
ABSTRACT

DIGIROLAMO, CLAIRE M. Applications of GPOPS-II to Optimal Control Problems with Delays.
(Under the direction of Stephen Campbell.)

In this thesis we explore the application of the MATLAB-based optimal control software GPOPS-

II to boundary value problems and optimal control problems with constant delays in the state and

control. GPOPS-II is a direct transcription software: it discretizes the optimal control problem and

directly transcribes it into a large nonlinear programming problem (NLP). In particular, GPOPS-II

uses a Legendre-Gauss-Radau hp -adaptive pseudospectral method to discretize the optimal control

problem. p Pseudospectral methods are global orthogonal collocation schemes. GPOPS-II employs

powerful grid refinement algorithms which allow the software to adapt both the number of mesh

intervals h and the order of the interpolating polynomial p on each interval. The software is designed

to exploit the sparsity of the resulting NLP.

While GPOPS-II is an optimal control solver, the software utilizes a boundary value solver

philosophy in that it attempts to minimize the error along the entire solution interval. The software’s

flexible problem formulation allows the user to apply GPOPS-II to a wide array of problems, including

using the software as an ODE integrator or a boundary value problem (BVP) solver. For the first

time, this thesis examines applying GPOPS-II to certain types of delay differential equations (DDEs),

delayed BVPs, as well as delayed optimal control problems (OCPs). These are classes of problems

for which GPOPS-II was not designed. These applications are particularly important: currently,

there are no delay BVP solvers for MATLAB, and there are very few optimal control solvers which

accept delay problems. Delay problems have a wide array of applications and frequently appear in

industrial problems, such as when a control responds to sensor data or in the modeling of physical

systems.

At the beginning of this thesis, we provide the reader with the necessary background on DDEs

and OCPs. We then discuss existing numerical techniques for solving DDEs and OCPs with and

without delays. We introduce two new formulations for solving a delay problem in GPOPS-II: one

which involves a linear interpolation of the delay term, and an iterative method. We first apply both

methods to OCPs with delays in the state, as well as the state delayed BVP which results from the

necessary conditions. We present numerical results which demonstrate we are able to successfully

solve several types of problems with delays in the state using GPOPS-II. We present a sufficient

condition for the convergence of the nonlinear optimizer on a BVP with delay in the state. We then

present a condition for the convergence of the nonlinear optimizer for an OCP with delay in the

state.

We then discuss solving OCPs and BVPs with delays in the control using GPOPS-II. We present

numerical results which demonstrate we may expect GPOPS-II to perform well on these types of

problems, provided the user has a sufficiently accurate starting value for the control. In the case

where the control computed by GPOPS-II is excessively noisy, we demonstrate a technique which



allows the user to smooth the control. We provide all relevant MATLAB scripts for each type of

problem discussed in this thesis in the Appendix.
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CHAPTER

1

INTRODUCTION

1.1 Dissertation Outline

Chapter 1 contains our introduction. In Chapter 2, we discuss delay differential equations (DDEs)

in-depth. We consider methods for obtaining the analytic solution of a DDE via the method of steps

as well as ways to reformulate a DDE as a system of ordinary and partial differential equations. We

discuss existing numerical methods for solving DDEs, including those in a built-in MATLAB DDE

solver. In Chapter 3 we discuss numerical methods for optimal control problems without delays. We

provide a discussion of solving the necessary conditions as well as direct transcription methods. We

examine the hp -adaptive pseudospectral method implemented by the optimal control software

GPOPS-II.

In Chapter 4, we examine optimal control problems with state delays and examine the extent

to which GPOPS-II can be used to solve these delayed state optimal control problems. We derive

the necessary conditions for two different problem formulations and demonstrate that for one

formulation the delayed problem will converge to the undelayed case. We derive the collocation

equations for using GPOPS-II and demonstrate a new problem formulation to allow GPOPS-II

to solve a delayed state optimal control problem. We propose the use of incorrect Jacobians by

GPOPS-II leads the software to produce a suboptimal solution for certain problems.

Chapter 5 contains our numerical results, and subsequent analysis. We show that using the

necessary conditions, it is often possible to use GPOPS-II to obtain an accurate solution of a delayed
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state optimal control problem. We also demonstrate that on more unstable problems with longer

delays, using GPOPS-II iteratively is often a viable method for producing a suboptimal solution to the

delayed optimal control problem. We implement control parameterization to solve a delayed state

optimal control problem using the software Activate. We present new results on the convergence of

GPOPS-II’s nonlinear optimizer IPOPT both on delayed optimal control problems as well as the

delayed boundary value problem.

In Chapter 6, we introduce the use of GPOPS-II on optimal control problems with control delays,

and demonstrate that using GPOPS-II to solve the necessary conditions gives an accurate solution

for certain types of problems. We discuss techniques for smoothing the control for the delayed

optimal control problem. In Chapter 7 we make our conclusions, summarize the contributions of

this thesis, and consider applications for further research.

1.2 Delay Differential Equations

A delay differential equation is a differential equation of the form

ẋ (t ) = f (x (t ), xt , t ), (1.1)

where the change in the state, x , depends not only on the present state x (t ) but also on past values

xt [8]. Referred to in early literature as differential equations with deviating arguments, one of the

first known differential equations with a delayed argument originally appeared in the work of French

mathematician and aristocrat Marquis de Condorcet in the late 1700s [58]. While mathematicians

remained aware of delayed effects in mathematical systems, the theory required to work with these

equations did not begin to be developed until the 20th century [36, 49]. Delay equations arise

naturally in any system model which must account for reaction time, and therefore have a wide

range of applications in engineering, biology, chemistry, and physics [25, 36, 49, 56].

Delays can can be time-dependent with

ẋ (t ) = f (x (t ), x (t −τ(t )), t ). (1.2)

Time-varying delays often appear in biological systems. For example, the modified Mackey-Glass

model

ẋ =
a x (t −τ(t ))

1+ x 10(t −τ(t ))
− b x (t ) (1.3)

τ(t ) =τ0+

∫ t

0

ξ(s )d s (1.4)

introduces a time-varying delay term to model blood cell regeneration in leukemia patients [48].
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Delay terms can also be state-dependent, with

ẋ (t ) = f (x (t ), x (t −τ(t , x (t )))). (1.5)

We consider DDEs with fixed, discrete delays. A general form of the linear problem with constant

coefficients is given by [8]

a ẋ (t ) + b ẋ (t −τ) + c x (t ) +d x (t −τ) = f (t ). (1.6)

The general Eq. 1.6 can be categorized into three cases. For the case a 6= 0 and b 6= 0 we have a DDE

of the neutral type,

a ẋ (t ) + c x (t ) +d x (t −τ) = f (t ), (1.7)

where delays appear in derivatives of the state. If a = b = 0 or c = d = 0, then the equation is said to

be a pure difference equation [8], for example,

c x (t ) +d x (t −τ) = f (t ). (1.8)

In this thesis will we focus on the case a 6= 0, b = 0, a DDE of the retarded type. A general

nonlinear version with several delays takes the form

ẋ (t ) = f (t , x (t ), x (t −τ1), . . . , x (t −τm )), τm ≥, . . . ,≥τ1 ≥ 0, (1.9)

where delays are constant and appear only in the state and not in the derivative [8]. In the remainder

of this work, when we discuss a general DDE we are referring to an equation of the form given in

Eq. 1.9.

We note that with the introduction of a delay term it is no longer sufficient to specify an initial

condition to obtain a unique solution of the problem. Rather we need to specify a prehistory function,

φ(t ), φ ∈C ([−τm , 0],Rn ) (1.10)

[56]. Thus we have an infinite-dimensional set of initial conditions and even a single, linear DDE

is an infinite-dimensional problem [25]. We note that choosing a continuous prehistory function

φ(t ) is one possibility; one can have a looser requirement thatφ(t ) simply be integrable. We further

discuss the relevant theory of DDEs in Chapter 2.

We note we may also have advances of the form

ẋ = x (t +τ), t ≥ 0. (1.11)

While we do not consider specific examples with advances in the dynamics, advances will appear in
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our equations for the necessary conditions of our delayed optimal control problems. Because our

focus is on direct transcription codes, which use a boundary value problem philosophy, there is no

significant difference in the implementation of delays versus advances [12]. This will be become

apparent when we discuss and solve the necessary conditions in Chapters 4 and 5.

DDEs have a wide range of applications, from population dynamics to engineering. We present

an industrial example from Kyrychko and Hogan [49]. High-speed milling is a common industrial

cutting process using a rotating tool. Let x be the displacement of the cutting tool. Then the motion

of the cutting tool can be modeled by the equation

ẍ (t ) +2ξωn ẋ (t ) +ω2
n x (t ) =

g (t )
m

Fc (h (t )), (1.12)

where K is an experimentally-determined parameter,ωn is the natural undamped frequency, ξ is

the relative damping factor, and w is the constant chip width. The term Fc is a cutting force, usually

modeled as a power law

Fc (h (t )) = K w (h (t ))3/4 (1.13)

and

g (t ) =







0 if there exists j ∈Z : t j ≤ t ≤ t −j+1,

1 if there exists j ∈Z : t −j+1 ≤ t < t j+1,
(1.14)

where t −j+1 are times at which the tool begins cutting, t j+1 the times at which the tool finishes cutting,

and t j are the times at which the tool starts free vibration. The delay arises in the term representing

the chip thickness, h (t ), where

h (t ) = h0+ x (t −τ)− x (t ) (1.15)

and h0 = v0τ is the feed for a cutting period. The thickness h of the chip being cut depends on both

the current tool tip position as well as its previous position [49].

1.3 Optimal Control Problems With and Without Delays

Consider a dynamical system without delays

ẋ = f (x (t ), u (t ), t ) (1.16)

and a cost functional

J =φ(x (T ), T ) +

∫ T

t0

L (x (t ), u (t ), t ) d t , x (t0) = x0, (1.17)
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where x (t ) is the state and u (t ) is the control input. The functional J is what we wish to minimize. The

termφ(x (T ), T ) is the final weighting function, dependent upon the state x at the final time T , and
∫ T

t0
L d t is the cost on the trajectory and control. Consider also a terminal conditionψ(x (T ), T ) = 0.

The optimal control is the input u∗ which steers our system in Eq. 1.16 along a trajectory x ∗ which

minimizes our cost functional J in Eq. 1.17 and satisfies our terminal condition [51].

The need for a theory of optimal control arose after World War II, when engineers began tackling

the problems of flight dynamics in high speed aircraft and optimizing the trajectories of rockets [47,

63]. The field lacked many of the mathematical tools needed until Pontryagin and his colleagues

formulated a maximum principle for a minimum time optimal control problem utilizing the calculus

of variations. We give a statement of Pontryagin’s maximum principle. Consider the Hamiltonian

function

H (x (t ), u (t ),λ(t ), t ) =λT (t ) f (x (t ), u (t )) + L (x (t ), u (t ), t ) (1.18)

with x (t ) ∈Rn , u (t ) ∈D ⊂Rm , and λ(t ) ∈Rn is the costate vector. The maximum principle states

that for a control u∗(t ) and a trajectory x ∗(t ) to be optimal, there must exist a nonzero variable

vector λ∗(t ) which satisfies the equation Eq. 1.19a with the additional conditions Eq. 1.19b and

Eq. 1.19c:

−λ̇ = Hx (x
∗(t ), u∗(t ),λ(t ), t ) (1.19a)

φT (x (T ))+H (x (T ), u (T ),λ(T ), T ) = 0 (1.19b)

λT (T ) = φx (x (T )), (1.19c)

t0 ≤ t ≤ t1, where we only have Eq. 1.19c if x (T ) if free, and which satisfies

H (x (t ), u (t ),λ(t ), t ) =max
u∈U

H (x (t ), u (t ),λ(t ), t ), ∀t ∈ [t0, t1], (1.20)

where we assume u (t ) is piecewise continuous [63, 64]. For x (t0)fixed, we will haveλ(t0) free. We note

that, depending upon the sign on H , the principle may be called Pontryagin’s minimum principle.

We give a derivation of the necessary conditions for an unconstrained optimal control problem

using this maximum principle in Chapter 3. With the preliminary theory in place, the field of optimal

controls continued to grow throughout the 20th century. Optimal control theory has a wide variety

of applications including trajectory optimization, production models in factories, and mechanical

engineering [18, 47, 69].

In this work we primarily consider problems with quadratic cost, or performance index,

J =φ(x (T ), T ) +

∫ T

t0

(x − r )T Q (x − r ) +u T R u d t . (1.21)
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In our case, r is a reference trajectory and Eq. 1.21 is a type of tracking problem. The idea of a

quadratic performance index was originally introduced by Kalman in 1960 and eventually became

known as a Linear Quadratic Regulator (LQR) [41]. Kalman was able to show that "the optimal

controls were linear feedbacks of the state variables" for both multiple-input multiple output

(MIMO) and linear time varying systems [18].

Below we present an example from Jahromi, Xie, and Bhat [40] of an LQR used to control damping

in a semi-active car suspension system. A semi-active suspension utilizes a controllable damper

with an actuator. The researchers sought to minimize the pitch and roll rates as well as the bounce

velocity of the car body as the car passed over bumps in the road. The car is modeled as a four

mass-spring system with seven degrees of freedom.

The equations of motion and the state space equations, in matrix form, are

M ẍs +B ẋs +K xs = FM R + Fr o a d (1.22a)

żs = Azs +BM R u +W v (1.22b)

Y = C zs +D u , (1.22c)

where x is the displacement of the suspension springs, u is the control, v represents the disturbance

from the road, and M is the mass. Matrix B is damping, K is stiffness, FM R is the actuating force,

and Fr o a d is the force due to the terrain of the road. Matrix A contains the dynamic properties of

the system, the effect of the actuator is modeled by BM R , and the effect of the profile of the road

is modeled by W . The output of the system Y is given by the 14×14 identity matrix C , and in the

researchers’ model the static effect in the matrix D is zero [40]. The performance index

J =
1

2

∫ ∞

0

x T (t )Q x (t ) +u T (t )R u (t ) d t (1.23)

sought to minimize the actuator energy needed, where Q ≥ 0 is symmetric positive semi-definite

and R > 0 is symmetric positive definite.

Delays are frequently incorporated into control systems with a variety of applications, such as

modeling the incubation period or treatment delay of a disease [74], economic models [17], and

transmission delays in networked control systems [39]. Much work has been done to formulate a

minimum principle for optimality in optimal control problems with delays; we note only a small

number of works here. A minimum (maximum) principle for optimal control problems with constant

delays in the state was originally derived by Kharatishvili in 1961 [44]. Frankena derived a minimum

principle for optimal control problems with delays in the state and control as well as inequality

restrictions on both the state and control variables in 1975 [27]. In this work, we utilize the minimum

principle as well as the necessary conditions derived by Göllmann, Kern, and Mauer [32, 33] for

optimal control problems with delays in both the state and control and mixed inequality constraints.
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Below we give a statement of the optimality conditions developed by Göllmann, Kern, and Mauer

from [32].

Consider the general, not necessarily linear, delayed optimal control problem

min J (x , u ) = g (x (b ))+

∫ b

a

L (t , x (t ), x (t −τ), u (t ), u (t − s )) d t , (1.24)

where τ≥ 0 and s ≥ 0 are constant delays in the state and control respectively, x (t ) ∈Rn , u (t ) ∈Rm .

The cost functional in Eq. 1.24 is subject to the constraints

ẋ = f (t , x (t ), x (t −τ), u (t ), u (t − s )) a .e . t ∈ [a , b ] (1.25a)

x (t ) = φ(t ), t ∈ [a −τ, a ] (1.25b)

u (t ) = ψ(t ), t ∈ [a − s , a ) (1.25c)

w (x (T )) = 0 (1.25d)

C (t , u (t ), x (t )) ≤ 0, t ∈ [a , b ], (1.25e)

whereφ(t ) andψ(t ) are the prehistory functions for the delayed state and control, w is the terminal

condition, and “a.e." stands for “almost everywhere". The authors assume the following functions

are twice continuously differentiable with respect to all arguments:

g : Rn →R

f : [a , b ]×Rn ×Rn ×Rm ×Rm →R

w : Rn →Rq , 0≤ q ≤ n

C : Rn ×Rm →Rp

L : [a , b ]×Rn ×Rn ×Rm ×Rm →R.

A state x and a control u are called admissible if they satisfy the constraints in Eq. 1.25 with (x , u ) ∈
W (1,∞)([a , b ],Rn )× L∞([a , b ],Rm ) where W (1,p ) is the Sobolev space for p =∞ and L∞ is the

Lebesgue L p space for p =∞. The authors define the pair (x̂ , û ) to be locally optimal or a weak

minimum for the delayed optimal control problem if

J (x̂ , û )≤ J (x , u ) (1.26)

holds for admissible (x , u ) in a neighborhood of (x̂ , û )where ‖x (t )− x̂ (t )‖,‖u (t )− û (t )‖<ε for small

enough ε> 0, t ∈ [a , b ]. In order to extend their the application of Pontryagin’s minimum principle

to their problem with mixed constraints, the authors need to assume a regularity condition. They

say, for a locally optimal pair (x̂ , û ) and t ∈ [a , b ], let J0(t ) := { j ∈ {1, ..., p}|C j (t x̂ (t ), û (t )) = 0} be the
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set of active indices for the inequality constraint in Eq. 1.25e. Then the authors assume the rank

condition

rank

�

∂ C j (t , x̂ (t ), û (t ))

∂ u

�

j∈J0(t )
= #J0(t ). (1.27)

The authors further assume that for delays τ, s ≥ 0, (τ, s ) 6= (0, 0), the ratio s/τ ∈Qwith τ> 0 or

τ/s ∈Qwith s > 0 whereQ is the set of rational numbers. The authors then replace the terminal

condition in Eq. 1.25d with the mixed boundary condition w (x (a ), x (b )) = 0. Define the Hamiltonian

H and the augmented HamiltonianH as follows

H (t , x (t ), y , u (t ), v,λ) := L (t , x (t ), y , u (t ), v ) +λT f (t , x (t ), y , u (t ), v ) (1.28)

H (t , x (t ), y , u (t ), v,λ,µ) := L (t , x (t ), y , u (t ), v ) +λT f (t , x (t ), y , u (t ), v ) +µT C (t , x (t ), u (t ), (1.29)

where λ(t ) ∈Rn and µ(t ) ∈Rp are multipliers, y (t ) ∈Rn is the delayed state variable and v (t ) ∈Rm

is the delayed control variable [32].

To obtain the necessary conditions for the delayed OCP with mixed state and control constraints,

the authors extend an approach originally developed by Guinn in 1976 [35] for an unconstrained

problem with a delay in the state. The authors augment the delayed OCP to obtain an undelayed

OCP with higher dimensionality, allowing them to use the necessary conditions for the undelayed

problem [32, 35].

Theorem 1.3.1. Let (x̂ , û ) be locally optimal for Eq. 1.24 and Eq. 1.25 with delays satisfying the ratio-

nality assumption. Then there exist a costate (adjoint) function λ̂ ∈W (1,∞)([a , b ],Rn ), a multiplier

function µ̂ ∈ L (1,∞) ([a , b ],Rp ), and a multiplier ν̂ ∈Rq , such that the following conditions hold for

a.e.t ∈ [a , b ]:

1. adjoint differential equation:

˙̂λT =−Ĥx (t )−χ[a ,b−τ](t )Ĥy (t +τ), (1.30)

which gives

˙̂λT =−Hx (t , x̂ (t ), x̂ (t −τ), û (t ), û (t − s ), λ̂(t ), µ̂(t ))

−χ[a ,b−τ](t )Hy (t +τ, x̂ (t +τ), x̂ (t ), û (t +τ), û (t +τ− s ), λ̂(t +τ), µ̂(t +τ)) (1.31)

where Ĥx (t ) and Ĥy (t ) denote the evaluation of the partial derivativesHx andHy along

x̂ (t ), x̂ (t −τ), û (t ), û (t −τ), λ̂(t ), µ̂(t );

2. transversality conditions:

λ̂(b )T = g x (x̂ (b ))+ ν̂
T wx (x̂ (b )) (1.32)
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3. minimum condition for Hamiltonian:

Ĥ (T ) +χ[a ,b−s ](t )Ĥ (t + s ) = (1.33a)

= H (t , x̂ (t ), x̂ (t −τ), û (t ), û (t − s ), λ̂(t ))

+χ[a ,b−s ](t )H (t + s , x̂ (t + s ), x̂ (t + s −τ), û (t + s ), û (t ), λ̂(t + s ))

≤ H (t , x̂ (t ), x̂ (t −τ)u , û (t − s ), λ̂(t ))

+χ[a ,b−s ](t )H (t + s , x̂ (t + s ), x̂ (t + s −τ), û (t + s ), u , λ̂(t + s ))

for all u ∈Rm satisfying C (t , x̂ (t ), u )≤ 0;

4. local minimum condition for augmented Hamiltonian:

Ĥu +χ[a ,b−s ](t )Ĥv (t + s ) = 0 (1.34)

5. nonnegativity of multiplier and complementarity condition:

µ̂(t )≥ 0 and µ̂i (t )Ci (t , x̂ (t ), û (t )) = 0, i = 1, ..., p . (1.35)

A complete proof of Theorem 1.3.1 may be found in [32]. We give a derivation of the necessary

conditions for an unconstrained optimal control problem with constant delay in the state in Chapter

4.

1.4 Existing Numerical Methods

Though mathematicians began working on optimal control theory in the early 20th century, the

equations in their models were not solvable analytically. Mathematicians and engineers needed to

develop numerical tools to solve their optimal control problems concurrently. The computational

expense involved meant that solving many optimal control problems was not possible until the

advent of digital computers after the end of World War II [18, 63].

Broadly, numerical methods for solving optimal control problems can be divided into direct and

indirect methods. In an indirect method, one must first find the first order necessary conditions of

the optimal control problem from the calculus of variations and Pontryagin’s maximum (minimum)

principle stated above. The necessary conditions are in the form of a multipoint boundary value

problem, giving a system of nonlinear equations to be solved. Popular indirect methods include

indirect shooting methods, which are vulnerable to sensitivities in the unknown initial conditions,

and indirect collocation [67].
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In this work, we will primarily consider direct methods of solving optimal control problems. In a

direct method, sometimes referred to as a direct transcription method, one discretizes either the

control or the state and control and transcribes the optimal control problem into the nonlinear

programming problem (NLP) [78]

min J (x ) (1.36)

subject to the constraints

c (x ) = 0 (1.37a)

z (x ) ≤ 0, (1.37b)

x ∈ Rn , c (x ) ∈ Rm , and z (x ) ∈ Rq . The first order optimality conditions are given by the Karush-

Kuhn-Tucker (KKT) conditions [43, 76]

ci (x ) = 0, i = 1, ..., m (1.38a)

zi (x ) ≤ 0, i = 1, ..., q (1.38b)

µi ≥ 0, i = 1, ..., q (1.38c)

µi zi (x ) = 0, i = 1, ...q (1.38d)

∇ f (x ) +
m
∑

i=1

λi∇ci (x ) +
q
∑

i=1

µi∇zi (x ) = 0. (1.38e)

Both direct and indirect methods require a differential equation solver to integrate the dynamics,

but unlike an indirect method, direct methods utilize nonlinear optimization in order to find the

optimal value of the control and minimize the cost subject to the dynamics and any other constraints.

A key advantage of direct methods is they do not require the derivation of the necessary conditions,

a process which can become extremely cumbersome for large or complex problems. Direct methods

are able to avoid the sensitivity to changes in the initial conditions that result from the Hamiltonian

nature of the necessary conditions [23].

There have been numerous papers written on numerical methods for optimal control problems

with delays. However the focus of these papers is often on the theoretical foundations of the proposed

method; numerical results are presented without the code that generated them, making the proposed

methods difficult for the reader to implement [16, 24, 26, 45, 53, 54, 55, 62]. Given access to a

delayed differential equation solver, one can sometimes parameterize the control and use a standard

nonlinear optimizer to minimize the cost. This eliminates the need for a specialized software package,

but in exchange one sacrifices the full functionality of a dedicated control solver. Optimal control

packages are written to take advantage of the large, sparse NLPs which result from discretizing
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the optimal control problem, greatly improving their speed of execution. These packages are also

often equipped with powerful mesh refinement algorithms. GPOPS-II, for example, includes a mesh

refinement algorithm which adjusts both the number of intervals and collocation points within

each interval [59]. A user who implements their own control parameterization approach would need

to write their own sparse solver and mesh refinement scheme.

Additionally, there are a limited number of commercially available optimal control solvers

formulated to accept delays, including the Sparse Optimization Suite SOS [13], written in FORTRAN,

or the open source PSOPT written in C++ [5]. In this work we seek to expand the application

of the optimal control software GPOPS-II, written in MATLAB, by adapting the software to solve

delayed optimal control problems. While GPOPS-II is not written to accept delay problems, we

show it is possible to use GPOPS-II to solve certain types of delay problems. We present several

different problem formulations, as well as the associated code snippets, to enable the reader to

easily implement the results. We include a full list of code for each type of problem considered in

the Appendix.
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CHAPTER

2

DELAY DIFFERENTIAL EQUATIONS

In this chapter we give an overview of delay differential equations. We present existence and unique-

ness results important for our work, as well as results on stability. We discuss existing solvers and

methods for the numerical solution of delay differential equations, and introduce techniques for

solving delay differential equations using GPOPS-II.

2.1 Basic Theory

We now give a brief overview of delay differential equations (DDEs). We include relevant existence

results and stability properties for the work in this thesis. We discuss methods of obtaining an

analytical solution to validate our work in later chapters as well as several useful numerical methods.

2.1.1 Existence Results

We begin with a result on the existence and uniqueness of a general, linear DDE with constant delay

τ given by Bellman and Cooke in [8]. We follow the notation and conventions established therein.

Consider a DDE of the form

a x ′(t ) + b x (t ) + c x (t −τ) = f (t ) (2.1)

with initial condition

x (t ) =φ(t ) (2.2)
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on 0≤ t ≤ τ. Let C k (t1, t2) be the set of all functions with k continuous derivatives on (t1, t2). The

set C k [t1, t2) contains functions f ∈C k (t1, t2)which have continuous k t h right-hand derivative at

t1. Similarly the set C k (t1, t2] contains those functions f ∈ C k (t1, t2) which have continuous k t h

left-hand derivative at t2. If a function f is in both C k [t1, t2) and C k (t1, t2], then f ∈C k [t1, t2]. Then

we have the following result from [8]:

Theorem 2.1.1. Let f ∈C 1[0,∞) andφ ∈C 0[0,τ]. Then there exists exactly one continuous function

for t ≥ 0 which satisfies condition Eq. 2.2 and satisfies Eq. 2.1 for t >τ. Furthermore, this function x

is C 1(τ,∞) and C 2(2τ,∞). Ifφ ∈C 1[0,τ], then x’ is continuous at τ if and only if

aφ′(τ−0) + bφ(τ) + cφ(0) = f (τ). (2.3)

We have x” continuous at 2τ ifφ ∈C 2[0,τ] and either Eq. 2.3 holds or c = 0. [8]

Though we note in the introduction that one may simply choose a φ integrable instead of φ

continuous, one is no longer guaranteed the existence of a reasonably smooth, unique solution to

the DDE. In the next section, we discuss a technique for solving a DDE called the method of steps,

which can be used to prove the existence of a solution by construction. For those problems, we

need not requireφ(t ) be continuous at 0 in order to guarantee the existence and uniqueness of a

solution.

The result in Theorem 2.1.1 is applicable to linear DDEs. We now present a more general result

by Gorecki, Fuksa, Grabowski, and Korytowski from [34] on the continuous dependence of solutions;

we utilize the conventions and notation established by the authors. Let C ([a , b ],Rn ) be the space

of continuous functions from [a , b ] into Rn with norm | f | = supa≤t≤b | f (t )|, and let h ≥ 0, h ∈ R.

Consider the following DDE

ẋ = f (xt , t ) (2.4)

on D × [t0, t1] where D ⊆ C ([−h ,0],Rn ), D open. The term xt is the delay argument and f : D ×
[t0, t1]→ Rn , is a given function, f not necessarily linear. Let xt = x (t + s ), s ∈ [−h ,0], and xt ∈
C ([−h ,0],Rn ) for x ∈ C ([t0 − h , t1],Rn ), t1 > t0. The function x : [t0 − h , t1]→ Rn is a solution to

Eq. 2.4 if x ∈ C ([t0 −h , t1],Rn ) and if Eq. 2.4 holds for almost all t ∈ [t0, t1]. The authors have the

initial condition xt0
=φ,φ ∈C ([−h , 0],Rn ).

The authors further require f satisfy the Carathéodory condition. Let f : Ω→ Rn , where Ω ⊆
C ([−h , 0],Rn )×R, Ω open. Suppose f (φ, ·) is measurable for every fixedφ, and f (·, t ) is continuous

for every fixed t . Then, if for every point (φ, t ) ∈Ω, there is a Lebesgue integrable function m and a

neighborhood V (φ, t ) such that

| f (ψ, s )| ≤m (s ), (ψ, s ) ∈V (φ, t ), (2.5)

then f satisfies the Carathéodory condition. We have now given sufficient background to present
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the following theorem on continuous dependence from [34].

Theorem 2.1.2. Let Ω⊆C ([−h , 0],Rn )×R,Ω open. Let x 0 be a solution of Eq. 2.4 with right hand side

f 0 ∈C (Ω,Rn ), f passing through (φ0, t 0
0 ) ∈Ω. Assume x 0 exists and is unique in [t 0

0 −h , b ], b > t 0
0 .

