
ABSTRACT

OWEN, HAILEY MARKAY. A Machine Learning Approach to Predict Loan Default. (Under the
direction of Hien Tran.)

In a world of increasing reliance on technology and a culture that wants fast results at the tip

of their finger, Lending Club emerges as a fast and mutually beneficial tool to provide borrowers

with unsecured personal loans without the need of interaction with a financial institution and

investors with an opportunity to increase personal wealth by collecting interest on these loans. In

this dissertation, we will look at the results given by Decision Tree models, which aim to predict

the time until default on 36 month term loans supplied by Lending Club. First, we will explore loan

default as a binary classification problem. Then, we will expand these results to see how long it

will take for a loan to default, using a Multi-Class Decision Tree. We change the question slightly to

determine where in the term of the loan the lender will regain their investment, and whether the

loan default before or after this point. Finally, we will predict what percent gain the investor will

receive regardless of the status of the loan.
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CHAPTER

1

INTRODUCTION

Peer-to-peer lending is the practice of borrowing or lending money from one person or company

to another without going through a bank or other financial institution. Specifically, Lending Club

is a peer-to-peer lending platform, headquartered in San Francisco, California [21]. This lending

website pairs borrowers with investors. Customers apply for an unsecured personal loan online.

Borrowers give information about their income, purpose for the loan, and debt. Lending Club

collects further information about the borrower such as credit score and credit history then assesses

the risk of funding the loan. If the loan is accepted, Lending Club determines the grade of the loan

which assigns the interest rate and fees that must be paid to Lending Club. Investors can then

search through the loan listings to find loans in which they are comfortable with investing based

on information about the borrower, loan amount, grade, and purpose of the loan. Investors make

money by collecting the interest from the loans. Currently, interest rates can range from 5.31% to

26.77% depending entirely on the grade that was assigned to the loan [22]. Investors can choose to

fully fund a loan or partially fund a loan. It is required that investors fund at least $25 in one loan

and invest at least $1,000 in total, but this could be spread over multiple loans. Borrowers can pay

back the loan fully at any time without penalty [23].

For borrowers that become delinquent throughout the term of their loan, Lending Club reaches

out via email, phone, and letter to collect past due payments and bring the loan back to a âĂIJcurren-

tâĂİ status. After 121 days of failure to pay, a loanâĂŹs status is changed to default by Lending Club

and the loan is charged off when there is no âĂIJreasonable expectation of further paymentsâĂİ
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[24] to Lending Club, usually within 150 days of being past due. This could happen sooner if the

borrower declares bankruptcy.

Investors have only some details about the loan to make a decision about investing. Knowing

if a person will default and when that could occur could make the decision process less daunting.

In this paper, we will focus on trying to predict the time until charge off. We will do this in several

ways. First, we will use a Decision Tree to predict if a loan is charged off, does it happen in the first,

second, or third year of the loan. Second, in an attempt to attain more applicable information to the

investor, we will use a second Decision Tree Model to predict if the loan would be charged off before

or after the principal loan amount was paid back to the investor. Finally, we will predict the percent

return on a loan. This is different than all other models run in our research. In this model, we will

use a continuous label and employ a Regression Tree Model. Using this information, lenders, with

some certainty, can choose investments that might default, but will be profitable before the loan

goes into default.

1.1 What is Machine Learning?

Dr. Yoshua Bengio, UniversitÃl’ de MontrÃl’al, defines machine learning research as a part of research

on artificial intelligence, seeking to provide knowledge to computers through data, observations

and interacting with the world. That acquired knowledge allows computers to correctly generalize to

new settings. Machine learning is based on the idea that systems can learn from data by identifying

patterns within the data. This is done by determining a target function that is an approximation to

the relationship between the input data and its label, in the case of supervised learning. This is all

done in hopes that the system will make decisions with minimal human intervention. In general,

machine learning algorithms consist of the following:

• Representation âĂŞ Classifiers, i.e. Classification and Regression Trees, Neural Networks,

Support Vector Machine, and clustering

• Evaluation âĂŞ Accuracy/Error Rate, Confusion Matrix, Information Gain, Sensitivity, Speci-

ficity

• Optimization âĂŞ Search Methods, i.e. Gradient descent, Greedy search

Because of recent advancements in methods, research, and computing environments, machine

learning today is not like that of the past. The ability to automatically apply calculations in less and

less time with more and more data has transformed the older idea that machines can learn from

patterns within data into what we see today, machines making real time predictions based on real

time data. These advancements have given rise to the applications of machine learning used in

everyday life.
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1.1.1 Supervised vs Unsupervised

There are 3 main ways that classification algorithms operate- supervised, unsupervised, and re-

inforcement learning. Supervised learning is done using labeled outputs. The goal of supervised

learning techniques is to learn a function that, given a sample of data and desired (labeled) outputs,

best approximates the relationship between input and outputs that are observable in the data. More

explicitly put, the data has a training set that is a complete set with input and labels attached. This

complete data has both features and labels for each observation. The supervised learning algorithm

looks at this complete data to find a pattern. This pattern is used to classify future data either for

determining an accuracy measure using the testing set, which also is complete data or classifying

new data that does not have a label. Given a set N of training samples (x1, y1)...(xN , yN ) where xi

is a feature vector and yi is the associated label, it is assumed that there exists a function f such

that y = f (x ) for each of the observes data. The goal of the learning algorithm is to find the best

approximation g to f so that it can be applied to new data and assign labels. The function g is often

called a classifier [14].

Machine learning algorithms that use this method are support vector machines, decision trees, k-

nearest neighbor, and neural networks. Support vector machines build a hyperplane or hyperplanes

to classify data. This idea can be seen in figure 1.1, where H0 and H1 are the hyperplanes, and 2
||−→w ||

is the distance between the two hyperplanes that is to be maximized to find the optimal H0 and

H1. The hyperplane that has the largest distance to the nearest data point of any class is chosen.

This maximizes the separation and ideally achieves the lowest error rate. A decision tree classifier,

which is displayed in figure 1.2, has a root node, which represents the entire population or sample of

data. This root node gets divided into two or more sets depending on the split and feature that best

minimizes the error. This process continues and creates decision nodes until either the node has

become pure or a preset threshold has been reached. When splitting stops a leaf or terminal node is

created. This process is explained in great detail in chapter 4. The k-nearest neighbor algorithm

clusters the data to determine similarities. It then makes decisions on new data based on labels

within each cluster. In figure 1.3, it can be seen how the algorithm clusters the data. Finally as seen

in figure 1.4, a neural network makes decisions with layers. Data are passed between layers to adjust

its internal weightings and ultimately minimize classification error.

Unsupervised learning is done with data that does not have labels. The goal is to infer the

natural structure present within a set of data points to make classifications. The two main machine

learning algorithms that use this method are principal component and cluster analysis. In principal

component analysis, as illustrated in figure 1.5, the dimension of the data is reduced, but maintains

as much of the complexity of the data as possible. The most significant principal components are

selected by looking at how much of the data’s variance they capture, as can be seen in figure 1.6.

Then, by using the first few dimensions of the remapped space only, we can gain understanding of
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Figure 1.1 An Example of a linearly separable binary problem with support vector machines. Support vec-
tor machines build a hyperplane or hyperplanes to classify data. The hyperplane that has the largest dis-
tance to the nearest data point of any class is chosen. This maximizes the separation and ideally achieves
the lowest error rate [35].

the data set’s organization. Cluster analysis is a broad topic that can be accomplished many different

ways. Clustering inherently uses the structure of the data to understand how data is similar, as can

be seen in figure 1.7. As explained above, clustering groups data by similarities and then uses those

similarities to gain understating about new data. Assuming the new data is within some distance to

existing data, new data can be classified the same way.

Semi-supervised learning allows for some labeled observations in the training set and some

that are not. Due to cost of labeling with some projects, fully labeled data may be near impossible,

but some labels can drastically improve results. It can be seen in figure 1.8, that the black and

white points are labeled while the gray points are unlabeled. From the picture, we can tell that the

unlabeled points along with the label points can provide information about the structure of the data

that would not be available without the few labeled data points.

Reinforcement learning refers to a goal-oriented algorithm and is used when decisions need to

be made in a sequential order. The input for the model is the initial state from which the model will

begin. Each decision is made based on the output of the previous decision. These algorithms are

penalized when making a wrong decision and rewarded when making a right decision. An example
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Figure 1.2 A decision tree classifier has a root node, which represents the entire population or sample
of data. This root node gets divided into two or more sets depending on the split and feature that best
minimizes the error. This process continues and creates decision nodes until either the node has become
pure or a preset threshold has been reached. When splitting stops a leaf or terminal node is created.

of an objective function for reinforcement learning is

Σt=∞
t=0 γ

t r (x (t ), a (t )), (1.1)

where r is the reward function and t the time or steps it takes to reach the goal. x is the state at

the given time and a is the action taken in that state. The objective function calculates all rewards

that could be obtained by running all possible decisions. γt is defined as a discount factor and is

multiplied by the reward function. It is designed to make future rewards worth less than immediate

rewards. Reinforcement learning judges decisions that are made by results. The goal is to maximize

the objective function and determine the best path to the goal. An example of a real world application

would be a robot who’s goal is to travel from point A to point B. Every inch that the robot moves

closer to its destination could be counted as points thus minimizing the distance the robot travels

from point A to point B.

1.1.2 Applications

Machine learning is used by many industries and has numerous real world applications that have

significant impacts on the world around us. Figure 1.9 illustrates the methods and models used for

applications of machine learning, though these are just a few.
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Figure 1.3 k-nearest neighbor algorithm clusters the data to determine similarities. The model then makes
decisions on new data based on labels within each cluster. The cluster size depends on what integer K is
determined to be. K is frequently determined by choosing the K that minimizes the error rate [30].

A small number of these applications that deserve mention because how they impact our

everyday life are-

• Voice Recognition Software - Virtual Personal Assistants

• Navigation âĂŞ GPS

• Advertisement - Product Recommendations

• Face Detection âĂŞ Video Surveillance

• Search Engine Results âĂŞ Google

• Medical Predictions âĂŞ Epidemic Outbreak Prediction

• Fraud Detection - Distinguish between legitimate or illegitimate transactions

Siri and Alexa are popular applications of the virtual personal assistants. These applications

use voice commands to find information. Machine learning is an important part of these personal

assistants as they collect information about our lives and preferences and use that information in

their later involvement with us. Typically, Deep Learning which usually involves the use of Neural
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Figure 1.4 A neural network makes decisions with layers. Data are passed between layers to adjust its in-
ternal weightings and ultimately minimize classification error. The input layer contains the entire sample
or population. There can by many hidden layers depending on how deep the network needs to be achieve
accuracy. The output layer contains predictions or decisions made by the model.

Networks are employed to allow these virtual assistants to learn how to interpret what the user

wants.

In navigation, recent advancements in machine learning have allowed the GPS to make traffic

predictions. While we use the GPS, our current location and velocity, along with many other pieces of

information, are recorded and processed along with thousands of other people to predict traffic and

estimated time until arrival. Many methods discussed above are used in traffic pattern prediction.

