
ABSTRACT

AHRENS, KATHARINE A. Combinatorial Applications of the k-Fibonacci Numbers:
A Cryptographically Motivated Analysis. (Under the direction of Ernest Stitzinger and
Scott Batson.)

Recent exploration of hard problems conjectured to be quantum secure has opened a

number of fascinating problems in mathematics and computer science. In this thesis, we

present our research on one such problem.

To begin, we explore polynomial and matrix properties of a class of polynomials which

could be relevant for a certain variant of a cryptographic hard problem currently being

considered for post-quantum security. We conjecture singular value bounds tighter than

those which appear in the current literature and provide heuristic evidence for these

conjectures.

In the second part, we embark on a combinatorial deep dive and explore a certain gen-

eralization of Fibonacci number which arose over the course of our research. Our contri-

butions include answering two questions specifically posed in the last decade: we defined

a bijection between the k-Fibonacci numbers and a certain class of restricted integer

composition, and found a general form of the generating function for the k-Fibonacci

numbers.

Finally, we provide a new singular value bound for a restricted class of Vandermonde

matrix and offer ideas on how this could be generalized. We also offer avenues for future

work, including cryptographic and combinatorial problems.
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Chapter 1

Introduction

Cryptography is ubiquitous in modern society. From email to online shopping to health

and medical information, keeping data safe is of utmost importance.

Accomplishing this, especially online, relies on public key (also known as asymmetric)

cryptography. In a more traditional symmetric key setup, two parties wishing to commu-

nicate securely would first have to meet in person to exchange a shared key. Since this is

completely infeasible in the computer world—surely no Amazon customer would fly to

Seattle to exchange a key before impulse-buying a new pair of headphones—a solution

had to be reached. The RSA cryptosystem proposed in 1978 [31] neatly met this need,

and variants of it are used across the internet today.

RSA has sufficed for decades, and it continues to be used today. However, RSA might

be rendered obsolete in the future. RSA is based on the difficulty of factoring the prod-

uct of large prime numbers, and Schor’s algorithm [34] gives an efficient way to factor

integers given a quantum computer. While a fully scalable quantum computer doesn’t

actually exist yet, Schor’s algorithm—and recent success in physically constructing quan-

tum computers, including Google’s recent claim of achieving quantum supremacy [4], or

a quantum computer with a discernible advantage over a classical version—has motivated

a deep exploration of quantum resistant algorithms.

In the face of the quantum threat, mathematicians and computer scientists have at-

tempted to come up with a cryptosystem which would be immune to quantum attacks.

The largest effort to this end is the 2017 NIST Competition [2], which gives various

schemes which are conjectured to be quantum hard. One of the leading candidates for

a quantum-resistant hard problem is the learning with errors problem (LWE), first pro-
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posed in [28], and its ring-based variant ring learning with errors (RLWE) which was

first proposed in [21]. It is proved in [21] that the RLWE problem is at least as hard

as the problem of finding a short vector in an ideal lattice, which is widely conjectured,

although not proven, to be quantum hard. Almost a third of the original NIST proposals

are based on some variant of the LWE problem.

RLWE itself exists in various forms. The standard form is the form on which most of

the RLWE NIST proposals are based. There is also a tweaked version, known as the

non-dual form of RLWE. While only a slight difference apparently separates the dual

and the non-dual form, the non-dual form does not have a security reduction to a lattice

problem as the dual form does. In fact, a series of papers [16] [17] [9] [26] [32] revealed

that the non-dual form is not secure in some instantiations, even without using a quantum

computer. The attacks depend on properties of a Vandermonde matrix associated with

the polynomial used to define the base ring.

This thesis is essentially in two parts. In the first part, we review some previous literature

on the RLWE problem, including the cryptographic attack which motivated our work.

Then we give some conjectures and heuristic evidence for the expansion of the attack into

other polynomial classes. Our contributions include improving the singular value bound

on our class of Vandermonde matrix, proposals for further generalizations of previously

considered classes of polynomials, and heuristic observations of root behavior and singular

value properties of the expanded class.

The second part of the thesis is a rabbit hole, though it is a combinatorially interest-

ing rabbit hole which neatly answers some open questions in enumerative combinatorics.

While attempting to use the Schur-Cohn theorem to prove an observed behavior of poly-

nomial roots in the complex plane, we stumbled across a generalization of Fibonacci

numbers which has not been studied in much depth in the current literature. Intrigued,

we explored these numbers, known as the k-Fibonacci numbers, in connection with the

Schur-Cohn matrix and obtained some exciting new results. Our contributions include

defining a new class of restricted permutation; providing a new proof for the permanent

of a k-tridiagonal matrix; exhibiting explicit bijections among 4 classes of combinatorial

objects which the k-Fibonacci numbers count; stating and proving the general form of the

k-Fibonacci generating function; and discovering a previously unknown tensor variant of

Pascal’s triangle.

The combinatorial contributions we made, which were motivated by questions in an

entirely different mathematical field, are interesting and novel. That one branch of math

2



can so seamlessly blend together, and that one fascinating question can give rise to

another, is one of the delights of math. It was an honor to work on these questions and

to be able to follow their windy, unpredictable path wherever they happened to lead.
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Chapter 2

Background

In this chapter, we give some background on the ring learning with errors problem, as

well as some important definitions for understanding our work in the theory of algebraic

numbers, polynomials, and matrices.

We will later need some combinatorial background as well; these definitions appear in

Chapter 6.

2.1 LWE and RLWE

The ring learning with errors (RLWE) problem is an adaptation of the learning with

errors (LWE) problem. It was first introduced in [28]. The LWE problem is defined in

[29] as follows.

Definition 1. ([29], section 1) Fix a size parameter n ≥ 1, a modulus q ≥ 2, and an

error probability distribution χ on Zq. Let As,χ on Znq ×Zq be the probability distribution

obtained by choosing a vector a ∈ Znq uniformly random, choosing e ∈ Zq according to χ

and outputting (a, 〈a, s〉) + e where additions are performed in Zq. An algorithm solves

the (search version) LWE for modulus q and error distribution χ if for any s ∈ Znq given

an arbitrary number of independent samples from As,χ it outputs s with high probability.

It is shown in [28] that the LWE problem reduces quantumly to an approximate version

of some lattice problem. While [28] constructs a cryptosystem around the LWE problem,

the main restriction to implementing it with key sizes on cryptographic scale is the

4



question of efficiency. One LWE pair creates only one sample, rather than a vector of

samples, and as a result key sizes and computation times are very large.

The RLWE problem is a ring-based version of LWE with more efficient storage require-

ments and computation times. It was introduced in [21] and it is shown that the RLWE

problem is hard given worst-case assumptions on the hardness of ideal lattice problems

in quantum polynomial time.

Before we can define RLWE, we recall some definitions from algebra.

2.1.1 Algebraic Number Theory

RLWE is defined over algebraic extensions of fields and the rings of integers in those fields.

Thus we begin by recalling some basic algebraic number theory definitions, following [23].

Let α be an algebraic number, e.g. α is the root of some degree d polynomial in C and

is not a root of a polynomial of degree less than d. The field Q[α] formed by adjoining α

to the rational field Q is called the algebraic number field of degree d over Q.

Furthermore, α has a unique minimal polynomial m(x) over Q and this polynomial is

irreducible. By the first isomorphism theorem, Q[α] ∼= Q[x]/m(x).

We can generalize the notion of a ring of integers to algebraic number fields. We say that

algebraic integers are the algebraic numbers whose minimal polynomials have coefficients

in Z and denote the algebraic integers of an algebraic number field K as OK .

A basis for OK over Z, sometimes called a Z-basis, is called an integral basis for K.

While K is guaranteed an integral basis, it is not necessarily true that OK = Z[α]; in

other works, a basis over Z of the form {1, α, α2, . . . , αn−1}. In the special case where K

has this integral power basis, K is called monogenic. Whether K is monogenic or not,

OK is a free Z-module, since it has some (not necessarily power) basis.

We use algebraic number theory to define a mapping from the ring of integers in an

extension field to the real numbers as follows.
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2.1.2 Canonical embeddings

Recall that a complex embedding of a number field K = Q[x]/m(x) for a polynomial

m(x) irreducible over Q is defined as σi : K → C such that σi fixes every element of Q.

There are n = degree(m(x)) embeddings σi of K and these are connected to the n roots

of m(x). In fact, where α1, . . . , αn are the roots of m(x), σi(α1) = αi.

If σi(α) ∈ R, then σi corresponds to a real root of m(x) and σi is called a real embedding.

Clearly, complex σi come in conjugate pairs. We denote the number of real embeddings

by r1 and the number of complex embeddings by r2. Then {r1, r2} is called the signature

of K.

The signature of K is used to define a subspace H ⊂ Rr1 × C2r2 , where

H = {(x1, . . . , xn) ∈ Rr1 × C2r2 : xr1+r2+j = xr1+j ∀ j ∈ 1, . . . , r1}. (2.1)

Note H is isomorphic to Rn via multiplication by the unitary matrix

U =

Ir1+r2 0 0

0 1√
2
Ir2×r2

1√
2
Ir2×r2

0 1√
2
Ir2×r2

1√
2
Ir2×r2

 .

We use the n embeddings of a number field to define an n × n matrix of the embed-

dings. This embedding is called the canonical embedding, also known as the Minkowski

embedding.

Definition 2. The matrix of the canonical embedding M = σ(OK) of the ring of integers

OK in K with basis {bi} is defined by

Mi,j = σi(bj)

where σ1, . . . , σr1 are the real embeddings and σr2 , . . . , σn are the complex embeddings

ordered so that xr1+r2+j = xr1+j.

While we can perform this embedding with respect to any basis, throughout we will

consider the case of K monogenic and take the power basis {1, x, . . . , xn−1} of OK . We

denote the canonical embedding of a basis B as B.

We can use the embeddings to define not just the image of the ring of integers OK , but of
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any ideal I within K. This works essentially the same way as the canonical embedding of

OK : for a Z-basis B = {b1, . . . , bn} of I, the ideal lattice L is generated by the columns

of B where Bi,j = σi(bj) for the n complex embeddings σi of K.

Important for RLWE purposes is the idea of a dual lattice, denoted R∨. For any ideal

I, the dual lattice is I∨ = {x ∈ K : Tr(xL) ⊆ Z} which embeds as the conjugate of the

dual lattice of I∨. Where B = (bj) is an integer basis for I, then B∨ = (b∨j ) is an integer

basis for I∨. Thus, we have B∨ = (B−1)∗ where B = σ(B).

We can define the discriminant of a number field using the matrix B of the canonical

embedding.

Definition 3. Let B be the image of a Q basis for K under the canonical embedding.

Then the discriminant ∆K of K is defined as det(B)2.

A dimension-normalized version of the discriminant is called the root discriminant and

is defined as δK =
√

∆K
1/n

= det(B)1/n.

2.1.3 Tensor products

Definition 4. A tensor product A⊗B of two matrices A and B is defined as all blocks

ai,jB arranged in the same order as the entries of A.

A tensor product of two vector spaces V,W is defined axiomatically; see [26] or [13] for

details. Mostly notably, if (vi) and (wj) are a basis for V and W respectively, then

(vi ⊗ wj) is a basis for V ⊗W . A tensor product of Z modules is defined analogously.

Additionally, the tensor product is well-behaved multiplicatively under norms and duals,

as ||a⊗ b|| = ||a||||b||, (A⊗ B)∨ = A∨ ⊗ B∨. Additionally, for modules R = M ⊗N , the

root discriminant is multiplicative and thus δR = δMδN .

2.1.4 Gaussians

The RLWE problem uses samples drawn from the multidimensional discrete Gaussian

distribution, which is defined as follows.

Definition 5. ([21]) Let H be defined by Equation 2.1. For r > 0, define the Gaussian

7



function ρr : H → (0, 1] as ρr(x) = exp(−π||x||2/r2).The continuous Gaussian probabil-

ity distribution Dr of width r has density given by r−nρr(x).

See Figures 2.1 and 2.2 for the plot of a Gaussian distribution for varying values of r,

which gives a good intuition for why r is sometimes called the “width” of the Gaussian.

Figure 2.1: Gaussian of width r = 8 Figure 2.2: Gaussian of width r = 0.5

2.1.5 RLWE

Now we proceed with the RLWE definition. Note that this definition considers the

Gaussian drawn from KR/qR
∨ where KR = K ⊗R, but as noted in [26], KR ∼= H. While

[26] uses KR to be formal, we can view the distribution as over H which is isomorphic to

K via σ−1.

Definition 6 ([26] definition 2.6). Fix parameters R, the ring of integers of a number

field K, a positive integer modulus q, and an error distribution ψ over KR. The search

RLWEq,ψ problem is to find a uniformly random secret s ∈ R∨q given many independent

samples of the form (ai, bi = sai + ei mod qR∨) ∈ Rq × KR/qR
∨ where each ai ←

Rq is uniformly random and each ei ← ψ is drawn from the error distribution. The

decision RLWE problem is to distinguish with some noticible advantage between samples

generated as above and uniformly random samples Rq ×KR/qR
∨.

While it may at first seem more natural to choose s ∈ Rq (called the non-dual form

of RLWE) instead of using the dual lattice, and while they are equivalent up to choice

of distribution, a spherical Gaussian in the dual form may convert to a highly elliptical

Gaussian in the nondual form, giving rise to unwanted patterns in the errors which allow

for solving both search and decision. It is this type of weakness which is explored in [16],

[10], [26] and which we will exploit for new classes of examples.
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2.2 Matrix Theory

One of the most important quantities of a matrix A is the determinant.

Definition 7. Let A ∈ Cn×n be a matrix. The determinant of A is

det(A) =
∑
π∈Sn

(
sign(π)

n∏
i=1

ai,π
)

where Sn is the set of all permutations π of the set {1, 2, . . . , n} and sign(π) = 1 if π is

even and −1 if π is odd.

We now recall the definition of the singular value decomposition.

Definition 8. ([22]) Let A ∈ Cm×n of rank(A) = r. There exist orthogonal matrices

U ∈ Cm×m, V ∈ Cn×n and a diagonal matrix Σr = diag(s1, s2, . . . , sr) such that

A = U

[
Σr

0

]
V ∗

with s1 ≥ s2 ≥ · · · ≥ sr > 0. This factorization is called a singular value decomposition

of A and the si are called singular values.

Definition 9. ([22]) Let A be an m× n matrix.

1. The condition number of κ(A) is s1/sn if sn > 0 and ∞ if sn = 0.

2. The Frobenius norm ||A||F of A = (aij) is
√∑

i,j |aij|2.

3. The 1-norm of A is ‖A‖1 = max1≤j≤n
∑m

i=1 |ai,j| and the infinity norm is ‖A‖∞ =

max1≤i≤n
∑n

i=1 |ai,j|.

4. The 2-norm ||A||2 is s1.

5. For p ≥ 1, let x ∈ Cn and let the vector p-norm of x be defined as ||x||p =

(
∑n

i=1)|xi|p)
1
p . Then the matrix p-norm ||A||p is supx 6=0

||Ax||p
||x||p .

Norms are submultiplicative and various relationships exist between the common norms

above.

Proposition 1. For matrices A and B with the same number of columns,

1. For a p-norm ‖ · ‖p, ‖AB‖p ≤ ‖A‖p‖B‖p.
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2. ‖A‖2 ≤
√
‖A‖1‖A‖∞

3. ‖A‖2 ≤ ‖A‖F

The rest of the singular value spectrum is not submultiplicative, but the following rela-

tionship does hold.

Proposition 2. For the singular values si of compatible matrices A,B,

si(AB) ≤ s1(A)si(B)

for 1 ≤ i ≤ min(m,n).

If we happen to know the singular value spectrum of A, calculating its determinant up

to absolute value is easy.

Proposition 3. | det(A)| =
∏n

i=1 si(A).

Singular values and the condition number have an important geometric interpretation:

si(A) is the distortion of a unit ball under multiplication by A in n-space along the ith

axis, and κ(A) quantifies the total amount of distortion in the system.

The following theorem gives an important connection from the singular values of A to a

low-rank approximation of A.

Theorem 1. ([25]) Let Aj−1 be the closest approximation of A of rank at most j − 1.

Then

sj = ||A− Aj−1||2

for 1 ≤ j ≤ n.

2.3 Polynomial Roots

Our analysis of polynomials for RLWE base rings will depend on the the following results.

The theorems and definitions in this section come from [27].

Definition 10. Let a0, . . . , an be a sequence of real numbers. We define V (a0, . . . , an)

as the total number of variations of sign in the reduced sequence obtained by ignoring

all the zero elements. We agree that V assumes the value zero if only one or none of the

elements is different from zero.
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Example 1. V (1,−2, 3, 0,−4, 5) = 4, since there is one variation in sign between the 1

and −2, the −2 and 3, the 3 and −4 (here we ignore the 0), and −4 and 5. Similarly,

V (7, 0, 8, 9) = 0.

Theorem 2 (Sturm). Let f be a polynomial with real coefficients. Let

fi+1 = −rem(fi, fi−1)

where rem(fi, fi−1) is the remainder of the polynomials fi, fi−1 as produced by the Eu-

clidean algorithm. Then consider f0, f1, f2, . . . , fm where f0 = f and f1 = f ′. Suppose

that f does not vanish at a and b where a < b. Then

Nf [a, b] = V (f0(a), . . . , fm(a))− V (f0(b), . . . , fm(b))

where Nf [a, b] denotes the number of distinct zeros of f in [a, b].

To find the total number of real roots, we can consider the sequences

V (f0(−∞), f1(−∞) . . . fm(−∞))

and

V (f0(∞), f1(∞) . . . fm(∞)),

where we define f(∞) as the sign of its leading coefficient, and f(−∞) as the sign of the

leading coefficient of f for even degree f , and f(−∞) as the opposite sign of the leading

coefficient of f for odd degree f .

Theorem 3 (Montel). Every polynomial fk(z) = a0 +a1z+ · · ·+apzp+c1z
n1 + · · ·+ckznk

(ap 6= 0, 1 ≤ n1 < · · · < nk) has a zero of modulus not exceeding |a0/ap|1/prk where r0 = 1

and

rk =
( n1

n1 − k
. . .

nk
nk − p

)1/p ≤
(
p+ k

k

)1/p

, k ∈ N.

Theorem 4 (Budan-Fourier). Let f be a polynomial of degree n with real coefficients.

Let I be any interval and Nf (I) denote the number of zeros of f in I. Let Vf (x) =

V
(
f(x), f ′(x), . . . , f (n)(x)

)
. Then

Nf (a, b] = Vf (a)− Vf (b)− 2k

for some k ∈ N0.
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We will make use of the following facts from [27] below.

Definition 11. Let f(z) = a0 + a1z + · · ·+ anz
n be a polynomial of degree n. Then the

Cauchy bound of f , denoted ρ[f ], is defined as the unique positive root of the equation

|a0|+ |a1|x+ · · ·+ |an−1|xn−1 = |an|xn

when f is not a monomial and 0 otherwise.

Theorem 5 (Cauchy). All zeros of a non-constant polynomial f lie in the closed disc

with center at the origin and the Cauchy bound ρ[f ] as radius. Moreover, for such a disc,

ρ[f ] is the smallest radius that depends only on the moduli of the coefficients of f .

Of course, calculating the Cauchy bound of Theorem 5 seems just as difficult as finding a

root of f itself. However, this bound is useful because there are many ways of estimating

it. We will make use of the following; other methods appear in Chapter 8 of [27].

Theorem 6. For the Cauchy bound ρ[f ] of a polynomial f as above, then for positive

numbers λ0, . . . , λn−1 such that
∑n−1

ν=0 λν = 1, we have

ρ[f ] ≤ max
0≤ν≤n−1

( 1

λν

∣∣aν
an

∣∣) 1
n−ν .

2.4 Constructing the Vandermonde Matrix

We recall the definition of a Vandermonde matrix, since properties of Vandermonde

matrices play a large role in our analysis.

Definition 12. ([19]) An n× n Vandermonde matrix V = [vij] has the form vij = αj−1
i

for scalars αi. The αi are sometimes called the nodes of the Vandermonde matrix.

Example 2. For n = 3, αi = i, the Vandermonde matrix of the αi is1 1 1

1 2 4

1 3 9

 .

We will use some well-known properties of the Vandermonde matrix throughout.
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Proposition 4. ([19]) The determinant of a Vandermonde matrix V with nodes αi is

det(V ) =
∏

1≤i<j≤n

(αj − αi).

It is clear from Definition 4 that the Vandermonde matrix is nonsingular if and only if

the nodes are distinct.

While the Vandermonde matrix is often notoriously ill-conditioned even in the nonsin-

gular case, it is possible to write down an analytic inverse.

Proposition 5. ([19]) Let the i, j entry of the inverse V −1 of a Vandermonde matrix V

with nodes αi be denoted vij. Then

vij = (−1)i−1



∑
1≤m1<...<mn−i≤n

m1,...,mn−i 6=j

αm1 · · ·αmn−i

∏
1≤ k≤n
k 6=j

(αk − αj)

 , 1 ≤ i < n

We note that the canonical embedding of R as defined above is simply the Vandermonde

matrix of the roots of the minimal polynomial.

Lemma 1. For a ring R = Z[x]/m(x) with power basis B = {1, x, . . . , xn−1}, let ζ denote

a root of the minimal polynomial m(x). Then the matrix of the canonical embedding σ(B)

is the Vandermonde matrix with nodes αi = ζ i, 0 ≤ 1 ≤ n− 1. We will denote it Vm, or

simply V when the polynomial m(x) is clear.

Proof. Let σj, 1 ≤ j ≤ n, denote the jth complex embedding which maps ζ to a root of

m(x). By the first isomorphism theorem, the roots of m(x) are 1, ζ, . . . , ζn−1 and thus

σj(ζ) = ζj−1. Since the σj are ring homomorphisms, for ζ i we have σj(ζi) = ζ i(j−1).

Letting αi = ζi gives the definition of a Vandermonde matrix.

Thus we can leverage the properties of Vandermonde matrices when analyzing this map-

ping between the canonical and coefficient embeddings.
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Chapter 3

Previous Results and Our

Contributions

3.1 Previous Results

We give a brief overview of previous results relating to the security of using non-cyclotomic

base rings R for the non-dual form of the RLWE problem. The ideas presented here mo-

tivated our exploration of the roots of polynomials of the form xn+axm+ b where m < n

are positive integers and a, b ∈ R, and the singular value properties of their associated

Vandermonde matrices, which appear in Chapters 4 and 5 below.

