
ABSTRACT

KRISHNA PRASAD, RAHUL. Learning Actionable Analytics in Software Engineering. (Under
the direction of Tim Menzies.)

Software analytics is routinely used by researchers and industrial practitioners for many

diverse tasks. Large organizations such as Microsoft routinely make practice data-driven

policy development where organizational policies are learned from an extensive analysis

of large datasets. However, despite these successes, there exist some limitations to modern

software analytic tools —

1. Lack of relevant data to perform the analytics, and

2. Lack of insightful analytics.

This thesis attempts to highlight and offer potential solutions to these pressing problems.

A premise with most of the prior work on software data analytics is that there exists data

from which we can learn models. But this premise is not always satisfied. When local data

is scarce, sometimes it is possible to use data collected from other projects. Researchers

achieve this using transfer learning which seeks to transfer knowledge from some source

project and apply it to a target project. Much of the transfer learning methodologies achieve

this by using complex dimensionality transformations. However, these methodologies were

seldom generalizable and needlessly complex. To address this, this thesis offers a very

simple “bellwether” transfer learner. Given N data sets, we find one dataset that which

produces the best predictions on all the other projects. We call this the “bellwether” data

set. We show that these can then be used for all subsequent analytics. We explore the

existence of Bellwethers in a number of domains within software analytics: (a) Code smells

detection; (b) Effort estimation; (c) Issue lifetime estimation; (d) Defect Prediction; and

(e) Optimization of highly configurable systems. In doing so, we found that bellwethers are



ubiquitous and in general outperform other more complex transfer learners.

The second key challenge in data mining in software engineering is the lack of actionable

analytics. Specifically, while there are tools that support discovering likely issues in software

engineering, there is a general lack tools that generate “plans”– specific suggestions on

what to change in order to improve the quality of software. Additionally, textbooks, tools,

subject matter experts, and researchers often disagree on what is the best way to improve

software quality. To address this, this thesis introduces XTREE, a framework that analyzes

historical logs of defects seen previously in the code and generates a set of plans, presented

as useful code changes, to prevent these issues from reoccurring. We discovered that code

modules that are changed in response to XTREE’s recommendations contain significantly

fewer defects than recommendations from previous studies. Further, it was discovered

that the code changes endorsed by XTREE significantly overlaps with the changes actually

undertaken by developers.

The work on the above above issues has served to highlight several areas that warrant

further exploration. First, we believe that we can use “bellwethers” in conjunction with

XTREE to generate actionable plans across projects. This will attempt to generate a unified

software analytics framework that generates actionable analytics by looking within and

across various software projects. Another area that represents a computational bottleneck

is the process of discovering the so-called “Bellwethers”. The current method undertakes a

brute-force approach with an O (N 2) complexity. While this serves as a baseline, we believe

we can achieve faster discovery by seeking better ways to do this.
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CHAPTER

1

INTRODUCTION

Software analytics is a part of data mining that attempts to link data mined from many

different software artifacts to obtain valuable insights so as to inform the decision-making

process throughout a software project’s life-cycle. Software analytics is currently a hot and

promising topic in software engineering research. Over the past decade, a large number of

metrics and models have been proposed for measuring various aspects of software projects

such as complexity, maintainability, readability, and other important aspects of software

quality (e.g., [Hal77; McC76; CK94; BW08]). Researchers and industrial practitioners rou-

tinely make extensive use of software analytics. It has be applied in a myriad different ways.

For example, to estimate how long it would take to integrate the new code [Cze11], where
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Figure 1.1 Software Analytics

bugs are most likely [Ost04; Men07c], or how long it will take to develop this code [Tur11;

Koc12]. In fact, it is now routine for practitioners to treat every planned feature as an “ex-

periment” [Sav16]. In this approach, key performance metrics are carefully monitored and

analyzed to judge each proposed feature. Even simple design decisions such as the color

of a link are chosen by experiments [LV14]. Large organizations like Microsoft routinely

practice data driven policy development where organizational policies are learned from an

extensive analysis of large datasets collected from developers [BZ14; The15].

Although software analytics has yielded some very promising results, the current gener-

ation of software analytics still has some unique challenges that need to be solved:

1. What is to be done when there is not enough data? When a specific project doesn’t

have historical data, how does one go about learning?

2. How can one learn lessons from other similar projects? One way to address the previ-

ous challenge is to use transfer learning. However, how does one choose an appropriate

transfer learner?
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3. Where should one transfer lessons from? Given the exponential growth in the number

of software projects, which project should one transfer lessons from to achieve the best

results?

4. How does one obtain actionable insights? Most modern software analytics tools are

mostly prediction algorithms (e.g. support vector machines, naive bayes, logistic regres-

sion, etc). How does one go from prediction to decision making?

While the first two challenges have been addressed with the use of sophisticated ma-

chine learning techniques such as transfer learning. The last two challenges have yet to be

solved. This thesis attempts to offer tools and techniques to help address these challenges.

While there is a lack of historical data for a project, we can use one of many transfer

learning techniques. However, given the exponential growth in the number of software

projects, there is a major issue of conclusion instability with transfer learning methods

when applied to software engineering. Conclusion instability may be defined as follows:

“The more data we inspect from more projects, the more our conclusions change.”

The problem with conclusion instability is that the lessons transfer from a certain project

may no longer hold when new data arrives. Conclusion instability is very unsettling for

software project managers struggling to find general policies. In order to support managers,

who seek stability in their conclusions, while also allowing new projects to take full benefit of

the data from recent projects, in this research we recommend that we must forgo attempts

to generalize from all data. We believe that a more achievable goal would be to slow the

pace of conclusion change. The approach proposed in this thesis is to declare one project

as the “bellwether”1 which should be used to make conclusions about all other projects.

Note that conclusions are stable for as long as this bellwether continues to be the best

1According to the Oxford English Dictionary, the “bellwether” is the leading sheep of a flock, with a bell on
its neck.
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oracle for that community. In the rest of this thesis, we will demonstrate that regardless of

the sub-domain of software engineering (code smells detection, effort estimation, defect

prediction, or performance optimization), there always exists a bellwether dataset that can

be used to train relatively accurate quality prediction models.

A critical component of software analytics that has become drawn a lot of attention of

late is the need for actionable advice. Such advice would empower software developers and

teams to gain and share insight from their data to make better decisions. Due to the volume

of data, finding these insights typically requires some degree of automation. Lack of such

insights is a common critique against current generation of software analytics. For example,

at the workshop on “Actionable Analytics” in 2015 IEEE conference on Automated Software

Engineering, business users were vocal in their complaints about analytics [8]. “Those tools

tell us what is, ” said one business user, “But they don’t tell us what to do”. Accordingly, in this

thesis we seek new tools that offer guidance on “what to do” within a specific project. The

tool assessed in this thesis is the XTREE planning tool. XTREE employs a cluster+ contrast

approach to planning where it (a) Clusters different parts of the software project based on

a quality measure (e.g. the number of defects); and (b) Reports the contrast sets between

neighboring clusters. Each of these contrast sets represent the difference between these

clusters and they can be interpreted as plans. XTREE uses data from within a software

project to generate plans. But, in several cases local data may not readily available. To

overcome this limitation, we may choose to incorporate our findings from bellwethers to

extend XTREE to use the bellwether projects.
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1.1 Thesis Statement

"Software quality can be improved by generating effective actionable an-

alytics that are stable despite constant change."

1.2 Thesis Contributions

In summary, the key contributions of this work are:

1. Addressing conclusion instability with bellwethers: We show that depending on the

source dataset, there can be large variances in the performance of transfer learner. Fur-

ther, we show that different source datasets can lead to different (and often contradicting)

conclusions. This thesis demonstrates that these issues can be potentially addressed

using the bellwether dataset.

2. Empirical evidence for generality of bellwethers: The more the bellwether effect is

explored, the more we learn about its broad applicability. Originally, we explored this

just in the context of defect prediction, it has now been shown to work also in:

• Code smells detection (specifically God Class and Feature Envy);

• Effort estimation;

• Issue lifetime estimation;

• Defect Prediction; and

• Configuration optimization.

3. Bellwethers as a baseline transfer learner: Prior to bellwethers, the research on transfer

learning was very domain specific,i.e., evidence of it’s effectiveness was only demonstrate

in single domain (e.g., defect prediction). In attempts to generalize transfer learners, we
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discovered that the transfer learning literature lacks a simple baseline to compare and

contrast the various transfer learners.

To address this, we developed a baseline transfer learner called BEETLE (Bellwether

Transfer Learner). To the best of our knowledge, our work was the first to offer a baseline

for transfer learning and to undertake a case study of all the state-of-the-art transfer

learners and validate their usability in domains other than defect prediction with respect

to this baseline. In this thesis, we demonstrate that BEETLE is just as effective as other

state-of-the-art algorithms such as:

• Transfer Component Analysis (referred to henceforth as TCA+);

• Transfer Naive Bayes (hereafter referred to as TNB) [21];

• Value Cognitive Boosting Learner [22];

• Gaussian Processes Modeling; and

• Linear Regression.

4. New kinds of software analytics techniques: Another major component of this research

was generating actionable insights in software analytics. In order to do this, we devel-

oped a novel algorithm call XTREE. Our results have established that planning is quite

successful in producing actions that can reduce the number of defects. We show that

actions recommended with XTREE has a significant overlap with the actions actually

taken by developers in order to reduce defects.

5. Rich replication packages: For all the experiments reported in this thesis, we have made

available several replication packages 2 3.

2https://git.io/fNcYY
3https://git.io/fh149
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CHAPTER

2

BACKGROUND

2.1 Transfer Learning

When there is insufficient data to apply data miners to learn defect predictors, transfer

learning can be used to transfer lessons learned from other source projects S to the target

project T .

Initial experiments with transfer learning offered very pessimistic results. Zimmermann

et al. [Zim09b] tried to port models between two web browsers (Internet Explorer and

Firefox) and found that cross-project prediction was still not consistent: a model built on

Firefox was useful for Explorer, but not vice versa, even though both of them are similar
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applications. Turhan’s initial experimental results were also very negative: given data from

10 projects, training on S = 9 source projects and testing on T = 1 target projects resulted

in alarmingly high false positive rates (60% or more).

Subsequent research realized that data had to be carefully sub-sampled and possibly

transformed before quality predictors from one source are applied to a target project. That

work can be divided two ways:

• Homogeneous vs heterogeneous;

• Similarity vs dimensionality transform.

Homogeneous, heterogeneous transfer learning operates on source and target data

that contain the same, different attribute names (respectively). This thesis focuses on

homogeneous transfer learning, for the following reason. As discussed in the introduction,

we are concerned with an IT manager trying to propose general policies across their IT

organization. Organizations are defined by what they do—which is to say that within one

organization there is some overlap in task, tools, personnel, and development platforms.

This overlap justifies the use of lessons derived from transfer learning.

Hence, all our dataset contain overlapping attributes. In our case these attributes are

the metrics gathered for each of the projects. As evidence for this, the datasets explored in

this work fall into 4 domains; each domain contains so called “communities” of data sets.

Each dataset within a community share the same attributes (see Figure 2.4).

As to other kinds of transfer learning, similarity approaches transfer some subset of

the rows or columns of data from source to target. For example, the Burak filter [Tur09]

builds its training sets by finding the k = 10 nearest code modules in S for every t ∈ T .

However, the Burak filter suffered from the all too common instability problem (here,

whenever the source or target is updated, data miners will learn a new model since different

code modules will satisfy the k = 10 nearest neighbor criteria). Other researchers [KM11;
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Koc15] doubted that a fixed value of k was appropriate for all data. That work recursively bi-

clustered the source data, then pruned the cluster sub-trees with greatest “variance” (where

the “variance” of a sub-tree is the variance of the conclusions in its leaves). This method

combined row selection with row pruning (of nearby rows with large variance). Other

similarity methods [Zha15] combine domain knowledge with automatic processing: e.g.

data is partitioned using engineering judgment before automatic tools cluster the data. To

address variations of software metrics between different projects, the original metric values

were discretized by rank transformation according to similar degree of context factors.

Similarity approaches uses data in its raw form and as highlighted above, it suffers from

instability issues. This prompted research on Dimensionality transform methods. These

methods manipulate the raw source data until it matches the target. In the case of defect

prediction, a “dimension” was one of the static code attributes of Figure 2.5.

An initial attempt on performing transfer learning with Dimensionality transform was

undertaken by Ma et al. [Ma12]with an algorithm called transfer naive Bayes (TNB). This

algorithm used information from all of the suitable attributes in the training data. Based on

the estimated distribution of the target data, this method transferred the source information

to weight instances the training data. The defect prediction model was constructed using

these weighted training data.

Nam et al. [Nam13] originally proposed a transform-based method that used TCA

based dimensionality rotation, expansion, and contraction to align the source dimensions

to the target. They also proposed a new approach called TCA+, which selected suitable

normalization options for TCA.

The above researchers failed to address the imbalance of classes in datasets they studied.

In SE, when a dataset is gathered the samples in them tend to be skewed toward one of the

classes. A systematic literature review on software defect prediction carried out by Hall et
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al. [Hal12] indicated that data imbalance may be connected to poor performance. They

also suggested more studies should be aware of the need to deal with data imbalance. More

importantly, they assert that the performance measures chosen can hide the impact of

imbalanced data on the real performance of classifiers.

An approach proposed by Ryu et al. [Ryu16] showed that using Boosting-SVM combined

with class imbalance learner can be used to address skewed datasets. They showed improved

performance compared to TNB. More recently, in our previous work [Kri16b], we showed

that a very simplistic transfer learner can be developed using the “bellwether" dataset with

Random Forest. We reported highly competitive performance scores.

When there are no overlapping attributes (in heterogeneous transfer learning) Nam et

al. [NK15] found they could dispense with the optimizer in TCA+by combining feature selec-

tion on the source/target following by a Kolmogorov-Smirnov test to find associated subsets

of columns. Other researchers take a similar approach, they prefer instead a canonical-

correlation analysis (CCA) to find the relationships between variables in the source and

target data [Jin15].

Considering all the attempts at transfer learning sampled above, our reading of these

literature suggests a surprising lack of consistency in the choice of datasets, learning meth-

ods, and statistical measures while reporting results of transfer learning. Further, there was

no baseline approach to compare the algorithms against.

2.1.1 Conclusion Instability

As and when new data arrives, there is a sudden and an unpredictable change in conclusions

that are derived from that data source. This uncertainty accompanying a change in data is

termed as conclusion instability. It manifests itself as large variances in conclusions and
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Figure 2.1 Bad smells from different sources. Check marks ( ) denote a bad smell was mentioned.
Numbers or symbolic labels (e.g. "VH") denote a priorization comment (and “?” indicates lack of
consensus). Empty cells denote some bad smell listed in column one that was not found relevant in
other studies. Note: there are many blank cells.

these instabilities usually challenges the validity of the policy decisions made prior to arrival

of new data. In addition to making generating general policies very difficult, it also causes

practitioners to distrust decisions made from software analytics tools [Has17]. In this work,

we define and categorize conclusion instability into two forms: (a) performance instability,
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Figure 2.2 Contradictory conclusions from OO-metrics studies for defect prediction. Studies report
significant (“+”) or irrelevant (“-”) metrics verified by univariate prediction models. Blank entries
indicate that the corresponding metric is not evaluated in that particular study. Colors comment on
the most frequent conclusion of each column. CBO= coupling between objects; RFC= response
for class (#methods executed by arriving messages); LCOM= lack of cohesion (pairs of methods
referencing one instance variable, different definitions of LCOM are aggregated); NOC= number of
children (immediate subclasses); WMC= #methods per class.

and (b) source instability.

(a) Performance Instability: This can be noticed during ranking studies undertaken to pick a

reliable data miner. For instance, many researchers run ranking studies where performance
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scores are collected from many classifiers which are ranked for tasks such as defect predic-

tion [Les08; Hal12; EE08; Men10; Gon08; Rad13; Jia08b; WY13; MK09; Li12; Kho10; Jia09;

Gho15; Jia08a; Tan16; Fu16a]. These rankings are then used to identify the “best” defect

predictor. However, these prediction tasks assume that future events to be predicted will be

near identical to past events. Therefore, given data in the from {xt r a i n , yt r a i n}, prediction

algorithms use this for training in order to form a joint distribution P (X , Y ) = P (Y |X )P (Y )

and estimate the conditional P̂ (Y |X t e s t ). These predictions will be good as long as the data

is a close approximation of the underlying distribution. As the source of the data changes,

the joint distribution P (X , Y ) changes to reflect this new data. This gradual change in the

underlying distribution of training data with the arrival of new data is called data drift. It is

widely accepted that this drift is the leading cause of instability of prediction models [QC09;

Han06; Sto08]. Performance instability can result in large variances in the quality of predic-

tions. Numerous researchers [Fu16a; AM17] have shown that changing only the data and

retaining the same defect predictor can result in statistically significant differences.

(b) Source Instability: This arises due to the constant influx of potential new data sources.

In methods such as transfer learning, where we translate quality predictors learned in one

data set to another, arrival of new data would require changing models all the time as the

transfer learners continually exchange new models to the already existing ones. However,

as demonstrated in subsequent parts of this section, each new data source can produce

completely different and often contradicting conclusions. Identifying a reliable source of

data from all the available options is a pressing issue; more so for methods such as transfer

learning since they place an inherent faith in quality the data source. If a change in data

source can also change the conclusions, then not being able to identify a reliable data

source would limit one from leveraging the full benefits of transfer learning.

Impact of these instabilities can be observed in several domains within software engi-
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neering. The studies explored in the rest this section sample some instances of instability

and its prevalence in the domains of software engineering studied here1. Note the vast

contradictions in conclusions in each of these domains.

2.1.1.1 Code Smells

Research on software refactoring endorses the use of code-smells as a guide for improving

the quality of code as a preventative maintenance. However, as discussed below, a lot of the

research on bad-smells suffers from conclusion instability.

There is much contradictory evidence on whether programmers should take heed of

these guidelines or ignore them. For instance, a systematic literature review conducted by

Tufano et al. [Tuf15] lists dozens of papers that recommend tools for repair and detection of

code smells. On the other hand, several other researchers cast doubt on the value of code

smells and their use as triggers for change [Man04; YM13a; Sjo13].

Further, this contradiction is also frequently seen among domain experts. Researchers

caution that developers’ cognitive biases can lead to misleading assertions that some things

are important when they are not. According to Passos et al. [Pas11], developers often assume

that the lessons they learn from a few past projects are general to all their future projects.

They comment, “past experiences were taken into account without much consideration for

their context” [Pas11]. This warning is echoed by Jørgensen & Gruschke [JG09]. They report

that the supposed software engineering experts seldom use lessons from past projects to

improve their future reasoning and that such poor past advice can be detrimental to new

projects. [JG09].

Other studies have shown some widely-held views are now questionable given new

1Note: Due to relatively recency of the research on estimating lifetime of open issues and comparatively
fewer papers, we omit it from this survey of conclusion instability.
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evidence. Devanbu et al. examined responses from 564 Microsoft software developers from

around the world. They comment programmer beliefs can vary with each project, but do

not necessarily correspond with actual evidence in that project [Dev16].

The above remarks seem to hold true for bad smells. As shown in Figure 2.1, there is a

significant disagreement on which bad smells are important and relevant to a particular

project. In that figure, the first column lists commonly mentioned bad smells and comes

from Fowler’s 1999 text [Fow99]. The other columns show conclusions from other studies

about which bad smells matter most2. From this figure, it is easy to note the lack of con-

sensus among developers, text books, and tools. They all disagree on which bad smells are

important; just because one developer strongly believes in the importance of a bad smell,

it does not mean that the same belief transfers to other developers.

In summary, we seek methods like bellwethers in order to draw stable conclusions. A

particular challenge in each of the study in Figure 2.1 is the lack of consistent data source

over the period of time these studies were undertaken. In such cases, bellwether datasets

can be particularly useful.

2.1.1.2 Defect Prediction

In the area of defect prediction too there are several examples of conclusion instability. As

motivating examples, consider the following two findings: (a) Zimmermann et al. [Zim09a]

showed that when they learned defect predictors from 622 pairs of projects, in only 4%

of pairs, the defect predictors learned from one project pair worked in another. These

contradictory conclusions extend to OO metrics as well; and (b) In our previous work, we

2The developer survey column shows the results of an hour-long whiteboard session with a group of 12
developers from a Washington D.C. web tools development company. Participants worked in a round robin
manner to rank the bad smells they thought were important (and any disagreements were discussed with the
whole group)

18



conducted a large scale systematic literature review [Men11a]. We distilled our findings

into a list of 28 studies. We noted that they offered contradictory conclusions regarding the

effectiveness of OO metrics. These findings are tabulated in Figure 2.2. The figure offers a

troubling prospect for managers of a software project. The only concrete finding they can

derive from this figure is that response for class is often a useful indicator of defects. Each

study makes a clear, but usually different, conclusion regarding the usefulness of other

metrics.

In a study of conclusion instability, Turhan [Tur12] showed that the reason for this

inconsistency is due to dataset drift. That work reported different kinds of data drift within

software engineering data, such as: (1) Source component shift; (2) Domain Shift; (3) Imbal-

anced Data, etc. Further, he noted that all contribute significantly to the issue of conclusion

instability. In our previous work, we offered further evidence to such a drift by demonstrat-

ing that different clusters within the data provided completely different models [Men11a].

Further, the models built from specialized regions within a specific data set sometimes

perform better than those learned across all data. However, new data is constantly arriving,

and finding these specialized regions with new data turns into an arduous task. In such

cases, tools like bellwethers offer a way to draw conclusions from a stable project. As long

as the bellwether project remains unchanged so does the conclusions we derive from that

project.

2.1.1.3 Effort Estimation

As with code smell detection and defect prediction, conclusion instability seems to be an

inherent property of the datasets commonly explored in this area [Men05]. For example,

consider stability tests conducted on Boehm’s COCOMO software effort estimation model

by Menzies et al. [Men05]. There, it was found that only the coefficient on lines of code (loc)
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was stable while the variance in dozens of other coefficients were extremely large. In fact,

in the case of five coefficients, the values even changed from positive to negative across

different samples in a cross-validation study.

Other studies on effort estimation also report very similar findings. Jørgensen [Jor04]

compared model-based to expert-based methods in 15 different studies. That study re-

ported that: five studies favored expert-based methods, five found no difference, and five

favored model-based methods. Similarly, Kitchenham et al. [Kit07a] reviewed seven studies

to check the effect of data imported from other organizations as compared with local data

for building effort models. Of these seven studies, three found that models from other orga-

nizations were not significantly worse than those based on local data, while four found that

they were significantly worse. MacDonell and Shepperd [MS07] also performed a review on

effort estimation models by replicating Kitchenham et al. [Kit07a]. From a total of 10 studies,

two were found to be inconclusive, three supported global models, and five supported local

models. Similarly, Mair and Shepperd [MS05] compared regression to analogy methods for

effort estimation and found conflicting evidence. From a total of 20 empirical studies, (a)

seven recommended regression for building effort estimators; (b) four were indifferent;

and (c) nine favored analogy.

2.2 Planning

1. What exactly do you mean by “planning"?

We distinguish planning from prediction for software quality as follows: Quality prediction

points to the likelihood of defects. Predictors take the form:

o u t = f (i n )
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where in contains many independent features (such as OO metrics) and out contains some

measure of how many defects are present. For software analytics, the function f is learned

via data mining (for static code attributes for instance).

On the other hand, quality planning generates a concrete set of actions that can be taken

(as precautionary measures) to significantly reduce the likelihood of defects occurring in

the future.

For a formal definition of plans, consider a defective test example Z , planners proposes

a plan D to adjust attribute Z j as follows:

∀δ j ∈∆ : Z j =











Z j +δ j if Z j is numeric

δ j otherwise

The above plans are described in terms of a range of numeric values. In this case, they

represent an increase (or decrease) in some of the static code metrics of Figure 2.5. However,

these numeric ranges in and of themselves may not very informative. It would be beneficial

to offer a more detailed report on how to go about implementing these plans. For example,

to (say) simplify a large bug-prone method, it may be useful to suggest to a developer to

reduce its size (e.g., by splitting it across two simpler functions).

2. How to operationalize plans?

In order to implement such plans, developers need some guidance on what to change

in order to achieve the desired effect. There are two ways to generate that guidance. One

way is to is to use a technique proposed by Nayrolles et al. [NHL18] at MSR 2018. In that

approach, we look through the developer’s own history to find old examples where they

have made the kinds of changes recommended by the plan.
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However, this data is not accessible. Therefore, we must seek alternative ways to imple-

ment plans. One way is to is to use a reverse engineering technique popularized in recent

literature. In these techniques, plans, which are in the form of a range numeric range, are

mapped into specific actions that will improve the quality of their designs. There has been

a number of recent research by the SE community [SS07; DB06; Kat02; BA09], including

one of our previous work [Kri17c], that attempt to tackle this very issue. Stroggylos & Spinel-

lis [SS07] studied the impact of CK-metrics to assert if performing reorganization was useful

in reducing bugs and improving software quality, they reported a strong correlation be-

tween these metrics and software quality. Du Bois [DB06] conducted a study that explored

coupling and cohesion metrics and reported similar findings. Elish & Alshayeb [EA11; EA12]

conducted a systematic study to categorize code reorganization procedures in terms of

their measurable effect on software quality attributes. Their studies showed how each

reorganization action would impact several of the CK-metrics.

