
ABSTRACT

RIGGS, BRITTANY ANNE. An Improved Degree Bound on Exactifying Multipliers for Descartes’
Rule of Signs. (Under the direction of Hoon Hong.)

Determining the number of roots of a univariate polynomial has been a fundamental mathe-

matical question for hundreds of years. The number of complex roots has been resolved elegantly

since Gauss proved the Fundamental Theorem of Algebra in 1799. While methods for determin-

ing the number of real roots of a polynomial have been found, the pursuit of better methods of

counting is an active and non-trivial area of research.

One of the most used and simplest results was stated by Descartes in 1637: the number of pos-

itive real roots of a polynomial f is bounded by the number of sign variations in the consecutive

non-zero coefficients of f . There followed a number of significant results, by Budan, Fourier, Her-

mite and Sturm. While Hermite and Sturm provided an exact count of the number of real roots,

their methods were complex and costly to implement. Despite this later work, Descartes’ Rule of

Signs is still most commonly used, due to its simplicity. However, Descartes only provided a bound

on the number of positive real roots, not an exact count.

In 1888, Poincaré proved that Descartes’ Rule of Signs is exact, in some sense. He proved that

for a non-zero univariate polynomial f , there exists a multiplier g such that the number of sign

variations in the consecutive non-zero coefficients of g f is exactly the number of positive real roots

of f . Studying this multiplier can provide an avenue to a faster way to count the exact number of

positive real roots of a polynomial. In particular, an effective bound on the degree of this multiplier

is essential to progress.

This research focuses on the fundamental case in which the polynomial f has no positive real

roots but still has sign variation. We improve upon the previous bound on the degree of the multi-

plier, by Powers and Reznick, and then extend the bound to arbitrary polynomials with any number

of positive real roots.

The previous bound arose from a careful study of a multiplier given by Pólya as a certificate of

positivity in a generalized multivariate case. The new bound is derived from a reformatting of the

problem using linear algebra, resulting in a bound based on the geometry of the complex roots of

the polynomial. In general, the new bound is optimal in some cases and appears to be exponentially

smaller in the degree of f than its predecessor, a significant overall improvement.



A summary of results is as follows:

1. We provide a new bound on the degree of an exatifying multiplier for Descartes’ Rule of Signs

in the special case of polynomials with no positive real root.

2. We prove the new bound is optimal for quadratic polynomials with no positive real root.

3. We provide a witness for the multiplier for quadratic polynomials with no positive real root.

4. We discuss optimality in higher degrees.

5. We prove an extension of the bound to polynomials with any number of positive real roots.

6. We provide a detailed comparison of the previous bound by Powers and Reznick to the new

bound.
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CHAPTER

1

INTRODUCTION

Determining the number of roots of a univariate polynomial has been a fundamental mathematical

question for hundreds of years. The number of complex roots has been resolved elegantly since

Gauss proved the Fundamental Theorem of Algebra in 1799. While methods for determining the

number of real roots of a polynomial have been found, the pursuit of better methods of counting

is an active and non-trivial area of research.

Chapter 2 will include several such results. One of the most used and simplest results was stated

by Descartes in 1637: the number of positive real roots of a polynomial f is bounded by the number

of sign variations in the consecutive non-zero coefficients of f . There followed a number of signif-

icant results, by Budan, Fourier, Hermite and Sturm. While Hermite and Sturm provided an exact

count of the number of real roots, their methods were complex and costly to implement. Despite

this later work, Descartes’ Rule of Signs is still most commonly used, due to its simplicity.

In the following table, we will list some research from the last century based on Descartes’ Rule

of Signs.
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Table 1.1 A Sample of Research Citing Descartes’ Rule of Signs

Credit Title

Curtiss 1918 [10] Recent Extentions of Descartes’ Rule of Signs

Schoenberg 1955 [30] A Note on Multiply Positive Sequences and the Descartes

Rule of Signs

Carnicer-Peña 1998 [9] Characterizations of the Optimal Descartes’ Rule of Signs

Eigenwillig 2008 [13] Real Root Isolation for Exact and Approximate Polynomials

using Descartes’ Rule of Signs

Sagraloff 2014 [28] A Near-Optimal Algorithm for

Computing Real Roots of Sparse Polynomials

Kostov 2020 [18] Descartes’ Rule of Signs and Moduli of Roots

However, Descartes only provided a bound on the number of positive real roots, not an exact

count. In 1888, Poincaré proved that Descartes’ Rule of Signs is exact, in some sense. He proved

that for a non-zero univariate polynomial f , there exists a multiplier g such that the number of

sign variations in the consecutive non-zero coefficients of g f is exactly the number of positive

real roots of f . Studying this multiplier can provide an avenue to a faster way to count the exact

number of positive real roots of a polynomial. In particular, an effective bound on the degree of

this multiplier is essential to progress.

Chapter 2 will detail a formulation for this multiplier by Avendaño and a bound on its degree

in a foundational case, by Powers and Reznick. The previous bound arose from a careful study of a

multiplier given by Pólya as a certificate of positivity in a generalized multivariate scenario and a

subsequent specialization to univariate polynomials. In addition to its mathematical importance,

this work by Avendaño and Powers-Reznick is cited in applications throughout applied math and

the sciences.
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Table 1.2 Current Research Citing Avendaño

Field Title
Credit

Modeling On Equilibrium Properties of the Replicator-Mutator

Duong-Han 2019 [12] Equation in Deterministic and Random Games

Quantum Information Science Quantum Coherence - Classical Uncertainty

Starke Chrysosthemos-Maziero Tradeoff Relations

2018 [32]
Modeling Coexistence of Species in a Tritrophic Food Chain

Ble-Castellanos-Dela Rosa 2018 [5] Model with Holling Functional Response Type IV

Table 1.3 Current Research Citing Powers-Reznick

Field Title
Credit

Modeling On Equilibrium Properties of the Replicator-Mutator

Duong-Han 2019 [12] Equation in Deterministic and Random Games

Electrical Engineering Affine Parameter-Dependent Lyapunov Functions for

Toth-Cox-Weiland 2018 [27] LPV Systems with Affine Dependence

Controls Full-block Multipliers for Repeated, Slope-Restricted

Fetzer-Scherer 2017 [14] Scalar Nonlinearities

Artificial Intelligence Shape-independent Model Predictive Control for

Ariño-Querol-Sala 2017 [1] Takagi-Sugeno Fuzzy Systems

Physics Quantum de Finetti Theorems Under Local

Brandão-Harrow 2017 [8] Measurements with Applications

This dissertation, like the work by Powers-Reznick, focuses on the fundamental case in which

the polynomial f has no positive real roots but still has sign variation. We improve upon the pre-

vious bound on the degree of the multiplier by Powers and Reznick and then extend the bound

to arbitrary polynomials with any number of positive real roots. The new bound is derived from

a reformatting of the problem using linear algebra, resulting in a bound based on the geometry

of the complex roots of the polynomial. In general, the new bound is optimal in some cases and

appears to be exponentially smaller in the degree of f than its predecessor, a significant overall

improvement.
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A summary of results is as follows:

1. Chapter 3: We provide a new bound on the degree of an exactifying multiplier for Descartes’

Rule of Signs in the special case of polynomials with no positive real root.

2. Chapter 3: We prove the new bound is optimal for quadratic polynomials with no positive

real root.

3. Chapter 3: We provide a witness for the multiplier for quadratic polynomials with no positive

real root.

4. Chapter 3: We discuss optimality in higher degrees.

5. Chapter 4: We prove an extension of the bound to polynomials with any number of positive

real roots.

6. Chapter 5: We provide a detailed comparison of the previous bound by Powers and Reznick

to the new bound.
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CHAPTER

2

PREVIOUS WORK

This dissertation will provide an improved degree bound on exactifying multipliers for Descartes’

Rule of Signs. This chapter will serve to define this concept, detail the work previously done on the

existence of such multipliers, and show the derivation of the previous degree bound.

2.1 Descartes’ Rule of Signs

First, we will describe the foundational result, Descartes’ Rule of Signs. Let

p ( f ) = the number of positive real roots of f (counting multiplicity)

v ( f ) = the number of sign differences between consecutive non-zero coefficients.

Theorem 2.1.1 (Descartes 1637 [11]). Let f ∈R[x ] be non-zero. Then p ( f )≤ v ( f ) and p ( f )≡2 v ( f ).

Descartes provided an elegant upper bound on the number of positive real roots of a given

polynomial. While computationally simple, there is no guarantee this is a particularly tight bound.

Example 2.1.1. Let f = x 2−2x+4. Then p ( f ) = 0 and v ( f ) = 2. Clearly, p ( f )< v ( f )and p ( f )≡2 v ( f ),

since v ( f )−p ( f ) = 2.

Example 2.1.2. Let f = (x 2 − 2x + 4)(x 2 − 2x + 2) = x 4 − 4x 3 + 10x 2 − 12x + 8. Then p ( f ) = 0 and

v ( f ) = 4. Clearly, p ( f )< v ( f ) and p ( f )≡2 v ( f ), since v ( f )−p ( f ) = 4.

5



2.2 Efforts to Improve upon Descartes’ Rule of Signs

For the following theorems, we define

rI ( f ) = the number of real roots of f (counting multiplicity) in the interval I

r ∗I ( f ) = the number of distinct real roots of f in the interval I

v (S ) = the number of sign differences in the sequence S

Budan and Fourier independently proved a generalization of Descartes’ Rule of Signs.

Theorem 2.2.1 (Budan 1807 [6] Fourier 1820 [15]). Let f ∈R[x ] be non-zero. Define

Sa =
�

f (a ), f ′(a ), . . . , f (n )(a )
	

. Then for any interval (a , b ),

1. v (Sa )≥ v (Sb )

2. v (Sa )− v (Sb )− r(a ,b ]( f ) is a non-negative even integer

and hence r(a ,b )( f )≤ v (Sa )− v (Sb ).

Note that this is still an upper bound of the count of real roots of f and Descartes’ Rule of Signs

is a special case of the above theorem. Sturm defined a new sequence in order to improve upon

this counting technique.

Definition 2.2.1. The Sturm sequence of a polynomial f ∈R[x ] is the sequence given by

1. f0 = f

2. f1 = f ′ (the derivative of f )

3. fi+1 =−rem( fi−1, fi )

for i ≥ 1 and where rem( fi−1, fi ) is the remainder in the Euclidean division of fi−1 by fi .

Theorem 2.2.2 (Sturm 1829 [34]). Let f ∈ R[x ] and a < b such that f (a ), f (b ) ̸= 0. Let Sa be the

Sturm sequence for f evaluated at x = a . Then r ∗(a ,b )( f ) = v (Sa )− v (Sb ).

Sturm’s theorem provides an exact count of the number of distinct real roots of a polynomial in

a given interval, but is computationally costly to implement. Hermite provided another such exact

result, but several definitions are needed first.

6



Definition 2.2.2. Let f = (x − z1) · · · (x − zn ), where zi ∈ C. Then the discriminant matrix Q of f is

defined by Q =V V T where

V =

 z 0
1 · · · z 0

n
...

...

z n−1
1 · · · z n−1

n

 .

Definition 2.2.3. Let M be a real symmetric matrix. The signature of M , σ(M ), is the number of

positive eigenvalues of M minus the number of negative eigenvalues of M , counting multiplicity.

Theorem 2.2.3 (Hermite 1853 [16]). Let f ∈ R[x ]. Then r ∗R( f ) = σ(Q ), where Q is the discriminant

matrix of f .

While this is an exact count of the distinct real roots of f , it does require knowing the roots of

f in order to count them.

2.3 Exactifying Multipliers for Descartes’ Rule of Signs

In spite of the exact root counts detailed in the previous section, Descartes’ Rule of Signs remains

frequently used. As such, research has been conducted to address the "inexactness" of the bound.

Poincaré proved that Descartes’ Rule of Signs is exact in some sense.

Theorem 2.3.1 (Poincaré 1888 [23]). For a non-zero f ∈R[x ], there exists g ∈R[x ] such that v (g f ) =

p ( f ).

Poincaré proved that, for a polynomial f , there exists a multiplier g that makes Descartes’ Rule

of Signs exact, in that v (g f ) = p ( f ).

Example 2.3.1. Let f = x 2 − 2x + 4 and g = x 2 + 2x + 4. Then g f = x 4 + 4x 2 + 16, v (g f ) = 0 and

v (g f ) = p ( f ).

Definition 2.3.1. For a non-zero polynomial f ∈R[x ], an exactifying multiplier for Descartes’ Rule

of Signs is a polynomial g ∈R[x ] such that v (g f ) = p ( f ).

Poincaré’s theorem guarantees the existence of a polynomial multiplier g that serves to make

Descartes’ Rule of Signs exact. Martin Avendaño proved that such a g with non-negative coeffi-

cients exists, and found a witness for this g , which we will detail here.

Avendaño first proved two smaller lemmas.

Lemma 2.3.1 (Avendaño 2010 [4]). Let f ∈R[x ] be a monic quadratic polynomial with no positive

real roots. Then there exists a monic polymonial g ∈R[x ]with all non-negative coefficients such that

g f has all non-negative coefficients.

7



Proof. Let f = x 2+ b x + c .

