
ABSTRACT 

PARSONS, ARIELLE WALDSTEIN. Assessment of the Effect of Urbanization on Diversity, 

Population Dynamics and Wildlife Interactions Using Citizen-Science Camera Ancillary Data. 

(Under the direction of Dr. Roland Kays and Dr. Krishna Pacifici). 

 

Urban areas have been classically seen as areas of low species diversity, low animal abundance, 

few native predators, and thus low resilience and ecological function.  However, some previously 

extirpated mammals are returning to cities or colonizing them for the first time, leading to the 

idea that suburban areas may be more diverse than previously thought.  Along with this diversity 

could come alterations to interspecific interactions which can influence distribution, fitness and 

persistence.  Understanding how animals respond to urbanization and how it shapes their 

interactions is critical to conservation and management in the Anthropocene. Working with 

citizen scientist volunteers, I used camera traps to survey mammals across two development 

gradients in two cities in the eastern United States (Washington, DC and Raleigh, NC).  Our 

objectives were to 1) characterize community-level responses to urbanization (i.e., diversity and 

relative abundance of mammals) 2) determine the population-level response in terms of 

distribution and the role of interspecific interactions and 3) determine the population-level 

response to urbanization in terms of abundance and population dynamics. I found that developed 

areas had significantly higher or statistically similar mammalian occupancy, relative abundance, 

richness and diversity compared to wild areas.  Using a multispecies occupancy model with four 

competing predator species (coyote (Canis latrans), gray fox (Urocyon cinereoargenteus), red 

fox (Vulpes vulpes) and bobcat (Lynx rufus)) I found interspecific interactions to be key 

mediators of carnivore occupancy in urban areas.  I found that coyotes and gray foxes were more 

likely to use the same forest patches in suburban areas, suggesting positive spatial interaction.  

However, gray foxes temporally avoided coyotes in suburban areas by becoming more diurnal, 



increasing the potential for human-fox interactions. Using an integrated population model, I 

found that suburban white-tailed deer (Odocoileus virginianus) survival and recruitment were 

negatively related to coyote density at low levels of development but positively related at high 

levels of development, consistent with deer exploiting suburban and urban areas for concentrated 

resources and/or as refuges from coyote predation. Overall, I found that diversity, the frequency 

of interspecific interactions and prey population dynamics can all be higher in suburban areas.  

However, as species like coyotes adapt more to suburban landscapes, we might expect changes 

to their response to urbanization and the dynamics between predator, competitors and prey, 

leading to consequences unforeseen by our analyses.  Although some animals can thrive in 

suburbia, conservation of wild areas and preservation of green space within cities are needed to 

protect sensitive species and to give all species the chance to adapt and persist in the 

Anthropocene. 
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Chapter 1: Mammal communities are larger and more diverse in moderately developed 

areas  

Parsons, A.W., Forrester, T., Baker-Whatton, M.C., McShea, W.J., Rota, C.T., Schuttler, S.G., 

Millspaugh, J.J. and Kays, R., 2018. Mammal communities are larger and more diverse in 

moderately developed areas. ELife, 7, p.e38012. 

 

Introduction  

Global loss of biodiversity leads to disruption of ecosystem services around the world, ultimately 

threatening human well-being (Cardinale et al. 2012). Vertebrate species loss is typically 

considered to be worst in the most developed landscapes, where urbanization serves as an intense 

and long-term disturbance that permanently alters habitat and truncates food webs (Mckinney 

2006; Lombardi et al. 2017a). However, for some species, urbanization can offer abundant 

nutrient-rich food that is less ephemeral compared to wild areas (Bateman and Fleming 2012; 

Wang et al. 2017). Whether this food is enough to counteract the negative effects of disturbance 

(i.e. higher road mortality, fragmentation) depends on a species’ ability to adapt to the stressors 

of urban living (Witte et al. 1982). Mammal species, especially those with large home ranges, are 

arguably most at risk from development, leading some to suggest that developed areas have a 

dearth of predators, and that prey species could benefit by using humans as a shield (Crooks 

2002; Ordeñana et al. 2010). Historical studies have shown cities to be depauperate of bird life, 

supporting the traditional view that development and biodiversity cannot coexist (Keast 1995; 

Strohbach et al. 2014).  

However, recent evidence has shown that some mammal species previously thought mal-

adapted to urban landscapes (i.e. mountain lion (Puma concolor), fisher (Martes pennanti)) are 
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thriving in them (Bateman and Fleming 2012; Lapoint et al. 2013), suggesting an evolutionary 

trend that could be important for conservation in the Anthropocene. Existing research on 

mammal communities across urbanization gradients has focused on single cities, yielding 

conflicting results, perhaps due to variation in city structure and characteristics (Saito and Koike 

2013; Lombardi et al. 2017a). Given the rapid expansion of urban areas worldwide, and the 

recent case studies of urban adaptations by wildlife (Lapoint et al. 2013; Riley et al. 2014; Wang 

et al. 2017), more large scale studies are needed to evaluate the response of wildlife communities 

to urban development if we are to understand urban ecology, conservation, and evolution in the 

Anthropocene.  

Here we present the results of a large-scale mammal survey of two urban-wild gradients. 

Our objectives were to determine how diversity, richness, detection rate, and occupancy of the 

mammal community change as a function of human disturbance.  We hypothesized that the 

availability of supplemental food at higher levels of development would positively affect 

mammalian populations and outweigh the negative effects of disturbance, except for the most 

sensitive species.  Specifically, we predicted that mammalian relative abundance would increase 

with developmental level but that species richness and diversity would decrease.  Furthermore, 

we predicted that occupancy of the most sensitive species (i.e. large and medium carnivores) 

would be highest in wild areas both in our study area and around the world. 

 

Materials and Methods 

Study sites. Washington, District of Columbia, USA (hereafter DC) is a city of approximately 

177 km2 with an estimated human population size of 681,000, thus a density of 3,847 

people/km2. Our study spanned a 56,023.7 km2 area around the city with a mean of 4.4 
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houses/km2 and matrix of agriculture (~21.3%) and forest (~54.1%). Raleigh, North Carolina, 

USA (hereafter Raleigh) is approximately 375 km2 with an estimated human population size of 

459,000, thus a density of 1,278 people/km2. Our study spanned a 66,640 km2 area around the 

city with a mean of 17.7 houses/km2 and matrix of agriculture (~24.3%) and forest (~52.3%). 

 

Citizen science camera trap surveys. From 2012-2016, 557 trained volunteers deployed 1427 

unbaited camera traps across an urban-wild gradient around Raleigh and DC.  Each individual 

camera was considered a “camera site” and volunteers ran cameras at an average of 2 sites each.  

Following Hammer et al. (2004), we used the Silvis housing density dataset with 1km grid cells 

to define five development levels of the gradient for sampling stratification (excluding open 

water): urban (>1000 houses/km2), suburban (147.048-1000 houses/km2), exurban (12.64-

147.047 houses/km2), rural (0.51-12.63 houses/km2) and wild (<0.5 houses/km2).  Within those 

gradient levels, camera placement was also stratified between residential yards, open areas 

(>0.001 km2 absent of trees), small forest fragments (≤1 km2) and large forest fragments (>1 

km2) (Table A1).  Forest fragment size was verified using the 2006 US National Landcover 

Dataset (NLCD) and Landscape Fragmentation Tool v2.0 (Vogt et al. 2007) in ArcMap (Version 

10.1, ESRI, Redlands, CA, USA) which defines forest fragments by size.  Yards were not 

available for sampling in the urban or wild levels of the gradient.  Urban areas were not sampled 

in Raleigh and open areas were not sampled in DC. All adjacent cameras were spaced at least 

200 m apart. Camera placement was randomized as much as possible using ArcMap (Version 

10.1) to randomly generate points within polygons while following certain rules. For example, 

we selected sites within forests that volunteers were permitted to access and were within a 

reasonable hiking distance (i.e. < 11 km hike round trip) with terrain that was not too steep to 
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traverse safely (i.e. <45 degree slope).  Within yards, cameras were placed as randomly as 

possible while avoiding the highest human traffic areas (i.e. walkways, doors, gates and 

driveways). 

No explicit power analysis was used to predetermine sample size. Our sample size goal 

was 20 spatial replicates (equating to ~420 trap nights), which has been found to maximize 

precision for estimating detection rate (Rowcliffe et al. 2008; Kays et al. 2010b).  Camera sites 

are biological replicates, parallel measurements capturing random biological variation. This 

study did not include technical replicates. 

Volunteers used Reconyx (RC55, PC800, and PC900, Reconyx, Inc. Holmen, WI) and 

Bushnell (Trophy Cam HD, Bushnell Outdoor Products, Overland Park, KS) camera traps 

attached to trees at 40cm above the ground.  Cameras were deployed for three weeks and then 

moved to a new location without returning, with sampling taking place continuously throughout 

the year.  Cameras recorded multiple photographs per trigger, at a rate of 1 frame/s, re-triggering 

immediately if the animal was still in view.  We grouped consecutive photos into on sequence if 

they were <60 seconds apart, and used these sequences as independent records, counting animals 

in the sequence, not individual photos (Parsons et al. 2016).  We then collapsed these 

independent records into daily detection/non-detection for occupancy modeling.  Initial species 

identifications were made by volunteers using customized software (available freely from 

eMammal.org, source code proprietary) and all were subsequently reviewed for accuracy before 

being archived at the Smithsonian Digital Repository (Mcshea et al. 2016). 

 

Diversity.  We used package iNEXT (Hsieh et al. 2016) in R (Version 3.1.0; R Development 

Core Team 2008) via R Studio (Rstudio Team 2015) to calculate Hill numbers (i.e. the effective 
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number of species, incorporating relative abundance and richness) of species richness and 

Shannon diversity (Chao et al. 2014) between gradient levels (urban-suburban-exurban-rural-

wild) and plot types (yard, open, small forest, large forest).  iNEXT calculates the Shannon 

diversity as Hill number q = 1, equal to the exponential of Shannon's entropy index, thus the 

natural log of those results was used for display purposes. We used detection/non-detection data 

to compute diversity estimates and the associated 95% confidence intervals via rarefaction, 

plotting the diversity estimates while accounting for sample size.  We fit a curve to diversity 

estimates between gradient levels using a generalized additive model with a polynomial term.  

 

Model covariates. We modeled variation in occupancy (ψ) and detection rate using 13 covariates 

(Table A2) representing development level, the amount of core forest, small scale forest cover, 

prey relative abundance and whether hunting was allowed.  We added year as a covariate to 

account for population changes over time.  We used the Landscape Fragmentation Tool v2.0 

(Vogt et al. 2007) and the NLCD (2006) land use dataset in ArcMap (Version 10.1) to create a 

landcover layer representing the percent of large core forest (forest patches larger than 1km2) in a 

5km radius around camera locations which we considered best approximated the home range 

size of our target species (Bekoff 1977; Fritzell and Haroldson 1982; Larivière and Pasitschniak-

Arts 1996; Larivière and Walton 1997).  Forest patches did not necessarily fall entirely within 

the buffer. We considered road density as an additional covariate at the 5 km scale but initial 

evaluations showed it to be highly correlated with housing density (87.1%) so we chose to 

eliminate it from the analysis.  We used a 100 m radius for small scale forest cover to best 

represent small forest patches within suburban neighborhoods (e.g. small vacant lots with trees, 

greenways).  We represented deer and rodent+lagomorph relative abundance using site-specific 
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detection rate (the number of detections divided by the total number of camera-nights).  We 

included an indicator (0/1, no hunting/hunting) to categorize whether a site allowed hunting or 

not.  We modeled detection probability (p) using five covariates (Table A2).  Because both 

ambient temperature and undergrowth can affect the camera’s ability to detect an animal, we 

included daily covariates for temperature and NDVI (Moderate Resolution Imaging Land Terra 

Vegetation Indices 1 km monthly, an average value over the month(s) the camera ran) obtained 

from Env-DATA (Dodge et al. 2013).  To complement NDVI, we also considered site-specific 

detection distance, a measure of how far away the camera was able to detect a human, which is 

influenced by both understory and site topography.  We included an indicator (0/1, not 

yard/yard) to categorize whether a site was a residential yard or not.  In Raleigh, two different 

camera models were used (both Reconyx and Bushnell) so we added a 0/1 (Bushnell/Reconyx) 

covariate to account for potential difference in detection probability between the two brands.  We 

diagnosed univariate correlations between covariates using a Pearson correlation matrix, and 

used a restrictive prior for beta coefficients  for beta coefficients where correlation was >0.60 

(i.e. logistic(0,1); a prior with reduced variance to induce shrinkage, similar to ridge regression; 

Hooten and Hobbs 2015).  All covariates were mean-centered.  

 

Detection rate models. We used a Poisson count model (e.g. Kays et al. 2016) to assess 

differences in total mammal detection rate (i.e. the intensity with which a site was used, 

count/day) between the five gradient levels (urban, suburban, exurban, rural, wild) and four plot 

types (large forest, small forest, open, yard).  We fit a curve to total detection rate estimates 

between gradient levels using a generalized additive model. No other covariates were used in this 

model.  We then ran separate count models for four predator species (coyote (Canis latrans), 
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gray fox (Urocyon cinereoargenteus), red fox (Vulpes vulpes) and bobcat (Lynx rufus)) to 

evaluate covariates of detection rate, running one fully-parameterized model (Table A2) to 

evaluate which explained the most variation in detection rate.  We assessed model fit with 

posterior predictive checks (PPC) (Kery and Schaub 2012; Gelman et al. 2014) by calculating 

the sum of squared Pearson residuals from observed data (T(y)) and from data simulated 

assuming the fully parameterized model was the data-generating model (T(ysim)). We calculated a 

Bayesian p-value as pB = Pr(T(ysim) > T(y)) from posterior simulations and assumed adequate fit 

if 0.1 < pB < 0.9 (Table A3).  We fit the detection rate model in OpenBUGS v3.2.3 (Lunn et al. 

2009) via R2OpenBUGS v3.2 (Sturtz et al. 2005) in R (Version 3.1.0)  via R Studio. We based 

inference on posterior samples generated from three Markov chains, using trace plots to 

determine an adequate burn-in phase. All models achieved adequate convergence (𝑅̂ ≤ 1.1) 

(Gelman et al. 2014) by running for 50,000 iterations following a burn-in phase of 1000 

iterations, thinning every 10 iterations.  We based significance on whether parameter 95% 

credible intervals overlapped zero. 

 

Occupancy models. We used the multispecies occupancy model of Rota et al. (2016)  to estimate 

the probability of occupancy of four predator species: bobcat, coyote, red fox and gray fox.  

Although we are using the term occupancy, because data were collected from camera traps 

estimates are more analogous to “use” than true occupancy (Burton et al. 2015).  This model is 

distinct from the classic multispecies community models (Dorazio and Royle 2005; Gelfand et 

al. 2005; Dorazio et al. 2006) and is rather a generalization of the single-season occupancy 

model (Mackenzie et al. 2002) to accommodate two or more interacting species. It contains 

single-species (first order) occupancy models for each interacting species alone as well as 
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pairwise (second order) models for the co-occurrence of each pair of species (Rota et al. 2016). 

For each species and pairwise interaction, the model estimates detection probability (p), defined 

as the probability of detecting an occurring species at a camera site, and occupancy (ψ), defined 

as the probability that a given camera site is occupied, for each species. The latent occupancy 

state of each species at a site is modeled as a multivariate Bernoulli random variable such that 

(assuming 2 interacting species):  

 

𝑍~𝑀𝑉𝐵(𝜓11, 𝜓10, 𝜓01, 𝜓00) 

  

Where 𝜓11is the probability that both species occupy a site, 𝜓10 is the probability that only 

species 1 occupies a site, 𝜓01 is the probability that only species 2 occupies a site and 𝜓00 is the 

probability that neither species occupies a site. We assumed all species occurred independently 

and considered the same set of five covariates for the detection probability models and 13 

covariates in the occupancy model of each species (Table A2). We considered interactions (i.e. 

city*covariate) between each occupancy covariate and city (0/1, DC/Raleigh).  We estimated 

occupancy for each species across levels of the development gradient (urban, suburban, exurban, 

rural, wild) and plot types (yard, open, small forest, large forest) within each city separately by 

including development level and plot type as categorical covariates in our model. 

We fit models in STAN  (Version 2.15.1; Stan Development Team 2015b) via the 

RSTAN  (Version 2.15.1; Stan Development Team 2015a) interface in R (Version 3.4.0) via R 

Studio (Version 1.0.143). We based inference on posterior samples generated from two Markov 

chains, using trace plots to determine an adequate burn-in phase and subsequently running chains 

they reached adequate convergence (𝑅̂>1.1) (Gelman et al. 2014). All models achieved adequate 
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convergence by running for 3000 iterations following a burn-in phase of 1000 iterations.  We 

based predictor significance on whether beta coefficient 95% credible intervals overlapped zero. 

We assessed model fit with posterior predictive checks (PPC) (Kery and Schaub 2012; Gelman 

et al. 2014) by calculating the sum of squared Pearson residuals from observed data (T(y)) and 

from data simulated assuming the fully parameterized model was the data-generating model 

(T(ysim)). We calculated a Bayesian p-value as pB = Pr(T(ysim) > T(y)) from posterior simulations 

and assumed adequate fit if 0.1 < pB < 0.9. To our knowledge, the squared Pearson’s residual has 

not been derived in the context of occupancy models, so we present our derivation of this test 

statistic in Appendix B.  We added a random effect on detection/non-detection for the coyote 

portion of the model since initial assessments of fit for this species were inadequate (i.e. pB>0.9). 

We assessed differences in occupancy between gradient levels for each species using 

overlapping 95% confidence intervals. 

 

Comparison with global occupancy data. We removed omnivores from the dataset of Rich et al. 

(2017) to better compare with carnivore occupancy from our own dataset.  Where species 

occupancy was estimated from multiple studies in the Rich et al. dataset, we calculated averages 

to compare to occupancy estimates from our own study.  We summarized occupancy estimates 

of Rich et al. and our own study within each developmental level using a box and whisker plot 

and assessed statistically significant differences based on whether or not interquartile ranges 

overlapped. 

 

Data accessibility. Raw detections data have been deposited in Data Dryad, 

doi:10.5061/dryad.11rf64v. The software used for initial species identifications is available via 
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eMammal.org. To download and use the software, users must first create an account on 

eMammal and become associated with an existing project. This can be done by using the 'Join' 

button on the project's homepage, or by emailing the contact person, also listed on the project 

homepage. Usually the user will also have to pass an online or in person training, depending on 

the project requirements, and they will then become approved to download the software.  

 

Results and Discussion  

Working with citizen scientist volunteers, we obtained 53,273 detections of 19 mammal species 

at 1427 sites along an urban-wild gradient in Washington, DC and Raleigh, NC, USA, sampling 

both private and public lands. In DC, we detected 17 mammal species with mean naïve 

occupancy of 0.19 (min=0, max=0.93) and mean detection rate of 0.09 detections/day (min=0, 

max=1.05).  In Raleigh, we detected 17 mammal species with mean naïve occupancy of 0.14 

(min=0, max=0.79) and mean detection rate of 0.08 detections/day (min=0, max=0.09). 

We found no significant decline of species diversity or richness from suburban to wild gradient 

levels (Figure A1, Figure 2). However, Shannon diversity was significantly lower at the urban 

level in DC, possibly due to low sampling (Figure 1, Table A1). Diversity in yards was 

significantly higher or not statistically different from large and small forest fragments in both 

cities (Figures A2, A3). Most (92.3%) of the 13 mammal species detected >20 times occupied all 

levels of development below the urban level. Two of the largest predators, coyotes and bobcats, 

were absent from the highest development level (urban) but were detected at all other levels in 

both cities. Black bears (Ursus americanus), which are actively discouraged from colonizing 

central North Carolina (North Carolina Wildlife Resources Commission 2011), were not detected 

in Raleigh and only detected in the DC at the wild level of the gradient. These results indicate 
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that the extant mammal guild exploits all levels of the urban-wild gradient and that no species are 

entirely relegated to the wild gradient level. However, some species appear less adapted to 

habitation in human-dominated areas, spending most of their time at the wild levels of the 

gradient (i.e. bobcat, bear; Figure 2).  We recognize that the current community represents 

species that survived the initial arrival of high-density human settlement. In particular, two large 

predators (wolves (Canis lupus) and cougars (Puma concolor)) were extirpated from our study 

area a century ago.  However, even cougars and wolves have recently shown surprising 

adaptability in the face of development at other sites (Bateman and Fleming 2012; Wang et al. 

2017) suggesting that, given enough time and protection from persecution, many of the most 

“wild” of species may adapt to human development.   

Predators are thought to be the most at risk from urbanization (Crooks 2002), therefore 

we evaluated predictors for occupancy (Mackenzie et al. 2002) and detection rate (Kays et al. 

2016) for four carnivores: coyote, gray fox, red fox, and bobcat. Both of our models fit well, with 

Bayesian p-values between 0.1 and 0.9 (Table A3). Suburban and urban occupancy probabilities 

were not statistically different from wild for any of the species (Figure A4) and we noted a 

decreasing trend in occupancy from urban to wild (Figure 3). We compared the occupancy 

estimates from our study to those reported for carnivores in protected areas around the world 

(Rich et al. 2017) and found no significant difference (Figure 3), suggesting that the ecological 

function of predators in this urban system is not substantially reduced from the current wild state, 

excepting the historical extirpation of the two largest native predators from the region.  

Our occupancy and detection rate models yielded similar results (Tables A4- A6) 

demonstrating that green space is important to carnivore species that are less-adapted to human-

altered landscapes. These models show a greater association of carnivores with green space when 
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housing density is high (e.g. coyote and gray fox, Tables A4, A5), consistent with other studies 

finding urban green space important in maintaining biodiversity in cities (Gallo et al. 2017; 

Lombardi et al. 2017a; Matthies et al. 2017). It is likely that shyer species are not avoiding 

regions of high human density, but require patches of forest to navigate residential areas that are 

freely used by more commensal species, such as red foxes (Tigas et al. 2002), which we 

frequently detected in yards.  Indeed, we found a gradient of responses in carnivore use of 

human-dominated environments, from red fox which are the most urban adapted (i.e. negatively 

associated with local large forest fragments and the only species to have a positive association 

with yards) to bobcats which appear to be the most human-averse (i.e. they had the lowest 

occupancy values of any carnivore at the suburban level) (Figures 2, A4).  

Contrary to expectations, we found no evidence for a negative impact of suburban and 

exurban development on extant native mammal diversity, richness, and occupancy and detection 

rate of carnivores.  In fact, all metrics were significantly greater than, or equal to, wild areas. We 

suspect that developed areas offer good food resources for wildlife through direct and indirect 

feeding (i.e. bird feeders supplementing prey, pets), accidental feeding (i.e. garbage), and 

ornamental plantings (for herbivores), but testing this hypothesis will require additional diet 

studies in urban landscapes (Contesse et al. 2005).  Furthermore, the structure of mature suburbia 

(i.e. older, established neighborhoods with large trees, wooded riparian areas, small parks) 

contributes to a more diverse and varied landscape than wild areas with more homogenous forest 

cover, which is potentially beneficial for many generalist species. Developed areas where 

hunting is limited or prohibited also offer a safe haven for game species, presuming they can 

navigate the road networks (Collins and Kays 2011) and avoid direct human conflict. 
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Our discovery of a wild suburbia suggests high levels of adaptation by mammals to 

developed landscapes over the last few decades, including predators and prey.  The resilience of 

these species gives hope for wildlife in the Anthropocene, but the generality of this pattern needs 

to be tested in other cities to understand how habitat type, development patterns, apex predators, 

and hunting regulations influence urban mammal communities, as there are examples of far more 

drastic impacts of urbanization on other taxa and in other places around the globe (Keast 1995; 

Mckinney 2008). Indeed, in Tokyo, Japan, the relative abundance of mammals declined with 

urbanization (Saito and Koike 2013) and avian communities in Quebec, Canada and Rennes, 

France showed a similar decline in richness (Clergeau et al. 1998; Saito and Koike 2013). This 

suggests that city structure, size and human density may influence mammalian distribution along 

urban-wild gradients with large, sprawling New World cities showing different patterns than the 

smaller more concentrated cities of the Old World.  Although our study provides a less dire 

picture of urban ecosystem function than previously thought, we do not suggest abandoning 

mitigation of urbanization’s negative impacts, or conservation of completely wild areas. Factors 

such as urban green space, connectivity and availability of completely wild areas give species the 

time and space to adapt to changing habitats and climates. Further understanding of how urban 

wildlife navigates human-dominated areas and factors that contribute to the adaptation of species 

to the Anthropocene will be critical to maintaining diversity in a rapidly urbanizing world. 
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Figure 1: Mean Shannon diversity and total detection rate along a gradient of housing density in 

two cities, Washington, DC and Raleigh, NC USA taken from camera traps. Bars show 95% 

confidence intervals, lines are fit using a generalized additive model with a polynomial term.  

