
ABSTRACT

PETROSKE, KATRINA ELISE. Efficient Methods for Image Reconstruction and
Uncertainty Quantification with Application to Photo-acoustic Tomography. (Under
the direction of Arvind Krishna Saibaba.)

Inverse problems arise in various scientific applications such as biomedical and geo-
physical imaging applications. A significant amount of effort has focused on developing
efficient and robust methods to compute solutions to inverse problems by reconstructing
parameters of interest. In addition to parameter reconstruction, there is a critical need to
be able to obtain valuable uncertainty information (e.g., solution variances, samples, and
credible intervals) to assess the reliability of computed solutions and to aid in decision-
making. To demonstrate the techniques developed in this work we use a model problem,
photo-acoustic tomography (PAT), an imaging modality that is used in breast and brain
imaging. The goal of PAT is to recover the spatial distribution of the optical properties,
such as the absorption coefficient, from ultrasound measurements. The PAT reconstruction
process can be mathematically formulated as two coupled inverse problems involving
partial differential equations. We take a two-step approach to solving PAT: the first step
is a linear inverse problem for which we take a Bayesian approach and the second step is
non-linear for which we take a deterministic approach.

In the first part of the thesis, we focus on uncertainty quantification for linear inverse
problems with Gaussian posterior distributions. We exploit Krylov subspace methods to
develop and analyze new techniques for large-scale uncertainty quantification in inverse
problems by exploring the posterior distribution. In particular, we use the generalized
Golub-Kahan bidiagonalization to derive an approximation of the posterior covariance
matrix, and we provide theoretical results that quantify the accuracy of the approximate
posterior covariance matrix and of the resulting posterior distribution. Then, we describe
efficient methods that use the approximation to compute measures of uncertainty, such
as the Kullback-Liebler divergence and optimality criteria, which are important in the
context of optimal experimental design. Additionally, we present two methods that use
the preconditioned Lanczos algorithm to efficiently generate samples from the posterior
distribution. Numerical examples, including a model problem from PAT, demonstrate the
effectiveness of the described approaches.

In the second part of the thesis, we focus on the non-linear inverse problem, also known



as Quantitative photo-acoustic tomography (QPAT). We take a deterministic approach
and formulate QPAT a nonlinear PDE-constrained optimization problem. We develop
Newton and Gauss-Newton solvers for QPAT in which the search directions are computed
inexactly using the preconditioned Conjugate Gradient method. We study various aspects
of the solvers such as the type of regularization used, choice of preconditioner, choice of
stopping criteria, and the behavior as the number of sources is increased. The performance
of the solvers is demonstrated through a synthetic model problem from QPAT.
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Preconditioners are based on fractional powers of the Laplacian
(−∆)γ . The plots correspond to various choices of ν in the Matérn
covariance kernel and γ in the preconditioner. (left) ν = 1/2 and
γ = 1/2, (middle) ν = 3/2 and γ = 1, and (right) ν = 5/2 and γ = 2. 64

Figure 3.2 For the PRspherical problem, we provide the computed MAP
estimate (left), a random draw from the prior distribution (middle),
and a random draw from the posterior distribution computed using
Method 1 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 3.3 For the PRspherical problem, we provide the computed MAP
estimate (left), a random draw from the prior distribution (middle),
and a random draw from the posterior distribution computed using
Method 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 4.1 Normalized spectrum of the Gauss-Newton Hessian with and with-
out preconditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.2 Plot of the location of the sources which are indicated in yellow. . 85
Figure 4.3 The reconstructions of the QPAT image found using the different

methods, the relative error for the reconstructions are provided in
Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.4 Reconstructions using different regularization types; the relative
error is provided in Table 4.4. . . . . . . . . . . . . . . . . . . . . 88

Figure 5.1 A flowchart that compares the one-step and two-step PAT inverse
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



CHAPTER

1

INTRODUCTION

Inverse problems are ubiquitous in sciences and engineering: examples include applications
in astrophysics (recovering a true image from a blurry image), signal processing and
acoustics (recovering the true signal from a noisy signal), medical imaging (magnetic reso-
nance imaging, computed tomography, projection radiography), geophysics (groundwater
contaminant source identification, seismic tomography, electrical resistance tomography,
hydraulic tomography), nuclear engineering (detecting defects in spent nuclear fuel rods),
and many more. As the name suggests, an inverse problem is the “inverse” of another
problem called the forward problem. In a forward problem, parameters are inputs to a
model, typically described using partial differential equations (PDEs), that is used to
generate predictions (the output). In an inverse problem, the inputs are noisy data, which
are used to recover the outputs which are parameters of interest. In Figure 1.1, we provide
a diagram that demonstrates how the forward and inverse problem are related.

Finding the solution to an inverse problem presents many challenges. Inverse problems
are often ill-posed, meaning that they either have no solution, no unique solution, or
the solution does not depend continuously on the data. One approach to solving inverse
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Figure 1.1 A diagram that shows the relationship between a forward problem and an inverse
problem.

problems is deterministic, in which a single estimate of the parameter(s) is provided by
solving an optimization problem. However, there may be uncertainties associate with the
solution of the inverse problem and these can be handled using the Bayesian approach,
where the solution of the inverse problem is the probability distribution of the parameter(s)
of interest [69], since it has the capability of quantifying the uncertainty. Uncertainty
quantification (UQ) for inverse problems is much more computationally intensive than
generating a single estimate of the parameters. In this thesis we adopt both approaches
for solving inverse problems.

In this thesis we develop and demonstrate efficient methods and algorithms to deal
with some of the challenges posed by inverse problems. In order to motivate our work,
we use the Photo-acoustic tomography (PAT) image reconstruction inverse problem as a
model application. In this chapter we describe the model PAT problem and outline the
thesis. In Section 1.1, we describe the physics behind PAT, some applications PAT is used
in, and briefly discuss the image reconstruction process. In Section 1.2, we an outline of
the contents and contributions of each chapter in the thesis.

1.1 Background for PAT

Photo-acoustic tomography (PAT) is a multi-scale imaging modality that works by
illuminating a medium with multiple wavelengths of near infra-red light. The light is
either absorbed or diffuses through the medium as it travels. The light that is absorbed
transfers energy to the medium causing it to heat up. The heating causes thermal
expansion, which in turn causes a pressure wave (the photo-acoustic effect). The pressure
wave propagates as an acoustic wave and is measured by ultrasound detectors.
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PAT is used in many in vivo imaging applications for anatomical, functional, molecular,
and metabolic purposes in the microscopic scale [137]. PAT has been used to image
mitochondrion (300 nm) [38] and blood vessels in the human hand (50-350 µm) [136]. PAT
has, also been used in breast [119] and brain imaging [137]. Since PAT uses near infra-red
light, unlike traditional imaging modalities (such as computed tomography, which use
x-rays, and magnetic resonance imaging, that uses magnetic fields), it can be safely used
on a wider variety of patients/subjects. For more technical engineering details about PAT
systems and further applications the reader is directed to [130]. Outside of the life sciences
PAT has been used as a non-destructive way to image the underdrawings of paintings
[121].

For these reasons developing efficient methods for the reconstruction of PAT images is
important and the inverse problems associated with PAT offer interesting mathematical
challenges.

1.1.1 Mathematics of PAT

The physics behind PAT can be modeled by two separate, but coupled, partial differential
equations (PDEs). Figure 1.2 shows the relation between the physics of the PAT process
and the PDEs used to describe the physics.

Figure 1.2 A diagram that shows the relation between the physics of the PAT process and
the PDEs used to describe the physics.

3



PDEs Governing PAT

The first PDE that describes the physical process is a diffusion approximation to the
radiation transport equation:

−∇ · (D∇u) + µu = f, x ∈ Ω,

u+ 2AD∇u · n = 0, x ∈ ∂Ω,

where µ is the absorption coefficient, u is the photon density, Ω is the domain, ∂Ω is
the boundary of the domain, D is diffusion coefficient, and f is the source. This PDE
describes the light illuminating the medium and the absorption of the light.

The second PDE used to model the underlying physics is a wave equation, which
describes the propagation of the initial pressure wave:

1

c2
ptt −∆p = 0, (t, x) ∈ [0,∞)× Ω

p(0, x) = H(x), x ∈ Ω,

pt(0, x) = 0, x ∈ Ω,

where p is the pressure, c is the wave speed, and H(x) is the initial pressure.
The two PDEs are coupled through the initial pressure, H(x), in that

H(x) = Υ(x)ψ(x) = Υ(x)µ(x)u(x), (1.1)

where Υ(x) is the Grüneisen parameter, which is a measure of photoacoustic efficiency
measure, and ψ(x) is the absorbed energy. In Figure 1.3 we show a diagram of the wave
equation and diffusion equation are coupled by the initial pressure.

Reconstruction of Photo-acoustic Images

In order to reconstruct the underlying optical properties in the medium we must use
the collected data, i.e., the pressure measured by the ultrasound detectors, to first solve
an inverse problem based on a wave equation to find the initial pressure wave, then we
use the initial pressure wave to solve an inverse problem to find the optical properties,
typically the absorption field. This is a two-step reconstruction process. An alternative
approach called one-step PAT reconstructs the underlying optical properties directly from

4



Figure 1.3 A diagram showing how the diffusion equation and wave equation are coupled
through the initial pressure.

the measured pressure; we do not consider it here and refer the reader to [122, 67].
The first step in the PAT reconstruction process is known as the PAT step or the

qualitative step. Many authors have explored methods for computing the solution, the
initial pressure, for this step in the PAT inverse problem using explicit inversion, series
solution, and time reversal [4, 5, 75, 77, 134, 132, 133]. If one assumes that the wave
speed, c, is constant the data can be represented by the spherical Radon transform.
Doing so allows this step of the reconstruction process to simplify to the inversion of the
spherical Radon transform [30, 43, 42, 78, 76, 135]. In this work we use the spherical
Radon transform approach to represent the forward problem.

The second step in the process, called Quantitative Photo-acoustic Tomography
(QPAT), uses the initial pressure reconstructed from the first step as data. In this work
we assume the Grüneisen parameter (1.1) takes the value 1, so the data is the absorbed
energy. Authors have primarily taken Gauss-Newton and quasi-Newton approaches to
solve this inverse problem [48, 35, 10, 47, 81, 46, 114].

1.2 Outline of Thesis

In this section, we provide an overview of the thesis and how each chapter is connected
to the PAT inverse problem, as well as highlight the main contributions in each chapter.

5



Rather than dedicating a separate chapter to reviewing background material, we review
the necessary background within each chapter. It should be noted that Chapters 2 and
3 expand on a paper currently undergoing revision at Numerical Linear Algebra with
Applications journal; a pre-print is available [103].

Chapter 2: Efficient Computing of Uncertainty Quantification Measures in
Large-Scale Bayesian Linear Inverse Problems

The first step of the PAT reconstruction process can be modeled as a linear inverse
problem, where the data collected by the ultrasound detectors is used to recover the
initial pressure. We focus on not only solving the inverse problem, but on quantifying
the uncertainty associated with the reconstruction as well. In this chapter we consider
large scale Bayesian inverse problems with linear forward operators and Gaussian priors,
where the covariance matrices are large and dense, making them difficult to work with
explicitly. For this particular setup a generalized hybrid Golub-Kahan (genHyBR) method
[32] was developed. The genHyBR method is used to find the maximum a posteriori
(MAP) estimate and an approximation of the posterior covariance matrix, which together
determine the approximate posterior distribution.

Contribution: In this chapter we use the iterates of the genHyBR method to ap-
proximate the posterior covariance matrix. We derive and prove theoretical bounds for
the accuracy of the approximate posterior covariance and bounds for the approximate
posterior distribution. Additionally, we develop methods for approximating the optimality
criteria, that play an important role in optimal experimental design, using the genHyBR
iterates. We also develop error bounds to monitor the accuracy of our estimators and
demonstrate the benefits of the approach on model problems including PAT.

Chapter 3: Sampling from Gaussian Posterior Distributions

A popular method for visualization and uncertainty quantification is to generate samples
(conditional realizations) from the posterior distribution, which provides realizations of
solutions and can be used for quantifying uncertainty. Krylov subspace methods can be
used to efficiently sample from Gaussian posterior distributions, which is the case for
PAT. In particular, a Lanczos process can be used to generate samples from a posterior
distribution. However, if the covariance matrix is large and dense, traditional Krylov
subspace methods can be computationally infeasible.
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Contribution: In this chapter, we propose two different sampling methods that
use preconditioned Lanczos methods to sample realizations from the Gaussian posterior
distribution arising from the PAT problem. The first method generates samples from
approximate posterior distribution; we use the genHyBR method to approximate the
posterior. The second method generates approximate samples from the exact posterior
distribution. Sampling from the approximate posterior distribution has a lower computa-
tional cost while sampling from the exact posterior distribution provides better accuracy.
We demonstrate both methods on model problems, including PAT.

Chapter 4: Efficient Newton-based Approaches to Solve Deterministic Quan-
titative Photo-acoustic Tomography

In this chapter, we model QPAT as a deterministic, PDE constrained optimization problem.
We assume the initial pressure has been reconstructed and use it as the data in order to
reconstruct the absorption coefficient. Current methods for the nonlinear QPAT image
reconstruction process use only gradient information or approximations of the Hessian [35,
10, 47, 81, 46]. However, in this chapter we investigate the use of Newton-based methods
that have the potential to reduce the computational cost over the existing methods.

Contribution: We solve the regularized QPAT inverse problem by taking an optimize-
then-discretize approach. We use Lagrangian-based adjoint methods to derive the opti-
mality conditions and then we solve the discretized inverse problem with preconditioned
inexact-Newton-CG and Gauss-Newton methods. Additionally, we investigate different
regularization types and preconditioners for efficiently computing the Newton step. We
show that while the use of the full Hessian has a higher cost per iteration compared to
the Gauss-Newton Hessian, it has an overall lower computational cost.

Chapter 5: Conclusion

Finally, in Chapter 5, we present overall conclusions and contributions, and highlight a
few avenue for future research.
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CHAPTER

2

EFFICIENT COMPUTATION OF
UNCERTAINTY QUANTIFICATION

MEASURES IN LARGE-SCALE
BAYESIAN LINEAR INVERSE

PROBLEMS

Inverse problems arise in various scientific applications, and a significant amount of
effort has focused on developing efficient and robust methods to compute approximate
solutions. However, as these numerical solutions are increasingly being used for data
analysis and to aid in decision-making, there is a critical need to be able to obtain
valuable uncertainty information (e.g., solution variances, samples, and credible intervals)
to assess the reliability of computed solutions. Tools for inverse uncertainty quantification
(UQ) often build upon the Bayesian framework from statistical inverse problems. Great
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overviews and introductions can be found in, e.g., [19, 115, 117, 70, 25].
Unfortunately, for very large inverse problems, UQ using the Bayesian approach is

prohibitively expensive from a computational standpoint. This is partly because the
posterior covariance matrices are so large that constructing, storing, and working with
them directly is not computationally feasible. For these scenarios, a generalized hybrid
Golub-Kahan based method was proposed in [33] to efficiently compute the maximum
a posteriori (MAP) estimate and to select a precision parameter automatically. We go
beyond computing reconstructions (e.g., MAP estimates) and develop efficient methods
for inverse UQ. In this chapter we focus on methods that use the approximate posterior
distribution to compute measures of uncertainty. In Chapter 3 we develop methods for
generating samples from the approximate and true posterior distributions that can then
be used to compute measures of uncertainty.

Overview of Chapter and Main Contributions

In this chapter, we use efficient Krylov subspace iterative methods, previously used for
solving the weighted least squares problem, for inverse UQ. This motivates new algorithms
and analyses, which is the central focus of this chapter. Section 2.1 describes the setup of
the linear Bayesian inverse problems and assumptions we are making. Sections 2.2 and
2.3 describe the generalized Hybrid Golub-Kahan (genHyBR) based method, which is
used to solve the MAP estimate and estimate the precision parameter. The iterates from
the genHyBR process are used to efficiently construct an approximation to the posterior
covariance matrix resulting in an approximate posterior distribution. In Section 2.4, we
discuss how the approximate posterior distribution can be used in Optimal Experimental
Design. Lastly, in Section 2.5 we present numerical examples that demonstrate the
performance of the theoretical bounds found in Section 2.3 and Section 2.4.
The main contributions are as follows:

• We develop error bounds for monitoring the accuracy of the approximate posterior
covariance matrix based on the generalized hybrid Golub-Kahan [33] iterates.

• We relate the error in the approximate posterior covariance matrix to the error in the
approximate posterior distribution.

• We show how to efficiently compute measures of uncertainty, such as the Kullback-
Leibler divergence, from the posterior distribution to the prior distribution.
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• We develop error bounds for the accuracy of approximated optimality criteria used in
optimal experimental design.

2.1 Setup of the Linear Bayesian Inverse Problem

Throughout this chapter, we consider a linear inverse problem of the form

d = As + δ, (2.1)

where the terms are defined as

• d ∈ Rm are the observed data,

• A ∈ Rm×n is a given matrix, forward operator, or parameter-to-observable map.

We model the the unknown parameters, s, and the measurement error, δ, as independent
Gaussian random vectors; that is

• δ ∼ N (0,Γnoise), where δ ∈ Rm is the measurement error (noise), Γnoise ∈ Rm×m is
a covariance matrix, e.g. a symmetric positive definite matrix,

• s ∼ N (µ, λ−2Q), where s ∈ Rn are the unknown parameters we want to reconstruct,
µ ∈ Rn is the mean or expected value of the parameters, λ is a non-zero precision
parameter, and Q ∈ Rn×n is a covariance matrix.

Note that the precision parameter λ can be fixed or an unknown to be estimated as part
of the inversion, discussed and is discussed in Section 2.2.2.

By taking a Bayesian approach to the problem we are no longer looking for a single
deterministic solution; instead we are trying to find the posterior probability distribution,
or the probability of s conditioned on the observed data d. Recall Bayes’ theorem, which
states that the posterior probability distribution function (p.d.f.) is given by

πpost ≡ π(s|d) =
π(d|s)π(s)

π(d)
. (2.2)

It is also common to write πpost ∝ π(d|s)π(s), where ∝ means proportional to, since the
constant of proportionality is often not important in the application, as in our case.
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Along with the posterior p.d.f. there are other values of interest, such as the maximum
a posteriori (MAP) estimate that is defined as

sMAP = arg max
s∈Rn

π(s|d), (2.3)

which maximizes the posterior p.d.f. probability and the conditional mean (CM)

sCM =

∫
Rn

sπ(s|d) ds, (2.4)

which is also called the posterior mean [25]. The MAP estimate and CM help characterize
the posterior p.d.f. and are particularly useful if the posterior is hard to visualize due to
the high dimensionality of the problem or if the computational cost of solving the problem
is prohibitive [69].

Since s and δ are Gaussian random vectors, the posterior p.d.f. has the following
representation,

πpost ∝ exp

(
−1

2
‖As− d‖2

Γ−1
noise
− λ2

2
‖s− µ‖2

Q−1

)
, (2.5)

where ‖x‖M =
√

x>Mx is a vector norm for any symmetric positive definite matrix M.
Thus, the posterior distribution, πpost, is Gaussian with mean, spost, and covariance, Γpost,
defined as

Γpost ≡ (λ2Q−1 + A>Γ−1
noiseA)−1 and spost = Γpost(A

>Γ−1
noised + λ2Q−1µ) (2.6)

and furthermore [69, Chapter 3.4] for linear inverse problems

spost = sMAP = sCM.

For the reminder of this chapter we will refer to spost the MAP estimate.
For the problems of interest, computing the inverse and square root of Γnoise are

inexpensive (e.g., Γnoise is a diagonal matrix), but explicit computation of Q (or its inverse
or square root) may not be possible, this in turn makes computation and manipulation of
Γpost difficult. However, we assume that matrix-vector products (mat-vecs) involving Q

can be done efficiently (e.g., in O(n log n) operations rather than O(n2) operations for an
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n × n matrix). The covariance matrix Q can be described using covariance kernels we
review a specific class of covariance kernels, that are popular for their desirable properties,
which we use in this work.

