
ABSTRACT

LI, XILAI. Neural Architectures Design and Search for Deep Representation Learning and
Continual Learning. (Under the direction of Tianfu Wu).

Recent progress of deep neural networks or deep learning has enabled great impact

and transformative applications in both computer vision and natural language processing.

Amongst all the aspects of deep learning development, neural architecture design is the

foundation for improving the performance of deep neural networks. This thesis explores

several novel approaches on neural architecture design or search in terms of both network

topology and node operations to improve deep neural networks on not only accuracy, but

also interpretability, robustness, continual/lifelong learning ability, etc.

I begin by presenting a class of models called And-Or Grammar networks (AOGNet)

which utilize And-Or grammar as a network structure generator. AOGNets harness the best

of both world: grammar models and deep neural networks. It integrates compositionality

adn reconfigurability of the former and capability of learning rich features of the latter

in a principled way. This family of architectures enable better performance on multiple

computer vision benchmarks and also shows better model interpretability and adversarial

robustness.

Next, I will introduce a novel feature normalization technique that integrates exist-

ing feature normalization with attention. And the resulting Attentive Normalization (AN)

outperforms the widely used batch normalization (BN) and its variants.

The final chapter explores a potential learning framework to alleviate a widely-known

issue of neural networks, called catastrophic forgetting, when the learning systems are

trained with sequential or streaming tasks. We presents a conceptually simple yet general

and effective framework, called Learn-to-Grow, from the angle of neural architecture by

separating the learning into a neural structure optimization component and a parameter

learning component.

© Copyright 2020 by Xilai Li

All Rights Reserved

Neural Architectures Design and Search for Deep Representation Learning and Continual
Learning

by
Xilai Li

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Electrical Engineering

Raleigh, North Carolina
2020

APPROVED BY:

Hamid Krim Edgar Lobaton

Luo Xiao Tianfu Wu
Chair of Advisory Committee

DEDICATION

This dissertation is dedicated to my dear parents Hongchao Li and Jiandong Qiu, who have

loved and supported me no matter what. I would like to thank my wife Yang Li for our many

wonderful years and always being on my side.

ii

BIOGRAPHY

The Author was born on October 4, 1991, in Shenyang, Liaoning, China. In June 2014,

he received his B.S. degree from the department of Physics, University of Science and

Technology of China (USTC) in Hefei. There, he got the interest on the research. Two months

later, he enrolled in the Ph.D. program in the Department of Electrical and Computer

Engineering, at North Carolina State University. In the first two and half years of his Ph.D.,

he worked as a research assistant supervised by Professor Ki Wook Kim. His research aims

at designing the next generation of information and signal processing devices, enabled

by newly discovered physics phenomena, especially on ultra-low power magnetic devices.

In the latter three years, he worked as a research assistant supervised by Professor Tianfu

(Matt) Wu. His research focuses on designing universal, efficient and interpretable deep

learning architectures that can power computer vision, natural language processing, or

general artificial intelligence.

iii

ACKNOWLEDGEMENTS

The 5-year Ph.D. study at NC State was an amazing experience. There are many people that

I wish to acknowledge. This dissertation would not have been possible without the support

of you guys.

First of all, I would like to thank my advisor, Prof. Tianfu Wu. He is a very good advisor.

Most of the work here is the result form our fruitful discussions. He has always been patient

when I encounter difficult problems during my research and always motivate me to work

on project with big impact.

Also, I would like to thank my previous advisor, Ki Wook Kim. He is a very good physicist.

I learned a lot on the mathematical and physical modeling while working with him. And

the skills I learned is very helpful for my current research topics.

I would also like to thank my thesis committee, Hamid Krim, Edgar Lobaton and Luo

Xiao, for their kind support and advice on my research. I am very honored to have them in

my committee.

Also, I would like to thank my group-mates who made my graduate school journey more

colorful and fulfilling: Xiaopeng Duan, Rui Mao, Zhenghe Jin, Wei Sun, Liang Dong, Zekun

Zhang, Nan Xue, Xianpeng Liu, and Kelvin Cheng.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . x

Chapter 1 Introduction . 1

Chapter 2 An Overview of Convolutional Neural Architecture 5
2.1 Overview . 5
2.2 Basic Components of CNNs . 6
2.3 Modern CNN architecture designs . 8

2.3.1 Hand-crafted CNN architectures . 8
2.3.2 Neural Architecture Search (NAS) . 13

Chapter 3 And-Or Grammar Networks . 16
3.1 Motivation and Objective . 17
3.2 Background . 21
3.3 And-Or Grammar Network Overview . 22
3.4 The Architecture of AOGNets . 24

3.4.1 The Structure of an AOGNet . 24
3.4.2 Node Operations in an AOGNet . 26
3.4.3 Simplifying AOG Building Blocks . 28

3.5 Experiments . 28
3.5.1 Implementation Settings and Details . 28
3.5.2 Experiments on CIFAR . 29
3.5.3 Image Classification in ImageNet-1K . 31
3.5.4 Experiment on Model Interpretability . 34
3.5.5 Experiment on Adversarial robustness . 36
3.5.6 Object Detection in Pascal VOC . 36
3.5.7 Object Detection and Segmentation in COCO 37
3.5.8 Experiment on Chest X-Ray datasets for Medical Image Analysis . . . 39

3.6 Summary and Discussion . 39

Chapter 4 Attentive Normalization . 44
4.1 Motivation and Objective . 45
4.2 Background . 46

4.2.1 Feature Normalization. 46
4.2.2 Feature Attention. 47

4.3 Overview of Attentive Normalization . 48
4.4 Implementation of Attentive Normalization . 49

4.4.1 Formulation of Feature Normalization . 49
4.4.2 Formulation on Feature Attention . 50

v

4.4.3 Attentive Normalization . 51
4.4.4 Integrating AN in Building Blocks of DNNs 54

4.5 Experiments . 57
4.5.1 Ablation Study . 60
4.5.2 Image Classification in ImageNet-1000 . 60
4.5.3 Object Detection and Segmentation in COCO 62
4.5.4 Adversarial training for model robustness 65

4.6 Conclusion . 65

Chapter 5 Learn to Grow: A Continual Structure Learning Framework for Over-
coming Catastrophic Forgetting . 69

5.1 Introduction . 70
5.2 The Proposed Learn-to-Grow Framework . 71

5.2.1 Problem Definition of Continual Learning 71
5.2.2 Our Proposed Learn-to-Grow Framework . 73

5.3 Our Implementation . 74
5.3.1 Structure Optimization . 74
5.3.2 Parameter Optimization . 77

5.4 Experiments . 78
5.4.1 Are Sensible Structures Sought in Learn-to-Grow? 79
5.4.2 Are Forgetting Addressed in Learn-to-Grow? 80
5.4.3 Comparisons with State-of-the-Art Methods 83

5.5 Related Work . 85
5.6 Additional Results . 87

5.6.1 Additional Experimental Details for permuted MNIST 87
5.6.2 Additional Experimental Details for Split CIFAR-100 87
5.6.3 Additional Experiments on Visual Decathlon Dataset 88

5.7 Summary . 89

Chapter 6 Conclusion and Discussion . 91

References . 93

vi

LIST OF TABLES

Table 3.1 Error rates (%) on the two CIFAR datasets (63). #Params uses the unit
of Million. k in DenseNet refers to the growth rate. 30

Table 3.2 An ablation study of our AOGNets using the mean error rate across
5 runs. In the first two rows, the AOGNets use full structure, and the
pruned structure in the last two rows. The feature dimensions of node
operations are accordingly specified to keep model sizes comparable. 31

Table 3.3 Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-
1000 validation set using the vanilla setup. 33

Table 3.4 Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-
1000 validation set using the state-of-the-art setup. The numbers in
brackets show the performance improvement by our proposed AN
over the baselines. All models are trained from scratch under the same
settings. See text for details. 34

Table 3.5 An ablation study of our AOGNets using different OR-Node merging
scheme: elementwise-um, elementwise-average or elementwise-max.
This results are preformed with AOGNet-12m with pruned structure
without lateral connections. 34

Table 3.6 The top-1 and top-5 error rates (%) on the ImageNet-1K validation set
under mobile settings. 35

Table 3.7 Top-1 accuracy comparisons under white-box adversarial attack using
1-step FGSM (31) with the Foolbox toolkit (107). 36

Table 3.8 Performance comparisons using Average Precision (AP) at the intersec-
tion over union (IoU) threshold 0.5 (AP@0.5) in the PASCAL VOC2007
/ 2012 dataset. ∗ reported based on our re-implementation using the
exactly same PyTorch implementation of Faster R-CNN and PyTorch
pretrained ResNet-101 backbone on ImageNet for fair comparisons.
The reproduced results of ResNets are better than those reported in
the original paper (40). 38

Table 3.9 Mask-RCNN results on coco_val2017 using the 1x training sched-
ule. Results of ResNets and ResNeXts are reported by the maskrcnn-
benchmark. 39

Table 3.10 Results on 14 pathologies in the ChestX-ray14 dataset. CheXNet is
using a DenseNet-121 architecture. * CheXNet implementation with
PyTorch reported by https://github.com/zoogzog/chexnet. 40

vii

https://github.com/bethgelab/foolbox
https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark

Table 4.1 Ablation study on different design choices in our proposed AN with BN
as feature normalization backbone using ResNet-50 in ImageNet-1000.
There are four categories: The first three are detailed in Section 4.4.3.
The fourth one refers to the number K of components in the mixture
of affine transformation which is used for each of the four stages in
ResNet-50 and we empirically select three options for simplicity. The
second row shows the best design combination we observed, which
will be used in our comparison experiments. In each test (row 3 to
9), we only change one in the best design combination for computa-
tional feasibility. During our development, we first observed the best
combination based on our intuitive reasoning and small experiments
(a few epochs) in the process, and then design this ablation study to
verify the design choices. * means AN is applied to all the BatchNorms
of the network. The performance of the baseline ResNet-50+BN is in
Table 4.2. See text for details. 59

Table 4.2 Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-
1000 validation set using the vanilla setup. The numbers in brackets
show the performance improvement by our proposed AN over the
baselines (for ResNet-50, the numbers are shown with the baseline
methods since there are multiple ones). † means the model is not
trained by us. All other models are trained from scratch by us under
the same settings. See text for details. 61

Table 4.3 Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-
1000 validation set using the state-of-the-art setup. The numbers in
brackets show the performance improvement by our proposed AN
over the baselines. All models are trained from scratch under the same
settings. See text for details. 62

Table 4.4 Detection and segmentation results in MS-COCO val2017 (84) using
the Mask R-CNN (37) framework with the FPN (83) implemented in
MMDetection (11). All models use 2x lr scheduling (180k iterations).
BNmeans BN is frozen in fine-tuning for object detection. † means that
models are not trained by us. All other models are trained from scratch
by us under the same settings (fine-tuned from pre-trained models
under the vanilla setup in Table 4.2 for fair comparisons). The numbers
in brackets show the performance improvement by our proposed AN
over the baselines (the numbers show sequential improvement in the
two AOGNet models). 63

Table 4.5 Results in MS-COCO using the state-of-the-art cascade variant (9) of
Mask R-CNN. 64

viii

Table 4.6 Top-1 accuracy of ResNet-50 on ImageNet-1K with adversarial training.
The experiment is performed with Adversarial Training for Free with
m=4 (cite), which is a fast version of adversarial training, m is PGD
attack steps. The model is tested with clean images, and PGD attack
with 10 iterations, and 50 iterations, respectively. 65

Table 5.1 Results of the (top-1) validation classification accuracy (%) on Visual
Domain Decathlon dataset, top-2 performance are highlighted. The
total model size (“#params") is the total parameter size (in Million)
after training the 10 tasks. Individual indicates separate models trained
for different tasks. Classifier denotes that a task specific classifier (i.e.
the last softmax layer) is tuned for each task. Adapter refers to methods
proposed by Rebuffi et al.(110). 82

Table 5.2 Results of different continual learning approaches on 10 permutated
MNIST datasets. The averaged accuracy after all 10 tasks are learned
and total number of parameters are compared. 85

Table 5.3 Results of different continual learning approaches on split CIFAR100
dataset. The averaged accuracy after all 10 tasks are learned and total
number of parameters are compared. 86

Table 5.4 Comparison of (top-1) validation classification accuracy (%) and total
model size (in Million) on Visual Domain Decathlon dataset with
parameter loss factor β of 0.01, 0.1, 1.0. 88

ix

LIST OF FIGURES

Figure 2.1 AlexNet architecture, image source (64). 9
Figure 2.2 Inception module, image source (135). 9
Figure 2.3 GoogLeNet architecture, image source (136). 10
Figure 2.4 VGGNet architecture. 10
Figure 2.5 Illustration of Residual function, image source (40). 11
Figure 2.6 A 5-layer dense block with a growth rate of k = 4. Each layer takes all

preceding feature-maps as input. Image source (49). 12
Figure 2.7 SE Block, image source (47). 12
Figure 2.8 Comparison of modern neural architectures on ImageNet-1k bench-

mark. 13

Figure 3.1 Illustration of our AOG building block for grammar-guided network
generator. The resulting networks, AOGNets obtain 80.18% top-1
accuracy with 40.3M parameters in ImageNet, significantly outper-
forming ResNet-152 (77.0%, 60.2M), ResNeXt-101 (79.6%, 83.9M),
DenseNet-Cosine-264 (79.6%, ∼73M) and DualPathNet-98 (79.85%,
61.6M). See text for details. (Best viewed in color) 18

Figure 3.2 Illustration of (a) the space of neural architectures, (b) the building
block based design, and (c) examples of popular building blocks
in GoogLeNet (135), ResNet (40), ResNeXt (151), DenseNet (49) and
DualPathNets (13). See text for details. 20

Figure 3.3 Illustration of a 3-stage AOGNet with 1 AOG building bock in the 1st and 3rd
stage, and 2 AOG building blocks in the 2nd stage. Note that different stages
can use different AOG building blocks. We show the same one for simplicity.
The stem can be either a vanilla convolution or convolution+MaxPooling.
(Best viewed in color) . 21

Figure 3.4 Illustration of simplifying the AOG building blocks by pruning syn-
tactically symmetric child nodes of OR-nodes. Left: An AOG building
block with full structure consisting of 10 Terminal-nodes, 10 AND-
nodes and 10 OR-nodes. Nodes and edges to be pruned are plotted
in yellow. Right: The simplified AOG building block consisting of 8
Terminal-nodes, 5 AND-nodes and 8 OR-nodes. (Best viewed in color) 27

Figure 3.5 Plots of top-1 error rates and training losses of the three AOGNets in Ima-
geNet. (Best viewed in color and magnification) 35

Figure 3.6 Network dissection (6), image source from (6). 36
Figure 3.7 Comparisons of model interpretability using the network dissection method (6)

on ImageNet pretrained networks. 37
Figure 3.8 Sample grad-cam results from ResNet-50/101, AOGNet-12m/40m. 41
Figure 3.9 Sample dissection results of AOGNets generated by network dissection. . . 42
Figure 3.10 Sample COCO object detection and instance segmentation results of Mask-

R-CNN model with AOGNet-40m backbone. 43

x

http://netdissect.csail.mit.edu/

Figure 4.1 Illustration of the proposed Attentive Normalization (AN). AN aims
to harness the best of feature normalization and feature attention.
AN keeps the block-wise standardization unchanged. AN learns a
mixture of K channel-wise affine transformations. AN leverages at-
tention mechanism to learn the instance-specific weights for the
mixture components in computing the weighted sum of the mixture
as the final affine transformation for re-calibrating the input features.
See text for details. Best viewed in color. 48

Figure 4.2 Illustration of the proposed Attentive Normalization (AN) in (b) using
the vanilla Batch Normalization (BN) (57) as backbone (a). AN shares
the feature normalization component with BN, and differs in how
the affine transformation is done. AN can also use other variants
of BN as backbones. The input feature map is represented using
the convention (N , C , H , W) for the batch axis, channel axis, spatial
height and width axes respectively. xi represents a feature response
in the input feature map with position index i = (iN , iC , iH , iW). x̂i

represents the normalized response using the pooled channel-wise
mean and variance. x̃i is the response after affine transformation
with learned scale and offset parameters. See text for details. 55

Figure 4.3 Complete PyTorch code for implementing our AN using BN as the
backbone. 56

Figure 4.4 Illustration of integrating the proposed AN in the popular Bottleneck
building block presented in ResNets (40). Here, the feature normal-
ization backbone is BN. The proposed AN is only used to replace the
second one (BN2) followed the 3×3 convolution. This leads to negli-
gible extra parameters. Furthermore, this potentially enables jointly
integrating local spatial attention in learning the instance-specific
attention weights. 57

Figure 4.5 Heatmap visualization of γk ,iC
’s and βk ,iC

’s in the AN. See text for
details. Best viewed in color and magnification. 57

Figure 4.6 Illustration of the effects of AN and BN on filter responses. We show
the filter response histograms (marginal distributions) for different
images in different categories. Here we show results of a 4-stage
ResNet50. s t a g e _i _uni t _ j means the histograms are plot for the
output feature map of the j -th ResBlock in the i -th stage. From the
histograms, we observe that for images from the same class (e.g.,
school bus), the histograms of our AN show higher similarities with
smaller variance. This empirically shows that a channel-wise atten-
tion guided mixture of affine transformation helps recalibrate the
normalized responses in a more meaningful way. 66

xi

Figure 4.7 Performance plots for the proposed Attentive Normalization (AN)
and the vanilla Batch Normalization (BN) (57) across three neural
architectures, ResNets (40), MobileNets-v2 (120) and AOGNets (74)
in ImageNet-1000 (116). The proposed AN consistently improves
performance. It also outperforms other variants of BN tested using
ResNet-50: GroupNorm (GN) (150) and SwitchableNorm (SN) (88).
See text for details. Best viewed in color. 67

Figure 4.8 Training and validation loss curves of ResNet-50 in ImageNet with
BN, GN and AN respectively. Best viewed in color. 67

Figure 4.9 Sample comparisons between Mask R-CNN with ResNet-50-AN and
ResNet-50-BN backbones on COCO. 68

Figure 5.1 Illustration of different continual learning approaches. a) All but the
task specific layer are shared, catastrophic forgetting is countered
by techniques that prevents parameters to move to lower energy re-
gions of previous tasks. b) Each task will add some fixed task specific
parameters, all layers’ original weights are not tuned, and thus pre-
vents forgetting. c) Our approach, where network structure is learned
by architecture search. In this example, the search result decides
to “reuse" the first two layer, do “adaptation" for the 3rd layer and
allocate “new" weight for the 4th layer. 72

Figure 5.2 Illustration of the proposed learn-to-grow framework. a) Current
state of super model. In this example, the 1st and 3rd layers have
single copy of weight, while the 2nd and 4th has two and three re-
spectively. b) During search, three options, “reuse", “adaptation"
and “new" are utilized.α is the weight parameters for the architecture.
c) Parameter optimization with selected architecture on the current
task k. d) Update super model to add the newly created S ′3. See text
for details. 75

Figure 5.3 Overview of Learn-to-Grow Framework that learning on sequential
tasks. 77

Figure 5.4 Results on permutated MNIST dataset. a) Comparing our method
(fix, tune reuse with and without regularization) with SGD and EWC
on the average accuracy over the seen tasks. b) Ablation experiments
of "new" different layers in terms of average accuracy over the seen
tasks. 78

Figure 5.5 Visualization of searched architecture with learning two tasks sequen-
tially. The search are based on the super model obtained by training
ImageNet as first task. (a) and (b) shows searched architecture on
CIFAR100 and Omniglot task respectively. 80

Figure 5.6 Comparisons of the catastrophic forgetting effects between our pro-
posed approach and the baseline in VDD. 81

xii

Figure 5.7 Distance between the tuned parameters at each task and the parame-
ters of the very first task in VDD experiments. a) First layer parameter
distance, and b) Last layer parameter distance. Baseline indicates the
result from tuning all layers using SGD. 83

Figure 5.8 Performance comparisons in a) permuted MNIST and b) split CIFAR-
100 dataset. Methods include Kirkpatrick et al. (62, EWC), Lee et al.
(73, IMM), Fernando et al. (23, PathNet (PN)), Rusu et al. (117, Pro-
gressive Net (PG)), Serrà et al. (125, HAT), Lee et al. (73, DEN), Nguyen
et al. (98, VCL), ours (w/o reg) denotes the case where finetuning for
current tasks is done without using any regularization to prevent
forgetting, and ous represents the case where the `2 regularization is
used. 84

Figure 5.9 Statistics for performance and number of added parameters for each
task of VDD dataset with 4 random task ordering. The first task is
kept with ImageNet due to its large size and long training time. We
observed that both accuracy and parameter growth are robust to
different task ordering. 89

xiii

CHAPTER

1

INTRODUCTION

Recent progress of deep neural networks or deep learning has enabled great impact and

transformative applications in both computer vision and natural language processing,

because its powerful representation learning capability. However, despite the superior

performance of the deep neural networks on some standard tasks with abundant labeled

training data, it is still far away from the level of general human intelligence in many aspects.

Deep neural network models such as Convolutional Neural Networks (CNN) are typically

contains tens or hundreds of millions parameters, and it often costs huge computation

resources to train and high-speed inference still need to be performed on high-end devices,

like GPUs or TPUs. Also, deep neural networks are often criticized as being black boxes

that lack of interpretability. The interpretablility of AI models is closely relevant to various

important issues, especially in some safety-aware areas, like medical image diagnosis and

autonomous driving.

Another main issue of current deep neural networks is that most of the networks are

designed for a particular single task and trained from random initialization or only partly

pretrained. Human intelligence can handle many related or unrelated tasks. And when

human learns a new task, we could take advantage from the knowledge or pattern we have

learned from previous tasks, to learn faster and better. And most importantly, we won’t

1

forget the previous learned knowledge too much after we learn on something knew. In

most of the cases, learning on new things will reversely help for better understanding of the

previously learned knowledge. However, deep neural networks have severe "catastrophic

forgetting" issues when the model is trained on multiple tasks sequentially.

This Ph.D. thesis work explores to alleviate the above issues of current deep neural

networks from the angle of neural architecture design and search by seeking for an uni-

versal representation learning system with better parameter efficiency, interpretability

and lifelong learning capability. For universal architecture, we aim at designing a family

of neural architectures that follows certain biological plausible principles or rules, and

can be used on many different domains or tasks in computer vision, or natural language

processing, or both. We also aim to design a better learning framework that can enable

deep neural networks learn multiple tasks in a sequential/online manner with minimum

forgetting and maximum inter-task knowledge transfer.

A novel model family introduced in this thesis is summarized under the term And-Or

Grammar Networks. Although there has been great success using deep learning techniques

in image classification and natural language processing, an import aspect of language

and the visual world that has not been accounted for in deep neural networks is the per-

vasiveness of recursive or hierarchical and compositional structure. This motivated us

to bridge grammar model with deep neural networks to integrate compositionality and

reconfigurability of the former and the capability of learning rich representations of the

later in a principled way. Here I would like to cite a sentence said by Dr. David Mumford,

"Grammar in language is merely a recent extension of much older grammars that are built

into the brains of all intelligent animals to analyze sensory input, to structure their actions

and even formulate their thought".

In order to have elegant framework for lifelong/continual learning, there are several

requirements. the most important one is that we need to have minimum forgetting. Sec-

ondly, learning new knowledge could take advantage of the previously learned ones, so

that it will learn better and faster. The model size need to grow but cannot grow linearly

as the number of tasks increases. External memory could be used but the size would be

limited to reasonable constant maximum. Finally, positive backward transfer is plausible,

in other words, learning new task should potentially improve the learning on old tasks

instead of forgetting. Considering on these requirements, I proposed our simple yet general

and effective Learn-to-Grow framework, for handling catastrophic forgetting in continual

learning with deep neural networks.

In Chapter 2, I’ll review the history of Convolutional neural architecture designs from

2

the original invention of CNNs, basic components of common CNN architecture, to modern

deep CNN architecture designs and search. I’ll review crucial components that CNNs are

built on such as convolution, batch normalization, etc. I’ll also review several widely-used

architectural designs such as ResNet and DenseNet, and how it is related to AOGNet I will

introduce in Chapter 3. And finally review some recent progress on neural architecture

search.

In Chapter 3, I’ll introduce And-Or Grammar Networks for computer vision tasks. It

represents a family of deep compositional grammatical architectures which harness the

best of two worlds: grammar models and Convolutional Neural Networks (CNNs). AOGNets

integrate compositionality and reconfigurability of the former and the capability of learning

rich features of the latter in a principled way. We utilize AND-OR Grammar (AOG) as network

generator and call the resulting networks AOGNets. An AOGNet consists of a number of

stages each of which is composed of a number of AOG building blocks. An AOG building

block splits its input feature map into N groups along feature channels and then treat

it as a sentence of N words. It then jointly realizes a phrase structure grammar and a

dependency grammar in bottom-up parsing the "sentence" for better feature exploration

and reuse. It provides a unified framework for the best practices developed in state-of-the-

art DNNs. In experiments, AOGNet obtains state-of-the-art results on CIFAR-10, CIFAR-

100 and ImageNet-1K classification benchmark and the MS-COCO object detection and

segmentation benchmark. AOGNet also obtains the best model interpretability score using

network dissection. AOGNet further shows better potential in adversarial defense.

In Chapter 4, I propose a new feature normalization operator called Mixture Normal-

ization which is a simple and unified alternative to the widely used Batch Normalization.

Mixture normalization absorbed channel-wise feature attention into the affine transforma-

tion of vanilla normalization to make the affine transformation more dynamic and instance

specific. The overhead of our mixture normalization is neglectable, and could be used for

replacing the vanilla normalization in most of the vision tasks. We test our mixture normal-

ization module with multiple computer vision benchmarks with multiple popular network

backbones, the results show that our mixture can improve the performance consistently.

