
ABSTRACT 

SORRELL, EMMA Pattern Detection and Mechanical Modeling of Cylindrical Packing as 
Applied to the Notochord (under the direction of Dr. Sharon R. Lubkin). 

The notochord, which is a biological structure that develops into the nucleus pulposus of  

intervertebral discs and is the defining feature of chordates, has inner vacuolated cells 

surrounded by a thin layer of epithelial cells that form a constraining sheath.  These inner cells 

form configurations reminiscent of the phyllotactic patterns found in cylindrical foams, and the 

patterns are influenced by the physical properties of the sheath.  We have created a novel 

algorithm to quantify the often irregular patterns formed by these vacuolated cells as they 

arrange in the notochord during morphogenesis, and the application of this algorithm to zebrafish 

notochords reveals commonalities between notochord packing and the packing in an inert analog 

system, which provides justification for a mechanical model of the notochord.  We present three 

new mechanical models of foams in tubes of previously unstudied varying cross sections and 

varying physical properties, including a model for a flexible tube, and these models are united by 

two key ratios that interact with cross-sectional tube eccentricity.  We analyze the lowest-order 

regular patterns in these models and identify a bifurcation to a previously unidentified packing 

pattern.  
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1. Chapter 1 
Introduction 

The notochord is a tube of soft tissue that helps elongate the chordate embryo and in most 

chordates, it is a precursor to the spine.  The notochord provides the developing embryo with a 

structural framework, and in vertebrates controls the signaling that influences left-right 

differentiation and arterial/venous sorting of blood vessels. In most chordates, the cells in the 

notochord are precursors of the center (nucleus pulposus) of the intervertebral disks in the spine 

[32].  Incorrect formation of the notochord is associated with the development of scoliosis [9].   

In the context of this dissertation, when we refer to morphogenesis of the notochord, we  

specifically mean the effect that the packing of the interior cells constrained by a sheath during 

early embryonic development has on the overall geometric properties of the notochord.  As 

illustrated in Figure 1.1, the sheath of the notochord is composed of a layer of squamous 

epithelial cells, while the interior cells of the notochord are larger and vacuolated [10].  The 

specific formation into which the interior cells arrange themselves directly contributes to the 

strength and flexibility of the notochord, and thus the correct formation of the spine [10, 23].   

!1

A B

Figure 1.1: A) Depiction of a zebrafish notochord.  The inner cells are largely 
vacuole, and are much larger than the outer sheath cells. From [9]. B) Dorsal 
(top), lateral (bottom) and transverse (right) views of a section of wild type 
(WT) zebrafish notochord with inner cells. The cells are arranged in a pattern 
typical for the WT strain.  Confocal microscopy in B courtesy of Dr. Michel 
Bagnat, Duke University.



The notochord has proven extremely important throughout vertebrate and chordate 

evolutionary history and has been present in the fossil record as far back as the Early Cambrian 

[31], and its mechanical properties have been well-studied [15, 22].  However, little is known 

about the mechanical properties of the notochord cells themselves.  Because the interior cells of 

the notochord are largely vacuole, the notochord has been speculated to have mechanics like that 

of a soap foam contained in a tube [23].  Figure 1.2 illustrates the similarity between internal 

notochord cell geometry (Figure 1.2A) and foam geometry (Figure 1.2B).  

1.1. Brief Review of Recent Progress in the Study of Contained Foams 

The basic physics of contained, monodisperse foams, meaning those composed of 

bubbles of equal size, has been well-established [36].  Monodisperse foams packed in a tube can 

form ordered patterns, where bubbles group together to create a pattern that is repeated 

throughout the entire container.  This ordered packing allows a small number of bubbles, enough 

to form the repeated pattern, to be studied in lieu of the entire container.  

There are many experiments on foams packed in a regular circular cylinder [12, 13, 25, 

26, 29, 38].  The results from these experiments indicate that there is a strong relationship 

between the ratio of cylinder diameter !  to the diameter !  of a sphere with the same volume as a D d

!2

Figure 1.2: A) Section of notochord from a WT zebrafish. Confocal microscopy 
courtesy of Dr. Michel Bagnat, Duke University. B) Section of soap foam in a 
tube from [25]. The patterns formed by the cells in A and foam in B are visually 
similar, although the notochord’s cells are polydisperse.



bubble, defined as ! , and the pattern that is formed.  Furthermore, as !  is varied 

experimentally, there are sharp transitions between patterns, indicating bifurcations.  This makes 

the role of !  both interesting and valuable, as it is nondimensional and can easily be used to 

compare experimental results with simulations and controls greatly, if not entirely, the 

equilibrium pattern of a confined foam.  The phenomenon of sharp transitions has been examined 

in detail for regular cylinders, as in [13, 25, 26, 29], and we will briefly review that work here.  

The modern study of foams began in 1992 with the letter and subsequent 1995 paper by 

Hutzler, Pittet, and Weaire in Forma [26, 38].  These works laid the foundation for the current 

phyllotactic approach to foam packing in tubes by making the observation that soap foams in 

cylinders form patterns very like phyllotactic patterns common in plant growth [33].  The lowest 

order patterns are shown in Figure 1.3. In particular, Hutzler, Pittet, and Weaire introduced the 

use of the ratio of tube diameter to bubble diameter, denoted ! , and they related this 

dimensionless parameter to traditional phyllotactic notation and showed that !  drives the 

formation and transitions of structures [26].  They further gave the two least complex patterns 

names - bamboo and staircase - in addition to their numeric phyllotactic designations - (1, 1, 0) 

and (2, 1, 1), respectively - and these names are still in common use.  The name “hopscotch” 

given to the the pattern numerically designated (2, 2, 0) was coined in [23].    

In a later paper, Pittet et al. [25] analyzed the transitions between patterns and concluded 

that there were rules for which patterns could transition to which others, based on elementary 

topological transformations.  Hutzler et al. [13] expanded on these conclusions and experimented 

with moving foam transitions, and they discovered the so-called twist boundary in the staircase 

λ = D /d λ

λ

λ

λ
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foam pattern, in which a seemingly stable configuration spontaneously rotates 180º without 

changing topology.   

The transition between the bamboo and staircase patterns, which are illustrated in Figure 

1.3, was studied analytically, experimentally, and numerically by Reinelt et al. for dry foams, 

which are foams with negligible liquid volume and thus are completely space-filling.  The 

difference between wet and dry foams is illustrated in Figure 1.4.  It has been shown that the 

transition from staircase to bamboo pattern that is forced by stretching a dry foam occurs because 

the equilibrium staircase pattern becomes unstable due to a saddle node bifurcation in the system 

energy; it was previously assumed to happen because an edge of a bubble moved continuously 

toward zero length [29].  

Dry foams with internal bubbles that have no surface on the tube wall have been 

observed experimentally to behave similarly to less complex foams on the tube wall, but the 

interior bubbles form a variety of interesting structures.  These structures have also been 

!4

Figure 1.3: Patterns bamboo, staircase, chiral, and hopscotch as they appear in 
foams [12] (left) and sketched to show structure (right).  The vector notation is 
defined in Chapter 2. 



successfully simulated with the Surface Evolver [30], a finite elements program designed to 

minimize surface energy.  Surface Evolver is discussed in detail in Section 4 of Chapter 3.  

In addition to foams contained in circular cylinders, foams in tubes with some non-

circular cross sections have been studied.  This includes those with triangular or square cross 

sections, and these tubes have been shown to form not only patterns similar to those formed in 

circular tubes, but also patterns unique to their specific cross section shape [12, 35]. 

1.2. Foam Modeling as a Basis for Notochord Pattern Identification 

 To examine the process of notochord morphogenesis and cellular patterning, Dr. Michel 

Bagnat’s research group at Duke University studied the effects on packing of genetic 

manipulation of the number of cells in the zebrafish notochord [23].  Pattern classification thus 

far has existed only for identical bodies in rigid cylinders, like foam in a hard tube [13, 23, 26, 

35].  Further complicating the creation of a notochord model, unlike in foams, multiple patterns 

can appear in different portions of the same fish’s notochord. To identify the different patterns 

and how they vary between various mutant fish, we have developed an algorithm to classify 

patterns formed by weakly polydisperse disordered bodies packed in a weakly bent tube of 

variable cross section using foam patterning notation; see Chapter 2.   The results of analysis 

!5

Figure 1.4 Tube containing a foam in transition from wet to dry.  Note that wet 
foam appears to have space between the bubbles because wet foams possess a 
significant amount of liquid volume.  Foam image from [12].



with this algorithm show that mutants with lower density of cells per unit length, mutants with a 

higher density of cells, and wild type (unmodified, abbreviated WT) zebrafish each form the 

same patterns - commonly called bamboo, staircase, and chiral - but these patterns appear with 

different frequency for each type of fish, and that frequency is governed by the ratio !  of cells 

per unit length.   

Dr. Bagnat’s group also created a physical bead model of the notochord using flexible 

silicone tubing and gel beads that swell when placed in water [23].  The patterns of the beads in 

this  physical model resemble the patterns of cells in the notochord as !  is varied, including the 

coexistence of multiple patterns in one tube; see Figure 1.5.  One of the key results of this 

nonliving model is that the cross sections of the tubes were observed to be elliptical, rather than 

circular, in areas where beads form the typical notochord staircase pattern.  A second experiment 

was performed with the beads using a tube that was rigid and had an elliptical cross section, and 

they noted an extreme bias for the staircase pattern over all others [23].  The results of the gel 

bead experiments are presented in Figure 1.5.   

Although the gel beads are mechanically different from bubbles, their patterns formed are 

remarkably similar.  In both the physical model and the zebrafish notochord, we observed a 

correlation between cross-sectional shape and observed pattern.  A tube or notochord with an 

elliptical cross section presents with staircase pattern more frequently than one with a circular 

cross section, and cells arranging in the staircase pattern pushes the cross section toward 

elliptical.   

The behavior of the physical model suggests that the notochord behaves like a packing 

problem, where bodies with set properties are packed into a constrained space.  The key 

λ

λ

!6



  

differences between the notochord and a standard packing problem are twofold: not only can the 

notochord cells vary in size and shape, but the sheath of the notochord is flexible rather than 

rigid.    

In Chapter 2 we present the new sorting algorithm used in the data analysis for [23] and 

explain in detail its utility for notochord analysis.  In Chapter 3, we also elucidate the packing 

problem of soap foams in tubes and expand the results of the earlier foam packing studies to 

three previously unexamined general cases.  We believe these foam models will have useful and 
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Figure 1.5: A) Eccentricity of flexible tubes containing gel beads in the 
staircase pattern compared to tubes containing the first chiral pattern.  Tubes 
containing the staircase pattern consistently presented with higher eccentricity 
than those with first chiral (n = 6 tubes, *p < 0.0001, Welch’s t-test). From [22]. 
B) Rigid tubes with eccentricity !  containing gel beads.  The occurrence of 
staircase pattern varies with λ, but it never occupies more than half the tube.  C) 
Rigid tube of eccentricity !  containing gel beads.  The staircase pattern is 
dominant for all λ tested.   
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unique biological applications, since notochord cells have been observed to form patterns similar 

to those of foams [10], and the resulting model analysis has direct implications for the 

mechanical properties of the notochord.   
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2. Chapter 2 
Two Algorithms for Biological Pattern Identification in Cylinders 

2.1. Ordered Patterns in Foams 

To provide context for a discussion of pattern formation in cylinders, we first need to 

describe the variety of ordered patterns found in foams that are relevant to our biological system.  

We will use the phyllotactic notation adopted by [26] to describe patterns in their study of foams.  

Phyllotaxis, also sometimes called “generalized crystallography,” is the symmetry and 

asymmetry of the arrangement of the lateral organs of plants, like seeds on a sunflower or leaves 

on a stem [28].  These lateral organs arrange themselves into spirals, and the spirals form 

families based on their relative orientation.  The number of spirals !  in a direction required to 

complete the spiral pattern categorizes those spirals as an n-parastich [37].  In a grouping of 

hexagonal-faced cells, such as those formed by monodisperse, ordered foams, this leads to three 

n-parastiches with ! .  These integers are listed in non-increasing order, with !  

representing the steepest spiral, and we call the corresponding structure a !  pattern.    

For a bounded structure of hexagonal-faced cells, there is an alternative method to 

determine ! .  With the structure oriented so the spirals are around the z-axis, cells are 

numbered from bottom to top starting at 1.  For each cell with index " , we note that its three 

neighbors have indices " ,  " , and " .  The pattern at cell "  is thus denoted ! , 

where ! , is a proven relationship in phyllotaxy; see [28], for example. If a cell has fewer 

than three distinct neighbors, a neighbor is counted for each of its contacts with the cell in 

question.  We provide an example of this pattern-finding process in Figure 2.1. 

For a basic cylindrically-bounded foam model, it is assumed that cells are monodisperse, 

and that any pattern they form is ordered and consistent through the entire bounding cylinder.  

n

n = k , l,  and m k

(k , l, m)

(k , l, m)

i

i + k i + l i + m i (k , l, m)

k = l + m
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Therefore, finding the pattern at one body is equivalent to finding the pattern globally.  We refer 

to such patterns as regular patterns.  

The notation for patterns has not been chosen arbitrarily; it contains information about 

the relationship between the bounding cylinder and the cells contained within it.  Let !  be the 

smallest vector which takes body "  to an equivalent body; note that this is not the same as the 

previously defined pattern vector ! .  Let "  denote the diameter of the cylinder, and let !  

be the diameter of a circle with area equal to that of the hexagon formed by the contact of a cell 

with the cylinder wall. It follows that 

Vi

i

⟨k , l, m⟩ D d

!  10

Figure 2.1: Example of a structure of two-dimensional hexagonal cells, which 
result from the “unwrapping” the surface of a cylinder with this surface pattern.  
The surface of  the cylinder is separated at the lighter, green cells, so they are 
included on either side to facilitate the observation of neighbors.  Examining the 
!  cell, for example, we see its neighbors have indices 8, 10, and 11.  Then 
! ,  ! , and ! , so this structure is in the 
!  pattern; note that !  as expected.

7th

k = 11 − 7 = 4 l = 10 − 7 = 3 m = 8 − 7 = 1
(4, 3, 1) k = l + m

∥Vi∥2 = (k −
m
2 )

2

+
3
4

m2

= l2 + lm + m2

≈ (πλ)2

(1)



  

where λ is the dimensionless ratio ! .  This approximation results because !  is the smallest 

vector that can be wrapped around the tube from one cell, back to that same cell.  Because !  

is defined from pattern rather than cell and cylinder dimensions, it measures the circumference of 

the tube in terms of  cell length.  Therefore, ! . We note here that this 

definition of !  is slightly different from the definition that will be used throughout the rest of the 

paper in that here !  is used in a two-dimensional setting as diameters of circles.  The usual 

definition of !  is for measurement in three-dimensions and uses diameters of spheres instead.    

 As previously stated, we assume that any pattern within a bounding cylinder is repeated 

throughout the entire cylinder, so computing !  for one cell is equivalent to finding it for all 

cells in the same relative position within the pattern.  It will become apparent that the definition 

of !  in Equation (1) is crucial to the further comparison of patterns between systems.  It 

provides a way to relate pattern notation to the parameters measured in the system being 

examined.  Furthermore, it associates a dimensionless parameter !  with each pattern, allowing us 

to compare patterns in systems with drastically different sizes.   

Based on  the maximum observed value for !  in the WT notochord, we can assume that 

there will be no patterns relevant to the notochord with ! .  This means there are only four 

regular patterns of potential interest to us: ! , ! , ! , and ! , which have 

! .  We will refer to these patterns as bamboo (b), staircase (S), regular 

hopscotch (H), and first chiral (c), respectively; we provided examples of these patterns in foams 

in Figure 1.3.   

These same patterns appear in packing of hard spheres in cylinders, although these hard 

sphere patterns are determined by contact points between the hard sphere and the cylinder wall, 

D /d ∥Vi∥

∥Vi∥

∥Vi∥ ≈ πD /d = πλ

λ

λ

λ

∥Vi∥

Vi

λ

λ

k ≥ 4

(1, 1, 0) (2, 1, 1) (2, 2, 0) (3, 2, 1)

∥Vi∥ = 1, 3, 2, and 7
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whereas foam patterns are determined by the configuration of edges in contact with the wall.  For 

hard spheres, the wall is “unwrapped” to a plane, forming a two-dimensional lattice.  A similar 

technique can be applied to foams; the point used for each bubble is the center of the surface of 

the bubble that is in contact with the wall. Significant work has been performed examining 

transformations of this lattice and the resulting patterns, especially of hard spheres [19, 20].  It 

has been noted that hard spheres will exhibit shears and line-slips, creating modified versions of 

standard patterns [19, 20].  However, although these modifications can be seen in moving foams, 

they do not occur in foams in equilibrium and are therefore not considered here.  

