
ABSTRACT

LAVIGNE, GARY MICHAEL. Modeling and Quantifying Spatial Strategies of the Innate Immune
Response. (Under the direction of Kevin Flores.)

The innate immune response, particularly the interferon response, represents a first line of

defense against viral infections. The interferon proteins produced from infected cells signal to

nearby cells that an infection is present, causing them to enter a protected anti-viral state. Although

the molecular processes involved in interferon signaling have been well studied, the collective effect

of interferon signaling to stop the spread of viral infection through a tissue has yet to be rigorously

characterized. Here, we use mathematical modeling in both continuous (partial differential equa-

tion) and discrete (cellular automata) frameworks to study the host interferon response as a strategy

for controlling disease. Furthermore, we contrast the results from spatial and non-spatial models

of this process to demonstrate the importance of localized response in the efficacy of interferon

response. Specifically, we find that cell-to-cell signaling of interferon is only impactful in a spatially

structured infection, whereas its effect is minimal in a well-mixed infection. However, same-cell

signaling can be efficacious in a well-mixed environment but loses its effectiveness when infection

is spatially structured. Furthermore, we argue that the interferon response can be seen as a parallel

to population-level epidemic prevention strategies such as "contact tracing" or "ring vaccination".

Thus, our results here may have implications for the outbreak control at the population scale more

broadly. We lastly employ a variety of established and novel data-driven equation learning frame-

works to draw conclusions about the impact of interferon signaling on the spread of disease. We

study how high levels of interferon signaling can increase the stochasticity of the spread of infection.
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CHAPTER

1

INTRODUCTION

Mathematical models have a long history of use in describing biological phenomena across a wide

array of temporal and spatial scales from natural selection and species migration to cell motility and

insulinemic response. Biological phenomena invariably emerge as the result of local interaction,

either of individuals on the population scale or of cells and molecules on the tissue scale. While

many models can be of incredible utility without the explicit consideration of spatial arrangement

and local interactions, certain phenomena are inherently spatial in nature. This is trivially true

in the study of inherently spatial processes such as migration, motility, transport, and diffusion.

But local interactions are equally important in the shaping processes such as cancer pathogenesis,

embryonic development, and immune response. Especially at the cellular scale, it is the passive

diffusion of nutrients, oxygen, and cytokines that is critical for shaping the way tissues organize

themselves. Diffusion as a delivery mechanism is limited to this scale in the body, meaning the

efficacy of diffusion as a delivery mechanism may act as a metric against which tissues measure

themselves. Hypoxia in growing tumors due to insufficient diffusion of oxygen can lead to tumor

angiogenesis, the first step in the cancer pathogenesis. In this way, diffusion, though a passive
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process, can play a crucial role in the organization of tissues, especially when considered in concert

with reaction processes. Alan Turing famously outlined the idea of diffusion-driven instability in his

1952 paper "A chemical basis of morphogenesis”, wherein he describes how the passive diffusion of

reactive species can result in the formation of patterns [1].

In this thesis, we will explore the importance of local interactions in the efficacy of the host

immune response to viral infection. We will focus on the innate (naïve) response to a novel viral

infection in the form of Interferon response. We aim to elucidate how this response is efficacious

due to it’s ability to act locally within a tissue via the extension of previous work to spatially explicit

modeling frameworks. Specifically, we hope to show how studying the Interferon signaling and

viral infection process in consideration of explicit spatial arrangement of cells can lead to different

conclusions than the study of the process under an assumption of well-mixedness. The Interferon

signal received by a cell can be characterized as a “paracrine signal” if the signal is recieved from

a another cell or as an “autocrine signal” if the signal is recieved by the same cell that produced

it, each resulting in different cell phenotypes during infection. We will study these two signaling

pathways in both spatial and non-spatial frameworks to understand how they can work in concert

to protect the host from viral infections (see Figure 1.1 for a conceptual diagram).
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Paracrine Signaling

Autocrine Signaling
Spatially structured infection

Well-mixed infection
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Figure 1.1 Conceptual diagram. Infected cells produce IFN in response to the detection of intracellular viral matter. The IFN the exits the infected host
cell and binds to cell surface receptors. IFN signaling occurs via paracrine (cell-to-cell) and autocrine (same cell) pathways. Autocrine IFN signaling
can slow virion production in the already-infected cell, or can create a completely anti-viral state in uninfected cells. Theses two signaling pathways
are present in both spatially structured infection in epithelial tissues and in well-mixed infection such as in the blood. We will investigate the diverging
impact of these two key signaling pathways in both spatial and non-spatial frameworks to understand how they work in concert to protect an immune
naïve host from novel viral pathogens.
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1.1 Review of biology literature on Interferon response

The innate immune response provides critical protection against pathogen invasion of humans and

other animals prior to establishment of adaptive immunity. It relies on multiple cytokines, chief

among them being interferons (IFNs), a large, diverse family of signaling proteins that together

induce a protective response [2]. The importance of IFN in the defense against viral infections is

demonstrated by the fact that essentially all viral pathogens have developed mechanisms to interfere

with the host IFN response [3, 4, 5]. Indeed, viral evasion of the IFN response strongly determines

the rate of viral replication, the success of transmission and infection establishment in new hosts [6]

and the range of species infection [7]. The capacity to inhibit the IFN response determines species

tropism for human immunodeficiency virus [8], dengue virus [9], rotavirus [10], measles virus [11],

and influenza virus [12].

The IFN response is commonly described by its two components: first, viral induction of IFN,

and second, IFN induction of antiviral genes [13]. Upon infection, viral RNAs or DNAs are detected

by the cell triggering a signaling cascade that results in the production of Type I IFNs [14, 15]. These

IFN molecules are then secreted and bind to surface receptors located on the cell membrane. IFN

binding to the surface of the cell from which it is produced is referred to as autocrine signaling,

whereas binding to the surface of any other cell is referred to as paracrine signaling. This binding

initiates a series of signaling events that ultimately result in the production of Interferon Stimulated

Genes (ISGs), the expression of which repress viral replication in the cell at multiple steps ([16]. In

an uninfected cell, binding of IFN to its receptor and subsequent IFN signaling renders the cell

refractory to viral infection, while in an infected cell, this signaling can suppress viral replication and

decrease release of viral progeny from the cell. An elegant analysis of the virus-induced IFN response

at the single cell level demonstrated that paracrine signaling early in infection shapes the overall

IFN response [16]. However, the inflammatory response elicited by IFN can have deleterious effects

on the host if uncontrolled, with high levels of IFN being strongly correlated with host mortality [17].
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1.2 Review of modeling literature on Interferon response

Although the molecular mechanisms of IFN signaling have been well characterized, the systems-level

properties arising from the individual host cell response, particularly how the host cells collectively

stop viral infection at the site of exposure before the infection becomes systematic, remain unclear.

To address these questions, we use modeling approaches to understand how IFN signaling can

stop early infection (i.e., at the site of initial entry) before adaptive immunity is developed. Previous

modeling of virus infection and the IFN response has focused on the role of IFN response after

the infection becomes systematic and used ordinary differential equations (ODEs) to model the

dynamics of global target cell populations [18, 19, 20]. An ODE modeling study of equine IFN

response in response to Influenza A Virus (H3N8) infection concluded that IFN response is important

in modulating viral dynamics in a naïve host by accelerating the depletion of target cells [19]. A

later study also using ODEs of the same experimental data was able to capture a bimodal trend

in viral load which was explained by the temporary depletion of target cells due to IFN response

followed by the bulk reentry of protected cells into the susceptible class, thus causing two peaks in

measured viral titers [20]. A notable limitation of this dataset, however, was the collection method,

wherein nasal wash from infected ponies was used as a surrogate for the global viral load of the

host, which can be reasonably construed as the entire respiratory tract. ODE models necessarily

include the implicit assumption that the host is treated as a single well-mixed compartment, and

thus they neglect the spatial structure of infection [21]. ODE models of this type also typically model

systemic infection of the host, and are therefore not useful for studying one of the key insights

of the interferon literature: that IFN is a highly effective selection pressure and strongly shapes

tropism of viral phenotypes. That is to say, ODE models of systemic infection can not capture the

fundamental reasons for the efficacy of IFN in quashing incompetent viral infections at the initial

site of transmission. Influenza infection, for example, starts at the epithelial lining of the upper

respiratory tract, which is composed of a lattice monolayer of non-motile cells, and infection is

initiated by a transmission bottleneck as small as 10-200 virions [22]. In HIV-1 infection, it has been

shown that 80% of novel chronic infections are initiated by a single founder virus [23], suggesting

that the vast majority of virions transmitted are unfit in the face selection pressure at the epithelial

transmission barrier such as IFN response. This spatial structure ensures that infection – and the
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ensuing interferon response – are inherently a spatial processes that depend of highly localized

interactions. Therefore, for many viral pathogens, a spatially explicit model is most appropriate to

investigate the interaction between virus and the IFN response early in infection.

In this thesis, we will develop various models with or without explicitly considering the impact

of the spatial arrangement of cells to examine the roles of autocrine and paracrine IFN signaling. In

Chapter 2 we will develop on ODE model of viral infection with IFN response based on previous

work, with the novel inclusion of both autocrine and paracrine pathways for IFN signaling. We show

that, in well-mixed ODE models, autocrine signaling can impact the course of infection by inhibiting

virus production from already infected cells, thus directly decreasing the exponential growth rate

during early infection. However, we will discover that paracrine signaling is less impactful during

this early growth phase, as it can only act to decrease the availability of target cells. In Chapters 3

and 4, we will develop spatially explicit models of viral infection with IFN signaling and will show

that IFN paracrine signaling can stop viral infection by segregating susceptible cells from areas

of infection with an insulating layer of protected cells. In Chapter 3 we will develop a system of

reaction-diffusion partial differential equations that allows for classical traveling wave analysis. In

Chapter 4, we develop a novel Cellular Automata model that included the stochasticity inherent to

the earliest stages of viral infection. Both of these models will show that the ability of IFN to locally

target the cells most susceptible to infection allows it to strongly impede the spread of infection – a

feature that is necessarily missed by the non-spatial ODE models. This strategy parallels the control

strategies of "ring vaccination" and "contact tracing" in epidemiology and outbreak control which

aim to stop spread of infection by targeting the most at-risk individuals [24, 25, 26].
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CHAPTER

2

AN ODE MODEL OF VIRAL INFECTION

WITH INTERFERON RESPONSE

2.1 Model Development

We first develop a model of viral infection with IFN signaling using ordinary differential equations

(ODEs). ODE models of this type have been well established by previous work on in-vivo models

of virus-immune interaction during systemic infection [18, 20]. These models consider all state

variables to be functions of time t alone, and therefore neglect the spatial arrangement of individual

cells, virions, and IFNs. Rather, in this model, the entire host is modeled as a single well-mixed

compartment, with all interactions being governed by mass action kinetics. The equations of our

model are as follows:
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d T

d t
=−βV T −φF T +ρR

d I

d t
=βV T −δI −k I −φF I

d I ∗

d t
= k I +φF I −δI ∗

d R

d t
=φF T −ρR

d V

d t
= p I + (1− f )p I ∗− c V

d F

d t
=πp (I + I ∗)− c F

(2.1)

In this model (see Figure 2.1 or a schematic), cells are categorized into one of four states: un-

infected target cells T , productively infected cells I , infected cells that are in an antiviral state I ∗

and refractory cells R . Uninfected cells are infected by virions V at rate β or become refractory

to infection through paracrine signaling of IFN (F ) at rate φ. Binding of IFN molecules to IFN

receptors on infected cells (I ), including both autocrine and paracrine IFN signaling, may trigger an

antiviral response in those cells, such that virus production is inhibited or reduced. We model the

impacts of autocrine and paracrine signaling using two separate terms, i.e. k I andφF I . Note that

F in our model represents the ambient concentration of unbound IFN (under the assumption of

homogeneous concentration of IFN). We assume that autocrine signaling occurs independent of

the ambient IFN concentration, because once produced from infected cells, IFNs preferentially bind

to the producing cell due to proximity. The transition towards an antiviral state due to autocrine

signaling is thus modeled by k I , i.e. independent of ambient IFN concentration. In contrast, the rate

of transition due to the paracrine signaling is modeled to be dependent on the IFN concentration

with the mass action termφF I .

We assume that infected cells (both I and I ∗) die at the same per capita rate δ. Refractory cells

remain protected for an average time of 1/ρ before returning to the susceptible state, i.e. becoming

target cells again. Infected cells I release viruses at rate p . Infected cells in an anti-viral state I ∗

release virions at a reduced rate of (1− f )p , where f is the fraction of reduction. For simplicity, we

further assume that both I and I ∗ cells release IFNs at rateπp and that viruses and IFNs are cleared at

per capita rate c . Note that since the time scale of the dynamics of IFNs is much faster than the time
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scale of dynamics of the cells, we can make the quasi-equilibrium assumption for the concentration

of IFN and then the level of IFNs are related to infected cells as F = πc p (I + I ∗). Therefore, if IFN is

cleared in the system at a rate different from c , the level of IFN can be compensated in the system by

changing the value ofπ. In this way, when β andφ are taken to be equal, the parameterπ represents

the ratio of successful IFN contact events to successful virion contact events on target cells T . The

parameters used throughout are shown below in Table (2.1).

Table 2.1 Parameters of the ODE model. Parameter β chosen to produce peak viremia near 2 DPI,φ taken
to match β so that π represents ratio of efficacious IFN contacts to infection events. Autocrine transition
rate k taken to equal δ so that cell has equal probability of dying or entering autocrine-signaled state.

Parameter Description Units Default Value Source
T0 initial target cell population cells 3.5×1011 [20]
β virus contact rate cm particles−1 day−1 5×10−13

φ IFN contact rate cm particles−1 day−1 5×10−13

δ infected cell death rate day−1 1 [20]
k autocrine transition rate day−1 1
f autocrine efficacy unitless 0.9
p virion production virion cell−1 day−1 2400 [27]
c virion clearance day−1 14 [20]
ρ reversion from R to T day−1 0.1 [20]
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Figure 2.1 Schematic of ODE model of viral infection with interferon response. Schematic diagram with parameters in the model. Solid arrows indicate
transition of cells from one state to another; dashed arrows indicate the production or binding of viruses and IFNs from cells.
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2.2 Equilibrium Analysis of the ODE Model

The model presented in equations (2.1) is classified as a target cell limitation model. That is to say

that there is no natural death or regeneration in the target cell compartment. We solve the steady

state system:

−βV T −φF T +ρR = 0

βV T −δI −k I −φF I = 0

k I +φF I −δI ∗ = 0

φF T −ρR = 0

p I + (1− f )p I ∗− c V = 0

πp (I + I ∗)− c F = 0

(2.2)

We find the equilibria of the model consist of the unstable manifold of “disease free” equilibria:

h

T , I , I ∗, R , V , F
iT

=
h

T , 0, 0, 0, 0, 0
iT

, T > 0

and the unique globally stable equilibrium

h

T , I , I ∗, R , V , F
iT

=
h

0, 0, 0, 0, 0, 0
iT

,

which is referred to as the “extinction” equilibrium. Our model is considered a target cell limitation

model as the total number of cells inexorably decreases to 0. That is to say, the cell total N =

T + I + I ∗+R can only decrease due to cell death, as shown below.
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d N

d t
=

d (T + I + I ∗+R )
d t

=
d T

d t
+

d I

d t
+

d I ∗

d t
+

d R

d t

=−βV T −φF T +ρR +βV T −δI −k I −φF I +k I +φF I −δI ∗+φF T −ρR

=−δ(I + I ∗)

No “endemic” (i.e., non-trivially non-zero) equilibrium is admitted in this model since there is no

proliferation of Target cells. Equations (??) show that d N
d t is always negative when any number of

infected cells exists. In such target cell limitation models, the clearance of infection is only achieved

by the extinction of the target cell compartment. These models have routinely been used to describe

acute infections that do not establish persistent infection such as Influenza [18].