Diversity peaked at intermediate levels of urbanization (exurban in DC and suburban in Raleigh).  

Total detection rate peaked at the urban level in DC and exurban level in Raleigh. 
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Figure 2: The percent of detections for each species of carnivores (left) and herbivores (right) in 

each development level along the urban-wild gradient in Washington, DC and Raleigh, NC, USA 

accounting for the effort (i.e. camera nights) within each level, sorted from lowest to highest 

proportion urban/suburban in DC. The dashed line shows 50% of total detections. Some species 

were predominantly rural/wild (i.e. bobcats and fox squirrels) while others were mainly detected 

in urban/suburban habitats (i.e. red fox, raccoon).  Patchy distributions at different gradient 

levels were seen for species at the edge of their ranges (i.e. chipmunks and woodchucks in 

Raleigh).  Urban habitats were not sampled in Raleigh. 
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Figure 3: Comparison of carnivore (i.e. bobcat, coyote, gray fox, red fox) occupancy 

probabilities  at each developmental level in two cities with global values from Rich et al. (Rich 

et al. 2017), representing 93 carnivores from 13 protected areas on five continents (Global 

Wildlands). Each box for our dataset represents the distribution of marginal occupancy 

probabilities for each of four carnivore species in that city (i.e. four probabilities).  The boxes for 

Global Wildlands represent the distribution of marginal occupancy probabilities for 93 species.  

We found no statistically significant differences between any habitat levels in our study or 

between our study and global wildland occupancy probabilities but noted a decreasing trend in 

occupancy from urban-wild. We included only predators from Rich et al. 2017 and removed 

omnivores (i.e. raccoon, coati) to better reflect our data.  
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Chapter 2: Urbanization focuses carnivore activity in remaining natural habitats, 

increasing species interactions  

 

Parsons, A.W., Rota, C.T., Forrester, T., Baker‐Whatton, M.C., McShea, W.J., Schuttler, S.G., 

Millspaugh, J.J. and Kays, R., 2019. Urbanization focuses carnivore activity in remaining natural 

habitats, increasing species interactions. Journal of Applied Ecology, 56(8), pp.1894-1904. 

 

Introduction 

Interspecific interactions such as predation, competition, parasitism and mutualism are thought to 

play critical roles in structuring biotic communities. Antagonistic interspecific interactions can 

provoke temporal and spatial avoidance, leading to patch exclusion and reduced carrying 

capacity and population growth rates (Linnell and Strand 2000), with cascading effects on 

population densities (e.g., Henke and Bryant 1999) and spatial distribution patterns (e.g., 

Hersteinsson and Macdonald 1992). The ability of species to coexist in the presence of 

interspecific interactions ultimately contributes to biodiversity and ecosystem stability, where 

changes to interspecific interactions (i.e., population decline or extirpation of one species) would 

be expected to have destabilizing consequences such as trophic cascades and local extinctions 

(Ricklefs 1987).  

Competition and predation are interactions common among carnivore species (Palomares 

and Caro 1999) and thought to play a pivotal role in the structuring and spatial distribution of 

carnivore communities (Caro and Stoner 2003; Carter et al. 2015; Swanson et al. 2016). 

Dominant carnivores are predicted to be distributed according to food availability, while 

subordinate species select habitats based on both food and safety from dominant carnivore 

harassment or predation (Heithaus 2001). Avoidance of dominant carnivores may force 
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subordinate species to use lower quality sites with fewer prey, resulting in lower densities (e.g., 

Durant 1998). Dominant carnivores can also mediate interactions between competing smaller 

carnivores by consuming the better competitor, increasing the prey base and enhancing 

coexistence when present (e.g., St‐Pierre et al. 2006), and increasing competition when absent. 

Despite evidence that interspecific interactions are present among carnivores, their relative 

importance compared to other ecological factors, and impacts on the broader community, are 

poorly understood (Gompper et al. 2016). 

Changes to carnivore distribution in response to human activity has been of particular 

interest over the last 20 years (e.g., Randa and Yunger 2006; Lewis et al. 2015b). The dramatic 

reductions and fragmentation of wildlife habitat associated with human development  are thought 

to be especially problematic for large and wide-ranging carnivores (Muhly et al. 2011), resulting 

in fewer large carnivores in the most highly developed areas (Bateman and Fleming 2012) and 

potentially cascading ecological effects. Under this traditional view of carnivore decline in 

developed areas, we would expect a reduction of competitive interactions between carnivores 

due to low density and increased prey base (Périquet et al. 2015). However, reductions in 

populations of large predators in developed areas could actually lead to increases in smaller 

predator populations (i.e., mesopredator release), resulting in the decline of smaller prey (Crooks 

and Soulé 1999) and more intense competition between smaller carnivores over increasingly 

scarce food. When food resources are clumped, as would be expected in urban areas, competition 

between urban-adapted species can further increase (Macdonald and Johnson 2015). Indeed, prey 

species in urban areas might be able to use humans as shields, concentrating their activities in the 

most human-dominated areas to be exploited only by the most urban-adapted predator species 

(Berger 2007). However, recent evidence has shown that many carnivore species are more 
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adaptable than previously thought, with some able to thrive in developed areas, presumably 

habituating to the disturbance of human activity and exploiting anthropogenic food subsidies 

(Wang et al. 2015), including domestic species (Athreya et al. 2016).  The relative ability of 

some species to exploit human-dominated areas may shift the dynamics between predator species 

to new competitive advantages based on boldness and adaptation to human disturbance, rather 

than direct competitive advantage (Geffroy et al. 2015). 

Following the historic extirpation of cougars and wolves, extant carnivore communities 

in the eastern USA have shown little decline in relative abundance or diversity even in the most 

urban areas (Parsons et al. 2018a), and formerly rare predators are recolonizing suburbia (e.g., 

fisher Pekania pennanti (Lapoint et al. 2015) and mountain lions Puma concolor (Bateman and 

Fleming 2012)).  Coyotes (Canis latrans) have expanded their geographic range, and are now 

moving into some of the most populated cities in the US (Weckel et al. 2015; Hody and Kays 

2017).  Given their use of highly urban areas in their traditional range (Gehrt et al. 2011b), we 

expect coyotes to become more common in developed areas in the east. Western coyotes impact 

smaller predators (Fedriani et al. 2000), suggesting that their arrival in eastern cities could have 

similar cascading effects on resident urban foxes. These dynamic carnivore populations offer an 

ideal setting to evaluate the impact of human disturbance on species interactions by comparing 

predator communities along gradients of urbanization. 

We used camera traps deployed by citizen-scientists in two cities (Washington, DC and 

Raleigh, NC) in the mid-Atlantic United States to investigate whether species interactions 

influence the site occupancy of carnivore species along an urbanization gradient. By sampling 

not only forested areas, but also residential yards, our study offers a more complete perspective 

on how animals use developed lands. We tested four hypotheses representing factors that could 
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influence predator occupancy along the urbanization gradient: forest fragmentation, human 

influence, prey availability, and interactions between carnivores.  We used a multispecies 

occupancy model with four competing predator species (coyote, bobcat (Lynx rufus), grey fox 

(Urocyon cinereoargenteus) and red fox (Vulpes vulpes)) to test which hypothesis best explained 

species occupancy. We predicted that accounting for interspecific interactions would be an 

important factor in modelling occupancy for all species. If smaller competitors (i.e., grey and red 

fox) are using humans as shields, we predicted a positive relationship with housing density and 

less interaction with larger competitors (i.e., coyotes) at higher levels of urbanization. If the 

clumped distribution of food resources in urban areas is increasing interspecific competition, we 

predicted that species interactions would be positively mediated by urbanization.  

 

Materials and methods 

Study sites – We chose two study sites in the mid-Atlantic United States which varied in size, 

sprawl and human density.  Washington, District of Columbia (hereafter DC) is a city of 

approximately 177km2 with an estimated population size of 681,000, thus 3,847 people/km2. Our 

study spanned a 56,023km2 area around the city where surrounding land use was a combination 

of agriculture (~21%) and forest (~54%) with a mean of 4.4 houses/km2. Raleigh, North Carolina 

(hereafter Raleigh) is approximately 375km2 with an estimated population size of 459,000, thus 

1,278 people/km2. Our study spanned a 66,640km2 area around the city where surrounding land 

use was a combination of agriculture (~24%) and forest (~52%) with a mean of 17.7 houses/km2.  

Forest fragmentation, measured as an index of non-forest to forest pixels (Riitters et al. 2000) 

within a 100km radius around the city centre, was higher in DC (1.39) than Raleigh (0.94). 
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Citizen science camera trap surveys – From 2012-2016 (Table C1), 557 trained volunteers (see 

Parsons et al. 2018c for details) deployed 1,260 unbaited camera traps across urbanization 

gradients around Raleigh and DC (Figure 4). We used the Silvis housing density dataset 

(Hammer et al. 2004) and bin levels of Theobald (2005) to define the four levels of the gradient 

for sampling stratification (excluding open water): suburban (147.05-1000 houses/km2), exurban 

(12.64-147.06 houses/km2), rural (0.51-12.63 houses/km2) and wild (<0.5 houses/km2).  Within 

gradient levels, camera placement was stratified between residential yards, small forest 

fragments (≤1km2), and large forest fragments (>1km2) (Table C2). All adjacent cameras were 

spaced at least 200m apart. Volunteers used Reconyx (RC55, PC800, and PC900, Reconyx, Inc. 

Holmen, WI) and Bushnell (Trophy Cam HD, Bushnell Outdoor Products, Overland Park, KS) 

camera traps attached to trees at approximately 40cm above the ground. Trigger sensitivity was 

set to high for all cameras and we verified that both brands of camera had similar trigger speeds 

(<0.5s) and randomized placement of the different models to avoid bias due to camera type. 

Cameras were deployed for three weeks and then moved to a new location. Cameras recorded 

multiple photographs per trigger, at a rate of 1 frame/s, re-triggering immediately if the animal 

was still in view. We grouped consecutive photos into sequences if they were <60 seconds apart, 

counting animals in the sequence, not individual photos, and used these sequences as 

independent records (see Kays et al. 2016). We collapsed independent records into daily 

detection/non-detection for occupancy modelling. Initial species identifications were made by 

volunteers using customized software (eMammal.org) and all were subsequently reviewed for 

accuracy before being archived at the Smithsonian Digital Repository (as previously described in 

Mcshea et al. 2016). 
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Model Covariates – We modelled variation in occupancy using 12 covariates (Table C3) that 

addressed our hypotheses:  housing density and 0/1 indicators of whether a site was hunted, a 

residential yard and/or had a dog present during the study (humans hypothesis), the amount of 

forest at the local camera level and at a larger scale around the site (forest fragmentation 

hypothesis) and prey relative abundance (prey hypothesis). We used the percent tree cover 

(percent of each 30x30m pixel covered by trees; Hansen et al. 2013) at two scales, a local scale 

to represent forest cover at the camera site (100m radius around each pixel) and a larger scale 

(5km radius) to best approximate the home range size of all of our target species (Bekoff 1977; 

Fritzell and Haroldson 1982; Larivière and Pasitschniak-Arts 1996; Larivière and Walton 1997). 

We used the Silvis housing density dataset (Hammer et al. 2004) averaged over a 5km radius to 

represent urban development.  We represented prey availability as deer, rodent, and lagomorph 

relative abundance using site-specific detection rate (detections/day). Because we counted 

individuals at the sequence level and not in individual photos, we were able to avoid counting 

high numbers of the same individual(s) within a short period of time (e.g., while foraging in front 

of the camera). While this measure does not necessarily reflect true prey abundance at a site, it is 

a proxy for how frequently a site is used by a given prey species and thus relevant to how often a 

predator may use the same site in response. We added year as a covariate to account for changes 

in site occupancy over time. 

We modelled detection probability (p) using five covariates (Table C3). Because both 

ambient temperature and undergrowth can affect the camera’s ability to detect an animal, we 

included daily covariates for temperature and NDVI (Moderate Resolution Imaging Land Terra 

Vegetation Indices 1km monthly) obtained from Env-DATA (Dodge et al. 2013). We also 

considered site-specific detection distance, a measure of how far away the camera was able to 
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detect a human, and whether or not a site was a residential yard. In Raleigh, two different camera 

models were used (Reconyx and Bushnell) so we added a 0/1 covariate to account for potential 

differences in detection probability between the two brands. We diagnosed univariate 

correlations using a Pearson correlation matrix, and used a restrictive prior for beta coefficients 

(Hooten and Hobbs 2015) where correlation was >0.60. All covariates were mean-centred.  

 

Occupancy Models – We used the multispecies occupancy model of Rota et al. (2016) to assess 

species interactions of bobcat, coyotes, grey fox and red fox, while accounting for imperfect 

detection. Although we are using the term occupancy, because data were collected from camera 

traps, estimates are more analogous to “use” than true occupancy (Burton et al. 2015).  This 

model is a generalization of the single-season occupancy model (Mackenzie et al. 2002) to 

accommodate two or more interacting species. For each species and pairwise interaction, the 

model estimates detection probability (p), defined as the probability of detecting an occurring 

species at a camera site, and ψ which defines the probability of each combination of latent 

presence/absence. ψ is a function of (2S – 1) “natural parameters” which can all be modelled as 

linear functions of covariates and describes the probability a site is occupied by only one species 

(first order); only two species (second order), and so on up to order S, the number of interacting 

species (Rota et al. 2016).  Species occurrence is assumed independent if all second order and 

higher natural parameters are fixed at 0, whereas dependence between species can be modelled 

by estimating parameters associated with second order and higher natural parameters.  When 

second order and higher natural parameters are present, slope coefficients associated with first 

order natural parameters can be interpreted as log odds ratios of occupancy probabilities (i.e., the 



24 

 

log of the probability a species occupies a site divided by the probability it does not) resulting 

from a one-unit change in a relevant covariate (Rota et al. 2016).  

We calculated absolute log odds ratios to quantify the importance of environmental 

variables relative to interspecific interactions in influencing the probability of occurrence of each 

species. Following Rota et al. 2016, we calculated ORsp and ORh. ORsp is the odds ratio of the 

predicted probability of occupancy of each species conditional on the presence and absence of 

each of the other species when covariate (h) (and all other covariates) is held at a baseline level 

(x): 

 

𝑂𝑅𝑠𝑝 =
𝑜𝑑𝑑𝑠(𝑧1 = 1|𝑧2 = 1|𝑧3 = 1|𝑧4 = 1, ℎ = 𝑥)

𝑜𝑑𝑑𝑠(𝑧1 = 1|𝑧2 = 0|𝑧3 = 0|𝑧4 = 0, ℎ = 𝑥)
 

 

 

ORh is the odds ratio of predicted probability of occupancy of each species conditional on the 

absence of all other species associated with a change in covariate h of x units (𝛥ℎ) while all 

other covariates were held at a baseline level: 

 

𝑂𝑅ℎ =
𝑜𝑑𝑑𝑠(𝑧1 = 1|𝑧2 = 0|𝑧3 = 0|𝑧4 = 0, ℎ = 𝑥 + Δ𝑥)

𝑜𝑑𝑑𝑠(𝑧1 = 1|𝑧2 = 0|𝑧3 = 0|𝑧4 = 0, ℎ = 𝑥)
 

 

We calculated ORh for three covariates: housing density, forest at the larger scale and local 

forest. Since covariates were scaled and centred, we set 𝛥ℎ = 0.5 units for each. 

We fit a set of 25 candidate models that allowed us to test our hypotheses regarding the 

relative importance of interspecific interactions, forest fragmentation, prey and humans on the 
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occupancy of each species along the urbanization gradient (Table C4). We considered the same 

set of five covariates for the detection probability models of each species (Table C3) and chose 

occupancy covariates to reflect the different hypotheses we were interested in testing (see Table 

C4). We considered interactions between each occupancy covariate and city. We compared our 

candidate models with Watanabe–Akaike Information Criterion (WAIC), a fully Bayesian 

information-criterion which works particularly well with hierarchical models where other model-

selection strategies (i.e., DIC,  BIC) may not (Gelman et al. 2014; Hooten & Hobbs 2015).  We 

considered the top model to be the one with the lowest WAIC.  We fit models in STAN (Version 

2.15.1, Stan Development Team 2015b) via the RSTAN (Version 2.15.1, Stan Development 

Team 2015a) interface in R (Version 3.4.0, R Development Core Team 2008) via R Studio 

(Version 1.0.143, Rstudio Team 2015). We ran 2 chains for each model, using trace plots to 

determine an adequate burn-in phase and subsequently running chains until the Brooks–Gelman–

Rubin convergence diagnostic indicated adequate convergence (R-hat<1.1; Gelman et al. 2014). 

All models achieved adequate convergence by running for 3000 iterations following a burn-in 

phase of 1000 iterations. 

 

Results 

With 1,260 camera sites running a total of 27,379 camera nights we captured 42,814 wildlife 

detections including 6,413 carnivores across both cities between 2012 and 2016. Detection rate 

(count/day), an index of relative habitat use, for bobcats and coyotes in suburban and exurban 

habitats was highest in green space (i.e., forest fragments), but in rural areas was highest in yards 

(Table C5).  All species except bobcat had higher detection rates in suburban green space 

compared to wild green space (Table C5).  Model selection supported the importance of 
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accounting for multiple interspecific interactions. The top model incorporated interspecific 

interactions and performed significantly better (ΔWAIC >10) than models where interspecific 

interactions were absent or few (Table C4). While there are no published recommendations for 

determining significant differences between models based on WAIC, given its similarity to AIC, 

a conservative cut-off of 10 WAIC points is likely adequate to infer when a model no longer has 

support relative to the top model (Burnham and Anderson 2003).  The top model included a 

global first order model (i.e., all covariates included) with a global second order model, 

suggesting that none of the combinations of covariates we examined performed significantly 

better than any others in isolation.  However, the second-best model was not significantly 

different from the top model (WAIC<10) and included a global first order model with second 

order natural parameters related to the interaction of forest fragmentation and housing density, 

suggesting that the interplay between forest fragmentation and housing density, along with 

interspecific interactions, are important determinants of carnivore occupancy. 

 

First order occupancy relationships with covariates – Although marginal occupancy for each 

species showed expected trends along the housing density gradient (foxes and coyote positively 

associated, bobcat negatively associated) (Figure C1), housing density alone was not a strong 

first order predictor for any species. Both coyote and grey fox occupancy was different between 

the cities, being significantly higher in Raleigh.  

 

Second order occupancy: species interactions – We found evidence for multiple pairwise 

interactions among all four species evaluated.  Specifically, the probability of grey fox 

occupancy was significantly lower in the presence of red fox and vice versa, regardless of city or 
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habitat, as was the probability of grey fox occupancy in the presence of bobcat and vice versa, 

and these patterns were reflected in log odds ratios (Figures 6, C2). Additionally, the probability 

of coyote and grey fox occurring together varied as a function of the housing density/local forest 

interaction term (Figure 5).  We found no evidence of significant interactions between red foxes 

and either of the two larger species in our top model, however our second-best model showed 

that in both cities, bobcat and red fox occupancy was lower in sparsely forested areas at high 

housing density when in the presence of the other species (Table C6).  Indeed, log odds ratios 

from our top model for bobcats and red fox were negative across the gradient in both cities, with 

the exception of the wild level in DC, further indicating trends towards negative interactions 

(Figure 6).  Most of these ratios were not significant, however, with the exception of the exurban 

and rural gradient levels in Raleigh. Conversely, log odds ratios indicated positive, but not 

significant, interactions between coyote and both fox species across the urbanization gradient in 

both cities, with the exception of grey fox in the suburban and wild levels in DC where 

interactions were negative (Figure 6). Log odds ratios indicated bobcats were generally less 

likely to occupy the same sites as coyotes, though ratios were not significant (Figures 6, C2). We 

did not note any difference in the number of negative log odds ratios between the different 

gradient levels (Figure 6). 

 

Relative importance of interactions and covariates – The two cities showed similar patterns in the 

relative importance of forest fragmentation and housing density covariates versus interspecific 

interactions in determining occupancy, based on absolute log odds ratios. Along both gradients, 

local forest cover was the most important determinant of occupancy, followed by interspecific 

interactions (Tables 1, C7). Local forest cover was most important for bobcats in particular in 
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both cities (Table 1). However, housing density was consistently more important for grey foxes 

in Raleigh than interactions or other habitat covariates, with the interaction between grey fox and 

coyote being a more important determinant of grey fox occupancy in DC (Table 1). In both 

cities, interactions with each fox species were more important determinants of coyote occupancy 

than any of the habitat covariates.  The interaction with coyotes was also the most important 

determinant of red fox occupancy in Raleigh (Tables 1, C7).   

 

Discussion 

Although past studies have examined the distribution of carnivores along an urbanization 

gradient (Randa and Yunger 2006; Goad et al. 2014; Lewis et al. 2015b; Wang et al. 2015; Moll 

et al. 2018), this is the first to account for interspecific interactions explicitly within a multi-

species occupancy framework, to directly compare two cities, to consider private lands, and to 

have a larger sample size than most other studies. We found evidence of both positive and 

negative interactions across the gradient of urbanization with some dependent on available green 

space, suggesting that fragmentation concentrates carnivores into remaining green space, leading 

to higher levels of spatial interaction between some species. 

Forest fragmentation coupled with housing density was key in mediating species 

interactions, being in our top model (with all covariates) and also as the only factors in our 

second-best model, which was not significantly different from out top model in terms of WAIC 

support. Models incorporating housing density and human-related covariates, prey covariates or 

forest fragmentation covariates alone received relatively low support (i.e., ΔWAIC > 10). The 

relative strength of interactions versus forest fragmentation and housing density was similar 



29 

 

between the cities with forest fragmentation being most important followed by interspecific 

interactions.  

Our prediction that accounting for interspecific interactions would be an important factor 

in modelling occupancy for all species was supported. Our model selection exercise showed 

clear support for models including species interactions over models assuming no or few 

interspecific interactions. The top model incorporated all pairwise interactions between species 

and performed significantly better than more traditional two-species co-occurrence models 

(Richmond et al. 2010). Our results suggest that ecological models based solely on habitat 

without incorporating interspecific interactions may be inaccurate.   

Our prediction that housing density (a general measure of development intensity) and 

other human-related covariates would be strongly associated with the smaller carnivore species 

was only partially supported. Housing density alone was not a significant predictor in any of our 

first order models, indicating that all species we modelled use all levels of the urbanization 

gradient to a similar extent, matching other analyses of these same data (Parsons et al. 2018a). 

