
ABSTRACT

MCMAHON, MALLORY ELISE. Unsupervised Learning Models for Dual-Domain Data with Proximal
Geographic Clustering. (Under the direction of Mansoor Haider.)

A dual-domain data set is comprised of two distinct sets of features, with one set consisting of

geographic or spatial data and the other consisting of attribute data. This type of data is ubiquitous

across a wide spectrum of disciplines, yet identifying meaningful clusters within dual-domain data

sets is often non-trivial. Conventional clustering methods often rely exclusively on similarity in the

geographic domain when interpreting clusters, even though the algorithm was likely trained on

the entire data set. While this approach may be effective for identifying well-delineated geographic

groupings, it does not account for instances where data observations that are similar in the attribute

domain are geographically dispersed. Some recent works have proposed multi-pass approaches

that determine similarity in each domain individually, then iteratively merge and tune the clusters

to resolve inter-domain discrepancies. In this work, we developed a tailored unsupervised learning

methodology based on the Self-Organizing Map (SOM) algorithm that is specifically designed to

address the challenges of dual-domain clustering in an automated way. Our framework incorporates

domain-specific biasing parameters into the SOM training that are subsequently optimized via an

objective function.

The tailored learning methodology in this work, referred to as the Tailored SOM, incorporated

the use of a 2-dimensional, 3×3 rectangular SOM structure that was trained on dual-domain data via

a reformulated Euclidean distance measure. This reformulation considers and measures similarity

using domain-specific biasing parameters, which allow for feature weighting and better evaluation

of inter-domain data relationships. To optimize the values of these parameters, we constructed an

objective function defined with quantities derived from the clustering projection in the geographic

domain as well as statistical measures of the attribute clusters. The choice of these quantities was

motivated directly by the overall goals of dual-domain clustering and designed to be sufficiently

versatile across applications. We prescribed an admissible space for the biasing parameters and

proposed two global methods for its traversal: a systematic grid search and the stochastic technique

known as Simulated Annealing.



To test the performance and robustness of the tailored learning methodology, we generated

several cases of synthetic dual-domain data with varying structure and complexity. To ensure

consistent and methodical algorithm assessment, we designed three metrics: the Stable Score, the

Inlier Score, and the notion of Geographic Feasibility. We evaluated these metrics, along with the

tailored objective function, to assess and compare the results obtained by the Tailored SOM and

two standard clustering algorithms, the Standard SOM and the k -Means algorithm. The evaluation

of these metrics demonstrated that the results produced by the Tailored SOM were, by and large,

the most geographically desirable and feasible. Additionally, this analysis provided us with insight

into the relative tendencies, strengths, and limitations of the Tailored SOM, the Standard SOM and

the k -Means algorithm when applied to dual-domain data sets. Finally, we tested the capability of

the Tailored SOM on a dual-domain data set consisting of geographically-ordered colorectal cancer

incidence rates in the state of California. With this data set, we further investigated the applicability

of a versatile objective function, the advantage of a tailored objective function, and the robustness

of the Tailored SOM and its associated learning methodology in the context of higher-dimensional

data. Our results demonstrated the unique capability of the Tailored SOM to identify both a well-

delineated geographic clustering and significant groupings of high and low cancer incidence. These

findings are significant in that they could provide the public health and epidemiology community

with a more holistic understanding of the relationships between geographic location, demographic

features, and the prevalence of certain cancers.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

In this thesis we consider data from a dual-domain configuration. The configuration consists of an

attribute domain A and a geographic domain G. The attribute domain may contain information re-

lated to quantitative or measurable qualitative features. The geographic domain G provides location

information for each observation in A. We allow the definition of geographic to be flexible, thus G

could provide data pertaining to physical locations, or "digital" locations, i.e., relative closeness on

a social network map or similarity in web-based activity, as described in [12]. Each dual-domain

data observation ~d is a concatenation of all features from both domains, i.e., ~d = [ ~a , ~g ]where ~a ∈A,

~g ∈ G. An example of this dual-domain configuration, projected into the geographic domain G is

illustrated in Figure 1.1. In this example, each point is an observation from G, in the form of an (x , y )

location pair, with the marker type indicating its true group in the attribute domain G. This example

includes a geographic constraint in the form of a river running diagonally through the data.
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Figure 1.1 An example of a dual-domain data set, projected into the geographic domain G, featuring a
geographic constraint in the form of a river. In this example, there are geographic data observations located
on each side of the river that correspond to one of three attribute groups (groupings in the attribute domain

A). We use the marker type/color (red circle, green x, black diamond) to indicate each geographic data
observation’s association with an attribute group.

We aim to find a clustering of a data set with observations of the form ~d = [ ~a , ~g ] that is both

telling of the intrinsic structure of the attribute domain A and is geographically useful. In other

words, the goal is to identify clusters of “like-minded" individuals (data observations) that are

geographically proximal. We loosely define a geographically useful cluster as one whose boundaries

do not span across geographic barriers or constraints and whose coverage area has minimal overlap

with other clusters. We view this problem as an unsupervised learning task, where neither the

observations from the attribute domain A nor the geographic domain G are labeled, therefore we

cannot train against a ground truth. Previous approaches to similar dual-domain (joint-domain)

clustering problems have been more heuristic in nature, requiring multiple phases and explicit

reliance on geographic constraints [24, 25, 27]. We, instead, view this as an optimization problem by

introducing an objective function directly motivated by the modeling application.

1.2 Definition of a Successful Clustering

Unsupervised data clustering is an inherently uncertain task. That is to say, we often find ourselves

relying on clustering algorithms to uncover structure and similarity within a data set without a

widely accepted method for assessing the validity of the results. It would not be uncommon for two

well-studied clustering algorithms to identify vastly different clusters within the same data set, with

the likelihood of this outcome increasing dramatically as the dimension and complexity of the data
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set grows. By definition, the observations of a data set undergoing a clustering regime are not labeled

nor classified a priori, i.e., there is neither an underlying ground truth nor “right answer" to train

the algorithm against [13]. With this type of task, we as researchers are responsible for designing a

notion of correctness based on either domain-specific knowledge, measurable qualities of the data

set itself, or desired cluster outcomes [1, 4, 44]. In the context of the dual-domain problem, we aim

to uncover a clustering that is both telling of the intrinsic structure of the attribute domain A and

is feasible in the geographic domain G. It is with this overarching goal in mind that we develop a

definition for correctness and construct the desired properties of the ideal clustering.

The reliance on synthetic data sets when building and testing our dual-domain clustering

approaches is especially advantageous when it comes to defining the desired properties of a right

answer. With synthetic data comes knowledge of underlying generating distributions, various levels

of noise within the data, and intended cluster arrangements in A and G. Based on this knowledge,

we can test the performance of an algorithm with scoring methods that consider quantities such as:

• the number of known primary groups identified,

• the number of outlying/anomalous observations assigned to each geographic cluster, and

• the degree to which geographic constraints present in G (such as the river depicted in Figure

4.3 (b)) were adhered to, i.e., not violated when geographic cluster boundaries are imposed.

In contrast to working with real data, we can reliably use these type of metrics when assessing

the clustering of synthetic data due to the level of control we have over its design. This control is

rooted in how we choose to prescribe values for the many parameters that are used in the synthetic

data set design process and allows for the creation of an assessment framework. Within this frame-

work, we can investigate how varying levels of noise and cluster separation affect the accuracy and

performance of our methods.

1.3 A Review of Literature on Dual-Domain Clustering Methods

Traditional clustering methods may approach a dual-domain problem by either: 1) only clustering

over the data in the geographic domain G, thus overlooking any groupings that may exist in the
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attribute domain and focusing exclusively on geographic proximity, or 2) using a standard algorithm

to cluster over the entire data set, weighting the features from A and G equally when determining

similarity. Figure 1.2 (a,b) demonstrates possible outcomes of implementing methods 1) and 2), re-

spectively, on the sample dual-domain data set depicted in Figure 1.1. While the outcome presented

in Figure 1.2 (a) is mindful of geographic proximity, it is blind to attribute differences coexisting

within its clusters. The outcome presented in Figure 1.2 (b) is clearly problematic as it does not

account for the geographic constraint in the data set and instead favors attribute similarity, thus

producing a geographically unfeasible clustering.

(a) (b)

Figure 1.2 A depiction of possible geographic clusterings obtained via standard clustering algorithms that:
(a) only consider the data in the geographic domain (G) during training, and (b) consider and weight all

features in the data set equally (in both domains G, A) during training.

Recent works [24, 25, 27] have proposed iterative, multi-pass methodologies to efficiently

cluster dual-domain data (also referred to as joint clustering). Such methods often require that the

clustering algorithms have explicit knowledge of constraints present in the geographic domain prior

to training, in order to produce a result that is geographically feasible (i.e., it does not violate said

constraints). In [25], Lin et al. proposes the Interlaced Clustering-Classification (ICC) algorithm to

cluster dual-domain data using an attribute-based objective function and specified constraints

in the geographic domain. This methodology breaks the dual-domain problem into two separate

tasks: (1) an unsupervised clustering problem over the optimization (attribute) domain and, (2) a

supervised classification problem over the geographic domain based on constraint specifications.

The ICC algorithm alternates between these two tasks to identify optimal clusters in the optimization
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(attribute) domain that correspond to compact geographic regions. Another multi-step approach

for clustering dual-domain data is proposed by Liao and Peng in [24]. Their method, called the

Clustering with Local Search (CLS) algorithm, proposes the construction of a connected graph,

based on given geographic constraints and requirements, which is subsequently used to determine

the placement of initial cluster representatives. From there, distances to nearby, connected data

observations are computed and “coarse" clusters are formed and then iteratively merged and tuned

[24]. In [27], Lo and Peng build upon the clustering methodology presented in [24]with their proposal

of the k -Means with Local Search (KLS) algorithm. The KLS algorithm consists of three phases which

aim to (1) build a connected graph for representing constraints in the geographic domain, (2) apply

a coarse clustering to the data via an initial placement of k or more cluster centroids, and (3) tune

and merge the clusters, according to a cost function, until exactly k clusters are identified.

A few commonalities among the existing dual-domain clustering methods outlined above

are:

• the use of multiple clustering and classification phases which focus exclusively on analyzing

the data in one of the two domains,

• the requirement of explicit knowledge of geographic constraints or definition for geographi-

cally connected, and

• the specification of the number of desired clusters.

1.4 Tailored Clustering using Self-Organizing Maps

In this thesis, we propose a tailored unsupervised learning methodology to efficiently cluster dual-

domain data sets that does not require explicit incorporation of the geographic constraints or a priori

specification of the number of desired clusters. Our algorithm aims to simultaneously cluster data in

both the geographic and attribute domain through the use of domain-specific biasing parameters,

the optimization of a tailored objective function, and the evaluation of generic geometric and

statistical quantities. In Chapter 2, we present an overview of unsupervised machine learning and a

detailed description of two standard clustering approaches: the Self-Organizing Map [17, 18] and
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the k -Means algorithm [30]. In Chapter 3, we propose and develop a novel tailored unsupervised

learning algorithm called the Tailored SOM, which relies fundamentally on the Self-Organizing Map,

incorporates a reformulated distance measure, and employs a tailored objective function. Alongside

the development of this algorithm, we motivate the need for the tailored objective function, detail

the process through which we design its terms, and outline two methods for optimizing this function

within the clustering framework.

After fully developing the Tailored SOM, we build and consider three cases of synthetic dual-

domain data with varying structural characteristics and levels of noise that were specifically designed

to be useful dual-domain test cases. With each test case of synthetic data, we implement the tai-

lored unsupervised learning methodology presented in Chapter 3 and evaluate and compare its

performance against results obtained by the standard clustering algorithms presented in Chapter 2.

Furthermore, we propose and develop four novel metrics for evaluating and comparing algorithm

performance. We create two metrics that are based on properties of the synthetic-data set itself, a

third metric that accounts for geographic feasibility, and a fourth metric that quantifies geographic

desirability of a clustering. These metrics give structure and formality to our algorithm assessment

framework. These metrics, as novel contributions, are critical in the context of unsupervised learn-

ing, where there is neither a notion of "ground truth" nor a widely-accepted method for assessing

the validity of an algorithm’s output.

Finally, in Chapter 5, we consider a real dual-domain data set consisting of latitude/longitude

measurements, colorectal cancer incidence rates, and demographic information for counties in

the state of California. This data was obtained from the United State Census Bureau [43] and the

CDC’s National Program of Cancer Registries (NPCR) and the National Cancer Institute’s (NCI’s)

Surveillance, Epidemiology, and End Results (SEER) Program [37]. We use the cancer incidence data

to further investigate the capabilities of the tailored unsupervised learning methodology developed

in Chapters 3 and 4. With this investigation, we demonstrate the unique capability of our Tailored

SOM and its adaptable learning framework to discover clusters that are geographically useful,

information-dense in the attribute domain, and capable of providing critical insight to the areas of

public health and epidemiology.

6



CHAPTER

2

UNSUPERVISED LEARNING

ALGORITHMS

2.1 Unsupervised Learning

Unsupervised learning refers to the class of machine learning techniques used for analyzing unla-

beled data, i.e., a data set for which a known class or response for each observation is not provided.

Unsupervised learning algorithms aim to identify patterns, groups, and similarities within a data set

to ultimately cluster observations that have something in common [1, 32]. In the absence of explicit

information regarding whether an input observation belongs to one class or another, unsupervised

learning algorithms such as the Self-Organizing Map [18] and k -Means [30] rely on metrics such as

distances between observations and the means of groups of observations to identify similarity and

groupings in an automated fashion. In contrast, supervised learning techniques, such as regression,

neural networks, and random forests, aim to learn the input-output relationship of labeled data

for the purpose of building a prediction or classification model. Supervised learning algorithms
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typically rely on an optimization regime to minimize an error function that uses the classes (outputs)

and the data observations (inputs) to learn the relationship between the two. Once the algorithm

has been trained and the input-output relationship has been learned, the supervised learning model

can be used to predict the output of future observations or classify unlabeled observations [1].

Figure 2.1 depicts a fundamental difference between supervised and unsupervised learning.

In an elementary supervised learning problem, as seen in Figure 2.1 (a), we have a standard two-class

classification task. The two different classes of data are depicted by the red circles and green x’s.

For this example, a supervised learning algorithm, such as the traditional Support Vector Machine

[7], would rely on the knowledge of the two labeled classes to learn, for instance, a linear separator

between them. Then, when new data is presented, the algorithm would use the learned separator to

classify the observations as belonging to one class or the other. This type of classification problem

can also be extended to multi-class (more than 2 classes) data sets. In an elementary unsupervised

learning task, as seen in Figure 2.1 (b), we are unaware of classes/labels, thus all data points are

depicted as purple circles with no distinction among them. For this example, an algorithm, such as

k -Means, would search for closeness among the data and decide on a clustering based on proximity.

Depending on the application, new data can either be compared to the existing clusters and assigned

to the cluster that it is most similar to, or a re-clustering of the entire data set may be appropriate.

(a) (b)

Figure 2.1 A depiction of a data set suited for: (a) an elementary supervised classification problem, and (b)
an unsupervised clustering algorithm. The marker types/colors in (a) denote the known labels of each data

observation, which are used to train a classifier. In contrast, observations in (b) have the same marker
type/color, thus demonstrating the lack of available data labels in an unsupervised clustering problem.
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2.2 Self-Organizing Map

The standard Self-Organizing Map (SOM) is a type of Artificial Neural Network developed by Teuvo

Kohonen in the 1980s and was originally motivated by the human brain’s spatial organization and

how sensory signals are mapped into the cerebral cortex [17, 18]. The SOM functions similarly to a

sensory map, which details how various parts of the brain respond to spatially organized sensory

stimulation. The SOM learns an ordered, topology-preserving mapping from the input data to a

low-dimensional (typically 1- or 2-dimensional) map structure via a similarity-based competition.

This competitive learning algorithm uses a fully connected, low-dimensional map of nodes, depicted

in Figure 2.2, to cluster and produce a representation of the higher-dimensional input data. Each

node in the map is associated with a weight vector of dimension equal to that of the input data, and

with a set of neighboring nodes.

During the SOM training, weight vectors compete against each other to be chosen as the

“winner” based on the distance between each weight vector and the given data observation. Each

winning weight vector, and the weight vectors of its node’s neighbors, are then moved according to

their proximity to data observations deemed closest. The goal of this iterative, competitive process

is for each weight vector to become a “representative” for a cluster in the data. Additionally, the

data ultimately clustered to nodes that are neighbors on the SOM will be more similar than data

clustered to non-neighboring nodes. This property of neighboring nodes is unique to the SOM and

results in a representation of clusters that preserves the spatial organization of the original input

data space on the lower dimensional Self-Organizing Map.

Figure 2.2 depicts a two-dimensional, 3 x 3 rectangular lattice SOM consisting of nine nodes,

three sample input data observations, and select weight vectors. The edges of the SOM are used to

illustrate the neighborhood connections between nodes. Thus, any two nodes that are connected

with an edge are considered neighbors and will be treated accordingly during the competitive

learning. The weight vectors, a few of which are shown as dashed lines in Figure 2.2, are used to

connect the two-dimensional map structure to the input data, shown as x’s.
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Figure 2.2 Illustration of a 3 x 3 rectangular lattice SOM with select weight vectors.

A step by step outline of the standard Self-Organizing Map algorithm [19] is given in Algo-

rithm 1 . The key components of the algorithm are the total number of nodes (N ) of the SOM, the

arrangement of the nodes, and the learning rates z and γ. The learning rates dictate to what degree

the position of the weight vectors are updated at each iteration of training. These rates decrease

with time, thus the effects of these learning rates on the weight vectors’ positions will gradually

decline as the learning progresses. Exponential decay functions of the form

z (k ) = a
k

kma x (2.1)

and

γ(k ) = b
k

kma x (2.2)

where k is the iteration, kma x is the maximum number of iterations, a ∈ (0, 1), b ∈ (0, 1), and a > b ,

are typical choices for these learning rates.
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Algorithm 1: Standard Self-Organizing Map

1 Choose topological arrangement, size (N ), and neighboring relations of SOM;

2 Initialize learning rates z (k ) and γ(k );

3 Initialize weight vectors ~w j , for j = 1, .., N for each node of the SOM;

4 for k = 1, .., kmax (the number of batch training iterations)

5 for i = 1, .., D (each data vector in the data set S given by ~di )

6 Compute the index of the winning weight vector via the formulation:

c (i ) = argmin j=1,..,N ‖ ~di − ~w j ‖2
2.;

7 end

8 for j = 1, .., N

9 C j = S(~c == j , :) (a matrix of all data vectors with winning index j );

10 Let m j =
�

�C j

�

� (the number of data vectors stored in C j );

11 Let N j be the set of indices of the neighbors of ~w j ;

12 Let pj =
�

�N j

�

� (the number of neighbors associated with ~w j ) ;

13 end

14 for j = 1, .., N

15 Let ~w ∗ = ~w j ;

16 Update the j th weight vector using C j ;

17 for t = 1, .., m j

18 ~wt = ~w ∗+ z (k )(C j (t , :)− ~w ∗);
19 end

20 ~w j =
1

m j

∑m j

t=1 ~wt ;

21 Update the j th weight vector using the data associated with its neighbors;

22 for r ∈ N j

23 for s = 1, .., pj

24 ~ws = ~w ∗+γ(k )(Cr (s , :)− ~w ∗);
25 end

26 ~w j = ~w j +
1

pj

∑pj

s=1 ~ws ;

27 end

28 end

29 Update the learning rates z (k ) and γ(k );

30 end

31 for i = 1, .., D (each data vector in the data set S given by ~di )

32 Compute final winning cluster index c (i ) = argmin j=1,..,N ‖ ~di − ~w j ‖2
2.;

33 end

34 return Final cluster indices ~c for S and final representative weight vectors ~w j , for j = 1, .., N ;
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2.2.1 SOM Parameters

There are a number of parameters and algorithmic options that need to be prescribed when imple-

menting a Standard SOM. Starting with line 1 of the algorithm, shown in Algorithm 1, we choose the

total size N , the node arrangement (e.g., lattice, hexagonal), and the definition of a neighborhood.

With a 2-dimensional rectangular lattice structure, depicted in Figure 2.2, the size N is given by

N = a × b , where a = b = 3. In this example, the edges of the rectangular lattice demonstrate which

nodes in the map are defined as neighbors. Alternatively, a triangular lattice could be used, as shown

in Figure 2.3. With a triangular lattice, the notion of neighbors is extended to include nodes that are

adjacent diagonally, as well as those defined in the rectangular lattice.

Figure 2.3 Illustration of a 3 x 3 triangular lattice SOM with select weight vectors.

In line 3 of Algorithm 1, we initialize the weight vector associated with each node in the SOM.

There are several ways that weight vectors can be initialized, however, their dimension must always

match that of the input data. We will further explore the various choices for how weight vectors can be

initialized in Chapters 3 and 4 of this thesis. In line 6 of Algorithm 1, the competitive learning process

begins with the computation of the distance between each weight vector and all observations in the

input data. While this representation of the Standard Self-Organizing Map algorithm makes use of

the Euclidean distance, it can be generalized further to make use of a different distance metric, when

appropriate. Additionally, it is important to note that we implement a batch learning approach when

training the SOM. Batch learning requires that the steps in which we update each weight vector and
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its neighbors (lines 14 through 28) occur after winning weight vectors have been computed for the

entire data set. This approach is in contrast to the online learning approach, which executes the

weight vector updates immediately after each observation of the input data is presented. The batch

competitive learning process is repeated until the user-prescribed maximum number of iterations,

kmax, is reached. Alternatively, the algorithm can terminate when changes to the weight vectors are

within a prescribed tolerance.

2.3 k -Means

The k -Means algorithm [30] is arguably the most commonly used method for unsupervised data

clustering. The algorithm aims to cluster D data observations into k clusters, based on each obser-

vation’s proximity to the k cluster centroids. After k centroids are initialized, the algorithm proceeds

by iterating back and forth between two steps: the assignment step and the update step. In the

assignment step, each observation is assigned to the cluster with the nearest centroid, measured

by Euclidean distance. Next, in the update step, each centroid is updated to equal the mean of the

observations assigned to it. The algorithm terminates when there are no further changes made in

the assignment step, or when a user-prescribed maximum number of iterations has been reached.

A step by step outline of the standard k -Means algorithm [32], where termination depends on a

user-prescribed maximum number of training iterations, is given in Algorithm 2.

Figure 2.4 illustrates the first few steps of the k -Means algorithm on a small, two-dimensional

data set. The green x’s are the data, and the blue and red circles are the cluster centroids. This

illustration begins with a random initialization of the two cluster centroids (seen in (a)). Next, the

first assignment step is executed (seen in (b)), thus each observation of data is assigned to the nearest

centroid according to Euclidean distance. In this step, we update the color of each data observation

to indicate which cluster (red or blue) it has been assigned to. Next, the first update step is executed

(seen in (c)). In this step the two centroids’ locations are updated to equal the mean of the data

that was assigned to it in the previous step. This step is analogous to those performed in lines

14 through 20 in the SOM algorithm (Algorithm 1) as it allows for the centroids to become better

representatives of the clusters that exist within the data. It is important to note that the k -Means
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Algorithm 2: k -Means Algorithm

1 Choose value of k ;

2 Initialize cluster centroids ~c j , for j = 1, .., k ;

3 for t = 1, .., Tmax

4 for i = 1, .., D (each data vector in the data set S given by ~di )

5 Compute the index of the closest cluster centroid via: b (i ) = argmin j ‖ ~di − ~c j ‖2;

6 end

7 for j = 1, .., k

8 B j = S(~b == j , :) (a matrix of all data vectors closest to cluster centroid j );

9 Let m j =
�

�B j

�

� (the number of data vectors stored in B j );

10 Update cluster centroids: ~c j =
1

m j

∑m j

r=1 B j (r, :);

11 end

12 end

13 return Final cluster indices ~b for S and final cluster centroids ~c j , for j = 1, .., k ;

algorithm does not have an analog to the neighborhood update steps in the SOM algorithm (lines

22 through 27 in Algorithm 1) . The centroids in k -Means are neither aware of nor impacted by the

location and training of each other, which is not the case in the SOM due to the implementation of a

neighborhood among the nodes. Lastly, we illustrate the beginning of the next iteration of training,

which begins again with an assignment step (seen in (d)). In this step, the data observations are

compared to the locations of the updated centroids and reassigned to a cluster (red or blue) based

on their Euclidean proximity. Even by only considering this small example, we can recognize two

important features of the k -Means algorithm:

• the centroid initialization is highly influential in terms of how well the algorithm can perform

and how quickly it terminates, and

• the choice of k , which is prescribed by the user, is nontrivial.