Throughout, we refer to the matrix Vandermonde matrix M (sometimes V ) of an ideal

I ∈ R[x]/m(x) as the Vandermonde matrix whose nodes are the roots of the minimal

polynomial m(x). For short, we may refer to this matrix as “the matrix of the polyno-

mial.”

In [16], the authors define the normalized spectral norm of a matrix M as

N (M) = ‖M‖2/| det(M)|1/n,

and note N ′ := N (M−1) = ‖M−1‖2| det(M)|1/n. They prove that where κ(M) is the

2-norm condition number of M , we have

N ′(M) ≤ 2κ(M).
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Furthermore, the authors plot N ′ for f = x32 +ax+b for −60 ≤ a, b ≤ 60 and conjecture

based on this plot that most, though not all, of these f satisfy N ′ ≤
√

max(a, b). The

authors do not give any heuristic motivation for which choices of coefficients the bound

will or will not be satisfied. They do solve the non-dual search RLWE problem for the

weak parameter choice of f(x) = x128 + 524288x + 524285, which satisfies a number of

conditions laid out in the paper, including a requirement on the size of the spectral norm

of M and a requirement on the modulus q used in RLWE.

The paper [9] extends the ideas expressed in [16]. The authors note that the roots of the

polynomial f(x) = x128 + 524288x + 524285 roughly form a circle and that the singular

values decrease roughly geometrically, but they make no attempt to generalize these

observations. They provide a simple linear algebra attack on weak instances of RLWE

which is independent on the modulus q and depends only on choice of Gaussian width

relative to sn(M).

Figure 3.1: Behavior of x128 + 524288x+ 524285 observed in [9].

In [26], the criterion for a successful linear algebra attack on the search version is sim-

plified, showing that independent of singular values magnitude, it suffices only to have a

row of M−1 that has a small Euclidean norm relative to the Gaussian width parameter.

In [17] the RLWE question is approached from a more number theoretic perspective. With

the definition of spectral norm as above, the authors propose as an open problem finding

possible values of ρ(M) for M constructed as above, specifically whether possible values

for ρ are on a continuum or discrete in regions of R. They also recall that the definition

of the Mahler measure M(f) of a polynomial f(x) = a(x − α1)(x − α2) . . . (x − αn) is
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given by

M(f) = a
∏
|αi|≥1

|αi|

and ask if there is a connection between small Mahler measure and small spectral norm,

giving examples where this is the case. The authors also note that related quantities

of M , such as condition number or the entire vector of singular values, could also be of

interest.

Finally, [32] gives a tighter connection between hardness results for the RLWE problem

and a polynomial LWE problem. As part of their argument, the authors prove the

following, by bounding the roots of f using Rouche’s Theorem and using the Frobenius

norm.

Theorem 7. ([32], Theorem 4.7) Let P (x) =
∑

1≤j≤ρ·n pjx
j for complex pj. Let gn,b =

xn − b + P (x) and let V be the Vandermonde matrix with the roots of gn,b as nodes.

Denote the Frobenius norm of V by ||V ||F . Then for any b > (||P ||1 · C−1eρ)1/(1ρ) with

C = |1− cos(a−1/n − 2eb
1/n

nb2/n
)|, we have

||V ||F ≤ bne

and

||V −1||F ≤ n5/2(||P ||1 + 1)b1/ne2.

While this result is exciting, covering a fairly general class of polynomials, it does not

completely clear up the questions of spectral norm proposed in the previous papers. For

instance, these estimates of ‖V ‖F and ‖V −1‖F , which also gives upper bounds for the

2-norm by Proposition 1, are in practice much too large.

3.2 Our Contributions

Broadly, we sought to extend the attacks above to theorems based on more general classes

of polynomials. Since the attacks above depend on properties of the polynomial’s Van-

dermonde matrices, which in turn depend on the locations of the polynomial roots, our

contributions span branches of analytic polynomial theory, matrix theory, and combina-

torics.

We began with an analysis of polynomials of the form xn+ax+b for n ∈ Z+ and a, b ∈ R.

16



Our contributions include empirical observations regarding their root locations and a

new conjecture about the magnitude of singular values of the associated Vandermonde

matrices. We provide a proof of the number of roots with modulus less than 1 when

a = b = 1 and make significant progress on the proof for the a, b 6= 1 case. These results

appear in Chapter 4.

Then, we broadened our analysis to polynomials of the more general form xn + axm + b

for a, b ∈ R and m < n. Here we extend the empirical observations with regards to

root locations and singular value properties to the more general case. We contribute

numerical evidence that these bounds are in practice quite tight. We also provide proofs

regarding the number of real roots of these polynomials and prove that they always have

at least one root of modulus less than 1. These results appear in Chapter 5.

We provide our most exciting results in Chapter 6. While seeking to generalize a root

localization theorem of Chapter 4, we came across an interesting and open combinatorics

question regarding the determinant of a certain type of tridiagonal matrix. We proved

bijections between 5 classes of combinatorial objects, the overwhelming majority of which

were previously unknown in the literature. In doing so, we greatly expanded the current

research regarding a certain class of generalized Fibonacci number. We also give the first

generating function for this class of Fibonacci number, and prove three new identities on

these k-Fibonacci numbers which we use as lemmas to obtain the generating function.

Both the generating function question and at least two of the bijections were specifically

posed as open combinatorial questions in [14].

Lastly, we briefly explored the Mahler measure question proposed in [17] for Salem and

Pisot numbers. Our results indicate that contrary to the conjecture of [17], Mahler

measure by itself is not sufficient to determine spectral norm. In addition, our approaches

in this section, such as leveraging properties of the Vandermonde matrix and our use of

the Eckart-Young theorem, could be generalized to other polynomials with known roots,

including those of the form xn+axm+b given more information about their root locations.

This work is presented in Chapter 7.
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Chapter 4

The First Polynomial: xn + ax + b

4.1 Motivation

The polynomials considered in [16] and [9] are of the form xn + ax + b, for a positive

integer n and a, b ∈ R. Initially, we look at properties of the roots for the a = b = 1 case,

and explore the generalization at the end of the chapter.

In addition, there is cryptographic interest in polynomials of this form besides their use

in RLWE. In [8], researchers proposed a new class of polynomials for base ring defined

in the cryptosystem NTRU, noting that the polynomials

xp − x− 1

for p a prime integer satisfy desired irreducibility requirements and are more secure

against certain classes of attacks. While we do not know if a detailed analysis of the

roots would be of any use in analyzing the security of NTRU prime, the cryptographic

interest in these polynomials motivates further exploration.

The analysis in [32] also motivates the spectral analysis of these polynomials with the

following result:

Theorem 8 ([32], Appendix C). Let V be the Vandermonde matrix of xn± x± 1. Then

for every n > 2,

‖V ‖F ≤ 2n
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and

‖V −1‖ ≤ 6n7/2.

Since the Frobenius norm bounds the 2-norm, the first part of Theorem 8 gives an upper

bound on the largest singular value of V (and, trivially, the entire spectrum). However,

we noticed that this bound is in practice much too loose. The bound increases linearly

in n, and the maximum singular value increases sublinearly in n. See Figure 4.1 for an

illustration.

Figure 4.1: An illustration of the 2-norm bound of [32] as polynomial degree increases.

In addition to providing a loose bound for the maximum singular value, Theorem 8 does

not give us any useful information about the rest of the spectrum of V . In fact, the

behavior of the entire spectrum is intriguing.
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n = 37 n = 120

n = 200

Figure 4.2: Singular values for various choices of n

In all of these examples, an inflection point occurs around index 2 bn/3c . This state of

affairs becomes even more curious when we compare the singular value plots to the plots

of the roots of the polynomials.
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n = 37 n = 120

n = 200

Figure 4.3: Polynomial roots of various choices of n

While it it is hard to tell from the plots for larger n, computations indicate that roughly

bn/3c of the roots of the polynomials tested lie inside the unit circle.

Given that the the roots of the polynomial and their powers form the nodes of the

Vandermonde matrices, it is perhaps not surprising that there is a connection between

the root and matrix properties. However, it was not immediately apparent to us why

this connection should be so strong or so pervasive. Thus, in an effort to learn more

about the Vandermonde matrix properties of this polynomial, we first investigate the
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root properties of these polynomials.

4.2 Root Locations

We start by identifying the locations of the roots of xn ± x ± 1, and we will show that

polynomials of this form do in fact have roughly bn/3c of their roots inside the unit circle.

Our approach to the proof is to convert the root finding problem to a matrix problem

using the Schur-Cohn Theorem. First recall some basic definitions.

Definition 13 ([22]). The inertia of a real-symmetric matrix A is defined as the triple

(n+, n , n0)

where n+, n , n0 are respectively the number of positive, negative, and zero eigenvalues

of A.

A symmetric matrix has no complex eigenvalues and thus positive and negative eigen-

values are well-defined.

Definition 14 ([27]). The signature of A, denoted sig(A), is n+ − n and the rank of A

is n+ + n .

Definition 15 ([27]). A real quadratic form in n real variables x1, . . . , xn is defined by

Q(x) := xTAx =
n∑
i=1

n∑
j=1

aijxixj

where A = (aij) ∈ Rn×n is a real symmetric matrix.

The following is the main theorem we will use to analyze the locations of polynomial

roots.

Theorem 9 (Schur-Cohn; see [27]). Let f(x) =
∑n

i=0 aix
i be a polynomial of degree n.

Suppose that f(x) and f ∗(x) := f( 1
x̄
) have no common zero, and denote by sig(f) the
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signature of the quadratic form C = BTB − ATA where

A =


a0 a1 . . . an−1

a0 . . . an−2

. . .
...

a0


and

B =


ān ān−1 . . . ā1

ān . . . ā2

. . .
...

ān

 .
Then f has exactly n+sig(f)

2
zeros inside the unit circle, n−sig(f)

2
zeros outside the unit

circle, and no zeros on it.

Note that Schur-Cohn in its full generality holds for polynomials with complex coeffi-

cients, in which case C is a Hermitian form. As the coefficients of our polynomials are

real, we only need the version as stated in Theorem 9.

For f(x) = xn − x− 1, we construct the Schur-Cohn matrix C as in Theorem 9.

Proposition 6. Let f(x) = xn− x− 1. Then the Hermitian form C as in Theorem 9 is

C =



0 −1 0 0 . . . −1

−1 −1 −1 0 . . . 0

0 −1 −1 −1 . . . 0
...

. . . −1

−1 0 . . . 0 −1 0


.

Proof. Immediate from Theorem 9.

Now, to determine how many roots of f(x) are inside the unit circle, we must find the

signature of C. If the leading minors of C are all nonzero, we could use the following

Theorem 10 to do this.

Theorem 10 (Jacobi; see [27]). Let A be a symmetric matrix of rank m. Suppose that

the principal minors D1, . . . , Dm of A are all different from zero. Then the quadratic

form Q(x) := xTAx has signature sig(Q) = m− 2V (1, D1, . . . , Dm).
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At first, it seems we cannot use Theorem 10, as the Schur-Cohn matrix C corresponding

to the quadratic form has some 0 minors; for instance, the leading 4 × 4 minor in the

a0 = a1 = −1 case is always zero. Luckily for us, there is a generalization of Theorem 10

that dates back to 1881 and allows zero minors as long as leading minor sequence does

not include more than two zeros as successive entries. In the subsequent application of

the theorem, a 0 can be counted as an entry of either sign. See [27].

Thus we only need to calculate the sign changes in the leading minor sequence to deter-

mine the signature of the quadratic form.

We take a combinatorial approach, for reasons that will soon become clear.

First, recall the definition of a leading matrix minor.

Definition 16. Let Mk be the kth leading minor of a matrix A, that is, the submatrix

formed from the k × k elements in the upper left corner, for 1 ≤ k ≤ n− 1. Then

Mk =
∑
π∈Sk

(
sign(π)

k∏
i=1

aiπi
)

where Sk is the set of all permutations on the set {1, 2, . . . , k} and sign(π) = 1 if π is

even and −1 if π is odd.

Due to the nearly-tridiagonal structure of the Schur-Cohn matrix C, calculating the

leading minor sequence is equivalent to solving a restricted permutation problem. As it

turns out, this particular permutation problem has a very nice combinatorial solution.

Proposition 7. All elements in the sum of Definition 16 for a given k are zero, except for

possibly permutations π on k elements 1, . . . , k such that |π(i)−i| ≤ 1 for all 1 ≤ i ≤ n−1.

Proof. All entries aij of C are zero, unless j = i ± 1. Thus for a given π ∈ Sk, we must

have σi = 1 ± i or σi = i for all i with 1 ≤ i ≤ n − 1 for any nonzero term in the sum

Mk.

Thus we begin by counting permutations of the possibly-nonzero form. The result is a

familiar integer.

Throughout, let |πk| denote the total number of permutations of the form of Proposition

7.
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Proposition 8. There are fk−1 permutations of the form in Proposition 7, where fk−1

is the kth Fibonacci number.

Proof. Let πk be a length k permutation of the desired form.

First, we must have πk(1) = 2 for any k, since πk(i)− i must be true and since πk(1) = 1

gives a zero term as a1,1 is 0. Similarly, we must have πk(2) = 1. Thus |π1| = |πk(2)| = 1.

Now consider πi, i ≥ 3. We must have πi(i) = i or πi(i) = i−1. If πi(i) = i, then the first

i− 1 elements of π satisfy the |πk(i)− i| ≤ 1 condition, and so there are |πi−1| elements

of πi with πi(i) = i. Similarly, if πi(i) = i − 1, then πi(i − 1) = 1, and considering only

the first i− 2 elements, by the same logic, gives |πi−2| elements of this form.

Thus, |πk| = |πk−1|+ |πk−2| for any 3 ≤ k ≤ n− 1.

Recall that the Fibonacci numbers are defined recursively by

f0 = 0, f1 = 1, fn = fn−1 + fn−2.

As the recursion on πi is identical with the same initial conditions, we obtain that the

number of π(k) = fk−1. The length-1 shift occurs because of the +1 shift in indexing for

the initial conditions.

We have now calculated the ith leading minor of C but discarded the signs in the defini-

tion of a determinant (see Definition 7). In the matrix theory literature, this is known as

the permanent of a matrix. We remark that it is known that the permanent of a tridiag-

onal matrix of all 1’s is a Fibonacci number; the usual proof is through the definition of

a matrix continuant. We present the combinatorial argument above because the typical

definition of a matrix continuant does not hold when the off-diagonal elements are not

the sub and super diagonals. Our combinatorial argument will generalize to the more

complicated cases in Chapter 6 below, while the traditional matrix continuant argument

does not.

To find the Mk themselves now that we know the number of terms in the expansion, we

need to find the sign each of those terms. Recall that the sign of a permutation π is 1 if π

has an even number of transpositions, and −1 if π has an odd number of transpositions.

The recursive argument about makes it quite easy to count these transpositions.
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Theorem 11. Define two interlacing recursive sequences t and u with initial conditions

t0 = t1 = 0, u0 = 0, u1 = 1, and tk = tk−1 + uk−2 and uk = uk−1 + tk−2. Then there are

tk permutations on πk with an even number of transpositions and uk permutations on πk

with an odd number of transpositions.

Proof. Recall the recursive argument given above. Then the |πk−1| terms of πk have the

same number of descents; the terms of πk constructed from πk−2 will have one more de-

scent than the original πk−2 by construction. Recalling the initial conditions π1 = 2 (one

permutation, and no permutations with either an even nor odd number of transpositions)

and π2 = 21 (one permutation with an odd number of transpositions, no permutations

with even number of descents) concludes the argument.

This theorem naturally partitions the Fibonacci numbers into the sum of two sequences.

Corollary 1. Fn = tn + un, with Fn the nth Fibonacci number and tn, un defined as in

Theorem 11.

The difference between tk and uk, and thus the calculation of the minors of C, is pre-

dictable.

Lemma 2. Let vk = tk−uk be the sequences of differences of the entries of the sequences

a, b. Then

vk =


−1, k ≡ 2, 3 mod 6

0, k ≡ 1, 4 mod 6

1, k ≡ 5, 6 mod 6

Proof. First, from the initial conditions we have that v1 = t1 − u1 = 0 − 0 = 0 and

v2 = t2 − u2 = 0 − 1 = −1. Now, by the recursive definition of t, u, we have that for

k ≥ 3,

vk = tk − uk = tk−1 + uk−2 − (uk−1 + tk−2)

= tk−1 − uk−1 − (tk−2 − uk−2)

= vk−1 − vk−2.

From here, we note
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vk+3 = vk+2 − vk+1

= vk+1 − vk − vk+1

= −vk

and thus vk+6 = vk. Noting that v3 = −1 from the initial conditions concludes the

proof.

While vk does not quite count the minor sequence of C, it is quite close.

Lemma 3. Where Mk, 1 ≤ k ≤ n− 1, is the kth leading minor of C,

Mk =


1, k ≡ 0 mod 3

0, k ≡ 1 mod 3

−1, k ≡ 2 mod 3

.

Proof. The proof is simply Lemma 2 combined with our knowledge of C. Since cij = 1

for all the entries of C we are considering, the terms in the product in Definition 16 will

contribute a coefficient of 1 if the permutation has even length and −1 if the permutation

has odd length. Thus we switch the sign of vk in Lemma 2 for odd k only which yields

the result.

If the polynomial coefficients a = b = 1, we do not switch the signs for odd k, since all

cij = 1.

We have now determined Mk for all 1 ≤ k ≤ n− 1. Calculating the determinant of C is

our last lemma.

Lemma 4. Let C be the Schur-Cohn matrix for xn − x− 1. Then

det(C) =


−1, n = 0 mod 3

−1, n = 1 mod 3

−4, n = 2 mod 3

.

Proof. Throughout, let π = πn for clarity. We follow the same permutation argument as

above, with the difference is the additional possibilities of π(1) = n with the addition of
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the last row and π(n) = 1 or π(n) = n− 1 with the addition of the last column. We also

have π(n− 1) = n case, as before. We consider four cases.

1. If π(1) = 2 and π(n) = n − 1, then we must have π(2) = 1. We can pick entries

from all other middle columns in the usual |π(n− 3)| = Fn−4 ways.

2. If π(1) = 2 and π(n) = 1, then we must have π(n− 1) = n. However, this in turn

forces π(n−2) = n−1, and so on. Thus there is only one permutation in this case.

3. If π(1) = n and π(n) = n − 1, the argument is similar to case 2. We must have

π(2) = 1, which sets π(3) = 2, and so on til π(n− 1) = n − 2. Thus there is only

one permutation in this case as well.

4. If π(1) = n and π(n) = 1, we have to order only the middle elements. This

is like case 1, but without the restriction that π(2) = 1. Thus, there are Fn−3

permutations here.

So consider the signs of each of these permutations. In case 1, the parity is the same as

was determined in Lemma 3. However, in cases 2 through 4 the number of descents does

not necessarily determine the parity of the permutation; luckily we know enough about

the structure of the permutations to determine them by hand.

In case 2, all the elements are in fixed point order, with the exception of the 1 in the

nth position. Thus it will take n− 1 transpositions to order the permutation to π(i) = i.

Thus the case 2 permutation has sign −1n−1. If n is even, (−1)n−1 = −1, and there is no

sign change from the even number of ai,j in the minor expansion, so the term is −1. If

n is odd, (−1)n−1 = 1, but there is a change from the odd number of ai,j = −1 in the

minor expansion, so the term is still −1. Thus case 2 contributes a −1 to the determinant

regardless of the parity of n.

In case 3, the argument is the same as case 2, except the n− 1 transpositions come from

swapping the n in position 1 back to position n. Thus this term always contributes a −1

as well.

In case 4, we need to reorder the middle n − 2 elements, which follows the Lemma 3

pattern. Then we must consider the number of transpositions from the π(1) and π(n)

elements. As again every element is bigger than π(p)n, that gives n − 1 transpositions;

since π(1) is bigger than all other elements, that is an additional n−2 transpositions (we

are avoiding double counting π(1) > π(n)). Thus there is an additional 2n−3 inversions,

which is always odd regardless of n.
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Thus case 4 is a flipped sign from case 1, with an index-1 offset in the mod since there

are cn−1 and not cn transpositions in the middle. Adding, the case-4 coefficient is thus
−1, n ≡ 2 mod 3

0, n ≡ 0 mod 3

1, n ≡ 1 mod 3

.

Now, we put it all together. Let n ≡ 0 mod 3. Then,

det(C) = 1− 2 + 0 = −1.

Let n ≡ 1 mod 3. Then,

det(C) = 0− 2 + 1 = −1.

Let n ≡ 2 mod 3. Then,

det(C) = −1− 2− 1 = −4.

The determinant calculation yields an important corollary.

Corollary 2. Rank(C) = n.

Proof. As per Lemma 4, det(C) 6= 0 regardless of the modularity of n.

This corollary proves that we can in fact use Theorem 9 to count the roots inside the

unit circle, since f(x) and f ∗(x) have no common roots.

We are now ready to count the sign changes in the minor sequence and thus the number

of roots inside the unit circle.

Lemma 5. Let V (S) be the number of sign changes in a sequence S, where 0 can be

counted as either positive or negative. Let S = 1,M1, . . . ,Mn. Then

V (S) =


2n
3
− 1, n ≡ 0 mod 3

2(n−1)
3

+ 1, n ≡ 1 mod 3

2(n+1)
3
− 1, n ≡ 2 mod 3

.
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Proof. As established above, the minor sequence repeats 1, 0,−1, 1, 0,−1 . . . starting at

index k = 0, with variation in the mn coordinate. If there are r elements organized into

blocks of 1, 0,−1, there are 2r
3
− 1 sign changes–r/3 to account for the r switches from

1 to −1 within each block and r/3 − 1 to account for the −1 to 1 switch between the

blocks.

If n = 0 mod 3, then we have n/3 full blocks, with one more −1 on the end. As the Mn

coordinate for the determinant is negative, there is no switch between Mn−1 = −1 and

Mn = −1, and this observation yields case 1 directly.

If n = 1 mod 3, there are n − 1 complete blocks, and then Mn−1 = 1 and Mn = −1.

This yields an extra 2 sign changes after the full blocks and thus the result.

If n = 2 mod 3, we have (n− 2)/3 full blocks, and then Mn−2 = 1,Mn−1 = 0,Mn = −4.

The sign changes are identical to that of (n+ 1)/3 full blocks and counting them as such

yields the result.

The main result is an easy corollary.

Theorem 12. Let f(x) = xn − x − 1, n > 1. Let zer(f) be the number of zeros of f

inside the unit circle. Then

zer(f) =


n
3

+ 1, n ≡ 0 mod 3⌈
n
3

⌉
+ 1, n ≡ 1 mod 3⌈

n
3

⌉
, n ≡ 2 mod 3

.

