
ABSTRACT

WANG, JIE. Modeling and Analysis of Mobile Data Dynamics in Heterogeneous Wireless
Networks. (Under the direction of Wenye Wang and Xiaogang Wang.)

Owing to advances in wireless communication, networking and data analysis technologies,

the generation, dissemination and acquisition of data are more frequent and accessible than

ever. Consequently, data services, which move data from its generator(s) to its consumer(s)

through individual connections, are quickly migrating to the edge of networks. Such wireless

systems are composed of numerous devices that are different in many aspects, e.g., communica-

tion technology, mobility pattern, and so on. Despite the benefits they brings, such as reducing

service latency, emerging data services at the edge create new challenges to the network: hetero-

geneity of individuals adds to the complexity of system design, management, and performance

evaluation, while proliferating end devices impose an ever-increasing demand on resources, that

are already scarce at the edge. To exploit the full potential of data services, it is essential to

understand the cause, governing rules, and impact of data’s mobility in such heterogeneous

wireless networks, for the benefit of data owners, service providers, and network operators.

Therefore, this dissertation is dedicated to study mobile data dynamics, that is, dynamic

processes of mobile data. Specifically, we identify three dynamic processes, of information,

coverage, and spectrum, as the cause, manifestation, and impact of mobile data, respectively.

Then we examine these dynamics process and the governing rule of data movements, through a

modeling and analysis approach to answer the following questions: when data move and stop,

where data are, how data move, and what impact mobile data induce on network resources.

In particular, we first study conflicting information propagation with a novel Susceptible-

Infectious-Cured (SIC) model to answer the when question. Our results reveal the impact of

network topology on the lifetime of the undesired information, which provides bounds, scaling

laws, and guidelines for practical information control measures. For the where question, we

quantify the whereabouts of data, that is, data coverage, with a data-strength metric, and find

the change of data coverage depends heavily on user mobility, based on which we establish

a framework to predict data coverage, and achieve over 80% accuracy in tests with real-world

traces. Then, we consider dissemination processes of multiple data blocks in the emerging DSA-

enabled fog paradigm, to answer the how and what questions. We propose a gravity model to

describe how data move in an offloading process, based on which we find that, the amount of

storage and communication resource needed for data offloading scales linearly with the network

size. Particularly for the spectrum resource, a scarce resource in wireless networks, we study

spectrum activity surveillance (SAS) to observe the impact of mobile data, and propose multi-

monitor deployment strategies with guaranteed performances for both the dedicated and crowd-

source SAS scenarios. The work in this dissertation advances our understanding on mobile data,

and provides design guidelines for data services in heterogeneous wireless networks.
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Chapter 1

Introduction

1.1 Motivation

Data, which refers to transmittable and storable computer information, has been an integral part

of modern society, since the invention of computers. Especially in the past decade, its indis-

pensable role in various applications, ranging from marketing [126] to scientific researches [40],

has been re-enforced by advances in data mining, machine learning, and artificial intelligence

studies. As the proliferation of smart devices that can interconnect with each other on-the-go,

the creation, collection, and analysis of data are much easier and more accessible than before,

leading to huge amounts of data being generated in both wired and wireless networks almost

every second. For instance, the online social network (OSN) giant Facebook has 1.6 billion daily

active users, who generate more than 4 PetaByte new data every day [127]. Meanwhile, the de-

livery networks of data are evolving into large, complex systems, due to the explosive growth of

wireless devices, e.g., the number of Internet-of-Things (IoT) devices is expected to exceed 500

billion by 2030 [30], imposing a tangible impact on mobile data traffic. Consequently, recent

years are witnessing the transition of data from a commodity owned by companies, to a service

that can be provided/acquired by anyone, just like the transition of computing resource in cloud

infrastructure a decade ago [102]. The principal course of such service is to move data from its

generator(s) to its consumer(s) through a network of data carriers. In this data dissemination

process, data is mobile, in the sense that both the traffic volume and whereabouts are constantly

changing due to user movement and data forwarding actions.

1.1.1 Data Is Alive and Mobile

From the data owner/disseminator’s perspective, it is their natural rights to know who have

taken (temporary) possession of its data, where those data blocks have traveled to, and when a

data block of interest stops circulating in a certain region. All of these questions are tied closely

to movements of data in a dissemination process.

From the delivery network’s perspective, data is alive, that is, interacting with individuals
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in the network, only when it is mobile. In other words, the lifetime of data begins at the time

instant when it is first injected into the network, and stops when none of its copies is circulating

in the network of interest any more. During its lifetime, every move of a data block induces

dynamical changes in the network, with respect to both resources and network status. In the

former aspect, mobile data utilizes various kinds of network resources, for example: storage

resource is consumed at a device, when the data block is temporarily stored by intermedi-

ate data carriers (for later forwarding); bandwidth/spectrum resource is consumed, when it is

transmitted between data carriers; and computation resource is consumed, when it needs to be

fragmented, processes, or routed. On the other hand, operating status of both individuals and

the networked system as a whole, e.g., capacity and system integrity, are in turn impacted by

the mobile data. For example, a computer malware, e.g., the SMS Trojans [43] that spreads

over emails and messages, can hide in data blocks, piggyback on their dissemination process,

and attack multiple users in an institutional computer network. As such a process unfolds in

time, normal operations of the networked system may not be sustained.

Therefore, it is both primitive and essential to understand data’s mobility, for the design,

management, and recovery of data-delivery networks, as well as the provision of service trans-

parency to data owners. Specifically, we identify the following open questions to understand the

dynamic processes with respect to mobile data:

1. When does a data block start and stop moving in a network?

2. Where is the data block of interest accessible during dissemination?

3. How do data blocks move in the heterogeneous wireless network?

4. What is the observable impact of mobile data on data-delivery networks?

Among these, the first and second questions focus on the dissemination process of a single

data block, while the rest two questions are for cases of multiple blocks. Particularly, the first

question focuses on the time domain, in which the cause, or the driving force of mobile data,

dictates the start and stop of the dissemination process, i.e., the lifetime of a data block in a

network. The second question focuses on the space domain, in which the whereabouts of data

refer to the time-varying locations, where the data block (and its copies) is accessible. The

third question asks for the governing rule of mobile data, taking interactions of multiple data

dissemination processes into consideration. The last question focuses on the consequence and

impact of data being mobile, especially on shared network resources.

Considering that movements of a single data block already create a dynamic process in the

space that spans over time, geographical location, and spectrum domains, the sheer complexity

of multiple data blocks being replicated, piggybacked and transmitted in the same network

prohibits these questions to be answered with a single model, nor a simple solution. Therefore,

we first specify and analyze the scenario of mobile data, and then introduce our solution that

tackles the aforementioned problem in different domains.
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1.1.2 Mobile Data Dynamics in Heterogeneous Wireless Networks

Wireless network is becoming the primary choice of many data disseminators, and the common

practice of content delivery services, which are enabled by developments in wireless communi-

cation and networking technologies, including 5G [115], dynamic spectrum access (DSA) [84],

IoT [4], fog computing [119], and so on. This can be observed by the ever-increasing wireless

(especially mobile) traffic volume [120] and spectrum demand. For instance, ever since 2015,

over 80% of social media traffic in the U.S. comes from wireless mobile devices, as well as over

50% of all website traffic world wide [62]. Such a wireless data-delivery paradigm is adopted

by various application scenarios, including data sharing/forwarding [67, 68] in Long Term Evo-

lution (LTE)-device-to-device communication (D2D) networks, mobile advertisement [100] in

WiFi-LTE networks, safety message dissemination [68, 130] in vehicular networks, IoT provi-

sioning by LTE-based fog [4], and many more. Motivated by its extensive applications, this

dissertation is devoted to study data mobility in heterogeneous wireless networks, which are

composed of both wireless end devices, such as mobile phones, smart vehicles, and sensory de-

vices, and network elements of the wireless access network, such as base station (BS) in cellular

networks, AP in wireless LAN, and roadside unit (RSU) in vehicular networks.

Such wireless data-delivery networks exhibit distinct characteristics, which also bring new

challenges: First, data carrying individuals (users) themselves are mobile, resulting in intermit-

tent data transmission links, and changing network topologies. Moreover, user mobility intro-

duces the notion of ‘where’, i.e., geographical location, which further complicates the problem.

Second, individuals in such networks can be highly diverse in many aspects, including commu-

nication protocol, radio access technology (RAT), data forwarding preference, mobility pattern,

etc., creating a dynamic and heterogeneous environment, which is difficult to model and exper-

iment on. Last but not least, the data-delivery network can be formed in a spontaneous and

ad hoc manner, which means there may not exist control of any form, unlike in a wired system

with central control, e.g., a cloud computing system built on Amazon EC2 servers [34].

To address these challenges, we identify three dynamic processes, each describes the behavior

of mobile data in one of the three domains, namely, time, geographical space, and spectrum,

such that their properties are tractable to be analyzed individually, and collectively they are

comprehensive enough to understand mobile data in heterogeneous wireless networks. These

dynamic processes reflects the cause, manifestation, and result of data’s mobility, are hence

referred to as mobile data dynamics.

1.1.2.1 Information Dynamics: the Driving Force of Mobile Data

Any data-delivery network is designed to facilitate the flow of information, in the form of

moving data blocks, so the beginning and the end of information propagation decide the start

and stop time of data movement. However, as networks evolve into more complex systems,

increasing and more diverse users introduce information from various aspects, even conflict-
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ing information, e.g. rumor v.s. truth, in networks. Similar phenomena can also be observed

in many networks, if the information concept is generalized to include virus/malware, system

operation status and adoption of new products. Despite different manifestations, we observe

that all the conflicting information propagation instances share some common characteristics:

the later-injected desired information targets at an existing undesired information, stops its

propagation, and terminates a potential/ongoing epidemic of the latter. In this way, the unde-

sired information resembles an infectious virus that can infect susceptible individuals, while the

desired information functions as an antidote that can permanently immune susceptible individ-

uals or cure infected individuals. Due to this asymmetry, the propagation process is transient,

in the sense that its asymptotic behavior at time t goes to infinity is known (virus-free), and

the two epidemic process co-exist only for a short period of time, as opposed to the long-term

coexistence (and equilibrium) in existing models on competing epidemics, e.g., [94, 16, 33]. Ac-

cordingly, a natural question is, how such propagation process evolves in finite time. In other

words, there is little knowledge on the aftermath of conflicting information propagation via

individual spreading, especially when the undesired information (virus) dies out, how fast the

number of victims of the virus decreases below a predetermined level, and how to design effec-

tive information (antidote) distribution strategy to reduce the lifetime of undesired information

in a network. These questions have a broad impact on design, operation, and management of

networks, because information propagation is the driving force of mobile data, and the extinc-

tion of the undesired information marks the end of its propagation (generation of data traffic),

while the impact of the propagation reveals requirements of data delivery services.

1.1.2.2 Coverage Dynamics: the Whereabouts of Mobile Data

In a wireless data-delivery network that includes mobile devices, a data dissemination process is

actually a sequence of data relocation actions, which are the superposition of data transmissions

and entity (data-carrying individuals) movements. In this scenario, data’s mobility is manifested

in its time-varying coverage, that is, the geographical location where the data block of interested

can be accessed (legally by its consumer or monitor, and illegally by malicious attackers).

Then the direct question of mobile data follows: where is the data during a dissemination

process? If such a dissemination process is viewed as a cause-and-effect phenomenon, existing

research focus on single factors from the cause-direction, e.g., from the network topology and

communication aspects [100]. While most literature [100, 68, 130, 88] do not carry the notion of

‘where’, the ones that do [141, 66] assume entities are homogeneous in every aspect. To answer

the where question for a heterogeneous scenario, a new model is needed to describe data’s

current whereabouts/coverage. Knowing the dynamically changing data coverage is important

to both the data owner(s) and the delivery network. To the former, data dissemination should

be transparent to the customer (data owner/disseminator) as a service, while to the later,

particularly network elements, including access points, base stations and gateways, changing

coverage translates to traffic load and is hence relevant to resource management, as well as
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policy and charging plan design.

1.1.2.3 Spectrum Dynamics: the Impact of Mobile Data in the Spectrum Domain

Spectrum is one of the most important resource in current wireless systems, due to its scarcity.

Any data transmission in a wireless network will result in a spectrum activity, i.e., occupancy

of a spectrum slice for a certain period of time (typically several milliseconds) at a geographical

location, so that no other individual in this region can utilize the same slice simultaneously. In

other words, spectrum dynamics, that is, time-varying spectrum activities over a geographical

region, is the outcome of mobile data, as well as an impact to the system capacity. To observe and

evaluate such impact, it is necessary to have a spectrum surveillance system, which carries out

continuous scans of spectrum activities on the frequencies of interest, for the purpose of usage

data collection, including temporal and spatial patterns of spectrum occupancy, user mobility,

as well as traffic patterns. Spectrum surveillance is particularly crucial to dynamic spectrum

access (DSA)-enabled systems, because of the risks introduced by its open and opportunistic

nature. In prior studies of spectrum surveillance strategies (e.g., [107, 56, 65]), an implicit

assumption is that spectrum monitors are sufficiently powerful, such that they can watch over

the entire geographical region of interest and tune/move without any limit. The fact is that

most spectrum activities, including communications, attacks/jamming and monitoring/sniffing,

are local, i.e., confined in both the spectrum domain and the space domain during a fixed-

length time interval. This discrepancy is especially pronounced in wide-band wide-area spectrum

monitoring, which naturally leads to an open question: how to model a spectrum surveillance

process and design deployment strategies for monitors? Answers to this question sketch a way

to evaluate the impact of data mobility in emerging wireless systems, where DSA is enabled to

improve spectrum efficiency.

1.1.2.4 Network-Data Interaction: Governing Rules of Mobile Data

In addition to the three mobile data dynamics, which are external manifestations of data’s move-

ments in different domains, it is equally necessary to study how data move, i.e., the governing

rule of mobile data, to fully understand how their movements are constrained by the available

resource in a wireless system, and how their movements in turn affect the system. This ques-

tion is especially meaningful to emerging networking paradigms, such as fog computing [119],

because they are expected to support frequent data offloading induced by IoT applications at

a massive scale, with rather limited resources [78]. While existing study in this line of research

design offloading schemes to direct where data blocks should move, e.g., [140, 134, 135, 23, 97],

to minimize the offloading latency [129] and/or energy consumption [128] for a single task, or

to maximize revenue of the network [133], there is little knowledge on how to evaluate the

performance of such systems, particularly how much resource the offloading process consumes,

especially how it scales with the network size. In fact, scalability has been recognized as one

of the major design concerns for the fog paradigm [2], and the crux of the resource consump-
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tion problem [139], which motivates us to model the data offloading processes and study the

performance evaluation problem for the resource-constrained edge networks.

1.2 Research Questions and Contributions

With the three mobile data dynamics identified in different domains, and network-data inter-

action specified for data’s mobility, we study mobile data in a top-down manner: we start from

the driving force (information dynamics) in the time domain, then move to the description of

whereabouts (coverage dynamics) in the space domain, further to the governing rules of data

movements, and finally arrive at the impact on networks (spectrum dynamics) in the spectrum

domain. Each step addresses one question (when, where, how, and what) identified at the be-

ginning of this section. Next, we briefly summarize the research questions to address, in each

step of this dissertation, and list our contributions toward the understanding of mobile data.

1.2.1 Information Dynamics: When Data Start and Stop Moving

Information propagation is the driving force of mobile data. With respect to information dynam-

ics, the first work studies the propagation process of conflicting information, which is expected

to answer when data start and stop moving. Considering the resemblance between a pair of

conflicting information and a pair of virus and antidote, we model such a propagation process

as two competing epidemics. To address the open question of how virus and antidote epidemics

evolve in the same network, specifically, how much time it takes the undesired information

(virus) to stop propagating, we derive bounds for such dynamics, in terms of network size and

initial conditions. In this process, we reveal the influence of network topology on the lifetime

of the undesired information. Further, as applications of the proposed model, we propose in-

formation injection strategies to reduce the lifetime of the undesired information, and design

an algorithm to infer the time-varying number of information adopters in the network. Our

contributions toward the when (Question 1) question are summarized as follows.

• Modeling: We propose a susceptible-infected-cured (SIC) epidemic model to study the

propagation process of antidote-virus-like conflicting information in a network, which

captures the competing-while-spreading effect of the virus and antidote.

• Metric: We define extinction time and half-life time of the virus, to describe the lifetime of

the undesired information, as well as to quantify the effectiveness of information injection

as a countermeasure against the undesired information.

• Results: We derive upper and lower bounds of the extinction time and half-life time,

for SIC dynamics in networks with an arbitrary topology, which reveals how topological

properties of a network change the scaling of virus’ lifetime, over the size of the network.
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• Design guideline: We propose a divide-and-conquer guideline for antidote (desired infor-

mation) injection, to effectively reduce the extinction time of the undesired information.

• Algorithm: We design an inference algorithm, to estimate the number of information

adopters in the network, during the competition between the two pieces of information,

to better understand the real-time impact of the undesired information.

1.2.2 Coverage Dynamics: Where Data Are during Dissemination

The second topic focuses on the whereabouts of a data block (and its copies) during its dis-

semination process. To answer where data are, we formally define and quantify data coverage,

that is, where the data block is accessible, such that data coverage can be represented by a

time-varying signal on a graph, which captures physical movements of individual users/entities,

and embeds geographical locations. Analyzing snapshots of the graph signal reveals the impact

of user mobility, and how mobility can be used in predicting data coverage in the future. Then

we build a prediction framework and evaluated its accuracy with real-world GPS traces. Our

contributions toward the whereabouts (Question 2) of mobile data are summarized as follows.

• Modeling: We propose an entity model, based on which data coverage is formally defined,

quantified by the data-strength metric, and formulated as a series of numeric signals on a

graph, which embeds location information.

• Metric: We define the mobility dependence index (MDI) to quantitatively reveal the

impact of user mobility on the change of data coverage. We observe high MDI when the

maximum moving speed and the participating probability are low, indicating it is possible

to predict data coverage based on previous observations and user mobility in these cases.

• Application: We build a prediction framework of data coverage, which achieves an over

80% accuracy in simulation with real-world mobility traces.

1.2.3 Governing Rules: How Data Move during Offloading

The third work focuses on the governing rule and the impact of mobile data in an offloading

process, which is an exemplified application of the fog computing paradigm. With respect to

how data blocks move, we study the inter-play of multiple tasks that compete for network

resource during their offloading processes, and propose a gravity-based offloading model that

can describe a variety of offloading criteria. With respect to the impact on network resource, we

define device and network efforts, which quantify the the amount of resource consumed during

the offloading of any task. Our contributions toward the governing rule (Question 3) and impact

(Question 4) of mobile data are summarized as follows.

• Modeling: We propose a gravity-based offloading model, to capture probabilistic task

offloading processes in the fog, by which a variety of offloading criteria can be described.
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• Metric: We define task lifetime, device effort and network effort, to quantify the offloading

performance for individual tasks, and the amount of storage resource, and communication

resource consumed by the offloading process.

• Result: We derive upper bounds for the performance metrics under a generic gravity

rule, and find that the lifetime of individual tasks is at most constant with the network

size, and the total efforts spent by the system scale linearly with the network size.

1.2.4 Spectrum Dynamics: What Observable Impact Mobile Data Cause

Our last work focuses spectrum dynamics, which is the result of mobile data. Particularly, we

study spectrum activity surveillance (SAS) processes over a large geographical region, to answer

what is the observable impact of mobile data in the spectrum domain. To be more specific, we

identify the goals of SAS to be sweep-coverage of the spectrum/space, and detection of spectrum

culprits. Taking geographical space, and locality of spectrum activities into consideration, we

propose a two-step solution, such that any SAS process can be formulated into a graph walk

process. Two typical surveillance scenarios, namely, the dedicated and crowdsoruce scenarios,

are analyzed to address their distinct design concerns, i.e., efficient sweep-coverage and quick

detection of culprits, respectively. As an application of the proposed modeling approach, we

propose deterministic and randomized monitor deployment strategies, whose performances,

i.e., coverage time and detection time are analyzed. Our contributions toward the observable

impact (Question 4) of mobile data are summarized as follows.

• Modeling: We model spectrum activities in a spectra-location space that incorporates

spectra, temporal and geographical domains, while the locality of spectrum activities is

captured. Then the SAS strategy design is formulated as a graph walk problem.

• Metrics: We define the coverage time and detection time for monitor deployment strate-

gies, so that the qualitative data collection and culprit detection objectives are translated

to clear quantitative metrics, by which strategies can be fairly compared.

• Results: We show that, despite the switching capacity limits, randomized strategies of

m monitors can achieve sweep-coverage over a space of n assignment points in Θ( nm lnn)

time, and detect a persistent or adversarial culprit in Θ( nm) time.

1.3 Organization of This Dissertation

In summary, our systematic study of mobile data dynamics expands our knowledge on data

dissemination services, as they migrate to the network edge, and provide practical guidelines

for fast, efficient, and predictable service provision in heterogeneous wireless networks.

This dissertation revolves around the cause, description, governing rule, and impact of mo-

bile data, and takes a modeling approach to address the when, where, how, and what questions
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of mobile data, which are identified at the beginning of this chapter. The rest of this dissertation

is organized as follows: Chapter 2 discusses the conflicting information propagation process, to

answer when data starts and stops moving in networks. Then in Chapter 3, coverage dynamics,

that is the manifestation of mobile data in a wireless environment, is introduced to examine

the whereabouts of a single data block (and its copies) in its dissemination process. Chapter

4 focuses on the governing rule of mobile data, which studies how multiple data blocks move

during offloading, under resource constraints in a fog computing system. Chapter 5 focuses

on observing the impact of mobile data, for which spectrum activity surveillance is studied

for DSA-enabled wireless systems. Finally, this dissertation is concluded in Chapter 6, where

possible extensions are also discussed.
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Chapter 2

Information Dynamics: Modeling

and Analysis of Conflicting

Information Propagation in a Finite

Time Horizon

In this chapter, we study information dynamics, particularly the propagation process of conflict-

ing information in networks, which provides in-depth understanding of how network topology

determines the lifetime of mobile data dynamics. We find that the lifetime of the undesired

information can be upper and lower bounded by functions of the network size and topological

properties. Specifically, when connections concentrate on a few individuals to create bottlenecks

in networks, the lifetime of the undesired information can change from decreasing to increas-

ing with the network size. Taking computation complexity into consideration, we obtain upper

bounds with vertex eccentricities, that is, the largest distance between an individual and any

other individuals in the network, from which we propose a ‘divide-and-conquer’ guideline to

inject desired information, such that the undesired information can be eliminated in a shorter

period of time. In addition, to observe the propagation process in a finer time resolution, we pro-

vide an inference algorithm to estimate the number of information adopters, which can foresee

the instantaneous evolution of the dynamics before it fully unfolds.

2.1 Introduction

Due to proliferating mobile devices and emerging mobile applications, people are more con-

nected with each other than ever. Consequently, networked systems, such as OSN, institutional

computer networks, and IoT, are developing into much larger and more complex structures than

before. For instance, the OSN giant Facebook has 1.6 billion daily active users, who generate

more than 4 PetaByte new data every day [127], while the number of IoT devices is expected
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to exceed 500 billion by 2030 [30], imposing a tangible impact on mobile data traffic. As more

and more individuals, e.g., users in OSN, and devices in IoT, join such systems, inconsistent,

even conflicting information are injected into the network during the same time period, leading

to an interesting competition while both pieces propagate via individual connections.

By conflicting, we mean two pieces of information that can not be admitted by the same in-

dividual at the same time. For example, it is highly unlikely, for an OSN user to simultaneously

admit the truth and a rumor that contradicts with the truth. Particularly for such pairs, in

which one piece (the desired information, e.g., truth) is apparently more credible than the other

(the undesired information, e.g., a rumor), an individual who has chosen to admit the desired

information, will not be affected by its undesired counterpart. Therefore, the undesired infor-

mation, though spreads via individual connections itself, will be eliminated from the network

given sufficient time. This phenomenon can be seen in various systems.

2.1.1 Motivating Examples in Different Systems

Conflicting information propagation is prevalent in social networks, e.g., the word-of-mouth

networks among acquaints, and OSN, which have become the arena of clashing opinions, unver-

ified reports, and publicity campaigns. Similar competing-while-spreading phenomena can also

be observed in engineered systems, such as the computer network of an institution, and IoT.

2.1.1.1 Rumor v.s. Truth in OSN

After the Boston bombing incident on April 15th, 2013, Reddit users started an online suspect

hunt, which identified an innocent person as the bomber [6]. This rumor (undesired information

in the form of image data) spread rapidly on both Reddit and Twitter, leading to serious cyber-

harassment to the wrongly-accused. The number of mentions regarding this rumor quickly

decreased after the police released correct information (desired information) [60]. Similarly in

the OSN, the meme tracker App [131] recorded the number of posts with “#SpecialOlympics#”

from March 20th to 24th, 2009, as shown in Figure 2.1a. At that time, President Obama made

an inappropriate joke in ‘The Tonight Show with Jay Leno’, and soon apologized to the Special

Olympics chairman to correct his mistake. However, it took four days for the whole incident

to die down after the apology was made. In case of such epidemic spreading of both desired

and undesired information, a natural question is: when will the undesired information stop

propagating, such that it will not affect users in the network any more?

Moreover, it is observed that the lifetimes (referred to as the news cycles) of both rumors

and news are becoming noticeably shorter [63, 131] than before. Is this phenomenon caused by

the rapid increase of active users in the OSN [127]? What does this phenomenon imply about

the topological structure of the OSN, which is too big and complex to be studied as a whole?
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Figure 2.1 Motivating examples of conflicting information propagation in different networks.

2.1.1.2 Advanced Product v.s. Outdated Product in Word-of-mouth Networks

When two rivalry products compete through the word-of-mouth network, where people are

affected by the ‘reputation’ of a product among their friends, the newer and more advanced

product will eventually dominate the market, by swapping out its outdated counterpart that

is less appealing to customers. For instance, Facebook overturned the OSN market in its com-

petition with MySpace, which was popular when Facebook just opens registration in January

2007, as shown in Figure 2.1b. The newer mobile game Clash of Clans, drew mobile users’

attention quickly from its counterpart, Candy Crush, as shown in Figure 2.1c. In case of rivalry

product competition, manufacturer of the better product will be interested in the market share

(adopter of the desired information) its product takes before reaching a full market penetration,

to plan and allocate business resources. In other words, how does the dynamic process evolve,

particularly how the number of adopters of different information change over time?

2.1.1.3 Malware v.s. Security Patch in Institutional Computer Networks and

Faults v.s. Restoration Commands in IoT

Engineered systems such as institutional computer networks and IoT are usually large [120],

and operate under the control of system administrators. When the system administrator of an

institutional computer network spots spreading malware infections, such as SMS Trojans [43]

that spreads over emails and messages, and Chameleon virus [82] that spreads over WiFi links,

a possible countermeasure is to distribute replicable security patches, which can fix infected

computers, and also prevent uninfected computers from malware infections. Similarly in IoT

systems, such as a smart grid, when cascading failures [122] are triggered by overloaded stations,

the administrator can apply load shedding measures [17] to restore some affected stations, such

that their neighboring stations can also benefit from the restoration, and gradually return to

normal operation. In both cases, the system administrator know the structure of the networked

system, and can proactively inject desired information (security patch, load shedding command),
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to control and eliminate the epidemic spread of undesired information (malware, fault). Hence,

a practical question for the system administrator is, where to inject the desired information

such that the undesired information (malware, failures) can die out faster? In other words, how

to leverage knowledge on network topology to design more effective countermeasures against

the viral spreading of undesired information?

Despite the manifestation, these conflicting information propagation processes have two

defining characteristics: i) There are two pieces of information circulating the same network,

both spread via contacts of individuals in an epidemic manner. ii) The later-injected desired

information can convert victims of the undesired information back to normal states, just like

a replicable antidote can cure/immune an individual from an infectious virus, as a result of

which, the cured individual will not be infected by the same virus again, but not vice versa.

2.1.2 Related Work

Considering the great resemblance between information propagation and virus spreading, epi-

demic models have been adopted to describe the propagation process over individual connec-

tions, e.g., rumors spread between friends, and malwares spread between computers, in which

the information is modeled as an infectious virus. Literature on this line of research can be

categorized into single-virus epidemics and multi-virus (or competing) epidemics.

Among the extensive study on single-virus epidemics [89, 122, 22, 95, 42, 61, 59], Ganesh

et.al. [42] and Krishnasamy et.al. [59] identified the significant impact of the Cheeger constant

η(G), which measures the expansion property of the underlying network G, on the propagation

time of the virus. To be more specific, the spreading time of the virus is upper bounded by

a function of η(G) [59] under the Susceptible-Infected (SI) model, while for the Susceptible-

Infected-Susceptible (SIS) model that allows infected individuals to recover on themselves, the

virus can live for an exponentially long time with respect to network size n [42], if the recovery-

to-infection rate is larger than η(G). However, these single-virus models can not describe the

competition between multiple pieces of information, which is the key characteristic of conflicting

information propagation. In fact, the single-virus SI epidemics can be viewed a special case of

the conflicting information propagation process, in the sense that it only observes the epidemic

process of the antidote, which is not affected by the virus.

With respect to competing epidemics between conflicting information, existing literature

can be further categorized into population dynamics and network dynamics [86], depending on

whether the network topology is taking into consideration. In population dynamics, participants

of the propagation process are assumed to be a well-mixed population, i.e., there is no notion

of network, which does not apply to most propagation scenarios. In contrast, network dynamics

view participants of the propagation process as heterogeneous, and model their connections

with a graph structure. Among these, Lin et.al. [70] utilized mean field approximation (MFA)

to conduct asymptomatic and numerical analysis of the propagation process. Prakash et.al.

[94] proposed an SI1I2S model, and proved that a piece information with faster propagation
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speed will eliminate its slower counterpart as time approaches infinity. More recently, Dadlani

et.al.. modeled competing memes as epidemic processes on multi-layered graphs, and derived

critical survival threshold of a meme [33] to be persistent. Newman [83] found the coexistence

threshold of two competing epidemics on networks with known degree distributions, under the

Susceptible-Infected-Recovered (SIR) model. From the perspective of propagation model, both

the linear threshold model and SI1I2S model allow any individual to switch back and forth

between different information pieces, in which context the asymptotic behavior (steady state of

the system as time t→∞) of the dynamics is of more interest. In our case, however, the desired

information is much more credible than its undesired counterpart, so competition between the

two finishes in finite time, for which existing analysis on asymptotic behavior does not apply.

2.1.3 Our Approach and Contributions

Motivated by the lack of study, this chapter discusses the propagation process of a pair of

virus-antidote like conflicting information in networked systems, in order to understand when

the resulted mobile data dynamics starts and stops in such systems. Our contributions can be

summarized as follows.

We propose a SIC propagation model, to capture the competing and epidemic spreading

nature of a conflicting information pair, and identify two pivots in the lifetime of the undesired

information, namely the extinction time τe and half-life time τ 1
2
, to quantify the dynamic

evolution in the time domain.

We find both lifetime metrics are upper bounded by functions of η(G), the Cheeger constant

measuring the level of bottleneck-ness of G, which indicates the lifetime of the undesired infor-

mation does not always decrease with the network size n. When edges of the network become

less and more concentrated such that η(G) = O(log n), the lifetime of the virus will decrease

with n, as exemplified by the dichotomy of E(τe) and E(τ 1
2
) for two extreme topologies, i.e.,

Considering η(G) is difficult to obtain (NP-complete) for complex networks, we show that

the lifetime of the undesired information can also be upper and lower bounded by functions

of vertex eccentricities, which can be obtained with fast algorithms [112]. These bounds not

only enable us to estimate the lifetime in large complex networks, but also imply a practical

‘divide-and-conquer’ guideline for information injection to be used as a countermeasure against

viral spreading of undesired information.

We design an inference algorithm to estimate the number of information adopters at any

time, given the initial condition and the topology of the network, which can be used to observe

and predict the dynamic evolution with a finer resolution in time.

2.2 System Model

In this section, we introduce terminologies, assumptions and definitions of the Susceptible-

Infected-Cured propagation model, which captures the competition between a pair of conflicting
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information, referred to as a virus and an antidote. Then based on the SIC model, we formally

define lifetime metrics of the virus, so as to formulate the when problem. First, we specify the

scope of conflicting information studied in this chapter.

2.2.1 Conflicting Information Pair: Virus x and Antidote ax

Conflicting information has been defined as “two pieces of text that are extremely unlikely to be

considered true simultaneously” in relevant information collection studies [36]. Considering that

information takes various forms other than text, such as source code, operating status of devices,

and commands in the motivating examples, we extend the definition of conflicting information

to mutually-exclusive information that can not be possessed/admitted by the same individual at

the same time. Particularly, we focus on a virus-antidote pair, in which the desired information

(referred to as antidote ax) is of dominant credibility/power over its undesired counterpart

(referred to as virus x), such that it kills virus x if they are both present on the same vertex,

but not vice versa. In other words, virus x can not re-infect an individual, who has admitted

antidote ax, which is different from the symmetric setting in existing models [94, 16], where

virus x can re-infect an individual, who already has a copy of ax, and ax is treated as another

virus symmetric to x, instead of an antidote to x.

The rationale behind the asymmetry in our model comes from observations in real-world

examples and modeling accuracy concerns. First, for the case of security patch v.s. computer

malware, and restoration commands v.s. (cascading) faulty status, the desired information (e.g.,

security patch) is injected purposely by the system to eliminate the undesired information (e.g.,

malware), and it is only reasonable that a malware can not leverage a fixed bug to attack the

system. Second, for the case of clashing opinions and adoption of different products, once an

individual is convinced(infected) by the newer and better product ax, it is unlikely for him/her

to switch back to the older product x, unless the older product has an upgrade (to the newest

version) x′. This new injections of x′ are considered as the beginning of a new epidemic process

with x′ as the antidote to virus ax in our model. In the SI1I2S model [94, 16], x′ and x are

considered as the same virus competing with ax, such that re-infection (or switching-back from

ax to x) is allowed, because of its focus on long-term (time t→∞) behaviors. A drawback of the

existing approach is that x′ and x are automatically associated with the same propagation speed.

On the contrary, our model allows x, ax, x′ to have different propagation speeds, capturing

competitions of both ax v.s. x, and x′ v.s. ax, and is hence more accurate in modeling.

2.2.2 Network G(V , E)

The underlying network of information (virus x and antidote ax) propagation is described as a

graph G(V, E), where vertex set V corresponds to the set of individuals, such as devices in IoT,

while edge set E corresponds to the set of connections between any of two individuals, such as the

communication links between two devices. An edge e(i, j) exists, if vertex i and j can directly

exchange information. For any vertex v ∈ V, its neighborhood N (v) := {u ∈ V| (u, v) ∈ E}
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is defined as the set of vertices that are directly connected to vertex v. The topology of the

network can be described by its adjacency matrix An×n = (au,v)u,v∈V , where au,v = av,u = 1,

if there exits an edge e(u, v) ∈ E .

We make the following assumptions of network G: i) It is undirected, that is, edge e(i, j) =

e(j, i) identifies mutual connections between vertices i and j. ii) It is connected, such that

information (x and ax) can spread to every vertex in V. iii) It is static1, that is, both size

n := |V| and topology A of the network remain the same during the epidemic evolution.

2.2.3 Epidemic Propagation Process

Both virus x and antidote ax spread in an epidemic manner on network G. To describe this

epidemic process, each vertex is associated with a state that can change over time.

2.2.3.1 State Transitions

Let r.v. Xx
v (t) : Ω→ Λ = {0, 1, − 1} denote the state of vertex v ∈ V at time t. Values of Xx

v

correspond to different nodal states, as shown in Figure 2.2a.
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Figure 2.2 State transitions of individal vertices in the SIC propagation model.

Susceptible at time t: The default state Xx
v (t) = 0 (white circle with letter S in Figure 2.2a)

indicates that neither the virus x nor the antidote ax has reached vertex v by time t, so it

is possible for v to be infected by x, or cured/immunized by ax in the future, if any of them

propagates to vertex v via contacts with other vertices.

Infected at time ti: If a copy of virus x reaches susceptible vertex v at ti, v becomes infected

at ti, which means Xx
v (ti) = 1 and limt→t−i

Xx
v (t) = 0. This infect action is shown by the dashed

arrow from susceptible state to the infected state (red circle with letter I) in Figure 2.2a. At

this state, vertex v will try to infect, i.e., pass copies of virus x, indicated by red squares in

1Though the information dynamics is studied in a heterogeneous wireless network scenario such that the
underlying connections are unstable, the social connection that directs information exchange is rather static,
i.e., less likely to change, during a data dissemination (a course of information propagation) process. Therefore,
throughout this chapter, we assume the network G to be static.
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Figure 2.2, to any u of its susceptible neighbors, N x
S (ti, v) = {u ∈ N (v)|Xx

u(ti) = 0}, after a

random period of time sxv(u), as shown in Figure 2.2b. Vertex v will stay in infected state until

it receives a copy of antidote ax.

Cured at time tc: If at tc, a copy of antidote ax reaches vertex v (solid arrows in Figure 2.2a)

for the first, i.e., limt→t−c X
x
v (t) ≥ 0, the state of v changes to cured at tc, that is, Xx

v (t) = −1,

as shown as the blue circle with letter C in Figure 2.2. At this state, vertex v will pass copies of

antidote (indicated by blue triangles) to any u of its neighbors N x
NC(t, v) = {u ∈ N (v)|Xx

u(ti) ≥
0} after a random period of time saxv (u), as shown in Figure 2.2c. Vertex v will stay cured for

the rest of the time, i.e., Xx
v (t) = −1 for any t > tc.

2.2.3.2 Propagation Rules

As shown in Figure 2.2, the state transitions of vertex v are driven by an infection event of

virus x, or a curing event of antidote ax, whose speeds are controlled by the infection intervals

{sxu(v)}v∈NS(t,u), and the curing intervals {saxu (v)}v∈NNC(t,u), respectively. These intervals can

be of arbitrary lengths, but to make this problem tractable, we follow the convention in [94,

59], and assume time homogeneity for the propagation process: For any vertex u, random

intervals {sxu(v)}v∈NS(t,u) and {saxu (v)}v∈NNC(t,u) are two groups of r.v.’s satisfying i) pairwise

independent, and ii) exponentially distributed with parameters βxu,v and γxu,v, respectively.

From the perspective of time, βxu,v = βxv,u is known as the virulence (or infection rate) of

virus x, while γxu,v = γxv,u as the curing rate of antidote ax, representing how frequently a copy

of virus x and antidote ax is exchanged via edge e(u, v), respectively. Their formal definition

are given as

βxu,v := lim
t→0+

P(sxu(v) ≤ t)
t

, (2.1)

γxu,v := lim
t→0+

P(saxu (v) ≤ t)
t

, (2.2)

where sxu(v) (saxu (v), respectively) is the time period between the infection (curing) of u, and

the time when u passes a copy of virus x (antidote ax) to v vie edge e(u, v).

From the perspective of probability, βxu,v is also known as the infection probability over unit

time on edge e(u, v), which can be explained by considering a simple network composed of two

connected vertices, i.e., V = {u, v}. In this case, at time t, given Xx
v (t) = 0, the probability

that v gets infected by u in ∆t is

P
(
Xx
v (t+ ∆t) = 1|Xx

v (t) = 0
)

= ∆t · βxu,v · 1{Xx
u(t)=1} + o(∆t), (2.3)

where r.v. sxu(v) ∼ Exp(βxu,v), with mean E(sxu(v)) = 1
βxu,v

. Similar results also apply to r.v.

saxu (v) and curing rate γxu,v. Therefore, when the time interval is of unit length, i.e., ∆t = 1, the

state transition probability P
(
Xx
v (t+ ∆t) = 1|Xx

v (t) = 0
)

= P(sxu(v) ≤ t) = βxu,v equals to the

infection rate βxu,v in value, which bridges the gap between continuous-time modeling/analysis
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(a) t→ t−0 (b) t = t0 (c) t = t1 (d) t = t2 (e) t = t0 + τe

Figure 2.3 An example of an SIC epidemics on a network of 12 vertices.

and discrete-time simulations.

2.2.4 Problem Formulation

The SIC model in the previous subsection defines the propagation at individual vertex level.

At the system level, the evolution of the SIC dynamics can be described by the set of vertices

that are susceptible, infected, and cured, respectively, because at any time t, vertices set V =

Sx(t) ∪ Ix(t) ∪ Cx(t), where Sx(t), Ix(t), Cx(t) are mutually disjoint sets: the susceptible set

Sx(t) := {v ∈ V : Xx
v (t) := 0}, the infected setIx(t) = {v ∈ V : Xx

v (t) := 1}, and the cured

set Cx(t) = {v ∈ V : Xx
v (t) = −1}. Evolution of an SIC epidemic process can then be captured

by the time-varying infection count, Ix(t) := |Ix(t)|, and the cured count, Cx(t) := |Cx(t)|. For

the ease of notation, we suppress x, and write Xv(t), S(t), I(t), C(t) instead.

Figure 2.3 shows the evolution process of an SIC dynamics over a network with 12 vertices.

As shown in Figure 2.3a, before the antidote ax is injected, I(t0−) = 6 vertices in I(t−0 ) =

{v1, v2, v3, v5, v9, v11} are infected (colored in red). Then at t0, one unit of antidote is given

to vertex v8, and cures it immediately (indicated as blue), that is, C(t0) = {v8}, as shown in

Figure 2.3b. As time t proceeds, states of the 12 vertices change as illustrated in Figure 2.3c-e.

Eventually, the virus dies out at time t = t0 + τe, because I(t) = 0.

As shown in the example (Figure 2.3), the evolution of the SIC dynamics is recorded by the

infection and cured counts across time. Based on these system-level states, we define lifetime

metrics of the virus to answer when the undesired information dies out. Specifically, we identify

two pivots in time, namely, the extinction time and half-life time, to quantify how fast the virus

dies, which also indicate the effectiveness of an instance of antidote distribution.

Definition 2.1. For an SIC dynamic of virus x and antidote ax, the extinction time of virus

x, denoted as τe, is defined as the time interval between t0 and the infected set I(t) becomes

empty for the first time, that is,

τe := inf{t > t0 : I(t) = φ} − t0, (2.4)

where t0 is the time instant when C0 copies of antidote ax are injected into the network G.
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The extinction time τe is a finite2 r.v. on measurable space (Ωn, 2Ωn ,P). It answers when

the virus dies out, because time instant t0 + τe marks the end point of the virus’s life in G. In

other words, the infection count decreases from I(t0) to 0 during a time interval of length τe,

so we know the virus (undesired information) dies out at an average speed of I(t0)
τe

. But it is

still not clear how such speed changes during the lifetime of the virus, i.e., how fast the virus

dies, out, which answers a lot of realistic questions on the impact of the virus, e.g., when will

the majority of individuals be free of the undesired information? To answer this question, we

identify another pivot in time, and define the half-life time of the virus.

Definition 2.2. For an SIC dynamic of virus x and antidote ax, the half-life time of the

virus epidemic, denoted as τ 1
2
, is defined as the time interval between t0 and the last time that

event {I(t) ≥ 1
2I(t0)} happens after t0, that is,

τ 1
2

:= sup
{
t ∈ [t0, t0 + τe] : I(t) ≥ 1

2
I(t0)

}
− t0, (2.5)

where I(t0) > 0 is the initial infection count at t0.

The half-life time τ 1
2

: Ωn → [t0, t0 + τe] is also a finite r.v. on the same measurable space

as r.v. τe. The term half-life is originally from Chemical Kinetics, which describes the decay

of discrete entities. Unlike in Chemical Kinetics, where half-life is the mean, we define half-life

as the actual time interval until event {I(t) ≥ 1
2I(t0)} happens for the last time. The physical

meaning of τ 1
2

can be explain as follows: the competition between the undesired information and

its desired counterpart mainly takes place before pivot time t0 + τ 1
2
, after which the undesired

information can be viewed as controlled, because the number of its victim will never exceeds

the threshold I(t0)/2. In this sense, the two lifetime metrics, extinction time τe and half-life

time τ 1
2
, illustrate how fast the virus dies, because for a fixed initial condition (I(t0) and C(t0)),

the larger the gap τe − τ 1
2
, the faster the undesired information dies during its most hazardous

phase [t0, t0 + τ 1
2
].

Figure 2.4 illustrates the extinction time and the half-life time for the example of the SIC

dynamics shown in Figure 2.3, where a red arrow corresponds to an infection, and a blue one

represents a curing event. At t0 + τ 1
2
, the infection count of the system drops to 3 (= 1

2I0), and

never exceeds 3 again, which implies that the virus epidemic has been restricted to a limited

area, or equivalently, under control. At t0 + τe, the virus dies out.

