
ABSTRACT

VOGT, RYAN HUBERT. Interface Problems and Binary Electromagnetic Cloaking Designs in
Computational Electromagnetics. (Under the direction of Zhilin Li.)

This thesis studies two type of problems in the area of computational electromagnetics. The first

topic is numerically solving Maxwell’s equations with discontinuous permittivity and permeability

across a material interface. We develop convergent finite-difference methods using the immersed

interface method (IIM) on Cartesian meshes. Our method takes into the account of the jump

conditions from the equations so that the scheme maintains second-order accuracy in time and

space. We design methods for Maxwell’s equations in one and two dimensional space. For the one

dimensional problem we introduce two separate methods: a direct approach that uses the jump

conditions directly, and an alternating direction implicit method that takes advantage of augmented

variables. We numerically show the consistency, stability, and convergence for our methods. The

second topic is constructing effective binary electromagnetic cloaking designs in three different

instances. All of these problems can be written as a mixed-integer partial-differential equation

constrained optimization (MIPDECO) problem. The goal of solving the optimization problem is to

find a cloaking design that minimizes the scattering in a predefined region of space. We define a

subregion of the domain which we divide into a control mesh, made up of subdomains. On each of

these subdomains, we define a binary variable. The value of this binary variable determines if we

place material at a given subdomain location or not. The constraint on the optimization problem is

that the scattering wave must satisfy Maxwell’s equations with a Robin boundary condition. Because

our binary cloak design is not time dependent, we convert the time domain Maxwell equations into

their frequency counterpart. The resulting constraint equation then becomes a Helmholtz equation.

To solve this optimization problem we derive an optimize-then-discretize approach. We first derive

the necessary conditions of optimality, which gives us a gradient, then we apply a trust-region

method to solve the problem. We present numerical results that show that our method produces

effective electromagnetic cloaks. We takes these steps for each instance of the problem. The first

instance we study is to make 2D binary cloaks with a single material to cloak a region in 2D space.

In the second case, we generalize the results from the first case, allowing for a binary cloak to be

made out of several different materials. In the third and final case we construct binary designs in 3D

to cloak a region in space.
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CHAPTER

1

INTRODUCTION

In this thesis we discuss two topics in the field of electromagnetics. The first topic that we study is to

solve Maxwell’s equations numerically with discontinuous permittivity and permeability across a

material interface. We develop second order, stable, finite difference schemes using the immersed

interface method (IIM) [64]. We numerically show that our schemes are consistent, stable and

convergent in both one and two dimensions. The second topic that we study is the development of

binary cloak designs. We use the Haslinger model [41] as the foundation to formulate a mixed-integer

partial-differential equation constrained optimization (MIPDECO) problem for the electromagnetic

cloaking design. We introduce a trust-region method for solving the MIPDECO.

An overview of the thesis is as follows: we first give an overview of the different subjects that ap-

pear in this thesis; these include, classical electromagnetics, interface problems in electromagnetics,

electromagnetic cloaking design, partial differential equation constrained optimization, mixed-

integer nonlinear programming, and mixed-integer partial differential equation optimization. Next

we give a brief summary of the contributions of this thesis. In Chapter 2, we present several finite-

difference schemes for solving Maxwell’s equations in one dimension when a material interfaces

are present. We conclude the study of each scheme presented with a test problem to illustrate the

success of our methods. In Chapter 3 we introduce an augmented IIM method [64] to solve Maxwell’s

equations in one and two dimensional space; like Chapter 2 we study the stability, consistency, and

convergence of our method. We introduce numerical results to show that our method works for

2D curved interfaces while also maintaing second order accuracy in space and time. In chapter 4,
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we introduce a two dimensional model for designing electromagnetic cloaks made out of a single

non-magnetic material with the intent of making a predefined area of space optically invisible; the

resulting problem is a MIPDECO. We then introduce a trust-region steepest-descent method, using

an adjoint-based gradient, to solve the electromagnetic cloak problem numerically. Next, in chapter

5 and chapter 6 we introduce two variants of the problem. The first variant that we study is the

construction of an electromagnetic cloak with several different materials under a mass constraint.

We study the impact that mass and materials have on the impact of the electromagnetic cloaking

capability. We introduce continuation methods to improve cloaking capability of the multiple mate-

rial cloaks in an iterative way. The second variant is generalizing the single material model to three

dimensional space and solving the resulting problem. In chapter 7 we describe several different

directions the work shown in this thesis can be extended.

1.1 Classical Electromagnetics

We begin with reviewing classical electromagnetics, which is the basis for all work in this thesis.

1.1.1 Maxwell’s Equations

The fundamental equations of electromagnetics, in the time domain. were first presented in their

entirety by James Clark Maxwell [74]:

∇·E=
ρ

ε
(Gauss’s Law) (1.1)

∇·B= 0 (Gauss’s Law For Magnetism) (1.2)

∇×E=
∂ B

∂ t
(Maxwell Faraday Equation) (1.3)

∇×B=µ
�

J+ε
∂ E

∂ t

�

(Ampè re’s Law). (1.4)

These four equations establish the relationship between the electric field, E and the magnetic

field B. We will denote E= (E x , E y , E z ) and B= (B x , B y , B z ). Each component of the field can be

dependent on all spatial variables x and the scalar time variable t. In the equation above, the quantity

ρ :=ρ(x, t ) represent the electromagnetic charge density that exists at the vector position x at time t ,

the quantity J := J(x, t ) denote the electromagnetic current density that exists at the vector position

x at time t . The material properties ε := ε(x, t ) and µ :=µ(x, t ) denote the electric permittivity and

magnetic permeability, respectively. Both measure how a material stores electric and magnetic

energy respectively. A given materials permittivity and permeability are summarized by the material
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response at a given frequencyω,

ε := ε(ω) = εr (ω)εo (1.5)

µ :=µ(ω) =µr (ω)µo . (1.6)

The quantity εo represents the permittivity of free space, with εo ≈ 8.8×10−12 Farad per meter and

µo represents the permeability of free space,with µo ≈ 1.3×10−12 Farad per meter. εr and µr denote

a materials relative permittivity and permeability respectively.

We consider only linear media for the purpose of this thesis. In addition we will assume that

materials of interest cannot be polarized and or magnetized.

We also introduce two additional fields: the displacement field D, and the magnetizing field H.

We define these fields as

D= εE

H=
1

µ
B,

and in this work we assume that there is neither a polarization or magnetization field present in the

physical system.

Each of Maxwell’s Equations describe important physical phenomena found in electromagnet-

ics [7]. When numerically solving Maxwell’s equations only (1.3) and (1.4) need to be considered.

Maxwell’s first two equations can easily be derived by using charge conservation arguments.

We briefly show this, first deriving Gauss’s Law of Magnetism from the Maxwell Faraday equation.

We first take the divergence of both sides of (1.3),

∇·∇×E=−
∂
�

∇·B
�

∂ t
. (1.7)

Using the vector identity that the divergence of the curl of a vector field with sufficient regularity

yields

−
∂
�

∇·B
�

∂ t
= 0. (1.8)

However this implies that

∇·B= f (x), (1.9)

where f is some arbitrary function with sufficient regularity in time. Two arguments can be made to

enforce that f = 0. The first is a classical argument, which states that there has been no experimental
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observation of a magnetic monopole. This directly implies the divergence of the magnetic field is

zero [50]. Another argument, which is consistent with the classical argument, comes from quantum

mechanics [16, 57]. This argument predicts the existence of magnetic monopoles due to the big-

bang. However their density has rapidly decreased due to the rapid expansion of space, becoming

negligible. This theoretical prediction enforces that f = 0.

Next we discuss the derivation of Gauss’s Law from Ampè re’s Law. We first take the divergence

of both sides of equation (1.4),

∇·∇×B=∇·
�

µ

�

J+ε
∂ E

∂ t

��

. (1.10)

Using the divergence applied to a curl identity we obtain

∇· J+
∂
�

ε∇·E)
�

∂ t
= 0. (1.11)

We now assume that conservation of charge holds on the charge density function ρ, which means

∇· J+
∂ ρ

∂ t
= 0. (1.12)

When comparing equations (1.11) and (1.12), we observe for both equations to be true simultane-

ously that

ε∇·E=ρ+C , (1.13)

where C is some arbitrary constant. The equation is equivalent to

∇·E=
ρ

ε
+

C

ε
. (1.14)

Because we can always define the charge density relative to our definition of ground, we can enforce
ρ
ε := ρε +

C
ε , which gives us Gauss’s Law.

When solving (1.3) and (1.4) with a numerical method we cannot guarantee we satisfy (1.1)

and (1.2). We therefore will favor methods that solve (1.3) and (1.4) accurately but also enforce

conservation of electric and magnetic as written in (1.1) and (1.2). In chapter 2, we will solve (1.3)

and (1.4) under the assumption that material permittivity, ε, and the material permeability, µ,

are discontinuous functions. This is to say that we are interested in observing the behavior of

electromagnetic waves as they move through several homogeneous materials in a physical domain.
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1.1.2 The Electromagnetic Wave Equation

Another important version of Maxwell’s equations is when the electric and magnetic field are written

in the time domain wave equation form. We begin by showing from (1.3) and (1.4) that we can derive

wave equations for the magnetic and electric field. We first take the curl of (1.4) and (1.3):

∇×
�

∇×E
�

=
∂
�

∇×B
�

∂ t
(1.15)

∇×
�

∇×B
�

=µ
�

∇× J+ε
∂
�

∇×E
�

∂ t

�

. (1.16)

We will use the vector identity, for a general differential vector field F=
�

F1, F2, F3

�

,

∇×
�

∇×F
�

=∇
�

∇·F
�

−∆F, (1.17)

where∆ is the element wise Laplacian operator,

∆F=







∆F1

∆F2

∆F3






=







∇·
�

∇F1

�

∇·
�

∇F2

�

∇·
�

∇F3

�






. (1.18)

We then write the final form of Maxwell’s equations in their electromagnetic wave equation form,

∆E=
1

c 2

∂ 2E

∂ t 2
+µ

∂ J

∂ t
+∇

�

ρ

ε

�

(1.19)

∆B=
1

c 2

∂ 2B

∂ t 2
−µ

�

∇× J
�

, (1.20)

where c = 1p
εµ is the speed of light [50].

One can solve either the classical form of Maxwell’s Equations or solve the electromagnetic wave

equations to find the electric and magnetic fields.

1.1.3 Helmholtz Equation

In subsections 1.1.2, we have written the equations in the time domain. Another important frame of

reference of these equations are in the frequency domain. This frame of reference is important both

from a practical and mathematical perspective [17, 26, 94, 101, 111] . In this thesis, our motivation

of using the frequency domain version of Maxwell’s equations is to determine how, for a fixed

non-magnetic material and electromagnetic frequency, we construct a cloak that is successful at

optical cloaking.

We show how one derives the Helmholtz equation, which is just the wave equation in the
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frequency domain. If we solve (1.19) and (1.20) under the assumption of zero current density, J= 0,

and zero charge density, ρ = 0, then any equation in the system can be written as

∆v =
1

c 2

∂ 2v

∂ t 2
, (1.21)

where v is a scalar function.

To transfer the homogeneous wave equation to the frequency domain, we apply the Fourier

transformation to both sides:

∫ ∞

−∞
∆v e iωt d t =

∫ ∞

−∞

1

c 2

∂ 2v

∂ t 2
e iωt d t . (1.22)

where i =
p
−1 is the unit imaginary number andω is a given frequency. We will define the Fourier

Transformation of v (x, t ) in the time domain to its frequency domain counter part u (x,ω) as

u (x,ω) =

∫ ∞

−∞
v (x, t )e iωt d t . (1.23)

Conducting the contour integral in (1.22) on the complex plane [71] yields

∆u +ω2u = 0. (1.24)

The equation in (1.24) is known as the Helmholtz equation. A modified version of this equation

will appear in chapter 4, as a constraint to a special instance of a partial differential equation

optimization problem.

1.2 Interface Problems in Electromagnetics

In Chapter 2, we focus on the development of efficient numerical methods and analysis for the

Maxwell’s equations, in particular, we focus on electromagnetic scattering in heterogeneous media.

The first topic is to solve and analyze Maxwell’s equations that models electromagnetic waves

in heterogeneous media. We start with the one dimensional Maxwell’s equations that can be de-

composed into two independent sets of equations, the transverse magnetic (TM) mode and the

transverse electric (TE) mode [14, 47, 50, 62]. The focus is to solve the one dimensional problem and
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then ultimately solve the two dimensional problem. The one dimensional TE and TM equations are

∂H y

∂ t
=

1

µ

∂ E z

∂ x
(1.25)

∂ E z

∂ t
=

1

ε

∂H y

∂ x
∂ E y

∂ t
=−

1

ε

∂H z

∂ x
(1.26)

∂H z

∂ t
=−

1

µ

∂ E y

∂ x
,

We are interested in the case when the electromagnetic waves pass through different materials

as illustrated in the diagram for a two dimensional problem, as ween in Fig. 1.1 which were shown in

[82, 87]. For design and cloaking purposes, we assume that the interface between two media is sharp

in contrast to phase field models. At an interface between two media, say medium 1 and medium 2,

the interface conditions can be expressed as

n× (E1−E2) = 0, n× (ε1E1−ε2E2) = 0, (1.27)

n× (H1−H2) = 0, n×
�

µ1H1−µ2H2

�

= 0, (1.28)

denoted as

[n×E] = 0, [n×εE] = 0, (1.29)

[n×H] = 0,
�

n×µH
�

= 0, (1.30)

where n is the outward unit vector perpendicular to the interface. The representations to the right

are called jump conditions. We will use standard approaches for dealing with outer boundary

conditions such as perfect electric conductors (PEC), or absorbing boundary conditions (BCs), or

perfectly matched layer (PML) techniques, but focus on our effort on the treatment of interfaces.

When electromagnetic (EM) waves reach an interface characterized by an abrupt change in physical

properties, portions of the signal undergo reflection, refraction and transmission which makes it

possible to design the wave patterns for cloaking purposes.

For the purposes of the 2D problem, we will focus on solving the TM equation using an aug-
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mented immersed interface method [64]:

∂H x

∂ t
+

1

µ

∂ E z

∂ y
= 0, (1.31)

∂H y

∂ t
−

1

µ

∂ E z

∂ x
= 0, (1.32)

∂ E z

∂ t
+

1

ε

�

∂H x

∂ y
−
∂H y

∂ x

�

= 0. (1.33)

Our method is such that there are minor differences between solving the 2D TM and TE equation,

therefore we will focus on the TM equations for this work.

.

Figure 1.1 A diagram of cloaking technique and electromagnetic wave scattering in different media. The
images can be seen in [82, 87] respectively.

Yee’s Scheme. We plan to develop efficient dimensional jump splitting methods for solving

Maxwell’s equations. Our approach will be based on Yee’s algorithm [105] and the direct and aug-

mented strategy [64]. Yee’s algorithm uses a staggered Cartesian mesh and has a number of significant

properties: (1) It is second order accurate both in space and time without using second order partial

derivatives as in the Lax-Wendroff scheme (2): the CFL condition is favorable ∆t ∼ C h (3) Yee’s

scheme is a time-domain technique, and when a broadband pulse (such as a Gaussian pulse) is used

as the source, then the response of the system over a wide range of frequencies can be obtained with

a single simulation. This is useful in applications where resonant frequencies are not exactly known,

or anytime that a broadband result is desired (4) it allows us to specify the material at all points

within the computational domain. A wide variety of linear and nonlinear dielectric and magnetic

materials can be naturally and easily modeled (5) Yee’s scheme allows the effects of apertures to

be determined directly. Thus shielding effects can be found, and the fields both inside and outside

a structure can be found directly or indirectly (6) Yee’s scheme solves the electric and magnetic

fields directly so it is convenient that no conversions must be made after the simulation has run

to get these values, like the wave equations approach. We also propose to develop a dimensional

jump splitting approach for Helmholtz equations that can pin down particular wave numbers for
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particular material designs. One of the challenges naturally is how to maintain the same order of

accuracy and stability when waves pass through physical interfaces between different materials.

Why structured (such as Cartesian or adaptive Cartesian) meshes? There are a variety of meth-

ods for solving Maxwell’s equations. Finite-element methods have been developed particularly for

frequency domains using Helmholtz equations, which are elliptic PDEs for which FEM and theory

are mature. A body-fitted mesh coupled with a finite element formulation is a natural choice for

elliptic PDEs and Helmholtz equations with interfaces and has been extensively studied in the litera-

ture. In addition the body-fitted approach is easy to analyze and often leads to optimal convergence.

However, for arbitrary interfaces with complicated geometries, generating a satisfactory body fitting

mesh is often time consuming. Such a difficulty becomes even more severe for moving interface or

free boundary problems in which the mesh has to be generated again and again in the time stepping

procedure. Note that the primitive Maxwell’s equations are a first order hyperbolic system that can

be solved using a finite-difference time-domain (FDTD) method, such as the simple Yee’s scheme

rather easily. Even in the frequency domain using the Helmholtz equations, a fast Helmholtz solver,

e.g., the one from Fishpack et al [3] can be utilized, but only on structured meshes.

For moderately complex geometries, it is unnecessary to apply unstructured meshes and domain

decomposition techniques. For complicated geometries, methods have been developed for adaptive

Cartesian meshes for various problems, see [67, 68]. There are limited sharp interface methods

using Cartesian meshes for hyperbolic interface problems, see, for example, [107], but even fewer

for Maxwell’s equations with discontinuous permittivity and permeability until recently [98, 106]

for straight interfaces, the derivative matching method in [109, 110], and the immersed interface

method [23]. In these methods, the finite difference stencil are usually enlarged and the coefficients

are determined from a small to medium size of linear system of equations (36 grid points in [23] for

2D problems). As a result, smaller Courant Friedrichs Lewy (CFL) numbers [60] are needed. These

methods are not practical in general for optimal controls since forward solvers are too expensive.

Why a dimensional jump splitting approach in 2D? Note that discretizations in one spatial

dimension are much easier and more efficient not only in terms of implementations, but also

in convergence analysis. This is one of the motivations to introduce a dimension by dimension

approach for 2D & 3D. In addition, parallel computing can be done more easily in each coordinate

dimension. One challenge is how to deal with the discontinuities at the interface that are not

in the coordinate directions. We introduce the use of the dimensional jump splitting strategy by

introducing one or several jump variables (in the coordinate directions) whose dimensions are at

least one order lower than that of the primitive variables. Note that while augmented strategies have

been applied to various problems [24, 46, 49, 51, 69], the dimensional jump splitting approach is new.

Applications, including the scattering problems using Maxwell’s equations and the related optimal

control, are new. The dimensional jump variables are from the solution and/or its gradient and will

not affect the wellposedness of the problem. Advantages of our proposed approach to Maxwell’s
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equations with discontinuities include: (1): Yee’s compact finite difference remains the same with

modified right hand sides. Thus we maintain the simplicity and the structure of the FDTD method;

(2): The CFL condition remains at least asymptotically the same; (3): For fixed interface and time

step size, the coefficient matrix for the augmented jump variables is a constant matrix thus it needs

to be computed just once. For moving interfaces or adaptive time steps, the GMRES or rank one or

two updating methods can be utilized since the change is relatively small; (4): It is relatively easier to

carry out the convergence analysis since the finite difference stencil and coefficients do not change.

1.3 Mixed-Integer Partial-Differential Equation Constrained Optimiza-

tion and Electromagnetic Cloaking Problems

In chapter 4, 5 and 6 we solve a mixed-integer partial-differential equation constrained optimization

problem (MIPDECO) to build effective electromagnetic cloak designs. We first present an overview

of electromagnetic cloaking on the experimental and theoretical front. Afterwards we present an

overview of PDE constrained optimization, mixed-integer programming and MIPDECO.

