
ABSTRACT

MENNICKE, CHRISTINE VICTORIA. A Data-Driven Framework for Modeling the Neurogenesis-to-
Gliogenesis Switch. (Under the direction of Mansoor Haider.)

Embryonic cortical development is driven by a population of cells called radial glial progenitors

(RGPs), whose divisions produce the neurons and glial cells that build the cortex. At earlier stages

of cortical development, RGPs undergo a period of neuron production called neurogenesis. In the

later stages of cortical development following neuron production, the RGPs shift to producing glial

cells via gliogenesis. This shift is known as the neurogenesis-to-gliogenesis switch, or NGS. It is vital

that the NGS is controlled such that RGPs produce the appropriate quantity of neurons and glia, as

disruptions in neural and glial production can cause significant diseases such as multiple sclerosis,

epilepsy, and glioma. Thus, being able to describe how RGPs divide and differentiate into neurons

and glia during the NGS may give insight into understanding how such diseases progress.

Recently, a cell labeling technique called mosaic analysis with double markers (MADM) was

developed, which labels the offspring (neurons or glia) arising from single RGPs with red and green

fluorescent markers. Specifically, the red and green labels correspond respectively to cells from the

two sublineages that arise after an RGP initially divides. This provides information not only about

the total neurons and glia produced (red+green) by individual RGPs, but also about the symmetry

or asymmetry of neural and glial production (red versus green). Data that counts the offspring of

individual cells is referred to as clonal data.

In this thesis, we develop mathematical models and techniques to analyze a set of clonal MADM

data gathered in embryonic mouse cortices during the NGS. The data provides the total number

of red neurons, red glia, green neurons, and green glia produced by each MADM-labeled RGP, or

‘clone.’ Our focus is on the glia in this dataset, since neurogenesis has previously been studied using

MADM. Thus, our goal is to use mathematical methods to analyze the set of glia per clone and

develop hypotheses describing how RGPs divide and differentiate into glia. In particular, clonal

level data may exhibit different patterns that denote RGP division mechanisms as deterministic or

stochastic. We identify which patterns are present in the set of glia per clone so that we can define

mechanisms that represent RGP behavior during gliogenesis. The work in this thesis thus presents a

data-driven approach for identifying rules governing cell division and differentiation during the

NGS. These rules are then used to model glial production during cortical development.

First, self-organizing maps (SOMs) are used to compare the sets of clones from each individual

mouse (Chapter 2). This comparison is performed to evaluate the consistency of the MADM tech-

nique across multiple samples. Following this investigation, we shift our analysis to sets of clones

pooled together across multiple mice within the dataset. The focus of the subsequent analysis is on

the distribution of clone sizes (total glia per clone) across the entire population of clones. The theory



of branching processes is used to motivate testing the distribution of glia per clone for patterns

classified as ‘stochastic’ (Chapter 3). This produces evidence that a portion of RGPs may behave

stochastically, but the other portion may not. We then use clustering and statistical analysis to fur-

ther delineate the existence of two separate sets of RGPs with different patterns of glial production

(Chapter 4). These results lead us to develop a hypothesis that two subpopulations of RGPs exist:

NGS-RGPs, which show deterministic patterns of glial production, and G-RGPs, whose patterns

of glial production are stochastic. We then test the distribution of glia per clone for deterministic

patterns (Chapter 5). The identification of deterministic patterns in the distribution of glia per clone

for a subset of the clones, but not all clones combined, further supports our hypothesis of separate

subpopulations of NGS-RGPs and G-RGPs. Finally, we use the previous results to propose determin-

istic and stochastic rules to model NGS-RGP and G-RGP divisions during gliogenesis, respectively

(Chapter 6). We simulate sets of clones according to these rules, finding that the simulated clones

produce a distribution of glia per clone that is consistent with the true NGS data. These results

suggest that a combination of deterministic and stochastic rules describe RGP behavior during the

NGS and gliogenesis.
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CHAPTER

1

CLONAL DATA: DESCRIPTION AND

METHODS

1.1 Biological motivation

In this thesis, we study the behavior of progenitor cells that are responsible for building the mam-

malian cerebral cortex during embryonic development. The timing and biological mechanisms

that drive cortical development have been heavily studied, but much remains unclear or unknown.

Here, we will describe what is currently known about the progenitor cell population that builds the

cerebral cortex as it relates to our application. We will then outline the mathematical techniques

that we will use in this thesis to study progenitor cell behavior from data.

1.1.1 Cerebral cortex

The human brain is composed of three major parts: the cerebrum, the cerebellum, and the brain

stem. Of these, the cerebrum is the largest and is responsible for higher functions such as speech,

reasoning, emotions, and learning [31]. The outer layer of the cerebrum is called the cerebral cortex

– we will refer to this as simply the cortex.

Two broad cell types are found in the cortex: glial cells, or glia, and neurons, which are present

in an approximately 5:1 ratio, respectively [31]. The combination of these cell types forms what is

known as gray matter, while other areas of the brain containing no neuronal cell bodies are known as
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white matter [23, 31]. The cortical layer of gray matter is 1.5-4 mm thick in the human brain, and its

neurons and glia are arranged in six layers. These layers are formed during embryonic development

in an ‘inside-out’ fashion, with interior/deep layers formed first, followed by superficial layers (Fig.

1.1) [32]. We discuss the formation of the cortex in the following section.

In larger mammals such as humans, the cortex contains folds to increase the surface area

available for neuronal connections [43]. The cortex of smaller mammals such as mice is smooth.

We can observe this difference by examining cross-sections of human and mouse brains (Fig. 1.2,

cortex indicated). The cortex is present in mammals, and its role in higher functions indicates that

it is a more recent development, phylogenetically [23]. Importantly, disruption of the production

of cortical neurons and glia during development can cause significant diseases such as multiple

sclerosis, epilepsy, and glioma [28, 56].

Figure 1.1 A cross-section of the cortex showing cells distributed in six layers. Layer I is the most super-
ficial and develops last, while layer VI is the deepest and develops first. Adapted with permission from
“The Primary Visual Cortex,” by M. Schmolesky in Webvision: The Organization of the Retina and Visual
System [Internet], H. Kolb, E. Fernandez, R. Nelson, editors, 2005, Salt Lake City (UT): University of Utah
Health Sciences Center. Figure 13, [Nissl stain of the visual cortex reveals the different layers quite clearly.].
Copyright 2020 Webvision.

1.1.2 Cortical development and the neurogenesis-to-gliogenesis switch

At the cellular level, cortical development occurs via a population of cells called radial glial progeni-

tors, or RGPs [38]. RGPs are multipotent progenitor cells, that is, they can undergo cell division to

produce multiple cell types: additional RGPs, neurons, and glia. The production of additional RGPs

via RGP division is called proliferation, and the production of functional cells (neurons and glia) is

called differentiation. All neurons in the cortex are produced from RGP differentiation, and the glia
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Figure 1.2 Human (left) and mouse (right) cerebral cross-sections. In the human brain, the cortex is iden-
tified by the outer layer of gray matter, indicated. Here, the folds which increase the cortical surface area
are visible. In the mouse brain, the cortex is also found in the outer layer of the cerebrum. The cortex is
not folded in mice, but is smooth. Adapted with permission from “Cerebral edema in a patient following
cytoreductive surgery and hyperthermic intraoperative intraperitoneal chemoperfusion” by R.L. Nair, J.
Tobias, G. Stemmerman et al., 2006, World Journal of Surgical Oncology, 4(85). Copyright 2006, Springer
Nature; “Internet-Enabled High-Resolution Brain Mapping and Virtual Microscopy” by S. Mikula, I. Trotts,
J. Stone, E.G. Jones, 2007, NeuroImage. 35(1):9-15.

produced by RGPs include two cell subtypes, astrocytes and oligodendrocytes [6, 16, 38, 41].

The production of the neurons and glia in the cortex via RGP divisions occurs in a defined

series of steps in time and space. This is illustrated in Fig. 1.3 as it occurs in mice. Before the mouse

embryo is eleven days old (denoted E11), the population of RGPs is located in a region called the

ventricular zone (VZ). The white cell body located in the lower left of Fig. 1.3 denotes an RGP in this

region. At this stage of development, the RGPs in the VZ undergo proliferative, symmetric divisions

to increase the population size. Around E11, neurogenesis begins, which expands and continues

until approximately E16 [22, 41]. Evidence has shown that RGPs differentiate asymmetrically to

produce neurons; that is, of the two daughter cells produced from an individual RGP division during

neurogenesis, one daughter cell is an RGP and the other is a neuron [16, 26]. Newly born neurons

travel from the ventricular zone radially outward to form layers of the cortex, using long extensions

of the RGP cell bodies as scaffolding. This process is shown in Fig. 1.3 as the green and orange cells

moving upwards between the dates E13 and E16. Over this time frame, the migration of neurons

produces the six layers of the cortex, with deeper layers established first, and more superficial layers

established later from the newest neurons migrating past the deeper layers [9, 32, 42]. Following

neurogenesis, a portion of the RGP population alters its production from neurons to glia [6, 26,

35, 39, 41] in a phenomenon known as the neurogenesis-to-gliogenesis switch, or NGS. RGPs that

have begun producing glia will no longer produce neurons, and it is estimated that approximately

10-20% of RGPs become gliogenic during the NGS [16, 41]. In mice, gliogenesis peaks after E16 and

continues past birth, which typically occurs at approximately E19. Glia additionally migrate into the

six cortical layers and the layer of white matter (WM) immediately below.
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The precise molecular, cellular, and physiological mechanisms controlling the behavior of RGP

migration, proliferation, and differentiation over the course of neurogenesis and the NGS have been

heavily studied, but much remains unknown. It is known, however, that epidermal growth factor

receptor, or EGFR, is influential during the NGS. EGFR is a cell receptor located in the surface of

RGPs, which accepts the epidermal growth factor (EGF) ligand. Expression of the gene responsible

for EGFR production is increased in the developing brain, and EGFR is known to affect gliogenesis

[5, 8, 15, 17, 47]. However, its precise role remains unclear, with different studies finding it playing

a role in glial production and others finding it important for neurogenesis and neuronal survival

[1, 2, 12, 15, 17, 21, 25, 27, 47, 49, 51]. One research aim in this thesis will be to quantify how EGFR

expression in RGPs influences the NGS and gliogenesis.

1.2 Mosaic Analysis with Double Markers

To generate data describing RGP behavior during the NGS, a cell labeling technique called mosaic

analysis with double markers was utilized. Here, we will describe the general technique and illustrate

the type of data it outputs. The specific dataset used to study RGP behavior during the NGS in this

thesis will be described in Sec. 1.3.

1.2.1 Method

Mosaic analysis with double markers (MADM) is a cell labeling technique that enables the observa-

tion of cell lineages in living organisms (in vivo) [55]. The technique can target any population of

actively dividing cells in a tissue, but for simplicity and consistency, we will describe the method

as acting on radial glial progenitors (RGPs) in the embryonic cortex and tracking their neural and

glial offspring. As previously mentioned, RGPs can undergo two types of divisions during the NGS:

proliferation, dividing to produce two RGPs, and differentiation, dividing to produce neurons or

glial cells that do not themselves divide further. Differentiation can be asymmetric, producing an

RGP and a differentiated cell, or symmetric, producing two differentiated cells. Figure 1.4a illustrates

these division types.

In performing the MADM technique, an RGP is genetically modified at a chosen induction time.

This modification activates red and green fluorescent markers in the two daughter cells arising

from that RGP, respectively; thus, MADM labeling is only observable after the RGP divides. Any

further offspring in the lineages of the two initial daughter cells retain the red and green labeling.

The technique operates sparsely, meaning that only a small number of individual cells in a tissue

will receive the MADM modification, and thus the number of observable red and green cells will be

limited. The level of sparsity or density of cell labeling can be controlled at the induction step of

the process. Fig.1.4b shows a simplified depiction of MADM in the NGS, starting with a single RGP
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Figure 1.3 Diagram of cortical development from RGP divisions over time and space. The RGPs begin in
the ventricular zone (VZ) prior to embryonic day 10, where they proliferate to expand the number of RGPs
in the population. Neurogenesis begins around E11, when RGPs begin to differentiate asymmetrically and
produce one neuron and one RGP per division. As neurons separate from their ancestor RGP, they travel
radially outward along a long extension of the RGP cell body and begin settling into layers. The formation
of the six cortical layers occurs with the deepest layers first, followed by more superficial layers. After
≈E16-E17, about 10-20% of RGPs stop neural production and instead produce glia (denoted ‘macroglia’).
Adapted from “Neural stem cells to cerebral cortex: emerging mechanisms regulating progenitor behavior
and productivity” by N. D. Dwyer, B. Chen, S. Chou, S. Hippenmeyer, L. Nguyen, H. T. Ghashghaei, 2016,
Journal of Neuroscience, 36, p. 11395. Copyright 2016, The Authors.
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induced at some initial time in panel 1, continuing with the proliferation of red and green RGPs

in panel 2, neurogenesis in panel 3, and the onset of gliogenesis during the NGS in panel 4. Panel

5 shows the completion of the process, where all RGPs have fully differentiated into neurons and

glia and no RGPs remain. We can consider this final panel as the point at which the cortex is fully

developed and no more neurons and glia are being produced. The sparsity of the MADM-induced

RGPs in the tissue results in red and green cells being distinctly identifiable when viewed against

unlabeled background cells (depicted as the white cells in the figure).

(a)

(b)

Figure 1.4 (a) Types of divisions an RGP can undergo to form two daughter cells. Producing more RGPs is
called proliferation, and producing neurons or glia is called differentiation. (b) Single cell lineage (clone)
tracked over the NGS with MADM. The first division of the MADM-induced RGP in Panel 2 initializes red
and green labeling in each of its daughter lineages, respectively, which is retained in all neural and glial
offspring in the following panels. White cells represent those not labeled with MADM or not arising from
the lineages of MADM-induced RGPs. The red and green neurons and glia in Panel 5 are thus observed as
arising from the single initial MADM-labeled RGP in Panel 1.

Specifically, the activation of the red and green fluorescent markers is accomplished by targeting

genetic recombination in a designated segment of DNA [55]. This targeted recombination can also

be designed to simultaneously modify other genes, meaning that the genotypes of the red and green

daughter lineages can be distinct from one another. For instance, this may be used to designate the

red lineage as ‘wild type’ cells, having otherwise unaltered DNA, and the green lineage as genetic

‘knockout’ cells, having a particular gene deleted. This type of experiment results in genetic ‘mosaic’

organisms, which have a mixture of red wild type and green knockout cells. Comparison of the red
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and green lineages can give insight into the particular knocked out gene’s function.

1.2.2 Data output

The in vivo nature of the MADM technique implies that the data it produces represents cell behavior

in the dynamic environment of a developing tissue more accurately than in vitro data, which

observes the behavior of cells removed from the living tissue [41, 48]. However, since MADM operates

on living organisms in vivo, the offspring of MADM-labeled cells can only be observed once; the

organism must be sacrificed and the tissue segmented to visualize the red and green RGP offspring.

Thus, the red and green cells observed represent a single temporal snapshot of the total and types

of cells present at the specific time of observation. The data output (counts of total red and green

cells) is therefore highly dependent on the chosen observation time as well as the induction time.

For instance, the red and green cells in each panel in Fig. 1.4B represent the data that would be

gathered if observation occurred at that particular time, given the initial MADM labeling time shown.

We see that earlier observations would show more red and green RGPs and fewer differentiated

neurons and glia, while observations after the cortex is finished developing (Panel 5) would show

only differentiated cells and no RGPs. On the other hand, if MADM induction occurred later in the

process, we would not see any of the neurons or glia that already differentiated in previous panels

since these cells do not divide and therefore cannot activate the red and green labels. That is, in

Fig. 1.4b, if the initial MADM induction occurred in an RGP in Panel 3 and observation occurred

in Panel 5, we would not be able to count any of the red and green neurons produced prior to

Panel 3, and instead would only count the neurons and glia that appear for the first time in Panels

4 and 5. In summary, the data generated by MADM measures the offspring of RGPs produced the

window of time between induction and observation, and it cannot account for offspring arising

before induction or after observation.

MADM can produce two types of data as output, depending on the method for counting the

red and green cells. First, the total red and green neurons and glia in an area of the tissue can be

counted, producing data representing cell densities. In this case, the observed cells are not assumed

to arise from the same initial RGP, but would be considered as representing the neural and glial

output in the RGP population as a whole. Alternatively, if there is some spatial restriction on the

location of a cell’s offspring and MADM labeling is sparse enough, it can be assumed that all red and

green neurons and glia located near each other during observation arose from one single initial RGP.

This gives a type of data called clonal data, where each ‘clone’ in the dataset represents the offspring

of an individual RGP in the population. Clonal data can provide particularly valuable insight into

the uniformity or variability of cell proliferation and differentiation patterns across the population,

since it counts the total and type of cells that each individual RGP produces. That is, in contrast with

the first type of MADM data that measures cell densities in an area of tissue, clonal MADM data
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measures RGP offspring at a finer resolution, at the level of individual cells. Our dataset is clonal,

and we describe this dataset in the following section.

1.3 Clonal Data from the NGS

The data we consider was generated by the Ghashghaei Lab at NC State (http://tghashghaeilab.org)

using MADM induction of RGPs in the embryonic mouse cortex. Mouse embryos received MADM

modification at one of three successive embryonic time points: E15.5, E16.5, or E17.5, corresponding

to 12PM on the 15th, 16th, and 17th days of gestation, respectively. Additionally, each mouse was

designated as being wild type (WT) or knockout (CKO), where WT refers to mice in which both the

red and green MADM sublineages had no further genetic modifications, and CKO refers to mice

in which the green MADM sublineage had the gene for epidermal growth factor receptor (EGFR)

removed. As previously described in Sec. 1.1.2, EGFR is important for the production of glia, and

removal of the gene for EGFR suppresses gliogenesis. Clones coming from CKO mice thus tended to

exhibit very few green glia and an overproduction of red glia (Fig. 1.5a).

All observations were taken at postnatal date P30 when actively dividing RGPs are no longer

present, corresponding to the final panel in Fig. 1.4b. At this time, each mouse cortex was sliced

into 50µm thick cross-sections from front to back. For each mouse, the cross-sections were indexed

in order and mounted on individual microscope slides, then manually examined for red and green

neurons and glia. Cells oriented in vertical columns from deep to superficial cortical layers and

located in the same area of the cortex across neighboring cross-sections were considered to have

originated from the same initial RGP in a given mouse, due to the outward radial movement of cells

coming from individual RGPs (see Sec. 1.1.2). The cells in vertical columns thus gave the total red and

green neurons and glia arising from individual RGP lineages (clones). Fig. 1.5b shows the presence

of one clone across five separate cortical cross-sections. The total neurons and glia produced by

this clone is the total neurons and glia counted across all five cross-sections. We also see that when

the cross-sections are merged, the MADM cells appear as one cohesive group. Several clones were

counted for each mouse. Table 1.1 summarizes how many mice were labeled under each time and

genetic type, as well as how many clones were counted in each mouse. Overall, the full dataset

contains a total of 550 clones coming from 27 individual mice.

Each clone is represented by a vector C∈Z4+ corresponding to the total red glia, total red neurons,

total green glia, and total green neurons arising from one MADM-labeled RGP. Several other features

are recorded for each clone: MADM induction time (E15.5, E16.5, or E17.5), the type of clone (N, G,

Mix, representing clones producing only neurons, only glia, or a mix of the two, respectively), the

location of the observed cells in the six cortical layers (deep, superficial, or all layers), the genotype

regarding the presence or absence of the gene for EGFR in the green MADM sublineage (WT or

CKO), and its mouse of origin (indexed 1-18 for WT mice, 1-9 for CKO mice, with ordering from
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(a) (b)

Figure 1.5 Visualization of MADM cells. (a) Cells in a single CKO clone, showing overproduction of red glia.
(b) MADM offspring produced from a single clone across five cortical cross-sections. The merged cross-
sections show the red and green cells in the entire clone all together. (Image used with permission from
Ghashghaei Lab)

Table 1.1 Total mice and clones per mouse for each MADM induction time (E15.5, E16.5, or E17.5) and
genotype (WT or CKO). The mice having the same induction time and genotype are called replicates.

E15.5 WT E16.5 WT E17.5 WT E15.5 CKO E16.5 CKO E17.5 CKO

Mouse 1 14 23 19 16 18 12
Mouse 2 28 27 20 14 25 17
Mouse 3 15 15 15 15 14 26
Mouse 4 22 23 42 – – –
Mouse 5 18 12 44 – – –
Mouse 6 – 25 8 – – –
Mouse 7 – 23 – – – –

Total Clones 97 148 148 45 57 55
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Table 1.2 Full features of three clones from the dataset. The values in the columns for Red G, Red N, Green
G, and Green N make up the 1×4 vector C for each clone.

Time Red G Red N Green G Green N Clone Type Depth Genotype Mouse ID

E15.5 0 6 0 2 N superficial WT 1
E16.5 79 3 0 2 Mix all layers CKO 5
E17.5 0 0 7 0 G deep WT 17

earliest to latest induction times). Table 1.2 shows three examples of clones with varying features

from the dataset.

1.4 Mechanisms of clonal behavior

1.4.1 Deterministic versus stochastic

In this thesis, our goal is to use mathematical models and techniques to study clonal data from the

NGS and identify what rules of proliferation and differentiation RGPs follow when producing glia. It

is also important to define these rules as either deterministic or stochastic. Under a deterministic

mechanism, RGPs have specific predispositions that control the fate of their offspring. On the other

hand, RGPs operating under a stochastic mechanism all have equal likelihood of different fates, and

the choice of specific fate for each RGP is a random event [29, 45]. For instance, under deterministic

rules, we could define a specific 20% of the RGP population as predisposed to producing glia, while

under stochastic rules, every individual RGP has a 20% chance of producing glia after neurogenesis

(Fig. 1.6). Thus, the two different mechanisms differ in how they control the fate of cells produced

by RGPs. Controlling cell fates is important for producing neurons and glia in the proper balance.

Hence, if we can determine whether the mechanism of control is deterministic or stochastic, we

may gain insight into how that mechanism may be disrupted and lead to diseases characterized by

improper neural and glial production.

It is important to note that for our example in Fig. 1.6, we would not be able to distinguish the

two rules mathematically from the simple observation that≈20% of RGPs in the population produce

glia. That is, the deterministic and stochastic rules described above can produce the same output at

the level of the cell population. However, if the RGP population is perturbed, for instance with a

genetic deletion, the effect of that perturbation may be analyzed to characterize the population as

deterministic or stochastic. If there is a consistent effect across the entire population, this would

point to a stochastic mechanism, whereas if different subsets of RGPs respond differently to the

perturbation, it is more likely that these RGPs have different predispositions and are deterministic.
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Figure 1.6 Illustration of deterministic versus stochastic fate specification in a progenitor population.
In the deterministic case, RGPs are predisposed to specific fates, shown as 20% of the RGPs (4 out of 20)
being both capable and guaranteed of producing glia. In the stochastic case, all RGPs have a 20% chance
of producing glia. Hence, despite the different mechanisms of fate specification, we would expect 20% of
RGPs in the population to produce glia.

It is necessary to have clonal data for this type of experiment, since the response of individual

RGPs must be assessed rather than the effect of the genetic knockout on the total population of

RGPs. Many studies have used genetic knockouts, cell reprogramming, and cellular responses to

external stimuli to classify clonal populations of stem and progenitor cells as having deterministic

or stochastic behavior [10, 19, 20, 50, 54].

