
ABSTRACT

COSS, OWEN T. Analyzing the Equilibria of Coupled Oscillators: Finding, Stability of, and Counting
Equilibria for the Generalized Kuramoto Model. (Under the direction of Hoon Hong.)

Systems of coupled oscillators are prevalent throughout nature and engineering. These systems

often exhibit complex synchronization phenomena and thus can be difficult to model. The most

popular models for such systems are the Kuramoto model and its nonuniform coupling generaliza-

tion that uses a symmetric matrix to describe the coupling. Studying the equilibria of these models

yields insights into the synchronization behavior of systems of coupled oscillators.

This paper examines the equilibria in three ways. First, methods are presented that find all of

the equilibria or classify the structure of all of the equilibria. Second, the stabilities of the equilibria

are studied. Third, upper bounds for the maximum number of equilibria are proved. This paper

is organized around these three topics for a few different cases of the Kuramoto model and its

generalized version which are as follows.

In the case where the oscillators are identical and coupled uniformly, the equilibria can be

classified into two sets, balanced and unbalanced. Moreover, one can find all of the eigenvalues

related to each equilibrium which shows that only one equilibrium is stable. For a system with two

or three oscillators, there is a finite number of equilibria, but a system with four or more oscillators

has an infinite number of equilibria. When there are four oscillators, all of the equilibria reside in a

finite number of connected components, and systems with five or more oscillators are conjectured

to also have a finite number of connected components of equilibria.

The next case considered is the generalized Kuramoto model where the coupling is described

by a symmetric rank one matrix. When the oscillators are identical, the equilibria can again be

classified into two groups, balanced and unbalanced, and again only one equilibrium is stable.

In the case where the oscillators are instead not uniform, an efficient algorithm is provided that

computes all of the equilibria. Moreover, in experiments it compares favorably to other methods

used to compute all the equilibria. This algorithm is used to show that generically there is a unique

stable equilibrium for this case. It also provides a tighter upper bound on the number of equilibria

than previously known.

Lastly, the techniques used for the rank one coupling case are applied to the generalized Ku-

ramoto model where the coupling is described by a symmetric matrix of arbitrary rank. This provides

an algorithm for finding all the equilibria with an efficiency that scales with the rank of the coupling

matrix. This algorithm can also be used to more efficiently find only the stable equilibria provided

the coupling matrix is positive semidefinite.

Two appendices are also provided. The first provides code examples implementing the equilib-

rium finding algorithms. The second shows that the methods used for the arbitrary rank case can

also be applied on an even more general version of the Kuramoto model that includes a loss term to

create an algorithm that finds all the equilibria. This is a potential topic for future research.
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CHAPTER

1

INTRODUCTION

Systems of coupled oscillators are common throughout nature and engineering. In fact, anything

that continuously cycles through a fixed set of states or positions can be considered an oscillator.

For example, fireflies that periodically flash, alternating current electricity, and metronomes are

all oscillators. Often many such oscillators are coupled together, which means that the state of

one oscillator can influence the speed of the oscillations of other oscillators in the group. In such

situations, synchronization often occurs among the members. A common example is that a group

of fireflies when left undisturbed in a forest will after a time start flashing nearly in unison [22]. In

another example, if multiple metronomes are placed on a table which is allowed to sway, then the

beat of each metronome will synchronize after a short time [44].

Because of the wide spread nature of such synchronization phenomena, it is important to have

useful models so that this behavior can be studied. The most popular and successful model of this

type is the Kuramoto model. This paper deals with three areas related to this model. First, methods

of finding all the equilibria of the model or of classifying all the equilibria are examined in various

situations. Second, stability properties of these equilibria are analyzed. And third, upper bounds on

the number of equilibria are proved.

This paper is organized as follows. The remainder of Chapter one explains the Kuramoto model

and a generalized variant, as well as explaining the terminology associated with the model. It also

reviews previous results that will be needed in proofs in later chapters and reviews the results that

compare to those presented in this paper.

Chapters two through five examine different cases of the model and its matrix coupling gen-

eralization. Specifically, Chapter two examines the original model in the special case where the

oscillators are identical. In this case we can completely characterize all of the equilibria and their

1



associated eigenvalues, and we examine the number of connected components among the set of

all equilibria. Chapters three and four examine the generalized Kuramoto model where the cou-

pling matrix is rank one. Specifically, Chapter three deals with the case where the oscillators are

all identical, whereas Chapter four deals with cases having nonidentical oscillators. When the os-

cillators are identical, there are two types of equilibria, and we show that there is a unique stable

equilibria. In the nonidentical oscillator case, an algorithm is provided which can efficiently find

all of the equilibria. This algorithm is compared to other solving methods and is shown to solve

many examples in significantly less time. Additionally, it is shown that in cases having at least one

equilibria, generically there is a unique stable equilibria. Furthermore, this algorithm can be utilized

to provide a stricter upper bound on the number of solutions for the rank one case than the general

bound from other works. Chapter five utilizes the methods of Chapter four on the generalized model

with arbitrary rank coupling. This again yields an algorithm for finding all the equilibria, though

without further results it is does not offer advantages to other methods of solving. However, when

combined with a restriction that the coupling matrix is positive semidefinite, this algorithm does

offer potential efficiency advantages when used to find just the stable solutions.

There are also two appendices. Appendix A provides two code examples. Fully functioning C++

code is provided that implements the finding algorithms from Chapter four, and prototype Matlab

code is provided that implements the finding algorithm for one case of the arbitrary rank finding

algorithm from Chapter five. Appendix B applies the methods used in Chapter five to a further

generalization of the Kuramoto model that includes a loss term. While it is interesting to note that

the same approach can be applied to that case, practically it offers no meaningful results without

further research.

1.1 The Kuramoto Model

In 1975, Yoshiki Kuramoto presented a model for coupled oscillators and showed some preliminary

results [31]. The model proved to be popular due to hitting the sweet spot between tractability and

effectiveness at modeling the complicated phenomena present in systems of coupled oscillators.

The model, which took on his name, is as follows.

dθu

dt
=ωu −

K

n

n
∑

v=1

sin(θu −θv ) for u = 1, 2, . . . , n (1.1.1)

where n ≥ 2 is the number of oscillators, K > 0 gives the coupling strength, θ (t ) is the phase angles of

the oscillators at time t , andω is the natural frequencies of the oscillators. By using the sine function

on the angle differences, Eq. 1.1.1 models synchronization behavior since oscillators that are “too

fast" will be slowed by the sum of sine terms and oscillators that are “too slow" will accelerate. Figure

1.1 gives a graphical representation of a single oscillator when we picture it as traveling along the

unit circle.

The Kuramoto model has found widespread use in many fields. For example the model or a
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Figure 1.1 Representation of the u th oscillator on the unit circle. θu gives the phase angle andωu gives the
natural frequency of the oscillator.

variant of it has been used for applications in electrical engineering [20, 21, 49], chemistry [3, 32, 43],

physics [44], neurology [34, 47], and economics [27]. One of the most common generalizations allows

for nonuniform coupling among the oscillators by using a coupling matrix K ∈Rn×n
≥0 .

dθu

dt
=ωu −

1

n

n
∑

v=1

Ku v sin(θu −θv ) for u = 1, 2, . . . , n (1.1.2)

Typically the coupling matrix K is taken to be symmetric, but some more recent works have examined

nonsymmetric coupling as well. Throughout the rest of this paper, the term “generalized Kuramoto

model" is referring to this generalization, Eq. 1.1.2, with a symmetric coupling matrix.

1.1.1 Equilibria and the Rotating Reference Frame

Many important questions regarding the behavior of the Kuramoto model involve its equilibria.

Since generally the oscillators in a coupled system will never stop moving, an equilibria in this

context means an arrangement of the oscillators θ (t ) such that

dθ1

d t
= · · ·=

dθn

d t
= E

for some constant E . In other words, a θ (t ) for which all oscillators will have the same frequency.

This is also sometimes referred to as a phase-locked state since the relative difference of the phases

of the oscillators will be unchanging as they continue to rotate.

For such a θ (t ), adding all n equations of Eq. 1.1.2 together gives

n E =
n
∑

u=1

ωu −
1

n

n
∑

u=1

n
∑

v=1

Ku v sin (θu −θv ) =
n
∑

u=1

ωu

Hence

E =
1

n

n
∑

u=1

ωu =: ω̄

3



where ω̄ is the average ofω1,ω2, . . . ,ωn . Thus the equation for an equilibrium becomes

0= ω̄u −
1

n

n
∑

v=1

Ku v sin (θu −θv )

where ω̄u :=ωu−ω̄measures the difference of each oscillator from the average. Note that
n
∑

u=1

ω̄u = 0.

In order to simplify finding an equilibrium, it is thus equivalent to try to find θ (t ) such that

dθ1

dt
= · · ·=

dθn

dt
= 0

with the restriction that
n
∑

u=1

ωu = 0

This technique is referred to as using a rotating reference frame and is how we will define equilibria.

Furthermore, since dθu
dt = 0, we have that θ (t ) is a constant function in this reference frame. Thus

we will drop t and use θ ∈ (−π,π]n . Note also that the same applies to the original Kuramoto model

in Eq. 1.1.1 by letting every entry of the coupling matrix be the same constant.

Example 1.1.1 Suppose three oscillators are coupled together with the natural frequencies of 3.0, 3.1,

and 3.5 respectively. Then we have that ω̄= 1
3 (3.0+3.1+3.5) = 3.2, so we can use the rotating reference

frame by letting

ω= (3.0−3.2, 3.1−3.2, 3.5−3.2) = (−0.2,−0.1, 0.3)

We will use the rotating reference frame to define equilibria and throughout the rest of the paper.

Definition 1.1.2 θ is an equilibrium of Eq. 1.1.2 (or Eq. 1.1.1) under the rotating reference frame if

dθ1

dt
=

dθ2

dt
= · · ·=

dθn

dt
= 0

1.1.2 Orbital Stability

In many applications, understanding the stability properties of an equilibrium is important. Since

even in an equilibrium state the oscillators continue to move, we define stability relative to that

movement. This idea is referred to as orbital stability. Note that if θ is an equilibrium of Eq. 1.1.2 (or

Eq. 1.1.1), again under the assumption that we are using the rotating reference frame described last

section, then any constant shift θ + c = (θ1+ c , θ2+ c , . . . ,θn + c ) for c ∈R is also an equilibrium.

However, since all the differences of phase angles between oscillators are identical for θ and θ + c ,

we can consider these two solutions equivalent “modulo shift." Using this equivalence lets us define

a notion of stability for the Kuramoto model.

Definition 1.1.3 An equilibrium θ of Eq. 1.1.2 (or Eq. 1.1.1) is called orbitally asymptotically stable

if there exists aδ-neighborhood centered atθ such that for anyθ δ(t ) starting within that neighborhood
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there exists a constant c such that

lim
t→∞

‖θ δ(t )− (θ + c )‖= 0

Put simply, an equilibrium θ is stable if after a small perturbation it returns to the same equilibrium

modulo shift. Throughout the rest of the paper, “stable" will be taken to mean orbitally asymptotically

stable.

One approach used in answering typical stability questions is to look at the eigenvalues of

the Jacobian of a system when it is evaluated at an equilibrium. A similar approach works when

considering orbitally stable solutions. Computing the Jacobian J for Eq. 1.1.2 gives

J =−
1

n

















n
∑

v=1

K1v cos(θ1−θv )

...
n
∑

v=1

Kn v cos(θn −θv )

















+
1

n

�

Ku v cos(θu −θv )
�

(u ,v )

It is immediate that the sum of all the columns of J gives the zero vector. Thus J always has a zero

eigenvalue with the associated eigenvalue being the all ones vector. This corresponds to the equiva-

lence of equilibria under shift since adding the same constant amount to each oscillator doesn’t

change the angle differences between oscillators. Thus we can essentially ignore this eigenvalue

and use the remaining n −1 eigenvalues to determine stability. Note also that J is symmetric, so

all the eigenvalues of J are real. If J has n −1 negative eigenvalues at an equilibrium θ , then θ is

orbitally asymptotically stable. Likewise, if J evaluated at an equilibrium has a positive eigenvalue,

then that equilibrium is unstable [9].

1.2 Literature Review

This section reviews results dealing with the Kuramoto model. Because the model has been exten-

sively studied since its inception in 1975 and many variations have been proposed for a wide variety

of applications (e.g., adding in a loss term cos(θu −θv ) or an inertia term d2θu
dt 2 ), only a selection of

the vast number of papers will be covered. The results mentioned are those dealing with similar

variations and questions to those in later chapters.

1.2.1 General Review

In this section a few general results are presented which will be required for proofs in later chapters.

The first Lemma is a result from Chapter 7 of [5] which shows the affects on the eigenvalues of a

matrix upon adding a positive semidefinite matrix to it. This result will be used in several of the

stability results.
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Lemma 1.2.1 Let A, B ∈Rn×n be symmetric matrices with B � 0. Then

λu (A+B )≥λu (A)

where λ1(M ),λ2(M ), . . . ,λn (M ) are the eigenvalues of the matrix M in decreasing order. Moreover, if

B � 0, then the eigenvalues of A+B are strictly greater than those of A.

The proof follows from the Courant-Fischer min-max theorem which is also presented in Chapter 7

of [5].

The next result is from [1] and gives a method to factor a determinant with a particular form. It

will be used in the rank one stability results.

Lemma 1.2.2 Let A be an n ×n matrix and let b and c be n dimensional column vectors. Then

det
�

A+ b b T+ c c T
�

= det(A)
�

�

1+ b TA−1b
� �

1+ c TA−1c
�

−
�

c TA−1b
�2�

Proof. Define the matrix

M :=







1 −b T 0

b A −c

0 c T 1







Using elementary row and column operations on M , it is possible to convert it into two different

lower triangular matrices M1 and M2.

M1 :=







1 0 0

b A+ b b T+ c c T 0

0 c T 1







M2 :=







1+ b TA−1b 0 0

b A 0

0 c T 1− c TA−1
�

b b TA−1c
1+b TA−1b − c

�







Using the fact that det(M1) = det(M2) gives the result.

The main stability result in the arbitrary rank case relies on the Hadamard product of two

matrices and the Schur Product Theorem which was first proven in [46].

Definition 1.2.3 Let A, B ∈Cm×n . Then the Hadamard Product of A and B , denoted A◦B , is defined

by [A ◦B ]u v = Au v Bu v for all 1≤ u ≤m, 1≤ v ≤ n.

Theorem 1.2.4 (Schur Product Theorem) If A and B are square matrices of the same dimensions,

then A, B � 0 imples that A ◦B � 0.

Proof. Suppose A, B ∈ Cn×n with A, B � 0. Since A and B must be Hermitian matrices, we can
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decompose them as

A =
n
∑

u=1

λu au a ∗u B =
n
∑

u=1

µu bu b ∗u

where ∗ is the conjugate transpose operator, λ is the set of eigenvalues of A and µ is the set of

eigenvalues of B . Then we have that

A ◦B =
n
∑

u=1

n
∑

v=1

λuµv (au a ∗u ) ◦ (bv b ∗v )

=
n
∑

u=1

n
∑

v=1

λuµv (au ◦ bv )(au ◦ bv )
∗

Since λuµv ≥ 0 for any u and v , each term of the sum is positive semidefinite, so A ◦B is positive

semidefinite.

1.2.2 Finding

One of the major questions arising from the Kuramoto model is how to find all the equilibria. Yoshiki

Kuramoto analyzed this question in his original paper on the model [31] and in his follow up work

[32]. He introduced the order parameters r andψwhich satisfied the relation

r e iψ =
1

n

n
∑

v=1

e iθv

where i :=
p
−1. With these new variables, the model equations can be decoupled as

dθu

dt
=ωu +K r sin(ψ−θu )

By taking the limit as n→∞, and assuming a probability density onω, he showed that equilibria

exist as long as K is large enough, i.e., as long as the coupling is strong enough. The value for K at

which equilibria are possible is called the critical coupling strength and is often denoted Kc . Many

works since have focused on finding approximations and bounds on Kc . The paper by Dörfler and

Bullo [19] summarizes many of these prior results and presents an explicit necessary and sufficient

condition for the existence of equilibria.

In situations where the coupling is strong enough to admit solutions to the model, a few different

approaches have been used to find all the equilibria. By using the trigonometric identity

sin(θu −θv ) = sin(θu )cos(θv )− cos(θu )sin(θv )

one can transform the original model into a polynomial system. Combined with the rotating refer-
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ence frame explained in Section 1.1.1, the system for the equilibria is











0=ωu −
K

n

n
∑

v=1

su cv − cu sv

1= s 2
u + c 2

u

for u = 1, 2, . . . , n (1.2.1)

This polynomial reformulation allows the use of standard algebraic geometry techniques such as

resultants and Gröbner bases [7, 16, 17, 36]. However, these techniques scale very poorly as n grows.

A typical example with n = 11 may take 40 hours to solve. Nonetheless, efficiency improvements

have been made in some cases such as by using sparse elimination theory [48]. The Kuramoto model

can also be rewritten in terms of Laurent polynomials by using xu = e iθu in which case the equilibria

conditions become

0=ωu −
K

2ni

n
∑

v=1

�

xu

xv
−

xv

xu

�

for u = 1, 2, . . . , n

This reformulation allows for certain sparse resultant methods to be used [8]. Focusing on a special

case of the generalized model where the coupling matrix K is a tree network also allows for improved

efficiency [10].

An alternate way to compute all of the equilibria using elliptical continuation was introduced

in [35] which can be used on a more general class of models called the power-flow equations. It

offers significant performance advantages compared to the previously mentioned techniques with

a typical example having n = 18 taking 50 hours. (Due to the exponentially bad scaling of the above

algebraic geometry techniques, a general case with n > 12 can not realistically be solved with them.)

Furthermore, elliptical continuation scales with the number of real solutions to the polynomial

system, i.e., equilibria, rather than n , so a case that has n = 60 but only two equilibria can be solved

in 90 minutes. However, it was shown that this method did not always find all of the equilibria [40].

An improved version was created in [33] that handled the known counter-examples of the original,

but it is not known whether this version is guaranteed to find all of the equilibria.

A third approach to find the equilibria is to use homotopy continuation methods. Optimizations

for the more general class of models called the power flow equations was done in 1989 [45]. Later the

numerical polynomial homotopy continuation (NPHC) method was also applied to the power flow

equations [39]. A typical example with n = 18 may take 3 hours to solve. This is significantly faster

than the other methods, however this approach does find all complex solutions to a polynomial

reformulation of the Kuramoto model and then filters out the non-real solutions, so it also scales

poorly with n . Currently a system with n in the lower twenties is the realistic limit for this approach

as it now stands.

Many applications are interested in situations were the number of oscillators could be in the

hundreds. Thus an important area of research is to continue to find more efficient algorithms for

computing all the equilibria. Since many applications are expected to have relatively few equilibria,

methods similar to elliptical continuation that scale with the number of equilibria instead of n are
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likely going to be most effective.

1.2.3 Stability

Many applications are concerned with the stability properties of the equilibria of the Kuramoto

model and whether or not there is a unique stable solution (in the orbitally stable sense). It was

shown as early as 1972, prior to the formulation of the Kuramoto model in 1975, that the load-flow

problem, a more general system of equations, could have multiple stable solutions [29]. Thus one

approach is to find conditions under which existence or uniqueness properties hold, or conditions

under which desirable properties of the stable equilibria are created. In one such approach, it was

shown for the Kuramoto model that if the coupling was strictly greater than the critical coupling

value, there is a unique stable solution [1]. Another work showed that the identical oscillator case,

i.e., the case whereω= ~0 using the rotating reference frame, always has the globally asymptotically

stable solution θ = ~0 [28]. Other works have studied the impact of the parameters K andω on the

solution space, such as [37]which examines the n = 2,3,4 cases and shows the affects of the size

of K on stability of the equilibria. Similarly, [6] characterizes the set ofω values that admit stable

equilibria and show that it is convex. A plot from this paper of the solutions by index when n = 3

is reproduced in Figure 1.2. Other works such as [14] look at asymptotically stable equilibria and

consider the rate of approach.

Figure 1.2 Plot of the index of equilibria when n = 3. The lighter central region contains the stable solu-
tions, the pale blue region contains the solutions with index 1 Jacobian, and the purple regions contain the
solutions with index 2 Jacobian. This plot is taken from [6].

Stability properties of generalizations of the Kuramoto model have also been studied. In [20],

the authors consider the generalized Kuramoto model with non-identical coupling and provide a

sufficient coupling strength condition for any arrangement of oscillators contained within a given

arc to asymptotically approach a stable equilibrium. A parameter homotopy method was used in [38]
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to experimentally find counterexamples to a few conjectures, and it also showed that multiple stable

equilibria can exist in cyclic coupling situations. More exotic generalizations where the coupling is

asymmetric or directed have also been studied. For instance [18] characterized the equilibria on

acyclic oriented networks and oriented cyclic networks to show that if a stable equilibrium exists, it

is unique. Overall, the number of stable equilibria depends heavily on the structure of the coupling.

1.2.4 Counting

A third topic of research is finding the maximum number of equilibria for the Kuramoto model.

Applying the Bézout bound to the polynomial version of the Kuramoto model (see Eq. 1.2.1) gives

an upper bound of 4n−1 on the number of complex solutions. Thus the equilibria, which correspond

to the number of real solutions, are also bounded by 4n−1. In 1982 Baillieul and Byrnes provided a

tighter general upper bound [2]:
�

2n −2

n −2

�

≈
4n−1

p

π(n −1)

When n = 2 or n = 3 it is possible to construct examples that show this bound is tight. For example

[26] sampled the solution space in an n = 3 case to graph the boundary curves between regions

having different numbers of solutions. A color reproduction of this graph is provided in Figure 1.3.

When n = 4, tighter bounds have been found. It was shown in [41] that the power flow equations, a

more general system of equations containing the Kuramoto model, has at most 16 real solutions

provided one of the parameters is near zero, and examples are given which obtain this bound. In

[50], again with n = 4, it is shown that the number of distinct real solutions for the Kuramoto model

is at most 14 and provides examples that have 10 distinct real solutions.

Figure 1.3 Regions based on the number of equilibria when n = 3 and K = 1. This graph is taken from [26].
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Another approach used on the generalized Kuramoto model is to consider topology dependent

bounds. In other words, one can interpret the coupling matrix K as a graph and determine bounds

based on the structure of K . One of the more common ways used is to find the Bernstein-Khovanskii-

Kushnirenko (BKK) bound on the polynomial version of the Kuramoto model (see Eq. 1.2.1) where K

is replaced with a coupling matrix. A similar idea is used in [11]where the authors use the topology to

construct an adjacency polytope which can be used to more tightly bound the number of solutions.

Table 1.1 shows a comparison of the bounds from this method in two example network topologies in

comparison to the Baillieul-Byrnes bound. One can also rewrite the Kuramoto model as a polynomial

system similar to the Laurent polynomial version mentioned previously. Namely, by letting xu = e iθu

and yu = e −iθu , the equations for the equilibria using the rotating reference frame can be rewritten

as











0=ωu −
n
∑

v=1

Ku v

ni

�

xu yv − xv yu

�

1= xu yu

for u = 1, 2, . . . , n (1.2.2)

This reformulation was used in [12] and it was shown that the BKK bound on this polynomial system

improved on the BKK bound used on the typical polynomial version of the Kuramoto model in

Eq. 1.2.1. A comparison of the two BKK bounds and the Baillieul-Byrnes bound is shown in Table

1.2. Another result in [13] uses the invariant intersection index to show that tree networks have an

upper bound of 2n−1 and cycle networks have a bound of n
� n−1
b(n−1)/2c

�

. It is still an open question to

find a tight bound for the generalized Kuramoto model for any topology of the coupling network.

Table 1.1 Comparison of bounds from [11] for various values of n . “Path AP" is the bound computed using
the adjacency polytope on a path network graph, “Ring AP" is the bound computed using the adjacency
polytope on a ring network graph, and “BB" is the Baillieul-Byrnes bound

�2n−2
n−1

�

.

Bound \n 4 5 6 7 8 9 10 11 12
Path AP 8 16 32 64 128 256 512 1024 2048
Ring AP 16 40 96 224 512 1152 2560 5632 12288
BB 20 70 252 924 3432 12870 48620 184756 705432
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Table 1.2 Comparison of bounds on path and ring networks from [12] for various values of n . “BKK 1" is
the BKK bound computed using Eq. 1.2.2, “BKK 2" is the BKK bound computed using the typical polyno-
mial version of the Kuramoto model similar to Eq. 1.2.1, and “BB" is the Baillieul-Byrnes bound

�2n−2
n−1

�

.

Bound \n 4 5 6 7 8 9 10 11 12
Path BBK 1 8 16 32 64 128 256 512 1024 2048
Path BBK 2 24 80 256 832 2688 8704 28160 91136 294912

Ring BBK 1 12 30 60 140 280 630 1260 2772 5544
Ring BBK 2 24 80 256 832 2688 8704 28160 91136 294912

BB 20 70 252 924 3432 12870 48620 184756 705432
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CHAPTER

2

UNIFORM COUPLING WITH IDENTICAL

OSCILLATORS

The Kuramoto model with uniform all-to-all coupling is

dθu

dt
=ωu −

K

n

n
∑

v=1

sin(θu −θv ) for u = 1, 2, . . . , n (2.0.1)

where n ≥ 2 is the number of oscillators, K > 0 is the coupling strength, θ is the phase angles of the

oscillators, andω is the natural frequencies of the oscillators. This chapter will focus on the case

where the oscillators are identical, i.e., whenω1 =ω2 = · · ·=ωn . Using the rotating reference frame

discussed in Section 1.1.1, this is equivalent to the case whereωu = 0 and dθu
dt = 0 for every u . Thus

the equations to solve to find the equilibria simplifies to

0=
K

n

n
∑

v=1

sin (θu −θv ) for u = 1, 2, . . . , n (2.0.2)

2.1 Finding

Note that if θ is a solution to Eq. 2.0.1, then θ + c is also a solution for any constant c . Thus, two

solutions are called equivalent modulo shift if each component-wise difference is the same modulo

2π. In order to choose a representative, an output condition for θ ∈ (−π,π]n is given below so that

only one of these equivalent solutions is chosen.

13



OC:
n
∑

u=1

e iθu ∈R+ or

�

n
∑

u=1

e iθu = 0 and θ1 = 0

�

This choice of representative has a physical interpretation. If weights with masses given by K are

placed on the unit circle in C at angles given by θ , then this choice of representative is the rotation

where the center of mass lies on the positive real axis. This choice is always possible and unique

provided that the center of mass is not exactly on the origin. In that situation, instead the first

oscillator will be fixed to have a phase angle of zero.

Definition 2.1.1 Let ΘK be the set of solutions to Eq. 2.0.2 modulo shift. In other words,

ΘK :=

¨

θ ∈ (−π,π]n : ∀
u

0=
K

n

n
∑

v=1

sin(θu −θv ) ∧ OC

«

Note that U is the unit circle in C. In other words, U := {z ∈ C: |z | = 1}. We can perform a

convenient transformation on ΘK and break it into two disjoint sets that characterize the equilibria.

