
ABSTRACT

COOK, JARED ANDREW. Surrogate Model Construction, Data Assimilation, and
Data-Driven Equation Learning to Enable Nonproliferation Capabilities. (Under the
direction of Ralph C. Smith).

This dissertation presents techniques for surrogate and reduced-order model con-

struction applied to the field of nuclear nonproliferation. Specifically, we are concerned

with the problem of locating a source of radiation in an urban environment using a dis-

tributed detector network. We approach this problem by employing Bayesian inference

techniques; specifically, we consider sequential Monte Carlo and Markov chain Monte

Carlo (MCMC) techniques. We model the detector responses to a source by employing a

1/distance2 model, a ray-tracing model, and a high-fidelity nuclear transport package. We

employ experimental data with the 1/distance2 detector model to test a sequential Monte

Carlo algorithm within an open field geometry with low-level sources. We also simulate

detector measurements using the latter two methods to test a MCMC algorithm within

a simulated geometry derived from two real city blocks.

Particle filtering is a sequential Monte Carlo method that recent research has shown to

have convergence in distribution under certain assumptions. However, some applications

of particle filtering methods, such as radiation source localization problems, can be shown

to have an extended convergence. We prove the theoretical convergence of the posterior

and its approximation by the particle filtering algorithm to the true Dirac distribution

characterizing the source location using properties of the detector measurements. We

then design a Sampling Importance Resampling (SIR) particle filter to locate a radiation

source using a network of sensors and numerically assess the effectiveness of this particle

filter by applying it to experimental open-field data sets from Intelligent Radiation Sensor

Systems (IRSS) tests.

Surrogate models are increasingly required for applications in which first-principles

simulation models are prohibitively expensive to employ for uncertainty analysis, design,

or control. They can also be used to approximate models whose discontinuous derivatives

preclude the use of gradient-based optimization or data assimilation algorithms. We con-

sider the problem of inferring the 2-D location and intensity of a radiation source in an

urban environment using a ray-tracing model based on Boltzmann transport theory. The

resulting likelihood exhibits discontinuous derivatives due to the presence of buildings.



To address these issues and to motivate extension to spatially 3-D high-fidelity models,

we discuss the construction of accurate and efficient surrogate models for optimization,

Bayesian inference, and uncertainty propagation. We then employ both Delayed Rejec-

tion Adaptive Metropolis (DRAM), a Markov chain Monte Carlo (MCMC) algorithm,

and the SIR particle filter to infer the location and intensity of an unknown source.

These inference results yield a posterior probability distribution for the source’s location

conditioned on the observed detector count rates.

Additionally, we employ the Monte Carlo N-Particle (MCNP) code to provide high-

fidelity simulations of radiation transport within a 3-D urban domain. Because MCNP

simulations are computationally expensive, we employ surrogate models to approximate

the detector responses. We again employ DRAM to infer the location and intensity of an

unknown source. The posterior distribution exhibits regions of high and low probability

within the simulated environment identifying potential source locations. In this manner,

we can quantify the source location to within one of these regions of high probability in

the considered cases.

Lastly, we investigate the use of data-driven modeling techniques to predict isotope

concentrations within a sample of radioactive material as it undergoes radioactive de-

cay. We describe the sparse identification of nonlinear dynamics (SINDy) algorithm and

employ it to infer the decay dynamics for two test cases where we consider samples of

cesium-137 and radon-222. This work motivates future work on inferring concentrations

of isotopes in irradiated samples within a nuclear reactor.
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Chapter 1

Introduction

Uncertainty quantification (UQ) is increasingly employed in physical and biological ap-

plications to understand the degree to which mathematical and statistical models can be

trusted and to provide predictions with quantified and reduced uncertainties. Surrogate

modeling focuses on the accurate and efficient approximation of high-fidelity, black-box,

and legacy models and has garnered significant attention due to the need to approximate

model parameters and quantify uncertainty for complex simulation codes. A Bayesian

framework of uncertainty quantification, which we employ throughout this investigation,

often requires thousands of model evaluations, so the approximation of these complex

mathematical and statistical models via surrogate modeling is a critical area of research.

Within this Bayesian framework, the model parameters are assumed to be random vari-

ables having associated densities rather than fixed, unknown values as with a frequentist

framework. By sampling from these parameter distributions and propagating these un-

certainties through models, we can construct prediction intervals for statistical quantities

of interest (QoI).

Surrogate modeling is often a critical initial step in solving inverse problems and for

quantifying the propagated uncertainty in that approximation. This is especially true in

the application of nuclear engineering, where high-fidelity nuclear transport codes are

utilized for numerous applications. These codes are often legacy, black-box codes that

are maintained and experimentally validated by national labs and nuclear engineering

corporations. Because of the computational expense of these codes and the occasional

inaccessibility of source codes, surrogate modeling is necessary for Bayesian inference and

uncertainty quantification.
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National nuclear security research has devoted significant attention to the accurate

and efficient determination of the location of radioactive materials out of regulatory con-

trol. This problem is especially important in urban environments, which are particularly

susceptible to threats due to high population densities. One strategy is to deploy a net-

work of detectors, which count ionizing gamma particles that reach their location. The

resulting problem is to locate a radioactive source in a complicated domain using this

noisy detector data. This requires modeling the paths of the gammas and is often solved

by employing the Boltzmann transport equation to determine the origination location.

Two standard methods for numerically solving the Boltzmann transport equation are: (1)

solve for the explicit, deterministic solution, and (2) solve the implicit, stochastic solution

using Monte Carlo simulations of many particle histories, each of which will be discussed

in Chapter 2. However, both of these methods for solving the radiation transport problem

are computationally expensive.

In this dissertation, we consider this source localization problem as a parameter es-

timation [52, 60, 85] or inverse problem [34]. The objective is to reconstruct the inputs

of the problem by comparing a model with a set of outputs or observations. To collect

observations, detector networks monitor radiation within an environment. The detectors

record counts, which result from background as well as any nearby source of radiation.

Given a set of observations from a detector network, our objective is to reconstruct the

input — i.e., source location and intensity — that generated those readings. Whereas

there is significant research in the area of radiation source detection [5, 52] and identifica-

tion [60, 63], in this dissertation we assume that a source is present within the considered

domain and we focus on the radiation source localization problem. To simulate the de-

tector observations, we employ limited, spatially two-dimensional experimental data, a

simplified, spatially two-dimensional ray-tracing model, and high-fidelity, spatially three-

dimensional Monte Carlo simulations using Monte Carlo N-Particle (MCNP) software.

Performing a physical experiment with a radiation source in an urban environment

to collect experimental data is typically infeasible. The experimental data employed in

this dissertation was obtained for a homogenous domain [54]. However, experiments have

been performed that have incorporated attenuating material within the domain [29].

More often, detector count rate data is simulated and a common model is a 1/distance2

detector count rate model [29, 44, 52]. We introduce this model in Chapter 2, employ it in

Chapter 3, and extend it to develop a ray-tracing model in Chapter 5. This 1/distance2
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model neglects particle scattering – i.e., uncollided flux – within the domain, but the

MCNP software package provides a detector model that additionally considers particles

that have scattered before reaching the detector location. We employ this high-fidelity

MCNP detector model in Chapter 6.

Several aspects of source localization are computationally difficult. First, the prop-

erties of the source may not yield unique observations. A stronger source may yield

comparable detector readings to a weaker source, depending on the location and types

of obstacles occluding the path between the source and detector. Secondly, the physical

process of measuring radiation from a source is random in nature, where the expected

number of counts from the detector satisfies a Poisson distribution. To address the first

issue, we consider the convex hull of the detector network and, when necessary, assume

that the source is within this convex hull. To address the second issue, we implement

a Bayesian approach, which accounts for the inherent uncertainty within the problem

[31]. Uncertainty arises in part due to the presence of background radiation in the envi-

ronment which must be accurately incorporated to distinguish it from radiation caused

by an unknown source. Prior work has inferred background radiation simultaneously

with the source location and intensity [64]. The difficulties are compounded when the

signal-to-background radiation ratios are low, as is often the case.

Within this Bayesian approach, we treat the source location and intensity as random

variables instead of unknown fixed values. This approach differs from other source local-

ization methods, such as multilateration [44, 72], – introduced in Chapter 2 – which can

be highly sensitive to the uncertainty in the input. We employ sequential Monte Carlo

(SMC) and Markov chain Monte Carlo (MCMC) methods to solve this inverse problem

in the presence of uncertainty. Specifically, we utilize particle filtering and the Delayed

Rejection Adaptive Metropolis (DRAM) algorithm to infer the unknown posterior distri-

butions of the source location and intensity. These techniques require thousands of model

evaluations, which is infeasible for the majority of the high-fidelity radiation transport

models commonly used by nuclear engineers. For this reason it is necessary to develop

accurate surrogate models that are efficient to evaluate.

Additionally, radiation transport models used to solve the source localization prob-

lem, such as the ray-tracing model outlined in Chapter 5, often exhibit discontinuous

derivatives due to the buildings in the geometry that block radiation paths to detectors.

Therefore, gradient-based optimization and sensitivity analysis are not directly applica-
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ble. To avoid similar difficulties in various models, studies have employed differentiable

surrogate models for applications in reactor simulations [81], hydrology [77], and for use

in general optimization strategies [3, 18, 28] and optimal design [48, 68]. Given that the

surrogate models are approximations of the high-fidelity model, iterative optimization

and model refinement schemes have been suggested to ensure the solution to the opti-

mization problem is an optima of the high-fidelity model [25, 40]. The surrogate models

we employ approximate the detector response provided by the high-fidelity model effi-

ciently, making them suitable for inverse methods for source localization, experimental

design, and uncertainty propagation. In addition to being efficient, the surrogates pro-

vide the added benefit of being continuously differentiable, which makes them suitable

for gradient-based optimization algorithms.

Prior work in the field has focused on locating a source by fusing detector data

while attempting to account for noise in the detector readings and uncertainties in the

background estimates [5, 53, 60]. Researchers have also focused on simultaneously de-

creasing the number of detectors required for localization, increasing the accuracy of the

source location estimate, and increasing the efficiency of the algorithm for real-time use

[8, 10, 35, 48].

In prior work, we employed a spatially two-dimensional ray-tracing algorithm to model

detector responses to a radiation source in a simulated city block [69]. We used the open

source code gefry to solve for the detector responses within this test environment [32].

Whereas this algorithm is based on Boltzmann transport theory, scattering is neglected

to significantly improve the efficiency. We show in Chapter 5 and in [65] that despite

these simplifying assumptions, the code can resolve source locations to within meters for

the considered geometry and background levels. To solve the source localization problem,

we employ a particle filtering algorithm outlined in Chapter 3 and the DRAM algorithm

[27] which is outlined in Appendix A.

We performed preliminary research regarding the use of Monte Carlo simulations [24]

to generate measurement data for nine point detectors in three dimensions with scat-

tering in an extremely simplified geometry detailed in [33]. In Chapter 6, we provide

details on the Monte Carlo algorithm MCNP that was employed in this preliminary in-

vestigation. A Monte Carlo simulation was run once to generate synthetic measurements,

and calibration was then performed against the calculated detector responses using the

ray-tracing model detailed in Chapter 5. In this geometry, four rectangular prisms in a
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2 × 2 layout were considered in a 100 m × 100 m domain, each adjusted to have wall

thicknesses of 0.5 meters of concrete. Employing the ray-tracing model for the source

localization problem for a 662 keV source placed 1 meter above the ground, we were

able to localize the source to within 5 meters. This level of accuracy is sufficient in this

large-space source search problem. However, it required several CPU hours of computa-

tion to generate one set of detector measurements employing MCNP code [24, 33]. For a

realistic three-dimensional geometry, such as a three-dimensional version of the geometry

depicted in Figure 5.1, thousands of CPU hours would be required to solve the source

localization problem using only Monte Carlo simulations. This preliminary investigation

motivated the investigation of the surrogate modeling techniques detailed in Chapter 4.

Lastly, we investigate data-driven equation learning techniques to enable nonprolif-

eration capabilities. Specifically, we employ data-driven learning techniques to approx-

imate the dynamics of radioactive decay. We plan to extend this initial study of ra-

dioactive decay dynamics to learning nuclear irradiation dynamics. This is an important

study to nuclear nonproliferation safeguards, as much of nuclear reactor design is pro-

prietary. Therefore, assessing the composition of samples of nuclear material following

irradiation is important to safeguarding those materials and preventing their diversion.

Data-driven equation learning, specifically the sparse identification of nonlinear dynamics

(SINDy) [6] and the data-driven discovery of partial differential equations (PDE-FIND)

[62] algorithms, has garnered a large amount of attention from researchers in the field

[7, 41, 43, 45, 83]. We employ the SINDy algorithm to learn the system of ordinary

differential equations describing the dynamics of radioactive decay. We use this as a pre-

liminary study for using the SINDy algorithm to learn more complex dynamics, such as

the dynamics of nuclear irradiation.

The remainder of this dissertation is organized as follows. In Chapter 2, we provide

relevant background material on Bayesian inference, surrogate modeling, and nuclear en-

gineering. We provide a complete descriptioin of the DRAM algorithm that we employ

for source localization in Appendix A. In Chapter 3, we employ a simple radiation trans-

port model with particle filtering, a sequential Monte Carlo method, to solve a radiation

source localization problem with experimental data in a two-dimensional open-field test

environment. We additionally prove that the posterior approximated using the parti-

cle filtering method converges to the true source location. In Chapter 4, we introduce

and assess the accuracy and efficiency of the surrogate modeling techniques we employ
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throughout much of this dissertation. We then extend the simple radiation transport

model outlined in Chapter 3 by introducing a ray-tracing model in Chapter 5. We ap-

proximate this model using the surrogate modeling techniques from Chapter 4 to solve

the source localization problem in a more complex two-dimensional urban domain us-

ing Bayesian inference techniques – DRAM as well as the particle filtering method from

Chapter 3. In Chapter 6, we introduce a three-dimensional simulated domain and employ

Monte Carlo N-Particle (MCNP) simulations to construct surrogate models that we sub-

sequently use to solve the source localization problem with Bayesian inference methods.

In Chapter 7, we introduce data-driven equation learning techniques that we employ for

learning the underlying dynamics of radioactive decay. Future work includes extending

this preliminary research to predict concentrations of radioactive materials within a sam-

ple while it is irradiated within a nuclear reactor. Finally, we present conclusions and

future directions in Chapter 8.

The primary contributions of this work are:

• Comparison of surrogate modeling techniques to approximate nuclear transport

models,

• Application and comparison of SMC and MCMC inference results for an urban

radiation source search problem,

• Application of surrogate modeling techniques to high-fidelity nuclear transport

codes for the purpose of Bayesian parameter estimation using a MCMC technique,

and

• Data-driven equation learning of radioactive decay dynamics to enable nuclear non-

proliferation.
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Chapter 2

Background Material

2.1 Mathematics and Statistics

Bayesian statistical analysis is a powerful tool that is increasingly employed in applica-

tions that have inherent uncertainties associated with the measurement processes. Within

a Bayesian framework, we take model inputs or parameters to be random variables with

associated probability density functions (PDFs). Herein we denote the vector of input

parameters by q. This is contrasted with frequentist techniques, where the inputs of a

model are treated as fixed, deterministic values to be estimated. When solving inverse

problems, employing a Bayesian framework also allows us to directly obtain uncertainty

estimates for the model parameters from their distributions, whereas estimators must be

employed to obtain uncertainty estimatess in a frequentist approach. Treating the input

parameters q of a model u as random variables allows us to easily propagate uncertainty

through the model to obtain uncertainty bounds on the model output or quantities of

interest (QoI).

As discussed in Chapter 1, Bayesian statistical analysis requires many model eval-

uations, which motivates the construction of efficient surrogate models uN(q) to ap-

proximate the high-fidelity model u(q). Following the upfront expense of evaluating the

high-fidelity model to obtain training and testing data for surrogate model construction,

the surrogate models can be efficiently employed to perform Bayesian inference. In this

section, we present the general framework for Bayesian inference and surrogate modeling.
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2.1.1 Bayesian Inference

The goal of Bayesian inference is to estimate the distribution, called the posterior dis-

tribution, of the input parameter random variables Q given measurement data and a

mathematical model. We employ the statistical observation model

Y = u(Q) + ε, (2.1)

where Y is the random measurement process, u is the mathematical model, and ε is

random measurement error. A common assumption is that the measurement errors are

normally distributed ε ∼ N (0, σ2) with some fixed error variance σ2 as well as indepen-

dent and identically distributed (iid). We denote realizations of the random variables Y

and Q by y and q respectively, where y ∈ Rd and q ∈ Rp; i.e., there are d measurements

and p parameters. To compute the posterior distribution π(q|y) of the parameters q, we

employ Bayes’ relation

π(q|y) =
π(y|q)π0(q)∫

Rp π(y|q)π0(q)dq
∝ π(y|q)π0(q), (2.2)

where π0(q) is the prior distribution for q and π(y|q) is the likelihood function. Any

a priori information known about the model parameters is incorporated in the prior and

a uniform or flat prior distribution is employed when no prior information is available.

Given the statistical model (2.1) with independent measurement errors, the likelihood

function is the Gaussian likelihood function

π(y|q) =
1

(2πσ2)d/2
e−SS(q)/2σ2

(2.3)

where

SS(q) =
d∑
i=1

[yi − ui(q)]2 (2.4)

is the sum of squares and σ2 is the measurement error variance. In much of this disser-

tation, the measurement process that generates the observations y is Poisson distributed

Y ∼ Poisson(u(Q)), as radioactive decay and detection are Poisson random processes.

However, for a large number of measurements – E[u(Q)] > 30 [39, 76]– the Poisson

distribution can be approximated by a Gaussian distribution. Calculating the posterior
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distributions analytically is typically infeasible, so we employ sampling-based methods

to estimate the posterior distribution.

In Chapter 3, we employ a sequential Monte Carlo sampling method called particle

filtering to estimate the posteriors. To do this, we reconstruct the statistical model (2.1)

such that there are separate time-dependent system and measurement processes. Given

this framework, particle filtering algorithms can be employed to perform Bayesian in-

ference. Particle filtering methods are a generalization of the Kalman filter, where the

posteriors are assumed Gaussian and the mathematical model is assumed to be linear.

Particle filters generalize Kalman filters such that nonlinear models can be employed

and non-Gaussian posteriors can be estimated. This is necessary for radiation source

localization applications where highly nonlinear problems are common and Poisson dis-

tributed processes are required. We provide details on the theory and implementation of

a sampling importance resampling (SIR) particle filtering algorithm in Chapter 3.

In Chapters 5 and 6, we employ the Delayed Rejection Adaptive Metropolis (DRAM)

algorithm outlined in Appendix A to perform Bayesian inference [27]. DRAM is a Markov

chain Monte Carlo (MCMC) algorithm that is an extension of the Metropolis algorithm,

which is also outlined in Appendix A. Specifically, a delayed rejection (DR) step and an

adaptive Metropolis component (AM) are incorporated to improve the posterior infer-

ence.

DRAM is employed to infer the posterior distribution by generating samples from

a proposal distribution, which are accepted or rejected based on the probability that

they represent a sample from the posterior distribution. A MCMC chain is created by

iterating over this process and the inferred distribution is obtained by constructing, for

example, the kernel density estimate using the MCMC chain. If a sample is rejected by

the Metropolis algorithm, the previous sample is employed for that step in the chain

and a new sample is drawn for the next step. DRAM improves the acceptance rate of

this sampling procedure by introducing a delayed rejection step. If a sample is rejected

by the DRAM algorithm, we sample another set of parameters from a tighter proposal

distribution and compare it with both the previously accepted sample and the sample that

was rejected. Additionally, the adaptive Metropolis step efficiently enables the correction

of poor initial estimates and prior distributions by updating the proposal distribution

periodically.
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2.1.2 Surrogate Modeling

Surrogate models are employed to approximate input-output behavior of complex systems

based on limited simulations [66]. In this dissertation, we investigate the construction of

surrogate models that are computationally feasible for use with high-fidelity 3-D sim-

ulation codes. Whereas there are many methods to create surrogate models, we focus

on response surface methods that treat the simulation code as a black box. We denote

the surrogate model by uN(q), and relate it to the physical model solution u(q) via the

statistical model

uN(q) = u(q) + δ. (2.5)

Here, the model discrepancy δ quantifies unresolved fine-scale behavior incorporated in

the high-fidelity model but neglected in the surrogate model.

For the majority of the surrogate modeling techniques we consider, we can formulate

the surrogate models as

uN(q, w) =
N∑
j=1

wjΨj(q) + P (q),

where w = [w1, . . . , wN ] are coefficients and Ψj(q) are the N basis functions that define

the surrogate model. The trend function P (q) quantifies global trends exhibited by the

model. To train the surrogate models, we evaluate the high-fidelity model response at

M parameter values {qm}Mm=1. We then employ these high-fidelity model evaluations

u(qm), m = 1, . . . ,M with an optimization scheme to train the surrogate model weights

{wj}Nj=1. Lastly, we test the surrogate model performance against high-fidelity model

evaluations that we obtain using S randomly distributed parameter values {qs}Ss=1. We

explore several surrogate modeling techniques as well as methods for choosing the training

points in Chapter 4.

2.2 Nuclear Engineering

This dissertation focuses on nuclear engineering applications and, more specifically, nu-

clear nonproliferation applications. In this section, we present core concepts from the

nuclear engineering field that we draw upon throughout the rest of the dissertation.
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Whereas there has been extensive work performed on these topics, we present a short

overview to provide a framework for this work.

Networks of radiation detectors are increasingly being deployed to detect and localize

sources of radiation within urban areas, for portal monitoring, at special events, and at

border crossings. Because of this, a model for processing the detector responses is required

to detect and locate a given source quickly and accurately. Arguably, one of the simplest

methods for localization is multilateration. We first introduce multilateration and show

how this technique can be used in highly simplified cases to determine the location of an

unknown source. We then consider the integral form of the Boltzmann transport equation

for neutral particles, which is obtained from conservation of mass and momentum. From

this we are able to derive the detector response function, which quantifies the expected

number of particles recorded at a given detector. A complete description of Boltzmann

transport is provided in [16] and the full derivation of the detector response function

from the Boltzmann transport equation is provided in [64]

Multilateration is a technique used in many applications including global positioning

systems (GPS) and source localization. A node with an unknown location can be located

as long as at least three nodes of known location are nonlinearly positioned. In the

context of source localization, the three nodes represent the detectors that are measuring

radiation in the environment and the node in question represents a radiation source. A

simple example of this concept is depicted in Figure 2.1(a).

We suppose that the unknown 2-D source location is (xsource, ysource) and that there

are detectors at locations (xi, yi), i = 1, 2, 3, as depicted in Figure 2.1(a). The actual

distances between the source and the detectors are given by

di =
√

(xsource − xi)2 + (ysource − yi)2, i = 1, 2, 3.

This provides three separate equations, for which both sides of each can be squared and

rearranged to obtain

x2
i + y2

i − d2
i = 2xsourcexi + 2ysourceyi − x2

source − y2
source, i = 1, 2, 3. (2.6)

This overdetermined system of equations can be solved exactly for the true source location

(xsource, ysource) if the distances di are known. However, in practice we usually do not

know these distances and instead must use information provided by the detectors to

11



Figure 2.1: Multilateration example for three detectors and one source with (a) no noise
and (b) when noise is present.

infer the source location. Furthermore, we must account for uncertainties in the detector

measurements. When these issues are accounted for, we are not able to solve exactly for

the true source location, but we are able to obtain a general area where the source may

be located, represented by the dashed circle in Figure 2.1(b). One way to account for

and estimate this uncertainty is to employ Bayesian techniques for estimating the source

location using this model, as discussed in Section 2.1.

In nuclear source localization problems, the distances di, i = 1, 2, 3 between the

source and detectors are unknown since the source location is unknown. However, we

can approximate the source location using the detector readings of the radiation from

the source as well as the known detector locations. Assuming that the environment is a

vacuum, has no background radiation, and that the source and detectors are far enough

away from each other that we can treat them as points, we can model the response of

the ith detector per unit time to a source at location (xsource, ysource) with intensity I as

ui(xsource, ysource, I) = εi
I

4πd2
i

, i = 1, 2, 3. (2.7)

Here, we have included the detector’s intrinsic efficiency εi, which accounts for the fact

that not all of the radiation that reaches the detector from the source will be observed

by the detector. The detector’s geometric efficiency εgeo = 1/(4πd2
i ) accounts for the fact

that radiation is being given off by the source in all directions, not just in the direction of
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the detector. In other words, the geometric efficiency εgeo accounts for the solid angle of

the detector, which is the portion of a circle’s circumference (or the portion of a sphere’s

surface area in 3-D) with a center at the source location that is covered by the detector.

It is now useful to define rsource = (xsource, ysource) and ri = (xi, yi), i = 1, 2, 3, as the

2-D locations of the source and detectors. Given measurements ui(rsource, I) from three or

more detectors, we are again able to rearrange (2.7) to obtain equations for the distances

from the source to the detectors in terms of the detector measurements

di = ||ri − rsource||2 =

√
εiI

4πui
, i = 1, 2, 3.

