
ABSTRACT

GUY, HAYLEY CLAIRE. Efficient Dimension Reduction and Uncertainty Quantification for
Complex Physical and Biological Systems. (Under the direction of Alen Alexanderian.)

With rapid advances in computing technology, the need for efficient uncertainty quantifica-

tion (UQ) methods is growing. The goal of UQ methods is to identify, quantify and reduce

uncertainties associated with models of real-world systems. For computationally expensive

large-scale problems, performing UQ studies can be challenging. Approximating these

models via a surrogate model is a common approach to address this challenge. Using surro-

gate models, one can replace expensive model evaluations by inexpensive surrogate model

evaluations. This dissertation provides a number of novel techniques for constructing these

surrogate models. To enable efficient surrogate modeling, we consider ideas from active

subspaces, reduced order modeling and machine learning. We provide an extension of the

active subspace method, for problems with function valued QoIs. We also analyze links

between traditional global sensitivity analysis methods and the active subspace method.

Theoretical and computational aspects of these methods are considered throughout this

dissertation. We demonstrate the effectiveness of the proposed methods with application

problems from biology, chemical kinetics and nuclear engineering.
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CHAPTER

1

INTRODUCTION

Uncertainty quantification (UQ) methods aim to identify, characterize and ultimately re-

duce uncertainties in models of physical systems. A major challenge facing UQ is the curse

of dimensionality. Performing UQ studies on complex physical models may be infeasi-

ble due to high-dimensional input or output parameter spaces, and the model may be

expensive to evaluate.

Surrogate modeling is used to circumvent these issues by constructing an accurate efficient-

to-evaluate approximation to the quantity of interest. Examples of surrogate modeling

techniques include polynomial chaos expansions [39, 64], kriging [83, 112], neural networks

[48, 103], multivariate adaptive regression splines [34] and active subspaces [18, 23, 86].

A related technique, used to understand and simplify complex computational models is

global sensitivity analysis (GSA), which includes variance based [98, 99] and derivative

based [58, 101]methods. GSA examines how model outputs are affected by uncertainties

in model inputs. These methods are used to identify unimportant model inputs, hence

reducing the dimension of the input parameters.
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In this dissertation we present a number of surrogate modeling techniques to approximate

computationally expensive models. These models may have high-dimensional input or

output parameter spaces making uncertainty quantification studies infeasible. In particu-

lar we focus on the active subspace based method and machine learning techniques for

sensitivity analysis and surrogate modeling of complex physical and biological systems.

We will see that there are interesting links between the active subspace method and GSA

methods. We apply these methods to application problems from biology, chemical kinetics

and nuclear engineering.

1.1 Dissertation outline

Chapter 2 reviews relevant background material relating to GSA methods, active subspaces

and machine learning. We discuss two common GSA methods in detail, Sobol’ indices

and derivative based global sensitivity measures (DGSMs) and also briefly reference other

methods such as, Morris screening and moment independent importance measures. We

introduce the active subspace method for scalar-valued QoIs. Active subspaces can be used

to reduce the dimension of the input parameter space by identifying important ’directions’

in the space. Active subspaces are related to DGSMs via activity scores. Finally, we briefly

introduce machine learning by discussing how these techniques can be used and the

differences between supervised and unsupervised learning.

In chapter 3 we apply the active subspace method to an application problem from chemical

kinetics [111]. We compute the active subspace using two different approaches, perturbation

based where we calculate gradients using finite differences and regression based where we

use local linear approximations. We investigate each approach in detail. We also investigate

important links between GSA methods and active subspaces, for a general class of input

parameter distributions.

Chapter 4 extends the theory of active subspaces, originally defined for scalar-valued QoIs,

to function valued QoIs [42]. Theoretical and computational aspects of the method are

analyzed. The success of the method is demonstrated in a biotransport application problem.

In chapter 5 we introduce functional activity scores which can be used to screen for unim-

portant input parameters and can be used to approximate functional DGSMs. We also

2



investigate the sensitivity of the active subspace method to correlations between input

parameters.

In chapter 6 we use convolutional neural networks, a popular tool for image classification,

to build a classifier for detecting corrosion from images [79]. We will test the performance of

the classifier using a number of metrics including AUC, ROC curve and confusion matrices.

1.2 Contributions of this dissertation

The main contributions of this dissertation are as follows:

• We implement the active subspace method to a high-dimensional H2/O2 kinetics

problem involving 36 uncertain inputs in chapter 3 and to a biotransport problem

with high-dimensional inputs and function valued outputs in chapter 4. The results

obtained successfully demonstrates that active subspaces can reasonably approxi-

mate the uncertainties in the QoIs, indicating immense potential for computational

savings.

• We present a mathematical framework and computational method for surrogate

modeling for models with high-dimensional inputs and function valued outputs

that uses KL expansions for output dimension reduction, active subspaces for input

dimension reduction, and adjoint based gradient computation as needed in the active

subspace method. Details are in chapter 4.

• We analyze the errors due to active subspace projection and output KL truncation in

chapter 4. The presented analysis provides insight on the interplay between these

two important sources of errors.

• We provide a complete analysis of the links between total Sobol’ indices, DGSMs,

and activity scores for a broad class of probability distributions in chapter 3. We

also extend the idea of activity scores to function valued QoIs which can be used to

approximate functional DGSMs demonstrated through an application from biology

in chapter 5.

• We study the impact on the active subspace method to correlations between parame-

3



ters in our input space in chapter 5. We demonstrate this on a simple quadratic model

and a cholera model governed by a nonlinear ODE system.

• We develop a machine learning approach, using convolutional neural networks, to

efficiently detect and analyze corrosion from images and live video streams of spent

nuclear fuel canisters. The classifier achieves accuracies of approximately 96%. Details

are given in chapter 6.
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CHAPTER

2

BACKGROUND

In this dissertation we provide different techniques for efficiently approximating com-

putationally expensive models with efficient-to-evaluate surrogate models. This is also

closely linked with ideas from sensitivity analysis and dimension reduction methods. In

this chapter we provide a brief summary of key tools used in this dissertation. First we

discuss two widely used GSA methods, Sobol’ indices in section 2.1.1 and Derivative Based

Global Sensitivity Measures (DGSMs) in section 2.1.2. We also briefly mention some other

techniques for performing sensitivity analysis and dimension reduction in section 2.1.3.

We discuss the active subspace method for scalar valued functions in section 2.2 and finally

we introduce machine learning techniques in section 2.3.

2.1 Global Sensitivity Analysis (GSA)

The aim of GSA methods is to quantify how uncertainties in model inputs influence model

outputs. [92]. These methods can be used to determine the most important input parame-

5



ters contributing to the output of a mathematical model as well as identifying those input

parameters that cause negligible effects on the output. They can also be used to investigate

interaction effects between model parameters. In this section we review two commonly

used GSA methods, Sobol’ indices and derivative-based global sensitivity measures. We

will also briefly mention other alternatives.

2.1.1 Review of Sobol Indices

Let (Ω,B,µ) be a probability space with Ω⊆RNp , the sample space,B, the Borelσ-algebra

on Ω and µ, the law of the uncertain parameter vector ξ = (ξ1,ξ2, . . . ,ξNp
)T ∈ Ω. In this

section, we assume the components of the random vector ξ are independent.

Let K = {1,2,3, . . . , Np } be an index set, let U = { j1, j2, j3, . . . , jm} ⊂ K and let U c be the

complement of U in K , U c = K \U . The group of variables corresponding to U is referred

to as ξU = (ξ j1
,ξ j1

, . . . ,ξ jm
). Consider a scalar-valued random variable f :Ω→Rwhere f is

assumed to be square integrable.

Consider the ANOVA decomposition [105] of f (ξ):

f (ξ) = f0+ f1(ξU ) + f2(ξU c ) + f12(ξ), (2.1)

where f0 is the mean of the process, f1(ξU ) = E { f (ξ)|ξU }− f0, f2(ξU c ) = E { f (ξ)|ξU c }− f0 and

f12(ξ) = f (ξ)− f1(ξU )− f2(ξU c )− f0 is the remainder. This allows us to decompose the total

variance of f (ξ) as follows:

Var( f (ξ)) =VarU ( f (ξ))+VarU c ( f (ξ))+VarU ,U c ( f (ξ)). (2.2)

Using this, we can define the first- and total-order Sobol’ indices [97]:

SU =
VarU ( f (ξ))
Var( f (ξ))

, S tot
U =

VarU ( f (ξ))+VarU ,U c ( f (ξ))
Var( f (ξ))

. (2.3)

The total Sobol’ index is used to rank the importance of a parameter. Parameters with small

Sobol’ indices are deemed unimportant. These indices can be estimated using a Monte Carlo

(MC) sampling procedure. In many applications, evaluating f is computationally intensive
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and it may not be feasible to estimate the indices this way. Also, when the dimension of the

uncertain parameter vector ξ is large, computing Sobol indices’ can be very challenging. A

cheap-to-evaluate surrogate model f̂ ≈ f can be used to accelerate computation of Sobol’

indices. Common techniques include Polynomial Chaos expansions [6, 10] and Gaussian

processes [74].

2.1.2 Derivative Based Global Sensitivity Measures (DGSMs)

An alternative to Sobol’ indices is to calculate DGSMs, which can be used to screen for unim-

portant parameters. DGSMs often obtain sufficient accuracy in identifying unimportant

parameters with much less model evaluations than is needed with Sobol’ indices. As before,

consider a scalar-valued random variable f :Ω→Rwhere f and its partial derivatives are

assumed to be square integrable. We consider the following commonly used DGSM [101] :

ν j ( f ) =

∫

Ω

� ∂ f

∂ ξ j

�2
µ(dξ), j = 1, . . . , Np .

Estimation ofν j requires a Monte Carlo (MC) sampling procedure and the ability to estimate

derivatives efficiently. As noted above this often requires many less samples than Sobol’

indices. The following two theorems given in [101] establish the relation between DGSMs

and total Sobol’ indices.

Theorem 2.1.1. Assume that c ≤ | ∂ f
∂ ξ j
| ≤C . Then

c 2

12Var( f (ξ))
≤ S tot

U ≤
C 2

12Var( f (ξ))

Theorem 2.1.2. Assume that ∂ f
∂ ξ j
∈ L 2. Then

S tot
U ≤

1

π2Var( f (ξ))

∫

Ω

� ∂ f

∂ ξ j

�2
dξ

2.1.3 Other GSA methods

Here we briefly introduce some alternatives to Sobol’ indices and DGSMs. The Morris

screening method [50, 76] can be used to screen for unimportant parameters. It measures
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importance by estimating the elementary effects for each input ξi . Using these effects sen-

sitivity measures can be calculated, usually the mean and standard deviation of elementary

effect for each input. Morris screening is efficient to compute and is related to DGSMs

in that they are capable of ranking the importance of parameters. The difference is that

screening methods cannot weigh the importance of one parameter over another [96].

Additionally, using the variance of f (ξ) in certain applications is not sufficient to screen for

unimportant parameters. In [13] the authors discuss moment independent importance

measures which look at the effect uncertainties in the inputs has on the entire output

distribution rather than to specific moments of the output. As defined in [27], we can

measure the influence a given input ξi has on the output f (ξ) using the following:

Lξi
=Eξi

[d ( f (ξ), f (ξ)|ξi )]

where d denotes some dissimilarity measure between the distribution of f (ξ) and the

distribution of f (ξ)|ξi [9, 80].

Active subspaces provide an alternative to using GSA methods for dimension reduction. A

detailed review of this method is given in section 2.2. There exists interesting links between

Sobol’ indices, DGSMs and active subspaces which we discuss in section 3.2. Activity scores,

discussed in Chapter 3 and again in Chapter 5, stem from active subspaces and can be

used to measure the importance of input parameters. Active subspaces can also be used to

approximate DGSMs which we will investigate in section 5.1.

2.2 Active Subspaces

A common approach to input dimension reduction is to identify a subset of input model

parameters that are the most important to model variability. This is done typically using

a local or global sensitivity analysis approach [51, 58, 82]. The active subspace approach

is different; it identifies a set of important directions in the input parameter space rather

than giving importance to one input over another. We can rotate the coordinates to align

with the directions of strongest variation of the QoI. Each direction can be considered as a

set of weights that define a linear combination of all of the inputs. Directions where the
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outputs do not vary much are ignored. Consider a model

y = g (ξ), ξ ∈RNp .

We assume the uncertain parameters ξ have an associated probability density function

π(ξ) that is supported on Ω⊆RNp . Assume g is square integrable and has square integrable

partial derivatives with respect to ξ. The following matrix plays a key role in active subspace

construction:

S=

∫

Ω

∇g (ξ)∇g (ξ)Tπ(ξ)dξ. (2.4)

The matrix S is symmetric and positive semi-definite with spectral decomposition

S=WΛWT , Λ= diag(λ1, · · · ,λNp
).

The eigenvalues λi ’s are sorted in descending order λ1 ≥ · · · ≥λNp
≥ 0 and W contains the

orthonormal eigenvectors of S as its columns. The active subspace is determined by the

dominant eigenvectors of S. Specifically, we partition the eigenvalues and eigenvectors

according to

Λ=

�

Λ1

Λ2

�

, W=
�

W1 W2

�

, (2.5)

where Λ1 ∈Rr×r is a diagonal matrix with the dominant eigenvalues on its diagonal; and

W1 contains the corresponding eigenvectors w 1, . . . w r as its columns. These columns span

the dominant eigenspace of S—the active subspace. Given ξwe define y =WT
1 ξ ∈R

r and

z =WT
2 ξ ∈R

Np−r , and note that

ξ=W1WT
1 ξ+W2WT

2 ξ=W1y +W2z .

The elements of y and z are the sets of active and inactive variables, respectively. As dis-

cussed in detail in [23], the active variables, i.e., elements of y , are responsible for most of

the variations of the function g . We can consider approximating g in the active subspace,

g (ξ)≈ g (W1WT
1 ξ). It is convenient to define the function G :Rr →R by

G (y ) = g (W1y ), y ∈Rr ,
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and write the approximation to g as

g (ξ)≈G (WT
1 ξ). (2.6)

In practice, the function G is typically approximated by a surrogate model. Specifically, we

can compute a polynomial regression fit, which we denote by Ĝ (y ), for the function G (y ).

Moreover, Monte Carlo sampling is used to approximate the matrix S in (2.4):

S≈ Ŝ=
1

Ns

Ns
∑

i=1

∇g (ξi )∇g (ξi )
T . (2.7)

Typically, a modest Monte Carlo sample is sufficient for computing reliable approximations

to the dominant eigenvalues and eigenvectors of S. We provide the steps for computing

an active subspace-based surrogate model for the function g in Algorithm 1. For further

details, we refer the readers to [23].

Algorithm 1 Computation of an active subspace-based surrogate model for a scalar-valued
function g .

Input: A set of Ns data points (ξi , g (ξi )), i = 1, . . . , Ns , drawn from the law of ξ.

Output: Surrogate model Ĝ (WT
1 ξ)≈ g (ξ)

Compute the gradients D i =∇g (ξi ), i = 1, . . . , Ns

Compute

S=
1

Ns

Ns
∑

i=1

D i D T
i .

Compute spectral decomposition Ŝ=WΛWT .

Based on decay of the eigenvalues, determine the dimension r of the active subspace,

and partition Λ and W as in (2.5).

Compute y i =WT
1 ξi , i = 1, . . . , Ns .

Compute a regression fit Ĝ (y ) to G (y ) using the data points (y i , g (ξi )), i = 1, . . . , Ns .
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2.3 Machine Learning

Machine learning methods help us discover patterns in data, build algorithms that can

predict outcomes, detect and analyze trends in data and help understand and address

complex problems. Machine learning can be divided into two main categories, supervised

and unsupervised learning [94].

With supervised learning we have a labeled dataset containing a set of input parameters

x and a corresponding output set y . We want to build a a machine learning algorithm

to learn the mapping f : x → y from set of inputs x to the set of outputs y . The goal is

to approximate the function f well to make predictions accurately on new input data.

Supervised learning uses both classification and regression techniques to build predictive

models. Algorithms used include linear regression, logistic regression, k-nearest neighbor

and neural networks.

With unsupervised learning we have a set of input parameters x but no labeled output data.

The goal is to learn more about the data by modeling the underlying structure of the data.

Unsupervised learning can be split into clustering and association type problems.

Machine learning models can be used to approximate complicated input-output relations

and thus can be viewed as a surrogate modeling approach. In chapter 6, we discuss using

convolutional neural networks, a variant on neural networks, in an application problem

from nuclear engineering where we seek to classify defects in nuclear fuel canisters. We

provide more background details on deep learning in chapter 6.
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CHAPTER

3

SURROGATE MODELING AND

SENSITIVITY ANALYSIS FOR CHEMICAL

KINETICS APPLICATIONS

3.1 Introduction

Chemical kinetics systems can be complex due to a large number of reactions and a high-

dimensional set of input parameters that control the rate of these chemical reactions. In

practice there are large uncertainties associated with these rate-controlling parameters.

Understanding the impact these parameters have on the model output can be challenging.