Electromagnetic Cloaking: In our application, electromagnetic cloaking, we focus on manipu-

lating the light around an object to make the object nearly optically invisible. Since the study of optics

began, the ability to control the properties of light with materials found in nature has been limited.

The introduction of meta materials, which cannot be found in nature, has made the creation of

electromagnetic cloaks feasible and has brought a strong interest to this field of study [88]. The goal

of an electromagnetic cloak on an object is for the light to flow around the object, rather than being

scattered by the object, causing the object to optically disappear. Experiments have established

the first practical implementation of an electromagnetic cloak over a small frequency band [88].

While this cloak was unsuccessful in obtaining perfect cloaking of a copper cylinder, the experiment

showed the ability to decrease the shadow of an object, getting closer to resembling empty space;

thus reinforcing the theory of electromagnetic cloaking and the practicality of an implementation.

In [89] experimental observations established the construction of electromagnetic cloaks which are

not dependent on prior knowledge of the incident wave, while [20] outlines an in-depth summary of

electromagnetic cloaking by means of meta materials. Highlights include several key experiments,

including [88], but also a discussion of future directions for electromagnetic cloaking, especially in

the area of cloaking for a large frequency band, which has not yet been observed. There has been

interest also in using material science to address the challenge of constructing a metamaterial that

will be effective at cloaking. Numerical simulations and experiments are leading advancements in

the construction of electromagnetic cloaks [15, 21].

Partial-Differential Equation Constrained Optimization: In this portion of the thesis we de-

fine the class of partial-differential equation constrained optimization (PDECO) problems. We first
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discuss the methods for solving these problems. Next, we give some examples of application prob-

lems which have fueled the interest and study of PDECO; then we cite several books and references

that discuss both the theory and numerical methods available for solving PDECO problems.

A general formulation for the class of PDECO problem can be written as,

minimize
u ,v

J (u , v )

subject to P (u , v ) = 0 in D ,
(1.34)

where P , the constraint vector, can contain scalar, algebraic, and differential constraints with respect

to the state vector u and the control vector v . We assume that at least one of the constraints present

in the problem is a partial differential equation (PDE) in the state u over domain D . P also contains

relevant information such a boundary conditions, initial conditions (for time dependent problems)

and can also contain further constraints on the state and control vector. The goal of the optimization

problem is to find an optimal state and control pair, (u∗, v ∗), which minimizes the cost functional

J (u , v ). The formulation in (1.34) is referred as a full space formulation because we are optimizing

over the state and control vector simultaneously.

While discussing PDECO in this thesis, we use the reduced space formulation approach [97]. In

this approach, given a control vector v , we can produce a unique state vector u (v ), thus eliminating

the state constraint from the optimization problem and only need to optimize over v :

minimize
v

J (u (v ), v )

subject to C (u (v ), v ) = 0 ,
(1.35)

where C is the remaining constraint(s) present in the problem when the PDE constraint is eliminated.

There are two school of thoughts when it comes to solving PDECO problems, the first is the

discretize-then-optimize perspective (DTO). We do not use this approach in this thesis, but instead

summarize the approach. In this approach, we first discretize the infinite-dimensonal problem.

We would first discretize the objective function (which we assume in our work to be an integral

whose integrand contains the state and or the control) by means of a quadrature rule. We also

discretize the state equation by means of a numerical method that is appropriate and discretize all

other constraints to be consistent with the state discretization. The resulting problem will be a large

scale (finite dimensional) nonlinear optimization problem. We note that the size of this problem is

determined by how refined the computational domain is. Once the problem is a finite-dimensional

nonlinear programming problem, the wide range of tools and theory that are available can be used

to solve such a problem numerically. Particularly first order methods that only require gradient

information, g , and second order methods that require both g and the Hessian matrix, H [80].

The second approach is the optimize-then-discretize (OTD) approach. In this approach we first
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pose the Lagrangian associated with the PDE optimization problem,

L (u , v,λ) = J +

∫

D

λT C d D , (1.36)

where λ is refereed to as the adjoint (multiplier) vector; we note that each component of this vector

contains a scalar adjoint variable that is associated with each constraint and is a function.

In this thesis, we derive the the weak form of the state and adjoint equation to pose the optimality

conditions for the reduced space formulation. Before we discuss the optimality conditions, we

discuss the concept of a weak and strong solution to a partial differential equation. In classical

PDE theory it is sufficient to having solutions exist in the function space C N (D ); this function

space contains all continuous function on D , whose derivatives up to order N are also continuous

functions [86]. We call these solutions strong (classical) solutions because the derivatives of the

solution satisfy the limit definition of a derivative. The classical definition of a partial derivative of a

function requires regularity assumptions on the function. For example, in the classical sense, if a

function is not continuous then it cannot be differentiable. The study of weak solutions to a partial

differential equation were introduced and studied by Sergei Sobolev, a Russian mathematician, in

the 1930s. The motivation of introducing the concept of a weak solution was to understand the

solutions of fluid equations [28]. These equations could be proven to not admit solutions in C N (D ).

Soblev was able to construct function spaces, which are called Soblev spaces [86] and denoted

W k ,p (D ), which define the function space of all functions that are L p (D ) and weak derivatives up to

order k are also L p (D ) in the sense of distributions. We briefly now discuss the concept of a weak

derivative on D in the sense of distributions as first described in his work. We first define a test

function space on D

Φ= {φ|φ ∈C∞(D ), D̄∞φ|∂ D = 0}, (1.37)

where ∂ D denotes the boundary of the set D and D̄ is a multi-index differential operator on the

elements of Φ. We can summarize the test function space in words by saying that Φ is the space of

all continuous functions on D that are compactly supported. Next we have a function, say u and we

are interested in calculating D̄ n (u ) in the weak sense, which is any partial derivative up to order n .

Next we choose an arbitrary test function with this differential operator applied to it and "test" it

against u :
∫

D

uD n (φ)d D . (1.38)

we then conduct integration by parts several times, also using the compactness of the test functions,

until we have removed the differential operator on the test function:

∫

D

uD n (φ)d D = (−1)n
∫

D

f φd D , ∀φ ∈Φ. (1.39)
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We say that f is the corresponding weak derivative u, in the sense of distributions, for the differential

operator D̄ n . We note that if u is differential in the standard C n (D ) sense, then f = D̄ n (u ) is the

strong derivative of u. We note that the weak derivative and the strong derivative of a function is the

same if the function is differentiable in the traditional sense. This is an important observation when

looking at partial differential equations, because, if we apply this idea to a classical PDE, then we

recover classical solutions with our weak formulation, however for more complicated equations,

which do not admit classical solutions, we can seek the appropriate Soblev space for which our

equation is satisfied in a weak sense. The framework that Soblev established to examine equations

that do not admit classical solutions has defined the study of PDE for almost the last 100 years. A

complete discussion of the theory of Soblev spaces and the use of them to successfully solve PDE

can be found in [86].

With the idea of weak derivatives in mind, we then compute the integral in (1.36) by means

of integration by parts, treating the adjoint variable like a test function, to weaken the regularity

assumptions on the state vector u . Next, we introduce the first-order optimality conditions [97],

which are based on the variational (Gateaux) derivatives of the Lagrangian:

Lλ[λ̃] =
d

dε

�

L (u , v,λ+ελ̃)
�

�

�

�

�

ε=0

= 0 ∀λ̃ ∈ F̃1 (Weak State Equation)

Lu [ũ ] =
d

dε

�

L (u +εũ , v,λ)
�

�

�

�

�

ε=0

= 0 ∀ũ ∈ F̃2 (Weak Adjoint Equation)

Lv [ṽ ] =
d

dε

�

L (u , v +εṽ ,λ)
�

�

�

�

�

ε=0

= 0 ∀ṽ ∈ F̃3 (Weak Gradient Equation),

(1.40)

where F̃1, F̃2 and F3 are the appropriate function spaces for the state and adjoint equation. These

spaces will be problem dependent. The weak adjoint equation, like the weak state equation, is also

a partial differential equation.

The optimality conditions (1.40) are defined in infinite-dimension. These conditions define the

first order conditions that a local minimizing solution v , must satisfy.

When using either the DTO or OTD approach a finite dimensional problem must be solved

eventually. In the DTO case, we derive discretize the infinite dimensional problem which results in

a large scale optimization problem. We then write down the KKT system which defines optimality

criteria. In the OTD, we find the gradient by solving the state and adjoint equations with the incum-

bent control. We note that we can pose second order conditions of optimality using a Lagrange

multiplier approach.

The main numerical techniques for solving finite-dimensional continuous optimization prob-

lems are line-search and trust-region methods [53]. In the line-search approach, given an initial
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guess v 0, we define an iterative scheme

v k+1 = v k +αk p k , (1.41)

where αk is defined to be the step length and pk is the descent direction on the k -th iteration.

A few popular methods for picking αk include the Armijo (backtracking) and Wolfe line search

[53]. Newton method [54] and Quasi-Newton methods [80] have been extremely popular as line

search techniques. Newton’s method for large scale problems is less attractive because second-order

information must be known explicitly. This is the motivation of the quasi-Newton methods which

approximates the Hessian. A popular quasi-Newton is LBFGS (limited-memory BFGS) [112].

In the trust-region method, we solve a sequence of optimization problems, P k , where we take

the original optimization problem and add the trust-region constraint ||v − v k || ≤∆k :

minimize
v

Ĵ k

subject to

||v − v k || ≤∆k

v ∈ Ṽ ,

(1.42)

where Ĵ k is the Taylor series about an incumbent solution v k :

Ĵ k = J k + g T (v − v k ) +
1

2
(v − v k )T H (v − v k ) (1.43)

and∆k is the trust-region radius on the k -th iteration. The spirit of the trust-region method is to

determine a second order (Taylor) approximation to the objective function that is to be minimized,

subject to the previous constraints, in a ball of set size [80]. If such a v can be found on a given

iteration, we move to the solution which produces a lower objective function and either increase

the trust-region radius or keep it the same. If we cannot, we decrease the radius and resolve the

problem. We continue this until the trust-region radius is zero which indicates that we have found a

local minimum.

Many physical phenomenon from fluid flow [19], electrodynamics [50], quantum mechanics

[85], etc can be modeled by partial-differential equations (PDEs). A natural question to ask is can a

physical system (described by a PDE) be driven (controlled) in such a way that a goal is reached.

In this thesis, our goal is to find an electromagnetic cloak that can minimize scattering in a region

to induce cloaking, which is governed by a Helmholtz equation. However, this is not the first work

that addresses PDECO problems with applications in mind. An example of PDECO problems with

application in mind is where the PDE constraint comes from fluid mechanics (Navier-Stokes, Euler

gas laws, conservation laws). Two notable examples that researchers are interested in are boundary
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control to influence fluid flow and heat transfer in fluids [36]. Another example comes from electro-

dynamics, where the PDE constraint is Maxwell’s equations (Helmholtz equation in the frequency

domain). The goal of the optimization problem is to construct a topology to induce electromagnetic

cloaking in a region [41]. Finally in quantum mechanics, where the governing PDE is Schrodinger

equation, optimal control problems have been posed to drive quantum systems to a desired states

[93]. This is not an exhaustive list of applications of PDE optimization, but it does demonstrate that

researchers from different scientific domains are interested in these class of problems.

There are several references that may be an interest of readers that focus on the main components

of PDE optimization: theory and numerical methods. In [43] a survey of both the full space and

reduced space is explored. This includes the "one-shot" approach for solving the KKT system with

both Newton and inexact Newton. It also discusses the adjoint approach for obtaining the gradient,

using the Lagrangian method. The book by F. Troltzsch [97] focuses on the reduced space formulation

of PDECO problems for elliptic and parabolic PDE constraints. The book rigorously proves both the

first and second order optimality conditions in infinite dimension. The book by K. Ito [48] also gives

the theoretical overview of the Lagrangian approach to PDECO and includes several application

problems. An overview of the numerical techniques for solving PDECO (which boils down to Newton

and quasi-Newton methods) can be found in [12, 42, 83]. We suggest the book of J. De los Reyes

[84] as an excellent short reference for both the numerical and theoretical components of PDECO.

The book by M. Gunzburger [36] provides a more in depth discussion of both the theoretical and

numerical challenges but is mainly focused on fluid mechanic application problems.

Mixed-Integer Programming: A general mixed-integer nonlinear program (MINLP) can be

written as:
minimize

x̄ , ȳ
f (x̄ , ȳ )

subject to

hp (x̄ , ȳ ) = 0 p = 1...m ,

gq (x̄ , ȳ )≤ 0 q = 1...n ,

x̄ ∈ X , ȳ ∈ Y ,

(1.44)

where hp for p = 1....m and gq for q = 1....m are real valued functions which we will refer to the

equality and inequality constraints respectively. We define ȳ to be the continuous (real-valued)

variables that we are optimizing over and they exist in a set Y ⊂Rk . We denote x̄ to be the integer

variables present in the problem, which exist in a set X ⊂Zk . We remind the reader that Zk is the set

of all integer points inRk . In this work we focus on binary integer variables, that is to say that the

integer variables must exist in the set {0,1}, we call this problem a mixed-binary integer program

(MBIP).

The theory for MINLP begins with convex MINLP, which is to say that f , hp , and gq are convex

functions. A naive approach for solving MBIP would first sample one of the binary outcomes (
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there are 2N binary combinations, where N is the number of binary variables in the problem),

then solving the nonlinear program. For small N this is approachable, and known as the total

enumeration (brute-force) approach [78]. If we look at a slightly larger number, for example N = 20

and N = 40, we would have to solve approximately 106 and 1012 nonlinear programs respectively to

obtain the global optimal solution. This exponential growth of nonlinear programs that are needed

to be solved is not computationally tractable. Many applications of MIBP have hundreds if not

thousands of variables present in a problem. The traveling salesman problem is an example of MIBP

that introduces a large amount of binary integer variables. The goal of solving the problem is to

find the path from one location to another, while minimizing the distance traveled between the

two points. The problem is represented as a graph [103], where the nodes of the graph represent the

various locations and the edge between nodes indicates a path from one location to another. One

can interpret the traveling salesman problem as a figure out the edges to choose and not choose to

take to get to the desired location. In some cases, this problem could have hundreds of thousands

to millions of variables. The brute force approach would not be appropriate.

The Branch and Bound (B&B) method [58] is a heuristic based method to address the computa-

tional intractability that MBIP introduces. The goal of B&B is to attempt to enumerate through the

binary space in such a way that total enumeration can be avoided. The algorithm can be summarized

in two steps :

• branching : choosing how to explore integer space (this is heuristic based but motivated by

the specific problem) [13, 18, 77].

• bounding : Introduce a relaxation of the problem, which is a nonlinear program. We say

a program for the MBIP is a relaxation if the objective value for this program provides a

lower bound for the original MNIP problem. Two popular relaxations for binary problems

are continuous and Lagrangian relaxation [61]. In this thesis we will focus on the continuous

relaxation. The original MBIP has the binary variable x ∈ {0, 1}, while the relaxed problem will

have this constraint replaced with 0≤ x ≤ 1. After we solved the relaxed problem we introduce

a rounding heuristic to round the relaxation back to 0, 1. Conducting this rounding produces

an integer solution that produces an upper bound for the MBIP. Calculate the integraility gap

[61], if the integraility gap is zero/near zero, then the global/sub optimal solution has been

found.

We note that in practice most practitioners never solve a problem to global optimality, especially for

large amount of integer variables, because of the computational effort required.

Another popular class of methods for solving convex MBIP are cutting plane methods [55].

These methods introduce a mirror problem with additional linear constraints, called cuts, which

are defined so that the optimal solution to the original program does not change. It is natural to
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combine cutting plane technique with B&B, which is called the branch and cut method [44]. These

additional linear constraints will make a given relaxation harder to solve, but the goal is to find tighter

integraility gaps which will cause a natural pruning of the B&B tree. This can help the computational

tractability of a problem.

In the case of nonconvex MBIP, methods have been developed to solve convex problems such as

Convexification methods [45, 90, 95] convert a nonconvex problem into by doing approximations, by

convex underestimates, of objective and constraints by convex functions. This new convex problem

can then be solved using B&B or branch and cut.

A beginning reference that gives an introduction to linear integer programming is the book by L.

Wolsey [104]. This book introduces the B&B method, cutting plane methods, model formulation,

etc. For an advanced treatment of MINLP, which includes nonconvex MINLP, nonlinear MINLP,

convexification, etc, the book by D. Li [61] and the book by S. Leyffer and J. Lee [59] are excellent

references.

Mixed-Integer Partial-Differential Equation Constrained Optimization In chapters 4,5 and 6

of this thesis we study mixed-integer partial-differential equation constrained (MIPDECO) problems.

These problem combine mixed-integer programming and PDECO. In this thesis, we assume there is

one control present in the problem and this control can only take integer values. We focus on a subset

of these problems; the particular case we focus on is when the control present in the optimization

problem takes binary values {0, 1}, but make note that all of the approaches and ideas introduced in

this thesis can be easily extended if the control can take general integer values. The general reduced

space MIPDECO we consider in this thesis, which we refer to as a binary PDECO problem, is:

minimize
v

J (u (v ), v )

subject to C (u (v ), v ) = 0

v ∈ {0, 1}.

(1.45)

We note that the only difference between PDECO and binary MIPDECO is that we restrict the control

to take only binary values, whereas in the classical reduced space PDECO formulation the control is

assumed to take real values.

The Computational Bottleneck for MIPDECO Very little work has been done in the area of

MIPDECO due to the computational challenges that arise. However in the face of these many

challenges there also are many opportunities to make improvements on the theory, methods, and

applications of MIPDECO. The standard approach for solving MIPDECO is first to discretize the

infinite dimensional optimization problem [38–40]. This results in a large scale MINLP that can be

solved with B&B if the problem is convex, and convexification methods when the problem is not

convex. While executing the branch and bound method the solution of the continuous relaxation is

required. The continuous relaxation problem is defined to be when we relax the integer variables
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from being in the set {0,1} to being in the continuous interval [0,1], which makes the large scale

MINLP into a large scale NLP. We may need to solve a relaxation hundreds, if not thousands of

times to satisfy the MINLP optimality conditions, which may or not be computationally tractable.

The size of this large scale nonlinear program is directly related to the mesh refinement. This is a

problem because as we refine the mesh to obtain a refined state and control (if the control is also

mesh dependent), we also increase the size of the problem drastically (exponentially if the control

is mesh dependent). Even though several papers have been written in the subject recently [38–40],

there are still many challenges when solving MIPDECO from the DTO approach.

In this thesis we will choose a OTD approach for several reasons. The first reason is that by

finding the optimality conditions in infinite-dimensions and then discretizing these conditions we

are maintaining physics of the underlying system. The second reason is that our PDE optimization

contains integer variables. The DTO approach has traditionally been applied the MIPDECO which

requires a large-scale MINLP to be solved. This problem is solved using a branch and bound method

[8]. Solving large scale MINLP problems in an efficient manner is still an open question. This had led

to the computational intractability of these problems and has been a major bottleneck for progress

in solving MIPDECO. We instead introduce a trust-region method, which uses an adjoint based

gradient, to solve MIPDECO. Our trust-region method uses a linear approximation of the objective

function instead of the standard quadratic approximation. The reason we do not introduce the

Hessian (quadratic) term to the trust-region subproblem is to ensure the computational tractability

of the problem. Because we only use a linear model, the trust-region problem reduces to a knapsack

problem that can be solved in O (N log(N )), where N is the number of binary integers present in the

problem. Our method produces quality minimizing solutions in a reasonable amount of trust-region

iterations. This is important to note because even though the search space if 2N , we are able to find

a solution to a given instance of our MIPDECO within one-hundred iterations.