Theorem 2.1.2 Let

f :
�

[θ1, . . . ,θn ]
T
�

7−→
�

e iθ1 , . . . , e iθn
�T

.

Then we have

1. f |ΘK
is injective.

2. f (ΘK ) =ΦK ,unbalanced ] ΦK ,balanced where

ΦK ,unbalanced :=

¨

φ ∈ {−1,+1}n :
n
∑

u=1

φu > 0

«

ΦK ,balanced :=

¨

φ ∈Un :
n
∑

u=1

φu = 0 ∧ φ1 = 1

«

Proof. Let r :=
1

n

n
∑

u=1

φu where φu := e iθu . Note that z ∗ denotes the complex conjugate of z . We

have that

f (ΘK ) =

¨

f (θ ) : ∀
u

0=
K

n

n
∑

v=1

sin(θu −θv ) ∧ OC

«

=

¨

f (θ ) : ∀
u

0=
K

n

n
∑

v=1

Im
�

e i (θu−θv )
�

∧ OC

«

=

¨

φ ∈Un : ∀
u

0=
K

n

n
∑

v=1

Im
�

φuφ
∗
v

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

«

=

¨

φ ∈Un : ∀
u

0= K Im

�

1

n

n
∑

v=1

φuφ
∗
v

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

«
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=

¨

φ ∈Un : ∀
u

0= Im

�

φu
1

n

n
∑

v=1

φ∗v

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

«

=
n

φ ∈Un : ∀
u

0= Im
�

φu r ∗
�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

o

=
n

φ ∈Un : ∀
u

0= Im(φu ) ∧ r ∈R+
o

]
�

φ ∈Un : r = 0 ∧ φ1 = 1
	

=ΦK ,unbalanced ] ΦK ,balanced

Corollary 2.1.3 Forφ ∈ΦK ,unbalanced ] ΦK ,balanced, we have that

f −1(φ) =
�

arg(φ1), arg(φ2), . . . , arg(φn )
�T ∈ΘK

2.2 Stability

In this section we will examine all of the eigenvalues of the equilibria and show that there is one

stable equilbirium (in the orbitally stable sense; see Section 1.1.2 for a discussion of orbital stability).

Let J be the Jacobian for Eq. 2.0.1. A straightforward calculation gives

J =−
K

n

















n
∑

v=1

cos(θ1−θv )

...
n
∑

v=1

cos(θn −θv )

















+
K

n

�

cos(θu −θv )

�

(u ,v )

(2.2.1)

Lemma 2.2.1 The Jacobian matrix has a zero eigenvalue.

Proof. It is immediate from Eq. 2.2.1 that the sum of all the columns of J is zero. Therefore the all

ones vector is an eigenvector with the corresponding eigenvalue of zero.

The all ones eigenvector corresponds to the invariance under shift of the Kuramoto model.

Adding the same amount to every phase angle does not change the differences, so we will ignore it

when defining stability for the Kuramoto model. Also note that since J is a real symmetric matrix,

all the eigenvalues are real. Thus if J evaluated at an equilibrium has n −1 negative eigenvalues,

then that equilibrium is stable. Likewise, if J has a positive eigenvalue, then that equilibrium cannot

be stable [9].

Remark 2.2.2 For convenience, we will refer to φ ∈ ΦK ,unbalanced ] ΦK ,balanced as stable if the corre-

sponding θ = f −1(φ) is stable.

Note that if θ ∈ΘK , then θ ′ ∈ΘK where θ ′ is a permutation of θ . Thus we would like to consider

only one permutation of a solution when determining the stability. The following Lemma shows

that this is valid since all permutations of a solution share the same eigenvalues.
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Lemma 2.2.3 Let θ ′ be a permutation of θ . Then the eigenvalues of the Jacobian for θ are the same

as those for θ ′.

Proof. Let p ∈ Sn be a permutation and let θ ′ = (θp1
,θp2

, . . . ,θpn
). Let J be the Jacobian matrix given

in Eq. 2.2.1 using θ and J ′ be the Jacobian matrix given in Eq. 2.2.1 using θ ′. Let P be the n ×n

permutation matrix that corresponds with p . Then we have that

J ′ = P J P −1

Therefore J and J ′ have the same eigenvalues.

It is convenient for the proof later to convert the Jacobian into the same variables as the previous

section used.

Lemma 2.2.4 Let

φu := e iθu r :=
1

n

n
∑

u=1

φu

Then

J =−K







Re
�

φ1r ?
�

...

Re
�

φn r ?
�






+

K

n







Re(φ1) Im(φ1)
...

...

Re(φn ) Im(φn )







�

Re(φ1) · · · Re(φn )

Im(φ1) · · · Im(φn )

�

Proof. Applying the change of variables to Eq. 2.2.1 gives

J =−
K

n

















Re

�

n
∑

v=1

φ1φ
?
v

�

...

Re

�

n
∑

v=1

φnφ
?
v

�

















+
K

n

�

Re(φuφ
?
v )

�

(u ,v )

=−K







Re
�

φ1r ?
�

...

Re
�

φn r ?
�






+

K

n

�

Re(φuφ
?
v )

�

(u ,v )

Furthermore, note that the second matrix in the sum above can be factored.

J =−K







Re
�

φ1r ?
�

...

Re
�

φn r ?
�






+

K

n







Re(φ1) Im(φ1)
...

...

Re(φn ) Im(φn )







�

Re(φ1) · · · Re(φn )

Im(φ1) · · · Im(φn )

�
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Remark 2.2.5 This factorization of J can easily be done prior to the change of variable, i.e., on

Eq. 2.2.1, with trigonometric identities, and that factorization is used in [1] and [6].

Using Lemmas 2.2.3 and 2.2.4, we can find the eigenvalues for all the equilibria.

Theorem 2.2.6 Let ΦK ,unbalanced and ΦK ,balanced be as in Theorem 2.1.2.

• ΦK ,unbalanced :=

¨

φ ∈ {−1,+1}n :
n
∑

u=1

φu > 0

«

Let p be the number of+1s inφ and m be the number of−1s inφ. Hence p >m. The eigenvalues

for anyφ ∈ΦK ,unbalanced are as follows.

◦ λ= ( −K , . . . ,−K
︸ ︷︷ ︸

n−1

, 0) if m = 0.

◦ λ= (−d , . . . ,−d
︸ ︷︷ ︸

p−1

, 0, d , . . . , d
︸ ︷︷ ︸

m−1

, K ) where d = p−m
n K if m > 0.

• ΦK ,balanced :=

¨

φ ∈Un :
n
∑

u=1

φu = 0 ∧ φ1 = 1

«

The eigenvalues for anyφ ∈ΦK ,balanced are as follows:

◦ λ= ( 0, . . . , 0
︸ ︷︷ ︸

n−1

, K ) if n is even andφ is any permutation of ( 1, . . . , 1
︸ ︷︷ ︸

n
2

, −1, . . . ,−1
︸ ︷︷ ︸

n
2

)withφ1 = 1.

◦ λ= ( 0, . . . , 0
︸ ︷︷ ︸

n−2

, a , K −a ) otherwise where

a :=
K

2

 

1−

√

√

√1−
4

n 2

∑

1≤u<v≤n

Im
�

φuφ
∗
v

�2

!

Remark 2.2.7 The fact that θ = (0, . . . , 0), which corresponds toφ = (1, . . . , 1), is the only stable solution

was previously shown in [1]. Moreover, stability properties of this equilibrium have been examined in

[28].

Proof. We will consider ΦK ,unbalanced and ΦK ,balanced separately.

• ΦK ,unbalanced

First, consider the case φ = (1, . . . ,1). Using r :=
1

n

n
∑

u=1

φu gives r = 1 and the Jacobian from

Lemma 2.2.4 becomes

J =
K

n

















−n +1 1 1 · · · 1

1 −n +1 1 · · · 1
...

...
...

1 · · · 1 −n +1 1

1 · · · 1 1 −n +1
















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This matrix has the n eigenvectors























−1

1

0

0
...

0























,























−1

0

1

0
...

0























, . . . ,























−1

0

0
...

0

1























, and













1

1
...

1













,

with the corresponding eigenvalues −K ,−K , . . . ,−K , 0.

The other equilibria when converted toφ are some mixes of+1 and−1. Let p be the number of

+1s and m be the number of −1s. By choosing the representative so that r ∈R+, only the cases

with p >m need to be considered. Up to index permutations, all the equilibria have the form

φ = ( 1, . . . , 1
︸ ︷︷ ︸

p

, −1, . . . ,−1
︸ ︷︷ ︸

m

). Furthermore, r = ∆n where ∆ := p −m . Substituting these values

into the Jacobian from Lemma 2.2.4 gives the following. (Note that the upper left submatrix is

p ×p and the lower right submatrix is m ×m .)

J =
K

n























−∆+1 1
... −1

1 −∆+1

∆+1 1

−1
...

1 ∆+1























This results in four groups of eigenvectors as follows. (Note that the top section of each of the

following eigenvectors have p elements, the bottom sections have m elements, and that ~0

represents a column of zeros of the appropriate size.)

◦



























−1

1

0

0
...

0

~0



























,



























−1

0

1

0
...

0

~0



























, . . . ,



























−1

0

0
...

0

1

~0



























give p −1 copies of the eigenvalue −∆n K .

◦







1
...

1






gives the eigenvalue 0.
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◦



























~0

1

−1

0

0
...

0



























,



























~0

1

0

−1

0
...

0



























, . . . ,



























~0

1

0

0
...

0

−1



























give m −1 copies of the eigenvalue ∆n K .

◦























−m
...

−m

p
...

p























gives the eigenvalue K .

• ΦK ,balanced

Consider the Jacobian from Lemma 2.2.4 for the r = 0 case.

J =
K

n







Re(φ1) Im(φ1)
...

...

Re(φn ) Im(φn )







�

Re(φ1) . . . Re(φn )

Im(φ1) . . . Im(φn )

�

Therefore, J is at most rank 2, so there are at most 2 nonzero eigenvalues. Consider two

subcases on the rank of J .

◦ Rk(J ) = 1

Since φ1 = 1, we must have that Im(φu ) = 0 for all u in order for J to be rank one. The

only possible way up to index permutations for this to occur is for n to be even andφ to

be evenly split between +1 and −1, i.e.,φ = ( 1, . . . , 1
︸ ︷︷ ︸

n
2

, −1, . . . ,−1
︸ ︷︷ ︸

n
2

) so that r = 0. This gives

J =
K

n

�

1 −1

−1 1

�
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where 1 is the n
2 ×

n
2 matrix filled with ones. We have that

K

n

�

1 −1

−1 1

�























−1
...

−1

1
...

1























= K ·























−1
...

−1

1
...

1























Therefore the eigenvalues are n −1 copies of 0 and K.

◦ Rk(J ) = 2

The characteristic polynomial of J is

C (λ) =λn + cn−1λ
n−1+ cn−2λ

n−2

=λn−2(λ2+ cn−1λ+ cn−2)

Furthermore, cn−1 =− tr(J ) =−K and cn−2 is the sum of the 2×2 principal minors of J ,

specifically

cn−2 =
K 2

n 2

∑

1≤u<v≤n

1−Re(φuφ
?
v )

2

=
K 2

n 2

∑

1≤u<v≤n

Im(φuφ
?
v )

2

since |φuφ
?
v |= 1. Moreover, since Rk(J ) = 2, there exists a w such that Im(φw ) 6= 0 and

w 6= 1 since φ1 = 1. Thus Im(φ1φw )2 > 0, so cn−2 > 0. Consider the quadratic factor of

the characteristic polynomial, λ2−K λ+ cn−2. We have

λ=
K ±

p

K 2−4cn−2

2
(2.2.2)

Since cn−2 > 0 and all the roots are real because J is a symmetric real matrix, the two

roots of Eq. 2.2.2 are both positive and sum to K. Therefore the eigenvalues of J are n −2

copies of 0 and the two positive values satisfying Eq. 2.2.2 which have the form a and

K −a where 0< a ≤ K
2 .

Example 2.2.8 Let n = 6 and K = 1. Then Theorem 2.2.6 gives

• ΦK ,unbalanced has three elements up to index permutations, namely

◦ φ = (1, 1, 1, 1, 1, 1)with eigenvalues (−1,−1,−1,−1,−1, 0)
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◦ φ = (1, 1, 1, 1, 1,−1)with eigenvalues
�

− 2
3 ,− 2

3 ,− 2
3 ,− 2

3 , 0, 1
�

◦ φ = (1, 1, 1, 1,−1,−1)with eigenvalues
�

− 1
3 ,− 1

3 ,− 1
3 , 0, 1

3 , 1
�

• ΦK ,balanced has an infinite number of elements. Four examples are

◦ φ(1) = (1, 1, 1,−1,−1,−1)with eigenvalues (0, 0, 0, 0, 0, 1)

◦ φ(2) = (1, 1, e i 2π
3 , e i 2π

3 , e i 4π
3 , e i 4π

3 )with eigenvalues
�

0, 0, 0, 0, 1
2 , 1

2

�

◦ φ(3) = (1, e i , i ,−1, e i (π+1),−i )with eigenvalues
�

0, 0, 0, 0, 1
3 , 2

3

�

◦ φ(4) = (1, e i (α− π3 ), e i (α− π3 ), e i ( 5π
3 −α), e i ( 5π

3 −α), e i 2π
3 ) where α = arccos

�

− 1
4

�

with eigenvalues
�

0, 0, 0, 0, 1
8 , 7

8

�

Figure 2.1 has graphs of these four sample equilibria.

φ(1) φ(2) φ(3) φ(4)

Figure 2.1 The four sample equilibria from ΦK ,balanced in Example 2.2.8. A blue circle represents one oscilla-
tor, green represents two, and red represents three.

2.3 Counting

Using Theorem 2.2.6 also allows us to count the number of equilibria for each index value.

Theorem 2.3.1 Let Nu be the number of equilibria of index u modulo shift. (The index of an equilib-

rium is the number of positive eigenvalues of its associated Jacobian matrix.) Then

N0 = 1 N2 =











0 if n = 2

2 if n = 3

∞ if n ≥ 4

N1 =











1 if n = 2

n if n is odd

n +
�n−1

n/2

�

otherwise

Nu =

¨

0 if 2u ≥ n
�n

u

�

if 2u < n
for u ≥ 3
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Proof. Theorem 2.3.1 follows from Theorem 2.2.6 by grouping equilibria by their indices. We will

consider cases based on n .

• n = 2

The stable equilibriumφ = (1, 1) is the only element of ΦK ,unbalanced. Alsoφ = (1,−1) is the only

element of ΦK ,balanced. Therefore, N0 = 1 and N1 = 1.

• n = 3

ΦK ,unbalanced has the stable equilibrium (1, 1, 1) and the
�3

1

�

index one equilibria of (1, 1,−1) and

its permutations. There is only one way to balance the oscillators up to index permutations,

namely the evenly spaced arrangementφ = (1, e i 2π
3 , e i 4π

3 )which gives two positive eigenval-

ues. Since φ1 = 1 in order to ignore the shift invariance, we have
�2

1

�

index two equilibria in

ΦK ,balanced.

• n ≥ 4

ΦK ,unbalanced contains
�n

u

�

equilibria having index u where u < n
2 . Also, there are infinitely many

equilibria in ΦK ,balanced that have index two. For example, let ζn be the n th root of unity. Then

the last two oscillators can be anywhere on U as long as they are opposite each other,

φ =
�

1,ζn−2,ζ2
n−2, . . . ,ζn−3

n−2,α,−α
�

Note also that balanced arrangements exist for which no subset is an evenly spaced arrange-

ment, such as the fourth example φ(4) from ΦK ,balanced in Example 2.2.8. If n is even, then

there are
�n−1

n/2

�

equilibria having index one in ΦK ,balanced

Combining all these options gives the result.

Since there are infinitely many equilibria of index two even modulo shift, it is helpful to also

consider the number of connected components when all the equilibria are plotted. We will consider

four cases based on the value of n .

n = 2

When n = 2, there are two equilibria modulo shift. θ = (0,0)with the eigenvalues λ= (−K ,0) and

θ = (0,π)with the eigenvalues λ= (0, K ). Graphing these two equilibria with there shift values gives

us two connected components when viewed modulo 2π. A nice way to visualize them in this case is

to graph the two equilibria with their shifts on a torus. Figure 2.2 shows these two representations

and it is clear that there are two connected components.

n = 3

When n = 3, there are six equilibria modulo shift. The only stable equilibria is θ = (0,0,0) and its

shifts. Three of the equilibria have index one, namely (0,0,π), (0,π,0), and (π,0,0) and their shifts.
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Figure 2.2 Two representations of the connected components of the equilibria of Eq. 2.0.1 when n = 2
graphed modulo 2π. The blue line contains all the stable equilibria and the red line contains all the unsta-
ble equilibria which have index one.

The fifth and sixth equilibria are balanced equilibria with index two and have the forms (0, 2π
3 , 4π

3 )

and (0, 4π
3 , 2π

3 ) and their shifts. Each of these equilibria with their shifts forms a distinct line as can

be seen in Figure 2.3 giving six connected components.

Figure 2.3 The connected components of the equilibria of Eq. 2.0.1 when n = 3 graphed modulo 2π. The
blue curve contains all the stable equilibria, the three red curves contain all the unstable equilibria of
index one, and the two green curves contains all the unstable equilibria of index two.
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n = 4

When n = 4, f −1(ΦK ,unbalanced) contains one stable equilibria, namely (0,0,0,0), and four unstable

equilibria of index one, namely (0, 0, 0,π) and its four permutations. However, f −1(ΦK ,balanced) con-

tains an infinite number of equilibria. It has three more index one equilibria, namely (0,0,π,π),

(0,π, 0,π), and (0,π,π, 0), but infinitely many index two equilibria. The following Lemma shows that

all the equilibria from ΦK ,balanced have the same form.

Lemma 2.3.2 φ ∈ΦK ,balanced when n = 4, if and only ifφ has the form up to shift and index permu-

tation

φ = (1,−1,α,−α)

for some α ∈U.

Proof. Let n = 4. For an arbitrary φ ∈ ΦK ,balanced we have
n
∑

u=1

φu = 0 and φ1 = 1. Since we are free

to rotate all the oscillators simultaneously by a fixed amount and reindex, we can without loss of

generality assume thatφ1 =β andφ2 =β ∗ for some β ∈Uwith Re(β ), Im(β )≥ 0. Here we consider

two cases.

• φ1 = i :

In this caseφ2 =−i , so we must haveφ3+φ4 = 0 to be balanced. Henceφ = (i ,−i ,γ,−γ) for

some γ ∈U. Rotating clockwise by π
2 then gives the equivalent equilibriaφ = (1,−1,α,−α) for

some α ∈U.

• φ1 6= i :

In this case we must have that Re(φ1 +φ2) = −Re(φ3 +φ4) and Im(φ3) = − Im(φ4) for φ to

be balanced. Since Re(φ1) = Re(φ2) > 0, we must have that φ3 = φ∗4 with Re(φ3) = Re(φ4) =

−Re(φ1). Thus we have thatφ = (β ,γ,−β ,−γ) for some β ,γ ∈U. Rotating so thatφ1 = 1 and

reindexing by switching index two with three gives the formφ = (1,−1,α,−α) for some α ∈U.

Thus any φ ∈ ΦK ,balanced has the stated form. Furthermore, it is obvious that φ = (1,−1,α,−α) ∈
ΦK ,balanced.

Using this Lemma, we can now show that balanced equilibria are one connected component.

Proposition 2.3.3 The equilibria from ΦK ,balanced when n = 4 and when considered with shifts form

one connected component.

Proof. Consider two arbitrary equilibria from ΦK ,balanced,

φ = (1,−1,α,−α) φ′ = (1,β ,−1,−β )

for some α,β ∈U. We will show that a continuous path of balanced equilibria exist which connect

φ and φ′. Starting at φ, we can continuously rotate α and −α simultaneously until we reach the
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Figure 2.4 The connected components of the equilibria of Eq. 2.0.1 when n = 4 projected into θ1 = 0
space and graphed modulo 2π. The blue line contains all the stable equilibria, the three red lines (at the
intersections of the planes) contain all the balanced equilibria of index one, and the green and gray planes
contain all the balanced equilibria of index two. The gray plane is all the equilibria with the form modulo
shift (1,−1,α,−α), and the green planes contain the other five permutations. Note that the four lines of
index one solutions that are unbalanced project onto the same lines as the three index one balanced
equilibria and the stable equilibria, but are distinct in (−π,π]4.
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equilibria (1,−1,−1, 1). By Lemma 2.3.2, every element along this path is in ΦK ,balanced. Next, we can

continuously rotate the second and fourth elements simultaneously until we reach φ′. Again by

Lemma 2.3.2, every element along this path is in ΦK ,balanced. Thereforeφ andφ′ are part of the same

connected component.

Repeating this process for any permutation of oscillators shows that all of ΦK ,balanced is one

connected component.

Using this result, we have that the equilibria in the n = 4 case form six connected components.

The stable equilibria and index one unbalanced equilibria each form one line for a total of five

components, and the balanced equilibria form one higher dimensional connected component.

Contained within this component are three lines that are index one, while everywhere else is index

two. Figure 2.4 shows the connected components when projected into θ1 = 0 space.

n ≥ 5

Using Theorem 2.2.6, it is clear that all of the unbalanced equilibria each form a distinct line in n

dimensional space. Thus we have
�n

u

�

connected components of index u for each u = 0, 1, . . . ,
�

n −1

2

�

.

Furthermore, we conjecture that ΦK ,balanced behaves the same as it does in the n = 4 case.

Conjecture 2.3.4 The equilibria from ΦK ,balanced when n ≥ 5 and when considered with shifts form

one connected component.

As the number of oscillators increases, it becomes more difficult to classify all the forms of

balanced equilibria. However the following example for n = 5 shows that two groups of balanced

oscillators are connected within the same component.

Example 2.3.5 Letφ = (1,ζ5,ζ2
5,ζ3

5,ζ4
5) and letφ′ = (1, i ,ζ3,ζ2

3,−i )where ζn is the n th root of unity.

In other words,φ is the balanced equilibria where the five oscillators are spaced equidistant along

the unit circle, andφ′ is the composition of two balanced arrangements of two and three oscillators.

Starting at φ, we can shift the third and fourth oscillators toward each other by the same amount

while also shifting the second and fifth oscillators toward the imaginary axis a corresponding amount

to keep the arrangement balanced untilφ′ is reached.

Figure 2.5 The leftmost graph is ofφ and the middle two graphs show steps along the path toφ′ which is
the rightmost graph.
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CHAPTER

3

RANK ONE COUPLING WITH IDENTICAL

OSCILLATORS

The Kuramoto model with rank one coupling has the form

dθu

dt
=ωu −

1

n

n
∑

v=1

ku kv sin(θu −θv ) for u = 1, 2, . . . , n (3.0.1)

where n ≥ 2 is the number of oscillators, ku > 0 determines the coupling strength, θ is the phase

angles of the oscillators, andω is the natural frequencies of the oscillators. When all of the oscillators

are identical, we haveω1 =ω2 = . . .=ωn . Using the rotating reference frame explained in Section

1.1.1, we can takeωu = 0 and dθu
dt = 0 for all u without loss of generality. Thus the equations for the

equilibria simplify to

0=
1

n

n
∑

v=1

ku kv sin(θu −θv ) for u = 1, 2, . . . , n (3.0.2)

3.1 Finding

Note that if θ is a solution to Eq. 3.0.1, then θ + c is also a solution for any constant c . Thus, two

solutions are called equivalent modulo shift if each component-wise difference is the same modulo

2π. In order to choose a representative, an output condition for θ ∈ (−π,π]n is given below so that

only one of these equivalent solutions is chosen.
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OC:
n
∑

u=1

ku e iθu ∈R+ or

�

n
∑

u=1

ku e iθu = 0 and θ1 = 0

�

.

This choice of representative has a physical interpretation. If weights with masses given by k are

placed on the unit circle in C at angles given by θ , then this choice of representative is the rotation

where the center of mass lies on the positive real axis. This choice is always possible and unique

provided that the center of mass is not exactly on the origin. In that situation, instead the first

oscillator will be fixed to have a phase angle of zero.

Definition 3.1.1 Let Θk be the set of all solutions to Eq. 3.0.2 satisfying OC, that is,

Θk :=

�

θ ∈ (−π,π]n : ∀
u

0=
1

n

n
∑

v=1

ku kv sin(θu −θv ) ∧ OC

�

Note that U is the unit circle in C. In other words, U := {z ∈ C: |z | = 1}. We can perform a

convenient transformation on Θk and break it into two disjoint sets that characterize the equilibria.

Theorem 3.1.2 Let

f :
�

[θ1, . . . ,θn ]
T
�

7−→
�

e iθ1 , . . . , e iθn
�T

.

Then we have

1. f |Θk
is injective.

2. f (Θk ) =Φk ,unbalanced ] Φk ,balanced where

Φk ,unbalanced :=

¨

φ ∈ {−1,+1}n :
n
∑

u=1

kuφu > 0

«

Φk ,balanced :=

¨

φ ∈Un :
n
∑

u=1

kuφu = 0 ∧ φ1 = 1

«

Proof.

1. Let θ ,θ ′ ∈ Θk be such that f (θ ) = f (θ ′). Then for every u we have e iθu = e iθ ′u , and thus

θu = θ ′u since θu ,θ ′u ∈ (−π,π]. Hence θ = θ ′.

2. Let r :=
1

n

n
∑

u=1

kuφu whereφu := e iθu . Note that z ∗ denotes the complex conjugate of z . Then

we have that

f (Θk ) =

¨

f (θ ) : ∀
u

0=
1

n

n
∑

v=1

ku kv sin(θu −θv ) ∧ OC

«

=

¨

f (θ ) : ∀
u

0=
1

n

n
∑

v=1

ku kv Im
�

e i (θu−θv )
�

∧ OC

«

=

¨

φ ∈Un : ∀
u

0=
1

n

n
∑

v=1

ku kv Im
�

φuφ
∗
v

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

«
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=

¨

φ ∈Un : ∀
u

0= Im

�

1

n

n
∑

v=1

ku kvφuφ
∗
v

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

«

=

¨

φ ∈Un : ∀
u

0= Im

�

kuφu
1

n

n
∑

v=1

kvφ
∗
v

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

«

=
n

φ ∈Un : ∀
u

0= Im
�

kuφu r ∗
�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

o

=
n

φ ∈Un : ∀
u

0= r Im
�

φu

�

∧
�

r ∈R+ ∨ (r = 0 ∧ φ1 = 1)
�

o

=
n

φ ∈Un : ∀
u

0= Im(φu ) ∧ r ∈R+
o

]
�

φ ∈Un : r = 0 ∧ φ1 = 1
	

=Φk ,unbalanced ] Φk ,balanced

Corollary 3.1.3 Forφ ∈Φk ,unbalanced ] Φk ,balanced, we have that

f −1(φ) =
�

arg(φ1), arg(φ2), . . . , arg(φn )
�T ∈Θk

3.2 Stability

In this section we will examine all of the eigenvalues of the equilibria and show that there is one

stable equilbirium (in the orbitally stable sense; see Section 1.1.2 for a discussion of orbital stability).