In particular, it has been observed that deterministic mechanisms are often characterized by

asymmetric cell divisions and a pairing or correlation between the behavior of the two daughter

lineages of individual cells [16, 34, 44, 54]. Thus, clone sizes and symmetries may be used to classify

cell division mechanisms as deterministic. The development of the MADM technique and its ability

to delineate daughter lineages by color, as well as its ability to perturb one cell population with a

genetic knockout and keep the other unchanged, has resulted in excellent opportunities for analyzing

clonal populations to identify deterministic patterns. Recent studies have used MADM modification

of progenitor cells in a developing tissue to measure the predictability of each progenitor’s offspring,

the relationship between the fates of the two red and green daughter lineages, the mobility of

progenitor offspring as the tissue develops, the uni- or multipotency of the progenitor population,

and the effect of mosaic genetic knockouts [7, 14, 16, 33, 52].
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1.4.2 RGP behavior from clonal MADM data

We next highlight two recent studies with the most direct application to the research presented in this

thesis. Both studies used the MADM technique to obtain clonal data from RGPs in the developing

mouse cortex and attempted to analyze the resulting clones for deterministic or stochastic patterns.

However, both focused on neurogenesis rather than gliogenesis and the NGS.

First, in a study by Gao et al. [16], clonal MADM data was collected in the embryonic mouse

cortex with induction times between E10.5 and E13.5. These induction times coincided with the bulk

of neurogenesis, hence the clones observed predominantly produced large numbers of neurons.

Similar to our data, observations were performed between P10-P30 when only neurons and no

RGPs appeared, and the analysis thus focused on studying the total capacity for neural output in

the clonal population throughout all of cortical development. Clone sizes (total red and green)

and symmetries (red versus green) were examined, revealing predictable patterns of clonal sizes

and consistent ratios of red to green cells. Thus, it was argued that neurogenesis is a deterministic

process. We applied several of these methods to our own data, in particular using Gaussian mixture

models to represent clonal output, which we describe in more detail in Chapter 5.

Second, Picco et al. [40] used staggered induction and observation times in different mice

for the purpose of gathering time-series clonal data of embryonic neurogenesis, with the goal of

constructing a stochastic model of RGP behavior. Fig. 1.7 shows the different MADM induction and

observation times used for individual mice in their study. We note that this method of gathering

clonal MADM data differs from ours, since clones were observed prior to birth, before the cortex

was finished developing. A drawback in this method is that MADM observations performed prior to

birth introduce uncertainty in cell counts, since a cell’s morphology may not yet be clear enough

to indicate whether it is an RGP or a neuron. Their study dealt with this uncertainty by assuming

all observed cells were RGPs. However, we deem this an oversimplification that makes the MADM

data less informative, particularly when attempting to use clonal output to characterize division

behavior as deterministic or stochastic. Additionally, this method requires many mice to generate a

significant number of clones since clone sizes are smaller at earlier time points. The cost of such an

experiment may not be practical, especially considering the uncertainty in the observed data. Still,

the theory of branching processes, which was utilized in this paper for stochastic modeling of the

RGP population, is useful for attempting to model our data from the NGS. This method was also

used to model neurogenesis in Slater et al. [48]. We explore this method in Chapter 4.

Apart from drawing on the techniques from these two studies, we utilize combinatorial, statistical

and machine learning methods to analyze the clonal MADM data and understand the progression

of the NGS. First, in Chapter 2, we use self-organizing maps (SOMs) to compare the sets of clones

from each individual mouse (Table 1.1). This is performed to explore the MADM technique itself,

namely to judge the consistency in the data it produces across different organisms. Following this

12



Figure 1.7 Diagram of MADM induction and observation times of RGPs during the NGS for different mice,
as performed in the study by Picco et al. (Image source: [40]).

investigation, we shift our analysis to the level of clones pooled together across different mice within

the population. The remainder of this thesis deals with clones at this pooled level, thus our analysis

is primarily of the distribution of clone sizes (total glia per clone) across the entire population.

The analysis we perform is intended to investigate whether clones during the NGS produce glia

deterministically or stochastically.

In Chapter 3, we use the theory of branching processes to test the distribution of glia per clone

for stochastic patterns. The results of this chapter lead us to hypothesize that two subpopulations of

RGPs exist, one of which behaves stochastically. Thus, in Chapter 4, we use clustering and statistical

analysis to identify unique behaviors among different subsets of the clones in the data. This work

supports the hypothesis of separate subpopulations of RGPs, and indicates that the other subpopu-

lation behaves deterministically. In Chapter 5, we implement the methods from Gao et al. described

above, using discrete multi-Gaussian mixture models to test the distribution of glia per clone for

the deterministic hallmarks observed during neurogenesis [16]. The work in these three chapters

leads us to propose a set of rules describing gliogenesis in which two subpopulations of RGPs exist:

NGS-RGPs, which behave deterministically, and G-RGPs, which behave stochastically. Finally, in

Chapter 6, we simulate deterministic and stochastic divisions of RGPs according to these rules and

test how well our simulated clones agree with the true clonal MADM dataset during the NGS.
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CHAPTER

2

MOUSE-LEVEL ANALYSIS:

SELF-ORGANIZING MAPS

As described in Sec. 1.3, we consider a set of clonal MADM data gathered during the NGS representing

the total neurons and glia produced by individual radial glial progenitors (RGPs). This data set was

generated from MADM labeling of RGPs in embryonic mouse cortices, and for each time point

considered, multiple mice received MADM labeling: for the WT group, this was 5 mice at E15.5,

7 mice at E16.5, and 6 mice at E17.5 (Table 1.1). It is customary in biological experiments to test

multiple genetically identical organisms under the same conditions to help control for the natural

variability between different organisms; this is referred to as gathering replicate data. If we assume

that apart from their natural variability, a group of mice labeled at the same time point (replicates)

are essentially interchangeable, we can think of the clones coming from each mouse to be random

samples all drawn from the same distribution despite coming from separate organisms. Under this

assumption, it is reasonable to pool together the clones coming from all replicates and analyze

these clones as a single dataset. That is, in Table 1.1, we would consider pooling the clones in each

column, which come from separate mice having the same induction time and genotype (e.g., E15.5

WT).

However, the MADM technique itself introduces uncertainties in the timing of labeling. As a

consequence, the assumption that replicates are at identical developmental stages at the time of

MADM labeling may not hold. In this chapter, we discuss the sources of uncertainty in the timing of
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MADM labeling, then describe how we can use self-organizing maps (SOMs) to better understand

the level of similarity or variability in the clonal data coming from replicate mice.

2.1 Comparing MADM data between mice

2.1.1 Uncertainty of mouse embryo ages

The MADM technique operates on RGPs in vivo, in the actual developing mouse embryo, allowing

an accurate representation of developmental dynamics. However, its in vivo nature prevents us from

knowing the precise age of the embryos, and we must instead use an approximated age. An embryo

originates when a breeding takes place between mice. Pairs of mice breed overnight, but the actual

time of the breeding is unknown since the mice are not observed at all hours. If the observer arrives

the next morning to see that a breeding has taken place, the onset time of the embryo, E0, is taken

to be at midnight of the previous night. The actual onset time of the embryo could have occurred

any time between when the observers leave on the previous day and when they arrive again the

following morning, a window of ≈12-16 hours. Thus, two embryos considered to have originated at

the same time may be as much as 16 hours apart in age. This implies that if MADM labeling occurs in

the two embryos at, say, noon on the 15th day after the breeding takes place (E15.5), both embryos

are assumed to be the exact same age at the time of labeling and hence are assumed to be at the

same stage of development. In this example, these embryos would be E15.5 replicates in our data.

Since mouse gestation is only ≈ 20 days, and since the clonal population in the cortex rapidly

changes during the NGS, a difference in age of 16 hours is enough to produce significantly different

clonal distributions between two mice assumed to be replicates. In particular, differences would

appear in their proportions of clone types - clones containing only neurons, only glia, or a mix of

the two - since the NGS progresses from neurogenesis to gliogenesis over time. We should certainly

expect a degree of variability when comparing replicates’ clones due to randomness in MADM

sampling and natural biological variability. However, large differences in the proportions of clone

types between replicate mice more likely indicates uncertainty in the true age of the embryos at the

time of MADM induction. We may for instance observe that the clones in a particular E15.5 mouse

are more similar to those coming from E16.5 mice, rather than the other E15.5 mice assumed to be

replicates, and thus the particular E15.5 mouse may have been older than presumed at the time of

MADM labeling.

2.1.2 Dealing with MADM uncertainty in the NGS

Since MADM operates in vivo, it is not possible to reduce the uncertainty in embryonic age at

the time of MADM labeling by observing the embryo in real time. Instead, under the assumption

that same-age mice should be at similar stages in cortical development and thus show similar
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behavior at the cellular level, we can consider two mice to have been labeled at approximately

the same age if their clones exhibit similar features when analyzed quantitatively. Specifically, as

cortical development progresses from E15.5 to E17.5, we would expect a decrease in neurogenic

clones and an increase in gliogeneic clones. The percentage of each mouse’s clones containing only

neurons (%N), only glia (%G), or a mix of both (%Mix) should thus be indicative of MADM induction

time. Additionally, clone sizes (total neurons and glia per clone) should distinguish each induction

time, since later inductions track only a subset of an RGP’s overall proliferation and differentiation

behavior.

In Fig. 2.1a, we find the clone type percentages for all clones pooled between replicate mice.

We clearly see the expected pattern of %N decreasing and %G increasing over time, and each time

point can be distinguished from the others by its clone type percentages. However, if this percentage

is calculated for each individual mouse’s clones, significantly more variability is observed in the

breakdown of %N, %G, %Mix for each replicate mouse as seen in Fig. 2.1b. For instance, Mice 3, 9,

and 18 all received MADM induction at different time points, but their clone type percentages are

nearly identical. Based on our assumption that the clone type percentages should be characteristic

of the true age of the embryo at induction, we may consider the case that these three mice were closer

in age at MADM induction than their time point label suggests. Thus, we propose to address the

uncertainty in embryonic age at the time of MADM labeling by comparing each mouse’s population

of clones. We use self-organizing maps to aid clonal comparisons between mice.

(a) (b)

Figure 2.1 Percent of clones containing only neurons (N), only glia (G), or both (Mix). In (a), this percent-
age is calculated for the clones pooled between all WT mice per time point, whereas in (b), the percentages
of clone types are calculated for the clones coming from each individual mouse.
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2.2 Self-Organizing Maps

2.2.1 Description of SOM clustering technique

Clustering is a data analysis technique used to partition data into separate groups, or clusters,

such that data elements in the same cluster are similar to one another and less similar to data

elements in different clusters. Data clustering is a particularly useful method for analyzing or

visualizing the relationships present in complex or high-dimensional data, since it provides an easily

interpretable way to compare different data elements. Depending on the format of the input data

and the information wanted from the partition, different clustering algorithms may be suitable.

We implement clustering using self-organizing maps (SOMs). As with other clustering algorithms,

SOMs sort data elements that are similar to one another into clusters together. However, an SOM also

provides additional information in the clustering by arranging the clusters into an ordered grid of

nodes, typically one- or two-dimensional, such that the data sorted into neighboring nodes is more

similar than data sorted into non-neighboring nodes. This makes an SOM grid not only a clustering

diagram, but also a form of similarity graph [24]. Additionally, this distinguishes SOMs from the

k-means clustering algorithm [30], which places data elements into clusters with no particular

ordering relative to one another.

Figure 2.2 illustrates a simple representation of data sorted into a 1×5 SOM. Here, each data

element is a 2×1 vector, shown plotted as points in the 2-D data space (x y -plane). The SOM forms

five clusters in the data, one for each node of the SOM, and clusters together the elements that are

closest in the x y -plane. We outline the data points placed into clusters together in dashed circles.

These groups of data points are mapped to the 1×5 grid of nodes in the SOM, such that the clusters

closer in the x y -plane are in neighboring nodes. In the figure, the outlines of the clusters in the

x y -plane are color-coded according to the node in the SOM to which they belong. We notice that

in this example, the x values of the data elements sorted into each node increase monotonically

when traversing the nodes in the map from left to right. If we examined the y values of the data

elements sorted into each node, we would not see the same monotonic increase. In this example,

we would say that the SOM has ‘sorted’ the data according to the x values. Generally, because the

SOM clustering operates on the distances between elements, it partitions the data into separate

clusters according to the component(s) of the data with the greatest variance across the set of data

elements.

2.2.2 Implementation

The following steps are taken in a one-dimensional SOM with q clusters and R input data elements

(vectors) vr , r = 1, ..., R each of dimension D :

For a 1-D SOM with q clusters, sorting r data vectors vr each of dimension D :
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Figure 2.2 Simple representation of data sorted into five clusters in a 1× 5 SOM. Elements are clustered
together according to their closeness in the data space. The SOM then sorts these clusters into the grid of
five nodes so that the data points in neighboring nodes (1 and 2, 2 and 3, etc) are closer in the data space.

1. Initialize each cluster with a weight vector w j , j = 1, ..., q , where each weight has dimension

D

2. For each input vector vr , find its distance from each weight vector

d (vr , w j ) = ||vr −w j ||2, j = 1, ..., q

and select the weight w ∗j with the smallest distance to vr as the ‘winner’

3. Update the weight of the winning node w ∗j as

w ∗new
j =w ∗j +η(k )(vr −w ∗j )

where η(k ) is the learning rate function at iteration k and depends on an initial learning rate

η0 and learning rate decay parameter a , 0<a<1:

η(k ) =η0e(−k∗a ).

4. For each data vector vr , find the neighbors wn of its winning node w ∗j by finding any nodes
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within a Gaussian neighborhood w ∗j , where the variance of the Gaussian neighborhood func-

tion is

γ(k ) = γ0e(−k∗b )

for initial variance γ0 > 0 and decay parameter 0< b < 1, then update the neighbors according

to

w new
n =wn +γ(k )(vr −wn )

5. Repeat steps 2-4, starting with the updated weights, until some stopping criteria is met, for

instance a maximum number of iterations k .

We utilize the MATLAB SOM toolbox in all SOM implementations presented. Other than the

data itself, the clustering algorithm takes as input the number of iterations and the parameters a , b ,

η0, and γ0.

2.2.3 Interpreting output

After all data elements are assigned to a cluster, the components of those elements can be visualized

for each cluster. For instance, for the clustering in Fig. 2.2, the average x component of the elements

in each cluster can be calculated, then visualized in order of clusters 1-5. Since x values increased

going from left to right in the SOM geometry, we would observe a positive correlation between x

value and cluster number. However, if we calculated the average y component from each cluster

and ordered these by clusters 1-5, we would not see a clear correlation between the y value and the

cluster number. Thus, visualizing component averages and standard deviations can indicate which

components the SOM sorted on, in the case when the input data is higher dimensional and cluster

orderings cannot be easily seen by plotting the data itself.

If the data elements have other features which were not used as input to the SOM (that is, they

were not used in calculating the distance between data elements during SOM clustering), then

the distribution of these features among clusters can be observed as well. If a certain feature is

concentrated in clusters at one end of the SOM, this can indicate a correlation between that feature

and the component on which the SOM sorted. This correlation can be positive or negative depending

on whether the features are concentrated at the end of the SOM with high or low component values.

2.3 Application of SOM to mouse-level NGS data

2.3.1 Data representation for comparing WT mice

To compare mice by their clonal populations, namely by their clone types and sizes, we chose to

represent each mouse’s clones in a two-dimensional normalized histogram. An example is shown
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in Fig. 2.3. In this histogram, eight bins were created in two dimensions to correspond to total

neurons and total glia per clone, respectively, resulting in an 8×8 grid pattern for each mouse. One

outlier clone was removed from Mouse 6 (E16.5) which contained 164 glia, as the next largest clone

contained only 74 glia. All analysis in this chapter was performed on the set of WT mice only.

To help the clustering distinguish between different clone types, the N and G clones (containing

only neurons or only glia, respectively) were not placed into bins with Mix clones; the leftmost bin

along each axis was designated for clones having only neurons or only glia, and any bins on the

interior of those two zero axes corresponded to Mix clones of various sizes and ratios of neurons to

glia. To determine the bin width on the interior of the grid, the Freedman-Diaconis rule was used

in each dimension: Bin Width=2IQR(X )/ 3pn , where IQR(X ) is the interquartile range of the vector

X of total neurons or total glia in all WT mixed clones, and n is the number of WT mixed clones

[11]. This gave bin widths of 1.5683 for neurons and 10.6496 for glia, which we rounded to 2 and

11, respectively. Accommodating all clone sizes using these bin widths added seven bins in each

direction for the Mix clones, resulting in the final 8×8 binning partition. For a given mouse, the

histogram bar heights are calculated by finding the percent of the mouse’s clones falling into each

bin.

In Fig. 2.3, the tallest bar thus indicates that ≈30% of that mouse’s clones fell in the bin cor-

responding to 0 neurons and between 12-22 glia. We also see that ≈6% of its clones were neuron

only and contained 3-4 total neurons. These 8×8 grid patterns were reshaped into 1×64 vectors V
j

T ,

indexed for each mouse j = 1, ...,18 and its respective MADM induction time T , where T=E15.5

for j = 1 : 5, T=E16.5 for j = 6 : 12, and T=E17.5 for j = 13 : 18. The vectors V
j

T were used as inputs

for the SOM to cluster. For simplicity, since each grid pattern/vector represents one of the 18 mice

considered, we will generally refer to the SOM operating on ‘mice.’

2.3.2 Generation of multiple datasets via sampling

The goal in comparing the mice based on their 8×8 grid patterns was to see how often E15.5 mice

were placed in the same cluster as other E15.5 mice, and so on for E16.5 and E17.5. To achieve a

balanced comparison between the time points, we considered groups of fifteen mice, with five

sampled from each time point. A total of j = 18 mice comprise the WT data set, and running through

all folds of sampling given five E15.5 mice, seven E16.5 mice, and six E17.5 mice gave a total of

k =
�5

5

��7
5

��6
5

�

= 126 combinations of mice. We will denote the indicator function

1k( j ) =

(

1 if mouse j is in combination k

0 if mouse j is not in combination k .
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Figure 2.3 Example grid pattern for an E16.5 mouse. An equal number of 8 bins were set in each direction,
where the first bin along each axis contains clones with no neurons or no glia. The Mix clones are dis-
tributed into the remaining 7 bins in each direction based on their total neurons and glia. For this mouse,
the most represented bin is that for 0 neurons and between 12-22 glia, containing ≈30% of its clones.

2.3.3 SOM usage

We opt to cluster our mice via a 1×3 SOM. The implementation of an SOM of this size is useful for

several reasons. First, regarding using SOMs themselves, unsupervised learning makes sense given

our data because we cannot assume the labeled time point of each mouse is accurate. Instead, we

want to find how similar different mice are based on their clonal distributions, regardless of their

label. Additionally, an SOM does not require separate sets of training, validation, and testing data

like in supervised learning techniques, which would be impractical given a data set with only 18

elements (mice) to compare. Regarding the dimension of the SOM, we would expect the mice to sort

into clusters partly based on their %N, %G, and %Mix clones, informed by the bar heights in the grid

pattern corresponding to each of these clone types. Thus, based on these percentages shown in Fig.

2.1a, we could expect for instance that the mice sorted clusters 1, 2, and 3 would be ordered from

lowest to highest %G clones. Since these percentages correlate with time point, we would expect

E15.5, E16.5, and E17.5 mice to sort more often into clusters 1, 2, and 3, respectively.

We note here that an SOM is unbiased in its left-right orientation. Hence, over the k = 126

clusterings, the SOM may sometimes designate cluster 1 as representing the group of mice with

low %G in cluster 1, but other times this group of mice may be assigned to cluster 3. This difference

could make it difficult to compare the results of the k = 126 clusterings, since we cannot simply
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compare the mice sorted into clusters 1, 2, or 3 in each case. To make it easier to compare the cluster

compositions across all clusterings performed, we bias the orientation of the SOM by initializing the

weights of clusters 1, 2, and 3 as the centroids of the E15.5, E16.5, and E17.5 mice, respectively. This

initialization biases the sorting of mice with a higher percentage of G clones into cluster 3 rather

than cluster 1. We can therefore calculate how often E15.5 get sorted into cluster 1 versus clusters 2

or 3 and consider this as a measure of the accuracy of the clustering over the k = 126 combinations,

and similarly for E16.5 mice in cluster 2 and E17.5 mice in cluster 3.

For each combination k = 1, ...,126 of mice, clustering and analysis was completed using the

following steps:

1. Calculate the mean value µT of the grid patterns among the five mice from each time point in

combination k ,

µT =
1

5

18
∑

j=1

1k( j )V
j

T , T = E 15.5, E 16.5, E 17.5 (2.1)

2. Initialize the centers of each cluster in a 1×3 SOM as the mean values found from Eqn. 2.1,

with µE 15.5, µE 16.5, and µE 17.5 initializing the centers of clusters 1, 2, and 3, respectively. This

initializes the orientation of the SOM.

3. Cluster the set of vectors V
j

T , j ∈ k with the SOM.

4. Record the SOM clustering placement for each mouse j = 1, ..., 18 in a 126×3 matrix C j ,

C j (k , l ) =

(

1 if mouse j is present in combination k and is placed in cluster l , l=1, 2, 3

0 otherwise .

5. Compare the cluster to which each mouse was assigned to its true time point label, for instance

considering a ‘correct’ clustering as an E15.5 mouse placed in cluster 1, and an ‘incorrect’

clustering as an E16.5 mouse placed in cluster 1 or cluster 3. Record the SOM performance for

each mouse j in the indicator function 1C( j , k ),

1C( j , k ) =

(

1 if mouse j is present in combination k and is correctly clustered

0 otherwise.

6. Compute the fraction of mice out of the fifteen that were classified correctly as the percent

accuracy

Ak =
1

15

18
∑

j=1

1C( j , k ). (2.2)
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After repeating these steps over all k = 126 combinations of mice, we then calculated the

percent of times β j (l ) that each mouse j was sorted into each cluster l = 1, 2, 3 when included in a

combination k ,

β j (l ) =

∑126
k=1 1k( j )C j (k , l )
∑126

k=1 1k( j )
. (2.3)

Additionally, we examined whether the percent accuracy Ak depended on the particular mice

included or excluded in a combination k . We focused this analysis on E16.5 mice; none of the E15.5

mice were ever excluded in a combination, and we also found that the accuracies did not vary as

significantly when examining each group of combinations excluding a particular E17.5 mouse.

Each particular group of five E16.5 mice was used in
�5

5

��6
5

�

= 6 combinations out of the total

126, implying that any pair of two specific mice was simultaneously left out of 6 combinations. The

average accuracy Ā( jn , jm ) over all combinations with E16.5 mice j1 and j2 left out, j1, j2 = 6, ..., 12,

is thus

Ā( j1, j2) =
1

6

126
∑

k=1

Ak (1−1k( jn ))(1−1k( jm )) (2.4)

with Ak defined as in Eqn. 2.2.

2.4 Results

2.4.1 Accuracy of clustering by time point

Fig. 2.4 shows the percent of clusterings β j (l ) in which each mouse was placed in cluster l=1, 2, or 3

as calculated in Eqn. 2.3, which we can classify as ‘correct’ or ‘incorrect’: E15.5 mice in Fig. 2.4a are

correctly clustered if placed in cluster 1, E16.5 mice in Fig. 2.4b are correctly clustered if placed in

cluster 2, and E17.5 mice in Fig. 2.4c are correctly clustered if placed in cluster 3. Each time point’s

mice were sorted into the correct clusters more often than each of the other clusters. However, the

cluster placements of some mice clearly indicate similarity to the mice outside their given time

point, which may identify which particular mice were at earlier or later development stages than

their presumed age, as previously described in Sec. 2.1.1.

Out of all the time points, the E15.5 mice were most accurately clustered, falling into cluster 1

in 69.69% of all clustering cases. If we examine each mouse separately, we see that Mice 1 and 5

were sorted into cluster 1 in 100% of cases. Mice 3 and 4 were clustered similarly to each other, with

placement in cluster 1 for 65.08% and 63.49% of clusterings, respectively, and placement in cluster

2 in the remaining percentage of cases. This could point to the ages of these mice at the time of

MADM induction as being slightly older than Mice 1 and 5, somewhere in between the E15.5 and

E16.5 ages. Mouse 2 was least clearly clustered, ending up in cluster 1 for 19.84% of cases, cluster 2
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for 46.83% of cases, and cluster 3 for 33.33% of cases. This indicates a lack of definition in Mouse 2’s

grid pattern, which we will examine further in the next section in Fig. 2.6.