Fraud detection algorithms are used to distinguish between legitimate and illegitimate transac-

tions. Paypal being one example of a company using machine learning methods to protect against

users laundering money using their services. The company compares millions of transactions using

machine learning methods to distinguish between transactions that are considered normal and

abnormal.
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Figure 1.5 The direction with the most variance in the data is represented using the green line. This is the
first principal component. The blue dotted line represents the second principal component and it is the
direction that varies the most but is uncorrelated to the first component [9].

These among so many others are applications of machine learning that are changing the world in

which we are living. In this dissertation, we discuss one other such domain where machine learning

is already making a difference by providing more information to investors about potential loans.

1.1.3 Difficulties in Machine Learning

There are several difficulties that have to be overcome when using machine learning methods. Some

methods have more limitations than others, but it general most machine learning methods struggle

when presented with a class imbalance or missing data. Many methods can overfit the data if not

pruned or stopped by defining parameters this can cause models that are too complex and variance

in the results of the model.

Most machine learning algorithms work most efficiently when the number of instances of each

class are roughly equal. When there is a class imbalance, the algorithm typically learns quickly that

the error can be minimized easily by always choosing the larger class. These results are not helpful to

the analyst. There are a few ways to overcome this issue and several of them are explored extensively

in this dissertation. Over and under-sampling techniques are used either multiply the minority class

or classes or take away from the majority class or classes. This is usually done by random sampling.

Synthetic Minority Over-sampling Technique (SMOTE) is used to create new data by clustering old

data and borrowing features from similar observations to add new records to the minority class or
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Figure 1.6 The first principal component is highly correlated with both the features in this example. The
second has less correlation. As in this example, when the features are highly correlated predictions can be
made with one new variable, the first principal component, because it can summarize the data well. Thus
the dimension of the data is reduced [9].

classes. These methods allow the algorithm to not make decisions based on popularity of one class,

but to minimize the error as they are designed to do.

The problem of having missing data is inevitable when working with real world data. Missing

data can be caused by a wide variety of reasons including human error during data entry, humans

withholding information on a survey or form, incorrect sensor readings, or software bugs. There are

also many methods to combat this issue inducing- deletion, mean imputation, clustering methods,

and Expectation Maximization. Deleting observations that have missing data is an easy way to avoid

the problem all together if there are minimal missings within the data. This method causes deletion

of valuable information if the problem is wide spread and not a good option for those cases. Mean

imputation is a method where each missing data point is filled in with the mean of the feature

it is in. Hot-Deck imputation is a clustering method that is described in detail later in this paper.

Expectation maximization is the method that was ultimately chosen as the best method for our data

in this dissertation, and involves an iterative method to find the maximum likelihood estimate for

incomplete data.
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Figure 1.7 The image on the right was created using the K-Means method for clustering.The goal of the
model is to determine groups of data. The number of groups is predetermined by the analyst. To produce
these results, first, pick random points as cluster centers, which are called centroids. Second, calculate
each inputs distance to each centroid and assign to the nearest. Third, take the average of assigned data
points for each cluster and find the new center. Fourth, repeat steps two and three until the center of the
clusters no longer change [19].

Overfitting often occurs when the model is more complex than necessary. The algorithm fits the

training data far too closely to generalize results for any new data. It can be seen in figure 1.10, the

green curve separates the blue and red data points perfectly. These points are part of the training

set. While the error using the green line for the training set will be zero, the testing set or new data

likely will not look the same and result in more error than if the line was more general. This is an

example of an over fit classifier. The black line is still separates the training data well, and is far more

general than a line that fits the data perfectly [16].

1.2 Prior Work

Many methods to predict default in loans have been purposed throughout the literature. Among

the most popular are traditional statistical methods (e.g. logistic regression [36]), nonparametric

statistical models (e.g. k-nearest neighbor [15] and classification trees [10]) and neural networks
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Figure 1.8 An example of a semi-supervised model. The black and white points are labeled while the gray
points are unlabeled. From the picture, we can tell that the unlabeled points along with the label points
can provide information about the structure of the data that would not be available without the few la-
beled data points.

[12]. We have chosen to focus our paper on classification and regression tree models and their

adaptations. We do this because, while they are generally able to achieve high predictive accuracy

rates, reasoning behind how they reach decisions is interpretable and applicable to both borrowers

and lenders [28].

Classification trees were first introduced as methods to classify binary outcomes, but have been

used for multi-class problems. In "Solving Multiclass Learning Problems via Error-Correcting Output

Codes" [13], Dietterich et al., generalize the decision tree algorithm to handle multi-class problems.

They take this approach on datasets with 6 classes up to 26 classes.

Much of the previous work has focused on predicting a binary split of loans that will be paid-

in-full or will default. This is done frequently in literature and sometimes as class projects. This is

an easy baseline problem from which to start. One paper that successfully makes this prediction is

"Analysis of Default in Peer to Peer Lending" [33]. In this paper, Ramirez explores loan default as a

binary classification problem. He builds a decision tree classifier and evaluates performance based

on binary classification metrics. His error rate is 22.2% for his single tree model.
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Figure 1.9 Example of Machine Learning Applications [17] for unsupervised, supervised, and reinforce-
ment learning models. This map shows how each of these types of machine learning might be used in
practice.

In "A Data-Driven Approach to Predict Default Risk of Loan for Online Peer-to-Peer (P2P) Lend-

ing" [18],the authors use Lending Club data and several multi-class models to predict if a loan will

default, need attention, or be paid and compare results. Their classification/prediction models

include neural networks, decision trees, and support vector machines (SVM). They compare the

accuracy of these methods to conclude that SVM achieved the best performance, but only slightly.

This prediction is similar to our baseline prediction though it does use the idea of a multi-class

classifier to make a more robust prediction. The novelty of this paper is predicting default times

using classification trees, but until now much of this work was being done using survival analysis.

Narain [29]was the first author to use parametric accelerated failure time (AFT) survival method.

He used data that contained 1242 borrowers with 24 month loan terms. He obtained results that

were reasonable. Several authors followed his lead and started to use these techniques to make
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Figure 1.10 This is an example of overfitting. The green curve separates the blue and red data points per-
fectly. These points are part of the training set. While the error using the green line fore the training set will
be zero, the testing set or new data likely will not look the same and result in more error than if the line
was more general. This is an example of an over fit classifier. The black line is still separates the training
data well, and is far more general. The yellow data point shows the situation where a new data point will be
classified differently based on overfitting of the training data.

their predictions. In "Not if but when will borrowers default", Banasik et al. [3] purposed using an

alternative to the AFT model. His work focused on using the Cox proportional hazard model for its

flexible non-parametric baseline hazard. His work used a data set with 50,000 loan applications.

The data was analyzed using the non-parametric proportional hazards model (no baseline hazard

assumption), two parametric proportional hazards models using exponential hazards and Weibull

baseline hazards, and an ordinary logistic regression approach [2].

The successes that were found in previous work, using decision trees in creative ways, set the

stage for us to predict time until default using multi-class decision trees.
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1.3 Overview of Contributions

While cleaning the data, imputation, and feature engineering are not novel, the way in which we

employ these methods gives us the ability to apply models to data in a novel way. In literature, we

find countless papers and projects that do a binary decision tree on loan data to determine if a

loan will default or be paid-in-full. The accuracy of our models are better than most found in the

literature. These comparisons will be made in chapter 5. The uniqueness in this dissertation comes

in using multi-class classification trees to predict time until default. In the field, similar predictions

are made using survival analysis. We compare our results to a survival analysis model in chapter 5.

We finally predict percent gain using a regression tree. We have found in the literature this being

done with random regression forests, which is similar to our model and has comparable results.
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CHAPTER

2

DATA PREPARATION METHODS

Data cleaning is comprised of detecting and modifying or deleting inaccurate, incomplete, or

irrelevant records or features from a data set. Lending Club’s data had many irregularities and

missing values as most of the features are self-reported and some information is not mandatory

on the application. Also, because these data sets come from different years, regulations change

which results in differing or missing entries and inconsistent features. Some, but not all, of these

barriers were overcome within the cleaning and preparation process. Another reason for cleaning

and managing the data is to fit the input for the model in the most efficient way possible. Some

features were recoded to reduce computing time.

2.1 Cleaning

The data from Lending Club is publicly available and comes in .csv format in multiple tables. Years

2007-2011, 2012-2013 and the data dictionary were downloaded for this research. After combining

all data sets there was a total of 123,386 loans. A sample of data can be seen in figure 2.1. We wanted

to keep all data where the loan had either been paid-in-full or defaulted. We read in and cleaned

this data using SAS 9.4. Initially, we read in and set these tables together to create one large database.

After investigation, we dropped all 60 month term loans. The volume of these longer terms loans is

far less than 36 month term loans. Lending Club began issuing 60-month term loans in 2010 on

a very small scale. Until recently these initial loans had not reached maturity, which is one of our

15



qualifications for analysis, thus providing very little data for analysis. After dropping all 60-month

term loans, approximately 11% of loans were default and 89% were paid-in-full. We then found all

the features where at least 50% of entries were missing and dropped those out of the study. We also

removed 23 features that had only 31% of their entries missing, but this occurred in the same 54,084

records. The pattern here was too much to meaningfully impute this data. We also removed rows

that did not appear accurate, such as if the loan amount was missing. We then found all features

that were created after origination of the loan as these features were not helpful in our research and

dropped those as well. You can see in Table 2.9 the features that were dropped and the reason. All

features not mentioned in the table were used in analysis or used to create a feature used in analysis.

Figure 2.1 This figure shows an example of the data used in this project. There are 10 records in this exam-
ple and a small subset of the features used in each model.

Several features came in the data sets as categorical. Features that were categorical and had no

sense of order or ranking were coded with a one-hot representation. The one-hot representation

creates a new feature for each category within a current feature. An example of this can be seen in

figure 2.2. The category that applies to each record is indicated with a 1 and all others 0. An example

of this, in the data, occurs with the feature purpose. This tells us, in 14 categories, the intent of the

borrower. All 14 categories were made into separate features all consisting of 0’s or 1’s. Each record

only has one of these 14 categories flagged as the intended use of the resource. You can see in table

2.1 the distribution of the records within the feature purpose.
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Figure 2.2 These two tables show the progression per observation that happens to apply a one hot encod-
ing.