Let J be the Jacobian for Eq. 3.0.1. A straightforward calculation gives

J =−
1

n

















n
∑

v=1

k1kv cos(θ1−θv )

...
n
∑

v=1

kn kv cos(θn −θv )

















+
1

n

�

ku kv cos(θu −θv )
�

(u ,v )
(3.2.1)

Lemma 3.2.1 The Jacobian matrix has a zero eigenvalue.

Proof. It is immediate from Eq. 3.2.1 that the sum of all the columns of J is zero. Therefore the all

ones vector is an eigenvector with the corresponding eigenvalue of zero.

The all ones eigenvector corresponds to the invariance under shift of the Kuramoto model.

Adding the same amount to every phase angle does not change the differences, so we will ignore it

when defining stability for the Kuramoto model. Also note that since J is a real symmetric matrix,

all the eigenvalues are real. Thus if J evaluated at an equilibrium has n −1 negative eigenvalues,

then that equilibrium is stable. Likewise, if J has a positive eigenvalue, then that equilibrium cannot

be stable [9].

Remark 3.2.2 For convenience, we will refer to φ ∈ Φk ,unbalanced ] Φk ,balanced as stable if the corre-

sponding θ = f −1(φ) is stable.
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It is convenient for the proof later to convert the Jacobian into the same variables as the previous

section used.

Proposition 3.2.3 Let

φu := e iθu r :=
1

n

n
∑

u=1

φu

Then for anyφ ∈Φk ,unbalanced ] Φk ,balanced, we have that J =D +M M T where

D :=−







k1r Re(φ1)
...

kn r Re(φn )






M :=

1
p

n







k1 Re(φ1) k1 Im(φ1)
...

...

kn Re(φn ) kn Im(φn )







Proof. Applying the change of variables to Eq. 3.2.1 gives

J =−







k1 Re(φ1r ?)
...

kn Re(φn r ?)






+

1

n

�

ku kv Re(φuφ
?
v )
�

(u ,v )

Using the fact that OC implies r ∈R≥0 for an equilibrium and factoring the second matrix gives

J =−







k1r Re(φ1)
...

kn r Re(φn )







+
1

n







k1 Re(φ1) k1 Im(φ1)
...

...

kn Re(φn ) kn Im(φn )







�

k1 Re(φ1) · · · kn Re(φn )

k1 Im(φ1) · · · kn Im(φn )

�

=D +M M T

Theorem 3.2.4 θ = (0,0, . . . ,0) is a stable equilibrium of Eq. 3.0.1. Furthermore, it is the only stable

equilibrium.

Proof. Consider the two sets of equilibria from Theorem 3.1.2.

• φ ∈Φk ,balanced

We have that r = 0 for any balanced equilibrium. Thus J =M M T � 0 with at least one positive

eigenvalue, which means every balanced equilibria is unstable.

• φ ∈Φk ,unbalanced
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By Lemma 1.2.1 and Proposition 3.2.3, we have that

λu (J ) =λu (D +M M T)≥λu (D )

since M M T � 0. Therefore, any unbalanced equilibrium withφu =−1 for any u is unstable.

The only case left to consider isφ = (1, . . . , 1). Plugging this into the Jacobian using Proposition

3.2.3 gives

J =−







k1r
...

kn r






+

1

n
k k T

where r =
1

n

n
∑

u=1

ku . Again by Lemma 1.2.1 we have that

λu (−J ) =λu

�

−D −
1

n
k k T

�

>λu

�

−
1

n
k k T

�

since −D � 0 whenφ = (1, . . . , 1). Flipping the sign gives

λu (J )<λu

�

1

n
k k T

�

since
1

n
k k T is a rank one matrix, it has n −1 copies of 0 for its eigenvalues. Therefore J must

have n −1 negative eigenvalues. Thereforeφ = (1, 1 . . . , 1) is stable.
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CHAPTER

4

RANK ONE COUPLING WITH

NONIDENTICAL OSCILLATORS

The Kuramoto model with rank one coupling has the form

dθu

dt
=ωu −

1

n

n
∑

v=1

ku kv sin(θu −θv ) for u = 1, 2, . . . , n (4.0.1)

where n ≥ 2 is the number of oscillators, ku > 0 determines the coupling strength, θ is the phase

angles of the oscillators, andω is the natural frequencies of the oscillators. By using the rotating

reference frame explained in Section 1.1.1, the equilibria can be found by solving the set of equations

0=ωu −
1

n

n
∑

v=1

ku kv sin(θu −θv ) for u = 1, 2, . . . , n (4.0.2)

provided we assume the following input condition.

IC1:
n
∑

u=1

ωu = 0

Additionally, this chapter will be focused on the case where the oscillators are not identical as the

previous chapter covers the identical oscillator case. This gives a second input condition.

IC2: ω 6= ~0

Finally, we will reindex the oscillators by the size of |ωu/ku |. This will be convenient in the optimiza-

tion section.
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IC3:

�

�

�

�

ω1

k1

�

�

�

�

≤
�

�

�

�

ω2

k2

�

�

�

�

≤ · · · ≤
�

�

�

�

ωn

kn

�

�

�

�

Remark 4.0.1 Some of the results covered in this chapter were developed in collaboration with

Jonathan Hauenstein, Hoon Hong, and Daniel Molzahn and were published in [15].

4.1 Finding

Note that if θ is a solution of Eq. 4.0.1 then any shift of θ (modulo 2π) is also an equilibrium. Thus

we will impose a condition on θ so that only one of these “equivalent” solutions is chosen.

OC:
n
∑

u=1

ku e iθu ∈R+

This choice of representative has a physical interpretation. If weights with masses given by k are

placed on the unit circle in C at angles given by θ , then this choice of representative is the rotation

where the center of mass lies on the positive real axis. This choice is always possible and unique

provided that the center of mass is not exactly on the origin. Lemma 4.1.2 shows that this edge case

is avoided whenever IC2 is satisfied.

Definition 4.1.1 Let Θk ,ω be the set of all solutions to Eq. 4.0.1 satisfying OC, that is,

Θk ,ω :=

�

θ ∈ (−π,π]n : ∀
u
ωu =

1

n

n
∑

v=1

ku kv sin(θu −θv ) ∧ OC

�

Note that U is the unit circle in C. In other words, U := {z ∈ C: |z | = 1}. We can perform a

series of two transformation on Θk ,ω to decouple the equations and instead have univariate radical

equations.

Lemma 4.1.2 Let

f :
�

[θ1, . . . ,θn ]
T
�

7−→
�

e iθ1 , . . . , e iθn
�T

.

Then we have

1. f |Θk ,ω
is injective.

2. f
�

Θk ,ω

�

=Φk ,ω where

Φk ,ω :=

�

φ ∈Un : ∀
u
ωu = ku r Im

�

φu

�

∧ r ∈R+

�

and where r :=
1

n

n
∑

u=1

kuφu .

Remark 4.1.3 Note that if r = 0, then we must have thatω= ~0, which contradicts IC2. Therefore IC2

implies r 6= 0.
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Proof.

1. Let θ ,θ ′ ∈ Θk ,ω be such that f (θ ) = f (θ ′). Then for every u we have e iθu = e iθ ′u , and thus

θu = θ ′u since θu ,θ ′u ∈ (−π,π]. Hence θ = θ ′.

2. Let r :=
1

n

n
∑

u=1

kuφu whereφu := e iθu . Note that z ∗ denotes the complex conjugate of z . Then

we have that

f
�

Θk ,ω

�

=

¨

f (θ ) : ∀
u
ωu =

1

n

n
∑

v=1

ku kv sin(θu −θv ) ∧ OC

«

=

¨

f (θ ) : ∀
u
ωu =

1

n

n
∑

v=1

ku kv Im
�

e i (θu−θv )
�

∧ OC

«

=

¨

φ ∈Un : ∀
u
ωu =

1

n

n
∑

v=1

ku kv Im
�

φuφ
∗
v

�

∧ r ∈R+

«

=

¨

φ ∈Un : ∀
u
ωu = Im

�

1

n

n
∑

v=1

ku kvφuφ
∗
v

�

∧ r ∈R+

«

=

¨

φ ∈Un : ∀
u
ωu = Im

�

kuφu
1

n

n
∑

v=1

kvφ
∗
v

�

∧ r ∈R+

«

=
n

φ ∈Un : ∀
u
ωu = Im

�

kuφu r ∗
�

∧ r ∈R+
o

=
n

φ ∈Un : ∀
u
ωu = ku r Im

�

φu

�

∧ r ∈R+
o

Lemma 4.1.4 We have

Φk ,ω =
⋃

σ∈{−,+}n
Φk ,ω,σ

where

Φk ,ω,σ :=

�

φ ∈Un : ∀
u
φu =

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
∧ r ∈R+

�

Proof. We have that

Φk ,ω =

�

φ ∈Un : ∀
u
ωu = ku r Im(φu ) ∧ r ∈R+

�

=
§

φ ∈Un : ∀
u

2ωu i = ku r (φu −φ∗u ) ∧ r ∈R+
ª

Note that |φu |= 1, soφu 6= 0. Thus multiplying through byφu gives us that

Φk ,ω =
§

φ ∈Un : ∀
u

2ωuφu i = ku r (φ2
u −1) ∧ r ∈R+

ª

=
§

φ ∈Un : ∀
u

0= ku rφ2
u −2ωu iφu −ku r ∧ r ∈R+

ª
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Since ku r 6= 0, we can use the quadratic formula to solve forφu .

Φk ,ω =
⋃

σ∈{−,+}n

�

φ ∈Un : ∀
u
φu =

2ωu i +σu

Æ

−4ω2
u +4k 2

u r 2

2ku r
∧ r ∈R+

�

=
⋃

σ∈{−,+}n

�

φ ∈Un : ∀
u
φu =

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
∧ r ∈R+

�

Lemma 4.1.5 Let

g :φ 7−→
1

n
k Tφ.

Then we have that

1. g |Φk ,ω,σ
is injective.

2. g (Φk ,ω,σ) =Rk ,ω,σ where

Rk ,ω,σ :=

�

r ∈R+ : r 2 =
1

n

n
∑

u=1

σu

Æ

k 2
u r 2−ω2

u

�

Proof.

1. Letφ,φ′ ∈Φk ,ω,σ be such that g (φ) = g (φ′). Then

r = g (φ) = g (φ′) = r ′

Thus

φu =
ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
=
ωu i +σu

Æ

k 2
u (r ′)2−ω2

u

ku r ′
=φ′u

2. Note that g (φ) = r . Thus we have that

g (Φk ,ω,σ) =

¨

g (φ) : ∀
u
φu =

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
∧ r ∈R+

«

=

¨

r ∈R+ : r =
1

n

n
∑

u=1

kuφu ∧ ∀u φu =
ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r

«

=

¨

r ∈R+ : r =
1

n

n
∑

u=1

ku

�

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r

�

∧ ∀
u
φu =

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r

«

=

¨

r ∈R+ : r =
1

n

n
∑

u=1

ku

�

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r

�«

=

¨

r ∈R+ : r 2 =
1

n

n
∑

u=1

ωu i +σu

Æ

k 2
u r 2−ω2

u

«
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=

¨

r ∈R+ : r 2 =
1

n

n
∑

u=1

σu

Æ

k 2
u r 2−ω2

u

«

since IC1 gives
n
∑

u=1

ωu = 0.

Putting the previous three Lemmas together allows for a reformulation of Θk ,ω.

Theorem 4.1.6 We have

Θk ,ω = F

�

⋃

σ∈{−,+}n
Gσ

�

Rk ,ω,σ

�

�

where

F
�

φ
�

:=
�

arg
�

φ1

�

, . . . , arg
�

φn

��T

Gσ (r ) :=

�

ω1i +σ1

Æ

k 2
1 r 2−ω2

1

k1r
, . . . ,

ωn i +σn

Æ

k 2
n r 2−ω2

n

kn r

�T

Furthermore, F and Gσ are injective.

Proof. We split the proof into three parts.

1. F = f −1 and is injective.

Recall that

f
�

[θ1, . . . ,θn ]
T
�

=
�

e iθ1 , . . . , e iθn
�T

.

Therefore,

f −1
�

φ
�

=
�

arg
�

φ1

�

, . . . , arg
�

φn

��T
= F

�

φ
�

and F is injective.

2. Gσ = g −1|Φk ,ω,σ
and is injective.

Recall that

g
�

φ
�

=
1

n
k Tφ.

Let r = g
�

φ
�

whereφ ∈Φk ,ω,σ. Then

φu =
ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
=Gσ (r )u .

Furthermore, let r, r ′ ∈Rk ,ω,σ be such that Gσ (r ) =Gσ (r ′). Then

r =
1

n

n
∑

u=1

ku
ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
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=
1

n

n
∑

u=1

kuGσ(r )u

=
1

n

n
∑

u=1

kuGσ(r
′)u

=
1

n

n
∑

u=1

ku
ωu i +σu

Æ

k 2
u (r ′)2−ω2

u

ku r ′

= r ′

3. Θk ,ω = F

�

⋃

σ∈{−,+}n
Gσ

�

Rk ,ω,σ

�

�

.

Combining Lemmas 4.1.2, 4.1.4, and 4.1.5 with parts one and two above gives

Θk ,ω = f −1
�

Φk ,ω

�

= f −1

�

⋃

σ∈{−,+}n
Φk ,ω,σ

�

= f −1

�

⋃

σ∈{−,+}n
g −1

�

Rk ,ω,σ

�

�

For eachσ ∈ {−,+}n , the first step to utilize Theorem 4.1.6 for locating all equilibria is to find

the positive solutions to

r 2 =
1

n

n
∑

u=1

σu

Æ

k 2
u r 2−ω2

u

This is equivalent to finding the positive roots of

fσ(R ) :=−R +
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u (4.1.1)

where R := r 2. For each positive root R of fσ, the second step from Theorem 4.1.6 is to compute

the equilibria via F
�

Gσ
�p

R
��

. This process is summarized in the following algorithm. Note that

it depends upon a root finding method that returns the set of all positive roots of fσ, denoted

Solve+( fσ).

Algorithm 4.1.7

In: ω ∈Rn and k ∈Rn
>0 satisfying IC1, IC2, and IC3.

Out: Θk ,ω, the set of equilibria satisfying OC1.

1. Θk ,ω←{}

2. Forσ ∈ {−,+}n do

(a) fσ← −R +
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u
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(b) R← Solve+
�

fσ
�

(c) For R ∈R do

i. θ ← F
�

Gσ
�p

R
��

ii. Add θ to Θk ,ω

Example 4.1.8 To illustrate for n = 2, considerω= (4,−4) and k = (5, 2). There are 4 sign patternsσ

to consider:

• σ= (+,+) :

◦ fσ(R ) =−R + 1
2

�p
25R −16+

p
4R −16

�

has one positive root, namely R = 10.25.

◦ This yields the equilibrium θ = (0.2526,−0.6747).

• σ= (+,−) :

◦ fσ(R ) =−R + 1
2

�p
25R −16−

p
4R −16

�

has one positive root, namely R = 4.25.

◦ This yields the equilibrium θ = (0.3985,−1.8158).

• σ= (−,+) :

◦ fσ(R ) =−R + 1
2

�

−
p

25R −16+
p

4R −16
�

has no positive roots.

• σ= (−,−) :

◦ fσ(R ) =−R + 1
2

�

−
p

25R −16−
p

4R −16
�

has no positive roots.

In summary, there are two equilibria satisfying Eq. 4.0.1.

Optimizations

In Algorithm 4.1.7, Solve+( fσ), which computed all positive roots of fσ, was called for all 2n sign

patterns. This exponential scaling in the number of oscillators is not any better than the previous

approaches discussed in Section 1.2.2. As such, the goal of this section is to prune out sign patterns

σ for which fσ defined in Eq. 4.1.1 has no positive roots. This improvement allows for the optimized

algorithm to scale much more efficiently. Throughout this section, we assumeω ∈Rn and k ∈Rn
>0

satisfy IC1 – IC3 andσ ∈ {−,+}n .

Before looking at the sign cases, we can also consider some slight improvements in the calculation

of θ given r .

Proposition 4.1.9 Givenσ ∈ {−,+}n and r ∈Rk ,ω,σ, let θ = F (Gσ(r )). Then

∀
u
θu = arcsin

�

ωu

ku r

�

s.t. sign(cos(θu )) =σu

provided cos(θu ) 6= 0. If instead cos(θu ) = 0, then we have that θu = sign(ωu )
π

2
.
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Proof. From Theorem 4.1.6 we have that

F (Gσ(r ))u = arg

�

ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r

�

Let φu =Gσ(r ) =
ωu i +σu

Æ

k 2
u r 2−ω2

u

ku r
. Thus φ ∈ Φk ,ω,σ ⊂ Φk ,ω. Therefore, Im(φu ) =

ωu

ku r
, so we

must have Re(φu ) =
σu

Æ

k 2
u r 2−ω2

u

ku r
. Since ku r > 0, we have that sign(Re(φu )) =σu provided that

Æ

k 2
u r 2−ω2

u > 0. Also,φ ∈Un , so

θu = arcsin
�

ωu

ku ru |φu |

�

= arcsin
�

ωu

ku ru

�

s.t. sign(cos(θu )) =σu

when cos(θu ) 6= 0. If however Re(φu ) = 0, then we have thatφu =
ωu i

ku r
. Sinceφ ∈U andφ is purely

imaginary, we get thatφu = sign(ωu )i , so θu = sign(ωu )
π

2
.

We can also find an interval that contains all the positive root of fσ.

Proposition 4.1.10 Ifσ+ := {u : σu =+}, then every positive root of fσ is contained in the interval





�

ωn

kn

�2

,

�

1

n

∑

u∈σ+
ku

�2


 .

Remark 4.1.11 Note that this always rules out the all negative sign case since
�

ωn

kn

�2

> 0.

Proof. Suppose that R is a positive root of fσ. Since each
ω2

u

k 2
u R
= sin2θu ≤ 1 by Proposition 4.1.9,

R ≥
�

ωu

ku

�2

for u = 1, 2, . . . , n .

Hence, IC3 gives us that R ≥
�

ωn

kn

�2

. Moreover,

0≤
Æ

k 2
u R −ω2

u ≤ ku

p
R .
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Thus forσ+ := {u : σu =+} andσ− := {u : σu =−}, we have

R =
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u

=

�

1

n

∑

u∈σ+

Æ

k 2
u R −ω2

u

�

−

�

1

n

∑

u∈σ−

Æ

k 2
u R −ω2

u

�

≤
1

n

∑

u∈σ+
ku

p
R .

This is equivalent to R ≤

�

1

n

∑

u∈σ+
ku

�2

.

Example 4.1.12 With the setup from Example 4.1.8, we consider the four cases:

• σ= (+,+) :

◦ Proposition 4.1.10 gives the interval [4, 12.25], which contains the positive root R = 10.25.

• σ= (+,−) :

◦ Proposition 4.1.10 gives the interval [4, 6.25], which contains the positive root R = 4.25.

• σ= (−,+) :

◦ no positive roots since Proposition 4.1.10 gives the “interval” [4, 1].

• σ= (−,−) :

◦ no positive roots since Proposition 4.1.10 gives the “interval” [4, 0].

As shown in Example 4.1.12, Proposition 4.1.10 can exclude sign patternsσ for which fσ has no

positive roots. The following Lemma will be useful in developing more ways to exclude sign cases.

Lemma 4.1.13 fσ has no positive roots if and only if fσ < 0 on

�

�

ωn

kn

�2

,∞
�

.

Proof. Let I =

�

�

ωn

kn

�2

,∞
�

. If R ∈ I , then

fσ(R ) =−R +
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u

≤−R +
1

n

n
∑

u=1

Æ

k 2
u R −ω2

u

≤−R +
1

n

n
∑

u=1

ku

p
R
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so that

lim
R→∞

fσ(R ) =−∞.

Since fσ is continuous on I , we must have fσ < 0 on I when fσ has no positive roots. Furthermore,

the interval





�

ωn

kn

�2

,

�

1

n

∑

u∈σ+
ku

�2


 contains all the positive roots of fσ by Proposition 4.1.10 and

is contained in I . Hence, if fσ < 0 on I , then fσ has no positive roots.

If fσ has no positive roots, the following yields additional cases which also have no positive

roots.

Proposition 4.1.14 Let u be such thatσu =+. Letσ′ such thatσ′u =− andσ′v =σv for v 6= u. If fσ
has no positive roots, then fσ′ also has no positive roots.

Proof. Since fσ has no positive roots, Lemma 4.1.13 shows that fσ < 0 on

�

�

ωn

kn

�2

,∞
�

. Since fσ′ ≤ fσ

on

�

�

ωn

kn

�2

,∞
�

, fσ′ also does not have any positive roots by Lemma 4.1.13.

Example 4.1.15 With the setup from Example 4.1.8, since fσ forσ= (−,+) has no positive roots, fσ′

also has no positive roots forσ′ = (−,−).

A natural way to order the sign patternsσ is to convert them using binary representations of the

numbers from 0 to 2n −1 where “0” in binary comes from a − and “1” in binary comes from a +. We

will denote this using ι(σ). For example,σ= (+,−) corresponds to the binary number 102, so we can

say ι(σ) = 2. This allows for an important technique. Because merely tracking all of the sign cases

could use prohibitive amounts of memory for large n values, a way to skip sign cases efficiently

without tracking them all is needed. With a binary numbering scheme, one needs to track only the

current sign number and can skip over sequential sign cases using the result of Proposition 4.1.14.

Definition 4.1.16 Let ι : {−,+}n →Zwhere ι maps − to “0" and + to “1" in the n digit binary repre-

sentation of the output.

Theorem 4.1.17 Let σ ∈ {−,+}n be such that fσ has no positive roots and let p be the index of the

last negative inσ or zero if there are no negatives inσ. Letσ′ ∈ {−,+}n be such that

• σ′u =σu for u ≤ p .

• σ′u =− for u > p .

Then fσ̂ has no positive roots for any σ̂ ∈ {−,+}n where ι(σ′)≤ ι(σ̂)≤ ι(σ).

Proof. Let σ,σ′, and p be as described in the theorem statement above. Let σ̂ ∈ {−,+}n be such

that ι(σ′) ≤ ι(σ̂) ≤ ι(σ). Since the bits of ι(σ) and ι(σ′) agree up to the p -th position, only the

less significant bits to the right of the p -th position of ι(σ̂) can differ from ι(σ). Furthermore, the
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bits past the p -th position of ι(σ) are all ones by selection of p . Therefore, ι(σ̂) can only have ones

changed to zeros when compared to ι(σ). Thus Proposition 4.1.14 can be repeatedly applied for

each such position where the bits differ, so fσ̂ cannot have any positive roots.

In order to use Theorem 4.1.17, we will define a function that gives the next value that may need

to be checked.

Definition 4.1.18 The pruning function P` :Z>0→Z≥0 for ` ∈Z>0 takes the binary representation of

m, zeroes out everything to the right of the `th zero from the right (left padding with zeros as needed),

and then subtracts one. If that number is negative, then it returns 0, otherwise it returns that number.

Example 4.1.19 Note that 23= 101112. Then

P1(23) = 011112 = 15 P2(23) = 0

Example 4.1.20 Letσ= (+,−,+,+) 7→
ι

11 and suppose fσ has no positive roots. Using Theorem 4.1.17,

we know that the following sign cases have no roots:

(+,−,+,−) 7→
ι

10

(+,−,−,+) 7→
ι

9

(+,−,−,−) 7→
ι

8

Note that Proposition 4.1.14 could be used to rule out additional sign cases such as (−,−,+,+) 7→
ι

3,

however such sign cases are not sequential. Moreover, it is trivial to compute that P1(11) = 7 gives the

next case that may need to be checked by zeroing out the bits to the right of the last zero of ι(σ) and

subtracting one.

Applying Theorem 4.1.17 allows for a significantly improved algorithm. The following algorithm

depends upon a root finding method that returns the set of roots of fσ within the interval I denoted

Solve( fσ, I ).

Algorithm 4.1.21 (Prune 1)

In: ω ∈Rn and k ∈Rn
>0 satisfying IC1–IC3.

Out: Θk ,ω

1. Θk ,ω←{}

2. j ← 2n −1

3. While j > 0 do

(a) σ← ι−1( j )
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(b) I ←





�

ωn

kn

�2

,

�

1

n

∑

u∈σ+
ku

�2




(c) If I is empty, then

i. j ← P1(u )

ii. Continue (go back to Step 3)

(d) fσ← −R +
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u

(e) R← Solve( fσ, I )

(f) IfR = ;, then

i. j ← P1(u )

ii. Continue (go back to Step 3)

(g) For R ∈R do

i. Compute θ ∈ (−π,π]n according to Proposition 4.1.9

ii. Add θ to Θk ,ω

(h) j ← u −1

Here we consider the above algorithm on a concrete application (power flow analysis) from

electrical engineering [21].

Example 4.1.22 (Power flow model: 4-bus system) Figure 4.1 depicts a lossless four-bus power sys-

tem with active power injections p , voltage magnitudes |V |, and line susceptances b12 = b13 = b14 =

b23 = b24 = b34 = −1. The equilibria of the power flow equations correspond to the equilibria of

the rank-one coupled Kuramoto model, namely the solutions of (4.0.1) where ω =
�

p1, p2, p3, p4

�

,

k = (2|V1|, 2|V2|, 2|V3|, 2|V4|), and θ = (θ1,θ2,θ3,θ4) are the voltage angles.

Suppose that p = (1.00,−1.25, 2.00,−1.75) and |V |= (1.10, 0.93, 1.05, 0.90). Algorithm 4.1.21 starts

with j = 15.

• The case withσ= ι−1(15) produces a positive root, so the algorithm proceeds with j = 14. The

cases j = 14, 13, 12, 11, 10 also produce a positive root, so proceed in turn.

• The case withσ= ι−1(9) produces no roots. Using Theorem 4.1.17, case j = 8 can be skipped, so

j = 7 is next considered.

• The case withσ= ι−1(7) produces two roots, so j = 6 is next considered.

• The case withσ= ι−1(6) produces no roots. Theorem 4.1.17 does not give any additional cases

that can be skipped in this case, so j = 5 is next considered.

• The case withσ= ι−1(5) produces no roots. Theorem 4.1.17 allows case j = 4 to be skipped, so

j = 3 is next considered.
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b 1
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−

1
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4
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−

1

b
14 =
−1 b 23

=
−1

Figure 4.1 One-line diagram for a four-bus electric power system.

• The case withσ= ι−1(3) produces no roots. Theorem 4.1.17 gives case j =−1 as the next case to

be considered, so the algorithm stops.

In this example Theorem 4.1.17 allowed us to skip five of the nine cases that could have possibly been

skipped since they gave no equilibria.

In some cases, it is possible to prune more efficiently than Theorem 4.1.17. Consider the following

input condition.

IC4: k1 ≥ k2 ≥ · · · ≥ kn

Note that it is not always possible to satisfy both IC3 and IC4, but if anω and k do satisfy both, then

a more efficient algorithm can be used.

