
ABSTRACT

WATKINS, SETH QUENTIN. Realization of L (2⇤0) for the Lie Algebra A(2)2n�1. (Under the direction of
Kailash C. Misra.)

In affine Lie algebra representation theory, one of the primary objectives is to give an explicit

construction of integrable highest weight modules. It is known that for each dominant weight there

exists an integrable highest weight module. The principally specialized character of an integrable

highest weight module has a product form. When the product of the principally specialized char-

acter is equal to the generating function of a specific class of partitions, then those partitions can

be used to construct a minimal spanning set for the module. In order to do this, one must use

Z -operators. Lepowsky and Wilson developed a theory of Z -operators to realize affine Lie algebras

and their integrable highest weight modules. Harger used Z -operators to construct the integrable

highest weight module L (2⇤0) for the affine Lie algebra A(2)7 . In my dissertation, I will construct

the integrable highest weight module L (2⇤0) for the general case A(2)2n�1. The module L (2⇤0) can be

realized as a submodule of L (⇤0)⌦ L (⇤0). Then the Z -operators for L (2⇤0) can be built from the

Z -operators for L (⇤0)⌦L (⇤0). Using the generalized Euler identity, I have shown that the principally

specialized character of L (2⇤0) for A(2)2n�1 is the generating function for partitions where each part is

even and each part occurs at most n times. Therefore a basis for L (2⇤0) will have basis elements

which correspond to those partitions.

In addition to giving a realization of L (2⇤0) for A(2)2n�1, I have also computed the principally

specialized characters for the level 3 modules of A(2)2n�1, n = 3, 4, 5, 6, 7. In the last chapter I provide a

conjecture which gives a formula for the principally specialized characters for the level 3 modules

for the general case of A(2)2n�1.
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CHAPTER

1

INTRODUCTION

Lie algebras were discovered in the 19th century by the Norwegian mathematician Sophus Lie. Lie

studied what he called infinitesimal transformations or transformation groups. The term Lie algebra

did not come about until the 1930’s.

A Lie algebra is a vector space V over a field F equipped with a bilinear map [, ] : V ⇥V ! V

called the Lie bracket. The Lie bracket satisfies the Jacobi identity, and the bracket of any element

with itself is 0. As a result the bracket is also anticommutative. In my work I will always take the field

F to be the complex numbers C.

Let g be a Lie algebra. A subspace I of g is an ideal if [x , y ] 2 I for all x 2 g and y 2 I . The derived

series [3] is a series of ideals of g given by g(0) = g,g(1) = [g,g],g(2) = [g(1),g(1)], . . .. We say g is solvable

[3] if g(n ) = 0 for some n . From [3]we know g has a unique maximal solvable ideal called r a d (g). If

g 6= 0 and r a d (g) = 0, then g is semisimple [3]. The finite dimensional semisimple Lie algebras are

classified by their Cartan matrices, listed in [3].

In 1968, Victor Kac and Robert moody defined a class of Lie algebras generalizing finite dimen-

sional semisimple Lie algebras which are now known as Kac-Moody Lie algebras. these algebras are

associated with an n ⇥n matrix A = (ai j )ni , j=1 with ai i = 2, ai j  0, ai j = 0) a j i = 0 for i , j = 1, . . . , n

and i 6= j called a generalized Cartan matrix (GCM). A GCM is symmetrizable if it can be written as

the product of two matrices where one is an invertible diagonal matrix and the other is a symmetric

matrix [4]. A GCM is decomposable if it decomposes into a nontrivial direct sum after applying

the same permutation to the rows and columns [4]. We say a GCM is indecomposable if it is not
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decomposable. A GCM is affine if the corank is 1 and the null space is spanned by a vector with

positive entries [4]. The affine GCMs are listed in [4]. Given a symmetrizable, indecomposable, GCM

A one can construct the Kac-Moody algebra g(A) associated with that GCM [4]. If the GCM is affine,

then we say g(A) is affine.

A representation of a Lie algebra g is a linear map ⇡ : g! g l (V ), where g l (V ) is the set of linear

operators on some vector space V , such that ⇡([x , y ]) =⇡(x )⇡(y )�⇡(y )⇡(x ). In this case V is called

a g-module. In Lie algebra representation theory one of the main objectives is to give an explicit

description of a module or family of modules. From [1] and [7]we get the principal realization which

provides a way to construct a Lie algrebra so as to provide a basis for a given integrable highest

weight module. A Heisenberg Lie algebra of order n has a basis ei , fi (i = 1, . . . , n ), z , such that

[ei , f j ] =�i j z (i , j = 1, . . . , n ), and all other brackets are zero [4]. An affine Lie algebra in the prinipal

picture contains an infinite dimensional Hiesenberg subalgebra with a triangular decomposition.

The subspace containing the highest weight vectors of the Heisenberg subalgebra is called the

vacuum space. In [7] and [6] the authors describe the vacuum space of a given module. Now the

problem becomes describing the vacuum space instead of the entire module. In this thesis, I will

provide an explicit construction for the vaccum space of the integrable highest weight module

L (2⇤0). The vacuum space is denoted ⌦(L (2⇤0))

The principally specialized character is the prinipal specialization of the Weyl character formula,

which has an infinite product form. The principally specialized character described in [5], along

with the grading of the vacuum space described in [7] and [6], provides information about the basis

elements of the vacuum space. In the case that the principally specialized character can be written as

the generating function for a specific type of partitions, then one can construct basis elements of the

vacuum space that meet the partition criteria. The principally specialized character of the vacuum

space is denoted � (⌦(L (2⇤0)))Using the principally specialized character and the generalized Euler

identity [8], I have proved the following theorem.

Theorem 1.

� (⌦(L (2⇤0))) =
Y

j 6⌘0mo d (n+1)

(1�q 2 j )�1 =
X

`�0

c`q
`

where c` = the number of partitions of `with even parts such that each part appears at most n times.

In order to construct a basis for ⌦(L (2⇤0)) one can use Z�operators, defined in [7] to construct a

spanning set. Then the relations given by the generalized commutator, also defined in [7], allow one

to reduce the original spanning set to a minimal spanning set. In [2], Harger constructed bases for

⌦(L (2⇤0)), ⌦(L (⇤2)), and ⌦(L (⇤4)) in the case of A(2)7 . My work is a generalization of Harger’s result for

⌦(L (2⇤0)) extended to the case of A(2)2n�1. In the last chapter I will also provide a list of the principally

specialized characters for level 3 modules of A(2)2n�1, 3 n  7, and a conjecture for a general formula

for these principally specialized characters.
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CHAPTER

2

PRELIMINARIES

2.1 Lie Algebra and the Generalized Cartan Matrix

Definition 2.1.1. A Lie Algebra is a vector space g over a field F , with an operation [, ] : g⇥ g! g,

called the Lie bracket or commutator, which satisfies the following conditions:

1. The bracket is bilinear.

2. [x , x ] = 0 for all x 2 g

3. [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 for all x , y , z 2 g

I will always take F to be the field of complex numbers, denoted C. Also observe that criteria 1.

and 2. above, when applied to [x + y , x + y ], imply that [x , y ] =�[y , x ] for all x , y 2 g.

Definition 2.1.2. A Lie algebra g is abelian if [x , x ] = 0 for all x 2 g.

Definition 2.1.3. Let g be a Lie algebra. A subspace I of g is an ideal if [x , y ] 2 I for all x 2 g and

y 2 I .

Let g be a Lie algebra, then there is a sequence of ideals of g defined by g(0) = g,g(1) = [g,g],g(2) =
[g(1),g(1)], . . .. This sequence is called the derived series [3]. We say g is solvable if g(n ) = 0 for some n

[3]. From [3]we know g contains a maximal solvable ideal, call it rad(g).

Definition 2.1.4. A Lie algebra g is semisimple if rad(g) = 0 [3].

Definition 2.1.5. The matrix A = (ai , j )ni , j=1 is called a generalized Cartan matrix (GCM) if it satisfies

the following conditions [4]:
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1. ai i = 2

2. ai j are nonpositive integers for i 6= j

3. ai j = 0 implies a j i = 0

Definition 2.1.6. A GCM A = (ai j )n⇥n is symmetrizable if there exists an invertible diagonal matrix

D and a symmetric matrix B such that A =D B [4].