2.2. Packing of Irregular Bodies 

Our analysis of patterns in irregular bodies was motivated by the data Dr. Bagnat’s group 

acquired on three-dimensional cell position and volume from zebrafish notochord confocal 

microscopy.  The imaging process was as described in [23], and segmentation was carried out 

using ImarisCell, a well-known imaging software widely used in biological applications; see 

Figure 2.2 for an example.  It uses a unique segmentation algorithm, presented in [6], which 

automates the segmentation process and removes the majority of visual confirmation required 

from the user.    

!  12

Figure 2.2: Dorsal and lateral view from a three dimensional rendering of a WT 
zebrafish notochord [22] carried out with ImarisCell [5]. The existence of 
nonzero curvature of the notochord is particularly clear in the lateral view.



  

The first hurdle in working with notochord cell data is that the notochord itself is curved 

and tapered, as seen in Figure 2.2.  The fish was manually, but imperfectly, aligned in the "  

coordinate system along the !  axis; because of this rough alignment, we were able to assess the 

existence of twists in the notochord.  We observed that the curvature of the notochord was 

largely in the "  plane with no twisting.  Thus, to straighten the notochord stack we created a 

new coordinate system, denoted ! .  We found the midline of the notochord by using 

cubic spline interpolation, performed in JMP using their built-in package, to create a best fit 

curve to the centroid positions in the "  and "  planes.  The new coordinate system was then 

defined as  

where !  is the lowest "  value in the dataset.  This gives us a straight notochord that begins at 

!  

While this addresses the straightening of the notochord effectively, the tapering still needs 

to be addressed.  Dr. Bagnat’s team at Duke was able to provide us with some measurements of 

the notochord cross-sectional dimensions, but we found the potential error margin on these to be 

too high because they were found using the notochord sheath cells rather than the interior 

notochord cells.  While theoretically these should yield the same measurements, we found that 

the sheath cross section images had too much noise for distances to be measured consistently.  

Instead, we computed the cross-sectional area as ! , which is equivalent to finding 

the cross-sectional area at centroid !  as c, where !  is the volume of the !  cell, and !  is the 

distance in the X direction between ordered cells !  and ! .  We found the diameter !  of a 

circle with area !  at each !  position as !  .  We then used the same spline 

x, y, z

x

x y

(X, Y, Z )

x y xz

xmin x

X = 0.

A = dV⟋d X

i vi ith ΔXi

i i − 1 Di

Ai X Di = 2 Ai ⟋ π
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smoothing method in JMP on the diameters to find ! , which we used to calculate the radius !  at 

each !  position, giving us the new radially normalized YZ coordinates as ! .  

We then normalized !  by scaling !  by the local volume, yielding the final normalized 

coordinates of ! .  We denote the sequence of centroid positions in the new coordinate 

system, ordered by !  position, as ! . 

Scaling centroid positions radially in the !  plane provides us with another metric to 

compare patterns, both between individual zebrafish and between entire zebrafish strains; we can 

create a cross-sectional heat map of the centroid positions for each strain of fish, as shown in 

Figure 2.3.  The utility of these heat maps in pattern analysis is illustrated in Section 2.3 of this 

chapter.  

Previously discussed foam and hard sphere pattern analysis results rely on the 

“unwrapping” process to analyze the patterns formed on the surface of the bounding cylinder.  In 

D̂i ri

X ( ̂Y, ̂Z ) = (Y⟋r, Z⟋r)

X Δx

(X̂, ̂Y, ̂Z )

X̂ Kn

( ̂Y, ̂Z )
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Figure 2.3: Heat maps of notochord cell centroid positions in transverse view 
using four fish from each strain; NICD is a mutant strain with the lowest 
density of cells per unit length, and SuHDN is a mutant strain with the highest 
density of cells per unit length.  All cross sections are oriented with the dorsal 
(D) side on the top and ventral (V) side on the bottom, which are aligned with 
our !  axis; the right (R) and left (L) are relative to the orientation of fish and 
are aligned with the !  axis. From [22].  
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our case, however, due to the limitations of segmentation the only position data we have are the 

centroids of cells, and these are not all equidistant from the midline.  Therefore, even if we were 

to project the centroids to the bounding surface, the results would be meaningless, especially for 

cells with centroids particularly close to the midline.  Instead, we created two new pattern 

identification methods, both stemming from one key observation: centroid positions are nearly 

periodic as we move along the !  axis.  That is, for the first centroid in any pattern, there is a 

centroid with approximately the same "  and "  values after a fixed number of centroids.  This 

value is unique to each pattern.  For bamboo, each sequential centroid has approximately the 

same "  and "  position; for staircase, this happens every other centroid, and for first chiral every 

third.  In carefully controlled foam experiments, we would expect this centroid positioning for 

each periodicity to be more precise than in notochords.  

2.3. Hopscotch Patterns 

One of the unexpected results of packing cells in the physical gel bead model and in the 

notochord, compared to packing soap foam or hard spheres in a tube, is the relatively frequent 

appearance of the pattern we have named the regular hopscotch pattern, ! .  In foam 

experiments, this pattern appears rarely and only under highly specific conditions [26].  For the 

notochord, however, the range of parameters for which regular hopscotch appears seems to be 

much larger.  Additionally, the notochord presents a unique pattern, which we have named 

irregular hopscotch. Regular and irregular hopscotch are illustrated in Figure 2.4. 

X

̂Y ̂Z

̂Y ̂Z

(2, 2, 0)
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2.4. Two Algorithms for Pattern Identification 

While working with notochord data, we need a way to numerically distinguish patterns, 

especially ones that are visually ambiguous.  We developed two related pattern identification 

methods, which we call the radial algorithm and the projection algorithm.  These methods were 

both motivated by the centroid heat map figures, like those in Figure 2.3.  We noticed that areas 

of the notochords dominated by patterns that we could visually identify as bamboo had centroids 

largely clustered close to the midline, whereas areas that were visually determined to be staircase 

formed two distinct clusters of centroids and first chiral presented a more evenly distributed ring 

of centroids.  This led to the previously mentioned definition of cell periodicity: for the lowest 

index centroid !  in any pattern, there is a centroid with approximately the same "  and "  values 

after a fixed number of subsequent centroids.   

This definition of periodicity is insufficient to categorize every cell in the notochord 

because aside from the straightforward case when adjacent cells are in the same pattern, there are 

Kj
̂Y ̂Z
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Figure 2.4: Sketch of several cells in the (a) regular and (b) irregular hopscotch 
patterns.  In foams, regular hopscotch alternates between horizontal pairs of 
bubbles and a single bubble that spans the entire diameter of the tube.  Irregular 
hopscotch is characterized by having either one or two bubbles stacked 
irregularly between the horizontal pairs of bubbles. 

(a) (b)



  

also cells that form a transition from one pattern to the next.  These transitions are denoted BS 

for bamboo-staircase, BC for bamboo-chiral, BH for bamboo-hopscotch, SC for staircase-chiral, 

SH for staircase-hopscotch, and CH for chiral-hopscotch.  The order of patterns - e.g.  

transitioning from bamboo to staircase versus staircase to bamboo - is irrelevant.  Notably, not all 

of these possible transitions were observed in the zebrafish notochord. 

After periodicities of each centroid are assigned a connection type using one of the 

algorithms described subsequently in Sections 3.1 and 3.2, individual cells are then assigned to a 

pattern based on the periodicities of adjacent cells.  Both algorithms share the notation !  for the 

sequence of cell periodicities and !  for the sequence of cell centroids, and both ordered by 

ascending cell !  position.  Computationally, !  is implemented as a cell array in Matlab, 

allowing it to store both integer and character data.   

2.4.1. Radial Algorithm 

We designed the radial algorithm to identify three different periodicities, denoted period 

one (P1), period two (P2), and period three (P3).  For each centroid !  in the 

sequence of centroids,  we calculate the distance of the centroid from the midline as 

for ! .  Periodicity for cell !  is the lowest value !  for which ! , and ! .  

If !  for all tested values of !  the periodicity of !  is undetermined and ! .  After the 

algorithm completes its sorting, cells flagged as undetermined must be manually assessed for 

periodicity. 

Tn

Kn

X Tn
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k = 1, 2, and 3 Kj k Dk < Rtol Tj = k
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2.4.2. Projection Algorithm 

For the projection algorithm, we define the periodicities as vertical (P0), horizontal (P1), 

period two (P2) and period three (P3), illustrated in Figure 2.5.  At the pattern assignment step, 

following the periodicity algorithm, we also flag potential areas where cells transition between 

patterns by tagging cells adjacent to two different patterns.  This is not strictly necessary for 

pattern identification, but helps automate the process of displaying and analyzing data.   

For each element !  in the sequence of centroids, we find the vector "  defined as by the  

vector connecting centroids "  and "  for ! , and determined simply from 

! .  For each value of ! , we compute   

to project the vector !  onto the midline.  We then compute the cosine of the angle between 

vectors !  and !  as 

because !  is a unit vector and therefore has unit norm.     

Kj vk, j

Kj Kj+k k = 1, 2, and 3

Kj+k − Kj k

vk, j

vk, j vk+1, j

⟨1, 0, 0⟩
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Figure 2.5: The four types of cell periodicities used for the projection 
algorithm.

Vertical (P0) Horizontal (P1) P2 P3

(4)Vk = vk, j ⋅ ⟨1, 0, 0⟩

cos(θ ) =
Vj

∥vk, j∥
(5)



  

The value !  is a special case.  We first check the cosine of the angle between !  and 

!  to see if ! , indicating that the vector !  is approximately parallel to the 

notochord midline.  Although this means that the angle between vectors can range up to ! , we 

determined that this was a sufficient categorization for a period one pattern using angles 

measured in notochords with visually clear bamboo pattern.  If the midline and vector are 

sufficiently close to parallel, the periodicity of centroid !  and !  is then labeled as P1.  We 

then check to determine if the cosine of the angle between !  and !  is lower than 0.1, 

indicating that the vector !  is within approximately !  of perpendicular to the midline.  This 

identifies the connection as P0, and centroids !  and !  are then labeled as P1.      

We then check the vectors !  and !   in that order to see if the angle between either 

vector and the midline are sufficiently close to zero using the same thresholds as with the P0 and 

P1 periodicities.  The periodicity associated with !  is defined as the lowest value !  for which the 

above conditions hold.  Any centroids between !  and !  are also defined as having this 

periodicity, due to the definition of periodicity as illustrated by Figure 2.5.  The additional 

conditions on !  are necessary to accurately identify hopscotch pattern cells.  The MATLAB 

code for this algorithm, which includes specific tolerance values, can be found in Appendix E.   

This method is sufficient to categorize all centroids in our notochord data sets.  However, 

for other sets with larger " , there will be blank elements in the sequence ! .  These correspond to 

more complicated patterns resulting from larger "  and have not been observed during this phase 

of zebrafish notochord formation.  Simply allowing for !  to be larger does not include all of the 

k = 1 v1, j

⟨1, 0, 0⟩ cos θ > 0.9 v1, j

25∘
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higher order patterns, and significant further work would be required to create an algorithm that 

works for all ! .  These patterns, however, are of no biological interest with respect to notochords. 

2.5. Periodicity Sorting and Pattern Classification 

Once the sequence of periodicities !  has been found, we use it to determine the actual 

patterns occurring within the notochord.  It is necessary to use the periodicities of neighboring 

connections to determine if the cells are transitioning from one pattern to another.  We provide a 

visualization of the following sorting algorithm in Figure 2.6.  For each element ! , we examine 

the elements !  through ! .  First, we check !  for periodicities in the order P1, P0, P2, P3 to 

avoid any conflicts arising from the inherent overlap of the hopscotch and bamboo patterns, 

since both patterns include cells with centroids very close to the midline.  The key to 

distinguishing between the two is to check the periodicity of the connections to and from the cell 

in question.   

2.6. Algorithm Comparison 

The radial and projection algorithms are closely related, but we found that the projection 

algorithm agreed more closely with our visual identifications of patterns.  Furthermore, the 

projection algorithm can identify hopscotch patterning where the radial algorithm cannot, due to 

the radial algorithm’s independence from the !  position of centroids.  Identifying patterns from 

only the centroid positioning in the !  plane will miscategorize the near horizontal portion of the 

hopscotch pattern as staircase.   

k

Tn

Tj

Tj−3 Tj+3 Tj

x

yz

!  20



  

!  21

Figure 2.6: Sorting algorithm used for categorizing cells into a pattern array !  
based on periodicity. The order in which the element !  is checked for 
periodicity is required to correctly identify all patterns.  Connections between 
cells  are flagged to mark potential transitions between patterns.   
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Since hopscotch has been identified as a stable and common pattern for the notochord, 

even though it exists only under highly specific conditions for foams, this makes it a novel 

pattern, and our ability to detect it is therefore particularly important in the notochord context.  

Because of its inability to detect the hopscotch pattern, the radial algorithm was deemed to be too 

prone to error for identification of irregular patterns, and therefore the projection algorithm was 

used for the data sorting reported in [23].  The published paper that resulted from this work can 

be found in Appendix F.    
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3. Chapter 3 
Packing in Elliptical Cylinders 

From the results of the genetic manipulation experiments performed for Chapter 2, we 

were able to analyze the dimensions of notochords of zebrafish through manual measurements of 

cross-sectional slices of confocal microscopy stacks.  We studied the cross-sectional eccentricity 

! , which is effectively a measurement of the aspect ratio of an ellipse, with ! ; see Figure 

3.1.  We determined that wild type zebrafish is in the range of !  to ! .  This is 

significantly ( ! ) different from zero, making a perfectly circular cylindrical tube a 

suboptimal model for notochords.     

As foams in elliptical tubes have yet to be studied and have a stronger relationship to the 

zebrafish notochord behavior than foams in circular tubes, we present three novel models of 

tubes containing foams.  These models are a rigid elliptical tube of fixed eccentricity; a semi-

flexible elliptical tube, with eccentricity treated as a dependent variable and part of the energy 

e 0 ≤ e ≤ 1

e = 0.3 e = 0.4

p < 0.0001
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Figure 3.1: Example of ellipses with different eccentricities, with A) !  
and B) ! .

e = 0.9
e = 0

A

B



  

minimization;  and a fully flexible sheath that is not constrained by any fixed geometry and is 

fully dependent on surface tension ratios. 

3.1. Continuous Models 

Our primary goal for the creation of these models was to be able to compare the results of 

energy minimization for tubes of different eccentricities under different constraints without 

changing cross-sectional area.  This allows us to easily compare our results with those of 

physical foam experiments [13, 25, 26, 38].  In these experiments, the tube is a fixed size, and 

the monodisperse bubbles packed in the tube are varied in volume for each trial to yield different 

!  values.  The changes in pattern as !  is varied in foam experiments are illustrated in Figure 3.2.   

There has been extensive analysis of foams in rigid tubes of circular [13, 25, 26, 29, 38] and 

other [35] cross sections, but there are no published studies of elliptical cross sections.  Using an 

elliptical tube for our models with geometric boundary conditions allows us to specify the cell 

volume !  in terms of !  and the cross-sectional area; because the relationship between !  and cell 

patterns is well-studied for the problem of a perfectly circular tube, this allows us to directly 

analyze the additional effect that varying eccentricity has on pattern formation.  As mentioned in 

Chapter 1, the ! -pattern relationship has also been studied for other cross sections, including 

square and triangular [11, 34], but these are of no interest biologically and are not considered 

here. 

Our first assumption for all three models is that the bounding tube or sheath is infinitely 

long; this eliminates any effects from the ends of the tube on pattern behavior.  This aligns 

conceptually with foam experiments, since those experiments are performed in long open-ended 
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tubes, meaning the pattern observed in the center of the tube is at equilibrium and assumed to be 

unaffected by the boundary conditions from the far away open top and bottom [13, 25, 37].   

Under the infinite tube assumption, we can simplify our models further to a 

representative length of tube and assume that the pattern in this length is tessellated above and 

below the representative section, which we will refer to as the fundamental region.  Because our 

primary interest is the transition between bamboo and staircase patterns, both of which can be 

!  25

Figure 3.2: Variations in !  cause changes in pattern in foam experiments.  The 
solid line represents pattern transitions as !  is increased, and the dashed line 
represents pattern changes as !  is decreased.  Patterns above the grey line have 
not been observed in the zebrafish notochord.  The difference in pattern 
transition points indicates a range of !  for which a pattern is stable.  The variable 
!  is a numerical characterization of different patterns, and the computation of 
this value for different !  values is discussed in Section 2.1.  Original figure from 
[12], annotations added.
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considered period 2, the fundamental region of our models contains two cells.  We denote the 

dimensional height of the fundamental region as ! . 

We are modeling notochord cells as a dry foam; see Figure 1.4 in Chapter 1.  One of the 

properties of dry foam is that the foam is completely space-filling, so we may assume this 

property of our cells as well.  We are further assuming that all cells are of equal volume and 

pressure, so each cell must occupy precisely half of the fundamental region within the tube.  This 

means that any patterns that do appear can be assumed to be regular as defined in the first section 

of Chapter 2.  Therefore, we can compute the total energy of the fundamental region and halve it 

to find the energy per individual cell in the infinite tube. 