2.3 Basic Reproduction Number R0

The basic reproduction number R0 of a disease is defined to be the expected value of the number of

secondary infections produced by a single infected individual in a wholly susceptible population. For

simple models with a single short-lived infectious class, a straightforward probabalistic argument

can be made:

R0 = [ # successful contacts per unit time]× [lifespan of infected cell]

First, as a baseline, we will consider a reduced ODE model that neglects IFN signaling, which we

will call the “TIV” model.

d T

d t
=−βV T

d I

d t
=βV T −δI

d V

d t
= p I − c V

(2.3)

In this model, an infected cell lives for an average time of 1/δ, producing p virions per unit time.
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Each virion, in turn, lives for an average time of 1/c , producing βT0 infections per unit time. These

two observations together yield the following expression for the basic reproduction number:

R0 = p ·
1

δ
·βT0

1

c
= T0

βp

δc
(2.4)

For our baseline parameter set shown in Table 2.1, the relation in 2.4 gives R0 = 30. Note that this

reproductive number would be very large in the context of the epidemiological spread of disease,

but could be considered reasonable on the in-host scale in the absence of immune control. However,

for models such as ours where there are several infectious classes with a variety of modalities of

infection and state transition, this approach is rendered intractible, and we make use of a generalized

Next Generation Matrix (NGM) approach, as outlined in [28].

Deriving an expression for R0 in ODE model

We will derive an expression for the basic reproductive number R0 for the ODE system below via

construction of the Next Generation Matrix (NGM).

d T

d t
=−βV T −φF T +ρR (2.5)

d I

d t
=βV T −δI −k I −φF I (2.6)

d I ∗

d t
=φF I +k I −δI ∗ (2.7)

d R

d t
=βF T −ρR (2.8)

d V

d t
= p I + (1− f )p I ∗− c V (2.9)

d F

d t
=πp (I + I ∗)− c F (2.10)

We consider the “infectious subsystem“ consisting of consisting of equations (2.6),(2.7), and (2.9)

above. We compute the Jacobian of this subsystem, evaluating it at the disease-free equilibrium

[T , I , I ∗, R , V , F ]T = [T0, 0, 0, 0, 0, 0]T , which yields the following:
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J=











−δ−k 0 β ∗T 0

k −δ 0

p (1− f )p −c











(2.11)

The Jacobian (2.11) is then partitioned as J= T+Σ, where the transmission matrix T represents epi-

demiological birth events such as infections and virion production while Σ represents exponentially

distributed transition events such as cell death.

T=











0 0 βT0

0 0 0

p (1− f )p 0











(2.12) Σ=











−δ−k 0 0

k −δ 0

0 0 −c











(2.13)

The NGM is then defined to be K=−TΣ−1, and R0 is defined to be the spectral radius of the NGM.

We note here that Σ is always non-singular, as the inevitable clearance of infected cells and virions

is required for R0 to be finite. The following computations were perfomed with Maple.

Σ−1 =











−1
δ+k 0 0

−k
(δ+k )δ

−1
δ 0

0 0 −1
c











and K=−TΣ−1 =











0 0 βT0/c

0 0 0

p/(δ+k ) + (1− f )p k
(δ+k )∗δ (1− f )p/δ 0











(2.14)

The spectral radius of K as shown in (2.14) is found to be:

ρ(K) =

√

√βp T0(− f k +δ+k )
δc (δ+k )

=

√

√βp T0

cδ

�

1−
f k

δ+k

�

(2.15)

It is unclear if the expression for R0 given in (2.15) is properly interpretable, however, as the

infectious system of equations contains state variables that are a mix of individuals (cells) and

“vectors” (virions). We can produce a similar analysis for a system in which non-cell compartments

are assume to immediately equilibrate.
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d V

d t
= p I + (1− f )p I ∗− c V = 0 =⇒ V =

p

c

�

I + (1− f )I ∗
�

d F

d t
=πp (I + I ∗)− c F = 0 =⇒ F =

πp

c
(I + I ∗)

(2.16)

By substituting the above expressions for V and F shown in (2.16) into equations (2.5) – (2.8), we

obtain the Quasi-equilibrium system, shown below:

d T

d t
=−β

p

c

�

I + (1− f )I ∗
�

T −φ
πp

c
(I + I ∗)T +ρR

d I

d t
=β

p

c

�

I + (1− f )I ∗
�

T −δI −k I −φF I

d I ∗

d t
=φ

πp

c
(I + I ∗)I +k I −δI ∗

d R

d t
=β

πp

c
(I + I ∗)T −ρR

Reproducing the NGM analysis with the Quasi-euilibrium system, we obtain the following:

T=





βp T0
c

βp (1− f )T0
c

0 0



 Σ=





−δ−k 0

k −δ





Σ−1 =





−1
δ+k 0

−k
(δ+k )δ −1/δ





Kq e =





βp T0
c (δ+k ) +

βp (1− f )k T0
cδ(δ+k )

βp (1− f )T0
cδ

0 0





ρ(Kq e ) =
βp T0(− f k +δ+k )

δc (δ+k )
=
βp T0

cδ

�

1−
f k

δ+k

�

(2.17)

We note that ρ2(K) =ρ(Kq e ). Since the threshold for outbreak is R0 > 1, this discrepancy does not

affect the threshold for establishment of systemic infection. Furthermore, we note that the value
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of R0 obtained from the quasi-equilibrium system in (2.17) is consistent with the probabilistic

interpretation of the terms of the original model, as outlined below:

R0 =





# successful contacts

per time in class I



×





avg. time spent

in class I





+





# successful contacts

per time in class I ∗



×







avg. time spent

in class I ∗






×





prob. of entering

I ∗ before cell death





=
βp T0

c
·

1

δ+k
+ (1− f )

βp T0

c
·

1

δ
·

k

δ+k

=
βp T0

cδ
·
�

δ

δ+k
+
(1− f )k
δ+k

�

=
βp T0

cδ
·
�

1−
f k

δ+k

�

We can see now that the “baseline” value of R0 computed for the TIV model is exactly the value

of R0 attained in the full model when IFN is switched off (i.e., δ = k =π= 0, f = 1). Furthermore,

we note that the parameters governing the paracrine “free IFN” response do not appear at all

in the expression for R0, suggesting that in the spatially homogenous (i.e., well-mixed) setting,

autocrine response is significantly more impactful. This is intuitive, as in a biologically realistic

setting, paracrine signaling acts locally to decrease susceptibility in a targeted region around the

infection, so in a non-spatial setting this effect is greatly diluted. We discuss this in greater depth

later in section 2.6.

2.4 Approximating Peak Viral Load

We will approximate the peak viral load in consideration of an ODE model that considers only the

protective effect of IFN signaling on susceptible cells and not the dampening of virion output from

infected cells (i.e., no I* class). Since paracrine IFN signaling is shown to be less influential than

autocrine signaling in the ODE context, we consider this model as a “best-case scenario” for the

efficacy of paracrine IFN signaling in a spatially-homogeneous setting. This reduces the model (2.1)

to the following system of ODEs:
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d T

d t
=−βV T −φF T +ρR

d I

d t
=βV T −δI

d R

d t
=φF T −ρR

d V

d t
= p I − c V

d F

d t
=πp I − c F

(2.18)

We will once again assume that during initial infection the compartments V and F are near

equilibrium, so we will take the following approximation in our analysis:

0= p I − c V =⇒ V =
p

c
I

0= q I −d F =⇒ F =π
p

c
I

(2.19)

We now consider an approximate model for the cell compartments alone that employs the rapid

equilibration of the V and F compartments. We furthermore assume that in the initial stage of

infection the target cell population remains close to the initial value T0 and that the transition from

the refractory class back to the target population is negligible during initial infection (i.e., ρ = 0).

Furthermore, we take the contact rates for both virions and IFNs to be β . Since there is mutual

unidentifiablity between p and β and between πp andφ, we can let β =φ as the parameter π can

implicitly account for the difference in these contact rates as might be present in biology. Together

these assumptions yield the following pair of ODEs:

d T

d t
=−β (V + F )T =−β (1+π)

p

c
I T

d I

d t
=β

p

c
I T −δI

We will now approximate the peak infected cell population. At peak infection, we have
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d I

d t
= 0 =⇒ Tp e a k =

T0

R0
(2.20)

where R0 =
βp
δc T0. We consider now a phase plane solution to the following:

d I

d T
=
β p

c I T −δI

−(1+π)β p
c I T

=−
1

1+π

�

1−
T0

R0

1

T

�

=⇒ I (T ) =−
1

1+π

�

T −
T0

R0
ln(T ) +C

�

(2.21)

Under the assumption that there is no initial infected cell population,

I (0) = 0=−
1

1+π

�

T0−
T0

R0
ln(T0) +C

�

=⇒ C =−T0+
T0

R0
ln(T0)

I (T ) =
1

1+π

�

T0−T +
T0

R0
ln(T /T0)

�

Since we now have I expressed explicitly as a function of T , we can substitute in the value of Tp e a k

calculated in (2.20):

Ip e a k = I (Tp e a k ) =
1

1+π
T0

�

1−
1+ ln R0

R0

�

We lastly return to our assumption that under rapid equilibration V = p
c I , so our expression for the

peak viral load is

Vp e a k =
1

1+π
p

c
T0

�

1−
1+ ln R0

R0

�

=
1

1+π
δ

β

�

R0−1− ln R0

�

Since π= 0 corresponds to the case of no paracrine IFN signaling, we see that paracrine IFN

signaling has the effect of reducing peak viremia by a factor of f = 1
1+π compared to the case of no

paracrine IFN.
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2.5 Approximating Time to Peak Viremia in ODE Model

We will find an approximate expression for the time to peak viremia. We again make the quasi-steady

state assumption in V and F , take f = 1 so that autocrine signaling completely shuts down virion

output, meaning that we will work with the two-compartment model shown in (??). We see that

peak infection (d I /d t = 0) occurs at such a time that T (tp e a k ) = T0/R0, as shown in (2.20), where

R0 =
βp
cδ T0. Approximating growth to be exponential until that time, we have:

I (t ) = I0e (R0−1)δt while t < tp e a k (2.22)

Substituting (2.22) into the equation for T , we can easily solve the single ODE, giving the following:

T (t ) = e
�

R0
R0−1

I0
T0
(1+π)(e (R0−1)δt−1)

�

.

Taking T (tp e a k ) = T0/R0 in the above approximate solution for T (t ), we can easily solve for tp e a k

and find the following approximate expression.

tp e a k =
1

(R0−1)δ
ln
�

1+
T0

I0

R0−1

R0
(1+π) ln

T0

R0

�

(2.23)

2.6 Results

We first constructed a model (see Figure 2.1 for a schematic) and analyzed the roles of autocrine and

paracrine IFN signaling using ordinary differential equations (ODEs). To understand the impacts of

autocrine and paracrine signaling on the virus dynamics after initial viral exposure, we calculated

the Basic Reproductive Number R0 of the virus using the Next Generation Matrix technique [28].

Note that R0 = 1 is the threshold for establishment of infection, and viral population only grows

when R0 > 1. Thus, for an effective innate immune response to halt viral infection, R0 has to be less

than 1. For the above model we find:
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R0 = T0
βp

cδ
·
�

1−
f k

δ+k

�

This expression shows that the reduction of R0 due to autocrine signaling is f k
δ+k , where f is the

inhibition of virus production due to the cellular antiviral response and k/(δ+k ) is the probability

that an infected cell becomes antiviral by the autocrine pathway before cell death occurs (see Table

2.1 for the parameter ranges considered for this model). For our baseline parameter set shown in

table 2.1, this gives R0 = 3. This is a reasonable value for in-host spread of disease as suggested in

[29]. In vivo experiments suggest that the fraction of infected cells that successfully enter an antiviral

state is in general low [30, 31, 32], i.e. k/(δ+k ) is much less than 1. If this observation is consistent

with IFN response in vitro, then our results suggest that autocrine signaling alone has limited impact

on arresting viral infection.

Importantly, we found that the parameters governing paracrine IFN signaling (i.e. φ,π) do

not appear in the expression for R0, i.e. paracrine signaling alone does not change the infection

threshold. Therefore, the ODE model makes the surprising prediction that when cells, viruses and

IFN are well mixed (as assumed in our ODE model and other models [20, 18], paracrine signaling

has a negligible role in halting infection during early infection when the number of target cells are

abundant). We further performed simulations of the model to compare the viral dynamics with and

without paracrine IFN signaling (Figure 2.2). In agreement with the analytical derivation for R0, we

found that IFN paracrine signaling has negligible impact on the viral load during initial exponential

growth period. This is true even for very large (biologically unrealistic) values of π (Figure 2.3). We

found that IFN-mediated protection of target cells is only able to affect the course of infection after

some period of viral growth once infected cell concentration, and thus IFN concentration, rises to a

sufficiently high level that there is a notable impact on protecting target cells and infected cells. The

peak viral load is decreased by approximately 1/(1+π)-fold and the time to peak viremia is relatively

insensitive to changes in π. This nominal decrease in the time to peak viral load is a consequence of

the accelerated target cell depletion due to IFN signaling to uninfected cells.
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Figure 2.2 Representative simulations of the ODE model. Shown are simulations of the ODE model with
no IFN response (solid line), paracrine IFN signaling only (dashed line), and full IFN response (dotted line).
The simulations show that paracrine signaling alone does not alter the initial exponential growth rate of
the viral load, and can only moderately advance the time to peak viral load by accelerating the depletion of
target cells. However, autocrine signaling is able to decrease the exponential growth rate, observable as the
slope of the viral load curve prior to the peak at day 2.