2.1.1 Matérn Covariance Kernels

The Matérn class [96] is a class of stationary, isotropic, and positive definite kernels, given
by the formula

Cν(r) =
1

2ν−1Γ(ν)

(√
2νr

`

)ν

Kν

(√
2νr

`

)
(2.7)

where

• r is a measure of the distance between points,

• ν is a parameter that controls smoothness of the underlying process,

• Γ is the Gamma function,

• ` is a scaling parameter or the correlation length,

• Kν(·) is the modified Bessel function of the second kind of order ν.

A feature of Matérn family of kernels is that it includes other widely used kernels for
certain values of ν.

• When ν →∞ we get the squared exponential covariance function, for appropriate
scaling of `

lim
ν→∞

Cν(r) = exp

(
−r2

2`2

)
• When ν = 1/2 we get the exponential covariance function

Cν=1/2(r) = exp

(
−r
`

)

• When ν = p+ 1/2, where p is a positive integer we get that the covariance function
is a product of an exponential and order p polynomial [97, 53],

Cν=p+1/2(r) = exp

(
−
√

2νr

`

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

`

)p−i

12



If we have the set {x1,x2, . . . ,xn}, where xi ∈ Rd, are points in the domain of interest
that has dimension d, we can then define a covariance matrix

Qi,j = Cν(‖xi − xj‖2), for i, j = 1 . . . n.

In Figure 2.1, we show some examples of Matérn kernels and realizations drawn from
the distributions generated by the corresponding kernels. The figure illustrates how the
value of ν controls the smoothness of the realizations and, in fact, the realizations are
almost surely, dνe − 1 order continuously differentiable [105].
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Figure 2.1 Examples of Matérn kernels for ` = 1 and different values of ν (left) and realiza-
tions of the Gaussian distributions with zero mean and covariance defined be the respective
kernels (right).

To summarize, the Matérn class of covariance kernels are useful because: they have
good theoretical properties, they include other popular covariance kernels, the smoothness
of the realizations can be controlled, they allow for areas of relative smoothness, but also
can capture jumps. A drawback is that the covariance matrix, Q, defined by Matérn
kernels are dense and for large grid sizes making storage, inversion, and factoring difficult,
but there are efficient ways to compute matrix vector products (mat-vecs) with Q, which
we now describe.

In general, the storage and computational cost for mat-vecs involving a dense Q is
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O(n2), recall that the forward operator A ∈ Rm×n, using the naive approach of storing
the entries explicitly. However, for covariance matrices defined by stationary or translation
invariant covariance kernels (this includes Matérn kernels) with spatial points located on
a regular, equispaced grid the cost per mat-vec can be reduced to O(n log n), recall n is
the dimension of the parameters. This is done be exploiting the connection between the
Fast Fourier Transform (FFT) and matrices with Toeplitz structure [84]. For irregular
grids the cost for approximate mat-vecs can be reduced to O(n log n) using Hierarchical
matrices [101] or O(n) using H2-matrices or the Fast Multipole Method (FMM) described
in [3]. We will only use FFT based methods in this work.

In the subsequent sections, we describe algorithms for finding the maximum a posteriori
(MAP) estimate and the approximate posterior covariance matrix, using the Generalized
Hybrid Golub-Kahan method that can be used with large, dense Q. In the next chapter
we will discuss how to use the MAP estimate and posterior covariance to draw samples
from the posterior distribution.

2.2 Generalized Hybrid Golub-Kahan (genHyBR)

Approach

In this section we will discuss how the genHyBR method [33] can be used to find the MAP
estimate for the posterior distribution. The genHyBR method has two components: a
generalized Golub-Kahan (genGK) method for computing Krylov subspaces and methods
for estimating the precision parameter λ. We describe the genHyBR method in detail
in this section to provide context for subsequent material. We start by a brief review of
existing methods, then describe the underlying algorithm for the method, how the MAP
estimate is found, and finally the hybrid approach we take.

2.2.1 Review of Existing Methods

There is a large body of work that focuses on finding the MAP estimate, spost, which in
our case can be found by minimizing the negative log likelihood of (2.5), e.g.

spost = arg min
s∈Rn

1

2
‖As− d‖2

Γ−1
noise

+
λ2

2
‖s− µ‖2

Q−1 (2.8)
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which is equivalent to solving the normal equations

(
A>Γ−1

noiseA + λ2Q−1
)

s = A>Γ−1
noised + λ2Q−1µ. (2.9)

Many of the existing methods solve a problem equivalent to (2.8), called a general-form
Tikhonov problem, defined as

spost = arg min
s∈Rn

1

2
‖LΓ(As− d)‖2

2 +
λ2

2
‖LQ(s− µ)‖2

2, (2.10)

where LΓ and LQ are Cholesky factors of Γnoise and Q respectively.
In iterative regularization, the precision parameter λ is set to zero and an iterative

solver is used to minimize the data misfit term, the first term in (2.10), and terminate
the iterations early [59]. This approach relies on the semiconvergence of iterative methods
where the initial iterates appear to reduce the error, but at some later iteration the iterates
will diverge from the true solution [59, 31]. A major drawback is that selecting a good
stopping iteration is often a non trivial task [31].

One way of finding the precision parameter λ is to solve (2.10) multiple times with
different a priori selected λ then, depending on chosen criteria, the solution corresponds
to the “best” λ [59]. In Section 2.2.2 we will go into further detail about different ways of
choosing λ. One can clearly see that this approach to finding the precision parameter is
computationally intensive, making it infeasible for some problems.

Another way to solve (2.10) is to project the problem into a lower-dimensional subspace,
search for a solution in this subspace. The basis vectors for the low dimension subspace
are typically taken to be the basis vectors for a Krylov subspace associated with (2.9)
[59]. Projection methods also display semiconvergence so the previously mentioned early
termination methods apply to the projected problem as well.

This finally brings us to hybrid methods. A hybrid method combines projection
methods with estimating λ during the iterative process. There have been hybrid iterative
methods [85, 73, 14, 29, 31, 62, 52] developed to solve the standard-form Tikhonov
problem, LQ = I, and the general problem [98, 72, 51, 63, 64], but they would involve
factoring Q. The genHyBR algorithm we use is also a hybrid method, which avoids this
factorization.

15



Preliminaries

Since we cannot compute Q−1, we first make a change of variables

x = Q−1(s− µ), b = d−Aµ,

so that (2.8) is equivalent to solving

arg min
x∈Rn

1

2
‖AQx− b‖2

Γ−1
noise

+
λ2

2
‖x‖2

Q (2.11)

or
(A>Γ−1

noiseAQ + λ2I)x = A>Γ−1
noiseb.

The genHyBR method we use to solve (2.11) is built upon the generalized Golub-Kahan
(genGK) bidiagonalization method. The basic idea behind the genHyBR method is first,
using the genGK method, generate a basis Vk for the Krylov subspace

Sk ≡ Span{Vk} = Kk(A>Γ−1
noiseAQ,A>Γ−1

noiseb) (2.12)

= Kk(A>Γ−1
noiseAQ + λ2I,A>Γ−1

noiseb) (2.13)

where Kk(M,g) = Span{g,Mg, . . . ,Mk−1g}, and second to solve (2.11) in this subspace.
Note that we have used the property that Krylov subspaces are shift invariant i.e.
Kk(M,g) = Kk(M + λ2I,g).

Generalized Golub-Kahan (genGK) bidiagonalization Method

A basis for Kk(A>Γ−1
noiseAQ + λ2I,A>Γ−1

noiseb) can be generated using the genGK bidiago-
nalization process1 summarized in Algorithm 2.2.1, where at the end of k steps, we have

1Generalized Golub-Kahan methods were first proposed by Benbow [15] for generalized least squares
problems, and used in several applications, see e.g. [7, 6, 86]. However, the specific form of the bidiago-
nalization was developed in [33].
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the matrices

Uk+1 ≡ [u1, . . . ,uk+1],Vk ≡ [v1, . . . ,vk], and Bk ≡


α1

β2
. . .
. . . αk

βk+1

 (2.14)

that, in exact arithmetic, satisfy

AQVk = Uk+1Bk (2.15)

A>Γ−1
noiseUk+1 = VkB

>
k + αk+1vk+1e

>
k+1 (2.16)

and
U>k+1Γ

−1
noiseUk+1 = Ik+1, V>k QVk = Ik. (2.17)

Vector ek+1 corresponds to the (k + 1)st standard unit vector or the last column of Ik+1.

Algorithm 2.2.1 gen-GK bidiagonalization
Output: [Uk, Vk, Bk] = gen-GK(A, Γnoise, Q, b, k)
β1 = ‖b‖Γ−1

noise
β1u1 = b
α1 = ‖A>Γ−1

noiseu1‖Q
α1v1 = A>Γ−1

noiseu1

for i = 1, . . . , k do
βi+1 = ‖AQvi − αiui‖Γ−1

noise
βi+1ui+1 = AQvi − αiui
αi+1 = ‖A>Γ−1

noiseui+1 − βi+1vi‖Q
αi+1vi+1 = A>Γ−1

noiseui+1 − βi+1vi
end for

Finding the MAP Estimate with genGK Method

After finding a basis for Kk, we seek an approximate solution to (2.11) of the form
xk = Vkzk, so that xk ∈ Kk. We can then determine zk by solving either the gen-LSQR
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sub-problem

min
xk∈Kk

1

2
‖AQxk − b‖2

Γ−1
noise

+
λ2

2
‖xk‖2

Q ⇔ min
zk∈Rk

1

2
‖Bkzk − β1e1‖2

2 +
λ2

2
‖zk‖2

2, (2.18)

or the gen-LSMR sub-problem

min
xk∈Kk

1

2
‖A>Γ−1

noise(AQxk − b)‖2
Q +

λ2

2
‖xk‖2

Q ⇔ min
zk∈Rk

1

2
‖B̄kzk − β̄1e1‖2

2 +
λ2

2
‖zk‖2

2,

(2.19)
where,

B̄k =

[
B>k Bk

β̄k+1e
>
1

]
and β̄k = βkαk. (2.20)

Here gen-LSQR and genLSMR generalize the standard LSQR and LSMR problems; [88,
45].

For a fixed precision parameter, λ, an approximate MAP estimate can be recovered
by undoing the change of variables,

sk = µ + Qxk = µ + QVkzk, (2.21)

where, now, sk ∈ µ+QKk. In the next section we will discuss how the precision parameter
is computed for each iteration.

2.2.2 The genHyBR Method [33]

As stated previously in hybrid methods the precision parameter λ is computed on-the-fly
during the iterative process. We will focus on three methods for finding λ: Generalized
Cross Validation (GCV), Discrepancy Principle (DP), and Unbiased Predictive Risk
Estimator (UPRE). For each method, we also provide expressions for the projected
problem (using the genGK estimates) and for comparison we show the how the methods
are used for the general-form Tikhonov problem (2.10). Note: For ease of notation, in this
section we assume that µ = 0.

First, we look at the Generalized Cross Validation (GCV) [55]. For (2.10) we can find
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the parameter λgcv that minimizes the GCV function

G(λ) =
n‖Asλ − d‖2

Γ−1
noise[

trace
(
Im − LΓAA†λ

)]2 (2.22)

where L>ΓLΓ = Γ−1
noise and

A†λ = (A>Γ−1
noiseA + λ2Q−1)−1A>L>Γ .

We can instead find use the GCV function that corresponds to the projected problem
(2.18), where λgcv at the kth iterate minimizes

Gproj(λ) =
k‖(I−BkB

†
k,λ)β1e1‖2

2[
trace

(
Ik+1 −BkB

†
k,λ

)]2 , (2.23)

where
B†k,λ = (B>k Bk + λ2I)−1B>k .

A similar GCV function can be found for the projected problem in (2.19) by replacing
Bk with B̄k and β1 with β̄k. We will also note that a weighted-GCV (WGCV) approach
[29, 99] has been suggested where a weighting parameter is included in the denominator
of (2.23). We will let λwgcv be the minimizer of the WGCV function. The GCV method
is robust, if the noise in the problem is white, but the GCV function can have a flat
minimum causing an underestimate of λgcv which can lead to “ridiculous under-smoothing”
of the solution [73, 59].

Another method is the Discrepancy Principle (DP), where λdp is found so that the
residual norm is on the order of the noise in the data, i.e.,

‖Asλ − d‖2
Γ−1
noise

= τδ, (2.24)

where δ is an estimate of the squared norm of the noise and τ ' 1. Again, we can find
λdp by solving at the projected problem, i.e.,

‖Bkzk,λ − β1e1‖2
2 = τδ. (2.25)
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A drawback of the DP method is that the norm of the noise may be unknown and must
be estimated. Furthermore, λdp is very sensitive to δ and even with a good estimate, the
solutions can be over-smoothed [73].

Lastly, we consider the Unbiased Predictive Risk Estimator (UPRE) method, where
λupre is taken to minimize

U(λ) =
1

n
‖Asλ − d‖2

Γ−1
noise

+
2η2

n
trace

(
LΓAA†λ

)
− η2, (2.26)

where η2 = δ/m, (recall m is the dimension of the data). For the projected problem we
compute λupre by minimizing

Uproj(λ) =
1

k
‖Bkzk,λ − β1e1‖2

2 +
2η2

k
trace

(
BkB

†
k,λ

)
− η2. (2.27)

In [99], it was shown that the λupre found for the projected problem is a good estimate for
the full problem. As noted previously, the norm of the noise may not be known exactly.

Now that we described all of the main components of the genHyBR method in
Algorithm 2.2.2 we give a sketch of the complete method. We remind the reader the
benefit of using this hybrid approach is that this algorithm automatically determines
the number of iterations k and the precision parameter λ. In particular, the stopping
iteration is determined using a combination of approaches, including a maximum number
of iterations, a GCV function defined in terms of the iteration, and tolerances on the
residual. We remark that early termination of the genHyBR iterations can negatively
affect the reconstruction and later approximations, but a later termination will not have
a significant impact due to the inclusion of proper regularization. Thus, for subsequent
UQ, a safer option is to perform a few extra iterations of the genHyBR method.

In the next section we will discuss how the genHyBR method can be used to find an
approximation of the posterior covariance (2.6).

2.3 Approximation and Accuracy of Posterior

Covariance Using the genHyBR Method

In this section, we will first briefly review existing methods to find the posterior covariance,
then describe how the genHyBR method can be used to approximate the posterior
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Algorithm 2.2.2 genHyBR
Output: [sk, Uk, Vk, Bk, QVk λ] = genHyBR(A, Γnoise, Q, b, kmax)
[U1, V1, B1] = gen-GK(A, Γnoise, Q, b, 1)
while not converged and k ≤ kmax do
[Uk, Vk, Bk] = gen-GK(A, Γnoise, Q, b, k)
[zk, λ] = projected(Bk, method)
check for convergence

end while
sk = QVkzk

covariance, and then show theoretical results that demonstrate the accuracy of our
approximated posterior covariance and the accuracy of the posterior distribution.

2.3.1 Review of Existing Methods

Others have worked on efficient approximations of Γpost based on a low-rank perturbation
to the prior covariance matrix [44, 23, 24, 110]. To explain this approach, first rewrite the
posterior covariance matrix (2.5) as

Γpost = λ−2Q1/2(I + λ−2Q1/2A>Γ−1
noiseAQ1/2)−1Q1/2.

One could then compute a low-rank approximation

Q1/2A>Γ−1
noiseAQ1/2 ≈ VkΛkV

>
k

using the singular value decomposition (SVD) and use this to develop an efficient repre-
sentation of Γpost as

Γpost ≈ λ−2(Q−Q1/2VkDkV
>
k Q1/2) where Dk = Λk(Λk + λ2I)−1.

The computation of the SVD is expensive, so the authors in [23, 104] use a randomized
approach to efficiently compute a low-rank approximation. We use the Krylov subspaces
generated by the genHyBR method.
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2.3.2 Approximating the Posterior

To begin, recall that

Γpost ≡ (λ2Q−1 + A>Γ−1
noiseA)−1 = (λ2Q−1 + H)−1,

where we define H ≡ A>Γ−1
noiseA. We will use the genHyBR method to compute a low

rank approximation of H. We define the Ritz pairs (ϑ,y), the approximate eigenvalues
and vectors, obtained as the solution of the following eigenvalue problem,

(HQVky − ϑVky) ⊥Q Span {Vk} .

Here the orthogonality condition ⊥Q is defined with respect to the weighted inner product
〈·, ·〉Q. The Ritz pairs can be obtained by the solution of the eigenvalue problem

B>k Bkyj = ϑjyj j = 1, . . . , k. (2.28)

The Ritz pairs can be combined to express the eigenvalue decomposition

B>k Bk = YkΘkY
>
k

and the accuracy of the Ritz pairs can be quantified as

‖HQVkyj − ϑjVkyj‖Q = αk+1βk+1|e>k yj| j = 1, . . . , k. (2.29)

The best k-rank approximation of H over the space Kk ≡ Kk(HQ,A>Γ−1
noiseb) with basis

Vk is given by H ≈ VkTkV
>
k . This comes from the fact that

Tk ≡ B>k Bk = min
∆∈Rk×k

‖HQVk −Vk∆‖Q, (2.30)

see Appendix A.1 for a derivation, [111] has a similar result. Here we define the matrix
‖ · ‖Q norm to be ‖M‖Q = max‖x‖2=1 ‖Mx‖Q.

An approximation of this kind has been previously explored in [104, 44, 23, 24];
however, the error estimates developed in the above references assume that the exact
eigenpairs are available. If the Ritz pairs converge to the exact eigenpairs of the matrix
Q1/2HQ1/2, then furthermore, the optimality result in [110, Theorem 2.3] applies here as
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well.
We use the following low-rank approximation of H which is constructed using the

either using the genHyBR iterates as

Ĥ ≡ VkTkV
>
k . (2.31)

Using this low-rank approximation, we can define the approximate posterior distribution
π̂post by the measure N (sk, Γ̂post), which is a Gaussian distribution with covariance matrix

Γ̂post ≡ (λ2Q−1 + Ĥ)−1 (2.32)

and mean sk defined in (2.21). Using (2.32), we note that

sk = µ + Γ̂postA
>Γ−1

noiseb. (2.33)

See Appendix A.2 for a derivation.

2.3.3 Accuracy of Posterior Covariance

In order to discuss the theoretical accuracy of the posterior covariance approximation
we first derive a way to monitor the accuracy of the low-rank approximation using the
information available from the gen-GK method. This result is similar to [108, Proposition
3.3].

Proposition 2.3.1. Let HQ = Q1/2HQ1/2 and ĤQ = Q1/2ĤQ1/2. After running k
steps of Algorithm 2.2.2, the error in the low-rank approximation Ĥ, measured as

ωk = ‖HQ − ĤQ‖F , (2.34)

satisfies the recurrence

ω2
k = ω2

k+1 + 2|αk+1βk+1|2 + |α2
k+1 + β2

k+2|2, for k = 1, . . . , n− 2.

Proof. First, we recognize that Ĥ = VkTkV
>
k , where Tk = V>k QHQVk is a tridiagonal
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matrix of the form

Tk =



α2
1 + β2

2 α2β2

α2β2 α2
2 + β2

3 α3β3

. . . . . . . . .

αk−1βk−1 α2
k−1 + β2

k αkβk

αkβk α2
k + β2

k+1


.

For simplicity denote V̂k = Q1/2Vk and note that the columns of V̂k are orthonormal
with respect to the standard inner product. We write

ĤQ = Q1/2VkTkV
>
k Q1/2 = Q1/2VkV

>
k QHQVkV

>
k Q1/2 = V̂kV̂

>
k HQV̂kV̂

>
k .

Then we write

HQ − ĤQ =(I− V̂kV̂
>
k )HQ + V̂kV̂

>
k HQ(I− V̂kV̂

>
k ).

The observation that (I− V̂kV̂
>
k )HQ ⊥ V̂kV̂

>
k HQ(I− V̂kV̂

>
k ) with respect to the trace

inner product means we can apply Pythagoras’ theorem to obtain

ω2
k = ‖(I− V̂kV̂

>
k )HQ‖2

F + ‖V̂kV̂
>
k HQ(I− V̂kV̂

>
k )‖2

F .