Proposition 4.1.23 Suppose that IC1–4 are satisfied and u and v are such that u < v ,σu =+, and

σv = − for some σ ∈ {−,+}. Let σ′ be the same as σ except that σ′u = − and σ′v = +. If fσ has no

positive roots, then fσ′ also has no positive roots.

Proof. From IC3 and IC4 and u < v , we have

ku ≥ kv and
�

ωu

ku

�2

≤
�

ωv

kv

�2

.

For R ≥
�

ωn

kn

�2

,

ku

√

√

√

R −
�

ωu

ku

�2

≥ kv

√

√

√

R −
�

ωv

kv

�2

so that
Æ

k 2
u R −ω2

u ≥
Æ

k 2
v R −ω2

v .
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Hence, fσ′ (R )≤ fσ(R ). Therefore, the result follows from Lemma 4.1.13.

Writingσ as a binary number, Proposition 4.1.23 allows swapping a “0” and a “1” provided the

“0” is on the right of “1.” Thus, we can once again skip sequential sign cases once a case with no

roots is determined.

Theorem 4.1.24 Assume that IC1–4 are satisfied. Let σ ∈ {−,+}n be such that fσ has no positive

roots and let p be the index of the penultimate negative inσ or zero if there are less than two negatives

inσ. Letσ′ ∈ {−,+}n be such that

• σ′u =σu for u ≤ p .

• σ′u =− for u > p .

Then fσ̂ has no positive roots for any σ̂ ∈ {−,+}n where ι(σ′)≤ ι(σ̂)≤ ι(σ).

Proof. Letσ,σ′, and p be as described in the theorem statement above. Let v be the index of the last

negative inσ or zero if there are no negatives inσ. Let σ̂ ∈ {−,+}n be such that ι(σ′)≤ ι(σ̂)≤ ι(σ).
Since the bits of ι(σ) and ι(σ′) agree up to the p -th position, only the less significant bits to the

right of the p -th position of ι(σ̂) can differ from ι(σ). There are two cases to consider.

• v = 0 or σ̂v =−

By selection of p and v , we have that σ̂u ≤σu for u > p , u 6= v . Thus, Proposition 4.1.14 can

be repeatedly used on the appropriate positions just like in Theorem 4.1.17.

• σ̂v =+

Since ι(σ̂)≤ ι(σ), we must have p < u < v such that σ̂u =−. Thus we can apply Proposition

4.1.23 toσu andσv to switch the negative to the left and then use Proposition 4.1.14 to change

the remaining differing positions from positive to negative.

Theorem 4.1.24 allows us to use the pruning function P2 to determine the next sign case to be

considered. Note that this Theorem 4.1.17 using P2 is strictly better than Theorem 4.1.17 which used

P1. If a case is determined to produce no solutions, then all of the bits past the penultimate zero can

be zeroed out instead of just the bits past the last zero. Thus if IC1–4 are satisfied, we can replace

the pruning in Algorithm 4.1.21 with the stronger Theorem 4.1.24.

Algorithm 4.1.25 (Prune 2)

In: ω ∈Rn and k ∈Rn
>0 satisfying IC1–IC4.

Out: Θk ,ω

1. Θk ,ω←{}

2. j ← 2n −1
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3. While j > 0 do

(a) σ← ι−1( j )

(b) I ←





�

ωn

kn

�2

,

�

1

n

∑

u∈σ+
ku

�2




(c) If I is empty, then

i. j ← P2( j )

ii. Continue (go back to Step 3)

(d) fσ← −R +
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u

(e) R← Solve( fσ, I )

(f) IfR = ;, then

i. j ← P2( j )

ii. Continue (go back to Step 3)

(g) For R ∈R do

i. Compute θ ∈ (−π,π]n according to Proposition 4.1.9

ii. Add θ to Θk ,ω

(h) j ← j −1

Example 4.1.26 To illustrate, suppose the input parameters satisfy IC1–4 and fσ has no positive

roots for σ = (+1,+1,−1,+1,−1,+1) 7→
ι

53. Theorem 4.1.24 shows that fσ′ also has no positive roots

for the following sequential sign patterns:

(+1,+1,−1,+1,−1,−1) 7→
ι

52

(+1,+1,−1,−1,+1,+1) 7→
ι

51

(+1,+1,−1,−1,+1,−1) 7→
ι

50

(+1,+1,−1,−1,−1,+1) 7→
ι

49

(+1,+1,−1,−1,−1,−1) 7→
ι

48

Furthermore, 48 can be immediately calculated from 53 by zeroing out everything from the next to last

zero onward, so that the five listed cases do not need to be considered at all. Note also that Theorem

4.1.17 would skip only case 52.

4.1.1 Performance Comparison

A program that combines Algorithm 4.1.21 and Algorithm 4.1.25 was written in C++ using the

C-XSC library which is described in [30]. The C-XSC library uses an interval Newton method (see
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Chap. 6 of [24]) as its univariate solver for Solve. This program was presented in [15] and was used

to compare computation times with other common methods. That implementation is available

at http://dx.doi.org/10.7274/R09W0CDP as “main.cpp". A similar C++ program is provided in

Appendix A for convenience. However, note that this version differs slightly from the implementation

used in [15]which was used to generate the timings in this section so as to match the format of this

chapter. This section contains those performance comparisons against the following methods:

• solve Eq. 4.0.2 (converted to a polynomial system using trigonometric identities) using Gröbner

basis techniques in Macaulay2 [23];

• solve Eq. 4.0.2 (converted to a polynomial system using trigonometric identities) using homo-

topy continuation in Bertini [4] as in [38];

• compute equilibria of Eq. 4.0.1 using elliptical continuation from [33].

We end with an example having n = 60 that is easily solvable using Algorithm 4.1.25.

Comparison with computational algebraic geometry:

We use the following setup from [38] to compare solving Eq. 4.0.2 using Macaulay2 and Bertini

with serial computations to Algorithm 4.1.25. For each n = 3, . . . ,12, the natural frequencies are

equidistant, namelyωu =−1+(2u−1)/n for u = 1, . . . , n , with uniform coupling k = (
p

1.5, . . . ,
p

1.5).

To simplify the algebraic geometry computations using Macaulay2 and Bertini, we compute the

equilibria as in [38] by setting θn = 0 (sn = 0 and cn = 1) with the results summarized in Table 4.1.

With Macaulay2, we simply computed the total number of complex solutions, i.e., the degree of

the ideal generated by the polynomials when sn = 0 and cn = 1. Thus, one would need to perform

additional computations to compute the number of real solutions. The symbol ‡ means that the

computation did not complete within 48 hours.

With Bertini, we performed two different computations. The first was to directly solve the

polynomial reformulation of Eq. 4.0.2 using regeneration [25] and the second utilized a parameter

homotopy [42]. Both of these computations provide all real and non-real solutions to the polynomial

reformulation of Eq. 4.0.2.

Although Bertini is parallelized and Algorithm 4.1.25 is parallelizable, we again note that the

data in Table 4.1 is based on using serial processing. Nonetheless, this shows the advantage of

using Algorithm 4.1.25 to compute all equilibria without needing to compute the non-real solu-

tions of Eq. 4.0.2.

Comparison with elliptical continuation:

We next compare Algorithm 4.1.25 with the elliptical continuation method proposed in [33]. While

having the advantage of being applicable to a more general setting of power flow equations, the

elliptical continuation method in [33] comes with both theoretical and computational drawbacks
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Table 4.1 Time comparison of various solving methods on the rank one Kuramoto model.

n 3 4 5 6 7 8 9 10 11 12

# real 2 2 4 4 4 4 4 4 8 8
# complex 6 12 28 56 118 238 486 976 1972 3958

Macaulay2 degree < 0.1s < 0.1s 0.1s 1.1s 7.0s 72.6s 716.5s 10783.7s 149578.0s ‡
Bertini regeneration 0.3s 1.2s 3.4s 13.4s 45.1s 116.6s 210.1s 486.2s 1493.1s 3443.5s

Bertini parameter < 0.1s < 0.1s 0.2s 0.4s 1.1s 2.2s 6.9s 15.0s 36.9s 116.8s
Algorithm 4.1.25 < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s

relative to Algorithm 4.1.25 when considered in the context of the Kuramoto model. In contrast to

Algorithm 4.1.25, there currently is no theoretical guarantee that the elliptical continuation method

in [33]will compute all equilibria. Moreover, the computational speed of Algorithm 4.1.25 can be

several orders of magnitude faster than the elliptical continuation method in [33]. Consider, for

instance, a test case with n = 18, k = (1, . . . , 1), and

ω = (0.1000, −0.1000, −0.1415, −0.1429, 0.1500, 0.2000, −0.4142, 0.7000, −0.8500,

1.4142, 2.3000, 3.1415, −3.1904, −3.5000, 4.3333, −5.0000, −6.0000, 7.0000) .

When interpreted as a power flow problem, this test case represents a power system composed

of 18 buses with fixed, unity voltage magnitudes and specified active power injections given byω in

normalized “per unit” values. The buses are completely connected by lines with unity reactance and

zero resistance. While this is a very special example of a power system network, the corresponding

test case enables comparison between Algorithm 4.1.25 and the elliptical continuation method

in [33] in the context of the Kuramoto model.

A serial implementation of the elliptical continuation method in [33] in Matlab yielded 8538

equilibria satisfying Eq. 4.0.1 in 1.935×105 seconds (53.77 hours). For a fair comparison, we used a

serial implementation of Algorithm 4.1.25 in Matlab which computed 8538 equilibria in 13.9 seconds.

Hence, the implementation of Algorithm 4.1.25 in Matlab is roughly four orders of magnitude faster

than the Matlab implementation of [33] for this example. We note that the C++ implementation of

Algorithm 4.1.25 took 6.6 seconds.

An example with n = 60:

We conclude with an example solved by Algorithm 4.1.25 for n = 60 having k = (60, . . . , 60) and

ω=( 0, 0, 0, 0, 0, 0, 0, 0, 0, 20,

−20, 40, −60, 60, 60, 80, −80, −100, −100, 120,

−160, −160, −200, 240, −280, −300, 300, −360, 360, −380,

420, 420, −420, −460, 460, 500, 520, 540, −560, −600,

−620, 620, −640, 660, 660, 660, 680, −720, 780, −800,

820, −820, −840, −840, −880, 920, −980, −980, −1080, 3500 ).
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This example has 2 equilibria satisfying Eq. 4.0.1 with the total computation time using the C++ im-

plementation of Algorithm 4.1.25 taking under a second. For comparison, the elliptical continuation

method as described in the previous example took 5609 seconds (93.5 minutes). This example is sim-

ply too large for current methods that compute all complex roots. Generally, problems with
�

ωn

kn

�2

near

�

1

n

n
∑

u=1

ku

�2

will be solved quickly by Algorithm 4.1.25 as a consequence of Proposition 4.1.10

and Theorem 4.1.24.

4.1.2 Performance Analysis

This section considers the effectiveness of Algorithms 4.1.21 (Prune 1) and 4.1.25 (Prune 2). We will

show that restricting the pruning to sequential sign cases is very effective at using the results of

Propositions 4.1.14 and 4.1.23. One way to visualize these comparisons is to create a lattice-like

structure where the sign cases are the nodes and the edges show which cases can be ruled out

should a case not have any solutions. Examples 4.1.27 and 4.1.28 show the comparisons between

the Algorithms’ and the Propositions’ results.

Example 4.1.27 Consider the case where n = 4. Using the results of Proposition 4.1.14 with the binary

enumeration scheme explained in Section 4.1 allows us to create a graph that shows what cases

can be skipped once a case with no solutions has been found. (Note that the all negative case which

corresponds with zero is not shown as it can never have a solution.)

15

1314 11 7

1012 9 6 5 3

8 4 2 1

Figure 4.2 Representation of the pruning using Proposition 4.1.14 when n = 4.

For example, in Figure 4.2, if the sign case corresponding with 14 does not have any solutions,

then the sign cases 12, 10, and 6 can be skipped, and the cases that follow from them, namely 8, 4, and

2, can also be skipped. Restricting the pruning to skip only sequential cases as described by Theorem

4.1.17 gives a subgraph which is shown for n = 4 in Figure 4.3.

If the sign cases corresponding to 15,14,13,12 and 11 are the only ones having roots, then an

algorithm that uses the full pruning result of Proposition 4.1.14 and Algorithm 4.1.21 (Prune 1) which
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15

1314 11 7

1012 9 6 5 3

8 4 2 1

Figure 4.3 The pruning when n = 4 described by Theorem 4.1.17 which uses a sequential restriction. This
is a subgraph of Figure 4.2.

uses Theorem 4.1.17 are shown for comparison in Figure 4.4. In both cases, three unneccessary cases

are checked.

Figure 4.4 The results of an algorithm using the full, nonsequential pruning of Proposition 4.1.14 on the
left, and the result of Algorithm 4.1.21 (Prune 1) on the right. The dots correspond to the nodes in Figures
4.2 and 4.3. Blue dots represent cases that were checked and have a root, red dots are cases that were
checked and do not have a root, and black dots are cases that are ruled out. Note that only the first edge
that rules out a case from consideration is shown.

Example 4.1.28 Consider the case where n = 4 when IC4 is satisfied. Using the results of Proposition

4.1.23 with the binary enumeration scheme explained in Section 4.1 allows us to create a graph

that shows what cases can be skipped once a case with no solutions has been found. The solid edges

in Figure 4.5 show these relations. Combining this with Proposition 4.1.14 gives the total possible

pruning. The dashed edges in Figure 4.5 represent the pruning from the Proposition 4.1.14 which is

not redundant. (Note that the all negative case which corresponds with zero is not shown as it can

never have a solution.)

Restricting the pruning to use sequential cases as described in Theorem 4.1.24 and used in Algo-

rithm 4.1.25 (Prune 2) gives a subgraph which is shown for the n = 4 case in Figure 4.6.

For comparison, if the sign cases corresponding to 15, 14, 13, 12 and 11 are the only ones having

roots, then an algorithm that uses the full pruning results of Propositions 4.1.14 and 4.1.23 and

Algorithm 4.1.25 (Prune 2) which uses Theorem 4.1.24 are shown in Figure 4.7. In both cases, two

unneccessary cases are checked.
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15

1314 11 7

1012 9 6 5 3

8 4 2 1

Figure 4.5 Representation of the pruning using Propositions 4.1.14 (dashed arrows) and 4.1.23 (solid ar-
rows). Redundant edges from Proposition 4.1.14, such as from 15 to 13, have been removed for clarity.

15

1314 11 7

1012 9 6 5 3

8 4 2 1

Figure 4.6 The pruning when n = 4 described by Theorem 4.1.24 which uses a sequential restriction. This
is a subgraph of Figure 4.5.

Figure 4.7 The results of an algorithm using the full, nonsequential pruning of Propositions 4.1.14 and
4.1.23 on the left, and the result of Algorithm 4.1.25 (Prune 2) on the right. The dots correspond to the
nodes in Figures 4.5 and 4.6. Blue dots represent cases that were checked and have a root, red dots are
cases that were checked and do not have a root, and black dots are cases that are ruled out. Note that only
the first edge that rules out a case from consideration is shown.
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Since if there are no solutions, both Algorithms check only one case, namely the all positive case,

this section will assume that there is at least one solution. It will be shown that if S is the set of sign

cases containing equilibria of Eq. 4.0.1, then the number of sign cases checked by Algorithm 4.1.21

(Prune 1) is at most (n +1)|S | and the number of sign cases checked by Algorithm 4.1.25 (Prune 2) is

at most 2|S |. In other words Prune 1 checks at most n |S | extra cases and Prune 2 checks at most |S |
extra cases. Thus Prune 1 and Prune 2 scale extremely efficiently with the number of equilibria. In

many applications the number of equilibria is expected to be relatively low. Hence, these algorithms

will be much less time consuming compared to the other approaches discussed in the previous

section.

Moreover, we can construct two examples that have the same numbers of extra cases checked

when using the full, nonsequential pruning from Propositions 4.1.14 and 4.1.23 respectively. Thus,

using the sequential pruning restriction gives the same worse case performance as the nonsequential

pruning while also giving a simple computation for how to skip cases as opposed to the exponential

time work needed to determine the total pruning.

The first step in proving these results is to abstract the process of skipping sign cases.

Definition 4.1.29 The efficiency algorithm E` is an algorithm that takes as its input a nonempty

subset of {1, 2, . . . , 2n −1} for some given integers n ≥ 2 and ` > 0 and outputs a pair of integers (R , C )

according to the following steps:

In: S ⊆ {1, 2, . . . , 2n −1} s.t. S 6= ;

Out: (R , C )

1. j ← 2n −1, R ← 0, C ← 0

2. While j > 0 do

(a) C ←C +1

(b) If j ∈ S then

i. R ←R +1

ii. j ← j −1

(c) Else

i. j ← P`( j )

For a given ` and n, an input S ⊆ {1,2, . . . ,2n −1}, S 6= ; is called valid if R = |S |where (R , C ) is

the output of E`(S ). Let S` be the set of all valid inputs.

Lemma 4.1.30 2n −1 ∈ S for any S ∈ S`.

Proof. Note that the n digit binary representation of 2n −1 is all ones. Therefore P`(2n −1) = 0 for

any ` > 0. Suppose that 2n −1 /∈ S for some S ∈ S`. Then E`(S ) = (0,1), but |S |> 0 by definition of S`.

Since this is a contradiction, we must have 2n −1 ∈ S .

The outputs of the efficiency algorithm E` on a valid input S can be interpreted as
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• R = the number of cases checked that are required to be checked

• C = the total number of cases that are checked

Comparing the sizes of R and C quantifies the efficiency of the pruning algorithm P` since the closer

C is to R , the less work was wasted checking unnecessary cases. We restrict the input to valid sets

since we will assume that the algorithm we are abstracting is correct, i.e., it will not skip over any

sign case that does have a solution.

In order to consider the efficiency, we will build a graph that represents all the possible outputs

of E` as all the possible paths through this graph. Building all possible (R , C ) pairs produced by E`(S`)

can be done recursively by working backwards. Let Em
` be the same as E` except that the algorithm

starts “in the middle" by initializing u to m in Step 1 of Definition 4.1.29. For a given S ∈ S`, at any

case m < 2n −1, there are two options:

• m ∈ S , in which case we get Em
` (S ) = (α+1, β +1)where (α, β ) is the result of Em−1

` (S ).

• m /∈ S , in which case we get Em
` (S ) = (α, β +1)where (α, β ) is the result of EP`(m )

` (S ).

For m = 2n −1, we have only the first option by Lemma 4.1.30.

To determine the efficiency, we want to show that max
(R ,C )∈E`(S`)

C

R
= f (n ). To do so, we can rewrite

any (R , C ) pair as (α, f (n ) ·α+p )where p is the “par number" of the pair. If p ≤ 0 for every pair, then

the ratio is at most f (n ), and if p = 0 for some pair, then the maximum is exactly f (n ). Consider the

two cases above again.

• m ∈ S , so we have Em
` (S ) = (α+ 1, f (n ) · (α+ 1) + (p − f (n ) + 1)) where (α, f (n ) ·α+p ) is the

result of Em−1
` (S ). Therefore the new par number is lower by f (n )−1.

• m /∈ S , so we get that Em
` (S ) = (α, f (n ) ·α+(p+1))where (α, f (n ) ·α+p ) is the result of EP`(m )

` (S ).

Therefore the new par number is one higher.

To represent this graphically, we can connect the node m −1 to m with an edge having weight

− f (n )+1 for m ≤ 2n −1, and we can connect the node P`(m ) to m with an edge having weight

+1 for m < 2n −1. Showing that max
(R ,C )∈E`(S`)

C

R
= f (n ) can now be done by showing that the maximum

weight path through this graph is zero.

Before beginning to examine the efficiency of P1 and P2, several lemmas regarding the binary

representation of sign cases are required.

Lemma 4.1.31 The k ≥ 1 digit binary representation of 2k−1 ≤m < 2k has a leading one.

Proof. 2k−1 has the binary representation of a one followed by k − 1 zeros. 2k − 1 has the binary

representation of k ones. Thus every number in between must start with a one and have some

combination of k −1 ones and zeros.

Lemma 4.1.32 The k ≥ 2 digit binary representation of 2k−1 ≤m ≤ 2k −2k−2−1 starts with “10."
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Proof. 2k−1 has the binary representation of a one followed by k−1 zeros. 2k −2k−2−1 has the binary

representation of a “10" followed by k −2 ones. Thus every number in between starts with “10" and

has some combination of k −2 ones and zeros.

Lemma 4.1.33 The k ≥ 3 digit binary representation of 2k − 2k−2 − 2k−3 ≤m ≤ 2k − 2k−2 − 1 starts

with “101."

Proof. 2k − 2k−2 − 2k−3 has a binary representation that starts with “101" followed by k − 3 zeros.

2k −2k−2−1 has a binary representation that starts with “101" followed by k −3 ones. Thus every

number in between starts with “101" and has some combination of k −3 ones and zeros.

Lemma 4.1.34 The k ≥ 3 digit binary representation of 2k−1 ≤m ≤ 2k −2k−2−2k−3−1 starts with

“100."

Proof. 2k−1 has a binary representation of a one followed by k −1 zeros. 2k −2k−2−2k−3−1 has a

binary representation that starts with “100" and is followed by k −3 ones. Thus every number in

between starts with “100" and has some combination of k −3 ones and zeros.

Example 4.1.35 Let k = 4.

• Lemma 4.1.31: Every 8≤m < 16 starts with a leading one

8= 10002, 9= 10012, 10= 10102, . . . , 15= 11112

• Lemma 4.1.32: Every 8≤m ≤ 11 starts with “10."

8= 10002, 9= 10012, 10= 10102, 11= 10112

• Lemma 4.1.33: Every 10≤m ≤ 11 starts with “101."

10= 10102, 11= 10112

• Lemma 4.1.34: Every 8≤m ≤ 9 starts with “100."

8= 10002, 9= 10012

4.1.2.1 Prune 1

We will show that max
(R ,C )∈E1(S1)

C

R
= n +1.

Example 4.1.36 Let n = 3. Then the graph representing E1 is shown in Figure 4.8. For S = {6, 7} ∈ S1,

E1(S ) would start with j = 7, go to 6, go to 5, skip to 3, then skip to 0 which ends the algorithm,
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returning (2, 4) = (2, 4 ·2−4), so this particular example finishes four under par for the max ratio C /R

of 4. We can convert the steps of E1 on S into a path in the graph above by reversing the order of the j

values. Traveling from 0 to 3 on the red edge then to 5 on the red edge, then to 6 on the

blue edge, then to 7 on the blue edge gives a total weight of 1+1+−3+−3=−4, the par number

for S.

7654321

0

Figure 4.8 The graph representing E1 when n = 3. Blue lines have weight −3 and red lines have weight +1.

It is useful to break the full graph for E1 into several parts. Consider the weighted directed graph

Gk for k ≥ 2 with nodes 0 , 2k−1−1 , 2k−1 , . . . , 2k −1 with edges based on the following rules.

• An edge with weight −n goes from m to m +1 for 2k−1−1≤m < 2k −1.

• An edge with weight +1 goes from P1(m ) to m for 2k−1−1≤m < 2k −1.

Note that 0 will have no incoming edges, 2k−1−1 will have one incoming edge of weight +1,

2k−1 ,. . . , 2k −2 will each have two incoming edges, one of weight −n and one of weight +1, and

2k −1 will have one incoming edge of weight −n . There are no other edges. Also note that edges

go from a smaller number to a larger. Joining G2, G3, . . . , Gn together and examining the maximum

weight path gives the worst case performance for E1.

Definition 4.1.37 Let

I k
t = 2k −1 I I k

t = 2k −2k−2−2

I k
b = 2k −2k−2−1 I I k

b = 2k−1−1

Then Gk for k ≥ 3 can be split into two “boxes" as follows:

• B1: The induced subgraph of Gk by taking 0 , I k
b , . . . , I k

t .

• B2: The induced subgraph of Gk by taking 0 , I I k
b , . . . , I I k

t .
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321

0

76543

0 0

B1B2

151413121110987

00

B1B2

Figure 4.9 G2, G3, and G4 with the boxes described by Definition 4.1.37. Blue edges have weight −n and red
edges have weight +1. Dashed edges go between boxes. The graph for E1 when n = 4 is G2 ∪G3 ∪G4.

Recursive Structure

Gk+1 can be constructed from Gk using the following propositions.

Proposition 4.1.38 B1 of Gk+1 for k ≥ 2 is the same as Gk with 2k added to every nonzero node except

that I k+1
b has a blue edge from I I k+1

t and a red edge from I I k+1
b instead of 0 .

Proof.

• Nodes:

It is sufficient to show that the top and bottom nodes of Gk with 2k added match the top and

bottom nodes of B1 of Gk+1 since all the nodes in between are sequential.

I I k
b +2k = (2k−1−1) +2k I k

t +2k = (2k −1) +2k

= 2k+1− (2k+1−2k −2k−1)−1 = 2k+1−1

= 2k+1−2k−1−1 = I k+1
t

= I k+1
b

• Blue Edges:

m +2k−1 and (m +1) +2k−1 are still adjacent. Also I k+1
b and I I k+1

t are adjacent.

• Red Edges:

Note that for 2k−1 ≤m < I k
t the k digit binary representation of m starts with a one by Lemma

4.1.31 and has at least one zero since I k
t consists of k ones. Adding 2k to m left-appends a one
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to the binary representation. Therefore P1(m +2k ) = P1(m )+2k since the left-most one will be

unaffected by P1. Furthermore, I k+1
b has the binary representation of “10" followed by k −1

ones. Therefore P1(I k+1
b ) = I I k+1

b .

1514131211107

0

B1

76543

0

Figure 4.10 B1 of G4 and G3 which have the same structure (see Proposition 4.1.38).

10987

0

B2

76543

0

Figure 4.11 B2 of G4 and G3 which have the same structure (see Proposition 4.1.39).

Proposition 4.1.39 B2 of Gk+1 for k ≥ 2 is the same as Gk\ I k
t with 2k−1 added to every nonzero

node.

Proof.
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• Nodes:

It is sufficient to show that the top and bottom nodes of Gk\ I k
t with 2k−1 added match the

top and bottom nodes of Box II of Gk+1 since all the nodes in between are sequential.

I I k
b +2k−1 = (2k−1−1) +2k−1 (I k

t −1) +2k−1 = (2k −2) +2k−1

= 2k −1 = 2k+1− (2k+1−2k −2k−1)−2

= I I k+1
b = 2k+1−2k−1−2

= I I k+1
t

• Blue Edges:

m +2k−1 and (m +1) +2k−1 are still adjacent.

• Red Edges:

The k digit binary representation of I I k
b <m < I k

t has a leading one by Lemma 4.1.31 and at

least one zero since I k
t is k ones. Consider two cases.

◦ P1(m ) has a leading one in its k digit binary representation:

Then P1(m +2k−1) = P1(m ) +2k−1.

◦ P1(m ) has a leading zero in its k digit binary representation:

Then m must have the form “10. . . 01. . . 1" and P1(m ) = I I k
b . Therefore, m +2k−1 has the

form “100. . . 01. . . 1" and P1(m +2k−1) = I I k+1
b = I I k

b +2k−1.

