
ABSTRACT

KING, ETHAN ANDREW. Nonlinear Feedback Controllers and State Estimators:
Theory, Applications, and Real-Time Implementation. (Under the direction of Hien Tran and
Tien Khai Nguyen.)

This work presents research within three topics: state estimation, feedback control, and

mathematical biology.

Proximal Point Moving Horizon Estimation

This work explores use of the proximity operator for constructing moving horizon estimators,

which successively fit model trajectories to recent system outputs in order to construct state

estimates of dynamical systems. In the presence of both modeling and measurement noise a

general convergence result for state estimates using a proximity operator is given for nonlinear

systems. Stronger convergence results are shown for linear systems using both least squares

and modified least squares fitting functionals. Use of linearization with proximal point moving

horizon estimation for nonlinear systems is explored and shown to compare well to the extended

Kalman filter on a numerical example. The approach is also found to perform well compared

to a low pass derivative filter for supplying state estimates for online stabilization of a double

inverted pendulum on a moving cart, in laboratory experiments.

Relaxed Projection Feedback Control

For affine input stabilizing feedback control of nonlinear systems, a family of feedback

controls is proposed. The controls are parameterized by a symmetric positive definite (SPD)

matrix P , and for discrete dynamics they can be understood as a projection with respect to the

P norm. If the projection control is stabilizing for a system, then it is shown that a relaxation

for appropriate choices of a parameter γ is also stable. Therefore if a stabilizing P can be

identified, weights γ can tune the relaxed projection control for a particular implementation.

An analogous control is also developed for continuous nonlinear systems. To construct controls

a control synthesis methodology is proposed using an ensemble Kalman search procedure to

find stabilizing P over selected subsets of the SPD cone. On numerical examples, the control is

shown to perform well in comparison to LQR control for both linear and nonlinear dynamics.

The control is also shown to perform well for online stabilization of a double inverted pendulum

on a cart in laboratory experiments.

An Optimal Innate Immune Response At The Onset Of Infection

Optimal control of viral infection in a domain of host cells is explored as a means of

comparison to experimental observations of the dynamics of the immune system. The immune

response and control action studied can induce an antiviral state in cells which protects them

from the infecting virus. Optimality of a response is approached in a framework common



to the study of vaccination, using the measurement R∗, the expected number of infection

progeny of an infected cell in a fixed population under the intervention regime, to quantify the

intervention efficacy. This work defines a protection control that achieves a target value for R∗

while protecting the least number of cells for the least amount of time, as optimal. It is shown

that a cell autonomous response where protection is initiated when viral density is above a

threshold in the neighborhood of the cell, can coordinate optimal regions of cell protection.
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CHAPTER

1

PROXIMAL POINT MOVING HORIZON
ESTIMATION

Given a system of interest, a model of the dynamics can help inform control and management

decisions. Models often summarize the state of the system and dynamics in terms of a finite

number of variable quantities. In many cases only a subset of the quantities needed to specify

the system state can be measured directly. Model based state estimation approaches use system

outputs and the model dynamics to recover the unmeasured system states.

This chapter presents methods for state estimation of discrete time dynamical systems. State

estimates are constructed by fitting the model dynamics to the most recent system measurements

in a moving horizon approach. Within the framework of the proximal point minimization

algorithm a family of moving horizon state estimators are given, and in the presence of both

modeling and measurement noise a general convergence result for state estimates of nonlinear

systems is established. Stronger results are then given for estimators utilizing least squares

functionals on linear dynamics. The use of linearization in conjunction with proximal point

moving horizon estimation on nonlinear systems is explored on a numerical example.
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1.1 State Estimation

This chapter considers dynamical systems in the discrete time setting. Available system measure-

ments for state estimation are generally discrete and many continuous time model dynamics

can be treated in a discrete manner, allowing the discrete setting a broad applicability. The state

estimation problem will be introduced for linear systems first.

Suppose that the states {xk}k∈N ∈ Rd at times k of a system satisfy the linear time invariant

dynamics
xk+1 = Axk

yk+1 = Cxk+1

with matrices A ∈ Rd×d and C ∈ Rm×d. Given the past measurements from the system {yi}ki=0

up to the current time k the state estimation problem is to find the current state of the system

xk. Note that after k time steps the problem can be formulated as solving the linear system
C

CA

. . .

CAk

x =


yk

yk−1

. . .

y0

 . (1.1)

In particular, if k ·m ≥ d and the matrix
[
C CA . . . CAk

]T
has full column rank then the

true state of the system can be uniquely specified by the solution of (1.1). In this case the system

is called observable [9]. Similar observability criteria for guaranteeing that a finite number

of measurements can be used to determine the system state can be developed for nonlinear

continuous and discrete time systems also [20,43]. Direct solution of (1.1) will yield the exact

system state and is an example of a deadbeat observer. Deadbeat observers yielding the exact

system state can also be constructed in continuous time settings [19,57]. While methods for exact

construction of the system state seem ideal, note that in general for applications with both model

error and measurement noise, the linear system (1.1) using all of the available measurements,

will be over-determined and have no solution. State estimation methods are needed that can

produce good approximations and that are robust to noise, possible perturbations of the system,

and erroneous measurements.

Let {ηk}k∈N and {εk}k∈N be measurement and model noise respectively, such that the system

dynamics are given by
xk+1 = Axk + ηk

yk+1 = Cxk+1 + εk .
(1.2)

Suppose further that the noise terms are known to be normally distributed with mean zero and
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covariances given by the positive definite matrices Q ∈ Rd×d and R ∈ Rm×m, that is

ηk ∼ N (0, Q) εk ∼ N (0, R) .

A natural idea for producing an estimate of the state at a time k is to find a weighted fit of the

model to the available measurements {yi}ki=1. For example a fit weighted by the covariance of

the noise terms. In particular, for x ∈ Rd let

||x||2Q−1 = xTQ−1x

the norm associated with the positive definite matrix Q−1, and consider the state estimate given

by a solution to the problem

min
{x̂i,ηi}ki=0

{
k∑
i=1

||Cx̂i − yi||2Q−1 +
k∑
i=1

||ηi||2R−1

}
subject to x̂i+1 = Ax̂i + ηi for all i ∈ {1, 2 . . . k − 1} .

(1.3)

An immediate issue with this approach is that the size of the problem will grow with time and

can quickly become unmanageable. The Kalman filter as introduced in [49] develops a recursion

which updates the current state estimate using only the most recent measurement such that the

state estimate remains optimal with respect to (1.3).

The Kalman filter can be broken up into two steps, a prediction step and an update step. The

prediction step uses the past state estimate and model dynamics to predict the state at time k

according to
x̂−k = Ax̂k−1

P−k = APk−1A
T +Q .

The estimate is then updated using the current system measurement as follows

Kk = P−k C
T (CP−k C

T +R)−1

x̂k = x̂−k +Kk(zk − Cx̂−k )

Pk = (I −KkC)P−k .

The matrix Pk in the recursion is a positive definite matrix which can be interpreted as an

estimate for the covariance of the state estimation error (x̂k−xk) [17]. The Kalman filter is often

derived in a probabilistic setting using Baye’s rule, though as is shown in [82] a least squares

formulation, as is presented here, provides an equivalent state estimation procedure.

The state estimate x̂k computed by the Kalman filter is equivalent to the estimate generated

by solving the minimization problem (1.3) but avoids the need to successively solve a growing
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optimization problem at each time point. The assumption of linear dynamics are critical to

formulating the Kalman filter recursion, and in general, for systems governed by nonlinear

dynamics, such a recursion cannot be constructed.

State estimation for nonlinear systems has been approached by using approximations to

compute Kalman filter updates. The extended Kalman filter (EKF) uses a linearization of the

system dynamics about the most recent state estimate to compute the Kalman update recursion.

The EKF has been widely used for many applications, some industry examples are reviewed

in [29]. The unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF) use an

evaluation of the dynamics at a set of points to produce a state estimate. The UKF as presented

in [48], can be understood to be performing a linear regression at a set of regression points to

estimate the system dynamics [53]. On the other hand, the EnKF as introduced in [32] evaluates

the dynamics at an ensemble of inputs to directly estimate the error covariance and error output

cross covariance to compute a Kalman filter update, and can be particularly useful for large

dimensional systems.

Rather than seeking to approximate a Kalman filter type recursion, moving horizon estimation

(MHE) looks to solve a truncated minimization problem, for example of the form (1.3), to directly

fit the model to the recent measurement outputs up to a horizon time, an approach which can

directly incorporate nonlinear dynamics. This chapter studies a family of moving horizon state

estimators and introduces the moving horizon framework in the next section.

1.2 Moving Horizon State Estimation

Moving horizon estimation (MHE) constructs state estimates for a system by fitting model

dynamics to the most recent measurement outputs. Only the most recent measurements are

used often out to a fixed time called the horizon, it is sometimes described as moving a sliding

window within which the model is fit to the data. The approach is analogous to that of model

predictive control for computing system inputs. The functional used to fit the model to the data

is often composed of two terms, a term which explicitly penalizes the model fit to the most

recent measurements, and a term which implicitly fits the model to the excluded past data.

One of the fist moving horizon type approaches was developed by Jazwinski in [47]. Jazwinski

proposed resetting the Kalman filter after every N time steps to address an issue with the Kalman

filter when used for long periods of time, for example in applications to space vehicle trajectories,

where the Kalman filter can become insensitive to new measurements and diverge. The first

moving horizon approach for estimation of nonlinear systems was proposed by Michalska and

Mayne in [58], and similar approaches have since been developed by multiple authors.

Consider a nonlinear discrete time system with dynamics at each time step k given by an

fk : Rd → Rd and measurements of the system given by a gk : Rd → Rm, such that the system is
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modeled by the recursion
xk+1 = fk(xk) + ηk

yk+1 = gk+1(xk+1) + εk ,
(1.4)

where {ηk}k∈N and {εk}k∈N are model and measurement noise with distributions

ηk ∼ N (0, Q) εk ∼ N (0, R) ,

for Q ∈ Rd×d and R ∈ Rm×m positive definite matrices defining the covariances. A common

approach for moving horizon state estimation as in [69] constructs state estimates as solutions

to a problem of the form

min
{zi,ηi}ki=k−N+1

{
Θk−N+1(zk−N+1) +

k∑
i=k−N+1

||g(zi)− yi||2Q−1 +

k∑
i=k−N+1

||ηi||2R−1

}
subject to zi+1 = f(zi) + ηi for all i ∈ {k −N + 1, k −N + 2, . . . k − 1} .

(1.5)

The cost functional to be minimized fits the model directly to the most recent N measurements

and the functional Θ summarizes a fit to the previous data. For some approaches, as in [69], Θ

is called the arrival cost and defined such that

Θk−N+1(z) = min
{zi,ηi}k−Ni=0

k−N∑
i=1

||g(zi)− yi||2Q−1 +

k−N∑
i=1

||ηi||2R−1 ,

subject to zk−N+1 = z and zi+1 = f(zi) + ηi for all i ∈ {1, 2 . . . k −N} .

(1.6)

If the arrival cost (1.6) is used, then minimizing (1.5) is equivalent to fitting the model to

the full output history. For example if the dynamics are linear, then positive definite matrices

Pk−N+1 ∈ Rd×d can be found such that

Θk−N+1(z) = ||z − x̂k−N+1||2Pk−N+1
(1.7)

where x̂k−N+1 is given by the previous state trajectory estimate. In this case, the MHE estimates

are equivalent to using the Kalman filter estimates and in fact by choosing the horizon size

to be N = 1, the Kalman filter can be recovered [69]. In general, for nonlinear systems and

constrained linear systems a simple form for the arrival cost cannot be derived. Methods have

been explored for approximating the arrival cost in these cases, for example, those in [69,88].

Summarizing the model fit to the past data has also been approached from other perspectives,

including a probabilistic perspective as in [22,87]. Another approach, considers a term which

is interpreted as a confidence in the previous estimate, which penalises the norm difference

between the new and previous estimate at the horizon of the estimation window [4]. Whatever
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the method, the inclusion of a summary of the past data with an implicit penalty term has been

found to be important to ensure convergence and stability properties of MHE algorithms as

shown in [6,61,88].

Beyond just the available measurement data for a system, other information may also be

available that can be incorporated as constraints on state variables. For example, it may be

impossible for a measurement to be negative. A major advantage of MHE methods is that explicit

minimization at each iteration makes the inclusion of additional inequality constraints on state

variables and measurement errors straightforward, and MHE has been found to perform well on

constrained systems. In a review of methods for incorporating constraints into Kalman filtering

approaches [78], Simon found that in a comparison of Kalman methods to an MHE method, the

MHE had lower estimation error, though at increased computational cost.

MHE methods have been found to perform well in comparison to extended Kalman filters

(EKF) for state estimation of nonlinear systems in some cases as well. Haseltine and Rawlings

found a MHE to converge faster than an EKF from poor initial estimates [38], a result also

observed by others [5,51,88]. Alessandri et al. found also for their MHE implementation that

when subject to noise, the root mean square error of the MHE trajectory was smaller than for

an EKF [5]. Similar results have been observed in online applications; Shen et al. found faster

convergence of a MHE than EKF from poor initial estimates in charge estimation of batteries [77],

as did Abdollahpouri et al. for state estimation of a vibrating active cantilever [2]. Further,

Abpdollahpouri et al. observed robust estimation by an MHE in the presence of disturbance and

measurement noise [2].

One of the biggest disadvantages of MHE methods is the computational cost of solving a

minimization problem at every iteration. For state estimation of a large scale water treatment

plant, Busch et al. found an EKF and MHE to perform similarly but the MHE was much more

computationally expensive [30]. Methods to reduce the computational burden of MHE focus on

approximation of the minimization at each MHE iteration, for example with Newton methods

[3, 51, 59, 92], conjugate gradient [3] and gradient methods [3, 60]. Another potential issue

for MHE methods for nonlinear dynamics is that the minimization problem may not be well

posed, and minimization algorithms may converge to only local minimums resulting in poor

state estimates.

This chapter presents a family of MHE methods constructed within the framework of the

proximal point minimization algorithm. The proximal point minimization algorithm as in [71]

naturally gives rise to a quadratic regulating term similar to the implicit penalty terms shown

to be effective for MHE in practice. Proximal operator methods have been effective in signal

processing, with operator splitting methods allowing for applications to a wide range of cost

functionals and state constraints [12,21,25]. While splitting methods may allow for construction

of MHE algorithms which can incorporate additional state constraints, this chapter focuses on
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the unconstrained case. The use of linearization with proximal point MHE for nonlinear state

estimation is explored as a means for real time computation, and implementation of this method

for online stabilization control of a double inverted pendulum on a cart is presented in Chapter

3.

1.3 Proximal Point Moving Horizon Estimation

A family of moving horizon estimation methods will be constructed with functionals fitting a

model trajectory to recent measurement data, in the class Γ0(Rd), the functionals on Rd which

are convex, proper, and lower semi-continuous. The minimization at each iteration of MHE, will

be approached as an application of the proximity operator of the trajectory fitting functional to

the previous state estimate.

Definition 1.3.1. Let the function φ : Rd → [−∞,∞] and γ ∈]0,∞[. The proximity operator of
γφ is defined by

Proxγφ : Rd → Rd : x→ argminz∈Rd φ(z) +
1

2

1

γ
||z − x||2 .

The weight γ will allow for shifting the balance of the proximity operator between minimizing

the fitting functional φ and minimizing the distance to a given prior state estimate.

For time steps k ∈ N, let fk : Rd → Rd be the state transition maps and gk : Rd → Rm be the

state to output maps for the discrete dynamical system

xk+1 = fk(xk) + ηk

yk+1 = gk+1(xk+1) + εk ,
(1.8)

where {ηk}k∈N and {εk}k∈N are sequences of unknown model and measurement noise, respec-

tively, and will be treated in a deterministic setting. The system is further taken to satisfy the

assumptions (A):

(A1) The {fk}k∈N are Lipschitz continuous functions with a Kmin and Kmax in ]0,∞[ such that

the Lipschitz constants {Kk}k∈N satisfy Kmin ≤ Kk ≤ Kmax for all k ∈ N.

(A2) The noise terms are bounded, with η̄ and ε̄ in ]0,∞[, such that for all k ∈ N, ||ηk|| ≤ η̄ and

||εk|| ≤ ε̄.