Several research efforts in recent years address the quantification and propagation of

uncertainty in such systems [43, 77, 78, 84, 93, 109, 110]. In this chapter we implement

the active subspace method, discussed in section 2.2, to a high-dimensional chemical

kinetics system. We recall that the active subspace method identifies important directions
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in the input parameter space that predominantly capture the variability in the model

output. These directions are the dominant eigenvectors of the matrix S in (2.4). The active

subspace method focuses on reducing the dimensionality of the problem, and hence the

computational effort associated with uncertainty propagation. The focus here is on input

parameter dimension reduction. This is different from techniques such at Computational

Singular Perturbation (CSP) [30, 59, 60, 89, 107] that aim to reduce the complexity of stiff

chemical systems by filtering out the fast timescales from the system. The latter is done,

for instance, using the eigenvectors of the system Jacobian to decouple the fast and slow

processes; see e.g., [30].

The application problem considered here is the H2/O2 reaction mechanism from [115].

This mechanism has received a lot of attention as a potential source of clean energy for

locomotive applications [28], and more recently in fuel cells [26, 70]. The mechanism

involves 19 reactions including chain reactions, dissociation/recombination reactions, and

formation and consumption of intermediate species; see Table 3.1. For each reaction, the

reaction rate is assumed to follow an Arrhenius correlation with temperature:

ki (T ) = Ai T ni exp(−Ea ,i/RT ), (3.1)

where Ai is the pre-exponent, ni is the temperature exponent, Ea ,i is the activation energy

corresponding to the i t h reaction, and R is the universal gas constant. The Arrhenius rate

law in (3.1) is typically interpreted in a logarithmic form as follows:

log(ki ) = log(Ai ) +ni log(T )−Ea ,i/RT . (3.2)

The global reaction associated with the H2/O2 mechanism can be considered as follows:

2H2+O2→ 2H2O. (3.3)

The equivalence ratio (Φ) is given by [111]:

Φ=
(MH2

/MO2
)obs

(MH2
/MO2

)st
, (3.4)

where the numerator on the right-hand-side denotes the ratio of the fuel (H2) and oxidizer

(O2) at a given condition to the same quantity under stoichiometric conditions. In this study,
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Table 3.1: Reaction mechanism for H2/O2 from [115].

Reaction # Reaction
R1 H +O2 � O +OH
R2 O +H2 � H +OH
R3 H2 +OH � H2O +H
R4 OH +OH � O +H2O
R5 H2 +M � H +H +M
R6 O +O +M � O2 +M
R7 O +H +M � OH +M
R8 H +OH +M � H2O +M
R9 H +O2 +M � HO2 +M
R10 HO2 +H � H2 +O2

R11 HO2 +H � OH +OH
R12 HO2 +O � O2 +OH
R13 HO2 +OH � H2O +O2

R14 HO2 +HO2 � H2O2 +O2

R15 H2O2 +M � OH +OH +M
R16 H2O2 +H � H2O +OH
R17 H2O2 +H � HO2 +H2

R18 H2O2 +O � OH +HO2

R19 H2O2 +OH � HO2 +H2O

computations were performed at fuel-rich conditions, Φ = 2.0. Homogeneous ignition at

constant pressure is simulated using the TChem software package [88] using an initial

pressure, P0 = 1 atm and initial temperature, T0 = 900 K. The time required for the rate of

temperature increase to exceed a given threshold, regarded as ignition delay is recorded.

We seek to understand the impact of uncertainty in the rate-controlling parameters, pre-

exponents (Ai ’s) and the activation energies (Ea ,i ’s) as well as the initial pressure, temper-

ature, and the equivalence ratio on the quantity of interest (QoI), the ignition delay. The

log(Ai )’s associated with all reactions and the Ea ,i ’s with non-zero nominal estimates are

considered to be uniformly distributed about their nominal estimates provided in [115].

Temperature exponent, ni for each reaction is fixed to its nominal value, also provided

in [115]. The initial conditions are also considered to be uniformly distributed about their

respective nominal values mentioned above. The total number of uncertain inputs is 36,

making the present problem computationally challenging. To address this challenge, we

focus on reducing the dimensionality of the problem by computing the active subspace.

This involves repeated evaluations of the gradient of a model output with respect to the

input parameters. Several numerical techniques are available for computing the gradient,
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such as finite differences and more advanced methods involving adjoints and sensitivity

equations [2, 14, 54]. In this chapter we will compare two different approaches for active

subspace discovery. The first approach, which we call the perturbation approach, uses

finite differences to approximate the gradient of the QoI with respect to the uncertain rate-

controlling parameters. The second approach [20], referred to as the regression approach

here, uses local linear approximations to estimate the active subspace. The regression

based approach is computationally less intensive than the perturbation approach. Note

the regression based approach is used only in active subspace construction.

Global sensitivity measures provide an alternative approach to input dimension reduction.

Sobol’ indices [99] rank input parameters based on their contribution to the variance in

the output. These indices can be estimated using a Monte Carlo sampling procedure. In

many applications, evaluating f is computationally intensive and estimating the indices

this way may not be feasible. Also, when the dimension of the uncertain parameter vector

is large, computing Sobol indices’ can be very challenging. Multiple efforts have focused on

efficient computation of the Sobol’ indices [67, 81, 104, 106]. Also derivative based global

sensitivity measures (DGSMs) can be used to accurately screen for unimportant parameters

often with less model evaluations than is needed when estimating Sobol’ indices. DGSMs

can also provide approximate upper bounds for Sobol’ indices. It was noted in [24, 31] that

DGSMs can be approximated by exploiting their links with active subspaces. This led to

the definition of the activity scores. In Section 3.2, we build on these ideas to provide a

complete analysis of links between Sobol indices, DGSMs, and activity scores for functions

of independent random inputs whose distribution law belongs to a broad class of probability

measures. Computing global sensitivity measures provides important information about

a model that go beyond dimension reduction. By identifying parameters with significant

impact on the model output, we can assess regimes of validity of the model formulation,

and gain critical insight into the underlying physics in many cases.

This chapter is organized as follows. In section 3.2, we study activity scores and their use

for approximating DGSMs. We also analyze important links between activity scores and

GSA methods, namely DGSMs and the total Sobol’ indices. In section 3.3, we outline our

approach for active subspace discovery and apply it to a 19-dimensional H2/O2 reaction

kinetics problem The pre-exponents Ai ’s are considered as the uncertain parameters here.

In section 3.5, we apply the approach to a higher dimensional H2/O2 reaction kinetics
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problem where 36 of the input parameters are considered to be uncertain. In both problems

we compare the results of the perturbation method (gradient-based) with the regression

method (gradient-free approach). In section 3.6, we provide a summary and discussion of

the results.

The details of this chapter are published in [111], which is the result of collaborative work

with Dr. Manav Vohra and Dr. Sankaran Mahadevan of Vanderbilt University.

3.2 GSA measures and their links with active subspaces

Consider a function f = f (ξ1,ξ2, . . . ,ξNp
). While the active subspace framework described

above does not make any assumptions about independence of the inputs ξi , i = 1, . . . , Np ,

the classical framework of variance based sensitivity analysis [91, 99] assumes that the inputs

are statistically independent. While extensions to the cases of correlated inputs exist [12,

52, 68, 114], we limit the discussion in this section to the case of random inputs that are

statistically independent and are either uniformly distributed or distributed according

to the Boltzmann probability distribution. Note that a measure µ onR is referred to as a

Boltzmann measure if it is absolutely continuous with respect to the Lebesgue measure

and admits a density of the form π(x ) =C exp{−V (x )}, where V is a continuous function

and C a normalization constant [61]. An important class of Boltzmann distributions are

the so called log-concave distributions, which include Normal, Exponential, Beta, Gamma,

Gumbel, and Weibull distributions. Note also that the uniform distribution does not fall

under the class of Boltzmanm distributions [61].

The total-effect Sobol’ index (Ti ( f )) of a model output, f (ξ) quantifies the total contribution

of the input, ξi to the variance of the output [99]. Mathematically, this can be expressed as

follows:

Ti ( f ) = 1−
Vξ∼i

�

E[ f |ξ∼i ]
�

V( f )
, (3.5)

where ξ∼i is the input parameter vector with the i th entry removed. Here E[ f |ξ∼i ] denotes

the conditional expectation of f given ξ∼i and its variance is computed with respect to ξ∼i .

The quantity,V( f ) denotes the total variance of the model output. The total-effect Sobol’

index accounts for the contribution of a given input to the variability in the output by itself as
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well as due to its interaction or coupling with other inputs. Determining accurate estimates

of Ti ( f ) typically involves a large number of model runs and is therefore can be prohibitive

in the case of compute-intensive applications. Derivative based global sensitivity measures

(DGSMs) [100] provide a means for approximating informative upper bounds on Ti ( f ) at a

lower cost; see also [108].

For f :Ω→R, we consider the DGSMs,

νi ( f ) := E

�

�

∂ f

∂ ξi

�2�

=

∫

Ω

�

∂ f

∂ ξi

�2

π(ξ)dξ, i = 1, . . . , Np .

Here π is the joint PDF of ξ. Note that νi ( f ) is the i th diagonal element of the matrix C as

defined in (2.4). Consider the spectral decomposition written as C=
∑Np

k=1λk w k w >
k . Herein,

we use the notation 〈·, ·〉 for the Euclidean inner product. The following result provides a

representation of DGSMs in terms of the spectral representation of C:

Lemma 3.2.1. We have νi ( f ) =
∑Np

k=1λk 〈e i , w k 〉2.

Proof. Note that νi ( f ) = e >i Ce i , where e i is the i th coordinate vector in RNp , i = 1, . . . , Np .

Therefore, νi ( f ) = e T
i

�

∑Np

k=1λk w k w >
k

�

e i =
∑Np

k=1λk 〈e i , w k 〉2.

In the case where the eigenvalues decay rapidly to zero, we can obtain accurate approxima-

tions of νi ( f ) by truncating the summation:

νi ,r ( f ) =
r
∑

k=1

λk 〈e i , w k 〉2 , i = 1, . . . , Np , r ≤Np .

The quantitiesνi ,r ( f ) are called activity scores in [24, 31], where links between GSA measures

and active subspaces is explored. The following result, which can also be found in [24, 31],

quantifies the error in this approximation. We provide a short proof for completeness.

Proposition 3.2.1. For 1≤ r <Np ,

0≤ νi ( f )−νi ,r ( f )≤λr+1, i = 1, . . . , Np .

Proof. Note that, νi ( f )−νi ,r ( f ) =
∑Np

k=r+1λk 〈e i , w k 〉2 ≥ 0, which gives the first inequality.
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To see the upper bound, we note,

Np
∑

k=r+1

λk 〈e i , w k 〉2 ≤λr+1

Np
∑

k=r+1

〈e i , w k 〉2 ≤λr+1.

The last inequality holds because 1= ‖e i‖2
2 =

∑Np

k=1 〈e i , w k 〉2 ≥
∑Np

k=r+1 〈e i , w k 〉2.

The utility of this result is realized in problems with high-dimensional parameters in which

the eigenvalues λi , i = 1, . . . , Np , decay rapidly to zero; in such cases, this result implies that

νi ( f )≈ νi ,r ( f ), where r is the numerical rank of C. This will be especially effective if there

is a large gap in the eigenvalues.

The relations recorded in the following lemma will be useful in the discussion that follows.

Lemma 3.2.2. We have

1.
∑Np

i=1νi ,r ( f ) =
∑r

k=1λk .

2.
∑Np

i=1νi ( f ) =
∑Np

k=1λk .

Proof. The first statement of the lemma holds, because

Np
∑

i=1

νi ,r ( f ) =
Np
∑

i=1

r
∑

k=1

λk 〈e i , w k 〉2 =
r
∑

k=1

λk

Np
∑

i=1

〈e i , w k 〉2 =
r
∑

k=1

λk‖w k‖2 =
r
∑

k=1

λk .

The statement (b) follows immediately from (a), because νi ( f ) = νi ,Np
( f ).

It was shown in [61] that the total-effect Sobol’ index Ti ( f ) can be bounded in terms of

νi ( f ):

Ti ( f )≤
Ci

V( f )
νi ( f ), i = 1, . . . , Np , (3.6)

where for each i , Ci is an appropriate Poincaré constant that depends on the distribution of

ξi . For instance, if ξi is uniformly distributed on [−1, 1], then Ci = 4/π2; and in the case ξi

is normally distributed with varianceσ2
i , then Ci =σ2

i . Note that (3.6) for the special cases

of uniformly distributed or normally distributed inputs was established first in [100]. The

bound (3.6) provides a strong theoretical basis for using DGSMs to identify unimportant

inputs.
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Combining Proposition 5.1.1 and (3.6), shows an interesting link between the activity scores

and total-effect Sobol’ indices. Specifically, by computing the activity scores, we can identify

the unimportant inputs. Subsequently, one can attempt to reduce parameter dimension by

fixing unimportant inputs at nominal values.

Suppose activity scores are used to approximate DGSMs, and suppose ξi is deemed unim-

portant as a result, due to a small activity score. We want to estimate the approximation

error that occurs once ξi is fixed at a nominal value. To formalize this process, we proceed

as follows. Let ξ be given and let z be a nominal value for ξi . Consider the reduced model,

obtained by fixing ξi at the nominal value:

f (i )(ξ; z ) = f (ξ1,ξ2, . . . ,ξi−1, z ,ξi+1, . . . ,ξNp
),

and consider the following relative error indicator:

E (z ) =

∫

Ω

�

f (ξ)− f (i )(ξ; z )
�2
µ(dξ)

∫

Ω
f (ξ)2µ(dξ)

.

This error indicator is a function of z with z distributed according to the distribution of ξi .

Theorem 3.2.1. We have Ez {E (z )} ≤ 2Ci

�

νi ,r ( f ) +λr+1

�

/V( f ), for 1≤ r <Np .

Proof. Note that, since
∫

Ω
f (ξ)2µ(dξ) =V( f ) +

�∫

Ω
f (ξ)µ(dξ)

�2 ≥V( f ), we have

Ez {E (z )} ≤
1

V( f )
Ez

�∫

Ω

�

f (ξ)− f (i )(ξ; z )
�2
µ(dξ)

�

= 2Ti ( f ),

where the equality can be shown using arguments similar to the proof of the main result

in [102]. Using this, along with (3.6) and Proposition 5.1.1, we have

Ez {E (z )} ≤
2Ci

V( f )
νi ( f )≤

2Ci

V( f )
�

νi ,r ( f ) +λr+1

�

.

In [108] the screening metric

ν̃i ( f ) =
Ciνi ( f )

∑Np

i=1 Ciνi ( f )
, (3.7)
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was shown to be useful for detecting unimportant inputs. We can also bound the normalized

DGSMs using activity scores as follows. It is straightforward to see that

ν̃i ( f )≤
Ci

�

νi ,r ( f ) +λr+1

�

∑Np

i=1 Ciνi ,r ( f )
=

Ciνi ,r ( f )
∑Np

i=1 Ciνi ,r ( f )
+κiλr+1,

with κi =Ci/(
∑

i Ciνi ,r ( f )). In the case where where λr+1 ≈ 0, this motivates definition of

normalized activity scores

ν̃i ,r ( f ) =
Ciνi ,r ( f )

∑Np

i=1 Ciνi ,r ( f )
.

Remark 3.2.1. If the random inputs ξi , i = 1, . . . , Np , are iid, then the Ci ’s in the definition of

the normalized screening metric will cancel and

ν̃i ( f ) =
νi ( f )

∑Np

i=1νi ( f )
=

∑Np

k=1λk 〈e i , w k 〉2
∑Np

k=1λk

.

The expression for the denominator follows from Lemma 3.2.2(b). Also, in the iid case, using

Lemma 3.2.2(a) we can simplify the normalized activity scores as follows.

ν̃i ,r ( f ) =
νi ,r ( f )

∑Np

i=1νi ,r ( f )
=

∑r
k=1λk 〈e i , w k 〉2
∑r

k=1λk

. (3.8)

The significance of the developments in this section are as follows. Theorem 3.2.1 provides

a theoretical basis for parameter dimension reduction using activity scores. This is done by

providing an estimate of the error between the reduced model and the original model. If a

precise ranking of parameter importance based on total-effect Sobol’ indices is desired,

one can first identify unimportant inputs by computing activity scores, and then perform a

detailed variance based GSA of the remaining model parameters. This approach will provide

great computational savings as variance based GSA will now be performed only for a small

number of inputs deemed important based on their activity scores. Moreover, the presented

result covers a broad class of input distributions coming from the Boltzmann family of

distributions. Additionally, the normalized activity scores discussed above provide practical

screening metrics that require only computing the activity scores. This is in contrast to the

bound in Theorem 3.2.1 that requires the variance V( f ) of the model output.
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3.3 Computational Method

In this section, we outline the methodology for computing the active subspace in an effi-

cient manner. The proposed framework is employed to analyze a 19-dimensional H2/O2

reaction kinetics problem whereby the logarithm of the pre-exponent (Ai ) in the rate law

associated with individual reactions provided in Table 3.1 is considered to be uniformly

distributed in the interval, [0.97log(A∗i ),1.03log(A∗i )]; A∗i is the nominal estimate provided

in [115]. Two approaches are explored for estimating the gradient of ignition delay with

respect to log(Ai ): a perturbation approach that involves computation of model gradients

using finite difference in order to construct the matrix Ŝ in (2.7), and a regression approach

that involves a linear regression fit to the available set of model evaluations. The active

subspace is computed in an iterative manner to avoid unnecessary model evaluations.