1. Case 1: f has two non-positive real roots, α,β ∈R≤0. Then

f = (x −α)(x −β ) = x 2+ (−α−β )x +αβ .

Since α,β ∈ R≤0, −α−β ,αβ ∈ R≥0 and f itself has non-negative coefficients. Hence, g = 1

will suffice.

2. Case 2: f has two complex roots, α and α, where arg(α) ∈ (0,π). For any α, arg(α) =
π

2k
or

π

2k
< arg(α)<

π

2k−1
for some k ∈N �so

π

2k
≤ arg(α)<

π

2k−1

�
. We induct on k .

(a) Base Case: k = 1. Then
π

2
≤ arg(α) < π. In this case, α = −r + s i , α = −r − s i , where

r, s ∈R≥0.

f = (x − (−r + s i ))(x − (−r − s i ))

= (x + r − s i )(x + r + s i )

= x 2+2r x + (r 2+ s 2)

In this case, 2r, r 2+ s 2 ∈R≥0, so f has non-negative coefficients and g = 1 will suffice.

(b) k > 1: Assume any monic quadratic with two complex roots α, α such that
π

2k−1
≤ arg(α)<

π

2k−2
has a monic polynomial g ∈R[x ] such that g f has all non-negative

coefficients. Consider the polynomial f (x ) f (−x ):

f (x ) f (−x ) = (x 2+ b x + c )(x 2− b x + c )

= x 4+ (2c − b 2)x 2+ c 2

= x 4+d x 2+ e

where d = 2c − b 2 and e = c 2. Then f (x ) f (−x ) = f̃ (x 2)where f̃ = x 2+d x + e . We have

roots α2 and α2 =α2 of f̃ since f̃ (α2) = f (α) f (−α) = 0 and f̃ (α2) = f (α) f (−α) = 0. Now

π

2k
≤ arg(α)<

π

2k−1

⇐⇒ π
2k
≤ 1

2
arg(α2)<

π

2k−1

⇐⇒ π

2k−1
≤ arg(α2)<

π

2k−2

Then f̃ satisfies the inductive hypothesis. There exists some g̃ with non-negative coef-

8



ficients such that g̃ f̃ has all non-negative coefficients. Consider g = f (−x )g̃ (x 2).

g f = f (−x )g̃ (x 2) f (x )

= g̃ (x 2) f (x ) f (−x )

= g̃ (x 2) f̃ (x 2)

We know g̃ f̃ has all non-negative coefficients, so all that remains is to show that g has

non-negative coefficients. Since arg(α)<
π

2
, α= r + s i ,α= r − s i for r, s ∈R≥0. Then

f = (x − (r + s i ))(x − (r − s i ))

= (x − r − s i )(x − r + s i )

= x 2−2r x + (r 2+ s 2)

Hence, f (−x ) has non-negative coefficients and g = f (−x )g̃ (x 2) must also have non-

negative coefficients.

Example 2.3.2. Let f = x 2−2x +4. Then b =−2 and c = 4. By the proof of Lemma 2.3.1,

f̃ = x 2+ (2c − b 2)x + c 2

= x 2+4x +16

g̃ = 1

g = f (−x )g̃ (x 2)

= (x 2+2x +4)(1)

g f = (x 2+2x +4)(x 2−2x +4)

= x 4+4x +16.

Lemma 2.3.1 leads to a simple proof for the existence of such a g for monic polynomials of

arbitrary degree with no positive real roots.

Lemma 2.3.2 (Avendaño 2010 [4]). Let f ∈R[x ] be a monic polynomial with no positive real roots.

Then there exists a monic polymonial g ∈ R[x ] with all non-negative coefficients such that g f has

all non-negative coefficients.

Proof. Let

f = (x − r1) · · · (x − rt ) f1 · · · fm

9



where r1, . . . , rt are real roots and f1, . . . , fm are the irreducible quadratic factors of f over R. Then

the fi have non-real roots and by Lemma 2.3.1, for each fi , there exists a g i such that g i fi has all

non-negative coefficients.

Let g = g1 · · ·gm . Then

g f = g1 · · ·gm (x − r1) · · · (x − rt ) f1 · · · fm

= (x − r1) · · · (x − rt )g1 f1 · · ·gm fm

and g f has all non-negative coefficients.

We are now ready to prove the existence of Avendaño’s exactifying multiplier.

Theorem 2.3.2 (Avendaño 2010 [4]). Let f ∈ R[x ] be a non-zero polynomial. Then there exists g ∈
R[x ]with all non-negative coefficients such that v (g f ) = p ( f ).

Proof. We will divide the proof into conceptual steps.

1. Let f = a (x − r1) · · · (x − rt ) h where a ∈R, ri ∈R>0 and h is monic with no positive real roots.

Let n = deg( f ) and t = p ( f ). Then l = deg(h ) = deg( f )− t = n − t .

2. From Lemma 2.3.2, there exists a monic q such that v (q h ) = 0. Let N = deg(q h ).

3. Let p = a (x N+1− r N+1
1 ) · · · (x N+1− r N+1

t ). Note that p = a if f has no positive real roots.

p = a
t∏

j=1

�
x N+1− r N+1

j

�
= a

t∑
j=0

(−1) j e j

�
r N+1

1 , . . . , r N+1
t

� �
x N+1

�t− j

where e j

�
r N+1

1 , . . . , r N+1
t

�
is the elementary symmetric polynomial of degree j in�

r N+1
1 , . . . , r N+1

t

�
. In this form, we see immediately that v (p ) = t .

4. Note that the degree gap between two consecutive terms of p is N +1. Note also that q h has

all non-negative coefficients and deg(q h ) =N . Now consider p q h :

p q h =

 
a

t∑
j=0

(−1) j e j

�
r N+1

1 , . . . , r N+1
t

� �
x N+1

�t− j

!
q h

= a
t∑

j=0

(−1) j e j

�
r N+1

1 , . . . , r N+1
t

� �
x N+1

�t− j
q h

10



In order to count the sign changes in p q h , fix a j :

(−1) j e j

�
r N+1

1 , . . . , r N+1
t

� �
x N+1

�t− j
q h

= (−1) j e j

�
r N+1

1 , . . . , r N+1
t

�
x (N+1)(t− j )

N∑
i=0

bi x i where q h =
N∑

i=0

bi x i

=
N∑

i=0

(−1) j e j

�
r N+1

1 , . . . , r N+1
t

�
bi x i+(N+1)(t− j )

This polynomial has all same sign coefficients, based on the sign of (−1) j e j

�
r N+1

1 , . . . , r N+1
t

�
,

since the bi are all non-negative.

Additionally, there are no common terms when j varies. Consider terms contributed by the

( j −1)-th, j -th, and ( j +1)-th terms of p q h :

highest degree term for j +1: (N +1)(t − j )−1

lowest degree term for j : (N +1)(t − j )+0

highest degree term for j : (N +1)(t − j )+N

lowest degree term for j −1: (N +1)(t − j )+N +1

Hence, we have preserved the number of sign changes of p and v (p q h ) = t .

5. Note

p q h = a
�
x N+1− r N+1

1

� · · · �x N+1− r N+1
t

�
q h

=
x N+1− r N+1

1

x − r1
· · · x

N+1− r N+1
t

x − rt
q (a (x − r1) · · · (x − rt ) h )

=
�
x N + r1 x N−1+ · · ·+ r N

1

� · · · �x N + rt x N−1+ · · ·+ r N
t

�
q f

= g f

where g =
�
x N + r1 x N−1+ · · ·+ r N

1

� · · · �x N + rt x N−1+ · · ·+ r N
t

�
q . Hence v (g f ) = t .

6. Since f has t positive roots, we see that g f has at least t positive real roots. By Descartes’ Rule

of Signs, the number of positive real roots of g f is at most v (g f ) = t . Thus g f has exactly t

positive roots, i.e. Descartes’ Rule of Signs is exact for g f .

11



Example 2.3.3. Let f = (x − 1)(x 2 − 2x + 4). From the proof of Theorem 2.3.2, we have n = 3, t = 1,

r1 = 1 and h = x 2−2x +4. From Example 2.3.2, we have q = x 2+2x +4 and q h = x 4+4x +16. Then

N = 4

p = x 5−15 = x 5−1

g = (x 4+ x 3+ x 2+ x +1) q

g f = (x 4+ x 3+ x 2+ x +1)(x 2+2x +4)(x −1)(x 2−2x +4)

= x 9+4x 7+16x 5− x 4−4x 2−16.

Note that v (g f ) = 1= p ( f ).

2.4 A Degree Bound from Multivariate Certificates of Positivity

Recent research in multivariate polnomials has lent itself to the derivation of a degree bound on an

exactifying multiplier for Descartes’ Rule of Signs. This branch of research was motivated by David

Hilbert’s Seventeenth Problem:

“When can a non-negative form be expressed as a quotient of sums of squares of forms?” [17]

One way to answer Hilbert’s question is to find a “certificate of positivity” for a given multivari-

ate polynomial - an expression that serves to demonstrate that the polynomial is positive over the

given set. We will first discuss some basic results on certificates of positivity and then detail the

work by Pólya, which led to the bound in question.

To formalize this concept, let

f ∈ R [x1, . . . , xn ]

G = {g1, . . . , g r } ⊂R [x1, . . . , xn ]

S = {x ∈Rn : g1(x )≥ 0, . . . , g r ≥ 0}.

The goal is to determine if f (x1, . . . , xn ) > 0 for all x1, . . . , xn ∈ S and, if so, provide a certificate of

positivity.

2.4.1 Background on Certificates of Positivity

Hilbert himself suggested that expressing a polynomial as a quotient of sums of squares would

serve as a certificate of positivity.

12



Example 2.4.1. Let f (x ) = x 2−2x +4. Since

f (x ) = x 2−2x +4= (x −1)2+ (
p

3)2,

f (x ) is non-negative over the reals. Note that, in this example, G =∅ and S =R.

Then the goal of this technique is, given a polynomial f and a set G , to find an equivalent ex-

pression for f that is a quotient of sums of squares or to conclude that none exists. In order to

create an algorithm to find such an expression, we need to have an upper bound on the degree of

the polynomial components of the sum of squares or the algorithm may never terminate.

Once a bound is found, we immediately have the following algorithm:

1. Search for a certificate of a low degree.

2. If successful, then claim that f is positive and return the found certificate.

3. If not, then increase the degree and repeat.

4. If the degree reaches the bound, we stop and claim that f is not positive.

Due to the importance of the challenge, there has been much effort yielding significant progress.

We will list several key results - the certificate paired with the relevant bound.

Throughout the following theorems, let

f =
∑
e

ae x e

d = deg( f ).

Emil Artin proved that a non-negative polynomial over Rn can, in fact, always be written as a

sum of squares. The subsequent research involves polynomials that are positive over more restric-

tive sets G .

13



Table 2.1 Certificate and Bound for G =∅

Certificate Bound

Artin 1927 [2] Lombardi-Perucci-Roy 2014 [20]

∀
x∈S f (x )> 0 =⇒ ∃

p ,q ̸=0
f =

∑
i

p 2
i

q 2
deg(pi ), deg(q )≤ 222d 4n

It is important to note that, while a bound on the degree of the certificate of positivity exists,

this bound is not currently practical in terms of implementation in an algorithm.

Example 2.4.2. Let f = x 2 − 2x + 4 and G = ∅. Then n = 1 and d = 2. Thus the bound on the Artin

certificate, from Table 2.1, is given by

deg p ,deg q ≤ 222d 4n

= 22224 ≈ 101020000

However, in Example 2.4.1, we provided a certificate of degree 1,

f = x 2−2x +4= (x −1)2+ (
p

3)2.

Table 2.2 Certificate and Bound for G arbitrary

Certificate Bound

Krivine 1964 [19] / Stengle 1974 [33] Lombardi-Perucci-Roy 2014 [20]

∀
x∈S f (x )> 0 =⇒ ∃

p ,q ̸=0
f =

1+
∑

T⊂G

∑
i

p 2
T ,i

∏
g∈T

g∑
T⊂G

∑
i

q 2
T ,i

∏
g∈T

g
deg(pT ,i ),deg(qT ,i )≤ 22

�
2d 4n

+r 2n
d 16n log2 d

�

14



Table 2.3 Certificate and Bound for G such that S is compact

Certificate Bound

Schmüdgen 1991 [29] Schweighofer 2004 [31]

∀
x∈S f (x )> 0 =⇒ ∃

p ̸=0
f =

∑
T⊂G

∑
i

p 2
T ,i

∏
g∈T

g deg(pT ,i )≤ c d 2

�
1+

�
d 2n d U ′

L ′

�c �
U ′ = max

e
|ae | e1! · · ·en !

(e1+ · · ·+ en )!
r e1+···+en

where r is such that S ⊂ (−r, r )n

L ′ = min
x∈S f (x )

c is some constant

The final certificate requires a definition first.

Definition 2.4.1. A set S is archimedean if ∃
k∈N k − �x 2

1 + · · ·+ x 2
n

� ∈ �s0+ s1g1+ · · ·+ sr g r : si

	
is a

sum of squares.