In Chapter 5, I’ll introduce our Learn-to-Grow framework, for handling catastrophic

forgetting in continual learning with deep neural networks. It consists of two components:

a neural structure optimization component and a parameter learning and/or fine-tuning

component. By separating the explicit neural structure learning and the parameter estima-

tion, not only is the proposed method capable of evolving neural structures in an intuitively

meaningful way, but also shows strong capabilities of alleviating catastrophic forgetting in

3

experiments. Furthermore, the proposed method outperforms most of the baselines on

several datasets in continual learning setting.

In the final chapter, I summarize all the works and discuss about the future directions

and remaining challenges.

4

CHAPTER

2

AN OVERVIEW OF CONVOLUTIONAL

NEURAL ARCHITECTURE

2.1 Overview

Convolutional neural networks (71), or CNNs for short, form the backbone of many modern

computer vision systems. It enables interesting use-cases such as image classification,

object detection and segmentation, video processing, and also areas outside computer

vision such as natural language processing and speech processing, etc. CNNs use multiple

feature extraction stages that enables its capability of automatically learning intermediate

representations from the data. It can be trained in an end-to-end manner with error back-

propagation (115) algorithm without any hand-engineered features.

The powerful CNNs are not invented recently. In fact, the CNNs have already been

introduced around 30 years ago, however surged until recent years with nowadays big

data and high performance computing technology. CNN first came to limelight through

the work of LeCuN in 1989 for processing of grid-like topological data (images and time

series data). (71; 70) The architectural design of CNN was inspired by Hubel and Wiesel’s

5

work and thus largely follows the basic structure of primate’s visual cortex (54; 55). During

training, CNN learns through back-propagation algorithm, by regulating the change in

weights with respect to the target. Optimization of an objective function using backpropa-

gation algorithm is similar to the response based learning of human brain. Multilayered,

hierarchical structure of deep CNN, gives it the ability to extract low, mid, and high-level

features. High-level features (more abstract features) are a combination of lower and mid-

level features. Hierarchical feature extraction ability of CNN emulates the deep and layered

learning process of the Neocortex in the human brain, which dynamically learns features

from the raw data (30). The popularity of CNN is largely due to its hierarchical feature

extraction ability.

With the advancement of modern computing power, various of deep CNN architectures

are proposed and the performance improvement from these deep networks are significant

among most of the tasks (64; 40; 10). In Section 2.2, the basic components of CNN archi-

tectures are reviewed. And In Section 2.3, I will review various manually-designed neural

architectures (61) and recently introduced automatically-searched architectures (145).

2.2 Basic Components of CNNs

The success of CNNs are largely due to its capability of learning hierarchical feature rep-

resentations, from low-level features such as textures and shapes to high-level semantic

features. In order to achieve that, A typical CNN architecture consists of alternate layers of

the basic components, such as convolution, normalization, non-linear activation function

and pooling layer, and then a linear fully-connected classifier is appended to the end (71).

Sometimes, inserting some regularization purpose operators, like dropout, can help CNNs

avoid overfit to training data and thus improves the generalization ability (129).

Convolution. Convolutional layer is composed of a set of convolutional kernels. Convo-

lutional kernel is simply a small matrix of weights. And This kernel "slides" over the spatial

dimension of the input, performing an elementwise multiplication with the part of the

input is is currently on, and then summing up the results into s single output pixel (30). This

process repeats for every location the kernel slides over, converting the input matrix to the

output matrix with the same dimension. For example, in image application, 2D convolution

is often used, the input and output of convolution layer is a 3D tensor (C ×H ×W), here

C is the number of channels, H is the height, W is the width. Usually, padding is needed

when one wants to maintain the output dimension to be exactly the same as the input’s.

6

The weight sharing nature of convolutional operation ensures the model to be spatially

invariant, and also make it parameter efficient as compared to fully-connected operator.

Convolutional operations can be further classified into different types according to the size

of the kernel, type of padding, stride size, etc.

Pooling layer. Another operator that makes CNN more translation-invariant is the

pooling layer (122). Pooling layers provides an approach to down-sampling feature maps by

summarizing the presence of features in patches of the feature map. Two common pooling

methods are average pooling and max pooling that summarize the average presence of a

feature and the most activated presence of a feature respectively. Another thing to note

is that, convolution with stride larger than one has similar functionality as the pooling

operation. Many modern architectures, such as ResNet uses convolution with stride equals

2 to downsample the feature map among the stages (39; 122).

Feature Normalization. Feature Normalization is another important operation in CNN

that are proposed to address the issues of internal covariance shift within feature-maps (57).

Internal covariance shift is the change of scale and distribution among intermediate neu-

rons values in each layer, which could potentially slow down the optimization or even

make the system not trainable. Without feature normalization, deep networks are often

hard to train and need to carefully tuning the learning rate and initialization (57). Typi-

cally, a normalization layer consists of two step, one is the normalization process with the

computed mean and variance, while the second step is the affine transformation which is

proved very useful for get good performance. The exact reason of why affine transformation

works is still a research topic, but it kind of works as feature re-calibration (121). Different

feature normalization schema differ in how the mean and variance are computed, such

as Batch Normalization (BN) (57), Layer Normalization (LN) (3), Instance Normalization

(IN) (141), Group Normalization (GN) (150), etc. Among them, BN is most widely used

normalization operator for CNNs, and also it has been deeply analyzed in terms of how

it helps optimization (121). In Chapter 4, different from other normalizations that focus

how to compute the mean and variance, I will introduce Attentive Normalization (AN) that

learns a mixture of affine transformations and utilizes their weighted-sum as the final affine

transformation applied to re-calibrate features in an instance-specific way, instead of use a

single affine transformation as other normalizations (76).

Activation function. Activation function is another crucial operation that introduce

non-linearity to CNNs so that CNNs can learn complex patterns. Typical activations are

sigmoid, tanh, and ReLU (99), and ReLU variants such as ELU, Leaky ReLU, PReLU, etc. One

of the recently proposed activation function is "Mish", which has shown better performance

7

than ReLU in most of the recently proposed deep networks on benchmark datasets (93).

Regularization. Dropout is the most widely used regularization for CNN architectures,

which simply skipping some units or connections randomly with certain probability (129).

And it is very effective for avoid the overfitting issue when training over-parameterized

networks. There are other similar regularizations are proposed recently like ZoneOut (65),

DropBlock (27), etc.

Fully connected layer. Fully connected layer is mostly used at the end of the network for

classification purpose. Unlike pooling and convolution, it is a global operation. It takes input

from feature extraction stages and globally analyses output of all the preceding layers (61).

2.3 Modern CNN architecture designs

Altough, many interesting ideas to bring advancements in CNNs have been explored such

as the use of different activation and loss functions, parameter optimization, regulariza-

tion, and architectural innovations. However, the major improvement in representational

capacity of the deep CNN is achieved through architectural innovations.

2.3.1 Hand-crafted CNN architectures

AlexNet. The main breakthrough in CNN performance was brought by AlexNet, which

showed significant performance improvement in 2012-ILSVRC (reduced error rate from 25.8

to 16.4) as compared to conventional CV techniques. AlexNet was proposed by Krizhevesky

et al. (64), and the network had a very similar architecture as LeNet by Yann LeCun et al but

was deeper, with more filters per layer, and with stacked convolutional layers. It consisted

11x11, 5x5,3x3, convolutions, max pooling, dropout, data augmentation, ReLU activations,

SGD with momentum. In addition to this, ReLU was employed as a non-saturating acti-

vation function to improve the convergence rate by alleviating the problem of vanishing

gradient to some extent. AlexNet was trained for 6 days simultaneously on two Nvidia

Geforce GTX 580 GPUs which is the reason for why their network is split into two pipelines.

ZFNet. Not surprisingly, the ILSVRC 2013 winner was also a CNN which became known

as ZFNet. It achieved a top-5 error rate of 14.8% which is now already half of the prior

mentioned non-neural error rate. It was mostly an achievement by tweaking the hyper-

parameters of AlexNet while maintaining the same structure with additional Deep Learning

elements as discussed earlier in this essay.

8

Figure 2.1: AlexNet architecture, image source (64).

GoogLeNet/Inception. In ILSVRC 2014 competition, GoogLeNet (136) won the 1st place

and have significant improvement over ZFNet (2013 winner) and AlexNet (2012 winner).

The new architectural component of GoogLeNet is that it contains 1x1 convolution at

the middle of the network and use global average pooling before the classifier instead of

using fully connected layers. These two techniques are form another work called "Network

in Network" (82). The main contribution of GoogLeNet is the inception module, which

is showed in Fig. 2.2. It has different sizes/types of convolutions for the same input and

stacking all the outputs. The whole architecture of GoogLeNet is stack of multiple inception

modules, Fig 2.3.

Figure 2.2: Inception module, image source (135).

VGG-Net. VGG-Net is the runner-up at the ILSVRC 2014 competition, and it was devel-

oped by Simonyan and Zisserman (10). VGGNet was born out of the need to reduce the

number of parameters in the CONV layers and improve on training time. The important

idea to note here is that all the convolutional kernels are of fixed size 3x3 as compared to

AlexNet that use multiple kernel sizes (11x11, 5x5, 3x3). Fig. 2.4 shows the the architecture

9

Figure 2.3: GoogLeNet architecture, image source (136).

of VGG-16 architecture.

Figure 2.4: VGGNet architecture.

ResNet. Deep Residual Network (ResNet) (40) is one of the first work that successfully

adopt skip connections. It provides a simple yet effective solution, inspired by the High-

way network (130), that enables networks to enjoy going either deeper or wider without

sacrificing the feasibility of optimization, pushes the depth of deep neural networks to

hundreds of layers by using skipping connections. Without the residual connection, deep

networks often suffer vanishing gradient issues and hard to optimize. The residual/skip

connections allow the gradient propagate back to the base layer with shorter/clearer path.

Fig. 2.5 shows the simple idea of ResNet basic blocks. The residual path element-wisely adds

the input features to the output of the same block, making it a residual unit. In addition

to residual connection, the ResNet work introduced a bottleneck design of basic block for

better parameter efficiency. It contains three convolutional layers in the block, and the first

and third with 1x1 convolution to compress and recover the channel size respectively, while

the middle convolution is a 3x3 with compressed channel size (typically ratio of 0.25).

Depending on the inner structure design of the mirco-block, the residual network has

10

Figure 2.5: Illustration of Residual function, image source (40).

developed into a family of various architectures, including Wide-ResNet (155), Inception-

resnet (135), and ResNeXt (152), etc.

DenseNet. DenseNet (49) is introduced in CVPR2017 and won the best paper award.

Different from ResNet, DenseNet uses feature-maps of all preceding layers as inputs, and

its own feature-maps are used as inputs into all subsequent layers. DenseNets have several

compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature

propagation, encourage feature reuse, and substantially reduce the number of parameters.

Fig. 2.6 shows an example of dense block. In a Dense-block with L layers, there are L (L+1)
2

connections. The dense connections provides more diverse information flow that helps

optimization and efficiency.

Dual Path Networks (DPN) was proposed to inherits both advantages of residual and

densely connected paths, enabling effective feature re-usage and re-exploitation (13). The

idea is splting the input channels to two group, one goes through a ResNet-like block and

the other goes through a DenseNet-like blcok, and merge them together afterwards. The

proposed DPN also enjoys higher parameter and FLOPS efficiency.

SENet. Squeeze-and-Excitation Networks (SENet) (47) introduced a Squeeze and Ex-

citation (SE) block, that explore the channel relationship and adaptively re-calibrates

channel-wise feature responses by explicitly modelling inter-dependencies between chan-

nels. Fig. 2.7 shows the idea of SE Block. It uses the average-pooled output features to

learn a channel-wise attention weight with a set of fully connected layers, and use the

weight to re-calibrate the output features by a broadcast multiply. It shows that these blocks

can be stacked together to form SENet architectures that generalise extremely effectively

across different datasets. And SE blocks is demonstrated bring significant improvements

in performance for existing state-of-the-art CNNs at slight additional computational cost.

11

Figure 2.6: A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding
feature-maps as input. Image source (49).

Squeeze-and-Excitation Networks won the 1st place of ILSVRC 2017 classification challenge.

Figure 2.7: SE Block, image source (47).

MobileNet. MobileNet has several versions. MobileNet-V1 (46) replaces conventional

convolutional layers with depth-wise Separable Convolution and point-wise convolution

(1x1 convolution) to reduce the model size and complexity. It is particularly useful for mobile

and embedded vision applications. In MobileNetV2 (120), a better module is introduced

with inverted residual structure and non-linearity in narrow layers are removed.

Summary. Neural architectures are the foundation for improving performance of deep

neural networks (DNNs). Much of the progress are achieved mainly through engineering

network architectures which jointly address two issues: increasing representational power

by going either deeper or wider, and maintaining the feasibility of optimization using back-

12

propagation with stochastic gradient descent (i.e., the vanishing and/or exploding gradient

problems). As shown in Fig. 2.8, different manually-designed architectures are compared

with the most widely used ImageNet-1K benchmark (116).

Figure 2.8: Comparison of modern neural architectures on ImageNet-1k benchmark.

In Chapter 3, I’ll introduce And-Or Grammar Networks (AOGNets) which use a grammar-

guided network generators to design networks that unified the so-far best practices of

network architecture designs. And I’ll demonstrate AOGNets out-performs state-of-the-art

architectures on commonly used benchmarks (75).

2.3.2 Neural Architecture Search (NAS)

With network engineering, CNN architectures are improved significantly on different bench-

marks across various tasks . However, deep learning techniques are computationally in-

tensive and their application requires a high level of domain knowledge. Thus, Neural

Architecture Search (NAS) idea comes in to automate the architecture design process for

saving more labor and potentially improving the performance to the next level (18)(145).

In order to perform NAS, a proper search space is needed, and the space needs to contain

13

large enough number of candidate architectures and also feasible in terms of computational

time. Normally, there are two level of search space, global search space and cell search

space. Global search space covers how blocks are connected and what hyper-parameters

are used for each block (e.g. channel size, number of repeat, etc). Cell search spaces defines

how each operators are connected within a block.

Without loss of generality, the architecture search space A is represented by a directed

acyclic graph (DAG). A network architecture is a sub-graph a ∈A , denoted asN (a , w).

with weights w . Neural architecture search aims to solve two related problems. The first is

weight optimization of a given network architecture as in standard deep learning,

wa = argmin
w

Lt r a i n (N (a , w)), (2.1)

whereLt r a i n (.) is the loss function on the training set. The second is architecture opti-

mization. In a general sense, it finds the architecture that is trained on the training set and

has best accuracy on the validation set, as

a ∗ = argmax
a∈A

AC Cv a l (N (a , wa)), (2.2)

where AC Cv a l (.) is the accuracy on the validation set.

Real world tasks usually have additional requirements on a network’s memory con-

sumption, FLOPs, latency, energy consumption, etc. These requirements are up to the

architecture a , software and hardware platforms, but irrelevant to the weights wa . Thus,

they are called architecture constraints.

Early NAS approaches perform weight optimization and architecture optimization in

a nested manner (164; 166; 4). Numerous architectures are sampled fromA and trained

from scratch as in Eq. 2.1. Efficient architecture search algorithms are critical to making

Eq. 2.1 affordable. Previous works use reinforcement learning (RL) (164; 4) and evolutionary

algorithm (EA) (166; 108; 109) for searching, however the computational cost is still very

high, it takes days or weeks of searching on small dataset (e.g. CIFAR-10) with small search

space.

The main reason makes the searching process slow is we need to train from scratch

for each sampled architecture. To make the search process faster, recent NAS algorithms

adopt a common weight sharing strategy (104; 85; 148). The architecture search spaceA
is encoded in a supernet, denoted asN (A ,W), where W is the weights in the supernet.

The supernet is trained once. All architectures inherit their weights directly fromW . Thus,

14

they share the weights in their common graph nodes. Fine tuning of an architecture is

performed in need, but no training from scratch is incurred. Therefore, architecture search

is fast and suitable for large datasets like ImageNet.

Most weight sharing approaches convert the discrete architecture search space into

a continuous one (85; 148). Formally, spaceA is relaxed toA (θ), where θ denotes the

continuous parameters that represent the distribution of the architectures in the space.

An evident advantage of the continuous search space is that gradient based methods (85)

become feasible for the joint optimization of both weights and architecture distribution

parameters. However, there are several optimization challenges with this weight sharing

strategy. The weights that compose different architectures in the supernet is strongly cou-

pled with each other during optimization. Also, joint optimization of architecture parameter

θ and weightsW introduces further coupling. These coupling might lead to sub-optimal

of searching. It is also hard to impose architectural constraint with continuous relexation

of architecture parameters, only soft constraint can be applied without guarantee (148).

Recently, another category of NAS is introduced, called One-shot NAS to solve the issue

of coupled optimization (8; 33). It decouples the weight optimization and architecture

search processes. The supernet is trained only once and architecture search is performed

based on the learned supernet.

With NAS techniques, CNN performance is further improved as compared to human-

designed architectures. In Chapter 5, I’ll introduce Learn-to-Grow framework (77) that

utilize NAS technique to help neural network alleviate "catastrophic forgetting" issue under

continual/lifelong learning settings.

15

CHAPTER

3

AND-OR GRAMMAR NETWORKS

Neural architectures are the foundation for improving performance of deep neural net-

works (DNNs). This chapter presents deep compositional grammatical architectures which

harness the best of two worlds: grammar models and DNNs. The proposed architectures

integrate compositionality and reconfigurability of the former and the capability of learning

rich features of the latter in a principled way.

We utilize AND-OR Grammar (AOG) (128; 163; 162) as network generator and call the

resulting networks AOGNets. An AOGNet consists of a number of stages each of which

is composed of a number of AOG building blocks. An AOG building block splits its input

feature map into N groups along feature channels and then treat it as a sentence of N

words. It then jointly realizes a phrase structure grammar and a dependency grammar in

bottom-up parsing the “sentence" for better feature exploration and reuse. It provides a

unified framework for the best practices developed in state-of-the-art DNNs.

In our experiments, AOGNet is tested in the ImageNet-1K classification benchmark and

the MS-COCO object detection and segmentation benchmark. In ImageNet-1K, AOGNet

obtains better performance than ResNet (40) and most of its variants, ResNeXt (151) and its

attention based variants such as SENet (47), DenseNet (49) and DualPathNet (13). AOGNet

also obtains the best model interpretability score using network dissection (6). AOGNet

16

further shows better potential in adversarial defense. In MS-COCO object detection and

instance segmentation task, AOGNet obtains better performance than the ResNet and

ResNeXt backbones with Mask R-CNN framework (36).

In the following sections, I will presents the details of the design and performance of

AOGNets. In section 3.1, I will first present the motivation and objective of designing network

architecture with And-Or Grammar. Section 3.2 presents some background information

on existing CNN architectures and grammar models. Section 3.3 and 3.4 presents detailed

designs of our AOGNets. Section 3.5 shows experimental results and comparisons with

other networks, as well as ablation studies on different aspects of our AOGNets. Finally,

Section 3.6 concludes this work and discusses some on-going and future work.

3.1 Motivation and Objective

Recently, deep neural networks (DNNs) (71; 64) have improved prediction accuracy sig-

nificantly in many vision tasks, and have obtained superhuman performance in image

classification tasks (40; 135; 49; 13). Much of these progress are achieved mainly through

engineering network architectures which jointly address two issues: increasing representa-

tional power by going either deeper or wider, and maintaining the feasibility of optimization

using back-propagation with stochastic gradient descent (i.e., the vanishing and/or explod-

ing gradient problems). The dramatic success does not necessarily speak to its sufficiency,

given the lack of theoretical underpinnings of DNNs at present (1). Different methodologies

are worth exploring to enlarge the scope of neural architectures for seeking better DNNs.

For example, Hinton recently pointed out: a crucial drawback of current convolutional

neural networks: according to recent neuroscientific research, these artificial networks

do not contain enough levels of structure (44; 118). Thus, in this work, we are interested

in grammar-guided network generators (Fig. 3.1), which has rich structures due to its

compositional and recurrent nature.

Neural architecture design and search can be posed as a combinatorial search problem

in a product space comprising two sub-spaces (Fig. 3.2 (a)): (i) The structure space which

consists of all directed acyclic graphs (DAGs) with the start node representing input raw

data and the end node representing task loss functions. DAGs are entailed for feasible

computation. (ii) The node operation space which consists of all possible transformation

functions for implementing nodes in a DAG, such as Conv+BN (57)+ReLU (64) with different

kernel sizes and feature channels.

17

Channels

AND-node
OR-node
Terminal-node

AND-OR Grammar (AOG) building block

Input feature map !

Output feature map

Node operation: "(⋅)

!&,(

"(!&,()

Splitting

Terminal-node

Summation

…
)&,(*)&,(+

"()&,(* + ⋯+)&,(+ + !./012/.)

OR-node

!./012/.Concatenation

"()&,&345 ,)&3436,(7 + !./012/.)

)&,&345)&3436,(7

AND-node

!./012/.

Figure 3.1: Illustration of our AOG building block for grammar-guided network generator.
The resulting networks, AOGNets obtain 80.18% top-1 accuracy with 40.3M parameters in
ImageNet, significantly outperforming ResNet-152 (77.0%, 60.2M), ResNeXt-101 (79.6%,
83.9M), DenseNet-Cosine-264 (79.6%, ∼73M) and DualPathNet-98 (79.85%, 61.6M). See
text for details. (Best viewed in color)

18

The structure space is almost unbounded, and the node operation space for a given

structure is also combinatorial. Neural architecture design and search is a challenging

problem due to the exponentially large space and the highly non-convex non-linear ob-

jective function to be optimized in the search. As illustrated in Fig. 3.2 (b), to mitigate the

difficulty, neural architecture design and search have been simplified to design or search a

building block structure. Then, a DNN consists of a predefined number of stages each of

which has a small number of building blocks. This stage-wise building-block based design

is also supported by the theoretical study in (1) under some assumptions. Fig. 3.2 (c) shows

examples of some popular building blocks with different structures. Two questions arise

naturally:

• Can we unify the best practices used by the popular building blocks in a simple and elegant

framework? More importantly, can we generate building blocks and thus networks in a

principled way to effectively unfold the space (Fig. 3.2 (a)) ? (If doable)

• Will the unified building block/network generator improve performance on accuracy,

model interpretability and adversarial robustness without increasing model complexi-

ties and computational costs? If yes, the potential impacts shall be broad and deep for

representation learning in numerous practical applications.

To address the above questions, we first need to understand the underlying wisdom in

designing better network architectures: It usually lies in finding network structures which

can support flexible and diverse information flows for exploring new features, reusing

existing features in previous layers and back-propagating learning signals (e.g., gradients).

Then, what are the key principles that we need to exploit and formulate such that we can ef-

fectively and efficiently unfold the structure space in Fig. 3.2 (a) in a way better than existing

networks? Compositionality, reconfigurability and lateral connectivity are well-known prin-

ciples in cognitive science, neuroscience and pattern theory (25; Mumford and Desolneux;

Grenander and Miller; 26; 66; 26). They are fundamental for the remarkable capabilities

possessed by humans, of learning rich knowledge and adapting to different environments,

especially in vision and language. They have not been, however, fully and explicitly inte-

grated in DNNs.

Thus, we presents compositional grammatical architectures that realize composition-

ality, reconfigurability and lateral connectivity for building block design in a principled way.

We utilize AND-OR Grammars (AOG) (128; 163; 162) and propose AOG building blocks that

unify the best practices developed in existing popular building blocks. Our method deeply

integrates hierarchical and compositional grammars and DNNs for harnessing the best of

both worlds in deep representation learning.

19

Raw Data
(as start node)

A product space of
Structure: Directed Acyclic Graph (DAG)
Node Operations: Stretch and Squash data

Task Loss
(as end node)

ResNetGoogLeNet ResNeXt

(c) Examples of popular building blocks

DenseNet DualPathNet

(a) The space of neural architectures: exponentially large

(b) Building block based design by popular networks

Raw Data
(as start node)

Task Loss
(as end node)

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

B
lock

Stage 1 Stage 2 Stage #

…

Figure 3.2: Illustration of (a) the space of neural architectures, (b) the building block
based design, and (c) examples of popular building blocks in GoogLeNet (135), ResNet (40),
ResNeXt (151), DenseNet (49) and DualPathNets (13). See text for details.

Why grammars? Grammar models are well known in both natural language processing

and computer vision. Image grammar (163; 21; 162; 25) was one of the dominant methods

in computer vision before the recent resurgence in popularity of deep neural networks.

With the recent resurgence, one fundamental puzzle arises that grammar models with

more explicitly compositional structures and better analytic and theoretical potential, often

perform worse than their neural network counterparts. As David Mumford pointed out,

“Grammar in language is merely a recent extension of much older grammars that are built

into the brains of all intelligent animals to analyze sensory input, to structure their actions

and even formulate their thoughts." (Mumford). Our proposed AOG building block is highly

expressive for analyzing sensory input and bridges the performance gap between grammars

and DNNs. It also enables flexible and diverse network structures to address Hinton’s quest

on improving structural sufficiency in DNNs (44).