1.4 Thesis Contributions

The Immersed Interface Method for the One and Two Dimensional Maxwell’s Equation:

In chapter 2 we introduce a direct immersed interface method that uses a modified Yee’s Scheme to

solve the 1D Maxwell’s equations with discontinuous permittivity and permeability. This work has

provided the following contributions:

• An explicit finite difference scheme to solve Maxwell’s equations in one dimensional space

with interfaces using the interface conditions directly. Even with discontinuous permittivity

and permeability, our finite difference scheme solves the equations to second order accuracy

in time and space.

• Numerical experiments to demonstrate the consistency, stability and convergence of the
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direct method.

In chapter 3 we introduce an ADI Yee’s scheme method to solve Maxwell’s equations in 1D and 2D

with discontinuous permittivity and permeability. In 2D we can solve the interface problem even

with a curved interface. This work has provided the following contributions:

• An ADI-Yee’s scheme in 1D and 2D that takes advantage of augmented variables, to solve the

problem dimension by dimension [64].

• A proof for the stability of the ADI-Yee’s Scheme for 1D Maxwell’s equations.

• Numerical experiments to establish the consistency, stability and convergence of the methods.

Mixed-Integer Partial Differential Equation Optimization Theory and Binary Electromagnetic

Cloaks:

In Chapter 4 we have made the following contributions:

• A benchmark (application) problem for MIPDECO: 2D single material electromagnetic binary

cloaking, which can be modeled as a MIPDECO.

• A steepest-descent trust-region method for MIPDECO. The method is effective at producing

good local solutions and is efficient even with a large amount of integer variables present

in the problem. Our framework for MIPDECO relies on solving a sequential set of PDE and

trust-region sub problems (knapsack problems) in order to arrive at a local solution in a

reasonable amount of iterations. We showed through numerous computational experiments

that the knapsack problems take negligible computational time when compared with the

computational effort required to first solve the state and adjoint PDEs, then build the gradient

for the sub problem. This is encouraging because the computational bottleneck of MIPDECO

has been traditionally encountered due to the presence of a large amount of integer variables.

With our perspective, we have reduced MIPDECO back to the difficulties associated with

PDECO which is to first efficiently solving the state and adjoint equation and then build the

gradient using the state and adjoint variables.

• We introduced a systematic manner to solve MIPDECO with our trust-region method: first we

solve the continuous relaxation, next we round the continuous relaxation using a rounding

heuristic that produces a feasible starting guess for the MIPDECO, then we use the rounded

relaxation as a starting guess for our trust-region method. We have compared this approach

versus starting the trust-region with a random guess, and have found that even though sig-

nificant computational effort is required to solve the continuous relaxation, we take less

trust-region iterations to find a local solution. Moreover this solution produces an objective

function value that is lower than random sampling. Still sampling could still be attractive. If a
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user is just interested in a local minimum solution and does not care about the quality of the

minimum, then starting the trust-region method from a random sample is more computa-

tionally efficient. Moreover, since many MIPDECO of interest are nonconvex, one could take

several samples and make an attempt to "globalize" the algorithm (also known as multi-start

methods [73]).

In chapter 5 we extend our work from chapter 4, assuming that a 2D binary electromagnetic cloak

can be built using several materials, leading to the following contributions:

• A benchmark (application) problem for MIPDECO: 2D multi-material electromagnetic binary

cloaking. This model introduces non-trivial constraints to the MIPDECO that are studied.

• A modified trust-region method that is based on our original trust-region algorithm for

MIPDECO to deal with constraints. We show through numerical experiments that even with

the introduction of constraints, the numerical computation of this instance of a MIPDECO is

still computationally tractable.

• Two separate continuation techniques in order to find local minimum to this instance of a

MIPDECO problem that produces minimizers with superior quality when compared to solving

the problem from scratch.

In chapter 6 we extend our work from chapter 4 to a 3D generalized model from the 2D model. The

contributions of this work include:

• A benchmark (application) problem for MIPDECO: 3D electromagnetic binary cloaking using

a single material.

• The structure of this problem introduces a large number of integer variables naturally. We

solve an instance of the problem with 8000 cloaking blocks that make up the 3D binary

electromagnetic cloak. Even with a large number of integer variables present in the problem

our trust-region method is still computationally tractable and finds good local solutions.
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CHAPTER

2

A DIRECT APPROACH FOR SOLVING

MAXWELL’S EQUATIONS IN ONE

DIMENSION WITH THE IMMERSED

INTERFACE METHOD

2.1 Chapter Outline

In this chapter we will introduce the philosophy of the immersed interface method (IIM)[64], for

finite difference methods, then apply the method to Maxwell’s equations in one dimension. We start

this chapter by describing how the IIM works on a simple ordinary differential equation (ODE). We

then discuss consistency, stability and convergence of the scheme. In the remainder of the chapter,

we discuss our seconder order IIM schemes for Maxwell’s equations. We present numerical results

to establish the consistency, stability and convergence.

2.2 The IIM Applied to a Simple ODE

The purpose of the IIM is to solve either ordinary or partial differential equations (PDEs) with

discontinuities present in the problem. These discontinuities can occur either in terms of the
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equation, the solution to the equation, or the solutions derivatives. We will demonstrate the IIM

method applied to the simplest initial value problem as an example to demonstrate how the method

works:

d y

d x
(x ) = c y (x ) in Ω= [0, 1] (2.1)

y (0) = 1, (2.2)

where

c (x ) =







c1 x <α

c2 x ≥α
(2.3)

and c1, c2, α are real numbers. The quantity α is a point where c could be discontinuous. We refer

to the point x =α as the interface point.

2.2.1 The Failure of the Euler’s Method

We begin to show how the traditional approach to solve this ODE with a discontinuous coefficient

fails. To numerically solve (2.1), with a finite difference approach, we would first discretize Ω into

n +1 discrete points x0..xn where

xi = i h i = 0..n (2.4)

h = 1/n . (2.5)

Next we approximate the derivative on this grid at point xi with the forward difference formula

d y

d x
(xi ) =

y (xi+1)− y (xi )
h

+O (h ). (2.6)

Now we write an explicit formula to approximate y i+1 := y (xi+1), which is known as the forward

Euler method,

y i+1 = y i +h ci y i = (1+h ci )y
i , (2.7)

with y0 = y (0) = 1.

We conduct a numerical study to show the failure nodes of Euler’s method applied to a differential

equation with discontinuous coefficients. We show this pictorially and theoretically. We will take
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n = 2k for k = 5, 6, 7, ..., 11. We also calculate the convergence order

γ≈
log

�

En
E2n

�

log
�

h
h
2

� . (2.8)

Because the error on a grid broken into n pieces O (h ), then a grid broken into 2n pieces would be

O
�

h
2

�

. Ignoring the constant in the O term, we find theoretically that

γ≈
log(2)
log(2)

= 1. (2.9)

So as we continue to refine the mesh, we should see numerically that the convergence order is 1,

which is the same as saying that the error is reduced by 1
2 every time we refine the mesh.

We solve the ODE (2.1) in two cases; the first where c1 = c2 = 0.5, thus c is continuous; the second

case c1 = 0.5, c2 = 1, thus c is a discontinuous function. We set α= 0.5. The true (exact) solution to

the ODE, which we define as yexact, is

yexact(x ) =







e c1t x ≤ 1
2

e c2t x ≥ 1
2 .

(2.10)

We measure the error for a fixed n in the infinity norm, by taking yapprox(xi ) := y (xi ) = y i then

defining the corresponding error En as

En = ||yexact− yapprox||∞ =maxi |yexact(xi )− yapprox(xi )|. (2.11)

We first report the error and convergence order found numerically for the two cases in Table 2.1

and Table 2.2 respectively. We observe in Table 2.1 that for the continuous c we recover first order

convergence, which is expected. However in Table 2.2 we observe that our convergence order is not

converging to the value one, instead converging to zero. This indicates that when c is discontinuous

we make negligible progress towards reducing the error as we refine the mesh.

We now plot the exact solution versus the numerical solution for n = 2048 (a very fine mesh)

for both the continuous and discontinuous case in Figure 2.1. This illustrates why the standard

finite difference method fails. We see that for the continuous coefficient, our numerical and exact

solution match. However for the discontinuous coefficient we see that the exact and approximate
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Table 2.1 Error and convergence for continuous coefficient.

n Error Convergence Order
32 6.2513e-03 -
64 3.1740e-03 0.9778

128 1.5987e-03 0.9894
256 8.0221e-04 0.9948
512 4.0181e-04 0.9974

1024 2.0108e-04 0.9987
2048 1.0059e-04 0.9993

Table 2.2 Error and convergence for discontinuous coefficient.

n Error Convergence Order
32 6.1726e-01 -
64 6.0988e-01 0.0173

128 6.0574e-01 0.0098
256 6.0355e-01 0.0052
512 6.0242e-01 0.0026

1024 6.0186e-01 0.0013
2048 6.0157e-01 0.0006

solution agree until we reach the point of discontinuity. After this point, the approximate and exact

solution diverge. This is why the convergence order is nearly zero for the discontinuous problem;

because as we refine the mesh, we cannot resolve the jump that was caused in the solution due to

the discontinuous coefficient. In the next subsection we address this challenge with the IIM.

2.2.2 A Modification to the Euler’s Method

In the previous Subsection 2.2.1 we observed that Euler’s method fails when applied to discontinuous

coefficients. In this subsection we address this challenge with the IIM.

We first briefly discuss why Euler method fails. When deriving finite difference approximations,

some assumptions on regularity are required. In the case of our forward difference approximation,

this approximation is only valid if y ∈C 2(Ω), where C p is the space of all functions that are continu-

ous and have continuous derivatives up to order p . When we look at the true solution (2.10), we see

that the solution is not continuous when c1 6= c2, which already imply the function does not have

classical derivatives. Because the solution does not admit a classical derivative, the finite-difference

approximation is not valid.

We do see that on the pieces of Ω, Ω− := Ω−α = {x : x < α} and Ω+ := Ω+α{x : x ≥ α}, the solu-

tion is C 2(Ω−α) and C 2(Ω+α). This observation is what motivates the finite-difference approach for
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(a) Continuous Coefficient c1 = c2 = 0.5.
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(b) Discontinuous Coefficient c1 = 0.5, c2 = 1..

Figure 2.1 Comparison of solutions for continuous and discontinuous coefficient.

the immersed interface method. Because we have the regularity required away from the point of

discontinuity, the typical forward difference approximation is valid. The difficulty is when we are

approximating near the point where the discontinuity occurs. For the remainder of this chapter, we

focus only on the case when c1 6= c2 (c is discontinuous). We now discuss the implementation of the

IIM applied to (2.1). An outline of the steps are

• Determine the jump conditions for the PDE.

• Break the interval [0, 1] into a uniform mesh (Cartesian Mesh).

• Determine which points in the discretization are regular and irregular.

• Choose a finite difference stencil to approximate the derivative.

• Use the standard finite difference approximation at regular grid points and a corrected ap-

proximation at irregular grid points.

We first discuss the jump conditions for our ODE 2.1. Our notation for the jump conditions will be

as followed: we use
�

y
�

=
�

y +− y −
�

�

�

�

�

x=α
, to denote the jump of the state over the interface point α,

which we refer as the zero order jump condition. Similarly we use
�d y

d x

�

=
�d y

d x

+
− d y

d x

−�
�

�

�

�

x=α
to denote

the first order jump condition in the first derivative. We will use a direct approach, which we know

[u ], [ux ]. We will use our exact solution for the interface problem to derive these exactly to illustrate
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how the IIM works. The jump conditions are then

�

u
�

= e c2α− e c1α

�

d y

d x

�

= c2e c2α− c1e c1α.

We now generate a Cartesian mesh x0....xn . In our approach however we classify these grid

points into two classes - regular and irregular grid points.

Definition 2.2.1. Irregular Grid Point: A grid point xi is said to be irregular for our finite difference

approximation of the first derivative, if xi ≤α≤ xi+1.

Remark. As noted in the definition, the grid points that are considered irregular for an approximation

is dependent on the grid points uses in the approximation of a given derivative. In general if an

approximation of a derivative of any order is made at xi , this grid point is irregular if x = α is

contained in the span of the finite difference stencil.

Definition 2.2.2. Regular Grid Point: A grid point xi is said to be regular if it is not irregular.

We now discuss creating the scheme for the interface problem. At the regular grid points, xi , we

take advantage of the standard forward difference approximation. At irregular grid points, we do a

Taylor series expansion to approximate the derivative at x =α on the left side of the interface,

d y

d x

−
(α) = a y i+1+ b y i , (2.12)

where a , b are determined in such a way that the approximation is valid. Because we are at an

irregular grid point xi ≤α≤ xi+1, then xi+1 ∈Ω+ and xi ∈Ω−. We then expand based on which side

of the interface we are on, which in this case is the left of the interface point, which results in

d y

d x

−
(α) = a

�

y +(α) +
d y

d x

+

(α)
�

xi+1−α
�

+O (
�

xi+1−α
�2
)
�

(2.13)

+b
�

y −(α) +
d y

d x

−
(α)
�

xi −α
�

+O
�

((xi −α
�2
)
�

.

We see that our expansion has terms which are evaluating the state and its derivative on the two

sides of the equation. To compare the two sides of the equation, we replace the positive side terms

with negative side terms using the jump conditions (2.12) in our expansion by solving plus terms,

u+ = u−+ e c2t − e c1t (2.14)

d y

d x

+

=
d y

d x

−
+ c2e c2t − c1e c1t .
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When we substitute (2.14) into our expansion and then equate the sides, we have a linear system,

�

1 1

xi+1−α xi −α

��

a

b

�

=

�

0

1

�

. (2.15)

The analytic solution to the linear equation is

a =
1

h
, b =−

1

h
.

When we substitute these values back into the Taylor approximation we find that

d y

d x

−
(α) =

y i+1− y i

h
−Ci +O (h ) (2.16)

where we denote Ci to be the correction term at irregular node xi and

Ci =
1

h

�

e c2α− e c1α+ (c2e c2α− c1e c1α)(xi+1−α)
�

. (2.17)

We use the standard forward Euler method when updating regular grid points, when we are updating

irregular grid points we edit the scheme with a correction to guarantee an approximation that takes

into account the jump conditions, therefore creating a method that will successfully solve the

equation (2.1) when c is discontinuous. Our scheme is summarized as follows: if the grid point xi is

regular grid point then

y i+1 = (1+ ci h )y i (Standard Forward Euler).

If the grid point xi is an irregular grid point then the corrected scheme is

y i+1 = (1+ ci h )y i +hCi (Corrected Forward Euler).

2.2.3 Stability, Consistency, Convergence of the Modified Euler’s Scheme

In the context of the IIM method we have two classes of grid points: regular and irregular. At regular

grid points we use a classical scheme, where stability and consistency results have already been

established. We will only focus on linear equations in this thesis, therefore establishing stability

and consistency of the scheme at both irregular and regular grid points is sufficient to establish

convergence. This is due to the Lax Equivalence Theorem [64, 66]. In our corrected forward Euler

method, the same stability and consistency arguments hold at irregular grid points as the regular

grid points, since the stencil weights are the same. Because we have the same finite-difference

weights in the irregular scheme, we maintain the first order error at both regular or irregular grid
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points. The correction term does not alter the stability of the problem and can be considered a

source term which eliminates the extra terms of the Taylor series to guarantee our derivative is first

order accurate (as it is in the standard forward Euler method).

2.2.4 Numerical Results of the Modified Forward Euler Method

We now redo the previous simulation with our corrected forward Euler scheme with c1 = .5, c2 = 1. We

first show the convergence results in Table 2.3. We see that our corrected scheme has a convergence

order of one, that is to say that our corrected scheme maintains first order accuracy as we refine the

mesh.

Table 2.3 Error and Convergence for Discontinuous Coefficient with Corrected Euler Method.

n Error Convergence Order
32 2.3126e-02 -
64 1.2126e-02 0.9314

128 6.2031e-03 0.9670
256 3.1365e-03 0.9838
512 1.5770e-03 0.9919

1024 7.9067e-04 0.9960
2048 3.9588e-04 0.9980

We plot the solution for the regular Euler scheme and the corrected Euler scheme on a n = 2048

point mesh in Figure 2.2. We observe that our corrected scheme produces a result that is consistent

with the true solution. We have captured the jump that is caused by the discontinuity with our

corrected scheme, which was the failure mode for the standard Euler’s method. We have shown

with this simple example that the IIM can successfully address the challenge of solving differential

equations with a discontinuous coefficient.
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(a) Modified Euler Scheme c1 = 0.5, c2 = 1.
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(b) Standard Euler Scheme c1 = 0.5, c2 = 1.

Figure 2.2 Comparison Solutions for Continuous and Discontinuous Coefficient.

2.3 The IIM Applied to the 1D Maxwell’s Equation

We begin with defining Maxwell Equations in 1D:

∂H y

∂ t
=

1

µ

∂ E z

∂ x
(2.18)

∂ E z

∂ t
=

1

ε

∂H y

∂ x
∂ E y

∂ t
=−

1

ε

∂H z

∂ x
∂H z

∂ t
=−

1

µ

∂ E y

∂ x

a ≤ x ≤ b

0≤ t ≤ Tfinal,

where a , b are real numbers and Tfinal is the maximum time we observe the behavior of the elec-

tromagnetic wave. We will work with (and derive numerical methods) for the equations (2.18). We

choose to work with the electric field E and the magnetizing field H. We note that one can go between

the field the electric field E and displacement field D by the constitutive relation,

D= εE. (2.19)
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Similarly we can go between the magnetic field B and the magnetizing field H by the constitutive

relation

B=µH. (2.20)

Historically, (2.18) is known as the TM (Transverse Magnetic) equation, we will also solve the TE

(Transverse Electric) equation as well [50]. Both the transverse electric and magnetic equations can

be expressed as

∂ u

∂ t
+

1

β

∂ v

∂ x
= f (2.21)

∂ v

∂ t
+K

∂ u

∂ x
= g .

When u =−H y , v =−E z , β =µ, K = 1
ε , and f = 0, (2.21) is the TM equations. When u = E y , v =H z ,

β = ε, K = 1
µ , and g = 0, (2.21) is the TE equations. We use this system for the remainder of this

chapter. We note that we add the source terms f , g in our derivation in order to easily validate

theoretical findings in a later sections. Additionally, we use this system to derive jump conditions

for both the TM and TE equations simultaneously in subsection 2.3.2.

Next we briefly discuss Maxwell’s equations numerically. The popular methods include the finite

volume approach, the finite-difference time domain (FDTD) approach, commonly referred as Yee’s

Scheme [105], and the finite element time domain (FETD) approach. A general summary of these

methods, including their strengths and weaknesses in practice is discussed in [47]. In this thesis

we focus only on the FDTD approach. As discussed in 2.2, we base our IIM approach on using a

standard finite difference stencil. The FDTD stencil is a natural choice due to being well known in

the numerical electromagnetic community as a stable second order method for solving Maxwell’s

Equations with continuous permittivity and permeability. We extend the FDTD method to also solve

the equation with discontinuous permittivity and permeability, for,

ε=







ε− x <α

ε+ x ≥α,
(2.22)

µ=







µ− x <α

µ+ x ≥α.
(2.23)

The outline for the remainder of this section is as follows: we first introduce the FDTD (Yee Scheme)

method. We then follow the steps that were outlined in Section 2.2, but apply these steps to the

1D Maxwell equations with discontinuous permittivity and permeability. We first derive the jump
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conditions for (2.21), then produce numerical schemes to solve both the TE and TM equations

with discontinuous coefficients. We analyze and establish our methods consistency, stability, and

convergence. We end the section with the presentation of numerical simulations that validate our

theoretical findings. The derivation and analysis of the TM and TE schemes are very similar, therefore

we discuss the main ideas in the TM section. We omit some details in the TE section that do not add

intellectual content to the thesis due to repetitive information.