Table 2.4 Certificate and Bound for G such that S is archimedean

Certificate Bound

Putinar 1993 [26] Nie-Schweighofer 2007 [22]

∀
x∈S f (x )> 0 =⇒ ∃

p ̸=0
f =

∑
i

p 2
0,i +

∑
g∈G

∑
i

p 2
g ,i g deg(p0,i ),deg(pg ,i )≤ c e

 
d 2n d

U ′
L ′

!c

U ′ = max
e
|ae | e1! · · ·en !

(e1+ · · ·+ en )!
r e1+···+en

where r is such that S ⊂ (−r, r )n

L ′ = min
x∈S f (x )

c is some constant
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In each of these cases, the bound on the degree of the certificate is impractical. To make an

algorithm feasible, we must improve upon these bounds.

2.4.2 Pólya’s Certificate of Positivity

George Pólya considered the case when G = {x1, x2, . . . , xn} and proved that, in this case, sums

of squares are not needed. In Section 2.5, we will show how this multiplier relates to Descartes’

Rule of Signs and provides a degree bound on the exactifying multiplier for a fundamental set of

polynomials.

Theorem 2.4.1 (Pólya 1928 [24]). Let f ∈ R [x1, . . . , xn ] be monic and G = {x1, x2, . . . , xn}. Then

∀
x∈S f (x )> 0 =⇒ ∃

p ,q ̸=0

coeffs(p )≥0

f =
p

q

where coeffs(p ) represents “the coefficients of p ”.

Rearranging the statement provides an equivalent form that we will use:

∀
x∈S f (x )> 0 =⇒ ∃

p ,q ̸=0

coeffs(p )≥0

q f = p .

Hence, Pólya proved the existence of a polynomial multiplier that serves as a certificate of posi-

tivity when G = {x1, x2, . . . , xn}. In addition to proving the existence of such a multiplier, Pólya also

provided the shape of a witness.

Theorem 2.4.2 (Polya 1928 [24]). Let f ∈ R[x1, . . . , xn ]. If f > 0 for x ∈ ∆n , then there exists k ∈ N0

such that the polynomial (x1+ · · ·+ xn )k f has all coefficients of the same sign.

2.4.3 Powers-Reznick’s Degree Bound on Pólya’s Certificate of Positivity

Powers and Reznick studied the witness from Theorem 2.4.2 in order to compute a bound on the

degree of the multiplier.

Theorem 2.4.3 (Powers-Reznick 2001 [25]). Let f =
∑
|p |=d

ap x p be such that

∀
x∈∆n

f (x )> 0

where

∆n = {(x1, . . . , xn ) : x1, . . . , xn ≥ 0, x1+ · · ·+ xn = 1} .

16



Then all the coefficients of

(x1+ · · ·+ xn )
⌈k ⌉ f (x )

are non-negative if

k ≥ d (d −1)
2

U

L
−d

where

U =max|p |=d

p1! · · ·pn !

d !
|ap |

L =min
x∈∆n

f (x ) .

Proof. Let

f =
∑
|p |=d

ap x p g =
∑
|q |=k

bq x q .

Note
f g =

∑
|p |=d

ap x p
∑
|q |=k

bq x q =
∑
|p |=d|q |=k

ap bq x p+q =
∑
|r |=d+k

∑
|p |=d|q |=k

p+q=r

ap bq x r

=
∑
|r |=d+k

∑
|p |=d
p≤r

ap br−p x r =
∑
|r |=d+k

cr x r

where

cr =
∑
|p |=d
p≤r

ap br−p .

Now we consider a specific g . For some k ,

g = (x1+ · · ·+ xn )
k .

The multinomial theorem states that the coefficients of g are given by

bq =
k !∏n

i=1 qi !
.

Thus

cr =
∑
|p |=d
p≤r

ap
k !∏n

i=1

�
ri −pi

�
!
.
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Note

cr =
k !

r1! · · · rn !

∑
|p |=d
p≤r

ap

n∏
i=1

ri !�
ri −pi

�
!

=
k !

r1! · · · rn !

∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

�
ri − j

�
since

n∏
i=1

ri !�
ri −pi

�
!
= ri (ri −1) · · · (ri −p +1) =

pi−1∏
j=0

�
ri − j

�

=
k ! (d +k )d

r1! · · · rn !

∑
|p |=d
p≤r

ap

∏n
i=1

∏pi−1
j=0

�
ri − j

�
(d +k )d

=
k ! (d +k )d

r1! · · · rn !

∑
|p |=d
p≤r

ap

∏n
i=1

∏pi−1
j=0

�
ri − j

�∏n
i=1 (d +k )pi

since |p |= d

=
k ! (d +k )d

r1! · · · rn !

∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

ri − j

d +k

since

∏n
i=1

∏pi−1
j=0

�
ri − j

�∏n
i=1 (d +k )pi

=
n∏

i=1

�
ri −0

d +k

��
r1−1

d +k

�
· · ·
�

ri − (pi −1)
d +k

�
=

k ! (d +k )d

r1! · · · rn !
ur

where

ur =
∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

ri − j

d +k
.

Let

U =max|p |=d

p1! · · ·pn !

d !
|ap |

L =min
x∈∆n

f (x ) .
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Note

ur =
∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

ri − j

d +k

=
∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

ri

d +k
− ∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

ri

d +k
+
∑
|p |=d
p≤r

ap

n∏
i=1

pi−1∏
j=0

ri − j

d +k

=
∑
|p |=d
p≤r

ap

n∏
i=1

� ri

d +k

�pi − ∑
|p |=d
p≤r

ap

 
n∏

i=1

� ri

d +k

�pi −
n∏

i=1

pi−1∏
j=0

ri − j

d +k

!

by simplifying
pi−1∏
j=0

ri

d +k

= f
� r

d +k

�
− ∑
|p |=d
p≤r

ap

 
n∏

i=1

� ri

d +k

�pi −
n∏

i=1

pi−1∏
j=0

ri − j

d +k

!

since f =
∑
|p |=d

ap x p and
� r

d +k

�
=
� r1

d +k
, . . . ,

rn

d +k

�
= f

� r

d +k

�
− ∑
|p |=d
p≤r

d !

p1! · · ·pn !

p1! · · ·pn !

d !
ap

 
n∏

i=1

� ri

d +k

�pi −
n∏

i=1

pi−1∏
j=0

ri − j

d +k

!

≥ L −U
∑
|p |=d
p≤r

d !

p1! · · ·pn !

 
n∏

i=1

� ri

d +k

�pi −
n∏

i=1

pi−1∏
j=0

ri − j

d +k

!

since
n∑

i=1

ri

d +k
= 1 and

ri

d +k
≥ 0 so

r

d +k
∈∆n

≥ L −U

 ∑
|p |=d
p≤r

d !

p1! · · ·pn !

n∏
i=1

� ri

d +k

�pi − ∑
|p |=d
p≤r

d !

p1! · · ·pn !

n∏
i=1

pi−1∏
j=0

ri − j

d +k



= L −U

� r1

d +k
+ · · ·+ rn

d +k

�d − ∑
|p |=d
p≤r

d !

p1! · · ·pn !

n∏
i=1

pi−1∏
j=0

ri − j

d +k


by the multinomial theorem
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= L −U

1− ∑
|p |=d
p≤r

d !

p1! · · ·pn !

n∏
i=1

pi−1∏
j=0

ri − j

d +k

 since |r |= d +k

= L −U

1− ∑
|p |=d
p≤r

d !

p1! · · ·pn !

n∏
i=1

pi−1∏
j=0

� ri

d +k
− j t

� where t =
1

d +k

= L −U

1− ∑
|p |=d
p≤r

d !

p1! · · ·pn !

n∏
i=1

� ri

d +k

�pi

t

 where t =
1

d +k

= L −U

 
1−

d−1∏
j=0

�
1− j

k +d

�!
by the iterated Chu-Vandermonde identity [25] [3].

Note that if w j =
j

d +k
, then 0≤w j < 1 and 0< 1−w j ≤ 1 for all j . We will prove by induction that

d−1∏
j=0

�
1−w j

�≥ 1−
d−1∑
i=0

w j .

The base case is clear. Assume

k−1∏
j=0

�
1−w j

�≥ 1−
k−1∑
i=0

w j for k < d .

k∏
j=0

�
1−w j

�
= (1−wk )

k−1∏
j=0

�
1−w j

�
≥ (1−wk )

�
1−

k−1∑
i=0

w j

�
= 1+wk

k−1∑
i=0

w j −
k−1∑
i=0

w j −wk

= 1+wk

k−1∑
i=0

w j −
k∑

i=0

w j

≥ 1−
k∑

i=0

w j .
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Hence

d−1∏
j=0

�
1−w j

�≥ 1−
d−1∑
i=0

w j .

Then

1−
d−1∏
j=0

�
1−w j

�≤ 1−
�

1−
d−1∑
i=0

w j

�

1−
d−1∏
j=0

�
1−w j

�≤ d−1∑
i=0

w j

L −U

 
1−

d−1∏
j=0

�
1−w j

�!≥ L −U
d−1∑
i=0

w j

≥ L −U
1+ · · ·+d −1

d +k

= L −U
d (d−1)

2

d +k
.

Hence ur ≥ 0 if

L

U
≥ d (d −1)

2 (d +k )

k ≥ d (d −1)
2

U

L
−d .

2.5 Specializing the Powers-Reznick Degree Bound to bP R , a Univariate

Degree Bound

We can specialize bP R from Theorem 2.4.3 by considering the two variable case and then setting

x2 = 1. The witness from Theorem 2.4.2 becomes (x +1)k .

Example 2.5.1. Let f = x 2−2x +4. Note

(x +1) f = x 3− x 2+2x +4

(x +1)2 f = x 4+ x 2+6x +4.

Then the k from Theorem 2.4.2 is k = 2. Since (x + 1)2 and x 4 + x 2 + 6x + 4 are clearly positive for

x > 0, we must also have that f > 0 for x > 0.
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Now let’s specialize bP R to the univariate case. This corresponds to the case for Descartes’ Rule

of Signs when p ( f ) = 0.

Theorem 2.5.1 (Powers-Reznick 2001 [25]). If f ∈R[x ] has no positive real roots and

k ≥

�

n

2

� max
0≤i≤n

�|ai |/�ni �	
min

x∈[0,1]

n
(1− x )n f

� x

1− x

�o
−n = bP R ( f ),

where n = deg( f ), then (x +1)k f (x ) has all its coefficients of the same sign.

Proof. We specialize Theorem 2.4.3 to the case where f ∈R[x1, x2]. Let

f̂ (x1, x2) =
∑

p1+p2=n

âp1p2
x

p1
1 x

p2
2 be such that

∀
(x1,x2)∈∆2

f̂ (x1, x2)> 0

where

∆2 = {(x1, x2) : x1, x2 ≥ 0, x1+ x2 = 1} .
Then all the coefficients of

(x1+ x2)
⌈k ⌉ f̂ (x1, x2)

are positive if

k ≥ n (n −1)
2

U

L
−n

where

U = max
p1+p2=n

p1!p2!

n !

��âp1p2

��
L = min

(x1,x2)∈∆2

f̂ (x1, x2) .

1. We will rewrite parts of the above.
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(a) Note

∀
(x1,x2)∈∆2

f̂ (x1, x2)> 0

⇐⇒ ∀
0≤x1≤1

f̂ (x1,1− x1)> 0

⇐⇒ ∀
0≤x1≤1

∑
p1+p2=n

âp1p2
x

p1
1 (1− x1)

p2 > 0

⇐⇒ ∀
0≤x1≤1

n∑
i=0

âi ,n−i x i
1 (1− x1)

n−i > 0

⇐⇒ ∀
0≤x1≤1

(1− x1)
n

n∑
i=0

âi ,n−i

�
x1

1− x1

�i

> 0

⇐⇒ ∀
0≤x1≤1

(1− x1)
n f

�
x1

1− x1

�
> 0 where f (x ) =

n∑
i=0

ai x i and ai = âi ,n−i

⇐⇒ ∀
0≤x

f (x )> 0.

(b) Note

all coefficients of (x1+ x2)
⌈k ⌉ f̂ (x1, x2) are positive

⇐⇒ all coefficients of (x1+ x2)
⌈k ⌉ ∑

p1+p2=n

âp1p2
x

p1
1 x

p2
2 are positive

⇐⇒ all coefficients of (x1+ x2)
⌈k ⌉

n∑
i=0

âi ,n−i x i
1 x n−i

2 are positive

⇐⇒ all coefficients of x ⌈k ⌉2

�
x1

x2
+1

�⌈k ⌉
x n

2

n∑
i=0

âi ,n−i

�
x1

x2

�i

are positive

⇐⇒ all coefficients of x ⌈k ⌉2

�
x1

x2
+1

�⌈k ⌉
x n

2

n∑
i=0

ai

�
x1

x2

�i

are positive

⇐⇒ all coefficients of x ⌈k ⌉+n
2

�
x1

x2
+1

�k

f
�

x1

x2

�
are positive

⇐⇒ all coefficients of
�

x1

x2
+1

�⌈k ⌉
f
�

x1

x2

�
with respect to

x1

x2
are positive

⇐⇒ all coefficients of (x +1)⌈k ⌉ f (x ) are positive.
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(c) Note

U = max
p1+p2=n

p1!p2!

n !