20

Stem

M
ean Pooling

Softm
ax

“Laptop”

Figure 3.3: Illustration of a 3-stage AOGNet with 1 AOG building bock in the 1st and 3rd stage, and
2 AOG building blocks in the 2nd stage. Note that different stages can use different AOG building
blocks. We show the same one for simplicity. The stem can be either a vanilla convolution or
convolution+MaxPooling. (Best viewed in color)

3.2 Background

Hand-crafted network architectures. After more than 20 years since the seminal work 5-

layer LeNet5 (71) was proposed, the recent resurgence in popularity of neural networks was

triggered by the 8-layer AlexNet (64) with breakthrough performance on ImageNet (116)

in 2012. Since then, a lot of efforts were devoted to learn deeper AlexNet-like networks

with the intuition that deeper is better. The VGG Net (10) proposed a 19-layer network

with insights on using multiple successive layers of small filters (e.g., 3×3) A special case,

1×1 convolution, was proposed in the network-in-network (82) for reducing or expanding

feature dimensionality between consecutive layers, and have been widely used in many

networks. The 22-layer GoogLeNet (136) introduced the first inception module and a bot-

tleneck scheme implemented with 1×1 convolution for reducing computational cost. The

main obstacle of going deeper lies in the gradient vanishing issue in optimization, which is

addressed with a new structural design, short-path or skip-connection, proposed in the

Highway network (131) and popularized by the ResNets (40), especially when combined

with the batch normalization (BN) (57). More than 100 layers are popular design in the re-

cent literature (40; 135), as well as even more than 1000 layers trained on large scale datasets

such as ImageNet (50; 160). The Fractal Net (69) and deeply fused networks (143) provided

an alternative way of implementing short path for training ultra-deep networks without

residuals. Complementary to going deeper, width matters in ResNets and inception based

networks too (155; 151; 159). Going beyond the first-order skip-connections in ResNets,

DenseNets (49) proposed a densely connected network architecture with concatenation

scheme for feature reuse and exploration, and DPNs (13) proposed to combine residuals

and densely connections in an alternating way for more effective feature exploration and

21

reuse. DLA networks (154) further develop iterative and hierarchical aggregation schema

with very good performance obtained. Most work focused on boosting spatial encoding

and utilizing spatial dimensionality reduction. The squeeze-and-excitation module (47) is

a recently proposed simple yet effective method focusing on channel-wise encoding. The

Hourglass network (97) proposed a hourglass module consisting of both subsampling and

upsampling to enjoy repeated bottom-up/top-down feature exploration.

Our AOGNet is created by intuitively simple yet principled grammars. It shares some

spirit with the inception module (135), the deeply fused nets (143) and the DLA (154).

Grammars. A general framework of image grammar was proposed in (163). Object

detection grammar was the dominant approaches for object detection (21; 162; 128; 81;

79; 80), and has recently been integrated with DNNs (138; 139; 12). Probabilistic program

induction (133; 67; 68) has been used successfully in many settings, but has not shown good

performance in difficult visual understanding tasks such as large-scale image classification

and object detection. More recently, recursive cortical networks (26) have been proposed

with better data efficiency in learning which adopts the AND-OR grammar framework (163),

showing great potential of grammars in developing general AI systems.

3.3 And-Or Grammar Network Overview

We first summarize the best practices in existing building blocks, and then briefly overview

our proposed AOG building block (Fig. 3.1) and how it unifies the existing ones.

Existing building blocks usually do not fully implement the three principles (composi-

tionality, reconfigurability and lateral connections).

• InceptionNets or GoogLeNets (135) embodies a split-transform-aggregate heuristic in a

shallow feed-forward way for feature exploration, which is inspired by the network-in-

network design (82) and the theoretical study on stage-wise design (1). However, the filter

numbers and sizes are tailored for each individual transformation, and the modules are

customized stage-by-stage. Interleaved group convolutions (159) share the similar spirit,

but use simpler scheme.

• ResNets (40) provide a simple yet effective solution, inspired by the Highway network (131),

that enables networks to enjoy going either deeper or wider without sacrificing the feasi-

bility of optimization. From the perspective of representation learning, skip-connections

within a ResNet (40) contributes to effective feature reuse. They do not, however, realize

the split component as done in GoogLeNets.

22

• ResNeXts (151) add the spit component in ResNets and address the drawbacks of the

Inception modules using group convolutions in the transformation.

• Deep Pyramid ResNets (34) gradually increase feature channels between building blocks,

instead of increasing feature channels sharply at each residual unit with down-sampling

in vanilla ResNets.

• DenseNets (49) explicitly differentiate between information that is added to the network

and information that is preserved. Dense connections with feature maps being concate-

nated together are used, which are effective for feature exploration, but lack the capability

of feature reuse as done in ResNets.

• Dual Path Networks (DPN) (13) utilize ResNet blocks and DenseNet blocks in parallel to

balance feature reuse and feature exploration.

• Deep Layer Aggregation networks (DLA) (154) iteratively and hierarchically aggregate the

feature hierarchy when stacking the building blocks such as the ResNet ones.

Our AOG building block is hierarchical, compositional and reconfigurable with lateral

connections by design. As Fig. 3.1 shows, an AOG building block splits its input feature map

into N groups along feature channels, and treat it as a sentence of N words. It then jointly

realizes a phrase structure grammar (vertical composition) (24; 25; 22; 163; 162; 128) and a

dependency grammar (horizontal connections in pink in Fig. 3.1) (35; 163; 26) in bottom-up

parsing the “sentence" for better feature exploration and reuse: (i) Phrase structure grammar

is a 1-D special case of the method presented in (128; 149). It can also be understood as

a modified version of the well-known Cocke-Younger-Kasami (CYK) parsing algorithm

in natural language processing according to a binary composition rule. (ii) Dependency

grammar is integrated to capture lateral connections and improve the representational

flexibility and power.

In an AOG building block, each node applies some basic operation T (·) (e.g., Conv-BN-

ReLU) to its input, and there are three types of nodes:

• A Terminal-node takes as input a channel-wise slice of the input feature map (i.e., a

k -gram).

• An AND-node implements composition, whose input is computed by concatenating

features of its syntactic child nodes, and adding the lateral connection if present.

• An OR-node represents alternative compositions, whose input is the element-wise sum

of features of its syntactic child nodes and the lateral connection if present.

Our AOG building block unifies the best practices developed in popular building blocks

in that,

• Terminal-nodes implement the split-transform heuristic (or group convolutions) as done

23

in GoogLeNets (135) and ResNeXts (151), but at multiple levels (including overlapped

group convolutions). They also implement the skip-connection at multiple levels. Unlike

the cascade-based stacking scheme in ResNets, DenseNets and DPNs, Termninal-nodes

can be computed in parallel to improve efficiency. Non-terminal nodes implement ag-

gregation.

• AND-nodes implement DenseNet-like aggregation (i.e., concatenation) (49) for feature

exploration.

• OR-nodes implement ResNet-like aggregation (i.e., summation) (40) for feature reuse.

• The hierarchy facilitates gradual increase of feature channels as in Deep Pyramid ResNets,

and also leads to good balance between depth and width of networks. (34)

• The compositional structure provides much more flexible information flows than DPN

(13) and the DLA (154).

• The lateral connections induce feature diversity and increase the effective depth of nodes

along the path without introducing extra parameters.

We stack AOG building blocks to form a deep AOG network, called AOGNet. Fig. 3.3

illustrates a 3-stage AOGNet. Our AOGNet utilizes two nice properties of grammars: (i) The

flexibility and simplicity of constructing different network structures based on a dictionary

of primitives and a set of production rules in a principled way; and (ii) The highly expressive

power and the parsimonious compactness of their explicitly hierarchical and compositional

structures. Furthermore, the explainable rigor of grammar could be harnessed potentially

to address the intepretability issue of deep neural networks.

3.4 The Architecture of AOGNets

In this section, we first present details of constructing the structure of our AOGNets. Then,

we define node operation functions for nodes in an AOGNet. We also propose a method of

simplifying the full structure of an AOG building block which prunes syntactically symmetric

nodes.

3.4.1 The Structure of an AOGNet

An AOGNet (Fig. 3.3) consists of a predefined number of stages each of which comprises one

or more than one AOG building blocks. As Fig. 3.1 illustrates, an AOG building block maps

an input feature map Fi n with the dimensions Di n ×Hi n ×Wi n (representing the number of

channels, height and width respectively) to an output feature map Fo u t with the dimensions

24

Do u t ×Ho u t ×Wo u t . We split the input feature map into N groups along feature channels,

and then treat it as a “sentence of N words". Each “word" represents a slice of the input

feature map with Di n
N ×Hi n ×Wi n . In implementation, following a common convention, we

usually reduce the spatial size and increase the number of channels between consecutive

stages for bigger receptive field and greater expressive power. Within a stage, we usually

keep the dimensions of input and output same for the AOG building blocks except for the

first one (40). Our AOG building block is constructed by a simple algorithm (Algorthm 1)

which integrates two grammars.

The phrase structure grammar (24; 25; 22; 163; 162; 128). Let Si , j be a non-terminal

symbol representing the sub-sentence starting at the i -th word (i ∈ [0, N −1]) and ending

at the j -th word (j ∈ [0, N −1], j ≥ i) with the length k = j − i +1. We consider the following

three rules in parsing a sentence:

Si , j → ti , j , (3.1)

Si , j (m)→ [L i ,i+m ·Ri+m+1, j], 0≤m < k , (3.2)

Si , j → Si , j (0)|Si , j (1)| · · · |Si , j (j − i). (3.3)

where we have,

• The first rule is a termination rule which grounds the non-terminal symbol Si , j directly to

the corresponding sub-sentence ti , j , i.e., a k -gram terminal symbol, which is represented

by a Terminal-node.

• The second rule is a binary decomposition rule, denoted by [L ·R], which decomposes a

non-terminal symbol Si , j into two child non-terminal symbols representing a left sub-

sentence and a right sub-sentence, L i ,i+m and Ri+m+1, j respectively. It is represented by

an AND-node, and entails the concatenation scheme in forward computation to match

feature channels.

• The third rule represents alternative ways of decomposing a non-terminal symbol Si , j ,

denoted by A|B |C , which is represented by an OR-node, and can utilize summation

scheme in forward computation to “integrate out" the decomposition structures.

The dependency grammar (35; 26; 163). We introduce dependency grammar to model

lateral connections between non-terminal nodes of the same type (AND-node or OR-node)

with the same length k . As illustrated by the arrows in pink in Fig. 3.1, we add lateral

connections in a straightforward way: (i) For the set of OR-nodes with k ∈ [1, N −1], we first

sort them based on the starting index i ; and (ii) For the set of AND-nodes with k ∈ [2, N],

we first sort them based on the lexical orders of the pairs of starting indexes of the two child

25

Input: The total length (or primitive size) N .
Output: The AND-OR Graph G =<V , E >
Initialization: Create an OR-node O0,N−1 for the entire sentence, V = {O0,N−1}, E = ;, BFS

queue Q = {O0,N−1};
while Q is not empty do

Pop a node vi , j from the Q and let k = j − i +1;
if vi , j is an OR-node then

i) Add a terminal-node ti , j , and update V =V ∪{ti , j }, E = E ∪{< vi , j , ti , j >};
ii) Create AND-nodes Ai , j (m) for all valid splits 0≤m < k ;
E = E ∪{< vi , j , Ai , j (m)>};
if Ai , j (m) /∈V then

V =V ∪{Ai , j (m)};
Push Ai , j (m) to the back of Q ;

end
else if vi , j is an AND-node with split index m then

Create two OR-nodes Oi ,i+m and Oi+m+1, j for the two sub-sentence respectively;
E = E ∪{< vi , j (m), Oi ,i+m >,< vi , j (m), Oi+m+1, j >};
if Oi ,i+m /∈V then

V =V ∪{Oi ,i+m};
Push Oi ,i+m to the back of Q ;

end
if Oi+m+1, j /∈V then

V =V ∪{Oi+m+1, j };
Push Oi+m+1, j to the back of Q ;

end
end

end
Add lateral connections (see text for detail).

Algorithm 1: Constructing an AOG building block

nodes. Then, we add sequential lateral connections for nodes in the sorted set either from

left to right, or vice versa. We use opposite lateral connection directions for AND-nodes

and OR-nodes iteratively to have globally consistent lateral flow from bottom to top in an

AOG building block.

The AOG building block is constructed by the Algorithm 1 using the breadth-first search

(BFS) order.

3.4.2 Node Operations in an AOGNet

In an AOG building bock, all nodes use the same type of transformation function T (·) (see

Fig. 3.1). For a node v , denote by fi n (v) its input feature map, and then its output feature

26

Figure 3.4: Illustration of simplifying the AOG building blocks by pruning syntactically
symmetric child nodes of OR-nodes. Left: An AOG building block with full structure con-
sisting of 10 Terminal-nodes, 10 AND-nodes and 10 OR-nodes. Nodes and edges to be
pruned are plotted in yellow. Right: The simplified AOG building block consisting of 8
Terminal-nodes, 5 AND-nodes and 8 OR-nodes. (Best viewed in color)

map is computed by fo u t (v) = T (fi n (v)). For a Terminal-node t , it is straightforward to

apply the transformation using fi n (t) = Fi n (t) where Fi n (t) is the k -gram slice from the

input feature map of the AOG building block. For AND-nodes and OR-nodes, we have,

• For a Terminal-node ti , j , denote by Fi , j the corresponding k -gram chunk in the input

feature map F . We have its input f t
i , j = Fi , j with the dimensionality c v

i , j ×H ×W , and its

output ft
i , j =T (Fi , j)with the dimensionality cv

i , j×H×W, where c v
i , j = k×c and cv

i , j = k× CN .

• For an AND-node A with two child nodes L and R , its input fi n (A) is first computed by the

concatenation of the outputs of the two child nodes, fi n (A) = [fo u t (L) ·λL , fo u t (R) ·λR]. If

it has a lateral node whose output is denoted by fo u t (Al a t e r a l), we add it and get fi n (A) =

[fo u t (L) ·λL , fo u t (R) ·λR] + fo u t (Al a t e r a l) ·λl a t e r a l .

• For an OR-node O , its input is the summation of the outputs of its child nodes (including

the lateral node if present), fi n (O) =
∑

u∈c h (O) fo u t (u) ·λu , where c h (·) represents the set

of child nodes.

Where λL ,λR , λl a t e r a l and λu ’s are weights (see details in Section 3.5.1). Node inputs are

computed following the syntactical structure of AOG building block to ensure that feature

dimensions and spatial sizes match in the concatenation and summation. In learning and

inference, we follow the depth-first search (DFS) order to compute nodes in an AOG building

block, which ensures that all the child nodes have been computed when we compute a

node v .

27

3.4.3 Simplifying AOG Building Blocks

The phrase structure grammar is syntactically redundant since it unfolds all possible con-

figurations w.r.t. the binary composition rule. In representation learning, we also want to

increase the feature dimensions of different stages in a network for better representational

power, but try not to increase the total number of parameters significantly.

To balance the structural complexity and the feature dimensions of our AOG building

block, we propose to simplify the structure of an AOG building block by pruning some

syntactically redundant nodes. As illustrated in Fig. 3.4, the pruning algorithm is simple:

Given a full structure AOG building block, we start with an empty simplified block. We first

add the root OR-node into the simplified block. Then, we follow the BFS order of nodes

in the full structure block. For each encountered OR-node we only keep the child nodes

which do not have left-right syntactically symmetric counterparts in the current set of child

nodes in the simplified block. For encountered AND-nodes and Terminal-nodes, we add

them to the simplified block. The pruning algorithm can be integrated into Algorithm 1.

For example, consider the four child nodes of the root OR-node in the left of Fig. 3.4, the

fourth child node is removed since it is symmetric to the second one.

3.5 Experiments

We test our AOGNet on three highly competitive image classification benchmarks: CIFAR-10

and CIFAR-100 (63), and ImageNet-1K (116). For testing the transfer learning ability of our

ImageNet-pretrained AOGNets, we also tested our AOGNets as backbone for object detec-

tion and instance segmentation tasks on the PASCAL VOC 2007 and 2012 benchmarks (19)

and the MS-COCO object detection and segmentation benchmark (84). We implemented

our AOGNets using PyTorch. 1

3.5.1 Implementation Settings and Details

We use simplified AOG building blocks. For the node operation T (), we use the bottleneck

variant of Conv-BN-ReLU proposed in ResNets (40), which adds one 1× 1 convolution

before and after the operation to first reduce feature dimension and then expand it back.

More specifically, we have T (x) = R e LU (x +T (x)) for an input feature map x where T ()

1Our code based on PyTorch has been made publicly available at https://github.com/iVMCL/
AOGNets.

28

https://github.com/iVMCL/AOGNets
https://github.com/iVMCL/AOGNets

represents a sequence of primitive operations, Conv1x1-BN-ReLU, Conv3x3-BN-ReLU and

Conv1x1-BN. If Dropout (64) is used with drop rate p ∈ (0, 1), we add it after the last BN, i.e.,

T (x) =R e LU (x +D r o p o u t (T (x), p))

Handling double-counting due to the compositional DAG structure and lateral connec-

tions. First, in our AOG building block, some nodes will have multiple paths to reach the

root OR-node due to the compositional DAG structure. Since we use the skip connection

in the node operation T (), the feature maps of those nodes with multiple paths will be

double-counted at the root OR-node. Second, if a node v and its lateral node vl a t e r a l share

a parent node, we also need to handle double-counting in the skip connection. Denote by

n (v) the number of paths between v and the root OR-node, which can be counted during

the building block construction (Algorithm 1). Consider an AND-node A with two syntactic

child node L and R and the lateral node Al a t e r a l , we compute two different inputs, one for

the skip connection, f s k i p
i n (A) = [fo u t (L) · n (A)

n (L) , fo u t (R) · n (A)
n (R)] if A and Al a t e r a l share a parent

node and f s k i p
i n (A) = [fo u t (L) · n (A)

n (L) , fo u t (R) · n (A)
n (R)] + fo u t (Al a t e r a l) · n (A)

n (Al a t e r a l)
otherwise, and the

other for T (), f T
i n (A) = [fo u t (L), fo u t (R)] + fo u t (Al a t e r a l). The transformation for node A is

then implemented by T (A) =R e LU (f s k i p (A)+T (f T
i n (A))). Similarly, we can set λu ’s in the

OR-node operation. We note that we can also treatλ’s as unknown parameters to be learned

end-to-end.

let x be the input computed from the syntactic child nodes and xl a t e r a l be the output

from the lateral node. The input for node v is x = xc h+xl a t e r a l . If v and its lateral node share

a parent node, we omit xl a t e r a l in the operation of the skip connection and we implement

the node operation for v by T (x) =R e LU (xc h +T (x)).

We notice that we can apply different AOG building blocks and node operations for

different types of nodes as long as we can match the dimensions during the computation.

We keep them simple in this paper. We leave the exploration of different operators in future

work.

3.5.2 Experiments on CIFAR

CIFAR-10 and CIFAR-100 datasets (63), denoted by C10 and C100 respectively, consist of

32× 32 color images drawn from 10 and 100 classes. The training and test sets contains

50, 000 and 10, 000 images respectively. We adopt widely used standard data augmentation

scheme, random cropping and mirroring, in preparing the training data.

We train AOGNets with stochastic gradient descent (SGD) for 300 epochs with random

parameter initialization. The front-end (see Fig. 3.3) uses a single convolution layer. The

29

Table 3.1: Error rates (%) on the two CIFAR datasets (63). #Params uses the unit of Million.
k in DenseNet refers to the growth rate.

Method Depth #Params FLOPs C10 C100
ResNet (40) 110 1.7M 0.251G 6.61 -

ResNet (reported by (50)) 110 1.7M 0.251G 6.41 27.22

ResNet (pre-activation) (42)
164 1.7M 0.251G 5.46 24.33

1001 10.2M - 4.62 22.71
Wide ResNet (155) 16 11.0M - 4.81 22.07

DenseNet-BC (49) (k = 12) 100 0.8M 0.292G 4.51 22.27
AOGNet-4-(1,1,1)-252d 74 0.78M 0.123G 4.37 20.95

DenseNet-BC (49) (k = 24) 250 15.3M 5.46G 3.62 17.60
AOGNet-4-(1,1,1)-1152d 98 15.8M 2.4G 3.42 16.93

Wide ResNet (155) 28 36.5M 5.24G 4.17 20.50
FractalNet (69) 21 38.6M - 5.22 23.30

with Dropout/DropPath 21 38.6M - 4.60 23.73
ResNeXt-29, 8×64d (151) 29 34.4M 3.01G 3.65 17.77

ResNeXt-29, 16×64d (151) 29 68.1M 5.59G 3.58 17.31
DenseNet-BC (49) (k = 40) 190 25.6M 9.35G 3.46 17.18
AOGNet-4-(1,1,1)-1444d 98 24.8M 3.7G 3.27 16.63

initial learning rate is set to 0.1, and is divided by 10 at 150 and 225 epoch respectively. For

CIFAR-10, we chose batch size 64 with weight decay 1× 10−4, while batch size 128 with

weight decay 5×10−4 is adopted for CIFAR-100. The momentum is set to 0.9.

The depth of an AOGNet is defined by the largest number of units which have learnable

parameters along the paths from the final output to the input data following BFS order.

E.g., the longest path in the simplified AOG building block in Fig. 3.4 is 8, and a bottle-

neck operation is counted as 3 units, so the depth of the simplified AOG building block is

counted as 24. In comparison, to indicate the specifications, AOGNets will be written by

AOGNet-PrimitiveSize-(#AOG blocks per stage)-[OutputFeatDim]. E.g., AOGNet-4-(1,1,1,1)-

256d represents a 4-stage AOGNet with 1 AOG building block per stage, primitive size being

4, and the final output feature dimension 256.

After the AOG structure is specified, the number of parameters of an AOGNet is deter-

mined by the number of channels of input/output of each stage. Thus, for an M -stage

AOGNet, we have an (M +1)-tuple specifying the number of channels. For example, we can

specify the 4-tuple, (16, 16, 32, 64) or (16, 32, 64, 128) for a 3-stage AOGNet, resulting different

number of parameters in total.

Results and Analyses. We summarize the results in Table 3.1. With smaller model sizes

30

Table 3.2: An ablation study of our AOGNets using the mean error rate across 5 runs. In
the first two rows, the AOGNets use full structure, and the pruned structure in the last two
rows. The feature dimensions of node operations are accordingly specified to keep model
sizes comparable.

Method #Params FLOPS CIFAR10 CIFAR100
AOGNet 4.24M 0.65G 3.75 19.20

AOGNet+LC 4.24M 0.65G 3.70 19.09
AOGNet+RS 4.23M 0.70G 3.57 18.64

AOGNet+RS+LC 4.23M 0.70G 3.52 17.99

and much reduced computing complexity (FLOPs), our AOGNets obtain better performance

than ResNets (40) and some of the variants, ResNeXts (151) and DenseNets (49) consistently

on both datasets. Our small AOGNet (0.78M) already outperforms the ResNet (40) (10.2M)

and the WideResNet (155) (11.0M). Since the same node operation is used, the improvement

must come from the AOG building block structure. Compared with the DenseNets, our

AOGNets improve more on C100, and use less than half FLOPs for comparable model sizes.

The reason for the reduced FLOPs is that DenseNets apply down-sampling after each Dense

block, while our AOGNets sub-sample at Terminal-nodes.

Ablation Study We conduct an ablation study which investigates the effects of (i) RS:

Removing Symmetric child nodes of OR-nodes in the pruned AOG building blocks, and of

(ii) LC: adding Lateral Connections. As Table 3.2 shows, the two components, RS and LC,

improve performance. The results are consistent with our design intuition and principles.

The RS component facilitates higher feature dimensions due to the reduced structural

complexity, and the LC component increases the effective depth of nodes on the lateral

flows.

3.5.3 Image Classification in ImageNet-1K

The ILSVRC 2012 classification dataset (116) consists of about 1.2 million images for training,

and 50, 000 for validation, from 1, 000 classes. We adopt the same data augmentation scheme

(random crop and horizontal flip) for training images as done in (40; 49), and apply a single-

crop with size 224×224 at test time. Following the common protocol, we evaluate the top-1

and top-5 classification error rates on the validation set.

Model specifications. We test three AOGNets with different model complexities. In

comparison, we use the model size as the name tag for AOGNets (e.g., AOGNet-12M means

31

the AOGNet has 12 million parameters or so). The stem (see Fig. 3.3) uses three Conv3x3-BN

layers (with stride 2 for the first layer), followed by a 2×2 max pooling layer with stride 2.

All the three AOGNets use four stages. Within a stage, we use the same AOG building block,

while different stages may use different blocks. A stage is then specified by Nn where N is

primitive size (Algorithm 1) and n the number of blocks. The filter channels are defined

by a 5-tuple for specifying the input and output dimensions for the 4 stages. The detailed

specifications of the three AOGNets are: AOGNet-12M uses stages of (22,41,43,21) with

filter channels (32,128,256,512,936), AOGNet-40M uses stages of (22,41,44,21)with filter

channels (60, 240, 448, 968, 1440), and AOGNet-60M uses stages of (22, 42, 45, 21)withe filter

channels (64, 256, 512, 1160, 1400).

Training Settings. i) Common training Setup.We use 8 GPUs (NVIDIA V100) to train

models using the same settings for apple-to-apple comparisons. The method proposed

in (38) is used to initialize all convolutions for all models. The batch size is 128 per GPU 2

with FP16 optimization used in training to reduce the training time 3. The mean and stan-

dard deviation for block-wise standardization are computed within each GPU. The initial

learning rate is 0.4, and the cosine learning rate scheduler (87) is used with 5 warm-up

epochs and weight decay 1×10−4 and momentum 0.9. In addition to the common settings,

we have two different setups in experimental comparisons:

ii) The Vanilla Setup. We adopt the basic data augmentation scheme (random crop

and horizontal flip) in training as done in (40). We train the models for 120 epochs. All

ResNets (40) use the vanilla stem layer with 7× 7 convolution. The MobileNets-v2 uses

3×3 convolution in the stem layer. The AOGNets use two consecutive 3×3 convolution

in the stem layer. All the γ and β parameters of the feature normalization backbones are

initialized to 1 and 0 respectively.

iii) The State-of-the-Art Setup. There are different aspects in the vanilla setup which

have better variants developed with better performance shown (43). We want to address

whether the improvement by our proposed AN are truly fundamental or will disappear with

more advanced tips and tricks added in training ConvNets. First, on top of the basic data

augmentation, we also use label smoothing (137) (with rate 0.1) and the mixup (with rate

0.2) (157). We increase the total number of epochs to 200. We use the same stem layer

with two consecutive 3×3 convolution for all models. We add the zero γ initialization trick

for the feature normalization backbones (not for AN), which uses 0 to initialize the last

2Although the best practice is to use 8 GPUs and batch size 32 per GPU for training ConvNets in ImageNet,
we do not follow it since it would take too long in order to run all the experiments given the resources we have.

3The NVIDIA APEX library is used.

