
ABSTRACT

FREEDMAN, BENJAMIN NATHANIEL. Existence and Qualitative Description of Solutions to Nonlinear
Boundary Value Problems. (Under the direction of Jesús Rodríguez.)

The focus of this work is to study the existence and qualitative properties of solutions to nonlinear

boundary value problems. We analyze boundary value problems on continuous time intervals in

the context of differential equations as well as ones arising in the context of difference equations.

Criteria for the existence of solutions involves nonlinearities satisfying certain size, growth, or

geometric constraints. In each of these sets of results, our analysis of nonlinear problems is guided

by properties of a set of corresponding linear problems. In certain cases, the corresponding linear

problem is invertible. However, many of the results that follow concern cases where it is not. These

cases are much more delicate to analyze mathematically.

We start our analysis by looking at a set of nonlinear scalar problems in the differential equation

setting. That is, problems on [0,1] of the form

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=G (x )(t )

subject to the generalized boundary conditions

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) =φi (x )

whereωi j represents a function of bounded variation for all 1≤ i ≤n and 1≤ j ≤n . We assume here

that the associated linear problem is invertible, and results involve applications of classical fixed

point theorems from functional analysis.

Next, we focus on discrete-time systems on [a ,b ]∩Z of the form

x (k +1)−A(k )x (k )+ψ(x )(k ) = f (x )(k )

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j )+η(x ) =φ(x ).

We give a set of results that can be used when the associated linear problem is invertible, and these

results again rely on applications of fixed point theorems. Then we give results that can be applied

when this is not the case, and make use of topological degree theoretic arguments.

We then investigate nonlinear perturbations of the classical Legendre boundary value problem.



That is, problems on (−1,1) of the form,

[(1− t 2)x ′(t )]′+µx (t ) = ε f (x (t ))

subject to the condition that the following limits exist and are finite

lim
t→−1+

x (t ), lim
t→1−

x (t )

lim
t→−1+

x ′(t ) lim
t→1−

x ′(t ).

First, we fix ε=1 and investigate the cases where the associated linear problem is and is not invertible.

Finally, we allow ε to vary and investigate the case of weakly nonlinear problems. Results in this

case do not require invertibility of the corresponding linear problem and involve an application of

the Lyapunov-Schmidt procedure as well as the implicit function theorem for Banach spaces. We

provide a qualitative description of the solutions for sufficiently small values of ε.

Finally, we investigate a set of weakly nonlinear problems on infinite intervals both in the differ-

ential equations and discrete-time settings. First we present the results concerning the continuous

setting, then present the results pertaining to the discrete-time analogs. In both cases, our analysis

involves a projection scheme somewhat similar to the Lyapunov-Schmidt procedure as well as an

application of the implicit function theorem for Banach spaces. Solutions guaranteed using this

framework emanate from a certain solution of the corresponding linear problem.
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CHAPTER

1

INTRODUCTION

This paper is devoted to the study of nonlinear boundary value problems in both the continuous and

discrete settings. In particular, we analyze the existence and qualitative properties of solutions. The

size and geometric properties of nonlinearities involved as well as their interplay with corresponding

linear problems determine the conditions under which we can guarantee solutions in different

cases.

In chapter 2, we analyze nonlinear scalar problems in the continuous setting with nonlinearities

in the boundary conditions as well as the dynamics. Results of this type were studied by [3] and [29]

, but were limited in that they could only be used for second-order problems with a very specific

structure. Results in chapter 2 pertain to a larger set of problems on [0,1] of the form

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=G (x )(t )

subject to the generalized boundary conditions

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) =φi (x )

whereψ, G , ηi andφi for 1≤ i ≤n are nonlinear maps andωi j : [0,1]→R is a function of bounded

variation for all 1≤ i ≤n and 1≤ j ≤n . Expressing the linear boundary conditions in this way allows

for a lot of flexibility, as any bounded linear functional onC [0,1] can be represented uniquely by a

Riemann-Stieltjes integral with respect to a function of bounded variation. We split the nonlinearities

in this way in order to impose qualitatively different conditions on each component. For 1≤ i ≤n ,

the functions ai : [0,1]→R are continuous and an (t ) 6=0 for all t ∈ [0,1]. We assume in this chapter
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that the corresponding linear problems are invertible, or rather that

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t ) =h (t )

subject to

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t ) = v

has a unique solution for any continuous function h and v ∈Rn . We impose size and growth

conditions on the nonlinearities involved, and utilize fixed point theorems to provide our main

results.

In chapter 3, we focus on discrete-time systems on [a ,b ]∩Z of the form

x (k +1)−A(k )x (k )+ψ(x )(k ) = f (x )(k )

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j )+η(x ) =φ(x ).

where C j is an n×n real-valued matrix for all a ≤ j ≤ b +1. The matrix A(k ) is an n×n real-valued

matrix for all integers k ∈ [a ,b ], andψ and f represent nonlinearities in the dynamics and η and

φ represent nonlinearities in the boundary conditions. We investigate cases where the associated

linear problem is invertible as well as others where it is not. Cases where it is not invertible involve

degree theoretic arguments as we impose certain geometric conditions on nonlinearities involved,

and provide advantages over similar results in [20] and [37] by allowing for nonlinearities in the

boundary conditions which grow significantly large in magnitude.

In chapter 4, we study nonlinear perturbations of the classical Legendre boundary value problem.

That is, problems on (−1,1) of the form

[(1− t 2)x ′(t )]′+µx (t ) = ε f (x (t ))

subject to the condition that the following limits exist and are finite

lim
t→−1+

x (t ), lim
t→1−

x (t )

lim
t→−1+

x ′(t ) lim
t→1−

x ′(t ).

Here f :R→R is nonlinear and continuous and ε ∈R. We first investigate the case where ε=1, then

allow ε to vary in order to determine when we can guarantee solutions for sufficiently small values of

2



ε. In these cases, the solutions guaranteed emanate from a particular solution to the corresponding

linear problem. Results involve an application of the Lyapunov-Schmidt procedure as well as the

implicit function for Banach spaces.

In chapter 5, we investigate weakly nonlinear boundary value problems on infinite intervals first

in the continuous case then in the context of discrete-time systems. Existing work on this topic (

[15], [31], [32]) is significantly more limited than the results we now present since it requires that the

corresponding linear problems be invertible. In the continuous case, we analyze problems on[0,∞)
of the form

x ′(t )−A(t )x (t ) =h (t )+ε f (t , x (t ))

subject to

Γ (x ) =u+ε

∫ ∞

0

g (t , x (t ))d t

where A is a continuous n ×n matrix-valued function on [0,∞), f and g are continuously dif-

ferentiable maps from Rn+1 into Rn , and Γ is a bounded linear map from the space of bounded,

continuous functions on [0,∞) intoRn . In the discrete case, we consider problems on k =0,1,2,...

of the form

x (k +1)−A(k )x (k ) =h (k )+ε f (k , x (k ))

subject to

∞
∑

k=0

Ck x (k ) =u+ε
∞
∑

k=0

g (k , x (k ))

where Ck is an n×n real-valued matrix for all nonnegative integers k . Denoting the nonnegative

integers by Z+, we have that the maps f :Z+×Rn→Rn and g :Z+×Rn→Rn are continuous, ε is a

real parameter, and A(k ) is a nonsingular n×n real-valued matrix for all k ∈Z+. In both cases, we

provide a framework which allows us to guarantee solutions for sufficiently small values of ε where

the solutions guarantees emanate from a particular solution to the corresponding linear problem.

3



CHAPTER

2

ON THE SOLVABILITY OF NONLINEAR

DIFFERENTIAL EQUATIONS SUBJECT TO

GENERALIZED BOUNDARY

CONDITIONS

2.1 Preliminaries

In this paper, we study nonlinear scalar boundary value problems which we approach by reformu-

lating as an operator equation of the form

L x =H (x ) (2.1)

whereL is a linear operator, H is a nonlinear operator and both map from a subspace ofC into

C ×Rn whereC denotes the space of continuous functions on [0,1]. Suppose thatL has an inverse,

and H =Ψ+G where Ψ and G satisfy two separate conditions. The strategy we will employ is to

first give conditions under whichL −Ψ is guaranteed an inverse. That is, we give conditions under

which we can uniquely solve the equation

L x −Ψ(x ) = y (2.2)
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for any point y in the space thatL and Ψ map into. Given a result of this type, we then study condi-

tions under which (2.1) has a (possibly non-unique) solution by studying the operator (L −Ψ)−1G

and determining conditions under which it has a fixed point. This will rely on a Schauder’s fixed

point theorem argument. Throughout this chapter, when we refer to solution we mean a classical

solution to the n-th order problems we consider. That is, an n-times continuously differentiable

function that satisfies both the differential equation and the boundary conditions.

The literature concerning the study of boundary value problems is extensive. In [35] and [38]

the authors analyze boundary value problems subject to linear constraints. The use of projection

schemes appears in [22], [27], [35] and [38]. In [2], and [3] the authors obtain existence results based

on a global inverse function theorem. The work in [3] and [29] analyzes problems in the continuous

setting where nonlinearities are present in both the dynamics and boundary conditions and these

nonlinearities satisfy size and growth conditions. However, these results require a corresponding

linear problem with a very specific structure which does not allow for flexibility if there are linear

terms that don’t fit into this structure. This has the effect of making the size and growth conditions

impossible to satisfy in many cases. In the results in this paper, we allow for more flexibility in

terms of what can be considered part of the linear problem and therefore can establish existence of

solutions for many problems for which this closely related previous work is inconclusive.

2.2 Main Results

We consider nonlinear differential equations on the interval [0,1] of the form

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=G (x )(t ) (2.3)

subject to the boundary conditions

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) =φi (x ) (2.4)

for 1≤ i ≤n .

Here ψ :R→R, the maps ηi and φi for 1≤ i ≤ n are nonlinear real-valued maps from C =
(C [0,1],R,‖·‖∞) into Rwhere ‖·‖∞ denotes the supremum norm. Further G :C →C is a contin-

uous map, a0,a1,...,an ∈C and an (t ) 6= 0 for all t ∈ [0,1]. We use C n to denote the subspace of

C consisting of all n-times continuously differentiable functions on [0,1]. For 1≤ i ≤n , 1≤ j ≤n ,

ωi j : [0,1]→R is a real-valued function of bounded variation. We will determine conditions under

which we can guarantee at least one solution inC n to (2.3)−(2.4).

To do so, we first consider a closely related problem. That is, we seek conditions under which we

5



can uniquely solve

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=h (t )

subject to

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) = vi

for 1≤ i ≤n and for any h ∈C and v ∈Rn .

Define L :C n→C by

[L x ](t ) =an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )

and B :C n→Rn by

B (x ) =













∑n
j=1

∫ 1

0
x ( j−1)(t )dω1 j (t )

∑n
j=1

∫ 1

0
x ( j−1)(t )dω2 j (t )

·· ·
∑n

j=1

∫ 1

0
x ( j−1)(t )dωn j (t )













.

The mapL :C n→C ×Rn will be defined as

L =

�

L

B

�

.

Before proceeding, we state the following remark which illustrates an important special case of

(2.3)−(2.4) that can be dealt with using the framework of this section.

Remark 1. Let t0 ∈ [0,1], β ∈R and let the functionω : [0,1]→R be the step function

ω(x ) =







0, t < t0,

β , t ≥ t0,

So for any x ∈C , the Riemann-Stieltjes of x with respect toω is given by

∫ 1

0

x (t )dω(t ) =β x (t0).

6



Therefore, the boundary value problem (2.3)−(2.4) includes problems of the form

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=G (x )(t )

subject to the multipoint boundary conditions

q
∑

i=1

Bi x̄ (ti )+











η1(x )

η2(x )

...

ηn (x )











=











φ1(x )

φ2(x )

...

φn (x )











where

x̄ (t ) =











x (t )

x ′(t )

·· ·
x (n−1)(t )











ti ∈ [0,1], and Bi is a real-valued n×n matrix for all 1≤ i ≤q .

It is well known from the theory of linear differential equations that ker(L ) is n-dimensional.

Without loss of generality, choose a basis {u1,u2,...,un} for the kernel of L such that ‖u1‖+‖u2‖+
·· ·+‖un‖≤1 and let

u =











u1

u2

·· ·
un











Suppose that the functions of bounded variationωi j : [0,1]→R for i , j ∈{1,2,...,n} appearing

in the boundary conditions are such that the n ×n real-valued matrixB = [B u1|B u2|...|B un ] is

invertible.

Note that one set of relevant examples where this condition onB is the case of a linear regular Sturm-

Liouville problem perturbed away from an eigenvalue. Results in [3] and [29] analyzed nonlinear

perturbations of such problems. One specific example is when L is of the form

[L x ](t ) = x ′′(t )+µx (t )

B is of the form

B x =

�

αx (0)

γx (1)

�

where µ 6=n 2π2 for any positive integer n . For more details regarding Sturm-Liouville theory in

7



general, the reader can consult [4].

Defining the constant B0 as:

B0= ‖B−1‖

then we have that for any v ∈Rn

‖u TB−1v ‖≤B0|v |.

As a matter of notation, define η :C →Rn by η(x ) =











η1(x )

η2(x )

...

ηn (x )











.

In the following theorem, we give conditions under which we can solve a very closely related

nonlinear problem.

Theorem 1. The map
�

L |ker(B )
�

is a bijection fromC n ontoC and its inverse is continuous. Suppose

the mapψ :R→R is Lipschitz with constant K1, η :C →Rn is Lipschitz with constant K2 and

A0K1+B0K2<1

where A0=









�

L |ker(B )
�−1








. Then for each pair h ∈C , v ∈Rn , the boundary value problem

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=h (t )

subject to

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) = vi , 1≤ i ≤n

has a unique n-times continuously differentiable solution.

Proof. Suppose L (x0) = 0 for some 0 6= x0 ∈C n and {u1,...,un} be the basis we chose for ker(L )

above. Since x0 ∈ ker(L ) there exists a unique set of constants c1,...,cn ∈R with ci 6= 0 for some

1≤ i ≤n such that x0=
∑n

i=1 ci ui . Since x0 ∈ker(B )we have that

0=B x0

=B

�

n
∑

i=1

ci ui

�

=
n
∑

i=1

ci B ui

8



contradicting the fact that {B u1,...,B un} is a linearly independent set inRn . Therefore, x0=0 and

we conclude thatL :C n→C ×Rn is one-to-one.

Let h ∈C and v ∈Rn . By the general theory of linear scalar ODEs it is well known that the solution

L x =h has at least one solution inC n . Let xp ∈C n be the particular solution to this equation given

by variation of parameters. That is,

xp (t ) =
n
∑

k=1

uk (t )

∫ t

0

h (s )Wk [u1,...,un ](s )
an (s )W [u1,...,un ](s )

d s

where Wk denotes the determinant of the matrix obtained by replacing the k t h column of the matrix

whose determinant is W with en (the standard basis vector with a 1 in the n t h slot and 0s everywhere

else).

By our assumption that {B u1,...,B un} is a basis for Rn , there exists a unique set of constants

d1,...,dn such that

n
∑

i=1

di B ui = v −B (xp ).

Then we have that

L

�

xp +
n
∑

i=1

di ui

�

=h+0=h

and further that

B

�

xP +
n
∑

i=1

di ui

�

=B (xp )+B

�

n
∑

i=1

di ui

�

=B (xp )+
n
∑

i=1

di B ui

=B (xp )+(v −B (xp )).