Suppose that no information is available about the distribution of the noise terms for system

(1.8), then a simple least squares fit may be a good approach. Consider a model fit to only the
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two most recent measurement outputs {yk, yk+1}. For example the fitting functional defined by

φk(z)
.
= ||g(z)− yk||2 + ||g ◦ f(z)− yk+1||2 . (1.9)

With a previous estimate for the state at time k given by x̂k ∈ Rd, let

pk = Proxγφk(x̂k)

= argminz∈Rd
{
||g(z)− yk||2 + ||g ◦ f(z)− yk+1||2 +

1

2γ
||z − x̂k||

}
.

The output of the proximal operator pk provides an MHE type estimate for the state at time k

using the two most recent measurements for the system, and is indirectly fit to the past data by

the term 1
2γ ||z− x̂k||. The estimate pk can be propagated forward in time by the model dynamics

to provide an estimate for the state at time k + 1 or a prediction of the state at future times.

Iterative application of the proximity operator of a model fitting functional provides a framework

for constructing MHE methods. However, note that in general, for φk of the form in (1.9), the

proximal operator is not well defined.

For a given cost functional, iterative application of the proximity operator can generate a

minimizing sequence and is called the proximal point minimization algorithm. In particular, if

φ ∈ Γ0(Rd) and argmin φ 6= {∅} then for all γ ∈]0,∞[, Proxγφ is well defined. Moreover, for any

initial value z0 ∈ Rd with sequence {γk}k∈N in ]0,∞[ such that
∑

k∈N γk =∞ the proximal point

iteration

zk+1 = Proxγkφzk

generates a minimizing sequence of φ [12].

Let {xk}k∈N, a given state trajectory for system (1.4). Discrete time state estimators can be

designed by constructing functionals {φk}k∈N such that (xk + ζk) ∈ argminz∈Rdφk(z), for some

unknown discrepancy term ζk, dependent on the system noise and available model outputs.

Further, let the sequence of functionals {φk}k∈N satisfy the assumptions (B):

(B1) φk ∈ Γ0(Rd) for all k ∈ N

(B2) minz∈Rn φk(z) = φk(xk + ζk) = 0

(B3) There exists ζ̄ > 0 such that for all k ∈ N, ||ζk|| ≤ ζ̄

It may be assumed without loss of generality that minz∈Rn φk(z) = 0 since only the minimizer is

of interest.

Given an initial state estimate x̂0 ∈ Rn and sequence of weighting parameters {γk}k∈N, the

corresponding proximal point MHE observer is then defined as the state estimates {x̂k}k∈N and

8



{pk}k∈N constructed according to the recursion

pk = Proxγkφk x̂k

x̂k+1 = fk(pk) .
(1.10)

Note that at each iteration pk gives a new estimate for the state at time k which in general

is not the current system time, pk may need to be propagated with the system model several

steps forward in time to provide an estimate of the current system state. For simplicity only the

updated estimate x̂k+1, which will serve as the prior state estimate for the next MHE iteration,

will be kept track of here.

Given fitting functionals {φk}k∈N constructed for system (1.8) satisfying the assumptions

(B), the following convergence result for the proximal point MHE (1.10) can be established.

Theorem 1.3.2. If sequence {γk}k∈N in ]0,∞[ satisfies,γk+1 ≥ max
{
K2
kγk,

βk+1γkK
2
k

Kk+1

}
, and∑∞

k=1
1
γk
<∞, then

φk(pk)→ 0 ,

where βk = 2Kk||ζk||+ 2||ηk + ζk+1||+ 1 for all k ∈ N.

Theorem 1.3.2 can be shown by a proof similar to that in [12] for the convergence of the

proximal point minimization algorithm. Before giving the proof it is useful to establish a relation

for the proximity operator from [12].

Proposition 1.3.3. Let φ ∈ Γ0(Rd), x ∈ Rd and γ > 0. If p = Proxγφ(x) then for any y ∈ Rd

||y − p||2 ≤ ||x− y||2 − 2γ(φ(p)− φ(y)) .

Proof. Let φ ∈ Γ0(Rd), the subgradient of φ at x ∈ Rd is defined by

∂φ : Rd → 2R
d

: x→ {u : (∀y ∈ Rd) 〈y − x|u〉+ φ(x) ≤ φ(y)} .

Using Fermat’s rule, for any x ∈ Rd, p ∈ Rd, γ ∈]0,∞]

p = Proxγφ(x) iff (x− p) ∈ ∂γφ(p) , (1.11)

which follows since p = argminy∈Rd γφ(y) + 1
2 ||y − x||

2 iff 0 ∈ ∂γφ(p) + (p − x) therefore iff

(x− p) ∈ ∂γφ(p).

Let x ∈ Rd, and let p = Proxγφ(x), then from (1.11) for any y ∈ Rd

〈y − p|x− p〉+ γφ(p) ≤ γφ(y)

9



therefore also

〈y − p|x− p〉 ≤ −γ(φ(p)− φ(y)) . (1.12)

Moreover, note that

||y − p||2 = ||y − x+ x− p||2 = ||y − x||2 + ||x− p||2 + 2〈y − x|x− p〉

and

2〈y − x|x− p〉 = 2〈p− x + y − p|x− p〉 = −2||x− p||2 + 2〈y − p|x− p〉 .

Taken together,
||y − p||2 = ||y − x||2 − ||x− p||2 + 2〈y − p|x− p〉

||y − p||2 ≤ ||y − x||2 + 2〈y − p|x− p〉 ,

which in conjunction with (1.12) yields the result

||y − p||2 ≤ ||y − x||2 − 2γ( φ(p)− φ(y) ) .

Theorem 1.3.2, can then be established using Proposition 1.3.3.

Proof. From the definition of the proximal point MHE (1.10), for each k ∈ N the state estimates

satisfy

||x̂k+1 − (xk+1 + ζk+1)||2 =||fk(pk)− fk(xk + ζk) + fk(xk + ζk)− (fk(xk) + ηk)− ζk+1||2

≤(||fk(pk)− fk(xk + ζk)||+ ||fk(xk + ζk)− fk(xk)||+ ||ηk + ζk||)2 .

Using the Lipschitz continuity of fk and expanding gives

||x̂k+1 − (xk+1 + ζk+1)||2 ≤K2
k ||pk − (xk + ζk)||2 + 2Kk||pk − (xk + ζk)||( Kk||ζk||+ ||ηk + ζk+1|| )+

K2
k ||ζk||2 + ||ηk + ζk+1||2 + 2Kk||ζk|| ||ηk + ζk+1|| .

(1.13)

Using Proposition 1.3.3 with y = xk + ζk and the assumption φk(xk + ζk) = 0,

||pk − (xk + ζk)||2 ≤ ||x̂k − (xk + ζk)||2 − 2γkφk(pk) ,

and since φk ≥ 0 we obtain

||pk − (xk + ζk)|| ≤ ||x̂k − (xk + ζk)|| .
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Using the two relations above with (1.13) gives,

||x̂k+1 − (xk+1 + ζk+1)||2 ≤

K2
k ||x̂k − (xk + ζk)||2 − 2γkK

2
kφk(pk) + 2Kk||x̂k − (xk + ζk)||( Kk||ζk||+ ||ηk + ζk+1|| )+

K2
k ||ζk||2 + ||ηk + ζk+1||2 + 2Kk||ζk|| ||ηk + ζk+1|| .

(1.14)

Note also that

||x̂k+1 − (xk+1 + ζk+1)|| =||fk(pk)− fk(xk + ζk) + fk(xk + ζk)− (fk(xk) + ηk)− ζk+1||

≤Kk||pk − (xk + ζk)||+Kk||ζk||+ ||ηk + ζk+1|| ,

then

||x̂k+1 − (xk+1 + ζk+1)|| ≤ Kk||x̂k − (xk + ζk)||+Kk||ζk||+ ||ηk + ζk+1|| . (1.15)

Adding (1.14) and (1.15) yields

||x̂k+1 − (xk+1 + ζk+1)||2 + ||x̂k+1 − (xk+1 + ζk+1)|| ≤

K2
k ||x̂k − (xk + ζk)||2 − 2γkK

2
kφk(pk) +Kk||x̂k − (xk + ζk)||( 2Kk||ζk||+ 2||ηk + ζk+1||+ 1 )+

K2
k ||ζk||2 + ||ηk + ζk+1||2 + 2Kk||ζk|| ||ηk + ζk+1||+Kk||ζk||+ ||ηk + ζk+1|| .

(1.16)

Let

αk = K2
k ||ζk||2 + ||ηk + ζk+1||2 + 2Kk||ζk|| ||ηk + ζk+1||+Kk||ζk||+ ||ηk + ζk+1||

and

βk = 2Kk||ζk||+ 2||ηk + ζk+1||+ 1 .

Then (1.16) becomes

||x̂k+1 − (xk+1 + ζk+1)||2 + ||x̂k+1 − (xk+1 + ζk+1)|| ≤K2
k ||x̂k − (xk + ζk)||2−

2γkK
2
kφk(pk) +Kkβk||x̂k − (xk + ζk)||+ αk ,

and rearranging gives

2φk(pk) ≤
1

γk
||x̂k − (xk + ζk)||2 −

1

K2
kγk
||x̂k+1 − (xk+1 + ζk+1)||2+

βk
γkKk

||x̂k − (xk + ζk)|| −
1

K2
kγk
||x̂k+1 − (xk+1 + ζk+1)||+ αk

γkKk
.

11



Therefore for any M ∈ N

2
∑M
k=0 φk(pk)≤ 1

γ0
||x̂0−(x0+ζ0)||2+

∑M
k=1

[
( 1
γk
− 1

γk−1K
2
k−1

)||x̂k−(xk+ζk)||2
]
− 1

K2
M
γM
||x̂M+1−(xM+1+ζM+1)||2+

β0
γ0K0

||x̂0−(x0+ζ0)||+
∑M
k=1

[
(
βk

γkKk
− 1

γk−1K
2
k−1

)||x̂k−(xk+ζk)||
]
− 1

K2
M
γM
||x̂M+1−(xM+1+ζM+1)||+

∑M
k=0

αk
γkKk

,

and since γk+1 ≥ max
{
K2
kγk,

βk+1γkK
2
k

Kk+1

}
for all k ∈ N, the summation terms on the right hand

side are negative, hence

2
M∑
k=0

φk(pk) ≤
1

γ0
||x̂0 − (x0 + ζ0)||2 +

β0

γ0K0
||x̂0 − (x0 + ζ0)||+

M∑
k=0

αk
γkKk

.

Moreover
∑∞

k=1
1
γk
<∞ and the noise and Lipschitz constants are bounded, whence

∞∑
k=0

φk(pk) <∞ ,

therefore also

φk(pk)→ 0 .

Theorem 1.3.2 states that for any fitting functionals φk which can be constructed satisfying

the assumptions (B) a sequence of weighting parameters can be chosen such that the proximal

point state estimates (1.10) will converge with respect to the fitting functionals and so have the

potential to be used to construct a system state observer. The φk though, must be constructed

such that φk(pk) → 0 implies also that ||x̂k − xk|| will be small in the limit in order for the

state estimates to be accurate. Note also that, in general, the weighting parameters must grow

exponentially to ensure convergence.

For nonlinear systems, constructing φk which satisfy the assumptions of Theorem 1.3.2 is

difficult. Construction of state estimators for nonlinear systems is approached here by using

linearization of the dynamics. In the next sections, proximal point MHE methods for linear

dynamics are presented for which stronger convergence results under weaker conditions on the

weighting parameters can be shown.
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1.4 Least Squares Proximal Point Moving Horizon Estimation for

Linear Systems

Consider a linear system of the form (1.4) under the assumptions (A), with matrices {Φk}k∈N in

Rd×d and {Ck}k∈N in Rm×d such that

xk+1 = Φkxk + ηk

yk+1 = Ck+1xk+1 + εk+1 .
(1.17)

State estimates for the system can be constructed using a least squares fit to the measurement

outputs. For example, let {yk+i}N−1
i=0 be N recent measurement outputs and consider a least

squares measure of a model fit to the outputs of the form

N−1∑
i=0

|| yk+i − Ck+izk+i||2 ,

where zk+i+1 = Φkzk+i ∀i ∈ {0, 1, ..N − 1} .

(1.18)

The fit to the model can be written more succinctly with a matrix Gk giving the model to output
map, and vector vk incorporating the model and measurement noise. In particular, let

Gk =


Ck+1Φk

. . .

Ck+N

(∏N−1
i=0 Φk+i

)
 , vk =

 Ck+1ηk + εk

. . .

Ck+N
∑N−2
j=0 (

∏N−1
i=j Φk+i)ηk+j + Ck+Nη(k+(N−1)) + εk+N

 .
Then if {xk}k∈N is the true state trajectory satisfying the linear system (1.17), the least squares

fit (1.18) can be written equivalently as

1

2
||Gk(xk − z) + vk||2 . (1.19)

This section will develop results for proximal point MHE using least squares fitting functionals of

this general form.

For functionals of the form (1.19), let the matrices {Gk}k∈N in R`×d and vectors {vk}k∈N in

R` satisfy the assumptions (C):

(C1) GTkGk is positive definite for all k ∈ N.

(C2) For λkmin the smallest eigenvlaue of GTkGk, there exists a λ̄min such that for all (k ∈ N),

λkmin ≥ λ̄min.

(C3) For a v̄ in ]0,∞[, ||vk|| ≤ v̄ for all (k ∈ N).
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Then for every k, the functional (1.19) has a unique minimizer z∗k, that is given by

z∗k = xk + (GTG)−1GT vk ,

with the minimum value equal to 1
2 ||(I − Gk(G

T
kGk)

−1GTk )vk||2. For convenience and to fit

into the framework of Theorem 1.3.2 least squares fitting functionals for proximal point state

estimation of (1.17) are defined as follows

φk(z) =
1

2
( ||Gk(xk − z) + vk||2 − ||(I −Gk(GTkGk)−1GTk )vk||2 ) ,

which may be written with the discrepancy term ζk = (GTG)−1GT vk more conveniently as

φk(z) =
1

2
||Gk((xk + ζk)− z)||2 . (1.20)

Note that the assumption (C1) is equivalent to the statement that for the number of observations

used in a cost functional of the form (1.18) the system is observable.

From an initial estimate x̂0, let the sequences {x̂k}k∈N and {pk}k∈N be generated according

to the proximal point MHE (1.10) using the cost functionals (1.20), with sequence of weighting

parameters {γk}k∈N in ]0,∞[, then the following proposition holds.

Proposition 1.4.1. If {γk}k∈N are chosen to satisfy the conditions of Theorem 1.3.2 then

||pk − (xk + ζk)|| → 0 .

Proof. Each φk is in Γ0(Rd) and by assumption (C3) the terms {ζk}k∈N are bounded, therefore

the assumptions of Theorem 1.3.2 are satisfied. Then, if weighting terms {γk} are chosen to

satisfy Theorem 1.3.2, the proximal point observer (1.10) generates a sequence {pk}k∈N such

that φk(pk)→ 0. Moreover, using assumption (C2), φk(pk) ≥ λ̄min
1
2 ||pk − (xk + ζk)||2 whence

the result follows ||pk − (xk + ζk)|| → 0.

Weaker conditions on the weighting terms than those given by Theorem 1.3.2 can also be

found to guarantee stability of the state estimates. For each k ∈ N, let Uk ∈ Rd×d a unitary

matrix, and Λk ∈ Rd×d diagonal such that GTkGk = UkΛkU
T
k . The eigenvalues of GTkGk will be

denoted by {λki}di=1.

Proposition 1.4.2. The error terms ek = (x̂k − xk) satisfy the recursion

ek+1 = ΦkUkΛ̄kU
T
k ek + ΦkUkΛ̈kU

T
k ζk − ηk ,
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where the matrices Λ̄k and Λ̈k are diagonal and have the entries

(Λ̄k)i,i =
1

1 + γkλki
, and (Λ̈k)i,i =

γkλki
1 + γkλki

respectively.

Proof. Note from (1.10)

pk = Proxγkφk(x̂k) = argminz∈Rd

{
1

2
||Gk(z − (xk + ζk))||2 +

1

2γk
||z − x̂k||2

}
.

Then computing the gradient and setting it equal to zero yields

pk = (GTkGk +
1

γk
I)−1GTkGk(xk + ζk) +

1

γk
(GTkGk +

1

γk
I)−1x̂k .

Using the fact GTkGk = UkΛkU
T
k ,

pk = Uk(Λk +
1

γk
I)−1ΛkU

T
k xk +

1

γk
Uk(Λk +

1

γk
I)−1UTk x̂k + Uk(Λk +

1

γk
I)−1ΛkU

T
k ζk .