Definition 2.1.7. A GCM A = (ai j )n⇥n is called decomposable if, after applying the same permutation

to the rows and columns, A decomposes into a nontrivial direct sum. A is indecomposable if it is not

decomposable [4].

Consider the column vector

u =

0
BBBB@

u1

u2
...

un

1
CCCCA

We say u > 0 if ui > 0 for all i = 1, . . . , n .

Definition 2.1.8. Let A = (ai j )n⇥n be an indecomposible GCM. Then A is of Affine type if corankA = 1,

or if there exists a vector u > 0 such that Au = 0 [4].

In 1968, V. Kac and R. Moody independently discovered the Lie algebra associated with a given

GCM. From [4], we know that each symmetrizable indecomposable Cartan matrix has a correspond-

ing Lie algebra called the Kac-Moody Lie algebra.

Definition 2.1.9. The Cartan Datum of a GCM A is a triple (h,⇧,⇧_), where h is a complex vector

space, ⇧= {↵1, . . . ,↵n}⇢ h
⇤ and ⇧_ = {h1, . . . , hn}⇢ h, which satisfies the following criteria [4]:

1. ⇧ and ⇧_ are linearly independent.

2. ↵i (hj ) = a j i , (i , j = 1, . . . , n )

3. n � `= dimh�n, where ` is the rank of A

Let g be a Lie algebra. For each x 2 g there is a linear operator on g called a dx defined by

a dx (y ) = [x , y ] for all y 2 g. Given a symmetrizable GCM A and its Cartan datum, (h,⇧,⇧_), we can

construct the Kac-Moody Lie algebra, g(A), associated with A. The Lie algebra g(A) is generated by
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the set {ei , fi | i 2 J }[h, where J = {1, . . . , n}, with the following relations [4].

[ei , f j ] =�i , j hi (i , j 2 J )

[h , h 0] = 0 (h , h 0 2 h)

[h , ei ] =↵i (h )ei

[h , fi ] =�↵i (h ) fi (i 2 J ; h 2 h)

(a dei
)1�ai j e j = 0 (i , j 2 J ; i 6= j )

(a d fi
)1�ai j f j = 0 (i , j 2 J ; i 6= j )

With the above relations h forms an abelian Lie algebra called the Cartan subalgebra. Denote by

n+ and n� the subalgebras of g(A) generated by the ei ’s and fi ’s respectively. Then from [4] we know

g(A) = n� �h�n+ as vector spaces. We say g(A) is affine of type A if A is of affine type.

2.2 The Root System and Root Space Decomposition

Definition 2.2.1. Let ↵ 2 h⇤. Then ↵ is a root if ↵ 6= 0 and g↵ = {x 2 g(A) | [h , x ] = ↵(h )x , for all h 2

h} 6= {0}. g↵ is called the alpha root space.

The set ⇧= {↵1, . . . ,↵n} is called the root basis and the ↵i ’s are called simple roots. We set

Q =
nX

i=1

Z↵i

Q± =
nX

i=1

Z±↵i

The lattice Q is called the root lattice. For µ,� 2 h⇤, we say µ�� if µ�� 2Q+. From Theorem 1.2 in

[4]we have the root space decomposition of g(A).

g(A) =
M

µ2Q

gµ

Each root space is one dimensional and g↵i
= s p a n{ei } and g�↵i

= s p a n{ fi } for i 2 J . Let � denote

the set of all roots. The sets of positive and negative roots are defined as �± =�\Q±. From [4]we get

�=�+t��. For ↵ 2�, ↵=
Pn

i=1 ai↵i , where all coefficients ai are either nonnegative or nonpositive

integers. The height of ↵, denoted h t↵, is
Pn

i=1 ai .

Definition 2.2.2. For each simple root ↵i we have a simple reflection given by�i , i = 1, . . . , n defined

by�i (�) =���(hi )↵i , for all � 2 h⇤ [4].

Definition 2.2.3. The group W generated by the simple reflections is called the Weyl group.

For w 2W , the expression w =�i1
. . .�is

is reduced if s is minimal among all possible represen-

tations of w 2W [4]. In this case s is called the length of w and denoted `(w ).
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Definition 2.2.4. A root ↵ 2 � is called a real root if there exists w 2W such that w (↵) is a simple

root. A root ↵which is not real is called an imaginary root [4].

The set of real roots are denoted �r e and the imaginary roots are denoted �i m . Again we have

�r e =�r e
+ t�

r e
�

and �i m =�i m
+ t�

i m
�
[4].

The dimension of g↵ is called the multiplicity of ↵, denoted mult(↵). The following results from

[4] give us mult(↵) for each ↵ 2�.

Theorem 2.2.1. ([4] Proposition 5.1) Let ↵ be a real root of a Kac-Moody algebra. Then mult(↵) = 1.

Theorem 2.2.2. ([4] Theorem 5.6) Let A be an indecomposable GCM. If A is of affine type, then

�i m
+ = {`� (`= 1, 2, . . .)}

The GCM A(2)2n�1 is of affine type. The � in the above theorem refers to the null root which will be

defined in the next section.

Theorem 2.2.3. ([4] Corollary 8.3) Let g(A) be an affine algebra of rank n +1 and let A be of type X (r )N .

Then the multiplicity of the root j r� is equal to n, and the multiplicity of the root s� for s 6⌘ 0modr

is equal to N�n
r�1 .

2.3 Affine Lie Algebras and the Lie Algebra of Type A(2)2n�1

My work is on affine Lie algebras of type A(2)2n�1 which has GCM of the following form for n � 3.

A =

0
BBBBBBBBBBB@

2 0 �1 0 . . . 0 0

0 2 �1 0 . . . 0 0

�1 �1 2 �1 . . . 0 0

0 0 �1 2 . . . 0 0
...

...
...

...

0 0 0 2 �2

0 0 0 �1 2

1
CCCCCCCCCCCA

The above matrix is (n +1)⇥ (n +1). The null space of the above matrix is spanned by

u =

0
BBBBBBBBB@

1

1

2
...

2

1

1
CCCCCCCCCA

We say the Lie algebra g is of type A(2)2n�1 if g = g(A) where A has the form above. If g is type A(2)2n�1,

then ⇧= {↵0,↵1, . . . ,↵n} and ⇧_ = {h0, h1, . . . , hn}. Since the null space of the GCM A(2)2n�1 is spanned
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by the vector u above, this means that there is a nonzero root � 2� such that �(hi ) = 0 for all hi 2⇧
_.

The root � is called the null root [4] and is � =↵0+↵1+2↵2+ · · ·+2↵n�1+↵n . There is another vector

v = (1,1,2, . . . ,2) such that v A = 0. This means that there exists a nonzero element c 2 h such that

↵i (c ) = 0 for all ↵i 2⇧. c is called the canonical central element [4], and c = h0+h1+2h2+ · · ·+2hn .

As a result we have [c ,g] = 0.

According to Definition 2.1.6, the dimension of h is n + 2. To complete the basis of h fix an

element d 2 h that satisfies the following conditions.

↵0(d ) = 1

↵i (d ) = 0, for i 6= 0

The set {h0, h1, . . . , hn , d } forms a basis for h, and d is called the scaling element [4].

2.4 Lie Algebra Representations and Modules

Definition 2.4.1. Let g be a Lie algebra and V a vector space each over C. Denote by gl(V ) the set of

linear operators on V . A linear map⇡ : g! gl(V ) is a representation if⇡([x , y ]) =⇡(x )⇡(y )�⇡(y )⇡(x ).
In this case the vector space V is referred to as a g-module.

If V is a g-module, then⇡ defines an action of g on V where x .v =⇡(x )(v ) for all x 2 g and v 2V .

A module V is called h-diagonalizable if V =
L
�2h⇤ V�, where V� = {v 2V |h .v =�(h )v, for all h 2 h}.

If dimV� 6= 0, then � is called a weight. Denote by P (V ) = {� 2 h⇤|dimV� 6= 0} the set of all weights of

V [4].
For a set of simple coroots ⇧_ = {h0, . . . , hn}, we can define the set of fundamental weights

{⇤0, . . . ,⇤n}⇢ h
⇤ by ⇤i (hj ) =�i , j . Now we define the weight lattice, denoted P , as follows.