We can compute these distances and use them to solve (2.6). Again, there is typically

a great deal of uncertainty in these measurements so we are not able to solve exactly

for the source location. Therefore, we again employ a Bayesian framework to solve this

problem so that we can infer uncertainty bounds for the estimated source location.

By multiplying the detector response model in (2.7) by the surface area Ai of the

detector, we are able to extend this model to cases where the source and detectors are

not far enough away from each other to treat them as points. Additionally, if the detectors

tally radiation counts for ∆ti units of time, – i.e., the detector has a certain dwell time

– this can be incorporated within the model as a product. Detector dwell times are the

amount of time that the detector counts radiation interactions before providing that data

to the user and are often taken to be several seconds to minutes. Background radiation

is ignored in this simple model, but should be accounted for in more complex models,

as it adds random noise to the measurements ui [64]. A further extension of this model

that will be employed in Chapter 5 is the incorporation of buildings or obstacles in the

geometry. One way to account for these buildings, which we employ in Chapter 5, is to

introduce a product term that accounts for attenuation of radiation by the buildings in

the geometry.

The radiation detector model (2.7) can also be derived from the integral form of the

Boltzmann Transport Equation (BTE) for neutral particles – particles with no electrical

charge [16, 64]. Derived from conservation of mass and momentum, the time independent
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BTE for neutral particles is given by

Ω∇̇u(r,E,Ω) + σ(r, E)u(r, E,Ω)

=

∫ ∞
0

dE ′
∫

4π

dΩ′σs(r, E
′ → E,Ω′ → Ω)u(r, E,Ω) + S(r, E,Ω).

(2.8)

Here, we solve for the particle flux u as a function of the particle’s position r = (x, y, z),

energy E, and the cosines of the particle’s direction Ω = (Ωx,Ωy,Ωz) with respect to its

position (x, y, z). The total cross-section σ(r, E) = σa(r, E) + σs(r, E) is the probability

a particle with energy E will be absorbed σa or scattered σs per unit distance traveled.

The probability of a particle scattering from incident energy and direction (E ′,Ω′) into

emergent energy and direction (dE, dΩ) about (E,Ω) per unit distance traveled is denoted

by the scattering cross-section σs(r, E
′ → E,Ω′ → Ω)dEdΩ. Particles are introduced to

the system by the source term S, which denotes the rate of particle emission from the

source.

We note that the full derivation of the detector response function from (2.8) is given

in [64, 65] and a selection of intermediate steps and assumptions are listed in Chapter 5.

The detector response function

ui(rsource, I0) = I0∆tiεi
Ai

4π||ri − rsource||22
exp

(
−
∫
rsource→ri

1

λ
dr

)
(2.9)

provides the total recorded radiation interactions within the ith detector ui at location

ri for a source at location rsource with intensity I0. Here, the path of the gammas from

the source to the detector is represented by rS → ri, which represents an arbitrary

parameterization of the curve from rS to ri; e.g., [rS → ri](τ) = rS + (ri − rS)τ where

τ ∈ [0, 1]. We note that (2.9) extends (2.7) by the addition of the multiplicative dwell

time ∆t, detector surface area Ai, and exponential attenuation term. The exponential

decay term in (2.9) accounts for attenuation of the radiation signal through non-vacuum

like conditions and is governed by the mean free path λ through the materials that the

particles must travel through to reach the detector (rsource → ri). We note here that

the total cross-section σ of the buildings in the geometry is inversely proportional to the

mean-free-path λ = 1/σ.
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We can approximate the detector response as

ûi(rsource, I0) = I0∆tiεi
Ai

4π||ri − rsource||22
exp

(
−
N∑
h=1

`h
λh

)
, i = 1, . . . , d, (2.10)

which we call the ray-tracing model. Here, we compute the lengths `h of the intersections

of a ray drawn from the source to each detector with the N buildings and we use (2.10)

to approximate the detector response. This ray-tracing model is presented in full in

Chapter 5 and is employed to construct and evaluate the performance of the surrogate

models we introduce in Chapter 4.

The intensity of the source I0 can be measured in both curies (Ci) or becquerels

(Bq), which are units of radioactivity. The becquerel is the SI unit of radioactivity and

is equivalent to disintegrations per second within the source; i.e., one becquerel is one

nucleus decay per second. A Curie (Ci) is a unit still widely used in nuclear engineering

literature and corresponds to 3.7 × 1010 disintegrations per second. We use both units

throughout this dissertation and employ the relation 1Ci = 3.7 × 1010 Bq to convert

between the two.

The radiation transport discussed in this chapter is primarily deterministic, but in

Chapter 6 we introduce a Monte Carlo radiation transport model. However, when we

employ these deterministic models, it is within a Bayesian perspective and with Bayesian

algorithms so we are able to assign uncertainties to the model predictions. The importance

of assigning uncertainties to predictions is a central point of this dissertation.

15



Chapter 3

Particle Filtering Approach to

Radiation Source Localization

The work we detail in this chapter was performed under the direction of Dr. Nageswara

Rao during an internship at Oak Ridge National Laboratory [11]. We consider in this

chapter the problem of estimating the 2-D location and intensity of an unknown ra-

dioactive source in an open-field environment given count rate measurements provided

by detectors at known locations. These networks of radiation detectors are increasingly

being employed for detecting and localizing potentially low-level radiation sources in a

variety of environments. The urgency of locating these materials quickly and accurately

necessitates an accurate model for processing the detector responses.

Particle filtering is a sequential Monte Carlo method developed for solving signal

processing problems, which involves the estimation of posterior distributions. An essential

component comprises the approximation of the internal states in dynamical systems when

partial observations are made and random perturbations are present. Random measures,

composed of point masses, or “particles”, and their associated importance weights are

used to estimate the posterior probability density function of the state, based on all

available information [2, 14].

We use sequential importance sampling and Bayesian inference to solve a radiation

source localization problem. We implement a Sampling Importance Resampling (SIR)

particle filter designed to detect and locate a radiation source using a network of detec-

tors. The Domestic Nuclear Detection Office’s (DNDO) Intelligence Radiation Sensors

Systems (IRSS) program supported the development of commercial radiation sensor net-
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works for use in detection, localization and identification of primarily low-level radiation

sources. Through this program, a range of indoor and outdoor tests were conducted using

stationary and moving sources of varying strengths and types, different background pro-

files, and varying detector layouts. From the information gathered in these tests, canonical

datasets were packaged for public release [54]. We numerically assess the effectiveness of

this particle filter by applying it to a subset of these datasets.

Lastly, we prove the theoretical convergence of the particle filtering estimate to the

state posterior probability density function (PDF). There have been many developments

in showing weak convergence in mean squared error of the empirical particle filtering

distribution toward their true values [12]. For our radiation source detection problem, we

have statistically independent measurements and a measurement process that does not

depend on the state space. These properties allow us to prove the particle filter applied to

the radiation source detection problem converges to the underlying Dirac density centered

at the true source characteristics. The assumption of the underlying distribution being a

Dirac distribution is motivated by the large size of the domain, which allows us to treat

the source as a point source.

This chapter is organized as follows. In Section 3.1, we describe the model and the

optimal filtering problem in a generic framework. In Section 3.2, we discuss the particle

filtering algorithm we employ in our analysis and in Section 3.3, we formulate the radia-

tion source localization problem. In Section 3.4, we give numerical results for the particle

filtering algorithm applied to the test data provided by the IRSS tests. In Section 3.5, we

present the convergence results for the particle filtering algorithm. This section is further

subdivided into proving that the empirical distribution converges to its true underlying

distribution and proving that the particles converge to the Dirac distribution centered

at the true source location. We note that the particle filtering algorithm outlined in this

chapter is also employed in Chapter 5 to solve a source localization problem in a 2-D

urban environment.
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3.1 Optimal Filtering

To define the optimal filtering problem, consider the unobservable state sequence within

the state space Ω and the sequence of partial or noisy measurements

{xk ∈ Ω = Rnx , k ∈ N≥0}, (3.1)

{yk ∈ Rny , k ∈ N}, (3.2)

which are Markov processes represented by the equations

xk = fk(xk−1, uk−1), (3.3)

yk = hk(xk, vk). (3.4)

Here

fk(·) : Rnx × Rnu → Rnx and

hk(·) : Rnx × Rnv → Rny

are the known, time-dependent, and possibly nonlinear system transition and measure-

ment functions. We note that uk−1 and vk are independent and identically distributed

(iid) state and measurement noise vectors of size nu and nv respectively and k is the time

index, k = 1, . . . , T .

The optimal filtering problem consists of estimating the state sequence (3.1) recur-

sively using the information provided by the observation process (3.2). In a Bayesian

setting, this process can be formalized as the computation of the filtering distribution

π(xk|y1:k), where y1:k denotes the measurements y1, . . . , yk. Here, we assume that the

prior PDF π(x0) of the state vector is available. When this is the case, the computation

of the filtering distribution can be performed recursively in two steps: prediction and

update.

In the prediction step, we assume that the filtering distribution from the previous

recursion π(xk−1|y1:k−1) = πk−1 is available, and we compute the posterior distribution

π(xk|y1:k−1) =

∫
Rnx

π(xk|xk−1)π(xk−1|y1:k−1)dxk−1. (3.5)
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The probabilistic model of the state evolution π(xk|xk−1) is defined by (3.3) and the

known state noise statistic uk−1. Next, we assume that at time k, we obtain a new

measurement yk and we employ Bayes’ relation (2.2) to compute the updated PDF

π(xk|y1:k) =
π(yk|xk)π(xk|y1:k−1)

π(yk|y1:k−1)
≡ πk. (3.6)

Here, the normalizing constant is π(yk|y1:k−1) =
∫
Rnx π(yk|xk)π(xk|y1:k−1)dxk, where the

likelihood function π(yk|xk) is defined by (3.4) and the known measurement noise statistic

vk [12].

To illustrate how the state evolution model and likelihood function are defined, con-

sider the example of Kalman filtering where we assume that the state (3.3) and measure-

ment (3.4) equations are linear

xk = Axk−1 +Buk−1,

yk = Cxk +Dvk.

Given this, we define the probabilistic state evolution and the likelihood as

π(xk|xk−1) ∼ N (Axk−1, BB
T ),

π(yk|xk) ∼ N (Cxk, DD
T ),

where A, B, C, and D are matrices of appropriate size. We explicitly define the state

evolution model and likelihood function for our specific problem in Section 3.3.

The recursive propagation of the posterior density in (3.5) and (3.6) is computa-

tionally intractable for large state spaces nx due to the integration required to compute

π(yk|y1:k−1) and π(xk|y1:k−1), so we must resort to approximation methods such as Monte

Carlo approximation.

3.2 Particle Filtering

In particle filtering, one uses particles and corresponding weights whose empirical mea-

sure approximates the target posterior distribution π(x0:k|y1:k). Here, we summarize the

Sampling Importance Resampling (SIR), or bootstrap filter, algorithm, which uses par-

ticle and weight pairs {pik, wik}Ni=0 to approximate the target distribution as
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π(x0:k|y1:k) ≈
N∑
i=1

wikδ(xk − pik).

Here, δ(xk − pik) is the Dirac distribution centered at pik. We compute the weights using

importance sampling and normalize them such that
∑N

i=1w
i
k = 1; e.g., see [2].

To illustrate importance sampling, suppose we want to approximate the distribution

π(x) with discrete random measures pi. If we were able to generate points from π(x),

each would be assigned an equal weight of 1/N . When direct sampling is not possible,

we employ importance sampling by sampling from the importance density pi ∼ πN(x)

instead, where πN is chosen to ensure efficient sampling. We then assign the weights as

wi =
π(pi)

πN(pi)

and normalize the weights so they sum to one.

Assume now that the posterior distribution π(x0:k−1|y1:k−1) is approximated by the

discrete random measure {pik−1, w
i
k−1}Ni=1 such that the particles are distributed according

to π(x0:k−1|y1:k−1). If we employ an importance function that can be factored as

πN(x0:k|y1:k) = πN(xk|x0:k−1, y1:k)π
N(x0:k−1|y1:k),

and if

wik−1 ∝
π(pi0:k−1|y1:k)

πN(pi0:k−1|y1:k)
,

then we can augment the particles pi0:k−1 with pik ∼ πN(xk|pi0:k−1, y1:k). Employing Bayes’

relation (2.2), the associated weights are then recursively defined as

wik ∝
π(yk|pik)π(pik|pik−1)

πN(pik|pi0:k−1, y1:k)
wik−1. (3.7)

We generally want the importance distribution πN(x0:k|y1:k) to be as close to π(x0:k|y1:k)

as possible. We also employ the likelihood π(yk|pik) and prior π(pik|pik−1), which we define

for our problem in Section 3.3 in the weight computation and we note that these are

often employed as the importance distribution.

In this way, the recursive SIR particle filtering algorithm is divided into three steps.

The prediction step is performed by sampling particles via importance sampling

20



{pik}Ni=0 ∼ πN(xk|xk−1) ≡ πNk−1. (3.8)

These particles are used to construct the empirical distribution πN(xk|y1:k−1), which is

an approximation of π(xk|y1:k−1). The updating step provides the empirical posterior

distribution

π̃N(xk|y1:k) =
N∑
i=1

wikδ(xk − pik) ≡ π̃Nk , (3.9)

where the importance weights are calculated according to (3.7) and normalized so that∑N
i=0 w

i
k = 1.

The third step is introduced to address a major problem with particle filters, termed

the degeneracy problem or sampling impoverishment. This problem occurs when after

several iterations only a few of the particles have significant weights and all the other

particles have negligible weights. A common way to address this issue is by resampling,

where a new set of particles is drawn from the discrete approximation to the filtering

distribution, pik ∼ π̃N(xk|y1:k). After this third resampling step, the particle weights are

all set to 1/N and the final empirical distribution approximating the posterior is given

by

πN(xk|y1:k) =
1

N

N∑
i=0

δ(xk − pik) = πNk . (3.10)

3.3 Radiation Source Localization

Unlike Kalman Filtering methods, which rely on the assumptions of linearity and Gaus-

sian distributions, particle filtering is suitable for radiation source detection and localiza-

tion, since they are nonlinear problems with high variance Poisson measurements. In this

framework, the particles represent potential sources and they dynamically evolve using

information from the detector measurements. The particles that are more likely to be

sources are retained following the resampling step and cluster around the true source.

Here, we describe a Sampling Importance Resampling (SIR) particle filter designed

to locate a fixed radiation source comprised of a location vector and radiation strength

scalar. We use a fixed number of detectors, each having a set number of measurements.
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The particles for this problem, pik = (sik, t
i
k, I

i
k), consisting of the two-dimensional position

(sik, t
i
k) and radiation source strength I ik, are each drawn from a uniform distribution over

their respective domains Ω = [smin, smax]× [tmin, tmax]× [Imin, Imax].

The prediction step takes pik = pik−1, since the importance sampling function is in-

dependent of the measurement yk. Therefore, the state space is explored without any

knowledge of the observations and the state process fk(·) is taken to be the identity

matrix of appropriate size. If prior information was known about the source location or

trajectory, we would use this information in our formulation of the state process, but we

assume here that no information is known a priori.

We have in (3.7) that the weights are proportional to the likelihood wik ∝ π(yk|pik) so

we approximate the weights by setting them equal to the log of the likelihood. We take the

likelihood to be a Poisson distribution with a mean value provided by a radiation detector

model which approximates the detector responses to a source represented by a particle pik.

We compare the detector model responses with the observed detector responses via the

Poisson distribution. The weights corresponding to each particle represent the probability

that the particle accurately approximates the true source characteristics based on detector

measurements that are Poisson distributed. Therefore, we employ the weights

wik = log
(
π(yk|pik)

)
= log

(
P (yk;uj(p

i
k))
)

= log

(
d∏
j=1

P (yjk;uj(p
i
k))

)

=
d∑
j=1

log
(
P (yjk;uj(p

i
k))
)

=
d∑
j=1

log

(
uj(p

i
k)
yjke−uj(pik)

yjk!

)
,

(3.11)

since the measurements yk = [y1
k, . . . , y

d
k] are independent. We take measurement process

hk to be the Poisson distribution P (·) with parameter

uj(p
i
k) =

I ik · ε
j
int · Aj

4π||rj − rik||22
=

I ik · ε
j
int · Aj

4π[(sj − sik)2 + (tj − tik)2]
.

Here, we denote the particles as pik = (rik, I
i
k) = (sik, t

i
k, I

i
k) ∈ Ω, the detector locations as

rj = (sj, tj), and Ω is the state space.

The parameter uj(·) represents the expected count rate due to the source of the jth

detector as given by the detector model outlined in Chapter 2.2. Each detector has an

associated surface area Aj and intrinsic efficiency εjint. The summation in (3.11) is taken
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over the total number of detectors d. We note that the measurements yk, k = 0, . . . , T , are

statistically independent of each other. We also note that this approach of computing the

weights is similar to assigning these weights the values of a Gaussian likelihood (2.3) when

the detectors record counts greater than approximately 30. However, the experimental

data we employ in Section 3.4 of this chapter was performed using low-level sources and

the detectors provided counts each second. Therefore, detectors far from this low level

source do not have count rates consistently greater than 30 for one second of dwell time.

In Chapter 5, we consider sources with larger intensities and we note that employing

a Gaussian likelihood in that application yields similar localization results to when a

Poisson likelihood is employed.

To address the issue of sampling impoverishment, at every iteration we resample 60%

of the particles. To perform this resampling strategy, we order the particles by their

weights and we retain the 40% highest weighted particles whereas the bottom 60% are

replaced by particles drawn from a uniform distribution. This simple strategy is used

to decrease the complexity of the convergence analysis, but does not perform as well

numerically as other strategies, such as Multinomial or Systematic resampling [58]. We

leave the implementation of these resampling methods in the context of this application

as future work.

Lastly, we provide the SIR particle filtering algorithm for the radiation source local-

ization problem in Algorithm 1. We note that we take the prior distribution to be uniform

over the state space π(x0) = U(Ω) and we take the importance distribution to be equal

to the prior πN(xk|xk−1) = π(x0) = U(Ω) to begin our analysis. Therefore, the particles

are repositioned in the resampling step with no knowledge of the posterior estimate.
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Algorithm 1 SIR Particle Filtering Algorithm

Sample particles pi0, i = 1, . . . , N from the prior distribution pi0 ∼ π(x0).

For k = 1, . . . ,M

1: Take measurement yk.

2: Compute the weights wik, i = 1, . . . , N according to (3.11).

3: Normalize weights so that
∑N

i=0 w
i
k = 1.

4: Reorder particles by their weights and resample particles pik, i = 1, . . . , floor(0.6×N)

from the importance distribution pik ∼ πN(xk|xk−1).

5: Compute posterior estimate according to (3.10)

3.4 Numerical Results

The Intelligence Radiation Sensor Systems (IRSS) program was initiated in 2009 by the

Department of Homeland Security’s Domestic Nuclear Detection Office (DNDO). The

objective was to demonstrate that a system of networked detectors could outperform, in

both efficiency and accuracy, an individual detector in the detection, localization, and

identification of a radiation threat. The lack of experimental datasets for testing this

hypothesis was addressed by performing a series of IRSS tests and creating canonical

datasets.

Three independent companies developed networked systems for the IRSS characteri-

zation tests and each developed their own detection, localization, and identification ca-

pabilities. The IRSS tests were conducted with multiple experiments performed for each

of several indoor and outdoor configurations with multiple source strengths and types,

different background profiles, and various types of source and detector movements. The

majority of the tests were carried out with cesium-137 and cobalt-57 isotopes as sources;

however, we only employ the experiments in which cesium was used as the source. The

tests were conducted at the Savannah River National Laboratory (SRNL) and the indoor

tests were performed in the Low Scatter Irradiator (LSI) facility at SRNL.

The spectral counts – counts of gamma particles with different energies – collected

by the detection devices were mapped into 21 spectral bins. This mapping was based on

the selected set of isotopes and on the energy resolution of the detectors employed [54].

The tests we employ in this dissertation to assess the accuracy of the SIR particle filter
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Table 3.1: Description of the experimental test sets.

Tests Isource (µCi) Isource (Bq) (xsource, ysource) in (cm)
LSI A04 35 1.295× 106 (0, 0)
LSI C01 7.6 2.812× 105 (0, 0)
LSI C02 7.6 2.812× 105 (71, 71)
LSI C03 7.6 2.812× 105 (141, 141)
LSI C04 7.6 2.812× 105 (283, 283)

are labeled LSI A04, LSI C01, LSI C02, LSI C03, and LSI C04 and the experimental

layout of each is described in Table 3.1. For each of these experiments, the detectors and

a source are stationary in the 10 m by 10 m indoor domain. The detectors are NaI 2 inch

by 2 inch detectors randomly scattered around the source.

The datasets are packaged with a MATLAB dashboard that provides an overview of

the corresponding dataset. For each scenario, the dashboard plots the detector layout, the

measurements of the nearest and furthest detectors over time, the counts from a spectral

bin of the nearest detector, and the spectra of all detectors. Figures 3.1 and 3.2 depict

the standard dashboard plots for the LSI A04 test. We see from the detector layout in

Figure 3.1 that detector 14 is the farthest from the source and detector 6 is the nearest.

We note that the LSI A04 experiment was conducted with 21 detectors whereas the

LSI C experiments employed 22 detectors. The layout of the 22 detectors in the LSI C

test cases is similar to the layout in the LSI A04 experiment. The 12th bin includes

counts of particles with energies between 621 KeV and 704 KeV which corresponds to

the 662 KeV cesium-137 photopeak. Figure 3.1(d) depicts the time series measurements

from the 12th spectral bin of the nearest detector to the source.

In addition, background measurements were taken by the detectors for the experi-

mental setup of LSI A04, mapped similarly into 21 spectral bins, and compiled in the

LSI A-Background dataset. The detectors in the LSI C datasets are positioned slightly

differently and include an additional detector. Furthermore, the background measure-

ments were taken every second for only 60 seconds, whereas for the experiments where a

source is present, measurements were taken every second for 120 seconds.

To incorporate these background measurements, we find for each detector in the LSI C

datasets the closest corresponding detector in the LSI A-Background dataset. We simulate

detector background measurements by drawing from a Poisson distribution with a mean
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Figure 3.1: (a) Experimental layout of the detectors, binned spectra of the (b) farthest
detector from source location and (c) nearest detector to source, and (d) time-series
counts from the 12th spectral bin, associated with the cesium-137 photopeak, of the
nearest detector to the source.

26



Figure 3.2: Experimental time series binned spectral counts from each detector.
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given by the mean experimental background measurement. Then, for each detector in

each of these datasets, we subtract the Poisson distributed background sample from the

detector count rate to provide us with the counts from the radiation source. We account

for negative values after subtracting the Poisson simulated background by setting those

values to zero.

The first dataset, LSI A04, was an indoor test with one stationary source and 21

stationary detectors. Nine repetitive experiments were executed, with each run lasting

approximately T = 120 seconds and counts taken every second, but we employ only the

first experiment in each case in testing the particle filter. We draw the particles from the

uniform state space U [Ω] = U [(−5, 5m) × (−5, 5m) × (1 × 104 Bq, 1 × 107 Bq)] and

employ N = 1000 particles. For our particle filter, we choose to resample f × N of the

particles at each time step k. We choose f = 0.6 and we resample the f×N particles that

have the lowest corresponding weights from the same uniform distribution used originally

to generate the particles. The final scattering of the particles is shown in Figure 3.3(a).

We note that the particles converge to what looks like a discrete approximation of a

normal distribution centered near the true source location and with little variance.

The other datasets we use, LSI C01, LSI C02, and LSI C03, are also indoor tests

with a stationary source and 22 stationary detectors. Again, the source, cesium-137 with

radiation strength of 7.6 µCi, was stationary within the 10 meter by 10 meter domain.

As seen in Figure 3.3(b) and compiled in Table 3.1, the source was placed in the center

of the domain in LSI C01, but the sources in the LSI C02, C03, and C04 experiments

were placed in the northeast area of the domain, increasingly farther from the center.

We note that the particle filtering algorithm fails to locate the source in this case,

although there is a small cluster of particles at the source location. This is due in part to

the low source strength, which is nearly an order of magnitude lower than in the LSI A04

experiment, but may also be due to the simplified resampling scheme we employ to prove

analytic convergence. Numerical convergence was shown for this same problem when more

sophisticated resampling schemes were utilized [58]. However, those results employed an

additional scaling factor that artificially inflated the detector counts. We note that we

obtain convergence of this algorithm when a similar scaling factor is employed in our

algorithm, however we instead constrain our prior distribution to investigate whether

limited prior information allows for convergence of this algorithm with the low-level

sources employed to obtain this experimental data.
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We discuss in Chapter 2 that source multilateration requires that the source be within

the convex hull of the detectors, which is the case for all of the experimental test cases

presented here. To test the effectiveness of this simple particle filtering algorithm, we

draw the particles from a uniform distribution over the convex hull of the detectors. To

do this, we construct the normal vectors between the detectors and use them to test

whether a randomly drawn particle is within the convex hull. If it is, then a weight is

calculated for it within the particle filtering algorithm, but if not, that point is discarded

and another one drawn. We revisit this concept of constraining our search space to be

within the convex hull of the detectors in Chapters 5 and 6.