Without loss of generality, we let t0 = 0, and denote I(0) as I0 (and C(0) = C0) for the ease

of notation. All the events we discuss hereafter take place in the observation window [0, τe]. We

further assume that both the infection rate β and curing rate γ are constant on every edge of

the network, which is commonly adopted in information propagation studies.

Under the proposed SIC model, we restate our research question as follows: Consider a pair

of conflicting information (x, ax), in which x is the virus with virulence β, and ax is the antidote

2To be more accurate, r.v. τe is almost surely (a.s.) finite, that is, P(τe < ∞) = 1, when the network G is
connected. The reason behind this is that it can be written as the summation of a finite number of exponential
r.v.’s, each of which is a.s. finite.
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Figure 2.4 Illustration of the extinction time τe and half-life time τ 1
2

of the virus under the SIC epi-
demics example in Figure 2.3: At time t0, C0 = 1 copy of antidote is injected into the network.

with curing rate γ. At time t = 0, C0 copies of antidote are distributed in network G(V, E),

when the infection count equals to I0.

• When: What is the expected extinction time E(τe) and half-life time E(τ 1
2
) of virus x?

• Countermeasure: How to properly select vertices in C0 to distribute antidotes, such that

the lifetime of the virus (E(τe) and E(τ 1
2
)) can be shortened?

• Evolution: Given time t, how to estimate the infection count I(t) and cured count C(t)?

We answer these questions sequentially in the following sections. As mentioned in the intro-

duction, the main obstacle of this study resides in the introduction of network G, a structure

with numerous topological properties, some of which are of particular importance to the epi-

demic spreading of information, as evidenced in [42, 59, 83]. Therefore, for the first question,

which is the main objective of this chapter, we start from simple networks with two special

topologies, to gain insights for solutions in networks with arbitrary topologies.

2.3 Lifetime of the Undesired Information in Networks with

Simple Topologies

We first examine the lifetime of the virus in the complete graph Kn and the star graph Sn,

which are not only common network topology themselves, but also essential components of

complex networked systems.

2.3.1 Bounds for Complete Networks Kn

A complete graph Kn, is a fully connected graph with n vertices, in which for any pair of vertices

vi, vj ∈ V (Kn), i 6= j, there exists an edge e(i, j) ∈ E(Kn) between them, and hence |E(Kn)| =
n(n − 1)/2. This topology is frequently seen in networks that require high reliability, e.g.,

network of AS routers, or networks that are densely connected everywhere, e.g., a household or

a community, where every individual is familiar with one another. It has two key characteristics:
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i) it is the most densely connected simple graph, because it has the maximum number of edges;

ii) it is regular, because every vertex is inter-changable with another, which means they have

the same vertex metrics, such as degree and centrality. In such networks, the expected lifetime

metrics of the undesired information are upper bounded by the following theorem.

Theorem 2.1. Consider an SIC epidemic in action on a complete network Kn, with curing

rate γ, and initial condition (I0, C0). The expected extinction time E(τe) and half-life time

E(τ 1
2
) of the virus can be bounded above as

E(τe) <
1

γn

[
2 + ln

(n− 1)(n− C0)

C0

]
, (2.6)

E(τ 1
2
) <

1

γn

[
2 + ln

(n− 1)(n− 1− dI0/2e)
dI0/2e+ 2

]
; (2.7)

when C0 ≥ 2, we also have

E(τe) <
2

γ(n− 1 + C0)
ln(n− C0), (2.8)

E(τ 1
2
) ≤ 2

γ(n− 1− dI0/2e+ C0)

(
1 + ln

n− C0

dI0/2e+ 1

)
, (2.9)

where n = |V| is the size of the complete network Kn.

Remark 2.1. To prove this theorem, we first present a set of simple bounds on the exact value

of the extinction time τe and the half-life time τ 1
2
, which is intuitive and only concerns intervals

of curing events, as the starting step of the competing case in Theorem 2.1.

Lemma 2.1. Consider a network G(V, E) with |V| = n under SIC dynamics. At t = 0, there

are initially I0 infected nodes and C0 units of antidote disseminated. We have the following

bounds for the extinction time and the half-life time.

I0∑
k=1

∆k
C ≤ τe ≤

n−C0−1∑
k=1

∆k
C , (2.10)

I0/2∑
k=1

∆k
C ≤ τ 1

2
≤

n−C0−1−dI0/2e∑
k=1

∆k
C , (2.11)

where ∆k
C denotes the interval between the (C0+k)-th and (C0+k−1)-th curings in the network,

as shown in Figure 2.4.

Proof. Note that all the initial C0 curings happen at t = 0. Recall our definition of time interval

between curings ∆k
C = τk+C0

C − τk+C0−1
C . At time τk−1

C , the number of cured vertices can be

calculated by C
(
τk+C0−1
C

)
= k − 1 + C0.

The upper bounds come from asymmetric immunity, that is, a cured vertex will never be

infected again. So number of cured vertices C(t) is non-decreasing, then half-life of the virus
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t 1
2

is bounded above by the spreading time of antidote epidemic. At t1 = inf{t > 0|C(t) =

n− dI0/2e}, I(t1) + S(t1) = n− C(t1) = dI0/2e, therefore I(t) ≤ dI0/2e, ∀t ≥ t1.

For the lower bounds, τe is greater than or equal to the curing time of the initially infected

set I(0), because as the antidote spread, the virus may have collected new victims already.

Now consider a ‘smart’ antidote with the same curing rate γ, or equivalently, let the cured

vertices spread the antidote in a ‘smart’ way, in which it always cures its infected neighbors

first. For each realization of the SIC epidemic, this ‘smart’ antidote distribution is equivalent

to re-arranging the sequence of curing events in an SIC epidemic. Similar statement is also true

for the half-life time.

Proof. (Theorem 2.3.) The process of cured count, {C(t)}t is a continuous time Markov chain

with transition rate

c→ c+ 1 at rate γc(n− c) ∀ C0 ≤ c ≤ n− 1,

and hence E(∆c
C) = 1

γc(n−c) ∀ C0 ≤ c ≤ n − 1, because r.v. ∆c
C is Exponentially distributed

with parameter γc(n− c).
Then by Lemma 2.1, we have

E(τe) ≤ E
( n−1∑
c=C0

∆c
C

)
=

1

γn

n−1∑
c=C0

(
1

c
+

1

n− c
)

≤ 1

γn
(Hn−1 −HC0−1 +Hn−C0)

<
1

γn

[
2 + ln

(n− 1)(n− C0)

C0

]
,

where Hn is the Harmonic Number, and ln(n+1) < Hn ≤ ln(n)+1. Similarly, the same method

can be used to derive upper bound of half-life for clique.

E(τ 1
2
) ≤ E

n−1−dI0/2e∑
c=C0

∆c
C

 =

n−1−dI0/2e∑
c=C0

1

γc(n− c)

≤ 1

γn
(Hn−1−dI0/2e −HdI0/2e+1 +Hn−1)

<
1

γn

[
2 + ln

(n− 1)(n− 1− dI0/2e)
dI0/2e+ 2

]
.

Similarly technique can be applied for the case of C0 ≥ 2.

Theorem 2.1 implies that both the expected extinction time and half-life time decreases with

size n of the clique as O( logn
n ), which means the larger the network, the quicker the undesired

information dies, given the same initial condition of the dynamics. The reason behind this is

that, dense connections among vertices make it difficult for the virus to dodge contact with
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antidotes. In other words, even though both virus and antidote can spread faster, due to the

larger number of edges, dense connections work in favor of the antidote propagation. On the

other hand, with respect to the severeness of virus infection upon antidote injection, we can see

the half-life time decreases with the initial infection count I0 as O(log A
I0

), where A is a function

of n and C0 that does not vary with I0. In this case (larger I0), the larger gap τe− τ 1
2

indicates

that, competition between the antidote and the virus is only fierce for a short period of time,

and the larger portion of extinction time is spent on extinguishing cornered virus infections.

From the perspective of connectivity, any other simple network topology of the same size n

has strictly less edges than the complete graphKn, as a result of which the undesired information

(virus) will die slower with high probability in these networks, even with the same initial

condition (I0 and C0). Bases on this observation, we also have the following lower bounds as a

corollary of Theorem 2.1.

Corollary 2.1. For an SIC epidemic with curing rate γ on an arbitrary network G of size n,

the expected extinction time and half-life time of the virus can be bounded below as

E(τe) ≥
1

γn

[
HC0+I0−1 −HC0−1 +Hn−C0 −Hn−C0−I0

]
, (2.12)

E(τ 1
2
) ≥ 1

γn

[
HC0+dI0/2e−1 −HC0−1 +Hn−C0 −Hn−C0−dI0/2e

]
, (2.13)

where Hk =
∑k

j=1
1
j is the k-th Harmonic Number.

Proof. Let ∆k
C denote the time interval between the (C0 + k)-th and the (C0 + k+ 1)-th curing

event, as shown in Figure 2.4. The expected extinction time and half-life time can be lower

bounded by the time that the C0 + I0-th and C0 + bI0/2c-th vertex first receives a copy of the

antidote respectively, which are shown in Lemma 2.1. On the other hand, the spreading time of

the antidote is statistically bounded below by that in a complete network, i.e., when G = Kn.

In this case, the value of an inter-curing interval follows an Exponential distribution, that is,

∆k
C ∼ Exp(γ(C0 + k − 1)(n − k − C0 + 1)), because it is the minimum r.v. out of n − C0 − k

exponentially distributed r.v.’s. Therefore,

E(τe) ≥ E

(
I0∑
k=1

∆k
C

)
=

I0∑
k=1

E(∆k
C) =

1

γn

I0∑
k=1

[
1

C0 + k − 1
+

1

n− C0 − k + 1

]
,

and Eq. (2.12) follows from the definition of Harmonic number. Proof of the lower bound of the

expected half-life time E(τ 1
2
) is similar and hence omitted.

2.3.2 Bounds for Star Networks Sn

As opposed to the most densely connected complete network Kn, a star network Sn is composed

of a hub v1 and n− 1 leaves (peripheral vertices), such that every piece of information from a

leaf vertex has to go through the hub to reach another vertex. In other words, edges only exists
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between the hub and leaves, creating a huge bottle-neck in the middle, which can be viewed as

a high-degree of heterogeneity among vertices. The star topology is also of great importance,

due to its natural link to artificial structures, e.g., a WiFi access network within the coverage

of an access point, and the ego-network of a high degree node in OSNs.

Consider same SIC dynamic with infection rate β and curing rate γ on a star Sn. In an

extreme case, if a copy of antidote is first given to the hub, then infection count I(t) will be

monotonically decreasing with time t, which is less interesting, because it is impossible for the

virus to claim new victims, and hence no competition. Therefore, we consider the case that

antidotes are distributed to peripheral vertices at time 0 in the following theorem.

Theorem 2.2. For an SIC epidemic over a start network in which the initial infection count

satisfies I0 ≥ 2, the expected extinction time E(τe) and half-life E(τ 1
2
) follow upper bounds:

E(τe) <
1

γ

[
1

C0
+ 1 + ln(I0 − 1) +

β

γC0(I0 − 1)

]
, (2.14)

E(τ 1
2
) <

1

γ

[ 1

C0
+ 1 + ln(

I0 − 1

dI0/2e
) +

β

γC0(I0 − 1)

]
. (2.15)

Proof. Let r.v. τ0 denote the time when the hub is cured, then I(t) is non-increasing after τ0.

Let ∆ denote the number of new infections until τ0, Tk denote the time that the cured hub

disseminates antidote to the k infected peripheral vertices. Then Tk is the k-th minimum out of

the I0+∆−1 i.i.d. Exponential r.v.’s with parameter γ. If k = I0+∆−1, Tk will be the maximum

of k i.i.d Exponential r.v.’s with parameter γ, or equivalently E(TI0+∆−1) = 1
γHI0+∆−1. Then

we can write the expectation of extinction time τe, with E(τe) = E(τ0) + E(T∆+I0−1), where τ0

satisfies Exponential distribution with parameter (C0γ). Hence, its probability density function

fτ0(t) = C0γe
−C0γt, and its mean E(τ0) = 1

C0γ
. So

E(T∆+I0−1) = E
(
E(T∆+I0−1|∆)

)
=

1

γ

n−C0−I0∑
k=0

Hk+I0−1 · P(∆ = k)

<
1

γ

n−C0−I0∑
k=0

(
1 + ln(k + I0 − 1)

)
· P(∆ = k).

Let function g(k) = ln(k + I0 − 1). Notice that g(·) is concave in [1, n− C0 − I0]. Then

E(T∆+I0−1) <
1

γ
+

1

γ
E
(
g(∆)

)
=

1

γ
+

1

γ
E
(
E(g(∆)|τ0)

)
=

1

γ
+

1

γ

∫ ∞
0

E
(
g(∆)|τ0 = t

)
· fτ0(t)dt

Jensen
≤ 1

γ
+

1

γ

∫ ∞
0

g
(
E(∆|τ0 = t)

)
· fτ0(t)dt.

Now consider r.v. E(∆|τ0 = t). Since the network Sn is a star, and ∆ is the number of new

infections until time instant τ0 when the hub gets cured, these ∆ new infections of different

susceptible vertices are mutually independent. Therefore, given a fixed time instant τ0 = t, r.v.
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∆ obeys Binomial distribution B(n− C0 − I0, 1− e−βt), i.e.,

P(∆ = k|τ0 = t) = P(k out of n− C0 − I0 vertices are infected before t)

=

(
n− C0 − I0

k

)
(e−βt)n−C0−I0−k(1− e−βt)k.

Consequently, we have the conditional expectation E(∆|τ0 = t) = (n− C0 − I0) · (1− e−βt) as

a function of t, which takes value in [0, τ0]. Note time instant τ0 is also a r.v., whose range is

[0,∞), so integrating over this range we have the expected time until the ∆ + I0 − 1-th curing

as

E(T∆+I0−1) ≤ 1

γ
+

1

γ

∫ ∞
0

g
(
(n− C0 − I0) · (1− e−βt)

)
· fτ0(t)dt

=
1

γ
− 1

γ

∫ ∞
0

ln
[
(n− C0 − 1)− (n− C0 − I0)e−βt

]
d
(
e−C0γt

)
=

1

γ

[
1 + ln(I0 − 1)

]
+
β(n− C0 − I0)

γ(n− C0 − 1)
·
∫ ∞

0

e−C0γt

eβt − n−C0−I0
n−C0−1

dt

=
1

γ

[
1 + ln(I0 − 1)

]
+
β

γ

∞∑
k=1

1

C0γ + kβ
·
(n− C0 − I0

n− C0 − 1)

)k
≤ 1

γ

[
1 + ln(I0 − 1)

]
+

β

γ2C0(I0 − 1)
,

which is the upper bound of E(τe) in Eq. (2.14). Similarly, when considering the half-life time,

at τ0, there are ∆ + I0 − 1 infected peripheral vertices. Thus T∆+dI0/2e−1 = t indicates the

time when there are only dI0/2e infected vertices left in the peripheral area, or equivalently,

∆ + dI0/2e − 1 out of ∆ + I0 − 1 i.i.d Exponential r.v’s are less than t. Therefore,

E(T∆+dI0/2e−1) =
1

γ
(H∆+I0−1 −HdI0/2e−1)

< 1 + ln(∆ + I0 − 1)− ln(dI0/2e − 1 + 1) = 1 + ln
∆ + I0 − 1

dI0/2e
.

Let g′(k) = ln k+I0−1
dI0/2e . Then we have the upper bound in Eq. (2.15) because

E(τ 1
2
) = E(τ0) +E(T∆+dI0/2e−1)

Jensen
<

1

C0γ
+

1

γ
+

1

γ

∫ ∞
0

g′
(

(n−C0− I0) · (1− e−βt)
)
· fτ0(t)dt.

2.3.3 Numerical Simulation and Discussion

To validate upper bounds (dashed lines) in Theorem 2.1 and Theorem 2.2, numerical results

(solid lines with markers) with respect to network size n and the initial infection count I0 are

shown in Figure 2.5 and Figure 2.6-2.7 respectively. As can be seen from all three figures, trends
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Figure 2.5 Expected extinction time E(τe) and half-life time E(τ 1
2
) of an SIC epidemics (C0 = 1,

I0 = 10), with respect to the network size n. In this simulation, we set the infection(β) and curing (γ)
rates as β = γ = 0.01 in the star network Sn, and β = γ = 0.0001 in the complete network Kn, for a
clearer comparison between the two topologies.
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(c) β = 0.001, γ = 0.0005 C0 = 3.

Figure 2.6 Extinction time E(τe) and Half-life time E(τ 1
2
) in the complete graph K100.

of both the expected extinction time and half-life time are well captured by the derived bounds.

Comparing results for the two simple topologies, we highlight the following observations.

(1) There is a clear dichotomy in lifetime of the virus with respect to network size n, that

is, virus dies faster in a larger complete network Kn, but slower in a larger star network Sn,

as shown in the semi-log plots of Figure 2.5. Both E(τe) and E(τ 1
2
) are O( logn

n ) for complete

networks (decreasing blue lines), while both are O(log n) for star networks (increasing red lines),

as indicated by Theorem 2.1 and Theorem 2.2, respectively. This implies an interesting change

in the propagation process, when a hub (bottleneck) emerges in the network.

(2) The infection/curing rates, β and γ, have the same effect on both metrics regardless of

network topology, which can be observed by comparing sub-figures in Figure 2.6 and 2.7. To be

more specific, they only lengthen or shorten time intervals between events, but do not change
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Figure 2.7 Extinction time E(τe) and Half-life time E(τ 1
2
) in the star network S100.

the order of occurrences, resulting in a homogeneous scaling effect on both lifetime metrics.

(3) Impact of the initial infection count I0 on the lifetime of the virus is shown in Figure

2.6 and 2.7, for complete network K100 and star network S100, respectively. The mild zig-zag

pattern of the half-life time (left end of all blue solid lines with markers) is caused by rounding-

off the threshold b 1
I0
c when I0 is small. Though the general trend is the same in both networks,

i.e., extinction time increases with I0, while half-life time decreases with I0, impact of topology

is still apparent, as shown by the different scaling behavior over I0 (marked in Figure 2.6 and

2.7).

As two extremes of network topology, the complete graph is regular (every vertex has the

same degree) and most densely connected (|E| = n(n−1)
2 ), while the star graph is highly irregular

(due to the existence of the central hub) and sparse (|E| = n−1). Comparing the two, we observe

when edges concentrate and form a bottleneck in the network, the impact of network size n

and initial condition I0 changes drastically. Though results in these two simple networks do not

directly apply to general cases, they shed lights on studying conflicting information propagation

in general networks, by recognizing the importance of bottlenecks in networks.

2.4 Lifetime of the Undesired Information in Networks with

Arbitrary Topologies

Considering the broad application scenarios of conflicting information propagation, it is likely

that the underlying network G does not have nice topological properties like regularity, and is

hence a complex network with unique topologies. To study when and how fast the undesired

information dies out in such networks, we examine graph metrics, namely the Cheeger constant

η(G) and vertex eccentricities {ε(v)}v∈V , to quantitatively link topological properties to the

lifetime metrics (E(τe) and E(τ 1
2
)) of the virus in an SIC epidemics through upper bounds.
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2.4.1 Bounds by Considering the Edge-expansion Property

Recall in the comparison between complete networks and star networks, we find that the key

to propagation behavior change is the existence of the central hub in star Sn, which forms a

bottleneck in the network. Therefore, we first consider the metric that quantitatively measures

the level of ‘bottleneckness’ of a network G, the Cheeger constant η(G), which is defined as

η(G) := inf
S⊂V,|S|≤n/2

|δ(S)|
|S| , where δ(S) := [S,V \S] is the edge-cut of vertex set S, that is, the set

of boundary edges between set S and its compliment set V \ S.

As a graph expansion property [51], η(G) identifies the ‘narrowest’ part of network G, i.e.,

the minimum boundary edges for as many as vertices. Intuitively, the larger the boundary set,

the more difficult it is to break the network into isolated components by disconnecting edges, so

η(G) and other expansion properties are viewed as indicators of robustness, and hence studied in

many applications [51]. Due to this property, it has been shown that η(G) is of key importance

to the spreading behavior of an epidemic process, under different propagation models, including

SI [59, 141], SIS [59], and SIR [42] models. For the proposed SIC propagation model, in which

two epidemic processes compete in finite time, we show in the following theorem that both the

expected extinction time and half-life time are also bounded by η(G), as O( logn
γη(G)).

Theorem 2.3. For a network G with Cheeger constant η(G), given the initial cured count C0,

the extinction time of the virus in an SIC epidemic with curing rate γ can be bounded above by

E(τe) ≤
1

γη(G)
[a ln(n+ b) + c], (2.16)

1. If 1 ≤ C0 < n/2, b = 0, and a = 2
ln 4(C0−1) , c = −

[
4C0−5

8(C0−1)2
+ γE

]
.

Particularly when C0 = 1, a = 2
ln2 , c = 2γE;

2. If C0 ≥ n/2, a = 1, b = −C0 + 1, c = 1
2(n−C0+1) + γE,

where γE ' 0.577 is the Euler-Mascheroni constant.

When the initial infection count I0 is given, the expected half-life time can be upper bounded3

when 2 ≤ C0 < n/2,

E(τ 1
2
) ≤ 1

γη(G)

[
ln

n2

2(C0 − 1)I0
− 4C0 − 5

8(C0 − 1)2
+

2I0 + 1

I2
0

]
, (2.17)

and when C0 = 1, E(τ 1
2
) ≤ 1

γη(G)

[
ln n2

2I0
+ 2I0+1

I20

]
.

Proof. Let Vk := {V |V ⊂ V, |V | = k} be the set of all vertex sets containing k vertices

from the network G(V, E). Let Ck ∈ Vk be the set of cured k vertices when C(t) = k. Let

Tk := inf{t|C(t) = k} be the time that the cured count C(t) reaches k. Note that C(t) is

3For the case of C0 > n/2, it is with high probability that τ 1
2

= 0, which is a less interesting case and hence

not discussed.
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monotonically increasing, and C(0) = C0, TC0 = 0. For any k ≥ C0,

E(Tk+1 − Tk) =
∑
A⊂Vk

E
(
Tk+1 − Tk|C(t) = A)P(C(t) = A

)
= E

(
1

γ|δ(Ck)|

)
,

where δ(Ck) := [Ck,V \ Ck] is the edge cut of set Ck, and

|δ(Ck)| ≥

η(G)k, k < n
2 ,

η(G)(n− k), k ≥ n
2 .

Also, by Lemma 2.1, we have E(τe) ≤
∑n−1

k=C0
E(Tk+1− Tk). So when 2 ≤ C0 <

n
2 , the expected

extinction time can be upper bounded by

E(τe) ≤
n/2∑
k=C0

1

γη(G)k
+

n−1∑
k=n

2
+1

1

γη(G)(n− k)
=

1

γη(G)

(
2Hn

2
− 2

n
−HC0−1

)
Franel
<

1

γη(G)

[
ln

n2

4(C0 − 1)
− 4C0 − 5

8(C0 − 1)2
− γE

]
,

where the last line follows from Franel’s Inequality[98]. Similarly, the expected half-life time

can be bounded by

E(τ 1
2
) ≤

n/2∑
k=C0

1

γη(G)k
+

n−1−dI0/2e∑
k=n

2
+1

1

γη(G)(n− k)
.

As for C0 ≥ n
2 , the upper bound can be obtained by considering E(τe) ≤

∑n−1
k=C0

1
γη(G)(n−k) .

Though not a sharp bound, Theorem 2.3 confirms the importance of the edge-expansion

property, i.e., the Cheeger constant η(G), in epidemic spreading of information, particularly two

pieces of conflicting information studied in this chapter. As can be seen, the more ‘expandable’

(strong connectivity with less vertices, towards the clique topology), the less time it takes

to eliminate the virus, which explains the shorter rumor circulation time [131] than before,

as OSNs (and Internet at large) become more connected nowadays. Particularly for the two

simple network topologies, clique and star, studied in the previous section, Theorem 2.3 clearly

explains the dichotomy of the scaling laws over the network size n: i) η(Kn) = n/2 = O(n),

which implies the O( logn
n ) scaling for the complete network Kn; while ii) η(Sn) = O(1) for the

star network Sn, and hence the O(log n) increasing over network size n.

For some large networks with special topological properties [51], existing results on its edge

expansion properties allow us to estimate the lifetime of the undesired information in such

networks as the network grow in size. For instance, Krishnasamy et.al. showed that for Erdös-

Rényi random graph (ER) G(n, p) with p > 32 logn
4 , there is a high probability (over 1− 1

n2 ) that

η(G) ≥ np
4 [59, Corollary 2]. Applying Theorem 2.3, we know that the undesired information
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dies out in O( lognγn ) time with high probability.

For a complex network with arbitrary topology, however, obtaining the Cheeger constant

is a well-known hard problem (NP-complete [74]), especially when the network is large. In this

case, η(G) can be bounded by the Cheeger Inequality [29, 51], λ1
2 ≤ η(G) ≤ 2

√
λ1, where λ1 is

the second smallest eigenvalue of the graph Laplacian4 of network G. As we will show in the

simulation later, λ1
2 does not lead to a tight bound of the extinction time, so next we consider

properties that are more accessible for general large networks.

2.4.2 Bounds by Considering Vertex Eccentricity

Recall in Theorem 2.2, after the hub of a star network is cured, the extinction time of the

virus is bounded by the last curing event of an infected peripheral vertex, which depends on

the longest time it takes a copy of antidote to pass though multiple hub-peripheral paths of

length 1. In a general network G, if we view every initially cured vertex v ∈ C(0) as a ‘hub’,

the extinction time also depends on such hub-peripheral paths, whose lengths are measured in

hop-count distances dist(·, ·). In practice, distance between two vertices is easy to obtain from

the adjacency matrix of a graph, and is therefore widely used in various applications, such as

routing and influential node detection. Based on this graph metric, the eccentricity of a vertex

v in network G is defined as the longest distance of between v and any other vertex in V,

that is, εG(v) := maxu∈V distG(u, v), and the diameter of network G is defined as the largest

eccentricity, i.e., diam(G) := maxv∈V εG(v).

As the first step, consider the case that a single copy of antidote is distributed to vertex

c ∈ V at time 0, i.e. C0 = {c}. Then propagation time of the antidote to any specific vertex i

can be bounded by the following lemma.

Lemma 2.2. Let Tc,i denote the time that vertex i gets a copy of the antidote originated from

vertex c ∈ C0. We have

E(Tc,i) ≤
dist(c, i)

γ
, (2.18)

Proof. Let {Pk}Kk=1 denote the set of paths between vertex c and i, such that their lengths are

in an ascending order, i.e., lk ≤ lk+1. For any 1 ≤ k ≤ K, we have

distG(c, i) ≤ l1 ≤ lk ≤ lK . (2.19)

Consequently, the curing time Tc,i of vertex i (by vertex c) can be re-written as

Tc,i = min
1≤k≤K

T kc,i ≤ T 1
c,i, (2.20)

4Let A denote the adjacency matrix of G. The graph Laplacian of G is defined as L(G) = diag( ~D) − A,
where ~D is the degree sequence of G, and diag( ~D) is the diagonal matrix with ~D as its main diagonal. Since G is
undirected and connected, its Laplacian L(G) is symmetric and positive-semidefinite, and has n non-negative real
eigenvalues. Among these, the second smallest eigenvalue λ1, referred to as the algebraic connectivity, measures
the expanding property of G. Particularly, the lower bound of η(G) is referred to as the Buser Inequality.
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where T kc,i is the attempted curing time of vertex i, by the antidote copy originated from c,

and transmitted along path Pk. For every k, time T kc,i is the sum of lk i.i.d. Exponential r.v.’s

with mean 1
γ , as a result of which r.v. T kc,i satisfies Gamma distribution, i.e., T kc,i ∼ Γ(lk, γ),

with mean µk = lk
γ and variance σ2

k = lk
γ2

. Then the upper bound in Eq. (2.18) can be obtained

through Eq. (2.19) because

E(Tc,i) = E( min
1≤k≤K

T kc,i) ≤ min
1≤k≤K

E(T kc,i) =
l1
γ
, (2.21)

where l1 = distG(c, i) is the length of the shortest path between vertex c and i in graph G.

Lemma 2.2 provides an upper bound of the expected antidote dissemination time from a

designated vertex c to vertex i, which is also an upper bound of the curing time of vertex i, if

c ∈ C(0). Based on this bound, the extinction time of the undesired information can be analyzed

with graph augmentation, as illustrated in the following theorem.

Theorem 2.4. Let εG(v) denote the eccentricity of vertex v in graph G. Let GV (V/V, E ′) denote

the resulting graph induced by contracting vertices in set V ⊂ V to a single vertex f(V ), and

removing all multiple edges5. Given that antidotes are distributed to the set C0 at time t = 0,

The expected extinction time τe of the virus can be upper bounded by

E(τe) ≤
1

γ


2 lnK∗G/C0

1−(K∗G/C0
)

− 1
εGC0

(f(C0))
, (w.h.p.) if εGC0 (f(C0)) ≤ 10,

εGC0 (f(C0)) +
√

(Ks − 1)εGC0 (f(C0)), in general,

(2.22)

where K∗G/C0 is the number of longest shortest paths starting from the contracted vertex f(C0)

in the quotient graph GV (V/V, E ′), and Ks ≥ K∗G/C0 + 1 is the number of shortest paths that

start from f(C0), and are longer than εGC0 (f(C0))− s.

Remark 2.2. To prove Theorem 2.4, which upper bounds the extinction time with the curing

time through dominant paths, i.e., paths to peripheral vertices, we need to upper/lower bound

the maximum/minimum of summations of multiple Exponential variables, i.e., multiple r.v.’s

with Gamma distribution, to address which we first present a technical lemma.

Lemma 2.3. Let Xn = min1≤i≤nXi be the minimum of n r.v.’s, and Xn = max1≤i≤nXi be the

maximum of them, where each Xi ∼ Γ(ki, θi), where θi’s are the rate parameters. Then E(Xn)

5Graph GV is the quotient graph of G through an equivalence relationship induced by partition
{V, {v1}, {v2}, · · · } where vi ∈ V \ V , so that its vertex set V/V = (V \ V ) ∪ f(V ) has |V| − |V |+ 1 vertices.
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and E(Xn) are bounded:

E(Xn) ≤ max
i

{
ki
θi

}
+

(
n− 1

n

n∑
i=1

ki
θ2
i

)1/2

, (2.23)

E(Xn) ≥ min
i

{
ki
θi

}
−

(
n− 1

n

n∑
i=1

ki
θ2
i

)1/2

. (2.24)

When ki = k and θi = θ for every 1 ≤ i ≤ n such that {Xi}i are a set of i.i.d Gamma r.v.’s,

tighter bounds exist:

E(Xn) ≤ 2 lnn

θ(1− n−1/k)
, (2.25)

E(Xn) ≥ k ln 2− lnn

θ
. (2.26)

Proof. Eq. (2.23) and Eq. (2.24) follow from [10, Theorem 2.1] and [10, Corollary 2.1] by

substituting the mean µi = E(Xi) = ki
θi

and variance σ2
i = ki

θ2i
of Gamma distributions.

For the i.i.d case, Eq. (2.25) is proved in [35, Eq. (7)]. Now we prove the lower bound in

Eq. (2.26). Let r.v. Yi = −Xi, then Xn = miniXi = −maxi Yi , Yn. The moment generating

function (MGF) of r.v. Yi can be derived as MY (t) = MX(−t) = (1 + t
θ )−k, where t < θ as

required by MGF MX(t) of r.v. Xi.

Let set D(M) = {t ≥ 0|MY (t) ≥ 1}. Then with the technique from [35, Eq. (6)], we have

E(Yn) ≤ inf
t∈D(M)

1

t
[lnn+ lnMY (t)] ≤ 1

t

[
lnn− k ln(1 +

t

θ
)

]
, g(t),

which is true for every t ∈ [0, θ). Notice that g(t) is monotonically decreasing in [0, θ], so a

tighter bound of E(Yn) can be upper derived as g(θ). Then Eq. (2.24) follows from the fact that

E(Xn) = −E(Yn) ≥ −g(θ).

With the preparation of Lemma 2.3, which bounds the maximum and minimum of n Gamma

r.v.’s, we are now able to prove the upper bound of extinction time in Theorem 2.4.

Proof. (Theorem 2.4.) For an SIC epidemic on graph G, the extinction time of the virus can

be bounded by

max
i∈I0

{
min
c∈C0

Tc,i

}
≤ τe ≤ max

i∈V\C0

{
min
c∈C0

Tc,i

}
. (2.27)

First we show when C0 ≥ 2, the extinction time τe on the original graph G is upper bounded

by the extinction time τ̂e of the SIC epidemic on the quotient graph GC0 , in which one unit of

antidote is distributed to vertex f(C0) at time t = 0.

An example of the graph contraction procedure is shown in Figure 2.8. Consider vertex

v1, v4 ∈ C0. Evolution of the SIC epidemic (spread of virus and antidote) will not be affected

by adding an edge (v1, v4) to G, no matter such edge (v1, v4) exists in G or not. This is because:
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(a) Graph G, C0 = {v1, v4}.
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(b) Quotient graph GC0 .
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(c) Path to peripheral vertices.

Figure 2.8 Example of contracting cured set C0 into vertex f(C0). In the quotient graph GC0 , there is
K∗G/C0 = 1 path of length εGC0 (f(C0)) = 3 from f(C0) to vertex v7, and K ′ = 1.

(i) transmission of antidotes between any vertex pair is independent with transmission actions

between others; (ii) transmission of antidote between u and v will not result in any state change.

Since v1 and v4 will stay in cured state forever, we can combine and contract them into one

vertex f({v1, v4}) and keep all their edges in G, without affecting the evolution process. The

contraction process may result in multiple edges, by removing which the extinction time may

increase. Then by induction on the contraction of C0, the extinction time τe ≤ τ̂e, which is the

extinction time of the virus on the quotient graph GC0 .

Therefore, it is sufficient to consider the SIC epidemic on graph GC0 , with one unit of antidote

distributed to f(C0) at time t = 0. Then we have the following inequality,

τe ≤ τ̂e := max
i∈V\C0

Tf(C0),i ≤ max
i∈V\C0

T 1
f(C0),i, (2.28)

where T 1
f(C0),i ∼ Γ

(
distGC0 (f(C0), i), γ

)
. The last inequality of Eq. (2.28) follows from Eq. (2.20)

in Lemma 2.2. Next we discuss maxi∈V\C0 T
1
f(C0),i and the eccentricity εGC0 (f(C0)) of the central

cured hub f(C0).

By definition, distance between any vertex i and the cured hub f(C0) satisfies

distGC0 (f(C0), i) ≤ εGC0 (f(C0)) ≤ diam(GC0) ≤ diam(G). (2.29)

Without loss of generality, suppose εGC0 (f(C0)) = k + s is achieved by the path from f(C0) to

vertex u in the quotient graph GC0 . Consider infected vertex i that is distGC0 (i, f(C0)) = k hops

away from the cured hub f(C0), such that s ≥ 1. Let r.v. X and Y denote the time it takes a

copy of antidote to reach vertex u and v from the hub f(C0), respectively. We first show that

when k + s is small, the probability that X ≤ Y is small.

Clearly, X ∼ Γ(k+s, θ) and Y ∼ Γ(k, θ), so X
X+Y satisfies Beta distribution with parameters

k + s and k, and

P(X ≤ Y ) = P(
X

X + Y
≤ 0.5) =

Γ(2k + s)

Γ(k + s)Γ(k)

∫ 0.5

0
tk+s−1(1− t)k−1dt, (2.30)
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where Γ(k) =
∫∞

0 xk−1e−xdx is the Gamma function. It is difficult to bound Eq. (2.30) due to

the integral, so we plot this probability for k and s values, such that k + s is in the range of

frequently6 seen network diameters, as shown in the following Figure 2.9.
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Figure 2.9 Probability P(X ≤ Y ) for k + s (≤ graph diameter diam(G)) ranging from 5 to 20.

In Figure 2.9, the dashed vertical lines identify the diameter diam(G) of three networks

used for simulation validation in this section. Among these dataset107 is a real-world network

portion, whose diameter is typical. When k+s ≤ diam(G) ≤ 10, the probability that the antidote

will reach u sooner than i, who is s-hops closer than u from f(C0) is small (< 0.2) when s ≥ 3.

In addition, the rate parameter θ of the Gamma distribution equals to the curing rate γ, so

when γ is also small, the gap between the two time intervals Y and X is therefore small as well,

such that we only need to consider vertices who are located the furthest from vertex f(C0) in

graph GC0 , i.e., the K∗G/C0 distinct vertices, such as u, satisfying distGC0 (f(C0), i) = εGC0 (f(C0)).

Then the first term on the right-hand side of Eq. (2.22) follows from the tighter upper bound

Eq. (2.25) in Lemma 2.3. Note that when K∗G/C0 = 1, the first term is not well-defined, because

the denominator equals to 0. In this case, we take E(τe) ≤
εGC0

(f(C0))

γ instead.

If this condition is not satisfied, e.g., when diam(G) is large, such that P(X ≤ Y ) can not be

omitted, we always have the option to consider more paths, which are possibly shorter, to upper

bound the extinction time. Then the upper bound (second term in Eq. (2.22)) follows from the

upper bound of general distributions, which is illustrated in Eq. (2.23) of Lemma 2.3.

Note that the eccentricity εGC0 (f(C0)) is a property of the augmented quotient graph GC0 .

To apply Theorem 2.4, we need to know the exact locations (vertices) where copies of antidotes

are disseminated, i.e., set C0. If such knowledge is not readily available, the extinction time

can still be bounded by the diameter (or more generally, distribution of vertex eccentricities)

6In most networks we consider (complete graph, star graph, ER graph and scale-free network etc.), the
diameter diam(G) = O(log |V|) is small due to the small-world effect, so probability P(X ≤ Y ) in Eq. (2.30) is
also small.
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of graph G, as given in the following two corollaries. Proof of Corollary 2.2 and 2.4 are simple

as they directly follow from the fact that εGC0 (f(C0)) ≤ minc∈C0 εG(c) ≤ diam(G).

Corollary 2.2. Particularly when C0 = 1, for any initial antidote recipient c ∈ V,

E(τe) ≤
1

γ

[
diam(G) +

√
diam(G)(|Peri(G)|/2− 1)

]
, (2.31)

where Peri(G) = {v ∈ V | ε(v) = diam(G)} is the set of peripheral vetices in G.

Corollary 2.2 is also an upper bound of the expected extinction time E(τe) for the case of

C0 > 1, because the more copies of antidote distributed initially at t = 0, the less (statistically

bounded) time it takes to fully remove virus from the network, i.e., a shorter extinction time.

A direct implication of Corollary 2.2 is that for small-world graphs, which naturally emerges in

various contexts, such as social networks, the extinction time is O( logn
γ ), due to the O(log n)

scaling of the network diameter. Though not a tight bound compared to Theorem 2.3, this

corollary is much more accessible in the sense of computation complexity, especially for large

networks. Obtaining the eccentricity distribution of a graph, including diameter and peripheral

size, is at most O(n|E|) in time complexity with further speedups [112], which is much faster

than obtaining the Cheeger constant η(G). By the eccentricity distribution and the initial cured

count C0, a more accurate upper bound can be derived as follows.

Corollary 2.3. Suppose vertices in C0 are chosen uniformly at random from V, and cumu-

lative (probability) density function (CDF) of the eccentricity distribution of graph G is F (x)

(radi(G) ≤ x ≤ diam(G)). The expected extinction time can be upper bounded by

E(τe) ≤
1

γ

[
µC0 +

√
µC0

(
n− C0

diam(G)
− 1

)]
, (2.32)

where µC0 =
∑diam(G)

k=radi(G) k[1 − F (k)]C0 is the expected maximum eccentricity of vertices in the

cured set C0, and radius radi(G) equals to the minimum eccentricity in G.

Corollary 2.3 stems from Theorem 2.4, by considering the expected maximum eccentricity

of the C0 antidote recipients in C0, given that antidotes are randomly distributed at time 0.

Specifically, for any vertex v ∈ V \ C0, the distance between i and vertex f(C0) in the quotient

graph GC0 satisfies distGC0 (f(C0), v) ≤ εGC0 (f(C0)) ≤ minc∈C0 εG(c) ≤ diam(G), which is the

diameter of the original graph G. On the other hand, changing perspective to the initial infected

set I0, in which vertices are in infected state at time 0, the expected extinction time E(τe) can

also be bounded below by considering the shortest paths between vertices in set I0 and set C0.

Corollary 2.4. Given the initial infected set I0 = I(t = 0), the expected extinction time can

be lower bounded by

E(τe) ≥
1

γ

[
dist(C0, i

∗) ln 2− lnKi∗
]
, (2.33)
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where dist(C0, i) = minc∈C0{dist(c, i)} denote the shortest distance between set C0 and vertex i,

i∗ = arg max
i∈I0

{dist(C0, i)}, and Ki∗ is the number of shortest paths7 between set C0 and i∗.

Proof. From Eq. 2.27, we have

τe ≥ max
i∈I0

{
min
c∈C0

Tc,i

}
≥ min

c∈C0
Tc,i∗ , (2.34)

where Tc,i∗ = min1≤k≤Ki∗ T
k
c,i∗ is the minimum of Ki∗ i.i.d. Gamma r.v.’s, and each T kc,i∗ ∼

Γ(dist(C0, i),
1
γ ), which comes from Lemma 2.2. Then the lower bound in Eq. (2.33) follows

immediately from Eq. (2.26) in Lemma 2.3.

2.4.3 Validation in Synthetic and Real-world Networks

To validate the derived bounds, especially the extinction time of the undesired information,

we test three networks with different topologies, but similar sizes: random graph (ER graph

ER75 with edge connecting probability p = 0.0075, scale-free graph SF1 generated with the

Barabási–Albert model by attaching one edge for one vertex each time, and a fraction of the real-

world Facebook friendship network dataset107 [64]. Statistics of the three connected graphs,

ER75, SF1 and dataset107 are shown in Table 2.1. Though all of the three networks have

around 1000 vertices, the SF1 network has a large diameter (diam(G) > 10, which indicates

that the condition in the first case of Theorem 2.4 does not hold.) and is less connected,

compared to ER75 and dataset107. This can be observed by the low average degree and

algebraic connectivity λ1. ER75 is more clustered and even, in the sense that it achieves a high

algebraic connectivity λ1 with a relatively low average degree.

Table 2.1 Statistics of networks used in simulation (Section 2.4.3).

Property Description ER75 SF1 dataset107

n network size |V| 1000 1000 1033
d̄ average degree 7.362 1.9980 51.7851
diam(G) network diameter, maxv∈V εG(v) 7 19 9
radi(G) network radius, minv∈V εG(v) 5 10 5
λ1 algebraic connectivity 0.7618 0.002 0.1329
|Peri(G)| periphery size, |{v ∈ V|εG(v) = diam(G)}| 1 8 1

Figure 2.10a-c show the simulated extinction time (grey dots) in the three networks, re-

spectively, whose mean E(τe) are identified with blue ‘×’ markers. Each instance in the x-axis

corresponds to the same initial cured set C0 and infected set I0, and each instance is repeated

7In practice, obtaining quantity Ki∗ requires executing path searches repetitively. To avoid high computation
load in the simulation, we use the upper bound of Ki∗ , that is, |{i ∈ I0|dist(C0, i) = dist(C0, i∗)}| when evaluating
the lower bound in Corollary 2.4.
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Figure 2.10 Bounds and simulation of the extinction time E(τe) in general networks. The curing rate
γ in the SF1 scenario is increased to avoid a lenthy simulation in SF1.

100 times to obtain E(τe). The red round markers and black squares correspond to the upper

bounds in Theorem 2.4 and Corollary 2.4, respectively, both of which rely on vertex eccentric-

ity properties of the network. The red dashed line and green dashed line with triangle markers

correspond to the upper bounds presented in Corollary 2.2 that relies on network diameter

diam(G), and Theorem 2.3 that relies on the Cheeger constant8 η(G), respectively.

We highlight the following observations:

(1) Network Topology : Extinction time E(τe) varies more violently in SF1 and dataset107

networks that are less ‘regular’ (less like clique topology) in the sense that vertices differ more

in degree, centrality, etc. (indicating different importance/influential in status of individuals).

