∫

Ω
ψi (s)d s. Hereψi ∈V = {ψ ∈H 1(Ω) |ψ(s) = 0 for s ∈ Γ1} are test

functions. The scalar response is then approximated as

f (x) = cT u(x)≈
1

|Γ2|

∫

Γ2

u (s, x)d s, (3.26)

using the trapezoidal rule. The components of c are equal to c̃ where they correspond to Γ2, and zero

elsewhere. Here c̃= ∆x
2 [1,2,2, . . . ,2,2,1]T is the vector of quadrature weights from the trapezoidal

rule. As derived in [17], adjoint variables are used to compute the gradient vector∇x f . We note that

since the quantity of interest in (3.26) can be written as a linear functional of the solution, we can
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define adjoint variables,

f = cT u= cT u−yT (Ku− f), (3.27)

for any constant vector y. Taking the derivative of (3.27) with respect to the input xi , we obtain

∂ f

∂ xi
= cT

�

∂ u

∂ xi

�

−yT
�

∂ K

∂ xi
u+K

∂ u

∂ xi

�

= (cT −yT K)
�

∂ u

∂ xi

�

−yT
�

∂ K

∂ xi
u
�

. (3.28)

Choosing y to solve the adjoint equation KT y= c yields

∂ f

∂ xi
=−yT

�

∂ K

∂ xi

�

u. (3.29)

To approximate the gradient∇x f at the point x, we compute the finite element solution of Ku= f,

solve the adjoint problem, and compute the components using (3.29). The derivative of K with

respect to xi is straightforward to compute from the derivative of a (s, x)using the same finite element

discretization. The gradient matrix G is then constructed as

G=
1
p

M
[∇x f1 . . .∇x fM ], (3.30)

For implementation, we modified the MATLAB codes provided in [15, 18, 37].

3.2.5.1 Initialization Algorithm to Approximate the Gradient

We chose the components of x0 randomly from N (0, 1) and let `= 99. We define the positive definite

scaling matrix S with diag(S) = (1/r 2
j ). Here we define the ellipsoid radius as r j = 10−3. We computed

the cosine of the angle between the gradient approximation in (3.30) and the approximation provided

by Algorithm 7 with various values of h . In Figure 3.7, we plotted the cosine of the angle between

the analytic gradient and the gradient approximation from Algorithm 7 with h = 1, 5, 10, and 20. We

terminate the algorithm when the cosine of the angle between the gradient approximation and the

analytic gradient is greater than or equal to 0.99. We observed that for all values of h there is steady

cosine convergence to 1.
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Figure 3.7 Cosine of the angle between the adjoint gradient in (3.30) and the gradient approximation from
Algorithm 7 for (a) h = 1, (b) h = 5, (c), h = 10, and (d) h = 20. We have included the mean and ±2σ error
bars on the plots, which we obtained by employing (3.9) and (3.10) in Section 3.1.1.

3.2.6 SCALE 6.1: 44-Dimensional Neutronics Example

We now consider the improved initialization algorithm for the neutron transport model discussed

in Section 2.4. Recall for this example, our scalar quantity of interest is the effective multiplication

factor keff. We consider the effect of perturbations of the fission cross sectionsΣ f for the 235
92U isotope

for a discretization of 44 energy groups, yielding a 44-dimensional input space. All cross sections for

other materials and reactions are considered to be fixed at their nominal values provided by the

SCALE6.1 44-energy group cross-section library. The initial sample points are taken to be a cross-

section perturbations within 10% of the nominal values. The transport calculations are performed
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using the SCALE6.1 module NEWT [46], and the perturbations of the cross-section libraries are

computed via a ROMUSE [31]. We compute the adjoint gradient-based matrices for comparison

using the sensitivity information from the SAMS module in SCALE6.1 [46], which quantifies the

gradient vector with respect to keff.

3.2.6.1 Initialization Algorithm to Approximate the Gradient

We compare the previous formulation of the initialization algorithm in Algorithm 6 to our new

formulation in Algorithm 7. We computed the gradient approximation using Algorithms 6 and

7 with 20 initial points. We ran both algorithms for ` = 43 iterations and computed the average

cosine of the angle between the gradient approximation and the adjoint gradient from SCALE6.1

across all 20 points at each iteration. Figure 3.8 shows the average cosine over all 20 points at each

iteration for Algorithms 6 and 7. We observed that the average cosine of the angle between the

adjoint gradient and the gradient approximation from Algorithm 7 is converging to 1 much faster

than the average cosine of the angle between the adjoint gradient and the gradient approximation

from Algorithm 6. After `= 43 iterations with h = 1, we found that average cosine is approximately

0.93 for Algorithm 7 which indicates we are close to the adjoint gradient. This is a significant

improvement from Algorithm 6 which has an average cosine of approximately 0.55 after ` = 43

iterations. While Algorithm 7 converges much quicker than Algorithm 6, we find that Algorithm 7 has

only converged to an average cosine of 0.93 after m−1 iterations. We attribute the algorithms inability

to converge to the adjoint gradient in m −1 iterations for this example to numerical inaccuracies

in the function evaluations and the adjoint gradient in SCALE6.1. Since the gradient estimate is

not directly aligned with the adjoint gradient the estimate may not be sufficient enough to get an

accurate low-dimensional active subspace. We will investigate these potential numerical issues in

future work.

We plot the root mean squared error for the constructed response surfaces using the gradient-

based method, Algorithm 6, and Algorithm 7 in Figure 3.11. We observed that the RMSEs for Algo-

rithms 6 and 7 are comparable; however, they are approximately an order of magnitude larger than

the gradient-based method until the active subspace dimension is nearly the entire input space.

Figure 3.10 shows the response surfaces for gradient-based, finite-difference Morris, adaptive Morris

and initialized adaptive Morris with Algorithm 6. For all four methods, the root mean squared error

(2.6) is on the order of 10−4. We hypothesize that the root mean squared error for Algorithms 6 and 7

will improve after addressing the numerical issues and obtaining a gradient estimate that is “closer”

to the adjoint gradient.
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Figure 3.8 Average cosine of the angle between the adjoint gradient from SCALE6.1 and the gradient ap-
proximation from the new initialization Algorithm 7 and previous Algorithm 6 for `= 43 iterations.
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Figure 3.10 Comparison of keff responses at testing points and the constructed response surface for one-
dimensional active subspaces for (a) gradient-based, (b) finite-difference Morris, (c) adaptive Morris, and
(d) initialized adaptive Morris using Algorithm 6.
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3.3 Summary

In this chapter, we introduced an extended initialization algorithm that we used to approximate

the gradient for numerical examples with analytic and adjoint gradients. We then used the analytic

and adjoint gradients to verify the gradient approximation from Algorithm 7 via the cosine of

the angle between the columns. We illustrated that Algorithm 7 converges to the the analytic or

adjoint gradient in m −1 iterations for m number of parameters [10]. In future work, we will further

investigate why the gradient approximation from Algorithm 7 does not converge to the adjoint

gradient in m −1 iterations for the SCALE6.1 example. Additionally, we will derive a convergence

proof for the initialization algorithm that incorporates the function.
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CHAPTER

4

FREQUENTIST AND BAYESIAN LASSO

TECHNIQUES FOR PARAMETER

SELECTION FOR NONLINEARLY

PARAMETERIZED MODELS

In addition to active subspace methods, least absolute shrinkage and selection operator (lasso)

techniques can be employed for parameter space reduction. One advantage of the lasso method

is its ability to perform parameter selection and estimation simultaneously. Additionally, the use

of the L1 norm allows parameter values to be exactly zero, which indicates they can be excluded

from the model. In this chapter, we survey existing frequentist and Bayesian lasso techniques, and

introduce a novel Bayesian lasso implementation using the Delayed Rejection Adaptive Metropolis

(DRAM) algorithm [9]. We demonstrate how the DRAM implementation performs comparable to

the Gibbs sampler.

4.1 Lasso Method for Linear Models

Before addressing nonlinear models in Sections 4.3 - 4.5, we illustrate existing lasso techniques [57]

for the linear model
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υi =χ
T
i θ+ ei , i = 1, . . . , n . (4.1)

Here υi ∈R is the response variable,χi = (χi 1, . . . ,χi p )T ∈Rp is the p -dimensional set of predictors

or independent variables, and θ = (θ1, . . . ,θp )T is the vector of parameters. We assume that the

errors ei are independent and identically distributed (iid) with mean 0 and varianceσ2. The lasso

estimator of θ is defined by

θ̂∗ = argmin
θ

n
∑

i=1

 

υi −
p
∑

j=1

θ jχi j

!2

(4.2)

subject to
∑p

j=1 |θ j | ≤ t . This can be achieved by solving

θ̂∗ = argmin
θ







n
∑

i=1

 

υi −
p
∑

j=1

θ jχi j

!2

+λ
p
∑

j=1

|θ j |







, (4.3)

where t andλ are user-defined smoothing parameters that control the amount of shrinkage. Smaller

values of t and larger values of λ result in a higher amount of shrinkage. It is important to note that

we are employing regularization where λ controls the importance of the regularization term rather

than Lagrange multipliers. The objective of the lasso method is to shrink some parameters while

setting others to zero.