We can make some additional observations about the structure of Gk .

Proposition 4.1.40 The only edge from 0 goes to I I k
b .

Proof. (Proof by induction)

• Base Cases: Observe that this is true for G2 up to G4 in Figure 4.9.

• Suppose for induction that the claim holds for GN where N ≥ 4 and consider GN+1. By Propo-

sition 4.1.38, B1 of GN+1 is a copy of GN except that the only edge from 0 has been changed.

By Proposition 4.1.39, B2 of GN+1 is a copy of GN \ I k
t , so it will have only one edge from 0

which goes to I I N+1
b .

Proposition 4.1.41 There are only two edges from B2 to B1 of Gk , namely a blue edge from I I k
t to

I k
b and a red edge from I I k

b to I k
b .

Proof. Immediate from Proposition 4.1.38.
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Maximum Weight Path

Now that the structure of the graph has been examined we will use the recursive structure to examine

the maximum weight path.

Theorem 4.1.42 The maximum weight path from 0 to I k
t in Gk for k ≥ 2 is zero when n = k .

Proof. (Proof by induction)

• Base Cases: The maximum weight path in G2 up tp G4 is zero as can be seen Figure 4.9 with

n = k .

• Suppose for induction that GN has a maximum weight path of zero and consider GN+1. By

Proposition 4.1.40, all paths from 0 to I N+1
t must use the red edge from 0 to I I N+1

b .

There are two cases to consider by Proposition 4.1.41.

◦ A path from I I N+1
b to I I N+1

t inside B2 and then the blue edge from I I N+1
t to I N+1

b is

taken.

Note that this path is a copy of a path in GN except that blue edges have a weight that

is one less, so the maximum weight is at most zero. Furthermore, a path from I N+1
b

to I N+1
t has a maximum weight of at most zero since it is a copy of a path in GN by

Proposition 4.1.38 except with a “cheaper" replacement for the edge from 0 to I I N
b .

◦ The red edge from I I N+1
b to I N+1

b is taken.

Any path from I N+1
b to I N+1

t is a copy of a path from I I N
b to I N

t by Proposition 4.1.38

except that blue edges have a weight that is one less. The blue edge from I N+1
t −1 to

I N+1
t must be taken which cancels out the extra red path. Therefore the maximum

weight path is zero.

31· · ·15· · ·7· · ·3· · ·1

0

G5G4G3G2

Figure 4.12 G2 ∪G3 ∪G4 ∪G5.
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Corollary 4.1.43 The maximum weight path from 0 to 2n −1 in G2 ∪G3 ∪ · · · ∪Gn is zero.

Proof. Note that if n > k , then the maximum weight path from 0 to I k
t in Gk is less than zero

since all the blue edges are more negative, the red edges are unchanged, and at least one blue edge

from I k
t −1 to I k

t must be taken. Therefore, taking the edge from 0 to I I k
b and then a path to

I k
t is “cheaper" than the edge from 0 to I I k+1

b . Hence the maximum weight path must take

the edge from 0 to I I n
b and thus lies entirely within Gn .

By construction of the graph for E1, Corollary 4.1.43 gives us max
(R ,C )∈E1(S1)

C

R
= n +1. Thus for any

S ∈ S1, the number of cases checked C is at worst (n +1)R . Furthermore, consider the case where

S = {2n −1}. Then using the full, nonsequential pruning from Proposition 4.1.14, we would need to

check all of the n the cases with one negative before we would have checked or ruled out all the sign

cases. Thus the worst case is the same whether using the sequential restriction or not.

4.1.2.2 Prune 2

We will show that max
(R ,C )∈E2(S2)

C

R
= 2.

Example 4.1.44 Let n = 3. Then the graph representing E2 is in Figure 4.13. For S = {6, 7} ∈ S2, E2(S )

would start with j = 7, go to 6, go to 5, then skip to 0 ending the algorithm, returning (2, 3) = (2, 2 ·2−1),

so this particular example finishes one under par for the max ratio C /R of 2. We can convert the steps

of E2 on S into a path in the graph above by reversing the order of the j values. Traveling from 0 to

5 on the red edge, then to 6 on the blue edge, then to 7 on the blue edge gives a total weight

of 1+−1+−1=−1, the par number for S.

7654321

0

Figure 4.13 The graph representing E2 when n = 3. Blue lines have weight −1 and red lines have weight +1.

Again, it is useful to break the graph of E2 into several parts. Consider the weighted directed

graph Gk for k ≥ 2 with nodes 0 , 2k−1−1 , 2k−1 , . . . , 2k −1 with edges based on the following

rules.

• An edge with weight −1 goes from m to m +1 for 2k−1−1≤m < 2k −1.
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• An edge with weight +1 goes from P2(m ) to m for 2k−1−1≤m < 2k −1.

Note that 0 will have no incoming edges, 2k−1−1 will have one incoming edge of weight +1,

2k−1 ,. . . , 2k −2 will each have two incoming edges, one of weight −1 and one of weight +1, and

2k −1 will have one incoming edge of weight −1. There are no other edges. Also note that edges

go from a smaller number to a larger. Joining G2, G3, . . . , Gn together and examining the maximum

weight path gives the worst case performance for E2.

321

0

76543

0

151413121110987

0000

B1B2B3B4

313029282726252423

2221201918171615

0

000

B1

B2B3B4

Figure 4.14 G2, G3 G4, and G5 with the boxes described by Definition 4.1.45. Blue edges have weight −1 and
red edges have weight +1. Dashed edges go between boxes. The graph for E2 when n = 5 is G2 ∪G3 ∪G4 ∪G5.
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Definition 4.1.45 Let

I k
t = 2k −1 I I I k

t = 2k −2k−2−2k−4−2

I k
b = 2k −2k−2−1 I I I k

b = 2k −2k−2−2k−3−1

I I k
t = 2k −2k−2−2 I V k

t = 2k −2k−2−2k−3−2

I I k
b = 2k −2k−2−2k−4−1 I V k

b = 2k−1−1

Then Gk for k ≥ 4 can be split into four “boxes" as follows:

• B1: The induced subgraph of Gk by taking 0 , I k
b , . . . , I k

t .

• B2: The induced subgraph of Gk by taking 0 , I I k
b , . . . , I I k

t .

• B3: The induced subgraph of Gk by taking 0 , I I I k
b , . . . , I I I k

t .

• B4: The induced subgraph of Gk by taking 0 , I V k
b , . . . , I V k

t .

Recursive Structure

Gk+1 can be constructed from Gk using the following propositions.

Proposition 4.1.46 B1 of Gk+1 for k ≥ 3 is the same as Gk with 2k added to every nonzero node except

that I k+1
b has a blue edge from I I k+1

t .

Proof.

• Nodes:

It is sufficient to show that the top and bottom nodes of Gk with 2k added match the top and

bottom nodes of B1 of Gk+1 since all the nodes in between are sequential.

I V k
b +2k = (2k−1−1) +2k I k

t +2k = (2k −1) +2k

= 2k+1− (2k+1−2k −2k−1)−1 = 2k+1−1

= 2k+1−2k−1−1 = I k+1
t

= I k+1
b

• Blue Edges:

m +2k and (m +1) +2k are still adjacent. Also I k+1
b and I I k+1

t are adjacent.

• Red Edges:

Note that adding 2k to 0<m < 2k is the same as left-appending a one to the k digit binary

representation of m . Consider two subcases.
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151413121110

0

B1

76543

0

Figure 4.15 B1 of G4 and G3 which have the same structure (see Proposition 4.1.46).

◦ m has < 2 zeros in its k digit binary representation where 2k−1−1≤m < 2k −1:

Then P2(m ) = P2(m +2k ) = 0.

◦ m has ≥ 2 zeros in its k digit binary representation where 2k−1−1≤m < 2k −1:

By Lemma 4.1.31, m +2k has a binary representation that starts with “11." Thus P2(m +

2k ) = 2k +P2(m ) since the left-most one is unaffected by P2.

Proposition 4.1.47 B2∪ I V k+1
b of Gk+1 for k ≥ 4 is the same as B2 ∪ B3∪ I V k

b of Gk with 3 · 2k−2

added to every node I I I k
b ≤m ≤ I I k

t and adding 2k−1 to I V k
b .

Proof.

• Nodes:

It is sufficient to show that the top and bottom nodes of B2∪B3 of Gk with 3 ·2k−2 added match

the top and bottom nodes of B2 of Gk+1, since all the nodes in between are sequential, and

that I V k
b +2k−1 = I V k+1

b .

I I I k
b +3 ·2k−2 = (2k −2k−2−2k−3−1) +3 ·2k−2

= (2k −2k−2−2k−3−1) + (2k−1+2k−2)

= 2k+1− (2k+1−2k −2k−1)−2k−3−1

= 2k+1−2k−1−2k−3−1

= I I k+1
b

I I k
t +3 ·2k−2 = (2k −2k−2−2) +3 ·2k−2

= (2k −2k−2−2) + (2k−1+2k−2)
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= 2k+1− (2k+1−2k −2k−1)−2

= 2k+1−2k−1−2

= I I k+1
t

I V k
b +2k−1 = (2k−1−1) +2k−1

= 2k −1

= I V k+1
b

• Blue Edges:

m +3 ·2k−2 and (m +1) +3 ·2k−2 are still adjacent.

• Red Edges:

By Lemma 4.1.33, every node in B2 ∪B3 of Gk except I I I k
b starts with “101" and has at least

one more zero. Adding 3 ·2k−2 = 2k−1+2k means that these nodes now have k +1 digits and

start with “1011." Consider two subcases.

◦ m has 2 zeros in its k digit binary representation where I I I k
b <m ≤ I I k

t :

Then P2(m ) = I V k
b and P2(m +3 ·2k−2) = I V k+1

b .

◦ m has > 2 zeros in its k digit binary representation where I I I k
b <m ≤ I I k

t :

Then P2(m +3 ·2k−2) = P2(m ) +3 ·2k−2 since the leading “10" of m is unaffected by P2.

By Lemma 4.1.34, I I I k
b +3 ·2k−2 = I I I k

b +2k−1+2k−2 starts with “1010" followed by k −3 ones.

Thus P2(I I I k
b ) = I V k

b and P2(I I I k
b +3 ·2k−2) = I V k+1

b .

Proposition 4.1.48 B3 of Gk+1 for k ≥ 4 is the same as B4 of Gk with 3 · 2k−2 added to every node

I V k
b ≤m ≤ I V k

t except I I I k+1
b has a red edge from I V k+1

b instead of 0 and a new blue edge from

I V k+1
t .

Proof.

• Nodes:

It is sufficient to show that the top and bottom nodes of B4 of Gk with 3 ·2k−2 added match

the top and bottom nodes of B3 of Gk+1 since all the nodes in between are sequential.

I V k
b +3 ·2k−2 = (2k−1−1) +3 ·2k−2

= (2k−1−1) + (2k−1+2k−2)

= 2k +2k−2−1

= 2k+1− (2k+1−2k ) +2k−2−1
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Figure 4.16 B2 of G6 and B2 ∪B3 of G5 which have the same structure (see Proposition 4.1.47).

= 2k+1−2k +2k−2−1

= 2k+1− (2k−1+2k−1) +2k−2−1

= 2k+1−2k−1− (2k−1−2k−2)−1

= 2k+1−2k−1−2k−2−1

= I I I k+1
b

I V k
t +3 ·2k−2 = (2k −2k−2−2k−3−2) +3 ·2k−2

= (2k −2k−2−2k−3−2) + (2k−1+2k−2)

= 2k +2k−1−2k−3−2

= 2k+1− (2k+1−2k −2k−1)−2k−3−2

= 2k+1−2k−1−2k−3−2

= I I I k+1
t

• Blue Edges:

m +3 ·2k−2 and (m +1) +3 ·2k−2 are still adjacent. Also, I V k+1
t and I I I k+1

b are adjacent.

• Red Edges:

By Lemma 4.1.34, the k digit binary representation for 2k−1 ≤m ≤ I V k
t starts with “100." Thus

m +3 ·2k−2 has k +1 digits and starts with “1010." Consider two cases.

◦ The k digit binary representation of P2(m ) for 2k−1 ≤m ≤ I V k
t starts with “100":
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Then P2(m +3 ·2k−2) = P2(m ) +3 ·2k−2.

◦ The k digit binary representation of P2(m ) for 2k−1 ≤m ≤ I V k
t is “011. . . 1" = I V k

b :

Then P2(m +3 ·2k−2) = “10011 . . . 1”= I I I k+1
b .

Also, P2(I I I k+1
b ) = “011 . . . 1= I V k+1

b .

Proposition 4.1.49 B4 of Gk+1 for k ≥ 4 is the same as B2 ∪ B3 ∪ B4 of Gk with 2k−1 added to every

nonzero node.

Proof.

• Nodes:

It is sufficient to show that the top and bottom nodes of B2 ∪B3 ∪B4 of Gk with 2k−1 added

match the top and bottom nodes of B4 of Gk+1 since all the nodes in between are sequential.

I V k
b +2k = (2k−1−1) +2k−1

= 2k −1

= I V k+1
b

I I k
t +2k−1 = (2k −2k−2−2) +2k−1

= 2k+1− (2k+1−2k −2k−1)−2k−2−2

= 2k+2−2k−1−2k−2−2

= I V k+1
t

• Blue Edges:

m +2k−1 and (m +1) +2k−1 are still adjacent.

• Red Edges:

By Lemma 4.1.32, every node in B2 ∪B3 ∪B4 of Gk except I V k
b has k digits and starts with

“10." Adding 2k−1 means they will have k +1 digits and start with “100." Consider two cases.

◦ The k digit representation of P2(m ) for I V k
b <m ≤ I I k

t starts with “10":

Then P2(m +2k−1) = P2(m ) +2k−1.

◦ The k digit representation of P2(m ) for I V k
b <m ≤ I I k

t is “011 . . . 1”= I V k
b :

Then P2(m +2k−1) = I V k+1
b .

Also, P2(I V k+1
b ) = 0.
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0
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Figure 4.17 B3 of G6 and B4 of G5 which have the same structure (see Proposition 4.1.48).

3837363534333231

0

B4

2221201918171615

000

B2B3B4

Figure 4.18 B4 of G6 and B2 ∪B3 ∪B4 of G5 which have the same structure (see Proposition 4.1.49).
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We can make some additional observations about the structure of Gk .

Proposition 4.1.50 B2 ∪B3 of Gk has no edge from 0 and B4 of Gk has only one edge from 0

which goes to I V k
b for k ≥ 4.

Proof. (Proof by induction)

• Base case: Observe that this is true for G4 and G5 in Figure 4.14.

• Suppose the proposition is true for k ≥ 4. Consider Gk+1.

By Proposition 4.1.47, B2 of Gk+1 is a copy of B2 ∪B3 of Gk , so will have no edges from 0 .

By Proposition 4.1.48, B3 of Gk+1 is a copy of B4 of Gk except that the (only) edge from 0

has been changed, so it will have no edges from 0 .

By Proposition 4.1.49, B4 of Gk+1 is a copy of B2 ∪B3 ∪B4 of Gk , so it will have only one edge

from 0 which goes to I V k+1
b .

Proposition 4.1.51 B1 of Gk has only one edge from outside of B1 which is the edge with weight −1

from I I k
t to I k

b .

Proof. Immediate from Proposition 4.1.46.

Gk
B2 ∪B3

of Gk
B4 of Gk

B2 ∪B3 ∪B4

of Gk

B1B2B3B4

Figure 4.19 Putting Propositions 4.1.46 – 4.1.49 together allows for Gk+1 to be built from Gk .

Maximum Weight Path

Theorem 4.1.52 The maximum weight path from 0 to I k
t in Gk for k ≥ 2 is zero.

Proof. (Proof by induction)

• Base cases: Checking G2 up to G5 in Figure 4.14 shows that the maximum weight path from

0 to I k
t is 0 for k = 2, 3, 4, 5. Also, the “bottom halves" of G4 and G5, i.e., B2 ∪B3 ∪B4, have

a maximum weight path of zero from I V k
b to I k

b .
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• Assume for induction that Gk has a maximum weight path of zero and that the maximum

weight path from I V k
b to I k

b is zero for k ≤N where N ≥ 5. Consider GN+1. By Propositions

4.1.46 and 4.1.50 there are two choices to travel from 0 .

◦ A path from 0 to B1 is taken:

Then the path is entirely contained inside GN by Proposition 4.1.46, so the maximum

weight is zero by the inductive hypothesis.

◦ The path from 0 to I V N+1
b is taken:

Here again there are two options by Proposition 4.1.51.

• A path from I V N+1
b to a node in B4 is taken:

By Propositions 4.1.47 and 4.1.48, all such paths must go through I I I N+1
b . By Propo-

sition 4.1.49, this portion of the path is identical to the bottom half of GN , so by the

inductive hypothesis, this portion has a maximum weight of zero. Again, by Proposi-

tions 4.1.47 and 4.1.48, the path from I I I N+1
b to I N+1

b is a copy of the bottom half

of GN except with fewer edges of weight+1, thus this portion of the path must have a

maximum weight of at most zero. Therefore, 0 to I V N+1
b and then the path from

I V N+1
b to I N+1

b has a maximum weight of at most one, which is the same as taking

the direct path from 0 to I N+1
b . Since the direct path is completely contained in

GN by Proposition 4.1.46, it results in a maximum weight path of zero. Replacing the

direct path with a longer path through the bottom half with the same weight will

still result in a maximum weight path of zero.

• A path from I V N+1
b to a node in B2 is taken:

Since I V N+1
b ∪B2 of GN+1 is a copy of I V N

b ∪B2 ∪B3 of GN by Proposition 4.1.47,

the maximum weight path is zero by the inductive hypothesis.

• The path from I V N+1
b to I I I N+1

b in B3 is taken:

By Proposition 4.1.48, B3 of GN+1 is a copy of B4 of GN . This in turn is a copy of

B2 ∪ B3 ∪ B4 of GN−1 by Proposition 4.1.49. Thus the maximum weight path from

I I I N+1
b to I I N+1

b is zero by the inductive hypothesis. Therefore, taking the edge

from I V N+1
b to I I I N+1

b and then a path from there to I I N+1
b has the same weight

as taking the edge from I V N+1
b to I I N+1

b directly, so the maximum weight path is

again zero by the above case.

Corollary 4.1.53 The maximum weight path from 0 to 2n −1 in G2 ∪G3 ∪ · · · ∪Gn is zero.

Proof. Note that taking a red edge from 0 to a node in Gk and then the path from that node to

I k
t has maximum weight zero by the above theorem while the red edge from 0 to I k

t has a
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weight of one. Therefore the maximum weight path must take a red edge from 0 to a node in Gn .

Thus the maximum weight path lies entirely in Gn .

31· · ·15· · ·7· · ·3· · ·1

0

G5G4G3G2

Figure 4.20 G2 ∪G3 ∪G4 ∪G5.

By construction of the graph for E2, Corollary 4.1.53 gives us max
(R ,C )∈E2(S2)

C

R
= 2. Thus for any S ∈ S2,

the number of cases checked C is at worst 2R . Furthermore, consider the case where S = {2n −1}.
Then an algorithm that uses the full, nonsequential pruning of Propositions 4.1.14 and 4.1.23 would

check case 2n −2, giving C = 2R . Therefore, the worst case efficiency is the same when applying the

sequential pruning restriction.

4.2 Stability

In this section we will show that if there is at least one equilibrium, then the rank one Kuramoto

model generically has a unique stable equilibria (in the orbitally stable sense; see Section 1.1.2 for

a discussion of orbital stability). Furthermore, this stable equilibria can be found from the largest

root of f+++. To start, we will examine the Jacobian matrix J . A direct computation of the Jacobian of

Eq. 4.0.1 gives

J =−
1

n

















n
∑

v=1

k1kv cos(θ1−θv )

...
n
∑

v=1

kn kv cos(θn −θv )

















+
1

n

�

ku kv cos(θu −θv )
�

(u ,v )
(4.2.1)

Lemma 4.2.1 The Jacobian matrix has a zero eigenvalue.

Proof. It is immediate from Eq. 4.2.1 that the sum of all the columns of J is the zero vector. Therefore

the all ones vector is an eigenvector with the corresponding eigenvalue of zero.

The all ones eigenvector corresponds to the invariance under shift of the Kuramoto model.

70



Since the model depends only on the differences between angles, we will ignore the shift when

determining the stability of an equilibrium. Moreover, note that J is a real symmetric matrix, so all

its eigenvalues are real. Thus if J evaluated at an equilibrium has n −1 negative eigenvalues, then

that equilibrium is stable. Likewise, if J has a positive eigenvalue, then that equilibrium cannot be

stable [9].

Remark 4.2.2 For convenience, we will call r ∈ Rk ,ω,σ stable if the corresponding θ = F (Gσ(r )) is

orbitally stable.

Here we will introduce some convenient notation.

Notation 4.2.3

• Let+++ := (+, . . . ,+).

• Let su :=
Æ

k 2
u R −ω2

u .

• Recall from Section 4.1 that fσ(R ) :=−R +
1

n

n
∑

u=1

σu su .

We can convert J using the same variables as the reformulation in Section 4.1. For convenience

we will restate some results from the reformulation first.

Lemma 4.2.4 Letφ ∈Φk ,ω,σ. Then

Im(φu ) =
ωu

ku
p

R
Re(φu ) =

σu su

ku
p

R

Proof. From Lemma 4.1.2 we have thatωu = ku r Im(φu )where r ∈R+ for any equilibria. We also

haveφu =
ωu i +σu su

ku r
from Lemma 4.1.4. Lastly, we defined R := r 2.

(Note as a consequence of this Lemma that su ≥ 0 for all u .)

Proposition 4.2.5 Let

φu := e iθu r :=
1

n

n
∑

u=1

kuφu

Then J =D +M M T for any equilibrium of Eq. 4.0.1 where

D :=−







σ1s1

...

σn sn






M :=

1
p

n







k1 Re(φ1) k1 Im(φ1)
...

...

kn Re(φn ) kn Im(φn )







Proof. Applying the change of variables stated in the proposition to Eq. 4.2.1 gives

J =−







k1 Re(φ1r ?)
...

kn Re(φn r ?)






+

1

n

�

ku kv Re(φuφ
?
v )
�

(u ,v )
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For an equilibrium, we have r ∈R+. Using Lemma 4.2.4 and factoring the second matrix therefore

gives

J =−







k1r Re(φ1)
...

kn r Re(φn )







+
1

n







k1 Re(φ1) k1 Im(φ1)
...

...

kn Re(φn ) kn Im(φn )







�

k1 Re(φ1) · · · kn Re(φn )

k1 Im(φ1) · · · kn Im(φn )

�

=−







σ1s1

...

σn sn






+

1

n







k1 Re(φ1) k1 Im(φ1)
...

...

kn Re(φn ) kn Im(φn )







�

k1 Re(φ1) · · · kn Re(φn )

k1 Im(φ1) · · · kn Im(φn )

�

=D +M M T

Next, we can restrict the possibleσ values that can produce stable equilibria.

Proposition 4.2.6 The set of all stable equilibria is a subset of F (G+++(Rk ,ω,+++))

Proof. For any r ∈Rk ,ω,σ, Lemma 1.2.1 combined with Proposition 4.2.5 gives

λu (J ) =λu (D +M M T)≥λu (D )

since M M T � 0. Furthermore, D is diagonal, so its eigenvalues are the diagonal elements −σu su .

Suppose r̂ ∈Rk ,ω,σ is stable and let R̂ = r̂ 2. Then we must have that −σu su ≤ 0 for every u . Thus for

any v such thatσv =−, we must have sv = 0. But then fσ(R̂ ) = f+++(R̂ ), so r̂ ∈Rk ,ω,+++.

Recall that the domain of fσ(R ) is

�

�

ωn

kn

�2

,∞
�

. Thus for r̂ ∈ Rk ,ω,σ, we generically have R̂ =

r̂ 2 >

�

ωn

kn

�2

which implies su > 0. By restrictingσ to the caseσ=+++, we can determine that n −2 of

the necessary n −1 eigenvalues are negative in this generic case.

Lemma 4.2.7 For generic r ∈Rk ,ω,+++, J has at least n −2 negative eigenvalues.

Proof. For any generic r ∈Rk ,ω,+++, Lemma 1.2.1 combined with Proposition 4.2.5 gives

λu (−J ) =λu (−D −M M T)>λu (−M M T)

since generically−D � 0 whenσ=+++. Flipping the sign givesλu (J )<λu (M M T). Furthermore, M M T

is at most rank two, so at least n −2 of its eigenvalues are zero. Therefore, at least n −2 eigenvalues

of J are strictly less than zero.
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By the above proposition and Lemma 4.2.1, only one eigenvalue has an undetermined sign. The

next proposition provides a test to determine that sign.

Proposition 4.2.8 Let r ∈Rk ,ω,+++ and R := r 2. Then generically r is stable if

ξ(R ) := 1−
1

n

n
∑

u=1

ω2
u

R su
> 0

and r is unstable if ξ(R )< 0.

Proof. For a generic r ∈ Rk ,ω,+++, Lemmas 4.2.1 and 4.2.7 leave one unknown eigenvalue. Let λ1 be

this unknown value, λ2, . . . ,λn−1 be the n −2 negative eigenvalues, and λn be the zero eigenvalue.

Since λn = 0, the coefficient of the linear term in the characteristic equation for J is the product

−λ1λ2 · · ·λn−1. Thus we have

det(J −λI ) = det(D +M M T−λI )

= det(A+ b b T+ c c T)

=−(λ1λ2 · · ·λn−1)λ+O (λ2)

where A :=D −λI , b is the first column of M , and c is the second column of M . Applying Lemma

1.2.2 then gives

det(A)
�

(1+ b TA−1b )(1+ c TA−1c )− (c TA−1b )2
�

= −(λ1λ2 · · ·λn−1)λ+O (λ2) (4.2.2)

We will consider each piece of the left-hand side individually. Again, note that for a generic r ∈Rk ,ω,+++

we have that su > 0.

1. det(A) = det(D ) +O (λ) :

We have that
n
∏

u=1

(−su −λ) =

�

n
∏

u=1

−su

�

+O (λ)

2. A−1 =D −1+







s−2
1

...

s−2
n






λ+O (λ2) :

We have that

A−1 =







−1
s1+λ

...
−1

sn+λ







Using the Taylor series centered at zero on each diagonal element gives

−1

su +λ
=−

1

su
+

1

s 2
u
λ+O (λ2)
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3. 1+ b TA−1b =
λ

R
+O (λ2) :

By Lemma 4.2.4, Proposition 4.2.6, and #2 we have

1+ b TA−1b = 1+ b TD −1b + b T







s−2
1

...

s−2
n






bλ+O (λ2)

= 1+
1

n

n
∑

u=1

−k 2
u Re2(φu )

su
+

1

n

n
∑

u=1

k 2
u Re2(φu )

s 2
u

λ+O (λ2)

= 1−
1

n

n
∑

u=1

su

R
+

1

n

n
∑

u=1

1

R
λ+O (λ2)

=
1

R
f+++(R ) +

λ

R
+O (λ2)

=
λ

R
+O (λ2)

since f+++(R ) = 0 by the assumption that r ∈Rk ,ω,+++.