We plot the results for this analysis using datasets LSI C01 and C03 in Figure 3.4.

We note that there are clusters of particles, representing regions of high probability,

at the source location. However, the right edge of the convex hull domain has a large

cluster of particles as well. Again, this is likely due to the low levels of radiation in the

experiments produced by the sources and the fact that we are attempting to infer the

source location as well as the source intensity. Similar detector readings can be caused

by sources of vastly different strengths depending on the source locations. To test if the

algorithm results converge, we instead sample from a Poisson distribution with mean

given by the mean response from the experimental detector readings to simulate more

detector measurements.

By employing both the uniform distribution over the convex hull as the sampling

distribution and the Poisson distribution to simulate more data, we observe particle

convergence to the source location. We plot these results for the datasets LSI C02 and

C04 in Figure 3.5 employing 1000 seconds of simulated data. We observe that the particles

have converged after approximately 300 seconds. Here, we are able to localize the source

to within approximately 1.5 meters given less than 5 minutes of measurement time and

the prior information that the source is within the convex hull of the detector network.
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Figure 3.3: Particle filtering results for the (a) LSI A04 and (b) LSI C01 experimental
layouts.

Figure 3.4: Particle filtering results employing a uniform sampling distribution over the
convex hull of the detector network for the (a) LSI C01 and (b) LSI C03 experimental
layouts.

30



Figure 3.5: Results for the particle filtering algorithm employing a uniform distribution
over the convex hull of the detectors, a poisson distribution to simulate additional data,
and applied to experimental test cases (a) LSI C-01 and (b) LSI C-03.

3.5 Convergence Analysis

We analyze the convergence of the particle filtering algorithm by dividing the problem

into two parts. First, we show that the empirical distribution constructed by the discrete

points, which we call particles, converges to the true underlying distribution as the num-

ber of particles increases. We next show that the particles, and in effect the underlying

distribution, converge to the Dirac distribution centered at the true source location. We

do this by showing that the radius of the cluster of particles with the largest weights

converges to zero as the number of iterations k goes to infinity. Using both of these re-

sults, we determine that the empirical distribution will converge to the Dirac distribution

centered at the true source location.

We first consider the convergence of the approximation made by the discrete particles

to the underlying distribution; i.e., the solution to the optimal filtering problem [12].

We denote the empirical particle filtering distribution at the kth time step as πNk and

the “true” distribution, which is the solution to the optimal filtering problem, as πk.

We are concerned with showing that E[(〈πNk , φ〉 − 〈πk, φ〉)] is bounded above by some

value dependent on the number of particles, N , where 〈 · , · 〉 denotes the Euclidean inner

product. We take φ ∈ B(Rnx), where B(Rnx) is a Borel σ-algebra on Rnx and nx is the

dimension of the state space.
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Crisan and Doucet [12] outline a theorem that, when applied to this problem, provides

the first part of the convergence of the particle filtering algorithm.

Theorem 3.5.1. Given that the measurement process hk(·) is a bounded function in

argument xk ∈ Rnx ; i.e., ||hk|| <∞ for all k, then for any φ ∈ B(Rnx), for all k = 1, ..., T ,

E[(〈πNk , φ〉 − 〈πk, φ〉)2] ≤ C
||φ||2

N
.

Next, we show that the particles converge to the Dirac distribution centered at the

true source location as more measurements become available. That is, we show that

E[〈πNk , φ〉− 〈δ(xs,ys), φ〉]→ 0 as k →∞. We know that for our application, we can obtain

this stronger form of convergence for our particle filtering algorithm due to the statistical

independence of the measurements and the lack of dependence of our observations on

the state variables. We use both of these facts in our analysis to show the particle filter

convergence.

This problem can be reformulated as showing that the ball centered at the true source

location and comprised of the highest weighted f×100 percent of particles at the (k+1)st

step, has a probability of 1 of being smaller than or equal to the size of the same ball

from the kth step, as k →∞. We denote the radius of these balls as rk and we show that

Pr[rk+1 ≤ rk]→ 1 as k →∞.

For the considered algorithm, the resampling step consists of retaining the top weighted

(1− f)× 100 percent of the particles and replacing the other f × 100 percent of particles

with randomly distributed particles drawn from a uniform distribution across the state

space. The numerical results were obtained using a value of f = 0.6, meaning we resam-

pled 60% of the particles at each time step. Because of this simple resampling strategy,

Pr(rk+1 ≤ rk) can be approximated by Pr[h
(
pfk
)
> h(p∗k)]. Here, we denote the particles

from the kth step by pik, where i = 1, ..., N . The (f × N)th weighted particle is pfk and

p∗k denotes any of the particles that are closer to the source than the particle pfk . The

weight of each particle is given by the weight function h(pik), which is dependent on the

Poisson distributed measurements. We note that the distance from pfk to the mean of the

(1 − f) × N highest weighted particles defines the radius rk. Therefore, the probability

that the radius of the ball of the top f percent of the particles is decreasing is equal to

the probability that any of the top weights is less than the (f ×N)th weight.
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Using this relation, we next show that Pr[h(pfk) > h(p∗k)]→ 0 as k →∞.

Theorem 3.5.2. We assume that the distribution to be approximated is a Dirac distri-

bution centered at the source parameter values and that the measurements are Poisson

distributed. We then obtain Pr[h(pfk) > h(p∗k)]→ 0 as k →∞.

Proof. We have,

Pr[h(pfk) > h(p∗k)] = Pr[h(pfk) > ε, h(p∗k) < ε for any ε]

= Pr[h(pfk)) > ε
∣∣h(p∗k) < ε] Pr[h(p∗k) < ε],

since the measurements are statistically independent. Employing properties of conditional

probabilities, we obtain

Pr[h(pfk)) > ε
∣∣h(p∗k) < ε] Pr[h(p∗k) < ε] ≤ Pr[h(pfk)) > ε

∣∣h(p∗k) < ε]

≤ Pr[h(pfk)) > ε].

We now employ Chebyshev’s inequality to obtain

Pr[h(pfk)) > ε] ≤ E[h(pfk))]

ε

=
δS(pkf )

ε
= 0, as k →∞,

where we have additionally used the fact that the distribution we are approximating is a

Dirac distribution centered at the true source parameters.

We note that if δS(pfk) 6= 0, then all f percent of the particles are at the true source

location. However, if δS(pfk) = 0, then there is a larger than zero probability of the

uniformly distributed resampled particles being closer to the true source location than

pfk . Therefore, P (rk+1 ≤ rk)→ 1 as k →∞.
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Chapter 4

Surrogate Modeling Methods

Surrogate models are used to approximate input-output behavior of complex systems

based on limited simulations [66]. The surrogate modeling techniques we consider are

computationally feasible for use with 3-D simulation codes or codes incorporating addi-

tional physics, like photon scattering. However, we begin by approximating the response

of the ray-tracing model introduced in Chapter 2. We investigate two surrogate mod-

els based on a polynomial expansion of the physical model evaluations using Legendre

polynomials and radial basis functions. We employ discrete projections to evaluate the

Legendre polynomial surrogate models. To compare, we consider radial basis function

surrogate models constructed using regression and a Legendre polynomial-based surro-

gate model constructed using sparsity-controlled regression. In addition, we consider a

surrogate model based on a multivariate adaptive regression splines (MARS) algorithm.

Finally, we demonstrate Gaussian processes and artificial neural networks for surrogate

model construction.

Our strategy is to construct an individual surrogate model to approximate the re-

sponse of each of the d detectors in the simulated urban geometry. We construct the

surrogate models in this chapter using the ray-tracing model (2.10) introduced in Chap-

ter 2 and fully formulated in Chapter 5, but we employ these techniques to approximate

a high-fidelity MCNP model in Chapter 6. To compute the surrogate model response for

a source at location (x, y) with intensity I, we sample the ray-tracing model response

ui(q
m) at M = 213 = 9261 Gauss-Legendre training points qm ∈ Ω for each of the

i = 1, ..., d detector locations. We take Ω to be the parameter space, which in the case

of the ray-tracing model is three-dimensional, q = (x, y, I), over the problem domain
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introduced in Chapter 5. It takes 4.23 hours to compute these 9261 model evaluations of

(2.10) for each of the d = 10 detectors considered on a computer with a 3.4 GHz Intel

core processor and 16 GB of memory. Whereas the computations can be parallelized, we

report serial values in this chapter and in Chapters 5 and 6.

For each of the d detectors, we denote the surrogate model by uNi , i = 1, . . . , d, and

relate it to the physical model solution ui = ûi + B in (2.10) via the statistical model

Yi = ui(q) + εi in (2.1)

uNi (qm) = ui(q
m) + δmi , m = 1, . . . ,M. (4.1)

The observation errors δmi quantify unresolved fine-scale behavior incorporated in the ray-

tracing model but neglected in the surrogate model. We assume that δmi are identically

distributed with variance σ2
0, but one cannot justify the more stringent assumption that

δmi ∼ N (0, σ2
0). It is not true in general that δmi are identically distributed, but our

observation has been that they are identically distributed for this problem.

As discussed in Chapter 2, for all but neural networks, we can express surrogate

models as

uNi (q, wi) =
N∑
j=1

wijΨj(q) + Pi(q),

where wi = [wi1, . . . , w
i
N ] are coefficients and Ψj(q) are basis functions that define the sur-

rogate model. The trend functions Pi(q) quantify global trends exhibited by the model. To

demonstrate the goal of surrogate model construction, we plot a Gaussian process-based

surrogate response surface versus the training points for a fixed intensity in Figure 4.1.

We note that the detector response increases as the source is moved closer to the detector

location and the response surface accurately quantifies the behavior of the training data.

Additionally, we note that the surrogate model has smoothed the surface represented by

the training data, most notably near the singularity at the detector location caused by

the ||ri − rS|| term in the denominator of (2.10).

To verify each of the d models, we compare the surrogate and physical models at S

randomly generated test points qs ∈ Ω. The physical model (2.10) takes 13.63 minutes to

compute detector responses for S = 500 test points. We quantify errors in this chapter
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Figure 4.1: Gaussian process surrogate model response surface versus the natural loga-
rithm of the training data for detector 1 observing a source with intensity I = 5×1010 Bq.

by computing the relative root mean square error (rRMSE)

rRMSEi ≡

[
1

S

S∑
s=1

(ui(qs)− uNi (qs)

ui(qs)

)2
]1/2

(4.2)

at each detector. Since the detector responses (in counts per second) vary over orders of

magnitude, we compute the surrogate model responses based on the natural logarithm of

the ray-tracing solution. For each surrogate model, we report rRMSE ≡
∑d

i=1 rRMSEi

and plot the surrogate and physical model responses at the first 50 test points in Chap-

ter 5. Whereas the surrogate and physical model responses at these test points are dis-

crete, we plot the points continuously for clarity. Additionally, we plot the rRMSEi,

i = 1, . . . , d of each surrogate model for the d = 10 detectors in Chapter 5. We note

that performance metrics such as proper scoring rule [23] or Mahalanobis distance can

be employed to obtain some assessment of the uncertainty in the surrogate model, but

we leave this as future work.
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To minimize notation overload throughout the remaining discussion, we drop the

dependence on i and express the surrogate and statistical models as

uN(q, w) =
N∑
j=1

wjΨj(q) + P (q), (4.3)

and

y = u(q) = uN(q, w) + ε, (4.4)

where we combine errors from the ray-tracing algorithm and surrogate model construction

in ε. However, we remind the readers that we construct individual surrogate models for

each of the i = 1, . . . , d detectors.

In this chapter, we present surrogate modeling techniques based on Legendre poly-

nomial projection and regression in Sections 4.1 and 4.2. We then present a multivariate

adaptive regression splines algorithm in Section 4.3 and another regression-based al-

gorithm, this time employing radial basis functions, in Section 4.4. Lastly, we present

Gaussian process and neural network based surrogate models in Section 4.5 and 4.6.

4.1 Legendre Polynomial Projection

For polynomial projection and regression, we assume that the physical model responses

can be expressed as

u(q) = u(q, w) =
∞∑
j=1

wjΨj(q), (4.5)

which we approximate by truncating at N basis functions to obtain the surrogate model

uN(q, w) =
N∑
j=1

wjΨj(q). (4.6)
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We take Ψj(q) to be multivariate Legendre polynomials — i.e., products of univariate

Legendre polynomials — which are defined as the solution to the differential equation

d

dq

[
(1− q2)

d

dq
Ψj(q)

]
+ j(j + 1)Ψj(q) = 0.

The first three univariate Legendre polynomials are

ψ0(q) = 1,

ψ1(q) = q,

ψ2(q) =
1

2
(3q2 − 1)

for q ∈ Ω̂ = [−1, 1]. These polynomials are orthogonal on the interval Ω̂ = [−1, 1] with

respect to the density ρ(q) = 1
2
. We note that the roots of the univariate Legendre

polynomials provide the Gauss-Legendre training points, qm, m = 1, ...,M , that we use

to construct the surrogate models.

An important feature of polynomial approximations is that their accuracy is improved

for functions with more regularity. We have spectral convergence for Legendre polynomial

expansions of functions on [−1, 1] with error bounds

||u(q, w)− uN(q, w)||L2[−1,1] ≤ CkN
−k||u(q, w)||Hk([−1,1]).

Here, Ck ≥ 0 is a constant that may depend on k and u ∈ Hk([−1, 1]), where Hk([−1, 1])

is a Sobolev space of L2 functions with weak derivatives of all orders up to k in L2 [73].

We should observe the convergence rate CN−1||u(q, w)||1, since our model is continuous,

but likely has discontinuities in its derivatives. We observe a convergence rate of

rRMSE(uN)/rRMSE(uN/2) ≈ 0.8,

where rRMSE(uN) means the relative root mean squared error (4.2) of the Legendre-

polynomial based surrogate model employing N basis functions. This is not the conver-

gence rate of rRMSE(uN)/rRMSE(uN/2) ≈ 0.5 that we expected to observe, since

CN−1||u(q, w)||1
C(N/2)−1||u(q, w)||1

=
N−1

(N/2)−1
=

1

2
.
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However, this rate is closer to 0.5 for certain values of N , as can be seen in the convergence

results in rRMSE of the Legendre polynomials that we compile in Table 4.1. We also

bound N from above to address overfitting the noise in the physical model response.

We consider two methods to solve for the coefficients wj. The first is based on discrete

projection, which exploits the orthogonality of the polynomials Ψj(q) to approximate the

function of interest at u(qm), m = 1, . . . ,M — i.e., the physical model simulations (2.10)

— and the second is presented in Section 4.2. Multiplying both sides of (4.5) by Ψj(q)

and integrating over Ω̂, yields

wj =
1

γj

∫
Ω̂

u(q, w)Ψj(q)ρ(q)dq, j = 1, . . . , N, (4.7)

by exploiting the orthogonality relation

∫
Ω̂

Ψj(q)Ψi(q)ρ(q)dq =

0 for i 6= j

γj for i = j.

Here γj = ||Ψj|| is a normalization constant and ρ(q) = 1
2

is the associated density over

Ω̂ = [−1, 1].

We approximate this integral by a quadrature rule, such as Gauss-Legendre quadra-

ture, to obtain the approximate relation

wj ≈
1

γj

R∑
r=1

u(qr)Ψj(q
r)ρ(qr)ωr, j = 1, . . . , N

for the coefficients of the surrogate model. Here qr are the sampled inputs, ωr are the

quadrature weights, and we have dropped the dependence on w. When possible, we

employ Gaussian quadrature, since with only R+1 training points, polynomials of degree

less than or equal to 2R + 1 can be integrated exactly. We set R = M and N = (p+K)!
p!K!

,

where p is the number of parameters — three in our case — and K is the maximum

degree of the multivariate Legendre polynomials [66].

We construct the multivariate Legendre polynomials as tensor products of univariate

Legendre polynomials. As discussed in [4], the surrogate model error decreases roughly

exponentially with polynomial degree, provided that a high enough order quadrature rule

is used; e.g., large R. However, results with high degree polynomials, large K, diverge
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because of large fluctuations in the function uN between the quadrature points produced

by overfitting; i.e., uN begins fitting observation errors.

To determine the correct degree K, we compute the sum of squares error of the

surrogate model evaluated at the test points qs

SS(q) =
S∑
s=1

[u(qs)− uN(qs, w)]2,

and compute the likelihood

π(u|q) =
1

(2πσ2
0)S/2

e−SS(q)/2σ2
0 ,

for the surrogate model uN with maximum polynomial degree K = 1, ..., 30. We plot the

results in Figure 4.2, where the results for the d = 10 surrogate models are plotted with

the mean value overlaid in a solid line. We see that the mean sum of squares error has

a distinct minimum and the mean likelihood has a maximum at K = 21. Therefore, we

use this value when computing the surrogate model and employ N = 2024 total basis

functions. Akaike information criteria (AIC), Bayesian information criteria (BIC), or cross

validation techniques can also be employed to determine the value of K that balances

accuracy versus overfitting of the surrogate model. These cross-validation procedures are

discussed further in [1, 80]. An alternative to using such a high degree polynomial for

this surrogate model is to employ splines, which we consider in Section 4.3.

We note that these surrogate models, excluding the Gaussian process surrogate model,

are all parametric models. Whereas there are multiple definitions of parametric models,

we define a parametric model as one where the class of basis functions is defined prior to

construction of the model. Since we employ the class of Legendre polynomials to construct

this surrogate model, we classify it as a parametric surrogate model. We classify Gaussian

processes as semi-parametric under this definition, as discussed in Section 4.5.

4.2 Legendre Polynomial Regression

An alternate method to obtain the coefficients wj in (4.6) is to perform a regression. We

employ least absolute shrinkage and selection operator (LASSO) regression [20] to solve

for the coefficients wj. Borrowing from compressive sensing, we penalize the l1 norm
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Table 4.1: Convergence of Legendre surrogate model rRMSE as N increases.

N 4 8 16 32 64 128 256 512 1024 2024
rRMSE 1.382 1.113 0.825 0.633 0.468 0.387 0.331 0.281 0.236 0.213
rRMSE(uN )

rRMSE(uN/2)
0.805 0.741 0.767 0.739 0.827 0.855 0.849 0.840 0.903

Figure 4.2: (a) Sum of squares error and (b) likelihood for Legendre-based surrogate
models computed via (4.7) with maximum polynomial degree P = 1, ..., 30. The dashed
lines correspond to each of the d = 10 surrogate models and the solid line is their mean.
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of the coefficients to enforce sparsity. Therefore, we can formulate the problem as the

optimization problem

min
c
||Aw − y||22, subject to ||w||1 ≤ τ. (4.8)

Here, Ajm = Ψj(q
m) is a matrix of the Legendre basis functions, y = [y1, ..., yM ]T is the

vector of observations obtained from the statistical model (4.4), and w = [w1, ..., wN ]T is

the vector of coefficients. To solve this optimization problem, we use the SPGL1 solver

which is implemented in MATLAB and detailed in [20].

We use τ = 35 to obtain the results discussed in Section 4.7 and Chapter 5, which we

obtained via trail and error and note that cross-validation procedures may be employed

to optimize τ [1, 80]. We determine this value of τ by computing the 1-norm of the co-

efficients obtained via discrete projection. We find that these coefficients have a 1-norm

between 32 and 38, and when we decrease τ below 32, significant error is introduced.

When we increase τ to greater than 38, the 1-norm of the coefficients is less than τ ,

meaning that the constraint has no effect on the problem. When comparing the coeffi-

cients between these two solving methods, we see that they are similar but not identical,

even when τ > 38. Employing this value of τ yields surrogate models for the ten detectors

with between N = 144 and N = 222 active basis functions, which is a significant decrease

from the N = 2024 basis functions employed in the discrete projection based surrogate

models. Further analysis on determining optimal values of τ is discussed in [20].

4.3 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) were first proposed in [21] as a pro-

cedure for performing adaptive nonlinear regression using piecewise linear (spline) basis

functions. MARS follows from recursive partitioning regression, which is also outlined in

[21]. The MARS basis functions, often termed hinge functions, are introduced in pairs

on either side of a “knot” ξ, where there is an inflection point in a particular parametric

direction; e.g.,

ψk(q) = max(0, qi − ξ) and ψk+1(q) = max(0, ξ − qi) (4.9)
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are introduced concurrently. Here, qi, i = 1, . . . , p denotes the ith component of q, where

p = 3 in our model, since q = (x, y, I). In this way, the domain is divided so that ψk(q)

is zero for qi < ξ and ψk+1(q) is zero for qi > ξ.

We employ an adaptive regression algorithm to generate knot locations using data

{qm, ym}Mm=1 from the statistical model (4.4) for the 10 detectors. We take the knot

locations to be ξ ∈ {qmi }
p,M
i=1,m=1. An additive MARS model would take the basis functions

to be Ψk(q) = ψk(q), but we consider products of the piecewise linear basis functions, so

we take the basis functions to be

Ψj(q) =

Kj∏
k=1

ψk(q) =

Kj∏
k=1

[sjk(qv(j,k) − ξjk)]+. (4.10)

Here v(j, k) ∈ {1, ..., p} labels the component of the parameter vector or predictor vari-

able, q = [q1, . . . , qp], Kj ≤ p is the level of interaction between the piecewise linear basis

functions, and ξjk is the kth knot employed by the jth basis function. Furthermore, the

positive subscript informs us to take the maximum of zero and the argument, as in (4.9),

and we take Ψ0(q) = 1 and sjk = ±1. For simplicity, we consider only piecewise linear

basis functions ψ(q), although this algorithm can also be performed with other piecewise

basis functions, such as cubic. Additionally, we consider up to second-order interactions

of the piecewise linear basis functions ψ; i.e., Kj ≤ 2, and first-order interactions of the

basis functions that are a function of the same variable. We found that employing sec-

ond degree interactions — i.e., products of piecewise linear basis functions of the same

variable — did not increase the performance of the surrogate models significantly.

The surrogate model is

uN(q, w) =
N∑
j=0

wjΨj(q),

where Ψ0(q) = 1 and the coefficients wj are estimated using least-squares regression.

Note that this is the same form as (4.3), for w0 = 1 and Ψ0(q) = P (q). The construction

of the MARS model takes place in two steps. In the forward step, basis functions are

added to the model to reduce a“lack of fit” value, which we take to be the least-squares

error of the surrogate model to the physical model evaluated at the training points. This

is performed until a user defined maximum number of terms is reached. The maximum
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number of terms we use in the forward process of the MARS algorithm to construct the

surrogate models approximating (2.10) is N = 200.

The MARS algorithm purposefully overfits the model to the data in its forward simu-

lation and then performs a backward deletion strategy in the second step to remove basis

functions that no longer contribute sufficiently to the accuracy of the model fit. This is

performed via a model selection procedure employing the Generalized Cross-Validation

(GCV) metric to compare models with subsets of the basis functions. The GCV equation,

GCV =
1
M

∑M
m=1

[
ym − uN(qm, w)

]2[
1− N+κ×(N−1)/2

M

]2 ,

is a goodness of fit test that uses the parameter κ to penalize large numbers of basis

functions N [84]. We use a default penalty parameter of κ = 3 and a threshold value of

GCV < 10−3, which is used as a stopping criterion for the backward phase. The default

threshold value is 10−4 and should be reduced for noise free data.

To better understand the MARS model structure, consider the problem of approxi-

mating the data depicted in Figure 4.3. We employ the MARS model

uN(q) = 20−max(q − 12, 0) + 3×max(12− q, 0)− 2×max(22− q, 0)

to approximate the data. The knot locations at q = 12 and q = 22 delimit the regions

where different linear relationships are identified. By considering the products of these

piecewise linear basis functions, we can quantify nonlinear behaviors of the model.

To motivate error analysis of the MARS surrogate model, we consider the full MARS

model

uN(q, w) = w0 +
N∑
j=1

wj

Kj∏
k=1

[sjk(qv(j,k) − ξjk)]+,

where w0 is the coefficient of the constant basis function. The sum is over the basis
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Figure 4.3: Simple additive MARS example with two knot locations represented by the
dashed vertical lines.

functions of degree Kj

Bi(qi) =
N∑
j=1,
Kj=1

wjΨj(qi) =
N∑
j=1,
Kj=1

wj[sj1(qi − ξj1)]+, for i ∈ Vj,

Bik(qi, qk) =
N∑
j=1,
Kj=2

wjΨj(qi, qk) =
∑
j=1,
Kj=2

wj[sj1(qi − ξj1)]+[sj2(qk − ξj2)]+, for i, k ∈ Vj,

...

where we consider higher-order products of basis functions; i.e., Kj ≥ 1. We denote the set

of predictor variable component labels for the jth basis function Ψj as Vj = {v(j, k)}Kj

1 .

Whereas this representation of the model does not provide insight into the model devel-

opment, it allows us to rearrange the model in a way that reveals the predictive behavior

of the model. By collecting basis functions that involve identical predictor variable sets,

we obtain the representation

uN(q) = w0 +Bi(qi) +Bik(qi, qk) +Bik`(qi, qk, q`) + . . . (4.11)
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These sums represent the Kj level interactions, if present, between the variables within

the model. By adding the univariate contributions to the bivariate contributions, we

obtain the representation

B∗ik(qi, qk) = Bi(qi) +Bk(qk) +Bik(qi, qk).