Therefore, in SF1, due to the larger curing rate γ, and the larger diameter diam(G) ,the proba-

bility in Eq. (2.30) will not be small enough to be neglected, so the upper bound specifically for

i.i.d. Gamma distributions (first term in the right-hand side of Eq. (2.22)) in Theorem 2.4 does

not hold any more, but the second term for general distributions still holds, which is adopted

as the red round markers in Figure 2.10b. For the ‘regular’ ER75 and dataset107 networks,

despite their differences in average degree, and algebraic connectivity, their similarity in the

vertex eccentricity properties (diameter, radius, and periphery size in Table 2.1) leads to very

close extinction time, which indicates the usefulness of Corollary 2.2.

(2) Tightness of the Bounds: Theorem 2.4 and Corollary 2.4 are tighter in the ‘irregular’

SF1 and dataset107, due to the existence of few ‘dominant’ longest shortest paths, i.e., K∗

is small. In contrast, for the ER75 newtork, vertex degrees and pair-wise distances are highly

homogeneous (small variance in degree distribution), resulting in a large K∗ that affects the

tightness of both upper and lower bounds. Corollary 2.2 (red dashed line in Figure 2.10a-c)

that relates to the network diameter diam(G) is an upper bound not only good for the mean,

8Approximating the Cheeger constant η(G) with the lower bound λ1
2

results in a very loose bound of E(τe)
at ∼ 104, so it is not shown for a better illustration and comparison among other bounds. The green dashed
line corresponds to the upper bound in Cheeger’s Inequality η(G) = 2

√
λ1, which is presented to illustrate how

close Theorem 2.3 can be, if the Cheeger constant reaches its maximum possible value. Hence the star sign in
the legend.
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but also for every simulation runs. Theorem 2.3 is not a tight bound. As indicated by the green

dashed line with triangle markers, which approximates the Cheeger constant with its maximum

possible value η(G) = 2
√
λ1, even so the derived upper bound is not as close as Theorem 2.4,

especially in SF1 and dataset107.

(3) Implications: From the proof of Theorem 2.4, another implication is that, the extinction

time of the undesired information can be bounded by the number and the length of shortest

paths, which go through vertices of the initial cured set C0. This observation sheds light on

antidote distribution (injection of desired information), when used as a counter-measure against

the epidemic spreading of undesired information: A general guideline on selecting vertices for

set C0 is to choose vertices that sit on the most number of shortest paths, i.e., vertices with high

betweenness centrality. To better understand the structural change due to C0 and its impact to

the extinction time of the virus, we discuss antidote distribution in the next section in details.

2.5 Divide-and-Conquer: Leveraging Topology to Control Un-

desired Information

As discussed in the introduction, desired information, e.g., security patches, can be purposely

injected into networked systems to control the epidemic spreading of undesired information,

e.g., computer malware. There has been extensive studies on control of epidemic information

propagation, most of which model the control process as an optimization problem under resource

constraints. Preciado et.al. developed a convex framework[96] to evaluate the optimal allocation

of edge control, immunization and non-replicable antidotes resources, in which the network is

modeled as a directed graph. Borgs et.al. studied the optimal distribution of non-replicable

antidote[19] given that the curing rate, proportional to the units of given antidote, is non-

uniform. As for replicable antidote, Khouzani et.al. formulated the control strategy[57] with

both replicable and non-replicable antidote into an optimal resource allocation problem. Chen

utilized optimal control theory to determine the optimal distribution time[25] of a replicable

antidote for timely control. However in [19, 57, 25], the information dynamic in the system

is described by nonlinear differential equations, which indicates it is a population dynamic,

rather than a network dynamic, or equivalently, topology of the network is not taken into

consideration. On the other hand, the influence of network topology is studied in terms of

epidemic threshold[61] under immunization and spreading/extinction time[59] under SI or SIS

epidemic propagation models, while the dissemination of replicable antidote is not incorporated.

Therefore, in this section we explore the distribution strategies of replicable antidote, leveraging

network topology in order to control the undesired information.

Apparently, both the extinction time and the half-life time changes with the initial distri-

bution choice, i.e., C(0), so a carefully chosen set of vertices can effectively shorten the lifetime

of the virus. This is shown by a simple example in Figure 2.11. As can be seen, after the initial

distribution, the potential hazard zone (pink shaded region) in the random distribution case is
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Figure 2.11 An example of (a) random distribution; (b) targeted distribution.

larger than that of the targeted distribution. During the propagation process, the effect of the

replicable antidote is two-fold: on individual bases, it cures infected vertices which decreases

the infection count; on the other hand, the expanding cured set composes a structure to retain

the potential hazard zone of the virus. In the latter case the influence of network topology is

more evident because the dynamics is changing a topological property of the system.

2.5.1 Topology-based Antidote Distribution

As shown in the previous example of Figure 2.11b, the potential hazard zone of the virus

is restricted to a limited region of the network, i.e. a non-empty set of susceptible vertices

are ‘quarantined’ by the initial antidote distribution, who will never be infected during the

dynamics. We are interested in such locking condition, which effectively restrains the virus

propagation. To characterize this effect, we introduce the initial locking time, defined as follows.

Definition 2.3. Let G∗(t) be the induced subgraph of G by removing the cured vertices C(t).
We write G∗(t) = ∪1≤i≤k(t)Gi, where Gi(Vi, Ei) are components of G∗(t) and k(t) denote the

number of components at time t. The initial locking time τ0 is defined as the first time that

G∗(t) becomes disconnected, or equivalently

τ0 = sup{t > 0 | k(t) ≥ 2}.

Remark 2.3. Time instant τ0 marks a critical point of the virus epidemic, because a topological

property of the remaining graph G∗(t), i.e., the connectivity of G∗(t), changes at τ0.

When t < τ0, k(t) = 1, the virus can potentially spread to every corner of the remaining

graph G∗(t). As time t goes beyond τ0, further fragmentation starts to happen in each Gi ⊂
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G∗(t), and potential hazard of the virus can be treated as under control. Then we have the

following theorem regarding the extinction time E(τe) and E(τ0).

Theorem 2.5. Let C0 = |C(0)|, diam(G) and η(G) denote the diameter and Cheeger constant

of graph G, respectively. Then the expected extinction time can be upper bounded by

E(τe) ≤ E(τ0) +
1

γ
[

2

(n− C0)η(G)
+ max

1≤i≤k(τ0)
{diam(Gi)}]. (2.35)

Proof. Consider r.v. Zi and Yi, defined as follows.

Zi := inf
t>τ0
{t− τ0 | |Vi ∩ I(t)| = 1} , (2.36)

Yi := inf
t>Zi+τ0

{t− (Zi + τ0) | |Vi ∩ I(t)| = 0}. (2.37)

Now we re-write E(τe) with E(τ0),

E(τe) ≤ E(τ0) + E( max
1≤i≤k(τ0)

{Zi + Yi})

Jensen
≤ E(τ0) + max

1≤i≤k(τ0)
{E(Zi) + E(Yi)}

≤ E(τ0) + max
1≤i≤k(τ0)

{E(Zi)}+ max
1≤i≤k(τ0)

{E(Yi)}), (2.38)

Note that the first inequality of Eq. (2.38) follows from the fact that among all the components

of G∗(τ0), some may not contain infected vertices. The physical meaning of Zi is the time interval

between the initial locking and the first vertex in Gi is cured, or equivalently, the minimum of

δ(Gi) i.i.d exponential r.v.’s with parameter γ, where δ(Gi) denote the number of edges in edge

cut [Vi,V \ Vi]. Hence Zi ∼ Exp(δ(Gi)γ). Therefore

max
1≤i≤k(τ0)

{E(Zi)}) =
1

γ
[ max
1≤i≤k(τ0)

{ 1

|δ(Gi)|
}

≤ 1

γ
[ max
1≤i≤k(τ0)

{ 1

η(G) min{|Vi|, n− |Vi|}
}

≤ 1

γ

2

(n− C0)η(G)
. (2.39)

For Yi, it denotes the time interval between τ0 +Zi and the time that all the infected vertices

in Gi are cured. Suppose the first cured vertex in Gi is vi ∈ Vi, then Yi is bounded above by the

spreading time of the antidote along the shortest-path spanning tree of Gi rooted at vi. Since

vi ∈ i can be any vertex that is directed connected to C(τ0). Then

Yi ≤ max
vi∈Ei

{
depth(Gi,vi)∑

s=1

∆s
C} ≤

diam(Gi)∑
s=1

∆s
C , (2.40)

where ∆s
C ∼ Exp(γ) denote the time intervals between the s − 1-th and the s-th curing,
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depth(Gi, vi) denotes the depth of the shortest-path spanning tree of Gi, and diam(Gi) is the

diameter (length of the longest shortest-path) of Gi. The second inequality of Eq. (2.40) follows

from the fact that depth(Gi, vi) ≤ diam(Gi), ∀vi ∈ Ei, so
∑depth(Gi,vi)

s=1 ∆s
C ≤

∑diam(Gi)
s=1 ∆s

C , for

any vi ∈ Ei. Therefore,

max
1≤i≤k(τ0)

{E(Yi)}) ≤
1

γ
[ max
1≤i≤k(τ0)

{diam(Gi)}] (2.41)

Combining Eq. (2.38), (2.39) and (2.41) completes the proof.

Theorem 2.5 implies that, the virus infections are defeated through a divide-and-conquer

procedure. Specifically, the extinction time can be mainly determined by quantity E(τ0) and

quantity max1≤i≤k(τ0){diam(Gi)}, since η(G) ≥ n
2 (the case that all vertices form a single line)

indicates the second term in Eq. (2.35) is at most O(1).

2.5.2 Ideal Antidote Distribution Policy

From a holistic view, there are two influential factors on the extinction time: the initial antidote

distribution policy, and the network topology. The former includes the initial cured count C0

and the recipient of the C0 antidotes, i.e. assignment of C(0). Now consider the initial locking

time τ0. Apparently it is decreasing as the initial cured count C0 increases, as well as diam(Gi).

However, it is not reasonable nor realistic to let C0 approach n. We want to find the most

effective way to distribute as less antidote as possible, under condition that the extinction time

can be mostly shortened. So in this subsection, we assume that we have just enough antidote

such that τ0 = 0, i.e. C(0) is a vertex cut of G. Then we define the following metric to describe

the impact of the graph topology on the extinction time with respect to an assignment of C(0).

Definition 2.4. The hazard index φ(C(0)) is defined as the maximum diameter of components

of the initially disconnected graph G∗(t) = ∪1≤i≤k(t)Gi,

φ(C(0)) = max{diam(Gi) | Gi ⊂ G∗(τ0), 1 ≤ i ≤ k(τ0)}.

Further, we provide the following upper bound of φ(C(0)) in terms of |Vi|, the number of

vertices in each components of G∗(0).

Theorem 2.6. Let d′(G) denote the minimum degree of graph G, then

φ(C(0)) ≤ 3

d′(G) + 1
max

1≤i≤k(τ0)
{|Vi|} − 1. (2.42)

Proof. Let the minimum degree of each component Gi be denoted as d′i. If it satisfies d′i ≤
|Vi|−2

2
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(d′i >
|Vi|−2

2 is highly unlikely, because it would suggest every component Gi is dense), then[21]

diam(Gi) ≤ 3b |Vi|
d′i + 1

c −


3, n mod (d′i + 1) = 0;

2, n mod (d′i + 1) = 1;

1, otherwise.

(2.43)

Then

φ(C(0)) ≤ max
1≤i≤k(τ0)

{3b |Vi|
d′i + 1

c − 1} ≤ max
1≤i≤k(τ0)

{3(
|Vi|

d′(G∗(τ0)) + 1
)− 1}

Note
≤ max

1≤i≤k(τ0)
{3(

|Vi|
d′(G) + 1

)− 1} ≤ 3

d′(G) + 1
max

1≤i≤k(τ0)
{|Vi|} − 1. (2.44)

Note that the third inequality in Eq. (2.44) is not strict, but still reasonable. Since d′(G∗(τ0)) ≥
d′(G) holds except the case that the vertext with the minimal degree (denote as h) is directly

adjacent to a vertex in C(0). If the degree of h is decreased much due to the removal of C(0),

then it would be more convenient to include h in C(0) at the initial antidote distribution, and

in this case, the degree of the remaining vertices is decreased at most 1, due to the fact that G
is simple, that is, G does not have repetitive edges.

Theorem 2.6 provides an upper bound of φ(C(0)) in terms of the size of the giant component

max1≤i≤k(τ0)(|Vi|) in G(τ0), where τ0 = 0 in this case. In discrete mathematics, this is equivalent

to the most balanced cut problem, that is, finding such vertex-cut constrained on different

balance requirements, which in our case, is the number of vertices in each component Gi.

On the other hand, clearly from Eq. (2.35), our goal of assigning C(0) is to minimize the

hazard index, i.e. minC(0){φ(C(0))}. From the Moore Bound [81] Inequality, we know that the

diameter of each subgraph Gi can be lower bounded by9

diam(Gi) ≥


|Vi|−2

2 , di = 2,

logdi−1[(|Vi| − 1)di−2
di

) + 1], di > 2,

where di is the maximum degree and |Vi| is the number of vertices of graph Gi respectively. Let

f(di, |Vi|) := logdi−1[(|Vi| − 1)di−2
di

) + 1]. We can show that f(di, |Vi|) is decreasing in di, but

increasing in |Vi|. In the mean time, |Vi|−2
2 is also increasing in |Vi|, irrelevant to di. Consequently,

f(di, |Vi|) ≥ f(d(G), |Vi|),

where d(G) denotes the maximum degree of the network G.

Now minimizing max{diam(Gi)} becomes minimizing max{|Vi|}, that is, we want to find

a minimum vertex cut C(0) ⊂ V, such that in the induced subgraph G∗(τ0) = G \ C(0),

9We remark that the Moore Bound is fairly difficult to attain, but it is a valid lower bound with respect to
the number of vertices of each component.
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minC(0){maxi{|Vi|}} can be achieved. Again, the upper bound of φ(C(0)), (and hence that

of E(τe)) is related to the maximum number of vertices in each component of G∗(τ0), which

also leads to the minimum most balanced vertex-cut problem. By assigning C(0) to the min-

imum most balanced cut, the upper bound of E(τe) in Eq. (2.35) can be tightened because

maxi{diam(Gi)} is tightened.

Therefore, to maximize the effect of antidote that can propagate and spread itself, as well

as to minimize the extinction time, the target of an ideal initial antidote distribution strategy

is to assign C(0) to the minimum most balanced vertext-cut of the network G.

2.5.3 Practical Approaches

In real-world networks that are complex in topology, however, it is not possible to find a small

vertex-cut, let alone a minimum most balanced vertex-cut. For example, in a complete graph

Kn, the minimum vertex-cut contains n− 1 vertices. It translates to either a long τ0, or a large

enough C0, but E(Yi) ' 1
γ(n−1) , in which case the upper bounds in the previous sections are more

applicable. In addition, searching for the minimum most balanced cut or directly searching for

vertices whose removal will result in a smaller φ(C(0)) is difficult. In fact, finding the minimum

most balanced cut for general graphs is NP-Hard [58]. So we introduce the following applicable

and practical approaches under the guideline of minimizing φ(C(0)), or minimizing the size of

the giant component in G∗(τ0).

2.5.3.1 betcen-based approach

Betweenness centrality of a vertex v is defined as g(v) =
∑

s 6=v 6=t
δst(v)
δst

, where δst denotes the

number of shortest paths between vertex s and v, while δst(v) are the number of those paths

that passes through vertex v. Parameter g(v) indicates how likely vertex v sits in other vertices’

shortest paths. Removal of a vertex with high g value will likely break more shortest paths,

which is an effective measure as indicated by the extinction time bound in the previous section.

However, it requires global knowledge and takes O(|V||E|) [20] time to calculate.

2.5.3.2 ccfs-based approach

Clustering Coefficient of a vertex v is defined as C(v) = 2|{est|est,evs,evt∈E}|
d(v)[d(v)−1] , which shows how

densely connected is v’s neighborhood. To calculate C(v), knowledge of vertices within the

distance of two to v is required. The reason of using C value as an indicator is that when C(v)

is a small but strictly positive value, it implies that v’s neighbor is not well-connected, and

relies v to function as a bridge between its neighbors. This is especially true when the graph

does not have many ‘long edges’.
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Figure 2.12 A example of an SIC dynamics (β = γ = 0.003, I0 = 200) after the initial distribution of
C0 = 40 copies of antidotes with ccfs-based approach.

2.5.3.3 degree-based approach

Degree of vertex v, d(v) is easy to attain because it only requires knowledge of one-hop neighbors

of a vertex. Higher degree indicates a vertex has a higher chance of being a hub. Hence the

removal of such a vertex will result in the removal of a lot of edges.

In the implementation of these approaches in the next subsection, we first calculate the g,

C and d values for each vertex, and then sort them to find the best candidates. Considering the

sorting process require global knowledge of the graph, in real world implementation, the sorting

process can be substituted with a cut-off mechanism with predetermined threshold values.

2.5.4 Numerical Results and Discussion

To validate and compare the proposed approaches, we first analyze an extreme case scenario,

and then present simulation results in network portions acquired from the real world OSN,

Facebook. Figure 2.12 shows a set of snapshots of an SIC information dynamics evolution in

dataset0, where color red, white and blue indicates infected, susceptible and cured respectively.

Consider first a special case when G = Sn, i.e. the star network with one hub and n − 1

peripherals. Based on all three approaches, the hub will be the first one selected in C(0), due

to its high g and d value, as well as its low C value. When the hub is cured, the SIC dynamic

is in a locked condition, that is, the SIC dynamic fragmented the remaining of the star into

disconnected vertices, leaving no further expansion space for the virus. The extinction time τe

in Sn will be the maximum of I0 i.i.d. r.v.’s, each with distribution Exp(γ), and E(τe) =
HI0
γ ,

where Hk is the k-th Harmonic number.

To examine the effectiveness and efficiency of the proposed antidote dissemination policy, we

conducted simulation of SIC dynamics on two connected network, both fractions from Facebook

[64], dataset0 10 and dataset348. Statistics of the two networks fraction are shown in Table 2.2.

As can be seen from the average degree, dataset348 is much denser than dataset0. In addition,

from the average ccfs (clustering coefficient), dataset348 is more clustered than dataset0.

Figure 2.13 shows the topologies of the two networks, where the betweenness centrality value

is indicated by color (low-blue, high-red). Candidates for C(0) in the betcen-based approach are

the vertices in red. Intuitively from the figure, we can tell that dataset0 is more ‘scattered’

10Originally, dataset0 contains 342 vertices and is disconnected, so we select the giant component to be
dataset0 during the simulation.
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Table 2.2 Statistics of the two networks: dataset0 and dataset348.

Statistics Description dataset0 dataset348

n = |V| order (number of vertices) 324 224
|E| size (number of edges) 5028 6384
d̄ = 2|E|/n average degree 31.037 57
diam(G) network diameter 11 9
C̄ average ccfs 0.522 0.544
l̄ average path length 3.573 3.042

(a) Topology of dataset0 network (b) Topology of dataset348 network

Figure 2.13 Topologies of the two network fractions: Red vertices have high betweenness centrality
(betcen, g) values, while blue ones have low g values.

than dataset348, which implies that it will be easier (with a smaller C0 = |C(0)|) to achieve

the locking condition, i.e. G∗(0) is disconnected.

Figure 2.14 illustrates topological changes of dataset0 and dataset348, induced by differ-

ent initial antidote distribution strategies, i.e. different assignments of C(0). These results can

be used to predict the effectiveness of those three approaches, plus a random distribution, in

terms of E(τe) and E(τ 1
2
). As discussed in Section 2.5.1, the approach that can minimize the size

of the giant component will most effectively shorten the extinction time. From the topological

characteristics shown in Figure 2.14, it is interesting to see that betcen-based approach will be

outperformed by ccfs-based approach in dataset348, while in dataset0 it is the opposite. The

possible reason is that dataset348 is much denser (avg. degree 57) and more clustered (avg.

ccfs 0.544) than dataset0, which is also manifested in Figure 2.13. This implies the betcen-

based approach will disconnect dataset0 more easily, while leaving dataset348 still connected

during the initial distribution.

Figure 2.15 illustrates the mean extinction time and half-life time, each over 1000 simulation

runs. The propagation parameters of the SIC epidemic are: infection rate β = 0.01, the curing

rate γ = 0.01, and initial infection count I0 = |I(0)| ' 1
2 |V|.

Simulation results in Figure 2.15 echoes with the prediction we had from Figure 2.14, in
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Figure 2.14 Topological change of G∗(0) with under different C(0) options.

which performance of degree-based approach is poor, and the best approach is either betcen-

based or ccfs-based. In terms of extinction time, the degree-based approach is even worse than

random distribution, because high degree does not imply high importance. Due to the clustering

effect of human social interactions, high degree vertices is often located in a densely connected

core, where the removal of such a vertex can be compensated by its neighbors. However, the

zig-zag pattern of the green line, i.e. the random distribution, indicates the instability of this

approach. What’s more, considering the ccfs-based approach only requires knowledge of two-

hop neighbors, rather than global knowledge in the betcen-based approach, it is an optimal

choice, especially when the network is denser. As for the half-life time, which indicates the

effectiveness in alleviating heavy infection conditions, simulation suggests similar conclusion as

the extinction time, except that degree-based distribution performs better when C0 is small in

dataset348, where the network is more clustered.
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Figure 2.15 Extinction time E(τe) and Half-life time E(τ 1
2
) under different initial distibution strate-

gies on network dataset0 and dataset 348 show that betweeness-centrality based approach works
better for dataset0, while cluster-coefficient based approach works better for dataset348.

2.6 Dynamics in Motion: Estimating the Number of Informa-

tion Adopters at Time t

In the previous sections, we study the lifetime of the undesired information (virus), which is a

‘coarse’ and collective way to describe the propagation process at system-level, as only two time

pivots are identified from the entire dynamic evolution. To answer the third research question,

how the number of information adopters changes over time, however, the dynamic process need

to be analyzed in finer grains. Therefore, in this section, we discuss the step-by-step evolution

of a SIC epidemic process in a discrete time system with time-step of length ∆t.

We set ∆t to be sufficiently short, such that within a time step, e.g., from the (t − 1)th-

step to tth-step, the state of a vertex i ∈ V, Xi(t) depends solely on the last states of its

neighbors {Xj(t− 1)|j ∈ N (i)} and itself Xi(t− 1). This behavior resembles the Local Markov
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property of Markov Random Fields (MRF), where (temporal) Markov property is correlated

with spatial dependence. To overcome this challenge caused by this correlation, we separate the

spatial dependence and temporal dependence through a similar method introduced in [27], but

addressing both the virus infection and antidote curing events at the same time. In this way, we

are able to derive a time-recursive expression for the infection probability P(Xi(t) = 1), from

which the expected number of information adopters E(I(t)) and E(C(t)) can be inferred.

Remark 2.4. Due to the focus on the step-by-step evolution, it is on longer reasonable to use

system-level infection/curing rates (also probability, because we adopt ∆t as the unit length of

a time step) β and γ for all edges. In other words, to obtain a finer time resolution of the

dynamics, we also need a finer network model, which can capture the difference between two

edges, e.g., the probability βi,j that a virus propagate through edge e(i, j) in a time step can

be different from βu,v that a virus propagate through edge e(u, v). Considering this change in

resolution, we write β := {βi,j}i,j∈V and γ := {γi,j}i,j∈V , as the matrix of infection probabilities

and curing probabilities, respectively. In this sense, the network G(V, E) is heterogeneous, and

can be characterized by matrices β and γ.

2.6.1 Temporal Dependence

First, we discuss the state dependence and evolution in the time domain. With states of i’s

neighbors at time t, the probability that a susceptible vertex i remains susceptible in the next

time step can be written as

P(Xi

[
t+ 1) = 0 | Xi(t) = 0, XN (i)(t) = xN (i)(t)

]
=

∏
j∈NI(t,i)

(1− βj,i) ·
∏

k∈NC(t,i)

(1− γk,i)

=
∏

j∈N (i)

(1− βj,i)
1
2

(x2j (t)+xj(t)) · (1− γj,i)
1
2

(x2j (t)−xj(t)). (2.45)

Let Puv(t) = P(Xi(t + 1) = v|Xi(t) = u) denote the transition probability from state u

to v during one time step at time t. Note that only three equations are needed because∑
v∈Λ Pu,v = 1, P10 = 0 and P−1−1 = 1. Let Ii(t) = 1 −

∏
j∈N (i)(1 − βj,i)

1
2

(x2j (t)+xj(t)),

Ci(t) = 1−
∏
k∈N (i)(1− γk,i)

1
2

(x2k(t)−xk(t)), then the evolution can be described by the following

one-step transition probabilities.

P00(i, t) =
∑

xN (i)(t)

P(XN (i)(t) = xN (i)(t)|Xi(t) = 0) · (1− Ii(t))(1− Ci(t)), (2.46)

P01(i, t) =
∑

xN (i)(t)

P(XN (i)(t) = xN (i)(t)|Xi(t) = 0)Ii(t)(1− Ci(t)), (2.47)

P11(i, t) =
∑

xN (i)(t)

P(XN (i)(t) = xN (i)(t)|Xi(t) = 1)Ci(t). (2.48)

The temporal dependence is included in Ii(t) and Ci(t), while the spatial dependence is
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captured by the joint conditional probability P(XN (i)(t) = xN (i)(t)|Xi(t) = xi(t)), which is

the reason that calculating the exact marginal probability distribution is expensive. A common

assumption is that during one time step, states of different vertices are mutually independent,

i.e. P(XN (i)(t) = xN (i)(t)|Xi(t) = xi(t)) =
∏
j∈N (i) P(Xj(t) = xj(t)), which creates a noticeable

deviation in probability as indicated by [27], so we discuss spatial dependence in the next step.

2.6.2 Spatial Dependence

The relationship between the temporal and spatial state dependence is that, during one time

step, i.e., from t to t + 1, virus and antidote can only propagate to vertices that are at most

one hop away, or equivalently, only the states of one’s neighbors are relevant in determining

the next state of a vertex. In other words, we can write the temporal and spatial dependence

as follows:

Xu(t+ 1) ⊥ XV\N (u)∪{u}(t) | XN (u)(t). (2.49)

Based on this observation, we assume the states of vertex i’s neighbors N (i)(t) are inde-

pendent of each other for every time step t, so

P(XN (i)(t) = xN (i)(t)|Xi(t) = xi(t)) =
∏

j∈N (i)

P(Xj(t) = xj(t)|Xi(t) = xi(t)). (2.50)

Let N s
0 (i, j, t) = P(Xj(t) = s|Xi(t) = 0), N s

1 (i, j, t) = P(Xj(t) = s|Xi(t) = 1), s ∈ {0,−1, 1}.
Then Eq. (2.46), (2.47), and (2.48) can be simplified into

P00(i, t) =
∑

xN (i)(t)

∏
j∈N (i)

[
N
xj(t)
0 (i, j, t) · (1− βj,i)

1
2

(x2j (t)+xj(t)) · (1− γj,i)
1
2

(x2j (t)−xj(t))N
xj(t)
0 (i, j, t)

]
=

∏
j∈N (i)

[
1−N1

0 (i, j, t)βj,i −
(
1−N0

0 (i, j, t)−N1
0 (i, j, t)

)
γj,i
]

(2.51)

P01(i, t) =
∑

xN (i)(t)

[
1−

∏
j∈N (i)

(1− βj,i)
1
2

(x2j (t)+xj(t))
]
·
∏

j∈N (i)

(1− γj,i)
1
2

(x2j (t)−xj(t))N
xj(t)
0 (i, j, t)

=
∏

j∈N (i)

[
1−

(
1−N0

0 (i, j, t)−N1
0 (i, j, t)

)
γj,i
]
− P00(i, t) (2.52)

P11(i, t) = 1−
∑

xN (i)(t)

[
1−

∏
j∈N (i)

(1− γj,i)
1
2

(x2j (t)−xj(t))
]
·
∏

j∈N (i)

N
xj(t)
0 (i, j, t)

=
∏

j∈N (i)

[
1−

(
1−N0

1 (i, j, t)−N1
1 (i, j, t)

)
γj,i
]
. (2.53)

With Eq. (2.51)-(2.53), the recursive master equations of the system over time can be written

as

P(Xi(t+ 1) = 0) = P(Xi(t) = 0) · P00(i, t), (2.54)

P(Xi(t+ 1) = 1) = P(Xi(t) = 0) · P01(t) + P(Xi(t) = 1) · P11(i, t). (2.55)
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Note N0
0 (i, j, t), N1

0 (i, j, t), N0
1 (i, j, t) and N1

1 (i, j, t) are necessary to solve these equations,

but it is hard to obtain closed form equations of these quantities. However, it is possible to

derive recursive expressions for them with respect to time, as shown below.

N0
0 (i, j, t) =

P(Xj(t) = 0, Xi(t) = 0)

P(Xi(t) = 0)

=
P(Xi(t− 1) = 0)

P(Xi(t) = 0)
·N0

0 (i, j, t− 1) · P00(i, j, t− 1) · P00(j, i, t− 1), (2.56)

N1
0 (i, j, t) =

P(Xj(t) = 1, Xi(t) = 0)

P(Xi(t) = 0)

=
P(Xi(t− 1) = 0)

P(Xi(t) = 0)
· P00(i, j, t− 1) ·

[
N0

0 (i, j, t− 1) · P01(j, i, t− 1)

+ (1− βj,i) ·N1
0 (i, j, t− 1) · P11(j, i, t− 1)

]
, (2.57)

N0
1 (i, j, t) =

P(Xj(t) = 0, Xi(t) = 1)

P(Xi(t) = 1)

=
P00(j, i, t− 1)

P(Xi(t) = 1)
·
[
P(Xi(t− 1) = 0) ·N0

0 (i, j, t− 1) · P01(i, j, t− 1)

+ P(Xi(t− 1) = 1) · (1− βi,j) ·N0
1 (i, j, t− 1) · P11(i, j, t− 1)

]
, (2.58)

N1
1 (i, j, t) =

P(Xj(t) = 1, Xi(t) = 1)

P(Xi(t) = 1)

=
P(Xi(t− 1) = 0)

P(Xi(t) = 1)
·
[
N0

0 (i, j, t− 1) · P01(i, j, t− 1) · P01(j, i, t− 1)

+N1
0 (i, j, t− 1) · P11(j, i, t− 1) · [βj,i + P01(i, j, t− 1)− βj,iP01(i, j, t− 1)]

]
+

P(Xi(t− 1) = 1)

P(Xi(t) = 1)
· P11(j, i, t− 1) ·

[
[βi,j + P01(j, i, t− 1)− βi,jP01(j, i, t− 1)]

·N0
1 (i, j, t− 1) +N1

1 (i, j, t− 1) · P11(i, j, t− 1)
]
, (2.59)

where transition probabilities P00(i, j, t), P01(i, j, t), and P11(i, j, t)

P00(i, j, t) =
∏

k∈N (i)\{j}

[
1−N1

0 (i, k, t)βk,i −
(
1−N0

0 (i, k, t)−N1
0 (i, k, t)

)
γk,i
]

(2.60)

P01(i, j, t) =
∏

k∈N (i)\{j}

[
1−

(
1−N0

0 (i, k, t)−N1
0 (i, k, t)

)
γk,i
]
− P00(i, j, t) (2.61)

P11(i, j, t) =
∏

k∈N (i)\{j}

[
1−

(
1−N0

1 (i, k, t)−N1
1 (i, k, t)

)
γk,i
]
. (2.62)

denote the probability that without considering vertex j ∈ N (i), vertex i remains susceptible,

becomes infected, and remains infected during time step t respectively.
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2.6.3 Expected Infection Count E(I(t)) and Cured Count E(C(t))

Note that Eq. (2.56)-(2.59) are time-recursive, allowing us to estimate the state evolution as long

as the initial state of the network is known (equivalent to the case that the initial distribution of

state vector X(0) is a δ-distribution at time t = 0). It is clear that P(Xv(0) = 1) = 1 ∀v ∈ I(0),

P(Xu(0) = −1) = 1 ∀u ∈ C(0) and P(Xw(0) = 0) = 1 ∀w ∈ S(0). Therefore, P(X(0) = x(0)) =

1 =
∏
v∈V P(Xv(0) = xv(0)), where x(0) = {xv(0)}v∈V is the state vector of the network at time

0, which indicates r.v.’s {Xv(0)}v∈V are mutually independent. Hence N s
r (j, 0) = P(Xj(0) =

s|Xi(0) = r) = P(Xj(0) = s) is determined for any r, s ∈ {0, 1,−1}. Then P(Xi(t) = 1) can be

solved iteratively, and the expected infection count at time t can be calculated by

E(I(t)) = E[
∑
i∈V

1{1}(Xi(t))] =
∑
i∈V

P(Xi(t) = 1), (2.63)

E(C(t)) =
∑
i∈V

[
1− P(Xi(t) = 0)− P(Xi(t) = 1)

]
. (2.64)

The manipulations discussed above, whose purposes are to obtain E(I(t)) and E(C(t))

for a given time step t, can be summarized into the following iterative algorithm. Note that

~P0(t) = {P(Xi(t) = 0)}i∈V and ~P1(t) = {P(Xi(t) = 1)}i∈V are two n × 1 vectors, while

~RS(t) = {P00(i, j, t)}i,j∈V , ~NC(t) = {P11(i, j, t)}i,j∈V , ~N 0
0 (t) = {N0

0 (i, j, t)}i,j∈V , ~N 0
1 (t) =

{N1
0 (i, j, t)}i,j∈V , ~N 1

0 (t) = {N0
1 (i, j, t)}i,j∈V , ~N 1

1 (t) = {N1
1 (i, j, t)}i,j∈V are n× n matrices.

Algorithm 1 Iterative Inference Method.

Input: I(0), C(0), βββ, γγγ, V
Output: E(I(t)), E(C(t))

1: Initialize: n = |V|, I(0) = |I(0)|, C(0) = n− I(0)− |C(0)|
~P0(0) = ~N 0

0 (0) = ~N 0
1 (0) = 1V\(I(0)∪C(0)),

~P1(0) = ~N 1
0 (0) = ~N 1

1 (0) = 1I(0)

2: Calculate ~P0(1) with Eq. (2.48) and (2.53)
3: Calculate ~P1(1) with Eq. (2.51), (2.52) and (2.55)
4: Output E(I(1)) = sum(~P1(1)),

E(C(1)) = n− E(I(1))− sum(~P0(1))
5: Calculate ~RS(0) and ~NC(0) with Eq. (2.60) and (2.61)
6: t = 1
7: while E(C(t)) < n do

Calculate ~N 0
0 (t), ~N 1

0 (t), ~N 0
1 (t), ~N 1

1 (t) with Eq. (2.56)-(2.60)
Calculate ~P0(t+ 1) with Eq. (2.48) and (2.53)
Calculate ~P1(t+ 1) with Eq. (2.51), (2.52) and (2.55)
Output E(I(t+ 1)) = sum(~P1(t+ 1)),

E(C(1)) = n− E(I(t+ 1))− sum(~P0(t+ 1))
Calculate ~RS(t) and ~NC(t) with Eq. (2.60) and (2.61)
t = t+ 1

8: end while
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Figure 2.16 Simulated v.s. calculated infection/cured count in networks of size 40,80 and 100.

We validate the efficacy of the proposed algorithm in networks with size n ranging from 40

to 100, where each edge e(i, j) is associated with random infection/curing probability βi,j and

γi,j . Figure 2.16 shows the simulation (dashed lines with s in the legend) v.s. calculation (solid

lines composed of dots, with c in the legend) of expected value of infection and cured counts.

The infection count I(t) and the curing count C(t) can be viewed as the number of information

adopters at time t. As shown by the small gaps between the solid lines and their corresponding

dashed lines, E(I(t)) and E(C(t)) can be well captured by the outcome of Algorithm 1.

2.7 Summary

In this chapter, we studied conflicting information propagation, in terms of lifetime of the

undesired information. We propose a Susceptible-Infected-Cured propagation model to capture

the short-term competitions between the virus (undesired information) and the later-injected

antidote (undesired information), both propagating on the same network. We find the lifetime

of the virus can be upper bounded by two topological properties of the network G: the Cheeger

constant η(G), which measures the level of ‘bottleneckness’, and vertex eccentricities {εG(v)}v,
which measures the longest distance between vertex v and any other vertices in the network.

Particularly, the O( logn
η(G) ) bound indicates that the lifetime of the virus does not always decrease

with network size n, while the upper bounds with {εG(v)}v are less computationally expensive to

obtain. As an application of this knowledge, we provide practical antidote distribution strategies

with real-world network traces. Finally, we propose an inference algorithm to estimate the

number of information adopters, which can foresee the instantaneous evolution of the dynamics

before it fully unfolds. As the driving force of mobile data, information dynamics determines

when data moves and stops, as well as the volume of data traffic in networks. Knowledge on the

lifetime of information provides guidelines on network topology design, data traffic prediction,

and control of undesired information propagation.
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Chapter 3

Coverage Dynamics: Modeling,

Analysis, and Prediction of Data

Coverage in Heterogeneous Edge

Networks

Our study in the previous chapter revealed the lifetime of mobile data in large networks, to

address the when question. In this chapter, we shift gear to another important aspect of mobile

data in the space domain, that is, the whereabouts of data. Specifically, we study where data

are accessible, i.e., the data coverage, during a dissemination process. This question is of par-

ticular importance to location-based service (LBS), in which data are tagged with geographical

locations, and disseminated though mobile devices with diverse capabilities in the edge net-

work. However, existing research on data dissemination either do not carry the notation of

‘where’, or assume participants of the dissemination process to be homogeneous in communica-

tion, mobility, and other aspects. To overcome these challenges that hinder the understanding

of data dissemination services, we propose a data coverage model that captures the attributes

and actions of individual participants, and quantify the data coverage with a data strength

metric, by which the dynamic change of data coverage can be described as a numeric signal

on a graph, that embeds location information. Analyzing this graph signal over entity mobility

and data forwarding, we find that, the impact of entity mobility is high especially when entities

are less active in forwarding, or moving in low speed, and such impact acts in the form of a

user mobility matrix, which describes the underlying graph topology of the defined signal of

data strength. This observation enables us to predict future data coverage with graph signal

processing (GSP) tools. Our results provide a novel, yet practical solution to understand data

dissemination services in the edge network composed of heterogeneous wireless devices.
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3.1 Introduction

Recent advances in data-driven applications are re-enforcing the indispensable role of rapidly

growing mobile data [120] in a variety of scenarios, ranging from marketing [126] to manufac-

turing [114], and scientific research [40]. In the era of mobile data, generation, dissemination

and consumption of data are much easier than ever, owing to the proliferation of increasingly

powerful mobile devices, such as smart phones [142], as well as emerging networking paradigms,

such as IoT and fog computing [85, 18]. Consequently, data dissemination processes, which move

data from their generator(s) to their consumer(s), as if data are a special type of commodities,

are quickly migrating to the edge networks, which are composed of both user-operated wireless

devices that can move, such as smart phones, wearable devices, and smart vehicles; and sta-

tionary network elements that provide wireless access to devices as a part of the infrastructure,

such as cellular BS, LTE eNodeB, and WiFi AP.

3.1.1 Motivation

Such data dissemination services are imperative to a lot of applications. For instance, in mobile

advertisement (ad) applications [99, 124], business-owners can recruit smart phones, nearby

vehicles and AP’s to distribute ads, such that an ad penetration is maintained over populous

regions. Another example is traffic information collection/distribution in intelligent transporta-

tion systems (ITS) [130, 8], which heavily relies on communication among smart vehicles with

on-board unit (OBU), IoT sensors, RSU, and cellular eNodeB. Despite their differences, data

dissemination processes in these applications share some common grounds:

(1) Heterogeneous network : Data are generated and disseminated by mobile phones, smart

vehicles, AP’s, and BS’s, which we refer to as entities, with vastly different communication

schemes, mobility patterns, and forwarding preferences. For example, the communication range

of a BS (100 m to 10 Km) is much larger than that of an AP (20 m to 1 Km), and a pedestrian,

who streams video over his/her smart phone, moves much slower than a vehicle on the highway,

whose registration information is collected and routed by the electric toll collecting (ETC)

sensors. As a result, entities may intermittently connect, disconnect, and re-connect as they

move, so data to be disseminated traverse a heterogeneous network via both wired (e.g., the X2

connection between LTE eNodeB’s and wireless (e.g., the D2D connection between LTE smart

phones) links, before they are picked up by consumers.

(2) Mobile data: Ever since its injection into the network edge, a data block (which we refer

to as datum throughout this chapter) and its copies are constantly moving, due to user/entity

movements such as people walking, data forwarding actions such as ad broadcasting, and enti-

ties’ decisions to participate in/withdraw from the dissemination process.

(3) Location-based service (LBS): The dissemination service is location-centric, because

where data are determines who can immediately access the data. This is especially evident

to applications that deal with location-tagged data, e.g., traffic information collected and ex-
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changed among smart vehicles, mobile ads distributed by local stores in a mall, sensory data

collected and actuation commands distributed in IoT, etc.

A key question arises from the dissemination process of data: where are the accessible data?

Answer to the ‘where’ question is meaningful to multiple stake-holders of a data dissemina-

tion service, and can effectively guide a number of design issues, such as placement of network

elements, allocation of storage/processing resources, and evaluation of network performances.

From the perspective of data owners, e.g., companies who purchase mobile ad service from

AdMob, it is their legitimate rights to know where their data can be accessed, and preferably

accessed by whom. To data service providers, e.g.,content delivery network (CDN) like Cloud-

flare, whereabouts of data should be disclosed to content owners for service transparency, and as

input to servers deployment planning. In regard to the network operators, e.g., cellular carriers

like AT&T, changing volume of mobile data translate to traffic engineering, and management

of network resources, which should be considered in network planning, charging, and OA&M

(operation, administration, and maintenance). Therefore, it is necessary for all parties, to have a

quantitative measure on the whereabouts of data in dissemination, and preferably a mechanism

to evaluate/predict data accessibility over a geographical region of interest.

3.1.2 Related Work

Due to its great importance, data dissemination process in wireless networks has been exten-

sive studied from the following aspects, such as data dissemination time [141], throughput [46],

and network topology [99]. Among these, Grossglaussor and Tse proved movements of enti-

ties (under speed-constrained mobility) can increase the system capacity (in terms of pairwise

throughput) for ad hoc networks [46] relying uni-casts. Under a move-and-gossip dissemination

model, Zhang et.al. defined a mobile conductance metric, to derive the spreading time, by when

all of the entities have received the data [141]. Li et.al. studied the speed of data propagation

with geo-cast [66] in a group of mobile devices following the same propagation mode and mo-

bility pattern. Lu et.al. showed there exists a critical condition characterized by participating

probability, moving speed and transmission range, above which the number of data-carrying

entities will scale quadratically with time [76]. In the aforementioned literature, participants

of the data dissemination process are assumed to be homogeneous in aspects including com-

munication capacity, mobility pattern, and data forwarding preferences. This is not the case

in the edge network, where participants can be vastly different in these aspects. Taking het-

erogeneity in communication protocols into consideration, hierarchical topology of mobiles in a

cellular and WiFi overlay network is studied in [68]. From the perspective of data forwarding

influenced by social features, Qin et.al. analyzed the dynamic sociality of vehicles, based on

which they proposed a mobile advertisement dissemination scheme that can achieve a shorter

distributing time [100]. Despite it significant impact, the ‘where’ question remains open, as the

aforementioned literature do not carry the notion of data’s whereabouts.
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3.1.3 Our Approach and Contributions

Motivated by the lack of study on the whereabouts of data, this chapter discusses data cover-

age, that is, the time-varying locations where a data block of interest can be accessed during

its dissemination process. However, answer to the ‘where’ question are hindered by two main

challenges arsing from the edge network scenario: First, from the unique setting of data dissem-

ination processes, how to account for the heterogeneity among entities, including both mobile

devices, and stationary access network elements that are different in many aspects? Second, from

the location-centric nature of the problem, how to quantitatively describe the whereabouts of

a data block (and its copies), considering that they are constantly moving over-the-air due to

forwarding, being downloaded and/or deleted by users, and piggybacking on moving entities?

To overcome the first challenge of heterogeneity, we propose a generic entity model that

captures the attributes and actions of participants in a dissemination process, and formally

define a measurable scope of data coverage, i.e., the geographical region in which the data

block can be accessed to answer the ‘where’ question. Then to address the second challenge of

quantification, we define a new metric, data-strength, through which the coverage dynamics, i.e.,

time-varying data coverage, can be quantitatively described by a signal on a graph that embeds

geographical location information. The graph signal formulation allows us to study the evolution

and prediction of the dynamic process of data movement and coverage. Particularly, we analyze

the impact of user mobility and data forwarding through a snapshot of the coverage dynamics,

i.e., the difference graph signal. Based on the observation and the governing equations of the

dynamics, we propose and test a graph signal processing (GSP)-based prediction framework, to

showcase an application of the proposed model. In summary, this chapter makes the following

contributions toward understanding mobile data dissemination in the edge networks:

We formally define the data movement and coverage problem, propose a new metric, data-

strength, to characterize the dissemination process, and formulate data coverage as a tractable

time series of numeric graph signals.