P =
nM

i=0

Z⇤i �Z�

For � 2 h⇤ set D (�) = {µ 2 h⇤|µ�}. From [4]we get the following definition of category O

Definition 2.4.2. The category O is defined as follows. Its objects are g(A)�modules V which are

h-diagonalizable with finite-dimensional weight spaces and such that there exists a finite number of

elements �1, . . . ,�s 2 h
⇤ such that

P (V )⇢
s[

i=1

D (�i )

The morphisms in O are homomorphisms of g(A)-modules.

Definition 2.4.3. The universal enveloping algebra of g is a pair (U, i ), where U is an associative

algebra with 1 overC, i : g!U is a linear map satisfying i ([x , y ]) = i (x )i (y )�i (y )i (x ) for x , y 2 g, and

the following holds: for any associative C-algebra V with 1 and any linear map j : g!V satisfying

j ([x , y ]) = j (x ) j (y )� j (y ) j (x ), there exists a unique homomorphism of algebras � : U!V which

sends 1 to 1 and� � i = j
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The universal enveloping algebra of g is denoted U(g).

Definition 2.4.4. A g-module V is called a highest-weight module with highest weight � 2 h⇤ if there

exists a nonzero vector v� 2V such that

n+(v�) = 0

h (v�) =�(h )v� for h 2 h

U(g)(v�) = V

where U(g) is the universal enveloping algebra of g. In this case the vector v� is called the highest-

weight vector. The highest weight vector is unique up to scalar multiple.

The set P+ = {� 2 P |�(hi )> 0, i = 0, . . . , n} is called the set of dominant integral weights. Let V be

a highest weight g-module with highest weight vector v . The module V is integrable if an only if

there exists an integer Ni > 0 such that f Ni
i .v = 0 [4]. From sections 10.1 an 9.3 in [4]we know that

for each ⇤ 2 P+ there exists a unique integrable highest weight module with highest weight ⇤ and

highest weight vector v⇤, call it L (⇤). From section 9.2 in [4]we also get the following.

L (⇤) =
M

�⇤

L (⇤)�; dimL (⇤)� <1

2.5 The Principally Specialized Character

For all � 2 h⇤ the formal exponentials, denoted e (�), define a linearly independent set where multi-

plication is defined by e (�)e (µ) = e (�+µ) and extends linearly.

Definition 2.5.1. Let V 2 O and V =
L
�2h⇤ V� be its weight space decomposition. The formal char-

acter of V is defined by

chV =
X

�2h⇤

(dimV�)e (�)

Recall the positive root lattice Q+ =
Pn

i=0Z+↵i and the set of positive roots �+. Now for V 2 O set

D =
Y

↵2�+

(1� e (�↵))mult(↵)

Define ⇢ to be a fixed element in h⇤ such that ⇢(hi ) = 1 for all i = 0, . . . , n . Recall from section 2.2 the

length `(w ) of an element in the Weyl group W .

Theorem 2.5.1. ([4] Theorem 10.4) Let g(A) be a symmetrizable Kac-Moody algebra, and let L (⇤) be

an irreducible g(A)-module with highest weight ⇤ 2 P+. Then

c h L (⇤) =
P

w2W (�1)`(w )e (w (⇤+⇢)�⇢)Q
↵2�+
(1� e (�↵))m ul t (↵)
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Definition 2.5.2. Let (s0, . . . , sn ) be a sequence of positive integers and q an indeterminate. The q -

specialization of type (s0, . . . , sn ) is the homomorphism between the two rings of formal power series

Z[[e (�↵0), . . . , e (�↵n )]]!Z[[q ]]

which assigns e (�↵i ) to q si . When (s0, . . . , sn ) = (1, . . . , 1), this homomorphism is called the principal

specialization.

For g = g(A), the Kac-Moody algebra associated to the GCM A, we can construct the dual Lie

algebra g0 as g0 = g(At ), the Kac-Moody algebra associated to the transpose of A. Similarly we can

define D 0 in the following way

D 0 =
Y

↵2�0+

(1� e (�↵))mult(↵)

where �0 is the root system for g0.

Theorem 2.5.2. ([5] Corollary 4.3) Consider the highest weight module L (⇤). The principal special-

ization of e (�⇤)c h L (⇤) is called the principally specialized character of L (⇤), denoted � (L (⇤)), and

has the following product expansion.

� (L (⇤)) =
D 0⇤
D 00

where D 0⇤ is the ((⇤+⇢)(h0), . . . , (⇤+⇢)(hn ))q -specialization of D 0 and D 00 is the principal q -specialization

of D 0.

If g is type A(2)2n�1, then g0 is type B (1)n , which is itself an affine Lie algebra. The root system for B (1)n

is

�0 = {`�+↵ |↵ 2⌫�,` 2Z}[ {`� |`= 1, 2, 3, ...}

Here �=↵0+↵1+2↵2+2↵3+ · · ·+2↵n is the null root for B (1)n , and⌫� is the root system of type Bn .

The following is the set of positive roots for Bn .

⌫�+ = {↵i , ↵ j +↵ j+1+ · · ·+↵k , ↵ j +↵ j+1+ · · ·+↵k�1+2↵k + · · ·+2↵n |1 i  n , 1 j < k  n}

Theorem 2.5.3. For an algebra g of type A(2)2n�1, and F =� (L (⇤0)) =
Q
`>1(1�q 2`�1)�1 we get

� (L (2⇤0)) = F
Y

` 6⌘0mo d (n+1)

(1�q 2`)�1

Proof. In order to prove this we need to look at the root system of g0, which is type B (1)n . Let �0 be the

set of roots of g0. From [4]we know

�0 = {`�+↵ |↵ 2⌫�,` 2Z}[ {`� |`= 1, 2, 3, ...}where

�=↵0+↵1+2↵2+2↵3+ · · ·+2↵n ,

and
⌫�+ = {↵i , ↵ j +↵ j+1+ · · ·+↵k , ↵ j +↵ j+1+ · · ·+↵k�1+2↵k + · · ·+2↵n |1 i  n , 1 j < k  n} is the

9



positive root system for Bn .

)�0+ = {`�+↵ |↵ 2⌫�+,`� 0}[ {`��↵ |↵ 2⌫�+,`� 1}

To compute � (L (2⇤0)), I will use the following formula from Definition 2.5.3

� (L (2⇤0)) =
D 02⇤0

D 00

where D 00 and D 02⇤0
are the principal and (2⇤0(h0) +1, 2⇤0(h1) +1, . . . , 2⇤0(hn ) +1) specializations of

D 0 =
Q
↵2�0+
(1� e (�↵))d i mg0↵ respectively.

Let ↵= `�+⌫↵ 2�0+ where⌫↵ 2⌫�. Since (2⇤0(h0)+1, 2⇤0(h1)+1, . . . , 2⇤0(hn )+1) = (3, 1, . . . , 1), it follows

that e (↵) 7! q (2n+2)`+h t⌫↵. From this we get

D 02⇤0
=
Y

`�0

(1�q (2n+2)`+1) f1 (1�q (2n+2)`+2) f2 · · · (1�q (2n+2)`+(2n�1)) f2n�1

Y

`>0

(1�q (2n+2)`�1) f1 (1�q (2n+2)`�2) f2 · · · (1�q (2n+2)`�(2n�1)) f2n�1 (1�q (2n+2)`)n

where fi = the number of roots ↵ 2⌫�+ such that h t↵= i . The 1�q (2n+2)` term has a multiplicity of

n because imaginary roots have a multiplicity of n .

Now we need to determine the value of each fi . Let⌫�i = {↵ 2⌫�+ |h t↵= i }, so fi = |⌫�i |.

Each ↵=
Pn
`=1 a`↵` 2⌫�i is uniquely defined by the lowest ` such that a` = 1. Let Ni = {` 2Z |` is the

lowest integer such that a` = 1 for some ↵ 2⌫�i }.

ma x (Ni ) = fi . Based on⌫�+, we get the following for fi .

fi = n �m where i = 2m +1 if i is odd and i = 2m if i is even.

f1 = n

f2 = n �1

f3 = n �1

f4 = n �2

f5 = n �2
...

f2n�2 = 1

f2n�1 = 1

f2n = 0

f2n+1 = 0

Using the above values for fi and re-indexing, we get the following for D 02⇤0

D 02⇤0
=
Q
`>0(1�q (2n+2)`�1)n (1�q (2n+2)`�2)n�1(1�q (2n+2)`�3)n · · ·

(1�q (2n+2)`�(2n�1))n (1�q (2n+2)`�2n )n�1(1�q (2n+2)`�(2n+1))n (1�q (2n+2)`)n

10



Since D 00 =
Q
`>0(1�q 2`�1)(1�q `)n , we can now find � (L (2⇤0)).