This contrasts other studies of carnivores along urbanization gradients that only considered 

habitat factors, which typically find significant effects of urbanization on coyote and fox 

occupancy (Randa and Yunger 2006; Goad et al. 2014). However, when we also considered 

interspecific interactions, housing density, when coupled with forest fragmentation, became an 

important predictor in our second order models, supporting our prediction that species 

interactions would be positively mediated by urbanization. This suggests urban development 

plays an important role in structuring carnivore communities with available green space (i.e., 

forest fragmentation) as a mediating factor (Gallo et al. 2017). We interpret this to mean that 

habitat fragmentation is concentrating the larger, less urban-adapted carnivores (i.e., bobcats, 
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coyotes) into limited green space, leading to more spatial interactions with urban-adapted species 

(i.e., grey and red foxes). 

Grey foxes were the one species that interacted significantly with every other species 

included in our model, interacting negatively with both red foxes and bobcats and positively with 

coyotes. The negative interaction between grey foxes and red foxes and bobcats respectively 

occurred across all levels of urbanization and forest fragmentation. The diets of both fox species 

overlap significantly (Cypher 1993) but grey foxes tend more toward omnivory and have been 

reported to exclude red foxes from some habitats (Carey 1982). The lack of mediation by 

housing density in interactions between the fox species is consistent with their ability to adapt to 

urbanization, indeed, both species used yards extensively in this study.  Red foxes in particular 

have been recorded in European cities since the 1930s, and during the past 20 years have 

colonized additional cities in North America, showing a remarkable ability to thrive and exploit 

human-dominated landscapes around the world (Wandeler et al. 2003).  Grey fox diet tends to 

overlap less with bobcats than with red foxes (Neale and Sacks 2001) but grey foxes are subject 

to intraguild predation by bobcats which may account for the negative spatial interaction we 

observed between these species (Farias et al. 2005).  The lack of mediation of this interaction by 

housing density suggests the risk of intraguild predation is similar across the urbanization 

gradient. 

Grey foxes and coyotes appear to require woodlots to navigate suburban areas and share 

these spaces without obvious negative consequences, even where those woodlots are rare. Grey 

foxes are excellent tree climbers, giving them the ability to avoid direct persecution from coyotes 

which may facilitate coexistence (Terres 1939), as could temporal partitioning.  By contrast, red 

foxes and bobcats, the most and least urban-adapted species respectively, appear to spatially 
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avoid one another in areas where large tracts of green space are particularly sparse. Where green 

space is adequate, there appears to be sufficient opportunity for co-existence in an urban 

landscape between these two species. 

Large carnivores typically avoid humans, and smaller carnivores have been shown to 

reduce agonistic encounters with larger carnivores by living closer to people, a hypothesis known 

as the “human shield effect” (Berger 2007). Our study design was well suited to test this 

hypothesis with sampling stratified along the urbanization gradient and small and large 

interacting carnivores. We found no clear positive association between the smaller carnivores 

(foxes) and housing density, nor did they appear to spatially avoid some larger carnivores 

(coyotes) at higher housing densities as would be expected if they were using humans as shields. 

On the contrary, we found no evidence of a significant interaction between red foxes and 

coyotes, and grey foxes and coyotes co-occurred at high housing density, suggesting that human-

dominated areas do not act as spatial refugia for foxes in these cities. A recent study of urban 

parks in Cleveland, OH, USA found much stronger evidence of a human shield effect between 

coyotes and red foxes than we found in our study, noting opposing responses to human 

development of red foxes and coyotes and avoidance of coyotes by red foxes, supporting the idea 

that red foxes use humans as shields (Moll et al. 2018). Unfortunately, there are differences in 

methodology between the two studies that make direct comparisons difficult; Moll et al. (2018) 

considered temporal dynamics which we did not, while we considered suburban habitats (i.e., 

yards and small woodlots) and the joint probabilities of occupancy between interacting species. 

The relative importance of forest fragmentation, housing density and interspecific interactions 

was similar between the cities with forest fragmentation being the most important determinant of 

occupancy. These cities are both large and sprawling with high levels of forest fragmentation, 
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likely causing less urban-adapted carnivores to use patches of forest cover to navigate 

successfully along the urbanization gradient to exploit the rich resources suburban areas have to 

offer. Differences in city structure (i.e., sprawl, housing concentration) may be expected to affect 

how carnivores navigate cities and their success in adapting to urban environments. Whether 

these results hold in other cities remains to be tested and multi-city comparisons can help us 

understand how different development patterns influence urban mammal communities to 

promote conservation in the Anthropocene. 
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Figure 4:  Camera locations in Washington, DC and Raleigh, NC, USA from 2012-2016.  The 

gradient from wild to urban is defined as the average number of houses in a 1km radius 

(Wild=≤0.5, Rural=0.51-12.63, Exurban=12.63-147.05, Suburban=147.06-1000, Urban>1000).  

Examples of the three plot types sampled in each city (residential yard, small forest and large 

forest) are pictured using satellite imagery.
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Figure 5:  Occupancy for coyote and grey fox in the presence and absence of each other 

conditional on the absence of bobcat and red fox along a housing density gradient in low (5-50% 

in a 5km radius) and high percent local forest (51-100% in a 100m radius). Data were taken from 

camera traps run in Washington, DC (A) and Raleigh, NC, USA (B) between 2012 and 2016. 

Lines show posterior means and shaded regions are 95% credible intervals. In both cities, coyote 

and grey fox occupancy was higher in low forest at high housing density when in the presence of 

the other species.    
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Figure 6: A comparison of log odds ratio for pairwise combinations of species (the log of the 

probability a species occupies a site divided by the probability it does not, conditional on the 

presence of an interacting species) in wild, rural, exurban, and suburban gradient levels taken 

from camera traps run between 2012 and 2016 in Washington, DC and Raleigh, NC, USA.  All 

second order models are conditioned on all other species being absent.  Ratios tended to be 

similar in terms of being positive (co-occurrence) and negative (avoidance) across the gradient 

levels.  
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Table 1: The relative importance of environmental covariates versus interspecific interactions in 

influencing the probability of occurrence for each species.   Relative importance was assessed 

using absolute log odds ratios ORsp and ORh, associated with the interaction between two species 

and the change in environmental covariates (Δh=0.5 units), respectively. Data come from camera 

trapping in Washington, DC and Raleigh, NC from 2012-2016.  All covariates were centered and 

scaled for easy comparison.  Asterisks show the highest ratios for each species. B is bobcat, C 

coyote, GF grey fox and RF red fox. 

Washington, DC 
 ORsp ORh 

    Housing Density 5km Forest 5km Forest 100m 

B*C    * 

B*GF    * 

B*RF    * 

C*B   * 
 

C*GF *   

 

C*RF *   
 

GF*B   *  

GF*C *   
 

GF*RF  *  
 

RF*B 
 

  * 

RF*C 
 

  * 

RF*GF    * 

Raleigh, NC 

B*C  
  * 

B*GF  
  * 

B*RF  
  * 

C*B 
 

  * 

C*GF *  
 

 
C*RF *    
GF*B 

 
*   

GF*C 
 

*   
GF*RF 

 
*   

RF*B 
 

  * 

RF*C *    
RF*GF 

 
*   
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Chapter 3: The effect of urbanization on spatiotemporal interactions between gray foxes 

and coyotes 

Introduction 

Competition plays a pivotal role in structuring the spatial distribution of many carnivore 

communities (Caro and Stoner 2003). Dominant predators that have high dietary overlap with 

smaller predators can suppress the subordinate species through exploitative competition for a 

shared resource if that resource is in limited supply (Holt et al. 1994).  Where resources are 

abundant and clumped however, such as in urban and suburban areas, subordinate species may 

not be so easily outcompeted, forming small social groups around rich food patches that are 

better able to counter competitive advantages of larger species (Macdonald 1981).  Smaller 

carnivores may further reduce agonistic encounters with larger carnivores by living closer to 

people where larger carnivores tend to be rare due to high fragmentation and persecution 

(Bateman and Fleming 2012), a hypothesis known as the “human shield effect” (Berger 2007). 

Competitive dynamics can further change if the largest predators are absent in urban areas, 

leading to mesopredator release where abundances of small, generalist carnivores like raccoons 

and foxes increase, leading to potential cascading effects on the abundances of smaller 

competitors and prey (Ritchie and Johnson 2009). 

However, recent evidence has shown that many developed areas are being colonized, or 

re-colonized, by larger carnivores. For example,  mountain lions (Puma concolor) have recently 

recolonized the highly fragmented mountain habitats around Los Angeles (Benson et al. 2019) 

and increased their use of residential areas in Colorado’s front range (Blecha et al. 2018).  The 

European wolf (Canis lupus), long ago eradicated in most of western Europe, has recolonized 

France, Germany, Switzerland and Denmark, countries densely populated by humans (Mech 
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2017).  Other carnivore species are expanding their ranges for the first time into human-

dominated habitats. For example, golden jackal (Canis aureus) populations in Europe have been 

expanding westward since the mid-twentieth century, making regular use of human-dominated 

habitats (Trouwborst et al. 2015) while in North America, coyotes (Canis latrans) have 

expanded their range east where humans are most concentrated, making increasing use of cities 

(Hody and Kays 2017).  As more carnivore species colonize cities, they are coming into contact 

with each other and with more established urban dwelling carnivores (e.g., Lewis et al. 2015a).  

These newer urban carnivores may avoid humans by concentrating their urban activities to green 

spaces, leading to higher levels of interspecific interaction with smaller species in suburban 

forests (Parsons et al. 2019). The exact nature of these interactions is still unclear. If interactions 

are largely agonistic it could lead to patch exclusion, contracted spatial distribution patterns (i.e. 

Hersteinsson and Macdonald 1992) and lower population densities for subordinate species (i.e. 

Henke and Bryant 1999).  Even if species are spatially tolerant of each other, agonistic 

interactions could manifest as prey switching and altered activity patterns, having potential 

consequences for human-wildlife conflict (i.e., Murray et al. 2015).   

Measuring interspecific interactions is challenging due to the potential simultaneous 

spatial and temporal responses they provoke, requiring sophisticated modeling approaches. As a 

result, although inference on both spatial and temporal processes related to species interactions 

are frequently of interest in ecology, they are typically treated separately.  This becomes 

problematic if, for example, one species shifts temporal patterns but does not shift space use in 

response to the presence of another species. Indeed, past analysis of our dataset based solely on 

spatial interactions found no support for the hypothesis that smaller competitors (i.e., gray fox 

(Urocyon cinereoargenteus)) use humans as shields against larger competitors (i.e., coyotes) at 
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higher levels of urbanization (Parsons et al. 2019). Here, we take advantage of a new method that 

integrates a continuous-time detection process into a multi-species occupancy model, allowing 

inference on spatial co-occurrence and temporal shifts simultaneously (Kellner et al. In Review). 

This tool represents a new opportunity to simultaneously consider the spatial and temporal nature 

of species interactions, including the effect of temporally varying factors (e.g., precipitation).    

The carnivore guild in the eastern United States has been dynamic over the last century, 

with the extinction of apex predators (wolves and cougars) and subsequent colonization by 

coyotes.  Coyotes are now present in most or all cities in the eastern United States (Hody and 

Kays 2017), although not as common in highly urban areas as are western coyotes (Gehrt et al. 

2011b). Through interference competition and direct intraguild predation, western coyotes are 

well known to limit the number and distribution of smaller competitors (Fedriani et al. 2000). 

The impact of coyotes on smaller competitors is less clear in the east, although recent studies 

have found evidence for a decline in fox numbers following coyote colonization (Levi and 

Wilmers 2012), and of foxes becoming relatively more abundant in urban areas to escape coyote 

competition (Moll et al. 2018).  However, other studies have indicated that coyotes and gray 

foxes are more likely to be detected at the same site in suburban areas, if the site is forested 

(Parsons et al. 2019), the opposite of what would be expected if coyotes are excluding foxes.  By 

comparing these dynamic eastern communities along a gradient of urbanization and examining 

spatial and temporal dynamics simultaneously, we can better evaluate the impact of human 

disturbance on interspecific carnivore interactions.  

We used camera traps deployed by citizen-scientists in Raleigh, NC, USA to investigate 

whether species interactions influence the site occupancy and detection intensity of carnivore 

species along an urbanization gradient. We hypothesize that although coyotes and gray foxes use 
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the same sites, they do not use them at the same time.  Specifically, we predict that foxes will 

change their behavior in the presence of coyotes by avoiding a site after the passage of a coyote 

and/or by changing their daily activity patterns to be active at times coyotes are typically 

inactive. Scent marking may be key to both partitioning resources and avoidance tactics between 

species (Apfelbach et al. 2005), but its effectiveness should decrease with precipitation (e.g., 

Allen et al. 2017).  If the species are detecting each other by scent and avoiding areas used 

recently by the other species, we predict that the time since the last coyote detection will be 

mediated by precipitation. If smaller competitors (i.e., gray fox) are using humans as shields, we 

predict a positive relationship between occupancy and housing density and less spatial and 

temporal interaction with larger competitors (i.e., coyotes) at higher levels of urbanization.  

 

Materials and Methods 

Study site – Raleigh, North Carolina is located in the mid-Atlantic region of the United States.  It 

is approximately 375km2 with an estimated population size of 459,000, thus 1,278 people/km2. 

Our study spanned a 66,640km2 area around the center of the city where surrounding land use 

was a combination of agriculture (~24%) and forest (~52%) with a mean of 17.7 houses/km2.    

 

Citizen science camera trap surveys – From 2012-2016 (Table D1), 336 trained volunteers (see 

Parsons et al. 2018c for details) deployed 760 unbaited camera traps across an urbanization 

gradient around Raleigh (Figure 7). We used the Silvis housing density dataset (1km resolution; 

Hammer et al. 2004) and bin levels of Theobald (2005) to define the four levels of the gradient 

for sampling stratification (excluding open water): suburban (147.05-1000 houses/km2), exurban 

(12.64-147.06 houses/km2), rural (0.51-12.63 houses/km2) and wild (<0.5 houses/km2).  Within 
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gradient levels, camera placement was stratified between residential yards, small forest 

fragments (≤1km2), open areas (at least 0.02km2 open) and large forest fragments (>1km2) 

(Table D2), although we were unable to sample open areas and residential yards in the wild 

strata due to their rarity. All adjacent cameras were spaced at least 200m apart. Volunteers used 

Reconyx (RC55, PC800, and PC900, Reconyx, Inc. Holmen, WI) and Bushnell (Trophy Cam 

HD, Bushnell Outdoor Products, Overland Park, KS) camera traps attached to trees at 

approximately 40cm above the ground. Trigger sensitivity was set to high for all cameras and we 

verified that both brands of camera had similar trigger speeds (<0.5s) and randomized placement 

of the different models to avoid bias due to camera type. Cameras were deployed for three weeks 

and then moved to a new location. Cameras recorded multiple photographs per trigger, at a rate 

of 1 frame/s, re-triggering immediately if the animal was still in view. We grouped consecutive 

photos into sequences if they were <60 seconds apart and used these sequences as independent 

records. We did not bin records into daily or weekly capture histories for occupancy, instead 

using all independent records for analysis. Initial species identifications were made by volunteers 

using customized software (eMammal.org) and all were subsequently reviewed for accuracy 

before being archived at the Smithsonian Digital Repository. 

 

Model Overview – We used a multispecies occupancy model with continuous-time detection 

process (Kellner et al. In Review) to assess spatial and temporal species interactions of coyotes 

and gray fox, while accounting for imperfect detection (Figure 8). This model is a generalization 

of the single-season occupancy model (Mackenzie et al. 2002) to accommodate two or more 

interacting species, and to allow the detection process to occur in continuous time. The 
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detections of each species at each site are treated as the realization of a temporal Poisson point 

process (PPP) with intensity function λ(t) evaluated at time t.   

The model also estimates the probability of each combination of latent presence/absence 

for all species, denoted ψ. The probabilities of each combination of latent presence/absence 

describe the probability a site is occupied by only one species (first order); only two species 

(second order), and so on up to order S, the number of interacting species.   The probabilities of 

each combination of latent presence/absence are functions of “natural parameters”, denoted f, 

which can be modeled as linear functions of covariates (Rota et al. 2016).  For the two species 

case, first order f parameters can be denoted f1 and f2, and second order f parameters can be 

denoted f12.  Species occurrence is assumed independent if all second order and higher natural 

parameters are fixed at 0 (e.g., f12=0), whereas dependence between species can be modeled by 

estimating parameters associated with second order and higher natural parameters (Rota et al. 

2016).  

 

Model Covariates – We modeled variation in occupancy using five covariates (Table D3) that 

were most important in a previous spatial analysis of this dataset (Parsons et al. 2019), applying 

all five covariates to both first and second order natural parameter models (Table D3).  We used 

percent tree cover (percent of each 30x30m pixel covered by trees; Hansen et al. 2013) at two 

scales: a local scale to represent forest cover at the camera site (100m radius around each pixel) 

and a larger scale (5km radius) to best approximate the home range size of our target species 

(Bekoff 1977; Fritzell and Haroldson 1982). We used the Silvis housing density dataset 

(Hammer et al. 2004) averaged over a 5km radius to represent urban development.   
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The detection intensity function can be modeled as a log linear function of covariates, 

allowing the use of continuously time-varying predictors like precipitation.  We modeled 

detection intensity using nine covariates (Table D3).  To account for differences in camera setup, 

terrain and camera model, we included site-specific detection distance, a measure of how far 

away the camera was able to detect a human, as a nuisance covariate. To test our hypotheses that 

coyotes and gray foxes are using the same sites but not at the same time, we used two measures 

of temporal interaction: activity pattern (detection intensity varied as a function of time of day) 

and the time since the last coyote detection, the dominant species.  We allowed detection 

intensity for both species  to vary by time of day using a Fourier series basis function following 

Kellner et al. (In Review):   

 

log(𝜆𝑠(𝑡)) =
𝛼𝑠0

2
+ ∑ 𝛼𝑠𝑚cos (

𝑚𝜋𝑡

𝐿
) + 𝛾𝑠𝑚sin (

𝑚𝜋𝑡

𝐿
)

𝑀

𝑚=1
 

 

where αs and γs are species-specific regression coefficients to be estimated.  We assume a 2L = 

24-hour period, thus fixing L = 12; and fixing M = 2 which adequately captures cyclic peaks and 

troughs in detection intensity. The PPP likelihood requires evaluation of an integral which can be 

closely approximated with quadrature techniques by dividing the entire sampling interval into 

arbitrary small time intervals (Kellner et al. In Review).  For this analysis, we used 60-minute 

quadrature intervals for integral approximation.   

To address our hypothesis that gray foxes would exhibit altered activity patterns at sites 

where coyotes were present, we explored potential temporal dependence between gray fox and 

coyote by comparing models that assumed gray fox detection intensity was independent of latent 

coyote presence, and models that assumed an interaction between Fourier series coefficients for 
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gray fox and latent coyote presence.  Additionally, we modeled gray fox detection intensity as a 

function of time since the last coyote detection, conditional on at least one coyote detection at a 

site.  We only considered time since the last coyote detection, assuming that the effect of other 

species passing between a gray fox and a coyote would be negligible and contribute only to noise 

in the overall signal of the gray fox-coyote temporal interaction.  We used cumulative 

precipitation readings generated at 30 minute intervals obtained from Env-DATA (Dodge et al. 

2013) and interpolated to our detections dataset (ECMWF Interim Full Daily Total Precipitation 

(mm); European Centre for Medium-Range Weather Forecasts 2019) to test our hypothesis that 

scent influences the relationship between gray fox detection intensity and the time since the last 

coyote detection.  

We diagnosed univariate correlations using a Pearson correlation matrix ensuring 

correlation <0.60. All covariates were centered and scaled prior to analysis. We compared our 

candidate models with Watanabe–Akaike Information Criterion (WAIC), a fully Bayesian 

information-criterion which works particularly well with hierarchical models where other model-

selection strategies (i.e., DIC, BIC) may not (Gelman et al. 2014). We considered the top model 

to be the one with the lowest WAIC.  We fit models in STAN (Version 2.15.1, Stan 

Development Team 2015b) via the RSTAN (Version 2.15.1, Stan Development Team 2015a) 

interface in R (Version 3.4.0, R Development Core Team 2008) via R Studio (Version 1.0.143, 

Rstudio Team 2015). We ran three chains for each model, using trace plots to determine an 

adequate burn-in phase and subsequently running chains until the Brooks–Gelman–Rubin 

convergence diagnostic indicated adequate convergence (R-hat<1.1; Gelman et al. 2014). All 

models achieved adequate convergence by running for 7000 iterations following a burn-in phase 

of 5000 iterations. 
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Results 

We detected coyotes 347 times and gray foxes 943 times over 908 camera sites running a total of 

19,353 traps nights.  Our top model included both spatial dependence between the species and 

temporal dependence in detection intensity that varied by time of day (hereafter “activity 

pattern”), performing better (ΔWAIC >10) than models assuming spatial independence or 

models assuming spatial dependence but without temporal interactions (Table 2).  Our spatial 

results mirrored a past spatial analysis of this dataset, indicating that these two species are more 

likely to occupy the same sites where housing density is high and forests highly fragmented 

(Table 3, Figure 9; Parsons et al. 2019).  Our top model indicated important spatial results not 

detected in our past work which did not account for temporal patterns, showing that coyotes were 

positively associated with the amount of local forest at low housing densities and most likely to 

occupy large forests with low housing density regardless of gray fox presence (Table 3).  

Coyotes were less likely to occupy high housing density sites than gray fox, regardless of forest 

cover.  Gray foxes were negatively associated with the amount of local forest at both low and 

high housing densities and more likely to occupy small forest fragments regardless of coyote 

presence (Figures 9, 10).   

In addition to patterns of co-occurrence, our spatiotemporal model allowed us to assess 

patterns of co-detection.  Models including activity patterns performed better than models 

including time since last coyote detection or those without temporal interactions.  Models 

allowing activity patterns to differ based on latent coyote presence/absence performed better than 

models that did not include a term for latent coyote presence (Table 2).  We found that housing 

density was a significant mediator of activity pattern overlap between gray foxes and coyote.  

Our top model showed that gray fox expected detections per hour at low housing densities were 
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highest at night when coyotes were present (Figures 11, D1). At high housing densities however, 

gray foxes were much more detectable during the day in the presence of coyotes, showing a 

higher proportion of nocturnal detections when coyotes were absent (Figure 11, D1).  Our model 

of time since coyote detection mediated by precipitation was not supported over a model of 

unmediated time since coyote detection (ΔWAIC >> 10; Table 2). 

 

Discussion 

Ecology is defined as “the relations of organisms to one another and to their physical 

surroundings” (Oxford Collocations Dictionary 2002), yet studying the interactions of highly 

mobile animals has been challenging because they can behaviorally avoid each other in both 

space and time.  Past work has focused on either the spatial patterns resulting from interspecific 

interactions (e.g., Grassel et al. 2015), or the temporal patterns (Farris et al. 2015), but seldom 

the interaction of these two dimensions (but see Moll et al. 2018) and never within a unified 

framework. Our results represent the first study to consider spatial and temporal interactions of 

carnivores simultaneously within a unified framework, while accounting for imperfect detection.  

Accounting for temporal interactions in addition to spatial interactions allowed us to gain more 

insight into the drivers of occupancy for both species, providing a nuanced picture of how 

spatiotemporal interactions are mediated by housing density and local forest cover. We found 

that coyotes and gray foxes both used forest cover and often at the same sites, but generally 

preferred different amounts of forest.  Despite using the same sites as coyotes, gray foxes 

avoided coyotes temporally by becoming more diurnal, especially where they co-occurred at 

high housing densities, suggesting the potential for temporal interactions with coyotes to increase 

human-fox interactions.  
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We predicted a positive relationship with housing density if smaller competitors (gray 

fox) are using humans as shields against larger competitors (coyotes). When we look at these 

data from a simply spatial context, we see a positive relationship between gray fox occupancy 

and housing density in the presence of coyotes, but only where local forest cover is low.  Coyote 

occupancy was also positively associated with housing density where forest cover was low in the 

presence of gray fox, suggesting these results are not consistent with gray foxes using humans as 

shields.  However, we noted evidence of gray fox temporal avoidance of human activity through 

increased nocturnality when coyotes were absent, consistent with a species that has adapted to 

living around humans and may be using them as shields (e.g., Wang et al. 2017).  Wildlife often 

shift daily activity patterns subtly to avoid humans with nocturnal species becoming more so in 

areas of high human activity (Gaynor et al. 2018) and carnivores in particular have been shown 

to alter their daily activity patterns to persist in urban forest fragments (Tigas et al. 2002).  