��âp1,p2

�� = max
0≤i≤n

i ! (n − i )!
n !

��âi ,n−i

��
= max

0≤i≤n

i ! (n − i )!
n !

|ai | = max
0≤i≤n

|ai |�
n

i

� .

(d) Note

L = min
(x1,x2)∈∆2

f̂ (x1, x2)

= min
(x1,x2)∈∆2

∑
p1+p2=n

âp1p2
x

p1
1 x

p2
2

= min
0≤x≤1

n∑
i=0

âi ,n−i x i (1− x )n−i

= min
0≤x≤1

(1− x )n
n∑

i=0

âi ,n−i

� x

1− x

�i

= min
0≤x≤1

(1− x )n
n∑

i=0

ai

� x

1− x

�i

= min
0≤x≤1

(1− x )n f
� x

1− x

�
.

2. Combining the above two, we obtain the following.

Let f (x ) =
n∑

i=0

ai x i be such that

∀
0≤x

f (x )> 0.

Then all coefficients of (x +1)⌈k ⌉ f (x ) are positive if

k ≥ n (n −1)
2

U

L
−n

where

U = max
0≤i≤n

|ai |�
n

i

�
L = min

0≤x≤1
(1− x )n f

� x

1− x

�
.
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3. Finally, note

⌈k ⌉=
¡

n (n −1)
2

U

L
−n

¤
=


�

n

2

� max
0≤i≤n

�|ai |/�ni �	
min

x∈[0,1]

n
(1− x )n f

� x

1− x

�o
−n .

Example 2.5.2. Let f = x 2−2x +4. Then

max
§

1,
|a1|

2
, |a0|

ª
=max

§
1,
| −2|

2
, |4|

ª
= 4

min
x∈[0,1]

(1− x )2 f
� x

1− x

�
= min

x∈[0,1]
(1− x )2

�� x

1− x

�2−2
� x

1− x

�
+4

�
= min

x∈[0,1]

�
x 2−2x (1− x )+4 (1− x )2

�
= min

x∈[0,1]

�
7x 2−10x +4

�
=

3

7
.

Thus,

bP R ( f ) =
¡

4

3/7

¤
−2=

¡
28

3

¤
−2= 8.

Hence, (x +1)8 f will have all non-negative coefficients. However, we saw in Example 2.5.1 that

(x +1)2 f was sufficient.

Chapter 3 will provide a lower bound than the one provided in Theorem 2.5.1 on an exactifying

multiplier for Descartes’ Rule of Signs for the case when p ( f ) = 0.
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CHAPTER

3

A NEW DEGREE BOUND FOR

POLYNOMIALS WITH NO POSITIVE REAL

ROOTS (BH R )

In Sections 2.1 and 2.3, we discussed the existence of exactifying multipliers for Descartes’ Rule

of Signs and a construction of such a multiplier given by Avendaño. In Section 2.5, we discussed

a witness for the multiplier given by Pólya, g = (x + 1)k , for the foundational case of polynomials

with no positive real roots and the bound, bP R ( f ), on k provided by Powers and Reznick. In this

Chapter, we will provide a new bound on the degree of an exactifying multiplier for Descartes’ Rule

of Signs for polynomials with no positive real root, give an explicit witness for the certificate when

deg( f ) = 2, and prove its optimality when deg( f ) = 2.

3.1 Main Results

In this section, we will state the main results relating to exactifying multipliers for Descartes’ Rule

of Signs when the polynomial has no positive real roots.
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Theorem 3.1.1 (Bound). Let f ∈R [x ] be monic without positive real roots. Then there exists monic

polynomial g ∈R [x ] of degree at most bH R ( f ) such that coeffs
�
g f

�≥ 0, where

bH R ( f ) =
m∑

i=1

�¡
π

arg(αi )

¤
−2

�
and α1, . . . ,αm are all the non-real roots of f with positive imaginary part (multiple roots are re-

peated). (Note that bH R ( f ) = 0 if all roots of f are real.)

In the case of quadratic polynomials with no positive real roots, we can prove the optimality of

this bound and provide a witness for the certificate of that exact degree.

Theorem 3.1.2 (Optimality for Degree 2). Let f = x 2+a1 x +a0 ∈R [x ] be without real roots. Then

the smallest degree of non-zero g ∈R [x ] such that coeffs
�
g f

�≥ 0 is

bH R ( f ) =
¡
π

arg(α)

¤
−2

where α is the non-real root of f with positive imaginary part.

Remark 3.1.1. Note that bH R ( f ) = 0 when f has two non-positive real roots and is, hence, clearly

optimal.

Theorem 3.1.3 (Multiplier for Degree 2). Let f = x 2+a1 x +a0 ∈R [x ] be without real roots. Then a

witness for coeffs
�
g f

�≥ 0 is given by

g =

�������������

a2 x 0

a1
...

...

a0
...

...
...

...
...

a0 a1 x s

�������������
where

s = bH R ( f ) =
¡
π

arg(α)

¤
−2

where again α is the non-real root of f with positive imaginary part.
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Conjecture 3.1.1 (Angle-Based Optimality). We have

∀
θ∈(0,π]k

∃
r∈[0,∞)k opt

�
f
�
= bH R

�
f
�

where

fθ ,r =
∏

1≤i≤k
θi=π

(x + ri )
∏

1≤i≤k
θi ̸=π

�
x 2−2ri cosθi + r 2

i

�
.

3.2 Reducing the Problem via Linear Algebra

We will provide a series of lemmas to reformat the problem. Let f ∈R [x ] be monic without losing

generality. Assume that f does not have any positive real roots. The problem is to find a non-zero

g ∈R [x ] such that coeffs
�
g f

�≥ 0. We will reduce the problem to that of linear algebra. Let

f = an x n + · · ·+a0 x 0

g = bs x s + · · ·+ b0 x 0

where an = 1 and bs = 1. We first rewrite them using vectors. Let

a =
�

a0 · · · an

�
b =

�
b0 · · · bs

�
and let

xk =

 x 0

...

x k

 .

Then we can write f and g compactly as

f = a xn , g = b xs .

Let

As =

 a0 · · · · · · an

...
...

a0 · · · · · · an

 ∈R(s+1)×(s+n+1).
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Lemma 3.2.1. coeffs
�
g f

�
= b As

Proof. Note

g f = (b xs ) (a xn )

= b (xs a xn )

= b

 x 0

...

x s

� a0 · · · an

� x 0

...

x n



= b

 a0 · · · · · · an

...
...

a0 · · · · · · an


 x 0

...

x s+n


= b As xs+n .

Hence coeffs
�
g f

�
= b As .

We partition As into two submatrices as As = [L s |Rs ]where

L s =



a0 · · · an−1

...
...

a0


∈R(s+1)×n and Rs =



an
...

...
...

...

a0
...

...
...

a0 · · · · · · an


∈R(s+1)×(s+1).

Let
c = b Rs ∈ R1×(s+1)

Ts = R−1
s L s ∈ R(s+1)×n .

The rows of Ts are indexed from 0 to s , while the columns are indexed from 0 to n −1.
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Lemma 3.2.2. coeffs
�
g f

�
= c [Ts |I ]

Proof. Note

b As = b
�
Rs R−1

s

�
As

= (b Rs )
�
R−1

s As

�
= (b Rs )

�
R−1

s [L s |Rs ]
�

= (b Rs )
�
R−1

s L s |R−1
s Rs

�
= (b Rs )

�
R−1

s L s |I �
= c [Ts |I ] where c = b Rs and Ts =Rs L s .

We will present an example here to show the various matrices associated with f and g .

Example 3.2.1. Let f = x 2−2x +4 and g = x 3+4x 2+14x +20. Then

a =
�

4 −2 1
�

b =
�

20 14 4 1
�

A3 =


4 −2 1 0 0 0

0 4 −2 1 0 0

0 0 4 −2 1 0

0 0 0 4 −2 1



L3 =


4 −2

0 4

0 0

0 0



R3 =


1 0 0 0

−2 1 0 0

4 −2 1 0

0 4 −2 1



c = b R3 =
�

20 14 4 1
�


1 0 0 0

−2 1 0 0

4 −2 1 0

0 4 −2 1

= � 8 10 2 1
�
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T3 =R−1
3 L3 =


1 0 0 0

−2 1 0 0

4 −2 1 0

0 4 −2 1


−1

4 −2

0 4

0 0

0 0

=


4 −2

8 0

0 8

−32 16

 .

Lemma 3.2.3. We have

∃
g ̸=0, deg(g )≤s

coeffs
�
g f

�≥ 0 ⇐⇒ ConvexHull (Ts )∩Rn≥0 ̸=∅

where Ts is a viewed as a set of row vectors.

Proof. Note

∃
g ̸=0, deg(g )≤s

coeffs
�
g f

�≥ 0

⇐⇒ ∃
c ̸=0

c [Ts |I ]≥ 0 (from Lemma 3.2.2)

⇐⇒ ∃
c ̸=0

c Ts ≥ 0 and c ≥ 0

⇐⇒ ∃
c≥0, c ̸=0

c Ts ≥ 0

⇐⇒ ∃
c≥0, c0+···+cs=1

c Ts ≥ 0

⇐⇒ ConvexHull (Ts )∩Rn≥0 ̸=∅.

Example 3.2.2. Let f = x 2−2x +4 and g = x 3+4x 2+14x +20. Since

g f =
�
x 3+4x 2+14x +20

� �
x 2−2x +4

�
= x 5+2x 4+10x 3+8x 2+16x +80,

Lemma 3.2.3 states that

ConvexHull(T3)∩R2≥0 ̸=∅
where T3 is from Example 3.2.1. Hence, there must exist

�
c1 c2 c3 c4

�≥ 0 with

c1+ c2+ c3+ c4 = 1 such that

c1

�
4 −2

�
+ c2

�
8 0

�
+ c3

�
0 8

�
+ c4

� −32 16
�≥ 0.

Then �
4c1+8c2−32c4 −2c1+8c3+16c4

�≥ 0.
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Note, for example, that
�

0 1 0 0
�

will do, since

0
�

4 −2
�
+1

�
8 0

�
+0

�
0 8

�
+0

� −32 16
�

=
�

8 0
�

.

Let

f = an

n∏
i=1

(x −αi ) .

Lemma 3.2.4. The entries of Ts are given by

Ts k l =−|N ||D |
where

D =

 α0
1 · · · α0

n
...

...

αn−1
1 · · · αn−1

n


and N is obtained from D by replacing the l -th row with

�
αk+n

1 · · · αk+n
n

�
.

Proof. Note

xs f = As xs+n

=Rs R−1
s As xs+n

=Rs R−1
s [L s |Rs ] xs+n

=Rs

�
R−1

s L s |R−1
s Rs

�
xs+n

=Rs [Ts |I ] xs+n

=Rs

Ts

 x 0

...

x n−1

+
 x n

...

x s+n


 .

By evaluating the above on each root, we have α
0
i

...

αs
i

 f (αi ) =Rs

Ts

 α0
i

...

αn−1
i

+
 αn

i
...

αs+n
i


 .
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Since f (αi ) = 0, we have

0=Rs

Ts

 α0
i

...

αn−1
i

+
 αn

i
...

αs+n
i


 .

Since Rs is an invertible matrix, we have

0= Ts


α0

i

α1
i

...

αn−1
i

+
 αn

i
...

αs+n
i

 .

Rearranging,

Ts


α0

i

α1
i

...

αn−1
i

=−
 αn

i
...

αn+s
i

 .

Combining the above equations for all the roots, we have

Ts

 α0
1 · · · α0

n
...

...

αn−1
1 · · · αn−1

n

=−
 αn

1 · · · αn
n

...

αs+n
1 · · · αs+n

n

 .

By applying Cramer’s rule, we have

Ts k l =−|N ||D |
where

D =

 α0
1 · · · α0

n
...

...

αn−1
1 · · · αn−1

n


and N is obtained from D by replacing the l -th row with

�
αk+n

1 · · · αk+n
n

�
.

Remark 3.2.1. Note that Ts k l does not depend on s . Thus we will often write it as Tk l .
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Example 3.2.3. Let f = x 2−2x +4. Note that the roots of f are α1 = 1+ i
p

3 and α2 = 1− i
p

3. Note

T10 =−

����� α3
1 α3

2

α1
1 α1

2

���������� α0
1 α0

2

α1
1 α1

2

�����
=−α

3
1α

1
2−α1

1α
3
2

α2−α1
=−α1α2

�
α2

1−α2
2

α2−α1

�
=α1α2(α1+α2)

= (1+ i
p

3)(1− i
p

3)(1− i
p

3+1+ i
p

3) = 8.

Note, in particular, that this matches T10 from Example 3.2.1.

3.3 Proof of Bound bH R (Theorem 3.1.1)

Lemma 3.3.1. Let f ∈R[x ] be such that deg( f ) = 2 without real roots. Let the roots be α= r e iθ and

α= r e −iθ . Then we have

Tk 0 = +r k+2 sin (k +1)θ
sinθ

= r 2 Imαk+1

Imα

Tk 1 = −r k+1 sin(k +2)θ
sinθ

= − Imαk+2

Imα
.