Define a set

W 0 = {(x 0
t , t ) : t ∈ [t 0

0 , b ]} (2.6)

where V 0 is a neighborhood of W 0, and let f be bounded in V 0. Supposed there is an arbitrary

sequence (φk , f k , t k
0 ), k = 1, 2, ... where φk →φ0, | f k − f 0| → 0, and t k

0 → t 0
0 as k →∞. Then there

exists a k 0 such that for all k ≥ k 0 there is a solution x k of Eq. 2.4 in [t k
0 , b ] which passes through

(φk , t k
0 ) with right hand side f k . Additionally, for every ε > 0, there exists a k1(ε) such that x k (t ),

k ≥ k1(ε), is determined on [t 0
0 −h +ε, b ] and x k → x 0 uniformly on [t 0

0 −h +ε, b ]. [34]

In our work, we primarily consider linear delayed optimal control problems. We now present an

existence result from [34] for linear systems of delayed differential equations of the form

ẋ +
N
∑

i=0

[Ai x (t −hi )+Bi u (t −hi )]+

∫ 0

−h

A(t ,τ)x (t +τ)dτ+

∫ 0

−h

B (t ,τ)u (t +τ)dτ= f (t ), t ≥ t0 (2.7)

with a control u . We note Eq. 2.7 includes a delay in the control; while we restrict much of our

discussion to systems with delays in the state alone, we include the result for the more general case

in Eq. 2.7 and we consider control delays in Chapter 6. We have the initial conditions

x (t ) = φ(t ), t ∈ [t0−h , t0] (2.8a)

ẋ (t ) = µ(t ), t ∈ (t0−h , t0) (2.8b)

u (t ) = ν(t ), t ∈ [t0−h , t0) (2.8c)

whereφ,µ, and ν are all given and square integrable on (t0−h , t0).

Given that we consistently work on finite real intervals, we may additionally assume f and u

are square integrable on every [t0, t ], t > t0. We allow A, B , Ai , Bi may be linear time-varying, and

assume they are bounded and integrable on every finite subset of their domain. The authors note

there is no requirement for continuity of the initial conditionφ, and therefore x is only required to

be continuous for t > t0, and continuous from the right at t0. The authors use the Cartesian product

H =Rn × L 2(−h , 0;Rn )× L 2(−h , 0;Rn )× L 2(−h , 0;Rm ) (2.9)

as their space of initial data where L 2 is the Lebesgue L p space with p = 2. Then we have the following

result on existence from [34].

Theorem 2.1.3. For all t1, s , t1 ≥ s ≥ t0, every u ∈ L 2([s , t1],Rm ), every f ∈ L 2([s , t1],Rn ), and every

initial condition ξ ∈H there is a unique solution x (·,ξ, u , f ) of Eq. 2.7 in [s −h , t1]. Additionally, the
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function (ξ, u , f ) 7→ x (·,ξ, u , f )|[s ,t1] ∈C (s , t1) is both linear and continuous. The solution to Eq. 2.7 is

of the form:

x (t ,ξ, u , f ) =Φ(t , s )x (s )−
∫ 0

−h

Φ1(t , s ,τ)x (t +τ)dτ −

∫ 0

−h

Φ2(t , s ,τ)u (t +τ)dτ−
∫ t

s

Φ(t ,τ)[v (τ)− f (τ)]dτ, t ≥ s , (2.10)

where

v (t ) =
N
∑

i=0

Bi







u (t −hi ) t −hi ≥ s

0 else
(2.11a)

+

∫ 0

−h

B (t ,τ)







u (t +τ) t +τ≥ s

0 else
dτ. (2.11b)

Here, Φ is the fundamental solution matrix of Eq. 2.7 and is defined by

∂

∂ t
Φ(t , s ) +

N
∑

i=0

AiΦ(t −hi , s ) +

∫ 0

−h

A(t ,τ)Φ(t +τ, s )dτ= 0, t > s (2.12)

with Φ(s , s ) = I and Φ(t , s ) = 0 for t < s . We also have

Φ1(t , s ,τ) =
N
∑

i=0







Φ(t , s +τ+hi )Ai (s +τ+hi ) τ= s − t <−hi ≤τ

0 else
(2.13a)

+

∫ τ

−h

Φ(t , s +τ−θ )A(s +τ−θ ,θ )dθ (2.13b)

and Φ2 is defined similarly to Φ1 with Bi instead of Ai and B instead of A.

2.1.2 Analytic Solution Via Method of Steps

Having presented key existence results for DDEs, we now to turn to obtaining an analytic solution.

The method of steps is a technique to obtain an analytic solution of a DDE by reducing it to an ordinary

differential equation (ODE) on time intervals determined by the length of the delay. The technique

was originally developed by Bellman in [7] as a way to alleviate computational storage problems

when solving DDEs numerically. The method is simple to implement but becomes cumbersome

when the delay is short relative to the time interval of interest due to the number of equations one

would need to solve. While the method of steps is applicable to systems with multiple discrete,
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constant delays it suffices to consider the case where only one delay is present.

Consider a DDE of the form

ẋ = f (t , x (t ), x (t −τ)), 0< t ≤ T (2.14a)

x (t ) = φ(t ), t ∈ [−τ, 0] (2.14b)

with constant delay τ, prehistory functionφ(t ), and f not necessarily linear. We can rewrite Eq. 2.41

as an ODE system on [0,τ] in the following manner:

ẋ1(t ) = f (t , x1(t ),φ(t ), u1(t )), i = 1, t ∈ [0,τ] (2.15a)

ẋi (t ) = f (t , xi (t ), xi−1(t ), ui (t )), i = 2, ..., N , t ∈ [0,τ] (2.15b)

x1(0) = φ(0), i = 1 (2.15c)

xi (0) = xi−1(τ), i = 2, ..., N (2.15d)

for N number of steps in the interval [0, T ].

We can see that as the length of the interval increases, or the number of delays increases, the size

of the problem increases as well. Though the problem can get quite large, it can now be solved by any

ODE integrator. Bellen and Zennaro note that, for any finite number of steps, a numerical method

of global order p will perform on the process to order p [6]. Forφ(t ) continuous, the MOS gives a

unique solution that is globally-defined in forward time. This is because any initial discontinuity

at t0 is propagated through the solution at successively higher derivatives; the solution becomes

smoother on subsequent time intervals [56].

2.2 Formulation as a Partial Differential Equation

The method of steps allows one to reformulate a DDE as system of ODEs without a delay. We now

discuss reformulating a DDE as a system of partial differential equations (PDEs), which allows one

to use a broader range of numerical techniques to solve the resulting problem.

2.2.1 Reformulation of a Delay Differential Equation as a System of Partial Differential

Equations

Consider the DDE given in the previous section,

ẋ = f (t , x (t ), x (t −τ)), t ≥ 0 (2.16a)

x (t ) = φ(t ), t ∈ [−τ, 0]. (2.16b)
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Letφ ∈C 1([−τ, 0],Rn ) and f be globally Lipschitz on [0,∞)×Rn ×Rn and satisfy the requirements

of Theorem 2.1.2. Then Eq. 2.16 has a unique solution x (t ) ∈C 1([−τ,∞),Rn ). Let

u (t ,θ ) = x (t +θ ), θ ∈ [−τ, 0], t ≥ 0. (2.17)

Then u (t ,θ ) is the solution x on [t −τ, t ] and satisfies the PDE boundary value problem

∂ u

∂ t
=

∂ u

∂ θ
, θ ∈ [−τ, 0], t ≥ 0 (2.18a)

u (0,θ ) = φ(θ ), θ ∈ [−τ, 0] (2.18b)
∂ u

∂ t
(t , 0) = f (t , u (t , 0), u (t ,−τ)), t ≥ 0. (2.18c)

We have rewritten our delay equation in Eq. 2.16 as a PDE system which we can solve with any

suitable numerical technique.

2.2.2 Method of Lines

In the preceding section we demonstrate how a DDE can be rewritten as a PDE. We now show how

the resulting PDE can be solved numerically using the method of lines (MOL). The method of lines

relies on partially discretizing the PDE, generally in the state direction, in order to rewrite the PDE

as a system of ODEs. In this section, we use MOL to reformulate a delayed optimal control problem.

We first rewrite the delayed system as a PDE in terms of time, t , and our delayed state, θ . We then

approximate this PDE using the method of lines. This eliminates the delay from the equations,

allowing one to use a greater variety of optimal control solvers.

Say we have the system

ẋ = Ax +C x (t −τ) +B u (2.19a)

x (t ) = φ(t ), t ∈ [−τ, 0] (2.19b)

J =

∫ T

0

(x − r )T Q (x − r ) +u T R u d t (2.19c)

J (0) = (0) (2.19d)

with delay τ. We assume A, B , C are linear time-varying, with Q ≥ 0 and R > 0. We first reformulate

Eq. 2.19 as a PDE with respect to time and a delayed variable, θ . Let U (t ,θ ) = x (t +θ ),−τ ≤ θ ≤
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0, t ≥ 0. Then we have

Ut = Uθ , −τ≤ θ < 0, t ≥ 0 (2.20a)

U (0,θ ) = φ(θ ), −τ≤ θ ≤ 0 (2.20b)

Ut (t , 0) = AU (t , 0) +C U (t ,−τ) +B u (t ), t ≥ 0 (2.20c)

Jt (t , 0) = (U (t , 0)− r )T Q (U (t , 0)− r ) +u T R u , t ≥ 0, (2.20d)

whereφ(θ ) is the prehistory.

Now we have an initial boundary value problem and can use MOL with a centered difference

to compute the partial derivatives with respect to the delay variable θ and step size h to rewrite

Eq. 2.20 as a system of ODEs in θ . Let U (t ,θk ) =Uk (t ), k = 0...N . Then we have:

Uk+1(t ) = Uk (t ) +hU ′
k (t ) + (h

2/2)U ′′
k (t ) + (h

3/6)U ′′′
k (ξ1) (2.21a)

Uk−1(t ) = Uk (t )−hU ′
k (t ) + (h

2/2)U ′′
k (t )− (h

3/6)U ′′′
k (ξ2). (2.21b)

Subtracting Eq. 2.21b from Eq. 2.21a we obtain

U ′
k (t ) =

1

2h
(Uk+1(t )−Uk−1(t ))−

h 2

6
U ′′′

k (ξ), (2.22)

a second order approximation to the solution on the interior grid points. Then our system of ODEs

is

U ′
k = 1/2h (Uk+1(t )−Uk−1(t )) , k = 1...N (2.23a)

U ′
N = AUN (t ) +C U0+B u (t ), k =N (2.23b)

J ′N = (UN − r )T Q (UN − r ) +u T R u , k =N . (2.23c)

We require a boundary condition along the line U (t ,−τ), so an equation for U ′
0 (t ). We begin by

taking a Taylor expansion about the points U (t +2h ) and U (t +h ). Then we have

U (t +2h ) = U (t ) +2hU ′(t ) +
�

4h 2/2
�

U ′′(t ) +
�

8h 3/6
�

U ′′′(ξ1) (2.24a)

U (t +h ) = U (t ) +hU ′(t ) +
�

h 2/2
�

U ′′(t ) +
�

h 3/6
�

U ′′′(ξ2). (2.24b)

Multiplying Eq. 2.24b by four and subtracting from Eq. 2.24a, we obtain

U (t +2h )−4U (t +h ) =−3U (t )−2hU ′(t ) + (2h 3/3)(U ′′′(ξ1)−U ′′′(ξ2)) (2.25)

or

U ′(t ) = 1/2h (−U (t +2h ) +4U (t +h )−3U (t ))+ (2h 3/3)U ′′′(ξ). (2.26)
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Thus our boundary condition becomes

U ′
0 (t ) = 1/2h (−U2(t ) +4U1(t )−3U0(t )) + (2h 3/3)U ′′′(ξ) (2.27)

and we have the system

U ′
0 (t ) = 1/2h (−U2(t ) +4U1(t )−3U0(t )) , k = 0 (2.28a)

U ′
k = 1/2h (Uk+1(t )−Uk−1(t )) , k = 1...N (2.28b)

U ′
N = AUN (t ) +C U0+B u (t ), k =N (2.28c)

J ′N = (UN − r )T Q (UN − r ) +u T R u , k =N (2.28d)

using a second order central difference formula for the interior points and a third order approxima-

tion for our boundary condition.

We implement the MOL using GPOPS-II for a specific example in Chapter 5, and demonstrate we

are able to obtain an accurate solution for the case N = 5. Our results are remarkable considering the

formula on the interior is only second order accurate and we use a low-dimensional approximation.

A key fact to note is, for constant step size, our h =τ/N . Then for a modest delay of τ= 1, we have

that our error is O
�

.22
�

on the interior and O
�

.23
�

on the boundary.

2.3 Eigenvalues

When using the method of lines, or method of steps, to solve a delay differential equation the stability

of the resulting problem can affect the user’s ability to obtain a numerical solution. In this section we

discuss the eigenvalues of a DDE and their affect on the system’s stability. Consider a linear delayed

differential equation of the form

ẋ = A0 x (t ) +
N
∑

i=1

Ai x (t −τi ). (2.29)

The characteristic equation of Eq. 2.29 is

det(∆(λ)) = 0, (2.30)

where∆(λ) is the characteristic matrix of Eq. 2.29 with

∆(λ) =λI −

�

A0+
N
∑

i=1

Ai e −λτi

�

, (2.31)
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where we have substituted in x = y e −λτi . Here y is a nonzero vector, det(∆(λ)) is the characteristic

function of Eq. 2.29, and λ is a root of the characteristic function, so x = y e −λτi is a solution to the

DDE. The roots of Eq. 2.30 are the characteristic roots of the differential equation.

We now introduce several important definitions of stability from Michiels and Niculescu in [56].

We begin with the following important notion of asymptotic stability of the homogeneous solution

to Eq. 2.29:

Definition 1. The homogenous solution of Eq. 2.29 is asymptotically stable iff for all ε > 0 there

exists a δ > 0 such that for allφ ∈C ([−τm , 0],Rn ), ‖φ‖<δ =⇒ for all t ≥ 0 ‖x (t ;φ)‖<ε, for allφ ∈
C ([τm , 0],Rn ) limt→+∞ x (t ;φ) = 0 [56].

Here, ‖ · ‖ is the supremum norm and x (t ;φ) denotes solution x with initial conditionφ. We note

that for a linear DDE of the form in Eq. 2.29, asymptotic stability is equivalent to exponential stability.

The following definition of exponential stability is from [56].

Definition 2. The homogeneous solution x with initial conditionφ ∈C ([−τm , 0],Rn ) is exponentially

stable iff there are constants C > 0, k > 0 such that ‖x (t ;φ)‖ ≤C e −k t ‖φ‖. [56]

We note the following important key fact about the characteristic roots of Eq. 2.29 from [56]:

Proposition 1. The homogenous solution of Eq. 2.29 is asymptotically stable iff all characteristic

roots have negative real part; i.e. all characteristic roots of Eq. 2.29 are in the open left half plane.

Now consider the scalar, linear DDE

ẋ = a x + c x (t −τ), (2.32)

which we use for several computational examples in this work. The eigenvalues, and hence stability

of the problem, will depend on the values of parameters a and c as well as the value of the delay τ.

We utilize the MATLAB roots package written by Wu and Michiels [82] to compute and plot the

characteristic roots of Eq. 2.32 for several different values of c and τ. The package allows the user to

find the roots in a given right half-plane, R e (λ)> r , or to specify a rectangular region. We chose the

region −20<R e (λ)< 20 and −200< I m (λ)< 200.

We first take a =−.5, c =−1.2, and τ= 1. We can see from Fig. 2.3(a) that our characteristic roots

all have negative real part, indicating an asymptotically stable solution. We therefore may reasonably

expect a decent numerical approximation to the solution. Fig. 2.3(b) demonstrates changing the

sign on the delay term to c =+1.2 introduces a small, positive characteristic root with I m (λ) = 0.
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Figure 2.1 (a) Eigenvalues of Eq. 2.32 with τ= 1, a =−.5, c =−1.2 and (b) c =+1.2.
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Figure 2.2 (a) Eigenvalues of Eq. 2.32 with τ= 1.5, a =−.5, c =−1.2 and (b) c =+1.2.
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Figure 2.3 (a) Eigenvalues of Eq. 2.32 with τ= .05, a =−.5, c =−1.2 and (b) c =+1.2.
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2.4 Existing Solvers and Numerical Methods

There are a variety of available numerical tools for solving DDEs. As we discuss in the preceding

sections, one can utilize the method of steps or method of lines with any standard ODE or BVP solver.

Another technique we implement is a method called waveform relaxation, which we discuss later in

this section. Runge-Kutta methods have been implemented with success in various specialized DDE

solvers including the MATLAB solver dde23 [72] and the FORTRAN-based DKLAG6 [21]. MATLAB

has two other DDE solvers: ddesd and ddensd [70, 73]. For our purposes, we restrict our software

discussions to the two main MATLAB solvers we utilized: bvp4c, and dde23 [46, 71].

2.4.1 MATLAB Delay Differential Equation Solver

We utilize the MATLAB DDE solver dde23 developed by Shampine and Thompson in [72] to solve our

delayed dynamics in our control parameterization code and as the "true" solution to test GPOPS-II

as a DDE integrator later in this work. The syntax of a function call to dde23 is as follows

sol = dde23(ddefun,lags,history,tspan),

where the output sol is a structure containing the mesh sol.x, the solution sol.y evaluated at

the mesh points, and sol.yp, the derivative of the solution evaluated at the mesh points. The

function ddefun contains the dynamics, lags is the vector of constant delay values, history is

the prehistory function, and tspan is the time interval. The user can specify additional options

such as tolerances and step size using the options argument and the function ddeset.

The solver utilizes the Runge-Kutte triple BS(3,2) developed by Bogacki and Shampine in [66].

We now present a general discussion of the dde23 solver strategy as originally given in [72], and

follow the authors’ notational conventions. We begin by defining the general formulas used in

the Runge-Kutta triple. Let yn be the approximation to y (x ) at the mesh point xn . Then the next

approximation to the solution yn+1 is defined as

yn+1 = yn +hn

s
∑

i=1

bi fni , (2.33)

where hn is the step size and i is the index of stage fni = f (xni , yni ) at mesh point xni = xn + ci hn

and

yni = yn +hn

i−1
∑

j=1

ai j fn j . (2.34)

Then

y (xn+1) = y (xn ) +hnΦ(xn , y (xn ))+ en (2.35)
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where Φ(xn , yn ) =
∑s

i=1 bi fni and en is the local truncation error which is O (h p+1
n ) for f , y (x ) suffi-

ciently smooth. The triple uses a second, lower order formula for selecting the step size

y ∗n+1 = yn +hn

s
∑

i=1

b ∗i fni = yn +hnΦ
∗(xn , yn ) (2.36)

with local truncation error e ∗n that is O (h p
n ). The third formula is

yn+σ = yn +hn

s
∑

i=1

bi (σ) fni , (2.37)

where the bi (σ) are coefficient polynomials inσ. This gives a polynomial approximation to the value

of the solution y (xn +σhn ) forσ ∈ [0, 1]. For the BS(2,3) triple the following two assumptions hold:

first, thatσ= 0 gives yn andσ= 1 gives yn+1 and second, that the order of Eq. 2.37 is the same as

Eq. 2.35. Then Eq. 2.37 is referred to as a continuous extension of Eq. 2.35, and Eq. 2.35 is considered

theσ= 1 case of Eq. 2.37. The authors define the local truncation error of the continuous extension

as

y (xn +σhn ) = y (xn ) +hnΦ(xn , y (xn ),σ) + en (σ) (2.38)

where they assume for smooth y (x ), f that ‖en (σ)‖ ≤C1h
p+1
n for some constant C1.

For a DDE with linear, constant delays the authors have

fni = f (xni , yni , y (xni −τ1), ..., y (xni −τk )). (2.39)

Consider the approximation S (x ) to y (x ) for all x ≤ xn . Then for hn ≤ τ =min(τ1, ...,τk ) one has

xni −τ j < xn and

fni = f (xni , yni ,S (xni −τ1), ...,S (xni −τk )) (2.40)

is an explicit method for determining the stage and formulas Eq. 2.35, Eq. 2.36, and Eq. 2.37 are

explicit as well. In this case the function S (x ) is the prehistory. To obtain the value of the approxima-

tion at the next step, yn+σ, the authors use the continuous extension to define S (xn +σhn ) = yn+σ

on [xn , xn+1].

For the case hn > τ j , for some j , the formulas for the triple are now implicit and the history

function S (x ) is evaluated in the span of the current step. The implicit formulas are evaluated using

iteration. In dde23, the function S (x ) is defined up to the current step xn . The authors extend the

definition of S (x ) to (xn , xn + hn ] by calling the new function S (0) = y0 for the first step, because

the solution is discontinuous at the left endpoint of the interval, a . The prediction for S (0) at the

next step is the continuous extension of the previous step. The algorithms for adjusting step size in

dde23 are taken from the MATLAB ordinary differential equation solver ode23 [71] and modified to

accept implicit formulas. For results on convergence and error control, see [72].
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The algorithm requires a choice of step size such that the discontinuities are mesh points, so

none of the delay terms will have a low-order discontinuity in the span of the current step. This

ensures that the Runge-Kutta method used will have the expected order to estimate the error. Only

the smoothness of f need be considered because the authors utilize one-step methods. For more

serious discontinuities, dde23 will restart the integration.

2.4.2 Method of Steps Formulation with MATLAB Boundary Value Problem Solver

As we explain earlier in the chapter, a key advantage of the MOS formulation is the ability to use any

BVP solver to find the solution to a DDE. In this work, we utilize the MOS with the MATLAB BVP

solver bvp4c. We consider the following delay problem

ẋ = −x +2x (t −1), t ∈ [0, 4] (2.41a)

x (t ) = sin(t ), t ∈ [−1, 0] (2.41b)

with delay τ= 1 and prehistoryφ(t ) = sin(t ). Using the MOS we rewrite Eq. 2.41 as a system of ODES.

We have :

ẋ1(t ) = −x1(t ) +2 sin(t −1) + t , x1(0) = 0, t ∈ [0, 1] (2.42a)

ẋi (t ) = −xi (t ) +2xi−1(t ) + t , xi (0) = xi−1(1), i = 2, .., 4. (2.42b)

We define a new ODE for each i , i = 1, .., 4. The delay term in Eq. 2.42 is given by the prehistory

sin(t − 1) for the first equation in x1 and in the following xi equations the delay term is replaced

by the solution on the previous interval. We treat Eq. 2.42 as a BVP where the righthand boundary

condition for xi−1 is the lefthand boundary condition for xi , in order to enforce continuity across

the time intervals. We then solve Eq. 2.42 with bvp4c using the following code

solinit = bvpinit(linspace(0,1),[0,0,0,0]); %initial conditions
sol = bvp4c(@defun, @debc, solinit) %solve using bvp4c

function res = debc(ya,yb) % boundary conditions
res = [ya(1);

ya(2)-yb(1);
ya(3)-yb(2);
ya(4) - yb(3)];

end

function dydt = defun(t,y)
dydt= [-y(1) + 2*sin(t-1) + t; %dynamics
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-y(2) + 2*y(1) + (t+1);
-y(3) + 2*y(2) + (t+2);
-y(4) + 2*y(3) + (t+3) ];

end

Our solution plot in Fig. 2.4 demonstrates how one needs to translate the solutions onto the different

intervals in order to construct the solution on the entire time interval.

Figure 2.4 Solution of Eq. 2.41 using MOS.

2.4.3 Waveform Relaxation

In addition to the method of steps and dde23, another numerical technique we rely upon is wave-

form relaxation. Waveform relaxation is an iterative technique which can be used to solve DDEs. It

was originally applied by Lelarasmee, Ruehli, and Sangiovanni-Vincentelli in [50] to the time domain

analysis of systems of nonlinear differential equations modeling integrated circuits.

To apply waveform relaxation to a DDE, we begin with an initial estimate of the solution of the

delayed equation. In subsequent iterations, we replace the delayed term at the current iterate with

the value of the delayed term from the previous iterate. For example, consider the general DDE

ẋ = f (t , x (t ), x (t −τ)), t ≥ 0 (2.43a)

x (t ) = φ(t ), t ∈ [−τ, 0]. (2.43b)

Then, given an initial estimate of the solution x0(t ), we have the ODE

x ′k+1 = f (t , xk+1(t ), xk (t −τ)), k = 1...N (2.44)
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with N iterates.

This approach is of particular interest to us because the method is no longer solving a DDE.

In our work, we seek to utilize the software GPOPS-II to solve a delayed optimal control problem.

Though designed to be an optimal control solver, GPOPS-II is a very effective ODE integrator. Before

attempting to apply a waveform-type method to an optimal control problem, we test GPOPS-II on a

linear DDE using waveform relaxation.

We consider problems of the form

ẋ = a x + c x (t −τ) (2.45a)

x (t ) = φ(t ), t ∈ [−τ, 0]. (2.45b)

Then we have the iteration

ẋk+1 = f (xk+1(t ), xk (θ (t )) = a xk+1(t ) + c xk (t −τ), xk+1(0) = x0 (2.46)

where the delay argument is θ (t ) = t −τ. In particular, Eq. 2.46 satisfies the assumptions (3.2)-(3.4)

for superlinear convergence from [15] i.e. that f is Lipschitz continuous with respect to xk (θ (t )),

satisfies a one-sided Lipschitz condition with respect to xk+1(t ), and that θ (t ) ≤ t , θ ′(t ) > 0. We

may therefore expect the waveform relaxation method to converge for the types of problems we

consider.

We note these conditions given in [15] do not guarantee the existence of a solution, only that the

method will converge if such a solution exists. For our linear problem in Eq. 2.45 we are guaranteed

a solution via Theorem 2.1.1. For detailed convergence analysis and error estimates, we refer the

interested reader to [3, 4, 15, 83]. We compare the performance of GPOPS-II to using waveform

relaxation with the MATLAB ODE integrator ode45, as well as the DDE integrator dde23, in Chapter

5 and see that we do indeed achieve rapid convergence.
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CHAPTER

3

OPTIMAL CONTROL PROBLEMS

WITHOUT DELAYS

In Chapter 2 we discuss the supporting theory and necessary background for DDEs. In this chapter,

we review optimal control problems without delays, including numerical techniques, before turning

to a discussion of delayed OCPs in Chapter 4. We begin by discussing some of the known theory for

OCPs, as we will rely on these ideas later. We then discuss several different methods for solving OCPs,

including an overview of the software GPOPS-II, and introduce our own control parameterization

method.

3.1 Derivation of Necessary Conditions

We first give a proof of the known necessary conditions for optimality using Pontryagin’s minimum

principle and the calculus of variations. Consider the following general optimal control problem

with fixed final time T in Bolza form:

min J =φ(x (T ), T ) +

∫ T

t0

L (t , x , u ) d t , (3.1)
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subject to the constraints

ẋ = f (t , x , u ), x (t0) = x0 (3.2a)

0 = g (x (T ), T ), (3.2b)

where L (t , x , u ) is the weighting function of the trajectory and control,φ is an endpoint weighting

function, and g is our terminal constraint. We have x (t ) ∈RN , u (t ) ∈Rm and g (t ) ∈Rp . We follow

the conventions established in [51].

Define the Hamiltonian of the system as

H (t , x , u ,λ) = L (t , x , u ) +λT f (t , x , u ), (3.3)

where λ is our costate, with values λ(t ) ∈Rn . Then our augmented cost functional is

J̃ =φ(x (T ), T ) +νT g (x (T ), T ) +

∫ T

t0

H (t , x , u ,λ)−λT ẋ d t , (3.4)

where ν is the multiplier associated with our endpoint constraint, ν(t ) ∈ Rp . Then, taking the

derivative of J̃ using Leibniz’s rule [51]we obtain

d J̃ = (φx + g T
x ν)

T d x
�

�

T
+ (φt + g T

t ν)d t
�

�

T
+ g T

�

�

T
dν+ (H −λT ẋ )d t

�

�

T
− (H −λT ẋ )d t

�

�

t0

+

∫ T

t0

H T
x δx +H T

u δu + (Hλ− ẋ )T δλ−λT δẋ d t , (3.5)

where δx , δu , and δλ are the variations in x , u , and λ respectively. We note that δẋ and δx are not

independent increments, so we integrate by parts to obtain

−
∫ T

t0

λT δẋ d t =−λT δx
�

�

�

T
+λT δx

�

�

�

t0

+

∫ T

t0

λ̇T δx d t . (3.6)

Now, from [51]we have the relation

d x (T ) =δx (T ) + ẋ (T )d T . (3.7)

Substituting Eq. 3.7 and Eq. 3.6 into Eq. 3.5 and noting that t0, T , and x (t0) are fixed, we have

d J̃ = (φx + g T
x ν−λ)

T d x
�

�

T
+ g T

�

�

T
dν+

∫ T

t0

H T
x δx + λ̇T δx +H T

u δu +H T
λ δλ− ẋ T δλ d t . (3.8)

Setting the coefficients of our independent increments equal to zero, we obtain our first order
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necessary conditions

ẋ = f (t , x , u ) (3.9a)

−λ̇ = Hx (t , x , u ) (3.9b)

u minimizes H (x ,λ, u , t ) (3.9c)

x (t0) = x0 (3.9d)

0 = g (x (T ), T ) (3.9e)

with boundary conditions

(φx + g T
x ν−λ)

T
�

�

T
d x (T ) = 0. (3.10)

We note that if u is unconstrained, the minimization in Eq. 3.9c becomes Hu = 0.

3.2 Numerical Methods

In this introduction, we outline two general classes of numerical methods for optimal control

problems: direct and indirect methods. We note that for both classes of numerical methods discussed

here, a sufficiently accurate initial value is often required for the methods to perform well [10, 16,

67, 80]. We will see this sensitivity to the initial value illustrated later in our numerical examples in

Chapter 5. We now give a more detailed discussion of various direct and indirect methods.

3.2.1 Solving the Necessary Conditions

As noted in the introduction, any indirect method for solving an optimal control problem involves

solving the necessary conditions for optimality. In the previous section, we gave a derivation of the

first order necessary conditions for optimality for a general unconstrained optimal control problem

in Eq. 3.9 and Eq. 3.10. In rare cases when the cost and associated constraints are very simple, it

is possible to obtain an analytic solution. However for most practical applications, a numerical

approach is needed. Two main advantages for utilizing indirect methods is they are often very

accurate and do not require solving a large NLP.

Indirect methods generally fall into one of two categories: indirect shooting methods or in-

direct collocation. In a shooting method, an initial guess is made for the value of the unknown

boundary conditions. The Hamiltonian system is then integrated; if the solution differs from the

known terminal conditions by more than a specified tolerance, the initial guess is adjusted and the

integration repeated. Indirect shooting methods require relatively accurate initial guesses because

of the sensitivity of the Hamiltonian system but are very easy to implement. A multiple shooting

method subdivides the timespan into multiple intervals, and integrates the necessary conditions

on each subinterval. Additional variables are introduced via continuity conditions on the state x
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and costate multiplier λ at each interior node. Integrating over a shorter time span helps mitigate

the ill-conditioning of the system. [23, 67, 78]

In an indirect collocation method, one applies a collocation scheme to the two point BVP in

terms of the state x and the costate λwhich results from finding the necessary conditions. Consider,

for example, a pseudospectral collocation scheme, where the collocation nodes are the roots of an

orthogonal polynomial defined on [−1, 1]. First, the BVP is transferred down onto the interval [-1,1].