2.3.1 Introduction

In this section we discuss a direct IIM method for the 1D Maxwell Equations. We call the method

“direct” because we will derive the jump conditions for the interface problem explicitly [64]. An

outline of the section is as follows: we first derive the jump conditions for our system (2.21), which

will hold for both the TM and TE equations. Next we introduce the Yee Scheme [105] both for the

TM and TE equations. Afterwards we derive a IIM method for first the TM equation, and then the

TE equation. In each case we will study the consistency and stability of respective method, then

establish convergence results. We conclude the discussion of each method by presenting numerical

results which support our theoretical findings.

2.3.2 Jump Conditions

We begin with deriving the jump conditions which are required to produce our IIM method. Because

we are interested in producing a second-order scheme in time and space we only need to derive the

zero; first; and second-order jump conditions. We first write the jump conditions in full, then we

discuss the derivation of the conditions. The jump conditions for (2.21), for a fixed one-dimensional

interface x =α are

[u ] = 0 [v ] = 0 (2.24)

[ut ] = 0 [vt ] = 0 (2.25)

[ut t ] = 0 [vt t ] = 0 (2.26)
�

K ux

�

= [g ]
�

1

β
vx

�

= [ f ] (2.27)

�

K

β
ux x

�

=
�

g x

β
− ft

� �

K

β
vx x

�

=
�

K fx − g t

�

. (2.28)

The jump conditions (2.24)-(2.26) are assumed to be true. A reference to the validity of (2.24) can

be found in [50]. The remaining assumptions are based on the empirical observation concerning

conservation of charge (which has never been violated experimentally) [50]. If these jump conditions

were to be violated, this would imply that charge had entered or left a given system instantaneously.

This violates conversation of charge, which states that charge can neither be created nor destroyed.
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The jump conditions (2.27) are obtained using our assumption in the jump condition (2.25). We

first apply to argument to obtain the jump condition for the spatial derivative of u :

�

∂ v

∂ t
+K

∂ u

∂ x

�

= [g ] (2.29)

=⇒
�

∂ v

∂ t

�

+
�

K
∂ u

∂ x

�

= [g ], (2.30)

but [vt ] = 0, therefore

�

K
∂ u

∂ x

�

= [g ]. (2.31)

Without loss of generality, we can apply the same argument to the remaining equation, instead

using [ut ] = 0, which yields

�

1

β
vx

�

= [ f ]. (2.32)

The jump conditions (2.28) are derived by manipulating (2.21) and applying the assumed jump

conditions (2.26). We first derive the second order jump condition for u . We notice from (2.21) the

following system is also true:

ut t +
1

β
vx t = f (2.33)

1

β
vt x +

K

β
ux x =

g x

β
.

Because we assume enough regularity, the mixed partials have the property vt x = vx t , therefore

when we subtract the second equation from the first equation we obtain

K

β
ux x −ut t =

g x

β
− ft . (2.34)

We enforce our assumption that [ut t ] = 0 to obtain the second order jump condition for u:

�

K

β
ux x

�

=
�

g x

β
− ft

�

. (2.35)

We again use a similar argument to derive the second order jump condition of v, noticing

K ut x +
K

ρ
vx x = K fx (2.36)

vt t +K ux t = g t . (2.37)
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Again, enforcing that the mix partials are equal, [vt t ]=0, and subtracting the second equation from

the first equation yields

�

K

β
vx x

�

=
�

K fx − g t

�

. (2.38)

We will use these jump conditions to correct our FDTD scheme. As we previously noted, we will

use these jump conditions directly to correct the FDTD scheme. When we correct the scheme, it

will be dependent if the interface point x =α is to the left or right of where we expand our Taylor

approximation. We write the jump conditions explicitly (omitting the jump in time derivatives),

which we will reference when deriving our IIM method.

u+ = u− u− = u+ (2.39)

v+ = v− v− = v+ (2.40)

u+x =
K −

K +
u−x +

[g ]
K +

u−x =
K +

K −
u−x −

[g ]
K −

(2.41)

v+x =
β+

β−
v−x +β

+[ f ] v−x =
β−

β+
v−x −β

−[ f ] (2.42)

u+x x =
β+K −

β−K +
u−x x +

β+

K +

�

g x

β
− ft

�

u−x x =
β−K +

β+K −
u+x x −

β−

K −

�

g x

β
− ft

�

(2.43)

v+x x =
β+K −

β−K +
v−x x +

β+

K +

�

K fx − g t

�

v−x x =
β−K +

β+K −
v+x x −

β−

K −

�

K fx − g t

�

(2.44)

2.3.3 The 1D TM Equations and Yee’s Scheme

In this subsection we discuss the grids that will be used for the FDTD method, then we introduce

the classical FDTD method for the TM equations. We introduce the IIM scheme that uses the FDTD

method at regular grid points and a corrected FDTD scheme at irregular grid points. We study

the consistency, stability and convergence of our scheme. We end the subsection by conducting

a numerical experiment to illustrate the success of our method in practice. Before discussing the

scheme, we first discuss the spatial and time mesh for our problem. We will define two spatial

meshes and two time meshes. We first define two spatial meshes. The first mesh is a discretization

of [a , b ] into nx +1 points. We define the first spatial mesh as

X full =
§

xi : xi = a + i∆x , i = 0...nx , ∆x =
b −a

nx

ª

, (2.45)
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and the second spatial mesh as

Xhalf =
§

xi+ 1
2

: xi+ 1
2
= a +

∆x

2
+ i∆x , i = 0...nx , ∆x =

b −a

nx

ª

. (2.46)

We refer to X full as the main grid, and Xhalf as the staggered grid in space. We now define the same

grid structure for the time variable, this time taking nt +1 time steps:

Tfull =
§

ti : ti = i∆t , i = 0...nt , ∆t =
Tmax

nt

ª

, (2.47)

and the second spatial mesh as

Thalf =
§

ti+ 1
2

: ti+ 1
2
=
∆t

2
+ i∆t , i = 0...nt , ∆t =

Tmax

nt

ª

. (2.48)

The FDTD scheme takes advantage of these grids approximating the derivatives in the TM equations

as follows:

∂ u

∂ t
(xi+ 1

2
, tn ) =

u
n+ 1

2

i+ 1
2
−u

n− 1
2

i+ 1
2

∆t
+O (∆t 2), (2.49)

∂ v

∂ t
(xi , tn+ 1

2
) =

v n+1
i − v n

i

∆t
+O (∆t 2), (2.50)

∂ u

∂ x
(xi , tn+ 1

2
) =

u
n+ 1

2

i+ 1
2
−u

n+ 1
2

i− 1
2

∆x
+O (∆x 2), (2.51)

∂ v

∂ x
(xi+ 1

2
, tn ) =

v n
i+1− v n

i

∆x
+O (∆x 2). (2.52)

We now define the FDTD (Yee) scheme for the TM equation:

u
n+ 1

2

i+ 1
2
= u

n− 1
2

i+ 1
2
−

∆t

βi+ 1
2
∆x

�

v n
i+1− v n

i

�

+∆t f n
i+ 1

2
(2.53)

v n+1
i = v n

i −Ki
∆t

∆x

�

u
n+ 1

2

i+ 1
2
−u

n+ 1
2

i− 1
2

�

+∆t g n
i

We use the short hand notation u
n+ 1

2

i+ 1
2
= u (xi+ 1

2
, tn+ 1

2
), v n+1

i = v (xi , tn+1), etc. This scheme is O (∆x 2+

∆t 2) (second order accurate in time and space) for continuous permittivity and permeability. More-

over, the method is stable, in the sense of Von-Neumann stability analysis [60], for continuous K ,β ,

under the assumption that Courant Friedrichs Lewy (CFL) condition is satisfied [47]:

max
Ω,t

�

√

√K

β

�

∆t

∆x
≤ 1. (2.54)
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2.3.4 The Corrected Yee’s Scheme for the 1D TM Equation

We can use the standard scheme (2.53) at regular grid points. At irregular grid points we need to

correct the scheme. Because the first and second time derivatives are continuous across the interface

we only need to correct the scheme for the spatial derivative terms.

We first discuss the correction required for ∂ v
∂ x . The standard Yee scheme uses the spatial stencil

points (xi , xi+ 1
2

, xi+1) to update the u at xi+ 1
2

, for the next time step tn+ 1
2

. So there are two cases to

consider. In the first case, the interface point x =α satisfies

xi ≤α≤ xi+ 1
2
≤ xi+1, (2.55)

and in the second case,

xi ≤ xi+ 1
2
≤α≤ xi+1. (2.56)

We begin the by addressing the approximation in the first case. Because the classical Yee approxi-

mation of the derivative is at xi+ 1
2

andα≤ xi+ 1
2

, then xi+ 1
2
∈Ω+. We use the method of undetermined

coefficients to approximate the derivative about x =α by

∂ v+

∂ x
(α, tn ) = a+v v n

i+1+ b+v v n
i . (2.57)

The goal is to find the coefficients (a+v , b+v ) that make the approximation valid, while also obtaining

a desirable order of accuracy. In our application, we are interested in making an approximation

that yields an error O (∆x 2). We expand the right side of (2.63), noting that xi ∈Ω− and xi+1 ∈Ω+ to

obtain

∂ v+

∂ x
(α, t ) =a+v

�

v+(α, t ) +
∂ v+

∂ x
(xi+1−α) +

∂ 2v+

∂ x 2

(xi+1−α)2

2
+O (∆x 3)

�

+ (2.58)

b+v

�

v−(α, t ) +
∂ v−

∂ x
(xi −α) +

∂ 2v−

∂ x 2

(xi −α)2

2
+O (∆x 3)

�

.

We further expand the right hand side to convert the “-” terms to “+” terms, using the jump condi-

tions (2.39),

∂ v+

∂ t
(α, t ) =a+v

�

v+(α, t ) +
∂ v+

∂ x
(xi+1−α) +

∂ 2v+

∂ x 2

(xi+1−α)2

2
+O (∆x 3)

�

+ (2.59)

b+v

�

v+(α, t ) +
�

β−

β+
∂ v+

∂ x
−β−[ f ]

�

(xi −α)

+
�

β−K +

β+K −
∂ 2v+

∂ x 2
−
β−

�

K fx − g t

�

K −

� (xi −α)2

2
+O (∆x 3)

�

.
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We do this so that now we can compare the two sides. Comparing the two sides yields a system of

linear equations for the unknown stencil weights for the corrected derivative,(a+v , b+v ) ,







1 1

xi+1−α
β−

β+ (xi −α)
(xi+1−α)2

2
β−K +(xi−α)2

2β+K −







�

a+v
b+v

�

=







0

1

0






. (2.60)

This linear equation can be solved by means of the least squares method. Once we have solved the

system for the coefficients, we introduce a correction, C v+
i ,

∂ v+

∂ x
(α, tn ) = a+v v n

i+1+ b+v v n
i −C v+

i +O ((a+v + b+v )∆x 3), (2.61)

where

C v+

i = b+v

�

−β−[ f ](xi −α)−
β−

�

K fx − g t

�

K −
(xi −α)2

2

�

(2.62)

to correct the terms generated by the jump conditions across the interface, resulting in an approxi-

mation of order O ((a+v + b+v )∆x 3).

We now examine the second case of the finite-difference approximation for ∂ v
∂ x when xi ≤ xi+ 1

2
≤

α ≤ xi+1. In this case, xi+ 1
2
∈ Ω−. Therefore we approximate the derivative on the left side of the

interface by finding the undermined coefficients (a−v , b−v ) that yields a valid approximation:

∂ v−

∂ x
(α, tn ) = a−v v n

i+1+ b−v v n
i . (2.63)

Next we expand the right side:

∂ v−

∂ x
(α, t ) =a−v

�

v+(α, t ) +
∂ v+

∂ x
(xi+1−α) +

∂ 2v+

∂ x 2

(xi+1−α)2

2
+O (∆x 3)

�

+ (2.64)

b−v

�

v−(α, t ) +
∂ v−

∂ x
(xi −α) +

∂ 2v−

∂ x 2

(xi −α)2

2
+O (∆x 3)

�

.

We further expand the right hand side to convert the “+” terms to “-” terms, using the jump condi-

tions (2.39),

∂ v+

∂ t
(α, t ) =a−v

�

v−(α, t ) +
�

β+

β−
∂ v−

∂ x
+β+[ f ]

�

(xi+1−α)+ (2.65)

�

β+K −

β−K +
∂ 2v+

∂ x 2
+
β+

�

K fx − g t

�

K +

� (xi+1−α)2

2
+O (∆x 3)

�

+ b−v

�

v−(α, t ) +
∂ v−

∂ x
(xi −α) +

∂ 2v−

∂ x 2

(xi −α)2

2
+O (∆x 3)

�

.
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We do this so that now we can compare the two sides. Comparing the two sides yields a system of

linear equations for the unknown stencil weights for the corrected derivative,(a+v , b+v ) ,







1 1
β+

β− (xi+1−α) (xi −α)
β+K −(xi+1−α)2

2β−K +
(xi−α)2

2







�

a−v
b−v

�

=







0

1

0






. (2.66)

This linear equation can be solved by means of the least squares method. Once we have solved the

system for the coefficients, we introduce a correction, C v−
i ,

∂ v−

∂ x
(α, tn ) = a−v v n

i+1+ b−v v n
i −C v+

i +O ((a−v + b−v )∆x 3), (2.67)

where

C v−

i = a−v

�

β+[ f ](xi+1−α) +
β+

�

K fx − g t

�

2K +
(xi+1−α)2

2

�

(2.68)

to correct the terms generated by the jump conditions across the interface, resulting in an approxi-

mation of order O ((a+v + b+v )∆x 3).

We now repeat the process of deriving the correction term for ∂ u
∂ x . The standard Yee scheme uses

the spatial stencil points (xi− 1
2

, xi , xi+ 1
2
) to update the v at xi , for the next time step tn+1. Just like in

the case for ∂ v
∂ x , there are two cases to consider for a valid approximation of ∂ u

∂ x . In the first case, the

interface point x =α satisfies

xi− 1
2
≤α≤ xi ≤ xi+ 1

2
, (2.69)

and in the second case,

xi− 1
2
≤ xi ≤α≤ xi+ 1

2
. (2.70)

In the first case our approximation is on the “+” side of the interface, thus we wish to construct a

valid second order approximation

∂ u+

∂ x
= a+u u

n+ 1
2

i+ 1
2
+ b+u u

n+ 1
2

i− 1
2

. (2.71)

In the second case, because the interface is on the “-” side of the interface, our approximation will

take the form
∂ u−

∂ x
= a−u u

n+ 1
2

i+ 1
2
+ b−u u

n+ 1
2

i− 1
2

. (2.72)

Based on whether xi is on the left or right side of the interface we find the coefficients (a+u , b+u ) or

(a−u , b−u )

We omit the details regarding expanding the Taylor series, which was previously shown for ∂ v
∂ x ,

we do however write the the linear systems to find the stencil weights for both approximations,
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and the corresponding correction terms respectively. First we write down the linear system and

correction term corresponding with the approximation. The linear system to find the stencil weights

(a+u , b+u ) is








1 1

(xi+ 1
2
−α) K +

K − (xi− 1
2
−α)

(x
i+ 1

2
−α)2

2

β−K +(x
i− 1

2
−α)2

2β+K −









�

a+u
b+u

�

=







0

1

0






. (2.73)

The corresponding correction term is

C u+

i = b+u

�−[g ]
K −
(xi− 1

2
−α)−

β−

K −

�

g x

β
− ft

� (xi− 1
2
−α)2

2

�

. (2.74)

Next we write down the linear system and correction term associated with the coefficients (a−u , b−u ):









1 1
K −
K + (xi+ 1

2
−α) (xi− 1

2
−α)

β+K −(x
i+ 1

2
−α)2

2β−K +

(x
i− 1

2
−α)2

2









�

a−u
b−u

�

=







0

1

0






, (2.75)

with the corresponding correction term

C u−

i = a−u

� [g ]
K +
(xi+ 1

2
−α) +

β+

K +

�

g x

β
− ft

� (xi+ 1
2
−α)2

2

�

. (2.76)

Then based on if the irregular “central grid point” of the spatial derivative approximation is to the

left (on the “+” side) or right (on the “-” side), we time step using the corrected scheme,

u
n+ 1

2

i+ 1
2
= u

n− 1
2

i+ 1
2
−
∆t

βi+ 1
2

�

a±v v n
i+1+ b±v v n

i

�

+∆t f n
i+ 1

2
+
∆t

βi+ 1
2

C v±

i (2.77)

v n+1
i = v n

i −∆t Ki

�

a±u u
n+ 1

2

i+ 1
2
+ b±u u

n+ 1
2

i− 1
2

�

+∆t g n
i +∆t Ki C u±

i .

We note that at regular grid points the corrected scheme (2.88) simplifies to the classical Yee

scheme (2.53). That is to say that the correction term at regular grid points is zero, and the stencil

weights are the same as the Yee scheme.

We can recover the original TM fields by undoing the change of variables:

H y =−u , E z =−v. (2.78)
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2.3.5 A Numerical Experiment

In this section we conduct a numerical experiment to demonstrate that our method solves the

TM equations with discontinuous permittivity and permeability to second order accuracy. We will

test our method by using the method of manufactured solution. We propose a solution to the TE

equations

u (x , t ) = v (x , t ) =







sin(x − 1
3 ) + t 3 x < 1

3

sin((x − 1
3 )

2) + t 3 x ≥ 1
3 ,

(2.79)

with permittivity function,

ε=







7 x < 1
3

8 x ≥ 1
3 ,

(2.80)

and permeability function

µ=







4 x < 1
3

5 x ≥ 1
3 .

(2.81)

We begin with numerically demonstrating the consistency of our method by calculating the

convergence order. For all simulations, we take∆x = 1
nx

, with spatial mesh Ω= [0,1] and Tfinal = 1.

We also take∆t = ∆x

2
Ç

K
β

In Tables 2.4 and 2.5 we calculate the convergence order, using the || · ||∞ to

measure the error. We see that the convergence order of our method is oscillating about two. This

has been observed in numerous interface problems that are solved with IIM. In [64], it has been

rigorously proven that a second order method will show the behavior seen in the tables. The reason

for this is because the constant in error term in the Taylor series is dependent on where the interface

is with respect to the interface. The average convergence value determines the convergence order

of the method. When we average these convergence orders we find that the average convergence

value for the TM scheme is 2.01, and the average convergence order has a value of 2.04. Because

the average convergence order is close to two, we can conclude that our method is second order

accurate (this also shows the method is stable, but we verify this separately).