For example, consider Figure 2.3. Let’s say a planner has recommended the changes

shown in Figure 2.3(a). Then, we use 2.3(b) to look-up possible actions developers may

take, there we see that performing an “extract method” operation may help alleviate certain

defects (this is highlighted in blue ). In 2.3(c) we show a simple example of a class where

the above operation may be performed. In 2.3(d), we demonstrate how a developer may

perform the “extract method”.

3. Why use automatic methods to find quality plans? Why not just use domain knowledge;

e.g. human expert intuition?

Much recent work has documented the wide variety of conflicting opinions among software

developers, even those working within the same project. According to Passos et al. [Pas11],

developers often assume that the lessons they learn from a few past projects are general to
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DIT NOC CBO RFC FOUT WMC NOM LOC LCOM
· · · 4 · 4 4 4 4

(a) Recommendations from some planner. Here a ‘4’ represents an increase, a ‘5’
and a ‘·’ represents no-change.

Action DIT NOC CBO RFC FOUT WMC NOM LOC LCOM
Extract Class 4 5 4 5 5 5 5
Extract Method 4 4 4 4 4
Hide Method
Inline Method 5 5 5 5 5
Inline Temp 5
Remove Setting Method 5 5 5 5 5
Replace Assignment 5
Replace Magic Number 4
Consolidate Conditional 4 4 4 5 4
Reverse Conditional
Encapsulate Field 4 4 4 4
Inline Class 5 4 5 4 4 4 4

(b) A sample of possible actions developers can take. Here a ‘4’ represents an
increase, a ‘5’ represents a decrease, and an empty cell represents no-change.
Taken from [SS07; DB06; Kat02; BA09; EA11; EA12]. The action highlighted in

blue shows an action matching XTREE’s recommendation.

(c) Before ‘extract method’ (d) After ‘extract method’

Figure 2.3 An example of how developers might use planning to reduce software defects.
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all their future projects. They comment, “past experiences were taken into account without

much consideration for their context” [34]. Jorgensen and Gruschke [JG09] offer a similar

warning. They report that the supposed software engineering “gurus” rarely use lessons

from past projects to improve their future reasoning and that such poor past advice can

be detrimental to new projects [JG09]. Other studies have shown some widely-held views

are now questionable given new evidence. Devanbu et al. examined responses from 564

Microsoft software developers from around the world. They comment programmer beliefs

can vary with each project, but do not necessarily correspond with actual evidence in that

project [Dev16].

Given the diversity of opinions seen among humans, it seems wise to explore automatic

oracles for planning quality improvement change.

2.2.1 Planning in Classical AI

In classical AI, planning usually refers to generating a sequence of actions that enables

an agent to achieve a specific goal [RN95]. In an idealized situation, it is assumed that the

possible initial states of the world is known and so are the description of the desired goal

in addition to the set of possible and feasible actions. In such a hypothetical situation,

planning results in generating a set of actions that is guaranteed to enable one to reach a

desired goal. This can be achieved by classical search-based problem solving approaches

or logical planning agents. Such planning tasks now play a significant role in a variety of

demanding applications, ranging from controlling space vehicles and robots to playing the

game of bridge [Gha04].

As discussed in the rest this section, there are many types of planning. We introduce the

premise of those different planning paradigms with respect to classical artificial intelligence.
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2.2.1.1 Classical Planning

A simple abstraction of the planning problem is known as classical planning. Classical

planning assumes that the initial state is fully-observable and any action is deterministic.

Such an assumption enables us to predict the outcome of an action accurately every single

time. Further, plans can be defined as sequences of actions, because it is always known in

advance which actions will be needed [FN71].

Classical Planning is most useful when the problem is not very complex and the simpli-

fying assumptions mentioned above lead to a development of a well-founded model [WJ95].

In the case of complex domains like software engineering, performing a search of plans is

highly inefficient. It becomes very difficult to pick the correct search space, algorithm, and

heuristics for finding these plans [Gha04].

2.2.1.2 Probabilistic Planning

Probabilistic planning tackles a slightly different problem in planning — one where the

outcomes may be random and are partly controlled by the decision maker [Bel57; Alt99;

GHL09]. These kinds of planning problems are usually solved using dynamic programming

and reinforcement learning. The key idea here is to represent the planning problem as

an optimization problem [Gha04]. Planning for such problems are best achieved when

the state-space is small [Gha04]. Additionally, such a planning approach works even with

partial observability, i.e., it works even when the planning agent cannot fully observe

the underlying problem space. Planning over partially observable states is achieved by

maintaining a distribution of probabilities over the possible states and planning based on

these distributions [Kae98].
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2.2.1.3 Preference-based Planning

The preference based planning is an extension of the above planning schemes with a

focus on producing plans that satisfy as many user-defined constraints (preferences) as

possible [SP06]. These preferences as defined by the user are generally not hard constrains,

rather they define the quality of the plan, which increases as more of the preferences are

satisfied. Algorithms that can solve constraint satisfaction problems are well suited to solve

these forms of planning problems. Other popular algorithms include PPLAN [SP06] and

HTN [BM09]. However, existence of a model precludes the use of this planning approach.

This is a major impediment, since for reasons discussed in the following section, not every

domain has a reliable model.

2.3 Target Domains

The rest of this work attempts to discover bellwethers and assesses the performance of

bellwethers as baseline transfer learning method. For this, we explore 4 domains in SE:

code smells, issue lifetime estimation, effort estimation, and defect prediction.

2.3.1 Code Smells

According to Fowler [Fow99], bad smells (a.k.a. code smells) are “a surface indication that

usually corresponds to a deeper problem”. Studies suggest a relationship between code

smells and poor maintainability or defect proneness [YC13; YM13b; Zaz11] and therefore,

smell detection has become an established method to discover source code (or design)

problems to be removed through refactoring steps, with the aim to improve software quality

and maintenance. Consequently, code smells are captured by popular static analysis tools,
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Defect

Community Dataset
# of instances

# metrics Nature
Total Bugs (%)

AEEEM

EQ 325 129 (39.81)

61 Class
JDT 997 206 (20.66)

LC 399 64 (9.26)
ML 1826 245 (13.16)
PDE 1492 209 (13.96)

Relink
Apache 194 98 (50.52)

26 FileSafe 56 22 (39.29)
ZXing 399 118 (29.57)

Apache

Ant 1692 350 (20.69)

20 Class

Ivy 704 119 (16.90)
Camel 2784 562 (20.19)
Poi 1378 707 (51.31)
Jedit 1749 303 (17.32)
Log4j 449 260 (57.91)
Lucene 782 438 (56.01)
Velocity 639 367 (57.43)
Xalan 3320 1806 (54.40)
Xerces 1643 654 (39.81)

Code Smells
Community Dataset

# of instances
# metrics Nature

Samples Smelly (%)

Feature Envy

wct 25 18 (72.0)

83 Method

itext 15 7 (47.0)
hsqldb 12 8 (67.0)
nekohtml 10 3 (30.0)
galleon 10 3 (30.0)
sunflow 9 1 (11.0)
emma 9 3 (33.0)
mvnforum 9 6 (67.0)
jasml 8 4 (50.0)
xmojo 8 2 (25.0)
jhotdraw 8 2 (25.0)

God Class

fitjava 27 2 (7.0)

62 Class

wct 24 15 (63.0)
xerces 17 11 (65.0)
hsqldb 15 13 (87.0)
galleon 14 6 (43.0)
xalan 12 6 (50.0)
itext 12 6 (50.0)
drjava 9 4 (44.0)
mvnforum 9 2 (22.0)
jpf 8 2 (25.0)
freecol 8 7 (88.0)

Effort Estimation
Community Dataset Samples Range (min-max) # metrics

Effort

coc10 95 3.5 - 2673

24
nasa93 93 8.4 - 8211

coc81 63 5.9 - 11400

nasa10 17 320 - 3291.8

cocomo 12 1 - 22

Issue Lifetime
Community Dataset

# of instances
# metrics

Total Closed (%)

camel

1 day

5056

698 (14.0)

18
7 days 437 (9.0)
14 days 148 (3.0)

30 days 167 (3.0)

cloudstack

1 day

1551

658 (42.0)

18
7 days 457 (29.0)
14 days 101 (7.0)

30 days 107 (7.0)

cocoon

1 day

2045

125 (6.0)

18
7 days 92 (4.0)
14 days 32 (2.0)

30 days 45 (2.0)

node

1 day

2045

125 (6.0)

18
7 days 92 (4.0)
14 days 32 (2.0)

30 days 45 (2.0)

deeplearning

1 day

1434

931 (65.0)

18
7 days 214 (15.0)
14 days 76 (5.0)

30 days 72 (5.0)

hadoop

1 day

12191

40 (0.0)

18
7 days 65 (1.0)
14 days 107 (1.0)

30 days 396 (3.0)

hive

1 day

5648

18 (0.0)

18
7 days 22 (0.0)
14 days 58 (1.0)

30 days 178 (3.0)

ofbiz

1 day

6177

1515 (25.0)

18
7 days 1169 (19.0)
14 days 467 (8.0)

30 days 477 (8.0)

qpid

1 day

5475

203 (4.0)

18
7 days 188 (3.0)
14 days 84 (2.0)

30 days 178 (3.0)

Figure 2.4 Datasets from 4 chosen domains.

like PMD3, CheckStyle4, FindBugs5, and SonarQube6. Until recently, most detection tools for

code smells make use of detection rules based on the computation of a set of metrics, e.g.,

3https://github.com/pmd/pmd
4http://checkstyle.sourceforge.net/
5http://findbugs.sourceforge.net/
6http://www.sonarqube.org/
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Size Complexity Cohesion Coupling Encapsulation Inheritance

Label Description Label Description Label Description Label Description Label Description Label Description

LOC Lines Of
Code

CYCLO Cyclomatic
Complex-
ity

LCOM Lack of Co-
hesion

FANOUT/IN Fan Out/In LAA Locality of
Attribute
Accesses

DIT Depth
of Inher-
itance
Tree

LOCNAMM LOC (with-
out ac-
cessor or
mutator)

WMC Weighted
Methods
Count

TCC Tight Class
Cohesion

ATFD Access to
Foreign
Data

NOAM Number of
Accessor
Methods

NOI Number of
Interfaces

NOM No. of
Methods

WMCNAMM Weighted
Methods
Count
(without
accessor or
mutator)

CAM Cohesion
Among
classes

FDP Foreign
Data
Providers

NOPA Number
of Public
Attribute

NOC Number of
Children

NOPK No. of Pack-
ages

AMW Average
Meth-
odsWeight

RFC Response
for a Class

NMO Number of
Methods
Overridden

NOCS No. of
Classes

AMWNAMM Average
Methods
Weight
(without
accessor or
mutator)

CBO Coupling
Between
Objects

NIM Number of
Inherited
Methods

NOMNAMM Number of
Not Acces-
sor or Mu-
tator Meth-
ods

MAXNESTING Max Nest-
ing

CFNAMM Called For-
eign Not
Accessor
or Mutator
Methods

NOII Number
of Imple-
mented
Interfaces

NOA Number of
Attributes

CLNAMM Called
Local Not
Accessor
or Mutator
Methods

CINT Coupling
Intensity

NOP Number
of Parame-
ters

MaMCL Maximum
Message
Chain
Length

NOAV Number of
Accessed
Variables

MeMCL Mean Mes-
sage Chain
Length

ATLD Access to
Local Data

CA/CE/IC Afferent/
Efferent/
Inher-
itance
coupling

NOLV Number of
Local Vari-
able

CM Changing
Methods

WOC Weight Of
Class

CBM Coupling
between
Methods

MAX_CC/AVG_CC Maximum/
Average
McCabe

Figure 2.5 Static code metrics used in defects and code smells data sets.

well-known object-oriented metrics. These metrics are then used to set some thresholds

for the detection of a code smell. But these rules lead to far too many false positives making

it difficult for practitioners to refactor code [Kri16a].
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Commit Comment Issue

nCommitsByActorsT meanCommentSizeT issueCleanedBodyLen

nCommitsByCreator nComments nIssuesByCreator

nCommitsByUniqueActorsT nIssuesByCreatorClosed

nCommitsInProject nIssuesCreatedInProject

nCommitsProjectT nIssuesCreatedInProjectClosed

nIssuesCreatedProjectClosedT

nIssuesCreatedProjectT

Misc. nActors, nLabels, nSubscribedByT

Figure 2.6 Metrics used in issue lifetimes data.
Personnel Product System Other

Label Description Label Description Label Description Label Description

ACAP Analyst Capability CPLX Prod. Complexity DATA Database size DOCU Documentation

APEX Applications Exp. SCED Dedicated Schedule PVOL Platform volatility TOOL Use of software tools

LEXP Language Exp. SITE Multi-side dev. RELY Required Reliability

MODP Modern Prog. Practices TURN turnaround time RUSE Required Reuse

PCAP Programmer Capability STOR % RAM

PLEX Platform Exp. TIME % CPU time

VEXP Virtual Machine Exp. VIRT Machie volatility

PCON Personnel Continuity

Figure 2.7 Metrics used in effort estimation dataset.

Recently, the research community is changing rapidly in terms of defining novel method-

ologies that incorporate additional information to detect code-smells. Much progress has

been made in towards adopting machine learning tools to classify code smells from exam-

ples, easing the build of automatic code smell detectors, thereby providing a better-targeted

detection. Kreimer [Kre05] proposes an adaptive detection to combine known methods

for finding design flaws Large Class and Long Method on the basis of metrics. Khomh et

al. [Kho09] proposed a Bayesian approach to detect occurrences of the Blob antipattern

on open-source programs. Khomh et al. [Kho11] also presented BDTEX, a GQM approach

to build Bayesian Belief Networks from the definitions of antipatterns. Yang et al. [Yan12]

study the judgment of individual users by applying machine learning algorithms on code

clones. These studies were not included in our comparison as the data was not readily

available for us to reuse.

29



More recently, Fontana et al. [Arc16] in their study of several code smells, considered 74

systems for their analysis and validation. They experimented with 16 different machine

learning algorithms. They made available their dataset, which we have adapted for our

applications in this study. These datasets were generated using the Qualitas Corpus (QC)

of systems [Tem10]. The Qualitas corpus is composed of 111 systems written in Java, char-

acterized by different sizes and belonging to different application domains. Fontana et

al. [Arc16] selected a subset of 74 systems for their analysis. The authors computed a large

set of object-oriented metrics belonging to class, method, package, and project level. A

detailed list of metrics and their definitions are available in appendices of [Arc16]. The code

smells repository we use comprises of 22 datasets for two different code smells: Feature

envy and God Class. The God Class code smell class level code smell that refers to classes

that tend to centralize the intelligence of the system. Feature Envy is a method level smell

that tends to use many attributes of other classes (considering also attributes accessed

through accessor methods).

The number of samples in these datasets are particularly small. For our analysis, we

retained only datasets with at least 8 samples so that the transfer learners used here function

reliably. This lead us to a total of 22 datasets shown in Figure 2.4.

2.3.2 Issue Lifetime Estimation

Open source projects use issue tracking systems to enable effective development and main-

tenance of their software systems. Typically, issue tracking systems collect information

about system failures, feature requests, and system improvements. Based on this infor-

mation and actual project planing, developers select the issues to be fixed. Predicting the

time it may take to close an issue has multiple benefits for the developers, managers, and
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stakeholders involved in a software project. Predicting issue lifetime helps software devel-

opers better prioritize work; helps managers effectively allocate resources and improve

consistency of release cycles; and helps project stakeholders understand changes in project

timelines and budgets. It is also useful to be able to predict issue lifetime specifically when

the issue is created. An immediate prediction can be used, for example, to auto-categorize

the issue or send a notification if it is predicted to be an easy fix.

As an initial attempt, Panjer [Pan07] used logistic regression models to classify bugs as

closing in 1.4, 3.4, 7.5, 19.5, 52.5, and 156 days, and greater than 156 days. He was able to

achieve an accuracy of 34.9%. Giger et al. [Gig10] used models constructed with decision

trees to predict for issue lifetimes in Eclipse, Gnome, and Mozilla. They were able obtain a

peak precision of 65% by dividing time into 1, 3, 7, 14, 30 days. Zhang et al. [Zha13]developed

a comprehensive system to predict lifetime of issues. They used a Markov model with a

kNN-based classifier to perform their prediction. More recently, Rees-Jones et al [Rj17]

showed that using Hall’s CFS feature selector and C4.5 decision tree learner a very reliable

prediction of issue lifetime could be made.

Figure 2.4 shows a list of 8 projects used to study issue lifetimes. These projects were

selected by our industrial partners since they use, or extend, software from these projects.

It forms a part of an ongoing study on prediction of issue lifetime by Rees-Jones et al. [Rj17].

The authors note that one issue in preparing their data was a small number of sticky issues.

They define sticky issues as one which was not yet closed at the time of data collection. As

recommended by Rees-Jones et al. [Rj17], we removed these sticky issues from our datasets.

In raw form, the data consisted of sets of JSON files for each repository, each file con-

tained one type of data regarding the software repository (issues, commits, code contrib-

utors, changes to specific files). In order to extract data specific to issue lifetime, we did

similar preprocessing and feature extraction on the raw datasets as suggested by [Rj17].
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2.3.3 Effort Estimation

The nature of effort estimation and the corresponding data is unlike that of other domains.

Firstly, while domains like defect prediction datasets often store several thousand samples

of defective and non-defective samples, effort data is usually smaller with only a few dozen

samples at most. Secondly, unlike defect dataset or code smells, effort is measured using,

say man-hours, which is a continuous variable. These differences requires us to significantly

modify existing transfer learning techniques to accommodate this kind of data.

Transfer learning attempts have been made in defect prediction before albeit with

limited success. Kitchenham et al. [Kit07b] reviewed 7 published transfer studies in effort

estimation. They found that in most cases, transferred data generated worse predictors

than using within-project information. Similarly, Ye et al. [Yan11] report that the tunings

to Boehm’s COCOMO model have changed radically for new data collected in the period

2000 to 2009. Kocaguneli et al. [Koc15] used analogy-based effort estimation with relevancy

filtering using a method called TEAK for studying transfer learning in effort estimation. He

found that it outperforms other approaches such as linear regression, neural networks,

and traditional analogy-based reasoners. Since then, however, newer more sophisticated

transfer learners have been introduced. Krishna et al. [Kri16b] suggest that relevancy fil-

tering (for defect prediction tasks) would never have been necessary in the first place if

researchers had instead hunted for bellwethers. Therefore, in this work, we revisit transfer

learning in effort estimation keeping in mind these changing trends.

For our experiments, we consider effort estimation data expressed in terms of the

COCOMO ontology: 23 attributes describing a software project, as well as aspects of its per-

sonnel, platform, and system features (see Figure 2.7 for details). The data is gathered using

Boehm’s 2000 COCOMO model. The data was made available by Menzies et al. [Men16]who
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show that this model works better than (or just as well as) other models they’ve previously

studied. We use 5 datasets shown in Figure 2.4. Here, COC81 is the original data from 1981

COCOMO book [Boe81b]. This comes from projects dated from 1970 to 1980. NASA93 is

NASA data collected in the early 1990s about software that supported the planning activities

for the International Space Station. The other datasets are NASA10 and COC05 (the latter is

proprietary and cannot be released to the research community). The non-proprietary data

(COC81 and NASA93 and NASA10) are available at http://tiny.cc/07wvjy.

2.3.4 Defect Prediction

Human programmers are clever, but flawed. Coding adds functionality, but also defects,

so software will crash (perhaps at the most awkward or dangerous time) or deliver wrong

functionality. Since programming introduces defects into programs, it is important to

test them before they are used. Testing is expensive. According to Lowry et al. software

assessment budgets are finite while assessment effectiveness increases exponentially with

assessment effort [Low98]. Exponential costs quickly exhaust finite resources, so standard

practice is to apply the best available methods only on code sections that seem most critical.

One such approach is to use defect predictors learned from static code attributes. Given

software described in the attributes of Figures 2.5, 2.6, and 2.7, data miners can learn

where the probability of software defects is highest. These static code attributes can be

automatically collected, even for very large systems [NB05]. Although other methods like

manual code reviews are much more accurate in identifying defects, they take much higher

effort to find a defect and also are relatively slower. For example, depending on the review

methods, 8 to 20 LOC/minute can be inspected and this effort repeats for all members of

the review team, which can be as large as four or six people [Men02]. This is complementary
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to defect prediction techniques. These techniques enable developers to target defect-prone

areas faster, but do not guide developers toward a particular fix. The defect prediction

models are easier to use in that sense that they prioritize both code review and testing

resources (these areas complement each other).

Moreover, defect predictors often find the location of 70% (or more) of the defects

in code [Men07a]. Defect predictors have some level of generality: predictors learned at

NASA [Men07a] have also been found useful elsewhere (e.g. in Turkey [Tos10; Tos09]). The

success of this method in predictors in finding bugs is markedly higher than other currently-

used industrial methods such as manual code reviews. For example, a panel at IEEE Metrics

2002 [Shu02] concluded that manual software reviews can find ≈60% of defects. In another

work, Raffo documents the typical defect detection capability of industrial review methods:

around 50% for full Fagan inspections [Fag76] to 21% for less-structured inspections.

Not only do static code defect predictors perform well compared to manual methods,

they also are competitive with certain automatic methods. A recent study at ICSE’14, Rah-

man et al. [Rah14] compared (a) static code analysis tools FindBugs, Jlint, and Pmd and

(b) static code defect predictors (which they called “statistical defect prediction”) built

using logistic regression. They found no significant differences in the cost-effectiveness of

these approaches. Given this equivalence, it is significant to note that static code defect

prediction can be quickly adapted to new languages by building lightweight parsers that

find information like Figure 2.5. The same is not true for static code analyzers– these need

extensive modification before they can be used on new languages.

For the above reasons, researchers and industrial practitioners use static attributes to

guide software quality predictions. Defect prediction has been favored by most transfer

learning researchers. Further, defect prediction models have been reported at Google [Lew13].

Verification and validation (V&V) textbooks [Rak01] advise using static code complexity
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attributes to decide which modules are worth manual inspections.

The defect dataset we have used come from 18 projects grouped into 3 communities

taken from previous transfer learning studies. The projects measure defects at various

levels of granularity ranging from function-level to file-level. Figure 2.4 summarizes all the

communities of datasets used in our experiments.

For the reasons discussed in §2.1, we explore homogeneous transfer learning using the

attributes shared by a community. That is, this study explores intra-community transfer

learning and not cross-community heterogeneous transfer learning.

The first dataset, AEEEM, was used by [NK15]. This dataset was gathered by D’Amborse

et al. [D’A12], it contains 61 metrics: 17 object-oriented metrics, 5 previous-defect metrics,

5 entropy metrics measuring code change, and 17 churn-of-source code metrics.

The RELINK community data was obtained from work by Wu et al. [Wu11]who used

the Understand tool 7, to measure 26 metrics that calculate code complexity in order to

improve the quality of defect prediction. This data is particularly interesting because the

defect information in it has been manually verified and corrected. It has been widely used

in defect prediction [NK15][Wu11][Bas96b][OA96][Kim11].

In addition to this, we explored two other communities of datasets from the SEACRAFT

repository8. The group of data contains defect measures from several Apache projects. It

was gathered by Jureczko et al. [JM10]. This dataset contains records the number of known

defects for each class using a post-release bug tracking system. The classes are described

in terms of 20 OO metrics, including CK metrics and McCabes complexity metrics. Each

dataset in the Apache community has several versions. There are a total of 38 different

datasets. For more information on this dataset see [Kri16a].

7http://www.scitools.com/products/
8https://zenodo.org/communities/seacraft/
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2.4 Evaluation

2.4.1 Evaluating Transfer Learners

2.4.1.1 Evaluation for Continuous Classes

For the effort estimation data in Figure 2.4, the dependent attribute is development effort,

measured in terms of calendar hours (at 152 hours per month, including development and

management hours). For this, we use general machine learning algorithms as a regressor

instead of a classifier.

To evaluate the quality of the learners used for regression, we make use of Standardized

Accuracy (SA). The use of SA has been endorsed by several researchers in SE [SM12a; Lan16]

Standard Accuracy is computed as below:

S A = 1−
M AR

2
n 2

∑n
i=1

∑ j<i
j=1 |yi − yj |

×100 (2.1)

Where, MAR is the mean of the absolute error for the predictor of interest. E.g. for

software project estimation, the average of the absolute difference between the effort

predicted and the actual effort the project took.