We illustrate first a lasso implementation based on the Least Angle Regression (LARS) algorithm

in [22]. The LARS algorithm is summarized in Algorithm 9.
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Algorithm 9 LARS Algorithm from [22]

1. Start with all coefficients θ j equal to zero.

2. Find the predictor χ j most correlated with υ.

3. Increase the coefficient θ j in the direction of the sign of its correlation with υ = (υ1, . . . ,υn )T .

Take residuals r=υ− υ̂ and stop when some other predictor χk has as much correlation with

r as χ j .

4. Increase (θ j ,θk ) in the direction equiangular between the two until some other predictor χ`
has as much correlation with r as χ j and χk .

5. Increase (θ j ,θk ,θ`) in the equiangular (joint least squares) direction between the three coeffi-

cients. If a nonzero coefficient becomes zero, remove it from the active set of predictors and

recompute the joint direction.

6. Proceed until all the predictors are in the model.

Note that in step 5, if a coefficient becomes zero, we remove its corresponding predictor from the

active set of predictors, thus, simultaneously shrinking the parameters and selecting variables.

4.2 Adaptive Lasso

It has been shown that lasso is not consistent in variable selection if there are multiple local minima.

The work in [61] proposes adaptive lasso as a solution to address the inconsistency of the lasso

method.

Adaptive weights are used for penalizing different coefficients in the L 1 penalty. Adaptive lasso

is a convex optimization problem, so its global minimizer can be efficiently solved. Additionally, we

can use the same algorithm for solving lasso with a few simple modifications. Suppose that θ̂ is an

estimator of θ; e.g., θ̂ = θ̂(O LS )where θ̂(O LS ) is the ordinary least squares estimate. Specify γ and

define the weight vector ŵ= 1
|θ̂|γ . The adaptive lasso estimates are given by

θ̂∗ = argmin
θ







n
∑

i=1

 

υi −
p
∑

j=1

θ jχi j

!2

+λ
p
∑

j=1

ŵ j |θ j |







. (4.4)

It is important to note that ŵ = (ŵ1, . . . , ŵp ) is data dependent. The LARS algorithm for adaptive

lasso is summarized in Algorithm 10.
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Algorithm 10 LARS Algorithm for Adaptive Lasso from [61]

1. Define χ∗∗j =
χ j

ŵ j
, j = 1, 2, . . . , p .

2. Solve the lasso problem,

θ̂∗∗ = argmin
θ







n
∑

i=1

 

υi −
p
∑

j=1

θ jχ
∗∗
i j

!2

+λ
p
∑

j=1

ŵ j |θ j |







.

3. Output θ̂ ∗j =
θ̂ ∗∗j

ŵ j
, j = 1, 2, . . . , p .

If we use θ̂(O LS ) to construct the adaptive weights, we can use cross validation to find the optimal

smoothing parameter λ; see [61].

4.3 Nonlinear Lasso

We now discuss nonlinear regression models with Gaussian basis expansions. We use Gaussian

basis functions because they can be expressed in a simple form and are easily applied to analyze

high-dimensional data sets [5]. Additionally, the efficiency of nonlinear regression models that use

Gaussian basis functions with a hyperparameter controlling the dispersion is discussed in [2].

Suppose that we have n independent observations (χT
1 , y1), . . . , (χT

n , yn )where υi are random

response variables andχi are vectors of p -dimensional predictors, assumed to satisfy the nonlinear

regression model

υi = u (χi ) + ei , i = 1, . . . , n . (4.5)

Here u (·) is an unknown smooth function and ei are independently, normally distributed with mean

zero and varianceσ2. We assume that the function u (·) can be expressed as a linear combination of

basis of functionsφ j (χ), j = 1, 2, . . . , m ; i.e.,

u (χ;θ) = θ0+
m
∑

j=1

θ jφ j (χ) = θ
Tφ(χ), (4.6)

where φ(χ) = (1,φ1(χ), . . . ,φm (χ))T is a vector of basis functions and θ = (θ0,θ1, . . . ,θm )T is an

unknown coefficient parameter vector. The nonlinear regression model can then be formulated as

υi = θ
Tφ(χi ) + ei , i = 1, . . . , n . (4.7)
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For a p -dimensional vector of predictorsχ= (χ1, . . . ,χp )T , the Gaussian basis functions are given by

φ j (χ) = exp

�

−
||χ−µ j ||2

2h 2
j

�

, j = 1, 2, . . . , m . (4.8)

Here µ j is a p -dimensional vector determining the center of the basis function, h 2
j is a parameter

that determines the dispersion, and || · || is the Euclidean norm. The unknown parameters in (4.7) are

the coefficient parameters θ j , the centers µ j , and the dispersion parameters h 2
j from the Gaussian

basis functions. As discussed in [56], the unknowns are determined in a two-stage procedure to

avoid local minima and identification problems.

In the first stage, the centers and dispersion parameters are determined using the k -means

clustering algorithm [33]. The data set of observations of predictors χ1, . . . ,χn is divided into m

clusters C1, . . . , Cm and the centersµ j and dispersions h 2
j are determined by

µ̂ j =
1

n j

∑

χi∈C j

χi , (4.9)

ĥ 2
j =

1

n j

∑

χi∈C j

||χi −µ j ||2. (4.10)

Here n j is the number of observations included in the j th cluster C j . Replacing µ j and h 2
j in (4.8)

by µ̂ j and ĥ 2
j , respectively we obtain a set of m basis functions

φ j (χ; µ̂ j , ĥ 2
j ,ν) = exp

�

−
||χ− µ̂ j ||2

2νĥ 2
j

�

, j = 1, 2, . . . , m , (4.11)

where ν is a hyperparameter that adjusts the dispersion of basis functions. We include this hyperpa-

rameter to avoid basis functions that do not overlap.

In the second stage, the coefficient parameters θ j are estimated by the maximum penalized

likelihood method. The nonlinear regression model in (4.7) has the probability density function

f (υi |χi ;θ,σ2) =
1

p
2πσ2

exp

�

−
(υi −θTφ(χi ))2

2σ2

�

. (4.12)

The maximum likelihood estimates of θ andσ2 are

θ̂ = (ΦTΦ)−1ΦTυ, σ̂2 =
1

n
(υ−Φθ̂)T (υ−Φθ̂), (4.13)

where Φ = (φ(χ1), . . . ,φ(χn ))T and υ = (y1, . . . , yn )T . Using the estimates in (4.13) yield unstable

estimates and overfitting, so we instead estimate θ and σ2 via regularization. We maximize the

penalized log-likelihood function
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lλ(β) =
n
∑

i=1

log f (υi |χi ;θ,σ2)−nλH (θ). (4.14)

Hereβ = (θT ,σ2)T , λ> 0 is a smoothing parameter that controls the smoothness of the fitted model,

and H (θ) is a penalty function. We employ the penalty function

H (θ) =
m
∑

j=1

c j |θ j |. (4.15)

This is similar to the adaptive lasso algorithm for linear regression models described in Section 4.2.

Using the weights,

c j =







1, h̄ 2 ≤ h 2
j

h̄ 2/h 2
j , h̄ 2 > h 2

j

, (4.16)

h̄ 2 =
1

m

m
∑

k=1

h 2
k , (4.17)

enforces coefficients of narrow basis functions to shrink toward exactly zero so that the estimated

regression function incorporates the structure of the data [56]. The maximum penalized likelihood

estimator β̂ = (θ̂T ,σ̂2)T , with the penalty function given by (4.15), is

β̂ = argmax
θ,σ2

 

n
∑

i=1

log f (υi |χi ;θ,σ2)−nλ
m
∑

j=1

c j |θ j |

!

. (4.18)

Since the lasso estimate is non-differentiable in θ, it is difficult to obtain (4.18) in analytical form.

The statistical model obtained by replacing β with its estimator β̂ is

f (υi |χi ; θ̂,σ̂2) =
1

p
2πσ̂2

exp

�

−
(υi − θ̂Tφ(χi ))2

2σ̂2

�

. (4.19)

This model depends on the number of basis functions m , the value of the smoothing parameter λ,

and the value of the hyperparameter ν in the Gaussian basis functions. In Section 4.4.1, we apply the

Delayed Rejection Adaptive Metropolis (DRAM) algorithm, summarized in Appendix A, to a nonlin-

ear example with fixed values for the hyperparameters. In Section 4.4, we discuss how to determine

the optimal values for λ and ν, and in Section 4.5 we determine the optimal hyperparameter values

for the curve fitting example.
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4.4 Bayesian Lasso

As detailed in [44], the lasso estimate for linear regression parameters can be interpreted as a Bayesian

posterior mode estimate when the regression parameters have independent Laplace priors. Tateishi

et al. [56] employ an unconditional Laplace prior density

π(θ) =
n c jλ

2
exp−n c jλ|θ j | (4.20)

and a non-informative prior forσ2. Thus, the posterior distribution of the parameter β = (θT ,σ2)T

is given by

logπ(β|υ) = log f (υ|β)−nλ
m
∑

j=1

c j |θ j |+C , (4.21)

where C is constant with respect to β. We can apply the Deviance Information Criterion (DIC),

first introduced by [54], as a model evaluation criterion for the Bayesian lasso estimate. The DIC

for evaluating the nonlinear regression model based on Gaussian basis functions estimated by the

maximum penalized likelihood method with lasso penalty is

D I C =−2 log f (υ|β̂) +2pD . (4.22)

Here β̂ is given by (4.18) and pD is the effective number of parameters defined as

pD = Eβ|υ[−2 log f (υi |χi ;β)] +2 log f (υi |χi ; β̂). (4.23)

Since pD can be difficult to derive analytically, a Gibbs Sampler and the Delayed Rejection Adaptive

Metropolis (DRAM) algorithm are typically employed [27]. Values of the smoothing parameter and

hyperparameter are chosen to minimize the Deviance Information Criterion (DIC). We then take

the corresponding model as the optimal model.