This provides a bivariate tensor product spline approximation representing the joint

bivariate contributions of qi and qk to the model [21]. Similar rearranging can be per-

formed by employing this representation combined with the trivariate functions to obtain

the joint contributions of qi, qk, and q`. Since equation (4.11) is similar to analysis of vari-

ance (ANOVA) decomposition [66], we refer to this as the ANOVA decomposition of the

MARS model. The optimal additive approximation corresponds to the first-order terms

in the ANOVA expansion so if the higher order indices are small, then the function can

be accurately approximated by an additive model; i.e., Kj = 1, j = 1, . . . , N . Note that

for our purposes, we consider a model with second-order interactions, so we truncate

equation (4.11) at the second-order interactions. Unfortunately, the adaptivity of MARS

makes it difficult to bound the error in the manner of spectral approaches which bound

the error in terms of the coefficients wj. However, cross validation procedures such as

those detailed in [1, 80] can be used to provide an error estimate for the MARS model.

The MARS algorithm can be cast in a Bayesian framework in which case the number of

basis functions N , their coefficients wj, and their form — knot points ξjk, sign indicators

sjk, and the level of interaction Kj — are considered to be random variables [13, 19].

Since any MARS model can be uniquely defined by these values, the Bayesian MARS

model sets up a probability distribution over the space of possible MARS structures.

The data are then used to infer these hyperparameters by employing a Markov chain

Monte Carlo (MCMC) reversible jump simulation algorithm [26]. Currently, a form of

this algorithm has been implemented in the R package BASS, — Bayesian adaptive spline

surface — but no such package exists for MATLAB. Hence, a comparison of BASS with

these surrogate models is deferred to future research.

The MARS surrogate model takes advantage of the local low dimensionality of the

function of interest, even if that function is strongly dependent on a large number of

variables; i.e., large p. We employ the third-party ARESLab toolbox for MATLAB [36],

which utilizes an algorithm similar to MARS [21]. Following the backward deletion step

performed by this toolbox, each of the 10 detector surrogate models that we construct
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and test in Chapter 5 employ between N = 20 and N = 36 basis functions.

4.4 Radial Basis Function Regression

Here we consider expansions

uN(q, w) =
N∑
j=1

wjΨj(q) (4.12)

with radial basis functions

Ψj(q) = Ψ(||q − qj||2) = Ψ(hj(q))

defined in terms of the Euclidean distance

hj(q) = ||q − qj||2 =

[
p∑
i=1

(qi − qji )2

]1/2

. (4.13)

We remind the reader that p = 3 for our problem (2.10). A common choice of Ψ is

Ψ(hj(q)) = e−h
2
j (q)/2σ2

, j = 1, ..., N. (4.14)

Here the hyperparameter σ is a scale factor, which is typically inferred when construct-

ing the surrogate model. Details regarding the manner in which σ affects conditioning

and stability are provided in [57]. Gaussian radial basis functions (4.14) have the ad-

vantage of physical interpretation and super-spectral convergence; i.e., errors decrease

as O(e−CN). Additionally, multiquadric, inverse multiquadric, and thin plate splines are

described in Table 4.2.

To compute the coefficients w = [w1, . . . , wN ]T , we formulate (4.12), with observations

given by (4.13) as the matrix system

u = Aw + ε,

where u = [u(q1), . . . , u(qM)]T , Ajm = Ψj(q
m), and ε = [ε1, . . . , εM ]T are the errors from
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(4.4). For M > N , the least-squares estimate is given by

w = A†u, (4.15)

where A† =
[
ATA

]−1
AT is the pseudo-inverse of A. To compute w, we use the MATLAB

backslash command which employs a QR factorization. Other solution techniques are

discussed in [15, 57]. For the purpose of comparing with Legendre surrogate models, we

employ the same number of basis functions N = 2024 by randomly selecting center points

qj for the basis functions Ψj(q) from the training data, such that {qj}Nj=1 ∈ {qi}Mi=1.

In Table 4.2, we observe that the Gaussian radial basis functions surrogate model

does not perform as well as the inverse multiquadric and thin-plate spline radial basis

function surrogate models for this problem. This decrease in performance is likely due

to the smoothness of the Gaussian radial basis functions as compared with the other

basis functions. The inverse multiquadric function provides the best accuracy and low

computational cost in comparison with the other basis functions. Therefore, we employ

inverse multiquadric radial basis functions to develop surrogate models that we com-

pare with the other surrogate modeling methods in Section 4.7 and Chapter 5. We note

that radial basis functions often are employed in the development of neural networks as

the activation functions of the neural network nodes, which will be discussed further in

Section 4.6.

Whereas the shape parameter σ can treated as a hyperparameter to be optimized for

each problem, we set σ = 40. We choose this by testing multiple values of σ and choosing

the value that provided the smallest rRMSE (4.2). Because we randomly sample the

basis function center points, optimizing the value of σ is difficult. However, if we use all

or a constant set of the training points as center points for the basis functions, we can

optimize this hyperparameter. The value of σ can affect the conditioning of the problem

— we observed condition numbers as high as 1020 to 1030 for certain values of σ —

and, if too large, cause the Runge phenomenon to introduce large errors, as discussed in

[57]. However, decreasing the value of σ improves conditioning and decreases accuracy,

so these two effects must be considered when setting this hyperparameter.
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Table 4.2: Comparison in terms of training time and relative root mean squared error
of radial basis functions for surrogate model construction.

Basis Function Mathematical Form Time (s) rRMSE

Multiquadric Ψ(hj(q)) =
√
h2
j(q) + σ2 131 0.2094

Inverse Multiquadric Ψ(hj(q)) = 1/
√
h2
j(q) + σ2 132 0.2075

Thin-plate Spline Ψ(hj(q)) = h2
j(q) log(hj(q)/σ) 159 0.2089

Gaussian Ψ(hj(q)) = e−h
2
j (q)/2σ2

135 0.2093

4.5 Gaussian Process Regression

In Gaussian process (GP) or kriging based surrogate modeling, one treats the high-fidelity

simulations as realizations of a Gaussian process

uN(q) ∼ GP (m(q), c(q, q′)) .

The mean and covariance functions m(q) and c(q, q′) are constructed to reflect the trends

and correlation structure of the physical model u(q).

We employ a constant mean m(q) = P (q) = β01, where β0 is a hyperparameter

that we infer and 1 is an M × 1 vector of 1’s, since we employ observations for M

parameter values qm to compute the surrogate model. Whereas universal kriging employs

a polynomial trend function m(q), we limit our analysis to ordinary kriging by employing

a constant mean m(q). Additionally, we employ covariance functions of the form

c(q, q′) = σ2r(q, q′),

where σ2 denotes the model variance and r(q, q′) is a parametric correlation function

or kernel. Gaussian processes are semi-parametric according to the definition of para-

metric given in Section 4.1. This is because the employed class of basis functions is not

fully determined, but follow from the predefined parametric correlation function. A fully

nonparametric Gaussian process model is discussed in [9], where a fully nonparametric

covariance estimator is constructed via a nonparametric approximation of completely
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monotone functions. A common choice for r(q, q′) is the squared exponential function

r(q, q′) = e−
1

2`2

∑p
i=1[qi−q′i]

2

, (4.16)

which can be expressed as

r(hj(q)) = e−hj(q)2/2`2

with hj(q) defined in (4.13) if we consider q′ = qj. Comparison with (4.14) illustrates

that this is comparable to employing radial basis functions as a correlation function. We

note that this kernel is isotropic in the sense that the length scale ` is the same for each

of the p = 3 scaled components of the parameter q = (x, y, I).

For inputs q1, . . . , qM , the associated covariance and correlation matrices have entries

Cij = c(qi, qj) and Rij = r(qi, qj). For the statistical model (4.4), it follows that

u ∼ N (β01, C + σ2
0I),

where u = [u(q1), . . . , u(qM)]. Note that σ2
0 serves as a nugget, which results in an emula-

tor that does not interpolate the data and attaches a non-zero uncertainty bound around

the data.

To illustrate the construction of the Gaussian process regression surrogate models,

we consider the 1-D Branin function

f(q1) = a((1 + c)(15q1 − 5)− b(15q1 − 5)2 − r)2 + s(1− t)cos(15q1 − 5) + s,

where (a, b, c, r, s, t) = (1, 5
4π2 ,

5
π
, 6, 10, 1

8π
). The 2-D version of this function is often used

in optimization studies, as it has a single global maximum and has a complex response

surface. We plot the Branin function in Figure 4.4 along with the training data and

the Gaussian process surrogate model predictions. In Figure 4.4(a), we employ 10 model

evaluations — half randomly selected and half uniformly distributed — to train the GP

surrogate model and we evaluate the surrogate model at 10 separate randomly selected

test points. We note that these predictions are very close to the true values of the Branin

function and that the true response falls within the 99% prediction intervals provided

by the GP model. We then evaluate the Branin function at the test points and re-train

the surrogate model using the additional points. We plot the new GP prediction in
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Figure 4.4(b) along with the training data and the true Branin function. Here, the 99%

prediction intervals have narrowed, as there is more information available and so the

GP prediction has less uncertainty. We also note that there are non-zero variance at the

training points because of the nugget term σ2
0.

Figure 4.4: Branin function plotted against Gaussian process regression surrogate model
with 99% prediction intervals for q1 = [0, 1] with (a) 10 training points and (b) 20 training
points.

Whereas use of the correlation function (4.16) facilitates comparison with radial basis

surrogate models, it is overly smooth for the urban source applications with discontinuous

derivatives. This motivates consideration of the Matern correlation functions, which allow

us to control the smoothness of the surrogate models [61, 71]. As summarized in Table 4.3,

we consider three isotropic correlation functions — the exponential and Matern 3/2

correlation functions are formulated as

r1/2(h) = e−h/`,

r3/2(h) =

(
1 +

√
3h

`

)
e−
√

3h/`,

and (4.16) is the squared exponential correlation function. Here, h = ||qi − qj|| de-

notes the Euclidean distance between samples qi and qj and the subscripts denote half

integer choices with explicit representations. We also consider three anisotropic kernel

functions where the characteristic length scale `i is allowed to vary for each component

of q = (x, y, I). As detailed in [71], this yields the anisotropic exponential, Matern 3/2,
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and Matern 5/2 Automatic Relevance Determination (ARD) correlation functions

rARD1/2 = e−h` ,

rARD3/2 =
(

1 +
√

3h`

)
e−
√

3h` ,

rARD5/2 =

(
1 +
√

5h` +
5

3
h2
`

)
e−
√

5h` ,

where

h` =

[
p∑
i=1

(qji − qki )2

`2
i

]1/2

.

Note that rARD3/2 reduces to r3/2 when `i = ` and that the exponential kernels are equivalent

to Matern kernels with parameter value 1/2.

Since the ARD Matern kernel with Matern parameter value 3/2 outperforms the other

kernel functions for this problem, we consider this kernel for the rest of our analysis in

Section 4.7 and Chapter 5. The ARD Matern 3/2 kernel performs better than the ARD

Matern 5/2 kernel because it is less smooth than the ARD Matern 5/2 — the Matern

3/2 kernel has one continuous derivative whereas the Matern 5/2 kernel has two —

and hence can more accurately quantify the non-smooth behavior of the physical model.

Anisotropic functions are important for this application of surrogate modeling, since the

domain differs greatly in each parametric direction [71].

We optimize the hyperparameters, [σ, `j], j = 1, ..., p, using a dense, symmetric rank-

1 based, quasi-Newton algorithm to approximate the Hessian that is required to solve

this problem. We set their initial values respectively as the standard deviation of the

predictors and the standard deviation of the responses divided by the square root of

two. In Chapter 5, we employ the MATLAB package fitrgp, which is both robust and

relatively easy to use.

4.6 Neural Networks

The final surrogate model we consider is based on neural networks [42, 46], which were

originally developed to solve problems in a way that emulates the brain. These models

are typically organized in layers of their core structures, called neurons or nodes, each
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Table 4.3: Comparison of Gaussian process kernel functions for surrogate model con-
struction.

Kernel Function Computation Time (s) rRMSE
Exponential 203 0.1993
Squared Exponential 175 0.2013
Matern 3/2 196 0.2006
ARD Exponential 448 0.2005
ARD Matern 3/2 426 0.1975
ARD Matern 5/2 401 0.1995

of which has an inherent activation function. There are also sets of coefficients that act

on the connections between nodes, which are tuned by a learning algorithm and are

capable of accurately approximating nonlinear functions [46]. We take the input nodes

of the neural network as the parameter components {qi}pi=1. The output node is the

neural network surrogate model approximation to the high-fidelity model solution u(q).

Here, we develop a feed-forward artificial neural network, meaning that the information

is only passed forward through the layers. This is unlike a feedback network, which allows

for information transfer in both directions and consequently loops within the network.

Whereas we use supervised learning methods, we note that unsupervised learning may

also be employed for this application.

We divide the construction of the neural network surrogate model into two steps:

choosing a network structure and training the network. To define the network architec-

ture, we must define the number of hidden layers, the number of neurons in each layer,

the activation functions associated with each neuron, and the performance function used

to evaluate the accuracy of the network during training. There have been many advances

made in the development of deep learning algorithms [42], but for simplicity we consider

a single hidden layer when approximating the ray-tracing model. However, we employ a

neural network model with three hidden layers to approximate the high-fidelity MCNP

response in three spatial dimensions in Chapter 6. We set the hidden layer of the network

to a size of 35, which we obtained from testing hidden layer sizes to obtain an optimal

size for this problem. We note that the use of a large number of hidden layers or hidden

layer neurons can lead to overfitting and increased computational time. Hence these mea-

sures are normally employed only for highly complex problems, such as the 3-D problem

detailed in Chapter 6.
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Each neuron performs a linear transformation ηj = wj1q1 + wj2q2 + ... + wjpqp + bj for

the p components {qi}pi=1, where wji , i = 1, . . . , p are the coefficients and bj is the bias of

the jth neuron. Therefore, there are p×N ×N × 1 + 2×N coefficients to train for this

model, where we take N = 35 in Chapter 5 as the number of neurons in the model and

the dimension of the output layer is one. This transformation is followed by a nonlinear

operation defined by a predefined activation function. For the problem of approximating

the ray-tracing response, we employ the sigmoid activation function

Ψ(q, wj) = Ψ(ηj) =
2

1 + e−2ηj
− 1, j = 1, . . . , N,

but we note that in Chapter 6, we employ a hyperbolic tangent activation function. We

note that the output layer also has bias values and is taken to have a linear activation

function; i.e., Ψ(ηj) = ηj, j = 1, . . . , N . We employ the MATLAB neural network toolbox

to evaluate the surrogate model for this problem. We apply the mean squared error

performance function, since this performance function provides a good balance between

accuracy and computation time during surrogate model construction when compared

with other performance functions provided by the MATLAB neural network toolbox.

To train the network, we employ a nonlinear least-squares regression to compute the

coefficients and biases using the training data {qj, u(qj)}Mj=1. Back-propogation is the

process of propagating error backward through the model to calculate the gradient of

the user-defined error function with respect to the neural network weights. This gradient

is then used in an optimization strategy to compute weights that yield outputs that

accurately approximate the training data. We employ the Levenberg-Marquardt back-

propagation training function, since this outperforms other built-in training functions

in terms of error. The only exception is Bayesian regulation back-propagation, which

requires approximately four times the computational time for an improvement of only

0.01 in the surrogate model rRMSE. This is due in part to the fact that the Levenberg-

Marquardt algorithm does not require the computation of the Hessian matrix, unlike

many of the other MATLAB built-in training functions. We set the training parameters

associated with this training function to their default values and compare the performance

of this surrogate model with the other models in Section 4.7 and Chapter 5.
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4.7 Training Points

The basis functions Ψj, j = 1, . . . , N should be employed in conjunction with a com-

plimentary choice of training points, qm, m = 1, . . . ,M , to accurately approximate the

ray-tracing model. Training points derived from the roots of the univariate Legendre poly-

nomials are often employed in Gaussian quadrature due to their accuracy with relatively

few points. However, these points are not nested and hence cannot be re-employed when

increasing discretization levels. This is made apparent by Figures 4.5(a) and (b) in which

we plot the Gauss-Legendre and Clenshaw-Curtis points for levels ` = 0, ..., 4, where the

number of training points are given by R(`) = 2` + 1 . We note that each level of Gauss-

Legendre points do not overlap with the level above it whereas the Clenshaw-Curtis

points do overlap. This becomes important when attempting to refine a grid without

re-evaluating the high-fidelity model at every point on the updated grid. We consider

four separate sets of training points and we compare how the surrogate models previ-

ously discussed perform when employing each set of points. Whereas there is a whole

class of model-based design methods that have been studied for use with various surro-

gate modeling techniques [37], we consider model-free techniques. Additionally, methods

for experimental design or nested sparse grid techniques could be employed to improve

surrogate performance, but we leave this as future work.

Figure 4.5: Quadrature points for levels l = 0, ..., 4 for (a) Gauss-Legendre and (b)
Clenshaw-Curtis algorithms.

The first set of points is Gauss-Legendre (GL), which we use to obtain the surrogate

model results discussed in Chapter 5. The Gauss-Legendre points can be obtained by
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solving for the roots of the Legendre polynomials. We compile rRMSE results for the

surrogate models employing these training points in Table 4.4. We also compile in Ta-

ble 4.4 the surrogate model rRMSE when randomly selected training points are used.

These randomly selected points are drawn from a uniform distribution over [0, 1]. We

remind the reader that the order N of each of the surrogate models is provided in their

respective sections with details on their specific implementations.

Clenshaw-Curtis (CC) quadrature points are specified by the extrema of Chebyshev

polynomials, which are typically defined on the interval [−1, 1]. These points, when

mapped to [0, 1], are given by

qr` =
1

2

[
1− cos

(r − 1)π

R(`)− 1

]
, r = 1, ..., R(`),

where R(`) = 2` + 1. As seen in Figure 4.5, these points are not equally spaced and

cluster around the endpoints of the interval. This effectively avoids producing spurious

oscillations, termed the Runge’s phenomenon, when interpolating. Furthermore, we note

that these points are nested, so that the training points in level R(`) are also in level

R(`+ 1), which is important when more points must be added for increased accuracy of

the surrogate model. In practice, it has been shown Clenshaw-Curtis quadrature performs

as well as Gaussian quadrature [75] in many applications.

Latin hypercube sampling (LHS) was designed to be quasi-random while adequately

exploring a multidimensional space [55, 70]. For a p dimensional parameter space, each

dimension is divided into M equally probable sections. Then M points are randomly

sampled so that each sample is the only point in its axis-aligned hyperplane. This sam-

pling scheme is favorable in high dimensions — e.g., p ≥ 10 — since increased samples

are not required for increased dimensions. In addition, these points can be nested, as

with Clenshaw-Curtis.

We note that the discrete projection-based Legendre surrogate model employing

Gauss-Legendre sampling outperform the same surrogate model employing the other

sampling methods. Conversely, the regression-based Legendre, MARS, RBF, Gaussian

process and neural network surrogate models favor random sampling of the parameter

space. Latin hypercube sampling has been shown to perform about as well as simple

random Monte Carlo sampling strategies [55, 70]. We attribute the decrease in accuracy

seen in a number of the surrogate models employing LHS sampling to the low dimen-
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Table 4.4: Comparison of surrogate models relative error using various training point
strategies where Legendre refers to the model constructed via (4.7) and Legendre Regress.
refers to the model constructed via (4.8).

Points Legendre Legendre Regress. MARS RBF GP NN
GL 0.213 0.305 0.418 0.208 0.198 0.262
Random 9.391 0.267 0.357 0.112 0.078 0.202
CC 0.226 0.290 0.431 0.221 0.239 0.294
LHS 9.440 0.353 0.360 0.167 0.151 0.226

sional parameter space, so we are not exploiting the main strength of Latin hypercube

sampling — better performance in high dimensional spaces compared with the other

sampling strategies we consider in this dissertation. Additionally, recent work has shown

that this is not true when model hyperparameters are unknown and must be estimated

from training data observed at the chosen design sites [82].

In Table 4.5, we tabulate the rRMSE of each of the surrogate models for several

choices of the number of tensored Gauss-Legendre points used to train the surrogate

models. We note that the Legendre polynomials employing discrete projections do not

do well at approximating the physical model for a low number of training points. This

likely has to do partly with less points being employed for the quadrature rule. The

sparsity controlled regression-based Legendre surrogate model does not have this same

problem, but the error decreases more slowly than some of the other surrogate models

as more training points are employed. The MARS surrogate model does not improve

greatly when training points are added. The radial basis function, Gaussian process, and

neural network surrogate models behave similarly and as expected, with the rRMSE

error bound decreasing as more training points are employed. In Chapter 5, we employ

the Gauss-Legendre points for surrogate model construction since this choice provides a

good comparison of all the surrogate models.
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Table 4.5: Comparison of surrogate model accuracy bounds in rRMSE when the grid of
Gauss-Legendre training points is refined where Legendre refers to the model constructed
via (4.7) and Legendre Regress. refers to the model constructed via (4.8).

M Legendre Legendre Regress. MARS RBF GP NN
93 26.950 0.4244 0.4803 0.3828 0.3804 0.4306
113 2.0417 0.4225 0.4341 0.3753 0.3661 0.4713
133 0.5061 0.3574 0.4190 0.3220 0.3109 0.5311
153 0.3351 0.3390 0.4307 0.2825 0.2738 0.3563
173 0.2947 0.3344 0.4025 0.2375 0.2422 0.4164
193 0.2427 0.3135 0.3908 0.2397 0.2173 0.3636
213 0.2128 0.3048 0.4175 0.2075 0.1975 0.2624
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Chapter 5

Surrogate Modeling of a

Ray-Tracing Model

In this chapter, we employ the surrogate modeling techniquese discussed in Chapter 4

to solve an urban source localization problem with a simple two-dimensional ray-tracing

model. Whereas this ray-tracing model is not prohibitively expensive for use in Bayesian

inference, we use this example to verify the surrogate modeling techniques so that they

can be confidently employed for approximating high-fidelity transport codes used for

source localization in Chapter 6. An additional concern is that the two-dimensional ray-

tracing model has a discontinuous derivative due to the geometry of the problem, so

gradient-based optimization for experimental design is not possible. Alternatively, the

surrogate models that we construct are differentiable, therefore we can employ them for

gradient-based optimization. [25, 40]

As discussed in Chapter 2, the problem of determining the location and intensity

of a radiation source from detector measurements requires the solution of the Boltz-

mann transport equation (2.8) describing the transport of neutral particles, which is

computationally intractable to solve in real time. To address this problem, we make the

assumption that gamma rays that suffer collisions before reaching a detector are never

detected. Under this assumption, we obtain the model

ω · ∇u(r, E, ω) +
1

λ(r, E, ω)
u(r, E, ω) =

I0

4π
δ(E − E0)δ(||r − rS||2) (5.1)

describing gamma transport. Here u denotes gamma intensity per unit area – particle
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scalar flux – at location r and I0 denotes the intensity of the source, which is located

at the position rS with directional unit vector ω and energy E. The Dirac densities δ(·)
on the right-hand side isolates the source energy and position to E0, rS. Finally, λ is

the mean-free path, which is the mean distance traveled by source particles between

collisions.

Given a source at location rS = (x0, y0) with intensity I0 so that the model parameters

are q = [rS, I0] ∈ Ω, we solve (5.1) for total flux at a certain point ri, which we take to

be the location of the ith detector, and this yields

ûi(q) = I0∆tiεi
Ai

4π||ri − rS||22
exp

(
−
∫
rS→ri

1

λ
dr

)
, i = 1, . . . , d. (5.2)

Here, û is the expected number of gammas observed by a detector at location ri and Ω

is the parameter domain, which we explicitly define in Section 5.2. Here, the path of the

gammas from the source to the detector is represented by rS → ri, which represents an

arbitrary parameterization of the curve from rS to ri; e.g., [rS → ri](τ) = rS + (ri− rS)τ

where τ ∈ [0, 1]. Here, the i-th detector has face area Ai, a dwell time ∆ti, and intrinsic

efficiency εi. The full derivation of this equation is provided in [65].

The remainder of this chapter is organized as follows. We begin by outlining the

numerical ray-tracing model in Section 5.1. We introduce the problem geometry, a down-

town block of Washington D.C., in Section 5.2. For the purpose of constructing the

surrogate models, we develop a statistical model in Section 5.3. In Section 5.4, we detail

the surrogate model performance results for the ray-tracing model considering all of the

surrogate modeling techniques detailed in Chapter 4. We then employ the particle filter-

ing algorithm from Chapter 3 and the delayed rejection adaptive Metropolis algorithm

from Appendix A to solve the radiation source localization problem in Section 5.5. We

compare the localization results obtained using both of these algorithms employing the

ray-tracing model and the surrogate models. Lastly, we investigate a simple moving de-

tector strategy using the particle filtering algorithm and present improved localization

results for this method in Section 5.6.
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5.1 Numerical Model

We employ a ray-tracing scheme to determine the intensity of gamma particles reaching

each detector at location ri. For each detector, we construct a ray from the source location

to the detector location. We compute the number of intersections with the N buildings

along the path of this ray, and the length `h of the ray segment through each of the

h = 1, . . . ,N buildings. The buildings in the domain are assumed to be homogeneous,

each having a mean free path λh, h = 1, . . . ,N [69]. These assumptions yield

ûi(q) = I0∆tiεi
Ai

4π||ri − rS||22
exp

(
−
N∑
h=1

`h
λh

)
, i = 1, . . . , d, (5.3)

where q = [rS, I0]. Note that unlike in (2.10), we denote the ray-tracing model as û to

distinguish it from the model with background incorporated u.