2.7 Contributions

In this Chapter we developed an ODE model of well-mixed viral infection with IFN signaling based

on previous work [20]. Our novel contribution is the distiction between the paracrine (cell-to-

cell) and autocrine (same-cell) signaling mechanisms. Whereas paracrine signaling is a density-

dependent effect that requires the accumulation of extracellular IFN, autocrine signaling can be

seen as density-independent and IFNs are highly likely to bind to receptor sites on the progenitor

cell. Our results indicate that in the absence of spatial structure, where both virions and unbound

IFN accumulate in the host environment homogeneously, autocrine signaling is considerably more
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impactful than paracrine signaling. Whereas paracrine signaling is untargeted in a well-mixed

infection, homogeneously decreasing the susceptibility of host cells, the autocrine signaling received

by infected cells is inherently targeted and has the effect of reducing the viral load, thereby slowing

the growth of the infection or even preventing it by reducing R0 below the threshold value of 1.
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Figure 2.3 Representative ODE model simulations with supraphysiological values of π show little impact of paracrine signaling. These two simula-
tions of the ODE model demonstrate the conclusion that paracrine signaling alone is unable to meaningfully impact the establishment of infection in the
spatially homogeneous setting. Since the paracrine signaling acts by depleting the population of target cells, this impact is not sufficiently large during
the initial exponential growth phase of the infection.
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CHAPTER

3

PDE MODEL OF VIRAL INFECTION WITH

IFN RESPONSE

3.1 Introduction

The analysis of the ODE model of viral infection with IFN signaling in developed in Chapter 2

revealed that, in a spatially homogeneous setting, the paracrine (cell-to-cell) signaling of interferon

has little to no impact on the early stages of infection. In the ODE model, individual virions and IFNs,

once produced, have an equal probability of contacting any cell in the entire host compartment. This

means the protective effect of paracrine IFN signaling is diluted across the entire host compartment

and that a virion’s likelihood of contacting susceptible target cells is essentially unimpeded during

the initial exponential growth phase. However, both in vitro and in vivo experimentation has revealed

that IFN signaling is an extremely local process. In [33], in vitro infection of human tracheobrocheal

epithelial monolayers with an H1N1 strain of Influenza A Virus (IAV) was performed at a very low

multiplicity of infection. Immunostain was applied after several rounds of replication and the cells
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that were found to contain viral RNA were concentrated in tight clusters. This suggests that infection

tends to spread from infected cells only to a small number of neighboring epithelial cells. In [34],

Immunostaining of flash-frozen liver biopsies from hepatitis C virus (HCV) positive individuals

found that interferon stimulated gene (ISG) expression and HCV viral RNA were highly co-localized.

That is to say, individual cells were the most likely to demonstrate ISG expression if the neighboring

cells were infected or if they were infected themselves. Together, these works suggest that the ability

of IFN to spread and act locally to the site of infection is an important aspect of the efficacy of cell-

to-cell IFN signaling. That is to say, local IFN signaling to cells that are near to the site of infection

(and therefore the most likely to be contacted by a virion) could greatly increase the impact of IFN

signaling as compared to the ODE model.

3.2 Model Development

We next develop a partial differential equation (PDE) model of viral infection and IFN response. This

model explicitly considers the spatial arrangement of cells, virions, and IFNs, thus more accurately

representing the dynamics of infection in an epithelial tissue. We assume that susceptible cells T

are arranged on a 1-dimensional lattice with spatial variable x ∈ [0, L ]with a uniform initial density

T0. Viruses and IFNs can diffuse to nearby locations, in contrast to the ODE model where viruses

and IFNs are assumed to instantaneously be evenly distributed once produced. Virions and IFNs

diffuse across the spatial domain with diffusion coefficients DV and DF , where we take DF >>DV

since IFNs are much smaller than virions and therefore diffuse at a much greater rate [27, 35]. These

diffusion parameters determine the characteristic length scales on which IFNs and virions will be

active [36]. Furthermore, we assume that ρ = 0 due to an emphasis on modeling the initial stages of

the infection process where anti-viral cells are unlikely to return to the susceptible state. Otherwise,

the dynamics from the non-spatial ODE setting remain the same. The initial conditions are taken to

be such that the domain is populated only with Target cells at a constant density and a single infected

cell at the position x = 0, which is achieved using a Dirac delta distribution δ0(x ). The boundary

conditions are taken to be homogeneous Neumann at x = 0 to represent reflective symmetry of the

spread of infection, and homogeneous Dirichlet at far-field x = L . The parameters of the model can
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be found in Table , and the equations of the model are as follows:

∂ T

∂ t
=−βV T −φF T +ρR

∂ I

∂ t
=βV T −δI −k I −φF I

∂ I ∗

∂ t
= k I +φF I −δI ∗

∂ R

∂ t
=φF T −ρR

∂ V

∂ t
= p I + (1− f )p I ∗− c V +DV

∂ 2V

∂ x 2

∂ F

∂ t
=πp (I + I ∗)− c F +DF

∂ 2F

∂ x 2

Boundary Conditions:
∂ F

∂ x
=
∂ V

∂ x
= 0 at x = 0, F =V = 0 at x = L

Initial Conditions: T (x , 0) = T0, I (x , 0) =δ0(x )

(3.1)

Table 3.1 Parameters of the PDE model. Parameters β andφ taken to produce reasonable wave speed
given remaining parameter set. Diffusion coefficient DV taken to be 1 as a baseline, DF taken to be be-
tween 1 and 2 orders of magnitude greater than DV [31].

Parameter Description Units Default Value Source
T0 initial target cell density cells cm−1 6.6×105 [37]
β virus contact rate cm particles−1 day−1 8.3×10−6

φ IFN contact rate cm particles−1 day−1 8.3×10−6

δ infected cell death rate day−1 1 [20]
k autocrine transition rate day−1 1
f autocrine efficacy unitless 0.9
p virion production virion cell−1 day−1 2400 [27]
c virion clearance day−1 14 [20]

DV virion diffusion cm2 day−1 1
DF IFN diffusion cm2 day−1 40

3.3 Reaction Diffusion Systems and Traveling Wave Solutions

Our spatial model (3.1) can be analyzed as a reaction diffusion system, a system of PDEs containing

only diffusion terms and reaction terms. In general, a reaction diffusion system has the form

ut =∇2u+ f(u)
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where the vector-valued state variable u is a function of a temporal variable t and spatial variables

x,∆ represents the Laplacian operator in the spatial variables, and f is a non-linear function of u

referred to as the “reaction term”. Reaction diffusion equations are widely used to model biological

phenomena across many spatial scales. Reaction diffusion systems may exhibit traveling wave

solutions, where a waveform translates through the spatial domain with time at a constant speed. For

a system with a single spatial variable x , a traveling wave solution takes the form u (x , t ) =U (x −v t ),

where the single variable function U describes the traveling front and v is the traveling wave speed.

3.3.1 A Classical Example: The Fisher Equation

The Fisher Equation is the most classical of all reaction diffusion PDEs that exhibit traveling wave

solutions. It is achieved by taking the non-linear reaction term to be a logistic growth term, f (u ) =

r u (1−u ) . Fisher first proposed and studied this equation in 1937 to study the propagation of an

advantageous gene through a spatially structured population [38]. The equation takes the form

ut = r u (1−u ) +D ux x

where u represents the allele frequency, r represents the allele’s reproductive rate, and D is the

diffusion coefficient of the allele. The PDE admits two spatially homogeneous equilibrium solutions:

the unstable “extinction solution” u = 0 and the stable “saturation solution” u = 1. We will look

for the admissible traveling wave solutions and their corresponding wave speeds by substituting

u (x , t ) =U (x − v t ). This yields the 2nd order traveling wave ODE:

−vU ′ = r U (1−U ) +DU ′′.

The ODE can be solved compute the form of the traveling front U (ξ) for any given wavespeed

v , where ξ = x − v t . However, we are particularly interested in wave solutions that preserve the

interpretation of u as allelic frequency, meaning that we require that 0≤ u ≤ 1. Note ,however, that

integration forward in ξ is backwards in t (assuming v > 0), so in the traveling wave frame the U = 0

equilibrium is an attractor. This means we will require that the U = 0 equilibrium be non-oscillatory.
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We perform an equilibrium analysis of the traveling wave ODE as follows. Letting W =U ′, we have





U

W





′

=





W

− r
D U (1−U )− v

D W





We linearize the system about the extinction equilibrium U =W = 0, and find the Jacobian of the

system to be the following:

J=





0 1

− r
D − v

D





Since we are interested in values of the wave speed v that admit non-oscillatory solutions, we argue

that the eigenvalues of J must be real valued. The characteristic polynomial of J is found below.

p (λ; v )|λI − J|=

�

�

�

�

�

�

l a −1

r
D λ+ v

D

�

�

�

�

�

�

=λ2+
v

D
λ+

r

D

We can make the following argument real-valued eigenvalues in terms of the discriminant.

Discλ
�

p (λ; v )
�

=
v 2

D 2
−4

r

D
≥ 0 =⇒ v ≥ 2

p
r D

We term the minimum admissible wavespeed v ∗ = 2
p

r D to be the critical wavespeed. Furthermore,

it is able to be shown that for initial data with compact support the aysmpototic speed of the traveling

wave solution is precisely the critical wave speed v ∗.

3.3.2 Traveling Wave Analysis of our PDE Model

We will perform a traveling wave analysis of the PDE model. Since we are interested in quantifying

the impact of the IFN response (both via paracrine and autocrine signaling) on the ability of infection

to spread, we will perform our analysis on a reduced PDE model without IFN response, shown
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below.

∂ T

∂ t
=−βV T

∂ I

∂ t
=βV T −δI

∂ V

∂ t
= p I − c V +Dv

∂ 2V

∂ x 2

(3.2)

We term this reduced model the TIV model, as it includes only target cells, infected cells, and

virions. We will consider a traveling wave solution of the TIV system. For each compartment ui (x , t )

there exists a function Ui (z )where the solution can be expressed as ui (x , t ) =U (x + v t ). Now for

each compartment ui we make the following substitutions:

∂ ui

∂ t
= vU ′

i (z ),
∂ 2ui

∂ x 2
=U ′′

i (z )

Making the above substitutions and re-writing the second-order equation in V as two first order

equations, we arrive at the following 4 dimensional system system of first order equations:

T ′ =−
β

v
V T

I ′ =
β

v
V T −

δ

v
I

V ′ =W

W ′ =−
p

D
I +

c

D
V +

v

D
W

This system has disease-free steady state ue = [T0,0,0,0]. Evaluating the Jacobian of the system at

ue , we find:

J =

















0 0 −βv T0 0

0 −δv
β
v T0 0

0 0 0 1

0 −p/D c /D v/D

















(3.3)

To exclude biologically irrelevant solutions to the system, we will enforce that the eigenvalues of

the Jacobian be non-complex to avoid oscillation of the populations about zero. That is to say, the

minimum admissible wave speed will occur for the critical value v ∗ at which the the characteristic
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polynomial of the Jacobian takes a double real root. This of course is the threshold value before which

the polynomial takes complex conjugate-pair roots. The block diagonal structure of the Jacobian

reveals there to be a zero eigenvalue, so we can examine instead the characteristic polynomial of

the full-rank 3×3 block.

p (λ; v ) = det











λI −











−δv
β
v T0 0

0 0 1

−p/D c /D v/D





















=D vλ3+ (Dδ− v 2)λ2− (c +δ)vλ+ cδ(R0−1)

We note the following when R0 > 1:

lim
λ→±∞

p (λ; v ) =±∞ if v > 0 , lim
λ→±∞

p (λ; v ) =∓∞ if v < 0

p (0; v ) = cδ(R0−1)> 0

p ′(0; v ) =−(c +δ)v

These three observations together ensure that p (λ) always has one negative real root and attains

an extremum for some λ> 0. We will now construct v ∗ such that there exists a positive real double

root onR+ (see Figure 3.1). For a positive double root to exist it must also be an extremum of the

polynomial. This means we solve the following system of equations for λ and v :











p (λ; v ) = 0 λ> 0

d
dλp (λ; v ) = 0 λ> 0

For a given parameter set, this system of two equations can be done numerically to find a prediction

of the traveling wave speed v ∗.

3.3.3 Discriminant Method for Determining Exact Expression for Wave Speed

With any polynomial p (λ) = W λ3 + X λ2 + Y λ+ Z of degree 3 we can associate a discriminant

Discλp (λ) = X 2Y 2−4W Y 3−4X 3Z −27W 2Z 2+18W X Y Z .

The minimum admissible traveling wave speed of the system (3.2) is found to be the critical value

v ∗ for which the characteristic polynomial of the Jacobian takes a double root, which is precisely

30



-4 -3 -2 -1 0 1 2 3 4 5
-400

-300

-200

-100

0

100

200

300

400

500

600
Characteristic Polynomial p(λ)

Cmin- - - 𝑣∗

Figure 3.1 Characteristic polynomial p (λ; v ). The minimum admissible wavespeed v ∗ will be the smallest
such that admits non-oscillatory solutions, meaning that we must enforce that p (λ; v ) have only real roots.
Therefore, the critical wavespeed v ∗ will be the small that admits real roots, meaning that we look specif-
ically for the value of v that produces a double root. Shown are three cases: (1) a subcritical case, where
only one real root exists, (2) a supercritical case, with three distinct real roots, and (3) the critical case v ∗

where a double root is attained on R+.
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where Discλp (λ; v ∗) = 0. In terms of the discriminant, we frame the problem as:

Discλp (λ; v ) = v 2(Dδ− v 2)(δ+ c )2+4D v 4(δ+ c )3+4(v 2−Dδ)3cδ(R0−1)... (3.4)

...−27D 2v 2[cδ(R0−1)]2+18D v 2(v 2−Dδ)(c +δ)[cδ(R0−1)] = 0

For the simpler problem where there is no death of infected cells and thus the total number of cells

is conserved we can further reduce the dimensionality of the problem:

∂ I

∂ t
=βV (T0− I )

∂ V

∂ t
= p I − c V +D

∂ 2V

∂ x 2

We find the corresponding 1s t order traveling-wave ODE to have jacobian about the zero equilibrium.

J =











0 βT0/v 0

0 0 1

−p/D c /D v /D











We will consider the discriminant of the characteristic polynomial of the above jacobian matrix to

be a function of the wavespeed v and collect terms accordingly:

p (λ; v ) =D vλ3− v 2λ2−q vλ+p T0β

=⇒ Discλ
�

p (λ; v )
�

= (4T0βp + c 2)v 6+ (18T0β c D p +4c 3D )v 4− (27T 2
0 β

2D 2p 2)v 2

We see that the discriminant here is a sixth order polynomial in v with no odd order terms and no

constant term. Since the trivial wavespeed v = 0 is not of interest, we can neglect the double root of

v = 0 and look at the following:

∆̃3(v ) = (4T0βp + c 2)v 4+ (18T0β c D p +4c 3D )v 2− (27T 2
0 β

2D 2p 2) := Av 4+B v 2+C

The minimal wavespeed v ∗ will be the largest value of v for which ∆̃3(v ) = 0. Since the above is

quadratic in v 2, it is easily solved by the quadratic formula. This furthermore implies that each
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positive wave speed admitted also admits an equal and opposite wave speed, as the system is

non-advective and thus has no directional bias. Letting R = T0βp , we have the following expression

for the wave speed:

(v ∗)2 =
−B +

p
B 2−4AC

2A
=Dv

−9R c −2c 3+
p

4c 6+36R c 4+108R 2c 2+54R 3

R + c 2

Recalling the parameter values used from Table 3.1, we can choose smaller order terms to neglect to

arrive at a simpler expression that is sufficiently accurate for a neighborhood of our parameter set.