32

https://github.com/NVIDIA/apex

Table 3.3: Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-1000 vali-
dation set using the vanilla setup.

Method #Params FLOPS top-1 top-5
ResNet-101 (40) 44.5M 8G 23.6 7.1
ResNet-152 (40) 60.2M 11G 23.0 6.7

ResNeXt-50 (151) 25.03M 4.2G 22.2 5.6
ResNeXt-101 (32×4d) (151) 44M 8.0G 21.2 5.6
ResNeXt-101 (64×4d) (151) 83.9M 16.0G 20.4 5.3
ResNeXt-101 + BAM (100) 44.6M 8.05G 20.67 -

ResNeXt-101 + CBAM (147) 49.2M 8.0G 20.60 -
ResNeXt-50+SE (47) 27.7M 4.3G 21.1 5.49

ResNeXt-101+SE (47) 48.9M 8.46G 20.58 5.01
DensetNet-161 (49) 27.9M 7.7G 22.2 -
DensetNet-169 (49) ∼ 13.5M ∼ 4G 23.8 6.85
DensetNet-264 (49) ∼ 33.4M - 22.2 6.1

DensetNet-cosine-264 (105) ∼ 73M ∼ 26G 20.4 -
DPN-68 (13) 12.8M 2.5G 23.57 6.93
DPN-92 (13) 38.0M 6.5G 20.73 5.37
DPN-98 (13) 61.6M 11.7G 20.15 5.15

AOGNet-12M 11.9M 2.36G 22.28 6.14
AOGNet-40M 40.3M 8.86G 19.82 4.88
AOGNet-60M 60.7M 14.36G 19.34 4.78

normalization layer (BN3 in Figure 4.4) to make the initial state of a residual block to be

identity.

Results and Analyses: Table 4.2 shows the results, and Fig. 3.5 shows plots for the top-1

error rates and training losses. Our AOGNets are the best among the models with compara-

ble model sizes in comparison in terms of top-1 and top-5 accuracy. Our small AOGNet-12M

outperforms ResNets (40) (44.5M and 60.2M) by 1.32% and 0.72% respectively. We note

that our AOGNets use the same bottleneck operation function as ResNets, so the improvement

must be contributed by the AOG building block structure. Our AOGNet-40M obtains better

performance than all other methods in comparison, including ResNeXt-101 (151)+SE (47)

(48.9M) which represents the most powerful and widely used combination in practice.

AOGNet-40M also obtains better performance than the runner-up, DPN-98 (13) (61.6M),

which indicates that the hierarchical and compositional integration of the DenseNet- and

ResNet-aggregation in our AOG building block is more effective than the cascade-based

integration in the DPN (13). Our AOGNet-60M achieves the best results. The FLOPs of

our AOGNet-60M are slightly higher than DPN-98 partially because DPN uses ResNeXt

33

Table 3.4: Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-1000 vali-
dation set using the state-of-the-art setup. The numbers in brackets show the performance
improvement by our proposed AN over the baselines. All models are trained from scratch
under the same settings. See text for details.

Method #Params FLOPS top-1 top-5
ResNet-50 25.56M 4.09G 21.08 5.56
ResNet-101 44.57M 8.12G 19.71 4.89

AOGNet-12M 12.26M 2.19G 21.63 5.60
AOGNet-40M 40.15M 7.51G 18.70 4.47

Table 3.5: An ablation study of our AOGNets using different OR-Node merging scheme:
elementwise-um, elementwise-average or elementwise-max. This results are preformed
with AOGNet-12m with pruned structure without lateral connections.

Method top-1 top-5
elem-sum 22.59 6.12
elem-avg 22.60 6.14
elem-max 23.10 6.50

operation (i.e., group conv.).

Mobile settings. We train an AOGNet-4M under the typical mobile settings (46). Ta-

ble 3.6 shows the comparison results. We obtain performance on par to the popular net-

works specifically designed for mobile platforms such as the MobileNets (46; 120) and

ShuffleNets (161). Our AOGNet also outperforms the auto-searched network, NASNet (166)

(which used around 800 GPUs in search). We note that we use the same AOGNet structure,

thus showing promising device-agnostic capability of our AOGNets. This is potentially im-

portant and useful for deploying DNNs to different platforms in practice since no extra

efforts of hand-crafting or searching neural architectures are entailed.

3.5.4 Experiment on Model Interpretability

Interpretability has been recognized as a critical concern in developing deep learning based

AI systems (DARPA). We use the network dissection metric (6) which compares the number

of unique “detectors" (i.e., filter kernels) in the last convolution layer. Our AOGNet obtains

the best score in comparison (Fig. 3.10), which indicates the AOG building block has great

potential to induce model interpretabilty by design, while achieving the best accuracy

34

Figure 3.5: Plots of top-1 error rates and training losses of the three AOGNets in ImageNet. (Best
viewed in color and magnification)

Table 3.6: The top-1 and top-5 error rates (%) on the ImageNet-1K validation set under
mobile settings.

Method #Params FLOPS top-1 top-5
MobileNetV1 (46) 4.2M 575M 29.4 10.5
SqueezeNext (28) 4.4M - 30.92 10.6

ShuffleNet (1.5) (161) 3.4M 292M 28.5 -
ShuffleNet (x2) (161) 5.4M 524M 26.3 -

CondenseNet (G=C=4) (48) 4.8M 529M 26.2 8.3
MobileNetV2 (120) 3.4M 300M 28.0 9.0

MobileNetV2 (1.4) (120) 6.9M 585M 25.3 7.5
NASNet-C (N=3) (166) 4.9M 558M 27.5 9.0

AOGNet-4M 4.2M 557M 25.6 7.91

35

Figure 3.6: Network dissection (6), image source from (6).

Table 3.7: Top-1 accuracy comparisons under white-box adversarial attack using 1-step
FGSM (31) with the Foolbox toolkit (107).

Method #Params ε= 0.1 ε= 0.3 clean
ResNet-101 44.5M 12.3 0.40 77.37
ResNet-152 60.2M 16.3 0.85 78.31
DenseNet-161 28.7M 13.0 2.1 77.65
AOGNet-12M 12.0M 18.1 1.4 77.72
AOGNet-40M 40.3M 28.3 2.2 80.18
AOGNet-60M 60.1M 30.2 2.6 80.66

performance.

3.5.5 Experiment on Adversarial robustness

Adversarial attack is another crucial issue faced by many DNNs (2). We conduct a simple

experiment to compare the out-of-the-box adversarial robustness of different DNNs. Ta-

ble 3.7 shows the results. Under the vanilla settings, our AOGNets show better potential in

adversarial defense, especially when the perturbation energy is controlled relatively low

(i.e. ε= 0.1). We will investigate this with different attacks and adversarial training in future

work.

3.5.6 Object Detection in Pascal VOC

We test our AOGNets in object detection on the PASCAL VOC 2007 and 2012 datasets (19).

We adopt the vanilla Faster R-CNN system (113) and reuse the code in PyTorch 4. We only

4https://github.com/jwyang/faster-rcnn.pytorch

36

https://github.com/bethgelab/foolbox
https://github.com/jwyang/faster-rcnn.pytorch

AOGNet-
60

M

AOGNet-
40

M

Res
Net-

10
1

Res
Net-

15
2

AOGNet-
12

M

Res
Net-

50

Den
se

Net-
16

1

Res
Net-

18

Goo
gL

eN
et VGG

Alex
Net

0

50

100

150

200

250

300

350
N

um
be

r o
f u

ni
qu

e
de

te
ct

or
s

object
part
scene
material
texture
color

AOGNet-
60

M

AOGNet-
40

M

Res
Net-

10
1

Res
Net-

15
2

AOGNet-
12

M

Res
Net-

50

Den
se

Net-
16

1

Res
Net-

18

Goo
gL

eN
et VGG

Alex
Net

0

500

1000

1500

2000

2500

N
um

be
r o

f d
et

ec
to

rs

object
part
scene
material
texture
color

Figure 3.7: Comparisons of model interpretability using the network dissection method (6) on
ImageNet pretrained networks.

substitute the ConvNet backbone with our AOGNets in experiments and keep everything

else unchanged for fair comparison. We finetue the AOGNets pretrained on ImageNet. We

adopt the provided end-to-end training procedure to train the region proposal network

(RPN) and R-CNN jiontly. The first three stages are shared by RPN and R-CNN, and the

last stage is used as the head classifier for region-of-interest (RoI) prediction. We fix all

parameters pretrained on ImageNet before stage 1 (inclusive) in training. We follow the

standard evaluation metrics Average Precision (AP) and mean of AP (mAP) in evaluation (19).

Table 3.8 shows the detection results and comparisons. Our AOGNets obtain better mAP

than ResNet-101 by around 3% consistently. When trained using the 07+12 trainval dataset,

our small AOGNet-backboned detector (13.6M) already slightly outperforms the ResNet-

backboned one (47.5M), which further shows the effectiveness of the AOG building blocks

in object detection tasks.

3.5.7 Object Detection and Segmentation in COCO

MS-COCO is one the widely used benchmarks for object detection and segmentation (84). It

consists of 80 object categories. We train AOGNet in the COCO train2017 set and evaluate

in the COCO val2017 set. We report the standard COCO metrics of Average Precision (AP),

AP50, and AP75, for bounding box detection (APb b) and instance segmentation, i.e. mask

37

http://netdissect.csail.mit.edu/

Table 3.8: Performance comparisons using Average Precision (AP) at the intersection over
union (IoU) threshold 0.5 (AP@0.5) in the PASCAL VOC2007 / 2012 dataset. ∗ reported
based on our re-implementation using the exactly same PyTorch implementation of Faster
R-CNN and PyTorch pretrained ResNet-101 backbone on ImageNet for fair comparisons.
The reproduced results of ResNets are better than those reported in the original paper (40).

07trainval/07test 07+12trainval/12test
model ResNet-101∗ AOGNet-12M AOGNet-40M ResNet-101∗ AOGNet-12M AOGNet-40M

#params 47.5M 13.6M 43.2M 47.5M 13.6M 43.2M
areo 76.2 76.0 77.2 86.1 87.0 88.9
bike 77.9 77.4 84.4 82.5 82.1 82.8
bird 74.6 72.6 78.0 77.6 78.4 81.3
boat 59.9 59.2 64.5 63.4 63.1 66.9

bottle 53.0 55.6 60.6 54.5 56.7 62.4
bus 80.8 80.4 83.5 80.6 80.0 82.6
car 81.7 83.7 87.2 79.9 80.7 83.0
cat 85.3 85.2 85.8 91.0 91.5 92.5

chair 49.0 50.1 55.4 55.8 55.1 59.6
cow 80.2 77.1 85.1 79.9 79.7 82.5
table 64.1 63.7 65.7 56.0 59.9 61.9
dog 83.7 83.8 86.0 89.5 88.8 90.9

horse 83.3 82.8 84.5 82.6 83.8 86.1
mbike 76.5 78.7 80.3 83.3 82.8 84.5
person 77.8 77.8 78.9 83.1 83.4 84.5
plant 45.2 44.7 52.4 53.9 54.3 56.1
sheep 73.0 71.4 75.5 79.8 79.0 83.3
sofa 72.0 72.5 72.6 67.4 65.8 69.7
train 81.7 79.1 82.6 86.3 84.7 87.6

tv 71.3 70.6 75.9 69.5 67.4 71.5
mean AP 72.3 72.1 75.8 75.1 75.2 78.0

prediction (APm). We experiment on the Mask-RCNN system (36) using the state-of-the-art

implementation, maskrcnn-benchmark (91). We use AOGNets pretrained on ImageNet-

1K as the backbones. In fine-tuning for object detection and segmentation, we freeze all

the BN parameters as done for the ResNet (40) and ResNeXt (151) backbones. We keep all

remaining aspects unchanged. We test both the C4 and FPN settings.

Results. Table 4.4 shows the comparison results. Our AOGNets obtain better results

than the ResNet (40) and ResNeXt (151) backbones with smaller model sizes and similar or

slightly better inference time. The results show the effectiveness of our AOGNets learning

better features in object detection and segmentation tasks.

38

Table 3.9: Mask-RCNN results on coco_val2017 using the 1x training schedule. Results of
ResNets and ResNeXts are reported by the maskrcnn-benchmark.

Method #Params t (s/img) APb b APb b
50 APb b

75 APm APm
50 APm

75

ResNet-50-C4 35.9M 0.130 35.6 56.1 38.3 31.5 52.7 33.4
ResNet-101-C4 54.9M 0.180 39.2 59.3 42.2 33.8 55.6 36.0
AOGNet-12M-C4 14.6M 0.092 36.8 56.3 39.8 32.0 52.9 33.7
AOGNet-40M-C4 48.1M 0.184 41.4 61.4 45.2 35.5 57.8 37.7
ResNet-50-FPN 44.3M 0.125 37.8 59.2 41.1 34.2 56.0 36.3
ResNet-101-FPN 63.3M 0.145 40.1 61.7 44.0 36.1 58.1 38.3
ResNeXt-101-FPN 107.4M 0.202 42.2 63.9 46.1 37.8 60.5 40.2
AOGNet-12M-FPN 31.2M 0.122 38.0 59.8 41.3 34.6 56.6 36.4
AOGNet-40M-FPN 59.4M 0.147 41.8 63.9 45.7 37.6 60.3 40.1
AOGNet-60M-FPN 78.9M 0.171 42.5 64.4 46.7 37.9 60.9 40.3

3.5.8 Experiment on Chest X-Ray datasets for Medical Image Analysis

3.6 Summary and Discussion

We proposes grammar-guided network generators which construct compositional gram-

matical architectures for deep learning in an effective way. It presents deep AND-OR Gram-

mar networks (AOGNets). The AOG comprises a phrase structure grammar and a depen-

dency grammar. An AOGNet consists of a number of stages each of which comprises a num-

ber of AOG building blocks. Our AOG building block harnesses the best of grammar models

and DNNs for deep learning. AOGNet obtains state-of-the-art performance. In experiments,

our AOGNet is tested in the ImageNet-1K classification benchmark (116) and the MS-COCO

object detection and segmentation benchmark (84). In ImageNet-1K (116), AOGNet obtains

better performance than all state-of-the-art networks under fair comparisons. AOGNet

also obtains the best model interpretability score using network dissection (6). AOGNet

further shows better potential in adversarial defense. In MS-COCO (84), AOGNet obtains

better performance than the ResNet and ResNeXt backbones in Mask R-CNN (36).

We hope this work encourages further exploration in integrating compositional gram-

mar models and other structured knowledge representation and deep neural networks

end-to-end, especially to harness the explainable rigor of the former and the discriminative

power of the latter. In implementation, some interesting aspects that worth investigat-

ing include, but not limited to, searching better hyper-parameters in learning AOGNets

(e.g., learning rate and schedule, parameter initialization and batch size, etc), conducting

39

https://github.com/facebookresearch/maskrcnn-benchmark

Table 3.10: Results on 14 pathologies in the ChestX-ray14 dataset. CheXNet is using
a DenseNet-121 architecture. * CheXNet implementation with PyTorch reported by
https://github.com/zoogzog/chexnet.

Pathology CheXNet CheXNet* AOGNet-12M AOGNet-40M

Athelectasis 0.8094 0.8321 0.8357 0.8375
Cardiomegaly 0.9248 0.9107 0.9121 0.9186
Effussion 0.8638 0.8860 0.8870 0.8906
Infiltration 0.7345 0.7145 0.7164 0.7211
Mass 0.8676 0.8653 0.8734 0.8714
Nodule 0.7802 0.8037 0.8071 0.8160
Pneumonia 0.7680 0.7655 0.7752 0.7740
Pneumothorax 0.8887 0.8857 0.8925 0.8961
Consolidation 0.7901 0.8157 0.8176 0.8188
Edema 0.8878 0.9017 0.9043 0.9074
Emphysema 0.9371 0.9422 0.9404 0.9477
Fibrosis 0.8047 0.8523 0.8535 0.8632
Pleural Thickening 0.8062 0.7948 0.7989 0.8059
Hernia 0.9164 0.9416 0.9185 0.9287
Mean AUROC 0.8414 0.8508 0.8523 0.8569

experiments with much larger AOGNets (deeper and wider with different primitive size

per stage), extending binary composition rule in constructing AND-OR graphs, adopting

sub-graph based concatenation scheme for AND-nodes with predefined growth rate as

done in DenseNet and DPN, and using front-end stages from networks such as ResNet,

DenseNet and DPN before the first stage to further boost the experssive power and to save

memory footprint.

40

ResNet-101 AOGNet-40MOriginal Image ResNet-50 AOGNet-12M

Dial
telephone

Screw

Cucumber

Kerry blue
terrier

Siamese
cat

Cinema

Scale

Figure 3.8: Sample grad-cam results from ResNet-50/101, AOGNet-12m/40m.

41

A
O
G
N
et
-1
2M

A
O
G
N
et
-4
0M

A
O
G
N
et
-6
0M

Figure 3.9: Sample dissection results of AOGNets generated by network dissection.

42

Figure 3.10: Sample COCO object detection and instance segmentation results of Mask-R-CNN
model with AOGNet-40m backbone.

43

CHAPTER

4

ATTENTIVE NORMALIZATION

In state-of-the-art deep neural networks, both feature normalization and feature atten-

tion have become ubiquitous with significant performance improvement shown in a vast

amount of tasks. They are usually studied as separate modules, In this Chapter, I will pro-

pose a light-weight integration between, and thus harness the best of, the two schema. We

present Attentive Normalization (AN) which generalizes the common affine transformation

component in the vanilla feature normalization. Instead of learning a single affine transfor-

mation, AN learns a mixture of affine transformations and utilizes their weighted-sum as

the final affine transformation applied to re-calibrate features in an instance-specific way.

The weights are learned by leveraging feature attention.

AN introduces negligible extra parameters and computational cost (i.e., light-weight).

AN can be used as a drop-in replacement for any feature normalization technique which

includes the affine transformation component. In experiments, we test the proposed AN

using three representative neural architectures (ResNets (40), MobileNets-v2 (120) and

AOGNets (74)) in the ImageNet-1000 classification benchmark (116) and the MS-COCO

2107 object detection and instance segmentation benchmark (84). AN obtains consistent

performance improvement for different neural architectures in both benchmarks with

absolute increase of top-1 accuracy in ImageNet-1000 between 0.5% and 2.0%, and absolute

44

increase up to 1.8% and 2.2% for bounding box and mask AP in MS-COCO respectively. The

source codes are publicly available 1.

In the following sections, I will presents the details of the design and performance

of AOGNets. In section 4.1, I will first present the motivation and objective of attentive

normalization. Section 4.2 presents some background information on existing feature

normalizations and feature attentions. Section 4.3 and 4.4 presents detailed designs of our

AOGNets. Section 4.5 shows experimental results and comparisons with other networks, as

well as ablation studies on different aspects of our AOGNets. Finally, Section 4.6 concludes

this work and discusses some on-going and future work.

4.1 Motivation and Objective

Pioneered by Batch Normalization (BN) (57), feature normalization has become ubiquitous

in the development of deep learning. As illustrated in Figure 4.2, feature normalization con-

sists of two components: feature standardization and channel-wise affine transformation

which is introduced to provide the capability of undoing the standardization (by design),

and can be treated as feature re-calibration in general. Many variants of BN have been

proposed for practical deployment in terms of variations of training and testing settings

with remarkable progress obtained. They can be roughly divided into two categories:

• Generalizing feature standardization. Different methods are proposed for comput-

ing the mean(s) and standard deviation(s), or for modeling the data distribution

in general, within a min-batch. They include Batch Renormalization (56), Decor-

related BN (52), Layer Normalization (LN) (3), Instance Normalization (IN) (141),

Instance-level Meta Normalization (58), Group Normalization (GN) (150), Mixture

Normalization (59) and Mode Normalization (16). Switchable Normalization (SN) (88)

and its sparse variant (SSN) (126) learn to switch between different vanilla schema.

These methods adopt the vanilla channel-wise affine transformation after standard-

ization, and are often proposed for discriminative learning tasks.

• Generalizing feature re-calibration. Instead of treating the affine transformation pa-

rameters directly as model parameters, different types of task-induced conditions

(, class labels in conditional image synthesis using generative adversarial networks)

are leveraged and encoded as latent vectors, which are then used to learn the affine

transformation parameters, including different conditional BNs (17; 15; 103; 94; 7),

1Classification in ImageNet: https://github.com/iVMCL/AOGNets-v2 and Detection in MS-COCO:
https://github.com/iVMCL/AttentiveNorm_Detection

45

https://github.com/iVMCL/AOGNets-v2
https://github.com/iVMCL/AttentiveNorm_Detection

style-adaptive IN (60) or layout-adaptive IN (101; 134). These methods have been

mainly proposed in generative learning tasks.

In the meanwhile, feature attention has also become an indispensable mechanism for

improving task performance in deep learning. For computer vision, spatial attention is in-

herently captured by convolution operations within short-range context, and by non-local

extensions (144; 53) for long-range context. Channel-wise attention is relatively less ex-

ploited. The squeeze-and-excitation (SE) unit (47) is one of the most popular designs, which

learn instance-specific channel-wise attention weights to re-calibrate an input feature map

(Figure 4.2). Unlike the affine transformation parameters in feature normalization, the

attention weights for re-calibrating an feature map are often directly learned from the input

feature map in the spirit of self-attention, and often instance-specific or pixel-specific.

Although both feature normalization and feature attention have become ubiquitous

in state-of-the-art DNNs, they are usually studied as separate modules. Therefore, in this

paper we address the following problem,

How to learn to re-calibrate feature maps in a way of harnessing the best of feature

normalization and feature attention in a single light-weight module?

To that end, we present Attentive Normalization (AN). our proposed AN is both con-

ceptually and computationally simple, which can be used as a drop-in replacement for

any feature normalization method that includes the affine transformation component and

results in consistent performance improvement (Figure 4.8).

4.2 Background

4.2.1 Feature Normalization.

There are two types of normalization schema, feature normalization (including raw data) (57;

56; 3; 141; 150; 88; 126; 59; 16) and weight normalization (119; 51). Unlike the former stated

above, the latter is to normalize model parameters to decouple the magnitudes of parameter

vectors from their directions. We focus on feature normalization in this paper.

Different feature normalization schema differ in how the mean and variance are com-

puted. BN (57) computes the channel-wise mean and variance in the entire min-batch

which is driven by improving training efficiency and model generalizability. BN has been

deeply analyzed in terms of how it helps optimization (121). DecorBN (52) adds a whiten-

ing operation after the standardization. BatchReNorm (56) introduces extra parameters

46

to control the pooled mean and variance to reduce BN’s dependency on the batch size.

IN (141) focuses on channel-wise and instance-specific statistics which stems from the task

of artistic image style transfer. LN (3) computes the instance-specific mean and variance

from all channels which is designed to help optimization in recurrent neural networks

(RNNs). GN (150) stands in the sweet spot between LN and IN focusing on instance-specific

and channel-group-wise statistics, especially when only small batches are applicable in

practice. In practice, synchronized BN (102) across multiple GPUs becomes increasingly

favorable against GN in some applications. SN (88) leaves the design choices of feature

normalization schema to the learning system itself by computing weighted sum integration

of BN, LN, IN and/or GN via softmax, showing more flexible applicability, followed by

SSN (126) which learns to make exclusive selection. Instead of computing one mode (mean

and variance), MixtureNorm (59) introduces a mixture of Gaussian densities to approximate

the data distribution in a mini-batch. ModeNorm (16) utilizes a general form of multiple-

mode computation. Unlike those methods, the proposed AN focuses on generalizing the

affine transformation component. Related to our work, Instance-level Meta normaliza-

tion(ILM) (58) first utilizes an encoder-decoder sub-network to learn affine transformation

parameters and then add them together to the model’s affine transformation parameters.

Unlike ILM, the proposed AN utilizes a mixture of affine transformations and leverages

feature attention to learn the instance-specific attention weights.

On the other hand, conditional feature normalization schema (17; 15; 103; 7; 60; 101; 134)

have been developed and shown remarkable progress in conditional and unconditional

image synthesis. Conditional BN learns condition-specific affine transformations in terms

of conditions such as class labels, image style, label maps and geometric layouts. Unlike

those methods, the proposed AN learns self-attention data-driven weights for mixture

components of affine transformations.

4.2.2 Feature Attention.

Similar to feature normalization, feature attention is also an important building block in the

development of deep learning. Residual Attention Network (142) uses a trunk-and-mask

joint spatial and channel attention module in an encoder-decoder style for improving

performance. To reduce the computational cost, channel and spatial attention are sepa-

rately applied in (146). The SE module (47) further simplifies the attention mechanism by

developing a light-weight channel-wise attention method. The proposed AN leverages the

idea of SE in learning attention weights, but formulates the idea in a novel way.

47

!
"

#×
%

BatchNorm GroupNorm
Block-wise Standardization

…

Multipliers (&) and Intercepts (')

Channel-wise Affine Transformation

Instance-Specific Channel-Attention Multipliers

Attention
!

((

Attention
!
(

A Mixture of (Channel-wise Affine Transformations

Instance-Specific Mixture-Component Multipliers

Attentive Normalization

Feature AttentionFeature Normalization

Re-calibration

!

Instance-Specific Channel-wise Affine Transformations

!& '

Figure 4.1: Illustration of the proposed Attentive Normalization (AN). AN aims to harness
the best of feature normalization and feature attention. AN keeps the block-wise standard-
ization unchanged. AN learns a mixture of K channel-wise affine transformations. AN
leverages attention mechanism to learn the instance-specific weights for the mixture com-
ponents in computing the weighted sum of the mixture as the final affine transformation
for re-calibrating the input features. See text for details. Best viewed in color.