We observe bounded impact from user mobility and data forwarding on the change of

data-strength, as the maximum moving speed or participating ratio increases. Particularly, the

impact of user mobility is high when entities are not active in moving or data forwarding, and

this impact takes effect in the form of a mobility matrix, which describes the underlying graph

of the data strength signal. It indicates that data coverage in the future can be predicted based

on the current data strength, and the long-term mobility patterns.

We propose and implement a GSP-based prediction framework, which can predict the in-

stantaneous data coverage with an over 80% accuracy for time periods ranging from 10 s to 200

s, in data dissemination scenarios with both wireless and wired connections.
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3.2 Problem Formulation

As discussed in the previous section, existing research on data dissemination focus on ‘how

many’ have received the data, instead of ‘where’ data can be accessed. To introduce the notion

of data whereabouts, we introduce the data coverage model in this section, to formulate the

intuitive ‘where’ question into specific and rigorous research questions. Specifically, we first

specify the scope of the ‘where’ question, establish the entity model to characterize dissemination

participants of various kinds, and formally define data coverage dynamics, based on which the

‘where’ question is break into in three tractable sub-questions.

3.2.1 Scope of the ‘Where’ Problem

The time-varying whereabouts of data due to entity movements and data forwarding are relevant

to three domains: time, space, and data, for each of which we specify our assumptions.

(1) Time: The system runs in continuous time [0,∞), and is observed every ∆ time. The

0-th observation taken at time instant 0 is called the initial state of the system. For integers

t ∈ T = {1, 2, · · · }, we differentiate the following:

• Time (instant) t refers to the time instant t·∆ ∈ [0,∞), when we take the t-th observation

of the dissemination process.

• Time step t refers to the time interval [(t− 1)∆, t∆) ⊂ [0,∞), during which actions and

interactions of entities take place in the system.

With this clarification, we consider intervals of unit length (∆ = 1), and write t ∈ T
throughout this chapter, when no confusion is raised.

(2) Space: Consider a planar region A ⊂ R2, e.g., the downtown area of a city, where mobile

ads are disseminated through smart phones. Let dA(·, ·) denote the Euclidean distance in A.

(3) Data: Let D denote a set of distinct data blocks. We consider the dissemination process

of one data block δ ∈ D, later referred to as a datum, which has been injected into the network

before time instant t = 0. The dissemination process of datum δ refers to the replication,

forwarding, and deletion of δ that take place in region A. Exact copies of datum δ (as a result of

replication) are treated as the same data block as the original datum δ during the dissemination

process, but any distorted, or altered copies of δ are viewed as different datum than δ, and is

hence not considered in the dissemination process.

Participants of a data dissemination process include mobile wireless devices, e.g., smart

phones, IoT sensors, and OBU’s in vehicles, as well as infrastructure nodes in wireless access

networks, e.g., AP’s, eNodeB’s, and RSU’s. They compose a group of entities E, each of which

can receive, carry, distribute, and delete datum δ at any time.
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Figure 3.1 Data coverage model (Note that time is not to scale in this diagram).

3.2.2 Entity Model

Each entity e ∈ E is characterized by a list of attributes and a set of actions that can change

entity e’s own dynamic attributes (and hence the whereabouts of datum δ).

3.2.2.1 Attributes of Entity e

Attributes of an entity describe its (static) capability and (dynamic) statuses.

(1) Transmission range re ∈ R+ is defined as the maximum distance that a data block δ ∈ D
can be transmitted successfully over wireless links by entity e in one time step. It is a static

attribute that does not change over time.

(2) Position pe(t) ∈ R2 records the exact location, e.g., GPS coordinates, of entity e at

every observation, which is taken at time t. It is a dynamic status, and note that it is possible

for an entity e to move out of (and back into) region A at some time instant.

(3) State δe(t) ∈ {0, 1} is an indicator of whether entity e has a copy of datum δ at time

instant t, as well as a determinant of entity e’s actions in the next (t+ 1-th) time step. Entity

e will participate in the dissemination process, i.e., promises to disseminate copies of δ, during

time step t+ 1, if and only if its state δe(t) = 1. It is a dynamic status of entity e.

The dynamic statuses of an entity e, that is, position pe(t) and states δe(t) observed at time

instant t, are changed by actions the entity takes in past time step t (as time instant t marks

the end of time step t, as shown in Figure 3.1), and the current statuses partially determine

the actions entity e will take during time step t+ 1.
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3.2.2.2 Actions

During every time step t ≥ 1, each entity takes three actions sequentially: one disseminate

action, one decide action, and a move action, as illustrated in the central block of Figure 3.1.

(1) Disseminate: At the beginning of time step t, given its previous state δe(t− 1), entity e

will take exactly one of the following two actions:

• Forward datum δ to all possible recipients, if entity e decided to participate (in the

previous time step), i.e., δe(t − 1) = 1. Data recipients include any entity x ∈ E within

its wireless communication range, that is, {x ∈ E | dA (pe(t), px(t)) ≤ min{rec , rxc }}, and

(stationary) entity y that is directly connected with (stationary) entity e via wired links;

• Listen to broadcasts of others, if δe(t− 1) = 0.

(2) Decide: Then entity e makes a decision to set its state δe(t), i.e., whether entity e will:

• Keep its current state during time step t+ 1, such that δe(t) = δe(t− 1), as shown by the

blue boxes with letter K in Figure 3.1;

• Withdraw from the dissemination process, by deleting the local copy of δ and setting

δe(t) = 0, given that it was participating in the previous time step, i.e., δe(t− 1) = 1, as

shown by the white box with letter W in Figure 3.1;

• Participate in the dissemination process of datum δ, by setting state δe(t) = 1, as shown

by the orange box with letter P in Figure 3.1, given that i) it was not participating in the

last time step, i.e., δe(t−1) = 0, and ii) it has received a copy of δ during the dissemination

stage in time step t.

(3) Move: Finally entity e moves from its last position pe(t−1) to a new position pe(t) ∈ R2.

Though stationary entities like an eNodeB are stationary, we write pe(t) = pe(t − 1), ∀ t ∈ T ,

such that all entities can be described by the same generic model.

3.2.3 Data Coverage and Coverage Dynamics

Due to the movements, actions, and interactions of entities in E, the region where a datum can

be accessed, i.e., its data coverage, changes over time.

Definition 3.1. (Data) Coverage C(δ, t) of datum δ at time t is defined as a sub-region

of region A, where a copy of δ can be obtained in time step t+ 1, that is,

C(δ, t) := {a ∈ A | ∃ e ∈ E, s.t. a ∈ Ce(δ, t)} , (3.1)

where Ce(δ, t) denotes the individual coverage offered by entity e, i.e., locations where δ can be
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Figure 3.2 An illustration of data movement and coverage (red shaded area) during interval [1, 2], in
a heterogeneous edge network composed of eight entities {ei}i∈[1,8], two of which (AP e1 and eNodeB
e6) are stationary entities connected by wired links.

obtained from e, that is,

Ce(δ, t) :=

{a ∈ A | dA(a, pe(t)) ≤ re}, if δe(t) = 1,

φ, otherwise.
(3.2)

An Example. Figure 3.2 shows the time-varying data coverage in a system of eight entities,

two (AP e1 and eNodeB e6) of which are stationary entities. During this (short) dissemination

process, the system is observed at time instant t = 0 and t = 1, as shown in Figure 3.2a and d.

During time step 1, the following individual actions drive the coverage dynamics, i.e., changes

the data coverage:

(a) By time instant t = 0, datum δ has been injected into the system through entity e1, so

δe1(0) = 1. Data coverage C(δ, 0) = Ce1(δ, 0), and Cei(δ, 0) = φ for i 6= 1.

(b) At the beginning of time step 1 (dissemination stage), entity e1 forward datum δ to

potential recipients {e2, e3, e5, e6}, while all other entities listen, as shown by the light

purple boxes with letter L. Note a copy of δ is passed to entity e6 via the wired link.

(c) Then in the decision stage, entity e3, e5, e6 decide to participate (δe3(1) = δe5(1) =

δe6(1) = 1); entity e2, e4, e7 and e8 decide to keep their current states (δe2(1) = δe4(1) =

δe7(1) = δe8(1) = 0); entity e1 decides to withdraw from the dissemination (δe1(1) = 0).

(d) At time instant t = 1, the system is observed again (after each mobile entity moves) for
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data coverage C(δ, 1), which equals to ∪i=3,5,6Cei(δ, 1).

In this way, the coverage of datum δ changes over time, snapshots of which compose the

coverage dynamics {C(δ, t)}t∈T ⊂ AT that describes the whereabouts of datum δ during its

dissemination process. Based on this data coverage model, we formulate the ‘where’ question

into three sub-questions, with respect to {C(δ, t)}t∈T :

• Quantification: How to describe/calculate the data coverage C(δ, t) at time instant t?

• Evolution: What is the impact of user mobility and data forwarding actions on the change

of data coverage over a time step, e.g., from C(δ, t) to C(δ, t+ 1)?

• Prediction: OBServing the dynamics {C(δ, t)}Tt=1 for T time steps, can we predict its

evolution in the future, that is, estimating data coverage C(δ, s) for s > T?

Among these, the first question calls for a quantification of coverage dynamics, which is

a premise to address the rest two problems. Therefore in the next section, we introduce our

analysis framework that formulates the dynamics into a structured set of numeric random

processes, before addressing the evolution and prediction problems.

3.3 Representing Coverage Dynamics with Graph Signals

By definition in the last section, data coverage of datum δ is the union of individual coverage,

∪e∈ECe(δ, t). Though intuitive, this entity-centric definition with the union operator does not

naturally provide any quantitative measure on coverage. In other words, we can not calculate,

or compare data coverage instances. For example, we can not compare coverage of datum δ at

different time instants, C(δ, t) and C(δ, t+1), or compare data coverage of different data blocks

at the same instant, e.g., coverage C(ε, t) and C(δ, t) of ε and δ, respectively.

Therefore, to answer the quantification question, we make coverage dynamics tractable by a

numeric measure of data coverage, and then discuss entity-level state transitions, and system-

level governing equations, as the analysis framework of data coverage dynamics.

3.3.1 A Location-centric Measure: Data-strength

The cornerstone of this framework is a metric to represent data coverage C(δ, t) numerically,

through which the data coverage (a set of infinite location points) of an irregular shape, e.g.,

C(δ, t) (as shown in Figure 3.3a), can be compared with its predecessor C(δ, t− 1) for further

analysis. Ideally, this metric should reflect the strength of datum δ’s coverage at time t. For

example in Figure 3.3b, darkness of the shade indicates the number of datum copies that can be

obtained at different locations: the darker the shade, the more probable that a copy of datum

δ can be obtained during time step t+ 1.

To do so, we change from an entity-centric perspective, to a location-centric perspective.

First, partition region A into a grid of N non-overlapping sub-regions (later referred to as cells)
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(d) Data-strength s(δ, t) ∈
RN0 is a vector of N real
numbers.

Figure 3.3 Data-strength s(δ, t) describes data coverage C(δ, t) at the space granularity of cells.

{A1, A2, · · · , AN}, as shown in Figure 3.3c. Then for each cell An, measure the data-strength

as

sn(δ, t) :=
∑
e∈E

|An ∩ Ce(δ, t)|
|An|

, (3.3)

where | · | denotes the area of a region.

The the assembled vector of data strength, s(δ, t) = [s1, s2, · · · , sN ](δ, t), can fully describe

data coverage at time t, in the sense that:

• The location information (where) is encoded in the superscripts of vector s(δ, t), such that

changes in the space domain are transformed into variation of numeric values;

• Given vector s(δ, t), data coverage C(δ, t) can be approximated by the the union of cells

in set {An | sn(δ, t) > α}, where α ≥ 0 is a predetermined threshold;

• The data-strength metric measures the expected number of copies of datum δ an entity

can gather if it is located in a cell. So data-strength of a cell can be viewed as the intensity

of data coverage, at the space granularity of cells.

Remark 3.1. In some cases, it may not be necessary, or possible to count the exact number of

data carriers in a cell, especially due to privacy concerns. For example, a carrying entity, who

agrees to share data (participate in the dissemination) anonymously, may be reluctant to reveal

its carrying status to others. For these cases, data strength can be measured from the perspective

of recipients, that is, the number of datum δ an entity can receive in a cell during a time step.

In other words, the system operator can employ probe entities to measure data strength.

Remark 3.2. In theory, any form of cell is acceptable. In fact, cells don’t even have to be

mutually exclusive, because as long as set A = {A1, A2, · · · , AN} jointly cover region A, vector

s(δ, t) will be a numerical description of data coverage C(δ, t) over the whole region A. From

the data owner’s perspective, it is also sensible to include all the sub-regions of interest as the

collection A, e.g., entrances, elevators and stairways of a mall in the mobile ad application. We

adopt the partition of square cells for its simplicity in denotation and simulation.
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When the area of a cell is larger than, or comparable to, the area of individual coverage,

data-strength of cell An can be further simplified1 to

sn(δ, t) :=
∑
e∈E

δe(t)1An (pe(t)) . (3.4)

In this way, data coverage, a time-varying subset of A, is transformed into a numeric data-

strength vector, whose value can be calculated with attributes {δ·(t), p·(t)}e∈E of all the entities.

Next, we discuss the short-term evolution of the coverage dynamics, that is, how data strength

s(δ, t) over the region A changes over time, from the entity-level and system level, respectively.

3.3.2 State Transitions of a Single Entity

As can be seen in the state transition diagram (grey box in Figure 3.1) of an entity, individual

state changes are driven by the decision an entity makes, which is impossible for a large system

to determine at an individual level. Therefore, we characterize their preference on the data

dissemination process at a system-level, with participating rate β and withdrawing rate γ.

(1) Participating rate β ∈ [0, 1] is the probability that an arbitrary entity e ∈ E chooses to

participate during time step t, given that e has received one copy of datum δ during time step

t − 1. In other words, for an entity e|δe(t−1)=0, pe(t−1)∈An located in cell An at time t − 1, the

probability that its state transits from 0 to 1 during time step t can be obtained as

P
(
δe(t) = 1

∣∣ {δe(t− 1) = 0, pe(t− 1) ∈ An}
)
' 1− (1− β)f(s(δ,t))+

∑
x∈E δx(t−1)Bx,e , (3.5)

where f(s(δ, t)) = sn(δ, t − 1) + c
∑

j∈N(n) s
j(δ, t − 1), in which c is a coefficient and N(n)

denotes the indices of cells that are adjacent to cell An; and quantity Bx,e = 1 if and only if

entity e is a stationary entity, and is connected to another stationary entity x via a wired link.

In fact, the exponent in Eq. (3.5) equals to the number of datum copies that entity e expects to

receive over wireless links during time step t− 1, which includes datum copies from co-locating

entities (inside cell An) and those from adjacent cells (only a fraction c of datum copies sent

from entities that are close to cell Ai can be heard by e). For mobile entities, the last term in

the exponent of Eq. (3.5) equals to 0.

For the clarity of description, we refer to the heterogeneous scenario as Case-2, which in-

cludes both wired and wireless connections as described in Eq. (3.5), and refer to the simpler

scenario with merely wireless connections as Case-1, throughout this chapter.

(2) Withdrawing rate γ ∈ [0, 1] is the ratio of participating entities that choose to stop dis-

seminating data in the next time step, or equivalently, the probability that an entity e|δe(t−1)=1

1Entities in cell An can also obtain copies of δ from carrying entities in adjacent cells, but this part of data-
strength is ‘lost’ due to partition, which is negligible when cells are large (compared to individual coverage of
single entities). The impact of cross-cell data forwarding is considered in Section 3.3
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takes a withdraw action (resulting in a state transition from 1 to 0), that is,

P
(
δe(t) = 0 | δe(t− 1) = 1

)
= γ, ∀t ∈ T . (3.6)

Remark 3.3. Note that the probability of a participate action increases with the total number

datum copies an entity receives, as stated in Eq. (3.5), while the probability to withdraw is in-

dependent with actions of other entities, which can be seen from Eq. (3.6). The reason behind

the increasing willingness to participate over the number of received data copies is that, more

received copies indicate there are more participants in the system, which further implies a pos-

sibly high incentive offered by the data owner, hence the larger chance of participating. On the

other hand, an entity already knows the incentive when it makes the decision on withdrawal, so

its decision to withdraw will not be affected by others’ actions. Instead, an entity could with-

draw from the dissemination process of datum δ due to lack of storage space, lost of network

connectivity, or simply out of its own will, which are captured by probability γ as a whole.

As system-level indicators of an entity’s willingness to participate, rate β and γ can be

changed by adjusting the incentives offered to participants. With these rates, we link the indi-

vidual states δe(t) to the data-strength s(δ, t− 1) of a single cell, via Eq. (3.5) and (3.6). Next,

we zoom out further to analyze the dynamics’ evolution on the system level.

3.3.3 Evolution of the Dynamics via Data-strength Vector st

The key to understand the coverage dynamics {C(δ, t)}t∈T is knowing how it evolves in one time

step, i.e., from C(δ, t−1) to C(δ, t), or equivalently under the data-strength measure, from vector

s(δ, t−1) to s(δ, t). For the ease of notation, we omit δ, and write s(δ, t) as st = [s1
t , s

2
t , · · · , sNt ]ᵀ,

as we are only interested in the dissemination process of datum δ.

Consider cell An ∈ A. The change of data-strength in this cell, (∆st)
n = snt −snt−1, is induced

by two impetuses, that is, movements of entities (across cells), and data dissemination (inside

cell An and across neighboring cells), which we discuss separately.

(1) User mobility component. Let pnt :=
∑

e∈E 1Anpe(t) denote the number of entities inside

cell An at time t. We write its vector form as pt = [p1
t , p

2
t , · · · , pNt ]. Let mt

i,j denote the number

of entities that move out of cell Ai to a different cell Aj during time step t, i.e., mt
i,j = |{e ∈

E|pe(t−1)×pe(t) ∈ Ai×Aj}|. For cell index i 6= j, define the i, j-th element of a N×N matrix

Wt, the user mobility matrix, as

W t
i,j :=


mti,j
pnt
, if i 6= j and pnt > 0,

0, otherwise.
(3.7)

Matrix Wt records the ratio of entities that move across cell boarders. During time step t, among

the W t
n,kp

n
t entities that moved from cell An to cell Ak, on average, there are (1 − γ)W t

n,ks
n
t

data carriers, which contributes to the decrease in data-strength snt , and the increase of skt .
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(2) Data dissemination component. Assuming entities are ‘well-mixed’ in each cell2, we apply

MFA at the cell level to derive the one-step evolution equation. We start from the simpler Case-

1 with merely wireless connections. For cell An, on average, the number of new participants

grows at rate βf(s(δ, t)) entities per time step, and existing participants withdraw at rate γsnt−1

entities per time step.

With the entity-level state transition analysis and MFA, the average evolving trend of the

coverage dynamics can be described with Wt, st and pt. For every cell An in a Case-1 scenario,

the number of entities pnt and data-strength snt satisfy

pnt = pnt−1 +

N∑
j=1

W t
j,np

j
t−1 −

N∑
k=1

W t
n,kp

n
t−1, (3.8)

snt = (1− γ)

snt−1 +
N∑
j=1

W t
j,ns

j
t−1 −

N∑
k=1

W t
n,ks

n
t−1

+ (pnt−1 − snt−1)β

snt−1 + c
∑

m∈N(n)

smt−1

 .

(3.9)

A clear observation from Eq. (3.9) is that the signal value of a cell at time t, is the summation

of a scaled version of its previous value, and the influence of its neighboring cells, which are

captured by the user mobility matrix Wt and N(n) ⊂ A. For the Case-2 scenario, the number

of entities in each cell pnt still satisfies Eq. (3.8), while the data strength may increase due to

data transmission along wired connections, which are time-invariant, and accessible before the

data dissemination process. Denote APn := {e ∈ E | pe0 = pe1 = · · · = pet ∈ An} as the set

of stationary entities in cell An, and Ln,j :=
∑

e,x∈N2 1APn
(e)Bex1APj

(x) as the number of

wired connections between cell An and Aj . Recall Bex is defined as 1 when entity e and x

are connected permanently by a wired link, in Eq. (3.5). Then data strength snt in the Case-2

scenario has one more term than Eq. (3.9), i.e.,

snt = (1− γ)

snt−1 +

N∑
j=1

W t
j,ns

j
t−1 −

N∑
k=1

W t
n,ks

n
t−1


+ (pnt−1 − snt−1)β

snt−1 + c
∑

m∈N(n)

smt−1

+
pnt−1 − snt−1

pnt−1

β

N∑
j=1

Ln,j
sjt−1

pjt−1

. (3.10)

From Eq. (3.10), we can see that, the time-invariant matrix LN×N adds another layer of

interconnection between cells (in addition to the user mobility matrix Wt), which is independent

of geographical adjacency (as apposed to matrix Wt). Together, Eq. (3.8), (3.9), and (3.10)

sketch the average evolution trend of the data-strength with the following implications.

(1) Mobility drives the coverage dynamics. The change in data-strength during time step

2‘Well-mixed’ means each entity has an equal chance of contact (transmit/receive datum) with any other
entities in the same cell. We set the cell size to be comparable to individual coverage (in terms of area), so that
every entity in a cell is almost under the individual coverage of each other.
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t, ∆st = st − st−1, relies heavily on user mobility (captured by matrix Wt in Eq. (3.8) and

(3.9)), which is to say, the change in the data strength of each cell can be written as a function

of Wt. This is especially true when the participating rate β (indicator of data forwarding) is

small or the withdrawing rate γ is small, as both the last term in Eq. (3.9) and the extra term

in Eq. (3.10) also tend to be small, compared to the first term in Eq. (3.9). In addition, term∑
m∈N(n) s

m
t−1 in Eq. (3.9) can be re-written as a function of Wt and st−1, because cross-cell

movements (in one time step) are only possible, if the two cells are close to each other.

(2) Data-strength st is a graph signal. By nature, any data-strength vector st is essentially

a vector of positive real numbers indexed by cells, i.e., a signal defined on a graph with vertex

set A. Given an initial state s0, the signal value snt of cell An can be estimated with the data-

strength in the last time step, i.e., st−1 and matrix Wt, as shown in Eq. (3.9). In fact, only

a few neighboring cells (determined by elements of Wt) are relevant to the change of data-

strength during time step t, because correlation between signal values snt and smt−1 decreases

as the distance between cell An and Am increases, which is true for both Eq. (3.8) and Eq.

(3.9). Therefore, matrix Wt is closely related to the underlying structure of signal st, and can

be viewed as the adjacency matrix of the graph. Formulating st as a graph signal allows us to

explore the rich property of coverage dynamics in both the space domain and the time domain,

as a preparation to which, we briefly introduce the basics of GSP for self-containment reasons.

3.3.4 Preliminaries on Graph Signal Processing (GSP)

graph signal processing (GSP) is an emerging tool to describe, analyze, and recover high-

dimensional data. On this avenue, Sandryhaila and Moura extended digital signal processing

(DSP) concepts to static signals index by graphs, and formally defined the graph shift operator,

graph fourier transform and graph filters based on adjacency matrices [105]. Similar concepts

are also defined based on the graph Laplacian [108], which has nice properties such as positive

semi-definite, to make GSP more commutable with DSP. Then taking the evolution of graph

signals into consideration, Grassi et.al. constructed a time-vertex signal processing framework,

which formally defined time-vertex process, joint time-vertex Fourier transform (JFT) [75], and

filter banks [45]. Based on this framework, prediction of stationary graph signal with frequency

domain analysis is made possible in [75], and proved to have a lower complexity. Recently,

Marques et.al. generalized the definition of weak stationarity for random graph signals, and

proposed a spectral estimation mechanism to predict real-world graph signals [79].

Next, we briefly introduce the definition and terminologies in GSP that are useful in this

chapter. Interested users are readers are directed to [108, 105, 45, 75, 79] for details.

3.3.4.1 Graph Fourier Transform (GFT) and Spectrum of a Graph Signal

Consider graph signal st ∈ RN on an undericted and connected graph G(A,W), in which A
is the vertex set, and W is the weighted adjacency matrix of G. Let D be the generalized

degree matrix of G, that is, a diagonal matrix with diagonal elements Di,i =
∑

j∈Awi,j . Then
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the Laplacian of graph G is defined as LG := D −W. Since G is undericted, LG is real-

valued, symmetric and positive semi-definite, as a result of which, LG has N real, non-negative

eigenvalues {λn}n=0,1,...,N−1.

Without loss of generality, let the eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λN−1 be non-decreasingly

ordered, and denote Λ = diag(λ0, λ1, · · · , λN ). Then we always have λ0 = 0, and each eigenvalue

λn corresponds to an eigenvector vn (column vector). Let UG = [v0,v1, · · · ,vN−1] be the matrix

form of all the eigenvectors of LG . Then graph Laplacian LG = UGΛU∗G . The graph Fourier

transform (GFT) of signal st is defined as the product of UG and the graph signal st, that is,

ŝt = GFT{st} := U∗Gst, (3.11)

where U∗G is the conjugate transpose of UG , and ŝtN×1 = [st(λ0), st(λ1), · · · , st(λN−1)]ᵀ is the

GFT spectrum of st. Like the spectrum of a signal in the 1-dim time domain, GFT spectrum

ŝt of graph signal st captures the variation of the signal in the vertex domain (A).

3.3.4.2 Time-Vertex Process and Stationarity

Temporal evolution of a graph signal composes a time-vertex process SN×T = [s1; s2; · · · ; sT ].

Along the time dimension, every row vector of S, can be analyzed through discrete Fourier

transform (DFT). The DFT of process S is defined as DFT{S} := SUT , where UT is the

T-point normalized DFT matrix. Its (t, s)-element is UT (t, s) = e−jωst√
T

, and ωs = 2π(s−1)
T .

Grassi et.al. defined the joint Fourier transform (JFT) [45] as JFT{S} := U∗GSUT . The

time-vertex process S is joint wide-sense stationary (JWSS), if it is wide-sense stationary in

both the vertex domain and the time domain [75, 47]. Or formally as stated in [75], process S

is JWSS with respect to graph G, if an only if (i) LJE(vec(S)) = 0, where the joint Laplacian

LJ = LG×LT ; and (ii) its covariance matrix Σvec(S) is diagonalizable by the joint basis UG⊗UT .

Recall in Section 3.3.3, we find that user mobility drives the evolution of data coverage

dynamics. In regard to user mobility and data dissemination, Grossglauser and Tse proved

that mobility increases per-user throughput in ad hoc wireless networks [46], when mobile

nodes function as relays. Naturally, we anticipate data coverage to be boosted by an increase

in mobility (speed), because: i) In both Case-1 and Case-2 scenario, entities function as relay,

passing the datum to others. ii) Increased mobility leads to an increase of probability that a

relay can meet with a destination (in this case, any entity), as well as pair-wise throughput [46],

which indicates that more data transmissions between entities can happen simultaneously. But

an open question is, how much does mobility (captured by Wt) and data forwarding (captured

by β) contribute to the change of data-strength ∆st?
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3.4 Information from a Snapshot

Knowing quantitatively how much entity mobility and data forwarding contribute to the dy-

namic evolution of data coverage can significantly benefit data disseminators, who expect to

boost data coverage effectively. For example, which works better for an ad distributor: raise

incentive to increase the participating probability β, or employ faster-moving entities as ad

distributors? This is especially meaningful to the Case-1 scenario, in which wired connections

are not available for data dissemination processes.

Therefore, in this section, we discuss the impact of user mobility in the Case-1 scenario. To

be more specific, we examine a snapshot of the coverage dynamics, i.e., the difference graph

signal ∆st = st − st−1, with respect to user mobility Wt. A simple homogeneous case with a

synthetic mobility model is considered in this section, to better uncover the impetuses.

3.4.1 A Simple Homogeneous Scenario

Suppose the entire network is composed of mobile entities that i) have the same transmission

range rc, and ii) move according to a speed-constrained mobility model detailed as follows.

During the ‘move’ stage in every time step, each entity e ∈ E chooses a direction uniformly at

random from [0, 2π), along which e moves at a speed randomly chosen from [0, vmax]. We follow

the convention in [66] and assume that, an entity crossing the boundary of region A on one

side will emerge from the opposite side. In addition, considering that every entity withdraws

independently, we set the withdrawal rate γ = 0 in this section to focus on the impact of

maximum speed vmax, participating rate β, and communication range rc.

3.4.2 Impact of Mobility

Recall data-strength vector st (similarly the difference signal ∆st) is a graph signal defined on

vertex set A of some graph G. Also, we observed the important role of user mobility matrix Wt

in the dynamical change of data strength, in Eq’s. (3.8) to (3.10), so we propose to define the

weighted adjacency matrix W̃t of graph G as a function of Wt, which is fairly accessible (due

to prevalent GPS devices [103], IoT sensors [104], and location-based services [110]).

3.4.2.1 Weighted Adjacency Matrix W̃t of G

The evolution rule in Eq. (3.9) is formulated based on the instantaneous user mobility Wt, but

it is not suitable to directly assign Wt as the adjacency matrix of G for real systems, because

of the time gap between data transmission (several ms to seconds) and positioning (e.g., GPS

logging, seconds to minutes). To bridge this gap, we observe the system every K ∈ N+ time

steps, and obtain a snapshot ∆sKt = st−s(t−K+1) for every observation. Accordingly, we employ

the symmetric accumulated version W̃t as the weighted adjacency matrix of graph G, defined

as the number of cell crossings during time interval of length K.
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Figure 3.4 GFT spectrum of three difference signals ∆st, generated with different β values, illustrate

the variation of ∆st over mobility W̃t: the higher the participating probability β, the more dominant
the high frequency components, and the less impact by user mobility.

Remark 3.4. We use the number of crossing, instead of ratio of crossing in Eq. (3.7), due to two

reasons: i) it is easier to obtain offline for a period of time, and ii) the number of cell crossings

also captures correlation between adjacent cells (N(n) in Eq. (3.9) and (3.10)), because the more

cell crossing, the more entities gathering at the cell edge, and hence a higher probability of data

forwarding across cell boarders. In this way, we are able to reduce the number of variables in

Eq. (3.9) and (3.10), and write st =
[
(1− γ + β)KI + f(t)W̃t

]
st−K+1 + ~ψt instead, where f(t)

is a coefficient function by β and γ, and ~ψt is the error term introduced by the approximation.

To validate the graph formation based on W̃t, and the speculation that the change in data-

strength, ∆sKt , is a graph signal on G, we first examine three snapshot instances (with the same

user mobility and initial state, so graph G and the weight matrix W̃t are exactly the same). As

can be seen from the GFT (defined in [108, 105]) spectrum in Figure 3.4, high participating rate

β will induce peaks at high frequencies, that is, larger products ∆̂s(λn) =< ∆s,vn > at larger

eigenvalues λn of the graph Laplacian LG of G. This conceptually validates our observation of

∆sKt being a graph signal on G, which is defined by matrix W̃t. However, spectrum ∆̂s of signal

∆sKt does not intuitively or quantitatively reflect the impact of user mobility. Therefore, we

define a new metric to quantify the impact.

3.4.2.2 Mobility Dependence Index (MDI)

With user mobility quantitatively represented by W̃t, the level of inconsistency of difference

signal ∆st with respective to G identifies the impetus that is not from mobility, i.e., from data

forwarding, as illustrated in Figure 3.4. To quantify the impact of mobility (captured by W̃t),

we define a new metric for every interval [t, t+K − 1].

Definition 3.2. The mobility dependency index of a snapshot ∆sKt with respective to W̃t

is defined as

MDI
W̃t

(∆sKt ) :=
1

‖∆sKt − 1
λmax

W̃t∆sKt ‖1
, (3.12)
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where λmax is the maximum eigenvalue of W̃t.

In this definition, the denominator is the total variation TVG of the difference signal ∆sKt .

Intuitively, TVG quantifies the conformity of ∆sKt with respect to entity movements captured

by weight matrix W̃t. Therefore, the higher the MDI (i.e., lower TVG), the more mobility

contributes to the evolution of coverage dynamics. When the difference signal ∆sKt is very

smooth (with respect to graph G), the change in data-strength is aligned with weight matrix W̃t,

indicating a heavy influence of mobility. In contrast, any increment in signal value attributed

to data forwarding will induce an increment in TVG , and hence a decrease in the MDI value.

3.4.2.3 Simulation Configuration

To observe the impact of user mobility via the MDI metric, we simulate a dissemination process

in the wireless connection only, Case-1 scenario, whose configurations shown in Table 3.1.

Table 3.1 Simulation settings for Section 3.4.

Para. Description Value Para. Description Value

A region of interest [0, 1000]2 |E| # of entities 1000
|Ai| area of a cell 100×100 N # of cells in A 100
rc communication range [10, 50] vmax max. speed [10, 100]
N/A # of seeds 50 N/A # of runs 100
β participating prob. [0.05, 0.4] γ withdrawing prob. 0
∆ time step 1 s K observation interval 5 s

3.4.2.4 Observations

Figure 3.5 shows the MDI value of the difference signal ∆sKt |K=5 generated with the same initial

condition st, but with different participating rate β, maximum speed vmax and transmission

range rc. We highlight the following observations.

(1) Trend of MDI : It is intuitive that MDI decreases when transmission range rc increases

(Figure 3.5a and b), and also decreases when the participating probability β increases (Figure

3.5a), because increment in either rc or β will result in more non-carrying entities (δe(t) = 0)

to receive a copy of δ and participate in the dissemination. Nonetheless, it is rather interest-

ing to observe in Figure 3.5b, that when the maximum speed vmax increases, MDI decreases

dramatically for small transmission ranges. The reasons behind this plunge are: i) the incre-

ment in data-strength largely relies on new effective contacts, that is, data forwarding between

entity-pairs, which are more prevalent due to the larger movement range (K · vmax); and ii)

elements in user mobility matrix W̃t can not capture geographical adjacency of cells any more,

as movements between non-adjacent cells are now possible due to the larger movement range.
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Figure 3.5 Bounded impact of both mobility and data forwarding on the evolution of data coverage
dynamics (MDI values in both figures are scaled to be more visible).

(2) Decreasing, but bounded impact : observe that MDI flats out as β and vmax further

increases, indicating a threshold behavior of the coverage dynamics with respect to both impe-

tuses: the change of data coverage can not always be accelerated by increasing β or vmax. In

fact, above a certain threshold, e.g., β = 0.2 at communication range rc = 40, further increasing

β will not decrease the MDI in Figure 3.5a, so β has bounded impact on the coverage change.

Similar effect is also seen for the maximum speed vmax.

(3) Prediction based on W̃t: observe the high MDI when maximum speed vmax (and prefer-

ably the participating rate β as well) of entities is relatively low, which is also captured by Eq.

(3.9) and (3.10). This implication motivates us to consider predicting the data coverage based

on the weight matrix W̃t, which is quite accessible in a real-world edge network.

3.5 Prediction of Data Coverage: Where Data Are

As a preliminary application of the proposed coverage dynamics model, and observed properties

on its evolution, we examine a realistic heterogeneous edge network, and design a framework

to answer the prediction question, i.e., where data will be.

3.5.1 A Real-world Heterogeneous Edge Network

It would be ideal to experiment with data coverage collected from operating networks. However,

traces with data forwarding logs are usually not available due to privacy concerns, while mobility

traces are abundant. Therefore, we first generate a half-synthetic coverage dynamics trace by

simulating a data dissemination process with real-world user mobility traces.
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Figure 3.6 A data dissemination process by taxis (blue dots) and WiFi hotspots (green squares).
Initial datum carriers (at time 0) are marked in red.

3.5.1.1 Entities and Mobility

There are two types of entities in this network: 1072 taxis3 that move according to their GPS

logs in the cabspotting dataset [93], and 231 WiFi APs that are positioned according to the

urban hotspot model proposed in [106]. Moving speed of taxis satisfies a Weibull(5.88, 1.60)

distribution with mean 5.88 m/s, which is quite low (compared to Figure 3.5 (b)), so MDI is

high. In the Case-2 scenario, each pair of APs is connected by a wired link with probability 0.5.

3.5.1.2 Region A and Initial Conditions

We consider a 6 Km by 6 Km region A in downtown San Francisco, which is divided into a

(15 × 15) grid of square cells, as shown in Figure 3.6a. At time t = 0, 50 entities (seeds) are

randomly selected to receive the datum. Note that taxis may move out of region A. In fact, the

GPS records in the cabspotting dataset expands far beyond region A, as a result of which data

dissemination can happen outside region A as two taxis meet. These events are also considered

and simulated in our experiment (but not included in the signal value collection), to better

mimic a real-world system.

3.5.1.3 Weight Matrix W

For the ease of implementation, we consider the average weight matrix W as follows:

W :=
1

d TK e

d T
K
e∑

j=1

W̃jK+1 (3.13)

3The cabspotting dataset contains 536 taxis. Considering they move out of region A easily, we replicate the
logs in reverse time, such that the total number of taxi is 1072. In addition, the GPS logs are also truncated to
12000 s to align with the shortest individual log.
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The reason to use the long-term average W, instead of W̃t, is that it is easier to obtain (collect

and calculate offline) one copy of W, and use it for all analysis, as the moving patterns of taxis

are quite stationary over a time span of 4 hours (determined by the cabspotting dataset).

The graph G(A,W) constructed based on weighted adjacency matrix W is shown in Figure

3.6b, where width of an edge (blue line segments) is proportionate to its associated weight in

W. As can be seen from Figure 3.6b, the correlation between directly adjacent cells are well

captured by the mobility pattern (thicker horizontal and vertical lines), while the diagonal or

off-diagonal adjacency is not prominent (thinner leaning lines). The reason behind this is that

W is constructed based on GPS logs of taxis, who travel along road segments, which are usually

horizontal or vertical, as can be seen from Figure 3.6a. It is especially suitable in this case4,

because the we consider a grid of square cells, which resemble street blocks.

3.5.2 Coverage Dynamics as a Time-vertex Process

On graph G(A,W), observations of the coverage dynamics, i.e., signal st constitute a time-

vertex process [45] over time span [1, T ]. We can write this process {st}t∈[1,T ] in its matrix form

SN×T = [s1; s2; · · · ; sT ], in which every row vector sn = [sn1 , s
n
2 , · · · , snT ] is a temporal process

on a vertex (cell) An ∈ A, while every column vector st is a graph signal on graph G(V,A).

In this context, the prediction problem becomes estimating st|t>T , based on observation

SN×T and average weight matrix W. From exiting literature on GSP [75, 45], we know that, this

prediction is possible if process {st}t is JWSS, i.e. wide-sense stationary (or weakly stationary)

in both vertex and time domains. In the time domain, signal on each vertex can be made

stationary by taking the time difference ∆sKt = st − st−K+1. So the crux of this prediction

problem is the stationarity in the vertex domain, for which we re-examine Eq’s. (3.8) to (3.10).

First, we discuss the stationarity of a Case-1 scenario, where only wireless links are utilized

to disseminate datum δ. During time step t, if we approximate pt−1 − st−1 as the summation

of a constant vector and a noise vector of Gaussian random variables ~ψt, the following equation

can be obtained for signal st:

st = [(1− γ + β)I + (1− γ)Wt + βg(Wt)] st−1 + ~ψt, (3.14)

where g(Wt) is a function of matrix Wt that maps Wt into a 0, 1-matrix, and then scaled by

some constant c, such that the i, j-th element equals to c if and only if W t
i,j > 0.

In a real-world system, the coverage dynamics is observed every K times steps to bridge the

frequency gap between data transmission and user mobility (as discussed in Section 3.4.2.1),

so we obtain observations {st=jK}j∈N. Substituting the instantaneous user mobility matrix Wt

with the long-term average weight matrix W, the data-strength vector st=jK in Eq. (3.14)

can be re-written as (I− f(t)W)j s0 plus some random noise, where f(t) is a time-varying

4For scenarios with more complicated mobility traces, e.g., a street scenario with both vehicles and pedestrians,
or an indoor scenario with sensors and mobile devices, cells of other form may lead to a better result.
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coefficient, that can be determined by probability β and γ for every t = jK.

Then, process {st=jK}j∈N+ is WSS with respect to graph G(A,W), because: i) the initial

state s0 and the noise vector are both random, as a result of which both are WSS; ii) any

polynomial of W can be written as a finite product of graph filters [79] defined on W, through

which stationarity is maintained; and iii) signal st=jK can be seen as a filtered version of s0.

For the ease of notation, we write st for the data-strength observed at time t ·K hereafter.

With respect to the more complex Case-2 scenario, where both wireless and wired links are

utilized, it is rather difficult to examine the stationarity of {st=jK}j∈N+ directly, because of the

denominators in the last term of Eq. (3.10), that is, pnt−1 and pjt−1. However, considering this

extra term is in a similar form as the second term in Eq. (3.10), we adopt a ‘generalized’ weight

matrix, i.e.,

W∗ := (1− γ)Wt + βg(Wt) +
β∑N

n=1 |APn|
L, (3.15)

where the number of wired connections from/into each cell is normalized by the total number

of APs5, such that every term in Eq. (3.14) concerning Wt can be substituted by W∗.

3.5.3 Prediction Framework

Taking advantage of the JWSS property, we present a data coverage prediction framework that

consists of a simulator, a pre-processing module, and a predictor, as shown by the block diagram

in Figure 3.7. The simulator generates data-strength (signals) {st}t and calculates the average

weight matrix W, which are pre-processed into smaller blocks, and then fed into the predictor

to estimate the future data coverage.

(1) Simulator. The simulator generates signal SN×T and the average weight matrix W,

based on the cabspotting trace [93]. Simulation configurations can be found in Table 3.2.

Table 3.2 Simulation configuration for Section 3.5.

Parameter Value Parameter Value Parameter Value

region A [0, 6000 m]2 boundary open # of experiments 100
# of AP’s 231 # of taxis 1072 N 225
area of a cell 400× 400 rc(AP) 200 m rc(Taxi) 100 m
prob. β 0.2 prob. γ 0.01 AP conn. prob. (Case-2) 0.5
time interval K 10,50,100,200 time step 1 s time-span T 12000

(2) Pre-processing This component partitions graph G into smaller subgraphs, as shown in

the example in Figure 3.8a, to avoid heavy computation induced by frequent eigen-decomposition

5In this case, we still have st = [I + f(t)W ∗]st−1 + ~ψ, but with a deviation caused by the normalization over
the total number of APs, instead of the time-varying pnt−1 in the denominators. To compensate this effect, we
adjust the graph partition (discussed in the following Section 3.5.3) with historic signal observations, when high
discrepancies between the observation and prediction occur.
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Figure 3.7 Block diagram of the prediction framework, in which the prediction process is illustrated.

of large matrices, as well as the case of disconnected G, due to absence of movement across cells.

Note the JWSS property is sustained on subgraphs, especially when K is small, because only a

few neighboring cells are relevant in the short-term evolution of the dynamics. We consider two

graph partition measures: a fixed partition of G into 10 subgraphs based on spectra-clustering,

and a dynamic partition of G that takes a short (< 10%) history of signal, in this case the

first 0.1 TK observations, into consideration. Note that the dynamic partitioning scheme is not

adaptive, which means the graph G is partitioned only once, to avoid heavy computation.

(3) Predictor. The predictor works on the sub-graph (of size N ′) level, with (sub-)weight

matrix WN ′×N ′ . It first computes the GFT of signal portion SN ′×T , then feeds each line of the

spectrum ŜiT−(m−1):T to an auto regressive moving average (ARMA)(m,m) model trained with

history observations, to generate the forecast of GFT spectrum ̂̃sT+1. Finally IGFT is applied

to obtain prediction s̃T+1, which is the estimated T + 1-th data-strength, for the observation

at time t = (T + 1)K. We choose m = 2, because we found through experiments that, despite

heavier computation, larger m does not increase accuracy. Data coverage for every observation

is then determined by comparing s̃T+1 with the threshold 0.5.

The rationale behind the prediction is that, when a time-vertex process {st}t is JWSS, the

(future) GFT spectrum of the signal along every frequency (eigenvalues of the graph Laplacian

LG) can be independently predicted [75]. In this sense, each row of the spectrum is a time series,

which can be predicted by statistical methods like ARMA, or other machine learning methods,

such as recurrent neural network (RNN), and long short-term memory (LSTM) model. ARMA

is adopted in this work, because in such single-variate short-term prediction problem with

relatively few training data, statistical methods generally out-performs the latter in accuracy,

complexity, and training time [77].
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Figure 3.8 Examples of pre-processing and prediction result (color indicates real signal value).