The variables are then discretized at the chosen collocation points. Depending upon the collocation

method chosen, the collocation points may be defined on (−1, 1), [−1, 1), (−1, 1], or [−1, 1]. The state

and costate are then approximated by a basis of polynomials

x (y ) ≈
N
∑

j=1

x j Pj (y ) (3.11a)

λ(y ) ≈
N
∑

j=1

λ j Pj (y ), (3.11b)

which are then evaluated at the yi collocation points in [−1,1], i = 1, ..., N . Here Pj are the approx-

imating polynomials, and λ j , x j are the coefficients for which the software needs to solve. Two

common approaches are to use the roots of Legendre or Chebyshev polynomials as the collocation

points.

The approximations are then substituted into the Hamiltonian system given above in Eq. 3.9

and Eq. 3.10. For our purposes, it suffices to consider a quadratic cost of the form

J =φ(x (T ), T ) +

∫ T

t0

x T Q x +u T R u d t (3.12)

and dynamics of the form

ẋ = F (x ) +B (x )u (3.13)

with R > 0. For u unconstrainted, one can use the condition Hu = 0 to solve for u in terms of λ to

obtain u =− 1
2 R−1B T (x )λ. This gives, on [−1, 1], the system of collocation equations

N
∑

j=0

x j

d Pj

d t
(yi )−

t f − t0

2
F (x j ,λ j , yj ) = 0 (3.14a)

N
∑

j=0

λ j

d Pj

d t
(yi ) +

t f − t0

2

�

∂ L

∂ x
(x j ,λ j , yj ) +λ j F (x j ,λ j , yj )

�

= 0 (3.14b)

on a single interval with mixed boundary conditions dependent upon the form of g (x (T ), T ). We

note the term
t f − t0

2
is required to account for translating the problem down to the interval [−1, 1].
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In general, pseudospectral methods are global collocation schemes. Thus [t0, t f ] = [t0, T ], that

is, the problem is approximated by a global polynomial along the entire time interval. Later, when

we discuss GPOPS-II, we will introduce an hp -adaptive pseudospectral method. In that case, the

entire time interval [t0, T ] is subdivided, t0, t1, ..., tN = T , and each individual subinterval [ti , ti+1] is

translated down onto [−1, 1]. [67, 75, 78]

Because there are no control parameters to optimize, the problem formulation in Eq. 3.14 can

be solved with a BVP solver, not necessarily dedicated optimal control software. Even if one uses

a collocation code, the indirect approach is still more labor intensive for the user, because one

must first find the necessary conditions to provide to the software. Depending upon the form of

the terminal constraint g (x (T ), T ) in Eq. 3.9e, obtaining the correct boundary conditions for the

problem can become quite complicated.

3.2.2 Direct Transcription Methods

In our introduction, we note that direct methods, or direct transcription methods, are a class of

numerical methods for solving optimal control problems. Rather than writing down the necessary

conditions for a minimum, the optimal control problem is instead directly transcribed as a nonlinear

programming problem (NLP). We now consider different types of direct methods in greater detail.

There are two parts to a direct transcription method: the discretization of the optimal control

problem, and the nonlinear optimizer used to solve the resulting NLP. We note both the discretization

and optimization are handled by the software; in this section we explain how the software itself

works.

3.2.2.1 The Nonlinear Optimizer

In this work, we focus on a class of nonlinear optimization methods known as gradient methods.

Gradient methods are iterative methods where the iteration is of the form

xk+1 = xk +αk dk , (3.15)

where αk is the step size and dk is the search direction. Two popular gradient-based methods for

nonlinear optimization are sequential quadratic programming, and interior point methods. Our

work with the optimal control software GPOPS-II utilizes an interior point method.

In an interior point method, the constrained NLP

min f (x ) (3.16)
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subject to

c (x ) = 0 (3.17a)

xL ≤ x ≤ xU (3.17b)

is replaced with a sequence of unconstrained problems

min
x∈Rn

β (x ,µ) = f (x )−µi

n
∑

i=1

ln(xi ), (3.18)

subject to c (x ) = 0 where each µi is a parameter in a sequence where the µi are decreasing to zero.

Interior point methods are sometimes referred to as barrier methods, where β (x ,µ) in Eq. 3.18 is

the logarithmic barrier function and µ is the barrier parameter. We note that Eq. 3.18 is only one

choice of barrier function [9].

We utilize GPOPS-II with the open source interior point software IPOPT, an Interior Point

OPTimizer. IPOPT uses a damped Newton’s method to solve the primal-dual formulation of the

barrier problem in Eq. 3.18 [80]; solving Eq. 3.18 is equivalent to applying a homotopy method to

the primal-dual system

∇ f (x ) +∇c (x )λ− z = 0 (3.19a)

c (x ) = 0 (3.19b)

X Z e −µe = 0, (3.19c)

where e is a vector of ones, µ is now the homotopy parameter, and the dual variables λ and z are

the associated Lagrange multipliers for the equality constraints and variable bounds. In this case

X and Z are diagonal matrices where the diagonals are the associated vectors x and z [57, 68, 80].

The additional conditions x ≥ 0, z ≥ 0 coupled with Eq. 3.19 give the KKT conditions for the original

NLP in Eq. 3.16 and Eq. 3.17.

Rather than using a merit function to determine the step size αk in Eq. 3.15, IPOPT uses a

line-search filter method [79, 80]. A merit function seeks to decrease both the objective function

and the infeasibility of the constraint, while a filter method treats these as two separate criteria [77].

The outline of the filter method used in IPOPT may be found in [79, 80]. The search direction dk is

determined from a linearization of the primal-dual system in Eq. 3.19.

3.2.2.2 Solution of the Optimal Control Problem

We now consider different methods of discretizing and solving the optimal control problem. The first,

and most simple, is a direct shooting method. Direct shooting is a form of control parameterization.
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Given a time grid t0 < t1 ≤ ...≤ tm = t f we parameterize the control u (t )with a known function,

u (t )≈ u j (a j , t ), j = 1...m , t ∈ [t j , t j+1]. (3.20)

Let u (t ) ∈Rq , and suppose we choose a polynomial of order p to parameterize the control. Then the

vector of parameters is a j ∈Rr where r = q (p+1). Examples of common functions include piecewise

linear functions and splines; later in this work we present the results of a control parameterization

code where the control is parameterized with cubic splines. [42]

The user provides an initial estimate of the control parameters to a numerical integrator, used to

integrate the dynamics and calculate the cost. These values are then passed to a nonlinear optimizer,

and the process is repeated until the constraints have been met and the cost minimized within a

user-specified tolerance. Because they do not require specialized control software, direct shooting

methods are very easy to implement. However a very fine mesh or higher order approximating

function may be required to obtain a sufficiently accurate solution, resulting in a high dimensional

problem with a greatly increased computational cost. Additionally, a sufficiently "good" initial

estimate of the parameters may be required to obtain an accurate solution.

In order to overcome some of the difficulties in a single shooting method, one may use a multiple

shooting method. Now the time interval is discretized into finite subintervals, [t j , t j+1], j = 0...m . We

again parameterize the control as in Eq. 3.20. However, we integrate the dynamics and calculate the

cost on each individual subinterval. The initial value of the state, x , on each subinterval becomes

an additional parameter in the optimization.

Let our initial condition on each interval be x (t j ) = yj . Then we have the additional continuity

condition

yj+1− x (t j+1; yj , a j ) = 0, t ∈ [t j , t j+1], (3.21)

where the state x evaluated at t j+1 depends on the initial condition yj and the value of the pa-

rameter for the control a j . Introducing an additional parameter into the optimization increases

the dimension of the problem but integrating the dynamics on much shorter time intervals helps

decrease the sensitivity to the initial estimate.

An alternative to direct shooting methods is direct collocation. In a direct collocation scheme,

the collocation method is applied directly to the optimal control problem. Both the state and control

are parameterized. Generally, direct collocation methods can be classified as either local or global.

In a local collocation scheme the time interval is discretized into a finite number of subintervals,

[t j , t j+1], j = 0, ..., m .
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The state and control are usually approximated by a piecewise continuous polynomial,

x (t ) ≈
n
∑

i=0

Pi j (t )xi j (3.22a)

u (t ) ≈
q
∑

i=0

Pi j (t )ui j , (3.22b)

where xi j and ui j are the coefficients to be determined, t ∈ [t j , t j+1], where i is the index within each

subinterval. Individual subintervals are again linked by a continuity condition on the states, where

the terminal value of x on [t j−1, t j ] is enforced as the initial condition of x on [t j , t j+1]. The number

of subintervals may be increased to obtain convergence while the order of the approximating

polynomial remains fixed. Continuity of the control u across subintervals may not be enforced;

depending upon the application, a piecewise continuous control may be acceptable.

In a global collocation scheme, the time interval is discretized t0 < t1 < ... < tm−1 < tm = t f

and the solution is approximated by a global polynomial on the entire time interval. In contrast

to a local collocation method, the number of intervals (i.e. one) remains fixed while the order of

the approximating polynomial is increased. An orthogonal collocation scheme is one in which the

collocation nodes are chosen as the roots of orthogonal polynomials. A pseudospectral collocation

scheme is a global orthogonal collocation scheme.

3.2.2.3 GPOPS-II: HP-Adaptive Pseudospectral Method

GPOPS-II, a general purpose optimal control MATLAB software, is an hp -adaptive pseudospectral

method [61]. Here, h refers to the number of mesh intervals, and h-methods achieve convergence

by increasing the number of mesh intervals until a specified error tolerance is satisfied. In contrast,

p refers to the order of the approximating polynomial and a p -method relies on increasing the

degree of the approximating polynomial. As described in the previous section, a pseudospectral

method is a global orthogonal collocation scheme. GPOPS-II uses a Radau pseudospectral method

or Legendre-Gauss-Radau collocation scheme on each individual mesh interval [22, 29, 61]. The

formulas for the LGR nodes can be found in [20] and are zeroes of

LN + LN+1, (3.23)

where LN is the N th order Legendre polynomial and the weights are given by

w j =
1

(N +1)2
1− yj

�

Ln (yj )
�2 . (3.24)

The approximating polynomials used are the Lagrange polynomials in Eq. 3.27 [61].
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We present the general outline of how the Radau pseudospectral method is implemented for a

general unconstrained optimal control problem,

min J =φ(x (T ), T ) +

∫ t f

t0

L (t , x , u ) d t , (3.25)

subject to the dynamics

ẋ = f (t , x (t ), u (t )). (3.26)

Later on, we give a more detailed explanation of the collocation equations for a specific form of the

optimal control problem. For now we follow the notational conventions established in [28, 29, 30]

and give the differential form of the collocation scheme on [−1, 1].

In GPOPS-II, the user has the option to use the differential or integral form of the collocation

equations, which were shown to be equivalent in [29]. Consider the time interval [t0, t f ]and subdivide

it into K intervals [Tk , Tk+1]. The LGR collocation points are defined on the half-open interval [−1, 1),

so each interval [Tk , Tk+1] is mapped down onto [−1,1]. The authors define a new independent

variable on [−1, 1]. Let y ∈ [−1, 1], so t =
Tk+1−Tk

2
y +

Tk+1+Tk

2
. Thus a factor of

Tk+1+Tk

2
is carried

through the approximation.

Let x (k )(yj )be the state after the change of variables from grid points ti on [Tk , Tk+1] to collocation

points yj on [-1,1] where k = 1, .., K is the index of the interval. Then one can approximate the

dynamics at the collocation points yj , j = 1, ..., Nk + 1 in each interval on [−1,1] using a basis of

Lagrange polynomials,

x (k )(y )≈
Nk+1
∑

j=1

x (k )j p (k )j (y ), p (k )j (y ) =
Nk
∏

l=0,l 6= j

y − y (k )l

y (k )j − y (k )l

, (3.27)

where Nk is the order of the approximating polynomial in the k th interval. The authors in [30]

introduce an additional noncollocated point yNk+1 = 1 to account for the righthand endpoint of the

interval in the state approximation.

The approximation is then differentiated and substituted it into the dynamics to obtain the

equation
Nk+1
∑

j=1

x (k )j

d p (k )j (yi )

d y
=

Tk+1−Tk

2
f
�

x (k )i , u (k )i , y (k )i

�

, i = 1, ..., Nk , (3.28)

where u (k )i is the approximation to the control on the k th interval. The authors of the software

use the same variable for y (k )Nk+1 and y (k+1)
1 to enforce continuity across intervals [60]. The cost J is
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approximated by an LGR quadrature rule with

J ≈φ(x (k )Nk+1, Tk+1) +
K
∑

k=1

Nk+1
∑

j=1

Tk+1−Tk

2
w (k )

j L
�

y (k )j , x (k )j , u (k )j

�

. (3.29)

The scheme is called "adaptive" because GPOPS-II is able to change the number of mesh intervals

and the order of the approximating polynomial. There are several different mesh refinement schemes

available to the user, such as those outlined in [22] and [52]. We use the default ’hp-PattersonRao’

mesh refinement scheme established by Patterson, Hager, and Rao in [59]. While the software option

is called ’hp-PattersonRao’, the authors refer to their mesh refinement algorithm as a p h scheme in

[59] because the algorithm first seeks to increase the order of the approximating polynomial on a

given interval to satisfy a user-specified tolerance and only subdivides the interval if the polynomial

degree cannot be further increased.

In order to determine when to increase the order of the approximating polynomial or subdivide

the mesh, the authors utilize a user-specified error tolerance ε and an estimate of the relative error

in the state, e (k ). The authors obtain their estimate of the relative error by comparing the solution

on the current mesh, x (k )(yl ), to a polynomial approximation, x̂ (k )( ŷl ), l = 1, ..., N +2, they construct

with higher accuracy. The authors assume the solution to the optimal control problem is sufficiently

smooth, such that a larger number of LGR collocation points yields a more accurate approximation

of the dynamics. Then for the i th component of the state, the relative error e (k )i is

e (k )i ( ŷ
k

l ) =

�

�x̂ (k )i ( ŷ
(k )

l )− x (k )i ( ŷ
(k )

l )
�

�

1+max j

�

�x (k )i ( ŷ
(k )
j )

�

�

, (3.30)

where i = 1, ..., n , l = 1, ..., Nk + 2, and j = 1, ..., Nk + 2 where Nk is the number of LGR points on a

given interval and n is the dimension of the continuous-time state.

In order to determine how to refine the mesh, the user is asked to specify the following in the

GPOPS-II main file

%-------------------------------------------------------------------------%
%----------Provide Mesh Refinement Method and Initial Mesh ---------------%
%-------------------------------------------------------------------------%
mesh.method = ‘hp-PattersonRao’;
mesh.tolerance = eps;
mesh.maxiteration = Mmax;
mesh.colpointsmax = Pmax;
mesh.colpointsmin = Pmin;
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where mesh.method is the mesh refinement method, mesh.tolerance is the tolerance ε,

mesh.maxiteration is the maximum number of mesh iterations, and mesh.colpointsmax and

mesh.colpointsmin are the maximum and minimum allowable number of collocation points in

each interval respectively.

The argument of mesh.colpointsmin must be at least two, and the user must set

mesh.colpointsmax ≥ mesh.colpointsmin. Let e (k )max be the maximum relative error on the k th

mesh interval Sk and e (k )max > ε so the mesh needs to be refined. The method in [59] first seeks to

increase the degree of the approximating polynomial on Sk by checking if the predicted number

of collocation points Nk needed on the next mesh iteration is larger than Pmax, the maximum

polynomial degree specified by the user.

In order to determine how many new collocation points to add on the next mesh iteration, the

authors use the fact that the convergence rate for a global collocation scheme is approximately

O (N 2.5−c ) where N is the number of collocation points in the interval and c is the number of

continuous derivatives in the solution. For a sufficiently smooth solution, the authors are able to

take c =N . Thus, if the number of collocation points in the interval on the next iteration is N +P

the error bound decreases by a factor of N −P .

In order to obtain the desired tolerance ε, the authors need e (k )∗max = e (k )max(ε/e
(k )
max). They choose

Nk where N −P
k = ε/e (k )max. Then they use the expression for N −P to solve for P and obtain

N P = e (k )max/ε =⇒ P = logNk
(e (k )max/ε), (3.31)

where P =
 

logNk
(e (k )max/ε)

£

if Eq. 3.31 is not an integer.

Say Nk ≤ Pma x . Then GPOPS-II will increase the number of collocation points to Nk on the next

iteration, and repeat the process until either e (k )ma x < ε for all k or until Nk > Pma x . Now suppose

Nk > Pma x , so GPOPS-II can no longer increase the degree of the polynomial by adding more

collocation points. Then GPOPS-II will seek to subdivide the mesh interval Sk . The authors have

established two main criteria for the mesh division: the sum of the number of collocation points

in the new subintervals must be equal to the predicted polynomial degree on the next mesh and

the software must place Pmi n collocation points in each new subinterval. Then the number of new

subintervals created is max

��

Nk

Nmi n

�

, 2

�

[59].

GPOPS-II has two NLP solver options: the sequential quadratic programming method SNOPT

[31], which requires the user to purchase a license, and the open source interior point method IPOPT.

For our work we use IPOPT, which we explain in Section 3.2.2.1. There are three main options for

supplying derivatives to the NLP solver in GPOPS-II: a built-in sparse finite differencing scheme

[60], automatic differentiation with the software ADiGator [81], or user-supplied analytic derivatives.

Analytic derivatives must be passed to GPOPS-II using the assumed sparsity structure of the problem,

making this approach unsuitable for our application.
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The user has the option to specify the NLP solver use either first or second order derivatives. For

our work, when using numerical differentiation we provide IPOPT with second order derivatives

and we select GPOPS-II’s sparse finite differencing scheme with central differences. We note the

default setting in GPOPS-II is to supply only first derivatives to the NLP solver using the built-in

sparse finite difference method.

3.2.3 Control Parameterization

When using GPOPS-II on delayed optimal control problems, we require another numerical solution

to validate our results. We note that many direct transcription methods, such as shooting methods,

parameterize the control. Direct transcription codes generally involve dedicated solvers and hun-

dreds of grid points in the discretization. In this work when we refer to "control parameterization"

we are referring to parameterizing the control with a relatively low number of mesh segments,

solving the cost and constraint equations with a differential equation solver, and using a nonlinear

optimizer to find the value of our parameters and the cost.

To verify our algorithm, we begin with the following example

ẋ =−0.5x +u , x (0) = 0 (3.32)

with the cost

J =

∫ 5

0

10 (x −2)2+u 2 d t . (3.33)

Given Eq. 3.32 is an undelayed control problem we are able to use GPOPS-II to establish a "true"

solution. We set our tolerances at 1e −7 for both methods. We allow GPOPS-II five iterations and set

the initial number of mesh intervals to N = 4 and fix the order of our polynomial at P = 3. GPOPS-II

finds the cost to be J = 18.7137100.

We now solve Eq. 3.32 using control parameterization. We use the MATLAB solver ode45 to

find a solution to the system and then minimize the cost J over the control parameters u using

the MATLAB nonlinear solver fmincon. We initially use linear splines to interpolate our control

and divide our interval [0,5] into N = 30 segments. We obtain the cost J = 31.2462859. We plot

our state and control in Fig. 3.1. We can see the solutions obtained from control parameterization

oscillate significantly. The state from control parameterization in Fig. 3.1(a) roughly follows the

state obtained by GPOPS-II but the control in Fig. 3.1(b) does not approximate the control from

GPOPS-II well at all.

To improve the quality of our approximation using control parameterization we keep our initial

N = 30 but now interpolate our control using cubic splines instead. We obtain cost J = 20.4920886.

Fig. 3.2 shows that using cubic splines enables our code to approximate the answers obtained by

GPOPS-II much more closely, however there is still a significant amount of oscillation.
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(a) (b)

Figure 3.1 (a) State and (b) control obtained by GPOPS-II and control parameterization for Eq. 3.32 with
cost Eq. 3.33 using linear splines and N = 30 segments.

(a) (b)

Figure 3.2 (a) State and (b) control obtained by GPOPS-II and control parameterization for Eq. 3.32 with
cost Eq. 3.33 using cubic splines and N = 30 segments.

We attempt to find the initial number of segments N at which the quality of our approximation

degrades. Table 3.1 shows the number of segments and the cost obtained by our control parameter-

ization code. We can see the optimal number of initial segments is N = 28, as it gives us the best

Table 3.1 Cost obtained by control parameterization using cubic splines for different number of grid seg-
ments, N .

N J
27 19.7921053
28 19.5916043
29 19.6824370
30 20.4920886
32 20.2325944
35 20.3113542
36 25.1148795
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approximation to our cost J = 18.7137100 obtained from GPOPS-II.

Although N = 28 gives us the best value of the cost, our approximation still has a significant

amount of oscillation in the state and control. We therefore consider changing our initial iteration

value for the control u . Previously we took our initial value to be u = 0 ∗ (1 : N +1). Our new initial

value is u (0) = 6 ∗ (1 : N + 1)−1, and we continue to use N = 28. Our new cost is J = 18.7325981,

much closer to GPOPS-II’s result of J = 18.7137100. Fig. 3.3 shows that our state and control closely

resemble those obtained by GPOPS-II, demonstrating this problem’s sensitivity to the initial value

in the control. While adjusting the initial number of intervals N was helpful, it was not enough to

obtain a good solution for poor choice of initial iteration value in the control.

(a) (b)

Figure 3.3 (a) State and (b) control obtained by GPOPS-II and control parameterization for Eq. 3.32 with
cost Eq. 3.33 using cubic splines and N = 28 segments for new initial value u (0) = 6 ∗ (1 : N +1)−1.

Our computational results in this section demonstrate our control parameterization technique

is a valid method for solving optimal control problems, however the process is very computationally

intensive and the quality of the results is highly dependent upon the initial choice of parameters

for u . We can see from both our costs and plots in Fig. 3.1 - Fig. 3.3 that even for the relatively easy

problem in Eq. 3.32,Eq. 3.33 the initial value for the control is extremely important for obtaining

an optimal solution. These results are not surprising; the choice of initial value in the control is

often extremely important in the numerical solution of optimal control problems [10]. We therefore

expect the initial choice for u to be extremely important later in this work when we consider optimal

control problems with delays.
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CHAPTER

4

OPTIMAL CONTROL PROBLEMS WITH

STATE DELAYS

In Chapter 3, we discuss optimal control problems without delays. We outline several numerical

methods, including those underlying the software GPOPS-II. We are now ready to begin our discus-

sion of optimal control problems with delays. In this chapter, we focus on OCPs with state delays.

We review a selection of existing numerical methods for solving delay OCP. We then introduce two

new GPOPS-II problem formulations for solving OCPs with state delay. We discuss the necessary

conditions for each problem formulation, and explain how these necessary conditions can affect

our numerical results. We also introduce the collocation equations which result from an OCP with

state delay, and discuss how the additional delay terms may affect the performance of GPOPS-II.

4.1 Derivation of Necessary Conditions for the Delayed Problem

In Chapter 1 we give a general statement of the necessary conditions for a problem with state and

control delays in Theorem 1.3.1. We now derive the necessary conditions for the following optimal
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control problem with a state delay

J =

∫ T

0

x T Q x +u T R u d t (4.1a)

ẋ = Ax +C x (t −τ) +B u (4.1b)

x (t ) =φ(t ), t ∈ [−τ, 0], (4.1c)

where A, B , C are time-varying with piecewise smooth entries, R > 0, and Q ≥ 0. Then our augmented

cost is

J̃ =

∫ T

0

x T Q x +u T R u +λT ((Ax +C x (t −τ) +B u )− ẋ ) d t (4.2)

and our Hamiltonian is

H (t , x , x (t −τ), u ,λ) = x T Q x +u T R u +λT (Ax +C x (t −τ) +B u ). (4.3)

In order to find the necessary conditions for a minimum we wish to take the derivative of our

augmented cost functional and set this derivative to zero. Using Leibniz’s rule to take the derivative

of our augmented cost is straightforward for the increments δu , δλ in u and λ. However, in order

to take the derivative of the term λT C x (t −τ)with respect to δx in Eq. 4.3 we need to account for

the delay.

Consider the integral

∫ T

0

λT (t )C x (t −τ)d t =

∫ τ

0

λT (t )C x (t −τ)d t +

∫ T

τ

λT (t )C x (t −τ) d t . (4.4)

The integral on [0,τ] in Eq. 4.4 is defined by the prehistory φ(t ) in Eq. 4.1c, so its derivative with

respect to the increment δx is zero. For the integral on [τ, T ] in Eq. 4.4 we have

∫ T

τ

λT (t )C x (t −τ)d t =

∫ T−τ

0

λT (t +τ)C x (t )d t =

∫ T

0

χ[0,T−τ]λ
T (t +τ)C x (t ) d t , (4.5)

where χ[0,T−τ] is the characteristic function of [0, T −τ]. Then the derivative of our cost functional J

with respect to each of our increments δx ,δu and δλ is

d J̃ =
�

H −λT ẋ
�

d t
�

�

�

T
−
�

H −λT ẋ
�

d t
�

�

�

0
(4.6a)

+

∫ T

0

�

�

2R u +B T λ
�T
δu +

�

2Q x +AT λ+χ[0,T−τ]C
T λ(t +τ)

�T
δx

�

d t (4.6b)

+

∫ T

0

�

−λT δẋ + (Ax +C x (t −τ) +B u − ẋ )T δλ
�

d t . (4.6c)
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We note that δx and δẋ in Eq. 4.6 are not independent. To obtain independent increments we

integrate by parts, which gives us

−
∫ T

0

λT δẋ =−λT δx
�

�

�

T
+λT δx

�

�

�

0
+

∫ T

0

λ̇T δx d t . (4.7)

From [51]we have the relation

d x (T ) =δx (T ) + ẋ (T )d T . (4.8)

Substituting Eq. 4.8 into Eq. 4.7 and then into Eq. 4.6 we obtain

d J̃ =
�

H −λT ẋ +λT ẋ
�

d t
�

�

�

T
−λT d x

�

�

�

T
−
�

H −λT ẋ +λT ẋ
�

d t
�

�

�

0
+λT d x

�

�

�

0
(4.9a)

+

∫ T

0

�

2Q x +AT λ+χ[0,T−τ]C
T λ(t +τ)

�T
δx + λ̇T δx d t (4.9b)

+

∫ T

0

�

2R u +B T λ
�T
δu + (Ax +C x (t −τ) +B u − ẋ )T δλ d t . (4.9c)

Now δx ,δu , and δλ are independent increments. Since our control u is unconstrained, to obtain

our necessary conditions for a minimum we set their coefficients equal to zero. We obtain

Hu = 2R u +B T λ= 0. (4.10)

So Hu = 0 and our integral becomes

d J̃ =H d t
�

�

�

T
−λT d x

�

�

�

T
−H d t

�

�

�

0
+λT d x

�

�

�

0
(4.11a)

+

∫ T

0

�

2Q x +AT λ+χ[0,T−τ]C
T λ(t +τ)

�T
δx d t (4.11b)

+

∫ T

0

λ̇T δx + (Ax +C x (t −τ) +B u − ẋ )T δλ d t . (4.11c)

Since λ and x are unconstrained and δx ,δλ are independent we can set their coefficients to zero to

obtain

ẋ = Hλ = Ax +C x (t −τ) +B u (4.12a)

−λ̇ = Hx = 2Q x +AT λ+χ[0,T−τ]C
T λ(t +τ). (4.12b)

For our boundary conditions, we note that our endpoints 0, T are fixed. Thus d t
�

�

�

0
= d t

�

�

�

T
= 0.

Furthermore, d x (0) = 0 since we have fixed our initial condition. However, d x (T ) is free, so we have
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the boundary condition

λ(T ) = 0. (4.13)

The necessary conditions for our problem Eq. 4.1 are

ẋ =Hλ = Ax +C x (t −τ) +B u (4.14a)

−λ̇=Hx = 2Q x +AT λ+χ[0,T−τ]C
T λ(t +τ) (4.14b)

Hu = 2R u +B T λ= 0 (4.14c)

x (t ) =φ(t ), t ∈ [−τ, 0] (4.14d)

λ(T ) = 0. (4.14e)

4.2 Review of Existing Numerical Methods for Delayed Optimal Control

Problems

Later in this work we demonstrate how to use GPOPS-II to solve the necessary conditions, Eq. 4.14,

which we just derived. In this section, we discuss the pre-existing methods for solving delayed OCP.

We rely on these methods to validate our results.

4.2.1 Method of Steps

We originally introduce the method of steps (MOS) in Chapter 2 as a way to reduce a DDE to a

system of ODEs. MOS can also be used to rewrite a delayed optimal control problem as a system of

control problems without the delay, enabling the use of a wider range of optimal control solvers. We

seek to use MOS to rewrite an optimal control problem with constant delay in the state in order to

solve it with GPOPS-II, which will be very useful in establishing a “true” solution later in this work.

Given a general optimal control problem with a state delay

ẋ = f (t , x (t ), x (t −τ), u (t )) (4.15a)

J =

∫ T

0

L (t , x (t ), u (t )) d t (4.15b)

we can rewrite the cost as
N
∑

i=1

∫ τ

0

L (t , xi (t ), ui (t )) d t (4.16)
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and our dynamics as the system

ẋ1(t ) = f (t , x1(t ),φ(t ), u1(t )) (4.17a)

ẋi = f (t , xi (t ), xi−1(t ), ui (t )), i = 2, ..., N (4.17b)

x1(0) = φ(0) (4.17c)

xi (0) = xi−1(τ), i = 2, ..., N . (4.17d)

To illustrate, choose the specific example

min

∫ 5

0

10(x (t )−2)2+u 2(t ) d t (4.18a)

subject to

ẋ (t ) = −0.5x (t ) + c x (t −τ) +u (t ) (4.18b)

x (t ) = 1, −τ≤ t < 0 (4.18c)

x (0) = 1 (4.18d)

with τ= 1 and c =+1.2. The MOS formulation of this problem is then equivalent to minimizing the

cost
5
∑

i=1

∫ 1

0

10(xi (t )−2)2+u 2
i (t ) d t (4.19a)

subject to the following dynamics on 0≤ t ≤ 1:

ẋ1(t ) = −0.5x1(t ) +1.2+u1(t ) (4.19b)

ẋi (t ) = −0.5xi (t ) +1.2xi−1(t ) +ui (t ), i = 2, 3, 4, 5 (4.19c)

x1(0) = 1 (4.19d)

xi (0) = xi−1(1), i = 2, 3, 4, 5. (4.19e)

We note that the MOS problem formulation in Eq. 4.19 is now a BVP, not just an initial value problem.