As discussed earlier, gradient estimation using finite differences requires additional model

evaluations at the neighboring points in the input domain. Hence, for N samples in a

d -dimensional parameter space, N (d + 1)model evaluations are needed. On the other

hand, the regression-based approach involves a series of linear regression fits to subsets of

available evaluations as discussed in [20]. Hence, the computational effort is reduced by

a factor (d +1)when using the regression-based approach. In other words, for the same

amount of computational effort, the regression approach can afford a sample size that is

(d+1) times larger than that in the case of perturbation approach. The specific sequence of

steps for computing the active subspace is discussed as follows.

We begin by evaluating the gradient of the model output,∇ξ f , at an initial set of n0 samples

(generated using Monte Carlo sampling) denoted by ξi , i = 1, . . . , n0. Using the gradient

evaluations, the matrix,

Ŝ=
1

Ns

Ns
∑

i=1

∇ f (ξi )∇ f (ξi )
T

is computed. Eigenvalue decomposition of Ŝ yields an initial estimate of the dominant

eigenspace, W1 and the set of corresponding eigenvalues, Λ1. Note that W1 is obtained

by partitioning the eigenspace around λ j such that the ratio of subsequent eigenvalues,
�

λ j

λ j+1

�

≥O (101). At each subsequent iteration, model evaluations are generated at a new set

of nk samples. The new set of gradient evaluations are augmented with the available set to

re-construct Ŝ followed by its eigenvalue decomposition. The relative change in the norm
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of the difference in squared value of individual components of the dominant eigenvectors

between subsequent iterations is evaluated. The process is terminated once the maximum

relative change at iteration k , max(δW(k )
1, j ) ( j is used as an index for the eigenvectors), is

smaller than a given tolerance, τ, where

δW(k )
1, j =

‖(W(k )
1, j )

2− (W(k−1)
1, j )

2‖2

‖(W(k−1)
1, j )2‖

. (3.9)

A regression fit to G (W>
1ξ)with G as in (2.6) is used as a surrogate to characterize and quan-

tify the uncertainty in the model output. Moreover, the components of the eigenvectors in

the active subspace are used to compute the activity scores, νr ( f ), which provide an insight

into the relative importance of the uncertain inputs. Note that the index, r , corresponds to

the number of eigenvectors in W1. The sequence of steps as discussed are outlined in [111,

Algorithm 1].

3.4 Results and Discussion

To assess its feasibility and suitability, we implement the proposed strategy to compute

the active subspace for the 19-dimensional H2/O2 reaction kinetics problem by perturbing

log(Ai ) by 3% about its nominal value as discussed earlier. For the purpose of verification,

Ŝ was initially constructed using a large set of samples (N = 1000) in the input domain.

The gradient was estimated using finite difference, and hence, a total of 20,000 model runs

were performed. In Figure 3.1, we illustrate the comparison of the resulting normalized

eigenvalue spectrum by plotting log(λi/λ0) (i = 1, . . . ,19) corresponding to N = 1000 and

the same quantity corresponding to a much smaller set of samples, n = {20,40,80,120}.
We observe that the dominant eigenvalues, λ1, . . . ,λ4, are approximated reasonably well

with just 20 samples. As expected, the accuracy of higher-index eigenvalues is observed to

improve with the sample size. Since λ1 is roughly an order of magnitude larger than λ2, we

expect a 1-dimensional active subspace to reasonably approximate the uncertainty in the

ignition delay. To further confirm this, we evaluate a relative L 2 norm of the difference (εN−n
L2 )

between the squared value of corresponding components of the dominant eigenvector,
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Figure 3.1: A comparison of the normalized eigenvalue spectrum, log(λi/λ0) using
n = {20, 40, 80, 120} samples with that obtained using a much larger sample size, N = 1000.

computed using N = 1000 (w 1,N ) and n = {20, 40, 80, 120} (w 1,n ) as follows:

εN−n
L2 =

‖w 2
1,N −w 2

1,n‖2

‖w 2
1,N ‖2

(3.10)

The quantity, εN−n
L2 , was found to be O (10−2) in all cases. Thus, even a small sample size, n =

20, seems to approximate the dominant eigenspace with reasonable accuracy in this case.

The active subspace for the 19-dimensional problem was also computed using regression-

based estimates of the gradient that do not require model evaluations at neighboring

points as discussed earlier. The quantity, max(δW(r )
1, j ), defined in (3.9) ,was used to assess

the convergence behavior of the two approaches. Using a set tolerance, τ = 0.05, it was

observed that both, perturbation and regression approaches took 8 iterations to converge.

Note that the computational effort at each iteration was considered to be the same in both

cases. More specifically, 5 new random samples were added for the perturbation approach

at each iteration. However, as discussed earlier, as total of 100 (=5×(19+1)) model runs

were needed to obtain the model prediction and its gradients at these newly generated

samples. Hence, in the case of regression, 100 new random samples were generated at

each iteration since gradient computation does not require additional model runs in this

case. Thus, including the initial step, a total of 900 model runs were required to obtain a

converged active subspace in both cases.

The accuracy of the two approaches was assessed by estimating εN−n
L2 using the components

of the dominant eigenvector in the converged active subspace in each case in (3.10). The
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quantity, εN−n
L2 was estimated to be 0.0657 and 0.1050 using perturbation and regression

respectively. Squared values of the individual components of the dominant eigenvector

from the two approaches and for the case using N = 1000 in the perturbation approach

are plotted in Figure 3.2 (left). The set of eigenvector components for the three cases are

Figure 3.2: Left: An illustrative comparison of individual squared components of the con-
verged dominant eigenvector obtained using perturbation and regression strategies using
M = 900 model runs in each case. Additionally, the dominant eigenvector components
obtained using M = 20000 model runs (corresponding to N = 1000 samples) in the pertur-
bation strategy (test case), used to assess the accuracy of the two strategies are also plotted.
Right: An illustrative comparison of the SSPs generated using the perturbation and the
regression strategies for computing the active subspace.

found to be in excellent agreement with each other, indicating that both approaches are

sufficiently accurate for this setup.

As mentioned earlier, the model output f (ξ) i.e. the ignition delay in the H2/O2 reaction

in this case, varies predominantly in a 1-dimensional active subspace. As discussed in

Section 2.2 we can approximate f (ξ) as G (W>
1ξ)where W1 has one column containing the

eigenvector corresponding to the dominant eigenvalue. The plot of G versus W>
1ξ, regarded

as the sufficient summary plot (SSP), obtained using the perturbation-based and regression-

based gradient estimates are compared in Figure 3.2 (right). The dominant eigenvector

obtained using perturbation is based on N = 45 samples which requires M = 900 model

runs. For the same amount of computational effort, we can afford N = 900 samples when
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using regression. Hence, the SSP from regression is based on 900 points: (W>
1ξ j , G (W>

1ξ j )),

j = 1, . . . , 900. On the other hand, the SSP from perturbation is plotted using only 45 points

as mentioned earlier. Nevertheless, the illustrative comparison clearly indicates that the

two SSPs are in excellent agreement. Moreover, it is interesting to note that the response

in ignition delay based on the considered probability distributions for log(Ai ) although

non-linear, can be approximated by a 1-dimensional active subspace.

We further estimate the normalized activity scores for individual uncertain inputs (ν̃i ,r ; r=1

since we have a 1-dimensional active subspace) using the components of the dominant

eigenvector. The activity scores for the 19 uncertain pre-exponents (Ai ’s), estimated using

the perturbation and regression strategies are plotted in Figure 3.3. The activity scores

Figure 3.3: Left: A bar-graph of normalized activity scores (ν̃i ,r ’s) for the 19 uncertain
pre-exponents (Ai ’s); r denotes the number of eigenvectors in the dominant eigenspace.

based on the two approaches for gradient estimation agree favorably with each other as

well as those based on the screening metric involving the DGSMs in [108]. It is observed

that the uncertainty associated with the ignition delay is largely due to the uncertainty in

A9 while A1, A15, and A17 are also observed to contribute significantly towards its variance.

The above comparisons indicate that the gradient of the ignition delay with respect to

the uncertain Ai ’s is reasonably approximated using both, perturbation and regression

approaches in this case. Since both approaches yield consistent results and are comparable

in terms of convergence and accuracy, we could use either for the purpose of active subspace
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computation for this setting. In the following section, we shift our focus to the higher-

dimensional H2/O2 reaction kinetics application wherein the activation energies in the

rate law as well as initial pressure, temperature, and stoichiometric conditions are also

considered to be uncertain.

3.5 H2/O2 reaction kinetics: higher-dimensional case

Here we aim to investigate the impact of uncertainty in the following problem param-

eters on the ignition delay associated with the H2/O2 reaction: (i) pre-exponents (Ai ’s);

(ii) the activation energies (Ea ,i ’s); and (iii) the initial pressure (P0), temperature (T0), and

stoichiometry (Φ0). The log(Ai )’s, Ea ,i ’s for all reactions exceptR6 –R9,R13 (due to zero

nominal values for Ea ), and the initial conditions were considered to be uniformly dis-

tributed, and perturbed by 2% about their nominal values. Note that the magnitude of the

perturbation was selected such that the ignition delay assumes a physically meaningful

value in the input domain. The nominal values of the rate parameters, Ai ’s and Ea ,i ’s were

taken from [115]. The nominal values of P0, T0, and Φ0 were considered to be 1.0 atm, 900 K,

and 2.0 respectively.

3.5.1 Computing the active subspace

The active subspace was computed using the iterative procedure outlined earlier. The

convergence of the eigenvectors was examined by tracking the quantity ‘max(δW(i )
1, j )’. In

Figure 3.4 (right), we examine max(δW(i )
1, j )with increasing iterations for the perturbation and

the regression approaches discussed earlier in Section 3.3. At each iteration, we improve our

estimates of the matrix Ŝ by estimating the gradient of the ignition delay at 5 new randomly

generated samples in the 36-dimensional input space. However, gradient computation at

these 5 samples requires 185 (=5×(36+1)) model runs when using perturbation. For the

same computational effort, the regression approach can afford 185 new samples at each

iteration. It is observed that using τ = 0.05, the active subspace requires 4 iterations (925

model runs) to converge in the case of perturbation, and 9 iterations (1850 model runs) to

converge in the case of regression. Hence, the computational effort required to obtain a
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Figure 3.4: Left: An illustrative comparison of individual components of the dominant
eigenvector in the converged active subspace i.e., at the end of 4 iterations in the pertur-
bation approach and 9 iterations in the regression approach. Right: A comparison of the
convergence behavior of the perturbation and the regression approaches. Convergence is
accomplished once max(δW(i )

1, j ) assumes a value smaller than 0.05.

converged active subspace is doubled when using regression to approximate the gradient.

Moreover, gradient estimation in the perturbation approach can be made more efficient

by using techniques such as automatic differentiation [57] and adjoint computation [54].

These techniques although not pursued here are promising directions for future efforts

pertaining to this work. In Figure 3.4 (right), we compare individual components of the

dominant eigenvector in the converged active subspace obtained using the two approaches.

The components are observed to be in excellent agreement with each other.

3.5.2 Constructing the surrogate model

The surrogate Ĝ was constructed using a regression fit [111]. In figure 3.5 we compare the

PDFs of the 1-dimensional surrogate for the regression and perturbation approaches with

the true model. We also computed the mean and standard deviation for each case and

noted the values were in close agreement with the true model G . The pdfs and the statistics

indicate that the uncertainty in ignition delay is accurately captured with the surrogate

models.

We computed the normalized activity scores using the active subspace based surrogate and
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Figure 3.5: A comparison of the PDFs of ignition delay, obtained using model evalua-
tions (solid line) regression-based surrogate (dashed line) and the perturbation-based
surrogate(dashed-dotted line). The same set of 104 samples in the cross-validation set were
used in each case.

identified that the following parameters as significant to the variability in ignition delay:

pre-exponents A1, A9, A15 and A17, the activation energy Ea ,15, and the initial temperature T0.

The activity scores were found to be consistent with total Sobol’ indices. For more details,

see [111].

3.6 Discussion

In this chapter, we focused on the uncertainty associated with the rate-controlling param-

eters in the H2/O2 reaction mechanism as well as the initial pressure, temperature, and

stoichiometry and its impact on ignition delay predictions. The mechanism involves 19

different reactions and in each case, the reaction rate depends upon the choice of a pre-

exponent and an activation energy. Hence, in theory, the evolution of the chemical system

depends upon 38 rate parameters and three initial conditions. However, we considered

uncertainty in all pre-exponents and activation energies with non-zero nominal values in

addition to the three initial conditions. To enable efficient UQ we reduced the dimension

of the problem using active subspaces, which aligns the input parameters along important

directions in the parameter space. Additionally, we demonstrated that the activity scores,

computed using the components of the dominant eigenvectors from the active subspace
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provide an efficient means for approximating derivative based global sensitivity measures

(DGSMs). Furthermore, we investigated links between activity scores, DGSMs, and total

Sobol’ indices which could be exploited to reduce computational effort associated with

global sensitivity analysis.

Active subspace computation requires repeated evaluations of the gradient of the QoI.

For this purpose, we explored two approaches, namely, perturbation and regression. Both

approaches were shown to yield consistent results for the 19-dimensional problem wherein

only the pre-exponents were considered to be uncertain. It was observed that the computa-

tional effort required to obtain a converged active subspace was comparable for the two

approaches. However, the predictive accuracy of the perturbation approach was found to

be relatively higher. Moreover, a 1-dimensional active subspace was shown to reasonably

approximate the uncertainty in the ignition delay. Additionally, the activity scores were also

shown to be consistent with the screening metric estimates based on DGSMs in [108]. An

iterative procedure was adopted to enhance the computational efficiency.

The active subspace was further computed for a 36-dimensional problem wherein all pre-

exponents and activation energies with non-zero nominal estimates as well as the initial

conditions were considered uncertain. Once again, consistent results were obtained using

the two approaches. A 1-dimensional active subspace was shown to reasonably capture the

uncertainty in the ignition delay in this case. However, the computational effort required to

compute a converged active subspace using perturbation was found to be half of the effort

required in the case of regression. Predictive accuracy of the two approaches was found

to be comparable. Hence, perturbation seems like a preferred approach for the higher-

dimensional problem based on our findings. GSA results indicated that the variability in

the ignition delay is predominantly due to the uncertainty in the rate parameters, A1 and

A9 with significant contributions from A15, A17, and Ea ,15. Additionally, the ignition delay

was found to be sensitive towards T0.

Based on our findings, in the present application, the perturbation approach is preferable

for active subspace computation; the computational cost of this approach can be reduced

significantly, if more efficient gradient computation techniques (e.g., adjoint-based ap-

proaches or automatic differentiation) are feasible. The regression-based approach can

be explored in situations involving intensive simulations where gradient computation is

very challenging. We must mention however, that the regression based approach may fail
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in cases where the sign of the partial derivatives does not remain constant over the entire

parameter space, see [18, p.8]. We also mention that alternate regression-based approaches

such as ones based on computing a global quadratic model have been proposed and used

in the literature; see e.g., [25]. The applicability of such an approach in the context of

high-dimensional chemical reaction networks is subject to future work.

The computational framework presented in this work can be easily adapted for other

chemical systems as long as the quantity of interest is continuously differentiable in the

considered domain of the inputs. We have demonstrated that the active subspace could be

exploited for efficient forward propagation of the uncertainty from inputs to the output. The

resulting activity scores and the low-dimensional surrogate could further guide optimal

allocation of computational resources for calibration of the important rate-controlling

parameters and input conditions in a Bayesian setting. Additionally, dimension reduction

using active subspaces could assist in developing robust formulations for predicting dis-

crepancy between simulations and measurements due to epistemic uncertainty in the

model inputs.
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CHAPTER

4

A DISTRIBUTED ACTIVE SUBSPACE

METHOD FOR SCALABLE SURROGATE

MODELING OF FUNCTION VALUED

OUTPUTS

4.1 Introduction

Models with uncertain input parameters are common in modeling of complex systems.

Computational studies such as forward uncertainty propagation, optimization, or parame-

ter estimation require repeated evaluation of the model. These tasks become challenging

for expensive-to-evaluate complex models. To address this challenge, surrogate models are

often used. By approximating the mapping from the uncertain input parameters to output

quantities of interest (QoIs), using a surrogate model, one can replace expensive model
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evaluations by inexpensive surrogate model evaluations. Examples of surrogate model-

ing tools include polynomial chaos expansion [37, 63], multivariate adaptive regression

splines [34], and Gaussian processes [83].

In the present work, we consider surrogate construction for models of the form

y = f (x ,ξ), (4.1)

where x belongs to a spatial domain and ξ ∈RNp is a vector of uncertain parameters. In our

target applications f is defined in terms of the solution of a partial differential equation

(PDE) that is parameterized by a high-dimensional input parameter. Albeit, the proposed

framework can be adapted to more general settings.