Therefore,L :C n→C ×Rn is a bijection with

L −1(h ,v )T =
�

L |ker(B )
�−1

h+u TB−1v

where
�

L |ker(B )
�

is the map L restricted to the kernel of B . Consequently, we have that ‖L −1‖ ≤
max{A0,B0}where A0 is an upper bound on the norm of the continuous linear map

�

L |ker(B )
�−1

.

We now defineΨ :C →C ×Rn byΨ(x )=

�

−ψ(x )
−η(x )

�

. Note that since the map fromR toR given by

t 7→ψ(t ) is Lipschitz with constant K1, then the map fromC toC defined by x 7→ψ◦x is Lipschitz

9



with constant K1. For each pair (h ,v )∈C ×Rn , we define the map H(h ,v ) :C →C by

H(h ,v )(x ) =L −1Ψ(x )+L −1[(h ,v )T ].

Let x1, x2 ∈C . Then we have that

‖H(h ,v )(x1)−H(h ,v )(x2)‖= ‖L −1Ψ(x1)−L −1Ψ(x2)‖

≤A0‖ψ(x1)−ψ(x2)‖+B0‖η(x1)−η(x2)‖

≤ (A0K1+B0K2)‖x1−x2‖.

Then H(h ,v ) is a contraction on C and so by Banach’s fixed point theorem it has a unique fixed

point x0 ∈C . Since L −1 maps into C n , we have that x0 ∈C n . Therefore, there exists a unique

x0 ∈C n satisfyingL (x )−Ψ(x )= (h ,v )T . Since h ∈C and v ∈Rn were arbitrary, we conclude that the

operator (L −Ψ) :C n→C ×Rn is invertible. From this it follows that for each pair (h ,v )∈C ×Rn ,

the boundary value problem

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=h (t )

subject to

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) = vi , 1≤ i ≤n

has exactly one solution.

The following lemma establishes an important result regarding the mapL −1 :C ×Rn→C . The

importance of this lemma will become apparent when we provide our conditions for the solvability

of (2.3)−(2.4).

Lemma 1. The operatorL −1 :C ×Rn→C is compact.

Proof. Let M >0 and define S = {(h ,v )∈C ×Rn : ‖h‖+ |v | ≤M }. Let (h ,v )∈S . Then

‖L −1(h ,v )‖≤




L −1




(‖h‖+ |v |)

≤max{A0,B0}(‖h‖+ |v |)

≤max{A0,B0}M .

Therefore the set {L −1(S )} is bounded. We now wish to show this set forms an equicontinuous set

of functions.

Let ε >0, and let δ= ε
max{A0,B0}M . Then for any (h ,v )∈C ×Rn and t1,t2 ∈ [0,1]with |t1− t2|<δ,

10



�

�

�

L −1(h ,v )
�

(t1)−
�

L −1(h ,v )
�

(t2)
�

�

=
�

�

�

�

�

L |ker(B )
�−1

h
�

(t1)−
�

�

L |ker(B )
�−1

h
�

(t2)+u T (t1)B−1v (t1)−u T (t2)B−1v (t2)
�

�

�

≤
�

�

�

�

�

L |ker(B )
�−1

h
�

(t1)−
�

�

L |ker(B )
�−1

h
�

(t2)
�

�

�+
�

�u T (t1)B−1v (t1)−u T (t2)B−1v (t2)
�

�

≤max{A0,B0}M |t1− t2|

<ε.

Therefore the set of functions {L −1(S )} is equicontinous and we conclude thatL −1 :C ×Rn→C
is compact by the Arzelá–Ascoli theorem.

Recall that in the proof of theorem 1, we established that the operatorL −Ψ is a bijection from

C n ontoC ×Rn . We now state important properties of (L −Ψ)−1 under the conditions of theorem

1. The proof of the first corollary follows directly from corollary 2.3.2 in [8].

Corollary 1. Suppose the conditions of theorem 1 hold. Then the map (L −Ψ)−1 :C ×Rn →C n is

Lipschitz continuous with constant

K ≡
max{A0,B0}

1− (A0K1+B0K2)
.

Corollary 2. Under the conditions of theorem 1, the map (L −Ψ)−1 :C ×Rn→C n is compact. This

follows from the fact that we can write

(L −Ψ)−1=L −1
�

Ψ ◦ (L −Ψ)−1+ I
�

.

Therefore it is clear from this representation that (L −Ψ)−1 is compact as the composition of a compact

operator with a continuous one.

We now proceed to establish conditions for the solvability of the boundary value problem

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=G (x )(t )

subject to the boundary conditions

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) =φi (x )

11



for 1≤ i ≤n .

We defineφ :C →Rn byφ=











φ1

φ2

...

φn











and G :C →C ×Rn by G =

�

G

φ

�

.

In doing so, we are now ready to state sufficient conditions under which we can guarantee the

existence of at least one solution to the nonlinear boundary value problem (3)− (4).

Before stating theorem 2, define M0 as the norm of the unique solution to the boundary value

problem

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=0

subject to the boundary conditions

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) =0

for 1≤ i ≤n .

Theorem 2. Suppose the mapψ :R→R is Lipschitz with constant K1 and η :C →Rn is Lipschitz

with constant K2. Suppose that

A0K1+B0K2<1

and that there exists a constant M such that for ‖x‖≤M , ‖G (x )‖≤K −1(M −M0). Then there exists a

solution to the boundary value problem

an (t )x
(n )(t )+an−1(t )x

(n−1)(t )+ ·· ·+a0(t )x (t )+ψ(x (t ))=G (x )(t )

subject to the boundary conditions

n
∑

j=1

∫ 1

0

x ( j−1)(t )dωi j (t )+ηi (x ) =φi (x )

for 1≤ i ≤n.

Proof. Note that the map (L −Ψ)−1G :C →C is compact as the composition of a compact operator

12



with a continuous one. Define B = {z ∈C : ‖z‖≤M }. Let x ∈B . Then

‖(L −Ψ)−1G (x )‖≤‖(L −Ψ)−1G (x )−M0‖+M0

≤K ‖G (x )‖+M0

≤K (K −1(M −M0))+M0

=M .

Since (L −Ψ)−1G (B )⊆B and B is clearly closed, bounded, and convex we have that (L −Ψ)−1G has

at least one fixed point inC by Schauder’s fixed point theorem. That is, there exists at least one x0∈C
such that (L −Ψ)−1G (x0)= x0. Since (L −Ψ)−1 maps intoC n , we have that x0 must be an element

ofC n . This is equivalent to there existing at least one x0 ∈C n such thatL (x0)−Ψ(x0) =G (x0).

The following corollary is immediate:

Corollary 3. Suppose the mapψ :R→R is Lipschitz with constant K1 and η :C →Rn is Lipschitz

with constant K2. If

A0K1+B0K2<1

and

lim
‖x‖→∞

‖G (x )‖
‖x‖

=0

then the boundary value problem (2.3)−(2.4) has a solution.

In the next section, we consider advantages this framework provides us in cases where we

attempt to analyze problems that are seemingly well-suited to using the framework outlined in [3]

and [29]. In these papers, the authors also gave criteria for the existence of solutions to boundary

value problems in the differential equation setting with nonlinearities in both the dynamics and the

boundary conditions.

2.3 Examples

To view advantages of using this framework as opposed to previous results, consider another set

of special cases of the general boundary value problem (2.3)−(2.4). That is, problems already in

self-adjoint form. This is a necessity if we are to attempt to use the analysis of [3] and [29].

Remark 2. Consider differential equations on [0,1] of the form:

(p (t )x ′(t ))′+q (t )x (t )+ψ(x (t ))=G (x (t )) (2.5)

13



subject to the boundary conditions

αx (0)+β x ′(0)+
2
∑

j=1

∫ 1

0

x ( j−1)(t )dω1 j (t )+η1(x ) =0

(2.6)

γx (1)+δx ′(1)+
2
∑

j=1

∫ 1

0

x ( j−1)(t )dω2 j (t )+η2(x ) =0

whereψ :R→R is Lipschitz, α2+β2 6=0, γ2+δ2 6=0, η1 and η2 are nonlinear Lipschitz functions from

C 2 into R. The function ωi j : [0,1]→R is a function of bounded variation for i = 1,2 and j = 1,2.

We assume that p ,p ′, and q are continuous, p (t )> 0 for all t ∈ [0,1]. We assume the map G is a

continuous function fromC intoC satisfying

lim
‖x‖→∞

‖G (x )‖
‖x‖

=0.

Using results from [3] and [29], we would have to treat the linear integral boundary conditions

appearing in (2.6) as part of the nonlinear component of the problem. Let K̂2 be the Lipschitz constant

of the map defined by

x 7→

�
∑2

j=1

∫ 1

0
x ( j−1)(t )dω1 j (t )+η1(x )

∑2
j=1

∫ 1

0
x ( j−1)(t )dω2 j (t )+η2(x )

�

with respect to the norms used in those previous papers. Suppose {u1,u2} is a basis for the solution

space of

(p (t )x ′(t ))′+q (t )x (t ) =0

and without loss of generality suppose that

�

∫ 1

0

|u1(t )|2d t

�
1
2

+

�

∫ 1

0

|u2(t )|2d t

�
1
2

≤1.

Further, suppose the 2×2 matrix B̂ =

�

αu1(0)+βu ′1(0), αu2(0)+βu ′2(0)

γu1(1)+δu ′1(1), γu2(1)+δu ′2(1)

�

is invertible. Then if

�

sup
v∈R2
|B̂−1v |

�

K̂2≥1

it would be impossible to establish the existence of solutions to (2.5)−(2.6) using any of the results

appearing in [3] or [29].

14



When we formulate (2.5)−(2.6) within the framework presented in section 3, it is clear that if the

map

x 7→







(p (t )x ′(t ))′+q (t )x (t )

αx (0)+β x ′(0)+
∑2

j=1

∫ 1

0
x ( j−1)(t )dω1 j (t )

γx (1)+δx ′(1)+
∑2

j=1

∫ 1

0
x ( j−1)(t )dω2 j (t )







is a bijection from its domain ontoC ×R2 then the boundary value problem would have a solution

provided the Lipschitz constants for η1,η2, andψ are sufficiently small. The magnitude of the linear

integral boundary conditions is completely irrelevant.

We would now like to point out that the map G that we have just described can be generated in

a variety of ways. For example G could be of the form

G (x )(t ) = g (x (t ))

where g :R→R is continuous or of the type

G (x )(t ) =

∫ 1

0

k (t , x (s ))d s

where k :R2→R.

In addition to the advantages that we have just discussed, we would like to point out that if the

nonlinearities ηi appearing above are of the form

ηi =
N
∑

j=1

fi , j (x (t j ))

then in order to use results appearing in [3] or [29] it must be assumed that the operator G is compact.

This restriction is no longer present when using the results that we have just presented.
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CHAPTER

3

ON NONLINEAR BOUNDARY VALUE

PROBLEMS IN THE DISCRETE SETTING

3.1 Preliminaries

Let Z denote the set of integers and a ,b ∈Z. We consider nonlinear discrete-time systems on

[a ,b ]∩Z of the form

x (k +1)−A(k )x (k )+ψ(x )(k ) = f (x )(k ) (3.1)

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j )+η(x ) =φ(x ). (3.2)

Throughout this paper we will be working over the integers and subsets of the integers. Therefore,

for α,β ∈Rwhere α<β we will use the notation [α,β ] to denote the set {x ∈Z :α≤ x ≤β}. Let a and

b be integers and let X denote the space of functions from [a ,b +1] intoRn . Let Y denote the space

of functions from [a ,b ] into Rn . We endow X and Y with the norm ‖·‖ defined by

‖x‖=max |x (k )|

where the max ranges over the domain of the function. In (3.1)-(3.2) above, C j is an n×n real-valued

matrix for all a ≤ j ≤ b +1. The matrix A(k ) is an n×n real-valued matrix for all integers k ∈ [a ,b ].
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For Λ∈Rn×n , we use the norm

|‖Λ‖|= sup
|v |=1
|Λv |

and for X : [a ,b ]→Rn×n , define the norm by

‖X‖=max
i
|‖X(i )‖|

where i ranges over the domain of the matrix-valued function. For (h ,v )∈Y ×Rn , we use the norm

‖(h ,v )‖= ‖h‖+ |v |.

The functionsψ and f are nonlinear maps from X to Y while η andφ are nonlinear maps from X

to Rn . We seek conditions under which we can find at least one solution to (3.1)−(3.2) in X . In

the first section, we formulate our boundary value problem as an operator equation of the form

L x =G (x )whereL is linear andG is nonlinear. Results in the first section require the mapL being

invertible, and rely on fixed point theorems as well as a global inverse function theorem. Conditions

are imposed that restrict the size and impose growth conditions for the nonlinearities involved in

both the dynamics and boundary conditions. For the use of similar framework in the analysis of

discrete problems, please see [26] and [1] for systems or [3] and [29] for scalar problems. For use of

this type of argument in the continuous setting, the reader is referred to [12], [3], and [29].

The second framework provides geometric conditions that can be used to guarantee solvability in

certain cases and doesn’t require a certain operator to be invertible. Results rely on useful properties

of the Brouwer degree of a continuous map between finite dimensional spaces. We impose geometric

conditions on the nonlinearities in this section. The reader can reference [20] and [37] for this type

of argument in the context of discrete systems. The work presented here is an improvement in

certain cases over results presented in these papers as here we allow for more generality in both the

dynamics and the boundary conditions. For the use of projection methods in the setting of discrete

problems see [10], [11], [19], [22], [28], [1], [34], and [37].

3.2 Main Results

3.2.1 Lipschitz/Growth Conditions

Define the map L : X →Y by

[L x ](k ) = x (k +1)−A(k )x (k )

17



and the map B : X →Rn by

B x =
b+1
∑

j=a

C j x ( j ).

Now defineL : X →Y ×Rn byL =

�

L

B

�

. We begin by stating some general theory regarding linear

difference equations. Throughout section 3.2.1, we make the assumption that the n×n matrix Γ

defined by

Γ =
b+1
∑

j=a

C jΦ( j ,a )

is invertible where Φ(k ,l ) is defined for any l ∈ [a ,b ], k > l by

Φ(k ,l ) =A(k −1)A(k −2)·· ·A(l ), k > l

and Φ(k ,l )= I if k = l . There is a large class of discrete boundary value problems where this assump-

tion on the linear problem is satisfied. For any case where the matrix A is constant, this condition is

satisfied provided

b+1
∑

j=a

C j e A j

is nonsingular. One specific but important case where this condition may be satisfied is in the study

of the periodic behavior of discrete dynamical systems. This implies that L is a bijection from

X onto Y ×Rn . Equivalently, for any h ∈ Y and v ∈Rn there exists a unique solution to the linear

boundary value problem

x (k +1)−A(k )x (k ) =h (k )

subject to

b+1
∑

j=a

C j x ( j ) = v

and this solution can be represented as,

x (k ) =Φ(k ,a )Γ−1

(

v −
b+1
∑

j=a+1

C j

j−1
∑

l=a

Φ( j ,l +1)h (l )

)

+
k−1
∑

j=a

Φ(k , j +1)h ( j ).

For a proof of this fact, please consult lemma 2.1 in [26].

18



Define the constants A1 and A2 by:

A1=

 














Φ(·,a )Γ−1
b+1
∑

j=a+1

C j

j−1
∑

l=a

Φ(·,l +1)
















+ sup
k∈[a ,b+1]

�

�

�

�

�
















k−1
∑

j=a

Φ(k , j +1)
















�

�

�

�

�

!

A2=




Φ(·,a )Γ−1




.