Although gray foxes are generally thought to be more urban-adapted than coyotes or bobcats in 

the east (Kapfer and Kirk 2012), our results suggest that they still consider humans a threat worth 

avoiding temporally.  This may facilitate their ability to occupy high housing density forest 

fragments, which appear less desirable for coyotes. 

We predicted that we would find less interaction of subordinate competitors (gray fox) 

with larger competitors (coyotes) at higher levels of urbanization if smaller competitors are using 

humans as shields.  Spatially, our results did not support this hypothesis, finding that coyotes and 

gray foxes were more likely to occupy the same sites at high housing densities where local forest 

cover was scarce, similar to past studies (Parsons et al. 2019).  In the absence of the other 

species, gray foxes and coyotes were less likely to occupy areas of high housing density where 

local forest cover was low, but more likely to occupy those same suburban forest fragments 
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when the other species was present.  This supports the idea that remnant forest fragments are 

necessary for carnivores to occupy suburban environments, but that not all patches are of high 

enough quality to support carnivores. The patches in which coyotes and foxes co-occurred may 

represent the only habitat available to carnivores in cities (Parsons et al. 2019). Though these 

suburban forest fragments are used by both species, we suspect our finding that gray foxes do not 

show any spatial avoidance of suburban forest fragments used by coyotes is because coyotes are 

simply passing through these areas and not establishing and defending territories (Kapfer and 

Kirk 2012).  Furthermore, gray foxes are excellent tree climbers and this ability may allow them 

to avoid predation by coyotes when they co-occur in space and time (Terres 1939). Although 

gray foxes did not avoid coyotes spatially, they did avoid them temporally at high housing 

densities, showing increased diurnal activity in the presence of typically nocturnal coyotes.  

Coyotes have been shown to provoke temporal changes in hunting patterns in gray foxes: gray 

foxes in California reduced their consumption of nocturnal prey in the presence of coyotes 

(Smith et al. 2018). This suggests that a shift to greater nocturnality to avoid humans may not be 

possible at sites where coyotes are present.  Indeed, we found foxes shifting to greater 

nocturnality only at high housing density sites where coyotes were absent.  These results show 

that gray foxes balance the risks associated with human and coyote presence when it comes to 

temporal partitioning and that alterations in one interaction have the potential to affect the other.  

We predicted that if gray foxes are detecting coyotes by scent and avoiding areas used 

recently, the time since the last coyote detection would be mediated by precipitation. Our model 

of time since coyote detection mediated by precipitation received little support, suggesting that 

gray foxes are not using scent to avoid sites recently used by coyotes. Coyotes typically scent 

mark using urine which decays in the environment more quickly with precipitation, however 
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subordinate species may avoid a site if marked (and detected) in the past, making this avoidance 

undetectable on fine temporal scales.  Interference in the form of urine scent marking is one 

possible way to exclude competitors from a resource or territory (Gill 1974), but other signs may 

alert subordinates to the presence of a dominant competitor that are not as prone to decay by 

precipitation (Macdonald 1980). When scent is used to detect dominant predators and avoid 

them, the response of the subordinate competitor should be proportional to the perceived level of 

threat of the dominant species (Gaynor et al. 2019). Coyotes are more likely to be transients at 

higher levels of urbanization (Newsome et al. 2015), posing little threat to competitors, which 

may help explain why our spatial results did not indicate any avoidance of coyotes by gray foxes.  

Transient coyotes are less likely to scent mark and return to the same site frequently (Gese and 

Ruff 1997) which may also explain the lack of temporal avoidance response from gray foxes.  

By using a continuous-time detection process, we were able to test hypotheses related to 

temporally varying covariates which cannot easily be done with traditional occupancy models 

that bin detection covariates across days or weeks. While not significant in our study, we think 

this statistical approach has great potential for testing for interactions between weather and scent 

communication in other mammal species.  

We found that temporal species interactions in this study were important and mediated by 

spatial factors (i.e., housing density), and this would not have been detected without an explicit 

spatiotemporal approach.  These results show the importance of considering temporal patterns 

when addressing questions about interspecific interactions mediated by human activities (i.e., 

Moll et al. 2018). Our study suggests that gray foxes continue to be wary of both humans and 

coyotes, using temporal partitioning more than spatial partitioning as an avoidance mechanism.  

Where coyotes are present, gray foxes reduce their nocturnal avoidance of humans, suggesting 
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avoidance of coyotes has the potential to increase gray fox-human interactions.  However, gray 

foxes do not show a strong spatial response to coyotes moving through the urban matrix, which 

we suspect are transient animals.  Thus, if coyotes adapt further to urbanization and begin 

establishing territories in more developed parts of cities, we may begin to see further impacts on 

smaller competitors and their relationship with humans. 
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Figure 7:  Camera locations in Raleigh, NC, USA from 2012-2016.  The gradient from wild to 

suburban is defined as the average number of houses in a 1km radius (Wild=≤0.5, Rural=0.51-

12.63, Exurban=12.63-147.05, Suburban=147.06-1000).  Examples of the four plot types 

sampled (residential yard, small forest, large forest and open area) are pictured using satellite 

imagery. 
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Figure 8: Different potential spatiotemporal interactions between coyotes and gray fox showing 

A) spatial avoidance, B) spatial attraction and C) spatial attraction with temporal avoidance.  

Spatial attraction with temporal avoidance can take two forms, either avoiding the site during the 

same time of day as the other species (activity pattern shift) or avoiding the site temporarily after 

a recent passage of the other species, regardless of the time of day. 
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Figure 9: Occupancy for coyote and gray fox in the presence and absence of each other along a 

housing density gradient in low (13.72% in a 100m radius, 10th quantile) and high (99.36% in a 

100m radius, 90th quantile) percent local forest. Data were taken from camera traps run in 

Raleigh, NC, USA between 2012 and 2016. Lines show posterior means and shaded regions are 

95% credible intervals. In both cities, coyote and gray fox occupancy was higher in low local 

forest cover at high housing density when in the presence of the other species. 
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Figure 10: Marginal occupancy results for gray fox and coyote along a gradient of percent local 

tree cover within a 100m radius of the camera in areas of low (46.78 houses/km2 within a 5km 

radius of the camera, 30th quantile) and high housing density (439.16 houses/km2 within a 5km 

radius of the camera, 90th quantile). Data are taken from camera locations in Raleigh, NC, USA 

from 2012-2016. 
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Figure 11: Activity patterns of gray foxes and coyotes from our top spatiotemporal occupancy 

model in areas of low (46.78 houses/km2 within a 5km radius of the camera, 30th quantile) and 

high housing density (439.16 houses/km2 within a 5km radius of the camera, 90th quantile) while 

accounting for latent coyote site occupancy.  Data are taken from camera locations in Raleigh, 

NC, USA from 2012-2016.  At high housing densities, gray foxes were more nocturnal in the 

absence of coyotes and more diurnal in the presence of coyotes.  At low housing densities, gray 

foxes were more nocturnal in the presence of coyotes. 
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Table 2: Model selection results for the co-occurrence and co-detection of gray foxes and coyotes along an urbanization gradient.  

Data are taken from camera locations in Raleigh, NC, USA from 2012-2016.  Models are presented according to the main hypotheses 

they represent.  All first order f parameters were modeled using the linear function 

~Forest5+Forest100+HDens+Forest5*Hdens+Forest100*Hdens except in the null models where they were fixed at 1.  Those models 

that allowed for co-occurrence are noted as f(d), meaning that second order f parameters were also modeled using the linear function 

above.  Those models that assume independence between the species (i.e., no co-occurrence) are noted as f(i), meaning second order f 

parameters were fixed at 0.  Detection intensity λ is modeled as a linear function of covariates specific to each hypothesis. Detection 

covariates included detection distance (DD), a nuisance parameter representing the maximum distance away from the camera that a 

human can still be detected and photographed, activity pattern (time of day) with latent coyote (activity pattern), activity pattern 

without latent coyote (activity pattern_NLC), time since the last coyote detection (tsc), average housing density in a 5km radius 

(Hdens), local tree cover in a 100m radius around the camera site (TC100m), and precipitation (Precip). 

Null spatial models WAIC ΔWAIC 

f(d) λ(DD) 20871 0 

f(d) λ(1) 20999 127 

f(i) λ(DD) 21012 140 

f(i) λ(1) 21162 291 
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Table 2 (continued) 

Is the interaction between these species spatial, temporal, neither or both? 

f(d) λ(activity pattern, DD) 20063 0 

f(d) λ(tsc,activity pattern, DD) 20176 112 

f(i) λ(activity pattern, DD) 20906 842 

f(d) λ(activity pattern_NLC, DD) 21548 1485 

f(i) λ(DD) 21952 1888 

f(i) λ(tsc, DD) 21971 1907 

f(d) λ(DD) 22099 2035 

f(d) λ(tsc, DD) 22156 2092 

Do activity patterns (coarse scale temporal) change with habitat? 

f(d) λ(activity pattern, Hdens, activity pattern*Hdens, DD) 19891 0 

f(d) λ(activity pattern, DD) 20063 172 

f(d) λ(activity pattern, TC100m, Hdens, activity pattern*TC100m, activity pattern*Hdens, TC100m*Hdens, 

DD) 

21732 1840 

f(d)p(activity pattern, TC100m, activity pattern*TC100m, DD) 22478 2587 
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Table 2 (continued) 

Does time since detection (fine scale temporal) change with habitat? 

f(d)p(tsc, TC100m, tsc*TC100m, DD) 22028 0 

f(d)p(tsc, DD) 22156 127 

f(d)p(tsc, TC100m, Hdens, tsc*TC100m, tsc*Hdens, TC100m*Hdens, DD) 22157 129 

f(d)p(tsc, Hdens, tsc*Hdens, DD) 22245 217 

Does fine scale temporal interaction change with precipitation? 

f(d)p(tsc, DD) 22156 0 

f(d)p(tsc, Precip, tsc*Precip, DD) 22203 47 

Does combining all important factors spatial, temporal and covariate factors improve support? 

f(d)p(activity pattern, Hdens, activity pattern*Hdens, DD) 19891 0 

f(d)p(tsc, TC100m, tsc*TC100m, activity pattern, Hdens, activity pattern*Hdens, DD) 19934 42 
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Table 3: Predictors used to model 1st (Gray Fox and Coyote) and 2nd (Coyote*Gray fox) order f 

parameters in a multi-species occupancy model with estimated model coefficients and 95% 

credible interval, in parentheses.  Coefficients for which the 95% credible interval does not 

overlap zero are shown in bold.  Coyotes and gray foxes are more likely to occupy the same site 

at high housing density (Hdens5km) and low local forest cover (TC100m), shown by the 

negative Hdens5km*TC100m coefficient. 

Predictor Gray Fox Coyote Coyote*Gray Fox 

Intercept -0.78 (-1.23, -0.29) -1.14 (-1.47, -0.74) 0.13 (-0.47, 0.69) 

TC5km -0.31 (-0.73, 0.07) -0.23 (-0.69, 0.18) 0.28 (-0.39, 0.91) 

TC100m 0.01 (-0.31, 0.32) 0.45 (0.13, 0.78) -0.68 (-1.2, -0.19) 

Hdens5km -0.41 (-0.84, 0.01) -0.95 (-1.37, -0.58) 1.1 (0.5, 1.74) 

Hdens5km*TC5km 0.18 (-0.15, 0.49) 0.08 (-0.27, 0.42) 0.31 (-0.22, 0.86) 

Hdens5km*TC100m 0.01 (-0.28, 0.31) 0.4 (0.02, 0.75) -0.58 (-1.11, -0.04) 
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Chapter 4: Predicting the effect of increasing urbanization on coyotes and white-tailed deer 

using an integrated population model 

 

Introduction: 

White-tailed deer (Odocoileus virginianus) are the largest and most common herbivore in the 

eastern United States (Mcshea 2012).  Primarily browsers, deer play an important role in 

maintaining plant genetic diversity (Parker et al. 2010; Royo et al. 2010) and in forest nutrient 

cycling (Pletscher et al. 1989).  They are also one of the most heavily managed species in the 

region, relying predominantly on citizen hunters to reduce herds during the annual fall hunting 

season. Approximately 11.6 million Americans hunt and 16.9 billion dollars are spent each year 

on deer hunting activities in the United States (Poudel et al. 2016). In the Southeast, hunters and 

vehicles are the main sources of mortality for deer (e.g., 64%; Kilgo et al. 2016) since the 

extirpation of their main predators, wolves (Canis lupus) and cougars (Puma concolor). 

However, in the last 3-4 decades, coyotes (Canis latrans) have colonized the Southeast (Hody 

and Kays 2018).  Typically larger than their western counterparts, eastern coyotes are capable of 

depredating large prey species like deer (Kays et al. 2010a).  Indeed, there is some evidence to 

indicate that eastern coyotes occasionally prey upon adult deer (Chitwood et al. 2014) and ample 

evidence of depredation of fawn neonates, sometimes enough to affect population sizes (Kilgo et 

al. 2010; Kilgo et al. 2012).  Despite this, there is little evidence of declines in deer populations 

concurrent with coyote range expansion (Bragina et al. 2019) and the effect of coyote predation 

on deer populations in the Southeast appears variable, with long-term consequences difficult to 

predict (Mcshea 2012).   
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Deer may be able to use urban and suburban areas as refuges from coyote predation.  

Both coyotes and deer use suburban areas regularly but deer appear to use higher levels of 

urbanization in the Southeast proportionally more than do coyotes, which tend to occupy areas 

with lower human densities (Parsons et al. 2018b). Furthermore, there is some evidence to 

suggest that coyotes pose less risk to deer in suburbia than in rural or wild areas, including lower 

coyote predation rates on fawns (Gulsby et al. 2017) and lower spatial and temporal avoidance 

responses of deer to coyote presence (Gallo et al. 2019).  However, recently coyotes have shown 

an ability to adapt to urban areas (Gehrt et al. 2011a), suggesting that they could become more 

common in cities over time (Bateman and Fleming 2012).  With urbanization increasing across 

the country, especially in the Southeast (Sohl et al. 2018), it is important to understand how 

coyotes will respond and the implications for deer management.  

Most data on deer management come from hunter harvest, but hunting is generally 

prohibited in urban areas (though suburban archery programs exist; Mcshea 2012), thus studying 

these predator-prey dynamics in urban areas is difficult.  Lower rates of predation, the limited 

hunting, and ample supplemental food (i.e., landscaping) lead to higher density populations of 

deer living near people (Brown et al. 2000). These large populations result in increased risk of 

tick-borne infections, vehicle collisions and damage to residential landscaping (Mcshea 2012). 

This added human element coupled with a lack of data and an adaptable predator make deer 

management especially challenging in urban areas. Nevertheless, establishing relationships 

between urbanization and deer and coyote populations is important to the future management of 

deer in the Southeast.  

Predicting trends in deer abundance over time may not be enough to understand the 

dynamics between predator and prey.  Predation can be described on a continuum from 
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compensatory (not limiting) to additive (limiting), and where predation falls on this continuum 

determines its effect on prey abundance (Bender 2018).  In highly stressed populations, where 

food is lacking and/or disease present, predation is most likely to be compensatory (Bender 

2018).  However, in populations in high-quality habitats where individuals attain excellent 

nutrition, predation is more likely to be additive, with detectable effects on population size more 

likely (Bender 2018).  Thus, if conditions change and populations become more or less stressed 

by outside factors, whether predation is predominantly compensatory or additive can likewise 

change.  Therefore, it’s important to not only monitor abundance, but to determine how predators 

are affecting key vital rates (i.e., survival and recruitment) under different environmental 

conditions. 

Coyotes could affect deer populations through direct predation on fawns or adults (e.g., 

Chitwood et al. 2014; Chitwood et al. 2015b), or through indirect effects that increase vigilance 

(e.g., Lashley et al. 2014; Schuttler et al. 2017) or avoidance behaviors (e.g., Parsons et al. 2016; 

Gulsby et al. 2017).  All of these could lower survival or recruitment and thus affect deer 

abundance.  Estimating survival, recruitment and abundance in free ranging populations is 

challenging, however, requiring labor-intensive studies which become even more difficult as the 

geographic scope of inference increases. However, there are many sources of data (e.g., harvest 

data counts) collected regularly by wildlife managers that are readily available.  These datasets 

are typically indices rather than the robust datasets generated by following individuals through 

time (e.g., capture-recapture, telemetry).  Indices generally correlate to desired quantities, like 

density or survival, and although they are not providing robust estimates, can nevertheless 

provide valuable information. Recently developed integrated population models (Schaub and 
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Abadi 2011) provide a framework for integrating index and more robust datasets from widely 

varying sources on different spatial scales to estimate survival, recruitment and abundance.   

In the last five years, the use of IPMs in ecology has increased seven-fold (2020 Google 

Scholar search) with managers increasingly using them for joint analysis of survey data 

commonly collected for managed species (e.g., Mccaffery and Lukacs 2016; Gamelon et al. 

2019).  The use of state-space models has allowed the flexible IPM framework to incorporate 

such indices with general success, by allowing observation processes (e.g., detection probability) 

to be modeled separately from state processes, resulting in parameter estimates similar to those 

estimated from more robust datasets (e.g., Fieberg et al. 2010).  Although state space models can 

be used outside of IPMs, within an IPM they offer some solutions to estimate confounding 

quantities like detection probability by informing them with additional datasets (e.g., Hostetler 

and Chandler 2015).  IPMs offer several advantages over the traditional approach wherein 

different datasets are analyzed separately, and the estimated demographic parameters used as 

inputs in population projection matrices.  IPMs are more efficient, use all available information 

and allow formal accounting of uncertainty across sub-models (Schaub and Abadi 2011).  

Furthermore, they may allow estimation of quantities not directly informed by data in the model 

(i.e., if one parameter is missing data and all others informed by data and linked), and the sharing 

of parameters between models can increase estimate precision (Schaub and Abadi 2011).   

Our first objective was to establish relationships between coyotes and urbanization and 

their effects on deer survival and recruitment.  Our second objective was to predict how deer 

abundance will respond to increases in urbanization and coyote density. We used camera trap 

data to measure how coyote density varies with urbanization and to estimate the initial 

abundance of deer. We used stage-at-harvest data to estimate deer recruitment and annual 
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survival considering their stage (adult, juvenile) and sex.  We used hunter observations of 

fawn/doe ratios to estimate recruitment and the results of decoy experiments to estimate survival 

of fawns through the first month of life.  We used an IPM to share deer survival and recruitment 

parameters among camera trap, harvest, hunter observation and fawn decoy experiment data 

likelihoods in a two-stage, two-sex Lefkovich projection matrix.  Survival and recruitment were 

allowed to vary as a function of urbanization level and predicted coyote density so we could 

forecast how future changes in those two factors would affect vital rates. We used these 

relationships to predict deer populations over 10 years in different scenarios of urbanization and 

coyote density, presuming no immigration.  

Studies in urban areas have suggested a predation paradox wherein predator numbers 

increase with urbanization but predation rates decline (Fischer et al. 2012).  Therefore, we 

hypothesize that the relationship between coyote density and deer population metrics will vary 

with urbanization. Specifically, we predict that deer recruitment and survival will be lowest 

where urban landcover is highest.  We further predict that the relationship between coyote 

density and deer abundance will be mediated by urbanization, with higher coyote densities 

having less effect on deer abundance at high compared to low levels of urbanization.   

 

Methods: 

Study area: 

The focus of our study was on four counties in central North Carolina (Chatham, Durham, 

Orange and Wake), located in the mid-Atlantic region of the United States (Figure 12).  These 

counties contain three major cities, Raleigh (area: 375km2, population density: 1,278 

people/km2), Durham (area: 280km2, population density: 811 people/km2) and Chapel Hill (area: 
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55km2, population density: 1,037 people/km2). Surrounding land use of each city is a 

combination of agriculture (~24%) and forest (~52%). 

 

Data collection: 

We used four different datasets to estimate initial abundance, recruitment and survival of white-

tailed deer in our study area (Figure 13).  We used citizen-science camera trapping to estimate 

initial abundance of adults of each sex and juveniles (hereafter “fawns”).  We used fawn decoy 

experiments to estimate the survival of fawns through their first month of life.  We used harvest 

data to estimate fecundity and annual survival for adults of each sex and fawns. We used hunter 

observations of adult females (hereafter “does”) and fawns along with fawn decoy survival and 

fecundity from harvest data to estimate recruitment. 

 

Citizen science camera trap surveys: From July through December 2017, we worked with 37 

trained volunteers to deploy 55 unbaited camera traps across our study area, covering a total of 

3,000km2 (Figure 12). Camera site selection was chosen to stratify random camera placement 

among forested, open (>0.02km2 treeless) and developed habitat types proportional to their 

makeup of the study area.  Cameras were placed with a minimum spacing of at least 200m from 

the adjacent camera (mean=2.8km). Volunteers predominantly used Reconyx (PC800, and 

PC900, Reconyx, Inc. Holmen, WI) with some using Bushnell (Trophy Cam HD, Bushnell 

Outdoor Products, Overland Park, KS), Browning (Strike Force, Browning Trail Cameras 

Birmingham, AL) and Primos (Proof Cam 01, Primos Hunting Flora, MS).  Camera traps were 

attached to trees at approximately 40cm above the ground. Trigger sensitivity was set to high for 

all cameras and we verified that all brands of camera had similar trigger speeds (<0.5s). Cameras 
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were deployed for three weeks and then moved to a new location. Cameras recorded multiple 

photographs per trigger, at a rate of 1 frame/s, re-triggering immediately if the animal was still in 

view. We grouped consecutive photos into sequences if they were <60s apart, and used these 

sequences as independent records for doe, fawn and coyote abundance estimates (as previously 

described in Kays et al. 2016). We binned captures into six monthly periods for analysis.  We 

fixed capture probability to zero for cameras that were not operational on a given occasion. 

Initial species identifications were made by volunteers using customized software 

(eMammal.org) and all were subsequently reviewed for accuracy before being archived at the 

Smithsonian Digital Repository (as previously described in Mcshea et al. 2016). 

 

Hunter observations: 

During the 2017 hunting seasons hunters across the state were asked by the North Carolina 

Wildlife Resources Commission (hereafter NCWRC) to complete the North Carolina Deer 

Hunter Observation Survey to document what species they observed on their hunts, given the 

number of hours they spent hunting, to get an index of abundance. Potential volunteers were 

recruited through the big game harvest registration database, public news releases, email blasts, 

and various staff contacts (Fuller et al. 2018).  Using a mailed survey form, hunters were asked 

to record the date they hunted, number of hours, location type (i.e., public or private land), use of 

bait, species and sex/stage where applicable and the number of animals seen. The location of 

these observations was known only to the county level, thus estimates in our model were 

generated at the county level. Hunters were instructed to report their hunting activity even if no 

wildlife was observed (Fuller et al. 2018). Approximately 1,300 deer hunters participated 

encompassing 452,429 observation hours.  Hunters recorded an average of 19.4 hunts, averaging 
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3.4 hours per hunt (Fuller et al. 2018).  For use in our model, we removed all observations made 

over bait and averaged observations of hunters that remained in the same hunting stand for 

multiple days instead of treating those days as independent samples.  

 

Harvest data: 

North Carolina requires that all deer harvests be reported using a Big Game Harvest Report Card 

which is furnished with the issuance of a big game hunting license each season. All harvest data 

are reported at the county level. The card distinguishes between adult males (hereafter “bucks”), 

does and button bucks (fawns). Hunters are instructed to carry the card with them on a hunt and 

punch a hole in the card next to the relevant sex/age class when a kill is made. They then register 

the kill within 24 hours to the NCWRC. We used deer harvest data from 2012-2017 in our 

models.  