The purpose for all three models is straightforward: minimizing average surface energy 

per cell, denoted ! , constrained by a periodic boundary condition !  and by 

conservation of volume.  However, the mechanics of the sheath are treated differently in each of 

our three models and may provide additional constraints.  The three different sheath models are 

presented here ordered from maximally to minimally constrained.  

3.1.1. Rigid Sheath Model  

To mirror some of the experiments with the gel beads discussed in Chapter 1, and to 

provide an analysis of a system which has not yet been explored in foams literature, we begin 

with a model for a rigid elliptical tube of eccentricity !  and cross-sectional area ! , filled with 

cells (or bubbles) of equal volume ! ; the combination of prescribing cross-sectional area and cell 

volume results in a fixed height for the fundamental region, which yields 

h

Ω̂ (x, y, 0) = (x, y, h)

e S

v
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The cross section depicting the employed geometry is shown in Figure 3.3. Since the tube 

in this scenario is inflexible, it forms a bounding surface for the internal foam cells.  This means 

that we only need to minimize average internal cell-cell surface area, since the surface area per 

fundamental region of the rigid tube is fixed.   

Aligning the cylinder so its base is perpendicular to the !  axis, we can assign the direction 

of the major axis of the elliptical cross section without loss of generality, so we choose to have 

the major axis on the !  axis.  Because of this, our semi-major and semi-minor axes are denoted !  

and ! , respectively, so the equation for the bounding ellipse is  

Therefore, eccentricity is thus defined as 

with ! .    

z

x rx

ry

0 ≤ e < 1
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Figure 3.3: Sketch of the cross section of the configuration used for the rigid 
model.  Two cells are shown, one in red and one in blue, with the sheath drawn 
in black.  The surface being minimized is the one formed by cells in contact with 
each other, not the cell surface in contact with the sheath.  The sheath is rigid and 
therefore is ignored in energy minimization.

fixed surface 
area, no 

contribution to 
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We can derive expressions for the geometric properties of the tube with respect to the 

cross-sectional area !  and ellipse eccentricity ! , which are the parameters dealing with the 

boundary.  Thus, we derive expressions for !  and !  as  

and note that these are functions of fixed parameters !  and ! .  Our problem is then minimizing 

the surface energy !  of the cells in the fundamental region, constrained cross-sectionally by 

an ellipse with the axes described above.  Generally, we define surface energy as the energy from 

tension over the surface in question.  This surface energy minimization is therefore equivalent to 

minimizing !  where !  is the area of the !  internal face of the !  cell and !  is the 

interfacial tension affecting the !  internal face of the !  cell.  Since we are using a fundamental 

region of cells to represent the entire system, the minimization is over the two cells in a 

fundamental region.  We can now determine our dimensional objective function ! , and we will 

then nondimensionalize to yield ! .  

Since the interfacial tension !  is fixed, our objective function, which represents the 

minimizable energy per cell in the fundamental region, is 

Here !  is the surface area of the !  interior face of an interior cell.  Since !  is a function of 

! , this means that, since !  and !  are dimensionless and !  can be computed from !  

and ! , we can express the units of !  as 

S e

rx ry

e S

∑i Ωi

∑i ∑j Ai, jγi, j Ai, j jth ith γi, j

jth ith

Ω

Ω̂

γc

Aj jth Ω

v, S, γc, e, and λ λ e S v
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rx =
S

π 1 − e2

ry = rx 1 − e2

(9)

Ω(γc, e, S, λ) = ∑j Aj(e, S, λ) γc (10)

[Ω] = [γc]a[v]b (11)



  

However, since !  is defined to be an energy, and therefore ! , and as a tension 

term we have ! , this means ! , so  

and we therefore define our nondimensional objective function for the rigid tube model as  

Our problem thus consists of finding surfaces that minimize !  under three 

constraints.  The first two are the conservation of volume and periodic boundary condition 

common to all three models.  Let !  be the region within the cylinder contained in the 

fundamental region whose base is the ellipse described by d                                                      l, where !  and 

!  are as given above.  Then our last constraint is that all cell-sheath surfaces are in ! E and that 

all cell-cell surfaces lie in the interior of ! . 

To find analytical solutions to this problem, we consider specific cases.  First, we 

consider the energy of a cell in bamboo pattern.  Since the only energy contributed to 

minimization comes from the product of interfacial tension and surface area, the only surfaces 

we need to consider are the top and bottom of the cell.  However, we have constrained this 

problem to have constant cross-sectional area ! , so the energy per cell in bamboo pattern is 

!  giving nondimensional energy per cell ! , independent of eccentricity and ! .  

The transition from the bamboo pattern to staircase should occur when the energy in the staircase 

configuration, denoted ! , is lower than ! , so the theoretical transition point between patterns 

should occur once ! .  There is no analytical geometric expression in three dimensions for 

the interior surfaces of a cell in the staircase configuration, and, as previously noted, foam 

Ω [Ω] = L2MT−2

[γ] = MT−2 a = 1 and b = 2/3

Ω̂(λ, e)

E

rx

ry ∂

E

S

ΩB = 2Sγc Ω̂B = 2 λ

Ω̂S Ω̂B

Ω̂S ≤ 2

!  29

[Ω] = [γc] [v]2/3 (12)
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Ω

γc v2/3 (13)
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contained in circular cylinders has been shown experimentally to have stable patterns across !  

ranges, some of which overlap, so further examination of this transition point requires numerical 

simulations.   

3.1.2. Semi-Flexible Sheath Model 

While little is known about most of the physical properties of the notochord, we do know 

that its sheath is not rigid.  As an intermediate model between a rigid tube and a completely 

flexible one, we consider a uniform elliptical tube with unfixed eccentricity, where !  and !  are 

free to vary as a consequence of system parameters and cell arrangement.  Rather than providing 

a purely geometric boundary, as in the rigid tube problem, this semi-flexible sheath has an 

additional tension parameter !  which interacts with the surface of the inner notochord cells that 

are in contact with the sheath, as shown in Figure 3.4. 

This configuration necessitates a change in the objective function, since rather than just 

! , we are now also considering the tension !  from the sheath, and because the geometric 

boundary constraint is a function of the free variables !  and !  rather than only system 

λ

rx ry

γs

γc γs

rx ry
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Figure 3.4: Sketch of the cross section of the configuration used for the semi-
flexible model.  Two cells are shown, one in red and one in blue, with the sheath 
represented in black. We are minimizing the surfaces that are formed by cell-cell 
contact combined with the surfaces formed by cell contact with the sheath.



  

parameters.  From Figure 3.4 we see that the total tension on an exterior surface is !   since 

there are contributions from both cell tension and sheath tension.  Thus the objective function for 

energy per cell must then become  

constrained by conservation of volume (by fixing !  and ! ), fixed cross-sectional area ! , and both 

!  and !  fixed.  Since we are no longer constraining our system purely geometrically, !  has 

become a dependent variable rather than an independently prescribed parameter as in the rigid 

tube model.  Along with ! , we have an additional driving ratio for this model in the 

nondimensional parameter ! , the ratio of external to internal surface tension.  In 

nondimensionalizing, we use a characteristic surface tension !  defined as !  rather than 

using solely !  or ! .  If we define ! , then !  becomes a function of ! , ! , ! , ! , ! , 

and ! , and rather than !  and !  we can use cell volume ! ; these changes are particularly helpful 

because ! , ! , and !  are dimensionless, so  

Recalling that the units of !  are ! , we see that here !  and ! .  We therefore 

define our general dimensionless energy !  for the semi-flexible model as 

The constraints on this minimization are the same as for the rigid sheath model: a periodic 

boundary condition, conservation of volume, and a bounding elliptic cylinder.  The key 

difference is that the ellipse described by I     I is now also affected by the 

cells because the eccentricity !  has become a dependent variable. 

γs + γc

λ S S
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Ω(λ , S, γs, γc, rx, ry) = (γs + γc) Aext(λ , S, γs, γc, rx, ry) + 2γc Aint(λ , S, γs, γc, rx, ry) (14)

[Ω] = [γ]a [v]b

= MaT−2aL3b
(15)

Ω̂ =
Ω

v2/3γ
(16)

S
π = x2 1 − e2 + y2

1 − e2



  

3.1.3. Flexible Sheath Model 

Our final, and least constrained, model is one for a fully flexible sheath, depicted in 

Figure 3.5. We have ! , but we can eliminate the dependence on !  and !  by 

using the previous definitions of !  and ! .  Then ! ; since !  and 

!  are dimensionless, we obtain 

Here we again have !  and ! , resulting in the same nondimensional objective function 

!  as we used for the semi-flexible model,  

However, for this model our only constraints for the minimal energy surface are the volume 

conservation and the periodic boundary constraint common to all models. 

Ω = Ω(γc, γs, λ, v) γs γc

Γ = γs /γc γ = γsγc Ω = Ω(Γ, γ, v, λ) λ

Γ

a = 1 b = 2/3

Ω̂
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Figure 3.5: Sketch of the cross section used for the fully flexible model.  Both 
sheath-cell and cell-cell surfaces contribute to energy and are being jointly 
minimized, but they are no longer constrained to have a surface on a bounding 
ellipse.

[Ω] = [γ]a[v]b

= MaT−2aL3b
(17)
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3.2. Discretization 

While the described minimal surface problems initially appear to be relatively simple 

models, we run into complications when we consider the irregular shapes that the faces of our 

cells can potentially form.  Rather than attempt to compute !  using geometric equations for area, 

we instead discretize the surfaces to find numerical solutions.  Note that due to the properties of 

dry foams upon which this set of models is based, most importantly that there is no volume 

between bubbles and the foam is completely space-filling, volumes are bounded by multiple 

faces connected by edges, and these edges meet at individual vertices.   

We will discretize faces !  and edges into triangular facets and their associated shared 

edges and vertices. For all three models, the faces !  of each cell !  are approximated as a union 

of facets !  with vertices ! , ! , and ! , connected by ordered edges ! , ! , and !  as shown in 

Figure 3.6.  These vertices and edges will form the initial mesh for our models although the 

initial mesh will be coarse and require refinement.  Solving the minimization problem then 

consists of iteratively moving vertices in a lower energy direction using the conjugate gradient 

method, modifying mesh through refinement and rebalancing, and calculating new energies.  

Ω̂

Fi

Fi b

fj v0 v1 v2 s0 s1 s2

!  33

Figure 3.6: A) An arbitrary cell, B) arbitrary face F1, C) F1 discretized into 
facets, D) discretization into individual facets, and E) facet f1 with vertices v0, v1, 
and v2, connected by edges s0, s1, and s2.

D
E



  

3.2.1. Rigid Sheath Model 

From our continuous model described in Section 3.1.1 of this chapter, we see that our 

model must include the energies contributed from surface tension and from enforcing fixed cell 

and fundamental region volume. This is accomplished by modifying the energy using pressure as 

a Lagrange multiplier; since we are modeling the rigid tube wall as a bounding ellipse, we need 

not examine the surfaces on this boundary.   

Since our discretization of a model of a curved surface on a curved boundary consists of 

flat facets fixed to a segmented boundary, there will be area and volume errors due to this 

curvature.  To address this, we include an additional Lagrange multiplier in the form of gap 

energy, which is defined as an energy proportional to the cross-sectional area between a facet and 

a curved boundary; see Equation (28).  Minimizing gap energy counteracts the clumping trend of 

vertices away from high curvature boundaries during iterative remeshing, where most edges of 

facets are shortened at the expense of some becoming extremely long.  This uneven mesh can 

lead to highly inaccurate fit along the high curvature portion of the boundary.  As eccentricity of 

the tube increases, the ratio of maximum to minimum edge curvature increases, as illustrated in 

Figure 3.7, so gap energy becomes vital to maintaining balance in mesh size for higher 

eccentricity simulations.  Thus, the change to a discrete system requires us to modify our 

objective function from Equation (13).  For a cell !  with !  faces, the !  face !  consists of !  

triangular facets denoted ! .  Each of these facets has three edge vectors, and we denote them as 

!  , ! , and !  as shown in Figure 3.6.  

b N ith Fi ni

fj

⃗s0, j ⃗s1, j ⃗s2, j
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Then, assuming a balanced discretization, the area of face !  is   

We then apply a partial sum of this area equation as an approximation for surface area when we 

compute the energy contributed by surface tension. 

Rather than an objective function of just surface area and tension, as in the objective 

function for the continuous rigid sheath model in Equation (10), we have  

where !  is the energy from internal pressure affecting cell ! , !  is the energy contributed 

by tension acting on facet ! , and !  is the gap energy affecting edge !  of facet ! .  The 

energies here are all dimensional, and nondimensionalization occurs at the end of the 

minimization process for analysis and comparison purposes.  We shall now discuss the 

computation of these energies in further detail.  

Fi

Ωp(b) b Ωt( fj)

fj Ωg(sk) sk fj
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Ai = lim
ni→∞ ∑

fj∈Fi

area of fj = lim
ni→∞

ni

∑
j

1
2

∥ ⃗s0, j × ⃗s1, j∥ (19)

Ω(b) = Ωp(b) + ∑
fj∈b

Ωt( fj) + ∑
sk∈fj

Ωg(sk) (20)

Figure 3.7: Difference in curvature ratio with A) eccentricity = 0.9 and B) 
eccentricity = 0.
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First, we can express the energy contributed from surface tension as 

where !  is the surface tension affecting facet !  and is assumed to be constant across the facet.  

This means the force from surface tension on each vertex of !  is 

Next, we consider the energy from a cell’s internal pressure, which results from enforcing 

it as a Lagrange multiplier in the volume conservation equation 

where !  is the computed volume in Equation (25) and !  is the set volume of the cell. 

 For any cell ! , we have  

where !  is the prescribed volume of the cell, which we computed previously from λ and cross-

sectional area, and !  is the resulting internal pressure of the cell.  To enforce conservation of 

volume, !  is used as a Lagrange multiplier and adjusted with each application of forces to 

maintain the initial specified volume ! .  

The volume of a body that has been defined as a collection of facets is computed as 

where !  is the !  position of vertex !  and !  is the basis vector ! .  Since the volume  

equation is a constraint on our system with pressure acting as a Lagrange multiplier, the force 

γc f

f
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⋅
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contribution from pressure on a vertex !  associated with cell !  is  

where !  is the gradient of the volume of cell !  as a function of the coordinates of the vertex ! ,  

!  is the ambient pressure, and the sum is over all cells that include vertex !  in their surface. 

Since we assume ambient pressure is zero, this simplifies to 

The final contribution to energy is from gap energy, an energy proportional to the area 

between the boundary wall and the edges of a cell surface; see Figure 3.8. The gap energy for an 

edge !  is given by 

where !  is the edge vector and !  is the projection of !  onto the tangent plane of the constraining 

surface at the tail vertex of the edge ! , as shown in Figure 3.9, and !  is the gap constant; !  

functions like a spring constant and has units ! .  If an edge !  is not part of an exterior facet, 

then ! .   

v b
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⃗F p(v) = − ∑b (pb − pamb) ⃗g b (26)

⃗F p(v) = − ∑
b

pb ⃗g b (27)

Ωg(s) =
k
6

∥ ⃗s × ⃗qt ∥ (28)

Figure 3.8: An ellipse is initially represented as six vertices connected by edges.  
The area between the approximation and actual ellipse is in blue.  A) The mesh 
is refined, doubling the number of vertices used, but no position adjustments are 
made. B) The vertices are shifted by increasing k, but no new vertices are added.  
C) The mesh is refined and the vertices are shifted.



  

The closest approximation to the actual gap area is given by ! , and !  has the 

effect of forcing vertices to distribute closer along high curvature sections of the boundary.   It is 

also worth noting that the gap energy decreases quadratically as the total number of facets is 

increased, so gap energy does not contribute significantly to total energy for a sufficiently fine 

mesh. 

Gap energy directly affects only the vertices at the head and tail of edges on the exterior 

facets.  Let !  be the projection of !  onto the tangent plane of the constraint at the head vertex 

of ! , as illustrated in Figure 3.8.  For a vector !  with head vertex !  and tail vertex ! , we will 

write !   as ! .   

Thus,  

k = 1 k > 1

⃗q h ⃗s

s ⃗s vh vt

⃗w ⋅ ⃗w w2
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Figure 3.9: The curved volume, in red, is discretized into the black surface.  The 
vector ! , in black, is projected onto the blue plane, which is tangent to the red 
surface at the tail of ! , creating the blue vector ! . 
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and by combining the equations (21), (24), and (28) we obtain the discretized objective function 

subject to  !  and the periodic boundary condition.   

3.2.2. Semi-Flexible Sheath and Flexible Sheath Models 

To apply a similar discretization to the semi-flexible sheath model, only a few changes to 

the rigid model are required.  We now need to include the surface energy contributed by exterior 

facets, meaning our equation for energy from surface tension is now 

Rather than carry the notation for a piecewise energy function through our objective function, we 

instead use  

where 

Thus, 

and we note that unlike in the rigid tube system, the geometric boundary constraint l is dependent 

on cell configuration because !  and !  are dependent variables; volume remains constrained as 

before.   