Since E16.5 is the middle time point, there was room for the true ages of these mice at the time

of MADM induction to deviate in either direction, being slightly older or younger. This is reflected

in the clusterings shown in Fig. 2.4b. Mice 7, 10, and 11 were predominantly placed correctly cluster

2, in respectively 98.89%, 97.78%, and 95.56% of cases, and placed into cluster 3 in all remaining

cases. Mouse 8 may have been younger at the time of induction as it was placed in cluster 1 in 100%

of cases, and Mouse 6 may have been somewhere between the E15.5 and E16.5 ages at induction

time as previously seen with Mice 3 and 4 in E15.5, being in cluster 1 67.78% of the time and cluster

2 for the remainder. Mice 9 and 12 may have been older at MADM induction than their presumed

age of E16.5, as these were both placed into cluster 3 for 98.89% of clusterings.

The clusterings of the E17.5 mice are more unexpected. Mice 16 and 17 were correctly placed in

cluster 3 for 100% of clusterings. Mice 13 and 14 were in cluster 3 for 64.76% and 67.62% of cases,

respectively, and in cluster 2 for the remainder, indicating the age of these mice at induction may

have been between E16.5 and E17.5. However, Mice 15 and 18 were placed in cluster 1 in nearly every

case – 100% and 93.33% of cases, respectively – corresponding to the E15.5 cluster. It is surprising

that two of the six mice would have a large enough deviation in age to place them in the cluster

farthest away from their presumed age’s cluster. We examine the grid patterns of these mice in more

detail in Fig. 2.6 , but this may be an indication that clones at E15.5 and E17.5 follow relatively similar

patterns.

2.4.2 Qualitative comparison of grid patterns for most and least accurately classified

Figure 2.5 shows the grid patterns for the most accurately clustered mice for each time point, while

Figure 2.6 shows the mice most often placed in the wrong clusters. From Fig. 2.5, we see that the

most accurately classified mice have patterns clearly distinctive from the mice at other time points.

The most accurately classified mice at E15.5, 1 and 5, are more dominated by clones containing

neurons and smaller numbers of glia. Mice 7 and 12 in E16.5 instead show smaller neuron counts

and a wider range of glial counts, and Mice 16 and 17 in E17.5 are dominated by smaller glial only

clones. We can think of these patterns as ‘representatives’ for what is happening in the neurogenesis

to gliogenesis switch at their respective time points. This gives a temporal progression of the NGS

that is consistent with the presumed ordering of events: neurogenesis finishes first, and neurogenic

clones may produce small numbers of glia, then gliogenesis surges as neurogenesis ends.

For the least accurately classified mice in Fig. 2.6, we instead see patterns that more closely

resemble the representative patterns from other time points in Fig. 2.5. Mouse 2 in E15.5 has clones

with small neuron counts and a large number clones of small glial counts, comparable to the

representative pattern of E16.5 or E17.5. Mouse 8 in E16.5 was classified as being in the E15.5 cluster,
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(a)

(b)

(c)

Figure 2.4 Percent of clusterings in which each mouse was placed in cluster 1, 2, or 3. E15.5 Mice j = 1−5
are shown in (a), E16.5 Mice j = 6−12 in (b), and E17.5 Mice j = 13−18 in (c). Placement of a mouse into
clusters 1, 2, or 3 corresponds to a ‘classification’ of E15.5, E16.5, or E17.5, respectively.

25



which is consistent with its pattern showing more neurons and fewer glia. In the other direction,

Mice 9 and 12 in E16.5 have patterns with no N clones and very high percentages of small G clones,

closely resembling the representative pattern of E17.5. For E17.5, Mice 15 and 18 show either N

clones or Mix clones containing large numbers of neurons, explaining why these two mice were

placed in the E15.5 cluster.

2.4.3 Identifying influential or outlier mice

We can also evaluate the influence that different mice have on the SOM clustering by examining

average accuracy of the six clusterings generated by excluding each pair of two mice from E16.5,

Ā( jn , jm ), defined in Eqn. 2.4. These 21 combinations of 2 out of 7 excluded E16.5 mice are shown in

Fig. 2.7, and below are the corresponding values of Ā( jn , jm ), The combinations are presented in

order of decreasing average accuracy along with standard deviation bars. Interestingly, six out of the

eight most accurate clusterings occurred in combinations that excluded Mouse 12. This particular

mouse was one of the least accurately clustered mice as shown in Fig. 2.6, but this also indicates

that using Mouse 12 in the initialization of cluster 2’s centroid leads to a worse performance of the

SOM overall. On the other hand, all five of the least accurate clusterings occurred in combinations

that excluded Mouse 7. Mouse 7 was the most accurately classified mouse in E16.5 as previously

described, but the fact that its exclusion in the combination of mice leads to the worst accuracy of the

SOM indicates that this mouse is particularly influential in distinguishing between the patterns at

different time points. Since the presence or absence of these two mice influence the SOM’s accuracy,

we can assume that Mouse 12 in E16.5 is a poor representation of the true NGS behavior at E16.5,

and alternatively, Mouse 7 especially helps delineate NGS behavior at E16.5 from that at E15.5 and

E17.5.

Naturally, some variability between mice is expected since the clones measured in each mouse

are a random sample of only a small number of the total clones in the cortex. However, we have

observed here that the placement of each mouse in a cluster helps us think more accurately about

the data as coming from continuous time measurements rather than three completely distinct time

points. Additionally, we have seen that particular mice may skew the data intended to represent a

certain developmental time. Thus, examining MADM data using clustering is a valuable technique

for determining possible outliers in the data, and it can also give insight into the true age of the

embryos at the time of MADM induction.
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(a) (b)

(c) (d)

(e) (f )

Figure 2.5 Grid patterns corresponding to the most accurately clustered mice from each time point. E15.5
Mice 1 and 5 are shown in (a)-(b), E16.5 Mice 7 and 11 in (c)-(d), and E17.5 Mice 16 and 17 in (e)-(f). The
grid patterns are clearly distinct between the different time points and characterize the clonal shift in the
NGS over E15.5 to E17.5: neural, to mixed, to glial.
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(a) (b)

(c) (d)

(e) (f )

Figure 2.6 Grid patterns for the least accurately clustered mice from each time point. The progression
in these grids over time does not accurately describe the progression of neural to mixed to glial clones
during the NGS. In (a), E15.5 Mouse 2 has few neurons and mostly small glia. In (b)-(d) E16.5 Mice 8, 9,
and 12 have mostly G clones rather than Mix. In (e)-(f) E17.5 Mice 15 and 18 produce more neurons than
expected for mice this late in the NGS.
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Figure 2.7 Average clustering accuracy over the 21 mouse combinations excluding two specific E16.5 mice.
The above diagram indicates which two mice in each combination were excluded, thus combination 1 did
not contain mice 8 or 12. Below, we show the mean ± standard deviation of the accuracy of the clusterings
performed for combinations of mice that did not include the two mice specified.
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CHAPTER

3

BRANCHING AND TREE MODELS OF

CELL DIVISION

In Chapter 1, we described how clonal lineages arise from the divisions of a single progenitor cell

(RGP). However, the MADM technique specifically provides only a single temporal snapshot of an

RGP’s offspring. As an illustration, Fig. 3.1(a) shows an initial RGP undergoing a series of proliferative

and differentiating divisions to produce neurons and glia. Our MADM data does not provide any

knowledge of the series of divisions, but instead tells us the total number of neurons and glia

produced by the RGP’s red and green sublineages. The only information we would have for this

example lineage is that the RGP produced five red neurons, three green neurons, and seven green

glia, which we highlight in Fig. 3.1(b).

Since we want to understand cell division patterns during the NGS, it is natural to ask what can

be inferred about the history of cell divisions given only the final number of differentiated cells. In

this chapter, we explore this question using two mathematical representations of clonal lineages.

First, we use binary trees [13] to estimate the generations of cell division that produce the clone

sizes observed during the NGS. Second, we use branching processes [4] to probabilistically model

the switch from neurogenesis to gliogenesis and test whether stochastic rules of cell division can

reasonably represent the observed distribution of glia per clone in the NGS. Our work here will be

used in our final model of glia production in the NGS in Chapter 6.
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(a) (b)

Figure 3.1 (a) A hypothetical clonal lineage starting with a single RGP (top circle) which divides and differ-
entiates into neurons and glia (b) The same lineage with all terminal cells (neurons and glia) highlighted
red and green as would be observed with MADM. The history of divisions producing these neurons and
glia as descendants of the single initial RGP would be unknown from the MADM technique.

3.1 Estimating Generations of RGP Division

Given a clone of size l , considering the l differentiated cells all being of the same type, we can

establish a simple bound on the number of generations of RGP division h required to produce

the clone. We illustrate this in Fig. 3.2 for a clone of size l = 8. On the left, we show the maximum

generations of division that can produce l = 8 terminal cells. Here, the initial RGP has undergone

a series of h − 1 asymmetric differentiating divisions, each of which produce one terminal cell.

The final division produces two cells and terminates the division process. The number of terminal

cells produced is thus (h − 1) + 2 = h + 1. Equating this expression with l and solving for h gives

h = l −1. On the right, we show the minimum generations required to produce l = 8 terminal cells.

In contrast with the strict asymmetric divisions in the maximum case, we have strictly symmetric

divisions, which double the number of cells present in each generation. The l = 8 terminal cells

can be produced in h = 3 generations, since log2(8) = 3. Note that this is the maximum number

of differentiated cells that can be produced in h = 3 generations; if we considered l = 9, at least

one more round of division would be needed. Generalizing these cases, the rounds of division h

required to produce a clone of size l must satisfy

dlog2(l )e ≤ h ≤ l −1, (3.1)
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assuming no cell death. For large clone sizes present in the NGS data, the range of possible values for

rounds of division h becomes too large to be informative. It would be more useful if we could instead

determine how likely a value of h is given a clone size l . To do this, we propose a combinatorial

formula generated from representing clonal lineages as binary trees.

Figure 3.2 Examples of clonal lineages with l = 8 differentiated cells (marked red and green) having maxi-
mal and minimal heights as determined by Eqn. 3.1. In the left lineage, the maximum number of genera-
tions (h = 7) occurs, and minimum height (h = 3) occurs in the right lineage.

3.1.1 Tree representation

The clonal lineages shown in Fig. 3.1 are represented as a set of nodes and edges, with each node

being a cell (RGP, neuron, or glial cell) and each edge connecting cells to their immediate descendants.

The topmost RGP is the initial ancestor cell, which divides into two cells in the next generation,

which continue to divide in the subsequent generation. All RGPs in the lineage have two direct

descendants in the next generation, and all neurons and glia have zero descendants.

This representation therefore makes a clonal lineage into a type of graph known as a rooted full

binary tree, defined as a set of nodes and edges that includes a topmost node (the root), and where

every node has exactly zero or two direct descendants connected by edges [46]. In the terminology

of trees, a branch node has two direct descendants, and a leaf node has zero direct descendants. The

height of a tree is the number of edges on the longest path from the root node to a descendant leaf.

In Fig. 3.3, we show that when a clonal lineage is represented as a rooted full binary tree, the

initial RGP is the root, additional RGPs in the lineage are branch nodes, the total rounds of division
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gives the height of the tree, and the clone size is the number of leaves. Thus, if we can estimate the

height of a rooted full binary tree given a certain number of leaves in the tree, we equivalently have

an estimate for the division rounds given a certain clone size. For simplicity, we consider clones of

only one differentiated cell type; the ordering of neurogenesis and gliogenesis in time implies that

clones containing both neurons and glia have additional restrictions on where each cell type could

occur in the lineage.

Figure 3.3 RGP lineage with red and green terminal cells and corresponding rooted full binary tree termi-
nology.

For small l , it is easy to draw out all possible configurations of branch and leaf nodes and

manually count the tree heights. We introduce the value nl as the total number of rooted full

binary trees with l leaves, which are listed for the trees up to l = 4 in Fig. 3.4. All nl possible tree

configurations for a given l are assumed to be equally likely. Next, we introduce the value Gh ,l as

the total rooted full binary trees of height h and leaves l , which is nonzero only for values of h that

satisfy Eqn. 3.1. The values of Gh ,l are additionally listed for each l in Fig. 3.4. Note that

nl =
l−1
∑

h=0

Gh ,l . (3.2)

The values of nl are known to match the sequence of Catalan numbers, Cn = (2n )!/((n +1)!n !) [18].

Manual counting of the possible tree configurations thus quickly becomes intractable: for l = 5, 6, 7

we have n5 = 14, n6 = 42, and n7 = 132. Instead, we draw on an alternative definition of a full binary

tree to create a recursion relation for the heights of larger trees.

Definition: A full binary tree B is either a single root node, or a root node with two subtrees L and R

that are both full binary trees by our previous definition [13].
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Figure 3.4 Possible lineages for trees with up to l = 4 terminal cells. In each case, we denote the number of
trees of size l (nl ), the height of each tree (h), and the number of trees having height h and l terminal cells
(Gh ,l ).

Thus, if we consider a clonal lineage as a full binary tree B with l leaves, we can equivalently

consider it to be a root node composed with two full binary trees L and R containing k and l −k

leaves, respectively, where 1 ≤ k < l . As an example, we illustrate the possible subtree sizes for a

clone with l = 5 leaves in Fig. 3.5: either (1,4), (2,3), (3,2), or (4,1). In the (1,4) case, there is one

possible configuration of the left subtree L with k = 1 leaf, and there are five possible configurations

of the right subtree R with l −k = 4 leaves, as listed in Fig. 3.4. The total configurations of L and R

thus multiply to give five possible configurations of the (1,4) tree. To determine the heights of these

five trees, we note that the possible heights of L and R are already known and listed in Fig. 3.4. Since

the subtrees are separated from the root by one generation, the height of the full tree B will be

height(B ) = 1+max(height(L ), height(R )) (3.3)

For the five possible (1,4) tree configurations, the R subtree with 4 leaves has the maximum height

in each case. Similarly, for the (2,3) tree configuration, the R subtree with 3 leaves has the maximum

height in each of the two possible configurations (Fig. 3.5). We see that the total trees with l = 5
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leaves is n5 = 14, which can be broken down into G3,5 = 6 trees with height h = 3 and G4,5 = 8 trees

with height h = 4. These are the only two possible heights for a tree of l = 5 leaves, consistent with

Eqn. 3.1.

Figure 3.5 Representation of trees with l = 5 leaves as two subtrees having k and l − k leaves. For each
case of subtree sizes, the number of trees of its size and the heights of those trees are already known, as
illustrated in Fig. 3.4. The height of the tree with l = 5 leaves can thus be calculated from the subtree
heights according to Eqn. 3.3. For l = 5, n5 = 14 possible lineages exist, of which 6 have height 3 and 8 have
height 4 (G3,5 and G4,5).

3.1.2 Generation estimate

We can now write a generalized recursive relation for the number of trees Gh+1,l having height h +1

and leaves l . Eqn. 3.3 implies that if a tree B has height h + 1, at least one of the subtrees L or R

has height h . If that subtree has k leaves, there are Gh ,k possible configurations of that subtree. The

other subtree must therefore have l −k leaves, and its height must be j ≤ h to ensure that the height

of B is not greater than h +1. This subtree thus has G j ,l−k possible configurations. Considering each

pair of subtree sizes k and l −k , Gh+1,l is thus represented

Gh+1,l =
l−1
∑

k=1

Gh ,k



2
h
∑

j=0

G j ,l−k −Gh ,l−k



 , (3.4)

given values of Gh ,k known for small h and k < l . In Eqn. 3.4, the subtrees are ordered so that L has

height h , and R has height j ≤ h . These combinations are doubled to account for the reflected tree,

where L and R have heights j ≤ h and h , respectively. However, the case of both subtrees having
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heights h does not need to be doubled, so we must subtract one of the Gh ,l−k terms.

We use Eqn. 3.4 to generate the recursive values of Gh ,l in MATLAB for trees up to size l = 50,

using initial values shown in Fig. 3.4. As a verification, we confirm that the total trees generated with

size l , found using Eqn. 3.2, matches the known sequence of Catalan numbers as expected [18]. For

each l , we normalize the values of Gh ,l to find the conditional probability p (h |l ) that a tree with l

leaves has height h ,

p (h |l ) =
Gh ,l

nl
. (3.5)

The distributions of p (h |l ) are shown for a subset of tree sizes l in Fig. 3.6a. To estimate p (h ), the

probability that h rounds of division occurred in the dataset, we use the law of total probability,

which states that the probability of an event A can be calculated as p (A) =
∑

n p (A|Bn )p (Bn ) for

some finite or countably infinite partition of events Bn . Using Eqn. 3.5, this implies that

p (h ) =
50
∑

l=1

Gh ,l

nl
pl , (3.6)

where pl is the observed frequency of a clone containing l glia in the dataset. Eqn. 3.6 is evaluated

and displayed in Fig. 3.6b. The resulting probability distribution of p (h ) indicates that ≈95% of

lineages are completed in under 15 generations, and that, for l ≤ 50, very few clones plausibly divide

beyond 20 generations. We will therefore set a maximum of 20 generations of division in our future

work simulating glial production in the NGS in Chapter 6.

3.2 Branching processes

In the previous section, we illustrated how representing a clonal lineage of size l as a rooted full

binary tree with l leaves allows for an estimate of the generations of division h . To do this, we

assumed that for a binary tree with l leaves, all possible tree structures were equally likely. This may

not be the case if certain types of divisions occur more frequently. For instance, between the two

clones of size l = 8 shown in Fig. 3.2, the right lineage may be more probable than the left one if

progenitors strongly favor symmetric over asymmetric divisions. In this section, we draw on the

theory of branching processes to consider how the hypothetical distribution of clone sizes changes

if we attach likelihoods to the different types of cell divisions.

3.2.1 Description

Branching processes are a type of stochastic process used to model populations that proliferate,

mutate, and/or die over time according to a prescribed set of probabilities. They are useful modeling
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(a) (b)

Figure 3.6 (a) Probability distribution p (h |l ) of tree heights h for selected values of l , calculated from Eqn.
3.5. The area under the distribution for each l is equal to 1. (b) Probability of a tree of height h calculated
from Eqn. 3.6 using the conditional probability distributions shown in (a) and the observed frequency pl of
clones with l glia in the data.

tools in many biological applications including the spread of genetic mutations in a population, can-

cer proliferation and response to treatment, and, relevant to our work, growing stem and progenitor

cell populations [4]. Although branching processes are generally described as acting on ‘particles,’

we will proceed with describing them specifically as acting on cells.

A basic branching process representing progenitor proliferation and differentiation can be

described as follows. The process begins with an initial progenitor cell (the ancestor) at time t = 0.

We will refer to the ancestor cell as a type 1 cell. After one discrete unit of time, at t = 1, the ancestor

divides into two daughter cells which may be the same or different types as the ancestor. The cell

types of these two offspring are selected randomly according to a set of probabilities pi , j , denoting

the probability of a type i = 1, 2, ..., k cell producing offspring of type j = 1, 2, ..., k . The two daughter

cells then exist for one discrete unit of time, after which each cell produces two offspring randomly

according to pi , j . It is important to point out that in the process of progenitor proliferation and

differentiation, differentiated cell types are terminal and produce zero offspring with probability 1.

Thus, the process continues until no proliferative cells remain. If the probability of differentiation

is high enough, the processes is guaranteed to terminate or ‘go extinct’ in a finite number of time

steps, whereas a low probability of differentiation results in the chance that a process continues

indefinitely [48]. Fig. 3.7 shows an example of a lineage produced by a process of three cell types:

progenitors, neurons, and glia.

The number of cells of each type that are present at time t is a sequence of random vectors Xt ,

called the state of the process. These values are shown at each time step for each cell type in Fig.
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Figure 3.7 Example branching process lineage. The process starts with one progenitor cell P at time t0,
zero neurons N , and zero glia G . The starting state of the process X0 is thus a vector [1,0,0]. The initial
progenitor divides into two progenitors at t1, hence X1=[2,0,0]. At successive discrete time points t2, t3, ...,
progenitors divide and differentiate into neurons and glia. The components of the state vector are shown
for each time. Note that the number of progenitors present at the end of the process is zero, as all have
undergone differentiating divisions.

3.7. All cells behave independently of their ancestors and siblings born in the same generation. A

branching process therefore has the Markov property

P[Xt+1 = n |Xt =mt , Xt−1 =mt−1, ..., X0 =m0] =P[Xt+1 = n |Xt =mt ]. (3.7)

Simply stated, the probability of the process having state Xt+1 at time t +1 depends only on the state

of the process at time t and not on any previous states, thus making it ‘memoryless’ or ‘self-similar.’

The shift of cells between types in any branching process can be summarized in a transition matrix

T where Ti , j=pi , j as defined previously. T can be used to examine a process’s asymptotic behavior

and chance of extinction depending on different division probabilities [4].

T is called reducible if it can be put into block upper-triangular form by simultaneous row and

column permutations. If this cannot be done, T is called irreducible. Conceptually, a process being

irreducible implies that every cell type in the process can be produced from any other cell type in

a finite number of divisions. In the NGS, we consider four cell types: neuron-producing RGPs np ,

glia-producing RGPs g p , neurons N , and glia G . The potential behaviors of these cell types are as

follows:

1. np can self-replicate, differentiate into neurons N , or switch to gliogenesis by producing g p

as offspring

38



2. g p can self-replicate or differentiate into glia G

3. N and G are both terminal and produce no further offspring

With ∗ representing a nonzero probability, our transition matrix would thus have the following upper

triangular form

np g p N G
















np ∗ ∗ ∗ 0

g p 0 ∗ 0 ∗
N 0 0 0 0

G 0 0 0 0

.

The process is therefore reducible. We can also understand this conceptually by noting that some

states in the process cannot be reached from others, for instance, np cells cannot be produced from

N cells since N cells do not proliferate.

Two issues arise when attempting to analyze RGP proliferation and differentiation in the NGS us-

ing branching processes. First, asymptotic analysis of our problem is not informative since we know

the population of RGPs responsible for building the cortex will always ‘go extinct’ by differentiating

into neurons and glia. Second, the theory that exists for branching processes is overwhelmingly ap-

plicable to the irreducible case, whereas reducible processes require methods uniquely determined

for the particular application [53]. In the next section, we will briefly describe a method used to

determine the clone size distribution during neurogenesis, informed by a basic branching process

known as a Galton-Watson (GW) process [48]. We then adapt this method to model glial production

during the NGS.

3.2.2 Determining Clone Size Distributions Using the Galton-Watson Process : Neuro-

genesis

In a study by Slater et al. [48], a GW process was formulated to model neurogenesis. The process

consisted of two cell types S and N , where type S cells are progenitors that can proliferate or

differentiate into neurons, and type N cells are neurons that do not divide. The probabilities of

an S cell producing pairs of offspring were defined with parameters p and q , where P (N , N ) = p ,

P (S ,S ) = q , and P (S , N ) = P (N ,S ) = (1−p −q )/2.

The goal in this study was to determine the probability of a clone of size n (having n neurons),

denoted Qn , given a starting S cell that divides according to some parameters p and q . It was noted

that a clone of size 2 could only occur from the initial S cell undergoing an immediate {N , N }
division. Since the probability of this division occurring is p , the probability Q2 of a clone of size 2 is

also p . A clone of size 3 would require an initial asymmetric {S , N } or {N ,S} division, followed by the

S cell produced from this division undergoing an {N , N } division to produce two more differentiated
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neurons (Fig. 3.8). Thus, considering each cell division as an independent probabilistic event, the

probability of the cell divisions are multiplied together to give Q3 = p (1−p −q )/2+p (1−p −q )/2=

p (1−p −q ). This method of listing possible division patterns mirrors the enumerating of tree sizes

we performed in the previous section (Fig. 3.4). As such, we can use recursion to develop a formula

for larger clone sizes: the extrapolated pattern gives the recurrence relation

Qn = q
n−2
∑

k=2

QkQn−k + (1−p −q )Qn−1, n ≥ 4. (3.8)

Here, the probability of a clone of size n is calculated by considering all combinations of subtrees of

size k and n −k . The first sum considers an initial {S ,S} division with probability q , where the two

subtrees must both have ≥2 N cells. The second term considers an initial {S , N } or {N ,S} division,

which necessarily has one subtree with only one N cell produced after the first division, and the

second subtree must therefore have n −1 N cells to sum to a clone of size n .