Then for any h ∈Y , k ∈ [a ,b +1],

�

�

�

�

�

−Φ(k ,a )Γ−1
b+1
∑

j=a+1

C j

j−1
∑

l=a

Φ( j ,l +1)h (l )+
k−1
∑

j=a

Φ(k , j +1)h ( j )

�

�

�

�

�

≤A1‖h‖

and for any v ∈Rn ,

‖Φ(·,a )Γ−1v ‖≤A2|v |.

Therefore it is clear from the representation ofL −1 above that for any (h ,v )∈Y ×Rn we have





L −1(h ,v )




≤A1‖h‖+A2|v |

and consequently

‖L −1‖≤max{A1,A2}.

We now connect results concerning this closely related linear problem to the solvability of the

nonlinear boundary value problem (3.1)-(3.2).

Define the maps Ψ : X →Y ×Rn by

Ψ(x ) =

�

−ψ(x )
−η(x )

�

andF : X →Y ×Rn by

F (x ) =

�

f (x )

φ(x )

�

.

The following result is the discrete time analog of a theorem appearing in [12]. Since [12] is

devoted to differential equations, we have provided a proof of the theorem that follows for the sake

of completeness.

Theorem 3. Suppose that ψ : X → Y is Lipschitz continuous with constant K1 and η : X →Rn is

Lipschitz continuous with constant K2. Suppose further that K ∗=A1K1+A2K2<1. ThenL −Ψ is a
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bijection from X onto Y ×Rn and (L −Ψ)−1 : Y ×Rn→X is Lipschitz continuous with constant

K =
max{A1,A2}

1−K ∗
.

Suppose further there exists a positive number M such that for ‖x‖≤M

‖F (x )‖≤K −1
�

M −




(L −Ψ)−1 (0)






�

.

Then the boundary value problem

x (k +1)−A(k )x (k )+ψ(x )(k ) = f (x )(k )

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j )+η(x ) =φ(x ).

has a solution in X .

Proof. Let (h ,v )∈Y ×Rn and define

H(h ,v ) : X →X

by H(h ,v )(x ) =L −1Ψ(x )+L −1(h ,v ). Let x1, x2 ∈X . Then

‖H(h ,v )(x1)−H(h ,v )(x2)‖= ‖L −1Ψ(x1)−L −1Ψ(x2)‖

≤A1‖ψ(x1)−ψ(x2)‖+A2|η(x1)−η(x2)|

≤A1K1+A2K2<1.

So H(h ,v ) is a contraction on X and therefore is guaranteed a unique fixed point x0 ∈X by Banach’s

fixed point theorem. That is, for any pair (h ,v )∈Y ×Rn there is a unique x0 ∈X such that

(L −Ψ)(x0) = (L −Ψ)(x0) = (h ,v )T .

By corollary 2.3.2 appearing in [8], the map (L −Ψ)−1 is Lipschitz continuous with constant

K =
max{A1,A2}

1−K ∗
.
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Now let S = {z ∈X : ‖z‖≤M } and let x ∈S . Then

‖(L −Ψ)−1F (x )‖≤‖(L −Ψ)−1F (x )− (L −Ψ)−1(0)‖+‖(L −Ψ)−1(0)‖

≤K ‖F (x )‖+‖(L −Ψ)−1(0)‖

≤K (K −1
�

M −




(L −Ψ)−1 (0)






�

+




(L −Ψ)−1 (0)






=M .

Note that S is compact and convex. We have now shown that (L −Ψ)−1F (S )⊂S and therefore by

Brouwer’s fixed point theorem (L −Ψ)−1F is guaranteed at least one fixed point in S . Since (L −Ψ)
is invertible, this is equivalent to guaranteeing at least one solution in S to the boundary value

problem (3.1)−(3.2).

The following remark points out that under certain cases, the theorem above can be used to

guarantee a unique solution to the boundary value problem (3.1)-(3.2).

Remark 3. Note that theorem 1 implies that if K ∗<1 then the boundary value problem

x (k +1)−A(k )x (k )+ψ(x )(k ) =h (k )

subject to

b+1
∑

j=a

C j x ( j )+η(x ) = v

has a unique solution for any pair (h ,v )∈Y ×Rn .

In the following remark, we point out that framework in this section can be used in certain cases

to establish existence of solutions to scalar boundary value problems in the discrete setting. For the

convenience of the reader, we present a general scalar boundary value problem and reformulate

this problem as the equivalent system in the form (3.1)-(3.2).

Remark 4. Let a ,b ,n ∈Zwith a < b and n >0. Consider discrete scalar boundary value problems on

[a ,b +n ] of the form

an (k )x (k +n )+an−1(k )x (k +(n−1))+ ·· ·+a0(k )x (k )+ψ(x )(k ) = f (x )(k )

subject to the boundary conditions

n
∑

j=1

ci , j (a )x ( j +a −1)+
n
∑

j=1

ci , j (a +1)x ( j +a )+ ·· ·+
n
∑

j=1

ci , j (b +1)x ( j +b )+ηi (x ) =φi (x )

for 1≤ i ≤n.
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Here a0,...,an ∈ Ŷ = { f : [a ,b ]→R} with an (k ) 6= 0 for all k ∈ [a ,b ] The maps ψ and f are func-

tion valued and ηi andφi are maps from X̂ = { f : [a ,b +n ]→R} into R. Suppose we seek conditions

under which we can guarantee at least one solution to this scalar problem in the space X̂ . Then define

y : [a ,b +1]→Rn by

y (k ) =











x (k )

x (k +1)

·· ·
x (k +(n−1))











,

the n×n matrices Cl for a ≤ l ≤ b +1 by

Cl =
�

ci , j (l )
�

the maps ψ̂, ĝ : X →Y by

ψ̂([y1, y2,..., yn ]
T ) =











0

0

·· ·
ψ(y1)











, ĝ ([y1, y2,..., yn ]
T ) =











0

0

·· ·
g (y1)











and η̂,φ̂ : X →Rn by

η̂([y1, y2,..., yn ]
T ) =











0

0

·· ·
η(y1)











, φ̂([y1, y2,..., yn ]
T ) =











0

0

·· ·
φ(y1)











.

Define for all k ∈ [a ,b ], the n×n matrix A(k ) is defined by

A(k ) =











0 1 0 ·· · 0

0 0 1 ·· · 0

·· · · ·· · ··
− a0

an
(k ) − a1

an
(k ) − a2

an
(k ) ·· · −an−1

an
(k )











.

Then we could formulate this scalar boundary value problem as a first order system. That is, solving

the scalar problem above is equivalent to finding a solution y ∈X to the system

y (k +1)−A(k )y (k )+ψ̂(y )(k ) = f̂ (y )(k )
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subject to

b+1
∑

l=a

Cl y (l )+η̂(y ) = φ̂(y ).

In the introduction, we referred to existing results regarding existence of solutions to nonlinear

discrete scalar boundary value problems. Two of note are [3] and [29], which analyze nonlinearly

perturbed Sturm-Liouville equations in the discrete setting. The following set of examples illustrates

that framework in this section can be used to establish existence of solutions to problems for which

the results of these previous papers is inconclusive.

Example 1. Consider the following boundary value problem on [a −1,b −1],

∆(p (k −1)∆x (k −1))+q (k )x (k )+ψ(x )(k ) = f (x )(k )

subject to

αx (a −1)+β∆x (a −1)+
m
∑

k=1

αk x (tk ) =φ1(x )

γx (b )+δ∆x (b )+
q
∑

j=1

β j x (s j ) =φ2(x )

where∆x (k )= x (k +1)−x (k ). If any one of the constants αk , β j for k =1,2,...,m and j =1,2,...q is

sufficiently large in magnitude, we would have no chance of guaranteeing solutions using results

appearing in [12] or [29]. However, using the framework presented in this section we could guarantee

solutions independent of the sizes of α1,...,αm ,β1,...,βq .

3.2.2 Geometric Conditions

In this section, we present results regarding the existence of solutions to (3.1)−(3.2) under conditions

independent of the invertibility assumption made in the previous section. In this section, we denote

f −ψ= g ,φ−η=q and rewrite the system (3.1)−(3.2) as

x (k +1)−A(k )x (k ) = g (x )(k )

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j ) =q (x ).

The reason for not splitting the nonlinearities like in section 2.1 will become clear when we state

our conditions. Throughout this section, we assume that G is generated by a continuous function g
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that maps from Rn into Rn . More specifically

g (x )(k ) =G (x (k )).

We assume in this section that we can split q into the sum of two nonlinear operators q1 and q2.

Further, suppose there exists a positive number M such that for ‖x‖≤M , q1 satisfies q1(−x )=−q1(x ).

Define L : X →Y as in last section and the nonlinear maps N : X →Y ×Rn by

N (x ) =

�

L x

Cb+1 x (b +1)−q1(x )

�

and G : X →Y ×Rn by

G (x ) =

�

g (x )

q2(x )−
∑b

l=a Cl x (l )

�

Guaranteeing solutions to (3.1)-(3.2) is equivalent to guaranteeing solutions to the nonlinear

operator equation N (x ) =G (x ).

Lemma 2. Suppose Ω⊂X is an open bounded neighborhood of 0∈X such that that N (x ) =0 has no

solutions on ∂ Ω and N (x ) 6=λG (x ) for every (x ,λ)∈ ∂ Ω× (0,1). Then the equation (3.1)−(3.2) has at

least one solution in Ω̄.

Proof. Consider the mapF : X × [0,1]→Y ×Rn by

F (x ,λ) = (1−λ)N (x )+λ(N −G )(x ).

Since N is odd and has no zeroes on ∂ Ω, d [N ,Ω,0] 6= 0 and F (x ,0) 6= 0 for all x ∈ ∂ Ω. Note that

F (x ,λ)=0 is equivalent to N (x )=λG (x )which by assumption has no zeroes for x ∈ ∂ Ω, λ∈ (0,1).

Suppose first that there exists an x0 ∈ ∂ Ω such thatF (x0,1) =0. Then x0 is a solution in ∂ Ω to (3.1)-

(3.2). If not, thenF has no zeroes on ∂ Ω× [0,1]. Therefore by homotopy invariance of the Brouwer

degree established in [21],

d [(N −G ),Ω,0] =d [N ,Ω,0] 6=0

and so (N −G )must have at least one zero in Ω̄. This of course is equivalent to (3.1)-(3.2) having at

least one solution in Ω̄⊂X .

We are now ready to state the following theorem giving conditions for the solvability of (3.1)-(3.2).

Theorem 4. Suppose that for all v ∈Rn and k ∈ [a ,b ],

〈v,A(k )v 〉≥ |v |2.
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Then we can guarantee a solution to

x (k +1)−A(k )x (k ) = g (x )(k )

subject to

b+1
∑

j=a

C j x ( j ) =q (x )

provided there exists a positive constant r ≤M such that,

• For v ∈Rn with |v |= r ,

〈v,G (v )〉>0

and

• For all x ∈X such that |x (b +1)|= r ,

|q1(x )|> |q2(x )|+

�

b+1
∑

l=a

|‖Cl ‖|

�

r.

’

Proof. Let Ω be the set

Ω= {u ∈X : |u (k )|< r, ∀k ∈ [a ,b +1]}

and note that Ω is an open, bounded neighborhood around 0∈X . Further, note that

Ω̄= {u ∈X : |u (k )| ≤ r, ∀k ∈ [a ,b +1]}

so then

∂ Ω= {u ∈ Ω̄ : |u (k0)|= r, for some k0 ∈ [a ,b +1]}.

The set Ω is simply the open ball of radius r in X .

First we will show that N (x )=0 has no solution on ∂ Ω. Suppose to the contrary that there is such

a solution and call it x0. Since ‖x0‖= r , there exists some k̂ ∈ [a ,b +1] such that |x0(k̂ )|= r . Suppose

that k̂ ∈ [a ,b ] and that |x0(k̂ +1)|< r . Then

〈x0(k̂ ),A(k̂ )x0(k̂ )〉= 〈x0(k̂ ), x0(k̂ +1)〉

≤ |x0(k̂ )||x0(k̂ +1)|

< r 2,
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a contradiction to condition i ) above. Therefore, |x (k )|= r for all k ≥ k̂ . In particular |x0(b +1)|= r .

By condition iii),

�

�q1(x0)−Cb+1 x0(b +1)
�

�≥ |q1(x0)|−|‖Cb+1‖|r

>0.

Next we will show that

N (x ) =λG (x )

has no solutions for λ∈ (0,1) and x ∈ ∂ Ω. Suppose there does exist such a pair (y ,λ̄)∈ ∂ Ω× (0,1)

satisfying this equation. Then for all k ∈ [a ,b ]

y (k +1)−A(k )y (k ) = λ̄G (x (k ))

and further

Cb+1 y (b +1)−q1(y ) = λ̄

�

q2(y )−
b
∑

l=a

Cl y (l )

�

Since y ∈ ∂ Ω there exists some k0 ∈ [a ,b +1] with |y (k0)|= r . First suppose that k0 ∈ [a ,b ]. Since

y ∈ Ω̄, it follows that 〈y (k0), y (k )− y (k0)〉≤0 for all k ∈ [a ,b +1]. However,

〈y (k0), y (k0+1)− y (k0)〉≥ 〈y (k0), y (k0+1)−A(k0)y (k0)〉

= λ̄〈y (k0),G (y (k0))〉

>0

which is a contradiction. (Note that the first to the second line follows from i ) and the third to fourth

line follows from the first part of i i )). Now suppose that k0= b +1. Then we have from above that

|y (k )|< r

for all k ∈ [a ,b ]. Therefore by the second part of condition i i ),

26



�

�Cb+1 y (b +1)−q1(y )
�

�≥
�

�q1(y )
�

�−|‖Cb+1‖|r

> |q2(y )|+

�

b+1
∑

l=a

|‖Cl ‖|

�

r −|‖Cb+1‖|r

= |q2(y )|+

�

b
∑

l=a

|‖Cl ‖|

�

r

≥

�

�

�

�

�

q2(y )−
b
∑

l=a

Cl y (l )

�

�

�

�

�

≥ λ̄

�

�

�

�

�

q2(y )−
b
∑

l=a

Cl y (l )

�

�

�

�

�

which is a contradiction as well. Therefore, by the previous lemma we can guarantee at least

one solution to (3.1)−(3.2) in Ω̄.

3.3 Examples

Example 2. As a special case of (3.1)-(3.2) are multipoint boundary value problems on [a ,b +1] of

the form

x (k +1)−A(k )x (k ) =G (x (k ))

subject to

b+1
∑

l=a

Cl x (l ) =q (x (a ),q (a +1),..., x (b +1))

Let N be the number of integers between a and b +1. Suppose q :RN n→Rn is nonlinear and that

q =q1+q2 where −q1(s1,s2,...,sN ) =q1(−s1,−s2,...,−sN ) for all (s1,s2,...sn )∈Rn such that

max
i=1,2,...,n

|si |=M .

Further suppose that there exists r ≤M such that for (s1,s2,...,sN ) satisfying |sN |= r ,

|q1(s1,s2,...,sN )|> |q2(s1,s2,...,sN )|+

�

b+1
∑

l=a

|‖Cl ‖|

�

r.

Then if A satisfies the conditions of condition i ) and 〈 f (v ),v 〉>0 for all |v |= r we can guarantee solu-

tions to this two-point boundary value problem. Examples of q :RN n→Rn satisfying this requirement
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include

q (s1,s2,...,sN ) =q2(s1,s2,...,sN−1)+β |sN |2sN

for β sufficiently large or alternatively

q (s1,s2,...,sN ) =q2(s1,s2,...,sN−1)+δe |sN |sN

for δ sufficiently large.

Using the framework appearing in [37], we would be unable to guarantee solutions in cases where

the magnitude of q (s1,...,sN ) grows very quickly as one of s1,...,sN grows in magnitude. However,

results presented in this paper allow us to guarantee solutions in certain cases to problems where this

happens to be the case.