3.5.4 Results and Discussion

In the validation, we consider time intervals of different lengths K (10s, 50s, 100s and 200s) to

validate the proposed model and prediction framework for different applications. For instance,

prediction with finer time granularity is more beneficial to ITS systems, in which traffic infor-

mation has more stringent delay requirements, while prediction at a coarser time grain, but less

computationally expensive, should satisfy the need of mobile advertisement applications.

3.5.4.1 Summary of Prediction Accuracy

Performances of the prediction framework are summarized in Table. 3.3, in which the error

ratio (percentage of time instances with erroneous predictions) is calculated for each cell, and

averaged over 100 experiments. Erroneous prediction includes false positive when a ‘covered’

prediction is made for a not covered cell, and false negative when the opposite happens, as

shown in Figure 3.8b. We list four observations from the result summary:

(1) False positives are more prevalent in fixed partition due to ineffective division of the

graph, while false negatives are prevalent in dynamic partition, because the impact of data

forwarding actions (and that β >> γ) is not fully regarded by the average weight matrix W,

compared to mobility. This is especially true when the observation/prediction intervals is long,

e.g., K = 100 and K = 200.

(2) There is a clear decrease in prediction error when finer time granularity (smaller K) is

employed, because: i) the ARMA model is better trained with more observations; ii) Stationary

of the difference signal ∆sKt is better preserved, when extended from one-step evolution in Eq.

(3.14). This effect in in conjunction with the false negative errors listed in (1), because mobility

is fully captured by the model for longer intervals, while the cumulative error induced by not

fully incorporating data transmission is severer.

(3) Extending the weight matrix W, which only considers user mobility, to the generalized
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Table 3.3 Summary of prediction error for different settings.

Time interval K (s)
False Positive (%) False Negative (%)

fixed(f) dynamic(d) fixed(f) dynamic(d)

Case-1: Wireless Connection Scenario
200 13.77 8.39 10.80 10.93
100 13.40 8.04 10.36 10.43
50 12.51 6.74 10.08 9.72
10 10.05 3.98 7.28 5.87

Case-2: Heterogeneous Connection Scenario
200 12.18 7.73 11.13 10.79
100 12.18 7.54 10.62 10.40
50 11.18 6.54 10.20 9.80
10 8.58 4.61 7.45 6.54

form W∗, which jointly considers mobility, wireless data transmission across cell borders, as

well as wired connection between APs, does not affect the prediction accuracy much for the

Case-2 scenario, as can be observed from the comparison between the two cases in Table 3.3.

(4) Dynamic graph partition can effectively reduce false positives, compared to the fixed

scheme, but such effect is not as obvious for false negatives. To understand this, we further

examine the geographical distribution pattern of prediction errors.

3.5.4.2 Accuracy with Respect to Location

Figure 3.9 and Figure 3.10 illustrate the average prediction error of each cell, for Case-1 and

Case-2 scenarios, respectively. The darker the color of a cell, the higher the ratio of prediction

error. As can been seen from both figures, there is a clear pattern with respect to location.

(1) False positives are most severe at the top-left and top-right corners in Figure 3.9a, which

are either across the coastline (top-right), or close to it (top-left). In the fixed graph partition,

some subgraphs expand over the coast line, as indicated by the blue cluster at the top-right

corner in Figure 3.9a. This can be easily identified and corrected by the dynamic partition

scheme (as in Figure 3.9c), which breaks these subgraphs based on historical observations, as

shown in Figure 3.9c, for the Case-1 scenario, and Figure 3.10a, for the Case-2 scenario.

However, as we emphasis on the impact of wired connections in Case-2, which successfully

improves the accuracy for cells with APs (bottom left and middle part of the region), the top

and right ‘boarder’ cells are left with more false positives, as indicated by the darker cells in

Figure 3.10a. This increase in false positives is due to the over-prediction introduced by MFA,

which is especially prevalent when a cell has very few APs, or is rarely visited by taxis (e.g.,

dark cells at the right fringe, in Figure 3.10a), such that the ‘well-mixing’ assumption of MFA

does not hold any more.

(2) False negatives outline the terrestrial boundaries of the region, among which the most

severe errors occur at two sets of locations, highway entrance to region A (marked by the solid
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Figure 3.9 Prediction error of each cell in a Case-1 (wireless links only) scenario.

yellow circle in Figure 3.9b), and the Mission Bay area (identified by the dashed red circle

in Figure 3.9b). High error ratio at the highway entrances is caused by data-carrying entities

entering the region through these cells, because we assume the boundary of region A is open,

as a result of which data dissemination can actually happen outside region A, as discussed in

Section 3.5.1.2. For the latter case with respect to the Mission Bay area, a narrow water hinders

taxis from moving across cells (low weight in matrix W), but can not prevent data forwarding

over the air, which creates a discrepancy between weight W and the intensity of cross-cell data

forwarding actions. This can not be effectively improved by dynamic partitioning, as shown

in Figure 3.9d. Similar effect is also seen in Figure 3.10b, where the inaccurate predictions

mainly reside at the entrance/exit of region A. To further eliminate the false negative errors

in these sub-regions, we expect an adaptive dynamic graph partition can properly incorporate

the impact of cross-cell data forwarding, but is much more computationally expensive, as it

requires graph partition (and eigen-decomposition) at every observation/prediction.

78



0 5 10 15
0

5

10

15

(a) False positive (dynamic)

0 5 10 15
0

5

10

15

(b) False negative (dynamic)

Figure 3.10 Prediction error of each cell in a Case-2 (wireless and wired links) scenario.

3.6 Summary

In this chapter, we raise the question of where data are, in heterogeneous edge networks, which

is becoming the main scenario for data dissemination services. To address the whereabouts of

mobile data, we formally define the scope, entity model, and data coverage for a data dissem-

ination process in such networks, propose a data-strength metric such that data coverage can

be quantified, and formulate the data coverage dynamics as a time-vertex process of numeric

graph signals. This formulation enables us to observe, analyze, and predict the dynamic evo-

lution of coverage dynamics, en route of data movements. Specifically, from snapshots of the

coverage dynamics, we observe the impact of user mobility is high, especially when entities are

less active forwarding or the maximum moving speed is low; as the maximum speed increases,

such impact decreases but is still lower bounded. From this observation, we propose to predict

data coverage based on system-level user mobility traces, which can be easily obtained without

raising privacy concerns. Simulation with real-world mobility traces shows that our framework

is a practical solution for predicting data coverage in heterogeneous wireless networks.
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Chapter 4

Governing Rules: Modeling and

Analysis of Task Offloading

Processes in the Fog

In the previous chapters, we discussed the dissemination process of one data block, particularly

its lifetime and whereabouts, in wireless networks. As data services quickly migrate to the

network edge, which is composed of numerous resource-constrained wireless devices and access

network elements, the dissemination processes of multiple data blocks may interfere with each

other, due to their competition for resources. A typical example is the emerging fog paradigm,

in which a task, that is, a computation-intensive (and delay-sensitive) data block [139], can

be offloaded to resourceful fog nodes nearby, in order to reduce latency, or save energy. The

offloading process is affected by the amount of accessible resource in the network, and its

execution in turn affects how other tasks will be offloaded, making it difficult to evaluate the

performance of such large-scale fog systems. To address this open problem, we study the task

offloading process in terms of how multiple data blocks move in this chapter. We propose a

gravity-based offloading model, to describe how the target fog node is selected under different

offloading criteria. This model allows us to evaluate the performance of a large-scale fog system,

particularly how much (local and shared) resource such offloading processes consume, which

are quantified by the device effort and network effort metrics. With respect to the scalability

of fog, which is a major design concern of the paradigm, we find that, under the gravity-

based offloading rule, the lifetime of an individual task does not deteriorate as the network

size increases, while the total resource needed for the system scales linearly. As our model can

describe various offloading criteria, these results are generally applicable in understanding how

data move in a fog network, and the amount of resource needed for such systems.
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4.1 Introduction

With the proliferation of smart devices [120, 119], including smart phones, wearables, and

sensors, Internet-of-Things (IoT) is driving a digital transformation in all aspects of modern

life [4]. As the vision quickly turns into reality [90], IoT brings about new challenges to its

provision network, including stringent latency requirement, resource-limited devices, and the

prohibitive scale. These requirements are difficult to satisfy with the existing cloud computing

paradigm, due to it centralized structure, where cloud servers are usually deployed in privately-

owned, remote data centers. Consequently, fog computing is introduced [119] and envisioned as

a promising paradigm in IoT provisioning [4].

4.1.1 Fog Emerges on the Edge: Remedy or Resource Drain?

The principle feature of the fog paradigm is bringing data services to the edge of the network,

such that the processing and dissemination of data are available, right where the generation

and consumption of data take place. Instead of drawing the surging mobile data traffic to cloud

servers through the core network, data are processed by (less powerful) fog servers deployed in

edge devices, e.g., commercial edge routers, Cloudlet and IOx [136], and even mobile devices

[49], which are referred to as fog nodes. In this sense, fog computing is a broad concept that

includes mobile edge computing (MEC), mobile cloud computing (MCC), cloudlet, and mobile

ad hoc cloud computing (MACC) [139]. From the perspective of network architecture, some

researchers view fog nodes as an intermediate layer between “things” in the IoT and remote

servers in the cloud [2, 49], while others view it as a fully distributed substitute of the cloud

architecture [28, 118]. Despite the different opinions in the fog architecture, a consensus for the

fog continuum [119] is that, its monumental purpose is to provide data offloading options, with

two design objectives [2] tailored for IoT applications:

(1) Short Delay. Per request of real-time applications in IoT, such as smart infrastructure,

autonomous driving, and virtual assistance [90], a fog system is expected to reduce the service

latency to the ms level (< 10 ms), comparing to the 30∼100 ms in the current cloud computing

paradigm. This demand requires the fog paradigm to maintain a sufficient number of fog servers

in the vicinity of any task node, which can be any wireless device seeking to offload data.

(2) Scalability. Due to the massive scale of the geo-dispersed IoT systems [4], a fog system is

expected to process tasks offloaded from a large number of task nodes, e.g., the vast amount of

sensors, cameras, and smart vehicles in an intelligent transportation systems (ITS). Considering

the frequent changes of locations, connectivity and offloading criteria, this objective requires the

fog paradigm to scale easily, i.e., operating with simple organization and minimum overhead.

In fact, openness and scalability have been recognized as the major design concerns for the fog

paradigm, by the OpenFog consortium in the IEEE OpenFog reference architecture [2].

With these objectives fulfilled, the fog paradigm seems a good remedy for the large-scale

delay-sensitive IoT applications, as it rallies up resource at the network edge, and takes ad-
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vantage of the huge numbers of candidate fog nodes (routers, AP, and mobile devices) in a

distributed manner. However, as mobile traffic continues to grow [120], will the resource-limited

network edge be able to keep such a fog eco-system afloat? In other words, how to evaluate the

performance of the fog paradigm with respect to the massive task offloading processes?

Answer to this question helps us understand the impact of data services, which is non-trivial

for the edge network, a heterogeneous wireless system. First, from the perspective of service

provisioning, resource constraint has been a major issue at the network edge [78], especially for

communication resources. While processing and storage can be boosted by simply deploying

more fog nodes, communication resource, including spectrum, time, code, and space, is shared

by the system, and hence subject to further degeneration as the system scales. Nonetheless,

fog computing allows power-constrained end devices to save energy by avoiding local process-

ing, at the cost of frequent short-range communications with nearby fog nodes, which further

aggravates the spectrum scarcity concern [13]. Second, from the perspective of traffic pattern,

IoT applications are so broad and complex, that data are generated in various volume, form,

and frequency, e.g., there are periodic, short sensory data from smart meters, as well as spon-

taneous, long video clips from ground traffic monitoring. As a result, the fog paradigm, which

provides infrastructure-as-a-service (IaaS) and platform-as-a-service (PaaS) to IoT, impose un-

predictable resource demand on the underlying edge network. For such a large-scale system

that is still in the design stage, it is essential to understand its impact on existing networks,

and its performance as the system scales, before it can be deployed.

4.1.2 Related Work

As am exemplified application in the fog, data offloading has been extensively studied in different

contexts, including MCC, MEC, and cloudlets, from the aspects of synchronized data storage

[123], bench-marking [49], deployment [101], and so on. Considering that fog is specifically

designed for IoT applications, in which data blocks are generated by resource-limited nodes, and

need to be processed within a time bound, we focus on the offloading process of computation-

intensive data blocks [139], i.e., tasks.

The central question in task offloading is, for each individual task, whether a task should

be offloaded, and if so, to which fog node, both of which are determined by the offloading

mechanism. Existing literature on this topic can be categorized into centralized and distributed

schemes, typical examples of which are shown in Table 4.1. The former family (the majority)

relies on a single centralized entity to determine where each task should be sent, e.g., [24], which

is against the open and distributed nature of fog computing, so we focus on the distributed

schemes, which further branches into cooperative and non-cooperative types.

In cooperative offloading schemes, e.g., [140, 134, 135, 23, 97], fog nodes exchange informa-

tion to optimize resource allocation, or collectively schedule the offloaded tasks, to minimize the

offloading latency [133] and/or energy consumption [129] for a single task. In other words, fog

nodes cooperate to determine the offloading target. Though cooperation among fog nodes are
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highly beneficial to Quality-of-Service (QoS) provisioning and load-balancing, it is less likely

in a large-scale fog continuum, due to the prohibitive communication overhead, lack of inter-

operability among different providers, and security concerns of end users. In this regard, Tang

and He recognizance the competition among fog nodes, modeled the offloading process as a

non-cooperative game [113] to study the impact of users’ behavioral biases, and evaluated their

results with small-scale experiments. In addition, considering the wireless link may not be stable

during the task offloading, Wu considered fault recovery in the offloading process, and aimed

to maximize revenue of the network [128].

Table 4.1 Fog node selection schemes for task offloading.

Example scheme Selected by Objective Cooperative Approach

[24] central control delay yes optimization
[133] fog node delay yes optimization
[129] fixed QoE and energy yes optimization
[128] task node fault recovery no queuing theory
[55] task node energy no optimization
[138] task node delay no heuristic scheme
[113] task node subjective choice no game theory

An open, yet challenging question is, how to evaluate the performance of such fog systems?

To be more specific, what is the expected processing time for a task, and how much resource

will be consumed by the fog-based IoT system? Considering that different offloading schemes

can be adopted, and they differ in many aspects, as shown in Table 4.1, it is difficult, if not

impossible, to measure the system performance by experiments. This difficulty can be further

exacerbated by the large, and growing size of the fog-based IoT system, which is expected to

cater for millions of IoT devices [4]. Consequently, the scalability of fog computing, as identified

in the survey [139] on fog computing, is the crux of the performance evaluation problem. On

one hand, the increase in network size permits more offloading options, which increases the

offloading probability, and hence the QoS of end applications. On the other hand, frequent data

transmission as a result of higher offloading probabilities raise concerns in resource consumption.

In addition, some participants in the fog, e.g., smart phones, may act as both task node and

fog node, such that the total amount of data (to offload) also increases as the system becomes

larger. Meanwhile, task nodes can have their own offloading criterion/algorithms, as a result of

which the impact of network size is unclear.

4.1.3 Our Approach and Contributions

Seemingly simple, performance evaluation of task offloading is very challenging in the fog com-

puting context: First and foremost, the distributed and open nature of fog introduces hetero-
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geneity in offloading criteria. Consequently, it is difficult to describe actions of individual nodes,

and hence more difficult to capture behavior of the system as a whole. Second, with respect to

resource need, particularly scalability, experiment is not an easy option, because it is impossi-

ble to implement and measure all combinations of offloading+communication schemes in the

envisioned fog system, which may not even be readily available. Therefore, we need a generic

model and a set of universal metrics that can accurately depict data offloading processes, with

flexible offloading criteria, yet manageable to derive scalability properties of the fog paradigm.

Instead of focusing on inter-node coordination and trade-offs, we address the performance

evaluation problem from the perspective of data, and take a completely different approach,

that is, finding out how data blocks move in the fog during the offloading process. The rationale

behind this approach is: resource consumption, in forms of spectrum, time, and storage space,

are all driven by movements of data blocks, and can be examined through the traversing paths

of tasks as data blocks. In regard to task offloading process in the fog, which is a typical

example of multiple data blocks move under the influence of each other, our contributions can

be summarized as follows.

We propose a gravity-based offloading model that views tasks as particles, whose movements

are driven by the gravity force between the particle and different fog nodes. Moreover, a data

block moves toward a fog node with a probability proportionate to the gravity force, allowing our

model to capture the adjustments of offloading target, either due to load-balancing among fog

nodes, or subjective preferences of the task node. Then the impact of data offloading processes

can be viewed as the effort of the gravity force, in the form of data movements.

We define evaluation metrics, namely, task lifetime, device effort and network effort, which

quantify the end-to-end delay of a task, the consumption of storage/processing resource at the

device level, and that of communication/coordination resource at the network level, respectively.

We find that, under a generic gravity rule, which applies for distance, energy, and delay-

based offloading criteria, the lifetime of a task remains constant (when the system is lightly

loaded), or decreases (when the processing load is heavier) with respect to the network size,

and both the device and network efforts of the system scale linearly. This result shows though

the QoS of individual tasks can be guaranteed as the network scales, the total network resource

consumption may exceeds what the system can provide.

4.2 System Model and Problem Formulation

In this section, we formally introduce the terminology and settings on nodes, tasks, and the

offloading process, define the performance metrics from the perspective of data movements, and

formulate the offloading problem.
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Figure 4.1 An example of a fog system hosted by a heterogeneous wireless network, and a data of-
floading scenario (inner box on the left) in the fog.

4.2.1 Network Model

Consider a fog system hosted by the 5G cellular network and wireless local area network (LAN),

a miniature example of which is illustrated in the right of Figure 4.1. In this network1, the fog

service is provided by BS’s (of picocells and femtocells), AP’s, and mobile devices (including

smart phones, tablets, laptops, and so on), which we refer to as fog nodes. Any device that is

authorized to offload tasks (to fog nodes) is referred to as a task node, so it is possible that a

node (device) can act as a fog node and a task node at the same time. For instance, an end

device k can choose to offload a heavy video trans-coding task ε to nearby fog servers deployed

at the AP j, while accepting a file offloading (further to the cloud) task δ from a nearby IoT

sensor u, as shown in the zoomed box on the left of Figure 4.1.

Therefore, we consider a node n ∈ E to be composed of two components: a fog node, which

is associated with a CPU with processing capacity cn, and a first-in-first-out (FIFO) queue;

and a task node, which generates tasks at the rate of β. As a fog node that can process tasks,

n announces its capacity cn within its transmission range rn, while as a task node, n decides

whether, and to whom, every of its generated tasks will be offloaded.

Considering any node may move in time span T = [0,∞), for a node e, let {Xe(t)}t∈T
denote its trajectory over time, where each Xe(t) ∈ R2 is a vector on a 2-D plane representing

1Considering resource bottlenecks mainly exist in wireless networks, in this chapter, we restrict the scope
of the fog paradigm to the network edge, despite the fact that wired connections between fog nodes and cloud
servers are also viewed as part of the fog system in some research, e.g., [133, 2].
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the location of node e at time t. For a node e ∈ E, located at Xe(t) at time t, denote its

neighbors as

Ne(t) = {i ∈ E | d(Xi(t), Xe(t)) ≤ min{re, ri}}, (4.1)

where re is the transmission range of node e, beyond which data transmission is not possible.

Suppose node e utilizes a wireless channel of bandwidth BW (Hz) to communicate with

node n ∈ Ne(t), located at Xn(t), where the noise power measures at P0 (dBm) inside this

channel bandwidth. Then if node e with transmission power Pe (dBm), which remains the same

throughout the data dissemination process, the data transmission rate from node e to node n

can be obtained as

Re→n(t) ≤ BW log2(1 + SNR)

≤ BW log2(1 + 10
1
10

(RSSIn(dBm)−Noise(dBm)))

' BW (log2 10)

10
[Pe − P0 − κd(Xn(t), Xe(t))] (4.2)

where κ is the path-loss exponent in the current system, and d(Xn(t), Xe(t)) measures the

distance between node e and node n at time t. The transmission range re can then be defined

as re := sup{d > 0 | BW (log2 10)
10 (Pe − P0 − κd) ≥ Rmin}, where Rmin is the minimum possible

transmission rate that is allowed in a RAT.

Remark 4.1. For fair comparison and simplicity reasons, we assume that the communication

between any pair of nodes follows the same set of parameters, including transmission power Pe,

noise level P0, and channel bandwidth BW , such that the transmission rate from node e to node

n can be simplified into the following form,

Re→n(t) ' Rmax − 0.32BWκd(Xn(t), Xe(t))
4
= Rmax − ψd(Xn(t), Xe(t)), (4.3)

where Rmax ' 0.32BW (Pe − P0), and constant coefficient ψ = 0.32BWκ.

Writing data rate Re→n as a linear function of distance d(Xn(t), Xe(t)) is reasonable for

several different communication schemes. For instance, this linear relationship is observed in

measurements of WiFi signals, [39]. As for the parameter Rmax, i.e., the peak data rate, we

survey measurements in real-world networks for comprehension in a numeric sense: The peak

data rate Rmax in WiFi systems measures at 8.3 Mbps unlink and 27.33 Mbps downlink for

mobile devices, and 32.88 Mbps unlink and 96.25 Mbps downlink for fixed devices [109]. The

peak data rate in LTE measures at 17.2 Mbps unlink and 42.4 Mbps downlink [41]. For the

future 5G communication, or WiFi with mmWave, the peak data rate can reach 5 to 40 Gbps

[52] in lab environments.
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4.2.2 Task Model

Consider task ε, which is captured as a seven-element tuple (tε, Lε, τε, Sε, Dε, φε, αε), whose

ranges and physical meaning can be found in Table 4.2.

Table 4.2 Attributes of a task ε (determined at tε).

Attribute Range Physical meaning

tε R+ the time instant ε is generated
Lε N+ volume of task ε (bits)
τε R+ timeout/delay bound
Sε E task node who generated ε
Dε E target fog node to offload
φε [100, 400] processing intensity (CPU cyles/bit)
αε (0, 1] coefficient of volume change after processing

Among these attributes in Table 4.2, the first five are common attributes of data blocks

in any dissemination process, while the last two capture the characteristics of data blocks as

tasks to be offloaded. For example, a file ε of size Lε, to be transferred from the source node

Sε = k to the destination node Dε = n, needs to be completed by time instant tε + τε. As a

task to be offloaded to node Dε, data block ε has two more attributes in addition to the basic

model, i.e., the processing intensity φε and volume change coefficient αε ∈ (0, 1], because a

task ε needs to processed for an expected result α(ε), where function α : {0, 1}Lε → {0, 1}αεLε

describes the processing procedure that maps task δ to the result α(ε). For example, a video

trans-coding task ε to compress an 1 minute 1080p video clip to a low-resolution 360p version

has data volume Lε = 165 Mb, processing intensity φε ' 290 cycles/bit (calculated from data

in [9, 73]), and volume change coefficient αε = 0.33, as the processing result α(ε), i.e., the 1

minute 360p video clip, is only 55 Mb in volume.

Three attributes of the task tuple, i.e., volume Lε, processing intensity φε, and volume

change coefficient αε, may differ considerably among different types of tasks, e.g., a text-

translation task have a small Lε on the level of Kb, and coefficient αε ' 1, because the size

of the translated file will be comparable with that of the original text file, both of which are

small; virtual reality (VR)/augmented reality (AR) tasks have large Lε, and coefficient αε ' 1,

because the major processing object are images, which are relatively large in volume; while

object recognition and cloud offloading tasks have medium Lε, and small coefficient αε ' 0,

because the expected result α(ε) will be much shorter compared to the original data block ε.

All the attributes of task ε are determined at its generation (i.e., at time tε). Among these,

the offloading target Dε decides the direction of ε’s movements during the offloading, which is

determined by the data owner/generator with an offloading criterion, taking into consideration

the current status of the network, e.g., reachability, processing capacity, and cost of the fog
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Figure 4.2 Efforts spent to offload task ε from task node k to fog node n.

service. For instance, in the offloading scenario shown in Figure 4.1, task node k can choose

fog node n as the target fog node, where ε will be offloaded to, by a distance-based offloading

criterion to save energy; and task node u may choose fog node i, according to a delay-based

offloading criterion to reduce service latency. To address how the target is selected, we propose

a gravity model in the next Section 4.3, which can describe a family of task offloading criteria.

4.2.3 Performance Metrics through Data Movements

The offloading process of task ε, is a course of transporting data block ε from its generator,

task node k, to a fog node n, getting processed at n, and then returning the result α(ε) back to

its generator k. This process can be described by four stages: offloading (from k to n), queuing

(at n), processing (at n), and responding (from n back to k), as shown at the top of Figure

4.2. Note that the offloading target, i.e., fog node Dε, is determined by the task node Sε = k

at tε, and can take value Dε = k, which means k decides to process ε locally. In this case (local

processing), the offloading process only contains the queuing and processing stage.

We consider performance2 of task offloading processes from two aspects: the completion

time of individual tasks, and the resource consumption during the offloading process. From the

perspective of individual users, the generator Sε of a task ε needs to know the time that task ε is

completed, which is defined as the lifetime of task ε in the fog. From the perspective of the fog

system, we define device effort and network effort to quantify the storage, and communication

resource consumption, respective.

Let Hε(t) ⊂ E denote the set of nodes that has data block ε locally stored at time t. Then

2Though task offloading in the fog paradigm is usually one-hop, i.e., direct transmission between the task
node Sε and a fog node Dε, we define the performance metrics in a more general sense, such that they also apply
to multi-hop scenarios.
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with respect to ε, the state of each node e ∈ E is a random variable εe(t) = 1Hε(t)(e) : Ω→ {0, 1}
in probability space (Ω,F ,P), and changes in Hε(t) can be represented by the random process

{~ε(t)}t∈T of random vectors ~ε(t) = {εe(t)}e∈E . For a generic data dissemination process in

wireless networks, the movement trace of data block ε can be described by a process of random

elements, {X (t)}t∈T , where X (t) =
⋃
e∈Hε(t){Xe(t)}, as a result of actions taken by the carrying

nodes Hε(t). The movements of data block ε will stop when its lifetime θε is reached.

Definition 4.1. Consider task ε, which is generated by task node Sε ∈ E at time tε. Let α(ε)

denote the expected processing result of task ε. The lifetime of ε is define as the time between

its generation, and the time that the last bit of α(ε) reaches the task node Sε, that is,

θε := min
{
τε, inf{t ≥ 0 | Sε ∈ Hα(ε)(t)} − tε

}
, (4.4)

where τε is the timeout bound of task ε.

Lifetime measures the minimum period of time that task ε (and its copies) is physically

present in the fog system. It is upper bounded by the timeout τε (an attribute of the task

determined at generation) of that data block, after which time the existence of ε is no longer

necessary, though some carrying nodes of this data block can still hold to it longer, at their

own will. In the offloading process (before the end of its lifetime), movements of the task as a

data block, are sustained at the cost of efforts by the fog system. Three types of resource are

consumed to complete a task: communication, storage, and processing. Considering that the

amount of processing resource needed is fixed, and can be determined by the product of volume

Lε and processing intensity φε, we focus on the first two that are changing over time.

Remark 4.2. The concept of effort can be understood with an analogy in physics. If we view a

data block ε as a solid object with mass φεLε, which is initially static at its generator Sε. In this

case, external forces have to be applied onto the data block to change its motion (from static to

moving), which is accompanied with work by the force, spent in the form of energy.

During the lifetime of task ε, process {(Hε(t),X (t))}0≤t≤θε describes where copies of ε are

stored, through which we define the device effort to quantify the storage resource consumption,

as the impact (at the individual device level) of ε’s movements on the nodes in set E.

Definition 4.2. The device effort spent on task ε at time t ∈ [tε, tε + θε] is defined as the

amount of local storage resource consumption (cumulative) in the carrying nodes,

DEε(t) :=

∫ t

tε

Lε|Hε(s)|+ αεLε|Hα(ε)(s)| ds, (4.5)

where |Hε(s)| is the number of copies of task ε stored on any device/node in the network. Denote

DEε := DEε(tε + θε) as the total device effort spent during the offloading process of task ε.

Note that |Hε(t)| = ||~ε(t)||1 is a random variable in probability space (Ω,F ,P), that takes

range in [0, |E|]. The device effort quantifies the amount of storage resource consumed upto
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time t. For instance, during the offloading process shown in Figure 4.2, the amount of device

effort spent on task ε are 2Lε during the queuing and processing stage, while it is Lε during

the offloading stage, and αLε during the responding stage. This is because both the task node

k and the fog node n need to keep a copy of task ε to avoid transmission failure or processing

failure, during the queuing and processing stage.

On the other hand, the network effort quantifies the amount of shared resource it takes

the fog system, to perpetuate the movements of task ε, as a data block, over the air interface.

By network resource, we mean communication resource belonging to the provisioning wireless

network, e.g., spectrum, resource blocks, transmission opportunities, and so on.

Definition 4.3. For task ε with lifetime θε, the network effort of ε at time t ∈ [tε, tε + θε] is

defined as the sum of every distance-transmission time product, that is,

NEε(t) :=
∑
s∈T ε

∑
i∈∆Hε(t)

T εp(i)→id
(
Xi(s), Xp(i)(s)

)
, (4.6)

where ∆Hε(t) := Hε(t) \ Hε(t−) denotes the set of new recipients of data block ε at time t, set

T ε := {s ∈ (tε, t] | ∆Hε(t) 6= φ} denotes all the time instants when data block ε is transmitted

over the air, and p(i) denotes the node, from which i receives a copy of ε. Let NEε := NEε(tε+θε)

denote the total network effort spent during the entire offloading process of task ε.

Note that the two types of efforts, i.e., device effort and network effort, can not be directed

added, because they quantify resource consumption in different types (and are hence in different

units), but they jointly illustrate the amount of resources spent on the dissemination process of

data blocks, and can be separately compared among offloading processes (and more generally,

any data delivery process in a wireless network) of different tasks. Formulating the resource

consumption of an individual offloading process as functions of paths taken by the data block,

we are able to decouple the performance metrics from the offloading schemes. As a result, we

have the expected answers to the first two research questions, irrespective of the criteria and

implementation details of offloading algorithms.

4.3 How Data Move: the Gravity Model for Task Offloading

As identified in the moving object analogy, the offloading scheme functions as an external force

to determine the moving direction of tasks. It seems straight-forward, but modeling such a

mechanism is actually very challenging. First and foremost, the task node may use a variety

of offloading schemes, which results in unmanageable space of network components for mod-

eling. Second, offloading traffic increases as the fog system scales, so multiple nodes in the

fog system may compete for shared resources, including storage, processing, and communica-

tion. Consequently, the offloading decision of one task node is inevitably affected by others.

Lastly, for the cooperative offloading schemes, there is a probability that a task may not be
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Figure 4.3 An offloading process from the perspective of task ε. Note that Sε can be the same as Dε

for local processing, in which case transmission time T εS→D = T εD→S = 0.

able to be offloaded to the ‘optimal’ fog node seen from the task node’s perspective, because of

load-balancing operations among fog nodes.

To overcome these challenges, we propose a generic gravity-based offloading model, in which

different offloading criteria (to select the target fog node) can be written as different forms

of gravity functions, while allowing the task node to select any qualified candidates with a

probability that is proportionate to its ‘suitableness’. Based on this model, we are able to

derive upper bounds of efforts spent on the offloading process of a single task. In this section,

we focus on the simplest, yet most essential form of task offloading processes, that is, single-

hop offloading, in which task ε moves from its generator, i.e., task node Sε ∈ E, directly to a

processor, e.g., fog node Dε ∈ E.

4.3.1 An Offloading Procedure

The state transitions of task ε during its offloading process are shown in Figure 4.3. And the

offloading process, as shown in Figure 4.2, can be described as follows:

1. At time tε, node Sε = k ∈ E generates task ε, and Hε(tε) = {k}.

2. Task node k chooses the offloading target Dε = n ∈ Nk(tε)∪{k} with probability P(Dε =

n).

3. Task ε is then transmitted from node k to node n at data rate Rk→n. As a result, Hε(tε +

T εk→n) = {n, k}. If n = k, i.e., task node k made a decision to process task ε locally, this

step is omitted, and T εk→n = 0.

4. Upon receiving task ε, node n will put ε in a queue if processor of node n is busy (occupied

by tasks from other offloading processes). Processing of ε will start once there is spare

resource at n.

5. When processing of ε is completed (after queuing delay T εQ|n and processing delay T εP |n),

the corresponding result α(ε), e.g. trans-coded video, object recognition output, or ac-

knowledgement of a file uploading (to remote cloud servers), of size αεLε, will be trans-

mitted back to the task node k at the data rate of Rn→k.

6. Finally, at time tε + T εk→n + T εQ|n + T εP |n + T εn→k, the response α(ε) is returned to node k.
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Figure 4.4 An example of the gravity-based data offloading: every fog node i ∈ Nk(tε) ∪ {k} (includ-
ing the task node k itself) imposes a non-negative gravity force F (ε, i) on task ε, and the offloading
probability from k to i is proportionate to the gravity force F (ε, i) defined in Eq. (4.7).

The first important feature of the proposed gravity model is allowing probabilistic target

selection for load-balancing purposes. The offloading probability is defined as follows.

Definition 4.4. The offloading (to n) probability P(Dε = n), that is, probability that fog

node n ∈ E is chosen by task node Sε as the offloading target for task ε, is defined as

P(Dε = n) :=

0, if
∑

i∈Nk(tε)
F (ε, i) = 0,

ρ(F (ε,n))∑
i∈Nk(tε)

ρ(F (ε,i)) , otherwise,
(4.7)

where F (ε, i) ≥ 0 is the gravity on task ε imposed by fog node i ∈ E, and selectiveness function

ρ(·) ≥ 0 is an increasing, convex function.

Note that when none of the candidate fog nodes imposes a positive gravity (e.g., the trans-

mission time alone is longer than the timeout value τε) on task ε, i.e., the first case in Eq.

(4.7), task ε will be processed locally, i.e., Dε = Sε = k. The probabilistic setting addresses the

identified challenges in offloading modeling from the following aspects:

(1)Diverse offloading criteria. The definition of offloading probability provides two options

with respect to modeling different criteria. First, gravity function F (ε, i) can be set by the

task node to adapt to its unique requirements. Second, selectiveness function ρ(·) allows the

task node to fine-tune how selective it is, or how reluctant it is to adjustments due to load-

balancing. For example, we can set ρ(x) = xγ , where γ ∈ [1, 10] is the selectiveness coefficient

that controls the extremeness of solution. The larger γ is, the more likely task node Sε will favor

fog nodes with the highest gravity, i.e., probability of being selected are more concentrated on

the top-ranking fog nodes.

(2) Competition and adjustment. The probabilistic setting achieves an ‘automatic’ load-

balancing among fog nodes, in the sense that tasks are not always offloaded to the seemingly

‘optimal’ choice (fog node imposing the largest gravity force) from the (possibly incomplete)

view of the task node, to avoid a small number of powerful fog nodes being overloaded by
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excessive task offloading. This measure (allowing tasks to offloaded to sub-optimal fog nodes)

can also be viewed as a result of the competition among task nodes.

4.3.2 Typical and Generic Gravity Rules

The gravity force F (ε, n) is meant to quantify the ‘attractiveness’ of fog node n, in regard

to the processing of task ε, which can be freely defined by any task node. Considering most

offloading criteria have an objective to optimize, such as delay, energy consumption, etc., we

define the gravity function as the performance gain achieved by offloading, compared to local

processing, or the remaining allowance against a performance budget. We list a few example

rules for typical application scenarios.

4.3.2.1 Gravity Rule based on Distance

The simplest offloading scheme is to always offload to the nearest fog node, as long as there is

one in the communication range of the task node, regardless of status of the fog nodes. This

simple rule applies to offloading processes from IoT devices without local processing power, in

which energy spent on data transmission over the air interface is the major concern, hence the

preference on short distances. The gravity force for distance-based offloading can be written as

follows:

F (ε, n) =
1

d (Xk(tε), Xn(tε))
, ∀n ∈ Ne(tε). (4.8)

To always select the nearest fog node, the probability mapping function ρ(x) can be set to

ρ(x) = xγ with a large γ, because the larger the selectiveness coefficient γ is, the more likely

the task node chooses the nearest fog node.

4.3.2.2 Gravity Rule based on Energy Consumption

For pocketable, battery-operated task nodes, e.g., IoT sensors, energy consumption for data

processing is always the major concern. So the ultimate goal of offloading is to spend as less

energy (mainly consumed by data transmission) as possible. In this sense, the gravity force

imposed by node n upon task ε can be defined as

F (ε, n) = max

{
Eεk −

PeLε
Rmax − ψd (Xk(tε), Xn(tε))

, 0

}
, (4.9)

where Rmax, Pe, ψ are defined in (4.3), and Eεk denotes the local energy consumption (for data

processing), if task ε is processed at node k, which is proportionate to φεLε. The max operator is

employed to indicate that offloading is only an option, when it consumes less energy compared

to local processing.
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4.3.2.3 Gravity Rule based on Capacity

For computationally expensive tasks, e.g., video trans-coding, the major concern of the task

node Sε is the capacity of candidate fog nodes, such that the application can run smoothly.

F (ε, n) = max

{
τε −

Lεφε
cn

, 0

}
, ∀n ∈ Ne(tε), (4.10)

where cn (cycles/s) is the capacity of candidate n. Subtracting the processing workload of task

ε, the gravity force measures the capacity/computation margin after taking in ε, so the larger

the capacity margin, the more likely that once offloaded, task ε will be processed with a shorter

queuing delay. Here, capacity can refer to the processing power of fog nodes. However, it can be

generalized to the bundled capability of service provisioning, e.g., number of reserved channels

(logically, TCP connections) to the cloud server, from which the processing/service time has

the same format as the processing power, and hence the same definition in Eq. (4.10).

4.3.2.4 Gravity Rule based on Delay

As the primary motivation of fog paradigm [119], reducing service latency is the top design

priority for many task offloading schemes. As shown in the delay decomposition in Figure 4.2

and Figure 4.3, for a task ε generated by Sε = k, three components of the total delay can be

determined, including the uplink transmission delay T εS→D, processing delay T εP |D, and downlink

transmission delay T εD→S , if the offloading decision is made as Dε = n:
T εk→n = Lε

Rmax−ψd(Xk(tε),Xn(tε))
,

T εn→k = αεLε
Rmax−ψd(Xk(tε),Xn(tε))

,

T εP |n = Lεφε
cn

.

(4.11)

The queuing delay T εQ|n, on the other hand, is a random variable, whose value is dependent

on the offloading processes of other tasks. For instance, as shown in Figure 4.2, though task ε

is offloaded to node n, it has to wait until node n has completed processing task δ, which is

offloaded earlier. In fact, the queuing delay is bounded by 0 ≤ T εQ|n <
Qn(tε)+Yn

cn
, where random

variable Yn ∈ [0,∞) is the workload offloaded to node n, during the transmission delay of task

ε, i.e., interval [tε, tε + T εk→n]. Note that task node k, as a fog node, has also been accepting

tasks offloaded to itself, hence the ‘local processing’ option of ε may also induce queuing delay,

so we define the gravity force imposed on task ε, by a candidate fog node n ∈ Nk(tε), as

F (ε, n) = max
{
τε −

(
T εk→n + T εP |n + T εn→k

)
, 0
}
, (4.12)

to avoid including the undetermined queuing time in the offloading criterion.

Next, we present a generic form of gravity force, whose parameters can be tuned to describe

the four rules enumerated above, for the ease of analysis.

94



Definition 4.5. The gravity force F (ε, n) imposed by fog node n on task ε is defined as

F (ε, n) = f

(
Aε −

Bε
cn

+
Gε

g (d(Xk(tε), Xn(tε)))

)
, (4.13)

quantities in which have the following properties:

• Function f : R → R is non-decreasing, and for any a > 0, f(a) > 0 and f(−a) = 0,

f(0) = 0. The simplest form of f is f(x) = max{x, 0}.

• Function g : R+ → R is a linear non-decreasing function of the distance d(Xk(tε), Xn(tε)).

• Quantities Aε, Bε, and Gε are non-negative constants, which are only relevant to the

attributes of task ε itself, and satisfy Bε +Gε > 0.

The rationale of this function form in Definition 4.5 is that, despite their differences, the gist

of all offloading rules is to find a fog node with the highest capacity, the shortest processing delay,

and the least communication cost in terms of energy (i.e., that is located near the task node’s

current position). Together with the selectiveness function ρ(·) in Eq. (4.7), the generic rule in

Eq. (4.13) can describe the aforementioned gravity rules in this subsection. For instance, in the

distance-based offloading scheme3 (Eq. (4.8)), Aε = Bε = 0, Gε = 1, and function g(x) = x,

while in the delay-based offloading scheme (Eq. (4.12)), Aε = τε, Bε = φεLε, Gε = (1 + αε)Lε,

and g(x) = ψx − Rmax. Note that the physical meaning of function |g(x)| in Eq. (4.13) is the

data transmission rate at distance x for delay or energy-based offloading.

Remark 4.3. Note in Eq. (4.8) to (4.12), the physical meaning of gravity force F (ε, n) is

different, and is hence measured in different units. When a joint criterion is considered, e.g., a

task is to be offloaded to a fog node that simultaneously satisfy an energy consumption goal and

a processing delay goal, the new gravity force can be defined as a linear combination of Eq. (4.8)

to (4.12), with predetermined weights on each term to capture the preference of the task node.

The resulting joint gravity function will have the same generic form as defined in Eq. (4.13).

With this generic function form of the gravity force, we next derive the probability for local

processing and offloading, as a preparation toward obtaining the three performance metrics.

4.3.3 Offloading Options and Probabilities

Fog systems are expected to include a large number of devices (fog/task nodes), so it is highly

probable that multiple offloading candidates co-exist for a task ε, in the vicinity of task node

Sε. Consequently, the actual efforts of the offloading process depend on whether to offload, and

3This assumption applies to a rather homogeneous setting, when the fog nodes and task nodes have similar
hardware configurations. However, Eq. (4.13) also applies to the case of Rn > Rk, which is very common if
candidate fog nodes are only located at APs or eNodeBs, because term T εn→k will be fairly small, especially when
αε is small as well.
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if so, which fog node to choose. To address this issue, we first discuss the offloading options and

their probabilities for a given task ε.

Consider ε = (tε, Lε, τε, Sε, Dε, φε, αε), i.e., a task4 of size Lε, generated at tε by Sε = k,

and with processing intensity φε and volume change coefficient αε. For any fog node n ∈
E, let random variable Vn = d(Xk(tε), Xn(tε)) denote the distance between n and k, with

probability density function (PDF) fV (v) (v ∈ [0,+∞)), and random variable Cn denote its

processing capacity, with PDF fC(c) (c ∈ [cmin, cmax]). First, we present the probability for local

processing, that is, task ε will not be offloaded to any candidates in node k’s neighborhood.

Lemma 4.1. The probability that task node Sε = k decides at time tε to process task ε locally

is given by

P(Dε = k) = 1− (1− Ppos)N−1 . (4.14)

For scenario when Aε 6= 0, and function g(x) = ψx − Rmax, probability Ppos can be calculated

as

Ppos =

∫ cmax

Bε
Aε

∫ g−1
(

cGε
Bε−cAε

)
0

fV (v)dvfC(c)dc, (4.15)

where cmax is the maximum capacity among fog nodes in E.

Proof. Task ε is forced to be processed locally at task node Sε = k, if and only if there is no

proper candidate (fog) nodes from Nk(tε), or equivalently, none of the N − 1 fog nodes in set E

impose a positive gravity on ε. This explains the form of Eq. (4.14) with respect to Ppos, which

is the probability that a randomly chosen fog node n from E \ {k} qualifies as an offloading

candidate, that is, fog node n imposes a positive gravity force, F (ε, n) > 0.