To address the first bullet, the k -Means algorithm is not alone in its sensitivity to initialization.

The performance of the SOM algorithm will also vary, in some cases significantly, depending on

the choice of initial weight vectors. In Chapter 3 of this thesis we will explore and experiment with

various methods for SOM weight vector initialization. For the k -Means initialization, a widely used

method is the k ++ algorithm [5]. The k ++ algorithm is a process that chooses the cluster centroids
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iteratively, based on the distances between the input data and all previously chosen centroids. By

considering the distances between a proposed centroid and the other centroids, the k ++ algorithm

creates an initialization that is sufficiently spread out in the input data space and less likely to lead

to a poor clustering.

To address the second bullet, the choice of k in k -Means is somewhat analogous to the choice

of the number of nodes (N ) and their arrangement in the SOM algorithm. However, due to the lack

of a neighborhood relation or connectivity among the centroids in k -Means, the algorithm will

always produce a clustering with exactly k clusters. Whereas in the SOM, the nodes in the map are

connected via a neighborhood relation. Thus the position of a node is affected by both the data

assigned to it, and the data assigned to its neighbors. This feature allows for the algorithm to produce

a clustering with less than N clusters. In other words, it is not always the case that each node in the

SOM will be populated with data observations by the time the algorithm terminates.
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(a) Initialization of 2 centroids (b) First assignment step

(c) First update step (d) Second assignment step

Figure 2.4 Illustration of implementing the first few steps of the k -Means algorithm on a two-dimensional
data set.
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2.3.1 Determining the Optimal k

When considering a two-dimensional data set for clustering, the natural first step would be to

generate a scatter plot of the data in order to get a sense of how many clusters we expect to observe.

However, as the dimension of the data set increases, visualization quickly becomes unfeasible. In

the case of k -Means, it is the responsibility of the user to prescribe a value for k , i.e., we must first

tell the algorithm how many clusters to look for. Without the ability to visualize the data, estimating

k becomes a nontrivial, yet extremely important, task. To aid in this task, several methods have been

developed. These methods rely on properties of the data set itself and a prescribed k to quantify the

quality of a given clustering. Two of the most widely used methods are called the Elbow Method [31]

and the Average Silhouette Method [39].

For the Elbow Method, we begin by choosing a range of possible integer values for k , for

example k = [2 : 10]. For each choice of k , we randomly initialize k centroids, cluster the data, and

compute the total within-cluster sum of squared distances (WSS) between the data observations

and their cluster centroid. The WSS is defined as

WSS=
K
∑

k=1

∑

i∈Dk

||xi − ck ||22 (2.3)

where Dk is the set of data assigned to the k -th cluster, xi is the i -th data observation in Dk , and ck

is the k -th cluster centroid. As the value of k increases, the sum of squared distances will approach

zero. However, this does not imply that a large k is inherently best. Consider the case where we let k

equal the size of the data set, D . In this case, with careful centroid initialization, we expect the sum

of squared distances to equal zero, since each data observation will form its own cluster. Clearly,

this is not optimal nor useful. Instead, we plot the WSS as a function of k and look for the "elbow" in

the graph to indicate an appropriate number of clusters. The "elbow" is defined as the point on the

graph at which the WSS, as a function of k , begins to decrease linearly.

Similar to the Elbow Method, we begin the Average Silhouette Method by selecting a range of

possible integer values for k . For each k , we randomly initialize k centroids, cluster the data, and

compute the silhouette coefficient for each data observation. The silhouette coefficient Si for an
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observation xi is defined as

Si =
bi −ai

max(ai , bi )
, for i = 1, .., D (2.4)

where ai is the mean distance from xi to the other observations in the same cluster, and bi is the

minimum mean distance from xi to observations in a different cluster. The silhouette coefficient is

designed to measure the similarity of points assigned to the same cluster, and the average of the

silhouette coefficients across a clustered data set is used as the metric for assessing the quality of the

clustering overall [39]. The range of Si is [−1, 1], with higher values indicating that a data observation

is similar to other observations within its own cluster and dissimilar to observations in other clusters.

While the silhouette coefficient can be computed using any distance metric, we implement the

Euclidean distance throughout. We compare the average silhouette coefficients as a function of

the number of clusters k and choose the optimal k to be the one that produces the largest average

silhouette coefficient.

As a first illustrative example, we consider the two-dimensional data set depicted in Figure

2.5. The data set depicted in Figure 2.5 is generated from four known clusters. The observations in

each cluster are generated from a circular region about a prescribed centroid, with radii drawn from

the normal distribution r ∼N (0,0.22) and angular measure drawn from the uniform distribution

θ ∼U (0,2π). We apply both the Elbow Method and Average Silhouette Method to determine the

optimal k for this data set. Based on the results depicted in Figure 2.6, we can determine that the

“elbow” of the graph occurs at k = 4, since the total within-cluster sum of squared distances (WSS)

appears to decrease linearly for k > 4. Similarly, the results from the Average Silhouette Method,

depicted in Figure 2.7, suggest that k = 4 is optimal, since it corresponds with the maximum average

silhouette coefficient. In this case, the two methods agree in their determination of the optimal k .
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Figure 2.5 Two-dimensional data set generated from 4 cluster distributions with radial varianceσ= 0.22.

Figure 2.6 Elbow Method results for data depicted in Figure 2.5: total WSS as a function of k .
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Figure 2.7 Average Silhouette Method results for data depicted in Figure 2.5: average Si as a function of k .
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As a second illustrative example, we consider the two-dimensional data set depicted in Figure

2.8. This data set was generated from the same four cluster centroids as the data set depicted in

Figure 2.5, however the observations’ radii were drawn from N ∼ (0, 0.252), i.e., the radial variance

is 0.252 and larger than the previous example. We again implement the Elbow Method and the

Average Silhouette Method to determine the optimal k . However, for this data set, the results of

these methods are not as easily interpretable. The graph depicted in Figure 2.9 shows the results of

implementing the Elbow Method. In this plot, it is not inherently clear where the “elbow” occurs.

One could argue that possible contenders for the “elbow" may be k = 3, k = 4, or k = 5, given the

decreasing nature of the graph at those points. Figure 2.10 depicts the results of implementing the

Average Silhouette Method for the data set seen in Figure 2.8. Based on these results, we identify

k = 3 as the optimal value as it yields the maximum average silhouette coefficient. However, it is

important to note that k = 4 is a very close runner-up and may also be worth investigating further.

Figure 2.8 Two-dimensional data set generated from 4 cluster distributions with radial varianceσ= 0.252.

In summary, these two illustrative examples further highlight one critical, yet nontrivial,

component of implementing the k -Means algorithm: determining the best choice of k for a given

data set. Even with a two-dimensional data set that can be visualized, the “optimal” k may not be

obvious. The difficulty of this task compounds quickly as the dimension of the data set increases,
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Figure 2.9 Elbow Method results for data depicted in Figure 2.8: total WSS as a function of k .

Figure 2.10 Average Silhouette Method results for data depicted in Figure 2.8: average Si as a function of k .

22



thus complicating an otherwise straightforward algorithm. While the SOM algorithm also requires

the user to prescribe the number of nodes (N ) on the map before training can begin, its unique

neighborhood feature provides more flexibility for how many clusters will actually be identified

among the data.

2.4 Tailored Unsupervised Learning

A dual-domain clustering problem, defined in Chapter 1, presents unique challenges related to

how information and similarity within each domain should be considered and prioritized. The

Self-Organizing Map and k -Means algorithms, as outlined above, are two approaches designed

to handle unsupervised learning tasks. However, these standard algorithms may fall short when

applied to cluster a dual-domain data set. Especially in the case where the dimension of the attribute

domain A is much larger than the dimension of the geographic domain G, these standard algorithms

often fail to appropriately weight the distinct information obtained from each domain and result in

either an over-simplified or geographically unfeasible clustering.

To overcome these challenges, we propose an unsupervised learning framework that highlights

domain-specific similarity, while simultaneously considering global features of the data set. Our

methodological framework, which still relies fundamentally on the principles of unsupervised

learning, allows for the integration of an objective function that can be tailored to the geographic

modeling application. With the introduction of an objective function, we are able to transform a

traditional clustering task, for which a ground truth does not exist, into an optimization problem

with a feasible solution set. In the next several chapters of this thesis, we outline the methodology,

objective function construction, optimization approaches, and methods for algorithm assessment

using synthetic data. Additionally, we will rely on two well-known, standard clustering algorithms,

the Self-Organizing Map and the k -Means algorithm, to serve as comparisons for the tailored

methodology developed in Chapter 3. These methods were chosen for their widely-accepted utility

in clustering unlabeled data set and relatively few number of hyperparameters. Other common

algorithms, such as the Fuzzy C -Means algorithm and an autoencoder, were also considered and

examined for their use as potential comparisons.
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The algorithmic approach of Fuzzy C -Means [6, 9] is very similar to that of the k -Means algo-

rithm outlined above. However, in Fuzzy C -Means Clustering each data observation can be assigned

to more than one of the C clusters. In other words, during training, the algorithm determines the

probability of a given observation belonging to each of the C clusters. Therefore, the final clusters

are referred to as "soft" clusters and often analyzed as probability distributions. Ultimately, given

the many ways one could interpret the resulting cluster distributions determined by the Fuzzy

C -Means algorithm, we felt it would be infeasible to use it as a frequent and repeated comparison.

Similar to the Self-Organizing Map, an autoencoder (also referred to as Non-Linear Principal Com-

ponent Analysis) is a type of artificial neural network that is designed to learn a low-dimensional

(latent-space) representation of higher-dimensional data [20]. The autoencoder is not inherently a

clustering algorithm, however, it does encode a representation of a data set into a lower-dimensional

space. In short, an autoencoder aims to build an encoder of the input data, that compresses it into a

latent-space representation, and a decoder, which reconstructs the input data from the latent-space,

that minimize the difference between the true input and the reconstruction. Especially in the case of

high-dimensional, noisy data, autoencoders are often used as a pre-processing tool for de-noising

prior to the implementation of a standard clustering or classification algorithm, as demonstrated by

[29]. To that end, we choose to reserve the use of autoencoders in our tailored framework for cases

of dual-domain data not considered in this thesis, i.e., those with high-dimensional attribute spaces

and an inhibitory level of noise.
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CHAPTER

3

TAILORED CLUSTERING OF

DUAL-DOMAIN DATA USING

SELF-ORGANIZING MAPS

3.1 A Tailored Self-Organizing Map

In Chapter 2 we discussed in detail the algorithmic approach of the Self-Organizing Map, as well

as the parameters associated with training the map. To better handle a clustering problem within

the dual-domain configuration, we propose a novel, alternative approach called the Tailored Self-

Organizing Map (TSOM). This new approach relies fundamentally on the standard Self-Organizing

Map (SOM) algorithm and the incorporation of domain-specific biasing parameters α and β . These

parameters are introduced into the competitive phase of the SOM algorithm (line 6 in Algorithm

1) and can be adjusted to result in a clustering that favors the features of one domain over the
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other. A step by step outline of the Tailored Self-Organizing Map algorithm is depicted in Algorithm

3. The Tailored SOM algorithm is O(kma x ·D ·N ), where kma x is the number of batch training

iterations, D is the number of observations in the data set, and N is the number of nodes in the map.

The initialization of this algorithm still relies on the user-prescribed total number of nodes in the

map (N ), arrangement of the nodes (rectangular lattice, triangular lattice, etc.), and neighborhood

relationships among the nodes. The weight vector, ~w j , for each node is viewed as a concatenation

of two subvectors. The first subvector, ~w a
j , is associated with data in the attribute domain A and

the second subvector, ~w
g
j , is associated with data in the geographic domain G. By considering each

subvector as its own entity, we allow for more flexibility when determining domain-appropriate

initializations, as well as interpretations of their final positions as cluster representatives.

The primary differences between the Tailored SOM algorithm (Algorithm 3) and the Standard

SOM algorithm (Algorithm 1) can be seen in lines 4 and 7 of Algorithm 3, with the incorporation

of the biasing parameters. These parameters, α and β , allow for more consideration to be given to

the data in the attribute domain A or geographic domain G, respectively, when determining the

winning weight vector at each iteration of training. In other words, by manipulating α and β we

create a competitive learning scenario that favors one domain over the other. By increasing the

relative magnitude of α and β , the similarity between the attribute (or geographic) components of

each data observation and the weight vectors is weighed more heavily, thus producing a clustering

that is more tailored to groups within the attribute domain A (or geographic domain G). When

α=β = 1, the competitive phase of the Tailored SOM algorithm is equivalent to that of the Standard

SOM algorithm. To maintain an appropriate balance between the domains, we institute a biasing

threshold T , such that max(α,β )
min(α,β ) < T for all α,β . We will further discuss admissible parameter spaces

and choice of an appropriate threshold in Section 3.3.
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Algorithm 3: Tailored Self-Organizing Map

1 Choose topological arrangement, size (N ), and neighboring relations of SOM;

2 Initialize learning rates z (k ) and γ(k );

3 Initialize weight vectors ~w j = [ ~w a
j , ~w

g
j ], for j = 1, .., N for each node of the SOM;

4 Initialize biasing parameter set q = [α, β ], such that α> 0 , β > 0, and max(α,β )
min(α,β ) < T ;

5 for k = 1, .., kmax (the number of batch training iterations)

6 for i = 1, .., D (each data vector in the dual-domain data set S given by ~di = [ ~ai , ~g i ] )

7 Compute the index of the winning weight vector via the biased formulation:

c (i ) = argmin j=1,..,N α‖ ~ai − ~w a
j ‖

2
2+β‖ ~g i − ~w

g
j ‖

2
2;

8 end

9 for j = 1, .., N

10 C j = S(~c == j , :) (a matrix of all data vectors with winning index j );

11 Let m j =
�

�C j

�

� (the number of data vectors stored in C j );

12 Let N j be the set of indices of the neighbors of ~w j ;

13 Let pj =
�

�N j

�

� (the number of neighbors associated with ~w j ) ;

14 end

15 for j = 1, .., N

16 Let ~w ∗ = ~w j ;

17 Update the j th weight vector using C j ;

18 for t = 1, .., m j

19 ~wt = ~w ∗+ z (k )(C j (t , :)− ~w ∗);
20 end

21 ~w j =
1

m j

∑m j

t=1 ~wt ;

22 Update the j th weight vector using the data associated with its neighbors;

23 for r ∈ N j

24 for s = 1, .., pj

25 ~ws = ~w ∗+γ(k )(Cr (s , :)− ~w ∗);
26 end

27 ~w j = ~w j +
1

pj

∑pj

s=1 ~ws ;

28 end

29 end

30 Update the learning rates z (k ) and γ(k );

31 end

32 for i = 1, .., D (each data vector in the dual-domain data set S given by ~di = [ ~ai , ~g i ] )

33 Compute final winning cluster index c (i ) = argmin j=1,..,N α‖ ~ai − ~w a
j ‖

2
2+β‖ ~g i − ~w

g
j ‖

2
2;

34 end

35 return Final cluster indices ~c for S and final representative weight vectors ~w j , for j = 1, .., N ;
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3.2 Designing an Objective Function

The introduction of α and β into our unsupervised learning algorithm allows for the construction

of an objective function, J , that can be used to optimize their values in the context of the objectives

of dual-domain clustering. We aim to design an objective function that is generic in the sense that it

can be useful for many different data sets, yet also tailored to address the unique challenges present

in a dual-domain clustering problem. Recall, these challenges include identifying clusters that

adhere to geographic constraints and are geographically proximal, that simultaneously identify an

information-dense representation of groupings in the attribute domain. To increase the likelihood

that the Tailored SOM (Algorithm 3) will achieve a geographically feasible clustering of the data,

we focus our attention on the geographic domain G when constructing the objective function J .

Specifically, for each of the C clusters identified by the TSOM (with C ≤ N ) when trained with

prescribed α and β , we consider its projection onto only the geographic domain G. For each cluster

projection, we construct cluster boundaries using the convex hull of its geographic data. We do so via

the native MATLAB function boundary, which creates a two- or three-dimensional boundary for a

given set of points using a scaling parameter s ∈ [0, 1]. For s = 0, the boundary is the convex hull. For

s = 1, the boundary is compact. Throughout this work, we will exclusively set the scaling parameter

to s = 0 and rely on the properties of the convex hull. By imposing convex boundaries, we create a

natural way of viewing the clusters as a contiguous geographic region, instead of as a discrete set of

points [4]. Additionally, having the convex boundaries for each cluster allows for the incorporation

of relevant two-dimensional quantities when specifying the objective function. For example, the

average area of a cluster is a quantity that cannot be computed without the imposition of a boundary

on a given cluster’s data. Furthermore, we can consider instances of boundary intersections, total

cluster region overlap, etc., to assess how well-separated, or unique, the identified geographic

regions are.

When designing the objective function we recall the motivating goal: to find a clustering

of a dual-domain data set that is both telling of the intrinsic structure of data in the attribute

domain A and is geographically useful. In other words, we aim to identify clusters of "individuals"

(observations) with similar attributes that are geographically proximal. To that end, we define the
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objective, Jg

�

α,β
�

, to be a function of the geographic projection of the TSOM clusters, and hence

denoted by the subscript g , for prescribed α and β . Thus, we consider the quantities defined in

Table 3.1.

Table 3.1 Clustering-based quantities used in construction of objective function.

Name Description

C the total number of identified clusters (nodes in TSOM populated with data)

ni the number of data observations assigned to the i th cluster, for i = 1, .., C

Ai , j the overlapping area between the i th and j th geographic clusters, for i , j = 1, .., C and i 6= j

Ā the average geographic cluster area

pi the perimeter of the i th geographic cluster, for i = 1, .., C

p̄ a prescribed “representative" cluster perimeter of the geographic data

To further illustrate the terms in Table 3.1 in the context of a clustering identified by the

Tailored SOM, projected into the geographic domain G, we consider the example data depicted in

Figure 3.1. The clusters seen in Figure 3.1 are the geographic components of the results obtained

from implementing the TSOM algorithm for given values of α and β . As depicted by the marker

types, the TSOM algorithm identified two clusters in the data, denoted by the red x’s and green

squares. Thus, for this example, we have C = 2, n1 = 11 (red x’s cluster), and n2 = 11 (green squares

cluster). It is important to note that in addition to the geographic observations seen in Figure 3.1,

this fictitious data set also has data vector components in an associated attribute domain A (not

pictured) that was considered during the training process. Post-clustering, we determine the convex

hull of each geographic cluster and impose boundaries (Figure 3.1). The convex boundaries allow

us to consider each geographic cluster as a region, instead of as just a discrete set of points.

Figure 3.2 serves to illustrate the terms in Table 3.1 in the context of the data seen in Figure

3.1. The third term in Table 3.1, Ai , j , is illustrated by the region shaded black (seen in (a)), which is

the area common to both clusters. Recall the overarching goal of uncovering a clustering of a given

data set that identifies, to the extent possible, unique geographic groupings of data. To that end,

determining values of α and β that minimize the quantity Ai , j , for i , j = 1, .., C and i 6= j , would
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Figure 3.1 An example of a dual-domain data set, clustered by the Tailored SOM and projected into G. Once
clustered and projected, we construct the convex hull of each geographic cluster. The convex hulls act as

boundaries for the clusters and create a geographic region for each cluster.

be useful. The fourth term in Table 3.1, Ā, is illustrated by the mean value of the areas of the red

and green shaded regions (seen in (b)). In general, Ā, is the mean value of C geographic cluster

areas, where C is the number of populated nodes in the TSOM. This quantity, when incorporated

into the objective function Jg , can be used to control the size of the identified geographic regions.

For example, this term can help promote a clustering that amalgamates several smaller clusters

to create a larger one. The fifth term in Table 3.1, pi , for i = 1, .., C , is depicted by the black dotted

boundary applied to the red cluster (seen in (c)). We compute each geographic cluster’s perimeter, pi ,

by summing the edge lengths of its convex hull. Along with each cluster’s perimeter, we determine a

representative perimeter, p̄ , that acts as an "ideal" perimeter and can be used to help smooth and

tune geographic properties of the clustering. Segmenting and smoothing algorithms, such as the

Mumford-Shah formulation [36], are prevalent in the study of image segmentation [35], where one

seeks to partition an image into distinct sub-regions according to some measure of similarity or

relevance. In our work, we aim to segment the geographic data observations into clusters (and via

convex hulls, regions) that are optimal for a given application. Thus, one reasonable choice for a

representative perimeter, p̄ , is the circumference of a circle (seen in (d)). For example, this choice

would be appropriate in an application determining optimal sales territories, where it is beneficial

to have approximately equivalent point-to-centroid distances within clusters in order to minimize

cost, travel time, etc. However, other geometries may be more ideal depending on the data set or

specific knowledge about the geographic domain, or application context.
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(a) Ai , j (b) Ā

(c) pi (d) p̄

Figure 3.2 An illustration of various terms (defined in Table 3.1) to be included in the objective function
Jg (α,β ). (a) Ai , j : the overlapping area between two geographic clusters. (b) Ā: the mean area of the two

geographic clusters, shown as the red and green shaded regions. (c) pi : the perimeter of a geographic cluster
denoted by the black dotted line segments. (d) p̄ : an example of a circular representative perimeter denoted

by the black dotted circle.
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With the terms outlined in Table 3.1, we propose the objective function Jg

�

α,β
�

defined in

equation (3.1).

Jg

�

α,β
�

=
C
∑

i , j=1
i 6= j

Ai , j

Ā
+

1

C

C
∑

i=1

�

pi

p̄
−1

�2

(3.1)

We note that Jg is not explicitly defined in terms of α,β , rather it depends on quantities derived

from a geographic clustering determined by the Tailored SOM for given values of α,β . Thus, we

choose to refer to the objective function as Jg

�

α,β
�

as a reminder that the choice of α,β directly

impacts the clustering that is determined by the Tailored SOM, and subsequently the evaluation

of the terms in Jg

�

α,β
�

. When minimized, we aim for the formulation of Jg

�

α,β
�

seen in equation

(3.1) to select an “optimal” parameter set q ∗ = [α∗,β ∗] such that

q ∗ = [α∗,β ∗] = argmin
α,β

Jg

�

α,β
�

. (3.2)

We note that Jg

�

α,β
�

(equation (3.1)) is constructed to be dimensionless, with each term in the

function having equal weight. Given the weighting provided by implementing α, β in the TSOM

training, we choose to not impose additional weighting parameters on the individuals terms in

Jg

�

α,β
�

. However, it is possible that term-specific weights could be advantageous for certain for-

mulations of Jg

�

α,β
�

. Based on the particular formulation of Jg

�

α,β
�

seen in equation (3.1), we

define the “optimal" parameter set as one that produces a useful clustering via the Tailored SOM

(Algorithm 3) with:

• minimal overlap among geographic cluster regions (first term in equation (3.1)),

• geographic clusters with boundaries that do not span/violate geographic constraints, such as

a river (both terms in equation (3.1)), and

• geographic clusters of comparable size, in terms of their perimeters (second term in equation

(3.1)).

Of course, this is just one possible formulation of an objective function that can be used

to determine favorable values of α and β . Other applications may require additional terms to be
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included, or existing terms to be deleted from the objective function defined in equation (3.1).

For example, prior knowledge of specific features of the geographic domain, such as shape and

size constraints, can be used when designing and tailoring terms in Jg

�

α,β
�

. Additionally, some

applications may lend themselves better to an objective function that relies more heavily on a

metric derived from, or inherent to, features in the attribute domain. In this case, one may choose

to formulate an objective function that penalizes for a large quantity of observations falling outside

n-standard deviations of their attribute cluster centroid, or dissimilar cluster population sizes.

