
ABSTRACT

HERMAN, ELIZABETH ASHLEY. Design of Inverse Problems and Surrogate Modeling in
Complex Physical Systems. (Under the direction of Alen Alexanderian and Arvind Krishna
Saibaba.)

Continuous advances in mathematical modeling have allowed mathematicians and compu-

tational scientists to successfully describe physical phenomena. Specifically, within the areas

of science and engineering, there are many applications that require computationally complex

models, in the form of partial differential equations, to model the physical phenomena; these

complex mathematical models can be expensive to simulate. In addition, tasks, such as design,

control, and optimization, require repeated evaluations of the model, making the computational

cost of analyzing the models prohibitively expensive. In this thesis, we focus on two aspects:

optimal experimental design (OED) for inverse problems and developing surrogate models for

an application in materials science.

Majority of the work presented in this thesis focuses on optimal placement of sensors for

data acquisition in Bayesian inverse problems. This problem can be formulated in the optimal

experimental design framework, where we specifically focus on the A-optimal criterion. We

exploit the low-rank structure of the inverse problem to derive efficient randomized estimators

for the A-optimal objective function and its gradient, based on the randomized subspace

iteration. Motivated by computational costs involving the A-optimal criterion, we also propose

a new criterion called the modified A-optimal criterion and derive randomized estimators to

efficiently compute this new criterion. For both of these criteria, along with their gradients,

we derive error bounds to monitor the accuracy of the proposed estimators. The placement

of sensors is determined by the solution of a prohibitively expensive binary optimization

problem. Instead, we seek a sparse and binary solution to a continuous optimization problem,

where the objective function is the summation of the design criterion and a penalty function.

We propose a new penalty function and derive a new reweighted `1 optimization algorithm,

based on the Majorization-Minimization principle. Finally, motivated by applications in which

implementations of the adjoint PDE solvers are not readily available, we develop randomized

estimators to evaluate the A- and D-optimal criterion and their gradients in this setting. This

approach relies on an additional assumption that the prior covariance operator is approximately

low-rank. The success of the proposed methods are illustrated on a synthetic model problem in

contaminant source identification.

In the last part of the thesis, we consider a phase-field PDE model for physical vapor

deposition (PVD). PVD is an experimental procedure for creating binary alloy thin films, where

the structure of the thin film is dictated by the process parameters of the experiment. In the

thesis, we are interested in understanding the relationship between a subset of the process

parameters and a function of the resulting PVD output. Since model evaluations of the PDE

model are computationally expensive, we construct a surrogate model using non-intrusive



techniques to efficiently explore the input parameter space. We take advantage of the low-rank

structure of the output sample covariance matrix and use principal component analysis (PCA)

to compute a low-dimensional approximation of the high-fidelity output. The process parameters

are then linked to the low-dimensional approximation by polynomial chaos expansions (PCEs).

Through an error study, the surrogate model is demonstrated to be accurate.
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CHAPTER

1

INTRODUCTION

Mathematical models described by partial differential equations (PDEs) are important in many

applications in science and engineering. Examples include epidemiology (e.g., modeling the

spread of disease), meteorology (e.g., predicting hurricane paths), geophysics (e.g., modeling

the flow of a contaminant in groundwater), and materials science (e.g., radiation damage in

metals). In general, models can vary in computational complexity, from simple models that can

be run in a few seconds to elaborate ones that can require days to simulate. Furthermore, the

computational cost becomes prohibitively high if the model is the governing equation of design,

control, or optimization problems, as these tasks require many model evaluations.

In this thesis, we consider two computationally intensive problems: design of inverse problems

and forward uncertainty propagation. In each problem, the model in question is described by

a system of PDEs, which is assumed to be computationally expensive to evaluate. To enable

efficient solution methods, a common theme throughout the thesis is understanding and exploiting

problem structure (e.g., low-rank structures in the problem).

The majority of the work presented in the thesis focuses on the design of inverse problems.

In particular, we seek to develop efficient methods that address challenges associated with

computing optimal experimental designs (OEDs) for infinite-dimensional Bayesian linear inverse

problems governed by PDEs. We demonstrate the efficiency of the developed methods on a

contaminant source identification problem. The second problem we consider involves a non-

intrusive approach for constructing a surrogate model that approximates a computationally

expensive high-fidelity model. The specific high-fidelity model we consider is a function of a PDE

model output, where the PDE model describes a materials science experimental process called

physical vapor deposition (PVD). The surrogate model construction is the first step toward
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enabling efficient forward uncertainty quantification.

In Section 1.1, we introduce the problems of interest in the thesis. Then, in Section 1.2, we

describe the premise behind each chapter and highlight the contributions of this thesis towards

addressing the challenges associated with each of the respective problems.

1.1 Problem statements

Here we motivate the two problems we consider in the thesis: design of experiments for large-scale

linear inverse problems governed by PDEs and surrogate model construction for PVD. We

discuss the challenges associated with each problem and provide references to works that have

made significant advancements to each research area.

OED for large-scale linear inverse problems governed by PDEs

A central problem in scientific computing involves estimating parameters that describe mathe-

matical models, such as initial conditions, boundary conditions, or material parameters. This is

often addressed by using experimental measurements and a mathematical model to compute

estimates of unknown model parameters. In other words, one can estimate the parameters by

solving an inverse problem. Experimental design involves specifying the experimental setup for

collecting measurement data, with the goal of accurately recovering the parameters of interest.

As such, optimal experimental design (OED) is an important aspect of effective and efficient

parameter estimation. Namely, in applications where collecting experimental measurements

is expensive (e.g., because of budget, labor, or physical constraints), deploying experimental

resources has to be done efficiently and in a parsimonious manner. Even when collecting large

amounts of data is feasible, OED is still important; the computational cost of processing all the

data may be prohibitive or a poorly designed experiment with many measurements may miss

important information about the parameters of interest.

To make matters concrete, we explain the inverse problem and the experimental design in

the context of an application. Consider the transport of a contaminant in an urban environment

or the subsurface. The forward problem involves forecasting the spread of the contaminant,

whereas the inverse problem involves using the measurements of the contaminant concentration

at discrete points in space and time to recover the source of the contaminant (i.e., the initial

state). In this application, OED involves optimal placement of sensors, at which measurement

data is collected, to reconstruct the initial state.

We focus on OED for Bayesian linear inverse problems governed by PDEs. In our formulation

of the OED problem, the goal is to find an optimal subset of sensors from a fixed array of ns

candidate sensor sites. The experimental design is parameterized by assigning non-negative

weights to each candidate sensor location. Ideally, we seek a binary weight vector w; if wi = 1, a

sensor will be placed at the ith candidate location, and if wi = 0, no sensor will be placed at

the location. However, formulating an optimization problem over binary weight vectors leads to

2



a binary optimization problem that is prohibitively expensive from a computational standpoint.

A common approach to address this issue is to relax the binary requirement on design weights

by letting the weights take values in the interval [0, 1]. The sparsity of the design will then be

controlled using a penalty method; see e.g., [5, 42, 111]. This results in an optimization problem

of the following form:

min
w∈[0,1]ns

Φ(w) + γP (w), (1.1)

where Φ denotes the design criterion, γ > 0 is a penalty parameter, and P is a penalty function.

Adopting a Bayesian approach to the inverse problem, the design criterion will be a measure

of the uncertainty in the estimated parameters. Throughout this problem, we focus on a popular

choice known as the A-optimal criterion [20, 104]. That is, we seek a sensor configuration that

results in a minimized average posterior variance. The design criterion, in this case, is given by

the trace of the posterior covariance operator.

One major challenge in solving (1.1), specifically for PDE-based inverse problems, is the

computational cost of objective function and gradient evaluations. Namely, the posterior covari-

ance operator Γpost is dense, high-dimensional, and computationally challenging to explicitly

form—computing applications of Γpost to vectors requires solving multiple PDEs. Furthermore,

these computations must be performed at each iteration of an optimization algorithm used to

solve (1.1). To address this computational challenge, efficient and accurate matrix-free approaches

for computing the OED objective and its gradient are needed. Another challenge in solving the

OED problem (1.1) is the need for a suitable penalty method that is computationally tractable

and results in sparse and binary optimal weight vectors. Majority of the thesis is related to

this problem set up and specifically to developing methods that overcome these computational

challenges.

The research area of OED is widely studied [3, 5, 6, 8, 9, 11, 20, 24, 26, 40–42, 46, 48, 58–60,

67, 84, 86, 88, 92, 104, 105, 111]. The efforts that focus on developing algorithms for A-optimal

designs for ill-posed linear inverse problems include [40, 42], and more specifically [5, 59] focus

on infinite-dimensional Bayesian linear inverse problems. In these articles, Monte-Carlo trace

estimators are used to approximate the A-optimal design criterion and its gradient. Also, [5,

42] advocate use of low-rank approximations using the Lanczos algorithm or the randomized

SVD [43]. We refer to the work, [89], for comparison of Monte Carlo trace estimators and those

based on randomized subspace iteration; it was shown that the latter are significantly more

accurate than Monte Carlo trace estimators. Regarding sparsity control, various techniques have

been used to approximate the `0-“norm” to enforce sparse and binary designs. For example, [40–

42] use the `1-penalty function with an appropriate threshold to post-process the solution. In [5],

a continuation approach is proposed that involves solving a sequence of optimization problems

with non-convex penalty functions that approximate the `0-“norm”. More recently, in [111], a

sum-up rounding approach is proposed to obtain binary optimal designs.
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Surrogate model construction for PVD

Nanostructured thin films are used as coatings to serve specific mechanical, thermal, magnetic

or optical functionalities [21, 27, 69]. The properties of these thin films depend directly on

the underlying structure resulting from the synthesis process called physical vapor deposition.

PVD consists of solid (metal) materials being converted to a vapor and then deposited to a

surface, where the vaporized materials are returned to solid form. This process is complex to

model due to a competition between the depositing vapor flux and surface transport effects,

which govern the formation of specific underlying structures of the thin film [95, 101, 102]. The

complexity and high-dimensionality of the processing input space hinders the ability to design

synthesis protocols for fabrication of reliable and functional thin films. In our work, we focus

on constructing a surrogate model which approximates the relationship between a subset of

process parameters and the output thin film structure of PVD. Building a surrogate model that

rapidly links process to structure is central to being able to fabricate thin films that have specific

structure. The consequence is possible advancements to applications in aerospace, automotive

industry, manufacturing, textiles, and electronics [7, 90].

Numerous high-fidelity simulation methods using atomistic, kinetic Monte Carlo or phase-

field methods [23, 31, 68, 95] predict the thin film evolution during PVD quite well. We utilize

a phase-field model for simulating PVD of binary-alloy thin films developed in [95] (see brief

description of the model in Chapter 6) to simulate the PVD process. While this model accurately

predicts experimentally observed thin films across a broad class of immiscible materials systems

and deposition conditions, it is computationally expensive. This phase-field model is not suited

to rapidly explore the large number of combinations of processing parameters needed to design

thin films with specific properties. A large portion of the literature has been centered around

the development of surrogate models that efficiently and quickly link process, structure, and

properties for a wide variety of materials and fabrication processes [19, 52–54, 62, 74, 83,

93, 96, 107, 109]. Such linkage is constructed using a range of different techniques including,

regression models [54, 62, 83, 96], Gaussian processes [52] or deep learning [19, 110]. All of

these methods rely on a statistical representation of the thin film to construct a surrogate

model that can be used to identify process-structure relations, thus, eliminating the source of

randomness in the output of the high-fidelity model. For example, [109] presented a workflow

to extract process-structure linkages from phase-field simulations of the structure evolution of

ternary eutectics during solidification. This methodology uses two-point statistics, principal

component analysis (PCA), and a spectral representation to link the temperature-gradient to

the output of their model. As identified by the authors in [109], this methodology would need to

be demonstrated for a wide range of solidification rate and eutectic concentration. In our case,

this would correspond to deposition rate and phase fraction, the two process parameters we

consider in our work. Predicting the underlying thin film structures achievable during PVD as a

function of the deposition parameters presents an additional challenge related to the fact that

the deposition conditions can yield a much broader range of structures [95].

4



1.2 Outline of the thesis

The details of this section are reserved for providing an overview of the problems discussed in

each chapter of the thesis and the contributions of the author. We mention that the majority of

the work presented in this thesis has been submitted for publication. Specifically, the contents

of Chapter 3 and Chapter 4 are based on an article, [44], that has been accepted for publication in

the SIAM Journal of Scientific Computing. The contents of Chapter 6 are based on a manuscript

that has been recently submitted to a peer-reviewed journal [45].

Chapter 2: Background. This chapter includes background details to the problems we

consider and sets up notation that will be carried throughout the thesis.

Chapter 3: Efficient computation of A-optimal criterion and its gradient. The

A-optimal criterion is the trace of the posterior covariance operator; however, evaluating this

criterion is computationally challenging since constructing the posterior covariance is infeasible.

Because the objective criterion and the gradient need to be evaluated many times, we require

efficient methods for their evaluation. In particular, we need algorithms that are matrix-free, in

the sense that, the operators are not formed explicitly, but only through their action on vectors.

Contributions: In this chapter, we develop efficient and accurate randomized estimators

of the A-optimal criterion and its gradient, based on randomized subspace iteration. This

is accompanied by a detailed algorithm that guides efficient implementations, discussion of

computational cost, as well as theoretical error analysis. The estimators are structure exploiting,

in that they use the low-rank structure embedded in the posterior covariance operator. To

quantify the accuracy of the estimators, a rigorous error analysis is presented, significantly

advancing the methods in [89]. A feature of the analysis is that the bounds are independent

of the dimension of the discretized inversion parameter. Furthermore, the computational cost

(measured in the number of PDE solves) of the A-optimal objective and gradient using the

proposed estimators is independent of the discretized parameter dimension. In this chapter,

a new criterion is also proposed. Motivated by reducing computational cost, the modified

A-optimal criterion is derived by considering a suitably weighted A-optimal criterion. We present

randomized estimators for this novel criterion and its gradient and derive error bounds for its

accuracy. We demonstrate the methods on a synthetic source identification problem.

Chapter 4: An optimization framework for finding binary designs. We formulate

the optimal sensor placement problem as in (1.1), where a penalty term is included to promote

sparsity in the solution. The penalty term must enforce a sparse and binary design. However,

many convex penalty functions that ensure sparsity of the design, require additional techniques

(i.e., thresholding) to obtain a binary design.

Contributions: We propose a new penalty method that enforces sparse and binary designs.

Then, we develop a reweighted `1 algorithm for solving this optimization problem based on the

Majorization-Minimization principle. The resulting algorithm requires solving a sequence of

convex subproblems and is accelerated by the randomized estimators developed in Chapter 3.
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We illustrate the success of the penalty method on the same source identification problem as

in Chapter 3.

Chapter 5: Efficient computation of the OED problem without adjoint PDE

applications. In this chapter, we consider a slight variation of the problem setup in the

previous two chapters. We assume that an implementation of the adjoint PDE solver may not be

readily available. For example, the adjoint solver may be complicated to derive and implement

due to the coupled multiphysics, the forward model may be implemented with legacy software,

or the adjoint solver may be computationally expensive.

Contributions: Under this context, we present adjoint-free estimators for the A- and D-

optimal criterion and their respective gradients. The estimators are developed using an alternative

expression for the posterior covariance operator and take advantage of the symmetry and low-

rankness of the operator. This approach requires an additional assumption; i.e., we assume that

the prior covariance operator is approximately low-rank. For OED problems where the added

assumption is reasonable, the computational cost is significantly decreased using our methods.

The algorithms are demonstrated on a model problem from contaminant source identification.

Chapter 6: A non-intrusive surrogate model for predicting microstructure mor-

phologies during physical vapor deposition. Thin film creation via PVD is a complex

physical phenomenon; however, understanding how different process parameters affect the thin

film structure is important to be able to design thin films with favorable properties. The existing

high-fidelity models that describe PVD are computationally expensive and make it challenging

for efficient exploration of the input space. Within this chapter, we consider a high-fidelity model:

the input is a finite set of physical parameters and the output is a function of a phase-field

model solution.

Contributions: In Chapter 6, we develop a non-intrusive surrogate modeling approach to

approximate the high-fidelity model. To construct the surrogate model, we first evaluate the

high-fidelity at a set of parameters and utilize PCA to find a reduced-dimensional subspace of

the output space, exploiting the structure of the problem [50]. Then the relationship between the

process parameters and the PCA coefficients is determined using polynomial chaos expansions

(PCEs) [25]. The error of the surrogate model is explored at various stages of the construction

process and is shown to accurately approximate the high-fidelity model.

Chapter 7: Conclusion. This chapter summarizes the main contributions and conclusions

from the work presented in the thesis. We also discuss some potential future directions.
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CHAPTER

2

BACKGROUND

In this section, we recall the background material needed in the remainder of the thesis. In Sec-

tion 2.1, we provide definitions of a random field and specifically discuss Gaussian random

fields. Section 2.2 introduces the basics of Bayesian inverse problems. Then, in Section 2.3, we

define the optimal experimental design problem, which is the focus of most of this thesis. Sec-

tion 2.4 provides a discussion of the design criteria we consider in our work. Finally, Section 2.5

states the randomized algorithms we utilize throughout the thesis.

2.1 Gaussian random fields

In this section, we recall some basics regarding Gaussian random fields. The details of this

section are based on the following references [3, 5, 16, 28, 85, 97].

Consider the probability triple (Ω,B(Ω), P ), where Ω represents a non-empty sample space,

B(Ω) is the Borel sigma-algebra on Ω, and the final term is a probability measure P : B → [0, 1].

We begin our discussion with defining a random field.

Defintion 1. Let (Ω,B(Ω), P ) and D ⊆ Rn. A random field X is defined as a function

X : Ω×D → R.

Intuitively, a random field can be thought of in the following ways:

1. For a fixed point, d ∈ D, Xd : Ω → R, is a random variable. Therefore, a random field

assigns a probability distribution to each spatial location.

7



2. Fixing ω ∈ Ω, Xω is a function from D to R. Or alternatively, Xω ∈ V, where V is a

function space (for our work, we set V = L2(D)). This function is commonly called a

sample function [66].

In our work, we take the approach that X is a random variable, which maps (Ω,B(Ω), P ) to

(V,B(V)). Next, we can define the probability law of X.

Defintion 2. The probability law µ of a random variable, X : (Ω,B(Ω), P ) → (V,B(V)), is

defined as µ(E) = P (X ∈ E), where E ∈ B(V).

A particular class of random fields that we consider in Chapter 3 – Chapter 5 are Gaussian

random fields. Here we define them along with important features that are needed within the

thesis.

Defintion 3. A random field, X, is Gaussian if for any finite set of spatial locations, d1,. . .,dn ∈
D, X = [X(d1), . . . , X(dn)] is a n-dimensional Gaussian random vector.

A Gaussian random field is completely defined by its mean and covariance function [28, 97].

Defintion 4. The mean of a random field X is defined as

m̄(d) = E [X(d)] for d ∈ D.

Defintion 5. The covariance function of a random field X is defined as

c(di,dj) = E [(X(di)− m̄(di))(X(dj)− m̄(dj))] for di,dj ∈ D,

where m̄(d) is the mean of the random field.

The covariance operator, Γ, for a random field, is defined in terms of the covariance function.

Specifically, the covariance operator can be represented as an integral operator, such that for

u ∈ V,

[Γu](x) =

∫

D
c(x,y)u(y)dy, (2.1)

where c(x,y) was defined in Defintion 5.

2.2 Bayesian linear inverse problems

Inverse problems are used to estimate a parameter using measurement data and a model. In

general, the relationship between the unknown parameter, m, and the measurement data, y, is

described by the model

f(m) + η = y,

where η represents the measurement noise and f is a (possibly nonlinear) parameter-to-observable

map [99]. The focus of the thesis is on the case where the parameter-to-observable map is linear,
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i.e., f(m) = Fm, where F is a continuous linear transformation. Then, the corresponding model

is of the form,

Fm+ η = y. (2.2)

Additionally, we assume that the inversion parameter m is an element of V = L2(D), where D
is a bounded domain and that the measurement noise is Gaussian with η ∼ N (0,Γnoise).