Proof. From Theorem 10, the signature sig(f) of the Hermitian form associated with f

is n − 2V (S) where S is the minor sequence, and by Theorem 9, the number of roots

inside the unit circle is (n+ sig(f))/2 = (n+ n+ sig(f))/2 = n− V (S).

If n ≡ 0 mod 3, then

n− V (S) = n− 2n

3
+ 1 =

n

3
+ 1.

If n ≡ 1 mod 3, then

n− V (S) = n− 2(n− 1)

3
+ 1 =

n

3
+

5

3
=
⌈n

3

⌉
+ 1.
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If n ≡ 2 mod 3, then

n− V (S) = n− 2(n+ 1)

3
+ 1 =

n+ 1

3
=
⌈n

3

⌉
.

As a sanity check, we successfully verified Theorem 12 in Sage for the roots of all poly-

nomials xn − x− 1, 3 ≤ n ≤ 100.

4.3 When a, b 6= 1

Now, we explore what happens when a, b are not necessarily 1. This analysis depends on

the previous case, but also requires the additional knowledge of where the fixed points of

the permutations lie. We obtain an expression for the leading minors in a and b, although

determining the sign changes is not as clear as the previous section, and we are not able

to conclude much as far as root locations. However, the work in this section paves the

way for both further exploration of the root locations, as well as providing motivation

for the combinatorial results of Chapter 6.

We begin by constructing the Schur-Cohn matrix C for this new class of polynomials.

Proposition 9. Let p(x) = xn − ax − b. Then p(x) has exactly n − V (1, C1, . . . , Cn)

zeros inside the unit circle where

C =



1− b2 −ab 0 0 . . . −a
−ab 1− a2 − b2 −ab 0 . . . 0

0 −ab −1− a2 − b2 −ab . . . 0
...

... −ab . . . . . . 0

0
...

...
. . . . . . −ab

−a 0 . . . 0 −ab 1− b2


.

Proof. Immediate from Schur-Cohn: let
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A =



−b −a 0 . . . 0

0 −b −a . . . 0

0 0
. . . . . .

...
...

...
. . . . . . −a

0 0 . . . 0 −b


and

B =



1 0 0 . . . −a

0 1
. . . . . . 0

0
. . . . . . . . .

...
...

...
. . . . . . 0

0 0 . . . 0 1


and construct the quadratic form.

To find the number of zeros inside the unit circle, we need to construct the leading minor

sequence. This differs from the xn − x− 1 case in that now we need to separately count

the number of diagonal elements in the matrix; that is, the number of fixed points in the

restricted permutation class.

We motivate the investigation of the fixed points by the leading minor definition and the

structure of C. Since the diagonal elements of C are different from the sub and super

diagonals, and since we will get a contribution of a diagonal element whenever we have a

permutation σ such that aiσ(i) = aii in the minor definition, we need to be able to count

how many fixed points there are in each restricted permutation of length 1 to n− 1.

For this class of restricted permutation, such a calculation is not difficult.

Proposition 10. The total number of fixed points in a length n permutation π with

|π(i)− i| ≤ 1 is
bn/2c∑
i=0

(
n− i
i

)
(n− 2i).

For some given i, there are
bn/2c∑
i=0

(
n− i
i

)
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total permutations with i fixed points.

Proof. See Chapter 6.

With this additional knowledge, we can write down an expression for the minors using

techniques similar to those of the previous chapter.

Proposition 11. Let Ci be the ith leading minor of C, 1 ≤ i ≤ n− 1. Then

Ci = (1− b2)

dn/2e∑
i=0

(−1)n+i

(
n− 1− i

i

)
(1− a2 − b2)n−2i−1(ab)2i

+

bn/2c∑
i=0

(−1)n+i

(
n− 2− i

i

)
(1− a2 − b2)n−2i(ab)2i.

Proof. If π(1) = 1 or π(n) = n, this contributes a 1 − b2 term to the minor. We can

disregard the π(n) = n case, since we only need permutations up to length n− 1 for the

minors we are considering here. For all other fixed points, each permutation with i fixed

points contributes a (1 − a2 − b2)n−2i(ab)2i term. So, calculating the minor consists of

finding the number of permutations with i fixed points and their signs.

By Proposition 10, there are
∑bn/2c

i=0

(
n−i
i

)
permutations with i fixed points. With ti =(

n−2−i
i

)
and ui =

(
n−1−i

i

)
denoting the partition into even and odd permutations as in

the a = b = 1 case in Lemma 2, there are ti permutations of length n with π(1) = 1 and

ui permutations of length n with π(1) = 2. Each of the π(1) = 1 permutations has sign

(−1)n+i since there is a −1 for each swap and for each term in the permutation; similarly

each of the π(1) = 2 permutations has sign (−1)n+i+1, accounting for the initial 21 swap.

Putting it all together, we obtain

Ci = (1− b2)

dn/2e∑
i=0

(−1)n+i

(
n− 1− i

i

)
(1− a2 − b2)n−2i−1(ab)2i

+

bn/2c∑
i=0

(−1)n+i

(
n− 2− i

i

)
(1− a2 − b2)n−2i(ab)2i.

33



Corollary 3. The xn + ax+ b case is identical to the xn − ax− b case from Proposition

9.

Proof. The only difference in the Schur-Cohn matrix C occurs in the upper right and

lower left corners, which does not matter for any minor smaller than the full determinant.

Remark 1. Letting a, b = ±1 recovers the case from the previous section.

To prove the number of roots inside the unit circle for xn − ax − b, we would have to

count the number of sign changes in the sequence 1,M1, . . . ,Mn for Mn as above. We

leave the completion of the proof to future work.
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Chapter 5

Generalizing: xn + axm + b

Next, we generalize the Chapter 4 analysis of root and singular value properties of the

matrix V ; we now consider polynomials of the form f(x) = xn + axm + b, with a, b ∈ R
and for integers n,m with 2 ≤ m ≤ n. While most of the observations in this chapter

are empirical, they do advance the existing literature. In addition, our application of

the Cauchy bound to these polynomials is also novel and results in an apparently tighter

bound for this class of polynomials than previously known. Furthermore, generalizing the

Schur-Cohn approach from the previous chapter naturally leads to fascinating questions

in enumerative combinatorics, which we ultimately answer in Chapter 6.

In this chapter, we observe the behavior of the roots in the complex plane for our class

of polynomials, and we prove some root properties for the m = 1 and a, b 6= 1 case.

For the class of polynomials of the form f(x) = xn + axm + b, the behavior of the

polynomial roots seems to be determined entirely by the (relative) magnitudes of the

coefficients a and b and the degrees n,m. Furthermore, properties of Vf are in turn

determined by the roots of f . We show below that we can calculate a bound on the

spectral distortion of Vf above knowing only the 4 parameters a, b,m, n. Moreover, we

provide empirical evidence that the bounds we propose are extremely tight in practice.

5.1 Empirical Observations

To motivate analysis of the root behavior below, we first show trends we observed com-

putationally for the location of the roots of f in terms of the degree and the coefficients.
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We begin by fixing m = 1. First, observe that the roots of f fall roughly on a circle.

f appears to have one real root, and the behavior of that real root is controlled by the

relative magnitudes of a and b. To see this, we fix n = 50 and vary a and b; the results

are show in Figure 5.11. The unit circle is shown in blue.

a = 5× 105, b = 1× 105 a = 1.5× 105, b = 1× 105

a = b = 1× 105 a = 1× 105, b = 1.1× 105

Figure 5.1: Root plots for n = 50 and various choices of a and b.

Thus taking a > b seems to give a root of modulus less than 1, a = b gives a root of

modulus about 1, and b > a gives a root of modulus greater than 1.

The modulus of the outer ring of roots appears to be controlled by n and, to a lesser

extent, the magnitudes of a and b. Fixing a = b = 1000 and varying n gives Figure 5.12.
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n = 25 n = 50

n = 100 n = 200

Figure 5.2: Root plots for a = b = 1000 and various n.

Furthermore, fixing n = 50 and varying a = b gives Figure 5.13.
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a = b = 10 a = b = 1× 105

a = b = 1× 1010

Figure 5.3: Root plots for n = 50 and various a and b.

Thus, it seems like 1 root falls inside the unit circle roughly when a = b or a > b (with

possibly more subtle behavior when n is on the same order of magnitude as a, b.) In

Chapter 4, we presented a method through the Schur-Cohn theorem which could be used

to prove these results. The conclusion would depend on calculating the number of sign

changes in the sequence of leading minors for a, b of different relative magnitudes. We

explore this approach further below.

The observed behavior generalizes fairly directly to the m > 1 case. Where above there

was 1 distinguished root on our near the unit circle, there are now m of them, spaced

approximately evenly. Other trends in terms of root magnitude depending on a, b, n and

38



tightness to the unit circle depending on n appear to continue.

n = 35,m = 14,
a = b = 1000.

n = 100,m = 9,
a = 1, b = −1014.

n = 12,m = 7,
a = 5, b = 1.

Figure 5.4: Root plots for various n,m, a, b.

We seek an analytic explanation of these observed trends. In the following section, we

will prove a bound on the magnitude of the polynomial roots and show that it is in

practice quite tight. However, we give no guarantee of tightness, and this bound says

nothing about the distribution of roots inside versus outside the unit circle. Yet it is in

practice a tighter bound that that given in [32] for this class of polynomials.
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5.2 Polynomial Root Analysis

We first bound the magnitudes of all roots of f , using the Cauchy bound of Theorem 5

and its approximation in Theorem 6.

Proposition 12. Let ρ[f ] be the Cauchy bound of a polynomial f . Then the roots of

f(x) = xn + axm + b, 1 ≤ m ≤ n, have modulus at most

ρ[f ] = max((2|a|)1/n, (2|b|)1/(n−m)).

Proof. Consider Theorem 6 with λ0 = λm = 1
2

and all other λi = 0. Clearly the condition

that
∑n−1

i=0 λi = 1 holds, but note Theorem 6 requires all λi > 0. However, for our f(x) the

proof of Theorem 6 in [27] carries through for λi = 0, i 6= 0,m (that is, when |av/an| = 0),

which we now show, following the original proof technique.

Let R = max0≤v≤n−1
1
λn

∣∣ av
an

∣∣1/(n−v)
and let cv = | av

an
|. It suffices to show that c0 + c1R +

· · ·+ cn−1R
n−1 ≤ Rn (see [27], Lemma 8.1.1). Note that cv ≤ λvR

n−v is always true: by

definition if λv 6= 0, cv 6= 0, and trivially if λv = cv = 0. Thus,

n−1∑
v=0

cvR
v ≤

n−1∑
v=0

λvR
n = Rn

and the result follows.

For smaller m, this bound appears to be tighter; it is worth highlighting the m = 1 case.

Corollary 4. The roots of f(x) = xn + ax+ b have modulus at most

max((2|a|)1/n, (2|b|)1/(n−1)).

Proof. Let m = 1 in the bound of Theorem 12.

The bound of Proposition 12 makes intuitive sense when compared with the behavior

of the root modulus observed above: decreasing the magnitude of a or b forces the

maximum modulus closer to the unit circle gradually, while an increase in n forces the

modulus closer to the unit circle more rapidly.
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Note that Proposition 12 makes no guarantee of tightness; it could be several orders of

magnitude too large, and in fact many of the other upper bounds of ρ[f ] listed in [27]

we tested but do not list here; they were too loose to give any useful information about

the roots of f(x). However, the bound r is in practice extremely tight, as illustrated in

Figure 5.5 for the n = 1 case.

Figure 5.5: Plots of roots and bound, n = 35, a = b = 1e4
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Figure 5.6: Plots of roots and bound, n = 100, a = 1, b = −1014

Figure 5.7: Plots of roots and bound, n = 35, a = b = 1

In the m > 1 case, the bound is less tight on average than in the a ≥ b case, due to the

nested circle behavior of the roots observed above. The Cauchy bound does not give us

any information about the existence of the smaller roots. See Figures 5.8, 5.9, and 5.10
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for illustrations of the roots and the Cauchy bound.

Figure 5.8: Plots of roots and bound, n = 34, a = b = 1000,m = 14

Figure 5.9: Plots of roots and bound, n = 50, a = 10000, b = 1,m = 10
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Figure 5.10: Plots of roots and bound, n = 55, a = 1, b = 10000,m = 25

Graphically, the root bound appears to be fairly tight. We quantify this tightness more

precisely for varying values of a, b, n,m by measuring the distance of various roots to

the point closest to them on the unit circle. In Table 5.1, “Max distance to outer root”

refers to the the maximum modulus of roots in the outer circle minus 1; “Max distance

to inner root” refers to the the maximum modulus of roots in the inner circle minus 1;

and “average distance” is the average of the modulus minus 1 over all roots.

Table 5.1: Observed tightness of root bound for various n,m, a, b.

n m a b Max distance to outer root Max distance to inner root Average distance

55 1 1 1000 0.014356 0.014403 0.014379

55 20 1 1000 0.014126 0.014623 0.014379

55 40 1 1000 0.011131 0.017292 0.014377

55 1 1× 1010 1× 1010 0.005583 0.551529 0.029393

100 1 1× 1010 1× 1010 0.001440 0.270723 0.0114596

100 10 1× 1010 1× 1010 0.008979 0.301535 0.039140

100 50 1× 1010 1× 1010 0.022124 0.607017 0.314571

100 1 1000 1 0.007524 1.078801 0.018246

100 10 1000 1 0.008343 0.586936 0.066207

100 50 1000 1 0.016028 0.293218 0.154623

Thus we see that tightness of the bound to the outer ring is consistently around 10−2,
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with some variation depending on parameter magnitudes.

Plotting these errors gives an idea of how this tightness varies in each parameter. First,

we fix values of a, b and plot the errors for various values of n; see Figures 5.11 through

5.14. The errors decrease as n increases, but the errors increase slightly as the coefficients

increase in magnitude.

Figure 5.11: Average and maximum error, a = b = 1,m = 1
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Figure 5.12: Average and maximum error, a = b = 10,m = 1

Figure 5.13: Average and maximum error, a = b = 100,m = 1
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Figure 5.14: Average and maximum error, a = b = 1× 109,m = 1

Now we vary m. Figures 5.15 through 5.18 show the same a, b, n ranges as above, but

now we fix m = bn/2c. The same sort of behavior as above is apparent, but note that

now that the average error especially is higher. This is because there are now m roots

near the unit circle and thus have larger distance from the outer maximum modulus,

instead of the 1 root as before.

For even n in the a = b = 1 cases, the maximum, maximum outer, and average error are

all equal. This is due to the fact that x2n±xn± 1 are cyclotomic polynomials, thus their

roots are the roots of unity, and the Cauchy bound happens to be exact.
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Figure 5.15: Average and maximum error, a = b = 1,m = bn/2c

Figure 5.16: Average and maximum error, a = b = 10,m = bn/2c
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Figure 5.17: Average and maximum error, a = b = 100,m = bn/2c

Figure 5.18: Average and maximum error, a = b = 109,m = bn/2c
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Fixing m = bn/4c and repeating these tests gives a results as expected, with the average

error somewhere in between the m = 1 and m = bn/2c cases. See Figures 5.19 through

5.22.

Figure 5.19: Average and maximum error, a = b = 1,m = bn/4c
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Figure 5.20: Average and maximum error, a = b = 10,m = bn/4c

Figure 5.21: Average and maximum error, a = b = 100,m = bn/4c
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Figure 5.22: Average and maximum error, a = b = 109,m = bn/4c

Finally, we fix n = 55 (arbitrarily; similar results hold for other n) and vary the magnitude

of the coefficients. First, we clearly see the dominating behavior of a large b value; as

noted above, all roots appear in one ring, so the max inner, outer, and average errors

are extremely similar, and basically identical for large enough b. The results are shown

in Figures 5.23 through 5.25.
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Figure 5.23: Average and maximum error, n = 55, a = 1,m = 1

Figure 5.24: Average and maximum error, n = 55, a = 1,m = 1
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Figure 5.25: Average and maximum error, n = 55, a = 1,m = 1

For other values of m, the same trends hold, though convergence takes longer for larger

m. See Figures 5.26 through 5.28.

Figure 5.26: Average and maximum error, n = 55, a = 1,m = 27
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Figure 5.27: Average and maximum error, n = 55, a = 1,m = 40

Figure 5.28: Average and maximum error, n = 55, a = 1,m = 27
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For the a > b case, error to the inner ring of course increases, but error to the outer ring

remains consistent with the above trends. See Figures 5.29 and 5.30.

Figure 5.29: Average and maximum error, n = 55, a = 1× 105,m = 1
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Figure 5.30: Average and maximum error, n = 55, a = 1× 1010,m = 1

Thus we conjecture that for reasonably large values of n and for a, b, error, at least to

the outer ring of roots, is small. We leave proof of a tightness guarantee, either through

the Cauchy bound or some other theorem, as an avenue for future work.

Having explored the magnitudes of the roots in some observational depth, we briefly

turn to other root properties, and prove some basic results using more conventional root

theorems. In the m = 1 case, we can easily prove the existence and number of real roots

of the polynomial.

Proposition 13. The polynomial f(x) = xn + ax + b has 1 real root if n is odd and

a 6= 0 and |a| < n
( −b
a(1− 1

n
)

)n−1
, and 3 real roots if a < 0 and |a| < n

( −b
a(1− 1

n
)

)n−1
. If n is

even, f has 2 real roots if a 6= 0 and |a| < n
( −b
a(1− 1

n
)

)n−1
, and 0 real roots if a < 0 and

|a| > n
( −b
a(1− 1

n
)

)n−1
.

Proof. First, we calculate the Sturm sequence, defined in Theorem 2, of f(x). Clearly

f0(x) = xn + ax + b and f1(x) = nxn−1 + a. The remainder of quo(f0, f1) will have

degree 1, so the Sturm sequence will have 4 total entries. It is clear from the Euclidean

algorithm that rem(f0, f1) = a(1− 1
n
)x+ b and so f2(x) = −a(1− 1

n
)x− b. So we must

calculate rem(f1, f2). The first entry of the quotient is nxn−2

−a(1− 1
n

)
; multiplying by b in the
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next step gives bnxn−2

−a(1− 1
n

)
. Each subsequent step of the algorithm gives another a(1− 1

n
) in

the denominator and another b in the numerator. The sign switches every step, as there

are only 0 coefficients between nxn−1 + a in f1. Noting that there are n− 1 steps of the

algorithm gives f3(x) = a+ n
( −b
a(1− 1

n
)

)n−1
.

In summary,

f0(x) = xn + ax+ b

f1(x) = nxn−1 + a

f2(x) = −a(1− 1

n
)x− b

f3(x) = −a− n
( −b
a(1− 1

n
)

)n−1

Now we apply Sturm’s Theorem on the interval (−∞,∞) to get the total number of real

roots. The calculations are not difficult since we know all the fi; see table below for

summary of results. We start with the odd n and consider cases for the sign of a, noting

that the sign of b will not change the results. Furthermore, note that f3 could be positive

or negative depending on the relative magnitudes of a and b.

Table 5.2: Sturm sequence signs, a > 0, n odd.

Polynomial Sign at −∞ Sign at ∞
f0 − +

f1 + +

f2 + −
f3 − −
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Table 5.3: Sturm sequence signs, a < 0, n odd.

Polynomial Sign at −∞ Sign at ∞
f0 − +

f1 + +

f2 − +

f3 + or − + or −

Therefore, the number of real roots is

V (−∞)− V (∞) = 2− 1 = 1, a > 0

and for the a < 0 case, either a < n
( −b
a(1− 1

n
)

)n−1
and then f3 is negative, yielding

V (−∞)− V (∞) = 2− 1 = 1, a < 0

and otherwise

V (−∞)− V (∞) = 3− 0 = 3, a < 0.

For n even, we repeat the sign calculation. As before, the relative magnitudes of a, b, n

determine the sign of the last row.

Table 5.4: Sturm sequence signs, a < 0, n even.

Polynomial Sign at −∞ Sign at ∞
f0 + +

f1 − +

f2 − +

f3 + or − + or −

If a < n
( −b
a(1− 1

n
)

)n−1
then f3 is negative and so

59



V (−∞)− V (∞) = 2− 0 = 2

and otherwise

V (−∞)− V (∞) = 1− 1 = 0.

If a > 0, then

Table 5.5: Sturm sequence signs, a > 0, n even.

Polynomial Sign at −∞ Sign at ∞
f0 + +

f1 − +

f2 + −
f3 − −

Thus in this case

V (−∞)− V (∞) = 3− 1 = 2.

Proposition 14. The polynomial f(x) = xn + axm + b has at least one root of modulus

less than 1 whenever |a| ≥ |b|( n
n−m)1/m.

Proof. Let p = m, k = 1, a1 = a2 = · · · = ap−1 = 0 and nk = n as in Theorem 3. Then

r1 = ( n
n−m)1/m and by Theorem 3, f has a root of modulus at most |b/a|( n

n−m)1/m. Thus

f has a root of modulus at most 1 when |a| ≥ |b|( n
n−m)1/m.

Note that |a| > |b| will suffice to have a root of modulus at most 1, since ( n
n−m)1/m > 1.

The proposition above gives a stronger condition.

The previous result suffices to show that a polynomial of the given form has at least one

root inside the unit circle. However, we previously conjectured a more specific pattern:
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that for m > 1 and |a| > |b|, exactly m of the roots fall inside the unit circle, and that

they are roughly equally distributed angularly.

Conjecture 1. For |a| ≥ b the polynomial f(x) = xn + axm + b has m roots spaced

roughly evenly on or inside the unit circle and n−m roots spaced roughly evenly outside

the unit circle. For |b| > |a| all roots are outside the unit circle.

As we show in Section 5.3, the singular value behavior of the Vandermonde matrix

associated with this polynomial follows its root behavior closely. Thus we set out to prove

Conjecture 1, hoping to use this result to then prove the behavior of the Vandermonde

matrix and show its cryptographic implications. We explain our proof tactic (which is

an approach similar to the xn + ax + b case in the previous chapter) and its surprising

implications in the next chapter. For now, we go back to the Vandermonde matrix and

show some heuristic evidence as far as the root/singular value connection.

5.3 Vandermonde Matrix: Singular value observa-

tions

As with the f(x) = xn+x+ 1 case in Chapter 4, there appears to be a strong correlation

between the root locations and the singular values of the matrix. While we don’t prove

this correlation, we show our plots here, which motivates future exploration in this area.