The second term is easy since using the gen-GK relationships, we have

V̂kV̂
>
k HQ(I− V̂kV̂

>
k ) = αk+1βk+1v̂kv̂

>
k+1,

and thus ‖αk+1βk+1v̂kv̂
>
k+1‖2

F = |αk+1βk+1|2.
For the first term, denote ηk = ‖(I− V̂kV̂

>
k )HQ‖F , so that

ω2
k = η2

k + |αk+1βk+1|2. (2.35)

Then write I− V̂kV̂
>
k = I− V̂k+1V̂

>
k+1 + v̂k+1v̂

>
k+1 and again apply Pythagoras’ theorem

to get
η2
k = η2

k+1 + ‖v̂k+1v̂
>
k+1HQ‖2

F .
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From the gen-GK relations, it can be verified that

HQv̂k+1v̂
>
k+1 = αk+1βk+1v̂kv̂

>
k+1 + (α2

k+1 + β2
k+2)v̂k+1v̂

>
k+1

+ αk+2βk+2v̂k+2v̂
>
k+1.

(2.36)

Since each term is mutually orthogonal, this implies

η2
k = η2

k+1 + |αk+1βk+1|2 + |α2
k+1 + β2

k+2|2 + |αk+2βk+2|2.

Together with (2.35), we get the desired recurrence.

This proposition shows that, in exact arithmetic, the error in the low-rank approxi-
mation Ĥ to H decreases monotonically as the iterations progress. In [108], the authors
provide analysis for the case when the noise and prior covariance are the identity, that
for finite precision if the orthogonality is maintained during the Lanczos process then a
accurate low-rank approximation can be produced. Estimates for ωk can be obtained in
terms of the singular values of Γ

−1/2
noiseAQ1/2 following the approach in [108, Theorem 3.2]

and [66, Theorem 2.7]. However, we do not pursue them here.
The recurrence relation in Proposition 2.3.1 can be used to derive the following error

estimates for Γpost.

Theorem 2.3.1. The approximate posterior covariance matrix Γ̂post satisfies

‖Γpost − Γ̂post‖F ≤ λ−2 min

{
ωkλ

−2‖Q‖2,
ωk‖Q‖F
λ2 + ωk

}
.

Proof. We now consider the error in the posterior covariance matrix. For the first bound,
using

Γpost = Q1/2(λ2I + HQ)−1Q1/2 ,

we have

‖Γpost − Γ̂post‖F ≤ ‖Q‖2‖(λ2I + HQ)−1 − (λ2I + ĤQ)−1‖F (2.37)

= λ−2‖Q‖2‖(I + λ−2HQ)−1 − (I + λ−2ĤQ)−1‖F . (2.38)
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With f(x) = x/(1 + x), it is verifiable that

(I + λ−2HQ)−1 − (I + λ−2ĤQ)−1 = f(λ−2ĤQ)− f(λ−2HQ).

The function f is operator monotone [18, Proposition V.1.6] and satisfies f(0) = 0. Since
both λ−2HQ and λ−2ĤQ are positive semi-definite, using [18, Theorem X.1.3], we obtain

‖(I + λ−2HQ)−1 − (I + λ−2ĤQ)−1‖F ≤ ‖|E|(I + |E|)−1‖F ,

where we let E = λ−2(HQ− ĤQ), and |E| = (E∗E)1/2. Note that both |E| and E have the
same singular values, so ‖|E|‖F = ‖E‖F . Since |E| is positive semi-definite, the singular
values of (I + |E|)−1 are at most 1. By submultiplicativity inequality and ‖|E|‖F = ‖E‖F ,
we have

‖(λ2I + HQ)−1 − (λ2I + ĤQ)−1‖F ≤ ‖λ−2(HQ − ĤQ)‖F = λ−2ωk (2.39)

and hence the desired result:

‖Γpost − Γ̂post‖F ≤ λ−2‖Q‖2‖λ−2(HQ − ĤQ)‖F = λ−4ωk‖Q‖2. (2.40)

For the second bound, we reserve the use of spectral and Frobenius norms

‖Γpost − Γ̂post‖F ≤ λ−2‖Q‖F‖(I + λ−2HQ)−1 − (I + λ−2ĤQ)−1‖2.

Again, let E = λ−2(HQ − ĤQ), and use [18, Theorem X.1.1] with f(x) = x/(1 + x), to
obtain

‖(I + λ−2HQ)−1 − (I + λ−2ĤQ)−1‖2 ≤
‖E‖2

1 + ‖E‖2

.

It is readily verified that if 0 ≤ a ≤ b, then a(1 + a)−1 ≤ b(1 + b)−1, and so

‖(I + λ−2HQ)−1 − (I + λ−2ĤQ)−1‖2 ≤
‖E‖2

1 + ‖E‖2

≤ ‖E‖F
1 + ‖E‖F

=
ωk

λ2 + ωk
. (2.41)

The recognition that ‖E‖F = λ−2ωk completes the proof.

Theorem 2.3.1 quantifies the error in the posterior covariance matrix in the Frobenius
norm. However, the authors in [110] argue that the Frobenius norm is not the appropriate
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metric to measure the distance between covariance matrices. Instead, they advocate the
Förstner distance since it respects the geometry of the cone of positive definite covariance
metrics. We take a different approach and consider metrics between the approximate and
the true posterior distributions.

2.3.4 Accuracy of Posterior Distribution

The Kullback-Leibler (KL) divergence is a measure of “distance” between two different
probability distributions. The KL divergence is not a true metric on the set of probability
measures, since it is not symmetric and does not satisfy the triangle inequality [112];
despite this the the KL divergence is widely used. Despite these shortcomings, the KL
divergence is widely used since it has many favorable properties. Both the true and the
approximate posterior distributions are Gaussian, so the KL divergence takes the form
(using [112, Exercise 5.2]):

DKL(π̂post‖πpost) =
1

2

[
trace(Γ−1

postΓ̂post) + ‖spost − sk‖2
Γ−1
post
− n+ log

det Γpost

det Γ̂post

]
. (2.42)

Note that this definition is for a fixed n, but is not valid as n→∞. We first present a
result that can be used to monitor the accuracy of the trace of HQ.

Proposition 2.3.2. Let θk = trace(HQ − ĤQ). Then θk, satisfies the recurrence relation

θk = θk+1 + (α2
k+1 + β2

k+1)2 for k = 1, . . . , n− 1.

Proof. The linearity and cyclic property of trace estimator implies

θk = trace
(
HQ − V̂kV̂

>
k HQV̂kV̂

>
k

)
= trace

(
(I− V̂kV̂

>
k )HQ

)
.

As in the proof of Proposition 2.3.1, write I− V̂kV̂
>
k = I− V̂k+1V̂

>
k+1 + v̂k+1v̂

>
k+1, so that

θk = θk+1 + trace(v̂k+1v̂
>
k+1HQ).

The proof is finished if we apply the trace to the right hand side of (2.36).
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Note that the Cauchy interlacing theorem [65, Theorem 4.3.17] implies that θk is non-
negative; therefore, as with Proposition 2.3.1, this result implies that θk is monotonically
decreasing.

Theorem 2.3.2. At the end of k < n iterations, the KL divergence from the approximate
posterior to the true posterior distribution satisfies

0 ≤ DKL(π̂post‖πpost) ≤
λ−2

2

[
θk +

ω2
k

λ2 + ωk
α2

1β
2
1

]
.

Proof. The lower bound follows from the property of the KL divergence and the fact that
the distributions are not degenerate. The proof for the upper bound begins by providing
an alternate expression for the error in the KL divergence.

DKL(π̂post‖πpost) =
1

2
[E1 + E2 + E3] ,

where

E1 = trace(Γ̂postΓ
−1
post)− n,

E2 = log det(Γpost)− log det(Γ̂post),

E3 = ‖spost − sk‖2
Γ−1
post
.

We will tackle each term individually. For the first term E1, apply the second part of
Appendix A.3 to obtain

trace(Γ̂postΓpost
−1) = trace

[
(I + λ−2ĤQ)−1(I + λ−2HQ)

]
≤ n+ λ−2trace(HQ − ĤQ).

Therefore, E1 ≤ λ−2θk.
The second term E2 simplifies since

log det(Γpost)− log det(Γ̂post) = log det(I + λ−2ĤQ)− log det(I + λ−2HQ).

Let M = λ−2(HQ), then with P = V̂kV̂
>
k we have λ−2ĤQ = PMP. When we apply the

third inequality in Appendix A.3 we have that E2 ≤ 0.
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For the third term, notice that

Γpost − Γ̂post = λ−2Q1/2

((
I + λ−2HQ

)−1 −
(
I + λ−2ĤQ

)−1
)

Q1/2

and let D = (I + λ−2HQ)−1 − (I + λ−2ĤQ)−1. Then

‖spost − sk‖2
Γpost

−1 = b̂>D(I + λ−2HQ)Db̂ ≤ ‖Db̂‖2‖(I + λ−2HQ)Db̂‖2,

where b̂ = Q1/2A>Γ−1
noiseb. The inequality is due to Cauchy-Schwartz. Using (2.41), we

can bound

‖Db̂‖2 ≤
ωk‖b̂‖2

λ2 + ωk
.

Next, with E = λ−2(HQ − ĤQ), consider the simplification

(I + λ−2HQ)D = I− (I + λ−2HQ)(I + λ−2ĤQ)−1

= (I + λ−2ĤQ)(I + λ−2ĤQ)−1 + (I + λ−2HQ)(I + λ−2ĤQ)−1

= −E(I + λ−2ĤQ)−1,

so that ‖(I + λ−2HQ)Db̂‖2 ≤ λ−2ωk‖b̂‖2. Here, we have used submultiplicativity and the
fact that singular values of (I + λ−2ĤQ)−1 are at most 1. We also have that ‖b̂‖2 = α1β1

(this comes from the fact b̂ = Q1/2A>Γ−1
noiseb and relations shown in Algorithm 2.2.1).

Putting everything together, we see

E3 ≤
λ−2ω2

kα
2
1β

2
1

λ2 + ωk
.

Gathering the bounds for E1, E2 and E3 we have the desired result.

Both θk and ωk are monotonically decreasing, implying that the KL divergence between
the true and the approximate posterior is likely getting smaller as the iterations progress.
This theorem can be useful in providing bounds for the error using other metrics.

For example, consider the Hellinger metric and Total Variation (TV) distance denoted
by dH(πpost, π̂post) and dTV(πpost, π̂post) respectively. Combining Pinsker’s inequality [112,
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Theorem 5.4] and Kraft’s inequality [112, Theorem 5.10], we have the following relationship

d2
H(πpost, π̂post) ≤ dTV(πpost, π̂post) ≤

√
2DKL(π̂post‖πpost). (2.43)

Thus, Theorem 2.3.2 can be used to find upper bounds for the Hellinger metric and
the TV distance between the true and approximate posterior distributions. Furthermore,
suppose f : (Rn, ‖ · ‖Rn) → (Rd, ‖ · ‖Rd) is a function with finite second moments with
respect to both distributions, then by [112, Proposition 5.12]

‖Eπpost [f ]− Eπ̂post [f ]‖Rn ≤ 2
√
Eπpost [‖f‖2

Rd ] + Eπ̂post [‖f‖2
Rd ]dH(πpost, π̂post).

This implies that the error in the expectation of a function computed using the approximate
posterior instead of the true posterior can be bounded by combining (2.43) and Theorem
2.3.2.

2.3.5 Computation of Information-Theoretic Metrics

In addition to providing a measure of distance between the true and approximate posterior
distributions, the KL divergence can also be used to measure the information gain between
the prior and the posterior distributions. Similar to the derivation in (2.42), since both
πprior and πpost are Gaussian, the KL divergence takes the form

DKL(πpost‖πprior) =
1

2

[
trace(λ2Q−1Γpost) + λ2‖spost − µ‖2

Q−1 − n− log det(λ2Q−1Γpost)
]

=
1

2

[
trace

(
(I + λ−2HQ)−1

)
+ λ2‖spost − µ‖2

Q−1 − n

+ log det(I + λ−2HQ)
]
.

See Appendix A.4 for details. Then, using the approximations generated by the
genHyBR method, we consider the approximation

DKL ≡ DKL(πpost‖πprior) ≈ DKL(π̂post‖πprior) ≡ D̂KL.
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Using the facts (see Appendix A.4) that

log det(I + λ−2ĤQ) = log det(I + λ−2Tk),

trace(I + λ−2ĤQ)−1 = n− trace(Tk(Tk + λ2I)−1),

‖sk − µ‖2
Q−1 = ‖µ + QVkzk − µ‖2

Q−1

= ‖QVkzk‖2
Q−1 = ‖zk‖2

2

we get

D̂KL =
1

2

[
−trace(Tk(Tk + λ2I)−1) + λ2‖zk‖2

2 + log det(I + λ−2Tk)
]
.

Note that all of the terms only involve k× k tridiagonal matrices and, therefore, D̂KL can
be computed in O(k3) operations once the gen-GK bidiagonalization has been computed.

The following result quantifies the accuracy of the estimator for the KL divergence
between the posterior and the prior. Notice that the bound is similar to Theorem 2.3.2.

Theorem 2.3.3. The error in the KL divergence, in exact arithmetic, is given by

|DKL − D̂KL| ≤ λ−2

[
θk +

λ2ωk
λ2 + ωk

α2
1β

2
1

]
,

where ωk and θk were defined in Proposition 2.3.1 and 2.3.2 respectively.

Proof. The error in the KL-divergence satisfies

|DKL − D̂KL| ≤ E1 + E2 + E3,

where

E1 =
1

2

∣∣∣trace(I + λ−2HQ)−1 − trace(I + λ−2ĤQ)−1
∣∣∣ ,

E2 =
1

2

∣∣∣log det(I + λ−2HQ)− log det(I + λ−2ĤQ)
∣∣∣ ,

E3 =
λ2

2

∣∣‖spost − µ‖2
Q−1 − ‖sk − µ‖2

Q−1

∣∣
=
λ2

2

∣∣(spost − µ)>Q−1(spost − µ)− (sk − µ)>Q−1(sk − µ)
∣∣ .

We tackle the first two terms together. As in the proof of Theorem 2.3.2, let M = λ−2(HQ),
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then with P = V̂kV̂
>
k we have λ−2ĤQ = PMP. We apply the first and the third parts of

Lemma A.3.1 to obtain

E1 ≤
λ−2

2
trace(HQ − ĤQ) E2 ≤

λ−2

2
trace(HQ − ĤQ).

For the third term, let spost = sk + e, then

E3 =
1

2
λ2|(spost − sk)

>Q−1(spost − µ) + (sk − µ)>Q−1e|.

Notice that e = spost − sk = (Γpost − Γ̂post)A
>Γ−1

noiseb. Using Algorithm 2.2.1 we let

b̂ ≡ Q1/2A>Γ−1
noiseb = α1β1Q

1/2v1,

and write
Q−1/2e =

(
(λ2I + HQ)−1 − (λ2I + ĤQ)−1

)
b̂.

So, the submultiplicative inequality and (2.41) implies

‖Q−1/2e‖2 ≤ λ−2‖(I + λ−2ĤQ)−1 − (I + λ−2HQ)−1‖2‖b̂‖2

≤ λ−2 ωk
λ2 + ωk

α1β1 ,

where we have used (2.39). Next, applying the Cauchy-Schwartz inequality

|e>Q−1(spost − µ)| ≤ ‖Q−1/2e‖2‖Q−1/2(spost − µ)‖2.

Then, rewriting spost = µ + ΓpostA
>Γ−1

noiseb, we have

‖Q−1/2(spost − µ)‖2 = ‖(I + λ−2HQ)−1b̂‖2 ≤ ‖b̂‖2 = α1β1,

since the singular values of (I + λ−2ĤQ)−1 are less than 1. The other term is bounded in
the same way. So, we have

E3 ≤
ωk

λ2 + ωk
α2

1β
2
1 .

Putting everything together along with E1 + E2 ≤ λ−2θk gives the desired result.
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2.4 Optimality Criteria

Optimal Experimental Design (OED) [26, 8] is an area of inverse problems which seeks
to find the best experimental conditions (which we call design) to collect the measures
necessary for accurately and efficiently reconstruct the parameters of interest. OED
involves finding a design that optimizes certain design criteria, known as OED criteria.
The criteria that we consider in this chapter quantify the uncertainty associated with the
parameter reconstructions. However, computing these design criteria involve the posterior
covariance matrix and therefore their computation can be prohibitively expensive for many
applications of interest, such as PAT. Previous work has used randomized algorithms,
[61, 1], to efficiently and accurately compute the design criteria. In this section, after
reviewing the various design criteria, we show how to efficiently approximate the design
criteria using the genHyBR method and discuss the error in the approximation.

2.4.1 Weighted A-Optimality

The weighted A-optimal criterion is defined as

φA ≡ trace(WAΓpost),

where WA is a positive semi-definite matrix. The weighted A-optimal criterion minimizes
the average variance of the parameter estimates [27]. We can estimate the A-optimal
criterion by

φ̂A = trace(WAΓ̂post).

Computing the criterion itself involves further work, due to the large size of the
problems of interest we cannot explicitly construct Γ̂post, much less Γpost. In order to
compute the optimality criterion we use the Sherman-Morrison-Woodbury formula [65,
Eqn. (0.7.4.1)] and write

Γ̂post = (λ−2Q−1+Ĥ)−1 = (λ−2Q−1+V>k TkVk)
−1 = λ−2

(
Q−QVk

(
λ2T−1

k + I
)−1

V>k Q
)
.

By doing so we are now able to exploit are ability to do mat-vecs with Q. We then do a
Cholesky factorization, which has a cost of O (k3) [95], to get L>L =

(
λ2T−1

k + I
)−1. We
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then have
Γ̂post = λ−2

(
Q−QVkL

>LV>k Q
)
.

Doing this we can compute QVkL
> at a cost of O (nk2), since our Algorithm 2.2.2 has

already computed QVk. Now to find the weighted A-optimality criteria, using properties
of the trace we have

φ̂A = trace
(
QWA −QVkL

>LV>k QWA

)
= trace (QWA)− trace

(
LV>k QWAQVkL

>) .
For the case of WA = I the computation is much simpler since

φ̂A =
n∑
j=1

e>j Qej −
k∑
j=1

LV>k Q(j, :)QVkL
>(:, j),

where LV>k Q(:, j) is the j-th column and QVkL
>(j, :) is the j-th row of LV>k Q. The

computation of the second term can be done with a cost of O (k2n). Depending on the
size of the problem directly computing the trace of the first term may be too expensive
and randomized trace estimators [118, 102] would be a better computational method.

The general case, WA 6= I can be handled in a similar manner, but the computation
cost can be more substantial depending on the size and structure of WA.

Now that we can compute φ̂A, we can find a bound on the error of the true and
approximated criterion. We have

|φA − φ̂A| = |trace
(
WA(Γpost − Γ̂post)

)
|

=
∣∣∣trace(λ−2W

1/2
A Q1/2

(
(I + λ−2HQ)−1 − (λ2I + ĤQ)−1

)
Q1/2W

1/2
A

)∣∣∣
=
∣∣∣trace(λ−2Q1/2W

1/2
A W

1/2
A Q1/2

(
(I + λ−2HQ)−1 − (λ2I + ĤQ)−1

))∣∣∣ .
Clearly Q1/2W

1/2
A W

1/2
A Q1/2 is a symmetric matrix and (I + λ−2HQ)−1 − (λ2I + ĤQ)−1

is a symmetric positive semi-definite matrix. We are able to use the fact proved in [1,
Lemma 8], that for a square matrix X and symmetric positive semi-definite matrix Y

|trace(XY)| ≤ ‖X‖2trace(Y)
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to write

|φA − φ̂A| ≤ λ−2‖Q1/2W
1/2
A W

1/2
A Q1/2‖2

∣∣∣trace((I + λ−2HQ)−1 − (I + λ−2ĤQ)−1
)∣∣∣ .