Here, observing R ≈ 104 and c ≈ 2×101, we arrive at the following reduced expression:

v ∗ ≈

√

√Dv

4

�p
108R −9c

�

This value is shown to be consistent with traveling speeds measured from numerical simulations

(relative error ≈ 5%). Since this method appears effective in producing an accurate closed form

expression for the wave speed, we wish to recycle this logic as much as possible. For the more general

case where δ 6= 0, we would like to make small simplifications that will eliminate odd order terms

and allow use of the quadratic formula. Specifically we will make the assumption that v 2 >>Dδ

and will substitute X = (Dδ− v 2)→ −v 2. Under this substitution, the non-zero positive root of

the discriminant is approximated by quadratic formula and found be consistent with numerical

simulation (relative error≈ 2−5%). The closed form is very complicated and is not included here.

3.4 Results

For almost all respiratory and enteric viral infections, the site of initial infection and viral replication

is epithelial tissue, which is characterized by a monolayer structure [21]. Due to local diffusion of viral

progeny over the epithelium, a virion is highly likely to infect one of a small number of neighboring

cells rather than having an equal probability of infecting any target cell, as is the implicit assumption

in an ODE model of viral infection. For this reason, we are primarily interested in comparing the

behavior of our PDE model in the presence and absence of IFN response. Furthermore, we will

acutely interested in the relative efficacy of paracrine signaling and autocrine signaling alone in

stopping the spatial spread of viral infection.
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We begin by comparing simulations of the no-IFN TIV model and full PDE model, shown in

Figure 3.2. All simulations are performed using finite difference method with Runge-Kutta numerical

integration in time. The system of ODEs generated by the finite difference discretization is stiff,

so a Runge-Kutta method designed for stiff equations was used. In the absence of IFN signaling

(π = k = f = 0), the solution of the PDE model exhibits a traveling wave solution, as revealed

by the traveling wave analysis in the previous section. That analysis showed that, given that the

initial infected region was compactly supported, a front of infection propagates through healthy

epithelium with a constant velocity, v ∗. Though a closed form expression is possible, it very large

and unwieldly. An approximate expression for v ∗ that ignores negligible terms given our parameter

set is as follows:

v ∗ ≈

√

√DV

4

�
Æ

108T0βp −9c
�

(3.5)

Recall that IFN signaling has the effect of both decreasing the production of virions (p ) and decreas-

ing the number of cells susceptible to infection (T0), and thus it can in principal slow the spread

of infection. The above expression shows that the spatial spread of infection is driven primarily by

the production (p ) and diffusion (DV ) of virions, the infection of target cells (β ) and the density

of available target cells leading the front of the infection wave, i.e. T0. Since autocrine signaling

effectively decreases p for the portion of infected cells that are transitioned to the I ∗ class and

paracrine signaling has the impact of decreasing the density of target cells T0, we can expect the

spatial spread of infection to be disprupted in the presence of IFN signaling. This is borne out in

the simulation shown in Figure 3.2(b), where the rapid increase in refractory cells throughout the

domain results in the infection remaining localized to the right boundary.

We furthermore find that, in the absence of paracrine IFN signaling, the observed traveling wave

speed of the infection surprisingly does not depend strongly on the strength of autocrine signaling

(i.e. the value of the autocrine parameter k ). The effect of k on the wave speed is small even for

biologically unreasonable values of k (Fig. 3.3(b)). This is because the speed of spread is mostly

driven by virus production from cells at the wave front. These infected cells are unlikely to be in

an antiviral state, because of the waiting time (on average 1/k days) for that to occur. Thus, the

results from the PDE model is in a sharp contrast to the results form the ODE model, with respect to
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the roles of the autocrine and the paracrine signaling on preventing the growth of infection than

paracrine signaling. However, in Figure 3.3(a), we can clearly see that with increasing strength of

paracrine signaling π, the position of the infectious front can be stalled.
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(a) PDE model simulation without IFN signaling (b) PDE model simulation with IFN signaling 

Figure 3.2 Model simulations show that paracrine IFN signaling strongly interferes with the spatial spread of infection. Shown is the solution of the
model system at successive time points, with arrows indicating the direction of progression with time. (a) A representative simulation of the PDE model
with k = π = 0 (no IFN), exhibiting traveling wave behavior initiated from a single nexus of infected cells at position x = 0. The infection travels an
equal distance between successive times, demonstrating constant speed of spread. (b) A representative simulation of the PDE model with cell protection
included (π 6= 0) showing how IFN signaling can stop the spread of infection by depleting target cells. The distribution of virions and infected cells can be
seen to remain localized to the far left of the domain, as the rapid depletion of susceptible cells in the domain prevent the infection from establishing a
traveling wave.

36



Time ! (hours)

Fr
on

t P
os

iti
on

 "
(c

m
)

(a)  Impact of paracrine signaling (b)  Impact of autocrine signaling 

0 5 10 15
0

2

4

6

8

10
Predicted
=0
=0.2
=0.4
=0.6

0 5 10 15
0

2

4

6

8

10
Predicted
k=0
k=10
k=48

day-1

day-1

day-1

Figure 3.3 Comparison of the impacts of paracrine signaling and autocrine signaling on viral spatial spread. Shown is the position x (t ) of the infection
front over time for various values of the free IFN production parameter πwhile k = 0 (a), and varying the autocrine-mediated transition rate k while
π = 0(b). Here we define the front position x (t ) to be such that I (x (t ), t ) = 0.01T0 . The red line shows the predicted front position given the analytically
derived wave speed, i.e., x (t ) = v ∗t . (a) Sufficiently large production of free IFN (π= 0.4, 0.6) leads to halting the spread of infectious front. (b) Autocrine
parameter k has only small effect on wave speed of infection. The supraphysiologic values k = 10 and 48 days−1(corresponding respectively to 0.1 day and
30 minute waiting periods before infected cells transition to I ∗ state).
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3.5 Contributions

In this chapter, we developed a novel system of reaction-diffusion PDEs to model the spread of

infection through a 1D simulated tissue in the presence of interferon signaling, with a particular

interest in understanding the relative impact of the two IFN signaling pathways – autocrine and

paracrine – on the progression of a spatially structured infection. We find that the model exhibits

traveling wave solutions and perform a stability analysis in the traveling wave frame to determine the

speed at which infection spreads. We found that the speed of the infection wave depends primarily

on the virion diffusion coefficient, virion production rate, and and the density of target cells at the

front of infection, but that the infectious lifespan has negligible impact on the speed of spread. By

extension, this implied that autocrine signaling can do little to reduce the speed of spread, since in

the best-case scenario it is indistinguishable from cell death. However, since paracrine signaling

can reduce the number of target cells susceptible to infection at the front of the infection wave,

paracrine signaling can be highly impactful in interfering with the spatial propagation of infection.

This stands in stark contrast to the well-mixed infection modeled by the ODE model from Chapter

2, where paracrine signaling had no impact on the initial growth phase of infection. In the spatially

structured context, paracrine signaling targets the cells that are most susceptible to infection. And

while autocrine signaling still inherently targets infected cells, the reduction of virion production

mediated by the autocrine signal has little to no effect since the spread of infection is sustained

almost entirely by the cells at the leading edge of the front. In the Chapter 4, we will develop a Cellular

Automata framework for modeling this infection process with IFN signaling. This framework will

both allow 2D simulations and will include the stochasticity that is inherent to this early stage of

infection. We will then discuss the broader implications of our work for both cell-scale and epidemic

disease.
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CHAPTER

4

A CELLULAR AUTOMATA MODEL OF

IN-HOST VIRAL INFECTION

Infectious disease is an inherently random process in the real world, with stochastic fluctuations

such. This randomness mean that predictions of deterministic modeling frameworks often do not

directly apply to the real world setting. For instance, in the deterministic PDE model explored in the

previous chapter, the nature of parabolic PDEs demands that the virus density V (x , t ) be non-zero

on the entire domain for all t > 0. This means that fractional amounts of virus are present at parts of

the domain that are unrealistically far from the initial site of infection given the size and diffusivity

of virion particles. We can interpret this as representing the low but non-zero probability that virion

particles exist far from the initial infection site. In the real-world, however, the implications for a

virion reaching or failing to reach the far-field differ drastically, whereas the PDE framework can

not distinguish between the two. These discrepancies between the deterministic models and the

practical interpretations of their features and behaviors lead us to develop stochastic models that

will better represent the inherent randomness in the infection process.
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4.1 Cellular Automata Models

There is a wide array of agent-based modeling frameworks that would allow us to study the cell-

virus-interferon system in a stochastic setting, including both on- and off-lattice models. However,

since we are principally interested in studying the spread of infection through a static tissue, as

in the PDE model, we can restrict ourselves to models with stationary, uniformly arranged agents.

For this reason we chose to model this system in a Cellular Automata (CA) framework. A CA model

consists of a regular 2D grid of cells
�

si j

	

, each in one of a finite number of states S = 1, 2, 3, ..., m ,

with a predetermined ruleset for state transitions that occur between time steps. Throughout, we

will take the mesh of the lattice to be∆x and the length of each time step to be∆t .

Realistic biological models that are continuous in both space and time such as those resulting

from conservation laws often produce high-dimensional systems of non-linear partial (possibly

integro- ) differential equations. There are many issues inherent to studying systems of this type.

Firstly, the simulation of many coupled PDEs is a memory intensive process that is vulnerable

to numerical instabilities. Furthermore, depending on the qualities of the model, vastly different

numerical schemes many be necessary, thus limiting one’s ability to freely explore the parameter

space of the model. The next challenge is the interpretation of the model, where the deterministic

forward-evolution of continuum densities of your state variables must be related back to the bio-

logical observables, which are often low resolution compared to the detail of the model and may

contain noise. The cellular automata framework alleviates computational complexity of the model

by reducing the model to a list of simple rules that can be executed in parallel.

In [39], a cellular automata framework was used to study the growth of tumors in a inhomoge-

neous environment. Specifically, they studied the impact of vascular profusion and the resulting

oxygen landscape of the simulated tissue on the ability of tumors to growth. This problem would

have been very difficult to study via a more traditional PDE model, as the vasculature and resulting

inhomogeneously oxygenated environment would be difficult to describe in that context and would

have complicated the numerical solution of such a system.

More recently, however, Cellular Automata models have come into their own for their ability to

describe biological and ecological phenomena when prescribed stochastic rulesets. Specifically, in

the field of in-vivo viral infection, several works implemented cellular automaton frameworks to
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simulate intracellular infection processes while incorporating the inherent stochasticity at this scale

that is crucial in shaping the long-term outcomes of disease [40, 27]. In particular, it is the ability

to implement arbitrarily specific rulesets that include a great deal of biological phenomena that

lend strength to this modeling approach. Whereas increasing model complexity leads to numerical

and analytical difficulties for continuous and deterministic models, the ability to hard-code waiting

times and other state transitions in a CA model allows for a more “kitchen sink” modeling approach.

In [41], a Cellular Automata model was developed to study the spread of Infleunza A Virus (IAV)

infection over a lattice of stationary epithelial cells. In this model, they include both epithelial

cells as fixed agents to the lattice and patrolling immune cells that move about the lattice and kill

infected cells. Virus particles were not modeled explicitly, but rather IAV infection was assumed

to spread directly from cell-to-cell. This simple cellular automata model was able to reproduce

the basic dynamical features of IAV infection. In a later work, [40], it was shown that the outcomes

of infection are highly dependent on the initial distribution of infected cells. It was found that on

average when initialized with tight clusters of infected cells there were fewer overall infections,

whereas distributing infected cells more evenly over the lattice led to a greater number of total

infections. They also found, however, that when infections were initialized in clusters there was

greater downstream uncertainty in the severity of the infection, suggesting that when infection

occurs more uniformly over the lattice the results are more deterministic in nature. These kinds

of observations are completely inaccessible in deterministic modeling via ODE or PDE where the

model outcomes are determined entirely by the initial condition.

4.2 Model Development

We are interested in developing a Cellular Automata (CA) model that will serve as a discrete, stochas-

tic equivalent to the cell-infection-interferon process modeled by the PDE system in the previous

chapter. Here, the rectangular lattice of cells
�

si j

	

will represent the population of stationary eplithe-

lial cells, with five possible states – Healthy, Exposed, Infected, Protected, and Dead. The state

transitions will be governed by stochastic processes that are meant to simulate the intracellular

diffusion and signaling of free infectious virion particles and IFN proteins. The basic rules governing

the CA are listed below:
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1. Each time step, each infected cell produces virus_prod Virions and ifn_prod IFNs.

2. Each IFN is assigned to a recipient cell by a simulated diffusion process.

3. A Healthy cell receiving an IFN becomes Protected.

4. Each Virion is assigned to a recipient cell by a simulated diffusion process.

5. A Healthy cell receiving a Virion becomes Exposed.

6. After infect_delay time steps, an Exposed cell becomes Infected.

7. After lifespan time steps, an Infected cell becomes Dead.

8. A cell in any state other than Healthy does not change state by receiving a Virion or IFN.

A schematic for the CA model can be seen in Figure 4.1. This model neglects the impact of

autocrine IFN signaling and only includes the cell-to-cell protective effect of paracrine IFN signaling.

Since the extreme case of complete inhibition of virion production in infected cells is indistin-

guishable from cell death, we can lump the autocrine effect into the lifespan parameter. This

model simplification is supported by the results from the PDE model developed in Chapter 3 which

suggested that the impact of autocrine signaling is diminished in the case of radial spatial spread.

4.2.1 Simulating Diffusion by Random Walk

The most natural way to model the movement of virions and IFN particles over the cellular lattice is

via a 2D random walk process in which each particle has a fixed probability p_stay of maintaining

its current position on the lattice for the duration of the current time step and a corresponding

probability (1−p_stay) of moving, in which case it would choose from the 4 possible directions to

move in with equal probability. This approach is favorable because it is a discrete, stochastic process

that is known analytically to upscale to the continuous fickian diffusion modeled in the PDE.

It will be valuable to be able to compare the probabilistic parameters of the 2D random walk

with the upscaled diffusion coefficient D . To do so, we perform an analysis. Consider N (xi , yj , t )

be the number of particles of a single species at the i j position at time t . Recall that pstay be the

42



...