A simple approach is to construct a surrogate model pointwise in x . Specifically, discretizing

the spatial domain by grid points {x i }
Nx
i=1, we may consider approximating f (x i ,ξ), by con-

structing surrogate models f̂i (ξ)≈ f (x i , ·), i = 1, . . . , Nx . This straightforward approach can

be useful in some cases, however, the power of many of the surrogate modeling approaches

can be fully realized if one optimizes them for each x i in the computational grid. This is a

computationally expensive task and might become prohibitive if the parameter dimension

Np is large (e.g., Np ≥ 100), the model exhibits large variations in its response to parametric

uncertainties over the spatial domain, or the grid point number Nx is large, as can happen

in two or three-dimensional geometries.

We seek an efficient surrogate modeling approach, for models of the form (4.1), whose

complexity in terms of the number of model evaluations does not scale with the dimension

Np of the input parameters. To enable this, we need a method that is structure exploiting.

In particular, we seek to discover and utilize informative low-dimensional subspaces in

the input space and low-dimensional spectral representations of the model output. The

former uses ideas from active subspace methods [18] and the latter uses Karhunen–Loève

(KL) expansions [37, 69]. The proposed approach decouples the spatial (i.e. x ) dimensions

and those of the random variable ξ and exposes important structures that can be used for

building efficient surrogate models.

Related work. KL expansions have been used in many works for representing random field

parameters in physics models; see e.g., [8, 32, 33, 38, 40, 65, 66, 75, 87, 113]. KL expansions

can also be used to represent random field outputs of physics models, as done in the present
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work. In models governed by PDEs, the output field often exhibits favorable regularity

properties and can be represented by a KL expansion with a relatively small number of KL

terms. Examples of this appear for instance in our recent works [5, 17] for models governed

by elliptic PDEs.

The active subspace method [18, 23, 86] has become a popular approach in recent years

for input parameter dimension reduction and surrogate modeling. This method seeks to

identify important linear combinations of the input parameters. A brief summary of the

active subspace method, for approximating scalar valued models, has been provided in

Chapter 2. The active subspace method has been successfully used for uncertainty analysis

in models with scalar valued responses, in a host of engineering applications; examples

include scramjet analysis [19], wing shape optimization [71], hydrologic modeling [55],

battery modeling [22], and kinetic model uncertainty analysis [56]. Recently, there have

been efforts in extending the active subspace method to vector valued functions. In [116] the

authors find an upper bound for the error of a ridge function approximation of the original

(vector valued) function, and construct an approximating function by minimzing that upper

bound. In [56] an interesting approach is introduced for simultaneously approximating

multiple outputs using a single low-dimensional shared subspace. The shared subspace

is identified by solving a least-squares system to compute an appropriate combination of

single-output active subspaces.

We also mention another related and popular class of methods for parameter dimension

reduction: variance based [98, 99] and derivative based [58, 101] global sensitivity analysis

(GSA). These methods, which were reviewed in Chapter 2, provide means of identifying

unimportant model inputs, hence reducing the dimension of the input parameter vector.

Derivative based methods are especially attractive, as they can be used to efficiently screen

for unimportant input parameters, after which a surrogate model can be computed as a

function of a reduced set of parameters. While GSA approaches have traditionally been

applied to models with scalar outputs, extensions of GSA methods to vectorial and function

valued outputs appear in several recent works [4, 17, 35].

In practice, the active subspace method tends to be very effective in reducing the input

dimension as important directions in the input parameter space are identified. This is, in

contrast to seeking reduced parameter subsets, as identified by GSA approaches. We note

however that utility of GSA goes beyond input parameter dimension reduction—GSA pro-
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vides valuable insight regarding a model by identifying key contributors to model variability.

Also, we mention an interesting link between derivative based GSA and active subspaces

through the idea of activity scores as detailed in [21] and in Chapter 3; computing active

subspaces provides, as a byproduct, approximations to derivative based global sensitivity

measures, for scalar valued models.

Our approach and contributions. In our proposed approach, we combine active sub-

spaces and KL expansions to enable efficient surrogate modeling for function valued QoIs.

Specifically, we consider a suitably truncated KL decomposition

f (x ,ξ)≈ f̄ (x ) +
N
∑

k=1

p

λk fk (ξ)φk (x ),

where f̄ is the mean of the process f (x ,ξ) and (λk ,φk ) are the eigenpairs of the covariance

operator of the process. This way, the model uncertainty is encoded in the KL modes, fk ,

k = 1, . . . , N . In many cases a small N can be very effective in approximating f . These KL

modes can then be approximated efficiently using the active subspace approach. The active

subspace approach requires the gradients of fk , which are scalar functions of the random

vectorξ. For such functions, adjoint state approaches provide efficient means of computing

the required gradients. Specifically, gradients can be computed as a cost, in terms of model

evaluations, that does not scale with the dimension of the input parameter ξ. Realizing

the proposed approach requires (i) a rigorous functional framework upon which efficient

computational algorithms can be built; and (ii) a systematic computational procedure that

guides efficient implementations. These have been detailed in Section 3.3.

We deploy our proposed framework in the context of flows in biological tissues. Specifically,

in Section 4.5, we tackle biotransport in porous tumors with high-dimensional random

inputs (i.e., the permeability field) and random field outputs (i.e., the pressure distribu-

tion in tumors). Biological tissues usually have highly heterogeneous, uncertain, material

properties [73]. The biotransport process such as drug delivery in tissues thus can exhibit

“unpredictable" behaviors due to the uncertainties in tissue material properties [29]. Since

the unpredictability can adversely affect the effectiveness of therapy, quantifying variability

in biotransport due to uncertain material properties has a high impact on clinical trial proto-

col design. However, conducting useful uncertainty quantification studies on biotransport

is challenging due to the high dimension of the input parameter space, e.g. permeability
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and porosity [3]. We find that efficient-to-evaluate and accurate surrogate models can be

computed at a modest computational cost, with our proposed framework. The presented

computational experiments also indicate that the present method can be used successfully

in more general porous medium flow problems, where Darcy flow is a reasonable model.

Further investigations of the proposed surrogate modeling method in more complex flow

models is subject of our future work.

4.2 Active subspace-based surrogate models for function-

valued QoIs

In this section, we outline our approach for computing an active subspace-based surrogate

model for a function valued QoI. Specifically, we consider models of the form

y = f (x ,ξ), x ∈X ,ξ ∈Ω, (4.2)

whereX ⊂ Rn , with n = 2 or 3, is a compact set, and Ω ⊂ RNp is a sample space. The set

X will be a (sub-) region of a computational domain, in our target applications. Here

ξ= (ξ1,ξ2, . . . ,ξNp
)T is a vector of uncertain parameters, with probability density function

π(ξ). We make the following assumptions about f (x ,ξ).

Assumption 1. We assume

(a) f ∈ L 2(X ×Ω) and f is a mean square continuous process.

(b) ∂ f
∂ ξi
(x ,ξ) exists for all x ∈X ,ξ ∈Ω, i = 1, . . . , Np .

(c) ∂ f
∂ ξi
(x ,ξ) ∈ L 2(X ×Ω), i = 1, . . . , Np .

Letting E[·] denote expectation with respect to ξ, the covariance function, c :X ×X →R,

of f is defined as

c (x , y ) :=E[ f (x , ·) f (y , ·)]−E[ f (x , ·)]E[ f (y , ·)]

and the associated covariance operator C f : L 2(X )→ L 2(X ) is given by

[C f u ](x ) :=

∫

X
c (x , y )u (y )d y .
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Assumption 1(a) ensures that the covariance function c and the process mean

f̄ (x ) =E[ f (x ,ξ)]

are continuous onX ×X andX , respectively; see e.g., [49, Theorem 7.3.2].

We reduce the dimension of the output by computing a low-rank approximation using a

truncated KL expansion:

f (x ,ξ)≈ f̂ (x ,ξ) = f̄ (x ) +
N
∑

k=1

Æ

λk (C f ) fk (ξ)φk (x ). (4.3)

Here λk (C f ) and φk are the eigenvalues and eigenvectors of the covariance operator C f

and fk ’s are given by

fk (ξ) =
1

Æ

λk (C f )

∫

X
( f (x ,ξ)− f̄ (x ))φk (x )d x . (4.4)

We refer to the coefficients fk as the KL modes of f . In the present work, the (generalized)

eigenvalue problem,

C f φk =λk (C f )φk ,

∫

X
φk (x )

2 d x = 1, k = 1, 2, . . . , (4.5)

is solved using Nyström’s method. In practice, N in (4.3) can be chosen such that

(
N
∑

k=1

λk (C f ))/(
∞
∑

k=1

λk (C f ))< tol,

where tol is a user-specified tolerance. In many applications of interest, where f is defined

in terms of the solution of a differential equation, the eigenvaluesλk (C f ) exhibit rapid decay,

which enables low-rank representations. In particular, this is observed in the application

problem considered in the present work.

The KL modes fk (ξ) are functions of a potentially high-dimensional parameter ξ so the next

step is to approximate fk (ξ) using active subspaces [23]. For each KL mode fk , k = 1, . . . , N ,

we compute an active subspace by considering the symmetric positive semidefinite matrix,
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Sk ∈RNp×Np , defined by

Sk =

∫

RNp

�

∇ fk (ξ)
��

∇ fk (ξ)
�T
π(ξ)dξ. (4.6)

As before, we compute the spectral decomposition Sk =WkΛk WT
k , and partition the eigen-

pairs according to

Λk =

�

Λk ,1

Λk ,2

�

, Wk =
�

Wk ,1 Wk ,2

�

,

where Λk ,1 ∈Rrk×rk is a diagonal matrix with the dominant eigenvalues of Sk on its diagonal;

and Wk contains the corresponding eigenvectors. Defining,

Gk (y ) = fk (Wk ,1y ), y ∈Rrk , k = 1, . . . , N ,

the KL modes can be approximated by

fk (ξ)≈Gk (W
T
k ,1ξ), k = 1, . . . , N .

In practice, the active subspace-based surrogates for the KL modes fk are constructed by

following Algorithm 1, with g replaced by fk , k = 1, . . . , N . Thus, we obtain surrogate models

fk (ξ)≈ G̃k (W
T
k ,1ξ), k = 1, . . . , N .

The overall surrogate model for f (x ,ξ) is then given by

f (x ,ξ)≈ f̂ (x ,ξ) = f̄ (x ) +
N
∑

k=1

p

λk G̃k (W
T
k ,1ξ)φk (x ). (4.7)

The computational steps for computing f̂ (x ,ξ) can be divided into three main steps:

1. Compute the truncated KL expansion of f (x ,ξ).

2. Compute the active subspace-based approximation to KL modes fk , k = 1, . . . , N .

3. Form the overall surrogate model as in (4.7).

The most computationally challenging part of the above process is the first step, in which
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we require an ensemble of model evaluations f (·,ξi ), i = 1, . . . , Ns . These model evaluations

will be used to compute the KL expansion of the model f (x ,ξ). For this, we use Algorithm 1

in [5], that uses Nyström’s method to compute λk (C f ) and the corresponding eigenvectors

φk (·), k = 1, . . . , N . This process also provides the evaluations of the KL modes, fk (ξi ), k =

1, . . . , N , i = 1, . . . , Ns . As shown in our numerical results, often a modest choice of Ns is

sufficient for obtaining reliable approximations to (i) the dominant eigenpairs, and (ii) KL

modes fk .

Notice that for implementing the proposed method, differentiability of the KL modes is

required. Moreover, as seen below, for the purposes of error analysis, Lipschitz continuity

of the output KL modes is needed. These requirements can be satisfied through suitable

boundedness assumptions on the partial derivatives of f (x ,ξ), as we now explain. For

convenience, and with no loss of generality, we consider the case where f̄ (x ) ≡ 0 and

consider

F (ξ) =

∫

X
f (x ,ξ)v (x )d x , (4.8)

where we use a generic element v ∈ L 2(X ), with ‖v ‖L 2(X ) = 1, in place of the eigenvectors

φk . This F can be thought of as a generic unnormalized KL mode. In addition to the earlier

assumptions on f , we also require

�

�

�

�

∂ f

∂ ξ j
(x ,ξ)

�

�

�

�

≤ b j (x ), for all x ∈X ,ξ ∈Ω,

where b j , j = 1, . . . , N , are square integrable.

Lemma 4.2.1. Suppose the process f (x ,ξ) satisfies Assumption 1 and (4.8). Then, F is dif-

ferentiable and is Lipschitz continuous.

Proof. Differentiability of F can be shown using the standard arguments of differentiat-

ing under the integral sign; see e.g.,what where it is shown that under the present set of

assumptions, ∂ F
∂ ξ j
=
∫

X
∂ f
∂ ξ j
(x ,ξ)v (x )d x . We also have

|∂ j F (ξ)| ≤
∫

X
|∂ j f (x ,ξ)v (x )|d x ≤

∫

X
|b j (x )||v (x )|d x ≤ ‖b j‖L 2(X )‖v ‖L 2(X ),

for every x ∈X . Using this, it is straightforward to show, |F (ξ1)−F (ξ2)| ≤ L‖ξ1−ξ2‖, for all

ξ1,ξ2 ∈Ω, with L =
�

∑N
j=1 ‖b j‖2

L 2(X )

�1/2
.
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4.2.1 Gradient computation

The present active subspace-based surrogate modeling approach requires computing the

gradient of the output KL modes. Here, it is more convenient to consider the “unnormalized

KL modes”, Fk , k = 1, . . . , N .

Fk (ξ) =

∫

X
( f (x ,ξ)− f̄ (x ))φk (x )d x . (4.9)

Finite-difference approximations provide a simple approach, but will be prohibitive when

the input dimension Np is large and model evaluations are expensive. For field quantities

defined in terms of the solution u of a PDE parameterized by ξ, Fk is a functional of u . This

is an ideal situation for deploying adjoint based gradient computation. To illustrate this,

we assume the model f (x ,ξ) is a function of the solution u (x ,ξ) of a PDE. For instance

f can be the restriction of u to a sub-domain, or f can be flux of u through a boundary.

For illustration, we consider the case where the PDE is of the formA (ξ)u = b , whereA
denotes a differential operator that is parameterized by the uncertain parameter vector ξ

and b is a source term, and assume f (x ,ξ) = u (x ,ξ). To simplify the presentation further,

we consider the discretized problem, where the discretized KL mode is defined by

F k (ξ) = (u − ū )T Wφk , where A(ξ)u =b .

Here u is the discretized state variable, W is a diagonal matrix with quadrature weights on

diagonal,φk is the discretized k th eigenvector of output covariance, A is the discretized

PDE operator, and b is the discretized source term. Computing the gradient of F k with

respect to ξ can be done using a standard Lagrangian formalism [41]. Namely, we define

the Lagrangian

L (u ,ξ,q ) = (u − ū )T Wφk +q T
�

A(ξ)u −b
�

,

where q is a Lagrange multiplier. Setting ∂L
∂ q = 0 recovers the state equation, and setting

∂L
∂ u = 0 gives the adjoint equation

AT (ξ)q =−Wφk .
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Then, the gradient of F k is given by

∇F k (ξ)
T =

∂L
∂ ξ
=q T ∂ A(ξ)

∂ ξ
u .

Note that evaluation of∇F k requires one state (forward) equation solve and one adjoint

equation solve, independently of the dimension of the uncertain parameter vector ξ. (The

forward solves can be reused across the output KL modes.) Thus, to compute ∇F k , k =

1, . . . , N , we need one solution of the state equation, and N adjoint solves.

Computing the active subspaces for the output KL modes can be done with a set Ns of model

evaluations, used across all KL modes. Thus, the computational cost of active subspace

discovery for the output KL modes is Ns (1+N ), independent of the parameter dimension

Np . Typically a modest Ns is sufficient, as seen in our numerical results. Furthermore, the

same set of model evaluations can be used for surrogate model construction for the output

KL modes. This enables efficient computation of active subspaces for individual KL modes,

at a cost that does not scale with the dimension of ξ.

Notice that the present illustration uses an equation A(ξ)u =b , which is linear in the state

variable and nonlinear in the uncertain parameter ξ. Such an equation can result from

discretizing linear (in state) PDEs that are parameterized by uncertain parameters. The

adjoint approach can more generally be applied to nonlinear PDE models; see e.g., [41].

In the present work, we use adjoint based gradient computation for computing the gradient

of the output KL modes for models governed by elliptic PDEs with a random coefficient

function; see section 4.5.

4.3 Error Analysis

The presented computational strategy involves several approximations for computing the

active subspace-based surrogate for f (x ,ξ). In this section, we analyze the errors incurred

due to (i) truncation of the output KL expansion and (ii) active subspace approximation of

the KL modes. For the purposes of the presented analysis, it is more convenient to work
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with unnormalized KL modes (4.9), and consider

fN (x ,ξ) = f̄ (x ) +
N
∑

k=1

Fk (ξ)φk (x ). (4.10)

The active subspace strategy is flexible regarding the distribution law of the random vector

ξ; see e.g., [18]. However, in the present work, where we consider models with uncertain

coefficient functions that are modeled using log-Gaussian random fields, ξ is a standard

Gaussian random vector, i.e., ξ∼N (0, I).