Using sub-multiplicativity, the fact that ‖XsYs‖ ≤ ‖XY‖s for 0 ≤ s ≤ 1 for positive
matrices X,Y [18, Theorem IX.2.1], and symmetry we have

|φA − φ̂A| ≤ λ−2‖QWA‖2

∣∣∣trace((I + λ−2HQ)−1 − (I + λ−2ĤQ)−1
)∣∣∣ .

We note that ĤQ = V̂kV̂
>
k HQV̂kV̂

>
k and we can use Lemma A.3.1 with P = V̂kV̂

>
k to

get

|φA − φ̂A| ≤ λ−4‖QWA‖2

∣∣∣trace(HQ − ĤQ

)∣∣∣ = λ−4‖QWA‖2θk. (2.44)

We expect the bound to decrease as we take more iterations since θk is monotonically
decreasing. We will note that in practice, an upper bound for ‖QWA‖2 can be computed
using matrix-free techniques.

2.4.2 C-Optimality

The C-optimal criterion is defined as

φC ≡ c>Γpostc,

where c ∈ Rn is a user defined vector. We will note that the C-optimal criterion is just a
case of the A-optimal criterion with WA = cc> since

φC = trace(φC) = trace
(
c>Γpostc

)
= trace

(
cc>Γpost

)
,

and WA = cc> is a positive semi-definite matrix. The C-optimal criterion minimizes the
variance of the best linear unbiased estimate for a given linear combination of the model
parameters (determined by c) [39]. We can approximate the C-optimal criterion by

φ̂C = c>Γ̂postc

In order to compute the approximate C-optimality criterion, we follow the same
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approach in Section 2.4.1 and obtain

φ̂C = λ−2
(
c>Qc− c>QVkL

>LV>k Qc
)
.

As before, with QVk pre-computed by Algorithm 2.2.2, we can compute QVkL
> at a cost

of O (nk2) and c>QVkL
> at a cost of O (nk) and the total computational cost would be

O (nk2 + n log n).
Similar to the bound for the weighted A-optimal criterion, we have

|φC − φ̂C | ≤ λ−4‖Q1/2cc>Q1/2‖2θk.

Clearly Q1/2cc>Q1/2 is a rank one matrix so the bound simplifies to

|φC − φ̂C | ≤ λ−4‖Q1/2c‖2
2θk = λ−4|c>Qc|θk. (2.45)

We expect the bound to decrease as we take more iterations since θk is monotonically
decreasing.

2.4.3 D-Optimality

Related to the KL divergence is the D-optimal criterion for optimal experimental design,
which is defined as

φD ≡ log det(Γpost)− log det(λ−2Q) = log det(I + λ−2HQ).

The D-optimal criterion can be seen as the expected KL divergence, with the expectation
taken over the posterior distribution. A precise statement of this result was stated and
derived in [1, Theorem 1]. Similar to the KL divergence, we can estimate the D-optimal
criterion as

φ̂D = log det(I + λ−2Tk).

Computing the approximate D-optimal criterion is straight forward and relatively
inexpensive since we only need to compute the determinant of a k × k matrix which has
a cost of O (k3) [95].

A bound for the error in the D-optimal criterion is readily seen from the proof of
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Theorem 2.3.3, and is given by

|φD − φ̂D| ≤ λ−2θk. (2.46)

The computation of the error bound is trivial, since all the necessary quantities have
been computed using the genHyBR algorithm.

2.5 Numerical Results

In this section, we use two numerical example setups to illustrate the theoretical error
estimates and the performance of the algorithms presented in this chapter. The smaller
“Heat” example is used to show the performance of the theoretical bounds. The larger
“PAT” example is used to show the performance of the genHyBR algorithm and the
associated uncertainty estimates.

2.5.1 Heat Example

First, we investigate the accuracy of the bounds derived in Sections 2.3 and 2.4 using
the heat example from the Regularization Toolbox [58]. Matrix A is 256× 256, and the
observations were generated as in (2.1). In the experiments, we take δ to be 1% additive
Gaussian white noise. We let Q be a 256 × 256 covariance matrix that was generated
using an exponential kernel Cν(x, y) = exp(−r/`), where ` = 0.1 is the correlation
length. We use the genHyBR method to compute an approximate MAP estimate and
simultaneously estimate a good precision parameter. Using a weighted generalized cross
validation (WGCV) method, the computed precision parameter was λ2 ≈ 5× 103. The
precision parameter was then fixed for the remainder of this section.

Numerical Accuracy of the Posterior Covariance

In Figure 2.2a, we track the accuracy of ωk = ‖HQ− ĤQ‖F as a function of the number of
iterations. It is readily seen that the error decreases considerably and monotonically with
increasing k and that ωk obtained by recursion is in close agreement with the actual error
for the first 30 or so iterations. After that point, the effects of floating point errors appear
to affect the accuracy of the recurrence. This is likely due to the loss of orthogonality in
the Krylov basis vectors, despite using the full reorthogonalization. This is a well-known
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issue in Krylov methods. However, typically the genHyBR algorithm stops much earlier
(we monitor the residual to determine when to end the iterations). In this particular
example, 12 iterations were sufficient.
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Figure 2.2 (a) In this plot, we provide the computed values of ωk as a function of the it-
eration k. In the dotted line, we provide the values for ωk, as computed by the recurrence
relationship presented in Proposition 2.3.1. (b) Here, we show the computed values of θk as
a function of the iteration k. The dotted line is θk computed by the recurrence relationship
presented in Proposition 2.3.1.

In Figure 2.3, we provide, in the solid line, the computed errors for the posterior
covariance matrix ‖Γpost − Γ̂post‖F , which decrease considerably with more iterations. To
better illustrate the bounds in Theorem 2.3.1, we provide predicted bounds ωkλ−4‖Q‖2

(denoted “Predicted 1") and ωkλ
−2‖Q‖2
λ2+ωk

(denoted “Predicted 2"). Though both bounds
are qualitatively good, the first bound is slightly better at later iterations, the second
bound is more informative at earlier iterations. This can be attributed to the difference
in the behavior of ωk in the first bound versus ωk/(λ2 + ωk) in the second bound. The
overall bound in Theorem 2.3.1 is obtained by taking the minimum value per iteration.
Since these bounds involve ωk floating point errors effect the quality of the bound at later
iterations, but we can also see that the computed error behaves well. These plots provide
evidence that the low-rank approximation ĤQ constructed using available components
from the gen-GK bidiagonalization are quite accurate for the practical number of iterations
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Figure 2.3 Here, we provide the errors for the posterior covariance matrix ‖Γpost − Γ̂post‖F as
a function of the iteration, along with the two predicted bounds proposed in Theorem 2.3.1.

required and also that the bounds describing their behavior are informative.

Numerical Accuracy of the Posterior Distribution

For the next illustration, we use the same problem setup, but we investigate a bound for
the KL divergence from the posterior to the prior distribution and the bound for the KL
divergence from the approximate posterior to true posterior distribution. We first look
at the recurrence relationship in Proposition 2.3.2 for θk = trace(HQ − ĤQ). In Figure
2.2b, we plot the error as a function of the number of iterations. As with ωk, the error
decreases significantly and monotonically as the number of iterations increases. The effects
of floating point error are seen at much later iterations.

When we initially ran numerical experiments for the KL divergence in Theorem 2.3.3
we found that the bound for the quadratic term λ2‖spost − µ‖2

Q−1 was too pessimistic,
which in turn made the bound too pessimistic. For this reason, we simplified the expression
for the KL divergence to

DKL =
1

2

[
trace(Q−1Γpost)− n− log det(Q−1Γpost)

]
,

and the corresponding approximation is

D̂KL =
1

2

[
−trace(Tk(Tk + λ2I)−1) + log det(I + λ−2Tk)

]
.
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Theorem 2.3.3 then simplifies to |DKL − D̂KL| ≤ λ−2θk. The error in the KL divergence
is plotted in Figure 2.4a, along with the corresponding bound. We see that that the
bound captures the behavior of the KL divergence quite well. As for the quadratic term,
we found empirically that the error decreases monotonically and is comparable to the
simplified expression for the KL divergence. Even the pessimistic bound of Theorem 2.3.3
suggests that the error eventually decreases to zero with enough iterations. However, a
more refined analysis is needed to develop informative bounds for the quadratic term and
will be considered in future work.
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Figure 2.4 (a) This figure provides the computed error in the simplified KL divergence be-
tween the approximated posterior and prior, along with the predicted bound, as a function of
the iteration k. (b) This figure provides the computed error in the simplified KL divergence
between the approximate and true posterior distribution, along with the predicted bound, as
a function of the iteration k.

Similarly, for the KL divergence from the approximate to the true posterior distribution,
we found the bound on the quadratic term was too pessimistic. We simplified the bound
in Theorem 2.3.2 by removing the quadratic term for the same reasons as mentioned
previously. In Figure 2.4b, we plotted the simplified KL divergence from the approximate
to the true posterior distribution along with the bound.

40



Numerical Accuracy of the Optimality Criteria

Retaining the same setup as the previous experiment, we look at the accuracy of the
bounds on the optimality criteria derived in Section 2.4. We start with the weighted
A-optimality criteria. In Figure 2.5a, we display the bounds for the weighted A-optimality
(2.44) along with the computed error. Here WA was taken to be the identity matrix. In
Figure 2.5b, we plot the computed and predicted difference for the C-optimality criteria
(2.45, and we take c to be a normal random vector vector. Finally, we look at the bounds
for the D-optimality criteria. In Figure 2.5c, we plot the computed and predicted difference
for the D-optimality criteria (2.46). In all three cases we see that our predicted bound
captures the behavior of the error.

2.5.2 PAT

In this experiment, we use the PRspherical test problem from the IRTools toolbox [50,
60], which models spherical means tomography such as in photo-acoustic tomography.
The true image s and forward model matrix A that models spherical means tomography
are provided by the toolbox. We use the default settings provided by the toolbox; see [50]
for details. To simulate measurement error, we add 2% additive Gaussian noise. Our grid
size is 128 × 128 and we define Q with a Matérn kernel, ν = 1/2 and ` = 0.006 (see
Section 2.1.1 for definition). For the chosen setup, the size A is a sparse matrix of size
23168× 16384, b is size 23168× 1, and Q is a matrix, that is block-Toeplitz with Toeplitz
blocks, of size 16384× 16384 or ≈ 2.68× 108 entries. For this problem it is clear that Q

should not be stored explicitly. Instead, circulant embedding and FFT-based techniques
[84] are used to efficiently perform mat-vecs.

MAP Estimate

We look at two different true images, an image we call ‘smooth’ provided by the IRTools
toolbox and an image we will refer to as the ‘blood vessel’ image from the k-wave
toolbox [120]. For both images we compute the MAP estimate using the genHyBR
method. Since we have the true images and the realizations of the noise, we are able to
calculate the optimal precision parameter λ and use it to find the solution. In Figure 2.6,
we compare the true ‘smooth’ image with the reconstructed image found by using the
optimal precision parameter and visually they appear nearly identical. We found that the
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Figure 2.5 (a) The figure shows the computed and predicted difference of the true and ap-
proximated weighted A-optimality criterion, Section 2.4.1, with WA = I as a function of the
iteration k. (b) Here, we show the computed and predicted difference of the true and approx-
imated C-optimality criterion, Section 2.4.2, as a function of the iteration k. (c) The figure
shows the computed and predicted difference of the true and approximated D-optimality
criterion, Section 2.4.3, as a function of the iteration k.

optimal squared precision parameter λ2 ≈ 8.31 and that the relative error in the 2-norm
is 0.62%.

For the ‘blood vessel’ image in Figure 2.7 we compare the true image with the image
reconstructed with the genHyBR method and the optimal precision parameter. The
reconstruction appears to capture the shape of the blood vessel. For this image the we
found the value of the optimal squared precision parameter λ2 ≈ 0.4216 and the relative
error in the 2-norm is 7.7%. The large relative error is likely because the Gaussian prior
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Figure 2.6 True ‘smooth’ image (left) and MAP estimate found with the optimal λ2 (right).

is not able to capture edge information effectively.
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Figure 2.7 True ‘blood vessel’ image (left) and MAP estimate found with the optimal preci-
sion parameter (right).

Precision Parameter Selection

In the last section we used the optimal precision parameter, λ, which is not available in
most real-world problems since it requires exact knowledge of the noise. In this section
we look at the four different methods, described in Section 2.2.2, used to compute the
precision parameter for each of our true images. In Table 2.1, we show the squared
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precision parameter, λ2, computed by each of the different methods, and in Figure 2.8 we
show the reconstructions of the ‘smooth’ image found with those values. From the table
we can see that the GCV and WGCV methods found λ2 values closest to the optimal
value and that corresponds to what is seen visually in the figure.

Table 2.1 We show the squared precision parameter value, λ2, obtained using each of the
methods and the relative error between the true and computed solutions for the ‘smooth’
image.

Method λ2 Rel. Err. (%)
Optimal 8.31 0.62

DP 2.1652e-04 4.84
GCV 24.9061 2.24
WGCV 16.9394 1.14
UPRE 0.0040 4.84

Table 2.2 has the squared precision parameter, λ2, values computed by the different
methods for the true ‘blood vessel’ image along with the relative error in the 2-norm for
each method. Figure 2.9 shows the reconstructed images for each method. From the table
we can see that the WGCV method’s precision parameter was closest to the optimal.
The figure shows that the λ2 computed by the DP and UPRE methods lead to drastic
under-smoothing of the reconstructed solutions, which corresponds to the larger relative
error seen in the table. While the DP and UPRE methods preform badly for this choice
of Matérn kernel for other choices, they achieve much better reconstructions.

Variance of Reconstructed Solution

Along with the MAP estimate, we would like to know the variance of the reconstructed
parameters and give an estimate of the uncertainty. Recall that the variance is the diagonal
of the covariance matrix. Due to the size of the problem we cannot form Γ̂post explicitly,
but we can estimate the variance using the approximations from the genHyBR method.
We can compute the variance in a manner similar to the computation of the approximate
C-optimality criteria discussed in Section 2.4.2. In Figure 2.10, we plot the variance for
the ‘smooth’ and ‘blood vessel’ images.
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Table 2.2 We show the squared precision parameter value, λ2, obtained using each of the
methods and the relative error between the true and computed solutions for the ’blood vessel’
image.

Method λ2 Rel. Err. (%)
Optimal 0.8556 7.7

DP 3.7109e-05 59.6
GCV 1.5511 8.7
WGCV 1.0381 7.9
UPRE 4.5489e-04 59.6

Optimality Criteria

Lastly, we look at the computation of the optimality criteria for the PAT problem. In
Section 2.4 we discussed three different optimality criteria and showed how they can be
computed. Unlike the “Heat” example, we cannot compute the true optimality criteria due
to the large size of the problem, and here we only compute the approximations. In Figure
2.11, we plot the approximations to the A-optimal, C-optimal, and D-optimal criteria as
a function of the number of iterations for the ‘smooth’ image. For A-optimal criterion we
chose WA = I and for the C-optimal criterion we choose the entries of c to be from a
random normal distribution.

2.6 Conclusion

This chapter addresses the challenging problem of providing an efficient representation
for the posterior covariance matrix arising in high-dimensional inverse problems. To
this end, Krylov subspace methods are exploited to derive an approximation to the
posterior covariance matrix as a low-rank perturbation of the prior covariance matrix. The
approximation is computed using information generated from the genHyBR algorithm
while computing the MAP estimate. As a result, we obtain an approximate and efficient
representation for “free.” Several results are presented to quantify the accuracy of this
representation and of the resulting posterior distribution. We also show how to efficiently
compute measures of uncertainty involving the posterior distribution.

There are several avenues for further research. The first important question is: Can we
replace the bounds in the Frobenius norm by the spectral norm? The reason we employed
the Frobenius norm is the recurrence relation in Proposition 2.3.1. Another issue worth
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(b) Optimal
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(c) DP
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(d) GCV

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) WGCV
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(f) UPRE

Figure 2.8 The reconstructions of the ’smooth’ image for λ2 found using the different meth-
ods.

exploring is whether we can give bounds for the error in the low-rank approximation ωk
explicitly in terms of the eigenvalues of HQ. This can be beneficial for deciding a priori
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(e) WGCV
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(f) UPRE

Figure 2.9 The reconstructions of the ’blood vessel’ image for λ2 found using the different
methods.

the number of iterations required for an accurate low-rank approximation when the rate
of decay of eigenvalues of HQ is known. Finally, we are interested in exploring the use of
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Figure 2.10 The variance field for ‘smooth’ (left) and ‘blood vessel’ (right) images.

the approximate posterior distribution as a surrogate for the exact posterior distribution
inside a Markov Chain Monte Carlo (MCMC) sampler. This is of particular interest for
nonlinear problems where the posterior distribution is non-Gaussian. MCMC methods rely
heavily on the availability of a good proposal distribution. One approach is to linearize
the forward operator about the MAP estimate (the so-called Laplace’s approximation)
resulting in a Gaussian distribution with similar structure to πpost. This approximation to
the true posterior distribution can be used as a proposal distribution, see for e.g. [82, 93].
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Figure 2.11 The approximations to various optimality criteria for the ‘smooth’ image as a
function of the number of iterations.
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CHAPTER

3

SAMPLING FROM GAUSSIAN
POSTERIOR DISTRIBUTIONS

As was discussed in the previous chapter, in Bayesian inverse problems the posterior
distributions are often very high-dimensional and visualizing them can be challenging. A
popular method to visualize and quantify the uncertainty is to generate samples from the
posterior distribution (also sometimes known as conditional realizations), which can be
used for quantifying the reconstruction uncertainty. For instance, to compute the expected
value of a quantity of interest q(·) defined as

Q ≡ E [q(s) | d] =

∫
Rn

q(s)π(s | d)ds,

where s is a random variable and d is data. Suppose, we have samples {s(j)}Nj=1 then

QN ≡ N−1

N∑
j=1

q(s(j))
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is the Monte Carlo estimate of Q. Furthermore, the Monte Carlo estimate converges to the
expected value of the quantity of interest, i.e., QN → Q as N →∞ almost surely, by the
strong law of large numbers. Before describing our proposed methods to generate samples,
we briefly review a few methods for sampling from high-dimensional distributions. This
list is not meant to be exhaustive and we refer the reader to [113, 70, 19, 116] for a more
comprehensive review.

Existing Methods

For general Bayesian inverse problems, Markov Chain Monte Carlo (MCMC) methods are
popular and well-known ways to generate samples from a posterior distribution. MCMC
methods construct Markov chains whose stationary or target distribution is the posterior
distribution. At each iteration in a typical MCMC algorithm, a proposed state is generated
from a proposal distribution. The posterior p.d.f is evaluated at the proposed state and is
subjected to an accept/reject step to decide whether or not to move from the current to
the proposed state. After a suitable number of iterates are discarded as part of burn-in
process, the iterates from the chain can be considered to be samples from the target
distribution. However, a downside of using MCMC methods is that they typically require
many iterations for convergence and are computationally expensive for high-dimensional
problems. For more details on MCMC the interested reader can see [79, 20].

A related class of Monte Carlo methods are Importance Sampling methods, which
encompass, but are not limited to, mixture, multiple, and adaptive importance sampling
[22]. Adaptive importance sampling (AIS) methods, which can include mixture and
multiple methods, have become increasingly popular. AIS methods work by drawing
samples from a proposal distribution, weighing the samples by looking at the mismatch
between the proposal and the target (posterior) distributions, and adapting the proposal
distribution based on the weights and samples [22]. Like MCMC methods, AIS methods
also need many samples to converge to the posterior distribution.

In the case where the Bayesian inverse problem has Gaussian priors (but potentially
non-Gaussian likelihoods) more specific methods are available. The Randomize-Then-
Optimize (RTO) method [13, 12] solves an optimization problem using perturbed cost
functions to generate proposals; these proposals can then be used in the context of
an MCMC or importance sampling framework to obtain samples from the posterior
distribution. In [131], the authors extended the RTO method to a specific non-Gaussian
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prior. Randomized MAP (rMAP) method is an alternative technique which is identical to
the RTO for the case that the forward problem is linear and the prior is Gaussian, and
for the non-linear case they use different cost functions [129].