� (L (2⇤0)) =
D 02⇤0Q

`>0(1�q 2`�1)(1�q `)n

= F
Y

`>0

(1�q (2n+2)`�2)�1(1�q (2n+2)`�4)�1
· · · (1�q (2n+2)`�(2n�2))�1(1�q (2n+2)`�2n )�1

= F
Y

` 6⌘0mo d (n+1)

(1�q 2`)�1

The principally specialized character� (L (2⇤0)) gives information about the dimension of L (2⇤0).
We can use this in construcing a realization of L (2⇤0). In particular, the following identity known as

the generalized Euler identity [8] plays an important role in our construction.

Y

j 6⌘0mo d (n+1)

(1�q 2 j )�1 =
X

`�0

c`q
`

where c` = the number of partitions of `with even parts such that each part appears at most n times.
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CHAPTER

3

THE PRINCIPAL PICTURE

In order to construct a realization of L (2⇤0), we need a conducive realization of A(2)2n�1. We get such a

construction from [1].

3.1 The Automorphism ⌫

Let Q be the root lattice of type A2n�1 with the set of simple roots⇧= {↵1, . . . ,↵2n�1}. For each simple

root ↵i we have a simple reflection given by�i , i = 1, . . . , n defined by

�i (�) =���(hi )↵i , for all � 2 h⇤

Let� : Q !Q be the linear map defined by

�(↵i ) =↵2n�i , i = 1, . . . , n

Now we define the automorphism ⌫ : Q !Q by

⌫=�1�2 . . .�n�

Let m be the order of ⌫. From [1]we know that m = 4n �2. The automorphism ⌫ partitions � into n

orbits, denoted Oi , 1 i  n .

12



O1 ={↵1,↵2n�1,↵2,↵2n�2,↵3,↵2n�3, . . . ,↵n�1,↵1+↵2+ · · ·+↵n+1,

↵n + · · ·+↵2n�1,�↵1,�↵2n�1, . . . ,�↵n�1,

� (↵1+↵2+ · · ·+↵n+1),�(↵n + · · ·+↵2n�1)}

O2 ={↵1+↵2,↵2n�1+↵2n�2,↵2+↵3,↵2n�2+↵2n�3, . . . ,↵n�2+↵n�1,

↵1+↵2+ · · ·+↵n+2,↵n�1+ · · ·+↵2n�1,↵2+ · · ·+↵n+1,

↵n + · · ·+↵2n�1,�(↵1+↵2),�(↵2n�1+↵2n�2), . . . ,

� (↵n�2+↵n�1),�(↵1+↵2+ · · ·+↵n+2),�(↵n�1+ · · ·+↵2n�1),

� (↵2+ · · ·+↵n+1),�(↵n + · · ·+↵2n�1)}

...

On�1 ={↵1+ · · ·+↵n�1,↵1+ · · ·+↵2n�1,↵2+ · · ·+↵2n�1,

↵2+ · · ·+↵2n�2,↵3+ · · ·+↵2n�2,↵3+ · · ·+↵2n�3, . . . ,

↵n�1+↵n +↵n+1,↵n +↵n+1,�(↵1+ · · ·+↵n�1),

� (↵1+ · · ·+↵2n�1), . . . ,�(↵n +↵n+1)}

On ={↵n ,�(↵1+ · · ·+↵n ),�(↵n+1+ · · ·+↵2n�1),�(↵2+ · · ·+↵n ),

� (↵n+1+ · · ·+↵2n�2), . . . ,�(↵n�1+↵n ),�↵n+1,�↵n ,

↵1+ · · ·+↵n ,↵n+1+ · · ·+↵2n�1, . . . ,↵n�1+↵n ,↵n+1}

From each orbit Oi we select an orbit representative denoted �i , 1  i  n where �1 = ↵1,

�2 =↵1+↵2, . . . , �n�1 =↵1+ · · ·+↵n�1, �n =↵n .

3.2 The Principal Heisenberg Subalgebra and the Principal Realization

of A(2)2n�1

Now let a be the C vector space a = C⌦ZQ , and let! be a primitive mth root of unity. Then we

have the following decomposition for a .

a =
a

p2Zm

a (p )

13



where a (p ) = {x 2 a | ⌫x =!p x }. Now we can construct the principal Heisenberg subalgebra s.

s=
a

i2Z
a (i )⌦ t i

�Cc

s± =
a

i2Z±
a (i )⌦ t i

(we take a (i ) = a (i mod m )). The bracket on s is defined as follows.

[x ⌦ t i , y ⌦ t j ] =
1

m
i hx , y i�i+ j ,0c , for x 2 a (i ), y 2 a ( j )

[c ,s] = 0

The bilinear form h, i above is defined on the simple roots by h↵i ,↵ j i= a j i where a j i is the j i th entry

in the GCM of type A2n�1. The algebra s is referred to as a subalgebra because it is a subalgebra of

the affine Lie algebra of type A(2)2n�1. In [1] the construction of s extends to the construction of the

algebra of type A(2)2n�1. Let g be the vector space over C with basis ⇧[ {x↵|↵ 2�}. Where � is the root

system of type A2n�1 and x↵ are distinct symbols. Define the map ✏ : a ⇥a !C⇤ in the following

way.

✏(↵,� ) =
m�1Y

p=1

(1�!�p )h⌫
p↵,� i

Now we define the bracket on g by

[↵i ,↵ j ] = 0

[↵i , x↵] = h↵i ,↵ix↵ =�[x↵,↵i ] for 1 i  2n �1 and ↵ 2�

[x↵, x� ] =

8
><
>:

✏(�↵,↵)↵ h↵,� i=�2

✏(↵,� )x↵+� h↵,� i=�1

0 h↵,� i � 0

Now extend the the form h, i on a to a C-bilinear form on g.

h↵, x� i= 0

hx↵, x� i= ✏(↵,� )�↵+� ,0

for ↵,� 2 �. We also extend ⌫ to an automorphism of g by ⌫x↵ = x⌫↵ for ↵ 2 �. Let gp = {x 2

14



g|⌫x =!p x }. We now construct the Lie algebra g̃(⌫).

g̃(⌫) =
a

i2Z
g(i )⌦ t i

�Cc �Cd

The bracket on g̃(⌫) is defined as follows

[x ⌦ t i , y ⌦ t j ] = [x , y ]⌦ t i +
1

m
i hx , y i�i+ j ,0c

[c , g̃(⌫)] = 0

[d , x ⌦ t i ] = i x ⌦ t i

for x 2 g(i ) and y 2 g( j ). The algebra g̃(⌫) is the principal realization of A(2)2n�1 [1].

3.3 L (2⇤0), the Vacuum Space, and Z -operators

For the GCM A of type A(2)2n�1 we have the set of simple coroots ⇧_ = {h0, . . . , hn}. Recall the set of

fundamental weights {⇤0, . . . ,⇤n}⇢ h
⇤ by ⇤i (hj ) =�i , j . The module L (2⇤0) is the g(A)-module with

highest weight 2⇤0.

Definition 3.3.1. The vacuum space of L (2⇤0) is denoted ⌦(L (2⇤0)) and defined as follows

⌦(L (2⇤0)) = {v 2 L (2⇤0) | s+.v = 0}

Theorem 3.3.1. ([6] Prop.3.1) L (2⇤0)⇠=U(s)⌦⌦(L (2⇤0)) as s-modules.

From the above theorem it follows that L (2⇤0) is determined by ⌦(L (2⇤0)). Therefore L (2⇤0) can

be realized by finding a basis for ⌦(L (2⇤0)).
Denote by ⇡(p ) : a ! a (p ) the p th projection and let x(p ) =⇡(p )x for x 2 a . From [1] and [7]we get

the following definitions for E ±(� ,⇣, 2), X (� ,⇣), and Z (� ,⇣, 2) for � 2�.