Table 2.1 Loan Distributions by Loan Purpose

Purpose of Loan Number of Loans Total Percent Percent Charged Off
Car 2670 1.52 0.15

Credit Card 39638 22.60 2.40
Debt Consolidation 95984 54.71 7.08

Educational 405 0.23 0.05
Home Improvement 10014 5.71 0.64

House 1099 0.63 0.08
Major Purchase 4797 2.73 0.26

Medical 1929 1.10 0.18
Moving 1468 0.84 0.13
Other 10613 6.05 0.97

Renewable Energy 186 0.11 0.02
Small Business 3492 1.99 0.45

Vacation 1192 0.68 0.10
Wedding 1939 1.11 0.12

The one-hot representation creates challenges if the number of categories within a feature

is large, such as the state in which a borrow lives. If a feature like state is recoded to a one-hot

representation, running the decision tree model becomes far too time consuming. To combat

this issue, we grouped categories together in convenient ways. The feature state was converted
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Table 2.2 Loan Distributions by Grade

Grade of Loan Number of Loans Total Percent Percent Charged Off
A 37555 21.41 1.21
B 66782 38.07 4.06
C 40937 23.34 3.71
D 23442 13.36 2.73
E 5327 3.04 0.70
F 1124 0.64 0.18
G 259 0.15 0.05

Table 2.3 Loan Distributions by Employment length

Current Employment Length Number of Loans Total Percent Percent Charged Off
Less than 1 year 14784 8.43 1.10

1 year 12200 6.95 0.87
2 years 16628 9.48 1.19
3 years 14467 8.25 1.04
4 years 11346 6.47 0.80
5 years 13604 7.75 0.96
6 years 10929 6.23 6.79
7 years 9788 5.58 0.73
8 years 7915 4.51 0.57
9 years 6259 3.57 0.44

10+ years 49947 28.47 3.32
Did not answer 7559 4.31 0.79

to the feature region. This was done by grouping states into 9 regions then applying the one-hot

representation to the new feature and dropping the original feature of state. These regions were

determined by the Census Bureau [7] and can be seen in figure 2.3.

Features that were categorical, but had meaning when ranked, such as grade, were made numeric

by giving each category a meaningful numeric entry. You can see in table 2.2 the distribution of

records by grade. The grade of your loan directly impacts your interest rate. Grade A borrowers will

have the lowest interest rate. These borrowers have been deemed less risky by Lending Club.

2.2 Label Creation

We created four label features to use in our four different model runs. The first label was the binary

label that represented if the loan was defaulted or paid-in-full. We were given the status of the loan

within the data set as the variable loan_status.
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Figure 2.3 A map that of the United States from the Census Bureau showing the regions that were used for
recoding of the state variable.

The second feature indicated which third of the term of the loan the borrower defaulted on

payments, if they defaulted. This means that the borrower either paid the loan in full, defaulted

in the first year of first third of the loan term, second year or second third of the loan term, or the

third year or final third of the loan term. We then created this label by taking the date that the loan

was issued and the date of last payment and calculating the amount of time between the two dates

to find the total time that payments were being made on the loan. Because we would expect all

loans to be paid off or defaulted approximately one or two months after the loan term, we dropped

all records that far exceeded that time frame. We do not have all the payment history details on

each loan; therefore, we do not know enough to proceed with these records. We can see on the

Lending Club website that loans that fall delinquent are often brought back to âĂIJcurrentâĂİ by

arrangement of a new payment plan. This could account for the length of some loan terms being

longer than expected [25]. We then took both the binary label, we created, and the total amount of

time that was paid on the loan to decide in which of four bins each record should be placed, one of

the bins being paid-in-full, and the other three splitting the loan term in thirds. This is illustrated in

figure 2.4.

The third label that was created was based on the date within the loan term when the original
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Figure 2.4 This figure illiterates what is contained in each bin we create for the multi-class classification
tree and random forest model.

amount of the loan, excluding interest, was paid-in-full. Many records within the data set did have

borrowers that defaulted, but did so after their payments had exceeded the amount of the original

loan. In these instances, the lender still made a profit, or at least received the principal amount from

the borrower, even though it was not the principal amount plus interest. To calculate if the loan

was profitable or not, we multiplied the number of months the borrower made payments on the

loan by installment paid each month. Then we subtracted that number from the loan amount. If

the number was negative or 0, the loan was labeled 1 indicating the loan was profitable, else it was

labeled 0 indicating the lender lost their investment. Default versus paid-in-full was not considered

when creating this label.

The fourth label was created by considering the percent a lender will get as a return on their

investment. We want to be able to predict, with some certainty, what percent of the principal amount

the investor will gain or lose. We calculated this by summing the total received principal and the

total received interest, then subtracting the loan amount. This gave us the amount of money that

the investor received from the borrower over the amount that was lent. This total was then divided

by the loan amount to find the percent that the investor either gained or lost on the investment.

2.3 Sampling

Another challenge to over come in our data was a severe class imbalance. Decision tree models

create biased trees if there is a dominate class. This will frequently result in always predicting the

majority class. A class imbalance was expected as Lending Club does not want to take on loans

that are going to default, but conceivably some do. In three of our four created labels, we could see

imbalance. When there is a severe class imbalance, re-sampling is typically performed to relieve
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classifier bias when training because of the simplicity of the technique as well as implementation. We

chose to examine three different methods- Over-Sampling, Under-Sampling, and Synthetic Minority

Over-Sampling (SMOTE). Across all models, we can see in table 2.5 that SMOTE and Over-Sampling

out perform Under-Sampling. The severity of the class imbalance forces us, when under sampling,

to have so few records that there are not enough to properly train the model.

Table 2.4 Class Imbalance Percentages per Model

Multi-Class Label
Percent of Data in Each Class

Paid-in-full 87.37%
Default Year 1 4.59%
Default Year 2 5.14%
Default Year 3 2.90%

Binary Label
Percent of Data in Each Class

Paid-in-full 87.37%
Default 12.63 %

Break-Even Label
Percent of Data in Each Class

Gain from Investment 88.72%
Loss from Investment 11.28%

2.3.1 Over-Sampling the Minority Class

Over-sampling is done by generating new records that are copies of existing records. This process

must be done after removing the validation set to prevent over fitting. We do not want the same

records to be trained on as we will use to validate our models. Our over-sampling was done by first

randomizing the data. We removed testing and validation sets. We then duplicated the minority

class(es) until the percentages in the data were approximately equal to the majority class. We did

investigate making the classes exactly equal by randomly selecting records to duplicate instead of

duplicating the entire data set again, but this did not affect the accuracy of the model.
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2.3.2 Under-Sampling the Majority Class

Under-sampling is done by decreasing the number of records in the majority class until it is compa-

rable in size to the minority class. This is done by randomly selecting records to keep in the class.

Our under-sampling was done by first randomizing the data a second time. We sampled using a

simple random sampling method. In simple random sampling, each unit has an equal probability

of selection, and sampling is without replacement. We drew only the number of records that were in

the majority class. This severely depleted the number of records that were available to our model.

Due to the lack of information given to the model, this method did not create favorable results. If

more data were available, this method could be a better option.

2.3.3 SMOTE

SMOTE is a common method of over-sampling. Instead of duplicating records, the algorithm creates

records that are synthetic to append to the minority class. Synthetic records are created by looking

along the line segments, in the feature space, between minority class instances. The algorithm

draws a line segment between each instance and its k nearest neighbors, then randomly chooses

one of these line segments to create a synthetic instance. After determining the directions to use,

the difference is taken between the instance and its nearest chosen neighbor. That difference is

multiplied by a random number between 0 and 1 and added to the instance. This causes the selection

of a random point along the line segment between two specific instances. This idea is depicted in

figures 2.5, 2.6, and 2.7. The algorithm will continue this process until the classes are balanced. This

approach effectively forces the decision region of the minority class to become more general [8].

Our implementation uses five nearest neighbors.

2.3.4 Sampling Results

Imbalance within classes was by far the biggest hurdle in processing the data. The class imbalance

was so severe combined with our high dimensional data set, the SMOTE algorithm was unable to

really compete with over-sampling. In a paper by Blagus and Lusa [4], it was concluded that even

though SMOTE performs well on low-dimensional data, it is not effective in the high-dimensional

setting for many classification methods, including classification trees. Under-sampling sharply

depleted the amount of data fed into the classifier. The lack of data caused unfavorable results

coming out of the model. It can be seen in table 2.5, over sampling is the superior method. It is also

much less complicated and takes far less time to implement.

We are using error rate of our decision tree model to make decisions on methods to use to finalize

our model. Error rate is calculated by determining the number of correctly classified examples

divided by the total number of examples and subtracting that decimal from one. We want this rate
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Figure 2.5 The red data points are the minority class in this example, and the green data points are the
majority class [20]. This example was drawn from en example using the well known Iris data set.

Figure 2.6 This figure shows line segments that are drawn in the feature space between minority class
instances [20].

to become as small as possible while taking into account the false positive rate as well, which is

explains in detail in chapter 4.
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Figure 2.7 This figure shows the synthetic observations the algorithm created. The algorithm randomly
chooses one of these line segments to create a synthetic instance. After determining the directions to use,
the difference is taken between the instance and its nearest chosen neighbor. That difference is multiplied
by a random number between 0 and 1 and added to the instance. This causes the selection of a random
point along the line segment between two specific instances [20].

Table 2.5 Error Rates for Sampling Methods

Multi-Class Label Binary Label Break-Even Label
SMOTE 37.23% 34.58% 33.83%

Over Sampling 23.99% 22.15% 20.49%
Under Sampling 47.48% 45.32% 44.13%

2.4 Imputation

A serious problem when working with real-world data is that there are often significant amount of

data missing for various reasons. When working with a limited amount of data, it is crucial to use all

available data and not discard records due to missing values if possible.

Lending Club compiles a large amount of financial and personal data from its borrowers. This

data is plagued with missing entries, some explainable and some that are seemingly erroneous. In

section 2.1, we discussed our method of removing features due to having more than 50% missing

from the feature. In the cases where the missing information was seemingly random we elected to

attempt two forms of imputation to gain precision. We employed two popular methods- Nearest

Neighbor Hot-deck and Expectation Maximization. We evaluated the performance of each based on

improvement in accuracy within the models based on the accuracy of simply removing all missing

data. While the hot-deck method imputes missing values by clustering the data and then randomly
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choosing a âĂIJdonorâĂİ row to use for the missing value, the expectation maximization imputes

missing values by finding the maximum likelihood estimates and iterates until maximizing the log

likelihood. Then it uses this estimate to impute the data.

2.4.1 Removing Missing Data

Removing missing data involved deleting records in our data set that are missing data in any feature

of interest. This is a common technique because it is easy to implement and works with any type

of analysis. Because we needed a baseline for our imputation attempts, we started this process by

deleting all records with missing data anywhere in them. We deleted 9,036 records.

Table 2.6 Patterns within Missing Data

Group 1 2 3 4 5 6 7 8 9 10 11 12
tax_liens X X X X X X X X
total_acc X X X X X X X X X X

collections_12_mth_ex_med X X X X X
acc_now_delinq X X X X X X X X X X

chargeoff_within_12_mths X X X X X
delinq_amnt X X X X X X X X X X

earliest_cr_line X X X X X X X X X X
revol_util X X X X X X

pub_rec_br X X X X X
pub_rec X X X X X X X X X X
open_acc X X X X X X X X X X

delinq_2yrs X X X X X X X X X X
emp_length X X X X X X X X X X
annual_inc X X X X X X X X X X X

inq_last_6mths X X X X X X X X X X
Frequency 166093 7542 1203 143 6 4 32 2 74 1 25 4

As you can see in Table 2.6, groups 11 and 12, most features are missing values in these 29 records

(25 from group 11 + 4 from group 12). Although it is impossible, by looking at the data, to tell the

reason these 29 records are missing values from nearly all 15 features, it might imply there is an

underlying pattern of missingness among these records. Therefore, we dropped these 29 records.