Example 3. Consider discrete systems on [a ,b +1] of the form

x (k +1)−A(k )x (k ) =G (x (k ))

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j ) =q (x )

where q itself is an odd function on all of X . Then letting q1=q and q2=0 using the above construction,

we get that condition i i i ) of theorem 2 is satisfied provided

liminf
‖x‖→∞

|q (x )|
‖x‖

>
b+1
∑

l=a

|‖Cl ‖|.

Example 4. We now discuss the case of completely linear boundary conditions. For previous results

involving geometric conditions for the solvability of nonlinear discrete time systems subject to linear

boundary conditions, the reader is referred to [20]. Here, we consider discrete systems on [a ,b +1] of

the form

x (k +1)−A(k )x (k ) =G (x (k ))

subject to the multipoint boundary conditions:

b+1
∑

j=a

C j x ( j ) =0

where C j ∈Rn×n . Then letting q1(x )=
∑b+1

j=a C j x ( j )and q2(x )=0 we have that condition i i i ) is satisfied
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provided

�

�

�

�

�

b+1
∑

j=a

C j x ( j )

�

�

�

�

�

>0

for all x ∈X satisfying ‖x‖≤ r and |x (b +1)|= r . Using results appearing in [20], we would be unable

to establish existence of solutions for such problems unless Cb+1 is invertible and

b
∑

l=a

C −1
b+1Cl = I .
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CHAPTER

4

ON NONLINEAR LEGENDRE BOUNDARY

VALUE PROBLEMS

4.1 Preliminaries

The classical Legendre eigenvalue-eigenfunction problems consists of finding the scalars µ and

functions x : (−1,1)→R such that

[(1− t 2)x ′(t )]′+µx (t ) =0

for all t ∈ (−1,1)where

lim
t→−1+

x (t ), lim
t→1−

x (t )

lim
t→−1+

x ′(t ), lim
t→1−

x ′(t ).

all exist and are finite. It is well-known that nontrivial solutions of this problem exist if and only if

µ=k (k +1)where k is a nonnegative integer [4]. If µ=k (k +1), the only solutions are the constant

multiples of the k t h Legendre polynomial. In this paper, we consider a nonlinear perturbation of

the differential equation subject to the same boundary conditions. That is, the existence of finite

limits of x (t ) and x ′(t ) at 1 and −1.

Approaches similar to the ones appearing in this paper have been used in a variety of settings

in the study of nonlinear boundary value problems. For the use of arguments similar to those in
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section 4.2.1 in the continuous and discrete cases, the reader is referred to [12], [17], [28], [2], and

[29]. For the general theory of projection methods in nonlinear boundary value problems we suggest

[32]. For the use of projection methods similar to those in subsections 4.2.2 and 4.2.3, see [10], [24],

[25], [34], [36], and [38]. For results involving topological degree theory arguments in the analysis of

discrete boundary value problems, the reader may consult [5] and [9].

4.2 Main Results

4.2.1 The Case of Invertible L

Even though in this paper we are mainly interested in the cases where the parameter µ in the

equation below is an eigenvalue of the associated linear Legendre equation, we devote this first

section to the case where µ 6=k (k +1) for any nonnegative integer k . We consider boundary value

problems on (−1,1) of the form,

[(1− t 2)x ′(t )]′+µx (t ) = f (x (t )) (4.1)

subject to the condition that the following limits exist and are finite

lim
t→−1+

x (t ), lim
t→1−

x (t )

(4.2)

lim
t→−1+

x ′(t ) lim
t→1−

x ′(t ).

Throughout this paper, we assume that f :R→R is Lipschitz. LetL 2 denote the space of functions

L 2= (L 2[−1,1],‖·‖2), X be defined as the subspace of functions inL 2 where the limits appearing

in (4.2) exist and are finite and

D (L ) = {x ∈X : x ′ is absolutely continuous and x ′′ ∈L 2}.

This implies that f ◦x ∈L 2 for all x ∈L 2. We seek conditions under which we can guarantee

the existence of a solution to the boundary value problem (4.1)-(4.2).

We now present some basic results regarding a closely related linear boundary value problem. If

µ 6=k (k +1) for all k , the equation

[(1− t 2)x ′(t )]′+µx (t ) =h (t )
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has exactly one solution satisfying the condition that the following limits exist and are finite

lim
t→−1+

x (t ), lim
t→1−

x (t )

lim
t→−1+

x ′(t ) lim
t→1−

x ′(t ).

Define the map L : D (L )→L 2 by

[L x ](t ) = [(1− t 2)x ′(t )]′+µx (t ).

Clearly, if µ 6=k (k +1) for all k then L is a bijection from D (L ) ontoL 2.

Let Pk denote the k t h -degree Legendre polynomial and p (t ) = (1− t 2). From general Sturm-

Liouville theory, the equation (p x ′)′+λx =0, subject to the condition that the limits in (4.2) exist and

are finite, has countably many simple eigenvalues λk =k (k +1)with corresponding eigenfunctions

Pk for k ≥0. It is also well-known that L is self-adjoint and that the graph of L is closed [4]. Further,

the unique solution xh ∈D (L ) to L x =h guaranteed above can be represented by the eigenfunction

expansion,

xh =
∞
∑

k=0

(k + 1
2 )〈h ,Pk 〉

[µ−k (k +1)]
Pk

where 〈·, ·〉 denotes the standardL 2 inner product. From this is follows that L−1 is continuous and

that





L−1




≤
� ∞
∑

k=0

�

�

�

�

1

(µ−k (k +1))2(k + 1
2 )

�

�

�

�

�1/2

.

This information, as well as more on the general theory of Legendre polynomials and the Legen-

dre differential equation can be found in [4].

Before presenting the next corollary, we first must introduce some notation. LetC denote the

space of continuous functions on [−1,1], and ‖·‖∞ denote the standard norm on this space. That is,

for a continuous function x on [−1,1],

‖x‖∞= max
t ∈[−1,1]

|x (t )|.

In the following corollary, we establish the continuity of L−1 by giving a bound on its operator norm

that will be useful later.

Corollary 4. There exists K >0 such that for all h ∈ I m (L )⊂L 2, the unique solution xh to the equation

L x =h satisfies

‖xh‖∞≤K ‖h‖
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and

‖x ′h‖∞≤K ‖h‖.

Proof. Define the map L̂ : D̂ (L )→ I m (L ) by

[L̂ x ](t ) = [(1− t 2)x ′(t )]′+µx (t )

where D̂ (L ) consists of the same set of functions as D (L ) but is endowed with the norm ‖·‖H 2 given

by

‖z‖H 2 = ‖z‖∞+‖z ′‖∞+‖z ′′‖.

Note that the map L̂ is a continuous, linear bijection ontoL 2, and that D̂ (L ) and I m (L ) are Banach

spaces. Therefore, by a consequence of the open mapping theorem, L̂−1 is continuous. This means

there exists a K >0 such for any h ∈L 2 the unique solution xh to L x =h satisfies:

K ‖h‖≥‖xh‖H 2 ≥‖xh‖∞

and

K ‖h‖≥‖xh‖H 2 ≥‖x ′h‖∞

as required.

Now we are ready to provide the following lemma which establishes an important property of

the map L−1.

Lemma 3. The map L−1 : I m (L )→L 2 is compact.

Proof. Consider the map L̃ : D̃ (L )→ I m (L ) defined by

[L̃ x ](t ) = [(1− t 2)x ′(t )]′+µx (t )

where D̃ (L ) consists of the same set of functions as D (L ) but endowed with the norm ‖·‖∞. Note

that L̃ is invertible due to the fact that L is invertible. We wish to show that L̃ is compact using the

Arzela-Ascoli theorem. Let M >0 and define S to be the set S = {z ∈ I m (L ) : ‖z‖≤M }. Let h ∈S and

observe that

‖L̃−1h‖∞≤K ‖h‖

≤K M .

Therefore, the L̃−1(S ) is a uniformly bounded set of functions inC . We now wish to show that this

set is equicontinuous.
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Let h ∈S and let ε >0. By the previous corollary along with the mean value theorem, for any h ∈L 2

L̃−1h is Lipschitz on S with constant K M . Let δ= ε/K M and |t1− t2|<δ. Then we have that

|L̃−1h (t1)− L̃−1h (t2)| ≤K M |t1− t2|

<ε.

Therefore, L̃−1(S ) is an equicontinuous set of functions in C . By the Arzelá-Ascoli theorem, L̃−1 :

I m (L )→ D̄ (L ) is compact. Therefore, it follows that L−1 : I m (L )→D (L ) is a compact operator.

We now discuss the issue of whether we can guarantee a solution to the nonlinear boundary

value problem

[(1− t 2)x ′(t )]′+µx (t ) = f (x (t ))

where x satisfies the condition that limits in (4.2) exist and are finite. Define F :L 2→L 2 by

F (x ) = f ◦x .

It is evident that the boundary value problem (4.1)-(4.2) is equivalent to the operator equation

L x =F (x ). Now we are ready to state the following theorem in which we establish our main result of

this subsection.

Theorem 5. Suppose that f :R→R is Lipschitz and that µ 6=k (k +1) for all nonnegative integers k .

Then if

lim
|s |→∞

| f (s )|
|s |

=0

there exists a solution to the boundary value problem

[(1− t 2)x ′(t )]′+µx (t ) = f (x (t ))

subject to the condition that the limits in (4.2) exist and are finite.

The proof of this theorem is a standard application of Schauder’s fixed point theorem applied to

the operator L−1F . We omit the details. Note that results in this subsection depended heavily on

L having an inverse, which is only the case if we assume µ 6=k (k +1) for any k ∈N. The following

subsections analyze situations where L is not invertible.

4.2.2 The Case of Non-Invertible L

We will now assume that µ= k (k +1) for some k ∈ {0,1,2,...}. As a consequence of the general

Sturm-Liouville theory outlined in the previous section, µ=k (k +1) implies that the kernel of L is
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one-dimensional and spanned by Pk . Further, as stated in [13], we have that h ∈ Im(L ) if and only if

〈h ,Pk 〉=0.

Therefore, it follows that Im(L )=[Ker(L )]⊥. In this section we will assume that lims→∞ f (s ) and

lims→−∞ f (s ) exist and are finite. We denote these values by

f (∞)≡ lim
s→∞

f (s ) and f (−∞)≡ lim
s→−∞

f (s ).

We employ the Lyapunov-Schmidt procedure. For the readers convenience, we now outline the

basic elements of this process.

First define U :L 2→L 2 by

[U x ](t ) =
�

k +
1

2

�

〈x ,Pk 〉Pk (t ).

Note that U is a projection onto Ker(L ) = s p a n{Pk }. Define the projection E :L 2→L 2 onto

[Ker(L )]⊥ =Im(L ) by E = I −U . Note that the map L restricted to D (L )∩ Im(L ) is a bijection onto

Im(L ) =Im(E ). Therefore, it follows that there exists a linear map M :Im(E )→D (L )∩Im(L ) satisfying

LM h =h for all h ∈Im(L ) and M L x =E x =(I −U )x for all x ∈D (L ). In fact, we can represent this

map M with the eigenfunction expansion,

[M h ](t ) =
∑

l 6=k

(l + 1
2 )〈h ,Pl 〉

[µ− l (l +1)]
Pl (t ).

Note that M : I m (L )→ I m (L )∩D (L ) is a compact operator as a consequence of the argument

appearing in lemma 3 along with the fact that I m (L ) is a closed subspace of L 2. Using these
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projections, we analyze the operator equation L x = F (x ) in the following way:

L x = F (x )⇐⇒















E (L x −F (x ))=0

and

(I −E )(L x −F (x ))=0

⇐⇒















(I −U )x −M E F (x ) =0

and

F (x )∈ I m (L )

⇐⇒















x =U x +M E F (x )

and
∫ 1

−1
f (x (t ))Pk (t )d t =0

⇐⇒















x =αPk +w (x )

and
∫ 1

−1
f [αPk (t )+w (x (t ))]Pk (t )d t =0

where w (x ) =M E F (x ).

Define the constants J1 and J2 as follows:

J1= f (∞)
∫

{t :Pk (t )>0}
Pk (t )d t + f (−∞)

∫

{t :Pk (t )<0}
Pk (t )d t

J2= f (∞)
∫

{t :Pk (t )<0}
Pk (t )d t + f (−∞)

∫

{t :Pk (t )>0}
Pk (t )d t .

Note that if k =0, then J1= g (∞) and J2= g (−∞). If k ≥1, then

J1=
�

∫

{t :Pk (t )>0}
Pk (t )d t

�

[ f (∞)− f (−∞)]

J2=
�

∫

{t :Pk (t )>0}
Pk (t )d t

�

[ f (−∞)− f (∞)].

Theorem 6. Suppose that f :R→R is continuous and that f (−∞) and f (∞) exist and are finite.

Then we can guarantee a solution to the boundary value problem (4.1)-(4.2) in either of the following

cases:

(i) If k =0 and f (−∞) f (∞)<0

36



(ii) If k ≥1 and f (−∞) 6= f (∞).

Proof. We begin by noting that,

∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t

=

∫

{t :Pk (t )<0}
f [αPk (t )+w (x (t ))]Pk (t )d t +

∫

{t :Pk (t )>0}
f [αPk (t )+w (x (t ))]Pk (t )d t .

Since w is bounded, we have by the Lebesgue Dominated Convergence Theorem that

lim
α→∞

∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t = f (∞)
∫

{t :Pk (t )>0}
Pk (t )d t + f (−∞)

∫

{t :Pk (t )<0}
Pk (t )d t = J1

and

lim
α→−∞

∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t = f (∞)
∫

{t :Pk (t )<0}
Pk (t )d t + f (−∞)

∫

{t :Pk (t )>0}
Pk (t )d t = J2.

Condition i i i ) implies that J1 J2<0, and we proceed by supposing without loss of generality that

J2<0< J1.

Therefore there exists α0>0 such that for α≥α0,

∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t >0 (4.3)

and for α≤−α0,

∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t <0. (4.4)

Note that M is a compact linear map from I m (L ) onto D (L )∩ I m (L ) and E is a projection so w is a

nonlinear compact mapping.

Define H1 :L 2×R→L 2 by

H1(x ,α) =αPk +w (x )

and H2 :L 2×R→R by

H2(x ,α) =α−
∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t .

Let H :L 2×R→L 2×R be defined by

H (x ,α) = (H1(x ,α),H2(x ,α)).
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Guaranteeing a fixed point for H is equivalent to guaranteeing a solution to (4.1)-(4.2). We endow

the spaceL 2×Rwith the norm

‖(x ,α)‖=max{‖x‖, |α|}.

Define

r = sup
t ∈R
| f (t )|.

The existence of r is guaranteed by the continuity of f :R→R along with the fact that f (∞) and

f (−∞) exist and are finite. Choose α0> r so that (4.3) and (4.4) are satisfied and let δ=α0+r . As

stated in [4], |Pk (t )| ≤1 for all t ∈ [−1,1]. We know that f and M E are bounded, so there exists b1>0

such that for any x ∈L 2, α∈R,

‖H1(x ,α)‖≤ b1.

LetB be the set

B = {(x ,α)∈L 2×R : ‖x‖≤ b1,|α| ≤δ}.

Clearly ‖H1(x ,α)‖≤ b1 for all (x ,α)∈B by construction, so it suffices to show that ‖H2(x ,α)‖≤δ for

all (x ,α)∈B in order to show that H (B )⊂B .