Therefore,

(pk − xk) = Uk((Λk +
1

γk
I)−1Λk − I)UTk xk +

1

γk
Uk(Λk +

1

γk
I)−1UTk x̂k + Uk(Λk +

1

γk
I)−1ΛkU

T
k ζk .

Note that

(Λk +
1

γk
I)−1Λk − I = −Λ̄k,

1

γk
(Λk +

1

γk
I)−1 = Λ̄k, (Λk +

1

γk
I)−1Λk = Λ̈k

then

(pk − xk) = UkΛ̄kU
T
k ek + UkΛ̈kU

T
k ζk .

Therefore,

ek+1 = (x̂k+1 − xk+1) = Φk(pk − xk)− ηk = ΦkUkΛ̄kU
T
k ek + ΦkUkΛ̈kU

T
k ζk − ηk .

The error recursion of proposition 1.4.2, can be used to choose weighting parameters {γk}k∈N
to ensure the error is small relative to the noise. In particular,
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Proposition 1.4.3. Let γ ∈ R such that γ > max

{
Kmax − 1

λ̄min
, 0

}
, if γk > γ for all k ∈ N then

lim
k→∞

||ek|| ≤
κ

1− r
,

where κ = Kmaxζ̄ + η̄ and r =
Kmax

1 + γλ̄min
.

Proof. Using Proposition 1.4.2 and assumption (B2) for all k ∈ N

||ek+1|| ≤ ||Φk||
1

1 + γλ̄min
||ek|| + ||Φk||

γλkmax
1 + γλkmax

||ζk|| + ||ηk|| , (1.21)

and with assumption (A1)

||ek+1|| ≤ Kmax
1

1 + γλ̄min
||ek|| + Kmax||ζk|| + ||ηk|| .

Then ||ek+1|| ≤ r||ek||+ κ. Therefore, ||ek|| ≤ ||e0||rk + κ
∑k

m=0 r
m, and since r < 1

lim
k→∞

||ek|| ≤
κ

1− r
.

Note from the error recursion of Proposition 1.4.2 and corresponding inequality relation

(1.21), if the error is small and expected to not grow under the dynamics, then it is advantageous

to choose weighting terms γk small, such that the contribution of the noise at each iteration is

small. Correspondingly, if the error is relatively large compared to the noise terms then large γk
can be used to reduce the error, though such a choice will also increase the potential contribution

of the noise. For good performance then, the choice of weighting parameters must balance

reduction in error with introduction of noise. In the next section, a modification of the least

squares cost functionals is considered as a means to allow reduction of the noise contributions.

1.5 Subspace Solutions for Least Squares Proximal Point Moving

Horizon Estimation

Let {xk}k∈N a state trajectory for the linear system (1.17) and let the matrices {Gk}k∈N in

R`×d and vectors {vk}k∈N in R` satisfy the assumptions (C). For symmetric positive semidefinite

matrices (PSD) {Pk}k∈N in R`×`, consider fitting functionals to construct proximal point observers

of the form

ψ̂k(z) = (Gk(z − x)− vk)TP (Gk(z − x)− vk) .
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Note that ψ̂k is in Γ0(Rd) and therefore can be used to construct proximal point MHE observers

satisfying the conditions of theorem 1.3.2. In particular, we consider Pk constructed to weight

only the component of the state in the span of the eigenvectors corresponding to the largest

eigenvalues of GTkGk.

Let the diagonal matrix Λk ∈ Rd×d and orthonormal matrix Uk ∈ Rd denote a singular

value decomposition of GTkGk and let {λki}di=1 denote the eigenvalues of GTkGk ordered such

that λk1 ≥ λk2 ≥ . . . λkd > 0. For a p ∈ 1, 2 . . . d let Σk ∈ Rd×d be the diagonal matrix

with
{
λk1

λ2
k1

, . . .
λkp
λ2
kp

, 0 . . . 0

}
on the diagonal and set Vk ∈ R`×` the matrix with columns an

orthornormal basis of the form {Gkuk1 , . . . Gkukd}
⋃
{vkj}`j=d+1, where uki is the ith column of

the orthonormal matrix Uk.

Let Pk be the PSD matrix that satisfies the singular value decomposition

Pk =
[
GkUk Vk

] [Σk 0

0 0

][
UTk G

T
k

V T
k

]
,

where Vk is the matrix with columns {vkj}`j=d+1. Then

min
z∈Rd

ψ̂k(z) =
1

2
min
z∈Rd

{
(Gk(xk − z)− vk)TPk(Gk(xk − z)− vk)

}
=

1

2
min
z∈Rd

{
(xk − z)TGTkGkUkΣkU

T
k G

T
kGk(xk − z)−

2(xk − z)TGTkGkUkΣkU
T
k G

T
k vk + vTk Pkvk

}
=

1

2
min
z∈Rd

{
(xk − z)TUkΛ̃kU

T
k (xk − z)− 2(xk − z)T ĨGTk vk + vTk Pvk

}
,

where Λ̃k ∈ Rd×d is the diagonal matrix with
{
λk1 , . . . λkp , 0 . . . 0

}
on the diagonal, and Ĩ ∈ Rd×d

is block diagonal with the (p× p) identity in the upper block and zeros elsewhere. Therefore for

z∗k = xk + (GTkGk)
−1GTk vk,

z∗k ∈ argminz∈Rdψ̂k(z)

Let ζk = (GTkGk)
−1GTk vk. Fitting functionals to construct proximal point state estimates are

defined as follows

ψk(z) =
1

2
(Gk(xk − z) + vk)

TPk(Gk(xk − z) + vk)−
1

2
(vk −Gkζk)TPk(vk −Gkζk) ,

which may be written in the equivalent and more convenient form,

ψk(z) =
1

2
(Gk(xk + ζk)− z))TPk(Gk((xk + ζk)− z)) . (1.22)
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1.5.1 Computation of the proximal point update

Given a x̂k ∈ Rd and γk ∈]0,∞[ the proximal operator of ψk can be computed as follows

pk = Proxψk
(x̂k) = arg min

z∈Rd

{
(G(z − (xk + ζk)))TPk(G(z − (xk + ζk))) +

1

2

1

γ
(z − x̂k)T (z − x̂k)

}
= arg min

z∈Rd

{
(z − (xk + ζk))TU Λ̃kU

T (z − (xk + ζk)) +
1

2

1

γ
(z − x̂k)T (z − x̂k)

}
.

Let z′, x′k, ζ
′
k, x̂
′
k be vectors in Rd such that

z = Ukz
′ , xk = Ukx

′
k , ζk = Ukζ

′
k , x̂k = Ukx̂

′
k .

Then the following minimization problem is equivalent

arg min
z′∈Rd

{
(z′ − (x′k + ζ ′k))

T Λ̃(z′ − (x′k + ζ ′k)) +
1

2

1

γ
(z′ − x̂′k)T (z′ − x̂′k)

}
, (1.23)

and it can be decomposed into two independent minimization problems.

For x ∈ Rd let (x)p ∈ Rp and (x)pc ∈ Rd−p be such that

x =

[
(x)p

(x)pc

]
.

Denote by Λ̃kp the diagonal matrix in Rp×p with diagonal entries {λk1 . . . λkp} then (1.23) is

composed of the two independent minimization problems

(p′k)p = argmin(z′)p∈Rp
{

((z′)p − ((x′k)p + (ζ ′k)p))
T Λ̃kp((z

′)p − ((x′k)p + (ζ ′k)p))+

1

2

1

γk
((z′)p − (x̂′k)p)

T ((z′)p − (x̂′k)p)

} (1.24)

(p′k)pc = arg min
(z′)pc∈Rd−p

{
1

2

1

γk
((z′)pc − (x̂′k)pc)

T ((z′)pc − (x̂′k)pc)

}
. (1.25)

By computing the gradient and setting it equal to zero the unique minimizer of (1.24) is

given by

(p′k)p = (Λ̃kp +
1

γ
I)−1(Λ̃kp((x

′
k)p + (ζ ′k)p) +

1

γ
(x̂′k)p) ,

and the unique minimizer of (1.25) is trivially

(p′k)pc = (x̂′k)pc .
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Then, for Ukpc ∈ R(d−p)×(d−p) the matrix with columns {uki}di=p+1 and Ukp ∈ Rp×p the matrix

with columns {uki}
p
i=1, pk is given by

pk = Ukp(Λ̃kp +
1

γk
Ip)
−1UTkp(UkpΛ̃kpU

T
kp(xk + ζk) +

1

γk
x̂k) + UkpcU

T
kpc
x̂k . (1.26)

Alternatively, if (Λ̃k + 1
γ Ĩ)† denotes the pseudo inverse of (Λ̃k + 1

γ Ĩ) then pk may be written

equivalently as follows

pk = Uk(Λ̃k +
1

γ
Ĩ)†UTk (UkΛ̃kU

T
k (xk + ζk) +

1

γk
x̂k) + UkpcU

T
kpc
x̂k .

1.5.2 Stability of the state estimates

Following a similar analysis to that given for the least squares cost functionals, weaker conditions

on the weighting parameters {γk}k∈N can be found than those of Theorem 1.3.2 to achieve

stability of the state estimates.

From initial estimate x̂0, let the sequences {x̂k}k∈N and {pk}k∈N be generated according to

(1.10) using the cost functionals (1.22), and the sequence of weighting parameters {γk}k∈N in

[0,∞).

Proposition 1.5.1. The error terms ek = (x̂k − xk) satisfy the recursion

ek+1 = ΦkUkpΛ̄kpU
T
kpek + ΦkUkpcU

T
kpc
ek + ΦkUkpΛ̈kpU

T
kpζk − ηk , (1.27)

where the diagonal matrices Λ̄kp and Λ̈kp in Rp×p have entries

(Λ̄kp)i,i =
1

1 + γkλki
, and (Λ̈kp)i,i =

γkλki
1 + γkλki

,

respectively.

Proof. From (1.26),

(pk − xk) = Ukp((Λ̃kp +
1

γk
Ip)
−1Λ̃kp − Ip)UTkpxk +

1

γk
Ukp(Λ̃kp +

1

γk
Ip)
−1UTkp x̂k+

UkpcU
T
kpc

(x̂k − xk) + Ukp(Λ̃kp +
1

γk
Ip)
−1Λ̃kpU

T
kpζk .

Note that

(Λ̃kp +
1

γk
Ip)
−1Λ̃kp − Ip = −Λ̄kp ,

1

γk
(Λ̃kp +

1

γk
Ip)
−1 = Λ̄kp , (Λ̃kp +

1

γk
Ip)
−1Λ̃kp = Λ̈kp ,

19



then

(pk − xk) = UkpΛ̄kpU
T
kpek + UkpcU

T
kpc
ek + UkpΛ̈kpU

T
kpζk .

Therefore,

ek+1 = (x̂k+1−xk+1) = Φk(pk−xk)−ηk = ΦkUkpΛ̄kpU
T
kpek+ΦkUkpcU

T
kpc
ek+ΦkUkpΛ̈kpU

T
kpζk−ηk .

The term ΦkUkpcU
T
kpc
ek in the error recursion (1.27) can not be influenced by the choice of

weighting parameters. However, if for all k ∈ N, ||ΦkUkpcU
T
kpc
|| < 1 then the error can be made

stable.

Proposition 1.5.2. Let (0 < α < 1) such that for all k ∈ N, ||ΦkUkpcU
T
kpc
|| < α and let λ̄pmin =

mink∈N λkp . If γ > max

{
Kmax − (1− α)

λ̄pmin(1− α)
, 0

}
, then

lim
k→∞

||ek|| ≤
κ

1− r
,

where κ = Kmaxζ̄ + η̄ and r =
Kmax

1 + γλ̄pmin
+ α.

Proof. Using proposition 1.5.1 for all k ∈ N

||ek+1|| ≤ (||Φk||
1

1 + γλ̄pmin
+ α)||ek|| + ||Φk||

γλk1

1 + γλk1

||ζk|| + ||ηk|| ,

and with assumption (A1),

||ek+1|| ≤ (Kmax
1

1 + γλ̄pmin
+ α)||ek|| + Kmax

γλk1

1 + γλk1

||ζk|| + ||ηk|| .

Therefore, ||ek+1|| ≤ r||ek||+ κ, so also ||ek|| ≤ ||e0||rk + κ
∑k

m=0 r
m and r < 1, hence

lim
k→∞

||ek|| ≤
κ

1− r
.

1.6 Numerical Results

In this section, two proximal point MHE methods for state estimation are implemented for the

nonlinear Lorentz dynamical system by utilizing linearization about the current state estimate
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similar to the implementation of the extended Kalman filter (EKF). The dynamics of the Lorentz

system are given by
ẋL = σ(yL − xL)

ẏL = xL(ρ− zL)− yL
żL = xLyL − βzL .

(1.28)

The parameters for the system were taken to be {σ = 10, β = 8/3, ρ = 28} for which the

dynamics are well known to be chaotic. From a given initial condition x0 = [xL(0), yL(0), zL(0)]T ,

the dynamics were simulated using matlab’s ode45 solver. Measurements yk of the system state

were computed every h simulated time units, with

yk = Cx(tk) + εk ,

for C =

[
0 1 0

0 0 1

]
and εk ∼ N (0, σεI). At each measurement time point the state of the system

was also perturbed by adding a Gaussian noise term ηk ∼ N (0, σηI).

To perform state estimation, at each measurement time the dynamics of the system were

linearized around the current state estimate and a forward linear state transition map Φk,

and backward map Φ−1
k , over time intervals of size h, were approximated with matlab’s expm

command, in order to construct a linear approximation of the dynamics of the form (1.17).

State estimates were constructed using a centered proximal point MHE (CPX), utilizing the

three most recent system outputs with cost functionals φcntrk : Rd → R defined by

φcntrk(z)
.
=

1

2
||CΦ−1

k z − yk−1||2 +
1

2
||Cz − yk||2 +

1

2
||CΦkz − yk+1||2 , (1.29)

which are of the form (1.19) for

Gk =

CΦ−1
k

C

CΦk

 and vk =

−CΦ−1
k ηk−1 + εk−1

εk

Cηk + εk+1

 . (1.30)

Note that if A gives the linearized dynamics and the pair (C,A) is observable then GTkGk is

positive definite, hence assumption C1 is satisfied.

At each time step tk+1, with measurement vector qk = [yk−1, yk, yk+1]T and weighting term

γ the CPX update (1.10) was computed by

pk = Uk(Λk +
1

γ
I)−1UTk (GTk qk +

1

γ
x̂k)

x̂k+1 = Φkpk ,
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where Uk and Λk were computed with matlab’s svd command. The returned state estimate for

the system x̃ at each time step was taken to be the model prediction x̃k+2 = Φkx̂k+1.

The restricted subspace functionals ψcntrk of the form (1.22), constructed with the matrices

and vectors (1.30) were also used to compute a proximal point observer (SCPX) using p = 2. At

each time step tk+1, with measurement vector qk = [yk−1, yk, yk+1]T and weighting term γ the

SCPX update (1.10) was computed by

pk = Uk(Λ̃k +
1

γ
Ĩ)†UTk (GTk qk +

1

γ
x̂k) + UkpcU

T
kpc
x̂k

x̂k+1 = Φkpk ,

where again the returned state estimate at each time step was taken to be the model prediction

x̃k+2 = Φkx̂k+1.

Data was generated from the Lorentz system using a measurement time step of size h = .001

over a time interval of length 20. Model noise was generated with standard deviation ση = .1

and measurement noise with standard deviation σε = 5. State estimates were then computed

with a CPX observer using a fixed weighting parameter γ = .5 and a SCPX observer using

fixed γ = 50. For comparison two EKF estimators were also used. One (EKF) using the the

true noise parameters σEKFη = ση and σEKFε = σε. For the other (EKF2), the noise parameters

were tuned for a better fit of the unmeasured state variable xL, the best parameters found

were σEKF2η = .005 and σEKF2ε = 10. The average norm error of the full state estimates x̃k over

the time interval, e = 1
N

∑N
k=1 ||xk − x̃k|| and the average error of only the unmeasured state

variable exL = 1
N

∑N
k=1 |xLk − x̃Lk | were computed for each method. The results of 50 trials are

plotted in Figure 1.1.