Dead Cell

𝑡 → ∞

Figure 4.1 Schematic diagram of cellular automata model. Model consists of a rectangular lattice of cells
in one of five states: Healthy, Exposed, Infected, Protected, and Dead. Infected cells produce virion and
IFN particles that diffuse to nearby lattice points, resulting in transitions to the Exposed and Protected
states, respectively. After lifespan time steps, Infected cells become Dead.

expected proportion of particles that do not move over any given time step. Then,

N (xi , yj , t +∆t ) = pstayN (xi , yj , t ) +
1

4
(1−pstay)

�

N (xi+1, yj , t ) +N (xi−1, yj , t ) +N (xi , yj+1, t ) +N (xi , yj−1, t )
�

We assume that the grid spacing∆x is uniform and equal in the x and y directions. Now, by Taylor

expansion, we see that

N (xi±1, yj , t ) =N (xi , yj , t ) + (±∆x )Nx (xi , yj , t ) +
1

2
(±∆x )2 Nx x (xi , yj , t ) +

1

6
(±∆x )3 Nx x x (xi , yj , t ) +O(∆x 4)

=N (xi , yj , t )±∆x Nx (xi , yj , t ) +
1

2
∆x 2Nx x (xi , yj , t )±

1

6
∆x 3Nx x x (xi , yj , t ) +O(∆x 4),

and similarly in y . Substituting these series approximations in to the original equation, we note
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that the odd-order terms annihilate, leaving:

N (xi , yj , t +∆t ) = pstayN (xi , yj , t ) +
1

4
(1−pstay)

�

4N (xi , yj , t ) +∆x 2Nx x (xi , yj , t ) +∆x 2Ny y (xi , yj+1, t ) +O(∆x 4)
�

=N (xi , yj , t ) +
∆x 2

4
(1−pstay)

�

Nx x (xi , yj , t ) +Ny y (xi , yj+1, t )
�

+O(∆x 4)

We can similarly perform a Taylor expansion in t on the left-hand side and substitute N (xi , yj , t +

∆t ) =N (xi , yj , t ) +∆t Nt (xi , yj , t ) +O(∆t 2). Substituting above, we have

Nt (xi , yj , t +∆t ) =
∆x 2

4∆t
(1−pstay)

�

Nx x (xi , yj , t ) +Ny y (xi , yj+1, t )
�

+O
�

∆x 4

∆t

�

+O(∆t )

In the limit, as∆x ,∆t → 0 while preserving the ratio∆x 2/∆t = c o n s t ., we see that the unbiased

random walk process is equivalent to the continuous diffusion process governed by the classical

heat equation Nt =D∇2N with diffusion coefficient D =
∆x 2(1−pstay)

4∆t .

4.2.2 Simulating Diffusion with a Mean-Field Approximation

In practice, we find that the random walk approach to simulating the diffusion of particles over the

cellular lattice is ineffective due to the disparity between time scales relevant to particle movement

and cellular state transitions. That is to say, the∆t sufficient to make the random walk process an

acceptable approximation of the continuous time motion of small particles is much smaller than

the time step that is appropriate for the transition of cell states. This is reflective of the inherent

fast-slow nature of the ODE system developed in Chapter 2, where the parameters governing cell

compartments are in general much smaller than the parameters governing the Virion and IFN

compartments. In the ODE model, this allowed us to make the quasi-equilibirum assumption in

the non-cell compartments, reducing the dimensionality of the system of equations and facili-

tating analyses that would be encumbered by a larger number of equations. Here, in the Cellular

Automata setting, we can perform a similar reduction of state space dimension due to this disparity

in time scales. Specifically, we can argue that the time scales for particle diffusion over the lattice

are sufficiently small that the diffusion of particles away from the cell of origin and binding to a

recipient cell occur within a single CA time step. This allows us to completely decouple the two
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time scales – cellular and particulate. This is advantageous, as the diffusion of IFNs and virions can

be approximated arbitrarily well by the diffusion equation Vt =DV∇2V , as shown in the previous

section. Below, we develop a framework for selecting a recipient cell for each virion by drawing the

recipient cell location from a distribution that is consistent with a Wiener process.

Consider a single virion originating from an infected cell with grid location (x0, y0). Assuming

that virions bind to cells on the lattice continuously and independently at a constant rate, then

the time∆t between the production and binding of a single virion is an exponentially distributed

random variable. Furthermore, we interpret the location of the virion to be a random variable with

time-varying probability density function V (x , y , t ) that is initially δ-distibuted, i.e., V (x , y ,0) =

δ(x − x0, y − y0). We can now interpret the diffusion equation

Vt =DV∇2V (4.1)

that resulted from the analysis of the random walk process to govern time-evolution of the probabil-

ity density function V as the limiting distribution for a two-dimensional Wiener process. This is

convenient, as when given dirac-delta initial conditions, an explicit solution can be found for (4.1):

V (x , y , t ) =
1

4πDV∆t
e
−(x−x0)−(y−y0)

2

4DV ∆t

We recognize this Gaussian function as being precisely the probability density function of the

bivariate normal distribution N
�

h

x0 y0

iT

,σ2I
�

whereσ2 = 2DV∆t . This allows us to draw from

this distribution to determine the coordinates of the binding site for the virion. Combining these

insights, we develop algorithm 4.1 for the diffusion of virions and IFNs. We also show a schematic

for this recipient cell selection procedure in Figure 4.2. We can now write down the algorithm for

the complete Cellular Automata model, which is detailed in algorithm 4.2.
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(a)

(b)

(c)

Figure 4.2 Schematic of recipient cell selection process. (a) The particle is initially located at the produc-
ing cell, located at lattice position (x0, y0). We interpret its position to be initially delta distributed, i.e.,
V (x , y ,0) =δ(x − x0, y − y0). (b) The probability density function of the particle’s position is assumed to be
given by solving the diffusion equation Vt =DV∇2V forward∆t time units from the dirac delta initial con-
dition shown in (a). This gaussian functional form of the p.d.f is known explicitly. (c) The particle’s binding
location (x ∗, y ∗) is drawn from the p.d.f. shown in (b). Since in general (x ∗, y ∗) ∈ R2, we snap this binding
location to a lattice grid point by rounding to determine the recipient cell. This process is identical for both
virion and IFN particles, differing only in the value of the diffusion coefficient.
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Algorithm 4.1: Recipient Cell Selection Algorithm

For each infected cell with lattice coordinates (x0, y0):

1. sample∆t ∼ exp(λ)

2. sample

�

x ∗

y ∗

�

∼N
��

x0

y0

�

,σ2I

�

whereσ2 = 2DF∆t

3. snap binding site (x ∗, y ∗) to recipient cell grid location (x ∗i , y ∗j ):

(x ∗i , y ∗j ) = argmin
(x ,y )∈Z2

�
Æ

(x − x ∗)2+ (y − y ∗)2
�

4. if (x ∗i , y ∗j )Healthy, (x ∗i , y ∗j ) becomes Protected.

5. Repeat 1. – 4. IFN_prod times.

For each infected cell with lattice coordinates (x0, y0):

1. sample∆t ∼ exp(λ)

2. sample

�

x ∗

y ∗

�

∼N
��

x0

y0

�

,σ2I

�

whereσ2 = 2DV∆t

3. snap binding site (x ∗, y ∗) to recipient cell grid location (x ∗i , y ∗j ):

(x ∗i , y ∗j ) = argmin
(x ,y )∈Z2

�
Æ

(x − x ∗)2+ (y − y ∗)2
�

4. if (x ∗i , y ∗j )Healthy, (x ∗i , y ∗j ) becomes Exposed.

5. Repeat 1. – 4. virus_prod times.

Algorithm 4.2: Cellular automata model algorithm

for (i , j ) ∈ {1, 2, ..., n}× {1, 2, ..., n}:

1. if si j = Exposed

(a) infection_age++

(b) if infection_age ≥ infect_delay, si j = Infected

2. if si j = Infected, do algorithm 4.1. Then:

(a) infection_age++

(b) if infection_age ≥ lifespan, si j =Dead.
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4.3 Results

We simulate the Cellular Automata model on a n ×n lattice, initialized with a single infected cell

at the center of the grid,i.e., (bn2 c, b
n
2 c), taking n = 100. This initialization best simulates the initial

conditions used in the PDE model of a single infected cell located at the left end of the domain. The

parameters of the CA model, their units, and default values are enumerated in Table 4.1. We will be

interested in studying the impact of IFN signaling on the outward spread of the infected region, so

the value of ifn_prod will be varied over simulations. Note that since each virion and IFN in our

formulation of the model successfully finds a recipient cell before being cleared, the virus_prod

and ifn_prod parameters can not be directly interpreted as equivalent to the corresponding PDE

parameters p and πp , as none of them are cleared before making contact.

Table 4.1 Parameters of the CA model.

Parameter Description Units Default Value
virus_prod virus production rate virus step−1 1
ifn_prod IFN production rate IFN step−1 NA
virus_diff virus diffusion coeff. cell-width2 step−1 0.1
ifn_diff IFN diffusion coeff. cell-width2 step−1 0.5
infect_delay post-exposure wait time steps 14
lifespan post-exposure wait time steps 48

We first simulate the CA model with long-lived infection (i.e., lifespan=∞) in the presence

and absence of IFN response (see Figure 4.3) . The simulations show that the radial spread of the

infected region occurs relatively symmetrically and without impediment in the absence of IFN

signaling, i.e., ifn_prod= 0 (see left column of Figure 4.3). This parallels the conclusion from the

PDE model that the infection travels with a constant wave speed when no IFN is present. However,

in the presence of IFN signaling, the local conversion of Healthy cells to Protected cells impedes the

infection from spreading radially (see right column of Figure 4.3). We see in the figure that the shape

of the affected region is highly amorphous. We can surmise that the limited availability of Healthy

cells near to Infected cells leads to secondary infections being rare events, thus causing the spread of

infection to be sporadic and asymmetric. This observation also reflects one of the key observations

of viral phylogenetics: that the genetic diversity in viral innoculum is drastically reduced at the
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transmission bottleneck and that the “founder” virus that goes on to establish systemic infection

represents a very small subset of the initial viral challenge. That is to say, as the effect of IFN signaling

segregates infected cells behind a layer of protected anti-viral cells, the average number of productive

secondary infections from each infected cell will decrease. If this number decreases below 1, then we

can see the genetic diversity of the viral challenge is greatly reduced due to IFN signaling during this

initial spatial phase of epithelial infection. Indeed, it has been found that the epithelial transmission

barrier serves as a strong selection pressure for anti-IFN phenotypes ([19]).

We then simulate the CA model with short-lived infection (i.e., lifespan= 48) in the presence

and absence of IFN response (see Figure 4.4). Visually comparing the left column of Figure 4.4 to

that of Figure 4.3, we see that the spatial spread of the infected area is not hindered by introduction

of cell death. The reason for this is that in the absence of IFN signaling, recipient cells for virions

are mostly very close to the progenitor cell. That is to say, the new infections that cause the front of

infection to propagate are being caused mostly by infected cells that are themselves located on or

near the boundary of the infected region. Therefore, once an infected cell reaches an infectious age

of lifespan, it is too far from the boundary to be responsible for new infections anyway, and its

death is therefore inconsequential for the continued propagation of the infectious front. However,

in the presence of IFN signaling, the segregation of infected cells from healthy ones can reduce the

probability of an infected cell causing a secondary infection long enough for the cell to die before

causing any new infections. This can lead to dead regions of the boundary where no infected cells

remain, cutting off the continued spread of infection, and can potentially result in the extinction of

infection from the lattice. This suggests that cell death is most impactful in a high-IFN regime.

We compare the effect of IFN on the total number of infections in both the long-lived and

short-lived infection cases in Figures 4.5 and 4.6. In both figures, the top row shows a representative

simultion of the CA model at t = 100. The bottom rows show the total number of infected cells over

the entire lattice over time plotted on the log-log scale for 100 independent realizations of the CA

model. We see that there is no possibility of extinction in the long-lived case, as the log-log plots

in the bottom row of Figure 4.5 shows an uninterrupted linear trend. However, in the short-lived

infection case (see Figure 4.6) where there is the possibility that the infection may die out entirely, we

see that at the highest level of IFN production the log-log plot shows that the number of infections

fails to continue increasing with time, suggesting that extinction is occurring in those simulations.
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𝑡 = 1

𝑡 = 35

𝑡 = 70

𝑡 = 105

𝑡 = 140

Figure 4.3 Representative simulation of CA model with and without IFN signaling with long-lived infec-
tion. The left column shows the progression of infection in the absence of IFN signaling. The lattice is
initially populated with Healthy cells (white) at each grid point, with a single infected cell (red) located in
the center of the lattice. Each time step, an infected cell produces virus_prod virions, each of which is
assigned to a recipient cell according to Algorithm 4.1. If the recipient cell is Healthy, it becomes Exposed
(yellow). Otherwise the recipient cell is unchanged. The right column shows the progression of infection in
the presence of IFN signaling. Each time step, in addition to virions, an infected cell produces ifn_prod
IFNs, each of which is assigned to a recipient cell according to Algorithm 4.1. If the recipient cell is Healthy,
it becomes Protected (blue). We see that the abundance of Protected cells limits the number of virion
binding sites that can lead to further infections, thus impeding the spread of the infected area.
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𝑡 = 70

𝑡 = 105

𝑡 = 140

Figure 4.4 Representative simulation of CA model with and without IFN signaling with short-lived infec-
tion.The left column shows the progression of infection in the absence of IFN signaling with short lived
infected cells. We see the spread of infection is virtually unimpeded compared to the long-lived infection
case, as cell death occurs long after the front of infection has move (i.e., all Healthy cells have been ex-
hausted), meaning that cell death is inconsequential. However, the right column shows the progression of
short-lived infection in the presence of IFN signaling. Here, infected cells may become rapidly sequestered
by a neighborhood of Protected cells. Some cells may die before creating any secondary infections, leading
to the possibility of extinction.
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In Table 4.2 we show the probability of viral extinction across a range of infected cell lifespan and

IFN strength. Furthermore, we note the linear trend in the log-log plots in the bottom row of Figure

4.5 suggest that the total number of infections roughly follows a power law with time, i.e., I (t )∝ t γ.