Only one change to the semi-flexible model is needed to create our flexible model.  We 

have the same objective function  as with the semi-flexible model and we continue to constrain 

x2
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rx ry
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volume and require the periodic boundary condition.  Unlike the semi-flexible model, those are 

the only constraints for this model.  

3.3. Test Problems 

We ran our simulations using Surface Evolver, a finite element program developed by 

Brakke [1] and used extensively in foam modeling [2-4, 13, 17, 18, 21, 24, 29, 35, 36].  To verify 

the accuracy of our Surface Evolver simulations, we created two test models for problems with 

analytical solutions.  The first was designed to test the accuracy of the implementation of an 

infinitely long tube in Surface Evolver, and for simplicity this was done in two dimensions.  The 

second test problem was created to verify the necessary mesh refinement for satisfactory energy 

convergence in three dimensions.   

3.3.1. Two-Dimensional Analogue Problem 

We begin by studying the analytical solution of a simpler version of the notochord 

problem with a rigid sheath.  To translate our three-dimensional system to a two-dimensional 

system, our cell surfaces become curves or lines, and our volumes become areas; see Figure 

3.10.  The transition point between optimal patterns for this system can be found analytically.   

!  40

Figure 3.10: Two-dimensional potential fundamental regions in A) bamboo and 
B) staircase, which are each composed of two cells.  The green edges are the 
ones that contribute to interfacial tension.  The bottom edges are intentionally 
excluded to prevent counting edges twice when the pattern is repeated.
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Consider two pairs of fundamental regions in the configurations shown in Figure 3.10 

with the same cell-cell surface tension for each edge.  Because the tension is identical, we see 

that the angles formed by the three green edges must be equal, so ! , as first observed by 

Plateau [27].   

If we let !  represent interfacial tension, then we can write the surface energy functions of 

bamboo and staircase patterns in the fundamental region, respectively, as   

Since the angle !  is part of a right triangle, we obtain  

and we can further conclude that ! , which implies that !  since our foam 

is completely space-filling.  We are assuming that all cells have the same area, so from the 

bamboo pattern we can see that the area of a cell can be written as   

From the right triangle described by !  and !  we have   

and because ! , solving this for !  gives us ! ; solving the cell area equation 

for !  and substituting here yields !  and our energy functions thus become  
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12R
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We now define !  in the two-dimensional context to be the ratio of tube diameter to diameter of a 

circle with area ! ; i.e.,  

By solving equation (41) for !  and substituting the result into the energy functions from (36), we 

obtain 

Since !  is dimensionless and !  has a fixed value, it is possible to create dimensionless 

objective functions  

To find the !  value at which the transition between optimal patterns occurs, we set 

!  and solve for ! , yielding    

Interestingly, if we solve ! , we see that this is also the !  value for which !  is 

minimized, and this !  value is also comparable to the !  value for the bamboo-staircase pattern 

transition observed in foam experiments; see Figure 3.2. 

We now consider the simulated version of the above problem to test Surface Evolver’s 

accuracy against a problem with a known analytical solution.  We still need to examine an 

infinitely long “tube,” so we need to determine a fundamental region which we can then repeat 
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infinitely.  This means we are using a periodic boundary condition ! , where !  is the 

height of the fundamental region.  We will refer to this boundary condition as the torus 

constraint.   

In the interest of using Surface Evolver, we use the initial geometry shown in Figure 3.11, 

because it is easy to implement and has the maximum number of cells in contact with each other.  

If we create a graph using each cell as a vertex, and connecting adjacent cells with edges, then 

this geometry makes the valences of these vertices as large as possible, which allows patterns to 

transition into less complicated patterns. 

First, we performed a mesh refinement study, and we found that the minimal energy 

solutions conformed to the analytical solution for all !  regardless of mesh.  This happens because 

the bamboo and staircase solutions have only straight edges due to the boundary condition and 

required equal internal pressure for both cells. 

  We also wanted to verify that Surface Evolver accurately quantifies the transition point 

that is expected based on the previously discussed analytical solution.  We found this to be the 

case, as shown in Figure 3.12, with our simulated points fitting precisely to the analytical 

solutions. 

(x, 0) = (x, h) h

λ
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Figure 3.11: Initial fundamental region that is repeated infinitely in either 
direction.  The red and blue each represent one cell.



  

3.3.2. Two Bubbles 

Our second test problem is designed primarily to test the 3-dimensional mesh capabilities  

and accuracy of Surface Evolver.  We consider two bubbles with identical prescribed volume and 

surface tension, a problem which again has a known analytical solution.  The initial geometry 

uses two cubes as approximations to spheres, as depicted in Figure 3.13.  Because this is 

obviously a highly inaccurate representation of spheres, it provides a good way to study the 

effect of mesh coarseness on computed volume.   

To assess the accuracy of the stable energy solution supplied by Surface Evolver, we 

compare our results to the analytical solution, which we derive as a consequence of the Laplace-

Young equation [16, 39]  
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Δp = − γ∇ ⋅ ⃗n (45)

Figure 3.12: Nondimensional energy per unit volume in the bamboo 
configuration is shown in red, and the nondimensional energy per unit volume in 
the staircase configuration is shown in blue.  The λ value where the computed 
staircase energy becomes lower than the projected bamboo configuration energy 
is approximately 1.17, which is comparable to the !  value from foam 
experiments, seen in Figure 3.1.
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to describe the pressure difference across the interface between two static fluids, where !  is the 

surface tension, !  is the unit normal directed outward from the surface of the foam, and !  is 

the Laplace pressure, defined as the pressure difference between internal foam pressure and, in 

our case, ambient pressure [37].   

It has been well-established, as in [14] for example, that the solution to the Laplace-

Young equation is    

where !  is the mean curvature of the surface with radii of curvature !  and ! .  In this case, the 

curvature is homogeneous on each individual surface, so this simplifies to   

where !  is the radius of curvature of the surface in question.  

Since the two bubbles have equal internal pressure, the curvature of the interface between 

the two bubbles is   

and the shared interface is therefore flat. 
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⃗n Δp
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Figure 3.13: Initial geometry used to simulate the mechanics of two bubbles of 
equal volume.
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Next we consider the system as a whole.  Since we assume our configuration is stable, we 

know that the forces where the two bubbles meet and form the interface must be balanced.  

Because the two spheres are identical in volume and surface tension, together they have circular 

symmetry about the line perpendicular to the exterior and interior surfaces of both bubbles.   

Therefore, this problem can be simplified to balancing the forces of any cross section that 

contains a similar line of symmetry, as illustrated in 3.14.  Because the bubbles are of equal 

volume, the angles formed by where they meet the interfacial foam must be equal.  The surface 

tension is also the same for all surfaces, so the tangent vectors to each surface must be of equal 

magnitude.  Thus, the angles of intersection are ! , and this is confirmed by the first of 

Plateau’s laws [27]. 

We can now simplify this problem as a model for two intersecting circles with a segment 

joining their points of intersection.  Because the line from the center of a circle to its perimeter is 

perpendicular to the perimeter at the point where they intersect, we can further reason that the 

angle between this line and the interface must be ! .  Now, by examining only one bubble, we 

2π /3

π /6
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3.14: Two bubbles of A) equal volume and surface tension, and B) an arbitrary 
intersection of the surfaces of two bubbles and the plane perpendicular to all 
bubble surfaces (right). 
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can thus compute the radius of the interfacial side, denoted !  and equivalent to half the 

intersecting segment in our two dimensional simplification, as 

and this is confirmed by the Young-Dupré equation [8]. 

Note that, if we let !  be the line from the center of the circle that is perpendicular to the 

chord ! , we see that 

We now can compute the area of the shared surface as  

Let us now examine the spherical cap created by the intersection of this interfacial 

surface and a sphere.  The area and volume for the cap using our notation is 

Therefore, recalling that the area and volume of a sphere are !  and ! , we conclude that 

the surface area and volume of the two bubbles are 

Since cell volume is fixed, we denote the volume of an individual cell as !  

because the above equations are for the system of two cells.  Then we can solve for !  using the 

volume equation, resulting in 

b

a

b

4πr2 4πr3 /3

v = V /2

r
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b = r cos
π
6

=
r 3

2
(49)

a = r cos
π
3

=
r
2

(50)

Ashared = πb2 =
3r2π

4
(51)

Acap = 2π r (r − a) = π r2

Vcap =
π (r − a)2

3
(2r + a) =

5π r3

24

(52)

A = 2Asphere − 2Acap + Ashared V = 2Vsphere − 2Vcap

=
27π r2

4
=

9π r3

4

(53)

r = 3 8v
9π

(54)



  

Substituting this into equation (53) yields the equation for surface area of two bubbles,  

and thus we conclude that the total surface energy for the two bubble system is 

The nondimensional energy is therefore  

We performed a mesh refinement study, with the mesh rebalanced using equiangulation at 

each iteration.  The rebalancing process is discussed in further detail in Section 3.4.3 of this 

chapter.  We determined that for 3-dimensional simulations, using 11,000 facets converges to the 

analytical solution with relative error below ! , while 45,000 facets yields a relative error 0.02 %
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Figure 3.15: Simulated nondimensional energy, shown in black, is measured as 
a function of mesh fineness, as determined by number of facets used in the 
mesh; the cell volume is set to ! .  After approximately 10,000 facets, the 
energy has converged to within ! of the analytical solution to this problem, 
which is !  and is indicated by the grey dashed line. 
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A = 3 3 9π v2 (55)

Ω = γ 3 3 9π v2 (56)

Ω̂ =
Ω

γ v2/3
= 3 3 9π ≈ 9.1394 (57)



  

below ! , as seen in Figure 3.15.  When the increase in computing time between 11,000 

and 45,000 facets is taken into account, we considered this decrease in computed energy to be 

insignificant.  Since surface tension is fixed and equal across all surfaces, this is equivalent to 

showing that the increase has no effect on computed surface area.  These results led us to our 

typical mesh of approximately !  facets. 

3.4. Model Implementation in Surface Evolver 

A Surface Evolver datafile comprises three sections: definitions and options, geometry 

(further split into vertices, edges, faces, and bodies), and commands.  The definitions and options 

section is where parameters, boundary constraints, and torus periodicity are defined. 

Surface Evolver geometries are formed using a list of vertices in standard Cartesian 

coordinates by default, although it is possible to use other common systems or define one.  The 

directed edges are then written as a list of pairs of vertices, where the tail is the first vertex of the 

pair.  From this list of edges, we define faces; these are lists of edges in the order they connect.  

Because an edge e will not always point in the direction needed for specifying a face, we use -e 

to indicate that this edge must be traversed in the opposite direction to make the appropriate 

connection.  The direction of the edges around the face indicates the direction of the outward unit 

normal vector.  Faces can also be assigned various physical properties, like surface tension, and 

visual properties, such as color or opacity.  Lastly, the bodies are defined as a list of faces, where 

order is irrelevant.  Surface Evolver bodies are the three-dimensional cells or bubbles to be 

modeled.  When initializing a body, if a face f has a normal that points toward the interior of the 

body instead of the exterior, we use -f instead. 

0.005 %

15,000
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The final section of a Surface Evolver datafile is the commands section.  This section is 

optional, but can be used, for example, to prepare bodies for simulation or to create commands to 

be used later.  It is also where the method for optimization is set; we have used the conjugate 

gradient method and incorporated simulated annealing.  An example of a Surface Evolver 

datafile is presented in Appendix B. 

3.4.1. Initial Geometry 

Both the rigid and flexible tubes have the same initial geometry.  Two triangular prisms 

are generated within a bounding elliptical tube of set eccentricity, as shown in Figure 3.15.  All 

exterior faces of the prisms in Figure 3.16 are constrained to be on the bounding elliptical 

cylinder.  Additionally, any edges of cell-cell surfaces that are shared with exterior faces are 

constrained to the bounding ellipse, and cell-cell surfaces themselves are constrained to be within 

the bounding elliptical cylinder.   
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Figure 3.16: A) Initial fundamental region in three dimensions, B) Two full cells 
represented by the fundamental region, C) the fundamental region cross section; 
the shared edge of the triangles is also the minor axis of the bounding elliptical 
cylinder.
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This allows interfacial surfaces to remain interior surfaces while keeping their connection 

to the sheath surfaces, preventing object inversion.  The three-dimensional fundamental region 

has edges that wrap from above to underneath, equivalent to an infinite periodic tube of pairs of 

cells, as illustrated in Figure 3.16. 

3.4.2. Boundary Conditions  

We used the ellipse described by the equation 

as our geometric boundary equation. The eccentricity and cross-sectional area parameters are 

used to compute the required radiusx and radiusy.  The parameter !  rotates the bounding 

ellipse so its minor axis is correctly oriented in relation to the initial geometry.  It is defined as 

because Surface Evolver requires that a fundamental region with a periodic boundary constraint 

be contained completely in the first octant.  We also define centerx and centery as 

!  and !  to ensure that the torus periodic vectors   

where initial_height is computed from !  and cross-sectional area, are large enough to 

prevent any surfaces from overflowing the boundaries of the fundamental region.   

θ

3/2 𝚛𝚊𝚍𝚒𝚞𝚜𝚡 3/2 𝚛𝚊𝚍𝚒𝚞𝚜𝚢

λ
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((𝚡 − 𝚌𝚎𝚗𝚝𝚎𝚛𝚡)𝚌𝚘𝚜 θ + (𝚢 − 𝚌𝚎𝚗𝚝𝚎𝚛𝚢)𝚜𝚒𝚗 θ)2

(𝚛𝚊𝚍𝚒𝚞𝚜𝚡2)

+ ((𝚡 − 𝚌𝚎𝚗𝚝𝚎𝚛𝚡)𝚜𝚒𝚗 θ − (𝚢 − 𝚌𝚎𝚗𝚝𝚎𝚛𝚢)𝚌𝚘𝚜 θ)2

(𝚛𝚊𝚍𝚒𝚞𝚜𝚢2)
= 1

(58)

θ = 𝚊𝚛𝚌𝚝𝚊𝚗 ( 𝚛𝚊𝚍𝚒𝚞𝚜𝚢
𝚛𝚊𝚍𝚒𝚞𝚜𝚡 ) +

π
2

(59)

⟨2𝚌𝚎𝚗𝚝𝚎𝚛𝚡, 0, 0⟩
⟨0, 2𝚌𝚎𝚗𝚝𝚎𝚛𝚢, 0⟩
⟨0, 0, 𝚒𝚗𝚒𝚝𝚒𝚊𝚕_𝚑𝚎𝚒𝚐𝚑𝚝⟩

(60)



  

For the semi-flexible model, we use the same ellipse from equation (58) as that used for 

the rigid boundary, except we initially set eccentricity at zero.  This choice for initial eccentricity 

contributes the least amount of bias from the sheath toward staircase pattern.  Furthermore, rather 

than have radiusx and radiusy as fixed parameters, they are dependent variables.  Since 

cross-sectional area remains a fixed parameter, this is equivalent to allowing eccentricity become 

a variable.  We choose this method over simply freeing the eccentricity parameter because 

radiusx and radiusy are used directly in the boundary equation, so this saves us from 

needing to recompute them using eccentricity at each iteration step.  

3.4.3. Iteration  

We use a modified iteration step, which consists of equiangulation - edges of neighboring 

facets are swapped to minimize the deviation of facet angles from equiangular - followed by 

vertex position averaging to even out facet size, and then the application of one step of computed 

forces to each vertex using the conjugate gradient method.  This is repeated until energy, defined 

as the sum of facet surface areas weighted by their associated tension, begins to oscillate, at 

which point we refine the mesh and return to repeating the iteration process; we stop this 

modified iteration once the mesh is sufficiently fine to prevent oscillation.  During this process, 

if the cells have not shifted to the bamboo pattern by the time our mesh has approximately 5,000 

facets, we introduce a modified version of the simulated annealing option included within 

Surface Evolver.  The standard included simulated annealing method moves each vertex before 

the actual optimization step by  
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where !  is the annealing “temperature”, !  is a random value from the standard Gaussian 

distribution, and !  is a characteristic length.  The combination of this vertex movement with a 

step of the conjugate gradient method allows Surface Evolver to determine whether the 

movement of the vertex resulted in a lower energy state. Our modification allows the user to 

specify an amount by which to increase the initial !  if no transition between patterns occurs after 

a user-specified number of iterations, making the method closer to the traditional simulated 

annealing algorithm.  

3.4.4. Convergence  

Once energy has converged to !  using the above method, we repeatedly halve 

edges above a length determined at the beginning of the convergence phase by the distribution of 

all edge lengths, denoted ! ; this length is slowly decreased until all edges are approximately the 

same length.  This value for l is then used for the remainder of the convergence process.  Once l 

is set, we begin a further modified iteration step, where the vertex positions are shifted by the 

computed forces 100 times, followed by equiangulation until no edges are swapped, and then 

halving the edges longer than l.  This modified iteration step is repeated until energy has 

converged to ! , at which point the Hessian for the energy is computed and solved for 

the minimum energy; the threshold for considering a value to be equivalent to zero is set to ! .  

This provides additional accuracy with the energy computation.       