This also eliminates the need to impute total_acc, acc_now_delinq, delinq_amnt, earliest_cr_line,

pub_rec, open_acc, delinq_2yrs, annual_inc, inq_last_6mths.
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2.4.2 Expectation Maximization

The Expectation Maximization (EM) Algorithm is a technique that is used to impute missing values

by finding the maximum likelihood estimates. This is done by using an iterative process with

two main steps- the expectation step, or E step and the maximization step, or the M step. These

two steps are repeated until convergence. Though the EM algorithm was used earlier for special

circumstances, in a paper from 1977, Dempster, Laird, and Rubin [11] generalize and formally

formulate the Expectation Maximization algorithm [1]. To use the EM algorithm in our incomplete

data problem, we must associate it with the complete data problem to estimate the maximum

likelihood. The initial step in the algorithm is to initialize the parameter vector, let this be Θ.

Let y denote the complete data samples, with y ∈ Y ⊆R m , and the probability density function

(pdf) that is associated with y be Py (y ;Θ). y , however, cannot be directly observed. We will refer to

our observed data as x = g (y ) ∈ Xo b ⊆R l , where l <m . The pdf associated with the observed data

is Px (x ;Θ). The subset of y ’s associated with a single x can be written as Y (x )⊆ Y . The pdf of the

incomplete data can be found by

Px (x ;Θ) =

∫

Y (x )
Py (y ;Θ)d y . (2.1)

Ideally, the Maximum Likelihood estimate of Θ, denoted Θ̂M L , would be given by

Σk

∂ l n (Py (yk ;Θ))

∂ Θ
= 0. (2.2)

Our problem is that the y ’s represent our complete data, which is not available. Here is where we

use the EM algorithm to combat this issue.

For the current value of Θ(t ), the parameter vector, the E step computes the expected value of

the observed data log-likelihood

Q (Θ|Θ(t )) = E [Σk l n (Py (yk ;Θ)|X ,Θ(t ))]. (2.3)

The M step finds the parameter vector that maximizes the log-likelihood of the imputed data.

We call this vector Θ(t+1) and our goal is to maximize Q (Θ;Θ(t )). That is

∂Q (Θ;Θ(t ))
∂ Θ

= 0. (2.4)

The initial estimate is begun at Θ(0) and iterations are continued until the following condition is met:

||Θ(t+1)−Θ(t )|| ≤ ε. (2.5)
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Because the log-likelihood increases at each step and is bounded from above, convergence is

guaranteed. Proof of this can be found in [11] on page 7.

2.4.3 Hot-Deck

Hot-deck Imputation is an intuitive method for handling incomplete data. Therefore it has been

used propitiously on large data sets [27] for many years. We employed nearest neighbor hot deck

imputation. In this method, missing values are replaced by values from similar complete samples.

These similarities are found by clustering the data. We must define a metric to measure distance

between complete data and data with missing information. Suppose our X indicates features with

missing data with m missing values and Y indicates complete features.

To choose which value of X i where i = 1, ..., n −m replaces the missing in X j where j = n −m +

1, ...n , we must look at the corresponding values in the complete data Y . By calculating the closest

value Yj to Yi , we determined which samples were most similar. The distance is calculated using

the following method:

|Yi −Yj |= min
1≤k≤n−m

|Yk −Yj | (2.6)

If two or more values are equidistant from Yj , the mean of the corresponding X i is calculated for

imputation.

We looked to see what features had missing data. This can be seen in Table 2.6. We then analyzed

which features were most correlated with the feature containing missing data. The feature most

correlated will be Y as in our equations above. You can see in Table 2.7 the features and their

correlation rates with the features being imputed.
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Table 2.7 Features with Missing Data and Features Most Correlated

Feature with Missing Data Feature Most Correlated Correlation Rate
emp_length_num mortgage 0.214

tax_liens_num pub_rec_num 0.643
collections_12_mths_ex_med_num int_rate_num 0.043

chargeoff_within_12_mths_num delinq_2yrs_num 0.114
pub_rec_br_num pub_rec_num 0.753

revol_util_num int_rate_num 0.412

2.4.4 Imputation Results

As we see in Table 2.8, the EM algorithm sightly outperforms both Hot-deck Imputation and simply

removing the missing data in every model. In our situation, Expectation Maximization is a good

fit for the type of data we have. Features we imputed had at most 4% of the data missing, and it is

important to us that they preserve the relationship with other features for its use in the decision tree

model.

Table 2.8 Error Rates for Imputation Methods

Multi-Class Label Binary Label Break-Even Label
Remove Missing Data 23.99% 22.39% 21.26%

EM 23.99% 22.15% 20.49%
Hotdeck Imputation 24.27% 22.15% 20.84%

2.5 Contributions

While creating the labels, sampling, and imputing missing data are not novel, the way in which

we employ these methods gives us the ability to run the model to produce results that are novel.

In literature, we find countless papers and projects that do a binary decision tree on loan data to

determine if a loan will default or be paid-in-full. The uniqueness in this dissertation comes in the

multi-class labels that allow us to predict the time to default and percent return on investment using

a decision and regression tree, respectfully.
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Table 2.9 Features Dropped Before Analysis

Feature Dropped Reason

all_util All Missing

acc_open_past_24mths Not collected Prior to 2012

annual_inc_joint All Missing

application_type All entires are the same

avg_cur_bal 31% Missing

bc_open_to_buy Not collected Prior to 2012

bc_util Not collected Prior to 2012

collection_recovery_fee Data recorded into the life of the loan

deferral_term All Missing

dti_joint All Missing

emp_title Can’t be used in analysis

hardship_amount All Missing

hardship_dpd All Missing

hardship_end_date All Missing

hardship_last_payment_amount All Missing

hardship_length All Missing

hardship_loan_status All Missing

hardship_payoff_balance_amount All Missing

hardship_reason All Missing

hardship_start_date All Missing

hardship_status All Missing

hardship_type All Missing

hardship_flag All enties are the same

id All Missing

il_util All Missing

inq_fi All Missing

inq_last_12m All Missing

last_credit_pull_d Data recorded into the life of the loan

last_pymnt_amnt Data recorded into the life of the loan

max_bal_bc All Missing

member_id All Missing

mo_sin_old_il_acct 31% Missing

mo_sin_old_rev_tl_op 31% Missing

mo_sin_rcnt_rev_tl_op 31% Missing
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Table 2.9 (continued)

Feature Dropped Reason

mo_sin_rcnt_tl 31% Missing

mort_acc Not collected Prior to 2012

mths_since_last_delinq 58% missing

mths_since_last_major_derog 86% missing

mths_since_last_record 90% missing

mths_since_rcnt_il All Missing

mths_since_recent_bc_dlq 84% Missing

mths_since_recent_inq 31% missing

mths_since_recent_revol_delinq 76% missing

mths_since_recent_bc Not collected Prior to 2012

next_pymnt_d Data recorded into the life of the loan

num_accts_ever_120_pd 31% missing

num_actv_bc_tl 31% missing

num_actv_rev_tl 31% missing

num_bc_tl 31% missing

num_il_tl 31% missing

num_op_rev_tl 31% missing

num_rev_accts 31% missing

num_rev_tl_bal_gt_0 31% missing

num_tl_120dpd_2m 31% missing

num_tl_30dpd 31% missing

num_tl_90g_dpd_24m 31% missing

num_tl_op_past_12m 31% missing

num_bc_sats Not collected Prior to 2012

num_sats Not collected Prior to 2012

open_acc_6m All missing

open_il_12m All Missing

open_il_24m All Missing

open_il_6m All Missing

open_rv_12m All Missing

open_rv_24m All Missing

orig_projected_additional_accrue All Missing

out_prncp Data recorded into the life of the loan

out_prncp_inv Data recorded into the life of the loan
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Table 2.9 (continued)

Feature Dropped Reason

payment_plan_start_date Data recorded into the life of the loan

pct_tl_nvr_dlq 31% missing

percent_bc_gt_75 Not collected Prior to 2012

policy_code All entires are the same

pymnt_plan Data collected after origination

recoveries Data recorded into the life of the loan

revol_bal_joint All Missing

sec_app_chargeoff_within_12_mths All Missing

sec_app_collections_12_mths_ex_m All Missing

sec_app_earliest_cr_line All Missing

sec_app_inq_last_6mths All Missing

sec_app_mort_acc All Missing

sec_app_mths_since_last_major_de All Missing

sec_app_num_rev_accts All Missing

sec_app_open_acc All Missing

sec_app_open_il_6m All Missing

sec_app_revol_util All Missing

tot_coll_amt 31% missing

tot_cur_bal 31% missing

tot_hi_cred_lim 31% missing

total_bal_il All Missing

total_cu_tl All Missing

total_il_high_credit_limit 31% missing

total_pymnt Data recorded into the life of the loan

total_pymnt_inv Data recorded into the life of the loan

total_rec_late_fee Data recorded into the life of the loan

total_rev_hi_lim 31% Missing

total_bal_ex_mort Not collected Prior to 2012

total_bc_limit Not collected Prior to 2012

url All Missing

verification_status_joint All Missing
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CHAPTER

3

FEATURE ENGINEERING

Feature engineering is a process of the analyst creating features by either using relationships among

features currently in the data or looking for outside information that can be merged onto the data

with already existing features. Feature engineering is the human element in machine learning.

Understanding of the data, domain knowledge, and human intuition and creativity are what allow

feature engineering to make a difference in model accuracy. Decision Trees are designed to find

relationships among features and uses those to achieve better results. In general, a well engineered

feature may be easier for the algorithm to digest and make rules from than the feature from which it

was derived.

In our data, we created one relationship that increases accuracy. First credit pull (first_cr_pull)

is time between earliest credit line and loan origination. This gives the model the amount of time

that a borrower has had at least one credit line open. You can see in table 3.2, first credit pull is of

significant importance to all three models that were run.

In our data set, we were provided with the first three digits of a zip code for each borrower. This

allowed us to know what state and what region of the state each borrower was associated with at the

time the loan was originated.

We also wanted to get a picture of how far the borrowers income was away from the average

income in their general area. The only two location variables we had for each borrower was the

first 3 numbers in the zip code and the state in which they reside. We used a zip code database

that included county, zip code, and population from the year 2015. We also needed a data set that
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contained income information per capita. We used a data set that provided average income per

county, but did not contain zip code. Both data sets were pulled from the census bureau database.

We merged these two data sets by county, and calculated the average income in each 3 digit zip code

region.

To create the relationship for the new feature, percent difference from the average income, we

looked at each borrowers income and the average income in their region. We then calculated the

percent difference and the percent increase.

p e r _d i f =
|a v e r a g e _i n c o me −a nn ua l _i n c o me |

1
2 × (a v e r a g e _i n c o me +a nn ua l _i n c o me )

×100 (3.1)

p e r _i n c r e a s e =
a nn ua l _i n c o me −a v e r a g e _i n c o me

a nn ua l _i n c o me
×100 (3.2)

As a result of adding these features, the error rate decreased, as seen in table 3.1. Also, in table

3.2, percent difference in income (per_dif) was 10th most important in all models run. This tells us

that this feature is useful to the models, and made a difference in its calculations.