E ±(� ,⇣, 2) = e x p (m
X

± j>0

(�( j )⌦ t j )
⇣ j

2 j
)

X (� ,⇣) =
1

m
E �(�� ,⇣, 1)E +(�� ,⇣, 1)

Z (� ,⇣, 2) = E �(� ,⇣, 2)X (� ,⇣)E +(� ,⇣, 2) =
X

i2Z
Z (� , i )⇣i

15



Since L (2⇤0) is an s-module, coefficient Z (� , i ) of ⇣i acts on L (2⇤0) and is called a homogeneous

operator of degree i .

Theorem 3.3.2. ([7] Prop.4.7) Let v2⇤0
be a highest-weight vector for L (2⇤0).

⌦(L (2⇤0)) = span{Z (�1, ii )Z (�2, i2) . . . Z (�s , is )v2⇤0
| �k 2�, ik 2Z, k = 1, . . . , s }

From [7] and [2]we can define the s-filtration on ⌦(L (2⇤0)) by

0=⌦[�1] ⇢⌦[0] ⇢⌦[1] ⇢ · · ·⇢⌦(L (2⇤0))

where ⌦[i ] = s p a n{Z j1
(� j1
)Z j2
(� j2
) · · ·Z js

(� js
)v2⇤0
|0 s  i }.

We know that L (2⇤0)⇠=U(s)⌦⌦(L (2⇤0)) as s-modules. Therefore the principally specialized character

� (L (2⇤0)) has the following factorization.

� (L (2⇤0)) =� (U(s))� (⌦(L (2⇤0)))

We get the following expression of � (⌦(L (2⇤0))) from [7] section 7.

� (⌦(L (2⇤0))) =
X

n�0

� (⌦[n ]/⌦[n�1])

By computing �(L (2⇤0)) and � (U(s)) in conjunction with the generalized Euler identity [8], I have

proved the following result.

Theorem 3.3.3.

� (⌦(L (2⇤0))) =
Y

j 6⌘0mo d (n+1)

(1�q 2 j )�1 =
X

`�0

c`q
`

where c` = the number of partitions of `with even parts such that each part appears at most n times.

3.4 Results for A(2)2n�1

Proposition 3.4.1. a (p ) = 0 for p even.

Proof. Recall that a =
`

p2Zm
a (p ) and a (p ) = {x 2 a | ⌫x =!p x }. ⌫ acts on the simple roots in the
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following way:

⌫↵1 =↵2n�1

⌫↵2 =↵2n�2

⌫↵3 =↵2n�3

...

⌫↵n�2 =↵n+2

⌫↵n�1 =↵1+↵2+ · · ·+↵n+1

⌫↵n =�↵1�↵2� · · ·�↵n

⌫↵n+1 =↵n

⌫↵n+2 =↵n�1

⌫↵n+3 =↵n�2

...

⌫↵2n�2 =↵3

⌫↵2n�1 =↵2

Now let h =
P
↵i2⇧

ai↵i 2 a (p ), then ⌫h =!p h . Using the above values for ⌫, we get the following

relations:

!p a1 = an�1�an

!p a2 = an�1�an +a2n�1

!p a3 = an�1�an +a2n�2

!p a4 = an�1�an +a2n�3

...

!p an�1 = an�1�an +an+2

!p an = an�1�an +an+1

!p an+1 = an�1

!p an+2 = an�2

...

!p a2n�2 = a2

!p a2n�1 = a1

17



Solving for each ai in terms of a1, gives the following:

a2 = a1+!�2p a1 = a1(1+!�2p )

a3 = a1+!�2p a2 = a1(1+!�2p +!�4p )

a4 = a1+!�2p a3 = a1(1+!�2p +!�4p +!�6p )
...

an�1 = a1+!�2p an�2 = a1(1+!�2p +!�4p + · · ·+!�2(n�3)p +!�2(n�2)p )

an = a1+!�2p an�1 = a1(1+!�2p +!�4p + · · ·+!�2(n�3)p +!�2(n�2)p +!�2(n�1)p )

an+1 =!�p an�1 = a1(!�p +!�3p +!�5p + · · ·+!�(2(n�3)+1)p +!�(2(n�2)+1)p )
...

a2n�3 =!�p a3 = a1(!�p +!�3p +!�5p )

a2n�2 =!�p a2 = a1(!�p +!�3p )

a2n�1 =!�p a1

Notice that !p a1 = an�1 � an = �!�2(n�1)p a1. Therefore either a1 = 0 or !p +!�2(n�1)p = 0.

Now suppose a1 6= 0, then!p +!�2(n�1)p = 0. Since! is a primitive 4n � 2 root of unity, we have

!2n�1 = �1. Therefore !p +!�2(n�1)p = !p +!2np = !p + (!2n�1!)p = !p + (�1)p!p = 0. Since

!p
6= 0, we know 1+ (�1)p = 0, which is only true if p is odd. Hence if p is even, then a (p ) = 0.

Proposition 3.4.2. L (2⇤0) is a submodule of L (⇤0)⌦ L (⇤0) and v⇤0
⌦ v⇤0

is the highest weight vector

of L (2⇤0)

Proof. Let g be a Lie algebra of type A(2)2n�1 and let h 2 h and e 2 n+.

e .(v⇤0
⌦ v⇤0

) = e .v⇤0
⌦ v⇤0

+ v⇤0
⌦ e .v⇤0

= 0⌦ v⇤0
+ v⇤0
⌦0

= 0

h .(v⇤0
⌦ v⇤0

) = h .v⇤0
⌦ v⇤0

+ v⇤0
⌦h .v⇤0

=⇤0(h )v⇤0
⌦ v⇤0

+ v⇤0
⌦⇤0(h )v⇤0

=⇤0(h )(v⇤0
⌦ v⇤0

) +⇤0(h )(v⇤0
⌦ v⇤0

)

= 2⇤0(h )(v⇤0
⌦ v⇤0

)
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Proposition 3.4.3. Z (� ,⇣, 2) acting on L (⇤0)⌦ L (⇤0) is given by

Z (� ,⇣, 2)v ⌦w =
1

14
E �(�� ,⇣, 2)E +(�� ,⇣, 2)v ⌦E �(� ,⇣, 2)E +(� ,⇣, 2)w

+E �(� ,⇣, 2)E +(� ,⇣, 2)v ⌦
1

14
E �(�� ,⇣, 2)E +(�� ,⇣, 2)w

Proof.

Z (� ,⇣, 2)v ⌦w =E �(� ,⇣, 2)X (� ,⇣)[E +(� ,⇣, 2)v ⌦E +(� ,⇣, 2)w ]

=E �(� ,⇣, 2)[X (� ,⇣)E +(� ,⇣, 2)v ⌦E +(� ,⇣, 2)w

+E +(� ,⇣, 2)v ⌦X (� ,⇣)E +(� ,⇣, 2)w ]

=E �(� ,⇣, 2)X (� ,⇣)E +(� ,⇣, 2)v ⌦E �(� ,⇣, 2)E +(� ,⇣, 2)w

+E �(� ,⇣, 2)E +(� ,⇣, 2)v ⌦E �(� ,⇣, 2)X (� ,⇣)E +(� ,⇣, 2)w

Since

E +(�� ,⇣, 1)E +(� ,⇣, 2) = E +(�� ,⇣, 2)

and

E �(� ,⇣, 2)E �(�� ,⇣, 1) = E �(�� ,⇣, 2)

we get

Z (� ,⇣, 2)v ⌦w =
1

14
E �(�� ,⇣, 2)E +(�� ,⇣, 2)v ⌦E �(� ,⇣, 2)E +(� ,⇣, 2)w

+E �(� ,⇣, 2)E +(� ,⇣, 2)v ⌦
1

14
E �(�� ,⇣, 2)E +(�� ,⇣, 2)w

Proposition 3.4.4. For g= A(2)2n�1, Z (� , i ) = 0 for i odd.

Proof. From the previous proposition we get Z (� ,⇣) = Z (�� ,⇣). This along with the fact that

E ±(�� ,⇣, 2) = E ±(� ,�⇣, 2) gives us that Z (� ,⇣, 2) = Z (� ,�⇣, 2).
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Therefore
P

i2ZZ (� , i )⇣i =
P

i2ZZ (� , i )(�⇣)i , which implies Z (� , i ) = Z (� , i )(�1)i .