3.5. Results 

3.5.1. Rigid Sheath 

Since the only analytical solution we are able to find in three dimensions is for the 

bamboo configuration, we will derive this solution and compare it to our simulation results.  

t g

L

t

ΔΩ̂ ≤ 10−3

l

ΔΩ̂ ≤ 10−5

10−7
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First, recalling that the cross-sectional area is S and interfacial tension is ! , we note that the total 

minimizable surface energy of a cell in the bamboo pattern is !  The nondimensional 

energy equation for the bamboo pattern is then 

where v is the volume of a cell.   

To reformulate this equation in terms of λ, the substitutions  

are applied to yield the solution for nondimensional  bamboo energy per cell with respect to λ: 

We highlight that this equation does not depend on any other parameters, notably eccentricity ! .  

We plotted the results of our bamboo simulations in Figure 3.17 along with the analytical 

solution ! , fit the curve for the analytical solution as expected.  There is an error margin of 

! , which can be explained by mesh coarseness.  We considered this error to be small 

enough that the benefit of increased accuracy from further mesh refinement was outweighed by 

the increased computational cost; the computational time a simulation with this mesh is roughly 

fifteen minutes, while a simulation with one additional refinement of the mesh resulted in a run 

time of several hours.      

Our remaining discussion in this subsection focuses on the results of simulations in 

staircase pattern.  We fit quadratic curves !  to the simulated staircase energies for each 

eccentricity !  we tested, and found these fits to be sufficient for interpolating the bamboo-

staircase intersection. A summary of our fit analysis is available in Appendix A.   

γc

ΩB = 2Sγc

e

Ω̂B(λ)

< 1 %

pe(λ)

e
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Ω̂B = 2
Sγc

2v2/3γc
=

S
v2/3 (62)

v =
4π
3 ( d

2 )
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D
λ

D = 2
S
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3 36π
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We now define !  as the λ value where the analytical bamboo solution intersects our 

interpolated staircase energy, and it is dependent on cylinder eccentricity; !  is then 

computed by solving !  for each eccentricity. 

Our minimal energy simulations allowed cells to transition from staircase to bamboo 

pattern, and we observed the λ values where this transition occurred.  Due the topology change 

required to move from a pattern characterized by a cell-cell connection graph with low valence 

vertices to a more complex one, we are unable to simulate cells transitioning from bamboo to 

staircase.   

We hypothesized that the bamboo pattern would be the pattern to which cells converged 

for ! . However, we found that in simulations cells continue to converge to the staircase 

pattern for a range of λ below ! , as shown in Figure 3.18, and this range is dependent on 

λBS(e)

λBS(e)

pe(λ) = Ω̂B(λ)

λ < λBS(e)

λBS(e)
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Figure 3.17: Simulated energy of a cell in bamboo pattern for the rigid sheath 
model.  The simulated energy agreed with the analytical solution for the system.  
Like the analytical solution, the simulated nondimensional energy is 
independent of eccentricity and varies solely with ! . λ



  

eccentricity.  This overlap of ranges where patterns can be observed agrees with results from 

foam experiments on circular cylinders, like those in [26].   

Therefore we denote the lowest observed lowest λ where staircase appears as ! .  

Increasing eccentricity increases both !  and ! , but !  remains 

λmin(e)

λmin(e) λBS(e) λBS(e) − λmin(e)
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Figure 3.18: Minimized energy for staircase simulations (dashed lines), by !  
and ! , compared with analytical energy for bamboo (grey solid line).  The 
simulations with eccentricity of relevance to the notochord are colored in teal.  
There is overlap between where staircase pattern is observed and where bamboo 
pattern is optimal.  Nondimensional energy for cells in the staircase pattern 
decreases for fixed λ when eccentricity is increased, and this relationship 
between eccentricity and energy is nonlinear as particularly evidenced by the 
spacing between !  through ! .  
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approximately the same regardless of eccentricity.  The effect of varying eccentricity on !  is 

illustrated in Figure 3.19.  From these simulations, we conclude that for the rigid tube, increasing 

eccentricity of the bounding tube biases its cells toward the staircase pattern. 

3.5.2. Semi-flexible Sheath 

Like the rigid tube, the cell arrangements of the semi-flexible tube depend on initial 

geometry; unlike the rigid tube where the geometry of the bounding cylinder is fixed, the semi-

flexible tube has bounding geometry that is a result of the energy minimization.  This results 

from the additional parameter in the semi-flexible model, the ratio of sheath surface tension to 

interfacial tension, which we previously defined as ! . 

We first observed that there were some values of "  for which a change in !  has no effect 

on pattern.  For ! , all simulations converged to the bamboo pattern regardless of !  value; 

conversely, for !  all simulations converged to the staircase pattern; see Figure 3.20.  In the 

!  range, !  determines the observed pattern.  

λBS

Γ = γs /γc

λ Γ

λ < 1 Γ

λ > 1.1

1 ≤ λ ≤ 1.1 Γ
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Figure 3.19: Circles represent !  values for varying eccentricity.  There is a 
strong relationship between tube eccentricity and the !  value at which the 
minimal energy pattern changes from bamboo to staircase. 
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For bamboo, observed eccentricity was not distinguishable from zero.  For staircase, 

higher !  decreased the eccentricity of the semi-flexible tube, as seen in Figure 3.21 (a). Our 

results indicate that increasing !  controls the bifurcation between the low eccentricity bamboo 

pattern and the higher eccentricity staircase pattern, but increasing !  determines what values 

“low” and “high” eccentricity actually take; see Figure 3.21 (b). 

Γ

λ

Γ
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Figure 3.20: Example of simulated bamboo pattern (top) and staircase pattern  
(bottom).  The !  values are the same for both, but the different λ values result in 
different patterns.

Γ

Figure 3.21: A) Effect of !  on eccentricity !  for different !  values in the 
semi-flexible sheath model. For all !  values tested, higher eccentricity is 
associated with higher !  and lower eccentricity is associated with lower ! .  B) 
Effect of !  on eccentricity !  for different !  values in the semi-flexible 
sheath model. For higher ! , decreasing !  decreases the difference between high 
and low eccentricity.  For ! , varying !  causes eccentricity to jump from 
high to low (as a result of pattern change). 
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3.5.3. Fully Flexible Sheath  

The fully flexible sheath model is the least constrained of the three models, and it is also 

the richest in novel results.  Our first observation is that !  changes the shape of cells in all 

patterns.  Simulations with low !  showed much higher curvature than those with high ! .  These 

variations in cell shape can be observed for bamboo and staircase patterns in Figure 3.22.  

An alternative interpretation is that !  controls the angle between cells, which we define 

as the angle created by the intersection of the sheath surfaces of two cells with a plane 

perpendicular to both surfaces; see Figure 3.23.  This definition is effectively a localization of the 

angle measurement used for the two bubble test problem in Section 3.3.2 of this chapter, and it 

too can be expressed analytically.  Of note, this definition allows us to examine the angle 

between cells in patterns other than ones where the cell-cell interface is flat.   

To find the angle between two exterior cell surfaces, we again examine a cross section on 

the plane perpendicular to both surfaces, as we did in our two bubble test problem.  However, in 

this case, the tension on all surfaces is not equal, as illustrated in Figure 3.23, and our force-

balance changes accordingly.   

Γ

Γ Γ

Γ

!  59

0.25 1 5 10

!λ = 1.12
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Figure 3.22: Optimal packing in the fundamental region for different ! with 
!  and ! .  Increasing !  causes the curvature of the sheath to 
decrease.
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We now require  

for the forces acting on the intersection of the cell-cell surface and the cell-sheath surfaces from 

each cell on the plane perpendicular to all three surfaces at that point.  We see that  

so as !  approaches infinity, meaning that !  approaches infinity, we have cell-sheath surfaces that 

are perpendicular to the cell-cell surface and parallel to each other.  At this limit, we would see a 

sheath surface that is differentiable everywhere, and this is similar to the semi-flexible boundary 

condition. 

Because the flexible sheath is not geometrically constrained, there is no way to discuss 

the precise eccentricity of the equilibrium solutions.  Instead, we define the eccentricity !  of a 

configuration as the eccentricity of the best fit ellipse for the perimeter of the projection of all 

vertices onto the !  plane.  The eccentricity !  is computed in MATLAB from the ellipse with 

γs Γ

ẽ

x y ẽ
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Figure 3.23: Generalization of 3.14, with surface tensions allowed to be 
unequal.  The solution is an extension of Plateau’s laws, the Young-Dupré 
equation [7].

cos θ =
γc

γc + γs
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major and minor axes that have the same normalized central moments as the region formed by 

the projection perimeter.  Note that for the rigid and semi-rigid models with eccentricity ! , ! .  

There are similar behaviors between the semi-flexible sheath eccentricity !  and flexible 

sheath eccentricity ! .  The curves in Figure 3.24 (a) have the same overall shape as the curves in 

Figure 3.21 (a), although the !  ranges are different.  The fully flexible sheath model is much less 

constrained than the semi-flexible sheath models, and the properties of the flexible sheath result 

in a smoother transition between high and low eccentricity, as compared to the sharp transition 

seen for the semi-flexible model.  

There is a notable similarity between Figure 3.21 (b) and Figure 3.24 (b); however, the 

drop between high and low eccentricity is much sharper for the flexible sheath.  This is due to the 

higher number of simulations run near the bifurcation point for this model.  As with ! , the !  

e ẽ = e

e

ẽ

λ

λ Γ
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Figure 3.24: A) The relationship between !  and eccentricity !  for different !  
values.  Increasing !  generally causes an increase in ! , but this is especially 
noticeable once ! .  B) The relationship between !  and eccentricity !  for 
different !  values. Compared to the results of the semi-flexible sheath, there are 
more values of !  that exhibit high !  for low ! , and they do not follow the curve 
formed by the simulations of the lowest !  values. 
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values differ between the semi-flexible and flexible models, but the overall trend in the 

relationships between !  and eccentricity and between !  and eccentricity are remarkably similar.  

The difference between the semi-flexible sheath results and the flexible sheath results likely 

stems from a unique phenomenon exhibited by the flexible sheath model. 

Our surprising discovery with the flexible sheath model is the existence of a unique 

pattern not seen in either the rigid or semi-flexible models, which we have named the serpentine 

pattern; it is shown in the boxed portion of Figure 3.25.  This pattern shares properties with both 

λ Γ
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Figure 3.25: Optimal packing in the fundamental region for combinations of !  
and ! .  Increasing !  causes the curvature of the sheath to decrease, while 
varying !  causes the pattern of the cells to change.
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the bamboo and staircase patterns, but cannot be completely described by either of the previously 

observed patterns.   

The serpentine pattern is characterized by a cell connection graph with vertices of 

valence ! , like the connection graph for the bamboo pattern.  Although cells in the serpentine 

pattern have the same connection graph as bamboo, their centroid positions are staggered like 

those of cells in the staircase pattern. We detect serpentine pattern by a disagreement between the 

result of connection sorting and that of the sorting algorithm described in Chapter 2. 

≤ 2
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Figure 3.25: Relationship between eccentricity, pattern, ! , and ! .  Bamboo 
consistently has eccentricity near zero, and both serpentine and staircase present 
with high eccentricity.  There is an additional bifurcation in patterns associated 
with !  and !  that does not appear for the rigid or semi-
flexible models, which do not exhibit the serpentine pattern.  
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We only observed the existence of the serpentine pattern for a particular range of !  and ! , 

where !  and ! , as shown in Figure 3.26.  Further simulations will be 

required to determine this range with more accuracy.  However, we determined that there is a 

bifurcation for minimal energy pattern outside of the potential serpentine range. For ! , 

bamboo is always the only observed pattern if !  and staircase is always the only observed 

pattern for ! .  Although there is no correlation between !  and pattern for !  outside of the 

serpentine range, the curvature of the cell surface in contact with the sheath is controlled 

primarily by ! ; this is clear from a visual examination of surfaces, as presented in Figure 3.25.   
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4. Chapter 4 
Conclusion 

4.1. Discussion 

The experiments with zebrafish notochords and the associated physical gel bead model 

suggest that the arrangement of interior vacuolated notochord cells does behave like a packing 

problem.  The diameter of the notochord of WT zebrafish relative to size of vacuolated cells 

limits the potential stable patterns to the bamboo, staircase, first chiral, and hopscotch patterns. 

We were able to create a pattern sorting algorithm based solely on centroid position, and it has 

been shown to be effective for categorizing the irregular cells of the WT zebrafish notochord into 

phyllotactic patterns.  No such algorithm has been implemented in the previous study of foams.   

We developed two complementary pattern-detection algorithms, one based on centroid 

radial position and one based on the vectors between nearby centroids.  Although it could be 

effective for ordered monodisperse foams, a pattern detection algorithm based on centroid radial 

distance is insufficient to fully categorize all cells in the notochord; an algorithm that captures  

relative position between centroids shows greatly improved accuracy.  This is because, unlike 

ordered monodisperse foams, the notochord has irregular patterns and transitions between 

patterns frequently, and a radial distance-based algorithm is unable to detect these.  

 We also created three models of constrained monodisperse foams.  These models, one of 

a rigid elliptical sheath, one of an elliptical sheath with varying eccentricity, and one with a 

sheath constrained only by surface tension rather than geometry, were used to study foam 

packing in tubes. 
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The rigid sheath model, although not directly related to the mechanics of the notochord, 

could be applied in the relatively new field of discrete microfluidics to further expand the known 

interaction between tube geometry and foam structures, since this interaction is used in discrete 

microfluidics to efficiently process very small amounts of gases and liquids [7].  The results of 

the rigid sheath model show that sheath eccentricity affects equilibrium cell pattern.  Tubes with 

nonzero eccentricity bifurcate to the staircase pattern at lower cell densities, and this shift 

becomes stronger as eccentricity is increased. 

The semi-flexible sheath model provides a potential metric to measure the tension of the 

notochord sheath relative to the tension of the inner vacuolated cells.  We have found a strong 

relationship between cell volume relative to tube volume, cell-sheath surface tension relative to 

cell-cell surface tension, and sheath eccentricity.  Because sheath volume, number of cells (and 

therefore cell volume), and sheath eccentricity are computable from easily obtained and 

minimally invasive notochord measurements, this gives the semi-flexible sheath metric 

additional value for in vivo notochord experiments.  Furthermore, the results from the semi-

flexible sheath model combined with the results from the rigid model confirm that sheath 

eccentricity and equilibrium pattern are interdependent, as we observed in the physical model 

and zebrafish notochord in [23].  Although the notochord sheath is not constrained to form an 

elliptical cross section, the semi-flexible model provides a reasonable approximation to the true 

sheath geometry.  It is possible that the notochord evolution specifically took advantage of the 

mechanical interaction between cell packing and tube shape, since the notochord’s mechanics are 

thus far not observed in other biological systems.   
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Like the rigid model, the fully flexible model is not entirely relevant to the behavior of 

the notochord.  The flexible sheath model’s behavior for low !  does not resemble that of the 

notochord at all, although for high ! , the observed equilibrium configurations resemble that of 

the notochord.  The physiological control of the physical properties of the notochord, such as 

whether cell size or cell pressure is being controlled, are unknown, and the curvatures and 

rigidity of the sheath are difficult to measure precisely in zebrafish experiments, so the accuracy 

of the flexible sheath model as an effective model for the notochord is uncertain.   Despite the 

difficulty in assessing its viability as a mechanical notochord model, the unique mechanics of the 

flexible sheath model yield unexpected physical results in the form of the previously unobserved 

serpentine pattern.   

What makes serpentine a particularly interesting and unique pattern is that not only has it 

been observed only in the flexible sheath model, it is actually impossible for it to appear in either 

the rigid or semi-flexible models.  The cell-sheath surface topology of the serpentine pattern 

requires that the graph formed by cell-cell connections have vertices with valence ! .  Because 

the rigid and semi-flexible models both require the cells to be completely space filling, the two 

cell-cell surfaces would have to be perpendicular to the sheath, and therefore parallel to each 

other, as a consequence of Plateau’s laws; serpentine pattern requires the interfacial surfaces 

between cells to be non-parallel to achieve its staggered centroid positioning. 

4.2. Future Work 

We have shown that the complex process of notochord morphogenesis can be reasonably 

approximated by a purely mechanical model based on those of foams in tubes.  We suggest 

further exploration of the semi-flexible and fully flexible models in particular.   

Γ

Γ

≤ 2

!  67



  

The extension of the semi-flexible model, constrained cross sectionally by an ellipse with 

variable eccentricity, to a model constrained by only fixed perimeter of the cross section will 

allow an in-depth exploration of the potential geometry of the notochord sheath formed by inner 

vacuolated cell packing.  These results could be used to create an even closer mechanical model 

approximation to the actual physics of the notochord.  Aside from potential applications for 

biological system analysis, this model could additionally be used in the energy minimization 

problem of optimal tube geometry for constrained foams, a problem which has yet to be 

explored.  