4.3 Overview of Attentive Normalization

Figure 4.2 illustrates the proposed AN. The basic idea is straightforward. Conceptually,

the affine transformation component in feature normalization (Section 4.4.1) and the re-

scaling computation in feature attention play the same role in learning-to-re-calibrate

an input feature map, thus providing the foundation for integration (Section 4.4.2). More

specifically, consider a feature normalization backbone such as BN or GN, our proposed

AN keeps the block-wise standardization component unchanged. Unlike the vanilla feature

normalization in which the affine transformation parameters (γ’s and β ’s) are often frozen

in testing, we want the affine transformation parameters to be adaptive and dynamic in

both training and testing, controlled directly by the input feature map. The intuition behind

doing so is that it will be more flexible in accounting for different statistical discrepancies

between training and testing in general, and between different sub-populations caused by

underlying inter-/intra-class variations in the data.

To achieve the dynamic and adaptive control of affine transformation parameters,

the proposed AN utilizes a simple design (Section 4.4). It learns a mixture of K affine

transformations and exploits feature attention mechanism to learn the instance-specific

weights for the K components. The final affine transformation used to re-calibrate an input

feature map is the weighted sum of the learned K affine transformations. We propose a

48

general formulation for the proposed AN (Section 4.4.3). We study how to learn the weights

in an efficient and effective way (Section 4.4.3). We study how to deploy the proposed AN to

state-of-the-art building blocks such as the Bottleneck block (40) in a light-weight manner

in terms of both parameter increase and computational expense (Section 4.4.4).

In experiments, we focus on image classification and object detection and instance

segmentation tasks. We test the proposed AN with BN and GN as the feature normaliza-

tion backbones in three state-of-the-art DNNs: ResNets (40), MobileNets-v2 (120) and

AOGNets (74). We test our AN in the ImageNet-1000 dataset (116) and the MS-COCO

dataset (84). Our AN significantly outperforms the vanilla feature normalization backbones

consistently across the three networks in the two datasets. We also perform an ablation

study comparing different design choices in AN.

4.4 Implementation of Attentive Normalization

In this section, we present details of the proposed attentive normalization. Without loss

of generality, consider a DNN for 2D images, denote by x a feature map with axes in the

convention order of (N , C , H , W) (i.e., batch, channel, height and width). x is represented

by a 4D tensor. Let i = (iN , iC , iH , iW) be the address index in the 4D tensor. xi represents

the feature response at a position i . Note that we can squeeze the last two dimensions to

be consistent with Figure 4.2.

4.4.1 Formulation of Feature Normalization

As aforementioned, existing feature normalization schema often consist of two compo-

nents:

i) Block-wise Standardization. Denote by B j a block (slice) in a given 4-D tensor x.

For example, for BN, we have j = 1, · · · , C and B j = {xi |∀i , iC = j }. We first compute the

empirical mean and standard deviation in B j , denoted by µ j andσ j respectively, and we

have,

µ j =
1

M

∑

x∈B j

x , σ j =

√

√

√

1

M

∑

x∈B j

(x −µ j)2+ε , (4.1)

where M = |B j | and ε is a small positive constant to ensureσ j > 0 for the sake of numeric sta-

bility. Then, let ji be the index of the block that the position i belongs to, and we standardize

49

the feature response by,

x̂i =
1

σ ji

(xi −µ ji
) (4.2)

Remark: As studied in (121), other types of data-statistics can also be exploited in stan-

dardization. Since our proposed AN keeps the standardization component unchanged, it

will also be applicable to these variants.

ii) Channel-wise Affine Transformation. Denote by γc and βc the scalar coefficient

(re-scaling) and offset (re-shifting) parameter respectively for the c -th channel. The re-

calibrated feature response at a position i is then computed by,

x̃i = γiC
· x̂i +βiC

, (4.3)

where γc ’s and βc ’s are shared by all the instances in a min-batch across the spatial domain.

They are usually frozen in testing and fine-tuning.

4.4.2 Formulation on Feature Attention

We focus on channel-wise attention and briefly review the Squeeze-Excitation (SE) mod-

ule (47). SE usually takes the feature normalization result (Eqn. 4.3) as its input. SE learns

channel-wise attention weights as follows:

i) The squeeze module encodes the inter-dependencies between feature channels in a

low dimensional latent space with the reduction rate r (e.g., r = 16),

S (x̃;θS) = v, v ∈RN× C
r ×1×1, (4.4)

which is implemented by a sub-network consisting of a global average pooling layer (Avg-

Pool), a fully-connected (FC) layer and rectified linear unit (ReLU) (64). θS collects all the

model parameters.

ii) The excitation module computes the channel-wise attention weights, denoted by λ,

by decoding the learned latent representations v ,

E (v ;θE) =λ, λ ∈RN×C×1×1, (4.5)

which is implemented by a sub-network consisting of a FC layer and a sigmoid layer. θE

collects all model parameters.

50

Then, the input, x̃ is re-calibrated by,

x̃S E
i =λiN ,iC

· x̃i , (4.6)

=(λiN ,iC
·γiC
) · x̂i +λiN ,iC

·βiC
,

where the second step is obtained by plugging in Eqn. 4.3. It is straightforward to see

the foundation facilitating the integration between feature normalization and channel-

wise feature attention. However, the SE module often entails a significant number of extra

parameters (e.g., ∼2.5M extra parameters for ResNet-50 (40) which originally consists

of ∼25M parameters, resulting in 10% increase). We aim to design more parsimonious

integration that can further improve performance (i.e., favoring “less is more").

4.4.3 Attentive Normalization

The Formulation

Our goal is to generalize Eqn. 4.3 in re-calibrating feature responses to enable dynamic and

adaptive control in both training and testing. On the other hand, our goal is to simplify

Eqn. 4.6 into a single light-weight module, rather than, for example, the two-module setup

using BN+SE. In the most general form, we have,

x̃AN
i = Γ (x;θΓ)i · x̂i +B(x;θB)i , (4.7)

where both Γ (x;θΓ) and B(x;θB) are functions of the entire input feature map (without

standardization 2) with parameters θΓ and θB respectively. The two functions compute

4-D tensors of the size same as the input feature map and can be parameterized by some

attention guided light-weight DNNs. The subscript in Γ (x;θΓ)i and B(x;θB)i represents the

learned re-calibration weights at a position i .

In this paper, we focus on learning instance-specific channel-wise affine transforma-

tions. To that end, we have three components as follows.

i) Learning a Mixture of K Channel-wise Affine Transformations. Denote by γk ,c and

βk ,c the re-scaling and re-shifting (scalar) parameters respectively for the c -th channel in

the k -th mixture component. They are model parameters learned end-to-end via back-

propagation.

2We tried the variant of learning Γ () and B() from the standardized features and observed it works worse,
so we ignore it in our experiments.

51

ii) Learning Attention Weights for the K Mixture Components. Denote byλn ,k the instance-

specific mixture component weight (n ∈ [1, N] and k ∈ [1, K]), and by λ the N ×K weight

matrix. λ is learned via some attention-guided function from the entire input feature map,

λ= A(x;θλ), (4.8)

where θλ collects all the parameters.

iii) Computing the Final Affine Transformation. With the learned γk ,c , βk ,c and λ, the

re-calibrated feature response is computed by,

x̃AN
i =

K
∑

k=1

λiN ,k [γk ,iC
· x̂i +βk ,iC

], (4.9)

whereλiN ,k is shared by the re-scaling parameter and the re-shifting parameter for simplicity.

Since the attention weights λ are adaptive and dynamic in both training and testing, the

proposed AN realizes adaptive and dynamic feature re-calibration. Compared to the general

form (Eqn. 4.7), we have,

Γ (x)i =
K
∑

k=1

λiN ,k ·γk ,iC
, B(x)i =

K
∑

k=1

λiN ,k ·βk ,iC
, (4.10)

from which we can see two main advantages of the proposed AN in both training, fine-

tuning and testing:

• γk ,iC
’s and βk ,iC

’s are channel-wise and shared across spatial dimensions and by data

instances, which can learn population-level knowledge. λiN ,k ’s are instance specific

and learned from features that are not standardized. Combining them together en-

ables paying attention to both the population (what the common and useful informa-

tion are) and the individuals (what the specific yet critical information are). The latter

is particularly useful for testing samples “drifted" from training population, that is

to improve generalizability. It also helps establish more direct connections between

standardization and affine transformation in feature normalization. Their weighted

sum encodes more direct and “actionable" information for re-calibrating standard-

ized features (Eqn. 4.9) without being delayed until back-propagation updates as

done in the vanilla feature normalization.

• In fine-tuning, especially between different tasks (, from image classification to ob-

ject detection), γk ,iC
’s and βk ,iC

’s are usually frozen as done in the vanilla feature

normalization. They carry information from the source tasks. But, θλ (Eqn. 4.8) are

52

allowed to be fine-tuned, thus potentially better realizing transfer learning for the

target tasks. This is a desirable property since we can decouple training correlation

between tasks. For example, it is not necessary to train a model in ImageNet with

the feature normalization scheme such as GN (150) that is practically feasible and

beneficial in object detection in MS-COCO. As we shall show in experiments, the

proposed AN facilitates a smoother transition. We can use the proposed AN with

BN as normalization backbone in pre-training in ImageNet, and then use AN with

GN as normalization backbone for the head classifiers in MS-COCO with significant

improvement.

Details of Learning Attention Weights

We present a simple method for computing the attention weights A(x;θλ) (Eqn. 4.8). Our

goal is to learn a weight coefficient for each component from each individual instance

in a mini-batch (i.e, a N ×K matrix). The question of interest is how to characterize the

underlying importance of a channel c from its realization across the spatial dimensions

(H , W) in an instance, such that we will learn a more informative instance-specific weight

coefficient for a channel c in re-calibrating the feature map x.

In realizing Eqn. 4.8, the proposed method is similar in spirit to the squeeze module in

SE to maintain light-weight implementation. To show the difference, let’s first rewrite the

vanilla squeeze module (Eqn. 4.4),

v = S (x;θS) =R e Lu (f c (Av g P o o l (x);θS)) , (4.11)

where the mean of a channel c (via global average pooling, Av g P o o l (·)) is used to char-

acterize its underlying importance. We generalize this assumption by taking into account

both mean and standard deviation empirically computed for a channel c , denoted by µc

andσc respectively (µc andσc are computed using Eqn. 4.1 under the BN setting). More

specifically, we compare three different designs using:

i) The mean µc only as done in SE.

ii) The concatenation of the mean and standard deviation, (µc ,σc).

iii) The coefficient of variation or the relative standard deviation (RSD), µc
σc

.

RSD measures the dispersion of an underlying distribution (i.e., the extent to which the

distribution is stretched or squeezed) which intuitively conveys more information in learn-

ing attention weights for re-calibration. RSD is indeed observed to work better in our

53

experiments. Eqn. 4.8 is then expanded with two choices,

Choice 1: A1(x;θλ) = Ac t (f c (RSD (x);θλ)), (4.12)

Choice 2: A2(x;θλ) = Ac t (B N (f c (RSD (x);θ f c);θB N)),

where Ac t (·) represents a non-linear activate function for which we compare three designs:

i) The vanilla s i g mo i d (·) as used in the excitation module of SE.

ii) The channel-wise s o f t ma x (·).
iii) the piece-wise linear hard analog of the sigmoid function, so-called h-sigmoid func-

tion (45),

h s i g mo i d (a) =R e Lu6(a +3.0)/6.0,

where R e Lu6(a) =min(max(a , 0), 6.0) is a variant of the vanilla ReLu function with a

saturation threshold 6.0.

The h s i g mo i d (·) is observed to work better in our experiments. In the Choice 2 (Eqn. 4.12),

we apply the vanilla BN (57) after the FC layer, which normalizes the learned attention

weights across all the instances in a mini-batch with the hope of balancing the instance-

specific attention weights better. The Choice 2 improves performance in our experiments

in ImageNet.

During the learning, we have another hyper-parameter, K . For stage-wise building

block based neural architectures such as ResNets (40), we use different K ’s for different

stages with smaller values for early stages. For example, for the 4-stage ResNets, we typically

use K = 10,10,20,20 for the four stages respectively to balance the expressive power of

the mixture of affine transformations and the expense (we are interested in making extra

parameters and computation cost negligible).

Learning the attention weights A(x;θλ) can adopt other implementations when deploy-

ing in different domains such as in NLP. It can also leverage more effective and efficient

channel-wise attention mechanism when available in future.

Implementing AN is easy in modern deep learning code framework. For example, Fig-

ure 4.3 shows the complete PyTorch code for AN using BN as the backbone.

4.4.4 Integrating AN in Building Blocks of DNNs

In general, the proposed AN can be used as a drop-in replacement for all feature normal-

ization layers in a DNN. Typically, in convolutional neural networks (ConvNets), a feature

normalization layer follows a convolution layer. It is not necessary to replace all vanilla

54

Figure 4.2: Illustration of the proposed Attentive Normalization (AN) in (b) using the
vanilla Batch Normalization (BN) (57) as backbone (a). AN shares the feature normalization
component with BN, and differs in how the affine transformation is done. AN can also
use other variants of BN as backbones. The input feature map is represented using the
convention (N , C , H , W) for the batch axis, channel axis, spatial height and width axes
respectively. xi represents a feature response in the input feature map with position index
i = (iN , iC , iH , iW). x̂i represents the normalized response using the pooled channel-wise
mean and variance. x̃i is the response after affine transformation with learned scale and
offset parameters. See text for details.

feature normalization layers for two reasons: First, our AN exploits feature attention to

re-calibrate an input feature map, which is not needed for every convolution layer in a

ConvNet, especially for 1×1 convolution which only handles feature channels (increasing

or decreasing), and thus channel-wise re-calibration can be tackled by the convolution

kernel and the vanilla feature normalization themselves in training. Second, adding too

many AN layers may make a ConvNet computationally sloppy. Consider the widespread of

the Bottleneck block (40) in ConvNets, we integrate one AN layer into one Bottleneck block,

as illustrated and explained in Figure 4.4. The integration of SE adopts the same practice

and uses the spot after BN3 in a Bottleneck block.

55

class AttenNorm(nn.BatchNorm2d):
def __init__(self , C, K, eps, momentum, running):

super(AttenNorm, self).__init__(C, eps=eps, momentum=momentum, affine=False,
track_running_stats=running)

self .gamma = nn.Parameter(torch.Tensor(K, C))
self .beta = nn.Parameter(torch.Tensor(K, C))

self .avgpool = nn.AdaptiveAvgPool2d(1)
self . fc = nn.Linear(C, K)
self .sigmoid = nn.Sigmoid()

def forward(self, x) :
output = super(AttenNorm, self).forward(x)
size = output.size()

b, c, _, _ = x.size ()
y = self .avgpool(x).view(b, c)
y = self . fc(y)
y = self .sigmoid(y)

gamma = y @ self.gamma
beta = y @ self .beta
gamma =weight.unsqueeze(−1).unsqueeze(−1).expand(size)
beta = bias.unsqueeze(−1).unsqueeze(−1).expand(size)

return gamma output + beta

Figure 4.3: Complete PyTorch code for implementing our AN using BN as the backbone.

56

3
×

3
 c

o
n
v

A
N

R
eL
U

1
×

1
 c

o
n
v

B
N

1

R
eL
U

1
×

1
 c

o
n
v

B
N

3

R
eL
U

B
N

2

Figure 4.4: Illustration of integrating the proposed AN in the popular Bottleneck building
block presented in ResNets (40). Here, the feature normalization backbone is BN. The
proposed AN is only used to replace the second one (BN2) followed the 3×3 convolution.
This leads to negligible extra parameters. Furthermore, this potentially enables jointly
integrating local spatial attention in learning the instance-specific attention weights.

4.5 Experiments

In this section, we first show the ablation study verifying the aforementioned design choices

we used in the proposed AN. Then, we present detailed comparisons and results.

Stage 1 Stage 2 Stage 3 Stage 4

Figure 4.5: Heatmap visualization of γk ,iC
’s and βk ,iC

’s in the AN. See text for details. Best
viewed in color and magnification.

Data and Evaluation Metric. In experiments, we use two benchmarks, the ImageNet-

1000 classification benchmark (ILSVRC2012) (116) and the MS-COCO object detection and

instance segmentation benchmark (84). The ImageNet-1000 benchmark consists of about

57

1.28 million images for training, and 50, 000 for validation, from 1, 000 classes. We apply a

single-crop with size 224×224 in evaluation. Following the common protocol, we report

the top-1 and top-5 classification error rates tested using a single model on the validation

set. For the MS-COCO benchmark, there are 80 categories of objects. We use train2017 in

training and evaluate the trained models using val2107. We report the standard COCO

metrics of Average Precision (AP) at different intersection-over-union (IoU) thresholds,

, AP50 and AP75, for bounding box detection (APb b
I oU) and instance segmentation (APm

I oU),

and the mean AP over IoU=0.5 : 0.05 : 0.75, APb b and APm for bounding box detection and

instance segmentation respectively.

Neural Architectures and Feature Normalization Backbones. We use three represen-

tative neural architectures: (i) ResNets (40) (ResNet-50 and ResNet-101), which are the

most widely used architectures in practice, (ii) MobileNet-v2 (120). MobileNets are pop-

ular architectures under mobile settings and MobileNet-v2 uses inverted residuals and

linear Bottlenecks (for which our AN follows the 3×3 convolution layer in the way same as

Figure 4.4), and (iii) AOGNets (74) (AOGNet-12M and AOGNet-40M) are grammar-guided

networks with the vanilla Bottleneck building bock, which represent an interesting direc-

tion of network architecture engineering with better performance than ResNets and its

variants shown. So, the improvement by our AN will be both broadly useful for existing

ResNets/MobileNets based deployment in practice and potentially insightful for on-going

and future development of more advanced and more powerful DNNs in the community.

In classification, we use BN (57) as the feature normalization backbone for our proposed

AN, denoted by AN (w/ BN). We compare with the vanilla BN, GN (150) and SN (88). In

object detection and instance segmentation, we use the Mask-RCNN framework (37) and

its cascade variant (9) in the MMDetection code platform (11). We fine-tune feature back-

bones pretrained on the ImageNet-1000 dataset. We also test the proposed AN using GN

as the feature normalization backbone, denoted by AN (w/ GN) in the head classifier of

Mask-RCNN.

Initialization of our AN. The initialization of γk ,c ’s and βk ,c ’s (Eqn. 4.9) is based on,

γk ,c = 1.0+N (0,1)× 0.1 and βk ,c =N (0,1)× 0.1, where N (0,1) represents the standard

Gaussian distribution. This type of initialization is also adopted for conditional BN used in

the BigGAN (7).

58

Table 4.1: Ablation study on different design choices in our proposed AN with BN as feature
normalization backbone using ResNet-50 in ImageNet-1000. There are four categories:
The first three are detailed in Section 4.4.3. The fourth one refers to the number K of
components in the mixture of affine transformation which is used for each of the four
stages in ResNet-50 and we empirically select three options for simplicity. The second row
shows the best design combination we observed, which will be used in our comparison
experiments. In each test (row 3 to 9), we only change one in the best design combination for
computational feasibility. During our development, we first observed the best combination
based on our intuitive reasoning and small experiments (a few epochs) in the process, and
then design this ablation study to verify the design choices. * means AN is applied to all the
BatchNorms of the network. The performance of the baseline ResNet-50+BN is in Table 4.2.
See text for details.

Design Choices in AN (w/ BN) #Params FLOPS top-1 top-5

RSD(mean/std) + A2(·) + hsigmoid + K =
�

10
10
20
20

�

25.76M 4.09G 21.59 5.58

mean + A2(·) + hsigmoid + K =
�

10
10
20
20

�

25.76M 4.09G 21.85 5.92

concat(mean,std) + A2(·) + hsigmoid + K =
�

10
10
20
20

�

25.82M 4.09G 21.73 5.85

RSD(mean/std) + A1(·) + hsigmoid + K =
�

10
10
20
20

�

25.76M 4.09G 21.76 6.05

RSD(mean/std) + A2(·) + softmax + K =
�

10
10
20
20

�

25.76M 4.09G 21.72 5.90

RSD(mean/std) + A2(·) + relu + K =
�

10
10
20
20

�

25.96M 4.09G 21.89 6.04

RSD(mean/std) + A2(·) + sigmoid + K =
�

10
10
20
20

�

25.76M 4.09G 21.96 5.91

RSD(mean/std) + A2(·) + hsigmoid + K=
�

5
5

10
10

�

25.76M 4.09G 21.92 5.93

RSD(mean/std) + A2(·) + hsigmoid + K=
�

20
20
40
40

�

25.96M 4.09G 21.62 5.63

* RSD(mean/std) + A2(·) + hsigmoid + K =
�

10
10
20
20

�

25.76M 4.09G 22.15 6.24

59

4.5.1 Ablation Study

We compare different design choices in our proposed AN using ResNet-50 in ImageNet-

1000. Table 4.1 summarizes the results. The ablation study is in support of the intuitions we

have in elaborating the proposed AN in Section 4.4.3. All the models are trained using the

same settings (the vanilla setup in Section 4.5.2).

Figure 4.5 shows the learned mixture of affine transformations (γk ,c ’s and βk ,c ’s in each

building block) in the ResNet-50+AN (the best performer in Table 4.1). We can see there

are no degenerated cases observed in the learned affine transformations (i.e., no single

mixture component that dominates).

4.5.2 Image Classification in ImageNet-1000

Common Training Settings. We use 8 GPUs (NVIDIA V100) to train models using the same

settings for apple-to-apple comparisons. The method proposed in (38) is used to initialize

all convolutions for all models. The batch size is 128 per GPU 3 with FP16 optimization used

in training to reduce the training time 4. The mean and standard deviation for block-wise

standardization are computed within each GPU. The initial learning rate is 0.4, and the

cosine learning rate scheduler (87) is used with 5 warm-up epochs and weight decay 1×10−4

and momentum 0.9. For AN, the best practice observed in our ablation study (Table 4.1) is

used. AN is also used in the stem layer in the models. In addition to the common settings,

we have two different setups in experimental comparisons:

i) The Vanilla Setup. We adopt the basic data augmentation scheme (random crop

and horizontal flip) in training as done in (40). We train the models for 120 epochs. All

ResNets (40) use the vanilla stem layer with 7× 7 convolution. The MobileNets-v2 uses

3×3 convolution in the stem layer. The AOGNets use two consecutive 3×3 convolution

in the stem layer. All the γ and β parameters of the feature normalization backbones are

initialized to 1 and 0 respectively.

ii) The State-of-the-Art Setup. There are different aspects in the vanilla setup which

have better variants developed with better performance shown (43). We want to address

whether the improvement by our proposed AN are truly fundamental or will disappear with

more advanced tips and tricks added in training ConvNets. First, on top of the basic data

augmentation, we also use label smoothing (137) (with rate 0.1) and the mixup (with rate

3Although the best practice is to use 8 GPUs and batch size 32 per GPU for training ConvNets in ImageNet,
we do not follow it since it would take too long in order to run all the experiments given the resources we have.

4The NVIDIA APEX library is used.

60

https://github.com/NVIDIA/apex

Table 4.2: Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-1000 valida-
tion set using the vanilla setup. The numbers in brackets show the performance improve-
ment by our proposed AN over the baselines (for ResNet-50, the numbers are shown with
the baseline methods since there are multiple ones). † means the model is not trained by us.
All other models are trained from scratch by us under the same settings. See text for details.

Method #Params FLOPS top-1 top-5
ResNet-50-BN 25.56M 4.09G 23.01(1.42) 6.68(0.80)
†ResNet-50-GN (150) 25.56M 4.09G 23.52(1.93) 6.85(0.97)
†ResNet-50-SN (88) 25.56M - 22.43(0.83) 6.35(0.47)
†ResNet-50-SE (47) 28.09M - 22.37(0.78) 6.36(0.48)

ResNet-50-AN (w/ BN) 25.76M 4.09G 21.59 5.88

ResNet-101-BN 44.57M 8.12G 21.33 5.85
ResNet-101-AN (w/ BN) 45.00M 8.12G 20.61(0.72) 5.41(0.44)

MobileNet-v2-BN 3.50M 0.34G 28.69 9.33
MobileNet-v2-AN (w/ BN) 3.56M 0.34G 26.67(2.02) 8.56(0.77)

AOGNet-12M-BN 12.26M 2.19G 22.22 6.06
AOGNet-12M-AN (w/ BN) 12.37M 2.19G 21.28(0.94) 5.76(0.30)

AOGNet-40M-BN 40.15M 7.51G 19.84 4.94
AOGNet-40M-AN (w/ BN) 40.39M 7.51G 19.33(0.51) 4.72(0.22)

0.2) (157). We increase the total number of epochs to 200. We use the same stem layer

with two consecutive 3×3 convolution for all models. We add the zero γ initialization trick

for the feature normalization backbones (not for AN), which uses 0 to initialize the last

normalization layer (BN3 in Figure 4.4) to make the initial state of a residual block to be

identity.

Results Summary. Table 4.2 and Table 4.3 show the comparison results for the two

setups respectively. Our proposed AN consistently obtains the best top-1 and top-5 ac-

curacy results with more than 0.5% absolute top-1 accuracy increase (up to 2.0%) in all

models without bells and whistles. The improvement is obtained with negligible extra pa-

rameters (e.g., 0.06M parameter increase in MobileNet-v2 for 2.02% absolute top-1 accuracy

increase, and 0.2M parameter increase in ResNet-50 with 1.42% absolute top-1 accuracy

increase) at almost no extra computational cost (up to the precision used in measuring

FLOPs). With ResNet-50, our AN also outperforms GN (150) and SN (88) by 1.93% and

0.83% in top-1 accuracy respectively. For GN, it is known that it works (slightly) worse than

BN under the normal (big) mini-batch setting (150). For SN, our result shows that it is

more beneficial to improve the re-calibration component than to learn-to-switch between

61

Table 4.3: Comparisons of the top-1 and top-5 error rates (%) in the ImageNet-1000 vali-
dation set using the state-of-the-art setup. The numbers in brackets show the performance
improvement by our proposed AN over the baselines. All models are trained from scratch
under the same settings. See text for details.