The log-log plots in the bottom row of Figure 4.6 show that, short-lived infection case, this power law

seems to hold for low levels of IFN production, fails to hold for higher levels of of IFN production as

the likelihood of extinction increases. For the case of low or no IFN production, we find that γ takes

a value close to 2. This is consistent with a constant radial speed of spread, as the area of infection

increases quadratically with the radius. That is, if r (t ) = v ∗t then I (t )∝ A(t ) =π(r (t ))2 =π(v ∗)2t 2.
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ifn_prod= 0(a) (b) (c) (d)ifn_prod= 1 ifn_prod= 5 ifn_prod= 20

Figure 4.5 Log-log plots of lattice sum of infections over time for long-lived infection. Along the top row
are representative lattice states at t = 100 for each IFN level. In the bottom row are the total number of
Infected cells over time (light blue lines) for 100 independent CA realizations at four different IFN levels
graphed on the log-log scale. In red is shown the mean and one standard deviation. The linear trends in
these plots suggests a power law of the form I (t )∝ t γ, where γ decreases with ifn_prod.
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Table 4.2 Table of extinction probabilities across CA parameters. The table above shows the percentage
of 100 independent simulations that resulted in extinction of infection within the first 150 time steps
across varying infectious lifespan and IFN production levels.

ifn_prod
1 2 5 10 20

li
fe

sp
an 6 80% 98% 100% 100% 100%

12 0% 4% 77% 100% 100%
24 0% 0% 12% 94% 100%
48 0% 0% 3% 49% 98%

4.3.1 Stochasticity of model outcomes

One of the key features that distinguishes the cellular automata framework from the PDE model

developed in Chapter 3 is the inherent stochasticity of the model outcomes. Above we showed that by

aggregating many model realizations there is was a clear trend suggesting that the average number

of infected cells over time follows a power law (see Figure 4.5 and 4.6). However, if we show the

distribution of the number of infected cells at any given time, we see that the distribution depends

heavily on the level of IFN production. In Figure 4.7 we show the histograms of the total number of
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Figure 4.6 Log-log plots of lattice sum of infections over time for short-lived infection. Along the top row
are representative lattice states at t = 100 for each IFN level. In the bottom row are the total number of
Infected cells over time (light blue lines) for 100 independent CA realizations at four different IFN levels
graphed on the log-log scale. In red is shown the mean and one standard deviation. The linear trends in
these plots suggests a power law of the form I (t )∝ t γ, where γ decreases with ifn_prod. However, we
see the linear trend begins to fail for ifn_prod= 20, as extinction of infection from the lattice becomes
increasingly probable.
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infected cells (sum over entire lattice) over 105 independent realizations of the CA model for three

different values ofifn_prod. The panels show the histogram at 4 time points. We can clearly observe

that the histogram corresponding to ifn_prod= 1 exhibits the largest mean number of infected

cells at all 4 times. We furthermore see that the distance between the means of the three histograms

increases with time, which is consistent with the observation that the the mean numbers of infections

follows a power law I (t )∝ t γ where γ decreases with ifn_prod. Interestingly, we observe that the

characteristic width of the histogram seems the increase with ifn_prod, suggesting that as IFN

signaling increases the uncertainty of the model outcomes increases. For example, at t = 175, the

tails of the yellow histogram show that some realizations of the CA with ifn_prod= 5 exhibit nearly

no proliferation of infection where others show up to 5000 infected cells. This is consistent with our

observation that successful virion contacts that produce new infections become increasingly rare

as ifn_prod increases, implying a greater likelihood that the infection is unsuccessful over time.

4.4 Contributions and Future Work

In this Chapter we have developed a cellular automata model that can be seen as the discrete

stochastic 2D extension of the PDE model developed in Chapter 3. For the purpose of this model,

we have developed a scheme for lattice-free diffusion in which virion and IFN particles are assigned

to recipient cells in a way that mimics a continuous time diffusion process en lieu of a random-walk

approach. We compared the simulation of the cellular automata in the presence and absence of IFN

production for both long-lived and short-lived infection. We find, as with the PDE model, that the

effect of IFN to decrease the number of healthy cells near to infected cells has the effect of reducing

the rate at which the affected region grows. We also discovered that the lifespan of infected cells,

as in the PDE model, does not strongly affect the ability of the infection to spread, as cell death on

average occurs sufficiently far away from the active front of infection as to be inconsequential. This

observation does not hold, however, for higher levels of IFN production, where the abundance of

protected cells can sufficiently slow the spread of infection to such an extent where cell death can

lead to extinction of infection from the lattice. This novel approach elucidates how paracrine IFN

signaling can slow infection during the early, stochastic phase of epithelial spread and can stop IFN

incompetent virus infection at the epithelial transmission barrier.
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Figure 4.7 Time evolution of distribution of total (lattice sum) number of infected cells for different lev-
els of IFN production. Shown are the histograms of the total number of infected cells (sum over entire
lattice) over 105 independent realizations of the CA model for three different values of ifn_prod at 4 time
points. We observe that the mean number of infections decreases with ifn_prod at all times and that
the variance of the distribution seems to grow more quickly for larger ifn_prod. This suggests that high
levels of IFN production increases the stochasticity of model outcomes and leads to greater downstream
uncertainty of global infection levels.
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As a future extension of this work, we are interested in studying more specifically the effect of

paracrine IFN signaling as a selection pressure during early epithelial infection. As discussed in

Chapter 1, IFN signaling is known to be an important determinant of viral species tropism, as many

human viruses have non-structural proteins as well as specialized nucleic acid structures to that

have adapted to interfere with the IFN signaling pathway or avoid detection by the host cell. We have

begun development of an extended CA framework that includes viral evolution by incorporating

a continuum of IFN-blocking viral phenotypes between 0 and 1. Phenotype 0 infections admit

production of ifn_prod IFN particles per time step, while phenotype 1 infections completely

prevent production of IFN Particles. The production of IFN varies continuously with phenotype

between these two extreme cases, with an infection of phenotype pi j producing an average of

(1−pi j )·ifn_prod IFN particles per time step.

An infected cell at grid location (xi , yj ) has phenotype pi j ∈ [0,1]. Daughter infections are as-

signed a phenotype that is close to but not equal to the phenotype of the parent infection. Specifically,

the daughter phenotype p ∗i j is drawn from a uniform distribution U
�

pi j −∆p , pi j +∆p
�

. Under this

framework, phenotype 0 infected cells are unlikely to produce daughter infections since they will be

producing large amounts of IFN and surrounding themselves in an insultating layer of protected

cells. However, phenotype 1 infection will spread easily since it will produce no IFN and therefore

have more ready access to healthy cells. Our preliminary observations show that, under this frame-

work that allows for viral evolution, IFN signaling acts as a powerful selection pressure. That is, IFN

signaling strongly impedes the spread of IFN incompetent (p ≈ 0) phenotypes, causing infections

of phenotype near to 1 to emerge as the dominant “strain” of infection. In Figure 4.8 we compare

simulations of this CA model at ifn_prod=0 and ifn_prod=5, along with the distribution of viral

phenotypes over the entire lattice. We see that in the presence of IFN signaling (ifn_prod=5, bot-

tom row), there is strong species tropism as the phenotypic distribution becomes clustered around

1 as the simulation progresses. However, without IFN signaling (ifn_prod=0, top row) there is no

species tropism and the distribution of phenotypes simply approaches U [0, 1]. In the future, we are

interested in studying this model in more depth to quantify the impact of IFN signaling on viral

evolution.
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𝑡 = 35 𝑡 = 70 𝑡 = 105 𝑡 = 140

(a) ifn_prod = 0

(b) ifn_prod = 5

Figure 4.8 Representative simulations of CA model with viral evolution and distributions of viral phenotype. Shown are two independent simulations
of the CA model with viral evolution in the absence (ifn_prod=0, top row) and presence (ifn_prod=5, bottom row) of IFN signaling. The CA simula-
tions show infected cells continuously varying in color between black and red to represent infections of phenotype 0 to 1, respectively. Cells protected by
IFN are shown in blue, while exposed cells are shown in green/yellow. Below each snapshot of the CA grid is the distribution of viral phenotypes on the
lattice at that time.
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CHAPTER

5

EQUATION LEARNING

Classical mathematical dynamical models in biology and physics are most often direct expressions

of physical conservation laws or biostatistical principals in the form of differential equations. These

models have proven powerful for making insights into many systems. However, as the number of

coupled phenomena becomes large, as is inherent to many biological problems, a first-principals

approach to modeling often becomes intractable. Increasingly, with the development of new sensor

technologies and machine learning frameworks that allow for high-throughput data collection, there

has been a great deal of interest in data-driven modeling approaches. An iterative approach to model

selection where several candidate models are proposed and then validated against experimental or

observational data has become a staple of many applied math fields. This model selection approach

may become unattractive, however, in the case of spatial systems, where the addition or removal of

certain terms in a PDE model may fundamentally alter the numerical properties of the model and

require the implementation of wildly different numerical solution schemes.

Many methods for data-driven modeling have emerged, including equation-free approaches

[42], artificial neural networks [43], and natural selection of symbolic expressions [44]. Most recently,
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great promise has been shown by a novel framework that learns non-linear differential equations by

employing sparse regression techniques to a linear regression problem consisting of precomputed

non-linear candidate terms [45, 46]. In this Chapter, we will adapt the framework developed in

[45] and [46] to learn governing equations that describe the cellular automata model developed in

Chapter 4, with the particular goal of studying the parametric response in the learned equations to

IFN signaling strength.

5.1 Equation Learning via linear regression

We will discuss a general framework for using linear regression for fitting a differential equation

model to data. Consider the 1-dimensional dynamical system of a single independent variable as

follows:

y ′ = F (x , y )

Given a data set {xi , yi , y ′i }
N
i=1 where yi = y (xi ) and y ′i = y ′(xi ), we will determine the right-hand

side dynamics F . Suppose that for some basis of functions B = { fi }
p
i=1, we have that F ∈ span (B).

That is, there exist coefficients {wi }
p
i=1 such that F =

p
∑

i=1

fi wi . Then we can say

















y ′1

y ′2
...

y ′N

















=

















f1(x1, y1) f1(x1, y1) · · · fp (x1, y1)

f1(x2, y2) f1(x2, y2) · · · fp (x2, y2)
...

...
...

f1(xN , yN ) f1(xN , yN ) · · · fp (xN , yN )

































w1

w2

...

wp

















, or y′ = Fw

For instance, if we propose the basis of candidate functions B = {1, x , y , x 2, x y , y 2}, then for the

dynamical system y ′ = x y+2y−10, we expect to recover the coefficient vector w=
h

−10, 0, 2, 0, 1, 0
iT

.

In general, however, we expect the data will contain come combination of model error, mea-

surement error, and numerical error. In this cases, we will develop approaches to solve this general

linear regression problem in the presence of such error.
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5.2 PDE-Find

The PDE-Find framework as developed by [46] is used to determine the right-hand side functional

form of a time-dependent PDE of the form

ut = F (t , x , u , ux , ux x , ...).

Suppose that for some set of basis functions B = { fi }
p
i=1 we have that F ∈ span (B). That is, there exist

some coefficients {wi }
p
i=1 such that F =

p
∑

i=1

fi wi . Since the dynamics must be true across the entire

spatio-temporal domain, if given some list of points {(tk , xk )}, we can argue that ut = Fw, where

ut =











...

ut (xk , tk )
...











, F=











...
...

...

f1(xk , tk , u (xk , tk ), ...) f2(xk , tk , u (xk , tk ), ...) f3(xk , tk , u (xk , tk ), ...) · · ·
...

...
...











.

Now, suppose we are given experimental or artificial data {ui j } representing the model solution

at the point (xi , t j ) plus measurement error εi j , i.e.,

ui j = u (xi , t j ) + εi j .

Our goal is to recover the right-hand side dynamics F that best describe the data. Since we can

not be sure the true right hand side terms, we propose a library of candidate right-hand side

terms {ϕi }
q
i=1. We choose the library to include sufficiently many terms as to be able to capture a

wide variety of dynamics. Specifically, we hope that the library is sufficiently inclusive such that

span{ fi } ⊂ span{ϕi }. Given our data, we approximate the derivative data necessary to evaluate

our library of candidate terms – (ut )i j , (ux )i j , (ux x )i j , etc. – using either finite difference method

or polynomial interpolation. We then evaluate each candidate term at every domain point (xi , t j )

represented by the data, reshape the data and candidate terms into columns, and collect them into
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a matrix as follows:

ut =











...

(ut )i j

...











, Φ=











...
...

...

ϕ1(xi , t j , ui j , ...) ϕ2(xi , t j , ui j , ...) ϕ3(xi , t j , ui j , ...) · · ·
...

...
...











We now will look to solve the linear system

ut =Φξ (5.1)

where the solution vector ξ is the vector containing the right-hand side coefficients of the dynamics

F with respect to the library, i.e., F =
q
∑

i=1

ϕiξi . Note that, even for the vector of true coefficients ξtrue,

we have that ||ut −Φξtrue| |22 = ||~ε||
2
2 6= 0. Typically, the quantity of data vastly exceeds the number

of candidate terms in the library, causing (5.1) to be a drastically overdetermined system. We can

initially produce a least-squares solution of the system (see Figure 5.2(a)) by making use of the

Moore-Penrose pseudo-inverse:

ξ∗OLS =Φ
†ut = (Φ

TΦ)−1ΦT ut

However, due to measurement error and error generated in the reconstruction of derivative

data, the coefficient vector ξwill contain 0 with probability zero, meaning that every candidate term

in the library will be present in the recovered right-hand side dynamics F . Rather, we will pursue

a sparse solution using one of several methods to ensure sparsity. This will ensure that the terms

recovered are highly informative of the data and are not fitting measurement error, model error, or

numerical error from derivative reconstruction. The most elementary such method is to add add `1

regularization to the ordinary least-squares (OLS) error.

argmin
ξ∈Rq

||ut −Φξ||22+λ||ξ||1

In addition to penalizing large coefficients, this so-called Lasso regression is naturally sparcifying

since tangency between the level sets of the OLS error function and the `1 regularization term is

more likely to occur on the coordinate axes of the parameter space (see Figure 5.2(b)). Another
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option for generating sparse solutions is ridge regression with sequential thresholding, which uses

`2 regularization, as follows:

argmin
ξ∈Rq

||ut −Φξ||22+λ||ξ||2

However, though ridge regression similarly discourages large coefficients, is not inherently

sparsifying (see Figure 5.2(c)), meaning that in addition to regularization we include sequential

thresholding step where small coefficients are clamped to 0. We refer to this as the Sequential

Thresholding Ridge method (STRidge). Figure 5.1 shows a schematic of the PDE-Find algorithm.

= …

Matrix of solution data Matrices of reconstructed
derivative data

Linear system formed from
reshaped data matrices

…

Sparse regression
recovers coefficients

…

Figure 5.1 Schematic diagram of PDE-Find algorithm. Solution surface data in the form of a matrix is
loaded or constructed. Then, data matrices representing the desired derivative surfaces are constructed
using either finite difference method, polynomial interpolation, or some other context-dependent deriva-
tive approximation scheme. Matrices are reshaped into columns and point-wise multiplication is used to
contruct columns representing all pre-supposed candidate terms. Columns representing candidate terms
are collocated into library matrix and linear system ut =Φξ is formed. Sparse regression is used to recover
coefficient vector ξ. Non-zero entries of ξ represent recovered terms.