Proof. From Lemma 3.2.4 we have

Tk 0 = −

����� αk+2 αk+2

α1 α1

���������� α0 α0

α1 α1

�����
= −αk+2α−ααk+2

α−α = −r k+2+2i sin (k +1)θ
−2i sinθ

= +r k+2 sin (k +1)θ
sinθ

= r 2 Imαk+1

Imα

Tk 1 = −

������ α
0 α0

αk+2 αk+2

������������ α
0 α0

α1 α1

������
= −α

k+2−αk+2

α−α = −r k+1−2i sin(k +2)θ
−2i sinθ

= −r k+1 sin(k +2)θ
sinθ

= − Imαk+2

Imα
.
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Example 3.3.1. Let f = x 2−2x +4. Note that the roots of f are α= 1+ i
p

3= 2e i π3 and

α= 1− i
p

3= 2e −i π3 .

T10 = (2)
2 Im

�
1+ i
p

3
�1+1

Im
�
1+ i
p

3
� = 4

Im
�−2+2i

p
3
�

Im
�
1+ i
p

3
� = 4

2
p

3p
3
= 8

Note again that this matches Example 3.2.1.

Lemma 3.3.2. Let f ∈R[x ] be such that deg( f ) = 2 without real roots. Let α, ᾱ be the roots of f .

s = bH R ( f ) =
¡
π

arg(α)

¤
−2.

Then

∃
g ̸=0, deg(g )≤s

coeffs
�
g f

�≥ 0.

Proof. Note

∃
g ̸=0, deg(g )≤s

coeffs
�
g f

�≥ 0

⇐⇒ ConvexHull (Ts )∩Rn≥0 ̸=∅ (from Lemma 3.2.3)

⇐= Ts 0, Ts 1 ≥ 0

⇐⇒ sin (s +1)θ ≥ 0 ∧ sin (s +2)θ ≤ 0 (from Lemma 3.3.1)

⇐= 0< (s +1)θ ≤π ∧ π≤ (s +2)θ < 2π

⇐⇒ s ≤ π
θ
−1 ∧ s ≥ π

θ
−2

⇐⇒ π

θ
−2≤ s ≤ π

θ
−1

⇐= s =
lπ
θ

m
−2.

Example 3.3.2. Let f = x 2−2x +4. Note that the roots of f are α= 2e i π3 and α= 2e −i π3 .

s = bH R ( f ) =
¡
π

π/3

¤
−2= ⌈3⌉ −2= 1

According to the proof for Lemma 3.3.2, T10 and T11 must be non-negative. This can be verified in

Example 3.2.1.

In addition, we know that

ConvexHull (T1)∩R2≥0 ̸=∅.
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In fact, we can see that

0
�

4 −2
�
+1

�
8 0

�
=
�

8 0
� ∈ConvexHull (T1)∩R2≥0.

Note that this is a truncation of the vector provided in Example 3.2.2. Since c3 and c4 were 0, they

were unnecessary.

Finally, this means that a g with degree 1 exists. Let g = x + c . Let’s find g :

g f = (x + c )(x 2−2x +4)

= x 3+ (c −2)x 2+ (4−2c )x +4c

Then we have c −2≥ 0, 4−2c ≥ 0 and 4c ≥ 0. Hence c = 2 and g = x +2.

Proof of Theorem 3.1.1. Let

f = (x − r1) · · · (x − rt ) f1 · · · fm

where r1, . . . , rt are non-positive real roots and f1, . . . , fm are the irreducible quadratic factors of f

over R. Let αi be the non-real root of fi with positive imaginary part. From Lemma 3.3.2, there

exists non-zero g i ∈ R[x ] such that coeffs
�
g i fi

� ≥ 0 and deg(g i ) ≤
¡
π

arg(αi )

¤
− 2. Let g = g1 · · ·gm .

Then coeffs
�
g f

�≥ 0 and deg(g )≤
m∑

i=1

�¡
π

arg(αi )

¤
−2

�
= bH R ( f ).

3.4 Proof of Optimality of bH R for Degree 2 (Theorem 3.1.2)

Proof of Theorem 3.1.2. Let s = bH R ( f ). When
π

2
≤ θ < π, it is obvious since s = 0 and f will have

all non-negative coefficients already. Thus assume that 0<θ <
π

2
. Let g be such that g ̸= 0 and

deg(g ) = t < s .

∀
0≤t<s

0≤ t <
lπ
θ

m
−2

⇐⇒ ∀
0≤t<s

0≤ t <
π

θ
−2 (since t ∈Z)

⇐⇒ ∀
0≤i<s

sin(t +2)θ > 0

⇐⇒ ∀
0≤t<s

Tt 1 < 0

⇐⇒ ∀
0≤t<s

ConvexHull (Tt )∩R2≥0 =∅

⇐⇒ ̸ ∃
g ̸=0

deg(g )<s

coeffs
�
g f

�≥ 0.
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Hence, there can be no g ∈R[x ]with deg(g )< s such that coefffs(g f )≥ 0.

3.5 Proof of Certificate for bH R for Degree 2 (Theorem 3.1.3)

Proof of Theorem 3.1.3. From Lemma 3.3.1, we have Ts 0, Ts 1 ≥ 0. Thus it suffices to choose g such

that c =
�

0 · · · 0 1
�

since

coeffs
�
g f

�
= c [Ts |I ] =

�
Ts 0 Ts 1 0 · · · 0 1

�≥ 0.

Now let us find an explicit expression for g .

g = c R−1
s xs since c = b Rs

=
�

0 · · · 0 1
�

R−1
s xs

=
�
R−1

s xs

�
s

=

�������������

a2 x 0

a1
...

...

a0
...

...
...

...
...

a0 a1 x s

��������������������������

a2

a1
...

a0
...

...
...

a0 a1 a2

�������������

from Cramer’s rule

=

�������������

a2 x 0

a1
...

...

a0
...

...
...

...
...

a0 a1 x s

�������������
since a2 = 1
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Example 3.5.1. Let f = x 2−2x +4. Then s = bH R ( f ) = 1 from Example 3.3.2. By Theorem 3.1.3,

g =

����� a2 x 0

a1 x 1

�����=
����� 1 x 0

−2 x 1

�����= x +2.

Example 3.5.2. Let f = x 4−4x 3+10x 2−12x +8. Note

f = (x 2−2x +2)(x 2−2x +4)

f1 = x 2−2x +2

f2 = x 2−2x +4.

The root of f1 with positive imaginary part is α1 = 1± i and the root of f2 with positive imaginary

part is α2 = 1± i
p

3. Then

arg(α1) =
π

4

arg(α2) =
π

3
.

Hence,

s = bH R ( f ) =
�¡
π

π/4

¤
−2

�
+
�¡
π

π/3

¤
−2

�
= 3.

We can find g1, corresponding to f1, and we have g2 from Example 3.5.1:

g1 =

�������
1 0 x 0

−2 1 x 1

2 −2 x 2

�������= x 2+2x +2

Then g = g1g2 = (x 2+2x +2)(x +2) and we should have coeffs(g f )≥ 0. Indeed,

g f = (x 2+2x +2)(x +2)(x 4−4x 3+10x 2−12x +8)

= x 7+8x 4+4x 3+32.

3.6 Progress on Proof of Angle-Based Optimality (Conjecture 3.1.1 )

Definition 3.6.1. The optimal degree of f , denoted opt( f ), is defined as

opt( f ) = min
g , coeffs(g f )≥0

deg(g ).
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Lemma 3.6.1. Let f ′ = (x + r ) f . Then ∃
r>0

opt( f ′) = opt( f ).

Proof. Let f ∈R [x ]. Let f ′ = (x+r ) f . We need to show ∃
r>0

opt( f ′) = opt( f ). We will divide the proof

into several claims.

C1: ∃
r>0

opt( f ′) = opt( f ) ⇐= ∃
r>0

CH(T ∗f ′,0, . . . , T ∗f ′,s−1)∩Rn≥0 =∅

where

• n = deg
�
f
�

• s = opt( f )

• The Tf ′,i are the rows of Ts−1 for f ′.
• T ∗f ′,i is obtained from Tf ′,i by deleting the first element.

Proof: Note

opt( f ′) = opt( f )

⇐⇒ opt( f ′)≥ s since opt( f ′)≤ opt( f )+opt(x + r ) = opt( f ) = s

⇐⇒ ¬ ∃
h ̸=0, deg(h )<s

coeffs(h f ′)≥ 0

⇐⇒ ¬ �CH(Tf ′,0, . . . , Tf ′,s−1)∩Rn+1≥0 ̸=∅
�

⇐⇒ CH(Tf ′,0, . . . , Tf ′,s−1)∩Rn+1≥0 =∅
⇐= CH(T ∗f ′,0, . . . , T ∗f ′,s−1)∩Rn≥0 =∅.

C2: ∃
r>0

opt( f ′) = opt( f ) ⇐= ∃
r>0
ϵ f ′ (r )> 0

where ϵ f ′ (r ) stands for the minimum Euclidean distance between CH(T ∗f ′,0, . . . , T ∗f ′,s−1) and

Rn≥0, that is,

ϵ f ′ (r ) := min
x∈CH(T ∗

f ′ ,0,...,T ∗
f ′ ,s−1

)
y ∈Rn≥0

∥x − y ∥

Proof: Immediate from the above claim.

C3: ϵ f ′ (r ) is continuous at r = 0.

Proof: We will divide it into several steps.

39



(a) Note

ϵ f ′ (r ) = min
c∈Rs≥0

c0+···+cs−1=1
y ∈Rn≥0






s−1∑
i=0

ci T ∗f ′,i − y







= min

c∈Rs≥0
c0+···+cs−1=1

y ∈Rn≥0







�

s−1∑
i=0

ci T ∗f ′,i ,1 − y1 , . . . ,
s−1∑
i=0

ci T ∗f ′,i ,n − yn

�





= min

z∈Rs+n≥0

z0+···+zs−1=1







�

s−1∑
i=0

zi T ∗f ′,i ,1 − zs , . . . ,
s−1∑
i=0

zi T ∗f ′,i ,n − zs+n−1

�




 where z = (c , y )

= min
z∈C

p (z , r )

where p (z , r ) is Euclidean distance and

C =
�

z ∈Rs+n≥0 : z1+ · · ·+ zs = 1
	

.

(b) Note, since p (z , r ) is the distance between two closed sets, the minimum distance is

realized by a point in each set. Hence,

ϵ f ′ (r ) =min
z∈C

p (z , r ) = inf
z∈C

p (z , r ) .

(c) Note the following:

i. By Section 3.1.5 of [7], p (z , r ) is a convex function since p (z , r ) is a norm.

ii. By Section 3.2.5 of [7], ϵ f ′ (r ) = inf
z∈C

p (z , r ) is a convex function, since C is convex

and p (z , r ) is bounded below.

iii. By Corollary 3.5.3 in [21], since ϵ f ′ (r ) is a convex function defined on a convex set

R, ϵ f ′ (r ) is continuous on the relative interior of R, ri (R) =R.

iv. Hence, ϵ f ′ (r ) is continuous at r = 0.

C4: ϵ f ′ (0)> 0.

Proof: Let r = 0. Then f ′ = x · f .

(a) Subclaim: T ∗f ′,i , j = Tf ,i , j . Note that these are the entries of T ∗f ′,s−1 and Tf ,s−1. We will

prove the claim using the fact that Ts−1 =R−1
s−1L s−1 for any f .

i. Note R f ,s−1 =R f ′,s−1. This is clear from the definition of Rs−1. Hence R−1
f ,s−1 =R−1

f ′,s−1.

ii. Note that L f ,i , j = L f ′,i , j+1. This is clear from the definition of L s−1, since L f ′.s−1 is

composed of L f ,s−1 with a column of zeroes added on the left.
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iii. Note that for i = 0, . . . , s −1 and j = 0, . . . , n −1,

T ∗f ′,i , j = Tf ′,i , j+1

=
s−1∑
k=0

R−1
f ′,i ,k L f ′,k , j+1

=
s−1∑
k=0

R−1
f ,i ,k L f ,k , j

= Tf ,i , j

Hence T ∗f ′,i , j = Tf ,i , j .

(b) Subclaim: ϵ f ′ (0) = ϵ f

where ϵ f stands for the minimum Euclidean distance between CH(Tf ,0, . . . , Tf ,s−1) and

Rn≥0, that is,

ϵ f := min
x∈CH(Tf ,0,...,Tf ,s−1)

y ∈Rn≥0

∥x − y ∥.

To see this, note

ϵ f ′ (0) = min
c∈Rs≥0

c0+···+cs−1=1
y ∈Rn≥0






s−1∑
i=0

ci T ∗f ′,i − y







= min

c∈Rs≥0
c0+···+cs−1=1

y ∈Rn≥0






s−1∑
i=0

ci Tf ,i − y







= min

x∈CH(Tf ,0,...,Tf ,s−1)
y ∈Rn≥0

∥x − y ∥

= ϵ f

(c) Subclaim: ϵ f > 0.

Note since opt
�
f
�
= s , we have CH(Tf ,0, . . . , Tf ,s−1)∩Rn≥0 =∅. Thus ϵ f > 0.