In general, having j roots inside the unit circle corresponds to a gap between the j

smallest and n− j largest singular values in the Vandermonde matrix.

The plots in Figure 5.31 are a re-creation of those in [9]. Other choices of n,m, a, b,

shown in Figures 5.32, 5.33, and 5.34 are our observations.
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Roots Singular values

Figure 5.31: Roots and singular value correspondence, n = 128, a = 524288, b = 524285

Roots Singular values

Figure 5.32: Roots and singular value correspondence, n = 70,m = 5, a = 10, b = 1
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Roots Singular values

Figure 5.33: Roots and singular value correspondence, n = 15,m = 1, a = 1, b = 10

Roots Singular values

Figure 5.34: Roots and singular value correspondence, n = 35,m = 14, a = 103, b = 103
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Chapter 6

Cryptographic Combinatorics: The

k-Fibonacci Twist

6.1 Introduction and Motivation

The work in this chapter contains the main results and most exciting contributions of this

thesis. It has a much more pure combinatorial flavor than what followed previously, but

the motivation for this work arises directly from Chapters 4 and 5. Specifically, consider

the Schur-Cohn theorem (Theorem 9) again, which we previously used in Chapter 4 to

find the number of roots of xn ± x ± 1 inside the unit circle. Unlike before, we now

consider a more general polynomial xn + axm + b, where now m can be larger than 1.

Construction of the Schur-Cohn matrix C in the usual fashion gives a matrix similar

to the C of Proposition 9 in Chapter 4, but instead the −ab elements appear on the

mth subdiagonal and superdiagonal, instead of immediately above and below the main

diagonal. We set out to calculate the leading minor sequence in this matrix using a

similar permutation approach to that of Chapter 4.

To begin, we made two simplifying assumptions, along the same lines as those in Chapter

4: we first assumed that we had only a (0, 1) matrix, and we disregarded the signs of

the permutations and first calculated how many non-zero terms there are. (We also first

changed the 0 in the (1, 1) of C location to a 1, to simplify the initial analysis.) Thus,

the simplified problem we began with was to define and solve a permutation problem

which is equivalent to computing the permanent of a 0, 1 m-tridiagonal matrix.
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It is important to note that the solution to the tridiagonal permanent problem was

already known and is given in [14] and [15]. However, our permutation approach to the

proof is new, and we solved two enumerative combinatorics problems specifically posed

in [14] and [15]. Full details on previous work and our contributions are given in section

6.4 below.

6.2 Background

A permutation is a bijection from a set of elements [n] to itself. Permutations have been

studied extensively, including a wide variety of permutation statistics which calculate

various combinatorial properties of permutations [1].

One such statistic is known as drop size.

Definition 17. The drop size of an element i of a permutation π on n elements is defined

as |π(i)− i|, 1 ≤ i ≤ n.

There has been much previous work on permutations with maximum drop size k, for

instance [11], [12]. However, here we will consider a variant, and define permutations

with fixed drop size k, where every element in the permutation must have drop size 0 or

k. We prove that the number of permutations with a fixed drop size k, which we will

call a k-drop permutation, is a generalization of a Fibonacci number. Furthermore, we

provide bijections from k-drop permutations to four other combinatorial objects, which

are also counted by the same Fibonacci generalization.

We begin by recalling some elementary background. To start, consider a composition of

an integer n.

Definition 18. A composition of an integer n is an ordered set of positive integers

(a1, . . . , ak) where a1 + · · ·+ ak = n.

There are 2n−1 compositions of a number n, and there are
(
n−1
k−1

)
compositions of n with

exactly k parts.

Example 3. The 23 compositions of 4 are

(4), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 3), (3, 1), (2, 2), (1, 1, 1, 1).
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Also, recall the well-known Fibonacci sequence defined by the recursion

fn = fn−1 + fn−2, f0 = 1, f1 = 1.

The first few Fibonacci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

The Fibonacci sequence has generating function

f(x) =
1

1− x− x2
.

A closed form for the Fibonacci numbers is given by the Binet formula

Fn =
ψn+ − ψn√

5

where ψ+ = 1+
√

5
2

and ψ = 1−
√

5
2

. There are of course many more fascinating combina-

torial and algebraic properties of the Fibonacci numbers.

A generalization of the Fibonacci numbers is defined in [14] as follows.

Definition 19. The nth k-Fibonacci number is defined by

fn,k = fk−rm f rm+1

where

n = mk + r, 0 ≤ r < k.

We will follow the example of the authors and refer to these integers as the k-Fibonacci

numbers throughout this paper. (These are not to be confused with the class of Fibonacci

generalizations of the form Fk,n = kFk,n−1 + Fk,n−2, which have been extensively studied

and which is an entirely different generalization.)

Here is the product definition for some small k-Fibonacci numbers, for small values of n

and k.
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Table 6.1: Some small k-Fibonacci numbers, product definition.

n/k 0 1 2 3 4 5

0 f0 f0 f 2
0 f 3

0 f 4
0 f 5

0

1 f0 f1 f0f1 f 2
0 f1 f 3

0 f1 f 4
0 f1

2 f0 f2 f 2
1 f0f

2
1 f 2

0 f
2
1 f 3

0 f
2
1

3 f0 f3 f1f2 f 3
1 f0f

3
1 f 2

0 f
3
1

4 f0 f4 f 2
2 f 2

1 f2 f 4
1 f0f

4
1

5 f0 f5 f2f3 f1f
2
2 f 3

1 f2 f 5
1

6 f0 f6 f 2
3 f 3

2 f 2
1 f

2
2 f 4

1 f2

7 f0 f7 f3f4 f 2
2 f3 f1f

3
2 f 3

1 f
2
2

8 f0 f8 f 2
4 f2f

2
3 f 4

2 f 2
1 f

3
2

9 f0 f9 f4f5 f 3
3 f 3

2 f3 f1f
4
2

Some patterns are evident from both the chart and the definition.

• For fixed k, every kth element is a power of a Fibonacci number.

• For any fn,k, the Fibonacci numbers which make up fn,k are at most one index

apart.

• For a fixed n, any fn,k with k > bn/2c is a power of 2.

This last item is true since k > bn/2c implies n > m bn/2c+r in the notation of Definition

19, which means m < 2 since r ≥ 0.

Here are the evaluated products of some small k-Fibonacci numbers.
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Table 6.2: The k-Fibonacci numbers, evaluated.

n/k 0 1 2 3 4 5

0 1 1 1 1 1 1

1 1 1 1 1 1 1

2 1 2 1 1 1 1

3 1 3 2 1 1 1

4 1 5 4 2 1 1

5 1 8 6 4 2 1

6 1 13 9 8 4 2

7 1 21 15 12 8 4

8 1 34 25 18 16 8

9 1 55 40 27 24 16

6.3 Five Problems

To motivate our work, consider the following five problems.

Problem 1. Let π be a permutation on n elements. For some k, 1 ≤ k ≤ n− 1, we wish

to count the number of permutations whose drop size for every i in π is exactly 0 or k.

We will call these k-drop permutations for short.

Problem 2. Let M be an n× n square matrix. Fix some k, 1 ≤ k ≤ n. Let

Mij =

1, i = j, i = j + k, j = i+ k

0, otherwise.
.

We wish to find the permanent of M .

Problem 3. We wish to count the number of subsets of n − k elements, where the

difference of no two of the elements is k.

Problem 4. Consider a length n− k binary string on 0, 1 where for any 1 ≤ i ≤ n− 2k,

there is not a 1 in both at index i and i + k. We call these k-free strings. We wish to

count the number of k-free strings of length n− k.
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For our last problem, we define a special type of restricted integer composition in terms

of Problem 4.

Definition 20. A k-free composition of n is an integer composition of n which

1. Uses only the numbers {1, 2, . . . , k − 1, k + 1, k + 2, . . . , 2k}, and the first non-1

number in the composition is greater than k.

2. Satisfies the following mapping property.

Define a mapping m : c(i)→ bi from an element c(i) of a composition c on {1, 2, . . . , k−
1, k + 1, k + 2, . . . , 2k} to a binary string bi as follows:

1. bi = m(c(i)) = 11 . . . 1, where there are c(i) − k copies of 1, if c(i) > k and this is

the first occurrence of a number greater than k in the sequence

2. bi = m(c(i)) = 01 . . . 1, where there are c(i)− 1 copies of 1, if c(i) < k

3. bi = m(c(i)) = 0 . . . 01 . . . 1, where there are c(i)− k copies of 1 and k copies of 0,

if c(i) > k and c(i) is not the first number greater than k.

We call c a k-free composition if the concatenation m(c) = b1b2 . . . bn−k is a k-free string.

While a cleaner characterization (i.e., one which depends only on the properties of the ele-

ments of the composition themselves, and not on the binary string) of these compositions

thus far escapes us, a few partial characterizations are immediate from the definition.

Proposition 15. Consider an element c(i) = h > k of a k-free composition. There is

no restriction on the location of h.

Proof. Let c(i) = h. If h is the first occurrence of a number greater than k in the compo-

sition, then the only numbers preceeding m(h) in the binary string are 0’s corresponding

to the preceeding 1’s in c, so h may occur wherever. If h is not the first instance of a num-

ber greater than k in c, then the binary string corresponding to c(i) is bi = 0 . . . 01 . . . 1

where there are c(i)− k copies of 1 and k copies of 0. Since there are k zeros, we do not

violate the k-free condition in m(c) regardless of what bi−1 is.

Proposition 16. Consider an element c(i) = 1 of a k-free composition. There is no

restriction on the location of c(i).

Proof. This is clear: m(c(i)) = 0 in this case, and appending a zero will not impact the

k-free string criterion of the previous b1 . . . bi−1 elements.
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Proposition 17. Consider an element c(i) = h > k of a k-free composition. If c(i) is

not followed by another element greater than k, it must be followed by a composition of

2k − c(i).

Proof. Let bi = m(c(i) = 0 . . . 01 . . . 1 as above. The index of the first 0 is at c(i) and the

last is at index c(i) + k, so any element from c(i) + k to c(i) + 2k can be assigned a 1.

The order or number of 1’s does not matter for the k-free validity of m(c), so we simply

say the elements following bi may form any composition of 2k − c(i).

The characterizations of Propositions 15, 16, and 17 form a sufficient though not necessary

characterization of a k-free composition. The characterization of a k-free composition is

complete only in the event that the composition consists only of numbers greater than k

and numbers less than k which only appear as part of a composition proceeding a number

greater than k.

We showcase a series of examples of this definition. In Example 4, it suffices to work

from the partial characterization; no bijection to the binary string is needed. In Examples

5 and 6, we use the bijection to the binary string to illuminate some subtleties of the

definition.

Example 4. Let n = 10, k = 5. A generalized k composition of n first must use only

the numbers from S = {1, 2, 3, 4, 6, 7, 8, 9, 10}.

There are no restrictions on compositions only using numbers 6 and larger, by Proposition

15, or 1, by Proposition 16. So, 10, 1 + 9, 1 + 8 + 1, 1 + 1 + 1 + 1 + 6 are all examples of

5-free compositions of 10.

If we would like to use the numbers 2, 3, 4, we must do so carefully. By Proposition 17,

we are always allowed to have these numbers follow:

• 6, as part of a composition of 4

• 7, as part of a composition of 3

• 8 as part of a composition of 2

Technically, the definition allows that these numbers could also be used in a composition

of 1 following 9 or 0 following 10, but clearly this is not possible.

Thus some valid 5-free compositions using 2,3,4 are:
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• 6+1+1+2

• 6+4

• 6+1+3

• 6+3+1

• 7+3

• 8+2

In this case, since 2k = n, Propositions 15 16, and 17 happen to be both necessary

and sufficient; we will never have to consider a 2, 3, 4 which does not follow as a sub-

composition of 2k − c(i). We could enumerate all k-free compositions in this case using

only the rules from the propositions.

Some non-examples of 5-free compositions include 3+1+6, 4+2+2+2, and 1+1+1+3+4,

which all violate condition (1) of the definition, as a number larger than k is not the first

non-1 number.

Example 5. A larger example begins to showcase some of the subtleties of the definition.

Let n = 15, k = 6. The compositions may use only {1, 2, 3, 4, 5, 7, 8, 9}. Some valid 6-free

compositions include:

• 7+1+2+2+1+1+1. There are no restrictions on the location of 7. 1+2+2 = 5

is a composition of 12− 7 = 5. There is no restriction which prevents the trailing

1’s.

• 7 + 8 is valid. There is no restriction on any number greater than 6.

• 9 + 3 + 1 + 1 + 1, since 12− 9 = 3 and 3 is a composition of 3.

Some invalid compositions, which all violate Proposition 17, are:

• 10 + 1 + 2 + 2, since 2k − 10 = 2 and 1 + 2 is not a composition of 2;

• 9 + 4 + 1, since 2k − 9 = 3 and 4 is not a composition of 3;

• 8 + 5 + 1 + 1, since 2k − 8 = 4 and 5 is not a composition of 4.

A valid composition, which the 3 propositions do not suffice to construct, is

7 + 3 + 1 + 1 + 2 + 1.
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We can construct 7 + 3 + 1 + 1 using Proposition 17. However, we do not currently have

a proposition which tells us directly whether or not the 2 in the penultimate position is

valid. To ascertain this, we construct m(c) = 101100010 and note that no two 1’s are

distance 6 apart.

An invalid composition which violates rule (2) in the definition is the quite similar-looking

7 + 3 + 1 + 1 + 1 + 2

for which m(c) = 101100001 and which has 1’s at both index 3 and 9.

As n grows relative to k, it becomes more difficult to construct valid k-free compositions

using only the propositions.

Example 6. Let n = 16, k = 4. A 4-free composition can only use parts {1, 2, 3, 5, 6, 7, 8}.
For this example, we provide examples and non-examples which cannot be determined

from the propositions alone.

Table 6.3: Valid 4-free compositions.

Composition Binary String

8512 111100001001

5326 101101000011

Table 6.4: Invalid 4-free compositions.

Composition Binary String Violating Indices

53131111 101100010000 4,8

611215 110001000001 2,6

While the definition of a k-free composition at first seems inelegant and unintuitive, the

paper will reveal how it arises organically from consideration of k-drop permutations,

and how it is one natural generalization of the composition of an integer n using only

parts 1 and 2, which is famously counted by the Fibonacci numbers.
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Problem 5. Fix some element k, 1 ≤ k ≤ n. We wish to count the number of k-free

compositions of n.

We now present the first of our main contributions.

Theorem 13. Problems 1 through 5 are equivalent, and are all counted by the class of

k-Fibonacci numbers defined in Definition 19.

The proof of Theorem 13 is a consequence of our results in Section 6.5. We give an

illustration of which bijections prove which parts of Theorem 13 in Figure 6.1.

6.4 Previous Work and Our Contributions

The k-Fibonacci numbers of Definition 19 which we will consider were originally defined

in [14], and it is proven in [15] that these numbers are the permanents of the class of

k-tridiagonal matrices defined in Problem 2. Separately, a 2011 note [36] proves that the

k-Fibonacci numbers solve the restricted subset problem stated in Problem 3. The k-

Fibonacci numbers are sequence number A209434 in the Online Encyclopedia of Integer

Sequence (OEIS) database [3], and it is the subset-difference problem which is used to

describe them.

Separately again, Baltic in [6] uses matrix permanents to give an algorithm to find the

generating function for the number of permutations with certain restrictions. This algo-

rithm does not lend itself to a proof of the general form for the k-Fibonacci generating

function, as it involves solving a large system of equations; while we implemented this

algorithm in Sage and calculated up to k = 6 with this method, the computation re-

quired then became prohibitively large, and we will take a more combinatorial approach

in the general case. A k-Fibonacci generating function for k ≥ 7 does not appear in the

literature.

6.4.1 Contributions

Our first contribution is to connect these previously disparate results. Our statement

and solution to the permutation problem by using the restricted subset problem is new,

as is the calculation of the permanent of a k-tridiagonal matrix by using permutations

of fixed drop size.
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Our second contribution is the statement and proof of the integer composition problem,

which is completely novel. The small cases are known: the k = 1 case is a standard

exercise in elementary combinatorics [35], and it is noted in the OEIS that A006498 and

A006500 count the k = 2 and k = 3 cases respectively. However, there has been no

attempt at generalization, and indeed the final paragraph of [14] notes for the k = 2 case

that it is a surprise A006498 counts both the composition problem and the k-Fibonacci

problem. We clear up this mystery by offering not only offering the first explicit bijection

between the k-Fibonacci and composition problem in the small k case, but by defining

the general form of the compositions.

Perhaps most significantly, the general form and proof for the generating function of the

k-Fibonacci numbers is novel. To obtain this generating function, we stated and proved

three linear recurrence relations on this class of integers, which as far as we know are

also completely novel in their general form.

Finally, we offer a conjecture about the total number of fixed points in k-drop permuta-

tions, which is again new. Moreover, our conjecture gives rise to a previously unknown

generalized three-dimensional version of Pascal’s triangle, which could be of independent

interest.

6.5 Combinatorial Proofs

In this section, we provide bijections between the 5 problems we stated in Section 6.3,

which combine to give a proof of Theorem 13. We clarify which contributions are ours

in Figure 6.1. Solid lines indicate bijections known from [14] and dashed lines are our

contributions. Dashed lines with theorem or corollary labels are bijections given explicitly

in this section, while dashed lines without labels are implied by other results though not

given explicitly here.
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Figure 6.1: A solid line indicates a previously known bijection. A dashed line indicates
a new result given in this chapter.

We begin with a result that is already known.

Theorem 14. The k-Fibonacci number fn,k is the number of subsets on {1, 2, . . . , n−k}
such that no two elements have difference k.

Proof. The proof is given in [36].

The following theorem is our first contribution, and explicitly connects the permutation

and subset problems.

Theorem 15. The number of k-drop permutations on n elements is counted by the

number of subsets on n− k elements, no two of whose difference is k.

Proof. Let π(i) be an element of a k-drop permutation π. Then, we must have either a

fixed point π(i) = i so that |π(i)−i| = 0, or π(i) = i±k so that |π(i)−i| = |i±k−i| = k.

If the second case occurs, then consider the element in position π(i±k). Since the element

i ± k has already been used, we must have |π(i ± k) − i ± k| = k, and so π(i ± k) = i.

Thus we can view a k-drop permutation as a permutation whose only non-fixed points

occur as part of one swap with one element distance k away.

Intuitively, the restricted subsets of [n − k] encode which elements of π to switch. The

restriction that no two elements have difference k ensures that an element part of a swap
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will not occur as part of a second swap and thus break the |π(i)− i| = k condition.

Formally, we define the bijection as follows. Let S be the set of restricted subsets of the

above form and let Π be the set of all k-drop permutations. Let s = {a1, . . . , aj} ∈ S,

1 ≤ j ≤ n− k. Define f : S → Π as

f(s) =

π(i) = i+ k and π(i+ k) = i, i ∈ s

π(i) = i, else

We show f is indeed a bijection.

Let π = π(1) . . . π(n) ∈ Π. We show surjectivity by constructing a subset s from π as

follows. If π(1) = 1, we append nothing to s. If π(1) = k, we append 1 to s, noting

that then we must have π(k) = 1. By definition of Π, these are the only choices for π(1).

Working left to right, we continue, appending nothing to s if π(i) = i and appending i

if π(i) = i + k. If π(i) = i − k, we also append nothing; this is simply the second half

of a swap already encoded when we appended i− k upon considering π(i− k). We stop

once we do π(n − k), since every element π(i), n − k < i ≤ n is already determined by

the value of π(i− k). Since we never append both i and i+ k, no two elements of s have

difference k, and thus s ∈ S and f(s) = π.

Let f(s1) = π, f(s2) = σ ∈ Π for some s1, s2 ∈ S and assume f(s1) = f(s2). Then

we construct the inverse map of both π and σ as above. Since σ = π fixed points and

swaps occur in the same place in both permutations, the same integers do or do not get

appended to the respective preimage. Thus s1 = s2.

By Theorem 14, we have an exact count for the number of k-permutations of length n.

Corollary 5. The number of k-drop permutations of length n is counted by the k-

Fibonacci number fn,k.

Proof. Immediate from Theorem 15 and Theorem 19.

Corollary 6. The k-Fibonacci number fn,k is the permanent of the n× n square matrix

where

Mij =

1, i = j, i = k, j = k

0, otherwise
.
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Proof. As stated above, this result is not new; however, we offer a new proof based on

the count of k-drop permutations.

Recall that the permanent of an n× n matrix M = (mij) is given by

perm(M) =
∑
π∈Sn

n∏
i=1

mi,π(i)

where Sn is the symmetric group. For any permutation π where π(i) 6= 1, k for any

1 ≤ i ≤ n, the entire product will be zero by definition of M . Also by definition of M ,∏n
i=1miπ(i) = 1 if and only if π(i) = 1 or π(i) = k for all i. As this is the definition

of a k-drop permutation, the permanent is equal to the number of k-drop permutations,

which is fn,k by Theorem 15.

The class of k-free compositions, k-free binary strings, and k-free subsets are all closely

related, and, as we show below, are all counted by fn,k. We offer explicit bijections

between these class of objects.

Theorem 16. The number of k-free compositions of n is the same as the number of

k-free binary strings of length n− k.

Proof. The definition of a k-free composition already implies a relationship between these

two objects; by definition, we cannot have more k-free compositions than k-free binary

strings, so the map m defined above is injective.

To show m is surjective, consider a k-free binary string b = b1b2 . . . bn−k. Construct a

composition c as follows.

First, find the first bj where bj = 1; then find the first index r > j where br = 0. Let

cj = k + (r − j) and ci = 1 for 1 ≤ i ≤ j − 1. Since cj > k is clear, then the first

non-1 element of c is greater than k, as required by property 1 of the k-free composition

definition.

Next, starting at br, section b off into groups where each group has as many 0’s as possible

and then all the 1’s before the next 0. If the chunk has length less than k including at

least one 1 following the 0’s, append r + 1, where r is the number of 1’s, to c. Since

r < k − 2 (because the chunk has length at most k − 1 with at least one preceeding 0),

we have appended something in the range 2, 3, 4, . . . , k − 1 to c. If there are no 1’s after
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the 0 trail (i.e., a run of 0’s ends the binary string), append r 1’s to c, where r is the

number of zeros.

If the chunk has length r > k, consider two cases. If the chunk has exactly k 0’s following

by some number of 1’s, append r. Note r < 2k, otherwise b would not be k-free. If the

chunk has strictly more than k 0’s, call the number of 1’s e. Append r − e − k 1′s to

c followed by the integer e + k. Again, since b is k-free, e < k, and thus the e + k we

append is less than 2k.