3.3 Optimizing the Objective Function

To determine the optimal parameter set q ∗ = [α∗,β ∗] (equation (3.2)) that will minimize the pre-

scribed objective function Jg

�

α,β
�

, we begin by defining admissible ranges of values. Recall the

implementation of α and β in line 7 of the Tailored SOM algorithm (Algorithm 3), which states that

for each data vector ~di = [ ~ai , ~g i ], for i = 1, .., D , we compute the index of the winning weight vector

via the biased formulation

c (i ) = argmin
j=1,..,N

α‖ ~ai − ~w a
j ‖

2
2+β‖ ~g i − ~w

g
j ‖

2
2. (3.3)

This step is an expansion upon the competitive learning portion of the Standard SOM algorithm

(Algorithm 1, line 6), which states that for each data vector ~di , the index of winning weight vector

will be determined via

c (i ) = argmin
j=1,..,N

‖ ~di − ~w j ‖2
2.. (3.4)

Based on the formulations of equations (3.3) and (3.4), we note that the two approaches will yield the

same winning weight vector index c (i ) for a given data vector ~di for all parameter sets q = [α,β ] such

that α=β . Consequently, we anticipate the possibility of multiple (i.e., non-unique) local minima

solutions arising for any ranges of admissible values that are not mutually exclusive. Additionally,

the discrete nature of a clustering problem will inevitably lead to multiple (i.e., non-unique) local

minima solutions. That is to say, since there are only finitely many ways a given set of data can be

grouped into N clusters, it is likely that some perturbations to q = [α,β ] during optimization may

not yield changes to the clustering landscape, depending on the magnitude of the perturbations
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relative to the parameter values. Hence, we anticipate cases where Jg

�

α1,β1

�

= Jg

�

α2,β2

�

even

though [α1,β1] 6= [α2,β2]. Thus, for the sake of simplicity, we choose the admissible parameter space

to be of the form

[α,β ] ∈ [1−δ, 1+δ]× [1−δ, 1+δ] (3.5)

with δ ≥ 0. This choice allows for the space of values where α > β , and the space where β > α, to

be explored, while also maintaining a reasonable ratio, max(α,β )
min(α,β ) , for δ appropriately small (choices

for δ will be explored in Chapter 4). To that end, we introduce a threshold, T , to act as an upper

bound on the parameter ratio, seen in equation (3.6), thus preventing the over-minimization (or

over-emphasis) of one domain’s information.

max(α,β )
min(α,β )

< T (3.6)

The choice of T will in turn dictate admissible values for δ. Additionally, for some bounded opti-

mization regimes, this admissible space affords us the choice to initialize at [α0,β0] = [1, 1], which

results in a first iteration of clustering equivalent to the Standard SOM algorithm (Algorithm 1).

Lastly, with an admissible parameter space in place, we seek to evaluate and compare ap-

propriate and efficient optimization approaches. As previously mentioned, given the inclusion

of biasing parameters and the discrete nature of a finite clustering problem, we fully anticipate

the solution surface of Jg

�

α,β
�

to be one with many non-unique, local minima. Thus, it is in our

best interest to explore methods for global optimization, rather than rely on methods designed for

problems with a single unique solution and a smooth solution surface. For smaller problems, we

can employ a global grid search to determine values of α and β that minimize Jg

�

α,β
�

. For the grid

search, we define a step size,

∆q = [∆α,∆β ] (3.7)

with ∆α = ∆β , that is used to traverse the admissible parameter space (equation (3.5)) in both

dimensions. While this process can be slow for high-dimensional data sets, we can improve effi-

ciency by taking advantage of the relationship between α and β in equation (3.3) to avoid evaluating

Jg

�

α,β
�

unnecessarily. In other words, depending on the magnitude of∆q , we can determine pairs
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of α and β values that put the parameters in equal ratio, and skip over all but one of these pairs

when traversing the space and evaluating Jg

�

α,β
�

. For example, we can disregard iterations of the

grid search where α=β , since it is equivalent to the result obtained for α=β = 1. Additionally, we

can further improve efficiency by experimenting with the magnitude of∆q , as each data set will

require a different level of granularity to achieve a sufficiently holistic view of the solution space.

The illustration in Figure 3.3 depicts a high-level overview of this optimization approach as it relates

to a dual-domain clustering via the Tailored SOM.

Figure 3.3 A depiction of the optimization framework for determining the optimal parameter set q ∗ = [α∗,β ∗]
for a given data set via the Tailored SOM (TSOM) algorithm and an objective function Jg

�

α,β
�

.

For larger data sets with a high-dimensional attribute space or a large number of observations,

a global grid search may be unfeasible. In that case, to determine q ∗ = [α∗,β ∗]we rely on a proba-

bilistic global optimization method known as Simulated Annealing [8, 16, 22, 33, 41]. Other methods,

such as Stochastic Gradient Descent, were also considered for this optimization task. However, given

that Jg is not explicitly a function of the parameter set q = [α,β ] and it fundamentally depends on the

entire data set for evaluation (i.e., it depends on quantities derived from the full geographic cluster-

ing), we ultimately decided that a gradient-based method was not the best choice [41]. Alternatively,

Simulated Annealing, which relies only on objective function evaluations, is a general method used
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to determine the global minimum for a real-valued cost function even when its solution surface

contains many local minima. This method is based on the thermodynamic principles of the cooling

and annealing of metals. If a metal is held at a high temperature, its particles have a high probability

of transitioning to a higher energy state. However, as the metal is cooled at a controlled rate (i.e., it

is annealed) this probability decreases and particles are more likely to transition to a lower energy

state. Annealing is complete when the temperature of the metal has reached equilibrium with its

environment and the particles are at their lowest possible energy state. Simulated Annealing as

an optimization algorithm mimics this physical process, relying on the length of annealing (total

search duration) and a probability function to determine the global minimum of a cost function

(an analog to the particles’ lowest energy state). A step by step outline of the general Simulated

Annealing algorithm is depicted in Algorithm 4 [34, 41].

In summary, the algorithm searches the admissible solution space for a minimum by randomly

selecting candidates, accepting candidates that lower the cost function value with probability

1, and accepting candidates that do not lower the cost function (denoted by c (x ) in Algorithm

4, and analogous to Jg for our purposes) according to a decreasing probability function A. By

probabilistically accepting candidate solutions that increase the value of the cost function, the

solution space can be better explored and the algorithm is less likely to settle in a local minimum. A

typical form for the acceptance probability function, A(c (x ), T ) is

A(c (x ), T ) =
1

1+exp
�

∆c
T

� (3.8)

where∆c = c (xi )− c (xi−1) and T is the current temperature. With∆c and T strictly positive, the

range of A is (0, 1/2). Additionally, given the formulation of A, the algorithm is more likely to accept

candidate solutions that increase the value of the cost function early on in the search, when the

temperature is higher, rather than later in the search when it should be settling near the global

minimum.

When considering a dual-domain data set with a high dimensional attribute space, we employ

the Simulated Annealing algorithm to search the bounded admissible parameter space for q ∗, as

defined in equation (3.2), in lieu of using a global grid search. In Chapter 4 of this thesis, we will
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Algorithm 4: Simulated Annealing Algorithm

1 Initialize the temperature T ;

2 Define the ending temperature Tend and the decay constant γ;

3 Define the acceptance probability function A(c (x ), T ), where c (x ) is the cost function to be

minimized;

4 Generate initial random solution x0 and compute its cost c (x0);

5 Initialize acceptance counter i = 1;

6 while T < Tend do

7 Generate current solution xi from the neighborhood of previous solution xi−1;

8 Compute cost of current solution c (xi );

9 if c (xi )< c (xi−1) then

10 Accept xi as solution;

11 else

12 Accept xi as solution according to the acceptance probability A(c (x ), T );

13 end

14 if xi accepted then

15 Iterate i : i = i +1;

16 else

17 Do not iterate i ;

18 end

19 Update the temperature: T = γT ;

20 end

21 Compute best solution: x ∗ = argminxi
c (xi );

22 Compute minimized cost: c (x ∗);

23 return Best solution x ∗ and value of minimized cost c (x ∗);
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use synthetic data to demonstrate and compare the performance of a global grid search versus

the Simulated Annealing algorithm in optimizing Jg

�

α,β
�

and determining a geographically useful

clustering.
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CHAPTER

4

EVALUATING THE TAILORED

SELF-ORGANIZING MAP WITH

SYNTHETIC DATA

4.1 Approach

In this chapter, we will test and validate the tailored unsupervised learning methodology that

we developed in Chapter 3 on three cases of synthetic dual-domain data sets. In summary, the

methodology is comprised of:

1. Prescribing the map parameters and learning rates associated with the Tailored Self-Organizing

Map algorithm (TSOM) (Algorithm 3) and initializing the weight vectors.

2. Prescribing an admissible space for α and β via the parameters δ and T (equations (3.5) and

(3.6)).

3. Determining the optimal values for α and β that minimize the objective function Jg (α,β )
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(equation (3.1)) via: (1) a global grid search or (2) Simulated Annealing.

Once an optimal parameter set q ∗ = [α∗,β ∗] (equation (3.2)) has been determined, we will compare

the corresponding Tailored SOM clustering to results obtained from the Standard Self-Organizing

Map algorithm (Algorithm 1) and the k -Means algorithm (Algorithm 2). To compare the results of

each algorithm, we will use the objective function Jg to evaluate each clustering in terms of the

geographic characteristics used to define it. Additionally, we will propose the concept of geographic

feasibility and the notion of a "desired answer" based on known groupings of data within the

synthetic data set. With these metrics, we can validate the results of the Tailored SOM relative to

the Standard SOM and k -Means algorithms in a consistent way that is specific to the goals of the

dual-domain clustering problem.

4.2 Generation of Dual-Domain Synthetic Data

In the absence of a ground truth against which we can train a clustering algorithm, we begin by

designing and generating experimental, synthetic data for which we can define a right answer. With

synthetic data generation comes the freedom to customize; we can vary size, in terms of both the

number of observations and features in the data set, noise level and prevalence of outliers in both

domains, and type of constraint present in the geographic domain. By carefully varying each of

these components, we can thoroughly test competing algorithms for efficiency and robustness

when applied to synthetic data sets with measurable differences. Our methodology for generating

data is similar to that of a stochastic block model [2], which is a generative random graph model

often used in the study of community (cluster) detection within a network structure [14].

In the attribute domain, we create a data arrangement A∗ containing pa groups each with a

centroid Ma = [m i
a ,x , m i

a ,y ], for i = 1, .., pa , and D observations. The observations a i
j , for i = 1, .., pa

and j = 1, .., D , in each of the pa groups are generated from a circular region about the centroid.

The radii r a
j , for j = 1, .., D , are drawn from the normal distribution r a ∼N (0,σ2

1) and the angular

measures θ a
j , for j = 1, .., D , are drawn from the uniform distribution θ a ∼U (0,2π). Thus, each
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observation a i
j , for i = 1, .., pa and j = 1, .., D , is of the form

a i
j = [r

a
j cos(θ a

j ), r a
j sin(θ a

j )]+ [m
i
a ,x , m i

a ,y ].

In the geographic domain, we generate a corresponding geographical arrangement G∗ con-

taining pg groups each with a centroid Mg = [m i
g ,x , m i

g ,y ], for i = 1, .., pg . Each observation a i
j ∈A,

for i = 1, .., pa and j = 1, .., D , is associated with an observation in a corresponding geographic group

with probability P and associated with an observation in a non-corresponding geographic group

with probability 1−P . Geographic data observations g i
j , for i = 1, .., pg and j = 1, .., D , are generated

from a circular region about the centroid. Here, each geographic group pg has Npg
observations,

which is dependent on the prescribed association probability P . For P ≈ 1, the mean value of Npg

will approach D
pg

over many realizations. The radii r
g
j , for j = 1, .., D , are drawn from the normal

distribution r g ∼N (0,σ2
2) and the angular measures θ

g
j are drawn from the uniform distribution

θ g ∼U (0, 2π). Thus, each g i
j , for i = 1, .., pg and j = 1, .., D , is of the form

g i
j = [r

g
j cos(θ g

j ), r
g
j sin(θ g

j )]+ [m
i
g ,x , m i

g ,y ].

Figure 4.1 (a,b) depicts the first sample data arrangement, generated using the parameters

outlined above. In generating this sample set, we prescribe the parameter set

Q1 = [pa , pg , D ,σ1,σ2, P ] = [4, 5, 200, 0.15, 0.15, 1]

and choose the group centroids

Ma ,1 =
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(a) (b)

Figure 4.1 A sample dual-domain data arrangement generated from the parameter values specified by Q1,
Ma ,1, and Mg ,1 projected into the two-dimensional attribute domain (shown in (a)) and the two-dimensional
geographic domain (shown in (b)). The marker colors in each subfigure are used to indicate the inter-domain

correspondence/association between the geographic observations and the attribute observations.

In these figures, we use the marker colors to demonstrate inter-domain group connections, or

correspondence. For example, the red data in Figure 4.1 (b) are the geographic locations correspond-

ing to each of the red attribute observations in Figure 4.1 (a). We note that since the association

probability P = 1, there are no misplaced geographic data observations, in terms of their color, i.e.,

they were all drawn from a corresponding/associated attribute group distribution.

By adjusting the values ofσ1,σ2, and P used in data generation, we can create arrangements

with varying levels of noise, and thus a clustering task with varying levels of difficulty. To contrast

the example data set seen in Figure 4.1, we consider the parameter set

Q2 = [pa , pg , D ,σ1,σ2, P ] = [4, 5, 200, 0.15, 0.15, 0.75]

and group centroids Ma ,1, Mg ,1 defined above. With these values, we generate a second sample dual-

domain data set, depicted in Figure 4.2 (a,b). By holdingσ1 andσ2 constant at 0.15 and lowering

the association probability P to 0.75, we allow for each attribute data observation ~a to have a 25%

chance of being associated with a geographic observation ~g from a non-corresponding group, thus

introducing a substantial amount of noise in the geographic space (depicted in Figure 4.2 (b)).
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(a) (b)

Figure 4.2 A second sample dual-domain data arrangement generated from the parameter values specified
by Q2, Ma ,1, and Mg ,1 projected into the two-dimensional attribute domain (shown in (a)) and the

two-dimensional geographic domain (shown in (b)). The marker colors in each subfigure are used to indicate
the inter-domain correspondence/association between the geographic observations and the attribute

observations.

For a third example, we generate the sample dual-domain data arrangement depicted in

Figure 4.3 (a,b). This third sample set was generated using the parameter set

Q3 = [pa , pg , D ,σ1,σ2, P ] = [4, 5, 200, 0.25, 0.25, 0.95]

and cluster centroids Ma ,1, Mg ,1, as defined above. For this realization, we increase the association

probability to 0.95, thus allowing for each attribute domain observation ~a to have a 5% chance

of being associated with a geographic domain observation ~g from a non-corresponding group

(thus 1 − P reflects the probability of association with a non-corresponding group). By letting

σ1 =σ2 = 0.25, we increase the radial spread of each attribute and geographic group, which produces

a larger number of outliers per geographic and attribute group and increases the likelihood of group

mixing. We summarize the parameters and definitions used for synthetic data generation throughout

this thesis in Table 4.1.
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(a) (b)

Figure 4.3 A third sample dual-domain data arrangement generated from the parameter values specified by
Q3, Ma ,1, and Mg ,1 projected into the two-dimensional attribute domain (shown in (a)) and the

two-dimensional geographic domain (shown in (b)). The marker colors in each subfigure are used to indicate
the inter-domain correspondence/association between the geographic observations and the attribute

observations.

Table 4.1 Parameters used to generate synthetic dual-domain data.

Parameter Definition

pa number of groups in A
pg number of groups in G
D total number of observations in the data set

σ2
1 radial variance for observations in A
σ2

2 radial variance for observations in G
P association probability

Ma group centroids in A
Mg group centroids in G
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4.3 Synthetic Data: Case 1

For our first case, we manufacture a synthetic data set in which there are an equal number of attribute

and geographic groups (pa = pg ), as described in Section 4.2. We will use the term “group" when

referring to a known grouping of data within a data set, i.e., a grouping that we specified, for which we

know the generating distribution. We seek to identify these groups,without prior knowledge of them,

when applying a clustering algorithm. We will reserve the use of the term “cluster" for describing

the findings or output of an unsupervised algorithm. In addition to the number of attribute and

geographic groups (pa and pg ), we prescribe values for the total number of observations in the data

set (D ), the radial variances (σ2
1 andσ2

2) for the attribute and geographic groups relative to cluster

centroids, the association probability (P ), and the centroids of the attribute and geographic groups

(Ma and Mg ). These quantities were all defined in Section 4.2. We prescribe values for each of these

parameters for Case 1 synthetic data, as indicated in Table 4.2.

Recall that, in generating data sets, each attribute observation a i
j ∈ A, for i = 1, .., pa and

j = 1, .., D , is associated with an observation in a corresponding geographic group with probability

P and associated with an observation in a non-corresponding geographic group with probability

1−P . Therefore, while we can control the number of observations in each attribute group, Ni for

i = 1, .., pa , the number of observations in each corresponding geographic group, Nj for j = 1, .., pg ,

is dependent upon the prescribed association probability P . In addition to these parameters (which

are prescribed below in Table 4.2), we institute a vertical (north-south) geographic constraint in

the form of a river. A depiction of this constraint, along with a sample data set generated from the

parameter values depicted in Table 4.2, are shown in Figure 4.4.

First, we illustrate the projection of the sample data set into the attribute domain A (Figure

4.4 (a)). We note that we are not introducing the concept of noise nor observation misplacement

among the groups in the attribute domain. This choice, paired with a low radial varianceσ2
1, results

in four easily discernible attribute groups. Additionally, we illustrate the geographic data (Figure

4.4 (b)) that corresponds with the attribute domain projection (Figure 4.4 (a)). In Figure 4.4, we use

the marker colors to indicate the inter-domain correspondence among groups. For example, the

red geographic observations (Figure 4.4 (b)) are the geographic components of the red attribute
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observations (4.4 (a)). Given that we instituted an association probability P < 1, we observe a low

level of observation mismatch among the geographic groups. For Case 1, we intentionally keep the

radial variances,σ2
1 andσ2

2, small, the group centroids, Ma and Mg , well-separated (within each

domain), and the association probability, P , close to 1. In subsequent synthetic data experiments,

we will systematically adjust and increase these values to test the robustness of various algorithms.

Table 4.2 Parameter values used to manufacture the first case of synthetic data.

Parameter Value Definition

pa 4 number of groups in A

pg 4 number of groups in G

D 200 total number of observations in the data set

σ2
1 0.122 radial variance for observations in A

σ2
2 0.152 radial variance for observations in G

P 0.92 association probability
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(a) (b)

Figure 4.4 A sample Case 1 data set generated from the parameter values defined in Table 4.2 projected into
the two-dimensional attribute domain (Subfigure (a)) and the two-dimensional geographic domain

(Subfigure (b)). The marker colors in each subfigure are used to indicate the inter-domain correspondence
between the geographic observations and the attribute observations.

4.3.1 Tailored versus Standard Clustering Results: Case 1

To begin training, we must define the various map parameters and learning rates associated with

the Tailored SOM Algorithm (Algorithm 1). We choose to implement a 3×3 map, consisting of N = 9

nodes, arranged as a 2-dimensional rectangular lattice (as depicted by the example in Figure 2.2). We

use the structure of the rectangular lattice to define the neighborhood relation among the nodes, i.e.,

nodes that are one edge length apart on the lattice are neighbors, while those diagonally adjacent

are not. For Case 1, we initialize the weight vectors ~w j , for j = 1, .., N , such that the components are

evenly spaced throughout each sub domain ([−1, 1]×[−1, 1] for A and G). This choice of initialization

does not afford the training algorithm any biased knowledge of the data landscape prior to the

first iteration of training. In subsequent synthetic data experiments, we will investigate additional

choices for weight vector initialization and discuss their effects on algorithm performance. For the

learning rates z (k ) and γ(k ), we use the forms defined in equations (2.1) and (2.2) with a = 1
2 , b = 1

8 .

We summarize the parameters and design choices prescribed for this Tailored SOM in Table 4.3.
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Table 4.3 Parameters and design choices prescribed for training the Tailored SOM on Case 1 synthetic data.

Parameter Value Definition

N 9 total number of nodes in SOM (given by 3×3
rectangular lattice structure)

initial ~w a
j ( j = 1, .., N ) evenly spaced in

[−1, 1]× [−1, 1]
weight vector initialization in A

initial ~w
g
j ( j = 1, .., N ) evenly spaced in

[−1, 1]× [−1, 1]
weight vector initialization in G

~wn 1 edge away neighborhood relation among nodes

z (k )
�

1
2

�
k

kmax learning rate for winning weight vectors

γ(k )
�

1
8

�
k

kmax learning rate for neighboring weight vectors

kmax 12 number of training batches

For the optimization framework, as outlined in Section 3.3, we define the admissible parameter

space (equation (3.5)) via δ= 0.25, i.e., we will optimize Jg

�

α,β
�

(equation (3.1)) over

[α,β ] ∈ [0.75, 1.25]× [0.75, 1.25]. (4.1)

This choice of δ results in a parameter ratio threshold (equation (3.6)) of T = 5
3 ≈ 1.67. Additionally,

we choose to institute a circular representative perimeter, p̄ , with radius R = 0.3, in our formulation

of Jg

�

α,β
�

(equation (3.1)). First, to determine the optimal q ∗ = [α∗,β ∗] (equation (3.2)) for the

example Case 1 data set seen in Figure 4.4, we perform a global grid search of the parameter space

using the step size∆q = [0.05, 0.05]. To depict the results of this grid search, we construct the heat

map shown in Figure 4.5. Each square on the heat map represents the function value of Jg

�

α,β
�

when evaluated at the corresponding α, β values indicated on the x - and y -axis. We use the scaled

colors seen in this heat map to illustrate the various peaks and valleys attained by Jg

�

α,β
�

during

the search. The optimal parameter set for this data is q ∗ = [0.8, 1.1], which yields the minimum value

Jg (0.8, 1.1) = 0.9192, as depicted in Figure 4.5 by the deep blue color on the square corresponding to

this parameter pair.

When used during training of the Tailored Self-Organizing Map, this optimal set, q ∗, gen-
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Figure 4.5 An illustration of the function values attained by Jg

�

α,β
�

(equation (3.1)) at each α, β pair
(equation (4.1)) evaluated during the global grid search for the Case 1 data set depicted in Figure 4.4. Each

function value is denoted by the color of the square.

erates the geographic clusters seen in Figure 4.6 (c). For a first comparison, we train a Standard

Self-Organizing Map (Algorithm 1) on the full data set (containing both the attribute and geographic

features) using the same map topology, neighborhood relation, weight vector initialization, parame-

ters, and learning rates as defined in Table 4.3. Recall that, in the Standard SOM formulation, we

have α=β = 1. The resulting geographic clustering is depicted in Figure 4.6 (d).

At first glance, we observe notable differences in the geographic clustering obtained by the

Tailored SOM and the Standard SOM (Figure 4.6 (c,d)). First, the Tailored SOM was able to correctly

identify the four primary geographic groups that we specified during generation of the synthetic data.

The Standard SOM, in contrast, split the geographic observations occupying the lower left quadrant

(Figure 4.6 (d)) into two clusters. Secondly, the Tailored SOM was able to allocate three nodes (shown

in cyan, navy blue, and medium green in Figure 4.6 (c)) to capture some of the geographic noise

caused by our choice of P (< 1). For example, among the red geographic cluster (Figure 4.6 (c)), a

cyan cluster consisting of three non-corresponding observations was identified. This result is useful

as it demonstrates the algorithm’s ability to discover observations that are proximate geographically,

but dissimilar in attribute space, rather than lump such observations in with a larger, nearby cluster.
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(a) (b)

(c) (d)

Figure 4.6 The geographic clusterings for the example Case 1 data set (shown in (a) and (b)) obtained from:
(c) training the Tailored SOM algorithm with q ∗ = [0.8, 1.1] and (d) training the Standard SOM algorithm. Post

clustering, we apply the convex hull boundaries to each geographic cluster containing at least 2 data
observations. For this data set, the Tailored SOM (Subfigure (c)) identified 7 geographic clusters, denoted by
marker color, and the Standard SOM (Subfigure (d)) identified 8 geographic clusters, also denoted by marker

color.