Higher values of SA are considered to be better. Note: Some researchers have endorsed

the use other metrics such as MMRE to measure the quality of regressor in effort estimation.

We have made available a replication package9 with this and other metrics. Interested

readers are encouraged to use these.

9https://goo.gl/jCQ1Le
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2.4.1.2 Evaluation for Discrete Classes

In the context of discrete classes, we define positive and negative classes. With defects,

instances with one or more defects are considered to belong to the “positive class” and

non-defective instances are considered to belong to the “negative class”. Similarly in code

smell detection (smelly samples belong to “positive class”) and in issue lifetime estimation

(closed issues belong to “positive class”). Prediction models are not ideal, they therefore

need to be evaluated in terms of statistical performance measures.

For classification problems we construct a confusion matrix, with this we can obtain sev-

eral performance measures such as: (1) Accuracy: Percentage of correctly classified classes

(both positive and negative); (2) Recall or pd: percentage of the target classes (defective

instances) predicted. The higher the pd the better ; (3) False alarm or pf : percentage of

non-defective instances wrongly identified as defective. Unlike pd, lower the pf implies

better quality; (4) Precision: probability of predicted defects being actually defective. Either

a smaller number of correctly predicted faulty modules or a larger number of erroneously

predicted defect-free modules would result in a low precision.

There are several trade-offs between the metrics described above. There is a trade-off

between recall rate and false alarm rate where attempts to increase recall leads to larger

false alarm, which is undesirable. There is also a trade-off between precision and recall

where increasing precision lowers recall and vice-versa. These measures alone do not

paint a complete picture of the quality of the predictor. Therefore, it is very common to

apply performance metrics that incorporate a combination of these metrics. As a result,

some authors generally resort to using metrics such as F1 score to assess learners [Fu16b;

Kim08; Men07a; Wan16b]. However, there exists a peculiar challenge with using F-measure

that is specific to some software engineering problem – the large imbalance between class
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variables in the datasets commonly studied here. For instance, consider the datasets studied

in this work shown in Figure 2.4. There, a number of datasets have highly skewed samples.

In these cases, several researchers caution against use of common performance metrics

such as precision or F-measure. Menzies et al. [Men07c] in their 2007 paper showed the

negative impact of using these metrics. They caution researchers against the use precision

when assessing their detectors. They recommend other more stable measures especially for

highly skewed data sets. This concern is echoed by several other researchers in SE [Cha03;

KM97; Sha10c]. Kubat & Matwin found that the effect of the negative classes (in our context

this refers to bug-free/smell-free/closed issues) has a profound impact on the outcome

of these metrics. As a remedy, these authors recommend a new evaluation scheme that

combines reliable metrics such as recall (p d ) and false-alarm (p f ).

One such approach that can combine these metrics is to build a Receiver Operating

Characteristic (ROC) curve. ROC curve is a plot of Recall versus False Alarm pairing for

various predictor cut-off values ranging from 0 to 1. The best possible predictor is the one

with an ROC curve that rises as steeply as possible and plateaus at pd=1. Ideally, for each

curve, we can measure the Area Under Curve (AUC), to identify the best training dataset.

Unfortunately, building an ROC is not straight forward in our case. We have used Random

Forest for predicting defects owing to it’s superior performance over several other predic-

tors [Les08]. Note that Random Forest lacks a threshold parameter, since this threshold

parameter is required in order to generate a set of points to plot the ROC curve, Random

Forest is not capable of producing an ROC curve, instead we produce just one point on the

ROC curve. It is therefore not possible to compute AUC.

In a previous work, Ma and Cukic [MC07] have shown that other metrics that measure

the distance from perfect classification can be substituted for AUC in cases where a ROC

curve cannot be generated. Accordingly, we use the the "G-Score" for combining Pd and Pf.
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Several authors [Men07c; Sha10c] have previously shown that such a measure is justifiably

better than other measures when the test samples have imbalanced distribution in terms of

classes. G-Score can by computed by measuring the mean (geometric/harmonic) between

the Probability of True Positives (Pd) and Probability of true negatives (1-Pf). The choice

of using geometric mean or harmonic mean depends on the variance in Pd/Pf values.

Mathematically, it is known that in cases where samples tend to take extreme values (such

as Pd=0 or Pf=1) harmonic mean provides estimates that are much more stable and also

more conservative in it’s estimate compared to geometric mean [Xia99]. Therefore, we

propose the use of G-Score, measured as follows:

G =
2×P d × (1−P f )

1+P d −P f
(2.2)

In this work, for the sake of consistency with other SE literature, we report the measures

of Pd and Pf reported in terms of the G-Score. Also, note that with the formulation in

Equation 2.2, larger G-scores are better.

2.4.2 Evaluating Planners

It can be somewhat difficult to judge the effects of applying plans to software projects.

These plans cannot be assessed just by a rerun of the test suite for three reasons: (1) The

defects were recorded by a post release bug tracking system. It is entirely possible it escaped

detection by the existing test suite; (2) Rewriting test cases to enable coverage of all possible

scenarios presents a significant challenge; and (3) It may take a significant amount of effort

to write new test cases that identify these changes as they are made.

To resolve this problem, SE researchers such as Cheng et al. [CJ10], O’Keefe et al. [OC08;

OC07], Moghadam [Mog11] and Mkaouer et al. [Mka14] use a verification oracle learned
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separately from the primary oracle. This oracles assesses how defective the code is before

and after some code changes. For their oracle, Cheng, O’Keefe, Moghadam and Mkaouer et

al. use the QMOOD quality model [BD02].

A shortcoming of QMOOD is that quality models learned from other projects may

perform poorly when applied to new projects [Men13]. Hence, we eschew older quality

models like QMOOD and propose a verification oracle based on the overlap. between two

sets: (1) The changes that developers made, perhaps in response to the issues raised in a post-

release issue tracking system; and (2) Plans recommended by an automated planning tool

such as XTREE/BELLTREE. Using these two sources of changes, it is possible to compute the

extent to which a developer’s action matches that of the actions recommended by planners.

This is measured using overlap:

Overlap=
|D∩P|
|D∪P|

×100 (2.3)

That is, we measure overlap using the size of the intersections divided by the size of the

union of the changes. HereD represents the changes made by the developers and P repre-

sents the changes recommended by the planner. Accordingly, the larger the intersection

between the changes made by the developers to the changes recommended by the planner,

the greater the overlap.

As an example, consider Figure 5.5; there we have 2 sets of changes: (1) Changes made

by developers (D), and (2) Changes recommended by the planner (P). In each case we

have 3 possible actions for every metric: (1) Make no change (‘·’), (2) Increase (‘+’), and (3)

Decrease (‘−’). The intersection of the changes represents the number of times the actions

taken by the developers is the same as the actions recommended by the planner. This the

above example, the intersection, D∩P= 7, out of a total of D∪P= 9 possible actions. This
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DIT NOC CBO RFC FOUT WMC NOM LOC LCOM

Planner (P) · · · + · + + + +
Developer (D) · · − + − + + + +

O v e r l a p =
|D∩P|
|D∪P|

×100=
7

9
×100= 77.77%

Figure 2.8 A simple example of computing overlap. Here a ‘+’ represents an increase, a ‘−’ represents

a decrease, and a ‘·’ represents no-change. Columns shaded in blue indicate a match between
developer’s change and the recommendation made by a planner.

leads to O v e r l a p = 7
9 ×100= 77.77%.

2.4.3 Statistics

To overcome the inherent randomness introduced by the experiments, we use 30 repeated

runs, each time with a different random number seed (we use 30 since that is the minimum

needed samples to satisfy the central limit theorem). Researchers have endorsed the use of

repeated runs to gather reliable evidence [Vau12]. Thus, we repeat the whole experiment

independently several times to provide evidence that the results are reproducible. The

repeated runs provide us with a sufficiently large sample size (of size 30) to statistically

compare all the datasets.

Each repeated run collects the values of Pd and Pf which are then used to estimate the

G-Score using Equation 2.2. (Note: We refrain from performing a cross validation because

the process tends to mix the samples from training data (the source) and the test data (other

target projects), which defeats the purpose of this study.)

To rank these 30 numbers collected as above, we use the Scott-Knott test recommended

by Mittas and Angelis [MA13]. Scott-Knott is a top-down clustering approach used to rank

different treatments. If that clustering finds an statistically significant splits in data, then
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some statistical test is applied to the two divisions to check if they are statistically significant

different. If so, Scott-Knott recurses into both halves.

To apply Scott-Knott, we sorted a list of l = 40 values of Equation 2.2 values found

in l s = 4 different methods. Then, we split l into sub-lists m , n in order to maximize the

expected value of differences in the observed performances before and after divisions. E.g.

for lists l , m , n of size l s , m s , n s where l =m ∪n :

E (∆) =
m s

l s
a b s (m .µ− l .µ)2+

n s

l s
a b s (n .µ− l .µ)2

We then apply a statistical hypothesis test H to check if m , n are significantly differ-

ent. In our case, the conjunction of bootstrapping and A12 test. Both the techniques are

non-parametric in nature, i.e., they do not make gaussian assumption about the data. As

for hypothesis test, we use a non-parametric bootstrapping test as endorsed by Efron &

Tibshirani [ET93]. Even with statistical significance, it is possible that the difference can be

so small as to be of no practical value. This is known as a “small effect”. To ensure that the

statistical significance is not due to “small effect” we use effect-size tests in conjunction

with hypothesis tests. A popular effect size test used in SE literature is the A12 test. It has

been endorsed by several SE researchers [LO02; PC10; AB11; SM12b; Kam07; Koc13]. It

was first proposed by Vargha and Delany [VD00b]. In our context, given the performance

measure G, the A12 statistics measures the probability that one treatment yields higher

G values than another. If the two algorithms are equivalent, then A12 = 0.5. Likewise if

A12≥ 0.6, then 60% of the times, values of one treatment are significantly greater that the

other. In such a case, it can be claimed that there is significant effect to justify the hypothesis

test H . In our case, we divide the data if both bootstrap sampling and effect size test agree

that a division is statistically significant (with a confidence of 99%) and not a small effect
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(A12≥ 0.6). Then, we recurse on each of these splits to rank G-scores from best to worst.
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CHAPTER

3

BELLWETHERS

3.1 Why use Bellwethers?

A premise of software data analytics is that there exists data from which we can learn models.

When local data is scarce, sometimes it is possible to use data collected from other projects

either at the local site, or other sites. That is, when building software quality predictors, it

might be best to look at more than just the local data. To do this, recent research has been

exploring the problem of transferring data from one project to another for the purposes

of data analytics. These research have focused on two methodological variants of transfer

learning: (a) dimensionality transform based techniques by Nam, Jing et al. [Nam13; NK15;
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Jin15] and (b) the similarity based approaches of Kocaguneli, Peters and Turhan et al. [KM11;

Koc15; Tur09; Pet15]. One problem with transfer learning is conclusion instability which

may be defined as follows:

The more data we inspect from more projects, the more our conclusions change.

The problem with conclusion instability is that the assumptions used to make prior

policy decisions may no longer hold. Conclusion instability in software engineering, specif-

ically in transfer learning, is well documented. For example, Zimmermann et al. [Zim09b]

learned defect predictors from 622 pairs of projects project1, project2. In only 4% of pairs,

predictors from project1 worked on project2. Also, Turhan [Men11b] studied defect pre-

diction results from 28 recent studies, most of which offered widely differing conclusions

about what most influences software defects.

From the perspective of transfer learning, this instability means that learners that rely on

the source of data would also become unreliable. Conclusion instability is very unsettling

for software project managers struggling to find general policies. Hassan [Has17] cautions

that managers lose faith in the results of software analytics if those results keep changing.

Such instability prevents project managers from offering clear guidelines on many issues

including (a) when a certain module should be inspected; (b) when modules should be

refactored; (c) where to focus expensive testing procedures; (d) what return-on-investment

might be expected after purchasing an expensive tool; etc.

How to support those managers, who seek stability in their conclusions, while also

allowing new projects to take full benefit of the data from recent projects? Perhaps if we

cannot generalize from all data, a more achievable goal is to slow the pace of conclusion

change. While it may be a fool’s errand to wait for globally stable SE conclusions, one

approach is to declare one project as the “bellwether”1 which should be used to make

1According to the Oxford English Dictionary, the “bellwether” is the leading sheep of a flock, with a bell on
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conclusions about all other projects. Note that conclusions are stable for as long as this

bellwether continues to be the best oracle for that community. This “bellwether” project

would also act as an excellent source to perform transfer learning.

In this chapter, we first identify a bellwether effect and show that it may be used to

generate stable conclusions. We offer the following definition:

• The bellwether effect states that when a community works on software, then there exists

one exemplary project, called the bellwether, which can define predictors for the others.

From this bellwether effect we show that we may construct a baseline transfer learner

called the BEETLE to benchmark other more complex transfer learners. In other words,

• BEETLE searches for the exemplar bellwether project and constructs a transfer learner

with it. This transfer learner is then used to predict for effects in future data for that

community.

This chapter attempts to make the following empirical, methodological, and pragmatic

contributions. Empirically, the key contribution of this chapter is the discovery that simple

methods can find general conclusions across multiple SE projects. While we cannot show

that this holds for all SE domains, we can report that it has offer satisfactory results on

three out of the four domains that we have studied so far; i.e. code smell detection, effort

estimation, and defect prediction. In one of our domains, issue lifetime estimation, the

evidence supporting the usefulness bellwethers was unsatisfactory. But our results show

that seeking bellwethers may be a simple starting point to begin to reason about software

projects.

Pragmatically, we assert that simple methods should always be preferred to more com-

plex ones– particularly if we hope for those methods to be used widely in the industry.

Other researchers agree with our assertion. In a recent paper, Xu et al. [Xu15a] discuss the

its neck.
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cost of increasing software complexity: as complexity increases users use fewer and fewer

of the available configuration options; i.e. they tend to utilize less and less of the power

of that software. This is relevant to transfer learning since standard methods, other than

bellwethers, come with so many configuration options that even skilled users have trouble

exploiting them.

Methodologically, the simplicity associated with the discovery and the use of bell-

wethers is encouraging for further research in software engineering. Initial experiments

with transfer learning in SE built quality predictors from the union of data taken from mul-

tiple projects. That approach lead to poor results, so researchers turned to relevancy filters

to find what small subset of the data was relevant to the current problem [Tur09] and then

the dimensionality transform methods of Nam, Jing et al were developed. In this chapter,

we demonstrate the use “bellwethers" as a baseline transfer learning method for software

analytics. As described in the next section, bellwethers have all the properties desirable

for a baseline method such as simplicity of implementation and broad applicability. In the

case of transfer learning, such a baseline would have greatly assisted in justifying the need

for increasingly complex methods [Nam13; NK15; Jin15; KM11; Koc15; Tur09; Pet15].

While we cannot claim that such simple baselines are always better (they fail in the case

of issue lifetime estimation), the experiments of this chapter demonstrate that in some

cases other cases (code smell detection and effort estimation) bellwethers can perform

better than more complex algorithms.

3.2 Baselining with Bellwethers

Different domains can require different approaches. According to Wolpert & Macready [WM97],

no single algorithm can ever be best for all problems. They caution that for every class of
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problem where algorithm A performs best, there is some other class of problems where

A will perform poorly. Hence, when commissioning a transfer learner for a new domain,

there is always the need for some experimentation to match the particulars of the domain

to particular transfer learning algorithms.

When conducting such commissioning experiments, it is methodologically useful to

have a baseline method; i.e. an algorithm which can generate floor performance values.

Such baselines let a developer quickly rule out any method that falls “below the floor”.

With this, researchers and industrial practitioners can achieve fast early results, while also

gaining some guidance in all their subsequent experimentation (specifically: “try to beat

the baseline”).

Using baselines for analyzing algorithms has been endorsed by several experienced

researchers. For example, in his textbook on empirical methods for artificial intelligence,

Cohen [Coh95] strongly recommends comparing supposedly sophisticated systems against

simpler alternatives. In the machine learning community, Holte [Hol93] uses the OneR

baseline algorithm as a scout that runs ahead of a more complicated learners as a way to

judge the complexity of up-coming tasks. In the software engineering community, Whigham

et al. [Whi15] recently proposed baseline methods for effort estimation (for other baseline

methods in effort estimation, see Mittas et al. [MA13]). Shepperd and Macdonnel [SM12c]

argue convincingly that measurements are best viewed as ratios compared to measurements

taken from some minimal baseline system. Work on cross-versus within-company cost

estimation has also recommended the use of some very simple baseline (they recommend

regression as their default model) [Kit07b].

In their recent article on baselines in software engineering, Whigham et al. [Whi15]

propose guidelines for designing a baseline implementation that include:

1. Be simple to describe and implement;
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2. Be applicable to a range of models;

3. Be publicly available via a reference implementation and associated environment for

execution;

In addition to this, we suggest that baselines should also:

4. Offer comparable performance to standard methods. While we do not expect a baseline

method to out-perform all state-of-the-art methods, for a baseline to be insightful, it

needs to offer a level of performance that often approaches the state-of-the-art.

We note that the use of bellwether method for transfer learning satisfies all the above

criteria. The bellwether method is very simple in that it just uses the bellwether dataset to

construct a prediction model (without any further complex data manipulation).

As to being applicable to a wide range of domains, in this work we apply the bellwether

method to several sub-domains in SE, i.e., code-smell detection, effort estimation, issue

lifetime estimation, and defect prediction.

As to public availability, a full implementation of bellwethers including all the case

studies presented here (including working implementations of other transfer learning

algorithms and our evaluation methods) are available on-line.

In terms of comparative performance, for each model, we compared the bellwether

method’s performance against the the established state-of-the-art transfer learners re-

ported in the literature. In those comparative results, bellwethers were usually as good, and

sometimes even a little better, than the state-of-the art.

The use of bellwethers benefits practitioners and researchers attempting transfer learn-

ing in several ways:

1. Researchers can use results of bellwethers as the “sanity checker”. Experiments shows

that the use of bellwethers for transfer learning is comparable to, and in some cases

better than, other complex transfer learners. Consequently, when designing new transfer
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learners, researchers can compare their results to bellwether’s as a baseline.

2. Practitioners can also use bellwethers as an “off-the-shelf” transfer learner. For example,

in three out of the four domains studied here (code-smells, issue lifetimes, effort estima-

tion), there are no established transfer learners. In such cases, we show that practitioners

can simply use bellwethers as transfer learners instead of having to develop new transfer

learner (or adapt existing ones from other domains).

3.3 Research Questions

This section lists the questions that will guide our investigation.

RQ-3.1: How prevalent are “Bellwethers”?

Motivation: If bellwethers occur infrequently, we cannot rely on them. Hence, this question

explores how common bellwethers are.

Approach: To answer this question, we explore four SE domains: defect prediction, effort

estimation, issue lifetime estimation, and detection of code smells. Each domain contains

multiple “communities” of datasets. For each domain, we ensured that the datasets were as

diverse as possible. To this end, data was gathered according to the following rules:

• The data has been used in a prior paper. Each of our datasets for defects, code smells,

effort estimation, and issue lifetime estimation has been used previously;

• The communities are quite diverse; e.g. the NASA projects from the effort estimation

datasets are proprietary while the others are open source projects. Similarly, the God

Class is a class level smell and Feature Envy is a method level design smell.

• In addition, where relevant, the projects also vary in their granularity of data description

(in case of defect prediction, we have defects at file, class, or at a function level granularity).
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Results: In a result consistent with bellwethers being prevalent, we find that three out of

these four domains have a bellwether dataset; i.e. a single dataset from which a superior

quality predictor can be generated for the rest of that community.

RQ-3.2: How does the bellwether dataset fare against within-project data?

Motivation: One premise of transfer learning is that using data from other projects are as

useful, or better, than using data from within the same project. This research questions

tests that this premise holds for bellwethers.

Approach: To answer this question, we reflect on datasets with temporal within-project

data. One of our communities in defect prediction (APACHE) comes in multiple versions.

Here, each version is a historical release where version i was written before version j where

j > i . For this community, RQ-3.2 was explored as follows:

• The last version (version N ) of each project was set aside as a hold-out.

• Using an older version (N −1) we find the bellwether dataset.

• A defect predictor was then constructed on the bellwether dataset.

• The predictor was applied to the latest version (version N ).

We compare the above to using the within-project data; i.e. for each project:

• The last version (N ) of that project was set aside as a hold-out;

• The older version (N −1) of that project was then used to train a defect predictor.

• The predictor was then applied to the latest data (N ).

Results: In our experiments, the bellwether predictions proved to be as good or better than,

those generated from the local data. Note that, as of now, this has been verified only in

defect prediction.

51



RQ-3.3: How well do transfer learners perform across different domains?

Motivation: Our reading of the literature is that for homogeneous transfer learning, the

current state of the art is to use TCA+. However, note that this result has only been reported

for defect prediction and only for a limited number of datasets. In our previous work we

reported that Bellwether was better than relevancy based filtering methods. Here we ask if

this is true given newer transfer learning methods and different datasets.

Approach: To answer this question, we compare the “bellwether” method [Kri16b] against

3 other standard transfer learners: (1) TCA+ [Nam13]; (2) Transfer Naive Bayes [Ma12]; and

(3) Value Cognitive Boosting [Ryu16]. In addition we modify these learners appropriately

for different sub-domains under study.

Results: Our simple bellwether method’s predictions were observed to be superior than

those of other transfer learners in two domains: effort estimation and code smell detection.

Bellwether method’s predictions were a close second in defect prediction.

RQ-3.4: How much data is required to find the bellwether dataset?

Motivation: Our proposal to find bellwethers is to compare the performance of pairs of

datasets from different projects in a round robin fashion. However, conclusion instability

(as presented in §2.1.1) is a major issue in SE and the primary cause of such conclusion

instability is the constant influx of new data [Eka09]. Given this, a natural question that

arises from our experimental approach is the amount of data that is required to find the

bellwether dataset given the influx of new data.

Approach: To answer this research question, we again consider datasets with historical

versions of data similar to RQ-3.3. To discover how much bellwether data is required, we

incrementally increase the size of the bellwether dataset. We stop increments when (a) we
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notice no statistical improvement in using additional version data, or (b) we notice that

there is a deterioration of performance scores using additional version data. Specifically,

assuming that the bellwether project contains versions 1, ..., N , we construct a prediction

model with version N and measure the performance scores, then we repeat this by including

versions N , N −1 and so on. With this, we hope to offer some empirical evidence as to how

much data is required to discover the bellwether.

Results: Our experiments show that program managers need not wait very long to find their

bellwethers – when there are multiple versions of the bellwether project, project managers

need to only use the latest version of that project to perform analytics. Another interesting

finding is that in cases with no historical logs, only a few hundred samples usually are

sufficient for creating and testing candidate bellwethers.

RQ-3.5: How effectively do bellwethers mitigate for conclusion instabil-

ity?

Motivation: In the previous research questions, we established the prevalence of bell-

wethers (RQ-3.1), we showed its efficacy in constructing a baseline transfer learner (RQ-3.3),

and we also showed empirically that we can discover bellwethers early in the project’s

life-cycle (RQ-3.4). Since one of the primary motivation for seeking bellwethers is due to

existence of conclusion instability, in this final research question, we ask how one might

use the bellwether effect to mitigate the two sources of instability we identify in §2.1.1: (a)

performance instability, and (b) source instability.

Approach: To answer this question, we take two steps:

• To verify if the bellwether effect can be used to mitigate performance variations, we

reflect on the results of the comparison of various transfer learners (note that, these
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also includes bellwethers as a baseline approach). First, we try to determine if different

sources of data to construct the transfer learners produces variances in the performance.

Then, we determine if the use of bellwethers can address these variances.

• Next, to verify if bellwethers can be used to derive stable lessons in the presence of a

variety of data sources. We determine if using different sources of data can lead to different

conclusions. Then, we determine how the use of bellwethers can offer stable conclusion.

Results: Our experiments show that all the datasets we have explored in the four domains

studied here exhibit both performance instability and source instability. Performance

instability causes large variances in performance scores of transfer learners depending on

source of the data used. By using the bellwether effect, we may identify the bellwether data

set which can then be used as a stable source to construct transfer learners. Further, we

show that transfer learners constructed using the bellwether dataset offer statistically and

significantly greater performance scores compared to other data sources. The existence

of source instability causes different lessons to be derived from different data sources.

Bellwether effect can be used to tackle this by identifying a bellwether dataset from the

available data sources. The bellwether dataset can then be used to learn lessons. As long as

the bellwether dataset remains unchanged, we will (a) obtain the same performance scores

for a transfer learner, and (b) the same conclusions from the bellwether dataset.