As detailed in [18], while Algorithm 1 provides a practical surrogate modeling framework, it

is not directly amenable to theoretical analysis. To enable error analysis, following [18], we

define the functions Gk , used for active subpace projection of the KL modes in the following

way:

Gk (y ) =

∫

fk (Wk ,1y +Wk ,2z )πY |Z (z |y )d z , (4.11)

where πY |Z is the conditional density,

πY |Z (z |y ) :=
π(Wk ,1y +Wk ,2z )

πZ (z )
, with πZ (z ) =

∫

π(Wk ,1y +Wk ,2z )d y .

In practice, the marginalized Gk , which for convenience we can denote by

Gk (y ) =Ez { fk (Wk ,1y +Wk ,2z )},

can be approximated by Monte Carlo sampling,

Gk (y )≈ Ĝk (y ) :=
1

NAS

NAS
∑

i=1

fk (Wk ,1y +Wk ,2z i ). (4.12)

However, as seen below, even a very small Monte Carlo Sample (even with NAS = 1) can be

acceptable. This partly justifies and explains the effectiveness of Algorithm 1, which can be

seen as a special case of (4.12), with NAS = 1 and z 1 = 0.

Recall the approximation of the KL modes Fk (ξ) ≈ Gk (W T
k ,1ξ). As a first step in our error
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analysis, we quantify the error in this approximation. For each k ∈ {1, . . . , N }, we define

δk :=

 

Np
∑

j=rk+1

λ j (Sk )

!1/2

, (4.13)

where {λ j (Sk )}
Np

j=1 are the eigenvalues of Sk defined in (4.6) and rk is the dimension of

the active subspace for the k th KL mode Fk (ξ). The following result bounds the error in

approximating the individual KL modes.

Lemma 4.3.1. Let δk be as in (4.13), and let Gk and Ĝk be as in (4.11) and (4.12). Then,

1.

∫

Ω

(Fk (ξ)−Gk (W
T
k ,1ξ))

2π(ξ)dξ≤δ2
k .

2.

∫

Ω

(Fk (ξ)− Ĝk (W
T
k ,1ξ))

2π(ξ)dξ≤ (1+N −1/2
AS )δ2

k .

Proof. The KL modes Fk are square integrable, mean zero, and by Lemma 4.2.1, they are

differentiable and Lipschitz continuous. Thus, the first statement follows from using [18,

Theorem 4.3] and the second one follows from [18, Theorem 4.4].

Next, we consider the error, due to active subspace projection (for individual KL modes), in

approximating the KL expansion:

e (x ,ξ) = | fN (x ,ξ)− f̂N (x ,ξ)|

where fN is as in (4.10), and

f̂N (x ,ξ) :=
N
∑

k=1

Gk (W
T
k ,1ξ)φk (x ) (4.14)

its active subspace-based approximation where Gk (W T
k ,1ξ) is our approximation of the KL

modes Fk (ξ), as defined before. Then let

ē (ξ) =

∫

X
e (x ,ξ)d x .
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Theorem 4.3.1. E{ē } ≤ |X | 12
N
∑

k=1

δk , where δk is as in (4.13).

Proof. Note that,

e (x ,ξ) =

�

�

�

�

N
∑

k=1

(Fk (ξ)−Gk (W
T
k ,1ξ))φk (x )

�

�

�

�

≤
N
∑

k=1

|Fk (ξ)−Gk (W
T
k ,1ξ)||φk (x )|.

Then,

E{ē }=E
§

∫

X

N
∑

k=1

|Fk (ξ)−Gk (W
T
k ,1ξ)||φk (x )|d x

ª

=
N
∑

k=1

�

∫

X
|φk (x )|d x

�

E{|Fk (ξ)−Gk (W
T
k ,1ξ)|}

≤
N
∑

k=1

�∫

X
|φk (x )|2d x

�
1
2
�∫

X
12d x

�
1
2

E{|Fk (ξ)−Gk (W
T
k ,1ξ)|

2}1/2 ≤ |X |
1
2

N
∑

k=1

δk

where we have used Cauchy–Schwarz inequlity and Lemma 4.3.1(a).

Remark 4.3.1. Note that in view of Lemma 4.3.1(b), if we use Ĝk defined in (4.12), instead

of Gk in (4.14), we can repeat the argument in proof of Theorem 4.3.1 to get the following

estimate:

E{ē } ≤ |X |
1
2 (1+N −1/2

AS )
N
∑

k=1

δk .

Finally, we consider the overall error of approximating f (x ,ξ), due to KL truncation and

active subspace projection:

E (x ,ξ) = | f (x ,ξ)− f̂N (x ,ξ)|

where f is the original QoI and f̂N is the active subspace-based approximation as before.

We consider,

Ē (ξ) :=

∫

X
E (x ,ξ)d x .

We have the following result:
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Theorem 4.3.2.

E{Ē (ξ)} ≤ |X |
1
2

�� ∞
∑

k=N+1

λk (C f )

�1/2

+
N
∑

k=1

 

Np
∑

j=rk+1

λ j (Sk )

!1/2
�

. (4.15)

Proof. We have

Ē (ξ) =

∫

X
E (x ,ξ)d x =

∫

X
| f (x ,ξ)− fN (x ,ξ) + fN (x ,ξ)− f̂N (x ,ξ)|

≤
∫

X
| f (x ,ξ)− fN (x ,ξ)|d x +

∫

X
| fN (x ,ξ)− f̂N (x ,ξ)|d x

≤
§

∫

X
| f (x ,ξ)− fN (x ,ξ)|2d x

ª1/2

|X |
1
2 + ē (ξ)

=
§ ∞
∑

k=N+1

Fk (ξ)
2
ª1/2

|X |
1
2 + ē (ξ).

Now we consider

E{Ē (ξ)} ≤E
�

§ ∞
∑

k=N+1

Fk (ξ)
2
ª1/2

�

|X |
1
2 +E{ē (ξ)}

≤ |X |
1
2

�

E
�

§ ∞
∑

k=N+1

Fk (ξ)
2
ª1/2

�

+
N
∑

k=1

δk

�

≤ |X |
1
2

�

E
� ∞
∑

k=N+1

Fk (ξ)
2

�1/2

+
N
∑

k=1

δk

�

.

Note that E
�

∑∞
k=N+1 Fk (ξ)2

�

=
∑∞

k=N+1E
�

Fk (ξ)2
�

=
∑∞

k=N+1λk (C f ). Therefore, we have our

desired result

E{Ē (ξ)} ≤ |X |
1
2

�� ∞
∑

k=N+1

λk (C f )

�1/2

+
N
∑

k=1

δk

�

= |X |
1
2

�� ∞
∑

k=N+1

λk (C f )

�1/2

+
N
∑

k=1

 

Np
∑

j=rk+1

λ j (Sk )

!1/2
�

.

.

We note that the first term in (4.15) indicates error due to truncation of the output KL
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expansion. Recall that
∞
∑

k=1

λk (C f ) =

∫

X
c f (x , x )d x <∞,

where the equality is due to Mercer’s Theorem, and the finiteness of the integral is due

to continuity of the covariance operator, which is a consequence of the mean square

continuity assumption on the process. Therefore, the first term in (4.15) can be made

arbitrarily small by taking N sufficiently large. However, choosing a large N could entail

accumulation of error due to active subspace projection error in the second term in (4.15);

this error, however, can be controlled by increasing rk . In practice, in many applications, a

small number of output KL modes (i.e., a small N ), can be used to obtain an accurate KL

representation for the output. Moreover, typically low-dimensional (in many cases one- or

two-dimensional) active subspaces can be afforded for approximating the dominant KL

modes. We demonstrate these issues numerically in Section 4.5.

Remark 4.3.2. In view of Remark 4.3.1, if we use Ĝk defined in (4.12), instead of Gk in (4.14),

we can repeat the argument in proof of Theorem 4.3.2 to get the following estimate:

E{Ē (ξ)} ≤ |X |
1
2

�� ∞
∑

k=N+1

λk (C f )

�1/2

+ (1+N −1/2
AS )

N
∑

k=1

 

Np
∑

j=rk+1

λ j (Sk )

!1/2
�

.

Additional sources of error. The above error analysis only concerns errors assiciated with

active subspace projection and output KL truncation. In practical computations there are a

number of other errors. Most of these errors are related to the active subspace approach used

for approximating the KL modes Fk . These include errors in approximating the eigenvalues

and eigenvectors of Sk ’s, incurred due to sample average approximation to these matrices

and surrogate modeling errors incurred in approximating Gk ’s. Errors in approximating

Λk and Wk are analyzed for instance in [18]. Errors due to surrogate modeling of Gk ’s are

difficult to quantify in general, as these errors depend on the choice of surrogate modeling

framework.

There are also further errors related to KL approximation of the output field. Namely, we

need to approximate the mean field E{ f (x , ·)}. If simple Monte Carlo sampling is used,

approximations of the mean field exhibit the usual Monte Carlo convergence behavior.

However, quasi-Monte Carlo approaches can provide efficient means of obtaining more

accurate estimates. Finally, there will be errors in computing the eigenvaluesλk (C f ) and the
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corresponding eigenvectors. These errors are due to (i) sample average approximation to

the output covariance function, and (ii) errors due to discretizing the generalized eigenvalue

problem (4.5). The discretization errors of course depend on the numerical method used

for solving the eigenvalue problem. For example, if Nyström’s method is used, as done

in the present work, the discretization errors can be controlled by the resolution of the

computational grid, and the quadrature method used.

We demonstrate numerically that once a suitable output dimension reduction is deter-

mined, the active subspace approach can be deployed to obtain approximations to the

output KL modes and an overall surrogate model that captures the statistical properties of

f reliably. We find that this can be accomplished with an ensemble of function evaluations

{ f (·,ξ j )}
Ns
j=1, with a modest Ns .

4.4 Application Problem

In this section, we present our computational results in the context of a biotransport

application problem. We begin by describing the governing model in Section 4.4.1. Next, we

discuss computation of the KL expansion of the output in Section 4.4.2. This is followed by

our results on active subspace discovery and surrogate model construction in Section 4.5.1.

We test the accuracy of the computed surrogate models in Section 4.5.2.

4.4.1 The governing model

In this section we describe the biotransport problem we seek to investigate using the pro-

posed method. We are interested in understanding the impact of uncertainty in the material

properties of cancerous tumors. Specifically we seek to characterize the uncertainties in

the pressure field when a single needle injection occurs at the center of a spherical tumor

with uncertain heterogeneous structure. We focus on a 2D cross-section, and consider

Darcy’s law constrained by mass conservation in a domain D ⊂ R2 given by a circle of

radius Rtumor = 5 mm, centered at the origin, with an inner circle of radius Rneedle = 0.25 mm,

modeling the injection site, removed. We denote the inner and outer boundaries of the

46



domain by ΓN and ΓD, respectively. The following elliptic PDE governs the fluid pressure p :

−∇·
�

κ

µ
∇p

�

= 0 inD,

p = 0 on ΓD,

κ

µ
∇p ·n =

Q

2πRneedle
on ΓN.

(4.16)

In this equation, κ denotes the absolute permeability field, µ is the fluid dynamic viscosity,

Q is the volume flow rate per unit length, and n is the outward-pointing normal vector.

The nominal values for the above parameters are κ= 0.5 md , µ= 8.9×10−4 P a · s , and Q =

1 mm 2/mi n . These values are chosen according to previous investigations of fluid transport

in tumors [16, 72, 90]. As noted in a number of previous works, tumors exhibit complex

structures due to their invasive nature. Generally, tumors consist of loosely organized

abnormal cells, fibers, vasculature, and lymphatics [15], resulting in disordered tissues with

complex heterogeneous structures.

In the present work, we model the permeability field κ by a log-Gaussian random field as

follows. Let z (x ,ω) be a centered Gaussian process; hereω ∈Ωwhere Ω is an appropriate

sample space. We assume z has unit pointwise variance and has correlation function

cz (x , y ) = exp
§

−
1

`
‖x − y ‖1

ª

, x , y ∈D, (4.17)

where ` > 0 is the correlation length. In the present study we set the correlation length

`= 1 mm . Then, we define the log-permeability field a = logκ according to

a (x ,ω) = a0(x ) +σa z (x ,ω), x ∈D,ω ∈Ω,

where a0 andσ2
a represent the pointwise mean and variance, respectively. We can represent

a (x ,ω) using a truncated KL expansion:

a (x ,ω)≈ â (x ,ω) := a0(x ) +
Np
∑

j=1

q

λ j (Ca )ξ j (ω)e j (x ), (4.18)

where a0 is the mean field, (λ j (Ca ), e j ) are the eigenpairs of the covariance operator Ca of

a (x ,ω), Np is the input parameter dimension, and ξ j are independent standard normal ran-
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dom variables. With this parameterization, the uncertainty in the (approximate) log perme-

ability field â = logκ is completely characterized by the random vector ξ= (ξ1,ξ2, . . . ,ξNp
)T .

That is, â (x ,ω) = â (x ,ξ(ω)), and thus, we can consider the (approximate) log-permeability

field as a random process â : D ×Ω→ R. The QoI under study here is the pressure field

p (x ,ξ).

For illustration, two sets of realizations of the permeability field and the corresponding

pressure field with correlation length ` = 1 mm are presented in Figure 4.1. We observe

large fluctuations in the permeability field and relatively mild fluctuations in the pressure

field.

0.5
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Figure 4.1: Two realizations of the log-permeability field (left) and the corresponding
pressure field (right) using correlation length `= 1 mm .
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4.4.2 Spectral representation of the model output

We represent the QoI, p , using a truncated KL expansion

p (x ,ξ)≈ p̄ (x ) +
N
∑

k=1

q

λk (C f )pk (ξ)φk (x ), pk (ξ) =
1

Æ

λk (C f )

∫

D
(p (x ,ξ)− p̄ (x ))φk (x )d x .

(4.19)

Here λk (C f ),φk (x ) are the eigenvalues and corresponding eigenfunctions of the covariance

operator C f of p (x ,ξ).

In Figure 4.2 (top left) we see that the eigenvalues of the covariance operator C f show faster

decay than those of the log-permeability field a (x ,ξ). In Figure 4.2 (top right) we compute

the ratio ρk = (
∑N

k=1λk (C f ))/Tr(C f ), where N is the number of KL modes retained. Using

just N = 10 KL modes gives us ρk ≈ 0.9 indicating that 90% of the variance is captured.

If we add five more modes so that N = 15 then we capture nearly 95% of the average

variance in the model output p . Figure 4.2 (bottom) shows the first 40 eigenvalues of the

covariance operator C f , for a number of different sample sizes Ns used to approximate

the covariance function of p . Note that using Ns = 300 samples we can approximate the

dominant eigenvalues reasonably well. In the current study we set Np the input parameter

dimension to be 200 and to retain N = 15 KL modes. From the results that follow we will

see that we can achieve significant dimension reduction for the input parameter.

4.5 Results and Discussion

4.5.1 Active subspace discovery and surrogate model construction

To construct the active subspace-based surrogate model for p (x ,ξ), we need the gradients

of the output KL modes defined in (4.19). For this, we use the adjoint method.The adjoint

based expression for pk (ξ) can be derived using a formal Lagrange approach; see, e.g., [41].

For a basic derivation of the gradient of the output KL modes see appendix A. The adjoint
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Figure 4.2: Eigenvalue spectrum of a (x ,ξ) versus p (x ,ξ) (top left). Ratio showing saturation
of average variance for p (x ,ξ) (top right). First 40 eigenvalues of C f for different sample
sizes Ns (bottom).

based expression for the partial derivatives of pk ’s are given by,

∂ pk

∂ ξ j
=

Æ

λ j (Ca )

µ

∫

D
e j (x )e

â (x ,ξ)∇p (x ) ·∇q (x )d x . (4.20)

where p is the solution of the (forward) PDE (4.16) and q is the solution of the adjoint

equation:

−∇· (
κ

µ
∇q ) =−

1
Æ

λk (C f )
φk inD,

q = 0 on ΓD ,
κ

µ
∇q ·n = 0 on ΓN .

(4.21)

Note that in the forward and adjoint equation, we let the permeability field be κ(x ,ξ) =

e â (x ,ξ).

Guided by the results in the previous subsection, we focus on the first N = 15 output KL
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modes. For each k ∈ {1, . . . , N }, we generate a sample {∇pk (ξi )}
Ns
i=1, with Ns = 300. For {ξi }

Ns
i=1,

we used the same set of 300 parameter samples used in computing the KL expansion of the

output. Using (A.3),

∇pk (ξi ) =
1

µ























Æ

λ1(Ca )

∫

D
e1(x )e

â (x ,ξi )∇p (x ,ξi ) ·∇q (x ,ξi )d x

Æ

λ2(Ca )

∫

D
e2(x )e

â (x ,ξi )∇p (x ,ξi ) ·∇q (x ,ξi )d x

...
q

λNp
(Ca )

∫

D
eNp
(x )e â (x ,ξi )∇p (x ,ξi ) ·∇q (x ,ξi )d x























, i = 1, . . . , Ns .