Standard techniques of computing a solution to the inverse problem, described by (2.2), fall

into two categories, deterministic or Bayesian. The deterministic setting yields a single estimate

of the unknown parameter, obtained from solving the optimization problem

min
m
‖Fm− y‖2

Γ−1
noise

+R(m),

where ‖ · ‖Γ−1
noise

is a weighted norm and R(m) is a regularization term [5, 97]. On the other

hand, the solution to the inverse problem in a Bayesian setting is accompanied by knowledge

about the uncertainties in the solution, in the form of the posterior probability law of m. In this

section, we discuss the Bayesian approach to inverse problems.

The setup of the inverse problem

To fully specify the inverse problem, we need to describe the prior law of m and our choice of data

likelihood. For the prior, we choose a Gaussian measure µpr = N (mpr,Γpr). We assume the prior

mean mpr is a sufficiently regular element of V and that the covariance operator Γpr : V → V is

a strictly positive self-adjoint trace-class operator. Following the developments in [16, 29, 97],

we use Γpr = A−2 with A taken to be a Laplacian-like operator [97]. This ensures that Γpr is

trace-class in two and three space dimensions and allows for use of efficient elliptic PDE solvers

to compute matrix-vector products, i.e., the action of Γ
1/2
pr on u ∈ L2(D) is computed by solving

the elliptic PDE, Av = u.

We consider the case where F represents a time-dependent PDE and we assume observations

are taken at ns sensor locations at nt points in time. Thus, the vector of experimental data

y is an element of Rnsnt . An application of the parameter-to-observable map, F : V → Rnsnt ,
involves a PDE solve followed by an application of a spatiotemporal observation operator that

extracts solution values at the observation times for each of the sensor locations. Given our

choice of the noise model—additive and Gaussian—the likelihood probability density function

(pdf) is

πlike(y | m) ∝ exp

{
−1

2

(
Fm− y

)>
Γ−1noise

(
Fm− y

)}
.

For a prior probability law µpr and noise model, the solution to the infinite dimensional

Bayesian inverse problem is the posterior distribution law µypost that satisfies the infinite

dimensional Bayes formula [97, 106]:

dµypost
dµpr

∝ πlike(y | m),
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where
dµypost
dµpr

is the Radon–Nikodým derivative of the posterior measure with respect to the

prior measure and πlike(y|m) is the data likelihood. Since we have assumed a linear forward

mapping, an additive and Gaussian noise model, and a Gaussian measure as the prior law, then

the solution of the Bayesian inverse problem is the Gaussian measure, µypost = N (my
post,Γpost)

with

my
post = Γpost(F

∗Γ−1noisey + Γ−1pr mpr), Γpost = (F ∗Γ−1noiseF + Γ−1pr )−1. (2.3)

Note that here the posterior mean my
post coincides with the maximum a posteriori probability

(MAP) estimator [97].

Discretization

We use a continuous Galerkin finite element discretization approach for the governing PDEs,

as well as the inverse problem. Specifically, our discretization of the Bayesian inverse problem

follows the developments in [16]. The discretized parameter space in the present case is Vn = Rn

equipped with the inner product 〈·, ·〉M and norm ‖·‖M = 〈·, ·〉1/2M , where M is the finite element

mass matrix. Note that 〈·, ·〉M is the discretized L2(D) inner product. The discretized parameter-

to-observable map is a linear transformation F : Vn → Rnsnt with adjoint F∗ discussed below.

The discretized prior measure N (mpr,Γprior) is obtained by discretizing the prior mean and

covariance operator, and the discretized posterior measure is given by N (mpost,Γpost), with

Γpost =
(
F∗Γ−1noiseF + Γ−1prior

)−1
, my

post = Γpost

(
F∗Γ−1noisey + Γ−1priormpr

)
. (2.4)

We point out that the operator F∗Γ−1noiseF is the Hessian of the data-misfit cost functional whose

minimizer is the MAP point, and is thus referred to as the data-misfit Hessian; see e.g., [5].

It is important to keep track of the inner products in the domains and ranges of the linear

mappings, appearing in the above expressions, when computing the respective adjoint operators.

For the readers’ convenience, in Figure 2.1, we summarize the different spaces that are important,

the respective inner products, and the adjoints of the linear transformations defined between

these spaces.

Using the fact that Γprior is a self-adjoint operator on Vn and the form of the adjoint operator

F∗ (see Figure 2.1), we can rewrite the expression for Γpost as follows:

Γpost = Γ
1/2
priorM

−1/2
(
I + F>Γ−1noiseF

)−1
M1/2Γ

1/2
prior,

with

F = FΓ
1/2
priorM

−1/2. (2.5)

Note that the operator Hm = F>Γ−1noiseF is a symmetric positive semidefinite matrix, and is

a similarity transform of the prior-preconditioned data-misfit Hessian Γ
1/2
priorF

∗Γ−1noiseFΓ
1/2
prior. In

many applications, Hm has rapidly decaying eigenvalues and therefore, it can be approximated
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Figure 2.1 Different spaces, their inner products, and the adjoints of linear transformations between
them. Here 〈·, ·〉 denotes the Euclidean inner product and 〈·, ·〉M is the mass-weighted inner product.

by a low-rank matrix. This is a key insight that will be exploited in our estimators for the OED

criterion and its gradient in Chapter 3.

2.3 Optimal design of experiments

As mentioned in Chapter 1, in our work, an experimental design refers to a placement of sensors

used to collect measurement data for the purposes of parameter inversion. Here we describe the

setup of the optimization problem for finding an optimal experimental design.

Experimental design and dependence of the posterior covariance on the design

We seek to find an optimal subset of a network of ns candidate sensor locations, which collect

measurements at nt points in time. The experimental design is parameterized by a vector of

design weights w ∈ [0, 1]ns , where each weight value indicates the importance of the respective

sensor location.

We follow the same setup as [5]. Namely, the design weights enter the Bayesian inverse

problem through the data likelihood, so that the Hm operator depends on w. To weight the

importance of the spatiotemporal observations, the matrix W is defined as:

W =

ns∑

i=1

wiEi, with Ei = Int ⊗ eie
>
i ,

where ⊗ is the Kronecker product. Therefore, Hm(w) is expressed as follows:

Hm(w) = F>W1/2Γ−1noiseW
1/2F ,

We refer to [5] for details. This results in the w dependent posterior covariance operator:

Γpost(w) = Γ
1/2
priorM

−1/2 (Hm(w) + I)−1 M1/2Γ
1/2
prior. (2.6)
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In our formulation, we assume uncorrelated observations across sensor locations and time which

implies Γnoise is a nsnt×nsnt block diagonal matrix, with nt blocks of the form diag (σ21, . . . , σ
2
ns);

here σ2i , i = 1, . . . , ns, denote the measurement noise at individual sensor locations. Using this

structure for Γnoise, we define

Wnoise ≡W1/2Γ−1noiseW
1/2 = Γ

−1/2
noiseWΓ

−1/2
noise =

nsens∑

i=1

wiE
noise
i , (2.7)

with Enoise
i = σ−2i Intime ⊗ eie

>
i . Thus, we have Hm(w) = F>WnoiseF .

Optimization problem for finding an optimal design

Recall the optimization problem from (1.1). As explained before, to enable efficient solution

methods for the above optimization problem we need (i) a numerical method for fast computation

of Φ(w) and its gradient, and (ii) a choice of penalty function that promotes sparse and binary

weights. The former is facilitated by the randomized subspace iteration approach outlined

in Section 2.5 (see Chapter 3 and 5), and for the latter, we present an approach based on

rewighted `1 minimization (see Chapter 4).

2.4 Design criteria

There are many ways to measure the uncertainty in the solution to the inverse problem [20, 104].

Common design criteria (in finite-dimensions) include:

• A-optimal: tr (Γpost(w)), the average posterior variance;

• C-optimal: c>Γpost(w)c, the variance of a given linear combination of parameters;

• D-optimal: log det(Γpost(w)), the expected information gain (measured by the Kullback-

Leibler divergence); and

• E-optimal: λmax(Γpost(w)), the worst case uncertainty defined by the largest eigenvalue of

the posterior covariance operator.

In our work, we focus on the A- and D-optimal criterion to compute optimal designs. Therefore,

we discuss the two criterion and some useful properties that aid us in our discussion regarding

solving the optimal experimental design problem in (1.1).

2.4.1 A-optimal criterion

A large part of this thesis focuses on A-optimal designs. Here, we discuss the A-optimal criterion

in terms of an infinite dimensional posterior covariance operator, the convexity of the criterion,

and the gradient (with respect to w) of the criterion.
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The infinite-dimensional A-optimal criterion

Since the posterior covariance is a discretization of an infinite-dimensional operator, we need to

ensure the criterion we use makes sense in the infinite-dimensional limit. Let m(x) be Gaussian

random field on the domain D. And let its covariance operator, Γpost, be positive, self-adjoint,

and trace-class. Then the A-optimal criterion, measuring the average posterior variance, in

infinite dimensions is
1

|D|

∫

D
cpost(x,x)dx,

where cpost(x,y) is the covariance function of m(x) defined in Defintion 5 and cpost(x,y)

is assumed to be a continuous kernel on D. Then, using Mercer’s theorem [38], we provide

justification that the A-optimal criterion for an infinite-dimensional operator is equivalent to

the finite-dimensional criterion, i.e., the average variance of an infinite-dimensional operator

is equivalent to 1
|D| tr (Γpost) . Note that for the moment, we suppress the dependency of the

posterior covariance operator on the weights w.

Since Γpost is self-adjoint and trace-class, it has real eigenvalues λi for i = 1, 2, . . . and a

complete set of orthonormal eigenvectors φi ∈ L2(D), i = 1, 2, . . .. Also, since Γpost is positive,

λi ≥ 0 for i = 1, 2, . . ..

Recall the integral operator definition of the covariance operator in (2.1). The next step is

to apply Mercer’s theorem to obtain a spectral representation of cpost(x,x). Therefore, we have

cpost(x,y) =
∞∑

i=1

λiφi(x)φi(y),

where λi for i = 1, 2, . . . are real eigenvalues and {φi(x)}∞i=1 is the complete set of orthonormal

eigenvectors of Γpost. This series converges absolutely and uniformly.

Using the expansion of cpost, we express the average variance as

1

|D|

∫

D
cpost(x,x)dx =

1

|D|

∫

D

∞∑

i=1

λiφ
2
i (x)dx

=
1

|D|

∫

D
lim
k→∞

k∑

i=1

λiφ
2
i (x)dx

=
1

|D| lim
k→∞

k∑

i=1

λi =
1

|D|
∞∑

i=1

λi =
1

|D| tr (Γpost) ,

where the limit and integral are interchanged by the Monotone Convergence Theorem [87,

Theorem 11.30].

Thus, the A-optimal criterion naturally extends to the infinite-dimensional case and is given

in terms of the trace of the posterior covariance operator (the constant 1
|D| is dropped when

formulating the OED problem).
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Convexity of the criterion

We now verify the convexity of the A-optimal criterion. First, we define some notation. We

denote by SM the space of self-adjoint operators on (Rn, 〈·, ·〉M) and by S++
M cone of self-adjoint

and positive definite operators on (Rn, 〈·, ·〉M). Note that A ∈ S++
M satisfies

〈Ax,y〉M = 〈x,Ay〉M for all x,y ∈ Rn,

〈Ax,x〉M > 0, for all x 6= 0.

Recall the posterior covariance operator for a Bayesian linear inverse problem with Gaussian

prior and additive Gaussian noise model in (2.6). By construction, Γpost(w) ∈ S++
M , for all

w ∈ Rn
≥0, where Rn

≥0 denotes the non-negative orthant in Rn. Here we seek to prove that the

mapping w 7→ tr (Γpost(w)), i.e., the A-optimal design criterion, is convex on Rn
≥0 and strictly

convex provided an additional assumption is satisfied.

An important step in showing the convexity of the A-optimal criterion involves showing

strict convexity of the function G(X) = tr
(
X−1

)
on dom(G) = S++

M [104, Theorem B.27]. We

include the justification for completeness of this section. To show this we recall a result from [13]

that a function f : Rn → R is (strictly) convex if and only if its domain, dom(f), is convex and

that the function g : R→ R, defined by

g(t) = f(x+ tv), dom(g) := {t : x+ tv ∈ dom(f)},

is a (strictly) convex function of t, for any x ∈ dom(f) and v ∈ Rn. In the present setting, we

consider the function G : SM → R with dom(G) = S++
M .

Lemma 2.4.0.1. The function G(X) = tr
(
X−1

)
is strictly convex on dom(G) = S++

M .

Proof. Consider the restriction of G to a line, S + tB, where S ∈ S++
M and B is self-adjoint; that

is, we consider the function

g(t) = G(S + tB),

defined for t ∈ dom(g), where dom(g) is an interval of values of t for which S+tB ∈ S++
M . Consider

V = S−1/2BS−1/2 and let QΛQ∗ be its spectral decomposition; here Q is an orthogonal matrix

with eigenvectors of V as its columns, Q =
[
q1 · · · qn

]
, and Λ is a diagonal matrix with the

corresponding eigenvalues on its diagonal. It is straightforward to note that I + tV ∈ S++
M for
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t ∈ dom(g) and that

g(t) = tr
(
(S + tB)−1

)

= tr
(
S−1/2(I + tS−1/2BS−1/2)−1S−1/2

)

= tr
(
S−1(I + tV)−1

)

=
n∑

i=1

〈S−1(I + tV)−1qi, qi〉M

=
n∑

i=1

(1 + tλi)
−1〈S−1qi, qi〉M.

Now, ci = 〈S−1qi, qi〉M > 0, for i = 1, . . . , n, and hi(t) = (1 + tλi)
−1 is strictly convex for

t ∈ dom(g). To see the latter, note that (1 + tλi)
−1 > 0, i = 1, . . . , n, for t ∈ dom(g), and that

h′′i (t) = 2λ2i (1 + tλi)
−3 > 0, t ∈ dom(g), i = 1, . . . , n.

Hence, g(t) =
∑n

i=1 cihi(t) is a positive weighted sum of strictly convex functions, and is thus

strictly convex. Therefore, G is is strictly convex on dom(G) = S++
M .

We are now ready to prove the following result:

Theorem 1. The function Ψ : Rn
≥0 → R, given by Ψ(w) = tr (Γpost(w)) is convex.

Proof. Note that Γpost(w) = H(w)−1, where H(w) = F∗WnoiseF + Γ−1prior. Clearly H(w) is

an affine function of w. Moreover, H(w) ∈ S++
M , for every w ∈ Rn

≥0. Let w1,w2 ∈ Rn
≥0 with

w1 6= w2 and let 0 < α < 1. To simplify the notation, we denote Hi = H(wi), i = 1, 2. Note

that w1 6= w2 does not imply H1 6= H2 without added assumptions. We have

Γpost(αw1 + (1− α)w2) = [αH1 + (1− α)H2]
−1.

If H1 6= H2, then using Lemma 2.4.0.1, we obtain

Ψ(αw1+(1− α)w2)) = tr (Γpost(αw1 + (1− α)w2))

= tr
(
[αH1 + (1− α)H2]

−1) < αtr
(
H−11

)
+ (1− α)tr

(
H−12

)

= αtr (Γpost(w1)) + (1− α)tr (Γpost(w2)) = αΨ(w1) + (1− α)Ψ(w2).

However, if we assume H1 = H2, then the strict inequality in the previous derivation becomes

an equality. Thus, we have, Ψ(αw1 + (1− α)w2)) ≤ αΨ(w1) + (1− α)Ψ(w2).

Therefore, if Φ(w) = tr (Γpost(w)) in (1.1), then we have a convex optimization problem,

provided the penalty function is also convex. As briefly mentioned in the proof, more assumptions

are required to show strict convexity. Specifically, the added assumptions must ensure that if

w1 6= w2 then H1 6= H2. The following corollary provides a condition that ensures this property.
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Corollary 1.1. Assume that rank(F) = nsnt. The function Ψ : Rn
≥0 → R, given by Ψ(w) =

tr (Γpost(w)) is strictly convex.

Proof. The proof follows Theorem 1; however, we will use the added assumption to show

if w1 6= w2, then H1 6= H2. We consider proving the contrapositive. If H1 = H2, then

F∗ŴnoiseF = 0, where Ŵnoise = Wnoise
1 −Wnoise

2 and 0 ∈ Rnsnt×nsnt . We consider the rank

of the matrix F∗ŴnoiseF and apply Sylvester’s rank inequality [75, Eq. (4.5.3)] twice to the

expression to obtain

0 = rank(F∗ŴnoiseF) ≥ rank(F∗) + rank(ŴnoiseF)− nsnt
≥ 2 · rank(F) + rank(Ŵnoise)− 2nsnt = rank(Ŵnoise).

The last equality follows because we have assumed that rank(F) = nsnt. Therefore, Ŵnoise = 0

and thus w1 = w2.

Intuitively, since the rows of F are assumed to be linearly independent, the sensors at each

location must gather “new” data, i.e., none of the data gathered can be a linear combination of

the other observations.

Other (weaker) assumptions can be made to show that the A-optimal criterion is strictly

convex. For instance, if the matrix set, {F∗Enoise
j F}nsi=1, is linearly independent, then one can

use the definition of Wnoise to show strict convexity of the A-optimal criterion. Since the proof

is straightforward, we have omitted it. An intuitive interpretation of this assumption is that

each sensor location must contribute “different” information.

A reformulation of the A-optimal criterion

Because the criterion forms part of the objective function of an optimization problem, we

consider a slight variation to the traditional definition of the A-optimal criterion. Note that

tr (Γpost(w)) = tr (Γpost(w)−Γprior) + tr (Γprior) and thus, minimizing the trace of the posterior

covariance operator is equivalent to minimizing

Φaopt(w) ≡ tr
(
Γpost(w)− Γprior

)
. (2.8)

This is the objective function we seek to minimize for finding A-optimal designs. As seen below,

this formulation of the A-optimal criterion is well suited for approximations via randomized

matrix methods Section 2.5. Note also that minimizing Φaopt(w) amounts to maximizing

tr (Γprior)− tr (Γpost(w)), which can be thought of as a measure of uncertainty reduction.

We can also interpret (2.8) using a decision theoretic point of view. It is well known [3, 9,

20] that for Bayesian linear inverse problems with Gaussian prior and additive Gaussian noise
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models, tr (Γpost) coincides with Bayes risk (with respect to the L2 loss function):

tr (Γpost) = Eµpr
(
Eπlike(y|m)

(
‖my

post −m‖2M
))

=

∫

Vn

∫

Rnsnt
‖my

post −m‖2M πlike(y |m)dy µpr(dm).

Here µpr denotes the discretized prior measure, µpr = N (mpr,Γprior). Using

∫

Vn
‖mpr −m‖2M µpr(dm) = tr

(
Γprior

)
,

we see that

tr
(
Γpost − Γprior

)
= Eµpr

(
Eπlike(y|m)

(
‖my

post −m‖2M − ‖mpr −m‖2M
))

;

this provides an alternate interpretation of Φaopt(·) as a Bayes risk with respect to a modified

loss function.

The gradient of the A-optimal criterion

We now specialize the optimization problem (1.1) to the case of A-optimal sensor placement for

linear inverse problems governed by time-dependent PDEs:

min
w∈[0,1]ns

Φaopt(w) + γP (w). (2.9)

We utilize the expanded formulation of the posterior covariance operator in (2.6) to express the

A-optimal criterion as

Φaopt(w) = tr
(
Γ
1/2
priorM

−1/2[(Hm(w) + I
)−1 − I

]
M1/2Γ

1/2
prior

)

= tr
([(

Hm(w) + I
)−1 − I

]
Z
)
,

(2.10)

with

Z ≡M1/2ΓpriorM
−1/2. (2.11)

Also, anticipating that we will use a gradient-based solver for solving (2.9), we need the

gradient of Φaopt(w). Using Theorems B.17 and B.19 in [104], the partial derivatives of (2.10)

with respect to wj , j = 1, . . . , ns, are

∂jΦaopt(w) = −tr
(
(I + Hm(w))−1∂jHm(w)(I + Hm(w))−1Z

)
. (2.12)

(We have used the notation ∂j to denote ∂
∂wj

.) Note that using the definition of Hm(w), we

have ∂jHm(w) = F>Enoise
j F , j = 1, . . . , ns.
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2.4.2 D-optimal criterion

Here we consider the infinite-dimensional D-optimal criterion and its optimization problem.