Suppose that α∈ [α0,δ]. Then

∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t >0

and therefore H2(x ,α)<α≤δ. Further, since

�

�

�

�

∫ 1

−1
f [αPk (t )+w (x (t ))]Pk (t )d t

�

�

�

�

≤ r it follows that

α−
∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t ≥α0−r ≥0.

Therefore if α∈ [α0,δ] then |H2(x ,α)| ∈ [0,δ]. Suppose that α∈ [0,α0). Then

|H2(x ,α)|=
�

�

�

�

α−
∫ 1

−1

f [αPk (t )+w (x (t ))]Pk (t )d t

�

�

�

�

≤α0+r

=δ.

Therefore, if (x ,α)∈B and α∈ [0,δ] then |H2(x ,α)| ≤δ.

A symmetric argument can be used to show that if (x ,α)∈B and α∈ [−δ,0] then |H2(x ,α)| ≤δ.
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Therefore, H (B )⊂B . Since H :L 2×R→L 2×R is compact (following from the compactness of M )

andB is closed, bounded, and convex it follows that H is guaranteed a fixed point by Schauder’s

Fixed Point Theorem.

4.2.3 The Case of Weak Nonlinearities

In this subsection, assume that our nonlinearity is of the form ε f (x (t ))where ε is a real parameter

and f :R→R is continuously differentiable. That is, we now examine boundary value problems of

the form

[(1− t 2)x ′(t )]′+µx (t ) = ε f (x (t ))

subject to the condition that the limits appearing in (4.2) exist and are finite. Due to the fact that we

will impose differentiability conditions on the function-valued operator representing our nonlinear-

ity, we consider operators defined on the space of continuous functions. Again letC denote the

space of continuous functions on [−1,1] endowed with the supremum norm and let

D =
�

C 2[−1,1],‖·‖∞
�

⊂C

where C 2[−1,1] denotes the set of twice continuously differentiable functions on [−1,1]. In this

section, denoteL :D→C by

[L x ](t ) = [(1− t 2)x ′(t )]′+µx (t )

and F :C ×R→C by

[F (x ,ε)](t ) = ε f (x (t )).

Suppose again that µ=k (k +1).

In this section, for x ∈C and l ∈Nwe denote

xl =

�

�

l +
1

2

�

∫ 1

−1

Pl (t )x (t )d t

�

.

Define the projections U :C →C by

[U x ](t ) = xk Pk (t )

and E :C →C by E = I −U . Note that the map L restricted to D∩ Im(L ) is a bijection onto

Im(L ) =Im(E ). Therefore, it follows that there exists a linear map M :Im(E )→D∩ Im(L ) satisfying

LM h =h
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for all h ∈ Im(L ) and

ML x =E x = (I −U )x

for all x ∈D. Note that M is simply

�

L |D∩Im(L )

�−1

and observe further that M is continuous. We note that solving

L x = F (x ,ε)

is equivalent to solving the system















(I −U )x −M E F (x ,ε) =0

and

U ( f ◦x ) =0.

Define the map G :D×R→ Im(L )× Ker(L ) by

G (x ,ε) =
� (I −U )x −M E F (x ,ε)

U ( f ◦x )

�

.

It is well known that F is continuously differentiable with respect to x and for any x ∈C , ε ∈R,

�

∂ F

∂ x
(x ,ε)h

�

(t ) = ε f ′(x (t ))h (t ).

From that it follows that

∂G

∂ x
(x ,ε)

exists for all (x ,ε)∈C ×R and is given by

∂G

∂ x
(x ,ε)w =

�

[(I −U )−εM E ( f ′◦x )]w

U ( f ′◦x )w

�

.

Let x̄ =αPk for α∈R. For (x̄ ,0) and w ∈C :

∂G

∂ x
(x̄ ,0)w =

� (I −U )w

U ( f ′◦ x̄ )w

�

.

Since F ∈C 1 and M is continuous, it follows that G ∈C 1. For w ∈C , we can decompose w as
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w =u+v where

u =wk Pk

v =w −wk Pk .

With this in mind, we can rewrite the previous expression as

∂G

∂ x
(x̄ ,0)(u+v ) =

�

v

U ( f ′◦ x̄ )(u+v )

�

.

Define the maps H1 :Ker(L )→R by

H1(u ) =

∫ 1

−1

Pk (t ) f (u (t ))d t ,

H2 :R→Ker(L ) by H2(α) =αPk and finally H :R→R by H =H1 ◦H2. That is,

H (α) =

∫ 1

−1

Pk (t ) f (αPk (t ))d t .

Therefore for any number in R, H ′ : Ker(L )→R exists and for β ∈R,

[H ′(α)](β ) =

∫ 1

−1

Pk (t )[ f
′(αPk (t ))](βPk (t ))d t .

We are now ready to give conditions for the solvability of our boundary value problems examined

this section.

Theorem 7. Suppose that there exists α0 ∈R such that H (α0) = 0 and H ′(α0) 6= 0. Then there exists

and open neighborhood I ⊂R of 0 such that for any ε ∈ I there exists a solution to

[(1− t 2)x ′(t )]′+µx (t ) = ε f (x (t ))

satisfying the condition that the limits appearing in (4.2) exist and are finite.

Proof. Recall that G ∈C 1 and let x̄ =α0Pk . Then (I −U )x̄ −M E F (x̄ ,0) =0 and

U F (x̄ ) =

∫ 1

−1

Pk (t ) f (α0Pk (t ))d t

=H (α0Pk (t ))

=0.

Therefore G (x̄ ,0) = 0. We now wish to show that ∂G
∂ x (x̄ ,0) is a bijection from C onto Im(L )×

Ker(L ). Since ∂G
∂ x (x̄ ,0) is linear, in order to show this map is injective it suffices to show that it has a
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trivial kernel. Suppose that ∂G
∂ x (x̄ ,0)(u+v ) =0. Then

0= v

and so

0=U ( f ′◦ x̄ )u =
�

∫ 1

−1

Pk (t )[ f
′(α0Pk (t ))]u (t )d t

�

implying that u =0 due to our assumption that H ′(α0) 6=0. Note that since H ′(α0) is a nonzero linear

map from R→R, then it is a bijection from R onto R. This implies that the map U ( f ′◦ x̄ ) restricted

to Ker(L ) is a bijection onto Ker(L ). Given h1 ∈Im(L ) and h2 ∈ Ker(L ), we have that

∂G

∂ x
(x̄ ,0)(h1+ ĥ2) = (h1,h2)

where ĥ2 is the unique element of Ker(L ) that maps to h2 under U ( f ′ ◦ x̄ ). So ∂G
∂ x (x̄ ,0) is surjective

and therefore a bijection fromC onto Im(L )×Ker(L ). By the implicit function theorem [16], there

exists a neighborhood V0⊂R of 0 on which there exists a continuous functionφ : V0→D satisfying

G (φ(ε),ε) =0

for all ε ∈V0. Denotingφ(ε) = xε we have that

0=G (φ(ε),ε)

=G (xε ,ε)

=L xε−F (xε ,ε).

In other words for any ε ∈V0 we can guarantee a solution to

[(1− t 2)x ′(t )]′+µx (t ) = ε f (x (t ))

satisfying the condition that the limits in (4.2) exist and are finite.

Remark 5. Let xε denote the solution inD guaranteed by the implicit function theorem to

[(1− t 2)x ′(t )]′+µx (t ) = ε f (x (t )).

Note that

lim
ε→0

xε = x̄

where this limit is in the sense of uniform convergence. That is, solutions guaranteed by the above
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theorem are ones that emanate from a certain solution to the linear homogeneous problem.

4.3 Examples

Example 5. Consider the boundary value problem

[(1− t 2)x ′(t )]′= ε f (x (t ))

on (−1,1) subject to the condition that the limits in (4.2) exist and are finite.

Suppose that there exists a number α0 such that f (α0) =0 and f ′(α0) 6=0. Then since the constant

Legendre polynomial is P0(t ) =1, for α∈R,

∫ 1

−1

P0(t ) f (αP0(t ))d t =

∫ 1

−1

f (α)d t

so then
∫ 1

−1
P0(t ) f (α0P0(t ))d t =0. However, provided β 6=0,

∫ 1

−1

P0(t )[ f
′(α0P0(t ))](βP0(t ))d t =β

∫ 1

−1

f ′(α0)d t

so then
∫ 1

−1
P0(t )[ f ′(α0P0(t ))](βP0(t ))d t 6=0.

Example 6. Consider the boundary value problem

[(1− t 2)x ′(t )]′+2x (t ) = ε f (x (t ))

subject to the condition that the limits in (4.2) exist and are finite The constant Legendre polynomial

is P1(t ) = t , so the condition in theorem 7 is satisfied provided there exists a number α0 satisfying

∫ 1

−1

t f (α0t )d t =0

and f (α0) 6= f (−α0).
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CHAPTER

5

ON WEAKLY NONLINEAR BOUNDARY

VALUE PROBLEMS ON INFINITE

INTERVALS

5.1 Preliminaries

We first consider continuous nonlinear boundary value problems on the infinite interval [0,∞) of

the form

x ′(t )−A(t )x (t ) =h (t )+ε f (t , x (t )) (5.1)

subject to

Γ (x ) =u+ε

∫ ∞

0

g (t , x (t ))d t (5.2)

where A is a continuous n ×n matrix-valued function on [0,∞), f and g are continuously dif-

ferentiable maps from Rn+1 into Rn , and Γ is a bounded linear map from the space of bounded,

continuous functions on [0,∞) into Rn . Our main focus will be on the case where the bounded,

continuous function h and vector u ∈Rn are such that the linear problem

x ′(t )−A(t )x (t ) =h (t ) (5.3)
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subject to

Γ (x ) =u (5.4)

has a solution.

Then we will investigate

x (k +1)−A(k )x (k ) =h (k )+ε f (k , x (k )) (5.5)

subject to

∞
∑

k=0

Ck x (k ) =u+ε
∞
∑

k=0

g (k , x (k )). (5.6)

where Ck is an n×n real-valued matrix for all nonnegative integers k . Denoting the nonnegative

integers by Z+, we have that the maps f :Z+×Rn→Rn and g :Z+×Rn→Rn are continuous, ε is a

real parameter, and A(k ) is a nonsingular n×n real-valued matrix for all k ∈Z+.

In our analysis, we use a scheme somewhat similar to the Lyapunov-Schmidt procedure and

results are obtained through an application of the implicit function theorem for Banach spaces. We

provide a framework which allows us to determine cases when for ε sufficiently small in magnitude,

(5.1)-(5.2) has solutions which emanate from a particular solution to (5.3)-(5.4).

5.2 Main Results

5.2.1 Differential Equations

We useC to denote the space of bounded, continuous functions from [0,∞) into Rn , and pair this

space with the norm ‖x‖∞= supt≥0 |x (t )|. It is clear that (C ,‖·‖∞) is a Banach space. We use | · | to

denote the Euclidean norm on Rn and ‖·‖ for the standard operator norm on the space of n×n

real-valued matrices. Throughout this section, we assume that Γ :C →Rn is a bounded linear map

and write

‖Γ‖= sup
‖x‖∞=1

|Γ (x )|.

For previous results establishing existence of solutions to boundary value problems on infinite

intervals the reader is referred to [15] in the continuous case and [27], [31], and [32] in the discrete case.

In all of these results, it is assumed that a certain corresponding linear problem is invertible. In

these results, we remove this assumption and the situation gets more delicate mathematically.

Let Φ(t ) denote the fundamental matrix for x ′(t )−A(t )x (t ) =0 such that Φ(0) = I and Φi denote

the i t h column of Φ for 1≤ i ≤n . As mentioned in the introduction, our analysis will include a

discussion of a set of closely related linear problems. Throughout the paper, the reader will see that
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conditions we will impose on A guarantee that for anyψ∈C , Φ(·)
∫ ·

0
Φ−1(s )ψ(s )d s ∈C .

We define Λ as the n×n matrix

Λ= [Γ (Φ1(·))|Γ (Φ2(·))|· ·· |Γ (Φn (·))].

Note that a function x ∈C is a solution to

x ′(t )−A(t )x (t ) =0

subject to

Γ (x ) =0

if and only if x (0)∈ker(Λ). Givenψ∈C and w ∈Rn , we know by variation of parameters that any

solution to x ′(t )−A(t )x (t ) =ψ(t ) is of the form

x (t ) =Φ(t )x (0)+Φ(t )

∫ t

0

Φ−1(s )ψ(s )d s .

Imposing the condition that Γ (x ) =w we get that

Λx (0) =w −Γ
�

Φ(·)
∫ ·

0

Φ−1(s )ψ(s )d s

�

.

Let p denote the dimension of ker(Λ) for some integer 0≤p ≤n . If p =0, it is clear that (5.3)-(5.4)

has a unique solution. The bulk of our results concern the case where p ≥1. In this case, we let W

be a matrix whose columns form a basis for [ker(ΛT )]⊥. Note that there exists a solution to the linear

boundary value problem

x ′(t )−A(t )x (t ) =ψ(t )

subject to

Γ (x ) =w

if and only if

W T

�

w −Γ
�

Φ(·)
∫ ·

0

Φ−1(s )ψ(s )d s

��

=0.

Throughout this paper we will mainly be studying the structure of the solution set to (5.1)-(5.2)

in the cases when the matrix Λ is singular and the corresponding linear problem (5.3)-(5.4) has a
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solution, or equivalently where h and u satisfy

W T

�

u−Γ
�

Φ(·)
∫ ·

0

Φ−1(s )h (s )d s

��

=0.

Based on the discussion above, it is clear that there exists a solution to the nonlinear boundary

value problem

x ′(t )−A(t )x (t ) =h (t )+ε f (t , x (t ))

subject to

Γ (x ) =u+ε

∫ ∞

0

g (t , x (t ))d t

for ε 6=0 if there exists x ∈C and v ∈ker(Λ) satisfying

x (t ) =Φ(t )v +Φ(t )

∫ t

0

Φ−1(s )[h (s )+ε f (s , x (s ))]d s

and

W T

�∫ ∞

0

g (t , x (t ))d t −Γ
�

Φ(·)
∫ ·

0

Φ−1(s ) f (s , x (s ))d s

��

=0.

Remark 6. It should be observed that the problems we’re considering include ones of the form

ẋ (t )−A(t )x (t ) = ε f (t , x (t ))

subject to

∫ ∞

0

B (t )x (t )d t +
∞
∑

k=0

Ck x (tk ) = ε

∫ ∞

0

g (t , x (t ))d t

where B is a function-valued matrix whose entries are integrable functions from [0,∞) into Rn . and

Ck for k ≥0 is an n×n matrix with

∞
∑

k=0

‖Ck‖<∞.

.

We now list the following set of conditions which we will impose in our first theorem.

I) There exists positive constants K ,α such that

‖Φ(t )Φ−1(s )‖≤K e −α(t−s )
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for all t ≥ s ≥0.

II) For any compact subset S ⊂Rn , ∂ f
∂ x is uniformly continuous on [0,∞)×S and

sup
t≥0













∂ f

∂ x
(t ,0)













<∞.

III) For any compact subset S ⊂Rn , ∂ g
∂ x is uniformly continuous on [0,∞)×S and

∫ ∞

0













∂ g

∂ x
(t ,0)













d t <∞.

IV) For all h ∈C ,

∫ ∞

0

|g (t ,h (t ))|d t <∞.

V) There exists an integrable s : [0,∞)→R satisfying













∂ g

∂ x
(t , x1)−

∂ g

∂ x
(t , x2)













≤ s (t )|x1−x2|

for all t ≥0 and x1, x2 ∈Rn .