Thus we have shown c satisfies property 1 of the k-free composition definition. Addi-

tionally, any c constructed in this way will satisfy property 2 in the definition of k-free

compositions, since it was constructed from a k-free binary string. Thus m is bijective.

The next bijection is far more straightforward.

Theorem 17. The number of subsets on n−k such that no two elements have difference

k is the same as the number of k-free binary strings of length n− k.

Proof. Let s be a subset of the desired form and let b = b1 . . . bn−k be a k-free binary

string. Define m : b→ s as

m(bi) =

i, bi = 1

∅, bi = 0

Clearly, the image of m is a subset of the desired form, since having two elements of s

with difference k implies there were two 1’s distance k apart in the k-free string in the

preimage.

Furthermore, m is a bijection. To show m is surjective, let s = {s1, s2, . . . , sj}, j ≤ n−k,

be a subset on n − k such that no two elements have difference k. Construct a binary

string b = b1b2 . . . bn−k as follows: for each si, assign bi = 1. For any element j which

does not appear in s, let bj = 0. Since si − sj 6= k for any i, j, no two 1’s in b will be

distance k apart.

To show m is injective, let m(b1) = S1 = S2 = m(b2) for subsets s1, s2 and binary strings

b1, b2. We construct the inverse map as above. Since the same elements appear in S1
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and S2, the same locations in b1, b2 have 1’s, which determines where the zeros fall, so

b1 = b2.

Corollary 7. There are fn,k k-free binary strings of length n− k.

Proof. Immediate from Theorem 17 and Theorem 14.

Corollary 8. There are fn,k k-free compositions of n.

Proof. Immediate from Theorem 16 and Theorem 17.

The following theorem is already implied by the above results. However, for your com-

binatorial entertainment, we offer a direct bijective proof as well.

Theorem 18. The number of subsets on n − k, no two of whom have difference k, is

the same as the number of k-free compositions of n. The k-Fibonacci number fn,k counts

both these objects.

Proof. Clearly the result is true by Theorems 16, 17, and 14, but we offer a bijective

proof, inspired by though not directly using the count of k-drop permutations.

Construct a map p from k-free compositions c to subsets s as follows. Consider a k-

free composition c = (c1, . . . , ch); we will construct a subset s = {s1, . . . , sj} from c.

Throughout, let ri =
∑i−1

j=1 cj for some specified index i.

Find the first index i where ci > 1. Let s1 = ri + 1, s2 = ri + 2, . . . , sci−k = ri + ci − k.

Then continue scanning c. For every ci > k, append ri + 1, ri + 2 . . . ri + ci − k to s. For

every 1 < ci < k, append ri + ci− k, ri + ci− k− 1, . . . , ri + ci− k− (ci− 2) = ri− k+ 2.

If ci = 1, append nothing to s and move on to ci+1.

The image of p is in fact a subset with the desired property; note that violating the k-free

subset property is equivalent to violating the k-free string property in the binary string

m(c).

p is surjective. To show this, we show that for some subset S such that no 2 elements

have difference k, there is some k-free composition c such that S = p(c). We will do this

by constructing a binary string b from S and then finding c such that m(c) = b according

to Definition 20.
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Define a run of S as one or more consecutive elements, and the run length r as the

number of elements in the run. (Thus we, somewhat clunkily, define an element of s ∈ S
with s+ 1, s− 1 /∈ S as a run of length 1.)

Consider the first run s1, s2, . . . , sr1 of some length 1 ≤ r1 ≤ n−k. Say s1 = i1; let bj = 0

for all j < i1 and let bi1 = bi1+1 = · · · = bi1+r1−1 = 1. Since sh − sg 6= k for any h, g, no

1s of b are distance k apart.

Continue in this fashion and look for the next run. If there is no next run (e.g. there are

no more elements in the subset), we pad ci = 1 the rest of c. If there is a second run, call

this run sj, sj+1, . . . , sj+r2−1 of length r2. Say sj = i2. Let bi2 = bi2+1 = . . . bi2+r2−1 = 1

and bj = 0, i1 + r1 ≤< i2. Again, since sh − sg 6= k for any h, g, no 1s of b are distance k

apart.

Iterating, we eventually end up with a binary string b, and we can easily construct a

k-free composition c according to the map in the proof of Theorem 16. Since given any

subset S with no two elements with difference k, we can construct a k-free c such that

S = p(m(c)), p is surjective.

Following this same method show p is also injective, since any S1 = S2 will give identical

b1 = b2 and thus c1 = c2.

As Theorems 19 and 15 imply, there is indeed a direct bijection between restricted per-

mutations and restricted compositions of this type. Similarly to the restricted subset

case, one can read off fixed points and the k-drops in the permutation problem directly

from the k-compositions. While we do not walk through the formal proof, we present

the bijection here.

Intuitively, a 1 in the composition corresponds to a fixed point in the permutation; an

element i > k in the composition corresponds to a chunk of the permutation where, for

any non-fixed point element j swapped with element j − k, then j − k is also contained

within the chunk; and an element i < k in the composition corresponds to a chunk of the

permutation where, for any non-fixed point element j swapped with some element j− k,

j − k is not contained within the chunk.

Formally, define a map f from k-free compositions to k-drop permutations as follows.

Consider a k-free composition c = (c1, . . . , ch); we will construct a length n permutation

p = {p1 . . . pn} from c. There are 3 cases.
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Let ri =
∑i−1

j=0 cj. Then:

1. If ci = 1, then p1+r+i = 1 + ri.

2. If ci > k, then consider the chunk from pri+1 to p1+ri+ci . Starting with p1+ri+ci , swap

with p1+ri+ci−k. Continue, until reaching some j such that 1+ri+ci−k−j < 1+ri.

3. If ci < k, swap pr+1+j with pr+1+j−k for every 2 ≤ j ≤ ci.

It can be shown this is in fact a bijection.

6.6 Examples

Example 7 (Subsets and Permutations). Let n = 12, k = 4. The following are the cor-

respondences between some subsets on 8 elements with no two elements having difference

4, and 4-drop permutations of length 12.

Table 6.5: Subsets and permutations for the n = 7, k = 4 case.

Subset Permutation

{1, 2, 4} 5 6 3 8 1 2 9 4 10 11 12

{3, 5, 6, 8} 1 2 7 4 9 10 3 12 5 6 11 8

{1, 2, 3, 4} 5 6 7 8 1 2 3 4 10 11 12

{2} 1 6 3 4 5 2 7 8 9 10 11 12

Let n = 6, n = 2. There are fn,k = f3f3 = 9 total 2-drop permutations. This is all of

them, with their corresponding subsets.
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Table 6.6: All subsets and permutations for the n = 6, k = 2 case.

Subset Permutation

{} 1 2 3 4 5 6

{1} 3 2 1 4 5 6

{2} 1 4 3 2 5 6

{3} 1 2 5 4 3 6

{4} 1 2 3 6 5 4

{1, 2} 3 4 1 2 5 6

{2, 3} 1 4 5 2 3 6

{3, 4} 1 2 5 6 3 4

{1, 4} 3 2 1 6 5 4

Example 8 (Compositions and Permutations). Now we illustrate the bijection between

k-free compositions and k-drop permutations. Similarly to the previous example, the

compositions illustrate which elements of the permutation to swap.

We begin by showing all f4f3 = 15 examples for the n = 7, k = 2 case.

Table 6.7: All permutations and compositions for the n = 7, k = 2 case.

Permutation Composition

1 2 3 4 5 6 7 1+1+1+1+1+1+1

3 2 1 4 5 6 7 3+1+1+1+1

1 4 3 2 5 6 7 1+3+1+1+1

1 2 5 4 3 6 7 1+1+3+1+1

1 2 3 6 5 4 7 1+1+1+3+1

1 2 3 4 7 6 5 1+1+1+1+3

3 4 1 2 5 6 7 4+1+1+1

1 4 5 2 3 6 7 1+4+1+1

1 2 5 6 3 4 7 1+1+4+1

1 2 3 6 7 4 5 1+1+1+4

3 2 1 6 7 4 5 3+4

3 4 1 2 7 6 5 4+3

3 2 1 6 5 4 7 3+3+1

1 4 3 2 7 6 5 1+3+3

3 2 1 4 7 6 5 3+1+3
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For a larger example, here are a few instances of the n = 13, k = 5 case.

Table 6.8: Some permutations and compositions for the n = 13, k = 5 case.

Permutation Composition

1 7 3 4 5 6 2 13 9 10 11 12 8 7+6

6 2 8 4 5 1 12 3 9 10 11 7 13 6+2+1+1+2+1

6 7 8 4 5 1 2 3 9 10 1 12 13 8+1+1+1+1+1

1 2 3 9 5 11 12 13 4 6 7 8 1+1+1+6+4

6 7 3 9 10 1 2 13 4 5 11 12 8 7+3+1+2

Example 9 (Compositions and Permutations: The Deception of Small Examples). The

bijection between compositions and permutations is not immediately apparent for exam-

ples with k ≤ 3. Indeed, these examples may appear somewhat mysterious, while in fact

they are simply examples of the general case.

Consider k = 1. 2k = 2, so we construct compositions using only parts 1 and 2. (Note

that since k = 1 the definition could imply that we find the number of compositions

without 1, but since we defined a k-free composition as always including 1, we resolve

the conflict by choosing to include it.) It is already well-known, and a standard exercise

in elementary combinatorics [35], that the number of such compositions is the Fibonacci

number fn. (Indeed, these compositions are sometimes called Fibonacci compositions).

Here, we use our definition of k-free compositions to show that these Fibonacci compo-

sitions are 1-free, providing a roundabout proof for the standard exercise.

Let c = (c1, . . . cj) be a composition of n using only parts 1 and 2. Then where m is the

mapping to binary strings, m(1) = 0 and m(2) = 01. Thus, no matter the order of the

1’s and 2’s in c, we will never have a 11 in m(c), and thus c is 1-free, which we know is

counted by the Fibonacci number fn.

Consider k = 2. In this case, 2k = 4. Thus we must construct compositions using only

parts {1, 3, 4}. By Propositions 15 and 16, there are no restrictions on either of 3 or 4

(both greater than k) or 1. Thus a 2-free composition is any composition on 1, 3, 4. This

is the characterization of the k = 2 case found in [14] and OEIS A006498, although no

bijection from the characterization to either permutations or subsets is given.

Consider k = 3. In this case, 2k = 6. Thus our compositions must contain only
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{1, 2, 4, 5, 6}. There are no restrictions on 4, 5, 6, but there are restrictions on 2. 2

can appear after 4, since 2 + 4 = 2k; 2 can also appear after 2 (or any number of 2’s),

since this corresponding binary string to 22 is 0101 and the 1’s will always be 2 indices

apart. 2 cannot appear after 5 or 6, both by Proposition 17 and from the binary sequences

corresponding to 52 = 0001101 and 62 = 00011101. It remains to consider whether 2 can

come after a 1. To guarantee compliance with the k-free sequence criterion, we would

need at least two 1’s to precede the 2. However, 112 gives the same binary sequence as

4, so we would just write a 4 instead. The same is true as we increase the number of 1’s:

instead of 1 . . . 12 with p 1’s, we write p− 2 0′s and a 4.

Thus, a k-free composition uses parts 1, 2, 4, 5, 6 such that 2 can only come after 4 or

another 2. This is precisely the characterization of the k = 3 case found in the OEIS

A006500 (although, again, no bijection to the permutation is given).

After k = 4, a direct characterization for k-free compositions becomes less clear, and for

this k and larger we continue to use the binary sequence characterization instead.

Example 10 (Subsets and Compositions). Here we show some examples of the run-

length direct bijection between subsets and compositions given in Theorem 18.

First, consider k = 1; as above, this counts subsets on n−1 with no consecutive elements,

and compositions of n using only parts 1 and 2. We know that the number of both such

objects is a Fibonacci number. Here, we simply illustrate our bijection between them.

Let S = {s1, . . . , sr}, with the si in increasing order, be a subset with no consecutive

elements. Consider si − si−1 for each 1 ≤ i ≤ r. If si − si−1 = 2, we append 2. If

si − si−1 = m > 2, we append m − 1 1’s followed by a 2. Thus we have constructed

a composition using only parts 1 and 2, which is sufficient for a 1-free composition as

argued in Example 9.

Now consider k = 2. As in the k = 1 case, consider the consecutive differences si − si−1

for S = {s1, . . . , sr} with no two elements having difference 2.

Now let n = 7, k = 3. We know there are f7,3 = f2f2f3 = 12 subsets on n − k = 4 with

no difference k = 3, and 3-free compositions on 7. They are:

• {} ↔ 1 + 1 + 1 + 1 + 1 + 1 + 1

• {1} ↔ 4 + 1 + 1 + 1

• {2} ↔ 1 + 4 + 1 + 1
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• {3} ↔ 1 + 1 + 4 + 1

• {4} ↔ 1 + 1 + 1 + 4

• {1, 2} ↔ 5 + 1 + 1

• {2, 3} ↔ 1 + 5 + 1

• {3, 4} ↔ 1 + 1 + 5

• {2, 4} ↔ 5 + 2

• {1, 3} ↔ 4 + 2 + 1

• {1, 2, 3} ↔ 6 + 1

• {2, 3, 4} ↔ 1 + 6

Example 11 (A Big Example). We construct a table of all 4 correspondences for n =

11, k = 4. There are f11,4 = (2)(3)(3)(3) = 54 such elements.
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Table 6.9: All bijections, k = 4, n = 11.

Permutation Subset Binary String Composition

1 2 3 4 5 6 7 8 9 10 11 {} 0000000 1+1+1+1+1+1+1

5 2 3 4 1 6 7 8 9 10 11 {1} 1000000 5+1+1+1+1+1+1

1 6 3 4 5 2 7 8 9 10 11 {2} 0100000 1+5+1+1+1+1+1

1 2 7 4 5 6 3 8 9 10 11 {3} 0010000 1+1+5+1+1+1+1

1 2 3 8 5 6 7 4 9 10 11 {4} 0001000 1+1+1+5+1+1+1

1 2 3 4 9 6 7 8 5 10 11 {5} 0000100 1+1+1+1+5+1+1

1 2 3 4 5 10 7 8 9 6 11 {6} 0000010 1+1+1+1+1+5+1

1 2 3 4 5 6 11 8 9 10 7 {7} 0000001 1+1+1+1+1+1+5

5 6 3 4 1 2 7 8 9 10 11 {1,2} 1100000 6+1+1+1+1+1

5 2 7 4 1 6 3 8 9 10 11 {1,3} 1010000 5+2+1+1+1+1

5 2 3 8 1 6 7 4 9 10 11 {1,4} 1001000 5+1+2+1+1+1

5 2 3 4 1 10 7 8 9 6 11 {1,6} 1000010 5+1+1+1+2+1

5 2 3 4 1 6 11 8 9 10 7 {1,7} 1000001 5+1+1+1+1+2

1 6 7 4 5 2 3 8 9 10 11 {2,3} 0110000 1+6+1+1+1+1

1 6 3 8 5 2 7 4 9 10 11 {2,4} 0101000 1+5+2+1+1+1

1 6 3 4 9 2 7 8 5 10 11 {2,5} 0100100 1+5+1+2+1+1

1 6 3 4 5 2 11 8 9 10 7 {2,7} 0100001 1+5+1+1+1+2

1 2 7 8 5 6 3 4 9 10 11 {3,4} 0011000 1+1+6+1+1+1

1 2 7 4 9 6 3 8 5 10 11 {3,5} 0010100 1+1+5+2+1+1

1 2 7 4 5 10 3 8 9 6 11 {3,6} 0010010 1+1+5+1+2+1

1 2 3 8 9 6 7 4 5 10 11 {4,5} 0001100 1+1+1+6+1+1

1 2 3 8 5 10 7 4 9 6 11 {4,6} 0001010 1+1+1+5+2+1

1 2 3 8 5 6 11 4 9 10 7 {4,7} 0001001 1+1+1+5+1+2

1 2 3 4 9 10 7 8 5 6 11 {5,6} 0000110 1+1+1+1+6+1

1 2 3 4 9 6 11 8 5 10 7 {5,7} 0000101 1+1+1+1+5+2

1 2 3 4 5 10 11 8 9 6 7 {6,7} 0000011 1+1+1+1+1+6

5 6 7 4 1 2 3 8 9 10 11 {1,2,3} 1110000 7+1+1+1+1

5 6 3 8 1 2 7 4 9 10 11 {1,2,4} 1101000 6+2+1+1+1

5 6 3 4 1 2 11 8 9 10 7 {1,2,7} 1100001 6+1+1+1+2

5 2 7 8 1 6 3 4 9 10 11 {1,3,4} 1011000 5+3+1+1+1

5 2 7 4 1 10 3 8 9 6 11 {1,3,6} 1010010 5+2+1+2+1

5 2 3 8 1 10 7 4 9 6 11 {1,4,6} 1001010 5+1+2+2+1

5 2 3 8 1 6 11 4 9 10 7 {1,4,7} 1001001 5+1+2+1+2

5 2 3 4 1 10 11 8 9 6 7 {1,6,7} 1000011 5+1+1+1+3

1 6 7 8 5 2 3 4 9 10 11 {2,3,4} 0111000 1+7+1+1+1

1 6 7 4 9 2 3 8 5 10 11 {2,3,5} 0110100 1+6+2+1+1

1 6 3 8 9 2 7 4 5 10 11 {2,4,5} 0101100 1+5+3+1+1

1 6 3 8 5 2 11 4 9 10 7 {2,4,7} 0101001 1+5+2+1+2

1 6 3 4 9 2 11 8 5 10 7 {2,5,7} 0100101 1+5+1+2+2

1 2 7 8 9 6 3 4 5 10 11 {3,4,5} 0011100 1+1+7+1+1

1 2 7 8 5 10 3 4 9 6 11 {3,4,6} 0011010 1+1+6+2+1

1 2 7 4 9 10 3 8 5 6 11 {3,5,6} 0010110 1+1+5+3+1

1 2 3 8 9 10 7 4 5 6 11 {4,5,6} 0001110 1+1+1+7+1

1 2 3 8 9 6 11 4 5 10 7 {4,5,7} 0001101 1+1+1+6+2

1 2 3 8 5 10 11 4 9 6 7 {4,6,7} 0001011 1+1+1+5+3

1 2 3 4 9 10 11 8 5 6 7 {5,6,7} 0000111 1+1+1+1+7

5 6 7 8 1 2 3 4 9 10 11 {1,2,3,4} 1111000 8+1+1+1

5 6 3 8 1 2 11 4 9 10 7 {1,2,4,7} 1101001 6+2+1+2

5 2 7 9 1 10 3 8 4 6 11 {1,3,4,6} 1011010 5+3+2+1

5 2 3 9 1 10 11 8 4 6 7 {1,4,6,7} 1001011 5+1+2+3

1 6 7 8 9 2 3 4 5 10 11 {2,3,4,5} 0111100 1+8+1+1

1 6 3 8 9 2 11 4 5 10 7 {2,4,5,7} 0101101 1+5+3+2

1 2 7 8 9 10 3 4 5 6 11 {3,4,5,6} 0011110 1+1+8+1

1 2 3 8 9 10 11 4 5 6 7 {4,5,6,7} 0001111 1+1+1+8
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6.7 Generating Function

The previous sections provided new combinatorial interpretations and new uses of the

k-Fibonacci numbers, while connecting previously disparate results.

The purpose of the following section is to focus in more narrowly on the k-Fibonacci

numbers themselves. Specifically, we state and prove the previously unknown general

form of the k-Fibonacci generating function.

6.7.1 Introduction and Main Result

The late Herbert Wilf wrote that “a generating function is a clothesline on which we

hang up a sequence of numbers for display.” More specifically, the generating function

of a sequence {an} is defined by A(x) =
∑

n≥0 anx
n. Generating functions have all sorts

of fascinating properties. Informally, the denominator of a rational generating function

A(x) for a sequence an reveals the recurrence relation on {an}. Specifically, we have from

Stanley [35] that the following conditions are equivalent.

Theorem 19 ([35]). Let α1, α2, . . . , αd be a fixed sequence of complex numbers, d ≥ 1

and ad 6= 0. The following conditions on a function f : N→ C are equivalent.

1. ∑
n≥0

f(n)xn =
P (x)

Q(x)

where Q(x) = 1 + α1x+ α2x
2 + · · ·+ αdx

d and P (x) is a polynomial in x of degree

less than d.

2. For all n ≥ 0,

f(n+ d) + α1f(n+ d− 1) + α2f(n+ d− 2) + · · ·+ αdf(n) = 0.

It is stated specifically in [14] that the general form of a generating function for the

k-Fibonacci numbers for all k > 3 is an open problem. While generating functions up to

k = 6 have since been given on the OEIS (see A209434 for the link to all k = 1 through

k = 6; specifically A208743 has the k = 6 case), a generating function or recursion

remained elusive in its general form. The following theorem gives such a general form

for the first time.
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Theorem 20. The generating function for the k-Fibonacci numbers fk,n, denoted as

Fk(x), satisfies

Fk(x) =

∑k−3
j=0

∑k−1
i=0 N(k − 1, i, j)xj+ik

(1− x− x2)(
∑k−1

i=0 b̂k−1,ixik)

where b̂k,i is the signed Fibonomial coefficient of Definition 21 and the N(a, b, c) is the

recursive three-dimentional array defined by

N(a, 0, c) = (−1)cfc(a−1),a−1 +
c∑
j=1

(−1)j+1ba+j−1,jN(a, 2, c− j)

N(a, 1, c) = 0

N(a, b, c) = (−1)c+1fc(a−1)+b−2,a−1 +
c∑
j=1

(−1)jba+j−1,jN(a, b, c− j), b ≥ 2

with initial condition

N(a, 0, 0) = 1

N(a, 1, 0) = 0

N(a, b, 0) =

−1, 2 ≤ b ≤ a

0, b > a.

We give the proof of Theorem 20 in the proof of Corollary 9. Essentially, the proof

is a consequence of three lemmas, which we spend the next three sections stating and

proving.

6.7.2 The Fibonomials

The Fibonomials are a number triangle with a series of fascinating properties; for in-

stance, see [7] and its references. Intuitively, the Fibonomials arise from replacing every

integer i in the definition of the binomial coefficient
(
n
k

)
with its corresponding Fibonacci

number fi. A more precise definition is below.
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Definition 21. The Fibonomials are defined by

bn,k =
fn−1 . . . fn−k
fk−1 . . . f1

Note that since we index from f0 = 1 (the some Fibonomial definitions in the literature

use f0 = 0) we take f−1 = 0 for formality’s sake.