Figure 3.1 Map of United States Showing 3-digit Zip Code Regions
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3.1 Feature Engineering Results

Table 3.1 Error Rates for Features Engineered

Multi-Class Label Binary Label Break-Even Label
Before Feature Engineering 23.99% 22.15% 20.49%

First Credit Pull 23.54% 21.85% 20.20%
Percent difference in Income 23.48% 21.71% 20.07%
Percent Increase in Income 23.57% 21.83% 20.13%

With all Engineered Features 23.46% 21.63% 19.67%

3.2 Feature Importance

Feature importance is calculated within a decision tree model while it is splitting, which will be

discussed more in chapter 4. The importance score is calculated as the decrease in node impurity

weighted by the probability of reaching that node. The probability of reaching a node is calculated

by the number of samples that reach the node, divided by the total number of samples. The higher

the importance score the more important the feature is to the model.

In Table 3.2, we can see the top ten most important features in all decision tree models. We notice

that all three models approximately score the same 10 features most important. We are asking each

model run to make similar decisions all based on giving a loan to someone based on their financial

characteristics, thus using the same features for each model is not a surprising result. Similarly,

professionals, such as loan officers or investors, use certain criteria for loans, to decide if they are

good investments to fund.

3.3 Contributions

Feature engineering is not a unique method in machine learning; however, its creative aspect does

lend itself to finding new ways to allow the model to incorporate data. In this way, we calculated

three features that are definitely used in the field, possibly inadvertently, to make decisions about

loans, but are not typically used as features. This data is not directly collected by Lending Tree, to

our knowledge, but can be sought out by investors prior to investing.
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Table 3.2 Table of 10 Most Important Features

Importance Score Feature
Multi-Class Label

0.078 dti_num
0.078 revol_bal_num
0.075 revol_util_num
0.065 loan_amnt_num
0.064 annual_inc_num
0.053 earliest_cr_line_num
0.053 total_acc_num
0.053 first_cr_pull
0.044 int_rate_num
0.044 per_dif

Binary Label
0.076 dti_num
0.075 revol_util_num
0.071 revol_bal_num
0.065 annual_inc_num
0.060 New_England
0.056 total_acc_num
0.056 loan_amnt_num
0.049 earliest_cr_line_num
0.049 first_cr_pull
0.046 per_dif

Break-Even Label
0.075 dti_num
0.074 revol_bal_num
0.073 annual_inc_num
0.069 revol_util_num
0.059 New_England
0.059 loan_amnt_num
0.054 first_cr_pull
0.050 total_acc_num
0.050 earliest_cr_line_num
0.047 per_dif

35



CHAPTER

4

METHODS

4.1 Classification Tree

The idea of classification and regression trees was introduced by Breiman et al. in 1984 [5]. The basic

goal of a classification tree is to split a population of data into smaller segments. This algorithm has a

tree-like structure, hence the name. Each internal node represents features, each branch represents

a rule made by the algorithm, and each leaf the outcome of those decisions. In figure 4.1 we see

a basic example of the decision tree structure. A tree uses if-then statements to find patterns in

data. Each of these if-then statements creates the branches. Elements to the left of that point get

categorized in one way, while those to the right are categorized in another. Each non-terminal node,

determined by several parameters, repeats the splitting process until a specified level of purity is

reached. Decision trees are grown by examining all possible splits of all input features. The algorithm

then decides if the criterion has been met or not [35]. In figure 4.2, we see a basic flow chart for how

a decision tree is created as well as how the data flows though the process of creation. Each piece of

this flow chart is discussed, in detail, throughout this chapter.

There are two stages to prediction. The first is training the model where the tree is built and

optimized by using the training and validation sets. The second is predicting where we use the

optimal parameters found for the model to predict an outcome for the testing set.
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Figure 4.1 Basic decision tree structure that defines the root, decision, and leaf nodes.

Figure 4.2 Basic Classification Tree Flow Chart

4.1.1 Classification Tree Model

Given the training matrix X ∈R l×n , i = 1, , l , where n is the number of features and l is the number

of observations, and a label vector Y ∈R l×1, a decision tree recursively partitions the space such
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that the samples with the same labels are grouped together.

Let the data at node m be represented by Q . For each candidate split Θ = ( j , tm ) consisting of

feature j ∈ 1, , n and threshold tm , partition the data into Ql e f t (Θ) and Qr i g h t (Θ) subsets where

Ql e f t (Θ) = (x , y )|x j ≤ tm (4.1)

Qr i g h t (Θ) =Q\Ql e f t (Θ). (4.2)

The impurity at the point m is determined using an impurity function H (·), for which there are

several choices depending on the problem being solved. This is discussed later in the chapter. The

total impurity, G (·, ·), (weighted by the number of samples in the nodes) is computed using the

impurity function H (·) as follows,

G (Q ,Θ) =
nl e f t

Nm
H (Ql e f t (Θ))+

nr i g h t

Nm
H (Qr i g h t (Θ)), (4.3)

where n is the amount of data in the (right or left) node and N is the total data points in the parent

node. Select the parameters that minimizes the impurity,

Θ∗ = a r g mi nΘG (Q ,Θ). (4.4)

Continue for subsets Ql e f t (Θ∗) and Qr i g h t (Θ∗) until the tree is either fully grown or optimized [32].

4.1.2 Impurity

The two most commonly used ways to evaluate splits are the Gini Index and Entropy measure. The

two measures are very similar but have a few notable differences. Entropy (information gain) is the

measure of disorder within the data.

E =−ΣN
i=1pi l o g2(pi ) (4.5)

is the disorder of the set at each node, where N is the number of classes and pi are the ratios of the

elements of each label in the set. Minimum Entropy measure is 0 and maximum is l o g2N . The goal

is to minimize E by splitting the observations with different cut points to determine best split. The

Gini Index is the expected error rate according to the distribution of the classes at that node. The

cost function

I = 1−ΣN
i=1p 2

i (4.6)

is used to evaluate splits within the data set by measuring node impurity, where N is number of

classes and pi is the fraction of each class i that reach the node. The goal is to minimize I by splitting

the observations and features with different cut points to determine best split. Once a feature is
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chosen, use the best cut point, and repeat until end leaves are found. The Gini impurity index is

the measure that was used in our research because it was faster, not necessarily more accurate.

Calculating the l o g at each split is time consuming for large data sets. A weighted sum of the

impurity can be computed for each partition. The partition that gives the minimum gini impurity

index is selected.

The process of creating a decision tree begins by selecting the the feature and cut point within

the feature that makes up the root node. The root node, or any decision node within the model, is

chosen using an impurity measure, and in our case the Gini impurity index. In figure 4.3, we see

three features and a label in which we will use to determine the best feature to place in the root

node of this decision tree, which is a very small sample of our data. We will use this to simulate the

real process.

Figure 4.3 This sample of data was used to choose the root note to demonstrate the uses of impurity
within a decision tree.

In this example, we will use specific cut points for each feature instead of calculating the index

for every cut point within each feature because of the extensive amount of calculations.

To calculate the total impurity for interest rate (int_rate), we used the same equations as above,

39



Figure 4.4 This figure shows the 3 features that are candidates for the root node along with the example cut
points.

(4.6),

i n t _r a t e≥13 = 1− ((
6

9
)2+ (

3

9
)2)

= 0.444
(4.7)

i n t _r a t e<13 = 1− ((
5

7
)2+ (

2

7
)2)

= 0.408
(4.8)

i n t _r a t et o t a l =
9

16
×0.444+

7

16
×0.408

= 0.4283
(4.9)

To calculate the total impurity for debt to income ratio (dti), we used the same equations as
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above,

d t i≥10 = 1− ((
7

9
)2+ (

2

9
)2)

= 0.3457
(4.10)

d t i<10 = 1− ((
4

7
)2+ (

3

7
)2)

= 0.4898
(4.11)

d t it o t a l =
9

16
×0.3457+

7

16
×0.4898

= 0.4088
(4.12)

To calculate the total impurity for employment length (emp_length), we used the same equations

as above,

e mp _l e ng t h≥5 = 1− ((
7

7
)2+ (

0

7
)2)

= 0
(4.13)

e mp _l e ng t h<5 = 1− ((
4

9
)2+ (

5

9
)2)

= 0.4938
(4.14)

e mp _l e ng t ht o t a l =
7

16
×0+

9

16
×0.4938

= 0.2778
(4.15)

From looking at these three candidates for the root node feature the algorithm would choose

employment length because it is the most pure split, or has the lowest total Gini index. This process

is repeated at every node with the remaining data that made it to the node to determine the next

best split.

In figure 4.5, we show two example splits, A and B. Here we are show that nodes with multiple

classes are calculated exactly the same way as a binary tree. The Gini Index can be calculated in the
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Figure 4.5 Two Possible Splits to be Made by a Classification Tree

following way-

Sp l i t Al e f t = 1− ((
6

10
)2+ (

1

10
)2+ (

3

10
)2)

= 0.54
(4.16)

Sp l i t Ar i g h t = 1− ((
10

20
)2+ (

4

20
)2+ (

6

20
)2)

= 0.62
(4.17)

The total impurity for Split A is weighted by the number of samples in each node.

10

30
∗0.54+

20

30
∗0.62= .5933 (4.18)
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Sp l i t Bl e f t = 1− ((
6

15
)2+ (

9

15
)2)

= 0.48
(4.19)

Sp l i t Br i g h t = 1− ((
5

15
)2+ (

10

15
)2)

= 0.44
(4.20)

The total impurity for Split B is weighted by the number of samples in each node.

15

30
∗0.48+

15

30
∗0.44= 0.46. (4.21)

Since the total impurity is smaller (.46 compared to .5933) Split B is the better split, and will be

chosen by the algorithm, because it has higher proportions of fewer classes in each leaf.

4.1.3 Over-fitting and Parameter Optimization

One of the biggest problems in machine learning involves overfitting, which is fitting predictors

so well to the training set that the model cannot adapt to the testing set. To overcome this issue,

pruning is necessary. ÂăPruning a classification tree often results in a smaller size tree and avoids

unnecessarily complex trees. There are two methods for pruning- pre-pruning and post-pruning.

Pre-pruning, also called forward pruning, stops growing the tree earlier, before it perfectly

classifies the training set. This prevents non-significant branches from being formed. This method

involves using stopping criterion to stop growing prematurely as to not classify the training set

perfectly. When constructing the tree, some significant measures can be used to assess the goodness

of a split. If partitioning the tuples at a node would result the split that falls below a prespecified

threshold, then further partitioning of the given subset is halted; otherwise, it is expanded. High

threshold results in oversimplified trees, whereas low threshold results in very little simplification

[31]. This threshold, ideally, should be determined by tuning the parameters within the model to

find what threshold is best for the data.

Post-pruning, also known as backwards pruning, allows the tree toÂăperfectly classify the train-

ing set and then eliminates non-significant branches. There are various methods of post-pruning.

One of the most common approaches is called Reduced Error Pruning. This method looks at each

node, from the leaves up, in the classification tree and calculates the error rate of the new tree if that

node was a leaf. If the new error rate is equal to or smaller than the original tree then the node is

turned into a leaf. The branches and leaves below this node are discarded [31].
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We used a pre-pruning technique. Data were separated into two sets: a training set, which is

used to build the decision tree, and a validation set, which is used to evaluate the impact of pruning

the tree.ÂăWe tuned parameters on the validation set using stopping criterion before using our tree

to predict our testing set. Our stopping criterion were,

• Minimum Impurity Decrease - induces a split at a node if a decrease of the impurity greater

than or equal to some set threshold value. Therefore we are not making splits that are not

significant.