Since the D-optimal criterion is not the main focus of our work, we simply state and cite the

result.

The finite dimensional D-optimal criterion, log det(Γpost), is not meaningful in infinite

dimensions due to the posterior covariance operator being trace-class, i.e., the eigenvalues have

zero as the accumulation point. Instead, we use the definition of the D-optimal criterion derived

in [3, 6] in the infinite-dimensional case. The expected information gain is defined as

Φdopt(w) ≡ 1

2
log det(I + Γ

1/2
priorF

∗Γ−1noiseWFΓ
1/2
prior). (2.13)

This quantity remains meaningful in the infinite-dimensional limit. Then, using this definition,

we define a D-optimal design to be the solution to the optimization problem,

min
w∈[0,1]ns

−Φdopt(w) + γP (w).

Since the D-optimal criterion is used as part of the objective function for an optimization

problem, for the remainder of the thesis, we remove the factor of 1
2 that appears in (2.13).

2.5 Randomized subspace iteration algorithm

In this section, we discuss the randomized subspace iteration algorithm. We begin by explaining

how to compute a low-rank approximation of a symmetric positive semidefinite matrix, A ∈ Rn×n.

To draw connection with the previous subsection, in our application, A will stand for Hm. We

first draw a random Gaussian matrix Ω ∈ Rn×` (i.e., the entries are independent and identically

distributed standard normal random variables). We then perform q steps of subspace iteration

on A with the starting guess Ω to obtain the matrix Y. If, for example, the matrix has rank

k ≤ `, or the eigenvalues decay sufficiently, then the range of Y is a good approximation to

the range of A under these suitable conditions. This is the main insight behind randomized

algorithms. We now show how to obtain a low-rank approximation of A. A thin-QR factorization

of Y is performed to obtain the matrix Q, which has orthonormal columns. We then form the

“projected” matrix T = Q>AQ and obtain the low-rank approximation

A ≈ QTQ>. (2.14)

An alternative low-rank approximation can be computed using the Nyström approximation, see

e.g., [43]. Once the matrix T is computed, it can be used in various ways. In [89], tr (T) was

used as an estimator for tr (A), whereas log det(I + T) was used as estimator for log det(I + A).

The main idea behind these estimators is that the eigenvalues of T are good approximations to

the eigenvalues of A, when A is sufficiently low-rank or has rapidly decaying eigenvalues. Our
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estimators for the A-optimal criterion and its gradient utilize the same idea but in a slightly

different form.

Algorithm 1 [Q,T] = randSubspaceIteration(A, k, p, q)

Input: A ∈ Rn×n with target rank k, oversampling parameter p ≥ 2, with ` ≡ k + p ≤ n and
q ≥ 1 (number of subspace iterations).

Output: Q ∈ Rn×`,T ∈ R`×`.
1: Draw a standard Gaussian random matrix Ω ∈ Rn×`.
2: Compute Y = AqΩ.
3: Compute thin QR decomposition Y = QR.
4: Compute T = Q>AQ.

In our work, we consider an eigenvalue decomposition of the matrix T = UΛ̂U> so that (2.14)

becomes

A ≈ QTQ> = QUΛ̂U>Q> = VΛ̂V>,

where V = QU and Λ̂ are the approximate eigenvalues of A captured in the matrix T. We define

a procedure for computing this specific low-rank approximation of a matrix A in Algorithm 2,

which will be used throughout the thesis.

Algorithm 2 [V,Λ] = randEig(A, k, p)

Input: A ∈ Rn×n, target rank k, oversampling parameter p ≥ 2, with ` ≡ k + p ≤ n.
Output: V ∈ Rn×`,Λ ∈ R`×`.
1: Compute [Q,T] = randSubspaceIteration(A, k, p, 1).
2: Compute eigendecomposition [U,Λ] of T and form V = QU.
3: Return V and Λ.
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CHAPTER

3

EFFICIENT COMPUTATION OF

A-OPTIMAL CRITERION AND ITS

GRADIENT

The computational cost of solving (2.9) is dominated by the PDE solves required in OED

objective and gradient evaluations; these operations need to be performed repeatedly when using

an optimization algorithm for solving (2.9). Therefore, to enable computing A-optimal designs

for large-scale applications, efficient methods for objective and gradient computations are needed.

In this chapter, we derive efficient and accurate randomized estimators for (2.10) and (2.12). The

proposed estimators are matrix-free—they require only applications of the (prior-preconditioned)

forward operator F and its adjoint on vectors. Moreover, the computational cost, measured in

the number of PDE solves, does not increase with the discretized parameter dimension. This is

due to the fact that our estimators exploit the low-rank structure of Hm(w), a problem property

that is independent of the choice of discretization. We also present a novel modified A-optimal

criterion to further reduce the computational cost. Randomized estimators for this criterion are

developed and error bounds are also discussed.

We introduce our proposed randomized estimators for the A-optimal design criterion Φaopt(w)

and its gradient ∇Φaopt(w) in Section 3.1. Additionally, in this section, we present a detailed

computational proceedure and analyze the errors associated with our proposed estimators. Sec-

tion 3.2 introduces the modified A-optimal criterion. The randomized estimators are derived

and the computational procedure is presented. We also discuss the error associated with the
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modified A-optimal estimators in this section. In Section 3.3, we present numerical results that

indicate the accuracy of our estimators and illustrates the bounds we prove in Section 3.4.

Lastly, Section 3.5 includes concluding remarks and future directions of the work discussed in

this chapter.

3.1 Randomized estimators for Φaopt(w) and its gradient

Consider the low-rank approximation of Hm(w) given by Ĥm(w) = Q(w)T(w)Q>(w), with

Q(w) and T(w) computed using Algorithm 1. Replacing Hm(w) by its approximation and

using the cyclic property of the trace, we obtain the estimator for the A-optimal criterion (2.10):

Φ̂aopt(w; `) = tr
((

(I + Ĥm(w))−1 − I
)

Z
)
, (3.1)

where Z is as in (2.11).

To derive an estimator for the gradient, once again, we replace Hm(w) with its low-rank

approximation Ĥm(w) in (2.12) to obtain

∂̂jΦaopt(w; `) = −tr
(

(I + Ĥm(w))−1F>Enoise
j F(I + Ĥm(w))−1Z

)
, (3.2)

for j = 1, . . . ns.

3.1.1 Computational procedure

First, we discuss computation of the A-optimal criterion estimator using Algorithm 1. Typically,

the algorithm can be used with q = 1, due to rapid decay of eigenvalues of Hm(w). In this

case, Algorithm 1 requires 2` applications of Hm(w). Since each application of Hm(w) requires

one F apply (forward solve) and one F> apply (adjoint solve), computing Ĥm(w) requires 4`

PDE solves. Letting the spectral decomposition of the `× ` matrix T(w) be given by T(w) =

U(w)ΛT(w)U(w)> and denoting V(w) ≡ Q(w)U(w), we have Ĥm(w) = V(w)ΛT(w)V>(w).

Applying the Sherman–Morrison–Woodbury formula [75] and the cyclic property of the trace

to (3.1), we obtain

Φ̂aopt(w) = −tr
(
DT(w)V>(w)ZV(w)

)
, (3.3)

where DT(w) = ΛT(w)(I + ΛT(w))−1. To simplify notation, the dependence of w is suppressed

for the operators used in computing the estimators for the remainder of the chapter; however,

the notation is retained for Hm(w) and Ĥm(w).

Next, we describe computation of the gradient estimator (3.2). Here we assume nsnt ≤ n;

the extension to the case nsnt > n is straightforward and is omitted. Again, using the Woodbury

formula and cyclic property of the trace, we rewrite (3.2) as

∂̂jΦaopt(w; `) = −tr
(
F(I−VDTV>)Z(I−VDTV>)F>Enoise

j

)
(3.4)

21



for j = 1, . . . , ns. Expanding this expression, we obtain

∂̂jΦaopt(w) = −tr
(
ZF>Enoise

j F
)

+ 2tr
(
FVDTV>ZF>Enoise

j

)
−

tr
(
FVDTV>ZVDTV>F>Enoise

j

)
.

(3.5)

Note that the first term sj = −tr
(
ZF>Enoise

j F
)

in (3.5) does not depend on the design w,

for j = 1, . . . , ns. As a result, this term can be precomputed and used in subsequent function

evaluations. We expand sj to be

sj = −tr
(
ZF>Enoise

j F
)

= −
nsnt∑

k=1

(
F>(Enoise

j )1/2êk

)>
Z
(
F>(Enoise

j )1/2êk

)
,

where êk is the kth column of the identity matrix of size nsnt. Because there are only nt columns

of Enoise
j with nonzero entries, the total cost to precompute sj for j = 1, . . . , ns is nsnt PDE

solves.

To compute the remaining terms in (3.5), we exploit the fact that V has ` columns. Notice

all the other occurrences of F and F> occur as a combination of FV and FZV (or of their

transposes). Both of these terms require ` PDE solves to compute. As a result, the total cost to

evaluate Φ̂aopt(w) and ∇̂Φaopt(w; `) is 4` PDE solves to apply Algorithm 1 and 2` PDE solves

to compute FV and FZV. We detail the steps for computing our estimators for A-optimal

criterion and its gradient in Algorithm 3.

Alternative approaches and summary of computational cost

A closely related variation of Algorithm 3 is obtained by replacing step 1 of the algorithm

(i.e., randomized subspace iteration) by the solution of an eigenvalue problem to compute the

dominant eigenvalues of Hm(w) “exactly”. We refer to this method as Eig-k, where k is the

target rank of Hm(w). This idea was explored for computing Bayesian D-optimal designs in [6].

The resulting cost is similar to that of the randomized method: it would cost O(k) PDE solves

per iteration to compute the spectral decomposition of Hm(w), plus min{nsnt, n} PDE solves to

precompute sj for j = 1, . . . , ns. While both the randomized and Eig-k methods provide a viable

scheme for computing the A-optimal criteria, our randomized method can exploit parallelism

to lower computational costs. Each matrix-vector application with Hm(w) in Algorithm 1 can

be computed in parallel. However, if accurate eigenpairs of Hm(w) are of importance to the

problem, one can choose to use the Eig-k approach at the cost of computing a more challenging

problem.

Another possibility suitable for problems where the forward model does not depend on the

design (as is the case in the present work), is to precompute a low-rank SVD of F , which can

then be applied as necessary to compute the A-optimal criterion and its gradient. This frozen
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Algorithm 3 Randomized method for computing Φ̂aopt(w; `) and ∇̂Φaopt(w; `).

Input: Target rank k, oversampling parameter p ≥ 0, design w, and sj for j = 1, . . . , ns.

Output: OED objective Φ̂aopt(w; `) and gradient ∇̂Φaopt(w; `).
1: Apply Algorithm 1 with ` = k + p and q = 1 to obtain T ∈ R`×` and Q ∈ Rn×`.
2: Compute eigendecomposition [U,ΛT] of T. Let DT = ΛT(I + ΛT)−1.
3: for i = 1 to ` do
4: Compute vi=Qui, where ui are the columns of U.
5: end for
6: Compute

Φ̂aopt(w; `) = −
∑̀

i=1

div
>
i Zvi,

where di is the ith diagonal of DT.
7: for i = 1 to ` do
8: Compute ai = Fvi and bi = FZvi.
9: end for

10: for j = 1 to ns do
11: Compute

∂̂jΦaopt(w; `) = sj + 2
∑̀

i=1

dib
>
i Enoise

j ai −
∑̀

i=1

∑̀

k=1

didka
>
i Enoise

j akv
>
k Zvi.

12: end for
13: Return Φ̂aopt(w; `) and ∇̂Φaopt(w; `) = [∂̂1Φaopt(w; `), . . . , ∂̂nsΦaopt(w; `)]>.

forward operator approach has been explored in [5, 42] for the A-optimal criterion and in [6] for

the D-optimal criterion. The resulting PDE cost of precomputing a low-rank approximation of

F is O(k), with k indicating the target rank. The Frozen method is beneficial as no additional

PDE solves are required when applying Algorithm 3; however, this approach would not favor

problems where F depends on w, nor can the modeling errors associated with the PDE be

controlled in subsequent evaluations without the construction of another operator.

Finally, if the problem size is not too large (i.e., in small-scale applications), one could

explicitly construct the forward operator F . This enables exact (excluding floating point errors)

computation of the objective and its gradient. The total cost for evaluating F involves an

upfront cost of min{nsnt, n} PDE solves. We summarize the computational cost of Algorithm 3

along with the other alternatives mentioned above in Table 3.1.

To summarize, the randomized methods for computing OED objective and its gradient

present several attractive features; our approach is well suited to large-scale applications; it

is matrix free, simple to implement and parallelize, and exploits low-rank structure in the

inverse problem. Moreover, as is the case with the Eig-k approach, the performance of the

randomized subspace iteration does not degrade as the dimension of the parameter increases

due to mesh refinement. This is the case because the randomized subspace iteration relies on
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Table 3.1 Computational cost measured in terms of PDE solves for different methods in computing
Φaopt(w) and ∇Φaopt(w). Typically, q = 1 in Algorithm 1 is sufficient.

Method Φaopt(w) and ∇Φaopt(w) Precompute Storage Cost

“Exact” − min{nsnt, n} nnsnt
Frozen − O(k) (2n+ 1)k
Eig-k O(k) min{nsnt, n} ns

Randomized 2(q + 2)(k + p) min{nsnt, n} ns

spectral properties of the prior-preconditioned data misfit Hessian—a problem structure that is

independent of discretization.

3.1.2 Error Analysis

Here we analyze the error associated with our estimators computed using Algorithm 3. For

fixed w ∈ [0, 1]ns , since Hm(w) ∈ Rn×n is symmetric positive semidefinite, we can order its

eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Suppose λ1, . . . , λk are the dominant eigenvalues of

Hm(w), we define Λ1 = diag (λ1, . . . , λk) and Λ2 = diag (λk+1, . . . , λn) and we assume that the

eigenvalue ratio satisfies

γk = ‖Λ2‖2‖Λ−11 ‖2 =
λk+1

λk
< 1.

We now present the error bounds for the objective function and its gradient. To this end, we

define the constant C as

C ≡ e2(k + p)

(p+ 1)2

(
1

2π(p+ 1)

) 2
p+1 (

µ+
√

2
)2(p+ 1

p− 1

)
, (3.6)

with r = rank(Hm(w)) and µ ≡
√
r − k +

√
k + p.

Theorem 2. Let Φ̂aopt(w; `) and ∇̂Φaopt(w; `) be approximations of the A-optimal objective

function Φaopt(w) and its gradient ∇Φaopt(w), respectively, computed using Algorithm 3 for fixed

w ∈ [0, 1]ns. Recall that k is the target rank of Hm(w), p ≥ 2 is the oversampling parameter

such that k + p ≤ n, and q ≥ 1 is the number of subspace iterations. Assume that γk < 1. Then,

with f = x/(1 + x)

E
[
|Φaopt(w)− Φ̂aopt(w; `)|

]
≤ ‖Z‖2

(
tr (f(Λ2)) + tr

(
f(γ2q−1k CΛ2)

))
. (3.7)

Furthermore, with Pj = F>Enoise
j F , for j = 1, . . . , ns,

E
[
|∂jΦaopt(w)− ∂jΦ̂aopt(w; `)|

]
≤ 2‖Z‖2‖Pj‖2

(
tr (f(Λ2)) + tr

(
f(γ2q−1k CΛ2)

))
. (3.8)

Proof. See Section 3.4.2.
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In Theorem 2, the estimators are unbiased when the target rank equals the rank of Hm(w).

If the eigenvalues decay rapidly, the bounds suggest that the estimators are accurate. Recall

that rank(Hm(w)) ≤ min{nsnt, n} is the number of nonzero eigenvalues. Consequently, it is

seen that the bounds are independent of the dimension of the discretization n.

3.2 Modified A-optimal criterion

Motivated by reducing the computational cost of computing A-optimal designs, in this section,

we introduce a modified A-optimality criterion. As mentioned in [20], we can consider a weighted

A-optimal criterion tr (ΓΓpost(w)), where Γ is a positive semidefinite weighting matrix. Similar

to (2.8), we work with tr
(
Γ(Γpost − Γprior)

)
, since the term tr

(
Γ(Γprior)

)
is independent of

the weights w. By choosing Γ = Γ−1prior, we obtain the modified A-optimal criterion

Φmod(w) ≡ tr
(

(I + Hm(w))−1 − I
)
. (3.9)

Note that the expression for Φmod(w) remains meaningful in the infinite-dimensional limit. This

can be seen by noting that

Φmod(w) = tr
((

I + Hm(w)
)−1 − I

)
= −tr

(
Hm(w)

(
I + Hm(w)

)−1)
,

and using the fact that in the infinite-dimensional limit, for every w ∈ [0, 1]ns , Hm(w) is trace

class and
(
I + Hm(w)

)−1
is a bounded linear operator.

We show in our numerical results that the modified A-optimality criterion can be useful in

practice, if a cheaper alternative to the A-optimal criterion is desired, and minimizing Φmod can

provide designs that lead to small posterior uncertainty.

Derivation of estimators

Here we seek to improve the efficiency of the modified A-optimal criterion by computing a

randomized estimator for the modified A-optimal criterion and its gradient. As in the previous

derivation of our estimators, we replace Hm(w) by its low rank approximation to obtain the

randomized estimator for the modified A-optimal criterion

Φmod(w) ≈ tr
(

(I + Ĥm(w))−1 − I
)
≡ Φ̂mod(w; `). (3.10)

Similarly, we use the same low-rank approximation Ĥm(w) in the gradient of the modified

A-optimal criterion to obtain the randomized estimator

∂̂jΦmod(w; `) = −tr
(

(I + Ĥm(w))−1FTEnoise
j F(I + Ĥm(w))−1

)
, (3.11)

for j = 1, . . . , ns.
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3.2.1 Computational procedure

Using similar techniques as those described in Section 3.1, we can write the estimator for the

modified A-optimal criterion in terms of the eigenvalues of T:

Φ̂mod(w; `) = −tr (DT) . (3.12)

Moreover,

∂̂jΦmod(w) = −tr
(
F>Enoise

j F
)

+ 2tr
(
FVDTV>F>Enoise

j

)
−

tr
(
FVD2

TV>F>Enoise
j

)
.

(3.13)

with DT = ΛT(I + ΛT)−1 and V defined as in Section 3.1.

The procedure for computing the estimators for the modified A-optimal criterion follows

the steps in Algorithm 3 closely. Instead of presenting an additional algorithm, we provide an

overview of the computation of the estimators for the modified A-optimal criterion along with

the associated computational cost in terms of the number of PDE solves.

To evaluate the estimators for the modified A-optimal criterion, the only precomputation we

perform is to obtain

sj = −tr
(
F>Enoise

j F
)
, j = 1, . . . , ns.

This term appears in the estimator for the gradient and accumulates a total cost of nsnt PDE

solves. The remaining terms in the estimators depend on a design w and, in particular, the

eigenvalues and eigenvectors of Ĥm(w). As with the estimators for the A-optimal criterion,

the eigenvalues and eigenvectors of Ĥm(w) are obtained by Algorithm 1. Recall that the cost

associated with Algorithm 1, with q = 1, is 4` PDE solves. Once the eigenvalues and eigenvectors

are computed, (3.12) can be evaluated without any additional PDE solves. The remaining

computational effort occurs in the evaluation of the gradient. Because of our modification to the

A-optimal criterion, the expression (3.13) is efficiently evaluated by computing FV. Therefore,

the total cost of evaluating the estimators for the modified A-optimal criterion and its gradient is

5` PDE solves. From this computational cost analysis, we see the modified A-optimal estimators

require ` less PDE solves than the A-optimal estimators.

3.2.2 Error analysis

We now quantify the absolute error of our estimators with the following theorem.

Theorem 3. Let Φ̂mod(w; `) and ∇̂Φmod(w; `) be the randomized estimators approximating the

modified A-optimal objective function Φmod(w) and its gradient ∇Φmod(w), respectively. Using

the notation and assumptions of Theorem 2, for fixed w ∈ [0, 1]ns

E
[
|Φmod(w)− Φ̂mod(w; `)|

]
≤ tr (f(Λ2)) + tr

(
f(γ2q−1k CΛ2)

)
,
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and for j = 1, . . . , ns,

E
[
|∂jΦmod(w)− ∂̂jΦmod(w; `)|

]
≤ 2‖Pj‖2

(
tr (f(Λ2)) + tr

(
f(γ2q−1k CΛ2)

))
,

where C is defined in (3.6).