Method #Params FLOPS top-1 top-5
ResNet-50-BN 25.56M 4.09G 21.08 5.56
ResNet-50-AN (w/ BN) 25.76M 4.09G 19.92(1.16) 5.04(0.52)

ResNet-101-BN 44.57M 8.12G 19.71 4.89
ResNet-101-AN (w/ BN) 45.00M 8.12G 18.850.86) 4.63(0.26)

AOGNet-12M-BN 12.26M 2.19G 21.63 5.60
AOGNet-12M-AN (w/ BN) 12.37M 2.19G 20.57(1.06) 5.38(0.22)

AOGNet-40M-BN 40.15M 7.51G 18.70 4.47
AOGNet-40M-AN (w/ BN) 40.39M 7.51G 18.13(0.57) 4.26(0.21)

different feature normalization schema. It may be useful to integrate our AN and the SN in

future work.

Remarks. We observe that the proposed AN is more effective for small ConvNets in

terms of performance gain. Intuitively, this makes sense. Small ConvNets usually learn less

expressive features. With the mixture of affine transformations and the instance-specific

channel-wise feature re-calibration, the proposed AN offers the flexibility of clustering intra-

class data better while separating inter-class data better in training. This is potentially very

useful in state-of-the-art neural architecture search under mobile settings. The proposed AN

can be included as a strong inductive bias in the search space for learning potentially more

powerful networks. In the meanwhile, the proposed AN entails a second thought on the

Fixup initialization (158) which attempts to remove BN without hurting the performance.

Our results show it is beneficial to improve the vanilla feature normalization schema in a

light-weigh manner. It will be interesting to investigate the potential integration between

our AN and the Fixup. Our AN also provides an alternative for further studying how the

normalization schema helps optimization as done in (121). We leave these for the further

work.

4.5.3 Object Detection and Segmentation in COCO

In object detection and segmentation, high-resolution input images are beneficial and

often entailed for detecting medium to small objects, but limit the batch-size in training

62

Table 4.4: Detection and segmentation results in MS-COCO val2017 (84) using the Mask
R-CNN (37) framework with the FPN (83) implemented in MMDetection (11). All models
use 2x lr scheduling (180k iterations). BNmeans BN is frozen in fine-tuning for object de-
tection. † means that models are not trained by us. All other models are trained from scratch
by us under the same settings (fine-tuned from pre-trained models under the vanilla setup
in Table 4.2 for fair comparisons). The numbers in brackets show the performance improve-
ment by our proposed AN over the baselines (the numbers show sequential improvement
in the two AOGNet models).

Architecture Backbone Head #Params APb b APb b
50 APb b

75 APm APm
50 APm

75

MobileNet-v2
BN - 22.72M 34.2 54.6 37.1 30.9 51.1 32.6
AN (w/ BN) - 22.78M 36.0(1.8) 57.0(2.4) 38.9(1.8) 32.5(1.6) 53.8(2.7) 34.5(1.9)

ResNet-50

BN - 45.71M 39.2 60.0 43.1 35.2 56.7 37.6
AN (w/ BN) - 45.91M 40.8(1.6) 62.1(2.1) 44.5(1.4) 36.4(1.2) 58.9(2.2) 38.7(1.1)
†GN GN (150) 45.72M 40.3(1.3) 61.0(1.0) 44.0(1.7) 35.7(1.7) 57.9(1.6) 37.7(2.2)
†SN SN (88) - 41.0(0.6) 62.3(-0.3) 45.1(0.6) 36.5(0.9) 58.9(0.6) 38.7(1.2)

AN (w/ BN) AN (w/ GN) 45.96M 41.6 62.0 45.7 37.4 59.5 39.9

ResNet-101

BN - 64.70M 41.4 62.0 45.5 36.8 59.0 39.1
AN (w/ BN) - 65.15M 43.1(1.7) 64.1(2.1) 47.3(1.8) 38.2(1.4) 61.0(2.0) 40.7 (1.6)
†GN GN (150) 64.71M 41.8 62.5 45.4 36.8 59.2 39.0
AN (w/ BN) AN (w/ GN) 65.20M 43.2(1.4) 64.0(1.5) 47.3(1.9) 38.8(2.2) 61.3(2.1) 41.6(2.6)

AOGNet-12M
BN - 33.09M 40.7 61.4 44.6 36.4 58.4 38.8
AN (w/ BN) - 33.21M 42.0(1.3) 63.1(1.7) 46.1(1.5) 37.8(1.4) 60.1(1.7) 40.4(1.6)

AN (w/ BN) AN (w/ GN) 33.26M 43.0(1.0) 64.2(1.1) 46.8(0.7) 38.7(0.9) 61.1(1.0) 41.7(1.3)

AOGNet-40M
BN - 60.73M 43.4 64.2 47.5 38.5 61.0 41.4
AN (w/ BN) - 60.97M 44.1(0.7) 65.1(0.9) 48.2(0.7) 39.0(0.5) 62.0(1.0) 41.8(0.4)

AN (w/ BN) AN (w/ GN) 61.02M 44.9(0.8) 66.2(1.1) 49.1(0.9) 40.2(1.2) 63.2(1.2) 43.3(1.5)

(often 1 or 2 images per GPU). GN (150) and SN (88) have shown significant progress in

handling the applicability discrepancies of feature normalization schema from ImageNet to

MS-COCO. We test our AN in MS-COCO following the standard protocol as done in GN (150)

and as implemented in the MMDetection code platform (11) with significant improvement

obtained. The results are summarized in Table 4.4 and Table 4.5.

We first summarize the details of implementation. Following the terminologies used

in MMDetection (11), there are four modular components in the R-CNN detection frame-

work (29; 113; 37):

• Feature Backbone. We use the pre-trained networks in Table 4.2 (with the vanilla

setup) for fair comparisons in detection, since we compare with some models which

are not trained by us from scratch and use the feature backbones pre-trained in a way

similar to our vanilla setup and with on par top-1 accuracy. In fine-tuning a network

with AN (w/ BN) pre-trained in ImageNet such as ResNet-50+AN (w/ BN) in Table 4.2,

we freeze the stem layer and the first stage as commonly done in practice (. all the

63

Table 4.5: Results in MS-COCO using the state-of-the-art cascade variant (9) of Mask
R-CNN.

Architecture Backbone Head #Params APb b APb b
50 APb b

75 APm APm
50 APm

75

ResNet-101
BN - 96.32M 44.4 62.5 48.4 38.2 59.7 41.3
AN (w/ BN) - 96.77M 45.8(1.4) 64.3(1.8) 49.8(1.4) 39.6(1.4) 61.7(2.0) 42.7(1.4)

AOGNet-40M
BN - 92.35M 45.6 63.9 49.7 39.3 61.2 42.7
AN (w/ BN) - 92.58M 46.5(0.9) 65.0(1.1) 50.8(1.1) 40.0(0.7) 62.3(1.1) 43.1(0.4)

models in our experiments). For the remaining stages, we freeze the standardization

component only (the learned mixture of affine transformations and the learned

running mean and standard deviation), and allow the attention weight sub-network

to be fine-tuned.

• Neck Backbone: We test the feature pyramid network (FPN) (83) which is widely used

in practice.

• Head Classifiers. We test two setups: (i) The vanilla setup as done in GN (150) and

SN (88). In this setup, we further have two settings: with vs without feature normal-

ization in the bounding box head classifier. The former is denoted by “-" in Table 4.4,

and the latter is denoted by the corresponding type of feature normalization scheme

in Table 4.4 (, GN, SN and AN (w/ GN)). We experiment on using AN (w/ GN) in

the bounding box head classifier and keeping GN in the mask head unchanged for

simplicity. Adding AN (w/ GN) in the mask head classifier may further help improve

the performance. When adding AN (w/ GN) in the bounding box head, we adopt the

same design choices except for “Choice 1, A1(·)" (Eqn. 4.12) used in learning attention

weights. (ii) The state-of-the-art setup which is based on the cascade generalization of

head classifiers (9) and does not include feature normalization scheme, also denoted

by “-" in Table 4.5.

• RoI Operation. We test the RoIAlign operation (37), the default setup in Mask R-CNN.

Compared with the vanilla BN that are frozen in fine-tuning, our AN (w/ BN) improves

performance by a large margin in terms of both bounding box AP and mask AP (1.8% &

1.6% for MobileNet-v2, 1.6% & 1.2% for ResNet-50, 1.7% & 1.4% for ResNet-101, 1.3% &

1.4% for AOGNet-12M and 0.7% & 0.5% for AOGNet-40M). It shows the advantages of the

self-attention based dynamic and adaptive control of the mixture of affine transformations

(although they themselves are frozen) in fine-tuning.

When the AN is further integrated in the bounding box head classifier of Mask-RCNN

and trained from scratch, we also obtain better performance than GN and SN. Compared

64

Table 4.6: Top-1 accuracy of ResNet-50 on ImageNet-1K with adversarial training. The
experiment is performed with Adversarial Training for Free with m=4 (cite), which is a
fast version of adversarial training, m is PGD attack steps. The model is tested with clean
images, and PGD attack with 10 iterations, and 50 iterations, respectively.

Method #Params Clean PGD-10 PGD-50
ResNet-50-BN 25.56M 60.12 32.26 31.40
ResNet-50-AN (w/ BN) 25.76M 63.05(2.93) 34.34(2.08) 33.41(2.01)

with the vanilla GN (150), our AN (w/ GN) improves bounding box and mask AP by 1.3%

and 1.7% for ResNet-50, and 1.4% and 2.2% for ResNet-101. Compared with SN (88) which

outperforms the vanilla GN in ResNet-50, our AN (w/ GN) is also better by 0.6% bounding

box AP and 0.9% mask AP increase respectively. Slightly less improvements are observed

with AOGNets.

Similar in spirit to the ImageNet experiments, we want to verify whether the advantages

of our AN will disappear if we use state-of-the-art designs for head classifiers of R-CNN

such as the widely used cascade R-CNN (9). Table 4.5 shows that similar improvements are

obtained with ResNet-101 and AOGNet-40M.

4.5.4 Adversarial training for model robustness

4.6 Conclusion

This work presents Attentive Normalization (AN) that harnesses the best of feature normal-

ization and feature attention in a single lightweight module. AN learns a mixture of affine

transformations and uses the weighted sum via a self-attention module for re-calibrating

standardized features in a dynamic and adaptive way in training, testing and fine-tuning.

AN can be used as a drop-in replacement for existing feature normalization schema. In ex-

periments, the proposed AN is tested in ImageNet and MS-COCO with three representative

networks (ResNets, MobileNets-v2 and AOGNets). It consistently obtains better perfor-

mance, often by a large margin, than the vanilla feature normalization schema and some

state-of-the-art variants.

65

School bus

French bulldog

BN stage_3_unit_6 MN stage_3_unit_6 BN stage_4_unit_3 MN stage_4_unit_3

Dining table

Torch

Figure 4.6: Illustration of the effects of AN and BN on filter responses. We show the filter
response histograms (marginal distributions) for different images in different categories.
Here we show results of a 4-stage ResNet50. s t a g e _i _uni t _ j means the histograms are
plot for the output feature map of the j -th ResBlock in the i -th stage. From the histograms,
we observe that for images from the same class (e.g., school bus), the histograms of our
AN show higher similarities with smaller variance. This empirically shows that a channel-
wise attention guided mixture of affine transformation helps recalibrate the normalized
responses in a more meaningful way.

66

0 5 10 15 20 25 30 35 40 45 50 55
Number of Parameters (Millions)

70

71

72

73

74

75

76

77

78

79

80

81

Im
ag

en
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

ResNet-50-GN

ResNet-50-SN
ResNet-101-BN
ResNet-101-AN

MobileNet-v2-BN

MobileNet-v2-AN

AOGNet-12M-BN
AOGNet-12M-AN

AOGNet-40M-AN

Batch Normalization (BN)
Attentive Normalization (AN)

AOGNet-40M-BN

ResNet-50-AN

ResNet-50-BN

Figure 4.7: Performance plots for the proposed Attentive Normalization (AN) and the
vanilla Batch Normalization (BN) (57) across three neural architectures, ResNets (40),
MobileNets-v2 (120) and AOGNets (74) in ImageNet-1000 (116). The proposed AN con-
sistently improves performance. It also outperforms other variants of BN tested using
ResNet-50: GroupNorm (GN) (150) and SwitchableNorm (SN) (88). See text for details. Best
viewed in color.

Figure 4.8: Training and validation loss curves of ResNet-50 in ImageNet with BN, GN and
AN respectively. Best viewed in color.

67

R
es
N
et
-5
0-
B
N

R
es
N
et
-5
0-
A
N

Figure 4.9: Sample comparisons between Mask R-CNN with ResNet-50-AN and ResNet-
50-BN backbones on COCO.

68

CHAPTER

5

LEARN TO GROW: A CONTINUAL

STRUCTURE LEARNING FRAMEWORK

FOR OVERCOMING CATASTROPHIC

FORGETTING

Addressing catastrophic forgetting is one of the key challenges in continual learning where

machine learning systems are trained with sequential or streaming tasks. Despite recent

remarkable progress in state-of-the-art deep learning, deep neural networks (DNNs) are

still plagued with the catastrophic forgetting problem. This chapter presents a conceptually

simple yet general and effective framework for handling catastrophic forgetting in continual

learning with DNNs. The proposed method consists of two components: a neural structure

optimization component and a parameter learning and/or fine-tuning component. By

separating the explicit neural structure learning and the parameter estimation, not only is

the proposed method capable of evolving neural structures in an intuitively meaningful

way, but also shows strong capabilities of alleviating catastrophic forgetting in experiments.

69

Furthermore, the proposed method outperforms all other baselines on the permuted

MNIST dataset, the split CIFAR100 dataset and the Visual Domain Decathlon dataset in

continual learning setting.

5.1 Introduction

Learning different tasks continuously is a common and practical scenario that happens all

through the course of human learning. The learning of new skills from new tasks usually

does not have negative impact on the previously learned tasks. Furthermore, with learning

multiple tasks that are highly related, it often helps to advance all related skills. However, this

is commonly not the case in current machine learning with deep neural networks (DNNs).

When presented a sequence of learning tasks, DNNs experiences so called “catastrophic

forgetting" problem (92; 106), where they usually largely “forget" previously learned tasks

after trained for a new task. This is an interesting phenomenon that has attracted lots of

research efforts recently.

To overcome catastrophic forgetting, approaches such as Elastic Weight Consolida-

tion (EWC 62) and synaptic intelligence (156) introduce constraints to control parameter

changes when learning new tasks. However, forgetting is still non-negligible with these

approaches, especially when the number of tasks increases. Forgetting is also addressed

with memory-based methods, where certain information regarding learned tasks are stored

to help retaining the performance of the learned tasks (see 86; 124, for example). Addition-

ally, there are methods (89; 110; 111; 90) that learn multiple domains and completely avoid

forgetting by adding a small amount of parameters while the previously estimated parame-

ters are kept fixed. However, these models rely on a strong base network and knowledge

transferability is limited mainly between two consecutive tasks.

Most of the current approaches in continual learning with DNNs couple network struc-

ture and parameter estimation and usually apply the same model structure for all tasks.

Here, we propose to explore a more intuitive and sensible approach, that is to learn task spe-

cific model structures explicitly while retaining model primitives sharing, decoupling from

model parameter estimation1. Different tasks may require different structures, especially

if they are not relevant, so it may not make much sense to employ the same structure in

learning. For example, consider the tasks of learning digit and face recognition DNNs, the

1The structure that referred here is more fine-grained, such as number of layers, type of operations at each
layer, etc. It does not refer to generic structure names like convolutional neural networks or recurrent neural
networks.

70

lower level layers (features) required for the two tasks are likely to be drastically different,

thus entailing different overall structures that have task specific low level layers. Forcing

the same structure for these tasks is likely to cause catastrophic forgetting for one task (e.g.,

digit recognition) after the other task (e.g., face recognition) is trained. On the other hand,

if different tasks learn to explore different structures and grow their specific components

accordingly, it still has the potential to share common feature layers while maximizing the

performance for new tasks.

Here, we present a learn-to-grow framework that explicitly separates the learning of

model structures and the estimation of model parameters. In particular, we employ archi-

tecture search to find the optimal structure for each of the sequential tasks. The search

accounts for various options, such as sharing previous layers’ parameters, introducing

new parameters, and so on. After the structure is searched, the model parameters are then

estimated. We found that 1) explicitly continual structure learning makes more effective

use of parameters among tasks, which leads to better performance and sensible structures

for different tasks; 2) separating the structure and parameter learning significantly reduced

catastrophic forgetting as compared to other baseline methods with similar model complexi-

ties.

5.2 The Proposed Learn-to-Grow Framework

5.2.1 Problem Definition of Continual Learning

Consider a sequence of N tasks, denoted by T= (T1, T2, ..., TN). Each task Tt has a training

dataset,D (t)t r a i n = {(x
(t)
i , y (t)i); i = 1, · · · , nt }, where y (t)i is the ground-truth annotation (e.g., a

class label) and nt is the number of training examples. LetDt r a i n =∪N
t=1D

(t)
t r a i n be the entire

training dataset for all tasks. Similarly, denote byD (t)t e s t the test dataset for a task Tt . Denote

by f (·;Θt) the model (e.g., a DNN) in learning where Θt collects all learned parameters up

to the current task Tt (inclusive). The model gets to observe tasks from 1 to N sequentially.

After the model is trained on a task Tt using its training dataset D (t)t r a i n , both D (t)t r a i n and

D (t)t e s t will not be available in training tasks from Tt+1 to TN . The main objective of continual

learning is to maximize the performance of f (·;Θt) at the task Tt while minimizing the

forgetting for tasks from T1 to Tt−1, all being evaluated in their test datasetsD (t
′)

t e s t (1≤ t ′ ≤ t).

Ideally, we would like to minimize the following objective function in this continual learning

71

S1

S2

S3

S4

TBTA

S1

S2

S3

S4

TBTATBTA

S4 S4
,

 Input Reused weight New weight Adapter Task specific layer (prev) Task specific layer (current)

S3 S3
,

S2 S2
,

S1 S1
,

Fixed Structure
(Regularization based

method, e.g. EWC,
Kirkpatrick et al., 2016)

“New” layers for new
task (Progressive
Nets, Rusu et al.,

2016)

Add small task-specific
adapters (Residual

Adapter, Rebuffi et al.,
2018)

C1

C2

C3

C4

TBTA

S3 S3

OR

+

Learn-to-Grow

Instead of using a fixed
structure, or manually
growing the structure,
Our method performs a
structure search to
decide when to “reuse”,
“adaptation” or “new” for
each layer.

Figure 5.1: Illustration of different continual learning approaches. a) All but the task spe-
cific layer are shared, catastrophic forgetting is countered by techniques that prevents
parameters to move to lower energy regions of previous tasks. b) Each task will add some
fixed task specific parameters, all layers’ original weights are not tuned, and thus prevents
forgetting. c) Our approach, where network structure is learned by architecture search. In
this example, the search result decides to “reuse" the first two layer, do “adaptation" for the
3rd layer and allocate “new" weight for the 4th layer.

setting,

L (ΘN ;Dt r a i n) =
N
∑

t=1

Lt (Θt ;D (t)t r a i n) (5.1)

Lt (Θt ;D (t)t r a i n) =
1

nt

nt
∑

i=1

`t (f (x
(t)
i ;Θt), y (t)i) (5.2)

where `t is the loss function for task Tt (e.g., the cross-entropy loss) and the model regu-

larizer term is omitted for notion simplicity. However, since we do not have access to all

datasets at the same time, the above objective function (Eqn. 5.1) can not be directly com-

puted and then minimized. The challenge is to maintain
∑t−1

t ′=1Lt ′(Θt ′ ;D
(t ′)
t r a i n)not to change

too much without explicitly measuring it due to the streaming setting, while estimating Θt

via minimizing Eqn. 5.2 in isolation.

As illustrated in Fig. 5.1 (b), one straightforward solution is to keep Θt−1 fixed when

learning Θt = Θt−1 ∪ θt to avoid catastrophic forgetting completely, where θt is the new

parameters introduced for a new task Tt . How to introduce θt for each task sequentially

is usually hand-crafted and some simple heuristics are often used, e.g., by adding some

extra channels for each layer in a DNN. By doing this, the model will become more and

72

more complicated for incoming tasks and Θt−1 is “artificially" enforced to be reused for a

new task Tt without accounting for their potential dissimilarities. So, the computational

efficiency and accuracy performance of new tasks are traded-off for avoid catastrophic

forgetting.

As illustrated in Fig. 5.1 (a), another way of addressing catastrophic forgetting is to

utilize a single set of parametersΘ for all tasks, and control the changes of parameter values

from Θt−1 to Θt using some statistically inspired functions such as the Fisher information

criterion used in EWC (62). Following this direction, the accuracy performance of new tasks

are usually suffered from the constrained parameter space and well-designed initial models

are entailed for ensuring reasonably good performance across tasks. Furthermore, the

effectiveness of the parameter change control functions is often unknown as the number

of tasks increases at scale.

5.2.2 Our Proposed Learn-to-Grow Framework

In our learn-to-grow framework (Fig. 5.1 (c)), we adopt the growing strategy as stated

above in learning Θt =Θt−1 ∪θt . But, we learn to “grow" θt on top the previously trained

model Θt−1 and to exploit Θt−1 in a flexible way without enforcing to reuse all of them.

Our proposed method is also complementary to the elastic parameter strategy as used

in EWC. For the learned-to-reuse parameters in Θt−1, we can either keep them fixed or

allow them to change subject to some elastic penalty functions. So, the proposed method

can harness the best of both, and is capable of avoid catastrophic forgetting of old tasks

completely without sacrificing the computational efficiency and accuracy performance

of new tasks. We introduce st (Θt) to indicate the task-specific model for task Tt . The loss

function (Eqn. 5.2) is changed to,

Lt (st (Θt)) =
1

nt

nt
∑

i=1

`t (f (x
(t)
i ; st (Θt)), y (t)i) (5.3)

Now the structure is explicitly taken into consideration when learning all the tasks. When

optimizing the updated loss function in Eqn. 5.3, one needs to determine the optimal

parameter based on the structure st . This loss can be viewed in two ways. One can interpret

it as selecting a task specific network from a ‘super network’ that has parameter Θ using st ,

or for each task we train a new model with parameter st (Θt). There is a subtle difference

between this two views. The former one has an constraint on the total model size, while

the latter one does not. So, in the worst case scenario of the latter, the model size will grow

73

linearly as we increase the number of tasks. This would lead to a trivial solution – training

completely different models for different tasks and is no longer continual learning! To

address this problem, we propose the following penalized loss function,

Lt (st (Θt)) =
1

nt

nt
∑

i=1

`t (f (x
(t)
i ; st (Θt)), y (t)i)+

βtR s
t (st) +λtRp

t (Θt) (5.4)

where βt > 0, λt ≥ 0,R s
t andRp

t represent the regularizers for the network structure and

model parameters respectively. For instance, one can use `2 regularization forRp
t when

optimizing model parameters, andR s
t can be as simple as the (log) number of parameters.

In this way, the total number of parameters are bounded from above, and the degenerate

cases are thus avoided.

5.3 Our Implementation

It is a challenging problem to optimize the loss described in Eqn. 5.4, since it involves explicit

optimization of the structure of the model. In our implementation, we focus on continual

learning with DNNs. The proposed method consists of two components: a neural structure

optimization component and a parameter learning and/or fine-tuning component. The

former learns the best neural structure for the current task on top of the current DNN trained

with previous tasks. It learns whether to reuse or adapt building blocks or layers in the

current DNN, or to create new ones if needed under the differentiable neural architecture

search framework (85). The latter estimates parameters for newly introduced structures,

and fine-tunes the old ones if preferred. We present details in the following sections (see

Fig. 5.2).

5.3.1 Structure Optimization

We employ neural architecture search (NAS) for structure optimization. Before we move

on to further details, we adopt a further simplification that a global network topology is

given and could work for all tasks of interest, such as a ResNet (41). We optimize the wiring

pattern between layers and their corresponding operations. It is straightforward to extend

this to more complicated cases, e.g., by utilizing NAS at the first task.

Consider a network with L shareable layers and one task-specific layer (i.e. last layer)

74

S1S1

S2 S2

S3

S4 S4S4

T

S1

S3

Tk

S4

S2

S1S1

S2 S2

S4 S4S4

T

S3 S3

S2

S1S1 S1

S2S2 S2S2

S4 S4S4 S4S4 S4S4

Tk

α1

S3S3 S3

,

α2

,,, ,

,
α3

,, ,, ,,,, ,
α4

,

,,

,

, ,,

,

,

, ,,

 Input Reused weight New weight Adapter Task specific layer (prev) Task specific layer (current) Architecture parameters

Super-Net before
current task Θk-1

Step 1: Structure search on three
options, “reuse”, “adaptation” and

“new”. α is the architectural parameter

Search Result:

Layer1: reuse S1

Layer2: adapter on S2

Layer3: new

Layer4: reuse S’’4

Step 2: Parameter optimization
with retraining the selected

structure on current task

Step 3: Update
Super-Net to Θk

Figure 5.2: Illustration of the proposed learn-to-grow framework. a) Current state of super
model. In this example, the 1st and 3rd layers have single copy of weight, while the 2nd and
4th has two and three respectively. b) During search, three options, “reuse", “adaptation"
and “new" are utilized. α is the weight parameters for the architecture. c) Parameter opti-
mization with selected architecture on the current task k. d) Update super model to add
the newly created S ′3. See text for details.

for each task. A super networkS is maintained so that all the new task-specific layers and

new shareable layers will be stored intoS .

The goal of search is to seek the optimal choice for each of the L layers, given the current

task dataD (t)t r a i n and all the shareable layers’ weights stored inS . The candidate choices

for each layer are defined by: “reuse", “adaptation" and “new". The reuse choice will

make new task use the same parameter as the previous task. The adaptation option adds

a small parameter overhead that trains an additive function to the original layer output.

The new operator will spawn new parameters of exactly the same size of the current layer

parameters. Here, we denote the size of the lt h layer in super networkS as |S l |. The total

number of choices in the lt h layer Cl is 2|S l |+1, because we will have |S l | "reuse", |S l |
"adaptation" and l "new". Thus, the total search space is

∏L
l Cl . One potential issue here

is that, in the worst case, the search space may grow exponentially with respect to the

number of tasks. One way of addressing this is to limit the total number of possible choices,

and maintain a priority queue for learning the options. We do not find this necessary in all

of our experiments.