3.4 Bellwethers in Software Engineering

Bellwethers offer a simple solution to mitigating conclusion instability. Rather than ex-

ploring all available data for some eternal conclusions in SE, we seek bellwether datasets

that can offer stable solutions over longer stretches of time. When we notice the dataset

failing, we may seek different bellwethers. In addition to this, the ability of bellwethers to
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offer stable conclusions over long periods of time also simplifies another widely explored

problem in SE; i.e., the problem of transfer learning. In this section, we discuss how we may

simplify transfer learning by using bellwethers as a baseline transfer learner.

3.4.1 Bellwether Method

In the above section, we sampled some of the work on transfer learning in software engi-

neering. This rest of this work asks the question “is the complexity of §2.1 really necessary?”

We believe the answer is no. To assert this, we propose a framework that assumes some

software manager has a watching brief over N projects (which we will call the community

“C ”). As part of those duties, they can access issue reports and static code attributes of

the community. Using that data, this manager will apply the a framework described in

Figure 3.1 which comprises of three operators– DISCOVER, TRANSFER, MONITOR.

1. DISCOVER: Using cross-project data within a community, check if that community has

a bellwether dataset.

• For all pairs of data from projects in a community Pi , Pj ∈C ;

• Predict for defects/smells/issue-lifetime/effort in Pj using prediction model from data

taken from Pi ;

• A bellwether exists if one Pi generates the most accurate predictions in a majority of

Pj ∈C .

2. TRANSFER: Using the bellwether, generate prediction models on new project data. That

is, having learned the bellwether on past data, we now apply it to future projects.

3. MONITOR: Go back to step 1 if the performance statistics seen for new projects during

TRANSFER start decreasing. Specifically,

• As new data arrives to the projects in a community ...
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Figure 3.1.A: Discover
Discover the bellwether dataset for a given community. In a community C , for all pairs of
data from projects Pi , Pj ∈ C , do the following: Construct a prediction model with data from
project Pi and predict for the target variable in Pj using this model. Note: The term target
variable refers to defects, code-smells, issue lifetime, or effort, depending on the commu-
nity under consideration. Report a bellwether if one Pi generates the best predictions in a
majority of Pj ∈ C . Note: The quality of prediction is measured using G-Score for defect-
prediction, code smell estimation, and issue-lifetime estimation and by SA for effort estimation.

1 def discover(datasets):
2 "Identify Bellwether Datasets"
3 for data_1, data_2 in datasets:
4 def train(data_1):
5 "Construct quality predictor"
6 return predictor
7 def predict(data_1):
8 "Predict for quality"
9 return predictions

10 def score(data_1, data_2):
11 "Return accuracy of Prediction"
12 return accuracy(train(data_1),\
13 test(data_2))
14
15 "Return data with best prediction score"

Figure 3.1.B: Transfer Using the bellwether, construct a transfer learner.
Construct a transfer learner on the bellwether data. The choice of transfer learners may include
any transfer learner used in the literature. For more details on this, see §2.1. Now, apply it to future
projects.

1 def transfer(datasets):
2 "Transfer Learning with Bellwether Dataset"
3 bellwether = discover(datasets)
4 def learner(data):
5 """
6 Construct Transfer Learner, using:
7 1. TCA+; 2. TNB; 3. VCB; 4. Bellwether method
8 """
9 def apply_learner(datasets, learner):

10 "Apply transfer learner"
11 model = learner(bellwether)
12 for data in datasets:
13 if data != bellwether:
14 train(model)
15 test(data)
16 yield score(model, data)

Figure 3.1.C: Monitor Keep track of the performance of Bellwethers for transfer learning.
If the transfer learner constructed in TRANSFER starts to fail, go back to DISCOVER and update the
bellwether.

1 def transfer(datasets):
2 "Transfer Learning with Bellwether Dataset"
3 def fails(data):
4 "Return True if predictions deteriorate"

Figure 3.1 The Bellwether Framework
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• When we note that the prediction performance of bellwether is statistically poorer

than it was before ...

• Then we can declare that the bellwether has failed2, that is when we would ideally

eschew that bellwether and look for a newer bellwether using the DISCOVER step.

On line 3 in Figure 3.1.A, we just wrap a for-loop around some all pairs of datasets in

a community, i.e, data we try every dataset in a round-robin fashion and report the best

performing dataset as the bellwether. It is important to note that this will not necessarily

lead to a bellwether. Consider a case where all the datasets have very similar performance

scores – in such a case it would not be possible to report any dataset as being the bellwether.

To identify such similarities in performance, we may use statistical methods such as Scott-

Knott tests. If, according to Scott-Knott tests, all the datasets in a community as ranked the

same, then we cannot claim that there is a bellwether dataset in that community. However,

as discussed later on in this work, we note that this was not the case in any of the four

sub-domains we study here. In all cases there is a clear distinction between the best dataset

and the worst dataset.

In addition to this simplicity of Figure 3.1. An additional benefit of this DISCOVER-

TRANSFER-MONITOR methodology is the ability to optionally replace the Bellwether

Method in the TRANSFER stage with any other transfer learner (like TCA+, VCB, TNB, etc.).

2 we refrained from proposing a numerical threshold because this is a subjective measure. Even with a
fixed dataset, it is still subject to vary with several other factors such as the prediction algorithm, the transfer
learner, hyper-parameters of several algorithms used here, etc. We therefore recommend a more conservative
approach to declaring that the bellwether has failed.
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3.5 Experimental Setup

3.5.1 Discovering the bellwether

1. For each community in every sub-domain, we pick a project Pi . We use this as the training

set to construct a quality prediction model.

2. Next, we pick another project Pj /∈ Pi and retain this as a holdout dataset.

3. Then, for every other project Pk where k ∈ 1, . . . , n ; k /∈ {i , j }, that belong to the same

community as {Pi , Pj }, we evaluate the performance of Pi for Pk according to the evalua-

tion strategy discussed in §4.2.7.

4. We repeat steps 1,2, and 3 for all pairs of projects in a community.

This whole process is repeated 30 times, with different random number seeds. Then, we use

the statistical test described in §4.2.8 to rank each project Pi . For every holdout dataset in

step 2 above, if there exists one project that returns consistently high performance scores,

we label that as the bellwether.

3.5.2 Discovering the best transfer learner

1. For each community in every sub-domain, we pick a project Pi as in §3.5.A. We then

use this as the training data to construct the transfer learners (TCA+, TNB, VCB, and

Bellwether Method).

2. For every other project Pj where j ∈ 1, . . . , n ; j /∈ i , that belong to the same community as

Pi , we evaluate the performance of each of the transfer learners and use the evaluation

strategy discussed in §4.2.7 to evaluate their performance.

Similar to above, the above steps are repeated 30 times, with different random number

seeds. Then, we use the statistical test from §4.2.8 to rank each transfer learner.
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Defect

Community Holdout Test Bellwether(s)
G-Score(s)
med iqr

AEEEM

EQ ∀p 6= E Q LC 74 4
JDT ∀p 6= J D T LC 75 3
ML ∀p 6=M L LC 75 3
PDE ∀p 6= P D E LC 75 4

Relink
Apache ∀p 6= Ap a c he Zxing 67 5
Safe ∀p 6= Sa f e Zxing 66 5

Apache

Ant ∀p 6= An t Lucene 66 5
Ivy ∀p 6= I v y Lucene, Poi 64 5
Camel ∀p 6=C a me l Lucene, Poi 69 7
Poi ∀p 6= P o i Lucene, Poi 59 6
Jedit ∀p 6= J e d i t Lucene 66 4
Log4j ∀p 6= Lo g 4 j Lucene, Poi 65 5
Velocity ∀p 6=V e l o c i t y Lucene 67 7
Xalan ∀p 6= X a l a n Lucene, Poi 68 8
Xerces ∀p /∈ X e r c e s Lucene 68 5

Code Smells

Community Holdout Test Bellwether(s)
G-Score(s)
med iqr

Feature
Envy

wct ∀p 6=w c t mvnforum 92 3
itext ∀p 6= i t e x t mvnforum 92 2
hsqldb ∀p 6= h s q l d b mvnforum 91 4
nekohtml ∀p 6= ne k o h t ml mvnforum 89 4
galleon ∀p 6= g a l l e o n mvnforum 90 2
sunflow ∀p 6= s un f l o w mvnforum 90 3
emma ∀p 6= e mma mvnforum 92 1
jasml ∀p 6= j a s ml mvnforum 92 2
xmojo ∀p 6= x mo j o mvnforum 92 1
jhotdraw ∀p 6= j ho t d r a w mvnforum 92 1

God
Class

fitjava ∀p 6= f i t j a v a xerces, xalan 88 3
wct ∀p 6=w c t xerces, xalan 88 3
hsqldb ∀p 6= h s q l d b xerces 87 2
galleon ∀p 6= g a l l e o n xerces, xalan 90 2
xalan ∀p 6= x a l a n xerces 91 2
itext ∀p 6= i t e x t xerces 90 3
drjava ∀p 6= d r j a v a xerces, xalan 88 2
mvnforum ∀p 6=m v n f o r um xerces, xalan 90 3
jpf ∀p 6= j p f xerces, xalan 90 3
freecol ∀p 6= f r e e c o l xerces 90 4

Effort Estimation
Community Holdout Test Bellwether(s)

G-Score(s)
med iqr

Effort

coc10 ∀p 6= c o c 10 cocomo 98 2
nasa93 ∀p 6= na s a 93 cocomo 99 1
coc81 ∀p 6= c o c 81 cocomo 98 2
nasa10 ∀p 6= na s a 10 cocomo 98 3

Issue Lifetime
Community Holdout Test Bellwether(s)

G-Score(s)
med iqr

1 Day

cloudstack ∀p 6= c l o ud s t a c k camel 55 6
cocoon ∀p 6= c o c o o n camel 54 8
node ∀p 6= no d e camel 49 11
dl4j ∀p 6= d l 4 j camel, qpid 55 5
hadoop ∀p 6= ha d o o p camel 57 5
hive ∀p 6= hi v e camel 55 7
ofbiz ∀p 6= o f b i z camel 54 4
qpid ∀p 6= q p i d camel, node 55 7

7 Days

camel ∀p 6= c a me l ofbiz 47 7
cloudstack ∀p 6= c l o ud s t a c k ofbiz 47 8
cocoon ∀p 6= c o c o o n ofbiz 48 7
node ∀p 6= no d e ofbiz 48 8
dl4j ∀p 6= d l 4 j ofbiz 47 8
hadoop ∀p 6= ha d o o p ofbiz 46 9
hive ∀p 6= hi v e ofbiz 46 9
qpid ∀p 6= q p i d ofbiz 47 8

14 Days

camel ∀p 6= c a me l qpid 38 5
cloudstk ∀p 6= c l o ud s t k qpid 38 5
cocoon ∀p 6= c o c o o n qpid 39 6
node ∀p 6= no d e qpid 37 4
dl4j ∀p 6= d l 4 j qpid 37 4
hadoop ∀p 6= ha d o o p qpid 36 6
hive ∀p 6= hi v e qpid 38 6
ofbiz ∀p 6= o f b i z qpid 38 4
qpid ∀p 6= q p i d qpid 39 5

30 Days

camel ∀p 6= c a me l qpid 46 6
cloudstk ∀p 6= c l o ud s t k qpid 48 5
cocoon ∀p 6= c o c o o n qpid 47 5
node ∀p 6= no d e qpid 46 6
dl4j ∀p 6= d l 4 j qpid 46 7
hadoop ∀p 6= ha d o o p qpid 47 4
hive ∀p 6= hi v e qpid 48 4
ofbiz ∀p 6= o f b i z qpid 47 5
qpid ∀p 6= q p i d qpid 46 6

Figure 3.2 Discovering Bellwether datasets with a holdout data. We use the experimental setup
mentioned in §3.5 to discover these bellwethers.

3.5.3 Understanding The Results

In presenting our results for experiments in §3.5, we adopted a convention that includes

tabulated results. The following remarks need to be made regarding our tables:

1. In Figure 3.2, we list the results of performing the experiment in §3.5. The column labeled

“Holdout” represents the holdout dataset. The column labeled “Test” represents the test

data, i.e., all the remaining data in the community except the holdout. The column
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Bellwether Local

(Lucene) Train Test

(G-score) G-Score

Xalan 82 2.6 2.7 56

Ant 68 1.6 1.7 54

Ivy 67 1.4 2 63

Camel 62 1.4 1.6 51

Velocity 57 1.5 1.6 32

Jedit 61 4.2 4.3 77

Log4j 56 1.1 1.2 75

Xerces 58 1.3 1.4 66

Figure 3.3 Bellwether dataset (Lucene) vs. Local Data. Performance scores are G-scores so higher

values are better. Cells highlighted in blue indicate datasets with superior prediction capability.
Out of the eight datasets studied here, we note that in five cases the prediction performance of
bellwether dataset was superior to within-project dataset.

“Bellwether(s)” shows the dataset that was ranked the best from among the test data (and

therefore it is the bellwether dataset). Finally, the column “G-score(s)” is the G-score of

training on the bellwether and testing on the holdout dataset.

2. In Figures 3.4, 3.5, 3.6, and 3.7, we list the results of performing the experiment in

§3.5 where we compare the bellwether method with other transfer learners. In these

figures, the column labeled “source” (the second column) indicates the source from

which a transfer learner is built. The remaining datasets within the community are then

used as target datasets. The numeric values indicate the median performance scores

(Standardized Accuracy in case of effort estimation, G-score in the rest), when model is

constructed with a “target” dataset and tested against all the “source” datasets, and this

processes repeated 30 times for reasons discussed in §5.5.
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Source Bellwether TCA TNB

God Class

xerces 90 75 48

xalan 89 73 39

hsqldb 88 0 0

galleon 87 61 55

wct 81 58 67

drjava 80 58 56

jpf 79 59 65

mvnforum 74 43 57

freecol 69 0 0

fitjava 68 40 0

itext 62 72 30

W/T/L 10/0/1 1/0/10 0/0/11

Source Bellwether TCA TNB

Feature Envy

mvnforum 92 57 61

galleon 84 59 0

hsqldb 81 57 0

jhotdraw 81 35 64

nekohtml 81 52 57

wct 81 47 0

itext 74 66 0

xmojo 74 0 0

emma 70 74 37

jasml 66 79 0

sunflow 47 0 0

W/T/L 10/0/1 1/0/10 0/0/11

Figure 3.4 Code Smells: This figure compares the prediction performance of the bellwether dataset
(xalan,mvnforum) against other datasets (other rows). Bellwether Method against Transfer Learners
(columns) for detecting code smells. The numerical value seen here are the median G-scores from
Equation 2 over 30 repeats where one dataset is used as a source and others are used as targets
in a round-robin fashion. Higher values are better and cells highlighted in gray produce the best
Scott-Knott ranks. The last row in each community indicate Win/Tie/Loss(W/T/L). The bellwether
Method is the overall best.

3.6 Experimental Results

RQ-3.1: How prevalent is the “Bellwether Effect”?

The bellwether effect points to an exemplar dataset to construct quality predictors from.

Ideally, given an adequate transfer learner, such a dataset should produce reasonably high

performance scores. Figure 3.2 documents our findings. We use the setup described in §3.5

to discover bellwethers. It is immediately noticeable that for each community there is at

least one dataset that provides consistently better predictions when compared to other

datasets. For example:

1. Code Smells datasets: Here we have two datasets which are frequently ranked high: Xerces

and Xalan. But note that Xerces is ranked the best in all the cases. Thus, this would be a
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Source Bellwether TCA+ TNB VCB

1 Day

camel 17 2 55 10

node 44 24 55 17

ofbiz 29 14 53 8

qpid 44 34 49 19

deeplearning 51 42 42 15

cocoon 7 6 34 13

cloudstack 55 32 32 11

hive 11 1 22 23

hadoop 17 0 10 19

W/T/L 2/0/7 0/0/9 7/0/2 2/0/7

7 Days

ofbiz 17 3 49 11

camel 34 6 47 20

cloudstack 8 27 38 7

qpid 7 16 38 20

node 15 33 36 13

deeplearning 15 20 29 10

cocoon 0 3 22 16

hadoop 23 0 18 19

hive 3 0 7 14

W/T/L 2/0/7 0/0/9 7/0/2 2/0/7

Source Bellwether TCA+ TNB VCB

14 Days

qpid 0 0 39 6

cloudstack 8 8 36 8

hadoop 0 0 31 22

deeplearning 4 6 30 17

camel 1 6 29 18

cocoon 0 0 19 8

node 5 4 16 4

ofbiz 2 2 7 12

hive 0 0 0 14

W/T/L 0/0/9 0/0/9 7/0/2 2/0/7

30 Days

qpid 1 5 47 17

cloudstack 1 13 38 19

node 2 10 32 16

camel 1 1 30 17

deeplearning 1 2 29 14

cocoon 2 1 24 12

ofbiz 4 5 13 5

hadoop 0 0 7 2

hive 16 2 6 9

W/T/L 1/0/8 0/0/9 8/0/1 0/0/9

Figure 3.5 Issue Lifetime: This figure compares the prediction performance of the bellwether dataset
(qpid) against other datasets (rows) and various transfer learners (columns) for estimating issue
lifetime. The numerical value seen here are the median G-scores from Equation 2 over 30 repeats
where one dataset is used as a source and others are used as targets in a round-robin fashion. Higher
values are better and cells highlighted in gray produce the best Scott-Knott ranks. The last row in
each community indicate Win/Tie/Loss(W/T/L). TNB has the overall best Win/Tie/Loss ratio.

bellwether dataset for predicting for the existence of God Classes; this was followed by

hsqldb with a G-score of 88%. Additionally, when Xalan or Xerces were absent in Feature

Envy, mvnforum was a bellwether with a G-score of 92%.

2. Effort Estimation: When performing effort estimation, we found that cocomo was the

bellwether with remarkably high Standardized Accuracy scores of 98%.

3. Defect datasets: In the case of defect prediction, Jureczko’s bellwether is Lucene (with a G-

Score of 69%); AEEEM’s bellwether is LC (with a G-Score of 75%); and Relink’s bellwether

is ZXing (with a G-Score of 68%).

4. Issue Lifetime: Finally when predicting for lifetime of issues, we discovered the following
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Source Bellwether TCA+ TNB VCB

Apache

Lucene 63 69 57 64

Xalan 57 64 59 62

Camel 60 63 59 44

Velocity 58 63 51 63

Ivy 60 62 61 48

Log4j 60 62 58 62

Xerces 57 54 58 65

Ant 61 52 45 55

Jedit 58 43 57 49

W/T/L 2/0/7 6/0/3 0/0/9 1/2/06

ReLink

Zxing 68 67 53 64

Safe 38 34 36 31

Apache 31 31 32 31

W/T/L 0/1/1 0/1/1 1/0/2 0/1/2

LC 75 75 73 61

ML 73 73 67 51

PDE 70 71 60 57

JDT 63 64 68 53

EQ 59 61 59 57

AEEEM

W/T/L 0/2/3 2/2/1 1/0/4 0/0/5

Figure 3.6 Defect Datasets: This figure compares the prediction performance of the bellwether
dataset (Lucene,Zxing,LC) against other datasets (other rows). Bellwether Method against Transfer
Learners (columns) for detecting defects. The numerical value seen here are the median G-scores
from Equation 2 over 30 repeats where one dataset is used as a source and others are used as targets
in a round-robin fashion. Higher values are better and cells highlighted in gray produce the best
Scott-Knott ranks. The last row in each community indicate Win/Tie/Loss(W/T/L). TCA+ is the
overall best transfer learner.

bellwethers: camel for close time of 1 day with G-Scores of around 55%, ofbiz for close

time of 7 days with a G-score of around 47%, qpid for 14 days and 30 days with G-score

of around 38%, and 47% s respectively.

Note that in the case of issue lifetime estimation, the G-Scores are particularly low. Here

recommend that practitioners monitor the performance of bellwethers and eschew current

ones in favor of other better bellwether datasets.

In summary, in three out of the four domains studied here, there was a clear bellwether
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Source Bellwether TCA TNB

cocomo 98 90 90

nasa93 93 85 35

nasa10 90 53 65

coc81 83 85 60

coc10 55 75 73

FPA

W/T/L 3/0/2 2/0/3 0/0/5

Figure 3.7 Effort Estimation: This figure compares the performance of the bellwether dataset (co-
como) against other datasets (rows) and Transfer Learners (columns) for estimating effort. The
numerical value seen are the median Standardized Accuracy scores from Equation 3 over 40 repeats.
Bellwether Method has the best Win/Tie/Loss ratio.

Lucene 2.4 Lucene 2.4, 2.2 Lucene 2.4, 2.2, 2.0

G (mean) G (iqr) G (mean) G (iqr) G (mean) G (iqr)

Xalan 83 3 82 3 84 3

Poi 73 5 71 4 72 3

Ivy 69 3 66 2 69 2

Ant 67 2 68 1 70 1

Jedit 62 4 63 3 62 3

Xerces 56 9 52 5 58 5

Velocity 55 4 52 4 55 3

Camel 52 2 54 2 53 2

Log4j 52 6 48 6 50 8

Lucene 2.4 Lucene 2.4, 2.2 Lucene 2.4, 2.2, 2.0

Samples 341 587 782

Defect % 59 59 55

Figure 3.8 Experiments with incremental discovery of bellwethers. Note that the latest version of
lucene (lucene-2.4) has statistically similar performance to using the other older versions of lucene.

dataset for every community. In the case of issue lifetimes, although there was a bellwether,

the performances were particular low. Note that this may/may not hold true for other

sub-domains of SE. The study on these other domains are beyond the scope of this work

but what we can say now is:
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Feature Ranks

Project 1st 2nd 3rd 4th 5th

Apache

ant rfc loc cam ce cbo

lucene loc cbo amc ce rfc

jedit loc rfc amc lcom avg_cc

xerces cbo loc cam rfc ca

xalan loc amc cbo lcom3 rfc

camel ca mfa cbo loc amc

velocity mfa cbo cam loc rfc

poi loc ce lcom cbm rfc

log4j wmc cbo rfc amc loc

ivy loc rfc cam ce amc

AEEEM

JDT ce wmc nbugs lwmc cle

PDE ntb cwe lloc ce cle

EQ cee loc cle ce cbo

LC cwe nbugs ce cle lloc

ML fanOut CvsLinEntropy loc lloc npm

Relink

Apache #LineCodeExe #Line #LineCode RatioCommentToCode AvgEssential

Safe #Stmt SumCyclomaticStrict #LineCode #StmtDecl #LineCodeExe

Zxing #LineCodeDecl #LineCode AvgLine #Line #StmtDecl

Figure 3.9 An example of source instability in defect datasets studied here. The rows highlighted
in gray indicate the bellwether dataset. Note: Space limitations prohibit showing these for the
other communities. Interested readers are encouraged to use our replication package to see more
examples of source instability in other communities.

Result: Bellwethers are common in several domains of software engineering studied

here. ie., in defect prediction, effort estimation, and code-smell detection.

RQ-3.2: How does the bellwether dataset fare against within-project data?

Having established in RQ-3.1 that bellwethers are prevalent in the sub-domains studied

here. In Figure 3.3, we compare the predictors built on within-project data against those

built with a bellwether. For this question, we only used data from the Apache community

since it has releases ordered historically (which is required to test older data against newer
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data). Since other sub-domains did not have historically data similar to Apache, we were

unable to use them for this research question. For the Apache community, the bellwether

dataset was Lucene.

As seen in Figure 3.3, the prediction scores with the bellwether is very encouraging in

case of the Apache datasets. In 5 out of 8 cases (An t , C a me l , I v y , Xalan, and V e l o c i t y ),

defect prediction models constructed with Lucene as the bellwether performed better than

within-project data. In 3 out of 8 cases (J e d i t , Xerces, and Lo g 4 j ), the performance scores

of bellwether data were statistically worse than within-project data. Note again that this is

true in only one out of our the four domains studied, i.e., defect prediction. Therefore, the

following answer to the this research question is limited this domain.

Result: For projects in the Apache Community that were evaluated with the same quality

metrics, training a quality prediction model with the Bellwether is better than using

within-project data in majority of the cases.

RQ-3.3: How well do transfer learners perform across different domains?

Figures 3.4, 3.5, 3.6, 3.7 show the results of transferring data between different projects in

a community for code smell detection, issue lifetime estimation, defect prediction, and

effort estimation.

Note that of the three transfer learners studied here, value cognitive boosting (VCB) has

some methodological constrains that prevents us from translating it to all the domains.

VCB was initially designed for defect prediction. To enable it to work efficiently, the authors

propose the use of under-sampling techniques to complement transfer learning. This

under-sampling required that the datasets have discrete class variables (#d e f e c t s ) and

that the datasets are sufficiently large. Two of the domains considered in this work do
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not satisfy these constraints. We could not use VCB in code smell detection because our

datasets had small sample size (see Figure 2.4) and therefore under-sampling could not be

performed. We could not use VCB in effort estimation either because the class variable was

a continuous in nature. Other transfer learners did not have these constraints, therefore we

were able to translate them to all the domains relatively easily.