Proof. See Appendix Section 3.4.3.

Notice the bounds presented in Theorem 2 and 3 differ by a factor of ‖Z‖2. Since the modified

A-optimal criterion removes one application of Γprior from the computation of the A-optimal

criterion, the bounds related to the modified A-optimal criterion no longer have the factor of

‖Z‖2.

3.3 Numerical results

In this section, we present numerical results that test various aspects of the proposed methods.

We begin by a brief description of the inverse advection-diffusion problem used to illustrate

the proposed OED methods, in Section 3.3.1. The setup of our model problem is adapted

from that in [5], where further details about the forward and inverse problem can be found.

In Section 3.3.1, we also describe the numerical methods used for solving the forward problem,

as well as the optimization solver for the OED problem. In Section 3.3.2, we test the accuracy

of our randomized estimators and illustrate our error bounds.

3.3.1 Model problem and solvers

We consider a two-dimensional time-dependent advection-diffusion equation

ut − κ∆u+ v · ∇u = 0 in D × (0, T ),

u(·, 0) = m in D,
κ∇u · n = 0 on ∂D × (0, T ),

which models the transport of contaminants (e.g., in the atmosphere or the subsurface). Here

κ is the diffusion coefficient and is taken to be κ = 0.01. The velocity field v is computed by

solving a steady-state Navier-Stokes equations, as in [5]. The domain D, depicted in Figure 3.1,

is the unit square in R2 with the gray rectangles, modeling obstacles/buildings, removed. The

boundary ∂D is the union of the outer boundary and the boundaries of the obstacles. The PDE

is discretized using linear triangular continuous Galerkin finite elements in space and implicit

Euler in time. We let the final simulation time be T = 5.

The inverse problem involves reconstructing the initial state m from space-time point

measurements of u(x, t). We consider ns = 109 sensor candidate locations distributed throughout

the domain which are indicated by hollow squares in Figure 3.1. Measurement data is collected

from a subset of these locations at three observation times, t = 1, 2, and 3.5. To simulate noisy
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observations, 2% noise is added to the simulated data. We fix the random matrix Ω in Algorithm

1 for the numerical experiments performed in this chapter.

Recall, in Section 2.2, we define our prior covariance operator to be a Laplacian-like operator.

Following [5], an application of the square root of the prior on s ∈ L2(D) is v = A−1s, which

satisfies the following weak form

∫

D
θ∇v · ∇p+ αvp dx =

∫

D
sp dx for every p ∈ H1(D). (3.14)

Here θ and α control the variance and correlation length and are chosen to be α = 0.1 and

θ = 0.002, respectively.

Figure 3.1 Domain with 109 candidate sensor locations.

3.3.2 Accuracy of estimators

Here we examine the accuracy of the randomized estimators with respect to `, the number of

columns in the sampling matrix Ω in the randomized subspace iteration algorithm. Specifically,

we compute

e1(`) =
|Φaopt(w)− Φ̂aopt(w; `)|

|Φaopt(w)| , e2(`) =
‖∇Φaopt(w)− ∇̂Φaopt(w; `)‖2

‖∇Φaopt(w)‖2
,

e3(`) =
|Φmod(w)− Φ̂mod(w; `)|

|Φmod(w)| , e4(`) =
‖∇Φmod(w)− ∇̂Φmod(w; `)‖2

‖∇Φmod(w)‖2
,

with w taken to be a vector of all ones; that is, with all sensors activated. We let ` to vary

from 17 to 327, because the rank of Hm(w) is no larger than the number of observations taken,

nsnt = 327. Figure 3.2 illustrates the relative error in the estimators for the A-optimal criterion
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and its gradient (left) and the modified A-optimal criterion and its gradient (right), as ` is

varied. We observe that the error decreases rapidly with increasing `. This illustrates accuracy

and efficiency of our estimators.

Next, we consider the absolute error in the estimators for the objective function and compare

them with the theoretical bounds derived in Theorems 2 and 3. In Figure 3.3, we compare the

absolute error in the estimators with bounds from Theorem 2 and Theorem 3. As before, we

take w = [1, 1, . . . , 1]> ∈ Rns . We observe that our error bound captures the general trend in

the error. Moreover, the error bound for the modified A-optimality is better since it does not

have the additional factor of ‖Z‖2.
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Figure 3.2 Relative error of the randomized estimators for the A-optimal criterion (left), and those
corresponding to the modified A-optimal criterion (right) for varying `.
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Figure 3.3 Absolute error bound for Φ̂aopt(w) from Theorem 2 (left), and Φ̂mod(w) from Theorem 3
(right) for varying `.
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3.4 Proofs of bounds

3.4.1 Trace of matrix function

In the proofs below, we use the Loewner partial ordering [47, Chapter 7.7]; we briefly recapitulate

some main results that will be useful in our proof. Let A,B ∈ Rn×n be symmetric positive

definite; then A � B means that B−A is positive semidefinite. For any S ∈ Rn×m, it also follows

that S>AS � S>BS. Let UΛU> be the eigendecomposition of A. Then, f(A) = Uf(Λ)U>

and tr (f(A)) =
∑n

i=1 f(λi). If f is monotonically increasing then tr (f(A)) ≤ tr (f(B)) since

A � B implies λi(A) ≤ λi(B) for i = 1, . . . , n.

The following bound allows us to bound the trace of a matrix function in terms of its diagonal

subblocks.

Lemma 3.4.0.1. Let

A =

[
A11 A12

A>12 A22

]

be a symmetric positive definite matrix. Let f be a nonnegative concave function on [0,∞). Then

tr (f(A)) ≤ tr (f(A11)) + tr (f(A22)) .

Proof. See Theorem 2.1 and Remark 2.4 in [64].

We are ready to state and prove our main result of this section, which is the key in

proving Theorem 2 and Theorem 3.

Theorem 4. Let A ∈ Rn×n be a symmetric positive definite matrix with eigendecomposition

A = UΛU> =
[
U1 U2

] [Λ1

Λ2

][
U>1
U>2

]
,

where Λ1 = diag (λ1, . . . , λk) and Λ2 = diag (λk+1, . . . , λn) contain the eigenvalues arranged in

descending order. Assume that the eigenvalue ratio γk ≡ λk+1

λk
< 1. Let k be the target rank, p ≥ 2

be the oversampling parameter such that ` ≡ k + p ≤ n, and let q ≥ 1 be the number of subspace

iterations. Furthermore, assume that Q ∈ Rn×` and T ∈ R`×` are computed using Algorithm 1

and define Â ≡ QTQ>. Then

0 ≤ E
[
tr
(

(I + Â)−1
)
− tr

(
(I + A)−1

)]
≤ tr (f(Λ2)) + tr

(
f(γ2q−1k CΛ2)

)
,

where f = x/(1 + x), and the constant C is defined in (3.6).

Proof. Suppose rank(A) = r. Then, A has at most r nonzero eigenvalues, and thus, we can
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define Λr−k = diag(λk+1, . . . , λr) so that

Λ2 =

[
Λr−k

0n−r−k

]
. (3.15)

We split this proof into several steps.

Step 0: Lower bound

Let λ̃1 ≥ · · · ≥ λ̃` ≥ 0 be the eigenvalues of T (and also Â). By the Cauchy interlacing theorem

(see [89, Lemma 1] for the specific version of the argument), λi ≥ λ̃i for i = 1, . . . , `. Using

properties of the trace operator

tr
(

(I + Â)−1
)
− tr

(
(I + A)−1

)
=
∑̀

i=1

1

1 + λ̃i
+ (n− `)−

n∑

i=1

1

1 + λi

=
∑̀

i=1

λi − λ̃i
(1 + λi)(1 + λ̃i)

+
n∑

i=`+1

λi
1 + λi

.

Since each term in the summation is nonnegative, the lower bound follows.

Step 1. Trace of matrix function

We first write Â = QTQ> = QQ>AQQ> = PQAPQ, where PQ = QQ> is an orthogonal

projection matrix onto the range of Q. Since Â has the same eigenvalues as R ≡ A1/2PQA1/2 [47,

Theorem 1.3.22],

tr
(

(I + Â)−1
)

= tr
(

(I + A1/2PQA1/2)−1
)
. (3.16)

Also, since PQ � I, it follows that R = A1/2PQA1/2 � A and 0 � A−R. Therefore, from the

proof of [12, Lemma X.1.4] and (3.16),

tr
(

(I + Â)−1
)
− tr

(
(I + A)−1

)
≤ tr

((
I− (I + A−R)−1

))
= tr (f(A−R)) ,

where f(x) was defined in the statement of the theorem.

Step 2. Reducing the dimensionality

Let FS ≡ Λq
2Ω2Ω

†
1Λ
−q
1 . In Algorithm 1, we compute Y = AqΩ and let Y = QRY be the thin

QR factorization of Y. Let WQ = RYΩ†1Λ
−q
1 (I + F>S FS)−1/2 ∈ R`×k be defined as in the proof

of [89, Theorem 6]. It was also shown that WQ has orthonormal columns, so that

QWQ = U

[
I

FS

]
(I + F>S FS)−1/2 ∈ Rn×k,
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has orthonormal columns. The following sequence of identities also hold: WQW>
Q � I,

QWQW>
QQ> � QQ>,

and

A−R � A−A1/2QWQW>
QQ>A1/2 ≡ S.

Since f(x) is a monotonic increasing function, tr (f(A−R)) ≤ tr (f(S)).

Step 3. Split into the diagonal blocks

We can rewrite S as

S = U

[
S1 ∗
∗ S2

]
U>,

where ∗ represents blocks that can be ignored and

S1 ≡ Λ
1/2
1 (I− (I + F>S FS)−1)Λ

1/2
1 , S2 = Λ

1/2
2 (I− FS(I + F>S FS)−1F>S )Λ

1/2
2 .

We can invoke Lemma 3.4.0.1, since f(x) = x/(1 + x) is concave and nonnegative on [0,∞).

Therefore, we have

tr (f(S)) ≤ tr (f(S1)) + tr (f(S2)) .

Note that the matrix U disappears, because the trace is unitarily invariant.

Step 4. Completing the structural bound

Using an SVD based argument it can be shown that I− (I + F>S FS)−1 � F>S FS, so that

S1 = Λ
1/2
1 (I− (I + F>S FS)−1)Λ

1/2
1 � Λ

1/2
1 F>S FSΛ

1/2
1 .

Therefore, since f is monotonically increasing

tr (f(S1)) ≤ tr
(
f(Λ

1/2
1 F>S FSΛ

1/2
1 )

)
=

k∑

j=1

f
(
λj

[
Λ

1/2
1 F>S FSΛ

1/2
1

])
. (3.17)

Note that FSΛ
1/2
1 is (n− k)× k has at most min{n− k, k} nonzero singular values. Looking

more into the structure of FSΛ
1/2
1 , and using (3.15), we can write

FSΛ
1/2
1 = Λ

1/2
2

[
Λ
q−1/2
r−k

0

]
Ω2Ω

†
1Λ
−q+1/2
1

= Λ
1/2
2

[
Λ
q−1/2
r−k Ω̂2Ω

†
1Λ
−q+1/2
1

0

]
,
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where Ω̂2 ∈ R(r−k)×(k+p) such that Ω2 =

[
Ω̂2

∗

]
. Using the multiplicative singular value inequali-

ties [47, Equation (7.3.14)] and repeated use of the submultiplicative inequality gives

σj(FSΛ
1/2
1 ) ≤ γq−1/2k ‖Ω̂2Ω

†
1‖2σj(Λ

1/2
2 ), j = 1, . . . ,min{k, n− k}. (3.18)

The analysis splits into two cases:

Case 1: k ≤ n− k. Since f is monotonically increasing, using (3.17) and (3.18)

tr (f(S1)) ≤
k∑

j=1

f
(
λj

[
Λ

1/2
1 F>S FSΛ

1/2
1

])
≤

k∑

j=1

f
(
γ2q−1k ‖Ω̂2Ω

†
1‖22σ2j (Λ

1/2
2 )

)

≤
n−k∑

j=1

f
(
γ2q−1k ‖Ω̂2Ω

†
1‖22σ2j (Λ

1/2
2 )

)
= tr

(
f(γ2q−1k ‖Ω̂2Ω

†
1‖22Λ2)

)
.

Case 2: k > n− k. Since Λ
1/2
1 F>S FSΛ

1/2
1 has at most n− k nonzero eigenvalues, use the fact

that f(0) = 0, along with (3.17) and (3.18) to obtain

tr (f(S1)) ≤
k∑

j=1

f
(
λj

[
Λ

1/2
1 F>S FSΛ

1/2
1

])
=

n−k∑

j=1

f
(
λj

[
Λ

1/2
1 F>S FSΛ

1/2
1

])

≤
n−k∑

j=1

f
(
γ2q−1k ‖Ω̂2Ω

†
1‖22σ2j (Λ

1/2
2 )

)
= tr

(
f(γ2q−1k ‖Ω̂2Ω

†
1‖22Λ2)

)
.

To summarize, in both cases tr (f(S1)) ≤ tr
(
f(γ2q−1k ‖Ω̂2Ω

†
1‖22Λ2)

)
. Similarly, since 0 �

FS(I + F>S FS)−1F>S , we can show

S2 = Λ
1/2
2 (I− FS(I + F>S FS)−1F>S )Λ

1/2
2 � Λ2,

so that tr (f(S2)) ≤ tr (f(Λ2)). Combine with step 3 to obtain

tr (f(S)) ≤ tr (f(Λ2)) + tr
(
f(γ2q−1k ‖Ω̂2Ω

†
1‖22Λ2)

)
.

Combine this with the results of steps 1 and 2, to obtain the structural bound

tr
(

(I + Â)−1
)
− tr

(
(I + A)−1

)
≤ tr

(
f(γ2q−1k ‖Ω̂2Ω

†
1‖22Λ2)

)
+ tr (f(Λ2)) .

Step 5. The expectation bound

Note that Ω̂2 ∈ R(r−k)×(k+p) and Ω1 ∈ Rk×(k+p). From the proof of [89, Theorem 1], we have

E [‖Ω̂2Ω
†
1‖22] ≤ C, where C was defined in (3.6). By Jensen’s inequality, using the fact that
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f(x) = x/(1 + x) is concave on [0,∞) we have

E
[
tr
(

(I + Â)−1
)
− tr

(
(I + A)−1

)]
≤ tr (f(Λ2)) + E

[
tr
(
f(γ2q−1k ‖Ω̂2Ω

†
1‖22Λ2)

)]

≤ tr (f(Λ2)) + tr
(
f(γ2q−1k CΛ2)

)
.

Combining this with the lower bound (step 0) completes the proof.

3.4.2 Proof of Theorem 2

For the remaining discussion, we use the notation

Pj = F>Enoise
j F , (3.19)

where F and Enoise
j are defined in (2.5) and (2.7), respectively. We will also need

Lemma 3.4.0.2 (See [6]). Let A,B ∈ Rn×n and let B be a symmetric positive semidefinite

matrix. Then, we have |tr (AB) | ≤ ‖A‖2tr (B).

Proof. Recall our estimator Φ̂aopt(w; `) from (3.1). For fixed `, using Lemma 3.4.0.2 we have

E|Φaopt(w)− Φ̂aopt(w; `)| = E
∣∣∣tr
(

(I + Hm(w))−1Z− (I + Ĥm(w))−1Z
)∣∣∣

≤ ‖Z‖2E|tr
(

(I + Hm(w))−1 − (I + Ĥm(w))−1
)
|.
.

Applying Theorem 4 establishes (3.7).

Next, we consider (3.8). Recall the estimator ∂̂jΦaopt(w; `) from (3.2). We can write the

absolute error as

|∂jΦaopt(w)− ∂̂jΦaopt(w; `)|

= |tr
((

(I + Hm)−1Pj(I + Hm)−1 − (I + Ĥm)−1Pj(I + Ĥm)−1
)
Z
)
|,

where Ĥm = QTQ>. We use the decomposition

(
(I + Hm)−1Pj(I + Hm)−1 − (I + Ĥm)−1Pj(I + Ĥm)−1

)
Z

=
(
DPj(I + Hm)−1 + (I + Ĥm)−1PjD

)
Z,

where D ≡ (I + Hm)−1 − (I + Ĥm)−1. Repeated application of Lemma 3.4.0.2 gives

|∂jΦaopt(w)− ∂jΦ̂aopt(w; `)| ≤ ‖Pj‖2‖Z‖2
(
‖(I + Hm)−1‖2 + ‖(I + Ĥm)−1‖2

)
|tr (D) |.

Since I +Hm and I + Ĥm have eigenvalues greater than or equal to one, ‖(I +Hm)−1‖2 + ‖(I +

Ĥm)−1‖2 ≤ 2. Finally, taking the expectation and applying Theorem 4, we have the desired
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result.

3.4.3 Proof of Theorem 3

Proof. The proof follows in similar lines as the proof of Theorem 2 except the fact that

in Theorem 3 we do not have Z in the expressions.

3.5 Conclusion

We have established an efficient and flexible computational framework for A-optimal design of

experiments in large-scale Bayesian linear inverse problems. The proposed randomized estimators

for the OED objective and its gradient are accurate, efficient, simple to implement and parallelize.

Specifically, the randomized estimators exploit the low-rank structure in the inverse problem;

namely, the low-rank structure of the prior-preconditioned data misfit Hessian—a common

feature of ill-posed inverse problems. We also presented the modified A-optimal criterion, which

is more computationally efficient to compute and can provide designs that, while sub-optimal

if the goal is to compute A-optimal designs, provide a systematic means for obtaining sensor

placements with small posterior uncertainty levels.

Open questions that we seek to explore in our future work include adaptive determination of

the target rank k within the optimization algorithm, to further reduce computational costs, while

ensuring sufficiently accurate estimates of the OED objective and gradient. Another possible

line of inquiry is to use different low-rank approximations, such as Nyström’s method, and

extending the randomized estimators to approximate trace of matrix functions. We also seek

to incorporate the randomized estimators in a suitable optimization framework for Bayesian

nonlinear inverse problems, in our future work.
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CHAPTER

4

AN OPTIMIZATION FRAMEWORK FOR

FINDING BINARY DESIGNS

We seek A-optimal designs by solving an optimization problem of the form,

min
w∈W

Φ(w) + γP (w), W = [0, 1]ns , (4.1)

where the design criterion Φ is either the A-optimal criterion Φaopt(w) or the modified A-optimal

criterion Φmod(w) (see Section 3.2). In the previous chapter, we laid out an efficient framework

for computing accurate approximations to the A-optimal criterion and its gradient. We now

discuss the choice of the penalty term P and the algorithm for solving the optimization problem.

The choice of the penalty term must satisfy two conditions: enforcing sparsity, measured by

the number of nonzeros of the design vector, and binary designs, i.e., design vectors whose entries

are either 1 or 0. One possibility for the penalty function is the `0-“norm”, P`0(w) = ‖w‖0,
which measures the number of nonzero entries in the design. However, the resulting optimization

problem is challenging to solve due to its combinatorial complexity. A common practice is to

replace the `0-“norm” penalty by the `1-norm, P`1(w) = ‖w‖1. The penalty function P`1 has

desirable features: it is a convex penalty function that promotes sparsity of the optimal design

vector w. However, the resulting design is sparse but not necessarily binary and additional

post-processing in the form of thresholding is necessary to enforce binary designs.

In what follows, we introduce a suitable penalty function that enforces both sparsity and

binary designs and an algorithm for solving the OED optimization problem based on the MM

approach. The resulting algorithm takes the form of a reweighted `1-minimization algorithm [18].
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The chapter is laid out as follows. In Section 4.1, we present our novel penalty function we

use to solve (4.1). Section 4.2 provides a discussion of the MM approach and how this approach

transforms the non-convex optimization problem into a sequence of convex ones. This algorithm

is tested on our source identification problem from the previous chapter using the randomized

algorithms of Chapter 3, where the numerical results are presented in Section 4.3. The last

section of this chapter, Section 4.4 summarizes our findings.