We give the sample code required to solve this problem in GPOPS-II in the Appendix.

4.2.2 Control Parameterization

In addition to MOS we demonstrate in Chapter 3 that control parameterization can be a viable

method for solving an optimal control problem accurately, though computational times often run

long and the user would need to implement their own grid refinement scheme. The overall method

for using control parameterization with a delayed optimal control problem is essentially identical
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to that described in Chapter 3, the key difference being we need to introduce an integrator which is

capable of handling delays.

We choose to implement control parameterization in MATLAB using the DDE integrator dde23
and the nonlinear optimizer fmincon. We discuss the underlying Runge-Kutta method utilized in

dde23 in Chapter 2. We again choose to parameterize our control with N = 28 subintervals and

cubic splines. In order to pass our vector of control parameters u to the integrator dde23, we need

to make our constant prehistory into a column vector:

function s = ddehist(t,u)
s = [1;0]
end

and pass u as an additional parameter argument to our derivative function:

function dydt = dde(t,y,Z,u)

where Z is our delay variable.

Then our function call to dde23 is

sol = dde23(@dde, tau, @ddehist,[t0,tf],options,umin)

where umin is the vector of optimized parameters we obtain from fmincon. We solve several com-

putational examples using this technique in Chapter 5 and validate our initial results with data

obtained from the FORTRAN solver SOSD. We demonstrate our code solves relatively simple delayed

state optimal control problems accurately, enabling us to utilize our code as a "true" solution to

which we compare our results from GPOPS-II.

4.2.3 Direct Transcription

The advantage of control parameterization implemented using dde23 and MATLAB is the user does

not require any specialized software. This technique may be generalized to any DDE solver and

nonlinear optimizer in another computing language. However, the user loses the benefit of powerful

grid refinement techniques, sparse solvers, and other solver options present in specialized optimal

control software. Additionally, computational times can run upwards of 20 minutes on a standard

laptop. For more advanced applications, it is preferable to use a direct transcription code, which

uses much finer grids than the control parameterization approach we describe in the previous

section.

The basic process for solving a delayed optimal control problem using direct transcription is

essentially identical to applying direct transcription to an optimal control problem without delay: the

software first discretizes the optimal control problem on a given time grid, then passes the nonlinear

system to an optimizer. If the tolerances are met, the process stops. If not, the grid is refined and
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the optimization continues. A major difference occurs during the discretization: the software must

now account for new dependencies among the delay terms. Furthermore, the structure and sparsity

pattern of Jacobians is altered, which can impact the numerical solvers used on each mesh iteration.

Direct transcription methods have two key advantages in that they do not require the delayed

necessary conditions, which feature an advance in the adjoint and can become quite complicated,

and they are more global methods. Solving a delayed problem requires access to past values of either

the state or the control. In a direct transcription method, the entire state and control vectors are

available unlike in a step by step integrator.

4.3 Previously Existing Solvers for Delayed Optimal Control Problems

Direct transcription methods underly some of the most powerful commercially-available optimal

control software packages. As noted in our introduction there are commercially-available software

packages which solve optimal control problems with delays, each with its own advantages and

drawbacks. For our purposes, we limit our discussion here to the two software packages we utilize

in our work. We utilize the FORTRAN-based Sparse Optimization Suite, and later in this work we

discuss the use of the Altair software Activate.

4.3.1 SOS

There are several software tools available within the Sparse Optimization Suite (SOS); we utilize

the package SOSD to validate the results from GPOPS-II and control parameterization. SOS is

another direct transcription method. It utilizes three possible discretization methods: trapezoid,

Hermite-Simpson, or a higher order Runge-Kutta method. In particular SOSD will utilize a second-

order trapezoid discretization at the start of the computation, and then move to a fourth order

Hermite-Simpson discretization on subsequent finer grids.

Suppose we have a delayed optimal control problem in the same format as that given in Eq. 4.1a

- Eq. 4.1b . SOSD introduces a pseudovariable y for the delayed term x (t −τ). Then we have the

dynamics

ẋ = f (x (t ), u (t ), y (t ), t ) (4.20a)

0 = y (t )− x (t −τ), (4.20b)

a delayed differential algebraic equation [12].

After the software discretizes the problem, it is passed to a nonlinear optimizer. SOS is equipped

with both sequential quadratic programming (SQP) or interior point (barrier) methods. Our data

use the SQP method; in either case the optimizer requires both the Jacobian and Hessian of the

problem. SOS utilizes a finite difference scheme to compute the necessary derivatives. The solver
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then checks to see if the computed solution meets the user-specified error tolerances. If not, the

solver refines the grid and begins the process again. This powerful and efficient grid refinement is a

major advantage of using a direct transcription method on challenging optimal control problems,

and why we seek to use GPOPS-II on delayed optimal control problems rather than relying on our

own control parameterization method.

4.3.2 Activate

SOS is a powerful optimization software but requires the user to handle multiple FORTRAN files.

For cases when a user may not want to script extensively, another option is Activate. Activate is a

graphical modeling and simulation software produced by the company Altair. It is written in Open

Matrix Language (OML), an interpreted language similar to MATLAB. Activate relies on the use of

block diagrams to build models, similar to those used in Simulink. Activate also has the option for

scripting in OML or generating code from the block diagram [19]. We will discuss Active in Section

5.3.

4.4 New Use of GPOPS-II on Delayed Optimal Control Problems

Having reviewed some of the existing methods of solving DDEs and delayed OCP, we now turn

our attention to the software GPOPS-II. In this work, we consider several new applications of

using GPOPS-II to solve problems with state and control delays. We establish two new problem

formulations, which we refer to as GPOPS-IIm and GPOPS-IIow. In addition to using GPOPS-II

to solve delayed OCP, we demonstrate how to utilize GPOPS-II as an integrator on DDEs as well

as a boundary value problem solver on the necessary conditions. We consider how the necessary

conditions for different problem formulations affect their numerical convergence to the correct

answer.

4.4.1 Formulating a Delayed State Optimal Control Problem in GPOPS-II

We begin our discussion by exploring how to implement an optimal control problem with state

delay in GPOPS-II. The software GPOPS-II gives the user access to the entire state and control

history of the computation [61]. Thus, we are able to formulate a delay problem in such a way as to

allow GPOPS-II to attempt to solve the problem [11]. We note the code given below implements the

dynamics and prehistory for the OCP given in Eq. 4.18 with τ= 1.

We introduce the following code snippet into the “Continuous” file:

tau = input.auxdata.tau; %value of the delay
a = input.auxdata.a; % coefficient of state in dynamics
b = input.auxdata.b; %coefficient of control in dynamics
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c = input.auxdata.c; %coefficient of delay term in dynamics
x = input.phase.state(:,1); %full state history
u = input.phase.control(:,1); %full control history
t = input.phase.time(:,1) % time grid of all collocation points
NN = iter(1,1): %iteration count
if NN < 4
dx = a*x + u; %initialize without delay term
else
ts = t-tau; %delayed time vector
tsn = ts<=0; %delayed times <= 0
tsp = ts>0; %delayed times > 0
xd1 = ones(size(tsn)); %prehistory for this example
xd2 = interp1(t,x,ts(tsp),’linear’); %linearly interpolate delay term
xd = [xd1;xd2]; %delayed state
dx = a*x + c*xd + b*u; %dynamics for this example
end
phaseout.dynamics = dx; %dynamics passed to GPOPS-II to solve

where the "if" statement allows GPOPS-II to initialize without the delay term, and xd2 linearly

interpolates the vector of delayed values. We refer to this problem formulation, with an interpolation

of the delay term, as GPOPS-IIm [11].

We will demonstrate in Chapter 5 that GPOPS-II struggles to solve the GPOPS-IIm problem

formulation accurately for longer delays. We know from [60] that GPOPS-II exploits an assumed

sparsity pattern in the first and second order derivatives of the problem. We hypothesize these

presumed sparsity patterns ignore crucial derivative dependencies introduced by the delay term.

We note the user has the option to pass analytic derivatives to GPOPS-II; however the user needs

to specify the location of each derivative and the associated variable. This structure means we cannot

specify the appropriate derivative dependencies introduced by the delay term. We therefore explore

additional methods of solving a delayed optimal control problem using GPOPS-II. For example,

an iterative method we refer to as GPOPS-IIow is introduced later to investigate the effect of these

derivative dependencies.

In the following section, we give the form of the collocation equations for GPOPS-IIm. Then we

give the necessary conditions for the delayed problem, on which we use the GPOPS-IIm formulation.

Later, we show that as the delay τ approaches zero, the necessary conditions for delay problem,

which we pass to GPOPS-IIm, converge to the undelayed case, enabling GPOPS-IIm to obtain an

accurate solution to some optimal control problems for small delays.
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4.4.1.1 Collocation Equations for Delayed State Optimal Control Problems

Having explained how we implement GPOPS-IIm, we now give the collocation equations for GPOPS-

IIm, which demonstrate the actual equations which we ask GPOPS-II to solve. We will identify which

terms are not properly calculated by GPOPS-IIm, introducing errors into the computation. We use

the notation and conventions established in [60].

We consider a scalar OCP with state delay, so we have

ẋ = a (t )x (t ) + c x (t −τ) + b (t )u (t ), t ∈ (0, T ] (4.21a)

x = φ(t ), t ∈ [−τ, 0] (4.21b)

J =

∫ T

0

x (t )2+u (t )2d t (4.21c)

on the interval [0, T ] where τ is the value of the delay, u is our control, J is our cost, and φ(t ) =

φ = 1 is our prehistory. We allow that the coefficients a (t ) and b (t )may vary with time. GPOPS-II

approximates the system on K mesh intervals, k = 1, ..., K , [Tk , Tk+1].

Because GPOPS-II uses the Legendre Gauss Radau collocation points defined on [−1,1), each

mesh interval [Tk , Tk+1] is mapped to [−1, 1] via
t0− t f

2
where t0 and t f depend upon the endpoints

of each interval. The approximation of the state and control are defined in

x (k )(y )≈
Nk+1
∑

k=1

x (k )j p (k )j (y ) (4.22)

and

u (k )(y )≈
Nk+1
∑

k=1

u (k )j p (k )j (y ) (4.23)

respectively, where Nk is the order of the approximating polynomial on that mesh interval, and we

have that our y are in [−1, 1]. Here, p (k )j are the Lagrange interpolating polynomials, defined by

p (k )j (y ) =
Nk+1
∏

l=1,l 6= j

y − y (k )l

y (k )j − y (k )l

. (4.24)

We seek to obtain the value of our delayed variable at a grid point y (k )j , the value of our state x at

y (k )j −τ. However, y (k )j −τmay not always be a grid point. We use the built-in MATLAB function

interp1 to linearly interpolate our state from the time grid y (k )j to the delayed time grid y −τ, for

those y −τ> 0. To obtain x (y (k )j −τ), MATLAB interpolates the function at neighboring grid points.

Let y (k )j −τ ∈ [y
(k )
j−s , y (k )j−s+1]. Then our delayed variable is

x (y (k )j −τ) = 1, y (k )j −τ≤ 0 (4.25)
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and for those y (k )j −τ> 0 we have

x (y (k )j −τ) = x (y (k )j−s ) + (y
(k )
j − y (k )j−s )

x (y (k )j−s+1)− x (y (k )j−s )

y (k )j−s+1− y (k )j−s

, (4.26)

where j = 1...N . Then, to use the LGR nodes on [-1,1], the dynamics will be approximated as

Nk+1
∑

j=1

d p (k )j (y )

d y
x (k )j =

t f − t0

2
x (k )j a (y (k )j )

+
t f − t0

2

 

c x (k )j

 

p (k )j (y
(k )
j−s ) +

y (k )j − y (k )j−s

y (k )j−s+1− y (k )j−s

(p (k )j (yj−s+1)−p (k )j (y
(k )
j−s ))

!

+u (k )j b (y (k )j )

!

. (4.27)

The matrix structure we obtain for these system dynamics is the same as that given in [60]with

the addition of banded blocks to the matrix approximating the state. These banded entries are

the result of our linear interpolation of the delay term. These delayed entries fill in some of the

sparsity, resulting in a largely upper triangular structure. We note these entries will be neglected

when GPOPS-II calculates the Jacobians, and therefore result in approximate Jacobians being used

by IPOPT. Substituting the approximation into our cost, Eq. 4.21b, GPOPS-II uses the following

quadrature rule from [60]

J ≈
K
∑

k=1

Nk+1
∑

j=1

t f − t0

2
w (k )

j

�

p (k )j

�2
(y (k )j )

�
�

x (k )j

�2
+
�

u (k )j

�2�

. (4.28)

The diagram in (4.29) demonstrates the structure of the matrix for the dynamics given in Eq. 4.27.

We assume fixed polynomial order P = 2 and that the delay will be a grid point, y (k )j+τ. We see that

in rows corresponding to the dynamics at the collocation points, extra entries are introduced by

the delay terms. These delay terms will not be taken into account by GPOPS-II when it passes the

Jacobians to IPOPT, and in Chapter 5 we give conditions on how the size of these delay terms affects
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the convergence of IPOPT to the correct solution.
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4.4.1.2 Case A: Boundary Value Problem for the Delayed Tracking Problem

As we note above, GPOPS-IIm neglects the contributions of the delay terms when it calculates the

Jacobians of the delayed OCP. We now give the necessary conditions for optimality for a tracking

problem with state delay, for the form of the delay problem we pass to GPOPS-IIm. We will refer to

this as Case A in later sections.

Our interest in the necessary conditions are the following: first, given that GPOPS-IIm performs

well as an integrator on a simple delayed system without a control, we suppose GPOPS-IIm may

obtain a more accurate solution to the delayed optimal control problem by solving the necessary

conditions. Second, later in this chapter we are able to demonstrate when the necessary conditions

for OCP with state delay approach those of an OCP without a delay. This helps us to predict when

GPOPS-IIm will perform well on an OCP with state delay. We present our numerical results for

utilizing GPOPS-IIm in Chapter 5.

Suppose we have the system

ẋ = Ax +C x (t −τ) +B u (4.30a)

J =

∫ T

0

(x − r )T Q (x − r ) +u T R u d t , Q ≥ 0. (4.30b)

Here A, B , C may be time-varying with piecewise smooth entries and R > 0. Our Hamiltonian is

H (t , x , x (t −τ), u ,λ) = (x − r )T Q (x − r ) +u T R u +λT (Ax +C x (t −τ) +B u ) . (4.31)
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Then the necessary conditions, which we derived at the beginning of this chapter, give the

boundary value problem

ẋ = Ax +C x (t −τ) +B u , t ∈ [0, T ] (4.32a)

λ̇ = −2Q (x − r )−AT λ−χ[0,T−τ]C
T λ(t +τ) (4.32b)

λ(T ) = 0 (4.32c)

0 = 2R u +B T λ (4.32d)

x (t ) = φ(t ), t ∈ [−τ, 0], (4.32e)

where x (t ) = φ(t ) is the prehistory for our delay term and χ is the characteristic function. Then

from Eq. 4.32d we have

u (t ) =−
1

2
R−1B T λ. (4.33)

Substituting Eq. 4.33 into our dynamics Eq. 4.32 gives

ẋ = Ax +C x (t −τ)−
1

2
B R−1B T λ (4.34a)

λ̇ = −2Q (x − r )−AT λ−χ[0,T−τ]C
T λ(t +τ) (4.34b)

λ(T ) = 0 (4.34c)

x (t ) = φ(t ), t ∈ [−τ, 0]. (4.34d)

4.4.2 An Iterative Formulation for the Delayed State Optimal Control Problem

As we mention at the beginning of this section, we suppose the GPOPS-IIm formulation neglects

contributions from the delay terms in its derivative calculations, causing difficulty for the solver. We

therefore introduce a new problem formulation to test the effect of these delay terms. In Chapter 2

we explain how to use GPOPS-II to solve a DDE using the iterative method waveform relaxation.

We consider we may be able to obtain similarly successful results for the delayed optimal control

problem using an iterative method, which we call waveform optimization and will refer to as GPOPS-

IIow.

In this GPOPS-IIow formulation, the delay term is treated as a known function. At the first

iteration, we solve the delayed optimal control problem given in Eq. 4.30 with delay τ= 0. We then

take τ 6= 0 and pass in the initial state and time as parameters, and use the initial state and time to

interpolate our delay term in the "continuous" file.

Thus our subsequent function calls are

[time1,state1,control1] =wavef(a,c,tau,time0,state0),

where a , c are coefficients, τ is the delay, and time0 and state0 are the values of the time grid and

state obtained from the previous iteration. We include our numerical results for this approach in
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Chapter 5. Below we motivate the BVP for the waveform optimization problem and then demonstrate

that as the delay τ approaches zero, the GPOPS-IIow formulation does not approach the undelayed

formulation, causing the numerical approximation to converge to the incorrect solution.

4.4.2.1 Case B: Boundary Value Problem for Waveform Optimization Problem

Waveform optimization is an iterative method, and so we treat the delay term like a known function

interpolated from past values. We refer to this formulation as Case B. Then, on iteration N, we have

the system

ẋN = AxN +C xN−1(t −τ) +B uN (4.35a)

JN =

∫ T

0

(xN − r )T Q (xN − r ) +u T
N R uN d t . (4.35b)

Our Hamiltonian is

HN (t , xN , xN−1(t −τ), uN ,λN ) =

(xN − r )T Q (xN − r ) +u T
N R uN +λ

T
N (AxN +C xN−1(t −τ) +B uN ) . (4.36)

Then we have the boundary value problem

ẋN = AxN +C xN−1(t −τ) +B uN (4.37a)

λ̇N =−2Q (xN − r )−AT λN (4.37b)

0= 2uN +B T λN (4.37c)

λN (T ) = 0 (4.37d)

xN−1 =φ(t ), t ∈ [−τ, 0], N = 0 (4.37e)

and we have

uN =−
1

2
R−1B T λN . (4.38)

Substituting Eq. 4.38 into our dynamics gives

ẋN = AxN +C xN−1(t −τ)−
1

2
B R−1B T λN (4.39a)

λ̇N =−2Q (xN − r )−AT λN (4.39b)

λN (T ) = 0 (4.39c)

xN−1 =φ(t ), t ∈ [−τ, 0], N = 0. (4.39d)
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4.4.3 Error Estimates Between Problem Formulations

Now that we have established the form of the delayed boundary value problem for both GPOPS-

IIm and GPOPS-IIow, we seek to obtain bounds on the differences between the boundary value

problems for our two delayed problem formulations and the undelayed case. We show as the delay

τ approaches zero the delayed boundary value problem for GPOPS-IIm converges to the undelayed

problem, Case C, enabling us to obtain an optimal solution using the GPOPS-IIm formulation.

However as the delay increases the error term grows, and GPOPS-IIm is no longer able to find an

optimal solution. In the case of GPOPS-IIow we demonstrate that the boundary value problem

for GPOPS-IIow does not converge to the undelayed case; this explains why we do not see a more

accurate solution using GPOPS-IIow as we decrease the value of the delay.

4.4.3.1 Convergence of Delayed Problem

We now attempt to estimate the differences between the states x for each problem formulation and

the multipliersλ for each problem formulation. We first consider Case A, the GPOPS-IIm formulation

in Eq. 4.34, and Case C in Eq. 3.9, the undelayed problem formulation. Assume our solutions to

Eq. 4.34 and Eq. 3.9 exist and are piecewise smooth. We can use a Taylor expansion to obtain a first

order approximation of x (t −τ) in Eq. 4.34a and Eq. 3.9a. For our dynamics, let xA ,λA be the x ,λ

from Case A and xC ,λC be the x ,λ from Case C. Then we have

ẋA = AxA +C xA(t )−O (τ)−
1

2
B R−1B T λA (4.40)

and

ẋC = AxC +C xC (t )−
1

2
B R−1B T λC , (4.41)

where the O (τ) term in Eq. 4.40 depends on ‖x ′A‖∞.

Similarly, taking a first order Taylor approximation around λ(t +τ) gives us

λ̇A =−2Q (xA − r )−AT λA +χ[0,T−τ](C
T λA(t ) +O (τ)), (4.42)

where the O (τ) in Eq. 4.42 depends on ‖λ′A‖∞. Now, the characteristic function χ[0,T−τ] in Eq. 4.42

is one almost everywhere except on the interval [T −τ, T ]. Thus we can take χ[0,T−τ] = 1 with error

term Ô (τ), so we obtain

λ̇A =−2Q (xA − r )−AT λA −C T λ(t ) + Ô (τ) +O (τ)2. (4.43)

Then our equation for ẋA is as in Eq. 4.40, and our equation for λ̇A is as in Eq. 4.43. Let δxAC be
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xA − xC and δλAC =λA −λC . Then we have the system

δ̇x AC = AδxAC +CδxAC −
1

2
B R−1B T δλAC +O (τ) (4.44a)

δ̇λAC =−2QδxAC −AT δλAC −C T δλAC + Ô (τ) +O (τ)2 (4.44b)

with the boundary conditions δxAC (0) = 0 and δλAC (T ) = 0.

In, general this is a system of the form

Z ′ = P Z +O (τ) (4.45)

with constant linear boundary conditions where Z = [δxAC ;δλAC ]. For the case τ= 0 we know the

boundary value problem has a unique solution. Then for values of τ near 0 we will have a solution

and solutions will be continuous in τ [2]. Thus as the delay τ in Case A approaches 0, our solutions

from Case A will approach those of Case C.

4.4.3.2 Convergence of Waveform Optimization Problem

We now consider Case B, waveform optimization, and Case C, the undelayed problem. By obser-

vation, we know the iteration in Case B converges; suppose Eq. 4.39a and Eq. 4.39b converge to

ẋB = AxB +C xB (t −τ)−
1

2
B R−1B T λB (4.46a)

λ̇B = −2Q (xB − r )−AT λB . (4.46b)

Again, assume our solutions exist and are piecewise smooth. Then we can obtain first order approxi-

mation of x (t −τ) in Eq. 4.39a. We have

ẋB = AxB +C xB (t )−Õ (τ)−
1

2
B R−1B T λB , (4.47)

where the Õ (τ) in Eq. 4.47 depends on ‖x ′B ‖∞. Define xA − xB as δxAB and let λA −λB be δλAB .

Then we have the system

δ̇x AB = AδxAB +CδxAB −
1

2
B R−1B T δλAB +O (τ) (4.48a)

δ̇λAB = −2QδxAB −AT δλAB −C T λA +O (τ) +O (τ)2. (4.48b)

We can see that unlike Eq. 4.44b, Eq. 4.48b contains an extra term in the multiplier λ. The equation

in our multiplier Eq. 4.46b is missing a C T λB term because in waveform optimization we treat the

delay term as a known function. Thus as we decrease the delay in Eq. 4.39 it does not approach the
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solution for the zero delay case as given in Eq. 3.9.
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CHAPTER

5

NUMERICAL RESULTS

Here we present the numerical results of our extensive computational experimentation. As we

explain in our discussion of GPOPS-II in Chapter 3, GPOPS-II adapts the number of mesh intervals

and the order of the interpolating polynomial. In our case, we find that allowing GPOPS-II to vary the

order of the polynomial does not substantially increase the accuracy of our results but does increase

run time. Using the hp-PattersonRao mesh method, GPOPS-II assumes a degree of smoothness

in the solution when it increases the order of the polynomial. Many of our states and controls have

discontinuities at the value of the delay, and reduced smoothness at multiples of the delay, so those

assumptions of smoothness do not hold. Therefore in many of the examples we discuss, we fix the

order of the interpolating polynomial. At the end of the chapter, we present an analytical analysis

based on our numerical results.

5.1 Use of GPOPS-II as a Delay Differential Equation Solver

Before using GPOPS-II to solve a delayed optimal control problem, we first seek to determine if

GPOPS-II can accurately resolve delayed dynamics. We therefore use GPOPS-II as an integrator to

solve several delayed differential equations without a control, as well as a boundary value problem

solver on the necessary conditions and MOL formulations. We utilize several different approaches:

the method of steps (MOS), GPOPS-II and waveform relaxation (GPOPS-IIw), GPOPS-II with a linear

interpolation of the delay term (GPOPS-IIm), and the method of lines (MOL).
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5.1.1 Using the MOS Formulation

Here we present our results for using GPOPS-II on the MOS example Eq. 4.19 given in Chapter 4. We

allow three mesh iterations, fix our polynomial order at P = 3, and set our tolerances to 1e −07. We

include solution plots for the stable c =−1.2 and unstable c =+1.2. We compare our MOS solutions

to data from SOSD in Fig. 5.1 and Fig. 5.2.

We obtain J = 43.421409 from MOS and J = 43.421408 from SOSD, a difference of 3.2242e −06%

for c = −1.2. For c = +1.2 we obtain J = 8.0179012 from MOS and J = 8.017899 from SOSD, a

difference of 2.7439e −05%. Our results demonstrate that using GPOPS- II with MOS can be a highly

effective technique. We are able to use GPOPS-II with MOS to validate results from other methods

later in this chapter.

(a) (b)

Figure 5.1 MOS (a) State and (b) control from Eq. 4.19 with c =+1.2, τ= 1.

(a) (b)

Figure 5.2 MOS (a) State and (b) control from Eq. 4.19 with c =−1.2, τ= 1.
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5.1.2 Solving a DDE Using Waveform Relaxation

While MOS is a useful technique, it can be impractical for systems where the delay is short relative

to the time interval. Therefore we now consider behavior of GPOPS-II as it solves a simple delay

differential equation (DDE) using waveform relaxation, GPOPS-IIw [11]. Consider the problem

ẋ = a x + c x (t −τ), (5.1)

where a and c are constants andτ is the delay. We call GPOPS-II recursively and compare our results

to MATLAB’s built in DDE solver, dde23, as well as to waveform relaxation using the MATLAB solver

ode45.

5.1.2.1 Example

We take a =−.5, c =−1.2, and τ= 1.0 to obtain the problem

ẋ =−.5x −1.2x (t −1.0). (5.2)

For both GPOPS-II and ode45 we take five iterations. We allow GPOPS-II one mesh iteration on the

first function call and four mesh iterations during subsequent function calls. We set our tolerances

to 1e −06 for the first iteration and 1e −09 for the remaining four. Further iterations do not improve

the size of the residual and are therefore omitted. Fig. 5.4 shows that while GPOPS-II and ode45 are

able to solve the problem to the same order of accuracy, 1e −05, ode45 is slightly more accurate.

The residuals are nearly identical in shape, however GPOPS-II’s residual in Fig. 5.4(a) has a great

deal of oscillation on [0,2]. Interestingly, Fig. 5.3 demonstrates that GPOPS-II converges almost

immediately, while ode45 takes a full three iterations before it converges. Using GPOPS-IIw we are

able to accurately solve a DDE, without needing to rewrite the DDE to eliminate the delay as in MOS.

5.1.2.2 Comparison of GPOPS-IIm as a DDE Solver to Matlab DDE Solver

Both MOS and GPOPS-IIw are successful at solving a DDE, however we are also interested in using

GPOPS-II directly as an integrator on a DDE. We now compare the ability of GPOPS-IIm to solve a

basic delay differential equation (DDE) to that of the MATLAB software package dde23. We treat the

solution from dde23 as the "true" solution to the DDE. We have four examples: one asymptotically

stable Eq. 5.3a, one barely asymptotically stable Eq. 5.4a, one completely unstable Eq. 5.5a, and one

slightly unstable Eq. 5.6a:

ẋ = −2x + x (t −2) (5.3a)

λ = −0.2731 (5.3b)
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(a) (b)

Figure 5.3 (a) Solutions obtained by GPOPS-II and dde23 and (b) solutions obtained by ode45 and dde23
to Eq. 5.2 for c =−1.2 and τ= 1.0.

(a) (b)

Figure 5.4 (a) Residuals from GPOPS-IIw and dde23 and (b) residuals from ode45 and dde23 for Eq. 5.2
with c =−1.2 and τ= 1.0.

ẋ = −3x +2.8x (t − .3) (5.4a)

λ = −0.1084 (5.4b)

ẋ = −3x +3.4x (t − .3) (5.5a)

λ = 0.2011 (5.5b)

ẋ = −3x +3.2x (t − .3) (5.6a)

λ = 0.1029. (5.6b)

To find the roots of our delay differential equations we use the root finding package developed

for MATLAB by Zhen Wu and Wim Michiels [82]. We note the software gives both an approximate

and corrected eigenvalue. We use the approximate eigenvalues. To compare GPOPS-II and dde23
we first solve Eq. 5.3a-Eq. 5.6a using the GPOPS-IIm approach we describe in Chapter 4. We then

solve Eq. 5.3a-Eq. 5.6a in dde23 and output the solution onto the time grid points we obtain from
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GPOPS-II. This enables us to plot the two solutions, as well as the difference between them, to asses

how well GPOPS-IIm finds the solution to the DDE relative to dde23. In all cases, we set GPOPS-II

to a maximum of three iterations. We set all our tolerances in both packages to 10−7. We initially

solve the equations on a shorter interval, [0,4], and later repeat our comparison on longer intervals.

5.1.2.2.1 Solutions on a Short Interval

Interestingly, the solutions of GPOPS-II and dde23 agree very well in all cases for the short interval

[0,4]. Our solution plots from GPOPS-IIm in Fig. 5.5-Fig. 5.8 are visually indistinguishable from

dde23. We expect that GPOPS-IIm would be able to solve the asymptotically stable equation Eq. 5.3a

very well but thought the software may struggle when it came to the unstable equation Eq. 5.5a.

However we can see in Fig. 5.7(b) and Fig. 5.8(b) that the two solutions differ on the order 10−5.

(a) (b)

Figure 5.5 (a) Asymptotically stable Eq. 5.3a solution in dde23 and GPOPS-IIm and (b) difference of solu-
tions on [0,4]with tolerances 10−7.

5.1.2.2.2 Solutions on a Longer Interval

Next we examine the behavior of GPOPS-IIm relative to dde23 on longer intervals. We begin with

[0, T ] = [0,20] and gradually increase the length of the interval to observe the change in behavior.

The two software solutions agreed very well until we reach a final time of T = 23.95. Attempting to

take a longer time interval is too computationally expensive for GPOPS-IIm to find a solution.