For a second clustering comparison, we implemented the k -Means algorithm initialized with

the k ++ approach. As detailed in Section 2.3, an important first step of this algorithm is deciding

on an appropriate choice for k . To determine this, we implement both the Elbow Method [31] and

the Average Silhouette Method [39] (Section 2.3.1) for the example Case 1 data set depicted in Figure

4.4. The results of these methods are illustrated in Figure 4.7. Recall that for the Elbow Method,

we plot the within-cluster sum of squared distances (WSS) (equation (2.3)) as a function of k and
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look for the “elbow", or the k -value for where the function begins to decrease linearly, for guidance

on how to choose k . Determining the “elbow" is seldom a cut and dried task, as demonstrated by

the results in Figure 4.7 (a). In this figure, one could argue that the elbow occurs at k = 4 or k = 5,

depending on how strictly the "deceases linearly" property is enforced. The results obtained from

the Average Silhouette Method, shown in Figure 4.7 (b), are similarly ambiguous. Recall that for

the Average Silhouette Method, we seek to maximize the average silhouette coefficient (equation

(2.4)) of a clustering, as a function of k . As illustrated in Figure 4.7 (b), k = 4,5,6, and 7 yield very

similar average silhouette coefficients. Based on these results, we can conclude that there is no clear

optimal choice for k .

(a) (b)

Figure 4.7 Results of the Elbow Method (shown in (a)) and the Average Silhouette Method (shown in (b)) for
the Case 1 data set depicted in Figure 4.4. The Elbow Method relies on the total within-cluster sum of squared
distances (WSS) (equation (2.3)) between data observations and their cluster centroid. The Elbow Method

suggests choosing the value of k at which the WSS begins to decrease linearly, when plotted as a function of
k . The Average Silhouette Method relies on the silhouette coefficient (Si ) (equation (2.4)) of each observation.

The Average Silhouette Method suggests choosing the value of k that maximizes the average silhouette
coefficient.

For comparative purposes, we train the k -Means algorithm for each k value recommended

by either the Elbow or the Average Silhouette Method, i.e., k = 4,5,6,7, and depict the geographic

clustering results side-by-side in Figure 4.8. These results illustrate that the k -Means algorithm is

less successful in identifying and separating the misplaced/non-corresponding observations in

the geographic domain from nearby, well-clustered observations, even as we increase the number
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of centroids (k ). Specifically, we observe this result as boundary intersections and substantial

overlapping of geographic territory among the two primary clusters left of the river in each of the

cases depicted in Figure 4.8. Additionally, Figure 4.8 illustrates the sensitivity of the clustering results

to the prescribed value of k . A side-by-side comparison of the Tailored SOM geographic clustering

and the k -Means algorithm geographic clustering for k = 6 is depicted in Figure 4.9. We make

the note here that while the k -Means algorithm produced a geographically feasible result for this

example data set (no cluster boundaries violate the vertical geographic constraint), over many

realizations we notice that only a small percentage of k -Means results exhibit this quality. In the

next section, we will provide a thorough discussion and systemic algorithm comparison based on

results obtained by the Tailored SOM, Standard SOM, and k -Means algorithm.
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(a) (b)

(c) k = 4 (d) k = 5

(e) k = 6 (f ) k = 7

Figure 4.8 An illustration of the geographic clustering of the example Case 1 data set (shown in (a) and (b))
obtained with the k -Means algorithm for (c) k = 4, (d) k = 5, (e) k = 6, and (f) k = 7, as recommended by the

Elbow and Average Silhouette Methods.
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(a) (b)

(c) (d)

Figure 4.9 The geographic clusterings for the example Case 1 data set (shown in 4.4) obtained from: (c)
training the Tailored SOM algorithm with q ∗ = [0.8, 1.1] and (d) training the k -Means algorithm with k = 6.
Post clustering, we apply the convex hull boundaries to each geographic cluster containing at least 2 data

observations. For this data set, the Tailored SOM (shown in (c)) identified 7 geographic clusters, denoted by
marker color, and the k -Means algorithm (shown in (d)) identified 6 geographic clusters, also denoted by

marker color.
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4.3.2 Algorithm Assessment: Case 1

While we can provide some discussion on the similarities and differences among the geographic

clustering results achieved by the Tailored SOM (Figure 4.6 (a)), the Standard SOM (Figure 4.6 (b)),

and the k -Means algorithms (Figure 4.8), it is important to have a consistent method for assessing

and comparing the performance of each algorithm. In particular, we wish to assess the output of

each algorithm with respect to the overall goals of the dual-domain clustering problem. First, we

can evaluate algorithm performance and the quality of a clustering using the geographic objective

function Jg (equation (3.1)). For this, we compute the value of Jg for clusterings obtained by each

algorithm and deem the results that correspond with lower Jg values as more desirable. Additionally,

as discussed in Section 1.2, we can also design performance metrics that rely on our knowledge of

how the synthetic data sets were created. In other words, we can use our knowledge of the underlying

distributions, various levels of noise within the data, and intended cluster arrangements in A and G

that we prescribe when generating the synthetic data to design and score results against the notion

of a "desired answer".

To that end, we propose two metrics for algorithm assessment that are based on the synthetic

data generation: the Stable Score and the Inlier Score, defined in Table 4.4. The computation of

these scores depends on a concept we call the “stable" groups. The stable groups are made up of

the essential (non-outlying) observations of the geographic groups specified during synthetic data

generation. As detailed in Step 1 of Table 4.4, the stable groups are constructed through an iterative

process that aims to determine the core set of geographic observations in a known geographic group,

and, ideally, are identified during clustering. An example of how we construct a stable group for a

known geographic group from the example Case 1 data set (Figure 4.4) is depicted in Figure 4.10.

Based on the concept of stable groups, we define the Stable Score (Step 3, Table 4.4) as the

percentage of the stable group’s population represented by its best-matching cluster from the

TSOM/SSOM/k -Means output. Here, we define the best-matching cluster for a stable group as the

one with which it shares the largest intersection. We use the Stable Score as a way to quantify how

well a clustering algorithm achieved the results intended during data generation. However, this

formulation does not penalize a cluster for containing outlying observations, i.e., observations we
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(a) (b)

Figure 4.10 A depiction of the first iteration of the stable group construction for a known geographic group.
In the example Case 1 data set shown in (a), we consider all observations associated with Attribute Group 4
(cyan). In (b) we depict the centroid of the cyan observations with a black ‘x’ and 2.5-standard deviations

(radially) from the centroid with a black dashed circle. We identify 4 observations that fall outside this circle
(each noted with a black arrow. Each of these outlying observations would be removed from the cyan stable

group at this iteration of the construction process. This process repeats by updating the centroid and the
2.5-standard deviation boundary, and removing outliers until the population of the stable group no longer

changes. Once complete, the stable group is considered the set of core observations for that particular
geographic group and can be used in computing the Stable and Inlier Scores (defined in Table 4.4).

know to belong to a different geographic group. For example, the Stable Score would not penalize a

cluster for capturing the red observations that are mixed in with the cyan geographic group seen in

Figure 4.10 (b). To address this issue, we define the Inlier Score (Step 4, Table 4.4). The Inlier Score for

a given cluster is the percentage of its population that is shared with its best-matching stable group.

By considering each of these scores side by side, or their average, we are able to quantify how well a

given clustering captures the intended observations/geographic groupings without over-simplifying

its representation of the data by co-clustering multiple observations from distinct groupings.

To demonstrate the usage of these synthetic data based scoring techniques and how we can

evaluate Jg to assess algorithm performance, we refer back to the Case 1 data set depicted in Figure

4.4. Recall that for this data set we have obtained clustering results via the Tailored SOM (Figure 4.6

(c)), the Standard SOM (Figure 4.6 (d)) (abbreviated as SSOM in subsequent figures and tables), and

k -Means (Figure 4.8 (d)). For comparative purposes, we will focus on the k -Means result for k = 6

(Figure 4.8 (c)). For each result, we determine cluster boundaries using the convex hulls (Section 3.2)
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Table 4.4 Stable Score and Inlier Score Algorithm

Algorithm:

1. After generation of a synthetic data set, determine “stable" groups in the geographic

domain G.

(a) For each of the known geographic groups, compute the centroid and standard devi-

ation of its observations.

(b) Remove all observations that fall outside n-standard deviations of the centroid; these

observations are labeled as outliers.

(c) Update centroids and standard deviations using remaining observations.

(d) Repeat 1(b) and (c) until the group population is stable.

2. For each stable group identified, determine its best-matching cluster from the

TSOM/SOM/k -Means Algorithm output.

3. For each best-matching pair, the cluster’s Stable Score is defined as

� | best-matching cluster ∩ stable group |
| stable group |

�

×100

where | · | is the cardinality of the enclosed set.

4. For each best-matching pair, the cluster’s Inlier Score is defined as

� | best-matching cluster ∩ stable group |
| best-matching cluster |

�

×100

where | · | is the cardinality of the enclosed set.
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and compute the value of Jg (equation (3.1)) given a circular representative perimeter (p̄ ) with radius

R = 0.3. Recall that we constructed Jg such that a lower value reflects a more desirable geographic

clustering. Hence, when we compare Jg values for the clusterings produced by each algorithm,

we consider the “best" result to be the one that corresponds with the lowest value. Based on the

results depicted in Table 4.5, the clustering identified by Tailored SOM is more desirable than those

produced by the Standard SOM and the k -Means algorithms (for k = 6) in terms of the geographic

qualities addressed by Jg (Section 3.2). Given that the clustering obtained by the Tailored SOM

fundamentally relied on the minimization of Jg during training, this result is somewhat expected.

Nonetheless, Jg is a valuable metric for algorithm evaluation and comparison as it highlights the

important differences among results obtained by a standard approach versus one that was tailored

to the challenges of dual-domain data.

Table 4.5 Values of the geographic objective function Jg (equation (3.1)) for the clusterings determined by
the Tailored SOM, the Standard SOM, and the k -Means algorithm (k = 6) on the example Case 1 data set

depicted in Figure 4.4.

Tailored SOM Standard SOM k -Means

Value of Jg 0.9192 1.5661 2.0000

Given the data generation parameters defined in Table 4.2, we know there to be four primary

geographic groups within the data set. Hence, we can score the results obtained from each clustering

algorithm based on four stable groups determined with n = 2.5 standard deviations (Step 1(b), Table

4.4). For each of these stable groups, we compute the Stable Score and the Inlier Score for each

clustering algorithm, along with the mean Stable Score and Inlier Score across all four stable groups

(Table 4.6). While in some cases it may be beneficial to compare the Stable and Inlier Scores of

individual clusters across algorithms, considering their means and medians (last four columns of

Table 4.6) is a useful way of assessing the clustering as a whole. Based on the summary statistics

reported in the last four columns of Table 4.6, we can conclude that the Tailored SOM outperformed

the Standard SOM and the k -Means algorithms in both metrics (Stable and Inlier Scores). In terms

of the individual clusters, the lowest Stable Score obtained by the Tailored SOM was 97.9%, the

Standard SOM was 51.2%, and the k -Means algorithm was 50.0%. Furthermore, the lowest Inlier
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Score for an individual cluster obtained by the Tailored SOM was 86.0%, the Standard SOM was

75.9%, and the k -Means algorithms was 81.2%. These results suggest that, due to the additional

significance placed on the geographic domain (since β ∗ >α∗ for this example), the Tailored SOM is

able to identify the intended geographic groups to a higher degree of accuracy than the Standard

SOM and the k -Means algorithm.

Table 4.6 Stable Scores (SS) and Inlier Scores (IS) for the clustering of the example Case 1 data set depicted in
Figure 4.4 obtained by the Tailored SOM (Figure 4.6 (c)), the Standard SOM (Figure 4.6 (d)), and k -Means for
k = 6 (Figure 4.9 (d)). Each of the “Cluster" columns contains the scores for the best-matching cluster to one
of the 4 stable groups determined for this example data. The “Mean" column contains the mean Stable Score
and mean Inlier Score across all four stable groups for each algorithm. The “Median" column contains the

median Stable Score and median Inlier Score across all four stable groups for each algorithm.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Mean Median

SS IS SS IS SS IS SS IS SS IS SS IS

TSOM (%) 100 87.0 97.9 97.9 100 95.8 100 86.0 99.5 91.7 100 91.4

SSOM (%) 100 87.0 83.3 95.2 84.8 95.1 51.2 75.9 79.8 88.3 84.1 91.0

k -Means (%) 100 87.0 100 96.0 50.0 85.2 100 81.2 87.5 87.3 100 86.1

To validate these results, we repeat the experiment outlined by the above example by generat-

ing 20 realizations of Case 1 synthetic data sets according to the parameter definitions in Table 4.2. For

each realization we optimize the Tailored SOM using the parameters defined in Table 4.3 and the ob-

jective function Jg

�

α,β
�

(equation (3.1)) over the admissible parameter space (defined by equation

(4.1)) to determine an optimal q ∗ (equation (3.2)). Over all realizations, the mean optimal parameter

set is q̄ ∗ = [ᾱ∗, β̄ ∗] = [0.793,1.180] and the median parameter set is q̃ ∗ = [α̃∗, β̃ ∗] = [0.750,1.20]. Fur-

thermore, in each of the 20 optimal parameter sets determined for the Case 1 data realizations, we

haveα∗ <β ∗. Additionally, we train a Standard SOM on the full data set using the parameters defined

in Table 4.3 and the k -Means algorithm with optimal k ∗ as identified by the Average Silhouette

Method.

First, for each realization and clustering algorithm, we compute the value of Jg (given a circular

representative perimeter with radius R = 0.3) and, by inspection, determine whether each resulting

clustering is geographically feasible. We define a geographically feasible clustering as one that does
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not result in any of the convex boundaries crossing over the vertical geographic constraint (river)

depicted in Figure 4.4 (b). For each algorithm tested, we compute the percentage of realizations

for which a geographically feasible clustering was achieved and record the results in Table 4.7. An

example of a geographically unfeasible clustering produced by the k -Means algorithm is depicted

in Figure 4.11.

Table 4.7 The percentage of Case 1 realizations for which a geographically feasible clustering was achieved by
the Tailored SOM, the Standard SOM, and the k -Means algorithm.

Tailored SOM Standard SOM k -Means

Geographically Feasible (%) 85% 45% 30%

Figure 4.11 An example of a geographically unfeasible clustering produced by the k -Means algorithm (with
k = 5) on a Case 1 synthetic data set. We make this determination based on how the convex boundaries of

several geographic clusters span across the vertical constraint.

We depict the box plots of Jg values for each algorithm over all Case 1 data realizations in Figure

4.12. We implement the Kruskal-Wallis test to determine the validity of the null hypothesis that the

Jg values obtained by each algorithm (TSOM, SSOM, k -Means) come from the same distribution

[21]. This test returns a p -value of 8.16×10−5, indicating that we should reject the null hypothesis

and accept the alternative hypothesis that not all Jg values come from the same distribution. Based
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on this result, we perform Dunn’s multiple comparison test [10]. This test investigates which pairwise

comparisons are significantly different (in the statistical sense), i.e., which pair(s) of algorithms

produce clusterings that have Jg values that are unlikely to have come from the same distribution.

The results of Dunn’s test are depicted in Table 4.8. Based on these results, we can conclude that the

Jg values obtained by the Tailored SOM are significantly different and lower than those obtained by

the Standard SOM and the k -Means algorithm.

Figure 4.12 The box plots of the Jg values obtained by each algorithm: the Tailored SOM (TSOM), the
Standard SOM (SSOM), and k -Means for all realizations of Case 1 data.

Table 4.8 The results of performing Dunn’s multiple comparison test (as a follow-up to the Kruskal-Wallis
test) to test for statistically significant differences among the distributions of Jg values obtained by the

Tailored SOM, the Standard SOM, and the k algorithm.

p -value

TSOM vs. SSOM 0.0001

TSOM vs. k -Means 0.0003

SSOM vs. k -Means 0.9859

For the purpose of further comparison and visualization, we sort and plot the values of Jg
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obtained by each algorithm in ascending order and use the marker colors to indicate the geographic

feasibility of the clustering. These plots, which compare the results for the TSOM versus SSOM

and for the TSOM versus k -Means, are depicted in Figure 4.13 (a) and (b), respectively. In each

comparison, the solid plotted line corresponds to the results obtained from the Tailored SOM and

the dashed line corresponds to the results obtained by the Standard SOM (Figure 4.13(a)) or the

k -Means algorithm (Figure 4.13 (b)). A blue marker indicates a geographically feasible result and a

red marker indicates a geographically unfeasible result. The solid plotted line corresponds to the

results obtained from the Tailored SOM and the dashed line corresponds to the results obtained by

the Standard SOM (Figure 4.13(a)) or the k -Means algorithm (Figure 4.13 (b)). Based on these results

(depicted in Figure 4.13 (a,b)), we can conclude that the Tailored SOM clustering outperforms those

obtained by the Standard SOM and the k -Means algorithm in all realizations of the Case 1 data.

Additionally, we note the correlation between realizations that have the largest values of Jg and are

geographically unfeasible.

(a) (b)

Figure 4.13 A depiction of the values of Jg obtained for each realization of the Case 1 data by (a): the Tailored
SOM versus the Standard SOM and (b): the Tailored SOM versus the k -Means algorithm. For each

comparison, we sort the function values in ascending order and use the marker colors to indicate the
geographic feasibility of each realization. A blue marker indicates a geographically feasible result and a red
marker indicates a geographically unfeasible result. In each plot, the solid plotted line corresponds to the

results obtained from the Tailored SOM and the dashed line corresponds to the results obtained by the
Standard SOM (a) or the k -Means algorithm (b).

Secondly, we compute the mean Stable Score and the mean Inlier Score for each clustering
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across all 20 realizations. We record these scoring results, organized by realization number and

scoring metric, along with geographic feasibility (Table 4.9). We illustrate these results and compare

the performance of each algorithm with a depiction of the difference in mean Stable and Inlier

Scores for the Tailored SOM versus the Standard SOM (Figure 4.14), and the k -Means algorithm

(Figure 4.15). In each of these figures, the solid blue line indicates no difference between mean

scores, the solid red line indicates the mean score difference across all realizations, and the dashed

red lines represent ±1 standard deviation of the mean score differences.

From the results depicted in Figure 4.14 we conclude that, on average, the Tailored SOM

(TSOM) achieves a higher mean Stable Score (Figure 4.14 (a)) and an approximately equal Inlier

Score (Figure 4.14 (b)) as compared to the Standard SOM (SSOM). This suggests that, for Case 1 data,

the Tailored SOM is better suited to identify the intended geographic groups than the Standard SOM,

without over simplifying the clustering and grouping together dissimilar (outlying) observations. It

is somewhat expected that these two algorithms have an approximately equal mean Inlier score,

given that each was trained on the same map structure with an equivalent number of nodes. From

the results depicted in Figure 4.15, we can conclude that, while on average, the mean Stable Score

for the Tailored SOM is lower than that of k -Means, the Tailored SOM achieves a Stable Score

approximately equal to, or greater than, the k -Means algorithm in 55% of all realizations (Figure

4.15 (a)). Additionally, from the Inlier Score comparison (Figure 4.15 (b)), we can conclude that the

Tailored SOM outperforms the k -Means algorithm in its ability to isolate the intended geographic

groups, rather than simply capture them within a larger grouping, alongside outliers. This result is

significant in that it shows the Tailored SOM is better suited to identify a clustering which can shed

light on the more nuanced groupings within a data set.
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Table 4.9 Mean Stable Score, Mean Inlier Score, and Geographic Feasibility results for the Tailored SOM
(TSOM), Standard SOM (SSOM), and k -Means Algorithm for 20 realizations of Case 1 synthetic data. Mean
Stable Scores and Mean Inlier Scores were computed based on four stable groups determined with n = 2.5
standard deviations (Step 1(b), Table 4.4). In the “Geographically Feasible?" columns, ’Y’ indicates the result

is geographically feasible and ’N’ indicates the result is not geographically feasible.

Stable Score Inlier Score Geographically Feasible?

Realization TSOM SSOM k -Means TSOM SSOM k -Means TSOM SSOM k -Means

1 100% 91.4% 91.7% 92.9% 96.0% 94.3% Y N Y

2 100% 95.1% 88.8% 92.7% 92.9% 89.4% Y Y Y

3 98.5% 98.2% 100% 92.1% 92.0% 89.4% Y N N

4 92.4% 97.2% 100% 93.9% 93.6% 70.6% Y N Y

5 100% 95.7% 100% 95.8% 95.4% 69.6% Y Y Y

6 89.5% 96.4% 100% 93.8% 91.0% 86.5% N N N

7 98.4% 80.8% 91.5% 93.4% 95.9% 93.9% Y Y Y

8 99.5% 93.5% 89.7% 93.9% 95.5% 95.5% Y N N

9 97.5% 96.9% 94.4% 96.3% 97.9% 94.1% Y Y N

10 91.6% 95.2% 100% 94.1% 95.0% 93.3% Y N N

11 96.5% 90.5% 100% 90.8% 88.0% 85.1% Y N N

12 100% 89.1% 92.9% 91.0% 92.1% 86.4% Y Y Y

13 100% 98.8% 100% 90.1% 88.6% 85.6% N N N

14 89.2% 96.7% 99.4% 90.9% 93.0% 91.1% Y Y N

15 83.1% 64.7% 82.3% 91.4% 89.8% 89.3% Y N N

16 81.1% 96.9% 100% 93.5% 92.6% 92.7% N Y N

17 91.9% 86.4% 100% 93.0% 92.6% 89.5% Y N N

18 100% 96.1% 100% 88.1% 90.8% 89.7% Y Y N

19 100% 97.3% 100% 95.8% 95.8% 92.8% Y Y N

20 97.1% 94.8% 100% 91.7% 88.2% 85.9% Y N N
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(a) TSOM versus SSOM mean Stable Score differences

(b) TSOM versus SSOM mean Inlier Score differences

Figure 4.14 For each realization of Case 1 data, we compute the difference in mean Stable Score (shown in
(a)) and mean Inlier Score (shown in (b)) achieved by the optimized Tailored SOM (TSOM) versus the

Standard SOM (SSOM). A positive score difference indicates a realization for which the TSOM achieved a
higher score than the SSOM. Additionally, we plot the mean score difference across all realizations (solid red
line) and ±1 standard deviation of the mean score differences (dashed red lines). The solid blue line indicates

no difference in the mean scores.
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(a) TSOM versus k -Means mean Stable Score differences

(b) TSOM versus k -Means mean Inlier Score differences

Figure 4.15 For each realization of Case 1 data, we compute the difference in mean Stable Score (shown in
(a)) and mean Inlier Score (shown in (b)) achieved by the optimized Tailored SOM (TSOM) versus the

k -Means algorithm. A positive score difference indicates a realization for which the TSOM achieved a higher
score than the k -Means algorithm. Additionally, we plot the mean score difference across all realizations

(solid red line) and ±1 standard deviation of the mean score differences (dashed red lines). The solid blue line
indicates no difference in the mean scores.
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4.4 Synthetic Data: Case 2

For a second case, we manufacture a synthetic data set similar to that created for Case 1, with an

equal number of attribute and geographic groups (pa = pg ), as described in Section 4.2. However, we

choose to increase the attribute domain radial variance (σ2
1) and decrease the association probability

P . For this second case, we are interested in investigating how these levels of noise will affect or

impede the performance of each clustering algorithm. By holding the attribute and geographic

group centroids (Ma and Mg ) constant and increasing the attribute domain radial variance (σ2
1),

we create attribute groups that are less well-separated and may contain outlying observations that

mix in with a nearby group. Additionally, by decreasing the association probability P , it is more

likely that a larger number of attribute observations will be associated with a non-corresponding

geographic group. We define values for these parameters, along with the other parameters related

to synthetic data generation, in Table 4.10. Furthermore, we continue to implement a vertical

geographic constraint in the geographic domain G. We depict a sample Case 2 data set, generated

from the parameters defined in Table 4.10, in Figure 4.16. As previously done, the marker colors of

the geographic observations (Figure 4.16 (b)) indicate their correspondence with an attribute group

(Figure 4.16 (a)).
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Table 4.10 Parameter values used to manufacture the second case of synthetic data.