4.4.1 Curve Fitting Example

As an example, we considered the function

u (χ) = e −2χ cos(3πe χ ). (4.24)

The repeated random samples {(χi ,υi ); i = 1, . . . , n} with n = 130 were generated from the statistical

model

υi = u (χi ) + ei , i = 1, . . . , n . (4.25)

The design points χi are uniformly distributed in [0,1] and the errors ei are independently, normally
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distributed with mean 0 and standard deviation τ= 0.1. Here Ru = 0.1570, where Ru is the range

of u (χ) over χ ∈ [0,1]. We used m = 20 Gaussian basis functions. The smoothing parameter λ and

dispersion hyperparameter νwere fixed to 0.01 and 85, respectively. We used a Gibbs Sampler [23]

to construct the posterior distribution of θ and used the mean of the posterior distribution for θ

to construct our Bayesian nonlinear lasso estimate. In Figure 4.1, we compare the simulated data

with the true function and the Bayesian lasso estimate. It is important to note that, in practice, the

true function will be unknown. In Figure 4.2, we plotted the residuals. They appear to be randomly

scatter about zero, which supports our assumption of independently and identically distributed

errors. The Gaussian basis functions in Figure 4.3 overlap sufficiently, which indicates our lasso

estimate will quantify the data as discussed in [2].
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Figure 4.1 Gibbs sampler Bayesian lasso estimate for (4.7) versus simulated data.
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Figure 4.2 Residual Plot for the Gibbs sampler Bayesian lasso estimate.
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Figure 4.3 Gaussian basis functions with ν= 85.

In Table 4.1, we show the values of θ for λ= 0.01. We observe that parameter values from the

Gibbs sampler and DRAM algorithm are differ significantly for certain parameters. In Figure 4.4, we

plot the DRAM and Gibbs sampler lasso fit. Note that the lasso fit obtained using DRAM appears to

very similar to the lasso fit obtained using the Gibbs sampler. In Figure 4.5 we compare the simulated

data with the true function and the Bayesian lasso estimate computed using DRAM. The parameter
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Table 4.1 Bayesian lasso estimate of (4.7) with u (χ) = e −2χ cos(3πe χ ).

Parameter
Gibbs Bayesian DRAM Bayesian

Lasso Estimate Lasso Estimate

θ0 -0.0027 -0.2391

θ1 0.0495 0.5502

θ2 0.0174 -0.0360

θ3 0.1563 0.2144

θ4 0.5786 0.3009

θ5 -0.3390 -0.4334

θ6 0.0875 -0.0533

θ7 0.4125 0.2311

θ8 -0.0290 0.0629

θ9 -0.0352 0.1817

θ10 -0.2292 -0.3214

θ11 0.1994 0.2010

θ12 -0.1809 -0.1141

θ13 0.1641 -0.0500

θ14 0.0470 0.3349

θ15 0.0940 0.2231

θ16 0.4035 0.3016

θ17 -0.9177 -0.8610

θ18 -0.1674 0.0998

θ19 0.0213 0.1411

θ20 -0.0902 0.2815

chains were computed using the same values for m , Φ, and λ as the Gibbs sampler, and we fixed the

variance to 0.0246 in the DRAM algorithm since the data is simulated and we know the true variance.

In Figure 4.6, we plotted the residuals. They appear to be randomly scattered about zero, which

supports our assumption of independently and identically distributed errors. We illustrate a subset

of the pairwise plots in Figure 4.8. Most of the parameters appear to be identifiable in the sense that

they are not single-valued. The remaining pairwise plots are similar. The parameter chains, shown

in Figure 4.7, appear to be well-mixed and explore the parameter space adequately.
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Figure 4.4 DRAM and Gibbs sampler Bayesian lasso estimate for (4.7) versus simulated data.
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Figure 4.5 DRAM Bayesian lasso estimate for (4.7) versus simulated data.
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Figure 4.6 Residual Plot for the DRAM Bayesian lasso estimate.

Figure 4.7 Parameter chains for θ.
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Figure 4.8 Selected pairwise plots for the parameters θ.
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4.5 Determination of Hyperparameters

We can select the optimal values of the smoothing parameter λ and the dispersion parameter ν by

determining the values that minimizes the deviance information criterion (DIC) given by (4.22).

Using the DRAM algorithm, we computed the Bayesian lasso estimate for 100 different values of

λ and 10 different values of ν. We chose the λ and ν that minimized the DIC. Figure 4.9 shows

the corresponding Bayesian lasso estimate with the optimal smoothing parameter and dispersion

parameter values λ= 0.0005 and ν= 81, respectively. The lasso fit that minimizes the DIC does not

match the true function as closely as in Figure 4.5 with ν= 85, but it appears to quantify the data

well in terms of the residuals. We plot the residuals in Figure 4.10. We support our assumption of

independently and identically distributed errors since the residuals appear to be randomly scattered

about zero. As discussed in [2], the Gaussian basis functions in Figure 4.11 overlap sufficiently, which

indicates our lasso estimate will quantify the data. The parameter chains illustrated in Figure 4.12

appear to be well-mixed and explore the parameter space adequately indicating that the chains are

converged. In Figure 4.13, we illustrate a few of the pairwise plots and the remaining pairwise plots

are similar.
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Figure 4.9 Bayesian lasso estimate with optimal λ and ν.
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Figure 4.10 Residual plot for Bayesian lasso estimate with optimal λ and ν.
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Figure 4.11 Gaussian basis functions with ν= 81.
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Figure 4.12 Parameter chains for θ with optimal λ and ν.
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Figure 4.13 Selected pairwise plots for parameters θ with optimal λ and ν.
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4.6 Summary

In this chapter, we introduced a DRAM implementation of the Bayesian lasso method and compared

it to the Gibbs sampler for a curve fitting example. We observed that the DRAM implementation

performed comparable to the Gibbs sampler, and in fact, can quantify the data well by determining

the smoothing and dispersion hyperparameters for the Gaussian basis functions. We determined

the hyperparameters for the Gaussian basis functions by minimizing the deviance information

criterion (DIC). These results are reported in [9].
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CHAPTER

5

CRUD MODEL CALIBRATION USING

MAMBA CODE SIMULATIONS AND WALT

LOOP DATA

In this chapter, we address the last three steps in the UQ process, i.e., surrogate model construction,

Bayesian model calibration, and uncertainty propagation. We demonstrate surrogate model con-

struction via a physics-based surrogate model for crud deposition and employ Bayesian inference

to calibrate the surrogate and MAMBA models for crud. Once the model parameters are calibrated,

we employ prediction intervals to propagate the uncertainties through the MAMBA model.

5.1 WALT Loop Data

The WALT loop data we used to calibrate the heat transfer coefficient, crud thermal conductivity,

and chimney vapor fraction parameters in the MAMBA equations are summarized in Table 5.1.

Here B is a coolant mixture of 1000 ppm boric acid and 2.2 ppm lithium and DI is deionized water.

Normal cladding is the standard ZIRLO at 0.0225 inch wall thickness and a thinned wall is the

standard ZIRLO with thickness less than 0.0225 inches. The details of the WALT loop experiments

are discussed in Chapter 1.
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Table 5.1 Summary of the WALT runs from [52].

Final Temperature Increase after

Rod Coolant
ZIRLO # Crud Injection vs. Clean (F)

Cladding Inj Thickness
1 2 3 4 5

(µm)

80 B Normal 5 52 1 4 14 20 27

87 B Normal 4 37 -1 0 3.1 20.3

88 B Normal 1 34 41

90 B Thinned 6 45 -1 0 3.1 20.3

91 DI Thinned 23 45 0 0 0 0 0

94 DI Normal 12 56 -3.5 -3.2 -2.7 12.7 15.7

110 B Normal 20 56 -3.5 -3.2 -2.7 12.7 15.7

111 B Normal 4 45 4.2 10.8 13.5 33.8

112 B Thinned 12 73 -3.1 -3.2 6.0 5.2 13.1

112 B Normal 12 64 1.0 -2.65 -1.8 -0.6 3.6

116 B Thinned +Normal 6 74

117 B Thinned 5 98 12 36.5 44 54 71

117 B Normal 5 69 0.5 10 13.5 20 36

5.2 Bayesian Framework

To calibrate the surrogate heat transfer model in Section 5.3 and the MAMBA model in Section 5.7,

we employ the statistical observation model

Υi = f (χi ;Θ) + ei , i = 1, . . . , n , (5.1)

where Υi , ei and Θ are random variables representing the measurements, measurement errors,

and parameters, respectively. Here f (χi ;Θ) denotes the parameter-dependent model response.

We assume that the measurement errors are independent and identically distributed (iid) and

ei ∼ N (0,σ2), where σ2 is unknown. Using Bayes’ Theorem of Inverse Problems, as discussed in

[53], we assume that the p random parameter variables of Θ have a known prior distribution π0(θ).