Figure 3.8 Clone size probabilities according to division probabilities. A clone with two neurons (left)
arises from a {N , N } division, which occurs with probability p . The probability of a clone of size two, Q2, is
thus equal to p . A clone with three neurons (right) would be produced by an asymmetric division, {S , N }
or {N ,S}, followed by a differentiating {N , N } division. Multiplying the probabilities of these two division
events implies that the probability of each lineage is p (1−p − q )/2. The total probability of a clone with
three neurons, Q3, is the sum of the two clone probabilities, Q3 = p (1−p −q ). Eqn. 3.8 establishes how Qn is
calculated for larger clone sizes n .

Parameters p and q were chosen from observing the frequency of {N , N } and {S ,S} progenitor

cell divisions in vitro. The probability distribution Qn was then compared with the frequency

distribution of clone sizes in a dataset of neurogenic RGPs and determined to reasonably represent

the data by a Chi-square goodness of fit test [37].
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3.2.3 Determining Clone Size Distributions Using the Galton-Watson Process: Gliogen-

esis

As previously described, we consider additional cell types to model RGP behavior in the NGS:

neuron-producing RGPs np , glia-producing RGPs g p , neurons N , and glia G . To model the switch

into gliogenesis, we will not consider neurons N and only allow np to produce np and g p . Our goal

is to determine a recursive formula for glial clone sizes similar to Eqn. 3.8, taking into account that

np progenitors must switch to g p progenitors before producing glia. Thus, we must enumerate not

only the possible ways of producing glia from g p progenitors, but also of producing g p from np

progenitors.

We illustrate in Fig. 3.9 the different divisions that can occur, either with an np or a g p as the

ancestor cell. Probability parameters are assigned to each type of division. Using the convention from

[48], we denote the probability of np divisions P (g p , g p ) = p1, P (np , np ) = q1, and P (np , g p ) =

P (g p , np ) = (1− p1 − q1)/2, as the probabilities must sum to 1. Similarly, the probability of g p

divisions will be denoted P (G ,G ) = p2, P (g p , g p ) = q2, and P (G , g p ) = P (g p ,G ) = (1−p2−q2)/2.

Figure 3.9 Possible clonal divisions during gliogenesis. In each case, the initial cell (neural progenitor np
or glial progenitor g p is shown with the two offspring of its division. The probability of each division type
occurring is defined with parameters p1, q1, p2, and q2, where the np and g p probabilities each sum to 1.

To begin, we consider a process we will call Q 1, which starts with a g p cell that divides to produce

glia according to probabilities p2 and q2. This is actually identical to the process described in Sec.

3.2.2. We will denote the probability of a clone of size n coming from this process as Q 1
n , which is

41



found similar to Eqn. 3.8 as

Q 1
n = q2

n−2
∑

k=2

Q 1
kQ 1

n−k + (1−p2−q2)Q
1
n−1, n ≥ 4, (3.9)

where Q 1
2 = p2 and Q 1

3 = p2(1−p2−q2).

The "1" in the superscript of Q 1 denotes the m = 1 initial g p progenitor present in this process.

Accordingly, we can define Q 2 as a process beginning with an np cell which immediately undergoes

a division into m = 2 g p cells. This initial division occurs with probability p1 as previously defined.

Each of the first generation g p offspring then undergo divisions according to the probabilities p2

and q2. To determine clone size probabilities Q 2
n , we recall the recursive definition of a full binary

tree from Sec. 3.1.1, which states that a full binary tree is composed of left and right subtrees which

are each full binary trees. In the case of the Q 2 process, each of those subtrees is formed from a Q 1

process, since each begins with a g p cell (Fig. 3.10). Thus, taking all possible combinations of Q 1

trees that sum to give n cells, the probability Q 2
n is defined recursively as

Q 2
n = p1

n−2
∑

k=2

Q 1
kQ 1

n−k , n ≥ 4. (3.10)

Note here that the minimum clone size is n = 4. Thus, we have a recursive process whose clone size

probabilities can be determined from the already known Q 1
n probabilities.

Having defined the Q 2 process, we can proceed to recursively define processes from other cases

of an initial np cell dividing producing m g p cells, m ≥ 3. In each case, Q m
n is found by multiplying

the probability of the first division, which must be either a (g p , np )/(np , g p ) or a (np , np ) division

since m ≥ 3, by all combinations of clone sizes possible between its two subtrees. For instance, a Q 2

process has two subtrees which are both Q 1 processes, and a Q 3 process has two subtrees which

are a Q 1 and Q 2 tree (Fig. 3.10, one symmetry shown), and so on. A recursive formula can thus be

established, similar to Eqn. 3.8,

Q m
n = (1−p1−q1)

n−2
∑

k=2

Q m−1
k Q 1

n−k +q1

n−2
∑

k=2

m−2
∑

l=2

Q l
kQ m−l

n−k . (3.11)

Here, the first sum considers all combinations of left and right subtrees that can occur after an initial

(g p , np )/(np , g p ) division, which occurs with probability 1−p1−q1. The double sum considers the

possible combinations of left and right subtrees after an initial (np , np ) division, which occurs with

probability q1.

Q m
n is calculated for n ≤ 50, as ≈ 98% of clones in the NGS dataset have 50 or fewer glia. The

maximum value of m we calculated is m = 16; we wish to model the switch from np to g p occurring

in relatively few divisions, and for m > 16, at least four generations of division are required for all
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Figure 3.10 Illustration of clonal lineages during gliogenesis built from subtrees. In the upper left, we
define the process Q 1, which starts with a g p cell that divides to produce glia according to probabilities p2

and q2. Next, we define a Q 2 process, which starts with an np cell and produces two g p cells. Since each
root of these two sublineages is a g p cell, each produces glia according to the process Q 1. Similarly, we
define Q 3 as the process starting with an np cell and dividing into np and g p cells as shown. The root
of the left sublineage of the initial np cell matches the Q 1 process, and the root of the right sublineage
matches the Q 2 process as previously defined.

np progenitors to switch to g p . The final probability Qn of a clone of size n is then found by adding

together all Q m
n terms,

Qn =
16
∑

m=2

Q m
n , n ≥ 4 (3.12)

Note that Q1 is not included in this sum, since we are only considering clones that start with an np

cell and undergo a switch to g p at some point; Q1 was simply used in formulating the recursion.

Additionally, this implies that Eqn. 3.12 can only model clones having ≥ 4 differentiated glia.

3.2.4 Evaluation of clone size distribution Qn

In contrast with the GW process for neurogenesis in [48], we do not have in vitro progenitor divisions

that we could observe to select division probability parameters. However, we note that Eqn. 3.12 is a

multivariate polynomial in p1, q1, p2, and q2, as a clone’s probability of occurring is the product of

the probabilities of each of its individual divisions. It is thus possible to find the set of parameters
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that minimize the sum of square differences between Qn and the normalized distribution of glia

per clone in the NGS data, which we denote H (n ), n = 4, ..., 50. We use the native MATLAB function

fmincon to find parameter values p1, q1, p2, and q2 that minimize the sum of squares error between

H (n ) and Qn . The function fmincon allows for constraints on the possible parameter values, thus

we use this feature to constrain each parameter to be between 0 and 1. Additionally, we perform

the same parameter estimation using the Slater Qn model for neurogenesis clone sizes. This model,

given in Eqn. 3.8, is generated from only two cell types. In this case we would consider the two

cell types as glial progenitors g p and glial cells G , which differentiate and proliferate according

to probabilities p2 and q2. Note that in this case, the minimum clone size is 2 rather than 4, so we

compare to H (n ), n = 2, ..., 50.

Once we find parameter sets for each Qn model, we use a Chi-square goodness of fit test to

determine how well each represents the data. As compared with other statistical goodness of fit

tests like the Anderson-Darling or Kolmogorov-Smirnov, the Chi-Square test operates on discrete

binned data and is thus preferable for evaluating a statistical distribution’s fit to the distribution of

glia per clone [37]. The hypotheses for the Chi-Square test are

1. H0: The data follows the considered distribution.

2. H1: The data does not follow the considered distribution.

The Chi-square test gives a p -value, which is used to reject the null hypothesis if p is below the

confidence level α. We set α= 0.05, hence if we perform the Chi-square test for a distribution and

find p<0.05, we would conclude that the particular distribution does not represent the data. If

p>0.05, then the distribution does sufficiently represent the data.

In Table 3.1, we list the estimated parameter values when fitting each model to each dataset, along

with the p-value of the Chi-square test. The fits of each model to the data are additionally shown in

Fig. 3.11. We see an interesting result here. When fitting the Slater Qn model to the distribution H (i )

formed from G and Mix data (Fig. 3.11b), the χ2 p-value is below the α= 0.05 significance level. This

suggests that we would reject the null hypothesis of the Chi-square test; hence, this dataset does not

follow the distribution prescribed by the Slater Qn models. The χ2 p-value for fitting the NGS Qn

model to the G and Mix dataset (Fig. 3.11a) is just above α= 0.05, which suggests that the G and Mix

distribution H (i )may also not follow this model, though we would not reject the null hypothesis

at the α= 0.05 significance level. However, when fitting both the NGS and Slater Qn models to the

distribution H (i ) formed from glial only data (Fig. 3.11c-d, respectively), the χ2 p-value in each

case is well above the null hypothesis rejection level of α= 0.05. Thus, it appears that either of these

stochastic models could reasonably represent the process that produces clones with only glia and

no neurons.

This is an interesting result, as it suggests that there may be some difference in the distribution of

glial output between glial only and mixed clones. Currently, it is assumed that all glia come from RGPs
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(a) (b)

(c) (d)

Figure 3.11 Fits of model Qn to the distribution of total glia per clone in WT G+Mix clones (a)-(b) and WT
G clones (c)-(d). Two versions of Qn are fit to the distributions. In (a) and (c), version (3.12) representing
the NGS used. Note that this version of Qn can only fit clone sizes ≥ 4, and the clone size distribution is
normalized accordingly. In (b) and (d) version (3.8) is used, which represented neurogenesis in Slater et al.
[48]. Table 3.1 shows the p-values for the Chi-square test evaluating the goodness of fit of each model to
each distribution, indicating that only the WT G clones are represented by the model Qn .
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Table 3.1 Parameters p1, q1, p2, and q2 identified for fitting the model for clone size distributions Qn to
the data of glia per clone in the NGS data. Two forms of Qn were considered: model (3.8), formulated
by Slater et al. for neurogenesis [48] and model (3.12), formulated above for a population of progenitors
that undergoes a switch from neurogenesis into gliogenesis (denoted NGS Qn ). Each model was fit to
the normalized frequency histogram of glia per clone H (i ), formulated either considering all G and Mix
clones, or G clones only. The fit of each model to each histogram was evaluated using a Chi-square test
[37], for which the p-values are shown. A low p-value (p<0.05) indicates that the particular model does not
accurately represent the distribution of glia in the histogram.

H (i ) dataset Model p2 q2 p1 q1 χ2 p-value

G and Mix NGS Qn 0.4003 0.1370 0.5377 0.0577 0.0667
G and Mix Slater Qn 0.0764 0 - - 0.0254*

G only NGS Qn 0.4240 0.1514 0.5539 0.0667 0.2350
G only Slater Qn 0.0820 0 - - 0.2770

that previously produced neurons. However, if this was the case, we would expect the distribution

of glia per clone in mixed and glial only clones to be similar, as the glial only clones would have

originated from the same RGPs as mixed clones but were simply labeled at a later time with MADM

so that no neurons appear in the lineage. Instead, we see the distribution of glia in glial-only clones

sufficiently represented with a stochastic GW model. Furthermore, it is represented sufficiently by

the simpler Slater Qn model given in Eqn. 3.8, while adding mixed clones to the distribution causes

the GW model to fail in its representation of the data. It is possible that two separate populations

of progenitors exist - one of which produces only glia and behaves stochastically according to a

GW model, and the other of which undergoes a switch from neurogenesis into gliogenesis, whose

behavior we do not yet know.

3.2.5 Discussion of further modeling

The possibility of different populations of progenitors leads us to consider how the ‘mixed’ RGPs

that switch from neurogenesis into gliogenesis divide and differentiate, and how this differs from

the ‘glial only’ RGPs that follow a stochastic GW process. In the next chapters, we will consider how

to distinguish the rules governing the behavior of our two hypothesized RGP populations.

First, we will use statistical analysis and unsupervised machine learning to explore the rela-

tionships between clone sizes and features like induction time, location, and clone type, which we

cover in Chapter 4. Second, we consider a different method for representing the distribution of

glia per clone, formed from a discrete Gaussian mixture model. This type of model was used in a

previous study to represent MADM data collected during neurogenesis rather than gliogenesis, and

the model represented a specific hypothesis of deterministic clonal behavior during neurogenesis
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[16]. We perform this analysis in Chapter 5.

Ultimately, the main principle that we emphasize going forward is that different clonal division

rules, whether formulated from a GW process or any other model, affect the distribution of hypo-

thetical clone sizes. Conversely, if we have a clone size distribution measured from data, we can

test how well that distribution is represented by different clonal division rules. However, as we have

already seen – we failed to reject the Chi-square null hypothesis for both the NGS and Slater Qn

models in their representation of glia per clone in G only clones – two models with differing levels

of complexity may both reasonably describe the data. In this case, we chose the simpler Slater Qn

model to represent stochastic gliogenesis. In our remaining analysis, we will similarly attempt to

identify rules that are specialized enough to represent the distribution of clone sizes in the NGS

better than simpler rules, but that are themselves as simple as possible.
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CHAPTER

4

SOM AND STATISTICAL ANALYSIS OF

CLONAL DATA

In the previous chapter, we modeled glial production during the NGS using the traditional method

of branching processes and compared the model output to clonal MADM data. This analysis showed

that the glial production in the subset of clones containing only glia and no neurons (G clones) was

reasonably represented by a simple stochastic Galton-Watson branching process with two cell types:

glial progenitors g p and glia G . However, this model failed to represent the glia coming from clones

with both glia and neurons (Mix clones).

This observation leads us to hypothesize about the presence of two populations of RGPs, where

the first subpopulation produces neurons and then switches to producing glia, and the second

subpopulation produces only glia. Currently, it is unknown whether this second population of

purely gliogenic RGPs exists, and previous studies have suggested that all glia come from previously

neurogenic RGPs [16, 41]. Under this assumption, we would say that all glial-producing RGPs undergo

a switch from neurogenesis into gliogenesis, and any G clones that we observe in the NGS data

were induced with MADM after this switch occurred. Thus, any previously produced neurons would

not be observed in the MADM-labeled lineage. We would expect to see similar patterns of glial

production between G and Mix clones if this were the case, since G clones would simply be the glial

portion of Mix clones. Instead, we observed in Sec. 3.2.4 that the distributions of glia per clone in G

and Mix clones were not represented by the same model.
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At a glance, we can observe how glial production compares between G and Mix clones. Fig. 4.1

shows the means of the red or green glia produced per clone among different subsets of the data.

Recall that in wildtype (WT) mice, the red and green sublineages are genetically identical, while

in knockout (CKO) mice, the gene for epidermal growth factor receptor (EGFR) is deleted in the

green lineage only. As expected, the CKO clones produce a smaller average number of green glia

than WT clones, since gliogenesis is suppressed from the genetic knockout of EGFR. This reduction

of green glia in the CKO clones holds for both G and Mix clones. Additionally, the average red glia in

CKO clones appears to be increased as compared with the average red glia in WT clones, indicating

that the red lineages alter their glial output to compensate for loss of green glia. However, other

comparisons are less clear from simply examining the mean glia per clone. For instance, it is difficult

to tell whether a difference in glial output exists between G and Mix clones, or whether the G and

Mix clones compensate for the loss of green glia differently in CKO mice.

In this chapter, we aim to develop a clearer understanding of how RGP behavior progresses during

the NGS. First, in Sec. 4.1 we use self-organizing map (SOM) clustering as in Chapter 2 to observe

the broad differences in glial production between clones from different MADM labeling times, and

between WT and CKO populations. Second, in Sec. 4.2 we directly compare the glia produced in

different subsets of the population using the Wilcoxon Rank-Sum test. These comparisons result in

further distinctions between the Mix and G clones, which we incorporate into model construction

in Chapters 5 and 6.

4.1 Clonal analysis: Self Organizing Maps

4.1.1 Clone types as an indicator of development stage during the NGS

As time progresses through the switch from neurogenesis to gliogenesis, we would expect the

percentage of G clones in each mouse to increase. We observed this phenomenon in Chapter 2

when comparing the WT mice labeled with MADM at E15.5, E16.5, and E17.5, though there was

significant variability across different mice having the same time point label. Additionally, recall

from Table 1.1 that the number of mice per time point and the number of clones per mouse are

variable in the dataset. To allow a more even and robust comparison of the percentage of G clones

at different time points, we utilize a clonal subsampling scheme.

4.1.1.1 SOM construction: subsampling clones

We begin by pooling together the clones coming from all mice at a single time point and genotype,

resulting in a partition of the data into six groups: WT E15.5, E16.5, E17.5 (97, 148, 148 clones

respectively) and CKO E15.5, E16.5, E17.5 (45, 57, 55 clones, respectively). A random sample of

n clones was taken from each group; we chose n = 32 clones so that the group with the smallest
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Figure 4.1 Average red glia and green glia per clone in subsets of NGS data.

number of clones, CKO E15.5, would be sampled at roughly 70%. The percentages of N, G, and

Mix clones were calculated in each group’s sample and recorded in a 3× 1 vector. This random

sampling and clone type percentage calculation was performed 100 times for each group. Thus, the

end result was 600 vectors representing the percentages of N, G, and Mix clones in each sampled set

of n = 32 clones. Table 4.1 shows five examples of the vector components for %N, %G, and %Mix

clones calculated in samples of 32 clones from the group of E15.5 WT mice. To compare the change

in G clones over time, we clustered the % G component of the 600 vectors in a 1×5 SOM (see Sec.

2.2) and examined the placement of clones from each group into the five clusters.

Table 4.1 Percent N, G, and Mix clones in five sample sets of n = 32 clones from E15.5 WT mice.

Sample set 1 2 3 4 5
%N 20.59 17.64 23.52 22.06 19.12
%G 50.00 58.82 55.89 52.94 54.41

%Mix 29.41 23.52 20.59 25.00 26.47
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4.1.1.2 Results

In Fig. 4.2(a), we show the average % G clones among the mice sorted into each cluster. The map

has placed clones with lower percentages of G clones into the first cluster, and the percentage

increases monotonically when traversing clusters in the map from left to right. Fig. 4.2(b) shows the

percentage of samples in each cluster that come from each time point and genotype. Consistent

with the previous results in Chapter 2, mice with more G clones come from later time points, and this

is the case for both WT and CKO groups. However, there is an interesting shift in the placement of

mice coming from the same time point and different genotypes. For each time point, the CKO mice

are sorted into clusters farther to the right than the WT mice, indicating that CKO mice have a higher

percentage of G clones as compared with their WT counterparts. This is an interesting observation;

if we take the dataset of WT clones and simulate the effect of EGFR knockout by deleting all green

glia, the result is a decrease in the percentage of G clones, not an increase. As an example, 54.64%

of clones in E15.5 WT mice are G clones. Deleting green glia in all clones causes any Mix clones

containing all green and no red glia to become N clones, and it also removes any G clones that

contained only green and no red glia from the dataset altogether. The percentage of the remaining

clones that are G clones is reduced to 44.30%. Thus, the increase in percentage of G clones in CKO

mice does not appear to arise directly from the deletion of green glia. Instead, it implies that the

knockout of EGFR alters RGP behavior in some way to result in more G clones. We can hypothesize

about different mechanisms that could cause G clones to appear in larger numbers in CKO mice,

depending on the assumption of one or two populations of RGPs.

First, we consider one population of neurogenic RGPs in which a fraction of the RGPs eventually

switch from neurogenesis into gliogenesis (hypothesized to be 10-20% of RGPs [16, 41]), and all glia

come from previously neurogenic RGPs. Here, the increased percentage of G clones could occur if

the genetic knockout causes RGPs to switch from neurogenesis into gliogenesis earlier. This could

occur via a biological mechanism in which RGPs sense the loss of green glia at the start of the NGS

and compensate quickly by increasing the rate at which RGPs switch into gliogenesis. The observed

increase in the percentage of G clones would thus arise from MADM labeling occurring more often

in RGPs that have already switched into gliogenesis. In Fig. 4.3, we illustrate this phenomenon by

representing the NGS over E15.5 to E17.5 as a gradient from red to yellow, corresponding to an

increase in G clones over time. For the WT case, we show the NGS peaking around E16.5, where

fewer G clones are produced prior to E16.5 and more are produced after this time. For the CKO case,

we show the NGS occurring earlier, which shifts the gradient of increasing G clones over time to the

left. As a result, the CKO case shows more G clones at each time point as compared with the same

time point in the WT case. Thus, the increased observation of G clones in CKO mice could occur if

the NGS is sped up in response to the EGFR knockout.

Second, we consider the population of RGPs that switches from neurogenesis into gliogenesis as
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(a)

(b)

Figure 4.2 Results of clustering the values of %G clones in 600 sample sets of n = 32 clones into five clus-
ters using a 1×5 SOM. The number of sample sets sorted into each cluster ranged from 71 to 166. The plot
in (a) shows the mean ± SEM of the %G clones value for the sample sets sorted into each cluster. For in-
stance, the sample sets in cluster 1 had mean %G value of 50%. The sample sets sorted into clusters farther
to the right in the map contained more G clones. In (b), we show the percentage of samples sorted into
each cluster coming from each of the six groups listed. Samples with a lower value of %G clones on the
left of the map predominantly came from E15.5 mice, and traversing the map from left to right shows a
temporal shift to E16.5 and E17.5 as the average value of %G clones in each cluster increases.
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Figure 4.3 Conceptual diagram illustrating the result of an earlier occurrence of the NGS. The gradient
from red to yellow shows the increase in G clones in the observed data as the NGS proceeds. If we hypoth-
esize that the NGS is sped up in the CKO case as compared with the WT case and occurs at an earlier time
point, then the CKO clones at E16.5 and E17.5 will have increased numbers of G clones as compared with
the WT clones from the same times.

well as a second population of RGPs that produce only glia. We will refer to the former population

as NGS-RGPs, and the latter as glial-producing RGPs, or G-RGPs. In this case, the increase in G only

clones could simply occur if the G-RGPs respond differently than the NGS-RGPs to the deletion

of EGFR. For instance, EGFR deletion could cause increased proliferation of G-RGPs, but not in

NGS-RGPs, which would increase the proportion of G-RGPs in the entire population and accordingly

increase the proportion of G clones. A similar proportional increase in the G-RGP population could

occur from an influx of G-RGPs migrating from other regions of the developing cortex; it has been

demonstrated that some RGPs migrate tangentially in this manner during cortical development

[32].

The hypothesis of one or two populations of RGPs brings us to the question of deterministic ver-

sus stochastic mechanisms of RGP behavior during the NGS. Recall from Sec. 1.4.1 that a stochastic

mechanism implies that all RGPs would be affected similarly from EGFR knockout, whereas a deter-

ministic one implies that some RGPs may respond differently due to different fate specifications.

We can gain support for one of these options by examining the distributions of glia per clone in

separate subsets of the data for similarities or differences. Thus, in Sec. 4.2 we will use statistical

tests to quantify the clonal response to EGFR knockout, focusing on comparing the glial production

of G versus Mix clones.
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4.1.2 Glial Production, Wild Type and Knockout

4.1.2.1 SOM construction

Next, we perform SOM clustering using the two-component vectors of total neurons and total glia

per clone. For fair and robust comparison between the different time points and genotypes, we

again implement a subsampling scheme. As with the previous SOM in Sec. 4.1.1, n = 32 clones

were sampled from each of the six data groups. The red and green components of each clone were

summed to give total neurons and total glia per clone. The resulting 192 2× 1 vectors were then

clustered with a 1×5 SOM. This sampling was performed 500 times and a 1×5 SOM formulated for

each case.