Note that for x ∈C , v ∈ker(Λ), ε ∈R, and t ≥0 we have that,

�

�

�

�

�

x (t )−Φ(t )v −Φ(t )
∫ t

0

Φ−1(s )[h (s )+ε f (s , x (s ))]d s

�

�

�

�

�

≤‖x‖∞+sup
s≥0
‖Φ(s )‖+

∫ ∞

0

‖Φ(t )Φ−1(s )‖|h (s )+ε f (s , x (s ))|d s

≤‖x‖∞+sup
s≥0
‖Φ(s )‖+[‖h‖∞+ |ε|sup

s≥0
| f (s , x (s ))|]K

∫ ∞

0

e −α(t−s )d s

= ‖x‖∞+sup
s≥0
‖Φ(s )‖+[‖h‖∞+ |ε|sup

s≥0
| f (s , x (s ))|]K α−1.

Also observe that

�

�

�

�

W T

�∫ ∞

0

g (t , x (t ))d t −Γ
�

Φ(·)
∫ ·

0

Φ−1(s ) f (s , x (s ))d s

���

�

�

�

≤‖W T ‖
�∫ ∞

0

|g (t , x (t ))|d t −‖Γ‖
�∫ ∞

0

‖Φ(t )Φ−1(s )‖| f (s , x (s ))|d s

��

≤‖W T ‖
�∫ ∞

0

|g (t , x (t ))|d t −‖Γ‖
�

sup
s≥0
| f (s , x (s ))|K

∫ ∞

0

e −α(t−s )d s

��

= ‖W T ‖
�∫ ∞

0

|g (t , x (t ))|d t −‖Γ‖
�

sup
s≥0
| f (s , x (s ))|K α−1

��

<∞.
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From this is follows that H given by

H ((x ,v ),ε) =

�

H1((x ,v ),ε)

H2((x ,v ),ε)

�

=







x (t )−Φ(t )v −Φ(·)
∫ ·

0
Φ−1(s )[h (s )+ε f (s , x (s ))]d s

W T
�

∫∞
0

g (t , x (t ))d t −Γ
�

Φ(·)
∫ ·

0
Φ−1(s ) f (s , x (s ))d s

�

�







is a well-defined map fromC ×ker(Λ)×R toC ×Rp

Our main result will involve an application of the implicit function theorem for Banach spaces

[16]. This requires continuous Fréchet differentiability of H .

In the following lemma, for i =1,2 we use ∂Hi
∂ (x ,v ) to denote the partial (Fréchet) derivative of Hi

with respect to (x ,v ).

Lemma 4. Suppose that I )−V ) hold. Then for any ((x ,v ),ε)∈C ×ker(Λ)×R, the bounded linear

maps ∂H1
∂ (x ,v ) ((x ,v ),ε) and ∂H2

∂ (x ,v ) ((x ,v ),ε) exist and are given by

�

∂H1

∂ (x ,v )
((x ,v ),ε)

�

(ψ,w )(t ) =ψ(t )−Φ(t )w −ε
�

Φ(t )

∫ t

0

Φ−1(s )
∂ f

∂ x
(s , x (s ))ψ(s )d s

�

and

�

∂H2

∂ (x ,v )
((x ,v ),ε)

�

(ψ,w ) =W T

�∫ ∞

0

∂ g

∂ x
(t , x (t ))ψ(t )d t −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , x (s ))ψ(s )d s

��

.

Further, H1 and H2 are continuously (Fréchet) differentiable.

Proof. For x ,ψ∈C and v,w ∈ker(Λ)we have that

H1((x +ψ,v +w ),ε)−H1((x ,v ),ε)−ψ(t )+Φ(t )w +ε
�

Φ(t )

∫ t

0

Φ−1(s )
∂ f

∂ x
(s , x (s ))ψ(s )d s

�

= ε

�

Φ(t )

∫ t

0

Φ−1(s )
�

f (s ,(x +h )(s ))− f (s , x (s ))−
∂ f

∂ x
(s , x (s ))ψ(s )

�

d s

�

.

For a ,b ∈Rn , let L (a ,b ) denote the straight line segment connecting a and b . Note that by the

mean value theorem, for all t ≥0 we have that

�

� f (t ,(x +ψ)(t ))− f (t , x (t ))
�

�≤ sup
ν(t )∈L (x (t ),(x+ψ)(t ))

�

�

�

�

∂ f

∂ x
(t ,ν(t ))ψ(t )

�

�

�

�

and
�

�g (t ,(x +ψ)(t ))−g (t , x (t ))
�

�≤ sup
ζ(t )∈L (x (t ),(x+ψ)(t ))

�

�

�

�

∂ g

∂ x
(t ,ζ(t ))ψ(t )

�

�

�

�

.
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Then we have that for t ≥0,

�

�

�

�

�

�∫ t

0

Φ(t )Φ−1(s )
�

f (s ,(x +h )(s ))− f (s , x (s ))−
∂ f

∂ x
(s , x (s ))ψ(s )

�

d s

�

�

�

�

�

�

≤ sup
ν(s )∈L (x (s ),(x+ψ)(s ))













�

∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))

�













�∫ ∞

0





Φ(t )Φ−1(s )




d s

�

‖ψ‖∞

≤ sup
ν(s )∈L (x (s ),(x+ψ)(s ))













�

∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))

�













K α−1‖ψ‖∞

and supν(s )∈L (x (s ),(x+ψ)(s ))










�

∂ f
∂ x (s ,ν(s ))− ∂ f

∂ x (s , x (s ))
�








K α−1→0 as ‖ψ‖∞→0 by I I ).

We also have that
�

�

�

�

H2((x +ψ,v +w ),ε)−H2((x ,v ),ε)−

W T

�∫ ∞

0

∂ g

∂ x
(t , x (t ))ψ(t )d t −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , x (s ))ψ(s )d s

���

�

�

�

=

�

�

�

�

W T
�

∫ ∞

0

�

g (s ,(x +ψ)(s ))−g (s , x (s ))−
∂ g

∂ x
(s , x (s ))ψ(s )

�

d s

−Γ
�

Φ(t )

∫ t

0

Φ−1(s )
�

f (s ,(x +ψ)(s ))− f (s , x (s ))−
∂ f

∂ x
(s , x (s ))ψ(s )

�

d s

�

�

�

�

�

�

≤
�

‖W T ‖
∫ ∞

0

sup
ζ(s )∈L (x (s ),(x+ψ)(s ))













∂ g

∂ x
(s ,ζ(s ))−

∂ g

∂ x
(s , x (s ))













d s‖ψ‖∞

+‖W T ‖‖Γ‖ sup
ν(s )∈L (x (s ),(x+ψ)(s ))













∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))













∫ ∞

0





Φ(t )Φ−1(s )




d t
�

‖ψ‖∞

≤‖W T ‖
�

‖s‖L 1‖ψ‖∞+‖Γ‖ sup
ν(s )∈L (x (s ),(x+ψ)(s ))













∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))













K α−1
�

‖ψ‖∞

where ‖·‖L 1 denotes the standard norm on L 1[0,∞). Note that

‖W T ‖
�

‖s‖L 1‖ψ‖∞+‖Γ‖ sup
ν(s )∈L (x (s ),(x+ψ)(s ))













∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))













K α−1
�

→0

as ‖ψ‖∞→0 by I I ). Now we will show that the map

(x ,v ) 7→
∂Hi

∂ (x ,v )

is continuous for i =1,2. Note that for ‖ψ‖∞=1,
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�

∂H1

∂ (x ,v )
(x1,v1)−

∂H1

∂ (x ,v )
(x2,v2)

�

ψ













∞

= sup
t ∈[0,∞)

�

�

�

�

�∫ t

0

Φ(t )Φ−1(s )
�

∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))

�

ψ(s )d s

��

�

�

�

≤












∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))













�∫ ∞

0





Φ(t )Φ−1(s )




d t

�

≤K













∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))













α−1

and K









∂ f
∂ x (s , x1(s ))−

∂ f
∂ x (s , x2(s ))








α−1→0 as ‖x1−x2‖∞→0. We also have that

�

�

�

�

�

∂H2

∂ (x ,v )
(x1,v1)−

∂H2

∂ (x ,v )
(x2,v2)

�

ψ

�

�

�

�

≤‖W T ‖
�

∫ ∞

0













∂ g

∂ x
(s , x1(s ))−

∂ g

∂ x
(s , x2(s ))













d s

+‖Γ‖
∫ ·

0

‖Φ(·)Φ−1(s )‖












∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))













d s
���

�

�

�

�

≤‖W T ‖
�

‖x1−x2‖∞‖s‖L 1+K α−1‖Γ‖












∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))













�

.

Note that ‖W T ‖
�

‖x1− x2‖∞‖s‖L 1 +K α−1‖Γ‖









∂ f
∂ x (s , x1(s ))−

∂ f
∂ x (s , x2(s ))










�

→ 0 as ‖x1− x2‖∞→ 0,

proving our desired result.

Remark 7. The most interesting case and the one we will focus mostly on is the case whereΛ is singular.

In this case, solving the nonlinear boundary value problem (5.1)-(5.2) is equivalent to solving the

operator equation H1((x ,v ),ε)=H2((x ,v ),ε)=0. For the sake of completeness in our analysis it is worth

mentioning the case where Λ is invertible. If Λ is invertible, then (5.3)-(5.4) has a unique solution and

the matrix W does not exist. The nonlinear boundary value problem (5.1)-(5.2) is then equivalent to

finding a continuous function x and v ∈Rn satisfying

x (t )−Φ(t )v −Φ(t )
∫ t

0

Φ−1(s )[h (s )+ε f (s , x (s ))]d s =0

where

v =Λ−1

�

u+ε

∫ ∞

0

g (t , x (t ))d t −Γ
�

Φ(·)
∫ ·

0

Φ−1(s )[h (s )+ε f (s , x (s ))]d s

��

.
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Define Ψ :C ×Rn+1→C ×Rn by [Ψ1,Ψ2]T where

Ψ1((x ,v ),ε)(t ) = x (t )−Φ(t )v −Φ(t )
∫ t

0

Φ−1(s )[h (s )+ε f (s , x (s ))]d s

and

Ψ2((x ,v ),ε)(t ) = v −Λ−1

�

u+ε

∫ ∞

0

g (t , x (t ))d t −Γ
�

Φ(·)
∫ ·

0

Φ−1(s )[h (s )+ε f (s , x (s ))]d s

��

.

and note that Ψ((x̄ ,v0),0) =0 where x̄ denotes the unique solution to x ′(t )−A(t )x (t ) =h (t ) satisfying

x (0) = v0 where

v0=Λ
−1

�

u−Γ
�

Φ(·)
∫ ·

0

Φ−1(s )h (s )d s

��

.

Further note that by an analogous argument to the one appearing in the previous lemma, Ψ is

continuously differentiable at each point inC ×Rn+1 under conditions I )−V ) and

∂ Ψ

∂ (x ,v )
((x̄ ,v0),0)[ψ,w ]T = [ψ(·)+Φ(·)w ,w ]T

which is clearly a bijection from C ×Rn to C ×Rn . Therefore by the implicit function theorem for

Banach spaces, there exists a solution to (5.1)-(5.2) for sufficiently small ε and those solutions converge

uniformly to x̄ as ε goes to 0.

Now we shift our focus back to the case where Λ is singular. For the sake of notation, for any

y ∈Rn we define the function xy (t ) =Φ(t )[y +Γ
�

Φ(·)
∫ ·

0
Φ−1(s ) f (s , x (s ))d s

�

]+Φ(t )
∫ t

0
Φ−1(s )h (s )d s .

We also write

∂H

∂ (x ,v )
=







∂H1
∂ (x ,v )

∂H2
∂ (x ,v )






.

Theorem 8. Suppose that I )−V ) hold and that there exists y ∈ker(Λ) such that

W T

�∫ ∞

0

g (t , xy (t ))d t −Γ
�

Φ(·)
∫ ·

0

Φ−1(s ) f (s , xy (s ))d s

��

=0

andφ : ker(Λ)→Rp given by

φ(w ) =W T

�∫ ∞

0

∂ g

∂ x
(t , xy (t ))Φ(t )d t −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , xy (s ))Φ(s )d s

��

w

is a bijection from ker(Λ)⊂Rn onto Rp . Then there exists ε0 such that for all |ε| ≤ ε0, the boundary
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value problem

x ′(t ) =A(t )x (t ) =h (t )+ε f (t , x (t ))

subject to

Γ (x ) =u+ε

∫ ∞

0

g (t , x (t ))d t .

is guaranteed a solution xε . Moreover ‖xε−xy ‖∞→0 as ε→0.

Proof. We have shown that H is continuously differentiable. Note that H1((xy , y ),0)=0=H2((xy , y ),0).

Suppose that ∂H
∂ (x ,v ) ((xy , y ),0)(z ,v ) =0. Then z (t ) =Φ(t )v for all t ≥0 and therefore

W T

�∫ ∞

0

∂ g

∂ x
(s , xy (s ))Φ(s )d s −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , xy (s ))Φ(s )d s

��

v =0

implying that v =0. Therefore ∂H
∂ (x ,v ) ((xy , y ),0) is one-to-one. Let (ĥ , v̂ )∈C ×Rp . Then by assumption

there exists a unique w ∈ker(Λ) satisfying

W T

�∫ ∞

0

∂ g

∂ x
(s , xy (s ))Φ(s )d s −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , xy (s ))Φ(s )d s

��

w = v̂ −v∗.

where v∗ denotes the vector

v∗=W T

�∫ ∞

0

∂ g

∂ x
(s , xy (s ))ĥ (s )d s −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , xy (s ))ĥd s

��

.

Therefore

�

∂H1

∂ (x ,v )
((xy , y ),0)

�

(ĥ+Φ(·)w ,w )(t ) = ĥ (t )

and

�

∂H2

∂ (x ,v )
((xy , y ),0)

�

(ĥ+Φ(·)w ,w )(t ) = (v̂ −v∗)+v∗= v̂

and ∂H
∂ (x ,v ) ((xy , y ),0) is a bijection fromC ×ker(Λ) ontoC ×Rp . Our result follows from the implicit

function theorem for Banach spaces.

In results up to this point, we assume that h is simply an element ofC . In the following set of

results, we investigate problems where we know that h ∈C ∩L 1[0,∞). In this case, we impose the

following set of conditions.
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I ′) There exists positive constant K such that

‖Φ(t )Φ−1(s )‖≤K

for all t ≥ s ≥0.

I I ′) ∂ g
∂ x is uniformly continuous on [0,∞)×Rn and

∫ ∞

0













∂ g

∂ x
(t ,0)













d t <∞.

I I I ′) For all h ∈C ,

∫ ∞

0

|g (t ,h (t ))|d t <∞.

I V ′) ∂ f
∂ x is uniformly continuous on [0,∞)×Rn and

∫ ∞

0













∂ f

∂ x
(t ,0)













d t <∞.

V ′) There exists s ∈ L 1[0,∞) satisfying













∂ g

∂ x
(t , x1)−

∂ g

∂ x
(t , x2)













≤ s (t )|x1−x2|

for all t ≥0 and x1, x2 ∈Rn .

V I ′) There exists h1 ∈ L 1[0,∞) such that for every compact subset S of Rn there exists a constant

C satisfying

| f (t , x )| ≤C h1(t )

for all t ≥0 and x ∈S and

| f (t , x1)− f (t , x2)| ≤h1(t )|x1−x2|

for all x1, x2 ∈S and t ≥0.