Additional application of the projection algorithm to foam pattern categorization will 

allow its accuracy to be quantified, and additional modifications to the algorithm could be made 

to increase the variety of patterns identified.  This would involve a detailed study of the 

periodicities of more complex constrained foam patterns based on their centroid positioning, 

rather than the current periodicity assessment based on the pattern of the bubbles formed by their 

contact with the bounding tube, which could be achieved with further study of our mechanical 

foam models.   

The packings that appear in the flexible model strongly resemble those of other biological 

systems, such as the arrangement formed by cells during oogenesis in Drosophila.  Further 

analysis of the fully flexible scheme has the potential to yield a physical model for this process 

as well, although that is beyond the scope of this work.    
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Appendix A: Example Surface Evolver File 

//3D model for foam in infinite rigid elliptical tube. Tube wall does not 
contribute to energy.  

parameter tensC = 1 
parameter tens = 0 
parameter cell_opacity = .5 
parameter cross_sectional_area = 50 
parameter eccentricity = 0 
parameter lambda = 1 

//computed parameters 
parameter radiusx = sqrt(cross_sectional_area/(pi*sqrt(1-eccentricity^2))) 
parameter radiusy = sqrt((1-eccentricity^2)*radiusx^2) 
parameter centerx = radiusx+10 
parameter centery = radiusy+10 
parameter tubeD = 2*sqrt(cross_sectional_area/pi) 
parameter celld = tubeD/lambda 
parameter cell_volume = (4*pi*(celld/2)^3)/3 
parameter initial_height = 2*cell_volume/cross_sectional_area 
parameter theta = atan(radiusy/radiusx)+pi/2 

torus_filled 

periods 
(2*centerx) 0 0 
0 (2*centery) 0  
0 0 (initial_height) 

constraint 1 convex 
formula: ((x-centerx)*cos(theta)+(y-centery)*sin(theta))^2/(radiusx^2) + ((x-
centerx)*sin(theta)-(y-centery)*cos(theta))^2/(radiusy^2)=1 

constraint 2 nonpositive 
formula: ((x-centerx)*cos(theta)+(y-centery)*sin(theta))^2/(radiusx^2) + ((x-
centerx)*sin(theta)-(y-centery)*cos(theta))^2/(radiusy^2)=1 

vertices 
    1    centerx-radiusx centery-radiusy 0 constraint 1 
    2    centerx+radiusx centery-radiusy 0 constraint 1 
    3    centerx+radiusx centery+radiusy 0 constraint 1 
    4    centerx-radiusx centery+radiusy 0 constraint 1 
    5    centerx-radiusx centery-radiusy 1*initial_height/4 constraint 1 
    6    centerx+radiusx centery+radiusy 1*initial_height/4 constraint 1 
    7    centerx-radiusx centery+radiusy 1*initial_height/4 constraint 1 
    8    centerx-radiusx centery-radiusy 3*initial_height/4 constraint 1 
    9    centerx+radiusx centery-radiusy 3*initial_height/4 constraint 1 
    10   centerx+radiusx centery+radiusy 3*initial_height/4 constraint 1 
    11   centerx-radiusx centery-radiusy 4*initial_height/4 constraint 1 
    12   centerx+radiusx centery-radiusy 4*initial_height/4 constraint 1 
    13   centerx+radiusx centery+radiusy 4*initial_height/4 constraint 1 
    14   centerx-radiusx centery+radiusy 4*initial_height/4 constraint 1   

edges 
    1    1  5  * * * constraint 1
    2    3  6  * * * constraint 1
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    3    4  7  * * * constraint 1 
    4    2  9  * * * constraint 1 
    5    5  8  * * * constraint 1 
    6    6 10  * * * constraint 1 
    7    7 14  * * * constraint 1 
    8    8 11  * * * constraint 1 
    9    9 12  * * * constraint 1 
    10  10 13  * * * constraint 1 
    11   5  6  * * * constraint 2 //not fixed to wall 
    12   6  7  * * * constraint 1 
    13   7  5  * * * constraint 1 
    14   8  9  * * * constraint 1 
    15   9 10  * * * constraint 1 
    16  10  8  * * * constraint 2 //not fixed to wall 
    17  12  2  * * + constraint 1 
    18  11  1  * * + constraint 1 
    19  13  3  * * + constraint 1 
    20  14  4  * * + constraint 1 

     
faces 
    1   14 15 16                     tension 2*tensC  constraint 2  color 
yellow //red-red surf. 
    2   11 12 13                     tension 2*tensC  constraint 2  color 
cyan //blue-blue surf. 
    3  -15 -4 -17 -9 15 10 19 2 6    tension tens  density 0  constraint 1  
color red //red ext. 
    4  -14 -5 -1 -18 -8 14 9 17 4    tension tens  density 0  constraint 1  
color red //red ext 
    5    5 -16 -6 -11                tension 2*tensC  constraint 2  color 
green //shared middle 
    6    8 18 1 11 -2 -19 -10 16     tension 2*tensC  constraint 2  color 
green //shared wrap 
    7    7 20 3 -12 -2 -19 -10 -6 12 tension tens  density 0  constraint 1  
color blue //blue ext 
    8    5 8 18 1 -13 -3 -20 -7 13   tension tens  density 0  constraint 1  
color blue //blue ext 
  

bodies 
    1    2 -5 -6 7 8 -2     volume cell_volume //blue cell 
    2    -1 3 4 5 6 1       volume cell_volume //red cell     

read 
connected                   //view two complete cells 
U                           //conjugate gradient method ON 
G 0      //no gravity, probably not necessary for torus space 
but to be safe  
delete facets where area=0   //delete superfluous facets, cuts down on error 
messages 
set facet.opacity cell_opacity  //see through cells 
calc_ecc:={print sqrt(1-(radiusy/radiusx)^2)} //compute equilibrium 
eccentricity once reached  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Appendix B: Fit Analysis 
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e RSquare RMSE ANOVA Number of points used for fit

0 0.999961 0.002051 F<0.0063 4

0.1 0.999997 0.000559 F<0.0017 4

0.2 0.999833 0.003514 F<0.0002 5

0.3 0.999881 0.002938 F<0.0001 5

0.4 0.99964 0.005135 F<0.0004 5

0.5 0.999999 0.000417 F<0.0011 4

0.6 0.999989 0.001224 F<0.0032 4

0.7 0.999954 0.002166 F<0.0001 5

0.8 0.999968 0.001912 F<0.0001 5

0.9 0.999994 0.000964 F<0.0001 5

!1.11 + 1.68λ + 1.52(λ − 1.15)2

!1.25 + 1.59λ + 1.61(λ − 1.14)2

!1.29 + 1.59λ + 1.49(λ − 1.14)2

!0.69 + 1.69λ + 1.96(λ − 1.10)2

!1.27 + 1.61λ + 1.38(λ − 1.14)2

!0.94 + 1.62λ + 1.78(λ − 1.11)2

!1.24 + 1.65λ + 1.58(λ − 1.16)2

!1.09 + 1.59λ + 1.77(λ − 1.12)2

!1.23 + 1.66λ + 1.55(λ − 1.16)2

!1.05 + 1.68λ + 1.83(λ − 1.15)2

!pe(λ)

Table 5.1: Summary of fit analysis for each quadratic !  used to interpolate 
the staircase pattern for the rigid sheath model. 

pe(λ)



  

Appendix C: Table of Symbols 
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Name Type Definition Units

Independent variable Coordinates

Parameter Interfacial tension between cells

Parameter Interfacial tension between cell and sheath

Parameter -

Parameter Cell pressure

Parameter Tube cross-sectional area

Parameter Cell volume

Parameter Initial cell height

Parameter

Parameter

Parameter -

Dependent variable Cell surface area

Dependent variable Energy

!M /T 2

Diameter ratio !D /d

!D

!L2M /T 2

Pressure ratio !γs⟋γc

!L2

!γs

!Ω

!S

!L

!M⟋T 2

Diameter of circle with area !S

!d

!L2

!γc

!M /(LT 2)

!A

!p

!L

!L

Diameter of sphere with volume !v

!h

!x , y, z

!λ

!Γ

!L3!v

!L

Table 5.2: Common parameters and variables used in the three foam models. 



  

Appendix D: MATLAB Orthogonality Algorithm 

function [ pattern ] = OrthPatternFinder(data) 
%Orthogonal Pattern Finder 
%Creates vectors between 3D data points and calls transitions based on 
%periodicity. Transitions returned as strings with relevant index. 
 
%Used in conjunction with PatternInterpreter  

data=xlsread(data); 

xpoints=data(:,1);   
ypoints=data(:,2); 
zpoints=data(:,3); 
numelems=length(xpoints); 

%Step 0: Preallocate vectors 
xvec=zeros(numelems-1, 1); 
cosangle1=xvec; 
cosangle2=xvec; 
cosangle3=xvec; 
pattern1=strings(2, numelems-1); 
pattern2=strings(2, numelems-1); 
pattern3=strings(2, numelems-1); 
pattern=strings(numelems-1,1); 

hightol=.9; 
lowtol=.1; 

%Step 1: Check for bamboo and potential hopscotch 
p=1; 
for i=1:numelems-1 
    xvec = xpoints(i+1)-xpoints(i); 
    yvec = ypoints(i+1)-ypoints(i); 
    zvec = zpoints(i+1)-zpoints(i); 
    normxyzv = sqrt(xvec^2+yvec^2+zvec^2); 
    dot1 = xvec*1; 
    cosangle1(i)=dot1/normxyzv; 
    if cosangle1(i)>hightol  
        pattern1(1,p)=i; 
        pattern1(2,p)= "H"; 
        p=p+1; 
        pattern(i)="H"; 
    elseif cosangle1(i)<lowtol  
        pattern1(1,p)=i; 
        pattern1(2,p)="V"; 
        p=p+1; 
        pattern(i)="V"; 
    end 
    pattern1=pattern1(:,1:p-1); 
end 

%Step 2: Check for staircase 
p=1; 
for j=1:numelems-2  
    xvec = xpoints(j+2)-xpoints(j); 
    yvec = ypoints(j+2)-ypoints(j); 
    zvec = zpoints(j+2)-zpoints(j); 
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    normxyzv =sqrt(xvec^2+yvec^2+zvec^2); 
    dot2 = xvec*1; 
    cosangle2(j)=dot2/normxyzv; 
    if (cosangle2(j)>=hightol) && cosangle1(j)<hightol 

pattern2(2,p)= "P2"; 
pattern2(1,p)=j; 
p=p+1; 

    end 
    pattern2=pattern2(:,1:p-1); 
end 

%Step 3: Check for chiral 
p=1; 
for k=1:numelems-3  
    xvec = xpoints(k+3)-xpoints(k); 
    yvec = ypoints(k+3)-ypoints(k); 
    zvec = zpoints(k+3)-zpoints(k); 
    normxyzv =sqrt(xvec^2+yvec^2+zvec^2); 
    dot2 = xvec*1; 
    cosangle3(k)=dot2/normxyzv; 
    if (cosangle3(k)>=hightol) && cosangle1(k)<hightol && 
cosangle2(k)<hightol 

pattern3(2,p)= "P3"; 
pattern3(1,p)=k; 
p=p+1; 
pattern(k)="P3"; 

    end 
    pattern3=pattern3(:,1:p-1); 
end 
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Appendix E: Tissue self-organization underlies morphogenesis of the notochord 

The following paper was published in Philosophical Transactions of the Royal Society B in 

September 2018. 

!81



rstb.royalsocietypublishing.org

Research
Cite this article: Norman J, Sorrell EL, Hu Y,
Siripurapu V, Garcia J, Bagwell J, Charbonneau
P, Lubkin SR, Bagnat M. 2018 Tissue self-
organization underlies morphogenesis of the
notochord. Phil. Trans. R. Soc. B 373:
20170320.
http://dx.doi.org/10.1098/rstb.2017.0320

Accepted: 3 August 2018

One contribution of 14 to a Theo Murphy
meeting issue ‘Mechanics of development’.

Subject Areas:
developmental biology

Keywords:
zebrafish, notochord, vacuolated cells,
packing, self-organization

Author for correspondence:
Michel Bagnat
e-mail: m.bagnat@cellbio.duke.edu

Electronic supplementary material is available
online at http://dx.doi.org/10.6084/m9.
figshare.c.4195415.

Tissue self-organization underlies
morphogenesis of the notochord
James Norman1, Emma L. Sorrell1,3, Yi Hu2, Vaishnavi Siripurapu1,4,
Jamie Garcia1, Jennifer Bagwell1, Patrick Charbonneau2, Sharon R. Lubkin3

and Michel Bagnat1

1Department of Cell Biology, and 2Department of Chemistry, Duke University, Durham, NC 27710, USA
3Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA
4North Carolina School of Science and Mathematics, Durham, NC 27705, USA

SRL, 0000-0003-2521-0699; MB, 0000-0002-3829-0168

The notochord is a conserved axial structure that in vertebrates serves as a
hydrostatic scaffold for embryonic axis elongation and, later on, for proper
spine assembly. It consists of a core of large fluid-filled vacuolated cells
surrounded by an epithelial sheath that is encased in extracellular matrix.
During morphogenesis, the vacuolated cells inflate their vacuole and
arrange in a stereotypical staircase pattern. We investigated the origin of
this pattern and found that it can be achieved purely by simple physical
principles. We are able to model the arrangement of vacuolated cells
within the zebrafish notochord using a physical model composed of silicone
tubes and water-absorbing polymer beads. The biological structure and the
physical model can be accurately described by the theory developed for the
packing of spheres and foams in cylinders. Our experiments with physical
models and numerical simulations generated several predictions on key
features of notochord organization that we documented and tested exper-
imentally in zebrafish. Altogether, our data reveal that the organization of
the vertebrate notochord is governed by the density of the osmotically swel-
ling vacuolated cells and the aspect ratio of the notochord rod. We therefore
conclude that self-organization underlies morphogenesis of the vertebrate
notochord.

This article is part of the Theo Murphy meeting issue on ‘Mechanics of
development’.

1. Introduction
In essence, all morphogenetic processes are the result of one or more self-
organized events governed by physical principles. This is illustrated by the
fact that a properly proportioned and physiologically active embryo, with all
its organs, can be generated from an externally fertilized egg. Identifying the
key features and understanding the underlying principles that guide specific
morphogenetic processes constitutes one of the major challenges in biology.
The discovery of oscillations in simple chemical systems and the formal descrip-
tion of reaction–diffusion processes paved the way for the understanding of the
physical principles governing many sub-cellular processes (reviewed in [1]).
The celebrated and highly influential theoretical work of Turing [2], who pre-
dicted the emergence of stable patterns via reaction–diffusion mechanisms,
has been the conceptual basis of much of the work on biological modelling.
This has been applied initially to describe signalling and patterning cues
[3–5], and more recently to the emergence of tissue and organ level structures
[6–8]. However, it is clear that other conceptual frameworks can also reach
similar conclusions [9]. The main difficulties for modelling morphogenetic pro-
cesses lie in the identification of the key components and the most relevant
physical parameters. One successful approach to these problems has been to
take the perspective of the engineer, using geometric [10] and continuum

& 2018 The Author(s) Published by the Royal Society. All rights reserved.
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mechanical modelling [11], as well as macroscopic physical
models [12]. These studies have inspired us to build a
physical model to capture key elements controlling the
organization of the zebrafish notochord.

The zebrafish notochord is a rod that spans most of the
antero-posterior (AP) axis and serves as a hydrostatic scaf-
fold for embryonic axis elongation and later on for spine
assembly [13]. It is composed of a core of large vacuolated
cells surrounded by an epithelial sheath that is encased in a
thick extracellular matrix [14,15]. Both cell types differen-
tiate from a common precursor via a Notch-dependent
mechanism [16]. Each vacuolated cell nucleates a single
fluid-filled vacuole, which is a lysosome-related organelle,
that occupies most of the cellular volume [13]. As the vacu-
oles inflate by accumulating water, the vacuolated cells
expand within the confinement created by the cylindrical
notochord sheath, resulting in an expansion of the AP
axis [13,17]. Loss of vacuolated cells or fragmentation of
vacuoles leads to shortening of the AP axis and kinking
of the spine [13]. The sheath also plays important structural
roles [18–20] and forms a template for patterning
the segmented vertebrae [21–23]. Sheath cells are also
able to regenerate vacuolated cells following collapse or
injury [24,25].

Once notochord morphogenesis is completed, the vacuo-
lated cells are arranged in a stereotypical staircase pattern
[15]. While such arrangement could result from interactions
with other tissues such as the bilateral paraxial mesoderm,
we reasoned that being surrounded by another cell layer
and a thick matrix would make that scenario unlikely.
Instead, we hypothesized that vacuolated cells are arranged
via a self-organized process. Here, we identify key physical
and geometric parameters to build a simple physical model
whose main predictions we tested in vivo in zebrafish. Our
results indicate that vacuolated cells are organized by
simple packing rules that are governed by cell density and
the aspect ratio of the notochord rod.