• Minimum Samples - sets a threshold for the minimum number of samples required to be a

leaf node.

The specific thresholds used varied by model.

4.1.4 Model Evaluation

We are evaluating our classification trees using the error rate, which is the number of correctly

classified examples divided by the total number of examples subtracted from one.

Figure 4.6 Confusion Matrix

We also want to look at the confusion matrix, which will also help us to interpret the performance

of our model. When the model is binary, a loan that is predicted as default (or a loss of investment)
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when it actually is paid in full (or gain from investment) is called a false negative and is displayed

above the diagonal. When the model is binary, a loan that is predicted as paid in full (or a gain from

investment), but actually defaults (or is a loss of investment) is called a false positive and is displayed

below the diagonal. When our model is multi-class, we still want to look at the confusion matrix for

more explanation, but these terms no longer apply. In our specific case, as we will see in Chapter 5,

the column of the confusion matrix that was predicted paid in full, but actually defaulted is a good

indicator of if our model will be helpful. These loans that end up in these cells are loans that we

predicted would be paid in full, but have actually defaulted.

We also want to look at our binary loans using the following two rates:

• Sensitivity (True Positive Rate) - The fraction of loans that are predicted as paid-in-full loans

and were actually paid-in-full (True Positive) over loans that were actually paid-in-full (True

Positive + False Negative). This rate is sometimes called Recall or probability of detection and

it measures how often a test correctly generates a positive (paid-in-full) result for loans that

will be paid-in-full.

• Specificity (True Negative Rate) - The fraction of loans that are predicted as default and were

actually default (False Negative) over loans that were actually default (False Positive + True

Negative). This measures a model’s ability to correctly generate a negative result (default) for

loans that will default.

• Precision - The fraction of loans that are predicted as paid-in-full and were paid-in-full (True

Positive) over the total number of loans that were predicted as paid-in-full (True Positive +

False Positive).

These rates give us an overall picture of how our model is performing. Telling investors that loans

will be paid in full, when they will actually default will cost investors. However, telling investors that

loans will default when they will actually be paid in full will cost borrowers. These rates give a better

picture of incorrectly classified loans than accuracy alone.

4.1.5 Interpretation

In figure 4.7, we can see a basic example of a decision tree built, using loan data, to predict year

of default. A decision tree is said to be a "white box" of machine Learning algorithms because of

the simplicity of extracting rules and interpreting results. By visualizing the tree, decision-making

logic is available and simple to follow because it mimics the human-like thinking. The value and

likelihood of outcomes can be quantified directly on the flow chart. When dealing with the domain

of finance, it is imperative that the model and outcomes be easily interpretable and thus transparent

to both borrower and investor.
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Figure 4.7 Basic Classification Tree Example for Year of Default Selection

4.2 Regression Tree

We typically use regression trees for problems where we attempt to predict the values of a con-

tinuous variable from one or more continuous and/or categorical predictor variables. We build

these with very similar methods as the classification tree. Previously we were concerned with the

misclassification rate when discussing classification trees. When talking about regression, we need

a similar measure for node assignment. We used the Mean Squared Error in our model to determine

these assignments. We will begin this explanation with the estimate for the mean squared error,

R (d ), defined by

R (d ) =
1

N
Σn (yn −d (xn ))

2. (4.22)

We want to find the value of d (xn ) = y (t ), which is the predicted value for each observation, to

minimize R (d ), where y (t ) is the predicted response value at the node t .

Theorem 4.2.1. The value of y (t ) that minimizes R (d ) is the average of yn for all cases (xn , yn ) falling

into t ; that is, the minimizing y (t ) is

ȳ (t ) =
1

N (t )
Σxn∈t yn , (4.23)

where the sum is over all yn such that xn ∈ t and N (t ) is the total number of cases in t .
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The proof of this theorem can be found in [5], but this proof hinges on seeing that the number a

which minimizes Σn (yn −a )2 is a = 1
N Σn yn . This equation can be written in the more familiar form

R (t ) =
1

N
Σxn∈t (yn − ȳ (t ))2 (4.24)

More simply explained, within each of these nodes, t , a sum of squares can be calculated

Σxn∈t (yn − ȳ (t ))2). (4.25)

Then we can calculate the average by summing over t ∈ T for the total within node sum of squares

then dividing by the N , the number of samples. A regression tree is formed iteratively so as to

maximize the decrease in R (t ) [5]. To use the tree as a predictor, after building the tree, data can

be followed down the tree until it reaches a terminal node. At that time, the predicted value is

the average of all the responses within that terminal node. We will use this method to predict the

potential percent gain for an investor from each loan. For this model, there is no class imbalance

because there are no classes. We did not need to upsample before running the regression tree model.

We did use all features and we used Expectation Maximization to impute missing data.

4.3 Random Forest

Random forests are structured very similarly to classification trees. They were introduced by Breiman

in 2001 [6] and purposed to reduce error by growing a large number of classification trees and

compiling the results from the individual models to provide a final outcome. An illustration of the

structure of the random forest model is in figure 4.8. Growing a large number of trees typically results

in significant improvements in accuracy over the single classification tree. The trees are set up by

first selecting some number of best features and the best splits to grow a tree [35]. Then subsets of

the samples are randomly chosen. This can be done different ways, with replacement or without

replacement. For our purposes, we randomly selected with replacement and sub-sample size was

always the same as the original input sample size. [32]. This method is called bootstrapping and will

reduce over-fitting and variability within the model.

Breiman defines the margin function

mg (X , Y ) = a vk I (hk (X ) = Y )−ma x j 6=Y a vk I (hk (X ) = j ), (4.26)

where we denote our testing set X with coordinating label set Y and the ensemble of random

forest classifiers h1(x ), h2(x ), ..., hk (x ), where each h (x ) is trained on a random selection from X . The

function I (·) is an indicator function. The margin function finds the difference between the average

number of votes for the correct class and the average vote for any other class. The larger the margin
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Figure 4.8 Basic Random Forest, taken from [37]

the more certainty we have that the classifications are correct. In Breiman’s paper, he defines the

generalization error

P E ∗ = PX ,Y (mg (X , Y ))< 0, (4.27)

where the subscript X , Y indicates that the probability is over the X , Y space [6].

Theorem 4.3.1. As the number of trees N increases, for almost surely all sequencesΘ1,Θ2, ...,ΘN , then

P E ∗ converges to

PX ,Y (PΘ(h (X ,Θ) = Y )−ma x j 6=Y PΘ(h (X ,Θ) = j )< 0). (4.28)

The proof for this theorem can be found in [6]. Here hk (X ) can be written hk (X ,Θk )where θk

denotes the random subsets of X to be used by the algorithm. This result explains why random forests

do not over-fit as more trees are added but instead produce a limiting value of the generalization error

[6]. While the random forest model combats the issue of overfitting that we see in the classification

tree model, it also creates an issue with interpretability.

4.4 Contributions

While our machine learning methods that have been introduced in this chapter, have all been used

before, no where in the literature are researchers using multi-class classification trees to predict

time until default. Also using a Regression Tree to predict percent gain from an investment in a loan

is, to our knowledge, a novel way to make this prediction.
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CHAPTER

5

PREDICTION RESULTS

We completed all of our model runs in Python with the exception of the Survival Analysis model,

which was implemented in SAS. In Python, we used the machine learning packages imported from

scikit-learn. In SAS, we used PROC PHREG to obtain results for our comparison with survival analysis.

In all models we implemented sampling to combat the class imbalance where appropriate. We used

Expectation Maximization to impute missing data for all models run. All features that were created

through feature engineering were used to create all of the following model results.

5.1 Results for Classification Trees

We are predicting several things with these models. First, we are binarily predicting if loans will

default or not using data from Lending Club. Second, we are predicting if an investor will make a

profit or not if they choose to invest in a loan. This is also a binary prediction, but not the same as

the first. In this prediction a loan could still default, but the investor make a profit. It all depends on

when the loan defaults. Our third model is a multi-class classification tree that aims to predict a

time until default.

In table 5.1, we can see the error rates for all classification tree models. All models include

Sampling, imputation using Expectation Maximization, features that were engineered, and all were

pruned using the same methods.

As we would expect, both binary models have an error rate that is less than the multi-class error
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rate. This is expected, because there is more opportunity for error when we introduce the possibility

of predicting more classes within the default class. This is notably the same between the binary

prediction and the multi-class prediction, because the only variance is the increased number of

bins for default.

Table 5.1 Error Rates for Classification Tree

Multi-Class Label Binary Label Break-Even Label
Classification Tree 23.46% 21.63% 19.67%

In the confusion matrix in table 5.2, we can see the distributions of loans into each class as they

were predicted vs actual. Loans that appear in red are predicted as being paid-in-full but are actual

defaulted loans. We must remember that funding a loan is a non secured investment. The loans in

red are far more detrimental to investment strategy than loans in green. A loans in green simply

result in a missed opportunity to make a profit. In [33], Ramirez explores loan default as a binary

classification problem. He builds a decision tree classifier and his error rate is 22.2% for his single

tree model.Our error rate is lightly lower.

Table 5.2 Confusion Matrix for Multi-class Classification Tree

Predicted

Paid-in-Full Default Year 1 Default Year 2 Default Year 3 All

A
ct

u
al

Paid-in-Full 13121 741 903 493 15258

Default Year 1 642 111 54 17 824

Default Year 2 731 51 111 27 920

Default Year 3 409 19 20 60 508

All 14903 922 1088 597 17510

We have computed several metrics for our binary predictions based on the confusion matrix.

For the Binary classification the confusion matrix can be found in table 5.3. The Sensitivity/Recall

score is 87.38%, the Specificity score is 17.20%, and the Precision score is 87.75%. These scores show

that while we are predicting actual paid-in-full loans as such at a high rate, we are not predicting

loans that will default correctly nearly as often. Because the idea of having false positives are far
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Table 5.3 Confusion Matrix for Binary Classification Tree

Predicted

Paid-in-Full Default All

A
ct

u
al Paid-in-Full 12652 1827 14479

Default 1767 367 2134

All 14419 2194 16613

more detrimental to investors, our low specificity score may indicate another model may be more

beneficial where we can penalize the prediction of paid-in-full when the loan defaults.

Table 5.4 Confusion Matrix for Break-Even Classification Tree

Predicted

Gain from Investment Loss from Investment All

A
ct

u
al Gain from Investment 13755 1734 15489

Loss from Investment 1710 311 2021

All 15465 2045 17510

Again, we calculated the Sensitivity score (88.80%), Specificity score (15.39%), and Precision

score (88.94%) for the break-even binary model. The confusion matrix for this model can be seen in

table 5.4. These results are similar to the last. While our model is accurate 80.33% of the time, the

specificity score tells us that we are frequently saying that an investor will gain from their investment

when they will not.