Therefore Z (� , i ) can only be nonzero if i is even.
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CHAPTER

4

REALIZATION OF L (2⇤0)

By Theorem 3.3.1 we know L (2⇤0)⇠=U(s)⌦⌦(L (2⇤0)) so it suffices to give a realization of ⌦(L (2⇤0))
for constructing the module L (2⇤0). In order to construct a basis for ⌦(L (2⇤0)), the spanning set

given in Theorem 3.3.2 needs to be reduced in such a way that the monomials of Z -operators count

the partitions described in Theorem 3.3.3. To do this I establish an ordering on the Z -operator

monomials and use the generalized commutator to reorder the homogonous components within

each monomial.

4.1 Orbit Representatives and The Generalized Commutator

We take ⌫ and � as in Section 3.1. From [1] we know that ⌫ partitions � into n orbits each of size

4n �2. From each orbit we choose an orbit representative. The set of orbit representatives is denoted

by O = {�1, . . . ,�n}. For A2n�1 the orbit representatives are

�1 =↵1

�2 =↵1+↵2

...

�n�1 =↵1+ · · ·+↵n�1

�n =↵n

Where the ↵i , i = 1, . . . , n are simple roots of A2n�1. We also have from [1] and [7] that Z (⌫p� ,⇣, 2) =
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Z (� ,!p⇣, 2) for all � 2�. From this it follows that

⌦(L (2⇤0)) = span{Z (�i1
, ji )Z (�i2

, j2) . . . Z (�is
, js )v2⇤0

|�ik
2O , jk 2Z, k = 1, . . . , s }

Theorem 4.1.1. ([1] Theorem 7.3) The generalized commutator [[Z (↵,⇣1, 2), Z (� ,⇣2, 2)]] for ↵,� 2�

has the following identity

[[Z (↵,⇣1, 2), Z (� ,⇣2, 2)]]

=
Y

p2Zm

(1�!�p ⇣1

⇣2
)
<⌫p ↵,�>

2 Z (↵,⇣1, 2)Z (� ,⇣2, 2)�
Y

p2Zm

(1�!�p ⇣2

⇣1
)
<⌫p � ,↵>

2 Z (� ,⇣2, 2)Z (↵,⇣1, 2)

=
1

m

X

p2C�1

✏(⌫p↵,� )Z (⌫p↵+� ,⇣2, 2)�(
!�p⇣1

⇣2
)

+
2

m 2
< x↵, x�↵ >
X

p2C�2

(D�)(
!�p⇣1

⇣2
)

(where Ci = {p 2Zm | < ⌫
p↵,� >= i }, i =�1,�2).

In the theorem above �(⇣) =
P

i2Z⇣
i and D� =
P

i2Z i⇣i . Now let
Q

p2Z14
(1�!�p ⇣1

⇣2
)
<⌫p ↵,�>

2 =
P

i�0 k (↵,� )i
Ä
⇣1
⇣2

äi
and
Q

p2Z14
(1�!�p ⇣2

⇣1
)
<⌫p � ,↵>

2 =
P

i�0 k (� ,↵)i
Ä
⇣2
⇣1

äi
Then isolating the coefficient

of ⇣r
1⇣

s
2 gives us

X

i�0

k (↵,� )i Z (↵, r � i )Z (� , s + i )�
X

i�0

k (� ,↵)i Z (� , s � i )Z (↵, r + i )

=
1

m

X

p2C�1

✏(⌫p↵,� )Z (⌫p↵+� , s + r )!�p r +
2

m 2
< x↵, x�↵ >
X

p2C�2

r (!�p )r�s ,�r

The generalized commutator is primarily useful because it allows me to reorder Z -operators and

write Z -operators of one orbit representative in terms of another. Using the generalized commutator,

I can reduce the current spanning set for⌦(L (2⇤0)) down to a smaller spanning set which counts the

appropriate partitions. My goal is to construct a spanning set consisting of Z -operator monomials

Z (�i1
, ji )Z (�i2

, j2) · · ·Z (�is
, js ) acting on v2⇤0

which satisfy the following criteria:

1. jk is even for all 1 k  s
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2. j1  j2  · · · js  0

3. jk = jk+1 ) ik+1 = ik +1

4. jk 6= jk+1 ) ik = n

These criteria ensure that the elements of the spanning set count the partitions with even parts

such that each part appears at most n times.

4.2 Reducing The Spanning Set

The first criterion from Section 4.1 is satisfied as a result of Proposition 3.4.4.

Proposition 4.2.1. For g= A(2)2n�1

⌦(L (2⇤0)) = span{Z (�i1
, ji )Z (�i2

, j2) . . . Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, k = 1, . . . , s }

Proof. This is an immediate result of Proposition 3.4.4.

In order to satisfy criteria 2., 3., and 4. we need to first establish an ordering on the Z -operator

monomials. Let (n1, . . . , nk ) and (m1, . . . , mk ) be in Zk . We say (n1, . . . , nk )T (m1, . . . , mk ) if

nk mk

nk�1+nk mk�1+mk

...
kX

i=2

ni 

kX

i=2

mi

kX

i=1

ni 

kX

i=1

mi

Set �1 < �2 < · · ·< �n and let µ= (µ1, . . . ,µk ) and �= (�1, . . . ,�k ) where µi ,� j 2 {�1, . . . ,�n}. Order

µ and � by the reverse lexicographic ordering. Now we say (µ; n1, . . . , ns )<M (�; m1, . . . , ms )
If (n1, . . . , ns )<T (m1, . . . , ms )
or

If (n1, . . . , ns ) = (m1, . . . , ms ) and µ< �

Proposition 4.2.2. Let r > s , then Z (�i , r )Z (� j , s ) ⌘ Z (� j , s )Z (�i , r ) mod shorter terms or terms

higher in the <M ordering.

Proof. Consider Z (�i , r )Z (� j , s ) such that r > s . Then by the generalized commutator we have
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k (�i ,� j )0Z (�i , r )Z (� j , s )

= k (� j ,�i )0Z (� j , s )Z (�i , r )

� [
X

`�1

k (�i ,� j )`Z (�i , r � `)Z (� j , s + `)�
X

`�1

k (� j ,�i )`Z (� j , s � `)Z (�i , r + `)]

+
1

m

X

p2C�1

✏(⌫p�i ,� j )Z (⌫p�i +� j , s + r )!�p r +
2

m 2
< x�i

, x��i
>
X

p2C�2

r (!�p )r�s ,�r

= k (� j ,�i )0Z (� j , s )Z (�i , r )

� [
X

`�1

k (�i ,� j )`Z (�i , r � `)Z (� j , s + `)�
X

`�1

k (� j ,�i )`Z (� j , s � `)Z (�i , r + `)]

+ shorter terms

Since

Z (�i , r )Z (� j , s )<T Z (�i , r � `)Z (� j , s + `)
and

Z (�i , r )Z (� j , s )<T Z (� j , s � `)Z (�i , r + `) for `� 1

it follows that Z (�i , r )Z (� j , s )⌘ Z (� j , s )Z (�i , r )mod shorter terms or terms higher in the <M order-

ing.

Proposition 4.2.3. ⌦(L (2⇤0)) = s p a n{Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, j1  j2 

. . . js , 1 k  s }

Proof. Consider the two sets

T = {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z}

and

T 0 = {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, j1  j2  . . . js , 1 k  s }

Let Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

be an arbitrary element in T . Our induction hypothesis is that
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any element shorter or higher in the <M ordering is in the span of T 0. From Proposition 4.2.2 we get

Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )⌘ Z (�i 01

, j 01)Z (�i 02
, j 02) · · ·Z (�i 0s , j 0s )

mod terms that are shorter or higher in the <M ordering, where j 01  j 02  . . .  j 0s . Now by our

induction hypothesis we have ⌦(L (2⇤0)) = s p a n{Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

| �ik
2O , jk 2

2Z, j1  j2  . . . js , 1 k  s }.

Proposition 4.2.4. ⌦(L (2⇤0)) = s p a n{Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, j1  j2 

. . . js  0, 1 k  s }

Proof. Since L (2⇤0) is a highest weight module of weight 2⇤0, we have that L (2⇤0) is generated by

the fi ’s in A(2)2n�1. We know that d ( fi ) =�1 for all i .

Therefore L (2⇤0) decomposes into the eigenspaces of d in the following way.