(d) From the above two subclaims, we have ϵ f ′ (0)> 0.

From the above three claims, we immediately have

∃
r>0

opt( f ′) = opt( f ).
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We will show two examples here, one where opt( f ′) ̸= opt( f ) and one where opt( f ′) = opt( f ).

Example 3.6.1. Let f = x 2−2x +4 and f ′ = (x +2)(x 2−2x +4). We know from Example 3.3.2 and

Theorem 3.1.2 that opt( f ) = 1. Hence, opt( f ′)≤ 1.

f ′ = (x +2)(x 2−2x +4)

= x 3+8

Hence, for this choice of r = 2, we have opt( f ′) = 0 and hence opt( f ′) ̸= opt( f ).

Example 3.6.2. Let f = x 2−2x +4 and f ′ = (x +1)(x 2−2x +4). We know from Example 3.3.2 and

Theorem 3.1.2 that opt( f ) = 1. Hence, opt( f ′)≤ 1.

f ′ = (x +1)(x 2−2x +4)

= x 3− x 2+2x +4

Hence, for this choice of r = 1, we have opt( f ′) ̸= 0. Then since opt( f ′) ≤ opt( f ), we must have

opt( f ′) = opt( f ).

Conjecture 3.6.1. Let f ′ = (x 2+2r cosθ + r 2) f for 0<θ <π. Then ∃
r>0

opt( f ′) = opt( f )+
lπ
θ

m
−2.

Proposed Proof of Conjecture 3.1.1. We will use induction on k .

1. The claim holds for k = 1.

(a) θ1 =π

Since opt
�
f1

�
= 0 and bH R ( f1) = 0.

(b) θ1 ̸=π
From Theorem 3.1.2.

2. Assume that the claim holds for ≤ k where k ≥ 1.

3. The claim holds for k .

Let θ ∈ (0,π]k . We need to find r ∈ [0,∞)k such that

opt
�
f(θ1,...,θk ),(r1,...,rk )

�
= bH R

�
f(θ1,...,θk ),(r1,...,rk )

�
.

By the induction hypothesis, we have

opt
�
f(θ1,...,θk−1),(r1,...,rk−1)

�
= bH R

�
f(θ1,...,θk−1),(r1,...,rk−1)

�
for some (r1, . . . , rk−1) ∈ [0,∞)k−1.
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(a) θk =π

i. By Lemma 3.6.1, we have

opt( f(θ1,...,θk ),(r1,...,rk−1,rk )) = opt( f(θ1,...,θk−1),(r1,...,rk−1))

for some rk ∈ [0,∞).
ii. Since θk =π,we have

bH R

�
f(θ1,...,θk−1),(r1,...,rk−1)

�
= bH R

�
f(θ1,...,θk ),(r1,...,rk )

�
.

iii. From a.i and a.ii, we have

opt( f(θ1,...,θk ),(r1,...,rk )) = bH R

�
f(θ1,...,θk ),(r1,...,rk )

�
.

(b) θk ̸=π
i. By Conjecture 3.6.1, we have

opt( f(θ1,...,θk ),(r1,...,rk−1,rk )) = opt( f(θ1,...,θk−1),(r1,...,rk−1))

for some rk ∈ [0,∞).
ii. Since θk ̸=π,we have

bH R

�
f(θ1,...,θk−1),(r1,...,rk−1)

�
+
¡
π

θk

¤
−2= bH R

�
f(θ1,...,θk ),(r1,...,rk )

�
.

iii. From b.i and b.ii, we have

opt( f(θ1,...,θk ),(r1,...,rk )) = bH R

�
f(θ1,...,θk ),(r1,...,rk )

�
.
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CHAPTER

4

EXTENDING THE DEGREE BOUND TO

POLYNOMIALS WITH ARBITRARILY

MANY POSITIVE REAL ROOTS (BAR B )

In Section 2.3, we discussed the work by Poincaré, which showed that there exists a multiplier g for

a polynomial f that will produce a product g f such that the number of positive real roots of f is

equal to the number of sign differences in consecutive non-zero coefficients of g f . In this sense,

Descartes’ Rule of signs can be “exact”. For an example of an exactifying multiplier for a polynomial

with a positive real root, see Example 2.3.3 in Chapter 2. We also discussed the work by Avendaño

to construct an exactifying multiplier for arbitrary polynomials.

The multiplier provided in Chapter 3 can be used to find a witness for the exactifying multiplier

for arbitrary polynomials. We include a count of the degree of this multiplier.

4.1 Main Results

In this section, we will state the main results relating to exactifying multiplers for Descartes’ Rule

of Signs when the polynomial has arbitrarily many positive real roots.
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Theorem 4.1.1 (Bound). Let f ∈ R [x ]. Then there exists a polynomial g ∈ R [x ] of degree at most

bAR B ( f ) such that Descartes’ Rule of Signs is exact for g f where

1. bAR B ( f ) = (t +1) s + t (n − t )

2. s =
m∑

i=1

�¡
π

arg(αi )

¤
−2

�
3. n = deg( f )

4. t = p ( f ), the number of positive real roots of f , counting multiplicities

5. α1, . . . ,αm are all the non-real roots of f with positive imaginary part (multiple roots are re-

peated).

Theorem 4.1.2 (Multiplier). Let f ∈R [x ]. Then a witness for the exactifying multiplier is given by

g = q ·
t∏

i=1

�
x s+l + ri x s+l−1+ · · ·+ r s+l

i

�
where

1. ri are the positive real roots of f

2. t = p ( f )

3. h is the monic factor of f with p (h ) = 0

4. s = bH R (h )

5. l = deg(h )

6. q is the exactifying multiplier for h.

4.2 Proof of Multiplier (Theorem 4.1.2)

Recall that

p ( f ) = the number of positive real roots of f (counting multiplicity)

v ( f ) = the number of sign differences between consecutive non-zero coefficients.
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Example 4.2.1. Let f = (x −1)(x 2−2x +4) and g = (x 3+ x 2+ x +1)(x +2).

Note that

p ( f ) = 1

g f = (x 3+ x 2+ x +1)(x +2)(x −1)(x 2−2x +4)

= x 7+8x 4− x 3−8

We can see that v (g f ) = 1. Hence, there exists a multiplier g that produces a product g f in which

p ( f ) = v (g f ).

Proof of Theorem 4.1.2. We will divide the proof into conceptual steps.

1. Let f = a (x − r1) · · · (x − rt ) h where a ∈R, ri ∈R>0 and h is monic with no positive real roots.

Let l = deg(h ) = deg( f )− t = n − t .

2. Note s = bH R (h ).

3. From Theorem 3.1.1, there exists a monic q such that deg
�
q
�
= s and v (q h ) = 0.

4. Let p = a (x s+l+1− r s+l+1
1 ) · · · (x s+l+1− r s+l+1

t ). Note that p = a if f has no positive real roots.

p = a
t∏

j=1

�
x s+l+1− r s+l+1

j

�
= a

t∑
j=0

(−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

� �
x s+l+1

�t− j

where e j

�
r s+l+1

1 , . . . , r s+l+1
t

�
is the elementary symmetric polynomial of degree j in�

r s+l+1
1 , . . . , r s+l+1

t

�
. In this form, we see immediately that v (p ) = t .

5. Note that the degree gap between two consecutive terms of p is s + l + 1. Note also that q h

has all non-negative coefficients and deg(q h ) = s + l . Now consider p q h :

p q h =

 
a

t∑
j=0

(−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

� �
x s+l+1

�t− j

!
q h

= a
t∑

j=0

(−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

� �
x s+l+1

�t− j
q h
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In order to count the sign changes in p q h , fix a j :

(−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

� �
x s+l+1

�t− j
q h

= (−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

�
x (s+l+1)(t− j )

s+l∑
i=0

bi x i where q h =
s+l∑
i=0

bi x i

=
s+l∑
i=0

(−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

�
bi x i+(s+l+1)(t− j )

This polynomial has all same sign coefficients, based on the sign of (−1) j e j

�
r s+l+1

1 , . . . , r s+l+1
t

�
,

since the bi are all non-negative.

Additionally, there are no common terms when j varies. Consider terms contributed by the

( j −1)-th, j -th, and ( j +1)-th terms of p q h :

highest degree term for j +1: (s + l +1)(t − j )−1

lowest degree term for j : (s + l +1)(t − j )+0

highest degree term for j : (s + l +1)(t − j )+ s + l

lowest degree term for j −1: (s + l +1)(t − j )+ s + l +1

Hence, we have preserved the number of sign changes of p and v (p q h ) = t .

6. Note

p q h = a
�
x s+l+1− r s+l+1

1

� · · · �x s+l+1− r s+l+1
t

�
q h

=
x s+l+1− r s+l+1

1

x − r1
· · · x

s+l+1− r s+l+1
t

x − rt
q (a (x − r1) · · · (x − rt ) h )

=
�
x s+l + r1 x s+l−1+ · · ·+ r s+l

1

� · · · �x s+l + rt x s+l−1+ · · ·+ r s+l
t

�
q f

= g f

where g = q ·
t∏

i=1

�
x s+l + ri x s+l−1+ · · ·+ r s+l

i

�
. Hence v (g f ) = t .

7. Since f has t positive roots, we see that g f has at least t positive real roots. By Descartes’ Rule

of Signs, the number of positive real roots of g f is at most v (g f ) = t . Thus g f has exactly t

positive roots, i.e. Descartes’ Rule of Signs is exact for g f .
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Now, we will construct the g given in Example 4.2.1 using the format detailed in Theorem 4.1.2.

Example 4.2.2. Let f = (x −1)(x 2−2x +4). Note n = 3, h = x 2−2x +4, t = 1, l = 2, s = bH R (h ) = 1,

and r1 = 1.

From Example 3.5.1, we know the certificate for h = x 2−2x +4 from Theorem 3.1.3 is q = x +2.

The polynomial p from Step 4 of the proof of Theorem 4.1.2 is p = x 4−1 (which has exactly one sign

change).

p q h = (x 4−1)(x +2)(x 2−2x +4)

= (x −1)(x 3+ x 2+ x +1)(x +2)(x 2−2x +4)

= x 7+8x 4− x 3−8

Note that p q h has exactly one sign change, per the claim, and

p q h = (x 3+ x 2+ x +1)(x +2)(x −1)(x 2−2x +4)

= g f .

Then g = (x 3+ x 2+ x +1)(x +2).

4.3 Proof of Bound bAR B (Theorem 4.1.1)

Proof of Theorem 4.1.1. We compute the degree of the multiplier given in Theorem 4.1.2.

deg(g ) = (s + l ) t + s = (s + (n − t )) t + s = (t +1) s + t (n − t ) = bAR B ( f ).

Example 4.3.1. Let f = (x −1)(x 2−2x +4). Note n = 3, h = x 2−2x +4, t = 1, and s = bH R (h ) = 1.

bAR B ( f ) = (t +1) s + t (n − t ) = 4

We will show, via a counterexample, that this degree bound on the exactifying multiplier is not

optimal.
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Example 4.3.2. Let f = (x−1)(x 2−2x+4). The bound from Theorem 4.1.1 is 4. However, a multiplier

of degree 3 exists, which will produce a product with exactly one sign change.

g = x 3+3x 2+3x +2

g f = (x 3+3x 2+3x +2)(x −1)(x 2−2x +4)

= x 6+7x 3−8

Hence, deg(g ) = bAR B ( f ) is not optimal.

49



CHAPTER

5

COMPARING BP R TO BH R

The new bound from Theorem 3.1.1 is optimal for quadratic polynomials. We are curious to know

how it compares to the previous bound by Powers and Reznick given in Theorem 2.5.1.

For a polynomial f , let

bP R ( f ) be the Powers-Reznick bound for f

bH R ( f ) be the new bound for f .

First, we will show a general comparison of the two bounds for a large set of random polyno-

mials. In addition, we will compare bP R to bH R specifically for quadratic polynomials, where it is

known that bH R is optimal.

5.1 Comparison between bP R and bH R for Random Polynomials

It is easy to find examples of polynomials for which bH R is smaller than bP R .

Example 5.1.1. Let f = x 4−4x 3+10x 2−12x +8. Then

bP R ( f ) = 491

bH R ( f ) = 3 from Example 3.5.2.
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In general, bH R is a lower bound than bP R . To examine this relationship in better detail, we did

the following. For each degree n , we:

1. Computed 1000 polynomials of degree n by selecting random coefficients, { f1, . . . , f1000}.
2. Computed bP R ( fi ) and bH R ( fi ) for each polynomial in { f1, . . . , f1000}.
3. Computed the average bP R (avg) of the set {bP R ( fi ) : 1≤ i ≤ 1000} and bH R (avg) of

{bH R ( fi ) : 1≤ i ≤ 1000}.
4. Plotted the point

�
n ,

bH R (avg)
bP R (avg)

�
.

The resulting graphs show the ratio of bH R (avg) to bP R (avg) as n increases and the rate of decrease,

which appears to be linear in n .

 

!"#
!$#

 

n 

Figure 5.1 Graph of Ratio
bH R

bP R

 

ln #$%&$'&
( 

n 

Figure 5.2 Rate of Decrease of Ratio
bH R

bP R

Hence, in general, bH R is exponentially smaller in n than bP R .
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5.2 Comparison between bP R and bH R for Quadratic Polynomials

In order to compare the bounds for quadratic polynomials, we will give an explicit formula for

bP R ( f ) in terms of the coefficients of f when f = x 2+a1 x +a0.