These results are expressed in terms of win/tie/loss (W/T/L) ratios:

1. Code Smells dataset: From Figure 3.4 we note that the baseline transfer learner con-

structed using the bellwether dataset outperforms the other two approaches with a

W/T/L of 10/0/1 in both cases.

2. Issue lifetime dataset: From Figure 3.5, we see that, in this case, TNB outperforms the

other three methods. We note a W/T/L ratio for TNB at 7/0/2. The baseline approach

has W/T/L of 2/0/7 (for 1 and 7 days), 1/0/8 (for 14 days), and 0/0/9 (30 days).

3. Defects dataset: In the case of Figure 3.6, we note that TCA+was generally better than

the other three methods with an overall W/T/L ratio of 8/3/5. The was followed by the

baseline transfer learner with a W/T/L ratio of 2/3/11. Note that this behavior of TCA+

corroborates with previous findings by other researchers [Nam13].

4. Effort datasets: In the case of effort estimation, our results are tabulated in Figure 3.7. In

this case, the baseline transfer learner once again outperforms the other two methods

with a W/T/L ratio of 3/0/2.

The key point from the above is that no transfer learning method is best in all domains

(though we would boast that our bellwether method works best more often than the other

transfer learners). Hence, when faced with a new community, software analysts will have

to explore multiple transfer learning methods. In that context, it is very useful to have an

ordering of methods such that simpler baseline methods are run first before more complex

approaches. Note that:
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• When such an ordering of methods is available then if the simpler methods achieve

acceptable levels of performance, an analyst might decide to stop explore more complex

methods.

• We would argue that bellwethers fall very early in that ordering; i.e. bellwethers should

be the first simplest transfer learning method tried before other approaches.

That is, although we can’t endorse a transfer learner in general, we can offer the bellwether

method as a baseline transfer learner which can be used to benchmark other complex

transfer learners and seek newer transfer learners that can outperform this baseline. Hence,

our answer to this question is:

Result: There is no universal best transfer learner that works across multiple domains.

Simpler baseline methods like bellwethers show comparable performances in several

domains.

RQ-3.4: How much data is required to find the bellwether dataset?

One of our defect dataset allows for a special kind of analysis – the the Apache community

(see Figure 2.4) in the defect datasets has data available as historical versions. Using this

dataset, we performed an empirical study to establish the required amount of bellwether

data to make reliable predictions. We conducted experiments by incrementally updating the

versions of the bellwether dataset until we find no significant increase in performance, i.e.,

starting from version N (the latest version) we construct a prediction model and measure

the performance using G-Score. Next, we include an older version N −1 to and construct a

prediction model to measure the performance. This process is repeated by incrementally

growing the size of the bellwether data by including older versions of the bellwether project.

With this, the following empirical observations can be made:
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• Figure 3.8 documents the results of this experiment. As previously mentioned, we used

the defect datasets from the Apache community in Figure 2.4. In RQ-3.1, it was found

the Lucene was the bellwether dataset for that community. In experimenting with differ-

ent versions of Lucene, we found that using only the latest version of Lucene produced

statistically similar results to including the older versions of the data. Also, note that we

required only 341 samples to achieve good G-scores.

• In cases where datasets were not available in the form of past versions, we observed that

the size of the bellwether dataset is very small. For instance, consider the code-smells

dataset, the bellwether datasets had no more than 12 samples. Similarly, in the case of

effort estimation, the bellwether dataset had only 12 samples.

Result: Not much data is required to find bellwether dataset. In the case of defect predic-

tion, bellwethers can be found by analyzing only the latest version of the project. Even

in domains which lack data in the form if historical versions, we were able to discover

bellwethers with as few as 25 samples.

RQ-3.5: How effectively do bellwethers mitigate for conclusion instabil-

ity?

In §2.1.1, we discussed two sources of conclusion instability, namely performance instability

and source instability. We can use the bellwether effect to mitigate these two instabilities as

follows:

1. Performance instability causes data mining tools such as prediction algorithms to offer

unreliable results (their performance depends on the data source). To address this issue,

in this paper, we propose the use of the bellwether effect. This effect can be used to

discover the bellwether data and we can use this data set as a reliable source to construct
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prediction models. Figures 3.4, 3.5, 3.6, and 3.7 reveal that the bellwether data set can be

discovered in all the four domains we have studied here. Additionally, the performance

of an appropriate transfer learner (as identified in RQ-3.3) with the bellwether dataset is

statistically and significantly better than using other datasets. As long as the bellwether

dataset remains unchanged, so will the performance of data mining tools such as transfer

learners.

2. Source instability causes vastly different and often contradicting conclusions to be

derived from a data source. This sort of instability is very prevalent in several domains of

software engineering. An example of source instability in the case of defect prediction3

is shown in Figure 3.9. This figure shows the rankings of top 5 features that contributed

to the construction of the transfer learner (TCA+) for defect prediction tasks. It can be

noted that, with every data source, the feature rankings a very different. For instance, if

ant was used to construct TCA+, one may conclude that rfc (response for class) is the

most important feature, but if TCA+was constructed using lucene, then we would find

that loc is the most important feature (rfc is only the 5th most important feature). This

sort of instability can be addressed by identifying a reliable data source to construct a

transfer learner. The bellwether dataset is one such example of a stable data source. As

long as the bellwether data is reliable (which can be established using the MONITOR

step of Figure 3.1) and the bellwether data remains unchanged, so will the conclusions

derived from it.

In summary, we may answer this research question as follows:

3Space limitations do not permit us to show these for the other three domains. As a result, we have made
available a replication package with instructions to replicate these for all the other domains.
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Result: The Bellwether Effect can be used to mitigate conclusion instability because as

long as the bellwether dataset remains unchanged, we can (a) obtain consistent perfor-

mance for a transfer learner, and (b) consistent conclusions from the bellwether dataset.

3.7 Discussion

When reflecting on the findings of this work, there may be four additional questions that

arise. These are discussed below:

1. Can bellwethers mitigate conclusion instability permanently? No- and we should not

expect them to. The aim of bellwethers is to slow, but do not necessarily stop, the

pace of new ideas in software engineering (e.g. as in the paper, new quality prediction

models). Sometimes, new ideas are essential. Software engineering is a very dynamic

field with a high churn in techniques, platforms, developers and tasks. In such a dynamic

environment it is important to change with the times. That said, changing more than

what is necessary is not desirable– hence this work.

2. How to detect when bellwether datasets need updating? The conclusion stability offered

by bellwether datasets only lasts as long as the bellwether dataset remains useful. Hence,

the bellwether dataset’s performance must always be monitored and, if that performance

starts to dip, then seek a new bellwether dataset.

3. What happens if a set of data has no useful bellwether dataset? In that case, there are

numerous standard transfer learning methods that could be used to import lessons

learned from other data [KM11; Koc15; He13; Tur09; Pet15; Nam13; NK15; Jin15]. That

said, the result here is that all the communities of data explored by this paper had useful

bellwether datasets. Hence, we would recommend trying the bellwether method before

moving on to more complex methods.
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3.8 Summary

In this chapter, we have undertaken a detailed study of transfer learners. Our results show

that regardless of the sub-domain of software engineering (code smells, effort, defects or

issue lifetimes) or granularity of data (file, class, or method), there exists a bellwether dataset

that can be used to train relatively accurate quality prediction models and these bellwethers

do not require elaborate data mining methods to discover (just a for-loop around the data

sets) and can be found very early in a project’s life cycle.

We show that bellwether method is a simple baseline for transfer learning. We note that

this baseline approach is of much significance to the transfer learning community since

previous results on transfer learning do not translate well when applied to domains other

than the ones they were designed for. In such cases, bellwethers can be a useful tool to

perform accurate and more importantly, stable transfer. The baseline performance offered

by the bellwether method would be especially useful for researchers attempting to develop

better transfer learners for different domains in software engineering. Further, bellwethers

satisfy all the criteria of a baseline method, introduced in §3.2; i.e., they are simple to code

and are applicable to a wide range of domains.

Hence, from a pragmatic engineering perspective there are two main reasons to use

bellwethers: (a) they slow down the pace of conclusion change; and (b) they can be use to

construct a simple baseline transfer learner with comparable performance to the state-of-

the-art.

Finally, we remark that much of the prior work on homogeneous transfer learning,

including some of the authors own papers, may have needless complicated the homoge-

neous transfer learning process. We strongly recommend that when building increasingly

complex automatic methods, researchers should pause and compare their supposedly

72



more sophisticated method against simpler alternatives. Going forward from this paper,

we would recommend that the transfer learning community uses bellwethers as a baseline

method against which they can test more complex methods.
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CHAPTER

4

DISCOVERING BELLWETHERS FASTER

In the preceding chapter, we demonstrated the prevalence of bellwethers. Specifically, we

showed that bellwethers appear in domains such as defect prediction, effort estimation,

detection of code smells, and in estimation of issue lifetimes. However, these datasets we

only experimental in that they exemplified real world data only in the nature of the data

and not in the scale. For instance, the largest community of defect datasets (Apache) had

only 10 projects. Further, the largest project in the Apache community was Xalan with 3000

rows of data over 3 releases. These sizes do not represent real world situations, where it is

commonplace to analyze several hundered projects [Kri18; Agr18; Rah18]. Additionally, in

software engineering domains such as configuration optimization each dataset can poten-
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tially be combinatorially large and gathering additional data points can be prohibitively

expensive.

Therefore, if one wishes to leverage the bellwether effect, an important problem to

address then, to make the usage of bellwethers practicable, is to first ensure that it can be

discovered fast. In this chapter, we will highlight and discuss the scalability challenges in

greater details and discuss better (faster) discovery methods for bellwethers. The rest of this

chapter is structured as follows: in §4.1 we discuss the reason why current methods are slow

(§4.1.1) and detail the types of scalability problems that need to be addressed. In §4.2, we

propose a novel scaling algorithm that can used to accelerate the discovery of bellwethers

and enabling them to be used in real-world scenarios. Note, in §4.2 we explore a real-world

case study of performance optimization to evaluate our algorithm. In §4.3, we present our

findings as answers to research questions. And finally, in §4.4, we offer a summary of the

findings from this chapter.

4.1 On scaling the discovery of bellwethers

4.1.1 What causes the slow down?

To understand why the discovery of bellwethers is slow, we reflect on the DISCOVERY phase

of the framework presented in §3.4.1 and Figure 3.1.A. Briefly, it works as follows:

1. From N available projects, pick a project Pi .

2. Train a defect prediction model on Pi . Lets call this model M (Pi ).

3. Then, for every other project Pk where k ∈ 1, . . . , n ; k /∈ {i , j }, that belong to the same

community as {Pi , Pj }, we evaluate the performance of Pi for Pk according to the evalua-

tion strategy discussed in §4.2.7.
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4. Steps 1—3 are repeated for all pairs of projects in N .

5. Finally, the projects are ranked from the best to worst. The best ranked projects are

selected to be bellwethers.

It may be noted that the above methodology is a form of exhaustive search. While it

worked for the relatively small datasets in defect prediction, effort estimation, and code

smell detection (see Figure 2.4), the amount of data in real world situations is sufficiently

large that scoring all candidates using every sample is too costly.

To understand the theoretical complexity of the framework, let us say that we have (a) M

candidate projects, (b)With at most n measurements (rows), and (c) k features (columns)

in each. The classical approach, described above, will construct M models. If we assume

that the model construction time is a function of number of samples f (N ), then for one

round in the round-robin, the computation time will O (M · f (N )). Since this is repeated M

times for each environment, the total computational complexity is O (M 2 · f (n )).

If we take decision trees such as CART/C4.5/ID3 as our chosen model, then the model

construction time will be O (k n ·l o g (n )). There for the naive approach will have a theoretical

worst case complexity of O (M 2 ·k n · l o g (n )). When M and/or n is/are extremely large, it

becomes necessary to seek alternative methods. Depending on which of M and n is large,

the scalability may be categorized into two distinct problems:

1. Horizontal scaling problem. This problem occurs when the M , i.e., the volume of

datasets is extremely large. Being that our complexity is O (M 2 · k n · l o g (n )), large M

leads to a polynomial growth in discovery times.

2. Vertical scaling problem. This problem occurs when the n , i.e., the size of each dataset

is extremely large. Our complexity is O (M 2 ·k n · l o g (n )), large n leads to a quasi-linear

growth in discovery times.
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4.2 Scale-up using BEETLE

4.2.1 Case Study: Configuration optimization

With the appearance of continuous software engineering and devops, configurability has

become a primary concern of software engineers. System administrators today develop and

use different versions software programs under running several different workloads and in

numerous environments. In doing so, they try to apply software engineering methods to best

configure these software systems. Despite their best efforts, the available evidence is that

they need to be better assited in making all the configuration decisions. Xu et al. [Xu15b]

reports that, when left to their own judgementments, developers ignore up to 80% of

configuration options, which exposes them to many potential problems. For this reason,

the research community is devoting a lot of effort to configuration studies, as witnessed by

many recent software engineering research publications [Sie12; Val15a; Sie15; Sar15; Oh17;

Nai17b; Tan18; Nai17a; Nai18].

Without automatic support, humans find it difficult to settle on their initial choice for

software configurations. The available evidence [VA17; JC16; Her11] shows that system

administrators frequently make poor configuration choices. Typically, off-the-shelf defaults

are used, which often behave poorly. There are various examples presented in the literature

which have established that choosing default configuration can lead to sub-optimal perfor-

mance. For instance, Van Aken et al. report that the default MySQL configurations in 2016

assume that it will be installed on a machine that has 160MB of RAM (which, at that time,

was incorrect by, at least, an order of magnitude) [VA17]. Also, Herodotou et al. [Her11]

report that default settings for Hadoop results in the worst possible performance.

Traditional approaches to finding good configuration are very resource intensive. A
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typical approach uses sensitivity analysis [Sal00], where performance models are learned

by measuring the performance of the system under a limited number of sampled configu-

rations. While this approach is cheaper and more effective than manual exploration, it still

incurs the expense of extensive data collection about the software [Guo13; Sar15; Sie12;

Nai17a; Nai17b; Nai18; Oh17; Guo17; JC16]. This is undesirable since this data collection

has to be repeated if ever the software is updated or the environment of the system changes

abruptly. While we cannot tame the pace of change in modern software systems, we can

reduce the data collection effort required to react to that change.

As a more concerete example, consider an organization that runs, say, N heavy Apache

Spark workloads on the cloud. To optimize the performance of Apache Spark on the given

workloads, the DevOps Team need to find the optimal solutions for each of these workloads,

i.e., conduct performance optimization N times. This setup has two major shortcomings–

Hardware Change: Even though the DevOps engineer of a software system performs a

performance optimization for a specific workload in its staging environment, as soon as

the software is moved to the production environment the optimal configuration found

previously may be inaccurate. This problem is further accentuated if the production en-

vironment changes due to the ever-expanding cloud portfolios. It has been reported that

cloud providers expand their cloud portfolio more than 20 times in a year [Ec2].

Workload Change: The developers of a database system can optimize the system for a

read-heavy workload, however, the optimal configuration may change once the workload

changes to, say, a write-heavy counterpart. The reason is that if the workload changes, differ-

ent functionalities of the software might get activated more often and so the nonfunctional

behavior changes too. This means that as soon as a new workload is introduced (new fea-

ture in the organization's product) or if the workload changes, the process of performance

optimization needs to be repeated.
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Given the fragility of traditional performance optimization, it is imperative that we

develop a method to learn from our previous experiences and hence reduce the burden

of having to find optimum configurations ad nauseam. Formally, this is called “transfer

learning”; i.e., the transfer of information from selected “source” software configurations

running on one environment to learn a model for predicting the performance of some

“target” configurations in a different environment. We discuss transfer learning in much

detail in §2.1. Transfer learning can only be useful in cases where the source environment

is similar to the target environment. If the source and the target are not similar, knowledge

should not be transferred. In such situations, transfer learning can be unsuccessful and can

lead to a negative transfer. Prior work on transfer learning focused on “What to transfer”

and “How to transfer”, by implicitly assuming that the source and target are related to each

other. However, those work failed to address “From where (whence) to transfer” [PY10].

Jamshidi et al. [Jam17b] alluded to this and explained when transfer learning works but,

did not provide a method which can help in selecting a suitable source.

Fortunately, the issue of identifying a suitable source is not an uncommon problem in

software engineering. In fact, we have addressed this very issue in the previous chapter

using the bellwether effect.

There exists a computational bottleneck with using the bellewether effect as highlighted

previously. The challenge posed by this domain falls under the vertical scaling problem. In

the case of performance optimization, it is imperative that the number of measurements

are minimized. This is because of two reasons:

1. Combinatorial Explosion. Configurable software systems frequently have tens to hun-

dereds of possible configuration. It is therefore not practical to expect to train a Machine

Learner on such vast spaces.

2. Cost of data collection. Measuring the performance of each configuration is rather ex-
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pensive. Therefore, we are also limited by how data we can gather before the allocated

budget is exceeded.

To address these two problems, we must be able to discover the bellwether project as fast

as possible in order not to lose too much time or money. In this chapter, we present a

transfer learning framework called Bellwether Transfer Learner (henceforth referred to as

BEETLE) that scales to arbitrarily large configuration problems, performing much better

than the prior state of the art. Further, it does so using fewer measurements than existing

state-of-the-art methods. We say this since, comparitively, BEETLE has the lowest CPU cost

(and we conjecture that this is so since BEETLE makes the best use of old configurations).

4.2.2 Problem Formalization

Configuration: A software system, S, may offer a number of configuration options that can

be changed. We denote the total number of configuration options of a software system S as

N . A configuration option of the software system can either be a (1) continuous numeric

value or a (2) categorical value. This distinction is very important since it impacts the choice

of machine learning algorithms. The configuration options in all software systems studied

in this thesis are a combination of both categorical and continuous in nature. The learning

algorithm used here namely, Regression Trees, are particularly well suited to handle such a

combination of continuous and categorical data.

A configuration is represented by ci , where i represents the i t h configuration of a system.

A set of all configurations is called the configuration space, denoted as C. Formally, C is a

Cartesian product of all possible options C =Dom(c1) ×Dom(c2) × ... ×Dom(cN ), where

Dom(ci ) is eitherR (Real Numbers) or B (Catergorical/Boolean value) and N is the number

of configuration options.
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ATOMIC USE_LFS SECURE LATENCY (µs )
c1 0 0 0 100
c2 0 0 1 150
...

...
...

...
...

cN 1 1 1 400

Figure 4.1 Some configuration options for SQLite.

As a simple example, consider a subset of configuration options from SQLite, i.e., S≡

SQLite. This is shown in Figure 4.1. The subset ofSQLiteoffers three configuration options

namely, ATOMIC (atomic delete), USE_LFS (use large file storage), and SECURE (secure

delete), ie., N = 3. The last column contains the latency in µs when various combinations

of these options are chosen.

Environment: As defined by Jamshidi et al. [Jam17b], the different ways a software system

is deployed and used is called its environment (e ). The environment is usually defined in

terms of: (1) workload (w ): the input which the system operates upon; (2) hardware (h):

the hardware on which the system is running; and (3) version (v ): the state of the software.

Note that, other environmental changes might be possible (e.g., JVM version used,

etc.). For example, consider software system Apache Storm, here we must ensure that an

appropriate JVM is installed in an environment before it can be deployed in that environ-

ment. Indeed, the selection of one version of a JVM over another can have a profound

performance impact. However, the perceived improvement in the performance is due to

the optimizations in JVM, not the original software system being studied. Therefore, in

this work, we do not alter these other factors which do not have a direct impact on the

performance of the software system.

The following criteria is used to define an environment:

1. Environmental factors of the software systems that we can vary in the deployment

stack of the system. This prevents us from varying factors such as the JVM version, CPU
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frequency, system software, etc., which define the deployment stack and not the software

system.

2. Common changes developers choose to alter in the software system. In practice, it is

these factors that affect the performance of systems the most [Jam17b; Jam17a; Val17;

Val15b].

3. Factors that are most amenable for transfer learning. Preliminary studies have shown

that factors such as workload, hardware, and software version lend themselves very well

to transfer learning [Jam17b; Jam17a].

Formally, we say an environment is e = {w , h , v } where w ⊆W , h ⊆H , and v ⊆ V . Here,

W , H , V are the space of all possible hardware changes H ; all possible software versions

V , and all possible workload changes W . With this, the environment space is defined

as E ⊂ {W ×H ×V }, i.e., a subset of environmental conditions e for various workloads,

hardware, and environments.

Performance: For each enviroment e, the instances in our data are of the form {(c1, y1), ...,

(cN , yN )}, where ci is a vector of configurations of the i-th example and it has a corresponding

performance measure yi ∈ YS ,c ,e associated with it. We denote the performance measure

associated with a given configuration (ci ) by y = f (c i ). We consider the problem of finding

the near-optimal configurations (c ∗) such that f (c ∗) is better than other configurations in

CA,e , i.e.,

f (c ∗)≤ f (c ) ∀c ∈CA,h ,w ,v \ c ∗ for min objective

f (c ∗)≥ f (c ) ∀c ∈CA,h ,w ,v \ c ∗ for max objective

Bellwethers: In the context of performance optimization, the bellwether effect states that:

For a configurable system, when performance measurements are made under different envi-

ronments, then among those environments there exists one exemplary environment, called

the bellwether, which can be used determine near optimum configuration for other environ-
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ments for that system. We show that, when performing transfer learning, there are exemplar

source environments called the bellwether environment(s) (B= es 1, es 2, ..., es n ⊂ E ), which

are the best source environment(s) to find near-optimal configuration for the rest of the

environments (∀e ∈ E \B).

Problem Statement: The problem statement of this work:

Within a pre-defined budget constraint, find a near-optimal configuration for a target

environment (Set
), by learning from the measurements (〈c , y 〉) for the same system

operating in different source environments (Ses
).

In other words, we aim to reuse the measurements from a system operating in an

environment to optimize the same system operating in the different environment thereby

reducing the number of measurements required to find the near-optimal configuration.

4.2.3 BEETLE: Bellwether Transfer Learner

This section describes BEETLE, a bellwether based approach that finds the near-optimal

configuration using the knowledge in the “bellwether” environment. BEETLE can be sep-

arated into two main steps: (i) Discovery: finding the bellwether environment, and (ii)

Transfer: using the bellwether environment to find the near-optimal configuration for

target environments. These steps will are explained in greater detail in §4.2.3.1 and §4.2.3.2.

We outline it below,

1. Discovery: Leverages the existence of the bellwether effect to discover which of the avail-

able environments are best suited to be a source enviroment (known as the bellwether

environment). To do this, BEETLE uses a racing algorithm to sequentially evaluate

candidate environments [Bir02]. In short,

(a) A fraction (about 10%) of all available data is sampled. A prediction model is built
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(a) Elimination of non-bellwether environments

(b) Pick Bellwether Environment
(c) Pick Bellwether Environment

Figure 4.2 BEETLE framework

with these sampled datasets.

(b) Each enviroment is used as a source to build a prediction model and all the others

are used as targets in a round-robin fashion.

(c) Performance of all the enviroments are measured and are statistically ranked from

the best source environemnt to the worst. Environments with a poor performance

(i.e., those ranked last) are eliminated.

(d) For the remaining enviroments, another 10% of the samples are added and the

steps (a)–(c) are repeated.

(e) When the ranking order doesn’t change for a fixed number of repeats, we terminate

the process and nominate the best ranked enviroment(s) as the bellwether.

2. Transfer: Next, to perform transfer learning, we just use these bellwether environments

to train a performance prediction model with Regression Trees.
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1 def FindBellwether(srcs, frac, budget, ←-
thres, lives):

2 while lives or cost > budget:
3 "Sample configurations"
4 for i, src in enumerate(srcs):
5 samp_src[i].add_sample(src, step_size)
6 "Get cost"
7 cost += get_cost(samp_src)
8 "Evaluate pair−wise performances"
9 cur_ranks = get_perf_rankings(sampled)

10 "Loose life if no sources are removed"
11 if prev_ranks == cur_ranks:
12 lives -= 1
13 prev_ranks = cur_ranks
14 continue
15 else:
16 "Remove non−bellwether environments"
17 samp_sources = remove_non_bellws(←-

cur_ranks)
18 return sample_sources[cur_rank[0]]

Figure 4.3 Pseudocode for Discovery

1 def BEETLE(sources, target, budget):
2 "Find the bellwether environments"
3 bellw = FindBellwether(sources, frac, ←-

budget, thres, lives)
4 "If more than one bellwethers, pick one at random"
5 if len(bellw) > 1:
6 bellw = random.choice(bellw)
7 "Train a prediction model with the bellwether"
8 prediction_model = regTree.train(bellw)
9 "Predict the performance various configurations in target"

10 best_config = prediction_model.←-
predict_best(target)

11 "Return the configuration with the best performance"
12 return best_config

Figure 4.4 Pseudocode for Transfer

We conjecture that once a bellwether source environment is identified, it is possible to

build a simple transfer model without any complex methods and still be able to discover

near-optimal configurations in a target environment.