We employ the Python code gefry [32] to implement this numerical model, which

is a significant simplification of the original problem derived from Boltzmann transport

theory. Even so, because of the buildings in the geometry, this model is non-smooth

and any extension of this model – to 3-D or considering particle scattering – would

yield a model that is computationally infeasible for Bayesian inference and uncertainty

propagation.

5.2 Model Geometry

To apply and test this numerical model for a realistic scenario, we simulate a domain that

is a 250 m × 180 m block in downtown Washington, D.C. [65, 69]. We construct a 2-D

representation of the domain using data from the OpenStreetMaps database. We treat

the buildings as disjoint polygons of uniform density and composition, which define their

individual macroscopic cross-sections. A satellite photo with the building cross-sections

overlaid is provided in Figure 5.1.

We semi-randomly assign each building an optical thickness between 1 and 5 mean

free paths, with the larger and more dense buildings having larger optical thicknesses.

This is motivated by an approximation that the wood and concrete buildings in this

domain would have an average optical thickness of 3 mean free paths. We generate the

detector locations, plotted as diamond marks in Figure 5.1, by sampling from a uniform
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Figure 5.1: Satellite image of domain with overlaid model geometry from [69].

Table 5.1: Location of NaI detectors plotted in Figure 5.1.

Detector x (m) y (m) Detector x (m) y (m)
1 68.8 35.8 6 189.2 19.2
2 66.4 119.5 7 154.5 3.0
3 4.1 48.1 8 188.9 141.3
4 190.2 50.1 9 119.9 160.0
5 94.0 99.9 10 214.5 77.9

distribution across the spatial portion of the domain Ω while excluding the walls of the

buildings. Here, we also assume that the intensity I of a source within this domain is

between 5× 108 and 5× 1010 Bq which corresponds to a source between approximately

one hundredth of a curie and one curie. Therefore, we define our parameter domain as

Ω = [0, 250 m]× [0, 180 m]× [5× 108, 5× 1010 Bq].

We assume the detectors have facial areas Ai = .0058 m2 associated with a 3 inch

diameter and 3 inch length, intrinsic efficiencies of εi = 62%, and dwell times of ∆ti = 5

second for i = 1, ..., 10. These efficiencies are typical for a standard cilyndrical NaI scintil-

lator measuring 662 keV gamma particles. We use a background rate of B = 300 counts

per second, which is typical for this type of detector in an urban environment. We compile

the detector locations in Table 5.1.
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5.3 Statistical Model

To develop regression-based surrogate models, we must first construct an appropriate

statistical model, as in Chapter 2. We assume a constant mean background with nominal

intensity B = 300 gamma counts per second and take q0 = [x0, y0, I0] to be the true source

location and intensity. Radioactive decay and detection are Poisson random processes so

we take the detector response to be a Poisson-distributed random variable. For each of

the considered detectors, we employ the statistical model

Yi = Pois(ûi(q0) +Bi∆ti), i = 1, ..., d (5.4)

for the total detector response. Here, Pois() denotes the Poisson distribution with mean

ui(q0) = ûi(q0) + Bi∆ti, for ûi(q0) given by (5.3). The responses of the d detectors are

mutually independent. A Gaussian distribution approximates the Poisson distribution

with a large expected value, which in this case is accurate for a large number of gamma

observations. Therefore, we approximate (5.4) by

Yi ∼ N (ui(q0), σ2
0i

), i = 1, ..., d,

where σ2
0i

= ui(q0) = ûi(q0)+Bi∆ti. We denote the detector observations by yi, i = 1, ..., d,

which are realizations of the random variables

Yi = ui(q0) + εi, i = 1, ..., d, (5.5)

where εi ∼ N (0, σ2
0i

). We are then able to formulate the surrogate models as in (4.1).

5.4 Surrogate Modeling Results

For each of the surrogate models discussed in Section 4, we plot the goodness of fit

for the first 50 test points in Figure 5.2 for the first detector. Note that we construct

these surrogate models by employing Gauss-Legendre training points as mentioned in

Section 4.7 since they provide a good comparison of all the surrogate modeling techniques

that we consider. Figures 5.2(a) and (b) depict the natural log response of the physical

model plotted versus the Legendre polynomial-based surrogate models of order K = 21

solved via discrete projection (4.7) and LASSO (4.8). Additionally, in Figures 5.2(c), (d),
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(e), and (f) we plot the log of the physical model response versus the response of the

surrogate models based on multivariate adaptive regression splines, radial basis functions,

Gaussian process, and neural network respectively. We note that each of these surrogate

models provide an accurate approximation to the physical model. For each of the 10

detector models and for each of the considered surrogate models, we plot the relative

root mean squared error (rRMSEi) for test points {qs}Ss=1, s = 1, ..., S in Figure 5.3.

We also compile the total rRMSE (4.2) for each surrogate model in Table 5.2 along with

the training and evaluation times of the surrogate models.
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Figure 5.2: Log of detector 1 model responses plotted versus the (a) Legendre surro-
gate model computed via (4.7), (b) Legendre surrogate model computed via (4.8), (c)
MARS surrogate model, (d) radial basis functions surrogate model, (e) Gaussian process
surrogate model, and (f) neural network surrogate model for the first 50 test points.

Note that in Figures 5.2(a) and 5.2(b), both methods for computing the Legendre

surrogate models produce good approximations to the physical model. However, the

results in Table 5.2 show that the surrogate models computed by employing discrete

projection provide better accuracy and efficiency than the surrogate models employing

sparsity controlled regression. Whereas the Legendre polynomial based surrogate models
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require the least time to train, they require substantially more time to evaluate due to

the large number of basis functions required to accurately approximate the non-smooth

behavior of the physical model.

The MARS surrogate models do not perform as well as other surrogate models in

terms of accuracy but outperform many of them in terms of computational speed. This

is especially apparent in some of the large deviations of the surrogate model for the first

detector from the test data in Figure 5.2(c) as well as by the scale of the rRMSEi in

Figure 5.3. We explain this decrease in accuracy by the fact that we have restricted the

class of basis functions to piecewise linear splines with second-order interactions between

the parameters. Future work includes investigating whether higher-order interactions and

higher order splines improve these results. The ability of MARS to accommodate high-

dimensional parameter spaces makes it an ideal candidate for problems with a large

number of parameters.

The radial basis functions presented in Section 4.4 are isotropic, but the surrogate

models based on radial basis functions have low rRMSE in comparison with the other

surrogate models, as depicted in Figure 5.3 and compiled in Table 5.2. This isotropy is

a concern for our non-smooth model when less training points are available, since the

model has different responses in each parametric direction; mainly between the (x, y) and

I parameters. The Gaussian process surrogate models are constructed in a way to avoid

this problem using anisotropic kernel functions. The Gaussian process surrogate models

are more accurate but require a greater amount of training and evaluation time when

compared with the other models. However, the combination of the training and evaluation

expenses required by the Gaussian process surrogate models is still significantly less

expensive than the evaluation of the physical model at those same test points.

Radial basis function and neural network surrogate models also provide accurate

approximations of the physical model with the trade off of requiring a moderate amount

of time to train the surrogate models. The evaluation time for the RBF and neural

network surrogate models is an order of magnitude smaller than the other surrogate

models, excluding the less accurate MARS surrogate models, and substantially smaller

than the physical model evaluation time, making them ideal for Bayesian inference and

uncertainty quantification.

We used MATLAB’s built-in neural network and Gaussian process packages to develop

these two surrogate models, whereas we construct the functions required to evaluate
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Table 5.2: Comparison of surrogate models using Gauss-Legendre training points where
Leg. refers to the model constructed via (4.7) and Leg. Reg. refers to the model con-
structed via (4.8).

Surrogate rRMSE Surrogate Training Surrogate Evaluation
Time (s) Time (s)

Leg. 2.13× 10−1 33.42 3.86
Leg. Reg. 3.05× 10−1 50.21 3.95
MARS 4.18× 10−1 66.43 0.02
RBF 2.08× 10−1 134.45 0.29
GP 1.98× 10−1 425.64 2.32
NN 2.62× 10−1 124.11 0.13

the radial basis functions and Legendre functions surrogate models. Additionally, we

employed the third-party ARES toolbox [36] for the construction of the MARS surrogate

models.

5.5 Radiation Source Localization Results

To illustrate the use of surrogate models for Bayesian inference, we consider the problem

of locating a source within the domain depicted in Figure 5.1 and discussed in Sec-

tion 5.2. We consider two cases in which we simulate a 8.7 mCi source at the locations

(x0, y0) = (158 m, 98 m) and (x0, y0) = (120 m, 40 m), as in [29]. We will call these

Case 1 and Case 2 respectively. We compare the localization results when sequential

Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) techniques are employed.

5.5.1 SMC Implementation

We employ the ray-tracing model (5.1) to simulate detector responses and employ a sim-

ple particle filtering algorithm to perform Bayesian inference. A complete description of

the particle filtering methodology used for source localization can be found in Chapter 3.

We employ the ray-tracing model in the weight calculation (3.11) in place of the simple

quadratic attenuation detector model employed in Chapter 3. We note that while the

ray-tracing model is efficient enough for many applications, we must call the model once
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Figure 5.3: Root mean squared relative error for the ten surrogate models, corresponding
to the ten detectors, constructed using the surrogate modeling methods.

per particle simulated per time step. Therefore, we are unable to simulate many parti-

cles over many time steps, and so we are motivated to employ the surrogate modeling

techniques outlined in Section 4. However, we begin by employing the ray-tracing model

within the particle filtering framework from Algorithm 1 using 100 measurements and

1000 particles. We remind the reader that the detectors we employ in this chapter have

a five second dwell time. We note also that we sample particles from the convex hull

of the detector network as we did in Chapter 3; i.e., we employ an importance function

in Algorithm 1 that is uniform over the convex hull of the detector network. Even with

this low number of measurements and particles, employing the ray-tracing model for this

problem requires approximately three hours to compute the posterior.

We simulate the conditions for Case 1 and attempt to localize this source using

the detector measurements provided by the ray-tracing model. We plot the particles

remaining after resampling in Figure 5.4 and we observe that we have localized the source

to within approximately 10.5 meters. We next consider Case 2 and plot the particle
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Figure 5.4: Posterior density obtained by employing the ray-tracing model for Bayesian
inference with the SIR particle filter from Algorithm 1. We plot the cases where the
source is located at (a) rS = [158 m, 98 m] and (b) rS = [120 m, 40 m].

filtering results in Figure 5.4 (b). We note that we are able to localize this source to

within approximately 8 meters. In these figures, we plot the true source location, the

mean particle (x, y) location, and the detectors. For many applications, this localization

accuracy is sufficient. However, we note that this accuracy can be improved by employing

robust resampling strategies, but we leave this as future work.

Next, we construct a Gaussian process surrogate model to approximate the ray-tracing

model (5.3) as we did in Section 5.4. As the surrogate model is more efficient than the

physical model, we are able to simulate more particles and measurements. We consider the

problem of locating a source with 5,000 particles, but we first employ the same number

of measurements as with the ray-tracing model for comparison. We plot the localization

results obtained using the particle filter outlined in Algorithm 1 and employing the surro-

gate model in Figure 5.5 for both cases. The posteriors appear denser than in Figure 5.4

since we were able to employ 5 times as many particles in our simulations. In Case 1, we

are able to localize the source to within 8 meters of the true source location, which is an

improvement from the source estimate error obtained using the ray-tracing model. This

improvement is due to the increased number of particles simulated. However, the error in

Case 2 is approximately the same; we are able to localize the source in Case 2 to within

10 meters.

In both cases, we have quantified the true source location within the posterior distri-
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Figure 5.5: Posterior density obtained by employing the Gaussian process surrogate
model for Bayesian inference with the SIR particle filtering algorithm using 100 measure-
ments. We plot the two cases where the source is located at (a) x = [158 m, 98 m] and
(b) x = [120 m, 40 m].

butions and the location estimates of this algorithm are adequate for this application, as

teams with hand-held detectors could be sent to the building quantifying the majority

of the posterior distribution. We plot in Figure 5.6 the posterior distributions obtained

when the neural network surrogate is employed to solve the source localization problem

with the particle filtering algorithm. We note that there is not a significant difference

between the posteriors when neural network and Gaussian process surrogate models are

employed. The equivalence of these distributions obtained using the Gaussian process

and neural network surrogate models can be confirmed using energy statistics [74], but

we leave this as future work.

Next, we consider the same two cases, but we generate 5,000 separate measurements.

Additionally, we employ a neural network surrogate model to approximate the ray-tracing

model. We note that the particle filtering algorithm evaluates the surrogate model a

total of 50,000 times. However, to compute the posterior depicted in Figure 5.7 on a

standard laptop computer when the neural network surrogate model is employed takes

just over one minute. We note that in Case 1, the shape of the posterior has not changed

significantly when more measurements are employed. This variance is likely caused by

the variance of the Poisson distributed measurements and the model discrepancy errors

δi in (4.1) from the surrogate models. In Case 2, we see that increased measurements do

result in a posterior with less variance and we are able to localize the source to within
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Figure 5.6: Posterior density obtained by employing the neural network surrogate model
for Bayesian inference with the SIR particle filtering algorithm using 100 measurements.
We plot the two cases where the source is located at (a) x = [158 m, 98 m] and (b)
x = [120 m, 40 m].

approximately 6 meters. Therefore, we conclude that the distribution is converging to

the source location. However, in most applications we are not able to employ this many

simulations given the urgency of the problem.

5.5.2 MCMC Implementation

Here, we compare the SMC localization results with those obtained using a MCMC

technique. We again employ the ray-tracing model (5.1) to simulate detector responses

and now employ DRAM to perform Bayesian inference. A complete description of DRAM

and the methodology used for source localization can be found in [27] and is outlined

in Appendix A. We employ the Python package pymcmcstat to perform the Bayesian

inference with the DRAM algorithm. We initialize the MCMC chains in the center of

the uniform parameter prior distributions – i.e., an approximately 1 mCi source near

the center of the domain – and we draw 105 samples, with the first half discarded as

burn-in. An ordinary least squares estimate is often employed to initialize the MCMC

chains, however we employ this mean-valued initialization strategy here for simplicity.

We note that this is the same number of model evaluations used when 1,000 particles

were simulated using 100 detector measurements with the particle filtering algorithm in

Section 5.5.1. When multiple chains are simulated, Gelman-Rubin diagnostics can be
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Figure 5.7: Posterior density obtained by employing the neural network surrogate model
for Bayesian inference with the SIR particle filtering algorithm using 5,000 measurements.
We plot the cases two where the source is located at (a) x = [158 m, 98 m] and (b)
x = [120 m, 40 m].

employed to verify the chains have converged [22]. However, we instead plot the last

5,000 chain samples in Figure 5.8 to verify that they have converged – examples of chain

convergence and non-convergence are provided in [66]. Visual inspection of these sample

histories indicate that this number of samples is a conservative choice – i.e., the parameter

chains have converged.

Figure 5.8: MCMC sample chains for (a) the source x and (b) y coordinate estimates.
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We plot the posterior obtained from DRAM for Case 1 in Figure 5.9 and note that

the mean of the posterior is within approximately 1.5 meters of the true source location.

Additionally, we have quantified the true source location within the posterior distribution,

which covers approximately a 5 meter by 8 meter portion of the domain. In Figure 5.10,

we plot the posterior for Case 2 using the same initialization for the DRAM algorithm

and we note that we have localized the source to within a meter in this case. This is

a significant improvement from the SMC implementation; however, we note that the

temporal framework of the particle filtering algorithm lends itself to moving detectors,

as discussed in Section 5.6.

Figure 5.9: Posterior density for Case 1 employing the ray-tracing model for Bayesian
inference with DRAM. We plot (a) the full domain and (b) the portion of the domain
where the posterior is located.

Next, we use employ the GP surrogate models to generate detector responses to solve

the source localization problem with DRAM. We employ the same DRAM setup as was

used with the ray-tracing model and we plot the posteriors for Case 1 in Figure 5.11

and Case 2 in Figure 5.12. We note that the mean of the posterior for Case 1 is within

3 meters and for Case 2 is within 1 meter of the true source location. However, the

posteriors are slightly more diffuse than when the ray-tracing model was employed. This

is due to the model discrepancy errors δi from (4.1) that arise from the smoothing of the

ray-tracing model solution. These discrepancies lead to slightly less precise localization

results. However, we have still accurately localized the source to within an approximately
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Figure 5.10: Posterior density for Case 2 employing the ray-tracing model for Bayesian
inference with DRAM. We plot (a) the full domain and (b) the portion of the domain
where the posterior is located.

5 meter by 10 meter portion of the domain in both test cases and this amount of precision

in the posterior results is sufficient for most applications. Additionally, these localization

results using the GP surrogate models are an improvement from those obtained using

the particle filtering algorithm.

5.6 Moveable Detector Strategy

Prior research into moveable detectors using the ray-tracing model (2.10) and the simu-

lated domain in Section 5.2 has employed mutual information with DRAM to determine

detector locations that would lower the uncertainty in the posterior distribution [48].

Additionally, in [68], the problem of optimizing detector placement was treated as a

combinatorial problem where the sum of squares error in the average sense is minimized

by the optimal detector network over a large number of candidate locations. The particle

filter detailed in Algorithm 1 lends itself to a moving detector strategy, as measurements

are taken continuously over time and are employed to inform the particle weights. Be-

cause of this, we are able to move the detectors after a certain number of measurements

in a way that will decrease the uncertainty in the posterior approximated by the particles.

To begin, we implement the simple detector movement strategy of moving the detec-

tors each one meter toward the location of the mean of the estimated posterior within the
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Figure 5.11: Posterior density for Case 1 employing the Gaussian process surrogate
model for Bayesian inference with DRAM. We plot (a) the full domain and (b) the
portion of the domain where the posterior is located.

space after each measurement is taken. This is performed by evaluating the mean of the

non-resampled particles’ positions and moving the detectors one meter toward this loca-

tion. To avoid detector collisions with buildings, we check if the detector will be moved

across the boundary of a building and, if so, we attempt to move it in the coordinate

directions toward the source. We first check which coordinate direction would bring it

closer to the source estimate and attempt to move the detector in that direction. If a

movement in that direction results in a collision with a building, the other coordinate di-

rection is checked. If both of these cases result in a building collision, we randomly select

directions in which to move the detector until a direction is found such that a building

collision is avoided. In this way, the detectors move toward the source location and do not

collide with buildings within the geometry. However, these detectors are not technically

moving, but moveable since they do not have a specific trajectory. We plot results for

this simple movable detector strategy in Figure 5.13(a) with the detectors being moved

one meter after each measurement is taken. Note that we continue to sample particles

from the convex hull of the original detector network.

We observe in Figure 5.13(a) that as the detectors are moved through the domain,

regions that previously had little probability become candidate locations for the source

again. This is especially apparent in the bottom right portion of the convex hull of the

original detector network in Figure 5.13(a). Since the particle weights are reset during
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Figure 5.12: Posterior density for Case 2 employing the Gaussian process surrogate
model for Bayesian inference with DRAM. We plot (a) the full domain and (b) the
portion of the domain where the posterior is located.

each resampling step, the detectors do not retain information on areas from which they

have been moved away. In this way, the particles tend toward locations that have already

been disqualified as source locations when the detectors are moved farther from those

areas. Therefore, we propose that at each detector movement step, we construct a kernel

density estimate (KDE) of the approximate posterior and sample particles from the KDE.

We then move the detectors toward the locations of high probability within the domain

as before. We note that the KDE tends to smooth the posterior and for this reason should

be avoided in some cases [66]. However, for this simple problem with a single source, the

smoothing of the posterior by the KDE does not negatively affect the results.

We construct the KDE using sklearn’s KernelDensity [56] method after 10 measure-

ments have been taken and sample particles from this distribution as new measurements

are taken by the detectors. The detectors are then moved one meter in the direction of

the mean of the approximated posterior. This process is repeated every 3 measurements

so that the detectors converge toward the posterior’s location of maximum probability

within the space. We plot the results for this KDE-informed method of sampling in Fig-

ure 5.13(b) and we observe that the posterior is localized around the true source location

with a mean value approximately two meters away from the true source location. These

results were obtained using 100 measurements from the detectors, each of which has a

five second dwell time. We note that this is a simple moveable detector strategy and that
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future work includes investigation of informed detector movement strategies such as the

a Lyapunov-redesign method detailed in [17].

Figure 5.13: Posterior density for Case 1 employing the particle filtering algorithm with
moveable detectors. We plot (a) the results when particles are sampled uniformly over
the convex hull and (b) the results when particles are sampled from the kernel density
estimate of the posterior.

5.7 Moving Source Scenario

The IRSS datasets introduced in Chapter 3 include experimental detector measurements

of moving sources. Prior work has demonstrated the use of particle filtering algorithms

for tracking moving sources using this experimental data [59]. However, this data was

collected in an open-field scenario and so can not be employed to show localization of a

moving source within an urban environment. To answer the question of whether a moving

source can be located within an urban environment, we instead employ the ray-tracing

model to obtain detector readings. Since the detectors are not movable in this scenario,

we are motivated to again construct surrogate models to approximate the ray-tracing

model. We employ the GP surrogate models detailed in Chapter 4 to approximate the

ray-tracing model for the ten detectors discussed in Section 5.2. We then employ the

particle filtering algorithm outlined in Chapter 3 to approximate the posterior describing

the source location over time.
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We consider a source located initially at rS = [124, 40], which is near the southern

boundary of the convex hull of the detector network. We assume that this source is moving

north along the main street within this domain at a rate of one meter every 5 seconds;

i.e., we move the source a meter north after every detector measurement is taken, since

the detectors have five second dwell times. We plot the posterior distribution following

every 20 measurements for a total of 80 measurements in Figure 5.14. We observe that

we are able to track the source well as it moves north through the domain. The posterior

is more diffuse than in Section 5.5.1 since we have fewer measurements available for each

source location as it moves. However, we are still are able to localize the source to within

an approximately 50 by 50 meter area and our source estimate is at most 15 meters away

from the true source location in any of these plots. Therefore, we conclude that we are

able to localize a moving source within this simulated urban environment.
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(a) (b)

(c) (d)

Figure 5.14: Posterior density estimate employing the particle filtering algorithm and the
GP surrogate model approximation of the ray-tracing model to locate a moving source.
We plot the results when the source is at location (a) rs = [124, 60], (b) rs = [124, 80],
(c) rs = [124, 100], and (d) rs = [124, 120].
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Chapter 6

Surrogate Modeling of a

High-Fidelity Monte Carlo

N-Particle Model

The research detailed in this chapter was performed in collaboration with students and

faculty at the University of Michigan and North Carolina State University [49]. The

paper summarizing this research was coauthored by Dr. Paul Miles, who appears as first

author and contributed especially to the DRAM algorithm implementation. We note that

parts of this chapter, especially portions of Section 6.4, closely reflect the material in this

collaborative paper. We employ a Monte Carlo radiation transport model using the Monte

Carlo N-Particle (MCNP) software package [24] to provide high-fidelity simulations of

radiation transport within a simulated urban domain. We then use these high-fidelity

simulations to solve the source localization problem. We construct the radiation transport

model so that it employs a 3-D source location (x, y, z) as input and returns the expected

count rates for a set of detectors placed throughout the domain. We then perform the

inverse problem by comparing the model with a set of observations to reconstruct the

inputs to our problem. The detectors record counts of background radiation as well as

any source of radiation present in the space. The objective is to reconstruct the source

location and intensity that yielded that set of detector observations.

The MCNP model provides an accurate representation of radiation transport given the

user’s knowledge of the 3-D urban geometry. However, the MCNP model requires several

hours to simulate a single case. The computational cost of running the high-fidelity MCNP
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model makes it untenable for the inverse problem and experimental design, which require

thousands of model evaluations. Instead, we construct surrogate models to approximate

the MCNP response as we did in Chapter 4. Surrogate models provide an approximation

of the simulated MCNP response in seconds, making them suitable for inverse methods

for source localization [30, 31, 69], experimental design [48], and uncertainty propagation.

Based on the detector count rates returned by MCNP, we train and verify highly

efficient Gaussian process (GP) and artificial neural network (NN) surrogate models.

In Chapter 5 and in prior work, we have outlined the problem of modeling uncollided

radiation transport – i.e., neglecting scattering – within a 2-dimensional simulated urban

environment [10, 30, 31, 69]. The MCNP model we construct tracks both uncollided and

scattered gamma radiation in a 3-D environment, which enhances fidelity but makes the

construction of good surrogate models more challenging. Experimental design strategies

for surrogate model construction can lead to decreased cost associated with running the

MCNP model [10].