Both proximal point methods had smaller estimation error than the EKF, and the SCPX had

the smallest estimation error of the unmeasured state variable xL. A comparison of the SCPX

and EKF fits to the state variable xL are shown in Figure 1.2, which illustrates that the SCPX was

able to more closely recover the extrema of the xL state variable’s oscillations than the other

methods.
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Figure 1.1: Plot of the average norm error (’MTHD’ e) and average xL estimate error (’MTHD’ -
ex) for each state estimation method on the Lorentz system over 50 trials.
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Figure 1.2: Comparison of the SCPX and EKF estimates x̃L, of the Lorentz state variable xL.
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CHAPTER

2

RELAXED PROJECTION CONTROL

Given knowledge of the dynamics for a system and a mechanism for influencing the system

through a set of inputs, a control specifies inputs which achieve a desired system response. In

particular, feedback controls give inputs as a function of the current system state. By computing

inputs based on the current state of the system feedback controls can be robust to noise and

disturbances.

This chapter introduces a method for affine input stabilizing feedback control of nonlinear

discrete and continuous time systems. Stabilizing control is a general framework, in which the

control objective is to stabilize, drive to the origin, the state of the system. The presented control

can be understood as a projection of the system state with respect to a norm parameterized by a

positive definite matrix relaxed with a tuning parameter. Convergence results are established

for both discrete and continuous nonlinear systems, and stronger results are given for discrete

time linear systems. To synthesize controls, a methodology using an ensemble Kalman search

procedure is introduced. Both the control design and implementation are shown on numerical

examples.

2.1 Optimal Feedback Control

Feedback control will be introduced in the discrete time settings. Methods using optimal control

design will be presented first for reference and comparison to the controls which will be
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introduced in later sections.

Consider an affine control input system where for xk ∈ Rd the state of the system at time k

the system dynamics are given by

xk+1 = Axk +Buk (2.1)

for matrices A ∈ Rd×d and B ∈ Rd×m. The control input to the system at time k is specified by

the vector uk ∈ Rm.

This chapter considers stabilizing control problems, where the objective is to identify control

inputs {uk}k∈N such that when applied to the system (2.1) the state of the system is driven to

the origin, that is

xk → 0 .

In particular, feedback control is sought, that is a function h : Rd → Rm such that the control,

given at each time k by uk = h(xk), is stabilizing for the system.

A common approach for control design is to construct a control which is optimal with respect

to a performance measure, where the response of the system under the application of the

control is measured by a cost functional which quantifies how well the control achieves a desired

response. For stabilizing feedback control a common cost to use is a quadratic of the form

J(x, {uk}k∈N)
.
=
∞∑
k=0

xTkQxk + uTkRuk

with x0 = x , and xk+1 = Axk +Buk for all k ∈ N .

(2.2)

The matrices Q ∈ Rd×d and R ∈ Rm×m are symmetric positive definite and weight the quadratic

penalty for the distance of the state from the origin and the penalty for the magnitude of control

effort used at each time step.

If the system (2.1) is such that for all x ∈ Rd there exists a control {uk}k∈N such that

J(x, {uk}k∈N) <∞

then the optimal control which minimizes the cost (2.2) is called the linear quadratic regulator

(LQR) and as given in [9] has a feedback form given by

uk = −(R+BTPB)−1BTPAxk , (2.3)

where the matrix P ∈ Rd×d is the unique symmetric positive definite matrix which is a solution
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of the algebraic Riccati equation, given by

P = AT (P − PB(R+BTPB)−1BTP )A+Q .

The matrices Q and R can be tuned in the cost (2.2) such that the corresponding LQR

feedback control appropriately stabilizes the system while using a feasible amount of control

effort. A similar cost and corresponding feedback control can also be formulated for continuous

time linear dynamical systems. Controls that are optimal with respect to meaningful cost

functions often have other desirable properties such as robustness to noise and the avoidance of

unnecessary or counterproductive control effort.

If a systems dynamics are nonlinear, then solving for an optimal control is difficult. For

quadratic cost functionals of the form (2.2), no general solution is known for nonlinear systems.

Methods for approximating the optimal control have been proposed, for instance by using

linearization of the dynamics, several such methods are reviewed and compared in [13]. Given

the difficulty in constructing optimal controls for nonlinear systems, more direct methods of

control design have also been explored, and will be discussed in the next section.

2.2 Inverse Optimal Control Design

One alternative approach to optimal control design uses control Lyapunov functions (CLF).

Design of control using CLFs was first proposed by Artstein in [11] for continuous time systems,

and similar strategies can also be applied in the discrete time setting.

For an f : Rd → Rd and a g : Rd → Rd×m with control inputs uk ∈ Rm, consider the discrete

time system with dynamics

xk+1 = f(xk) + g(xk)uk . (2.4)

A positive definite function V : Rd → R is a CLF for system (2.4) if for all x ∈ Rd\{0} there

exists a u ∈ Rm such that

V (f(x) + g(x)u)− V (x) < 0 .

That is, for all system states not the origin there is a control input which can reduce the value

of the Lyapunov function sometimes referred to as the ’energy’ of the system, which implies a

control can be constructed which will bring the state of the system to the origin. The definition

for a CLF for continuous time dynamics is analogous and requires that, for each state, a control

exists such that the gradient of the CLF is negative.

As shown in [33,80], given an appropriate CLF for a continuous time dynamical system, a

stabilizing continuous feedback control can be constructed. Moreover, feedback controls can

be designed such that a corresponding cost functional can also be constructed that they are
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optimal with respect to [33, 46]. This suggests a control design approach sometimes called

inverse optimal control design, in which a control is constructed for a system and then certified

as optimal with respect to a constructed cost functional. The approach avoids the need to solve

for an optimal control directly, but if a meaningful cost functional can be constructed for which

a given control is optimal, then that control may still have beneficial properties of optimality.

Finding and verifying a CLF for a nonlinear system is ,in general, still quite difficult. For nonlinear

discrete time systems, Ornelas-Tellez et al. propose a method for systematically constructing

controls in [62].

For systems of the form (2.4) Ornelas-Tellez et al. propose constructing feedback controls by

searching over controls of the form

uk = −(g(xk)
TPg(xk) + E)−1g(xk)

TPf(xk) , (2.5)

by searching over the symmetric positive definite matrices (SPD) P ∈ Rd×d andE ∈ Rm×m which

parameterize the control. Controls are defined as stabilizing for a system if the corresponding

quadratic functional given by

VP (x)
.
= xTPx . (2.6)

is verified as a CLF for the system when using the control [62].

Note that the controls (2.5) have the same structure as the optimal LQR controls (2.3) for

linear systems. Further an LQR control strictly decreases the corresponding functional (2.6)

which is in fact the value function for the optimal cost from a given state [54]. Ornelas-Tellez

propose expanding this linear control structure for nonlinear discrete systems, and they show

further that if a P and E exist such that the control (2.5) is stabilizing for the system (2.4) then

a cost functional can be constructed such that the control is also optimal with respect to that

cost functional [62].

Several methods for searching over the SPD matrices to synthesize a control of the form (2.5)

have been explored including, speed gradient descent [62], particle swarm optimization [63,73],

the extended Kalman filter [7], and an ensemble Kalman filter [86].

This chapter presents a control synthesis methodology similar to that given by Ornelas-Tellez

et al. A related family of controls is proposed which is also parameterized by the SPD matrices

for nonlinear discrete time systems and an analogous control is presented for continuous time

nonlinear systems.

To search for an SPD matrix parameterizing a stabilizing control for a given system, an

ensemble Kalman procedure is presented. The ensemble Kalman filter was introduced for state

estimation in noisy systems by Evensen in [32] and has since been adapted for other inverse

problems including parameter estimation [10, 31] and training of neural networks [37, 50].

Use of ensemble statistics and a Kalman filter update allow for derivative free parallelizable
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methods, in particular the method proposed here does not require an explicit model for the

system dynamics. The control and control synthesis methodology are shown on several numerical

examples and an implementation is presented for stabilization of a double inverted pendulum

on a cart in Chapter 3.

2.3 Control For Nonlinear Discrete Time Systems

Let the discrete dynamics for the states xk ∈ Rd of a system at times k, be described by an

f : Rd → Rd and g : Rd → Rd×m with control inputs uk ∈ Rm, according to

xk+1 = f(xk) + g(xk)uk . (2.7)

The system is further taken to satisfy the assumption:

(A) for all x ∈ Rd the columns of g(x) are nonzero and linearly independent,

Note that the assumption (A) amounts to requiring that each control has an independent

affect on the system dynamics, that is to say, no control inputs are redundant. If that is not the

case it may be possible to reduce the system such that it holds.

Let P ∈ Rd×d a symmetric positive definite (SPD) matrix. For x and y in Rd, let

〈x , y〉P
.
= xTPy , and ||x||P

.
=
√
xTPx

the P inner product and norm, respectively, on Rd.
The stabilizing controls (2.5) proposed by Ornelas-Tellez et al. can also be understood to be

solutions to a minimization problem at each time step. In particular, for E and P symmetric

positive definite (SPD) matrices, the control

uk = −(g(xk)
TPg(xk) + E)−1g(xk)

TPf(xk)

is also the solution to the minimization problem

uk = argminu∈Rm
1

2
||f(xk) + g(xk)u||2P +

1

2
||u||2E .

2.3.1 Projection Control

This chapter considers a related control for stablization, given by

uk = argminu∈Rm
1

2
||f(xk) + g(xk)u||2P . (2.8)
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The control is well defined for all inputs xk, and can be written in the explicit feedback form

uk = −(g(xk)
TPg(xk))

−1g(xk)
TPf(xk) . (2.9)

In particular, ∇u[1
2 ||f(xk) + g(xk)u||2P ] = 0 if and only if g(xk)

TPg(xk)u = −g(xk)
TPf(xk) .

Further, note that g(xk)
TPg(xk) is the Gramian matrix of the columns of g(xk) with respect to

the P inner product, hence by the assumption (A) it is positive definite and therefore invertible.

Proposition 2.3.1. The feedback control (2.9) at each time step k is the projection with respect to
the P norm of the future state in the absence of control f(xk), onto the linear subspace

g(xk)
P⊥ .

= {y ∈ Rd : g(xk)
TPy = 0} .

Proof. Let xk ∈ Rd and to simplify notation let G ∈ Rd×m and ~f ∈ Rd be

G = g(xk) , ~f = f(xk) .

Then

uk = argminu∈Rm
1

2
||~f +Gu||2P .

By the orthogonal decomposition theorem, there exists a ζ ∈ N(GTP
1
2 ) := {z ∈ Rd : GTP

1
2 z =

0} and η ∈ R(P
1
2G) := {z ∈ Rd : ∃v ∈ Rm such that P

1
2Gv = z} such that P

1
2 ~f = ζ + η.

Therefore

1

2
||~f +Gu||2P =

1

2
||P

1
2 ~f + P

1
2Gu||2 =

1

2
〈ζ + η + P

1
2Gu | ζ + η + P

1
2Gu〉

=
1

2
〈ζ | ζ〉+

1

2
〈η + P

1
2Gu | η + P

1
2Gu〉+ 〈ζ | η + P

1
2Gu〉

=
1

2
||ζ||2 +

1

2
||η + P

1
2Gu||2

hence

min
u∈Rm

1

2
||~f +Gu||2P =

1

2
||ζ||2 + min

u∈Rm
1

2
||η + P

1
2Gu||2

but η ∈ R(P
1
2G), therefore

min
u∈Rm

1

2
||~f +Gu||2P =

1

2
||ζ||2

with minimizer u∗ the vector such that P
1
2Gu∗ = −η. Then by applying the minimizer as the

control the next state can be found. Consider that

P
1
2xk+1 = P

1
2 ~f + P

1
2Gu∗ = ζ
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therefore

xk+1 = P−
1
2 ζ .

Note that xk+1 ∈ GP⊥ and further it will be shown that xk+1 is the projection of ~f onto GP⊥

with respect to the P norm.

Suppose it is not, then there exists h ∈ GP⊥ such that ||h − xk+1||P > 0 and ||h − ~f ||2P <

||xk+1 − ~f ||2P . Therefore,

||h− ~f ||2P < ||P−
1
2 ζ − ~f ||2P

||P
1
2h− P

1
2 ~f ||2 < ||ζ − P

1
2 ~f ||2

that is

||P
1
2h− ζ − η||2 < ||η||2

in which case

||P
1
2h− ζ||2 + 2〈P

1
2h− ζ | η〉+ ||η||2 < ||η||2 .

Note that P
1
2h ∈ N(GTP

1
2 ) since h ∈ GP⊥ therefore

||h− xk+1||2P + ||η||2 < ||η||2

a contradiction, hence the proposition holds.

The goal is to find a control of the form (2.9), in particular an SPD matrix P such that the

control is stabilizing for the system (2.7).

Definition 2.3.2. P is globally exponentially stabilizing for system (2.7) if there exists 0 < α < 1

such that for all xk ∈ Rd and uk given by (2.9) the system dynamics satisfy

||xk+1||2P − ||xk||2P < −α||xk||2P .

While P may be stabilizing, if f(xk) is far from the subspace g(xk)
P⊥ the control magnitude

necessary for the projection may be extremely large. The control must be modulated for practical

implementations. A relaxation of the projection is introduced in the next section to allow for

tuning of the control.

2.3.2 Relaxed Projection Control

We consider a relaxation to the control (2.8) weighted by positive parameters {γk}k∈N of the

following form

uk = min
u∈Rm

1

2

(
||xk+1||2P +

1

γk
||xk+1 − xk||2P

)
.
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The control magnitude is modulated through the implicit penalty ||xk+1 − xk||2P . Under the

assumption (A), the control has the explicit feedback form

uk = −(g(xk)
TPg(xk))

−1g(xk)
TP (f(xk)−

1

γk + 1
xk) . (2.10)

Let P ∈ Rd×d a globally exponentially stabilizing matrix for (2.7) with parameter 0 < α < 1.

For a sequence of weighting parameters {γk}k∈N used with P in the feedback control (2.10) the

following proposition holds

Proposition 2.3.3. If for all k ∈ N, γk > 1−
√
α√
α

then the feedback control (2.10) is globally
exponentially stable.

Proof. We show that there exists a 0 < ζ < 1 such that for all xk ∈ Rd, ||xk+1||2P − ||xk||2P <

−ζ||xk||2P and therefore the control is globally exponentially stable.

Let xk ∈ Rd and let

upk = −(g(xk)
TPg(xk))

−1g(xk)
TPf(xk) and urk = (g(xk)

TPg(xk))
−1g(xk)

TPxk .

Then the control is given by

uk = upk +
1

γk + 1
urk ,

and

||xk+1||2P =

〈
f(xk) + g(xk)(upk +

1

γk + 1
urk) , f(xk) + g(xk)(upk +

1

γk + 1
urk)

〉
P

=〈f(xk) + g(xk)upk , f(xk) + g(xk)upk〉P+

2
1

γk + 1
〈f(xk) + g(xk)upk , g(xk)urk〉P +

1

(γk + 1)2
〈g(xk)urk , g(xk)urk〉P .

Note that 〈f(xk) + g(xk)upk , g(xk)urk〉P = 0 since (f(xk) + g(xk)upk) ∈ g(xk)
P⊥ . Therefore,

||xk+1||2P = ||f(xk) + g(xk)upk ||
2
P +

1

(γk + 1)2
||g(xk)urk ||

2
P ,

and

||xk+1||2P − ||xk||2P = ||f(xk) + g(xk)upk ||
2
P − ||xk||2P +

1

(γk + 1)2
||g(xk)urk ||

2
P .

Moreover f(xk) + g(xk)upk is the future state using the projection control and P is stabilizing

with constant α, hence

||xk+1||2P − ||xk||2P < −α||xk||2P +
1

(γk + 1)2
||g(xk)urk ||

2
P .
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Note also that

||g(xk)urk ||
2
P ≤ ||xk||2P

since

||xk||2P = 〈xk − g(xk)urk , xk − g(xk)urk〉P + 2〈xk − g(xk)urk , g(xk)urk〉P + 〈g(xk)urk , g(xk)urk〉P
= ||xk − g(xk)urk ||2P + ||g(xk)urk ||2P .

In particular, (xk − g(xk)urk) is the projection of xk onto g(xk)
P⊥ with respect to the P norm,

therefore 〈xk − g(xk)urk , g(xk)urk〉P = 0.

Then for all xk ∈ Rd,

||xk+1||2P − ||xk||2P < −
(
α− 1

(γk + 1)2

)
||xk||2P .

Let γmin = mink∈Nγk and set ζ =
(
α− 1

(γmin+1)2

)
, then 0 < ζ < 1 since γmin >

1−
√
α√
α

which

completes the proof.