Parameter Value Definition

pa 4 number of groups in A

pg 4 number of groups in G

D 200 total number of observations in the data set

σ2
1 0.152 radial variance for observations in A

σ2
2 0.152 radial variance for observations in G

P 0.85 association probability

Ma







0.4 −0.5 −0.6 0.5

0.4 0.4 −0.6 −0.3






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group centroids in A

Mg







0.5 0.5 −0.6 −0.6

0.4 −0.5 0.35 −0.35







T

group centroids in G
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(a) (b)

Figure 4.16 A sample Case 2 data set generated from the parameter values defined in Table 4.10 projected
into the two-dimensional attribute domain (shown in (a)) and the two-dimensional geographic domain

(shown in (b)). The marker colors in each subfigure are used to indicate the inter-domain correspondence
between the geographic observations and the attribute observations.

4.4.1 Tailored versus Standard Clustering Results: Case 2

For the Case 2 data, we maintain many of the same Tailored SOM design choices instituted for the

Case 1 data. We implement a 3×3 map, consisting of N = 9 nodes, with a neighborhood relation

defined by the structure of the rectangular lattice. However, one notable difference is our method of

weight vector initialization. In Section 4.3.1, we evenly spaced the initial weight vectors for each

domain in [−1, 1]× [−1, 1]. For Case 2 data, we will experiment with a pseudo-random initialization

of the weight vectors. For this initialization, we randomly generate N 4−dimensional weight vectors

from the continuous uniform distribution on (−1,1). For each of the N initial weight vectors, we

compute the closest data observation across the full feature set according to Euclidean distance,

and move the weight vector to be positioned at its location in data space. In contrast with the weight

vector initialization regime discussed for Case 1, this approach provides the clustering algorithm

with some preliminary knowledge of the data landscape prior to the start of training. For example,

by updating each random weight vector initialization to share the same location as an observation

in the data set, we are preventing the situation where weight vectors begin in an unpopulated region

of one or both domains. We summarize all parameters and design choices used for the Tailored

SOM used for Case 2 synthetic data in Table 4.11.
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Table 4.11 Parameters and design choices prescribed for training the Tailored SOM on Case 2 synthetic data.

Parameter Value Definition

N 9 total number of nodes in SOM (given by 3×3
rectangular lattice structure)

initial ~w a
j ( j = 1, .., N ) pseudo-random weight vector initialization in A

initial ~w
g
j ( j = 1, .., N ) pseudo-random weight vector initialization in G

~wn 1 edge away neighborhood relation among nodes

z (k )
�

1
2

�
k

kmax learning rate for winning weight vectors

γ(k )
�

1
8

�
k

kmax learning rate for neighboring weight vectors

kmax 9 number of training batches

For the optimization of Jg

�

α,β
�

, we maintain the same admissible parameter space (equation

(4.1)) and representative perimeter, p̄ , that were defined for Case 1. To determine an optimal q ∗ =

[α∗,β ∗] (equation (3.2)), we begin with the global grid search of the parameter space via the step

size ∆q = [0.05,0.05]. For the sample Case 2 data set depicted in Figure 4.16, we determine the

optimal q ∗ = [0.75, 1.1] via the global grid search. We implement this optimal parameter set in the

Tailored Self-Organizing Map (specified by the parameters in Table 4.11), and this result generates

the geographic clustering seen in Figure 4.17 (c).

To evaluate and compare, we repeat the same procedures as outlined for Case 1. First, we

train a Standard Self-Organizing Map (Algorithm 1) with the map topology, neighborhood relation,

pseudo-random weight vector initialization, and parameters defined in Table 4.11. The resulting

geographic clustering is depicted in Figure 4.17 (d). Evident from this comparison is the difference

in the geographic features of each clustering. While the Tailored SOM clustering is capable of identi-

fying the four primary groupings, the Standard SOM splits the group in the upper left portion of the

geographic domain into two clusters. Additionally, the Standard SOM fails to prioritize geographic

proximity and identifies a cluster (shown in orange in Figure 4.17 (d)) that violates the vertical

constraint. Additionally, the Tailored SOM more appropriately clusters non-corresponding geo-

graphic observations within larger primary groups based on their true attribute group (true attribute

groups shown in Figure 4.16 (b)). In contrast, the Standard SOM assigns many non-corresponding
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geographic observations from across different regions of the domain into a single cluster, focusing

too much on their attribute proximity.

(a) (b)

(c) (d)

Figure 4.17 The geographic clusterings obtained for the example Case 2 data set (shown in (a), (b)) from
training the Tailored SOM algorithm with q ∗ = [0.75, 1.1] (shown in (c)) and the Standard SOM algorithm

(shown in (d)). Post clustering, we apply the convex hull boundaries to each geographic cluster containing at
least 2 data observations. For this data set, the Tailored SOM (shown in (c)) identified 9 geographic clusters,
denoted by marker color, and the Standard SOM (shown in (d)) identified 9 geographic clusters, also denoted

by marker color.

Secondly, we implemented the k -Means algorithm initialized with the k ++ approach and

with an optimal value of k = 7, determined via the Average Silhouette Method (Figure 4.18). Similar
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to the results depicted in Figure 4.7, the average silhouette coefficients are quite close for k =

7,8,9. However, for the sake of automation, we will continue with the value of k for which the

function attains its true maximum, k = 7. A side-by-side comparison of the Tailored SOM geographic

clustering and the k -Means algorithm geographic clustering for k = 7 is depicted in Figure 4.19.

The results obtained from k -Means are most similar to those obtained from the Standard SOM,

with the exception of geographic feasibility, i.e., no cluster boundaries cross the vertical geographic

constraint. Based on these results, we note that the k -Means algorithm has difficulty managing the

additional geographic noise generated from our choice of the association probability, P = 0.85, as

demonstrated by the overlapping of several large clusters on each side of the geographic constraint,

i.e., east and west of the "river".

Figure 4.18 Average Silhouette Method results for the Case 2 data set depicted in Figure 4.16. This method
relies on the silhouette coefficient (Si ) (equation (2.4)) of each observation. The Average Silhouette Method

suggests choosing the value of k that maximizes the average silhouette coefficient. In this example, the
optimal value is k = 7.
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(a) (b)

(c) (d)

Figure 4.19 The geographic clusterings obtained for the example Case 2 data set (shown in (a,b)) from
training the Tailored SOM algorithm with q ∗ = [0.75, 1.1] (shown in (c)) and the k -Means algorithm with k = 7
(shown in (d)). Post clustering, we apply the convex hull boundaries to each geographic cluster containing at

least 2 data observations.

4.4.2 Algorithm Assessment: Case 2

To compare the geographic clusterings obtained from the Tailored Self-Organizing Map, Standard

Self-Organizing Map, and k -Means, depicted in Figures 4.17 and 4.19, we refer back to the geographic

objective function Jg (equation (3.1)), and the Stable and Inlier Scores (Table 4.4). For this single

example of a Case 2 data set (Figure 4.16), we compute the values of Jg (Table 4.12), and the mean

and median Stable and Inlier Score for each algorithm along with the Geographic Feasibility (Table
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4.13). From the Jg evaluation results (Table 4.12), we can observe a significant difference between

the performance of the tailored algorithm and the two standard approaches. Specifically, the two

standard approaches achieve a very similar Jg value that is nearly twice that achieved by the Tailored

SOM.

Table 4.12 Values of the geographic objective function Jg (equation (3.1)) for the clusterings determined by
the Tailored SOM, the Standard SOM, and the k -Means algorithm (k = 7) on the example Case 2 data set

depicted in Figure 4.16.

Tailored SOM Standard SOM k -Means

Value of Jg 2.1112 4.1290 4.0966

The Stable and Inlier Score results (Table 4.13) suggest that the Tailored SOM outperformed

the Standard SOM considerably, and slightly outperformed the k -Means algorithm in one or more

of the synthetic data based metrics (in terms of the summary statistics). Not noted in Table 4.13,

but easily observable in Figure 4.19, is the difference in the degree of delineation, or segregation,

among the primary clusters identified by the Tailored SOM and k -Means algorithm, respectively.

This difference can be quantified by considering the total amount of overlapping area among the

geographic clusters produced by each algorithm. This is worth noting as it highlights the concept of

geographic "usefulness" that we have previously discussed. Hence, while the TSOM and k -Means’

performances appear to be quite close (according to results in Table 4.13), it is reasonable to conclude

that the result produced by the TSOM is favorable, from a holistic standpoint, as demonstrated by

the comparison of Jg values (Table 4.12).

To validate these results, we repeat the experiment with an additional 20 realizations of Case

2 synthetic data sets according to the parameter definitions in Table 4.10. For each realization, we

optimize the Tailored SOM with the parameters specified in Table 4.11 and the objective function

Jg

�

α,β
�

(equation (3.1)) over the admissible parameter space (equation (4.1)) to determine the

optimal q ∗ (equation (3.2)). Over all realizations, the mean optimal parameter set is q̄ ∗ = [ᾱ∗, β̄ ∗] =

[0.793,1.180] and the median parameter set is q̃ ∗ = [α̃∗, β̃ ∗] = [0.750,1.225]. Furthermore, in each

of the 20 optimal parameter sets determined for the Case 2 data realizations, we have α∗ <β ∗. We
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Table 4.13 Stable Scores (SS) and Inlier Scores (IS) for the clustering of the example Case 2 data set depicted
in Figure 4.16 obtained by the Tailored SOM (Figure 4.17 (c)), the Standard SOM (Figure 4.17 (d)), and

k -Means for k = 7 (Figure 4.19 (d)). Each of the “Cluster" columns contains the scores for the best-matching
cluster to one of the 4 stable groups determined for this example data. The “Mean" column contains the
mean Stable Score and mean Inlier Score across all four stable groups for each algorithm. The “Median"
column contains the median Stable Score and median Inlier Score across all four stable groups for each
algorithm. The red text color is used to denote an algorithm that produced a geographically unfeasible

clustering for this example Case 2 data set.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Mean Median

SS IS SS IS SS IS SS IS SS IS SS IS

TSOM (%) 100 95.6 100 82.9 100 87.5 100 93.0 100 89.8 100 90.3

SSOM (%) 100 95.6 97.1 83.5 57.1 71.4 95.0 97.4 87.3 86.7 96.0 89.0

k -Means (%) 100 95.6 100 87.2 100 83.3 100 88.9 100 88.7 100 88.0

maintain the same training parameters for the Standard SOM as used for the Tailored SOM and, for

k -Means, we rely on the optimal k ∗ determined by the Average Silhouette Method.

We begin the discussion of comparative algorithm performance with the concept of geo-

graphic feasibility. For the Case 2 data, a geographically feasible clustering was achieved by the

Tailored Self-Organizing in 80% of realizations, by the Standard SOM in 50% of realizations, and

by the k -Means algorithm in 45% of realizations (Table 4.14). The relative ranking of algorithm

performance with respect to this assessment method for the Case 2 data is consistent with that of the

Case 1 data. In both cases, the Tailored SOM significantly outperformed the other two algorithms in

producing clusterings that are mindful of geographic constraints and dense in the sense that the

clusters do not span large sections of the geographic domain.

Table 4.14 The percentage of Case 2 realizations for which a geographically feasible clustering was achieved
by the Tailored SOM, the Standard SOM, and the k -Means algorithm.

Tailored SOM Standard SOM k -Means

Geographically Feasible (%) 80% 50% 45%

Next, for each realization and clustering algorithm, we compute the value of the geographic

objective function Jg . We depict the box plots of these values for each algorithm over all 20 Case 2
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realizations in Figure 4.20. Given the normality and homogeneity of the variances of these results,

we implement a one-way Analysis of Variance (ANOVA) [11] test to determine the validity of the

null hypothesis that the Jg values obtained by each algorithm (TSOM, SSOM, k -Means) come from

the same distribution. This test returns a p -value of 0.0024, indicating that we should reject the

null hypothesis and accept the alternative hypothesis that not all Jg values come from the same

distribution. Based on this result, we perform Tukey’s multiple comparison test [42]. The results of

Tukey’s test (Table 4.15) suggest that the Jg values obtained by the Tailored SOM are significantly

different (in the statistical sense) and lower than those obtained by the Standard SOM and the

k -Means algorithm.

Figure 4.20 The box plots of the Jg values obtained by each algorithm: the Tailored SOM (TSOM), the
Standard SOM (SSOM), and k -Means for all realizations of Case 2 data.

Table 4.15 The results of performing Tukey’s multiple comparison test (as a follow-up to the one-way ANOVA
test) to test for statistically significant differences among the distributions of Jg values obtained by the

Tailored SOM, the Standard SOM, and the k algorithm for the Case 2 data.

p -value

TSOM vs. SSOM 0.0026

TSOM vs. k -Means 0.0240

SSOM vs. k -Means 0.7098
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We continue with our evaluation and comparison by sorting and plotting the values of Jg

obtained by each algorithm, shown in Figure 4.21 (a,b). These plots compare the Jg results for the

Tailored SOM versus the Standard SOM (a) and the Tailored SOM versus the k -Means algorithm (b).

As previously done, the marker colors are used to indicate the geographic feasibility of the results

obtained by each algorithm for each realization. These plots demonstrate a result similar to the

one discussed for the Case 1 data; the Tailored SOM outperforms both the Standard SOM and the

k -Means algorithm in terms of the geographic qualities quantified by the terms in Jg .

(a) (b)

Figure 4.21 A depiction of the values of Jg obtained for each realization of the Case 2 data by (a): the Tailored
SOM versus the Standard SOM and (b): the Tailored SOM versus the k -Means algorithm. For each

comparison, we sort the function values in ascending order and use the marker colors to indicate the
geographic feasibility of each realization. A blue marker indicates a geographically feasible result and a red
marker indicates a geographically unfeasible result. In each plot, the solid plotted line corresponds to the

results obtained from the Tailored SOM and the dashed line corresponds to the results obtained by the
Standard SOM (a) or the k -Means algorithm (b).

Lastly, we compute and consider the mean Stable Score and mean Inlier Score alongside

geographic feasibility. We compare the performance of each algorithm by plotting the difference in

mean scores for the Tailored SOM versus the Standard SOM (Figure 4.22), and versus the k -Means

algorithm (Figure 4.15). From the results depicted in Figure 4.22, we can conclude that, on average,

the Tailored SOM achieves a higher mean Stable Score (shown in (a)) than the Standard SOM and an

approximately equal Inlier Score (shown in (b)). These results are very similar to those discussed in

Case 1, suggesting that the relative performance of the Tailored versus Standard SOM persists in the
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presence of increased varianceσ2
1 and lower association probability P . From the results depicted in

Figure 4.23, we can conclude that Tailored SOM and the k -Means algorithm are, more or less, on par

with one another with regards to the Stable Score (shown in (a)). However, the Tailored SOM does

have a small advantage over the k -Means algorithm with regards to the Inlier Score (shown in (b)).

We note that the side by side comparison of the mean Stable and Inlier Score for the Tailored SOM

and k -Means does not suggest a significant difference in algorithm performance. However, these

results (Figure 4.23) are more meaningful when considered in conjunction with the stark contrast

between the geographic feasibility of the results obtained by each algorithm and their respective Jg

values (Figure 4.21 (b)).
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(a) TSOM versus SSOM mean Stable Score differences

(b) TSOM versus SSOM mean Inlier Score differences

Figure 4.22 For each realization of Case 2 data, we compute the difference in mean Stable Score (Subfigure
(a)) and mean Inlier Score (Subfigure (b)) achieved by the optimized Tailored SOM (TSOM) versus the

Standard SOM (SSOM). A positive score difference indicates a realization for which the TSOM achieved a
higher score than the SSOM. Additionally, we plot the mean score difference across all realizations (solid red
line) and ±1 standard deviation of the mean score differences (dashed red lines). The solid blue line indicates

no difference in the mean scores.
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(a) TSOM versus k -Means mean Stable Score differences

(b) TSOM versus k -Means mean Inlier Score differences

Figure 4.23 For each realization of Case 2 data, we compute the difference in mean Stable Score (Subfigure
(a)) and mean Inlier Score (Subfigure (b)) achieved by the optimized Tailored SOM (TSOM) versus the

k -Means algorithm. A positive score difference indicates a realization for which the TSOM achieved a higher
score than the k -Means algorithm. Additionally, we plot the mean score difference across all realizations

(solid red line) and ±1 standard deviation of the mean score differences (dashed red lines). The solid blue line
indicates no difference in the mean scores.

80



4.5 Synthetic Data: Case 3

For a third case, we manufacture a synthetic data set with an unequal number of attribute and

geographic groups (pa 6= pg ). In other words, we consider the scenario where observations within

a single attribute group are associated with observations within one of two possible geographic

groups. To build this, we let pa = 4 and pg = 5. To ensure that our analysis is able to adequately

capture the effects of this structural change in the data on each algorithm’s performance, we keep

the attribute and geographic radial variances (σ2
1 and σ2

2) constant at 0.152, and implement an

association probability (P ) close to 1. The full set of parameters used in data generation are detailed

in Table 4.16 and a sample Case 3 data set is depicted in Figure 4.24. The property of unequal

attribute and geographic groups in the data set is clearly illustrated by the two distinct geographic

groups, one on each side of the vertical constraint, both populated primarily by yellow markers

(Figure 4.24 (b)). These two geographic groups both correspond to the yellow attribute group (Figure

4.24 (a)). In this section, we will investigate the performance of the Tailored SOM, the Standard SOM,

and the k -Means algorithm with respect to this new property of the data.

(a) (b)

Figure 4.24 A sample Case 3 data set generated from the parameter values defined in Table 4.2 projected into
the two-dimensional attribute domain (shown in (a)) and the two-dimensional geographic domain (shown
in (b)). The marker colors in each subfigure are used to indicate the inter-domain correspondence between
the geographic observations and the attribute observations. For this case, there are two distinct geographic

groups (shown in (b)) that correspond to the same attribute group (yellow group in (a)).
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Table 4.16 Parameter values used to manufacture the third case of synthetic data.

Parameter Value Definition

pa 4 number of groups in A

pg 5 number of groups in G

D 200 total number of observations in the data set

σ2
1 0.152 radial variance for observations in A

σ2
2 0.152 radial variance for observations in G

P 0.95 association probability

Ma
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4.5.1 Tailored versus Standard Clustering Results: Case 3

For the Case 3 data, we use the same Tailored SOM design as was used for Case 2, with the pa-

rameters and learning rates shown in Table 4.11. This consists of a 3× 3 map with N = 9 nodes

and a neighborhood relation defined by the structure of the rectangular lattice. For weight vector

initialization, we will continue to use the pseudo-random initialization in both the geographic and

attribute domains, as described in Section 4.2.1. We continue to optimize the biasing parameter

set q = [α,β ] by minimizing the geographic objective function Jg

�

α,β
�

(equation (3.1)) over the

admissible parameter space defined in equation (4.1), with a circular representative perimeter p̄

with radius R = 0.3.

For the sample Case 3 data set depicted in Figure 4.24, we obtain the optimal parameter

set q ∗ = [0.75,1.2] (equation (3.2)) via a global grid search of the admissible parameter space.

With this q ∗, the Tailored SOM produces the geographic clustering depicted in Figure 4.25 (c). We

compare these results to the geographic clustering, seen in Figure 4.25 (d), obtained from training a

Standard SOM with the same map topology, neighborhood relation, pseudo-random weight vector

initialization and learning parameters defined in Table 4.11. With this comparison, we can observe

how implementing an unequal number of attribute and geographic groups (pa 6= pg ) has increased

the overall level of difficulty of the dual-domain clustering problem. While the Tailored SOM is able

to identify dense, geographically feasible clusters throughout G (Figure 4.25 (c)), the results of the

Standard SOM (Figure 4.25 (d)) exhibit the disadvantageous effects of the additional geographic

group. In particular, these results demonstrate how the imbalance of attribute and geographic

groups can lead to a clustering that is both an oversimplification of the data and geographically

unfeasible. The large dark green cluster spanning the geographic constraint (seen in Figure 4.25 (d))

is an example of the Standard SOM oversimplifying its representation of the data set. By failing to

assign the observations in these two geographic regions to distinct clusters, the Standard SOM has

created a representation that overlooks the manufactured property pa 6= pg , in favor of clusters that

emphasize similarity in A.

Next, to compare against the k -Means algorithm, we implement the Elbow Method and the

Average Silhouette Method (Section 2.3.1) to determine an optimal value for k , and depict the results
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(a) (b)

(c) (d)

Figure 4.25 The geographic clusterings obtained for the example Case 3 data set (shown in (a), (b)) from
training the Tailored SOM algorithm with q ∗ = [0.75, 1.20] (shown in (c)) and the Standard SOM algorithm

(shown in (d)). Post clustering, we apply the convex hull boundaries to each geographic cluster containing at
least 2 data observations. For this data set, the Tailored SOM (shown in (c)) identified 8 geographic clusters,
denoted by marker color, and the Standard SOM (shown in (d)) identified 9 geographic clusters, also denoted

by marker color.

in Figure 4.26. The Elbow Method (Figure 4.26 (a)) returns inconclusive results, as there is no clear

value of k for which the WSS begins to decrease linearly. Thus, we rely on the Average Silhouette

Coefficient (Figure 4.26 (b)), which, as a function of k , is maximized at k = 4. We suspect that the

imbalance among the number of geographic and attribute groups in this case of synthetic data

may be leading to the ambiguous results obtained from the Elbow Method, as it has created a dual-

domain clustering problem that is less straightforward than those presented in Case 1 and 2. The
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geographic clustering produced by the k -Means algorithm initialized via the k ++ approach with

k = 4 is depicted in Figure 4.27. Clearly, these results are problematic. Given the parameters used to

generate this data set (Table 4.16), we know there to be five primary geographic groups and a number

of smaller geographic groups stemming from noise, yet k = 4 clusters was determined to be optimal

by standard approaches. As an experiment and an opportunity to further investigate the effects of

the property pa 6= pg on algorithm performance, we implement the k -Means algorithm for k = 5 and

k = 6, and depict the geographic clustering results in Figure 4.28. These results demonstrate that

even with the availability of additional clusters to populate with observations of data, the k -Means

algorithm does not produce geographically feasible results that appropriately handle the imbalance

among the number of geographic and attribute groups.

(a) (b)

Figure 4.26 Results of the Elbow Method (shown in (a)) and the Average Silhouette Method (shown in (b)) for
the Case 3 data set depicted in Figure 4.24. While the results of the Elbow Method are somewhat inconclusive,

the Average Silhouette Method suggests the the optimal value for this data set is k = 4.
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(a) (b)

(c) (d)

Figure 4.27 The geographic clusterings obtained for the example Case 3 data set (shown in (a,b)) from
training the Tailored SOM algorithm with q ∗ = [0.75, 1.20] (shown in (c)) and the k -Means algorithm with

k = 4 (shown in (d)). Post clustering, we apply the convex hull boundaries to each geographic cluster
containing at least 2 data observations.
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(a) (b)

(c) (d)

Figure 4.28 An illustration of the geographic clustering of the example Case 3 data set (shown in (a,b))
obtained with the k -Means algorithm for k = 5 (shown in (c)) and k = 6 (shown in (d)).
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4.5.2 Algorithm Assessment: Case 3

As outlined in previous cases, we compute the value of the geographic objective function Jg (equation

(3.1)), the Stable Score and the Inlier Score (Table 4.4) and evaluate the geographic feasibility of the

geographic clusterings produced by the Tailored SOM (Figure 4.25 (c)), the Standard SOM (Figure

4.25 (d)) and the k -Means algorithm for k = 4 (Figure 4.27 (d)). These results are shown in Tables 4.17

and 4.18. Based on these results, we conclude that in addition to being the only algorithm to achieve

a geographically useful clustering of the sample Case 3 data set, the Tailored SOM also outperformed

the other two algorithms in terms of Jg , and the mean and median Inlier Score. Furthermore, the

Tailored SOM outperformed the Standard SOM in both the mean and median Stable Score.