Next we show that the method is stable. We introduce the following Definition and subsequent
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Table 2.4 Error and Convergence for Solution u.

nx Error Convergence Order
16 3.56e-4 -
32 1.10e-4 1.69
64 2.06e-5 2.41

128 6.64e-6 1.63
256 1.26e-6 2.39
512 4.11e-7 1.61

1024 7.86e-8 2.38

Table 2.5 Error and Convergence for Solution v.

nx Error Convergence Order
16 2.96e-4 -
32 9.90e-5 1.58
64 1.60e-5 2.62

128 6.00e-6 1.41
256 9.66e-7 2.63
512 3.76e-7 1.35

1024 5.59e-8 2.65

Lemma, taken from [96], to discuss the stability of our method:

Definition 2.3.1. Suppose a finite difference scheme of the form Zn+1 = Sk Zn + Fn , where F is

bounded and the subscript k indicates that the time-stepping matrix is dependent on the time step.

The time-stepping matrix Sk is said to be stable if for some C > 0,

||S n
k || ≤C

for all n and k such that 0≤ nk ≤ Tfinal.

Lemma 2.3.1. If all the eigenvalues of Sk satisfy |λi (Sk )| ≤ 1+O (∆t ), and ||Fn || ≤C2 for some constant

independent of∆x and∆t , then the explicit scheme Zn+1 = Sk Zn +Fn is stable where F is the source

vector.

We note in our instance that Fn is always bounded, therefore we only need to show that the

eigenvalues satisfy the condition stability criterion. In Table 2.6 we show the result of numerically

calculating the largest eigenvalue for the matrix Sk in magnitude (the spectral radius of Sk ), which

we denote as ρ[Sk ] as we continually refine the mesh. The matrix Sk is the discretized differential

operator that is obtain by applying our finite-difference method to the infinite dimensional problem.
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Table 2.6 Eigenvalues of time step matrix Sk for different meshes such that∆t = ∆x

2
Ç

K
β

, and∆x = 1
nx

.

nx ρ[Sk ]
16 1.000
32 1.000
64 1.000

128 1.000
256 1.000
512 1.000

1024 1.000

We observe that in all cases that the maximum eigenvalue is exactly one. This means that our method

is stable. This shows that as long as we satisfy the CFL condition, we obtain stability of the IIM

scheme,

Our numerical experiment demonstrates the consistency and the stability of our scheme. Be-

cause the state equation is a linear PDE, we invoke the Lax-Equivalence Theorem [64, 66] to establish

convergence. Since we have shown numerically that the scheme is consistent and stable, then we

can guarantee the convergence numerically. In Figure 2.3 we plot the true and numerical solution

for u , v at t = 1 on the finest mesh with nx = 1024. We see that indeed the numerical and true

solution agree (which is supported by our average convergence order).
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Figure 2.3 Solution of the TM equation at t=1.
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2.4 The 1D TE Equations and Yee’s scheme

In this Section we introduce the FDTD scheme for the TE equations. This subsection will follow

a similar structure to the previous subsection 2.3.3. We direct the reader to Section 2.3.3 for a

description of the mesh used in the FDTD method and the notation convention used to describe

the scheme. We note that the TE scheme uses the exact same mesh as the TM scheme.

In the TE equations, we approximate the derivatives as follows:

∂ u

∂ t
(xi , tn+ 1

2
) =

u n+1
i −u n

i

∆t
+O (∆t 2), (2.82)

∂ v

∂ t
(xi+ 1

2
, tn ) =

v
n+ 1

2

i+ 1
2
− v

n− 1
2

i+ 1
2

∆t
+O (∆t 2), (2.83)

∂ u

∂ x
(xi+ 1

2
, tn ) =

u n
i+1−u n

i

∆x
+O (∆x 2), (2.84)

∂ v

∂ x
(xi , tn+ 1

2
) =

v
n+ 1

2

i+ 1
2
− v

n+ 1
2

i− 1
2

∆x
+O (∆x 2). (2.85)

We now define the FDTD (Yee’s) scheme for the TE equation:

u n+1
i = u n

i −
∆t

βi∆x

�

v
n+ 1

2

i+ 1
2
− v

n+ 1
2

i− 1
2

�

+∆t f
n+ 1

2
i (2.86)

v
n+ 1

2

i+ 1
2
= v

n− 1
2

i+ 1
2
−Ki+ 1

2

∆t

∆x

�

u n
i+1−u n

i

�

+∆t g n
i+ 1

2
.

As was the case for the TM scheme, the TE scheme is O (∆x 2+∆t 2) (second order accurate in time

and space) for continuous permittivity and permeability. We must also satisfy the CFL condition for

stability of the scheme:

max
Ω,t

�

√

√K

β

�

∆t

∆x
≤ 1. (2.87)

2.4.1 The Modified Yee’s Scheme for the 1D TE Equation

We omit the details of deriving the linear systems and correction term for the spatial derivatives in

the TE equations because the derivation is exactly the same as was done for the TM equations in

subsection 2.3.3. We provide the summary of the scheme as follows: if a spatial gridpoint is irregular

then

u n+1
i = u n

i −
∆t

βi

�

a±v v
n+ 1

2

i+ 1
2
+ b±v v

n+ 1
2

i− 1
2

�

+∆t f
n+ 1

2
i +

∆t

βi
C v±

i (2.88)

v
n+ 1

2

i+ 1
2
= v

n− 1
2

i+ 1
2
−∆t Ki+ 1

2

�

a±u u n
i+1+ b±u u n

i

�

+∆t g n
i+ 1

2
+∆t Ki+ 1

2
C u±

i .
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If regular then we use the standard FDTD scheme. The weights and correction term based on the

position of the irregular grid point is









1 1

xi+ 1
2
−α β−

β+ (xi− 1
2
−α)

(x
i+ 1

2
−α)2

2
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2
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




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=


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,
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





1 1
β+

β− (xi+ 1
2
−α) (xi− 1

2
−α)

β+K −(x
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




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=


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

0
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0






, (2.89)

where

C v+

i = b+v

�

−β−[ f ](xi− 1
2
−α)−

β−
�

K fx − g t

�

K −

(xi− 1
2
−α)2

2

�

, (2.90)
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, (2.91)

and
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where

C u+

i = b+u

�−[g ]
K −
(xi −α)−

β−

K −

�

g x

β
− ft

� (xi −α)2

2

�

, (2.93)

C u−

i = a−u

� [g ]
K +
(xi+1−α) +

β+

K +

�

g x

β
− ft

� (xi+1−α)2

2

�

. (2.94)

We note that we can recover the original TE fields by undoing the change of variables:

E y = u H z = v. (2.95)

2.4.2 A Numerical Experiment

In this section we conduct a numerical experiment to demonstrate that our method solves the

TM equations with discontinuous permittivity and permeability to second order accuracy. We will

test our method by using the method of manufactured solution. We propose a solution to the TM
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equations

u (x , t ) = v (x , t ) =







sin(x − 1
3 ) + t 3 x < 1

3

sin((x − 1
3 )

2) + t 3 x ≥ 1
3 ,

(2.96)

with permittivity function,

ε=







8 x < 1
3

4 x ≥ 1
3 ,

(2.97)

and permeability function

µ=







3 x < 1
3

6 x ≥ 1
3 .

(2.98)

We repeat the steps discussed in Section 2.3.5. Using the same spatial and time mesh as we used

for the TM numerical experiment. We first report the convergence order for the different mesh sizes

in Tables 2.7 and 2.8. The average convergence orders are 2.04 and 2.04 respectively, which means

that our method is second order accurate [64].
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Table 2.7 Error and Convergence for Solution u.

n Error Convergence Order
16 2.90e-4 -
32 1.03e-4 1.49
64 1.59e-5 2.69

128 6.16e-6 1.37
256 9.65e-7 2.67
512 3.86e-7 1.32

1024 5.99e-8 2.68

Table 2.8 Error and Convergence for Solution v.

n Error Convergence Order
16 2.88e-4 -
32 1.10e-4 1.38
64 1.56e-5 2.82

128 6.70e-6 1.22
256 9.48e-7 2.82
512 4.14e-7 1.19

1024 5.87e-8 2.81
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We omit the details of the time step matrix, which was shown in Section 2.3.5, because in this

case the matrix is the transpose of the matrix that was presented. A square matrix and its transpose

matrix share the same eigenvalues [75], however, we still calculate and present the eigenvalues for

different mesh sizes in Table 2.9.

Table 2.9 Eigenvalues of the transpose of the time step matrix Sk for different meshes such that∆t = ∆x

2
Ç

K
β

,

and∆x = 1
nx

.

nx ρ[S T
k ]

16 1.000
32 1.000
64 1.000

128 1.000
256 1.000
512 1.000

1024 1.000

Since we have numerically established the consistency and stability of our method, we again

can invoke the Lax-Equivalence Theorem [64, 66] to establish the numerical convergence of the

numerical solution to the true solution of the problem. In Figure 2.4 we plot the true and numerical

solution for u , v at t = 1 on the finest mesh with nx = 1024. We see that indeed the numerical and

true solution agree (which is supported by our average convergence order).
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Figure 2.4 Solution of the TE equation at t=1.
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CHAPTER

3

AN AUGMENTED IMMERSED

INTERFACE METHOD TO SOLVE

MAXWELL’S EQUATIONS IN ONE AND

TWO DIMENSIONAL SPACE

3.1 Chapter Outline

In this chapter we introduce an ADI-Yee’s method combined with the IIM[64]. In chapter 2, we

introduced a direct IIM that took advantage of Yee’s scheme. We cannot apply the same idea for

2D Maxwell’s equations because the jump conditions cannot be isolated for i.e we may know the

jump, [ux x +u y y ], but wouldn’t be able to establish what the direct jumps conditions were from

the previous jump condition i.e [ux x ], [u y y ]. Instead we introduce an ADI-Yee’s scheme that takes

advantage of the augmented IIM [64]. In this perspective, we introduce augmented variables to take

the role of the value of unknown jump conditions we cannot explicitly derive from the PDE. We

first present the idea for the 1D Maxwell’s equations, then generalize this framework to solve 2D

Maxwell’s equations where the interface can be curved. As in chapter 2, our IIM method for solving

Maxwell’s equations is second order in time and space. In 1D we prove that our method is stable

and in 2D we show numerical results which establish the stability, without proof. In all situations we
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observe as long as the CFL condition is satisfied this is sufficient to ensure the numerical stability of

our method. We provide two numerical experiments to demonstrate that the convergence order of

our method is two. The convergence order being two indicates the method admits a second order

truncation order in time and space, and is stable.

3.2 The ADI-Yee’s Scheme for One-Dimensional Maxwell’s equation

We first use the one-dimensional example to illustrate the idea. Note that if we let

u =−H y , p = E z , ρ =µ, K =
1

ε
, (3.1)

then the one-dimensional Maxwell’s equations (TM) can be written in the form of the one-dimensional

acoustic wave equations

ut +
1

ρ
px = 0 (or f (x , t )), 0< t , a < x < b , (3.2)

pt +K ux = 0 (or g (x , t )), 0< t , a < x < b , (3.3)

with initial conditions u (x ,0) and p (x ,0) and appropriate boundary conditions, where ut =
∂ u
∂ t ,

ux =
∂ u
∂ x , and so on. We add source terms f and g to the right-hand side so that we can construct

analytic solutions more easily.

3.2.1 Yee’s scheme for a regular one-dimensional problems

Given a mesh xi = a + i h , i = 0,1, · · · , N , h = (b − a )/N , and a time step size ∆t , t k = k∆t , Yee’s

scheme for the one-dimensional problem has the following form:

u k+1/2
i+1/2 = u k−1/2

i+1/2 −
1

ρ

∆t

h

�

p k
i+1−p k

i

�

+∆t f k
i+1/2 (3.4)

p k+1
i = p k

i −
K∆t

h

�

u k+1/2
i+1/2 −u k+1/2

i−1/2

�

+∆t g k+1/2
i , (3.5)

where u k+1/2
i+1/2 ≈ u (xi +h/2, t k +∆t /2) is an approximation to the solution and so on. The discretiza-

tion is explicit and second order accurate O ((∆t )2+h 2). Note also that the discretization is a second

order time splitting scheme at (xi+1/2, t k ) for the first equation, and at (xi , t k+1/2) for the second

equation. The CFL condition is

max
Ω,t

�
√

√K

ρ

∆t

h

�

≤ 1, or
∆t

h
≤min
Ω,t

s

ρ

K
. (3.6)
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The finite difference scheme can be written as

Zk+1 = Sk Zk +Fk , (3.7)

where Zk =
�

u k−1/2
i+1/2 , p k

i

�N

i=0
is the solution vector at time t k and so on. When the CFL condition is

satisfied, the spectral radius of S satisfies ρ(S )≤ 1+C∆t for the convergence, where C is a constant

independent of h and∆t .

3.2.2 Jump Conditions and the Modified Finite-Difference Approximations

Now we assume that ρ and K are piecewise constants and have finite jump discontinuities across

a fixed interface x =α in the solution domain. We refer to the jump conditions in 2.3.2, which we

again use here. The jumps are defined as the differences of the related limiting values from each

side of the interface.

Numerically there are several approaches in discretizing the partial differential equations ac-

curately. One approach is to modify the finite difference stencil and coefficients as in [23, 110],

which often leads to large finite difference stencils and compromises the stability analysis. Another

approach is to keep the finite difference stencil unchanged but introduce augmented variable(s) and

equations as in [65]. For the one-dimensional case, the differences between different approaches are

not significant but will be in two dimensions. We introduce an ADI-Yee’s method for one-dimensional

problems and carry out the consistency and stability analysis. The fundamental discretization for-

mulas are also used for two-dimensional problems.

Figure 3.1 A diagram of one-dimensional stencil and an interface α.

If we know the jump condition [ux ] = q1 and [ux x ] = q2, which we are unable to derive explicitly

from Maxwell’s equations, then we can get a second order accurate discretization from the following

lemma.

Lemma 3.2.1. Let u (x ) be a piecewise C 3 function in (x j ,α) and (α, x j+1) with finite jumps [u ], [ux ],
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and [ux x ] at α, where x j ≤α< x j+1, x j+1− x j = h . Then we have

u (x j+1)−u (x j )

h
=

¨

u ′
�

x j+ 1
2

�

+C j +O (h 2) if x j +
h
2 ≤α,

u ′
�

x j+ 1
2

�

−C j +O (h 2) if α< x j +
h
2 ,

(3.8)

where C j is given by

C j =
[u ] + (x j+1−α)[ux ] +

1
2 (x j+1−α)2[ux x ]

h
, (3.9)

as seen in [64].

Proof. We prove the first case in which x j +h/2≤α. Define the extension of u (x ) from the left side

of α to the right as

u e (x ) = u−+ (x −α)u−x +
1

2
(x −α)2u−x x +

1

6
(x −α)3u−x x x , x ≥α. (3.10)

Then we have

u (x j+1)−u (x j )

h
=

u++ (x j+1−α)u+x +
1
2 (x j+1−α)2u+x x +O (h 3)−u (x j )

h
(3.11)

=
u−+ (x j+1−α)u−x +

1
2 (x j+1−α)2u−x x +

1
6 (x j+1−α)3u−x x x +O (h 3)−u (x j )

h
(3.12)

+
[u ] + (x j+1−α)[ux ] +

1
2 (x j+1−α)2[ux x ]

h
(3.13)

=
u e (x j+1)−u (x j )

h
+C j +O (h 2) = u ′

�

x j+ 1
2

�

+C j +O (h 2) (3.14)

The proof for the case x j ≤α< x j +h/2 is similar.

3.2.3 Interpolation for the Interface Conditions

We can approximate [ux ] and [px ] explicitly as it was done in [23, 110], which will destroy the

structure of Yee’s scheme and will lead to a small CFL number. In our approach, we solve [ux ]

and [px ] implicitly and we will show that the CFL condition is nearly unchanged with a possible

order O (h 2) perturbation. The augmented variables should be chosen such that the jump condition

[K ux ] = [g ] is satisfied at t k+ 1
2 while

�

1
ρpx

�

= [ f ] is satisfied at t k+1.

In our algorithm, [ux ] and [px ] are used as intermediate variables so that the interface conditions

can be satisfied, which is done through some interpolation formulas from function values. A second

order accurate interpolation formula is stated in the following lemma.
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Lemma 3.2.2. Let u (x ) be a piecewise C 3 function in (x j−1,α) and (α, x j+1) with finite jumps [u ],

[ux ], and [ux x ] at α, where x j ≤α< x j+1, x j − x j−1 = x j+1− x j = h . Then we have

u−x (α) = γ1u (x j−1)− (γ1+γ2)u (x j ) +γ2u (x j+1) + C̄ j +O (h 2), (3.15)

where the coefficients and the correction term are given by

γ1 =
α− x j

h 2
−

1

2h
, γ2 =

α− x j

h 2
+

1

2h
; (3.16)

C̄ j =−γ2

�

[u ] + (x j+1−α)[ux ] +
1

2
(x j+1−α)2[ux x ]

�

. (3.17)

Proof. Similar to the proof in Lemma 3.2.1, we use Taylor expansion of u (x j−1), u (x j ), and u (x j+1)

at α from each side of the interface to have

γ1u (x j−1)− (γ1+γ2)u (x j ) +γ2u (x j+1) + C̄ j (3.18)

= u−x (α) +γ2

�

[u ] + (x j+1−α)[ux ] +
1

2
(x j+1−α)2[ux x ]

�

+ C̄ j +O (h 2), (3.19)

which leads to the lemma immediately. Note that C̄ j =−γ2C j h where C j is defined in 3.9.

The interface condition [K ux ] = [g ] is discretized using the interpolation scheme above as

follows. We use the following approximation

K +u+x −K −u−x = K +
�

u−x + [ux ]
�

−K −u−x = [K ]u
−
x +K +[ux ] = [g ]α, (3.20)

=⇒ [ux ] =
[g ]α− [K ]u−x

K +
(3.21)

=
[g ]α
K +
−
[K ]
K +

�

γ1u (x j−1)− (γ1+γ2)u (x j ) +γ2u (x j+1) + C̄ j

�

+O (h 2). (3.22)

From the expressions above, we have the following lemma.