A control design strategy for discrete time systems using this framework is to first identify a

stabilizing P for the system using the projection control (2.9), and then to use Proposition 2.3.3

to construct an appropriate choice of tuning parameters for implementation with the relaxed

projection control (2.10). This strategy will be shown for some numerical examples in section

2.7. Weaker conditions for Stabilizing P and choice of weighting parameters can be found for

discrete time linear systems and are presented in Section 2.5.

2.4 Continuous Time Systems

In many cases the dynamics for a system are described by continuous time differential equations.

While true continuous time feedback control cannot be implemented in practice, it can be useful

to formulate a control in the continuous time setting as will be done for the application example

presented in Chapter 3.

An analogous control to the relaxed projection feedback control (2.9) for discrete time

systems can be constructed for continuous time dynamics. Let the continuous dynamics for the

state x ∈ Rd of a system be given by a f : Rd → Rd and a g : Rd → Rd×m, with control input

u ∈ Rm according to the ordinary differential equation

ẋ = f(x) + g(x)u , (2.11)

with g such that the assumption (A) is satisfied.
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Let h > 0 a small time step, consider the feedback control at state x ∈ Rd given by

uh(x)
.
= argminu∈Rm

{
1

2
||x+ hf(x) + hg(x)u||2P +

1

2

1

ζ
||x(t) + hf(x) + hg(x)u− x||2P

}
.

(2.12)

Under the assumption (A) the control (2.12) has the explicit feedback form

uh(x) = −(g(x)TPg(x))−1(
ζ

h(1 + ζ)
g(x)TPx+ g(x)TPf(x)) .

Note that as the time step h is decreased the control magnitude will increase. Suppose that the

weighting term ζ is scaled with h to modulate the control effort, in particular the weighting term

value is chosen as the function ζ(h)
.
= hγ for some fixed γ > 0, then

uh(x) = −(g(x)TPg(x))−1(
γh

h(1 + γh)
g(x)TPx+ g(x)TPf(x)) .

The continuous time relaxed projection control is defined as

u(x)
.
= lim

h→0
uh(x) , (2.13)

which has the explicit feedback form

u(x) = −(g(x)TPg(x))−1( γg(x)TPx+ g(x)TPf(x) ) . (2.14)

The control functions similarly to the discrete control (2.10), the first term moves the current

state of the system towards the subspace g(x)P⊥ , while the second term counteracts the system

dynamics moving away from the subspace. A similar result for tuning the control as found for

the discrete time case can also be found in the continuous setting.

Definition 2.4.1. An SPD matrix P is globally exponentially stabilizing for the system (2.11) if
there exists a ζ > 0 and α > 0, such that for all x ∈ Rd using the feedback control (2.14), the
system dynamics satisfy

d

dt
[

1

2
||x||2P ] < −α||x||2P

Let P ∈ Rd×d be an SPD matrix globally exponentially stable for system (2.11) with param-

eters ζ > 0 and α > 0. Suppose that the weighting terms for the feedback control (2.14) are

given by the function γ : [0,∞)→ [0,∞).

Proposition 2.4.2. If γ(t) > ζ for all t > 0 then the feedback control (2.14) is globally exponen-
tially stable.

Proof. From initial condition x0 ∈ Rd let x : [0,∞) → Rd the solution of (2.11) using control
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(2.14) with weighting parameters γ(t). Let t > 0,

1

2

d

dt
[xTPx] =x(t)TPf(x)− xTPg(x)(g(x)TPg(x))−1g(x)TPf(x)−

γ(t)xTPg(x)(g(x)TPg(x))−1g(x)TPx .

Note, (g(x)TPg(x))−1 is positive definite by assumption (A) . Then, since γ(t) > ζ,

γ(t)xTPg(x)(g(x)TPg(x))−1g(x)TPx ≥ ζxTPg(x)(g(x)TPg(x))−1g(x)TPx .

Therefore, since P is globally exponentially stable for the parameters (α, ζ)

1

2

d

dt
[xTPx] < −α||x||2P .

Hence the control is globally exponentially stable.

As in the discrete time setting a stabilizing P can be found for a system and then tuned by

choice of weighting parameters to fit to an implementation. A control of this form is designed

and implemented for stabilization control of a double inverted pendulum on a cart in Chapter 3.

2.5 Relaxed Projection Control For Discrete Time Linear Systems

Let (A ∈ Rd×d) and (B ∈ Rd×m) with controls u ∈ Rm describe the discrete dynamics

xk+1 = Axk +Buk , (2.15)

where it is further assumed that the columns of B are linearly independent.

For a given SPD matrix P , using the discrete time feedback projection control (2.9), leads to

the state update recursion

xk+1 = (I −B(BTPB)−1BTP )Axk .

Let

PBP⊥
.
= I −B(BTPB)−1BTP

denote the P norm projection operator onto BP⊥ .

Definition 2.5.1. Let P ∈ Rd×d an SPD matrix, P is stabilizing for (2.15) if with {λi}d1 the
eigenvalues of (PBP⊥A), for all i ∈ {1, 2 . . . , d}, |λi| < 1.

Given a stabilizing P , the discrete time relaxed projection control (2.10), with sequence

35



{γk}k∈N, will give the state update recursion

xk+1 = PBP⊥Axk +
1

1 + γk
B(BTPB)−1BTPxk , (2.16)

and will converge for only mild assumptions on the sequence {γk}k∈N.

An explicit form for the state at each iteration in terms of the initial condition can be derived

for the system when the relaxed projection control (2.16) is used , from which conditions for

convergence easily follow.

Let x0 ∈ Rd be the initial condition for the system (2.15), and let v0 ∈ BP⊥ and z0 ∈ R(B)

give the unique P orthogonal representation, x0 = v0 + z0. For positive weighting parameters

{γk}k∈N let the control inputs be given by the feedback control (2.16), then the following

proposition holds.

Proposition 2.5.2. For all k ≥ 1 the state of the system is given by

xk = (PBP⊥A)kv0 +
k−1∑
m=0

(

(k−1)−m∏
i=0

1

1 + γi
)(PBP⊥A)mz0 . (2.17)

Proof. Employing proof by induction, suppose that

xk = (PBP⊥A)kv0 +

k−1∑
m=1

(

(k−1)−m∏
i=1

1

1 + γi
)(PBP⊥A)mz0 +

(k−1)∏
i=0

1

1 + γi
z0 .

Note

(PBP⊥A)kv0 +
k−1∑
m=1

(

(k−1)−m∏
i=1

1

1 + γi
)(PBP⊥A)mz0 ∈ BP⊥ ,

therefore,

B(BTPB)−1BTP

(PBP⊥A)kv0 +

k−1∑
m=1

(

(k−1)−m∏
i=1

1

1 + γi
)(PBP⊥A)mz0

 = 0

and (z0 ∈ R(B)), so

B(BTPB)−1BTPz0 = z0 .

Hence, it follows

xk+1 = PBP⊥Axk +
1

1 + γk
B(BTPB)−1BTPxk

= (PBP⊥A)k+1v0 +

k∑
m=1

(

(k)−m∏
i=1

1

1 + γi
)(PBP⊥A)mz0 +

(k)∏
i=0

1

1 + γi
z0 .
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Suppose further that P is a stabilizing matrix for (2.15), and let {λi}ni=1 be the eigenvalues

of PBP⊥A with λmax = max{|λi| : i ∈ {1, . . . n}}. Let σ > 0 with λmax < σ < 1 and M > 0 be

such that for any system trajectory {yk}k∈N from initial condition y0 ∈ Rd under the projection

control, the following holds

||yk|| < Mσk||y0|| .

Such a choice of σ and M exist since P is stabilizing, therefore the projection control update is

globally exponentially stable.

With P stabilizing an upper bound on the state can be established for any relaxed projection

control. For weighting parameters {γk}k∈N, let {xk}k∈N be the system trajectory from x0 under

the relaxed projection control (2.16).

Proposition 2.5.3. If {γk}k∈N in ]0,∞[, then

||xk||2 ≤M
(
||v0||2 +

1

1− σ
||z0||2

)
.

Proof. From (2.17),

||xk||2 ≤ ||(PBP⊥A)kv0||2 +
k−1∑
m=0

(

(k−1)−m∏
i=0

1

1 + γi
)||(PBP⊥A)mz0||2 .

Then since (∀k ∈ N), ( 1
1+γk

< 1) it follows that

||xk||2 ≤M(σ)k||v0||2 +M
k∑

m=0

(σ)m||z0||2 ,

and 0 < σ < 1, hence the result.

With a slight restriction to the weighting parameters, the relaxed projection controls will be

stabilizing as is given in the following proposition.

Proposition 2.5.4. Let sequence ({γk}k∈N in ]0,∞[), if there exists η ∈]0, 1[ such that (∀k ∈ N),
1

1+γk
< η, then the relaxed projection control is globally exponentially stable

Proof. Let r = max{σ, η}, then using (2.17),

||xk||2 ≤Mσk||v0||2 +M

k−1∑
m=0

η(k−1)−mσm||z0|| ,
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therefore,

||xk||2 ≤Mσk||v0||2 +Mkrk−1||z0||2 .

Since (0 < σ < 1) and (0 < r < 1), then for a 1 > κ > max{σ, r}, there exists an K such that

for all (x0 ∈ Rd) and (k ∈ N)

||xk|| ≤ K||x0||κk .

Hence the relaxed projection control is globally exponentially stable.

The weighting parameters to tune the control may also be chosen as a function of the state.

It may be useful to modulate the magnitude of the control more when the state is far from the

equilibrium, but allow for faster convergence once the state is near the origin. In particular,

consider the choice

γk =
γ

||xk||α2
, (2.18)

for a (γ > 0) and (α > 0).

Proposition 2.5.5. The relaxed projection control using weighting parameters (2.18) is globally
exponentially stable.

Proof. The proof follows immediately from Proposition 2.5.3 and Proposition 2.5.4. In particular,

by Proposition 2.5.3, with ` = 1
1−σ for all (k ∈ N)

1

1 + γk
≤ (M ||v0||2 +M ||z0||2`)α

γ + (M ||v0||2 +M ||z0||2`)α
,

hence by Proposition 2.5.4 the control is globally exponentially stable.

2.6 Synthesizing a control

Synthesizing a relaxed projection control for a discrete or continuous time system requires

identifying a stabilizing P and an appropriate relaxation to produce the desired system response.

Identifying stabilizing P for a system by searching over the positive definite cone can be

challenging, particularly as the dimension of the system grows large. This section explores

searching over subsets of the positive definite cone by searching over matrices with select

singular value decompositions (SVD).

2.6.1 Discrete Time Scalar Control Case

Suppose that a system has dynamics given by

xk+1 = f(xk) + g(xk)u ,
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where f and g are functions Rd → Rd, and u is a scalar control input. For an SPD matrix

P ∈ Rd×d, the subspace g(xk)
P⊥ is a hyperplane with normal vector Pg(xk). Suppose that there

is a fixed hyperplane with normal vector v ∈ Rd for which the projection and relaxed projection

control exhibit fast convergence for the system. Then it may be effective to construct a P which

fixes the hyperplane, that is for all x ∈ Rd, construct P such that Pg(x) ≈ v. Methods to compute

such P can be constructed by designing singular value decompositions with the desired property.

Constructing an SVD for an SPD matrix requires specifying an orthonormal basis and set

of corresponding singular values. Let v ∈ Rd and {ei}di=1 the standard orthonormal basis. Let

Rv be a rotation matrix that rotates e1 to v, for example Rv constructed with two Householder

reflections as,

Rv = (I − 2wwT )(I − 2e1e
T
1 ) ,

where w = (−e1−v)
||−e1−v|| . Then Rv can be used to construct an orthonormal basis with the first

element given by v. The basis will serve as singular vectors for the constructed SPD matrix with

corresponding singular values [s, 1 . . . , 1] where s has a large magnitude, for example s = 1×106.

In particular, let

Uv =

 | | |
v Rve2 . . . Rved

| | |


and let Pv be constructed with the SVD,

Pv
.
= UvΛU

T
v , (2.19)

where Λ = diag([s, 1 . . . , 1]).

If for all x ∈ Rd, svT g(x) is sufficiently large then Pvg(x) ≈ v. A stabilizing P for the system

is then searched for over the set

P = {Pv : v ∈ Rd, ||v|| = 1} ,

that is over the unit normal vectors in Rd, instead of searching over the whole positive definite

cone.

2.6.2 General Stabilizing P Construction

Consider that in general specifying stabilizing P for both discrete and continuous time sys-

tems may require only specifying the leading singular vectors and singular values. This section

proposes a general form for designing stabilizing P by constructing appropriate SVD decomposi-

tions.
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The first N orthonormal vectors V = {v1, v2, . . . vN} of the SVD basis are taken as variables.

The remaining basis vectors are constructed using Gram Schmidt on the set of vectors

{v1, v2, . . . vN , eN+1, . . . ed} ,

where ei is the ith standard normal basis vector. The resulting basis is denoted

{v1, v2, . . . vN , egN+1 , . . . egd}

and forms the orthonormal matrix

UV =

 | | | |
v1 . . . vN egN+1 . . . egd
| | | |

 .
The first N singular values s = {σ1, σ2, . . . σN} corresponding to the first N basis vectors are also

taken as variables while the remainder are set to the value one. The matrix of singular values is

denoted Λs = diag([σ1 . . . , σN , 1 . . . , 1]).

Stabilizing P are searched for over the SPD matrices PV,s of the form,

PV,s = UV ΛsU
T
V , (2.20)

by searching over the N basis vectors and singular values.

2.6.3 Ensemble Kalman algorithm

In this section, a general ensemble Kalman algorithm is outlined following a similar construction

to [42,76]. Then an implementation to synthesize relaxed projection controls is presented. Note

that the intent of this section is only to present a general approach, future work is needed to

evaluate construction of algorithms of this form to reliably achieve good performance for control

synthesis particularly for high dimensional systems.

Let y ∈ Rm be outputs or performance measures for a system and let ŷ ∈ Rm a desired

performance or output objective, with G : V → Rm : v → y the map from the input space V to

the performance measures. An ensemble Kalman algorithm is constructed to find a minimizer of

the difference between the observed performance and desired performance over the input space,

by solving a problem of the form

min
v∈V

1

2
||G(v)− ŷ||2 . (2.21)

The procedure evaluates the performance map G at an ensemble of input points, then each
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point in the ensemble is updated using summary statistics of the output map over the ensemble

according to the ensemble Kalman filter rule. The procedure is iterated until the mean of the

ensemble achieves a desired performance.

For iteration n, the ensemble of size J will be denoted by {vjn}Jj=1 and the computed

performance measures for each ensemble point j of generation n will be denoted by {yjn}Jj=1,

where for all j ∈ {1, 2 . . . , J}
yjn = G(vjn) .

For iteration n the mean ensemble estimate and mean performance measure are given by

v̄n =
1

J

J∑
j=1

vjn , ȳn =
1

J

J∑
j=1

yjn .

Let Σv,y
n denote the ensemble performance cross co-variance matrix, that is for vj,in element i

of ensemble point j, and yj,in performance measure i of ensemble point j in iteration n, Σv,y
n is

the (d×m) matrix with entries (`, i) given by

(Σv,y
n )`,i =

1

J − 1

J∑
j=1

(vj,`n − v̄`n)(yj,in − ȳin) .

Let Σy,y
n the performance measure co-variance, the (m×m) matrix with entries (`, i) given

by

(Σy,y
n )`,i =

1

J − 1

J∑
j=1

(yj,`n − ȳ`n)(yj,in − ȳin) .

The target performance objective is used in the role of the measurements of the ensemble

Kalman filter. Random perturbation of the objective has been found to be needed for ensemble

Kalman type schemes in order to keep the ensemble from collapsing towards the mean value [18].

Random performance measure objectives {ŷjn}Jj=1 are generated for each ensemble point j at

each iteration n, by random normal perturbation of a given target objective ŷ with co-variance

R, that is

ŷjn ∼ N (ŷ, R) .

At each iteration the ensemble points are updated by the Kalman rule, for all j ∈ {1, 2 . . . , J}

vjn+1 = vjn + Σv,y
n (Σy,y

n +R)−1(yjn − ŷjn) + wjn , (2.22)

where {wjn}Jj=1 are small random multi-normal perturbations with co-variance Σw, that is for all
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j ∈ {1, 2 . . . , J}
wjn ∼ N (0,Σw) .