5.3 Learning Governing Equations for Cellular Automata Model

A key observation from our work on the celluluar automata model developed in Chapter 4 was

the increasing stochasticisity of viral spread as IFN production increased. That is, when many

independent realization of the model were aggregated, we found that the distribution of the total

number of infected cells had a larger variance for higher levels of IFN production. We observed this in
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a) b) c)

Figure 5.2 Two dimensional visualization of regression problem under no regularization, `1 regularization
(lasso), and `2 regularization (ridge). (a) The ordinary least squares solution ξ∗OLS =Φ

†ut is the global mini-
mum of the convex OLS error function ||u−Φξ||22. (b) Due to the cusps on the level sets of the `1 regulariza-
tion term λ||ξ||1, the lasso solution ξ∗lasso is more likely to occur on the coordinate axes, thus encouraging
sparsity of the solution vector. (c) The ridge solution ξ∗rigde is pushed towards the origin by the `2 regulariza-
tion term λ||ξ||2. This approach, coupled with sequential thresholding of small entries of ξ, can result in a
sparse solution.

Figure 4.7 as the increasing characteristic width of the histograms. We argued that, as IFN signaling

reduced the availability of Healthy cells, successful virion contacts become an increasingly rare

event. So while the spread of infection is sustained by a high-probability event in the low-IFN case,

the spread of infection is sustained by a low-probability event in the high-IFN case. We are interested

in studying the relationship between IFN production and the variability of viral spread. That is,

imagining the histograms of the model results shown in Figure 4.7 as approximations of a probability

density function, we want to quantify the rate at which the variance of the distribution increases

with time as a function of IFN production. This would quantify the effect of IFN in increasing the

stochasticity of early infection.

In this section, we shall apply equation learning techniques to learn a partial differential equation

that governs the time evolution of the probability distribution of the number of infected cells

observed on the cellular automata lattice. Such equations are similar to the Focker-Plank equations

of statistical physics which govern the time evolution of the probability distribution of a particle’s

momentum under Brownian motion. Our goal is to learn governing PDEs for each level of IFN

response to describe the rate at which key statistical moments such as mean and variance increase
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with time. Let u (x , t ) = P (X = x |T = t )where X is a random variable representing the number of

infected cells observed on the lattice and T is the number of time steps since the initial infected cell

was born. Then we are interested in learning a PDE of the form

ut = F (u , ux , ux x , ...)

to describe the time evolution of the probability density function u .

5.3.1 Reconstruction of continuum density surface

We began by generating N = 105 independent realization of the CA model for T time steps for all

integer values of ifn_prod from 0 to 15. For each realization, the total number of infected cells

across the entire lattice Ik (t ) is computed at each time step t . We need to construct a matrix U

representing the solution surface where Ui j = u (xi , t j ), and similarly for the derivative surfaces ut ,

ux , and ux x . At each time t j , we can create a continuous reconstruction of u (x , t j ) using kernel

density estimation. That is, by choosing a kernel function K (x ) ∈C∞ with the properties:

1. K (−x ) =ψ(x )

2. lim x →±∞K (x ) = 0

3.

∫ ∞

−∞
K (x )d x = 1

we reconstruct u (x , t j ) as:

u (x , t j ) =
N
∑

k=1

K
�

x − Ik (t j )
�

where now the solution surface data matrix U is given as u (xi , t j )where xi ∈
§

1, 2, ..., max
k

Ik (T )
ª

.

This procedure is outlined by the diagram in Figure 5.3. Furthermore, since the kernel K is differen-
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tiable in x , we are able to reconstruct the derivative surfaces in the same way:

ux (x , t j ) =
N
∑

k=1

Kx

�

x − Ik (t j )
�

ux x (x , t j ) =
N
∑

k=1

Kx x

�

x − Ik (t j )
�

...

Common choices for the kernel function K include uniform, linear, and gaussian. Here, since we

are interested in recovering derivative information as well, we choose a gaussian kernel function

K (x ) =
p
π

h e x p
�

−(x/h )2
�

, where the so-called “bandwidth” h controls the characteristic width of

the kernel. This choice of kernel to allow for several orders of derivative information to be recovered

while performing the KDE.

tim
e

𝑡

# infected
𝑥

tim
e

𝑡

# infected
𝑥

a) noisy surface of 
aggregated histograms

b) KDE reconstruction 
of PDF at each time 𝑡!

c) denoised surface of 
aggregated PDFs

Figure 5.3 Diagram of KDE solution surface reconstruction procedure. a) Noisy surface of consisting of
aggregated histograms for 105 independent realizations of CA model showing # infected cells x observed
at time t . b) For each time t j , kernel density estimation is used to reconstruct the PDF u (x , ti ). c) The
individual PDFs are re-aggregated into denoised solution surface.

5.3.2 Library structure

We next need to build the library of candidate terms {ϕi }
q
i=1, where the right hand side dynamics of

the equation ut = F (t , x , u , ux , ...)must be recoverable as a linear combination of our library, i.e.,

F =
∑q

i=1ξiϕi . Our primary concerns are that the library be sufficiently inclusive such that many

dynamics can be captured and that the recovered right hand side preserve desired mathematical

properties of the solution. In our case, since we require that u (x , t j ) be a valid probability density
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function at each time t j , we must require that our equation be mass conserving:

∂

∂ t

∫ ∞

−∞
u (x , t ) d x = 0 (5.2)

Consider the generic 1D conservation law

ut +φx = 0

whereφ =
∑q

i=1ξiφi is the net flux, andφi are candidate fluxes. Then

∂

∂ t

∫ ∞

−∞
u (x , t ) d x =

∫ ∞

−∞
ut (x , t ) d x =

∫ ∞

−∞
φx d x = lim

a→∞
φ(a )− lim

b→−∞
φ(b )

Therefore, in order for 5.2 to hold, we must enforce that φ vanish at x =±∞. Since we want this

property to hold for all possibly recoverable right hand sides, we extend this vanishing requirement

to allφi . Now, we may choose candidate fluxesφi that meet this vanishing criterion and build our

library {ϕi }
q
i=1 as ϕi = (φi )x , therefore guaranteeing the recovered equation to conserve mass.

Following this procedure, we design the following set of candidate fluxes and construct the corre-

sponding library of mass conserving candidate terms as follows:

�

φi

	

=
�

u , u 2, u ux , (ux )
2, ux x , u ux x , ux ux x , (ux x )

2
	

�

ϕi

	

=
�

ux , 2u ux , (ux )
2+u ux x , 2ux ux x , ux x x , ux ux x +ux ux x x , (ux x )

2+ux ux x , 2ux x ux x x

	

Note that here, since the solution data u is reconstructed as a KDE, u and its derivatives satisfy the

vanishing criterion by inheriting it from the Gaussian kernel K (x ).

5.3.3 Results

For four different levels of IFN production – ifn_prod=1,2,5, and 10 – kernel density estimation

was used to reconstruct the solution surface u from N = 105 independent simulation of the CA

model for 150 time steps. The PDE-Find algorithm with STRidge regression was used to recover a

sparse model.

We find that when using the entire time course of 150 steps, no consistent model is learned across
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the different levels of IFN response. This suggests that either our library is insufficiently inclusive

or that the parametric response of the right-hand side F to changes of ifn_prod is non-linear.

However, we find that when only a portion of the solution surface corresponding to 40 time steps

is used, PDE-Find with STRidge regression consistently recovers a diffusion advection equation

ut =−c ux +D ux x across all levels of IFN production. This result is conducive to our stated goal of

interpreting the imact of IFN signaling on the uncertainty of the spread of infection. In this case,

since the form of the distribution is nearly Gaussian, we can interpret the recovered coefficients c

and D as the rate of change of the mean and variance of the distribution, respectively. In Figure 5.4

we show the recovered coefficients c and D across all four levels of IFN production. We see that

the advection rate c decreases with ifn_prod, since more frequent IFN signaling decreases the

number of successful infection events. We also see that the diffusion coefficient D of the distribution

increases with ifn_prod, suggesting that the variance of the distribution increases more rapidly as

IFN signaling increases. This can be interpreted as IFN signaling having the effect of making the

spread of infection more stochastic.

However, we find that the fit of the diffusion-advection equation breaks down with time and does

not describe the time evolution of the probability distribution for large numbers of time steps. If

we recall from Chapter 4, the number of infected cells on the CA lattice increases as a power law in

time. However, this is inconsistent with a constant advection rate c of the distribution, which would

indicate that the number of infected cells grows linearly with time. Rather, we should interpret the c

we recover to represent the instantaneous growth rate of the mean of the distribution.

5.4 A novel equation learning framework with trainable candidate terms

As we saw in the previous section, depending on the nature of the dataset, it may be a combinatorially

intractable problem to create a sufficiently broad library of candidate terms to capture the dynamics

of the data. Specifically, we may find that the true right-hand side contains non-linear terms with

non-integer exponents. In this section we will develop a novel framework for using a linear regression

equation learning framework coupled with trainable candidate terms. Rather than creating an overly

inclusive library of candidate terms, we will presuppose a non-linear parametrization for the right

hand side terms and allow the parameters to be trained on the data in addition to recovering a
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Figure 5.4 Coefficients of recovered diffusion-advection equation vary with IFN production. Coefficients
c and D of diffusion-advction equation ut =−c ux +D ux x recovered for varying levels of IFN production.
The advection rate c can be interpreted as the average rate at which the number of infections increases.
The diffusion coefficient D can be interpreted at the rate at which the variance of the distribution increase.
The trend suggests that increasing IFN prouction has the expected consequence of decreasing the average
rate at which the number of infections increase, but furthermore increases the rate at which the variance
of the distribution increases, suggesting that the stocasticity of the infection process increases with IFN
production.
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sparse set of coefficients via linear regression. We will limit ourselves to the ordinary differential

equation (ODE) setting, where from longitudinal time series data
�

(t j , yj , ẏj )
	

we will learn an ODE

of the form:

ẏ =
p
∑

i=1

ξi y γi .

Now, rather than pre-supposing a “sufficiently inclusive” library of candidate right-hand side terms

y γi such as
�

φ
	

=
¦

y ,
p

y , 1
y , y 3/2, y 2, ...

©

, we propose a candidate library
�

y γ1 , y γ2 , y γ3 , ...
	

where

the vector of exponent parameters γ=
h

γ1 γ2 γ3 ...
iT

will be learned from the data in tandem

with the coefficient vector ξ. The details of our algorithm are discussed below.

Given a time series data
�

(t j , yj , ẏj )
	

, we will construct the linear system

ẏ=Φ(γ)ξ where ẏ=











...

ẏj

...











, Φ(γ) =











...
...

...

y
γ1
j y

γ2
j y

γ2
j · · ·

...
...

...











.

We will alternate between performing gradient descent to train the exponent parameters γ and

solving the linear regression problem ẏ = Φ(γ)ξ to update the coefficients ξ. We must be careful

to update the coefficients ξ frequently enough so that the optimization landscape in γ does not

change too drastically between subsequent applications of gradient descent. In consideration of

the sum of squared error loss function

L(γ) = ||Φ(γ)ξ− ẏ||22

we can analytically compute the gradient with respect to γ to be

∇γL= 2
�

∇γ (Φξ)
�T
(Φξ− ẏ)

= 2ξT
�

Φ
⊙

log(y)
�T
(Φξ− ẏ)

where
⊙

is used here to represent entry-wise vector multiplication from the right applied to all

columns. As gradient descent is performed, the columns of Φmay become close to parallel if two γi
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approach the same value. To combat this, we will “merge” columns of Φwhen two candidate terms

become too close. This will act as a natural of achieving sparsity in the learned equation by merging

redundant terms.

Algorithm 5.1: Trainable candidate sparse equation learning algorithm.

Load data: y, ẏ. Initalize γ ∈Rc×1.
Build library Φ=

�

y γ1 | . . . |y γc
�

.

1. Solve for least squares coefficients: ξ=
�

ΦTΦ
�−1
ΦT ẏ

2. Update γwith Gradient Descent for num_GD_its iterations.

3. if |γi −γ j |< merge_thresh for some i 6= j , merge columns.

4. Remove columns with |ξi |< rm_thresh.

5. Update library. Φ=
�

y γ1 | . . . |y γc
�

The linear regression can either be made to enforce sparsity via a method such as lasso or can

be taken as the less expensive least squares regression via pseudo-inverse. Since the recovered

coefficients will change as γ is trained, we will opt to recover non-sparse ξ via pseudo-inverse and

allow the library to shrink by sequentially thresholding small terms to 0 and by implementing the

aforementioned merging. The complete algorithm is shown in Table 5.1.

5.4.1 The Logistic Equation

We will use the example of the Logistic Equation to show the performance of our algorithm on a

well understood case. We generate data
�

t j , yj , ẏj

	

for the logistic equation ẏ = r y
�

1− y
K

�

using the

well-known sigmoidal analytic solution

y (t ) =
K y0

P y 0+ (K − y0)e −r t

evaluated at all time sample points t j and subsequently constructing the derivative data as ẏj =

r yj

�

1− yj

K

�

. We can see that the logistic equation has the desired form ẏ =
∑p

i=1ξi y γi , where

γ= [1, 2]T and ξ= [r, −r /K ]T .
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Table 5.1 Table showing recovered equation for logistic data

Parameter Set True Equation Recovered Equation
r = 3, K = 100,y0 = 1 ẏ = 3y −0.03y 2 ẏ = 3.08y 0.983−0.0236y 2.04

r = 5, K = 100, y0 = 1 ẏ = 5y −0.05y 2 ẏ = 5.01y 0.998−0.0485y 2.01

r = 2, K = 10, y0 = 1 ẏ = 2y −0.2y 2 ẏ = 1.99y 0.998−0.196y 2.01

r = 5, K = 10, y0 = 0.1 ẏ = 5y −0.5y 2 ẏ = 4.99y 0.999−0.497y 2.00

r = 5, K = 10, y0 = 2 ẏ = 5y −0.5y 2 ẏ = 4.84y 0.947−0.295y 2.21+0.0036y 3.10

We will use our equation learning framework to recover the logistic equation. We initialize the

algortihm with five candidate terms and initialize the exponents as γ = [0.5,1.4,2.5,3,3.4]T . The

results are shown in Table 5.1. We see that the algorithm does a good job of removing the three

unnecessary candidate terms and recovering the logistic equation for all but one case. In Figure

5.5 we show simulations of the recovered equation compared to the ground truth and show the

training of the candidate terms for three of the examples shown in Table 5.1. You can see on the

left column of plots that the learned equation captures the data very well. In the right column, you

see the training of the candidate terms for the corresponding data from the left column. Shown in

blue are the exponents γi and in red are the coefficients ξi , with the true values shown in dotted

lines of the same color. We see that when a candidate term is removed from the library either by

thresholding or merging (seen as a line that terminates) the error rises abruptly but then decreases

as the candidate terms approach that of the true equation . In Figure 5.5(c), you see that the data

reaches equilibrium very quickly, meaning that the data is not as information-dense as the other

examples shown, perhaps explaining why an extra unnecessary term is recovered

5.4.2 Moment Equations

We will now use our novel equation learning framework to learn moment equations for the proba-

bility distribution u (x , t ) studied in section 5.3. That is, for a given statistical moment µ that can

be computed for the distribution u (x , t j ) at some time t j , we will construct a time series data set

µ j =µ(t j ) and learn from it an governing equation of the form

µ̇=
p
∑

i=1

ξiµ
γi

We build the data set of moment data for the mean (first raw moment) for the distribution collected
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(a)

(b)

(c)

Figure 5.5 Representative simulations of learned equations from logistic data and candidate term train-
ing. The left column shows the ground truth data (black dash), solution of equation fit using untrained
initial candidate terms (red circle), and solution of final learned equation (blue circle) for three represen-
tative logistic datasets. The right column shows the training of the candidate terms corresponding to the
data on the left. Shown in blue are the exponents γi and in red are the coefficients ξi , with the true values
shown in dotted lines of the same color. Terminated lines represent candidate terms that were removed
from the library via merging or thresholding.
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from 105 independent CA simulations with ifn_prod= 0, 1, 2, 3, ..., 13 with cell death. We will study

the trends in the learned equations to understand the impact of IFN production on the spread of

infection.