Lemma 3.2.3. Let u (x ) be a piecewise C 3 function in (x j−1,α) and (α, x j+1) with finite jumps [u ],

[ux ], and [ux x ] at α, where x j ≤α< x j+1, x j+1− x j = x j − x j−1 = h . Then we have

[ux ] =
1

1− [K ](x j+1−α)γ2

K +

� [g ]α
K +
−
[K ]
K +

�

γ1u (x j−1)− (γ1+γ2)u (x j ) (3.23)

+γ2u (x j+1) + C̃ j

��

+O (h 2) (3.24)

=β1u (x j−1)− (β1+β2)u (x j ) +β2u (x j+1) +β3[g ]α+β4C̃ j +O (h 2), (3.25)
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for some constants β j ( j = 1, 2, 3, 4) that are determined from above expression, where

C̃ j =−γ2

�

[u ] +
1

2
(x j+1−α)2[ux x ]

�

. (3.26)

3.2.4 The ADI-Yee’s Scheme for the One-Dimensional Maxwell’s Equations with an In-

terface

To deal with the discontinuities in the coefficients and maintain the structure of Yee’s scheme, we

need to add correction terms when the interface falls in the finite difference stencil. Take the diagram

in Figure 3.1 in which x j+ 1
2
≤α< x j+1, for example, only the finite difference formulas for u

k+ 1
2

j+ 1
2

and

p k+1
j+1 need to be modified as

u k+1/2
j+1/2 = u k−1/2

j+1/2 −
1

ρ

∆t

h

�

p k
j+1−p k

j −C
p
j+1/2

�

+∆t f k
j+1/2, (3.27)

p k+1
j+1 = p k

j+1−
K∆t

h

�

u k+1/2
j+3/2 −u k+1/2

j+1/2 +C u
j+1

�

+∆t g k+1/2
j+1 , (3.28)

where (note that [u ] = 0 and [p ] = 0)

C
p
j+1/2 = (x j+1−α)

�

p k
x

�

+
1

2
(x j+1−α)2

�

p k
x x

�

, (3.29)

C u
j+1 = (x j+1/2−α)

�

u k+1/2
x

�

+
1

2
(x j+1/2−α)2

�

u k+1/2
x x

�

. (3.30)

For practical reasons, we approximate the second order jumps explicitly. The modified finite

difference scheme can be written as

Zk+1 = Sk Zk +B Qk+1+Fk , (3.31)

where Zk =
�

u k−1/2
j+1/2 , p k

j

�N

j=0
is the k -th finite difference solution vector, Fk is the modified source

term due to contributions from the second order jump corrections, and Qk+1 has only two non-

zero entries corresponding to
�

p k
x

�

and
�

u k+1/2
x

�

. The so-called augmented variable Qk+1 should be

chosen such that the interface conditions in 2.3.2: at time t k+1 for the first equation, and t k+1/2 for

the second equation, are satisfied. In discretization, Qk+1’s two components have the expressions

like (3.23). Thus the discretization of the interface conditions can be written as

R Zk+1+G Qk+1−Fk
2 = 0. (3.32)
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If we put the two equations 3.31 and 3.32 together, we get

�

I −B

R G

��

Zk+1

Qk+1

�

=

�

Sk Zk +Fk

Fk
2

�

=

�

Fk
1

Fk
2

�

. (3.33)

Eliminating Zk+1 in (3.33) gives the Schur complement equation for Q

(G +R B )Qk+1 = Fk
2 −R Fk

1 . (3.34)

For fixed interface and time step size∆t , the matrix (G +R B ) is also fixed. Thus, we can use one

step P (G +R B ) = LU decomposition and find subsequent solutions Qk+1 rather easily, where P is a

permutation matrix.

3.2.5 The Stability Analysis for the One-Dimensional Algorithm

If there is no interface, then the CFL condition for Yee’s scheme is∆t /h ≤
p

ρ/K , see [25, 47, 76].

Since we treat the correction terms implicitly, we do not expect that the CFL condition will change

as verified in our numerical tests. Note that, for the first order linear system of partial differential

equations with interfaces, second order derivative corrections are not so important since they

are O (h 2) terms. In this work, to further simplify the new algorithms, we treat the jumps in the

second order derivatives explicitly. Thus, if we treat [ux x ] and [px x ] as known source terms, then for

one-dimensional problems, we can find an explicit expression of Qk+1 using (3.23) as

[ux ]
k+ 1

2 =β1u
k+ 1

2
j−1/2− (β1+β2)u

k+ 1
2

j+1/2+β2u
k+ 1

2
j+3/2+ C̄ k+ 1

2 , (3.35)

where the correction term C̄ k+ 1
2 depends on jumps [g ]k+

1
2 and [ux x ]k+

1
2 etc. There is a similar re-

lation for [px ]. Our stability analysis is based on Lemma 2.3.1. Note that the stability condition

in Lemma 2.3.1 is also sufficient for the convergence for any initial data and F0. For Yee’s scheme

without an interface, the condition is satisfied if the CFL condition is met. Now we consider the

ADI-Yee’s scheme when there is an interface α. In this case, we can find the entries of B in (3.31)

explicitly for the one-dimensional problem. For instance, assume that x j+ 1
2
≤ α < x j+1; then the

entries of B are zero except for a 6-by-6 block corresponding to

[u k+1/2
j−1/2 , u k+1/2

j+1/2 , u k+1/2
j+3/2 , p k+1

j , p k+1
j+1 , p k+1

j+2 ], see Figure 3.1 for an illustration. In fact, from Lem-
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mas 3.2.2 and 3.2.3 we know that

α1 =C1

�α− x j

h 2
−

1

2h

�

(x j+1−α), (3.36)

α2 =C1

�α− x j

h 2
+

1

2h

�

(x j+1−α), (3.37)

β1 =C2

�

α− x j+ 1
2

h 2
−

1

2h

�

�

x j+1+
h

2
−α

�

, (3.38)

β2 =C2

�

α− x j+ 1
2

h 2
+

1

2h

�

�

x j+1+
h

2
−α

�

, (3.39)

where C1 =
1
ρ
∆t
h ≤ 1 and C2 =

K∆t
h ≤ 1 from the usual CFL constraints of Yee’s scheme. Using the

relation (3.23) we can write the ADI-Yee’s Scheme as

(I −E )Zk+1 = Sk Zk +Fk . (3.40)

We note that E is a matrix of all zeros, except in certain diagonal blocks. These special blocks

correspond to 6-by-6 matrices, which we denote as E j , for each irregular grid point with index j .

The block matrix E j takes the form

E j =





















0 0 0 0 0 0

0 0 0 α1 −(α1+α2) α2

0 0 0 0 0 0

0 0 0 0 0 0

β1 −(β1+β2) β2 0 0 0

0 0 0 0 0 0





















. (3.41)

The eigenvalues of I6−E j are λi < 1, i = 3, · · · , 6, due to the stencil weights associated with the Yee’s

scheme [47], except for two listed below that we find using Maple:

λ1 =

�

−h 2+
q

C1C2

�

−2x j −3h +2α
�

(2α−2x j −h )(α− x j )2
�

h 2

4C1C2

�

α− x j −h/2
� �

α−3h/2− x j

� �

α− x j

�2−h 4
, (3.42)

λ2 =−

�

−h 2+
q

C1C2

�

−2x j −3h +2α
�

(2α−2x j −h )(α− x j )2
�

h 2

4C1C2

�

α− x j −h/2
� �

α−3h/2− x j

� �

α− x j

�2−h 4
. (3.43)

The stability of the ADI-Yee’s scheme is stated in the following theorem.

Theorem 3.2.4. If the conditions of Lemma 2.3.1 are satisfied, and [u ] = 0, [p ] = 0; and [ux x ] and [px x ]

are known (exact) quantities, then the ADI-Yee’s scheme for one-dimensional Maxwell interface

problems is stable, and thus is also convergent.
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Proof. From the relation (3.23) we can write

(I −E )Zk+1 = Sk Zk +Fk . (3.44)

Using Maple shows that I6−E j is invertible and its eigenvalues are bounded by (1+C∆t ) assuming

∆t ∼ h .

It is easy to find the extreme values of |λ1| and |λ2| above for x j+ 1
2
≤α< x j+1 as a single function

of α. We use Maple again to obtain that |λi |= 1, i = 1,2. Note that when α= x j+ 1
2
, we have exactly

λ1 = 1.

For The ADI-Yee’s scheme, Sk can be written Sk = I + Ēk and ‖Ēk‖ ≤C∆t for some constant C ,

and the structure of Ēk is determined by the Yee stencil weights. Using eigenvalue perturbation

theory, we know that the eigenvalues of (I −E )−1 Sk are those eigenvalues of (I −E )−1 with an order

of∆t perturbations, that is, λi ((I −E )−1 Sk ) = λi ((I −E )−1) +O (∆t ). Thus, there is a matrix norm

such that ‖ (I −E )−1 Sk‖ ≤ 1+C∆t , which guarantees the stability of the ADI-Yee’s scheme.

We use an explicit one-sided finite difference to approximate second order derivative jumps of

[ux x ] and [px x ]. Since the second order derivative jumps are high order terms (O (h 2)), they have

little effect on the stability. In one space dimension, whether we treat second order jump conditions

explicitly or implicitly does not make much difference, but it will for two-dimensional problems.

3.3 The ADI-Yee’s scheme for the two-dimensional Maxwell’s equation

with an Interface

In two space dimensions, Maxwell’s equations for the TM waves are

∂H x

∂ t
+

1

µ

∂ E z

∂ y
= 0, (3.45)

∂H y

∂ t
−

1

µ

∂ E z

∂ x
= 0, (3.46)

∂ E z

∂ t
+

1

ε

�

∂H x

∂ y
−
∂H y

∂ x

�

= 0. (3.47)

The jump conditions are

[τ ·H] = 0,
�

n ·µH
�

= 0, [E z ] = 0, (3.48)

where n is the normal vector to the interface and τ is the tangent vector to the interface curve. Again,

we assume that all the coefficients are piecewise constants that can have a finite jump across the
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interface Γ . Note that if we let

u =−H y , v =H x , p = E z , ρ =µ, K =
1

ε
, (3.49)

then the two-dimensional Maxwell’s equations (TM) can be written in the form of the two-dimensional

acoustic wave equations

∂ v

∂ t
+

1

ρ

∂ p

∂ y
= 0, (3.50)

∂ u

∂ t
+

1

ρ

∂ p

∂ x
= 0, (3.51)

∂ p

∂ t
+K

�

∂ v

∂ y
+
∂ u

∂ x

�

= 0, (3.52)

with given initial and boundary conditions.

The jump conditions now become

�

τ ·

�

v

−u

��

= 0,

�

n ·ρ

�

v

−u

��

= 0,
�

K
�

vy +ux

��

= 0,
�

1

ρ
pn

�

= 0, (3.53)

along with
�

p
�

= 0. More discussion regarding the jump relations can be found in [23, 108].

3.3.1 Augmented Variables and the Enlarged System

To use the ADI dimensional splitting approach for Maxwell’s equations with discontinuities across a

material interface Γ = (X (s ), Y (s )), where s is a parameter on the interface, say the arc-length, we

introduce several intermediate variables, also called augmented variables. We set

q1(s , t ) =

�

n ·

�

v

−u

��

, q2(s , t ) =
�

∂ u

∂ n

�

, q3(s , t ) =
�

∂ v

∂ n

�

, q4(s , t ) =
�

∂ p

∂ n

�

. (3.54)

If these variables are known, then we can discretize Maxwell’s equations dimension by dimension

as in the one-dimensional case. That is why the new method is called the ADI-Yee’s scheme.

Note that since we know [τ · [u , −v ]T ], we can solve for [u ] and [v ] in terms of the known normal

and tangential directions. Note also that there are different ways in introducing augmented variables.

The main motivation of our choice is that we can still use Yee’s scheme near and at the interface

with modified right-hand sides.

Given q1, q2, q3, and q4 with required regularity, for example, q1 ∈C (Γ 2), q2, q3, q4 ∈C (Γ ), we can

solve Maxwell’s equations (3.45) or (3.50) to get the solution (u , v, p ) that depends on q1, q2, q3, and

q4. The solution in general does not satisfy the original jump conditions (3.53). Thus we have an
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enlarged system: the original Maxwell’s equations (3.45) or (3.50), the original jump conditions

(3.53), and the newly introduced interface jump conditions eq3.54.

3.3.2 Equivalence of the Original and Enlarged Systems

The wellposedness of the Maxwell initial and boundary value problems is well established with

consistent initial and boundary conditions [47]. Assume that the original initial and boundary value

problem of Maxwell’s equations (3.50) and the jump conditions (3.53) has a unique solution [86, 108].

Then the solution is also the solution of the enlarged system since q1, · · · , q4 are all from the solution

and their derivatives. The existence of the solution of the enlarged system can be established easily.

On the other hand, if there is another set of solution (u , v, p ), then it will satisfy Maxwell’s equations

(3.50) and the jump conditions (3.53) in addition to the augmented relations (3.54). Thus from the

uniqueness of the original initial and boundary value problem of Maxwell’s equations (3.50) and

the jump conditions (3.53), the solution must be the solution to the original problem.

3.3.3 The ADI-Yee’s scheme in two dimensions

We assume that the domain Ω is rectangular, say [a , b ]× [c , d ]. We use a uniform M ×N grid with

xi = a + i h , yj = c + j h , h = (b −a )/M = (d − c )/N , for simplicity of the presentation.

Figure 3.2 A diagram of a two-dimensional stencil, an interface Γ , and orthogonal projections where the
augmented variables are defined.

We use the transverse magnetic (TM) case to illustrate our algorithm. According to Yee’s scheme,

we use p k
i j ≈ p (xi , yj , t k ) as the finite difference approximation at a grid point (xi , yj ) and the

time level t k , and similarly for u k+1/2
i+1/2, j and v k+1/2

i , j+1/2. Yee’s scheme for non-interface problems is the
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following

v k+1/2
i , j+1/2 = v k−1/2

i , j+1/2−
1

ρ

∆t

hy

�

p k
i , j+1−p k

i j

�

, (3.55)

u k+1/2
i+1/2, j = u k−1/2

i+1/2, j −
1

ρ

∆t

hx

�

p k
i+1, j −p k

i j

�

, (3.56)

p k+1
i j = p k

i j −K∆t

 

v k+1/2
i , j+1/2− v k+1/2

i , j−1/2

hy
+

u k+1/2
i+1/2, j −u k+1/2

i−1/2, j

hx

!

. (3.57)

We use a level set representation for an interface Γ in the domain. That is, the interface is the zero

level of a Lipschitz continuous function ϕ(x , y ). For example, for a unit circle interface x 2+ y 2 = 1,

one of (and the ideal) level set functions is ϕ(x , y ) =
p

x 2+ y 2−1. In general, the signed distance

function is recommended for numerical computations. In discretization, the level set function is

determined explicitly by its values at the grid points ϕi j =ϕ(xi , yj ), for example, for the unit circle

interface, ϕi j =
Ç

x 2
i + y 2

j −1.

We classify a grid point (xi , yj ) to be regular or irregular using the level set function. At a grid

point (xi , yj ), define

ϕma x =max
�

ϕi−1, j ,ϕi , j ,ϕi+1, j ,ϕi , j−1,ϕi , j+1

	

, (3.58)

ϕmi n =min
�

ϕi−1, j ,ϕi , j ,ϕi+1, j ,ϕi , j−1,ϕi , j+1

	

. (3.59)

If ϕma xϕmi n > 0, the grid point (xi , yj ) is called regular; otherwise it is irregular, meaning the

interface cuts through the standard five point finite difference stencil. Note that, with the level

set function representation, the interface can cut the grid line only between two neighboring grid

points, for example, (xi−1, yj ) and (xi , yj ) once.

At an irregular grid point where the interface cuts through either the x -axis or y -axis, we simply

add the correction terms to Yee’s scheme as in the one-dimensional case:

v k+1/2
i , j+1/2 = v k−1/2

i , j+1/2−
1

ρ

∆t

hy

�

p k
i , j+1−p k

i j +C
p ,y
i j

�

, (3.60)

u k+1/2
i+1/2, j = u k−1/2

i+1/2, j −
1

ρ

∆t

hx

�

p k
i+1, j −p k

i j +C
p ,x
i j

�

, (3.61)

p k+1
i j = p k

i j −K∆t

 

v k+1/2
i , j+1/2− v k+1/2

i , j−1/2+C
v,y

i j

hy
+

u k+1/2
i+1/2, j −u k+1/2

i−1/2, j +C u ,x
i j

hx

!

, (3.62)

where C
p ,y
i j , C

p ,x
i j , C

v,y
i j , and C u ,x

i j correspond to correction terms, see Lemma 3.2.1 and 3.8-3.9, if

the interface cuts the staggered finite difference stencil. Since we use the dimension by dimension

discretization and the specially selected augmented variables, the formula in Lemma 3.2.1 is used

for the correction terms. Again, we approximate the second order jumps explicitly. The modified
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finite difference scheme can be written as

Zk+1 = Sk Zk +B Qk+1+Fk , (3.63)

where Qk+1 is the vector of the discrete augmented variables q1, q2, q3, and q4 defined in 3.54.

3.3.4 Discretization of the Interface Conditions

In order to discretize the interface conditions, we need to choose a set of points (X l , Yl ), l =

1,2, · · · , Nb , called control points, on the interface. With a level set function representation and

assuming that the level set function is a good approximation of the signed distance function, see for

example [81, 91], we use the orthogonal projections of irregular grid points (xi , yj ) on the interface

from one particular side, often Ω+, see the little hexagons in Figure 3.2 for an illustration. If we know

values of a given function at those points, we can find the function value, its first and second order

surface derivatives from a local reconstruction, see [64] for the details regarding how this idea has

been used for other application problems.

The discretization of (3.53) is done using the second order least squares interpolation scheme [64].

In the least squares interpolation scheme, we select more grid points, often 9∼ 12 in two dimensions,

than that of needed for second order accuracy. Advantages of the least squares interpolation include

balanced coefficients and more accurate derivative approximations.

We take the last jump condition
�

1
ρpn

�

= 0 in (3.53) at (X l , Yl ) at time level k +1 as an example.

The interpolation using p k+1
i j , [p ] = 0, and q4 = [pn ] is an approximation to 1

ρ+p+n −
1
ρ−p−n = 0 at

(X l , Yl ) and the time level k +1. The interface condition is equivalent to
�

1
ρ

�

p−n +
q4
ρ+ = 0. The least

squares interpolation scheme is

�

1

ρ

� zI−1
∑

z=0

γl
z p k+1

i ∗+z , j ∗+z −C k+1
l +

q k+1
4,l

ρ+
= 0, (3.64)

where (xi ∗ , yj ∗ ) is the closest grid point to (X l , Yl ), zI is the number of grid points involved in the

interpolation scheme (9∼ 12), and C k+1
l is a correction term.

It is more convenient to use the local coordinates in the normal and tangential directions,

ξ= (x −X l )cosθ + (y −Yl )sinθ , (3.65)

η=−(x −X l )sinθ + (y −Yl )cosθ , (3.66)

where θ is the angle between the x -axis and the normal direction n= (cosθ , sinθ ) at (X l , Yl ).

For simplification of notations, we will drop the time level dependance t k+1 and k + 1. The

coefficients {γl
z } are determined by minimizing the interpolation error of (3.64) when pi ∗+z , j ∗+z is

substituted by the exact solution p (xi ∗+z , yj ∗+z , :). Using the local coordinate system centered at the
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point (X l , Yl ), and denoting the local coordinates of (xi ∗+z , yj ∗+z ) as (ξz ,ηz ), we have the following

from the Taylor expansion at Xl = (X l , Yl ) , or (0, 0) in the local coordinates:

p (xi ∗+z , yj ∗+z ) = p (ξz ,ηz ) = p±+ξz p±ξ +ηz p±η (3.67)

+
1

2
ξ2

z p±ξξ+ξzηz p±ξη+
1

2
η2

z p±ηη+O (h 3), (3.68)

where the ‘+’ or ‘−’ sign is chosen depending on whether (ξz ,ηz ) lies on the ‘+’ or ‘−’ side of Γ , p±,

p±ξ , · · · , p±ηη are evaluated at the local coordinates (0,0), or Xl = (X l , Yl ) in the original coordinate

system. The coefficients {γk }’s satisfy the following linear system of equations:

zI−1
∑

z=0

γl
z = 0,

zI−1
∑

z=0

γl
z ξz = 1, (3.69)

zI−1
∑

z=0

γl
z ηz = 0,

1

2

zI−1
∑

k=0

γl
z ξ

2
z = 0, (3.70)

zI−1
∑

z=0

γl
z ξzηz = 0,

1

2

zI−1
∑

z=0

γl
z η

2
z = 0. (3.71)

Once {γl
z }’s are computed, the correction term C k+1

l is determined from the following:

C k+1
l = a4 q +a6 [pη] +a8

�

pξξ
�

+a10

�

pξη
�

+a12

�

pηη
�

, (3.72)

where a2 =
∑

z∈K + γ
l
z , a4 =

∑

z∈K + ξzγ
l
z , a6 =

∑

z∈K + ηzγ
l
z , and so on; z ∈ K + means that the grid

point involved in the interpolation (xi ∗+z , yj ∗+z ) ∈Ω+.