 

Fawn decoy survival: We used fawn decoys to quantify the rate of mortality for young 

(<1month) fawns (Boone 2019).  We deployed 37 camera-decoy experiments from May to July 

2018 in central North Carolina, timed to match the peak of fawn births (Boone 2019).  Each 

location had an initial two-week survey period where two cameras were placed without the 

decoy or scent lure to habituate predators (Boone 2019). We used Recoynx RC55, PC800, and 

PC900 and Bushnell Trophy Cam cameras traps with trigger speed set to high, multiple 

photographs per trigger, re-triggering immediately if the animal was still in view. We stratified 

camera placement among two land cover groups (open and forest).  Cameras were set ~40cm 

high in pairs (~10m apart), separated from adjacent sites by at least 200m (Boone 2019).  

Following the initial habituation period, we set inflatable fawn decoys (Frantic Fawn Predator 
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Decoy; Primos Hunting, Inc) that closely resembled a bedded neonate in front of each pair of 

cameras, laying it on its stomach and securing it to a metal stake with a rubber band (Boone 

2019). We placed a 12- x20-cm piece of carpet lightly sprayed with fawn urine (The Predator 

bomb – Fawn Urine; Buck Bomb) under the decoy.  No vegetation was cleared in front of the 

cameras or around the decoy (Boone 2019).  If a predator (coyote, bobcat (Lynx rufus), red fox 

(Vulpes vulpes), gray fox (Urocyon cinereoargenteus) or domestic dog (Canis lupus familiaris)) 

approached within 5 meters of the decoy or physically touched it, we considered this to result in 

a neonate mortality.  Any sites without predators approaching the decoy were classified as a 

surviving neonate.  We considered only the first predator “attack” for each decoy to result in its 

mortality (Boone 2019).  

 

Coyote density estimates:  

We used camera trap data (see Citizen science camera trap surveys) to estimate coyote density 

and its relationship with urban land cover. Since we were unable to individually identify coyotes 

on camera traps, we used camera trap detections and the spatial count model of Chandler and 

Royle (2013) (hereafter SCM) to estimate their abundance. This model uses the correlation of 

spatially referenced counts made at closely spaced detectors to infer the number and locations of 

animal activity centers.  The model is analogous to a spatially explicit capture recapture 

(hereafter SCR) model where the encounter histories are latent.   Specifically, the latent 

encounter data are related to the trap-level count data according to: 

 

𝑛𝑗𝑘 =  ∑ 𝑧𝑖𝑗𝑘

𝑁

𝑖=1
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Where 𝑧𝑖𝑗𝑘 represent the latent encounter data for individual i at trap j on occasion k.  N 

represents the total number of individuals in the population and n represents the trap-level count 

data.  We assume: 

 

𝑧𝑖𝑗𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗) 

 

Where 𝜆𝑖𝑗 is the encounter rate of individual i at trap j and is a function of the distance of that 

individual’s activity center from the trap location (𝐷𝑖𝑗), analogous to a SCR model:  

 

𝜆𝑖𝑗 = 𝜆0 ∗ exp (
𝐷𝑖𝑗

2

2𝜎2
) 

 

Where 𝜆0 represents the detection intensity at the location of the activity center.  The 𝜎 

parameter is key since it defines the extent of space use over the period of study (Royle et al. 

2013) and the degree of spatial correlation among counts (i.e., large home range = more cameras 

and less correlation whereas small home range = fewer cameras and more correlation) (Chandler 

and Royle 2013). This method is an improvement over simple detection rate, which does not 

account for double-counted individuals or those that remain undetected.  The model has been 

shown to perform best when either ancillary movement data or a subset of marked individuals 

are available (Chandler and Royle 2013).  Since we did not have any ancillary data on coyote 

movement nor any marked individuals, we used informative priors on the sigma parameter using 

a study of coyotes in the Southeast (Hinton et al. 2015) to improve precision and reduce the 

potential of this method for positive bias (Chandler and Royle 2013). We used the detection rate 
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of coyotes on our cameras (count/day: mean=0.04, SE=0.01) to set a semi-informative, uniform 

prior on 𝜆0.   

 

𝜆0~𝑈𝑛𝑖𝑓(0, 0.2) 

 

𝜎~𝑈𝑛𝑖𝑓(2500𝑚, 3500𝑚) 

 

To account for variation in abundance over our study area and predict abundance for regions of 

our study area that were not sampled, we assumed an inhomogenous point process model where 

the location of activity centers 𝑠𝑖 are not uniformly distributed across the spatial domain (S):  

 

[𝑠𝑖|𝛽] =
𝜇𝑝

∑ 𝜇𝑝𝑠𝜖𝑆
 

 

Where 𝜇𝑝, the intensity parameter which is allowed to vary spatially, is defined at each point s in 

the spatial domain and modeled as a function of spatially referenced covariates (Royle et al. 

2013).  To address our hypotheses about the relationship between urbanization and coyote 

density, we modeled 𝜇𝑝 as a function of urbanization (percent developed land in a 1km radius; 

Sohl et al. 2018) such that:   

 

 log (𝜇𝑝) = 𝛽0 + 𝛽1 ∗ 𝑋𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

We did not consider other covariates to facilitate interpretation and prediction. This function 

returns the expected density of activity centers at location s in the spatial domain. We used this 
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function to predict coyote density statewide in 1km grid cells and averaged over each county for 

use in our integrated population model.   

To mitigate the computational burden of our models, we used a local evaluation of the 

individual state‐space (LESS; Milleret et al. 2019) which creates square evaluation windows that 

restrict the spatial domain in which an individual’s detection probability and activity center 

location are able to fall.  The width of the detection and activity center windows were set to 5*𝜎 

and 9*𝜎, respectively, as suggested by Milleret et al. (2019), where 𝜎 is the upper bound of the 𝜎 

prior above.   

 

Integrated population model: 

An integrated population model has two main components, a vector of initial abundance 

estimates for each stage and sex and a projection matrix populated with survival probabilities for 

each stage and sex and a recruitment rate.  We used a Lefkovich matrix with two sexes and two 

stages (fawn and adult) linking initial abundance of each stage and sex to survival and 

recruitment (Figure 14).  Initial abundances, survival and recruitment were estimated from 

different data sources using separate likelihoods and the components of these likelihoods shared 

some parameters in common (Figure 14).  Specifically, we were interested in estimating annual 

survival of bucks and does for which we had very little data, and recruitment which is an 

important metric for managers to set harvest rates (e.g., Skalski and Millspaugh 2002). We 

allowed all survival and recruitment rate parameters to vary as functions of covariates and were 

interested in estimating the relationship between survival/recruitment, urbanization and coyote 

density.  We estimated initial abundance for bucks, does and fawns from camera trap data.  We 

estimated fawn survival through the first month of life using fawn decoy experiments.  We 
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estimated annual survival and fecundity (a component of recruitment) using stage-at-harvest 

data.  Finally, we estimated recruitment using hunter observation data. 

 

Initial buck abundance:  We used camera trap data to estimate initial buck abundance for our 

population model. We identified individual bucks based on their antler pattern (i.e., Parsons et al. 

2017).  We constructed encounter histories for each individual and analyzed them within a 

spatially explicit capture recapture framework (Royle et al. 2013).  In SCR, the spatial encounter 

histories at a set of detectors are used to estimate the latent locations of individual activity 

centers. They are hierarchical state‐space models that combine a spatial point process model 

describing the spatial distribution of individual activity centers, and an observation model, 

describing the relationship between an individual’s detection probability and distance to its 

activity center. We used a Poisson observation model with a half‐normal detection function 

which assumes that the probability p of detecting individual i at detector j decreases with 

distance between the detector and the activity center (𝐷𝑖𝑗): 

 

𝑝𝑖𝑗 = 𝜆0 ∗ exp (
𝐷𝑖𝑗

2

2𝜎2
) 

 

Where 𝜆0 represents the baseline encounter frequency at the location of the activity center and 𝜎 

is the scale parameter (i.e., extent of space used over the period of study) (Royle et al. 2013).  

We used uninformative, uniform priors on 𝜆0 and 𝜎 with the 𝜎 prior representing the range of 

home range radius values for resident bucks in the literature (Stewart et al. 2011). 

 

𝜆0~𝑈𝑛𝑖𝑓(0, 1) 
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𝜎~𝑈𝑛𝑖𝑓(500𝑚, 2000𝑚) 

 

Just as for the coyote density model, we assumed an inhomogenous point process model where 

the location of activity centers 𝑠𝑖 were not uniformly distributed across the spatial domain (S).  

Instead, we allowed abundance to vary as a function of percent tree cover (percent of each 

30x30m pixel covered by trees; Hansen et al. 2013) and average housing density (Silvis housing 

density dataset, houses/square km; Hammer et al. 2004) in a 5km radius and the interaction 

between the two which have been shown to be important predictors of deer occupancy (Kays et 

al. 2016). We used a local evaluation of the individual state‐space (LESS; Milleret et al. 2019) to 

improve computation time. The width of the detection and activity center windows were set to 

5*𝜎 and 9*𝜎, respectively where 𝜎 is the upper bound of the 𝜎 prior above.   

 

Initial doe abundance: We used camera trap data to estimate initial doe abundance for our 

population model. Since we were unable to individually identify does on camera traps, we used 

camera trap detections and SCM to estimate their abundance analogous to our coyote density 

model. Since we did not have any ancillary data on doe movement nor any marked individuals, 

we used informative priors on the sigma parameter using a telemetry study of does in the 

Southeast (D'angelo et al. 2005).  We also used an informative, uniform prior on 𝜆0 by using the 

estimated 𝜆0from the buck SECR submodel (𝜆0𝐵𝑢𝑐𝑘) as a maximum bound.  

 

𝜆0~𝑈𝑛𝑖𝑓(0, 𝜆0𝐵𝑢𝑐𝑘) 

𝜎~𝑈𝑛𝑖𝑓(400𝑚, 500𝑚) 
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Just as for the buck SCR model, we assumed an inhomogenous point process, allowing 

abundance to vary as a function of percent tree cover and average housing density in a 5km 

radius and the interaction between the two. We used a local evaluation of the individual state‐

space (LESS; Milleret et al. 2019) to improve computation time. The width of the detection and 

activity center windows were set to 5000 and 9000, respectively. 

 

Initial fawn abundance:  We used camera trap data to estimate initial fawn abundance for our 

population model. Although we were able to individually identify fawns from camera traps, our 

traps were spaced too widely to recapture individuals on different cameras, preventing analysis 

by SCR.  Similar to does and coyotes, we used camera detections with SCM and informative 

priors to account for our lack of information about 𝜎 and 𝜆0 (Epstein et al. 1985).  

 

𝜆0~𝑈𝑛𝑖𝑓(0, 𝜆0𝐵𝑢𝑐𝑘) 

𝜎~𝑈𝑛𝑖𝑓(200𝑚, 300𝑚) 

 

Just as for our other abundance models, we assumed an inhomogenous point process and allowed 

abundance to vary as a function of percent tree cover and average housing density in a 5km 

radius and the interaction between the two. We used a local evaluation of the individual state‐

space (LESS; Milleret et al. 2019) to improve computation time. The width of the detection and 

activity center windows were set to 5000 and 9000, respectively. 

We were concerned that because sigma was so small relative to the average spacing of 

our cameras, we might further bias our estimates (Chandler and Royle 2013). Therefore, we 

conducted simulation studies to quantify the level of bias we could expect in our estimates due to 
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large camera spacing relative to sigma, even with the use of highly informative priors. We 

simulated a dataset with a true sigma of 300m and N=30 randomly distributed individuals.  We 

simulated a random array of cameras throughout the landscape under three different maximum 

allowed spacings: 200m (“good spacing”), 1km (“okay spacing”), 2km (“bad spacing”).  We ran 

50 simulations under each spacing scheme and used the results to adjust the uncertainty in our 

abundance estimates based on the model. 

 

Fawn first month survival:   Fawn survival has been shown to be lowest during the first month of 

life (Kilgo et al. 2012) and fawns typically do not move and are not harvested during that first 

month (Chitwood et al. 2017).  Therefore, we estimated fawn survival for the first month 

separately from fawn survival to adulthood, which we considered to be the end of their first year, 

considering only fawns surviving this first month as “recruits” in our model. We used “survival” 

data from fawn decoy experiments to estimate fawn survival from predation through the first 

month of life using a logistic exposure model (Shaffer and Thompson 2007).  Binary successes 

(survival, 1) and failures (predation, 0) for each decoy i each day of risk j were modeled as 

Bernoulli random variables with daily survival probability 𝜂𝑖. 

 

𝑦𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜂𝑖 ∗ 𝑦𝑖𝑗−1) 

 

The daily survival probability (𝜂𝑖) was allowed to vary on the logit scale as a linear function of 

covariates with uninformative 𝛽 priors: 

 

𝑙𝑜𝑔𝑖𝑡(𝜂𝑖) = 𝛽0𝐹𝑎𝑤𝑛 + 𝛽1𝐹𝑎𝑤𝑛 ∗ 𝑋1 + 𝛽2𝐹𝑎𝑤𝑛 ∗ 𝑋2 … 
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𝛽𝐹𝑎𝑤𝑛~𝑈𝑛𝑖𝑓(−5, 5) 

 

Specifically, we modeled 𝜂𝑖 as a function of site-level urbanization and average coyote density in 

a 1km radius (see Coyote density estimates).  We then predicted 𝜂𝑐, the average daily survival 

rate for each county, using county-level averages for each covariate.  Average county-level 

survival of fawns in the first month of life (29 days) was then given by: 

 

𝜔3𝑚,𝑐 = (𝜂𝑐
29 ∗ 0.79) 

 

Where the 0.79 represents a correction of estimated decoy survival to include additional 21% 

mortality from other sources (e.g., starvation/abandonment: Saalfeld and Ditchkoff 2007; Kilgo 

et al. 2012; Chitwood et al. 2015b).  

 

Annual survival:  We used the dynamic N-mixture model of Zipkin et al. (2014) to estimate 

stage and sex-based annual survival rates from stage-at-harvest data collected statewide from 

2012-2017 over all 100 counties of North Carolina.  Although our initial abundance data were 

collected in 2017 over four counties of the state, in order to estimate stage-based survival and 

recruitment from stage-at-harvest data, we needed multiple years of count data.  We wanted to 

use many sites (i.e., counties) to better establish relationships between survival/recruitment and 

predictors for projection.  Furthermore, we felt it was important to incorporate as much 

information about potential annual fluctuations in these rates, thus we chose to model six years 

of harvest data to generate estimates for 2017 survival and recruitment that incorporated 

uncertainty due to annual variation for our projections.  The statewide harvest data are collected 
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by county each year for two stages for male deer (adults and fawns about to transition to 

adulthood (i.e., button bucks)) and does.  We assumed that all button bucks were fawns and all 

females were adults.  The observed harvest count (nict) of individuals in stage/sex i recorded in 

each county c during year t is distributed as: 

  

𝑛𝑖𝑐𝑡~𝐵𝑖𝑛(𝑁𝑖𝑐𝑡, 𝜀𝑖𝑐𝑡) 

 

where 𝜀𝑖𝑐𝑡 is the stage/sex-specific harvest rate for a given county in a given year.  We estimated 

the harvest rates in our study area outside of our model by dividing the stage/sex-specific harvest 

counts by their respective abundance estimates (50%, 50% and 14% for bucks, does and fawns, 

respectively) and added them as data, assuming all counties in all years were harvested at the 

same rate. 

We assumed the initial (year 1 = 2012) population size for each stage/sex in each county 

(𝑁𝑖𝑐1) is a Poisson random variable with mean (𝜆𝑖𝑐), using an informative prior to limit it to a 

10,000 individual upper bound: 

 

𝑁𝑖𝑐1~𝑃𝑜𝑖𝑠(𝜆𝑖𝑐) 

𝜆𝑖𝑐~𝑈𝑛𝑖𝑓(0, 10000) 

 

Subsequent years are modeled by allowing transitions between stages by considering the number 

of individuals that survive (S) and are gained through recruitment (G) in the population as 

follows: 
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𝑆1𝑐𝑡~𝐵𝑖𝑛((𝑁1𝑐𝑡−1 + 𝑁3𝑐𝑡−1), (𝜔1𝑐 ∗ 𝜀1𝑐𝑡)) 

𝑆2𝑐𝑡~𝐵𝑖𝑛((𝑁2𝑐𝑡−1 + 𝑁3𝑐𝑡−1), (𝜔2𝑐 ∗ 𝜀2𝑐𝑡)) 

𝑆3𝑐𝑡~𝐵𝑖𝑛(𝐺3𝑐𝑡, (𝜔3𝑐 ∗ 𝜀3𝑐𝑡)) 

𝐺3𝑐𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝛾𝑐 ∗ 𝜔3𝑚𝑐 ∗ 𝑁2𝑐𝑡−1) 

 

where stage/sex 1, 2 and 3 are bucks, does and male fawns respectively. We assumed that male 

and female fawns have equal recruitment rates and survival to adulthood (Denicola et al. 2008) 

and that all does breed each year. We assumed that immigration and emigration were 

compensatory and did not estimate them under the model. The number of adults surviving of 

each sex in each county each year is determined by the number of adults and transitioning fawns 

of a given sex in the previous year and the product of respective annual survival (𝜔𝑖𝑐) and 

harvest rates (𝜀𝑖𝑐𝑡).  The number of male fawns surviving is determined by the number of 

recruits (G3ct), average county-level annual fawn survival (𝜔3𝑐) and the annual county-level 

harvest rate of button bucks (𝜀3𝑐𝑡).  Stage/sex specific survival rates in each county each year are 

allowed to vary as a function of average urbanization (percent developed land in a 1km radius; 

Sohl et al. 2018), average coyote density within each county and their interaction. 

 

𝑙𝑜𝑔𝑖𝑡(𝜔𝑖𝑐𝑡) =  𝛽0𝑖𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 + 𝛽1𝑖𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 ∗ 𝑋𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛+ 𝛽2𝑖𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒

+ 𝛽3𝑖𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒∗𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

With an uninformative prior on the 𝛽 parameters to bound 𝜔𝑖𝑐𝑡 between 0 and 1 on the probability 

scale. 
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𝛽𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙~𝑈𝑛𝑖𝑓(−1,1) 

 

The number of male fawns gained in each county in each year (G3ct) is determined by the 

fecundity rate (𝛾𝑐; the average number of male fawns produced by each doe in county c) and the 

probability of survival past the first month of life (𝜔3𝑚𝑐; see Fawn first month survival) 

multiplied by the number of does in the county population in the previous year.  Note that by 

incorporating 𝜔3𝑚𝑐 into the equation governing the number of recruits in each year, the meaning 

of annual fawn survival (𝜔3𝑐) changes to be fawn survival from month 2-12, though we will 

continue to refer to it as fawn annual survival. The average number of male fawns produced by 

each doe in county c was allowed to vary as a function of average urbanization (percent 

developed land in a 1km radius; Sohl et al. 2018) and average coyote density within each county 

and their interaction. 

 

𝑙𝑜𝑔(𝛾𝑐) =  𝛽0𝑅𝑒𝑐𝑟𝑢𝑖𝑡 + 𝛽1𝑅𝑒𝑐𝑟𝑢𝑖𝑡 ∗ 𝑋𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛+ 𝛽2𝑅𝑒𝑐𝑟𝑢𝑖𝑡 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒

+ 𝛽3𝑅𝑒𝑐𝑟𝑢𝑖𝑡 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒∗𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

With an informative prior on the 𝛽 parameters to bound 𝛾𝑐 between 0 and 1.5 male fawns per doe 

(Witham and Jones 1992). 

 

𝛽𝑅𝑒𝑐𝑟𝑢𝑖𝑡~𝑈𝑛𝑖𝑓(−0.3, 0.3) 

 

Since our census took place right before fawns transitioned to adulthood and we considered all 

fawns to reach adulthood at one year of age, we did not model a transition probability.  Our goal 
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was to estimate the county-level annual survival parameters 𝜔𝑖𝑐, which requires estimation of the 

true abundance of each stage/sex i in county c in year t (𝑁𝑖𝑐𝑡).  The stage-specific abundances in 

a given county c in year t are then determined by: 

 

𝑁1𝑐𝑡 = 𝑆1𝑐𝑡 + 𝑆3𝑐𝑡 

𝑁2𝑐𝑡 = 𝑆2𝑐𝑡 + 𝑆3𝑐𝑡 

𝑁3𝑐𝑡 = 𝐺3𝑐𝑡 

 

Recruitment:  We estimated average recruitment from hunter observation data statewide in 2017 

using a generalized linear model with a log-link to predict doe counts.  We assumed that the 

count of does in each county c was distributed as a Poisson random variable with mean 𝜆𝑑𝑐 ∗

𝑝_𝑑𝑐 and that the count of fawns was distributed as a Poisson random variable with mean 

(2𝛾𝑐 ∗ 𝜆𝑑𝑐 ∗ 𝜔3𝑚𝑐 ∗ 𝑝_𝑓𝑐): 

 

𝐶𝑑𝑐 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑑𝑐 ∗ 𝑝_𝑑𝑐) 

𝐶𝑓𝑐 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝛾𝑐 ∗ 𝜆𝑑𝑐 ∗ 𝜔3𝑚𝑐 ∗ 𝑝_𝑓𝑐) 

 

where 𝛾𝑐 and 𝜔3𝑚𝑐 are the number of male fawns produced by each doe in county c, estimated 

from harvest data (see Annual survival), and fawn survival probability in the first month of life in 

county c, estimated from fawn decoys (see Fawn first month survival), respectively.  To account 

for differences in detection probability between does and fawns, we added county-specific 

detection probability terms to each likelihood (𝑝_𝑑𝑐 and 𝑝_𝑓𝑐, respectively).  To estimate 

detection probabilities, we summed the hunter observation counts over our four focal counties 
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and used our estimates of doe (𝑁2; see Doe initial abundance) and fawn (𝑁3; see Fawn initial 

abundance) abundance within the model to link abundance, counts and detection probabilities: 

 

𝐶𝑑𝐹𝑜𝑐𝑎𝑙  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁2 ∗ 𝑝_𝑑𝐹𝑜𝑐𝑎𝑙) 

𝐶𝑓𝐹𝑜𝑐𝑎𝑙 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁3 ∗ 𝑝_𝑓𝐹𝑜𝑐𝑎𝑙) 

 

We then used 𝑝_𝑑𝐹𝑜𝑐𝑎𝑙 and 𝑝_𝑓𝐹𝑜𝑐𝑎𝑙 as informative priors for 𝑝_𝑑𝑐 and 𝑝_𝑓𝑐, respectively: 

 

𝑝_𝑑𝑐~𝑁𝑜𝑟𝑚𝑎𝑙(𝑝_𝑑𝐹𝑜𝑐𝑎𝑙 , 0.1) 𝑇(0,1) 

𝑝_𝑓𝑐~𝑁𝑜𝑟𝑚𝑎𝑙(𝑝_𝑓𝐹𝑜𝑐𝑎𝑙 , 0.1) 𝑇(0,1) 

 

We modeled 𝜆𝑑𝑐 as a function of average urbanization (percent developed land in a 1km radius; 

Sohl et al. 2018) and average coyote density within each county and their interaction. 

 

log (𝜆𝑑𝑐) =  𝛽0𝐷𝑜𝑒 + 𝛽1𝐷𝑜𝑒 ∗ 𝑋𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛+ 𝛽2𝐷𝑜𝑒 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒 + 𝛽3𝐷𝑜𝑒

∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒∗𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

With an uninformative prior on the 𝛽 parameters. 