For each SOM, we observed that clones were sorted predominantly based on the total glia per

clone, since this component had a wider range than the total neurons component. To allow for

comparison between the different clusterings, each SOM was arranged after clustering so that the

cluster containing clones with the most glia was on the left of the map and denoted cluster 1, and

the average glia per clone decreased in the clusters going from left to right.

4.1.2.2 Results

Fig. 4.4(a) shows the average glia and neurons in the clones sorted into clusters 1-5. Clone size

appears correlated with location, with small clones found predominantly in superficial and deep

layers, and large clones found among all layers (Fig. 4.4(b)). This makes sense biologically; RGPs

produce neurons and glia in layers from deep to superficial over time (see Sec. 1.1.2), so all layer

clones would be counting an entire clonal lineage, whereas deep or superficial ones would only be

counting a subset of a lineage’s cells.

It is interesting then to observe the placement of the six time and genotype groups among the

clusters. Cluster 1, having clones with very large numbers of glia that are predominantly found in

all layers, is primarily comprised of E16.5 CKO and E17.5 CKO clones. A small number of E16.5 WT

clones also fall into this cluster, indicating that an increase in glial output occurs at E16.5 regardless

of any genetic perturbation. The E15.5 CKO clones are not seen in Cluster 1, suggesting that any

increase in glial output in response to the genetic knockout occurs after E15.5. It may therefore be

the case that the naturally occurring increase in glial output at E16.5 is amplified and extended

temporally to E17.5 clones in response to the genetic knockout.

However, the WT and CKO clones sorted into Cluster 1 differ by clone type. Within Cluster 1, all

of the E16.5 WT clones are Mix clones, thus the natural increase in glial output appears to come

from clones switching from neurogenesis into gliogenesis around E16.5. Among the E16.5 CKO

clones in Cluster 1, only 38.38% are Mix clones, and the remaining 61.62% are G clones. The E17.5

CKO clones in Cluster 1 are all G clones. Thus, the clones producing large numbers of glia in CKO
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mice are predominantly G and not Mix clones, contrasting with WT mice.

Again, this difference between WT and CKO could occur from a mechanism operating on one or

two populations of RGPs. If only one population of RGPs existed and the EGFR knockout ‘speeds

up’ the NGS as described in Sec. 4.1.1.2, then the surge in glial production from Mix clones would

occur earlier in CKO mice, perhaps at E15.5 instead of E16.5. Accordingly, if these Mix clones with

large numbers of glia occur at E15.5, then the glial only portions of their lineage would be observed

at E16.5-E17.5. This would explain the large numbers of glia in G CKO clones at these later times.

However, we do not actually observe large numbers of glia in E15.5 CKO clones, Mix or G, as no E15.5

clones are located in Cluster 1 in Fig. 4.4(c). On the other hand, if we hypothesize about separate

populations of NGS-RGPs and G-RGPs, the surge of glial production in E16.5 and E17.5 CKO G

clones could easily be explained by an increase in G-RGP proliferation that occurs after E15.5 and

thus does not appear in E15.5 clones. In the next section, we highlight more differences between

glial output by time and clone type with the goal of distinguishing the two populations of RGPs.

4.2 Statistical Comparison of Clones

4.2.1 Wilcoxon Rank-Sum test

Next, we perform pairwise comparisons of clonal output between different subsets of the NGS data

using the Wilcoxon Rank-Sum test [37]. This method, also known as a Mann-Whitney U test, is an

analysis of variance (ANOVA) technique adapted for nonparametric data. That is, the test enables

comparing groups of data without the assumption that the data is normally distributed. The test

takes as input two sets of data in which the observations in each data set are

1. independent

2. able to be clearly ordered from smallest to largest.

The two data sets do not need to have the same number of elements, though a large difference in

sample size can produce a less reliable result.

The null hypothesis H0 and alternative hypothesis H1 for the Wilcoxon Rank-Sum test are as

follows:

1. H0: The populations in the two data sets are equal in distribution.

2. H1: The populations in the two data sets have different distributions.

The test calculates a p value, which indicates rejection of the null hypothesis if p is below a certain

significance level α. We consider the standard α = 0.05 to determine the rejection of the null

hypothesis.
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(a) (b)

(c)

Figure 4.4 Results of clustering the vectors of total glia and total neurons per clone into five clusters via
a 1×5 SOM. The average number of clones sorted into each cluster ranged from 8 in cluster 1 to 72 in
cluster 4. (a) Mean ± SEM of the components of total glia and total neurons in the clones sorted into each
cluster. We see that the SOM sorted clones based on the total glia component, with clones in the clusters
on the left of the map having many glia, and clones in the clusters on the right of the map having very few.
(b) Percentage of clones sorted into each cluster coming from each of the three cortical tissue locations:
all layers, deep, or superficial. All layer clones are highly represented in cluster 1 with large glial clones,
whereas deep and superficial clones occur more often in the clusters with small glial clones. (c) Percentage
of clones in each cluster by time point and genotype. E16.5 CKO and E17.5 CKO clones are dominant in
cluster 1 with large numbers of glia per clone.
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In the NGS data we consider, clone sizes are not normally distributed about some mean (see the

distribution of glia per clone in Fig. 3.11), but they can be clearly ordered. Additionally, all clones

are observed independently, since sampling of RGPs in the cortex occurs randomly. Thus, we satisfy

the above assumptions and can use this test to determine whether the production of glia differs

by genotype, clone type, and time. The data is considered at the clonal level, with clones pooled

among all mice in the respective groups being compared.

4.2.2 Results of comparisons

As a simple introductory example, we compare the sets of red and green glia per clone using the

Wilcoxon Rank-Sum test. From Fig. 4.1, we might expect to reject the null hypothesis if we compared

the red and green glia in CKO clones, but likely not reject the null hypothesis for the same test in WT

clones. Table 4.2 shows the p-values resulting from comparing red to green glia in clones coming

from four subsets of the data: G WT, Mix WT, G CKO, and Mix CKO. In both WT cases, p>0.05 and

we cannot reject the null hypothesis. Thus, WT clones produce a similar distribution of red and

green glia with no preference for red over green. Performing the test on red versus green glia in CKO

clones results in a rejection of the null hypothesis for both G and Mix clones, confirming that the

genetic knockout causes a significant difference in the production of red versus green glia.

Table 4.2 p-values generated from the Wilcoxon Rank-Sum test comparing red and green glia per clone for
WT G, WT Mix, CKO G, and CKO Mix clones.

Red glia vs green glia
G, WT 0.1172

Mix, WT 0.5398
G, CKO 3.3508e-14*

Mix, CKO 1.500e-3*

We perform three more tests to compare the distributions of glia per clone produced in subsets

of the population broken down by genotype (WT and CKO), time point (E15.5, E16.5, E17.5), clone

type (G and Mix), and in some cases, sublineage (red and green):

Total glia per clone in G versus Mix clones. First, we compare the total glia per clone in the sets

of G and Mix clones, broken down by time point and genotype. We note that there are no E17.5

CKO Mix clones, so the comparison to G clones could not be performed for this group. Based on the

p-values from the WT comparisons in Table 4.3, G and Mix clones produce similar distributions of

glia per clone at E15.5 and at E17.5. At E16.5, the distributions differ, with Mix clones producing on

average more glia than G clones. This is consistent with the previous phenomenon discussed in Sec.

4.1.2, where a natural surge in glial production occurs in WT Mix clones at E16.5. Interestingly, in
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the E16.5 CKO population, this difference in glial output is not observed between G and Mix clones

(p=0.2036).

Table 4.3 p-values generated from the Wilcoxon Rank-Sum test comparing glia per clone in Mix versus G
clones. The comparison is done for subsets of clones separated by time and genotype.

WT G clones vs WT Mix clones CKO G clones vs CKO Mix clones
E15.5 0.9957 0.5593
E16.5 2.9401e-04* 0.2036
E17.5 0.5748 no Mix clones

Total glia per clone in WT versus CKO clones. Next, we compare the output of glia per clone

between the WT and CKO populations. The p-values for the comparison tests between different

subsets of WT versus CKO clones are shown in Table 4.4. For G clones, the distribution of glia

produced in WT versus CKO clones is significantly different, with p-values well under 0.05; this

holds whether we compare the red sublineages only, the green sublineages only, or the total glia

per clone. For Mix clones, the genetic knockout appears to influence the distribution of glia in the

individual sublineages (p=0.0224 for red, p=0.0672 for green), but the distribution of total glia per

clone is not altered between WT and CKO Mix clones (p=0.2956).

Table 4.4 p-values generated from the Wilcoxon Rank-Sum test comparing glial output in WT versus CKO
clones. The tests are performed for the sets of red glia, green glia, and total glia.

Red Glia, WT vs CKO Green Glia, WT vs CKO Total Glia, WT vs CKO
G clones 7.5387e-09* 6.7019e-05* 1.2571e-05*

Mix clones 0.0224* 0.0672 0.2956

Total glia per clone by time point. G and Mix clones additionally show a difference when com-

paring the glia produced from separate MADM induction times. For G clones, the distribution of glia

produced is similar between all three time points, both in WT and CKO populations (Table 4.5). WT

Mix clones produce a similar distribution of glia at E15.5 and E17.5 (p=0.4766), but the distribution

of glia per WT Mix clone differs at E16.5 from the other two time points. Again, this is consistent

with the phenomenon of a surge in glial production in E16.5 Mix clones.
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Table 4.5 p-values for comparing total glia per clone by time point for WT G, WT Mix, CKO G, and CKO Mix
clones.

E15.5 vs E16.5 E16.5 vs E17.5 E15.5 vs E17.5
G, WT 0.6176 0.7495 0.8160

Mix, WT 0.0031* 0.0208* 0.4766
G, CKO 0.8840 0.6580 0.6285

Mix, CKO 0.1656 no E17.5 CKO Mix

4.3 Discussion of clonal behaviors in the NGS

The SOM and statistical tests presented in this chapter have shown several trends regarding glial

production during the NGS as it relates to time and clone type. We now aim to summarize the

observed trends to understand how the NGS proceeds in the WT case, and how the knockout of

EGFR affects RGP behavior during the NGS.

4.3.1 NGS in WT and CKO clones

First, we address our hypothesis of one or two separate populations of RGPs with different behavior.

In WT clones, we consistently observed a phenomenon in which E16.5 Mix clones produce more

glia than both G clones and Mix clones from other time points. The distribution of glia per clone in

WT G clones did not differ at different time points (Table 4.5). If G clones all arose as observations of

the later part of Mix lineages, we would expect to see a temporal difference in their production of

glia as was observed in Mix clones, but this is not the case. Additionally, we observed a different

response to EGFR knockout in G and Mix clones, with CKO G clones producing more glia than

their WT counterparts, but CKO Mix clones producing a similar distribution of total glia as WT Mix

clones, albeit with more red and fewer green glia. As described in Sec. 1.4.1, a different response to

genetic perturbation between subsets of a cell population can indicate different deterministic fate

specifications in these subsets. Thus, we gain support for the hypothesis that two deterministically

different populations of RGPs exist: the NGS-RGPs, which produce neurons and then glia (and result

in Mix clones if labeled prior to the switch and G clones if labeled post-switch), and G-RGPs, which

only produce glia (and hence can only be G clones).

Under the hypothesis of the existence of these two populations of RGPs, we can describe how the

NGS proceeds in the WT case according to the SOM and statistical test results. Between E15.5 and

E17.5, NGS-RGPs switch from neurogenesis into gliogenesis. Those that undergo this switch around

E16.5 end up producing more glia than those that switch around E15.5 or E17.5. This could be due

to increased expression of EGFR at E16.5 promoting gliogenesis as described in Sec. 1.1.2, but other

unknown factors could also contribute. The subpopulation of G-RGPs produce consistent numbers
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of glia per clone from E15.5 to E17.5, which suggests a steady migration of glia from G-RGPs into

the cortex. That is, if all G-RGPs were present and able to be labeled with MADM from the earliest

time point, E15.5, then we would expect to see the number of glia per clone decrease in G clones

at E16.5 and E17.5, since these G clones would be subsets of the E15.5 G clone lineages. Instead,

the distribution of G clones sizes is consistent over time, suggesting that the G clones labeled with

MADM at E16.5 and E17.5 are not from the same population as those labeled at E15.5.

We can also describe how the NGS proceeds differently in the CKO case, based on the hypothesis

of separate behavior between NGS-RGPs and G-RGPs. NGS-RGPs appear to have a similar surge in

glial production at E16.5 as in the WT case, evidenced by the E16.5 CKO Mix clones being clustered

with E16.5 WT Mix clones in the clonal SOM in Fig. 4.4. EGFR deletion shifts the production of red

and green glia in NGS-RGPs, but leaves the total glia unchanged (Table 4.4). On the other hand,

G-RGPs increase their glial output in the CKO case at E16.5 and E17.5, but not at E15.5 (Fig. 4.4).

Overall, the total glia produced by G-RGPs is increased in the CKO case (Table 4.4). Furthermore,

more G clones exist in the CKO case. Returning to the discussion of two populations of RGPs from

Sec. 4.1.1.2, this could be from a migration of G-RGPs from another location in the developing brain,

or simply from increased proliferation that increases G-RGP population.

4.3.2 Deterministic versus stochastic: clonal level

The analysis presented in this chapter supports the hypothesis of two deterministically fate-specified

subpopulations of NGS-RGPs and G-RGPs, which are distinguished from one another by different

patterns of glial production. However, within those two populations, at the clonal level, we can label

the patterns of glial production as deterministic or stochastic. These terms as they relate to clonal

output are less well-defined in literature than at the level of the population. Summarizing what

previous studies have used to define ‘deterministic’ clonal behavior, we will propose that possible

indications of clonally deterministic mechanisms include a predictable, normally distributed num-

ber of differentiated cells per clone, a pairing of fates between the sublineages of individual RGPs,

and a resistance to fate alteration via genetic reprogramming (see Sec. 1.4.1). Clonally ‘stochastic’

behavior may be defined by the absence of these deterministic signals.

Comparing the observations for Mix and G clones thus far appears to indicate a clonally deter-

ministic mechanism for NGS-RGPs, but a clonally stochastic mechanism for G-RGPs. Regarding

the former group, Mix clones produce similar total glia per clone even after deletion of the gene for

EGFR, pointing to a resistance in the NGS-RGP population to the alteration of total glia production.

For the G-RGPs, total glia production was increased in response to genetic alteration. Additionally,

the distribution of glia per clone in G clones is not normal but was found to be sufficiently repre-

sented by a distribution Qn matching the output of a stochastic Galton-Watson (GW) branching

process in Sec. 3.2.4. The similarity of glial production from G clones at successive time points is
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further evidence of behavior matching a stochastic GW process; these processes hold to the Markov

property (see Eqn. 3.7), which makes them self-similar in time.

Thus, in developing a model for clonal behavior during the NGS, we so far can represent the

stochastic behavior of G-RGPs with a GW process. The deterministic behavior of NGS-RGPs remains

to be understood. In the next chapter, we test whether a clone size distribution based on a Gaussian

mixture model, intended to represent clonally deterministic behavior, can represent the distribution

of glia per clone in Mix clones in the NGS data. If so, then we can define a set of deterministic rules

for the behavior of NGS-RGPs in Chapter 6.
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CHAPTER

5

CLONAL DISTRIBUTION ANALYSIS:

GAUSSIAN MIXTURE MODELS

Based on the analysis of clone size distributions in Chapter 3 and the statistical comparison of

groups of clones in Chapter 4, we have suggested that two subpopulations of radial glial progenitors

(RGPs) exist during cortical development and the neurogenesis-to-gliogenesis switch (NGS). One

subpopulation, which we denote G-RGPs, produces glia in a stochastic manner that can be repre-

senting using a branching process. This type of model was consistent with the glia produced by

clones containing no neurons (G clones). The other subpopulation, denoted NGS-RGPs, is hypothe-

sized to produce glia in a deterministic manner, but we have not yet determined a model that can

represent a deterministic distribution of glia per clone. In our MADM dataset, this subpopulation

of corresponds to the Mix clones, which produce both neurons and glia. Thus, in this chapter, we

aim to test whether a deterministic model is sufficient to represent the distribution of glia per

clone in Mix clones. Namely, we test the goodness of fit of a multi-Gaussian mixture model with

linearly spaced peaks; this particular model was proposed as a way of describing clonal output from

deterministically behaving RGPs during neurogenesis [16].

We begin this chapter, in Sec. 5.1, by highlighting two features of clonal MADM data that can be

used as indicators of specific proliferation and differentiation patterns in clonal lineages: symmetry

and recursion. Next, we explain how these features were analyzed in clonal MADM data collected

during neurogenesis in [16], both at the level of individual clones and at the level of the distribution
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of neurons per clone in the population. Lastly, we adapt and expand on their techniques to test

whether glia are produced during the NGS deterministically or stochastically in Sections 5.3-5.6.

The hypothesized mechanism of clonal behavior that we identify will be simulated in Chapter 6.

5.1 Inferring clonal division history from MADM data

We recall that the MADM data gathered during the NGS does not measure the entire history of each

labeled RGP’s divisions, but only provides the number of differentiated cells in the developed cortex

that are descendants of that RGP. Knowing the precise history of divisions would aid in judging

whether RGP expansion and differentiation occur deterministically or stochastically, since we would

directly know every cell’s fate. Although this precise history is unknown, two features of clonal

MADM data can help determine which mechanism most likely drives the proliferative capacity and

division history of a clonal population.

5.1.1 Symmetry

First, comparing the red and green sublineages of each MADM clone can give insight into whether

specific types of cell divisions correspond to clonal output. We note that the number of differentiated

cells in a clone’s red and green sublineages indicate what type of division the original MADM labeled

RGP underwent (Fig. 5.1). If both sublineages contain one cell, the RGP completed a symmetric

differentiating division. This case is trivial since there is no uncertainty about what type of division

occurred, disregarding the possibility of cell death. More importantly, if one sublineage (red or

green) contains only one cell and the other (green or red, respectively) contains more than one, then

the initial RGP performed an asymmetric differentiating division. If both sublineages contain more

than one cell, the initial division was a symmetric proliferative division, since the red and green

sublineages would each need an RGP at their roots to produce at least two differentiated cells.

We will thus classify clones as ‘asymmetric’ if one sublineage contains one cell and the other

contains more than one, or ‘symmetric’ if both sublineages contain more than one cell. The clone

sizes in the subpopulations of asymmetric and symmetric clones can be examined separately to

determine if an RGP’s initial division affects the total number of differentiated cells it produces. If a

clear pattern in clonal output exists for asymmetric or symmetric clones, we would have evidence

of a deterministic relationship between clone size and initial division type.

5.1.2 Recursion

Second, the numbers of differentiated cells in subsequent generations of the lineage are related to

one another by recursion. This property was previously used in Sec. 3.1 to develop an estimate for

the rounds of division h given a clone size l . In addition, the recursive property of clonal lineages
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Figure 5.1 Effect of the initial RGP division on the total differentiated cells. A symmetric differentiation pro-
duces two cells, one red and one green (left). Asymmetric differentiation (center) produces one red/green
cell and more than one green/red cell. A symmetric proliferative division (right) is required to produce
greater than one cell in both red and green sublineages.

can enable reconstruction of division histories given a sample of MADM clones at different time

points. This is best illustrated if we think of a clonal lineage as a rooted binary tree whose leaves are

differentiated cells, as in Sec. 3.1. Recall that the number of leaves descending from a node is the

sum of the leaves in the node’s left and right subtrees. For MADM data, this translates to the number

of cells descending from an initial RGP being equivalent to the sum of its red and green cells. Fig.

5.2 shows two possible scenarios of MADM labeling in an RGP lineage. If the RGP ‘a’ was labeled

with MADM, the observed clone would count 3 red and 10 green glia for a total of 13 cells. However,

consider if MADM labeling instead occurred in the RGP ‘b’. In this case, the observed clone would

have 2 and 1 glia in its respective red and green lineages. If we observed these two clones in the data

and knew that one had been labeled with MADM during a later development stage than the other,

then we could infer that RGP ‘b’ producing 2+1=3 glia was the same RGP from the red sublineage of

RGP ‘a’, also producing 3 glia.

Thus, since MADM tracks a random sample of clones at multiple time points, the clones mea-

sured at later time points can be thought to represent sublineages descending from clones present

at earlier time points. A rooted full binary tree can be reconstructed if the number of leaves in

each of its subtrees are provided [36]. Therefore, if a sufficient number of clones are measured at

multiple time points, we can consider that these clones provide a representation of a lineage and its

sublineages.

By treating a sample of MADM clones collected at subsequent time points as representing

sublineages of a global lineage process, we can use the distribution of clone sizes in the sample to

infer RGP proliferation and differentiation histories. For instance, we may notice by observing peaks

in the clone size frequency distribution that clones of size 5 and 8 are very common. If 13 is also a

common clone size, we may assume that the clones producing 13 cells tend to do so by having two

sublineages with 5 and 8 cells, respectively.
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Figure 5.2 Recursion of cell counts from MADM labeling in successive generations of a clonal lineage.
Labeling the initial progenitor (a) results in all glia being counted, 3 red and 10 green, while labeling pro-
genitor (b) would only count the 3 left glia as 2 red and 1 green.

5.2 Modeling clonal distributions in neurogenesis

As described in Sec. 1.1.2, the RGP population in the embryonic mouse cortex proliferates through

symmetric divisions prior to E10. Experimental observations suggest that upon entering the phase

of neurogenesis after E10, RGPs switch to asymmetric divisions, producing one neuron and one

self-renewed RGP at each division step [39]. This continues until a final symmetric differentiation

into two neurons, a switch into gliogenesis, or the death of the RGP.

Recently, a set of deterministic rules defining RGP behavior during neurogenesis was proposed

in [16] based on their analysis of clonal MADM data. The identification of these rules would not

have been possible without the MADM technique, as their analysis relied on assumptions regarding

clone symmetries and clone size frequencies. In their study, clonal MADM data was gathered in the

embryonic mouse cortex at earlier stages of development corresponding to the peak of neurogenesis:

E10-E13 (see Fig. 1.3). These clones produced large numbers of neurons, predominantly with no

glia, in contrast with the glial-dominant clones gathered with inductions during the NGS from

E15.5-E17.5 that we have in our own data.

5.2.1 Asymmetric neural clones

When examining the subset of asymmetric neural clones, it was found that the distribution of

neurons per clone was normal with mean µ0=8.4 and standard deviation σ=2.6 (Fig. 5.3a). This

indicated that clones which have begun neurogenesis and are undergoing asymmetric differentiating

divisions have a limited capacity to produce neurons, and do not randomly exit the cell cycle, but

rather favor producing an average number of ≈ 8 neurons before terminating division. The value of

65



µ0 = 8.4 also appeared in the distribution of clone sizes for all clones, asymmetric or not, with peaks

in the distribution appearing at integer multiples of µ0 (Fig. 5.3c).

5.2.2 Symmetric neural clones

Symmetric neurogenic clones were defined in [16] as those having four or more neurons in both red

and green sublineages. The symmetric cell counts imply that these clones were labeled with MADM

during the proliferative expansion phase, prior to the onset of asymmetric differentiation during

the phase of neurogenesis. Accordingly, the total neurons produced by symmetric clones tended

to be larger. The largest symmetric clones were the earliest labeled ones at E10, and clone sizes

decreased through E11 and E12, implying that E11 and E12 clones were subclones of the same RGP

lineages present initially at E10 (Fig. 5.3b). That is, the feature of recursion appears to be present in

neurogenic clonal MADM lineages measured at subsequent time points.