If we carry out such a local least squares interpolation for all the interface conditions 3.53, the

discretization can be written as

R Zk+1+G Qk+1−Fk
2 = 0, (3.73)

where the vector Qk+1 contains the discrete values of q1, q2, q3, and q4, and the non-zero en-

tries of R and G are the coefficients of the local interpolations scheme. Thus, the size of Qk+1

is O (4Nb )∼O (4N ). The procedure is the same as described early except that the matrices R , B , and

G are different, and unlike the one-dimensional case, we can not solve Qk+1 explicitly. Once again,

eliminating Zk+1 in (3.63) gives the Schur complement equation for Q

(G +R B )Qk+1 = Fk
2 −R Fk

1 . (3.74)

For fixed interface and time step size∆t , the matrix (G +R B ) is also fixed. Thus, we use one step

P (G +R B ) = LU decomposition and find subsequent solutions Qk+1 rather easily, where P is a
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permutation matrix.

The Convergence Discussion: The ADI-Yee’s scheme is consistent with O (h 2). This is a result of

using the Yee stencil from Yee’s scheme. For a line interface that is parallel to one of the axes, the

Maxwell interface problem is essentially a one-dimensional interface problem, and the ADI-Yee’s

scheme is stable with the usual Yee’s CFL constraint. For general interfaces, the study of the stability

is complicated and it is still a challenging open problem. Nevertheless, all our numerical tests show

that the usual Yee’s CFL constraint is enough for the stability. There are two intuitive explanations of

the stability. The augmented variables are determined implicitly, which often improve the stability.

Secondly, the modifications are needed at grid points near or on the interfaces. The number of those

grid points has co-dimension one compared with the total number of grid points.

3.4 Numerical Examples

We have implemented our new method for one and two-dimensional problems with different

interfaces and discontinuities and compared the numerical results with those from the literature.

All numerical experiments show second order convergence under usual CFL conditions for Yee’s

scheme.

The first example is a two-dimensional problem from [106] . We show grid refinement analysis

using the two-dimensional example from [106] in which a dielectric of relative permittivity ε2,

occupying the spatial region [0, 1/2]× [0, 1], is inserted in a PEC-bounded [0, 5/4]× [0, 1] domain. An

exact solution in this case is (0≤ y ≤ 1):

E z = p =

¨

sin(a1 x )sin(b y )sin(ωt ),

cos(a2 x )sin(b y )sin(ωt ),
(3.75)

H y =−u =

¨

a1
ω cos(a1 x )sin(b y )cos(ωt ), if 0≤ x ≤ 1

2 ,
a2
ω sin(a2 x )sin(b y )cos(ωt ), if 1

2 ≤ x ≤ 5
4 ,

(3.76)

H x = v =

¨

b
ω sin(a1 x )cos(b y )cos(ωt ), if 0≤ x ≤ 1

2 ,
b
ω cos(a2 x )cos(b y )cos(ωt ), if 1

2 ≤ x ≤ 5
4 .

(3.77)

We use the same parameters as in [106, 110], ε1 = 1, ε2 = 2, a1 = 2π, b =π, andω=
p

5π, and present

grid refinement results in Table 3.1, which clearly confirm second order accuracy for all involved

quantities.

In this constructed general example, we allow the solutions (p , u , v ) and their derivatives, the

coefficients of the partial differential equations, and source terms, to be discontinuous. The jump

conditions are non-homogeneous with more general interfaces.
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Table 3.1 Grid refinement analysis for Maxwell’s equations with a line interface x = 1/2 using the
dimensional jump splitting method. Second order convergence is confirmed. The final time is T = 5.

N E (u ) r E (v ) r E (p ) r
16 1.5859e-02 6.0688e-02 6.0688e-02
32 4.0064e-03 1.9850 1.5691e-02 1.9514 1.5691e-02 2.0138
64 1.0535e-03 1.9271 4.0553e-03 1.9521 4.0553e-03 2.0537

128 2.7546e-04 1.9353 1.0455e-03 1.9556 1.0455e-03 2.0027
256 6.9981e-05 1.9768 2.6496e-04 1.9804 2.6496e-04 1.9820
512 1.7399e-05 2.0080 6.6046e-05 2.0042 6.6046e-05 2.0063

The true solution is designed as below

u0(x , y ) =

¨

−a1 x + b1 sin(x + y ) +a3h (t ) if (x , y ) ∈Ω+,

−a2 x + b2 sin(x + y ) +a3h (t ) if (x , y ) ∈Ω−,
(3.78)

v0(x , y ) =

¨

b1 sin(x + y ) +a3h (t ) if (x , y ) ∈Ω+,

b2 sin(x + y ) +a3h (t ) if (x , y ) ∈Ω−,
(3.79)

p0(x , y , t ) =

¨

t +a3 sin x sin y if (x , y ) ∈Ω+,

t +a3(x 2+ y 2) if (x , y ) ∈Ω−.
(3.80)

The interface is an ellipse that is represented by the zero level set of

ϕ(x , y ) =
x 2

r 2
a
+

y 2

r 2
b

−1. (3.81)

The source term is derived from the solution,

fu (x , y , t ) =

¨

a3 cos x cos y
ρ1

+a3h ′(t ) if (x , y ) ∈Ω+,
2a3 x
ρ2
+a3h ′(t ) if (x , y ) ∈Ω−,

(3.82)

fv (x , y , t ) =

¨

a3 sin x sin y
ρ1

+a3h ′(t ) if (x , y ) ∈Ω+,
2a3 y
ρ2
+a3h ′(t ) if (x , y ) ∈Ω−,

(3.83)

fp (x , y , t ) = 0. (3.84)

Table 3.2 shows results of grid refinement analysis with h (t ) = sin t with the usual Yee’s CFL

condition. The interface is a circle: x 2 + y 2 = 0.82. The parameters are a1 = 10, a2 = 0.7, b1 = 1.5,

b2 = 3, ρ1 = 10, ρ2 = 2, and a3 = 1. Average second order accuracy is confirmed. Note that for

Cartesian mesh methods that do not fit the interface, the error constants depend on the interface

because the relative position of the interface and the underlying grid is not fixed, see for example
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Table 3.2 Grid refinement analysis for Maxwell’s equations with a circular interface x 2+ y 2 = 0.82 using the
ADI-Yee’s scheme with the usual Yee’s CFL constraint. Second order convergence is confirmed. The final time

is T = 1.2.

N E (u ) r E (v ) r E (p ) r
16 2.8221e-02 2.1101e-02 1.7693e-02
32 4.6064e-03 2.6151 3.0213e-03 2.8041 2.4169e-03 2.8719
64 5.3087e-04 3.1172 5.7567e-04 2.3918 2.5706e-04 3.2330

128 1.4724e-04 1.8502 2.0385e-04 1.4977 8.0732e-05 1.6709
256 3.4879e-05 2.0777 4.8737e-05 2.0644 1.9963e-05 2.0158

Average 2.4151 2.1895 2.4479

[63]. Similar results are observed with different h (t ) ∈C 1(t > 0).

In Table 3.3, we show the results of grid refinement analysis with large jump ratios in the coeffi-

cients and an elliptic interface: x 2

1.12 +
y 2

0.82 = 1. The parameters are a1 = 1.2, a2 = 50, b1 = 5, b2 = 3,

ρ1 = 1.5, ρ2 = 100, and a3 = 1 with h (t ) = sin t . In this case, the coarse grid with N = 16 would not

generate a meaningful result due to the unresolved (complicated) geometry.

In the bottom Table 3.3, we switch everything in the parameters used in the top table, that is,

the interface is x 2

0.82 +
y 2

1.12 = 1, and a1 = 50, a2 = 1.2, b1 = 3, b2 = 5, ρ1 = 100, and ρ2 = 1.5.

Table 3.3 Grid refinement analysis for Maxwell’s equations at a final time T = 1.2 with an elliptic interface
x 2

1.12 +
y 2

0.82 = 1 and large jumps in the coefficients using the ADI-Yee’s scheme. Second order convergence is
observed again. The bottom table shows the results of switching the parameter values inside and outside

with the interface being x 2

0.82 +
y 2

1.12 = 1.

N E (u ) r E (v ) r E (p ) r

32 5.2014e-01 2.1529e-01 2.6368e-01
64 3.1325e-03 7.3755 4.6313e-03 5.5387 1.9557e-03 7.0750

128 8.1156e-04 1.9485 8.3639e-04 2.4692 3.4856e-04 2.4882
256 1.4849e-04 2.4503 1.1429e-04 2.8715 3.7206e-05 3.2278

Average 3.4630 3.2360 3.7017

32 3.5252e-01 2.9110e-01 1.7246e-01
64 8.8514e-02 1.9937 5.3917e-02 2.4327 1.8491e-02 3.2214

128 1.8516e-02 2.2572 1.0871e-02 2.3102 2.0227e-03 3.1925
256 1.0516e-03 4.1380 2.4153e-03 2.1702 6.0501e-04 1.7412

Average 2.6167 2.2444 2.5427
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3.5 Conclusions

In this chapter, we proposed a new method for Maxwell’s equations with material interfaces based

on Yee’s scheme and the augmented strategy. With some intermediate (augmented) variables, we

can discretize Maxwell’s equations dimension by dimension with some added correction terms to

treat the discontinuities. The new method maintains the structure and accuracy of Yee’s scheme

even with the presence of discontinuities.
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CHAPTER

4

A MIXED-INTEGER PDE-CONSTRAINED

OPTIMIZATION FORMULATION FOR

THE CONSTRUCTION OF

ELECTROMAGNETIC CLOAKS WITH A

SINGLE MATERIAL IN 2D

4.1 Chapter Outline

In this work, we study the design of electromagnetic cloaks by formulating and solving a mixed-

integer partial-differential equation constrained optimization problem. The objective is to minimize

the integral of the response in the region we wish to cloak. The constraints include a 2D Helmholtz

equation with absorbing boundary conditions for each component of the complex valued scattering

wave, that are parameterized by the design of the electromagnetic cloak. The design is obtained

using binary variables that determine whether a cell in the system is filled with material or not.

The cloak design is dependent on the angle of the incidence wave, the cloaking material, and the

wavenumber.
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We also consider the design of a cloak that works well for several different angles of the incident

wave leading to a stochastic programming formulation where we minimize the expected value of

the objective function with respect to a discrete set of angles. Rather than a single 2D Helmholtz

equation, this uncertain version has a 2D Helmholtz equation for each angle.

In both the single and uncertain incident wave formulation we solve the combinatorial opti-

mization problem in two steps. The first step is to relax the binary variables, solve the relaxation, and

apply a rounding heuristic to obtain an initial design. In the second step we use a new trust-region

method to improve upon the initial design to obtain a final design. Our approach replaces the

large-scale MINLP by a sequence of easier linear knapsack problems.

Chapter Outline: In Section 4.2.1 we define the infinite-dimensional electromagnetic cloaking

problem using a single material for a nominal wave angle. We then extend this formulation to

an optimization problem under uncertainty that can account for uncertainty in the angle of the

incident wave, and we compute sensitivities with respect to the design variables that are needed in

our optimization approach. In Section 4.2.4 we derive a finite-dimensional optimal design problem

by discretizing the PDE using a finite-element approach, resulting in a large-scale MINLP. Next, we

present an approach to solve the relaxed MINLP. In Section 4.2.5 we motivate a simple rounding

heuristic and describe our trust-region steepest-descent algorithm. We provide numerical experi-

ments in Section 4.2.6 to demonstrate the success of our trust-region method, and we comment

on the computational effort to solve our problems. We define success as our ability to bring the

integrand of the objective function to a small value. We conclude with a brief summary in Section 4.3.

Detailed numerical results are presented in the appendix section .1.

4.2 Electromagnetic Cloaking Design for a Single Material in 2D

In this section we review the infinite-dimensional cloaking design problem for a single material. We

extend the nominal design and propose a stochastic optimization formulation for the design under

uncertainty. We also show how adjoints of the problems are derived. We choose the adjoint method

because we have a large amount of controls present in the problem. The adjoint method requires

only one state solve and one adjoint solve to produce the gradient (independent of the number of

controls). An approach, such as calculating sensitivity equations, would require us to solve the state

equation as many times as there are controls present in the problem. These adjoints are needed for

the solution of the continuous relaxation and for our proposed trust-region method.

4.2.1 Formulation of the Nominal Wave Electromagnetic Cloaking Problem

We consider the design of an electromagnetic cloak from [41], where we aim to determine the optimal

topology that induces electromagnetic cloaking. We let D ⊂R2 be the computational domain and
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D0 ⊂D be the part of the domain that we wish to cloak. We let ÒD ⊂D −D0 be the subregion in which

we can design the cloak and Ω̂⊂ ÒD be the topology of the cloak. The optimal topology is determined

by solving the following topology optimization problem that aims to minimize the response due to

the incidence wave in D0 subject to Helmholtz equation in D :

minimize
u ,Ω⊂ÒD

1

2
‖u + ūθ ‖2

2,D0

subject to −∆u −k 2
0

�

1+q1Ω
�

u = k 2
01Ωūθ , in D ,

∂ u

∂ n
− i k0u = 0, on ∂ D ,

(4.1)

where i =
p
−1, ∂ D is the boundary of the computational domain and

ūθ (x , y ) = exp(i k0(x cos(θ ) + y sin(θ ))) (4.2)

is the incident wave in direction d= (cos(θ ), sin(θ )), with wave number k0. The angle θ at which the

incident wave approaches the cloak is measured from the x-axis, and we refer to θ as the nominal

angle of attack. The state variable u represents the electromagnetic field intensity, and the parameter

q is the electromagnetic permittivity difference between Ω, the part of the cloak filled with material,

and ÒD − Ω̂, the part of the cloak without material.

The interpretation of this MIPDECO is as follows: the objective function represents the scattering

that occurs in the region D0. Our goal is to minimize this quantity. If the scattering in the region D0 is

small, then this means D0 is optically invisible. The constraint, which is Maxwell’s wave equation in

the frequency domain, describes the scattering behavior that will occur as the electromagnetic wave

that travels through the domain interacts with the cloak. The optimization problem is to determine

the cloak that will cause scattering to be minimized in D0; by minimizing the scattering we are

inducing electromagnetic cloaking.

When manufacturing cloaks, there is typically a lower bound on the size of the features in the

cloak, Ω̂. We partition the cloak Ω̂ into a finite number of equally sized squares, Ω̂n , for n = 1, . . . , N .

We refer to this partition as the control mesh and assume that the control mesh defines a partition

of the computational domain, i.e, that

Ω̂=
N
⋃

n=1

Ω̂n and
�

Ω̂n \ ∂ Ω̂n

�

∩
�

Ω̂p \ ∂ Ω̂p

�

= ; for n 6= p ,

see Figure 4.1 for an illustration.

We represent the decision of whether or not to fill a square Ω̂n ⊂ Ω̂ by a binary (control) variable
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vn ∈ {0, 1} for n = 1, . . . , N , and we define the indicator function 1Ω̂n
for Ω̂n as

1Ω̂n
(x , y ) =







1 if (x , y ) ∈ Ω̂n

0 otherwise,
(4.3)

for n = 1...N . The resulting reformulation of (4.1) can be rewritten as the MIPDECO

minimize
u ,v,w

1

2
‖u + ūθ ‖2

2,D0

subject to −∆u −k 2
0 (1+q w )u = k 2

0 q w ūθ in D ,

∂ u

∂ n
− i k0u = 0 on ∂ D ,

w =
N
∑

n=1

vn1Ω̂n\∂ Ω̂n
,

vn ∈ {0, 1} ∀n = 1, . . . , N ,

(4.4)

where the defined control, w , now takes the place of the topological variable, Ω̂. In this formulation,

we have a fixed finite number of binary variables vn that represent the design. Our formulation (4.4)

is a full-space problem. We could equally derive a reduced-space formulation in which u = u (v ) is

implicitly defined as the solution of the PDE.

Because u , ūθ :R2→C are complex valued, we split u and ūθ into its real and the imaginary

parts. We then formulate two separate PDEs for each part. In particular, we set u = uRe+ i uIm and

ūθ = ūRe+ i ūIm. We then rewrite the PDE-constraints in (4.4) as

−∆uRe−k 2
0 (1+q w )uRe = k 2

0 q w ūRe

−∆uIm−k 2
0 (1+q w )uIm = k 2

0 q w ūIm

∂ uRe

∂ n
=−k0uIm,

∂ uIm

∂ n
= k0uRe.

(4.5)

In general, we have an m ×m control mesh made up of N = m 2 squares. The optimization

problem is to decide if we place material (vn = 1) or do not place material (vn = 0) in any Ω̂n ⊂D to

best cloak the region D0. We illustrate a sample design in Figure 4.1, where red indicates material

and blue indicates no material. It is straightforward to add constraints on v to model other design

restrictions, such as an upper bound on the amount of cloaking material which can be modeled by

e T v ≤M , where M ≤N is the total number of patches that can be filled.

70



Ω̂1 Ω̂2 Ω̂3 Ω̂4

Ω̂5 Ω̂6 Ω̂7 Ω̂8

Ω̂9 Ω̂10 Ω̂11 Ω̂12

Ω̂13 Ω̂14 Ω̂15 Ω̂16

D

Ω̂

D0

Figure 4.1 Illustration of a 4×4 grid of control elements in which the goal is to cloak the region D0, in this case
a circle in the top right corner of the domain.

4.2.2 Optimal Design for Electromagnetic Cloaking Under Uncertainty

Here, we extend the optimal design problem to account for uncertainty in the incidence angle or

angle of attack, θ . We formulate an optimization problem to create a design that can effectively

cloak a given region even if the incidence angle of the wave changes.

To account for uncertainty in the design, we generalize problem (4.4) to allow a range of inci-

dence angles θ and we regard the incidence angle as a random variable. We can then formulate

an optimization problem that minimizes, for example, the expected value of the effectiveness of

the cloak, which is a risk-neutral formulation [4, 29, 35, 56] . We let (Θ,F , P ) be a triple of sample

space,σ-algebra, and probability measure, and we formulate the following stochastic optimization

problem:

minimize
u ,v,w

J (u , v, w ) =Eθ
�

1

2
‖uθ + ūθ ‖2

2,D0

�

subject to −∆uθ −k 2
0 (1+q w )uθ = k 2

0 q w ūθ in D , ∀θ ∈Θ
∂ uθ
∂ n

− i k0uθ = 0 on ∂ D , ∀θ ∈Θ

w =
N
∑

n=1

vn1Ω̂n\∂ Ω̂n

vn = {0, 1} ∀n = 1, . . . , N ,

(4.6)
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where Eθ [·] is the expectation with respect to the random variable θ , which is distributed uniformly,

and uθ = uθ (v ) is the solution of the PDE for a given control, v , and incidence angle θ . Problem (4.6)

has a structure similar to that of a two-stage stochastic program [92] if we interpret the controls w and

v as the first-stage decision variables, and the states uθ as the second-stage variables. However, there

is no optimization in the second stage because w , v , and θ uniquely determine uθ . To approximate

(4.6), we select a finite set of s angles denoted by the set Θ(s )⊂Θ, for example,

Θ(s ) =
§

θ j

�

� θ j =
π j

2s
, j = 0, . . . , s

ª

,

and we replace the expectation by the sample average approximation (SSA). We assume that each θ j

has a probability Pj of occurring, and we assume that all angles of attack are equally likely, Pj =
1
|Θ(s )|

(though this assumption is readily relaxed). We can interpret Θ(s ) as a discretization of a uniform

distribution over the interval of interest. We now rewrite our cloaking optimization problem for the

finite set Θ(s ) as

minimize
u ( j ),v,w

J (u ( j ), v, w ) =
1

2|Θ(s )|

s
∑

j=0

‖u ( j )+ ū ( j )‖2
2,D0

subject to −∆u ( j )−k 2
0 (1+q w )u ( j ) = k 2

0 q w ū ( j ) in D , ∀ j = 0, . . . , s

∂ u ( j )

∂ n
− i k0u ( j ) = 0 on ∂ D , ∀ j = 0, . . . , s

w =
N
∑

n=1

vn1Ω̂n\∂ Ω̂n

vn = {0, 1} ∀n = 1, . . . , N .