4. 1+ c TA−1c = ξ(R ) +O (λ) :

Let ξ(R ) := 1−
1

n

n
∑

u=1

ω2
u

R su
. By Lemma 4.2.4 and #2 we have

1+ c TA−1c = 1+ c TD −1c +O (λ)

= 1+
1

n

n
∑

u=1

−k 2
u Im2(φu )

su
+O (λ)

= 1−
1

n

n
∑

u=1

ω2
u

R su
+O (λ)

= ξ(R ) +O (λ)

5. c TA−1b =O (λ) :

By IC1 (which is
n
∑

u=1

ωu = 0), Lemma 4.2.4 and #2 we have

c TA−1b = c TD −1b +O (λ)

=
1

n

n
∑

u=1

−k 2
u Re(φu ) Im(φu )

su
+O (λ)

=
−1

n

n
∑

u=1

ωu

R
+O (λ)

=
−1

nR

n
∑

u=1

ωu +O (λ)
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=O (λ)

Putting #1–5 into the left-hand side of Eq. 4.2.2 gives

(det(D ) +O (λ))
��

λ

R
+O (λ2)

�

(ξ(R ) +O (λ))− (O (λ))2
�

= (det(D ) +O (λ))
�

ξ(R )
R
λ+O (λ2)

�

= det(D )
ξ(R )

R
λ+O (λ2)

Thus Eq. 4.2.2 becomes

det(D )
ξ(R )

R
λ+O (λ2) =−(λ1λ2 · · ·λn−1)λ+O (λ2)

Looking at the sign of the coefficient of λ gives

(−1)n sign(ξ(R )) = (−1)n−1 sign(λ1)

Hence sign(λ1) =−sign(ξ(R )). Therefore if ξ(R )> 0, J will have n −1 negative eigenvalues, so r is

stable, and if ξ(R )< 0, J will have a positive eigenvalue, so r is not stable.

In order to apply this test to the elements of Rk ,ω,+++, we can rewrite ξ in terms of f+++ and its

derivative. Since ξ is a factor of the linear coefficient of the characteristic equation which involves

the derivatives of the KM equations, it is not surprising to see that ξ depends on f ′. However, it is

unexpected to see that ξ also depends on f and only on f and f ′.

Lemma 4.2.9 ξ(R ) =
f+++(R )

R
−2 f ′+++(R )

Proof. Recall that f+++(R ) :=−R +
1

n

n
∑

u=1

su where su :=
Æ

k 2
u R −ω2

u . Thus

f ′+++(R ) =−1+
1

n

n
∑

u=1

k 2
u

2su

Therefore, we have that

f+++(R )
R
−2 f ′+++(R ) = −1+

1

n

n
∑

u=1

su

R
+ 2−

1

n

n
∑

u=1

k 2
u

su

= 1−
1

n

n
∑

u=1

�

k 2
u

su
−

su

R

�

= 1−
1

n

n
∑

u=1

k 2
u R − s 2

u

R su

= 1−
1

n

n
∑

u=1

ω2
u

R su

= ξ(R )
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Since all of the stable equilibria can be found within Rk ,ω,+++ by Proposition 4.2.6, it is necessary

to know when that set is nonempty in order to prove the existence of a stable solution.

Lemma 4.2.10 If Eq. 4.0.1 has at least one equilibrium, then Rk ,ω,+++ 6= ;

Proof. Suppose that Eq. 4.0.1 has at least one equilibrium. By Theorem 4.1.6, we have that Rk ,ω,σ 6= ;
for someσ ∈ {−,+}n . Recall that by construction, fσ(r 2) = 0 for any r ∈ Rk ,ω,σ. Thus we have that

f+++(r 2)≥ 0. Moreover, lim
R→∞

f+++(R ) =−∞. Therefore by the Intermediate Value Theorem, f+++ must have

a root, so Rk ,ω,+++ 6= ;.
Combining all the previous results, we can now prove the main stability result for the rank one

coupling case.

Theorem 4.2.11 Suppose that Eq. 4.0.1 has at least one equilibrium. Then generically Eq. 4.0.1 has a

unique stable equilibrium. Furthermore, this stable equilibrium, if it exists, comes from the largest

root of f+++.

Proof. By Lemma 4.2.10, we have that Rk ,ω,+++ 6= ; if Eq. 4.0.1 has at least one equilibrium. Also by

Proposition 4.2.6, Rk ,ω,+++ contains all the stable equilibria. Thus we need to consider each element

of Rk ,ω,+++, which by construction are the roots of f+++. We have that

f ′′+++ (R ) = −
1

n

n
∑

u=1

k 4
u

4s 3
u
< 0

Thus f+++ is concave down everywhere on its domain, so it has at most two roots. Supposing that f+++
has at least one root, there are then generically two cases to consider.

• f+++ has two roots, R1 and R2:

Let R1 <R2. By Lemma 4.2.9,

ξ(Ru ) =
f+++(Ru )

Ru
−2 f ′+++(Ru ) =−2 f ′+++(Ru )

Since f+++(R ) is concave down, we have that f ′+++(R1)> 0 and f ′+++(R2)< 0. So by Proposition 4.2.8,

R1 is unstable and R2 is stable.
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• f+++ has one root with multiplicity one R̂ :

We must have that f ′+++(R̂ )< 0, so again by Lemma 4.2.9 and Proposition 4.2.8, R̂ is stable.

4.3 Counting

As summarized in Section 1.2.4, an upper bound on the number of equilibria to Eq. 4.0.1 is 2, 6, 14

for n = 2,3,4, respectively. Theorem 4.3.3 shows that 2n −2 bounds the number of equilibria with

Corollary 4.3.4 showing that 2n − 2 is actually the generic root count for the polynomial system

version of Eq. 4.0.1 modulo shift.

Letω ∈Rn and k ∈Rn
>0 satisfy IC1-IC3. The following shows that the function

g (R ) :=
∏

σ∈{−,+}n
fσ(R ) =

∏

σ∈{−1,+1}n

�

−R +
1

n

n
∑

u=1

σu

Æ

k 2
u R −ω2

u

�

(4.3.1)

is actually a reducible polynomial.

Proposition 4.3.1 The univariate function g in Eq. 4.3.1 is a polynomial of degree 2n . Moreover, there

exists a polynomial h (R ) of degree 2n −2 with

g (R ) =R 2 ·h (R )

Proof. Since g is a product over all 2n conjugates, it immediately follows that g is a polynomial with

leading term (−R )2
n

showing that g is a polynomial of degree 2n .

In order to show that R 2 is a factor of g , we simply need to show that g (0) = g ′(0) = 0. To that

end, considerσω = sign(ω). (We will let sign(ωu ) = + ifωu = 0.) Then,

fσω (0) =
1

n

n
∑

u=1

sign(ωu )
Æ

−ω2
u =

p
−1

n

n
∑

u=1

ωu = 0

by IC1. By Eq. 4.3.1, this immediately shows that g (0) = 0 since one of the terms in the product is 0.
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By a similar argument as above, f−σω (0) = 0 by IC1. This shows that at least two terms in the

product defining g in Eq. 4.3.1 are zero. Hence, the product rule for differentiation shows that

g ′(0) = 0.

Example 4.3.2 For n = 2, we have

g (R ) = R 4−
1

2

�

k 2
1 +k 2

2

�

R 3+
1

16

�

�

k 2
1 −k 2

2

�2
+8

�

ω2
1+ω

2
2

�

�

R 2

−
1

8

�

k 2
1 −k 2

2

� �

ω2
1−ω

2
2

�

R +
1

16

�

ω2
1−ω

2
2

�2

which is indeed a polynomial of degree 22 = 4. Moreover, IC1 impliesω2 =−ω1 so that

g (R ) =R 2
�

R 2−
1

2

�

k 2
1 +k 2

2

�

R +
1

16

�

�

k 2
1 −k 2

2

�2
+16ω2

1

�

�

Proposition 4.3.1 immediately provides the following upper bound.

Theorem 4.3.3 If ω ∈ Rn and k ∈ Rn
>0 satisfy IC1–IC3, then there are at most 2n − 2 equilibria

satisfying Eq. 4.0.1.

Proof. This follows from Theorem 4.1.6 since g (R ) in Eq. 4.3.1 has at most 2n −2 positive roots.

Corollary 4.3.4 The generic root count modulo shift to the polynomial version of Eq. 4.0.1 is 2n −2.

Proof. Reviewing the proof of Theorem 4.1.6 shows that 2n −2 also bounds the number of complex

solutions to Eq. 4.0.1. For g in Eq. 4.3.1, g ′′(0) 6= 0 for generic values of the parameters yielding that

there are generically 2n −2 nonzero roots of g . Hence, 2n −2 is the generic root count of Eq. 4.0.1.

Example 4.3.5 Table 4.1 shows that the polynomial system of Eq. 4.0.1 for n = 4,ω=
�

− 3
4 ,− 3

4 , 1
4 , 3

4

�

,

and k = (
p

1.5,
p

1.5,
p

1.5,
p

1.5) has 12 complex roots modulo shift, which is less than the generic

root count of 24−2= 14. In fact, as in the proof of Proposition 4.3.1, this is due to the following four

quantities being equal to zero:

4
∑

u=1

ωu ,
4
∑

u=1

−ωi , ω1−ω2−ω3+ω4, −ω1+ω2+ω3−ω4

Hence, g in Eq. 4.3.1 has g (0) = g ′(0) = g ′′(0) = g ′′′(0) = 0, namely

g (R ) =
R 4

1073741824
(64R 4−96R 3+20R 2+1)(64R 2−24R +9)2(64R 2−24R +1)2

Theorem 4.3.3 provides an upper bound of 2n −2 when the symmetric coupling matrix has rank

one while [2] provides an upper bound of
�2n−2

n−1

�

in the general case. By Stirling’s formula,

�

2n −2

n −1

�

≈
4n−1

p

π(n −1)
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showing the bound in Theorem 4.3.3 for the rank-one case is roughly the square root of the general

purpose bound from [2].

Counting equilibria for particular cases

Motivated by [50], we use Theorem 4.1.6 to analyze the number of equilibria satisfying Eq. 4.0.1

for particular cases when n is even (Proposition 4.3.6 and Corollary 4.3.9) and when n is odd

(Proposition 4.3.12).

Proposition 4.3.6 Suppose that n ≥ 2 is even and q > 0. For ω =
�

nq , . . . , nq ,−nq , . . . ,−nq
�

and

k = (n , . . . , n ), there are exactly

2n −
∑

−q<`<q

�

n

n/2+ `

�

equilibria satisfying Eq. 4.0.2 counting multiplicity. Hence, the number of equilibria changes precisely

at the integers q = 1, 2, . . . , n/2.

Proof. Since k 2
u = n 2 andω2

u = n 2q 2, Theorem 4.1.6 shows that we need to compute all R > 0 where

R =
1

n

n
∑

u=1

σu

Æ

n 2R −n 2q 2

=
n
∑

u=1

σu

Æ

R −q 2

= S
Æ

R −q 2 (4.3.2)

with S :=
n
∑

u=1

σu andσ ∈ {−,+}n .

If S ≤ 0, then Eq. 4.3.2 has no positive solutions. Since n is even, the remaining cases have S ≥ 2.

Thus, the positive solutions of Eq. 4.3.2 must satisfy

R =
S

2

�

S ±
Æ

S 2−4q 2
�

> 0

This yields three cases:

• 2≤ S < 2q : Eq. 4.3.2 has no positive solutions;

• S = 2q ≥ 2: Eq. 4.3.2 has one positive solution of multiplicity 2, namely R = S 2/2;

• S > 2q with S ≥ 2: Eq. 4.3.2 has two distinct positive solutions.

Suppose that q is not an integer. Since S is even, we have S 6= 2q . Hence, the number of equilibria

is exactly

2 ·#
�

σ ∈ {+,−}n : S > 2q
	

= 2 ·#
�

σ ∈ {+,−}n : S ≥ 2
�

q
� 	

= 2 ·
n/2
∑

`=dq e

�

n

n/2+ `

�
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Since

�

n

n/2+ `

�

=

�

n

n/2− `

�

and 2n =
n
∑

`=0

�

n

`

�

, the number of equilibria when q is not an integer is

2 ·
n/2
∑

`=dq e

�

n

n/2+ `

�

=
−dq e
∑

`=−n/2

�

n

n/2+ `

�

+
n/2
∑

`=dq e

�

n

n/2+ `

�

= 2n −
∑

−q<`<q

�

n

n/2+ `

�

When q is an integer, we need to add in the case when S = 2q yielding

2 ·#
�

σ ∈ {+,−}n : S ≥ 2q
	

= 2 ·
n/2
∑

`=q

�

n

n/2+ `

�

= 2n −
∑

−q<`<q

�

n

n/2+ `

�

Example 4.3.7 For n = 2 and q > 0, the case ofω= (2q ,−2q ) and k = (2, 2) corresponds toω=
�q

2 ,−q
2

�

and k = (1,1). Hence, counting multiplicity, there are two equilibria for q ≤ 1 and no equilibria for

q > 1 in agreement with Proposition 4.3.6.

Example 4.3.8 For n = 4 and q > 0, the case ofω= (4q , 4q ,−4q ,−4q ) and k = (4, 4, 4, 4) corresponds

toω= (q/4, q/4,−q/4,−q/4) and k = (1, 1, 1, 1). Figure 4.21(a) plots the regions based on the number

of equilibria when k = (1,1,1,1) such thatω3 =ω4 =−(ω1+ω2)/2. With this setup,ω1 =ω2 = q/4

impliesω3 =ω4 =−q/4. Since the sign is arbitrary, the plot in Figure 4.21(b) incorporates the line

ω1 =ω2 = q/4. By Proposition 4.3.6, there are 10 equilibria for 0< |q |< 1, 2 equilibria for 1< |q |< 2,

and no equilibria for |q |> 2.

(a) (b)

Figure 4.21 Regions based on the number of equilibria satisfying Eq. 4.0.1 for n = 4 with a restricted set
ofω and k = (1, 1, 1, 1). The diagonal line in (b) corresponds to results from Proposition 4.3.6.
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Proposition 4.3.6 immediately yields the following.

Corollary 4.3.9 Suppose that n ≥ 2 is even and q > 0. The maximum number of distinct equilibria

satisfying (4.0.1) whenω= (nq , . . . , nq ,−nq , . . . ,−nq ) and k = (n , . . . , n ) is

2n −

�

n

n/2

�

(4.3.3)

which occurs for all 0< q < 1.

Example 4.3.10 For n = 4, Corollary 4.3.9 provides a maximum of 24−
�4

2

�

= 10 distinct equilibria

which matches the computational results in [50].

Before considering the odd case, we first define the constants

qo :=

p

414−66
p

33

16
≈ 0.3690 and Ro :=

21−3
p

33

8
≈ 0.4708 (4.3.4)

and prove an inequality regarding them.

Lemma 4.3.11 For 0< q < qo , Ro +
p

Ro −2
p

Ro −q 2 < 0 where qo and Ro as defined in Eq. 4.3.4.

Proof. Since q < qo and Ro −q 2 >Ro −q 2
o > 0, we have

Ro +
p

Ro −2
Æ

Ro −q 2 < Ro +
p

Ro −2
q

Ro −q 2
o = 0

With Lemma 4.3.11, we now consider the case when n is odd.

Proposition 4.3.12 Suppose that n ≥ 3 is odd and let 0< q < qo where qo is defined by (4.3.4). For

ω= (nq , . . . , nq ,−nq , . . . ,−nq , 0) and k = (n , . . . , n ), the number of equilibria satisfying Eq. 4.0.1 is

2n −
�

n −1

(n −1)/2

�

(4.3.5)

Proof. Since k 2
u = n 2 for u = 1,2, . . . , n ,ω2

v = n 2q 2 for v = 1,2, . . . , n −1, andωn = 0, Theorem 4.1.6

shows that we need to compute all R > 0 with

R =
1

n

n
∑

u=1

�

σu

Æ

n 2R −n 2q 2
�

+
1

n
σn

p

n 2R

=
n−1
∑

u=1

�

σu

Æ

R −q 2
�

+σn

p
R

= S
Æ

R −q 2+σn

p
R (4.3.6)
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where S :=
n
∑

u=1

σu andσ ∈ {−,+}n . Define pσ(R ) := R −σn
p

R −S
p

R −q 2. Since n −1 is even, we

know that S is also even. This yields three cases to consider.

• S < 0:

Rewriting Eq. 4.3.6 as

R −σn

p
R = S

Æ

R −q 2

shows that the right-hand size is non-positive. Hence, to have a solution, we needσn =+ and

R ∈ (q 2, 1). Since pσ(q 2) = q 2−q < 0 and pσ(1) =−S
p

1−q 2 > 0, we know that there is at least

one root in (q 2, 1). In fact, since S ≤−2, it is easy to see that pσ is a strictly increasing function

on (q 2, 1) since

p ′σ(R ) = 1−
1

2
p

R
+

−S

2
p

R −q 2
≥ 1−

1

2
p

R
+

1
p

R −q 2
≥ 1+

1

2
p

R
> 0

for all R ∈ (q 2, 1). Thus, this case yields one equilibrium for eachσ ∈ {−,+}n such thatσn =+

and S < 0 for a total of
1

2

�

2n−1 −
�

n −1

(n −1)/2

��

• S = 0:

Since (4.3.6) becomes R =σn
p

R , this case requires σn =+ and R = 1. The total number of

equilibria for this case is thus
�

n −1

(n −1)/2

�

• S > 0:

We split this into two cases based on the value ofσn .

◦ σn =+:

Rewriting Eq. 4.3.6 as

R −
p

R = S
Æ

R −q 2

shows that the right-hand size is nonnegative. Hence, to have a solution, we need R > 1.

Since pσ(1) =−S
p

1−q 2 < 0 and lim
R→∞

pσ(R ) =∞, we know that there is at least one root

in (1,∞). In fact, the root is unique since the graph of pσ is concave up due to

p ′′σ (R ) =
1

4R 3/2
+

S

4(R −q 2)3/2
> 0

for R > 1. Hence, the total number of equilibria for this case is

1

2

�

2n−1 −
�

n −1

(n −1)/2

��
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◦ σn =−:

We need to compute the number of roots of pσ for R > q 2. Since S ≥ 2 and R 3/2 >

(R −q 2)3/2 for all R > q 2, it follows that

p ′′σ (R ) = −
1

4R 3/2
+

S

4(R −q 2)3/2
> 0

when R > q 2. Hence, pσ is concave up on R > q 2 with pσ(q 2) = q 2+q > 0 and lim
R→∞

pσ(R ) =

∞. Thus, the number of roots depends on the sign of the minimum value of pσ on R > q 2.

Since increasing S makes pσ more negative and Lemma 4.3.11 shows that pσ(Ro ) < 0

when S = 2, there are always two roots with R > q 2. Hence, the total number of equilibria

for this case is

2n−1 −
�

n −1

(n −1)/2

�

The result is obtained by simply summing the number of equilibria from all of these cases.

Example 4.3.13 For n = 3, Proposition 4.3.12 shows that the number of equilibria forω= (3q ,−3q , 0)

and k = (3, 3, 3) is 23−
�2

1

�

= 6 whenever 0< q < qo with qo defined in (4.3.4). This is equivalent to the

case whenω= (q/3,−q/3, 0) and k = (1, 1, 1) for 0< q < qo . Since the ordering of the elements inω is

arbitrary, Figure 4.22 is an enhanced version of Figure 1.3 that plots, in red, the corresponding three

segments within the region having 6 equilibria:

• {(α, 0,−α) : |α|< q0} is the horizontal segment,

• {(0,α,−α) : |α|< q0} is the vertical segment, and

• {(α,−α, 0) : |α|< q0} is the diagonal segment.

The following suggests an upper bound on the maximum number of equilibria.

Conjecture 4.3.14 For n ≥ 2, the maximum number of equilibria satisfying Eq. 4.0.1 with n oscilla-

tors is






















2n −
�

n

n/2

�

if n is even

2n −
�

n −1

(n −1)/2

�

if n is odd

which are achieved in Corollary 4.3.9 and Proposition 4.3.12, respectively.

This conjecture matches the known cases of n = 2 and n = 3, and agrees with the conjecture for

n = 4 provided in [50] for the standard Kuramoto model.
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Figure 4.22 Enhanced version of Figure 1.3 with the three segments from Example 4.3.13 plotted in red

Asymptotic behavior

Even though we can only conjecture an upper bound on the number of equilibria, the results from

Corollary 4.3.9 and Proposition 4.3.12 provide the following result: there can asymptotically be as

many equilibria satisfying Eq. 4.0.1 as the number of complex solutions to Eq. 4.0.1 modulo shift.

Proposition 4.3.15 As n→∞, the ratio of the maximum number of equilibria satisfying Eq. 4.0.1

and the generic root count to Eq. 4.0.1 limits to 1.

Proof. For each n ≥ 2, let Ω(n ) denote this ratio. Theorem 4.3.3 and Proposition 4.3.12 together with

Corollaries 4.3.4 and 4.3.9 show that, for every `≥ 1,

22`−
�2`
`

�

22`−2
≤ Ω(2`) ≤ 1 and

22`+1−
�2`
`

�

22`+1−2
≤ Ω(2`+1) ≤ 1

Stirling’s formula yields

lim
`→∞

�2`
`

�

22`−2
= lim
`→∞

22`
p
π`

22`−2
= 0

so that

1≥ lim
`→∞

Ω(2`)

≥ lim
`→∞

22`−
�2`
`

�

22`−2

= lim
`→∞

22`

22`−2
− lim
`→∞

�2`
`

�

22`−2

= 1−0= 1
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Similarly, Stirling’s formula yields

lim
`→∞

�2`
`

�

22`+1−2
= lim
`→∞

22`
p
π`

22`+1−2
= 0

so that

1≥ lim
`→∞

Ω(2`+1)

≥ lim
`→∞

22`+1−
�2`
`

�

22`+1−2

= lim
`→∞

22`+1

22`+1−2
− lim
`→∞

�2`
`

�

22`+1−2

= 1−0= 1

Therefore, Ω(n )→ 1 as n→∞.
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CHAPTER

5

ARBITRARY RANK COUPLING

The Kuramoto model with arbitrary rank coupling has the form

dθu

dt
=ωu −

1

n

n
∑

v=1

Ku v sin (θu −θv ) for u = 1, 2, . . . , n (5.0.1)

where n ≥ 2 is the number of oscillators, K ∈Rn×n is symmetric and gives the coupling strengths, θ

is the phase angles of the oscillators, andω is the natural frequencies of the oscillators. As discussed

in Section 1.1.1, setting dθu
dt = 0 gives the equation for the equilibria when using the rotating reference

frame. Thus the equations to solve for finding the equilibria can be simplified to

ωu =
1

n

n
∑

v=1

Ku v sin (θu −θv ) for u = 1, 2, . . . , n (5.0.2)

We will take the following input conditions.

IC1:
n
∑

u=1

ωu = 0

This is necessary to use the rotating reference frame.

IC2: ωu 6= 0 for u = 1, 2, . . . , n

We will avoid cases where any oscillator has an intrinsic velocity equal to the average.
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5.1 Finding

Note that if θ is a solution to Eq. 3.0.1, then θ + c is also a solution for any constant c . Thus, two

solutions are called equivalent modulo shift if each component-wise difference is the same modulo

2π. In order to choose a representative, an output condition for θ ∈ (−π,π]n is given below so that

only one of these equivalent solutions is chosen. To set this up, a few variables will be defined.

Let L , R T ∈Rn×ρ where ρ := rk(K ) be factors of K . In other words, LR = K . Let φu := e iθu and let

ψ :=Rφ. Now we state the output condition as follows.

OC: ∃q ψq ∈R+ and ψq+1 = · · ·=ψρ = 0.

Remark 5.1.1 OC always produces a unique representative as long as IC2 is satisfied which is shown

in the proof of Lemma 5.1.4.

Definition 5.1.2 Let ΘK ,ω be the set of all solutions to Eq. 5.0.1 satisfying OC, that is,

ΘK ,ω :=

�

θ ∈ (−π,π]n : ∀
u
ωu =

1

n

n
∑

v=1

Ku v sin(θu −θv ) ∧ OC

�

Let U be the unit circle in the complex plane, U := {z ∈ C : |z | = 1}. We can perform a series

of transformations on ΘK ,ω to transform it into a system of radical equations in potentially less

variables if the rank of K is relatively small compared to n .

Lemma 5.1.3 Let

f :
�

[θ1, . . . ,θn ]
T
�

7−→
�

e iθ1 , . . . , e iθn
�T

Then we have

1. f |ΘK ,ω
is injective.

2. f
�

ΘK ,ω

�

=ΦC ,ω where

ΦK ,ω :=

�

φ ∈Un : ∀
u

nωu = Im
�

φu r ∗u
�

∧ OC

�

and where

r := K φ.

(Note that r ∗u denotes the complex conjugate of ru .)

Proof.

1. Let θ ,θ ′ ∈ ΘK ,ω be such that f (θ ) = f (θ ′). Then for every u we have e iθu = e iθ ′u , and thus

θu = θ ′u since θu ,θ ′u ∈ (−π,π]. Hence θ = θ ′.
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2. Let r := K φ. Note that z ∗ denotes the complex conjugate of z . Then

f
�

ΘK ,ω

�

=

¨

f (θ ) : ∀
u
ωu =

1

n

n
∑

v=1

Ku v sin(θu −θv ) ∧ OC

«

=

¨

f (θ ) : ∀
u

nωu =
n
∑

v=1

Ku v Im
�

e i (θu−θv )
�

∧ OC

«

=

¨

φ ∈Un : ∀
u

nωu = Im

�

n
∑

v=1

Ku vφuφ
∗
v

�

∧ OC

«

=

¨

φ ∈Un : ∀
u

nωu = Im

�

φu

n
∑

v=1

Ku vφ
∗
v

�

∧ OC

«

=
n

φ ∈Un : ∀
u

nωu = Im
�

φu r ∗u
�

∧ OC
o

Lemma 5.1.4 We have

ΦK ,ω =
⋃

σ∈{−,+}n
ΦK ,ω,σ

where

ΦK ,ω,σ :=

�

φ ∈Un : ∀
u
φu =

nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u
∧ OC

�

and r := K φ.

Proof. We have that

ΦK ,ω =

�

φ ∈Un : ∀
u

nωu = Im
�

φu r ∗u
�

∧ OC

�

=
§

φ ∈Un : ∀
u

2nωu i =φu r ∗u −φ
∗
u ru ∧ OC

ª

Note that |φu |= 1, soφu 6= 0. Thus multiplying through byφu gives us that

ΦK ,ω =
§

φ ∈Un : ∀
u

2nωu iφu = r ∗uφ
2
u − ru ∧ OC

ª

=
§

φ ∈Un : ∀
u

0= r ∗uφ
2
u −2nωu iφu − ru ∧ OC

ª

Forφ ∈ΦK ,ω, we have that r ∗u 6= 0. Otherwise, we would have 0= r ∗uφ
2
u−2nωu iφu+ru =−2nωu iφu

and thus eitherφu = 0 orωu = 0, a contradiction. Therefore we can use the quadratic formula to

solve forφu .