 

𝛽𝐷𝑜𝑒~𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.01) 
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We considered county-level recruitment (𝜌𝑐) to be the product of 2𝛾𝑐 and 𝜔3𝑚𝑐 since we 

considered true “recruits” to be those fawns that were born and survived the risky first month of 

life: 

 

𝜌𝑐 = 2𝛾𝑐 ∗ 𝜔3𝑚𝑐 

 

By sharing the 𝛾𝑐 and 𝜔3𝑚𝑐 parameters between models, we are able to fully integrate the three 

likelihoods, increasing our ability to precisely and accurately estimate these parameters (Zipkin 

and Saunders 2018). 

 

Population projections: 

Key quantities of coyote density, recruitment and stage/sex-specific survival and harvest rates 

were modeled as linear functions of covariates, allowing us to predict changes in these quantities 

given changes in the covariates used to model them. To test our hypotheses about the potential 

effects of increases in urbanization on coyote density and deer abundance, we predicted deer 

survival and recruitment as functions of low, medium and high levels of urbanization (10, 49, 

90% in a 1km radius) and coyote density (0.03, 1.18, 2.7 coyotes/km2), respectively. We 

predicted each quantity for each combination of urbanization and coyote density using the 𝛽 

coefficient estimates from 2017 associated with each submodel.  For each combination of 

urbanization and coyote density, we populated our projection matrix with predicted survival and 

recruitment vital rates and projected our model forward 10 years using:  

 

𝑁1𝑦 =  (𝑁1𝑦−1 ∗ 𝜔1𝑦 ∗ (1 − 𝜀1𝑦)) + ((
𝑁3𝑦−1

2
) ∗ 𝜔3𝑦 ∗ (1 − 𝜀3𝑦)) 
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𝑁2𝑦 =  (𝑁2𝑦−1 ∗ 𝜔2𝑦 ∗ (1 − 𝜀2𝑦)) + ((
𝑁3𝑦−1

2
) ∗ 𝜔3𝑦) 

𝑁3𝑦 =  𝑁2𝑦−1 ∗ 𝜌𝑦 

 

Where 𝑁1𝑦, 𝑁2𝑦 and 𝑁3𝑦 are the predicted abundances of bucks, does and fawn (of both sexes 

combined), respectively, in our four focal counties for each year of projection, with 𝑁11, 𝑁21 and 

𝑁31being the initial abundances in 2017 estimated from camera trap data. Buck, doe and fawn 

average annual survival probabilities over our focal counties are given by 𝜔1𝑦, 𝜔2𝑦 and 𝜔3𝑦, 

respectively.  Buck, doe and male fawn average harvest rates over our focal counties are given 

by 𝜀1𝑦, 𝜀2𝑦 and 𝜀3𝑦, respectively, and were assumed constant based on rates in our focal counties 

in 2017.  Finally, 𝜌𝑦 is the average recruitment of fawns (of both sexes combined) per doe in our 

four focal counties for each year of projection.  Note that 𝜌𝑦 represents the number of fawns 

produced by each doe that survive the risky first month of life. 

Immigration and harvest rates can have profound effects on abundance projections (i.e., 

whether they are increasing, decreasing or stable) but estimating these rates are challenging.  We 

tested three scenarios of immigration and harvest rates for our four focal counties to demonstrate 

the sensitivity of projections to changes in these rates.  We tested harvest levels of 2%, 5% and 

50% for adult males and females, with juvenile harvest rates being 28% of adult harvest rates 

(i.e., 0.006, 0.01 and 0.14, respectively) based on relative harvest rates calculated from initial 

abundance estimates and harvest count data.  We tested immigration levels of 0, 1000 and 1500 

adult male and adult female annual immigrants to the population. 

We used USGS landcover projections (Sohl et al. 2018) to predict what we might expect 

for the deer population in our study specific to actual predicted increases in urbanization over the 

next 10 years, rather than theoretical levels of each covariate.  We first predicted coyote density 
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using the beta coefficient values estimated under our coyote density model (see Coyote density 

estimates) and the amount of urbanized landcover predicted in each year by the USGS.  We then 

generated predictions each year for deer survival and recruitment by using the 𝛽 coefficient 

estimates from 2017 associated with each submodel and predicted values of urbanization and 

coyote density each year.  We averaged survival and recruitment estimates each year over our 

four counties to generate a single yearly estimate of recruitment and annual survival for each 

stage and sex to use in our projection matrix.  We then projected buck, doe, fawn and the total 

population abundance forward over the 10-year period using the survival and recruitment rates 

predicted for each year.  

 

Parameter sharing test: 

To determine if the sharing of parameters in an integrated population modelling framework 

improved estimate precision, we also ran our submodels separately, with no sharing of 

parameters or integrated framework.  Our separate submodels were structurally the same as their 

counterparts in our model with parameter sharing, except for the lack of shared parameters.  

Specifically, for our annual survival model (see Annual survival), instead of sharing fawn 

probability of survival past the first month of life,  (𝜔3𝑚𝑐; see Fawn first month survival) with 

the fawn decoy and hunter observation likelihoods, it was simply given an uninformative prior: 

 

𝜔3𝑚𝑐~𝑈𝑛𝑖𝑓(0,1) 

 

Additionally, in our recruitment model we removed the sharing of 𝛾 and 𝜔3𝑚𝑐 (see Recruitment) 

and instead assumed that the count of does in each county c was distributed as a Poisson random 
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variable with mean 𝜆𝑑𝑐 ∗ 𝑝_𝑑𝑐 and that the count of fawns was distributed as a Poisson random 

variable with mean 𝜆𝑓𝑐 ∗ 𝑝_𝑓𝑐: 

 

𝐶𝑑𝑐 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑑𝑐 ∗ 𝑝_𝑑𝑐) 

𝐶𝑓𝑐 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑓𝑐 ∗ 𝑝_𝑓𝑐) 

 

Where 𝑝_𝑑𝑐 and 𝑝_𝑓𝑐 are county-level doe and fawn detection probabilities, respectively.  Since 

we did not share parameters in this model, detection probabilities were not modeled using initial 

abundance estimates, instead they were simply given uninformative priors: 

 

𝑝_𝑑𝑐~𝑈𝑛𝑖𝑓(0,1) 

𝑝_𝑓𝑐~𝑈𝑛𝑖𝑓(0,1) 

 

We modeled 𝜆𝑑𝑐 and 𝜆𝑓𝑐 as functions of urbanization (percent developed land in a 1km radius; 

Sohl et al. 2018) and average coyote density within each county (N=100). 

 

log (𝜆𝑑𝑐) =  𝛽0𝐷𝑜𝑒 + 𝛽1𝐷𝑜𝑒 ∗ 𝑋𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛+ 𝛽2𝐷𝑜𝑒 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒 + 𝛽3𝐷𝑜𝑒

∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒∗𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

 

log (𝜆𝑓𝑐) =  𝛽0𝐹𝑎𝑤𝑛𝐶 + 𝛽1𝐹𝑎𝑤𝑛𝐶 ∗ 𝑋𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛+ 𝛽2𝐹𝑎𝑤𝑛𝐶 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒

+ 𝛽3𝐹𝑎𝑤𝑛𝐶 ∗ 𝑋𝑐𝑜𝑦𝑜𝑡𝑒∗𝑢𝑟𝑏𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
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We calculated a county-level recruitment parameter (𝜌𝑐) for use in our projection matrix as the 

ratio of fawn to doe counts: 

 

𝜌𝑐 = 𝜆𝑓𝑐/𝜆𝑑𝑐 

 

Since fawns are bedded and not likely to be detected during the first month of life, this measure 

also represents true “recruits” (i.e., those fawns that were born and survived the risky first month 

of life).  

 

Model fitting: We fit our models in JAGS (Plummer 2003) via the runjags (Denwood 2016) 

interface in R (Version 3.4.0, R Development Core Team 2008) via R Studio (Version 1.0.143, 

Rstudio Team 2015). We ran three chains, using trace plots to determine an adequate burn-in 

phase and subsequently running chains until the Brooks–Gelman–Rubin convergence diagnostic 

indicated adequate convergence (R-hat<1.1; Gelman et al. 2014). All models achieved adequate 

convergence by running for 200,000 iterations following a burn-in phase of 5000 iterations.  

Methods for assessing goodness-of-fit for integrated population models have not been 

established, so we assessed the fit of each submodel separately using posterior-predictive checks 

(PPC) (Schaub and Abadi 2011).  We calculated a Freeman-Tukey statistic from observed data 

𝑇𝑦 and from data simulated assuming a given submodel was the data-generating model (𝑇𝑦_𝑠𝑖𝑚). 

We calculated a Bayesian P-value as: 

 

𝑃𝐵 = Pr (𝑇𝑦𝑠𝑖𝑚
> 𝑇𝑦) 
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from posterior simulations and assumed adequate fit if 0.1 < PB < 0.9.  For buck initial 

abundance, our PPC critical values were assessed based on expected and observed individual 

encounter frequencies at each detector.  These critical values have been assessed by other authors 

and found to be meaningful for SCR models (Royle et al. 2013).  For initial fawn and doe 

abundance, our PPC critical values were assessed based on expected and observed trap 

frequencies on each occasion, analogous to SCR. 

 

Results: 

All models fit well with Bayesian p values 0.1 < p < 0.9 except the doe and fawn initial 

abundance models for which p=0, indicating poor model fit. This is not surprising given the large 

camera spacing relative to the expected sigmas, especially for fawns.  Our simulations indicated 

that we could expect a 26% positive bias on our fawn abundance estimates using the Chandler-

Royle method due to large camera spacing. To account for this, we added a 26% lower bound to 

our estimate of uncertainty for initial fawn abundance in the fawn abundance submodel.  

Density, survival, fecundity and recruitment estimates generally aligned well with other studies 

of deer and coyotes in urban/suburban/exurban areas, although recruitment tended to be high 

(Table 4).  Our estimate of doe annual survival was similar to estimates from a recent telemetry 

study in Cumberland County, NC, however fawn 1-month survival was high (Table 3; Chitwood 

et al. 2015a; Chitwood et al. 2015b). 
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Submodel results 

Initial abundance and covariate relationships 

Over 1101 trap nights at 55 camera sites over four counties, we detected coyotes on the camera 

traps 53 times and estimated average coyote density in 2017 to be 1.01 (95% CI: 0.43, 2.55) 

individuals/km2. Our models estimated a positive but weak relationship between coyote density 

and urbanization (Table 6). We captured bucks 351 times, does 535 times and fawns 108 times 

on our cameras.  We identified 61 individual bucks an average of 1.8 times (SE=0.17) each. 

Estimated population sizes for bucks, does and fawns in 2017 were 7687 (95% CI: 2035, 19880), 

4056 (95% CI: 1979, 11860) and 5080 (95% CI: 1549, 14070), respectively, corresponding to 

densities of 2.56 (95% CI: 0.68, 6.63), 1.35 (95% CI: 0.67, 3.95) and 1.69 (95% CI: 0.52, 4.69) 

individuals/km2.  The estimated total deer density in our study area was 5.61 (95% CI: 1.85, 

15.27) individuals/km2. 

 

Survival, recruitment and covariate relationships 

Survival and recruitment for both sexes and stages of white-tailed deer were significantly 

associated with both the percent of developed land (i.e., urbanization) and coyote density, and 

their relationship with coyote density varied with urbanization (Table 6).  Estimates were 

generally highest in areas of high urbanization or showed a positive relationship with coyote 

density in areas of high urbanization (Figure 15). We found that annual survival for all stages 

and sexes had a positive or neutral relationship with coyote density in areas of high urbanization, 

a neutral or negative relationship with coyote density at medium levels of urbanization and a 

consistent negative relationship at low levels of urbanization (Figure 15).  Fecundity had a 

negative relationship with coyote density at high and medium levels of urbanization with a 
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neutral relationship at low levels of urbanization (Figure 15). Recruitment and fawn first month 

survival were positively associated with coyote density at low levels of urbanization and showed 

a negative or neutral association at high levels of urbanization (Figure 15).  Recruitment 

estimates were significantly higher compared to a model with parameter-sharing that assumed 

equal detection probability of does and fawns in the hunter observation data (Table 7). 

 

Integration test 

Abundance estimates from our model without parameter-sharing tended to be higher and more 

uncertain than parameter-sharing estimates, but 95% credible intervals from both models 

overlapped substantially (Table 8).  Estimates for shared parameters (fawn 1-month survival, 

fecundity and recruitment) were more precise or equally precise when estimated within a 

parameter-sharing framework than when they were estimated separately, without parameter 

sharing (Figure 16).  However, the adult survival parameters were more precise when the stage-

at-harvest data were analyzed separately, without sharing the fecundity and fawn 1-month 

survival parameters with their respective data likelihoods (Figure 16).  This is most likely a result 

of the annual survival model being overfit when run separately, so that distinguishing between 

fecundity, fawn 1-month survival and annual survival becomes impossible without additional 

data, resulting in overly precise and potentially biased estimates (Hooten and Hefley 2019). 

 

10-year projection 

We used different levels of urbanization and coyote density to predict new recruitment and 

survival rates, then projected the deer population forward 10 years.  Assuming compensatory 

immigration/emigration and homogenous adult harvest rates at 50% (juveniles 14%), we found 
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that the population projections declined at all levels of urbanization and coyote density.  

Increases in net immigration of 1000 adult males and females per year stabilized the population 

and 1500 adult males and female net yearly immigration resulted in an increasing population 

(Figure 17).  Likewise, decreases in average harvest rate from 50% to 5% stabilized the 

population, and harvest rates of 2% resulted in an increasing population, assuming compensatory 

immigration and emigration (Figure 18). Regardless of the trajectory, relative changes in 

abundance over time showed significantly lower deer abundance in areas of low urbanization 

compared to high (i.e., ≥90%) and medium (i.e., ≥49%) levels, except where coyote densities 

are high (i.e., ≥2.7 coyotes/km2). Where coyote densities are high, our model predicted that deer 

abundance in areas of low urbanization would be significantly lower than areas of high 

urbanization, but statistically similar to areas of medium urbanization (Figure 19). We used 

USGS landcover projections (Sohl et al. 2018) to predict what we might expect for the deer 

population in our study area given projected increases in urbanization over the next 10 years.  

The USGS predicts that the average amount of developed land in a 1km radius in our study area 

will increase by 11% from 2017 to 2026 (Sohl et al. 2018).  In response to that increase, we 

predicted an increase in coyote density of 1% over the same period.  Projections of the deer 

population into the future based on those predicted increases showed trends consistent with what 

we would predict for a medium-development, medium-coyote density area (Figures 17, 18).  

 

Discussion: 

Our model differs from many other recent IPMs in that we used predominantly “low quality” 

datasets (i.e., harvest and count data) that are not considered as robust as capture-recapture, 

telemetry or distance-sampling data in estimating population parameters. Nevertheless, harvest 



91 

 

 

and count datasets are often the only datasets available for large-scale management of species in 

the United States and we are not the first to use them within an IPM framework.  Indeed, past 

studies have shown good success using harvest and count data within an IPM, in terms of 

estimates aligning with those from more robust datasets (e.g., Fieberg et al. 2010).  To our 

knowledge, however, this is the first published application of an IPM to white-tailed deer. Our 

estimates of abundance, survival and recruitment, when compared to other studies of white-tailed 

deer population metrics in developed areas using more robust datasets, were generally similar, 

falling within or overlapping the ranges estimated by other studies.  Indeed, when we compared 

our estimates of doe annual survival to a recent telemetry study in Cumberland County, NC 

(Chitwood et al. 2015a), we found good agreement, showing how commonly collected data 

requiring less effort can yield similar results. However, our estimate of fawn 1-month survival in 

Cumberland County, NC was significantly higher than estimates from a recent telemetry study in 

the same county (Chitwood et al. 2015b).  It’s possible that the broad scale covariates we used to 

predict fawn 1-month survival were not sufficient to capture variation in this metric over space, 

lead to an overestimate of fawn 1- month survival.  However, it’s also possible that the habitat 

(e.g., low nutritional value and extensive edge, ideal for coyote hunting behavior) of our 

comparison study site contributed to increased predation and starvation rates over what is found 

in the rest of the county (Ncwrc 2018). 

 

Benefits and drawbacks of using an IPM for white-tailed deer management 

We show that integration of harvest, count and capture-recapture datasets can not only provide 

similar results to more robust datasets, but can be more precise and potentially provide less 

biased estimates than if any of those were used on their own (Maunder and Piner 2017; Saunders 
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et al. 2019).  For example, our recruitment estimates tended to be higher than comparable 

studies, including estimates from the NCWRC.  This is most likely because we corrected for 

differences in detection probability in our fawn and doe counts where other studies did not.  Our 

estimates of detection probability were higher for does than fawns, as is expected based on fawn 

small body size and cryptic coloration, resulting in significantly higher recruitment estimates 

than if detection probability had been assumed equal. This shows how leveraging the parameter-

sharing ability of an integrated population model can improve estimates by adding additional 

data to estimate each parameter, giving critical insights important to management.   

When abundance, survival and recruitment are estimated separately and means used to 

populate a projection matrix, there is no formal way to account for estimate uncertainty 

(variances and covariances) and so population abundances and changes over time will appear 

overly precise.  This is especially problematic for cases where a management decision could be 

made with a narrowed view of potential outcomes. By using an integrated population model, all 

sources of uncertainty arising from each component dataset are adequately included (Schaub and 

Abadi 2011), giving a more realistic accounting of possible projection outcomes.   

Integrated population models can offer potential solutions to problems of difficult to 

estimate quantities.  Using stage-at-harvest data to estimate survival and fecundity 

simultaneously resulted in overparameterization (i.e., not enough data to estimate both; Hooten 

and Hefley 2019). This likely contributed to the high precision in our survival estimates for our 

model without parameter sharing.  By using an integrated population model, we were able to 

combine harvest data with hunter observations and fawn decoy experiments to provide more 

information to estimate fecundity, which allowed our stage-at-harvest model to estimate annual 

survival with a more realistic measure of uncertainty.  
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Although integrated population models offer a flexible framework to combine many 

disparate datasets of different spatial and temporal scales, if integrated data sources conflict (i.e., 

show different trends or give wildly different estimates) population inference may be misleading.  

This is particularly problematic when there is feedback between the demographic processes, 

common with parameter-sharing models (Saunders et al. 2019).  The integrated population 

modelling framework can be leveraged to address these issues of conflicting data, but the 

problem must first be recognized.  Another drawback of integrated population models is that 

they are complex and can be difficult to fit.  They may require more computation time than 

running each model component separately.  Given enough data, the simple approach might 

provide the required answers just as well as a fully integrated approach for less time and 

computational effort. 

 

Urbanization mediates how deer survival and recruitment are related to coyote density 

Past studies have suggested that coyotes play an important role in regulating prey species in 

urban/suburban habitats where hunting is prohibited (Jones et al. 2016).  We found that deer 

survival and recruitment rates were significantly related to coyote density and the relationship 

depended on the amount of urban development. This supports our hypothesis that the deer 

population would respond to changes in coyote density, but that the effect would vary with 

urbanization.  Our survival and recruitment estimates were generally highest in areas of high 

urbanization, supporting our prediction that the effect of coyotes would be lowest where urban 

landcover was highest.  This is likely due to highly productive habitats with low predation rates, 

consistent with other studies of deer in urban areas (Denicola et al. 2008). Although recruitment 

and fawn survival through the first month of life were significantly lower at low levels of 
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urbanization, they showed a positive, though highly uncertain, relationship with coyote density.  

This suggests a saturating effect wherein, at a certain point at low urbanization, more coyotes do 

not necessarily equate to higher predation rates on fawns (Solomon 1949). We also noted a 

significant negative relationship between fecundity and coyote density at high levels of 

urbanization. This could be due to deer being more stressed at high housing densities, increasing 

vigilance rates and decreasing feeding rates, which is compounded in the presence of a high 

concentration of coyotes (e.g., Boonstra et al. 1998).  This result requires more study and would 

benefit from the addition of direct fecundity data to interpret.  

 

Dynamics between coyotes and deer are more complicated than simply “more coyotes=fewer 

deer” 

High coyote densities (i.e., 2.7 coyotes/km2) are predicted to decrease deer abundance at low 

(i.e., 10%) and medium (i.e., 49%) levels of urbanization. However, at high levels of 

urbanization, our projections suggest that a high coyote density will have less effect on deer 

abundance.  This supports our prediction that the relationship between coyote density and deer 

abundance is mediated by urbanization and shows that the predation dynamics between coyotes 

and deer are more complicated than simply “more coyotes=fewer deer”, consistent with a 

“predation paradox” in urban areas.  For example, although coyote density may be high, 

predation rates on deer could be low due to predator saturation or if coyotes are exploiting other 

concentrated urban food sources (i.e., abundant rodents/lagomorphs, pets, other anthropogenic 

food sources) (Poessel et al. 2017).  The complex relationship between these two species and 

humans deserves more research to better predict population dynamics and mitigate associated 

human-wildlife conflict. Furthermore, our projections assume that the relationship between 
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coyotes and urbanization will be the same in 2026 as it was in 2017.  Increasingly, studies are 

considering the concept of non-stationarity when estimating relationships in time and space (e.g., 

Miller 2012; Pease et al. In Prep).  As coyotes adapt more to suburban landscapes (Bateman and 

Fleming 2012) we might expect larger increases in density and levels of predation, leading to 

consequences we are unable to predict.  

 

Model assumptions and limitations 

Our modeling results are conditional on a number of assumptions: 1) we assumed density-

independence, 2) we assumed all does bred at the same rate each year 3) we assumed the amount 

of urban landcover was the only driver of deer and coyote populations 4) we assumed 

compensatory immigration and emigration and 5) we assumed harvest rates were constant across 

counties and years.  We believe density dependence is not a critical factor driving deer 

population dynamics in our study given that even at densities far exceeding our estimates (e.g., 

25-60 deer/km2), density-dependence has been difficult to confirm in deer populations (Deyoung 

et al. 2008).  However, the addition of density-dependence into IPMs is an area of active 

research (Schaub and Abadi 2011) and will be key to improving the applicability of this 

modeling technique for urban wildlife populations.  We assumed that all does bred at the same 

rate each year which is reasonable for highly productive habitats like urban areas (e.g., Denicola 

et al. 2008), however studies have shown that yearling does tend to be less productive than older 

does (e.g., Fortin et al. 2015) which could have biased our fecundity estimates high. To isolate 

our inference to the effect of urbanization, we did not consider other factors that could influence 

coyote and deer populations which could have oversimplified our inference. For example, forest 

cover and hunting rates are important predictors of coyote and deer occupancy (e.g., Kays et al. 
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2016).  Although they are generally correlated with urbanization (i.e., where urban landcover is 

high, forest cover and hunting rates are low), they could induce additive effects which, when 

ignored, produce homogenous estimates of abundance and/or bias estimates low. 

Our assumptions of compensatory immigration/emigration and homogenous harvest rates 

across counties and years are key drivers of abundance projection trends. By increasing either net 

immigration or decreasing harvest rates, our projections change from decreasing to stabilizing to 

increasing.  These two factors are critical to providing realistic population projections yet are 

notoriously difficult to estimate.  Absent direct data on harvest rates, we inferred them from our 

initial abundance estimates and harvest counts and assumed they were constant over time and 

space which is unrealistic given known heterogeneity in harvest regulations and hunter 

population size (Winkler and Warnke 2013).  Furthermore, our homogenous harvest rates were 

high and resulted in declining projections.  True mean heterogenous harvest rates are likely 

substantially lower since ~24% of land in our study area prohibits hunting.  A lower mean 

harvest rate would result in a stable or growing population, which better reflects what is already 

known about deer populations in our study area (Bragina et al. 2019; Ncwrc 2019). 

In addition to the population model itself, each submodel has its own assumptions, which, 

when violated, can affect estimates of shared parameters and parameters not directly informed by 

data (Riecke et al. 2019).  Key assumptions of our submodels were 1) demographic closure 2) 

1:1 fawn sex ratio at birth 3) harvest reporting rates were 100%.  Our capture-recapture and 

initial abundance counts spanned six months through the rut period when males are especially 

mobile, making it likely that dispersal and long-distance movements took place during our study.  