4.2.3.1 Discovery: Finding Bellwether Environments

In the previous work on bellwethers [KM18], the discovery process involved a round-robin

experimentation comprised of the following steps:

1. Pick an enviroment ei from the space of all available enviroments, i.e., ei ∈E.

2. Use e j as a source to build a prediction model.

3. Using all the other enviroments e j ∈E and e j 6= ei as the target, determine the prediction

performance of ei .

4. Next, repeat the steps by choosing a different ei ∈E

5. Finally, rank the performances of all the enviroments and pick the best ranked enviro-

ment(s) as bellwether(s).
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The above methodology is a form of an exhaustive search. While it worked for the

relatively small datasets in [Kri16c; KM18], the amount of data in this work is sufficiently

large that scoring all candidates using every sample is too costly. More formally, let us say

that we have M candidate enviroments with N measurements each. The classical approach,

described above, will construct M models. If we assume that the model construction time

is a function of number of samples f (N ), then for one round in the round-robin, the

computation time will O (M · f (N )). Since this is repeated M times for each enviroment,

the total computational complexity is O (M 2 · f (n )). When M and/or N is/are extremely

large, it becomes necessary to seek alternative methods. Therefore, in this work, we use a

racing algorithm to achieve computational speedups.

Instead of evaluating every available instance to determine the best source environment,

Racing algorithms take the following steps:

• Sample a small fraction of instances from the original environments to minimize compu-

tational costs.

• Evaluate the performance of environments statistically.

• Discarded the environments with the poorest performance.

• Repeated the process with the remaining datasets with slightly larger sample size.

Figure 4.2a shows how BEETLE eliminates inferior environments at every iteration (thus

reducing the overall number of environments evaluated). Since each iteration only uses a

small sample of the available data, the model building time also reduces significantly. It

has been shown that racing algorithms are extremely effective in model selection when the

size of the data is arbitrarily large [Bir02; LN13].

In Figure 4.2c, we illustrate the discovery of the bellwether environments with an exam-

ple. Here, there are two groups of environments:

(i) Group 1: Environments e1, e2, ..., e7, for which performance measurements have been
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gathered. One or more these environment(s) are potentially bellwether(s).

(ii) Group 2: Environments e8, e9, ..., e12, these represent the target environments, for

which need to determine an optimal configuration.

In the discovery process, BEETLE’s objective is to find bellwethers from among the envi-

ronments in Group 1. And, later in the Transfer phase, we use the bellwether environments

to find the near-optimal configuration for the target environments from Group 2.

Fig. 4.3 outlines a pseudocode for the algorithm used to find bellwethers. The key steps

are listed below:

• Lines 3–5: Randomly sample a small subset of configurations from the source environ-

ments. The size of the subset (of configurations) is controlled by a predefined parameter

frac, which defines the percent of configurations to be sampled in each iteration.

• Line 6–7: Calculate sampling cost for the configurations.

• Line 8–9: Use the sampled configurations from each environment as a source build a pre-

diction model with regression trees. For all the remaining environments, this regression

tree model is used to predict for optimum configuration. After using every enviroment as

a source, the environments are ranked from best to worst using the evaluation criteria

discussed in §4.2.7.

• Line 10–14: We check to see if the rankings of the enviroments have changed since the last

iteration. If not, then a “life” is lost. We go back to Line 3 and repeat the process. When all

lives are expired, or we run out of the budget, the search process terminates. This acts as

an early stopping criteria, we need not sample more data if those samples do not help in

improving the outcome.

• Line 15–17: If there is some change in the rankings, then new configuration samples are

informative and the environments that are ranked last are eliminated. These environ-

ments are not able to find near-optimal configurations for the other environments and
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therefore cannot be bellwethers.

• Line 18: Once we have exhausted all the lives or the sampling budget, we simply return

the source project with the best rank. These would be the bellwether enviroments.

On line 6–7 we measure the sampling cost. In our case, we use the number of samples

as a proxy for cost. This is because each measurement consumes computational resources

which in turn has a monetary cost. Therefore, it is commonplace to set a budget and sample

such that the budget is honored. Our choice of using the number of measurements as a

cost measure was an engineering judgment, this can be replaced by any user-defined cost

function such as (1) the actual cost, or (2) the wall-clock time. The accuracy of either of the

above are depenedent on the business context. If one is either constrained by runtime or

there is large variance in the measurements of time per configuration, then the wallclock

time might be a more reasonable measure. On the other hand, if the cost of measurements

is the limiting factor, it makes sense to use the actual measurement cost. Using number of

samples encompasses these two factors since it both costs more money and takes time to

obtain more samples. In the ideal case, we would like to have performance measurements

for all possible configurations of a software system. But this is not practical because certain

systems have over 250 unique configurations.

It is entirely possible for the FindBellwether method to identify multiple bellwethers

(e.g., in the case of 4.2c the bellwethers were e1 and e2). When mutliple bellwethers are

found, we may use (a) any one of the bellwether enviroments at random, (b) use all the

enviroments, or (c) use heuristics based on human intuition. In this work, we pick one

enviroment from among the bellwethers at random. As long as the chosen project is among

the bellwether enviroments, the results remain unchanged.

The BEETLE approach assumes that a fixed set of enviroments exist from which we pick

one or more bellwethers. But, approach would work just as well where new measurements
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from new enviroments are added. Specifically, when more environments are added into a

project, it is possible that the newly added environment could be the bellwether. Therefore,

we recommend repeating FindBellwether method prior to using the new enviroment. Note

that, repeating FindBellwether for new enviroments would add minimal computational

overhead since the measurements have already been made for the new enviroments. Also

note that, this approach of revisiting FindBellwether on availability of new data, has been

previously been proposed in other domains in software engineering [Kri16c; KM18].

4.2.3.2 Transfer: Using the Bellwether Environments

Once the bellwether environment is identified, it can be used to find the near-optimal

configurations of target environments. As shown in Fig. 4.4, FindBellwether eliminates

enviroments that are not potentially bellwethers and returns only the candidate bellwether

enviroments. For the remaining target enviroments, we use the model built with the bell-

wether enviroments to identify the near optimal configurations.

Figure 4.4 outlines the pseudocode used to perform the transfer. The key steps are listed

below:

• Line 2-3: We use the FindBellwether from 4.3 to identify the bellwether enviroments.

• Line 4-6: If there exists more than one bellwether, we randomly chose one among them

be used as the bellwether enviroment.

• Line 7-8: The configurations from the bellwether and their corresponding performance

measures are used to build a prediction model using regression trees.

• Line 9-10: Predict the performances of various configurations from the target enviroment.

• Line 11-12: Return the best configuration for the target.

Note that, on Line 10, we use regression trees to make predictions. It has been the most

preferred prediction algorithm in this domain [Guo13; Sar15; Nai17a]. This is primarily
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because much of the data used in this domain are a mixture numerical and categorical

attributes. Given configuration measurement in the form {(ci , yi )}, ci is a vector of categori-

cal/numeric values and yi is a continuous numeric value. For such data, regression trees

are the best suited prediction algorithms [Nai17b; Nai18; Guo17; Val17]. This is because the

regression trees are built by recursively splitting the configuration vectors into a root node

configuration and subsets of children node configurations. This splitting is based on a set

of splitting rules that work equally well for both categorical and numeric data.

4.2.4 Other Transfer Learners

This section describes the methods we use to compare BEETLE against. These alterna-

tives are (a) two state-of-the-art transfer learners for performance optimization: Valov et

al. [Val17] and Jamshidi et al. [Jam17a]; and (b) a non-transfer learner: Nair et al. [Nai17b].

4.2.4.1 Transfer Learning with Linear Regression

Valov et al. [Val17] proposed an approach for transferring performance models of software

systems across platforms with different hardware settings. The method consists of the

following two components:

1. Performance prediction model: The configurations on a source hardware are sampled

using Sobol sampling. The number of configurations is given by T ×Nf , where T =

3, 4, 5 is the training coefficient and Nf is the number of configuration options. These

configurations are used to construct a Regression Tree model.

2. Transfer Model: To transfer the predictions from the source to the target, a linear regres-

sion model is used since it was found to provide good approximations of the transfer

function. To construct this model, a small number of random configurations are ob-
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tained from both the source and the target. Note that this is a shortcoming since, without

making some preliminary measurements on the target, one cannot begin to perform

transfer learning.

4.2.4.2 Transfer Learning with Gaussian Process

Jamshidi et al. [Jam17a] took a slightly different approach to transfer learning. They used

Multi-Task Gaussian Processes (GP) to find the relatedness between the performance

measures in source and the target. The relationships between input configurations were

captured in the GP model using a covariance matrix that defined the kernel function to

construct the Gaussian processes model. To encode the relationships between the measured

performance of the source and the target, a scaling factor is used with the above kernel.

The new kernel function is defined as follows:

k (s , t , f (s ), f (t )) = kt (s , t )×kx x ( f (s ), f (t )), (4.1)

where kt (s , t ) represents the multiplicative scaling factor. kt (s , t ) is given by the corre-

lation between source f(s) and target f(t) function, while kx x is the covariance function

for input environments (s & t). The essence of this method is that the kernel captures the

interdependence between the source and target environments.

4.2.4.3 Non-Transfer Learning Performance Optimization

A performance optimization model with no transfer was proposed by Nair et al. [Nai17b] in

FSE ’17. It works as follows:

1. Sample a small set of measurements of configurations from the target environment.

2. Construct performance model with regression trees.
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Table 4.1 Overview of the real-world subject systems. |C |:Number of Configurations sampled per
environment, N=Number of configuration options, |E |: Number of Environments, |H |: Hardware,
|W |: Workloads, and |V |: Versions.

3. Predict for near-optimal configurations.

The key distinction here is that unlike transfer learners, that use a different source envi-

ronment to build to predict for near-optimal configurations in a target environment, a

non-transfer method such as this uses configurations from within the target environment

to predict for near-optimal configurations.
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4.2.5 Evaluation

4.2.6 Subject Systems

In this study, we selected five configurable software systems from different domains, with

different functionalities, and written in different programming languages. We selected

these real-world software systems since their characteristics cover a broad spectrum of

scenarios. Briefly,

1. SPEAR is an industrial strength bit-vector arithmetic decision procedure and Boolean

satisfiability (SAT) solver. It is designed for proving software verification conditions, and

it is used for bug hunting. It consists of a binary configuration space with 14 options

with 214 or 16384 configurations. We measured how long it takes to solve an SAT problem

in all 214 configurations in 10 environments.

2. X264 is a video encoder that compresses video files and has 16 configurations options

to adjust output quality, encoder types, and encoding heuristics. Due to the cost of

sampling the entire configuration space, we randomly sample 4000 configurations in 21

environments.

3. SQLITE is a lightweight relational database management system, which has 14 configu-

ration options to change indexing and features for size compression. Due to the cost

of sampling and a limited budget, we use 1000 randomly selected configurations in 15

different environments.

4. SAC is a compiler for high-performance computing. The SaC compiler implements a

large number of high-level and low-level optimizations to tune programs for efficient

parallel executions. It has 50 configuration options to control optimization options. We

measure the execution time of the program for 846 configurations in 5 enviroments.
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5. STORM is a distributed stream processing framework which is used for data analytics.

We measure the latency of the benchmark in 2,048 randomly selected configurations in

4 environments.

Table 4.1 lists the details of the software systems used in this work. Here, |N | is the

number of configuration options available in the software system. If the options for each

configuration is binary, then there can be as much as 2|N | possible configurations for

a given system1, since it is not possible for us measure the performance of all possible

configurations, we measure the performance of a subset of the 2|N | samples, this subset

is denoted by |C |. The performance of each of the |C | configurations are measured under

different hardware (H ), workloads (W ), and software versions (V ). A unique combination

of H , W , V constitutes an enviroment which is denoted by E . Note that, measuring the

performance of |C | configurations in each of the |E | enviroments can be very costly and

time consuming. Therefore, instead of all combinations of H ×W ×V , we measure the

performance in only a subset of the enviroments (the total number is denoted by |E |).

4.2.7 Evaluation Criterion

4.2.7.1 Inadequacies of Conventional Evaluation Criteria

Typically, performance models are evaluated based on accuracy or error using measures

such as Mean Magnitude of Relative error (abbreviated as M M R E ). MMRE is calculated as

follows:

M M R E =
|p r e d i c t e d −a c t ua l |

a c t ua l
·100

While seemingly intutive, it has recently been shown that exact measures like MMRE can

be somewhat misleading to assess configurations. There has been a lot of criticism leveled

1On the other hand, if there are |o | possible options, then there may be |o |N possible configurations.
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against MMRE. MMRE along with other accuracy statistics such as MBRE (which stands

for Mean Balanced Relative Error) have been shown to cause conclusion instability [MS12;

Myr05; Fos03].

In order to overcome this, recently we have argued against the use of MMRE values, in

favor of using rank-based metrics that compute the difference between the relative rankings

of the performance scores [Nai17b; Nai18]. The key intuition behind relative rankings is

that the raw accuracy (as measured by MMRE) is less important than the rank-ordering of

configuraions from best to worst. As long as a model can preserve the order of the rankings

of the configurations (from best to worst), we can still determine which configuration is

the most optimum. We can quantify this by measuring the differences in ranking between

the actual rank and the predicted rank. More formally, rank-difference Rδ is measured as:

Rδ = |RankP r e d i c t e d −RankAc t ua l |

We note that rank difference, although slightly less susceptible to instability compared to

Value Rank
Actual 0.09 100
Predicted 0.11 10
Difference 0.02 90

M M R E =
0.11−0.09

0.09
×100= 22%

Rδ = |10−100|= 90

Now, let’s say the mi n = 0.09 and ma x = 0.11. Then,

N AR =
0.11−0.09

0.11−0.09
×100= 100%

Figure 4.5 A contrived example to illustrate the challenges with MMRE and rank based measures
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MMRE, is still not particularly informative. This is because it ignores the distribution of

performance scores and a small difference in performance measure can lead to a large rank

difference and vice-versa [Tru18].

To illustrate the challenges with Rδ and M M R E , consider the example in Figure 4.5

where we are trying to find a configuration with the minimum value. Here, although the

difference between the predicted value and the actual value is only 0.02, the rank difference

Rδ is 90. But this does not tell us if Rδ = 90 is good or bad. While, in the same Figure 4.5,

when we calculate MMRE we get an error of only 22%, this may convey a false sense of

accuracy. In the same example, let us say that the maximum value permissible is 0.11,

then according to Figure 4.5, our predicted value for the best performance (which recall is

supposed to the lowest) is the highest permissible value of 0.11.

Therefore, to obtain a realistic estimate of optimality of a configuration, we must use a

measure that does not under-estimate the difference between the actual best configuration

and the predicted best configuration (as with M M R E ), netiher should we over-estimate the

difference (as with rank-difference). In other words, we seek a robust measure of optimality.

4.2.7.2 NAR: A more robust metric

To overcome the challenges above, in this work, we propose a measure called Normal-

ized Absolute Residual (NAR). It represents the ratio of (a) difference between the actual

performance value of the optimal configuration and the predicted performace value of

the optimal configuration, and (b) The absolute difference between the maximum and

minimum possible performace values. Formally, it can be defined as:

NAR=
|mi n ( f (c ))− f (c ∗)|

ma x ( f (c ))−mi n ( f (c ))
·100 (4.2)
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Where mi n ( f (c )) is the value of the true minima of configuration c , f (c ∗) is the predicted

value of the minima, and ma x ( f (c )) is the largest performance value of a configuration. This

measure is equivalent to Absolute Residual between predicted and actual, normalized to lie

between 0% to 100% (hence the name Normalized Absolute Residual or N AR ). According

to this formulation, the lower the N AR , the better. Reflecting back on Figure 4.5, we see

that the N AR is 100% which is exact what is expected when a predicted “minima” (0.11) is

equal to the actual “maxima” (also 0.11).

Further, it is worth noting that, NAR is actually a variant of the Generational Distance or

Inverted Generation Distance used very commonly in search-based software engineering

literature [Wan16a; Che18; Deb02].

4.2.8 Statistical Validation

Our experiments are all subjected to inherent randomness introduced by sampling con-

figurations or by a different source and target environments. To overcome this, we use 30

repeated runs, each time with a different random number seed. The repeated runs provide

us with sufficiently large sample size for statistical comparisons. Each repeated run collects

the values of NAR.

To rank these 30 numbers collected as above, we use the Scott-Knott test recommended

by Mittas and Angelis [MA13]:

• A list of treatments, sorted by their mean value, are split at the point that maximizes the

expected value of the difference in their mean before after the split.

• That split is accepted if, between the two splits, (a) there is a statistically significant

difference using a hypothesis testH, and (b) the difference between the two splits is not

due to a small effect.
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• If the split is acceptable, the algorithm then recurses on both splits.

• Once no more splits are found, they are “ranked” smallest to largest (based on their

median value).

In our work, in order to judge the statistical significance we use a non-parametric bootstrap

test with 95% confidence [ET93]. Also, to make sure that the statistical significance is

not due to the presence of small effects, we use an A12 test [VD00a]. Briefly, the A12 test

measures the probability that one split has a lower NAR values than another. If the two

splits are equivalent, then A12= 0.5. Likewise if A12≥ 0.6, then 60% of the times, values

of one split are significantly smaller that the other. In such a case, it can be claimed that

there is a significant effect to justify the hypothesis test. We use these two tests (bootstrap

and A12) since these are non-parametric and have been previously demonstrated to be

informative [LO02; PC10; AB11; SM12b; Kam07; Koc13].

4.3 Experimental Results

RQ-4.1: Does there exist a Bellwether Environment?

Purpose: The first research question seeks to establish the presence of bellwether envi-

ronments within different environments of a software system. If there exists a bellwether

environment, then identifying that environment can greatly reduce the cost of finding a

near-optimal configuration for different environments.

Approach: For each subject software system, we use the environments to perform a pair-

wise comparison as follows:

1. We pick one environment as a source and evaluate all configurations to construct a

regression tree model.
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X264
Rank Dataset Median IQR
1 x264_18 0.35 1.82 s
1 x264_9 0.35 1.62 s
2 x264_10 0.94 8.25 s
2 x264_7 0.94 8.25 s
2 x264_11 1.62 7.46 s
3 x264_16 2.33 12.18 s
3 x264_2 2.33 12.18 s
3 x264_6 2.82 5.35 s
3 x264_20 3.65 13.74 s
4 x264_19 6.95 41.97 s
4 x264_3 8.68 49.78 s
4 x264_17 13.61 32.32 s
4 x264_13 16.42 51.65 s
4 x264_15 20.14 50.68 s
5 x264_14 27.24 42.74 s
5 x264_0 28.63 49.77 s

SAC

Rank Dataset Median IQR
1 sac_6 0.27 0.14 s
2 sac_4 0.96 4.26 s
2 sac_8 1.04 3.67 s
2 sac_9 2.29 4.98 s
3 sac_5 10.8 89.65 s

STORM
Rank Dataset Median IQR
1 storm_feature9 0.0 0.0 s
1 storm_feature8 0.0 0.0 s
1 storm_feature6 0.0 0.01 s
1 storm_feature7 0.01 0.04 s

SPEAR
Rank Dataset Median IQR
1 spear_7 0.1 0.1 s
1 spear_6 0.1 0.2 s
1 spear_1 0.1 0.1 s
1 spear_9 0.1 0.5 s
1 spear_8 0.1 0.2 s
1 spear_0 0.1 0.91 s
2 spear_5 0.28 0.3 s
3 spear_4 0.6 1.17 s
4 spear_2 1.09 5.31 s
5 spear_3 1.89 4.48 s

SQLITE

Rank Dataset Median IQR
1 sqlite_17 0.8 1.13 s
1 sqlite_59 2.0 3.44 s
1 sqlite_19 2.0 4.88 s
2 sqlite_44 1.96 6.91 s
2 sqlite_16 2.52 7.41 s
2 sqlite_73 2.82 7.24 s
2 sqlite_45 3.47 11.86 s
2 sqlite_10 3.88 6.92 s
2 sqlite_96 4.94 6.04 s
2 sqlite_79 5.64 5.24 s
2 sqlite_11 6.64 5.75 s
2 sqlite_52 6.84 7.95 s
2 sqlite_97 7.68 13.71 s
3 sqlite_18 13.17 54.68 s
3 sqlite_94 27.43 47.66 s

Figure 4.6 Median NAR of 30 repeats. Median NAR is the normalized absolute residual values as
described in Equation 4.2, and IQR the difference between 75th percentile and 25th percentile found
during multiple repeats. Lines with a dot in the middle ( s ), show the median as a round dot
within the IQR. All the results are sorted by the median NAR: a lower median value is better. The
left-hand column (Rank) ranks the various techniques where lower ranks are better. Overall, we
find that there is always at least one environment, denoted in blue , that is much superior (lower
NAR) to others.

2. The remaining environments are used as targets. For every target environment, we use

the regression tree model constructed above to predict for the best configuration.

3. Then, we measure the NAR of the predictions (see §4.2.7.2).

4. Afterwards, we repeat steps 1, 2, and 3 for all the other source environments and gather

the outcomes.

We repeat the whole process above 30 times and use the Scott-Knott test to rank each

environment best to worst.

Summary: Our results are shown in Fig. 4.6. Overall, we find that there is always at least one
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environment (the bellwether environment) in all the subject systems, that is much superior

to others. Note that, STORM is an interesting case, here all the environments are ranked 1,

which means that all the environments are equally useful as a bellwether environment —in

such cases, any randomly selected environment could serve as a bellwether. Further, we

note that the variance in the bellwether environments are much lower compared to other

environments. Low variance indicates the low median NAR is not an effect of randomness

in our experiments and hence increases our confidence in the existence of bellwethers.

Please note, in this specific experiment, we use all measured configurations (i.e., 100%

of |C | in Table 4.1) to determine if bellwethers exist. This ensures that the existance of

bellwethers is not biased by how we sampled the configuration space. Later, in RQ-4.2, we

will restrict our study to determine what fraction of the samples would be adequate to find

the bellwethers.

One may be tempted to argue that the answer to this question trivially could be answered

as "yes" since it is unlikely that all environments exhibit identical performance and there will

always be some environment that can make better predictions. However, observe that the

environments ranked first performs much better than the rest (with certain exceptions), and

hence, the difference between the bellwether environment and others is not coincidental.

Result: There exists environments in each subject system, which act as the bellwether

environment and hence can be used to find the near-optimal configuration for the rest

of the environments.
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(a) SQLITE (b) x264 (c) SPEAR

(d) STORM (e) SAC

Figure 4.7 Win/Loss analysis of learning from the bellwether environment and target environment
using Scott Knott. The x-axis represents the percentage of data used to build a model and y-axis is
the count. BEETLE wins in all software systems (since BEETLE wins more times than losses) except

for SAC– and only when we have measured more that 50% of the data.

RQ-4.2: How many measurements are required to discover bellwether en-

vironments?

Purpose: The bellwether environments found in RQ-4.1 required us to use 100% of the

measured performance values from all the environments2. Sampling all configurations

may not be practical, since that may take an extremely long time [Jam17b]. Thus, in this

research question, we ask if we can find the bellwether environments sooner using fewer

samples.

2Note, except for SPEAR, we only have measured a subset of all possible configuration space since we were
limited by the time and the cost required to make exhaustive measurements
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Table 4.2 Effectiveness of source selection method.

Subject System
Bellwether

Environment
Predicted Bellwether

Environment

Median IQR Median IQR

SQLite 0.8 1.13 1.8 2.48
Spear 0.1 0.1 0.1 0
x264 0.35 1.62 0.9 1.06

Storm 0.0 0.0 0.0 0.0
SaC 0.27 0.14 0.63 7.4

Approach: We used the racing algorithm discussed in Section §4.2.3.1. To see if our proposed

method is effective, we compare the performance of bellwether environment with the

predicted bellwether environment. It works as follows:

1. We start from 10% of configurations from each environment and assume that every

environment is a potential bellwether environment.

2. Then, we increment the number of configurations in steps of 10% and measure the NAR

values.

3. We rank the environments and eliminate those that do not show much promise. A

detailed description of how this is accomplished can be found in §4.2.3.

4. We repeat the above steps until we cannot eliminate any more environments.

Result: Table 4.2 summarizes our findings. We find that,

• In all 5 cases, using at most 10% of the configurations we find one of the bellwether

environments that are found using 100% of the measured configurations. In Table 4.2,

the second and the third column represent the median and IQR of the NAR values found

using the Bellwether environment, which is found using 100% of the configurations

(ground truth). The fourth and the fifth column (under Predicted Bellwether Environment)
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represent the median, and the IQR values found using the racing algorithm.