2.6.4 Stabilizing P Synthesis Procedure

Stabilizing P for both continuous and discrete time systems are searched for using an ensemble

Kalman search methodology over basis vectors V ∈ Rd×N and singular values s ∈ [0,∞)N .

The performance map G : Rd × Rd×N × [0,∞)d → R : (x0, γ, V, s)→ y, constructs matrix PV,s
according to (2.20) and computes the state trajectory from initial condition x0, over a fixed time

interval, under the appropriate control using matrix PV,s. A measure of the performance of the

control is then computed using the state trajectory.

The ensemble is initialized by random normal perturbation from a starting estimate for V

and s. At each search iteration the following procedure is implemented,

Procedure 1 Ensemble Kalman Search Update

1: for j = 1, 2 . . . J do

2: generate random initial state x0, x0 ∼ N (0,Σx0)

3: Set V = V j
n , and s = sjn, compute PV,s with (2.20).

4: Compute the state trajectory from x0 under feedback control using PV,s to terminal time

T .

5: Compute performance measures for the control

6: end for

7: Update the ensemble with rule (2.22).

8: Re-orthoganalize and normalize the ensemble basis elements.

The procedure tests controls from only one initial state at each iteration, while a P is likely

sought which will produce good convergence over a neighborhood of the origin if not globally.

While multiple initial states may be used at each iteration in the procedure, the computational

cost is increased significantly. Using one initial state was found to be sufficient for the applications

presented here.

Implementation For Discrete Time Systems

For discrete time systems a stabilizing P is found by evaluating the associated projection feedback

controls (2.9) using the ensemble Kalman procedure. For the numerical examples which will be

presented, control performance was evaluated after a fixed number of time steps K, using two
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measures of the final state xK given by

y1 = ||xK ||2 and y2 =
〈f(xK)− xK | xK〉P
||f(xK)− xK ||P ||xK ||P

. (2.23)

The criterion y1 measures how close the control has brought the state to the origin. The angle

criterion y2 measures the component of the change in the state due to the system dynamics,

f(xK)− xK , which is in the subspace g(xK−1)P⊥ , and directed towards the origin with respect

to the P inner product. Then, if the subspace is fixed, for example the hyperplane vP⊥ , that is

the component of the change which will be preserved by the control and move the state towards

the origin. Inclusion of this term was found to improve performance for the numerical examples

which will be presented in the next section.

Implementation For Continuous Time Systems

In the continuous time setting to search for stabilizing P requires using relaxed projection

feedback controls (2.14) which require specifying weighting parameters. In the application

example which is presented in Chapter 3 a fixed weighting parameter γ is used and selected to

be small while still achieving convergence in the simulated time interval, such that Proposition

2.4.2 guarantees a large range of parameters for tuning the control.

The state trajectory is computed over a fixed time interval [0, T ] and then evaluated with the

performance measure

y =
1

T − t∗

∫ T

t∗
x(t)TQx(t) dt , (2.24)

where Q ∈ Rd×d is a positive definite matrix, and 0 < t∗ < T . The value y measures how close

with respect to Q the control brings the state of the system to the origin in some interval from a

t∗ up to the final time T .

2.7 Numerical Examples For Discrete Time Dynamics

This section presents two examples of control synthesis and implementation using the ensemble

Kalman search procedure to identify relaxed projection feedback controls for discrete time

systems. A linear example is given first and then a nonlinear example is shown.
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2.7.1 Linear Example

Consider a linear discrete time dynamical system of the form (2.15) with

A =

[
.9974 .0539

−.1078 1.1591

]
, B =

[
.0013

.0539

]
.

The ensemble Kalman procedure was used to search for a stabilizing P of the form (2.19). An

ensemble of 50 vectors in R2 was randomly initialized from the distribution N 2(0, 0.2). At each

search iteration solutions under the control of each ensemble point were simulated for K = 8

steps from a random intial state x0 ∼ N (0, 1). Then the performance measures (2.23) were

computed, with the performance objectives given by

ŷ1 ∼ N (0, .0002) , ŷ2 ∼ N (−.2, .01) .

The search procedure was iterated until satisfactory performance measures were returned, after

about 150 iterations the ensemble mean was,

v = [−.9975,−.07]T .

A reference optimal LQR feedback control was computed using

Q =

[
350 0

0 5

]
, R =

[
3.5
]
.

A relaxed projection control (2.10) using weighting parameters of the form (2.18) was then

chosen such that the control had roughly the same maximal magnitude, and converged in

approximately the same time as the reference LQR control. A suitable choice was found to be

γk =
.45

||xk||32
.

A comparison of the controls is shown in Fig. 2.1
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Figure 2.1: Comparison of LQR and relaxed P control from initial state x0 = [2, 1]T .

Note that the relaxed projection control convergence rate increases as the state approaches

the origin, as can be more clearly seen in Fig. 2.2.
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Figure 2.2: Comparison of convergence of LQR and relaxed projection control on a Log scale.

The relaxed projection control is slower than the LQR control to bring the system near the

origin, but has a reduced overshoot, and transitions to a faster convergence rate once near the

origin.

2.7.2 Nonlinear Example

Consider a system of the form (2.7) with

f(x)
.
=

[
2.2 sin(.5x1) + .1x2

.1x2
1 + 1.8x2

]
, g(x)

.
=

[
0

2 + .1 cos(x2)

]
.

The Ensemble Kalman procedure was used to search for a stabilizing P of the form (2.19).

An ensemble of 100 vectors in R2 was randomly initialized according to N 2(0, 0.2). At each

search iteration solutions under the projection control of each ensemble point were simulated

for K = 4 steps from a random initial state x0 ∼ N (0, 1). Then the performance measures (2.23)
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were computed, with the performance objectives given by

ŷ1 ∼ N (0, .002) , ŷ2 ∼ N (−.2, .01) .

The search procedure was iterated until satisfactory performance measures were returned, after

about 250 iterations the ensemble mean was,

v = [.9950, .1003]T .

A relaxed projection control was then implemented with weighting parameters

γk =
.1

||xk||22
.

The result is shown in Fig. 2.3
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Figure 2.3: Nonlinear example with relaxed projection control implementation.

The parameter choice (2.18) for the relaxed P projection control resulted in smooth system

responses for many choices of γ and α tested.
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CHAPTER

3

REAL-TIME IMPLEMENTATIONS FOR
STABILIZATION OF A DOUBLE

INVERTED PENDULUM

Methods for both state estimation and control of dynamical systems may work in numerical

simulation but fail to be effective for implementation in practice. The requirement for real-

time computation of controls and state estimates can present a major hurdle, particularly as

computational resources for online implementation may be limited while values may be needed

quickly for a method to be feasible. Model based design for both control and state estimation

also require that the model is a close representation of the true system dynamics. For a method

to be effective in practice it must be robust to model errors, additional noise, and potential

disturbances of the system.

This chapter addresses the feasiblity of the state estimation method presented in Chapter

1 and the control method presented in Chapter 2 for practical application. Each method is

implemented online for stabilization of a double inverted pendulum (DIP) on a cart in laboratory

experiments, a benchmark problem in nonlinear control. Their performance is then compared to

methods implemented previously on the DIP system.
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3.1 Double Inverted Pendulum

The double inverted pendulum on a cart is a benchmark problem in nonlinear control. The

systems are relatively inexpensive and simple to operate while sharing important properties

common to many other control systems. Properties which can present challenges for control

and state estimation including; highly nonlinear dynamics, under-actuated control input, system

and measurement noise, and model error. Thus a controls efficacy on the DIP system may

be indicative of how it will perform on other systems of interest. Control of the DIP can also

provide a model for systems such as robotic limbs [74,81], human posture,balance, and gymnast

motion [75,83,90].

The DIP on a cart, consists of two pendulums in tandem connected on a hinge to a cart which

moves on a linear track as shown in Figure 3.1. The methods presented here are implemented for

stabilization control, which refers to moving the cart along the track, such that the pendulums

are balanced vertically over the cart in an upright unstable equilibrium.

3.1.1 Model Of The DIP Dynamics

x

y

α > 0

xc

u > 0

θ > 0

Figure 3.1: Diagram the DIP system.
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A model is used for the DIP system derived using Lagrange’s energy method as is commonly

done in the literature [16,23,36]. In particular, the model derived and given by Bernstein in [14]

is used here.

The state of the system is modeled by six variables: the position of the cart (xc), the angle

between the lower pendulum and normal vector vertical to the cart (α), the angle between the

lower and upper pendulum (θ), and their derivatives (ẋc, α̇, θ̇). The measurements are defined

such that the upright unstable equilibrium is the origin and counterclockwise rotation is positive.

The equations of motions for the system derived using Lagrange’s energy method are[
Mc +

JmK
2
g

r2
mp

+M1 +M2 +Mh

]
x′′c (t)−

[(
M1`1 +M2L1 +MhL1

)
cos(α(t))

+M2`2 cos(α(t) + θ(t))
]
α′′(t)−M2`2 cos(α(t) + θ(t))θ′′(t) +Bcx

′
c(t)[[(

M1`1 +M2L1 +MhL1

)
sin(α(t)) +M2`2 sin(α(t) + θ(t))

]
α′(t) +

2M2`2 sin(α(t) + θ(t))θ′(t)

]
α′(t) +M2`2 sin(α(t) + θ(t))

(
θ′(t)

)2
= Fc(t) ,

−
[(
M1`1 +M2L1 +MhL1

)
cos(α(t)) +M2`2 cos(α(t) + θ(t))

]
x′′c (t)

+
[
M1`

2
1 + I1 +M2L

2
1 +MhL

2
1 +M2`

2
2 + 2M2L1`2 cos(2α(t) + θ(t))

]
α′′(t)

+
[
M2L1`2 cos(2α(t) + θ(t)) +M2`

2
2

]
θ′′(t)

+
[
B1 − 2M2L1`2 sin(2α(t) + θ(t))

(
α′(t) + θ′(t)

)]
α′(t)

−M2L1`2 sin(2α(t) + θ(t))
(
θ′(t)

)2
−g
[
M1`1 +M2L1 +MhL1

]
sin(α(t))− gM2`2 sin(α(t) + θ(t)) = 0 ,

−M2`2 cos(α(t) + θ(t))x′′c (t) +
[
M2L1`2 cos(2α(t) + θ(t)) +M2`

2
2

]
α′′(t)

+
[
M2`

2
2 + I2

]
θ′′(t)−M2L1`2 sin(2α(t) + θ(t))

(
α′(t)

)2
+B2θ

′(t)

−gM2`2 sin(α(t) + θ(t)) = 0 .

The control affects the system by supplying a voltage Vm to a DC motor on the cart, which

applies the driving force on the cart Fc in the first equation of motion. The driving force can be
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written explicitly in terms of the voltage supplied as

Fc(t) =
KgKt(rmpVm(t)−KgKmx

′
c(t))

Rmr2
mp

.

Details for the derivation of the equations of motion can be found in [14,15]. Descriptions of

the parameters and values used for the computations in this paper are supplied in Table 3.3.

Let fd : R6 → R6 and gd : R6 → R6 give the solution of the equations of motion for the

derivative of the system states,and let the control u be the voltage Vm supplied to the cart’s DC

motor, giving the state-space DIP model dynamics

ẋ = fd(x) + gd(x)u where x = [xc, α, θ, ẋc, α̇, θ̇]
T . (3.1)

Both a relaxed projection control and a moving horizon proximal point state estimator were

implemented on a laboratory DIP system using this model.

3.1.2 Experimental Apparatus

The DIP laboratory setup was provided by Quanser Consulting Inc. and consists of an upper (12

in.) aluminium rod connected on a hinge to a lower (7 in.) rod which is in turn connected on a

hinge to a cart (an IPO2 linear servo unit) that moves on a track. Encoders measure the position

of the cart on the track and the pendulum angles, while the corresponding derivatives must be

estimated for a full state description. Control is applied by changing the voltage supplied to a

DC motor that moves the cart on the track.

State estimation and control were implemented in real time through MATLAB Simulink

interfaced with Quanser’s Quarc software on a desktop computer with a 3.20 GHz Intel Core

i5 650 processor and 4 GB of RAM, connected to the DIP system by two Q2-USB DAQ control

boards, with the control voltage applied to the cart by a VoltPAQ amplifier.
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Figure 3.2: Laboratory DIP apparatus.

3.2 Implementation of the Relaxed Projection Control

Many control techniques have been applied for stabilization of the DIP system including the linear

quadratic regulator (LQR) [16,23], state dependent Riccati equation control [16], and neural

network control [16,89], though often the methods are only tested in numerical simulations.

This section implements the relaxed projection control and control synthesis methodology

presented in Chapter 2 for stabilization of the DIP system. The control is shown to compare well

in experimental trials to previous methods that were implemented on the DIP laboratory system

in [14].

Previous Stabilization Controls

The performance of the relaxed projection control is compared with two other feedback controls

which have been previously implemented on the DIP laboratory system. Both controls are
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computed for the DIP model dynamics

ẋ = fd(x) +Bdu , (3.2)

where Bd ∈ R6 is the linearization of gd about the origin.

Let x : [0,∞) → R6 the solution of (3.2) from initial condition x0 ∈ R6 under a control a

measurable function u : [0,∞)→ R. Consider the cost functional

J(x0, u) =
1

2

∫ ∞
0

x(t)TQx(t) +Ru(t)2dt , (3.3)

where Q ∈ R6×6 and R ∈ R are symmetric positive definite matrices. The optimal control that

minimizes the cost functional (3.3) is a feedback control given by

u(x)
.
= −R−1BTVx(x) ,

where V is the solution to the corresponding Hamilton Jacobi Bellman equation [8]. Solving

for V is intractable for the DIP system as is true in general for nonlinear systems. Instead,

approximations to the optimal control are used.

Let the expansion of fd about the origin be given by

fd(x) = Adx+
∞∑
n=2

fdn(x), where fdn(x) = O(|x|n) .

Linear Quadratic Regulator control (LQR) The dynamics of the system are approximated

with the linear model ẋ = Adx+Bdu, for which V is a quadratic and can be solved explicitly with

the algebraic Riccatti equation [8]. Let the positive definite matrix P ∈ R6 be the corresponding

solution, then the linear quadratic regulator (LQR) feedback control is given by

u(x) = −R−1BT
d Px . (3.4)

While linearization is often an effective approach for constructing feedback controls for nonlinear

systems, better approximations to the optimal control can also be made.

Power Series Control (PS) For the system dynamics (3.2) and cost functional (3.3) the

solution V of the corresponding Hamilton Jacobi Bellman equation is approximated using power

series expansions following [35]. In particular, a third order expansion is used which gives the
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feedback control

u(x) = −R−1BT
d

[
Px−

(
ATd − PBdR−1BT

d

)−1
Pfd3(x)

]
, (3.5)

where P is the solution of the algebraic Riccatti equation corresponding to the linearized system.

Full details for the derivation of this control for the DIP model and its implementation on the

laboratory system can be found in [14].

3.2.1 DIP relaxed projection control synthesis

A relaxed projection control as presented in Chapter 2 was implemented for stabilization of

the DIP system. Since the physical model for the system is in continuous time, the continuous

time control formulation was used. Note that the laboratory system can only update the control

in discrete time. While the discrete update map for the system could be approximated using

the continuous time model it would be computationally expensive to do so, therefore to ensure

real-time implementation the control was computed using the continuous time dynamics.

A stabilizing P for the DIP model (3.1) was identified using the ensemble Kalman methodol-

ogy presented in Chapter 2, by searching for a matrix of the form (2.20). Orthonormal bases V

were constructed iteratively. A search was conducted first with only one free basis vector and

the corresponding singular value fixed at 1 × 106. The procedure was found to generally be

very sensitive to the initial estimate and initialization of the ensemble. Some success was found

initializing v1 by computing the solution of the algebraic Ricatti equation corresponding to an

LQR control for the linearized system, then taking an initial estimate for v1 as the eigenvector

of the solution corresponding to the largest eigenvalue. While P using one free basis vector

could be found which were stabilizing in a neighborhood of the origin for simulations, none

were effective on the laboratory system. A search was then conducted over two free basis vectors

and free corresponding singular values. The ensembles were initialized by perturbing stabilizing

v1 and constructing v2 by small random normal perturbations of vectors from the set v⊥1 ∩B⊥d ,

where Bd is the linearization of gd about the origin. The singular values were initialized as

random normal perturbations from s = [1× 106, 1× 105].