L (2⇤0) =
M

n0

Ln

Where Ln = {v 2 L (2⇤0) | d v = n v }. By assuming 2⇤0(d ) = 0, we get d v2⇤0
= 2⇤0(d )v2⇤0

= 0. This

means L0 = s p a n{v2⇤0
}. This along with the fact that Z (� , i )L j ⇢ L j+i for all � 2 O gives us that

Z (� , i ) annihilates L (2⇤0) for all � 2O and i > 0.

Proposition 4.2.5. Z (�i , 2m )Z (� j , 2m )⌘ 0 mod shorter terms or terms higher in the <M ordering.

Proof. Consider Z (�i ,2m )Z (� j ,2m ) for m 2 Z. Then setting r = 2m + 1 and s = 2m � 1 in the
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generalized commutator gives the following:

k (�i ,� j )1Z (�i , 2m )Z (� j , 2m )

=�k (�i ,� j )0Z (�i , 2m +1)Z (� j , 2m �1) +k (� j ,�i )0Z (� j , 2m �1)Z (�i , 2m +1)

+k (� j ,�i )1Z (� j , 2m �2)Z (�i , 2m +2)

� [
X

`�2

k (�i ,� j )`Z (�i , 2m +1� `)Z (� j , 2m �1+ `)

�

X

`�2

k (� j ,�i )`Z (� j , 2m �1� `)Z (�i , 2m +1+ `)]

+ shorter terms

=k (� j ,�i )1Z (� j , 2m �2)Z (�i , 2m +2)

� [
X

`�2

k (�i ,� j )`Z (�i , 2m +1� `)Z (� j , 2m �1+ `)

�

X

`�2

k (� j ,�i )`Z (� j , 2m �1� `)Z (�i , 2m +1+ `)]

+ shorter terms

Since Z (�k ,`) = 0 for all k and for ` odd.

Since

Z (�i , 2m )Z (� j , 2m )<T Z (� j , 2m �2)Z (�i , 2m +2),
Z (�i , 2m )Z (� j , 2m )<T Z (�i , 2m +1� `)Z (� j , 2m �1+ `)
and

Z (�i , 2m )Z (� j , 2m )<T Z (� j , 2m �1� `)Z (�i , 2m +1+ `) for `� 2

it follows that Z (�i , 2m )Z (� j , 2m )⌘ 0 mod shorter terms or terms higher in the <M ordering.

Proposition 4.2.6. ⌦(L (2⇤0)) = s p a n{Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, j1  j2 

. . . js  0, jk = jk+1) ik+1 = ik +1, 1 k  s }
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Proof. Consider the two sets

T = {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, j1  j2  . . . js  0, 1 k  s }

and

T 0 = {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O ,

jk 2 2Z, j1  j2  . . . js  0,

jk = jk+1) ik+1 = ik +1, 1 k  s }

Let Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

be an arbitrary element in T . Our induction hypothesis is that

any element shorter or higher in the <M ordering is in the span of T 0.

Now suppose there exists a pair of Z-operators Z (�ik
, jk )Z (�ik+1

, jk+1) such that jk = jk+1 and

ik+1 6= ik + 1. Then Proposition 4.2.5, tells us that Z (�ik
, jk )Z (�ik+1

, jk+1) can be written as a lin-

ear combination of terms that are shorter or higher in the <M ordering. From this it follows that

Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

is also a linear combination of terms that are shorter or higher in

the <M ordering.

Therefore, by the induction hypothesis, Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

is in the span of T’.

Proposition 4.2.7. For s 2 2Z, the homogenous component Z (�i , s ), i 6= n, is a linear combination of

monomials in Z (�n , r ) of length two, and the value of r is not fixed.

Proof. By computing the generalized commutator [[Z (�n ,⇣1), Z (�n ,⇣2)]] and isolating the coeffi-

cients of ⇣r
1⇣

s�r
2 we get the following identity.

X

i�0

k (�n ,�n )[Z (�n , r � i )Z (�n , s � r + i )�Z (�n , s � r � i )Z (�4, r + i )]

=m�1
n�1X

j=1

(1�!2 j�1)(!�(2 j�1)r+(2n�2+2 j�1)s
�!(2 j�1)r+(2n�2)s )

1+!2 j�1 Z (�n� j , s ) +2m�2(�1)r�s ,0

The coefficient matrix A = (ai j )n�1
i , j=1 is obtained from the equation. The goal is to show that for

each s 2 2Z there exist values r1, . . . , rn�1 2Zwhich make A nonsingular. I have found that the values

of ai j are given by

ai j =
(1�!2 j�1)(!�(2 j�1)ri+(2n�2+2 j�1)s

�!(2 j�1)ri+(2n�2)s )
1+!2 j�1

A is diagonalizable as A = A0D . Where A0 = (a 0i j )
n�1
i , j=1

a 0i j =!
(2 j�1)(s�ri )�!(2 j�1)ri
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and D is a diagonal matrix with the values d1, . . . , dn�1 on the diagonal.

d j =
!(2n�2)s (1�!2 j�1)

1+!2 j�1

Since d e t (D ) 6= 0, we have d e t (A) = 0 if and only if d e t (A0) = 0.

d e t (A0) =(�1)k!�(2(n�1)�1)(r1+···+rn�1)

Y

1i< jn�1

(!2ri �!2rj )

Y

1in�1

(!2ri �!s )

Y

1i< jn�1

(!2(ri+rj )�!2s )

Recall that ! is an mth root of unity, where m = 4n � 2. If any of the following hold, then

d e t (A0) = 0.

ri ⌘ rj mo d
1
2

m for 1 i < j  n �1

ri ⌘
1
2

s mo d
1
2

m for 1 i  n �1

ri + rj ⌘ s mo d
1
2

m for 1 i < j  n �1

For each s 2 2Zwe want to show that there exist values r1, . . . , rn�1 2Z such that d e t (A) 6= 0.

If s is even, then s is even mod m because m is even. This means we only need to show the existence

of the r values for values of s that are even mod m . Observe that 1
2 m = 2n �1 and let s 0 2Z2n�1 such

that s ⌘ s 0mo d (2n �1). We want to find the number of distinct pairs (a , b ) 2Z2n�1⇥Z2n�1 such

that a  b and a + b ⌘ s 0mo d (2n �1).

Now let a 2Z2n�1. Then a + (s 0 �a ) = s 0.

If a = s 0 �a , then 2a ⌘ s 0mo d (2n �1) and either a = 1
2 s 0 or a = 1

2 s .

If s < 2n �1, then s = s 0 and 1
2 s 0+ 1

2 s 0 = s 0.

If s > 2n �1, then 1
2 s 2Z2n�1 and 1

2 s + 1
2 s = s ⌘ s 0mo d (2n �1).

Let a , b , c 2Z2n�1. a + c = b + c ) a = b .

The above statements imply that there are 1
2 (2n � 1 � 1) = n � 1 pairs of distinct numbers in
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Z2n�1 ⇥Z2n�1 that sum to s 0 and one pair, namely ( 12 s , 1
2 s ), with the same number that adds to

s 0.

This gives a total of n different pairs that add to s 0. By taking each ri value from a different pair such

that no ri is equal to 1
2 s we can guarantee that none of the relations mentioned above hold, thus

ensuring that d e t (A) 6= 0.

Proposition 4.2.8. ⌦(L (2⇤0)) = s p a n{Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O , jk 2 2Z, j1  j2 

. . . js  0, jk = jk+1) ik+1 = ik +1, jk 6= jk+1 ) ik = n , 1 k  s }

Proof. Consider the two sets

T = {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O ,

jk 2 2Z,

j1  j2  . . . js  0,

jk = jk+1) ik+1 = ik +1,

1 k  s }

and

T 0 = {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

|�ik
2O ,

jk 2 2Z,

j1  j2  . . . js  0,

jk = jk+1) ik+1 = ik +1,

jk 6= jk+1 ) ik = n , 1 k  s }

Let Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

be an arbitrary element in T such that

Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

62 T 0. Then there exists a jk such that the highest Z -operator of

degree jk in the <M ordering is Z (�i , jk )where i 6= n . Let jk = 2m , m 2Z, since jk cannot be odd.
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Proposition 4.2.7 allows us to write Z (�i , 2m ) in the following way:

Z (�i , 2m ) = k1

ñX

`�0

a`(Z (�n , r1� `)Z (�n , s1+ `)�Z (�n , s1� `)Z (�n , r1+ `))

ô

+k2

ñX

`�0

a`(Z (�n , r2� `)Z (�n , s2+ `)�Z (�n , s2� `)Z (�n , r2+ `))

ô

...