• The NAR of the predicted bellwether environments with 10% of the configurations is

different by < 1% from the bellwether found at 100%.

These results are most encouraging in that we need only about 10% of the samples to

determine the bellwether:

Result: The bellwether environment can be recognized using only a fraction of the mea-

surements (under 10%). Encouragingly, the identified bellwether environments have

similar NAR values to the bellwether environment with 100% of samples. More running

fewer configuration takes less time and is cheaper.

RQ-4.3: How does BEETLE compare to state-of-the-art methods?

Purpose: The main motivation of this work is to show that the source environment can have

a significant impact on transfer learning. In this research question, we seek to compare

BEETLE with other state-of-the-art transfer learners by Jamshidi et al. [Jam17a] and Valov

et al. [Val17].

Approach: We perform transfer learning the methods proposed by Valov et al. [Val17] and

Jamshidi et al. [Jam17a]. Then we measure the NAR values and compare them statistically

using Skott-Knott tests. Finally, we rank the methods from best to worst based on their

Skott-Knott ranks.

Result: Our results are shown in Fig. 4.8. In this figure, the best transfer learner is ranked 1.

We note that in 4 out of 5 cases, BEETLE performs just as well as (or better than) the state-

of-the-art. This result is encouraging in that it points to a significant impact on choosing a

good source environment can have on the performance of transfer learners. Further, in

Figure 4.9 we compare the number of performance measurements required to construct
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SAC
Rank Learner Median IQR
1 Jamshidi et al. [Jam17a] 1.58 5.39 s
2 BEETLE 6.89 99.1 s
2 Valov et al. [Val17] 6.99 99.24 s

SPEAR
Rank Learner Median IQR
1 Jamshidi et al. [Jam17a] 0.70 1.29 s
1 BEETLE 0.79 1.40 s
1 Valov et al. [Val17] 1.11 1.98 s

SQLITE

Rank Learner Median IQR
1 BEETLE 5.41 9.28 s
2 Valov et al. [Val17] 6.96 12.91 s
3 Jamshidi et al. [Jam17a] 18.51 50.85 s

STORM
Rank Learner Median IQR

1 BEETLE 0.04 0.06 s
1 Jamshidi et al. [Jam17a] 0.86 20.69 s
2 Valov et al. [Val17] 2.47 53.98 s

X264
Rank Learner Median IQR
1 BEETLE 8.67 27.01 s
2 Valov et al. [Val17] 16.99 41.24 s
3 Jamshidi et al. [Jam17a] 43.58 28.39 s

Figure 4.8 Comparison between state-of-the-art transfer learners and BEETLE. The best transfer

learner is shaded blue . The “ranks” shown in the left-hand-side column come from the statistical
analysis described in §4.2.8.

the transfer learners (note the logarithmic scale on the vertical axis). The total number of

available samples for each software system is shown in the second column of Table 4.1 (see

values corresponding to |C |). Of these we used only:

1. x264: 10.21% of 4000 samples

2. SQLite: 11.42% of 1000 samples

3. Spear: 13.79% of 16384 samples

4. SaC: 15.4% of 846 samples

5. Storm: 17.40% of 2048 samples
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Figure 4.9 BEETLE v/s state-of-the-art transfer learners. The numbers in parenthesis represent the
numbers of measurements BEETLE uses in comparison to the state-of-the-art learners.

Based on these results, we note that BEETLE requires far fewer measurements compared to

the other transfer-learning methods. That is,

Result: In most software systems, BEETLE performs just as well as (or better than)

other state-of-the-art transfer learners for performance optimization using far fewer

measurements.

4.4 Summary

Our approach, BEETLE, exploits the bellwether effect—there are one or more bellwether

environments which can be used to find good configurations for the rest of the environ-

ments. We also propose a new transfer learning method, called BEETLE, which exploits

this phenomenon. As shown in this chapter, BEETLE can quickly identify the bellwether

environments with only a few measurements (≈ 10%) and use it to find the near-optimal

solutions in the target environments. Further, after extensive experiments with five highly-

configurable systems demonstrating that BEETLE:
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• Identifies suitable sources to construct transfer learners;

• Finds near-optimal configurations with only a small number of measurements (an aver-

age of ≤ 13.5%≈ 1
7

t h
of the available number of samples);

• Performs as well as non-transfer learning approaches; and

• Performs as well as state-of-the-art transfer learners.

Based on our experiments, we demonstrate our initial problem–“whence to learn?” is an

important question, and,

A good source with a simple transfer learner is better than source agnostic complex

transfer learners.

We show BEETLE can help answer this question effectively.
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CHAPTER

5

FROM PREDICTION TO PLANNING

5.1 Why do we need Planning?

Despite the success of software analytics, there exists some drawbacks with current software

analytic tools. At a recent workshop on “Actionable Analytics” at the 2015 IEEE conference

on Automated Software Engineering, business users were very vocal in their complaints

about analytics [HM15]. “Those tools tell us what is,” said one business user, “But they don’t

tell us what to do”.

Accordingly, in this research, we seek new tools that support actionable analytics that

offer clear guidance on “what to do” about a specific software project. We seek new tools
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since the current generation of software analytics tools are mostly prediction algorithms

such as support vector machines [CV95], naive Bayes classifiers [Les08], logistic regres-

sion [Les08], etc. For example, defect prediction tools report what combinations of software

project features predict for some dependent variable (such as the number of defects). Note

that this is a different task to planning, which answers the question: what to change in

order to improve quality.

More specifically, we seek plans that offer least changes in software but most improve

the quality where:

• Quality = defects reported by the development team;

• Improvement = lowered likelihood of future defects.

Data source

Within Cross

Task
Prediction TSE ’07 [Men07b]

EMSE ’09 [Tur09]
TSE ’17 [Nam17]ASE ’16 [Kri16c]

TSE ’18 [KM18]

Planning IST ’17 [Kri17b] This work Future work

Homogeneous Heterogeneous

Figure 5.1 Relationship of this work to our prior research. Within project trained and tested data
miners using data from the same project. Cross projects train on one project, then test on another.
Homogeneous learning requires the attribute names to be identical in the training and test set.
Heterogeneous learning relaxes that requirement; i.e. the attribute names might change from the
training to the test set.

5.1.1 Relationship to Previous Work

As for the connections to previous research, this chapter is an extension of those results.

As shown in Figure 5.1, originally in 2007 we explored software quality prediction in the
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context of training and testing within the same software project [Men07b]. After that we

found ways in 2009 to train these predictors on some projects, then test them on oth-

ers [Tur09]. Subsequent work in 2016 found that bellwethers were a simpler and effective

way to implement transfer learning [Kri16c], which worked well for a wide range of software

analytics tasks [KM18]. Meanwhile, in the area of planning, we conducted some limited

within-project planning in 2017 on recommending what to change in software [Kri17b]. This

current article now addresses a much harder question: can plans be generated from one

project and applied to the another? While answering this question, we have endeavored to

avoid our mistakes from the past, e.g., the use of overly complex methodologies to achieve

a relatively simpler goal. Accordingly, this work experiments with bellwethers to see if this

simple method works for planning as with prediction.

One assumption across much of our work is the homogeneity of the learning, i.e., al-

though the training and testing data may belong to different projects, they share the same

attributes [Kri16c; Kri17b; KM18; Men07b; Tur09]. Since that is not always the case, we

have recently been exploring heterogeneous learning where attribute names may change

between the training and test sets [Nam17]. Heterogeneous planning is primary focus of

our future work.

this work extends a short abstract presented at the IEEE ASE’17 Doctoral Symposium [Kri17a].

Most of this work, including all experiments, did not appear in that abstract.
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5.2 Research Questions

RQ-5.1: How effective is within-project planning with XTREE?

In this research question, we assess the effectiveness of XTREE when it is trained on past

data from within a project. This research question follows RQ-5.1, where we showed that

changes recommended by XTREE has a significant overlap with changes actually under-

taken by developers. XTREE recommends changes so that the project might have have fewer

defects in the next version, however correlation does not necessarily imply causation, it is

theoretically possible that the recommendations generated by XTREE could be misleading.

The results of this work are in accordance with our previous findings [Kri17b] and show

that XTREE is an effective planner for automatically recommending useful plans.

Result: For within-project planning, we see that greater the overlap with XTREE’s rec-

ommendations the larger the number of defects reduced in a subsequent release of a

project. This was true in 8 out of 9 projects studied here.

RQ-5.2: How does within-project XTREE compare with other threshold

based methods?

Alternative methods for planning make use of statistically determined thresholds over

source code metrics for reducing defects. Recent work by Shatnawi [Sha10b], Alves et

al. [Alv10], and Oliveira et al. [Oli14] assume that unusually large measurements in source

code metrics point to larger likelihood of defects and these should be avoided since, if left

unchanged, they would lead to defect-prone code.

Our results show that their assumption is not effective to generate actionable plans and
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that XTREE is a better way to plan quality improvement.

Result: For within-project planning, plans generated by XTREE is significantly superior

to plans generated by other threshold based methods.

RQ-5.3: How many changes do the planners propose?

In the final research question, we ask how many attributes are recommended to be changed

by different planners.

This result has a lot of practical significance since developers have a hard time following

those plans that recommend too many changes.

Result: XTREE recommends the least number of changes compared to other plan-

ners, while also producing the best overall performance (measured in terms of defect

reduction).

5.3 Planning in Software Analytics

Planning is extensively explored in artificial intelligence research. There, it usually refers to

generating a sequence of actions that enables an agent to achieve a specific goal [RN95].

This can be achieved by classical search-based problem solving approaches or logical

planning agents. Such planning tasks now play a significant role in a variety of demand-

ing applications, ranging from controlling space vehicles and robots to playing the game

of bridge [Gha04]. Some of the most common planning paradigms include: (a) classical

planning [WJ95]; (b) probabilistic planning [Bel57; Alt99; GHL09]; and (c) preference-based

planning [SP06; BM09]. Existence of a model precludes the use of each of these planning

approaches. This is a limitation of all these planning approaches since not every domain

has a reliable model.
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A survey of literature reveals at least two other kinds of planning research in SE. Each

kind is distinguishable by what is being changed.

• In test-based planning, some optimization is applied to reduce the number of tests

required to achieve to a certain goal or the time taken before tests yield interesting

results [TG06; YH12; Blu13].

• In process-based planning some search-based optimizer is applied to a software process

model to infer high-level business plans about software projects. Examples of that kind of

work include our own prior studies combining simulated annealing with the COCOMO

models or Ruhe et al.’s work on next release planning in requirements engineering [RG03;

Ruh10].

In software engineering, the planning problem translates to proposing changes to software

artifacts. These are usually a hybrid task combining probabilistic planning and preference-

based planning using search-based software engineering techniques [Har09; Har11]. These

search-based techniques are evolutionary algorithms that propose actions guided by a

fitness function derived from a well established domain model. Examples of algorithms

used here include GALE, NSGA-II, NSGA-III, SPEA2, IBEA, MOEA/D, etc. [deb00a; Kra15;

Zit02; ZK04; DJ14; Cui05; ZL07]. As with traditional planning, these planning tools all require

access to some trustworthy models that can be used to explore some highly novel examples.

In some software engineering domains there is ready access to such models which can

offer assessment of newly generated plans. Examples of such domains within software

engineering include automated program repair [Wei09; Le 12; Le 15], software product line

management [Say13; MP14; Hen15], automated test generation [And07; And10], etc.

However, not all domains come with ready-to-use models. For example, consider all

the intricate issues that may lead to defects in a product. A model that includes all those

potential issues would be very large and complex. Further, the empirical data required
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to validate any/all parts of that model can be hard to find. Worse yet, our experience has

been that accessing and/or commissioning a model can be a labor-intensive process. For

example, in previous work [Men07d]we used models developed by Boehm’s group at the

University of Southern California. Those models took as inputs project descriptors to output

predictions of development effort, project risk, and defects. Some of those models took

decades to develop and mature (from 1981 [Boe81a] to 2000 [Boe00]). Lastly, even when

there is an existing model, they can require constant maintenance lest they become out-

dated. Elsewhere, we have described our extensions to the USC models to enable reasoning

about agile software developments. It took many months to implement and certify those

extensions [Ii09; Lem09]. The problem of model maintenance is another motivation to look

for alternate methods that can be quickly and automatically updated whenever new data

becomes available.

In summary, for domains with readily accessible models, we recommend the kinds of

tools that are widely used in the search-based software engineering community such as

GALE, NSGA-II, NSGA-III, SPEA2, IBEA, particle swarm optimization, MOEA/D, etc. In

other cases where this is not an option, we propose the use of data mining approaches

to create a quasi-model of the domain and make of use observable states from this data

to generate an estimation of the model. Examples of such data mining approaches are

described below. These include three methods described in the rest of this section: Alves et

al. [Alv10], Shatnawi [Sha10b], and Oliveira et al. [Oli14]

5.3.1 Alves

Alves et al. [Alv10] proposed an unsupervised approach that uses the underlying statistical

distribution and scale of the OO metrics. It works by first weighting each metric value
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according to the source lines of code (SLOC) of the class it belongs to. All the weighted

metrics are then normalized by the sum of all weights for the system. The normalized

metric values are ordered in an ascending fashion (this is equivalent to computing a density

function, in which the x-axis represents the weight ratio (0-100%), and the y-axis the metric

scale).

Alves et al. then select a percentage value (they suggest 70%) which represents the

“normal” values for metrics. The metric threshold, then, is the metric value for which 70%

of the classes fall below. The intuition is that the worst code has outliers beyond 70% of

the normal code measurements i.e., they state that the risk of there existing a defect is

moderate to high when the threshold value of 70% is exceeded.

Here, we explore the correlation between the code metrics and the defect counts with a

univariate logistic regression and reject code metrics that are poor predictors of defects (i.e.

those with p > 0.05). For the remaining metrics, we obtain the threshold ranges which are

denoted by [0,70%) ranges for each metric. The plans would then involve reducing these

metric range to lie within the thresholds discovered above.

5.3.2 Shatnavi

Shatnawi [Sha10b] offers a different alternative Alves et al by using VARL (Value of Accept-

able Risk Level). This method was initially proposed by Bender [Ben99] for his epidemiology

studies. This approach uses two constants (p0 and p1) to compute the thresholds which

Shatnawi recommends to be set to p0 = p1 = 0.05. Then using a univariate binary logistic

regression three coefficients are learned: α the intercept constant; β the coefficient for

maximizing log-likelihood; and p0 to measure how well this model predicts for defects.

(Note: the univariate logistic regression was conducted comparing metrics to defect counts.
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Any code metric with p > 0.05 is ignored as being a poor defect predictor.)

Thresholds are learned from the surviving metrics using the risk equation proposed by

Bender:

Defective if M e t r i c >V AR L

Where,

V AR L = p−1(p0) =
1

β

�

log
�

p1

1−p1

�

−α
�

In a similar fashion to Alves et al., we deduce the threshold ranges as [0, V AR L ) for each

selected metric. The plans would again involve reducing these metric range to lie within

the thresholds discovered above.

5.3.3 Oliveira

Oliveira et al. in their 2014 paper offer yet another alternative to absolute threshold methods

discussed above [Oli14]. Their method is still unsupervised, but they propose complement-

ing the threshold by a second piece of information called the relative threshold. This measure

denotes the percentage of entities the upper limit should be applied to. These have the

following format:

p % of the entities must have M ≤ k

Here, M is an OO metric, k is the upper limit of the metric value, and p (expressed

as %) is the minimum percentage of entities are required to follow this upper limit. As an

example Oliveira et al. state, “ . . . 85% of the methods should have C C ≤ 14. Essentially, this

threshold expresses that high-risk methods may impact the quality of a system when they

represent more than 15% of the whole population of methods . . .”

The procedure attempts derive these values of (p , k ) for each metric M . They define
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a function Compliance(p,k) that returns the percentage of system that follows the rule

defined by the relative threshold pair (p , k ). They then define two penalty functions: (1)

penalty1(p,k) that penalizes if the compliance rate is less than a constant M i n%, and

(2) penalty2(k) to define the distance between k and the median of preset Ta i l -th

percentile. (Note: according to Oliveira et al., median of the tail is an idealized upper value

for the metric, i.e., a value representing classes that, although present in most systems, have

very high values of M). They then compute the total penalty as penalty= penalty1(p,k)

+ penalty2(k). Finally, the relative threshold is identified as the pair of values (p , k ) that

has the lowest total penalty. After obtaining the (p , k ) for each OO metric. As in the above

two methods, the plan would involve ensuring the for every metric M p % of the entities

have a value that lies between (0, k ]1.

5.4 XTREE

5.4.1 Construction

XTREE is a cluster delta algorithm that avoids the problem of verbose ∆s. XTREE is our

preferred planning algorithm that makes recommendations of what changes should be

made to code modules.

Planning with XTREE is comprised of three steps namely, (a) Frequent pattern mining;

(b) Decision tree construction; and (c) Planning with random walk traversal.

Step-1: Frequent pattern mining. The first step in XTREE is to determine which metrics

are most often changed together. The OO metrics are not independent of each other. In

other words, changing one metric (say LOC) would lead to a corresponding change in other

1If certain metrics already satisfy this criterion, they remain unchanged
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rfc loc dit cbo Bugs
1.java 0.6 100 1 4 0
2.java 0.9 223 4 5 1
3.java 1.1 290 5 7 1
4.java 2.1 700 10 12 3
5.java 2.3 800 11 15 3

(a)

rfc loc dit cbo
1.java A A A A
2.java A A B A
3.java A A B A
4.java B B C B
5.java B B C B

(b)

Items
1.java r f cA, l o cA, d i tA, c b oA

2.java r f cA, l o cA, d i tB , c b oA

3.java r f cA, l o cA, d i tB , c b oA

4.java r f cB , l o cB , d i tC , c b oB

5.java r f cB , l o cB , d i tC , c b oB

(c)

Items (min_sup=60) Support
r f cA 60
l o cA 60
d i tA 40

{r f cA, l o cA}, {l o cA, c b oA}, . . . 60
{r f cA, l o cA, c b oA} 60

{r f cA, l o cA, c b oA, d i tB ,C } 40

(d)

Figure 5.2 To determine which of metrics are usually changed together, we use frequent itemset
mining. Our dataset is continuous in nature (see (a)) so we first discretize using Fayyad-Irani [FI93];
this gives us a representation shown in (b). Next, we convert these into “transactions” where each
file contains a list of discretized OO-metrics (see (c)). Then we use the FP-growth algorithm to mine
frequent itemsets. We return the maximal frequent itemset (as in (d)). Note: in (d) the row in green

is the maximal frequent itemset.

metrics (such as CBO). We refrain from using correlation to determine which metrics change

together because correlation measures the existence of a monotonic relationships between

two metrics. We cannot assume that the metrics are monotonically related; moreover, it is

possible that more than two metrics are related to each other. Therefore, we use frequent

pattern mining [Han07], which represents a more generalized relationship between metrics,

to detect which of the metrics change together.

Our instrumentation is shown in Figure 5.2. We use the FP-Growth algorithm [Han07]

to identify the maximal frequent itemset (highlighted in green in Figure 5.2 (d)). This

represents the longest set of metrics that change together atleast support% (in our case 60%)
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Algorithm 1 N-ary Decision Tree
procedure NARY_DTREE(train)

features = train[train.columns[:-1]]
for f ∈ f e a t u r e s do

Find splits using Fayyad-Irani method
Compute expected entropy of splits

end for
fb e s t ← Feature with lowest mean entropy
Tree← Tree.add_node(f_best)
Dv ← Induced sub-datasets from train based on

fb e s t

for d ∈Dv do
Treev ← NARY_DTREE(d)
Tree← Treev

end for
return Tree
end procedure

(a) Decision Tree Algorithm (b) Example decision tree

Figure 5.3 To build the decision tree, we find the most informative feature,i.e., the feature which has
the lowest mean entropy of splits and construct a decision tree recursively in a top-down fashion as
show above.

of the time. The following steps use the maximal frequent itemset to guide the generation

of plans.

Step-2: Decision tree construction. Having discovered which metrics change together, we

next establish what range of values for each metrics point to a high likelihood of defects. For

this we use a decision tree algorithm (see Figure 5.3). For this, XTREE uses a multi-interval

discretizer based on an iterative dichotomization scheme, first proposed by Fayyad and

Irani [FI93]. This method converts the values for each code metric into a small number of

nominal ranges. It works as follows:

• A code metric is split into r (r = 2) ranges, each range is of size nr and is associated with

a set of defect counts xr with standard deviationσr .

• The best split for that range is the one that minimizes the expected value of the defect
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(a) (b)

Figure 5.4 For ever test instance, we pass it down the decision tree constructed in Figure 5.3. The
node it lands is called the “start”. Next we find all the “end” nodes in the tree, i.e., those which have
the lowest likelihood of defects (labeled in black below). Finally, perform a random-walk to get
from “start” to “end”. We use the mined itemsets from Figure 5.2 to guide the walk. When presented
with multiple paths, we pick the one which has the largest overlap with the frequent items. e.g., in
the below example, we would pick path (b) over path (a).

variance, after the split; i.e.
∑

r
nr
n σx (where n =

∑

r nr ).

• This discretizer then recurses on split to find other splits in a recursive fashion. As sug-

gested by Fayyad and Irani, minimum description length (MDL) is used as a termination

criterion for the recursive partitioning.

When discretization finishes, each code metric M has a final expected value Mv for

the defect standard deviation across all the discretized ranges of that metric. Iterative

dichomization sorts the metrics by Mv to find the code metric that best splits the data i.e.,

the code metric with smallest Mv .

A decision tree is then constructed on the discretized metrics. The metric that generated

the best split forms the root of the tree with its discrete ranges acting as the nodes.

When all the metrics are arranged this way, the process is very similar to a hierarchical

clustering algorithm that groups together code modules with similar defect counts and
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some shared ranges of code metrics. For our purposes, we score each cluster found in this

way according to the probability of classes with known defects. For example, in the case

of Figure 5.3(b), if rfc = [0, 1), KLOC = [3, 5), and DIT = [1, 6) then the probability of defect is

0.9.

Step-3: Random Walk Traversal. With the last two steps, we now know (1) which metrics

change together and (2) what ranges of metrics indicate a high likelihood of defects. with

this information, XTREE builds plans from the branches of the tree as follows. Given a

“defective” test instance, we ask:

1. Which current node does the test instance fall into?

2. What are all the desired nodes the test case would want to emulate? These would be

nodes with the lowest defect probabilities.

Finally, we implement a random-walk [Yin18; Sha16]model to find paths that lead from

the current node the desired node. Of all the paths that lead from the current node to the

desired node, we select the path that has the highest overlap with the maximal frequent

itemset. As an example, consider Figure 5.4. Here, of the two possible paths Figure 5.4(a)

and Figure 5.4(b), we choose that latter because it traverses through all the metrics in the

maximal frequent itemset.

5.4.2 How are plans generated?

The path taken by the random-walk is used to generate a plan. For example, in the case

of Figure 5.4, it works as follows:

1. The test case finds itself on the far left, i.e., the “current node” has: R F C : [0, 1), K LO C :

[3, 5) and D I T : [1, 6)

2. After implementing the random walk, we find that “desired” node is on the far right
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(highlighed in black )

3. The path taken to get from the “current node” to the “desired node” would require that

the following changes be made.

◦ R F C : [0, 1)−→ [1, 5);

◦ K LO C : [0, 1)−→ [1, 3); and

◦ C B O : [6, 10)

The plan would then be these ranges of values.

5.5 Cross-project Planning with BELLTREE

Many methods have been proposed for transferring data or lessons learned from one

project to another. Transfer learning with bellwethers is just a matter of calling existing

learners inside a for-loop. For all the training data from different projects, a bellwether

learner conducts a round-robin experiment where a model is learned from project, then

applied to all others. The bellwether is that project which generates the best performing

model. The bellwether effect, states that models learned from this bellwether performs as

well as, or better than, other transfer learning algorithms.

For the purposes of prediction, we have shown previously that bellwethers are remark-

ably effective for many different kinds of SE tasks such as (i) defect prediction, (ii) perfor-

mance optimization, (iii) effort estimation, and (iv) detecting code smells [KM18]. Since

planning takes from prediction, it is valuable to check the value of bellwethers for the

purposes of planning. Note also that use of bellwethers enables us to generate plans from

different data sets from across different projects.

BELLTREE extends the three bellwether operators defined in our previous work [KM18]

on bellwethers: DISCOVER, PLAN, VALIDATE. That is:
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1. DISCOVER: Check if a community has bellwether. This step is similar to our previous

technique used to discover bellwethers [Kri16c]. We see if standard data miners can

predict for the number of defects, given the static code attributes. This is done as follows:

• For a community C obtain all pairs of data from projects P, Q, R, S... such that x , y ∈C ;

• Predict for defects in y using a quality predictor learned from data taken from x ;

• Report a bellwether if one x generates consistently high predictions in a majority of

y ∈C .