2. Material and methods
(a) Animals
Zebrafish: Danio rerio stocks were maintained at 288C and bred as
previously described [26]. Zebrafish stocks were healthy and of
normal immune status, not involved in previous procedures, and
were drug test naive. Male and female breeders from three to
nine months of age were used to generate fish for all experiments.
In total, zebrafish larvae from Ekkwill background at 1–8 days
post-fertilization were used in this study. The Tg(rcn3:QF2)pd1190

strain was generated for this study using a Tol2 construct [27] in
which the rcn3 promoter [13] drives expression of QF2 [28]. Pre-
viously published strains were as follows: cavin1bbns110 [24],
Tg(col9a2:mcherry)pd1150 [24], Tg(col8a1a:GFPCaaX)pd1152 [24],
Tg(rcn3:GFPrab32a)pd1153 [24], Tg(QUAS:nlsVenus-V2a-notch1-
aICD)pd1164 [21], Tg(QUAS:nVenus-V2a-SuHDN)pd1165 [21].

Xenopus: Xenopus laevis tadpoles (stages 33–34) fixed in
para-formaldehyde were kindly provided by the laboratory of
Nanette Nascone-Yoder.

(b) Physical models
Silicone tube models were made with clear silicone tubing
(OCSparts.com) and sodium polyacrylate gel beads (JBs)
(Jelly BeadZ, jellybeads.com). The silicone tubes had a length
of either 29 cm (figures 1 and 2) or 30.48 cm (figure 5) with

an inner diameter of 12.7 mm, an outer diameter of 15.9 mm
and a wall thickness of 3.2 mm. Circular tube models were
made using clear polycarbonate tubing and elliptical tube
models were made using clear vinyl tubing (OCSparts). Poly-
propylene tube caps, punctured to allow water flow, were
placed on one end of the silicone tube and then sealed with
parafilm. Dry JBs were placed inside empty and dry silicone
tubes, which were then capped and sealed with parafilm.
Tubes were then submerged in a distilled water bath and
allowed to completely fill with water. Then, JBs were given
at least 3.5 h to grow and distribute throughout the tube
before being scored for patterns. For sectioning, silicone
tubes were frozen and cut into cross sections using a hacksaw.
Images of the tubes and the patterns generated were taken
using a cell phone camera. Time-lapse videos of the JBs grow-
ing and arranging in the tubes were taken using a Go Pro
HERO 3 camera.

Aspect ratio was measured for all tubes using a digital calli-
per (Fine Science Tools, Foster City, CA, USA) at 11 points,
equally spaced 2.54 cm apart, along the length of the tube. For
the silicone tube deformation experiment (figure 5e), the aspect
ratio was measured before and after JB swelling.

(c) Simulations
For circular cylinders, sphere centres are confined within a cylin-
der of radius w ¼ (D" d)=2, where D is the inner diameter and d
is the sphere diameter. In other words, sphere centres must lie no
further than r # w from the central axis of the cylinder. For ellip-
tic cylinders, the corresponding boundary condition does not
have a simple analytical form, but for sufficiently small D
(D=d # 2:71486 for circular cylinders [29]) all spheres are in con-
tact with the cylindrical wall at close packing. We can thus
reformulate the problem as identifying the densest packing of
sphere centres set on the surface of an elliptic cylinder. This
approximation is valid in the limit of small eccentricity. The
semi-major axis and semi-minor axis are such that ad . bd. In
order to more easily compare our results with experiments, we
define two diameters, Da=d ¼ 1þ 2a and Db=d ¼ 1þ 2b, and
hence the aspect ratio a ¼ Da=Db.

We follow the sequential linear programming (SLP) scheme
described before [30–32] to identify the densest sphere packing
for a fixed cylinder geometry.At each optimization step,Nparticles
on the surface of the elliptic cylinder move with small angular
and axial displacements (Dui,Dzi), and the unit cell height, hz,
changes by a relative shrinkage factor, 1z. The coordinates of
the sphere i before and after the movement are thus

(xi, yi, zi) ¼ (acos(ui), bsin(ui), zi)
and (x0i, y

0
i, z

0
i) ¼ (acos(ui þ Dui), bsin(ui þ Dui), (1" 1z)(zi þ Dzi))

where 0 # ui , 2p and 0 # zi , hz. Finding the maximum
packing density is then equivalent to minimizing hz, subject to

r0ij % d, 8ij neighbour pairs,
jDuij # Drupperu 8i,

jDzij # Drupperz 8i,

j1zj # 1
upper
z ,

where rij denotes the distance between neighbouring pairs,
which can be linearized by Taylor expansion if the upper
bound (denoted by the superscript ‘upper’) for a single step is
sufficiently small. Here we set rupperu ¼ rupperz ¼ 0:002d and
1upper ¼ 0:002 and sequentially conduct optimization steps
until convergence, i.e. 1z , 10"6. Because the number of spheres
in the unit cell (N ) for dense packing is not known, we scan N
from 6 to 50 and repeat 100 times with different initial structure
to identify potential densest structure for each pair of Da/d and
Da/d considered.
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(d) Microscopy
Three-dimensional renderings were generated from whole-
mount confocal live images obtained on a Fluoview FV3000
(Olympus) confocal microscope equipped with 30!/1.05 silicone
oil objective (Olympus) and Fluoview software (Olympus). Fish
were mounted onto glass-bottom dishes in a 3% methylcellulose
mixture of egg water and 1! tricane. Digital stitching of confocal
images used for Imaris renderings was done in the FLUOVIEW soft-
ware. Time-lapse movies of notochord morphogenesis were

recorded on a Lightsheet Z.1 microscope (Carl Zeiss) as
previously described [24].

(e) Image processing
Notochord renderings were created using the IMARIS v. 9.0.0 and
9.1.2 software (Bitplane USA, Concord, MA). Notochord render-
ings were created using both the surface and cells features (IMARIS

software, v. 9.0.0 and 9.1.2, respectively). Centroids, volumes

(a)

(c)

(d)

(e)

(g )

( f )

(h )

0

205

m
in

(b)
0 240 min

Figure 1. A physical model recapitulates the organization and key behaviours of the zebrafish notochord. (a) A single JB before (left panel) and after (right panel) being
placed in a water bath to grow unrestricted. (b) Cross-section image of an empty circular silicone tube (inner diameter, 12.7 mm). (c) Time-lapse images of JBs swelling in a
capped silicone tube. Scale bar, 2.5 cm. (d) Still images from time-lapse movies of vacuolated cells in the notochord of a zebrafish embryo starting at the 20-somite stage
and JBs as they settle in their final arrangement. Two cells wedging into a staircase arrangement are pseudo-coloured in green and red. A similar behaviour is highlighted for
JBs traced with dotted lines. Scale bar, 20 mm. (e) Rotating views of a silicone tube filled with 80 JBs. ( f ) Cross section of the tube shown in (e) taken at the indicated level.
Scale bar, 2.5 cm. (g ) Dorsal (top) and lateral (bottom) views of a three-dimensional rendering of a 48 h post-fertilization (hpf ) wild-type (WT) zebrafish expressing plasma-
membrane-targeted green fluorescent protein (GFP) in vacuolated cells of the notochord. Note similarities between the arrangement of vacuolated cells, mainly in a
‘staircase’ pattern, and the JB tube shown in (e). (h) Orthogonal view of the notochord shown in (g ). Scale bars, (g ) 200 mm, (h) 50 mm.
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and diameters were obtained for each vacuolated cell using
the detailed statistical analysis function for the reconstructed
notochords in the IMARIS software v. 9.0.0 and 9.1.2.

( f ) Morphometric analyses
(i) Notochords
Centroid locations were obtained from image processing software
(IMARIS) in (x, y, z) coordinates corresponding roughly to (AP, DV
and LR) axes, in micrometre units. Notochord tube diameter was
determined by two methods. (a) Creating a running sum of cell
volumes V(x) from head to tail, such that the local cross-sectional
area A(x) is dV/dx. Diameters in the LR and DV directions DLR(x)
and DDV(x) were determined either on the assumption that the
cross section was circular, or on the assumption that it was ellip-
tical, with the same aspect ratio measured by method (b). (b)
Measuring major and minor axes in Fiji 1.50a from cross sections
every 100 mm. Methods (a) and (b) were verified to measure stat-
istically equal area values for wild-type (WT) zebrafish. Aspect
ratio was defined for notochords as DLR(x)/DDV(x).

Diameter ratios l(x) ¼ D(x)/d(x) were determined from
smoothed tube diameters and smoothed cell volumes, using the
diameters of equivalent spheres of the same volume as the cells.
For each fish, we created a local coordinate system (X, Y, Z), nor-
malizing cell centroid positions so that (1) the head was at X ¼ 0;
(2) the centreline was at (Y, Z ) ¼ (0, 0); (3) each cross section had

radius 1. Patterns were classified on the basis of the vector
defined by connecting two adjacent centroids, and this vector’s
angle relative to the XY and XZ axes in the normalized coordi-
nate system (X, Y, Z ). For each centroid, vectors were created
between them and the following centroids, and the angle
between each of these vectors and the X axis was calculated
sequentially until a vector was found to be parallel to the X
axis. The periodicity of a centroid C was then defined as the
number of centroids examined in this process, and all centroids
examined were assigned the same periodicity as C. Cell arrange-
ment patterns were classified for each centroid by categorizing
sub-sequences within the sequence of periodicities in Matlab
using the code PatternInterpreter.m. Cells in transitional patterns
were flagged in this program and then assessed manually based
on the surrounding cell patterns. Transitional cells were counted
as half a cell in each pattern. Sphere figures were created for each
fish by plotting a sphere with the same volume as each cell
at each cell’s normalized position. These were then colourized
using the pattern classifications previously determined, using
Maple 2017.

(ii) JB tubes
JB patterns were classified visually. In order for a JB to count
towards a pattern, we required there be at least three sequential
JBs in this pattern. We counted JBs in transitions between patterns,
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Figure 2. JB arrangement in capped silicone tubes depends on bead density. (a) Images of capped silicone tubes filled with a range of JBs (30–95) that swelled to
fill the available space. JB numbers and their respective calculated l values are indicated on the left. Brackets mark regions of specific patterns. Scale bar, 2.5 cm.
(b) Schematic (left) and images (right) of JB patterns observed in capped silicone tubes. (c) Quantification of the fraction of JB pattern observed for various JB
densities (n ¼ 3). Corresponding l values and JB numbers are shown at the bottom.
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where a JB could be considered in either pattern, as half a JB for each
pattern. Regular hopscotch was defined to be two JBs in staircase
alternating with one in bamboo. Any pattern that was a mixture
of staircase and bamboo, but did not have a sequence of three JBs
in the same pattern, was classified as irregular hopscotch.

To calculate l, the volume of the tube, calculated as the
volume of a cylinder with height and diameter equal to the
measured height and interior diameter of the tube, was divided
by the number of JBs to obtain the volume of each JB. From this,
the diameter of a JB was calculated as the diameter of a sphere
with equivalent volume. Because the tubes lack a distinguished
orientation, aspect ratios for tubes were defined as DM(x)/
Dm(x) where DM(x) is the largest diameter at location x and
Dm(x) is the smallest.

(g) Statistical analyses
Statistical analysis was performed in JMPw PRO v. 13.0.0 (SAS
Corp., Cary, NC, USA) and GRAPHPAD PRISM v. 7.0c for Mac
(GraphPad Software, La Jolla, CA, USA).

3. Results
(a) A physical model of the zebrafish notochord
In the zebrafish, notochord vacuolated cells are organized in
a consistent staircase pattern [15]. To investigate the mechan-
ism that controls the arrangement of vacuolated cells during
morphogenesis, we built a physical model. We conceptual-
ized the notochord as a cylinder containing liquid-filled
spheroids. This is reminiscent of the arrangement of hard
spheres or detergent foam cells (soap bubbles) in cylinders,
which have both been extensively studied using theory and
experimental approaches in soft matter physics. In those sys-
tems, spheres or foam cells arrange in progressively more
complex patterns as the ratio (l ¼ D/d) of the diameter of
the cylinder (D) over that of the spheres or cells (d ) increases
[33–35]. The range of patterns observed as l increases fol-
lows a progression from a row of single units, called
‘bamboo’ and noted as (1,1,0) using the nomenclature
derived from phyllotaxis [35,36], to a ‘staircase’ or ‘zigzag’
(2,1,1), and then to more complex helical and chiral patterns
such as (3,2,1) [35,36]. For a given l value different patterns
have been observed to coexist, separated by transitional
arrangements (‘defects’ in the terminology of crystallography).
While these patterns are generally reminiscent of the arrange-
ment of vacuolated cells in the notochord there are important
differences that limit the applicability of the established
models. First, unlike the existing physical models, vacuolated
cells do not have a constant nor uniform size and shape.
Second, unlike hard sphere models, vacuolated cells comple-
tely fill their available space. While this property is also
present in cylindrical foams, these resemble epithelia and
their interaction is completely driven by surface tension. By
contrast, vacuolated cells are not epithelial and do not, at
least during morphogenesis, establish junctions between neigh-
bouring vacuolated cells or with sheath cells. Third, in
cylindrical foams and hard sphere packing templating effects
can bias pattern formation [36,37]. Therefore, we wanted to
generate a physical model that resembles the properties of
notochord vacuolated cells more closely.

Because the arrangement of vacuolated cells in the
notochord during morphogenesis occurs as the cells inflate
by drawing in fluid [13], we initially tried to emulate

vacuolated cells using starch beads (tapioca pearls) and
the notochord sheath using collagen sausage casing or
silicone tubes. Alas, the high softness of the starch beads
and their relatively rapid disintegration made this set-up
unsuitable to analysis. After a brief survey of other common
materials, we found sodium polyacrylate beads (a.k.a. JBs)
to be suitable. These beads are deformable hydrogels, com-
prising a polymer network that absorbs a significant
amount of water to swell in aqueous solutions. Thus,
these beads mimic the polymeric nature of the cytoskeleton
and exhibit large shape changes through swelling like the
vacuolated cells.

When placed in water, dry JBs swell from approximately
1.5 mm to approximately 15 mm in a span of 4 h at room
temperature and assume a spherical shape (figure 1a), similar
to vacuolated cells isolated from the zebrafish notochord [24].
When placed at one end of a capped silicone tube JBs swelled
and distributed throughout the tube in about 3.5 h (figure 1c),
mimicking the expansion of the embryonic axis driven by
notochord vacuolated cell expansion [13]. If one cap is
removed from the tube the expanding JBs extrude from the
open end, similar to what occurs with vacuolated cells
when the tail of a 24 h post-fertilization (hpf) embryo is cut
(electronic supplementary material, video S1). Interestingly,
when compared with the behaviour of vacuolated cells
during morphogenesis (electronic supplementary material,
video S2) we observed that JBs exhibited similar movements
as they locked into their final arrangement (figure 1c). We
then tested different types of tubes of varying diameters
and a range of JB numbers. We found that placing an
appropriate number (see next section) of JBs in a capped
12.7 mm-wide silicone tube (a diameter slightly smaller
than that of a fully swollen JB) results in a staircase arrange-
ment that closely resembles that of vacuolated cells in the
notochord of a 48hpf WT zebrafish (figure 1d ).

Next, we explored JB arrangement at increasing l values
in capped tubes of constant length in which JBs swell to fill
the available space. In this simple set-up, the final size each
JB acquires is progressively reduced as the number of JBs
per tube increases, thereby increasing l. To calculate l

values, we simply divided the internal volume of the tubes
by the number of JBs to obtain an equivalent sphere
volume that we used to calculate the average JB diameter.
As l increased from 1 to 1.41, we observed bamboo (1,1,0),
staircase (2,1,1), ‘hopscotch’ (2,2,0) and helical patterns (e.g.
3,2,1) appearing (figure 2a). Of note, the arrangement observed
for each l value was independent of the speed at which the JBs
swelled and the initial distribution of the dry JBs (data not
shown). The order of transitions from one pattern to the next
and the l values at which they occurred were consistent
with those reported for hard spheres and cylindrical foams
[30,35]. Similar to other packing models, we also observed
the coexistence of different patterns within a tube (marked
with brackets, figure 2a). However, unlike what has been
reported for cylindrical foams [36], in our JB tubes the different
patterns were intermixed and not sharply separated in large
domains. We also observed the generation of mixed ‘hops-
cotch’ irregular arrangements (figure 2b) at the transitions
between patterns. This may be comparable to the ‘line slip’
structures identified in the packing of wet foams, a model of
soft sphere packing [38].

Together, these data show that a simple physical model
composed of JBs swelling inside capped silicone tubes can
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reproduce the arrangement and even some of the beha-
viours of zebrafish notochord vacuolated cells. These
results also generate testable quantitative and qualitative
predictions about the arrangement of vacuolated cells in
the notochord.