5.2 Survival Analysis

In Survival Analysis, the aim is to estimate the distribution of the event times f (t ) of a group of

subjects. f (t ) can also be referred to as the probability distribution function (pdf). That is, the

function that describes the likelihood of observing Time (T ) at time (t ) relative to all other survival
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times. We will define F (t ) as follows:

F (t ) =

∫ t

0

f (t )d t . (5.1)

F (t ) is the probability of observing Time (T ) less than or equal to some time (t ). F (t ) is also called

the cumulative distribution function (cdf). To derive the Survival Function, S (t ), we must transform

the cdf to

S (t ) = P r (T > t ) = 1− F (t ). (5.2)

The Survival Function describes the probability of surviving past time t . It is a monotone decreasing

function of t with S (0) = 1 and l i mt−>∞S (t ) = 0 [2]. The Hazard Function, h (t ), takes the limit as

d t → 0 of the probability of an event happening in a time interval [t , t +d t ) given that the subject

has survived until time t divided by d t since the probability increase with d t . By taking the limit,

the hazard function quantifies the instantaneous rate of occurrence at time t [2].

h (t ) = l i md t→0
P r (t ≤ T < t +d t |T ≥ t )

d t
. (5.3)

The conditional probability in the numerator may be thought of as a ratio. The numerator of which

is the joint probability that T is in the interval [t , t +d t ) and T ≥ t , which, by definition, can be

written as f (t )d t , for small d t . The denominator is the probability of T ≥ t , which is S (t ). Thus we

have,

h (t ) = l i md t→0

f (t )d t
S (t )

d t

=
f (t )
S (t )

(5.4)

This is the connection between the survival function and the hazard function [34].

There are several variations to the survival analysis model, but the most commonly used variation,

when attempting to predict time until default, is the Cox proportional hazard model (Cox model). In

Chapter 1, our prior work survey describes this work. The Cox model, has a hazard function of the

form

h (t , xi ) = h0(t )e x p (βT xi ) (5.5)

This equation says that the hazard for a subject i at time t is the product of an unspecified,

positive baseline hazard function h0(t ), and a linear function of a vector of inputs xi which is

exponentiated. The baseline hazard h0(t ) is a function of time only, and is assumed to be the
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same for all subjects. The name "proportional hazard" stems from the fact that the hazard of any

individual is a fixed proportion of the hazard of any other individual over time. The β parameters of

the proportional hazards model can be estimated without having to specify the baseline hazard

function h0(t ). Therefore, the proportional hazards model is most often called a semi-parametric

model. The estimation of the β coefficients is done by using the partial likelihood principle [2],

which can be found in [33].

For the purpose of comparing our results to more typical results in the field, we are using a

survival analysis model.

5.3 Comparison of Results

To compare our results, we first ran a survival analysis model on our Lending Club data. We used

the same data that we used to run the classification model. A graph of the results can be seen in

figure 5.1. As time (in months) progresses the probability of survival decreases. Near the end of

the curve, we see a dramatic drop off. This is caused by the loans that exceed 36 month term due

to collections efforts. They, while is still classified under the 36 month category, are past due and

frequently default. Our curve, has removed all loans that exceed the 38 months.

To compare our classification tree model results to the survival analysis results, we subtracted

loans cumulatively that were predicted to default at each month from the total number of loans. We

then divided that by the total number of loans and multiplied by 100 to get a percent.

SP =
T −Σn

0 tn

T
×100, (5.6)

where T is the total number of loans and tn are the loans that default up to that month. We

plotted the Survival probability from the classification tree by time in months in figure 5.3. We

can see that, in our classification tree plot in figure, as time progresses the probability of survival

decreases, but less sharply than that of the survival analysis curve. In figure 5.2, we plot the actual

survival plot using equation 5.6 but instead of subtracting the loans that were predicted to default,

we subtract loans that actually defaulted using the label on each observation.

By looking at the three graphs, it is clear that the survival analysis results are closer to the actual

results which show the probability of survival. However, because these models are made to predict

somewhat different things, survival analysis being the probability of survival given certain attributes

and classification tree being in what year are you likely to default, we are limited on our comparison.

The classification tree model makes predictions that are difficult to obtain using the survival analysis

results. Using the classification tree results, an investor can follow a potential investments attributes

through the tree to see how our model would classify them and determine with some level of

accuracy within what year they are likely to default, if at all. It can be seen, through this comparison,
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that while the model’s outputs create different curves there are consistences in the curvature, which

tells us that the models are picking up many of the same patterns present in the data.

Figure 5.1 Survival Curve by month is created using the survival analysis model.

5.4 Results for Random Forests

We made the same predictions using a random forest model. While the error rate is somewhat lower

than with the classification tree and the specificity score is higher, the interpretability is less simple

for a random forest because of the number of trees that are created by each model. Each tree is

trained on bagged data using a random selection of features, thus gaining a full understanding of

the decision process by examining each individual tree is far more difficult than a classification or

regression tree.
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Figure 5.2 Actual Survival Plot is based on label instead of prediction.

Table 5.5 Error Rates for Random Forest Model

Multi-Class Label Binary Label Break-Even Label
Random Forest 21.91% 18.99% 16.77%

Number of Trees Grown 7 50 30

In the confusion matrix in table 5.6, we can, again, see the distributions of loans into each class

as they were predicted vs actual. Loans that appear in red are predicted as being paid-in-full but are

actual defaulted loans. We must remember that funding a loan is a non secured investment. The

loans in red are far more detrimental to investment strategy than loans in green. A loans in green

simply result in a missed opportunity to make a profit.
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Figure 5.3 Classification Tree Survival Plot is created using the classification tree model.

Table 5.6 Confusion Matrix for Multi-class Random Forest

Predicted

Paid-in-Full Default Year 1 Default Year 2 Default Year 3 All

A
ct

u
al

Paid-in-Full 13494 726 801 237 15258

Default Year 1 650 88 68 18 824

Default Year 2 751 65 80 24 920

Default Year 3 418 39 39 12 508

All 15313 918 988 291 17510

56



Table 5.7 Confusion Matrix for Binary Random Forest

Predicted

Paid-in-Full Default All

A
ct

u
al Paid-in-Full 12977 1502 14479

Default 1653 481 2134

All 14630 1983 16613

Table 5.8 Performance Metrics for Binary Random Forest

Sensitivity/Recall 89.63%

Specificity 22.54%

Precision 88.70%

Table 5.9 Confusion Matrix for Break Even Random Forest

Predicted

Gain from Investment Loss from Investment All

A
ct

u
al Gain from Investment 13504 1197 14701

Loss from Investment 1590 322 1912

All 15094 1519 16613

Table 5.10 Performance Metrics for Break-Even Random Forest

Sensitivity/Recall 91.86%

Specificity 16.84%

Precision 89.47%

5.5 Regression Tree Results

In our regression tree model we are trying to predict the net annualized return (NAR) or percent

gain. We did this by looking at two metrics coming out of our model- the mean squared error (MSE),

which is defined in chapter 4 and again here, and the coefficient of determination R 2.
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R 2 = 1−
Σm

i=1( ŷi − yi )2

Σm
i=1(yi − ȳ )2

(5.7)

M S E =
1

m
Σm

i=1( ŷi − yi )
2, (5.8)

where m is the number of samples that are considered for the split, ȳ is the mean of the label, and ŷ

is the models prediction of the label.

To predict the percent gain for each loan, we first calculated the percent of the loan amount that

the investor would make. We did this by determining the amount above principle the investor would

make. Then dividing by the loan amount. This percent would be negative if the investor lost the

investment because of early default. We used that as the target to train and determine the accuracy

of our regression model.

Though it is slight, it can be seen in table 5.11 that as we allow the depth to grow deeper, bias

increases while the MSE decreases. This is likely due to the idea that as the decision tree is allowed

to grow it is able to capture non-linear relationships among the data.

Table 5.11 Regression Tree Results

MSE R 2

Regression Tree (Max Depth 4) 0.059304 0.0101
Regression Tree (Max Depth 8) 0.059096 0.01358

Regression Tree (Max Depth 10) 0.059093 0.01362

The root of the MSE for the Regression Tree with max depth 10 is
p

0.059093= 0.24309, which

tells us that our predicted percent gain differs from the true percent gain on average by 0.24. If a

loan is going to default, most do soon after payments begin and have percent "gain" on average of

−0.49. If we think of our root of the MSE as somewhat of a confidence interval around the average

percent "gain" of −0.49, we can see our model predicts, on average, if the investment will result in

gain or in a loss.

The entire output is slightly too large when printed to read on one page, therefore an example of

the output of a tree model is located in figure 5.4. On each node that is displayed, the MSE, number

of samples, and the feature cut point is printed, making interpretation straightforward, similar to

the classification tree [26].
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Figure 5.4 On this regression tree result plot, each node displays, the MSE, number of samples, and the
feature cut point, making interpretation straightforward.

5.6 Contributions

In this chapter we have shown that our models are comparable with similar methods for solving

these problems in the field, and in most cases, can supply investors with useful information needed

to make educated decisions on investments based on attributes of borrowers. In some cases, as

we have noted, our models do not make a prediction that, by some accuracy measures, is reliable

enough to solely base a decision on investment. In these cases, domain knowledge as well as other

models used in the field would be a more appropriate consult.
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CHAPTER

6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Online Peer-to-Peer lending is rapidly becoming a more popular way to borrow money and invest.

Loan default by extension is a growing concern for the peer-to-peer loans. In our study we use data

from Lending Club to predict loan default in 5 main ways. We use a data-driven approach to build

two binary classification tree models that predict if a loan will default and if the investor will make

money on the loan regardless of the loan status. We then build a multi-class classification tree that

predicts the time until default. This is only granular by year. We replicate these predictions using

random forest models and find the results are somewhat better, but harder to interpret. Lastly, we

predict the percent gain an investor is likely to receive from his/her investment with a regression

tree.

We have made a few key contributions in our work.

• Through data processing, imputation, and feature engineering, we set up our data in such a

way to apply models and reach a greater efficiency and accuracy.

• We incorporate new features into our models through feature engineering and show how they

are relevant to each model run.

• We extend binary results to multi-class classification trees to predict time until default in a

unique way. We then compare our results to those methods that are used in the field, namely
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survival analysis models.

• We also experiment with the use of the random forest models to create the same prediction.

Our metrics show that this is a better model, but as discussed, possibly less interpretable.

• We use a regression tree to predict percent gain from an investment in a loan. We have shown

why our model is relevant in the field based on our results.

6.2 Future Work

Countless people can benefit monetarily by using methods described in this dissertation to de-

termine default, not just in peer-to-peer lending. The study could be continued on longer loan

term data and less risky loans, for example, commercial loans, mortgages, student loans. Also, early

repayment reduces the amount of profit on a loan, by reducing the amount of interest that is paid.

Expected profit could be incorporated into this analysis and more explicitly predicted.

Further exploration into ways of using classification trees to predict time until default could

be a next step. As expected we found the the more granular the prediction of time became the less

accurate the model. Investigating the idea of multiple binary predictions could be a next step. This

would allow the first prediction to be default or not, which had a low error rate. Then a separate

model could be run to take the output of the first model and predict time until the default will take

place.
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APPENDIX

A

FULL FEATURE DESCRIPTION

Table A.1 All Features Used with Description.