To compute these, we reuse the model evaluations {p (x ,ξi )}
Ns
i=1, from the computation of

the output KL expansion earlier; the adjoint variables q (·,ξi ) are computed by solving the

adjoint equation (A.1), with κ= e â (x ,ξi ), i = 1, . . . , Ns .

Using the gradient samples, we approximate the matrix Sk defined in (4.6) for each KL

mode, k = 1, . . . , N :

Ŝk =
1

Ns

Ns
∑

i=1

∇pk (ξi )∇pk (ξi )
T .

In each case, we consider the corresponding spectral decomposition Ŝk = Ŵk Λ̂k ŴT
k . To

identify the active subspace and where to partition the eigenpairs we examine the spectrum

of Ŝk . As an illustration, in Figure 4.3 (top) we present the spectrum for the first three output

KL modes. Visually we observe a gap between the first and second eigenvalue for each of the

modes indicating one-dimensional active subspaces. In Figure 4.3 (bottom), we show the

corresponding sufficient summary plots (SSPs) for the corresponding modes. A sufficient

summary plot here is a scatter plot of the active variables y =WT
k ,1ξ versus the output KL

modes pk (ξ). We observe a strong univariate trend which further indicates the presence

of one-dimensional active subspaces. To provide a consistent truncation approach, we

can use a threshold γ and choose the dimension rk of the active subspace according to

λk ,1/λk ,rk+1
> γ. In the current study we use γ = 10. Using this approach, we identified a

one-dimensional active subspace for each of the first 15 output modes, expect modes 11

and 12 where two-dimensional active subspaces were identified. To illustrate, we report

the spectrum of S12 and the SSP for p12 in Figure 4.4. Based on the determined values of rk ,
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we partition

Λk =

�

Λk ,1

Λk ,2

�

, Wk =
�

Wk ,1 Wk ,2

�

, k = 1, . . . , N .

Λk ,1 contains the dominant eigenvalues and Wk ,1 the corresponding eigenvectors.
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Figure 4.3: Top: eigenvalues of the matrix Ŝk for k = 1 (left) k = 2 (middle), and k = 3
(right); bottom: SSPs for output KL modes p1 (left), p2 (middle), and p3 (right).

Recall that the active subspace approach essentially seeks “important linear combinations”

of the input parameters. To illustrate this, in Figure 4.5, we present the components of

the dominant eigenvector for the first three output KL modes p1, p2 and p3. The smaller

inset plot shows the first 50 components of the dominant eigenvector for p1, p2 and p3. The

magnitude of the components give us a sensitivity measure for each of the input parameters.

A large component value indicates that that particular input is important in defining the

direction of most variation in our function p . We note that the first output KL mode is

sensitive to a few components of the input parameter vector. In contrast, the second and

especially the third output KL modes show sensitivity to a larger number of components of

ξ.
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Finally, we note that the present results indicate a significant dimension reduction. The

dominant output KL modes, each a function of 200 parameters, can be approximated in

one or two dimensional active subspaces.
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Figure 4.5: Components of the dominant eigenvector w for the output KL modes, p1,
p2, and p3 (left, middle, and right images, respectively). The inset plot shows the first 50
components in each case.

Next, we compute the surrogate models for the output KL modes, following the strategy de-

scribed in Section 3.3. The surrogate models G̃k (WT
k ,1ξ)≈ pk (ξ), k = 1, . . . , N are constructed

by regression fit. Specifically, letting pi ,k = pk (ξi ) and yi =WT
k ,1ξ, i = 1, . . . , Ns , we compute
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least squares approximating polynomials G̃k that minimize

Ns
∑

i=1

(G̃k (yi )−pi ,k )
2, k = 1, . . . , N .

In our computations, we found that linear regressions fits were suitable for the dominant

output KL modes, except modes 1, 11, and 12, for which we used a quadratic fit. For il-

lustration, we report the computed surrogate models for the first three output modes in

Figure 4.3 (bottom) and for the mode p12 in Figure 4.4 (right). We now have all the pieces to

form the surrogate model for the pressure field p (x ,ξ):

p (x ,ξ)≈ p̂ (x ,ξ) = p̄ (x ) +
N
∑

k=1

p

λk G̃k (W
T
k ,1ξ)φk (x ). (4.22)

Below, we examine the accuracy of the computed surrogate model and show its effectiveness

in capturing the statistical properties of the pressure field.

4.5.2 The accuracy of the surrogate model

In this section, we provide various tests of accuracy that examine different aspects of the

proposed method. To provide a baseline for comparision, we computed 10, 000 realizations

of the exact pressure field and its surrogate model approximation.

We begin by examining the success of the low-rank KL approximation of the pressure field

in capturing the variance of the process. The variance of the pressure field can be obtained

from Var(p (x ,ξ)) =E{p (x ,ξ)2}−E{p (x ,ξ)}2, which we approximate using the computed

samples of p (x ,ξ). The variance field for the truncated KL exansion of p is determined

completely by the spectral decomposition of its (approximate) covariance operator:

Var(p̂ (x ,ξ)) =
N
∑

k=1

λkφk (x )
2,

where λk and φk (x ) are the eigenvalues and eigenvectors of the covariance operator Cp .

Taking the square root we obtain the standard deviation of both the exact pressure field

and its approximation; results are shown in Figure 4.6. We note that for both, the standard
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deviation is highest at the center of the tumor and decreases to zero as we move away from

the center. We also observe that even a low-rank approximation to p (x ,ξ) captures the

standard deviation of the pressure field well.
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Figure 4.6: (Left) standard deviation of p (x ,ξ) using sampling, (middle) standard deviation
of p (x ,ξ) using KLE (15 modes), and (right) standard deviation of p (x ,ξ) using KLE (50
modes).

Next, we study the accuracy of the computed surrogate model by focusing on the relative

error indicator

Er e l (ξ) =

∫

D |p (x ,ξ)− p̂ (x ,ξ)|d x
∫

D |p (x ,ξ)|d x
,

where p̂ (x ,ξ) is computed according to (4.22). In Figure 4.7 (left), we plot the expected

value of Er e l as the number of output KL modes increases; the dashed lines indicate the

fifth and ninty fifth percentiles. We note that with N = 15 output KL modes, the relative

error is about 5% on average. To better understand the behavior of the relative error, we

report its distribution in Figure 4.7 (right), where we used N = 15 output KL modes in

computing p̂ . We also show the distribution of the relative error computed over a subdomin

D ′ = {x ∈D : ‖x ‖ ≤ 2} in Figure 4.7 (right). This is done to quantify the approximation errors

near the injection site. We observe that the distribution of the error is shifted to the left,

indicating smaller approximation errors inD ′ (with high probability). To see more clearly

how the distribution of the relative error evolves as the number of KL modes increase, we

show the probability density function of Er e l corresponding to different number of output

KL modes in Figure 4.8. Note that not only does the mode of the distribution get smaller,

the spread of the error also decreases, which can be inferred from Figure 4.7 (left) as well.
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Figure 4.8: Distribution of the error Er e l as the number of output KL modes increase from
N = 1 to N = 15.

In Figure 4.9, we report the distribution of the average pressure along concentric circles of

various radii. This shows that the computed surrogate captures statistical properties of the

pressure well in different parts of the domain.

4.6 Conclusions

We have presented a distributed active subspace method for scalable surrogate modeling

of PDE-governed physical processes with high-dimensional inputs and function valued

outputs. To save the modeling efforts spent on function valued outputs, we employ the

56



1000 2000 3000 4000 5000

pressure

0.001

0.002

0.003

0.004

0.005

p
d
f

r = 0.3

model

surrogate

1000 1500 2000

pressure

0.001

0.002

0.003

0.004

0.005

p
d
f

r = 1

model

surrogate

600 800 1000 1200 1400

pressure

0.001

0.002

0.003

0.004

0.005

p
d
f

r = 1.5

model

surrogate

400 600 800 1000

pressure

0

0.002

0.004

0.006

0.008

0.01

p
d
f

r = 2

model

surrogate

400 500 600 700 800

pressure

0

0.002

0.004

0.006

0.008

0.01

p
d
f

r = 2.5

model

surrogate

300 400 500 600

pressure

0

0.002

0.004

0.006

0.008

0.01

p
d
f

r = 3

model

surrogate

Figure 4.9: Distribution of the pressure averaged over concentric circles of various radii.

truncated KL expansion to decouple the spatial dimensions with those of the random

variables. As a result, the randomness in outputs is fully represented by scalar valued KL

modes. For elliptic PDEs, as observed in the work, a low-rank KL representation of the

model output is usually sufficient for an accurate representation. To reduce the dimen-

sion of inputs, we construct active subspaces for each of the dominant output KL modes.

Since output gradients with respect to the random variables need to be calculated when

constructing active subspaces, we develop an adjoint-based framework to ensure that the

computational cost does not scale with the input dimension. The method development is

complemented by a rigorous mathematical formulation as well as theoretical analysis of

errors due to active subspace projection and output KL representation.

We then deploy the distributed active subspace method to conduct surrogate modeling

of the pressure field in a biotransport model in tumors with an uncertain permeability

field. We demonstrate that a low-rank representation of the pressure field (i.e., output) can

be achieved with the truncated KL expansion. The input (i.e., random variables used to

represent the uncertain log-permeability field) dimension can be very high (e.g., several

hundreds) when the correlation length of the log-permeability field is small. However,
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we observe that dominant output KL modes admit low (one or two) dimensional active

subspaces. We observe that the average relative error between the surrogate model and

the PDE solution can be controlled under 5% even when a very low-rank representation of

the outputs is employed. We also show that the surrogate models can capture statistical

properties of the pressure well in different parts of the domain.

In future work, we will investigate extensions of the distributed active subspace method to

surrogate modeling of the time-dependent diffusion and convection-diffusion processes

in biological and geological flows. We envision that the truncated KL expansion can be

used to extract spatiotemporal coherent structures from the physical process, and the

low-dimensional active subspaces can then be constructed for the scalar valued KL modes

associated with these structures. This surrogate modeling approach will contribute to cost-

effective forward uncertainty quantification, and facilitate solution of inverse problems

under uncertainty, such as Bayesian inversion of tissue material properties from medical

images.
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CHAPTER

5

FURTHER INSIGHTS ON ACTIVE

SUBSPACES AND ACTIVITY SCORES

In section 5.1 we will extend the idea of activity scores, originally defined for scalar valued

functions to models with function valued outputs. Activity scores can be used to approxi-

mate DGSMs which we will demonstrate through an application problem from biology. In

section 5.2 of this chapter we will investigate the sensitivity of the active subspace method to

correlations among input parameters. We would like to understand how these correlations

might influence the dimension of our active subspace.

5.1 Activity scores for models with function-valued outputs

In this section we extend the idea of activity scores, defined originally for scalar-valued QoIs,

to the case of function-valued QoIs which we will call the functional activity scores. Activity

scores provide an alternate point of view for derivative based GSA, for function valued QoIs.
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We will use functional activity scores to approximate functional DGSMs defined in (5.3)[17]

and apply it to a cholera model.

To briefly review, activity scores are sensitivity metrics that stem from active subspaces. Let

W1 and Λ1 be as in (2.5). The activity score for the i th input variable is defined as:

αi (r ) =
r
∑

j=1

λ j 〈ei , w j 〉2, (5.1)

where r is the dimension of the active subspace and ei is the i th coordinate vector inRNp .

It is important to note that activity scores come for free, as a by product of active subspace

analysis. No further model evaluations are needed, beyond the model evaluations used for

the purposes of active subspace discovery.

5.1.1 Functional Activity Scores

We consider mathematical models of the form

y = f (x ,ξ), (5.2)

where x belongs to a compact set X ⊂ Rd with d = 1,2, or 3, and ξ is an element of an

uncertain parameter space Ω ⊆ RNp . We have the following definition for a functional

derivative based global sensitivity measure (DGSM) from [17]:

N j ( f ;X ) =
∫

X

∫

Ω

� ∂ f

∂ ξ j
(x ,ξ)

�2
π(dξ)d x =

∫

X
ν j ( f (x , ·))d x , (5.3)

where π is the law of the uncertain parameter vector ξ and

ν j ( f ) =

∫

Ω

� ∂ f

∂ ξ j

�2
π(dξ).
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We will compute an approximation to the functional DGSMs using the idea of activity scores.

We consider a discretization of the integral overX :

N(n )j ( f ;X ) =
n
∑

i=1

wi

∫

Ω

� ∂ f

∂ ξ j
(xi ,ξ)

�2
π(dξ)

where n is the number of discretization points, xi are the nodes and wi are the weights,

i = 1, . . . , n . We define the following symmetric postive semi-definite matrix Np ×Np matrix

S:

S=

∫

Ω

J(ξ)T WJ(ξ)π(dξ) (5.4)

where Ji j =
∂ f
∂ ξ j
(xi ,ξ) and W= d i a g (w1, . . . , wn ) are the associated weights. Since S is sym-

metric positive semi-definite it has spectral decomposition:

S=
Np
∑

k=1

λk u k u T
k , (5.5)

where λk ≥ 0 are sorted in descending order and u k are the corresponding orthonormal

eigenvectors. We can see that the functional DGSM is given by:

N(n )j ( f ;X ) = e T
j Se j (5.6)

where e j is the jth coordinate vector in RNp . Substituting in the spectral decomposition of

S we have:

N(n )j ( f ;X ) = e T
j

Np
∑

k=1

λk u k u T
k e j =

Np
∑

k=1

λk 〈e j , u k 〉2 (5.7)

Truncating the summation up to r with 1≤ r ≤Np we define the approximation:

a j ( f ; r ) =
r
∑

k=1

λk 〈e j , u k 〉2.

We call these the functional activity scores. The following result, quantifies the error in

approximating functional DGSMs with the functional activity scores.

Proposition 5.1.1. For 1≤ r <Np ,

0≤N(n )j ( f ;X )−a j ( f ; r )≤λr+1, i = 1, . . . , Np .
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Proof. Note that, N(n )j ( f ;X )− a j ( f ; r ) =
∑Np

k=r+1λk




e j , u k

�2 ≥ 0, which gives the first in-

equality. For the second inequality note,

Np
∑

k=r+1

λk




e j , u k

�2 ≤λr+1

Np
∑

k=r+1




e j , u k

�2 ≤λr+1.

The last inequality holds because 1= ‖e j‖2
2 =

∑Np

k=1




e j , u k

�2 ≥
∑Np

k=r+1




e j , u k

�2
.

We note that N(n )j ( f ;X )≈ a j ( f ; r ) in problems where the eigenvalues decay rapidly to zero.

5.1.2 Results & Discussion

Here we demonstrate the use of functional activity scores to approximate the functional

DGSMs for a cholera model [45], [4]. We consider a population of Npop individuals who are

split into three groups: susceptible S , infectious I , and recovered individuals R . We also

consider the concentrations of highly-infectious bacteria, BH and low infectious bacteria,

BL . The quantities BH and BL are measured in cells per milliliter. The following non-linear

system of ODEs, developed in [45], represents the the time-evolution of the state variables.

d S

d t
= b Npop−βLS

BL

κL +BL
−βH S

BH

κH +BH
− b S ,

d I

d t
=βLS

BL

κL +BL
+βH S

BH

κH +BH
− (γ+ b )I ,

d R

d t
= γI − b R ,

d BH

d t
= ζI −χBH ,

d BL

d t
=χBH −δBL ,

(5.8)

with initial conditions (S (0), I (0), R (0), BH (0), BL (0)) = (S0, I0, R0, BH0
, BL0
). We use the parame-

ter units and nominal values from [45]which are summarized in table 5.1.

We consider a total population of Npop = 10,000 and let the initial states be as follows:

S0 = Npop − 1, I0 = 1, R0 = 0, and BH0
= BL0

= 0. Figure 5.1 shows the number of cases of

cholera as a function of time. We see that the number of people infected with cholera peaks
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Table 5.1: Cholera model parameters from [4, 45].

Model Parameter Symbol Units Values

Rate of drinking BL cholera βL
1

week 1.5

Rate of drinking BH cholera βH
1

week 7.5

BL cholera carrying capacity κL
# bacteria

m` 106

BH cholera carrying capacity κH
# bacteria

m`
κL
700

Human birth and death rate b 1

week
1

1560

Rate of decay from BH to BL χ 1

week
168

5

Rate at which infectious individuals ζ # bacteria
# individuals·m`·week 70

spread BH bacteria to water
Death rate of BL cholera δ 1

week
7

30

Rate of recovery from cholera γ 1

week
7
5
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Figure 5.1: Cholera model: Infected Population

at approximately 6, 500 people less than 1 week after exposure to the disease. That number

declines rapidly to near 0 approximately 5 weeks later.

We computed the matrix S using Monte Carlo (MC) sample sizes of 104. In figure 5.2 we

computed the functional activity scores at various truncation levels r = 1,2 and 3. With

r = 2 we accurately capture the magnitude of the actual functional DGSMs computed as in

[17]. These results are consistent with those reported in [4, 17]. Using r = 1 fails to capture

the magnitude but it does successfully identify important parameters from unimportant

ones. Using a cut-off of 0.05 we determined that parameters 1, 4, 5, 7 are unimportant while

2, 3, 6, 8 would be considered the important parameters.