(b) Vacuolated cell arrangement in the zebrafish
notochord is influenced by the aspect ratio of the rod

We next used confocal microscopy to image the entire
notochord of 48hpf WT embryos expressing a plasma
membrane marker in vacuolated cells and generated three-
dimensional renderings. Using quantitative analyses, we
obtained the position of each cell’s centroid and plotted
them in dorsal view and in cross section. As expected, the
centroids were clustered along two areas that were consistent
with a staircase pattern (figure 3a). However, a fraction of
cells seemed to deviate from that pattern. To visualize
arrangements, we generated three-dimensional renderings
in which we placed a sphere of volume proportional to that
of each vacuolated cell at the position of the respective cen-
troid. We found that while most of the notochord length
corresponds to the staircase pattern (2,1,1), some areas con-
tain helical patterns, particularly (3,2,1) (figure 3b). Other
patterns including (4,2,2), bamboo (1,1,0), which was often
found at the rostral and caudal ends of the notochord, and
hopscotch (2,2,0) were also present (electronic supplementary
material, figure S1).

To compare the type and frequency of pattern occur-
rence between notochord vacuolated cells and JBs in
silicone tubes, we first determined the l value along the
notochord of six 48hpf embryos. To do this, we took the
local average volume of each cell and calculated the diam-
eter based on a sphere of the same volume. We found that
the l value was on average 1.33+ 0.14, and that it varied
along the length of the AP axis, tapering towards the
caudal region (figure 3c). As expected, the l value was
significantly higher in areas of staircase and complex
arrangements compared with the linear bamboo pattern
(figure 3d ). Overall, the frequency of each pattern
observed in vivo in 48hpf embryos closely followed the
distribution of JB tubes of the same l value (figure 3e).
However, we observed a significantly higher proportion
of bamboo (1,1,0) and staircase (2,1,1) arrangements in
vivo compared with the JB tubes (figure 3e). To identify
what might explain this discrepancy, we first analysed
the transverse aspect ratio (a) of the notochord in 48hpf
embryos and found it is significantly elliptical with an
average value of 1.07+0.03. Interestingly, when we analysed
a values during notochord morphogenesis we found that the
notochord rod is highly elliptical at the ‘stack of coins’
(chrodamesoderm) stage and that it becomes more circular
as the vacuolated cells inflate (electronic supplementary
material, figure S2). These data suggest that the aspect
ratio of the notochord rod influences the arrangement of
the vacuolated cells.

(c) Elliptical cylinders favour staircase arrangement of
hard spheres in simulations

To test whether the discrepancy between the notochord and
the physical model can be explained by the geometry of the
notochord rod, we conducted numerical simulations of

hard sphere packing in cylinders with a variable aspect
ratio between 1 and 2. Specifically, we wanted to determine
whether elliptical cylinders favour the (2,1,1) staircase
arrangements. To this end, we used the SLP method, pre-
viously used to simulate hard sphere packing in circular
cylinders up to a l value of 4 [30], and adapted it to the
case of elliptic cylinders.

Figure 4 shows the densest structures identified by
SLP for different l ¼ Da=d up to 2.15 and a ¼ Da=Db.
For l, 1.866, next-nearest-neighbour contacts are impossible,
hence the densest packings have a staircase morphology.
A twisted staircase regime appears at l , 1.866, and per-
sists for a relatively small ellipticity, i.e. l , 1.05. For
larger a, hard spheres form a crossing staircase structure.
Specifically, two staircase structures intersect every other
sphere. The angle between the two planes of these two stair-
case structures increases with a. This helical regime
diminishes upon approaching l ¼ 2, which in circular cylin-
ders is achiral. For l. 2.039, a triple helical structure,
(3,2,1), appears. This helical structure also transforms into
the crossing staircase structure as a increases. Similarly,
between these two regimes complex intermediate structures
with both discontinuous helical strands and bend crossing
staircases appear. The crossing staircase structures generally
become preferred as a increases.

(d) Reciprocal control of tube aspect ratio and local cell
arrangement in physical models

The analysis of vacuolated cell arrangement suggested that
the aspect ratio (a) of the notochord rod strongly influences
the pattern these cells achieve. This notion was supported
by numerical simulations indicating that elliptical cylin-
ders strongly favour the (2,1,1) staircase arrangement.
Because hard spheres impose constraints that limit their
possible arrangements, we decided to test in physical
models the effect of tube aspect ratio on JB arrangement.
To this end, we procured relatively inflexible vinyl tubes
of elliptical section (a ¼ 1.25) and hard polycarbonate
tubes of circular section (a ¼ 1.00) and filled them with
dry JBs which were allowed to swell as before. We tested
a range of l values close to those of the WT notochord
and found that in the circular tubes the helical and chiral
patterns were the most prominent, particularly at higher
l values (figure 5a,b). By contrast, in elliptical tubes JBs
were arranged almost completely in a staircase (2,1,1) pattern
(figure 5c,d).

Next, we re-visited the silicone tube model and took into
account their aspect ratio and the material properties. We first
measured the aspect ratio before the addition of JBs and
found a ¼ 1.02 throughout its length. Then, we added 80
JBs and allowed them to swell as before, reaching a l value
of 1.31, before scoring JB arrangement and the local aspect
ratio. Interestingly, we found that the tubes deformed locally
from a ¼ 1.00 up to 1.17 and that the areas with (2,1,1) stair-
case pattern were significantly more elliptical than those
presenting the chiral pattern (3,2,1) (figure 5f ). We then com-
pared the fraction of staircase (2,1,1) arrangement present in
silicone and hard polycarbonate tubes at a l value of 1.33
and found it is significantly higher in the deformable silicone
tube (figure 5g ).

Together, these data indicate that the aspect ratio of
the cylinder strongly influences the local arrangement of JBs
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in our physical model. Conversely, the local arrangement of
JBs also modifies the aspect ratio of the tube, indicating
these two key variables are interdependent. These data also

explain why in the largely elliptical WT zebrafish notochord
rod vacuolated cells are arranged mostly in a staircase pattern
while l values are relatively high.

R

L 0 200015001000

dorsal view

dorsal view

lateral view

cross section
D

V

LR

500

1.50

1.5

1.1

1.0
0 250020001500

x
1000500

1.2

1.3

1.4

ll

1.00

1.25

(1,1,0) other(3,2,1)
patterns

(2,1,1)

(1,1,0) other(3,2,1)

n.s.

100

0

25

50

75

n.s.
48hpf WT

JBs

**

*
**

***

*

patterns

pa
tte

rn
 d

is
tr

ib
ut

io
n 

(%
)

(2,1,1)

(1,1,0) (2,1,1) (3,2,1) (2,2,0)

(a)

(b)

(c)

(d)

(e)

0 200015001000500

0 200015001000500

Figure 3. The organization of vacuolated cells in the zebrafish notochord and the aspect ratio of the notochord rod are interrelated. (a) Dorsal (left) and cross-sectional
(right) centroid plots of notochord vacuolated cells for a 48hpf WT zebrafish embryo. Orientation labels D (dorsal), V (ventral), L (left) and R (right). Units are in micrometres.
(b) Lateral and dorsal views of three-dimensional renderings (top) and corresponding sphere plots (bottom) depicting the morphology and arrangement of vacuolated cells in
a 48hpf WT zebrafish embryo. Colours in the sphere plots indicate patterns observed: blue (2,1,1), yellow (3,2,1), red (1,1,0), orange (4,2,2), tan (2,2,0), grey (uncertain),
green (transition between 2,1,1 and 3,2,1). Scale bars, 300 mm (c) l values of vacuolated cells along the length of the notochord of a 48hpf WT embryo. Line colours
reflect patterns as in (b). (d) l values for different patterns in the notochord of a 48hpf WT embryo. One-way ANOVA, Tuckey’s test, *p ¼ 0.0037; **p ¼ 0.001; ***p ¼ 0.005.
(e) Distribution of patterns in 48hpf WT embryos (n ¼ 6) and JB tubes (n ¼ 3, l¼1.33). Paired t-test, *p ¼ 0.047; **p ¼ 0.045.
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(e) The density of vacuolated cells determines their
organization and influences the aspect ratio of the
notochord rod

The experiments with our physical model of the notochord
and our theoretical model generated two important predic-
tions: (1) the arrangement of vacuolated cells within the
notochord is dictated by cell density, which in turn defines
the l value as cells swell to occupy the available space;
(2) vacuolated cell arrangement and the aspect ratio of the
notochord rod are mutually regulated. To test these predic-
tions in vivo, we first took a genetic approach to alter
vacuolated cell density in the zebrafish notochord. Previous
work in zebrafish has shown that differentiation of chorda-
mesoderm cells, the notochord primordium, into vacuolated
and sheath cells is controlled by the Notch pathway [16].
Activation of the Notch pathway in the early notochord
leads to the generation of more sheath cells at the expense
of the vacuolated cells. Conversely, Notch inhibition leads
to more vacuolated cells (figure 6a). To manipulate Notch
activation specifically in the zebrafish notochord, we gener-
ated a new driver line, Tg(rcn3:QF2), to drive expression of
either constitutively active Notch intracellular domain

(NICD) or a dominant negative form of suppressor of hairless
(SuH-DN) from QUAS lines we previously established [21].

When we expressed NICD the number of vacuolated cells
was sharply reduced (69%, n ¼ 4). This produced a signifi-
cantly lower l value and drastically different arrangement
of vacuolated cells respect to WT controls, producing a
bamboo (1,1,0) pattern throughout most of the notochord,
which was readily recognized in centroid plots that collapsed
at the centre of the notochord (figure 6c). In three-dimensional
renderings, vacuolated cells clearly arranged in a linear
arrangement that was completely composed of the bamboo
(1,1,0) pattern (figure 6d ). Interestingly, the aspect ratio of
the notochord rod was also significantly more elliptical in
NICD when compared to WT (figure 6e). This is similar to
what we observed during morphogenesis (electronic sup-
plementary material, figure S2). We also observed an increase
in notochord aspect ratio after a tail cut (electronic supplemen-
tary material, figure S3), resulting in a local increase in the
formation of staircase and transitional patterns at the expense
of the chiral (3,2,1) pattern close to the posterior end of the
notochord (proximal to the cut), suggesting that the shape of
notochord rod is kept by the internal pressure of the structure
and opposed by surrounding tissues.
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By contrast, when we inhibited Notch in the early noto-
chord we generated an average of 25% (n ¼ 5) more
vacuolated cells of smaller size, with l values raising with

respect to WT controls to about 1.60 (figure 6b). The increased
l value was accompanied by a change in vacuolated cell
arrangement as visualized by three-dimensional renderings
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and centroid plots, which showed a fairly even distribution
around the whole periphery of the notochord (figure 6c,d).
Remarkably, and similar to our physical models (figure 5),
the dramatic shift towards the (3,2,1) chiral pattern was also
associated with a significant increase in circularity (reduced
aspect ratio) in comparison to WT controls (figure 6f ). Together,
these data demonstrate that vacuolated cell arrangement in
the zebrafish notochord is determined by cell density,
which in turn defines l. Our data also reveal that the local
aspect ratio of the rod and the arrangement of vacuolated
cells are interdependent.

Next, we wanted to examine a regeneration response that
also alters the number and size of notochord vacuolated cells.
Recently, we and others showed that in cavin1b mutants lack-
ing functional caveolae, vacuolated cells collapse in specific
areas under the mechanical stress of locomotion [24,39].
Then, sheath cells invade the inner notochord and trans-
differentiate into new vacuolated cells [24]. If the extent of
the lesion is large many sheath cells invade, eventually gen-
erating more, but smaller, new vacuolated cells [24]. To
determine whether the arrangement of vacuolated cells
changes during this injury and regeneration response, we
placed WT and cavin1b mutant embryos in methylcellulose
to increase the incidence of large notochord lesions and
tracked fish over time during the regeneration response.
Interestingly, we found that upon collapse of several vacuo-
lated cells, the remaining nearby vacuolated cells occupied
part of the vacant space and adopted locally a bamboo
(1,1,0) arrangement (electronic supplementary material,
figure S4). Then, over the course of 7 days the invading
sheath cells trans-differentiated and expanded to fill the avail-
able space. However, these newly generated vacuolated cells
were more numerous and smaller compared with the pri-
mary vacuolated cells (larger local l) and were arranged in
a complex pattern (electronic supplementary material,
figure S4c) similar to that found for fish expressing SuH-
DN in the notochord (figure 6d). These data reveal that
the arrangement of vacuolated cells is not fixed and is able
to re-settle according to the prevailing tissue constraints
during injury and regeneration.

4. Discussion
Altogether, our data show that the organization of vacuolated
cells within the zebrafish notochord follows packing rules that
can be recapitulated in a simple physical model. This model is
also able to recapitulate the path vacuolated cells followas they
settle into their final arrangement within the zebrafish noto-
chord. Thus, the morphogenesis of the zebrafish notochord
can be considered a self-organizing process [1] in which the
osmotic swelling of vacuolated cells, an energy consuming pro-
cess [13], within the boundaries of a semi-flexible notochord
sheath leads to a stereotypical arrangement.

Using water swelling JBs to emulate notochord vacuo-
lated cells provided two important advantages over
cylindrical foams and hard sphere packing models. First,
the JBs settle into their position as they swell and thus are
not influenced by a pre-existing pattern as is the case with
cylindrical foams and hard spheres. Second, because the
volume JBs reach is variable, within the range covered by
our experiments, it is easy to change l continuously simply
by changing bead number for any given length of tube,

which can also be of variable geometry. If we add to these
features the possibility of replacing JBs by highly customiz-
able hydrogels, it would be possible to address the effect of
the material properties of the packing beads. This may
allow for easier physical modelling of soft spheres and
other related problems. However, further development of
the theoretical framework will be needed to incorporate vari-
ables of biological relevance such as tube wall elasticity and
geometry, medium viscosity, bead properties (i.e. soft
spheres) and combinations of these variables.

Our data demonstrate that the particular arrangement
vacuolated cells achieve and the aspect ratio of the notochord
rod are largely determined by cell density (figure 6), which
defines l. Therefore, it is basically a geometry-driven process.
With a notochord rod aspect ratio that is initially highly ellip-
tical (electronic supplementary material, figure S2), probably
because of the effect of surrounding tissues, vacuolated cells
are prone to arrange in a staircase pattern. However, osmotic
swelling of the vacuolated cells tends to counter this effect,
making the structure more circular. This effect is also patent
in the mirroring changes that a and l exhibit along the
length of the notochord, i.e. as l increases a diminishes (elec-
tronic supplementary material, figure S5), suggesting a
mechanical buffering mechanism. The final a value the noto-
chord eventually reaches (approx. 1.07) is at the boundary
where the staircase pattern is strongly favoured in hard
sphere-simulations, but close to what allows chiral patterns
to exist, thus explaining the bias in vacuolated cell arrange-
ment observed in the notochord with respect to what is
seen in circular tubes, as well as the presence of chiral pat-
terns which are basically not found in hard elliptical tubes.
However, establishing exact boundary points is challenging
because the l values for vacuolated cells are low estimates
that do not take into account the role cell shapes irregularities
(e.g. l , 1 for NICD in figure 6). Conversely, it is also
expected that a soft sphere theoretical model would be
closer quantitatively to the JB and in vivo models with a
lower effective l value. Nevertheless, the trends and responses
to variations in tube geometry are all in good agreement.

One way to establish a closer quantitative comparison
between the hard sphere models and the notochord vacuola-
ted cell is to obtain effective l values using the longitudinal
centroid plots by calculating each cell’s diameter as twice
the distance from the perimeter to the centroid. This approxi-
mation is valid for the notochord because all vacuolated cells
are in contact the surrounding sheath. Using this method, we
obtained average l ! 1:85 for WT, which is close the bound-
ary where helical patterns are generated for a hard tube with
an l ! 1.866 in simulations.

Clearly, the material properties of the sheath and the
mechanical coupling of surrounding tissues [40] also influ-
ence the local aspect ratio (a) of the notochord rod, thereby
modulating the local arrangement of vacuolated cells. In
this context, the initial allocation of vacuolated cells and the
starting morphology of the notochord rod, which are defined
during gastrulation [41], probably determine the internal
organization of the notochord. These notions may also help
explain the variability in size and arrangement that are seen
across vertebrates. For example, the large notochord rod of
Xenopus laevis is filled with more vacuolated cells, but of
roughly the same size compared with zebrafish. As a result,
their organization is more complex, with internal cells that
are not in contact with the sheath, yet still similar to that
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achieved by silicone/JB tubes of similar proportions (electronic
supplementary material, figure S6). It will be interesting to
explore whether the mammalian notochord also follows the
same organizational principles.

During morphogenesis, vacuolated cells are able to slide
past each other as they settle into their final arrangement
(figure 1), which later (around 96 hpf) is stabilized by the for-
mation of desmosomes between vacuolated cells [24,42].
However, this arrangement is not fixed, as illustrated by
the dynamic changes that occur following vacuolated cell col-
lapse and regeneration (electronic supplementary material,
figure S2). This provides a robust mechanism ensuring the
mechanical integrity of the axis and safeguarding normal
spine development when more vacuolated cells are gener-
ated [24]. However, it remains unclear whether the
production of more but smaller vacuolated cells impacts
the mechanical properties of the spine, particularly the inter-
vertebral discs, later in life. By contrast, when fewer
vacuolated cells are produced (e.g. NICD expression) the
axis kinks during spine formation [13], suggesting that the
allocation of a minimum number of vacuolated cells
during embryogenesis is crucial.
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