For any fog node n ∈ E \ {k} to be considered as an offloading candidate, two conditions

have to hold simultaneously: first, node n must reside in k’s communication range, i.e., the

data transmission rate Rk→n(tε) > 0, which requires function g(Vn) < 0; second, the gravity

force F (ε, n) > 0 is strictly positive, which means there must be a performance gain if task ε is

offloaded. Then these two requirements translate to the following sufficient condition:Cn > Bε
Aε
, Condition 1,

g(Vn) < Gε
Bε
Cn
−Aε

, Condition 2.
(4.16)

As can be seen from Eq. (4.16), each capacity value c ∈ [cmin, cmax] corresponds to a distance

vmax = g−1
(

cGε
Bε−cAε

)
, which explains the integral limits in Eq. (4.15). Note that the threshold

distance vmax is smaller than or equal to the communication range, because when the Condition

1 on the first line of Eq. (4.16) holds, the right-hand-side of Condition 2 is guaranteed to be

negative, so the communication range requirement g(Vn) < 0 will be satisfied.

Lemma 4.1 provides a criterion of selecting offloading candidates from Nk(tε) for task ε, as

4For simplicity reasons, we assume τε = Lεφε
cSε

.
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well as the probability that ε will be processed locally at its generator k. It is a generic result,

in the sense that for different scenarios, e.g., pedestrians walking in a region under a random

walk model, or vehicles moving along a highway, this lemma gives numeric results, as long as

the distributions of node distance Vn and processing capacity Cn are known. It is also worth

noticing that the sum of offloading probabilities (equivalently 1− P(Dε = k)) can be obtained

with statistics of the node ensemble, instead of exact parameters of each individual node. This

indicates that, with the proposed gravity model, it is possible for a network operator to estimate

the offloading performance though analysis, instead of lengthy simulation or costly experiments.

Next, we discuss the offloading probability P(Dε = n) to a specific fog node n, whose capacity

cn and distance d(Xn(tε), Xk(tε))
4
= vn are known by task node k at time tε.

Theorem 4.1. Let µC =
∫ cmax
cmin

cfC(c)dc denote the mean capacity of fog nodes in E, and

FV (v) =
∫ v

0 fV (s)ds denote the CDF of distance V between a randomly chosen fog node and

task node k at time tε. The probability that task ε will be offloaded to a fog node n with capacity

cn and distance vn, i.e., P(Dε = n), is upper bounded by

P(Dε = n) ≤ ρ (F (ε, n))

LB(vmax)ρ
(
Aε − Bε

µC
+ Gε

FV (vmax)

∫ vmax
0

fV (v)
g(v) dv

) , (4.17)

where vmax = g−1( cmaxGε
Bε−cmaxAε ) is the maximum possible distance between a candidate node and

task ε at time tε, and LB(vmax) = NFV (vmax)fC(cmax) −BεGεg(vmax)

(Aεg(vmax)+Gε)
2 is an lower bound of the

total number of offloading candidates.

Proof. The key to derive the offloading (to n) probability P(Dε = n) in Eq. (4.7), is finding the

denominator
∑

i∈Nk(tε)
ρ (F (ε, i)) in the definition.

First, as ρ(·) is a convex function, e.g., ρ(x) = xβ, we have

∑
i∈Nk(tε)

ρ (F (ε, i))
Jensen
≥ |N+(tε)|ρ

(∑
i∈N+(tε)

F (ε, i)

|N+(tε)|

)
, (4.18)

where N+(tε ⊂ Nk(tε is the set of candidate fog nodes (imposing a positive gravity force on

task ε).

The next step is to obtain |N+(tε)| and
∑

i∈Nk(tε)
F (ε, i), that is, the total number of can-

didate nodes, and the total gravity force imposed by all candidates on task ε.

Observing that the gravity force only concerns the capacity Ci and distance Vi of a node

i, and both quantities are additive, we resort to a divide-and-conquer method for the solution

of |N+(tε)| and
∑

i∈N+(tε)
F (ε, i). To be more specific, we divide the disk area (yellow shades)

centered at Xk(tε) into circular regions of width ∆v, as shown in Figure 4.5.

Consider the circular region with inner radius v ∈ [0, vmax], as indicated by the blue ring

with width ∆v. When ∆v is small, the probability that a node falls into this region can be

approximated as fV (v)∆v. The probability that an arbitrary fog node i is located inside this
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Figure 4.5 Proof technique in Theorem 4.1: dividing the neighborhood of task node k into multiple
rings of width ∆v.

circular region, and satisfies the criterion in (4.16), can be calculated as

p0(v) = fV (v)∆v

∫ cmax

Bεg(v)
Aεg(v)+Gε

fC(c)dc = fV (v)∆v

[
1− FC

(
Bεg(v)

Aεg(v) +Gε

)]
, (4.19)

where FC(c) is the CDF of random variable C, representing the capacity of a randomly chosen

fog node from set E.

Denote the set of candidate fog nodes (imposing a positive gravity force on task ε) inside

the blue ring as Nv
+(tε). It is easy to see that random variable |Nv

+(tε)| ∼ B(N, p0(v)), with

mean

E(|Nv
+(tε)|) = NfV (v)∆v

[
1− FC

(
Bεg(v)

Aεg(v) +Gε

)]
. (4.20)

Then the total number of candidates in the yellow disk E (|N+(tε)|) can be lower bounded as

E (|N+(tε)|) = E
(∫ vmax

0
|Nv

+(tε)|dv
)
Fubini

=

∫ vmax

0
E
(
|Nv

+(tε)|
)
dv

≥ NFV (vmax)fC(cmax)
−BεGεg(vmax)

(Aεg(vmax) +Gε)
2 , (4.21)

where g(vmax) < 0 is guaranteed by the candidate criterion in Eq. (4.16), such that E (|N+(tε)|),
is always positive. Meanwhile, the expected number of candidates E (|N+(tε)|) is also upper-

bounded by the total number of nodes within the yellow disk, which also contains nodes that

fail criterion Eq. (4.16), that is,

E (|N+(tε)|) ≤ NFV (vmax). (4.22)

On the other hand, the total gravity force on task ε can be calculated as the sum of all ∆v
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rings within the disk of radius vmax, that is,

E

 ∑
i∈Nk(tε)

F (ε, i)

 Fubini
=

∫ vmax

0
E

 ∑
i∈Nv

k (tε)

F (ε, i)


≥ N

∫ vmax

0
fV (v)

[
1− FC

(
Bεg(v)

Aεg(v) +Gε

)]∫ cmax

Bεg(v)
Aεg(v)+Gε

(
Aε +

Gε
g(v)

− Bε
c

)
fC(c)dcdv

≥ N
(
Aε −

Bε
µC

)
FV (vmax) +NGε

∫ vmax

0

fV (v)

g(v)
dv, (4.23)

where µC = E(C) is the mean capacity of fog nodes in set E.

Consequently, the probability that task ε starts to offload to node n is upper bounded by

P(Dε = {n}) ≤ ρ (F (ε, n))

|N+(tε)|ρ

[
E
(∑

i∈N+(tε)
F (ε,i)

)
|N+(tε)|

] , (4.24)

plugging Eq. (4.23), upper bound Eq. (4.22), and lower bound Eq. (4.21) into the above equation

yields the result in Eq. (4.17).

We highlight two implications from the upper bound in Theorem 4.1:

(1) Invariant property. Regardless of the gravity rule and selectiveness, offloading probability

P(Dε = n) = O( 1
N ), that is, this probability is asymptotically bounded above by 1

N , when the

mapping function ρ(·) takes a polynomial form, i.e. ρ(x) = xβ + xβ−1 + · · ·+ x+ 1.

(2) Local action and global status. With this theorem, we establish a link between a local

action (task node k chooses fog node n to offload task ε) to the global status of the system,

because in this process, both device effort and network effort for task ε take changes, which in

turn affects the offloading options, and hence the efforts spent for other tasks. In other words,

with the set of probability {P(Dε = n)}n∈E , we can examine interactions of multiple tasks, and

their movements after time instant tε in the fog system.

4.4 Bounds and Scaling Laws of Performances

Recall that, in the one-hop data offloading process, the lifetime, device effort and network effort

of a single task ε can be obtained by their definitions once the offloading target Dε is chosen to

be fog node n ∈ E, that is,
θnε = T εk→n + T εQ|n + T εP |n + T εn→k,

DEnε (θε) = Lε

(
T εk→n + 2T εQ|n + 2T εP |n

)
+ αεLεT

ε
n→k,

NEnε (θε) = T εk→nd(Xk(tε), Xn(tε)) + T εn→kd(Xk(θε + tε), Xn(θε + tε)),

(4.25)

as illustrated by the example shown in Figure 4.2.
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The exact value of the three performance metrics on the offloading process of a task ε can

only be evaluated, when the target fog node n is chosen. However, in a probabilistic sense, we

can derive the expected lifetime and efforts for a given task ε, to understand the system-level

behavior. In this case, every term in Eq. (4.25) is only dependent on parameters (cn, Vn) of

fog node n, and the task ε, except for the queuing delay T εQ|n, which is the result of multiple

offloading processes in addition to task ε. Therefore, we first analyze the condition in which

other offloading processes will affect the queuing delay T εQ|n for task ε.

4.4.1 Discussion on Expected Queuing Delay E(T ε
Q|n)

Consider another task δ that is also offloaded to fog node n with probability P(Dδ = n). Its

processing may add to the queuing delay if and only if the last bit of δ arrived at n before the

last bit of ε, such that δ will be processed before ε, that is, tε < tδ + T δSδ→n < tε + T εSε→n.

According to the task node model described in Section 4.2, the data traffic generation process

of every node in set E is stationary, i.e., the distribution of intervals between two consecutive

tasks generated by the same node does not change over time, and the mean interval length is
1
β . In other words, the system will generate Nβ tasks on average, creating NβµLµφ processing

load, for each time step. If the total processing capacity NµC is smaller than the generated

processing load, the expected queuing time will eventually tend to infinity, in which case it is

less interesting to examine the performance of the fog system. So we consider the case when

generated loaded can be processed, that is, NµC > NβµLµφ.

Assume the distributions of different parameters of the task, e.g., data volume Lδ and

processing intensity φδ, are independent of each other. Then with a similar divide-and-conquer

method as depicted in Figure 4.5, we can upper bound the expected amount of data E(Yn)

offloaded to (arrived at) n during time interval [tε, tε + T εSε→n] by considering all the tasks

generated within fog node n’s communication range g−1(0), that is,

E(Yn) ≤ βNT εk→n
∫ g−1(0)

0

fV (v)

|N+(tε)|

∫ T εk→n

0
µφsHL [g(v)(s− T εk→n)] dsdv, (4.26)

where µφ is the expected processing intensity of tasks, and function HL(l) =
∫ l

0 xfL(x)dx is

the partial expectation of data volume L, which is less than or equal to threshold l. Note that

the denominator |N+(tε)| follows from the upper bound of offloading probability in Eq. (4.24).

Then, the expected queuing time is upper bounded by

E(T εQ|n) ≤ E(Yn)

cn
+ max

{
0,
Qn(tε)

cn
− T εk→n

}
, (4.27)

where Qn(tε) is the remaining load in fog node n at time tε.

From a realistic point of view, the peak data rates in existing LTE and WiFi systems

measure at 10 Mbps to 100 Mbps, while the processing capacity of most mobile devices measure

at GHz level (e.g., 1.4 GHz Raspberry Pi 3, and 2.6∼3.0 GHz smart phone processors), so

100



the second term of Eq. (4.27) is less significant compared to the first term. Considering that

|N+(tε)| = Θ(N), as shown in the proof of Theorem 4.1, we have E(T εQ|n) = O( 1
N ) from Eq.

(4.26) and (4.27), especially when β is large. On the other hand, when β is small, that is, the

system is lightly loaded, the probability that tasks arrives at the end of transmission will be

small, such that E(T εQ|n) ' max
{

0, Yncn − T
ε
k→n

}
will also be small positive values.

With Eq. (4.27) and (4.25), we are able to obtain the device and network efforts for ε, given

that it is offloaded to node n. Consequently, an upper bound of the device effort DEε, can be

obtained by E(DEε) =
∑

i∈N+(tε)∪{k}DEnε P (Dε = i), where the device effort DEε can be replace

by lifetime θε, or network effort NEε.

Despite the complex form of the expected queuing delay, it outlines a generic way to foresee

task ε’s resource consumption during the offloading process, irrespective to different initial

condition and network status. In some special cases, e.g., the distance Vn follows a special

distribution, we are able to obtain concrete, and more accurate results, so in the remaining of

this section, we consider the special case when fog nodes follow a random walk model.

Remark 4.4. Without loss of generality, we assume the data volume L and processing inten-

sity φ of tasks satisfy uniform distributions, with mean µL and µφ respectively. Consider the

selectiveness function takes the form of ρ(x) = x. Consider nodes in E are initially randomly

located in a square region [−a
2 ,

a
2 ]2 ⊂ R2, and they all move under a speed-constrained random

walk model with a maximum speed speedmax << a. When a node hits the boarder of the square

region, it shows up on the opposite boarder of the region, such that there is no boarder effect [11]

in this scenario. In this case, the distance V between any two randomly chosen entities satisfies

the following lemma.

Lemma 4.2. (Special case of [92].) Consider a square region [−a
2 ,

a
2 ]2 ⊂ R2. For two randomly

chosen points X1, X2 ∈ [−a
2 ,

a
2 ]2 in this region, the distance V = d(X1, X2) is a random variable

with PDF as follows:

fV (v) =

 π
a2

+ v2

a4
, 0 ≤ v ≤ a,

−2+π
a2

+ 2
a2

arcsin(av ) + 4(s2−a2)1/2

a3
, a ≤ v ≤

√
2a.

(4.28)

Proof of Lemma 4.2 is very similar to the general case presented in [92], and is hence omitted

here. In this scenario, we discuss data offloading processes under two gravity rules.

4.4.2 Performance under Distance-based Offloading

First, we discuss the simplest distance-based offloading rule, in which any task is for sure to be

offloaded to a neighboring fog node, by its gravity function Eq. (4.8). For task ε under the this

rule, the only criterion is transmission range, i.e., vmax = Rmax
ψ , because F (ε, n) > 0 for any

fog node n ∈ E.

Note that, by Lemma 4.2, the probability that two entities happen to be located at the

exact same location FV (v = 0) is strictly zero, and that it is very unlikely (with probability
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less than π
a2

+ 1
3a4

) that their distance is less than 1 unit length, especially when a is large.

Therefore, the gravity force F (ε, i) is well-defined (< ∞) for almost all offloading candidates.

With this lemma, we derive the lifetime and efforts of an individual task ε in two steps. First,

we give the offloading probability, device and network effort to a fixed candidate fog node n.

Proposition 4.1. Consider a distance-based offloading scheme, with the selectiveness function

ρ(x) = x. For task ε offloaded to fog node n, the efforts spent for task ε are given by

E(NEnε ) =
(1 + α)LεVn
Rmax − ψVn

, (4.29)

E(DEnε ) = Lε

[
(1 + α)Lε
Rmax − ψVn

+
2φεLε
cn

+ 2E(TQ|n)

]
, (4.30)

where E(TQ|n) ≤ βµφRmaxL
3
ε

12Ncn(Rmax−ψVn)3
is the expected queuing time at node n, and µφ is the mean

processing intensity of all tasks.

Proof. Under the distance-based gravity field, the gravity rule can be stated as F (ε, n) = 1
Vn

for Vn < vmax, and F (ε, n) = otherwise, where vmax = Rmax
ψ .

Plugging in the PDF fV (v) from Lemma 4.2, we obtain the expected number of offload-

ing candidates with a similar method in Theorem 4.1, as E(|N+(tε)|) = NFV (vmax), and the

offloading probability can be derived as

P(Dε = n) '
(
VnN

∫ vmax

1

fV (v)

v
dv

)−1

=
2a4

NVn [(vmax)2 + πa2 ln vmax]
, (4.31)

Note the integral in the denominator of Eq. (4.31) starts from 1 to avoid a diverging sum,

which is reasonable because the probability that the distance V < 1 is very small.

Then from Eq. (4.26), the expected amount of data E(Yn) offloaded to entity n during the

transmission time of task ε can be derived as

E(Yn)|T εk→n =N

∫ vmax

1
fV (v)P(Dε = n)βsµφ

∫ T εk→n

0
sHL [(T εk→n − s)(Rmax − ψv)] dsdv

=
βµφRmax

12N
(T εk→n)3 , (4.32)

where T εk→n = Lε
Rmax−ψVn is the transmission time of ε from the task node k to the candidate

fog node n. Note that the partial expectation of data volume

HL [(T εk→n − s)(Rmax − ψv)] =
1

2
(Lmin + (T εk→n − s)(Rmax − ψv)) , (4.33)

because data volume L is uniformly distributed, and the lower bound Lmin of data volume is

small, so we can approximate this partial expectation with 1
2(T εk→n − s)(Rmax − ψv).

Therefore, the expected queuing time E(TQ|n) ≤ βµφRmaxLε
12Ncn

(T εk→n)3. Plugging these quan-

tities in Eq. (4.25) yields the network and device efforts.
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Proposition 4.1 gives the exact expected effort for task ε, if it is offloaded to fog node n,

which happens with probability in Eq. (4.31). Then, we have the following corollary with respect

to the expected effort spent on ε, in terms of network size N .

Corollary 4.1. Under the distance-based offloading rule, the expected efforts to offload any

task, i.e., the network effort E(NEε) and the device effort E(DEε), are O(1) with respect to

network size N .

Proof. (Sketch.) The probability that task ε is offloaded to fog node n is shown in Eq. (4.31),

which is O( 1
N) . For each node n, the expected effort for task ε, given that it is offloaded to n,

are shown in Eq. (4.29) and (4.30), both of which are O(1) with respect to N .

Applying the divide-and-conquer method shown in Figure 4.5, as that in the proof of The-

orem 4.1, gives us the O(1) scaling law, as E(|Nk(tε)|) ∼ Θ(N), as shown by Eq. (4.21) and

(4.22). For instance, the expected network effort for task ε is

E(NEε) =
2(1 + α)Lε

[
(a2π + Rmax

ψ2 ) lnRmax − 3R2
max

2ψ2

]
R2
max
ψ + πa2ψ ln Rmax

ψ

, (4.34)

which is O(1) with respect to N .

Corollary 4.1 states that, the network effort and the device effort of a single task do not

scale with the network size N = |E|. Further, if we consider all the tasks generated during

the offloading process of ε as the total offloading traffic of the fog system, the total expected

efforts, both DE and NE, scales as O(N), due to the O(N) number of new tasks generated per

unit time. This indicates the linear growth of both traffic leads to a linear growth in resource

demand, under the distance-based offloading scheme.

4.4.3 Performance under Delay-based Offloading

Next, we consider the most complicated offloading criterion, i.e., delay-based offloading depicted

by Eq. (4.12), because other gravity rules, e.g., the power-based offloading rule in Eq. (4.9) and

the capacity-based offloading rule in Eq. (4.10), can be viewed as specially cases of Eq. (4.12),

in which two variables related to fog node n, d(Xk(tε), Xn(tε)) and Cn, reduce to one.

We adopt the same assumption as in the distance-based offloading: there are a total number

of N = |E| fog nodes in the region [−a
2 ,

a
2 ]2, in which a is large enough, such that a >>

maxe∈E{re}. Suppose a task node k located at the center of this region, i.e., location (0, 0), and

generates task ε to offload at time tε. Denote the distance from fog node n to this task node k

as V ε
n := d(Xk(tε), Xn(tε)), which obeys the distribution in Lemma 4.2. Under the delay-based

offloading rule, we have the following corollary.

Corollary 4.2. Under the delay-based offloading rule, the expected efforts to offload any task

are also O(1), with respect to the size of the fog network N .

103



Proof. (Sketch.) Under the delay-based gravity rule, the criterion F (ε, n) > 0 in Eq, (4.16)

becomes

F (ε, n) > 0⇐


Cn > φεLε

τε
,

V ε
n < 1

ψ

[
Rmax − (1+αε)Lε

τε−φεLεCn

]
.

(4.35)

From this criterion, especially the bound on distance V ε
n , we can see that the possible offloading

distance increases monotonically with the capacity of the fog node. Assume the capacity of any

fog node is uniformly distributed on [cmin, cmax]. Then the maximum distance for the task node

k to choose its offloading targets can be upper bounded by plugging Cn = cmax into Eq. (4.35).

In addition, the probability that a randomly chosen fog node n qualifies as a candidate can be

calculated as

P(F (ε, n) > 0) =

∫ cmax

φεLε
τε

πa2v + v3

3

a4(cmax − cmin)

∣∣∣∣∣
1
ψ

[
Rmax− (1+αε)Lε

τε−
φεLε
c

]

0

dc. (4.36)

Given that Nk(tε) 6= φ, we consider a particular fog node n ∈ E with capacity Cn = cn,

which is located at a distance of V ε
n = vn from the task node k. Let

vmax =
1

ψ

[
Rmax −

(1 + αε)Lε

τε − φεLε
cmax

]
(4.37)

denote the maximum possible distance in criterion (5.15) obtained by pushing Cn to its max-

imum value cmax. For an arbitrary fog node q ∈ E, when V ε
q > vmax, i.e., node q is located

outside the yellow outer circle in Figure 4.5, the gravity force it imposes on task ε will be strictly

zero, such that it will never be considered as a proper candidate, i.e., P (q ∈ Dε) = 0. Therefore,

we consider fog node n with vn ≤ vmax.

Similarly as in the proof of Theorem 4.1, we use the divide-and-conquer method to find the

expected sum of gravity force on task ε, which is also the denominator in Eq. (4.7), as

E

 ∑
i∈Nk(tε)

F (ε, i)

 =

∫ vmax

v=0
E

 ∑
i∈Nv

k (tε)

F (ε, i)


=

∫ vmax

0

2πNv

a2

[
τε +

(1 + αε)Lε
ψv −Rmax

− 2φεLε
cmin + cmax

]
dv

=
πN

a2

[
τεv

2
max +

2(1 + αε)Lε
ψ

ln

(
1− ψvmax

Rmax

)
− 4φεLεvmax
cmin + cmax

]
. (4.38)

From Eq. (4.38), we know that the probability that task ε is offloaded to fog node n is O( 1
N ),

as the numerator in the probability definition is a constant O(1) in terms of N . Then for each

node n, the expected effort for task ε, given that the task is offloaded to n, are also O(1) with

respect to N . Applying the divide-and-conquer method shown in Figure 4.5, as that in the

proof of Theorem 4.1, gives us the O(1) scaling law, because E(|Nk(tε)|) ∼ Θ(N) holds for the
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(c) Mean device effort E(DE).

Figure 4.6 Numerical results show that the mean lifetime and efforts are O(1) for a single task with
respect to network size N , when the processing load is light (β = 0.001 and 0.005).

generic gravity rule, including delay-based offloading procedures.

4.4.4 Numerical Results and Discussions

To validate the proposed gravity-based offloading model, and the derived scaling law of the

three performance metrics, we simulate the offloading process for fog systems of different sizes.

The simulation configuration is shown in Table 4.3. The mean lifetime, device and network

efforts for the 100 (Figure 4.6) or 1000 (Figure 4.7-4.8) tasks generated during the simulation

are shown in Figure 4.6-4.8. For each network size N , the simulation is run for 100 times, each

of which has randomly changing initial configurations (results shown in light colored dots), to

obtain the ensemble mean (results shown in bright colored markers and lines).

Table 4.3 Simulation configuration for Section 4.4.4.

Parameter Description Value/Range

N = |E| network size 100, 500, 1000, 5000, 10000
a region edge 1000 m
N/A simulation run times 100
N/A # of tasks (each simulation) 100 (Figure 4.6), 1000 (Figure 4.7-4.8)
β task generation prob. (per ms) 0.001, 0.005, 0.01, 0.05
speedmax max moving speed 10 m/s
ψ data rate attenuation (see Eq. (4.3)) 20 Mbps/m
Rmax max data rate 10 Gbps (considering [39, 109, 41, 52])
L data volume 1Mb, 10 Mb, 100 Mb, 1 Gb
φ processing intensity 100, 200, 300, 400 cycles/bit
α data volume change coefficient 0.1, 0.5, 1
C CPU frequency 1 GHz (w.p. 0.4), 4GHz (w.p. 0.6)

As can be seen from Figure 4.6, it is clear that despite the increase in network size N , the
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Figure 4.7 Under the delay-based offloading, lifetime of individual tasks and CPU occupancy at fog
nodes are O( 1

N ), when the processing load is heavier (β = 0.01 and 0.05).

mean efforts remain constant, especially for the delay-based offloading scheme (flat red lines).

For the distance-based offloading scheme (blue lines), the efforts are more volatile, because it

pursues to offload every task, such that there a larger probability for a task to be offloaded to

a less powerful fog node, which leads to unpredictable processing time, and hence the zig-zag

pattern in these figures. Note that this result is obtained for offloading services within a fixed

geographical region, in which the total amount of network resource is limited.

Next we examine the delay-based offloading scheme in the scenario of higher load β = 0.01

and β = 0.05. In Figure 4.7a, we observe the decrease in queuing time (dotted lines) and

hence the lifetime (dashed lines) of individual tasks, as the network size grows. The decreasing

trend is especially noticeable when the processing load is heavier, i.e. β = 0.05 (blue lines

with triangle markers), as discussed in Section 4.4.1 for the expected queuing delay E(TQ|D) of

tasks. This O( 1
N ) decreasing trend can be observed even more clearly by the amount of tasks

offloaded (E(Yn) in Eq. (4.26)) to each fog node, which can be reflected by the CPU occupancy

across time, as illustrated in Figure 4.7b. In addition, we also observe that by down-tuning the

selectiveness from ρ(x) = x10 (blue dashed line with triangle markers) to ρ(x) = x (red dashed

line with round markers), the average CPU occupancy is reduced. This means processing loads

are divided more evenly among fog nodes (red bars in the inner box of Figure 4.7), instead of

overloading a small number of fog nodes (blue bars concentrating at the high occupancy end).

Finally, we examine the total device and network efforts of the fog-computing system, con-

sidering the offloading process of all tasks generated during the same period of time, in Figure

4.8. As illustrated by the linear dashed and dotted lines, both the total device effort and the

network effort are linear with respect to the network size N , which can be obtained from Corol-

lary 4.2. An interesting observation is the impact of selectiveness on the network efforts. When

task nodes are more ‘picky’, or reluctant to offloading adjustments, the fog system can benefit
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Figure 4.8 Under the delay-based offloading, the total device and network effort of the fog system
(per unit time) are O(N) with respect to network size N .

in the sense that less network effort is spent to offload the tasks (as indicated by the higher

blue lines in Figure 4.8b), which indicates tasks are offloaded to fog nodes that are closer to the

task node. However, this reduction in network effort is achieved at the cost of burdening a small

portion of the fog nodes, as indicated by higher CPU occupancy in Figure 4.7b. Among the

linearly growing device and network efforts, the former can be easily provided by introducing

more fog nodes, while for the latter, it is rather difficult, or even impossible, to sustain such a

system, considering the limited network capacity provided at the network edge.

4.5 Summary

In this chapter, we studied the performance evaluation problem for task offloading processes

in the fog, through the lifetime individual tasks, device effort, and network effort defined via

data movements. We propose a gravity-based offloading model, by which a variety of offloading

criteria can be described. The storage and communication resource demand are then quantified

by the device effort and network effort metrics, such that resource consumption under different

schemes can be measured through a set of unified metrics. Through analysis and simulation,

we find that the time and efforts to offload a single task do not scale with the network size,

which indicates that, the total resource consumption for all the data offloading processes scale

linearly with the network size, under the gravity-based offloading schemes. As our model can

describe various offloading criteria, these results are generally applicable in understanding how

multiple tasks move in a resource-constrained system, such as the fog paradigm, as well as the

impact (in the forms of resource consumption) on the underlying provision networks.
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Chapter 5

Spectrum Dynamics: Modeling,

Analysis, and Design of Spectrum

Activity Surveillance in

DSA-enabled Systems

In this chapter, we study spectrum activity surveillance (SAS) to address what is the observable

impact of mobile data. SAS is essential to wireless systems, especially those open to dynamic

spectrum access (DSA), due to spectrum efficiency concerns. Considering monitoring hardware

are actively being developed, we take a modeling approach toward this question, such that the

monitor model can be fine-tuned to describe spectrum monitors with different characteristics.

We introduce a three-factor space, composed of spectrum, time, and geographic region, in

which spectrum activities are only observable in a closed subspace, due to their locality in the

three domains. We identify and quantify the two objectives of SAS, based on which we formulate

the strategy design problem in two steps: 3D-tessellation for sweep (monitoring) coverage and

graph walk for detecting spectrum culprits, that is, wireless devices responsible for unauthorized

spectrum occupancy. To efficiently observe the spectrum dynamics, as the result of mobile data,

we design efficient SAS strategies with multiple monitors: a low-switching-cost strategy for

systems with dedicated monitors, and performance-guaranteed random strategies for systems

with crowd-source monitors. We find that randomized strategies by m monitors (even with

limited switching capacities) can achieve a sweep coverage over a space of n assignment points

in Θ( nm lnn) time, and detect an oblivious or adversarial spectrum culprit in Θ( nm) time. This

O( 1
m) scaling indicates that, both SAS objectives can be achieved with a linear ‘speedup’ as

more spectrum monitors can be deployed, which provides performance expectations for existing

systems. In addition, size n of the assignment space is obtained as a function of the monitoring

power of individual monitors, so the performance bounds in turn outline design requirements

for spectrum monitors, in order to achieve a certain level of SAS performance.
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5.1 Introduction

dynamic spectrum access (DSA) has been envisioned as a key technology for future high-

speed heterogeneous wireless systems [50], e.g., 5G cellular networks [115], since it is expected

to boost spectrum efficiency by allowing wireless devices to temporally operate beyond their

designated spectrum bands, so as to mitigate the gap between the increasing frequency demand

and the crowded licensed radio spectrum. It is important on both individual and system levels:

it is essential to advanced cognitive radio (CR) technologies, e.g., CR non-orthogonal multiple

access (CR-NOMA) [38]; and it is also preliminary to abstraction of wireless resources in a

system, e.g., wireless network virtualization (WNV) [72, 69]. Despite its great potentials, the

opportunistic and open nature of DSA bears an intrinsic demand for SAS, as both a prerequisite

and a supplement to such spectrum-agile systems.

5.1.1 Motivation

An SAS process is expected to carry out continuous scans of spectrum activities on the fre-

quencies of interest, for the purpose of usage data collection and spectrum regulation polic-

ing/enforcing. On a systematic level, surveillance logs reflect the spectrum usage in wireless

communication systems, and can hence be analyzed for system management, as well as data

disclosure [48] purposes; on an individual level, real-time spectrum occupancy status can serve

as a crude input to reveal and predict the spectrum sensing range [84] for opportunistic spec-

trum access, which can reduce the sensing time as well as the access delay. To this end, Google

[44] and Microsoft [80] have launched their spectrum database projects, which provide availabil-

ity of TV white space over the entire United States, as a preliminary step toward real-time DSA

applications and the construction of radio environment map (REM) [53]. In this sense, SAS

is expected to act as a ‘spectrum-meter’, passively recording instantaneous occupancy data of

different spectrum slices for future analysis.

On the other hand, as an immediate beneficiary of this opportunistic environment toward

higher spectrum efficiency, spectrum culprit, which refers to overly-aggressive or malicious users,

may undermine the ‘right-of-way’ of legitimate users, and even downgrading performance of the

entire system, by occupying unauthorized frequency bands that are promised to other legitimate

users. This problem is especially severe in DSA-enbaled systems with distributed spectrum

sharing schemes, where a simple Listen-Before-Talk (LBT) mechanism [121] is preferred due

to its scalability and comparable throughput performances. In such systems, it is easy for

‘smart’ spectrum culprits to abuse the DSA-enabled system, owing to the application of machine

learning in cognitive radios [116, 87]. Consequently, SAS is expected to act as the ‘spectrum-

police’, proactively detecting spectrum misuse, guarding the rights of legitimate users, and

preserving forensics for further actions.

Therefore, SAS is both a premise to leverage spectrum efficiency in compliance to policy en-

forcement, and a proactive approach to catch the spectrum culprits. Such a system-level function
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of a DSA-enabled system is completed by spectrum monitors, who take advantage of spectrum

sensing, networking, and data processing techniques, to collect spectrum occupancy measure-

ments, and identify spectrum culprits based on collected data. In other words, a spectrum mon-

itor is logically composed of three building blocks: sensing hardware, measurement/detection

algorithm, and communication protocol. For a large-scale commercial DSA-enabled system,

e.g., a multi-operator LTE-WiFi overlay network in the 5 GHz unlicensed frequency bands de-

scribed in [121], it is necessary to include, and coordinate multiple monitors to provide reliable

and timely-updated SAS results.

5.1.2 Related Work

In this regard, existing literature on SAS can be broadly summarized into two categories: single-

monitor technique and multiple-monitor orchestration. The former develops prototypes [91, 84],

technique and algorithms [71, 132], for individual spectrum monitors, that can effectively dif-

ferentiate spectrum misuse or abnormalities from normal activities, e.g., statistical significance

testing [71], and the spectrum permit mechanism [132], for security enhancement and attack

mitigation. In contrast, the latter focuses on efficient deployment and cooperation of multiple

monitors for the purpose of better surveillance coverage [107], lower switching cost [56], or faster

detection of culprits [65]. To this end, spectrum occupancy measurement and interference map

construction with commercial dedicated monitors has been studied in [53], while the crowd-

source sensing/monitoring paradigm is proposed for cost and flexibility improvement, taking

advantage of collaboration [56] and distributed data decoding [37].

In prior studies of multiple monitor deployment strategies (e.g., [107, 56, 65]), an implicit

assumption is made for spectrum monitors to be sufficiently powerful, such that they can

watch over the entire geographical region of interest and tune/move without any limit. The

fact, however, is that most spectrum activities, including communications, attacks/jamming

and monitoring/sniffing, are local, i.e., confined in both the frequency domain and the space

domain during a fixed-length time interval, as noted in prototype design [91], and spectrum

occupancy measurements [53]. This discrepancy is especially pronounced in wide-band wide-

area monitoring, e.g., spectrum database or REM construction, which naturally leads to an

open question: how to perform an spectrum activity surveillance (SAS)) process and design

SAS strategies (with multiple monitors) for DSA-enabled systems?

5.1.3 Our Approach and Contributions

Hindered by the constraints on spectrum license and high deployment expenses, studying the

SAS problem via field tests is not a viable option, especially at the early stage when devel-

opment of prototypes [91, 84], as well as standardization for CR and DSA, are still underway.

Therefore, taking into consideration various monitor settings and SAS scenarios, we take a mod-

eling approach to study SAS processes from perspectives of surveillance coverage and culprit

detection. Seemingly trivial, the SAS problem is actually challenging in the following aspects.
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First, objectives of SAS, such as data collection and culprits detection, are by-and-large global

and collective, lacking a consolidated measure, through which a monitor deployment strategy

can be fairly evaluated. Second, if spectrum is considered as a 1-D domain, the surveillance

problem over a geographical region is naturally extended to a 3-D space, in which tracking

surveillance coverage and analysis are both non-trivial.

To address these challenges, we construct a spectra-location space that incorporates spectra,

temporal and geographical domains, in which the locality of spectrum activities are captured

by limited range and closed spaces. With respect to the modeling, design, and analysis of a SAS

process, our contributions can be summarized as follows:

We formally define monitoring power, switching cost, and switching capacity to characterize

monitors’ and culprits’ spectrum activities, and formulate the SAS process into a tractable graph

walk process with space-tessellation, such that a collective surveillance function are transformed

into localized (even distributed) actions of individual monitors.

We translate the qualitative data collection and culprit detection objectives of SAS processes

into two quantitative metrics in the time domain, i.e., the coverage time and detection time,

such that different SAS (monitors deployment) strategies can be evaluated, and fairly compared.

We present a deterministic SAS strategy with low switching cost for systems with dedicated

spectrum monitors, and randomized strategies specialized to protect against adversarial spec-

trum culprits, which is suitable for crowd-source surveillance scenarios. Despite the switching

capacity limit, randomized strategies of m monitors can achieve a full sweep coverage over a

spectra-location space of n assignment points in Θ( nm lnn) time, and detect a persistent or

adversarial culprit in Θ( nm) time.

5.2 Problem Formulation

In this section, we formally define the spectra-location space, spectrum activities and perfor-

mance metrics to formulate the SAS problem.

5.2.1 System Model

Let time t proceed in discrete steps, i.e., t ∈ T = {1, 2, · · · }. Consider a DSA-enabled system

deployed in a geographical region A ⊂ R2. The spectrum of interest, S, refers to the spectrum

blocks that are shared1 among K radio access technologies {RATi}Ki=1 allowed in this system.

5.2.1.1 Spectra of Interest S

Each RATi has a licensed band LBi exclusively reserved for authorized RATi users, and an

unlicensed band UBi to be shared with users accessing via other RAT’s. Each LBi or UBi can be

1There are two spectrum-sharing scopes for a DSA-enabled system: the inter-technology DSA, which only
shares the unlicensed spectrum bands [26], and the spectrum commons, in which licensed bands are also included,
and each device has equal spectrum access right on a cost basis [121]. Both scopes can be described by our model.
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Figure 5.1 An example of the spectra block S in sub-6GHz frequency bands.

viewed as an interval identified by the lowest and highest frequency as its endpoints (or a union

of such intervals), then the union of all licensed and unlicensed bands, S := ∪Ki=1{LBi ∪ UBi},
is the target of a SAS process in a DSA-enabled system.

An example of spectral block is shown in Figure 5.1, where K = 3 RAT’s are allowed in the

system: cellular (LTE/5g, RAT1), IEEE 802.11 (WiFi, RAT2), and IEEE 802.15 (Bluetooth,

RAT3). Among these, RAT1 has the licensed 5G New Radio (5G NR) FR1 bands [3] to itself,

as indicated by LB1, while its unlicensed U-NII bands UB1 are shared with RAT2, on which

licensed-assisted LTE access co-exists with WiFi access [121, 26]. Meanwhile, the unlicensed

ISM bands UB3 are shared by RAT2 and RAT3. The spectra of interest S = ∪3
i=1Si is their

union.

Without loss of generality2, we write S as interval [sL, sH ] ⊂ R, and further divide it into

d sH−sL∆f e spectrum slices of width ∆f , which is determined by:

(1) Channel bandwidth of {RATi}Ki=1. There may not be a unified channel access scheme on

S when K > 1. For instance, the U-NII bands can be accessed through LTE and WiFi. Under

the former, the standard channel bandwidth are 1.4, 3, 5, 10, 15, and 20 MHz, while under the

latter, the channel bandwidth ranges from 10 to 160 MHz. Further, an LTE channel is divided

into resource blocks (180 KHz) that contain 12 sub-carriers, while each IEEE 802.11n channel

(20 MHz) contains 52 sub-carriers that is of 312.5 KHz wide. Therefore, we choose the slice

width ∆f as a common divisor of all the channel bandwidths allowed by the K RAT’s, such

that a channel under each RATi contains ki spectrum slices, where ki ∈ N+ is a positive integer.

2Spectra block S in an wireless overlay system may not form one single continuous interval, rather, it is the
union of several non-overlapping continuous intervals, i.e., S = S1 ∪ S2 ∪ · · · . We focus on one of those intervals
in this chapter, for the simplicity of notation and understanding.
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(2) Resolution bandwidth of monitoring devices. Due to the different sampling rates of com-

mercial/prototype monitoring hardware, e.g., 10 MS/s for USRP E310, and 2.4 MS/s for the

low-cost SDR prototype designed in [91], resolution bandwidth of spectrum monitors are sub-

ject to various limits. Typically, it is set to be 1% to 3% of the channel bandwidth [1, 53] for

observable results, but it is also required to be greater than 1 KHz to avoid overloading [1].

Based on these, a spectrum slice of width ∆f will be used as the smallest3 unit of spectrum

trunk to be associated with an access specification and a time-varying observable state.

For each spectrum slice, an access specifications states the legitimate way to access this

slice, including allowed RAT, maximum transmitting power, maximum aggregated channel

bandwidth, register/authentication procedure, and so on. For example, an 1 KHz slice in the

5G NR FR1 (LB1 in Figure 5.1) can only be accessed through LTE/5G, with transmission

settings specified in 3GPP technical specifications, e.g., [3]. In this way, spectra block S is a

database with d sH−sL∆f e items, against which monitors checks activities on each slice.

The state of a spectrum slice i ∈ [1, d sH−sL∆f e] (frequency range [sL + (i− 1)∆f, sL + i∆f))

is the result of spectrum activities on this particular slice. Slice i is:

(1) Idle, when it is not occupied by any user in the current time step, e.g., the white slice

i = 4 and slice i = 5 in time step t = 1 in Figure 5.2.

(2) Rightfully occupied, if it is accessed by a device obeying the access specification of this

slice. For instance, the blue slices {17, 18} are rightfully occupied by an authenticated primary

user (PU) at time t = 2; the green slice 8 and slices {12, 13} (with 4 marker) are accessed by

authorized secondary user (SU) at time t = 1.

(3) Illegitimately occupied, if the occupant does not comply with the access specification of

slice i. For instance, the purple slices {11, 14} are beyond the designated bands of the aggressive

PU at time t = 3; the red slices (with restriction sign) are used by an unauthorized SU during

t = 1 to t = 3; the yellow slices [1, 6] are jammed by an attacker emitting a high-power signal at

t = 2. We refer to these illegitimate occupants as spectrum culprits, to be detected by monitors.

Rightful or illegitimate, all aforementioned spectrum activities take place in a 3-D space

that spans over both the spectrum domain and the geographical domain.

5.2.1.2 The Spectra-location Space X

Consider the monitoring process of 1-D spectrum S over a closed 2-D geographical region

A ⊂ R2. Together, they compose a 3-D product space S ×A, referred to as the spectra-location

space X. Then for any point x ∈ X, there exist projection maps pA : X → A and pS : X → S
that identify the frequency and location of any point x ∈ X respectively. In the product space

X, the spectra-location distance dSA between point xi and point xj ∈ X is defined as the

product metric induced by the Euclidean distance metrics in the spectrum domain S and the

3Note that ∆f is not the frequency range that can be scanned by a monitor during a time step. For example,
in Figure 5.2 a monitor (red/blue box) can determine the states of 4 spectrum slices.
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Figure 5.2 Two spectrum monitors M1 and M2 watch over spectrum block S = [sL, sH ].

space domain A, that is,

dSA(xi, xj) := ||dS (pS(xi), pS(xj)) ,
1

ε
dA (pA(xi), pA(xj)) ||2, (5.1)

where || · ||p is the p norm, and ε > 0 is a scaling coefficient so that distance dA and distance ds

are quantitatively comparable 4.

In this sense, the example illustrated in Figure 5.2 is a special case when region A shrinks

to a point {a}, such that merely the spectrum domain S needs to be taken into consideration.

But still, any monitor can scan, examine and/or record the spectrum activities that take place

in a ‘box’ of four spectrum slices, as a result of which the unauthorized SU is not detected until

time t = 3. When the space domain A is sufficiently large, spectrum slices are annotated with

locations, due to possible frequency re-use, and a spectrum activity is only observable within

the sensing/detection range [53] of a monitor in both spectrum domain S and geographical

space domain A, as described in the following surveillance model.

5.2.1.3 Surveillance Model

Denote M = {M1,M2, · · · ,Mm} as the set of m monitors in the system. For a single monitor,

it can only determine the states of adjacent slices [53] during a time step, as illustrated by

the boxes in Figure 5.2. Moreover, due to the attenuation of wireless signal over distance, such

constraint also exists in the space domain A. As a result, the capability of a monitor to observe

spectrum activities is restricted to a closed space, defined as the monitoring power.

Definition 5.1. For a monitor M ∈ M assigned at location atM ∈ A and center frequency

stM ∈ S at time t, the monitoring power of monitor M is defined as a δ-ball centered at

4By comparable, we mean their impacts on monitoring strategy design, e.g., easiness to relocate, energy or
time consumption, are on the same order in quantity.
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(b) Instantaneous coverage and sweep coverage.

Figure 5.3 Monitoring power, switching, and strategy coverage in spectra-location space X = S ×A.

stM × atM ∈ X, that is,

Ballδ(s
t
M × atM ) := {x ∈ X|dSA(stM × atM , x) ≤ δ}, (5.2)

inside which spectrum activities (rightful/illegitimate occupancy) can be identified by monitor

M with probability q.

In this definition, Parameter δ and q capture the locality and the probabilistic nature of

spectrum monitoring activities, respectively. For a spectrum monitor, these two parameters are

determined by hardware performances, including sensitivity, noise floor, input range etc. and

the detection algorithm. By fine-tuning function q(·), radius δ, and parameter ε in Eq. (5.1), a

variety of monitoring techniques can be depicted by this δ-ball model.