In [116] the authors use the matrix constructed in (5.4) to perform dimension reduction
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on the input parameter space. Their approach is to use a ridge function to approximate

the original function and then construct an upper bound for the error between the two.

Since the matrix S (5.4) has already been constructed we note as a post-processing step

one could calculate the functional activity scores for free.

In this section we have discussed how to extend activity scores to function valued QoIs. We

have illustrated using a cholera model how functional activity scores can be used to screen

for unimportant parameters. We have also shown that one can use the functional activity

scores to accurately approximate the functional DGSMs.

5.2 Impact of parameter correlations on active subspaces

The active subspace method does not use any specific assumptions on the correlation

structure of the input parameters. In our work so far, the input parameters have been

assumed to be uncorrelated. In particular, this assumption was justified in Chapter 4,

where the input parameter vector consisted of the coefficients in the KL expansion of the

input, which are independent standard normal random variables by construction. Here we

consider two different problems, a simple quadratic model and a cholera model governed

by a nonlinear ODE system with correlations in the input parameters. We investigate

the impact of correlations on active subspace calculations and find that the impact of

correlations is minimal.

5.2.1 Quadratic Model

We consider a vector ξ ∈RNp of uncertain input parameters with ξ∼N (0,Σ). We use the

following quadratic function for our investigations:

f (ξ) =
1

2
ξT Aξ, (5.9)

where A ∈RNp is a symmetric positive definite matrix. To construct this matrix A we first

construct a square matrix B ∈RNp×Np of normally distributed random variables. Taking a

QR factorization of B we obtain an orthogonal matrix Q and an upper triangular matrix
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R. We use Q to form our matrix A via A=QDQT with D a diagonal matrix with the desired

eigenvalues of A. The gradient of this function ∇ f = Aξ is used to form the matrix C for

active subspace construction:

C=

∫

(∇ f )(∇ f )Tπdξ. (5.10)

We can compute the matrix C analytically as follows:

C= E
�

Aξ(Aξ)T
�

= E
�

AξξT A
�

=AE
�

ξξT
�

A=AΣA, (5.11)

where Σ is the covariance matrix. For the purposes of this study we chose Np = 5 and Σ to

be:

Σ=



















1 0.5ρ 0.5ρ 0 0.8ρ

0.5ρ 1 0 0 0

0.5ρ 0 1 0 0.3ρ

0 0 0 1 0

0.8ρ 0 0.3ρ 0 1



















, 0≤ρ ≤ 1. (5.12)

This choice of Σwas motivated by the study in [44]. We compute the eigendecomposition

C=WΛWT , where Λ= diag(λ1, · · · ,λNp
) and W contains the orthonormal eigenvectors of C.

We computed this eigendecomposition for various values of ρ to investigate the effect of

correlations between input parameters.
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Figure 5.3: Comparison of eigenvalues of C at different ρ.
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In figure 5.3 we compare the eigenvalues for different values of ρ ranging from zero to 1.

We can see that correlation has very little effect on the eigenvalues and no effect on the

dimension of the active subspace indicating the method is not sensitive to input parameter

correlations. Since we have identified that the dimension of the active subspace has not

changed, stayed dimension one, we projected the original parameter vector ξ onto the

active subspace y =WT
1 ξwhere W1 contains one eigenvector corresponding to the largest

eigenvalue. From there we constructed a surrogate model approximation f (ξ)≈ f̂ (WT
1 ξ)

using a linear regression fit for each ρ.

In order to get a quantitative study on the impact ρ has on the eigenvalues we look at the

eigenvalue derivatives [62] given by:

dλk

dρ
=w T

k

d A

dρ
w k , k = 1, . . . Np (5.13)

where the w k ’s are the columns of W. In Figure 5.4 (left) we observe that the derivatives are

much smaller in comparison to the eigenvalues. For the eigenvalue of interest, the largest

one, the derivative looks to be almost constant as the value of ρ changes.

Next, we calculated the angles between the eigenvectors given by:

θ = arccos(w k ,0 ·w k ,ρ), k = 1, . . . Np (5.14)

where w k ,0 are the columns of W with ρ = 0. In Figure 5.4 (right) we plot these angles for

increasing values of ρ. We observe that the angle for the dominant mode is near zero for all

ρ. The angles increase for higher order modes but since we have a 1D active subspace we

are only interested in the dominant mode anyway.

Finally we looked at the relative error between the the model f and its surrogate model

approximation f̂ . From figure 5.5 we observe as the value of ρ increases the relative error

also increases. Although we see an increase, we note that the relative error remains small.

5.2.2 Cholera Model

Here we investigate the effects of correlation between parameters for the cholera model

described in section 5.1.2. For the purposes of this study we focus on the first week of
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exposure to cholera disease. Our quantity of interest (QoI) here is:

f (ξ) =

∫ 1

0

I (t ,ξ)d t . (5.15)

We solve the problem up to time t = 1 using the ode45 solver provided in MATLAB. We

consider correlations between βL , rate of drinking low infectious cholera BL and κL , the BL

cholera carrying capacity. We used a gaussian copula to introduce dependence between

these two parameters.

As in section 5.2.1 to construct the active subspace we compute the matrix C for each value

of ρ and its eigendecomposition C=WΛWT , where Λ= diag(λ1, · · · ,λNp
) and W contains

the orthonormal eigenvectors of C.

In figure 5.6 (left) we see the eigenvalues of C for each ρ. As with the quadratic model

we see no discernable difference as we increase the correlation between the parameters.

There appears to be a gap between the 1st and 2nd eigenvalue indicating the presence of

1-dimensional active subspace. The SSP plots in figure 5.6 (right) confirm that we have

identified 1-dimensional active subspaces for each ρ. We see that each of the plots show a

strong linear univariate trend. Since the shape is linear we choose to use a linear regression

model as our surrogates.
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Figure 5.6: Comparison of eigenvalues of C at different ρ (left) and SSPs for cholera model
at various ρ (right).
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In figure 5.7 (left) we plot the angle between the dominant eigenvectors for increasing

values of ρ. We observe that the angle for the dominant mode remains close to zero for

each value of ρ. We also report the activity scores for each of the parameters in the cholera

model in figure 5.7 (right). We recall that activity scores are defined by the formula:

νi ,r ( f ) =
r
∑

k=1

λk 〈e i , w k 〉2 , i = 1, . . . , Np , r ≤Np .

where r is the dimension of the active subspace, Np the dimension of our input parameter

space, λk , w k are the eigenvalues and corresponding eigenvectors of C and e i is the i th

coordinate vector inRNp . Since we identified a 1-dimensional active subspace regardless of

the value of ρ the formula for activity scores reduces to:

νi ,1( f ) =λ1 〈e i , w 1〉2 , i = 1, . . . , Np .

where Np = 8 since we have 8 input parameters for the cholera model. We note that the 8th

parameter, γ, rate of recovery from cholera, is identified as the most influential parameter

in our space of inputs. We study the accuracy of the computed surrogate model by focusing
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Figure 5.7: Angle between w1,0 and w1,ρ for various ρ (left) and activity scores for cholera
model at various values of ρ (right).

on the relative L 2 error indicator

E =
‖ f − f̃ ‖2

‖ f ‖2
(5.16)
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where f̃ is our linear surrogate model. In figure 5.8 (left) we note that the relative L 2 error

is very small and does not vary much as the value of ρ changes. Finally we look at the pdf

of the surrogate model with actual model evaluations for each ρ. As shown in figure 5.8

(right) the surrogate model does well at capturing the overall distribution of the model.
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Figure 5.8: Relative L 2 error at various values ofρ (left) and distribution of surrogate model
with actual cholera model (right).

In this section we have considered correlations between input parameters. We have ob-

served in the two examples, a simple quadratic model and a cholera model, that introducing

dependence between parameters has had little influence on the active subspace method.

We did notice some difference between the angles of the higher order eigenvectors in

figure 5.4 but the dimension of the active subspace and the overall approximation were

not affected. We note however that in certain cases correlations will have an impact. The

following example illustrates that introducing correlations between input parameters can

actually help us identify a lower dimensional active subspace.

Consider a vector ξ ∈ R3 with ξ ∼ N (0,Σ) and the quadratic function from section 5.2.1.

As in section 5.2.1, we can construct the matrix C in (5.10) analytically: C = AΣA. In this

example, we let A=









1 0 0

0 10 0

0 0 11









and Σ=









1 ρ ρ

ρ 1 ρ

ρ ρ 1









with 0≤ρ ≤ 1.

In table 5.2 we present the eigenvalues for different values ofρ. We note that whenρ = 0 the

values of the eigenvalues indicate we have a 2D active subspace since we have a significant
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Table 5.2: Eigenvalues at different values of ρ.

Eigenvalues ρ = 0 ρ = 0.8 ρ = 0.9 ρ = 1

λ1 121.00 199.84 210.91 222
λ2 100.00 21.88 10.95 0.00
λ3 1.00 0.29 0.15 0.00

gap between the 2nd and 3rd eigenvalue. However, as ρ approaches 1, clearly we approach

a 1D active subspace. This simple example illustrates that correlations between inputs can

have an influence on the dimension of the active subspace method and can be useful in

further reducing the dimension of the input parameter space.
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CHAPTER

6

DEEP LEARNING FOR EFFICIENT IMAGE

CLASSIFICATION: APPLICATION TO

FAULT DETECTION

6.1 Introduction

In this chapter we will use convolutional neural networks (CNNs) to perform image classifi-

cation. The application problem outlined below focuses on developing a machine learning

approach using CNNs. CNNs will be used to detect faults in steel canisters containing spent

nuclear fuel. The CNN classifier is able to detect corrosion and pitting with accuracies of

approximately 96%. The approach will assist with remote and real-time detection, interpre-

tation and prediction of corrosion in welded stainless-steel canisters storing spent nuclear

fuel and high-level radioactive waste. The framework would allow scanning a larger area,

and hence larger data sets, faster than currently possible. The capabilities of the approach

73



would be a big step forward to reduce radiation exposure to operators, minimize inspection

costs, and ensure long-term safety of spent nuclear fuel canisters.

In section 6.2 we give a brief overview of neural networks and in section 6.3 we provide

background material on CNNs, a particular type of neural network used in image classifica-

tion problems. Section 6.4 discusses the application problem in detail. We provide details

on how the dataset was generated and how we trained and validated the CNN classifier. We

provide performance metrics and results from testing the classifier on unseen data. Finally,

in section 6.5 we provide some closing remarks on the machine learning approach and

highlight some areas for future work.

The work in this chapter was made possible in part by the Artificial Intelligence Summer

Institute, which is part of Oak Ridge National Laboratory’s AI Initiative, and is facilitated

through the Oak Ridge Institute for Science and Education. Oak Ridge National Laboratory

is a multiprogram Department of Energy Laboratory operated by UT-Battelle.

6.2 Neural Networks

Neural networks are complex computational models that are structured in a way that

mimic the human brain. From a numerical analysis point of view, the models are used to

approximate complicated input-output relations. Neural networks are designed to complete

specific tasks including clustering, classification and prediction. Neural networks thus

provide a form of surrogate modeling approach suited for complex input-output relations

that are not amenable to traditional approaches.

Each artificial neuron is a function that takes a set of inputs and maps them to a single

output. The output from each artificial neuron is represented as follows:

y =φ

�

n
∑

i=1

wi xi + b

�

, (6.1)

where φ the activation function, wi are the connection weights, xi the input data and b

the bias. In figure 6.1 we show a schematic representation of an artificial neuron.
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Figure 6.1: schematic representation of an artificial neuron.

Neural networks typically contain a large number of these artificial neurons arranged in a

series of fully connected layers; that is, each neuron of a layer is linked to all the neurons of

the next layer but has no link with the neurons of the same layer, see Figure 6.2.

Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

Figure 6.2: A simple neural network with one hidden layer.

Given a set of inputsX , a set of outputsY and a function f :X →Y which maps the set

of inputsX to the set of outputsY , the goal is to use a surrogate model to approximate the

function f . Given a finite data set {(xi , yi )}Ni=1 with (xi , yi ) ∈X ×Y and a set H of hypothesis

functions, we want to compute:

hmi n = arg min
h∈H

1

N

N
∑

i=1

(h (xi )− yi )
2 (6.2)

such that hmi n ≈ f ; see [1].
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The number of parameters in a neural network increase with the number of layers in the

network. A challenge with networks with multiple layers is the amount of time required

to successfully train the network. In computer vision, for example, it would take a huge

amount of weights and biases to characterize the network because images themselves are

high-dimensional vectors. To illustrate, the number of weights in a fully connected layer

with 100 neurons for a 64x64x3 image is over 1 million, which makes traditional neural

networks an infeasible option for this type of application.

A variant on the neural network is the convolutional neural network (CNN), a popular

method for large data problems in image processing/analysis. The main difference of a

CNN and a traditional neural network is that the initial input matrix is reduced through an

operation called convolution. [118] [53] [47] [95] [36] [117]

In our work, we focus on using convolutional neural networks for image classification,

assigning a label to an input image from a fixed set of categories.

6.3 Convolutional neural networks

The structure of a CNN is as follows: first, we have a convolution layer, followed by an

activation layer, and then a pooling layer. The purpose of these three layers is to reduce the

number of parameters to be learned during the training stage. The output of the pooling

layer is sent to a traditional fully connected neural net for final classification. A description

of each of the layers is outlined below. In Figure 6.3 we present an overview of the structure

of a basic CNN.

In most applications the network will consist of many convolution, pooling and fully con-

nected layers. Due to the dimension reduction in the convolution and pooling layers, CNNs

are a popular method for large data problems in image processing/analysis. Using the

traditional neural network would be prohibitively expensive for such application problems.

Convolution Layer

The convolution involves passing a kernel or filter over an image multiple times to produce

a feature map. Given an m ×n filter K and an s × t image I, the convolution of I with K is
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Figure 6.3: Basic structure of a CNN.

given by the following:

Fi , j = (I ∗K )i , j =
m
∑

k=1

n
∑

l=1

Kk ,l Ii+k−1, j+l−1, i = 1, . . . , s −m +1, j = 1, . . . t −n +1. (6.3)

The convolution process is demonstrated in Figure 6.4 on a small example. For example to

Figure 6.4: An example of convolving a kernel with an input image to produce a feature
map.

get the first entry in the feature map in figure 6.4 we do the following:









1 1 0

0 1 0

1 1 1









∗









1 0 0

1 1 0

1 1 1









= 1(1) +1(0) +0(0) +0(1) +1(1) +0(0) +1(1) +1(1) +1(1) = 5 (6.4)
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The first convolutional layers in the network capture low level features of an image such

as edges and color. Subsequent layers learn more high level features such as objects and

labels [7] .

Activation Layer

After each convolution layer, we apply activation layers to the feature map obtained through

convolution. The purpose of this layer is to help the model account for interaction effects

and nonlinear effects. There are many nonlinear functions including tanh and sigmoid

functions, but the most popular is the Rectified Linear Unit (ReLU):

ReLU(x ) =







0 if x<0,

x otherwise.
(6.5)

Figure 6.5 shows plots of these activation functions.
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(x
)

ReLU

tanh

Sigmoid

Figure 6.5: Examples of several activation functions.

Pooling Layer

The feature map obtained in the convolution and activation layers is passed through a

pooling layer where the dimension of the map is reduced further. The pooling layer reduces

the number of parameters the network needs to learn and reduces computation time. Two

78



common functions used in the pooling operation are: average pooling, where the average

value for each patch (usually 2×2 pixels) on the feature map is calculated, and maximum

pooling, where the maximum value for each patch of the feature map is calculated. We use

max pooling in our work. This approach is demonstrated in figure 6.6.

Figure 6.6: Example of using max pooling with stride length 1 (move one pixel each time).

Once the image has passed through the convolution, activation and pooling layers we

vectorize the output (a matrix) to a column vector. We pass this vector through multiple fully

connected layers which we discussed in section 6.2. The final layer in a CNN is usually the

softmax layer. It takes the vector of values (suppose size K) from the fully connected layers

as input and outputs a probability distribution, where each value represents a probability

that a feature belongs to a particular class. The softmax function is defined as follows:

σ(z ) j =
e z j

∑N
k=1 e zk

, j = 1 . . . , K . (6.6)

where N is the number of classes, z is the input vector to the layer andσ(z ) j is the output

class probability. For example, suppose the output from a fully connected layer is the vector

z =
�

1.2 3.1 2.8 2.3
�T

.

Passing z through the softmax layer gives us the following output vector of probabilities

σ(z ) =
�

0.0639 0.4274 0.3166 0.1920
�T

.

This indicates the network is about 43% confident that the input image belongs to class 2.
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6.3.1 Training the CNN

In this section we describe a common approach used for training a CNN. We follow the

outline and derivations in [47]. Consider a CNN with L layers, where layer 1 represents the

input layer and layer L , the output layer. Let n` denote the number of neurons in layer `

where n1 and nL represent the dimension of the input and output layers, respectively.

Let W` represent the matrix of weights at layer `where w `
j ,k denotes the weight that neuron

j in layer i applies to the output from neuron k . Let x ∈Rn1 be the input data to the network.