Table 4.17 Values of the geographic objective function Jg (equation (3.1)) for the clusterings determined by
the Tailored SOM, the Standard SOM, and the k -Means algorithm (k = 4) on the example Case 3 data set

depicted in Figure 4.24.

Tailored SOM Standard SOM k -Means

Value of Jg 0.8626 1.9412 2.6711

Table 4.18 Stable Scores (SS) and Inlier Scores (IS) for the clustering of the example Case 3 data set depicted
in Figure 4.24 obtained by the Tailored SOM (Figure 4.25 (c)), the Standard SOM (Figure 4.25 (d)), and

k -Means for k = 4 (Figure 4.27 (d)). Each of the “Cluster" columns contains the scores for the best-matching
cluster to one of the 5 stable groups determined for this example data. The “Mean" column contains the
mean Stable Score and mean Inlier Score across all five stable groups for each algorithm. The “Median"
column contains the median Stable Score and median Inlier Score across all five stable groups for each

algorithm. The red text color is used to denote the algorithms that produced a geographically unfeasible
clustering for this example Case 3 data set.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Mean Median

SS IS SS IS SS IS SS IS SS IS SS IS SS IS

TSOM (%) 100 91.7 100 93.6 100 91.2 100 95.2 100 82.0 100 90.8 100 91.7

SSOM (%) 100 86.3 100 89.8 95.5 53.9 70.0 35.9 83.0 91.9 89.7 71.5 95.5 86.3

k -Means (%) 100 84.6 100 89.8 100 44.0 100 40.0 100 83.7 100 68.4 100 83.7

To investigate whether this pattern of relative algorithm performance persists, we repeat the

experiment with an additional 20 realizations of Case 3 synthetic data according to the parameter
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values described in Table 4.16. For each realization, we train a Tailored SOM and a Standard SOM

according to the parameters in Table 4.11. For the Tailored SOM, determine the optimal q ∗ = [α∗,β ∗]

with Jg

�

α,β
�

over the admissible parameter space defined in equation (4.1). Over all realizations,

the mean optimal parameter set is q̄ ∗ = [ᾱ∗, β̄ ∗] = [0.816,1.158] and the median parameter set

is q̃ ∗ = [α̃∗, β̃ ∗] = [0.750,1.20]. Furthermore, in 85% (17 out of 20) of the optimal parameter sets

determined for the Case 3 data realizations, we have α∗ <β ∗. For the k -Means algorithm, we rely

on the optimal value of k as identified by the Average Silhouette Method. With the results of this

experiment, we begin with a comparison of geographic feasibility. Across the 20 realizations of

the Case 3 data, a geographically feasible clustering was achieved by the Tailored SOM in 80% of

realizations, the Standard SOM in 40% of realizations, and the k -Means algorithm in only 15% of

realizations (Table 4.19). Thus, even more so than in the previous two cases of synthetic data, the

Tailored SOM far outperformed the Standard SOM and the k -Means algorithm in determining

a geographically useful clustering, despite the additional challenge associated with the property

pa 6= pg .

Table 4.19 The percentage of Case 3 realizations for which a geographically feasible clustering was achieved
by the Tailored SOM, the Standard SOM, and the k -Means algorithm.

Tailored SOM Standard SOM k -Means

Geographically Feasible (%) 80% 40% 15%

To complement the geographic feasibility comparison, we compute the value of Jg for each

algorithm and realization and depict the box plots in Figure 4.29. As previously described, we

implement the Kruskal-Wallis test [21], which returns a p -value of 2.19×10−8, indicating that the

Jg values for each algorithm do not come from the same distribution. Thus, we perform Dunn’s

multiple comparison test and record the pairwise p -values in Table 4.20 [10]. Based on these results,

we can conclude that the Jg values obtained by the Tailored SOM are significantly different and

lower than those obtained by the Standard SOM and the k -Means algorithm. Additionally, the

distributions of the Jg values obtained by the Standard SOM and the k -Means algorithm are not

significantly different.
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Figure 4.29 The box plots of the Jg values obtained by each algorithm: the Tailored SOM (TSOM), the
Standard SOM (SSOM), and k -Means for all realizations of Case 3 data.

Table 4.20 The results of performing Dunn’s multiple comparison test (as a follow-up to the Kruskal-Wallis
test) to test for statistically significant differences among the distributions of Jg values obtained by the

Tailored SOM, the Standard SOM, and the k -Means algorithm for Case 3 data.

p -value

TSOM vs. SSOM 9.35×10−5

TSOM vs. k -Means 2.69×10−8

SSOM vs. k -Means 0.3024

Next, we sort and plot the values of Jg obtained by the Tailored SOM, the Standard SOM,

and the k -Means algorithm. The comparison between the Tailored SOM and the Standard SOM

is depicted in Figure 4.30 (a) and the comparison between the Tailored SOM and the k -Means

algorithm is depicted in Figured 4.30 (b). In both comparisons, Jg values for each algorithm are

sorted in ascending order and the marker colors are used to indicate the geographic feasibility of

the results obtained in each case. These results indicate an overall larger gap between the Jg value

obtained by the Tailored SOM and the standard approaches (Standard SOM and k -Means) than was

observed in Case 1 and 2. This observation suggests that the imbalance in the number of attribute

versus geographic groups (pa 6= pg ) is resulting in a larger discrepancy between the performance of

the tailored algorithm and the standard algorithms. Thus, these findings further support the claim
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that standard approaches, such as the Standard SOM and the k -Means algorithms, are not optimal

in a dual-domain clustering setting.

(a) (b)

Figure 4.30 A depiction of the values of Jg obtained for each realization of the Case 3 data by (a): the Tailored
SOM versus the Standard SOM and (b): the Tailored SOM versus the k -Means algorithm. For each

comparison, we sort the function values in ascending order and use the marker colors to indicate the
geographic feasibility of each realization. A blue marker indicates a geographically feasible result and a red
marker indicates a geographically unfeasible result. In each plot, the solid plotted line corresponds to the

results obtained from the Tailored SOM and the dashed line corresponds to the results obtained by the
Standard SOM (a) or the k -Means algorithm (b).

We continue the algorithm evaluation with a comparison of the mean Stable Score and mean

Inlier Score (Table 4.4). As previously done, we plot the difference in mean scores for the Tailored SOM

versus the Standard SOM (Figure 4.31), and versus the k -Means algorithm (Figure 4.32). Keeping

in mind the significant difference in geographic feasibility among the three algorithms, the results

depicted in Figures 4.31 and 4.32 further suggest that the Tailored SOM is best suited to handle this

case of dual-domain data. In particular, we note the considerable difference in mean Inlier Score for

the Tailored SOM versus the k -Means algorithm (Figure 4.32 (b)). This finding is consistent with the

previous discussion regarding the difficulty of determining an optimal value of k for a data set with

an unbalanced number of true geographic and attribute groups. As a result, the Average Silhouette

Method frequently determined an optimal k that was too small to effectively identify the nuanced

groupings within the data set. Thus, for many of the 20 realizations, k -Means produced a clustering

containing many large, far-reaching geographic clusters with low Inlier Scores. The relatively high
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mean Stable Scores achieved by k -Means can also be explained by the frequent choice of a low k

value, since large spanning clusters will inevitably capture a large percentage of a stable group’s

population.

(a) TSOM versus SSOM mean Stable Score differences

(b) TSOM versus SSOM mean Inlier Score differences

Figure 4.31 For each realization of Case 3 data, we compute the difference in mean Stable Score (Subfigure
(a)) and mean Inlier Score (Subfigure (b)) achieved by the optimized Tailored SOM (TSOM) versus the

Standard SOM (SSOM). A positive score difference indicates a realization for which the TSOM achieved a
higher score than the SSOM. Additionally, we plot the mean score difference across all realizations (solid red
line) and ±1 standard deviation of the mean score differences (dashed red lines). The solid blue line indicates

no difference in the mean scores.
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(a) TSOM versus k -Means mean Stable Score differences

(b) TSOM versus k -Means mean Inlier Score differences

Figure 4.32 For each realization of Case 3 data, we compute the difference in mean Stable Score (Subfigure
(a)) and mean Inlier Score (Subfigure (b)) achieved by the optimized Tailored SOM (TSOM) versus the

k -Means algorithm. A positive score difference indicates a realization for which the TSOM achieved a higher
score than the k -Means algorithm. Additionally, we plot the mean score difference across all realizations

(solid red line) and ±1 standard deviation of the mean score differences (dashed red lines). The solid blue line
indicates no difference in the mean scores.

4.5.3 Optimization via Simulated Annealing

We use the Case 3 data to demonstrate a proof of concept for using the global optimization technique

Simulated Annealing (defined in Algorithm 4) [33], in lieu of the global grid search, to determine

the optimal q ∗ = [α∗,β ∗] (equation (3.2)). For this bounded optimization regime, we maintain the
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same admissible parameter space (4.1) that was explored by the global grid search. Additionally, as

defined in Algorithm 4, we prescribe an initial temperature T = 100, an initial solution q0 = [1,1],

and implement the acceptance function A(c (x ), T ) defined by equation (3.8). We terminate the

global optimization by imposing a termination tolerance of 1×10−6 on the objective function Jg

(referred to as the “cost function" in Algorithm 4). This termination criterion will cause the algorithm

to terminate when the change in the best value of Jg is smaller than the tolerance.

First, we refer back to the example Case 3 data set that we explored in Section 4.5.1. Recall

that for this data set we determined the optimal set, q ∗1 = [0.75, 1.20], via the global grid search. As a

comparison, we also use the configuration of the Simulated Annealing algorithm described above to

determine the optimal parameter set q ∗2 = [0.7519, 1.265] for this example data set . With q ∗2 , we train a

Tailored Self-Organizing map using the parameters in Table 4.11 and the same pseudo-random initial

weight vectors as we did for the global grid search in Section 4.5.1. We illustrate this comparison,

along with projections of the example data set, in Figure 4.33. Based on this illustration, we can

conclude that these two geographic clusterings (shown in Figure 4.33 (c,d)) are nearly equivalent,

with the cluster assignments of three data observations west of the geographic constraint (denoted

with black arrows in Figure 4.33 (c)) being the only exceptions. Given the very similar elements of q ∗1

and q ∗2 , this result is not surprising. Futhermore, we can use Jg to evaluate the similarity between

these two geographic clusterings (Table 4.21). For context, we also include the Jg values obtained by

the Standard SOM and the k -Means algorithms (as outlined in Section 4.5.1) in Table 4.21.

Table 4.21 Values of the geographic objective function Jg (equation (3.1)) for the clusterings determined by:
the Tailored SOM with optimal q ∗1 determined by the global grid search (denoted as GS in the table), the

Tailored SOM with optimal q ∗2 determined by the Simulated Annealing algorithm (denoted as SA in the table),
the Standard SOM, and the k -Means algorithm on the example Case 3 data set depicted in Figure 4.33 (a,b).

Tailored SOM (GS) Tailored SOM (SA) Standard SOM k -Means

Value of Jg 0.8626 0.6484 1.9412 2.6711
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(a) (b)

(c) (d)

Figure 4.33 The geographic clusterings obtained for the example Case 3 data set (shown in (a), (b)) from
training the Tailored SOM algorithm with the optimal parameter set identified by the global grid search,

q ∗1 = [0.75, 1.20], (shown in (c)) and the Tailored SOM algorithm with the optimal parameter set identified by
the Simulated Annealing algorithm, q ∗2 = [0.7519, 1.2465] (shown in (d)). The cluster assignment differences

between these two results are denoted with black arrows in (c).

Next, we extend our comparison to include all 20 realizations of the Case 3 data that were

examined in Section 4.5.2. For each realization, we determine the optimal parameter set q ∗ = [α∗,β ∗]

using the Simulated Annealing algorithm and train a Tailored SOM with the parameters in Table

4.11 and the same pseudo-random initial weight vectors used for the global grid search. Over

all realizations, the mean optimal parameter set is q̄ ∗ = [ᾱ∗, β̄ ∗] = [0.839,1.193] and the median

parameter set is q̃ ∗ = [α̃∗, β̃ ∗] = [0.780,1.219]. Furthermore, in 90% (18 out of 20) of the optimal
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parameter sets determined by Simulated Annealing for the Case 3 data realizations, we have α∗ <β ∗.

To evaluate and compare the results obtained by optimizing with the Simulated Annealing algorithm

versus the global grid search we generate four visualizations. The first, shown in Figure 4.34 (a),

depicts the box plots for the Jg values achieved by each optimization approach (global grid search

and Simulated Annealing). Additionally, we implement the one-way ANOVA test [11], which returns

a p -value of 0.1349, indicating that we should accept the hypothesis that the Jg values for each

approach come from the same distribution and are not significantly different (in the statistical

sense). For the second visualization, depicted in Figure 4.34 (b), we sort and plot the values of Jg

obtained for each realization by each optimization approach.

The third visualization, depicted in Figure 4.34 (c), illustrates the difference in mean Stable

Scores for the geographic clustering determined by each optimization approach. Similarly, for

the fourth visualization in Figure 4.34 (d), we depict the difference in mean Inlier Scores for the

geographic clusterings determined by each optimization approach over the 20 realizations. In

Figure 4.34 (c,d), a positive score difference indicates a realization for which the Taiored SOM

optimized via the global grid search obtained a higher mean score than the Tailored SOM optimized

via the Simulated Annealing algorithm. Based on these results, we can conclude that the choice

in optimization regime does not significantly impact the geographic clusterings achieved by the

Tailored SOM. Thus, it is reasonable to let the size of the dual-domain data set, or the range of the

admissible parameter space for α and β , dictate which optimization approach is most appropriate

and efficient.
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(a) (b)

(c) (d)

Figure 4.34 To compare the clusterings of the Case 3 data realizations achieved by the Tailored SOM via a
global grid search (GS) and the Tailored SOM via the Simulated Annealing algorithm (SA), we depict the box
plots of the Jg values obtained by each optimization approach (shown in (a)). Additionally, we depict of the

values of Jg obtained for each realization by the two optimization approaches (shown in (b)). For this
comparison, we sort the function values in ascending order and use the marker colors to indicate the

geographic feasibility of each realization. A blue marker indicates a geographically feasible result and a red
marker indicates a geographically unfeasible result. The solid plotted line corresponds to the results obtained
from the Tailored SOM via the global grid search and the dashed line corresponds to the results obtained by

the Tailored SOM via the Simulated Annealing algorithm. Lastly, we depict the difference in mean Stable
Scores and mean Inlier Scores achieved by the Tailored SOM optimized with the global grid search versus the

Tailored SOM optimized via the Simulated Annealing Algorithm (shown in (c,d)).
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4.6 Discussion

The geographic objective function Jg developed in Chapter 3, defined in equation (3.1), and im-

plemented and studied extensively in this chapter is the product of much experimentation. The

success demonstrated by the Tailored SOM, as documented in this chapter, is largely a result of a

comprehensive and lengthy refinement process. This process consisted of:

• hypothesizing terms and quantities that could be potentially valuable in an objective function

designed to tailor and tune the unsupervised clustering of a dual-domain data set,

• testing the capability and robustness of a proposed objective function with synthetic data

sets of varying dimension, structure, and levels of noise, and

• probing the results of such tests to better understand the utility in each term of the proposed

objective function.

At the core of this process was a requirement for an objective function that was versatile and unbiased.

Enough so that it could lend itself to enhancing the capabilities of the Standard Self-Organizing Map

algorithm in a number of settings; whether it be a particularly noisy data set, a data set too large to

feasibly apply a supervised learning approach, or a real-world application of critical importance. To

that end, we carefully considered several general concepts and quantities that could be of use. A few

examples of these quantities are: the overlapping area between geographic clusters, the perimeter

of a geographic cluster (both of which are outlined in Section 3.2), the average point-to-centroid

Euclidean distance of a geographic cluster, and the density of a geographic cluster. With each new

proposed term, we examined whether there was a need for an additional weighting parameter to

balance its magnitude relative to other terms in the function. Furthermore, we studied whether two

or more distinct terms relied too heavily on the same properties of the clustering, thus leading to an

overemphasis of particular features of the data set during optimization. Ultimately, we arrived at the

version of Jg defined in equation (3.1) and implemented throughout this chapter. The advantages of

this Jg are its dimensionless character, lack of apparent need for additional weighting parameters,

and efficacy in balancing the size and scope of geographic clusters even in the presence of increased

levels of noise and geographic observation misplacement.
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In the sections of this chapter devoted to algorithm assessment, we detailed how Jg can also

serve as an effective method for evaluating and comparing the performance of various clustering

algorithms. Given the design process outlined above, Jg is inherently built to favor a clustering with

qualities that are desirable in the context of the dual-domain problem. Such qualities include:

• clusters with minimal shared geographic territory, i.e., clusters that identify distinct, non-

overlapping regions of interest, and

• geographic feasibility with respect to constraints that are known to the user but unknown to

the clustering algorithm.

Therefore, by relying on Jg as a metric for comparing the results of several algorithms, we have not

only a method for evaluating each clustering with respect to the overall goals of the dual-domain

problem, but also a tool for highlighting the need for and value of a tailored approach. The results

of implementing Jg as an algorithm assessment metric (such as those depicted in Figures 4.12, 4.13)

demonstrate the significant advantage of using the Tailored SOM, as compared to off-the-shelf

methods such as the Standard SOM and k -Means algorithm, to achieve dual-domain clusterings

that are more desirable and feasible.

An interesting observation worth discussing further is the apparent utility of the Stable Score

and the Inlier Score as evaluation metrics for results obtained by the Standard SOM and the k -Means

algorithm, respectively. Based on the mean score difference visualizations depicted in Figures 4.14,

4.22, 4.31, 4.15, 4.23, and 4.32, we can observe that, overall, the Stable Score was more useful for

quantifying the advantage of the results obtained by the Tailored SOM when compared to the

results obtained by the Standard SOM. Whereas the Inlier Score was more useful for quantifying the

advantage of the results obtained by the Tailored SOM versus the results obtained by the k -Means

algorithm. This pattern can be largely explained by the relationship between the features used to

construct each score and the underlying principles of each algorithm.

Recall that the Stable Score (defined in Step 3, Table 4.4) is defined as the percentage of the

stable group’s population represented by its best-matching cluster from the TSOM/SSOM/k -Means

output. Therefore, high Stable Scores are inevitably obtained by large clusters, which likely wholly
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envelop a stable group, but also contain outlying observations (observations that are nearby in

the geographic domain but dissimilar in the attribute domain). To address this issue, we defined

the Inlier Score (defined in Step 4, Table 4.4). The Inlier Score for a given cluster is the percentage

of its population that is shared with its best-matching stable group. Hence, given that the Elbow

Method and the Average Silhouette Method often identified low values of k as optimal, the k -Means

algorithm frequently produced results with large, far-reaching clusters (such as those in Figure 4.27

(d)). These types of clusters ultimately score highly in terms of the Stable Score, but low in terms

of the Inlier Score. Furthermore, given the fundamental similarities between the Standard SOM

and the Tailored SOM, we observe more structural similarities between the results achieved by

these two algorithms. However, given its equal consideration of data similarity in the attribute and

the geographic domain, the Standard SOM often struggled to appropriately handle the misplaced

observations/noise. This frequently resulted in the segmentation of geographic data observations

belonging to the same stable group into two or more clusters (as demonstrated by the yellow and

dark blue clusters in Figure 4.17 (d)). Clusters of this form achieve high Inlier Scores, as they tend

to contain few outliers, but low Stable Scores due to the partitioning of a stable group. Ultimately,

it may be advantageous to consider an algorithm-specific approach for evaluating clusters from

a synthetic data perspective, though it may sacrifice on the consistent, universal nature of the

algorithm assessment regime outlined in this work.
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CHAPTER

5

APPLICATION OF THE TAILORED

SELF-ORGANIZING MAP TO CANCER

INCIDENCE DATA

5.1 Cancer Incidence Data

In this chapter we will further investigate the capabilities of the Tailored Self-Organizing Map in the

context of a real data set pertaining to colorectal cancer incidence in the state of California. This data

set is an amalgamation of two smaller data sets. The first data set contains county-level colorectal

cancer incidence rates and demographic information collected from 2001-2016. This data set was

obtained from the CDC’s National Program of Cancer Registries (NPCR) and the National Cancer

Institute’s (NCI’s) Surveillance, Epidemiology, and End Results (SEER) Program [37]. The second data

set contains representative geographic points, known as “internal points", in the form of the latitude
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and longitude measurements for each county represented in the first data set. The internal points

were obtained from a United States Gazetteer File [43]. The Gazetteer Files are publicly available and

contain information such as geographic identifier codes, area measurements, and representative

latitude and longitude coordinates.

The augmented data set described above matches well with the requirements for a dual-

domain clustering problem. As stated in earlier chapters, a dual-domain data set is comprised of

features that belong to either a geographic domain or an attribute domain. For the work presented

in this chapter, we define a two-dimensional geographic domain as containing a representative

latitude and longitude pair for each county. For the attribute domain, we will focus on a selection of

four colorectal incidence rates and four types of demographic information provided in the SEER data

set. Each of the colorectal incidence rates was collected on a population group categorized by sex

and race, e.g., white males. These eight features, along with a description of each feature, is shown in

Table 5.1. All data considered was collected over the period 2001-2016 and, when applicable, relied

on demographic and population data collected during the 2010 U.S. Census. Thus, the dual-domain

data set considered in this chapter is 10-dimensional. With this data set, we will investigate and

evaluate the performance of the Tailored Self-Organizing Map when clustered on the geographic

features (latitude, longitude) augmented with various subsets of the 8-dimensional attribute domain.

In other words, we will hold back certain attribute domain features from the clustering algorithm

and subsequently analyze the results in the context of the full data set.

We aim to evaluate the capability of the Tailored SOM algorithm in identifying clusters of

geographically proximal counties with similar levels of colorectal cancer among the various afore-

mentioned population groups. Additionally, we seek to find clusters with attribute features that

are significantly dissimilar from one another, i.e., clusters that uniquely identify groups of counties

with high or low incidence rates, median ages, etc. The purpose of this investigation is to better

understand how other factors, such as demography, population density, and environmental factors,

are correlated to trends of incidence of colorectal cancer. From a public health viewpoint, identifying

groups of counties, which posses distinct levels of cancer incidence and a uniquely characterized

population, would be useful for assessing county-level need for resources such as government

funding, educational initiatives, or early cancer screenings. From an epidemiology viewpoint, it
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is critical that we understand better the impact that geographic and population factors, such as

urban versus rural community structure, proximity to possible sources of water/air contamination,

population density, etc., may have on the prevalence of certain types of cancer. The insight that can

be gleaned from this type of analysis is integral to developing effective preventative measures and

disease intervention protocols.

Table 5.1 Colorectal cancer incidence and demographic features selected for clustering and/or analysis
obtained from the 2001-2016 SEER database.