Note, since the above steps perform an all-pairs comparison, the theoritical complexity

of the DISCOVER phase will be be O (N 2)where N is the number of projects.

2. PLAN: Using the bellwether, we generate plans that can improve a new project. That is,

having learned the bellwether on past data, we now construct a decision tree similar to

within-project XTREE. We then use the same methodology to generate the plans.

3. VALIDATE: Go back to step 1 if the performance statistics seen during PLAN fail to

generate useful actions.

5.6 Experimental Setup

It can be somewhat difficult to judge the effects of applying plans to software projects.

These plans cannot be assessed just by a rerun of the test suite for three reasons: (1) The

defects were recorded by a post release bug tracking system. It is entirely possible it escaped

detection by the existing test suite; (2) Rewriting test cases to enable coverage of all possible

scenarios presents a significant challenge; and (3) It may take a significant amount of effort

to write new test cases that identify these changes as they are made.

To resolve this problem, SE researchers such as Cheng et al. [CJ10], O’Keefe et al. [OC08;

OC07], Moghadam [Mog11] and Mkaouer et al. [Mka14] use a verification oracle learned
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separately from the primary oracle. This oracles assesses how defective the code is before

and after some code changes. For their oracle, Cheng, O’Keefe, Moghadam and Mkaouer et

al. use the QMOOD quality model [BD02]. A shortcoming of QMOOD is that quality models

learned from other projects may perform poorly when applied to new projects [Men13]. As

a results, we eschew using these methods in favor of evaluation strategies discussed in the

rest of this section.

5.6.1 TheK-test

In order to measure the extent to which the recommendations made by planning tools

matches those undertaken by the developers, we assess the impact making those changes

would have on an upcoming release of a project. For this purpose, we propose theK-test.

We say that a project P is released in versionsV ∈ {Vi ,V j ,Vk}. Here, in terms of release

dates,Vi precedesV j , which in turn precedesVk . We will use these three sets for train, test,

and validation, respectively. These three sets are used as follows:

1. First, train the planner on versionVi . Note: this could either be data that is either from a

previous release, or it could be data from the bellwether project.

2. Next, use the planner to generate plans to reduce defects for files that were reported to

be buggy in version V j .

3. Finally, on versionVk , for only the files that were reported to be buggy in the previous

release, we measure the OO metrics.

Having obtained the changes at versionVk we can now (a) measure the overlap between

plans recommended by the planner and the developer’s actions, and (b) count the number

of defects reduced (or possibly increased) when compared to the previous release. Using

these two measures, we can assess the impact of implementing these plans. Details on
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DIT NOC CBO RFC FOUT WMC NOM LOC LCOM

Version Vk 3 4 4 2 5 2.5 3 400 6

P→Vk+1 · · · [4, 7] · [3, 6] [4, 7] [1000, 2000] [1, 4]
D→Vk+1 3 4 3 5 3 5 4 1500 2

O v e r l a p =
|D∩P|
|D∪P|

×100=
7

9
×100= 77.77%

Figure 5.5 A simple example of computing overlap. Here a ‘·’ represents no-change. Columns shaded
in gray indicate a match between developer’s changes and planner’s recommendations.

measuring each of these are discussed in the subsequent parts of this section.

To compute that overlap, we proceeded as follows. Consider two sets of changes:

1. D: The changes that developers made, perhaps in response to the issues raised in a

post-release issue tracking system;

2. P: The plans recommended by an automated planning tool, overlap attempts to compute

the extent to which a developer’s action matches that of the actions recommended by

planners.

To measure this overlap, we use Jaccard similarity:

Overlap=
|D∩P|
|D∪P|

×100 (5.1)

In other words, we measure the ratio of the size of the intersection between the developers

plans and the size of all possible changes. Note that the larger the intersection between the

changes made by the developers to the changes recommended by the planner, then the

greater the overlap.

An simple example of how overlap is computed is illustrated in Figure 5.5. Here, we have

9 metrics and let’s say a defective file version Vk has metric values corresponding to row

labeled Version Vk . The row labeled P→Vk+1 contains set of treatments recommended by

a planner P for versionVk+1 (note that the recommendations are ranges of values rather

than actual numbers). Finally, the row labeledD→Vk+1 are the result of a developer taking
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certain steps to possibly reduce the defects in the file for versionVk+1. We see that in two

cases (CBO and FOUT) the developers actions led to changes in metrics that were not

prescribed by the planner. But in 7 cases, the developers actions matched the changes

prescribed by the planner. Computing overlap as per Equation 5.1, produces an overlap

value of 77%.

5.6.2 Presentation of Results

Using theK-test and overlap counts defined above, we can measure the overlap between

the planners’ recommendations and developers actions. With this, plot three kinds of charts

to discuss our results:

1. Overlap vs. Counts: A plot of overlap ranges (x-axis) versus the count of files that have

that specific overlap range (on the y-axis). This is illustrated in Figure 5.6. Here the

overlap counts (x-axis) have 4 ticks: 0 (labeled 100). We see that, in the case of XTREE,

the number of files that have between 76%−100% overlap is significantly larger than any

other overlap range. This implies that most of the changes recommended by X T R E E are

exactly what the developers would have actually done. On the other hand, for the other

three planners (Alves, Shatnawi, and Oliveira) the number of files that have between

0%−25% overlap is significantly larger than any other overlap range. This means that

those planners’ recommendation are seldom what developers actually do.

2. Overlap vs. Defects reduced: Just because there is an overlap, it does not necessarily

mean that the defects were actually reduced. To measure what impact overlaps between

planners’ recommendations and developers actions have on reduction of defects, we

plot a chart of overlap (x-axis) against the actual number of defects reduced. This is

illustrated in Figure 5.6. The key distinction between this chart and the previous chart is
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1 Counts the number of files

2
Number of files which have an overlap within

the range between 0% to 25%

3
Number of files which have an overlap within

the range between 76% to 100%

4
Overlap ranges from 0% to 100% in steps

of 25%

5 A count of #defects removed or #defects added.

6 Number of defects removed (or added) at

& 76%–100% overlap. Note: the scales are different.
7 Usually, #defects removed� #defects added.

Figure 5.6 Sample charts to illustrate the format used to present the results.

the y-axis, here the y-axis represents the number of defects reduced. Larger y-axis values

for larger overlaps are desirable because this means that more the developers follow a

planners’ actions, higher the number of defects reduced.

3. Overlap vs. Defects increased: It is also possible that defects are increased as a result of

overlap. To measure what impact overlaps between planners’ recommendations and
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developers actions have on increasing defectiveness, we plot a chart of overlap (x-axis)

against the actual number of defects increased. This is illustrated in Figure 5.6. The key

distinction between this chart and the previous two charts is the y-axis, here the y-axis

represents the number of defects increased. Lower y-axis values for larger overlaps are

desirable because this means that more the developers follow a planners’ actions, lower

the number of defects increased.

5.7 Experimental Results

RQ-5.1: Do planners recommendations match developer actions?

To answer this question, we measure the overlap between the planners’ recommendations

and the developer’s actions. To measure this, we split the available data into training, testing,

and validation sets. That is, given versions V1,V2,V3...., we,

1. train the planners on version V1; then

2. generate plans using the planners for version V2;

3. then validate the effectiveness of those plans on V2 using theK-test.

Then, we repeat the process by training on V2, testing on V3, and validating on version

V4, and so on. For each of these {train, test, validation} sets, we measure the overlap and

categorize them into 4 ranges:

• very little, i.e. 0−25%;

• some, i.e. 26%−50%;

• more, i.e. 51%−75%;

• mostly, i.e. 76%−100%.

Figure 5.7 shows the results of planning with several planners: XTREE, Alves, Shatnawi, and
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Figure 5.7 A count of number of test instances where the developer changes overlaps a planner
recommendation. The overlaps (in the x-axis) are categorized into four ranges for every dataset
(these are 0 ≤ Overlap ≤ 25, 26 ≤ Overlap ≤ 50, 51 ≤ Overlap ≤ 75, and 76 ≤ Overlap ≤ 100). For
each of the overlap ranges, we count the the number of instances in the validation set where overlap
between the planner’s recommendation and the developers changes fell in that range. Note: Higher
counts for larger overlap is better, e.g., C o un t ([75, 100])>C o un t ([0, 25)) is considered better.

Oliveira. Note, for the sake of brevity, we illustrate results for 4 projects– Ant, Camel, Poi,

and Xerces. A full set set results for all projects are available at https://git.io/fjkNM.

We observe a clear dichotomy in our results.

• All outlier statistics based planners (i.e., those of Alves, Shatnawi, and Oliveira) have

overlaps only in the range of 0% to 25%. This means that most of the developers actions

did not match the recommendations proposed by these planners.
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• In the case of XTREE, the largest number of files had an overlap of 76% to 100% and second

largest was between 51% to 75%. This means that, in a majority of cases developers actions

are 76% to 100% similar to XTREE’s recommendations. At the very least, there was an

51% similarity between XTREE’s recommendations and developers actions.

We observe this trend in all 18 datasets– XTREE significantly outperformed other threshold

based planners in terms of the overlap between the plans and the actual actions undertaken

by the developers. Note that reason the results are very negative about the methods of

Alves, Shatnawi, Oliveira, et al. is because their recommendations would be very hard to

operationalize (since those recommendations were seldom seen in the prior history of a

project). Thus, our response to this research question can be summarized as follows:

Result: XTREE significantly outperforms all the other outlier statistics based planners.

Further, in all the projects studied here, most of the developer actions to fix defects in a

file has as 76%–100% overlap with the recommendations offered by XTREE.

RQ-5.2: Do planners’ recommendation lead to reduction in defects?

In the previous research question measured the extent to which a planner’s recommenda-

tions matched the actions taken by developers to fix defects in their files. But, the existence

of a high overlap in most files does not necessarily mean that the defects are actually re-

duced. Likewise, it is also conceivable that that defects are added due to other actions the

developer took during their development. Thus, it is important to ask how many defects

are reduced, and how many are added, in response to larger overlap with the planners’

recommendations.

Our experimental methodology to answer this research question is as follows:

• Like before, we measure the overlap between the planners’ recommendations developers’
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Figure 5.8 A count of total number defects reduced as a result each planners’ recommendations. The
overlaps are again categorized into four ranges for every dataset (denoted by mi n ≤ O v e r l a p <
ma x ). For each of the overlap ranges, we count the total number of defects reduced and in the
validation set for the classes that were defective in the test set as a result of overlap between the
planner’s recommendation and the developers changes that fell in the given range

actions.

• Next, we plot the aggregate number defects reduced and in file with overlap values

ranging from 0% to 100% in bins of size 25% (for ranges of 0−25%, 26−50%, 51−75%,

and 76−100%).

Similar to RQ-5.1, we compare XTREE with three other outlier statistics based planners of

Alves et al., Shatnawi, and Oliveira, for the overall number of defects reduced and number
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Figure 5.9 A count of total number defects increased as a result each planners’ recommendations. The
overlaps are again categorized into four ranges for every dataset (denoted by mi n ≤ O v e r l a p <
ma x ). For each of the overlap ranges, we count the total number of defects increased in the validation
set for the classes that were defective in the test set as a result of overlap between the planner’s
recommendation and the developers changes that fell in the given range

of defects added. We prefer planners that have a large number defects reduced for higher

overlap ranges are considered better.

Figure 5.8 and Figure 5.9 show the results of planning with several planners: XTREE,

Alves, Shatnawi, and Oliveira. Note that, similar to the previous research question, we only

illustrate results for 4 projects– Ant, Camel, Poi, and Xerces. A full set of results for RQ-5.2

for all projects are available at https://git.io/fjIvG.

We make the following observations from in our results:
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1. Defects Decreased: Figure 5.8 plots the number of defects removed in files with various

overlap ranges. It is desirable to see larger defects removed with larger overlap. We note

that:

• When compared to other planners, the number of defects removed as a result of

recommendations obtained by XTREE is significantly larger. This trend was noted in

all the projects we studied here.

• In the cases of Ant, Camel, and Xerces there are large number of defect reduced when

the overlap lies between 76% and 100%. Poi is an exception– here, we note that the

largest number of defects are removed when the overlap is between 51% and 75%.

2. Defects Increased: Figure 5.9 plots the number of defects added in files with various

overlap ranges. It is desirable to see lower number of defects added with larger overlap.

We note that:

• When compared to other planners, the number of defects added as a result of recom-

mendations obtained by XTREE is comparatively larger. This trend was noted in all

the projects we studied here. This is to be expected since, developers actions seldom

match the recommendations of these other planners.

• In all the cases the number of defects removed was significantly larger than the number

of defects added. For example, in the case of Camel, 420+ defects were removed at 76%

– 100% overlap and about 70 defects were added (i.e., 6×more defects were removed

than added). Likewise, in the case of Xerces, over 300 defects were removed and only

about 30 defects were added (i.e., 10×more defects were removed than added).

The ratio of defects removed to the number of defects added is very important to asses.

Figure 5.10 plots this ratio at 76% – 100% overlap (it applied equally for the other overlap

ranges as they have far fewer defects removed and added). From this chart, we note that

out of 18 datasets, in 14 cases XTREE lead to a significant reduction in defects. For example,
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Figure 5.10 A count of total number defects reduced and defects increased as a result each planners’
recommendations. The overlaps are again categorized into four ranges for every dataset (denoted
by mi n ≤ O v e r l a p <ma x ). For each of the overlap ranges, we count the total number of defects
reduced and defects increased in the validation set for the classes that were defective in the test set
as a result of overlap between the planner’s recommendation and the developers changes that fell
in the given range

in the case of Ivy and Log4j, there were no defects added at all.

However, in 4 cases, there were more defects added than there were removed. Given the

idiosyncrasies of real world projects, we do not presume that developers will always take

actions as suggested by a planner. This may lead to defects being increased, however, based

on our results we notice that this is not a common occurrence. In summary, our response

to this research question is as follows:

Result: Plans generated by XTREE are superior to other outlier statistics based planners

in all 10 projects. Planning with XTREE leads to the far larger number of defects reduced

as opposed to defects added in 9 out of 10 projects studied here.
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ant-1 13 13 12 3 33 19 0 27 10 0 62 54

ant-2 0 6 13 0 42 33 0 27 27 0 114 61

ant-3 22 18 6 1 71 42 0 47 27 0 108 124

camel-1 76 29 10 0 90 30 0 52 20 0 226 98

camel-2 36 25 30 0 109 100 0 69 68 0 439 277

ivy-1 1 4 12 0 10 42 0 5 13 0 12 25

jedit-1 13 9 11 8 35 44 0 39 50 0 136 108

jedit-2 28 24 10 1 77 34 0 36 39 0 107 115

jedit-3 18 30 28 1 67 75 0 28 35 0 70 86

log4j-1 5 1 0 0 7 14 0 3 8 0 8 50

poi-1 1 0 7 5 0 80 0 2 19 0 81 90

poi-2 78 4 0 18 135 0 0 27 2 0 87 83

velocity-1 51 2 6 0 25 15 0 39 32 0 90 48

xalan-1 22 6 2 105 43 51 13 60 66 0 409 230

xalan-2 110 0 6 0 38 49 0 102 54 0 83 298

xerces-1 23 2 11 0 11 13 0 17 24 0 305 49

xerces-2 7 0 2 0 3 11 0 6 18 0 117 165

Figure 5.11 A count of total number defects reduced with XTREE and BELLTREE. Higher values at
Larger overlaps are better.

RQ-5.3: Are cross-project plans generated by BELLTREE as effective as

within-project plans of XTREE?

In the previous two research questions, we made an assumption that there are past releases

that can be used to construct the planners. However, this may not always be the case.

For new project, it is quite possible that there are not any historical data to construct the

planners. In such cases, SE literature proposes the use of transfer learning. In this work, we

leverage the so-called bellwether effect to identify a bellwether project. Having done so, we

construct a planner quite similar to XTREE with the exception that the training data comes
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ant-1 15 1 3 0 10 11 0 2 1 0 4 2

ant-2 63 9 1 0 33 10 0 11 2 0 20 4

ant-3 69 22 9 0 38 33 0 15 11 0 10 20

camel-1 36 10 5 0 11 25 0 6 14 0 14 31

camel-2 112 5 2 0 26 15 0 17 9 0 74 15

ivy-1 6 1 0 0 3 2 0 2 1 0 0 0

jedit-1 37 3 2 2 20 10 0 11 6 0 12 6

jedit-2 15 2 5 0 8 19 0 2 11 0 4 12

jedit-3 3 1 1 0 1 0 0 1 1 0 0 0

log4j-1 73 1 2 1 14 7 0 13 2 0 47 7

poi-1 190 1 1 6 7 1 0 5 0 0 182 6

poi-2 87 4 0 2 23 7 0 11 5 0 58 184

velocity-1 21 1 4 4 3 14 0 3 17 0 14 10

xalan-1 152 2 3 21 46 29 6 33 31 0 101 217

xalan-2 506 27 3 0 25 48 0 87 32 0 388 101

xerces-1 52 0 0 0 10 1 0 11 1 0 34 1

xerces-2 169 4 0 0 14 11 0 9 12 0 146 34

Figure 5.12 A count of total number defects reduced with XTREE and BELLTREE. Lower values at
Larger overlaps are better.

from the bellwether project. This variant of our planner that uses the bellwether project is

called the BELLTREE (see §5.5 for more details).

To answer this research question, we train XTREE on within-project data and generate

plans for reducing the number of defects. We then compare this with plans derived from

the bellwether data and BELLTREE. We hypothesized that since bellwethers have been

demonstrated to be efficient in prediction tasks, learning from the bellwethers for a specific

community of projects would produce performance scores comparable to within-project

data. Our experimental methodology to answer this research question is as follows:
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1. Like before, we measure the overlap between the planners’ recommendations developers’

actions.

2. Next, we tabulate the aggregate number defects reduced (Figure 5.11) and the number

of defects increased (Figure 5.12) in files with overlap values ranging from 0% to 100% in

bins of size 25% (for ranges of 0−25%, 26−50%, 51−75%, and 76−100%).

Similar to previous research questions, we compare XTREE with BELLTREE and a ran-

dom oracle (RAND). We prefer planners that have a large number defects reduced for higher

overlap ranges and planner that have lower number of defects added are are considered

better.

We make the following observations from in our results:

1. Defects Decreased: Figure 5.12 we tabulate the number of defects removed in files with

various overlap ranges for XTREE and BELLTREE. It is desirable to see larger defects

removed with larger overlap. We note that there is no clear winner, i.e., BELLTREE

performs just as well as XTREE.

2. Defects Increased: Figure 5.11 we tabulate the number of defects added in files with

various overlap ranges for XTREE and BELLTREE. It is desirable to see lower defects

removed with larger overlap. We again note that there is no clear winner, i.e., BELLTREE

performs just as well as XTREE.

3. In all the cases the number of defects removed was significantly larger than the number

of defects added.

In summary, our response to this research question is as follows:

Result: The effectiveness of BELLTREE and XTREE are similar. If within-project data is

available, we recommend using XTREE. If not, BELLTREE is a viable alternative.
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5.8 Discussion

When discussing these results with colleagues, we are often asked the following questions.

1. Why use automatic methods to find quality plans? Why not just use domain knowledge;

e.g. human expert intuition? Recent research has documented the wide variety of conflict-

ing opinions among software developers, even those working within the same project.

According to Passos et al. [Pas11], developers often assume that the lessons they learn from

a few past projects are general to all their future projects. They comment, “past experiences

were taken into account without much consideration for their context”. Jorgensen and Gr-

uschke [JG09] offer a similar warning. They report that the supposed software engineering

“gurus” rarely use lessons from past projects to improve their future reasoning and that such

poor past advice can be detrimental to new projects [JG09]. Other studies have shown some

widely-held views are now questionable given new evidence. Devanbu et al. examined

responses from 564 Microsoft software developers from around the world. They comment

programmer beliefs can vary with each project, but do not necessarily correspond with

actual evidence in that project [Dev16]. Given the diversity of opinions seen among humans,

it seems wise to explore automatic oracles for planning.

5.9 Summary

Most software analytic tools that are currently in use today are mostly prediction algorithms.

These algorithms are limited to making predictions. We extend this by offering “planning”:

a novel technology for prescriptive software analytics. Our planner offers users a guidance

on what action to take in order to improve the quality of a software project. Our preferred

planning tool is BELLTREE, which performs cross-project planning with encouraging results.
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With our BELLTREE planner, we show that it is possible to reduce several hundred defects

in software projects.

It is also worth noting that BELLTREE is a novel extension of our prior work on (1)

the bellwether effect, and (2) within-project planning with XTREE. In this work, we show

that it is possible to use bellwether effect and within-project planning (with XTREE) to

perform cross-project planning using BELLTREE, without the need for more complex

transfer learners. Our results from Figure 5.7 show that BELLTREE is just as good as XTREE,

and both XTREE/BELLTREE are much better than other planners.

Further, we can see that both BELLTREE and XTREE recommend changes to very few

metric, while other unsupervised planners such as Shatnawi, Alves, and Olivera, recom-

mend changing most of the metrics. This is not practical in many real world scenarios.

Hence our overall conclusion is to endorse the use of planners like XTREE (if local data

is available) or BELLTREE (otherwise).
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CHAPTER

6

FUTURE WORK

6.1 Future Work: Large Scale Transfer

While our work has generated several specific results about software projects projects, it

has failed (thus far) to provide general lessons that are demonstrably useful across a large

number of software projects. This, surely, is the utimate goal of software analysis. Indeed,

we must attempt to do better, given the ready availability of many software projects and

the scalablility of automated analytics.

A resonable explanation for the limited conclusions from automated analytics is the

amount of data that is being used in software analytics. A typical research paper in soft-

139



ware analytics studies less than a few dozen projects. Such small samples can never be

representative of something as diverse as software engineering.

Perhaps it is time to stop making limited conclusions from small samples of data set of

software projects. To be able to discover general conclusions in software engineering, we

propose learning from a much larger corpus than ever used before (10,000+ projects). To

that end, the future work of after this thesis will we explore innovative and scalable transfer

learning methods based on very fast clustering and transfer learners based on very fast

stream mining algorithms that use incremental hyper-parameter optimization.

With these innovations should enable use to explore 1500+ commercial projects main-

tained by our industrial colleagues at Raleigh’s Research Triangle Park; as well as the 10,000+

projects currently available from collaborative coding platforms such as Github. Using this

data, the future work will ask the following question:

Can transfer learning between 10,000+ project generate insightful models?

In order to answer the previous question, we propose watching for new releases of the

projects that are being studied. When these new releases do occur, we can apply our current

models to those new releases. This should demonstrate the value (or lack thereof) of our

models on new data.

6.2 Threats to Validity

6.2.1 Sampling Bias

Sampling bias threatens any empirical experiment; what matters in one case may or may not

hold in another case. For example, even though we use a number of open-source datasets

in this study which come from several sources, they were all supplied by individuals.
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That said, this work shares this sampling bias problem with every other data mining

paper. As researchers, all we can do is document our selection procedure for data and

suggest that other researchers try a broader range of data in future work.

6.2.2 Learner Bias

For building the quality predictors in this study, we elected to use random forests. We chose

this learner because past studies shows that, for prediction tasks, the results were superior

to other more complicated algorithms [Les08] and can act as a baseline for other algorithms.

Apart from this choice, one limitation to our current study is that we have focused here

on homogeneous transfer learning (where the attributes in source and target are the same).

The implications for heterogeneous transfer learning (where the attributes in source an

target have different names) are not yet clear. We have some initial results suggesting that a

bellwether-like effect occurs when learning across the communities but those results are

very preliminary. Hence, for the moment, we would conclude:

• For the homogeneous case, we recommend using bellwethers rather than similarity-

based transfer learning.

• For the heterogeneous case, we recommend using dimensionality transforms.

6.2.3 Evaluation Bias

This work uses a number of measures of prediction quality, for example, to discover if bell-

wethers exist, we use G-Score for example (see Equation 2.2). Other quality measures often

used in software engineering to quantify the effectiveness of prediction [MC07; Men07c;

Fu16b]. A comprehensive analysis using these measures may be performed with our repli-

cation package.
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6.2.4 Order Bias

With random forest and SMOTE, there is invariably some degree of randomness that is

introduced by both the algorithms. Random Forest, as the name suggests, randomly samples

the data and constructs trees which it then uses in an ensemble fashion to make predictions.

To mitigate these biases, we run the experiments 30 times (the reruns are equal to 30 in

keeping with the central limit theorem). Note that the reported variations over those runs

were very small. Hence, we conclude that while order bias is theoretically a problem, it is

not a major problem in the particular case of this study.
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