The ensemble Kalman procedure was iterated using an ensemble of size J = 80 for a

maximum of 1000 iterations. For each ensemble point the control (2.14) was simulated with

weighting parameter γ = 10. Simulations were computed with MATLAB ode45. Controls were

updated at .001 second intervals, which is the frequency of state measurements for the laboratory

system. The system state in the simulations was also perturbed every .001 seconds by the addition

of small random noise N (0, 5 × 10−5) which was found to improve robustness of the control.

To achieve feasible computation times control simulations for the ensemble points were run in

parallel on twelve cores using the North Carolina State Math Department’s High Performance
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Computing Cluster. Performance of the control was evaluated with the functional (2.23) using

Q = diag([80, 300, 100]). Search Trials were run successively while increasing the total simulation

time up to T = 3(s), and adjusting the performance objective parameters (ŷ, R), until good

control performance could be achieved. Note that a control could fail to stabilize the system, if

the norm of the state surpassed the threshold value 10, then the simulation was terminated and

the performance measure was set to the value 1000.

Of the stabilizing P identified for the model, the best performance on the laboratory DIP

system was achieved using the basis and singular values

v1 =
[
.0758 −.2888 −.9414 .0699 −.1077 −.0904

]T
v2 =

[
.4917 .5334 −.2177 −.5440 .3085 .1877

]T
s =

[
9.99× 105 3.37× 104

]
.

(3.6)

3.2.2 DIP stabilization control implementation

The relaxed projection (RP) control (2.14) using P constructed with (3.6) and fixed weighting

parameter γ = 40 was compared to an LQR control (3.4) and power-series (PS) control (3.5).

The LQR and PS control methodologies were implemented on the DIP laboratory system by

Bernstein in [14]. Out of those tested, for both methods, using Q = diag([30, 350, 100]) and

R = .1 produced feedback control which maintained the smallest average magnitude for the

pendulum angles during stabilization and are the implementations which the RP control is

compared against here.

Numerical simulation The controls were simulated on the DIP model (3.1) using MATLAB

ode45, with the control value updated every .001 seconds from the initial condition

x0 = [.0192, .0025, .0287,−.0392,−.004,−.0242]T .

Figure 3.3 shows that the control and state trajectory for the RP and PS controls appear more

similar to each-other than the LQR control, though for some initial conditions the PS control was

more similar to the LQR than the RP control. The RP control generally induced more oscillatory

state behavior than either the LQR or PS control and had the largest magnitude control efforts.
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Figure 3.3: Comparison of relaxed projection (RP), power-series (PS), and LQR feedback
controls in a numerical simulation for stabilization of the DIP model

Online implementation The controls were implemented on the laboratory DIP system. The

cart started in the center of the track and the pendulums were manually rotated into the upright

position, stabilization control was initiated once measurement values were within .01 of the

balanced state.

For each control, measurement data was collected over a typical twenty second interval. The

average absolute value of the measured states and control voltage are reported in Table 3.1. The

RP control maintained the smallest average magnitude and the smallest variance for all state

values. The average control magnitude for the RP control was almost twice that of the LQR and

PS controls, and the variance more than twice as large. Figure 3.4 illustrates the much more

oscillatory behavior of the RP control, over a typical .5 second interval, than either the LQR or

PS controls. The figure also shows that the angle between the pendulums θ was kept closer to

the balanced state by the RP control.
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Table 3.1: A comparison of values for the mean and variance, on a typical twenty second
interval, of the cart position (xc), pendulum angles (α, θ), and control voltage (u) for the double
inverted pendulum system under stabilization control by each of: LQR control, powerseries
control, and relaxed projection control.

LQR Power-series Relaxed projection

mean variance mean variance mean variance

|α| 3.4 3.03 1.8 1.1 1.4 .85

|θ| 1.9 .81 .9 .35 .46 .09

|xc| 29.4 410.7 36.5 639.4 23.4 285.1

|u| 1.7 1.5 1.8 2.9 2.5 5.0

Figure 3.4: Comparison of relaxed projection (RP), power-series (PS), and LQR feedback
controls for online stabilization of the laboratory system.

3.3 Implementation of Proximal Point Moving Horizon Estimation

Feedback control of the DIP system requires full state information for computation. The laboratory

system has encoders which directly measure the pendulum angles and cart position, however
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their velocities must be estimated.

State estimation for stabilization control of the DIP from an upright start is a non-trivial

problem. Rapid convergence of state estimates, from a potentially poor initial estimate, is

required in order for the feedback control to rescue the system. Moreover, the computation of the

estimates must be fast such that the control can be frequently updated. The estimation method

must also achieve robust performance in the presence of significant model error, measurement

error, and disturbances to be effective. State estimation for DIP stabilization control has been

found to be a challenging task for some methods. In particular, Bernstein found that an extended

Kalman filter was not able to supply state estimates to a power-series controller such that the

system could be stabilized even in simulations, if the full nonlinear model dynamics with white

noise added to the model and measurements was used. While other methods were found to be

simply too computationally intensive to be feasible [14].

This section presents an implementation of a moving horizon proximal point state estimator

as developed in Chapter 1. Linearization of the DIP dynamics about the unstable equilibrium is

used to construct a state estimator which can be computed quickly.

A centered proximal point moving horizon estimator of the form (1.29) was applied to the

DIP system by first constructing a discrete system of the form

xk+1 = Φxk +Wukηk

yk+1 = Cxk+1 + εk+1 ,

using a linearization of the nonlinear DIP model about the unstable equilibrium. The state

transition matrices Φ, Φ−1, W , and W−1 for the linearized system were approximated using

Matlab’s expm command. A fixed (γ > 0) was used in the computation of state estimates

according to proximal point observer (1.10) using the cost functionals (1.29), which at each

iteration requires a solution to

pk = argminz∈R6

1

2
||Hz − qk||2 , (3.7)

for

H =


1
γ I

CΦ−1

C

CΦ

 and qk =


1
γ x̂k

yk−1 − CW−1Bun−1

yk

yk+1 − CWBun

 .
To compute (3.7), an offline QR factorization for H = QHRH was computed with the Matlab

qr command. Then the centered proximal point moving horizon estimation (CPX) with a fixed γ
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was iterated from initial estimate x̂0 = 0 according to

pk = R−1
H QTHqk

x̂k+1 = Φpk +Wuk .
(3.8)

When implemented for the DIP feedback control in real time, the estimates supplied to compute

the control were the model predictions x̃k+2 = Φx̂k+1 + uk+1.

The power series feedback stabilization control was computed with

Q = diag([80, 300, 100, 0, 0, 0]) and R = .5 ,

where the state of the system is x = [xc, θ, α, ẋc, θ̇, α̇]T .

For a comparison study, both a CPX and a second order low pass derivative filter (LDF) were

used to supply state estimates for stabilization control. The CPX estimator (3.8) was applied with

γ = 150, while the LDF was used with Quanser’s supplied parameters: cutoff frequency ω = 100π

for the cart, ω = 20π for the pendulum angles, and damping ratios .9. Stabilization control was

initiated once measurement values were brought to within .01 of the balanced state, the average

value and variance for the measured DIP states when under stabilization control with CPX and

LDF are reported in Table 3.2. Feedback control using the CPX estimates maintained the system

closer to the balanced state and with less variance than with LDF estimates.

Table 3.2: Output of DIP stabilization over (6.5 sec) interval using either centered proximal
point MHE (CPX) or low pass derivative filter (LDF) to compute the feedback control, the
stabilized state is the origin

xc (cm) α (degrees) θ (degrees)
mean variance mean variance mean variance

CPX -.002 5.52 .178 35.2 -.45 3.89
LDF -.119 5.98 1.21 41.8 -.867 6.78

The CPX and LDF differed most for the estimates of the rate of change for θ, the angle

between the pendulums. Figure 3.5 shows a comparison between CPX and LDF angle velocity

estimates using measurement data from the physical DIP system under stabilization control.

The criteria for γ to guarantee CPX estimate convergence given in Proposition 1.4.3 is

γ ≥ 24400 for the DIP system. When values of γ satisfying the condition were used, the CPX

angle velocity estimates had large amplitude high frequency oscillations unsuitable for computing
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Figure 3.5: Comparison of CPX and LDF angle velocity estimates for the real time DIP system
under stabilization control.

a control, γ was reduced two orders of magnitude from the Proposition 1.4.3 criteria before a

reasonable control could be computed. The need for a smaller γ value is likely due to H in (3.7)

becoming more ill conditioned for larger γ and the solutions of (3.7) more sensitive to noise.
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Table 3.3: Description of the parameters and values used in the double inverted pendulum
model for all computations

Symbol Description Value
Bc Viscous Damping at the Motor Pinion 5.4 N.m.s/rad
B1 Viscous Damping at the Lower Pendulum Axis 0.0024 N.m.s/rad
B2 Viscous Damping at the Upper Pendulum Axis 0.0024 N.m.s/rad
g Gravitational Constant 9.81 m/s2

I1 Moment of Inertia of the Lower Pendulum 2.6347E-004 kg.m2

I2 Moment of Inertia of the Upper Pendulum 1.1987E-003 kg.m2

Jm Rotational Moment of Inertia of the DC Motor 3.9E-007 kg.m2

Kg Planetary Gearbox Gear Ratio 3.71
Km Back-ElectroMotive-Force Constant 0.00767 V.s/rad
Kt Motor Torque Constant 0.00767 N.m/A
`1 Length of Lower Pendulum from Pivot to Center of Gravity 0.1143 m
`2 Length of Upper Pendulum from Hinge to Center of Gravity 0.1778 m
L1 Total Length of Lower Pendulum 0.2096 m
L2 Total Length of Upper Pendulum 0.3365 m
Mc Cart Mass 0.57 kg
Mh Hinge Mass 0.170 kg
Mw Extra Weight Mass 0.37 kg
M1 Lower Pendulum Mass 0.072 kg
M2 Upper Pendulum Mass 0.127 kg
Rm Motor Armature Resistance 2.6 Ω
rmp Motor Pinion Radius 6.35E-003 m
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CHAPTER

4

CHARACTERIZATION OF AN OPTIMAL
INNATE IMMUNE RESPONSE AT THE

ONSET OF INFECTION

At the onset of viral infection in a human host, host responses to slow the spread of infection

are generally categorized within two broad classes, the innate immune system and the adaptive

immune system. The innate immune system comprises those responses which are non-specific

to the infecting virus, and are generally understood to be a first line of defense which reduces

the spread of the virus, allowing time for adaptive immune responses, with more specificity, to

become engaged and help to clear the infection [1]. The innate immune system can also clear

many infections on its own and is involved in controlling the adaptive response [45,85].

This chapter considers a component of the innate immune response mediated by Interferon-β,

a signalling molecule that can initiate an antiviral state in cells surrounding sites of infection.

The protection of cells from viral infection to slow the infection spread is approached from an

optimal control perspective. The initial spread of infection is modeled as a stochastic branching

process and the performance of cell protection control strategies are measured with respect to

reducing the expected number of secondary infected cells while limiting the size of the protected

region and total time cells spend protected. Optimal antiviral protection control strategies in the

presented framework are then compared to experimental observations.
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4.1 The Interferon-β Response

Upon infection of a host cell by a virus, host cell pattern recognition receptors can bind conserved

viral-associated molecular patterns initiating a signaling cascade with downstream responses

that can interfere with viral replication, recruit immune effector cells, and initiate adaptive

immune responses [1,84]. For example, the receptor retinoic acid-inducible gene I (RIG-I), binds

double stranded RNA and can induce production of type I interferons [84].

Type I interferons (IFN) are a class of cytokines commonly observed to be produced by

infected cells that can ’interfere’ with viral reproduction through up-regulation of the interferon

stimulated genes [40,44,56]. In particular, interferon-β can be produced by a large variety of

cell types, is found to be produced by cells when infected, and has been shown to function as an

inter-cellular signal that can induce an antiviral physiological state in uninfected cells; providing

a mechanism for protection of cells around sites of infection [44,56,68].

The effectiveness of the IFN response for inhibiting infection is underscored by the fact that a

part of most viral genomes is dedicated to disrupting the production and signalling pathways of

IFN [56]. However, IFN also has the potential to be damaging, and can be a very powerful signal

since most cells can respond to it [44]. High expression of IFN is associated with poor outcomes

of influenza infection in humans [27] and disease states can be exacerbated in animal models

that lack negative regulators for the IFN response [66]. Porritt et al. suggest that an extensive

negative regulatory network within IFN signaling works to strike a balance which ensures

sufficient action to slow viral spread, while limiting damage from immune responses [66].

Both initiation of the production of IFN-β in infected cells and initiation of an antiviral

response in uninfected cells upon exposure to IFN-β have been observed to exhibit what is called

cell intrinsic stochasticity [64,68,93]. A response is a cell intrinsic stochastic response if when a

population of identical cells are exposed to a homogeneous signal, only a random subset respond.

For instance the initiation of IFN-β production by infected cells does not appear to be linked to

the amount of virus in the cell [64,93]. Similarly, Rand et al. determined that heterogeneous

initiation of an anti-viral state in cells was not due to limiting concentrations of IFN-β. In a

detailed study of the initiation of IFN-β production upon infection, Zhao et al. hypothesize that

the stochastic response is due to nearly every constituent part of the signalling pathway being

present in rate limiting quantities [93]. Zhao et al. also tested the response of cells to IFN-β and

in contrast to Rand et al. observed a homogeneous rather than stochastic response. However,

they did not verify that the downstream product they measured corresponded to an antiviral

response as Rand et al. did in their study [68,93].

There has been some speculation about how the observed dynamics of both the production

and response to IFN-β may be optimized to slow the infection [64,68,93]. Less though has been

formally said about what may qualify a response as optimal. The focus of this chapter is on
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constructing a rigorous framework and definition of optimality for the antiviral protection of

uninfected cells.

4.2 Optimal Control Approach

It should be stated first that there is not an expectation that the dynamics of the immune response

are in fact optimal for some measure of immune performance. Rather, it is the intent that by

specifying quantitatively some measure of what is hypothesized to capture good performance, the

discrepancy between what is optimal with respect to that performance measure and observations

of the true system, is revealing. A similar approach was undertaken by Perelson for the adaptive

immune system in [65].

Based on the observation of Rand et al. in [68] that the initiation of an antiviral state in

cells was ’all or nothing’, this work approaches antiviral protection of cells in a simplified setting

where protection in cells is either on or off, and protected cells can not become infected. The

antiviral protection of cells shares much in common with vaccination control at the population

level.

The efficacy of vaccination strategies for preventing the spread of infection have been

commonly and effectively studied using the quantity R0, the expected number of infection

progeny of a single infected individual in a fixed susceptible population [39,70]. The approach

models the initial spread of infection as a stochastic branching process and if a control strategy

brings the native value of R0 to an R∗ with R∗ < 1 then the infection will not be able to invade

or become established within the population [39,70].

In a homogeneously mixing population with potential transmission contacts between indi-

viduals modeled by mass action, a vaccination strategy to reduce the native value of the initial

expected number of infection progeny R0 for an infection, to an R∗, requires that the proportion

(1− R∗

R0
) of the population be vaccinated [39]. Often R∗ is taken to be one, and this proportion is

referred to as the vaccination fraction. Note that for an infection where each infected is initially

expected to infect several individuals, an R0 > 2, to achieve an R∗ near one may require a large

majority of the population to be vaccinated. Within the context of an immune response which

initiates an antiviral state in cells, a majority of the cell population would need to enter into an

antiviral state, which could have severe physiological penalties. This suggests such an immune

strategy may have limited feasibility in a free mixing system and is perhaps instead more suited

for controlling spread of infection within bodies of cells with fixed spatial structure. Indeed,

studies of vaccination control have consistently found underlying structure and dynamics of

infection spread to be important considerations [26,28,67,72,91]. Unlike vaccination control,

an antiviral immune protection response must also consider the timing of cell protection, to

ensure that cells are protected fast enough and long enough to slow spread, but also return to a
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physiologically normal state with limited delay.

The importance of understanding the spatial structure of viral infection in a host is highlighted

by Funk et al. in [34] and both experiments and modeling have been conducted to understand

the role of cell spatial structure and infection dynamics for the IFN response [24,41,52]. Models

of the IFN response incorporating spatial structure have been studied in both discrete [41] and

continuous [52] settings. Detailed modeling of the IFN signaling pathway within cells has also

been explored to understand the dynamics of the IFN response [55,79,85,93].