Feature Description

Male/White Rate (MW) Colorectal cancer incidence rate per 100,000 white males in California

Male/Black Rate (MB) Colorectal cancer incidence rate per 100,000 black males in California

Female/White Rate (FW) Colorectal cancer incidence rate per 100,000 white females in California

Female/Black Rate (FB) Colorectal cancer incidence rate per 100,000 black females in California

Population Density (Pop Dens) Population (based on 2010 U.S. Census) per square mile in county

Percent Male (Perc M) Percentage of males in county population (based on 2010 U.S. Census)

Median Male Age (Age M) Median male age in county (based on 2010 U.S. Census)

Median Female Age (Age F) Median female age in county (based on 2010 U.S. Census)

To visualize the geographic domain, we create a scatter plot of the representative longitude,

latitude pairs (where longitude is on the horizontal axis and latitude is on the vertical axis) for each

county, and label the points with the county name, shown in Figure 5.1. Given the dimensionality

of the attribute domain, it is not feasible to visualize all of the features simultaneously. Hence,

to gain some awareness of the distributions of the data belonging to each feature, we depict the

corresponding box plots in Figure 5.2. Based on the box plots, we note that the median, range,

and number of points considered to be outliers varies from one feature to the next. Thus, before

we can apply a clustering algorithm, we must normalize the data so that some features are not

dominant when measuring similarity/distance during the training phase . We compute the feature-

wise (column-wise) z -score and use it normalize the data set such that each feature has a mean

value of 0 and a standard deviation of 1 but retains the original shape of its distribution [38].
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Figure 5.1 A scatter plot of the representative longitude, latitude pair for each county, labeled with the county
name. To maintain consistency with standard map views, we have longitude on the horizontal axis and

latitude on the vertical axis.
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(a) Cancer Incidence Rates (b) Demographic Information

(c) Population Density (log10 scale)

Figure 5.2 A depiction of the box plots of the data from various features in the attribute domain. In (a), we
depict the box plots for the colorectal cancer incidence rates by group: Male/White Rate (MW Rate),

Male/Black Rate (MB Rate), Female/White Rate (FW Rate), Female/Black Rate (FB Rate). In (b), we depict the
box plots for the features related to demographic information: Percent Male (Perc M), Median Male Age (Age

M), Median Female Age (Age F). In (c), we depict the box plot for the Population Density.
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5.2 Case 1: AnR4 Subset of Cancer Incidence Data

We begin our investigation of the colorectal cancer incidence data by applying the same Tailored

Self-Organizing Map framework that we developed in Chapter 3 and thoroughly assessed in Chapter

4 on anR4 dual-domain subset of the colorectal cancer incidence data. This first case (subset) will

be similar to the synthetic data sets previously analyzed in Chapter 4 in that it will consist of a two-

dimensional geographic domain (G) and a two-dimensional attribute domain (A). By commencing

our analysis with an implementation of the same Tailored SOM and geographic objective function

Jg (equation (3.1)) that we have previously examined on a data set with a familiar structure, we

provide ourselves the opportunity to evaluate how the methodology and existing parameters and

design choices perform in the context of real, non-synthetic data. The two-dimensional geographic

domain contains the representative latitude and longitude measurements for each county. The two-

dimensional attribute domain will consist of the two colorectal cancer incidence rates pertaining to

the male population: Male/White Rate and Male/Black Rate. While only these four features will be

considered during algorithm training, we will use the results and extend cluster assignments to the

full data set (consisting of all 10 features) in order to identify and analyze any patterns, groupings,

or trends that exist among all features.

5.2.1 Tailored versus Standard Clustering Results: Original Jg

First, for the Tailored Self-Organizing Map, we consider a 3× 3 map, consisting of N = 9 nodes,

arranged as a 2-dimensional rectangular lattice, where the lattice structure defines the neighborhood

relation among the nodes. To mirror the evenly-spaced initialization of weight vectors implemented

for the Case 1 data in Chapter 3, for this experiment we initialize the weight vectors evenly throughout

data space based on the feature Median Age Male. That is to say, we identify the California counties

with the minimum male median age, the maximum male median age, and determine the seven

values evenly spaced between these end points (with the endpoints included, this yields a total

of 9 candidate values). Then, for each candidate median age value, we compute its closest data

observation within the Median Age Male feature and initialize one of the weight vectors to be

positioned at its location in data space. We conclude that this method of weight vector initialization

is reasonably unbiased given that we are not considering the Median Age Male feature during the
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clustering regime. The remaining parameters and design choices for this implementation of the

Tailored SOM are summarized in in Table 5.2.

Table 5.2 Parameters and design choices prescribed for training the Tailored SOM on the R4 subset of the
colorectal cancer data consisting of latitude, longitude, MW Rate, and MB Rate features.

Parameter Value Definition

N 9 total number of nodes in SOM (given by 3×3
rectangular lattice structure)

initial ~w a
j ( j = 1, .., N ) evenly spaced

in Male Median
Age

weight vector initialization in A

initial ~w
g
j ( j = 1, .., N ) evenly spaced

in Male Median
Age

weight vector initialization in G

~wn 1 edge away neighborhood relation among nodes

z (k )
�

1
2

�
k

kmax learning rate for winning weight vectors

γ(k )
�

1
6

�
k

kmax learning rate for neighboring weight vectors

kmax 7 number of training batches

For the optimization of Jg

�

α,β
�

(as defined in equation (3.1)), we maintain the admissible

parameter space used throughout Chapter 4 (equation (4.1)). To account for the difference in the

range of the normalized latitude/longitude values versus the range of the synthetic geographic

data considered in Chapter 4, we prescribe a circular representative perimeter, p̄ , with a radius of

r = 0.5425 in Jg . This radius was computed by determining a total normalized area of California (via

the convex hull of all geographic data observations), dividing this area into 9 circular representative

areas (equal to the total number of nodes in the TSOM), and solving for the radius. To determine

an optimal q ∗ = [α∗,β ∗] (equation (3.2)), we use the global grid search to traverse the admissible

parameter space via the step size ∆q = [0.05,0.05]. With this approach, we determine that the

optimal parameter set for this 4-dimensional case of the colorectal cancer data is q ∗ = [0.75,1.25].

When trained with this q ∗, the Tailored SOM identifies the geographic clustering depicted in Figure

5.3 (a).
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For comparisons, we train a Standard Self-Organizing Map and the k -Means algorithm. For

the Standard Self-Organizing Map, we use the same structure, parameters, and weight vector ini-

tialization as we did for the Tailored SOM described above. For the k -Means algorithm, we train

two formulations, both initialized with the k ++ approach. The first k -Means formulation uses

k = 5, which was identified as the optimal value for k by the Average Silhouette Method. The second

k -Means formulation uses k = 9, which mirrors the size (number of nodes) of the Tailored SOM.

The geographic clusterings produced by these algorithms are depicted in Figure 5.3 (b,c,d). As

previously done, we use the convex hull of each cluster to define geographic boundaries throughout.

Additionally, to streamline the way in which we evaluate and analyze the results obtained by each

clustering algorithm, we identify and focus on the top four largest clusters (in terms of the number

of counties assigned to the cluster), when appropriate. We denote the top four most populated

clusters for each result in the legend of each plot (shown in Figure 5.3).

Immediately evident from the results depicted in Figure 5.3 is the difference in geographic

delineation and separation achieved by the tailored approach versus the three standard approaches.

In particular, we observe a high level of geographic cluster overlap in the k -Means result for k = 9

(Figure 5.3 (d)), with the purple, medium blue, and red clusters all occupying much of the same

territory. Additionally, we note that the k -Means result for k = 5, which was the value identified

as optimal by the Average Silhouette Method, appears to be somewhat oversimplified. We base

this assessment on the fact that all but 5 of the counties (shown as the red and purple clusters in

Figure 5.3 (c)) were assigned to one of only three clusters. Upon examination of the Standard SOM

results, we note some general structural similarities between its clusters and the clusters identified

by the Tailored SOM. For example, there are consistencies in how some groups of counties in the

northernmost and southernmost regions were clustered.

To give a more thorough evaluation and comparison of the results depicted in Figure 5.3 we

rely on two metrics. First, we evaluate the geographic objective function Jg , as described earlier in

this section, for each clustering. This will serve as a way to assess algorithm performance from a

geographic-similarity viewpoint. Recall that Jg was designed such that the clustering with the lowest

score is considered most desirable. Secondly, we use statistical testing to compare the number of

statistically significant differences (at the significance level α= 0.05) among the data components in
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(a) Tailored SOM Result (b) Standard SOM Result

(c) k -Means Result: k = 5 (d) k -Means Result: k = 9

Figure 5.3 The geographic clusterings obtained for 4-dimensional case of the colorectal cancer data with
features: latitude, longitude, MW Rate, and MB Rate. These results are from training the Tailored SOM

algorithm with q ∗ = [0.75, 1.25] obtained via the geographic objective function Jg (shown in (a)), the Standard
SOM algorithm (shown in (b)), the k -Means algorithm with k = 5 (shown in (c)), and the k -Means algorithm

with k = 9. Post clustering, we apply the convex hull boundaries to each geographic cluster containing at
least 2 data observations.

the attribute domain in the top 4 largest clusters in the clusterings produced by the Tailored SOM,

the Standard SOM, and the k -Means algorithm. Depending on the distribution of each cluster’s data

and its adherence to normality requirements, we utilize either: (1) the one-way Analysis of Variance

(ANOVA) test [11] followed by Tukey’s multiple comparison test [42], or (2) the Kruskal-Wallis test

[21] followed by Dunn’s multiple comparison test [10]. For this, we will use the cluster assignments

identified by each algorithm and extend them to include the data from all 8 attribute features of the
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cancer incidence data set (listed in Table 5.1).

Given that we are considering the top 4 largest clusters, there are six pairwise comparisons to

evaluate for statistically significant differences: Cluster 1 versus Cluster 2, Cluster 1 versus Cluster

3, Cluster 1 versus Cluster 4, etc. As an example, we depict the full pairwise cluster comparison

statistical testing results for the Tailored SOM in Table 5.3. In terms of a single aggregate metric,

we report these results as the percentage of the table entries that indicate a statistically significant

difference among the attribute features for the six pairwise comparisons, denoted asσA (i.e., the

percentage of entries in Tables 5.3, 5.4, 5.5 that are highlighted, indicating a p -value < 0.05 ). This

will serve as a way to assess algorithm performance from an attribute-similarity viewpoint, where

a higherσA is considered more desirable. We collate the Jg andσA results for each algorithm in

Table 5.6. Given that the k -Means result for k = 5 (Figure 5.3 (c)) assigned approximately 81% of the

counties to only 3 clusters, we exclude it from this analysis.

Table 5.3 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest

clusters identified by the Tailored SOM (Figure 5.3 (a)). The top 4 largest clusters are denoted as
“C T

1 ",“C T
2 ",“C T

3 ",“C T
4 " and correspond to the clusters referenced in the legend of Figure 5.3 (a). To aid in the

visualization of these results, we have highlighted in yellow each pairwise comparison that is statistically
significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C T
1 v. C T

2 0.0003 0.0252 0.0224 0.0019 0.0065 0.0009 0.0026 0.0006

C T
1 v. C T

3 0.9337 0.8691 0.7837 0.6673 0.9748 0.9999 0.3368 0.9889

C T
1 v. C T

4 0.0124 0.5247 0.4700 0.1374 0.9921 0.9999 0.9964 0.6305

C T
2 v. C T

3 0.0433 0.5630 0.0018 0.0005 0.0027 0.0124 0.6561 0.0300

C T
2 v. C T

4 0.9791 0.8706 0.8866 0.4705 0.0045 0.0124 0.0554 0.2050

C T
3 v. C T

4 0.2964 0.9984 0.0713 0.0286 1.0000 1.0000 0.8154 0.9812
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Table 5.4 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest

clusters identified by the Standard SOM (Figure 5.3 (b)). The top 4 largest clusters are denoted as
“C S

1 ",“C S
2 ",“C S

3 ",“C S
4 " and correspond to the clusters referenced in the legend of Figure 5.3 (b). To aid in the

visualization of these results, we have highlighted in yellow each pairwise comparison that is statistically
significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C S
1 v. C S

2 0.0002 0.0354 0.7357 0.6119 0.0129 0.0010 0.1313 0.0160

C S
1 v. C S

3 0.0700 0.0164 0.4369 0.5098 0.9093 0.9935 0.2544 0.9675

C S
1 v. C S

4 0.9981 0.9563 0.6129 0.8002 0.5060 0.9998 0.4493 1.0000

C S
2 v. C S

3 0.8315 0.9934 0.0331 0.0286 0.1537 0.0008 0.9997 0.3456

C S
2 v. C S

4 0.0096 0.5347 0.0650 0.0890 0.0010 0.0022 0.9659 0.0876

C S
3 v. C S

4 0.3433 0.2838 1.0000 0.9995 0.2729 1.0000 0.9860 0.9948

Table 5.5 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest
clusters identified by the k -Means algorithm for k = 9 (Figure 5.3 (d)). The top 4 largest clusters are denoted
as “C k 9

1 ",“C k 9
2 ",“C k 9

3 ",“C k 9
4 " and correspond to the clusters referenced in the legend of Figure 5.3 (d). To aid

in the visualization of these results, we have highlighted in yellow each pairwise comparison that is
statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C k 9
1 v. C k 9

2 0.0979 0.2252 0.2862 0.3653 0.8738 0.7541 0.0191 0.8955

C k 9
1 v. C k 9

3 0.4778 0.9708 1.0000 1.0000 0.0014 0.0000 0.0176 0.1181

C k 9
1 v. C k 9

4 1.0000 0.9950 0.4472 0.4955 0.6133 0.2969 0.0789 1.0000

C k 9
2 v. C k 9

3 0.9972 0.9091 0.4928 0.6303 0.0263 0.0018 0.9939 0.7738

C k 9
2 v. C k 9

4 0.2973 0.8551 1.0000 1.0000 0.3468 0.8411 0.9982 0.9793

C k 9
3 v. C k 9

4 0.6834 1.0000 0.6008 0.6951 0.0007 0.0380 0.9789 0.3689

Table 5.6 Values of the geographic objective function Jg (as defined in Section 5.2.1) and the percentage of
pairwise cluster comparisons (of the 4 largest clusters, across the 8 attribute features) that are significantly

different (σA) for the clusterings determined by the Tailored SOM, the Standard SOM, and the k -Means
algorithm (k = 9) on the R4 subset of the cancer incidence data.

Tailored SOM Standard SOM k -Means (k = 9)

Value of Jg 0.6846 2.0080 4.7696

Value ofσA 37.5% 25% 16.7%
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Based on the results in Table 5.6, we can conclude that the Tailored SOM achieved the most

desirable results from both a geographic-similarity and attribute-similarity point of view. This is

significant as it demonstrates the advantage of applying a tailored approach over a standard, off-

the-shelf algorithm on a real world, non-synthetic data set. Our analysis found the highest number

of statistically significant differences among the attribute features existed between:

• Cluster 1 and Cluster 2 in the Tailored SOM result (cyan and dark green clusters in Figure 5.3

(a)), with all 8 features having significant differences (Table 5.3),

• Cluster 1 and Cluster 2 in the Standard SOM result (orange and medium blue clusters in Figure

5.3 (b)), with 5 features having significant differences (Table 5.4) and,

• Cluster 1 and Cluster 3 in the k -Means for k = 9 result (purple and medium blue clusters in

Figure 5.3 (d)), with 3 features having significant differences (Table 5.5).

Next, to expand upon the first bulleted item, we illustrate some of the differences that exist

among the largest (Cluster 1) and second largest (Cluster 2) clusters (in terms of the number of

counties) in the Tailored SOM result. To do so, we depict the data pertaining to select features

(Population Density, MW Rate, MB Rate, and FW Rate) assigned to Cluster 1, assigned to Cluster

2, and all data pertaining to that feature. We present this depiction in Figure 5.4, organized by

feature: Population Density (shown in (a)), MW Rate (shown in (b)), MB Rate (shown in (c)), and FW

Rate (shown in (d)). From this depiction, we can conclude that Cluster 1 contains more counties

with higher population densities, higher incidences of colorectal cancer among the Male/White

population, the Male/Black population, and the Female/White population, than Cluster 2. Probing

the Tailored SOM results in this manner is advantageous for two reasons. First, it allows us to better

understand the groupings and patterns that were identified among the attribute features considered

during training (MW Rate, MB Rate). Secondly, it affords us the opportunity to infer correlations

between attribute features that were not considered during training (Population Density, FW Rate).

This second result is especially useful as it suggests it is not always necessary to implement a high-

dimensional clustering problem to uncover a comprehensive representation of patterns that exist

within a data set. Instead, using strategic feature selection, such as experimenting with holding back

certain attributes during algorithm training, has proven to be a useful approach.
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(a) Population Density (b) MW Rate

(c) MB Rate (d) FW Rate

Figure 5.4 A depiction of some of the results obtained by the Tailored SOM clustering (shown in Figure 5.3
(a)). Each plot shows the data pertaining to select features (Population Density, MW Rate, MB Rate, and FW
Rate) that was assigned to first largest cluster (Cluster 1), the second largest cluster (Cluster 2), and all data

pertaining to that feature.

5.2.2 Tailored versus Standard Clustering Results: Modified Objective Function

Next, to build upon the results presented in the previous section, we propose a modified objective

function, Jc , to aid in the tailored clustering of the cancer incidence data. We will refer to this

new formulation as a combination objective function, denoted by the subscript c , as it does not

exclusively rely on quantities derived only from the geographic projection of the clustering. With

the implementation of Jc , we aim to identify clusters with significantly different levels of colorec-
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tal cancer incidence, population density, and demographic features that are also geographically

proximal. Thus, we propose the function defined in equation (5.1), which consists of one term that

relies on geographic properties of the clustering, and one term that relies on a quantity based in the

attribute domain features. This objective function was built by modifying the geographic objective

function Jg , shown here in equation (5.2), thus making it more appropriately tailored to the specific

characteristics of the cancer incidence data set.

Jc

�

α,β
�

=






1−

C
∑

i , j=1
i 6= j

Ai , j

Ã






+σA (5.1)

Jg

�

α,β
�

=
C
∑

i , j=1
i 6= j

Ai , j

Ā
+

1

C

C
∑

i=1

�

pi

p̄
−1

�2

(5.2)

We design the combination objective function Jc using the quantities listed below.

• Ai , j : the overlapping geographic area between the i th and j th clusters, for i , j = 1, .., C and

i 6= j , where C is the total number of identified clusters.

• Ã: a total representative area of California, obtained by determining the area contained within

the convex hull of all counties.

• σA: the percentage of statistically significant differences among the 8 attribute features across

the six pairwise comparisons of the four most populated clusters, as shown by Table 5.3.

Given these terms, and in particular the quantityσA, we will search for the parameter set q ∗ = [α∗,β ∗]

that maximizes Jc , i.e.,

q ∗ = [α∗,β ∗] = argmax
α,β

Jc

�

α,β
�

. (5.3)

Though it would have been feasible to incorporateσA such that we would seek to minimize Jc , we

felt it was more natural to leaveσA as is and, instead, seek to maximize the objective function. With

the decision to frame the optimization of Jc as a maximization problem came the need to modify

the overlapping area term. Thus, we incorporate the term
�

1−
∑ Ai , j

Ã

�

which aims to maximize the
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geographic area not shared between clusters as a percentage of the total representative California

area.

One important difference between Jc and Jg is the term in Jg involving the cluster perimeters,

pi for i = 1, .., C , and a representative perimeter p̄ . Although we investigated the utility of including

a perimeter-based term in the modified objective function, ultimately, we felt that it was not appro-

priate given the geography of California. Specifically, we determined that there was not an obvious

best choice for the shape or size of a representative perimeter, given the uneven distribution of

counties throughout the state. Instead, we chose to exclusively rely on the overlapping area term
�

1−
∑ Ai , j

Ã

�

for tuning the geographic properties of the optimal clustering. Lastly, to balance with

the geo-centric quality of
�

1−
∑ Ai , j

Ã

�

, we incorporate σA into the new function Jc . As demon-

strated by the discussion related to Table 5.3, this term aims to promote a clustering within which

there exists numerous statistically significant differences, in terms of the attribute features, across

primary clusters. With the incorporation ofσA into the objective function, we ensure that adequate

weight is being placed on the features from the attribute domain, so as to not diminish their distinct

groupings in favor of geographic proximity. By defining Jc in terms ofσA and
�

1−
∑ Ai , j

Ã

�

, we are

more likely to identify a clustering that is well-balanced in terms of both its geographic clusters’

uniqueness and ability to represent the complex groupings with the attribute domain. Lastly, by

designing Jc to consist of only one geographic-based term and one attribute-based term, we limit

the need for additional term-specific weighting parameters.

To begin our implementation of Jc , we return to the R4 subset of the colorectal cancer inci-

dence data consisting of a two-dimensional geographic domain (latitude, longitude) and a two-

dimensional attribute domain (MW Rate, MB Rate). We continue to use the Tailored SOM described

in the previous section and defined by the parameters in Table 5.2. For the optimization of Jc , we

use the global grid search to traverse the admissible parameter space defined in Table 4.1 with the

step size ∆q = [0.05,0.05]. With this approach, we determine the optimal parameter set for this

4-dimensional case of the colorectal cancer data is q ∗ = [0.75, 1.10]. When trained with this q ∗, the

Tailored SOM identifies the geographic clustering depicted in Figure 5.5 (a). Recall that the Tailored

SOM obtained via the geographic objective function Jg (Section 5.2.1) outperformed the Standard

115



SOM and the k -Means algorithm based on the metrics depicted in Table 5.6. Hence, we will limit

our comparisons in this section to only those results achieved by the Tailored SOM via Jg and Jc .

For visualization purposes, we depict these two results side by side in Figure 5.5, with the previous

results achieved via the geographic objective function Jg (discussed in Section 5.2.1) shown in (b).

(a) Tailored SOM Result via Jc (b) Tailored SOM Result via Jg

Figure 5.5 The geographic clusterings obtained for 4-dimensional case of the colorectal cancer data (with
features: latitude, longitude, MW Rate, MB Rate) from training the Tailored SOM algorithm with

q ∗ = [0.75, 1.1] obtained via the combination objective function Jc (shown in (a)) and the Tailored SOM
algorithm with q ∗ = [0.75, 1.25] obtained via the geographic objective function Jg (shown in (b)). Post
clustering, we apply the convex hull boundaries to each geographic cluster containing at least 2 data

observations.

To compare these results, we evaluate one geographic metric and one attribute metric, shown

in Table 5.7. For the geographic evaluation, we compute
∑ Ai , j

Ã
, for i , j = 1, .., C and i 6= j , which

is the fraction of the total California area occupied by overlapping cluster regions (reported as a

percentage). For the attribute evaluation, we compute σA, which is the percentage of pairwise

cluster comparisons (of the 4 largest clusters) that are significantly different in terms of the 8

attribute features. To illustrate the computation ofσA, we depict the full pairwise cluster comparison

statistical testing results for the tailored clustering obtained via Jg and Jc in Table 5.8 and Table 5.9,

respectively. In these tables, the yellow highlighted entries indicate each pairwise cluster comparison

that was found to be statistically significant at the α= 0.05 significance level.

Based on the results depicted in Figure 5.5 and Tables 5.7, 5.8, and 5.9, we can conclude

116



that the two objective functions yield rather similar results when implemented with the Tailored

SOM. The tailored clustering obtained via the combination objective function, Jc (equation (5.1)),

identified clusters with a higher number of significant differences in the attribute domain data.

Whereas, the tailored clustering obtained via the geographic objective function, Jg (equation (3.1)),

achieved a clustering with a slightly lower amount of geographic cluster overlap. Thus, for this R4

subset of the colorectal cancer data, the preferred choice in objective function will likely depend on

the specific research question.

Table 5.7 The fraction (reported as a percentage) of the total California area occupied by overlapping cluster

regions
�∑ Ai , j

Ã
, for i , j = 1, .., C and i 6= j

�

and the percentage of pairwise cluster comparisons (of the 4
largest clusters, across the 8 attribute features) that are significantly different (σA) for the clusterings

determined by the Tailored SOM via Jc and via Jg on the R4 subset of the cancer incidence data.