We can summarize the outputs from the network as follows:

h 1 = x , and

h ` =φ(W`h `−1+b `), `= 2, . . . , L ,
(6.7)

whereφ is the activation function, b `, the bias at layer ` and h `, the output at layer `.

Suppose we have N input data points {xi }Ni=1 with N known output/classification labels

{yi }Ni=1. We would like to minimize the number of incorrect classifications made. We do this

by minimizing the mean squared error:

E =
1

N

N
∑

i=1

Exi
=

1

N

N
∑

i=1

[h L (xi )− yi ]
2, (6.8)

where h L (xi ) indicates the output at the final layer L for the input xi . The goal is to learn the

parameters W and b for all layers that minimize E. It is useful to imagine the weights and

biases stored as one single vector θ . We use the stochastic gradient descent (SGD) method

in our work [85]. A generic one step of the method is given below:

1. Randomly choose i ∈ 1, . . . , N

2. Update θ ← θ −η∇Exi
(θ )

where η is the learning rate. Back-propagation is used to calculate the gradient of the

objective function (see (6.8)) with respect to the network’s parameters, W and b . We take

the derivatives with respect to every w `
j ,k and b `j . Let:

z ` =W`h `−1+b `, `= 2, . . . , L (6.9)
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so that h ` =σ(z `) for `= 2, . . . , L . The error in the j th neuron of layer ` is defined as:

δ`j =
∂ E

∂ w `
j

. (6.10)

Let ◦ denote the Hadamard product such that (x ◦y )i = xi yi for vectors and (A◦B)i j = Ai j Bi j .

It then follows that [47]:

δL =σ(z L ) ◦ (h L − y ),

δ` =σ(z `) ◦ (W`+1)Tδ`+1, `= 2, . . . , L −1,

∂ E

∂ b `j
=δ`j , `= 2, . . . , L ,

∂ E

∂ w `
j ,k

, `= 2, . . . , L .

(6.11)

One forward pass through the neural network gives an initial estimate of the output hL at

layer L . This estimate is used to calculate all the derivatives with respect to weights and

biases moving backwards through the network. This is the back propagation process. The

weights are then updated according to an optimization rule using these derivatives, and

the process is repeated.

It is worth noting that back-propagation is essentially adjoint based gradient computation,

a widely used technique in PDE optimization. Moreover, what we call learning rate here, is

what optimizers call step length, in line search algorithms.

6.4 Application Problem: Corrosion detection in spent nu-

clear fuel canisters

After spent nuclear fuel is removed from a reactor core, it is placed in a wet storage assembly

for an extended period of time to manage radioactivity and heat. As a result of an increased

reliance on nuclear power, further intermittent storage is required to prevent the storage

pools from filling up. Dry cask canisters have been used to store spent fuel rods after they

have been cooled down in wet storage. The lifecycle of nuclear fuel [11] is shown in figure

6.7.
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Figure 6.7: Lifecycle of nuclear fuel.

With a lack of a long-term disposal plan for spent nuclear fuel, these dry cask canisters,

which have a planned utility of approximately twenty years, are going to be pushed further

than initial predictions and may be vulnerable to physical degradation. Undetected defects

in spent nuclear fuel canisters have the potential to irradiate the surrounding environment

and personnel. This necessitates the development of remotely operated systems for real-

time fast detection of defect type, location and size to support future repair activities, reduce

operator errors and optimize repair quality. An accurate and safe inspection system is

needed to analyze the current conditions of dry cask canisters and to ensure their continued

integrity and use.

While current techniques rely on in-situ manual inspections, (see figure 6.8) they are subject

to human error, pose an increased risk to personnel, and take an unreasonable amount

of time to execute, approximately a year to evaluate just one canister. Thus, the current

method is not a practical, long-term solution to analyzing dry cask integrity. New methods of

assessing defects in canisters are needed to automate the process and ensure the continued

sustainability of dry cask storage.

We propose a deep learning approach that will analyze images taken inside dry cask storage

canisters and detect corrosion and pitting in real time, eliminating human exposure to

radiation and minimizing human error.

6.4.1 Databank Generation

We use 168 raw images, consisting of 84 corroded canister images and 84 intact canister

images. The images were taken with a 16MP phone camera from a variety of locations,

angles and lighting conditions to ensure high variability in the dataset. It includes images

taken from inside the canisters as well as outside. The images were provided by the Electric
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Figure 6.8: Nuclear fuel storage site and in-situ inspections.

Power Research Institute (EPRI).

The 168 images were split into smaller images (tiled image) of a 256x256 pixel resolution,

which produced approximately 38, 000 images. After manually labeling each tiled image as

either an intact or corroded image, the dataset was split randomly to generate the training,

validation, and test sets. The dataset was split 60% for training purposes and 20% each for

validation and testing. To keep the sets independent, tiles from a particular image were

included in only one set. The total number of images in the training set is approximately

22, 000.

A number of data augmentation techniques were implemented to widen the domain of ap-

plicability for the models predictive power. Data preprocessing included random rotations,

flips, and color shifting of the images.

6.4.2 Training & Validation

CNNs learn features automatically when training by updating the weights after every iter-

ation of the SGD algorithm so no feature extraction techniques are needed, which is not

the case for other image-based classification problems. The ratio between the training to

validation set was 3:1 with training accuracy calculated from approximately 22,000 tiles

and validation accuracy out of approximately 7, 500 tiles.

ResNets [46] are a specific type of CNN architecture which can help increase the number

of hidden layers in the network. We chose to use the ResNet-18 architecture in this work,

a CNN which is 18 layers deep. We use SGD method as the optimizer and take our loss

function to be the mean squared error.
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A parameter that is needed to train the network is the batch size which is the number of

samples that will be propagated through the network at any one time. We experimented

with many different batch sizes and settled on using a batch size of 128. This means that the

algorithm takes the first 128 images from the training set and trains the network, then takes

the second 128 images and trains again and so on. One Epoch is when the entire dataset

has been trained on the network just once.

To train the network we needed to select an appropriate learning rate. To help select the

learning rate we plot the learning rate vs the loss. We selected the point where the decrease

in the loss was the fastest. In figure 6.9 (left) this corresponded to a learning rate of 10−2.

Figure 6.9: Plot of learning rate vs loss.

In figure 6.9 (right) we see how the network is improving/learning with each epoch. The

goal is to continue training until the training loss and validation loss level off, and there

is a small gap between the two. Continuing to train beyond this point usually results in

overfitting. The issue with overfitting is the network becomes more specialized towards the

training data and may struggle to adapt to new data.

6.4.3 Performance Metrics

We have trained a CNN to classify images of steel canisters as intact or corroded. The

next step is to assess the performance of the CNN on unseen image data. Performance is
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Table 6.1: Example of entries in a confusion matrix.

Actual

Positive Negative
Predicted Positive TP FP

Negative FN TN

assessed using a number of different tests and measures. A common way to summarize

classification accuracy is a confusion matrix. A confusion matrix is a table of the number of

correct and incorrect predictions summarized with count values and broken down by each

class. There are 4 important results from the confusion matrix:

1. True Positive (TP): Number of cases predicted as positive and the actual result was

positive.

2. True Negative (TN) : Number of cases predicted as negative and the actual output

was negative.

3. False Positive (FP): Number of cases predicted positive and the actual output was

negative.

4. False Negative (FN) : Number of cases predicted negative and the actual output was

positive.

In table 6.1 we show how the entries of the confusion matrix are presented. The matrix also

gives us insight into the types of errors the model is making. FP are classed as Type I errors

and FN, Type 2 errors.

We can calculate a number of other performance metrics from the results of the confusion

matrix. Precision is given by the relation: TP/(TP+FP). It tells us what proportion of positive

predictions were actually correct. Recall is given by the relation TP/(TP+FN). It tell us

what proportion of actual positives were correctly identified. There is a trade off between

precision and recall. If we try to increase one of the metrics then the other metric will

decrease in response. For example if we have high recall and low precision then we have a

low number for FN but a high FP. In contrast, when we have low recall and high precision

we have a high FN but low FP.

The F1 Score is another measure of the model’s accuracy. It is defined as the harmonic mean
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between precision and recall:

F1 = 2×
(precision× recall)
precision+ recall

.

This score considers both false positives and false negatives. The F1 score can be more

useful that accuracy in cases where one has an unbalanced class distribution. The range

for the F1 Score is [0,1]. It tells us how precise the model is, how many cases it classifies

correctly, as well as how robust it is.

Another performance metric is specificity given by the relation: TN/(TN + FP). Specificity is

the true negative rate or the proportion of negatives that are identified correctly. A receiver

operating characteristic curve (ROC curve) is created by plotting the true positive rate (recall)

versus the false positive rate (1-specificity) at different threshold values. This curve gives us

another way to visualize the performance of the classifier. The ROC curve demonstrates the

tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied

by a decrease in specificity). The closer the ROC curve is to the upper left corner, the higher

the overall accuracy of the test. In figure 6.10 we can see the curves for three different

models. A straight line curve through the center of the plot represents a bad model which

is only 50% accurate. The other curves show better models with the red curve being the

best. Notice as the model gets better the curve approaches the upper left corner of the plot.

The area under the curve (AUC) is a measure of a models accuracy. AUC is a measure of

how well a model can distinguish between two different groups.

6.4.4 Results

Now that we have defined each of the performance metrics we used in our work, we report

the performance results from our optimized CNN classifier using ResNet-18 architecture.

The performance of the CNN model was tested on 7,966 unseen tiled images from our test

set, 819 corroded images and 7,147 intact images. The classification accuracy was found to

be ∼ 96% which means the CNN correctly identified 7,647 of the test images. In table 6.2

we present the confusion matrices. The first shows the results of testing on the tiled images.

We also checked the results when testing on the raw images. Of particular interest were

the number of FP and FN results. False positives in this case represents cases where the
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Figure 6.10: ROC curve with three examples of models

Table 6.2: Confusion matrix for tiled images (left) and whole raw images (right)

Tiled Images: Actual

Corroded Intact

Predicted Corroded 677 142

Intact 148 6999

Raw Images: Actual

Corroded Intact

Predicted Corroded 17 2

Intact 14 0

network predicted images as corroded when they were in fact intact. False negatives are the

cases where the network classified the images as intact when they were actually corroded

images. From this table we find that the accuracy for corroded images is approximately

83% and for the intact images approximately 98%. Table 6.3 summarizes the performance

metrics for our optimized CNN. The optimized network was then tested on the 168 large

original images and resulted in an accuracy of 94% as presented in table 6.2.

Table 6.3: Performance metrics for optimized network using ResNet-18 architecture.

Metric Result

Accuracy 96.31%
F1 Score 0.980
Precision 0.972

Sensitivity (Recall) 0.987
Specificity 0.830

AUC 0.980

87



Figure 6.11: ROC curve for optimized network

In figure 6.11 we present the ROC curve for the optimized network. This figure allows us

to visually assess the performance of the CNN model. The ROC curve shows us the trade-

off between the True Positive Rate (Recall) and the False Positive Rate (FPR) at different

classification thresholds. We note that the CNN model has performed well since the ROC

curve is close to the top left corner of the figure. The area under a ROC curve (AUC) given

in table 6.3 quantifies the overall ability of the model to differentiate between those images

with corrosion and those without. With a value of 0.98 we can say that the model has

performed very well.

6.5 Conclusions

In this chapter, we have proposed a machine learning approach for image classification

using CNNs. Images are high-dimensional objects which makes traditional neural networks

an infeasible option. We have proposed a deep learning approach using a deep architecture

of convolutional neural networks (CNNs) for detecting corrosion without calculating the

defect features. The designed CNN demonstrates an accuracy of approximately 96%. The

results demonstrate that a deep learning approach is effective in analyzing canister integrity,

88



an approach that has the potential to significantly increase the speed of canister inspections,

minimize inspection costs, and eliminate radiation doses to personnel and can indeed find

canister defects in realistic situations.

Future work includes more exhaustive testing by acquiring a larger dataset of images from

a diverse collection of nuclear canisters. We would also like to investigate using pixel-wise

labeling for the images. Pixel-wise labeling would greatly increase the resolution of the

heatmaps, enabling full semantic segmentation of the entire input image. Such an approach

would require of an upfront investment to annotate images pixel-wise.
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CHAPTER

7

CONCLUSIONS

In this dissertation we have explored various techniques to effectively reduce the dimension

of large-scale problems to allow efficient UQ studies. In chapter 3, we successfully applied

the active subspace method to a high-dimensional chemical kinetics application prob-

lem. We compared the performance of the perturbation approach to the regression based

approach. In some applications, the regression-based approach is useful where gradient

computation is very challenging. We computed and used local linear models to approxi-

mate gradients but computing a global quadratic model has been proposed and used in [25].

Applying a global quadratic model to this application or other high-dimensional chemical

kinetics problems is subject of future work. We also explored links between traditional GSA

methods and active subspaces. In particular we investigated the links between total Sobol’

indices, DGSMs and activity scores, the latter which is associated with active subspaces.

We quantified the approximation error of using activity scores to approximate DGSMs.

In chapter 4, we developed a surrogate modeling approach for complex models with high-

dimensional inputs and function valued outputs that uses KL expansions for output di-
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mension reduction, active subspaces for input dimension reduction, and adjoint based

gradient computation in the active subspace method. We demonstrated the effectiveness

of the approach using a biotransport problem with high-dimensional random inputs and

random field outputs. We have also analyzed errors due to truncating the KL expansion and

due to active subspace construction. Topics for future work include extending the approach

to surrogate modeling of the time-dependent diffusion and convection-diffusion processes

in biological and geological flows.

In chapter 5, we introduced functional activity scores which we use to approximate the

functional DGSMs. Functional activity scores come for free, as a by product of active sub-

space analysis. No further model evaluations are needed, beyond the model evaluations

used for the purposes of active subspace discovery. We computed the functional activity

scores for a biotransport application problem and compared the results to the functional

DGSMs. In that chapter we also investigated the effects of input parameter correlations on

the active subspace method. We noted, in some cases, introducing correlations between

parameters has little to no effect on the dimension of the active subspace or the surrogate

model approximation. In other problems, we found that parameter correlations can actually

be useful in identifying a lower dimensional active subspace.

In chapter 6, we implemented a machine learning approach, using CNNs, to detect faults

in steel canisters containing spent nuclear fuel. Despite the small sample size of 168 whole

images, the trained CNN classifier achieves high detection accuracy. The approach shows

potential to automate and speed up inspections, to minimize inspection costs, and replace

human-conducted onsite inspections, thus reducing radiation doses to personnel. Topics

of future work include more testing on a much larger dataset of images to ensure the

robustness of the CNN classifier. We would also like to label the images at a pixel-wise level

which will require a significant investment of time.
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APPENDIX

A

DERIVATION OF GRADIENT OF THE

OUTPUT KL MODES

Note that the weak form of the forward problem (4.16) is given by

�

e â (x ,ξ)

µ
∇p ,∇p̃

�

−



h , p̃
�

ΓN
= 0 for all p̃ ∈V

where

V = {v ∈H 1(D) : v |ΓN= 0},

h = Q
2πRne e d l e

, 〈·, ·〉 is the L 2(D) inner product, and 〈·, ·〉ΓN is the L 2(ΓN ) inner product. Note

that we let the permeability field be κ(x ,ξ) = e â (x ,ξ).

Computing gradient of pk ’s. To compute the gradient we follow a formal Lagrange ap-
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proach. We consider the Lagrangian

L (p ,ξ, q ) =
1

Æ

λk (C f )

∫

D
(p − p̄ )φk d x +

�

e â (x ,ξ)

µ
∇p ,∇q

�

−



h , q
�

ΓN
.

Here q is a Lagrange multiplier, which in the present context is referred to as the adjoint

variable. Taking variational derivatives ofL with respect to q , and p , give the state and the

adjoint equations, respectively. In particular, the adjoint equation is found by considering

d

dε
L (p +εp̃ ,ξ, q ) |ε=0 = 0, for all p̃ ∈V .

This gives the weak form of the adjoint equation,

1
Æ

λk (C f )




p̃ ,φk

�

+

�

e â (x ,ξ)

µ
∇p̃ ,∇q

�

= 0, for all p̃ ∈V .

The strong form of the adjoint equation is

−∇·
�

e â (x ,ξ)

µ
∇q

�

=−
1

Æ

λk (C f )
φk inD,

q = 0 on ΓD ,

e â (x ,ξ)

µ
∇q ·n = 0 on ΓN .

(A.1)

Letting p and q be the solutions of the state and adjoint equations respectively, for the

gradient, we note that in a direction ξ̃ ∈RNp

(∇ξpk ) · ξ̃=
d

dε
L (p ,ξ+εξ̃, q ) |ε=0 =

�

(â (x , ξ̃)−a0(x ))
e â (x ,ξ)

µ
∇p ,∇q

�

, ξ̃ ∈RNp . (A.2)

In particular, letting ξ̃ be the j th coordinate direction in RNp , we get the adjoint based

expression for the partial derivatives of pk ’s:

∂ pk

∂ ξ j
=

Æ

λ j (Ca )

µ

∫

D
e j (x )e

â (x ,ξ)∇p (x ) ·∇q (x )d x . (A.3)
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