The solution to the deterministic inverse problem is potentially non-unique, as sep-

arate source locations and intensities can produce similar detector observations. To ad-

dress the potentially non-unique solution, we limit our search for the source location to be

within the convex hull of the detector network. Whereas we cannot guarantee the source

to be within the convex hull of the detectors as depicted by the multimodal posteriors that

we obtain for certain test cases, this assumption decreases the probability of non-unique

solutions and is motivated by multilateration, as discussed in Chapter 2. Additionally,

we implement a Bayesian approach to the source search problem, which accounts for the

inherent uncertainty of the problem [31], since the physical process is random in nature.

As discussed in Chapter 2, we treat the source location and intensity as random variables

instead of unknown fixed values. Using this approach, the posteriors reflect the probable

source locations and intensities given the set of detector measurements. This approach

differs from other source localization methods, such as multilateration [72] discussed in

Chapter 2, which can be highly sensitive to input uncertainty.

Background radiation in the environment leads to additional uncertainty which must

be incorporated to distinguish it from radiation caused by an unknown source. As in

Chapter 5, we utilize Markov chain Monte Carlo (MCMC) to infer the unknown poste-

rior distributions for the source location and intensity. The MCMC inference algorithms

employed in this chapter are detailed in Appendix A. As in Chapter 5, we employ the De-
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layed Rejection Adaptive Metropolis (DRAM) algorithm [27] implemented in the Python

package pymcmcstat [51]. The posterior distributions we obtain employing DRAM are

able to effectively reduce the search space of potential source locations by approximately

60%. Additionally, in the case of a unimodal posterior, we are able to localize the source

to within approximately 10 meters. When the posteriors are multimodal, we still are able

to quantify the source location within one of these modes, representing a region of high

probability.

The remainder of this chapter is organized as follows. In Section 6.1, we describe the

3-D Monte Carlo radiation transport physics and the experimental setup within MCNP.

We provide a basic description of the radiation transport model formulation in Section 6.2.

We discuss details regarding surrogate models and their performance in Section 6.3. We

provide a discussion of the validity of the simulated data for radiation source localization

in Sections 6.4.2 and 6.4.5. Finally, we outline a basic procedure for source localization

in Section 6.4.

6.1 Monte Carlo N-Particle (MCNP) Radiation

Transport

MCNP is a software package developed by Los Alamos National Laboratory which uses

the Monte Carlo method to simulate the transport of radiation as particles from which

detector count rates can be predicted. We employ MCNP to simulate random gamma

trajectories in a high-fidelity 3-D urban model and we use point detectors with response

functions to estimate the detector count rate. Monte Carlo transport software does not

require discretization in space, direction of flight, or gamma energy, so the calculation is

as accurate as the description of the problem geometry and the underlying interaction

cross sections and models can allow. We employ MCNP6.2 to perform the calculations

in this chapter.

MCNP can be used to compute the expected count rate for a network of detectors

located at specific locations in a simulated urban environment. We plot the 3-D simulated

environment in Figure 6.1 with a Google Earth image of the domain, which represents a

set of downtown blocks in Ann Arbor, Michigan. The detectors are positioned in several

locations throughout the domain as depicted in Figure 6.2. We provide the detector

locations in Table 6.1.
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Figure 6.1: 3-D view of urban environment from (a) Google Maps and from (b) com-
putational framework. Note that certain structures appear to “float” due to simplified
geometric constraints.

Table 6.1: Location of NaI detectors. Numbers correspond to markings in Figure 6.2.

Detector x (m) y (m) z (m) Detector x (m) y (m) z (m)
1 91.0 160.0 1.0 6 40.0 39.0 1.0
2 180.0 53.0 1.0 7 30.0 80.0 14.0
3 -4.0 90.0 1.0 8 122.0 80.0 25.0
4 34.0 -4.0 1.0 9 153.0 125.0 1.0
5 95.0 25.0 1.0 10 63.0 13.0 65.0

We assume that all buildings in the domain are fully solid objects with uniform den-

sities. For most of the buildings, we use a homogenized reduced density concrete mixture

with a mass density of 0.182 g/cm3 from the Pacific Northwest National Laboratory

(PNNL) material compendium (specifically concrete, regular) [47]. One exception is the

parking structure, which we model using reinforced concrete at full density. Using the

PNNL material compendium, we take the air between the materials to be dry air at sea

level and model the soil beneath the ground level as US averaged earth [47]. We take

all building structures to be rectangular parallelepipeds. We note that in Figure 6.1(b),

certain geometrical structures appear to “float” in space. These objects correspond to

different levels of a parking garage structure, where we have ignored the support mem-

bers between levels. The MCNP calculations use the photoatomic interaction data in the

MCPLIB84 library [78].

We model the source as a Cs-137 point source that emits 662 keV gammas isotropi-
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Figure 6.2: Overhead view of urban environment with detector positions denoted by
blue diamonds with a black cross. Numbers are included for each detector for reference
in later analysis.

cally. We use a branching ratio of 0.851 since only 85.1% of Cs-137 beta decays emit a

662 keV gamma. We assume that the contribution of any gammas that leave the simulated

problem domain are negligible; i.e., any gammas that escape the boundary are unlikely

to re-enter the domain. As gamma spectrometers typically have a minimum detection

threshold of around 50 keV, we use a lower cutoff of 20 keV for the MCNP simulations

to avoid tracking particles that have scattered below that energy which improves the

efficiency of the MCNP calculations with no loss of accuracy.

To accelerate the use of computationally expensive MCNP simulations for Bayesian

inference, we construct efficient surrogate models that can reasonably emulate the re-

sponse predicted by MCNP. We provide details regarding the surrogate model perfor-

mance and run time statistics in Section 6.3. To obtain statistically converged MCNP

simulations, many particles must be simulated within the domain. Employing MCNP,

we use point detector tallies, where MCNP performs a ray-tracing calculation at each

source and scattering event to estimate the contribution to each detector’s response. The

computed variance of the detector response depends on the spread in these contributions

to the estimator. We configure the point detector estimator employing MCNP to yield

a tally that represents the detector count rate per source decay per unit volume of the
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detector. Therefore, the MCNP estimate for each detector reading is scaled by the detec-

tor volume and the activity of the source, which we infer simultaneously with the source

location.

The MCNP calculations were each run with 5 million random gamma histories.

Whereas there is significant variation between calculations depending on the source lo-

cation, the computational time was typically on the order of 3-6 hours. The statistical

uncertainties of the MCNP detector responses also have a significant variation for the

same reason, but typical uncertainties of a few percent were obtained for most detector

tallies that were more than two standard deviations of the background above the nominal

background rate. On average, each source location simulated requires approximately 1000

computer minutes – distributed across 4 cores using OpenMP shared memory parallelism

within MCNP – to provide count rates for all 10 detectors. In parallel, a single case took

on average 4 hours to compute.

6.2 3-D Radiation Transport Model Formulation

We represent the radiation transport model as

ui(q) = ûKi (q) + E[Bi∆ti], i = 1, . . . , d, (6.1)

where ui(q) is the expected number of gamma counts during period ∆ti at the ith of d de-

tectors, ûKi (q) is the model prediction for expected counts due to a radiation source using

model K, which we take to be either the MCNP model (K = MCNP ), or the surrogate

model (K = SM). Additionally, E[Bi∆ti] is the expected number of background counts

during the same period. We denote the inputs of interest in our model by the parameter

set q = [x, y, z, I], where (x, y, z) is the source location and I denotes the source intensity

in gammas per second. We model the detector counts due to the source by

ûKi (q) = FKi (qloc)IVi∆ti. (6.2)

Here, FKi is either the high-fidelity MCNP model (FMCNP
i ) or surrogate model (FSMi )

prediction for number of gamma interactions per unit volume Vi of the ith detector per

simulated source particle. We will refer to this as the relative count rate. For convenience,

we define the subset of q that refers to the source location as qloc = [x, y, z].
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It is advantageous to formulate the Gaussian process and neural network surrogate

models in terms of a statistical observation model, as we did in (2.5), whose discrepancies

from the high-fidelity MCNP calculations are represented by random errors. We know

that the expected number of gamma particles observed at a detector location is given

by ui(q), and the observed number is distributed according to a Poisson distribution

with mean ui(q). However, for a large number of counts (typically greater than 30) we

can approximate the Poisson distribution by a Gaussian distribution, so we employ the

statistical model

Yi ∼ N (ui(q), σ
2). (6.3)

Here, σ2 = ui(q), since the Poisson distribution has variance equal to its mean. We use

realizations yi of this statistical model to construct our surrogate models. Details regard-

ing the MCNP model were provided in Section 6.1 and details regarding the surrogate

models will be discussed in Section 6.3.

6.3 Surrogate Modeling Results

As discussed in Section 6.1, using MCNP models for source localization is computationally

intractable, so we employ surrogate models. For the purpose of source localization in

this 3-D simulated domain we consider Gaussian process (GP) and neural network (NN)

surrogate models, which are discussed fully in Chapter 4. The quantity of interest, yi, i =

1, . . . , d, is the number of counts during the dwell time ∆ti for each detector in the domain,

so we train a separate surrogate model for each detector using the high-fidelity MCNP

simulations FMCNP
i , i = 1, . . . , d. Functionally, the surrogate models depend only on the

p = 3 dimensional parameter set, qloc = [x, y, z]. We train and test the surrogate models

using MCNP simulations performed with various combinations of different values of x, y,

and z.

As discussed in Section 6.1, we must scale the MCNP simulated detector readings. The

point detector estimators FMCNP
i were configured to yield a tally that represents the rate

per source decay per unit volume of the detector. Therefore, we scale the MCNP response

by the detector volume and the source intensity in decays per second. We define the scaled

high-fidelity model response as F̃MCNP
i = I×Vi×FMCNP

i and use it to train F̃SMi . We use

the relationship FSMi = F̃SMi /(I×Vi) to rescale the surrogate models prior to employing

them for Bayesian inference, since we infer the source intensity I as well as the source
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location qloc. We use a scaling factor of I × Vi = (3.7× 107 decays/second)× (2098 cm3),

which corresponds to a nominal source intensity I of 1 mCi (I = 3.7 × 107 decays per

second) and a detector with dimensions 2′′ × 4′′ × 16′′ (Vi = 2098 cm3). We tested the

surrogate models using source intensities in the range of I ∈ [3.7×105, 3.7×1011] Bq, and

we found that the surrogate performance is not highly dependent on this scaling factor.

For each of the detectors, we construct a separate surrogate model F̃SMi which is

related to the physical model by

F̃MCNP
i (qloc) = F̃SMi (qloc) + δi. (6.4)

The model discrepancy term δi quantifies the unresolved fine-scale behavior of the MCNP

simulations that is unaccounted for by the surrogate models. To pose this in a statistical

framework, we assume that the model discrepancy terms are identically distributed, and

the goal is to obtain enough information from the high-fidelity model to guarantee that

δi is small.

There are several choices that can be made when choosing training points for surrogate

models. Depending on the surrogate model, certain training points may increase the

accuracy of the model. For this investigation, we employ a combination of Gauss-Legendre

(Set 1) and random (Set 2) training points. Set 1 consists of 729 tensored Gauss-Legendre

points as visualized in Figure 6.3(a), which we utilize to ensure we have model information

throughout the domain. Set 2 consists of a total of 3000 random points placed within

the domain. The primary region of training is in the lower half of the domain, where

most of the buildings exist. The motivation behind this is two-fold: 1) the geometric

complexities due to the buildings in this part of the environment require more training

points to improve surrogate accuracy; and 2) a stationary radiation source is more likely

to be in or around the buildings, rather than suspended in the air above the buildings

— e.g., on a drone or aerial vehicle. Therefore, we run 70% of the 3000 random training

points in this region. The remaining training points are scattered between the tallest

building (5%) and the top-half (25%) of the domain as shown in Figure 6.3(b). We use

the remaining Nt = 271 MCNP simulations to test the accuracy of the surrogate models

and perform source localization experiments, as discussed in Section 6.4. These 271 test

points are scattered uniformly throughout the domain as seen in Figure 6.3(c). In total,

we performed MCNP simulations for 4000 different source locations, which takes between

3 and 4 weeks using the computational resources described in Section 6.1.
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Figure 6.3: Training points for surrogate model: (a) 729 Gauss-Legendre and (b) 3000
random (70% blue squares - lower half, 25% green triangles - upper half, 5% red circles
- tallest building). Test points for surrogate model: (c) 271 random test points.

As in Chapter 4, we employ Gaussian process surrogate models with constant mean

m(qloc) = P (qloc) = β01. To accommodate the less regular structure of the problem, we

again employ the Matern 3/2 correlation function

r(qjloc, q
k
loc) =

(
1 +
√

3h`

)
e−
√

3h` , (6.5)

where

h` = ||qjloc − q
k
loc||/` (6.6)

is the distance between the two points divided by the characteristic length scale `. Here,

we employ the covariance between two separate training points qjloc and qkloc, each of which

is a vector of p parameter values. We employ scikit-learn’s GaussianProcessRegressor

to construct these surrogates and we optimize the hyperparameters [σ, `, β0] by maximiz-
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ing the log-marginal-likelihood using the limited memory Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm L-BFGS-B [86] from scipy.

To validate the GP surrogate models, we employ fully-connected feed-forward deep

neural networks. We employ the multi-layer Perceptron regression MLPRegressor package

from scikit-learn [56] to construct these surrogates. We set the number of nodes n in

each of three layers to n = 200. Within this deep neural network architecture, each node

in the first layer performs a linear transformation ηj = wj1q
1
loc + wj2q

2
loc + wj3q

3
loc on the

p = 3 model parameters qloc = [x, y, z], where wji , i = 1, . . . , p, j = 1, ..., N are the

neural network weights associated with the N nodes in the network. This transformation

is followed by a nonlinear operation defined by the hyperbolic tangent activation function

Ψ(qloc, w
j) = Ψ(ηj) =

e−2ηj − 1

e−2ηj + 1
= tanh(ηj).

The output, Ψ(ηj), of these nodes serves as the input for each of the nodes in the next

layer, and the result is obtained through a final linear activation function following the

last layer of nodes, which provides the scalar-valued model response.

Our network has three layers of n = 200 nodes, a three dimensional input, and a

single dimensional output. Hence, there are

N = 3× n+ 2× (n× n) + n× 1 = 80, 800

weights wji that must be trained. We employ scikit-learn’s Adam optimizer [38] training

function which trains these weights by optimizing the mean squared error loss perfor-

mance function

MSE =
1

Ntrain

Ntrain∑
j=1

(
F̃MCNP
i (qjloc)− F̃

SM
i (qjloc)

)2

over the weights. Here, Ntrain = 3729 is the number of training points (729 points from

Set 1 and 3000 points from Set 2). We found that this optimizer and performance func-

tion provided the most accurate results when compared with other implementations in

scikit-learn.

Once the surrogate models have been trained, we use the remaining test points to

verify the model accuracy. Since the models are intended to provide the count rate for
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each detector given a source at a specified location, we chose to quantify accuracy using

the normalized root mean squared error (nRMSE). For the ith detector, we compute the

nRMSE

nRMSEi ≡

√
1
Nt

∑Nt

j=1

(
F̃MCNP
i (qjloc)− F̃SMi (qjloc)

)2

√
1
Nt

∑Nt

j=1 F̃MCNP
i (qjloc)

2

, (6.7)

where qjloc, j = 1, ..., Nt is the jth source location of the Nt = 271 test points. To quantify

the overall error, we average the nRMSEi from all d detectors; i.e.,

nRMSE =
1

d

d∑
i

nRMSEi. (6.8)

The nRMSE reported in Table 6.2 was obtained from evaluating the surrogate models

at the test points. It reveals larger errors than those in prior work performed in two spatial

dimensions [10]. In Chapter 5, we demonstrated the ability to train surrogates with

respect to a non-smooth ray-tracing algorithm for source localization in two dimensions.

However, the physical model considered in Chapter 5 is significantly less complex than

the MCNP simulations. Therefore, these values for the nRMSE are reasonable for this

application. We note that evaluating the surrogate models takes a fraction of a second

(� 1 s), which is orders of magnitude faster than the MCNP training model.

The surrogate model prediction at each detector location can be visually compared

with results from MCNP performed on a set of test points. These test points, which we

plot in Figure 6.3(c), are randomly distributed throughout the domain. In Figure 6.4, we

note that the Gaussian process surrogate models outperform the neural network surro-

gate models for most of the detectors. We note that the neural network surrogate model

for detector 2 outperforms the Gaussian process surrogate model. This is likely due to

the geometry of the problem, since detector 2 is at the edge of the domain and adjacent

to several buildings. Consequently, this detector’s response is dominated by non-isotropic

albedo from neighboring buildings, which is not well approximated by the isotropic Gaus-

sian process model.

We note that the reported values in Table 6.4 are relative errors, which means that the

GP surrogate model average error is 200% of the average MCNP response. However, for

the majority of test points, – approximately 90% – the surrogate model approximation

errors are closer 25% of the MCNP response. The remaining test points – approximately
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Table 6.2: Comparison of errors for Gaussian process (GP) and neural network (NN)
surrogate models using different combinations of training points: (Set 1) Gauss-Legendre
(729) training points and (Sets 1 and 2) Gauss-Legendre (729) with random (3000) train-
ing points. Normalized root mean squared error (6.7) and evaluation time calculated with
respect to Nt = 271 random test points.

Surrogate nRMSE
Training Evaluation

Time (s) Time (s)

Trained Using Set 1

GP 5.139 13.1 0.052

NN 5.170 63.4 0.049

Trained Using Sets 1 & 2

GP 2.231 915.1 0.267

NN 3.344 198.7 0.047

10% – for which the GP surrogate models have the most trouble predicting the detector

responses are above the detectors where there are no buildings occluding the source

from the detector or physically near the detectors. To illustrate this point, we consider

detector 2, where 255 of the Nt = 271 test points are below 100% relative error. We plot

in Figure 6.5 the relative errors of these 255 points in a histogram and note that the

mean relative error of this histogram is 24.6%.

One explanation for the poor surrogate model performance when predicting detector

responses for sources above the detector is that the isotropic GP surrogate models are

trained primarily on source locations that are occluded by the buildings, due to the

locations of the employed training points. Therefore, the surrogate model approximation

under-predicts the detector response for source locations that are above the detector

and not occluded by buildings. Again, we consider the second detector, for which the

GP surrogate model has trouble predicting the detector response because of the location

of the detector. This detector’s response is estimated by the GP surrogate model with

nRMSE2 = 0.213 for 92% of the Nt test source locations, but those points that are near

or above detector 2 are not approximated well and lead to the large overall nRMSE2

shown in Figure 6.4.

Additionally, non-smoothness in the detector response can be caused by objects within
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Figure 6.4: Comparison of various surrogate model responses to MCNP simulations for
each detector in the domain. We provide the surrogate model error when training using
(a) just Set 1 and (b) Sets 1 and 2 together. Surrogate models include Gaussian processes
(GP - red square) and neural networks (NN - green star). Relative root mean squared
error is calculated using (6.7).

the domain that block the signal and create near-discontinuities in the response surface.

For example, a source moved just slightly out from behind a building can substantially

increase the count rate, as the gammas that were partially blocked by the building are

now in direct line of sight of the detector. We note that some of the largest count errors

occur at test points where the source is located very close to the detector. It is reasonable

that the count error would be more pronounced here, as a source at these locations would

produce a large count rate for that detector. Furthermore, we note that the surrogate

models tend to under-predict the MCNP response, which is expected since the surrogate

models are constructed to smooth out the non-smooth behavior of the response. This is

especially apparent for sources that are located close to a detector, producing a near-

singularity in the detector response, which would be under-predicted by our smooth

surrogate models.

Lastly, we consider the log of the relative error

LREij = log(REij)
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Figure 6.5: Histogram of surrogate relative errors (REij) for detector 2 excluding outlier
test point values and (b) comparison of surrogate models log relative error (LREij) trained
on Set 1 and 2.

where

REij =

∣∣∣F̃MCNP
i (qjloc)− F̃SMi (qjloc)

∣∣∣
F̃MCNP
i (qjloc)

, i = 1, . . . , d, j = 1, . . . , Nt

is the relative error between each surrogate model and the corresponding high-fidelity

MCNP response for all of the Nt test points. We plot the LREij for the surrogate ap-

proximations of each detector response as a boxplot in Figure 6.5. We note that the mean

relative error for all the GP surrogate models and for most of the NN surrogate models

is less than 10% for each of the detectors. As seen from the whiskers of this box and

whisker plot, the source of the large nRMSE values in Table 6.2 are the outliers within

the test data. There is a large range of relative errors and further analysis shows that the

points that produce the errors at the upper end of the box and whisker plot are points

located near the associated detector. Despite the larger count error at test points close to

the detector, we show that the errors for the majority of test points are small. Further,

we show that we are able to sufficiently localize a source using these surrogate models

in Section 6.4, supporting the reasonableness of this modeling approach. While not con-

sidered in the present work, it may be possible to mitigate this issue by implementing

an exclusion procedure during training point selection for regions deemed too close to a

detector. In practice this makes sense as we would not need to search for a source that

is only a few meters away.
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6.4 Radiation Source Localization Results

A complete description of the methodology used for source localization can be found

in [30, 31]; Section 6.4.3 and Appendix A provide a synopsis. To assess the viability of

performing source localization with the surrogate models, we perform the localization

problem using a subset of the Nt = 271 test points shown in Figure 6.3(c).

6.4.1 Generating Observations

Performing physical experiments to create observations for source localization in an urban

environment is typically infeasible. To test our source localization procedure, we generate

observations numerically using the high-fidelity MCNP model at a specific location and

intensity that we denote by q0 = (x0, y0, z0, I0). Employing the high-fidelity model (6.2)

in (6.1) yields

ui(q0) = FMCNP
i (x, y, z)IVi∆ti + E[Bi∆ti]. (6.9)

We assume a constant average background rate at each detector location and incorporate

Poisson deviations by drawing a series of observations from the Poisson(ui(q0)). The jth

observation for detector i is denoted by yij ∼ Poisson(ui(q0)). Taking Nobs observations

for the ith detector yields the vector

yi = [yi1, yi2, ..., yiNobs
]T . (6.10)

We denote the matrix for all d detectors by

y = [y1, ..., yd], (6.11)

which will have size [Nobs × d].

We note that various computational experiments can be performed by varying the

dwell time ∆ti, the number of observations Nobs, the source intensity I, and the volume

of the detectors Vi. For the present analysis, we consider the case ∆ti = 120 seconds with

Nobs = 1. We consider all detectors to be 2′′×4′′×16′′ NaI detectors, so that Vi = 2098 cm3

and the nominal background count rate is Bi = 1200 counts per second (cps). Here, we

take the nominal background to be what we expect a detector of this size to observe in

an urban environment such as the one depicted in Figure 6.1. For the results presented
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in subsequent sections, we consider a 1 mCi source (I = 3.7 × 107 disintegrations per

second or becquerels) at two different locations.

6.4.2 Analysis of Detector Count Rate

For the goal of performing source localization, it is important to address whether sufficient

source radiation is present to distinguish the signal from background. To investigate this,

we simulate 2′′ × 4′′ × 16′′ NaI detectors, as discussed in Section 6.4.1, with the same

nominal background count rate of Bi = 1200 cps. For detector 1, we plot in Figure 6.6

the 271 test point locations and define the size and color of the plotting marker based

on the expected count rate due to the source. We observe that the count rate decreases

the farther the source is from the detector, as expected. Furthermore, we note that a

large number of locations yield a count rate greater than or equal to 100 cps. Table 6.3

summarizes the count rate statistics for all d = 10 detectors in the network. We note

that all but the tenth detector result in detector responses that are over 7% of the total

response, where background is included. We show in Section 6.4.6 that, in combination

with the other nine detectors in the network, this level of count rate due to the source is

reasonable for performing source localization.
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Figure 6.6: The expected count rate observed by detector 1 for a 1 mCi Cs-137 source
at various locations. The size and color of the markers are based on the count rate with
the larger markers representing more counts.
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Table 6.3: Source count rate statistics for detector network based on MCNP prediction
at 271 test points. Values reported are in counts per second or percent of the total detector
response, including background.

Detector Average % Total Detector Average % Total

Index (cps) Response Index (cps) Response

1 405.90 25.27 6 699.57 36.83

2 95.47 7.37 7 123.84 9.35

3 106.71 8.17 8 807.57 40.23

4 208.53 14.80 9 930.19 43.67

5 654.02 35.28 10 1.22 0.10

6.4.3 Bayesian Statistical Analysis

For each detector, we employ a statistical model of the form

yi = ui(q) + εi, where εi ∼ N (0, σ2
i ). (6.12)

The observations are assumed to consist of model prediction plus independent and iden-

tically distributed (iid) observation errors. We generate the observations via the MCNP

model response as outlined in Section 6.4.1. Our goal is to infer the source location and

intensity using the surrogate model

ui(q) = FSMi (x, y, z)IVi∆ti + E[Bi∆ti], (6.13)

so the parameter set of interest is

q = [x, y, z, I]. (6.14)

The detector volumes are known quantities, so we can use the same values of

Vi = V = 2098 cm3 and Bi = 1200 cps

used in generating the observations.