Other true, but perhaps not immediately obvious, facts are below.

Theorem 21. The following are true of the Fibonomial coefficients bn,k.

1. bn,k is always an integer.

2. The Fibonomial coefficients satisfy the recurrence bn,k = fn−k−2bn−1,k−1 + fkbn−1,k.

The first few Fibonomials are as follows.

Table 6.10: The first few Fibonomials.

n/k 0 1 2 3 4 5 6 7 8 9

0 1

1 1 1

2 1 1 1

3 1 2 2 1

4 1 3 6 3 1

5 1 5 15 15 5 1

6 1 8 40 60 40 8 1

7 1 13 104 260 260 104 13 1

8 1 21 273 1092 1820 1092 273 21 1

9 1 34 714 4641 12376 12376 4641 714 34 1

We will use a signed version of the Fibonomials for the generating function.

Definition 22. The signed Fibonomials b̂n,k are

b̂n,k = (−1)b
k
2cbn,k.
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The first few signed Fibonomials are listed below.

Table 6.11: The first few signed Fibonomials b̂n,k.

n/k 0 1 2 3 4 5 6 7 8 9

0 1

1 1 1

2 1 1 -1

3 1 2 -2 -1

4 1 3 -6 -3 1

5 1 5 -15 -15 5 1

6 1 8 -40 -60 40 8 -1

7 1 13 -104 -260 260 104 -13 -1

8 1 21 -273 -1092 820 1092 -273 -21 1

9 1 34 -714 -4641 12376 12376 -4641 -714 34 1

Interestingly, the signed Fibonomial triangle gives the coefficients of a signed version of

the Fibonomial generating function.

Theorem 22. Let b̂n,k be an entry of the signed Fibonomial triangle. Then

Bn(x) :=
∑
i≥0

(−1)ibn,ix
i =

1

p(n+ 1, x)
,

where p(n, x) =
∑

i≥0 b̂n,ix
i.

Proof. We know from the OEIS A055870 that for the offset signed Fibonacci triangle cn,k

defined by cn,k = (−1)b
(n+1)

2 cbn,k, we have

Cn(x) :=
∑
i≥0

cn,ix
i =

1

p(n+ 1, x)
,

where q(n, x) =
∑

i≥0 cn,ix
i. Furthermore, note that b̂n,k = (−1)kcn,k and q(n, x) =

p(n,−x).
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Thus,

Bn(x) = Cn(−x) =
1

q(n+ 1,−x)
=
∑
i≥0

(−1)ibn,ix
i =

1

p(n+ 1, x)

as desired.

6.7.3 The Denominators: Some Lemmas

As we know from Theorem 19, the denominator of a generating function gives the re-

cursion for the sequence. Thus, once we find a recursion for the k-Fibonacci numbers,

we know the denominator of the generating functions. We build this recursion through

a series of lemmas below, culminating in the recursion given in Theorem 23.

Lemma 6. Where fn is the nth Fibonacci number,

1. f 2
n = fn−1fn + fn−1fn−1 + (−1)n

2. fnfn−1 + f 2
n = fnfn+1

The proof of (2) is trivial from the Fibonacci recursion, and one proof of (1) can be found

in section 1.2 of [7].

Using Lemma 6, we can build a similar identity for the product of Fibonacci numbers.

Lemma 7. Where fj is the jth Fibonacci number, m is an integer, and 0 ≤ i ≤ m− 1,

fm−i−2
j f i+2

j+1 = fm−ij f ij+1 + fm−i−1
j f i+1

j+1 + (−1)j−1fm−i−2
j f ij+1

if 0 ≤ i ≤ m− 2

and

fjf
m−1
j+1 + fmj+1 = fm−1

j+1 fj+2

if i = m− 1.

91



Proof. This proof is straightforward from the Fibonacci recursion. If 0 ≤ i ≤ m− 2,

fm−ij f ij+1 + fm−i−1
j f i+1

j+1 = fm−i−2
j f ij+1(f 2

j + fj+1fj)

= fm−i−2
j f ij+1(f 2

j+1 + (−1)j) (by Lemma 6)

= fm−i−2
j f i+2

j+1 + (−1)jfm−i−2
j f ij+1

If i = m− 1,

fjf
m−1
j+1 + fmj+1 = fm−1

j+1 (fj + fj+1)

= fm−1
j+1 fj+2

Lemma 8 gives an identity on the k-Fibonacci numbers using the k and k − 2 Fibonacci

numbers. Note this is not yet a recursion in only the k-Fibonacci numbers, since this

lemma uses a fn,k−2 term.

Lemma 8. Let

α(n, k) =
(−1)bn/kc + (−1)b(n+1)/kc

2

Then

fn+2,k = fn+1,k + fn,k + α(n− k, k)fbn/kc(k−2)+n mod (k),k−2 (6.1)

Proof. The proof follows from Lemma 7. Our main task is to translate the statement

of Lemma 7 from Fibonacci products to k-Fibonacci numbers, being sure to track the

indices appropriately.

First, we consider the signs of the Fibonacci terms. When n mod k = 0, then

α(n− k, k) =
(−1)b(n−k)/kc + (−1)b(n−k+1)/kc

2
=

(−1)b(n/k−1/kc + (−1)bn/kc

2
= 0,

since the exponent of the first −1 will always be one less than the exponent of the second

−1. Then equation 6.1 follows immediately from the i = m − 1 case of Lemma 7 with

m = k, since fn,k = fkn/k when k divides n.
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Now consider n mod k = r, 0 < r < k. The exponent of the first −1 in α is⌊
n− k
k

⌋
=

⌊
n− r
k

+
r

k
− 1

⌋
=
n− r
k
− 1 +

⌊ r
k

⌋
=
n− r
k
− 1

and the second is⌊
n− k + 1

k

⌋
=

⌊
n− r
k

+
r

k
− 1 +

1

k

⌋
=
n− r
k

+−1 +
⌊ r
k

⌋
=
n− r
k
− 1

so the parity of the exponents is identical. Furthermore, this identical parity occurs in

length k − 1 chunks that alternate sign. That is, if n−1
k
− 1 is even, then n−r

k
− 1 is even

for all 0 < r < k; same if n−r
k
− 1 is odd. Also, if n−r

k
− 1 is even, then n−r+k

k
− 1 = n−r

k

is odd, and vice versa.

Consider the j in Lemma 7. If j is odd, then (−1)j−1 = 1. Furthermore, by definition of

the k-Fibonacci numbers, n− r = jk, and thus

n− r
k
− 1 =

jk

k
− 1 = j − 1

which must be even and thus (−1)
n−r
k
−1 = 1, so α(n − k − 1, k) = 1. Similarly, α(n −

k − 1, k) = −1 when j is even. Thus, the signs in equation 6.1 are the same as the signs

in Lemma 7.

Now we consider the Fibonacci terms themselves. By definition, fn,k = fk−rm f rm+1 with

n = mk + r, 0 ≤ r < n. We considered the r = 0 case above, so now assume 0 < r < n.

Then fn+1,k = fk−r−1
m f r+1

m+1 since m(k− r− 1) + (m+ 1)(r+ 1) = mk+ r+ 1 = n+ 1 and

thus the equation 6.1 terms match up to Lemma 7 in all but the all but the −(1)j term

in Lemma 7.

Thus we lastly consider fk−r−2
m f rm+1 of Lemma 7. Where n = mk + r as usual, we have

m =
n− r
k

=
⌊n
k

⌋
and furthermore r = n mod k. This gives

(k − r − 2)m+ (m+ 1)r = m(k − 2) + r

by the k-Fibonacci definition. Thus m(k − 2) + r =
⌊
n
k

⌋
(k − 2) + n mod k, as desired.
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The next lemma will be extremely important in the generation function proof. A version

for only the pure Fibonacci powers is already known in the literature [30] but this proof

is the first for the full sequence of k-FIbonacci numbers. We will use the existing paper

as a base case in the proof.

Lemma 9. Let cn,k = (−1)ĉn,k for n ≥ 1, cn,k = 1, n = 0 where ĉn,k = (−1)b(k+1)/2c+1bn,k

for the Fibonomials bn,k defined above. Then

fn,k =
k+1∑
j=1

fn−jk,kck+1,j.

Proof. The proof is through double induction on both n and k. For the k = 1 base

case, since fn,1 = fn−1,1 + fn−2,1 and c0,1 = c0,2 = 1, the lemma is true by the Fibonacci

recursion.

For a base case in n, recall from [30] that the statement is true if fn,k is the power of

some Fibonacci number, which occurs exactly when n mod k = 0. Thus, the statement

is true for n = k(k + 1), where we have fn,k = fkk+1. Since the recursion in the lemma

statement has depth k(k+ 1), this is the smallest possible n we can take for a base case.

Now we proceed by strong induction on n and k; assume the statement is true up to

n+ 1, k and consider fn+2,k. By Lemma 8:

fn+2,k = fn+1,k + fn,k + α(n− k, k)fbn/kc(k−2)+n mod k,k−2

=
k+1∑
j=1

fn+1−jk,kck,j +
k+1∑
j=1

fn−jk,kck,j + α(n− k, k)fbn/kc(k−2)+n mod k,k−2

=
k+1∑
j=1

(fn+2−jk,k + α(n− k − jk, k)fbn−jkk c(k−2)+(n−jk) mod k,k−2)ck,j

+ α(n− k, k)fbn/kc(k−2)+n mod k,k−2

=
k+1∑
j=1

fn+2−jk,kck,j +
k+1∑
j=1

α(n− k − jk, k)fbn−jkk c(k−2)+(n−jk) mod k,k−2ck,j

+ α(n− k, k)fbn/kc(k−2)+n mod k,k−2

=
k+1∑
j=1

fn+2−jk,kck,j +
k+1∑
j=1

α(n− k − jk, k)fbnk−jc(k−2)+n mod k,k−2ck,j
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+ α(n− k, k)fbn/kc(k−2)+n mod k,k−2

=
k+1∑
j=1

fn+2−jk,kck,j +
k+1∑
j=0

α(n− k − jk, k)fbnk−jc(k−2)+n mod k,k−2ck,j

Thus, it suffices to show

k+1∑
j=0

α(n− k − jk, k)fbnk−jc(k−2)+n mod k,k−2ck,j = 0.

If α(n− k, k) = 0, then α(n− k − jk, k) = 0 for all j, and so the statement is true.

Otherwise, we have more work to do. We first take care of the signs. By the proof of

Lemma 8, the signs of α alternate every k indices, and thus α(n− k− jk) = −α(n− j−
jk + 1). Thus, the sign of the jth term is

(−1)bn/kc−1+b(n+3)c/2+1bn,k = (−1)bn/kc+1b̂n,k

where b̂n,k is the signed Fibonomial coefficient.

Thus, we consider

(−1)bn/kc+1

k+1∑
j=0

fbnk−jc(k−2)+n mod k,k−2b̂k+1,j = 0.

We would like to use the induction hypothesis; however, the Fibonacci product is in k−2,

so we need b̂k−1 before we can proceed. Using the second half of Theorem 21 twice,

bn,k = fn−k−2(fn−k−4bn−2,k−2 + fk−1bn−2,k−1) + fk(fn−k−3bn−2,k−1 + fkbn−2,k).

So

(−1)bn/kc+1

k+1∑
j=0

fbnk−jc(k−2)+n mod k,k−2(−1)bj/2cfk−j−2(fk−j−4bk−2,j−2

+fj−1bk−2,j−1) + fj(fk−j−3bk−2,j−1 + fjbk−2,j)

The result follows from the induction hypothesis.
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We show a few examples of Lemma 9.

Example 12. Let n = 20, k = 4. Then

f22,4 =
5∑
j=1

fn−4j,4c5,j

= 1600(5) + 135(15)− 36(15)− 4(5) + 1

= 10816

= 82132

= f22,4

Example 13. Let n = 18, k = 3. Then

f18,3 =
4∑
j=1

fn−43,4c4,j

= 512(3) + 125(6)− 27(3)− 8(1)

= 2197

= 133

= f18,3

Here are some examples which show Lemma 8 in action.

Example 14. Let n = 12, k = 4. Then

f14,4 = f13,4 + f12,4 + α(10, 4)f2(2)+2,2

225 = 135 + 81 +
(−1)2 + (−1)2

2
(f6,2)

225 = 135 + 81 + (1)(9)

= 225

Example 15. Let n = 19, k = 2. Then

f21,2 = f20,2 + f19,2 + α(17, 2)f19 mod 2,0
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12816 = 7921 + 4895 +
(−1)8 + (−1)9

2
(1)

= 12816

Example 16. Let n = 13, k = 3. Then

f15,3 = f14,3 + f13,3 + α(10, 3)f(4)(1)+13 mod 3,1

512 = 320 + 200 +
(−1)10 + (−1)11

2
(8)

= 320 + 200− 8

= 512

Using Lemma 8, we state and prove a recursion on the k-Fibonacci numbers only which

does not need the fn,k−2. This paves the way for the statement and proof of the generating

function.

Theorem 23. The k-Fibonacci numbers can be written as

fn,k =
n∑
j=0

α(j + k − 2, k)fn−j

k−3∏
m=0

fb j+mk c.

Proof. Here is the formal proof of Theorem 23, which follows through strong induction

on n.

To begin, let n = 1. Then,

f1,k =
1∑
j=0

α(j + k − 2)fi−j

k−3∏
m=0

fb j+mk c

= α(k − 2, 2)f1

k−3∏
m=0

fbmk c + α(k − 1, 2)f1

k−3∏
m=0

fbm+1
k c

= f1

k−3∏
m=0

fbmk c

= f1

k−3∏
m=0

fbmk c
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= f1

k−3∏
m=0

f0

= f1

= 1

which is true for all k by the definition of the k-Fibonacci numbers.

Now assume

ft,k =
t∑

j=0

α(j + k − 2, k)ft−j

k−3∏
m=0

fb j+mk c

for all t ≤ n and consider fn+1,k. By Lemma 8,

fn+1,k = fn,k + fn−1,k + α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2.

Proceeding using the inductive hypothesis,

fn+1,k = fn,k + fn−1,k + α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2

=
n∑
j=0

α(j + k − 2, k)fn−j

k−3∏
m=0

fb j+mk c +
n−1∑
j=0

α(j + k − 2, k)fn−j−1

k−3∏
m=0

fb j+mk c

+ α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2

=
n−1∑
j=0

α(j + k − 2, k)(fn−j + fn−j−1)
k−3∏
m=0

fb j+mk c + α(n+ k − 2, k)f0

k−3∏
m=0

fbn+mk c

+ α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2

=
n−1∑
j=0

α(j + k − 2, k)fn+1−j

k−3∏
m=0

fb j+mk c + α(n+ k − 2, k)f0

k−3∏
m=0

fbn+mk c

+ α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2

=
n∑
j=0

α(j + k − 2, k)fn+1−j

k−3∏
m=0

fb j+mk c + α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2

where the last equality looks like cheating, but follows since f0 = f1; we switch the

index and assimilate it back in. To finish the proof, we need to write the α(n − k −
1, k)fbn/kc(k−2)+n mod (k)−1,k−2 in the sum. We will do this by showing that
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α(n− k − 1, k)fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 = α(n+ k − 1, k)f0

k−3∏
m=0

fbn+1+m
k c.

First we consider the α. Note

α(n− k − 1, k) =
(−1)b(n−k−1)/kc + (−1)bn−k/kc

2
=

(−1)b(n−1)/kc−1 + (−1)bn/kc−1

2

and

α(n+ k − 1, k) =
(−1)b(n+k−1)/kc + (−1)bn+k/kc

2
=

(−1)b(n−1)/kc+1 + (−1)bn/kc+1

2
.

Since
⌊
n−1
k

⌋
− 1 and

⌊
n−1
k

⌋
+ 1 have the same parity, as do

⌊
n
k

⌋
− 1 and

⌊
n
k

⌋
+ 1, then

α(n− k − 1, k) = α(n+ k − 1, k).

Now consider fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 and
∏k−3

m=0 fbn+1+m
k c, noting that we disregard

the f0; since f0 = 1, we can ignore it at will.

Begin with fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 and note that by the proof of Lemma 23,

fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 = f
k−2−((n−1) modk)
b(n−1)/kc f

(n−1) mod k
b(n−1)/kc+1 .

Note that where r = n mod k, since⌊
n− 1

k

⌋
=

⌊
n− r + r − 1

k

⌋
=
n− r
k

+

⌊
r − 1

k

⌋

and

⌊
n+ 1

k

⌋
=

⌊
n− r + r + 1

k

⌋
=
n− r
k

+

⌊
r + 1

k

⌋

then
⌊
n−1
k

⌋
=
⌊
n+1
k

⌋
as long as 0 < r < k − 1.

Furthermore, note that if r = 0, then α(n+ k− 1) = α(n− k− 1) = 0, since n−1
k
− 1 and

n−1
k

(equivalently, n
k
− 1 and n

k
) have opposite signs.
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Thus, assume 0 < r ≤ k − 2. (We will treat the k − 1 case below.) The Fibonacci

numbers making up
∏k−3

m=0 fbn+1+m
k c are fbn+1+m

k c = fbn+1
k c (for small enough m), and⌊

n+1
k

⌋
=
⌊
n−1
k

⌋
as shown above. Since 0 ≤ r ≤ k − 2, there is some m—call it m∗—at

which we will reach the threshold value such that fbn+1+m
k c = fbn+1

k c+1. As previously

argued, fbn+1
k c+1 = fbn−1

k c+1.

Thus, in this case the 2 consecutive Fibonacci numbers making up

fb(n−1)/kc(k−2)+(n−1) mod (k),k−2

and
k−3∏
m=0

fbn+1+m
k c

are the same. We now have to prove that the power of each Fibonacci number is the

same between the two expressions.

First, observe that since
⌊
n+1
k

⌋
=
⌊
n−r+r+1

k

⌋
= n−r

k
+
⌊
r+1
k

⌋
, there are (n−1) mod k copies

of fb(n−1)/kc+1. To determine how many copies there are of fb(n+1)/kc+1 = fb(n−1)/kc+1 in∏k−3
m=0 fbn+1+m

k c, consider the index m∗ at which

⌊
n+ 1 +m∗

k

⌋
>

⌊
n+ 1 +m

k

⌋
for all 0 ≤ m < m∗. (Since 0 < r < k− 2, such an m∗ exists). Once we find the m∗, then

there are k − 3−m∗ + 1 = k − 2−m∗ copies of fb(n+1)/kc+1.

So, we must determine what m∗. Clearly, it is the first index such that
⌊
n+1+m∗

k

⌋
is an

integer; thus, ⌊
n+ 1 +m∗

k

⌋
= q, q ∈ Z.

So,

n+ 1 +m∗ = kq

m∗ = kq − n− 1

m∗ = −(n+ 1) mod k

m∗ = k − (n+ 1) mod k (since we need 0 ≤ m∗ ≤ k − 3).

Thus, the number of copies of fb(n+1)/kc+1 is:
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k − 2−m∗ = k − 2− (k − (n+ 1) mod k)

= −2 + (n+ 1) mod k

= −2 + n+ 1 + k

⌊
n+ 1

k

⌋
= n− 1 + k

⌊
n+ 1

k

⌋
= n− 1 + k

⌊
n− 1

k

⌋
= (n− 1) mod k.

Thus, we have shown

α(n− k − 1, k)fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 = α(n+ k − 1, k)f0

k−3∏
m=0

fbn+1+m
k c

as long as 0 ≤ r ≤ k − 2.

Finally, consider r = k − 1. First, consider
∏k−3

m=0 fbn+1+m
k c and note that m∗ = 0, since

when m = 0,

⌊
n+ 1 + 0

k

⌋
=

⌊
n+ (k − 1)− (k − 1) + 1

k

⌋
=
n− (k − 1)

k
− 1

and when m = k − 3,

⌊
n+ 1 + k − 3

k

⌋
=

⌊
n+ (k − 1)− (k − 1) + k − 3

k

⌋
=

⌊
n− (k − 1)

k

⌋
+

⌊
k − 3 + 1− k − 1

k

⌋
=

⌊
n− (k − 1)

k

⌋
+

⌊
2k − 3

k

⌋
=
n− (k − 1)

k
+ 2 +

⌊
−3

k

⌋
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=
n− (k − 1)

k
+ 1

Thus there are k − 2 copies of fbn+1
k c and no copies of fbn+1

k
+1c.

Similarly, consider α(n − k − 1, k)fb(n−1)/kc(k−2)+(n−1) mod (k),k−2. As previously argued,

there are (n− 1)mod k copies of fbn−1
k c+1. Now, note that

⌊
n− 1

k

⌋
+ 1 =

⌊
n− (k − 1) + (k − 1)− 1

k

⌋
+ 1

=
n− (k − 1)

k
+

⌊
k − 2

k

⌋
+ 1

=
n− (k − 1)

k
+ 1

and

⌊
n+ 1

k

⌋
=

⌊
n− (k − 1) + (k − 1) + 1

k

⌋
=
n− (k − 1)

k
+

⌊
k

k

⌋
=
n− (k − 1)

k
+ 1

so fbn+1
k c = fbn−1

k c+1.

So, we find (n− 1)mod k given that r = k − 1:

(n− 1)mod k = n− 1− k(

⌊
n− 1

k

⌋
)

= n− 1− k
⌊
n− 1 + (k − 1)− (k − 1)

k

⌋
= n− 1− k(

n− (k − 1)

k
+

⌊
k − 2

k

⌋
)

= n− 1− (n− k + 1)

= k − 2.
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Therefore, α(n−k−1, k)fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 = α(n+k−1, k)f0

∏k−3
m=0 fbn+1+m

k c
when r = k − 1.

Thus we have shown

α(n− k − 1, k)fb(n−1)/kc(k−2)+(n−1) mod (k),k−2 = α(n+ k − 1, k)f0

k−3∏
m=0

fbn+1+m
k c

for all r, 0 ≤ r ≤ k − 1, and so:

fn+1,k =
n∑
j=0

α(j + k − 2, k)fn+1−j

k−3∏
m=0

fb j+mk c + α(n− k − 1, k)fbn/kc(k−2)+n mod (k)−1,k−2

=
n∑
j=0

α(j + k − 2, k)fn+1−j

k−3∏
m=0

fb j+mk c + α(n+ k − 1, k)f0

k−3∏
m=0

fbn+1+m
k c

=
n+1∑
j=0

α(j + k − 2, k)fn+1−j

k−3∏
m=0

fb j+mk c

concluding the proof.