In this chapter, we consider Krylov based sampling methods for the linear Bayesian
inverse problem with Gaussian likelihoods and priors described in Section 2.1. We continue
to consider problems where computation of the square root and inverse of the prior
covariance matrix are not feasible, but matrix-vector products (mat-vecs) involving Q

can be done efficiently. The idea of using Krylov subspace methods for sampling from
Gaussian random processes seems to have originated from [106]. Variants of this idea have
also been proposed in [89, 28] and have found applications in Bayesian inverse problems in
[54, 109]. The use of a low-rank surrogate of HQ (see Section 2.3.3) has also been explored
in [23, 24] and is similar to Method 1 (c.f., Section 3.2) that we propose. However, none
of the aforementioned methods can handle the case where the inverse prior covariance,
Q−1, or Q−1/2 are not available.

Overview of Main Contributions

We use preconditioned Krylov subspace methods to generate samples from the posterior
distribution that corresponds to the linear Bayesian inverse problem described in Section
2.1. We develop two different algorithms for generating samples from the posterior
distribution using preconditioned Lanczos methods.

• The first proposed algorithm computes a low-rank approximation of H, the data misfit
Hessian see Section 2.3.2, using the genHyBR approach and then uses this low-rank
approximation to generate samples from the approximate posterior distribution.

• The second proposed algorithm generates approximate samples from the exact posterior
distribution.

A direct application of existing approaches (reviewed in Section 3.1.1) to the posterior
covariance matrix is prohibitively expensive since they involve repeated applications of
Q−1. To avoid this, we present several reformulations. The first approach we describe
computes a low-rank approximation of H using the genHyBR approach and then uses this
low-rank approximation to generate samples from the approximate posterior distribution.
Any low-rank approximation can be used, provided it is sufficiently accurate. On the
other hand, the second approach generates approximate samples from the exact posterior
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distribution. Both methods use preconditioners, albeit in different ways. Before we
describe the proposed algorithms, we will review Lanczos method, which is based on
Krylov subspaces.

3.1 Background

Let ν̄ ∈ Rn and let Γ ∈ Rn×n be any symmetric positive definite matrix. Suppose the goal
is to obtain samples from the Gaussian distribution N (ν̄,Γ). Throughout this chapter,
let ε ∼ N (0, I). If we have a factorization of the form Γ = SΓS>Γ , then

ν = ν̄ + SΓε

is a sample from N (ν̄,Γ), where it can be readily shown that E[ν] = ν̄ and

Cov(ν) = E[(ν − ν̄)(ν − ν̄)>] = E[SΓεεS
>
Γ ] = Γ.

Note that any matrix SΓ that satisfies SΓS>Γ = Γ can be used to generate samples. We
show how Krylov subspace solvers, in particular preconditioned versions, can be used to
efficiently generate approximate samples from N (0,Γ) and N (0,Γ−1). These approaches
will be extended for sampling from the posterior distribution in Sections 3.2 and 3.3.

3.1.1 Sampling From a Gaussian Distribution Using Lanczos Pro-

cess

Given Γ and starting guess ε, after K steps of the symmetric Lanczos process, we have
matrix WK = [w1, . . . ,wK ] ∈ Rn×K that contains orthonormal columns and tridiagonal
matrix

CK =



γ1 δ2

δ2 γ2 δ2

. . . . . . . . .

δK−1 γK−1 δK

δK γK


∈ RK×K (3.1)
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such that in exact arithmetic we have the following relation,

ΓWK = WKCK + δK+1wK+1e
>
K =⇒ W>

KΓWK = CK . (3.2)

The Lanczos process is summarized in Algorithm 3.1.1.

Algorithm 3.1.1 Lanczos tridiagonalization
Output: [WK , CK ] = Lanczos(Γ, ε, K)
1: δ0 = 1,w0 = 0, δ1 = ‖ε‖2,w1 = ε/δ1

2: for i = 1, . . . , K do
3: γi = w>i Γwi,
4: r = Γwi − γiwi − δi−1wi−1

5: wi+1 = r/δi, where δi = ‖r‖2

6: end for

At the end of K iterations, the Lanczos process generates an orthonormal basis to the
Krylov subspace

KK(Γ, ε) = Span{ε,Γε, . . . ,ΓK−1ε}.

The Lanczos iterates can be used to approximate f(Γ)ε, where f is a matrix function of
interest. For sampling, f(·) can either be the square root or the inverse square root. Our
derivation follows that in [28, Section 2.1]. Specifically, the approximation ξ∗K

ξ∗K = WKW>
Kf(Γ)ε.

is the optimal approximation in KK (optimal in the sense that the 2-norm error is
minimized). From Algorithm 3.1.1, we can rewrite the optimal approximation as

ξ∗K = WKW>
Kf(Γ)WKδ1e1.

Following [28], if we approximate W>
Kf(Γ)WK ≈ f(W>

KΓWK) then using (3.2), we have

ξ̃∗K = WKf(CK)δ1e1.

To sample from N (0,Γ) we use f(Γ) = Γ1/2 and to sample from N (0,Γ−1), we
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use f(Γ) = Γ−1/2. The corresponding approximate samples from these distributions are
generated as

ξK = WKC
1/2
K δ1e1 and ζK = WKC

−1/2
K δ1e1, (3.3)

respectively. We remark that the iterates generated by the Lanczos process and the matrix
CK , depend on the realization ε; in other words, the Lanczos process has to be generated
from scratch for each random sample. Although this can become costly if many samples
are desired, the process is embarrassingly parallel across the samples. Furthermore, various
methods (e.g., recycling techniques [90, 91]) can be exploited for handling multiple right
hand sides efficiently; however we do not pursue them here.

Convergence of the Lanczos Process

In this section, we will let ε be fixed. The approximation of the samples improves as k
increases, and we expect typical convergence behavior for the Lanczos process whereby
convergence to extremal (i.e., largest and smallest) eigenvalues will be fast. The following
result [109, Theorem 3.3] sheds light onto the convergence of Krylov subspace methods
for sampling. The error in the sample ζK is given by

‖Γ−1/2ε− ζK‖2 ≤
√
λmin(Γ)‖rK‖2,

where λmin(Γ) is the smallest eigenvalue of Γ and rK = ε − ΓxK is the residual vector
at the k-th iteration of the conjugate gradient method and xk = WKC−1

K δ1e1. The
residual vector ‖rK‖2 can be bounded using standard techniques in Krylov subspace
methods [100]. To use this as a stopping criterion, we note that ‖rK‖2 = δ1|e>KC−1

K e1| and
by the Cauchy interlacing theorem λmin(Γ) ≤ λmin(CK) [18, Corollary, III.1.3]. Combining
the two bounds we have

‖Γ−1/2ε− ζK‖2 ≤
√
λmin(CK)δ1|e>KC−1

K e1|.

However, in numerical experiments we found that the bound was too pessimistic. Instead
we adopted the approach in [28], we define the relative error norm as

eK =
‖ζK − Γ−1/2ε‖2

‖Γ−1/2ε‖2

.
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In practice, this quantity cannot be computed, but it can be estimated using successive
iterates as

ẽK =
‖ζK − ζk+1‖2

‖ζk+1‖2

.

When convergence is fast, we found this bound to be more representative of the true error
in numerical experiments. The downside is that computing this is expensive since it costs
O(nk2) flops. However, this cost can be avoided by first writing

ζK = WK ζ̂K , where ζ̂K = δ1C
−1/2
K e1.

Since the columns of WK are orthonormal, then

ẽK =
‖ζ̂ ′K − ζ̂K+1‖2

‖ζ̂K+1‖2

ζ ′K ≡

[
ζ̂k

0

]
. (3.4)

Therefore, ẽK can be computed in O(K3) operations rather than O(nK2) operations. A
similar approach can be used to monitor the convergence of ξK to Γ1/2ε.

3.1.2 Preconditioned Lanczos Solvers

It is well known that an appropriate preconditioner can significantly accelerate conver-
gence of Krylov subspace methods for solving linear systems. Assume that we have a
preconditioner G which satisfies Γ−1 ≈ G>G. Then, the same preconditioner can be
used to accelerate the convergence of Krylov subspace methods for generating samples, as
we now show. Let

SΓ = G−1(GΓG>)1/2 and SΓ−1 = G>(GΓG>)−1/2 ,

then it is easy to see that

Γ = G−1(GΓG>)G−> = G−1(GΓG>)1/2(GΓG>)1/2G−> = SΓS>Γ (3.5)

and similarly Γ−1 = SΓ−1S>Γ−1 . The Lanczos process is then applied to GΓG> and
approximate samples from N (0,Γ) and N (0,Γ−1) can be obtained by computing

ξK = G−1WKC
1/2
K δ1e1 ζK = G>WKC

−1/2
K δ1e1. (3.6)
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Algorithm 3.1.2 summarizes the preconditioned Lanczos sampling process. In practice,
the vectors wi tend to lose orthogonality in floating point arithmetic [28] and, therefore
we reorthogonalize the vectors to alleviate potential loss of orthogonality.

Algorithm 3.1.2 Preconditioned Lanczos sampling
Output: [ξ, ζ] = LanczosSampling(Γ, G ε)
1: δ0 = 1,w0 = 0, δ1 = ‖ε‖2,w1 = ε/δ1

2: Set i = 0
3: while not converged do
4: Set i← i+ 1
5: γi = w>i GΓG>wi,
6: r = GΓG>wi − γiwi − δi−1wi−1

7: wi+1 = r/δi, where δi = ‖r‖2

8: end while
9: Let the number of iterations be K. Set ξ̂K = C

1/2
K δ1e1, ζ̂K = C

−1/2
K δ1e1 (see (3.1))

10: Set ξ = G−1WK ξ̂K , ζ = G>WK ζ̂K .

If G is a good preconditioner, in the sense that Γ−1 ≈ G>G (alternatively, GΓG> ≈
I), then the Krylov subspace method is expected to converge rapidly. The choice of
preconditioner depends on the specific problem. In [17], the authors develop a method for
computing a sparse incomplete factorization of symmetric positive definite (SPD) matrices
and use that factorization as the approximate inverse (AINV) preconditioner. In [16,
71] a stable method to compute the AINV preconditioner was developed independently.
In [74] factorized sparse approximate inverse (FSAI) preconditioners were proposed for
non-symmetric positive definite matrices. In [28] they discuss how stable AINV and FSAI
preconditioners can be used with preconditioned Krylov subspace methods to sample
from Gaussian distributions.

In this work, we use preconditioners of the form G = (−∆)γ for parameters γ ≥
0, where ∆ is the Laplacian operator discretized using the finite-differences operator.
This choice of preconditioners is inspired by [80], and exploits the fact that integral
operators based on the Matérn kernels (see Section 2.1.1) have inverses which are fractional
differential operators. Now that we have reviewed preconditioned Lanczos methods we
will describe our proposed algorithms.
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3.2 Method 1: Sampling Using Approximate Posterior

Covariance

Consider generating samples from πpost, where Γpost = λ−2(Q−1 + λ2H)−1 is the posterior
covariance matrix. Given a preconditioner G, which we assume to be invertible, we can
write

Q−1 = G>(GQG>)−1G.

Then consider the factorization Q−1 = LL> where

L ≡ G>(GQG>)−1/2. (3.7)

An important point to note is that while writing such a factorization, we do not propose
to compute it explicitly. Instead, we access it in a matrix-free fashion using techniques
from Algorithm 3.2.2.

Plugging the formula for L into the expression for the posterior covariance, we obtain

Γpost = λ−2(LL> + H)−1 = λ−2L−>(I + L−1HL−1)−>L−>.

The low-rank approximation of H in (2.31) can be used to derive an approximate
factorization of the posterior covariance matrix

Γ̂post = ŜΓŜ>Γ where ŜΓ ≡ λ−1L−>(I + L−1ĤL−>)−1/2. (3.8)

To efficiently compute mat-vecs with ŜΓ, there are two stages: a precomputation stage and
the sampling stage. In the precomputation stage, we compute the low-rank representation

λ−2L−1ĤL−> = λ−2L−1VkTkV
>
k L−> = ZkΘkZ

>
k ,

where Zk has orthonormal columns and Θk is a diagonal matrix with non-negative
entries. Computing the low-rank representation is accomplished using Algorithm 3.2.1
with Yk = L−1VkMk where Mk is the lower Cholesky factorization of λ−2Tk = λ−2B>k Bk.

Now, we have

ŜΓ ≡ λ−1L−>(I + L−1ĤL−>)−1/2 = λ−1L−>(I− ZkDkZ
>
k ).
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Algorithm 3.2.1 Low-rank representation ZΘZ> = YY>

Output: [Z,Θ] = Lowrank(Y) for an arbitrary Y ∈ Rn×k with k ≤ n
1: Compute thin-QR factorization QR = Y
2: Compute eigenvalue decomposition RR> = UΘU>

3: Compute Z = QU

In this step, we have used a variation of the Woodbury identity [65, Equation (0.7.4.1)]

(I + ZkΘkZ
>
k )−1/2 = I− ZkDkZ

>
k Dk = Ik ± (Ik + Θk)

−1/2.

In the sampling stage, given ε ∼ N (0, I), we can compute a sample from π̂post as

ξ = sk + λ−1L−>(ε− I− ZkDkZ
>
k ε).

In summary, the procedure for computing samples ξ(j) ∼ N (0, Γ̂post) is provided in
3.2.2. Computing mat-vecs with L (including its inverse and transpose) is done using the
preconditioned Lanczos method described in 3.1.2. Note that

L−1 = (GQG>)1/2G−> L−> = G−1(GQG>)1/2.

The accuracy of the generated samples is discussed in Section 3.4.

3.3 Method 2: Sampling Using the Full Posterior Co-

variance

The second approach we describe generates approximate samples from the exact posterior
distribution. First, we rewrite the posterior covariance matrix as

Γpost = (λ2Q−1 + H)−1 = QF−1Q F ≡ λ2Q + QHQ.

We define
SF ≡ QF−1/2

such that Γpost = SFS>F. In this method, computing a factorization of Γpost requires
computing square roots with F. Assume that we have a preconditioner G satisfying
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Algorithm 3.2.2 Method 1: Generate N samples from π̂post

Output: [ξ(1), . . . , ξ(N)] = Method1(A, Γnoise, Q, G, b, N)
1: Use genHyBR to get k, sk, λ,Vk,Bk (see 2.2)
2: Compute Cholesky factorization MkM

>
k = λ−2B>k Bk

3: (Stage 1: Precomputation stage)
4: for j = 1, . . . , k do
5: z(j) = G−>VkMk(:, j)
6: [ξ(j),∼] = LanczosSampling(GQG>, I, z(j))
7: Yk(:, j) = ξ(j) (Computes Yk(:, j) = L−1VkMk(:, j) )
8: end for
9: Compute [Zk, Θk] = Lowrank(Yk)
10: Compute Dk = Ik ± (Ik + Θk)

−1/2

11: (Stage 2: Sampling stage)
12: for j = 1, . . . , N do
13: Draw sample ε(j) ∼ N (0, I). Compute z(j) = ε(j) − ZkDkZ

>
k ε

(j)

14: [ξ(j),∼] = LanczosSampling(Q,G, z(j)) (Computes ξ(j) = λ−1L−>ε(j))
15: Compute ξ(j) ← sk + ξ(j)

16: end for

GG> ≈ F−1. Armed with this preconditioner, we have the following factorization

Γpost = SFS>F SF ≡ QG>(GFG>)−1/2.

Note that this factorization of Γpost is exact even though GG> ≈ F−1; see (3.5). The
application of the matrix G>(GFG>)−1/2 to a randomly drawn vector can be accomplished
by the Lanczos approach described in Section 3.1.1.

Algorithm 3.3.1 Method 2: Sampling from πpost
Output: [ξ] = Method2(A, Γnoise, Q, G, spost)
1: Draw sample ε ∼ N (0, I)
2: Compute F = λ2Q + QHQ
3: Compute [T,W] = Lanczos(GFG>, ε), see Alg. 3.1.1
4: Compute z = G>WT−1/2δ1e1

5: Compute ξ = spost+Qz

As currently described, computing approximate samples from Γpost requires computing
spost and applying the matrices A, A> once, and Q twice. However, this may be compu-
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tationally expensive for several problems of interest. Here we use sk as an approximation
to spost. A variant of this method, not considered in this work, follows by replacing the
data-misfit part of the Hessian H by its low-rank approximation Ĥ, defined in (2.31).
Define

F̂ ≡ λ2Q + QĤQ.

Therefore, we compute the following factorization of the approximate posterior covariance

Γ̂post = ŜFŜ>F ŜF ≡ QG>(GF̂G>)−1/2.

3.4 Comparing the Methods

We now compare the two proposed methods for generating approximate samples from the
posterior. The first approach only uses the forward operator A in the precomputation phase
to generate the low-rank approximation and subsequently uses the low-rank approximation
as a surrogate. This can be computationally advantageous if the forward operator is
very expensive to apply or if many samples are desired. On the other hand, if a greater
degree of accuracy is important or only a few samples are needed, then the second
approach is recommended since it targets the full posterior distribution. We summarize
the computational costs of both methods in Table 3.1

Table 3.1 A summary of the main computational costs for Method 1 and Method 2. The
number of genHyBR iterations is denoted k, and the number of iterations in the precondi-
tioned Lanczos sampling algorithm is denoted K. The columns labeled A and A> contain the
number of mat-vecs with the forward and the adjoint operator respectively; Q denotes the
number of mat-vecs with Q, G/G> denotes the number of mat-vecs with the preconditioner,
and G−1/G−> denotes the number of solves involving the preconditioner.

Component A A> Q G/G> G−1/G−>

Method 1
genHyBR k k 2k − −
Precomputation − − kK 2kK K
Sampling − − K + 1 2K 1

Method 2 Sampling K K 2K + 1 2K + 1 −

In Method 1, we generate samples from the approximate posterior distribution; the
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following result quantifies the error in the samples. Define S = Q1/2(λ2I + HQ)−1/2 such
that Γpost = SS> and let ε be a random draw from N (0, I), then

s = spost + Sε and ŝ = sk + Ŝε

are samples from πpost and π̂post respectively, where Ŝ is defined in (3.8).

Theorem 3.4.1. Let Γ̂post be the approximate posterior covariance matrix generated by
running k steps of the genHyBR algorithm and let ε be a fixed sample. The error in the
sample ŝ satisfies

‖s− ŝ‖λ2Q−1 ≤ λ−1

(
ωkα1β1

λ2 + ωk
+

√
λ2ωk
λ2 + ωk

‖ε‖2

)
.

Proof. By the triangle inequality, we have

‖s− ŝ‖λ2Q−1 ≤ ‖spost − sk‖λ2Q−1 + ‖Sε− Ŝε‖λ2Q−1 .

Similar to previous proofs in Chapter 2, we use spost − sk = (Γpost − Γ̂post)A
>Γnoise

−1b =

λ−2Q1/2Db̂, where D = (I + λ−2HQ)−1 − (I + λ−2ĤQ)−1 to get

‖spost − sk‖2
λ2Q−1 = b̂>DQ1/2λ−2(λ2Q−1)λ−2Q1/2Db̂ = λ−2‖Db̂‖2

2.

Thus,

‖spost − sk‖λ2Q−1 = λ−1‖Db̂‖2 ≤ λ−1 ωkα1β1

λ2 + ωk
,

For the second term, we write

λQ−1/2(S− Ŝ)ε =
[
(I + λ−2HQ)−1/2 − (I + λ−2ĤQ)−1/2

]
ε.

Then,

‖Sε− Ŝε‖λ2Q−1= ‖λQ−1/2(S− Ŝ)ε‖2 ≤ ‖(I + λ−2ĤQ)−1/2 − (I + λ−2HQ)−1/2‖2‖ε‖2.