From a Bayesian framework, we are quantifying the posterior parameter densities,

π
(
q|yi
)
, via Bayes’ relation (2.2). We denote the likelihood function by π(y|q), π0 is
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Table 6.4: Parameter bounds for uniform prior distribution for use in MCMC sampling.

q Units Lower Limit Upper Limit

x m -9.08 185.0

y m -9.80 166.0

z m 0.00 75.0

I mCi 0.10 10.0

the prior density and y are the detector observations. Because the denominator requires

integrating in Rp, direct evaluation of (2.2) is often computationally intractable. Instead,

we utilize MCMC methods with the Delayed Rejection Adaptive Metropolis (DRAM)

algorithm [27] to infer the parameter posterior densities. This algorithm is provided in

full in Appendix A.

Any a priori information known about the model parameters is incorporated in the

prior distribution. Here, we assume uniform prior distributions bounded by physically

reasonable parameter limits. We summarize the parameter bounds in Table 6.4 and dis-

cuss the prior used in this analysis in Section 6.4.5.

Because the observation errors εi are independent, we employ a Gaussian likelihood

function (2.3). We use this overall likelihood in combination with our prior function

to sample from the posterior distribution using the DRAM algorithm detailed in Algo-

rithm 3.

Some discussion is necessary when it comes to the nature of the observation errors.

Ideally, the surrogate models will yield comparable estimates for the relative count rate

as the MCNP model; i.e., FSMi (q) ≈ FMCNP
i (q). In this case, the observation errors arise

primarily due to sampling from the Poisson distribution in Section 6.4.1. However, in

most cases additional errors exist due to model discrepancy δi. The observation errors

are therefore a combination of the random variability from sampling from the Poisson

distribution as well as limitations in our surrogate model. Due to this uncertainty, we

infer the observation error variance σ2
i along with the remaining model parameters q.

For this analysis, we assume that FMCNP
i accurately represents a physical experiment,

so uncertainty in the MCNP simulations is not directly contributing to this model dis-

crepancy.

To provide initial values for the DRAM algorithm, we first perform an optimization
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study to determine starting values for our MCMC simulations. We detail this optimization

approach in Section 6.4.4.

6.4.4 Initial Grid Search

Given the complexity of the problem domain, we perform an initial grid search optimiza-

tion using the surrogate model formulation. Since the surrogate models are computa-

tionally efficient, we start our approach by evaluating the surrogate model at each point

in a reasonably dense 20 × 20 × 20 × 10 uniform grid over the (x, y, z, I) parameter

space, where 20 points are used in each spatial coordinate and 10 points for the source

intensity. We plot a visual representation of this uniform grid with respect to the spatial

parameters in Figure 6.7(a). Evaluating the Gaussian process surrogate models at each

of these points provides a reference table of potential observation values throughout the

domain. We evaluate the surrogate model for each detector in approximately 113 seconds

on a single processor for all points in the grid, which is a one-time evaluation. Using

the generated observations, as discussed in Section 6.4.1, we save the ν points from our

reference grid that yield the smallest overall sum-of-squares error (2.4). These ν points

may, or may not, be close together.

The referencing process to identify points that agree with observations takes a frac-

tion of a second (<< 1 s). We plot the set of points in Figure 6.7(b) that yield the

closest results to a single observation drawn from the Poisson distribution described in

Section 6.4.1 and corresponding to a 1 mCi source located at the red star. The spatial

points appear reasonably close and the optimized values for the source intensity ranged

from 0.1 to 5.6 mCi for the points seen on the plot. We use the results of this optimization

to initialize the MCMC sampling procedure, described in detail in Section 6.4.6.

6.4.5 Convex Hull Analysis

The Nt randomly selected test points may be located anywhere within the boundary of

the domain including outside the convex hull of the detectors. This can diminish the

ability of our algorithm to accurately locate a source at these locations. Source multilat-

eration requires that the source be within the convex hull of the detectors for accurate

localization. Since our detectors are located either at ground level or on top of build-

ings, a large number of the randomly generated test points lie outside this convex hull.
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Figure 6.7: Grid search optimization. (a) 20p uniform grid throughout entire spatial
domain. (b) The actual source location (red star) is unknown. The triangles plotted
reflect the surrogate model predictions that are most similar to the observations. We
take the top ν points that yield the best agreement to initialize our MCMC chains.

Additionally, the Bayesian inference techniques we employ allow for the accumulation

of posterior probability outside the convex hull because the prior is non-zero in these

regions.

An additional concern is that the tenth detector, located within the tallest building

in the domain, is providing a low count rate compared with the background, as discussed

in Section 6.4.2. This is likely due to the building occluding it from much of the radiation

from the source. Since the tenth detector is far from most potential source locations and

occluded by the building, this detector is not able to distinguish between source and

background radiation for the measurement time of several minutes. Therefore, since we

use a dwell time of two minutes when performing the radiation source localization, we

chose to employ the convex hull of the first nine detectors for the rest of this analysis.

To construct the convex hull of the detectors, we employ scipy’s ConvexHull package,

which provides equations for the hyperplanes representing the boundary of the convex

space enclosed by the outermost detectors. We conclude that a potential source location

is within the convex hull of the detectors if, for each of the hyperplane equations, the dot

product between the source location and the normal vector of the hyperplane equation

plus the offset of the equation is less than or equal to zero. That is, we check for each

surface of this 3-D subspace of the domain whether the source location lies above (outside)

the surface, in which case it is classified as outside the convex hull, or below (inside) the

surface, in which case it is classified as within the convex hull.
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To visualize this, we project to two dimensions and plot in Figure 6.8(a) the hyper-

planes that define the convex hull of the detectors, which are plotted as diamonds, along

with the Nt randomly generated test source locations. The sources that are within the

convex hull are represented with an x and the points that are outside the convex hull

are represented as a dot. Additionally, we plot the test points in three dimensions along

with the detectors and their convex hull using the same point types in Figure 6.8(b).

We are able to exclude the test points that are outside the convex hull of the first nine

detectors. This leaves NC
t = 18 test points to evaluate the effectiveness of our radiation

source localization procedure. Additionally, since we are considering only points that lie

within the convex hull of the first nine detectors, we consider a prior distribution π0 that

is uniform across this convex hull and has zero probability outside the convex hull. In

this way, we are able to constrain potential source locations to within the convex hull of

the first nine detectors. For these NC
t points, we note better accuracy in our localization

procedure, as discussed in Section 6.4.6.

Figure 6.8: The nine detector locations (a) projected into a two-dimensional space and
(b) plotted in a three-dimensional space along with the Nt randomly distributed test
points. The detectors are plotted as diamonds, the points within the convex hull are
plotted as x’s, and the points outside the hull are plotted as dots. The lines representing
the edges of the hyperplanes that define the convex hull of the detectors are also plotted.
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6.4.6 MCMC Implementation

As outlined in Section 6.4.4, we define the points in our predefined grid that yield closest

agreement between the Gaussian process surrogate response and the observations. Addi-

tionally, we only choose points on this grid that fall within the convex hull of our nine

detector network. We then compile the top ν results and use them to initialize ν different

MCMC simulations. For the reported tests, we consider the case where ν = 2 so we can

use Gelman-Rubin diagnostics to assess chain convergence [22]. Each MCMC simulation

is run 50,000 times using the Python package pymcmcstat [50, 51]. We present the results

for two separate case studies, where the true source location for each case is provided in

Table 6.5. The uncertainty associated with the source intensity is quantified by including

it in the model calibration, but we do not report its posterior as it is not identifiable.

In practice, inferring the source location to within a few buildings is a very useful re-

sult. The volume of the convex hull of the detector network is approximately 1.65×105 m3.

If the source is inferred to within 25 m radial distance, that implies a search volume re-

duction of nearly 60%. To quantify the success of the MCMC simulation, we introduce

the location of maximum probability (LMP). To clarify, LMP is estimated by taking the

maximum point from the posterior probability density function (PDF) of each variable

separately, and then taking their intersection.

In Figure 6.9, we plot the marginal posterior densities as well as LMP for x, y and

z of our MCMC simulations for two different source locations. The true source location

and intensities for each case are compiled in Table 6.5. For the first case, the posterior

distribution is highly concentrated near the actual source location, denoted by a red star

in the image. Likewise, the LMP estimate occurs at [x, y, z] = [104 m, 73 m, 2 m] (denoted

by the green circle in the image), which is radially separated from the true source location

by approximately 8 meters. In contrast, the posterior distribution in the second case has

a multimodal response that indicates several distinct regions of the domain where the

source could be located. Case 2 has a LMP estimate at [x, y, z] = [121 m, 82 m, 2 m], which

is separated from the true source by approximately 52 meters. The actual source is very

close to the left most regions of high probability. This multimodality is not surprising, as

one would expect multiple source locations to yield comparable detector readings given

the range of potential source intensities being considered.

The LMP estimate is sufficient for localizing the source in Case 1; however, the LMP

results from Case 2 are far away from the actual source. As seen in Figure 6.9(c) and (d),
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Table 6.5: Summary of results for two MCMC case studies: (True) True source loca-
tion. (LMP) Location of maximum probability for each variable. (G-R) Gelman-Rubin
diagnostic - values closer to 1 indicate the chains have converged.

Parameter
Case 1 Case 2

True LMP G-R True LMP G-R

x 98.5 m 104.3 m 1.000 69.1 m 121.2 m 1.005

y 70.1 m 73.8 m 1.007 85.1 m 82.3 m 1.006

z 6.52 m 2.12 m 1.000 7.43 m 1.75 m 1.000

the true source for Case 2 falls within part of the posterior distribution. The multimodal

posterior in Case 2 for x highlights the importance of viewing these variables as distribu-

tions instead of fixed values. These results motivate sending a search team to each region

of the posterior that predicted a source location with high probability. Alternatively, one

could also use this information to motivate the next placement of detectors as part of a

mobile detector system [48].

In Figure 6.10, we plot the posterior distributions, pairwise plots, and 2-D kernel den-

sity estimates obtained for Case 2. Multiple chains were generated by running simulations

with different initial values based on the initial grid search optimization outlined in Sec-

tion 6.4.4. Qualitatively, both chains yield fairly similar marginal posterior distributions

(main diagonal in Figure 6.10), which is consistent with the results of the Gelman-Rubin

diagnostics used to assess chain convergence as shown in Table 6.5. In addition, the

pairwise correlation plots (upper triangle) indicate very little correlation between the

source location parameters. Two-dimensional kernel density estimates (KDE) highlight

the probability contours, and the KDE with respect to [x, y] and [x, z] is consistent with

what we observed in Figure 6.9 for the second test case.

We note that source localization can also be performed using the neural network

surrogate models instead of the Gaussian processes. Whereas the resulting posterior dis-

tributions are not exactly the same (not shown for brevity), we find that they are suffi-

ciently similar in that they provide consistent localization. For a quantitative assessment

of whether or not the same posterior is obtained using different surrogate implementa-

tions, one could use energy statistics [74], but we leave this as future research.
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Figure 6.9: Marginal posterior densities and pairwise distributions from MCMC simula-
tions for two test cases. The true source location is denoted by the red star, as specified
in Table 6.5. Case 1: (a), (b) The region of highest likelihood is very close to the actual
source location. Case 2: (c), (d) Multiple regions of high probability were inferred, one
of which is within a few meters of the true source location.
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Figure 6.10: Posterior distributions, pairwise correlation, and 2-D kernel density esti-
mates obtained from MCMC simulation of Case 2. Two separate simulations were run
using different initial values based on result of optimization. Main diagonal: marginal pos-
teriors from MCMC simulation. Upper triangle: pairwise scatter plots. Lower triangle:
2-D kernel density estimates (KDE). Results are consistent with posterior distributions
for Case 2 in Figure 6.9.
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Chapter 7

Data-Driven Equation Learning

Nuclear safeguards are in place to deter the spread of nuclear weapons through early

detection of the diversion of nuclear materials. One potential step for diversion in the

nuclear fuel cycle is following the burn-up of fuel from a nuclear reactor. Since much of

nuclear reactor engineering is proprietary, it is important to be able to judge the composi-

tion of nuclear material throughout its burn-up and cooling time without knowing specific

reactor specifications. This makes inferring the composition of these nuclear materials an

important and challenging problem.

We approach this problem by first considering simple radioactive decay of samples of

cesium and radon for which we have analytic solutions describing the concentration of iso-

topes over time. We introduce and test data-driven modeling procedures on composition

data simulated using available analytic solutions. Specifically, we learn the underlying dy-

namics of radioactive decay for cesium and radon isotopes using the sparse identification

of nonlinear dynamics (SINDy) algorithm [6]. Data-driven equation learning is a field

that is rapidly expanding, led in part by the Kutz Research Group that developed both

SINDy and the partial differential equation learning algorithm PDE-FIND [62]. Data-

driven equation learning algorithms have been employed to solve a diverse set of problems

including inferring spatiotemporal dynamical systems (PDE-FIND) [62], biological net-

works [45], aeroelastic models [43], and nonlinear systems with control (SINDYc) [7].

The SINDy algorithm relies on a thresholded least-squares algorithm to solve the sparse

regression problem, and the solution to this problem identifies the nonlinear dynamics

of the learned system. We verify this thresholded least-squares algorithm using other

popular sparsity enforcing algorithms.
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This chapter is organized as follows. We provide a description of the methods we

employ to simulate radioactive decay dynamics in Section 7.1. In Section 7.2, we describe

the SINDy algorithm and discuss the algorithms we employ to validate SINDy. We provide

the learned dynamics obtained using SINDy and the analytic solution data in Sections 7.3

and 7.4. Lastly, future directions are provided in Section 7.5.

7.1 Radioactive Decay Dynamics Simulation

We model radioactive decay by a system of ordinary differential equations (ODEs) and we

first consider a sample of cesium-137, which decays into barium-137. This decay scheme

is depicted in Figure 7.1(a). We observe that cesium-137, denoted Cs137, decays to an

excited or metastable state of barium, denoted Ba137m, with a branching ratio of 0.946 –

i.e., with 94.6% probability – and decays to a stable barium-137 isotope, denoted Ba137,

with a branching ratio of 0.054. Additionally, Ba137m releases a gamma ray to decay to

the stable Ba137 isotope. We employ this example as a test of the algorithms we consider,

since we are able to analytically solve for the solution to the concentration as a function

of time. We learn the system of ODEs that govern this decay series, where each of the

states of the system represent the concentration of each of the isotopes in the decay chain.

We note that the system of differential equations is linear and, when written in matrix

notation, is strictly lower diagonal since the states lose mass as they decay. Additionally,

we plot the solution to the decay dynamics of Cs137 for an initial concentration of pure

cesium over the time interval of 100 years in Figure 7.1(b).

For a given sample of material, originally composed entirely of Cs137, we represent

the composition of Cs137 as u1, the composition of Ba137m as u2, and the composition

of the stable Ba137 as u3. Each of these states is a function of time, t ∈ [0, T ], and we

employ the system of differential equations

du1

dt
= −λ1u1, u1(0) = u10,

du2

dt
= b12λ1u1 − λ2u2, u2(0) = u20,

du3

dt
= b13λ1u1 + b23λ2u2 − λ3u3, u3(0) = u30

(7.1)

to compute the exact composition of the sample at any given time with any given initial
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Figure 7.1: (a) Decay scheme of cesium-137 branching through the excited state of
barium-137 and to the ground state of barium-137 and (b) the solution to the cesium
decay system of ordinary differential equations.

condition u0 = [u10, u20, u30] describing the initial composition of the sample.

Here, bij, i = 1, 2, 3, j = 1, 2, 3 are the branching ratios and λi, i = 1, 2, 3 are the

decay constants of these isotopes. We compute the decay constants using their half-lives

T i1/2, i = 1, 2, 3, employing the relation λi = ln(2)/T i1/2. Additionally, since Ba137 is

stable and the excited state of barium decays only to the stable state, we have that

λ3 = 0 and b23 = 1. We calculate each of these coefficients using half-life values and

branching ratios obtained from literature [67] and rewrite (7.1) as a matrix system

ut =


u1

u2

u3


t

=


a11 a12 a13

a21 a22 a23

a31 a32 a33



u1

u2

u3

 =


−λ1 0 0

b12λ1 −λ2 0

b13λ1 b23λ2 0



u1

u2

u3



≈


−2.297× 10−2 0 0

2.173× 10−2 −1.429× 105 0

1.241× 10−3 1.429× 105 0



u1

u2

u3

 = Au.

(7.2)

We note that we have employed half-life values in years, so the decay constants have

units of 1/years. We plot in Figure 7.1(b) the solution to this differential equation where

t ∈ [0, 100] years and the initial composition of the sample is taken to be pure Cs137 –

i.e., u0 = [1, 0, 0]. We note that this linear system of differential equations in (7.2) has
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the solution

u(t) = eAt × u0. (7.3)

The primary difficulty in approximating the dynamics of cesium decay is the short

half-life of Ba137m. To accurately approximate the dynamics associated with this short-

lived state, many measurements early on in the decay time must be available as the

state quickly reaches – or is “shocked” into – a “steady state”. We note that we use

the terms “shock” and “steady state” loosely. The short lived isotopes, which we often

initialize with zero concentration quickly reach a state that we call a steady state where

its concentration is directly dependent on the ingrowth of the parent isotope. Often,

Ba137m is neglected in modeling this decay chain, in which case the problem is trivial.

We employ this test case to show that it is infeasible to estimate these shorter lived

states. This problem motivates us to consider the decay of radon-222, which has a longer

decay chain – plotted in Figure 7.2 – with isotopes that have a variety of half-life time

scales. We neglect the isotopes with extremely short half-lives – on the order of seconds

– and attempt to learn the dynamics of the remaining states within the decay chain.

To simulate radon decay, we again consult literature [67] to obtain the half-lives of the

isotopes in Figure 7.2. We use these to construct an ODE matrix system like (7.2) and

employ MATLAB’s matrix exponential method to solve the system.

Whereas we are able to simulate decay data for cesium and radon analytically, we

are motivated to use other simulation methods that would more closely represent exper-

imental data. SCALE is a simulation and modeling suite of codes maintained by Oak

Ridge National Laboratory and used for nuclear safety analysis. SCALE includes tools

for criticality safety, reactor physics, radiation shielding, radioactive source term charac-

terization, and sensitivity and uncertainty analysis. One of the packages included with

SCALE is the Oak Ridge Isotope Generation (ORIGEN) code. ORIGEN is used to cal-

culate time-dependent concentrations, activities, and radiation source terms for a large

number of isotopes. These isotopes can be either simultaneously generated or depleted

by neutron transmutation, fission, and radioactive decay [79]. The ORIGEN measure-

ments can be employed to approximate experimental mass spectrometry measurements

of a sample of radioactive material over time.

Future work involves employing ORIGEN to simulate experimentally obtained ra-

dioactive decay concentrations for Cs137 and Rn222 and comparing these simulations

with the analytic solution. The ORIGEN simulations would be used to infer the decay
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Figure 7.2: Decay scheme of radon-222.

dynamics using the SINDy algorithm compared with the results we obtain when the an-

alytic solution data is employed. This work is an important initial study that motivates

future work including the data-driven modeling of the dynamics of irradiation within a

nuclear reactor using ORIGEN simulated data.

7.2 Data-Driven Modeling

The sparse identification of nonlinear dynamics (SINDy) algorithm [6] was developed for

the purpose of learning nonlinear systems of equations. We consider a parameterized and

potentially nonlinear system of ordinary differential equations of the form

ut = f(1, u, u2, . . . , ud, . . . , sin(u), . . . , µ) (7.4)
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where f is a function of the state u(t) and the parameters µ. The key assumption required

for this method is that f has a sparse functional form relative to the large space of

contributing terms.

To begin, we discretize the system such that U is a matrix of data containing eval-

uations of u(t). To obtain Ut, we employ derivative approximation techniques such as

interpolation to approximate the derivatives of u(t) using the data in U . For especially

noisy data, deep learning techniques have been shown to provide a good derivative ap-

proximation [41]. We rewrite (7.4) as

Ut = Θ(U,Q)ξ,

where the columns of the matrix Θ = [U,U2, . . . , Ud, . . . , sin(U), . . . , Q] correspond to

specific candidate terms for the algorithm solution and the column vector Q contains

any additional parameters µ. We assume that the vector ξ is sparse, meaning only a

few number of terms in Θ are active. Finally, to identify the dynamics of the underlying

physical system, we solve the sparse regression problem

min
ξ
||Θξ − Ut||2 + λ||ξ||m, (7.5)

where m defines the norm employed to enforce the regularization of ξ.

The SINDy algorithm employs a sequentially thresholded least-squares approach to

solve this sparse regression problem. To implement this algorithm, we employ the least-

squares solution solved with the QR solver in MATLAB as an initial estimate of ξ. We set

the coefficients in this estimate of ξ, which are less than the user-defined hyperparameter

κ to zero. We then recompute the least-squares solution column by column using the

QR solver to solve the least-squares problem employing only those values of Θ that

correspond to the non-zero entries of ξ. Since we know that our ODE systems are linear,

we construct Θ such that only the linear terms U are present.

To validate the SINDy algorithm, we employ the LASSO, elastic-net, ridge regres-

sion, and SPGL1 [20] algorithms, each of which are implemented in MATLAB. LASSO

and SPGL1 each are used to solve (7.5) with m = 1, whereas ridge regression is used to

solve (7.5) with m = 2. We employ two regularization terms with m = 1 and m = 2 to

solve the minimization problem with the elastic-net algorithm. A complete analysis of

the convergence of the SINDy algorithm and a comparison with other sparsity enforcing
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regression techniques is provided in [83], where it is shown that the SINDy algorithm ap-

proximates the local minimizers of (7.5) with m = 0. Sufficient conditions for convergence

and bounds on rate of convergence are also provided.

To compare the sparsity structure of the inferred matrix form approximations ξ with

the true ODE systems, we employ the True Positive Ratio (TPR)

TPR =
TP

TP + FP + FN
. (7.6)

Here, TP represents the true positives, i.e., we correctly identified a term within ξ. Con-

versely, FP and FN represent the false positives and false negatives where we have not

identified or incorrectly identified a term within the true ODE system. Therefore, we

seek approximations with TPR values close to one. This metric provides a measure of

how close we are to the sparsity structure of the ODE system, but we also employ the

relative error (RE)

RE =
||ξ − ξ̃||2
||ξ||2

(7.7)

to compare the approximated coefficients ξ̃ with the ODE system’s true coefficients ξ.

We provide results in terms of these metrics in Sections 7.3 and 7.4.

7.3 Learning Cesium Decay Equations

We attempt to learn the coefficients of the matrix system (7.2) describing Cs137 decay

in such a way that the sparsity of the matrix is preserved using the methods described

in Section 7.2. We note that the scale of these coefficients range from 10−3 to 105, which

presents a challenge when employing these algorithms. Since the half lives of Cs137 and

Ba137m are in terms of years and minutes, respectively, we do not expect to be able to

approximate the coefficients of the matrix A in (7.2) accurately with a low number of

uniform measurements. We also note that when this system of ODEs is solved explicitly

for the compositions as functions of time, it has the form
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u1(t) = u10e
−λ1t,

u2(t) = λ1b12u10

( e−λ1t

λ2 − λ1

+
e−λ2t

λ1 − λ2

)
,

u3(t) = λ1λ2b12u10

( 1

λ1λ2

+
e−λ1t

(λ1 − λ2)λ1

− e−λ2t

(λ1 − λ2)λ2

)
− λ1b13u10

(e−λ1t
λ1

+
1

λ1

)
.

(7.8)

Here, we assume that the initial conditions are u20 = u30 = 0, which corresponds to

the case where the initial sample is composed completely of cesium. The initial condition

assumptions can be relaxed, which produces more terms in the solutions, but we consider

this simple example to test the SINDy algorithm. We also assume that the concentrations

are normalized so we consider percent concentrations of each isotope within the sample. In

Section 7.3.1, we assume that we have access to the analytic derivative to learn the decay

dynamics. We then attempt to solve the problem with spline approximated derivatives

in Section 7.3.2.

7.3.1 Analytic Solution Data

To generate the data, ui(t), i = 1, 2, 3, t ∈ [0, T ], we initially employ the analytic solu-

tion provided by the matrix exponential (7.3). The results provided in this section were

validated using the analytic solution provided in (7.8). To generate the time-dependent

derivative data, dui
dt

(t), i = 1, 2, 3, we begin by assuming we have the exact derivatives

given by (7.2) and we simulate 1,000 uniform measurements at times {ti}N=1000
i=1 . Employ-

ing a thresholding parameter value of κ ∈ [1.2×10−3, 8.1×10−9], with any range of times

and a sample composed initially of only Cs137, we are able to learn the coefficients in

the matrix (7.2) exactly when the SINDy algorithm is employed using exact derivatives,

as expected. We note that there is no approximation error in the derivative data, so we

are able to learn the system (7.2) exactly.

To verify the SINDy algorithm, which uses a sequentially thresholded least-squares

solver, we employ a standard LASSO procedure with a similar thresholding step. We use

the same thresholding parameter κ = 10−3 that we employed with the SINDy algorithm.