Although these scenarios violate the closure assumption, estimators remain unbiased if 

movements in and out of the study area are completely random (Kendall 1999). If movements 
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are not random, our abundance estimates could be biased high. Although studies have shown 

variability in the sex ratio of fawns based on doe age (Verme 1983), on average across the 

populations, the sex ratio of produced fawns should be balanced (e.g., Ebersole et al. 2007; 

Denicola et al. 2008).  Harvest reporting rates are an important source of error in stage-at-harvest 

models that we ignored due to a lack of data to estimate these rates.  This could have resulted in 

actual harvest rates being higher than the harvest counts indicated, which would result in our 

annual survival and fecundity estimates being biased high.  

 

Future directions 

There are a number of pieces of data that would help improve our model for management 

purposes.  First, other important landscape factors should be added as predictors (e.g., the 

amount of agricultural land, hunting, road density) to improve estimates of coyote density and 

deer survival, recruitment and abundance.  Second, explicit data on fecundity, age distribution 

and harvest reporting rates would help better parameterize our annual survival model.  Third,  

harvest rates are known to vary spatially and temporally (Norton et al. 2012) and estimates can 

have considerable influence on abundance projections (Collier and Krementz 2007) thus, 

heterogeneity in harvest over space and time should be explicitly modeled to provide more 

realistic abundance projections.  Fourth, data on immigration and emigration rates should be 

explicitly modeled, or estimates used from the literature, to allow some level of net immigration.  

Fifth, more robust initial abundance and survival data would be beneficial, especially for fawns 

where capture-recapture is possible with a targeted sampling design (e.g., Chandler et al. 2018).  

Finally, a more explicit estimation of transient behavior could be incorporated into the model 

using Pollock’s robust design to relax the assumption of closure in initial abundance estimates. 
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Conclusions 

Several recent studies have looked at the link between coyote predation and deer vital rates in the 

Southeast (e.g., Kilgo et al. 2012; Chitwood et al. 2015a; Bragina et al. 2019), concluding that 

large-scale coyote effects on prey in the region remain small.  However, as urbanization in the 

region increases and coyotes respond positively, there is potential for coyote predation to affect 

deer abundance, even in suburban areas.  Since the effect of predation on prey populations can 

vary due to a number of factors (e.g., land cover, density, hunting, other mortality factors), 

simply monitoring trends in coyote and deer abundance over time may not be enough to predict 

long-term effects, especially under changing conditions.  There is a consensus that coyotes could 

have an impact in the future (Bragina et al. 2019) and a model-based approach that considers all 

of these factors can help managers understand how best and when to adapt harvest regulations in 

the face of growing coyote populations.  White-tailed deer are one of the most data-rich species 

in the world, with wildlife agencies throughout the region collecting harvest data, observational 

data, fecundity data, camera-trap data and age distribution data regularly.  Recently developed 

tools such as integrated population models provide a framework through which we can leverage 

and use these disparate datasets, providing the potential for a more detailed understanding of 

population dynamics to better address the complex questions facing wildlife managers in a 

rapidly changing world. 
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Figure 12: A map of camera locations in central North Carolina, located over four counties with 

three major cities.  Cameras were set by citizen scientists and run from July-December 2017. 
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Figure 13: White-tailed deer life cycle diagram highlighting the data sources used to estimate 

each element for a population of white-tailed deer across four counties in North Carolina.  Initial 

abundance for adults of each sex and fawns were estimated using citizen-science camera 

trapping (orange highlight).  Annual survival of adults and fawns and fecundity were estimated 

using harvest data (blue highlight).  Recruitment was estimated using hunter observations of does 

and fawns and fawn decoy experiments (green highlight) which allowed us to correct fecundity 

estimates from harvest data (blue highlight) to account for survival over the risky first month of 

life.  Those fawns born that survived the risky first month of life were considered recruited into 

the population. Recruitment from hunter observations was further corrected for detection 

probability differences using initial abundance estimates (orange highlight). 
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Figure 14: Model structure and integration for white-tailed deer across four counties in North Carolina. Initial abundance estimates for 

each sex and stage were estimated from camera trap data from July-December 2017. The core of the model is a Lefkovich projection 

matrix with two sexes and two stages (fawn and adult), survival parameters for each sex/stage and a recruitment parameter. Annual 

survival (𝜔) and fecundity (𝛾) were modeled from stage-at-harvest data collected between September-January over six years (2012-

2017).  The survival of fawns in the first month of life (𝜔𝐽𝑚) was estimated using fawn decoy experiments from predation and was 

shared with the annual survival model. The recruitment parameter (𝜌) was modeled as the ratio of fawn:doe counts from hunter 

observation data, incorporating both fecundity (𝛾), survival of fawns in the first month of life (𝜔𝐽𝑚) and an estimate of detection 

probability informed by initial abundance estimates (black arrows).  
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Figure 15: Relationships between deer vital rates and coyote density across three levels of 

urbanization. Predictions apply to four counties of central North Carolina in 2017 at high (80%), 

medium (40%) and low (10%) levels of anthropogenic development.  Lines are posterior means 

and shading shows 95% credible intervals. Recruitment represents the number of fawns 

produced by a doe that survive the first month of life.  All vital rates except doe annual survival 

and fecundity were lowest at low levels of urbanization and highest at high levels of 

urbanization.  Annual survival had a negative relationship with coyote density in rural areas but a 

positive or neutral relationship at higher levels of urbanization.  However, fawn survival through 

the first month showed the opposite relationship, being positively associated with coyote density 

in rural areas.  Recruitment and fecundity also had a positive or neutral relationship with coyote 

density at low and a negative relationship with coyote density at high levels or urbanization. 
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Figure 16: Parameter estimates for a white-tailed deer population in four counties of central 

North Carolina in 2017.  Estimates are compared between an integrated population model with 

parameter sharing between submodels with three submodels estimating annual survival and 

fecundity, fawn 1-month survival and recruitment, respectively.  This is compared to estimates 

where submodels were run separately and without parameter sharing. 
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Figure 17: Abundance projections for a white-tailed deer population in four counties of central 

North Carolina from 2017-2026 using actual landcover projections from the USGS Sohl et al. 

(2018).  Colors show how different levels of net immigration (number of adult males and 

females entering the population each year) change projections from declining, to stable, to 

increasing given homogenous harvest rates. We predicted expected coyote density changes based 

on an estimated relationship between coyotes and urbanization. We then used predicted 

covariates to predict survival and recruitment each year.  We used survival and recruitment 

estimates to populate a stage (fawn, adult) and sex-based Lefkovich matrix for each year of 

projection. We then multiplied initial abundance estimates through the matrix to generate 

population projections for each year. 
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Figure 18: Abundance projections for a white-tailed deer population in four counties of central 

North Carolina from 2017-2026 using actual landcover projections from the USGS Sohl et al. 

(2018).  Colors show how different levels of harvest (percent of population harvested each year) 

change projections from declining, to stable, to increasing given compensatory immigration and 

emigration. We predicted expected coyote density changes based on an estimated relationship 

between coyotes and urbanization. We then used predicted covariates to predict survival and 

recruitment each year.  We used survival and recruitment estimates to populate a stage (fawn, 

adult) and sex-based Lefkovich matrix for each year of projection. We then multiplied initial 

abundance estimates through the matrix to generate population projections for each year. 
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Figure 19: Abundance projections for a white-tailed deer population in four counties of central 

North Carolina.  Survival and recruitment rates were modeled as functions of the amount of local 

anthropogenic development and coyote density.  Beta coefficients were used to predict vital rates 

at three categorical levels of each covariate under three scenarios of net immigration (0, 1000 

and 1500 adult males and females/year) with harvest rates held at 50%.  Low, medium and high 

levels of development correspond to 10, 49 and 90% respectively.  Low, medium and high levels 

of coyote density correspond to 0.03, 1.18 and 2.7 coyotes/km2 respectively.  Predicted survival 

and recruitment were used to project abundance forward 10 years by multiplying the initial stage 

and sex-specific abundances through the projection matrix.   
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Table 4: Comparisons of our density, survival and recruitment estimates for white-tailed deer to previous studies.  We focused on 

studies that used robust methods (i.e., capture recapture, telemetry, distance sampling) and were conducted in urban, suburban or 

exurban study sites. 

Parameter Estimate Study Location 

Doe annual probability of survival 0.73 (0.70, 0.77) This study Raleigh, NC 

Doe annual probability of survival 0.65 (0.49, 0.79) (Ebersole et al. 2007) Cecil Co., MD 

Doe annual probability of survival 0.80 (0.52, 1.00) (Witham and Jones 1992) Chicago, IL 

Doe annual probability of survival 0.82 (0.70, 0.96) (Etter et al. 2002) Chicago, IL 

Doe annual probability of survival 0.86 (0.59, 0.97) (Clevinger 2017) Bloomington, IN 

Buck annual probability of survival 0.83 (0.82, 0.85) This study Raleigh, NC 

Buck annual probability of survival 0.76 (0.42, 0.87) (Witham and Jones 1992) Chicago, IL 

Buck annual probability of survival 0.83 (0.63, 1.00) (Etter et al. 2002) Chicago, IL 

Buck annual probability of survival 0.70 (0.31, 0.93) (Clevinger 2017) Bloomington, IN 

Buck annual probability of survival 0.72 (0.30, 1.00) (Mcdonald Jr et al. 2011) Carlisle, MA 

Coyote density (individuals/km2) 1.01 (0.43, 2.55) This study Raleigh, NC 

Coyote density (individuals/km2) 2 (1.6, 3.0) (Fedriani et al. 2001) Santa Monica, CA 
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Table 4 (continued) 

Coyote density (individuals/km2) 1.4 (0.4, 3.5) (Gehrt et al. 2011a) Chicago, IL 

Coyote density (individuals/km2) 1.38 (0.82, 1.94) (Lombardi et al. 2017b) Nacogdoches, TX 

Deer density (individuals/km2) 14.47 (4.80, 39.40) This study Raleigh, NC 

Deer density (individuals/km2) 12 (2.93, 23.33) NCWRC Raleigh, NC 

Deer density (individuals/km2) 23 (14, 40) (Williams et al. 2008) N. Branford, CT 

Deer density (individuals/km2) 22 (13, 39) (Urbanek et al. 2012) Chicago, IL 

Deer density (individuals/km2) 11.2 (8.6, 14.7) (Otto 2014) Oxford, OH 

Deer density (individuals/km2) 4.2 (3.21, 5.51) (Kilheffer 2014) Syracuse, NY 

Fawn annual probability of survival 0.80 (0.67, 0.86) This study Raleigh, NC 

Fawn annual probability of survival 0.87 (0.66, 1.00) (Grund 2011) Bloomington, MN 

Fawn annual probability of survival 0.85 (0.72, 1.00) (Etter et al. 2002) Chicago, IL 

Fawn annual probability of survival 0.94 (0.13, 1.00) (Piccolo et al. 2010) Chicago, IL 

Fawn annual probability of survival 0.76 (0.64, 0.90) (Kennedy 2015) Cleveland, OH 

Fawn first month probability of survival 0.69 (0.68, 0.69) This study Raleigh, NC 

Fawn first month probability of survival 0.56 (0.48, 0.64) (Saalfeld and Ditchkoff 2007) Auburn, AL 



109 

 

 

Table 4 (continued) 

Fawn first month probability of survival 0.95 (0.91, 0.99) (Kennedy 2015) Cleveland, OH 

Fawn first month probability of survival 0.40 (0.22, 0.58)  (Chitwood et al. 2015b) Fort Bragg, NC 

Recruitment (number of fetuses/doe) 1.78 (1.38, 2.00) This study Raleigh, NC 

Recruitment (number of fetuses/doe) 1.57 (1.20, 1.85) (Denicola et al. 2008) Iowa City, IA 

Recruitment (number of fetuses/doe) 1.63 (1.38, 1.79) (Ebersole et al. 2007) Cecil Co., MD 

Recruitment (number of fetuses/doe) 1.53 (0.5, 2.60) (Witham and Jones 1992) Chicago, IL 

Recruitment (number of fetuses/doe) 1.65 (1.52, 1.76) (Grund 2011) Bloomington, MN 

Recruitment (fawn:doe ratio) 1.21 (1.18, 1.25) This study Raleigh, NC 

Recruitment (fawn:doe ratio) 0.55 (0.34, 0.85) NCWRC Raleigh, NC 

Recruitment (fawn:doe ratio) 0.95 (0.40, 1.50) (Vercauteren and Hygnstrom 2000) 

Omaha-Bellevue, 

NE 

Recruitment (fawn:doe ratio) 0.89 (0.84,0.94) (Ebersole et al. 2007) Cecil Co., MD 

Recruitment (fawn:doe ratio) 1.00 (0.66, 1.61) (Denicola et al. 2008) Iowa City, IA 
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Table 5: Estimates of doe annual survival and fawn 1-month survival for 

Cumberland County, NC using an integrated population modelling approach with 

harvest, decoy, camera trap and hunter observation data.  Estimates are compared to 

estimates derived from telemetry data from Fort Bragg in Cumberland County 2011-

2012 (Chitwood et al. 2015a, Chitwood et al. 2015b). 

Parameter Estimate Study 

Doe annual survival 0.69 (0.61, 0.78) This study 

Doe annual survival 0.79 (0.68, 0.87) (Chitwood et al. 2015a) 

Fawn 1-month survival 0.61 (0.60, 0.62) This study 

Fawn 1-month survival 0.40 (0.22, 0.58)  (Chitwood et al. 2015b) 
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Table 6: Beta coefficient estimates for the relationship between survival and fecundity vital rates 

with the percent of developed land, coyote density and their interaction from an integrated 

population model.  Beta coefficient estimates for the relationship between the percent of 

developed land and coyote density are also shown. Quantities in parenthesis show 95% credible 

intervals. Quantities in bold are those with 95% credible intervals that do not overlap 0.  

Recruitment is modeled as the product of 2*fecundity*fawn first month survival, thus does not 

have specific beta coefficient estimates associated.   

Parameter 

% Developed in 1km 

radius 

Coyote density 

(1km) 

% Developed x 

Coyote Density 

Coyote density 0.04 (-0.18, 0.19)      

Fecundity -0.03 (-0.03, -0.03) -0.03 (-0.03, -0.03) -0.02 (-0.03, -0.01) 

Buck annual survival -0.1 (-0.32, 0.18) -0.99 (-1, -0.97) 1 (0.99, 1) 

Doe annual survival -0.63 (-0.86, -0.38) 0.05 (-0.39, 0.5) 0.36 (0.33, 0.39) 

Fawn annual survival 0.78 (0.47, 0.99) -0.94 (-0.99, -0.85) 0.52 (0.05, 0.92) 

Fawn first month survival 0.98 (0.4, 1.42) 0.26 (-0.23, 0.9) -0.19 (-0.22, -0.16) 
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Table 7: Estimates of detection probability used to correct counts from hunter observations to 

estimate recruitment (fawns/doe) within an integrated population model for white-tailed deer 

in four focal counties of North Carolina.  The resulting recruitment estimate is shown under 

the "Counts corrected" column.  This is compared to a model where doe and fawn detection 

probabilities were assumed equal (i.e., no correction of counts for detection probability: 

Counts uncorrected). 

Estimate Counts corrected Counts uncorrected 

Doe detection probability 0.45 (0.12, 0.78)   

Fawn detection probability 0.19 (0.04, 0.42)   

Recruitment (fawns:doe) 1.21 (1.18, 1.25) 1.08 (1.07, 1.09) 
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Table 8: Abundance estimates for a white-tailed deer population over four focal counties in 

North Carolina in 2017.  Estimates come from spatially explicit capture recapture (bucks) 

or spatial count (does and fawns) models using camera trap data.  Estimates are either 

generated from submodels within an integrated population model with parameter sharing or 

through separate models, without parameter sharing. 

Estimate Parameter sharing No parameter sharing 

Buck abundance 7687 (2053, 19880) 7556 (2010, 19765) 

Doe abundance 4056 (1979, 11860) 7107 (2169, 16442) 

Fawn abundance 5080 (1549, 14070) 6734 (1712, 18810) 

Total abundance 16823 (5581, 45810) 21397 (5891, 55017) 
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Appendix A: Chapter 1 supplementary information 

 

Figure A1:  Rarefaction curves estimating species richness in five development levels (urban, 

suburban, exurban, rural, wild) in two cities, Washington, DC and Raleigh, NC, USA, using 

camera traps between 2012 and 2016.  Shaded areas represent 95% confidence intervals.   
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Figure A2: Shannon diversity index estimates from camera trapping in two cities, Washington, 

DC and Raleigh, NC, USA, across five development levels (urban, suburban, exurban, rural, 

wild).  Diversity is separated by four plot types: large forest, small forest, open and residential 

yard.  Data were collected using camera traps between 2012 and 2016.  Bars show 95% 

confidence intervals.  Urban small forests were not sampled in Raleigh, open areas were not 

sampled in DC and urban/wild yards, urban open areas and urban large forests were not sampled 

in either city. 
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Figure A3:  Rarefaction curve estimating species richness in three plot types (residential yard, 

small forest, large forest) in two cities, Washington, DC and Raleigh, NC, USA, using camera 

traps between 2012 and 2016.  Shaded areas represent 95% confidence intervals.   
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Figure A4:  Occupancy estimates from single season occupancy model for four carnivore species 

(bobcat, coyote, gray fox and red fox) in five development levels (urban, suburban, exurban, 

rural, wild) in two cities, Washington, DC and Raleigh, NC, USA, using camera traps between 

2012 and 2016.  Bars represent 95% credible intervals.  Uncertainty was high with no significant 

differences between the habitats for any species. 
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Table A1: Effort expressed as camera nights with spatial replicates in parentheses for camera 

traps run in Washington, DC and Raleigh, NC from 2012-2016 between different levels along 

the urban-wild gradient around each city. 

Washington, DC 

Gradient 

Level 

Large Forest 

>10 km2 

Small Forest 

≤10 km2 

Yard Open Total 

Urban 0 (0) 430.3 (12) 0 (0) 0 (0) 430.3 (12) 

Suburban 517.4 (25) 530 (21) 109.4 (5) 0 (0) 1156.8 (51) 

Exurban 671.8 (31) 150.5 (7) 281 (14) 0 (0) 1103.3 (52) 

Rural 737.4 (35) 1699 (80) 598.3 (27) 0 (0) 3034.7 (142) 

Wild 4076 (176) 1720.6 (79) 0 (0) 0 (0) 5796.6 (255) 

Total 6002.6 (267) 4530.3 (199) 988.8 (46) 0 (0) 11521.6 (512) 

Raleigh, NC 

Suburban 105.9 (4) 3346 (152) 2981.9 (149) 1070.3 (55) 7504.2 (360) 

Exurban 251.5 (12) 2673.6 (120) 1545.9 (77) 956.1 (49) 5427.1 (258) 

Rural 603.2 (27) 1801.4 (83) 637.1 (27) 1059.9 (51) 4101.5 (188) 

Wild 987.7 (43) 1322.7 (66) 0 (0) 0 (0) 2310.3 (109) 

Total 1948.4 (86) 9143.6 (421) 5164.9 (253) 3086.3 (155) 19343.1 (915) 
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Table A2. Covariates used in the detection rate and occupancy analyses.  

Covariate Description Type Model 

City 0/1 Washington, DC or Raleigh, NC.  

Interactions between this term and all other 

covariates were tested. 

Camera 

site 

Ψ 

Large Forest % Large core (cont. forest frag >5 acre) in 

5 km radius 

GIS 5 km Ψ 

Small Tree Cover % tree cover in 100 m radius (Sexton et al. 

2013) 

GIS 100 m 
 

Housing Density Average Housing Density (houses/km2) in 

5km radius (Hammer et al. 2004) 

GIS 5 km Ψ 

Large Forest x 

Housing Density 

Interaction of large core forest and housing 

density in a 5 km radius 

Interaction Ψ 

Small Tree Cover x 

Housing Density 

Interaction of small scale (100 m) tree 

cover and housing density in a 5 km radius 

Interaction Ψ 

Rolag Rate Site-specific detection rate (count/day) of 

rodents and lagomorphs 

Camera 

site 

Ψ 

Deer Rate Site-specific detection rate (count/day) of 

white-tailed deer 

Camera 

site 

Ψ 

Hunting Categorical covariate for hunting or no 

hunting is permitted at the site (0,1) 

Camera 

site 

Ψ 

Year Year sampled Camera 

site 

Ψ 

Dog 0/1 variable representing if a dog is located 

at the site (yards only) 

Camera 

site 

Ψ 

Dog x Yard An interaction term between dog presence 

and whether or not a site is a yard 

Interaction Ψ 

Yard 0/1 variable representing if the camera was 

located inside or outside of a residential 

yard 

Camera 

site 

Ψ, p 

NDVI Moderate Resolution Imaging 

Spectroradiometer Land Terra Vegetation 

Indices 1 km monthly NDVI (Dodge et al. 

2013) 

Camera 

site/Day 

p 

Temperature ECMWF Interim Full Daily SFC Temp 

(2m above ground) (Dodge et al. 2013) 

Camera 

site/Day 

p 

Camera (Raleigh) 0/1 variable representing the type of 

camera used (0=Bushnell, 1=Reconyx) 

Camera 

site 

p 

Detection distance Maximum distance at which camera 

detects animals (m) 

Camera 

site 

p 
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Table A3: Results of goodness-of-fit tests for occupancy and 

Poisson count models assessed by posterior predictive check with 

adequate fit if 0.1 < pB < 0.9. 

Species Occupancy Count Model 

Bobcat 0.32 0.28 

Coyote 0.24 0.5 

Gray Fox 0.26 0.34 

Red Fox 0.30 0.5 
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Table A4:  Results of Poisson regression for single species using camera trapping over 

two cities between 2012-2016. Posterior mean and posterior standard deviation for each 

predictor are shown with bold entries indicating predictors with 95% credible intervals 

that did not overlap zero.  Predictors in bold were used for modeling occupancy for that 

species.  Housing density was used as a predictor in all occupancy models, regardless of 

whether it was significant in the preliminary count analysis. 

Covariate Bobcat Coyote Gray Fox Red Fox 

Intercept -12.31(2.14) -7.61(0.88) -10.08(1.63) -4.14(0.64) 

Hunting -1.09(0.83) 1.43(0.4) -1.54(1.31) 0.35(0.33) 

Yard -3.03(3.92) 0.24(1.09) -2.8(3.2) 1.54(0.65) 

Dog 3.45(4.11) -0.37(1.44) 7.71(3.27) 0.32(1.18) 

Year -0.85(0.53) -0.57(0.24) 0.71(0.75) 0.26(0.19) 

Forest 1.34(1.13) 0.88(0.33) 1.27(0.92) -0.68(0.29) 

Housing Density -2.85(2.93) 1.26(0.53) 1.69(0.77) 0.6(0.49) 

Large Forest x  

Housing Density 1.32(1.26) 0.81(0.31) 0.97(0.35) 0.39(0.29) 

Rolag Rate -2.64(4.13) -1.99(2.69) -1.23(5.16) 3.16(1.95) 

Deer Rate -2.17(1.92) -2.3(1.47) -2.47(1.51) -2.25(1.2) 

Small Tree Cover -0.05(1.12) -0.06(0.37) -0.68(0.69) -0.09(0.26) 

Housing Density 

x Small Tree 

Cover 1.09(1.33) 0.37(0.22) 0.12(0.22) -0.1(0.14) 

Yard*Dog 1.04(2.07) 0.66(0.71) -0.28(0.69) -1.21(0.87) 

City 2.27(1.76) 2.23(0.86) 4.27(1.62) -3.9(0.7) 

City x Hunting 2.78(1.16) -0.45(0.49) 1.9(1.39) -0.66(0.67) 

City x Yard 1.82(3.89) -1.37(1.16) 2.88(3.22) -0.19(0.79) 

City x Dog -3.3(4.09) 0.24(1.39) -7.24(3.24) 0.94(1) 

City x Year 0.77(0.68) 0.64(0.28) -1.48(0.77) -0.03(0.3) 

City x Large 

Forest -2.67(1.02) -0.56(0.38) -0.71(0.96) 1.12(0.54) 

City x Housing 

Density -0.42(2.61) -0.95(0.57) 0.02(0.78) 0.06(0.75) 

City x Rolag Rate 2.61(4.15) 2.13(2.69) 1.4(5.16) -3.06(1.95) 

City x Deer Rate 5.34(5.48) 11.63(2.59) 9.22(3.21) 1.3(4.9) 

City x Small Tree 

Cover 0.68(0.83) 0.16(0.38) 0.38(0.71) 0.11(0.33) 
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Table A5: Beta coefficients and 95% credible intervals (parentheses) for an occupancy 

model based on camera trapping data in Washington, DC, USA and Raleigh, NC, USA from 

2012-2016.  Those coefficients with 95% CIs not overlapping zero are shown in bold. 