We applied our framework detailed in Table 5.1 to these moments data and report the results

in Table 5.2 and Figure 5.6. The results show that only one term is recovered at low levels of IFN

production, while two terms are recovered at higher levels of IFN production. This result suggests

that a simple power law describes the data well at low levels of IFN production, but may break down

at higher levels. We observe that a single term is recovered at ifn_prod=10. This is due likely to a

sensitivity to hyperparameters such as thresholds and learning rate and does not indicate any special

properties of this value of ifn_prod. Recall that the spread of infection is radial and symmetric

at low levels of IFN (see Figure 4.4). This suggests that the number of infections should grow as a

power law in time µ(t )∝ t β with β ≈ 2. However, as the spread is interrupted by higher levels of

IFN production and the infected cell lifespan becomes comparable to the expected waiting time to

create a daughter infection, extinction becomes a possibility and that power law may fail to hold. Our

equation learning results seem to support the observation that the power law resulting from radial

2D spread is valid at low IFN levels, but begins to break down as IFN causes the spread of infection to

become more erratic. We furthermore note that the form and parameters of the recovered equation

appear to stagnate as ifn_prod increases past 10. One can think of each infected cell as the center

of a neighborhood of influence on the lattice the size of which depends on the diffusivity of IFN

and virions. IFN acts to prevent infection by saturating this neighborhood with protected cells. One

can imagine that as ifn_prod grows relative to the size of the neighborhood, the impact of further

increases in IFN production has diminishing returns once the current level of production is already

sufficient to saturate the neighborhood. This local saturation explains why the form of the learned

equations is insensitive to further increases in IFN production after ifn_prod=11.

We attempted a similar study on the variance (second central moment) of the distributions, but

found gradient descent to be causing blow-ups of the right hand side terms. We suspect the data

might need to be scaled or normalized to allow for such a study, as the variance of the distribution

grows very rapidly as the total number of infections easily approaches 105 within 150 time steps.

Upon devising an appropriate normalization protocol or making the gradient descent step more

robust to the scale of the data, we would be interested in performing this study on the variance data.
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Table 5.2 Learned moment equations from CA distribution data. Table shows the recovered euqation
from CA data across 14 levels of IFN production. Trend shows that one term is recovered at low levels of
IFN production, while two terms are recovered at higher levels of IFN production. This suggests that a
simple power law describes the data well at low levels of IFN production, but may break down at higher
levels.

ifn_prod Recovered Equation # Terms Recovered
0 µ̇= 0.9577µ0.52588 1
1 µ̇= 0.85292µ0.53176 1
2 µ̇= 0.76762µ0.53742 1
3 µ̇= 0.49811µ0.36594+0.41158µ0.58346 2
4 µ̇= 0.66911µ0.35423+0.29769µ0.60822 2
5 µ̇= 0.79957µ0.34368+0.22422µ0.63 2
6 µ̇= 0.89269µ0.33428+0.17758µ0.64765 2
7 µ̇= 0.95902µ0.3257+0.1465µ0.66197 2
8 µ̇= 1.0056µ0.3179+0.12487µ0.67366 2
9 µ̇= 1.0368µ0.31103+0.10938µ0.68305 2

10 µ̇= 0.51406µ0.53369 1
11 µ̇= 1.0645µ0.30006+0.089287µ0.6965 2
12 µ̇= 1.0665µ0.29585+0.08252µ0.70118 2
13 µ̇= 1.0636µ0.29231+0.077089µ0.70488 2

Figure 5.6 Parameters of learned moment equations from CA distribution data.
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5.5 Contributions and Future Work

In this chapter we have explored the use of data-driven equation learning frameworks to draw

conclusions from the cellular automata model developed in Chapter 4. We have adapted the PDE-

Find framework developed in [46] to learn Focker-Plank-type equations governing the time evolution

of the probability distribution of the total number of infected cells found on the CA grid. Our novel

contributions here are the use of kernel density estimation as a means of reconstructing a smooth

solution surface in tandem with derivative surfaces and the implementation of a library of candidate

terms that are designed to enforce that the learned equation be mass conserving.

Using PDE-Find, we were able to recover a diffusion-advection equation that describes the data

for all levels of IFN production. From these equations were able to observe that, not surprisingly, IFN

has the effect of slowing the growth of the total number of infections. Furthermore, we concluded

that IFN production has the effect of increasing the stochasticity of the spread of the infection. That

is to say, one can be less certain of the number of infections that will occur downstream under high

IFN production.

We also developed a novel equation learning framework that employs trainable candidate terms

to avoid the combinatorially large problem of defining a sufficiently inclusive library of candidate

terms. This allowed for a smaller number of non-linearly parametrized right-hand side terms to be

trained to fit the data and to be removed if redundant. Our framework was limited to the ODE setting,

but could be easily extended to a spatio-temporal setting. We demonstrated proof-of-concept by

using this approach to recover the logistic equation across differing parameter regimes from an

initial library of 5 nonlinearly parametrized terms that was trained and pruned until the original

equation was recovered.

We lastly employed our novel equation learning framework to learn equations describing the

time-evolution of the mean of the distribution of the number of infected cells. We found that the

number of terms in the recovered moment equation increased with IFN production. This suggested

that the power law that seems to hold for low levels of IFN production breaks down as IFN production

increases.

Moving forward, we hope to expand our novel equation learning framework to the PDE setting to

allow for more general equations to be learned from spatial-temporal data while taking advantage of
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the computational efficiency of the sparse linear regression framework. Specifically, we are interested

in learning equation that govern the phenotypic drift observed in the CA model with viral evolution

shown in Figure 4.8, with the goal of studying the parametric response of such governing equations

to varying levels of IFN production.

Furthermore, we are interested in expanding the Trainable Candidate EQL framework to handle

libraries of a more diverse array of non-linear functions that often appear in biological models, such

as Michaelis-Menten and generalized Hill functions.

76



CHAPTER

6

DISCUSSION

In this thesis, we have developed and analyzed a series of models of the in-vivo viral infection

that seek to characterize the spatial strategies employed by the host interferon response. The IFN

response is a critical element of the epithelial transmission barrier, and is a contributing factor to

virus viability in the host [6, 47]. Our models have shown how autocrine and paracrine IFN signaling

can act to stop an infection before it becomes systemic. Specifically, we have shown that in a spatially

structured infection such as epithelial infections at the site of initial viral entry, the IFN response

can halt an infection by rapidly inducing an anti-viral state in susceptible cells close to infected cells,

thus inhibiting the ability of the infection to spread. This is likely one important mechanism by

which IFN signaling is effective in quashing early epithelial infections. Furthermore, as we will argue

below, the local targeting of cells near to areas of infection is reminiscent of the "ring vaccination"

and "contact tracing" strategies in epidemiological control. In that way, despite this work focusing

on in-host innate immune response, a quantitative understanding of the IFN signaling process may

provide new insights for developing effective control strategies at the epidemiological scale.

Our work characterizes the different roles of autocrine and paracrine signaling pathways and
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quantifies their impacts on the initiation and spread of viral infection in different host cell environ-

ments. When infection occurs in well-mixed environment where the host cells do not exist in a static

spatial structure (e.g., blood), our ODE model developed in Chapter 2 predicts the role of autocrine

signaling to be much more important than that of paracrine signaling in stymieing viral growth

during early infection. However, when there exists a strong host-cell spatial structure where virion

and IFN are active only in a neighborhood where they are produced (e.g. epithelial infections), our

PDE and CA models – developed in Chapters 3 and 4, respectively – the impact of paracrine signaling

in shaping the progression of spreading infection becomes remarkably strong due to its ability to

act locally. Our work therefore suggests that the two signaling schemes may act complementary to

one another, though one may be more or less impactful than the other based on the context of the

infection.

The conclusions of our work about the importance of spatial structure in the efficacy of paracrine

IFN signaling are consistent with many experimental findings. In vivo experimentation has shown

that IFN response can arrest the spread of VSV infection in a monolayer culture of human lung

epithelial cells by rapidly inducing anti-viral states in proximal cells, even after an initial delay

in the production of IFN [48]. Another example of experimentally observed spatial structure in

IFN response comes from chronic liver HCV infection. Chronic HCV infection is characterized

by small clusters of infected cells that are contiuously seeded into the liver tissue from the blood,

leading to a spatially inhomogeneous distribution of infection. It is shown in [34] that single-cell

analysis of fresh-frozen biopsies of HCV infected liver show that presence of ISG RNA in uninfected

hepatocytes is highly correlated with close proximity to HCV-positive hepatocytes, whereas ISG RNA

negative uninfected hepatocytes were significantly less likely to have infected neighbors. This reflects

the tendency of IFN to act locally to combat infection by segregating infected hepatocytes from

healthy tissue with a cluster of anti-viral cells [49]. It has been shown that diffusion-consumption

mechanisms such as the IFN signaling modeled here exhibit spatial clustering in the body generally,

resulting in the creational of highly localized cytokine niches [50]. This suggests that the study of

reaction diffusion systems could have far reaching implications for the study of spatial arrangement

at the tissue level more broadly.

The highly localized response to viral infection at the intracellular level can be compared to

epidemiological control strategies at the population level. Especially in non-motile cell populations,
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we can see the local production and diffusion of IFN as a control strategy targeted at cells that are

most likely to become infected or to already be infected. This can be roughly compared to strategies

such as quarantine or contact tracing, where the control strategy is only imposed on the individuals

deemed to be at highest risk [51]. Just as over-production of inflammatory cytokines in the body

can be deleterious to the host, overzealous epidemic control strategies on the population scale

can have deleterious economic impact, which is why on both scales it is an important feature of

these control strategies that they be highly localized to the most at-risk individuals. Furthermore,

the spatial structure in which an insulating layer of protected cells isolated infected regions from

healthy tissue can be seen as a parallel to ring vaccination or ring culling [25, 26, 24], where spatially

proximal susceptible populations are removed to create a firewall against continued spatial spread of

disease. We also can consider how IFN signaling parallels the behavioral modulation of individuals

in response to disease, such as increased hand washing as individuals become increasingly aware of

the presence of disease in their community. In [52] it is proposed that the spread of high-quality

public health information can dampen the ability of an outbreak to spread by reducing the average

susceptibility of the population. In that work, preventative information is given to individuals

with infected contacts who in turn educate others by word of mouth, creating a firewall of cautious

contacts who are unlikely to become infected, paralleling the paracrine signaling of IFN to uninfected

cells near to infection. However, a natural extension of this work would include the self-awareness

of infected individuals, where, in response to being diagnosed, infected individuals become less

infectious as they try to isolate themselves to spare their contacts from infections. This self-regulation

could be seen as a parallel to autocrine signaling, wherein an individual’s infectivity drops in response

to their own infection status. Altogether, we posit that the spread of disease on these macro and

micro scales exhibits some meaningful self-similarity, and, though we can not assume them to be

wholly analogous, the continued study of each could continue to yield insights about the other.

Biological mechanistic models such as the ODE, PDE and CA models developed in this thesis

can be valuable tools for understanding the qualitative features of disease spread. However the de-

velopment such mathematical models becomes impractical as the number of coupled phenomena

rises or as the underlying mechanisms become unclear. In Chapter 5 we use a series of established

and novel data-driven equation learning frameworks adapted from those developed in [45] and

[46] to learn governing equations from aggregated data from the CA model developed in Chapter 4.
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These frameworks use front-end reconstruction of derivative data and creation of a so-called library

of candidate terms so that linear regression may be used to learn equations from the data. This

strategy allows one to avoid the cost of repeatedly numerically solving a differential equation to fit

the data and, most importantly, allows the functional form of the equation to be determined by the

data. This approach allowed us to draw conclusions about the effect of IFN response on the spread

of infection in the CA model, specifically how IFN response seems to increase stochasticity in the

spread of infection. However, we found that the parametric response of the learned equations to IFN

response was non-linear, meaning that in general no finite library of candidate terms would be suf-

ficiently inclusive. This led us to develop a novel framework where the candidate terms themselves

are learned, thus avoiding the issue of pre-defining a sufficiently inclusive library. Indeed, many

canonical models in mathematical biology are based on generalizations or idealizations that do

not hold up under all experimental circumstances. For example, fickian diffusion may not describe

well the movements of individuals in highly crowded environments such as in cell proliferation in

wound healing. Under such circumstances, non-linear diffusion terms with non-integer exponent

parameters may be needed to describe experimental data [53]. In cases such as these where the

learned equation does not vary only in the value of the coefficients in response to experimental

conditions, uncountably many candidate terms are needed to create a “sufficiently inclusive” library.

We believe that the novel learnable candidate framework proposed in this thesis is a first step towards

a more general equation learning framework that will allow governing equations to be learned from

experimental data.
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ACRONYMS

CA Cellular Automata

HCV Hepatitus C Virus

IAV Influenza A Virus

IFN Interferon

ISG Interferon Stimulated Gene

NGM Next Generation Matrix

ODE Ordinary Differential Equation

PDE Partial Differential Equation

VSV Vesicular Stomatitis Virus
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GLOSSARY

autocrine signal a signal that is produced and received by the same cell

epithelium the thin tissue forming the outer layer of a body’s surface and lining the alimentary

canal and other hollow structures, typically consisting of a cell monolayer with lattice structure

paracrine signal a signal that is produced by one cell and received by another

species tropism phenotypic shift in response to a selection pressure

virion the complete, infective form of a virus outside a host cell, with a core of RNA or DNA and a

capsid

quasi-equilibrium An assumption on an ODE compartment model under which “fast" compart-

ments are taken to always be at equilibrium value given the current values of “slow” compart-

ments
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