V I I ′) There exists h2 ∈ L 1[0,∞) such that for any compact subset S ⊂Rn ,













∂ f

∂ x
(k , x1)−

∂ f

∂ x
(k , x2)













≤h2(k )|x1−x2|

for all t ≥0 and x1, x2 ∈S .
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Before stating the main theorem in this section, it is worth mentioning for the sake of completeness

that ifΛ is invertible, an analogous argument to the one appearing in remark 2 holds. This is because

Ψ is continuously differentiable onC ×Rn+1 under conditions I ′)−V I I ′) and satisfies the conditions

of the implicit function theorem at the point ((x̄ ,v0),0)where x̄ and v0 are defined the same as in

remark 2. Therefore, we can guarantee solutions to (5.1)−(5.2) for ε sufficiently small and these

solutions converge uniformly to x̄ as the absolute value of ε goes to zero.

Theorem 9. Suppose that I ′)−V I I ′) hold and that there exists y ∈ker(Λ) such that

W T

�∫ ∞

0

g (t , xy (t ))d t −Γ
�

Φ(·)
∫ ·

0

Φ−1(s ) f (s , xy (s ))d s

��

=0

andφ : ker(Λ)→Rp defined by

φ(w ) =W T

�∫ ∞

0

∂ g

∂ x
(t , xy (t ))Φ(t )d t −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , xy (s ))Φ(s )d s

��

w

is a bijection from ker(Λ)⊂Rn onto Rp . Then there exists ε0 such that for all |ε| ≤ ε0, the boundary

value problem

x ′(t )−A(t )x (t ) =h (t )+ε f (t , x (t ))

subject to

Γ (x ) =u+ε

∫ ∞

0

g (t , x (t ))d t .

is guaranteed a solution xε . Moreover ‖xε−xy ‖∞→0 as ε→0.

Proof. We wish to show that H is continuously differentiable under this new set of conditions. Recall

that

H1((x +ψ,v +w ),ε)(t )−H1((x ,v ),ε)(t )−
�

ψ(t )−Φ(t )w +ε
�

Φ(t )

∫ t

0

Φ−1(s )
∂ f

∂ x
(s , x (s ))ψ(s )d s

��

= ε

�

Φ(t )

∫ t

0

Φ−1(s )
�

f (s ,(x +ψ)(s ))− f (s , x (s ))−
∂ f

∂ x
(s , x (s ))ψ(s )

�

�

.

We have that













Φ(·)
∫ ·

0

Φ−1(s )
�

f (s ,(x +ψ)(s ))− f (s , x (s ))−
∂ f

∂ x
(s , x (s ))ψ(s )

�

d s













∞

≤K

∫ ∞

0

sup
ν(s )∈L (x (s ),(x+ψ)(s ))













∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))













d s‖ψ‖∞

≤K ‖h2‖L 1‖ψ‖2
∞
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and K ‖h2‖L 1‖ψ‖∞→0 as ‖ψ‖∞→0. Note also that for ‖ψ‖∞=1,













Φ(·)
�∫ ·

0

Φ−1(s )
�

∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))

�

ψ(s )d s

�











∞

≤‖Φ(t )Φ−1(s )‖
∫ ∞

0













∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))













d s

≤K ‖h2‖L 1‖x1−x2‖∞→0

as ‖x1−x2‖∞→0. We also have that

�

�

�

�

H2((x +ψ,v +w ),ε)−H2((x ,v ),ε)−

W T

�∫ ∞

0

∂ g

∂ x
(t , x (t ))ψ(t )d t −Γ

�

Φ(·)
∫ ·

0

Φ−1(s )
∂ f

∂ x
(s , x (s ))ψ(s )d s

���

�

�

�

=

�

�

�

�

W T
�

∫ ∞

0

�

g (s ,(x +ψ)(s ))−g (s , x (s ))−
∂ g

∂ x
(s , x (s ))ψ(s )

�

d s

−Γ
�

Φ(t )

∫ t

0

Φ−1(s )
�

f (s ,(x +ψ)(s ))− f (s , x (s ))−
∂ f

∂ x
(s , x (s ))ψ(s )

�

d s

�

�

�

�

�

�

≤
�

‖W T ‖
∫ ∞

0

sup
ζ(s )∈L (x (s ),(x+ψ)(s ))













∂ g

∂ x
(s ,ζ(s ))−

∂ g

∂ x
(s , x (s ))













d s‖ψ‖∞

+‖W T ‖‖Γ‖ sup
ν(s )∈L (x (s ),(x+ψ)(s ))













∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))













K

∫ t

0













∂ f

∂ x
(s ,ν(s ))−

∂ f

∂ x
(s , x (s ))













d t
�

‖ψ‖∞

≤‖W T ‖
�

‖s‖L 1‖ψ‖∞+‖Γ‖K ‖ψ‖∞‖h2‖L 1 |
�

‖ψ‖∞.

and ‖W T ‖
�

‖s‖L 1‖ψ‖∞+‖Γ‖‖ψ‖∞‖h2‖L 1 |K
�

→0 as ‖ψ‖∞→0. Also note that for ‖ψ‖∞=1

�

�

�

�

�

∂H2

∂ (x ,v )
(x1,v1)−

∂H2

∂ (x ,v )
(x2,v2)

�

ψ

�

�

�

�

≤‖W T ‖
�

∫ ∞

0













∂ g

∂ x
(s , x1(s ))−

∂ g

∂ x
(s , x2(s ))













d s

+‖Γ‖‖Φ(·)
∫ ·

0

Φ−1(s )‖












∂ f

∂ x
(s , x1(s ))−

∂ f

∂ x
(s , x2(s ))













d s
���

�

�

�

�

≤‖W T ‖
�

‖x1−x2‖∞‖s‖L 1+α−1‖Γ‖‖x1−x2‖∞‖h2‖L 1

�

.

It is clear that ‖W T ‖
�

‖x1−x2‖∞‖s‖L 1+α−1‖Γ‖‖x1−x2‖∞‖h2‖L 1

�

→0 as ‖x1−x2‖∞→0. Therefore,

H1 and H2 is continuously differentiable and so H is as well. It follows that H satisfies the conditions

of the conditions of the implicit function theorem for Banach spaces by an analogous argument to

the one appearing in theorem 1.
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5.2.2 Discrete-Time Systems

In this section, we consider discrete time systems on k =0,1,2,... of the form

x (k +1)−A(k )x (k ) =h (k )+ε f (k , x (k )) (5.7)

subject to

∞
∑

k=0

Ck x (k ) =u+ε
∞
∑

k=0

g (k , x (k )). (5.8)

Throughout the section, we will denote the set of nonnegative integers asZ+. Here Ck is an n×n real-

valued matrix for all integers k ∈Z+. The maps f :Z+×Rn→Rn and g :Z+×Rn→Rn are continuous,

ε is a real parameter, and A(k ) is a nonsingular n ×n real-valued matrix for all k ∈Z+. We seek

conditions under which we can guarantee bounded solutions to problems of the form (5.7)-(5.8).

In this section, we use | · | for the Euclidean norm on Rn and ‖·‖ to refer to the induced operator

norm on the space of n×n real-valued matrices. We denote l∞ as the space of bounded Rn -valued

sequences on Z+ and ‖x‖∞ as the norm

‖x‖∞= sup
k≥0
|x (k )|.

We let

l1= {y :Z+→Rn :
∞
∑

k=0

|y (k )|<∞}

and for elements x ∈ l1, we use the norm

‖x‖1=
∞
∑

k=0

|x (k )|.

Note that (l∞,‖·‖∞) and (l1,‖·‖1) are Banach spaces.

We start by recalling some general theory in order to discuss the homogeneous linear system

x (k +1)−A(k )x (k ) =0

subject to

∞
∑

k=0

Ck x (k ) =0.

The fundamental matrix for the equation x (k +1) =A(k )x (k ) is given by

Φ(k ,l ) =A(k )·· ·A(l )
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for k > l andΦ(k ,l )= I if k = l . For the sake of notation, for k ∈Z+ we denoteΦ(k ,0) as simplyΦ(k ). In

this paper, we focus on the study nonlinear boundary value problems. As we have started to indicate,

part of our analysis involves discussing a set of corresponding linear problems. Properties imposed in

each context on A will guarantee that t
∑∞

k=0 CkΦ(k ) converges and that
∑∞

k=0 Ck

∑k−1
l=0 Φ(k ,l +1)h (l )

is a vector in Rn for all h in an appropriate sequence space. Define the matrix Λ by

Λ≡
∞
∑

k=0

CkΦ(k ).

We know x ∈ l∞ is a solution to

x (k +1)−A(k )x (k ) =0

subject to

∞
∑

k=0

Ck x (k ) =0.

if and only if x (0)∈ker(Λ).

Givenψ∈ l∞ and v ∈Rn , we know by variation of parameters that any solution to

x (k +1)−A(k )x (k ) =ψ(k )

is of the form

x (k ) =Φ(k )x (0)+
k−1
∑

l=0

Φ(k ,l +1)ψ(l ).

Imposing the condition that

∞
∑

k=0

Ck x (k ) = v

we have that

Λx (0) = v −
∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1)ψ(l ).

Therefore, there exists a unique solution to the linear problem above if and only if v−
∑∞

k=0 Ck

∑k−1
l=0 Φ(k ,l +

1)h (l ) lies in the image of Λ. Let p denote the dimension of ker(Λ). If p =0, it is clear that Let the

columns of the matrix W be a basis for ker(ΛT ). We know that I m (Λ)= [ker(ΛT )]⊥, so there exists a
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unique bounded solution to the linear boundary value problem above if and only if

W T

�

v −
∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1)ψ(l )

�

=0.

Throughout this paper we will mainly be studying the structure of the solution set to (5.7)-(5.8)

in the cases when the matrix Λ is singular and the corresponding linear problem has a solution, or

equivalently where h and u satisfy

W T

�

u−Γ
�

Φ(·)
∫ ·

0

Φ−1(s )h (s )d s

��

=0.

With this in mind, we note that the nonlinear boundary value problem

x (k +1)−A(k )x (k ) =h (k )+ε f (k , x (k ))

subject to

∞
∑

k=0

Ck x (k ) = ε
∞
∑

k=0

g (k , x (k ))

is equivalent (for ε 6=0) to solving















x (k )−Φ(k )v −ε
�

∑k−1
l=0 Φ(k ,l +1)[h (l )+ f (l , x (l ))]

�

=0

and

W T
�

∑∞
l=0 g (l , x (l ))−

∑∞
k=0 Ck

∑k−1
l=0 Φ(k ,l +1) f (l , x (l ))

�

=0.

For the sake of notation, we now state conditions which will be imposed in the first part of our

first theorem in this section.

DI)
∑∞

k=0‖Ck‖<∞.

DII) There exists positive constants K ,α such that

‖Φ(k ,l +1)‖= ‖A(k )A(k −1)·· ·A(l )‖≤K e −α(k−l )

for all k ≥ l ≥0.

DIII) For every compact subset S of Rn , ∂ f
∂ x exists and is uniformly continuous on Z+×S . Further

sup
k∈Z+













∂ f

∂ x
(k ,0)













<∞.
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DIV) There exists s ∈ l1 such that













∂ g

∂ x
(k , x1)−

∂ g

∂ x
(k , x2)













≤ sk |x1−x2|

for all k ≥0 and x1, x2 ∈Rn .

DV) ∂ g
∂ x (k ,0) exists for all k ≥0 and

∞
∑

k=0













∂ g

∂ x
(k ,0)













<∞.

DVI) For all (βk )∈ l∞,

∞
∑

k=0

|g (k ,βk )|<∞.

Note that for x ∈ l∞, v ∈ker(Λ), ε ∈R, and k ≥0 we have that,

�

�

�

�

�

x (k )−Φ(k )v −

�

k−1
∑

l=0

Φ(k ,l +1)[h (l )+ε f (l , x (l ))]

�

�

�

�

�

�

≤‖x‖∞+sup
l≥0
‖Φ(l )‖+

k−1
∑

l=0

‖Φ(k ,l +1)‖|h (l )+ε f (l , x (l ))|

≤ ‖x‖∞+sup
l≥0
‖Φ(l )‖+[‖h‖∞+ |ε|sup

l≥0
| f (l , x (l ))|]K

∞
∑

n=0

e −αn

= ‖x‖∞+sup
l≥0
‖Φ(l )‖+[‖h‖∞+ |ε|sup

l≥0
| f (l , x (l ))|]K α−1.

Also observe that
�

�

�

�

�

W T

�∞
∑

l=0

g (l , x (l ))−
∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1) f (l , x (l ))

�

�

�

�

�

�

≤‖W T ‖

�∞
∑

l=0

|g (l , x (l ))|+

�∞
∑

k=0

‖Ck‖

��

k−1
∑

l=0

‖Φ(k ,l +1)‖| f (l , x (l ))|

��

≤‖W T ‖

�∞
∑

l=0

|g (l , x (l ))|+

�∞
∑

k=0

‖Ck‖

��

sup
l≥0
| f (l , x (l ))|K

∞
∑

n=0

e −αn

��

= ‖W T ‖

�∞
∑

l=0

|g (l , x (l ))|−

�∞
∑

k=0

‖Ck‖

�

�

sup
l≥0
| f (l , x (l ))|K α−1

�

�

<∞.
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From this is follows that H given by

H ((x ,v ),ε) =

�

H1((x ,v ),ε)

H2((x ,v ),ε)

�

=







x (k )−Φ(k )v −
�

∑k−1
l=0 Φ(k ,l +1)[h (l )+ε f (l , x (l ))]

�

W T
�

∑∞
l=0 g (l , x (l ))−

∑∞
k=0 Ck

∑k−1
l=0 Φ(k ,l +1) f (l , x (l ))

�







is a well-defined map from l∞×ker(Λ)×R to l∞×Rp

Remark 8. An example of a case where condition HII) is satisfied is the case where A is a constant

matrix whose eigenvalues are each less than 1 in magnitude.

Like in the section regarding differential equations, our main result in this section will involve

an application of the implicit function theorem for Banach spaces. The following lemma establishes

the differentiability of the map H above.

Lemma 5. Assume H I )−H V I ) hold. Then the maps F : l∞→ l∞ defined by F (x )(k )= f (k , x (k )) and

G : l∞→Rn by G (x ) =
∑∞

k=0 g (k , x (k )) are continuously differentiable.

Proof. For the sake of notation, for a ,b ∈Rn we denote L (a ,b ) as the straight line segment connect-

ing a and b . Note that by the mean value theorem, for all k ≥0 we have that

�

� f (k ,(x +ψ)(k ))− f (k , x (k ))
�

�≤ sup
ν(k )∈L (x (k ),(x+ψ)(k ))

�

�

�

�

∂ f

∂ x
(k ,ν(k ))ψ(k )

�

�

�

�

and
�

�g (k ,(x +ψ)(k ))−g (k , x (k ))
�

�≤ sup
ζ(k )∈L (x (k ),(x+ψ)(k ))

�

�

�

�

∂ g

∂ x
(k ,ζ(k ))ψ(k )

�

�

�

�

.

Note that for h ∈ l∞,

sup
k≥0

�

�

�

�

F (x +h )(k )−F (x )(k )−
∂ f

∂ x
(k , x (k ))h (k )

�

�

�

�

≤ sup
k≥0













∂ f

∂ x
(k ,βk )−

∂ f

∂ x
(k , x (k ))













‖h‖∞.

It is clear that supk≥0










∂ f
∂ x (k ,βk )−

∂ f
∂ x (k , x (k ))








→0 as a consequence of D I I I ). So for any x ∈ l∞,

�

∂ F

∂ x
(x )h

�

(k ) =
∂ f

∂ x
(k , x (k ))h (k ).