We tested multiple values of for the hyperparameter λ in (7.5), but we use λ = 10−6,

since this value yielded the largest TPF of the values we tested. The LASSO algorithm

zeros out the correct coefficients of the matrix system, but it does not estimate the non-
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Table 7.1: True positive rate and relative errors of the approximated matrix A from the
SINDY, LASSO, elastic net, ridge regression, and SPGL1 methods for 10,000 data points
over one year using the analytic solution to compute derivatives.

SINDy LASSO Elastic Net Ridge SPGL1

TPR 1.0 0.89 0.89 0.56 0.78

RE 0.0 0.022 0.022 1.000 1.000

zero coefficients well and it zeros out the a21 coefficient in the matrix A in (7.2). We

tabulate the error metrics introduced in Section 7.2 for the results we obtain using the

LASSO algorithm as well as the elastic-net, ridge regression, and SPGL1 algorithms in

Table 7.1. We simulate data with a time span of 30 years (T = 30) – approximately one

half life of Cs137 – using 10,000 measurements and note that these are typical results

for most time spans and number of measurements. We obtain similar results to those

obtained using LASSO when we employ the elastic-net, ridge regression, and SPGL1

algorithms. Therefore, moving forward, we primarily focus on using the SINDy algorithm

and we leave the analysis of the performance of these algorithms on this specific problem

as future work. We note that the least-squares solution to this problem with a single

threshold step yields results similar to SINDy. As discussed in [83], the SINDy algorithm

converges in at least n steps where n = rank(U) = 3 for the Cs137 decay problem.

7.3.2 Approximate Derivative Data

Next we use a cubic spline interpolation approach to approximating the derivatives Ut. We

interpolate the data using MATLAB’s spline command, differentiate the spline model

using MATLAB’s fnder command, and we obtain the SINDy algorithm approximation

A ≈


−2.297× 10−2 0 0

1.824× 10−3 −1.199× 104 0

2.115× 10−2 1.199× 104 0

 ,
when 1000 data points are employed over T = 1 year of decay time and with a hyperpa-

rameter κ = 10−4. Here we note that we can identify the correct active elements of the

matrix and we closely approximate those active terms. We plot the estimated dynam-

ics against the analytic solution in Figure 7.3(a) and note that the dynamics of u2 are
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Table 7.2: True positive rate and relative errors of the approximated matrix A from the
SINDY, LASSO, elastic net, ridge regression, and SPGL1 methods for 1,000 data points
over one year using cubic splines to compute derivatives.

SINDy LASSO Elastic Net Ridge SPGL1

TPR 1.0 0.89 0.67 0.56 0.67

RE 0.916 0.936 0.936 1.000 1.000

near zero, plotted underneath u3. To generate these plots, we employ MATLAB’s ode15s

solver to compute the dynamics using our estimated ξ matrix. Additionally, we compare

the performance of all the sparse regression methods in Table 7.2.

However, when the time range is increased so that we consider decay over multiple

years, we are unable to identify the correct active terms using the SINDy algorithm with

only 1,000 data points. We consider decay over T = 100 years – over 3 half lives of Cs137

– and when we employ the same number of data points as before, we observe that the

true dynamics are closely approximated by plotting the time-dependent concentrations

dynamics in Figure 7.3(b). However, when we employ this few data points for this time

span, the SINDy approximation is

A ≈


−2.295× 10−2 1.634× 102 0

0 −2.295× 10−2 0

2.295× 10−2 10.006 0

 ,
which yields a TPR = 0.78 and RE= 1.0. We are not able to identify the true dynamics

governing this system. By increasing the number of data points across this time interval

to 350,000 we note that, using the SINDy algorithm, we are able to identify the correct

active – i.e., non-zero – terms of (7.2). However, obtaining this many data points either

experimentally or simulating more complex decay chains using ORIGEN is infeasible,

therefore we must consider shorter time intervals. We note that as the time interval T

is decreased, the dynamics associated with Ba137 are not approximated well, whereas

when T is increased the dynamics of Ba137m are not approximated well, which is expected

given the half-lives of these isotopes.

To better understand the challenges of this problem, we plot the spline approximated
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Figure 7.3: Dynamics identified by SINDy algorithm for (a) decay over one month and
(b) decay over 100 years using 1,000 data points.

derivative data for Ba137m and Ba137 over the first hundredth of the considered time

domain, i.e., the first year, in Figure 7.4. We note that the spline interpolates the dynamics

data and so this derivative approximation plotted in Figure 7.4 does not interpolate the

derivative data. There is an initial shock in the system, which represents the immediate

decay of Cs137 into Ba137m and Ba137. Since both the barium states are set to zero

initially, the derivatives of these states quickly reach what appear to be steady states.

The Cs137 to Ba137 dynamics are easily obtained from the derivative data after this

shock, but the Cs137 to Ba137m dynamics are modeled by this shock. We remind the

reader that we use the terms steady state and shock loosely.

Therefore, to be able to approximate the dynamics of Ba137m well, we need to be

able to model this shock by either employing more measurements over the whole domain

or taking more measurements in the initial portion of the time domain. This concept is

made especially apparent when we exclude the first 10 data points when performing the

data-driven modeling with SINDy. Doing this, we obtain a matrix with all components

set to zero except for the a11 and a13 components. We are able to infer the value of a11

exactly, but we estimate a13 = −a11, which means that the dynamics we approximate in

this case only include Cs137 decay into the stable state of Ba137, as expected.

We note that we are able to extrapolate using these approximated dynamics and ob-

tain solutions that fit the true dynamics extremely well as in Figure 7.3, even when the

SINDy approximation has not identified all the active and inactive terms in (7.2). How-

ever, since we are interested in equation learning, we instead disregard in our inference
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Figure 7.4: Derivatives of (a) Ba137m and (b) Ba137 plotted against the spline approx-
imation over 100 years using 1,000 data points.

the short-lived dynamics; i.e., the metastable barium state. Using the SINDy algorithm,

we are able to estimate the dynamics of the two by two matrix system exactly. As this is

trivial, we consider in Section 7.4 the decay of Radon-222, which has a decay chain with

many states of which we can approximate the decay dynamics.

7.4 Radon Decay Results

Lastly, we consider the decay of radon-222 into lead-210, omitting the states with half-

lives less than one minute and we attempt to approximate the dynamics of the six states

between and including these two isotopes. This decision is motivated by the results of

Section 7.3, where we show that we are unable to estimate the coefficients of the ODE

matrix system associated with Ba137m well for certain time spans due to its short half-

life. We assume that we start with a sample of pure radon-222, consider its decay over

12 days (3 half-lives of radon-222), and plot the results in Figure 7.5(a). We note that

we cannot extend the decay time span for this sub-problem to longer than a few years as

lead-210 is not stable, but has a half-life of 22 years. Therefore, we consider decay times

on the order of days. We also note that the significant states are radon-222 and lead-210,

which have half-lives on the order of days and years respectively, whereas the other states

have half-lives on the order of minutes. If we were to exclude all states with half-lives less

than a day, we would only consider decay from radon-222 directly to lead-210, which is

trivial.
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We use a threshold parameter of κ = 10−2 and 5,000 measurements over T = 12 days

and the error metrics of the resulting matrix system are TPR = 0.75 and RE = 2× 103.

However, if we decrease the time span to T = 1 day, we obtain a matrix system with

error metrics TPR = 0.86 and RE = 0.156. Whereas the relative error is lower when we

decrease the time span, we have not estimated the sparsity structure of the matrix system

exactly. Specifically, we estimate values in the upper triangular portion of the matrix

system which should be zero for radioactive decay. These incorrect non-zero values occur

in the column associated with thallium-210. Since this state is near the end of the decay

chain and has a short half-life compared to the other isotopes in the decay chain, this

is not unexpected. If we increase the number of measurements to 100,000 we estimate

the sparsity structure of the 6 by 6 matrix system exactly. Additionally, we note that we

have chosen the threshold parameter κ with knowledge of the values within the matrix

system. Performing this data-driven modeling with a thresholding parameter κ = 10−4

yields lower TPR and larger relative errors in the approximated system.

In Figure 7.5(b), we plot the log of the isotope concentrations over half a day, excluding

radon-222, where we have simulated an initial sample of pure radon-222. We observe that

all states except lead-210 appear to reach a steady state within this time interval. As

we expect, we are able to obtain the exact dynamics of this system when we employ

the exact derivatives. We also note that when we exclude the initial measurements, as

we did with cesium decay, the columns of the ODE matrix system associated with the

short-lived polonium-218 and thallium-210 are zeroed out. Therefore, we again have the

problem that the information concerning the dynamics of these states is incorporated in

the initial shock to the system caused by the initial condition and the state dynamics

reaching a steady state. In fact, if we extend the time span to 50 days and exclude the

first 800 measurements, the matrix system is reduced to a11 and a61 as the only non-zero

elements. These dynamics represent decay from radon-222 directly into lead-210. Given

this information, we expect to have similar issues in approximating the short-lived state

dynamics for long time spans and when few measurements are employed over the initial

part of the time interval.

To better approximate these shorter-lived states, we consider different measurement

strategies. We compare the equation learning results we obtained when using uniformly

distributed points with results obtained employing log scale distributed data points and

Gauss-Legendre (GL) or Clenshaw-Curtis (CC) sampling strategies. We consider decay
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Figure 7.5: (a) Radon decay isotope concentrations over 5 days and (b) the log of radon
decay isotope concentrations over half a day neglecting states with half-lives less than a
minute.

Table 7.3: True positive rate and relative errors of the approximated matrix A describing
radon decay from the SINDY algorithm with 10,000 measurements over one day taken
uniformly, on a log time scale and according to Gauss-Legendre and Clenshaw-Curtis
sampling points.

Uniform Log GL CC

TPR 0.86 0.97 0.97 0.94

RE 0.156 9.07× 10−6 2.77× 10−7 8.50× 10−7

over 12 days and employ 5,000 measurements. We tabulate performance results for each

of these sampling strategies employed with the SINDy algorithm in Table 7.3. We note

that the GL sampled measurements provide the best approximation in this case, but that

the log scale and CC points provide a relatively good approximation as well. We note

that the values in the estimated matrix ξ that were incorrectly approximated when using

the log, GL, and CC points are in the upper triangular portion of the matrix and are

associated with the short-lived thallium-210.

7.5 Future Work

We employ the SINDy algorithm to identify active and inactive terms in the ODE systems

that we consider as example problems when analytic derivatives are employed. We note
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that the sequentially thresholded least-squares approach to solving the minimization

problem (7.5) provides the most accurate approximations to the true solutions for these

example problems. When we employ spline approximations of the derivative, a large

number of measurements are required to infer the sparsity structure of the ODE matrix

system accurately. We show how non-uniformly sampled measurements improve the data-

driven equation learning results significantly. However, some of these measurements are

taken too close together in time for these results to be validated experimentally.

There are many directions for future work that should be explored. First, the difference

in performance between the thresholded least-squares, LASSO, elastic-net, ridge and

SPGL1 regression techniques should be explored. The performance of the thresholded

least-squares algorithm is briefly compared with LASSO in [83], but comparisons with

elastic-net, ridge, and SPGL1 regression are important.

A second future investigation can be done on ways to improve the SINDy results

for this problem using physically reasonable sampling techniques. Employing log time

scale, Guass-Legendre sampled, or Clenshaw-Curtis sampled measurements is infeasible

experimentally on the time scales and with the number of measurements we employ, but

experimental design could inform a sampling strategy that is both experimentally feasible

and yields improved equation learning results.

Lastly, ORIGEN can be employed to approximate experimental data that can be

used to test the SINDy algorithm. Whereas we do not present any simulated ORIGEN

results, preliminary research was performed using ORIGEN to generate simulated decay

concentration data. These simulations had relatively low noise – approximate relative

mean squared error less than 5.0× 10−2 – which suggests that employing this simulated

data with the SINDy algorithm may produce results similar to those obtained when

analytically generated data is employed. ORIGEN can be used to simulate sample irra-

diation within a reactor, which would be a challenging but important future application

for equation learning.
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Chapter 8

Conclusions and Future Work

In this dissertation, we have developed accurate and efficient algorithms for use in locat-

ing sources of radiation within open and urban environments. We have outlined methods

for solving the source localization problem using detector models based on approxima-

tions of the Boltzmann equation and using Monte Carlo N-particle software. Non-smooth

solutions and the computational expense of evaluating these models motivated the con-

struction of efficient surrogate models. We employed these surrogate models for Bayesian

inference to solve the inverse problem of determining the source location from the de-

tector model observations, comparing sequential Monte Carlo and Markov chain Monte

Carlo techniques. We have demonstrated that employing these surrogate models in this

way provides accurate approximations of the source location using both simulated and

experimental data.

In Chapters 3 and 5, we provided numerical and analytic proof of the convergence

for the particle filtering algorithm in Algorithm 1 for the source localization problem

using detector observations. We showed that the posterior approximation of the source

parameters provided by this particle filtering algorithm converges numerically for sources

at multiple locations within the domain when we make the assumption that the source

is within the convex hull of the detector network. The employed particle filtering algo-

rithm was validated using publicly available experimental data obtained in an open-field

environment. We then employed this algorithm to localize a source of radiation within a

two-dimensional simulated urban environment. We investigated the use of mobile detec-

tors within the framework of this SMC method and found that we were able to localize

the source to within several meters. Additionally, we proved the convergence of the par-
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ticles within the particle filtering algorithm to the Dirac distribution centered at the true

source properties. These convergence results do not necessarily apply to other problems,

unless they have the similar properties of statistically independent measurements and a

lack of dependence of the measurement process on the state space.

One direction for future research is to extend this analysis to broader classes of particle

filtering methods and source localization problems. This includes analytically investigat-

ing the convergence of methods with other resampling algorithms which have already

been shown to converge numerically [58]. Previous work has been performed to extend

this source localization problem to a more complex urban environment employing both

the DRAM algorithm and the DiffeRential Evolution Adaptive Metropolis (DREAM) al-

gorithm [64]. The use of particle filtering algorithms within this framework may facilitate

complex moving detector and source strategies, which also comprises future research.

In Chapter 4 we outlined the construction of surrogate models that could approximate

potentially non-smooth high-fidelity model solutions accurately and efficiently. We em-

ployed surrogate models based on Legendre polynomials, multivariate adaptive regression

splines, radial basis functions, Gaussian processes, and neural networks. In Chapter 5,

we compiled in Table 5.2 the rRMSE of the surrogate models, as well as metrics of the

computational efficiency of the surrogate models. We see that all of the surrogate models

yield a dramatic decrease in the time required to evaluate the model at the 500 test

points. The evaluation of the ray-tracing model required nearly 14 min, whereas all the

surrogate models required merely seconds for the same evaluation. The relative errors in

Table 5.2 are acceptable for many applications, including for this model. Additionally, we

showed that the choice of training points is important when choosing a surrogate model

and can affect the performance of the surrogate model approximation. We showed that

the surrogate models investigated here provide sufficiently accurate approximations for

use in Bayesian inference - both Markov chain Monte Carlo and sequential Monte Carlo

techniques – when solving the source localization problem.

An area of present and future work is the use of these surrogate models for optimal

detector placement and moving detectors, similar to the work performed in [65, 69]. The

surrogate models developed here would require being retrained for every new detector

location considered for optimal placement, making these surrogate models in their current

framework infeasible for use in that problem. However, the surrogate modeling techniques

can be reused to approximate, for instance, mutual information to inform optimal detector
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placement, as in [48].

In Chapter 6, we performed computational experiments using 3-D MCNP radiation

transport simulations, which provide a reasonable representation of physical experiments

to test source localization via Bayesian inference. Since these simulations are computa-

tionally expensive, using them to perform Bayesian inference to identify the radiation

source location is not feasible. Instead, we used a fixed number of high-fidelity MCNP

model simulations to train and verify accurate and efficient surrogate models. The sur-

rogate models provide a computationally efficient platform to utilize MCMC methods

for source localization. Utilizing a Bayesian approach provides us with significant infor-

mation regarding possible radiation source locations. The posterior distributions provide

regions of high and low probability within the domain, which can facilitate decision mak-

ing regarding future detector placement.

There are several future aspects of this research that should be pursued. First, more

efficient sampling strategies could be used to reduce the number of high-fidelity MCNP

model evaluations. This could reduce the accuracy of the surrogate models. However,

the surrogate’s performance may still be sufficient for the purpose of localization in the

presence of uncertainty. Additionally, the surrogate model’s performance may be further

optimized by utilizing the statistical uncertainties provided by the MCNP simulations to

train the surrogates. The surrogate construction could possibly be improved by enforcing

regions of exclusion such that training points deemed too close to the detectors do not

impact the overall model performance. Also, there are open questions as to whether or

not modeling uncollided flux is sufficient for localization in a complex urban environ-

ment. Using uncollided flux would significantly reduce the computational burden, and

possibly allow for reduced-order physics models to be used for localization instead of the

phenomenological surrogates. For example, this could be accomplished by extending the

ray-tracing algorithm presented in [30, 31] to accommodate three spatial dimensions, as

the MCNP software does, so that less complex modeling of the geometry can be employed.

Additionally, this work could be employed to inform experimental design algorithms for

fixed or moving detector strategies [48]. These objectives are left as future research.
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Appendix A

Markov Chain Monte Carlo

Algorithms

Markov chain Monte Carlo (MCMC) methods have existed for many years, but the

computational improvements of the last few decades have recently made them feasible for

more applications. MCMC methods combine the Markov chain property that each sample

depends only on the sample before it with Monte Carlo posterior distribution sampling

to estimate the posterior distribution. We employ the posterior distribution π(q|y) as

the stationary distribution of the Markov chain and use many Monte Carlo samples

to construct the posterior distribution estimate. We note that analytically evaluating

Bayes’ relation (2.2) would require the approximation of the integral over Rp, which

becomes intractable for p > 2−4. Therefore, we instead construct a Markov chain whose

stationary distribution converges to the posterior by sampling from a proposal function.

Here, we outline the Metropolis algorithm in Section A.1 and outline modifications to

the Metropolis algorithm in Section A.2 that improve the robustness and convergence.

A.1 Metropolis Algorithm

Given the statistical model (2.1) defined in Chapter 2, we assume that the measurement

errors ε are independent and identically distributed and that ε ∼ N (0, σ2). Using the

properties of this normal distribution, we can formulate the likelihood as

π(y|q) =
1

(2πσ2)d/2
e−SS(q)/2σ2

, (A.1)
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where

SS(q) =
d∑
i=1

[yi − ui(q)]2. (A.2)

This allows us to evaluate for any set of parameter values the likelihood that they were

sampled from the posterior distribution. We also assume a uniform or flat prior function

π0 is employed when no information is available. Through much of this dissertation we

take the prior to be uniform over either the full domain or over the convex hull of the

detector network.

The Markov property states that any candidate term q∗ at the kth iterate depends

only on the previous (k − 1)st iterate, so we construct the Markov chain by taking

candidates to be

q∗ = qk−1 +Rz. (A.3)

Here we denote the parameter value at the previous iterate as qk−1, we take z ∼ N (0, 1),

and R is the Cholesky decomposition of the covariance matrix V of the parameter set Q.

We compute the covariance matrix by employing an ordinary least squares estimate

V = σ2
OLS[χT (qOLS)χ(qOLS)]−1, (A.4)

where

qOLS = arg min
q∈Q

SS(q),

σ2
OLS =

1

d− p
SS(qOLS),

χik(q) =
∂ui(q)

∂qk
.

Given these definitions, we define the proposal distribution J(q∗|qk−1) from which we

sample chain candidates as q∗ ∼ J(q∗|qk−1) = N (qk−1, V ).

As the integration in the denominator of Bayes’ relation is often infeasible to compute,

we instead compute the ratio of the posterior densities between the candidate q∗ and the

last chain element qk−1. This cancels out the normalization term in the denominator so
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we compute the posterior ratio

r(q∗|qk−1) =
π(q∗|y)

π(qk−1|y)
=

π(y|q∗)π0(q∗)

π(y|qk−1)π0(qk−1)
=

e−SS(q∗)/2σ2

e−SS(qk−1)/2σ2

= e−[SS(q∗)−SS(qk−1)]/2σ2

.

(A.5)

Given this ratio, a candidate q∗ that yields r(q∗|qk−1) > 1 means that the candidate

produced a smaller sum of squares error and so this candidate is accepted with probability

one. However, if a candidate yields r(q∗|qk−1) < 1, – i.e., the sum of squares error is

increased – we accept the candidate with probability r(q∗|qk−1). Given these definitions,

we outline the Metropolis algorithm in Algorithm 2.

Algorithm 2 Metropolis Algorithm

Choose initial parameter q0 such that π(q0|y) > 0 and set number of chain iterates M .

Compute covariance V using (A.4).

For k = 1, . . . ,M

1: Sample z ∼ (0, 1) and construct the candidate q∗ = qk−1+Rz where R is the Cholesky

decomposition of V .

2: Compute the ratio r(q∗|qk−1) using (A.5).

3: Set

qk =

q∗ , with probability α(q∗|qk−1) = min(1, r(q∗|qk−1))

qk−1 , else.

A.2 DRAM Algorithm

The Delayed Rejection Adaptive Metropolis (DRAM) algorithm extends the Metropolis

algorithm by updating the covariance matrix V and including a delayed rejection of the

candidate q∗. During the initial non-adaptive period of length k0, chain values q0, q1, q2, . . .

are computed using the initial covariance matrix V (A.4). Following k0 samples, the

adaptive Metropolis algorithm updates the covariance matrix at the kth step such that

Vk = spcov(q0, . . . , qk−1) + εIp,
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where sp, k0, and ε > 0 are design parameters and εIp – where Ip is a p-dimensional

identity matrix – ensures that Vk is positive definite. The covariance cov(q0, . . . , qk−1)

can be computed recursively, which yields the recursive relation

Vk+1 =
k − 1

k
Vk +

sp
k

[kq̄k−1(q̄k−1)T − (k + 1)q̄k(q̄k)T + qk(qk)T + εIp] (A.6)

for the covariance matrix, where q̄k = 1
k

∑k−1
i=0 q

i. The efficiency of MCMC is improved

when this adaptive step is employed at prescribed intervals k0.

In the Metropolis algorithm, candidates q∗ are accepted with probability

α(q∗|qk−1) = min(1, r) = min
(
1,

π(q∗|y)

π(qk−1|y)

)
.

The delayed rejection algorithm instead constructs alternative candidates

q∗j ∼ Jj(q
∗j|qk−1, q∗) = N (qk−1, γj2Vk)

if q∗ is rejected. Here, Vk is constructed via (A.6) and γ2 is an additional design parameter

that determines how narrow to take the proposal distribution. We consider a single

alternative candidate q∗2, which is accepted according to

α2(q∗2|qk−1, q∗) = min
(

1,
π(q∗2|y)J(q∗|q∗2)[1− α(q∗|q∗2)]

π(qk−1|y)J(q∗|qk−1)[1− α(q∗|qk−1)]

)
. (A.7)

Details regarding the choice and construction of α2(q∗2|qk−1, q∗) are provided in [66]. This

delayed rejection step increases chain mixing and complements the adaptive updating of

the covariance.

An additional concern when employing the Metropolis algorithm is the estimation

of the observation error variance σ2 in (A.5). A sample-based error variance is often

employed such that

σ2 ≈ s2
k ∼ Inv-gamma(ak, bk),

where

ak = 0.5(ds + d), bk = 0.5(dsσ
2
s + SS(qk)). (A.8)

Here, ds and σs are additional design parameters and Inv-gamma(·) is the inverse gamma

distribution. Employing the adaptively updated covariance and the delayed rejection of
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chain candidates with this sample-based error variance, we formulate the DRAM algo-

rithm in Algorithm 3. Commonly employed values for each of the design parameters are

provided in [66]

We note that the initial samples from the chain tend to explore the parametric space

whereas samples later in the chain should converge to the posterior distribution. Because

of this, the initial portion of the chain is normally discarded as burn-in when the posterior

is constructed. In this dissertation, we discard the first half of the chain as burn-in and

display posterior distribution results obtained using the remaining portion of the chain.

Algorithm 3 Delayed Rejection Adaptive Metropolis Algorithm

Set design parameters sp, k0, ε, γ2, ds, σs, and M .

Choose initial parameter q0 = arg minq SS(q).

Compute covariance matrix V0 using (A.4) and variance estimate s2
0 = 1

d−pSS(q0).

For k = 1, . . . , N

1: Sample zk ∼ (0, Ip) and construct the candidate q∗ = qk−1 + Rzk, where R is the

Cholesky decomposition of Vk−1.

2: Compute the ratio r(q∗|qk−1) using (A.5), where σ2 = s2
k−1.

3: Set

qk =


q∗ , with probability α(q∗|qk−1) = min(1, r(q∗|qk−1)),

q∗2 , with probability α2(q∗2|qk−1, q∗) from (A.7),

qk−1 , else.

4: Update s2
k ∼ Inv-gamma(ak, bk), where (ak, bk) are computed using (A.8).

5: If mod(k, k0) = 1, update Vk according to (A.6). Otherwise, set Vk = Vk−1.
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