We let υ and θ denote the realizations of the random measurement Υ and parameter Θ random
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variables, respectively. The posterior distribution of θ, given measurements υ, is

π(θ|υ) =
π(υ|θ)π0(θ)
π(υ)

=
π(υ|θ)π0(θ)

∫

Rp π(υ|θ)π0(θ)dθ
. (5.2)

Based on our statistical model and measurement error assumptions, the likelihood function is

π(υ|θ) =
1

(2πσ2)n/2
e −SSθ/2σ

2
, (5.3)

where

SSθ =
n
∑

i=1

[υi − f (χi ;θ)]2 (5.4)

denotes the sum of squared error [53]. The posterior distribution in (5.2) provides the distribution of

θ based on the observationsυ. We take the mean value of the posterior distribution as the calibrated

value for the parameters. We employ a Markov Chain Monte Carlo method, the Delayed Rejection

Adaptive Metropolis (DRAM) algorithm [27], to determine the posterior distribution. The DRAM

algorithm is outlined in Appendix A. We employ the pymcmcstat package [38, 39] in Python for the

DRAM implementation.

5.3 Surrogate Heat Transfer Model

To model the temperature T inside of the cladding as a function of the crud thermal conductivity k

and the heat transfer coefficient h , we employ the physical surrogate model

k T ′′(r ) = h (T −Ts a t ), h = 0, T < Ts a t , (5.5)

where Ts a t is the saturation temperature in the annular flow. To solve this equation for the cladding

temperature T at some unknown radius r = ri n t , where continuity of temperature and heat flux are

assumed to hold, we solve the equation for T > Ts a t and T ≤ Ts a t , which we denote by Ts up and

Ts u b , respectively. We let Ts u b be the solution of the differential equation

k T ′′(r ) = 0, T (ro u t ) = Tsurf, T (ri n t ) = Ts a t , (5.6)

and Ts up be the solution of the differential equation

k T ′′(r ) = h (T −Ts a t ), −k T ′(0) = qc l a d , T (ri n t ) = Ts a t . (5.7)
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We then solve the equation

−k T ′s up (ri n t ) =−k T ′s u b (ri n t ) (5.8)

for ri n t using Newton’s method with the surface temperature Ts u r f and the heat flux in the cladding

qc l a d as boundary conditions. We use the measured value from the WALT loop experiment for

ro u t . Once ri n t is determined, Ts up (0) is computed to obtain the clad outer surface temperature.

Conduction through the cladding is then computed to obtain the temperature at the thermocouple

T , which is on the inside of the cladding.

To obtain the values for Ts a t , h , and k , we employ calibrated relations from MAMBA. To calculate

the value of Ts a t the value of ρw a t e r is first computed using the equation

ρw a t e r (T ) = 1.0e3(−4276.0+53.24T −0.1953T 2− (3.097e-4)T 3− (1.824e-7)T 4), (5.9)

for T < 650. If T > 650, we set T = 650 and evaluate (5.9). We note here that the constant values

in the following model equations are physical or previously calibrated values performed by the

MAMBA development team. The total molality of boron in the water is then computed using the

equation

B =
bc o n

ρw a t e r (T )/18.01528
, (5.10)

where bc o n is the measured total boron concentration for the Walt Loop test data in ppm. Lastly,

the saturation temperature in the annular flow Ts a t is computed using the equation

Ts a t = 11453.3B 3−249.862B 2+274.056B +618.068. (5.11)

The value of h is computed using the equation

h =ρc hi m (2πhc hi m rc hi m )rc r ud , (5.12)

where ρc hi m is the surface density of the chimney, hc hi m is the heat transfer coefficient in the

chimney, rc hi m is the radius of chimney, and rc r ud is the radius of the crud. To determine the

thermal conductivity in the crud k , we first need to compute the thermal conductivity of water and

steam which we denote as kw a t e r and ks t e a m , respectively. Here

kw a t e r (T , P ) = 0.686+ (7.3e-10)P − (5.87e-6)T 2, (5.13)

where T is the temperature of the water and P is the power. In (5.12), if T > 650 we set T = 235 and
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let T = T −415, otherwise. We also calculate the thermal conductivity of steam using the relation

ks t e a m (T , P ) = −7.210e-3+P [8.309e-8+ (2.818e-15)P ] (5.14)

+ T [6.740e-5+ (3.895e-8)T ] (5.15)

+ P T [−2.854e-10− (4.067e-18)P + (2.417e-13)T ], (5.16)

where we set T = 650, if T > 650. We then compute k via the equation

k =
1.0e-2

�

kmi x
ts e r
+ (1.0−kmi x )

tp a r
,
� , (5.17)

where kmi x is the thermal conductivity of the crud liquid and solid mixture. The quantities ts e r and

tp a r are given by

ts e r =
1.0

�

p
kw s
+
�

1.0− p
kc r ud

�� (5.18)

and

tp a r = (1.0e-2)kw s p + (1.0−p )kc r ud . (5.19)

Here p is the porosity of the crud and kc r ud is the thermal conductivity of the crud. Furthermore,

kw s is calculated via the equation

kw s = kw a t e r (Tw , P )(1.0− v f ) +ks t e a m (T , P )v f , (5.20)

where v f is the void fraction and Tw =min(T , Ts a t ). The goal is to calibrate hc hi m , kc r ud , and kmi x

for equations (5.12), (5.17), (5.18), and (5.19).

5.4 Surrogate Heat Transfer Model Results

In preliminary analysis, we determined that the parameter set θ = [hc hi m , kc r ud , kmi x ]was noniden-

tifiable. Specifically, the parameters kc r ud and kmi x are multiplied by each other in (5.17) which

indicates there is no unique set of parameter values that will minimize the sum of squares function.

Therefore, we let kmi x = 0.45, which was the optimal value obtained from a nonlinear least squares

method. We assumed a flat Gaussian prior with mean 0 and infinite variance for both hc hi m and

kc r ud . We then calibrated the reduced parameter setθ = [hc hi m , kc r ud ] for MAMBA equations (5.12),

(5.17), (5.18), and (5.19) using the data from rods 80, 87, 88, and 91. Using the DRAM algorithm with

initial parameter estimates [hc hi m , kc r ud ] = [50.0, 0.045], we determined the posterior distribution

for each parameter. The parameter estimates we obtained after 5,000 DRAM simulations with a
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burn-in period of 1,000 simulations are [hc hi m , kc r ud ] = [61.0965,0.0417]. Here we computed the

sum of squares for each rod and used the DRAM algorithm to minimize each sum of squares. The

posterior distribution for the parameters uses the product of the likelihoods of each rod, which is

equivalent to using the sum of the sum of squares of each rod. Note that we bounded hc hi m between

0 and 100 W/cm2K and kc r ud between 0 and 0.1 W/cmK to ensure that the parameter estimates

were physically relevant. In Figure 5.1, the measured cladding temperatures from the Walt Loop data

and the predicted cladding temperatures from the surrogate heat transfer model with the calibrated

parameter estimates are shown for rods 80, 87, 88, and 91.

We observed that the cladding temperatures from the surrogate heat transfer model asymptoti-

cally fits the average of the measured cladding temperatures since the measurement error is very

large for some rods. This indicates that we should employ a mixed-effects model to accommodate

individual effects due to the experiments [51, 60]. The mixed-effects model considers both fixed

effects and random or individual effects. The fixed effects are the mean parameters for all heater

rods, and the rod-specific parameters are obtained by adding random effects to the fixed effects.

The random effects represent deviations from the mean parameters (plus measurement errors)

within each individual rod dataset. Additionally, the random effects incorporate correlation between

measurements for individual rods [60].
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Figure 5.1 Measured cladding temperature versus the cladding temperature from the model with the
calibrated parameters for rods 80, 87, 88, and 91.
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We also observed that the model does not fit any of the thermocouples for rod 91. We attribute

this to the fact that the surrogate model is not complex enough to quantify the lack of boron in the

coolant. In Figure 5.2, we illustrate the parameter chains and pairwise plots for the DRAM algorithm.

The parameter chains appear to be well-mixed and explore the parameter space adequately. We

plot the parameter chains for the estimated measurement error variance in Figure 5.3 and the

kernel density estimate of the estimated measurement error standard deviation for each rod in

Figure and 5.4. The estimated measurement error variances have mean values [σ2
80,σ2

87,σ2
88,σ2

91] =

[15.52, 17.86, 72.29, 118.76]. We attribute the large error variance for Rod 91 to missing physics in the

surrogate model.

(a) (b)

Figure 5.2 (a) Parameter chains and (b) pairwise parameter chain plots from the DRAM algorithm for rods
80, 87, 88, and 91.
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Figure 5.3 The measurement error variance parameter chains from the DRAM algorithm for rods 80, 87,
88, and 91.

Figure 5.4 The kernel density estimates for the error standard deviationsσi from the DRAM algorithm for
rods 80, 87, 88, and 91.
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5.5 MAMBA Mass and Heat Transfer Model

To model the temperature inside the cladding T , we first consider steam inside the chimney. Steam

is generated at the chimney wall as heat flows from the surrounding porous medium to the chimney.

The volumetric heat sink due to the evaporation of liquid water to steam is computed by averaging

heat flux through chimney walls throughout the crud volume [14]. The chimney wall heat flux is

defined as

q̇c hi m = hc hi m (T −Ts a t ), (5.21)

where hc hi m is the heat transfer coefficient at the chimney wall, which is the first parameter we

calibrate using experimental data from the WALT loop experiment. Here Ts a t is the saturation

temperature. The volumetric heat sink is

Q̇s n b (T ) = 2πrc hi m Nc hi m hc hi m (T −Ts a t ), (5.22)

where rc hi m is the characteristic radius of a chimney in the crud and Nc hi m is the number density

of active chimneys per unit area. The corresponding volumetric mass generation rate for the steam

in the chimneys is

Φ̇s n b (T ) =
Q̇s n b

H f g
, (5.23)

where H f g is the enthalpy of vaporization of the coolant [14].