ΦK ,ω =
⋃

σ∈{−,+}n

�

φ ∈Un : ∀
u
φu =

2nωu i +σu

Æ

−4n 2ω2
u +4r ∗u ru

2r ∗u
∧ OC

�
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=
⋃

σ∈{−,+}n

�

φ ∈Un : ∀
u
φu =

nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u
∧ OC

�

Remark 5.1.5 Note that

nωu = Im(φu r ∗u ) = Im
�

nωu i +σu

Æ

|ru |2−n 2ω2
u

�

Therefore,

|ru |2 ≥ n 2ω2
u

Lemma 5.1.6 Let

g :φ 7−→Rφ.

Then we have that

1. g |ΦK ,ω,σ
is injective.

2. g (ΦK ,ω,σ) =ΨK ,ω,σ where

ΨK ,ω,σ :=

�

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru v

nωu i +σv

Ç

�

�r̂v

�

�

2−n 2ω2
u

r̂ ∗v
∧ OC

�

and r̂ := Lψ.

Proof.

1. Letφ,φ′ ∈ΦK ,ω,σ be such that g (φ) = g (φ′). Then

r = K φ = LRφ = Lg
�

φ
�

= Lg (φ′) = LRφ′ = K φ′ = r ′

Thus

φu =
nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u
=

nωu i +σu

Æ

|r ′u |2−n 2ω2
u

�

r ′u
�∗ =φ′u

2. Note that g (φ) =ψ. Recall that r := K φ and define r̂ := Lψ. We have that

g (ΦK ,ω,σ) =

¨

g (φ) : ∀
u
φu =

nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u
∧ OC

«

=

¨

ψ ∈Cρ : ψ=Rφ ∧ ∀
u
φu =

nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u
∧ OC

«

=

¨

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru vφv ∧ ∀u φu =
nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u
∧ OC

«
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=

¨

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru v

�

nωv i +σv

Æ

|γv |2−n 2ω2
v

r ∗v

�

∧

∀
u
φu =

nωu i +σu

Æ

|γu |2−n 2ω2
u

r ∗
∧ OC

«

=

¨

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru v

�

nωv i +σv

Æ

|γ̂v |2−n 2ω2
v

r̂ ∗v

�

∧ OC

«

since

r = K φ = LRφ = Lψ= r̂

Combining the above Lemmas gives a reformulation for ΘK ,ω.

Theorem 5.1.7 We have

ΘK ,ω = F

�

⋃

σ∈{−,+}n
Gσ

�

ΨK ,ω,σ

�

�

where

F
�

φ
�

=
�

arg
�

φ1

�

, . . . , arg
�

φn

��T

Gσ
�

ψ
�

=





nω1i +σ1

Ç

�

�r̂1

�

�

2−n 2ω2
1

r̂ ∗1
, . . . ,

nωn i +σn

Ç

�

�r̂n

�

�

2−n 2ω2
n

r̂ ∗n





T

and r̂ := Lψ. Furthermore, F and Gσ are injective.

Proof. We split the proof into three parts.

1. F = f −1 and is injective.

Recall that

f
�

[θ1, . . . ,θn ]
T
�

=
�

e iθ1 , . . . , e iθn
�T

Hence it is immediate that

f −1
�

φ
�

=
�

arg
�

φ1

�

, . . . , arg
�

φn

��T
= F

�

φ
�

and that F is injective.

2. Gσ = g −1|ΦK ,ω,σ
and is injective.

Recall that

g
�

φ
�

=Rφ.
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Let g
�

φ
�

=ψwhereφ ∈ΦK ,ω,σ. Then

γ= K φ = LRφ = Lψ= r̂ ,

so

φu =
nωu i +σu

Ç

�

�ru

�

�

2−n 2ω2
u

r ∗u
=

nωu i +σu

Ç

�

�r̂u

�

�

2−n 2ω2
u

r̂ ∗u
=Gσ

�

ψ
�

u
.

Furthermore, letψ,ψ′ ∈ΨK ,ω,σ be such that Gσ
�

ψ
�

=Gσ
�

ψ′
�

. Then

r̂ = Lψ= LRGσ
�

ψ
�

= LRGσ
�

ψ′
�

= Lψ′ = r̂ ′

Thus

ψu =
n
∑

v=1

Ru v

nωu i +σv

Ç

�

�r̂v

�

�

2−n 2ω2
u

r̂ ∗v
=

n
∑

v=1

Ru v

nωu i +σv

Ç

�

�r̂ ′v
�

�

2−n 2ω2
u

�

r̂ ′v
�∗ =ψ′u

3. ΘK ,ω = F

�

⋃

σ∈{−,+}n
Gσ

�

ΨK ,ω,σ

�

�

.

Combining Lemmas 5.1.3, 5.1.4, and 5.1.6 with parts one and two above, we have

ΘK ,ω = f −1
�

ΦK ,ω

�

= f −1

�

⋃

σ∈{−,+}n
ΦK ,ω,σ

�

= f −1

�

⋃

σ∈{−,+}n
g −1

�

ΨK ,ω,σ

�

�

In order to make use of the reformulation theorem and turn it into an algorithm, we need to

split up the equilibria in ΨK ,ω,σ based on q in OC.

Definition 5.1.8 Let

Ψ
q
K ,ω,σ :=







ψ ∈Cρ : ∀
u



ψu =
n
∑

v=1

Ru v

nωu i +σv

Ç

�

�r̂v

�

�

2−n 2ω2
u

r̂ ∗v



 ∧ ψq > 0 ∧ ψq+1 = · · ·=ψρ = 0







Note that ΨK ,ω,σ =
⋃

q∈{1,2,...,ρ}
Ψ

q
K ,ω,σ.

Furthermore, we can convert Ψ
q
K ,ω,σ to use equations over the real numbers by breaking the

equations forψu into real and imaginary components. This allows for solvers that function over

only the real numbers to be used to find ΨK ,ω,σ. Moreover, we can bound the values of the real and

imaginary components by the absolute row sums of R .
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Proposition 5.1.9 Let x :=Re(ψ) and y := Im(ψ). Then

Ψ
q
K ,ω,σ =

§

x + y i : x , y ∈Rρ ∧

x =−R (S L y +T L x )∧

y = R (S L x +T L y )∧

∀
u>q

xu = yu = 0∧

xq > 0, yq = 0
ª

where

S :=









nω1

(L x )21+(L y )21
...

nωn

(L x )21+(L y )2n









T :=











q

(L x )21+(L y )21−n 2ω2
1

(L x )21+(L y )21
... p

(L x )2n+(L y )2n−n 2ω2
n

(L x )2n+(L y )2n











Proof. Letψ ∈ΨK ,ω,σ. Then we have that

xu =Re(ψu )

=Re

�

n
∑

v=1

Ru v
nωv i +σv

Æ

|r̂v |2−n 2ω2
v

r̂ ∗v

�

=Re

�

n
∑

v=1

Ru v r̂u
nωv i +σv

Æ

|r̂v |2−n 2ω2
v

|r̂ 2
v |

�

=
n
∑

v=1

Ru v

|r̂ 2
v |

Re
�

nωv r̂v i +σv r̂v

Æ

|r̂v |2−n 2ω2
v

�

Recall that

|r̂u |2 ≥ n 2ω2
u

for any equilibria (see Remark 5.1.5). Thus

xu =
n
∑

v=1

Ru v

|r̂v |2
Re
�

nωv r̂v i +σv r̂v

Æ

|r̂v |2−n 2ω2
v

�

=
n
∑

v=1

Ru v

|r̂v |2
�

−nωv Im(r̂v ) +σv Re(r̂v )
Æ

|r̂v |2−n 2ω2
v

�

Doing the same for the imaginary parts gives the following.

yu = Im(φu )
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= Im

�

n
∑

v=1

Ru v
nωv i +σv

Æ

|r̂v |2−n 2ω2
v

r̂ ∗v

�

= Im

�

n
∑

v=1

Ru v r̂u
nωv i +σv

Æ

|r̂v |2−n 2ω2
v

|r̂v |2

�

=
n
∑

v=1

Ru v

|r̂v |2
Im

�

nωv r̂v i +σv r̂v

Æ

|r̂v |2−n 2ω2
v

�

=
n
∑

v=1

Ru v

|r̂v |2
Im

�

nωv r̂v i +σv r̂v

Æ

|r̂v |2−n 2ω2
v

�

=
n
∑

v=1

Ru v

|r̂v |2
�

nωv Re(r̂v ) +σv Im(r̂v )
Æ

|r̂v |2−n 2ω2
v

�

Also, we have that

r̂ = Lψ= L (x + y i ) = (L x ) + (L y )i

Therefore, Re(r̂ ) = L x , Im(r̂ ) = L y , and

|r̂u |2 = (L x )2u + (L y )2u

Thus we now have

xu =
n
∑

v=1

Ru v

(L x )2v + (L y )2v

�

−nωv (L y )v +σv (L x )v
q

(L x )2v + (L y )2v −n 2ω2
v

�

yu =
n
∑

v=1

Ru v

(L x )2v + (L y )2v

�

nωv (L x )v +σv (L y )v
q

(L x )2v + (L y )2v −n 2ω2
v

�

Rearranging the equations gives

xu =
n
∑

v=1

Ru v

�

−Sv (L y )v +Tv (L x )v
�

yu =
n
∑

v=1

Ru v

�

Sv (L x )v +Tv (L y )v
�

where

Sv :=
nωv

(L x )2v + (L y )2v
Tv :=

σv

Æ

(L x )2v + (L y )2v −n 2ω2
v

(L x )2v + (L y )2v

By letting S := diag(S1, . . . ,Sn ) and T := diag(T1, . . . , Tn ), we can combine the equations for x and for y

using matrix multiplication which gives the result.

Proposition 5.1.10 Let x + y i ∈Ψq
K ,ω,σ where x , y ∈Rn . Then |xu |, |yu | ≤

n
∑

v=1

|Ru v | for all u.
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Proof. Letψ ∈ΨK ,ω,σ and let x :=Re(ψ) and y := Im(ψ). Letφ :=Gσ(ψ) and recall thatφ ∈Un . Then

we have that

|xu |, |yu | ≤ |ψu | =

�

�

�

�

�

n
∑

v=1

Ru vφv

�

�

�

�

�

≤
n
∑

v=1

|Ru vφv | =
n
∑

v=1

|Ru v ||φv | ≤
n
∑

v=1

|Ru v |

Putting all of this together gives an algorithm to find ΘK ,ω. The following algorithm relies on

three outside functions. rk(M ) returns the rank of the matrix M ; Factor(M ) returns two matrices

L , R T ∈ Cn×ρ where ρ is the rank of M such that LR = M ; and Solve(Ψq
K ,ω,σ, B ) returns all the

solutions satisfying the set of equations in Ψ
q
K ,ω,σ (i.e., the elements of that set) within the bounding

box B .

Algorithm 5.1.11

In: K ∈Rn×n a symmetric matrix andω ∈Rn satisfying IC1–IC2.

Out: ΘK ,ω

1. ρ← rk(K )

2. L , R ← Factor(K )

3. ΘK ,ω←{}

4. For q ∈ {1, . . . ,ρ}

(a) B ← bounds for x and y using Proposition 5.1.10

(b) Forσ ∈ {−,+}n

i. S ← Solve
�

Ψ
q
K ,ω,σ, B

�

ii. ΘK ,ω←ΘK ,ω ∪ F (Gσ (S ))

5. Return ΘK ,ω

Note that Algorithm 5.1.11 calls a system solve ρ2n times. Thus it is unlikely to offer any perfor-

mance benefits compared to other methods of finding all the roots of Eq. 5.0.1 unless perhaps ρ is

very small compared to n . However, the reformulation could be very advantageous when searching

for only the stable equilibria as will be shown in the next section.

5.2 Stability

In this section we will show that by taking the restriction that K � 0, all of the stable solutions (in

the orbitally stable sense; see Section 1.1.2 for a discussion of orbital stability) can be found from
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the all positive sign case. Let J be the Jacobian for Eq. 5.0.1. A straightforward calculation gives

J =−
1

n

















n
∑

v=1

K1v cos(θ1−θv )

...
n
∑

v=1

Kn v cos(θn −θv )

















+
1

n

�

Ku v cos(θu −θv )
�

(u ,v )
(5.2.1)

Lemma 5.2.1 The Jacobian matrix has a zero eigenvalue.

Proof. It is immediate from Eq. 5.2.1 that the sum of all the columns of J is zero. Therefore the all

ones vector is an eigenvector with the corresponding eigenvalue of zero.

The all ones eigenvector corresponds to the invariance under shift of the Kuramoto model.

Since the model depends only on the differences between angles, we will ignore the shift when

determining the stability of an equilibrium. Moreover, note that J is a real symmetric matrix, so all

its eigenvalues are real. Thus if J evaluated at an equilibrium has n −1 negative eigenvalues, then

that equilibrium is stable. Likewise, if J has a positive eigenvalue, then that equilibrium cannot be

stable [9].

It is helpful for the main result of this section to rewrite J in terms of the variables used in the

reformulation.

Proposition 5.2.2 Let φu := e iθu and r := K φ. Then for a given σ ∈ {−,+}n we have that J =

D + 1
n K ◦M M T where

D :=−
1

n







σ1

Æ

|r1|2−n 2ω2
1

...

σn

Æ

|rn |2−n 2ω2
n







M :=







Re(φ1) Im(φ1)
...

...

Re(φn ) Im(φn )






(5.2.2)

(Note that ◦ is the Hadamard Product from Definition 1.2.3.)

Proof. Following the same procedure as Lemma 5.1.3, we have that

n
∑

v=1

Ku v cos(θu −θv ) =
n
∑

v=1

Ku v Re
�

e i (θu−θv )
�

=Re

�

φu

n
∑

v=1

Ku vφ
∗
v

�

=Re
�

φu r ∗u
�
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Therefore we can rewrite the Jacobian as

J =−
1

n







Re
�

φ1r ∗1
�

...

Re
�

φn r ∗n
�






+

1

n

�

Ku v Re
�

φuφ
∗
v

�

�

(u ,v )

For an equilibriumψ, we have that

Gσ(ψ) =φu =
nωu i +σu

Æ

|ru |2−n 2ω2
u

r ∗u

from Theorem 5.1.7. Therefore, we have that Re
�

φu r ∗u
�

=σu

Æ

|ru |2−n 2ω2
u giving

J =−
1

n









σ1

q

|r1|2−n 2ω2
1

...

σn

Æ

|rn |2−n 2ω2
n









+
1

n
K ◦

�

Re
�

φuφ
∗
v

�

�

(u ,v )

Furthermore,

�

Re
�

φuφ
∗
v

�

�

(u ,v )
=







Re(φ1) Im(φ1)
...

...

Re(φn ) Im(φn )







�

Re(φ1) · · · Re(φn )

Im(φ1) · · · Im(φn )

�

Theorem 5.2.3 If K � 0, then the set of stable solutions to Eq. 5.0.1 is a subset of F
�

G+++
�

ΨK ,ω,+++
��

.

Proof. If K � 0, then the Schur Product Theorem (Theorem 1.2.4) gives

K ◦M M T � 0

Furthermore, by Lemma 1.2.1 we have

λu (J ) =λu

�

D +
1

n
K ◦M M T

�

≥λu (D )

Therefore, if −σu

Æ

|r̂u |2−n 2ω2
u > 0 for any u , then J will have a positive eigenvalue. Hence for any

equilibria, if
Æ

|r̂u |2−n 2ω2
u > 0, we must haveσu =+, and if

Æ

|r̂u |2−n 2ω2
u = 0, thenσu can be +

or −. Thus the associated root for a stable solution is an element of ΨK ,ω,+++.

Using this theorem, we can replace the for loop in line 4b of Algorithm 5.1.11 withσ←+++ to find

a superset of the stable solutions. Thus the solver would get called only ρ times which could offer

a significant performance advantage when ρ is relatively small compared to n . Prototype Matlab

code is provide in the Appendix for such a situation.
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APPENDIX

A

CODE EXAMPLES

A.1 Rank One Solver

The following C++ code implements Algorithms 4.1.21 and 4.1.25 simultaneously using the C-XSC

library to find the positive roots of fσ [30]. This library uses an interval Newton method to find real

roots to a specified precision [24]. Since the left hand side of the domain of fσ has an undefined

derivative value, a few special considerations have to be made to accommodate this solving method.

Namely, a tolerance value is used as the buffer from the left hand end of the domain, and the left

edge up to the buffer is checked manually. The input is assumed to satisfy IC1 – 3, but is checked

to determine it IC4 is satisfied to decide which algorithm to use. Note that C++ uses zero based

indexing, so all the index values are decreased by one compared to the statements in Section 4.1.

Also note that this implementation cannot handle cases with n > 64 since the largest integer type in

C++ is 64 bits.

1 # include <n l f z e r o . hpp> // C−XSC l i b r a r y nonlinear equations s o l v e r

2 # include <s t a c k s z . hpp> // Increase s t a c k s i z e f o r some s p e c i a l C++ compilers

3 # include <cmath> // For abs ( ) and s q r t ( )

4

5 using namespace cxsc ;

6 using namespace std ;

7

8 // Global v a r i a b l e s

9 i n t n , prune_num ;

10 unsigned long long j ;

11 r e a l ∗w_sqrs , ∗k_sqrs , inner_min ;

102



12

13 // Univariate r a d i c a l equation f_sigma

14 DerivType f_sigma ( const DerivType &R ) {

15 i n t u , sgn ;

16 DerivType inner , f = −R ;

17

18 f o r ( u = 0 ; u < n ; u++){

19 // Conver the sign number j ’ s postion u b i t i n t o + or −
20 sgn = ( ( j >> ( n−1−u ) ) & 1) ∗2 − 1 ;

21

22 // Force the value i n s i d e the r a d i c a l to be above the min value by

23 // s h i f t i n g to the r i g h t as needed

24 // This avoids i s s u e s where the f l o a t i n g point e r r o r range extends to

25 // where f or f ’ i s undefined which crashes the s o l v e r

26 inner = k_sqrs [u ] ∗R − w_sqrs [u ] ;

27 i f ( I n f ( fValue ( inner ) ) < inner_min ) {

28 inner = inner − I n f ( fValue ( inner ) ) + inner_min ;

29 }

30 f = f + sgn∗ s q r t ( inner )/n ;

31 }

32 return f ;

33 }

34

35 // The pruning function

36 unsigned long long P ( unsigned long long sgn_num ) {

37 i n t u , zeros_found = 0 ;

38

39 // Search f o r zeros from the r i g h t

40 f o r ( u = 0 ; u < n ; u++){

41 i f ( ( ( sgn_num >> u ) & 1) == 0 ){

42 zeros_found++;

43 i f ( zeros_found == prune_num ) {

44 // Zero out everything from t h i s zero onward

45 sgn_num = ~ ( ( 1 << u)−1) & sgn_num ;

46

47 // Subtract one unless the number i s already zero

48 i f ( sgn_num > 0)

49 sgn_num−−;

50 return sgn_num ;

51 }

52 }

53 }

54 // Less than prune_num zeros , so return 0

55 return 0 ;

56 }

57

58

59 i n t main ( ) {
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60 i n t u , v , sgn , num_roots , e r r o r ;

61 unsigned long long i n t num_given_up_intervals=0;

62 r e a l ∗w, ∗k ;

63 r e a l k_sqr_min , pos_sgn_sum , tolerance , lhs , rhs , theta ;

64 i n t e r v a l value , I ;

65 i v e c t o r zeros ;

66 i n t v e c t o r unique ;

67 bool f l a g ;

68

69 const double pi = 3.1415926535897932384626433832795;

70

71 // Set the output format

72 cout << S e t P r e c i s i o n ( 2 3 , 1 5 ) << S c i e n t i f i c ;

73

74 // Get the number of parameters ( Note t h a t 2 <= n <= 64 i s assumed )

75 cout << "Number of parameters : " ;

76 cin >> n ;

77

78 // Set up stora ge f o r the parameters and output

79 w = new r e a l [n ] ;

80 k = new r e a l [n ] ;

81 w_sqrs = new r e a l [n ] ; // Global so f_sigma can access

82 k_sqrs = new r e a l [n ] ; // Global so f_sigma can access

83

84 // Get the parameters

85 // ( Note t h a t IC1−3 are assumed to be s a t i s f i e d )

86 cout << "w: " ;

87 f o r ( u = 0 ; u < n ; u++){

88 cin >> w[u ] ;

89 }

90

91 cout << "k : " ;

92 f o r ( u = 0 ; u < n ; u++){

93 cin >> k [u ] ;

94 }

95

96 // Store the squares to avoid recomputing them

97 // Also f i n d the min k^2 value

98 k_sqr_min = sqr ( k [ 0 ] ) ;

99 f o r ( u = 0 ; u < n ; u++){

100 w_sqrs [u ] = sqr (w[u ] ) ;

101 k_sqrs [u ] = sqr ( k [u ] ) ;

102 i f ( k_sqrs [u ] < k_sqr_min )

103 k_sqr_min = k_sqrs [u ] ;

104 }

105

106 // Set the l e f t s id e of the s o l u t i o n i n t e r v a l s

107 l h s = w_sqrs [n−1]/ k_sqrs [n−1 ] ;
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108

109 // Check i f IC4 i s s a t i s f i e d to determine the pruning l e v e l

110 prune_num = 2 ;

111 f o r ( u = 0 ; u < n−1; u++){

112 i f ( k [u ] < k [u+1 ] ){

113 prune_num = 1 ;

114 break ;

115 }

116 }

117

118 // Get a t o l e r a n c e value

119 cout << " Tolerance : " ;

120 cin >> t o l e r a n c e ;

121 cout << endl ;

122

123 // Compute the s t a r t i n g sign number

124 i f ( n == 64)

125 j = ~0;

126 e l s e

127 j = ( ( unsigned long long )1 << n ) − 1 ;

128

129 // I t e r a t e over the v a l i d sign cases

130 while ( j > 0 ){

131 // Determine the rhs of the i n t e r v a l

132 pos_sgn_sum = 0 ;

133 f o r ( u = 0 ; u < n ; u++){

134 pos_sgn_sum += ( ( i n t ) ( ( j >> u ) & 1 ) ) ∗k [n−1−u ] ;

135 }

136 rhs = sqr ( pos_sgn_sum/n ) ;

137

138 // I f the i n t e r v a l i s empty use the pruning function to skip cases

139 i f ( rhs < l h s ) {

140 j = P ( j ) ;

141 continue ;

142 }

143

144 // We cannot use the root f i n d i n g method since the f_sigma ’ i s

145 // undefined at the l e f t endpoint of our i n t e r v a l

146 // So instead we w i l l check i f a superset of the range of f_sigma on

147 // the i n t e r v a l [ lhs , l h s+t o l e r a n c e ] contains zero

148 // I f i t does not , we can s a f e l y ignore t h i s s u b i n t e r v a l

149 // Otherwise , we record t h a t there i s an i n t e r v a l on which we cannot

150 // determine i f there are s o l u t i o n s .

151 f l a g = true ;

152 f E v a l ( f_sigma , i n t e r v a l ( lhs , l h s+t o l e r a n c e ) , value ) ;

153 i f ( I n f ( value ) <= 0 && Sup ( value ) >= 0 ){

154 num_given_up_intervals++;

155 f l a g = f a l s e ;
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156 }

157

158 // Make sure the i n t e r v a l i s s t i l l v a l i d

159 i f ( rhs < l h s+t o l e r a n c e ) {

160 i f ( f l a g ) {

161 j = P ( j ) ;

162 } e l s e {

163 j −−;

164 }

165 continue ;

166 }

167 I = i n t e r v a l ( l h s+tolerance , rhs ) ;

168

169 // The min value i n s i d e the square ro o t s w i l l be >= min ( k ^2) ∗ tolerance ,

170 // so s e t inner_min to be l e s s than t h a t

171 inner_min = k_sqr_min∗ t o l e r a n c e /2 ;

172

173 // C a l l the s o l v e r

174 A l l Z e r o s ( f_sigma , I , tolerance , zeros , unique , num_roots , e r r o r ) ;

175

176 // Display any e r r o r from the s o l v e r

177 i f ( e r r o r ) {

178 cout << endl << AllZerosErrMsg ( e r r o r ) << endl ;

179 return e r r o r ;

180 }

181

182 // Check i f there were any r oo t s

183 i f ( num_roots == 0 ){

184 i f ( f l a g ) {

185 j = P ( j ) ;

186 } e l s e {

187 j −−;

188 }

189 continue ;

190 }

191

192 // Compute the equil ibrium f o r each v e r i f i e d unique root

193 f o r ( u = 1 ; u <= num_roots ; u++){

194 i f ( unique [u ] ) {

195 // C a l c u l a t e theta

196 f o r ( v = 0 ; v < n ; v++){

197 theta = mid ( asin (w[ v ] / ( k [ v ] ∗ s q r t ( zeros [u ] ) ) ) ) ;

198

199 // S h i f t to the c o r r e c t quadrant so t h a t the s i g n s match

200 sgn = ( ( j >> ( n−1−v ) ) & 1) ∗2 − 1 ;

201 i f ( cos ( theta ) ∗sgn < 0 ){

202 theta = pi − theta ;

203 }
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204

205 // S h i f t so the theta i s in the i n t e r v a l (−pi , pi ]

206 i f ( theta > pi ) {

207 theta −= 2∗pi ;

208 } e l s e i f ( theta <= −1∗pi ) {

209 theta += 2∗pi ;

210 }

211

212 // Display the e q u i l i b r i a

213 cout << theta ;

214 i f ( v < n − 1 ){

215 cout << " , " ;

216 }

217 }

218 cout << endl << endl ;

219 } e l s e {

220 // Include the p o s s i b l e ro o t s t h a t the s o l v e r couldn ’ t v e r i f y

221 // in the count of i n t e r v a l u s we cannot r u l e out

222 num_given_up_intervals++;

223 }

224 }

225 // Go to the next case

226 j −−;

227 }

228

229 // Display the number of problem i n t e r v a l s i f there were any

230 i f ( num_given_up_intervals > 0 ){

231 cout << "The s o l v e r f a i l e d to determine i f there was a root in " ;

232 cout << num_given_up_intervals << " i n t e r v a l s . " << endl ;

233 }

234 return 0 ;

235 }

Example A.1.1 Running this code on a case with fifteen oscillators having two equilibria produces

the following output in less than a second.