We can see from Fig. 5.9 and Fig. 5.10 that GPOPS-IIm is still able to approximate the solution

very well. Surprisingly, as shown in Fig. 5.12, GPOPS-IIm even does well with the approximation of

the slightly unstable example in Eq. 5.6a. However we can see in Fig. 5.11 that GPOPS-IIm is unable

to successfully approximate the very unstable example Eq. 5.5a on a longer interval.

We now increase all of our tolerances to 1e −08 and re-run several examples to see if GPOPS-IIm’s
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(a) (b)

Figure 5.6 (a) Barely asymptotically stable Eq. 5.4a solution in dde23 and GPOPS-IIm and (b) difference of
solutions on [0,4]with tolerances 10−7.

(a) (b)

Figure 5.7 (a) Unstable Eq. 5.5a solution in dde23 and GPOPS-IIm and (b) difference of solutions on [0,4]
with tolerances 10−7.

(a) (b)

Figure 5.8 (a) Slightly unstable Eq. 5.6a solution in dde23 and GPOPS-IIm and (b) difference of solutions
on [0,4]with tolerances 10−7.

approximation improves. We begin with the asymptotically stable example in Eq. 5.3a. We can see

from Fig. 5.13(b) that increasing our tolerance improves our approximation. Our error is now order
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(a) (b)

Figure 5.9 (a) Asymptotically stable Eq. 5.3a solution in dde23 and GPOPS-IIm and (b) difference of solu-
tions on [0, 23.95]with tolerances 10−7.

(a) (b)

Figure 5.10 (a) Barely asymptotically Eq. 5.4a solution in dde23 and GPOPS-IIm and (b) difference of
solutions on [0,23.95]with tolerances 10−7.

(a) (b)

Figure 5.11 (a) Unstable Eq. 5.5a solution in dde23 and GPOPS-IIm and (b) difference of solutions on [0,
23.95]with tolerances 10−7.

1e −06 as opposed to 1e −05. We now re-run the unstable example in Eq. 5.5a to see if increasing our

tolerance will improve the approximation. We can see from Fig. 5.14 that increasing our tolerance
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(a) (b)

Figure 5.12 (a) Slightly unstable Eq. 5.6a solution in dde23 and GPOPS-IIm and (b) difference of solutions
on [0,23.95]with tolerances 10−7.

(a) (b)

Figure 5.13 (a) Asymptically stable Eq. 5.4a solution from dde23 and GPOPS-IIm and (b) difference of
solutions on [0,20] for tolerance 10−8.

dramatically improves our approximation. Previously in Fig. 5.11 the GPOPS-IIm solution began to

diverge completely from the dde23 solution the error was much greater than one. Now our error

is of the order 1e −03. Our results indicate that on all but very unstable problems on longer time

intervals, GPOPS-IIm is an effective integrator of delayed dynamics.

5.1.3 Solving the Delayed Necessary Conditions with GPOPS-IIm

Our previous results show GPOPS-IIm can be a very effective integrator of delayed dynamics. We

now examine the use of GPOPS-IIm as a boundary value problem (BVP) solver on the necessary

conditions. We use the necessary conditions in Eq. 4.34 to obtain the two-point boundary value

problem with

a =−0.5, c =−1.2, b = 1, τ= 1 (5.7)

65



(a) (b)

Figure 5.14 (a) Unstable solution Eq. 5.5a from dde23 and GPOPS-IIm and (b) difference of solutions on
[0,23.95] for tolerance 10−8.

and cost

J =

∫ 5

0

10(x −2)2+u 2d t . (5.8)

We fix the order of the approximating polynomial at P = 3. GPOPS-IIm struggles to solve Eq. 5.7

for higher tolerances, therefore we set our mesh tolerance at 1e −05, and keep our IPOPT tolerance

at 1e −07. We allow four mesh iterations and compare our results to the solver SOSD from the Sparse

Optimization Suite (SOS) which we took to be "truth" for this experiment [13]. GPOPS-II obtains a

cost of J = 43.4212447, which agrees very well with the cost J = 43.421408 obtained by SOSD.

We plot our results in Fig. 5.15, which show the state and control obtained by solving the necessary

conditions agree very well with those obtained by SOSD. These results demonstrate we are able to

successfully solve this OCP with state delay in GPOPS-IIm using the necessary condition formulation,

as well as demonstrating GPOPS-IIm can be an effective delay BVP solver in MATLAB.

(a) (b)

Figure 5.15 (a) State and (b) control for necessary conditions Eq. 4.34 with τ= 1, c =−1.2.
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5.1.3.1 Nonlinear Example Using the Necessary Conditions

Given GPOPS-IIm is an effective delay BVP solver on linear dynamics we test if GPOPS-IIm performs

equally well on nonlinear dynamics, including those with control constraints. We consider the

modified Van der Pol Oscillator from [53]:

min J =
1

2

∫ 5

0

�

x 2
1 (t ) + x 2

2 (t ) +u 2(t )
�

d t (5.9)

subject to

ẋ1 = x2(t ) (5.10a)

ẋ2 = −x1(t ) + (1− x 2
1 (t ))x2(t −1) +u (t ) (5.10b)

|u (t )| ≤ 0.75 (5.10c)

x1(0) = 1, (5.10d)

x2(t ) = 0, t ∈ [−1, 0] (5.10e)

x1(5) = −1 (5.10f)

x2(5) = 0. (5.10g)

The necessary conditions for this problem are

ẋ1 = x2 (5.11a)

ẋ2 = −x1+ (1− x1)
2 x2(t −1) +u (5.11b)

λ̇1 = −x1− (−λ2−2λ2 x1 x2(t −1)) (5.11c)

λ̇2 = −x2−λ1−χ[0,4](t )
�

λ2(t +1)(1− x 2
1 (t +1))

�

, (5.11d)

where the Hamiltonian to be minimized is

min
u

H =
1

2

�

x 2
1 + x 2

2 +u 2
�

+λ1 x2+λ2

�

−x1+ (1− x 2
1 )x2(t −1)

�

+λ2u (5.12)

subject to

|u | ≤ .75. (5.13)

Then to minimize Eq. 5.12 over u we have

min
u

1

2
u 2+λ2u . (5.14)
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This implies

u =















.75 λ2 <−.75

−λ2 |λ2| ≤ .75

−.75 λ2 > .75.

(5.15)

We keep our IPOPT tolerance at 1e − 07 and our mesh tolerance at 1e − 05. We take P = 3,

allow three mesh iterations, and set the initial number of mesh intervals to N = 20. We obtain cost

J = 1.9866728 from GPOPS-IIm, which agrees with the values presented in [53] out to two significant

figures. Our results in Fig. 5.16 are nearly graphically identical to those given in Fig. 5.17 from [53];

we are able to use GPOPS-IIm on a delayed BVP with nonlinear dynamics.

(a) (b)

Figure 5.16 (a) State and (b) control the modified Van der Pol oscillator with cost J = 1.9866728.

Figure 5.17 Optimal state and control for modified Van der Pol Oscillator from [53].
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5.1.4 GPOPS-II and the Method of Lines

We see that GPOPS-IIm can be an effective delay BVP solver on the necessary conditions. For more

complicated systems, the necessary condition formulation may not be practical to implement. We

now consider using the method of lines (MOL) to obtain a boundary value problem from a delayed

OCP.

Consider the system

ẋ = −.5x −1.2x (t −1) +u (5.16a)

J =

∫ T

0

10(x −2)2+u 2 d t , (5.16b)

where the delay is τ= 1 and T = 5. We can rewrite Eq. 5.16 as a system of PDEs with respect to time

and a delayed variable, θ . Then we have

Ut = Uθ , −1≤ θ ≤ 0, t > 0 (5.17a)

U (0,θ ) = φ(θ ), −1≤ θ ≤ 0 (5.17b)

Ut = −0.5U (t , 0)−1.2U (t ,−1) +u (t ), t ≥ 0 (5.17c)

Jt = 10(U (t , 0)−2)2+u (t )2, t ≥ 0, (5.17d)

whereφ(θ ) is our prehistory,φ(θ ) = 1.

Now we can use the method of lines, where we use a centered difference to compute the partial

derivatives in θ , and step size h to rewrite Eq. 5.17 as a system of ordinary differential equations

(ODEs). We have

U ′
0 (t ) = 1/2h (−U2(t ) +4U1(t )−3U0(t ))+ Õ (h 3) (5.18a)

U ′
k (t ) = 1/2h (Uk+1(t )−Uk−1(t ))+O (h 3), k = 1...N (5.18b)

U ′
N = −0.5UN (t )−1.2U0+u (t ), k =N (5.18c)

J ′N = 10(UN (t )−2)2+u (t )2, k =N , (5.18d)

where U ′
0 is as derived in Eq. 2.24 - Eq. 2.27.

We use the MOL approach given above to solve Eq. 5.16 with N = 5 using GPOPS-II and plot

our results in Fig. 5.18. For our purposes, we take the solution obtained by SOSD as "truth". We set

our tolerances at 1e −07 and allow three mesh iterations. For Eq. 5.18, GPOPS-II obtains a cost of

J = 43.416160 while SOSD obtains cost J = 43.421408, a 0.0121% difference. We are able to use MOL

with GPOPS-II to solve a delay problem accurately with a relatively coarse mesh.

In Chapter 2 we show the error in our central difference approximation is O (h 2)while the error

in our one-sided Taylor approximation at the boundary is O (h 3). We now test the numerical rate of
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(a) (b)

Figure 5.18 (a) State and (b) control obtained for Eq. 5.16 using GPOPS-II and MOL with τ = 1 and c =
−1.2.

convergence with a mesh refinement study on the optimal control problem given in Eq. 5.16. The

results in Table 5.1 demonstrate that refining the mesh does decrease the difference in our costs.

For N = 9 and above, the difference between MOL and SOSD is of order 10−4.

The plots in Fig. 5.19 indicate similarly promising results. We test three grid sizes: N = 5, 10, 20

and plot the resulting solutions against those from SOSD. We can see that as we increase N , the

states and controls from MOL in Fig. 5.19 approach those of SOSD. In fact, the state and control for

N = 20 are visually indistinguishable from SOSD. These results indicate that we may expect refining

our grid will give a more accurate approximation of the control and trajectory. While using MOL on

larger or more complicated problems may result in a very high dimensional problem, for simple

examples like the problem in Eq. 5.18 using GPOPS-II and MOL can be a good choice.

(a) (b)

Figure 5.19 (a) State and (b) control obtained for Eq. 5.16 with grid size N = 5, 10, 20 and τ= 1, c =−1.2.
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Table 5.1 Mesh refinement study using MOL and GPOPS-II vs SOSD for Eq. 5.16.

N Cost J |JM O L − JSOSD |
5 43.4161601 0.0052
7 43.4225584 0.0012
9 43.4209837 4.2430e −04

10 43.4205858 8.2220e −04
15 43.4206727 7.3530e −04
20 43.4210928 3.1520e −04
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5.2 Use of GPOPS-II to Solve Delayed State Optimal Control Problems

In the previous sections we utilize GPOPS-II to solve delay differential equations and delayed

boundary value problems. We now shift our focus to the use of GPOPS-II directly on OCPs with

delays in the state. We demonstrate when we are likely to obtain a reasonable answer from both

GPOPS-IIm and GPOPS-IIow.

5.2.1 Use of GPOPS-II with Linear Interpolation (GPOPS-IIm)

We begin our discussion with GPOPS-IIm. In order to assess the performance of GPOPS-IIm we first

consider the delayed dynamics

ẋ =−0.5x + c x (t −τ)+u , x (0) = 1 (5.19)

subject to the quadratic cost given above in Eq. 5.8. We solve the optimal control problem using

GPOPS-IIm for several values of τ and c . We then compare our results to those obtained by control

parameterization and SOSD. We again parameterize the control with cubic splines and N = 28

subintervals. We use the MATLAB solver dde23 to solve the dynamics and MATLAB’s nonlinear

optimizer fmincon to optimize our cost J over the control, u . In all cases we set our tolerances to

10−7. We allow GPOPS-IIm to take three mesh iterations. Our initial value for u was u (0) = 6 ∗ (1 :

N +1)−1.

Initially, we begin with the stable case c =−1.2 and consider a small delay of τ= 0.05 to obtain

ẋ =−0.5x −1.2x (t −0.05) +u , x (0) = 1. (5.20)

We plot our results below in Fig. 5.20. We can see the results for the state agree very well. However,

GPOPS-IIm misses the slight spikes in the control in Fig. 5.20(b). We record the cost in Table 5.2 and

can see that GPOPS-IIm agrees with SOSD to two digits while our results for the cost using control

parameterization agrees with SOSD to three digits, indicating our control parameterization code is

producing a low order solution.

We now consider a longer delay of τ= 1 and keep c =−1.2 to obtain the dynamics

ẋ =−0.5x −1.2x (t −1)+u , x (0) = 1. (5.21)

We plot our results in Fig. 5.21. We can see the that difference between GPOPS-IIm and the other

two solvers is even more pronounced. The state in Fig. 5.21(a) appears to be a reflection of the states

obtained from SOSD and control parameterization. GPOPS-IIm also introduces a corner into the

control in Fig. 5.21(b) approximately where the delay takes effect at t = 1. While our costs from

SOSD and control parameterization in Table 5.2 agree relatively well the cost from GPOPS-IIm is
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(a) (b)

Figure 5.20 (a) State and (b) control obtained by GPOPS-IIm, control parameterization, SOSD for c =
−1.2,τ= 0.05 with cost Eq. 5.8.

significantly higher.

(a) (b)

Figure 5.21 (a) State and (b) control obtained by GPOPS-IIm, control parameterization, SOSD for c =
−1.2,τ= 1 with cost Eq. 5.8.

We note in Chapter 4 that we utilize a linear interpolation of the delay term in GPOPS-IIm. We

test if using a higher order interpolation, the MATLAB spline function, improves our results for

Eq. 5.21. We obtain cost J = 44.664865 using spline, a 2.8233% difference with SOSD. We obtain

J = 44.664151 using interp1, a 2.8217% difference with SOSD. We can see from Fig. 5.22 there is no

visual difference between the solutions produced using spline and those produced with interp1.

We consider the case where c =+1.2. Taking τ= 0.05 we have

ẋ =−0.5x +1.2x (t −0.05)+u , x (0) = 1. (5.22)

73



(a) (b)

Figure 5.22 (a) State and (b) controls from GPOPS-IIm using linear interpolation and splines on the delay
term, compared to SOSD for for c =−1.2,τ= 1 with cost Eq. 5.8.

We compare the performance of GPOPS-IIm to both control parameterization and SOSD. We can

see from Fig. 5.23 that GPOPS-IIm again performs well for a small delay. Interestingly the small

spike in the control present for the c =−1.2 case in Eq. 5.20 is no longer present for the c =+1.2

case. Our costs in Table 5.2 show that GPOPS-IIm only agrees with SOSD to two digits while control

parameterization agrees with SOSD to three digits. We note that our cost, 3.33, encourages our

optimizers to keep the state close to 2. However taking c positive resulted in a final state value of

approximately 2.4 in Fig. 5.23(a) as opposed to the final state value of 1.8 obtained using a negative

c value in Fig. 5.20(a).

(a) (b)

Figure 5.23 (a) State and (b) control obtained by GPOPS-IIm, control parameterization, SOSD for c =
1.2,τ= 0.05 with cost Eq. 5.8.

We increase τ to 1 and again take c =+1.2 to obtain the dynamics

ẋ =−0.5x +1.2x (t −1)+u , x (0) = 1. (5.23)
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Fig. 5.24 shows that control parameterization and GPOPS-IIm perform much better for Eq. 5.23 as

opposed to the c =−1.2 case in Eq. 5.21. As with the τ= 0.5 case, we no longer see a corner in the

control from GPOPS-IIm in Fig. 5.24(b) that was present in Fig. 5.21(b). Additionally the state from

GPOPS-IIm does not appear to be a reflection of the states obtained by control parameterization or

SOSD. Our costs in Table 5.2 continued to agree relatively well, with GPOPS-IIm returning the highest

value of the cost at J = 8.2505467 and SOSD returning the lowest value of the cost at J = 8.0178992.

(a) (b)

Figure 5.24 (a) State and (b) control obtained by GPOPS-IIm, control parameterization, SOSD for c =
1.2,τ= 1 with cost Eq. 5.8.

Table 5.2 Values of the optimal cost, J, for each τ and c =±1.2 obtained by GPOPS-IIm, SOSD, and control
parameterization.

c τ J (Ctrl Param) J (GPOPS-IIm) J (SOSD)
-1.2 1.0 43.4214095 44.6641508 43.421408
-1.2 0.05 46.8766437 46.8795593 46.876541
1.2 1.0 8.0179026 8.2505467 8.0178992
1.2 0.05 9.4539446 9.4558176 9.4539374

Though GPOPS-IIm does not produce the same trajectory as SOSD, the costs are very similar. We

seek to establish whether the control from GPOPS-IIm correctly integrates the dynamics to produce

the state trajectories in Fig. 5.24(a) and Fig. 5.21(a) or if the results are due to numerical error. To

test our control, we integrate the delayed dynamics in Eq. 5.23 using dde23 utilizing the control

from GPOPS-IIm. The results in Fig. 5.25 demonstrate that GPOPS-IIm successfully integrates the

dynamics and produces a suboptimal control.

Our results in this section show GPOPS-IIm performs well on OCP with delays in the state for
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(a) (b)

Figure 5.25 (a) State obtained by GPOPS-IIm and dde23 for c = 1.2 and (b) c =−1.2, τ= 1 with cost Eq. 5.8.

small delays or when the coefficients on the delay term and the state have the same sign. Our results

for small τ are consistent with our analysis of the necessary conditions for GPOPS-IIm in Chapter 4.

Later in this chapter we present a result based on the coefficient of the delay terms which help to

explain the change in numerical results we observe for differing values of c .
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5.2.1.1 Nonlinear Example

Given that GPOPS-IIm successfully computes suboptimal controls for linear dynamics, we now

test the performance of GPOPS-IIm on a nonlinear example. Consider the modified Van der Pol

oscillator given in Eq. 5.9 and Eq. 5.10 from [53], which we previously examined using the necessary

conditions. We continue to use three mesh iterations, set P = 3, let our initial N = 20, and set our

tolerances to 1e −07. GPOPS-IIm performs very well on our example. Our plots in Fig. 5.26 are very

similar to those from [53] in Fig. 5.27, however their control starts at -2.0 while ours starts at -6.0,

and our control remains at the maximum value of .75 for slightly longer. The authors found the

cost for a range of parameter values, the largest being J = 1.987116. Our cost is slightly higher at

J = 2.0237941. GPOPS-IIm is able to compute a reasonable solution to highly nonlinear dynamics.

(a) (b)

Figure 5.26 (a) State and (b) control for modified Van der Pol oscillator using GPOPS-IIm with cost J =
2.0237941.

Figure 5.27 Optimal state and control for modified Van der Pol Oscillator from [53].
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5.2.2 Use of GPOPS-II and Waveform Optimization (GPOPS-IIow)

Earlier in this chapter we see that GPOPS-II works well as an integrator on DDEs using waveform

relaxation. We now consider if using GPOPS-II as an iterative method will work well on a delayed

OCP. In particular, we test if using GPOPS-II iteratively will produce a better solution to the delayed

state optimal control problem in Eq. 5.19 and Eq. 5.8. Waveform optimization is a method of calling

GPOPS-II recursively to solve the problem

ẋn = a xn + c xn−1(t −τ) +un , x (0) = 1 (5.24)

subject to the cost

Jn =

∫ T

0

10(xn −2)2+un d t . (5.25)

We refer to this method as GPOPS-IIow [11]. In all cases, we run GPOPS-IIow for five iterations.

For our first iteration we set our tolerances to 1e −06 and allow one mesh iteration. For the four

subsequent iterations we set our tolerances at 1e − 09 and allow four mesh iterations. Allowing

GPOPS-IIow more mesh iterations does not improve the convergence of the method but does

significantly increase computational time. GPOPS-IIow struggles to solve the τ= 0 case in Eq. 5.24

on the first run. Subsequent function calls are simply refining the initial solution and GPOPS-IIow

runs much more quickly. We experimented with calling GPOPS-IIow for more than five iterations,

however this did not improve the approximation.

We begin with τ= 1 and c = −1.2. We can see from Fig. 5.28 that GPOPS-IIow does converge

within five iterations. We now compare the results from GPOPS-IIow to those from control parame-

(a) (b)

Figure 5.28 (a) States and (b) controls from GPOPS-IIow for Eq. 5.24 with τ= 1 and c =−1.2.

terization and GPOPS-IIm, where we take control parameterization as our “true" solution. We again
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use N = 28 subintervals and cubic splines to parameterize our control. The states and controls in

Fig. 5.29 show that while GPOPS-IIow produces a control relatively similar to GPOPS-IIm and control

parameterization, GPOPS-IIow produces a much larger state. This is reflected in our costs: control

parameterization gives a cost of J = 43.4214094 while GPOPS-IIm gives a cost of J = 44.6641508

and GPOPS-IIow produces the largest cost of J = 47.1541370. The states from both GPOPS-IIm and

GPOPS-IIow seem to have a maximum in the first half of the interval, while control parameterization

has its maximum in the second half.

(a) (b)

Figure 5.29 (a) Comparison of states and (b) controls produced by GPOPS-IIow, GPOPS-IIm, and control
parameterization for Eq. 5.19 with τ= 1 and c =−1.2.

We consider a more unstable system with c = +1.2 and keep the delay τ = 1. GPOPS-IIow

obtains a cost of J = 8.6946605 as opposed to the control parameterization cost of J = 8.0179026.

We again graph all three approaches in Fig. 5.30. Although GPOPS-IIow still produces a higher cost,

it approximates the solutions to this system much more closely than the c =−1.2 case.

(a) (b)

Figure 5.30 (a) Comparison of states and (b) controls produced by GPOPS-IIow, GPOPS-IIm, and control
parameterization for Eq. 5.19 with τ= 1 and c =+1.2.

79



Next, we keep c =+1.2 and increase our delay toτ= 1.7. GPOPS-IIm gives a cost of J = 7.1701048

while control parameterization gives a cost of J = 6.6920511. GPOPS-IIow gives a cost of J =

7.1537929. Interestingly the cost using GPOPS-IIow is lower than the cost from GPOPS-IIm. Fig. 5.32

demonstrates that two solutions from GPOPS-II are nearly identical until the delay takes effect. The

largest difference is in the state; Fig. 5.32(a) shows GPOPS-IIow consistently produces a higher value.

(a) (b)

Figure 5.31 (a) Comparison of states and (b) controls produced by GPOPS-IIow, GPOPS-IIm, and control
parameterization for Eq. 5.19 with τ= 1.7 and c =+1.2.

We now keep our delay at τ = 1.7 but change to c = −1.2. GPOPS-IIm gives the cost J =

44.0635701, while using control parameterization gives the cost J = 40.6378870. GPOPS-IIow gives a

cost of J = 43.7472571. While both methods using GPOPS-II produce a significantly higher cost than

that produced by control parameterization, GPOPS-IIow produces a lower cost than GPOPS-IIm;

this behavior reflects the results from the c =+1.2 case. It seems in systems with a longer delay, the

waveform method may be a better choice. Fig. 5.32(a) in particular shows that neither method using

GPOPS-II approximates the state very well, but the waveform method more closely approximates

the value of the state toward the right end of the interval.

After observing the behavior of GPOPS-IIow with a longer delay, we consider the behavior of

GPOPS-IIow with a small delay of τ = 0.4 and c = −1.2. Using GPOPS-IIm we obtain the cost

J = 9.1392437. Optimization by control parameterization gives a cost of J = 9.0871722. GPOPS-

IIow gives a cost of J = 9.9720657, which is significantly higher than the cost obtained by control

parameterization. Fig. 5.34 demonstrates that for a smaller delay, GPOPS-IIm is a superior choice to

waveform optimization.

We now use c = −1.2 and keep τ = 0.4. GPOPS-IIm gives a cost of J = 45.9988038, while

optimization via control parameterization obtains a cost of J = 45.7439663. Using GPOPS-IIow,

we obtain the cost J = 50.0036677. Fig. 5.33 demonstrates that, again, changing the sign on the
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(a) (b)

Figure 5.32 (a) Comparison of states and (b) controls produced by GPOPS-IIow, GPOPS-IIm, and control
parameterization for Eq. 5.19 with τ= 1.7 and c =−1.2.

(a) (b)

Figure 5.33 (a) Comparison of states and (b) controls produced by GPOPS-IIow, GPOPS-IIm, and control
parameterization for Eq. 5.19 with τ= 0.4 and c =−1.2.

delay term results a significant decrease in performance by GPOPS-II. As with the c =+1.2 case, the

costs and Fig. 5.33 show the shorter delay results in a less accurate result from GPOPS-IIow. We can

see from Fig. 5.33(a) that GPOPS-IIow has produces a much larger state and control than control

parameterization, explaining the significantly increased cost.

We now test if GPOPS-IIow is correctly integrating its delayed dynamics. To do so, we pass the

control computed by GPOPS-IIow to dde23, and use dde23 to integrate our delayed dynamics with

c = −1.2 and τ = 1. We can see from Fig. 5.35 that the control computed by GPOPS-IIow does in

fact produce the correct state. We know that for problems where GPOPS-IIow does converge, it will

converge to a suboptimal solution.

Our numerical results reflect the work we did in Chapter 4: the error in Eq. 4.44, the difference in

our necessary conditions, is O (τ) and so for shorter delays GPOPS-IIm converges to the undelayed

case. Thus for systems with small delays, GPOPS-IIm is a useful problem formulation. GPOPS-IIow,

on the other hand, is not solving the same set of necessary conditions and so does not converge to
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(a) (b)

Figure 5.34 (a) Comparison of states and (b) controls produced by GPOPS-IIow, GPOPS-IIm, and control
parameterization for Eq. 5.19 with τ= 0.4 and c =+1.2.

Figure 5.35 State from GPOPS-IIow and state obtained by dde23 integrating the delayed dynamics with
c =−1.2, τ= 1.

the undelayed necessary conditions as the delay decreases. This explains the poor performance of

GPOPS-IIow for shorter delays. On intervals with longer delays, however, GPOPS-IIow may be used

to obtain a suboptimal control. Though the cost is higher, the computational time is much lower

than that of control parameterization.

5.3 Control Parameterization Using Activate

In addition to using GPOPS-II to solve delayed OCP in MATLAB, we worked with the software Activate.

Our interest in Activate is motivated by its ability to use block diagrams rather than scripts to run,

and the fact it is written in open source OML. A basic edition of the software is free to download,

making it a very accessible tool for researchers to use. Users may obtain a free copy for personal

use in [1]. We note that Activate runs in a Windows environment. In our work we utilize a virtual

Windows environment.

There are two main methods of optimization using Activate: the user has the option to optimize
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parameters by iterating simulation runs, or the user can utilize one of two optimization blocks

within the model. We utilize the BobyqaOpt block, where BobyqaOpt stands for Bound Optimization

BY Quadratic Optimization [19]. The BobyqaOpt algorithm is an iterative algorithm which seeks

to minimize an objective function F (x ), x ∈Rn subject to the constraints ai ≤ xi ≤ bi . It relies on

a quadratic approximation Q such that Q (yj ) = F (yj ), j = 1, ...n where the yj are the interpolation

points [65]. The user needs to specify the upper and lower bounds on the trust region, the cost, a set

of parameters over which to optimize, and an initial value for the parameters [19].

We use Activate with control parameterization to solve the example

ẋ = −0.5x + c x (t −τ) +u ,φ(t ) = 1 (5.26a)

J =

∫ T

0

10(x −2)2+u 2d t , (5.26b)

whereφ(t ) = 1 is our prehistory. Activate incorporates both fixed and variable delay systems using

its FixedDelay and VariableDelay blocks. We use a FixedDelay block and define the delay τ in the

Initialization script. We calculate the cost using a MathExpression block and an integral block, which

integrates Eq. 5.26b with initial condition J (0) = 0 to account for the lower bound on the integral.

The final value of the integral in Eq. 5.26b is then passed to the BobyqaOpt block to be optimized.

The initial and final time are set as simulation parameters, which are fixed. We utilize the solver

LSODA for stiff and nonstiff ODEs. The solver initially uses a nonstiff Adams method and switches

to a stiff BDF (backwards differentiation formula) as needed [38].

We define an initial value of the parameters in our model initialization script, and pass this to

the BobyqaOpt block using the "GetFromBase" argument. The parameter values are updated using

the "To Base" argument, which enables us to use the new value of the parameter in our cost. To

generate the control, u , we use the SignalGenerator block.

We define a time grid in the initialization script, and use natural splines in the SignalGenerator

block to interpolate our parameters at the time grid. We then pass this signal to the cost in the

MathExpression block and to the dynamics using the Sum block. The BobyqaOpt block automatically

restarts the simulation until the specified error tolerances are met, at which point the final value of

the cost is displayed in a Display block. We use the Scope block to plot our final state and control in

Fig. 5.39 along with our other numerical results.

We consider the example in Eq. 5.26 with c =+1.2 and τ= 1. We define our initial conditions,

time grid, and initial parameter value in the Initialization script in Fig. 5.37. We choose N = 28

subintervals for comparison to our earlier results from using control parameterization in MATLAB.

One challenge is determining an appropriate initial value for the control parameters. We first use

our initial value from our control parameterization in MATLAB, u = 6 ∗ (1 : N +1)−1, however this

produces a suboptimal result. By observation of Fig. 5.30(b) we ascertain that a reasonable initial

83



Figure 5.36 Activate diagram using control parameterization to solve Eq. 5.26 with c =+1.2 and τ= 1..

value of the control is u = 2.2 ∗ (1 : (N +1))−1.

Activate struggles to solve Eq. 5.26 at first, oscillating the control between -1 and 1. We determine

this is due to the default setting of the BobyqaOpt block of 1e −8 and 1e −8 for the upper and lower

bounds. We therefore set the lower bound to -3 and the upper bound to 8. We also increase the

initial value of the trust region to 1e −0 from 1e −01. We allow a maximum of 500 iterations. We

obtain a cost of J = 8.0271 as opposed to the cost from control parameterization of J ≈ 8.0179.

We plot our resulting state and control in Fig. 5.39(a). For reference we include the state obtained

by control parameterization and GPOPS-IIm for the same problem in Fig. 5.39(b). We can see the

state produced by Activate is very similar to the one produced by control parameterization, though

the final value of the state from Activate is slightly larger than x = 2.5, whereas the final value

from control parameterization stays just under x = 2.5. We discuss improvements to using control

parameterization with Activate in Chapter 7.