The steam generated by chimney boiling drives a liquid Darcy flow into the crud. Instead of

solving Darcy’s law, it is assumed in MAMBA that radial liquid flux acts on the whole lateral area and

the liquid flux is derived from conservation of mass. The mass flux rate due to boiling is

d φ̇(`)s n b

d r
=

Q̇s n b

H f g
. (5.24)

In addition to the sink due to boiling, it is assumed in MAMBA that there is a volumetric sink of

liquid. A user-defined parameter called the chimney vapor fraction fv scales this sink as a fraction

of the boiling sink yielding the total radial liquid flux

d φ̇(`)T

d r
=

Q̇s n b

fv H f g
. (5.25)

The chimney vapor fraction fv is the second parameter we need to calibrate. The total radial liquid

flux is solved by MAMBA with the boundary flux at the cladding surface set to zero and with symmet-

ric flux boundary conditions at the coolant interface [14]. Neglecting the advection of temperature,
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the equation for heat conduction is

d

d r

�

kc r ud
d T

d r

�

= Q̇s n b . (5.26)

Here kc r ud is the effective thermal conductivity of the crud and is the third parameter we calibrate

using experimental data from the WALT loop experiment. Note that the calibrated parameter kc r ud

corresponds to a weighted average of the solid crud skeleton (NiFe2O4), precipitated Li2B4O7, water

and steam. MAMBA solves (5.26) for temperature T with the boundary conditions as the heat flux

from the fuel at the cladding-crud interface and the temperature of the coolant outside the crud.

The details of the solution method is provided in [13].

We now consider the species transport equations. The equation for transport of the i th species is

d

d r

�

D
d ci

d r

�

−u
d ci

d r
+Sc = 0, (5.27)

where ci is the concentration of the i th species, D is the diffusivity, u is the convective velocity, and

Sc represents sources and sinks. Note that the liquid flux in (5.25) defines the convective velocity as

u = φ̇
(`)
T
ρw

. Loss of species i from a cell may occur due to carry-over into steam and/or the entrained

liquid; however, the steam carry-over is small, where the entrained liquid leads to a significant

species flux [14]. The sink Sc may be written as

Sc = c v
i Φ̇b (T ) + ci Φ̇b (T )

�

1− fv

fv

�

, (5.28)

where c v
i is the species concentration in the vapor phase. To solve the species transport equation, a

hybrid differencing scheme is employed. This scheme evaluates the relative strengths of advection

and diffusion via a Peclet number

Pe≡
ρu

D /∆r
, (5.29)

at the lateral face of the control volume. The scheme then uses central differencing for diffusion-

dominated transport (Pe < 2) and upwinding for advective transport (Pe ≥ 2). To compute the

diffusion coefficient at the cell boundaries r −∆r /2 and r +∆r /2, first the diffusion coefficient

for the i th species Di is evaluated at the cell center by computing the coefficient at the reference

temperature. We can write Di as a function of T by employing the Stokes-Einstein relation

Di (T ) =
D0iµ0i T

µi (T )T0
, (5.30)

where T0 is the reference temperature, and for species i , D0i is the reference diffusion coefficient,

µ0i is the reference dynamic viscosity, and µi (T ) is the dynamic viscosity at temperature T . The
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dynamic viscosity at temperature T is computed using the correlation

µi (T ) =
25.3

−8.58 ·104+91T +T 2
(5.31)

from [24]. Here the units for viscosity are kg m−1s−1. To obtain values for the diffusion coefficient at

the inner and outer cell boundaries, harmonic averages between the cell-centered values are used

Di− 1
2
=

2Di−1Di

Di−1+Di
ri∆r∆θ∆z , (5.32)

Di+ 1
2
=

2Di Di+1

Di +Di+1
ri∆r∆θ∆z . (5.33)

We define

wi− 1
2
=max

�

fi− 1
2

,

�

Di− 1
2
+

fi− 1
2

2

�

, 0

�

, (5.34)

wi+ 1
2
=max

�

fi− 1
2

,

�

Di− 1
2
+

fi− 1
2

2

�

, 0

�

, (5.35)

where f is the solution to (5.25). The concentration in cell i is then computed as

ci =
wi− 1

2
ci− 1

2
+wi+ 1

2
ci+ 1

2

wi− 1
2
+wi+ 1

2
+ ( fi− 1

2
− fi− 1

2
)
. (5.36)

5.6 Parameter Subset Selection

To determine if the calibration parameters are identifiable, we employ parameter subset selection

[8]. We again consider the observation model

υi = f (χi ;θ) + εi , i = 1, . . . , n , (5.37)

where the scalar outputs υi are realizations of the random variable Υi and are observed at values of

the independent variable χi ; see (5.1). Here εi is the realization of the random variable ei for the

measurement errors. Minimizing the cost functional

J (θ) =
1

n

n
∑

i=1

[υi − f (χi ;θ)]2, (5.38)

using the nonlinear least squares method least_squares from the Python package SciPy yields

an optimal parameter vector θ∗, which we use as the nominal value for our identifiability analysis.

We note that θ is identifiable at θ∗ if it is uniquely determined by the data at the that value.
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We employ the linear Taylor expansion

f (χi ;θ)≈ f (χi ;θ∗) +∇θ f (χi ;θ∗) ·∆θ, (5.39)

to establish identifiability in terms of local sensitivity analysis. Here∆θ = θ−θ∗ and

∇θ f (χi ;θ∗) =

�

∂ f

∂ θ1
(χi ;θ∗), . . . ,

∂ f

∂ θp
(χi ;θ∗)

�T

. (5.40)

Assuming that υi ≈ f (χi ;θ∗), the cost functional can be approximated by

J (θ) ≈
1

n

n
∑

i=1

[∇θ f (χi ;θ∗) ·∆θ]2

=
1

n
[X∆θ]T [X∆θ], (5.41)

or, equivalently, J (θ∗+∆θ)≈ 1
n∆θ

TX TX∆θ. Here

X =











∂ f
∂ θ1
(χ1;θ∗) . . . ∂ f

∂ θp
(χ1;θ∗)

...
...

∂ f
∂ θ1
(χn ;θ∗) . . . ∂ f

∂ θp
(χn ;θ∗)











,

is the n × p sensitivity matrix evaluated at θ∗. If we let ∆θ be an eigenvector of X TX , so that

X TX∆θ =λ∆θ, it follows that

J (θ∗+∆θ)≈
λ

n
||∆θ||22. (5.42)

We note that sinceX TX is symmetric and nonnegative definite, the eigenvalues are real and non-

negative. If λ ≈ 0, the perturbations J (θ∗ +∆θ) are also approximately 0 and the corresponding

parameters are not identifiable at θ∗. We employ Algorithm 11, based on [47], where the determi-

nation of unidentifiable parameters based on negligible eigenvalues λ ofX TX is the basis of the

algorithm.
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Algorithm 11 Parameter Subset Selection [47].

1. Set the threshold η.

2. Set j = 0 and constructX (θ∗).

3. Compute the ordered eigenvalues λ1 ≤λ2 ≤ · · · ≤λ j ofX TX .

4. If λ1 > η, stop. All remaining inputs are identifiable. Elseif λ1 < η, at least one parameter is

not identifiable.

(a) For the eigenvector∆θ1 associated with λ1, identify the component having the largest

magnitude. This corresponds to the least identifiable parameter.

(b) Remove the corresponding column inX , set j = j −1 and repeat 3.

5.6.1 Parameter Subset Selection for MAMBA

For the MAMBA model, we initially performed parameter subset selection for the parameters

θ = [hc hi m , kc r ud , fv ] using data from rods 80, 87, 88, 91 and 94. Here the independent variable is

heat flux and the optimal parameter values determined by the nonlinear least squares method,

least_squares, are θ∗ = [13.3446, 0.0971, 0.8247]. The eigenvalues of the Fisher information ma-

trix F(θ∗) = X T (θ∗)X (θ∗) are [λ1,λ2,λ3] = [0.2796,5.27× 107,5.10× 109] and the corresponding

eigenvectors are

∆θ1 =









1.0000

-10.0010

0.0000









∆θ2 =









0.0000

0.0307

-0.9995









∆θ3 =









0.0010

0.9995

0.0307









.

Based on the heat flux values, the ratio of λ3/λ1 is 1.82×1010. Since the ratio is on the order of 1010,

which we define as the threshold for identifiability, we conclude that hc hi m is weakly identifiable.

Therefore, all three parameters are identifiable, and we proceed with the Bayesian calibration for

the parameter set θ = [hc hi m , kc r ud , fv ].

We next perform parameter subset selection for the parameters θ = [hc hi m , kc r ud , fv ] using the

data from rods 80, 87, 88, 91, 94, 110a-b, 111a-b, 112a-d, 116a-d, and 117a-d. The optimal parameter

values determined by the nonlinear least squares method are θ∗ = [13.3446,0.0971,0.8247]. The

eigenvalues for the Fisher information matrix are [λ1,λ2,λ3] = [2.48, 1.85×108, 4.33×1010] and the

corresponding eigenvectors are
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∆θ1 =









1.0000

-0.0010

0.0000









∆θ2 =









0.0000

0.0216

-0.9998









∆θ3 =









0.0010

0.9998

0.0216









.