Feature Name Decription

acc_now_delinq
The number of accounts on which the borrower is now delin-

quent.

addr_state The state provided by the borrower in the loan application

annual_inc
The self-reported annual income provided by the borrower dur-

ing registration.

chargeoff_within_12_mths Number of charge-offs within 12 months

collections_12_mths_ex_med
Number of collections in 12 months excluding medical collec-

tions

delinq_2yrs
The number of 30+ days past-due incidences of delinquency in

the borrower’s credit file for the past 2 years

delinq_amnt
The past-due amount owed for the accounts on which the bor-

rower is now delinquent.

dti

A ratio calculated using the borrower’s total monthly debt pay-

ments on the total debt obligations, excluding mortgage and

the requested LC loan, divided by the borrower’s self-reported

monthly income.
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Table A.1 (continued)

Feature Name Decription

earliest_cr_line
The month the borrower’s earliest reported credit line was

opened

emp_length

Employment length in years. Possible values are between 0 and

10 where 0 means less than one year and 10 means ten or more

years.

grade LC assigned loan grade

home_ownership

The home ownership status provided by the borrower during

registration or obtained from the credit report. Our values are:

RENT, OWN, MORTGAGE, OTHER

id A unique LC assigned ID for the loan listing.

initial_list_status
The initial listing status of the loan. Possible values are âĂŞ W, F

(Whole and fractional)

inq_last_6mths
The number of inquiries in past 6 months (excluding auto and

mortgage inquiries)

int_rate Interest Rate on the loan

issue_d The month which the loan was funded

last_pymnt_d Last month payment was received

loan_amnt

The listed amount of the loan applied for by the borrower. If

at some point in time, the credit department reduces the loan

amount, then it will be reflected in this value.

loan_status Current status of the loan

open_acc The number of open credit lines in the borrower’s credit file.

pub_rec Number of derogatory public records

pub_rec_bankruptcies Number of public record bankruptcies

purpose A category provided by the borrower for the loan request.

revol_bal Total credit revolving balance

revol_util
Revolving line utilization rate, or the amount of credit the bor-

rower is using relative to all available revolving credit.

sub_grade LC assigned loan subgrade

tax_liens Number of tax liens

term
The number of payments on the loan. Values are in months and

can be either 36 or 60.

total_acc
The total number of credit lines currently in the borrower’s credit

file
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Table A.1 (continued)

Feature Name Decription

verification_status
Indicates if income was verified by LC, not verified, or if the

income source was verified

zip_code
The first 3 numbers of the zip code provided by the borrower in

the loan application.

Table A.2 All Features Unused with Description.

Feature Name Decription

acc_open_past_24mths Number of trades opened in past 24 months.

all_util Balance to credit limit on all trades

annual_inc_joint
The combined self-reported annual income provided by the

co-borrowers during registration

application_type
Indicates whether the loan is an individual application or a joint

application with two co-borrowers

avg_cur_bal Average current balance of all accounts

bc_open_to_buy Total open to buy on revolving bankcards.

bc_util
Ratio of total current balance to high credit/credit limit for all

bankcard accounts.

collection_recovery_fee post charge off collection fee

desc Loan description provided by the borrower

dti_joint

A ratio calculated using the co-borrowers’ total monthly pay-

ments on the total debt obligations, excluding mortgages and

the requested LC loan, divided by the co-borrowers’ combined

self-reported monthly income

emp_title
The job title supplied by the Borrower when applying for the

loan.

fico_range_high
The upper boundary range the borrower’s FICO at loan origina-

tion belongs to.

fico_range_low
The lower boundary range the borrower’s FICO at loan origina-

tion belongs to.

funded_amnt The total amount committed to that loan at that point in time.

funded_amnt_inv
The total amount committed by investors for that loan at that

point in time.
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Table A.2 (continued)

Feature Name Decription

il_util
Ratio of total current balance to high credit/credit limit on all

install acct

inq_fi Number of personal finance inquiries

inq_last_12m Number of credit inquiries in past 12 months

installment
The monthly payment owed by the borrower if the loan origi-

nates.

last_credit_pull_d The most recent month LC pulled credit for this loan

last_fico_range_high
The upper boundary range the borrowerâĂŹs last FICO pulled

belongs to.

last_fico_range_low
The lower boundary range the borrowerâĂŹs last FICO pulled

belongs to.

last_pymnt_amnt Last total payment amount received

max_bal_bc Maximum current balance owed on all revolving accounts

member_id A unique LC assigned Id for the borrower member.

mo_sin_old_il_acct Months since oldest bank installment account opened

mo_sin_old_rev_tl_op Months since oldest revolving account opened

mo_sin_rcnt_rev_tl_op Months since most recent revolving account opened

mo_sin_rcnt_tl Months since most recent account opened

mort_acc Number of mortgage accounts.

mths_since_last_delinq The number of months since the borrower’s last delinquency.

mths_since_last_major_derog Months since most recent 90-day or worse rating

mths_since_last_record The number of months since the last public record.

mths_since_rcnt_il Months since most recent installment accounts opened

mths_since_recent_bc Months since most recent bankcard account opened.

mths_since_recent_bc_dlq Months since most recent bankcard delinquency

mths_since_recent_inq Months since most recent inquiry.

mths_since_recent_revol_-

delinq
Months since most recent revolving delinquency.

next_pymnt_d Next scheduled payment date

num_accts_ever_120_pd Number of accounts ever 120 or more days past due

num_actv_bc_tl Number of currently active bankcard accounts

num_actv_rev_tl Number of currently active revolving trades

num_bc_sats Number of satisfactory bankcard accounts

num_bc_tl Number of bankcard accounts
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Table A.2 (continued)

Feature Name Decription

num_il_tl Number of installment accounts

num_op_rev_tl Number of open revolving accounts

num_rev_accts Number of revolving accounts

num_rev_tl_bal_gt_0 Number of revolving trades with balance >0

num_sats Number of satisfactory accounts

num_tl_120dpd_2m
Number of accounts currently 120 days past due (updated in

past 2 months)

num_tl_30dpd
Number of accounts currently 30 days past due (updated in past

2 months)

num_tl_90g_dpd_24m Number of accounts 90 or more days past due in last 24 months

num_tl_op_past_12m Number of accounts opened in past 12 months

open_acc_6m Number of open trades in last 6 months

open_il_12m Number of installment accounts opened in past 12 months

open_il_24m Number of installment accounts opened in past 24 months

open_act_il Number of currently active installment trades

open_rv_12m Number of revolving trades opened in past 12 months

open_rv_24m Number of revolving trades opened in past 24 months

out_prncp Remaining outstanding principal for total amount funded

out_prncp_inv
Remaining outstanding principal for portion of total amount

funded by investors

pct_tl_nvr_dlq Percent of trades never delinquent

percent_bc_gt_75 Percentage of all bankcard accounts > 75% of limit.

policy_code
"publicly available p o l i c y _c o d e = 1 new products not pub-

licly available p o l i c y _c o d e = 2"

pymnt_plan Indicates if a payment plan has been put in place for the loan

recoveries post charge off gross recovery

title The loan title provided by the borrower

tot_coll_amt Total collection amounts ever owed

tot_cur_bal Total current balance of all accounts

tot_hi_cred_lim Total high credit/credit limit

total_bal_ex_mort Total credit balance excluding mortgage

total_bal_il Total current balance of all installment accounts

total_bc_limit Total bankcard high credit/credit limit
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Table A.2 (continued)

Feature Name Decription

total_cu_tl Number of finance trades

total_il_high_credit_limit Total installment high credit/credit limit

total_pymnt Payments received to date for total amount funded

total_pymnt_inv
Payments received to date for portion of total amount funded

by investors

total_rec_int Interest received to date

total_rec_late_fee Late fees received to date

total_rec_prncp Principal received to date

total_rev_hi_lim Total revolving high credit/credit limit

url URL for the LC page with listing data.

verified_status_joint
Indicates if the co-borrowers’ joint income was verified by LC,

not verified, or if the income source was verified

revol_bal_joint
Sum of revolving credit balance of the co-borrowers, net of du-

plicate balances

sec_app_fico_range_low FICO range (high) for the secondary applicant

sec_app_fico_range_high FICO range (low) for the secondary applicant

sec_app_earliest_cr_line
Earliest credit line at time of application for the secondary ap-

plicant

sec_app_inq_last_6mths
Credit inquiries in the last 6 months at time of application for

the secondary applicant

sec_app_mort_acc
Number of mortgage accounts at time of application for the

secondary applicant

sec_app_open_acc
Number of open trades at time of application for the secondary

applicant

sec_app_revol_util
Ratio of total current balance to high credit/credit limit for all

revolving accounts

sec_app_open_act_il
Number of currently active installment trades at time of appli-

cation for the secondary applicant

sec_app_num_rev_accts
Number of revolving accounts at time of application for the

secondary applicant

sec_app_chargeoff_within_-

12_mths

Number of charge-offs within last 12 months at time of applica-

tion for the secondary applicant

sec_app_collections_12_-

mths_ex_med

Number of collections within last 12 months excluding medical

collections at time of application for the secondary applicant
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Table A.2 (continued)

Feature Name Decription

sec_app_mths_since_last_ma-

jor_derog

Months since most recent 90-day or worse rating at time of

application for the secondary applicant

hardship_flag Flags whether or not the borrower is on a hardship plan

hardship_type Describes the hardship plan offering

hardship_reason Describes the reason the hardship plan was offered

hardship_status
Describes if the hardship plan is active, pending, canceled, com-

pleted, or broken

deferral_term

Amount of months that the borrower is expected to pay less than

the contractual monthly payment amount due to a hardship

plan

hardship_amount
The interest payment that the borrower has committed to make

each month while they are on a hardship plan

hardship_start_date The start date of the hardship plan period

hardship_end_date The end date of the hardship plan period

payment_plan_start_date

The day the first hardship plan payment is due. For example, if a

borrower has a hardship plan period of 3 months, the start date

is the start of the three-month period in which the borrower is

allowed to make interest-only payments.

hardship_length
The number of months the borrower will make smaller pay-

ments than normally obligated due to a hardship plan

hardship_dpd Account days past due as of the hardship plan start date

hardship_loan_status Loan Status as of the hardship plan start date

orig_projected_additional_ac-

crued_interest

The original projected additional interest amount that will ac-

crue for the given hardship payment plan as of the Hardship

Start Date. This field will be null if the borrower has broken their

hardship payment plan.

hardship_payoff_balance_-

amount
The payoff balance amount as of the hardship plan start date

hardship_last_payment_-

amount
The last payment amount as of the hardship plan start date

disbursement_method
The method by which the borrower receives their loan. Possible

values are: CASH, DIRECT_PAY

debt_settlement_flag
Flags whether or not the borrower, who has charged-off, is work-

ing with a debt-settlement company.
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Table A.2 (continued)

Feature Name Decription

debt_settlement_flag_date
The most recent date that the Debt_Settlement_Flag has been

set

settlement_status

The status of the borrowerâĂŹs settlement plan. Possible val-

ues are: COMPLETE, ACTIVE, BROKEN, CANCELLED, DENIED,

DRAFT

settlement_date The date that the borrower agrees to the settlement plan

settlement_amount The loan amount that the borrower has agreed to settle for

settlement_percentage
The settlement amount as a percentage of the payoff balance

amount on the loan

settlement_term
The number of months that the borrower will be on the settle-

ment plan
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