When we apply [18, Theorem X.1.1 and (X.2)], we have

‖(I + λ−2ĤQ)−1/2 − (I + λ−2HQ)−1/2‖2 ≤ ‖D‖1/2
2 . (3.9)

62



From (2.41), ‖D‖2 ≤ ωk/(λ
2 + ωk). Plugging this into (3.9) gives the desired result.

Theorem 3.4.1 states that if ωk is sufficiently small, then the accuracy of the samples is
high. The samples, thus generated, can then be used as is in applications. Otherwise they
can be used as candidate draws from a proposal distribution π̂post. To generate samples
from the full posterior distribution, the approximated distribution can be used inside an
independence sampler, similar to the approach in [21].

3.5 Numerical Results

In this section, we begin by discussing the preconditioners we choose and demonstrate
their effectiveness. We then show the efficiency of the preconditioned sampling methods
described in Sections 3.2 and 3.3 for generating samples from the approximate posterior
and posterior distributions.

3.5.1 Choice of Preconditioners

In our first example, we explain the choice of preconditioners and show the performance
of these preconditioners. We use preconditioners of the form G = (−∆)γ for parameters
γ ≥ 1, where ∆ is the Laplacian operator discretized using the finite-differences operator,
see Section 3.1.2.

In this experiment, we pick three different covariance matrices corresponding to Matérn
parameters ν = 1/2, 3/2, and 5/2; recall that this parameter controls the mean-squared
differentiability of the underlying process. For a precise definition of the Matérn covariance
function, see Section 2.1.1. We now briefly discuss the choice of the exponent γ. We choose
γ = 1/2, 1, and 2 corresponding to ν = 1/2, 3/2, and 5/2 respectively. The domain is
taken to be [0, 1]2, and we choose a 300× 300 grid of evenly spaced points; thus, Q is a
90, 000× 90, 000 matrix that is block-Toeplitz with Toeplitz blocks. Constructing such a
matrix is never done explicitly; instead, circulant embedding and FFT-based techniques
are used to efficiently perform mat-vecs. The correlation length ` is taken to be 0.25. In
Figure 3.1, we provide the relative differences (computed as ẽk from (3.4)) per iteration of
the preconditioned and unpreconditioned Lanczos approach for sampling from N (0,Q).
We use a fixed sample ε for all the values of Î¡ that we tested. It is readily seen that for
ν = 1/2 and 3/2, including the preconditioner can dramatically speed up the convergence.
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Figure 3.1 The relative differences ẽk using the Lanczos based sampling approach described
in Section 3.1.1 applied to the prior covariance matrix Q. The relative error plotted here is
ẽk computed as (3.4). Preconditioners are based on fractional powers of the Laplacian (−∆)γ .
The plots correspond to various choices of ν in the Matérn covariance kernel and γ in the
preconditioner. (left) ν = 1/2 and γ = 1/2, (middle) ν = 3/2 and γ = 1, and (right) ν = 5/2
and γ = 2.

Some improvement is seen for the case of ν = 5/2, but the unpreconditioned solver does
not even converge within the maximum allotted number of iterations, which was set to
300. Also, observe that the number of iterations that it takes to converge increases with
increasing parameter ν; this is because the systems become more and more ill-conditioned,
with increasing ν, for a fixed grid size. In summary, we see that fractional powers of
the Laplacian operator can be good preconditioners to use within the Lanczos methods
described in Section 3.1.1 for sampling, provided ν is small. Next, we investigate the
use of these preconditioners for sampling from the posterior and approximate posterior
distributions.

3.5.2 Sampling from the Approximate Posterior Distribution

In this experiment, we choose two different test problems from the IRTools toolbox [49,
60]. Specifically, we choose the PRspherical which models spherical means tomography
such as in photo-acoustic tomography (this is the same operator used in the Section 2.5),
and PRtomo which models parallel X-ray tomography. For both applications, the true
image s and forward model matrix A are provided. We use the default settings provided
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by the toolbox; see [49] for details. To simulate measurement error, we add 2% additive
Gaussian noise.

For the PRspherical problem, we first compute the MAP estimate for a grid size
of 128 × 128 and for Q representing a Matérn kernel with ν = 1/2 and ` = 0.25. The
reconstruction was computed using genHyBR and is provided in the left panel of Figure
3.2. The relative reconstruction error in the 2-norm was 0.0168, and the regularization
parameter determined using WGCV was λ2 ≈ 19.48. The regularization parameter was
fixed for the remainder of this experiment. In Figure 3.2, we also show a random draw
from the prior distribution N (0, λ−2Q) in the middle panel and a random draw from the
posterior distribution computed using Method 1 in Section 3.3 in the right panel. The
same random vector ε ∼ N (0, I) was used for both draws.

Figure 3.2 For the PRspherical problem, we provide the computed MAP estimate (left),
a random draw from the prior distribution (middle), and a random draw from the posterior
distribution computed using Method 1 (right).

In the next experiment, we investigate the performance of Method 1 described in
Algorithm 3.2.2 for generating samples from the approximate posterior distribution π̂post.
The problem setup is the same as the previous experiment. We first use the genHyBR
method to obtain the MAP estimate, the regularization parameter λ2, and the low-rank
approximation ĤQ. In the third column of Table 3.2, we report the number of genHyBR
iterations; see [33, 29] for details on stopping criteria. Then, we use Algorithm 3.2.2 with
and without a preconditioner, described in Section 3.5.1, to generate samples. Notice that
step 6 of Algorithm 3.2.2 requires the application of L−1 to the low-rank approximation;
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this is accomplished by using the approach described in Section 3.1.1. The number of
Lanczos iterations required for Step 6 is reported in the ‘Precomputation’ columns of
Table 3.2. Then, for each sample, step 14 of Algorithm 3.2.2 requires the application of
L−>, which is also done using a Lanczos iterative process; the number of iterations for
this step, averaged over 10 samples, is listed in the ‘Sampling’ columns of Table 3.2. We
also provide the time in seconds it takes for Stage 1 and 10 runs of Stage 2 of Algorithm
3.2.2 with and without a preconditioner in the ‘Time’ columns of Table 3.2.
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Table 3.2 We compare the performance of Method 1 described in Algorithm 3.2.2 with and without a preconditioner
for the PRspherical and PRtomo applications. The first two columns contain the number of unknowns and the number
of measurements. k is the number of genHyBR iterations required to compute the MAP estimate. The number of
Lanczos iterations required to apply L−> (Step 6 of Algorithm 3.2.2) is reported under ‘Precomp.’, and the average
number of iterations (averaged over 10 runs) to apply L−1 (Step 14 of Algorithm 3.2.2) is provided under ‘Sampling’.
The time in seconds it takes for to generate 10 samples is provided under ‘Time’.

PRspherical application

# unknowns # measurements k
Preconditioner No Preconditioner

Precomp. Sampling Time Precomp. Sampling Time
16× 16 368 52 761 14.7 0.49 1461 29.7 0.58
32× 32 1, 440 32 653 21.1 1.13 1481 51.0 2.50
64× 64 5, 824 27 745 30.1 3.58 2024 92.6 17.42
128× 128 23, 168 36 1378 42.5 37.82 4397 156.0 221.66
256× 256 92, 672 63 3321 60.8 417.83 12990 267.8 3246.38

PRtomo application

# unknowns # measurements k
Preconditioner No Preconditioner

Precomp. Sampling Time Precomp. Sampling Time
16× 16 4, 140 93 1335 14.0 0.56 2607 29.0 1.21
32× 32 8, 100 40 815 21.0 0.91 1872 51.4 3.41
64× 64 16, 380 32 890 29.5 3.51 2412 93.0 13.94
128× 128 32, 580 37 1432 42.1 27.34 4547 155.7 123.90
256× 256 65, 160 51 2645 61.0 201.31 10327 266.1 2294.45
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We make a few remarks about the results. First, the precomputation step to generate
the low-rank approximation requires a considerable number of mat-vecs involving Q but
far fewer involving A. Next, the number of iterations required for generating the samples
is, on average, smaller than those reported in Table 3.3 for a comparable problem size.
The reason for this is that the preconditioner is designed for Q rather than for F (as
required by Method 2). Finally, the use of a preconditioner is effective in reducing the
number of iterations and time it takes to generate samples.

3.5.3 Sampling from the Posterior Distribution

To begin, we repeat the first experiment of Section 3.5.2 with all the same parameters and
instead use Method 2 to sample from the posterior distribution. In Figure 3.3, we show
the computed MAP estimate (left), a random draw from the prior distribution (middle),
and a random draw from the posterior distribution computed using Method 2 (right).

Figure 3.3 For the PRspherical problem, we provide the computed MAP estimate (left),
a random draw from the prior distribution (middle), and a random draw from the posterior
distribution computed using Method 2 (right).

For the next experiment we demonstrate the performance of the preconditioned
Lanczos solver proposed in Section 3.3 on both applications. We vary the grid sizes from
16× 16 to 256× 256, and fix all other parameters (ν = 1/2, 2% additive Gaussian noise)
except the regularization parameter, which was determined separately for each problem
using WGCV. The choice of preconditioners was described in Section 3.5.1. In Table 3.3
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we report the number of iterations for the Lanczos solver to converge (i.e., achieving a
residual tolerance of 10−6) with and without a preconditioner.

Several observations can be made. First, for both applications the number of iterations
required to achieve a desired tolerance increases with increasing problem size. This is to
be expected since the number of measurements is also increasing with increasing problem
size, and the iterative solver has to work harder to process the additional “information
content.” Second, in both applications, the use of a preconditioner cuts the number of
iterations roughly in half. Since each iteration involves one forward and adjoint mat-vec
involving A, each iteration can be quite expensive; the use of a preconditioner is beneficial
in this case. Finally, another important observation is that although the preconditioners
proposed in Section 3.5.1 were designed for the prior covariance matrix Q, here they were
used for the matrix F instead; nevertheless, the results in Table 3.3 demonstrate that the
preconditioners were similarly effective.

Table 3.3 For various examples from the PRspherical and PRtomo applications, we compare
the performance of Method 2 described in Algorithm 3.3.1. We report the number of unknown
parameters and measurements for each problem. Then, we provide the number of iterations
(averaged over 10 different runs) required for convergence and the time it takes to generate 10
samples in the preconditioned and unpreconditioned cases.

PRspherical application

# unknowns # measurements Preconditioner No preconditioner
Sampling Time Sampling Time

16× 16 368 20.0 0.12 40.5 0.27
32× 32 1, 440 28.0 0.65 67.5 1.70
64× 64 5, 824 38.9 2.49 118.0 12.11
128× 128 23, 168 53.7 21.31 206.3 135.60
256× 256 92, 672 72.7 153.78 359.2 1569.49

PRtomo application

# unknowns # measurements Preconditioner No preconditioner
Sampling Time Sampling Time

16× 16 4, 140 21.8 0.19 38.8 0.33
32× 32 8, 100 27.1 0.57 66.4 1.96
64× 64 16, 380 36.4 2.72 116.4 10.30
128× 128 32, 580 52.0 15.90 205.3 85.61
256× 256 65, 160 71.8 85.49 354.7 1146.69
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3.6 Conclusion

In this chapter we present two variants that utilize a preconditioned Lanczos solver to
efficiently generate samples from the posterior distribution. The first approach generates
samples from an approximate posterior distribution, whereas the second approach generates
samples from the exact posterior distribution. The approximate samples can be used as
is or as candidate draws from a proposal distribution that closely approximates the exact
posterior distribution.

For further research we could investigate the use of preconditioned Lanczos solvers in
conjunction with the RTO method [13]. In doing so we could avoid sampling from the
posterior (or approximated posterior) altogether and instead obtain a posterior sample by
sampling only from the prior and noise distributions.
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CHAPTER

4

EFFICIENT NEWTON-BASED
APPROACHES TO SOLVE

DETERMINISTIC QUANTITATIVE
PHOTO-ACOUSTIC TOMOGRAPHY

We now turn attention to Quantitative Photo-acoustic Tomography, which can be rep-
resented as a nonlinear deterministic inverse problem. While the specific problem we
focus on in this chapter is the Quantitative Photo-acoustic (QPAT) we will note that the
techniques used here are applicable to a wide variety of other applications. In Chapter 1,
we described the physical process that occurs during the QPAT process and how it relates
to PAT, so we will omit discussion of it here.

In the past decade, the body of work on solving the QPAT inverse problem has
expanded rapidly. Earlier works used fixed point iteration methods [36] to solve the inverse
problem. This type of solution method was soon replaced by methods that incorporated
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Jacobian and gradient information. Initially Jacobian based methods [48, 34, 114] were
investigated. The major drawback of these methods were the computational cost and
storage associated with the Jacobian. This lead groups to pursue gradient based solution
methods [35, 10, 47, 81, 46]. The authors of [34, 114] explored Gauss Newton methods.
Most authors used quasi-Newton methods [48, 35, 10, 47, 81, 46]. In a recent paper [67]
the authors use inexact-Newton-CG methods on a linearized residual function.

Overview of Main Contributions

The main contributions of this chapter are as follows:

• We define a Newton-based approach for solving the QPAT problem. The resulting
Newton step is computed inexactly using Krylov subspace methods.

• We investigate different regularization types and preconditioners for efficiently comput-
ing the Newton step.

• We demonstrate that the additional effort required to derive and implement the Newton
approach is justified by the reduction in iterations and computational time.

In Section 4.1 we describe the forward and inverse problems. Then, in Section 4.2
we discuss the optimize-then-discretize approach taken with adjoint based Lagrange
multipliers. In Sections 4.2.2 and 4.3.2 we describe and motivate the choice of regularization
terms and propose a preconditioner to accelerate the computation of the Newton search
direction.

4.1 Background

In this section we describe the equations for the forward and inverse QPAT problems. We
refer the reader to Chapter 1 for background on the physical process that these partial
differential equations (PDEs) are describing.

4.1.1 Forward Problem

As mentioned in the Chapter 1 the forward model for the QPAT can be modeled by the
Diffusion Approximation (DA) of the Radiative Transfer Equation (RTE) [107]. In [107],
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the authors discuss how the DA can be made depending on the type of source used. For a
collimated source the forward problem can be described as

−∇ · (D∇u) + µu = f, x ∈ Ω, (4.1)

u+ AD∇u · n = 0, x ∈ ∂Ω,

where

• Ω is the domain, either 2D or 3D,

• ∂Ω is the boundary of the domain,

• u is the photon density,

• f is a point source,

• n is the outward pointing unit vector,

• A is the interface constant, assumed to be known experimentally,

• D > 0 is the diffusion coefficient,

• µ > 0 is the absorption coefficient.

We note that the coefficients D, mu, the source f and the photon density u are spatially
dependent, but for ease of notation we do not write the dependence explicitly.

The diffusion coefficient, D is related to the reduced scattering coefficient, µ′s by

D =
1

3µ′s
,

where µ′s us assumed to be a constant. The point source term takes the from

f = Iδ(x− x̄),

where δ is the Dirac-delta function, x̄ is the source location, and I is the photon density of
the NIR light source. The point source is located inside the domain at a distance of 1/µ′s

from the boundary [107]. It should be noted that reconstructions are not as accurate close
(less than the mean free path) to the collimated source [107]. An alternative approach
known as the diffuse source approach uses the point sources on the boundary as opposed
to the interior of the domain, but we do not follow this approach here. In this chapter,
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we will only consider the collimated source case. For ease of notation, in the subsequent
sections we will drop the explicit spatial dependence.

4.1.2 Inverse Problem

We focus on reconstructing the absorption coefficient, µ, by solving an inverse problem
and assume all other parameters are known. We make the assumptions that the diffusion
coefficient is known and that our data comes from PAT image reconstruction process.
Before we describe the inverse problem, we first make a change of variables in order to
ensure that our reconstruction remains positive. We now define the absorption coefficient
as

µ = em, (4.2)

and our goal is to find m. For the inverse problem we look at minimizing the data misfit
between our reconstructed solution and the data. Here our data is the absorbed energy,
ψobsi , for each source i = 1, . . . , ns, where ns is the total number of sources. It has been
proven that, with some assumptions on the continuity of µ and D, at least two “well-chosen”
sources are needed in order to allow unique and stable reconstructions [9, 122]. We make
no assumptions on the continuity of the absorption parameter and in order to ensure a
unique and stable reconstruction we incorporate a regularization term, which additionally
allows us to incorporate some prior knowledge of the parameter into the inverse problem.
This leads us to our cost function

J(m) = min
m

φ(m) +R(m), (4.3)

where φ(m) is the data-misfit term with form

φ(m) =
ns∑
i=1

[ ∫
Ω

(emui(m)− ψobsi )2 dx

]
,

and R(m) is the regularization term and optimization problem is constrained by the
PDEs for i = 1, ..., ns

−∇ · (D∇ui) + emui = fi, x ∈ Ω

ui + AD∇ui · n = 0, x ∈ ∂Ω.
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The reconstruction of the log-absorption coefficient m is a nonlinear inverse problem
which we tackle using Newton-based approaches.

4.2 Newton-Based Approaches

In order to solve the inverse problem, we take an optimize-the-discretize approach. We will
first derive the first order optimality conditions and second order derivative information
using variational derivatives in infinite dimensional space. We then discretize the problem
and describe the numerical algorithm we use to solve the inverse problem and reconstruct
the parameter of interest.

4.2.1 Adjoint-based Gradient and Hessian Computation

We will use the method of Lagrange multipliers to find the first and second order optimality
conditions. For the rest of the chapter we will use the notation {ui} to mean u1, ..., uns

and similarly for {pi}. We begin by taking the cost function (4.3) and the PDE (4.1), in
weak form, and constructing the Lagrangian,

L({ui}, {pi},m) =
ns∑
i=1

[ ∫
Ω

(emui − ψobsi )2 dx dx+

∫
Ω

D∇pi · ∇ui dx

+

∫
Ω

empiui dx−
∫

Ω

pifi dx+

∫
∂Ω

1

A
piui ds

]
+

∫
Ω

R(m)dx,

where pi ∈ H1(Ω) for i = 1, ..., ns, are the Lagrange multipliers. Recall that H1(Ω) is the
space of square integrable functions with square integrable (weak) partial derivatives.

First Variations

We calculate the first variations of the Lagrangian for each parameter to find the first order
optimality conditions: the state, adjoint, and gradient equations. For example the first
variation of the Lagrangian, L({ui}, {pi},m) with respect to the parameter of interest m
in the direction m̃, written as Lm({ui}, {pi},m)[m̃], will give us the gradient equation. In
the Lagrangian approach we treat all of the parameters as independent and to construct
the gradient, we must first find the state variables, ui’s and Lagrange multipliers, pi’s.
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We find the state variables, ui’s by solving the state equation

Lpi({ui}, {pi},m)[p̃] =

∫
Ω

D∇p̃ · ∇ui dx+

∫
Ω

emp̃ui dx

−
∫

Ω

p̃f dx+

∫
∂Ω

1

A
p̃ui ds = 0, ∀p̃ ∈ H1(Ω),

for each i = 1, ..., ns and the adjoint variables, pi’s by solving the adjoint equation

Lui({ui}, {pi},m)[ũ] =

∫
Ω

2emũ(emui − ψobsi ) dx+

∫
Ω

D∇pi · ∇ũ dx

+

∫
Ω

empiũ dx+

∫
∂Ω

1

A
piũ ds = 0, ∀ũ ∈ H1(Ω),

for each i = 1, ..., ns. The derivations for the state and adjoint equations are in Appendix
B.1.1 and B.1.2. We can then use the state and adjoint variables to construct the gradient
of the cost function (4.3)

g(m)[m̃] =
ns∑
i=1

[ ∫
Ω

2m̃emui(e
mui − ψobsi ) dx+

∫
Ω

m̃empiui dx

]
(4.4)

+

∫
Ω

R′(m, m̃) dx, ∀m̃ ∈ H1(Ω), (4.5)

where R′(m, m̃) is the first variation of the regularization term w.r.t the parameter m.
The derivation can be found in Appendix B.1.3.