4.1 Penalty functions

We propose the following penalty function

Pε(w) =

ns∑

i=1

|wi|
|wi|+ ε

, w ∈ Rns , (4.2)

for a user-defined parameter ε > 0. This penalty function approximates P`0 for small values of

ε; however, as ε becomes smaller the corresponding optimization problem becomes harder. To

illustrate the choice of penalty functions, in Figure 4.1, we plot P0.05 along with P`0 and P`1 ,

with ns = 1. Using Pε in the OED problem leads to the optimization problem,

min
w∈W

Φ(w) + γPε(w). (4.3)

In (4.3), the absolute values in definition of Pε can be dropped since we limit the search for

optimal solutions in W . Since Pε(w) is concave, (4.3) is a non-convex optimization problem. To

tackle this, we adopt the majorization-minimization (MM) approach.

−1 0 1 2
0

0.5

1

1.5

2

2.5

w

P`1(w)

P0.05(w)
P`0(w)

Figure 4.1 Different choices of penalty functions with ns = 1.
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4.2 MM approach and reweighted `1 algorithm

The idea behind the MM approach is to solve a sequence of optimization problems whose

solutions converge to that of the original problem [49, 61]. This sequence is generated by a

carefully constructed surrogate that satisfies two properties—the surrogate must majorize the

objective function for all values, and the surrogate must match the objective function at the

current iterate. More specifically, suppose

J(w) = Φ(w) + γ

ns∑

i=1

wi
wi + ε

.

Then the surrogate function g(w|w(m)) at the current iterate w(m) must satisfy

g(w|w(m)) ≥ J(w) ∀w ∈ W,

g(w(m)|w(m)) = J(w(m)).

Granted the existence of this surrogate function, to find the next iterate w(m+1) we solve the

optimization problem

w(m+1) = arg min
w∈W

g(w|w(m)). (4.4)

To show the objective function decreases at the next iterate, observe that the next iterate w(m+1)

stays within the feasible region and use the two properties of the surrogate function

J(w(m+1)) ≤ g(w(m+1)|w(m)) ≤ g(w(m)|w(m)) = J(w(m)).

To construct this surrogate function, we use the fact that a concave function is below its

tangent [61, Equation (4.7)]. Applying this to our concave penalty Pε(w), we have

Pε(w) ≤ Pε(w(m)) + (w −w(m))>∇wPε(w
(m)), for all w ∈ W.

With this majorization relation, we define the surrogate function to be

g(w|w(m)) = Φ(w) + γ
(
Pε(w

(m)) + (w −w(m))>∇wPε(w
(m))

)

By dropping the terms that do not depend on w, it can be readily verified that (4.4) can be

replaced by the equivalent problem

w(m+1) = arg min
w∈W

Φ(w) + γ

ns∑

i=1

εwi

(w
(m)
i + ε)2

= arg min
w∈W

Φ(w) + γ‖R(w(m))w‖1,
(4.5)
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where R(w) = diag
(

ε
(w1+ε)2

, . . . , ε
(wns+ε)

2

)
. We see that (4.5) is of the form of a reweighted

`1-optimization problem. The details of the optimization procedure are given in Algorithm 4.

(We remark that, in Algorithm 4, other metrics measuring the difference between the successive

weight vectors can be used in step 3.)

Algorithm 4 Reweighted `1 Algorithm.

Input: Initial guess w(0) ∈ Rns , stopping tolerance tol, penalty parameters γ, ε ≥ 0.
Output: Optimal design w∗ ∈ Rns .
1: Initialize m = 1.
2: Compute

w(1) = arg min
w∈W

Φ(w) + γ‖w‖1.

3: while m < mmax and ‖w(m) −w(m−1)‖2 > tol do
4: Update m = m+ 1
5: Compute

w(m) = arg min
w∈W

Φ(w) + γ

ns∑

i=1

ri · wi,

6: Update

ri =
ε

(|w(m−1)
i |+ ε)2

, i = 1, . . . , ns.

7: end while
8: Return w(m) = w∗.

We conclude this section with a few remarks regarding this algorithm. In our application,

Φ(w) is convex; therefore, each subproblem to update the design weights is also convex. To

initialize the reweighted `1 algorithm, we start with the weights ri = 1, i = 1, . . . , ns. This

ensures that, in the first step, we are computing the solution of the `1-penalized optimization

problem. The subsequent reweighted `1 iterations further promote binary designs. To solve

the subproblems in each reweighted `1 iteration we use an interior point algorithm; however,

any solver for appropriate convex optimization may be used. In Section 4.3, we will provide a

discussion of our choice of ε for our application. It is also worth mentioning that besides the

penalty function Pε used above, another possible choice is
∑ns

i=1 arctan(|wi|/ε) which yields the

weights 1
|wi|2+ε2 .

4.3 Numerical results

We now consider solving (2.9) with Algorithm 3 and Algorithm 4. The optimization solver

used for the OED problem is a quasi-Newton interior point method. Specifically, to solve each

subproblem of Algorithm 4, we use MATLAB’s interior point solver provided by the fmincon

function; BFGS approximation to the Hessian is used for line search. We use a vector of all ones,
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1 ∈ Rns , as the initial guess for the optimization solver.

For the numerical experiments presented in this section, the random matrix Ω in Algorithm

1 is fixed during the optimization process. However, because of the randomness, the accuracy of

the estimators, and the optimal design thus obtained, may vary with different realizations of Ω.

By conducting additional numerical experiments (not reported here) the stochastic nature of

the estimators resulted in minor variability (at most one or two sensor locations) in the optimal

experimental designs for a modest value of `. On the other hand, if ` is sufficiently large, we

observed that the same design was obtained with different realizations of Ω.

We now consider the choice of the value of ε in (4.5). The user-defined parameter ε controls

the steepness of the penalty function at the origin; see Figure 4.1. However, we observed that

if the penalty function is too steep, the optimization solvers took more iterations without

substantially altering the optimal designs. We found ε = 1/28 to be sufficiently small in our

numerical experiments, and we keep this fixed for the remainder of the numerical experiments.

In Section 4.3.1, we investigate the performance of our proposed reweighted `1-optimization

approach. Next, we utilize the proposed optimization framework to compute A-optimal designs

in Section 4.3.2. Finally, in Section 4.3.3, we compare A-optimal sensor placements with those

computed by minimizing the modified A-optimal criterion.

4.3.1 Performance of the reweighted `1 algorithm

We perform two numerical experiments examining the impact of changing ` and the penalty

parameter γ (in (2.9)). In the first experiment, we fix the penalty coefficient at an experimentally

determined value of γ = 3, and vary `; the results are recorded in Table 4.1. Notice when ` ≥ 127,

the objective function value evaluated with the optimal solution, the number of active sensors,

and number of subproblem solves do not change. This suggests that the randomized estimators

are sufficiently accurate with ` = 127 and this yields a substantial reduction in computational

cost.

Table 4.1 Number of subproblem solves (4.5), function evaluations, and active sensors for varying `
with the reweighted `1 algorithm and ns = 109.

` subproblem solves function count function value nsactive
57 10 395 39.0176 38
67 9 610 44.7219 30
77 9 790 44.5484 29
87 9 756 44.1142 30
127 9 1015 44.1139 30
207 9 978 44.1139 30
307 9 970 44.1139 30
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The second experiment involves varying γ, which indirectly controls the number of sensors in

computed designs, with ` kept fixed. Here we fix ` = 207, which corresponds to an accuracy on

the order of 10−7 for the A-optimal criterion (cf. Figure 3.2). In Figure 4.2, we report the design

weights sorted in descending order, as γ varies. This shows that the reweighted `1 algorithm

indeed produces binary designs for a range of penalty parameters. We also notice in Figure 4.3

that as γ increases the sparsity increases (i.e., the number of active sensors nsactive decreases)

and the number of function evaluations increases. The right panel compares the cost of solving

an `1-penalized problem for the corresponding penalty parameter γ. Since this problem is the

first iterate of the reweighted `1 algorithm we see that an additional cost is required to obtain

binary designs and this cost increases with increasing γ (i.e., more sparse designs).
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Figure 4.2 Optimal designs as a result of varying γ with the reweighted `1 algorithm for the A-
optimal criterion. We set ` = 207.

4.3.2 Computing optimal designs

In Figure 4.4 (left), we report an A-optimal sensor placement obtained using our optimization

framework, with ` = 207 and γ = 5; the resulting optimal sensor locations, with 18 active sensors,

are superimposed on the posterior standard deviation field. While the design is computed to yield

a minimal average variance of the posterior distribution, it is also important to consider the mean

of this distribution. For completeness, in Figure 4.4 we show the “true“ initial condition (middle

panel), used to generate synthetic data, and the mean of the resulting posterior distribution

for the 18 active sensor design (right panel). With the 18 sensor design, we also illustrate the

resulting uncertainty reduction by looking at the prior and posterior standard deviation fields;

see Figure 4.5.

We now compare the designs obtained using the reweighted `1 algorithm and our estimators
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Figure 4.3 The effect of varying γ on the reweighted `1 algorithm for the A-optimal criterion. We set
` = 207.

Figure 4.4 Standard deviation computed using the optimal design indicated by the gray circles (left).
True initial condition (middle) and initial condition reconstruction (right). The optimal design was
computed using ` = 207, the reweighted `1 algorithm, and γ = 5.

against designs chosen at random, illustrating the effectiveness of the proposed A-optimal design

strategy. Recall that varying γ allows us to obtain optimal designs with different numbers of

active sensors. For each value of γ, we use Algorithm 3 and Algorithm 4 to compute an optimal

design. We then draw 15 random designs with the same number of active sensors as the optimal

design obtained using our algorithms. To enable a consistent comparison, we evaluate the exact

A-optimal criterion Φaopt(w) at the computed optimal designs and the random ones; the results

are reported in the left panel of Figure 4.6. The values corresponding to the computed optimal

designs are indicated as dots on the black solid line. The values obtained from the random

designs are indicated by the squares. We note that the designs computed with the reweighted `1

algorithm consistently beat the random designs, as expected. This observation is emphasized in

the right panel of Figure 4.6. Here, we compared the computed optimal design (when γ = 3)

42



Figure 4.5 Comparison of the prior standard deviation field (left) with the posterior standard devia-
tion field (right) computed using the optimal design indicated by the gray circles.

with 1500 randomly generated designs using the exact trace of the posterior covariance. Again,

the computed design results in a lower true A-optimal value than the random designs.
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Figure 4.6 The true A-optimal criterion computed using the optimal and randomly generated de-
signs. The optimal designs were computed using the A-optimal criterion and the reweighted `1 algo-
rithm for different values of γ (left). Comparing the computed optimal design when γ = 3 to 1500
randomly generated designs (right).

4.3.3 Comparing A-optimal and modified A-optimal designs

Here we provide a quantitative comparison of sensor placements obtained by minimizing A-

optimal and modified A-optimal criteria using our proposed algorithms. Specifically, for various
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values of γ, we solve (2.9) with both the A-optimal and modified A-optimal estimators to obtain

two sets of designs. By varying γ, the resulting designs obtained with the A-optimal and modified

A-optimal estimators have different number of active sensors. Using both sets of designs, we

evaluate the exact A-optimal criterion Φaopt(w); these are displayed in Figure 4.7. Observe that

in all cases the computed A-optimal and modified A-optimal designs lead to similar levels of

average posterior variance. This suggests that the modified A-optimal criterion could be used as

a surrogate for the A-optimal criterion. Using the modified A-optimal criterion decreases the

overall number of PDE solves and yields designs that result in values of the average posterior

variance close to those produced by A-optimal designs.
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Figure 4.7 Comparison of designs obtained by minimizing the (approximate) A-optimal and modified
A-optimal criteria. For each design, we report the exact trace of the corresponding posterior covari-
ance operator.

4.4 Conclusion

In this chapter, we have presented a reweighted `1 algorithm to solve (4.1), which also produces

sparse and binary designs. This method is easy to implement and is applicable to both the

A-optimal and modified A-optimal design problems. Numerical experiments suggest that the

optimization approach produces reasonable designs that outperform randomly chosen designs.

Beyond optimal sensor placement, this optimization approach may find applications in other

binary optimization problems requiring sparse solutions.
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CHAPTER

5

EFFICIENT COMPUTATION OF THE

OED PROBLEM WITHOUT ADJOINT

PDE APPLICATIONS

The A-optimal methods discussed in Chapter 3 help reduce the number of forward and adjoint

PDE solves for computing an optimal design. However, these methods assume the availability of

accurate and efficient solvers for both the forward and adjoint problems. It may be desirable

to reduce or completely eliminate the need for adjoint PDE solvers for computing optimal

designs for three reasons: (1) for complex PDE models with coupled multiphysics, deriving and

implementing the adjoint may be time consuming; (2) many forward PDE implementations are

based on legacy software implementations and do not have adjoint capabilities; and (3) the

adjoint solves might be computationally expensive. The goal of this chapter is to present an

efficient method to solve (4.1) using the A-optimal (2.8) and D-optimal (2.13) criteria when

an adjoint solver is not available. The adjoint-free methods presented in this chapter are also

advantageous because they can be parallelized and implemented efficiently to decrease the

number of PDE computations within the optimization scheme.

As with the approach in Chapter 3, the adjoint-free methods rely on randomized subspace

iteration for computing low-rank approximations. We assume the prior covariance operator

Γprior has rapidly decreasing eigenvalues. Then, we use Algorithm 2 to compute a low rank

approximation of the prior covariance operator. Combining this approximation with a different,

but equivalent, formulation of the posterior covariance operator, we eliminate the need for an
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adjoint solver. We use this idea to compute A- and D-optimal designs.

The chapter is organized as follows. Section 5.1 includes the details regarding the reformulated

expressions of the posterior mean and covariance operator. In Section 5.2, we describe how each

criterion (A- and D-optimal) is simplified to eliminate the need for the adjoint applies. Section 5.3

includes the computational procedure for the adjoint-free randomized estimators. Section 5.4

includes the numerical results using the reweighted `1 algorithm from Chapter 4 and the

adjoint-free algorithms developed in this chapter on a contaminant source identification problem.

Finally, Section 5.5 provides closing remarks and future work regarding the adjoint-free methods.

5.1 Reformulation of the posterior covariance

As discussed in Chapter 2, the posterior covariance operator provides a meaningful description

of the uncertainty in linear inverse problem solutions. However, the expressions defined in (2.4)

require the application of F∗ to appropriately sized vectors. Since we have assumed that this

computation is infeasible, we present an approach to eliminate the applications of the adjoint

operator. We begin by reformulating the expressions in (2.4). Notice that in (2.4), the discretized

posterior covariance operator contains the operator F∗ΓnoiseF : (Vn, 〈·, ·〉M)→ (Vn, 〈·, ·〉M). In

our reformulation, we want to have an expression for the mean and covariance matrix that

includes FΓpriorF
∗ : (Rnsnt , 〈·, ·〉)→ (Rnsnt , 〈·, ·〉), instead of operators on the parameter space.

By using the spectral decomposition of the prior covariance matrix, Γprior = VΛV∗, we express

FΓpriorF
∗ as

FΓpriorF
∗ = FVΛV∗F∗ = (FV)Λ(FV)∗, (5.1)

where Λ ∈ Rn×n is the diagonal matrix of eigenvalues of Γprior and V ∈ Rn×n contains the

eigenvectors of Γprior as columns. Note that FΓpriorF
∗ can be constructed by forming FV

without using F∗. However, this is still computationally expensive, since forming FV requires

n applications of the forward operator. Recall that the problems we target with our methods

assume the discretized parameter dimension n is very large. To reduce the computational cost,

we work with a low-rank approximation of the prior covariance operator, i.e., Γprior ≈ VrΛrVr

with r � n. The details of this analysis are discussed in Section 5.3.

The idea of using a low-rank approximation of the prior covariance operator to eliminate

adjoint PDE applications is not new. It has been explored within inverse problem theory [97]

and has been successfully implemented in geophysical applications to solve inverse problems in

an adjoint-free manner [56]. Here we obtain optimal designs, in addition to solving the inverse

problem.

To begin the construction of the adjoint-free methods, we consider an alternate (but equiva-

lent) expression of the covariance operator. Proposition 5.1.1 states the reformulated expressions

for the posterior covariance and mean, which define the solution for linear inverse problems with

a Gaussian prior and additive Gaussian noise model. We start by recording a known technical

lemma.
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Lemma 5.1.0.1. If A and B are symmetric positive semi-definite n× n matrices, then AB

has non-negative eigenvalues.

Proof. See [10, Chapter 3, Exercise 18].

Next, recall from Chapter 2 that

Γpost(w) = (Γ−1prior + F∗W1/2Γ−1noiseW
1/2F)−1 (5.2)

is defined as the weight-dependent posterior covariance operator. The corresponding expression

for the weight-dependent posterior mean (MAP point) is

mpost(w) = Γpost(w)(F∗W1/2Γ−1noiseW
1/2y + Γ−1priormprior). (5.3)

We state and justify the equivalent expressions for the weight-dependent posterior covariance

and mean in Proposition 5.1.1 [59, 97]. Here we assume that Γnoise is diagonal, which indicates

uncorrelated observations.

Proposition 5.1.1. Assuming Γnoise is diagonal, then

Γpost(w) = Γprior − ΓpriorF
∗(Γnoise + WFΓpriorF

∗)−1WFΓprior. (5.4)

Furthermore,

mpost(w) = mprior + ΓpriorF
∗(Γnoise + WFΓpriorF

∗)−1W(y − Fmprior). (5.5)

Proof. Since we assume Γnoise and W are both diagonal, in (5.2), W1/2Γ−1noiseW
1/2 can be written

as Γ−1noiseW. We next verify that Γnoise+WFΓpriorF
∗ is invertible. We do this by showing that (i)

FΓpriorF
∗ is symmetric positive semi-definite (with respect to the Euclidean inner product) and

(ii) applying Lemma 5.1.0.1 to show that the eigenvalues of Γnoise + WFΓpriorF
∗ are positive.

To show FΓpriorF
∗ is symmetric positive semi-definite, we proceed as follows. To show

symmetry, we use the definition of F∗ and the fact that Γprior is symmetric with respect to the

M-weighted inner product (see Figure 2.1) to write

(FΓpriorF
∗)> = (FM−1Γ>priorF)> = FΓpriorM

−1F> = FΓpriorF
∗.

Next we show that FΓpriorF
∗ is positive semi-definite. Recall that the prior covariance operator

is positive definite with respect to the the M-weighted inner product, 〈·, ·〉M. Then, for any

x ∈ Rns ,

x>FΓpriorF
∗x = x>FM−1Γ>priorF

>x

= (x>FM−1)Γ>priorM(M−1F>x)

= z>MΓpriorz = 〈z,Γpriorz〉M ≥ 0,
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where z = M−1F>x.

Finally, we can show the eigenvalues of Γnoise + WFΓpriorF
∗ are positive. Since both W and

FΓpriorF
∗ are positive semi-definite, then the product WFΓpriorF

∗ has non-negative eigenvalues

by Lemma 5.1.0.1. Furthermore, by adding Γnoise, a symmetric positive definite matrix, to

WFΓpriorF
∗, the eigenvalues of the sum become positive and therefore, Γnoise + WFΓpriorF

∗ is

invertible.

Applying the Sherman-Morrison-Woodbury formula [75] to (5.2) yields (5.4), the equivalent

expression of the posterior covariance matrix.

The final step of the proposition is showing (5.5) is an equivalent expression for the mean of the

posterior. The expression (5.5) is obtained by a straight-forward calculation; we substitute (5.4)

into (5.3) and rearrange the resulting expression.

Using (5.4) as the expression for the posterior covariance operator, our approach is two-fold:

we exploit the symmetry in FΓpriorF
∗ to eliminate the adjoint PDE operators in the posterior

covariance operator and replace Γprior with a low-rank approximation. This ensures applications

of the prior covariance matrix are computationally efficient. In the next section, we formalize

our strategy for the A-optimal and D-optimal design criteria.

5.2 Design criteria and their gradients

In the previous section, we discussed Proposition 5.1.1 as the first step to eliminate the need

for adjoint applies. In this section, we show how the reformulation of the posterior covariance

operator is used to simplify the expressions for the A- and D-optimal criteria, along with their

respective gradients, in terms of operators on the measurement space.