Based on the heat flux values, the ratio of λ3/λ1 is 1.75× 1010. Since this ratio is on the order of

1010, we consider hc hi m weakly identifiable. Therefore, all three parameters are identifiable, and we

proceed with the Bayesian calibration for the parameter set θ = [hc hi m , kc r ud , fv ]. It is important to

note that since parameter subset selection is data driven, the identifiability of the parameters may

change with new data.

5.7 MAMBA Mass and Heat Transfer Results

We first performed deterministic calibration using the nonlinear least squares method least_-
squares from the Python package SciPy. We then used the optimal parameter values from the

deterministic calibration as initial values for the DRAM algorithm, and the mean of the posterior

distribution as the point estimate for parameters. Note that we bounded hc hi m between 0 and 100

W/cm2K, kc r ud between 0 and 0.1 W/cmK, and fv between 0.5 and 0.9 to ensure that the parameter

estimates were physically relevant. Here we used the Walt Loop data for rods 80, 87, 88, 91, 94, 110a-b,

111a-b, 112a-d, 116a-d, and 117a-d for the calibration and flat Gaussian priors with mean 0 and

infinite variance for hc hi m , kc r ud , and fv .

5.7.1 Bayesian Calibration for hc hi m and kc r ud

Initially, we calibrated the parameters hc hi m and kc r ud from the MAMBA model equations described

in Section 5.5 to examine the random effects in the data. We performed 3,000 DRAM simulations

with a burn-in period of 500 simulations. We then used the mean of the posterior distribution

as a point estimate for the parameter set. The optimal parameter values from the deterministic

calibration were [hc hi m , kc r ud ] = [11.96,0.0946]. Using these optimal parameter values as initial

values for DRAM, the parameter estimates we obtained were [hc hi m , kc r ud ] = [13.10,0.0917]. We

plot in Figures 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, and 5.11 the measured cladding temperatures from the Walt

Loop data along with the cladding temperatures from the MAMBA mass and heat transfer model

with the calibrated parameter estimates for each thermocouple and each rod. We note that MAMBA

significantly disagrees with the experimental data in regions of high heat flux and high free stream

coolant temperatures. Under these conditions, the highest amount of boiling occurs in the crud

layer. To address this issue, we will improve the chimney boiling heat transfer models in MAMBA in

future work.

97



Figure 5.5 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 80, 87, and 88.

Figure 5.6 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 91 and 94.
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Figure 5.7 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 110a-b.

Figure 5.8 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 111a-b.
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Figure 5.9 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 112a-d.
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Figure 5.10 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 116a-d.
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Figure 5.11 The measured cladding temperature for each thermocouple versus the cladding temperature
from MAMBA with the calibrated parameters for rods 117a-d.

We plot the parameter chains and pairwise plots from the DRAM algorithm in Figure 5.12.

The parameter chains are well-mixed and explore the parameter space adequately, therefore, we

conclude they are converged. We note that the error variance σ2 is updated at each iteration of

the DRAM algorithm. Figure 5.13 shows the measurement error variance parameter chain from

DRAM along with the kernel density estimate forσ2. The estimated error variance is approximately

112.28 which implies that the estimated standard deviation is approximately 10.60. We believe the

estimated standard deviation is reasonable based on the fact that the rods have a variety of crud

thicknesses and coolant compositions, and our model does not incorporate individual effects within

the experiments.
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(a) (b)

Figure 5.12 (a) Parameter chains and (b) pairwise parameter chain plots from the DRAM algorithm for
rods 80, 87, 88, 91, 94, 110a-b, 111a-b, 112a-d, 116a-d, and 117a-d.

Figure 5.13 Parameter chain for the error varianceσ2 from the DRAM algorithm and the corresponding
kernel density estimate for rods 80, 87, 88, 91, 94, 110a-b, 111a-b, 112a-d, 116a-d, and 117a-d.
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5.7.2 Bayesian Calibration for hc hi m , kc r ud and fv

We then calibrated the identifiable set of parameters hc hi m , kc r ud and fv obtained in Section for

the MAMBA model equations described in Section 5.5. The optimal parameter values from the

deterministic calibration were [hc hi m , kc r ud , fv ] = [12.49,0.099,0.81]. We then performed 10,000

DRAM simulations with a burn-in period of 5,000 simulations using the optimal parameter values

as initial values for DRAM. We used the mean of the posterior distribution as a point estimate

for the parameter set. The parameter estimates we obtained from DRAM were [hc hi m , kc r ud , fv ] =

[10.0752, 0.0958, 0.8936]. In Figures 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, and 5.20, we plot the measured

cladding temperatures from the Walt Loop data along with the cladding temperatures from the

MAMBA model with the calibrated parameter estimates for each thermocouple and each rod.
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Figure 5.14 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 80, 87, and 88.
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Figure 5.15 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 91 and 94.
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Figure 5.16 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 110a-b.
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Figure 5.17 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 111a-b.

80 100 120 140 160
Heat Flux (W/cm^2)

620

630

640

650

660

He
at

er
 T

em
pe

ra
tu

re
 (K

)

Rod 112a
Measured - TC 1
Predicted - TC 1
Measured - TC 2
Predicted - TC 2
Measured - TC 3
Predicted - TC 3
Measured - TC 4
Predicted - TC 4

80 100 120 140 160
Heat Flux (W/cm^2)

620

640

660

680

He
at

er
 T

em
pe

ra
tu

re
 (K

)

Rod 112b
Measured - TC 1
Predicted - TC 1
Measured - TC 2
Predicted - TC 2
Measured - TC 3
Predicted - TC 3
Measured - TC 4
Predicted - TC 4

50 60 70 80 90 100
Heat Flux (W/cm^2)

600

620

640

660

He
at

er
 T

em
pe

ra
tu

re
 (K

)

Rod 112c
Measured - TC 1
Predicted - TC 1
Measured - TC 2
Predicted - TC 2
Measured - TC 3
Predicted - TC 3
Measured - TC 4
Predicted - TC 4

50 60 70 80 90 100
Heat Flux (W/cm^2)

620

640

660

680

He
at

er
 T

em
pe

ra
tu

re
 (K

)

Rod 112d
Measured - TC 1
Predicted - TC 1
Measured - TC 2
Predicted - TC 2
Measured - TC 3
Predicted - TC 3
Measured - TC 4
Predicted - TC 4

Figure 5.18 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 112a-d.
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Figure 5.19 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 116a-d.
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Figure 5.20 Measured cladding temperature for each thermocouple versus the cladding temperature from
MAMBA with the calibrated parameters for rods 117a-d.

In Figure 5.21, we plot the parameter chains and pairwise chains from the DRAM algorithm. We

conclude that the parameter chains are converged since they appear to be well-mixed and explore

the parameter space adequately. We plot the measurement error variance parameter chain from

DRAM along with the kernel density estimate forσ2 in Figure 5.22. The mean of the error variance

posterior distribution is approximately 76.0 which implies that the estimated standard deviation is

approximately 8.72. We believe the estimated standard deviation is reasonable given the variability

in the WALT loop experiments. We expect the error variance to be small for some rods and large

for others due to individual effects in the data, and thus, a standard deviation of approximately 9 is

reasonable given the data.
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(a) (b)

(c) (d)

Figure 5.21 Parameter chains for (a) hc hi m (b) kc r ud , and (c) fv and (b) the pairwise parameter chain plots
from the DRAM algorithm for rods 80, 87, 88, 91, 94, 110a-b, 111a-b, 112a-d, 116a-d, and 117a-d.
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Figure 5.22 Parameter chain for the measurement error varianceσ2 from the DRAM algorithm and the
corresponding kernel density estimate for rods 80, 87, 88, 91, 94, 110a-b, 111a-b, 112a-d, 116a-d, and 117a-
d.

5.8 Credible and Prediction Intervals

To quantify the uncertainty in the parameters and the quantity of interest (QoI), we employ credible

and prediction intervals. We define the (1−α)×100% credible interval as that which has a (1−α)×100%

chance of containing the expected parameter [53].

We plot in Figure 5.23, the credible intervals for rods with increasing inlet temperature and

decreasing crud thickness. The crud thickness increases as we go from top to bottom and subcooling

increases as we move from left to right. We observed that the credible intervals are very tight for

rods such as 88 and 111b.
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Figure 5.23 The 50%, 90%, 95%, and 99% credible intervals for rods 80, 88, 110b, 111a-b, 116b-c, and 117a.
The crud thickness increases as we go from top to bottom and subcooling increases as we move from left
to right.

We employ prediction intervals, which propagate the parameter uncertainty through the model

to determine uncertainties for our QoI. Here our QoI is the cladding temperature. We define the

(1−α)× 100% prediction interval for a random response Υχ0
to the model in (5.1) as the pair of

statistics [Υ L (χ),Υ R (χ)] constructed from the random sample χ such that

P (Υ L (χ)≤ Υχ0
≤ Υ R (χ)) = 1−α,

where Υχ0
is a new observation at the point χ0 that is independent of the data used to construct

Υ L (χ) and Υ R (χ) [53]. The (1−α)×100% prediction interval is computed via the equation

h

Υ̂χ0
± tn−p−1,α/2 · σ̂

q

1+χT
0 (X TX )−1χ0

i

, (5.43)
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where Xi j (θ) =
∂ fi (θ)
∂ θ j

is the sensitivity matrix. The computed prediction intervals are shown in

Figure 5.24. We observed that the intervals are very wide. We attribute this to the large measurement

error varianceσ2 = 76.0, which is propagated through the model.
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Figure 5.24 The 95% prediction intervals for rods 80, 88, 110b, 111a-b, 116b-c, and 117a. The crud thick-
ness increases as we go from top to bottom and subcooling increases as we move from left to right.