+kn�1

ñX

`�0

a`(Z (�n , rn�1� `)Z (�n , sn�1+ `)�Z (�n , sn�1� `)Z (�n , rn�1+ `))

ô

Where ki , ri , si are scalars and ri+si = 2m , 1 i  n�1. Now looking at the degrees of the Z -operators

of the right hand side of the above equation, notice that (ri ± `) + (si ⌥ `) = 2m for i = 1, . . . , n �1 and

`� 0. This, along with the fact that there must be a lowest element in the set {ri , si |i = 1, . . . , n �1},

gives us that there exists a pair of Z -operators, call them Z (�n ,`1)Z (�n ,`2), which is lowest in the

>M ordering on the right hand side. As a result we get the following equation:

Z (�i , 2m ) = Z (�n ,`1)Z (�n ,`2) + terms higher in the >M ordering

Our induction hypothesis is that terms higher in the >M ordering are in the span of T 0. Since each

monomial in T has finite length, we can only replace Z -operators of orbit representatives that are

not �n a finite number of times. Therefore any element in T can be written as a linear combination

of elements in T 0.

From Proposition 4.2.8 we have a spanning set that satisfies the four partition criteria given in

Section 4.1. This leads to the following result.

Theorem 4.2.1. {Z (�i1
, j1)Z (�i2

, j2) · · ·Z (�is
, js )v2⇤0

| �ik
2 O , jk 2 2Z, j1  j2  . . . js  0, jk =

jk+1) ik+1 = ik +1, jk 6= jk+1 ) ik = n , 1 k  s } is a basis for ⌦(L (2⇤0)).

Proof. The grading described in Section 3.3 indicates that the basis elements of ⌦(L (2⇤0)) need to

count the partitions described in Theorem 3.3.3. The monomials described in our spanning set

count these partitions. Therefore our spanning set is a basis.
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CHAPTER

5

PRINCIPALLY SPECIALIZED CHARACTER

FOR LEVEL 3 WEIGHTS FOR A(2)2N�1

In this chapter I will provide a list of the principally specialized characters of level 3 weights that I

have computed. I will then give a conjecture for a general formula of the specialized characters of

level 3 weights.

Recall the canonical central element c of the Lie algebra A(2)2n�1. From [4]we know that c = h0+h1+
2h2+2h3+ . . .+2hn .

Definition 5.0.1. Given a weight �. The level of � (also the level of L (�)) is given by �(c ).

For A(2)2n�1, the level 3 weights are 2⇤0+⇤1, ⇤0+2⇤1, 3⇤0, 3⇤1 and ⇤i +⇤ j where i 2 {0,1} and

j 2 {2, . . . , n}.

n = 3

� (L (2⇤0+⇤1)) =� (L (⇤0+2⇤1)) = F
Y

i>0

(1�q 3i�1)�1(1�q 3i�2)�1

� (L (3⇤0)) =� (L (3⇤1)) = F
Y

i>0
i 6⌘0,±1 mo d 9

(1�q i )�1
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� (L (⇤0+⇤2)) =� (L (⇤1+⇤2)) = F
Y

i>0
i 6⌘0,±4 mo d 9

(1�q i )�1

� (L (⇤0+⇤3)) =� (L (⇤1+⇤3)) = F
Y

i>0
i 6⌘0,±2 mo d 9

(1�q i )�1

n = 4

� (L (2⇤0+⇤1)) =� (L (⇤0+2⇤1)) = F
Y

i>0
i 6⌘0,±3 mo d 11

(1�q i )�1

� (L (3⇤0)) =� (L (3⇤1)) = F
Y

i>0
i 6⌘0,±1 mo d 11

(1�q i )�1

� (L (⇤0+⇤2)) =� (L (⇤1+⇤2)) = F
Y

i>0
i 6⌘0,±5 mo d 11

(1�q i )�1

� (L (⇤0+⇤3)) =� (L (⇤1+⇤3)) = F
Y

i>0
i 6⌘0,±4 mo d 11

(1�q i )�1

� (L (⇤0+⇤4)) =� (L (⇤1+⇤4)) = F
Y

i>0
i 6⌘0,±2 mo d 11

(1�q i )�1

n = 5

� (L (2⇤0+⇤1)) =� (L (⇤0+2⇤1)) = F
Y

i>0
i 6⌘0,±3 mo d 13

(1�q i )�1

� (L (3⇤0)) =� (L (3⇤1)) = F
Y

i>0
i 6⌘0,±1 mo d 13

(1�q i )�1

� (L (⇤0+⇤2)) =� (L (⇤1+⇤2)) = F
Y

i>0
i 6⌘0,±5 mo d 13

(1�q i )�1

� (L (⇤0+⇤3)) =� (L (⇤1+⇤3)) = F
Y

i>0
i 6⌘0,±6 mo d 13

(1�q i )�1

� (L (⇤0+⇤4)) =� (L (⇤1+⇤4)) = F
Y

i>0
i 6⌘0,±4 mo d 13

(1�q i )�1
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� (L (⇤0+⇤5)) =� (L (⇤1+⇤5)) = F
Y

i>0
i 6⌘0,±2 mo d 13

(1�q i )�1

n = 6

� (L (2⇤0+⇤1)) =� (L (⇤0+2⇤1)) = F
Y

i>0
i 6⌘0,±3 mo d 15

(1�q i )�1

� (L (3⇤0)) =� (L (3⇤1)) = F
Y

i>0
i 6⌘0,±1 mo d 15

(1�q i )�1

� (L (⇤0+⇤2)) =� (L (⇤1+⇤2)) = F
Y

i>0
i 6⌘0,±5 mo d 15

(1�q i )�1

� (L (⇤0+⇤3)) =� (L (⇤1+⇤3)) = F
Y

i>0
i 6⌘0,±7 mo d 15

(1�q i )�1

� (L (⇤0+⇤4)) =� (L (⇤1+⇤4)) = F
Y

i>0
i 6⌘0,±6 mo d 15

(1�q i )�1

� (L (⇤0+⇤5)) =� (L (⇤1+⇤5)) = F
Y

i>0
i 6⌘0,±4 mo d 15

(1�q i )�1

� (L (⇤0+⇤6)) =� (L (⇤1+⇤6)) = F
Y

i>0
i 6⌘0,±2 mo d 15

(1�q i )�1

n = 7

� (L (2⇤0+⇤1)) =� (L (⇤0+2⇤1)) = F
Y

i>0
i 6⌘0,±3 mo d 17

(1�q i )�1

� (L (3⇤0)) =� (L (3⇤1)) = F
Y

i>0
i 6⌘0,±1 mo d 17

(1�q i )�1

� (L (⇤0+⇤2)) =� (L (⇤1+⇤2)) = F
Y

i>0
i 6⌘0,±5 mo d 17

(1�q i )�1

� (L (⇤0+⇤3)) =� (L (⇤1+⇤3)) = F
Y

i>0
i 6⌘0,±7 mo d 17

(1�q i )�1
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� (L (⇤0+⇤4)) =� (L (⇤1+⇤4)) = F
Y

i>0
i 6⌘0,±8 mo d 17

(1�q i )�1

� (L (⇤0+⇤5)) =� (L (⇤1+⇤5)) = F
Y

i>0
i 6⌘0,±6 mo d 17

(1�q i )�1

� (L (⇤0+⇤6)) =� (L (⇤1+⇤6)) = F
Y

i>0
i 6⌘0,±4 mo d 17

(1�q i )�1

� (L (⇤0+⇤7)) =� (L (⇤1+⇤7)) = F
Y

i>0
i 6⌘0,±2 mo d 17

(1�q i )�1

Conjecture 5.0.1. For A(2)2n�1 the level 3 principally specialized characters have the following formulas.

2 j  n

� (L (3⇤0)) =� (L (3⇤1)) = F
Y

i>0
i 6⌘0,±1 mo d (2n+3)

(1�q i )�1

� (L (2⇤0+⇤1)) =� (L (⇤0+2⇤1)) = F
Y

i>0
i 6⌘0,±3 mo d (2n+3)

(1�q i )�1

� (L (⇤0+⇤ j )) =� (L (⇤1+⇤ j )) = F
Y

i>0
i 6⌘0,±(2 j+1)mo d (2n+3)

(1�q i )�1
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