First, let f = x 2 + a1 x + a0 have no positive real roots. Then the Powers-Reznick bound from

Theorem 2.5.1 is given by

bP R ( f ) =


max

§
1,
|a1|

2
, |a0|

ª
min

x∈[0,1]
(1− x )2 f

� x

1− x

�
 − 2.

The bound says that (x + 1)bP R ( f ) f will have all non-negative coefficients. For an example of the

computation of bP R in the quadratic case, reference Example 2.5.2 in Chapter 2.

We could determine bP R in terms of the coefficients via a careful case analysis. There are 3

possible cases for the numerator. For the denominator, the cases may analyzed according to the

leading coefficient of g = (1− x )2 f
� x

1− x

�
and the location of its vertex with respect to [0, 1], e.g.

a positive leading coefficient of g and a vertex v < 0 implies that min
x∈[0,1]

g = g (0). Hence, there are 8

possible cases for the denominator, since g may be linear.

Using brute force, we must consider 24 total cases. However, many of these cases can be com-

bined and some are not realizable. We present in the following theorem a nice summary via trial

and error.
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Theorem 5.2.1. Let f = x 2+a1 x +a0 ∈R[x ] have no positive real roots. Then bP R ( f ) is as follows:

RRX "v .2b+�`i2bǶ _mH2 Q7 aB;Mb- i?2 MmK#2` Q7 TQbBiBp2 `2�H `QQib Q7 qf Bb �i KQbi S(qf) = tX

RkX h?mb qf ?�b 2t�+iHv t TQbBiBp2 `QQib- BX2X .2b+�`i2bǶ _mH2 Q7 aB;Mb Bb 2t�+i 7Q` qf X

!

N *QKT�`BbQM 7Q` [m�/`�iB+ TQHvMQKB�Hb
G2i f #2 � [m�/`�iB+ TQHvMQKB�H rBi? MQ MQM@M2;�iBp2 `2�H `QQibX h?2M

bpr =

⎡

⎢⎢⎢⎢⎢

max

{
|a2|,

|a1|
2

, |a0|
}

min
x∈[0,1]

(1− x)2f

(
x

1− x

)

⎤

⎥⎥⎥⎥⎥
− 2

\\\ r?�i B7 i?2 BMbB/2 Bb BMi2;2`X /`QT +2BH 2p2`vr?2`2 \\\\\ q2 +QmH/ /2i2`KBM2 bpr pB� � +�`27mH +�b2
�M�HvbBbX h?2`2 �`2 j TQbbB#H2 +�b2b 7Q` i?2 MmK2`�iQ`X 6Q` i?2 /2MQKBM�iQ`- i?2 +�b2b K�v �M�Hvx2/
�++Q`/BM; iQ i?2 H2�/BM; +Q2{+B2Mi Q7 g = (1− x)2f

(
x

1− x

)
�M/ i?2 HQ+�iBQM Q7 Bib p2`i2t rBi? `2bT2+i iQ

[0, 1]- 2X;X � TQbBiBp2 H2�/BM; +Q2{+B2Mi Q7 g �M/ � p2`i2t v < 0 BKTHB2b i?�i min
x∈[0,1]

g = g(0)X >2M+2- i?2`2 �`2
3 TQbbB#H2 +�b2b 7Q` i?2 /2MQKBM�iQ`- bBM+2 g K�v #2 HBM2�`X lbBM; #`mi2 7Q`+2- r2 Kmbi +QMbB/2` k9 iQi�H
+�b2bX >Qr2p2`- K�Mv Q7 i?2b2 +�b2b +�M #2 +QK#BM2/ �M/ bQK2 �`2 MQi `2�HBx�#H2X q2 T`2b2Mi ?2`2 � MB+2
bmKK�`v pB� i`B�H �M/ 2``Q`X

h?2Q`2K kk G2i f ∈ R[x] #2 [m�/`�iB+ rBi? MQ MQM@M2;�iBp2 `2�H `QQibX h?2M bpr Bb �b 7QHHQrb,
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Figure 5.3 Quadratic bP R by Coefficients of f
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¡

1
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¤
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�
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�
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�
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Proof. Let

f = (x − r1)(x − r2) = x 2− (r1+ r2)x + r1r2

bP R ( f ) =
¡

N

D

¤
− 2

N =max
§

1,
|r1+ r2|

2
, |r1r2|

ª
D = min

x∈[0,1]
g (x )

g = (1− x )2 f
� x

1− x

�
= (1− x )2

�� x

1− x

�2− (r1+ r2)
� x

1− x

�
+ r1r2

�
= (1+ r1+ r2+ r1r2)x

2− (r1+ r2+2r1r2)x + r1r2

= (r1+1) (r2+1) x 2− (r1+ r2+2r1r2) x + r1r2

a1 =−r1− r2

a0 = r1r2

b2 = a0−a1+1

b1 = a1−2a0

b0 = a0.

Note that a0 > 0.

N =max
§

1,
|a1|

2
, a0

ª
D = min

x∈[0,1]
g (x )

g = b2 x 2+ b1 x + b0

v =
−b1

2b2
=
−a1+2a0

2(a0−a1+1)

g (v ) =
−a 2

1 +4a0

4(a0−a1+1)

Note that if a1 < 0 and f has two real roots, then the roots must be positive. Hence, a1 < 0 implies

f has two non-real roots. Then we must have a 2
1 −4a0 < 0 when a1 < 0.
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Region 1. a1 ≥ 2 ∧ a1 ≥ 2a0 ∧ a0 < 1

1. Note
a1 ≥ 2

=⇒ |a1| ≥ 2a0

⇐⇒ |a1|
2
≥ a0

a1 ≥ 2

=⇒ |a1| ≥ 2

⇐⇒ |a1|
2
≥ 1.

Thus

max
§

1,
|a1|

2
, a0

ª
=
|a1|

2
.

2. Note
a1 ≥ 2

⇐⇒ a1− (a0+1)≥ 2− (a0+1)

⇐⇒ −a0+a1−1≥ 1−a0

=⇒ −b2 > 0 since 1−a0 > 0

⇐⇒ b2 < 0

a1 ≥ 2a0

⇐⇒ 0≥−a1+2a0

⇐⇒ −b1 ≤ 0.

Thus b2 < 0 and v ≥ 0, so

min
x∈[0,1]

g (x ) = min
x∈[0,1]
{g (0), g (1)}= min

x∈[0,1]
{a0, 1}= a0.

3. Note

bP R ( f ) =
¡ |a1|

2a0

¤
− 2.
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Region 2. a1 ≥ 2 ∧ a1 ≥ 2a0 ∧ a0 ≥ 1

1. Note
a1 ≥ 2

=⇒ |a1| ≥ 2a0

⇐⇒ |a1|
2
≥ a0

a1 ≥ 2

=⇒ |a1| ≥ 2

⇐⇒ |a1|
2
≥ 1.

Thus

max
§

1,
|a1|

2
, a0

ª
=
|a1|

2
.

2. Note
a1 ≥ 2a0

⇐⇒ −a0 ≥ a0−a1

=⇒ −1≥ a0−a1 since −1≥−a0

⇐⇒ 0≥ a0−a1+1

⇐⇒ b2 ≤ 0

a1 ≥ 2a0

⇐⇒ 0≥−a1+2a0

⇐⇒ −b1 ≤ 0.

3. If b2 < 0, then v ≥ 0 and

min
x∈[0,1]

g (x ) = min
x∈[0,1]
{g (0), g (1)}= min

x∈[0,1]
{a0, 1}= 1.

4. If b2 = 0, then
a0−a1+1= 0

⇐⇒ a0 = a1−1

b1 = a1−2a0

=⇒ b1 =−a1+2

=⇒ b1 ≤ 0 since 2−a1 ≤ 0

−b1 ≤ 0 ∧ b1 ≤ 0

=⇒ b1 = 0

b2 = 0 ∧ b1 = 0

=⇒ b0 = 1.
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Thus g is constant and g = 1, so

min
x∈[0,1]

g (x ) = 1.

5. Note

bP R ( f ) =
¡ |a1|

2

¤
− 2.

Region 3. a1 ≥ 2 ∧ a1 < 2a0 ∧ a0 ≥ 1

1. Note
a1 ≥ 2

=⇒ |a1|< 2a0

⇐⇒ |a1|
2
< a0

a1 ≥ 2

=⇒ |a1| ≥ 2

⇐⇒ |a1|
2
≥ 1.

Thus

max
§

1,
|a1|

2
, a0

ª
= a0.

2. Note
a1 < 2a0

⇐⇒ 0<−a1+2a0

⇐⇒ −b1 > 0.

3. Note if b2 < 0, then v < 0 and

min
x∈[0,1]

g (x ) = g (1) = 1.

4. Note if b2 > 0, then v > 0 and

a1 ≥ 2

⇐⇒ a1− (2a1−2a0)≥ 2− (2a1−2a0)

⇐⇒ −a1+2a0 ≥ 2a0−2a1+2

⇐⇒ −a1+2a0

2(a0−a1+1)
≥ 1.
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Thus v ≥ 1 and

min
x∈[0,1]

g (x ) = g (1) = 1.

5. Note if b2 = 0, then since b1 < 0,

min
x∈[0,1]

g (x ) = g (1) = 1.

6. Thus

bP R ( f ) = ⌈a0⌉ − 2.

Region 4. 0≤ a1 < 2 ∧ a1 ≥ 2a0 ∧ a0 < 1

1. Note
0≤ a1 < 2

=⇒ |a1| ≥ 2a0

⇐⇒ |a1|
2
≥ a0

0≤ a1 < 2

=⇒ |a1|< 2

⇐⇒ |a1|
2
< 1.

Thus

max
§

1,
|a1|

2
, a0

ª
= 1.

2. Note
a1 ≥ 2a0

⇐⇒ 0≥−a1+2a0

⇐⇒ −b1 ≤ 0.

3. Note if b2 < 0, then v ≥ 0 and

a1 < 2

⇐⇒ a1− (2a1−2a0)< 2− (2a1−2a0)

⇐⇒ −a1+2a0 < 2a0−2a1+2

⇐⇒ −a1+2a0

2(a0−a1+1)
> 1.
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Thus v > 1 and

min
x∈[0,1]

g (x ) = g (0) = a0.

4. Note if b2 > 0, then v ≤ 0 and

min
x∈[0,1]

g (x ) = g (0) = a0.

5. Note if b2 = 0, then since b1 ≥ 0,

min
x∈[0,1]

g (x ) = g (0) = a0.

6. Thus

bP R ( f ) =
¡

1

a0

¤
− 2.

Region 5. −p4a0 ≤ a1 < 2 ∧ a1 < 2a0 ∧ a0 < 1

1. Note
−p4a0 ≤ a1 < 2 ∧a0 < 1

=⇒ |a1| ≤ 2

⇐⇒ |a1|
2
≤ 1.

2. Note if |a1|< 2a0, then
|a1|

2
< a0. Thus

max
§

1,
|a1|

2
, a0

ª
= 1.

3. Note if |a1| ≥ 2a0, then
|a1|

2
≥ a0. Thus

max
§

1,
|a1|

2
, a0

ª
= 1.
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4. Note
a1 < 2a0

⇐⇒ a1− (2a1−2)< 2a0− (2a1−2)

⇐⇒ −a1+2< 2a0−2a1+2

=⇒ 0< 2a0−2a1+2 since 0< 2−a1

⇐⇒ b2 > 0

a1 < 2a0

⇐⇒ 0<−a1+2a0

⇐⇒ −b1 > 0.

Thus b2 > 0, v > 0, and

a1 < 2

⇐⇒ a1− (2a1−2a0)< 2− (2a1−2a0)

⇐⇒ −a1+2a0 < 2a0−2a1+2

⇐⇒ −a1+2a0

2(a0−a1+1)
< 1.

Thus v ∈ (0, 1) and

min
x∈[0,1]

g (x ) = g (v ) =
−a 2

1 +4a0

4(a0−a1+1)
.

5. Thus

bP R ( f ) =

�
4(a0−a1+1)
−a 2

1 +4a0

�
− 2.

Region 6. −p4a0 < a1 < 2 ∧ a1 ≥−2a0 ∧ a0 ≥ 1

1. Note if −2≤ a1 < 2, then
|a1| ≤ 2

⇐⇒ |a1|
2
≤ 1

|a1| ≤ 2 ∧ 2a0 ≥ 2

=⇒ |a1| ≤ 2a0

⇐⇒ |a1|
2
≤ a0.

Thus

max
§

1,
|a1|

2
, a0

ª
= a0.
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2. Note if a1 <−2, then
|a1|> 2

⇐⇒ |a1|
2
> 1

−a1 ≤ 2a0

=⇒ |a1| ≤ 2a0

⇐⇒ |a1|
2
≤ a0.

Thus

max
§

1,
|a1|

2
, a0

ª
= a0.