5.9 Summary

Here we calibrated the heat transfer coefficient, crud thermal conductivity, and chimney vapor frac-

tion parameters for a physical surrogate model and the MAMBA heat and mass transfer model. We

determined a set of identifiable parameters and obtained uncertainty bounds on those parameters

via credible intervals. Additionally, we propagated the parameter uncertainties through the MAMBA

model to quantify the uncertainties in the cladding temperature using prediction intervals. In future
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work, we will introduce a mixed-effects model that incorporates individual effects for the each rod

experiment [51, 60].
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CHAPTER

6

CONCLUSION

In this dissertation, we contributed to the following UQ areas: (i) parameter dimension reduction, (ii)

surrogate model construction, (iii) Bayesian model calibration, and (iv) uncertainty propagation. In

particular, we extended the gradient-free active subspace methods proposed in [34] by introducing

an extended initialization algorithm and calibrated and provided uncertainty bounds for crud

deposition model parameters.

In Chapter 2, we introduced an initialization algorithm which can be coupled with the adaptive

Morris algorithm to construct of active subspaces for applications with high-dimensional input

spaces. For the neutronics examples we tested, the adaptive Morris method coupled with the

initialization algorithm performs comparably with the other available methods, particularly in

moderate-dimensional scenarios, and is significantly more efficient than performing gradient

approximation on the full input space. However, some limitations of the initialization algorithm are

convergence to local maxima rather than global maxima and the randomization of the initial sample

points. The performance of initialized adaptive Morris depends on the choice of the initial points

used to compute the “rough” gradient estimates. If the number of initial points is insufficient or the

initial sample points do not point in important directions, the initialized columns, when coupled

with adaptive Morris, may not produce an accurate gradient approximation or active subspace.

Additionally, if the initial points are not well converged, initialized adaptive Morris may not perform

well.

To address these limitations, we introduced an extended initialization algorithm that guarantees

convergence to the analytic or adjoint gradient in m −1 iterations. As illustrated in the neutronics
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example, Algorithms 6 and 7 perform comparable to one another. We demonstrated that these two

algorithms can be used to compute gradient approximations, which can subsequently be used to

create response surfaces. Additionally, Algorithm 7 converges to the analytic or adjoint gradient

in m − 1 iterations, thus, reducing the number of function evaluations required to compute the

gradient approximation. Using Algorithm 7 and 6, we obtained response surfaces with RMSEs on

the order of 10−3, which is an order of magnitude larger than the other gradient-free active subspace

methods. In future work, we will investigate the decreased accuracy of the response surfaces for

the initialization algorithms in comparison to methods like adaptive Morris. We will also explore

criteria for choosing h , the number of function evaluations per iteration.

We also considered various dimension selection criteria, comparing their advantages and dis-

advantages for the various active subspace methods. We demonstrated that error-based methods,

while potentially useful for the gradient-based and finite-difference Morris algorithms, are not

appropriate for use with the adaptive Morris algorithm due to the rapid decay of the eigenvalues

that results from the termination of the function evaluations after a certain threshold is met. The

gap-based dimensions generally agree between all methods, but tend to have lager RMSE errors in

the resulting response surfaces. By constructing simple multivariate polynomial response surfaces

for each possible dimension and comparing the resulting errors, we can better quantify the dimen-

sion necessary for accuracy in future predictions, depending on a user-specified error threshold.

While we employed gap-based, error-based, and PCA methods for completeness, we found that

the response surface error-based method was best suited for determining the active subspace for

the constructed response surfaces. In future work, we will investigate both a different termination

scheme for the adaptive Morris algorithm as well as an extended initialization algorithm that allows

for better replication of the gradient-based eigenvalue spectrum. This improvement will yield better

comparisons in the PCA and error-based criteria between the gradient-based and gradient-free

methods.

Although we verified our methods through use of a neutronics code that possesses adjoint

capabilities, the algorithms are equally applicable to applications where adjoints are not available,

which is more important and the regime where they will have more impact. For example, in the

thermal-hydraulics component of nuclear reactor simulations, it is common to employ subchan-

nel codes such as COBRA-TF [50] and CFD codes such as Hydra-TH [43], which do not contain

adjoint capabilities. For these applications, gradient-based methods for active subspace will not be

applicable, and so they can benefit from the use of our gradient-free algorithms.

In Chapter 4, we demonstrated the implementation of a Bayesian lasso algorithm using a De-

layed Rejection Adaptive Metropolis (DRAM) algorithm. We verified the DRAM implementation of

Bayesian lasso with other statistically rigorous methods like Gibbs samplers. This algorithm can be

advantageous over Gibbs samplers for problems with highly correlated parameters. In future work,

we will demonstrate this approach for a physical model analyzed for model reduction.
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In Chapter 5, we focused on model calibration and forward propagation of uncertainties in crud

deposition models. We used a surrogate heat transfer model and the Walt Loop data to calibrate

the parameters hc hi m and kc r ud via the DRAM algorithm. We concluded that the surrogate model

was not physically complex enough to quantify the parameters, specifically, for rods without boron

in the coolant mixture. We then employed the MAMBA mass and heat transfer model and Walt

Loop data to determine the set of identifiable parameters θ = [hc hi m , kc r ud , fv ] given the data. After

we determined that all three of the parameters were identifiable, we performed a deterministic

calibration using a nonlinear least squares method. The optimal parameters from the deterministic

calibration were used as initial values for the Bayesian calibration. We determined an optimal set of

parameter values using the DRAM algorithm. We also computed credible and prediction intervals

to quantify the uncertainty in our parameters. Due to the large observation errors, the prediction

intervals are large. For preliminary analysis, the MAMBA development team will use the point

estimates for the parameters we obtained from the Bayesian calibration as initial values and the

credible intervals as the parameter bounds for the full calibration with CIPS cycles.

In future work, the WALT loop data needs to be closely examined via a statistically rigorous outlier

detection study. Some of the data appears to contain significant procedural or equipment failure

errors; e.g., rod 112a-d, which affects the calibration process and uncertainty bounds. Additionally,

the chimney boiling heat transfer models in MAMBA need to be improved in order to address the

model deficiencies in the regions of high flux and high steam coolant temperatures; e.g., rod 88.

We also need to introduce a mixed-effects model [51, 60] to incorporate individual effects from the

experiments or a hierarchical model for the Bayesian calibration in future work.
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APPENDIX

A

DELAYED REJECTION ADAPTIVE

METROPOLIS

The Delayed Adaptive Metropolis (DRAM) algorithm, first introduced by Haario et. al [27], was

developed to efficiently sample posterior distributions for models with highly nonlinear parameter

dependencies and potentially correlated parameters. Traditional Metropolis algorithms employ a

proposal distribution that incorporates aspects of parameter scaling and variability. The adaptive

Metropolis algorithms, like DRAM, employ proposal distributions that include information about

the posterior distribution as candidate parameters are accepted. The adaptive component of the

algorithm allows the proposal covariance matrix to be updated as more information is gained about

the posterior distribution through accepted chain candidates, and the delayed rejection component

induces greater chain mixing by altering the proposal function; i.e., reduce V if the candidate is not

accepted. It is important to note that the modifications from delayed rejection are temporary, but

the modifications of the adaptive metropolis are permanent and based on information learned

about the posterior distribution [53]. We note that since DRAM uses the chain history to update

the proposal function, it is no longer a Markovian process. Diminishing adaptation and bounded

convergence conditions that DRAM must satisfy to establish convergence are provided in [3, 25, 48].

We outline the DRAM algorithm in Algorithms 12. During adaption periods, the updated chain
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covariance matrix at the k t h step is

Vk = sp cov(θ0,θ1, . . . ,θk−1) + εIp. (A.1)

Here sp is a design parameter that depends on the dimension p of the parameter space. A typical

choice is sp = 2.382/p as detailed in [27]. The term εIp ensures that Vk is positive definite. Here ε ≥ 0

and Ip is the p -dimensional identity matrix. In practice, the length of the adaptation interval k0

is often chosen to be 100. Note that k0 is chosen to balance chain mixing and provide sufficient

diversity in points to adequately explore the parameter space by ensuring a nonsingular covariance

matrix in the initial stages of the chain progression [53]. The delayed rejection is summarized in

Algorithm 13.
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Algorithm 12 Delayed Rejection Adaptive Metropolis Algorithm [27, 53].

1. Set design parameters ns ,sp ,σ2
s , k0 and number of chain iterates M .

2. Determine θ0 = arg minθ

∑n
i=1[υi − fi (θ)]2.

3. Set SSθ0 =
∑n

i=1[υi − fi (θ0)]2.

4. Compute initial variance estimate s 2
0 =

SSθ0

n−p for n observations and p parameters.