84



Figure 5.37 Initialization script for Eq. 5.26 with c =+1.2 and τ= 1.

Figure 5.38 BobyqaOpt block parameters for Eq. 5.26 with c =+1.2 and τ= 1.
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(a) (b)

Figure 5.39 (a) State and control obtained from Activate for Eq. 5.26 and (b) state obtained by control
parameterization and GPOPS-II with c =+1.2 and τ= 1.
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5.4 Analysis of Results

Our numerical results demonstrate that GPOPS-IIm struggles to obtain an optimal solution to a

delayed OCP for certain values of our delay or coefficients. We also see that GPOPS-IIm obtains

better results when solving the necessary conditions, a delayed BVP. When GPOPS-II is simply

integrating the dynamics, it is no longer providing a cost or inequality constraints to IPOPT. We are

able to demonstrate that in this case IPOPT becomes a damped quasi-Newton method, and for a

sufficiently accurate initial value, the iteration will still converge.

We follow the notation and conventions established in [14]. Our NLP is of the form

min
x∈Rn

f (x ) (5.27a)

such that c (x ) = 0 (5.27b)

xL ≤ x ≤ xU , (5.27c)

where f :Rn →R is our objective function, c (x ) are our equality constraints, and Eq. 5.27c are our

inequality constraints. We consider the equivalent formulation

min
x∈Rn

f (x ) (5.28a)

such that c (x ) = 0 (5.28b)

0≤ x . (5.28c)

Let xk be the approximation to our NLP variables, λk the approximation to our equality constraint

multipliers, and zk the approximation to our inequality constraint multipliers. Then, given iterate

(xk ,λk , zk ), the inner loop to compute search directions (d x
k , d λk , d z

k ) is







Wk Ak −I

AT
k 0 0

Zk 0 Xk













d x
k

d λk
d z

k






=−







∇ f +Akλk − zk

c (xk )

Xk Zk e −µ j e






. (5.29)

Here, Wk is the Hessian∇2
x xL (xk ,λk , zk ) of the Lagrangian and Ak :=∇c (xk ). Then the iterates

are computed by

xk+1 = xk +αk d x
k (5.30a)

λk+1 = λk +αk d λk (5.30b)

zk+1 = zk +α
z
k d z

k , (5.30c)

where the αk are the step sizes. For details on step size and search direction choice, see [80]. When

we use IPOPT to simulate the delayed dynamics or solve a delayed BVP, we no longer have the
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inequality constraints or objective function and the state values are completely determined by the

equality constraints c (x ) = 0 and Eq. 5.30.

Then the NLP with GPOPS-IIm becomes

c̃ ′(xk )d
x
k = −c (xk ) (5.31a)

xk+1 = xk +αk d x
k . (5.31b)

Here, c̃ ′(xk ) is an approximation to the true gradient c ′(xk )where c̃ ′(xk ) is obtained by neglecting

those entries which come from the delayed terms. We note that for xk close to the solution of c (x ) = 0,

c ′(xk ) and c̃ ′(xk ) are nonsingular. We now establish a sufficient condition for the convergence of

the damped quasi-Newton method given sufficiently accurate initial values for our variables.

We examine the change in ‖c (x )‖2 over one iteration with search direction δ̂ obtained from

Eq. 5.31. For the moment we neglect the k subscript. First, note that c (x+δ̂) = c (x )+c ′(x )δ̂+O
�

‖δ̂‖2
�

.

Then we have

c (x + δ̂)T c (x + δ̂)− c (x )T c (x ) = (5.32a)
�

c (x ) + c ′(x )δ̂+O
�

‖δ̂‖2
��T �

c (x ) + c ′(x )δ̂+O
�

‖δ̂‖2
��

− c (x )T c (x ) = (5.32b)

δ̂T c ′(x )T c (x ) + c (x )T c ′(x )δ̂+O
�

‖δ̂‖2
�

. (5.32c)

Dropping our higher order terms, and substituting δ̂=−c̃ ′(x )−1c (x ) back into Eq. 5.32 we have

−
�

c̃ ′(x )−1c (x )
�T

c ′(x )T c (x )− c (x )T c ′(x )c̃ ′(x )−1c (x ) = (5.33a)

−c (x )T
�

c̃ (x )−T c ′(x )T + c ′(x )c̃ ′(x )−1
�

c (x ). (5.33b)

We can write c ′(x ) as E +F where E = c̃ ′(x ) contains entries for the undelayed terms in c ′(x ) and

F contains entries corresponding to the delay terms in c ′(x ). We note that F has nonzero entries

corresponding to zero entries in E . Then Eq. 5.33b becomes

−c T
�

E −T (E + F )T + (E + F )E −1
�

c = (5.34a)

−c T
�

(I + F E −1)T + (I + F E −1)
�

c . (5.34b)

We want Eq. 5.34 to be negative along search direction δ̂ provided it is negative along direction δ.

The condition that the numerical radius of F E −1 < 1 is a sufficient condition to guarantee Eq. 5.34< 0,

a weaker requirement than ‖F E −1‖< 1. This condition on the coefficients of the delay is sufficient

but not necessary, and the IPOPT iteration may converge when Eq. 5.34 < 0 does not hold.

The result we just presented is for solving a BVP with delay or carrying out an integration. Now
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consider the case when we use GPOPS-IIm on a delayed OCP. We have the problem

min
x∈Rn

f (x ) (5.35a)

such that c (x ) = 0, (5.35b)

where x = [x̄ u ]T , where x̄ are the state variables, and we have no inequality constraints. The true

search direction δ is computed by

c ′(x )δ=−c (x ). (5.36)

However, because GPOPS-IIm neglects the delay terms in the gradient, IPOPT is actually solving

c̃ ′(x )δ̂=−c (x ), (5.37)

where c̃ ′(x ) is an approximation of the true gradient c ′(x ) obtained by neglecting the delay terms.

We note that here

c (x ) = [c (x̄ ) c (u )] (5.38)

and

c ′(x ) = [c x̄ cu ]. (5.39)

Since c x̄ is invertible, we have [c x̄ cu ] has full row rank.

We again wish to consider the change in ‖c (x )‖2 over a single iteration, using the search direction

δ̂ from Eq. 5.37. First, note that c (x + δ̂) = c (x ) + c ′(x )δ̂ + O (‖δ̂‖2) and c ′(x ) = c̃ ′(x ) + F where

c̃ ′ is the Jacobian used by GPOPS-IIm and F contains the derivatives of the delay terms. Then

c ′(x )δ̂= (c̃ ′(x ) + F )δ̂=−c (x ) + F δ̂ and we have

c (x + δ̂)T c (x + δ̂)− c (x )T c (x ) = (5.40a)
�

F δ̂+O (‖δ̂‖2)
�T �

F δ̂+O (‖δ̂‖2)
�

− c T (x )c (x ) = (5.40b)

δ̂T F T F δ̂+O (‖δ̂‖3)− c T (x )c (x ), (5.40c)

where we drop our higher order terms.

Given c (x ) 6= 0, for either δ̂ or ‖F ‖2 sufficiently small relative to ‖c (x )‖2 we have that Eq. 5.40c

is negative and can expect our iteration to converge. An important factor is the relative size of the

coefficients on our delayed and undelayed terms. For cases where the coefficient on the delayed term

is large relative to the coefficients on the undelayed terms, we cannot guarantee the convergence of

IPOPT.
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5.4.1 Effect of Delay Coefficient on Solutions

Given our analytic results on the size of our delay terms from the previous section, we now analyze

numerically how altering the coefficients on the delay and the state in a delayed OCP affects the

convergence of GPOPS-II to the correct solution. We first consider GPOPS-IIm on the following

problem

ẋ = −.5x + c x (t −1) +u (5.41a)

J =

∫ 5

0

10(x −2)2+u 2d t (5.41b)

for several parameter values of c and observe how changing c affects the quality of our solution.

We compare our solutions from GPOPS-IIm to those from MOS. We implement MOS in GPOPS-II.

Unless otherwise noted we use N = 4, P =m = 3, and tolerances are set at 1e-07. Costs for each

value of c are displayed in Table 5.3 and run times using the MATLAB "tic" and "toc" functions

are displayed in Table 5.4. Computations are conducted on a late 2013 15 inch MacBook Pro with

a 2.6GHz Intel Core processor. In this section all timings should be considered approximate as

machine processes frequently affect recorded computational times for the very small time scales

which we present.

We can clearly see in Fig. 5.40-Fig. 5.44 that as the value of c is increases, the quality of the

solution from GPOPS-IIm degrades. We also see consistently increasing computational times from

GPOPS-IIm while the computational time for MOS remains relatively constant. The results in Table

5.4 reflect our analytic results; when the delayed state coefficient c becomes large relative to the

undelayed state coefficient a , our solution from GPOPS-IIm degrades.

(a) (b)

Figure 5.40 (a) State and (b) control by GPOPS-IIm and MOS with c = .1 for Eq. 5.41, cost J = 7.3484273
from GPOPS-IIm, and J = 7.3476357 from MOS.
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(a) (b)

Figure 5.41 (a) State and (b) control of Eq. 5.41 with c = .5, cost 3.7867743 from GPOPS-IIm, and cost
J = 3.7859437 from MOS.

(a) (b)

Figure 5.42 (a) State and (b) control of Eq. 5.41 with c = 1.0, cost 5.6303104 from GPOPS-IIm, and cost
J = 5.5426332 from MOS.

(a) (b)

Figure 5.43 (a) State and (b) control of Eq. 5.41 with c = 1.5, cost 13.9834065 from GPOPS-IIm, and cost
J = 13.3242859 from MOS.
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(a) (b)

Figure 5.44 (a) State and (b) control of Eq. 5.41 with c = 2.0, cost 27.4879834 from GPOPS-IIm, and cost
J = 25.4211318 from MOS.

Table 5.3 Costs from GPOPS-IIm and MOS for different values of c in Eq. 5.41.

c J GPOPS-IIm J MOS |∆ J| % Difference
-2.0 78.3348869 72.5385748 5.7963 1.9209
-1.5 56.7225871 54.3770261 2.3456 1.0556
-1.0 37.0650163 36.3281545 0.7369 0.5020
-.5 20.4889357 20.3895389 0.0994 0.1216
-.1 10.7545304 10.7529283 0.0016 0.0037
.1 7.3484273 7.3476357 0.0008 0.0108
.5 3.7867743 3.7859437 0.0008 0.0219

1.0 5.6303104 5.5426332 0.0877 1.5695
1.5 13.9834065 13.3242859 0.6591 4.8274
2.0 27.4879834 25.4211318 2.0669 7.8128

Table 5.4 Timing, in seconds, for different values of c in Eq. 5.41.

c T (s) GPOPS-IIm T (s) MOS |∆ T| % Difference
-2.0 2.0585 0.5836 1.4749 27.9115
-1.5 2.2258 0.5508 1.6750 30.1628
-1.0 1.0625 0.5979 0.4646 13.9906
-.5 0.7252 0.8281 0.1029 3.3123
-.1 2.4818 1.1224 1.3594 18.8586
.1 1.5604 1.1256 0.4348 32.3753
.5 2.0176 1.0721 0.9456 61.2118

1.0 3.6704 1.0764 2.5940 109.2947
1.5 5.1277 1.1164 4.0113 128.4829
2.0 8.0710 1.3813 6.6897 141.5465

5.4.1.1 Solving the Necessary Conditions

We now compare the timings and solutions of MOS versus solving the necessary conditions for

Eq. 5.41 with differing values of c . For c = .1, .5 we are able to keep our tolerances at 1e −07. For c = 1
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we need to decrease our mesh tolerance in the necessary conditions to 1e −06 in order to obtain an

answer. We decrease our mesh tolerance again to 1e −05 for c = 1.5, c =−.1, c =−.5. The costs in

Table 5.5 and graphs in Fig. 5.45-Fig. 5.49 show that using the necessary condition formulation of

the problem greatly improves our results.

(a) (b)

Figure 5.45 (a) State and (b) control of Eq. 5.41 with c = .1, a = −.5, cost 7.3477053 from GPOPS-IIm with
necessary conditions and cost J = 7.3476357 from MOS.

(a) (b)

Figure 5.46 (a) State and (b) control of Eq. 5.41 with c = .5, a = −.5, cost 3.7861046 from GPOPS-IIm with
necessary conditions and cost J = 3.7859437 from MOS.
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(a) (b)

Figure 5.47 (a) State and (b) control of Eq. 5.41 with c = 1, a = −.5, cost 5.5421608 from GPOPS-IIm with
necessary conditions and cost J = 5.5426332 from MOS.

(a) (b)

Figure 5.48 (a) State and (b) control of Eq. 5.41with c = 1.5, a =−.5, cost 13.3243674 from GPOPS-IIm with
necessary conditions and cost J = 13.3242859 from MOS.

(a) (b)

Figure 5.49 (a) State and (b) control of Eq. 5.41 with c = 2.0, a =−.5, cost 25.4211284 from GPOPS-IIm with
necessary conditions and cost J = 25.4211318 from MOS.
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Table 5.5 Costs from GPOPS-IIm and MOS for different values of c in Eq. 5.41 using GPOPS-IIm on the
necessary conditions.

c J GPOPS-IIm Nec. Conds. J MOS |∆J | ∆J %
-2.0 72.5393963 72.5385748 0.0008 0.0003
-1.5 54.3770318 54.3770261 0.0000 0.0000
-1.0 36.3263025 36.3281545 0.0019 0.0013
-.1 10.7527379 10.7529283 0.0002 0.0004
.1 7.3477053 7.3476357 6.9600e-05 0.0002
.5 3.7861046 3.7859437 1.6090e-04 0.0011

1.0 5.5421608 5.5426332 4.7240e-04 0.0021
1.5 13.3243674 13.3242859 8.1500e-05 0.002
2.0 25.4211284 25.4211318 3.4000e-06 0.0000

Table 5.6 Timing, in seconds, for different values of c in Eq. 5.41 using GPOPS-IIm on the necessary condi-
tions.

c T (s) GPOPS-IIm Nec. Conds. T (s) MOS |∆T | ∆T %
-2.0 2.1144 0.5683 1.4317 111.4901
-1.5 2.9189 0.5993 2.3196 131.8629
-1.0 6.6841 0.6002 6.0839 167.0414
-.1 1.6347 1.1584 0.4763 34.1055
.1 0.5463 1.1029 0.5566 67.4994
.5 1.7410 1.1370 0.6040 41.9736

1.0 0.6641 1.6937 1.0296 87.3357
1.5 1.1085e+03 1.6050 1.1069e+03 199.4217
2.0 1.1301e+03 1.1123 1.1290e+03 199.6067
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5.4.2 Changing the value on the state coefficient

We see that increasing the size of the delay term by increasing the coefficient c negatively impacts

our results. Now we study the effect of changing the size of the undelayed state coefficient, a . We

consider the example

ẋ = a x −1.2x (t −1) +u (5.42a)

J =

∫ 5

0

10(x −2)2+u 2d t (5.42b)

for several different values of a . We give costs and run times in Tables 5.7 and 5.8 respectively. We also

include a small selection of plots. Our results in Table 5.7 as well as the plots in Fig. 5.50 - Fig. 5.53

demonstrate that GPOPS-IIm produces better results for larger values of a , which is consistent with

our analytic result from the previous section.

(a) (b)

Figure 5.50 (a) State and (b) control of Eq. 5.42 with a = 0.1, c =−1.2, cost 22.2395200 from GPOPS-IIm and
cost J = 21.5224898 from MOS.

5.4.2.1 Necessary Conditions

Our previous results are for a delayed OCP. Now we consider how varying the coefficient a Eq. 5.42

effects the solution of the necessary conditions for Eq. 5.42 with GPOPS-IIm. We begin with mesh

tolerance 1e −05, IPOPT tolerance 1e −06 and one mesh iteration for a =−.5,−.1, .1, 0.5. We need

to lower our mesh tolerance to 1e −04 to obtain an answer for a = 1.5, 1.0,−1.0,−1.5. We note that

large values of a result in highly unstable dynamics, making the BVP difficult to solve. We can see

from Table 5.10 that decreasing our mesh tolerance greatly increases our speed of execution. Both

the values of our cost and the solution plots in Fig. 5.54 and Fig. 5.55 reflect our analytic result; we

obtain far better results when a is larger than c .
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(a) (b)

Figure 5.51 (a) State and (b) control of Eq. 5.42 with a = 20.0, c =−1.2, cost 222.1349950 from GPOPS-IIm
and cost J = 222.1272862 from MOS.

(a) (b)

Figure 5.52 (a) State and (b) control of Eq. 5.42 with a = −0.1, c = −1.2, cost 29.2185129 from GPOPS-IIm
and cost J = 28.3062769 from MOS.

(a) (b)

Figure 5.53 (a) State and (b) control of Eq. 5.42 with a =−20.0, c =−1.2, cost 196.2159127 from GPOPS-IIm
and cost J = 196.2104009 from MOS.
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Table 5.7 Costs from GPOPS-IIm and MOS for different values of a in Eq. 5.42 using GPOPS-IIm.

a J GPOPS-IIm J MOS ∆J ∆J %
-20 196.2159127 196.2104009 0.0055 0.0028
-5.0 159.4283099 159.0217559 0.4066 0.2553
-1.5 83.9586711 82.4496479 1.5090 1.8136
-.1 29.2185129 28.3062769 0.9122 3.1716
.1 22.2395200 21.5224898 0.7170 3.2770
.5 10.8533359 10.5200718 0.3333 3.1185

1.0 3.4373448 3.3986159 0.0387 1.1331
1.5 5.0562660 4.9662331 0.0900 1.7966
2.0 14.9002094 14.5105841 0.3896 2.6495
5.0 111.7284026 111.1001045 0.6283 0.5639

10.0 179.6720811 179.578356 0.0937 0.0522
20.0 222.1349950 222.1272862 0.0077 0.0035

Table 5.8 Timing, in seconds, for different values of a in Eq. 5.42 using GPOPS-IIm.

a T (s) GPOPS-IIm T (s) MOS ∆T ∆T %
-20 .9153 0.9151 .0002 0.0219
-5 1.2176 0.8239 .3937 38.5697
-.5 1.3842 0.6285 .7557 75.0932
-.1 3.1618 0.7938 2.3680 119.7290
.1 1.4243 0.7020 0.7223 67.9396
.5 .9969 .7979 0.1990 22.1752

1.0 1.1668 .6706 0.4962 54.0111
1.5 1.0224 .7673 0.2551 28.5076
2.0 1.0896 .7606 0.3290 35.5637
5.0 1.2759 .8230 0.4529 43.1559

10.0 1.0214 0.9437 0.0777 7.9080
20.0 .8577 1.1514 -0.2937 29.2370

(a) (b)

Figure 5.54 (a) State and (b) control using GPOPS-IIm on the necessary conditions for Eq. 5.42 with a =
−1.5 and c =−1.2 and cost J = 82.4499980 from GPOPS-IIm.
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(a) (b)

Figure 5.55 (a) State and (b) control using GPOPS-IIm on the necessary conditions for Eq. 5.42 with a =
+0.1 and c =−1.2 and cost J = 21.5220325 from GPOPS-IIm.

Table 5.9 Costs from GPOPS-IIm and MOS for different values of a in Eq. 5.42 using GPOPS-IIm on the
necessary conditions.

a J GPOPS-IIm Nec. Conds J MOS |∆J | ∆J %
-1.5 82.4499980 82.4496479 3.5010e-04 4.2462e-04
-1.0 63.3406456 63.3403483 2.9730e-04 4.6937e-04
-0.5 43.4215062 43.4214094 9.6800e-05 2.2293e-04
-.1 28.3060628 28.3062769 2.1410e-04 7.5637e-04
.1 21.5220325 21.5224898 4.5730e-04 2.1248e-03
.5 10.5198523 10.5200718 2.1950e-04 2.0865e-03

1.0 3.3986579 3.3986159 4.2000e-05 1.2358e-03
1.5 4.9674099 4.9662331 1.1768e-03 2.3693e-02

Table 5.10 Timing, in seconds, for different values of a in Eq. 5.42using GPOPS-II on the necessary condi-
tions.

a T(s) GPOPS-IIm Nec. Conds. T (s) MOS |∆T | ∆T %
-1.5 1.3868 0.7910 .59580 54.7158
-1.0 2.6896 1.4655 1.2241 58.9204
-.5 1.8231e+03 1.0034 1.82209e+03 199.7800
-.1 507.1222 0.9385 5.0618e+02 199.2611
.1 1.6796e+03 1.4613 1.6781e+03 199.6523
.5 1.3431e+03 0.9084 1.3422e+03 199.7296

1.0 1.6744 1.6233 0.0511 3.0991
1.5 0.6883 0.9414 0.2531 31.0609
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CHAPTER

6

CONTROL DELAYS

In addition to using GPOPS-IIm to solve optimal control problems (OCPs) with delays in the state,

we consider OCPs with delays in the control. In this chapter we demonstrate that we are able to

successfully solve an OCP with a constant delay in the control using GPOPS-IIm, as well as using

the necessary conditions to solve a BVP with a control delay.

We consider OCPs with control delays in the following form

J =

∫ T

0

10(x (t )− r )2+u (t )2d t (6.1a)

ẋ = a x (t ) + b u (t ) +d u (t − s ), t ∈ (0, T ] (6.1b)

x (0) = x0 (6.1c)

u (t ) = ψ(t ) t ∈ [−s , 0]. (6.1d)

We consider the following approaches: the method of steps, solving the necessary conditions, and

the GPOPS-IIm approach originally described in Chapter 4. We are able to use the method of steps

and data obtained from SOSD to validate our results from GPOPS-II.
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6.1 Control Delays and MOS

We begin by solving Eq. 6.1 using MOS to give us data to which we can compare our results from

GPOPS-II and SOSD. Initially we take

T = 4, x (0) = 10, r = 4, a =−1.14, b = 2, d = 0.3, s = 1, andψ=−2.3. (6.2)

We first allow GPOPS-II to vary the order of the interpolating polynomial; this does not improve the

quality of our approximation but does increase computational time. We therefore use GPOPS-II as

an h method by fixing the order of the interpolating polynomial at P = 3. We set a mesh tolerance of

1e −07 and our tolerance for IPOPT at 1e −06, and allow three mesh iterations with N = 4 initial

mesh intervals. We obtain a cost of J = 53.27062, as opposed to J = 53.27103 obtained from SOSD.
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Figure 6.1 (a) State and (b) control obtained using MOS for Eq. 6.2 and cost J = 53.27062.

We now consider the example

T = 4, x (0) = 10, r = 4, a =−0.2, b = 2.0, d =−0.4, s = 1, ψ=−2.3 (6.3)

which we solve using MOS. The solution plots in Fig. 6.2 demonstrate that we continue to see a

corner in the state and control when the delay takes effect at time t = 1, indicating a place in our

solution where we may expect GPOPS-II to have difficulty.

6.2 Solving the Necessary Conditions

In Chapter 4 we give the necessary conditions for a delayed state OCP. We then use GPOPS-IIm as a

BVP solver to solve the necessary conditions and obtain an accurate solution to the delayed state

OCP. In this section we demonstrate an identical approach may sometimes be used to obtain an
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(a) (b)

Figure 6.2 (a) State and (b) control obtained using MOS for Eq. 6.3 and cost J = 56.18724.

accurate solution to an OCP with constant delay in the control.

Consider the following form of the problem given in Eq. 6.1:

min J =

∫ T

0

10(x (t )−4)2+u (t )2 d t (6.4a)

subject to ẋ = a x + b u +d u (t − s ) (6.4b)

x (0) = 10 (6.4c)

u (t ) = ψ(t ), −s ≤ t ≤ 0, (6.4d)

where our u is unconstrained. Let v = u (t − s )where s is our constant delay. Define

H (t , x , u , v,λ) = f0(t , x , u , v ) +λ f (t , x , u , v ). (6.5)

Then we have the necessary conditions

ẋ = Hλ a .e . t ∈ [0, T ] (6.6a)

λ̇ = −Hx (6.6b)

λ(T ) = 0 (6.6c)

0 = Hu (t ) +χ[0,T−s ](t )Hv (t + s ) (6.6d)

x (0) = 10, (6.6e)

where a .e . stands for "almost everywhere."
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For the scalar, linear case given in Eq. 6.4 we obtain the BVP

ẋ = a x (t ) + b u (t ) +d u (t − s ) (6.7a)

λ̇ = −20(x (t )− r )−aλ(t ) (6.7b)

λ(T ) = 0 (6.7c)

0 = 2u (t ) + bλ(t ) +χ[0,T−s ](t )dλ(t + s ) (6.7d)

x (0) = 10. (6.7e)

We can use the constraint in Eq. 6.7d to obtain the following expression for u (t )

u (t ) =−
1

2

�

bλ(t ) +χ[0,T−s ]dλ(t + s )
�

(6.8)

and a shifted constraint to obtain an expression for the delay term u (t − s ):

u (t − s ) =−
1

2

�

bλ(t − s ) +χ[0,T−s ](t − s )dλ(t )
�

, t ∈ (s , T ]. (6.9)

We note thatχ[s ,T ](t ) on [s , T ] is equivalent toχ[0,T−s ](t − s ) on [0, T − s ]. Then we have the dynamics

ẋ = a x (t ) + b
�

−
1

2

�

bλ(t ) +χ[s ,T ](t )dλ(t + s )
�

�

+dψ(t ), t ∈ [0, s ], (6.10)

where u (t − s ) is given by the prehistoryψ(t ) for t ∈ [0, s ] and

ẋ = a x (t ) + b
�

−
1

2

�

bλ(t ) +χ[0,T−s ](t )dλ(t + s )
�

�

+d
�

−
1

2

�

bλ(t − s ) +χ[s ,T ]dλ(t )
�

�

, t ∈ (s , T ] (6.11)

otherwise.

Having eliminated u from our equations we can now pass in our equations for x ,λ, and J to

GPOPS-IIm as state variables where we add the dynamic constraint and boundary condition

J̇ = 10 (x (t )− r )2+
�

−
1

2

�

bλ+χ[0,T−s ](t )dλ(t + s )
�

�2

, J (0) = 0. (6.12)

Our BVP is now given by Eq. 6.12, Eq. 6.11, Eq. 6.7b, and Eq. 6.7c. GPOPS-IIm no longer has to

optimize a control, and can instead integrate the dynamics to solve the BVP while satisfying the

constraints. The result, which we demonstrate in the following section, is GPOPS-IIm no longer

relies on incorrect Jacobians obtained for the optimization problem and often finds the correct

solution.
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6.2.1 Numerical Results

We solve the necessary conditions for the example given in Eq. 6.2. We set our mesh tolerance at

1e − 07 and our IPOPT tolerance at 1e − 06. For this problem, we find we need to set our initial

number of mesh intervals to N = 20 in order to obtain an initial grid fine enough to permit a solution.

We allow three mesh iterations, m = 3, and fix the order of our polynomial at P = 3. For this problem

we obtain a cost of J = 53.27083 as opposed to J = 53.27062 from MOS and J = 53.27103 from SOSD.

The plots in Fig. 6.3 demonstrate that not only do our costs agree very well, but that GPOPS-IIm

obtains an accurate control and trajectory for Eq. 6.2.

(a) (b)

Figure 6.3 (a) State and (b) control obtained by GPOPS-IIm solving the necessary conditions for Eq. 6.2
with cost J = 53.27083.

We then solve the necessary conditions for the example in Eq. 6.3. We again fix the order of our

polynomial at P = 3, take N = 20 and allow three mesh iterations. We need to lower our tolerances

to 1e −04 and 1e −06 for our mesh and IPOPT respectively. This problem is exceptionally sensitive

to the choice of initial value. The graphs in Fig. 6.4 are the solution for the following initial values

tGuess = [0;0.8125;1;1.5; 3; 4];
xGuess = [10,-16.3547,0;4,.1,2;0.38,0.1,4; 4.2,0,6;4,0,8;4,0,10];

where xguess is the array of column vectors [x ,λ, J ].

The points in tguess are chosen to place two extra time grid points on either side of the discon-

tinuity at t = s . The remaining time grid values are chosen to account for values toward the end of

our interval. We set x (0) as our initial condition. To obtain λ(0) =−16.3547, we obtain an expression

for λ in terms of u , and use the value of u (0) from SOSD. We set the initial value of the cost J = 0,

and the final value of λ(T ) = 0. The remaining state values are chosen via estimation of our graphical

data from SOSD.
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Adding additional points to the initial value for the control u greatly improves the quality of

the solution. We can see from Fig. 6.4 that with a reasonable starting point informed by SOSD, the

solutions from GPOPS-IIm are nearly identical to those produced by SOSD. Using GPOPS-IIm on the

necessary conditions we obtain a cost of J = 56.027914 while SOSD obtains a cost of J = 56.187740.

(a) (b)

Figure 6.4 (a) State and (b) control obtained by GPOPS-IIm solving the necessary conditions for Eq. 6.3
with cost J = 55.2559463.

In addition to the choice of initial value, another possible explanation for the sensitivity of the

problem Eq. 6.3 may be found in the frequency domain. For the dynamics in Eq. 6.1b, we have the

Laplace transform solution

X (t̂ ) =
�

t̂ −a
�−1 �

b + e −t̂ s d
�

U (t̂ ), (6.13)

where t̂ is our Laplace transform variable. In the first example, Eq. 6.2, b and d have the same sign,

and we obtain a highly accurate solution from GPOPS-IIm. In the second example, Eq. 6.3, b and d

have opposite signs: the coefficient in front of the control may become very small or even go to zero.

The result is the control for the system will not be well-determined.

To verify that the control computed by GPOPS-IIm steers the dynamics along the correct trajec-

tory we use the fixed grid MATLAB integrator ode4, a fourth order Runge-Kutta method. We pass the

time grid and control from GPOPS-IIm to ode4 and integrate our dynamics with the values given in

Eq. 6.3. The plot in Fig. 6.5 demonstrates that state obtained GPOPS-IIm and the state obtained by

integrating the dynamics with ode4 are essentially identical. Our results show that for a sufficiently

accurate choice of initial value in the state and control variables, we able to use GPOPS-IIm to solve

an OCP with a delay in the control.
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Figure 6.5 State obtained by GPOPS-II and obtained by ode4 using the control computed by GPOPS-IIm
solving the necessary conditions for Eq. 6.3.