Similar to DARTS (85), to make the search space continuous, we relax the categorical

75

choices of the lt h layer as a Softmax over all possible Cl choices, i.e.

xl+1 =
Cl
∑

c=1

exp(αl
c)

∑Cl

c ′=1 exp(αl
c ′)

g l
c (xl) (5.5)

Here, the vector αl of dimension Cl is the architecture weights that are used for mixing the

choices for each sharable layer. And g l
c here is the operator for the choice c at layer l which

is expressed as:

g l
c (xl) =











S l
c (xl) if c ≤ |S l |,

S l
c (xl) +γl

c−|S l |(xl) if |S l |< c ≤ 2|S l |,
o l (xl) if c = 2|S l |+1

(5.6)

Here, γ is the adaption operation and o the new operation to be trained from scratch. After

this relaxation, the task of discrete search is posed as optimizing a set of continuous weights

α=
�

αl
	

. After the search, the optimal architecture is obtained by taking the index with the

largest weight αl
c for each layer l , i.e. cl = arg maxαl .

Adopting the training strategy from DARTS, we split the training dataset D (t)t r a i n into

two subsets: a validation subset for NAS, and a training subset for parameter estimation.

We use validation loss Lv a l to update the architecture weights α, while the parameters are

estimated by the training loss L t r a i n . The architecture weights and parameters are updated

alternately during the search process. Because it is a nested bi-level optimization problem,

the original DARTS provide a second-order approximation for more accurate optimization.

In this work, we find it is sufficient to use the simple alternately updating approach, which

was referred as the first-order approximation in (85).

To make it clear how “reuse", “adaptation" and “new" operations work, we walk

through a concrete example in the following. Let us take a convolutional neural network

(CNN) with all the layers using 3× 3 kernel size as an example. The choice of “reuse"

is just using the existing weights and keep them fixed during learning, thus there is no

additional parameter cost. For “adaptation", it uses a 1×1 convolution layer added to

the original 3×3 convolution layer in parallel, similar to the adapter used in (110). During

training, the weight of the original 3×3 kernel is kept fixed, while the parameters of the

1×1 adapter is learned. In this case, the additional parameter cost is only 1/9 of the original

parameter size. For the “new" operation, it introduces a replicated 3×3 layer that is initialized

randomly and trained from scratch. We make use of the loss function Lv a l to implement

the regularizerR s
i (si). The value of the regularizer is set proportional to the product of the

76

additional parameter size z l
c and its corresponding weight αl

c (i.e.R s
i (si) =

∑

c ,l α
l
c z l

c). The

architecture weights α is optimized in terms of both accuracy and parameter efficiency at

the same time.

5.3.2 Parameter Optimization

After the search, we retrain the model on the current task. There are two strategies to deal

with “reuse", we can either fix it unchanged during retraining just as in search, or fine-tune

it with some regularization – simple `2 regularization or more sophisticated methods such

as the EWC (62). The former strategy could avoid forgetting completely, however it will lose

the chance of getting positive backward transfer, which means the learning of new tasks

may help previous tasks’ performance. When the search process select “reuse" at layer l , it

means that the lt h layer tends to learn very similar representation as it learned from one of

the previous tasks. This indicates semantic similarity learned at this layer l between the two

tasks. Thus, we conjecture that fine-tuning the “reuse" lt h layer with some regularization

could also benefit the previous tasks (elaborated in experiments)After retraining on the

current task, we need to update/add the created and tuned layers, task-specific adapters

and classifiers in the maintained super network.

Dt
train

t-1

t t+1

Super Net
Θt-1

Structure
Optimization

θt = f(Dt
train, Θt-1)

Parameter
Estimation

Transfer knowledge
from previously learned
tasks (Super Net Θt-1)

Store new
knowledge
Θt= Θt-1⋃ θt

Update “reused”
knowledge

Figure 5.3: Overview of Learn-to-Grow Framework that learning on sequential tasks.

77

(b)(a)

Figure 5.4: Results on permutated MNIST dataset. a) Comparing our method (fix, tune
reuse with and without regularization) with SGD and EWC on the average accuracy over the
seen tasks. b) Ablation experiments of "new" different layers in terms of average accuracy
over the seen tasks.

5.4 Experiments

In this section, we first test two main hypotheses that motivate our proposed learn-to-grow

framework and then compare with state-of-the-art continual learning approaches. First,

will sensible model architectures be sought via the explicit structure learning for new tasks?

Second, will the optimized structure results in better continual learning, i.e., overcoming

catastrophic forgetting? We test these two hypotheses on two datasets: the permuted MNIST

and the visual domain decathlon dataset (110). The permuted MNIST dataset is a simple

image classification problem that derived from the MNIST handwritten digit dataset (153),

which is commonly used as benchmark in the continual learning literature (62; 86; 156). For

each task, a unique fixed random permutation is used to shuffle the pixels of each image,

while the annotated label is kept fixed. The visual decathlon dataset (VDD) consists of 10

image classification tasks – ImageNet, CIFAR100, Aircraft, DPed, Textures, GTSRB, Omniglot,

SVHN, UCF101 and VGG-Flowers. The images of all the tasks are rescaled with the lower-

edge being 72 pixels. The tasks are across multiple domains with highly imbalanced dataset,

which makes it a good candidate to investigate the continual learning problem and analyze

potential inter-task transfer, either forward or backward.

For experiments in permuted MNIST, we use a 4-layer fully-connected networks with

3 feed-forward layers and the 4t h layer is the shared softmax classification layer across

all tasks. This corresponds to the so called ‘single head’ setup (20). We choose to use this

78

setting because for the permuted MNIST dataset all the tasks share the same semantics,

and sharing the task classifier is a more reasonable design choice. We test our method in

learning the 10 permuted MNIST tasks in sequence. For simplicity, we only use two options,

“reuse" and “new" during the structure optimization.

For experiments in VDD, we use a 26-layer ResNet (41) as the base network to learn the

first task. This network consists of 3 basic residual blocks with output feature channels being

64, 128 and 256 respectively. At the end of each residual block, the feature resolution is halved

by average pooling. We adopt all the three options during the search. For “adaptation", a

1×1 convolution layer is used as the adapter.

5.4.1 Are Sensible Structures Sought in Learn-to-Grow?

For the permuted MNIST dataset, we may expect that a sensible evolving architecture for

the 10 tasks tends to share higher level layers due to the same task semantics, but to differ at

lower layers accounting for the pixel shuffling. Interestingly, our experiments show that the

structure optimization indeed selects the same wiring pattern that applies “new to the first

layer and “reuse to the remaining layers in all the 10 tasks. This shows that the structure

optimization component is working properly.

Although the learned wiring patterns are intuitive, we perform further experiments to

address what if we force to use “new for the learned “reuse" layers? We enumerate and

compare the three settings that the i -th layer is “new" and others are “reuse" (i = 1,2,3).

In the results, we found that the learned pattern is actually the best choice compared with

the other two settings (see Fig. 5.4 b).

In VDD, we test our method between two tasks. As shown in Fig. 5.5 (a), when the two

tasks are similar (ImageNet and CIFAR-100, both consisting of natural images), most of

the layers are shared for these two tasks. When two drastically different tasks are used, e.g.,

ImageNet and Omniglot, as Fig. 5.5 (b) shows, most layers in the learned structure select

the “new" option.

The above experimental results show that the proposed structure optimization does

result in sensible task specific structures with proper model primitive sharing. The learned

task structure tends to share when the semantic representation of corresponding layers are

similar, and spawn new parameters when the required information is very different.

79

ImageNet CIFAR100 ImageNet Omniglot ImageNet SVHN ImageNet UCF101

Input

Output

ImageNet DPed ImageNet DTD ImageNet Aircraft ImageNet Flowers

Reuse

Adaptation

New

Input

Output

Figure 5.5: Visualization of searched architecture with learning two tasks sequentially. The
search are based on the super model obtained by training ImageNet as first task. (a) and (b)
shows searched architecture on CIFAR100 and Omniglot task respectively.

5.4.2 Are Forgetting Addressed in Learn-to-Grow?

Obviously, if the “reuse” layers are kept fixed in learning, our method does not have any

forgetting. We are interest in how significant the forgetting will be when we fine-tune the

“reuse" layers.

We first test this in the permuted MNIST. As a baseline, we show that simply updating

all the layers with stochastic gradient descent (SGD) from task to task (i.e., the setting in

Fig. 5.1 (a)) results in catastrophic forgetting (see Fig. 5.4 (a)). After training the 10 tasks

sequentially, the average accuracy dropped from 97.9% to 63.0%. With the EWC used in

learning (62), the forgetting is alleviated and the average accuracy is 96.8%. For our proposed

learn-to-grow approach, we show that tuning the “reuse" layers by using a simple l2 based

regularization on previous task parameters (i.e. ‖Θi −Θ j‖2
2, where Θi is the parameters

for the current task and Θ j is the parameters from the j -th task that selected to reuse) is

sufficiently safe in terms of eliminating the forgetting. Both strategies, fixing the “reuse"
layers or fine-tuning them with simple l2 regularization can keep the overall accuracy as

high as training each task individually (see Fig. 5.4 (a)). Encouraged by the above result,

we further conduct experiments by tuning the “reuse" layers with smaller learning rate

80

 ImNet GTSR
C100 DPed
SVHN Flwr
UCF Airc
OGlt DTD

 Baseline (Shared)

Ours (Tune)

Figure 5.6: Comparisons of the catastrophic forgetting effects between our proposed
approach and the baseline in VDD.

without using any regularization. In other words, we do not add any regularization to the

parameters to mitigate forgetting among different tasks. The results are shown in Fig. 5.4

(a), which almost have the same behavior compared to the ł2 regularization. This suggests

that the learned structures actually make sense in terms of the “reuse" decisions, and the

reused parameters are near-optimal for specific tasks.

We continue to test this in VDD. A predefined order of the ten tasks is used: ImageNet,

CIFAR-100, SVHN, UCF101, Omniglot, GTSR, DPed, Flower, Aircraft and Textures (results

for different ordering are provided in the supplementary material). As a baseline, we also

train a model that shares all layers in the backbone and updates them from task to task.

The baseline model and our learn-to-grow model are trained with similar settings as in the

permuted MNIST experiments, and we choose not to use any regularization for fine-tuning

the “reuse" layers due to the positive results we obtain in the permuted MNIST experi-

ment. As can be seen from Fig.5.6, our learn-to-grow method significantly outperforms the

baseline approach.

We also compare with other baselines in VDD and the results are shown in Table. 5.1. Our

method obtains the best overall results and the total model size is similar to the “adapter"

approach (110)2. Our approach obtains the best results in five out of nine tasks. Especially

in tasks with small data size, e.g. VGG-Flowers and Aircraft, our method outperforms other

2The adapter proposed by Rebuffi et al. is targeted for the VDD dataset, which is not a continual learning
method.

81

baselines by a large margin.

Table 5.1: Results of the (top-1) validation classification accuracy (%) on Visual Domain
Decathlon dataset, top-2 performance are highlighted. The total model size (“#params") is
the total parameter size (in Million) after training the 10 tasks. Individual indicates separate
models trained for different tasks. Classifier denotes that a task specific classifier (i.e. the
last softmax layer) is tuned for each task. Adapter refers to methods proposed by Rebuffi et
al.(110).

Model ImNet C100 SVHN UCF OGlt GTSR DPed Flwr Airc. DTD avg. #params

Individual 69.84 73.96 95.22 69.94 86.05 99.97 99.86 41.86 50.41 29.88 71.70 58.96M

Classifier 69.84 77.07 93.12 62.37 79.93 99.68 98.92 65.88 36.41 48.20 73.14 6.68M

Adapter 69.84 79.82 94.21 70.72 85.10 99.89 99.58 60.29 50.11 50.60 76.02 12.50M

Ours (fix) 69.84 79.59 95.28 72.03 86.60 99.72 99.52 71.27 53.01 49.89 77.68 14.46M

To analyze why the simple fine-tuning strategies for the “reuse" layers work, we cal-

culate the l2 distance between the parameters before and after fine-tuning for each task

in VDD. We want to check if the “reuse" layers are almost at an optimal position for the

current task to use (i.e., the l2 distance will be relatively small). Fig. 5.9 (a) and (b) show the `2

distances between the parameters learned in the very first task and those after tuned in the

following tasks for the first and last layers respectively. It is clear that the fine-tuned param-

eters in our learn-to-grow method do not move far away from the original location in the

parameter space as compared to the baseline method, which explains why our method has

less forgetting in fine-tuning the “reuse" layer3. In addition, we notice that the distances

in our methods are more or less at the same scale across all layers. This may attribute to the

fact that the learn-to-grow of parameters and structures is explicitly optimized, and thus

the selected ones are more compatible with a new task. Therefore, less tuning is required

for the new task and hence smaller distances.

Experimental results in this section show that the explicitly continual structure learning

is important. With the proper structures learned, all the relevant parameters from previous

tasks can be exploited. Additionally, since the way to leverage these parameters are learned

through the structure optimization, much less tuning is required for better performance

on new tasks, and forgetting can thus be overcomed.

3Similar trend of the distances between parameters across tasks was found for all layers. In general, the
higher a layer is in the network the more the parameter moves for the baseline method, whereas for our
learn-to-grow method the distances are typically very small.

82

(b)(a)

Figure 5.7: Distance between the tuned parameters at each task and the parameters of
the very first task in VDD experiments. a) First layer parameter distance, and b) Last layer
parameter distance. Baseline indicates the result from tuning all layers using SGD.

5.4.3 Comparisons with State-of-the-Art Methods

We compare our learn-to-grow method with other recent continual learning approaches –

Lee et al. (73, DEN), Serrà et al. (125, HAT), Kirkpatrick et al. (62, EWC), Lee et al. (73, IMM),

Rusu et al. (117, ProgressiveNet), Fernando et al. (23, PathNet), Nguyen et al. (98, VCL).

We compare the performance of various methods in the permuted MNIST dataset with

10 different permutations. Since our model adds more parameters, for fair comparisons

we also train other methods with comparable or more parameters. In particular, since

our model tends to add new parameters at the first layer, for all methods we increase the

number of neurons in the first hidden layer by ten times, so that theoretically they could

learn exactly the same structure as our model. We also tried to compare with Shin et al.

(127), however, we are unable to get reasonable performance, and hence the results are

not included. The results are shown in Fig. 5.8 (a) and Table 5.2. It is clear that our method,

either tuned with or without regularization, performs competitive or better than other

methods on this task. This result suggests that although theoretically, structure can be

learned along with parameter, in practice, the SGD-based optimization schema have a hard

time achieving this. This in turn indicates the importance of explicitly taking continual

structure learning into account when learning tasks continuously. Although both DEN

and our method dynamically expand the network, our performance is much better, which

is attributed to the ability of learning new structures for different tasks. Additionally, our

model performs competitive as or better than the methods that completely avoids forgetting

by fixing the learned weights, such as ProgressNet and PathNet, without enforcing such

83

restrictions.

1 2 3 4 5 6 7 8 9 10
tasks

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

av
er

ag
e

ac
cu

ra
cy

EWC
IMM-mode
PG
PN
DEN

VCL
HAT
Ours (w/o reg)
Ours

1 2 3 4 5 6 7 8 9 10
tasks

0.500

0.551

0.602

0.653

0.704

0.755

0.806

av
er

ag
e

ac
cu

ra
cy

EWC
IMM-mode
PG

HAT
Ours (w/o reg)
Ours

Figure 5.8: Performance comparisons in a) permuted MNIST and b) split CIFAR-100
dataset. Methods include Kirkpatrick et al. (62, EWC), Lee et al. (73, IMM), Fernando et al.
(23, PathNet (PN)), Rusu et al. (117, Progressive Net (PG)), Serrà et al. (125, HAT), Lee et al.
(73, DEN), Nguyen et al. (98, VCL), ours (w/o reg) denotes the case where finetuning for cur-
rent tasks is done without using any regularization to prevent forgetting, and ous represents
the case where the `2 regularization is used.

We further compare with other methods in the split CIFAR-100 dataset (86), where we

randomly partition the classes of CIFAR-100 into 10 disjoint sets, and regard learning each

of the 10-class classification as one task. Different from the permuted MNIST, the split

CIFAR-100 presents a continual learning scenario where the input distribution is similar

(i.e., natural images) whereas the output distribution is different (disjoint classes). We

choose to use Alexnet (64) as the network structure, and all methods are constrained to

have comparable model complexities. This network structure contains three convolution

and max pooling layers and two fully connected layers before the last classification layer.

Comparison results are shown in Fig 5.8 (b) and Table 5.3. Similar results as the MNIST

experiment are obtained in this experiment. Interestingly, for all tasks, our method always

seeks the structures that use new parameters for the last convolution layer and reuse the

rest of the network parameters. It makes sense since the lower layer features are shared

accounting for the similar input distribution, and the higher ones need to be specific

for different tasks due to different output distribution. The fully connected layers are all

selected to be “reused" instead of “new", and this may be because of the relatively large

capacity that is sufficiently powerful to learn the subsequent tasks.

84

Table 5.2: Results of different continual learning approaches on 10 permutated MNIST
datasets. The averaged accuracy after all 10 tasks are learned and total number of parameters
are compared.

Method Acc (%) #params
SGD 72.51 3.35M
EWC 96.75 3.35M
IMM 95.00 3.35M
VCL 95.32 3.35M
HAT 97.98 3.46M
PN 96.18 3.96M
PG 97.81 3.05M

DEN 97.71 3.53M
Ours (fix) 98.46 2.56M

Ours (tune) 98.29 2.56M
Ours (tune+L2Reg) 98.48 2.56M

5.5 Related Work

Continual learning (140) remains a long standing problem, as models have the tendency to

forget previously learned knowledge when trained on new information (140; 92). This is

referred as the catastrophic forgetting problem in the literature. Early attempts to alleviate

catastrophic forgetting include memory systems that store previous data and replay the

stored old examples with the new data (114), and similar approaches are still used in the

latest development (112; 78; 86). Shin et al. (127) proposes to learn a generative model

to capture the data distribution of previous tasks, and both generated samples and real

samples from the current task are used to train the new model so that the forgetting can be

alleviated.

On the one hand, a typical class of methods for mitigating catastrophic forgetting

relies on regularization which imposes constraints on the update of model parameters.

Kirkpatrick et al. (62) proposes elastic weight consolidation (EWC) whose objective is to

minimize the change of weights that are important to previous tasks through the use of

a quadratic constraint. Zenke et al. (156) proposes to alleviate catastrophic forgetting by

allowing individual synapse to estimate their importance for solving learned tasks, then

penalizing the change on the important weights. Schwarz et al. (123) presents a method that

divides the learning into two phases – progress and compress. During the progress phase,

the model makes use of the previous model for learning the new task. In the compress

85

Table 5.3: Results of different continual learning approaches on split CIFAR100 dataset.
The averaged accuracy after all 10 tasks are learned and total number of parameters are
compared.

Method Acc (%) #params
SGD 21.02 6.55M
EWC 74.23 6.55M
IMM 63.13 6.55M
HAT 74.52 6.82M
PN 60.48 7.04M
PG 68.32 6.80M

Ours (fix) 75.31 6.86M
Ours (tune) 75.05 6.86M

Ours (tune+L2Reg) 76.21 6.86M

phase, the newly learned model is distilled into the old model using EWC to alleviate

forgetting. Serrà et al. (125) proposes to use attention mechanism to preserve performance

for previous tasks. Other methods could also completely avoid forgetting by preventing

changes to previous task weights (see for example 117; 89; 23).

On the other hand, another class of methods for continual learning is allowing the model

to expand. Dynamically expandable networks (72) select whether to expand or duplicate

layers based on certain criteria for a new task. However, the model for the new task is forced

to use the old structure from previous tasks. Similar strategies are adopted in progressive

networks (117). Our proposed learn-to-grow framework is more flexible, thanks to the

structure optimization via NAS. PathNet (23) selects paths between predefined modules,

and tuning is allowed only when an unused module is selected. Our method does not have

any restriction on tuning parameters from previous tasks.

Our method also relates to neural architecture search (132; 165; 5; 85), as we employ

search methods to implement the structure optimization. In particular, DARTS (85) is used

for efficiency, where a continuous relaxation for architecture search is proposed.

86

5.6 Additional Results

5.6.1 Additional Experimental Details for permuted MNIST

For all MNIST experiment, we use fully connected layer with three hidden layer, each with

300 hidden units, and one shared output layer for our method. For all other methods except

pathnet and progressive net we used 3000 units in the first layer and 300 for the rest. For

pathnet, each module in the first layer has 300 units, and the result layers has 30 units. We

use 16 modules per layer, and 5 layers for pathnet, and restrict each mutation to only use 3

modules besides the output layer. For progressive net, the first layer has 300 units for each

task, and the rest layers each has 30 units. Therefore, all competitive methods are having

more or the same number of parameters as our methods.

For variational continual learning (VCL 98), we used the official implementation 4. For

fair comparison with other methods, we set the coreset size to zero for VCL.

For (127) we used implementation 5. We tried various hyper-parameter settings, however,

we are unable to get reasonable results on permutated MNIST. Performance was reasonable

when the number of tasks is within five (average performance at around 96%). When

number of tasks go beyond five, performance drops on previous tasks is quite significant.

Reaching 60%

For DEN we use the official implementation 6, and we used Serrà et al. (125) implemen-

tation of HAT, EWC, and IMM from 7. We used our own implemention for for Progressive

Network and PathNet. All methods are trained using the same permutations and same

subset of training data.

5.6.2 Additional Experimental Details for Split CIFAR-100

For all CIFAR-100 experiment, we use an Alexnet like structure. It contains three convolution

and max pooling layers followed by two fully connected layers. The convolution layers are

of size (4,4), (3,3) and (2,2) with 64, 128 and 256 filters, respectively. All convolution layers

are followed by max pooling layer of size (2,2) and rectified linear activations. The two fully

connected layers each have 2048 hidden units.

4https://github.com/nvcuong/variational-continual-learning
5https://github.com/kuc2477/pytorch-deep-generative-replay
6https://github.com/jaehong-yoon93/DEN
7https://github.com/joansj/hat

87

5.6.3 Additional Experiments on Visual Decathlon Dataset

Table 5.4: Comparison of (top-1) validation classification accuracy (%) and total model
size (in Million) on Visual Domain Decathlon dataset with parameter loss factor β of 0.01,
0.1, 1.0.

ImNet C100 SVHN UCF OGlt GTSR DPed Flwr Airc. DTD Tot.

β = 0.01
acc 69.84 78.50 95.33 72.50 86.41 99.97 99.76 66.01 51.37 50.05 76.97

#params 6.07 0.15 2.74 2.28 6.17 3.59 1.02 0.19 4.15 0.13 26.49

β = 0.1
acc 69.84 79.59 95.28 72.03 86.60 99.72 99.52 71.27 53.01 49.89 77.68

#params 6.07 0.34 1.19 1.32 3.19 0.02 0.27 0.16 1.86 0.04 14.46

β = 1.0
acc 69.84 78.00 93.40 63.83 84.30 99.78 99.01 65.77 39.27 48.77 74.20

params 6.07 0.04 0.03 0.12 0.66 0.02 0.01 0.02 0.35 0.02 7.34

In the multi-task continual learning experiments, the 10 tasks was trained in a random

sequence except the first task was fixed to be ImageNet. This is just for fair comparison

with other works such as Rebuffi et al. (110) and Mallya and Lazebnik (89), they are all

using a light weight module to adapt ImageNet pretrained model to other of the 9 tasks.

In real case, the tasks can come in any order, thus our framework would be much more

flexible. As the tasks are trained in sequence, a super model is maintained that all the newly

created weights and task-specific layers are stored. In this ResNet-26 model, all the Batch

Normalization (BN) layers are treated as task-specific, which means each task has its own

sets of BNs. Here, we fixed the weight during retraining when "reuse" is selected in the

search phase. This means that the results of previous tasks would not be affected, i.e. no

forgetting. We leave the evaluation of forgetting in the context of VDD dataset as future

work.

In Table 1, we compare the results using our approach with other baselines. "Individual"

means that each task is trained individually and weights are initialized randomly. "Classifier"

means that only the last layer classifier could be tuned while the former 25 layers are transfer

from ImageNet pretrained model and kept fixed during training. In this case, each task only

adds a task-specific classifier and BNs, thus the overall model size is small. "Adapter" add a

1x1 conv layer besides each 3x3 conv layer, and the outputs will be added before proceed

to the next layer. Due to the lightweight 1x1 conv layer, each task will add approximately

1/9 of the whole model size. As shown in table 1, the results achieved by our framework is

88

C10
0

SV
HN

UCF
OGlt

GTS
R

DPe
d

Flw
r

Airc
.

DTD Avg
40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Accuracy
#params

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Nu
m

 o
f P

ar
am

te
rs

 A
dd

ed
 (M

)

Figure 5.9: Statistics for performance and number of added parameters for each task of
VDD dataset with 4 random task ordering. The first task is kept with ImageNet due to its
large size and long training time. We observed that both accuracy and parameter growth
are robust to different task ordering.

better than other baselines and the total model size is similar to "Adapter" case. We can see

that our approach gives best results in five out of nine tasks. Especially in task with small

data size, e.g. VGG-Flowers and Aircraft, our method outperforms other baselines by a large

margin.

Due to each choice has different parameter cost, we add a parameter loss function to Lv a l

to penalize the choices that cost additional parameters. And the value of the loss function is

proportional to the product of the additional parameter size and its corresponding weight

value αl
c . In table 2, we test it with three different scaling factor β of the parameter loss. We

found that the scaling factor β can control the additional parameter size for each task. And

we find that β = 0.1 gives the best average accuracy and can control the total model size

approximate 2.3× compared with the original model size.