Most interestingly, the ratio of the larger to smaller subclones was concentrated between a 1:1

and 2:1 ratio, with an average ratio of ≈ 1.6 [16]. In their analysis, this ratio was taken to indicate that

subclones either undergo the same number of proliferative divisions before the onset of asymmetric

neurogenesis, which would result in an average 1:1 ratio of neurons in the larger to smaller subclone,

or the generations of proliferative divisions may be offset by one, which would result in an average

2:1 ratio of neurons in the larger to smaller subclone. Thus, it was argued that the offspring of

proliferating RGPs do not randomly begin asymmetric neurogenic divisions, but instead time their

onset of neurogenesis closely in sync with their subclone siblings. This close relationship between

neurogenic capacity in subclones was taken as further evidence of deterministic behavior of RGPs

during neurogenesis [16]. We additionally point out that maintaining the same average ratio of

subclone sizes at all levels of a lineage implies a fractal relationship, which would strongly support a

deterministic level of organization governing cell population growth during this stage of cortical

development.

5.2.3 Deterministic mechanism and observation in full neural population

Overall, these observations of clone sizes and symmetries were used to hypothesize a two-step

deterministic process that all neurogenic RGPs follow. In the proposed process, RGPs first proliferate,

favoring symmetric divisions and producing a discrete number of daughter RGPs R = 1,2,3, ... as

offspring. The R RGPs are distributed between the two sublineages in a ratio between 1:1 and 2:1,

hence if one sublineage undergoes n proliferative divisions, the other sublineage undergoes n ±1

proliferative divisions. Each daughter RGP then begins neurogenesis by switching to asymmetric

differentiating divisions, producing an average of µ0 ≈ 8 neurons each. Thus, an initial RGP giving

rise to R RGP offspring, each producing an average ofµ0 neurons, produces Rµ0 neurons on average.

The result of this process is the presence of peaks in the distribution of neurons per clone at µ0, 2µ0,
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(a) (b)

(c)

Figure 5.3 (a) Distribution of total neurons per clone among neurogenic clones with asymmetric red and
green cell counts from [16]. The distribution is normal with µ0 = 8.4 andσ = 2.6. (b) Ratio of larger to
smaller subclones in symmetric neural clones from [16]. (c) Distribution of total neurons per clone up to
size 50 [16]. The Gaussian mixture model curve fit is shown (black dashed line) with three of the individual
Gaussians in the model separately plotted. Reprinted with permission from [16]. Copyright 2014, The
Authors. Published by Elsevier Inc.
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3µ0, etc, corresponding to R = 1, 2, 3 respectively (Fig. 5.3b, colored dashed lines). The distribution

can therefore be represented by a Gaussian mixture model with means located at integer multiples

of µ0. We will describe this type of model in more detail in Section 5.4.

5.3 Clone sizes during the NGS

The success of using clone sizes and symmetries to infer deterministic clonal behavior during

neurogenesis suggests that a similar approach may be useful for NGS data. We examine the normal-

ized frequency histograms of total glia per clone for asymmetric and symmetric wild type (WT) G

clones to observe whether deterministic clone size patterns appear. Note that this analysis does not

include Mix clones, since we want to strictly consider when the production of glia is asymmetric or

symmetric in the red and green lineages. We then examine the frequency distribution of glia in Mix

clones separately, as well as the distribution of glia in the combined population of G and Mix clones.

5.3.1 Asymmetric G clones

Unlike neurogenesis, gliogenesis is not known to be defined by RGPs undergoing a series of asym-

metric divisions. Not surprisingly, the distribution of total glia per clone in WT G clones having

asymmetric glial counts shows a different pattern than the distribution of asymmetric neural clones.

Fig. 5.4a shows the distribution of total glia in asymmetric WT G clones. As described in the previous

section, the Gaussian shape of the asymmetric neural clone size distribution (Fig. 5.3a) pointed to a

limited, deterministic capacity for neuron production in asymmetrically differentiating RGPs. For

asymmetric glial clones, the range of sizes in the distribution indicates a greater capacity for glial

production after an asymmetric division occurs. This suggests that the clonal rules governing glial

production in WT G clones do not match the deterministic rules for neurogenesis.

It is also unlikely that this range of sizes would be the result of a series of sequential asymmetric

divisions. During neurogenesis, RGPs require ≈13-19 hours to undergo one asymmetric differentiat-

ing division, producing one neuron [9]. If this cell cycle length is similar for asymmetric gliogenic

differentiation, producing 50 glia with a series of asymmetric divisions could take up to 40 days, far

longer than the time frame of the NGS. Instead, it is more likely that for asymmetric glial clones,

symmetric proliferative divisions occurred following the initial asymmetric division; symmetric

proliferative cell cycles are shorter and double the cell population with each division, producing

more cells in a shorter amount of time than asymmetric divisions [9]. Thus, we do not have evidence

that an initial asymmetric glial RGP division begins a series of asymmetric divisions, constrains the

RGPs gliogenic output, or results in a deterministically predictable number of glia.

68



5.3.2 Symmetric G clones

The sizes and subclone ratios in symmetric WT G clones also differ from those for neurogenesis.

Fig. 5.4b shows all symmetric WT G clones having ≥ 4 glia in both red and green sublineages. First,

we notice that clone sizes do not decrease progressively going from earliest (E15.5) to latest (E17.5)

MADM labeling time, suggesting that not all clones labeled at E16.5 and E17.5 were descendants

from those present in the population at E15.5. This violates the notion that NGS clones are tracked

recursively with MADM, in contrast with the clones observed during neurogenesis in [16]. That is,

a migration of RGPs into the cortex from a different area of the developing brain may occur after

E15.5, and these previously unobservable RGPs receive the MADM labeling at E16.5 and E17.5. This

mechanism of migrating RGPs was previously proposed in Sec. 4.3.1.

The ratios of glia in the larger to smaller subclone are also more variable than in neurogenesis.

Ratios are less concentrated between 1:1 and 2:1, with 30.65% of symmetric clones having a greater

than 2:1 subclone ratio. To examine the average larger to smaller subclone ratios by clone size as in

Fig. 5.3b, we note that in neurogenesis it was possible to use time point as a proxy for clone size,

since the total neurons per clone decreased predictably over time. Since the symmetric WT G clones

do not decrease similarly over time, we binned them into three equally sized groups by their total

glia (1-14, 15-22, and 23-70 glia, respectively) and calculated average smaller and larger subclones in

each group. The average for each group is shown in Fig. 5.4b in blue, with error bars representing the

standard error of the mean. The ratio of larger to smaller subclone in these averages does not appear

to be conserved as clone sizes increase as was seen in neurogenesis in Fig. 5.3b. Instead, larger

clones are more imbalanced between their larger and smaller subclones. Unlike in neurogenesis,

this does not give evidence that the differentiation fates between glial subclones are connected, and

it does not reflect a self-similar fractal pattern of symmetries.

5.3.3 Mix clones

Fig. 5.5 shows the distribution of glia per clone in Mix WT clones across all three MADM time points.

Only 73 out of the 393 WT clones are in the Mix group, so the overall shape of their distribution is not

immediately clear. However, it appears that the distribution may have peaks at different clone sizes,

perhaps occurring around 10, 18, and 28 glia per clone. It is therefore possible that this distribution

could be described by a Gaussian mixture model with linearly spaced peaks, as previously shown

for neurogenesis in Fig. 5.3c. If so, we would gain support for the hypothesis of deterministic glial

production in Mix clones. On the other hand, if the peaks are merely artifacts of having a relatively

small, randomly sampled dataset, we would not expect any sort of pattern to the location of the

peaks. Thus, in Sec. 5.6.2, we will test whether the peaks in this distribution appear at linearly spaced

locations or not.
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(a)

(b)

Figure 5.4 Total glia per clone in subsets of NGS MADM data. (a) Glia per clone in asymmetric clones,
having ≤ 1 red (or green) glia and ≥ 2 green (or red) glia. (b) Glia per clone in symmetric clones with ≥ 4
glia in both the red and green lineages, delineated by time. Average smaller and larger subclones among
clones divided into three groups by size (1-14, 15-22, and 23-70 glia, respectively) are shown ± SEM error
bars.
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Figure 5.5 Normalized frequency distribution of glia per clone in Mix WT clones with a maximum of 50
glia. The number of Mix WT clones in the data, in all combined time points, is 73.

5.3.4 Full glial population, G and Mix

In Secs. 5.3.1 and 5.3.2, we observed that G clones do not show the same deterministic signatures in

asymmetric and symmetric glial production as were observed for the production of neurons from

RGPs during neurogenesis in [16]. This is consistent with our hypothesis thus far that G clones behave

according to stochastic rules rather than deterministic. In Sec. 5.3.3, examining the distribution

of glia per clone in Mix clones indicated that a linearly spaced multi-Gaussian distribution may

describe how Mix clones produce glia, which would be evidence of deterministic rules. Again, this is

consistent with our hypothesis thus far.

Interestingly, the normalized frequency distribution of total glia per WT clone (G and Mix

combined) up to size 50 appears to have several peaks at various clone sizes (Fig. 5.6a). This is also

the case for CKO clones in Fig. 5.6b. Previously, in Sec. 3.2.4, we demonstrated that the distribution

of glia G clones was consistent with the distribution of glia that would be produced via a stochastic

branching process. It is therefore possible that the peaks appearing in the combined distribution

appear solely from the contribution of Mix clones. For instance, if Mix clones produce a linearly

spaced multi-Gaussian distribution of glia and G clones do not, and we combine the two sets of

clones, the G clones may not completely obscure the peaks from the Mix clones. They may, however,

change how the peaks appear in the combined distribution. For instance, the G clone distribution

may add enough ‘noise’ to the Mix distribution so that the peaks in the combined distribution
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cannot be determined to be linearly spaced. Thus, we will test whether or not the peaks in the

combined distribution of G and Mix clones shown in Fig. 5.6a can be represented with a multi-

Gaussian model with linearly spaced peaks. To conclude, we will discuss possible deterministic

or stochastic clonal behaviors by comparing how well the linearly spaced multi-Gaussian model

represented the distribution of G and Mix clones, and how well it represented the distribution of

Mix clones only.

We note that gathering clonal data is a costly and time-intensive process since each mouse must

be sacrificed to observe the clones, and each clone’s cells must be counted manually. In our analysis

of clone size distributions in this chapter, we operate on the assumption that the N = 73 WT Mix,

N = 359 WT Mix+G clones, and N = 134 CKO Mix+G clones are large enough samples to be able to

estimate the locations of the peaks in their clone size distributions. By comparison, the analysis of

clone size distributions in [16] used a sample size of N = 192.

5.4 Multi-Gaussian models for clone size distribution in gliogenesis

The distribution of neurons per clone for sizes i = 1, ..., 50 in [16]was represented with a Gaussian

mixture model of the form

MC O N (i | ~p ) =
k
∑

j=1

β2
j N (i | jµ0,σ2

j ). (5.1)

Here, k is the number of Gaussians in the model, ~p is the vector of parameters [β2
j ,µ0,σ2

j ], where

for each j = 1 : k , β2
j < 1 is a positive weight, and N (i | jµ0,σ2

j ) is a normal distribution evaluated at

integers i given mean jµ0 and varianceσ2
j . The form of model (5.1) was considered specifically to

represent the proposed mechanism of neurogenesis described in Sec. 5.2, with jµ0 constraining

the means of the Gaussian peaks to be at integer multiples of a deterministic mean µ0. A set of

parameters ~p ∗ was identified in [16] using least squares minimization and k = 5 Gaussians in the

model. We note however that none of the parameter values in ~p ∗ were reported, and no other

models were tested to compare their fit to the distribution of neurons per clone in [16]. Rather, the

observation that model (5.1) evaluated at ~p ∗ (Fig. 5.3b, black dashed line) produced a qualitatively

reasonable fit to the distribution of neurons per clone was taken as evidence supporting their

proposed hypothesis of deterministic clonal divisions during neurogenesis.

In our study, we wish to specifically use Gaussian mixture models to test whether the locations

of the peaks in the distribution of glia per clone are evenly spaced or not. Thus, we compare two

potential model distributions: (5.1) and

MU N C O N (i | ~p ) =
k
∑

j=1

β2
j N (i |µ j ,σ2

j ), (5.2)
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(a)

(b)

Figure 5.6 Distribution of total glia per clone in NGS MADM data for the populations of (a) WT Mix+G
clones (b) CKO Mix+G clones. These two groups consist of N = 359 and N = 134 clones, respectively.
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which sets no constraint on the locations of the Gaussian means. In the next section, we describe

the methods used to compare models (5.1) and (5.2).

5.5 Parameter estimation and model evaluation criteria

For the WT and CKO datasets separately, we found the density histogram H (i ) of glial clone sizes. As

with the previous neurogenesis study [16], we considered clone sizes i = 1, ..., 50 when calculating

H (i ); only 2.18% of WT clones (8 clones in total) contained more than 50 glia, and these clones were

sparsely distributed, having between 52 and 164 glia. The distributions H (i ) are shown in Fig. 5.6a

for the WT data and Fig. 5.6b for the CKO data.

To fit models (5.1) and (5.2) to the distributions of glia per clone, we again used fmincon. The

weights β2
j were constrained to be between 0 and 1 to ensure positive weightings of the Gaussians.

Variancesσ2
j were constrained to be between 0 and 6 to limit the overlap between Gaussians and

better distinguish individual peaks, and means µ j were free to fall anywhere between 0 and 50. We

sought to find parameter sets ~pC O N and ~pU N C O N that minimized the sum of squares error between

H (i ) and the respective model:

SS EC O N =min
~pC O N

50
∑

i=1

(MC O N (i | ~pC O N )−H (i ))2 (5.3)

SS EU N C O N = min
~pU N C O N

50
∑

i=1

(MU N C O N (i | ~pU N C O N )−H (i ))2. (5.4)

The parametersσ2
j and β2

j were initialized at the values 4 and 0.2, respectively, for all j . The value of

µ0 for the constrained model (5.1) was initialized at 5 by visual inspection of the location of the first

peak in Fig. 5.3a. For the unconstrained model (5.2), the initial values of µ j were set as the clone

size with the greatest frequency in bins 1 through 6 for j = 1, bins 7 through 12 for j = 2, and so on.

That is, for the WT distribution shown in Fig. 5.3a, these initial values were µ1=6 and µ2=10.

5.5.1 F-test for model comparison

For identical k values, (5.1) and (5.2) are nested , with MC O N using a proper subset of the parameters

used for MU N C O N [3]. That is, MC O N is a special case of MU N C O N in which the µ j parameters are

linearly spaced. MC O N is referred to as the reduced model as compared with MU N C O N , referred to

as the complete or full model.

Nested models can be compared using an F-test [3], which evaluates whether adding extra

parameters improves the model’s representation of the data significantly enough to outweigh the

cost of the model’s increased complexity. The null and alternate hypotheses in the F-test are
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1. H0: The complete model does not produce a better fit to the data than the reduced model.

2. H1: The complete model produces a significantly better fit to the data than the reduced model.

[3]. To evaluate the null hypothesis, the F-test calculates an F-statistic from the fits of two nested

models to the data distribution. For (5.1) and (5.2), this is

F =
(SS EC O N −SS EU N C O N )/(pU N C O N −pC O N )

SS EU N C O N /(n −pU N C O N )
(5.5)

where pU N C O N and pC O N are the total number of parameters in the respective models, n is the

number of evaluation points of the model (n = 50, from evaluating the model at clone sizes 1

though 50) and SS EC O N and SS EU N C O N are the sum of squared errors calculated according to

(5.3) and (5.4) [3]. The value of the F -statistic is used to calculate a p-value. If the p-value is below

a significance level α, commonly α= 0.05, then the null hypothesis is rejected, and the complete

model is considered to be a better representation of the data. That is, if p<0.05, the model with more

parameters is better than the model with fewer.

Models (5.1) and (5.2) represent two hypotheses themselves: that the peaks in the distribution

are evenly spaced or that they are not. Thus, failing to reject the null hypothesis in the F-test would

indicate that a model with evenly spaced peaks sufficiently represents the data distribution. On the

other hand, rejection of the null hypothesis would suggest that the peaks in the distribution of glia

per clone are unevenly spaced and that the clonal mechanism producing those peaks in clone sizes

is different from that observed during neurogenesis.

5.5.2 F-test for selection of number of Gaussians k

To directly compare the performance of models (5.1) and (5.2) in their fit to a distribution of clonal

data, it is reasonable to set the same number of Gaussians k for each model. Here, we discuss

the selection of k using an F-test. For either individual model, increasing k creates a sequence

of nested models; for instance, model (5.2) with K Gaussians can be transformed into a model

with K − 1 Gaussians if one of the Gaussian coefficients β j is set to zero. Thus, we may use the

F-test to determine whether a complete model with k = K Gaussians is a better representation of

the data than a reduced model with k = K −1. The simplest complete model (smallest value of k )

that produces an improved fit over the reduced model will be selected to avoid overfitting to the

distribution with too many Gaussian peaks.

We opt to use the fits of model MU N C O N (5.2) to select k , then set the same value of k for MC O N .

The values tested were k = 3, 4, 5, 6, 7; these values are selected from visual inspection of the number

of possible peaks in the glial distribution in Fig. 5.6a and for consistency with the k = 5 Gaussians

used in the neurogenesis distribution fit from Fig. 5.3b. An F-test (see Sec. 5.5.1) is performed on
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models with successive k values, and we select the lowest value of k for which the null hypothesis

cannot be rejected.

5.5.3 Subsampling method

In the previous section, we detailed a method for evaluating the fits of two nested models to a set

of data. However, the data we used to fit these models is the distribution of a random sample of

clone sizes. This raises the question of whether the result of the F-test comparing models (5.1) and

(5.2) would be the same if we had a different random sample of clones. A more robust comparison

method would be to evaluate the fit of both models to multiple samples of clones. To achieve

multiple comparisons of models (5.1) and (5.2), we implemented a subsampling scheme on the set

of WT Mix+G clones and the set of CKO Mix+G clones. Subsampling was not performed for the WT

Mix dataset due to the relatively smaller number of clones (73) in this group.

To implement the subsampling scheme, the clones in the set were split into ten equal groups.

The groups were then cycled through in ten folds, leaving one group out of the data at a time, and a

density histogram was formulated for the remaining 90% of clones in each case. Models (5.1) and

(5.2) were fit to each subsample’s histogram, and SSEs (5.3) and (5.4) were found, giving a set of ten

errors for each model after completing all sample folds. These two error sets were compared against

each other with ANOVA [37] to test whether either model produced a significantly lower mean error.

5.6 Results

5.6.1 k selection

Here, we review the results from selecting the number of Gaussians k in the mixture models (5.1)

and (5.2) using the F-test (Sec. 5.5.1). The p-values for each test performed are listed in Table 5.1.

For the WT Mix data, p>0.05 when comparing the model MU N C O N with k = 3 and k = 4 Gaussians,

indicating that k = 3 provides a sufficient fit over k = 4. Since we aimed to select the smallest value

of k , the remaining successive comparisons are not relevant. Thus, when we fit the models MC O N

and MU N C O N to the WT Mix clones in Sec. 5.6.2, we select k = 3 for the number of Gaussians in

models.

When testing the fit of MU N C O N using successive k values to the WT Mix+G data, the p-value is

less than 0.05 for k = 3 to k = 4. We therefore reject the null hypothesis of this F-test and conclude

that the model’s representation of the data is improved by using k = 4 Gaussians instead of k = 3. We

see from Fig. 5.7a that using k=4 in the model discerns more of the peaks in the data as compared

with k=3. The p-value going from k = 4 to k = 5 is greater than 0.05, causing us to fail to reject

the null hypothesis. Thus, increasing k to 5 does not add useful information in the model, and

k = 4 Gaussians is sufficient. In Fig. 5.7a, this may be apparent in the fit for k = 5 ‘overfitting’ the
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peaks in the data as compared with the fit for k = 4. The F-test on the CKO Mix+G data showed a

similar result, where the first p-value greater than 0.05 occurred when changing from k = 4 to k = 5.

(p=0.1074). We therefore select k = 4 Gaussians when fitting the models MC O N and MU N C O N to

the Mix+G clones for WT or CKO in Sec. 5.6.3.

(a) (b)

Figure 5.7 Fits of model (5.2) using k=3, 4, and 5 to the distribution of glia per clone in (a) WT (b) CKO.

5.6.2 Evaluation of Multi-Gaussian models, Mix clones

Fig. 5.8 shows the fit of models (5.1) (MC O N , constrained means) and (5.2) (MU N C O N , unconstrained

means) using k = 3 Gaussians to the distribution of glia per clone in WT Mix clones. The two models

show remarkable agreement in their fits to the data, as the blue and red curves overlap almost

perfectly in Fig. 5.8. Additionally, the parameter values for the Gaussian means are similar. The

p-value for the F-test comparing the two models is 0.9302. Since the p-value is greater than α= 0.05,

we cannot reject the null hypothesis of the F-test, and we conclude that the reduced model MC O N
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Table 5.1 p-values for F test comparing the performance of the unconstrained Gaussian mixture model
MU N C O N (5.2) using successive numbers of Gaussians k . The p-values below α= 0.05 are denoted with an
asterisk. The lowest value of k for which the p-value is above 0.05 was selected, thus k = 3 was chosen for
number of Gaussians in (5.2) and (5.1) when fitting these models to WT Mix clones, and k = 4 was chosen
for the model fits to WT Mix+G and CKO Mix+G clones.

Comparison WT Mix clones WT Mix+G clones CKO Mix+G clones

k=3 to k=4 Gaussians 0.5034 0.0353* 0.0012*
k=4 to k=5 Gaussians 0.04270* 0.1096 0.1074
k=5 to k=6 Gaussians 1.000 0.2337 0.2211
k=6 to k=7 Gaussians 0.5229 0.5229 0.5345

Table 5.2 p-values for F-test comparing fits of constrained and unconstrained Gaussian models to WT
Mix+G clones and CKO Mix+G clones. The fits are shown in Fig. 5.9. In both cases, p<0.05, thus the com-
plete model MU N C O N with unconstrained Gaussian means better represents the distributions.

Test p value

F-test, WT Mix+G clones, MC O N vs MU N C O N 0.0339*
F-test, CKO Mix+G clones, MC O N vs MU N C O N 0.0012*

represents the distribution better than the complete model MU N C O N .

5.6.3 Evaluation of Multi-Gaussian models, Mix+G clones

5.6.3.1 F-test

The fits of models (5.1) (MC O N , constrained means) and (5.2) (MU N C O N , unconstrained means)

using k = 4 Gaussians are shown in Fig. 5.9a for the WT Mix+G data and Fig.5.9b for the CKO

Mix+G data. Visually, both models performed similarly when fitting the portion of the distribution

of glia per clone for clones smaller than ≈12 glia. However, the two models deviated from one

another for larger glial sizes. Because of this close agreement, it is important to consider whether

the unconstrained model produces a significantly better fit than the constrained model given the

increase in the number of parameters. Table 5.2 gives the p-values from the F-test of these two

models and their fit to the WT and CKO data sets. For both data sets, the p-value is significant at the

α= 0.05 level, indicating that the complete model MU N C O N with unconstrained means represents

the distribution better than MC O N . This contrasts with the result for WT Mix clones in Sec. 5.6.2.
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Figure 5.8 Fit of models (5.1) (MC O N , constrained means) and (5.2) (MU N C O N , unconstrained means)
using k = 3 Gaussians to the distribution of glia per clone in WT Mix clones. The two models produce
a nearly identical fit to the data and have similar parameter values for the Gaussian means, shown. The
F-test p-value from comparing the fits of these two distributions was p=0.9302, indicating that the simpler
model MC O N is sufficient to represent the data.
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(a)

(b)

Figure 5.9 Fits of models (5.1) and (5.2) to the distribution of (a) WT Mix+G clones (b) CKO Mix+G clones.
Locations of the four Gaussian means for model (5.2) and the initial mean µ0 for model (5.1) are shown.
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5.6.3.2 Sampling error ANOVA

The mean and standard deviation of the ten subsampling fits of the constrained mean model (5.1)

and unconstrained mean model (5.2), as described in Sec. 5.5.3, are shown in Fig. 5.10a for WT data

and Fig. 5.10b for CKO data.