Tailored SOM via Jc Tailored SOM via Jg
∑ Ai , j

Ã
×100 4.44% 3.27%

σA 39.6% 37.5%

Table 5.8 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest
clusters identified by the Tailored SOM via the combination objective function Jc (Figure 5.5 (a)). The top 4
largest clusters are denoted as “C T,c

1 ",“C T,c
2 ",“C T,c

3 ",“C T,c
4 " and correspond to the clusters referenced in the

legend of Figure 5.5 (a). To aid in the visualization of these results, we have highlighted in yellow each
pairwise comparison that is statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C T,c
1 v. C T,c

2 0.7719 0.5879 0.5395 0.3889 0.9513 0.9993 0.1769 0.9857

C T,c
1 v. C T,c

3 0.3634 1.0000 0.0136 0.0028 1.0000 0.9994 0.5039 0.8836

C T,c
1 v. C T,c

4 0.0224 0.7175 0.0002 0.0000 0.0013 0.0032 0.5339 0.0044

C T,c
2 v. C T,c

3 0.0185 0.7851 0.5083 0.1107 0.9453 0.9755 0.9987 0.4583

C T,c
2 v. C T,c

4 0.0003 0.0595 0.0451 0.0015 0.0217 0.0008 0.0021 0.0004

C T,c
3 v. C T,c

4 0.8787 0.6347 0.8897 0.3669 0.0020 0.0205 0.0165 0.1468
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Table 5.9 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest
clusters identified by the Tailored SOM via the geographic objective function Jg (Figure 5.5 (b)). The top 4

largest clusters are denoted as “C T,g
1 ",“C T,g

2 ",“C T,g
3 ",“C T,g

4 " and correspond to the clusters referenced in the
legend of Figure 5.5 (b). To aid in the visualization of these results, we have highlighted in yellow each

pairwise comparison that is statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C
T,g
1 v. C

T,g
2 0.0003 0.0252 0.0224 0.0019 0.0065 0.0009 0.0026 0.0006

C
T,g
1 v. C

T,g
3 0.9337 0.8691 0.7837 0.6673 0.9748 0.9999 0.3368 0.9889

C
T,g
1 v. C

T,g
4 0.0124 0.5247 0.4700 0.1374 0.9921 0.9999 0.9964 0.6305

C
T,g
2 v. C

T,g
3 0.0433 0.5630 0.0018 0.0005 0.0027 0.0124 0.6561 0.0300

C
T,g
2 v. C

T,g
4 0.9791 0.8706 0.8866 0.4705 0.0045 0.0124 0.0554 0.2050

C
T,g
3 v. C

T,g
4 0.2964 0.9984 0.0713 0.0286 1.0000 1.0000 0.8154 0.9812

5.3 Case 2: AnR6 Subset of Cancer Incidence Data

We continue our investigation of the colorectal cancer incidence data by considering a larger, R6

dual-domain subset. This subset of data will maintain the geographic domain consisting of the

latitude and longitude measurements for each county (plotted in Figure 5.1). We increase the

dimension of the attribute domain to 4-dimensional, consisting of the features Male/White Rate,

Male/Black Rate, Female/White Rate, and Female/Black Rate (defined in Table 5.1). With this subset,

we can test and evaluate the capabilities and robustness of the Tailored SOM clustering approach,

compared to standard approaches, in the presence of a higher-dimensional attribute space (and

thus an unequal number of geographic and attribute features).

5.3.1 Tailored versus Standard Clustering Results: Jc

With this larger data subset, we choose to experiment further with the modified, combination

objective function Jc (equation (5.1)) defined in Section 5.2.2. For the Tailored SOM, we use the

weight vector initialization based on even spacing in the Median Age Male feature and the map

parameters and design choices shown in Table 5.2. For the optimization of Jc , we continue our use

of the global grid search to explore the admissible parameter space defined in equation (4.1) with
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step size ∆q = [0.05,0.05]. With this approach, we determine the optimal parameter set for this

6-dimensional case of the colorectal cancer data is q ∗ = [0.75, 0.95]. When trained with this q ∗, the

Tailored SOM identifies the geographic clustering depicted in Figure 5.6 (a).

As outlined in Section 5.2.1, we generate three additional clusterings to compare against the

Tailored SOM results. For the first comparison, we train a Standard SOM with the same structure,

parameters, and weight vector initialization as we prescribed for the Tailored SOM. The geographic

clustering results of this algorithm are shown in Figure 5.6 (b). For the k -Means algorithm, we train

two formulations, both initialized with the k ++ approach. The first k -Means formulation uses

k = 6, which was identified as the optimal value for k by the Average Silhouette Method. The second

k -Means formulation uses k = 9, which mirrors the size (number of nodes) of the Tailored SOM. The

geographic clustering results of these two implementations of the k -Means algorithm are depicted

in Figure 5.6 (c,d). For each result, we first compute the fraction of the total California area occupied

by overlapping cluster regions
�∑ Ai , j

Ã
, for i , j = 1, .., C and i 6= j

�

. Additionally, we compute the

percentage of pairwise cluster comparisons (of the 4 largest clusters) that are significantly different

in terms of the 8 attribute features (σA). The results of these evaluation metrics for each clustering

are shown in Table 5.10. Furthermore, we depict the full pairwise cluster comparison statistical

testing results for the each result in Tables 5.11, 5.12, 5.13, 5.14.

From the results depicted Figure 5.6 we observe significant similarities between the cluster-

ings achieved by the k -Means algorithm for k = 6 and k = 9. In particular, we note that in both

cases a significant majority of the counties are accounted for by only 3 large clusters. Whereas the

clusterings generated by the Tailored SOM and Standard SOM reveal smaller geographic clusters, es-

pecially in the more densely populated northern half of California. With the identification of smaller

geographic clusters, we are able to learn information about the distributions of each incidence rate

and demography at a more granular level. This result is reflected in the values ofσA (Table 5.10)

computed for each clustering. Specifically, the Tailored SOM outperforms the three other algorithms

in its ability to identify clusters that are significantly distinct from one another (in the statistical

sense) in the features of the attribute domain. Furthermore, the Tailored SOM is able to achieve

clusters with well-defined attribute similarity without compromising on geographic uniqueness, as

demonstrated by the overlapping region results
�∑ Ai , j

Ã

�

shown in Table 5.10.
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(a) Tailored SOM Result (b) Standard SOM Result

(c) k -Means Result: k = 6 (d) k -Means Result: k = 9

Figure 5.6 The geographic clusterings obtained for 6-dimensional case of the colorectal cancer data with
features: latitude, longitude, MW Rate, MB Rate, FW Rate, and FB Rate. These results are from training the

Tailored SOM algorithm with q ∗ = [0.75, 0.95] obtained via the combination objective function Jc (shown in
(a)), the Standard SOM algorithm (shown in (b)), the k -Means algorithm with k = 6 (shown in (c)), and the
k -Means algorithm with k = 9 (shown in (d)). Post clustering, we apply the convex hull boundaries to each

geographic cluster containing at least 2 data observations.
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Table 5.10 The fraction (reported as a percentage) of the total California area occupied by overlapping cluster

regions
�∑ Ai , j

Ã
, for i , j = 1, .., C and i 6= j

�

and the percentage of pairwise cluster comparisons (of the 4
largest clusters, across the 8 attribute features) that are significantly different (σA) for the clusterings

determined by the Tailored SOM, the Standard SOM, and the k -Means algorithm (for k = 6, 9) on the R6

subset of the cancer incidence data.

Tailored SOM Standard SOM k -Means (k = 6) k -Means (k = 9)
∑ Ai , j

Ã
×100 11.96% 12.06% 13.38% 11.1%

σA 39.6% 31.3% 21.3% 20.1%

Table 5.11 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest

clusters identified by the Tailored SOM via the combination objective function Jc for the R6 data subset
(Figure 5.6 (a)). The top 4 largest clusters are denoted as “C T

1 ",“C T
2 ",“C T

3 ",“C T
4 " and correspond to the clusters

referenced in the legend of Figure 5.6 (a). To aid in the visualization of these results, we have highlighted in
yellow each pairwise comparison that is statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C T
1 v. C T

2 0.7286 0.5270 0.4304 0.5068 0.4601 0.9989 0.0000 0.6685

C T
1 v. C T

3 0.0010 0.0491 0.2986 0.0116 0.0015 0.0000 0.0000 0.0000

C T
1 v. C T

4 1.0000 0.7050 0.9909 0.8624 0.0327 0.0253 0.0001 0.5564

C T
2 v. C T

3 0.0486 0.7304 0.0058 0.0004 0.0463 0.0003 0.9734 0.0047

C T
2 v. C T

4 0.9398 0.0594 0.2624 0.2457 0.3683 0.0735 0.9920 0.9990

C T
3 v. C T

4 0.0133 0.0039 0.8663 0.1802 0.8270 0.7578 0.9995 0.0698

Table 5.12 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest
clusters identified by the Standard SOM for theR6 data subset (Figure 5.6 (b)). The top 4 largest clusters are
denoted as “C S

1 ",“C S
2 ",“C S

3 ",“C S
4 " and correspond to the clusters referenced in the legend of Figure 5.6 (b). To

aid in the visualization of these results, we have highlighted in yellow each pairwise comparison that is
statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C S
1 v. C S

2 0.6648 0.4084 0.5070 0.5672 0.6105 0.9998 0.0002 0.7269

C S
1 v. C S

3 0.0014 0.0548 0.1526 0.0018 0.0003 0.0073 0.0014 0.0001

C S
1 v. C S

4 0.0749 0.9991 0.7377 0.1559 0.2477 0.0647 0.1305 0.0486

C S
2 v. C S

3 0.0813 0.8310 0.0040 0.0001 0.0087 0.0046 0.9995 0.0092

C S
2 v. C S

4 0.5561 0.9756 0.1240 0.0268 0.7223 0.1267 0.7885 0.4045

C S
3 v. C S

4 0.9984 0.5614 0.9982 0.7765 0.3993 0.0000 0.7878 0.9665
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Table 5.13 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest

clusters identified by the k -Means algorithm with k = 6 for the R6 data subset (Figure 5.6 (c)). The top 4
largest clusters are denoted as “C k 6

1 ",“C k 6
2 ",“C k 6

3 ",“C k 6
4 " and correspond to the clusters referenced in the

legend of Figure 5.6 (c). To aid in the visualization of these results, we have highlighted in yellow each
pairwise comparison that is statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C k 6
1 v. C k 6

2 0.0116 0.3133 0.4069 0.3331 0.0001 0.0016 0.0017 0.0001

C k 6
1 v. C k 6

3 0.4533 0.2688 0.1677 0.2030 0.1205 0.9780 0.0001 0.9438

C k 6
1 v. C k 6

4 0.9954 1.0000 0.2984 0.3647 0.9986 0.9999 0.0149 1.0000

C k 6
2 v. C k 6

3 0.8487 1.0000 0.0033 0.0031 0.1733 0.0871 0.6486 0.0196

C k 6
2 v. C k 6

4 0.0439 0.8071 0.0157 0.0169 0.0042 0.1255 0.9951 0.0141

C k 6
3 v. C k 6

4 0.4308 0.7338 1.0000 1.0000 0.2902 0.9999 0.8970 0.9923

Table 5.14 A depiction of the results of performing pairwise statistical testing (either the ANOVA test followed
by the Tukey multiple comparison test, or the Kruskal-Wallis test followed by Dunn’s test) on the top 4 largest

clusters identified by the k -Means algorithm with k = 9 for the R6 data subset (Figure 5.6 (c)). The top 4
largest clusters are denoted as “C k 9

1 ",“C k 9
2 ",“C k 9

3 ",“C k 9
4 " and correspond to the clusters referenced in the

legend of Figure 5.6 (d). To aid in the visualization of these results, we have highlighted in yellow each
pairwise comparison that is statistically significant at the α= 0.05 significance level.

Pop Dens Perc M Age M Age F MW MB FW FB

C k 9
1 v. C k 9

2 0.0066 0.2089 0.6338 0.5422 0.0009 0.0002 0.0004 0.0001

C k 9
1 v. C k 9

3 0.5996 0.3454 0.2409 0.3083 0.1101 0.9999 0.0001 0.7674

C k 9
1 v. C k 9

4 0.9999 0.9789 0.6313 0.7512 0.9712 0.9763 0.0022 0.8257

C k 9
2 v. C k 9

3 0.6129 1.0000 0.0115 0.0119 0.4938 0.0008 0.8680 0.0615

C k 9
2 v. C k 9

4 0.1371 0.9928 0.1361 0.1673 0.1637 0.3467 0.7550 0.5525

C k 9
3 v. C k 9

4 0.8012 0.9968 1.0000 1.0000 0.7066 0.9457 0.9727 0.9999

122



5.4 Discussion

The dual-domain colorectal cancer incidence data set investigated in this chapter served as a real-

world case study for the tailored unsupervised learning methodology developed in Chapter 3. The

use of this data set enabled us to expand upon the algorithm assessments performed using synthetic

data sets in Chapter 4, and further demonstrate the need for a tailored approach when clustering

dual-domain data. By commencing this chapter with the analysis of anR4 subset of the cancer data,

analogous to those considered in Chapter 4, we were able to evaluate the robustness and utility

of the overall methodology and Tailored SOM design choices outside the confines of a synthetic

data set. The results of this analysis, depicted in Figure 5.3 and Tables 5.3, 5.4, and 5.5, exhibit the

advantage of implementing the Tailored SOM as compared to the Standard SOM and the k -Means

algorithm, despite the fact that the underlying objective function was generic (i.e., not tailored to

characteristics of the California geography). Not only was the Tailored SOM more successful than

the Standard SOM and k -Means algorithm in achieving a geographically useful clustering, it also

identified the most information-dense attribute clustering.

This finding led us to hypothesize about the effect that a modified, California-specific objective

function could have on the performance of the Tailored SOM. We explored this idea through the

use of Jc (equation (5.1)), a combination objective function defined with geometric quantities from

the geographic domain and statistical measures of features from the attribute domain. We tested

and evaluated the clustering capabilities of the Tailored SOM when paired with the combination

objective function Jc on theR4 subset and an R6 subset of the cancer incidence data. The results of

these experiments, described in Sections 5.2.2 and 5.3.1, suggest that incorporating both geographic-

and attribute-based metrics in the tailored objective function is advantageous for determining an

optimal clustering, particularly in the higher dimensional (R6) case. Ultimately, the comparisons

and evaluations of the Tailored SOM, the Standard SOM, and the k -Means algorithm depicted in

this chapter support and further solidify the necessity for unsupervised clustering algorithms that

are specific to the goals of a dual-domain problem.
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CHAPTER

6

CONCLUSIONS

6.1 Conclusions and Summary of Contributions

Dual-domain data sets comprised of both geographic and attribute features whose observations

are associated, yet distinct in nature, are ubiquitous. There is a plethora of applications for which

dual-domain data sets exist and could be used to better understand proximal groupings within

the geographic domain, and how said groupings are related to feature similarity in the attribute

domain. However, given the unique structure of a dual-domain data set, standard unsupervised

clustering algorithms often fail to appropriately partition geographic groups in such a way that

maintains meaningful similarity in their corresponding attribute clusters. Therefore, to effectively

and efficiently mine useful clusters from a dual-domain data set, one must employ an algorithm

that allows for domain-specific assessment of feature similarity. Existing dual-domain clustering

methodologies [24, 25, 27] rely on multi-pass, iterative algorithms that consider each domain indi-

vidually and require a priori specification of geographic connectedness/constraints and the target

number of clusters.
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In this thesis, we developed a tailored, unsupervised clustering methodology, called the

Tailored Self-Organizing Map (Algorithm 3), specifically designed to achieve the goals of a dual-

domain clustering problem in an automated and model-driven manner. Our methodology relies

fundamentally on the algorithmic approach of the Standard Self-Organizing Map [17, 18], a well-

known clustering algorithm that creates a low-dimensional representation of a higher-dimensional

data set through the training of a fully-connected map of nodes and representative weight vectors. We

extend the applicability of the Standard SOM to a dual-domain clustering problem by reformulating

the underlying Euclidean distance measure used to assess data similarity to include domain-specific

biasing parameters capable of better evaluating inter-domain data relationships. The introduction

of biasing parameters allows for the construction of an objective function, J , that is used to optimize

their values in the context of the broader application.

In Chapter 2, we provided a detailed overview of the algorithmic approaches and example

implementations of two standard clustering algorithms: the Standard SOM and the k -Means al-

gorithms [30]. We highlighted the various parameters, design choices, strengths, and limitations

of these algorithms in order to provide sufficient context for their subsequent use as comparative

approaches in later chapters. Furthermore, we drew comparisons between these two standard

algorithms and their underlying clustering regimes.

In Chapters 3 and 4, we formally proposed and developed the Tailored Self-Organizing Map

algorithm and the broader tailored unsupervised learning framework designed specifically for

dual-domain clustering. At the core of our tailored algorithm is the reformulation of the Euclidean

distance measure used by the Standard SOM to identify similarity in data space. Our reformulation,

which enables the integration of domain-specific biasing parameters directly into map training,

allows for a better evaluation of inter-domain data relationships. The entirety of Chapters 3 and 4

was devoted to testing and experimenting with the Tailored SOM algorithm, and broader learning

framework, on three cases of synthetic, dual-domain data sets of varying complexity. We designed

these synthetic data sets to rely on parameters (defined in Table 4.1) whose values can be easily

manipulated and systemically varied to produce test sets ideal for investigating the robustness of

each clustering algorithm of interest. We gave careful consideration to the construction of each case

of synthetic data set to ensure that its properties and characteristics were reasonably analogous to
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those that one might observe in a real data set.

Next, to assess and compare algorithm performance, we evaluated the tailored objective

function J and designed three additional metrics: the Stable Score, the Inlier Score, and the notion

of Geographic Feasibility. With these metrics, we were able to consistently evaluate and compare

the output of each algorithm in a manner that was both appropriate and meaningful for a dual-

domain clustering problem. Without these metrics, we would have relied solely on observational

evaluations, which are ultimately of little use when aiming to fully understand the relative strengths

and limitations of each clustering algorithm. Even in the absence of a "ground truth" to use as a

basis for quantifying the quality of an algorithm’s performance, our novel metrics, i.e., the objective

function J , the notion of Geographic Feasibility, the Stable Score, and the Inlier Score, each provided

structure and formality to our algorithm assessment framework. With these metrics in hand, we

considered 20 realizations of each case of synthetic data and trained and compared the results of

the following.

• A two-dimensional, 3×3 Tailored SOM consisting of nine nodes, with biasing parameters α

and β that were globally optimized with the geographic objective function Jg

• A two-dimensional, 3×3 Standard SOM consisting of nine nodes

• The k -Means algorithm

Across a total of 60 realizations of three cases of synthetic data sets we observed that the Tailored SOM

generally outperforms the Standard SOM and the k -Means algorithms. Most notably, the results

produced by the Tailored SOM were, by and large, the most geographically desirable (quantified

by the evaluation of Jg ) and geographically feasible. We also observed the apparent utility of the

Stable Score and the Inlier Score as evaluation metrics for results obtained by the Standard SOM

and the k -Means algorithm, respectively. This finding provided us with insight into the relative

tendencies, strengths, and limitations of the Tailored SOM, the Standard SOM and the k -Means

algorithm when applied to a dual-domain data set. For example, in the presence of increased levels

of noise within the geographic domain, we noted a tendency of the k -Means algorithm to frequently

underestimate the number of true clusters, thus identifying larger, more far-reaching clusters of
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data. Whereas under the same data conditions, the Tailored SOM and Standard SOM were more

likely to over-partition the geographic space, thus producing smaller clusters with fewer outliers.

In Chapter 5, we continued the investigation of the Tailored SOM in the context of a real

data set pertaining to colorectal cancer incidence in the state of California. We amalgamated the

cancer incidence data set [37], which provides county-level colorectal incidence rates per 100,000

people in various population groups, with additional county-level demographic information and

representative latitude/longitude measurements [43] to create a dual-domain data set well-suited

for clustering. For this 10-dimensional data set, we designed and tested a modified, combination

objective function Jc . We tailored this function to the geography of California with the goal of

identifying information-dense clusters in the attribute domain. We assessed the performance of

the Tailored SOM optimized with Jg and Jc on varying subsets of the 10-dimensional data set

using both geographic quantities, such as overlapping cluster area, and statistical measures of

features from the attribute domain. Similar to the procedure outlined in Chapter 3, we also trained

a Standard SOM and the k -Means algorithm as comparisons. The results of these experiments

demonstrated the advantage of employing a Tailored SOM as compared to a Standard SOM or the

k -Means algorithm, especially in the case where the dimension of the attribute domain exceeds that

of the geographic domain. In particular, when compared to the k -Means algorithm, the Tailored

SOM achieved significantly better results in terms of uniqueness and delineation of geographic

cluster regions, with numerous statistically significant differences in multiple, important attribute

domain features, i.e., cancer incidence rates.

6.2 Future Work

In this thesis we developed, tested, and systemically evaluated the Tailored Self-Organizing Map

algorithm in the context of 4-dimensional synthetic data and 10-dimensional cancer incidence data.

While a considerable amount of groundwork and a number of fundamental aspects related to the

proposed methodology were established, there still exist a number of interesting questions that

could not be feasibly addressed. First, we were unable to do more than hypothesize possible ways

of integrating the neighborhood relation among the SOM nodes into the tailored clustering regime.

Given that the neighborhood component of the Self-Organizing Map is inherent to its structure
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and training procedure, it would be readily available for use within an objective function, a post-

clustering procedure/visualization, or when probing the clusters for information, as demonstrated

by the application in [23]. We hypothesize that this feature could be exploited to provide a criteria

for merging or tuning clusters after the SOM has been trained. This addition could help remedy the

scenario of the SOM populating more nodes with observations of data than necessary to accurately

represent true groupings (which may result from training too large of an SOM).

A second interesting feature that future studies could consider is the use of an adaptive, or

growing, Self-Organizing Map, like the one presented by Alahakoon et al. in [3] or by Jin et al, in [15].

For example, the growing SOM presented in [3] is able to adapt the map dimension (the total number

and arrangement of the nodes) during the competitive training phase, according to a “spread factor"

parameter. The implementation of this type of adaptive SOM within the Tailored SOM framework

may help to extend the work presented in this thesis to larger, more complex, or noisy dual-domain

data sets without requiring pre-training experimentation related to map size and node arrangement.

Finally, there exist ample opportunities for further research in areas related to scalability and

further automation of the components within our tailored learning framework. In this thesis, we

focused our efforts primarily on building the methodological approach, therefore we limited our

experiments to relatively small data sets with no more than 10 dimensions. However, as both the size

and dimension of a dual-domain data set grow, several additional opportunities for optimization

within our tailored framework arise. For example, a more thorough study on an appropriate choice

of global optimization technique would be worthwhile. While the results presented in Section 4.5.3

showed promise for the use of Simulated Annealing in determining the optimal parameter set q ∗,

other global optimization methods may prove to be more efficient for larger data sets and certain

formulations of J . Additionally, a closer, more systematic investigation of the sensitivity of the SOM

hyperparameters, such as learning rates γ(k ) and z (k ) and arrangement of nodes (rectangular lattice,

hexagonal lattice, etc.) could be performed. To do so, one may consider employing the Bayesian

hyperparameter optimization method [40], which constructs a probabilistic model that is used to

determine the optimal values for the hyperparamters of a given machine learning algorithm, based

on a validation data set. Implementing this type of hyperparameter optimization method would

add additional customization and further streamline the model training portion of our tailored
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framework.

Lastly, in Chapter 5 we demonstrated the advantage of incorporating application-specific

terms into the modified, tailored objective function Jc . The selection of the terms ultimately used in

Jc was a result of much hypothesizing, experimentation, and discussion. Given a large data set for

which one possesses little background knowledge or subject matter expertise, the term selection task

could prove to be quite arduous. Alternatively, we propose a two-level machine learning architecture,

where the upper level aims to learn, through data analysis, a set of candidate terms to be included

in the objective function J . Then, the lower level would consist of the model training and parameter

optimization regime developed in this thesis. Though considerable research would be required

to construct a library of such terms (based in both the geographic and attribute domain), this

additional feature would greatly improve the transferability of our tailored learning framework to

many dual-domain data sets and applications.

Overall, we believe the area of dual-domain unsupervised clustering to be one rich with

intriguing questions and meaningful applications. While in this thesis we focused exclusively on

the implementation of domain-specific biasing parameters into the Self-Organizing Map, this

concept could be extended to any number of clustering algorithms with an embedded distance

metric, such as the k -Means algorithm. Moreover, we hypothesize that the data exploration and

visualization technique t -SNE [26, 28], which uses a similarity measure to create a low-dimensional

data representation of high-dimensional data, may be amenable to the incorporation of biasing

parameters. Nonetheless, the methodology developed throughout this thesis demonstrates the

need for, and advantage of, employing a tailored algorithm when seeking to identify geographically

feasible and information-dense clusters within a dual-domain data set.
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