3. Note
a1 < 2 ∧ a0 ≥ 1

=⇒ −a1+2a0 > 0

⇐⇒ −b1 > 0

−a1+2a0 > 0

=⇒ a1 < 2a0

⇐⇒ a1− (2a1−2)< 2a0− (2a1−2)

⇐⇒ −a1+2< 2a0−2a1+2

=⇒ 0< 2a0−2a1+2 since 0< 2−a1

⇐⇒ b2 > 0.

Thus b2 > 0, v > 0, and

a1 < 2

⇐⇒ a1− (2a1−2a0)< 2− (2a1−2a0)

⇐⇒ −a1+2a0 < 2a0−2a1+2

⇐⇒ −a1+2a0

2(a0−a1+1)
< 1.

Thus v ∈ (0, 1) and

min
x∈[0,1]

g (x ) = g (v ) =
−a 2

1 +4a0

4(a0−a1+1)
.

4. Thus

bP R ( f ) =

�
4a0(a0−a1+1)
−a 2

1 +4a0

�
− 2.
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Example 5.2.1. Let f = x 2 − 2x + 4. Then a1 = −2 and a0 = 4. Hence, this f falls in Region 6 from

Theorem 5.2.1. Then

bP R ( f ) =

�
4a0(a0−a1+1)
−a 2

1 +4a0

�
−2

=
¡

4(4)(4− (−2)+1)
−(−2)2+4(4)

¤
−2

=
¡

16(7)
12

¤
−2

=
¡

28

3

¤
−2

= 8.

Note that this matches the bP R ( f ) calculated in Example 2.5.2.

To further illuminate bP R , below is an additional graph of bP R in terms of the coefficients a0

and a1, color-coded by region from Theorem 5.2.1.

Figure 5.4 Quadratic bP R by Region

Region 1 = Blue
Region 2 = Green
Region 3 = Yellow
Region 4 = Red
Region 5 = Pink
Region 6 = Purple
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Of particular note, consider any f = x 2 + a1 x + a0 where a1, a0 ≥ 0. This f will have all non-

negative coefficients and, hence, can have no positive real roots. It is visually obvious that the mul-

tiplier g = 1, with degree 0, will suffice. However, bP R ( f ) is clearly positive for most of these poly-

nomials.

Example 5.2.2. Let f = x 2+2x +10. Then

bP R ( f ) = 8.

However, we have v ( f ) = 0.

Finally, we will compare bP R and bH R in terms of a0 and a1.

Figure 5.5 Quadratic bP R Compared to Quadratic bH R

bP R = Blue
bH R = Red

In this comparison, two notable things are clear.

1. bH R is less than bP R .

2. bH R captures those polynomials for which a degree 0 multiplier is clearly sufficient - those

polynomials with a1, a0 ≥ 0.
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Example 5.2.3. Let f = x 2+2x +10. Then

bH R ( f ) = 0.
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APPENDIX

A

MAPLE CODES
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A.1 Utilities

restart: 
with(LinearAlgebra): 
with(simplex): 
with(RandomTools): 
with(Statistics): 
with(SolveTools[Inequality]): 
with(plots): 
with(combinat,powerset): 
kernelopts(opaquemodules=false): 
Plot:-Inequality:-refine_bounding_box := (r,x,a,b,y)->a..b: 
kernelopts(opaquemodules=true): 
 
# returns a quadratic polynomial with roots of radius r and argument Pi/(t+2) 
QF := proc(r,t) 
   # r is a positive integer. 
   local a1,a0,f; 
   a1 := -2*r*round(cos(Pi/(t+2))*2^10)/2^10; 
   a0 := r^2; 
   f  := x^2 + a1 *x + a0; 
   return f; 
end: 
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A.2 Bounds

# returns b_{HR}(f) for a given polynomial 
HRB := proc(f) 
   local R,s,r; 
   R := [fsolve(f,complex)]; 
   R := select(r->Im(r)>0,R); 
   s := add(ceil(Pi/argument(r))-2,r=R); 
   s := max(s,0); 
   return s; 
end: 
 
 
# returns the minimum on [0,1] of the denominator g from b_{PR}(f) 
UMin01 := proc(g) 
   local gp,rs,vs; 
   gp := diff(g,x); 
   rs := {0,1,fsolve(gp)}; 
   rs := select(r->0<=r and r<=1,rs); 
   vs := map(r->abs(eval(g,x=r)),rs); 
   return min(vs); 
end: 
 
# returns b_{PR}(f) for a given polynomial 
PRB := proc(f) 
   local d,M,g,m,p,i; 
   d := degree(f); 
   M := max(seq(abs(coeff(f,x,i))/binomial(d,i), i=0..d));  
   g := simplify((1-x)^d*eval(f,x=x/(1-x))); 
   g := evalf(g); 
   m := UMin01(g); 
   if m = 0 then 
     p := infinity; 
   else 
     p := evalf(binomial(d,2)*(M/m)-d); 
     p := max(ceil(p),0); 
   fi; 
   return p; 
end: 
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A.3 Derivation Matrices

# returns A_s for a given polynomial 
Am := proc(f,s,tr:=false) 
   local n,A; 
   n := degree(f,x); 
   A := Matrix(s+1,s+n+1,(i,j)->coeff(f,x,j-i)); 
end: 
 
 
# returns L_s for a given polynomial 
Lm := proc(f,s) 
   local A,n,L; 
   A := Am(f,s); 
   n := ColumnDimension(A) - RowDimension(A); 
   L := SubMatrix(A,[1..s+1],[1..n]); 
   return L; 
end: 
 
# returns R_s for a given polynomial 
Rm := proc(f,s) 
   local A,n,R; 
   A := Am(f,s); 
   n := ColumnDimension(A) - RowDimension(A); 
   R := SubMatrix(A,[1..s+1],[n+1..s+n+1]); 
   return R; 
end: 
 
# returns T_s for a given polynomial 
Tm := proc(f,s) 
   local A,L,R,T; 
   L := Lm(f,s); 
   R := Rm(f,s); 
   T := map(expand,R^(-1).L); 
   return T; 
end: 
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A.4 Optimality Testing

# returns a C-vector for a given polynomial 
CV := proc(f,s) 
   local T,Tv,C,S,c,i,j; 
   T := Tm(f,s); 
   C := {add(c[i-1],i=1..RowDimension(T))=1}; 
   C := {op(C),seq(add(c[i-1]*T[i,j],i=1..RowDimension(T))>=0,j=1..ColumnDimension(T))}; 
   S := maximize(c[s],C,NONNEGATIVE); 
   if S = {} then return none fi; 
   c := eval([seq(c[i-1],i=1..RowDimension(T))],S); 
   return c; 
end: 
 
# returns opt(f) for a given polynomial 
OPB := proc(f,hrb:=20) 
   local s,c,R,G,g,T,i; 
   for s from 0 to hrb do 
     c := CV(f,s); 
     if c <> none then 
       R := Rm(f,s); 
       T := Tm(f,s); 
       G := convert(Matrix(c).R^(-1),list); 
       g := add(G[i+1]*x^i,i=0..s); 
       return s,evalf(c),g;  
     fi; 
   od; 
   return "Increase hrb";  
end: 
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A.5 Comparing the Bounds on Random Inputs

# returns bound comparisons based on random polynomials from Chapter 5 
CompRCoeffsU := proc(db) 
   local d,i,f,  Rs,rs,r,ra, HRBs,hrbs,hrb,hrba, PRBs,prbs,prb,prba; 
   HRBs := []; 
   PRBs := []; 
   Rs   := [];  
   for d from db[1] to db[2] do 
     hrbs := []; 
     prbs := []; 
     rs   := []; 
     for i from 1 to 1000 do  
       while true do 
         f := Generate(polynom(rational(range=-1..1,denominator=2^20), x, degree = d)); 
         f := evalf(expand(f)); 
         if not (coeff(f,x,d) > 0 and nops(select(r->r>0,[fsolve(f)]))=0) then next fi; 
         prb  := PRB(f); 
         hrb  := HRB(f); 
         if hrb = 0 or prb = infinity then next fi; 
         r    := evalf(hrb/prb); 
         break;  
       od: 
       hrbs := [op(hrbs), hrb]; 
       prbs := [op(prbs), prb]; 
       rs   := [op(rs),   r]; 
     od: 
     hrba := Mean(hrbs); 
     prba := Mean(prbs); 
     ra   := Mean(rs); 
     HRBs := [op(HRBs), [d,hrba]]; 
     PRBs := [op(PRBs), [d,prba]]; 
     Rs   := [op(Rs),   [d,ra]  ]; 
   od: 
   return HRBs,PRBs,Rs; 
end:  
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SetState(state=1234567); 
HRBs,PRBs,Rs := CompRCoeffsU([2,15]): 
save HRBs,PRBs,Rs, "CompRCoeffsU2.m": 
read  "CompRCoeffsU2.m"; 
pointplot(HRBs,color=red,  labels=[typeset(Degree),typeset(Average)],connect=true); 
pointplot(PRBs,color=blue, labels=[typeset(Degree),typeset(Average)],connect=true); 
pointplot(Rs,color=red,    labels=[typeset(Degree),typeset(Ratio)],  connect=true); 
Rp  := map(r->[r[1],ln(r[2])],Rs): 
P1  := pointplot(Rp,color=red, 
labels=[typeset(Degree),typeset(Ratio)],connect=true,thickness=1): 
P1; 
X := map(r->r[1],Rp): 
Y := map(r->r[2],Rp): 
g := Fit(a*d+b,X,Y,d); 
P2 := plot(g,d=2..15,linestyle=dash,color=blue,thickness=4):  
display(P1,P2); 
 
 

A.6 Comparing the Bounds on Quadratic Inputs

# returns bound comparisons based on quadratic polynomials from Chapter 5 
plot_bound := proc(bf,ar,vr,c) 
   local P,a1,PP,a0,P_plot; 
   P := []: 
   for a1 from -ar to 2*ar by 0.1 do 
     PP := []: 
     for a0 from 0 to ar by 0.1 do 
       PP  := [op(PP), [a1,a0,`if`(a1<=0 and a0<=a1^2/4,1000,bf(x^2+a1*x+a0))]]; 
     od: 
     P := [op(P), PP]; 
   od: 
   P_plot  := surfdata(P,color=c,view=vr, labels=[a[1],a[0],b]): 
   return P_plot; 
end: 
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PRB_ec := (a1,a0)-> piecewise( 
  a1<=0 and a0<=a1^2/4,                [1000,                                                      0], 
  a1>=2 and a0>=1 and a1<=2*a0, [ceil(a0)-2,                                             20], 
  a1>=2 and a0>=1 and a1> 2*a0,  [ceil(abs(a1)/2)-2,                                  40], 
  a1>=2 and a0<=1,                         [ceil(abs(a1)/(2*a0))-2,                          80], 
  a1<  2 and a0>=1,                         [ceil(4*a0*(a0-a1+1)/(-a1^2+4*a0))-2, 100], 
  a1<  2 and a0<=1 and a1<=2*a0, [ceil(4  *(a0-a1+1)/(-a1^2+4*a0))-2,     120], 
  a1<  2 and a0<=1 and a1> 2*a0,  [ceil(1/a0)-2,                                         140]): 
 
PRB_e := (a1,a0)-> max(PRB_ec(a1,a0)[1],0): 
PRB_c := (a1,a0)-> PRB_ec(a1,a0)[2]: 
 
plot_exp := proc(ar,vr) 
   return plot3d(PRB_e(a1,a0), a1=-ar..2*ar, a0=0.001..ar, view=vr,  
        style=patchnogrid, numpoints=10000, color=PRB_c(a1,a0),  
        labels=[a[1],a[0],b],lightmodel=none); 
end: 
 
ar := 10: 
vr := [-ar..2*ar,0..ar,-1..8]: 
PPRB   := plot_bound(PRB,ar,vr,blue): 
PHRB   := plot_bound(HRB,ar,vr,red): 
PPRB_e := plot_exp(ar,vr): 
display(PPRB_e); 
display([PHRB,PPRB]); 
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A.7 Witness for the Quadratic Multiplier

# returns two animations detailing certificates for quadratic polynomials 
cert := proc(t,ver) 
   local f,s,c,h,opt,Pf,Ph; 
   f := QF(1,t); 
   h := ver(f); 
   if nops(select(z->z<0,{coeffs(evalf(expand(f*h)))}))>1 then print("ERROR") fi; 
   opt := style=point,symbol=solidcircle,axiscoordinates=polar;  
   Pf := complexplot([fsolve(f,complex)],opt,symbolsize=20,color=red); 
   Ph := complexplot([fsolve(h,complex)],opt,symbolsize=20,color=blue); 
   display(Pf,Ph); 
end: 
 
anim_cert := proc(max_t,ver) 
   display([seq(cert(t/10,ver),t=0..max_t*10)],insequence=true); 
end:  
 
ver1 := f->OPB(f)[3]: 
anim_cert(6,ver1); 
 
ver2 := proc(f) 
   local s,h; 
   s := OPB(f)[1]; 
   h := mul(x^2-2*cos((2*i+1)*Pi/(s+2))*x+1,i=1..iquo(s,2)); 
   if irem(s,2) = 1 then h := h*(x+1); fi; 
   return h; 
end: 
anim_cert(6,ver2); 
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