The average of the fitting errors for each model, calculated over each sampled fit from Eqns.

5.3-5.4, is shown in Fig. 5.11a-b (denoted J in the figure), with error bars denoting the standard error

of the mean. Performing ANOVA on the sets of errors indicated a significant difference between

models (5.1) and (5.2) at the α = 0.05 level for the WT data (p=0.0044), but not for the CKO data

(p=0.6279). That is, for the WT data, the set errors of the fit of MU N C O N were significantly lower

than those for MC O N , and we conclude that the unconstrained model performed better than the

constrained model. This is consistent with the result of the F-test for fitting the models once to

the full set of WT Mix+G clones in Sec. 5.6.3.1. Additionally, performing an F-test for each of the

ten fits resulted in a p-value greater than 0.05 in only two cases, and the p-values were relatively

low in these cases (p=0.0774 and p=0.1493). Thus, in eight out of ten cases, MU N C O N produced a

statistically significantly better fit to the subsample distribution than MC O N , suggesting that this

result is robust over multiple samplings of clones.

For CKO data, the sets of fitting errors were similar, thus MU N C O N did not perform better than

MC O N over the ten subsampled fits. Interestingly, this contrasts with the F-test result for CKO Mix+G

data in Sec. 5.6.3.1. However, we must note here that the locations of the unconstrained means were

not consistent across the ten subsample fits to the CKO data. Table 5.3 shows the average parameter

values for µ1-µ4 over the ten fits, but we observed that over different samples of the CKO data, one

of two subsets of parameter values tended to occur. We show these two subsets in Table 5.3. When

we performed an F-test for the model fits to each individual sample, we noticed that the p-value was

low when the parameters from the first column were used, whereas it was high when the parameters

from the second column were used (average p-values of 0.0349 and 0.8111, respectively). The F-test

result is thus not robust over multiple samplings of clones, which is likely a result of the smaller

number of CKO Mix+G clones (134) in comparison with WT Mix+G (359). We are therefore cautious

about drawing conclusions from this subsampling scheme for the CKO clones, and it may still be

the case that MU N C O N represents the distribution of CKO clones better than MC O N .

5.7 Discussion of clonal division rules

We now discuss what clonal division rules may be suggested by the results of the multi-Gaussian

model fits to the WT Mix and WT Mix+G datasets. Our focus here is WT clones, since the conclusions

from analyzing CKO clones in this chapter were not clear. Discussion of CKO clones is left for Sec.

6.6.
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(a)

(b)

Figure 5.10 Average and standard deviation of ten fits of models (5.1) (red) and (5.2) (blue) to distribution
of glia per clone formed from sampling 90% of clones in (a) WT Mix+G clones (b) CKO Mix+G clones. The
average locations of the Gaussian means in each case are listed in Table 5.3.
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(a) (b)

Figure 5.11 Average sum of squared error over the ten fits of models (5.1) and (5.2) to (a) WT (b) CKO.
Error bars indicate standard error of the mean. For WT, model (5.2) had significantly lower fitting error
(p=0.0044), but for CKO, the errors were not significantly different (p=0.6279).

Table 5.3 Mean values of Gaussian means µ1-µ4 over ten subsampling fits of models (5.1) and (5.2) to
WT Mix+G clones and CKO Mix+G clones, as shown in Fig. 5.10. The parameter values for µ1-µ4 were
generally consistent over the ten subsample fits with the exception of the CKO, MU N C O N case, which
tended to produce one of two different subsets of µ1-µ4.

WT, MC O N WT, MU N C O N CKO, MC O N CKO, MU N C O N CKO, MU N C O N subsets

µ1 5.0004 4.7726 4.8283 6.7870 4.7444 7.6624
µ2 10.0008 9.99 9.6566 15.3533 9.5321 17.8482
µ3 15.0012 15.17 14.4849 23.1357 17.4425 25.5756
µ4 20.0016 18.29 19.3132 28.3192 25.5950 29.4868
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First, we found a pattern of linearly spaced peaks in the distribution of WT Mix clones. This

indicates that the deterministic rules of neural production in Gao et al. [16]may also be applied to

glia production in Mix clones. Previously, we hypothesized that Mix clones originate from a subset of

RGPs which we called NGS-RGPs. Our observations of glial production from Mix clones in Chapters

3 and 4 led us to also hypothesize that the NGS-RGPs produce glia deterministically. Thus, the multi-

Gaussian analysis in this chapter has further supported the hypothesis of deterministic NGS-RGP

behavior. Furthermore, since the multi-Gaussian distribution model was directly associated with

a set of clonal division rules in [16], we can simulate clones that follow this set of rules. We define

these rules and perform simulations of clones in Chapter 6.

Second, we found that the peaks in the distribution of WT Mix+G clones were not linearly spaced.

Thus, the combined distribution of WT Mix+G clones cannot be labeled deterministic, suggesting

that this combined population does not follow deterministic rules of cell division despite the

deterministic patterns in the WT Mix clones. Additionally, our previous work in Sec. 3.2.4 indicated

that G clones produce a distribution of glia consistent with a stochastic branching process, rather

than a multi-Gaussian.

In summary, we have supported the hypothesis that two subpopulations of RGPs exist during

the NGS: deterministically behaving NGS-RGPs, and stochastically behaving G-RGPs. The former

group produces a set of glia whose distribution can be represented by a multi-Gaussian model

with linearly spaced peaks MC O N (5.1), and the latter produces a glial distribution according to a

stochastic Galton-Watson process, which we defined as Qn in Eqn. 3.8 in Sec. 3.2.2. Thus, combining

the sets of Mix and G clones into one distribution would combine the distributions MC O N and

Qn . It is possible that combining these two separate distributions obscures the ability to identify

either one. That is, the distribution of glia in Mix+G clones may be a combination of these two

distributions, but as we saw in Secs. 3.2.4 and 5.6.3, models Qn and MC O N each failed to represent

this clone size distribution. We test this idea in Chapter 6 by simulating two sets of gliogenic clones,

deterministic NGS-RGPs and stochastic G-RGPs, and comparing their combined distribution of

clone sizes to the models Qn , MC O N , and MU N C O N .
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CHAPTER

6

SIMULATION OF CLONAL DIVISIONS

6.1 Introduction

In the previous chapters, we have presented several methods of analyzing clonal data for determin-

istic and stochastic patterns. In Chapter 3, we used the theory of branching processes to formulate a

probability distribution Qn (see Eqn. 3.8 in Sec. 3.2.3), which represented the probability of a clone

producing n glia from a series of stochastic division events. When comparing this distribution to

the clonal NGS data, we demonstrated that this distribution sufficiently represented the glial output

from G clones, but that it failed to represent the glial output from G and Mix clones pooled together.

This suggested that G and Mix clones are produced during the NGS under two different sets of rules,

and that stochastic rules may drive the production of G clones.

In Chapter 4, we aimed to verify the difference in glial production between G and Mix clones,

particularly focusing on how these two sets of clones behaved differently across the E15.5, E16.5,

and E17.5 time points as well as across the WT and CKO genotypes. This was accomplished using

unbiased clustering (SOMs in Sec. 4.1) and statistical comparisons between subsets of clones

(Wilcoxon rank-sum test in Sec. 4.2). The results from this analysis further supported the hypothesis

that G and Mix clones do not produce glia according to the same set of rules during the NGS.

Furthermore, we noticed that the distribution of total glia per clone in Mix clones was unchanged

in response to suppression of gliogenesis in the green MADM sublineage via EGFR knockout. As

discussed in Sec. 4.3.2, this was a potential sign that Mix clones may produce glia in a deterministic

85



manner.

In Chapter 5, we tested whether the distribution of clone sizes in the NGS could be represented

with a multi-Gaussian distribution with linearly spaced peaks. A clone size distribution with linearly

spaced peaks was hypothesized to correspond to a deterministic mechanism of division in a study

of neurogenesis [16]. We denoted this distribution MC O N (see Eqn. 5.1 in Sec. 5.4) and compared its

ability to represent the distribution of glia per clone in the NGS data to a multi-Gaussian distribu-

tion without linearly spaced peaks, MU N C O N (Eqn. 5.2, Sec. 5.4). It was found that the combined

distribution of glia per clone in G and Mix clones could not be represented by the deterministic

distribution MC O N , with MU N C O N producing a significantly better fit to the data. However, the

distribution of glia per clone in Mix clones was sufficiently described by MC O N , providing further

support for the hypothesis of deterministic glial production from Mix clones.

We posited that two subpopulations of RGPs with separate behaviors were responsible for these

separate distributions of glia per clone. First, there is the subpopulation which we denoted NGS-

RGPs, which produce neurons and then glia over the course of the NGS and correspond to Mix

clones in the data. Second, there is the subpopulation denoted G-RGPs, which only produce glia and

no neurons. The G clones in the data are assumed to come mostly from G-RGPs, though we note that

G clones can also originate from MADM labeling of NGS-RGPs after the switch from neurogenesis

into gliogenesis has occurred. The distribution of glia per clone from Mix clones showed evidence

of deterministic patterns, so we predict that NGS-RGPs produce glia according to a deterministic

set of division rules. On the other hand, the distribution of glia per clone from G clones pointed

to stochastic patterns, so we predict that G-RGPs follow a stochastic set of division rules when

producing glia.

In this chapter, we aim to test these predictions by establishing deterministic and stochastic rules

of cell division that can be used to simulate clones arising from NGS-RGPs and G-RGPs, respectively.

We then use these rules to simulate sets of clones and test whether the resulting distributions of

glia per simulated clone can be represented by the distribution corresponding to its intended rules,

either MC O N for the deterministic NGS-RGP rules, or Qn for the stochastic G-RGP rules. Additionally,

we simulate a scenario in which a portion of the clones follows deterministic rules, and the other

portion follows stochastic rules. This is intended to simulate our hypothesis in which both NGS-RGPs

and G-RGPs are present during cortical development and the NGS. We test whether this distribution

of clones simulated using a combination of deterministic and stochastic rules can be represented

by MC O N or Qn , or if the unconstrained multi-Gaussian model MU N C O N produces the best fit to

the data instead. That is, we aim to test whether combining a set of clones that were simulated from

two separate rules into a single distribution obscures the ability to identify either set of rules, as was

observed when we attempted to fit MC O N and Qn to the combined distribution of glia in G and Mix

clones in Sec. 5.6.3.

Ultimately, the analysis in this chapter is intended to more robustly establish the validity of
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defining deterministic or stochastic mechanisms given only the distribution of glia per clone. In

previous chapters, we have searched the distributions of glia per clone for the signatures we assume

would be present in a deterministic or stochastic mechanism of glial production. We have thus

assumed that if different rules govern glial production at the level of clonal divisions, then this

difference should be discernible when examining the distribution of glia per clone. That is, we have

held that a difference in distribution implies a difference in clonal division rules. Here, we reverse

this analysis by simulating clones according to different rules that are known to be deterministic

or stochastic, then testing whether the resulting distributions of glia per clone match the model

intended to represent each mechanism, either MC O N or Qn . If we show that the correct models

match the simulated mechanism, we have a stronger case that our analysis of deterministic and

stochastic patterns in the distribution of glia per clone from the NGS data does in fact support the

hypothesis that these patterns occur at the clonal level.

6.2 Branching process construction

6.2.1 NGS-RGP subpopulation

To simulate glial production from NGS-RGPs using a branching process, we must establish division

rules that can produce a set of clones with a multi-Gaussian distribution of glia. Previously, in

Sec. 5.2.3, we discussed the deterministic clonal rules that were hypothesized to produce a multi-

Gaussian distribution of neurons per clone during neurogenesis in [16]. These rules defined a

two-stage process: in the first stage, RGPs proliferate to produce more RGPs, and in the second

stage, RGPs switch to asymmetric differentiating divisions to produce neurons. Thus, we can use a

similar two-stage framework to define rules that NGS-RGPs follow. We do so by creating a branching

process with three cell types: p , which represent proliferating NGS-RGPs, d p , which represent

differentiating NGS-RGPs, and G , which represent differentiated glia. In the branching process, p

and d p cells divide into two offspring at each discrete time step, and the cell types of the offspring

are determined according to a probability distribution. G cells are terminal and do not divide. The

rules for p and d p divisions are defined as follows.

Cell type p We base p divisions on the basic GW process, with the addition of a decay param-

eter. A p progenitor divides to produce a set of two offspring: {p ,p}, {p ,d p}, {d p ,p}, or {d p ,d p}.

The probability of producing {p ,p} or {d p ,d p} at the first division are the parameters ρ1 and ρ2,

respectively. This division occurs at the time t = 1. At each successive time step t = 2,3, ..., these

probabilities are updated according to a decay parameter d , 0< d < 1, such that the probability of a
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p division producing a set of offspring at time t is

P ({p , p}, t ) = ρ1d t−1 (6.1)

P ({d p , d p}, t ) = ρ2+ρ1(1−d t−1) (6.2)

P ({p , d p}) = P ({d p , p}) =
1−ρ1−ρ2

2
. (6.3)

Thus, the probability of producing more p progenitors decreases at each time step, and the probabil-

ity of creating d p progenitors absorbs the difference. Note that this is a departure from traditional

branching processes, where a cell type’s division probabilities do not change over time. We opted

to update the probabilities at each step using the decay parameter d so that the ρ1 could be-

gin at a large value and promote early proliferation, while avoiding the possibility of simulating

clones that continue to proliferate and never terminate. For simplicity, the asymmetric probabilities

P ({p , d p}) = P ({d p , p}) remain constant in time through the simulation. We discuss the calibration

of parameters ρ1, ρ2, and d in Sec. 6.3.

Cell type dp. In the model, p cells produce d p cells, hence d p cells may originate at times

t = 2, 3, ... and begin dividing according to their respective rules from this time of onset. For easier

indexing, we will refer to the divisions of d p cells as occurring at time steps relative to this onset,

t2 = 1,2, .... At each discrete time step t2, a d p cell undergoes an asymmetric division to produce

offspring {d p ,G } or {G ,d p}, where G is a glial cell. Glia do not divide further, while the d p cell

produced as offspring continues divide asymmetrically at subsequent time points until a final {G ,G }

division. The probability of a final {G ,G } division occurring at time point t ∗2 is modeled by a discrete

version of a truncated normal distribution, defined to be

P (t2 = t ∗2 ) =
1

σ
p

2π
e

�

−
(t ∗2+1−µ)2

2σ2

�

. (6.4)

This mode of differentiation was chosen based on the distribution of asymmetric neurogenic

clone sizes in [16]. We do not actually know if differentiating NGS-RGPs produce glia via asymmetric

divisions. To determine this, we would need to be able to compare the symmetries of red and green

glia production from NGS-RGPs while they are undergoing differentiation. However, we can only say

for certain that Mix clones arise from NGS-RGPs, which produce neurons prior to producing glia and

thus are not undergoing differentiation into glia from the onset of MADM labeling. However, since

our goal is to simply simulate clones that, when differentiating, produce a Gaussian distribution of

clone sizes, the symmetry of the clones in the simulation will not matter for our analysis.

We discuss the selection of parametersµ andσ in Sec. 6.3.2. For the discrete normal distribution

model in Eqn. 6.4, we note that P (t2 < 1)>0, whereas we can only simulate clones for values of t2 ≥ 1.

To avoid sampling values of t2 that are less than 1 in the simulation, we evaluate the probability

distribution shown in Eqn. 6.4 at t2 = 1, ...,20 at the selected values of µ and σ, then normalize
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the distribution. We note that a maximum of t2 = 20 was chosen since P (t2 > 20) is very small for

the parameters µ andσ that we determine. Thus, we only allow t2 to be between 1 and 20 in our

simulation.

Lastly, we define the probability parameter β . With probability β > 0, the simulation begins

with a type p cell, and with probability 1−β , the simulation begins with a type d p cell. Thus, the

minimum number of differentiated cells possible in a simulated clone is two, which would arise

from a clone beginning the simulation as a d p progenitor immediately undergoing a symmetric

differentiating division at t2 = 1. No cell death was considered in the model.

The simulation ends when no p or d p cells remain, all having differentiated into G cells. For

computational efficiency, a maximum of t = 20 rounds of proliferative division was set, based on

the cell division estimates in Sec. 3.1.2; in the case that any progenitors p remained after t = 20,

these progenitors were terminated. We note that this was a very rare occurrence given our calibrated

parameter values. The final output of the simulation is the total glia produced in each clone’s two

sublineages, with the sum being the total glia produced per clone. Fig. 6.1 shows an example of a

simulated lineage, which would produce an output of 5 glia in the left sublineage and 10 in the right,

for a total of 15 glia in the clone.

Figure 6.1 Possible clonal lineage generated by the model of glial production from NGS-RGPs, producing
15 glia. Here, the clone begins as a progenitor p , and when a d p progenitor is generated after a division,
glia are laid down in successive asymmetric divisions.
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6.2.2 G-RGP subpopulation

The G-RGP subpopulation divides stochastically and can thus be simulated using a basic GW

branching process. Thus, we can simulate glial production in this population with a model identical

to that for neurogenesis from [48], which we previously discussed in Sec. 3.2.2. Here, the simulation

begins with a progenitor p , which divides into two offspring at discrete time steps according to

probabilities fixed in time:

P ({p , p}) = ξ1 (6.5)

P ({G ,G }) = ξ2 (6.6)

P ({p ,G }) = P ({G , p}) =
1−ξ1−ξ2

2
. (6.7)

The simulation ends when all p cells have differentiated into G cells.

6.3 Parameter Selection and Estimation

We simulate four scenarios using the above models for NGS-RGP and G-RGP behavior. First, since

the NGS-RGP model was informed by a proposed deterministic model for neurogenesis, we simulate

clones using this model to compare to the clonal MADM data from neurogenesis collected in the

study by Gao et al. [16]. Second, we use the same model to simulate deterministic glial production in

NGS-RGPs. For these two simulations, we estimate the model parameters using the clonal MADM

data from neurogenesis and the NGS, respectively, using methods proposed in [16]. We describe

these parameter estimation methods in detail in Sec. 6.3.1-6.3.2. Third, we use the G-RGP model

to simulate stochastic glial production during the NGS. The parameters for this simulation are

determined by fitting the distribution Qn to the distribution of glia per clone as performed in

Sec. 3.2.4, which we briefly review in Sec. 6.3.3. Lastly, we simulate a scenario in which half of the

population of clones follows the NGS-RGP model, and the other half follows the G-RGP model. For

this simulation, we use the Mix clones to estimate the parameters for the NGS-RGP group, and the

G clones to estimate the parameters for the G-RGP group, which we explain in Sec. 6.3.4.

6.3.1 Scenario 1: Neurogenesis, NGS-RGP model

Simulating neurogenesis according to the NGS-RGP model requires the following parameters: β ,

the proportion of clones beginning the simulation as p cells, ρ1 and ρ2, the initial probabilities

of a {p , p} or {d p , d p} division, respectively, and d , the decay rate of ρ1 at each discrete time

step. Additionally, the normal distribution parameters µ and σ are required for the asymmetric

differentiation step.

As previously shown in Fig. 5.3, the parameters µ= 8.4 andσ= 2.6 were already found in the
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neurogenesis study [16]. The parameters β , ρ1, ρ2, and d require further calibration to simulate

clones comparable to the data coming from neurogenesis. These parameters control the number of

rounds of division a p cell performs before producing d p offspring. Thus, we wish to calibrate the

parameters so that the simulated p cells undergo approximately the same number of proliferative

divisions as were observed to occur during neurogenesis in [16].

Naturally, since clonal data is collected in vivo using MADM, their study was not able to directly

measure the number of progenitor divisions before beginning asymmetric neurogenesis. However,

the rounds of division were estimated using simplifying assumptions. First, it was argued from

observing clone symmetries during neurogenesis that the progenitors arising from the red and green

sublineages of an initial MADM-labeled progenitor begin asymmetric differentiation within one

generation of division of one another. By this argument, progenitor expansion is mostly symmetric

prior to differentiation, and thus the number of progenitors present doubles at each round of

division. If each differentiating progenitor produces ≈µ= 8.4 neurons, the rounds of proliferative

division n required to produce a clone with m total neurons can therefore be approximated by the

relation

n = log2

�

m

µ

�

. (6.8)

In [16], the rounds of division n were calculated according to Eqn. 6.8 for each neural clone, then

binned into a normalized frequency distribution with bin widths of 0.2. These binned frequencies

calculated for the neurogenisis data from time points E10-E12 are shown as dots in Fig. 6.2, along

with a smoothed curve.

We can use these generation estimates to calibrate the parameters in our neurogenesis simula-

tion. We focus on attempting to simulate clones whose rounds of division follow the green curve

generated for the data from E12, which we denote F (n ); these later clones predominantly produce

≤ 50 neurons, which we have emphasized previously in the multi-Gaussian model fits. F (n )was

digitally extracted for n values corresponding to the bin centers, n = 0.1, 0.3, ..., 4.9.

The extracted values of F (n )were used to initialize parameters for β , ρ1, ρ2, and d . First, the

function F (n ) for n < 1 represents the progenitors that were labeled with MADM while undergoing

asymmetric divisions. In relation to the model, this is the portion of progenitors beginning as d p

cells, 1-β . We thus find 1-β=
∑

n<1 F (n )=0.3874 and set β =0.6126. The parameter ρ2, denoting the

probability of a p cell undergoing a {d p , d p} division at the first generation, corresponds to the

occurrence of n = 1 rounds of proliferative division. We find
∑

1<n<2 F (n )=0.4366 and normalize

this value according to the percent of clones starting the simulation as p cells, β , giving ρ2 =

0.4366/0.6126=0.7127. To remain consistent with the previously stated assumption that progenitors

favor symmetric divisions during proliferation, we set the probabilities of asymmetric {p , d p} or

{d p , p} divisions at a small value, 0.1 each. Since the probabilities must sum to 1, this gave our

initial value for the final parameter ρ1 = 0.7127−0.1−0.1=0.0873. The value of the decay parameter
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Figure 6.2 Estimation of proliferative division rounds n during neurogenesis from [16]. Dots represent the
binned frequencies of division rounds estimated using Eqn. 6.8, with the input m being the total neurons
per clone from the neurogenesis data in [16]. A smoothed curve was fit to the frequencies of n for each
MADM time point, E10-E12. It was observed that the estimated rounds of proliferative division decreased
when going from earliest (E10) to latest (E12) MADM time point. Reprinted with permission from [16].
Copyright 2014, The Authors. Published by Elsevier Inc.
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d was assumed to be high so that rounds of proliferative division would not go beyond n = 4 as

shown in the green curve from Fig. 6.2. We thus chose an initial value of d = 0.7.

Using these parameters, a set of 5000 clones was simulated, and the rounds of division n for each

clone was found according to Eqn. 6.8. We found that 5000 clones was a sufficient sample size to

stabilize the distribution of simulated clone sizes. The division rounds were binned as was done for

F (n ) and smoothed, creating a binned distribution S̃ (n ), n = 0.1, 0.3, ..., 4.9 (Eqn. 6.10). To tune the

parameters and create a distribution of division rounds S̃ (n ) that more closely represents the data

F (n ), we implemented least squares minimization of the difference between S̃ (n ) and F (n ) using

the MATLAB function fmincon, with parameters initialized at their values above. It is important to

note that we should not expect these parameters to be unique. For instance, similar distributions of

S̃ (n )may be created by increasing the initial proliferation rateρ1 while also increasing the decay rate

d . However, our goal is simply to find a set of parameters that can plausibly represent the observed

neurogenesis data, which can be done using our informed initial parameter estimates.