We offer the following examples to illustrate Theorem 23 in action.

Example 17. We start with a big one. Let n = 10, k = 4. Then

36 = f10,4 =
10∑
j=0

α(j + 2, 4)f10−j

1∏
m=0

fb j+m4 c

= α(2, 4)f10(fb 04cfb 14c) + α(3, 4)f9(fb 14cfb 24c) + α(4, 4)f8(fb 24cfb 34c)

+ α(5, 4)f7(fb 34cfb 44c) + α(6, 4)f6(fb 44cfb 54c) + α(7, 4)f5(fb 54cfb 64c)

+ α(8, 4)f4(fb 64cfb 74c) + α(9, 4)f3(fb 74cfb 84c) + α(10, 4)f2(fb 84cfb 94c)

+ α(11, 4)f1(fb 94cfb 104 c) + α(12, 4)f0(fb 104 cfb 114 c)
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= f10(fb 04cfb 14c)− f8(fb 24cfb 34c)− f7(fb 34cfb 44c) + f6(fb 44cfb 54c)

− f4(fb 64cfb 74c)− f3(fb 74cfb 84c)− f2(fb 84cfb 94c) + f0(fb 104 cfb 114 c)

= f10f0f0 − f8f0f0 − f7f0f1 − f6f1f1 + f4f1f1 + f3f1f2 + f2f2f2 − f0f2f2

= 89− 34− 21− 13 + 5 + (3)(2) + (2)(2)(2)− (2)(2)

= 36

Example 18. Now we do one with a bigger k, so the product term is slightly less boring.

Let n = 12, k = 5. Then

f12,5 =
12∑
j=0

α(j + 3, 5)f12−j

2∏
m=0

fb j+m5 c

= α(3, 5)f12(fb 05cfb 15cfb 25c) + α(4, 5)f11(fb 15cfb 25cfb 35c) + α(5, 5)f10(fb 25cfb 35cfb 45c)

+ α(6, 5)f9(fb 35cfb 45cfb 55c) + α(7, 5)f8(fb 45cfb 55cfb 65c) + α(8, 5)f7(fb 55cfb 65cfb 75c)

+ α(9, 5)f6(fb 65cfb 75cfb 85c) + α(10, 5)f5(fb 75cfb 85cfb 95c) + α(11, 5)f4(fb 85cfb 95cfb 105 c)

+ α(12, 5)f3(fb 95cfb 105 cfb 115 c) + α(13, 5)f2(fb 105 cfb 115 cfb 125 c)

+ α(14, 5)f1(fb 115 cfb 125 cfb 135 c) + α(15, 5)f0(fb 125 cfb 135 cfb 145 c)

= f12(fb 05cfb 15cfb 25c))− f10(fb 25cfb 35cfb 45c)− f9(fb 35cfb 45cfb 55c)− f8(fb 45cfb 55cfb 65c)

− f7(fb 55cfb 65cfb 75c) + f5(fb 75cfb 85cfb 95c) + f4(fb 85cfb 95cfb 105 c) + f3(fb 95cfb 105 cfb 115 c)

+ f2(fb 105 cfb 115 cfb 125 c)− f0(fb 125 cfb 135 cfb 145 c)

= f12f0f0f0 − f10f0f0f0 − f9f0f0f1 − f8f0f1f1 − f7f1f1f1 + f5f1f1f1 + f4f1f1f2

+ f3f1f2f2 + f2f2f2f2 − f0f2f2f2

= 233− 89− 55− 34− 21 + 8 + (5)(2) + (3)(2)(2) + (2)(2)(2)(2)− (2)(2)(2)

= 233− 89− 55− 34− 21 + 8 + 10 + 12 + 16− 8

= 72
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= f12,5.

Example 19. Let n = 4, k = 3. Then

2 = f4,3 =
4∑
j=0

α(j + 1, 3)f4−j

0∏
m=0

fb j+m3 c

= α(1, 3)f4(fb 03c) + α(2, 3)f3(fb 13c)

+ α(3, 3)f2(fb 23c) + α(4, 3)f1(fb 33c) + α(5, 3)f0(fb 43c)

= f4f0 − f2f0 − f1f1

= 5− 2− 1

= 2

Example 20. Similarly, let n = 5, k = 3. Then

4 = f5,3 =
5∑
j=0

α(j + 1, 3)f5−j

0∏
m=0

fb j+m3 c

= α(1, 3)f5(fb 03c) + α(2, 3)f4(fb 13c) + α(3, 3)f3(fb 23c)

+ α(4, 3)f2(fb 33c) + α(5, 3)f1(fb 43c) + α(6, 3)f0(fb 53c)

= f5f0 − f3f0 − f2f1 + f0f1

= 8− 3− 2 + 1

= 4

Example 21. Now, we give an example of the technique used in the proof of Theorem 23

by computing f6,3 using Lemma 8; we wind up with an expression of the form Theorem

23.

f6,3 = f5,3 + f4,3 + α(1, 3)fb4/3c(1)+4 mod3,1

= f5f0 − f3f0 − f2f1 + f0f1 + f4f0 − f2f0 − f1f1 + f2,1
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= f5f0 + f4f0 − f3f0 − f2f0 − f2f1 − f1f1 + f0f1 + f2

= f6f0 − f4f0 − f3f1 + f0f1 + f2

= f6f0 − f4f0 − f3f1 + f1f1 + f0f2

=
6∑
j=0

α(j + 1, 3)f6−j

0∏
m=0

fb j+m3 c

6.7.4 The Numerators: A Recursive Array

The Fibonomials will play a large role in determining the denominator of the generating

function Fk(x). The numerators of Fk(x) can also be constructed in a systematic way

and can be represented by a number triangle for each k, but they do not already have a

name in the literature. We provide a description of them here.

These numerators serve as a bridge between the Fibonomials and the k-Fibonacci num-

bers. The reason for viewing them this way will become apparent in the next section,

but the motivation comes from Theorem 23. For now, we define the “bridge series” as

follows.

Definition 23. For some fixed k, define the series Bk(x) as

Bk(x) =
∑
i≥0

α(i+ k − 2, k)
k−3∏
m=0

fb i+mk cx
i

where Fi,k is the ith k-Fibonacci number and α(n, k) = (−1)bn/kc+(−1)b(n+1)/kc

2
.

Recall that the numerators of a generating function encode the initial conditions of the

recursion given in the denominators. Thus, determining the numerators is a simple

matter of methodically solving for the coefficient of the desired resulting series.

We choose to represent these coefficients as a three-dimensional array, which makes it

easy to write a recursive definition.

Definition 24. Let N(a, b, c) be an array defined recursively as follows. Throughout let

fn,k be the nth k-Fibonacci number and let bi,k be the Fibonomials.

1. For c > 0, a > c+ 2, and b ≥ c,
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N(a, 0, c) = (−1)cfc(a−1),a−1 +
c∑
j=1

(−1)j+1ba+j−1,jN(a, 2, c− j)

N(a, 1, c) = 0

N(a, b, c) = (−1)c+1fc(a−1)+b−2,a−1 +
c∑
j=1

(−1)jba+j−1,jN(a, b, c− j), b ≥ 2

2. The initial condition is

N(a, 0, 0) = 1

N(a, 1, 0) = 0

N(a, b, 0) =

−1, 2 ≤ b ≤ a

0, b > a

We show some examples of this definition. Throughout, note that a blank space at any

i, j location with j > i is an implied 0.

Example 22. Layer 1 of the array, that is, the c = 0 initial condition, for some small

a, b is given by

Table 6.12: N(a, b, 0) for small a, b.

a/b 0 1 2 3 4 5

2 1 0 -1

3 1 0 -1 -1

4 1 0 -1 -1 -1

5 1 0 -1 -1 -1 -1

6 1 0 -1 -1 -1 -1

Example 23. Layer 2 of the array, when c = 1, for some small a, b is given by
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Table 6.13: N(a, b, 1) for small a, b.

a/b 0 1 2 3 4 5 6 7 8 9

3 1 0 -1

4 2 0 -2 -1 1

5 4 0 -4 -3 -1 3

6 7 0 -7 -6 -4 0 8

7 12 0 -12 -11 -9 -5 3 19

8 20 0 -20 -19 -17 -13 -5 11 43

9 33 0 -33 -32 -30 -26 -18 -2 30 94

Example 24. Layer 3 of the array, when c = 2, for some small a, b is given by

Table 6.14: N(a, b, 2) for small a, b.

a/b 0 1 2 3 4 5 6 7 8 9

4 -1 0 1

5 -4 0 4 1 -1 -1

6 -16 0 16 8 0 -4 6

7 -53 0 53 34 12 -8 -12 34

8 -166 0 166 123 69 9 -39 -27 159

9 -492 0 492 398 274 122 -38 -142 -26 692

As the name may suggest, N(a, b, c) gives the numerator coefficients for our new gener-

ating function. We formalize this relationship now.

Theorem 24. Where N(a, b, c) is defined as in Definition 24, the numerator for the

generating function for the bridge series Bk(x) for fixed k is

k−3∑
j=0

k−1∑
i=0

N(k − 1, i, j)xi+jk.

In fact,
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Bk(x) =

∑k−3
j=0

∑k−1
i=0 N(k − 1, i, j)xi+jk∑k−1
j=0 b̂k−1,jxjk

Proof. Fix some k ≥ 3.

At a high level, recall that the numerator of a generating function encodes the initial

conditions for the recurrence encoded in the denominator. We solve for the numerators

coefficient by coefficient such that we obtain the desired Bk(x). Intuitively, we move

across the columns of N from the bottom up in row k − 1 of the array. That is, the

coefficients of xrk, x1+rk, . . . xk+rk, 0 ≤ r ≤ k − 3, are given by the k entries in row k − 1

of layer r in N .

Throughout, denote the coefficient of xi in some series S(x) by [xi]S(x). Also, let Ck(x) =∑k
j=0 b̂k,jx

jk.

First, consider [xi]Bk(x) for 0 ≤ i ≤ k− 1. Note that in the convolution of the numerator

and Ck(x), the only contribution of Ck(x) to Bk(x) is [x0] = 1, since [xk] is the next

smallest-powered term in Ck(x). First let i = 0. Since α(k−2, k) = 1 and
∏k−3

m=0 fbm/kc =

1, then 1 = [x0]. Since [x0] = 1 in Ck(x), then N(k − 1, 0, 0) = 1.

For i = 1, note that α(k − 1, k) = 0 so [x1] in Bk(x) = 0. Thus, we must have N(k −
1, 1, 0) = 0 since [x0] = 1 6= 0 in Bk(x).

Finally, for 2 ≤ i ≤ k − 1, note that α(i + k − 2) = −1 for all 2 ≤ i ≤ k − 1, and since

fb(k−1+k−3)/kc = f2−b4/kc = 1, [xi] = −1, 2 ≤ i ≤ k − 1. Since the only contribution from

Ck(x) is again only [x0] = 1, then we must have N(k − 1, b, 0) = −1 for 2 ≤ b ≤ a. This

proves the initial condition at the c = 0 layer of the array.

Now, consider layer c > 0 of N(a, b, c). Clearly, there are more contributions from Ck(x)

than just simply [x0]. In fact, for any [xi] in Bk(x) for i ≤ (k−1)(k−3), let r = i mod k.

Then we get contributions from all [xr+jk] in Ck(x) for 0 ≤ j ≤ bi/kc − 1. Specifically,

[xi]Bk(x) =

bn/kc−1∑
j=0

[xr+jk]Ck(x)N(k − 1, r, bi/kc − j).

Now, we determine the coefficients [xi]Bk(x) and [xi]Ck(x). Recall from Definition 23 that

[xi]Bk(x) = α(i + k − 2, k)
∏k−3

m=0 fb i+mk c. Furthermore, from the proof of Theorem 23,∏k−3
m=0 fb i+mk c = fb ikc(k−2)+(i−2) mod k,k−2.
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Also, [xjk]Ck(x) = (−1)jbk+j−2,j. Thus,

[xi]Bk(x) =

bi/kc∑
j=0

[xr+jk]Ck(x)N(k − 1, i mod k, bi/kc − j)

α(i+ k − 2, k)fb i−2
k c(k−2)+(i−2) mod k,k−2 =

bn/kc∑
j=0

(−1)jbk+j−2,jN(k − 1, i mod k, bi/kc − j)

Since b0,k = 1, we pull off the j = 1 term of the sum and solve for N(k−1, i mod k, bi/kc)
to obtain

N(k − 1, i mod k, bi/kc) = −α(i+ k − 2, k)fb i−2
k c(k−2)+(i−2) mod k,k−2

+

bi/kc∑
j=1

(−1)jbk+j−2,jN(k − 1, i mod k, bi/kc − j)

Letting a = k− 1, b = i mod k, c = bi/kc yields the recursive definition of N(a, b, c) from

Definition 24.

For any i = jk − 1, α(i + k − 2, k) = 0. Thus N(a, 1, c) = 0 since [xi] 6= 0 in Ck(x) for

any i by the definition of the Fibonomials.

Now, we have defined the initial conditions for the k − 2 Fibonacci numbers using

N(a, b, c). Since we have defined all the numbers up to the k(k + 1) recursion depth,

we are done with the initial conditions. From here on out, the coefficients of all xi in

the bridge series are determined by the recursion, which as we showed in Lemma 9, is

exactly the Fibonomials defined in the denominator.

At first glance, a complaint might be raised about the recursive nature of the numerator

definition. If we, say, wanted the generating function for the k-Fibonacci numbers for

k = 20, we surely do not want to calculate the generating functions for all k ≤ 19.

However, this complaint is easily answered by noting that the recursion in the array only

goes through the z-axis–that is, only through numbers that we need to know for a fixed

k generating function anyway. Since the only other numbers in the numerators are some
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k-Fibonacci numbers and some Fibonomials, both of which have closed forms, we argue

that we do not in fact need to do a burdensome amount of work to obtain a generating

function for some given k. That said, a closed form for the N(a, b, c) would certainly be

desirable, but we leave it to future work.

6.7.5 The Generating Function: Gluing the Pieces Together

One more lemma suffices to obtain the proof of Theorem 20.

Lemma 10. Where Bk(x) is the bridge series from Definition 23,

Bk(x)

1− x− x2
=
∑
i≥0

fi,kx
i

where fn,k is the nth k-Fibonacci number.

Proof. Recall the definition of convolution of polynomials: if f(x) =
∑

n≥0 anx
n and

g(x) =
∑

n≥0 bnx
n, then f(x)g(x) =

∑
n≥0

∑n
r=0 arbn−rx

n. By Definition 23,

Bk(x) =
∑
i≥0

α(i+ k − 2, k)
k−3∏
m=0

fb i+mk cx
i

and we know that
1

1− x− x2
=
∑
i≥0

fix
i.

Thus,

Bk(x)(
1

1− x− x2
) =

∑
i≥0

i∑
j=0

(
α(j + k − 2, k)

k−3∏
m=0

fb j+mk c
)(
fn−j

)
xi

=
∑
i≥0

fi,kx
i

where the last inequality follows from Theorem 23.

Now, we are finally ready to prove Theorem 20.

111



Corollary 9. Theorem 20 is true.

Proof. We have already proved the theorem in the lemmas. Theorem 24 gives us Bk(x),

and Lemma 10 gives us that Bk(x) multiplied by the Fibonacci generating function gives

the desired result.

Example 25. A generating function for k = 7 is not known either in the OEIS or in the

literature. Using the code in Appendix B, we obtain it here. The numerator is

−(x30 − x28 + x27 − x26 + x25 − x24 − 7x23 + 7x21 − 6x20 + 4x19 − 8x17 − 16x16 . . .

+16x14 − 8x13 + 4x11 + 6x10 + 7x9 − 7x7 + x6 + x5 + x4 + x3 + x2 − 1)

with denominator

(
x42 − 8x35 − 40x28 + 60x21 + 40x14 − 8x7 − 1

)(
x2 + x− 1

)
Example 26. Furthermore, the numerator of the generating function for k = 10 is

x72 − x70 + x69 − x68 + x67 − x66 + x65 − x64 + x63 + 33x62 − 33x60 + 32x59

− 30x58 + 26x57 − 18x56 + 2x55 + 30x54 − 94x53 − 492x52 + 492x50 − 398x49

+ 274x48 − 122x47 − 38x46 + 142x45 − 26x44 − 692x43 − 1784x42 + 1784x40

− 1092x39 + 426x38 + 72x37 − 222x36 − 72x35 + 426x34 + 1092x33 + 1784x32

− 1784x30 + 692x29 − 26x28 − 142x27 − 38x26 + 122x25 + 274x24 + 398x23

+ 492x22 − 492x20 + 94x19 + 30x18 − 2x17 − 18x16 − 26x15 − 30x14 − 32x13 − 33x12

+ 33x10 − x9 − x8 − x7 − x6 − x5 − x4 − x3 − x2 + 1

with denominator

−(x90 + 34x80 − 714x70 − 4641x60 + 12376x50 + 12376

x40 − 4641x30 − 714x20 + 34x10 + 1)(x2 + x− 1)
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Of course, as k gets bigger, the k-Fibonacci numbers only get bigger. This makes the

generating function quite unwieldy as k gets large. In fact, the coefficient of the x194

term in the numerator for k = 15 is the 31-digit number

−4466655663433116095405828866048.

Thus, this generating function might be more useful for theoretical rather than compu-

tational purposes.

6.8 Fixed Points and the Pascal’s Array Conjecture

A natural question about any class of restricted permutations is: how many fixed points

do they have? Since the fixed points of k-drop permutations correspond to the main

diagonals of a k-tridiagonal matrix, calculating the number of fixed points is a natural

avenue for learning more about this class of matrices. Here we identify the total number

of fixed points in all k-drop permutations of length n.

6.8.1 k = 1

We begin with the k = 1 case. Throughout, let pn,k be the total number of fixed points

in all k-drop permutations of length n, and let pn,k,i be the number of length n k-drop

permutations with i elements in the corresponding k-free subset. Since each element

in a subset corresponds to 2 non-fixed elements (since a subset entry encodes a switch),

p(n, k, i) is equivalent to having a length n k-drop permutation having n−2i fixed points.

We consider first the k = 1 case.

Proposition 18. pn,1,i =
(
n−i
i

)
.

Proof. We wish to choose i elements of n− 1 such that no two of them have distance 1

apart. For each element j that we choose, we cannot choose element j + 1. Thus, the

number of subsets is the number of ways to choose i elements from n− i elements.

Proposition 19. pn,1 =
∑bn/2c

j=0

(
n−j
j

)
(n− 2j).
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Proof. Immediate from Proposition 18, since there are n− 2i fixed points for each pn,1,i.

We can have at most n fixed points and at minimum n−2(bn/2c) fixed points, since this

is 0 or 1 depending on the parity of n. Note we cannot have fewer than 1 fixed point for

odd n, since there is no element available to swap with the last element.

There is another way to write pn,1, and this argument is combinatorial and somewhat

direct from the Fibonacci recurrence.

Proposition 20. pn,1 = sn, where sn is the nth element of the sequence given by s0 =

0, s1 = 1, sn = sn−1 + sn−2 + fn−1 for fn−1 the nth Fibonacci number.

Proof. When n = 0, there are 0 fixed points, and when n = 1, there is one fixed point

corresponding to (1), the only entry in the only permutation.

Now, consider the number of fixed points in all 1-drop permutations on n elements. Every

permutation must be formed by either

1. Appending π(n) = n to the end of any 1-drop permutation of length n− 1

2. Appending π(n − 1) = n, π(n) = n − 1 to the end of any 1-drop permutation of

length n− 2

Case (1) contributes the existing sn−1 fixed points from the length n − 1 permutations,

and also creates one new fixed point for each permutation. We already know there are

fn−1 such permutations, so case (1) contributes sn−1 +fn−1 fixed points. Case (2) creates

no new fixed points, so we have only the sn−2 existing fixed points.

To keep track of the coefficients, we write a series of polynomials Pn,k(x) for fixed n, k

where [xi]Pn,k(x) is the number of length n k-drop permutations with n− 2i fixed points.

Definition 25. Let Pn,1(x) =
∑k

i=0

(
k−i
i

)
xi.

The Pn,1(x) are known as the Fibonacci polynomials in the literature.

An interesting corollary follows.

Corollary 10. Pn,1(x) = ( 1
1−x−x2 )2.

Proof. We have a recursion for pn,1 from Proposition 20. From the OEIS A001629, we

know that the self-convolution of the Fibonacci numbers, defined by ( 1
1−x−x2 )2 follow the

same recursion with the same initial conditions.
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A combinatorial proof of this corollary—a direct explanation of why squaring the gener-

ating function gives the fixed points of the generating function, without recourse to the

recursion—we leave as an avenue for future work.

Example 27. The first few self-convolved Fibonacci numbers are

0, 1, 2, 5, 10, 20, 38, 71, 130, 235, . . .

Example 28. Here are the pn,1,i for various n and i. These are the jagged diagonals

from Pascal’s triangle. Note that the row sums give the Fibonacci numbers fn.

Table 6.15: Number of subsets on n− 1 for k = 1 with exactly i elements.

n/i 0 1 2 3 4

1 1

2 1 1

3 1 2

4 1 3 1

5 1 4 3

6 1 5 6 1

7 1 6 10 4

8 1 7 15 10 1

Multiplying the n, i entry by n−2i yields the number of fixed points. Summing the rows

yields the numbers in Example 27.
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Table 6.16: Number of permutations with i fixed points for k = 1.

n/i 0 1 2 3 4

1 1

2 2 0

3 3 2

4 4 6 0

5 5 12 3

6 6 20 12 0

7 7 30 30 4

8 8 42 60 20 0

Example 29. Let k = 1, n = 5. We count the number of permutations with n− 2i fixed

points for 0 ≤ i ≤ bn/2c.

For i = 0, we expect
(

5
0

)
= 1 permutation with 5 fixed points. This is

12345.

For i = 1, we expect
(

4
1

)
= 4 permutations with 3 fixed points. These are

21345

13245

12435

12354

For i = 2, we expect
(

3
2

)
= 3 permutations with 1 fixed point. These are

21435

21354

13254

These are all f5 = 8 permutations of length 5. We count (5)(1)+(3)(4)+(3)(1) = 20 = s6
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total fixed points, as expected.

6.8.2 k > 1

An interesting phenomenon occurs when finding the number of fixed points for permu-

tations with k ≥ 2. To find the number of fixed points, we conjecture that we must

simply multiply k copies of the Pn,1(x) corresponding to the Fibonacci numbers making

up fn,k. The coefficients of the resulting generating function yield a generalized version

of Pascal’s triangle, which does not appear in the literature as far as we know, and which

seem to give the number of permutations with a set number of fixed points.