5.7 Summary

We present a simple yet effective learn-to-grow framework for overcoming catastrophic

forgetting in continual learning with DNNs, which explicitly takes into account continual

89

structure optimization via differentiable neural architecture search. We introduce three

intuitive options for each layer in a give model, that is to “reuse", “adapt" or “new" it

in learning a new task. In experiments, we observed that the explicit learning of model

structures leads to sensible structures for new tasks in continual learning with DNNs. And,

catastrophic forgetting can be either completely avoided if no fine-tuning is taken for the

“reuse" layers, or significantly alleviated even with fine-tuning. The proposed method is

thoroughly tested in a series of datasets including the permuted MNIST dataset, the visual

decathlon dataset and the split CIFAR-100 dataset. It obtains highly comparable or better

performance in comparison with state-of-the-art methods.

90

CHAPTER

6

CONCLUSION AND DISCUSSION

In this thesis, a list of novel models and frameworks have been proposed and extensively

evaluated. This research is intrigue by the need of more powerful and universal repre-

sentation learning systems that have big impact on nowadays AI research and industrial

applications.

In Chapter 2, we introduced a novel family of grammar-guided network architectures

which construct compositional grammatical architectures for deep learning in an effective

way. The AOG comprises a phrase structure grammar and a dependency grammar. An

AOGNet consists of a number of stages each of which comprises a number of AOG building

blocks. Our AOG building block harnesses the best of grammar models and DNNs for

deep learning. AOGNet obtains state-of-the-art performance on multiple computer vision

benchmarks and shows better interpretability and potential adversarial robustness.

We hope this work encourages further exploration in learning grammar-guided network

generators. The AOG can be easily extended to adopt k-branch splitting rules with k >

2. Other types of edges can also be easily introduced in the AOG such as dense lateral

connections and top-down connections. Node operations can also be extended to exploit

grammar-guided transformation. And, better parameter initialization methods need to be

studied for the AOG structure.

91

In Chapter 3, we presents a lightweight integration of feature normalization and at-

tention. It connects the affine transformation in feature normalization schema with the

channel-wise attention based recalibration of feature responses. It presents Mixture Nor-

malization (MN) as a simple and unified alternative for feature normalization and attention.

It also shows a lightweight deployment of the proposed MN in the Bottleneck operation.

We validated it by testing MN using Batch Normalization (BN) as the backbone in Ima-

geNet and MS-COCO. It obtains better performance than state-of-the-art variants of BN,

Group Normalization (GN) and Switchable Normalization (SN). It also shows interpretable

visualization justifying the effectiveness of MN. The proposed method is complementary

to existing variants of BN and applicable to extending them to corresponding Mixture

versions.

In Chapter 4, we present a simple yet effective learn-to-grow framework for overcoming

catastrophic forgetting in continual learning with DNNs, which explicitly takes into account

continual structure optimization via differentiable neural architecture search. We introduce

three intuitive options for each layer in a give model, that is to “reuse", “adapt" or “new"

it in learning a new task. In experiments, we observed that the explicit learning of model

structures leads to sensible structures for new tasks in continual learning with DNNs. And,

catastrophic forgetting can be either completely avoided if no fine-tuning is taken for the

“reuse" layers, or significantly alleviated even with fine-tuning. The proposed method is

thoroughly tested in a series of datasets including the permuted MNIST dataset, the visual

decathlon dataset and the split CIFAR-100 dataset. It obtains highly comparable or better

performance in comparison with state-of-the-art methods.

We hope this work encourages further exploration on resolving the "catastrophic forget-

ting" issue of deep neural networks. One future direction what might be worth trying is that

we can combining the Learn-to-Grow framework with grammar architecture like AOGNets.

The reason why the grammar architecture has advantage on continual learning is that it

has the explicit multi-branch topology with more flexible feature reuse or adaptations.

92

REFERENCES

[1] Arora, S., Bhaskara, A., Ge, R., and Ma, T. (2014). Provable bounds for learning some
deep representations. In Proceedings of the 31th International Conference on Machine
Learning, ICML, pages 584–592.

[2] Athalye, A. and Sutskever, I. (2017). Synthesizing robust adversarial examples. CoRR,
abs/1707.07397.

[3] Ba, L. J., Kiros, R., and Hinton, G. E. (2016). Layer normalization. CoRR, abs/1607.06450.

[4] Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167.

[5] Baker, B., Gupta, O., Raskar, R., and Naik, N. (2017). Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823.

[6] Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A. (2017). Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

[7] Brock, A., Donahue, J., and Simonyan, K. (2018). Large scale gan training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096.

[8] Brock, A., Lim, T., Ritchie, J. M., and Weston, N. (2017). Smash: one-shot model archi-
tecture search through hypernetworks. arXiv preprint arXiv:1708.05344.

[9] Cai, Z. and Vasconcelos, N. (2018). Cascade R-CNN: delving into high quality object
detection. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 6154–6162.

[10] Chatfield, K., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Return of the devil in
the details: Delving deep into convolutional nets. In British Machine Vision Conference,
BMVC.

[11] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J.,
Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J.,
Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019a). MMDetection: Open mmlab
detection toolbox and benchmark. arXiv preprint arXiv:1906.07155.

[12] Chen, T., Chen, R., Nie, L., Luo, X., Liu, X., and Lin, L. (2019b). Neural task planning
with AND-OR graph representations. IEEE Trans. Multimedia, 21(4):1022–1034.

[13] Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., and Feng, J. (2017). Dual path networks. arXiv
preprint arXiv:1707.01629.

[DARPA] DARPA. Explainable artificial intelligence (xai) program.

93

[15] de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., and Courville, A. C. (2017).
Modulating early visual processing by language. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 6597–6607.

[16] Deecke, L., Murray, I., and Bilen, H. (2019). Mode normalization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

[17] Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., and
Courville, A. C. (2016). Adversarially learned inference. CoRR, abs/1606.00704.

[18] Elsken, T., Metzen, J. H., and Hutter, F. (2018). Neural architecture search: A survey.
CoRR, abs/1808.05377.

[19] Everingham, M., Eslami, S. M., Gool, L., Williams, C. K., Winn, J., and Zisserman, A.
(2015). The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vision
(IJCV), 111(1):98–136.

[20] Farquhar, S. and Gal, Y. (2018). Towards robust evaluations of continual learning. arXiv
preprint arXiv:1805.09733.

[21] Felzenszwalb, P. F. (2011). Object detection grammars. In IEEE International Conference
on Computer Vision Workshops, ICCV, page 691.

[22] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object
detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal.
Mach. Intell. (PAMI), 32(9):1627–1645.

[23] Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A. A., Pritzel, A., and Wier-
stra, D. (2017). Pathnet: Evolution channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734.

[24] Fu, K. S. and Albus, J. E., editors (1977). Syntactic pattern recognition : applications.
Communication and cybernetics. Springer-Verlag, Berlin, New York.

[25] Geman, S., Potter, D., and Chi, Z. Y. (2002). Composition systems. Quarterly of Applied
Mathematics, 60(4):707–736.

[26] George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M., Laan, C., Marthi, B., Lou, X.,
Meng, Z., Liu, Y., Wang, H., Lavin, A., and Phoenix, D. S. (2017). A generative vision model
that trains with high data efficiency and breaks text-based captchas. Science.

[27] Ghiasi, G., Lin, T.-Y., and Le, Q. V. (2018). Dropblock: A regularization method for
convolutional networks. In Advances in Neural Information Processing Systems, pages
10727–10737.

[28] Gholami, A., Kwon, K., Wu, B., Tai, Z., Yue, X., Jin, P., Zhao, S., and Keutzer, K. (2018).
Squeezenext: Hardware-aware neural network design. arXiv preprint arXiv:1803.10615.

94

[29] Girshick, R. (2015). Fast R-CNN. In Proceedings of the International Conference on
Computer Vision (ICCV).

[30] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[31] Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial
examples. In ICLR.

[Grenander and Miller] Grenander, U. and Miller, M. Pattern Theory: From Representation
to Inference. Oxford University Press.

[33] Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J. (2019). Single path one-
shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420.

[34] Han, D., Kim, J., and Kim, J. (2017). Deep pyramidal residual networks. IEEE CVPR.

[35] Hays, D. G. (1964). Dependency theory: A formalism and some observations. Language,
40(4):511–525.

[36] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017a). Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969.

[37] He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017b). Mask R-CNN. In IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 2980–2988.

[38] He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages
1026–1034.

[39] He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Spatial pyramid pooling in deep con-
volutional networks for visual recognition. IEEE transactions on pattern analysis and
machine intelligence, 37(9):1904–1916.

[40] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778.

[42] He, K., Zhang, X., Ren, S., and Sun, J. (2016c). Identity mappings in deep residual
networks. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV, pages 630–645.

[43] He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M. (2018). Bag of tricks for image
classification with convolutional neural networks. CoRR, abs/1812.01187.

95

[44] Hinton, G. (August 17, 2017). What is wrong with convolutional neural nets? the 2017
- 2018 Machine Learning Advances and Applications Seminar presented by the Vector
Institute at U of Toronto, https://www.youtube.com/watch?v=Mqt8fs6ZbHk.

[45] Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang,
R., Vasudevan, V., Le, Q. V., and Adam, H. (2019). Searching for mobilenetv3. CoRR,
abs/1905.02244.

[46] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.

[47] Hu, J., Shen, L., and Sun, G. (2017). Squeeze-and-excitation networks. CoRR,
abs/1709.01507.

[48] Huang, G., Liu, S., van der Maaten, L., and Weinberger, K. Q. (2017a). Condensenet:
An efficient densenet using learned group convolutions. group, 3(12):11.

[49] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017b). Densely con-
nected convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

[50] Huang, G., Sun, Y., Liu, Z., Sedra, D., and Weinberger, K. Q. (2016). Deep networks
with stochastic depth. In Computer Vision - ECCV 2016 - 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV, pages 646–661.

[51] Huang, L., Liu, X., Lang, B., Yu, A. W., Wang, Y., and Li, B. (2018a). Orthogonal weight
normalization: Solution to optimization over multiple dependent stiefel manifolds in
deep neural networks. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, pages 3271–3278.

[52] Huang, L., Yang, D., Lang, B., and Deng, J. (2018b). Decorrelated batch normalization.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt
Lake City, UT, USA, June 18-22, 2018, pages 791–800.

[53] Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., and Liu, W. (2018c). Ccnet: Criss-
cross attention for semantic segmentation. CoRR, abs/1811.11721.

[54] Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–
154.

[55] Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, 195(1):215–243.

96

[56] Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in
batch-normalized models. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 1945–1953.

[57] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Blei, D. and Bach, F., editors, Proceedings
of the 32nd International Conference on Machine Learning (ICML-15), pages 448–456.
JMLR Workshop and Conference Proceedings.

[58] Jia, S., Chen, D., and Chen, H. (2019). Instance-level meta normalization. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 4865–4873.

[59] Kalayeh, M. M. and Shah, M. (2019). Training faster by separating modes of varia-
tion in batch-normalized models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–1.

[60] Karras, T., Laine, S., and Aila, T. (2018). A style-based generator architecture for gener-
ative adversarial networks. arXiv preprint arXiv:1812.04948.

[61] Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2019). A survey of the recent
architectures of deep convolutional neural networks. arXiv preprint arXiv:1901.06032.

[62] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan,
K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, page
201611835.

[63] Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images. Master’s thesis, Department of Computer Science, University of Toronto.

[64] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Neural Information Processing Systems (NIPS),
pages 1106–1114.

[65] Krueger, D., Maharaj, T., Kramár, J., Pezeshki, M., Ballas, N., Ke, N. R., Goyal, A., Bengio,
Y., Courville, A., and Pal, C. (2016). Zoneout: Regularizing rnns by randomly preserving
hidden activations. arXiv preprint arXiv:1606.01305.

[66] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015a). Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338.

[67] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015b). Human-level concept
learning through probabilistic program induction. Science.

97

[68] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2016). Building
machines that learn and think like people. CoRR, abs/1604.00289.

[69] Larsson, G., Maire, M., and Shakhnarovich, G. (2016). Fractalnet: Ultra-deep neural
networks without residuals. CoRR, abs/1605.07648.

[70] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551.

[71] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[72] Lee, J., Yun, J., Hwang, S., and Yang, E. (2017a). Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547.

[73] Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-T. (2017b). Overcoming catas-
trophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, pages 4652–4662.

[74] Li, X., Song, X., and Wu, T. (2019a). Aognets: Compositional grammatical architectures
for deep learning. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 6220–6230.

[75] Li, X., Song, X., and Wu, T. (2019b). Aognets: Compositional grammatical architectures
for deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6220–6230.

[76] Li, X., Sun, W., and Wu, T. (2019c). Attentive normalization. arXiv preprint
arXiv:1908.01259.

[77] Li, X., Zhou, Y., Wu, T., Socher, R., and Xiong, C. (2019d). Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. arXiv preprint
arXiv:1904.00310.

[78] Li, Y., Li, Z., Ding, L., Yang, P., Hu, Y., Chen, W., and Gao, X. (2018). Supportnet: solving
catastrophic forgetting in class incremental learning with support data. arXiv preprint
arXiv:1806.02942.

[79] Liang, X., Lin, L., and Cao, L. (2015). Learning latent spatio-temporal compositional
model for human action recognition. CoRR, abs/1502.00258.

[80] Lin, L., Wang, X., Yang, W., and Lai, J. (2015). Discriminatively trained and-or graph
models for object shape detection. IEEE Trans. Pattern Anal. Mach. Intell., 37(5):959–972.

[81] Lin, L., Wu, T., Porway, J., and Xu, Z. (2009). A stochastic graph grammar for composi-
tional object representation and recognition. Pattern Recognition, 42(7):1297–1307.

98

[82] Lin, M., Chen, Q., and Yan, S. (2013). Network in network. CoRR, abs/1312.4400.

[83] Lin, T., Dollár, P., Girshick, R. B., He, K., Hariharan, B., and Belongie, S. J. (2017). Feature
pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 936–944.

[84] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P.,
Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: common objects in
context. CoRR, abs/1405.0312.

[85] Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

[86] Lopez-Paz, D. et al. (2017). Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pages 6467–6476.

[87] Loshchilov, I. and Hutter, F. (2016). SGDR: stochastic gradient descent with restarts.
CoRR, abs/1608.03983.

[88] Luo, P., Ren, J., and Peng, Z. (2018). Differentiable learning-to-normalize via switchable
normalization. CoRR, abs/1806.10779.

[89] Mallya, A. and Lazebnik, S. (2018). Piggyback: Adding multiple tasks to a single, fixed
network by learning to mask. arXiv preprint arXiv:1801.06519.

[90] Mancini, M., Ricci, E., Caputo, B., and Bulò, S. R. (2018). Adding new tasks to a single
network with weight trasformations using binary masks. arXiv preprint arXiv:1805.11119.

[91] Massa, F. and Girshick, R. (2018). maskrcnn-benchmark: Fast, modular reference
implementation of Instance Segmentation and Object Detection algorithms in PyTorch.
https://github.com/facebookresearch/maskrcnn-benchmark. Accessed: [In-
sert date here].

[92] McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning and motivation,
volume 24, pages 109–165. Elsevier.

[93] Misra, D. (2019). Mish: A self regularized non-monotonic neural activation function.
arXiv preprint arXiv:1908.08681.

[94] Miyato, T. and Koyama, M. (2018). cgans with projection discriminator. arXiv preprint
arXiv:1802.05637.

[Mumford] Mumford, D. Grammar isn’t merely part of language. http://www.dam.
brown.edu/people/mumford/blog/2016/grammar.html.

[Mumford and Desolneux] Mumford, D. and Desolneux, A. Pattern Theory, the Stochastic
Analysis of Real World Signals. AKPeters/CRC Press.

99

https://github.com/facebookresearch/maskrcnn-benchmark
http://www.dam.brown.edu/people/mumford/blog/2016/grammar.html
http://www.dam.brown.edu/people/mumford/blog/2016/grammar.html

[97] Newell, A., Yang, K., and Deng, J. (2016). Stacked hourglass networks for human pose
estimation. CoRR, abs/1603.06937.

[98] Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). Variational continual learning.
In International Conference on Learning Representations.

[99] Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation func-
tions: Comparison of trends in practice and research for deep learning. arXiv preprint
arXiv:1811.03378.

[100] Park, J., Woo, S., Lee, J.-Y., and Kweon, I. S. (2018). Bam: bottleneck attention module.
arXiv preprint arXiv:1807.06514.

[101] Park, T., Liu, M., Wang, T., and Zhu, J. (2019). Semantic image synthesis with spatially-
adaptive normalization. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 2337–2346.

[102] Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., and Sun, J. (2018). Megdet:
A large mini-batch object detector. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 6181–
6189.

[103] Perez, E., de Vries, H., Strub, F., Dumoulin, V., and Courville, A. C. (2017). Learning
visual reasoning without strong priors. CoRR, abs/1707.03017.

[104] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural
architecture search via parameter sharing. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, pages 4092–4101.

[105] Pleiss, G., Chen, D., Huang, G., Li, T., van der Maaten, L., and Weinberger, K. Q. (2017).
Memory-efficient implementation of densenets. CoRR, abs/1707.06990.

[106] Ratcliff, R. (1990). Connectionist models of recognition memory: constraints imposed
by learning and forgetting functions. Psychological review, 97(2):285.

[107] Rauber, J., Brendel, W., and Bethge, M. (2017). Foolbox: A python toolbox to bench-
mark the robustness of machine learning models. arXiv preprint arXiv:1707.04131.

[108] Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2018). Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548.

[109] Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q., and Kurakin, A.
(2017). Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041.

[110] Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2017a). Learning multiple visual domains
with residual adapters. In Advances in Neural Information Processing Systems, pages
506–516.

100

[111] Rebuffi, S.-A., Bilen, H., and Vedaldi, A. (2018). Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8119–8127.

[112] Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017b). icarl: Incremental
classifier and representation learning. In Proc. CVPR.

[113] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object
detection with region proposal networks. In Neural Information Processing Systems
(NIPS).

[114] Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7(2):123–146.

[115] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. Nature, 323:533–536.

[116] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale
Visual Recognition Challenge. Int. J. Comput. Vision (IJCV), 115(3):211–252.

[117] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu,
K., Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv preprint
arXiv:1606.04671.

[118] Sabour, S., Frosst, N., and E Hinton, G. (2017). Dynamic Routing Between Capsules.
ArXiv e-prints.

[119] Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameteri-
zation to accelerate training of deep neural networks. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, page 901.

[120] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4510–4520.

[121] Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization
help optimization? In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., pages 2488–2498.

[122] Scherer, D., Müller, A., and Behnke, S. (2010). Evaluation of pooling operations
in convolutional architectures for object recognition. In International conference on
artificial neural networks, pages 92–101. Springer.

101

[123] Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-Barwinska, A., Teh, Y. W., Pascanu,
R., and Hadsell, R. (2018). Progress & compress: A scalable framework for continual
learning. arXiv preprint arXiv:1805.06370.

[124] Sener, O. and Savarese, S. (2018). Active learning for convolutional neural networks:
A core-set approach.

[125] Serrà, J., Surís, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catastrophic
forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423.

[126] Shao, W., Meng, T., Li, J., Zhang, R., Li, Y., Wang, X., and Luo, P. (2019). Ssn: Learning
sparse switchable normalization via sparsestmax. CoRR, abs/1903.03793.

[127] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pages 2990–2999.

[128] Song, X., Wu, T., Jia, Y., and Zhu, S. (2013). Discriminatively trained and-or tree models
for object detection. In Proceedings of 2013 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3278–3285.

[129] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958.

[130] Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015a). Highway networks. CoRR,
abs/1505.00387.

[131] Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015b). Highway networks. CoRR,
abs/1505.00387.

[132] Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127.

[133] Summers, P. D. (1977). A methodology for LISP program construction from examples.
J. ACM, 24(1):161–175.

[134] Sun, W. and Wu, T. (2019). Image synthesis from reconfigurable layout and style. In
International Conference on Computer Vision, ICCV.

[135] Szegedy, C., Ioffe, S., and Vanhoucke, V. (2016). Inception-v4, inception-resnet and
the impact of residual connections on learning. CoRR, abs/1602.07261.

[136] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015a). Going deeper with convolutions. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
pages 1–9.

102

[137] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015b). Rethinking the
inception architecture for computer vision. CoRR, abs/1512.00567.

[138] Tang, W., Yu, P., and Wu, Y. (2018). Deeply learned compositional models for human
pose estimation. In ECCV (3), volume 11207 of Lecture Notes in Computer Science, pages
197–214. Springer.

[139] Tang, W., Yu, P., Zhou, J., and Wu, Y. (2017). Towards a unified compositional model
for visual pattern modeling. In ICCV, pages 2803–2812. IEEE Computer Society.

[140] Thrun, S. and Mitchell, T. M. (1995). Lifelong robot learning. In The biology and
technology of intelligent autonomous agents, pages 165–196. Springer.

[141] Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2016). Instance normalization: The
missing ingredient for fast stylization. CoRR, abs/1607.08022.

[142] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., and Tang, X. (2017).
Residual attention network for image classification. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
6450–6458.

[143] Wang, J., Wei, Z., Zhang, T., and Zeng, W. (2016). Deeply-fused nets. CoRR,
abs/1605.07716.

[144] Wang, X., Girshick, R. B., Gupta, A., and He, K. (2018). Non-local neural networks. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018, pages 7794–7803.

[145] Wistuba, M., Rawat, A., and Pedapati, T. (2019). A survey on neural architecture
search. arXiv preprint arXiv:1905.01392.

[146] Woo, S., Park, J., Lee, J., and Kweon, I. S. (2018a). CBAM: convolutional block attention
module. In Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part VII, pages 3–19.

[147] Woo, S., Park, J., Lee, J.-Y., and So Kweon, I. (2018b). Cbam: Convolutional block
attention module. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 3–19.

[148] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer,
K. (2019). Fbnet: Hardware-aware efficient convnet design via differentiable neural
architecture search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 10734–10742.

[149] Wu, T., Lu, Y., and Zhu, S. (2016). Online object tracking, learning and parsing
with and-or graphs. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), DOI: 10.1109/T-
PAMI.2016.2644963.

103

[150] Wu, Y. and He, K. (2018). Group normalization. In Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
XIII, pages 3–19.

[151] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017a). Aggregated residual transfor-
mations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500.

[152] Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017b). Aggregated residual transfor-
mations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500.

[153] Yann LeCun, C. C. (1998). The mnist database of handwritten digits.

[154] Yu, F., Wang, D., and Darrell, T. (2018). Deep layer aggregation. In CVPR.

[155] Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. In Proceedings
of the British Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22,
2016.

[156] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic
intelligence. arXiv preprint arXiv:1703.04200.

[157] Zhang, H., Cissé, M., Dauphin, Y. N., and Lopez-Paz, D. (2018). mixup: Beyond
empirical risk minimization. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.

[158] Zhang, H., Dauphin, Y. N., and Ma, T. (2019). Fixup initialization: Residual learning
without normalization. CoRR, abs/1901.09321.

[159] Zhang, T., Qi, G., Xiao, B., and Wang, J. (2017a). Interleaved group convolutions. In
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October
22-29, 2017, pages 4383–4392.

[160] Zhang, X., Li, Z., Loy, C. C., and Lin, D. (2016). Polynet: A pursuit of structural diversity
in very deep networks. CoRR, abs/1611.05725.

[161] Zhang, X., Zhou, X., Lin, M., and Sun, J. (2017b). Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083.

[162] Zhu, L., Chen, Y., Lu, Y., Lin, C., and Yuille, A. L. (2008). Max margin AND/OR graph
learning for parsing the human body. In 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR).

[163] Zhu, S. C. and Mumford, D. (2006). A stochastic grammar of images. Foundations
and Trends in Computer Graphics and Vision, 2(4):259–362.

104

[164] Zoph, B. and Le, Q. V. (2016a). Neural architecture search with reinforcement learning.
In Proceedings of International Conference on Learning Representations.

[165] Zoph, B. and Le, Q. V. (2016b). Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578.

[166] Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017). Learning transferable archi-
tectures for scalable image recognition. arXiv preprint arXiv:1707.07012, 2(6).

105

	List of Tables
	List of Figures
	Introduction
	An Overview of Convolutional Neural Architecture
	Overview
	Basic Components of CNNs
	Modern CNN architecture designs
	Hand-crafted CNN architectures
	Neural Architecture Search (NAS)

	And-Or Grammar Networks
	Motivation and Objective
	Background
	And-Or Grammar Network Overview
	The Architecture of AOGNets
	The Structure of an AOGNet
	Node Operations in an AOGNet
	Simplifying AOG Building Blocks

	Experiments
	Implementation Settings and Details
	Experiments on CIFAR
	Image Classification in ImageNet-1K
	Experiment on Model Interpretability
	Experiment on Adversarial robustness
	Object Detection in Pascal VOC
	Object Detection and Segmentation in COCO
	Experiment on Chest X-Ray datasets for Medical Image Analysis

	Summary and Discussion

	Attentive Normalization
	Motivation and Objective
	Background
	Feature Normalization.
	Feature Attention.

	Overview of Attentive Normalization
	Implementation of Attentive Normalization
	Formulation of Feature Normalization
	Formulation on Feature Attention
	Attentive Normalization
	Integrating AN in Building Blocks of DNNs

	Experiments
	Ablation Study
	Image Classification in ImageNet-1000
	Object Detection and Segmentation in COCO
	Adversarial training for model robustness

	Conclusion

	Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting
	Introduction
	The Proposed Learn-to-Grow Framework
	Problem Definition of Continual Learning
	Our Proposed Learn-to-Grow Framework

	Our Implementation
	Structure Optimization
	Parameter Optimization

	Experiments
	Are Sensible Structures Sought in Learn-to-Grow?
	Are Forgetting Addressed in Learn-to-Grow?
	Comparisons with State-of-the-Art Methods

	Related Work
	Additional Results
	Additional Experimental Details for permuted MNIST
	Additional Experimental Details for Split CIFAR-100
	Additional Experiments on Visual Decathlon Dataset

	Summary

	Conclusion and Discussion
	References