Number o f parameters : 15

w: 0 . 1 0.25 0 . 8 1 −1 −1 −1 1.25 −1.2 1 . 5 −2 −1.8 3 −4 4 . 1

k : 5 4 . 8 4 . 8 4 . 7 4 . 6 4 4 3 . 8 3 . 5 3 . 5 3 2 . 4 2 . 2 2 1 . 2

Tolerance : 1e−6

5.804744025401485E−003 , 1.511701176783033E−002 , 4.839147968591000E−002 ,

6.179156378059709E−002 , −6.313662728886302E−002 , −7.262271207465454E−002 ,

−7.262271207465454E−002 , 9.561786293751634E−002 , −9.967430024786283E−002 ,

1.247096801268227E−001 , −1.947185188847017E−001 , −2.194334347573920E−001 ,

4.069124532501765E−001 , −6.193071711961917E−001 , 1.441386302210293E+000
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5.834215320106978E−003 , 1.519376744623306E−002 , 4.863735895036847E−002 ,

6.210568543362181E−002 , −6.345760481327617E−002 , −7.299207557270629E−002 ,

−7.299207557270629E−002 , 9.610481566421319E−002 , −1.001820468718621E−001 ,

1.253461654739149E−001 , −1.957198998416935E−001 , −2.205658844969313E−001 ,

4.091015189688870E−001 , −6.229311023753289E−001 , 1.652393512117848E+000

A.2 Rank Two Solver

The following is prototype Matlab code that finds the solutions to ΨK ,ω,+++ when K is rank two.

Moreover, if the input coupling matrix K is positive semidefinite, then the output will contain all the

stable equilibria by Theorem 5.2.3. (A separate function would be needed to check each solution’s

stability properties.) The system of equations to determine ΨK ,ω,+++ has been converted to equations

over the real numbers using Proposition 5.1.9 and uses the bounds provided by Proposition 5.1.10.

Note that the function call “Solve" in lines 27 and 36 is a stand-in for any algorithm that returns the

roots of the system of equations.

1 function rank_two_al l_pos_solver (K , omega )

2 % Solves the rank 2 KM in the a l l p o s i t i v e case

3 % K i s expected to be a rank two symmetric matrix

4 % omega i s expected to s a t i s y IC1 & IC2 from Chapter 6

5

6 g l o b a l L R w n ;

7

8 % I n i t i a l i z e v a r i a b l e s and t o l e r a n c e constant

9 t o l = 1e−6;

10 w = omega ;

11 n = s i z e (w, 1 ) ;

12

13 % Use QR f a c t o r i z a t i o n to f i n d L and R so t h a t

14 % LR = K and L , R ’ are nx2

15 [L , R ] = qr (K ) ;

16 L = L ( 1 : n , 1 : 2 ) ;

17 R = R ( 1 : 2 , 1 : n ) ;

18

19 % Set up the bounds on p s i f o r when q = 2

20 abs_row_sum = vecnorm (R , 1 , 2 ) ;

21 bounds = [−abs_row_sum ( 1 ) abs_row_sum ( 1 ) ; . . . % x_1

22 t o l abs_row_sum ( 2 ) ; . . . % x_2 > 0

23 −abs_row_sum ( 1 ) abs_row_sum ( 1 ) ; . . . % y_1

24 0 0 ] ; % y_2 = 0

25

26 % C a l l a nonlinear system root f i n d e r f o r the q = 2 case

27 Psi_q2 = Solve ( @rk2_real_eq , bounds ) ;

28

29 % Set up the bounds on p s i f o r when q = 1
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30 bounds = [ t o l abs_row_sum ( 1 ) ; . . . % x_1 > 0

31 0 0 ; . . . % x_2 = 0

32 0 0 ; . . . % y_1 = 0

33 0 0 ] ; % y_2 = 0

34

35 % C a l l a nonlinear system root f i n d e r f o r the q = 1 case

36 Psi_q1 = Solve ( @rk2_real_eq , bounds ) ;

37

38 % Convert the s o l u t i o n s to Theta

39 Theta = convert ( [ Psi_q2 Psi_q1 ] ) ;

40

41 % Display the s o l u t i o n s

42 disp ( s i z e ( Theta , 2 ) )

43 disp ( Theta ) ;

44

45

46 function z = rk 2_re al_e q ( P s i )

47 % Implements the r e a l vers ion of the reformulation equations f o r

48 % the rank two case

49 % P s i i s expected to be 4x1

50

51 g l o b a l L R w n ;

52

53 % I n i t i a l i z e z to the proper dimension

54 z = P s i ;

55

56 % I n i t i a l i z e helper v a r i a b l e s

57 x = P s i ( 1 : 2 ) ; % r e a l components of P s i

58 y = P s i ( 3 : 4 ) ; % imag components of P s i

59

60 r _ h a t _ s q r s = ( L∗x ) . ^ 2 + ( L∗y ) . ^ 2 ;

61 S = diag ( n∗w. / r _ h a t _ s q r s ) ;

62 T = diag ( ( ( r_hat_sqrs−n^2∗w. ^ 2 ) . ^ ( 1 / 2 ) ) . / r _ h a t _ s q r s ) ;

63

64 % The equtions f o r which to f i n d the r o o ts

65 z ( 1 : 2 ) = −x − R∗ ( S∗L∗y + T∗L∗x ) ;

66 z ( 3 : 4 ) = −y + R∗ ( S∗L∗x + T∗L∗y ) ;

67

68

69 function Theta = convert ( P s i )

70 % Converts p s i −> theta

71

72 g l o b a l L w n ;

73

74 i f isempty ( P s i )

75 Theta = [ ] ;

76 e l s e

77 % Merge r e a l and imag p a r t s back together
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78 P s i = P s i ( 1 : 2 , : ) + P s i ( 3 : 4 , : ) ∗ i ;

79

80 % Convert p s i −> phi

81 r = L∗ P s i ;

82 Phi = ( n∗w∗ i + ( vecnorm ( r , 2 , 1 ) . ^ 2 −n^2∗w. ^ 2 ) . ^ ( 1 / 2 ) ) . / conj ( r ) ;

83

84 % Convert phi −> theta

85 Theta = atan ( imag ( Phi ) . / r e a l ( Phi ) ) ;

86 end
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APPENDIX

B

ARBITRARY RANK COUPLING WITH LOSS

It is interesting to note that the process of reformulation used in Chapter 5 can also be applied to

the Kuramoto model with arbitrary rank coupling and loss matrices. However, the resulting system

of equations and algorithm are equally if not more complicated than the other methods of solving,

so it offers no computational advantages without further results.

The Kuramoto model with arbitrary rank coupling and loss matrices has the form

dθu

dt
=ωu −

1

n

n
∑

v=1

Au v cos (θu −θv )+Bu v sin (θu −θv ) for u = 1, 2, . . . , n (B.0.1)

where n ≥ 2 is the number of oscillators, θ is the phase angles of the oscillators,ω is the natural

frequencies of the oscillators, A ∈Rn×n is skew-symmetric and describes the loss, and B ∈Rn×n is

symmetric and describes the coupling. As can be shown similarly to Section 1.1.1, setting dθu
dt = 0

gives the equation for the equilibria when using the rotating reference frame. Thus the equations to

find the equilibria can be simplified to

ωu =
1

n

n
∑

v=1

Au v cos (θu −θv )+Bu v sin (θu −θv ) for u = 1, 2, . . . , n (B.0.2)

We will take the following input conditions.

IC1:
n
∑

u=1

ωu = 0

This is necessary to use the rotating reference frame.

IC2: ωu 6= 0 for u = 1, 2, . . . , n
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We will avoid cases where any oscillator has an intrinsic velocity equal to the average.

B.1 Finding

Note that if θ is a solution to Eq. 3.0.1, then θ + c is also a solution for any constant c . Thus, two

solutions are called equivalent modulo shift if each component-wise difference is the same modulo

2π. In order to choose a representative, an output condition for θ ∈ (−π,π]n is given below so that

only one of these equivalent solutions is chosen. To set this up, a few variables will be defined. Let

C := A+B i . Then C = LR for some L , R T ∈Cn×ρ where ρ := rk(C ). Letφu := e iθu and letψ :=Rφ.

Now we state the output condition as follows.

OC: ∃q ψq ∈R+ and ψq+1 = · · ·=ψρ = 0.

Remark B.1.1 OC always produces a unique representative since if ψ = ~0, then γ = Cφ = LRφ =

Lψ= ~0, but γu 6= 0 as long as IC2 is satisfied as shown in the proof of Lemma B.1.4.

Let C := A+B i and C = LR for some L , R T ∈Cn×ρ where ρ := rk(C ). Let U be the unit circle in

the complex plane, U := {z ∈ C : |z | = 1}. We can perform a series of transformations on ΘC ,ω to

transform the system.

Definition B.1.2 Let ΘC ,ω be the set of all solutions to Eq. B.0.2 satisfying OC, that is,

ΘC ,ω :=

�

θ ∈ (−π,π]n : ∀
u
ωu =

1

n

n
∑

v=1

Au v cos(θu −θv ) +Bu v sin(θu −θv ) ∧ OC

�

Lemma B.1.3 Let

f :
�

[θ1, . . . ,θn ]
T
�

7−→
�

e iθ1 , . . . , e iθn
�T

Then we have

1. f |ΘC ,ω
is injective.

2. f
�

ΘC ,ω

�

=ΦC ,ω where

ΦC ,ω :=

�

φ ∈Un : ∀
u

nωu =Re
�

φuγ
∗
u

�

∧ OC

�

and where

γ :=Cφ.

(Note that γ∗u denotes the complex conjugate of γu .)

Proof.

1. Let θ ,θ ′ ∈ ΘC ,ω be such that f (θ ) = f (θ ′). Then for every u we have e iθu = e iθ ′u , and thus

θu = θ ′u since θu ,θ ′u ∈ (−π,π]. Hence θ = θ ′.
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2. Let α := Aφ and β := Bφ. Note that z ∗ denotes the complex conjugate of z . Then

f
�

ΘC ,ω

�

=
�

f (θ ) : θ ∈ΘC ,ω

	

=

¨

f (θ ) : ∀
u
ωu =

1

n

n
∑

v=1

Au v cos(θu −θv ) +Bu v sin(θu −θv ) ∧ OC

«

=

¨

f (θ ) : ∀
u

nωu =Re

�

n
∑

v=1

Au v e i (θu−θv )

�

+ Im

�

n
∑

v=1

Bu v e i (θu−θv )

�

∧ OC

«

=

¨

φ ∈Un : ∀
u

nωu =Re

�

n
∑

v=1

Au vφuφ
∗
v

�

+ Im

�

n
∑

v=1

Bu vφuφ
∗
v

�

∧ OC

«

=

¨

φ ∈Un : ∀
u

nωu =Re

�

φu

n
∑

v=1

Au vφ
∗
v

�

+ Im

�

φu

n
∑

v=1

Bu vφ
∗
v

�

∧ OC

«

=
n

φ ∈Un : ∀
u

nωu =Re
�

φuα
∗
u

�

+ Im
�

φuβ
∗
u

�

∧ OC
o

=
§

φ ∈Un : ∀
u

nωu =
1

2

�

φuα
∗
u +φ

∗
uαu

�

+
1

2i

�

φuβ
∗
u −φ

∗
uβu

�

∧ OC
ª

=
§

φ ∈Un : ∀
u

2nωu =
�

φuα
∗
u +φ

∗
uαu

�

−
�

φuβ
∗
u −φ

∗
uβu

�

i ∧ OC
ª

=
§

φ ∈Un : ∀
u

2nωu =φu

�

α∗u −β
∗
u i
�

+φ∗u
�

αu +βu i
�

∧ OC
ª

=
§

φ ∈Un : ∀
u

nωu =
1

2

�

φuγ
∗
u +φ

∗
uγu

�

∧ OC
ª

=
§

φ ∈Un : ∀
u

nωu =Re(φuγ
∗
u ) ∧ OC

ª

where γ :=α+β i = (Aφ+Bφi ) = (A+B i )φ =Cφ.

Lemma B.1.4 We have

ΦC ,ω =
⋃

σ∈{−,+}n
ΦC ,ω,σ

where

ΦC ,ω,σ :=

�

φ ∈Un : ∀
u
φu =

nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
∧ OC

�

and γ :=Cφ.

Proof. We have that

ΦC ,ω =

�

φ ∈Un : ∀
u

nωu =Re(φuγ
∗
u ) ∧ OC

�

=
§

φ ∈Un : ∀
u

2nωu =φuγ
∗
u +φ

∗
uγu ∧ OC

ª
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Note that |φu |= 1, soφu 6= 0. Thus multiplying through byφu gives us that

ΦC ,ω =
§

φ ∈Un : ∀
u

2nωuφu = γ
∗
uφ

2
u +γu ∧ OC

ª

=
§

φ ∈Un : ∀
u

0= γ∗uφ
2
u −2nωuφu +γu ∧ OC

ª

Forφ ∈ΦC , we have that γ∗u 6= 0. Otherwise, we would have 0= γ∗uφ
2
u −2nωuφu +γu =−2nωuφu

and thusφu = 0 orωu = 0, a contradiction. Therefore we can use the quadratic formula to solve for

φu .

ΦC ,ω =
⋃

σ∈{−,+}n

�

φ ∈Un : ∀
u
φu =

2nωu +σu

Æ

4n 2ω2
u −4γ∗uγu

2γ∗u
∧ OC

�

=
⋃

σ∈{−,+}n

�

φ ∈Un : ∀
u
φu =

nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
∧ OC

�

Remark B.1.5 Note that

nωu =Re(φuγ
∗
u ) =Re

�

nωu +σu

q

n 2ω2
u − |γu |2

�

Therefore,

|γu |2 ≥ n 2ω2
u

Lemma B.1.6 Let

g :φ 7−→Rφ.

Then we have that

1. g |ΦC ,ω,σ
is injective.

2. g (ΦC ,ω,σ) =ΨC ,σ where

ΨC ,ω,σ :=

�

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru v

nωu +σv

Ç

n 2ω2
u −

�

�γ̂v

�

�

2

γ̂∗v
∧ OC

�

and γ̂ := Lψ.

Proof.

1. Letφ,φ′ ∈ΦC ,σ be such that g (φ) = g (φ′). Then

γ=Cφ = LRφ = Lg
�

φ
�

= Lg (φ′) = LRφ′ =Cφ′ = γ′
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Thus

φu =
nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
=

nωu +σu

Æ

n 2ω2
u − |γ′u |2

�

γ′u
�∗ =φ′u

2. Note that g (φ) =ψ. Recall that γ :=Cφ and define γ̂ := Lψ. We have that

g (ΦC ,ω,σ) = {g (φ) : φ ∈ΦC ,ω,σ}

=

¨

g (φ) : ∀
u
φu =

nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
∧ OC

«

=

¨

ψ ∈Cρ : ψ=Rφ ∧ ∀
u
φu =

nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
∧ OC

«

=

¨

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru vφv ∧ ∀u φu =
nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
∧ OC

«

=

¨

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru v

�

nωv +σv

Æ

n 2ω2
v − |γv |2

γ∗v

�

∧

∀
u
φu =

nωu +σu

Æ

n 2ω2
u − |γu |2

γ∗u
∧ OC

«

=

¨

ψ ∈Cρ : ∀
u
ψu =

n
∑

v=1

Ru v

�

nωv +σv

Æ

n 2ω2
v − |γ̂v |2

γ̂∗v

�

∧ OC

«

since

γ=Cφ = LRφ = Lψ= γ̂

Combining the above Lemmas gives the following reformulation of ΘC ,ω.

Theorem B.1.7 We have

ΘC ,ω = F

�

⋃

σ∈{−,+}n
Gσ

�

ΨC ,ω,σ

�

�

where

F
�

φ
�

:=
�

arg
�

φ1

�

, . . . , arg
�

φn

��T

Gσ
�

ψ
�

:=





nωu +σ1

Ç

n 2ω2
u −

�

�γ̂1

�

�

2

γ̂∗1
, . . . ,

nωu +σn

Ç

n 2ω2
u −

�

�γ̂n

�

�

2

γ̂∗n





T

and γ̂ := Lψ. Furthermore, F and Gσ are injective.

Proof. We split the proof into three parts.

1. F = f −1 and is injective.
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Recall that

f
�

[θ1, . . . ,θn ]
T
�

=
�

e iθ1 , . . . , e iθn
�T

.

Hence it is obvious that

f −1
�

φ
�

=
�

arg
�

φ1

�

, . . . , arg
�

φn

��T
= F

�

φ
�

and that F is injective.

2. Gσ = g −1|ΦC ,ω,σ
and is injective.

Recall that

g
�

φ
�

=Rφ.

Let g
�

φ
�

=ψwhereφ ∈ΦC ,ω,σ. Then

γ=Cφ = LRφ = Lψ= γ̂,

so

φu =
nωu +σu

Ç

n 2ω2
u −

�

�γu

�

�

2

γ∗u
=

nωu +σu

Ç

n 2ω2
u −

�

�γ̂u

�

�

2

γ̂∗u
=Gσ

�

ψ
�

u
.

Furthermore, letψ,ψ′ ∈ΨC ,σ be such that Gσ
�

ψ
�

=Gσ
�

ψ′
�

. Then

γ̂= Lψ= LRGσ
�

ψ
�

= LRGσ
�

ψ′
�

= Lψ′ = γ̂′.

Thus

ψu =
n
∑

v=1

Ru v

nωu +σv

Ç

n 2ω2
u −

�

�γ̂v

�

�

2

γ̂∗v
=

n
∑

v=1

Ru v

nωu +σv

Ç

n 2ω2
u −

�

�γ̂′v
�

�

2

�

γ̂′v
�∗ =ψ′u .

3. ΘC = F

�

⋃

σ∈{−1,+1}n
Gσ

�

ΨC ,σ

�

�

.

Combining Lemmas B.1.3, B.1.4, and B.1.6 with parts one and two above, we have

ΘC ,ω = f −1
�

ΦC ,ω

�

= f −1

�

⋃

σ∈{−,+}n
ΦC ,ω,σ

�

= f −1

�

⋃

σ∈{−,+}n
g −1

�

ΨC ,ω,σ

�

�

In order to make use of the reformulation theorem and turn it into an algorithm, we need to

split up the equilibria in ΨC ,ω,σ based on q in OC.
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Definition B.1.8 Let

Ψ
q
C ,ω,σ :=







ψ ∈Cr : ∀
u



ψu =
n
∑

v=1

Ru v

nωu +σv

Ç

n 2ω2
u −

�

�γ̂v

�

�

2

γ̂∗v



 ∧ ψq > 0 ∧ ψq+1 = · · ·=ψρ = 0







Note that ΨC ,ω,σ =
⋃

q∈{1,2,...,ρ}
Ψ

q
C ,ω,σ.

We can convert Ψ
q
C ,ω,σ to use equations over the real numbers and real variables by breaking the

equations forψu into real and imaginary components. This allows for solvers that function over

only the real numbers to be used to find ΨK ,ω,σ. Moreover, we can bound the values of the real and

imaginary components by the absolute row sums of R .

Proposition B.1.9 Let x :=Re(ψ) and y := Im(ψ). Then

Ψ
q
C ,ω,σ =

§

x + y i : x , y ∈Rn ∧

x =Re(R )
�

S Re(γ̂)−T Im(γ̂)
�

− Im(R )
�

S Im(γ̂) +T Re(γ̂)
�

∧

y =Re(R )
�

S Im(γ̂) +T Re(γ̂)
�

+ Im(R )
�

S Re(γ̂)−T Im(γ̂)
�

∧

∀
u>q

xu = yu = 0∧

xq > 0, yq = 0
ª

where

S :=







nω1
|γ̂1|2

...
nω1
|γ̂1|2






T :=









σ1

q

|γ̂1|2−n 2ω2
1

|γ̂1|2
...

σn

p
|γ̂n |2−n 2ω2

n
|γ̂n |2









Re(γ̂) =Re(L )x − Im(L )y Im(γ̂) = Im(L )x +Re(L )y

and

|γ̂u |2 =
�

Re(L )x − Im(L )y
�2

u
+
�

Im(L )x +Re(L )y
�2

u

Proof. We have that

xu =Re(ψu )

=Re

�

n
∑

v=1

Ru v
nωv +σv

Æ

n 2ω2
v − |γ̂v |2

γ̂∗v

�

=Re

�

n
∑

v=1

Ru v γ̂u
nωv +σv

Æ

n 2ω2
v − |γ̂v |2

|γ̂2
v |

�
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=
n
∑

v=1

1

|γ̂2
v |

Re
�

nωv Ru v γ̂v +σv Ru v γ̂v

q

n 2ω2
v − |γ̂v |2

�

Recall that

|γ̂u |2 ≥ n 2ω2
u

for any equilibria (see Remark B.1.5). Thus

xu =
n
∑

v=1

Re(Ru v )
|γ̂v |2

Re
�

nωv γ̂v +σv γ̂v i
q

|γ̂v |2−n 2ω2
v

�

−
n
∑

v=1

Im(Ru v )
|γ̂v |2

Im
�

nωv γ̂v +σv γ̂v i
q

|γ̂v |2−n 2ω2
v

�

=
n
∑

v=1

Re(Ru v )
|γ̂v |2

�

nωv Re(γ̂v )−σv Im(γ̂v )
q

|γ̂v |2−n 2ω2
v

�

−
n
∑

v=1

Im(Ru v )
|γ̂v |2

�

nωv Im(γ̂v ) +σv Re(γ̂v )
q

|γ̂v |2−n 2ω2
v

�

Doing the same for the imaginary parts gives the following.

yu = Im(φu )

= Im

�

n
∑

v=1

Ru v
nωv +σv

Æ

n 2ω2
v − |γ̂v |2

γ̂∗v

�

= Im

�

n
∑

v=1

Ru v γ̂u
nωv +σv

Æ

n 2ω2
v − |γ̂v |2

|γ̂v |2

�

=
n
∑

v=1

1

|γ̂v |2
Im

�

nωv Ru v γ̂v +σv Ru v γ̂v

q

n 2ω2
v − |γ̂v |2

�

=
n
∑

v=1

Re(Ru v )
|γ̂v |2

Im
�

nωv γ̂v +σv γ̂v i
q

|γ̂v |2−n 2ω2
v

�

+
n
∑

v=1

Im(Ru v )
|γ̂v |2

Re
�

nωv γ̂v +σv γ̂v i
q

|γ̂v |2−n 2ω2
v

�

=
n
∑

v=1

Re(Ru v )
|γ̂v |2

�

nωv Im(γ̂v ) +σv Re(γ̂v )
q

|γ̂v |2−n 2ω2
v

�

+
n
∑

v=1

Im(Ru v )
|γ̂v |2

�

nωv Re(γ̂v )−σv Im(γ̂v )
q

|γ̂v |2−n 2ω2
v

�

Also, we have that

γ̂= Lψ= L (x + y i ) = (L x ) + (L y )i

118



Therefore,

Re(γ̂) =Re((L x ) + (L y )i ) Im(γ̂) = Im((L x ) + (L y )i )

=Re(L )x − Im(L )y = Im(L )x +Re(L )y

and

|γ̂u |2 =
�

Re(L )x − Im(L )y
�2

u
+
�

Im(L )x +Re(L )y
�2

u

Finally, we can combine the equations together using matrix multiplication giving the result.

Proposition B.1.10 Let x + y i ∈Ψq
K ,ω,σ where x , y ∈Rn . Then |xu |, |yu | ≤

n
∑

v=1

|Ru v | for all u.

Proof. Letψ ∈ΨK ,ω,σ and let x :=Re(ψ) and y := Im(ψ). Letφ :=Gσ(ψ) and recall thatφ ∈Un . Then

we have that

|xu |, |yu | ≤ |ψu |

=

�

�

�

�

�

n
∑

v=1

Ru vφv

�

�

�

�

�

≤
n
∑

v=1

|Ru vφv |

=
n
∑

v=1

|Ru v ||φv |

≤
n
∑

v=1

|Ru v |

Putting all of this together gives an algorithm to findΘC ,ω. The following algorithm relies on three

functions. rk(M ) returns the rank of the matrix M . Factor(M ) returns two matrices L , R T ∈Cn×ρ

where ρ is the rank of M such that LR =M . Solve(Ψq
C ,ω,σ, B ) returns all the solutions satisfying the

set of equations in Ψ
q
C ,ω,σ (i.e., the elements of that set) within the bounding box B .

Algorithm B.1.11

In: A, B ∈Rn×n andω ∈Rn satisfying IC1–IC2.

Out: ΘC ,ω

1. C ← A+B i

2. ρ← rk(C )

3. L , R ← Factor(C )
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4. ΘC ,ω←{}

5. For q ∈ {1, . . . ,ρ}

(a) B ← bounds for x and y using Proposition B.1.10

(b) Forσ ∈ {−1,+1}n

i. S ← Solve
�

Ψ
q
C ,ω,σ

�

ii. ΘC ,ω←ΘC ,ω ∪ F (Gσ (S ))

6. Return ΘC ,ω

B.2 Stability

In this section we will show that the Jacobian for Eq. B.0.2 can be rewritten in terms of the variables

used for the reformulation. Also, note that J is still symmetric in this case, so all its eigenvalues are

real. To determine the stability of an equilibrium in the orbitally stable sense (see Section 1.1.2), one

could to show that J evaluated at an equilibrium has n −1 negative eigenvalues. Likewise, if J has a

positive eigenvalue, then that equilibrium cannot be stable [9].

Proposition B.2.1 The Jacobian of Eq. B.0.1 in terms of the variables used in the reformulation in

the previous section is given by

J =







σ1

Æ

|γ1|2−n 2ω2
1

...

σn

Æ

|γn |2−n 2ω2
n






−

1

n

�

Au v Im
�

φuφ
∗
v

�

−Bu v Re
�

φuφ
∗
v

�

�

(u ,v )

Proof. The Jacobian for Eq. B.0.2 can be directly computed as

J =−
1

n

















n
∑

v=1

−A1v sin(θ1−θv ) +B1v cos(θ1−θv )

...
n
∑

v=1

−An v sin(θn −θv ) +Bn v cos(θn −θv )

















−
1

n

�

Au v sin(θu −θv )−Bu v cos(θu −θv )
�

(u ,v )

Recall thatφ := e iθ , α := Aφ, β := Bφ, C := A+B i , and γ :=Cφ. Following the same procedure as

Lemma B.1.3, we have that

n
∑

v=1

−Au v sin(θu −θv ) +Bu v cos(θu −θv ) =
n
∑

v=1

−Au v Im
�

e i (θu−θv )
�

+Bu v Re
�

e i (θu−θv )
�
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= Im

�

−φu

n
∑

v=1

Au vφ
∗
v

�

+Re

�

φu

n
∑

v=1

Bu vφ
∗
v

�

=− Im
�

φuα
∗
u

�

+Re
�

φuβ
∗
u

�

=−
1

2i

�

φuα
∗
u −φ

∗
uαu

�

+
1

2

�

φuβ
∗
u +φ

∗
uβu

�

=
1

2i

�

φu

�

−α∗u +β
∗
u i
�

+φ∗u
�

αu +βu i
��

=
1

2i

�

−φuγ
∗
u +φ

∗
uγu

�

= Im
�

φ∗uγu

�

=− Im
�

φuγ
∗
u

�

Therefore we can rewrite the Jacobian as

J =
1

n







Im
�

φ1γ
∗
1

�

...

Im
�

φnγ
∗
n

�






−

1

n

�

Au v Im
�

φuφ
∗
v

�

−Bu v Re
�

φuφ
∗
v

�

�

(u ,v )

Finally, from ΦC ,ω,σ, we see that Im
�

φuγ
∗
u

�

=σu

Æ

|γu |2−n 2ω2
u .
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