The closed δ-ball describes the surveillance range of a single monitor, as illustrated in Figure

5.3a. This ball shape comes from the hardware constraint on sampling rates [137, 91]. To be

more specific, the number of samples that a monitor can collect per unit time is limited [53],

and these samples can either be employed to cover either a larger bandwidth (large dS) with a

lower sensitivity, or a narrower bandwidth with a higher sensitivity. For instance, in the most

commonly-used energy detection method [71, 91], lower sensitivity translates to a higher power

threshold, resulting in a reduced detecting range in geographical domain, i.e., small dA. In other

words, for a set of monitoring hardware and a fixed time interval, large dS and large dA can

not be achieved simultaneously, hence the closed ball shape.

Function q : R→ [0, 1] quantifies the reliability of monitoring results within the monitoring

power, or equivalently the detection probability5 of spectrum culprits. It has the following

properties: i) q is a surjective; ii) q is non-decreasing in R; and iii) we can define its inversion q−1 :

5For any given radius δ, it is always more probable to determine whether a spectrum slice at a location
is occupied or not (qc(δ)), than determining whether the occupancy is legit (qc(δ)). Consequently, qc(δ) for
occupancy measurement is greater than or equal to that for culprit detection qd(δ). We set δ = max{δ >
0 | qc(δ) = 1}, and q = qd(δ), such that occupancy measurement is accurate while culprit detection is probabilistic.
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[0, 1]→ R as q−1(y) := supx>0{q(x) = y}, so for any required reliability y ∈ [0, 1], there exists a

critical radius δ∗ = q−1(y), above which the detection results are not acceptable. Consequently,

if a point x ∈ X is covered by the q(δ)-monitoring power of n monitors, illegitimate occupancy

at this point can be detected with a higher probability, 1− [1− q(δ)]n.

In the remaining of this chapter, radius δ in our model refers to δ∗ = q−1(1) that can

guarantee a fully reliable detection result, if q is not explicitly specified.

5.2.1.4 Exploit Model

Recall a spectrum culprit at time t is the occupant of a spectrum slice that does not comply

with the access specifications, as exemplified in Figure 5.2. Consider a spectrum culprit R ∈ R
located at aR ∈ A, who illegitimately occupies one or multiple spectrum slices, denote as

SR ⊂ S, at time t. Culprit R leaves a ‘mark’ Rt = SR × aR ⊂ X. The wider SR is, the larger

the ‘mark’, and the more detectable R becomes. For analysis reasons, we consider spectrum

culprits that are most difficult to detect as the worst-case scenario, that is, SR shrinks to a

point {sR} ∈ S, such that we can write Rt ∈ X; we also assume that, throughout time T ,

culprits stays in the system and continues its spectrum exploit6.

Then over time T , the exploit marks of culprit R constitute an exploit sequence {Rt}t∈T .

The detailed exploit pattern of spectrum culprits, i.e., how a spectrum culprit R ∈ R assigns

its exploit sequence, can be either oblivious or adversarial, depending on its learning capability,

and will be discussed later in details. At any time t, culprit R is considered to be detectable

with probability at least q(δ), if the exploit mark Rt overlaps with the monitoring power of

some monitors, i.e., ∃Mi ∈M such that Rt ∩Ballδ(ft(Mi)) 6= φ.

5.2.1.5 Switching Model

Despite their different roles in the DSA-enabled system, normal users (denoted as U), spectrum

culprits (R), and monitors (M), are all wireless devices capable of moving and tuning. Both

actions will result in a relocation of devices in the spectra-location space X, which we refer to

as a switching swYt of device Y ∈ U ∪M ∪ R, that is, a move of Y from point Yt−1 ∈ X to

point Yt ∈ X. For example, in Figure 5.3a, the switching swMt corresponds to the relocation

and tuning of monitor M between t− 1 and t, hence the change of its monitoring power (from

the blue ball to the red ball). As opposed to the assumption in [91, 65], this common switching

action is also constrained in X, due to the induced cost in the form of time, energy, budget,

and so on, which is a design concern for SAS process in some scenarios. Therefore, we define

the switching capacity to capture this constraint in space X.

6In reality, it is possible that a culprit occasionally misuse some spectrum slices, or even leave the system
indefinitely after such exploit. To quantify the performance of a SAS system based on its ability to catch these
culprits would not be objective, or fair, as it depends on the culprits’ spontaneous behavior. Therefore, we assume
culprits stays in the system across T . On the other hand, whenever a culprit’s misconduct is recorded for the
first time, some attributes, e.g., spectrum fingerprint [12], can be subtracted and distributed to all monitors,
such that a match can be found even if the culprit has been accessing the spectrum legitimately ever since.
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Definition 5.2. Let Yt ∈ X denote the location (in space X) of device Y at time t, the

Switching Capacity αY of Y is defined as the maximum distance in X, that device Y can

switch over by one action in a time step, that is,

αY := sup
t∈T
{dSA (Yt, Yt+1)} . (5.3)

Device Y is referred to as an αY -monitor or αY -culprit.

The switching capacity limit can take different values in different SAS scenarios. For a dedi-

cated (physical) monitor, such as specialty monitoring hardware mounted on a drone or vehicle,

a switching action is composed of physical movement and/or tuning. Consequently strategy de-

sign is restricted by a quantitative switching cost, including time, energy, budget etc, which is a

function of the switching distances dSA(·, ·). On the contrary, switching actions in a crowd-source

scenario are merely changes of surrogate (logical) monitors, which are wireless devices that are

capable of and willing to monitor the spectrum activities for the system. Consequently, if im-

mediate communication among participants is guaranteed, or there exists a central controller

capable of timely coordination, switching will not be constrained, i.e., αM =∞; otherwise for

the case of distributed control, which relies on local wireless communication, switching may not

not possible beyond the communication range of participating devices. Designing SAS strategies

for these two scenarios are discussed in Section 5.4 and Section 5.5, respectively.

5.2.2 Performance Metrics and Strategy Design Problem for SAS

To formulate the SAS strategy design problem, we first need to formally design a strategy with

respect to the m monitors. At the beginning of time step t, each monitor Mi ∈ M is assigned

to a spectra-location point fmt (Mi) ∈ X, through an assignment map fmt :M→ Xm, e.g., f1

and f2 in Figure 5.3a. Allowing time t to proceed in T , assignment points of the m monitors

constitute a strategy.

Definition 5.3. (Strategy7 fmt A strategy {fmt }t≤T is a sequence of assignments during time

interval [1, T ] ⊂ T , subject to the switching capacity constraints {αMi}Mi∈M. During time step

t, monitors in set M can scan C(fmt ) =
⋃
Mi∈MBallδ (fmt (Mi)) en masse, which is referred

to the (surveillance) coverage of assignment fmt . Sweep-coverage of a strategy C(f) is then the

union of sequence {C(fmt )}t∈[1,T ].

Recall the two objectives of a SAS process, that is, spectrum occupancy measurement and

culprit detection. The former urges for a quick sweep-scan of the entire spectra-location space

X, i.e., minimizing the time needed to satisfy the coverage goal X ⊂ C(f), such that spectrum

(occupancy) status can be timely recorded and updated to users. The latter requires effective

7Superscript m in fmt denotes the number of monitors, while subscript t denotes time. A second subscript
may be added to differentiate strategy types, e.g., fmS,t for deterministic strategy. Any of the three denotations
(number of monitors, time and type) may be omitted, when no confusion is raised.
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detection of spectrum culprits, such that the time that an undetected culprit illegitimately

occupies spectrum slices can be reduced. For instance, in the special case scenario (X = S×{a})
illustrated in Figure 5.2, the entire X is sweep-covered at t = 3, and the unauthorized SU

(culprit) exploited the system for two time steps before its detection at t = 3. In other words,

the efficacy of a strategy can be quantitatively evaluated and fairly compared through the

following two temporal metrics, with respective to the coverage and detection goals.

Definition 5.4. Under strategy {fmt }t∈T , the coverage time Tmf is defined as the first time

that its sweep-coverage CT (fm) contains every point in space X = S ×A, that is,

Tmf := min{T ∈ T | x ∈ CT (fm), ∀x ∈ X}. (5.4)

The detection time τR(fm) of a culprit R with exploit sequence {R(t)}t∈T , is defined as the

first time that culprit R can be identified by any of the m monitors, that is,

τR(fm) := min{t ∈ T |

[
m∑
i=1

1Rt∈Ballδ(fmt (Mi))Di

]
≥ 1}, (5.5)

where detection outcome Di is a Bernoulli r.v. with mean q.

Particularly for δ = δ∗, when monitoring (detection) result is fully reliable, i.e. q(δ∗) = 1,

the detection time can be further simplified to

τR(fm) := min{t ≥ 1 | R(t) ∈ C(fmt )}. (5.6)

With the proposed model, this chapter studies the SAS process for a set ofm αM -monitors

to achieve the sweep-coverage and culprit detection goals in the spectra-location space X.

Specifically, we intend to design strategies {fmt }t∈T ∈ {Xm}T for dedicated and crowd-source

SAS scenarios respectively, and examine their efficacy by answering the following questions:

• What is the the coverage time Tf of the designed strategy fm, by which time spectra-

location space X is sweep-covered, i.e., X ⊂ C(fm)?

• Under strategy f , what is the detection time τR(fm) of a spectrum culprit R ∈ R with

the exploit sequence {Rt}t∈[1,T ]?

5.3 A Two-step Solution

Designing an SAS strategy {fmt }t∈T ∈ {Xm}T is equivalent to finding a sequence of assignment

points in the spectra-location space X for every monitor M ∈ M, at every time instant t,

subjecting to the switching capacity constraint αM . There are two major challenges in this

process: First, for every time t, the solution space Xm is of infinite size, which hinders both the

analysis-based approach and the search-based experiment approach. Second, switching actions
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of monitors, i.e., the tuning (a move in the spectrum domain S) and/or relocation (a move in

the geographical space domain A), can also be constrained by the accompanied cost.

To overcome these challenges, we propose a two-step solution: first, the continuous strategy

space {Xm}T is reduced to a discrete and finite space {V m}T through space-tessellation; then

any surveillance strategy is formulated as a walk on the graph, whose edges illustrate possible

switching actions of monitors. In this way, SAS as a global activity is transformed into a chain

of individual actions, i.e., switching (walking) of monitors and culprits, such that design of SAS

strategies becomes tractable in both dedicated and crowd-source scenarios.

5.3.1 Space Tessellation: Reducing the Solution Space

Driven by the sweep-coverage and culprit detection objectives, the assignment points of monitors

{ft(M)}t∈[1,Tf ] of a good SAS strategy should have the following properties:

(1) Least points. To timely update the spectrum occupancy data, monitors are expected

to sweep-scan the entire spectra-location space X as quickly as possible, which translate to

achieving the coverage goal X ⊂ ∪Tft=1C(ft) with as few (m ∗ Tf ) assignment points as possible.

(2) Minimal overlapping. To quickly detect culprits, every assignment ft is expected to

cover as much non-overlapping space (large C(ft)) as possible, which translates to a minimal

overlapping of monitoring powers during every assignment8.

These requirements can be jointly satisfied if the continuous space X is divided into a min-

imum number of non-overlapping cells, each covered/contained by a δ-ball, i.e. the monitoring

power of a monitor, and every assignment map ft takes value from the set V of cell centers,

instead of the entire X. In this way, the first step becomes a tessellation problem of space X.

5.3.1.1 Solution to the Space-Tessellation Problem

Space tessellation, or honeycomb, in the 3-D space X, refers to the close packing of 3-D cells

without overlaps or gaps. So the objective of the tessellation problem is to find the best form

of cells, which can jointly cover a fixed X with the least cells.

A cell in the tessellation can be regarded as the non-overlapping part of a δ-ball (monitoring

power), and comes in various forms in the solution to this classic problem, e.g., cube, hexagon-

prism, tetrahedra, etc. The higher volume-efficiency ρ of a cell, that is, the volume ratio of

the cell over its insubscribed δ-ball, the more efficient the form of the cell, due to the less

overlap between adjacent monitoring power (δ-balls). It would be ideal to fully utilize δ-balls

to fill the space. However, direct packing of solid balls always leaves gaps, i.e., spectrum holes

in the sweep-coverage, which can be eliminated by pushing the ‘elastic’ balls into each other.

Meanwhile each ‘squeezed’ balls (the resulting cells) should be inscribed to a δ-ball, i.e. the

maximum distance of any two points on the cell surface is required to be smaller than 2δ.

8Though overlapping monitoring power permits a higher detection probability inside the δ-ball than that of
a single one, it is not necessary when the detection probability q is sufficiently high.

9Constant b =
√

|S|2
4δ2−|S|2 for the hexagon-prism cell.
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Table 5.1 Volume efficiency of different cell forms discussed in this chapter.

Cell Form Volume Efficiency ρ Iso. Quotient9 Size n = |V |

Cube ≥ 2√
3π
' 0.368 1

216 d
√

3|S|
2δ e · d

3|A|
8(εδ)2

e
Hexagon-prism ≥ 3

√
3

2 α
√

(1− α2) ≤ 0.585 3
√

3b
2(3
√

3+12b)3
2|A|

3
√

3(1−α2)(εδ)2
e

Truncated octahedron ≥ 24
5
√

5π
' 0.683 0.757 d5

√
5|S||A|

16ε2δ3
e

(a) A truncated octahe-
dron centerd at c.

(b) Top view of the cell. (c) Arrangement of cells. (d) Cell centers in the Kelvin
structure.

Figure 5.4 The discrete assignment space V is composed of cell centers of the Kelvin structure, in
the form of ‘full’ (black) and ‘middle’ (red) layers.

The space tessellation problem is closely related to the Kelvin problem [117], which aims to

find the most efficient bubble wrap form to fill a space with the least surface area. In the Kelvin

problem, efficiency is quantified by the isoperimetric quotient [125], and the ball shape (as the

monitor power in our model) has the highest isoperimetric quotient value of 1. Therefore, the

most efficient cell form in the tessellation problem is the one that has the highest isoperimetric

quotient. In this sense, the best solution for wide (large |S|) spectrum is the Kelvin structure

(with isoperimetic quotient value 0.757), whose cells are truncated octahedrons (Figure 5.4a-b),

arranged in a layered manner (Figure 5.4c-d). The truncated octahedron cell has the highest

volume-efficiency ρ compared to other forms, as shown in Table 5.1. Centers of these cells

correspond to assignment points composing the discrete and finite assignment space V , whose

size n = |V | can be obtained from the following proposition 5.1.

Proposition 5.1. When the spectrum block S is narrow (|S| = 2αδ, 0 < α << 1), the size of

the assignment space n = |V | can be determined by tessellation with hexagon-prism cells, i.e.,

nhex = d 2A

3
√

3(1− α2)(εδ)2
e, (5.7)

where A denotes the area of region A, δ corresponds to the monitoring power and ε is the scaling

coefficient in Eq. (5.1). Otherwise, size n is achieved by tessellation with truncated octahedron

(Kelvin structure) cells, and

no ≥ d
5
√

5|S|A
16ε2δ3

e. (5.8)
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Further, if the geographical region A is rectangular,

no ≥ d
√

5|S|
4δ
e · d5A+ 2

√
5Aδ(3− 2ε) + 4δ2(1− ε)2

8(εδ)2
e, (5.9)

where e = 2√
10
δ is the edge length of cells.

Proof. As shown in Figure 5.5, the narrow spectrum block, i.e., |S| = 2αδ, implies that one

layer of δ-balls is enough to cover the entire spectrum S, if all of the monitor radios are tuned to

the center frequency s = smax+smin
2 . At sL and sH , each δ-ball creates a disk print with radius

r on the surface of X, as shown in blue shade in Figure 5.5. Then the 3-D tessellation problem

becomes the coverage of a planar area A with disks of radius r =
√

(1− α2)δ, as illustrated in

the right of Figure 5.5. The effective non-overlapping part (a cell) is a hexagonal prism.

Figure 5.5 Tessellation of X with hexagonal prism when spectrum range is narrow.

To cover area A with the least overlap among disks, the disks should be arranged according

to the hexagonal tessellation, with each hexagon inscribed to a circle, as in Figure 5.5 right.

The edge length of any hexagon r =
√

(1− α2)δ. Bound on the number of assignment points

nhex in Eq. (5.7) follows from hexagonal geometry. Also, the coverage of the boundary points

(the top and bottom surface) are guaranteed.

For broader spectrum S, the best known 3-d tessellation form is the Weaire-Phelan structure[125],

which has two types of cells with the same isoperimetic quotient value 0.764. However, the ar-

rangement of two types of cells make it more difficult to design monitor assignment strategies.

Therefore, we adopt the sub-optimal Kelvin structure, whose cell is a truncated octahedron

with isoperimetic quotient value 0.75710, as shown in Figure 5.4a. Each cell is a polyhydron

with six square faces and eight hexagonal faces, both with edge length e. The center of each

cell coincide with the center c of its outscribed δ-ball, so its largest cross section through the

center c is an octagon with edge length p
√

2e.

Since e = 2√
10
δ, the volume efficiency ρoct = 24

5
√

5π
' 0.683, much higher than the hexagon

prism cell and the cubic cell, as listed in Table 5.1. To form a 3-d tessellation, the arrangement

pattern of cells is body-centered cubic, as shown in Figure 5.4c-d. Then lower bound of n in

10The Kelvin structure is allowed to have curved surfaces to have a smaller surface area, which is not necessary
in our case.

121



Eq.(5.8) can be obtained by

no ≥
|S||A|
ε2Voo

= d5
√

5|S|A
16ε2δ3

e.

A tighter bound can be found if A is a rectangular region. Suppose the length of A is l, and

the width is w. The number of “full” layers (blue shade in Fig 5.4 right) is

Lfull = d |S|
2h

+ 1e = d
√

5|S|
4δ
e+ 1, (5.10)

and the number of “middle” layers (red shade in Fig 5.4 right) is Lmid = Lfull − 1. For the

coverage of region A, the number of cells in a “full” layer can be lower bounded by

Nfull = d l +
√

2e

2h · ε
e · dw +

√
2e

2h · ε
e ≥ d5A+ 4

√
5Aδ + 4δ2

16(εδ)2
e. (5.11)

And the number of cells in a middle layers can be lower bounded by

Nmid = d l +
√

2e

2h · ε
− 1e · dw +

√
2e

2h · ε
− 1e ≥ d5A+ 8(1− ε)

√
5Aδ + 4δ2(1− 4ε)

16(εδ)2
e+ 1. (5.12)

Then the total number of truncated octahedron cells needed is

no = LfullNfull + LmidNmid, (5.13)

which yields the tighter bound Eq.(5.9) with some manipulations.

By space-tessellation, sweep-coverage of X is guaranteed as long as the assignment maps

{ft}t are jointly surjective on the finite assignment space V of cell centers. In other words, it is

sufficient for monitors (M) to switch among assignment points in V , which greatly reduces the

size of the solution space (from ∞ to |V |m) for every time step. For the ease of notation and

discussion, we can also restrict the range of exploit points to V , because any point x in X can

be uniquely mapped to a cell with its center vx in V , and the probability of a spectrum culprit

R ∈ R being detected at Rt ∈ X is the same as that at Rt = vx.

5.3.1.2 Exploit Patterns of Culprits in Assignment Space V

After the preparation of setting up the assignment space V , we categorize the exploit patterns

of spectrum culprits in this context, i.e., how a spectrum culprit R ∈ R determines its exploit

point Rt ∈ V for the next time step, with respect to its learning capabilities.

Definition 5.5. A persistent culprit Rp ∈ R refers to a spectrum culprit, whose exploit

sequence {Rt}t does not change over time, that is, {Rt}t is composed of i.i.d. r.v.’s Rpt , all

distributed with PMF gRp(v), where v is an assignment point in V .

Persistent culprit Rp can describe a variety of exploiting strategies with different PMF

gRp(v). For instance, as shown in Table 5.2, Rs is a stationary culprit that can only access a
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selective range of frequencies; Rsd corresponds to a DSA-enabled stationary culprit; and Rmd

is a mobile DSA-enabled culprit that can move in region A.

Table 5.2 Three types of persistent spectrum culprits.

Type Culprit Description PMF gR∗(·) Detection Time11

Rs stationary, fix-frequency gRs(v) = 1vs(v), ∀v ∈ V E (τs(fS)) = Ts
2

Rsd stationary, DSA-enabled gRs(v) =

{
1
|Vsd| , if v ∈ Vsd,
0, otherwise.

E (τsd(fS)) ≤ n
m ' Ts

Rmd mobile, DSA-enabled gRmd(v) = 1
n , ∀v ∈ V E (τmd(fS)) = n

m ' Ts

As opposed to oblivious persistent culprits, machine learning-assisted RAT [116, 87] allows

sophisticated culprits to steer the game toward their benefit, by actively dodging monitors [65].

The intuition behind adversarial culprits is that, once a SAS strategy is known12 by a culprit

Ra, Ra can then switch to points that are less probable to be monitored in the next time step.

Definition 5.6. An adversarial culprit Ra ∈ R is a spectrum culprit with prior knowledge

of current strategy {fmt }t∈T , that is, Ra knows the set of probabilities {v ∈ ∪Mif
m
t (Mi)}v∈V

ahead of time t, and determines its current exploit point Rat with PMF gtRa(v) = 1
|Void(t)| for

point v ∈ Void(t), where Void(t) = arg minv∈V P
(
v ∈

⋃
Mi∈M ft(Mi)

)
is the ‘spectrum hole’

that is least likely to be monitored at t.

Note there is no switching constraint in Definition 5.5 and Definition 5.6, which describe the

most powerful culprits in terms of switching, i.e., αR = ∞. As discussed before for monitors,

it is possible that culprit R has αR < ∞, such that the range of Rt+1 will be restricted to a

smaller subset N(Rt) = {v ∈ V | dSA(v,Rt) ≤ αR} of V , with the selecting probability of a

point v ∈ N(Rt) recalculated as P(Nt+1 = v) = gR(v)∑
u∈N(Rt)

gR(u) . However, it is still unclear how

range and rate of switching affects the performance of a SAS strategy, which will be addressed

in the next subsection, to better formulate the strategy design problem.

5.3.2 Graph Walk: A Chain of Switching Actions

Over the discrete time span T , any SAS process is now a chain of switching actions in the

assignment space V . Recall that a switching swYt is a relocation (tuning in S and/or movement

11The expected detection time of the persistent culprits, including quantity Ts, are discussed in Section 5.4.2.1.
12We consider the most powerful culprit (with full knowledge of a strategy) as an extreme case to examine

the performance of an SAS system against compromised strategies. In other cases, a weaker culprit can at least
observe the long-term visiting probability of any point v ∈ V as prior knowledge. On the other hand, SAS
strategies are required to be disclosed for transparency, such as a crowd-source SAS scenario, which increases
the risk of a strategy being leaked to culprits.
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in A) of a device Y ∈ M ∪ R (monitor or culprit13) from time t − 1 to t, whose range is

upper-bounded by the switching capacity αY . Next, we discuss switching actions from range

(how far) and time (how quick) aspects, to formulate the surveillance process into a graph walk.

5.3.2.1 Range Aspect (Switching Capacity)

The switching range refers to the maximum spectra-location distance dSA over which one switch-

ing action is possible. As discussed before, switching actions of dedicated monitors are completed

via physical movements and/or tuning of individual monitors, so the switching cost scales with

spectra-location distance dSA. For this case, we need a quantitative metric to accurately mea-

sure the switching cost for strategy design, which is addressed in Section 5.4, where a low

switching-cost monitoring strategy is proposed for dedicated monitors.

On the other hand, switching in a crowd-source monitoring scenario is a change of surrogate

monitors, that is, wireless devices (spontaneously) participating in the SAS process. In this case,

the switching cost may not scale with the spectra-location distance. Instead, a switching between

any two assignment points vx and vy ∈ V , can either be possible with a fixed amount of cost (e.g.,

time and coordination budget), or impossible during one time step. To be more specific, when

immediate communication is guaranteed among all participants, a ‘handover’ between any two

monitoring surrogates will be possible in one time step, i.e., αM =∞; otherwise for distributed

crowd-source monitoring that relies on short-range wireless communication to coordinate, any

switching action is only possible between two monitors within their communication ranges,

i.e., αM < ∞. For crowd-source monitoring scenarios under unlimited (αM = ∞) and limited

(αM <∞), strategy design is discussed in Section 5.5 and Section 5.6, respectively.

5.3.2.2 Time Aspect (Switching Rates)

In addition to switching range, the rate of switching, that is, how many switching actions can

be conducted in one time step, is also limited by the hardware constraint. Intuitively, a faster-

switching culprit will be more difficult to catch, due to the shorter time that the culprit remains

in the monitoring power of any monitors. Counter-intuitively, as we will show in Lemma 5.1,

such culprits will be detected in an even shorter period of time.

In Lemma 5.1, consider spectrum monitors with q(δ)-monitoring power, that is, when a

culprit shows up in the cell assigned to a monitor (referred to as co-location), the probability

that it is detected by that monitor during one time step is q. Let q · p(s) (s ∈ [0, 1]) denote

the detecting probability when the co-location time s is less than one full time step, where the

non-decreasing function 0 ≤ p(s) ≤ 1 captures the attenuated detection probability due to the

decreased co-location time, and has the property of p(0) = 0, p(1) = q.

13Normal users in U can also switch, but their switching actions do not have any impact on the performance
of SAS strategies, only the outcome, and are hence not listed here.
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Lemma 5.1. Suppose culprit R1 differs from R2 in only the switching rate: R1 can switch

k ∈ N+ times during one time step, while R2 and monitors can switch once. The detection time

of R1 is stochastically dominated by that of R2, that is, for any strategy f ,

τR1(f)
d
≤ τR2(f), (5.14)

when the following criterion is satisfied:

p(
1

k
) ≥

1− [1− q · P
(
R2(t) ∈ C(fmt )

)
]
1
k

q · P
(
R2(t) ∈ C(fmt )

) . (5.15)

Proof. Without loss of generality, suppose the strategy f is carried out by one monitor M . Eq.

(5.14) holds trivially for a deterministic strategy fS , when both R1 and R2 are adversarial,

because every next to visit assignment point is known by an adversarial culprit. In fact, the

detection time τR1(fS) = τR2(fS) = ∞, which is referred to as the ‘wandering hole’ problem

analyzed in at the end of Section 5.4.

Next we consider the case of f being a randomized strategy, in which the next assignment

point is chosen randomly, or R1 and R2 being persistent culprits. During a time step t, R1

generates an exploit sequence {R1
1(t), R1

2(t), · · · , R1
k(t)}, and R2 switches to R2(t), while monitor

M stays at a fixed assignment point ft(M) ∈ V . The probability that R2 is detected during t

is Q2 = q(1 − P
(
R2(t) 6= ft(m)

)
), while for R1, the probability of being identified by monitor

M is

Q1 = 1−Πk
i=1

(
1− qp( 1

k
)P
(
R1
i (t) = ft(m)

))
. (5.16)

Given that R1 and R2 only differ in switching rates, that is, P
(
R1
i (t) = v

)
= P

(
R2(t) = v

)
, for

any v ∈ V and i ∈ {1, 2, · · · , k}, the probability Q1 = 1 − (1 − p( 1
k )Q2)k. When the condition

in Eq. (5.15) holds, we have Q1 ≥ Q2, which means that R1 is more probable to be detected

during any given time step t. Equivalently, the complementary CDF (CCDF) of detection time

R1(f) and R2(f) satisfy P(τR1(f) > l) ≤ P(τR2(f) > l), for any integer l ≥ 1.

The condition in Eq. (5.15) easily holds when probability P
(
R2(t) ∈ C(fmt )

)
is small, i.e.,

when the size of the assignment space |V | is large enough, such that it is difficult for a culprit

to co-locate with any monitor in a single time step. Otherwise, when the assignment space V

contains few assignment points, though catching the faster culprit R1 takes more time than the

slower one, the expected detection time can be derived as E(τR1) = 1
kq·p( 1

k
)P(R2∈C(fmt ))

, which

will not be large, if the attenuation function satisfies p( 1
k ) ≥ 1

k . Consequently, the difference

between the detection time of R1 and R2 will be small. Based on this observation, it is reasonable

to assume both culprits and monitors switch once in every time step for the rest of this chapter.

5.3.2.3 A Graph Walk on Composite Graph (GM , GR)

Accounting switching capacity, the assignment space V is more than a set of points, rather, a

subspace that inherits dSA metric from space X. Together with the space-tessellation procedure,
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(a) An example of culprit detection process by
monitors M1 and M2 (blue dots).

(b) Monitoring (green) and exploiting (orange) sub-
graphs for the simulation scenario in Figure 5.14b.

Figure 5.6 Examples of composite graph (GM , GR), illustrating the case of weaker (smaller αM )
monitors v.s. the more powerful (larger αR) culprit.

the subspace gives rise to a structure that incorporates the possibility of switching actions, i.e.,

a composite graph, which consists of:

(1) Monitoring subgraph GM = (V,EM ), in which an edge (u, v) ∈ EM exists, if and only if

dSA(u, v) ≤ αM . Then, an arbitrary strategy {fmt }t∈T can be seen as a joint walk by m = |M|
monitors on the monitoring subgraph GM .

(2) Exploiting subgraph GR = (V,ER), in which an edge (u, v) ∈ EM exists, if and only if

dSA(u, v) ≤ αR of the culprit. Then, the exploiting sequence {Rt}t of R, which contains the

assignment points exploited by culprit R, also corresponds to visited vertices of a walk on the

exploiting subgraph GR = (V,ER).

Graph GR and GM have the same vertex set V , and are both sub-graphs of Kn, i.e., the

complete graph with n = |V | vertices, which corresponds to SAS scenario of unlimited switching

capacities (αM = αR = ∞). The SAS process, particularly culprit detection, then becomes a

graph walk on the composite graph G = (GM , GR), in which culprit R is first detected when R

and any of the monitors in M, co-locate at an assignment point, i.e., meet on a vertex in G.

Figure 5.6a illustrates an example of the composite graph walk. Monitors M = {M1,M2}
(solid blue dot) and a culprit R (solid red dot) both reside/walk in the assignment space

V = {a, b, c, d, e, u, v, x} for two time steps, where the edge sets EM and ER are shown in blue

dashed and red dotted lines respectively. By t = 2, the sweep coverage Ct = {a, b, c, e} ⊂ V ,

indicating the coverage time Tf > 2. The detection time τR(f) = 1, because monitor M1 meets

with the culprit Rt at assignment point a ∈ V , during time step t = 2.

Formulating the SAS process into a graph walk makes strategy design more tractable, in

the sense that the strategy space is now discrete and finite, such that both the theoretic and

simulation approaches are viable. Under this formulation, we discuss strategy design and per-

formance evaluation for the dedicated and crowd-source monitoring scenarios, in the following

Section 5.4 and Section 5.5, respectively.
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5.4 Deterministic SAS Strategies for Dedicated Monitors

Dedicated monitors refer to the specialized monitoring equipment mounted on towers, drones,

vans, etc. which are widely used by governmental and commercial agents, e.g., FCC, NTIA, and

AT&T, to collect spectrum measurement data [48]. For DSA-enabled systems relying on dedi-

cated monitors, deterministic monitoring strategies, that is, monitors traverse a predetermined

route to sweep-scan the spectra-location space, are the sensible choice due to its simpleness,

e.g., [53]. For such strategies, the switching cost, in the form of time, energy or budget, is the

key concern in deploying dedicated monitors. The reason behind this is that, switching cost,

induced by tuning (in spectrum domain S) and movement (in space domain A), scales with

distances in both domains, so it is essential to optimize the strategy for a reduced cost, given

that all the monitors are under the control of the SAS function. Therefore, we first define a com-

prehensive switching cost metric, based on the optimization of which, we propose the low-cost

deterministic SAS strategy fS .

Definition 5.7. The switching cost from point xi to xj ∈ X, is defined as the sum of tuning

cost and relocation cost, that is,

γ(xi, xj) := βSdS(pS(xi), pS(xj)) + βAdA(pA(xi), pA(xj)), (5.17)

where βS and βA are cost coefficients for tuning and relocation respectively. The cost of strat-

egy {fmt }
Tf
t=1 is then

Γmf :=

Tmf∑
t=2

m∑
i=1

γ(fmt (Mi), f
m
t−1(Mi)), (5.18)

where Tmf is the coverage time defined in Eq. (5.4).

Switching cost Γf can be applied to describe time, energy, and budget. For example, the

cost coefficients can be set to εβA >> βS to describe the switching time, since the time it

takes a radio head to tune to a different center frequency is approximately 1 ms [54], during

which the physical movement of any mobile device is negligible. It could also be the case that

re-configuring the center frequency of a radio head is more expensive (in terms of budget) than

physical movements, e.g., specialized devices with narrow frequency ranges, such that εβA < βS .

Accounting for switching cost between assignment points in space V , the resulting monitoring

sub-graph GM becomes a weighted complete graph Kn, in which the weight of each edge reflects

the switching cost along that edge.

5.4.1 Low Cost Deterministic Strategies fS

Addressing the design concern of switching cost in the dedicated SAS scenario, an optimal

deterministic strategy is a strategy {fS,t}Tt=1, whose total switching cost Γf is minimized in

the solution space {V m}T . In this sense, finding an optimal strategy {fmS,t}
Ts
t=1 is equivalent

to finding m vertex-disjoint ‘shortest’ paths (in terms of switching cost) that jointly cover the
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assignment space V by time TmS = d nme. This problem is actually an open-path multi-depot

multi-travailing salesmen problem (MD-MTSP), which is known to be NP-hard [14, 111].

Observing the structure of assignment space V (as shown in Figure 5.4d) over a rectangular

region A, we prove there is an upper bound of the minimum switching cost Γmmin for small m

values, which can be achieved by traversing the space V ‘smartly’. Before presenting the main

result, we summarize necessary denotations in the following Table 5.3 for the ease of references.

Table 5.3 Parameters and denotations in Theorem 5.1.

Denotation Meaning Example in Figure 5.4

L # of assignment points along the length of A L = 3 (in 5.4d)
D # of assignment points along the width of A D = 3 (in 5.4d)
H # of assignment points along the spectra axis S H = 4 (in 5.4d)
n = |V | total # of assignment points in V n = 48 (in 5.4d)
Type-1 edge edges w/ cost γ1 := βSa (c1, c6), (c2, c7) (in 5.4c)
Type-2 edge edges w/ cost γ2 := βAεa (c1, c2), (c7, c8) (in 5.4c)

Type-3 edge edges w/ cost γ3 := a
2 (
√

2βAε+ βS) (c1, c5), (c5, c8) (in 5.4c)

Theorem 5.1. For a set of m ≥ 3 monitors on the assignment space V with parameters L, D

and H (defined in Table 5.3), the switching cost Γmmin can be upper bounded by

Γmmin ≤

Γ1
∗ −A∗(m− 1), if m = 2k + 1,

Γ2
∗ −A∗(m− 2), if m = 2k + 2,

(5.19)

where k ∈ N+, ∗ = f if βS ≥ 2−
√

2
2 βAε, and ∗ = g otherwise. Quantities Γ1

∗, Γ2
∗ and A∗(·) are

determined as

Γ1
∗ := K1γ1 +K∗2γ2 +K∗3γ3,

Γ2
f := Γ1

f − (2D − 1)γ2 + γ3 + (
H

2
γ1 + γ2)e(L),

Γ2
g := Γ1

g − 2γ2 − γ1 + 2γ3,

A∗(x) := min{K1, x}γ1 + min{K∗3 , [x−K1]+}γ3 + [x−K1 −K∗3 ]+γ2,

where K1 = LD(H−1)+(L−1)(D−1)(H−2), Kf
2 = (L−1)D+(L−2)(D−1), Kf

3 = 2(D−1),

Kg
2 = L+D − 2, Kg

3 = 2(L− 1)(D − 1), and e(L) = 1 when L is even, e(L) = 0 otherwise.

Proof. (Outline.) We prove this theorem in a constructive manner, and work our way from the

base case when (m = 1 or 2) toward the general cases (m ≥ 3). For the single- or double-monitor

cases (m = 1 or 2), considering that Type-1, 2 and 3 edges are the least expensive edges in

the complete graph Kn in terms of switching cost, the main idea is to construct a traversing

route with the most number of least expensive edges (Type-1 or Type-2 depending on quantity
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βS − 2−
√

2
2 βAε), and as few necessary longer edges as possible. The optimal strategy for these

two cases, and their accompanied minimum switching costs Γ1
min and Γ2

min, are presented in

Lemma 5.2 and Lemma 5.4, respectively. Then for m > 2, the switching cost can be upper

bounded by evenly dividing the low-cost routes of m = 1 or m = 2, and then removing the

induced dividing edges, as presented in Lemma 5.3. First, we prove Lemma 5.2 for m = 1.

Lemma 5.2. When m = 1, and the assignment space V has L,D and H assignment points

along the length, width and height (spectrum S) of X, the switching cost of the optimal strategy

Γ1
min satisfies

Γ1
min ≤ Γ1

∗ = K1γ1 +K2γ2 +K3γ3, (5.20)

where K1 = LD(H − 1) + (L− 1)(D − 1)(H − 2); K2 and K3 are determined by the following:

1. When cost coefficients satisfy βS ≥ 2−
√

2
2 βAε, K2 = (L − 1)D + (L − 2)(D − 1) and

K3 = 2(D − 1). Then Γ1
∗ is achieved by the strategy f∗m=1, as shown in Figure 5.7a.

2. Otherwise K2 = L + D − 2 and K3 = 2(L − 1)(D − 1), achieved by strategy g∗m=1, as

illustrated in Figure 5.7b.

(a) m = 1: f∗m=1 (b) m = 1: g∗m=1 (c) m = 2: f∗m=2(M1) (d) m = 2: g∗m=2(M1)

Figure 5.7 Low-cost strategies for setting L = 4, D = 2, H = 3. Red, grey and blue indicate Type-1,
2, and 3 edges (defined in Table 5.3), respectively.

Proof. The shortest (in terms of cost) combination of paths connecting the n = |V | points is

including all the vertical (Type-1) edges, and then adding the minimum number of necessary

type-3 and type-2 edges, as in Figure 5.7a and 5.7b, because the triangle equality holds under

the switching cost metric defined in Section 5.4. When βS ≥ 2−
√

2
2 βAε, the switching cost of

the optimal strategy Γ1
min = Γ1

f∗ since the short edges (Type-1 and Type-2) are utilized to

the most, indicating f∗m=1 (Figure 5.7a) is the optimal strategy because in this case γ2 ≤ γ3.

Otherwise, if γ2 > γ3, it is cheaper to use Type-3 edges than Type-2 edges more often, under

the circumstance that the total number of edges remains the same, i.e. K1 +K2 +K3 = n− 1.

Therefore strategy g∗m=1 (Figure 5.7a) achieves a lower switching cost than strategy f∗m=1.

Now we consider the case of multiple monitors, i.e., m > 1.
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Lemma 5.3. When m > 1, the minimum cost satisfies

Γmmin ≤ Γ1
f∗ −min{K1, (m− 1)}γ1 −min{K3, [m− 1−K1]+}γ3 − [m− 1−K1 −K3]+γ2,

where [x]+ = max{x, 0}, and K1,K3,Γ
1
min as in Lemma 5.2.

Proof. One possible solution of employing m > 1 monitors is to divide the near-optimal path

f∗m=1 in Lemma 5.2 evenly (in terms of hop count), into m sub-paths, by removing m−1 edges.

Note that different m will result in the removal of different numbers of Type-1, 2 and 3 edges.

However, the minimum cost Γmmin is always upper bounded by the case that the removal starts

from Type-1 edges, which are associated with the minimum switching cost.

Further, when m is even, a tighter bound can be achieved through an effective way to alter

and divide the optimal path in strategy f∗m=1 and g∗m=1, as shown in Lemma 5.4.

Lemma 5.4. When m = 2, then

Γ2
g∗ = Γ2

g∗ − 2γ2 − γ1 + 2γ3, (5.21)

Γ2
f∗ = Γ2

f∗ − (2D − 1)γ2 + γ3 + (
H

2
γ1 + γ2)e(L), (5.22)

where e(L) = 1 if L is even, and e(L) = 0 otherwise. The minimum switching cost satisfies

Γ2
min ≤ min

{
Γ2
f∗ ,Γ

2
g∗

}
. Further if m = 2k, k ≥ 2, then Γmmin ≤ Γ2

min − (m− 2)γ1.

Proof. Eq. (5.21) is achieved by evenly dividing the space into two parts, and augment the

divided path segment of f∗m=1 and g∗m=1 by adding extra Type-3 edges, as shown in Figure 5.7c

and 5.7d. For example, in f∗m=2, a Type-3 edge (black arrow in Figure 5.7c is added for each

row. When L is even, the middle line of Type-1 edges needs to be divided, so a longer edge

(solid yellow arrow) is added. Since the cost metric γ is a linear combination of dS and dA, the

cost of the solid yellow arrow is equal to the summation of costs (H2 γ1 + γ2) of the two dashed

yellow arrows. Similarly for g∗m=2 (Figure 5.7d), two Type-2 edges and one Type-1 edges are

removed, while one Type-3 edges are added. Then the minimum switching cost Γ2
min is upper

bounded by the minimum of the two. For m = 2k ≥ 4, applying Lemma 5.3 to Γ2
min yields the

result.

Combining Lemma 5.2, 5.3 and 5.4, we have the upper-bounds of the total switching cost

Γf in Theorem 5.1.

As a constructive proof, Theorem 5.1 also sketches the proposed deterministic strategy

(denoted as fS). To validate these results (strategy fS and upper bounds), we conduct numerical

simulation, whose configuration is enumerated in Table 5.4. Note that the width of the spectrum

block S does not have any unit (similarly for monitoring power parameter δ). We eliminate the

unit, instead of plugging in parameters of real-world hardware e.g., [91, 84], because there will
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(d) RS βS = 0.8, βA = 0.2

Figure 5.8 The proposed strategy (black on the far left) achieves a lower switching cost, compared to
the genetic algorithm solution (red bars in (a-b)) and that the greedy-based random search solution
(blue in (c-d)), in different switching cost coefficients (βA and βS) settings.

be a (mere) change of constant when different units are applied, which is insignificant (and

more confusing) in validating the efficiency of the proposed deterministic strategies.

Table 5.4 Simulation configuration for coverage time of strategy fmS .

Parameter Description Value

n = |V| number of assignment points 394
m = |M| number of monitors [1, 5]
A the geographical region of interest [0, 10]2

|S| width of spectrum block 18
ε scaling coefficient in distance dSA 5

δ radius of the monitoring power
√

5
2

(L,D,H) tessellation parameters (see Table 5.3) (5,5,10)
βS , βA switching cost coefficients (see Definition 5.7) (0, 1)

The proposed strategy (black bars on the far left in Figure 5.8, labeled as fS) is compared

with the best solutions found by genetic algorithm (red-toned bars in Figure 5.8a-b, labeled

as GA-x, which means 10x iterations are executed to obtain this result), which is a commonly

used heuristic for MTSP, and those found by a greedy-based random search (blue-toned bars in

Figure 5.8c-d, labeled as RS-x, which means 10x iterations are executed to obtain this result).

The proposed fS achieves a very close switching cost to that of the best solution/strategy output

by GA after more than 10,000 iterations, under different switching cost coefficient settings. In

fact, when m is small, the best solution provided by GA bears great resemblance to the proposed

strategy, in terms of traversed edge types, as well as the breaking points (i.e., the way to divide

the optimal path of m = 1). Similar observations can be obtained in the comparisons with

random search, despite that the optimal solution can not be easily found by the random search

due to its greedy nature.
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5.4.2 Detection Time of the Deterministic Strategy fS

Though deterministic strategy fS proposed in Theorem 5.1 proves to be a good strategy in terms

of coverage time (TmS = d |V |m e) and switching cost, its detection performance is not satisfying. In

fact, it suffers from a ‘wandering hole’ problem when adversarial spectrum culprits are present.

So in this subsection, we discuss the detection performance of the deterministic strategy fS .

5.4.2.1 Detecting Persistent Culprits Rp

The expected detection time E(τp(fS)) of different persistent culprits Rp under strategy fS

can be found in Table 5.2, given that the initial position of Rp (at time t = 0) is chosen

randomly from the assignment space V . As can be seen, the expected detection time E(τp(fS))

are bounded above by the coverage time TmS = d nme. Proofs of these results are listed as follows.

Proof. (Expected detection time presented in Table 5.2.)

In general, for a strategy {fmt }t∈T conducted by a set M of monitors with q(δ)-monitoring

power, the probability that a culpritRp is detected in time step t = k is pk := q
∑

v∈fk(M) gRp(v).