6.3 Control Delays and GPOPS-IIm

We now use the GPOPS-IIm method discussed earlier in Chapter 4 to solve the example in Eq. 6.1

and Eq. 6.2. We consider the problem as an h method with fixed polynomial order P = 3 as well as

allowing P to vary between 2 and 6. We keep the same tolerances utilized in the MOS example. For

fixed order P = 3 we obtain cost J = 53.3702471. When we allow the order to vary we obtain a slightly

higher cost of J = 53.3764644. This is most likely due to the larger grid N = 83 points obtained when

we allow the polynomial order to vary as opposed to the grid N = 73 points obtained when we fixed

P = 3. The states and controls produced are essentially identical, therefore we will only be including

the plots for fixed P = 3. We can see from Fig. 6.6 that while GPOPS-IIm approximates the state from

SOSD very well, it introduces a sharp discontinuity into the control at time t = 1 when the delay in

the control takes effect.

(a) (b)

Figure 6.6 (a) State and (b) control using GPOPS-IIm for Eq. 6.2 with J = 53.3702471.
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In order to improve our answer from GPOPS-IIm we consider splitting the problem into two

phases, with the break between the phases at time t = s . We implement this strategy for the problem

given above in Eq. 6.1 and Eq. 6.2. We set our tolerances for the mesh and the NLP solver IPOPT at

1e −07 and 1e −06 respectively. We fix the order at P = 3 and allow three mesh iterations. Splitting

the problem into two phases does not improve the accuracy of the state or control but slightly lowers

cost to J = 53.3369513.

In our section on using the necessary conditions to solve Eq. 6.2 we note that taking a sufficiently

fine initial grid is key to obtaining a solution. We test if using GPOPS-IIm and a finer initial grid

will result in a more accurate answer. Increasing N has a negligible affect on our cost and on our

solution trajectories, however our results in Table 6.1 demonstrate that increasing the number of

initial mesh intervals N from 4 to 10 significantly decreases our run time. We note that increasing N

significantly beyond 20 does not continue to improve our run time. All timings are conducted using

the MATLAB tic and toc functions on a late 2013 15 inch MacBook Pro with a 2.6 GHz Intel Core i7

processor.

We now use GPOPS-IIm to solve Eq. 6.3, and encounter the same difficulties as using the nec-

essary conditions. We take N = 20, P = 3, and allow three mesh iterations. We need to reduce our

mesh tolerance to 1e −04 and our IPOPT tolerance to 1e −06. We use the same technique of adding

extra points to our initial values. For Eq. 6.3 we use

xGuess = [x0;4; xf];
uGuess = [-2.3; -0.3796; -0.8118] ;
guess.phase(1).time = [t0;0.8125; t2];
guess.phase(1).state = xGuess;
guess.phase(1).control = uGuess;
guess.phase(1).integral = 0;
guess.phase(2).time = [t2;1.5;tf];
guess.phase(2).state = [4;4; 4];
guess.phase(2).control = [-0.8118; 0.0933 ;0.0211];
guess.phase(2).integral = 0;

Given the sensitivity of Eq. 6.3 to the initial values in the control, we use data from SOSD to

provide our initial value for the control. Using the two-phase formulation of Eq. 6.3 we obtain a cost

of J = 55.8079917, lower than the cost from SOSD at J = 56.187740. We note that while it is possible

the optimal cost is lower than that obtained by SOSD, it is more likely that GPOPS-IIm is reducing

the cost by violating the continuity constraint at t = 1.

We therefore choose to return to the single phase formulation of the problem. We take N = 20,

P = 3, and allow three mesh iterations with the initial values

tGuess = [0; 0.8125; 1; 1.5; 5];

107



xGuess = [10; 4; 4; 4; 4];
uGuess = [7; -.3796; -0.8118; 0; 0];

where our initial values for the time and control are data from SOSD, and our state values are chosen

to correspond with the reference trajectory r = 4. We keep our tolerances at 1e −04 and 1e −06 for

the mesh and IPOPT respectively, and obtain cost J = 57.1385819. We plot the single-phase solution

in Fig. 6.7. While GPOPS-IIm captures the behavior of the state in Fig. 6.7(a), it introduces significant

noise into the control in Fig. 6.7(b).

Due to the noise introduced in the control by IPOPT, our answers vary slightly each time we

used GPOPS-IIm to solve Eq. 6.3 with a different number of initial mesh intervals. All the variation

we observe in our cost is within our numerical tolerances. We continue to utilize initial N = 20 in

order to decrease the computational time.

We again seek to gauge the quality of the control computed by GPOPS-IIm. We utilize the fixed

grid integrator ode4 from MATLAB to test if the computed control u from GPOPS-IIm will steer our

dynamics along the correct trajectory. We can see from Fig. 6.8 that the control from GPOPS-IIm

produces the correct state, in spite of the noise.

(a) (b)

Figure 6.7 (a) State and (b) control for Eq. 6.3 using GPOPS-IIm with cost J = 57.1385819.

Table 6.1 Run times, in seconds, and cost for Eq. 6.2 using GPOPS-IIm and the two phase problem formula-
tion.

N Run Time (s) Cost
4 208.5892 53.3369513

10 4.2490 53.3392184
20 3.7683 53.3395318
30 4.9627 53.3398289
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Figure 6.8 Comparison of states from GPOPS-IIm and ode4 for Eq. 6.3.

6.3.1 Smoothing the Control

While Fig. 6.8 demonstrates that GPOPS-IIm is correctly integrating our dynamics, the amount of

noise in the control is suboptimal. We seek to reduce the noise we see in the controls produced by

GPOPS-IIm in Fig. 6.6 and Fig. 6.7.

6.3.1.1 Adding Additional Dynamic Equation

In [12] the authors introduce pseudovariables for the delay terms to reduce the noise in their results.

We examine a similar approach. When the delay takes effect at t = s , we see a sharp increase in

our control u . This increase is associated with a large value of the first derivative, u̇ . We add a new

control variable, z , and add the dynamic equation u̇ = z . We then add z to our cost quadratically,

ε‖z‖2. Now u is implemented as a state variable, u (t − s ) is a state delay, and z is our new control. By

adding z to the cost, we encourage the optimizer to minimize the first derivative of u . Our problem

formulation for this approach is:

min
u

J =

∫ 5

0

10(x (t )− r )2+u (t )2+εz 2d t (6.14a)

ẋ = a x (t ) + b u (t ) +d u (t − s ) (6.14b)

u̇ = z (6.14c)

x (0) = x0 (6.14d)

u (t ) = ψ(t ), t ∈ [−s , 0]. (6.14e)

We first consider Eq. 6.2 using the problem formulation in Eq. 6.14, with ε= .01. We keep our

tolerances at 1e −07, take three mesh iterations, set P = 3, and the initial number of mesh intervals

N = 20. We can see from Fig. 6.9 our approach is highly effective, and has removed the discontinuity

from u in Fig. 6.9(b). We obtain cost 56.824463 from GPOPS-IIm as compared to J = 53.27103
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from SOSD. We expect our cost from GPOPS-IIm to increase due to the ε‖z‖2 term in the integral.

Subtracting
∫ 4

0
ε‖z‖2d t = 2.423768 from our GPOPS-IIm cost we obtain a new cost J = 54.400695

from GPOPS-IIm, much closer to that from SOSD.

(a) (b)

Figure 6.9 (a) State and (b) control for Eq. 6.2 using GPOPS-IIm and adding u̇ = z to the dynamics, cost
J = 56.824463.

We now test the approach in Eq. 6.14 on the second example given in Eq. 6.3, again with ε= .01.

We note this problem is more sensitive than the previous example. In order to obtain an answer

we need to reduce our mesh tolerance to 1e −03 and our IPOPT tolerance to 1e −04. We take the

initial number of mesh intervals N = 20, our polynomial order P = 3, and three mesh iteration. We

obtain cost J = 61.665679 from GPOPS-IIm, higher than J = 56.187740 from SOSD. The value of cost

after we subtract the integral of ε‖z‖2 is J = 58.529214, much closer to that of SOSD. The control

Fig. 6.10(b) demonstrates that we are able to remove most of the noise from the solution.

(a) (b)

Figure 6.10 (a) State and (b) control for Eq. 6.3 using GPOPS-IIm and adding .01‖z‖2 to cost, with J =
61.665679.
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While we see improved results for Eq. 6.3 using ε= .01 we consider we may be able to further

improve our results using a variable definition. We can see in Fig. 6.10(b) that the control for this

problem is extremely steep on [0, 1], and thus will have a much larger first derivative on that interval.

We therefore define epsilon as






ε= .001 if t ∈ [0, 1]

ε= .01 else
(6.15)

in order to control the size of the derivative u ′ = z on [0,1]. Using this definition, we obtain J =

57.5017110 and
∫ 4

0
ε‖z‖2d t = 0.707674. Subtracting the value of our integral from our cost J , we

obtain the new cost of J = 56.794046 from GPOPS-IIm, which is much closer to J = 56.187740 from

SOSD. We can see from Fig. 6.11 that changing our definition of ε results in a slightly more accurate

trajectory from GPOPS-IIm.

(a) (b)

Figure 6.11 (a) State and (b) control for Eq. 6.3 using GPOPS-IIm and adding ε‖z‖2 to cost, ε as in Eq. 6.15,
with J = 57.5017110.
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CHAPTER

7

CONCLUSIONS AND FUTURE RESEARCH

In this chapter we discuss our contributions and future research questions. We give an overview of

the new numerical techniques introduced in this thesis and the conclusions we may draw from our

results. We discuss our analytic results and when we may expect GPOPS-II to perform well on certain

types of delay problems. We then discuss opportunities for future work, including new methods for

smoothing the control produced by GPOPS-II and methods for improving our results using Activate.

7.1 Conclusions and Contributions

In this thesis, we seek to address the lack of a user-friendly delayed OCP solver for MATLAB. We have

examined the application of the MATLAB-based software GPOPS-II to delay problems. We explore

the use of GPOPS-II as an integrator of delay differential equations, an optimizer on optimal control

problems with delays, and as a delay boundary value problem solver on the necessary conditions for

optimal control problems with delays. We establish two separate methods for formulating delayed

OCP such that GPOPS-II will accept them. The first method, which we refer to as GPOPS-IIm, allows

the user to implement delay terms directly by interpolating the delay.

We demonstrate GPOPS-IIm is effective at solving DDEs without a control. For OCPs with delays,

GPOPS-IIm performs well on problems with small delays, and produces suboptimal solutions for

longer delays. We establish a result for the OCP with constant delay, which demonstrates that the

nonlinear optimizer will converge when the delay term is small relative to the Jacobian of the system.
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We demonstrate the effectiveness of GPOPS-IIm as a delay BVP solver on the necessary conditions,

introducing a new tool for MATLAB users. We show when GPOPS-IIm is able to compute optimal

solutions for the BVP, and present a result which gives a sufficient condition for convergence.

GPOPS-IIm can be a highly effective tool for solving delay problems in MATLAB. However, the

GPOPS-IIm formulation is highly sensitive to the choice of initial value, particularly in the control.

We are able to mitigate some of the sensitivity by the addition of extra points in the vector of initial

values. When good data are available, we use these data to inform our choice of initial value and

improve our results. For OCPs and BVPs with delays in the control, GPOPS-IIm can produce a noisy

control. We demonstrate that by adding the additional dynamic equation u ′ = z and adding ε‖z‖2

to our cost, ε< 1, we are able to almost completely smooth out the noise in the computed control.

Computational times can run long when using GPOPS-IIm on a problem with a large delay or

highly unstable dynamics. We therefore explore a second method to apply GPOPS-II to problems

with delays in the state: the use of an iterative method. We first demonstrate the efficacy of using

GPOPS-II and waveform relaxation on a DDE and then extend the approach to a delayed OCP, which

we refer to as waveform optimization and abbreviate as GPOPS-IIow. GPOPS-IIow runs quickly

even for larger delays and produces suboptimal solutions. We show, using the necessary conditions,

that the amount of suboptimality does not decrease with the size of the delay. The utility of the

GPOPS-IIow approach is therefore problem-dependent.

Many of the results we have just discussed appear in the paper “Examination of solving optimal

control problems with delays using GPOPS-II", which we published with Dr. Stephen Campbell and

Dr. John Betts [11]. The paper discusses our work with GPOPS-IIow on problems with state delays

and our work with GPOPS-IIm on problems with state and control delays. We present our result on

the sufficient condition for convergence of the BVP.

In addition to the work presented in this thesis, we address the sensitivity of GPOPS-II to the

choice of initial value in the paper “Initial guess sensitivity in computational optimal control prob-

lems" [10] which we published with Dr. Stephen Campbell and Dr. John Betts. We demonstrate

that, for a nonlinear optimal control problem, the choice of initial value can change the extrema to

which the software converges. For highly nonlinear problems, the same initial value can generate

fluctuations in the computed extrema.

7.2 Future Research

In the preceding section we give an account of the contributions of this thesis. In this section, we

discuss further areas of interest and possible applications of our results.
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7.2.1 Smoothing the Control

As we discuss in Chapter 6 and in our Conclusions section, GPOPS-IIm can produce noisy controls

when solving OCPs and BVPs with a delay in the control. We find one method of smoothing the

control involves the introduction of an additional dynamic equation u ′ = z and adding ε‖z‖2 to our

cost. We find that the definition of ε is key to obtaining a good result. Future research questions

include how to determine the best choice of ε to obtain the most accurate solution to the OCP.

We also note the importance of the choice of initial value for the control when obtaining a good

solution. GPOPS-II allows the user to optimize over static parameters. We therefore consider making

the prehistory for the controlψ in Eq. 6.4 a parameter in our optimization.

7.2.2 Identification of Delay

In addition to making the prehistory a parameter, we may consider applications of parameterizing

the value of the delay. In some important problems, the value of the delay is a parameter in the

model. Consider crystal growth problems: the time at which the crystallization process occurs may

be not be known. See, for example, [37]. The user may introduce the value of the delay as a parameter

in GPOPS-II, so the software can optimize over possible delay values.

7.2.3 Applications of Mesh Refinement for an OCP in Activate

In Section 5.3 we present results using the software Activate to solve an OCP with delay in the state.

We are able to use the Time Delay and BobyqaOpt blocks to implement the delayed dynamics and

solve the optimal control problem. However, when we compare our results using Activate to those

from SOSD we see that the solution computed by Activate is suboptimal. As we discuss in Chapter 3,

SOSD is a direct transcription code and has the advantage of powerful mesh refinement schemes.

The Activate routine involves repeated calls to the optimizer in the BobyqaOpt block, where the

parameters are passed from the main simulation environment to the optimizer via the ’GetFromBase’

argument [65]. See Fig. 5.36 and Fig. 5.37 for an example of a simulation diagram in Section 5.3.

The BobyquaOpt block will restart the simulation until the specified error tolerances are met. We

propose the introduction of a mesh refinement scheme which would refine the vector of parameters

passed to the optimizer at the re-start of each simulation run. There are several options for mesh

refinement, including an h method as employed by SOSD or a global p method as employed in a

general pseudospectral method, which we discuss in Chapter 3. Currently, parameters in Activate

are defined by the user. A better choice would be to select collocation points in the mesh refinement

scheme according to a type of Gaussian quadrature rule.
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APPENDIX

A

RELEVANT CODE

A.1 MATLAB Scripts

In this section we include example code for all the numerical techniques utilized in this thesis.

We give examples of how to implement control parameterization in MATLAB as well as how to

implement various problems in GPOPS-II. A problem in GPOPS-II requires three files to run: main.m
for the problem setup and bounds, continuous.m for the dynamics, and events.mwhich contains

the objective and phase constraints. We include all three GPOPS-II files for each problem. We note

that in most of the codes included in this Appendix, the order of the interpolating polynomial is

fixed to decrease computational time.

A.1.1 MOS Using GPOPS-II

We begin with the GPOPS-II code for implementing the method of steps (MOS) for the problem

given in Eq. 4.19 with c =−1.2 and τ= 1.

%---------Begin Main File-------%
function [answer] = mos_main(N,P,m)
%this is the main file for using MOS in GPOPS-IIm
%solves ax + cx(t-tau) + bu
%subject to 10(x-2)^2 + u^2 using MOS
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t0 = 0; %initial time
tf = 1; %final time
x0 = [1,2,3,4,4]; %initial state condition
xf = [2,3,4,4,4]; %final state value
c = -1.2; %delay state coefficient
a = -.5; % state coefficient
b = 1; %control coefficient
auxdata.a = a;
auxdata.b = b;
auxdata.c = c;
xmin = -200*ones(1,5); %state bounds
xmax = 200*ones(1,5);
umin = -100*ones(1,5); %control bounds
umax = 100*ones(1,5);

%----------Set up Problem Bounds -------------%
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = [1, -100*ones(1,4)];
bounds.phase.initialstate.upper = [1, 100*ones(1,4)];
bounds.phase.state.lower = xmin;
bounds.phase.state.upper = xmax;
bounds.phase.finalstate.lower = -100*ones(1,5);
bounds.phase.finalstate.upper = 100*ones(1,5);
bounds.phase.control.lower = umin;
bounds.phase.control.upper = umax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 10000;
bounds.eventgroup(1).lower = [0,0,0,0]; %enforce continuity across eqns
bounds.eventgroup(1).upper = [0,0,0,0];

%-------Provide Guess of Solution----%
guess.phase.time = [t0;tf];
guess.phase.state = [x0;xf];
guess.phase.control = [1,1,1,1,1;0,0,0,0,0];
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guess.phase.integral = 0;

%---Provide Mesh Refinement Method and Initial Mesh--%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-07;
mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%-----Assemble Information into Problem Structure-----%
setup.name = ’mos_statedly’;
setup.functions.continuous = @mos_cont;
setup.functions.endpoint = @mos_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.nlp.ipoptoptions.tolerance = 1e-07;
setup.mesh = mesh;

%----Solve Problem Using GPOPS2-----%
output = gpops2(setup);

solution = output.result.solution;
x = solution.phase.state;
u = solution.phase.control;
t = solution.phase.time;

cost = solution.phase.integral;
J_mos = sprintf(’%0.7f’,cost) %print cost

%plot solution on whole interval [0,5]
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figure()
plot(t,x(:,1),’k-’,’linewidth’,2)
hold on
plot(t+1,x(:,2),’k-’,’linewidth’,2)
plot(t+2,x(:,3),’k-’,’linewidth’,2)
plot(t+3,x(:,4),’k-’,’linewidth’,2)
plot(t+4,x(:,5),’k-’,’linewidth’,2)
xlabel(’Time’)
ylabel(’State’)
set(gca,’fontsize’,14)

figure()
plot(t,u(:,1),’k-’,’linewidth’,2)
hold on
plot(t+1,u(:,2),’k-’,’linewidth’,2)
plot(t+2,u(:,3),’k-’,’linewidth’,2)
plot(t+3,u(:,4),’k-’,’linewidth’,2)
plot(t+4,u(:,5),’k-’,’linewidth’,2)
xlabel(’Time’)
ylabel(’Control’)
set(gca,’fontsize’,14)

[answer] = [t x u];

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = mos_cont(input)
x = input.phase.state;
u = input.phase.control;
t = input.phase.time;
a = input.auxdata.a;
b = input.auxdata.b;
c = input.auxdata.c;
r = 2;

%dynamic equations
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dx1 = a*x(:,1) + c + b*u(:,1);
dx2 = a*x(:,2) + c*x(:,1) + b*u(:,2);
dx3 = a*x(:,3) + c*x(:,2) + b*u(:,3);
dx4 = a*x(:,4) + c*x(:,3) + b*u(:,4);
dx5 = a*x(:,5) + c*x(:,4) + b*u(:,5);

dx = [dx1, dx2, dx3, dx4, dx5];

%cost equation
integrand = (10*(x(:,1)-r).^2 + u(:,1).^2) +...

(10*(x(:,2)-r).^2 + u(:,2).^2)+...
(10*(x(:,3)-r).^2 + u(:,3).^2) +...
(10*(x(:,4)-r).^2+ u(:,4).^2) + ...
(10*(x(:,5)-r).^2 + u(:,5).^2);

phaseout.dynamics = dx;
phaseout.integrand = integrand;

%-------------------------%
%---------Begin Events File-------%
%------------------------%
function output = mos_events(input)
x0 = input.phase(1).initialstate;
xf = input.phase(1).finalstate;

%boundary conditions linking the MOS equations together
output.eventgroup(1).event = [x0(2)-xf(1), x0(3)-xf(2),...

x0(4)-xf(3), x0(5)-xf(4)];
output.objective = input.phase.integral;

A.1.2 GPOPS-II and MOL

We give the code to solve the OCP with state delay in Eq. 5.16 using the method of lines.

%---------------Begin Main File---------%
function [answer] = MOL_main(N,P,m,s)
%solve delay problem x’ = ax + cx(t-tau) + d*u
%uses Method of Lines w/ finite diff approximation
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%.......Set Up Bounds For Problem.....%

t0 = 0;
tf = 5;
x0 = [ones(1,s+1)];
xf = [4*ones(1,s+1)];
tau = 1; % Delay
a = -0.5;
c = -1.2;
d = 1;
xmin = [-3000*ones(1,s+1)];
xmax = [2000*ones(1,s+1)];
auxdata.tau = tau;
auxdata.a = a;
auxdata.c = c;
auxdata.d = d;
auxdata.s = s;
umin = -100;
umax = 100;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = x0;
bounds.phase.initialstate.upper = x0;
bounds.phase.state.lower = [-30*ones(1,s+1)];
bounds.phase.state.upper = [30*ones(1,s+1)];
bounds.phase.finalstate.lower = [-30*ones(1,s+1)];
bounds.phase.finalstate.upper = [30*ones(1,s+1)];
bounds.phase.control.lower = umin;
bounds.phase.control.upper = umax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 10000;

%----------------- Provide Guess of Solution -----------------%
tGuess = [t0;tf];
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xGuess = [x0;xf];
uGuess = [1;0] ;
guess.phase.time = tGuess;
guess.phase.state = xGuess;
guess.phase.control = uGuess;
guess.phase.integral = 0;

%-------Provide Mesh Refinement Method and Initial Mesh ---------%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-8;
mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%------- Assemble Information into Problem Structure -------%
setup.name = ’MOL’;
setup.functions.continuous = @MOL_continuous;
setup.functions.endpoint = @MOL_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.mesh = mesh;

%------------ Solve Problem Using GPOPS2-------------%
output = gpops2(setup);
solution=output.result.solution ;
state=solution.phase.state;
u=solution.phase.control;
time=solution.phase.time;
xN = state(:,end);
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cost = solution.phase.integral;
J_MOL = sprintf(’%0.7f’,cost)

[answer] = [time xN u];
%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = MOL_continuous(input)
tau = input.auxdata.tau; % delay
a = input.auxdata.a; % state coeff
c = input.auxdata.c; %delay state coeff
d = input.auxdata.d; % control coeff
s = input.auxdata.s;
x = input.phase.state;
u = input.phase.control;
t = input.phase.time;
% s = # of points in finite diff mesh
h = tau/s;
xdim = size(x);

%begin system for s mesh points
dx0 = (-3/(2*h))*x(:,1) + (2/h)*x(:,2) + (-1/(2*h))*x(:,3);
dxk = 1/(2*h)*(x(:,(3:end)) - x(:,(1:end-2)));
dxN = a*x(:,end)+ c*x(:,1) + d*u;

%transpose to obtain column vectors
dx = [dx0’; dxk’; dxN’];
dx = dx’;
integrand = 10*(x(:,end) - 2).^2 + u.^2;
phaseout.dynamics = dx;
phaseout.integrand = integrand;
%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = MOL_events(input)

output.objective = input.phase.integral;
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A.1.3 GPOPS-II on the State Delayed Necessary Conditions

We demonstrate how to use GPOPS-II as a delayed BVP solver on the necessary conditions with

state delay given in Eq. 4.34.

%---------------Begin Main File---------%
function [answer] = stateconds_main(N,P,m)
%solve x’ = ax + cx(t-tau) + bu
% with cost integrand 10(x-2)^2 + u^2 using necessary conditions
t0 = 0;
tf = 5;
tau = 1;
a = -.5;
b = 1;
c = .5;
r = 2;
auxdata.tau = tau;
auxdata.a = a;
auxdata.b = b;
auxdata.c = c;
auxdata.r = r;

%-------------- Set up Problem Bounds ---------------%
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;

%states are x, costates lambda, cost J
bounds.phase.initialstate.lower = [1,-30, 0];
bounds.phase.initialstate.upper = [1, 30, 30];
bounds.phase.state.lower = [-100, -100, 0];
bounds.phase.state.upper = [100, 100, 100];
bounds.phase.finalstate.lower = [-30, 0, 0];
bounds.phase.finalstate.upper = [100, 0, 100];

%----------------Provide Guess of Solution------------%
tGuess = [t0;tf];

130



xGuess = [1, -7, 0; 2, 0, 50];
guess.phase.time = tGuess;
guess.phase.state = xGuess;

%----Provide Mesh Refinement Method and Initial Mesh--%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-05;
mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%----------Assemble Information into Problem Structure ----------%
setup.name = ’State_Conds’;
setup.functions.continuous = @stateconds_cont;
setup.functions.endpoint = @stateconds_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.nlp.ipoptoptions.tolerance = 1e-6;
setup.mesh = mesh;

%--------------Solve Problem Using GPOPS2 ---------%
output = gpops2(setup);

solution=output.result.solution ;

x = solution.phase.state(:,1);
l = solution.phase.state(:,2);
%reconstruct control from lambda
u = -.5*l;
t = solution.phase.time;
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cost = output.result.objective;
J = sprintf(’%0.7f’, cost)

[answer] = [t x u];

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = stateconds_cont(input)
a = input.auxdata.a;
b = input.auxdata.b;
c = input.auxdata.c;
r = input.auxdata.r;
tau = input.auxdata.tau;

x = input.phase.state(:,1); %state
l = input.phase.state(:,2); %multiplier
j = input.phase.state(:,3); %cost

tt= input.phase.time;
iter = size(tt);
N = iter(1,1);

if N < 4 %initialize without delay
dx = a*x + c*x + (-.5*l);
dl = -a*x -c*l - 20*(x-2);
dj = 10*(x-r).^2 + (-.5*l).^2;

else
ttmtau = tt-tau;
tsn = ttmtau(ttmtau<=0);
tsp = ttmtau(ttmtau>0);
xd1 = ones(size(tsn));
xd2 = interp1(tt, x, tsp); %interpolate delay term
xdel = [xd1;xd2];
dx = a*x + c*xdel + -.5*l;

%account for characteristic function
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keeptt = tt(tt <= 4);
zerott = tt(tt > 4);

%implement advance in lambda:
newtime = keeptt + tau;
lnew1 = interp1(tt, l, newtime);
lnew2 = 0*zerott;
dell = [lnew1; lnew2];

dl = -a*l - c*dell - 20*(x-r);
dj = 10*(x-r).^2 + (-.5*l).^2;

end

phaseout.dynamics = [dx, dl, dj];
%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = stateconds_events(input)
g = input.phase.finalstate(3); %minimize cost
output.objective = g;

A.1.4 GPOPS-II on Control Delayed Necessary Conditions

We present sample code of how to implement the necessary conditions with control delay in Eq. 6.7.

As we demonstrate in Eq. 6.11 we have a delay as well as an advance in the multiplier λwhen we

solve for u (t − s ) in terms of λ.

%---------Begin Main File--------%
function [answer] = ctrlnecconds_main(N,P,m)

t0 = 0;
tf = 4;
x0 = 10;
r = 4;
a = -.2;
b = 2;
d = -.4;
s = 1; %control delay
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auxdata.r = r;
auxdata.a = a;
auxdata.b = b;
auxdata.d = d;
auxdata.s = s;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.initialstate.lower = [x0, -300,0];
bounds.phase.initialstate.upper = [x0,300,0];
bounds.phase.state.lower = [-30,-300,-300];
bounds.phase.state.upper = [30,300,300];
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.finalstate.lower = [-30, 0, 0];
bounds.phase.finalstate.upper = [30,0,100];

%--------Initial Guess---------%
guess.phase.time = [0;0.8125;1;1.5; 3; 4];
guess.phase.state = [10,-16.3547,0;4,.1,2; 0.38,0.1,4;...

4.2,0,6; 4,0,8 ; 4,0,10];

%-------Provide Mesh Refinement Method and Initial Mesh ---------%

mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-4 ;
mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%----------- Assemble Information into Problem Structure ------------%
setup.name = ’Control_BVP’;
setup.functions.continuous = @ctrlnecconds_cont;
setup.functions.endpoint = @ctrlnecconds_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
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setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.nlp.ipoptoptions.tolerance = 1e-6;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.mesh = mesh;

%--------------- Solve Problem Using GPOPS2 ----------------%
output = gpops2(setup);
solution=output.result.solution ;
state = solution.phase.state;
time = solution.phase.time;
x = state(:,1);
l = state(:,2);
cost = output.result.objective;
j_necconds = sprintf(’%0.7f’,cost)

%reconstruct control
%get lambda(t+s) on [0,tf -s], 0 else
keeptt = time(time<= 3);
zerott = time(time>3);
newtime = keeptt + s;
lnew1 = interp1(time,l,newtime);
lnew2 = 0*zerott;
dell = [lnew1;lnew2];
u = -0.5*(b*l + d*dell);

ttms = time-s;
tsn = ttms(ttms<=0); %delay times <= 0
tsp = ttms(ttms>0); %delay times > 0
ud1 = -2.3*ones(size(tsn));
ud2 = interp1(time,u, tsp);

udel = [ud1;ud2];

[answer] = [time x u udel];
%-------------------------------------%
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%---Begin Continuous File----%
%------------------------------------%
function phaseout = ctrlnecconds_cont(input)
x = input.phase.state(:,1);
l = input.phase.state(:,2);
tt = input.phase.time;
a = input.auxdata.a;
r = input.auxdata.r;
b = input.auxdata.b;
d = input.auxdata.d;
s = input.auxdata.s;
iter = size(tt);
N = iter(1,1);

if N < 4
dx = a*x + b*(-.5*b*l) + d*(-0.5*b*l);
dl = -20*(x-r) -a*l;
dj = 10*(x-r).^2 + (-.5*b*l).^2;

else
%get lambda(t+s) on [0,tf -s], 0 else

keeptt = tt(tt<= 3);
zerott = tt(tt>3);
newtime = keeptt + s;
lnew1 = interp1(tt,l,newtime);
lnew2 = 0*zerott;
dell = [lnew1;lnew2];

% get lambda(t) on [1,tf], 0 else
keepl = l(tt >1);

%get lambda(t-s) on [0,tf]
ttms = tt-s;
tsn = ttms(ttms<=0); %delay times <=
tsp = ttms(ttms>0); %delay times > 0
lms = interp1(tt,l,tsp);
lm_size= size(lms);
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%construct u in terms of lambda
%still considered state variable by gpopsii
upos = -.5*(b*lms + d*keepl);
uneg = -2.3*ones(size(tsn));
usub = [uneg;upos];

dx = a*x + b*-.5*(b*l + d*dell) + d*usub;
dl = -20*(x-r) - a*l;
dj = 10*(x-r).^2 + (-.5*(b*l + d*dell)).^2; %add cost as dynamic eq
end
%no integral cost here
phaseout.dynamics = [dx, dl, dj];

%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = ctrlneccconds_events(input)
g = input.phase.finalstate(3); %minimize cost variable
output.objective = g;

A.1.5 GPOPS-II and Waveform Relaxation

We demonstrate how to solve Eq. 5.2 using GPOPS-II and waveform relaxation. We include the main

driver file, as well as all three GPOPS-II files. The first set of fileswaveform0,waveform0_continuous,

and wave0Events provide an initialization for the iteration.