6.3.2 Scenario 2: Deterministic gliogenesis, NGS-RGP model

As in the previous section, modeling gliogenesis using the deterministic NGS-RGP model requires

parameters β , ρ1, ρ2, d , µ, andσ as shown in Eqns. 6.1-6.4. We began with setting the normal dis-

tribution parameters as the first Gaussian mean and standard deviation from fitting the constrained

multi-Gaussian model to the distribution of glia per clone as shown in Fig. 5.9, giving µ=4.9020 and

σ=2.4043. The remaining parameters β , ρ1, ρ2, and d , were then initialized using the same process

described in Sec. 6.3.1. That is, the number of glia m in each G and Mix clone from the NGS data was

used to estimate the rounds of proliferative division n by Eqn. 6.8. The values of n were then binned

into a frequency distribution F (n ). The initial value for the parameter β was set as 1-
∑

n<1 F (n ),

and the probability ρ2 was set as
∑

1<n<2 F (n )/β . The asymmetric division probabilities were again

initialized at a small value, 0.1, and the decay parameter d was initialized at 0.7. This set of initialized

parameters was then tuned using the same method described in Sec. 6.3.1.

6.3.3 Scenario 3: Gliogenesis, G-RGP model

The population of glia coming from G-RGPs was simulated following the Galton-Watson model with

division probabilities defined in Eqns. 6.5-6.7. A recursive expression for the probability distribution

of a clone of size n following this model was previously discussed in Sec. 3.2.2, and is represented

as Qn in Eqn. 3.8. The same model can be used for G-RGPs by substituting in P ({p , p}) = ξ1 and

P ({G ,G }) = ξ2 for the parameters q and p , respectively. Thus, we have Q2 = ξ2, Q3 = ξ2(1−ξ2−ξ1),

and

Qn = ξ1

n−2
∑

k=2

QkQn−k + (1−ξ2−ξ1)Qn−1, n ≥ 4. (6.9)
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We found the parameters ξ1 and ξ2 that minimize the sum of squares difference between Qn and

the distribution of glia in G and Mix clones using fmincon in MATLAB.

6.3.4 Scenario 4: Gliogenesis, combination NGS-RGP and G-RGP models

As previously mentioned, the simulation of a combined population of NGS-RGPs and G-RGPs is

performed by simulating each subpopulation according to its specific rules. Thus, the parameters

for each subpopulation’s simulation are determined using the same methods put forth in Secs. 6.3.2-

6.3.3, with the exception that the parameters are calibrated to the data coming from the separated

groups of Mix or G clones, respectively. That is, in scenarios 2 and 3, we assumed that all simulated

clones obey the same model of gliogenesis, either deterministic or stochastic respectively. The

parameters for simulating these scenarios were thus calibrated using the set of glia per clone in all

clones, Mix and G. Instead, in this final scenario, we use the Mix population of clones to calibrate

the parameters of the deterministic model, following the procedure detailed in Sec. 6.3.2, and the G

population of clones to calibrate the stochastic model parameters, using the procedure from Secs.

6.3.3.

6.4 Evaluation of Simulations

For scenarios 1-4 described in Sec. 6.3, we simulate populations of N total clones using the respective

rules and calibrated parameters. We set N = 359, which is equal to the number of clones having ≤50

glia in the NGS WT data. In scenario 4, we simulate N = 180 clones from each subpopulation for

a total of 360 clones in the combined population. From each simulated population, we form the

normalized frequency histogram of glia per clone, H (i ), i = 1, ..., 50.

For the frequency histograms formed for scenarios 1-3, we test the goodness of fit of the model

that is intended to represent the simulated rules. Thus, for H (i ) in scenarios 1 and 2, which model a

deterministic mechanism, we test whether MC O N sufficiently represents the distribution as com-

pared with MU N C O N . This is done with the methods used to evaluate these two models in Chapter 5,

which we recall here: first, we use an F-test to compare the nested models as described in Sec. 5.5.1,

and second, we run the simulations multiple times and compare the sets of fitting errors between

H (i ) and each model over the multiple runs. This is similar to what was done in the subsampling

scheme described in Sec. 5.5.3. However, instead of simulating one population of clones and fitting

MC O N and MU N C O N to the distribution of multiple subsamples, we simply simulate a new pop-

ulation of N = 359 clones in each run. For the clones simulated with a stochastic mechanism in

scenario 3, we use a Chi-Square test to evaluate whether Qn from Eqn. 6.9 accurately represents the

distribution of simulated clones H (i ).

Finally, for the clones simulated in scenario 4 with a combination of deterministic and stochastic
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behaviors, we use each of the methods above to test how well the distribution of clone sizes is

represented by each model: MC O N , MU N C O N , or Qn .

6.5 Results

6.5.1 Neurogenesis Model

6.5.1.1 Parameters

We calculated the division rounds n for 5000 clones simulated according to the initialized parameters

β , ρ1, ρ2, and d using Eqn. 6.8. The values of n were then binned into a normalized frequency

histogram S (n ). Based on the procedure described in [16], a smoothed distribution S̃ (n )was created

using a moving window of two points to the left and right of S (n ) so that

S̃ (n ) =
1

5

n+0.4
∑

k=n−0.4

S (k ). n = 0.1, 0.3, ...4.9 (6.10)

Fig. 6.3a shows S̃ (n ) (dots) computed using the initial parameters chosen in Sec. 6.3.1 in comparison

with the curve F (n ) representing neurogenesis division rounds from [16]. Our initial parameter

choices appear to get relatively close to representing F (n ), indicating a good performance from our

method of initialization. Fig. 6.3b shows the distribution of S̃ (n ) following parameter tuning, with

estimated parameters β=0.4232, ρ1=0.0977, ρ2=0.5174, and d=0.7585. These parameters produce

a better overall fit to F (n ).

6.5.1.2 Simulations

Using the tuned parameters, ten samples of 359 clones were generated and the frequency histogram

of clone sizes H (i ), i = 1, ...,50 was created for each sample. For each sample, the multi-Gaussian

models (5.1) and (5.2) with constrained and unconstrained means, respectively, were fit to the

distribution H (i ). For this neurogenesis simulation, k = 5 Gaussians were used in the models to

match the model in [16]. An F-test was run to generate a p-value comparing the performance of the

two models, and the sum of squares error J was also recorded in each case.

Fig. 6.4a shows a realization of H (i ) along with the average and standard deviation of the ten

model fits MC O N and MU N C O N . Visually, both models perform similarly, and we found that out

of the ten p-values generated from the F-test, only two were less than 0.05. This indicates that

clones following the deterministic division rules described in [16]most likely produce a frequency

distribution that can be sufficiently represented with a multi-Gaussian curve with linearly spaced

means. Additionally, we see observe that the mean ±SEM of J for each model over the ten fits were

not significantly different (ANOVA, p=0.4462). These results are expected, as they support the case
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(a) (b)

Figure 6.3 Calibration of the proliferation parameters for simulating neurogenesis. The dots represent
S̃ (n ), the distribution of division rounds n computed in Eqn. 6.10. The smooth curve was manually ex-
tracted from the green curve in Fig. 6.2 and represents the distribution of division rounds in neurogenesis
estimated in [16]. In (a), we show S̃ (n ) for the initialized parameter values given in Sec. 6.3.1. In (b), we
show S̃ (n ) for the tuned parameter set β=0.4232, ρ1=0.0977, ρ2=0.5174, and d=0.7585.

that deterministic rules at the clonal level can translate to identifiable patterns in the resulting

distribution of clone sizes.

6.5.2 Deterministic gliogenesis model

6.5.2.1 Parameters

We selected parameters µ= 4.9830 andσ= 2.5212 based on the first Gaussian mean and standard

deviation found from fitting MC O N to the WT Mix+G data in Fig. 5.9. The proliferation parameters

β = 0.3717,ρ1=0.4093,ρ2=0.4418, and d=0.4600 were then estimated using the procedure described

in Sec. 6.3.1. Fig. 6.5 shows the division rounds S̃ (n ) from 5000 clones simulated using the tuned

parameters, compared with the distribution of F (n ) found for glial clones using Eqn. 6.8 with

µ= 4.9830.

6.5.2.2 Simulations

We show a realization of a clonal distribution H (i ) from N = 359 clones simulated using the neuroge-

nesis model with gliogenesis parameters in Fig. 6.6a, along with the mean and standard deviation of

the ten fits for each model. Clearly, using different parameters alters the shape of the distribution of

clone sizes as compared with Fig. 6.4a. The fitting errors J in Fig. 6.6b are not significantly different

(ANOVA, p=0.4104). The F-test comparing the fits of models MC O N and MU N C O N gave a p-value
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(a) (b)

Figure 6.4 Results of neurogenesis simulation with deterministic NGS-RGP model. In (a), we show an ex-
ample distribution of neurons per clone from a set of N = 359 clones simulated according to the NGS-RGP
rules. Ten such distributions were created from sets of simulated clones, and the MC O N and MU N C O N

models were fit to the distribution in each case. The red and blue curves show the average and standard de-
viation of the distributions MC O N and MU N C O N over the ten samples. The average ±SEM of the ten fitting
errors J of each model to the distribution is shown in (b). These errors were not found to be significantly
different (ANOVA, p=0.4462).

Figure 6.5 Calibration of the proliferation parameters for simulating gliogenesis under NGS-RGP rules.
The curve represents the distribution of division rounds occurring in the data set of G and Mix clones,
estimated using Eqn. 6.8 with µ = 4.9830. The dots represent S̃ (n ), the distribution of division rounds n
computed in Eqn. 6.10 from a set of clones simulated in the NGS-RGP model with parameters β = 0.3717,
ρ1=0.4093, ρ2=0.4418, and d=0.4600.
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<0.05 in one out of ten cases. Again, this indicates that it is likely that the multi-Gaussian model

with linearly spaced means sufficiently represents the clonal distribution.

It is worth noting that we have reached the same conclusion here and in Sec. 6.5.1 when using

the same deterministic model with a different sets of parameters. Thus, our result appears to be

robust and not dependent on selecting a particular set of division probabilities.

(a) (b)

Figure 6.6 Results of gliogenesis simulation with deterministic NGS-RGP model. In (a), we show an exam-
ple distribution of neurons per clone from a set of N = 359 clones simulated according to the NGS-RGP
rules. Ten such distributions were created from sets of simulated clones, and the MC O N and MU N C O N

models were fit to the distribution in each case. The red and blue curves show the average and standard de-
viation of the distributions MC O N and MU N C O N over the ten samples. The average ±SEM of the ten fitting
errors J of each model to the distribution is shown in (b). These errors were not found to be significantly
different (ANOVA, p=0.4104).

6.5.3 Stochastic gliogenesis model

6.5.3.1 Parameters

Previously, we determined the parameters that fit Qn to the distribution of glia in G and Mix clones,

shown in Table 3.1 of Sec. 3.2.4 (in the row for G and Mix, Slater). Since the distribution Qn directly

represents a stochastic GW process, we can use these parameters in the simulation. Thus, we set

the parameters for the stochastic G-RGP model as ξ1 = 0 and ξ2 = 0.0764.
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6.5.3.2 Simulations

Fig. 6.7 shows the frequency distribution of glia per clone H (i ) from N = 359 clones generated from

the G-RGP model, along with the Qn distribution fit to the simulated data. We ran ten such groups

of clones, and for each group, we performed a Chi-square goodness of fit test for the Qn distribution

(see Sec. 3.2.4). In 9 out of 10 cases, the p-value from the test was above α = 0.05, thus we could

not reject the null hypothesis of the Chi-square test in these cases, indicating that the model Qn

sufficiently represented the simulated clones.

Figure 6.7 Distribution of clone sizes for a set of N = 359 clones simulated using the stochastic G-RGP
model (histogram). The dashed red line shows the fit of the Qn distribution to this particular set of clones.
Qn was judged to accurately represent the distribution of simulated clones in 9 out of 10 cases.

6.5.4 Combination gliogenesis model: deterministic and stochastic

6.5.4.1 Parameters

As in the previous section, the parameters for modeling the stochastic G-RGP portion of the simu-

lated clones were already determined, shown in Table 3.1 of Sec. 3.2.4 (in the row for G and Mix,

Slater). Hence, ξ1 = 0 and ξ2 = 0.0820. For the parameters governing the glia arising from mixed

clones, we proceed as before by first setting the normal distribution parameters µ = 6.5899 and

σ= 3.7997 from the first Gaussian mean and standard deviation found when fitting MC O N to the dis-

tribution of glia in mixed clones in Sec. 5.6.2. The remaining parameters are calibrated as described

in Sec. 6.3.1. Fig. 6.8b shows the distribution of division rounds S̃ (n ) from 5000 clones simulated
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using the found parameters β=0.2190, ρ1=0.5356, ρ2=0.4469, and d=0.4278. The curve represents

F (n ) calculated from Eqn. 6.8 for clone sizes m coming from mixed clones and µ= 6.5899.

Figure 6.8 Calibration of the proliferation parameters for simulating deterministic gliogenesis in Mix
clones under NGS-RGP rules. The curve represents the distribution of division rounds occurring in the
data set of Mix clones, estimated using Eqn. 6.8 with µ= 6.5899. The dots represent S̃ (n ), the distribution
of division rounds n computed in Eqn. 6.10 from a set of clones simulated in the NGS-RGP model with
parameters β=0.2190, ρ1=0.5356, ρ2=0.4469, and d=0.4278.

6.5.4.2 Simulations

A sample simulation of 360 clones from the gliogenesis model is shown in Fig. 6.9, with average and

standard deviations of the fits of multi-Gaussian models MC O N and MU N C O N with k = 4 over ten

simulations. 180 clones came from each population. We see some evidence of the multi-Gaussian

peaks coming from the mixed clones that follow the neurogenesis model, but more of an overall

shape similar to the distribution formed from a Galton-Watson process as in Fig. 6.7. Out of the ten

F-tests performed comparing models MC O N and MU N C O N to the simulated distribution of glia per

clone, eight out of ten showed p<0.05. Thus, in these cases, MU N C O N represented the distribution

better. The set of fitting errors J was also significantly lower for MU N C O N (ANOVA, p=4.6052e-04).

Additionally, we fit the Qn distribution to each distribution of simulated clones. One realization

of this is shown in Fig. 6.10. We performed Chi-square test (Sec. 3.2.4) to evaluate the fit of Qn to

each of the ten simulated groups of clones. In only one out of ten cases, the Chi-square p value

was below 0.05. Thus, in most cases, we cannot reject the null hypothesis of the Chi-square test,
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indicating that Qn accurately represents this combined distribution of clones.

This is an interesting result; for this simulation of clones with 50% following deterministic

NGS-RGP rules and 50% following stochastic G-RGP rules, the combined distribution of clones

can be represented by the stochastic model Qn . This result does not match the previous result

from fitting Qn , MC O N , and MU N C O N to the distribution of Mix+G clone sizes in the true NGS data,

where Qn and MC O N both failed to represent the distribution. As an experiment, we test different

percentages of G-RGPs in the simulation population, from 10% to 50%. Table 6.1 lists several values

found from evaluating the fits of Qn , MC O N , and MU N C O N to distributions of clones simulated with

these percentages of G-RGP inclusion. First, the average initial mean for MC O N is listed, as well as

all values of µ1−µ4 for the MU N C O N fit. We note that in general, the values found for µ1−µ3 for

MU N C O N fall in a range similar to the values µ1−µ3 when fitting MU N C O N to the true data in Table

5.3 (4-5 for µ1, 9-10 for µ2, and 15-18 for µ3). Thus, we appear to have reasonably identified rules

that can produce a distribution of simulated clones similar to the data. Below the values of µ1−µ4

in Table 6.1 are the p-values found from comparing the sets of fitting errors between MC O N and

MU N C O N using ANOVA. Lastly, we list the percent of cases in which the p-value for the Chi-square

test, evaluating the fit of Qn to the simulated clones, was below 0.05.

From the values listed in Table 6.1, we can see that simulating groups of clones with varying

percentages of G-RGPs alters the observed means as well as the results of the statistical tests. At

lower % G-RGPs, the ANOVA p-value is high, indicating that MC O N accurately represents these

simulated distributions. On the other hand, with a lower % G-RGPs, the p-values in the Chi-square

test are frequently >0.05, hence Qn does not represent the simulated distribution. This makes sense;

since the G-RGPs follow the Qn distribution and NGS-RGPs follow the MC O N distribution, a low

percentage of G-RGPs and a high percentage of NGS-RGPs in the simulated population should

result in a distribution matching MC O N and not Qn . We also see from the table that as the % G-RGPs

increases, the results of these statistical tests are reversed, with the ANOVA p-value being low and

the %p<0.05 in the Chi test also decreasing.

We recall that when fitting Qn , MC O N , and MU N C O N to the true Mix+G NGS data, we found a

small p-value for the error comparison using ANOVA (p=0.0044, Sec. 5.6.3) and a small Chi-square

p-value (p=0.0254, Sec. 3.2.4). Thus, to match the results from the data, we would want a low ANOVA

p-value, and a higher percentage of Chi-square p-values below 0.05. Among the simulations with

different inclusion levels of G-RGPs in Table 6.1, it appears that simulating around 30% of the clones

as G-RGPs produces a result most consistent with the true data. We can therefore hypothesize

that about 70% of the RGP population present during the neurogenesis-to-gliogenesis switch are

NGS-RGPs, while 30% are G-RGPs. This hypothesis could potentially be explored in future biological

experiments on clones during the NGS.
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(a) (b)

Figure 6.9 Results of gliogenesis simulation with clones coming from a combination of the deterministic
NGS-RGP and stochastic G-RGP models. In (a), we show an example distribution of glia per clone from a
set of N = 360 clones, where half were simulated under each model. Ten such distributions were created
from sets of simulated clones, and the MC O N and MU N C O N models were fit to the distribution in each case.
The red and blue curves show the average and standard deviation of the distributions MC O N and MU N C O N

over the ten samples. The average ±SEM of the ten fitting errors J of each model to the distribution is
shown in (b). These errors were found to be significantly different (ANOVA, p=4.6052e-04), hence MC O N

failed to represent the distribution of simulated clones.

Figure 6.10 Fit of the Qn distribution to the distribution of glia per clone in the simulated population of
half G-RGPs and half NGS-RGPs. Qn was judged to accurately represent the distribution of simulated
clones in 9 out of 10 cases.
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Table 6.1 Clonal simulations with varying percent inclusion of G-RGPs. Ten samples were simulated for
each percent inclusion, and models (6.9), (5.1), and (5.2) were fit to the distribution of glia per clone for
each simulation. For the Gaussian models (5.1) and (5.2), the average values of µ1 −µ4 over the ten sim-
ulations for each % G-RGPs are shown. The ten sets of residual errors from fitting these two models were
compared with ANOVA, and the p-value for this comparison is shown. For the stochastic model (6.9), the
fit for each simulated sample was evaluated with a Chi-square test. The percentage of the ten Chi-square
p-values below α= 0.05 for each % G-RGP inclusion level is shown.

% G-RGPs 10 20 30 40 50

µ1, MC O N 8.0800 8.5452 6.8747 6.3138 6.1226
µ1, MU N C O N 5.8618 5.0065 3.6433 4.2157 3.6080
µ2, MU N C O N 9.1842 9.4269 9.1615 10.2648 9.6180
µ3, MU N C O N 16.6824 15.7339 16.7188 18.8568 15.2574
µ4, MU N C O N 30.8426 31.1692 27.8096 31.0609 27.5572

p-value, ANOVA 0.7409 0.9850 0.0224 0.0060 4.6052e-04
% p<0.05, Chi 80% 60% 30% 0% 10%

6.6 Discussion and conclusions

In this thesis, we have used several mathematical models and methods to identify mechanisms of

radial glial progenitor (RGP) proliferation and differentiation during cortical development and the

neurogenesis-to-gliogenesis switch (NGS). These methods have been driven by a set of clonal data

gathered using mosaic analysis with double markers (MADM). This technique creates a unique type

of data measuring the total cells arising from the two daughter lineages of individual cells, namely,

the neurons and glia arising from the divisions of RGPs (clones). Patterns present in the distributions

of glia per clone can indicate that the RGPs produce glia deterministically or stochastically.

Based on our analysis of the data with branching processes (Chapter 3), clustering methods and

statistical tests (Chapter 4), and Gaussian mixture models (Chapter 5), we proposed a set of rules

that RGPs follow while dividing and differentiating into glia during the NGS. These rules defined

two subpopulations of RGPs: deterministic NGS-RGPs and stochastic G-RGPs. We demonstrated in

this chapter that simulating glial production in a population composed of a combination of these

two subpopulations could produce clone size distributions with similar features as the true data.

That is, the same type of model MU N C O N represented both the simulated data and the true NGS

data better than two simpler models MC O N and Qn . These two simpler models represented strictly

deterministic and stochastic mechanisms of glial production, respectively. Thus, our results imply

that glial production during the NGS is neither strictly deterministic nor strictly stochastic, and

suggests that a combination of behaviors may be present. Additionally, this result depended on

the relative proportion of NGS-RGPs and G-RGPs in the simulated population (Table 6.1). We can
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hypothesize that the percentage of G-RGPs (30%) which created a clone size distribution best fit

by MU N C O N over the other two models is the percentage of G-RGPs present in the real population

of RGPs during the neurogenesis-to-gliogenesis switch. Thus, our final hypothesis, which we have

developed from mathematical analysis of this clonal dataset, is that the NGS and gliogenesis can be

characterized by a mixture of deterministic and stochastic RGP behaviors, and that approximately

30% of the RGPs produce glia in a stochastic manner.

In formulating this hypothesis, a few features in the data were not addressed. First, our analysis

of the knockout (CKO) clones was limited, since this dataset was smaller than the WT dataset.

For instance, we were unable to definitively identify deterministic or stochastic patterns in the

distribution of glia per CKO clone in Sec. 5.6.3. We thus did not simulate any mechanisms of cell

division that RGPs may follow in response to the EGFR knockout. However, we did observe patterns

in the CKO clones that allow us to hypothesize about the response of RGPs to EGFR knockout. In

Sec. 4.3, we found that Mix clones produced a similar distribution of total glia in both WT and CKO

clones, while the average glia produced in G clones was increased. By our hypothesis of two RGP

populations, this would indicate that G-RGPs produce more total glia and ‘overcompensate’ for the

loss of green glia in response to EGFR knockout, but that NGS-RGPs do not.

Second, we did not incorporate the spatial portion of the clonal data into our simulation. It was

observed in Fig. 4.4 that the broad location of clones in the six layers of the cortex (superficial, deep,

or all layers) was correlated with clone size and potentially with genotype (WT or CKO). However, it

was challenging to compare the clone size distributions in the subsets of data separated by location,

since the subsets of deep and all layer clones contained much fewer clones than the subset of

superficial clones. Attempting to partition these groups further and see how location was associated

with other features, such as development time (E15.5, E16.5, or E17.5) or clone type (N, G, or Mix),

resulted in even smaller subsets. These small subsets could be compared using statistical tests

as in Chapter 4, but their clone size distributions did not contain enough data points to produce

identifiable deterministic or stochastic patterns. Thus, we were not able to identify specific rules of

clonal behavior that were associated with location, and we left this feature out of our simulation

framework. More clonal data could be gathered to increase the sizes of the data subsets by location,

but we note that MADM data collection is highly time intensive and costly.

Lastly, our simulations did not incorporate the separate red and green cell counts for each

simulated clone, but instead focused on the total glia per clone. Thus, our simulated clones did not

have any rules so that their red and green lineages matched the patterns of red/green symmetry

and asymmetry shown in Sec. 5.3. Part of the issue encountered with comparing the red and green

lineages in the NGS clones was that a significant portion of the G clones (>50%) contained only red

or only green glia. However, this in and of itself is an interesting observation in the NGS data. If a

clone produces only red or only green glia, this implies that the other lineage either died or was not

located where it could be observed. This could perhaps tie into the previously mentioned hypothesis
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that G-RGPs migrate during the NGS (Sec. 4.3). Overall, the complexity of developing rules that

would control the symmetries of simulated clones was deemed beyond the scope of this thesis. If a

set of rules was developed, we would want to incorporate a dependence on EGFR, which would

enable us to simulate the effect of EGFR knockout on glial production. We would likely require data

with a larger number of the CKO clones to more definitively establish these rules. Thus, there is

ample opportunity to expand on the mathematical analysis of NGS clones presented in this thesis.

However, since the methods we used were data-driven, any further work leading to a robust set of

extended mathematical models would require additional data.
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