Since Rp is persistent, i.e., its exploiting pattern does not change over time, the probability

that it not detected until time step k can be derived as P
(
τRp(ft) = k

)
= pk

∏k−1
i=0 (1− pi), then

the expected detection time of a persistent culprit Rp with PMF gRp(v) can be obtained by

E
(
τp(f)

)
=
∞∑
k=1

kpk

k−1∏
i=1

(1− pi), (5.23)

where p0 = 0 is added to keep its form consistent. Next, we discuss the detection time of the

three types of persistent spectrum culprits.

Case 1. Stationary Rs without DSA capability, who chooses x ∈ X (or equivalently v ∈ V )

uniformly at random, and stays there for any t > 0. Therefore, the probability that this culprit

is detect at time step k is P(τRs(fS) = k) = 1
TS

, indicating a uniform distribution for k =

1, 2, . . . ,S , and P(τR(fS) > TS) = 0. The expected detection time E(τRs(fS)) = TS
2 is bounded

by the coverage time of the deterministic strategy fS .

Case 2. Stationary Rsd with DSA capability, that fixes its location a ∈ A, and hops to any

frequency chosen uniformly at random from S, resulting in a Rsd(t) such that pa(Rsd(t)) = a for

all t > 0. Exact analysis of E(τRsd(fS)) is fairly difficult, due to the slight overlap of monitoring

powers at location a. But for every time slot t = k, the probability that culprit Rsd is identified,

is strictly less than that the more capable Rmd is identified, i.e. P(τRsd(fS) = k) < P(τRmd(fS) =

k). Therefore, E (τRsd(fS)) ≤ E (τRmd(fS)).

Case 3. Mobile Rmd with DSA capability, whose exploit sequence is randomly chosen from

X (or equivalently discrete space V ) during every time step. Since there are m monitors in

the assignment space V , during every time step t, the probability that the culprit Rmd is not

detected is 1− p = n−m
n . Consequently r.v. τR(fS) is geometrically distributed with parameter
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Figure 5.9 Illustration of a wandering hole: Five monitors are deployed in region A = [0, 4]2 with

δ =
√
5
2 . Their coverage Ct at time t, is the enclosed space of the blue (partial) balls and the boundary,

while the outter space corresponds to the ‘hole’, that is ‘wandering’ (changing) in X over time.

p, that is, P(τR(fS) = k) = (1− p)k−1p. Hence its expected value E (τR(fS)) = n
m ' TS .

5.4.2.2 Detecting an Adversary Culprit Ra

To maintain a low switching cost, the deterministic strategy fS will be repeated (in for-

ward/reverse direction in odd/even cycles) after TS = d nme time. Consequently it is possible

for culprits with learning capabilities to observe the deployment pattern of monitors, and even

predict where monitors will not be (e.g., the coverage hole shown in Figure 5.3b) in the next

time step. Then culprits can continue chasing the ‘hole’ for an infinitely long time, as if hiding

in a ‘wandering hole’ of the dynamically changing coverage Ct(fS,t).

Definition 5.8. Strategy {ft}t∈[1,T ] is said to suffer from a wandering hole problem, if an

adversarial culprit can exploit the system for infinitely long time, i.e., E
(
τa(ft)

)
=∞.

An example of the wandering hole problem is shown in Figure 5.9, where activities in spec-

trum block S over region A = [0, 4]2 are being monitored by m = 5 monitors. Red dots indicate

the assignment points of V , calculated by the Kelvin structure tessellation (in Section 5.3),

while space enclosed by shaded spheres corresponds to the monitoring power of the deployed

monitors14, whose tuning frequency is identified by the darkness of the shade. The white space

outside of these spheres corresponds to spectrum slices and locations that a culprit can exploit

without being detected, i.e. a spectrum hole in the monitoring coverage Ct. At time t = 1,

consider an adversarial culprits Ra located at (3, 3) occupying lower frequency portion in the

‘hole’. From previous observation, culprit Ra can easily find spectra-location points to exploit

in the next time slot t = 2, because a deterministic monitoring strategy fS repeats itself peri-

odically, i.e., Void(2) identifies the ‘hole’ exactly as the 3-D region in X where the probability

for it to be monitored during t = 2 equals to zero. Consequently, Ra can safely stay at the

current location, and continue occupying the current spectrum slice without being detected.

In other words, adversarial Ra can swiftly hide in the ‘wandering hole’ indefinitely, unless the

14Since we are interested in the closed space S ×A, spheres indicating the boundary of monitoring power are
trimmed, when they intersect with the boundary of space X = S ×A.
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Figure 5.10 Root cause of the wandering hole problem: difference in visiting probability (density).

deterministic deployment strategy fS changes. In fact, the wandering hole problem exists in any

deterministic strategy. Once the SAS strategy (or more precisely, its probability distribution)

is known by an adversarial culprit Ra, this prior knowledge can be leveraged by Ra to actively

dodge monitors, whenever there is a hole in the current coverage, i.e., X \ Ct 6= φ.

5.5 Patching the ‘Wandering Hole’: Randomized Strategies

The wandering hole problem exposes a defect of deterministic strategies against adversarial

culprits Ra. The root cause of this defect is that, taking advantage of its prior knowledge, i.e.,

the difference among visiting probabilities on different assignment points, an adversarial culprit

Ra is able to determine the spectrum ‘hole’ to exploit, i.e., Void(t). The sharper the difference,

the clearer the boundary of the ‘hole’, and the larger the chance for the culprit Ra to dodge

monitors in the next time step. For instance, under the deterministic strategy fS shown in

Figure 5.9, a culprit Ra located at a = (3, 2) can easily identify Void(2) ⊂ S × {a} due to the

prominent difference in probability (the second ‘bar’ from the left in Figure 5.10).

5.5.0.1 Motivation and Intuition

Knowing the root cause of the ‘wandering hole’ problem, a straight-forward countermeasure is to

better protect, or frequently change the SAS strategy, such that obtaining visiting probabilities,

or the strategy implementation, are more difficult to culprits, which requires constant effort in

the deployment stage. Nonetheless, we can achieve the same goal if we carefully design a SAS

strategy, from which no useful ‘knowledge’ can be derived, even if it is known to the culprit. In

other words, we can fully randomize the deployment, such that every assignment point is visited

with the same probability in the long run. Consequently, there is no probability difference, and

hence no boundary of spectrum holes for culprits to locate, as illustrated by the (uniform)

grey bar, second from the right in Figure 5.10. In addition, monitors follow no pattern at all

when switching to a different assignment point, so the adversarial culprits essentially become

persistent ones, in the sense that their exploit patterns become the same. Therefore, such

randomized strategies will be effective in culprit detection.

On the other hand, as we shift focus from low-cost sweep-coverage to quick culprit de-

tection, we switch gear from switching cost (Definition 5.7) to switching capacity (Definition
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5.2), the latter of which can be viewed as a binary quantification of the former against a cost

threshold. As a result, the underlying graph (GM , GR) (defined in Section 5.3.2.3) changes

from complete graphs with numerical edge weights (cost), to sparser simple graphs without

edge weights, pruned according to the switching capacity of monitors and culprits. This change

is also consistent with the SAS scenario change (from dedicated to crowd-source15): considering

a switching action is actually a change of surrogate monitors, randomized strategies are natural

for the crowd-source monitoring scenario, where the switching cost does not scale with distance

dSA. To be more specific, with a centralized coordinator or guaranteed communication among

participants, switching between surrogate monitors can be timely coordinated, so the entire

assignment space V is contained in the switching capacity of all monitors, which translates to

the unlimited switching capacity case, i.e., αM =∞; in case of distributed control, when change

of surrogate monitors needs to be completed with local communication, the switching capacity

of monitors will be upper-bounded, i.e., αM <∞, due to their limited communication ranges.

Next, we introduce two simple, but effective randomized strategies.

5.5.1 Randomized SAS Strategies

We consider two randomized strategies that requires different levels of coordination and switch-

ing capacities: the independent I-strategy fI and the distributed D-strategy fD.

(1) I-strategy fI . During each time step, each monitor Mi ∈ M switches to point vi ∈ V
uniformly at random, and independently of others, within its switching capacity αM . The

surveillance process is then equivalent to a composite random walk of m = |M| walkers, each

independently generating a sequence {fmt,I(M)}t∈T , on the monitoring subgraph GM . When GM

is (close to) regular, i.e., the number of assignment points reachable in one switching action is

almost the same starting from every point in V , the uniform transition probability leads to a

convergence-guaranteed distribution of visiting probabilities, that is, πv = 1
n , ∀v ∈ V .

(2) D-strategy fD. Assignment space V is evenly divided into m disjoint subsets {Vi}Mi∈M,

such that points in each subset Vi are within monitors’ switching capacity αM , and sets in

collection {Vi}Mi∈M compose a partition of V . During time step t, each monitor Mi ∈ M
switches to point fmt,D(Mi), chosen uniformly at random from its own subset Vi, which contains

nm = d nme assignment points. Thus, the D-strategy is equivalent to m independent single-walker

random walks, each on a smaller complete graph Knm . Moreover, graph Knm is regular, so the

stationary visiting probabilities are also uniform.

Based on this design, we first discuss the basic case of αM = αR = ∞, i.e., SAS strategy

without switching constraint, in this section, and leave the more complicated αM < ∞ case

for the next section. As we will show, both the coverage time and detection time of the two

randomized strategies: i) are bounded, indicating their efficacy; and ii) scale as O( 1
m) with

respect to the number of monitors m, revealing their efficiency.

15For SAS with dedicated monitors, this modeling approach with switching capacity is also valid, if we set a
fixed switching cost threshold γ∗, and determines switching capacity αM <∞ according to this threshold.
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5.5.2 Coverage Time of the Two Randomized Strategies fI and fD

Because of the unlimited switching capacity of both monitors and culprits, the underlying

monitoring subgraph GM are complete graphs, and both the I- and D-strategy are equivalent

to random walks, on Kn and Knm , respectively. The coverage time TI and TD become well-

defined r.v.’s that take value in [1,∞), and their expected value E(T∗) are referred to as the cover

time [7]. This quantity is well-studied for a single walker case, which correspond to the single

monitor case (I-strategy and D-strategy are exactly the same, i.e., f1
I = f1

D), but considering

that it is helpful for the latter cases, we present it in Lemma 5.5 for completeness reasons.

Lemma 5.5. The expected coverage time of strategy f1
I (or equivalently f1

D) on the assignment

space V is E(T 1
I ) = nHn, where Hn =

∑n
i=1

1
i denotes the n-th Harmonic number, and n = |V |

is the total number of assignment points.

Proof. The surveillance sequence generated by strategy f1
I (f1

D) is a single-walker random walk

on Kn. Let r.v. Ti ≥ 0 denote the time interval between the first hitting time of the i−1-th vertex

and that of the i-th vertex, for any i ≥ 2. Then Ti is geometric distributed with pi = n−i+1
n ,

and T1 = 1. So the expected coverage time can be calculated as E(T 1
I ) = E (

∑n
i=1 Ti) =∑n

i=1
n

n−i+1 = nHn.

Next, we discuss the case of multiple monitors for the I- and D-strategy, respectively.

5.5.2.1 Coverage Time of the I-strategy TmI

For an I-strategy fmI carried out by m monitors, the expected coverage time E(TmI ) can be

bounded by the following theorem.

Theorem 5.2. For a set of m = |M| monitors that follow the I-strategy {fmt }t∈T in the

assignment space V , the expected coverage time is upper bounded by

E(TmI ) ≤ e(n− 1)

[
0.562 + 0.768

Hn
m

]
, (5.24)

where n = |V | is the number of assignment points in V .

Proof. When m = 1, the expected coverage time E(T 1
I ) = nHn from Lemma 5.5. For m > 1,

let T 1
I,i denote the coverage time of a single monitor Mi ∈ M. Then {T 1

I,i}mi=1 is a set of i.i.d.

random variables with T 1
I,i

d
= T 1

I for any monitor Mi ∈M. So

E(TmI ) ≤ E( min
1≤i≤m

T 1
I,i) ≤ E(T 1

I,i) = E(T 1
I ). (5.25)

Let H(x, y) := mint>0{fmt (Mi) = y | fm0 (Mi) = x} denote the first hitting time of monitor

Mi ∈M on assignment point y ∈ V , given that Mi started its walk (surveillance) from x ∈ V .

Since monitor Mi is inter-changeable with Mj , the notation of monitor (i) can be suppressed in
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the hitting time. Each monitor walks independently on the complete graph Kn, so E(H(x, y)) =

n− 1, for any point x, y ∈ V .

Suppose at time t = 0 (one step ahead of the SAS process starts), all monitors are assigned

to the same point x, that is, fm0 (Mi) = x for all Mi ∈ M. Then for a fixed point u ∈ V , the

probability that a random walk of length e(n − 1) does not hit u is upper bounded by the

Markov Inequality [7]:

P
(
H(x, u) > e(n− 1)

) Markov
≤ E(H(x, u))

e(n− 1)
= e−1. (5.26)

Then for any integer r > 1, probability P
(
H(x, u) > er(n − 1)

)
≤ e−r, since the entire walk

can be viewed as r individual trails trying to hit u simultaneously. Therefore, the probability

that m independent (single-walker) random walks all starting from x, have not hit point u up

to time t = er(n− 1), can be upper-bounded by

P
(

min
Mi∈M

{Hi(x, u)} > er(n− 1)
)
≤ e−mr. (5.27)

Let r = d lnn+γ
m e, where γ = limn→∞(Hn− lnn) is the Euler-Mascheroni constant. Then the

probability that the m random walkers have not covered all points in V by time er(n− 1), or

equivalently the coverage time TmI is greater than er(n− 1) can also be upper bounded:

P
(
TmI > er(n− 1)

)
≤ e−mr ≤ e−γ . (5.28)

Also, notice that expected values E(TmI ) ≤ E(T 1
I ) = nHn from Eq. (5.25). Therefore, the

expected coverage time can be obtained as

E(TmI ) ≤ er(n− 1) · (1− e−γ) + E(T 1
I ) · e−γ (5.29)

≤ n− 1

m

[
(lnn+ γ +m)(e− e1−γ) +Hne−γ

]
≤ e(n− 1)

m

[
(Hn +m)(1− e−γ) +Hne−(1+γ)

]
,

and plugging in values of γ and e yields the result.

Though not a tight bound, Theorem 5.2 reveals the scaling law of the expected coverage

time with respect to size n of space V , and number of monitors m, that is, E(TmI ) = O(n lnn
m ).

5.5.2.2 Coverage Time of the D-strategy TmD

The expected coverage time of D-strategy fmD can also be bounded above.

Theorem 5.3. For a set of m monitors following the D-strategy fmD on the assignment space
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V of size n, the expected coverage time E(TmD ) is upper bounded by

E(TmD ) ≤ nmHnm +
nm
√
m− 1

2(nm − 1)

[
7(nm)2 − 11nm + 2

] 1
2 , (5.30)

where nm = d nme.

Proof. Let r.v. TMi denote the time when monitor Mi has covered every assignment point in

its own subset Vi ⊂ V for the first time, where |Vi|
4
= nm = d nme, and we refer to TMi as the

sub-coverage time. Under the D-strategy fmD , the sequence of assignment points to be scanned

by monitor Mi, can be viewed as a trail generated by a random walker on the complete graph

Knm of size nm. Therefore, by Lemma 5.5, the expected sub-coverage time E(TMi) by monitor

Mi ∈M can be obtained as E(TMi) = nm.

In addition to the mean, we know the distribution of every TMi , particularly its mean

and variance, from the proof of Lemma 5.5, because r.v. TMi =
∑nm−1

k=1 Tk, where each Tk

is geometrically distributed with parameter nm−k+1
nm

. Hence E(Tk) = nm
nm−k+1 and V ar(Tk) =

nm(k−1)
(nm−k+1)2

. Then the variance of r.v. TMi can be derived as

V ar(TMi) =

nm∑
k=1

V ar(Tk) =

nm∑
k=1

nm(k − 1)

(nm − k + 1)2

≤ (nm)2

1 +

nm∑
j=2

1

j2 − 1

 = (nm)2

(
7

4
− 2nm + 1

2(nm − 1)nm

)
. (5.31)

The coverage time of strategy fmD , i.e., the first time when every points in V is sweep-

scanned, actually equals to the time when the last monitor, say Mj , finishes scanning the last

point in its own subset Vj . Consequently, TmD equals to the maximum of m i.i.d. r.v.s, that is,

TmD = max
Mi∈M

{TMi}, (5.32)

which can be upper-bounded using the technique in [15, Eq.(3)],

E(TD) ≤ max
Mi∈M

{E(TMi)}+
√

(m− 1)V ar(TMi)

= E(TMi) +
√

(m− 1)V ar(TMi). (5.33)

Plugging Eq. (5.31) into Eq. (5.33) yields the upper-bound.

5.5.2.3 Numerical Validation

Figure 5.11 shows the expected coverage time of I-strategy (E(TmI ), blue ‘#’ markers) and

D-strategy (E(TmD ), red ‘×’ markers) with respect to m ∈ [1, 10], number of monitors, and

n = |V | ∈ [50, 500], size of the assignment space, respectively. Numerical results of TI and
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Figure 5.11 The expected coverage time of both the I- (E(TI)) and D-strategy (E(TD)) are
O( nm lnn), as predicted by Theorem 5.2 and Theorem 5.3, respectively.

TD are shown in dots, while their mean and standard deviation are shown with markers and

bracketed bars. The case of four monitors (m = 4) is zoomed in the inner box of Figure 5.11a,

and the distribution of coverage time (for n = 200 assignment points) is shown in the inner box

of of Figure 5.11b. We draw the following observations from the numerical validation: i) Theorem

5.3 (red dashed line) is a tight bound on the coverage time of D-strategy when m is small; ii)

Theorem 5.2 (blue dotted line), though not a tight bound, accurately describes its O( nm lnn)

scaling behavior; iii) I-strategy and D-strategy have very close coverage time performances,

not only in the mean sense, but also in distribution, as shown in the inner boxes of Figure

5.11b, which implies that the more demanding I-strategy (in terms of level of coordination and

switching capability of monitors) can be safely substituted by the distributed D-strategy, with

the same guaranteed performance in sweep-coverage; and iv) both expected coverage times can

be described as O( nm lnn) (blue dotted line in Figure 5.11b), indicating that this scaling law

can be used to predict the number of monitors needed to reach the coverage goal for SAS over

a fixed spectrum range and geographical region, when the resolution of surveillance result is

determined by the q(δ)-monitoring power.

Note that unit of the coverage time is time step, whose length can be evaluated when

parameters in Table 5.4 are determined in a real-world scenario, according to the monitoring

power of SAS monitors. We do not incorporate specific units in the analysis or simulation,

because our main objective is to find the scaling behavior of strategy performance with respect

to the problem size (in this case n) and the amount of SAS resource (in this case m), such that

generic design guidelines can be obtained for different SAS application scenarios. In addition,

compared with the deterministic strategy fS in Section 5.4, which can achieve a n
m coverage

time, randomized strategies seem to be at disadvantage in fulfilling the coverage goal, but as
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we will show in the following subsection, they are favorable in spectrum culprits detection.

5.5.3 Bounded Detection Time of Adversarial Culprits

As briefly analyzed in the example (Figure 5.10), the advantage of adversarial culprits over

deterministic strategies is lost, when facing monitors running randomized strategies fI and fD,

because their prior knowledge (visiting probabilities) is compromised by the uniform probability

distribution in fI and fD. Consequently, randomized strategies do not suffer from the ‘wandering

hole’ problem, that is, the detection time is bounded.

Theorem 5.4. Under strategy fmI and fmD , the expected detection time E(τR(f∗)) of an adver-

sarial culprit Ra is upper-bounded, if the detection probability is strictly positive, i.e., q ≥ q∗ > 0.

Proof. Consider m monitors over the assignment space V of size n = |V |, each has q(δ)-

monitoring power. That is to say, if the spectra-location distance between a monitor Mi and a

culprit Ra is less than δ, the probability that this particular culprit Ra will be detected by Mi

during one time step with probability q ≥ q∗. To I- and D-strategy, an adversarial culprit Ra is

equivalent to a mobile persistent culprit Rmd (see Table 5.2) in terms of detection time, because

from the perspective of Ra, the probability of any assignment point being visited during the

next time step is the same.

First we discuss the I-strategy fmI . The detection time is actually the first meeting time

between the culprit and any of the m monitors, while both the culprit and monitors randomly

walk on the complete graph Kn. By Eq. (5.23), detection time τR(fmI ) is geometrically dis-

tributed with parameter pI = 1 − (1 − q
n)m, which equals to the probability that R is caught

by at least one of the m monitors in a single time step. Therefore,

E
(
τa(f

m
I )
)

=
1

pI
=
[
1− (1− q

n
)m
]−1

. (5.34)

Then given that the detecting probability/reliability q is lower-bounded by a positive constant

q∗ > 0, Eq. (5.34) can be upper-bounded by

E
(
τa(f

m
I )
)
≤ 1

1−
[
(1− q∗

n )
n
q∗
] q∗m

n

≤ 1

1− e−
q∗m
n

. (5.35)

For the D-strategy fmD , each monitor switches independently, and occupies a different point

in V during each time step. Therefore, the probability that culprit Ra is detected by any of

the m monitors during t is pD = qmn , and the corresponding expected detection time is also

upper-bounded:

E(τa(f
m
D )) =

1

pD
=

n

qm
≤ n

q∗m
. (5.36)

Therefore, any adversarial culprit Ra will be detected in finite time, given that detection prob-

ability q ≥ q∗ > 0.
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Figure 5.12 The expected detection time of an adversarial culprit in the assignment space of size n is
O( nm ), under both the I and the D-strategy with full reliabiltiy q = 1.

Theoretically, it is possible that detecting probability q is minimal, due to the large radius

δ in the q(δ)-monitoring power, so the resulting detection time E(τa(f
m
I )) and E(τa(f

m
D )) tend

to infinity. However, this can be easily fixed if the radius parameter δ is adjusted in the space-

tessellation step, so that q is boosted to an acceptable level. Consequently, we conclude that

randomized monitoring strategies (fI and fD) do not suffer from the ‘wandering hole’ problem.

To validate the advantage of randomized strategies against adversarial culprit, i.e., Theorem

5.4, culprit detection is simulated under the same spectra-location space setting as the sweep-

coverage validation. Detection time samples are shown as light-blue (I-strategy) and light-red

(D-strategy) dots in Figure 5.12, which corresponds to the q = 1 case (perfect detection), and

Figure 5.13, which corresponds to the imperfect detection (q = 0.8 < 1) case. We highlight the

following observations. i) Not only are the detection time of I-strategy and D-strategy bounded

(and hence no ‘wandering hole’ problem), their expectations can be accurately calculated with

Eq. (5.34) and (5.36), once the number of monitors m and size of the assignment space n are

fixed. ii) Bounds in Eq. (5.34) and (5.36) hold for the imperfect detection case, as shown in

Figure 5.13. iii) The detection performance of the I- and D-strategy are fairly close, which

indicates that D-strategy can be a good distributed alternative to the I-strategy.

In addition, the O( 1
m) scaling behavior in both coverage (Figure 5.11a) and detection (Figure

5.12a) time, indicates a linear ‘speed-up’ in SAS performance, when multiple monitors are

employed in the randomized strategies. This behavior implies, as same as in the deterministic

strategies, increasing the number of monitors (m) is an efficient performance-boosting measure.

In addition, the bounds on detection time (or rather, accurate results in Eq. (5.34) and (5.36))

add to the predictability of randomized strategies, which can be fairly useful in the design stage

of a SAS system, e.g., estimating the number of monitors needed for culprit detection.
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Figure 5.13 Expected detection time of culprits under imperfect detection (reliability q = 0.8) is also
well captured by Eq. (5.34) and (5.36).

5.6 SAS with Limited Switching Capacities

In this section, we discuss the SAS process of m independent αM -monitors (with detection

probability q = 1) and an αR-culprit on the assignment space V , in which the switching capacity

of the monitors (αM ) and the culprit (αR) are limited, i.e., finite. Constrained switching capacity

(αM < ∞) applies to the fully-distributed crowd-source SAS scenario, in which a switching is

only possible if the two devices are within each other’s communication range. Such a capacity

limit can also be viewed as a binary quantification of the switching cost, in the sense that

it cuts off any edge (vi, vj) (in a complete graph), whose associated switching cost γ(vi, vj)

exceeds a threshold, to obtain the monitoring/exploiting subgraphs. Analysis of a SAS process

under switching capacity constraint, or as we formulate it, a composite graph walk process

on graph (GM , GR) that is not a complete graph, is challenging due to the following reasons:

i) theoretic analysis of random walks on general graphs is difficult, if at all possible, because

existing mathematical tools are developed for graphs with special structures, e.g., the complete

graph [5] and the expander graph [31]; ii) monitors and culprits switch/walk on different graphs

when αR 6= αM , which is not addressed by existing research on graph walk, e.g., [32].

For the ease of discussion, we introduce degree r∗() of an assignment point in the in the

monitoring subgraph GM and the exploiting subgraph GR. Let rαM (v) denote the degree of

point v ∈ V in GM , under constraint αM , and rαR(v) denote the degree of v in GR, under

constraint αR. Graph GM and GR are both subgraphs of a complete graph (degree r(v) = n−1

for every node v), which corresponds to the case of αM = αR = ∞ discussed in Section 5.5.

When αM = αR, the culprit and the monitors can be viewed as walking on the same graph, i.e.,

GM = GR. However, for cases when monitors are more ‘powerful’ than the culprit (αM > αR),

edges in GR are strictly sparser, i.e., ER ⊂ EM , and vise versa.
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5.6.1 Coverage and Detection Time through Regular Graph Approximation

Observe that assignment points (cell centers in the Kevin structure) in space V are quite ‘struc-

tured’, as shown in Figure 5.4d. As a result, subgraph GM (respectively GR) (e.g., the weaker

monitors v.s. powerful culprit case shown in Figure 5.6b) that build upon it is also ‘structured’,

in the sense that degrees of most vertices in GM (GR) are roughly the same, except for the

few near the boundary. Denote rM = 1
n

∑n
i=1 rαM (vi) as the average degree of the monitoring

subgraph GM , and rR as that of the exploiting subgraph GR. We first approximate GM and

GR as rM - and rR-regular graphs16 (GrM and GrR), respectively, on which mathematical tools

[7, 5, 32] come in handy.

5.6.1.1 Coverage Time TmrM

Let TmrM denote the coverage time ofm independent monitors on rM -regular graphGrM , to differ-

entiate from the actual coverage time TmI on the original monitoring subgraph GM . On regular

graph GrM , asymptotic bounds for E(TmrM ) have been studied by multiple researchers. Among

these, Alon et.al. [7] proved E(TmrM ) ∼ Θ(n lnn
m ), as n → ∞; Cooper, Frieze and Radzik[32]

provided a similar but more accurate asymptotic result for random regular graphs, when the

number of random walkers is not large, i.e., m = o( n
ln2 n

). It is shown in [31] that a uniformly

chosen r−regular (r ≥ 3) graph Gr is ‘nice’ with high probability (tending to one as n→∞),

such that the expected coverage time TmrM follows from [32, Thm. 2], that is,

E(TmrM ) ∼ rM − 1

rM − 2

n lnn

m
. (5.37)

Under an I-strategy, each monitor switches to any assignment point within its switching

capacity uniformly at random, resulting in a uniform stationary distribution πv = 1
n over

the assignment space V . In other words, each assignment point is visited roughly the same

number of times as time proceeds, so we say the spectra-location space X is ‘evenly’ covered.

Nevertheless, if a certain region (subspace of X) needs special attention, e.g., due to higher

presence of misbehavior, the probability to switch to a target assignment point in the switching

capacity can be adjusted, such that a desired (possibly non-uniform) stationary distribution over

V can be achieved through well-articulated algorithms, e.g., the Metropolis-Hasting algorithm.

5.6.1.2 Detection Time τR(rR, rM )

Unlike coverage time, for which existing research leads to direct solution, there is no proper

mathematical tool to directly address the culprit detection problem, in which the monitors and

the culprit may walk on different graphs, due to their different switching capacity limits. So we

address the weaker monitors vs. powerful culprit (αM < αR) case (and its reverse αM > αR)

16This average-degree-based approximation is reasonable, but also introduce a gap when determining SAS
performance for both sweep-coverage and culprit detection, which is discussed in Section 5.6.2.
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in this subsection.

Let τR(rR, rM ) denote the detection time of a culprit R (walking on the rR-regular graph

GrR), by m-monitors (walking on the rM -regular graph GrM ). There are two possible cases:

Case 1. Same switching capacity (rR = rM = r). Monitors M and the culprit R have the

same switching capacity, such that rR = rM = r, and GrR = Grm = Gr, i.e., both monitors and

culprit R walk on an r-regular graph Gr. Applying the predictor-and-prey model [32, Theorem

3], the expected detection time of culprit R can be asymptotically bounded, that is,

E(τR(r, r)) ∼ r − 1

r − 2
· n
m
. (5.38)

Case 2. Different switching capacities (rR 6= rM ). Monitors M and the culprit R walk

on different graphs, i.e., rR 6= rM such that GrR 6= Grm . We obtain the upper bound of the

detection time E (τR(rR, rM )) by considering a composite random walk.

Proposition 5.2. Let K = (n−1)!
(n−m−1)! . Under an I-strategy with m monitors, the expected de-

tection time of a culprit on graph (GrM , GrR) is upper bounded, i.e.,

E (τR(rR, rM )) ≤ 1 +
K

nm
(4K2 − 1). (5.39)

Proof. Without loss of generality, we number the monitors in M as {1, 2, . . . ,m}. Let M̄ =

M∪ {m + 1} denote a set of walkers, where the first m walkers correspond to monitors, who

walk on the monitoring subgraph GM , and walker m+ 1 refers to the culprit R, who walks on

the exploiting subgraph GR.

Consider a (single-walker) random walk {Zt}t∈T on graph H = (VH , EH), where each vertex

~v is a vector consisting m+ 1 elements, that is, VH = {~v = (v1, v2, . . . , vm, vm+1) | vi ∈ V, ∀i ∈
M̄}. Edges of graph H are constructed as follows: edge (~v, ~w) ∈ EH exists, if and only if: i)

(vi, wi) ∈ EM , ∀i ∈M; and ii) (vm+1, wm+1) ∈ ER. Graph H is a regular graph, since for every

vertex ~v ∈ VH , the number of neighbors, or the degree of vertex ~v, dH(~v) = rmM · rR, given that

(GM , GR) is approximated by the regular composite graph (GrM , GrR).

Now the SAS process, or more specially, the culprit detection process, can be described by

the single-walker random walk {Zt}t∈T on graph H, thanks to its construction. Let set

B := {~v ∈ VH | ∃ i ∈M s.t. vi = vm+1}

denote the set of vertices where the culprit (walker m+ 1) is detected by one of the m monitors

(co-locates with one of the m walkers in M). Then the detection time of culprit R, is the first

hitting time of set B by walk Zt, that is,

τ~vR(rR, rM ) = min
t∈T
{t | Zt ∈ B}, (5.40)

provided that walk Zt started from initial position Z1 = ~v. Since both the monitors M and
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culprit R starts uniformly at random in the assignment space V at time t = 1, the probability

that walk Zt starts from vertex ~v can be calculated by P(Z1 = ~v) = 1
|VH | = n−(m+1). With

respect to set B, there are two possible cases:

Case 1. If walk Zt starts from set B, that is, Z1 ∈ B, the culprit R is immediately identified.

This event happens with probability

P
(
τ~vR(rR, rM ) = 1

)
= P(Z1 ∈ B) =

|B|
|VH |

= 1− n!

(n−m− 1)!
= 1− nq. (5.41)

Case 2. Otherwise (with probability 1−P
(
τ~vR(rR, rM ) = 1

)
), the initial position Z1 ∈ VH \B,

with probability nq. In this case, since H is a regular, the following inequality follows from [5,

Proposition 6.16]:

E
(
τ~vR(rR, rM ) | ~v /∈ B

)
≤ 4|VH \B|2. (5.42)

Then the upper bound in Eq. (5.39) can be obtained by combing the two cases.

Proposition 5.2 holds for every n, but when n is large, it is not easy to calculate K and nm

in Eq. (5.39). For this case, we have the following scaling law on the expected detection time.

Corollary 5.1. The expected detection time of a culprit for a SAS process under the I-strategy

on graph (GrR , GrM ) satisfies

E (τR(rR, rM )) = Θ(
n

m
), (5.43)

where the exploiting subgraph GrR and the monitoring subgrpah GrM are rR- and rM -regular

graphs, respectively.

Proof. Let r1 = min{rR, rM} and r2 = max{rR, rM}, then

E (τR(r2, r2)) ≤ E (τR(rR, rM )) ≤ E (τR(r1, r1)) . (5.44)

Also, from results of detection time on regular graphs, we have E (τR(r2, r2)) ∼ r2−1
m(r2−2)n =

Ω( nm) and E (τR(r1, r1)) ∼ r1−1
m(r1−2)n = O( nm). Then it follows that E (τR(rR, rM )) = Θ( nm).

Compared to the SAS scenarios with unlimited switching capacity (αM = ∞) discussed in

Section 5.5, the scaling laws in this regular graph approximation (coverage time Eq. (5.37),

detection time Eq. (5.38) and Eq. (5.43)) differ only by a degree-determining constant, which

is less than or equal to 2. Consequently, we expect that, upon the imposed switching capacity

limit, scaling laws of both performance metrics over m and n to remain the same compared to

that under no switching capacity limit.

5.6.2 Gap between (GM , GR) and Approximation (GrM , GrR)

For Eq. (5.37) and Eq. (5.38) to hold, a regular graph needs to be ‘nice’ [31, pp. 733]. It is

also shown [31] that a large (n large) r-regular graph Gr randomly selected from all r-regular
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graphs Gr, is almost-Ramanujan with high probability, that is, the largest eigenvalue λ0(Gr)

and the second largest eigenvalue λ1(Gr) of graph Gr’s adjacency matrix satisfy

λ1(Gr) ≤ 2
√
λ0(Gr)− 1 + ε, (5.45)

where the λ0(Gr) = r, as Gr is r-regular.

However, Eq. (5.45) does not necessarily hold for the actual composite graph (GR, GM ). For

instance, the monitoring subgraph GM presented in Figure 5.6b corresponds to αM = 5, and it

has λ0(GM ) = 18.415 and λ1(GM ) = 16.475, certainly violating the eigenvalue gap criterion in

Eq. (5.45), while a randomly generated graph GrM (rM = 17), with the same average degree as

graph GM , has λ0(GrM ) = 17 and λ1(GrM ) = 7.633 satisfying the criterion.

This gap in the graph expansion property does not allow direct application of the scaling law

(described by Eq. (5.37) and Eq. (5.38)) to the composite graph (GM , GR), which is induced by

switching capacity limit αM and αR, even though (GM , GR) have the the same average degree

as its approximation (GrM , GrR) by construction. Therefore, we employ simulation to see if the

approximation is valid.

5.6.3 Numerical Results

We validate the regular approximation in the same assignment space V detailed in Table 5.4.

Simulation results (dots) and bounds (dashed and dotted lines) of the coverage time and de-

tection time, under an I-strategy with different switching capacities, are shown in Figure 5.14a

and 5.14b, respectively. The powerful monitors case (αM = 10, corresponding to rM = 19, and

αR = 5, corresponding to rR = 86) is marked in blue, whose mean is shown by blue ‘#’ marker,

while the powerful culprit case (αM = 5, αR = 10) is marked in red, whose mean is shown by

red ‘×’ marker. In Figure 5.14a, the lower bound of the coverage time (black dotted line) is

obtained by setting rM to ∞ in Eq. (5.37).

From the coverage time in Figure 5.14a, we observe as we anticipated: i) The coverage

time of a weaker monitor set (red ‘×’ markers, rM = 19) is slightly longer than that of a more

powerful monitor set (blue ‘#’ markers, αM = 10). ii) The Θ( nm lnn) scaling law of the expected

coverage time E(TmI ) over m is well captured, despite the switching capacity limit.

From the detection time in Figure 5.14b: i) as predicted by Corollary 5.1, the expected

detection time E(τR(fmI ))|αM=5 is not lengthened much compared to the strengthened case

αM = 10, as opposed to an intuitive anticipation, which indicates that both the time and range

aspects of the switching capacity do not impact the expected detection time much. ii) Both the

upper and lower bound of the expected detection time are tight, if not precise (E(τR(fMI )) '
E(τR(rR, rM )) for m ∈ [1, 10]).

From both figures: i) Even though the switching capacity of monitors (αM ) and that of the

culprit (αR) differ considerably in value for the two simulation cases, the mean coverage and

detection time (round and ‘×’ markers in both Figure 5.14a and Figure 5.14b) are pretty close.
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Figure 5.14 The expected coverage time and detection time for SAS processes with switching capac-
ity limits (Bounds are derived with regular graph approximation).

The reason behind this is similar to what is revealed in Lemma 5.1, i.e., the more ‘mobile’

(either monitors or culprits), the more ‘visible’ to spectrum monitors. ii) Through (GM , GR)

are not regular graphs, bounds derived for their regular graph approximation (GrM , GrR) (dash

and dotted black lines) apply smoothly to both the coverage time, and detection time, in the

sense that the scaling laws are well-captured in both figures.

Comparing unlimited (Figure 5.11a and 5.12a) with limited (Figure 5.14a and 5.14b) switch-

ing capacity cases, the capability limit αM becomes less influential as the number of monitors

m increases, and does not change the scaling behavior over m. The reason behind this is that

αM is sufficiently large so that the quantity rM−1
rM−2 in Eq. (5.37) comes close to 1. With extensive

simulation, we found that E(TmI ) and E(τR(fmI )) on the real composite graph (GM , GR) actually

follow the Θ(n lnn
m ) and Θ( nm) scaling law described in Eq. (5.37) and Eq. (5.38)). We speculate

the reason is that both subgraphs (GM and GR) are well-connected in degree sense, and the

variation in node degree is small, such that GM and GR are ‘regular’ enough. On the other

hand, this observation makes us wonder whether the requirement of being ‘nice’ is necessary in

achieving the Θ(n lnn
m ) and Θ( nm) scaling law.

5.7 Summary

From the impact aspect of mobile data, in this chapter, we examine spectrum activity surveil-

lance (SAS) for DSA-enabled wireless systems, which are envisioned as the monumental delivery

network for many data services. We identify the two main objectives of SAS, as sweep-coverage

of spectra-location space, and detection of simple/adversarial spectrum culprits, for which we

define quantitative metrics, such that any SAS monitor deployment strategy can be fairly evalu-
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ated. To accurately describe SAS processes, we introduce a 3-D model that incorporates spectra,

temporal and geographical domains, and captures the locality of different spectrum activities.

Based on this model, we formulate a SAS process into a graph walk, by space tessellation and

pruning with the switching capacity limits of monitors. As an application of the proposed model,

we present a deterministic strategy to achieve low switching cost, and randomized strategies

to quickly catch adversarial culprits. Efficacy of these strategies are theoretically analyzed and

validated through simulations, revealing how the size of a SAS system and the amount of mon-

itoring resource affect their performance. We hope these results contribute to the knowledge of

spectrum surveillance, and benefit the design of DSA-enabled wireless systems.
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Chapter 6

Conclusion and Future Directions

In this dissertation, we have presented our results on mobile data dynamics in heterogeneous

wireless networks, from four aspects: the cause, description, governing rule, and impact. Next,

we summarize our main results and discuss the possible future extensions.

6.1 Conclusion

This dissertation discussed the four aspects of mobile data in a top-down manner. We first

modeled the propagation of conflicting information, to answer when data start and stop moving

in networks in Chapter 2. Then in Chapter 3, we studied where data can be accessed, during

its dissemination process, by modeling data coverage as a graph signal. Onto the governing rule

of mobile data, i.e., how data move and what impact do mobile data cause, we investigated

the task offloading process in the resource-constrained fog paradigm, in Chapter 4. Finally, we

examined spectrum activity surveillance (SAS), to observe the impact of mobile data in Chapter

5. We recapitulate our major findings on mobile data as follows.

In Chapter 2, we studied the driving force of mobile data, that is, information dynamics.

Specifically, we proposed a Susceptible-Infected-Cured epidemic model to study the conflict-

ing information propagation phenomenon in networks, particularly the transient competition

between the two, during the evolution. Our analysis revealed the impact of network topology,

propagation parameters, and the initial conditions, on the lifetime of the undesired informa-

tion in a network. Upper bounds of the extinction time indicate a dominant impact of network

topology, captured by the Cheeger constant of a network, which determines the scaling laws

of the lifetime over the network size. As an application of the model and results, we proposed

practical and efficient information control measures, that is, injecting desired information into

the network, and designed an inference algorithm to obtain the number of information adopters,

before the conflicting information propagation process fully unfolds. Our findings quantitatively

revealed the impact of network topology on the lifetime time of mobile data, which contributes

to the design, management, and restoration of networked systems.

In Chapter 3, we examined data coverage, that is, locations where data are accessible, during
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the dissemination process in the heterogeneous wireless network. We defined data-strength

to quantify data coverage as a numeric signal on a graph, which captures user mobility and

geographical adjacency. Then, with graph signal processing tools, we observe high, decreasing,

but bounded impact, of user mobility on the change of data coverage. Based on this observation

and further analysis, we built a prediction framework, which can estimate future data coverage

based on historic observations. Our results contribute to the understanding of data’s movements

and whereabouts, which are closely related to data service provisioning in such heterogeneous

networks, while the graph signal representation of data coverage permits further examination,

on the rich temporal and spatial properties of the coverage dynamics.

In Chapter 4, we investigated the task offloading process in the fog paradigm, which is a

resource-constrained system residing at the network edge. We studied how multiple tasks, as

a special type of data blocks, move during offloading processes given the resource constraint,

as well as the impact, i.e., resource demand, of mobile data on the provisioning networks.

We proposed a gravity-based task offloading model, which captures the probabilistic offloading

decisions based on various criteria, and defined device and network efforts with respect to data

movements, to quantify the resource need for the massive task offloading procedures in fog.

With this model, we found that the time to complete individual tasks decreases with network

size, while the total resource consumption by the system scales linearly with the network size.

Our findings address the scalability issue of fog, in terms of resource consumption, which is

especially meaningful for large-scale fog applications, such as IoT.

In Chapter 5, we analyzed spectrum activity surveillance (SAS) for DSA-enabled wireless

systems, in order to observe the impact of mobile data on radio spectrum, which is a scarce

resource at the network edge. We studied this problem in a 3-D space that incorporates spectra,

temporal and geographical domains, and formulated the surveillance process into tractable

graph walks. We defined two performance metrics, namely the coverage time and detection time,

for spectrum monitor deployment strategies, such that any strategy can be fairly evaluated and

compared. For the surveillance scenarios by dedicated spectrum monitors, and that by crowd-

source spectrum monitors, we designed low-cost deterministic strategy for fast surveillance

coverage, and effective randomized strategies for quick detection of spectrum culprits. Our

results provide useful design guidelines for large-scale spectrum surveillance systems.

6.2 Future Directions

The work presented in this dissertation is only part of the efforts toward understanding mo-

bile data dynamics in heterogeneous wireless networks. In order to provide efficient, reliable,

and accessible data services in future wireless networks, which is expected to host numerous

heterogeneous wireless devices, our study may be extended in the following directions.

Due to the open nature of current and future wireless systems, data are not only mobile

in the geographical space domain, which is studied in this dissertation, but also mutating in
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content, representation, and so on. A natural follow-up question is, how does such mutation

affect the mobility and accessibility of data? For example, a semantically complete data block

can be fragmented and/or encrypted, when it is disseminated through the network. In this

case, the data coverage, where this data block is accessible, becomes a process on a higher-

dimensional structure that captures location, access capability, and data integrity, instead of

the 2-D graph studied in Chapter 3. It would be an interesting research problem to model these

aspects in a data dissemination process, for the benefit of data service provisioning.

Considering the exponentially growing size of wireless systems, powered by the proliferating

wireless devices, the speed of network expansion (in size) may well surpass the speed of network

capacity increase in a wireless system. For instance, in the fog paradigm, our work in Chapter

4 revealed that the growing number of offloading service participants will result in a linearly

growing demand on network resources, in the form of radio spectrum, resource blocks, and

so on. However, the total amount of network resource in the current wireless system is upper

bounded, which indicates that the scale of data offloading service can not grow indefinitely.

Consequently, it is highly desirable to obtain such limit, which is an important characteristic

of a wireless system, and a key input for designing data services. On the other hand, spectrum

dynamics, as a result of mobile data, in turn limits the mobility of data, especially in densely

populated networks, such as a fog system designed for IoT applications. Consequently, it will

be equally necessary to study the inverse of the impact problem addressed in Chapter 5: what

is the impact of spectrum dynamics on mobile data?
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