This work models the spread of viral infection through a body of cells with a fixed spatial

structure using a stochastic branching process. An explicit mechanistic model for the IFN response

is not used, instead an optimal antiviral cell protection response is constructed to serve as a

comparison to the observed dynamics for the true system. The performance of the antiviral

protection response is measured with respect to a given reduction in R0 the expected number of

infection progeny of an initial infected cell.

4.3 Infection Model

The initial spread of infection is modeled by a single infected cell located in a domain D of

susceptible cells, where D is a Lebesgue measurable subset of Rd. The infection is modeled as

a stochastic process with concurrent release of viral progeny from the infected cell upon cell

death. The probability measure space is denoted with the probability triple (Ω,A,P).

Let τη : Ω → [0,∞), the random variable for the time to death of the infected cell, and

Z : Ω× [0,∞) → N be the random variable for the number of virus produced by the infected

cell given time of cell death t > 0, with distributions following the assumptions (A):

(A1) The time to infected cell death τη is exponentially distributed with parameter η > 0, that is

P({ω : τη(ω) ≤ t}) =

∫ t

0
ηe−ηtdt .

(A2) The number of virus produced Z has a Poisson distribution with birth rate parameter

β > 0, then given time of cell death t > 0, for (n ∈ N)

P({ω : Z(ω, t) = n}) =
(βt)ne−βt

n!
.

For each virus j produced by the infected cell, let Xj : Ω→ {0, 1} be the random variable

defined

Xj(ω) =

1 virus j infects a new cell

0 virus j decays before infecting a new cell
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and it is assumed that

(A3) The {Xj}j∈N are independent and identically distributed.

The number of infection progeny of the original infected cell I : Ω→ N is given by

I =
Z∑
j=1

Xj =
∞∑
k=1

k∑
j=1

1{Z=k} ·Xj .

In this model, a control can be implemented to reduce the expected number of new infections

E[I] by reducing the expectation of infection for each virus {E[Xj ]}j∈N. The cell protection

control impacts the {E[Xj ]}j∈N, by changing the amount of time each virus is in contact with

susceptible cells. A virus j can only infect a new cell at time t if the virus position is in the set

S(t), the subset of the domain D which is susceptible at time t. It is assumed that the whole

of the domain D is susceptible unless occluded by the control, with the control a set valued

function

A : [0,∞[ → M(D) := {B ⊆ D | B is Lebesgue measurable},

where A(t) gives the region of the domain D in which cells are protected at time t ≥ 0.

Given a control A, we define the susceptible set

S(t)
.
= D\A(t) .

The expectation for infection by each virus {E[Xj ]}j∈N depends on the infection process

which is described by the following three random variables for each viral progeny j:

- the position of the viral particle in the domain Wj : [0,∞[×Ω→ Rn;

- the time to decay τδj : Ω→ [0,∞] ;

- the time to entering a cell τγj : Ω→ [0,∞[ .

Virus may either decay or successfully enter a cell. If the cell the virus enters is susceptible then

an infection will result, otherwise the virus is assumed to decay on entry. The control A(t) acts

by changing the probability that a cell that is entered by a virus is susceptible at the time of

entry.

In terms of these random variables, Xj can be written

Xj =


1 if τγj ≤ τδj and Wj(τγj ) ∈ Ac(τγj )

0 otherwise.
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The affect of the protection control on the expected number of infection progeny is stud-

ied with the distributions for the infection model random variables satisfying the following

assumptions (A):

(A4) Given j ∈ N, the time to decay τδj of virus j is exponentially distributed with parameter δ,
that is

P({ω : τδj (ω) ≤ t}) =

∫ t

0
δe−δtdt .

(A5) Given j ∈ N, the time to cell entry τγj of virus j is exponentially distributed with parameter γ,
that is

P({ω : τγj (ω) ≤ t}) =

∫ t

0
γe−γtdt .

(A6) The viral position Wj follows a Brownian type motion, with a given transition density function
p : [0,∞)× [0,∞)×Rd×Rd → [0,∞) that is for a measurable set C ∈M(D), from a given
starting position (x0 ∈ D) and starting time t0 > 0, for final time t > t0,

P({ω : Wj(ω, t) ∈ C}) =

∫
C
p(t0, t, x0, x) dx .

4.3.1 Affect of the control on the expected number of infection progeny

Under assumptions (A1)-(A3) the expected number of new infections is computed by

E[I] =
∞∑
k=1

k∑
j=1

E[1{Z=k}Xj ] =
∞∑
k=1

k∑
j=1

P({Z = k})E[Xj ]

=

∞∑
k=1

kP({Z = k})E[Xj ] = E[Xj ]E[Z] (4.1)

and using (A1)-(A2),

E[Z] =

∫ ∞
0

∞∑
k=1

kP({Z(t) = k})ηe−ηtdt =

∫ ∞
0

βt ηe−ηtdt =
β

η
.

It then remains to compute E[Xj ] to find E[I].

Given a control A, and under the assumptions (A4)-(A6)

E[Xj ] = P(Xj = 1)

=

∫ ∞
0

P({τδj > t , Wj(t) ∈ Ac(t)}|τγj = t) dP(τγj = t)
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=

∫ ∞
0

P(τδj > t) P(Wj(t) ∈ Ac(t)) dP(τγj = t)

=

∫ ∞
0

γe−(γ+δ)t

(
1−

∫
A(t)

p(0, t, 0, x)dx

)
dt

=
γ

δ + γ
−
∫ ∞

0

∫
A(t)

γe−(γ+δ)tp(0, t0, x)dx dt . (4.2)

Combining (4.1) and (4.2), the expected number of new infections is

E[I] = E[Z]E[Xj ]

=
βγ

η(γ + δ)
−
∫ ∞

0

∫
A(t)

βγ

η
e−(γ+δ)tp(0, t, 0, x)dx dt (4.3)

from which it is clear that in the absence of control, A(t)
.
= {∅}, the expected number of infection

progeny, often called R0 is given by

R0 = E[I] =
βγ

η(γ + δ)
.

Then given a control A(t), the reduction to R0 achieved by the control is given by

E[I] = R0 −
∫ ∞

0

∫
A(t)

βγ

η
e−(γ+δ)tp(0, t, 0, x)dx dt . (4.4)

The objective of the cell protection immune response to slow the spread of infection will be

quantified as a target reduction to the expected number of infection progeny (4.4). An optimal

cell protection control will be defined such that it contributes a given reduction to the expected

number of infection progeny, while minimizing the area of protection used. The control problem

is framed in a more general setting in the following section.

4.4 Optimal control problem

The control gives the region of protection A(t), a subset of the domain D, at each time t

from initial infection and is therefore a set valued function, whereas much theory is primarily

developed for controls measurable functions taking values in Rd. Directly studying how the

region of protection should evolve in time is difficult, instead note that for a control to be feasible

for (4.4) requires that
⋃
t≥0A(t) be Lebesgue measurable, therefore the feasible controls A

are contained in the Lebesgue measurable subsets of the time and space domain, that is for
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TD = [0,∞[×D,

A ⊂ M(TD) .

For a control A ∈ A the region of protection can be recovered for all (t ∈ [0,∞[) by

A(t)
.
= A

⋂(
t× Rd

)
.

Let g : TD :→ [0,∞[ a function defined by the infection model, with

g ∈ L1(TD, [0,∞[) := {f : TD → [0,∞[ |
∫
TD

f <∞} ,

and let (V ∈ R) a given target value satisfying 0 ≤ V ≤
∫
TD
g dz. Controls are considered which

satisfy a constraint ∫
A
g dz = V .

For example from (4.4), given a target R̄ for the expected number of infection progeny E[I],

g(x, t)
.
=
βγ

η
e−(δ+γ)tp(0, t, 0, x) and V = R0 − R̄ . (4.5)

The set of feasible controls is then

A
.
=

{
A ∈M(TD) :

∫
A
g dz = V

}
.

The goal is to find an control A ∈ A which minimizes a measure of its area. More precisely, let

h ∈ L1(TD, ]0,+∞[) be the cost for including each point of the domain in the control set. The

optimal control problem studied here is

min
A∈A

∫
A
h dz . (P)

Within the context of the infection control, h measures the relative penalty for protecting cells

within a given region or of a given type.

4.4.1 A characterization of optimal controls

An existence result for the optimal control problem (P) and characterization of the solutions

can be found by following the intuition that the set of least cost that achieves the target value,

includes the points of the domain which have the greatest ratio of value to cost. Assume that the

function g
h is integrable over the domain TD, i.e. gh ∈ L1(TD, [0,∞[). For any r > 0, let Lr be the
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corresponding upper level set of the ratio g
h , that is

Lr
.
=

{
z ∈ TD :

g(z)

h(z)
≥ r
}
. (4.6)

Let the function F :]0,∞[→]0,∞[ be a measure of the sets Lr with respect to g, given by

F (r)
.
=

∫
Lr

g(z) dz . (4.7)

Since g and g
h are in L1(TD, ]0,+∞[), one has that F is upper semi-continuous and monotone

decreasing with

F (0) = M and lim
r→∞

F (r) = 0.

In particular, the sublevel set of F

F−1([V,+∞[) = {r ∈ [0,∞[ : F (r) ≥ V }

is closed and bounded in R. Hence, the following is well defined

r̄
.
= max {r ∈ [0,∞[ : F (r) ≥ V } < +∞ (4.8)

The main result is stated as follows:

Theorem 4.4.1. Under the given assumptions on g and h, the optimization problem (P) admits
at least one solution. Moreover, A ∈ A is an optimal solution of (P) if and only if the Lebesgue
measure of each of the sets, A

⋂
Lcr̄ and Ac

⋂(⋃
r>r̄ Lr

)
, is zero.

Proof. For simplicity, denote the Lebesgue measure of a set A ∈ M(TD) by µ(A). The proof is

divided into two main steps:

Step 1. Assume that A is a solution of (P), then the claim is that

µ
(
A
⋂
Lcr̄

)
= 0 and µ

(
Ac
⋂(⋃

r>r̄

Lr

))
= 0 . (4.9)

That the first equality of (4.9) holds will be shown first. Assume for contradiction that

µ
(
A
⋂
Lcr̄

)
> 0

an admissible set Ã ∈ A will be constructed such that∫
Ã
h dz <

∫
A
h dz , (4.10)
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and therefore the set A can not be a minimizer of (P).

From (4.7)-(4.8), one has∫
A
g dµ = V ≤ F (r̄) =

∫
Lr̄

g dµ,

which implies ∫
A∩Lcr̄

g dµ−
∫
Ac∩Lr̄

g dµ =

∫
A
g dµ−

∫
Lr̄

g dµ ≤ 0.

By the continuity of Lebesgue integration, there exists a Lebesgue measurable set H ⊂ Ac ∩ Lr̄
such that ∫

H
g dµ =

∫
A∩Lcr̄

g dµ .

Recalling (4.6), note that g(x) ≥ r̄ · h(x) a.e. x ∈ H

g(x) < r̄ · h(x) a.e. x ∈ A ∩ Lcr̄ ,

whence

r̄

∫
H
h dµ ≤

∫
H
g dµ =

∫
A∩Lcr̄

g dµ < r̄

∫
A∩Lcr̄

h dµ .

Thus, the admissible set Ã = (A ∩ Lr̄) ∪H satisfies (4.10).

To complete this step, it will be shown also that the second equality of (4.9) holds. Assume

for contradiction that there exists r > r̄ such that µ (Ac ∩ Lr) > 0. Again an admissible set Ã

will be constructed such that ∫
Ã
h dz <

∫
A
h dz .

From (4.7)-(4.8), it follows that∫
A
g dµ = V > F (r) =

∫
Lr

g dµ,

therefore also ∫
A∩Lcr

g dµ−
∫
Ac∩Lr

g =

∫
A
g dµ−

∫
Lr

g dµ > 0 .

By the continuity of Lebesgue integration there exists H ⊂ (A ∩ Lcr) such that∫
H
g =

∫
Ac∩Lr

g .
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Again recalling (4.6), g(x) < r · h(x) a.e. x ∈ H

g(x) ≥ r · h(x) a.e. x ∈ Ac ∩ Lr ,

it follows that

r

∫
H
h dµ >

∫
H
g dµ =

∫
Ac∩Lr

g dµ ≥ r

∫
Ac∩Lr

h dµ .

Therefore, the admissible set Ã = (A\H) ∪ (Ac ∩ Lr) satisfies (4.10). This concludes step one.

Step 2. Assume that A is an admissible set that satisfies (4.9). The claim is that A is an

optimal solution of (P ). It will be shown that for any other admissible set B satisfying (4.9)∫
A
h =

∫
B
h ,

therefore each must be an optimal solution.

From (4.9), there exists subsets EA and EB of {z ∈ D : g(z)h(z) = r̄}, such that∫
A
h dµ =

∫
(
⋃
r≥r̄ Lr)

⋃
EA

h dµ and
∫
B
h dµ =

∫
(
⋃
r≥r̄ Lr)

⋃
EB

h dµ .

Therefore,∫
A

h dµ−
∫
B

h dµ =

∫
EA

h dµ−
∫
EB

h dµ =

∫
EA

r̄ · g dµ−
∫
EB

r̄ · g dµ = r̄

(∫
A

g dµ−
∫
B

g dµ

)
= 0

which concludes step two.

A choice of an admissible set which satisfies (4.9) must exist by the continuity of Lebesgue

integration, which completes the proof.

From Theorem 4.4.1, the case where the solution to (P) is unique follows.

Corollary 4.4.2. If F (r̄) = V then Lr̄ is the unique, up to Lesbegue measure zero, solution of (P).

Proof. It will be shown that any set A that is an optimal solution of (P) must satisfy

µ
(
A
⋂
Lcr̄

)
= 0 and µ

(
Ac
⋂
Lr̄

)
= 0 , (4.11)

and is therefore equal to Lr̄ up to measure zero.

The first equality of (4.11) follows immediately from Theorem 4.4.1 and implies

0 =

∫
A
g dµ− F (r̄) =

∫
A
g dµ−

∫
Lr̄

g dµ =

∫
Ac∩Lr̄

g dµ .
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Recalling (4.6), g > 0 on Lr̄. Therefore, µ (Ac
⋂
Lr̄) = 0 which completes the proof.

Note that in general F (r̄) > V since F is upper semi-continuous rather than continuous. In

which case (P) admits many solutions, though all are characterized by Theorem 4.4.1.

4.5 Biologically Feasible Control

The conditions for an area of cell protection given by Theorem 4.4.1 to be optimal for achieving a

given reduction in the initial expected number of new infections, suggest a potentially biologically

feasible feedback control.

If the cost of cell protection to the host is the same at all points in the domain around an

initial infection, then in the framework of problem (P), h is identically one and g may be defined

as in (4.5). Theorem 4.4.1 then states that the optimal region of cell protection follows an upper

level set of g, where g is directly proportional to the viral density on the domain. Therefore, a

cell autonomous feedback control in which an antiviral state is initiated in each cell whenever

the viral density surpasses a threshold in the neighborhood of the cell can produce an optimal

protection control with respect to the framework presented here. If the cost of protection varies

over the domain, then an optimal strategy will vary the viral density threshold required to

initiate protection for each cell in proportion to its cost of protection.

In hosts, anti-viral states in cells are induced by the inter-cellular signaling molecule

Interferon-β. This framework suggests that the role of Interferon-β is to provide an approxi-

mation of the viral distribution, and scale the approximation such that protection is initiated

at an appropriate threshold viral density for a particular infection, perhaps adaptively as the

progression of infection reveals its virility.

If the viral density is nearly homogenous in a large region above the optimal threshold, a

threshold switch will respond too aggressively and fail to be optimal. This is the case of Theorem

4.4.1 in which the solution is not unique, as there is freedom of choice in the viral density

level set, any subset choice of sufficient area produces an equivalent solution. Rand et al. found

cell intrinsic stochastic initiation of an antiviral state in response to homogeneous Interferon-β

exposure [68]. Given the homogeneity of input in the non-unique case, a stochastic response

may best construct an optimal subset selection, and prevent over response. They also report a

higher proportion of cells enter into an antiviral state as the concentration of IFN-β increases. It

many be that such a response can approximate an optimal control in the setting studied here.

Several studies have observed stochastic initiation of the release of Interferon-β by cells upon

infection [64,68,93]. Stochastic initiation of production and release may allow the Interferon-β

distribution to approximate the viral distribution while scaling the Interferon-β concentration

such that antiviral states are initiated at an appropriate viral threshold for the particular infecting

74



virus. Exploring additional cost functionals and control frameworks may provide further insights

into how observed patterns of immune responses contribute to control of infections within hosts.
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