Second Variations for One Source

The second variations of the Lagrangian are used to compute the action of the Hessian
in a direction m̂. For simplicity, we choose to illustrate the second variations for only
one source and in Appendix B.1.4 we derive the second variations for multiple sources.
In order to calculate the second variations, we introduce auxiliary variables û and p̂,
which are the incremental state and incremental adjoint variables and are solutions of the
incremental state and incremental adjoint equations, respectively. In Appendix B.1.4, we
derive all of the second variations (here the arguments are dropped for compactness) that
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are then used to form the Newton system a system of equations

Luu(ũ, û)+ Lum(ũ, m̂) + Lup(ũ, p̂) = 0, ∀ũ (Incremental Adjoint Eqn.)

Lmu(m̃, û)+ Lmm(m̃, m̂) + Lmp(m̃, p̂) = −g(m)[m̃], ∀m̃ (Hessian Apply) (4.6)

Lpu(p̃, û)+ Lpm(p̃, m̂) = 0, ∀p̃ (Incremental State Eqn.)

that can be used to describe the application (or action) of the Hessian in a given
direction m̂, û, p̂. Before we describe the discretization of the optimality conditions, we
will describe R(m), the two choices of regularization terms used in this chapter.

4.2.2 Regularization Type

We look at two different types of regularization terms, R(m). The first type H1-Tikhonov
regularization [37], we will refer to as ‘H1’, combines minimizing the parameter of interest
and minimizing the gradient of the the parameter:

RH1(m) =
λ

2

∫
Ω

|m|2 + |∇m|2 dx.

We experimented with solving the inverse problem with only one of the two terms in
the regularization term but found the combination to be better. The first and second
variations of this regularization term are simply

R′H1(m, m̃) = λ

∫
Ω

mm̃+∇m · ∇m̃ dx,

and
R′′H1(m, m̃, m̂) = λ

∫
Ω

m̂m̃+∇m̂ · ∇m̃ dx.

This choice of regularization type is easy to implement, but a drawback is that it promotes
smoothing of reconstructed parameter which, in many applications (e.g. QPAT) is not
realistic.

The other regularization type we consider is a modified form of total variation (TV)
regularization. TV regularization preserves edges and discontinuities in the reconstructed
parameter but is highly nonlinear and non-differentiable when ∇m = 0. The modified TV

77



regularization we use, which we will call ‘TV’ for the rest of the chapter, is defined as

RTV(m) =
λ

2

∫
Ω

(∇m · ∇m+ ε)1/2 dx,

where ε > 0, is needed to unsure existence of the 1st and 2nd variations. The first variation
is

R′TV(m, m̃) = λ

∫
Ω

1

(∇m · ∇m+ ε)1/2
∇m̃ · ∇m dx.

We will note that the second variation is

R′′TV(m, m̃, m̂) = λ

∫
Ω

1

(∇m · ∇m+ ε)1/2

[(
I − ∇m⊗∇m
∇m · ∇m+ ε

)
∇m̃

]
· ∇m̂ dx

The term
(
I − ∇m⊗∇m

∇m·∇m+ε

)
is highly nonlinear and will greatly affect the convergence of

the Newton method we use to solve the inverse problem [125]. We make the choice to
replace the second variation with

R′′TV(m, m̃, m̂) = λ

∫
Ω

1

(∇m · ∇m+ ε)1/2
∇m̃ · ∇m̂ dx.

This limits the Newton method to only first order convergence, but makes the method
more robust [125].

Each of the regularization types contain a regularization parameter, λ, that balances
how much influence the regularization term has on the cost function. For example, if
λ = 0 we would strictly be minimizing the misfit between the data and reconstruction.

Choosing the Regularization Parameter

In Chapter 2.2.2, we discussed different methods that can be used to choose λ, the
regularization (precision) parameter for a linear problem. Some of these techniques can
be adapted for the nonlinear inverse problem setting. For QPAT we used the L-curve
criterion to choose a regularization parameter. The L-curve criterion is used to find a
balance between the misfit and regularization terms. This is done by plotting, on a log-log
scale, the norm of the misfit versus the norm of the regularization term for various values
of λ and the value that corresponds to the point of greatest curve is taken to be the
regularization parameter. The reader is referred to [57] for more details. The method has
no guarantee it will give a good regularization parameter but is still considered a good
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heuristic [59].

4.2.3 Discretization

Now that we have described the optimality conditions, we can now consider our discretized
problem. We discretize (discrete values are represented by bold font) using finite elements
and represent our parameter of interest as a vector m. The forward problem, which is the
constraint of the optimization problem, can be written as

A(m)ui(m) = fi, for i = 1, ..., ns

where A(m) is the discretized forward problem for the given m and fi is a discretized
source. We can then write the data misfit term as

φ(m) =
ns∑
i=1

‖E(m)A(m)−1fi − di‖2
M,

where E(m) is a composition of the discretized representation of exponentiation of the
parameter interest with the projection operator needed to correspond to the data space,
di represents the discretized data, and M is a mass matrix. The form of the discretization
of the adjoint and gradient equations is omitted since it will not provide meaningful
insights to our problem.

We can discretize the Newton system(4.6) for only one source to get the following
discretized system Luu Lum Lup

Lmu R + Lmm Lmp

Lpu Lpm 0


 û

m̂

p̂

 =

 0

−g

0

 , (4.7)

where the the discretized components of the matrix correspond to the system in the
previous equations (4.6). In Appendix B.1.4 we describe the application of the Hessian
for multiple sources. For reasons to be addressed later in the chapter we write the
discretization of second variation w.r.t. m, Lmm(m̃, m̂) as R + Lmm, where R corresponds
second variation of the regularization term and Lmm corresponds to the remaining terms.
We reduce the system by eliminating the incremental state and adjoint variables, û and
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p̂, by using

û = L−1
puLpmm̂

p̂ = −L−1
up(Luuû + Lumm̂)

= L−1
up(LuuL−1

puLpm − Lum)m̂,

to get the reduced linear system
Hm̂ = −g,

where g is the discretized form of (4.4). The application of the Hessian to the direction
m̂ can then be written as

Hm̂ = (R + Lmm)︸ ︷︷ ︸
Hessian of reg

m̂ + (LmpL−1
up(LuuL−1

puLpm − Lum)− LmuL−1
puLpm︸ ︷︷ ︸

Hessian of data misfit

m̂. (4.8)

4.3 Inexact Newton-CG Method

Now that we have a gradient and a way to describe the application of the Hessian
to a vector, we are able to use second order iterative methods, in particular Newton-
CG (conjugate gradient) methods. Newton-CG methods are iterative methods used for
optimization of nonlinear problems. They exhibit second order convergence and can be
augmented with line search methods in order to obtain global convergence [83]. The
core of Newton’s method is that given a cost function J(m) to minimize and an initial
parameter guess m0 the solution can be found iteratively by

mk+1 = mk + αkm̂k, where Hkm̂k = −gk,

and for the k-th iteration gk is the gradient of J , Hk is the Hessian of J , αk is the step
length, and m̂k is the step direction. We do not solve Hkm̂k = −gk exactly, instead we
solve

Hkm̂k + gk = rk,

where rk is the residual. This is done because exact computation if m̂k can be expensive
and we only need to find a descent direction that is an approximation of the actual descent
direction. To solve this system, we use the conjugate gradient (CG) algorithm and we
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refer the reader to [83] for more details.
A issue that can happen is that Hk may not be positive definite which would make

the resulting m̂k not a descent direction. Typically, this occurs when the initial guess
is “far” from the minimum. In order to account for this, we can use a Gauss-Newton
approximation of the Hessian for a few of the initial iterations. In the Gauss-Newton
approximation we drop the second derivative components Lmm, Lum, Lmu from (4.8) to
get the Gauss-Newton Hessian apply

HGN
k m̂k = Rm̂k + (LmpL−1

upLuuL−1
puLpm)︸ ︷︷ ︸

Hessian of Misfit

m̂k (4.9)

The Gauss-Newton Hessian, assuming R is positive definite, is always positive semi-
definite which guarantees that m̂k will be a descent direction. Additionally, we check the
negative curvature condition to ensure m̂k is a descent direction. If negative curvature
is detected on the first iteration we set m̂k = gk, if negative curvature is found at later
iterations we terminate the CG iterations and use the last iterate as the step direction
[83].

Another factor we consider is choosing an appropriate step length αk by using a
backtracking linesearch method. A poorly chosen αk may result in completely overstepping
the minimum or not obtaining a sufficient decrease resulting in slow convergence. We use
the Armijo condition [83]

J(mk + αkm̂k) ≤ J(mk) + cαkg
>
k m̂k, (4.10)

where 0 < c < 1, to find a step length that will result in sufficient decrease. We will note
that the Armijo condition is one of the Wolfe conditions [83]. For this problem we chose
not to use the Wolfe or strong Wolfe conditions because that would potentially involve
multiple additional computations of the gradient. In Table 4.1 we provide the number of
PDE solves needed for one iteration of the inexact-Newton-CG algorithm.

4.3.1 Stopping Criteria

We discuss the stopping criteria for the Newton and Conjugate gradient iterations.
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Table 4.1 In this table we provide the number of forward, adjoint, incremental state, and
incremental adjoint PDE solves needed for one iteration of the inexact-Newton-CG algorithm.

Forward Adjoint Incremental State Incremental Adjoint
Initialization ns 0 0 0
Gradient ns ns 0 0
Hessian 0 0 ns ns

Linesearch ns 0 0 0
Total 3ns ns ns ns

Newton/GN

We explore two different stopping criteria for the outer Newton/GN iterations. The first
stopping criteria, which we will refer to as ’gradient’, will stop the iterations when the
norm of the gradient is less than or equal to some tolerance times the norm of the initial
gradient:

‖gk‖M ≤ ε‖g0‖M,

where ‖ · ‖M is the 2-norm weighted by the mass matrix M.

CG

For the CG iterations we also use two different stopping criteria. The first is simply uses
the relative residual

‖Hkmk + gk‖2 ≤ crtol‖rk‖2.

The other stopping criteria use, is the ‘inexact’ stopping criteria, which terminates
the iterations when

‖Hkmk + gk‖2 ≤ min

(
0.5,
‖gk‖2

‖g0‖2

)
.

4.3.2 Preconditioner

Each CG iteration requires one incremental forward and incremental adjoint solve per
source and can be computationally expensive. To mitigate this, we explore the use of
a preconditioner in order to reduce number of CG iterations. It is well known that the
number of CG iterations depend on the condition number and the clustering of eigenvalues;
the more cluster the faster the convergence. Following the authors of [127], we choose
the preconditioner to be the discretized regularization term R. If we assume that R is
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invertible then we can factor R−1 = LL>. Using this factorization, we can consider the
Gauss-Newton Hessian and rewrite it as

HGN = Hmisfit + R = L−>(L>HmisfitL + I)L−1, (4.11)

where H is the Hessian of the misfit from (4.9) If we chose R to be our preconditioner for
our reduced linear system and use (4.11) we have that

R−1Hm̂ = −R−1g =⇒ (L>HmisfitL + I)L−1m̂ = −L>g.

This means that the CG iterations will depend on the spectrum of (L>HmisfitL + I)

and since Hmisfit is often a low rank operator we would expect more clustering of the
eigenvalues. The condition number of (LHmisfitL

> + I) = (H̃ + I) is

κ(H̃ + I) =
λ1(H̃) + 1

λN(H̃) + 1
.

This is well-conditioned if H̃ is a “small” perturbation of the identity matrix.
If R is too expensive to factorize or invert we consider an approximate factorization

R−1 ≈ R̃−1 = L̃T L̃, then by Weyl’s Theorem [65, Theorem 4.3.1] we have

κ
(
L̃HmisfitL̃

>︸ ︷︷ ︸
H′misfit

+ L̃RL̃>︸ ︷︷ ︸
R′

)
≤ λ1(H′misfit) +

≈1︷ ︸︸ ︷
λ1(R′)

λN(H′misfit) + λN(R′)︸ ︷︷ ︸
≈1

.

This is also well-conditioned if H′misfit is a “small” perturbation of the identity matrix.
If R is not invertible a mass matrix can be added, so the preconditioner can be defined

as
R̂ = R + γM,

where γ > 0 is small and M is a mass matrix in the parameter space. Figure 4.1 shows
the normalized spectrum of the Gauss-Newton Hessian matrix and we see clustering of
the eigenvalues when the preconditioner is used. One of the properties of CG methods is
that when there is clustering of the eigenvalues the convergence rate is faster. In Section
4.4.1, we look at the effect of this preconditioner.
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Figure 4.1 Normalized spectrum of the Gauss-Newton Hessian with and without precondi-
tioning.

4.4 Numerical Results

In order to solve the inverse problem we rely on a software called FEniCS [41, 2] to
implement the PDEs. FEniCS allows users to input the variational form of the PDE they
are trying to solve and specify a mesh they wish to solve the PDE on, then it is able
to discretize and solve the PDE using finite element methods. The code used to solve
the inverse problem is adapted from hIPPYlib [127, 123, 124, 126] and uses PETSc [11]
for linear algebra operations and solvers. All of the experiments were run on a cluster
powered by the Slurm batch engine running on Ubuntu 16.04. Nodes on the cluster are
powered by two Intel(R) Xeon(R) CPU E5-2690 8-core CPUs @ 2.90GHz with 128GB of
DDR3 RAM, only 1 core was used in all of the experiments.

For all of the experiments, to avoid an inverse crime, we first generate synthetic data
obtained by solving the forward problem with the true parameter on a finer mesh of size
401× 401. We then project the resulting field on to a coarser grid of size 101× 101 and
add 2% Gaussian noise to simulate measurement error. The mesh elements are from the
Lagrange family of degree 1. We assumed all the other parameters described in Section
4.1.1 were constant with the following values taken from [107]: interface constant, A = 2.74,
the diffusion coefficient, D = 1/6.0075, and µ′s = 2.0025. In all the experiments the domain
is [0, 1]× [0, 1] and the initial parameter guess was a constant value of ln 0.02 ≈ −3.9.
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Figure 4.2 Plot of the location of the sources which are indicated in yellow.

4.4.1 Method Type

For our first experiment, we compared different optimization methods that can be used to
solve the QPAT inverse problem. We used the ‘H1’ regularization type described in Section
4.2.2 and we considered a Gauss-Newton method with and without preconditioning, a
L-BFGS method, and an inexact Newton method. For this experiment there are 12 sources,
3 on each side located an equal distance apart, see Figure 4.2.

In Table 4.2 we report the number of iterations, relative error of the computed solution
compared with the true solution, and the time it took for the method to converge. The
Gauss-Newton methods used performed the worse in terms of number of iterations and
time. We were able to demonstrate that the preconditioner described in Section 4.3.2
was effective in reducing the number of CG iterations and in fact reduces the iterations
more than tenfold. The L-BFGS method used for this experiment was the default method
provided in Python’s scipy.optimize package [68, 128]. While all of the methods achieved
the same order of relative error it is clear that the Newton method without preconditioning
performed the best in terms of computational time. The Gauss-Newton approach has a
lower cost per iteration compared to the Newton approach; however, the Newton approach
takes fewer iterations and hence converges faster. This justifies the additional effort in
deriving and implementing the Newton approach. In Figure 4.3, we show the reconstructed
solutions for the methods in Table 4.2. They are visually identical and capture the features
of the true image well. We can see that due to the choice of regularization type the edges
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of the reconstructed features are not sharp.
In Table 4.3 we show the effects of our preconditioner for the Newton method for the

relative residual CG stopping criteria. Here it is clear that our preconditioner increases the
number of CG iterations and thus the computational cost, the opposite of our goal. This
is due to the fact that the Newton Hessian has additional terms that are not captured by
the preconditioner we use. This clearly dictates the need to design a preconditioner based
on the Newton Hessian in the future.

Table 4.2 Here we compare methods for the ‘H1’ regularization type using gradient and
inexact stopping criteria. We see that using a preconditioner drastically decreases the number
of CG iterations for the Gauss-Newton method.

Meth. Precond. Outer Iter. CG Iter. Rel. Err. Time(s)
L-BFGS N/A 8 N/A 1.746E-02 856.60
GN No 57 5166 2.472E-02 1770.13
GN Yes 64 369 2.449E-02 1503.17
Newt No 41 113 2.404E-02 628.60

Table 4.3 Here we compare the Newton method for ‘H1’ regularization type using gradient
and relative residual stopping criteria. We can see that the preconditioner from Section 4.3.2
actually increases the number of CG iterations.

Meth. Precond. Outer Iter. CG Iter. Rel. Err. Time(s)
Newt Yes 37 9612 2.411E-02 1568.83
Newt No 37 1319 2.409E-02 694.66

4.4.2 Regularization Type

In this experiment, we compare the two choices of regularization types described in Section
4.2.2. We use the Newton method with the gradient stopping criteria for the Newton
iterations and the inexact stopping criteria for the CG iterations and report the results of
the iteration count, relative error and time in Table 4.4. We can see that even with using
the approximation of the TV Hessian the method converges in a comparable number of
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(a) True (b) GN No preconditioner

(c) GN with preconditioner (d) L-BFGS

(e) Newton

Figure 4.3 The reconstructions of the QPAT image found using the different methods, the
relative error for the reconstructions are provided in Table 4.2.

iterations and computational time. The relative error for both regularization types are
similar, but in Figure 4.4 it is easily seen that the TV regularization preserves the edges
of parameter better.
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Table 4.4 Here we compare the ‘TV’ and ‘H1’ regularization types for the Newton method
with the gradient stopping criteria for the Newton iterations and the inexact stopping criteria
for the CG iterations.

Meth. Reg. Newt Iter. CG Iter. Rel. Err. Time(s)
Newt TV 10 237 8.034E-03 171.37
Newt H1 41 113 2.404E-02 628.60

(a) True image (b) ‘H1’

(c) ‘TV’

Figure 4.4 Reconstructions using different regularization types; the relative error is provided
in Table 4.4.

88



4.4.3 Increasing the Number of Sources

For this experiment, we look at how increasing the number of sources effects the number of
iterations and time it takes the method to converge. In Table 4.5, we recorded the results
of increasing the number of sources for the Newton method using the ‘H1’ regularization
type with the gradient and relative residual stopping criteria. The table shows that
increasing the number of sources corresponds to an increase on the number of iterations
and an increase in the time it takes the method to find a solution. The relative errors of
the solutions are all the same order. This suggests that increasing the number of sources
increases the cost but does not improve the reconstruction accuracy.

Table 4.5 Here we can see the effects of increasing the number of sources. We use the ‘H1’
Newton method without preconditioning for the gradient and relative residual stopping crite-
ria

# of sources Newt Iter. CG Iter. Rel. Err. Time(s)
12 41 113 2.404E-02 628.60
20 54 1304 2.299E-02 1551.24
40 95 2297 2.263E-02 5466.65
60 229 4824 2.236E-02 22744.03
84 187 3778 2.226E-02 22597.89

4.5 Conclusion

In this chapter, we presented an efficient algorithm for the deterministic solution to
the QPAT inverse problem. We derived the first and second order optimality conditions
for the problem and demonstrated how the discretized conditions can be used in a
Newton algorithm. We compared the LBFGS, Gauss-Newton, and Newton approach and
demonstrated that our method was capable of achieving the same order of accuracy in a
faster amount of time. Additionally, we compared two different regularization types and
showed that they had comparable results.

For future work there is a need to derive better preconditioners for the Newton
approach. We demonstrated that using additional sources does not significantly increase
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the accuracy of the reconstruction but increases the computational cost. This suggests
that incorporating randomization, in a manner similar to the authors of [56], could reduce
the cost associated with multiple sources. Another future direction is to adopt a Bayesian
approach for QPAT and efficiently solve for the MAP estimate. We could then linearize
the QPAT problem and use the prior preconditioned Hessian to sample from the posterior
distribution using methods described in Chapter 3.

90



CHAPTER

5

CONCLUSIONS

In this thesis, we developed efficient methods for solving inverse problems and quantifying
the uncertainty in large-scale inverse problems arising in imaging applications. The algo-
rithms that we developed were validated on synthetic problems from a model application,
Photo-acoustic tomography (PAT), which is an image reconstruction inverse problem
with great potential in biomedical imaging.