5. Construct covariance estimate V0 = s 2
0 [X

T (θ0)X (θ0)]−1 and R0 = cholup p e r (V0) where the

sensitivity matrix has components

Xi k (θ
0) =

∂ fi (θ0)
∂ θk

.

for k = 1, . . . , M

(a) Sample zk ∼N (0, 1).

(b) Construct candidate θ∗ = θk−1+RT
k−1zk .

(c) Sample uα ∼U (0, 1).

(d) Compute SSθ∗ =
∑n

i=1[υi − fi (θ∗)]2.

(e) Compute α(θ∗|θk−1) =min(1, e −[SSθ∗−SSθk−1/2s 2
k−1]).

if uα <α,

Set θk = θ∗ and SSθk = SSθ∗ .

else

Use Algorithm 13.

end

(f) Update s 2
k ∼ Inv-gamma(a , b )where a = 0.5(ns +n ) and b = 0.5(nsσ

2
s +SSθk ).

if mod(k , k0) = 1,

Update Vk = sp cov(θ0,θ1, . . . ,θk ) and Rk = cholup p e r (Vk ).

else

Set Vk =Vk−1 and Rk =Rk−1.

end

end
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Algorithm 13 Delayed Rejection of DRAM Algorithm [27, 53].

1. Set the design parameter γ= 1
5 .

2. Sample zk ∼N (0, I ).

3. Construct second-stage candidate θ∗2 = θk−1+γRT
k−1zk .

4. Sample uα2
∼U (0, 1).

5. Compute SSθ∗2 =
∑n

i=1[υi − fi (θ∗2)]2.

6. Compute

α2(θ
∗2|θk−1,θ∗) =min

�

1,
π(θ∗2|y )Ji (θ∗|θ∗2)[1−α(θ∗|θ∗2)]

π(θk−1|y )J1(θ∗|θk−1)[1−α(θ∗|θk−1)]

�

,

where J1(θp |θc ) is the first stage proposal distribution from 6(a)-(b) of Algorithm 12 for the

move from θc to θp .

if uα2
<α2,

Set θk = θ∗2 and SSθk = SSθ∗2 .

else

Set θk = θk−1 and SSθk = SSθk−1 .

end

Note: The choice of γ= 1
5 in Step (1) is useful heuristic, but other values are reasonable. The choice

of γ< 1 ensures that the second-stage proposal function is narrower than the first, increasing the

mixing of the chain.
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APPENDIX

B

DOCKERIZING THE QUESO LIBRARY

AND DAKOTA WITH QUESO

B.1 Docker

Docker is an open platform for developing, shipping, and running applications [20]. It enables users

to separate their applications from your infrastructure by letting them manage their infrastructure

in the same ways they manage their applications. This decoupling of the infrastructure and the

application significantly reduces the time between development and running the application in

production. With Docker, one has the ability to package and run an application in an isolated

environment called a container [20]. One can, as a result, run many containers simultaneously on a

given host.

The two components of a Docker image are an image and a container. An image is a lightweight,

stand-alone, executable package that includes everything needed to run a piece of software, in-

cluding the code, a runtime, libraries, environment variables, and config files [20]. A container is

a runtime instance of an image, which is what the image becomes in memory when it’s executed.

Containers run on the host machine’s kernel, but are isolated from the host environment. The

containers only access the host files and ports they are configured to use. A user can run many
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containers simultaneously on a given host, including virtual machines, since they are lightweight,

isolated, and secure.

A Docker container is defined with a Dockerfile [20]. All files, ports, and other resources one

wishes to access inside the container environment must be specified in the Dockerfile. Once the

Dockerfile is composed, the user builds the image and it is saved to the machine?s local Docker

image registry. The user can then run a Docker container with the specified image in the image

registry, and the container is ready for use. Here we employ Docker to create an environment with

Dakota and the Quantification of Uncertainty for Estimation, Simulation and Optimization (QUESO)

library.

B.2 Dakota with QUESO

Dakota is a multilevel parallel object-oriented framework for design optimization, parameter es-

timation, uncertainty quantification, and sensitivity analysis [1]. For complex physical models,

namely, the MAMBA crud simulation code we discussed in this dissertation, Dakota can be used

to perform uncertainty quantification. Optimization algorithms with gradient and gradient-free

methods are provided in the Dakota toolkit. In this dissertation, we performed the MAMBA model

calibration in Chapter 5 using a Python interface, but Dakota can be employed to perform both

deterministic and Bayesian calibration for the MAMBA model. The Quantification of Uncertainty

for Estimation, Simulation and Optimization (QUESO) library can be coupled with Dakota to run

the DRAM algorithm outlined in Appendix A. QUESO consists of a collection of algorithms and

C++ classes intended for uncertainty quantification, including the solution of statistical inverse

and statistical forward problems, the validation of mathematical models under uncertainty, and

the prediction of quantities of interest from such models along with the quantification of their

uncertainties [45]. It was designed to run over uniprocessor or multiprocessor environments.

One challenge with using Dakota with QUESO is installing the software on non-Linux envi-

ronments. The software typically has to be built from source with the proper third-party libraries

already installed on your machine. This process can become complex very quickly and is dependent

on operating systems and software versions. For Mac environments, specifically, certain compiler

versions can cause the user to have to do major debugging. To address these installation issues, we

dockerized Dakota with QUESO.
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B.3 Dockering Dakota with QUESO

To dockerize Dakota with QUESO, we create a Ubuntu Docker image that contains all of the necessary

third-party libraries and source code files needed to build Dakota with QUESO. The Dockerfile is

shown in Listing B.1. Once the Docker image is built, one can start a Docker container using that

image and run any methods and algorithms from Dakota one needs. Users simply have to install

Docker on their machine, pull or build the Docker image, and run the Docker container using the

image. The instructions and necessary files needed to use the Dakota with QUESO Docker container

are given in [12]. Since Docker is easily installed on any machine, regardless of the environment, this

implementation circumvents issues with third-party libraries and compilers. This implementation

is listed as a contributed resource at Dakota QUESO.

Listing B.1 Dakota QUESO Dockerfile.

FROM ubuntu:latest

LABEL MAINTAINER ="Kayla D. Coleman <kdcolem2@ncsu.edu >"

ARG CMAKE_VERSION ="3.20.0"
ARG OPENMPI_VERSION ="26.0.0"
ARG BOOST_VERSION ="1.68.0"
ARG GSL_VERSION ="2.5"
ARG DAKOTA_VERSION ="6.8.0"
ARG DAKOTA_ROOT ="/tmp/dakota"
ARG TPL_ROOT ="/usr/lib/x86_64 -linux -gnu"

# 1) Install system package dependencies
# 2) Install GCC 7
# 3) Install CMake
# 4) Install OpenMPI
# 4) Install BLAS/LAPACK
# 5) Install Boost
# 6) Install GSL
# 7) Install Dakota with QUESO
# 8) Cleanup
# 9) Add and set user for use by Dakota with QUESO and set work folder

ENV CC "gcc"
ENV CXX "g++"
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ENV MPICC "mpicc"
ENV MPICXX "mpic ++"
ENV FC "gfortran"
ENV DAKOTA_SRC ="${DAKOTA_ROOT }/dakota -${DAKOTA_VERSION }.src"
ENV DAKOTA_BUILD ="${DAKOTA_ROOT }/dakota -${DAKOTA_VERSION }. build"
ENV PATH="${TPL_ROOT }:${DAKOTA_ROOT }/${DAKOTA_VERSION }/bin:$PATH"

RUN apt -get update \
&& apt -get install -y build -essential \

gfortran \
autotools -dev \
curl \
unzip \
git \
vim \
cmake \
openmpi -bin libopenmpi -dev \
libblas -dev liblapack -dev \
libboost -all -dev \
libgsl -dev \

&& cd /tmp \
&& mkdir dakota \
&& cd dakota \
&& curl -O https :// dakota.sandia.gov/sites/default/files/
distributions/public/dakota -6.8-release -public.src.tar.gz \
&& tar -xzf dakota -6.8-release -public.src.tar.gz \
&& ls \
&& mkdir -p ${DAKOTA_BUILD} \
&& cd ${DAKOTA_BUILD} \
&& cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=g++
-DCMAKE_Fortran_COMPILER=gfortran -DCMAKE_C_FLAGS:STRING="-O2"
-DCMAKE_CXX_FLAGS:STRING="-O2" -DCMAKE_Fortran_FLAGS:STRING="-O2"
-DDAKOTA_HAVE_MPI:BOOL=FALSE -DDAKOTA_HAVE_GSL:BOOL=TRUE
-DHAVE_QUESO:BOOL=TRUE -DBoost_INCLUDE_DIR =/usr/include/
-DBOOST_LIBRARYDIR=${TPL_ROOT} -DBoost_NO_BOOST_CMAKE:BOOL=TRUE
-DBoost_NO_SYSTEM_PATHS:BOOL=TRUE
-DCMAKE_INSTALL_PREFIX=${DAKOTA_ROOT }/6.8 ${DAKOTA_SRC}
2>&1 | tee dakota.cmake.log \
&& make -j 2 2>&1 | tee dakota.make.log \
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&& make -j 2 install 2>&1 | tee dakota.install.log \
&& apt -get autoremove -y \
&& rm -rf /${DAKOTA_ROOT }/dakota -6.8-release -public.src.tar.gz \
&& mkdir /dakotaQuesoWorking \
&& ldconfig

#Setup working directory
WORKDIR /dakotaQuesoWorking
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