 
Bobcat Coyote Gray Fox Red Fox 

Intercept 1.1 (-1.5, 4.5) -1.3 (-2.8, 0.1) -1.2 (-2.7, 0.2) -1.3 (-2.8, 0.2) 

Housing Density -1.8 (-5.4, 1.4) -0.1 (-1, 0.8) 1 (0.2, 1.8) 0.2 (-0.7, 1) 

Large Forest 0.6 (-1.7, 3.3) 0.3 (-0.2, 0.9) 0.4 (-0.1, 0.9) 0.5 (0, 1) 

Housing Density x 

Large Forest 

-0.4 (-3.4, 1.9) -0.1 (-0.6, 0.4) 0.6 (0.1, 1) 0.1 (-0.3, 0.6) 

Hunting 0.4 (-2.3, 3.7) 0.1 (-0.5, 0.7) -0.4 (-1.1, 0.2) 0.6 (0.1, 1.2) 

Yard 0.7 (-2.4, 4.1) -0.7 (-2.2, 0.8) 0.2 (-1.3, 1.6) 0.4 (-1.1, 1.8) 

Dog -0.8 (-3.9, 2) -0.8 (-3, 1.2) 0.3 (-1.6, 2.2) -0.1 (-2, 1.9) 

Rolag Rate -0.2 (-3.8, 3.5) -0.9 (-4, 1.9) -0.4 (-2.7, 2.3) -1.9 (-5.9, 0.7) 

Deer Rate -0.7 (-2.9, 1.5) -0.2 (-0.6, 0.1) -0.1 (-0.4, 0.3) 0 (-0.4, 0.3) 

Year 0.2 (-3.4, 3.8) 0.5 (-0.2, 1.3) 0.4 (-0.1, 0.9) 0.2 (-0.3, 0.8) 

Dog*Yard 0.5 (-2.8, 4.2) 0.5 (-0.7, 1.7) -0.7 (-1.6, 0.3) 0.3 (-1, 1.6) 

Small Tree Cover -1.4 (-4.5, 1.1) 0.2 (-0.3, 0.8) 0.4 (-0.2, 1.1) -0.1 (-0.6, 0.4) 

Housing Density x 

Small Tree Cover 

0 (-2.9, 2.7) 0.1 (-0.2, 0.4) -0.2 (-0.4, 0.1) 0.1 (-0.1, 0.4) 

City 0.9 (-1.7, 3.9) 0.4 (-0.4, 1.3) 0.6 (-0.2, 1.4) -0.4 (-1.2, 0.4) 

City x Large Forest -0.1 (-2.9, 2.5) 0.1 (-0.6, 0.8) 0.2 (-0.5, 0.8) -0.7 (-1.3, 0) 

City x Hunting -0.8 (-4.4, 2.7) -0.1 (-1, 0.8) 0.4 (-0.5, 1.2) 0 (-0.9, 0.9) 

City x Year 0.1 (-2.9, 3.8) 0.3 (-0.2, 0.8) -0.1 (-0.6, 0.3) 0.1 (-0.4, 0.5) 

City x Deer Rate 0 (-3.7, 3.5) -0.3 (-3.6, 2.9) 1 (-1.8, 4.1) -1.2 (-5.1, 2) 

City x Dog 0.2 (-3.1, 3.8) -0.1 (-1.5, 1.3) 0.1 (-1.2, 1.5) -1.4 (-2.7, -0.2) 

City x Housing 

Density 

0.6 (-2.5, 3.9) 0.7 (-0.3, 1.7) 0.4 (-0.5, 1.3) -0.5 (-1.4, 0.4) 

City x Yard -0.8 (-3.8, 2.2) 0.8 (-1.2, 3) -0.3 (-2.2, 1.5) 0 (-2, 1.9) 

City x Rolag Rate -1.1 (-4.5, 1.7) 0 (-0.6, 0.6) -0.1 (-0.8, 0.6) 0 (-0.5, 0.5) 

City x Small Tree 

Cover 

-0.1 (-3.8, 3.6) 0 (-1.9, 2) 1.2 (-0.7, 3.2) -0.2 (-2.5, 1.8) 
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Table A6: Results of a Poisson regression to determine differences in detection rate between 

the wild gradient level (reference level) and all other levels of the development gradient 

(above dotted line).  Also presented are results of a separate Poisson regression to determine 

differences in detection rate between yards and all other plot types. Significant results (95% 

CIs not overlapping zero) are in bold.     

Washington, DC 

Predictor Mean SD 2.5% 97.5% 

Intercept -0.07 0.06 -0.18 0.06 

Rural 0.25 0.1 0.06 0.45 

Exurban 0.51 0.13 0.25 0.77 

Suburban 0.69 0.13 0.44 0.96 

Urban 0.72 0.27 0.16 1.22 

Intercept 0.54 0.15 0.26 0.83 

Large Forest -0.46 0.17 -0.77 -0.13 

Small Forest -0.42 0.17 -0.77 -0.11 

Raleigh, NC 

Intercept -0.51 0.13 -0.77 -0.28 

Rural 0.15 0.17 -0.18 0.46 

Exurban 0.32 0.16 0.02 0.67 

Suburban 0.07 0.15 -0.21 0.34 

Intercept -0.37 0.09 -0.56 -0.2 

Large Forest 0.05 0.17 -0.3 0.35 

Small Forest 0.15 0.12 -0.09 0.38 

Open -0.42 0.15 -0.68 -0.13 
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Appendix B: Calculating goodness of fit statistics 

 

Pearson residuals 

The squared Pearson residual is defined as: 

𝑟𝑃
2 =

(𝑦 − 𝜇)2

𝑉(𝜇)
 

where 𝑦 is an observed response variable, 𝐸(𝑌) = 𝜇, and 𝑉(𝜇) is the variance function 

(Mccullagh and Nelder 1989, equation 2.11). 

 

Occupancy Models 

Occupancy models (sensu Mackenzie et al. 2017) are defined by the following joint distribution 

of 𝑧, the partially observed latent state, and 𝑦, detection / non-detections of the underlying state: 

 

𝑧~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) 

𝑦~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑝) 

 

This can alternatively be written as: 

𝑓(𝑧, 𝑦) = 𝜓𝑧(1 − 𝜓)1−𝑧(𝑧𝑝)𝑦(1 − 𝑧𝑝)1−𝑦 

Since we only fully observe 𝑦, we marginalize over 𝑧 to obtain the distribution of 𝑦: 

𝑓(𝑦) = 𝜓𝑝𝑦(1 − 𝑝)1−𝑦 + (1 − 𝜓)0𝑦 

To calculate squared Pearson's residuals, we first obtain 𝐸(𝑦) as: 

𝐸(𝑌) = ∑ 𝑦𝑓(𝑦)

𝑦

 

= 𝜓𝑝 
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To obtain 𝑉(𝜇), we first obtain the variance of 𝑦 as: 

𝑉𝑎𝑟(𝑌) = 𝐸(𝑌2) − 𝐸(𝑌)2 

= ∑ 𝑦2𝑓(𝑦) − (𝜓𝑝)2

𝑦

 

= 𝜓𝑝 − (𝜓𝑝)2 

= 𝜓𝑝(1 − 𝜓𝑝) 

 

Since 𝐸(𝑌) = 𝜇 = 𝜓𝑝, 𝑉(𝜇) = 𝜇(1 − 𝜇) = 𝜓𝑝(1 − 𝜓𝑝) we can now write a squared Pearson's 

residual as: 

𝑟𝑃
2 =

(𝑦 − 𝜓𝑝)2

𝜓𝑝(1 − 𝜓𝑝)
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Appendix C: Chapter 2 supplementary information 

 

Figure C1:  Marginal occupancy plots for each species along a gradient of housing density, 

percent forest cover in a 5km radius and 100m radius taken from camera traps run between 2012 

and 2016 in Washington, DC and Raleigh, NC, USA. Lines show posterior means and shaded 

regions are 95% credible intervals. 
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Figure C2:  A comparison of log odds ratios (i.e., the increase in log odds of occurrence of 

species 1 when species 2 is present) taken from camera traps run between 2012 and 2016 in 

Washington, DC and Raleigh, NC, USA.  RF is red fox, GF is grey fox, C is coyote and B is 

bobcat.  All pairwise comparisons are conditioned on all other species to be absent.  Bars 

represent 95% CI.  The ratios trended negative for most species pairs except coyote and red fox 

and grey fox respectively, indicating trends towards avoidance between most species.  Grey fox 

interactions with bobcat were significant and negative in both cities. 
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Table C1: Camera effort in terms of camera nights for camera traps run in 

Washington, DC and Raleigh, NC in each year from 2012-2016. 

Washington, DC 

Year Months Total Camera Nights 

Number of Camera 

Sites 

2012 July-November 2975 139 

2013 March-November 3253 137 

2014 April-December 1293 61 

2015 March-November 3364 153 

2016 April-June 206 10 

Raleigh, NC 

2012 January-July 998 69 

2013 February-December 2673 116 

2014 January-December 5177 237 

2015 January-December 4062 188 

2016 January-September 3346 150 
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Table C2: Effort in terms of camera nights for camera traps run in Washington, DC 

and Raleigh, NC from 2012-2016 between different habitat types along the 

urbanization gradient around each city. 

Habitat Large Forest >1km2 Small Forest ≤1km2 Yard Total 

Washington, DC 

Suburban 517.42 529.97 109.41 1156.8 

Exurban 671.78 150.48 281.01 1103.27 

Rural 737.36 1698.95 598.34 3034.65 

Wild 4076.02 1720.62 0.00 5796.63 

Total 6002.58 4530.29 988.76 11521.63 

Raleigh, NC 

Suburban 105.94 3345.99 2981.9 6433.83 

Exurban 251.54 2673.56 1545.9 4471.01 

Rural 603.21 1801.37 637.06 3041.65 

Wild 987.69 1322.65 0.00 2310.34 

Total 1948.39 9143.58 5164.86 16256.82 
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Table C3: Covariates used in the occupancy analyses.  Each occupancy covariate is 

categorized according to our main hypotheses. 

Hypothesis Covariate Description 

Forest fragmentation Forest5 % tree cover in 5km radius3 

Forest fragmentation Forest100 % tree cover in 100m radius3 

Humans Hunt Hunting permitted at the site (0=No,1=Yes) 

 Year Year sampled 

Humans Dog Dog is located at the site (0=No,1=Yes), yards 

only 

Humans Yard Site is a yard (0=No,1=Yes) 

Humans HDens Average Housing Density (houses/km2) in 5km 

radius2 

Forest fragmentation 

and Humans 

Forest5* HDens Interaction term between large forest patches and 

housing density 

Forest fragmentation 

and Humans 

Forest100* 

HDens 

Interaction term between local tree cover and 

housing density 

Prey Rolag Detection rate (count/day) of rodents and 

lagomorphs 

Prey Deer Detection rate (count/day) of white-tailed deer 

 City 0/1 Washington, DC or Raleigh, NC 
 

NDVI Moderate Resolution Imaging Spectroradiometer 

Land Terra Vegetation Indices 1km monthly 

NDVI daily1 
 

Temp ECMWF Interim Full Daily SFC Temp (2m 

above ground)1  
Camera 

(Raleigh) 

Camera type (0=Bushnell, 1=Reconyx) 

 
Det_dist Maximum distance at which camera detects a 

human (m) 

1 EnvData (Dodge et al. 2013) 
 

2 Landscape and Urban Planning 69 (2004) 183-199 (Hammer et al. 2004) 

(http://silvis.forest.wisc.edu/old/Library/HousingData.php) 

3 Percent Tree Cover, Global Forest Change Dataset (Hansen et al. 2013) 
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Table C4: Model selection results for a multi-species occupancy analysis from camera traps 

run in Washington, DC and Raleigh, NC from 2012-2016.   All no-interaction models set 

pairwise interaction components to zero (i.e., effectively removed second order models).  

Global models refer to those where all covariates in Table 1 were included.   

Single Species Models Pairwise Models Hypothesis WAIC 

Delta 

WAIC 

Global  Global  Interactions Global 9865.9 0.0 

Global  

HDens+Forest5+Forest

100+HDens*Forest5+ 

HDens*Forest100 

Interactions, Humans 

and Forest 

Fragmentation 9869.9 4.0 

Global  

HDens+Yard+Dog+ 

Rolag+ 

Deer+Hunt+Yard*Dog 

Interactions, Humans 

and Prey 9880.4 14.5 

Global  Rolag+Deer   Interactions and Prey 9884.7 18.8 

Global  Forest5+Forest100 

Interactions and Forest 

Fragmentation 9892.9 27.0 

Global  

HDens+Yard+Dog+ 

Yard*Dog 

Interactions and 

Humans 9893.9 28.0 

Global  

Global: Bobcat*Gray 

fox, all others 0 

One pairwise 

interaction 9895.3 29.4 

Global  

Global: 

Bobcat*Coyote, all 

others 0 

One pairwise 

interaction 9901.1 35.2 

Global 1 

Unmediated 

Interactions 9903.4 37.5 

Global  

Global: Bobcat*Red 

fox, all others 0 

One pairwise 

interaction 9912.1 46.2 

Global  

Global: Coyote*Red 

fox, all others 0 

One pairwise 

interaction 9921.0 55.1 

Global  0 No interactions 9923.6 57.6 

Global  

Global: Gray fox*Red 

fox, all others 0 

One pairwise 

interaction 9925.8 59.9 

Global  

Global: Coyote*Gray 

fox, all others 0 

One pairwise 

interaction 9930.2 64.2 

HDens+Yard+Dog+ 

Rolag+Deer+Hunt+ 

Yard*Dog 0 

Humans and Prey 

without Interactions 9934.0 68.1 
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Table C4 (continued) 

HDens+Yard+Dog+R

olag+Deer+Hunt+ 

Yard*Dog 1 

Humans and Prey with 

Unmediated 

Interactions 9934.1 68.2 

HDens+Yard+Dog+ 

Yard*Dog 0 

Humans without 

Interactions 9941.9 76.0 

HDens+Yard+Dog+ 

Yard*Dog 1 

Humans with 

Unmediated 

Interactions 9943.2 77.3 

HDens+Forest5+ 

Forest100+ 

HDens*Forest5+ 

HDens*Forest100 1 

Forest and Humans 

with Unmediated 

Interactions 9952.0 86.0 

HDens+Forest5+ 

Forest100+ 

HDens*Forest5+ 

HDens*Forest100 0 

Forest and Humans 

without Interactions 9958.8 92.9 

Forest5+Forest100 1 

Forest with 

Unmediated 

Interactions 9964.0 98.1 

Forest5+Forest100 0 

Forest without 

interactions 9969.0 103.1 

Rolag+Deer   1 

Prey with Unmediated 

Interactions 9991.0 125.1 

Rolag+Deer   0 

Prey without 

Interactions 9992.5 126.6 

1 0 Null model 10128.5 262.6 
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Table C5: Average detection rate (count/day) for four competing carnivore species from 

camera traps run in Washington, DC and Raleigh, NC from 2012-2016 between green 

space and yards in suburban, exurban and rural habitats.  Standard error is shown in 

parentheses.  Bobcat and coyote detection rates were higher in green space in suburban 

and exurban habitats, and higher in yards in rural habitats.  All species except bobcat had 

higher detection rates in suburban green space compared to wild green space. 

  Suburban Exurban Rural Wild 

Species 

Green 

Space Yard 

Green 

Space Yard 

Green 

Space Yard 

Green 

Space 

Bobcat 

0.02 

(0.01) 

0.00 

(0.00) 

0.02 

(0.01) 

0.00 

(0.00) 

0.03 

(0.01) 

0.06 

(0.03) 

0.06 

(0.01) 

Coyote 

0.41 

(0.09) 

0.05 

(0.03) 

0.65 

(0.13) 

0.26 

(0.10) 

0.23 

(0.08) 

0.31 

(0.11) 

0.25 

(0.04) 

Grey Fox 

0.74 

(0.16) 

1.53 

(0.63) 

1.00 

(0.32) 

1.26 

(0.62) 

0.28 

(0.07) 

0.61 

(0.33) 

0.04 

(0.02) 

Red Fox 

0.51 

(0.16) 

0.21 

(0.13) 

0.30 

(0.09) 

0.64 

(0.21) 

0.36 

(0.08) 

1.02 

(0.31) 

0.24 

(0.04) 
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Table C6: Coefficient directions for predictors in the second-best occupancy model based 

on camera trapping data in Washington, DC and Raleigh, NC from 2012-2016.  Blank 

spaces indicate 95% credible intervals overlapped 0, while (+) or (-) indicates the 

direction of coefficients.  The left four columns show first order occupancy models while 

the six columns to the right show second order models.  Greyed areas were not included 

in the second order models. B indicates Bobcat, C coyote, GF grey fox and RF red fox.  

Slope coefficients associated with first order models are interpreted assuming all other 

species are absent, while coefficients associated with second order models are interpreted 

for the two species occurring together and all other species absent. 

Covariate Bobcat Coyote 
Grey 

Fox 

Red 

Fox 

B* 

C 

B* 

GF 

B* 

RF 

C* 

GF 

C* 

RF 

GF* 

RF 

Intercept  - -  
 -    - 

Hdens    
 

  
    

Forest5    
 

  
    

Forest100           

Hdens*Forest5    
 

  +    

Hdens*Forest100    
   

    

City  + +    -    

City*Hdens           

City*Forest5   
 

   
    

City*Forest100           

Hunt  +  
 

  
    

Yard    +   
    

Dog    
 

  
    

Rolag  
 

  
  

    

Deer   
  

  
    

Year   
  

  
    

Dog*Yard   
 

   
    

City*Hunt           

City*Year           

City*Deer           

City*Dog           

City*Yard           

City*Rolag           
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Table C7: ORsp associated with the presence of absence of species 2 on the 

occupancy of species 1 and ORh associated with the change in covariates of 0.5 units 

based on camera trapping data in Washington, DC and Raleigh, NC from 2012-

2016.  All covariates were centered and scaled for easy comparison. B is bobcat, C 

coyote, GF grey fox and RF red fox.  For ORh, the occupancy of species 1 is 

conditioned on the absence of species 2 and all other species. 

Species ORsp ORh City 

  
Housing Density 

5km 

Forest 

5km 
Forest 100m  

B*C 0.35 0.60 1.56 3.13 DC 

B*GF 0.16 0.61 1.59 3.28 DC 

B*RF 1.17 0.65 1.56 3.72 DC 

C*B 0.35 0.86 0.99 0.94 DC 

C*GF 1.38 1.01 0.94 0.90 DC 

C*RF 1.17 0.98 0.97 0.88 DC 

GF*B 0.16 0.83 0.91 0.87 DC 

GF*C 1.38 1.20 0.89 0.83 DC 

GF*RF 0.27 1.24 0.86 0.89 DC 

RF*B 1.17 1.32 1.04 1.33 DC 

RF*C 1.17 1.04 1.08 1.20 DC 

RF*GF 0.27 1.06 1.02 1.33 DC 

B*C 0.34 0.19 1.59 5.88 Raleigh 

B*GF 0.05 0.26 1.90 5.89 Raleigh 

B*RF 0.25 0.23 2.19 5.91 Raleigh 

C*B 0.34 0.71 0.69 1.10 Raleigh 

C*GF 2.03 1.53 0.77 1.04 Raleigh 

C*RF 2.11 1.67 0.66 1.08 Raleigh 

GF*B 0.05 1.31 0.80 1.06 Raleigh 

GF*C 2.03 2.49 0.93 0.98 Raleigh 

GF*RF 0.46 2.75 0.80 1.10 Raleigh 

RF*B 0.25 0.78 1.05 1.09 Raleigh 

RF*C 2.11 2.08 0.91 1.02 Raleigh 

RF*GF 0.46 1.85 1.33 1.56 Raleigh 
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Appendix D: Chapter 3 supplementary materials 

 

Figure D1: The change in the average proportion of gray fox detections within each of four time 

periods (0:00-6:00, 6:00-12:00, 12:00-18:00, 18:00-24:00) as housing density increases in the 

presence and absence of coyotes. Data are taken from camera locations in Raleigh, NC, USA 

from 2012-2016.  Gray foxes were more diurnal at high housing densities in the presence of 

coyotes and more nocturnal in the absence of coyotes. 
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Table D1: Camera effort in terms of camera nights for camera traps run in 

Raleigh, NC in each year from 2012-2016. 

Year Months Total Camera Nights 

Number of Camera 

Sites 

2012 January-July 998 69 

2013 February-December 2673 116 

2014 January-December 5177 237 

2015 January-December 4062 188 

2016 January-September 3346 150 
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Table D2: Effort in terms of camera nights for camera traps run in Raleigh, NC from 2012-

2016 between different habitat types along the urbanization gradient around each city. 

Habitat Large Forest >1km2 Small Forest 

≤1km2 

Open Yard Total 

Suburban 105.94 3345.99 1070.32 2981.90 6433.83 

Exurban 251.54 2673.56 956.15 1545.90 4471.01 

Rural 603.21 1801.37 1059.90 637.06 3041.65 

Wild 987.69 1322.65 0.00 0.00 2310.34 

Total 1948.39 9143.58 3086.37 5164.86 16256.82 
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Table D3: Covariates used in the occupancy analyses.  Each covariate is categorized by 

whether it was used in the spatial model, temporal model or both. 

Interaction 

Type 

Covariate Description Type Model 

Spatial Forest5 % tree cover in 5km radius1 GIS 5km ψ 

Spatial Forest5* HDens Interaction term between 

large forest patches and 

housing density 

Interaction ψ 

Spatial and 

Temporal 

Forest100 % tree cover in 100m radius1 GIS 100m ψ, p 

Spatial and 

Temporal 

HDens Average Housing Density 

(houses/km2) in 5km radius2 

GIS 5km ψ, p 

Spatial and 

Temporal 

Forest100* 

HDens 

Interaction term between 

local tree cover and housing 

density 

Interaction Ψ, p 

Temporal Det_dist Maximum distance at which 

camera detects a human (m) 

Camera site p 

Temporal Precip ECMWF Interim Full Daily 

Total Precipitation (mm) 

Temporal 

and camera 

site 

p 

Temporal Time since last 

coyote detection  

The length of time since the 

last detection of a coyote at a 

given site (hours) 

Temporal 

and camera 

site 

p 

Temporal Activity pattern  Fourier series basis function Temporal 

and camera 

site 

p 

Temporal Latent coyote 

occupancy 

Model-estimated latent 

indicator of whether coyote 

occupied the site or not 

Camera site p 

Temporal Activity 

pattern*Latent 

coyote occupancy  

Interaction Temporal 

and camera 

site 

p 

1. Percent Tree Cover, Global Forest Change Dataset (Hansen et al. 2013) 

2. Landscape and Urban Planning 69 (2004) 183-199 (Hammer et al. 2004) 

3. EnvData (Dodge et al. 2013) 

    

 