Representing the prior covariance by its spectral decomposition, Γprior = VΛV∗, we define

B ≡ FΓpriorF
∗ = (FV)Λ(FV)∗ and C ≡ FΓ2

priorF
∗ = (FV)Λ2(FV)∗. (5.6)

The precise implementation details for computing the decomposition Γprior = VΛV∗ is discussed

in Section 5.3.1. Using B and C, we simplify the A- and D-optimality criteria to devise a

convenient strategy for their computations. Note that computations of B and C only require

FV and therefore can be done in an adjoint-free manner.

A-optimal criterion and its gradient

We begin with the A-optimal criterion defined in (2.8). Using (5.4) from Proposition 5.1.1, we

obtain

Φaopt(w) = −tr
(
ΓpriorF

∗(Γnoise + WFΓpriorF
∗)−1WFΓprior

)
.
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Then, by the cyclic property of the trace function and the definitions in (6.9), we write the

A-optimal criterion as follows:

Φaopt(w) = −tr
(
(Γnoise + WB)−1WC

)
. (5.7)

Next, we consider the reformulation of the gradient of the criterion. To aid in the gradient

computation, we define
∂W

∂wj
= Ej = Int ⊗ eje>j , (5.8)

where ej is the jth column of Ins . Using Theorems B.17 and B.19 from [104], the derivative

of (5.7) with respect to each wj is

∂Φaopt(w)

∂wj
= tr

(
(Γnoise + WB)−1EjB(Γnoise + WB)−1WC− (Γnoise + WB)−1EjC

)
,

for j = 1, . . . , ns. A straightforward simplification yields,

∂Φaopt(w)

∂wj
= tr

(
Ej [B(Γnoise + WB)−1W − Insnt ]C(Γnoise + WB)−1

)
, (5.9)

for j = 1, . . . , ns. The derived expressions of the A-optimal criterion (5.7) and its gradient (5.9)

are in terms of B and C, which only require computation of FV and are therefore, adjoint-free.

D-optimal criterion and its gradient

Recall the definition of the D-optimal criterion in (2.13). Using Sylvester’s determinant iden-

tity [82, Corollary 2.1] and by assuming that Γnoise is diagonal, we write the D-optimal criterion

as

Φdopt(w) = log det(I + Γ−1noiseWFΓpriorF
∗).

Then, through the use of (6.9) and basic properties of the log-determinant, we obtain

Φdopt(w) = log det(Γ−1noise(Γnoise + WB))

= log det(Γ−1noise) + log det(Γnoise + WB).

Further simplification occurs because Γ−1noise does not depend on w, resulting in the expression

of the D-optimal criterion,

Φdopt(w) = log det(Γnoise + WB). (5.10)

The gradient computation of the D-optimal objective function again utilizes Theorems B.17 and

B.19 from [104], which results in the gradient

∂jΦdopt(w) = tr
(
EjB(Γnoise + WB)−1

)
, (5.11)
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for j = 1, . . . , ns.

Recall that we have defined our criteria and their respective gradients in terms of the matrices

B and C from (6.9). The computation of these matrices require efficient evaluation of FV.

However, FV is the same size as F (nsnt × n), suggesting that the cost of computing FV

is equivalent to building F. To ensure that our method is computationally efficient, we seek

a low-rank approximation of Γprior to decrease the number forward PDE solves required to

compute FV.

5.3 Computational procedure

In this section, we begin by describing the computation of a low-rank approximation of Γprior

and then using the approximation, we discuss the efficient evaluation of the OED criteria. We

mention that our approach is only suitable for problems where Γprior can be approximated with

a low-rank approximation with sufficient accuracy.

5.3.1 Low-rank approximation of Γprior

Since the prior covariance is symmetric with respect to the M-weighted inner product, we use the

similarity transformation, M1/2ΓpriorM
−1/2, to obtain an operator that is symmetric with respect

to the Euclidean inner product. As a result, Algorithm 2 can be applied to M1/2ΓpriorM
−1/2.

Let Γprior = VΛV∗ be the spectral decomposition of the prior covariance. Note that

M1/2ΓpriorM
−1/2 = M1/2VΛV∗M−1/2

= M1/2VΛV>MM−1/2

= V̂ΛV̂>,

with V̂ = M1/2V and V̂>V̂ = I. From this, we obtain the relationship V = M−1/2V̂. This

relationship allows us to compute a low-rank approximation of Γprior by obtaining the spectral

decomposition of M1/2ΓpriorM
−1/2.

In our work, we apply Algorithm 2 to M1/2ΓpriorM
−1/2 with parameters k and p. Recall

that k is the target rank of Γprior and p is the oversampling parameter and define r = k + p.

Then we obtain

M1/2ΓpriorM
−1/2 ≈ V̂rΛ̃rV̂

>
r .

The result is a low-rank approximation of Γprior which satisfies

ΓpriorM
−1 ≈ ṼrΛ̃rṼ

>
r , (5.12)

where Ṽr = M−1/2V̂r. Assuming M1/2 and M−1/2 are easy to compute, the algorithm is

straightforward to implement. Additionally, the implementation of Algorithm 2 decreases the

computational cost because the algorithm can be applied in parallel and in a matrix-free manner.
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Now let F̂r = FṼr. Then using the approximation (5.12), we estimate B and C defined

in (6.9) by

B̂ = F̂rΛ̃rF̂
>
r and Ĉ = F̂rΛ̃

2
rF̂
>
r , (5.13)

respectively. Recall that the matrix Ṽr ∈ Rn×r, where n is the discretized parameter dimension

and r is the target rank for the prior covariance matrix. Therefore, the computation of F̂r ∈
Rnsnt×r requires r PDE solves. And since B̂ ∈ Rnsnt×nsnt and Ĉ ∈ Rnsnt×nsnt do not depend

on the weight vector w, these operators can be precomputed. We mention that if the number of

observations are too large, i.e., nsnt � r, then the storage of B̂ and Ĉ may not be feasible and

instead, one could store F̂r ∈ Rnsnt×r and Λ̃r to efficiently compute the OED.

Computing the A-optimal criterion

Using the estimators B̂ and Ĉ from (5.13), the adjoint-free estimator of the A-optimal criterion

is defined as

Φ̂aopt(w) = −tr
(

(Γnoise + WB̂)−1WĈ
)
. (5.14)

And the adjoint-free estimator of the gradient is

∂̂jΦaopt(w) = tr
(
Ej

(
B̂(Γnoise + WB̂)−1W − Insnt

)
Ĉ(Γnoise + WB̂)−1

)
, (5.15)

for j = 1, . . . , ns. We present the algorithm for computing the A-optimal criterion and its

gradient defined in Algorithm 5.

The algorithm consists of two parts: precomputation and evaluation of the A-optimal

estimator and its gradient. The precomputation is done once per OED problem and consists of

r forward PDE solves to compute and explicitly store B̂ and Ĉ. Note that the evaluation of the

A-optimal criterion and its gradient require no additional PDE solves.

As a part of the algorithms presented in this chapter, we require computation of the expression

tr (EjX) , for j = 1, . . . , ns, where X ∈ Rnsnt×nsnt is context-dependent. Instead of computing

tr (EjX) for each j, we suggest a vectorized MATLAB implementation to compute all of the

terms simultaneously by taking advantage of the definition of Ej in (5.8). The computation

consists of taking the diagonal of X, reshaping it to be size ns × nt, and then summing along

the rows of the new matrix. This observation is justified since for j = 1, . . . , ns,

tr (EjX) =

nt∑

i=1

x(i−1)ns+j,(i−1)ns+j .
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Algorithm 5 Randomized method for computing Φ̂aopt(w) and ∇̂Φaopt(w).

Input: Target rank k, oversampling parameter p ≥ 2, design w, mass matrix M and Γprior.

Output: OED objective Φ̂aopt(w) and gradient ∇̂Φaopt(w).

Precomputation

1: Compute [V̂,Λr] = randEig(M1/2ΓpriorM
−1/2, k, p) and compute V = M−1/2V̂.

2: for i = 1 to r = k + p do
3: Compute f i=Fvi, where vi are the columns of V.
4: end for
5: Let F̂r=[f1, . . . ,f r] and compute F̂rΛrF̂

>
r =B̂ ∈ Rnsnt×nsnt and F̂rΛ

2
rF̂
>
r =Ĉ ∈ Rnsnt×nsnt .

Evaluating Φ̂aopt(w) and ∇̂Φaopt(w)

6: Compute S = (Γnoise + WB̂)−1 and P =
(
B̂SW − Insnt

)
ĈS.

7: Compute

Φ̂aopt(w; r) = −tr
(
SWĈ

)
.

8: for j = 1 to ns do
9: Compute

∂̂jΦaopt(w) = tr (EjP) .

10: end for
11: Return Φ̂aopt(w) and ∇̂Φaopt(w; r).

So, written in MATLAB notation, we have




tr (E1X)

tr (E2X)
...

tr (EnsX)




= reshape(diag(X), ns, nt)1,

where 1 = [1, 1, . . . , 1]> ∈ Rnt .

Computing the D-optimal objective function

The D-optimal estimator is computed in a similar way as the A-optimal criterion. We utilize the

same definition of B̂ as in (5.13) to obtain the adjoint-free estimator of the D-optimal objective

function

Φ̂dopt(w) = log det(Γnoise + WB̂). (5.16)

The corresponding gradient of the estimator is

∂̂jΦdopt(w) = tr
(
EjB(Γnoise + WB)−1

)
, (5.17)
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for j = 1, . . . , ns.

Algorithm 6 describes the procedure for computing the estimators estimators of the D-

optimal objective function and its gradient from (5.16) and (5.17).

Algorithm 6 Randomized method for computing Φ̂dopt(w) and ∇̂Φdopt(w).

Input: Target rank k, oversampling parameter p ≥ 2, design w, mass matrix M and Γprior.

Output: OED objective Φ̂dopt(w) and gradient ∇̂Φdopt(w).

Precomputation

1: Compute [V̂,Λr] = randEig(M1/2ΓpriorM
−1/2, k, p) and compute V = M−1/2V̂.

2: for i = 1 to r do
3: Compute fi=Fvi, where vi are the columns of V.
4: end for
5: Let F̂r=[f1, . . . , fr] and compute F̂rΛrF̂

>
r =B̂ ∈ Rns×r.

Evaluating Φ̂dopt(w) and ∇̂Φdopt(w)

6: Compute S = (Γnoise + WB̂)−1 and P = B̂S.
7: Compute

Φ̂dopt(w; r) = log det(Γnoise + WB̂).

8: for j = 1 to ns do
9: Compute

∂̂jΦdopt(w) = tr (EjP) .

10: end for
11: Return Φ̂dopt(w) and ∇̂Φdopt(w).

Notice that the precomputation for Algorithm 5 and Algorithm 6 are similar. The difference

is that the A-optimal estimators require both B̂ and Ĉ, while the D-optimal estimators only

require B̂. Therefore, the D-optimal estimators require less storage than Algorithm 5. However,

both criteria require r forward PDE solves to compute an optimal experimental design.

Computing the MAP point

The adjoint-free framework can be used to compute the MAP point. While the OED problem

requires no knowledge about the MAP point, in application problems, it is common to utilize the

MAP point to represent the reconstruction of the unknown parameter. However, since we have

assumed that the adjoint of the forward PDE operator is unavailable, using (5.3) to compute

the posterior mean is infeasible. Instead we approximate the MAP point by using (5.5) along

with the low-rank approximation of the prior covariance operator. The resulting adjoint-free
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estimator of the MAP point is

mpost ≈mprior + VDF̂>r (Γnoise + WB̂)−1(y −WFmprior),

where B̂ and F̂r are defined in (5.13) and F is the forward PDE operator. Notice that the

computation of the MAP point requires r + 1 forward PDE solves: r forward PDE solves are

needed to compute F̂r and one forward PDE solve is needed to compute Fmprior.

5.4 Numerical results

In this section, we illustrate the usefulness of the adjoint-free estimators to compute optimal

designs for the model source identification problem described in Section 3.3.1. Recall that for this

model problem, the prior covariance is the square of a Laplacian-like operator A−2. To utilize

the adjoint-free estimators for the A- and D-optimal criterion, the prior covariance operator

must be approximately low-rank. Therefore, we begin by numerically investigating if our choice

of Γprior satisfies the assumption that the prior covariance operator is approximately low-rank.

We do this by looking at both the decay of eigenvalues and the resulting cumulative eigenvalue

fraction. Let λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of Γprior. We define the cumulative

eigenvalue fraction (or ratio of variances) for the first i eigenvalues by

ξ(i) =

∑i
j=1 λj∑n
j=1 λj

, for 1 ≤ i ≤ n.

Figure 5.1 shows the eigenvalue decay and the cumulative eigenvalue fraction ξ(i) for our choice

of the prior covariance operator, where the discretized parameter dimension is n = 2605. The

cumulative eigenvalue fraction indicates it is reasonable to assume that the prior covariance is

approximately low-rank. Specifically, Figure 5.1 indicates the first 73 eigenvalues of Γprior result

in 97% of the cumulative eigenvalue fraction. In a similar way, 99% of the cumulative eigenvalue

fraction of Γprior is obtained with 175 eigenvalues.

Next, we solve (4.1) using our adjoint-free estimators to estimate the OED criterion. In the

remainder of the section, we consider values of r ≥ 98 in Algorithm 5 and Algorithm 6 to ensure

a sufficiently accurate low-rank representation of Γprior. Additionally, we use the reweighted `1

framework described in Algorithm 4 as means to ensure a sparse and binary solution to (4.1),

with the user-defined parameter in this algorithm chosen to be ε = 1/28. We also fix the penalty

coefficient in (4.1) to be γ = 9 for the entirety of this section.

5.4.1 A-optimal designs

In this experiment, we specifically focus on understanding how the choice of r in Algorithm 5

affects the resulting designs. Using the prescribed parameters, we compute designs for r = 98,

200, 400, and 1000. The resulting designs are shown in Figure 5.2. We see from Figure 5.2 that
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Figure 5.1 The eigenvalue decay (left) and the cumulative eigenvalue fraction (right) of Γprior.

the design computed with r = 98 has only one sensor location which differs from the designs

computed with other target ranks. This indicates that beyond a certain target rank, the designs

show very mild dependance on the target rank suggesting that the low-rank approximation is

sufficiently accurate. Furthermore, the adjoint-free designs obtained are in good agreement with

the designs obtained using the method of Chapter 3.

Figure 5.2 Designs computed using r = 98 (left), r = 200 (middle left), r = 400 (middle right), and
r = 1000 (left).

We also make some remarks regarding the computational cost of the method in Table 5.1.

Specifically, we record both the time needed to precompute (5.13) and to solve (4.1). The

precomputation time increases as r increases; however, the time to solve the optimization

problem remains approximately constant. The computational cost of computing a solution to the

optimization problem also remains approximately constant in terms of the number of function

evaluations and outer iterations to terminate the reweighted `1 algorithm.
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Table 5.1 Numerical results obtained from computing the A-optimal designs in Figure 5.2.

r 98 200 400 1000

Precomputation (seconds) 9.61 12.73 18.95 38.69
Optimization (seconds) 17.31 16.82 19.01 17.88

Number of function evaluations 1322 1283 1312 1238
Outer iterations 14 12 12 12

nsactive 13 13 13 13

5.4.2 D-optimal designs

Using the D-optimal estimator described by Algorithm 6 with r = 98, 200, 400, and 1000, we

solve (4.1) to obtain 4 optimal designs. These designs are shown in Figure 5.3. In each subfigure,

we see that the designs have many sensors in common and that the designs using r = 400 and

r = 1000 are identical.

Figure 5.3 Designs computed using r = 98 (left), r = 200 (middle left), r = 400 (middle right),
r = 1000 (right) with D-optimal criterion.

We record observations about the optimization procedure in Table 5.2. As with the A-optimal

criterion problem, the precomputation time increases while the amount of time to solve the

optimization problem remains relatively constant. We mention that here we use the same value

for the penalty coefficient γ in (4.1) for both the A- and D-optimal designs. As shown in Table 5.1

and Table 5.2, the same penalty coefficient yields different number of active sensors, nsactive, for

the A- and D-optimal designs. Therefore, a comparison between the A- and D-optimal is not

performed at this time.

5.5 Conclusion

The randomized adjoint-free methods presented in this chapter are a convenient choice when

solving the OED problem for Bayesian linear inverse problems in which an implementation of
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Table 5.2 Numerical results obtained from computing the D-optimal designs in Figure 5.3.

r 98 200 400 1000

Precomputation (seconds) 9.63 12.72 18.93 38.53
Optimization (seconds) 6.47 7.01 8.85 7.97

Number of function evaluations 683 734 837 765
Outer iterations 6 6 7 7

nsactive 29 32 33 33

the adjoint PDE solver is either unavailable or undesirable. These methods are constructed with

the assumption that the Gaussian prior covariance operator can be chosen to be approximately

low-rank. Therefore, problems where this assumption is reasonable benefit from a decreased

computational cost through use of the adjoint-free estimators. Specifically, the algorithms

developed require fewer forward solves in comparison to the methods in Chapter 3 for evaluating

the objective function. In addition, the benefits of the Algorithm 1 are also inherited by the

methods presented in this chapter. That is, our algorithms are easy to implement, parallelizable,

and can be applied in a matrix-free fashion. The numerical results confirm that our proposed

adjoint-free method is efficient when the prior covariance is approximately low-rank. However,

this may not be true under all circumstances and a different approach may be needed.
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CHAPTER

6

A NON-INTRUSIVE SURROGATE

MODEL FOR PREDICTING

MICROSTRUCTURE MORPHOLOGIES

DURING PHYSICAL VAPOR

DEPOSITION

While our focus, thus far, has been on efficient solution methods for OED problems, this chapter’s

goal is to develop a surrogate model for physical vapor deposition (PVD). PVD is a broad

category of experimental processes, where thin films are applied to a substrate of choice [7, 70,

72]. The process consists of solid (metal) materials being converted to a vapor and deposited to

a surface, where the vaporized materials are returned to solid form. This process allows very thin

coatings to be applied to various substrates. Because the choice of materials being used to create

the thin film react and form structures at the microscopic scale (microns to centimeters), the

resulting thin film may exhibit favorable properties such as conductivity, strength, and corrosion

resistance [7]. Consequently, PVD has been successfully utilized as a process to apply thin films

to surfaces with applications in aerospace, automotive industry, manufacturing, textiles, and

electronics [7, 90]. Moreover, PVD is used by scientists to fabricate new types of materials,

which may lead to advancements in these application areas [33].

The PVD process can be described using a mathematical model developed in [95]. This

58



model involves a set of coupled PDEs and is solved with a numerical scheme (finite difference

in space and explicit Euler in time) for a set of uncertain parameters after appropriate non-

dimensionalization, θ ∈ [−1, 1]np . Although the PDE model provides a systematic framework to

simulate the PVD process, the computational cost of the model hinders efficient exploration

of the parameter space. This is the motivation for our work; a surrogate model results in the

ability to explore the parameter space with smaller computational cost than using experiments

or detailed numerical simulations. Moreover, in the framework we use, global sensitivity analysis

can be performed on the surrogate model to determine the importance of model parameters using

the theory of polynomial chaos. Finally, a surrogate model can be used to inform experimentalist

as to which parameters may yield a favorable output and therefore, physical costs associated

with running experiments can be controlled.

More specifically, we assume that the random field of interest is the output of the high-fidelity

PDE model of the form g : [−1, 1]np → RN , where np is the number of input parameters and N

is the grid size of the discretized system. The high-fidelity model for PVD is computationally

expensive so a surrogate model ĝ is desirable. Our strategy is to construct a surrogate model

for the random vector g using a combination of principal component analysis (PCA) and

polynomial chaos expansion (PCE). Both of these mathematical tools allow a surrogate model

to be constructed in a non-intrusive manner. That is, we use samples from the high-fidelity

model g to create an approximate model, which describes the input-output relationship between

the model parameters and the resulting output of the high-fidelity model. Specifically, PCA is

used to find a lower-dimensional subspace that yields approximate realizations of g(θ). Then a

linkage between the coefficients of the PCA expansion and the model parameters θ is formed

using PCE. The result of these two steps is a low-fidelity model, ĝ. The strategy of combining

PCA and PCE to create a surrogate model has been explored both from a theoretical point of

view and applied to different applications, [4, 25, 39, 62, 65, 73, 77, 109]. To our knowledge, this

has not been applied to PVD.