Conjecture 2. Pn,k(x) =
∏k−1

i=0 Pbn+ik c,1(x)

We do not yet have a proof of this conjecture. However, letting x = 1 shows the coefficient

sums of the right side for a given k do in fact add to fn,k.

Example 30. For k = 2, we compute the following. The row sums give the Fibonacci

numbers fn,2.

Table 6.17: Number of subsets on n− 2 for k = 2 with exactly i elements.

n/i 0 1 2 3 4

2 1

3 1 1

4 1 2 1

5 1 3 2

6 1 4 4

7 1 5 7 2

8 1 6 11 6 1

9 1 7 16 13 3

10 1 8 22 24 9

Multiplying the ith row pointwise with the vector v where vi = n−2i yields the following.

The row sums give column 2 in Table 6.21 below.

117



Table 6.18: Number of permutations with i fixed points for k = 2.

n/i 0 1 2 3 4 5

2 2

3 3 1

4 4 4

5 5 9 2

6 6 16 8

7 7 25 21 2

8 8 36 44 12 0

9 9 49 80 39 3

10 10 64 132 96 18

11 11 81 203 200 66 3

Example 31. For k = 3, we compute the following. The row sums give the Fibonacci

numbers fn,3.

Table 6.19: Number of subsets on n− 3 for k = 3 with exactly i elements.

n/i 0 1 2 3 4

4 1

5 1 1

6 1 3 3 1

7 1 4 5 2

8 1 5 8 4

9 1 6 12 8

10 1 7 17 16 4

11 1 8 23 28 13 2

12 1 9 30 45 30 9 1

Multiplying the nth row pointwise with the vector v where vi = n−2i yields the following.

The row sums give column 3 in Table 6.21 below.
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Table 6.20: Number of permutations with i fixed points for k = 3.

n/i 0 1 2 3 4

2 2

3 3

4 4 2

5 5 6 1

6 6 12 6 0

7 7 20 15 2

8 8 30 32 8

9 9 42 60 24

10 10 56 102 64 8

11 11 72 161 140 39 2

Example 32. The row sums of layer k of Pascal’s array yield the following. We conjec-

ture that each n, k entry is the total number of fixed points in a k-drop permutation on

n elements (equivalently, the total number of elements in all subsets on n− k elements,

no two of whom have difference k.)
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Table 6.21: Conjecture: the n, k entry gives the total number of fixed points in all k-drop
permutations of length n.

n/k 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2

3 5 4 3 3 3 3 3 3 3 3

4 10 8 6 4 4 4 4 4 4 4

5 20 16 12 8 5 5 5 5 5 5

6 38 30 24 16 10 6 6 6 6 6

7 71 55 44 32 20 12 7 7 7 7

8 130 100 78 64 40 24 14 8 8 8

9 235 180 135 112 80 48 28 16 9 9

10 420 320 240 192 160 96 56 32 18 10

11 744 564 425 324 272 192 112 64 36 20

12 1308 988 750 540 456 384 224 128 72 40

13 2285 1721 1300 945 756 640 448 256 144 80

14 3970 2982 2240 1650 1242 1056 896 512 288 160

15 6865 5144 3840 2875 2025 1728 1472 1024 576 320

16 11822 8840 6592 5000 3510 2808 2400 2048 1152 640

17 20284 15140 11284 8500 6075 4536 3888 3328 2304 1280

18 34690 25850 19266 14400 10500 7290 6264 5376 4608 2560

19 59155 44015 32747 24320 18125 12555 10044 8640 7424 5120

20 100610 74760 55524 40960 31250 21600 16038 13824 11904 10240
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Chapter 7

Proof of Concept: Salem Numbers

and Known Roots

In Chapters 4 to 6, we spent a lot of time considering the locations of the roots of various

classes of polynomials. We could save some of this effort if we first choose where the roots

lie in the complex plane, and then constructed polynomials based on these locations. This

would reduce the work involved in conjecturing and proving the locations of the roots,

and we could move on to attempting to prove properties of the Vandermonde matrix

right away.

To explore this avenue, we briefly consider some properties of the Salem and Pisot num-

bers. An exploration of these numbers was suggested in [17], and a hypothesis as to the

relationship between root location and Vandermonde matrix properties was given. We do

a more extensive computational study here, and give some evidence that root magnitude

alone is not sufficient to determine certain Vandermonde matrix properties.

7.1 Vandermonde matrix properties

Definition 26. A Salem number is a real algebraic integer α with |α| > 1 in which one

or more of its conjugates are on the unit circle and all the others have magnitude less

than 1.

Definition 27. A Pisot number is an algebraic integer α with |α| > 1 and all its conju-

gates of magnitude less than 1.

121



As was proven in 1944 [33], the smallest Pisot number is the positive root of x3 − x− 1,

and is around 1.3247.

The smallest Salem number is unknown.

Conjecture 3 (Lehmer, 1933). The smallest Salem number is the largest real root of

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

which is about equal to 1.17628.

This is Lehmer’s conjecture, proposed in [20], and is a famous open problem in algebraic

number theory.

There is one more type of algebraic integer we will work with.

Definition 28. A complex Pisot number is a complex algebraic integer α with |α| > 1

and |ᾱ| > 1 and all its conjugates of magnitude less than 1.

We recall some theorems and lemmas from the matrix theory literature we will use below.

Theorem 25. [[25] Theorem 3.1] Let V be a nonsingular Vandermonde matrix and let

ri, 1 ≤ i ≤ n be its nodes. Let r+ = maxn−1
i=0 |ri| and |V | = max{1, rn−1

+ }. Then

|V | ≤ σ1(V ) ≤ n|V |.

The following is a useful lower bound on σn(V ).

Theorem 26 ([18]). Let V be a Vandermonde matrix with distinct nodes r1, . . . , rn. Then

max
1≤i≤n

n∏
j=1,j 6=i

max(1, |rj|)
|ri − rj|

≤ ||V −1||∞

An easy corollary results.

Corollary 11 ([5]). Let V be a Vandermonde matrix with distinct nodes r1, . . . , rn. Then

1√
n

max
1≤i≤n

n∏
j=1,j 6=i

max(1, |rj|)
|ri − rj|

≤ ||V −1||2.

We construct the Vandermonde matrix V from the roots of the minimal polynomial of α
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and bound its spectral distortion.

Theorem 27. Where α is a Pisot number or a Salem number and V is the Vandermonde

matrix of α, then

|α|n−1 ≤ σ1(V ) ≤ n|α|n−1 (7.1)

and

σi(V ) ≤
√
n(n− i+ 1) (7.2)

and
|α|√

n|α + 2|n−1
≤ σn(V ) (7.3)

Proof. Without loss of generality, let r1 = α. By construction, the ri of V with largest

modulus is α. Thus equation 7.1 is immediate from Theorem 25.

For equation 7.2, let 2 ≤ i ≤ n and let Vapprox be V with the last i − 1 rows set to 0.

Then by Theorem 1,

σi(V ) ≤ ‖V − Vapprox‖2 = ‖



0 0 . . . 0
...

0 0 . . . 0

1 ri . . . rn−1
i
...

1 rn . . . rn−1
n


‖2 ≤

√
n(n− i+ 1)

where the last inequality follows from Proposition 1 and that rki ≤ 1 for all k.

For equation 7.3, we consider Corollary 11. Since the bound holds for the index i that

maximizes the quantity, we can choose any index i∗ and the bound will still hold (though

perhaps more loosely). We let i∗ = 1 and so α is the distinguished node.

The product of the numerator is simply α, since ri ≤ 1 for i = 2 ≤ i ≤ n. For the product

of denominators, we consider the maximum distance between α and the rest of the roots.

As α lies on the real axis and the rest of the roots are complex (because a conjugate of

α would have the same modulus as α and thus lie outside the unit circle), the maximum

distance is from α to the opposite side of the circle, and thus is α + 2. Replacing the

product of the denominators with n− 1 copies of |α + 2| yields the result.

We have no reason to believe the above bound should be tight; we made numerous
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estimates in the proof which revised this bound downward. With more knowledge of

the location of the roots of the minimal polynomial, we could potentially make fewer

estimates and tighten the bound. However, the bound is useful is at stands, especially

for small α in low n, and as a way of bounding condition number and spectral distortion,

as we now show.

Corollary 12. Where V is a Vandermonde matrix of Salem numbers, its 2 norm con-

dition number κ satisfies

κ(V ) ≤ n3/2|α|n−2|α + 2|n−1.

Proof. Immediate from equations 7.1 and 7.3.

Upper and lower bounds for spectral distortion follow easily as well.

Corollary 13. Where V is a Vandermonde matrix of Salem numbers, its 2 normalized

spectral norm ρ satisfies

ρ(V ) ≤ n3/2|α + 2|n.

Proof. First recall that | det(V )| =
∏n

i=1 σi(V ). By equations 7.1 and 7.2,

| det(V )| ≤ n|α|n−1

n−1∏
i=2

√
n(n− i+ 1) ≤ n|α|n−1

√
n
n−1

n−1∏
i=2

√
(n− i+ 1)

≤ n|α|n−1
√
n
n−1√

n
n−1

.

Thus

| det(V )|1/n ≤ n|α|.

Combining with equation 7.3,

ρ = | det(V )|1/n‖V −1‖2 ≤ n|α|(
√
n|α + 2|n−1

|α|
) = n3/2|α + 2|n−1.

Note we sacrificed some tightness of the bound for the sake of readability in the proof

above. Reverting to the factorial on the first line would give a tighter bound, should it

be needed.
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From the bounds above, we have shown that a large κ or a large ρ implies a large n

and/or α. However, nothing in these inequalities implies the converse: a large α does

not imply a large κ or ρ. This becomes evident when we compute κ and ρ for various

small values of α, n below.

7.2 Computational results

Our methodology was as follows. We considered the databases in [24] and wrote a Python

script to parse the raw text files and convert it into a set of polynomials in Sage. We

began with the 47 polynomials with degree at most 44 which have maximal root modulus

(equivalently, Mahler measure) at most 1.3 and plotted condition number and spectral

distortion as a function of Mahler measure.

Condition number Spectral distortion

Figure 7.1: Condition number and spectral distortion as a function of Mahler measure.

While we can see that higher Mahler measure on average does tend towards both larger

condition numbers and spectral distortions, this correspondence is not one to one. For

instance, there are many Mahler measure values between 1.28 and 1.3 with much different

condition numbers.

Taking into account the role of n, as indicated by the theoretical bounds should influence

the behavior, does not completely explain the difference:
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Table 7.1: Evidence that n and α do not suffice to determine the magnitude of the
condition number.

Mahler measure n Condition number

1.2851215 30 9139.26

1.2851857 30 4552.20

Thus, there is at least one other factor which influences the condition number and spectral

distortion. While we not yet know what the mystery factor is, it seems like it has to

do with the distribution of roots in the complex plane. For the set of roots used in

the polynomials in the table above, the roots for the smaller condition number appear

slightly more equidistributed around the unit circle.

Roots for line 1 in Table 7.1 Roots for line 2 in Table 7.1

Figure 7.2: Condition number and spectral distortion as a function of Mahler measure.

Formalizing this relationship is an avenue for future work.
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Chapter 8

Future Work and Conclusions

While we have made significant contributions to the known literature about k-Fibonacci

numbers and have made some interesting observations about the Vandermonde matrices

of polynomials of the form xn + axm + b, there are of course many further avenues of

exploration.

First, consider the relationship between roots of polynomials and singular values of Van-

dermonde matrices. Some ideas for future work which are based on this thesis include:

• A proof of the root locations and equidistribution properties for xn + axm + b for

m ≥ 1, using either Schur-Cohn or some other method.

• A proof of the singular value gap in the resulting Vandermonde matrix.

• A tightness guarantee on either the root bounds or the singular values.

• Other Vandermonde matrix properties: for instance, bounds on the 2 norm of the

inverse, or the norm of the smallest row in the inverse.

• Exploiting the properties of the Vandermonde matrix for non-dual RLWE instances,

as was done in the papers cited in Chapter 3.

On the combinatorial side, our first priority is to prove Conjecture 2. Conjecturing

and proving any further properties of the three-dimensional analogue of Pascal’s triangle

(Table 6.21), could also be of independent interest.

On the k-Fibonacci topic, we are also interested in any conjectures and proofs on further

permutation statistics of these restricted permutations, and their correspondences in the
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subsets and compositions. A cleaner criterion of a k-free composition—one which does

not depend on the mapping to the binary strings—is also desirable. Furthermore, a

non-recursive definition of the numerator tensors could be of interest. Finally, it could

be fun to find combinatorial proofs of any of the Chapter 6 lemmas which we proved by

induction.

Separately, a solution to the lattice path problem presented in Appendix A is another

avenue of exploration.

In conclusion, considering the non-dual RLWE problem leads to an array of fascinat-

ing problems: not only in cryptography, but in matrix theory, polynomial theory, and

combinatorics, all with varying degrees of relevance to the post quantum problem itself.

When we started work on this thesis, we did not expect it to end in Fibonacci numbers.

We are excited to see what other mathematical results and problems the post-quantum

quest brings to the world in the next many years.
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Chapter 9

Appendix A: An Exercise for the

Reader

While the permutation argument in Chapter 4 suffices to prove the determinant of the

tridiagonal matrix, an attempt using an ultimately less successful method leads to an

interesting question in enumerative combinatorics and a possible connection to spectral

graph theory. Thus we outline that attempt here.

We begin as above, calculating the Schur-Cohn matrix C for xn − x − 1 as in Chapter

4; recall this is the 0,−1 matrix that is nearly tridiagonal. Now, instead of calculating

the minor sequence of C to obtain the signature and ultimately the number of roots

inside the unit circle, we attempt to calculate the characteristic polynomial p and use

the Decartes Sign Rule or a similar technique to identify the number of its positive and

negative roots. Our thought was that this would avoid the problem of finding the leading

minors of the Schur-Cohn matrix. However, we were ultimately less successful with the

characteristic polynomial approach, though it did raise some an interesting combinatorics

question separate from the k-Fibonacci case already considered.

Proposition 21 ([22]). The eigenvalues of a matrix M are the roots of its characteristic

polynomial pM(x).

Thus, we have reduced the problem of finding the signature of M to the problem of

finding the number of positive and negative roots of the polynomial pM(x). Since there

are many techniques for finding the parity of roots—for instance, Sturm’s Theorem or the

Descartes Sign Rule—if pM(x) happens to be easy to construct, this might be a better

approach to the signature problem than calculating the Schur-Cohn minors.
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So, how do we construct pm(x)? Recall that

pM(x) =
n∑
k=0

xn−k(−1)ktr(ΛkM),

where

tr(ΛkM) =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

trM k − 1 0 · · ·
trA2 trM k − 2 · · ·

...
...

. . .
...

trMk−1 trMk−2 · · · 1

trMk trMk−1 · · · trM

∣∣∣∣∣∣∣∣∣∣∣∣∣
So we must first construct the powers of the matrix C, or at least find their diagonals,

as a first step to calculating the characteristic polynomial.

One way to find these diagonal powers is to use the following result from graph theory.

Note that we can view C as the adjacency matrix of a graph G, where we view a −1

in location i, j as an edge between i and j, and 0 as no edge. Since C is symmetric,

the graph is undirected. G looks like this, where more looped nodes could appear in the

dotted line areas.

H

A

B C

E

F

Figure 9.1: The graph G. We wish to count the number of length k closed walks from
each vertex.

Then recall the following result.

Proposition 22 ([22]). The i, j entry of the kth power of the adjacency matrix of a graph
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gives the number of walks of length k between vertices i and j.

Thus, to find the i, i entry of Ck, we would have to count the number of length k closed

walks starting and ending at each vertex of the graph which has C as its adjacency

matrix.

Label the vertices as follows: let v0 be the leftmost vertex which has no loop, v1 as the

rightmost vertex with no loop, and proceed to label in counterclockwise order. (This

ordering is without loss of generality; other orders simply change the indexing.) Label

a clockwise step with a −1, a counterclockwise step with a 1, and staying on a vertex

(taking a loop) as 0. Viewed in this way, the definition immediately recalls the idea of a

lattice path from combinatorics.

Definition 29 ([35]). A lattice path L in Zd of length k with steps in S is a sequence

v0, v1, . . . , vk ∈ Zd such that each consecutive difference vi − vi−1 lies inS.

Since we allow 3 steps, we wish to count a lattice path variant known as a grand Motzkin

path.

Definition 30. A grand Motzkin path of length n is a lattice path on Z×Z whose steps

are U = (1, 1), D = (1,−1), H = (1, 0) beginning at (0, 0) and ending at (0, n).

We associate a counterclockwise move on G with U , a clockwise move with D, and a loop

with H. Thus, the problem statement, which would give us the number of closed walks

on G and starting at each vertex and thus the trace of Ck for all k, is the following.

Problem 6. How many grand Motzkin paths of length k have horizontal steps that do

not occur at location y = 0 or y = 1? Or in general, some i and i+1, for any 0 ≤ i ≤ n−1
2

?

Example 33. The total number of grand Motzkin paths of this form (i.e., with no

horizontal step restriction) is

∑
0≤i≤bk/2c

(
k

i, i, k − 2i

)
.

These are the central trinomial coefficients, which are the largest coefficient of (1+x+x2)n.

This sequence begins 1, 1, 3, 7, 19, 51, 141, 393 and is number A002426.

As an example, we constructed the first few powers of the n = 20 adjacency matrix in

Sage. Since G is symmetric, we only display up to k = 10 for each power, as the second

half is always the same.
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Neither this triangle nor its subsequences appear to be catalogued in the OEIS.

Table 9.1: Number of length n closed walks on the graph G with 20 nodes for each
vertex k.

n/k 1 2 3 4 5 6 7 8 9 10

0 0 1 1 1 1 1 1 1 1 1

1 2 3 3 3 3 3 3 3 3 3

2 1 6 7 7 7 7 7 7 7 7

3 7 16 19 19 19 19 19 19 19 19

4 9 38 50 51 51 51 51 51 51 51

5 33 100 136 141 141 141 141 141 141 141

6 65 255 369 392 393 393 393 393 393 393

7 191 677 1013 1107 1107 1107 1107 1107 1107 1107

8 454 1789 3100 3138 3139 3139 3139 3139 3139 3139

9 1248 4813 7720 8774 8944 8953 8953 8953 8953 8953

Of course, there are many problems with the graph approach as a potential method for

solving the root location problem. To start, once we solve the path problem, we have to

take the determinant of the matrix in equation 9, and the way to do that is not apparent.

Furthermore, there is the matter of generalization to the xn + axm + b case, which we

have not yet considered with this method.
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Chapter 10

Appendix B: Code

Here we present the Sage code for the two tasks we thought would be of most interest.

This method constructs the generalized Pascal triangle for given n and k, which we

conjecture to count the total number of fixed points in all length n k-drop permutations.

import numpy as np

var(’x’)

def fib_indices(n,k):

"""calculates the product and returns which fibonacci

generating functions we need to be using"""

inds=[floor((n+i)/(k)+1) for i in range(k)]

return inds

def fib_diags(n):

"""calculates the tuple of coefficients for the k=1 case"""

return [binomial(n-i,i) for i in range(0,floor(n/2)+1)]

def fib_poly(diag_list):

"""returns the polynomial given coefficients"""

return sum([diag_list[i]*x^i for i in range(len(diag_list))])
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def construct_multiplier(n,length):

"""constructs the even/odd multipliers to take the dot product"""

return [n-2*i for i in range(length)]

def create_poly(n,k):

"""builds the polynomial P_(n,k) from the building blocks"""

poly_list=[]

if k==1:

inds=fib_indices(n,k)

poly_list.append(fib_poly(fib_diags(n)))

else:

inds=fib_indices(n,k)

for i in range(len(inds)):

poly_list.append(fib_poly(fib_diags(inds[i]-k+1)))

coef_list=np.prod(poly_list).expand().coefficients()

simple_list=[elem[0] for elem in coef_list]

return simple_list

#to see the first 30 rows of the k=4 layer:

for i in range(5,30):

print i,create_poly(i,4)

print

The following method constructs the k-Fibonacci generating function for given k. This is

a toy implementation. As k of the k-Fibonacci numbers increases, the coefficients of both

the tensor and the denominator quickly become quite large, and numerical considerations

may have to be taken into account for a full scale implementation. That said, Sage will

display the generating functions using this code at least until k = 15 with no additional

work; recall the current literature only has k ≤ 6.

import numpy as np

def fib_ind(n,k):

"""calculates the product and returns which fibonacci
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generating functions we need to be using"""

inds=[floor((n+i)/(k)+1) for i in range(k)]

return inds

def kfib(n,k):

return np.prod([fibonacci(i) for i in fib_ind(n,k)])

def fibonomial(n,k):

return np.prod([fibonacci(n-i+1) for i in range(1,k+1)])/...

(np.prod([fibonacci(i+1) for i in range(1,k)]))

def sfibonomial(n,k):

"""signed fibonomials"""

return (-1)^(floor(k/2))*np.prod([fibonacci(n-i+1) for i in...

range(1,k+1)])

(np.prod([fibonacci(i+1) for i in range(1,k)]))

def N(a,b,c):

"""the numerator tensors """

if b>a:

return 0

if b==c==0:

return 1

if b==1:

return 0

if c==0:

if b>a:

return 0

else:

return -1

else:

if b==0:

return -((-1)^(c+1)*kfib(c*(a-1)+2-2,a-1)-...

sum([(-1)^j*fibonomial(a+j-1,j)*(N(a,2,c-j)) ...

for j in range(1,c+1)]))
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else:

return (-1)^(c+1)*kfib(c*(a-1)+b-2,a-1)-...

sum([(-1)^j*fibonomial(a+j-1,j)*(N(a,b,c-j))...

for j in range(1,c+1)])

#the whole generating function

def make_gfun(k):

dim=k*(k-1)

denom=sum([int(sfibonomial(k-1,i))*x^(i*k) for i in range(0,k)])

ind=0 #keeping track of the numerator powers

num=0

for i in range(0,k-2): #layer

for j in range(k): #column

num=num+sum([int(N(k-1,j,i))*x^(ind)])

ind=ind+1

return num/(denom*(1-x-x^2))

#to get the generating function for k=7:

make_gfun(7)

#to expand and obtain first 50 coefficients of the series:

taylor(make_gfun(7),x,0,50)
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