%------Driver File---%
%uses gpops-ii and waveform relaxation to solve x’ = ax+ c*x(t-tau) on [0 5],
%prehistory = 1
a = -0.5;
c = -1.2;
tau = 1;

[time0,state0] =waveform0(a,c,tau); %solves the optimal control problem
[time1,state1] =waveform1(a,c,tau,time0,state0);
[time2,state2] =waveform1(a,c,tau,time1,state1);
[time3,state3] =waveform1(a,c,tau,time2,state2);
[time4,state4] =waveform1(a,c,tau,time3,state3);
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[time5,state5] =waveform1(a,c,tau,time4,state4);

%---Begin Main File------%
%initial iteration of waveform relaxation
function [time0,state0] = waveform0(a,c,tau)

%------ Provide and Set Up All Bounds for Problem -----%

t0 = 0;
tf = 5; %final time T
x0 = 1; %IC
xf = 1;
xmin = -20;
xmax = 20;
auxdata.tau =tau; %delay
auxdata.a =a; %coeff on x
auxdata.c =c; %coeff on delay term
P =4;
N =10;
umin = -20;
umax =20;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = 1;
bounds.phase.initialstate.upper =1;
bounds.phase.finalstate.upper =20;
bounds.phase.finalstate.lower =-20;
bounds.phase.state.lower =-20;
bounds.phase.state.upper =20;

%--------------- Provide Guess of Solution ---------------%
tGuess = [t0;tf];
xGuess = [x0;xf];
guess.phase.time = tGuess;
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guess.phase.state = xGuess;

%-------Provide Mesh Refinement Method and Initial Mesh ------------%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-6;
mesh.maxiteration = 1;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
N = 10;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%------- Assemble Information into Problem Structure ---------%
setup.name = ’wave0’;
setup.functions.continuous = @waveform0_continuous;
setup.functions.endpoint = @waveform0_events;
setup.auxdata =auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.method = ’RPM-Integration’;
setup.mesh = mesh;

%-------- Solve Problem Using GPOPS2 ----------%
output = gpops2(setup);

solution=output.result.solution;

state0=solution.phase.state;
time0=solution.phase.time;

%------Begin Continuous File-----%
function phaseout = waveform0_continuous(input)
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tau=input.auxdata.tau; %delay
a=input.auxdata.a; %coeff on x
c=input.auxdata.c; %coeff on delay term
x= input.phase.state(:,1);
tt=input.phase.time(:,1);
iter=size(tt);
NN=iter(1,1);

%initialize without delay term
if NN < 4
dx = a*x;
else
ts=tt-tau;
tsn=find(ts<=0);
tsp=find(ts >0);
xd1=ones(size(tsn)); %prehist = 1
xd2= interp1(tt,x,ts(tsp),’linear’); %interpolate delay term
xd=[xd1;xd2];

dx= d*xd+a*x;
end

phaseout.dynamics = dx;

%----Begin Events File---%
function output = waveform0_events(input)

output.objective = input.phase.integral;

%--Begin Main File---%
function [newtime,newstate] = waveform1(a,c,tau,oldtime,oldstate)

t0 = 0;
tf = 5;
x0 = 1;
xf = 1;
P=4; %polynomial order
N=10; %initial # of mesh intervals
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xmin = -20;
xmax = 20;
auxdata.tau=tau;
auxdata.a=a;
auxdata.c=c;
auxdata.oldtime=oldtime;
auxdata.oldstate=oldstate;
umin = -20;
umax =20;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = 1;
bounds.phase.initialstate.upper =1;
bounds.phase.finalstate.upper =20;
bounds.phase.finalstate.lower =-20;
bounds.phase.state.lower =-20;
bounds.phase.state.upper =20;

%------------------ Provide Guess of Solution --------------------%
tGuess = [t0;tf];
xGuess = [x0;xf];
guess.phase.time = tGuess;
guess.phase.state = xGuess;

%------Provide Mesh Refinement Method and Initial Mesh ----------%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-9;
mesh.maxiteration = 4;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
N = 10;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;
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%--------- Assemble Information into Problem Structure -----------%
setup.name = ’waveform’;
setup.functions.continuous = @waveform1_continuous;
setup.functions.endpoint = @waveform_events;
setup.auxdata =auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.method = ’RPM-Integration’;
setup.mesh = mesh;

%------------------ Solve Problem Using GPOPS2 ------------------%
output = gpops2(setup);

solution=output.result.solution
cost = solution.phase.integral
J_wave = sprintf(’%0.7f’,cost)
newstate=solution.phase.state;
newtime=solution.phase.time;

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = waveform1_continuous(input)

tau=input.auxdata.tau;
a=input.auxdata.a;
c=input.auxdata.c;
x= input.phase.state(:,1);
oldstate=input.auxdata.oldstate;
oldtime=input.auxdata.oldtime;

tt=input.phase.time(:,1);
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iter=size(tt);
NN=iter(1,1);
xd=ones(size(tt));

if NN < 4
dx1 = a*x1;
else

ts=tt-tau;
tsn=find(ts<=0);
tsp=find(ts >0);
xd1=ones(size(tsn));
xd2= interp1(oldtime,oldstate,ts(tsp),’linear’);
xd=[xd1;xd2];

dx= c*xd+a*x;
end

integrand = 10*(x - 2).^2 + u.^2;
phaseout.dynamics = dx;
phaseout.integrand = integrand;

%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = waveform_events(input)
g = input.phase.finalstate;
output.objective = g;

A.1.6 GPOPS-IIm on State Delay Differential Equation

We demonstrate how to implement a differential equation with state delay in GPOPS-IIm. The code

given below is for Eq. 5.5a. We note there is no control or cost.

%-------------Begin Main File---------------%
function soln = dde_main(N)
%solve DDE with state delay using GPOPS-IIm
% Set up initial data
t0 = 0;
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tf = 4;
x0 = 1;
xf = 10;
tau = .3; %delay value
P = 4;
xmin = -5000;
xmax = 5000;
auxdata.tau = tau;

%.......Set Up Bounds For Problem.....%
%large bounds for x unconstrained
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = x0;
bounds.phase.initialstate.upper = x0;
bounds.phase.state.lower = -5000 ;
bounds.phase.state.upper = 5000;
bounds.phase.finalstate.lower = -5000;
bounds.phase.finalstate.upper = 5000;

%---------- Initial Guess ------------%
tGuess = [t0;tf];
xGuess = [x0;xf];
guess.phase.time = tGuess;
guess.phase.state = xGuess;

%-------Provide Mesh Refinement Method and Initial Mesh ------%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-9;
mesh.maxiteration = 4;
mesh.colpointsmax = 4; %fixed order polynomial
mesh.colpointsmin = 4;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;
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%----- Assemble Information into Problem Structure ----%
setup.name = ’dde_main’;
setup.functions.continuous = @dde_continuous;
setup.functions.endpoint = @dde_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.method = ’RPM-integration’;
setup.mesh = mesh;

%------------ Solve Problem Using GPOPS2 --------------%
output = gpops2(setup);

solution = output.result.solution;

state=solution.phase.state;
time=solution.phase.time;
[soln] = [time state]

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = dde_continuous(input)
tau =input.auxdata.tau;
x = input.phase.state;
t = input.phase.time;
iter = size(t);
N = iter(1,1);
if N<4
dx = -3*x + 3.4*x; %unstable
else

tmtau = t-tau;
tsn = tmtau(find(tmtau<0));
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tsp = tmtau(find(tmtau>=0));
xd1 = ones(length(tsn),1);%prehistory is 1
size(xd1)
xd2 = interp1(t,x,tsp);
delx = [xd1;xd2];
dx = -3*x + 3.4*delx; %unstable

end

phaseout.dynamics = dx;

%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = dde_events(input)
g = input.phase.finalstate;
output.objective = g;

A.1.7 GPOPS-IIm on OCP with State Delay

We now give an example how to solve a delayed optimal control problem using GPOPS-IIm. We

give the code for the dynamics in Eq. 5.19 with c =−1.2 and the cost given in Eq. 3.33, a quadratic

tracking problem.

function [answer] = gpopsiim_main(N,P,m)
% solves ax + cx(t-tau) + bu on [0, T]
% cost 10(x-2)^2 + u^2
% fixed polynomial order N

%.......Set Up Bounds For Problem.....%

t0 = 0;
tf = 5;
x0 = 1;
xf = 4;
tau = 1; % Delay
a = -.5;
b = 1;
c = -1.2;
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xmin = -3000; %large x bounds, no path constraints
xmax = 2000;
auxdata.tau = tau;
auxdata.a = a;
auxdata.b = b;
auxdata.c = c;

%leave deliberately large bounds, u unconstrained
umin = -100;
umax = 100;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = 1;
bounds.phase.initialstate.upper = 1;
bounds.phase.state.lower = -30;
bounds.phase.state.upper = 30;
bounds.phase.finalstate.lower = -30;
bounds.phase.finalstate.upper = 30;
bounds.phase.control.lower = umin;
bounds.phase.control.upper = umax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 10000;

%----------------Provide Guess of Solution------------%
tGuess = [t0;2.5;tf]; % extra points in initial guess to improve solution
xGuess = [x0;1.5;1];
uGuess = [-16;2.5;0];
guess.phase.time = tGuess;
guess.phase.state = xGuess;
guess.phase.control = uGuess;
guess.phase.integral = 0;

%----Provide Mesh Refinement Method and Initial Mesh--%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-07;
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mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%-------- Assemble Information into Problem Structure ---------%

setup.name = ’GPOPS-IIm’;
setup.functions.continuous = @gpopsiim_continuous;
setup.functions.endpoint = @gen_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.mesh = mesh;

%-------- Solve Problem Using GPOPSII-------------%
output = gpops2(setup);
solution =output.result.solution ;
state =solution.phase.state;
u =solution.phase.control;
time =solution.phase.time;
x =state(:,1);

%reconstruct delayed state
ttmtau = time-tau;
tsn = ttmtau(ttmtau<=0); %delay times <= 0
tsp = ttmtau(ttmtau>0); %delay times > 0
xd1 = ones(size(tsn)); %prehistory p(t) = 1
xd2 = interp1(time,x,tsp);
delx = [xd1;xd2];

cost = solution.phase.integral

148



J_gpopsiim = sprintf(’\%0.7f’, cost)

[answer] = [time x delx u ];

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = gpopsiim_continuous(input)

tau = input.auxdata.tau;
a = input.auxdata.a;
b = input.auxdata.b;
c = input.auxdata.c;

x = input.phase.state(:,1);
u = input.phase.control;
tt = input.phase.time;

%identify when code initializes
iter= size(tt);
N = iter(1,1);

%ignore delay term when initializing
if N<4
dx = a*x + c*x + b*u;

else
ttmtau = tt-tau;
tsn = ttmtau(ttmtau<=0); %delay times <= 0
tsp = ttmtau(ttmtau>0); %delay times > 0
xd1 = ones(size(tsn)); %prehistory p(t) = 1
xd2 = interp1(tt,x,tsp); %interpolate state at delay times
delx = [xd1;xd2]; % assemble delayed state
dx = a*x + c*delx + b*u;

end

integrand = 10*(x-2).^2 + u.^2;
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phaseout.dynamics = dx;
phaseout.integrand = integrand;
%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = gen_events(input)
output.objective = input.phase.integral;

A.1.8 GPOPS-IIm on OCP with Control Delay

Below, we give the code to implement Eq. 6.3 using GPOPS-IIm.

%--------------Begin Main File-----------%
function [answer] = delayedctrl_main(N,P,m)
% solves ax + bu + du(t-s) on [0, T]
% w/ cost 10(x-r)^2 + u^2
% ORDER OF POLY FIXED
%.......Set Up Bounds For Problem.....%

t0 = 0;
tf = 4;
x0 = 10;
xf = 4;
s = 1; % Delay
a = -.2;
b = 2;
d = -.4;
r = 4;
xmin = -3000;
xmax = 2000;
auxdata.s = s;
auxdata.a = a;
auxdata.b = b;
auxdata.d = d;
auxdata.r = r;
umin = -100;
umax = 100;
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bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = x0;
bounds.phase.initialstate.upper = x0;
bounds.phase.state.lower = -30;
bounds.phase.state.upper = 30;
bounds.phase.finalstate.lower = -30;
bounds.phase.finalstate.upper = 30;
bounds.phase.control.lower = umin;
bounds.phase.control.upper = umax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 10000;

%----------------Provide Guess of Solution------------%
xGuess = [x0;4; 4; 4, xf];
uGuess = [7; -0.3796; -0.8118; 0; 0] ;
guess.phase.time = [t0;0.8125; 1; 1.5; tf];
guess.phase.state = xGuess;
guess.phase.control = uGuess;
guess.phase.integral = 0;

%----Provide Mesh Refinement Method and Initial Mesh--%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-04;
mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%------ Assemble Information into Problem Structure-------%
setup.name = ’Control_Delay’;
setup.functions.continuous = @delayedctrl_cont;
setup.functions.endpoint = @delayedctrl_events;
setup.auxdata = auxdata;
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setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.nlp.ipoptoptions.tolerance = 1e-4;
setup.nlp.ipoptoptions.maxiterations = 1000;
setup.mesh = mesh;

%----------Solve Problem Using GPOPS2 ---------------%
output = gpops2(setup);
solution=output.result.solution ;
x =solution.phase.state(:,1);
u=solution.phase.control(:,1);
t=solution.phase.time;
cost = solution.phase.integral;
J_gpopsiim = sprintf(’%0.7f’,cost)

[answer] = [t x u];

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = delayedctrl_cont(input)
s = input.auxdata.s;
a = input.auxdata.a;
b = input.auxdata.b;
d = input.auxdata.d;
r = input.auxdata.r;
x = input.phase.state(:,1);
u = input.phase.control(:,1);
tt = input.phase.time;
iter= size(tt);
N = iter(1,1);

if N<4
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dx = a*x + b*u + d*u;
else
ttms = tt-s;
tsn = ttms(ttms<=0); %delay times <= 0
tsp = ttms(ttms>0); %delay times > 0
ud1 = -2.3*ones(size(tsn)); %prehistory
ud2 = interp1(tt,u,tsp);
delu = [ud1;ud2];
dx = a*x + b*u + d*delu;

end
integrand = 10*(x-2).^2 + u.^2;
phaseout.dynamics = dx;

phaseout.integrand = integrand;

%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = delayedctrl_events(input)

output.objective = input.phase.integral;

A.1.9 GPOPS-IIm on OCP with Control Delay, Extra Variable

We give the code to implement Eq. 6.3 with extra dynamic equation u ′ = z , adding ε‖z‖2 to the cost.

In order to obtain
∫ T

0
ε‖z‖2d t , we create a new state variable zval and add the dynamic equation

dzval = ε‖z‖2. We then subtract
∫ T

0
ε‖z‖2d t from our computed cost in order to obtain the cost

for Eq. 6.3 without z increasing the results.

function [answer] = delayedctrl_main(N,P,m)
% solves ax + bu + du(t-s) on [0, T]
% w/ cost 10(x-r)^2 + u^2
% ORDER OF POLY FIXED

%.......Set Up Bounds For Problem.....%
t0 = 0;
tf = 4;
x0 = 10;
z0 = -7;
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zf = 0;
xf = 4;
tau = 1; % Delay
a = -.2;
b = 2;
d = -.4;
r = 4;
xmin = -3000;
xmax = 2000;
auxdata.s = s;
auxdata.a = a;
auxdata.b = b;
auxdata.d = d;
auxdata.r = r;
zmin = -100;
zmax = 100;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = [x0,-200,0];
bounds.phase.initialstate.upper = [x0,200,0];
bounds.phase.state.lower = [-200,-200,-200];
bounds.phase.state.upper = [200,200,200];
bounds.phase.finalstate.lower = [-200,-200,-200];
bounds.phase.finalstate.upper = [200,200,200];
bounds.phase.control.lower = zmin;
bounds.phase.control.upper = zmax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 10000;

%--------------------Provide Guess of Solution -----------------%
xGuess = [x0,z0,0;4,0,.1; 4,0,.1; 4,0,.1; xf, zf, 4];
uGuess = [7; -0.3796; -0.8118; 0; 0] ;
guess.phase.time = [t0;0.8125; 1; 1.5; tf];
guess.phase.state = xGuess;
guess.phase.control = uGuess;
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guess.phase.integral = 0;

%----Provide Mesh Refinement Method and Initial Mesh--%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-04;
mesh.maxiteration = m;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%------ Assemble Information into Problem Structure --------%
setup.name = ’Control_Delay’;
setup.functions.continuous = @delayedctrl_cont;
setup.functions.endpoint = @delayedctrl_events;
setup.auxdata = auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.nlp.ipoptoptions.tolerance = 1e-4;
setup.nlp.ipoptoptions.maxiterations = 1000;
setup.mesh = mesh;

%----------Solve Problem Using GPOPS2 ---------------%
output = gpops2(setup);
solution=output.result.solution ;
x =solution.phase.state(:,1);
u=solution.phase.state(:,2);
z = solution.phase.control;
t=solution.phase.time;
cost = solution.phase.integral;
J_gpopsiim = sprintf(’%0.7f’,cost)

%integral of \epsilon*||z||^2
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zval = solution.phase.state(:,3);
endz = zval(end); %value of integral at T
z_cost = sprintf(’%0.7f’,endz)

%cost minus value of integral of \epsilon*||z||^2
diff = cost- endz;
diff1 = sprintf(’%0.7f’,diff)

[answer] = [t x u zval];

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = delayedctrl_cont(input)
s = input.auxdata.s;
a = input.auxdata.a;
b = input.auxdata.b;
d = input.auxdata.d;
r = input.auxdata.r;
x = input.phase.state(:,1);
z = input.phase.control(:,1);
u = input.phase.state(:,2);

%create new state variable
%gives value of integral of epsilon*z^2 on [0,T]
zval = input.phase.state(:,3);

epsilon= .01;
tt = input.phase.time;
iter= size(tt);
N = iter(1,1);

if N<4 %initialize without delay
dx = a*x + b*u + d*u;
du = z;
dzval = epsilon*z.^2;

else
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ttms = tt-s;
tsn = ttms(ttms<=0); %delay times <= 0
tsp = ttms(ttms>0); %delay times > 0
ud1 = -2.3*ones(size(tsn)); %prehistory
ud2 = interp1(tt,u,tsp);
delu = [ud1;ud2];
dx = a*x + b*u + d*delu;
du = z;

%variable epsilon
% .001 z^2 on [0,1]
% .01 z^2 on [1,4]

t1 = find(tt==1);
dzval = epsilon*z.^2;
dzval(1:t1) = .1*dzval(1:t1);
end

%variable epsilon
% .001 z^2 on [0,1]
% .01 z^2 on [1,4]

newz = epsilon*z.^2;
newz(1:t1) = .1*newz(1:t1);

integrand = 10*(x - r).^2 + u.^2 + newz;
phaseout.dynamics = [dx, du, dzval];
phaseout.integrand = integrand;

%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = delayedctrl_events(input)

output.objective = input.phase.integral;

A.1.10 GPOPS-IIow State Delay

We given the code to solve Eq. 5.24 with cost Eq. 5.25 using GPOPS-IIow, waveform optimization.
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%--------Driver File-----------%
%use waveform optimization on x’= a x + cx(t-tau) + u on [0 5]
a=-0.5;
c=-1.2; % or 1.2
tau=1; %delay or 1, 0.5, 0.25, 0.05
[time0,state0,control0] =wave0f(a,c,0); %solves the optimal control problem
[time1,state1,control1] =wavef(a,c,tau,time0,state0);
[time2,state2,control2] =wavef(a,c,tau,time1,state1);
[time3,state3,control3] =wavef(a,c,tau,time2,state2);
[time4,state4,control4] =wavef(a,c,tau,time3,state3);
[time5,state5,control5] =wavef(a,c,tau,time4,state4);

%--------wave0 Main File------%
function [time0,state0,control0] = wave0f(a,c,tau)

%---------Provide and Set Up All Bounds for Problem -----------%

t0 = 0;
tf = 5;
x0 = 1;
xf = 1;
xmin = -20;
xmax = 20;
%tau =1;
auxdata.tau=tau;
auxdata.a=a;
auxdata.c=c;
P=4;
N=10;
umin = -20;
umax =20;
bounds.phase.initialtime.lower = t0;
bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = 1;
bounds.phase.initialstate.upper =1;
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bounds.phase.finalstate.upper =20;
bounds.phase.finalstate.lower =-20;
bounds.phase.state.lower =-20;
bounds.phase.state.upper =20;
bounds.phase.control.lower = umin;
bounds.phase.control.upper =umax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 100000;

%----------Provide Guess of Solution ------------%
tGuess = [t0;tf];
xGuess = [x0;xf];
uGuess = [1;1];
guess.phase.time = tGuess;
guess.phase.state = xGuess;
guess.phase.control = uGuess;
guess.phase.integral = 0;

%-----Provide Mesh Refinement Method and Initial Mesh---------%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-6;
mesh.maxiteration = 1;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
N = 10;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;

%-------- Assemble Information into Problem Structure ----------%
setup.name = ’wave0’;
setup.functions.continuous = @wave0Continuous;
setup.functions.endpoint = @wave0Events;
setup.auxdata =auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
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setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.method = ’RPM-Integration’;
setup.mesh = mesh;

%--------- Solve Problem Using GPOPS2 ------------%
output = gpops2(setup);

solution=output.result.solution

state0=solution.phase.state;
control0=solution.phase.control;
time0=solution.phase.time;

%-------------------------------------%
%---Begin Continuous File----%
%------------------------------------%
function phaseout = wave0Continuous(input)

tau=input.auxdata.tau;
a=input.auxdata.a;
c=input.auxdata.c;
x= input.phase.state(:,1);

u=input.phase.control(:,1);
tt=input.phase.time(:,1);
iter=size(tt);
NN=iter(1,1);

if NN < 4
dx = a*x +u; %initialize without delay
else

ts=tt-tau;
tsn=find(ts<=0);
tsp=find(ts >0);
xd1=ones(size(tsn));
xd2= interp1(tt,x,ts(tsp),’linear’); %interpolate delay term
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xd=[xd1;xd2];
dx1= c*xd+a*x+ u;

end

integrand = 10*(x-2).*(x-2) + u.*u;

phaseout.dynamics = dx;
phaseout.integrand = integrand;

%------------------------------------------%
%----------Begin Events File---------%
%------------------------------------------%
function output = wave0(input)

output.objective = input.phase.integral;

%---Begin Main ’wavef’ File---%
function [newtime,newstate,newcontrol] = wavef(a,c,tau,oldtime,oldstate)

%-------------------------------------------------------------------------%
t0 = 0;
tf = 5;
x0 = 1;
xf = 1;
xmin = -20;
xmax = 20;
auxdata.tau=tau;
auxdata.a=a;
auxdata.c=c;
auxdata.oldtime=oldtime;
auxdata.oldstate=oldstate;
P=4;
N=10;

umin = -20;
umax =20;
bounds.phase.initialtime.lower = t0;
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bounds.phase.initialtime.upper = t0;
bounds.phase.finaltime.lower = tf;
bounds.phase.finaltime.upper = tf;
bounds.phase.initialstate.lower = 1;
bounds.phase.initialstate.upper =1;
bounds.phase.finalstate.upper=20;
bounds.phase.finalstate.lower=-20;
bounds.phase.state.lower =-20;
bounds.phase.state.upper =20;
bounds.phase.control.lower = umin;
bounds.phase.control.upper = umax;
bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 100000;

%-------------------------------------------------------------------------%
%---------------------- Provide Guess of Solution ------------------------%
%-------------------------------------------------------------------------%
tGuess = [t0;tf];
xGuess = [x0;xf];
uGuess = [1;1];
guess.phase.time = tGuess;
guess.phase.state = xGuess;
guess.phase.control = uGuess;
guess.phase.integral = 0;

%-------------------------------------------------------------------------%
%----------Provide Mesh Refinement Method and Initial Mesh ---------------%
%-------------------------------------------------------------------------%
mesh.method = ’hp-PattersonRao’;
mesh.tolerance = 1e-9;
mesh.maxiteration = 4;
mesh.colpointsmax = P;
mesh.colpointsmin = P;
N = 10;
mesh.phase.colpoints = P*ones(1,N);
mesh.phase.fraction = ones(1,N)/N;
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%-------------------------------------------------------------------------%
%------------- Assemble Information into Problem Structure ---------------%
%-------------------------------------------------------------------------%
setup.name = ’wavef’;
setup.functions.continuous = @wavefContinuous;
setup.functions.endpoint = @wavefEvents;
setup.auxdata =auxdata;
setup.bounds = bounds;
setup.guess = guess;
setup.nlp.solver = ’ipopt’;
setup.derivatives.supplier = ’sparseCD’;
setup.derivatives.derivativelevel = ’second’;
setup.derivatives.dependencies = ’full’;
setup.method = ’RPM-Integration’;
setup.mesh = mesh;

%-------------------------------------------------------------------------%
%---------------------- Solve Problem Using GPOPS2 -----------------------%
%-------------------------------------------------------------------------%
output = gpops2(setup);

solution=output.result.solution
cost = solution.phase.integral
J_gpopsiiow = sprintf(’%0.7f’,cost)
newstate=solution.phase.state;
newcontrol=solution.phase.control;
newtime=solution.phase.time;

%--Begin Continuous File----%
function phaseout = wavefContinuous(input)

tau=input.auxdata.tau;
a=input.auxdata.a;
c=input.auxdata.c;
x= input.phase.state(:,1);
oldstate=input.auxdata.oldstate;
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oldtime=input.auxdata.oldtime;

u=input.phase.control(:,1);
tt=input.phase.time(:,1);
iter=size(tt);
NN=iter(1,1);
xd=ones(size(tt));
if NN < 4
dx1 = a*x +u;
else

ts=tt-tau;
tsn=findtts<=0);
tsp=find(ts >0);
xd1=ones(size(tsn));
xd2= interp1(oldtime,oldstate,ts(tsp),’linear’);
xd=[xd1;xd2];

dx1= c*xd+a*x+ u;
end

integrand = 10*(x-2).*(x-2) + u.*u;

phaseout.dynamics = dx;
phaseout.integrand = integrand;

%--Begin Events File---%
function output = wavefEvents(input)

output.objective = input.phase.integral;

A.1.11 Control Parameterization and OCP with State Delay

We demonstrate how to implement an OCP with state delay with linear dynamics and quadratic

cost in MATLAB. We use the delay differential equation solver dde23 and the nonlinear optimizer

fmincon, and solve the problem given by Eq. 5.21 and Eq. 5.8.

%------Begin Driver File----%
% Driver for Control parameterization code for delayed OCP
%solves dx = ax + cx(t-tau) + bu on [0,T]
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% with quadratic cost dJ = 10(x-2)^2 + u^2
t0 =0;
tf = 5;
N = 28;
tau = 1; %value of delay
x0 = [1 0]; %delay IC
step = tf/N;
time1 = t0:step:tf;

[J1,umin] = ctrlparam_mincost2();

ctrlparam_cost = sprintf(’%0.7f’,J1)

options = ddeset(’RelTol’,1e-7,’AbsTol’,1e-7);
sol = dde23(@ddex1,[tau],@ddex1hist,[t0,tf],options,umin);
t = answer(:,1);
umin = spline(time1,umin,t);

function s = ddex1hist(t,u)
s=[1;0];
end

function dydt = ddex1(t,y,Z,u)
N = 28;
t0 = 0;
tf = 5;
step = tf/N;
time = t0:step:tf;
ylag = Z(:,1);
dydt(1,:) = -0.5*y(1) -1.2*ylag(1) + spline(time,u,t);
dydt(2,:) = 10*(y(1)-2).^2 + spline(time,u,t).*spline(time,u,t);
end

%----------Additional File--------%
function [J1,umin] = ctrlparam_mincost2()
N = 28; % # mesh intervals for control
IC = 4*(1:(N+1)).^(-1); %initial condition x(0) = 0
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ub = 7*ones(N+1,1); %upper bound for control
lb = -2*ones(N+1,1); %lower bound for control

options=optimoptions(’fmincon’,’MaxIter’,9000, ’TolCon’,1e-7,...
’TolFun’,1e-7);

[umin,J1,exitflag] = fmincon(@cost,IC,[],[],[],[],lb,ub,[],options);
end

%delay function
%solve with dde23
function [J,t] = cost(u)
t0 = 0;
tf = 5;
x0 = [1 0];
options = ddeset(’RelTol’,1e-7,’AbsTol’,1e-7);
sol = dde23(@ddex1, [1],@ddex1hist,[t0,tf],options,u);
time= sol.x;
vals= sol.y;
J = vals(2,end);
end

function s = ddex1hist(t,u)
s=[1;0];
end
%
function dydt = ddex1(t,y,Z,u)
N = 28;
t0 = 0;
tf = 5;
step = tf/N;
time = t0:step:tf;
ylag = Z(:,1);
dydt(1,:) = -0.5*y(1) - 1.2*ylag(1) + spline(time,u,t);
dydt(2,:) = 10*(y(1)-2).^2 + spline(time,u,t).*spline(time,u,t);
end
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