This chapter is structured as follows. Section 6.1 includes a description of the high-fidelity

model: (1) the physics-based PDE model describing the process of PVD and the corresponding

computational procedure and (2) computation of the two-point statistics. Section 6.2 provides

an overview of the non-intrusive methods that are used to construct the surrogate model: (1)

PCA and (2) PCE. Section 6.3 describes numerical results associated with constructing the

surrogate model and the corresponding approximation error. And Section 6.4 summarizes the

work presented in this chapter and future work needed to be done with respect to applying the

mathematical theory to the PVD process.

6.1 High-fidelity model for PVD

As mentioned earlier, PVD is an experimental processes to apply thin film coatings to surfaces.

The properties of the thin films are typically determined based on the structure of the material
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at a microscopic scale. The term “microstructure” of a material is defined as the physical

composition of the material at the micro scale over a physical domain. The microstructure

consists of phases which are separated by boundaries, where a phase is a section of the material

which exhibits a unique chemical makeup. For our work, we consider a binary alloy thin film as

the output of the PVD process; therefore, we have two phases (one for each species) that define

the microstructure of the thin film.

Our goal is to develop a surrogate model ĝ to describe the structure of the microstructure for

a given set of uncertain model parameters θ ∈ [−1, 1]np . Within the materials science community,

microstructures are commonly analyzed in terms of the two-point statistics of their phases

within the microstructure [19, 35, 52, 54, 62, 83, 109]. The reason we consider a microstructure’s

two-point statistics is because it provides details into each realization of the spatial structure

of the composition. Therefore, we seek to create a surrogate model describing the two-point

statistics of each microstructure obtained for a variety of process parameters. The discretized

autocorrelation field is what we consider as the output of our high-fidelity model g. In this

section, we discuss the PDE model we use to describe the PVD process and the computation of

high-fidelity model.

6.1.1 Phase-field PVD model and numerical solution

We generate samples of our high-fidelity model g by solving a physics-based model developed

in [95]. The model was constructed to account for the major aspects of the PVD process and

has been shown to capture experimentally observed thin film microstructures. Specifically, the

model accounts for the transport of the vapor to the top of the thin film, the transition of

vapor to solid thin film, and the separating dynamics of the two alloys within the thin film.

The authors of [95] use phase-field modeling techniques to derive the model. We devote this

section to explaining the mathematical model for the PVD process of a binary alloy thin film

and describing the computational procedure used to solve the phase-field model.

Phase-field model

Phase-field models are commonly used to describe the evolution of microstructures and their

resulting properties [22, 76]. The models describe the evolution of materials (e.g., phase α and

phase beta during phase separation), by taking into account the amount of energy needed to

convert between the two phases. Phase-field models are advantageous because they assume a

diffuse interface instead of a sharp transition between phase α and phase β. This means that the

transition between the two phases is assumed to be continuous over a small finite width. As a

result, the evolution of the interactions between two phases can be described with one continuous

field instead of tracking the individual interfaces between the two phases. The continuous fields

are often called phase-fields or order-parameters.

In [95], the phase-fields are defined in terms of the difference between the fractions of each
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phase. A phase-field h(x, t) is defined as

h(x, t) =
a(x, t)− b(x, t)
a(x, t) + b(x, t)

,

where a(x, t) represents the mass of phase α and b(x, t) represents the mass of phase β at

location x and time t. As a result, when h(x, t) = 1, the location x is classified as being phase

α while h(x, t) = −1 indicates the location is classified as phase β.

The PVD model we consider uses two phase-fields, φ(x, t) and c(x, t), which depend on

the location x in the domain and the time t within the PVD process. Each phase-field models

the separation of different phases that occur during the PVD process: the field variable φ(x, t)

distinguishes between the solid and vapor phases, while the field variable c(x, t) distinguishes

between the equilibrium components of the binary alloy species.

Depending on the quantities being represented by the phase-fields, phase-fields are classified

as being either conserved or non-conserved. A phase-field is classified as being conserved if the

integral of the field over the entire space domain is a constant [81]. If a phase-field is conserved,

then the time evolution is described by the Cahn-Hilliard equations, and if a phase-field is

non-conserved, then a time-dependent Allen-Cahn equation describes the time evolution [76, 81].

In the PVD process, the phase-fields c(x, t) and φ(x, t) are conserved quantities. Therefore, we

use the Cahn-Hilliard equations to model the time evolution of the phase-fields we consider [17,

55, 63, 81]. Before we discuss how the Cahn-Hilliard equations are used to model PVD, we

discuss the free energy of the physical system.

Free energy is a thermodynamic term that describes the internal energy of a system [63]. In

our problem, neglecting any elastic effects, the total free-energy of the PVD process is taken as

a functional of the conserved field variables φ(x, t) and c(x, t) and their gradients, and has the

following form:

E(φ, c) =

∫ {
f(φ) +

κ2φ
2

(∇φ)2 + s(φ)

(
f(c) +

κ2c
2

(∇c)2
)}

dD . (6.1)

Here, κφ and κc are the gradient energy coefficients. The interpolation function, s(φ) = (1+φ)2/4,

ensures that compositional contributions are eliminated within the vapor phase. The first two

terms in (6.1) describe free energy between the solid and the vapor, while the terms in parentheses

describe the free energy within the growing thin film. The double-well function, f , describes the

equilibrium free-energy contributions of the two phases associated with the phase-field, and is

taken to be

f(v) = ωv
(v4

4
− v2

2

)
,

where ωv is the energetic barriers between the equilibrium phases. In other words, the function

f describe how much energy is required to transition between phase α and phase β. We refer

the reader to [63, 81] for further details on the derivation of the free energy of a physical system.
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Because physical systems seek to minimize their free energy over time, the equations of motion

for thin film growth and composition evolution are determined according to the Cahn-Hilliard

equations.

The governing equations for the composition evolution are

∂c

∂t
−∇ ·

[
Mc (φ, c)∇δE(φ, c)

δc

]
= 0 in D × (0, T ),

c(x, 0) = c0(x) in D,
Bc(c,x, t) = 0 on ∂D × (0, T ),

(6.2)

where δE(φ,c)
δc is the variational derivative of (6.1) with respect to c(x, t) and Mc(φ, c) is the

structurally and compositionally dependent mobility function. This mobility function captures

the relative difference between bulk and surface mobilities and allows for a smooth transition

between phase α and phase β, and their respective bulk or surface mobilities. In (6.2), Bc(c,x, t)
is a generic notation to describe the boundary condition; the specific form is given in Section 6.1.3.

To describe thin film growth, it is necessary to incorporate a source term in the Cahn-

Hilliard equation which represents the amount of vapor reaching the thin film. Evolution of the

solid-vapor field, φ(x, t), is then given as

∂φ

∂t
−∇ ·

[
Mφ(φ)∇δE

δφ
(φ, c)

]
−∇φ · (ρv) = 0 in D × (0, T ),

φ(x, 0) = φ0(x) in D,
Bφ(φ,x, t) = 0 on ∂D × (0, T ),

(6.3)

The first term in (6.3) captures arbitrary surface morphology formation and surface diffusion

effects (i.e., surface smoothening). The second term couples the thin film evolution to the incident

vapor flux and acts as the source term for interfacial growth and surface roughening. For our

work, we assume that the velocity is of the form v = (0,−v2) with v2 > 0. Additionally, we use

Bφ(φ,x, t) to represent a generic boundary condition.

Transport of the incident vapor flux towards the thin film surface is modeled via the

convection-diffusion equation,

∂ρ

∂t
−∇ · [Dρ∇ρ] +∇ · (ρv) +∇φ · (ρv) = 0 in D × (0, T ),

ρ(x, 0) = ρ0(x) in D,
Bρ(ρ,x, t) = 0 on ∂D × (0, T ),

(6.4)

where Dρ is the mass diffusivity of the vapor. The first two terms in (6.4) describe the diffusive

and ballistic transport (strength and direction) of the depositing vapor towards the thin film

surface. The last term in (6.4) couples thin film growth dynamics to the incident vapor dynamics

and acts as a sink that removes vapor that has been converted to solid. The term, Bρ(ρ,x, t), is
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a generic boundary condition.

Within the PVD model, there are many parameters, that influence the output of the PDE

model. In our work, we restrict ourselves to considering a subset of these parameters, while fixing

all remaining parameters to nominal values. We define the varying parameters to be θ = [θ1, θ2],

where θi ∈ [−1, 1] for i = 1, 2. The physical parameter, θ̃i defined on the interval [θmin
i , θmax

i ], is

mapped to its value, θi on the interval [−1, 1], by the following transformation:

θi =
2θ̃i − θmini − θmaxi

θmaxi − θmini

i = 1, 2. (6.5)

In our work, we define θ1 to represent the velocity of the vapor to the substrate in the vertical

direction and θ2 to represent the phase fraction. Within the coupled system (6.2) – (6.4), the

velocity is controlled by v2, where v = (0,−v2), and the phase fraction is implicitly controlled

by c0(x) (we discuss how the phase fraction relates to the initial condition of the microstructure

in Section 6.1.3).

In this work, we assume that θ : Ω → R2 is a random vector, where Ω is the sample

space of the probability triple, (Ω,B(Ω), P ). Furthermore, assume that each element in θ is an

independent and uniformly distributed random variable such that θi ∼ U(−1, 1) for i = 1, 2.

Then, the sample space of parameters is defined as Ω = [−1, 1]2, B(Ω) is the Borel sigma-algebra

on Ω, and the probability measure P is defined by P (dθ) = 1
4dθ.

Since we are interested in constructing a surrogate model to approximate the relationship

between the process parameters, θ, and the random field, c(x, t) we denote the realizations of

the microstructure by c(x, t,θ).

6.1.2 Statistical representation of the microstructure

So far, we have discussed the PDE model that generates realizations of the microstructure,

c(x, t,θ). The next step in our high-fidelity model is to compute the two-point statistics of

c(x, t,θ). We mention that throughout the rest of the chapter, the terms “autocorrelation” and

“cross-correlation” refer to the two-point statistics and not the correlation functions of a random

field with respect to the probability space Ω. These terms are common in materials science

literature [1, 2, 36, 80, 100].

We are interested in the structural composition of two phases (α and β). To analyze the

relationship, we split the information of the microstructure into realizations of two random fields

cα(x, t,θ) and cβ(x, t,θ). We consider cα(x, t,θ) and cβ(x, t,θ) as indicator functions defining

the locations of phase α and β, respectively:

cα(x, t,θ) =





1, c(x, t,θ) > 0

0, c(x, t,θ) ≤ 0
and cβ(x, t,θ) =





1, c(x, t,θ) ≤ 0

0, c(x, t,θ) > 0
. (6.6)

Then, we compute the two-point statistics for the realizations of the two random fields,
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cα(x, t,θ) and cβ(x, t,θ). For fixed time, t, and model parameters, θ, the two-point statistic

(autocorrelation) with respect to α is defined as [2, 35, 36, 80, 103, 109]

Rcαcα(r, t,θ) =
1

|D|

∫

D
cα(x, t,θ)cα(x+ r, t,θ)dx. (6.7)

Since (6.7) is a convolutional operator, we use the properties of Fourier transforms to write the

autocorrelation [14, 109] as

Rcαcα(r, t,θ) =
1

|D|F
−1 [F [cα(x, t,θ)]F [cα(x, t,θ)]] ,

where F and F−1 represent the Fourier and inverse Fourier transforms, respectively.

We mention that other two-point statistics can be defined: Rcαcβ (r, t,θ), Rcαcβ (r, t,θ), and

Rcβcα(r, t,θ); however, it has been shown that due to properties of the Fourier transform and

the structure of the random fields, cα(x, t,θ) and cβ(x, t,θ), only one of the correlations are

independent when considering two phases [34, 79].

6.1.3 Computation of the high-fidelity model

Here, we discus how each part of the high-fidelity model is computed numerically and then

define the high-fidelity model we consider. For simplicity, we consider all numerical and physical

parameters as dimensionless quantities.

Phase-field model computation

For the phase-field model, (6.2) – (6.4), we consider the 2D domain illustrated in Figure 6.1.

Let D = D1 ∪ D2 be the domain and ∂D = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 be the boundary of the domain.

Here, D1 is the area where the vapor is being transported (from top to bottom) to the thin

film, and D2 is the thin film. Since the thin film is assumed to grow in the positive vertical

direction, D2 increases in the vertical direction as the thin film grows through time. The spatial

domain is discretized into a uniform mesh of 256× 256 grid points where ∆x1 = ∆x2 = 1, and

the temporal domain is discretized with ∆t = 10−2.

We compute the PVD simulation using fixed model parameters with Mφ = ωφ = κφ = ωc =

κc = 1, Dρ = 5×10−3, and define Mc as in [95, Eq. 8]. The initial conditions are defined in terms

of D1 and D2 in Figure 6.1. Specifically, the simulation begins with D2 being two grid-points

thick and spans the entire length of Γ1. For the initial conditions, we define

c0(x) ∼ N (c̄, 0.3)|(−1,1), φ0(x) =




−1, x ∈ D1

1, x ∈ D2

, ρ0(x) =





1, x ∈ D1

0, x ∈ D2

, (6.8)

where N (c̄, 0.35)|(−1,1) is the normal distribution truncated to the interval (−1, 1). The mean,

c̄, of the truncated distribution implicitly defines the phase fraction of phases α and β. For
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D1

D2

Γ1

Γ2

Γ3

Γ4

Figure 6.1 Domain used for phase-field model. The horizontal direction is defined as x1 and the
vertical direction is defined as x2.

instance, the mean values of 0.00, 0.10, 0.20, 0.30 and 0.45 correspond to generating 50/50, 55/45,

60/40, 65/35, and 73/27 phase fractions. To define the boundary conditions for our PDE model,

let L be the distance between Γ2 and Γ4. Then,

Bφ(φ,x, t) =





φ(x, t)− 1, x ∈ Γ1

φ(x, t) + 1, x ∈ Γ3

φ ((x1, x2), t)− φ ((x1, x2 + L), t) , x ∈ Γ2

∇φ ((x1, x2), t) · n+∇φ ((x1, x2 + L), t) · n, x ∈ Γ2

,

Bc(c,x, t) =





∇c(x, t) · n, x ∈ Γ1 ∪ Γ3

c ((x1, x2), t)− c ((x1, x2 + L), t) , x ∈ Γ2

∇c ((x1, x2), t) · n+∇c ((x1, x2 + L), t) · n, x ∈ Γ2

,

Bρ(ρ,x, t) =





ρ(x, t), x ∈ Γ1

ρ(x, t)− 1, x ∈ Γ3

ρ ((x1, x2), t)− ρ ((x1, x2 + L), t) , x ∈ Γ2

∇ρ ((x1, x2), t) · n+∇ρ ((x1, x2 + L), t) · n, x ∈ Γ2

.

(6.9)

Following [95], the model defined by (6.2) – (6.4), (6.8), and (6.9) is solved numerically

using a finite-difference method with second-order central difference stencils for all spatial

derivatives. Time integration of the equations is performed using the explicit Euler method.

The computational scheme is implemented using Sandia’s in-house multi-physics phase-field

modeling code: Mesoscale Multiphysics Phase-Field Simulator (MEMPHIS).

By using a numerical computational scheme to solve the coupled PDEs, we obtain a model

to generate a discretization of the phase-fields. The phase-fields in our model are time dependent;

however, we are only interested in understanding the compositional structure of the thin film
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once it has reached a prescribed height. The time that the thin film reaches the prescribed

height tv can be calculated from the speed at which the vapor is moving toward the top of

the thin film. Therefore, for the remainder of this chapter, we use c(θ) ∈ RN as the numerical

approximation of the compositional phase-field at the time snapshot tv, c(x, tv,θ). An example

of four realization of the microstructure c(θ) are shown in Figure 6.2. In the figure, the yellow

color shows the locations where cj(θ) = 1 and the blue color indicates the locations where

cj(θ) = −1, for j = 1, . . . , N . Physically, the two colors represent the locations of each species α

and β.

Figure 6.2 Example of microstructures obtained from the PVD process obtained with varying veloc-
ity and phase fraction.

Autocorrelation computation

We use the uniform discretization of the microstructure, c(θ) ∈ RN to compute the discretized

random fields cα(θ) ∈ RN and cβ(θ) ∈ RN as defined in (6.6). And compute the autocorrelation

with respect to α with a two-dimensional Fast Fourier Transform (FFT) [15, 109]. Figure 6.3

illustrates the transformation of a microstructure to the autocorrelation representation, Rcαcα(θ).

As with the microstructure thin film, we illustrate the autocorrelation Rcαcα(θ) as a surface

plot, determined according to our numerical mesh.

This completes our discussion of the computation of the high-fidelity model. To summarize,

for a realization of the process parameters θ, we discussed the numerical computation of (6.2)

– (6.4) and how to use the microstructure to compute realizations of the autocorrelation with
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Figure 6.3 Autocorrelation Rcαcα(θ) (left) of a microstructure (right), where phase α is defined as
the yellow state and β as the blue state.

respect to phase α, Rcαcα(θ). We define the high-fidelity model to be

g(θ) ≡ Rcαcα(θ) : Rnp → RN . (6.10)

As defined in (6.10), we consider the high-fidelity model as random vector, not a random field.

The consequence of treating the random field as a finite dimensional object is that the results

we present are mesh-dependent. The next section consists of the construction of the surrogate

model for g(θ).

6.2 Construction of a surrogate model for PVD

The surrogate model ĝ(θ) is constructed using realizations of the high-fidelity model (6.10). We

assume that nd samples are generated from the high-fidelity model such that our data consists

of {(θm, gm
)
}ndm=1 with gm = g(θm). Using the data, we construct the surrogate model in

two steps: (1) utilize PCA to create a k-dimensional approximation of the realizations of the

random vector g(θ), and (2) use PCE to construct a linkage between the process parameters

and the projection of the samples to the k-dimensional space [4, 25, 39, 62, 65, 73, 77, 109]. By

implementing the methods of PCA and PCE, we obtain a surrogate model ĝ : [−1, 1]np → RN

of the form

ĝ(θ) = µ̂+

k∑

i=1

`i∑

j=0

a
(i)
j Ψj(θ)ui. (6.11)

The basis vectors, ui ∈ RN for i = 1, . . . , k and mean of the random vector, µ̂ ∈ RN , are

determined from the PCA algorithm, while the theory of PCE defines the family of orthogonal

polynomials, Ψj for j = 0, . . . , `i, and coefficients, a
(i)
j for i = 1, . . . , k and j = 0, . . . , `i. A

summary of the steps used to construct the surrogate model is shown in Figure 6.4. In the

remainder of this section, we describe the methods of PCA and PCE and how they are applied

to our PVD simulation data {(θm, gm
)
}ndm=1.
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Run PVD simulations
c(θm) ∈ RN

Compute autocorrelation
g(θm) ≡ Rcαcα(θm) ∈ RN

Generate high-fidelity samples:
{
g(θm)

}nd
m=1

PCA: Compute k-dimensional approximation
ĝPCA(θ) = µ̂ +

∑k
i=1 αi(θ)ui

Compute PCA coefficients for each sample
αi(θm) = u>

i (g(θm) − µ̂), i = 1, ..., k

PCE: Approximate the function αi(θ) using
samples,

{
αi(θm)

}nd
m=1

, for i = 1, . . . , k

Construct surrogate model: ĝ(θ)

Figure 6.4 Outline of approach to create a surrogate model for PVD, ĝ(θ).

6.2.1 PCA: Compute a k-dimensional approximation

PCA [32, 50, 51, 91] is a common tool for dimensionality reduction of a dataset. Assume that

each datapoint in the dataset is a realization of a random variable, x ∈ R. Then, PCA computes

a set of vectors, u1, . . . ,uk, such that the variance of the projection of x to the space spanned

by ui is maximized. The choice of the k basis vectors is dictated by the PCA algorithm and

ensures that the reduced space captures most of the variance of the process. In this portion of

the chapter, we discuss the mathematical formulation of PCA and its application to the problem

we consider.