In the first part of the thesis, Chapters 2 and 3, we focused on uncertainty quantification
for linear inverse problems with Gaussian posterior distributions. This is a good model for
the first part of the PAT reconstruction process. In Chapter 2, we developed error bounds
for monitoring the accuracy of the approximate posterior covariance matrix based on the
generalized hybrid Golub-Kahan (genHyBR) [33] iterates. We derived and showed how to
efficiently compute bounds for the Kullback-Leibler divergence between the posterior and
the approximate posterior, and between the posterior and prior distributions. Additionally,
we developed and demonstrated error bounds for the accuracy of approximated optimality
criteria. We demonstrated effectiveness of the bounds on a smaller toy problem and we
used of the genHyBR method to solve the linear Bayesian inverse problem associated
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with PAT. In Chapter 3, we used preconditioned Krylov subspace methods to generate
samples from the posterior distribution of linear Bayesian inverse problems with Gaussian
posteriors. We developed two sampling algorithms based on preconditioned Lanczos
methods to generate samples from the posterior distribution. The first algorithm uses a
low-rank approximation of the posterior covariance constructed by the genHyBR algorithm
to generate samples from the approximate posterior distribution. Additionally, we derived
error bounds for the accuracy of a sample generated from this approximate posterior
covariance. The second algorithm generates approximate samples from the posterior
distribution. For both preconditioned sampling methods we demonstrate the efficiency of
the algorithm on the PAT model problem. In the second part of the thesis, Chapter 4, we
developed Gauss-Newton and Newton solver for the deterministic non-linear Quantitative
photo-acoustic tomography (QPAT) inverse problem which is the second part of the
PAT reconstruction process. We studied certain aspects of solver: the the regularization
type, choice of preconditioner, choice of stopping criteria, and behavior of the solver as
the number of sources increased. We demonstrated the performance of our solvers on a
synthetic model problem in QPAT.

Optical
parameters

Acoustic
Parameters

Ultrasound
data

One-step inversion

Acoustic inversionDiffusion inversion

Two-step inversion

Figure 5.1 A flowchart that compares the one-step and two-step PAT inverse problem.

Future work can take several different directions. While this thesis adopted a two-step
approach, an alternative approach is to consider a one-step method for solving the PAT
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inverse problem. That is, the goal is to directly estimate the optical parameters from the
measured data. While the one-step approach has many potential benefits from a modeling
standpoint, it is computationally challenging since we now have to solve a coupled inverse
problem. Figure 5.1 is a schematic that explains the idea one-step and two-step inversion
process entail. There have been some advances in developing a practical one-step method
[40, 122, 94, 67]. One possibility is to extend the Newton-based solvers in Chapter 4 to the
one-step case. Another possibility is extending the UQ methods developed in Chapters 2
and 3 by using a Laplace’s approximation to the non-Gaussian posterior distribution.
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APPENDIX

A

RESULTS USED IN CHAPTER 2

A.1 Best Approximation of H, (2.30)

We will need to use the following

Fact A.1.1. That for a given orthonormal Q̃ ∈ Rm×n and H̃ = Q̃>ÃQ̃,

‖R(H̃)‖2 ≤ ‖R(C)‖2 ∀ C ∈ Rm×m, where R(C) = ÃQ̃− Q̃C.

The proof can be found in [92, Theorem 11.4.2].

Theorem A.1.1. Given Vk a basis for the subspace Sk ≡ Kk(HQ,A>Γ−1
noiseb) we have that

Tk ≡ B>k Bk = min
∆∈Rk×k

‖HQVk −Vk∆‖Q.
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Proof. First we note

‖M‖Q = max
‖x‖2=1

‖Mx‖Q = max
‖x‖2=1

‖Q1/2Mx‖2 = ‖Q1/2M‖2

.
Using this we can then write

‖HQVk −Vk∆‖Q = ‖ (Q1/2HQ1/2)︸ ︷︷ ︸
Ã

(Q1/2Vk)︸ ︷︷ ︸
Q̃

− (Q1/2Vk)︸ ︷︷ ︸
Q̃

∆‖2.

Written in this way it is clear that this mat Fact A.1.1 . From (2.17) it is clear that
Q1/2Vk is orthonormal and we can write

H̃ = Q̃>ÃQ̃

= V>k Q1/2Q1/2HQ1/2Q1/2Vk

= V>k QHQVk

= Tk

We will use the fact A.1.1 From (2.17) it is clear that Q1/2Vk is orthonormal and we have
that

‖R(H̃)‖2 ≤ ‖R(C)‖2 ∀ C

=⇒ ‖Q1/2HQVk −Q1/2VkTk‖2 ≤ ‖(Q1/2HQVk)−Q1/2VkC‖2 ∀ C

‖HQVk −VkTk‖Q ≤ ‖HQVk −VkC‖Q ∀ C.
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A.2 Derivation of sk using Γ̂post, (2.33)

First, we plug in Γ̂post = (λ2Q−1 + Ĥ)−1 and rearrange to get

Γ̂postA
>Γ−1

noiseb = (λ2Q−1 + VkTkV
>
k )−1A>Γ−1

noiseb

= (λ2I + QVkTkV
>
k )−1QA>Γ−1

noiseb .

Then, using the gen-GK relationships, we note that

A>Γ−1
noiseb = A>Γ−1

noiseUk+1β1e1 = VkB
>
k β1e1 .

Furthermore, using the Sherman-Morrison-Woodbury formula [65, Eqn. (0.7.4.1)], we have

(λ2I + QVkTkV
>
k )−1 = λ−2I− λ−4QVk(T

−1
k + λ−2I)−1V>k .

Thus, we get

Γ̂postA
>Γ−1

noiseb =
(
λ−2I− λ−4QVk

(
T−1
k + λ−2I

)−1
V>k

)
QVkB

>
k β1e1

= QVk

(
λ−2I− λ−4

(
T−1
k + λ−2I

)−1
)

B>k β1e1 (∗)

= QVk(Tk + λ2I)−1B>k β1e1

= QVkzk,

where in (∗) we use the fact that (T−1
k + λ−2I)−1 = λ2I− λ4(Tk + λ2I)−1. Since Tk = B>k Bk,

then from (2.18) we have the last equality.
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A.3 Lemma of independent interest used in Theorems

2.3.2, 2.3.3 and Section 2.4.1

Lemma A.3.1. Let A ∈ Rn×n be symmetric positive semidefinite and let P ∈ Rn×n be an
orthogonal projection matrix. Then

|trace(I + A)−1 − trace(I + PAP)−1| ≤ trace(A−PAP),

trace
[
(I + A)(I + PAP)−1

]
≤ n+ trace(A−PAP)

0 ≤ log det(I + A)− log det(I + PAP) ≤ trace(A−PAP).

Proof. Let {λi}ni=1 and {µi}ni=1 denote the eigenvalues of A and PAP. Since both matrices
are positive semidefinite, their eigenvalues are non-negative. Since P is a projection matrix, its
singular values are at most 1. The multiplicative singular value inequalities [18, Problem III.6.2]
say σi(PA1/2) ≤ σi(A

1/2), so λi ≥ µi for i = 1, . . . , n, and therefore, trace(A) ≥ trace(PAP).
Then for the first inequality

|trace(I + PAP)−1 − trace(I + A)−1| =

∣∣∣∣∣
n∑
i=1

λi − µi
(1 + µi)(1 + λi)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

(λi − µi)

∣∣∣∣∣ = |trace(A−PAP)|.

The inequalities follow since λi, µi are non-negative. The absolute value disappears since
trace(A) ≥ trace(PAP).

For the second inequality, write

(I + A)(I + PAP)−1 = A(I + PAP)−1 −PAP(I + PAP)−1 + I.

Both A and (I + PAP)−1 are positive semidefinite (the second matrix is definite), so the
trace of their product is nonnegative [65, Exercise 7.2.26]. Then a straightforward application
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of the von Neumann trace theorem [65, Theorem 7.4.1.1] leads to

trace(A(I + PAP)−1) ≤
n∑
i=1

λi
1 + µi

.

By utilizing its eigendecomposition, we see that trace[PAP(I+PAP)−1] =
∑n

i=1
µi

1+µi
. Putting

it together, we get

trace[(I + A)(I + PAP)−1] ≤ n+
n∑
i=1

(
λi

1 + µi
− µi

1 + µi

)
≤ n+

n∑
i=1

λi − µi
1 + µi

≤ n+
n∑
i=1

(λi − µi).

Connecting the sum of the eigenvalues with the trace delivers the desired result.
For the third inequality, use Sylvester’s determinant identity [87, Corollary 2.11] to write

log det(I + PAP) = log det(I + A1/2PA1/2).

Denote B = A1/2PA1/2 and introduce the notation of Loewner partial ordering [65, Section
7.7]. Let M,N ∈ Rn×n be symmetric. Then, M � N means N−M is positive semidefinite.
Since P � I, it follows that B � A [65, Theorem 7.7.2]. Then apply [1, Lemma 9], to obtain

0 ≤ log det(I + A)− log det(I + B) ≤ log det(I + A−B).

Finally since log(1 + x) ≤ x for x ≥ 0, log det(I + A−B) ≤ trace(A−B). The proof is
completed by observing that trace(B) = trace(PAP) by the cyclic property of trace.
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A.4 Facts used in Section 2.3.5

Using cyclic properties of the trace we have

trace(λ2Q−1Γpost) = trace(λ2Q−1/2Q−1/2(λ2Q−1 + H)−1)

= trace(λ2Q−1/2(λ2Q−1 + H)−1Q−1/2)

= trace
(
(I + λ−2HQ)−1

)
.

In this case we use log properties and the property of determinants that for square matrices
of the same size det(AB) = det(A) det(B) to show

log det(λ2Q−1Γpost) = log det(λ2Q−1/2Q−1/2(λ2Q−1 + H)−1)

= log det(λ2Q−1/2(λ2Q−1 + H)−1Q−1/2)

= − log det
(
I + λ−2HQ

)
.

Using the Sherman-Morrison-Woodbury formula [65, Eqn. (0.7.4.1)] we show that

trace
(

(I + λ−2ĤQ)−1
)

= trace
(
(I + λ−2Q1/2VkTkV

>
k Q1/2)−1

)
= trace

(
I−Q1/2Vk(λ

2I + TkV
>
k Q1/2Q1/2Vk)

−1TkV
>
k Q1/2

)
= n− trace

(
Tk(Tk + λ2I)−1

)
.

The last line comes from cyclic properties of trace and (2.17).

Using Sylvester’s determinant identity [87, Corollary 2.11] and (2.17) it is apparent that

log det(I + λ−2ĤQ) = log det(I + λ−2Q1/2VkTkV
>
k Q1/2)

= log det(I + λ−2Tk).
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APPENDIX

B

RESULTS USED IN CHAPTER 4

B.1 Derivation of Lagrangian and First and Second Vari-

ations

We begin with the PDE for collimated sources

−∇ · (D∇ui) + emui = fi, x ∈ Ω, (B.1)

ui + AD∇ui · n = 0, x ∈ ∂Ω,

and cost function

J(m) =
ns∑
i=1

[∫
Ω

(emui − ψobsi )2 dx

]
+
λ

2

∫
Ω

R(m) dx, (B.2)

which we use to form the Lagrangian
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L({ui}, {pi},m) =
ns∑
i=1

[ ∫
Ω

(emui − ψobsi )2 dx−
∫

Ω

pi∇ · (D∇ui) dx+

∫
Ω

empiui dx

−
∫

Ω

pifi dx+

∫
∂Ω

1

A
piui ds+

∫
∂Ω

piD∇ui · n ds
]

+
λ

2

∫
Ω

R(m) dx.

We use Green’s identity∫
Ω

k(x)∇u · ∇v dx = −
∫

Ω

v∇ · (k(x)∇u) dx+

∫
∂Ω

vk(x)∇u · n ds,

to rewrite the Lagrangian as

L({ui}, {pi},m) =
ns∑
i=1

[ ∫
Ω

(emui − ψobsi )2 dx+

∫
Ω

D∇pi · ∇ui dx+

∫
Ω

empiui dx

−
∫

Ω

pifi dx+

∫
∂Ω

1

A
piui ds

]
+
λ

2

∫
Ω

R(m) dx.

We remind the reader that the first variation of a function is calculated as

Fx(x, y)[x̃] =
d

dε
F(x+ εx̃, y)

∣∣∣∣
ε=0

∀x̃,

and the second variation is

Fxy(x, y)[x̃, ŷ] =
d

dε
Fx(x, y + εŷ)

∣∣∣∣
ε=0

∀x̃.

We will define the notation R′(m)[m̃] and R′′(m)[m̃, m̂] to be the first and second variations,
respectively, of the regularization term, R(m).
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We can then state that the first order optimality conditions are

Lpj (uj, pj,m) [p̃] = 0, ∀p̃ ∈ H1, for j = 1, ..., ns

Luj (uj, pj,m) [ũ] = 0, ∀ũ ∈ H1, for j = 1, ..., ns

Lm ({ui}, {pi},m) [m̃] = g(m)[m̃], ∀m̃ ∈ H1

B.1.1 Derivation of the Weak Form of the State Equation

Since we are taking a reduced order approach, we only need to look at one source (or j-th
term) at a time. We begin by evaluating

L(uj, (pj + εp̃),m) =

∫
Ω

(emuj − ψobsi )2 dx−
∫

Ω

D∇(pj + εp̃) · ∇uj dx

+

∫
Ω

em(pj + εp̃)uj dx−
∫

Ω

(pj + εp̃)f dx

+

∫
∂Ω

1

A
(pj + εp̃)uj ds+

λ

2

∫
Ω

R(m) dx.

We then take the derivative with respect to ε, then set ε = 0, yielding

Lpj(uj, pj,m)[p̃] =

∫
Ω

D∇p̃ ·∇uj dx+

∫
Ω

emp̃uj dx−
∫

Ω

p̃f dx+

∫
∂Ω

1

A
p̃uj ds = 0, ∀p̃ ∈ H1,

for j = 1, ..., ns.

B.1.2 Derivation of the Weak Form of the Adjoint Equation

Following the previous section, we begin by evaluating

L((uj + εũ), pj,m) =

∫
Ω

(em(uj + εũ)− ψobsj )2 dx+

∫
Ω

D∇pj · ∇(uj + εũ) dx

+

∫
Ω

empj(uj + εũ) dx−
∫

Ω

pjf dx

+

∫
∂Ω

1

A
pj(uj + εũ) ds+

λ

2

∫
Ω

R(m) dx
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We then take the derivative with respect to ε, then set ε = 0, yielding

Luj(uj, pj,m)[ũ] =

∫
Ω

2emũ(emuj − ψobsj ) dx+

∫
Ω

D∇pj · ∇ũ dx

+

∫
Ω

empjũ dx+

∫
∂Ω

1

A
pjũ ds = 0 ∀ũ ∈ H1,

for j = 1, ..., ns.

B.1.3 Derivation of the Weak Form of the Gradient Equation

We begin by evaluating

L({ui}, {pi}, (m+ εm̃)) =
ns∑
i=1

[ ∫
Ω

(em+εm̃ui − ψobsi )2 dx+

∫
Ω

D∇pi · ∇ui) dx

+

∫
Ω

em+εm̃piui dx−
∫

Ω

pif dx

+

∫
∂Ω

1

A
piui ds

]
+
λ

2

∫
Ω

R(m+ εm̃) dx.

We then take the derivative with respect to ε, then set ε = 0, yielding

Lm({ui}, {pi},m)[m̃] =
ns∑
i=1

[ ∫
Ω

2m̃emui(e
mui − ψobsi ) dx+

∫
Ω

m̃empiui dx

]
+
λ

2

∫
Ω

R′(m)[m̃] dx = g(m)[m̃] ∀m̃ ∈ H1.

B.1.4 Derivation of the Incremental Equations and the Application

of the Hessian

To derive the application of the Hessian we need to take the second variations of the Lagrangian
with respect to each parameter. As before we only need to look at the j-th term for j = 1, ...ns.
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Using the previous results, we get

Lpjuj(uj, pj,m)[p̃, û] =

∫
Ω

D∇p̃ · ∇ûj dx+

∫
Ω

emp̃ûj dx+

∫
∂Ω

1

A
p̃ûj ds

Lpjm(uj, pj,m)[p̃, m̂] =

∫
Ω

m̂emp̃uj dx

Lpjpj(uj, pj,m)[p̃, p̂] = 0

Lujuj(uj, pj,m)[ũ, û] =

∫
Ω

2e2mũûj dx

Lujpj(uj, pj,m)[ũ, p̂] =

∫
Ω

D∇p̂j · ∇ũ dx+

∫
Ω

emp̂jũ dx

∫
∂Ω

1

A
p̂jũ ds

Lujm(uj, pj,m)[ũ, m̂] =

∫
Ω

4ũujm̂e
2m dx−

∫
Ω

2m̂ũemψobsj dx+

∫
Ω

pjm̂ũe
m dx

Using the second variations we have that the incremental state equation is

Lpjuj(uj, pj,m)[p̃, û] + Lpjm(uj, pj,m)[p̃, m̂] + Lpjpj(uj, pj,m)[p̃, p̂] = 0, ∀p̃ ∈ H1,

which becomes∫
Ω

D∇p̃ · ∇ûj dx+

∫
Ω

emp̃ûj dx+

∫
∂Ω

1

A
p̃ûj ds

∫
Ω

m̂emp̃uj dx = 0,∀p̃ ∈ H1. (B.3)

For all j = 1, ..., ns we can solve the incremental state equations to find the incremental state
variables, ûj’s.

Similarly, we have that the incremental adjoint equation is

Lujuj(uj, pj,m)[ũ, û] + Lujm(uj, pj,m)[ũ, m̂] + Lujpj)(uj, pj,m)[ũ, p̂] = 0, ∀ũ ∈ H1,

which becomes∫
Ω

2e2mũûj dx+

∫
Ω

D∇p̂j · ∇ũ dx+

∫
Ω

emp̂jũ dx+

∫
∂Ω

1

A
p̂jũ ds

+

∫
Ω

4ũujm̂e
2m dx−

∫
Ω

2m̂ũemψobsj dx+

∫
Ω

pjm̂ũe
m dx = 0,∀ũ ∈ H1. (B.4)

For all j = 1, ..., ns we can solve the incremental adjoint equations to find the incremental
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adjoint variables, p̂j’s.
Once we have all of the incremental state and adjoint variables we can use them in the

application of the Hessian in the direction m̂. We have that

Lmuj({uj}, {pj},m)[m̃, û] =

∫
Ω

4ûjujm̃e
2m dx−

∫
Ω

2m̃ûje
mψobsj dx+

∫
Ω

pjm̃ûje
m

Lmpj({uj}, {pj},m)[m̃, p̂] =

∫
Ω

m̃emp̂juj dx,

for each j = 1, ..., ns and

Lmm({ui}, {pi},m)[m̃, m̂] =
ns∑
i=1

[ ∫
Ω

2m̃m̂emui(2e
mui − ψobsi ) dx+

∫
Ω

m̃m̂empiui dx

]
+
λ

2

∫
Ω

R′′(m)[m̃, m̂] dx.

Putting everything together we can write that the application of the Hessian in a direction
m̂, H(m)[m̃, m̂] is

ns∑
i=1

Lmui({ui}, {pi},m)[m̃, û] + Lmm({ui}, {pi},m)[m̃, m̂]

+
ns∑
i=1

Lmpi({ui}, {pi},m)[m̃, p̂] = H(m)[m̃, m̂], ∀m̃ ∈ H1

which becomes

ns∑
i=1

[ ∫
Ω

4uiûie
2mm̃ dx−

∫
Ω

2m̃emûiψ
obs
i dx+

∫
Ω

pim̃e
mûi dx (B.5)

+

∫
Ω

m̃p̂iue
m dx+

∫
Ω

2m̃m̂emui(2e
mui − ψobsi ) dx

+

∫
Ω

pim̃m̂e
mui dx

]
+
λ

2

∫
Ω

R′′(m)[m̃, m̂] dx = H(m)[m̃, m̂].
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