For x1, x2 ∈Rn and ‖h‖=1,













�

∂ F

∂ x
(x1)−

∂ F

∂ x
(x2)

�

h













∞
≤ sup

k≥0













∂ f

∂ x
(k , x1(k ))−

∂ f

∂ x
(k , x2(k ))













→0

as ‖x1−x2‖∞→0 as a consequence of D I I I ). Note that by the mean value theorem, for all k ≥0 we
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have that there exists ζk ∈ L (x (k ),(x +h )(k )) satisfying

g (k ,(x +h )(k ))−g (k , x (k ))=
∂ g

∂ x
(k ,ζk )h (k ).

Now observe
�

�

�

�

�

G (x +h )(k )−G (x )(k )−
∞
∑

k=0

∂ g

∂ x
(k , x (k ))h (k )

�

�

�

�

�

≤
∞
∑

k=0













∂ g

∂ x
(k ,ζk )−

∂ g

∂ x
(k , x (k ))













‖h‖∞

≤
∞
∑

k=0

sk‖ζ−x‖∞‖h‖∞

= ‖s‖1‖ζ−x‖∞‖h‖∞.

It is clear that ‖s‖1‖ζ−x‖∞ goes to 0 as ‖h‖∞→0. So for any x ,h ∈ l∞,

∂G

∂ x
(x )h =

∞
∑

k=0

∂ g

∂ x
(k , x (k ))h (k )

and for ‖h‖∞=1 we have that

�

�

�

�

�

∂G

∂ x
(x1)−

∂G

∂ x
(x2)

�

h

�

�

�

�

≤
∞
∑

k=0













∂ g

∂ x
(k , x1(k ))−

∂ g

∂ x
(k , x2(k ))













≤‖s‖1‖x1−x2‖∞ →0

as ‖x1−x2‖∞→0.

Let x̄ (k ) =Φ(k )y +
∑k−1

l=0 Φ(k ,l +1)h (l ) for some y ∈ker(Λ). Then

H ((x̄ , y ),0) =

�

0

W T
�

∑∞
l=0 g (l , xy (l ))−

∑∞
k=0 Ck

∑k−1
l=0 Φ(k ,l +1) f (l , xy (l ))

�

�

and

�

∂H

∂ (x ,v )
((x̄ , y ),0)

�

(h ,w ) =

�

h (k )−Φ(k )w
W T

�

∑∞
l=0

∂ g
∂ x (l , xy (l ))h (l )−

∑∞
k=0 Ck

∑k−1
l=0 Φ(k ,l +1) ∂ f

∂ x (l , xy (l ))h (l )
�

�

.

Remark 9. As mentioned in the introduction, the nonlinear boundary value problem (5.7)-(5.8) above

can be viewed as an operator equation of the formL x = εF (x )whereL is linear andF = [F,G ]T is

nonlinear. For the sake of completeness in our analysis, it is worth mentioning that in the case where

Λ is invertible, this operator equation can be rewritten as

x −εL −1F (x ) =0.

Let Ψ : l∞×R→ l∞ by Ψ(x ,ε) = x −εL −1F (x ) and by the lemma above, ∂ Ψ∂ x (x ) exists for all x ∈ l∞
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and is given by

∂ Ψ

∂ x
(x ) = I −εL −1 ∂F

∂ x
(x ).

It is clear that Ψ(0,0) =0 and that

∂ Ψ

∂ x
(0,0) = I

which is clearly a bijection from l∞ to l∞ . Therefore, we have by the implicit function for Banach

spaces that there exists ε0>0 such that for all |ε|<ε0 there exists a unique solution to the nonlinear

boundary value problem (5.7)-(5.8). Moreover, if we denote this solution by xε we have that ‖xε‖∞→0

as ε→0. In the results that follow, we make the assumption that the matrix Λ is not invertible.

For the sake of notation, for any y ∈Rn we define the function xy (k )=Φ(k )y +
∑k−1

l=0 Φ(k ,l +1)h (l ).

Theorem 10. Assume D I )−DV I ) hold and suppose that there exists y ∈ker(Λ)⊂Rn such that

W T

�∞
∑

l=0

g (l , xy (l ))−
∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1) f (l , xy (l ))

�

=0

and that the map Ψ : ker(Λ)→Rp defined by

Ψ(w ) =W T

�∞
∑

l=0

∂ g

∂ x
(l , xy (l ))Φ(l )−

∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1)
∂ f

∂ x
(l , xy (l ))Φ(l )

�

w

is a bijection from ker(Λ)⊂Rn onto Rp . Then there exists ε0 such that for all |ε| ≤ ε0, the boundary

value problem

x (k +1) =A(k )x (k )+ε f (k , x (k ))

subject to

∞
∑

k=0

Ck x (k ) = ε
∞
∑

k=0

g (k , x (k )).

is guaranteed a solution xε . Further, we have that‖xε−xy ‖∞→0 as ε→0.

Proof. Note that H is continuously differentiable as a consequence of lemma 1. Then we have that

H ((xy , y ),0) =0 so we wish to show that

∂H

∂ (x ,v )
((xy , y ),0)

is a bijection from l∞×Rn onto l∞×Rp . Let ĥ ∈ l∞ and ŵ ∈Rp . By assumption, there exists a
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unique w ∈ker(Λ)⊂Rn such that

W T

�∞
∑

l=0

∂ g

∂ x
(l , xy (l ))Φ(l )−

∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1)
∂ f

∂ x
(l , xy (l ))Φ(l )

�

w = ŵ .

Choosing h (k ) = ĥ (k )+Φ(k )w we have that

∂H

∂ (x ,v )
((xy , y ),0)(h ,w ) = (ĥ ,ŵ ).

Therefore, by the implicit function theorem for Banach spaces (see [16]), there exists a ε0 such that

for all |ε| ≤ ε0 there exists a bounded solution xε to the boundary value problem

x (k +1) =A(k )x (k )+ε f (k , x (k ))

subject to

∞
∑

k=0

Ck x (k ) = ε
∞
∑

k=0

g (k , x (k )).

In our results up to this point, we assume that h is simply an element of l∞. In the next set

of results, we will investigate problems where we know that h is an element of l1. We impose the

following set of conditions.

DI’)
∑∞

k=0‖Ck‖<∞.

DII’) There exists positive constant K such that

‖Φ(k ,l +1)‖= ‖A(k )A(k −1)·· ·A(l )‖≤K

for all k ≥ l ≥0.

DIII’) There exists h1 ∈ l1 such that for each compact subset S ⊂Rn , there exists a constant C

satisfying | f (k , x )| ≤C h1(k ) for all k ≥0, x ∈Rn and | f (k , x1)− f (k , x2)| ≤h1(k )|x1−x2| for all

k ≥0 and x1, x2 ∈Rn . Further, there exists h2 ∈ l1 such that













∂ f

∂ x
(k , x1)−

∂ f

∂ x
(k , x2)













≤h2(k )|x1−x2|

for all k ≥0 and x1, x2 ∈Rn .
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DIV’) There exists s ,t ∈ l1 such that













∂ g

∂ x
(k , x1)−

∂ g

∂ x
(k , x2)













≤ sk |x1−x2|

and

|g (k , x1)−g (k , x2)| ≤ tk |x1−x2|

for all k ≥0 and x1, x2 ∈Rn .

DV’) ∂ g
∂ x (k ,0) exists for all k and

∞
∑

k=0













∂ g

∂ x
(k ,0)













<∞.

DVI’) For all (βk )∈ l∞,

∞
∑

k=0

|g (k ,βk )|<∞.

Theorem 11. Suppose that D I ′)−DV I ′) hold and that there exists y ∈ker(Λ) such that

W T

�∞
∑

l=0

g (l , xy (l ))−
∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1) f (l , xy (l ))

�

=0

and that the mapψ : ker(Λ)→Rp defined by

Ψ(w ) =W T

�∞
∑

l=0

∂ g

∂ x
(l , xy (l ))Φ(l )−

∞
∑

k=0

Ck

k−1
∑

l=0

Φ(k ,l +1)
∂ f

∂ x
(l , xy (l ))Φ(l )

�

w

is a bijection from ker(Λ)⊂Rn to Rp . Then there exists ε0 such that for all |ε| ≤ ε0, the boundary value

problem

x (k +1) =A(k )x (k )+ε f (k , x (k ))

subject to

∞
∑

k=0

Ck x (k ) = ε
∞
∑

k=0

g (k , x (k )).

is guaranteed a solution xε .

Further, we have that‖xε−xy ‖∞→0 as ε→0.
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Proof. The fact that H2 is continuously differentiable under this new set of conditions can be shown

using an almost identical argument to the one showing H2 is continuously differentiable. We wish

to show that H1 : l∞×Rn+1→ l∞ is continuously differentiable.

Recall that

H1((x +h ,v +w )(k ),ε)−H1((x ,v )(k ),ε)−

�

h (k )−Φ(k )w −ε

�

Φ(k )
k−1
∑

l=0

Φ−1(l )
∂ f

∂ x
(l , x (l ))h (l )

��

= ε

�

k−1
∑

l=0

Φ(k ,l )
�

f (l ,(x +h )(l ))− f (l , x (l ))−
∂ f

∂ x
(l , x (l ))h (l )

�

�

.

Note further that
�

�

�

�

�

�

k−1
∑

l=0

Φ(k ,l )
�

f (l ,(x +h )(l ))− f (l , x (l ))−
∂ f

∂ x
(l , x (l ))h (l )

�

�

�

�

�

�

�

≤

�

�

�

�

�

k−1
∑

l=0

Φ(k ,l )
�

∂ f

∂ x
(l ,βl )−

∂ f

∂ x
(l , x (l ))

�

h (l )

�

�

�

�

�

≤
∞
∑

l=0













Φ(k ,l )
�

∂ f

∂ x
(l ,βl )−

∂ f

∂ x
(l , x (l ))

�













‖h‖∞

≤K

�∞
∑

k=0













∂ f

∂ x
(l ,βl )−

∂ f

∂ x
(l , x (l ))













�

‖h‖∞

≤K ‖h2‖1‖β−x‖∞‖h‖∞

and K ‖h2‖1‖β−x‖∞→0 as ‖h‖∞→0. Note also that for x1, x2 ∈ l∞ that

�

�

�

�

�

k−1
∑

l=0

Φ(k ,l )
�

∂ f

∂ x
(l , x1(l ))−

∂ f

∂ x
(l , x2(l ))

�

h (l )

�

�

�

�

�

≤
∞
∑

l=0

�

�

�

�

Φ(k ,l )
�

∂ f

∂ x
(l , x1(l ))−

∂ f

∂ x
(l , x2(l ))

�

�

�

�

�

≤K
∞
∑

l=0

�

�

�

�

�

∂ f

∂ x
(l , x1(l ))−

∂ f

∂ x
(l , x2(l ))

�

�

�

�

�

≤K ‖h2‖1‖x1−x2‖∞
→0

as ‖x1−x2‖∞→0. Therefore, H1 is continuously differentiable and therefore H is as well. It follows

that H satisfies the conditions of the implicit function theorem by the same argument as the one

appearing in the first part of this theorem, establishing our desired result.
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5.3 Examples

Example 7. Consider the boundary value problem

ẋ (t )−Ax (t ) = ε f (t , x (t ))

subject to

∞
∑

k=0

Ck x (tk ) = ε

∫ ∞

0

g (t , x (t ))d t

where x :Z+→Rn , f :R3→R2 is twice continuously differentiable, Ck is an 2×2 real-valued matrix

and tk ≥0 for all k ≥0. We assume that

Λ=
∞
∑

k=0

Ck e Atk

is singular. Suppose that the matrix A is diagonalizable. That is, there exists an invertible matrix

P =

�

p1 p2

p3 p4

�

and diagonal matrix

B =

�

α 0

0 β

�

satisfying

A=P B P −1.

Therefore, we have that

Ak =P B k P −1

and so

e At =P

�∞
∑

k=0

1

k !
B k t k

�

P −1.

As mentioned above, we assume that Λ is singular, which implies that the second row is a scalar

multiple of the first. Suppose that the second row of Λ is κ times row one for some κ∈R. It is clear that

Λ and ΛT have a one-dimensional kernel and that the kernel of ΛT is spanned by the vector [−κ,1]T .
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Write g as g = [g1,g2]. Suppose that there exists y ∈ker(Λ) that satisfies for all t ≥0,

0= f1(t ,e At y ) = f2(t ,e At y ) =
∂ f1

∂ x
(t ,e At y ) =

∂ f2

∂ x
(t ,e At y )

= g1(t ,e At y ) = g2(t ,e At y )

and

−κ
∫ ∞

0

∂ g1

∂ x
(t ,e At y )d t 6=

∫ ∞

0

∂ g2

∂ x
(t ,e At y )d t .

Under these assumptions, we have

W T

�

∫ ∞

0

g (t ,e t A y )d t −
∞
∑

k=0

Ck e Ask

∫ t

0

e Atk f (s ,e As y )d s

�

=W T

�

∫ ∞

0

(0)d t −
∞
∑

k=0

Ck e Ask

∫ t

0

e Atk (0)d s

�

=0

and that
�

�

�

�

�

W T

�

∫ ∞

0

∂ g

∂ x
(t ,e t A y )−

∞
∑

k=0

Ck e Atk

∫ t

0

e −s A y
∂ f

∂ x
(s ,e s A y )d s d t

�

�

�

�

�

�

=

�

�

�

�

∫ ∞

0

∂ g1

∂ x
(t ,e At y )−κ

�

∂ g2

∂ x
(t ,e At y )

�

d t

�

�

�

�

6=0.

Thus for ε sufficiently small in absolute value, we are guaranteed solutions to the nonlinear

boundary value problem above.

Alternatively, suppose for the problem above that the rows of Λ are identical, that A is the matrix

A=

�

− 1
2 0

1 − 1
2

�

and that f :R3→R2 and g :R3→R2 are given by

f (t , x1, x2) =

�

(x1−e −t /2)2
t 6

(x1−e −t /2)2+3(x2−e −t /2(t+1))2
t 8

�

and

g (t , x1, x2) =





x 2
1−e −t

t 2

5(t e −t /2−e −t /2−x2)
t 2



.
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Then y = [1,−1]∈ker(Λ) satisfies the conditions imposed in theorem 1. That is,

W T

�

∫ ∞

0

g (t ,e −t /2,e −t /2(t −1))d t +
∞
∑

k=0

Ck e Atk

∫ t

0

e −A(s+1) f (s ,e −s/2,e −s/2(s −1))d s d t

�

=0,

and

W T
∞
∑

k=0

Ck e Atk

∫ t

0

e −A(s+1) ∂ f

∂ x
(s ,e −s/2,e −s/2(s −1))d s d t =W T

∞
∑

k=0

Ck e Atk

∫ t

0

e −A(s+1)(0)d s d t =0

so we have
�

�

�

�

�

W T

�

∫ ∞

0

∂ g

∂ x
(t ,e −t /2,e −t /2(t −1))d t −

∞
∑

k=0

Ck e Atk

∫ t

0

e −A(s+1) ∂ f

∂ x
(s ,e −s/2,e −s/2(s −1))d s d t

�

�

�

�

�

�

=

�

�

�

�

W T

�∫ ∞

0

∂ g

∂ x
(t ,e −t /2,e −t /2(t −1))d t

��

�

�

�

=

�

�

�

�

W T

∫ ∞

0

�

∂ g1

∂ x
(t ,e −t /2,e −t /2(t −1))d t −

∂ g2

∂ x
(t ,e −t /2,e −t /2(t −1))

�

d t

�

�

�

�

6=0.

Therefore, by results in section 5.2.1 we can guarantee solutions to the nonlinear boundary value

problem in this example for ε sufficiently close to zero.
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