Since the derivation of PCA is standard, we discuss the intuition behind PCA by the

mathematical formulation when k = 1 and refer the reader to [32, 51] for a complete justification

of PCA. Suppose x ∈ Rn is a random vector with mean µ = E [x] and covariance Σ =

E
[
(x− µ)(x− µ)>

]
. We seek a vector u1 such that

u1 = arg max
‖u‖2=1

var(u>x) = arg max
‖u‖2=1

u>Σu, (6.12)

i.e., u1 is the best directionto compress the information contained in x so that the variance of

the projection to the space spanned by u1 is maximized. The solution to this problem is the

eigenvector corresponding to the largest eigenvalue of Σ. As justified in [32], the subsequent

vectors, u2, . . . ,un, are the eigenvectors of Σ ordered according to the magnitude of their

corresponding eigenvalues.

To approximate the realizations of x, we project the realizations to the space spanned by

the eigenvectors of Σ corresponding to the k-largest eigenvalues. The error of x̂, obtained from
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projecting x to the k-dimensional subspace, is

E
[
‖x− x̂‖22

]
=

N∑

i=k+1

λi,

the sum of the N−k smallest eigenvalues of Σ. If the magnitude of the N−k smallest eigenvalues

of Σ is small, then x̂ is a good approximation to x in the mean-square sense. A common indicator

used to determine a value of k is the proportion of total variance [51]:

ξ(i) =
λi∑N
j=1 λj

. (6.13)

The sum of ξ(i) for i = 1, . . . , k indicates the proportion of total variance explained by the the

first u1, . . . ,uk eigenvectors. We pick the smallest k such that
∑k

i=1 ξ(i) surpasses a user-specified

threshold.

Dimensionality reduction using our dataset

In our problem, we wish to obtain a k-dimensional approximation of the random vector g(θ)

using PCA. However, the information on the exact mean µ and covariance Σ of the random

vector is not available. Instead, the samples {(θm, gm
)
}ndm=1 are used to estimate the mean and

covariance of the random vector. The mean and covariance estimates are

µ̂ =
1

nd

nd∑

i=1

gi (6.14)

and

Σ̂ =
1

nd − 1
(G− µ̂1>)(G− µ̂1>)>, (6.15)

where 1 is the vector of all ones and G = [g1, . . . , gnd ] ∈ RN×nd .
The PCA algorithm in Algorithm 7 consists of computing the eigenvalue decomposition

of (6.15) and returning Uk = [u1, . . . ,uk], the eigenvectors which correspond to the k largest

eigenvalues.

Algorithm 7 Computing a k-dimensional subspace using PCA.

Input: Size of desired subspace k, samples from high-fidelity model gi for i = 1, . . . , nd.
Output: k-dimensional basis uj for j = 1, . . . , k.
1: Use (6.14) to compute the sample average µ̂ of gi for i = 1, . . . , nd.
2: Compute the sample covariance matrix Σ̂ by using (6.15).
3: Compute eigendecomposition [Uk,Λk] of the sample covariance Σ̂, corresponding to the k

largest eigenvalues.
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The approximation of g(θ) in the k-dimensional subspace, span{u1, . . . ,uk}, is defined as

g(θ) ≈ ĝPCA(θ) = µ̂+
k∑

i=1

αi(θ)ui, (6.16)

where

αi(θ) = u>i (g(θ)− µ̂), i = 1, ..., k.

We mention that the projection of the data to the space spanned by the k eigenvectors of Σ̂

depend on the process parameters θ while the eigenvectors are deterministic.

Through PCA, we have approximated the high-fidelity model and the dependency of θ on

g(θ) by reducing the number of coefficients from N to k. In our application, k � N because

the eigenvalues of the sample covariance matrix are observed to decay rapidly. The next section

is dedicated to discussing how the process parameters are linked to the coefficients of the

approximated representation, α(θ) = [α1(θ), . . . , αk(θ)]>.

6.2.2 PCE: Linking PCA coefficients with process parameters

To complete the construction of the surrogate model for PVD, we link the random inputs θ to

the coefficients of the PCA approximation, α(θ). We use PCE to accomplish this.

PCE [25, 30, 37, 57, 71, 78, 94, 108] approximates a random variable by a finite linear

combination of orthogonal multivariate polynomials. In our problem, we wish to approximate

the coordinates αi(θ) for i = 1, . . . , k in (6.16). Using PCE, the resulting approximation is

αi(θ) ≈ α̂i(θ) =

`i∑

j=0

a
(i)
j Ψj(θ), (6.17)

for some set of orthogonal polynomial basis functions {Ψj}`ij=0 and deterministic coefficients

{a(i)j }`ij=0. Next, we discuss the choice of orthogonal polynomial family, the number of terms in

the expansion `i and the determination of the PCA coefficients.

Choosing orthogonal multivariate polynomials

The choice of multivariate orthogonal polynomials depend on the probability density function of

θ. For many of the finite dimensional distributions commonly chosen to represent a random

variable, the associated probability function corresponds to the weighting function of a family of

orthogonal polynomials [30, 37, 57, 94, 108]. Recall that, in our problem, the components of

the random vector θ are assumed to be mutually independent random variables with uniform

distributions. The associated probability density function of the probability space we work in

corresponds to the weighting function of the two-dimensional Legendre polynomials defined on

the domain [−1, 1]2 [57, 94, 108].

The two-dimensional basis is formed by tensorizing the one-dimensional Legendre polynomials
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of each parameter, θi, for i = 1, 2, and is denoted by {Ψj(θ)}`ij=0. The number of polynomials

we use in our expansion (6.17) is determined by the total truncation level. We first define a

multi-index, l = (l1, l2), where the order of the one-dimensional Legendre polynomial for θi

is indicated by li ∈ Z≥0. A bivariate Legendre basis of total truncation level L consists of all

polynomials such that l1+ l2 ≤ L, where the total number of polynomials we use in the expansion

is computed by the formula `+ 1 =
(L+np)!
L!np!

. Since we compute a PCE for each of the coefficients

of the PCA approximation, αi(θ), we allow each PCE to have a different total truncation level

L and, therefore, denote the total number of polynomials used in each expansion as `i, for

i = 1, . . . , k. For more information and examples of the construction of the multi-dimensional

basis, see [94].

Computing the deterministic coefficients

To complete the surrogate model as described, the remaining task is to compute the coefficients

of the expansion (6.17). We accomplish this by first projecting the data, {(θm, gm
)
}ndm=1, to

the k-dimensional subspace spanned by the vectors ui for i = 1, . . . , k, transforming the data

points to {(θm,α(θm)
)
}ndm=1. Then define k vectors, αi ∈ Rnd×1, i = 1, . . . , k, such that each

entry in the vector corresponds to a different sample, θm, m = 1, . . . , nd, i.e.,

αi =
[
αi(θ1) αi(θ2) · · · αi(θnd)

]>
.

We also define A ∈ Rnd×`i to be a matrix with each row corresponding to the set of basis vectors

evaluated at a sampled process parameter, θm, such that

Ψ =




Ψ0(θ1) Ψ1(θ1) · · · Ψ`i(θ1)

Ψ0(θ2) Ψ1(θ2) · · · Ψ`i(θ2)
...

...
. . .

...

Ψ0(θnd) Ψ1(θnd) · · · Ψ`i(θnd)



.

Then for a fixed i, the coefficients a
(i)
j , j = 1, . . . , `i, are computed by solving the least squares

problem

a(i) = arg min
a∈R`i

‖αi −Ψa‖22, (6.18)

where

a(i) =
[
a
(i)
1 a

(i)
2 · · · a

(i)
`i

]>
.

We compute the solution to the k least squares problems in (6.18) by solving the normal

equations.

Using the PCEs for the coefficients, αi(θ), we substitute (6.17) in (6.16). The sequential com-

putation of the deterministic basis function ui for i = 1, . . . , k using PCA and the deterministic

coefficients a
(i)
j complete the discussion of the surrogate model, (6.11), for g(θ). We mention
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that there are two major sources of error in the construction of the surrogate model. The first

source of error is projecting g(θ) into a k-dimensional subspace using PCA. The second source

of error comes from using PCE to approximate the relationship between the process parameters

and the coefficients of the PCA expansion. Specifically, there is error associated with choosing a

total truncation level for the bivariate Legendre polynomial basis and solving the least squares

problem in (6.18).

6.3 Numerical results

In this section, we compute the surrogate model (6.11) and investigate its accuracy. We begin

with a description of how the data was collected. Then we discuss the computation of the

k-dimensional subspace obtained through PCA and the error obtained from our choice of k.

Finally, we link the process parameters and data to complete the construction of the surrogate

model. Multiple error metrics are presented to illustrate that the surrogate model yields accurate

predictions of g(θ).

6.3.1 High-fidelity samples

Recall we consider two parameters θ1 and θ2, representing the velocity that the vapor moves (in

the vertical direction) towards the thin film and the phase fraction of the alloy α, respectively.

We model these random inputs as independent uniform random variables. The physical range of

velocity and phase fraction is [0.08, 2.0] and [0, 0.5] repectively.

To sample the high-fidelity model, we create a tensorized grid of the physical process

parameters. Specifically, we choose the values of velocity to be equally spaced intervals of

0.03 from 0.08 to 2.0 and the values of phase fraction are chosen to be 0.1, 0.2, 0.3, 0.4, 0.5.

These physical parameters are mapped to the interval [−1, 1] by the linear transformation

in (6.5) to obtain 325 samples of θ. Using these samples of θ, the high-fidelity model, described

in Section 6.1, is evaluated 325 times. The model evaluations are then randomly split into a

training set, consisting of 90% of the data, and a testing set, containing the remaining 10% of

the data.

6.3.2 Accuracy of PCA

We consider a physical domain of size 256× 256 dimensionless units where the numerical grid is

256× 256 pixels and run the simulation until the thin film has grown to be 128 pixels. Each

high-fidelity sample is then defined as g(θ) ∈ R32768 and our surrogate model is constructed to

approximate these 32768 values.

PCA as described in Algorithm 7 is performed using the training dataset to estimate the

random variable g(θ). Figure 6.5 shows the variance λi for i = 1, . . . , 325 and the total explained

variability defined as ξtot(i) =
∑i

k=1 ξ(k), where ξ(i) is defined in (6.13) . The figure illustrates

8 basis vectors provide an accurate low-rank approximation of the sample covariance matrix,
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explaining 97.75% of the variability in the estimated covariance matrix (6.15). Letting k = 8, we

reduce the number of coefficients which depend on the process parameters θ from 32768 to 8 as

explained in (6.17). Figure 6.6 depicts the sample average µ̂ and the first five basis vectors ui

for i = 1, . . . , 5 that were computed as using Algorithm 7.
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Figure 6.5 Performing PCA on the high-fidelity training samples. The computed variance of g(θ)
(left) and the cumulative proportion of total variance (percentage) for the first 50 principal directions
(right).

Figure 6.6 The resulting average, µ̂, (top, left) and the first 5 basis elements, u1, . . . ,u5, computed
from PCA on the high-fidelity training set.

After using the training set to compute ui for i = 1, . . . , 8, we project each realizations of

the dataset into the k-dimensional space and obtain the corresponding coefficients α(θ) ∈ R8.

The error in the approximation of g(θ) using the PCA expansion in (6.16) is evaluated by the
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following error metric

err1 (θ) =
‖g(θ)− ĝPCA(θ)‖2

‖g(θ)‖2
Table 6.1 shows the minimum, maximum, mean, and standard deviation of the error associated

with err1 (θ) for both the training and testing set. We see that on average the error of using

this smaller space as a representation of the data results in less than a 2% error in the output of

the high-fidelity model.

Table 6.1 The error associated with using 8 basis functions to approximate the high-fidelity samples
of the training and testing set. By training (testing) error, we mean err1(θ), where θ is in the training
(testing) set.

err1(θ) min max mean standard deviation

Training error 0.0030 0.0690 0.0146 0.0123
Testing error 0.0030 0.0441 0.0123 0.0091

6.3.3 Linking process parameters to PCA expansion

For i = 1, . . . , 8, we approximate the relationship between the process parameters and αi(θ) by

solving the linear least squares problem in (6.18). To determine the total truncation level, L, for

each PCA coefficient, αi(θ), we performed 10-fold cross-validation on the training dataset and

chose the total truncation level that produced the smallest average error in the validation set.

For every αi(θ), i = 1, . . . , 8, the choice of `i + 1 is shown in Table 6.2.

Table 6.2 Size of polynomial basis `i + 1 for each coefficient αi(θ) determined by performing 10-fold
cross validation on the training set and choosing the truncation level which produced the smallest
average error in the validation set.

PCA coefficient, αi(θ) `i + 1

α1(θ) 15
α2(θ) 6
α3(θ) 15
α4(θ) 10
α5(θ) 1
α6(θ) 15
α7(θ) 1
α8(θ) 3
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Using these coefficients, we illustrate the success of the surrogate model by providing an

example of the prediction from the set of testing parameters in Figure 6.7. The high-fidelity

outputs we consider is shown in left panel in Figure 6.7 and the surrogate’s prediction is the

right panel. In the middle panel of Figure 6.7, a relative point-wise error is illustrated. This

error is defined as a vector, δ(θ), where each entry is computed by

δi(θ) =
|gi(θ)− ĝi(θ)|

gi(θ)
, i = 1, . . . , N. (6.19)

Figure 6.7 Example prediction using the surrogate model: high-fidelity evaluation g(θ) (left) and sur-
rogate evaluation ĝ(θ) (right). The relative point-wise error, δ(θ), as calculated by (6.19) is illustrated
in (middle).

To summarize the error associated with using PCE to approximate the relationship between

θ and α(θ), we define the following error metric,

err2(θ) =
‖α(θ)− α̂(θ)‖2
‖α(θ)‖2

.

Table 6.3 illustrates the error for the training and testing sets.

We also consider the total error of the surrogate model defined as

err3(θ) =
‖g(θ)− ĝ(θ)‖2
‖g(θ)‖2

.

The total surrogate error on both the testing and training set is summarized in Table 6.3. On

average the surrogate’s error is about 2% for both the training and testing sets. This suggest

our surrogate estimates the high-fidelity model accurately.

It is clear that the the surrogate model’s accuracy can be improved by decreasing the error

in the PCE step. Higher degree polynomials may be required for to obtain more accurate

approximations of the relationship between the process parameters and the PCA space. Other

possible methods that could describe this relationship include using a Gaussian process [52]

or machine learning techniques (deep neural networks or convolutional neural networks) to

represent the output of the high-fidelity model [19, 110].
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Table 6.3 The error in approximating α(θ) using PCE, err2(θ), and the error incurred by using
the surrogate model to predict g(θ), err3(θ). The training (testing) error is computed by evaluating
err2(θ) and err3(θ), where θ is in the training (testing) set.

err2(θ) min max mean standard deviation

Training error 0.0024 3.5730 0.1034 0.2762
Testing error 0.0034 0.5734 0.0865 0.1399

err3(θ)

Training error 0.0032 0.1197 0.0206 0.0223
Testing error 0.0035 0.0771 0.0154 0.0139

6.4 Conclusion

We have implemented an efficient method to create a surrogate model for the autocorrelation

of a realization from PVD. This random field is of interest as it can aid experimentalist in

determining the process parameters which yield microstructures with favorable properties. The

construction of surrogate model only requires samples from the high-fidelity model; therefore,

there is a high initial computational cost to construct the model. Using the samples, we use

PCA to find a k-dimensional subspace to approximate the output of the high-fidelity model.

Then the relationship between the process parameters and the coefficients in the PCA expansion

are approximated using PCEs. As illustrated by the error analysis, the combination of PCA and

PCE produces an accurate surrogate model.

Open directions that can be pursued include computing a surrogate model for the time

dependent process of PVD (not just one snapshot) and one which accounts for three-dimensional

thin films. The resulting surrogate model from these alterations would better represent the

physical process, but may require implementing more efficient methods to overcome the added

computational cost of the time-dependent process and a three-dimensional thin film. In addition,

creating a surrogate model that accounts for more process parameters would allow sensitivity

analysis to be performed. A benefit of using PCE is that the coefficients in the linear expansion

can be used to estimate statistical properties of the random variable along with having a

systematic way to perform sensitivity analysis on the inputs [94, 98]. If we construct a surrogate

model that incorporates all of the model parameters pertinent to PVD, then sensitivity analysis

could prove useful in guiding resources to ensure important parameters are accurately chosen.

76



CHAPTER

7

CONCLUSION

In this thesis, two computationally intensive problems are considered: design of linear inverse

problems and construction of a surrogate model. With both of these problems, the physical

phenomena are modeled by partial differential equations (PDEs) and consequently result in a

high computational cost for each model evaluation. To solve each problem we considered, multiple

model evaluations are necessary. Therefore, we developed and utilized efficient techniques to

address the computational challenges associated with each problem.

Chapter 3 – 5 focused on methods that improve upon existing computational techniques for

solving optimal experimental design (OED) problems governed by infinite-dimensional Bayesian

linear inverse problems. In Chapter 3, we developed randomized estimators to efficiently compute

the A-optimal criterion and its gradient. The randomized estimators were constructed to exploit

the low-rank structure in the governing inverse problem. We also presented a novel modified A-

optimal design criterion, and developed efficient randomized estimators to estimate the criterion

and its gradient. We provided discussions of computational cost and implementation issues, and

theoretical error analysis for these estimators. In Chapter 4, we presented a new optimization

framework for sensor placement based on reweighted `1 minimization. The algorithm was further

accelerated by the randomized estimators developed in Chapter 3. Since the A-optimal criterion

is a convex function, applying the penalty method to the OED problem resulted in a sequence of

convex optimization problems. The effectiveness of this, along with the randomized estimators

from Chapter 3, was demonstrated on a contaminant source identification problem. In Chapter 5,

we developed computational methods for OED problems where an adjoint PDE solver is not

available. These estimators required an added assumption that the prior covariance operator is

approximately low-rank. Using this approach, the randomized estimators for the A-optimal and
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D-optimal objective functions and their derivatives can be evaluated without adjoint capabilities.

We also illustrated the efficiency and effectiveness of these methods numerically.

In Chapter 6, we developed a surrogate model using non-intrusive techniques that approxi-

mated the relationship between the process parameters of physical vapor deposition (PVD) and a

function of its output. We used principal component analysis (PCA) to reduce the dimensionality

of the output of our high-fidelity model through exploitation of the low rank structure of the

output sample covariance matrix. Then, we approximated the relationship between the low-rank

approximation and the process parameters through polynomial chaos expansion (PCE). The

error study provided in that chapter suggests that the computed surrogate model for a subset of

the process parameters is sufficiently accurate.

Potential future directions:

Future directions for furthering our methods in Chapter 3 – Chapter 5 include incorporating

a mechanism within the optimization algorithm to adaptively determine the target rank k,

comparing the accuracy of our estimators with those of other low-rank approximations techniques,

extending the randomized estimators to approximate trace of matrix functions, and validating our

numerical results using real-world data. Another track of investigation would be to incorporate

the randomized estimators in optimization problems of nonlinear inverse problems.

In terms of the surrogate model for PVD, open directions include: developing a surrogate

for a more physically realistic dataset, i.e., one that accounts for three-dimensional thin film

growth as a result of PVD and including more process parameters. Once the surrogate model is

constructed, sensitivity analysis can be performed efficiently to determine the importance of

process parameters on the output of PVD.
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initial and wind forcing uncertainties in the Gulf of Mexico”. Computational Geosciences
20.5 (2016), pp. 1133–1153.

[66] Lifshits, M. A. Gaussian random functions. Mathematics and Its Applications. Springer
Netherlands, 1995.

[67] Long, Q., Motamed, M. & Tempone, R. “Fast Bayesian optimal experimental design for
seismic source inversion”. Computer Methods in Applied Mechanics and Engineering
291 (2015), pp. 123–145.

[68] Lu, Y., Wang, C., Gao, Y., Shi, R., Liu, X. & Wang, Y. “Microstructure map for
self-organized phase separation during film deposition”. Physical Review Letters 109.8
(2012).

[69] Ma, J., Hu, J., Li, Z. & Nan, C.-W. “Recent progress in multiferroic magnetoelectric
composites: From bulk to thin films”. Advanced Materials 23.9 (2011), pp. 1062–1087.

[70] Mahan, J. E. Physical vapor deposition of thin films. John Wiley & Sons, Ltd, 2000.
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