(4.7)

where u ( j ) is the state corresponding to the j th scenario, θ j , and the incidence wave associated with

θ j is defined as

ū ( j )(x , y ) = e (i k0(x cos(θ j )+y sin(θ j ))), ∀ j = 0, . . . , s . (4.8)

This stochastic program has 2|Θ(s )| state variables and 2|Θ(s )| adjoint variables (two for each angle

of attack θ j ). The evaluation of the objective function and gradient of (4.6) requires the solution of

4|Θ(s )| PDEs for each fixed v .

4.2.3 Adjoint-Based Gradient Computation

Our method for solving (4.7) is based on solving the continuous relaxation followed by a rounding

step and an incremental trust-region improvement algorithm. Both steps require computing gradi-

ents with respect to the control variables v . Here, we present the derivation of the weak state and
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weak adjoint equation for the uncertain problem (the derivation for the easier nominal problem

follows in a similar way). In addition we provide the strong gradient derivation for (4.6) using the

adjoint approach for calculating the gradient for the continuous relaxation (0≤ v ≤ 1). We begin by

formally defining the strong LagrangianL of (4.7) as

L (u ( j )Re , u
( j )
Im, v ;λ

( j )
Re ,λ

( j )
Imθ )

=
1

2|Θ(s )|

� s
∑

j=0

�

∫

D0

�

u
( j )
Re + ū

( j )
Re

�2
+
�

u
( j )
Im+ ū

( j )
Im

�2
d D0

�

+
s
∑

j=0

¬

λ
( j )
Re ,

�

−∆u
( j )
Re −k 2

0 (1+q w )u ( j )Re −k 2
0 q w ū

( j )
Re

�¶

L 2(D )

+
s
∑

j=0

¬

λ
( j )
Im,

�

−∆u
( j )
Im−k 2

0 (1+q w )u ( j )Im−k 2
0 q w ū

( j )
Im

�¶

L 2(D )
,

(4.9)

where 〈·, ·〉L 2(D ) is the L 2 inner product over D and λ
( j )
Re ,λ

( j )
Im are the adjoint variables for the j th real

and imaginary state equation respectively. (4.9) defines the strong Lagrangian, because we assume

that the pairs u
( j )
Re , u

( j )
Im ∈ C 2(D ) are twice continuously differentiable. We weaken this regularity

assumption because we intend to search for weak solutions with the finite-element method. Next,

we derive the weak form of the Lagrangian by applying Green’s theorem to the two constraint terms:

s
∑

j=0

¬

λ
( j )
Re ,

�

−∆u
( j )
Re −k 2

0 (1+q w )u ( j )Re −k 2
0 q w ū

( j )
Re

�¶

L 2(D )

=
s
∑

j=0

�

∫

D

λ
( j )
Re

�

−∆u
( j )
Re −k 2

0 (1+q w )u ( j )Re −k 2
0 q w ū

( j )
Re

�

d D
�

=
s
∑

j=0

�

∫

D

∇u
( j )
Re ·∇λ

( j )
Red D +

∫

∂ D

k0u
( j )
Imλ

( j )
Red ∂ D

−
∫

D

λ
( j )
Re

�

k 2
0 (1+q w )u ( j )Re +k 2

0 q w ū
( j )
Re

�

d D
�

(4.10)
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and
s
∑

j=0

�

¬

λ
( j )
Im,

�

−∆u
( j )
Im−k 2

0 (1+q w )u ( j )Im−k 2
0 q w ū

( j )
Im

�¶

L 2(D )

�

=
s
∑

j=0

�

∫

D

λ
( j )
Im

�

−∆u
( j )
Im−k 2

0 (1+q w )u ( j )Im−k 2
0 q w ū

( j )
Imd D

�

�

=
s
∑

j=0

�

∫

D

∇u
( j )
Im ·∇λ

( j )
Imd D −

∫

∂ D

k0u
( j )
Reλ

( j )
Imd ∂ D

−
∫

D

λ
( j )
Im

�

k 2
0 (1+q w )u ( j )Im+k 2

0 q w ū
( j )
Im

�

d D
�

.

(4.11)

We substitute (4.10) and (4.11) into (4.9) and obtain the weak Lagrangian:

L (u ( j )Re , u
( j )
Im, v,λ

( j )
Re ,λ

( j )
Im,θ )

=
1

2|Θ(s )|

� s
∑

j=0

�

∫

D0

�

u
( j )
Re + ū

( j )
Re

�2
+
�

u
( j )
Im+ ū

( j )
Im

�2
d D0

�

�

+
s
∑

j=0

�

∫

D

∇u
( j )
Re ·∇λ

( j )
Red D +

∫

∂ D

k0u
( j )
Imλ

( j )
Red ∂ D

−
∫

D

�

λ
( j )
Re

�

k 2
0 (1+q w )u ( j )Re +k 2

0 q w ū
( j )
Re

��

d D
�

+
s
∑

j=0

�

∫

D

∇u
( j )
Im ·∇λ

( j )
Imd D −

∫

∂ D

k0u
( j )
Reλ

( j )
Imd ∂ D

−
∫

D

�

λ
( j )
Im

�

k 2
0 (1+q w )u ( j )Im+k 2

0 q w ū
( j )
Im

��

d D
�

.

(4.12)

In the final form (4.12), we assume that u
( j )
Re , u

( j )
Im ∈H 1(D ), where H 1(D ) :=W 1,2(D ) is the Sobolev

space of all functions that are L 2(D ) (square integrable) and whose weak partial derivatives, in the

sense of distributions, is also in L 2(D ) [86]. To find the sensitivities of the objective function,J , with

respect to v , we exploit the fact that there exists a unique w for any choice of v and that (under

suitable conditions on k0) there exists a unique u for any v . We start by deriving the weak state

equations, which are obtained by taking variations of the Lagrangian with respect to λ̃
( j )
Re , λ̃

( j )
Im and
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setting the resulting expression to zero:

L
λ
( j )
Re
[λ̃( j )Re] =

∫

D

∇u
( j )
Re ·∇λ̃

( j )
Red D +

∫

∂ D

k0u
( j )
Imλ̃

( j )
Red ∂ D (4.13)

−
∫

D

λ̃
( j )
Re

�

k 2
0 (1+q w )u ( j )Re +k 2

0 q w ū
( j )
Re

�

d D

= 0 ∀λ̃( j )Re ∈H 1(D ),∀ j = 0, ..., s

L
λ
( j )
Im
[λ̃( j )Im] =

∫

D

∇u
( j )
Im ·∇λ̃

( j )
Imd D −

∫

∂ D

k0u
( j )
Re λ̃

( j )
Imd ∂ D (4.14)

−
∫

D

λ̃
( j )
Im

�

k 2
0 (1+q w )u ( j )Im+k 2

0 q w ū
( j )
Im

�

d D

= 0 ∀λ̃( j )Im ∈H 1(D ),∀ j = 0, ..., s .

We note that the weak state equation pair has a unique solution in H 1(D ) [41]. Once we have solved

this state equation pair, we can then calculate the adjoint pairs, (λ j
Re,λ

j
Im), by solving the weak adjoint

equations obtained by taking variations of the Lagrangian with respect to ũ
( j )
Re , ũ

( j )
Im and setting the

resulting expression to zero:

L
u
( j )
Re
[ũ ( j )Re ] =

1

|Θ(s )|

∫

D0

�

u
( j )
Re + ū

( j )
Re

�

ũ
( j )
Re d D0 (4.15)

+

∫

D

∇ũ
( j )
Re ·∇λ

( j )
Red D −

∫

D

λ
( j )
Rek 2

0 (1+q w )ũ ( j )Re d D

−
∫

∂ D

k0ũ
( j )
Reλ

( j )
Imd ∂ D

= 0 ∀ũ
( j )
Re ∈H 1(D ),∀ j = 0, ..., s

L
u
( j )
Im
[ũ ( j )Im] =

1

|Θ(s )|

∫

D0

�

u
( j )
Im+ ū

( j )
Im

�

ũ
( j )
Imd D0 (4.16)

+

∫

D

∇ũ
( j )
Im ·∇λ

( j )
Imd D −

∫

D

λ
( j )
Imk 2

0 (1+q w )ũ ( j )Imd D

+

∫

∂ D

k0ũ
( j )
Imλ

( j )
Red ∂ D

= 0 ∀ũ
( j )
Im ∈H 1(D ),∀ j = 0, ..., s .

The proof for the existence and uniqueness of the solution to general elliptic equations with Robin

boundary conditions in H 1(D ) can be found in chapter 4 of [86] and extends to the adjoint equation

pair, which differs from the state equation pair only in its source term. An argument similar to [41]

can then be applied to show the existence and uniqueness of the solution to the adjoint equation.
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After we have calculated the state and adjoint variables for all scenarios, we can assemble the

nth component of the gradient of the Lagrangian with respect to vn :

�

∇vL
�

n
=−

s
∑

j=0

∫

Ω̂n

�

k 2
0 q (u ( j )Reλ

( j )
Re +u

( j )
Imλ

( j )
Im) +k 2

0 q (ū ( j )Reλ
( j )
Re + ū

( j )
Imλ

( j )
Im)
�

d Ω̂n . (4.17)

One can be show, as illustrated in [97],

Lv [ṽ ] = 〈∇vL , ṽ 〉RN = 〈Ĵ ′(v ), ṽ 〉RN ∀ṽ ∈RN . (4.18)

Following Lemma 2.21 [97],

�

Ĵ ′(v ∗)
�T

(v − v ∗)≥ 0 ∀v ∈V = {v : 0≤ v ≤ 1, v ∈RN } (4.19)

are the necessary optimality conditions of the reduced space formulation,

minimize
0≤v≤1

Ĵ (v ) =
1

2|Θ(s )|

s
∑

j=0

‖Sθ j
(v ) + ū ( j )‖2

2,D0
, (4.20)

with Sθ j
being the solution operator of the state equation Sj : v → u j for an angle of attack θ j .

4.2.4 Solving the Continuous Optimal Design Problem

In the previous section we have described the infinite-dimension optimal design problem, and

derived optimality conditions in function space. In this section we describe our discretization and

then show how we solve the continuous design problem using a reduced-space method.

4.2.4.1 Discretization of State and Adjoint Equations

Here we show how to solve discretizations of the state and adjoint PDEs and compute gradients

(discretized) that can be used in a reduced-space approach. To solve the state and adjoint PDEs we

use a continuous Galerkin FEM [66]. We decompose our physical domain D into a computational

domain made up of uniform triangle elements, Ei , with length and height h as illustrated in Figure 4.2,

such that

D =
⋃

i

Ei and
�

Ei \ ∂ Ei

�

∩
�

E j \ ∂ E j

�

= ;, ∀i 6= j . (4.21)

We also assume that each control element Ωn covers a fixed number of finite elements Ei , as shown

in Figure 4.2.
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Figure 4.2 An illustration of the state and adjoint FEM discretization. Each control element (blue) is
composed of eight triangular finite elements. In the FEM approach we represent each control element as a

constant with value vn . The state and adjoint variables are defined on the finite-element mesh.

We construct an approximate solution to the state and adjoint variables using piecewise linear

test functions on our finite elements, giving linear test functions that have compact support on their

element. We then approximate the solution by a linear combination of the test functions for the j th

scenario:

u
h , j
Re =

R (h )
∑

i=1

ui , j
Reφi u

h , j
Im =

R (h )
∑

i=1

ui , j
Imφi (4.22)

λ
h , j
Re =

R (h )
∑

i=1

λ
i , j
Reφi λ

h , j
Im =

R (h )
∑

i=1

λ
i , j
Imφi , (4.23)

where u j
Re, u j

Im,λ
j
Re, and λ

j
Im are the coefficient vectors of our expansion that are determined by the

FEM (we use boldface to indicate finite-dimensional vectors in the remainder). Here, R (h ) is the

number of elements in the discretization for a fixed step size h .

We choose a piecewise linear FEM basis. Recall that solving the Helmholtz equation with trian-

gular elements gives an error order of p +1; this result can be found in chapter two of [66], where

p is the order of polynomial used in the approximation over the triangular elements. Thus, with

piecewise basis function, we obtain second order error, O (h 2).

Given a v (and hence, w ), we substitute (4.22) and (4.23) into (5.11), (5.12), (5.13), and (5.14).

This approach allows us to find the coefficients by solving a linear system of equations that defines

our approximate solution to the state and adjoint equations over the domain D . The resulting linear
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systems of equations (for fixed v ) is obtained by substituting our trial solution into the real and

imaginary state equations
�

A(v ) B(v )

−B(v ) A(v )

��

u j
Re

u j
Im

�

=

�

f j
Re(v )

f j
Im(v )

�

(4.24)

for the j th angle of attack, where

�

A(v )
�

i ,l
=

∫

D

∇φi ·∇φl d D +

∫

∂ D

k0φiφl d ∂ D

−
∫

D

k 2
0

�

1+q
� N
∑

n=1

vn1Ωn\∂ Ωn

��

φiφl d D ,

�

B(v )
�

i ,l
=

∫

∂ D

k0φiφl d ∂ D ,

�

f j
Re(v )

�

i
=

∫

D

k 2
0 q
� N
∑

n=1

vn1Ωn\∂ Ωn

�

ū
( j )
Reφi d D ,

and

�

f j
Im(v )

�

i
=

∫

D

k 2
0 q
� N
∑

n=1

vn1Ωn\∂ Ωn

�

ū
( j )
Imφi d D .

Next we write down the systems for the adjoint variables associated with the real and imaginary

adjoint equations. We note that the weak adjoint equations depend on the solution to the state

equations. In the discretized adjoint equations we use the discretized solution found by solving the

state equations as an approximation to the state. The system for the adjoint variables is

�

A(v ) −B(v )

B(v ) A(v )

��

λ
j
Re

λ
j
Im

�

=

�

g j
Re(v )

g j
Im(v )

�

(4.25)

for the j th angle of attack, where

�

g j
Re(u )

�

i
=−

1

|Θ(s )|

∫

D0

�

u
h , j
Re + ū

( j )
Re

�

φi d D0

78



and

�

g j
Im(u )

�

i
=−

1

|Θ(s )|

∫

D0

�

u
h , j
Im + ū

( j )
Im

�

φi d D0

is an affine function in the states, u .

Once we have found the solution to the state and adjoint equations, we construct an approxi-

mation of the nth component of the reduced gradient,
�

J ′
(v )

�h

n
, by using a tensorized two-point

Gauss-Legendre quadrature rule:

�

∇v Ĵ h (v )
�

n
=−

s
∑

j=0

∫

Ω̂n

�

k 2
0 q (u h , j

Re λ
h , j
Re +u

h , j
Im λ

h , j
Im ) +k 2

0 q (ū h , j
Re λ

h , j
Re + ū

h , j
Im λ

h , j
Im )

�

d Ω̂n . (4.26)

When we approximate both the components of the reduced gradient and the objective function we

obtain an error of the order O (h 2), which is consistent with the discretization error of the state and

adjoint equations.

4.2.4.2 Reduced-Space Method for Continuous Design

The derivation in the proceeding section shows that we can write the finite-dimensional approxi-

mation of (4.4) as

minimize
v∈[0,1]N

Ĵ h (v ) =
1

2|Θ(s )|

s
∑

j=0

‖S h
θ j
(v ) + ū

( j )
h ‖

2
2,D0

, (4.27)

where S h
θ j
(v ) is the solution operator for the FEM mesh of size h given by system (4.24) with angle θ j .

The derivation of the reduced gradient,∇v J h (v ), is given in (4.26), and we apply a reduced-space

optimization approach using a quasi-Newton approximation of the Hessian.

We note that the structure of the discretized state and adjoint equations (4.24) and (4.25), respec-

tively imply that this optimization problem is nonconvex, because the state equations are bilinear

in v and u . We investigate the effect of this nonconvexity further in Section 4.2.6.

4.2.5 Solving the Mixed-Integer Design Problem

The finite-dimensional approximation of the nominal (single angle) and uncertain (multiple angle)

MIPDECO (4.4) and (4.6), respectively, become finite-dimensional pure integer nonlinear optimiza-

tion problems:

minimize
v∈{0,1}N

Ĵ h (v ) =
1

2
‖S h
θ (v ) + ūh‖2

2,D0
(4.28)

and

minimize
v∈{0,1}N

Ĵ h (v ) =
1

2|Θ(s )|

s
∑

j=0

‖S h
θ j
(v ) + ū

( j )
h ‖

2
2,D0

, (4.29)
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respectively, where S h
θ (v ) is the solution operator defined in (4.24).

In this work, we are not concerned with the existence of the optimal solution as we refine the

control mesh. Instead, we keep the control mesh fixed, so that we always minimize over the same

integer space {0,1}N . This restriction ensures that the solution to the weak forward and adjoint

system exist, and can be consistently approximated using the FEM discretization.

The structure of (4.28) and (4.29) involving the solution operators S h
θ (v )makes it difficult to apply

the standard MINLP solvers (e.g., [2, 10, 72]) that require analytic expressions for all the functions.

One approach might be to include the discretized PDEs (4.24) and (4.25) directly as constraints.

However, we found on other MIPDECOs that such an approach does not provide a MINLP that can

be solved by modern MINLP solver in a reasonable time. Hence we consider a heuristic approach,

described next.

Our approach for solving the MIPDECOs, (4.28) and (4.29), is a two-phase method. We first solve

a relaxation, (4.20) and then round its solution. We apply a discrete steepest-descent trust-region

approach to improve this rounded solution. Our approach builds on the method in [37] and can

be interpreted as a rounding heuristic followed by repeated application of local branching [32,

79]. Unlike local branching, however, we use only first-order information to solve a sequence of

approximations enforcing descent from one iteration to the next. As a result, each trust-region

subproblem requires the solution of the discretized forward and adjoint PDEs, (4.24) and (4.25),

respectively, making it computationally efficient for MIPDECOs. Moreover, the trust-region problem

itself can be formulated and solved efficiently as a knapsack problem.

4.2.5.1 Rounding Heuristic

After solving the relaxation, we use a rounding heuristic with rounding threshold τ,

Rτ(vn ) =







1 vn ≥τ

0 vn <τ.
(4.30)

A popular rounding heuristic is τ= 0.5 [6, 70]. However, we chose τ= 0.8. We have observed in our

numerical computation that using this value of τ yields an objective value that is at least 10 percent

lower than using τ= 0.5.

4.2.5.2 Steepest-Descent Trust-Region for MIPDECO

Here we describe our steepest-descent trust-region approach to improve the rounded solution. Our

approach is related to the local branching heuristic [32, 79], but it neither backtracks nor uses the

full nonlinear relaxation. Instead, we only require the solution of the state and adjoint equations

to make progress and solve a knapsack problem at each iteration. The approach is motivated by
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[37]. The trust-region algorithm can use any feasible point v ∈ {0, 1}N as a starting guess. However,

we create our starting guess from using our rounding scheme from 4.2.5.1 on the solution found

by solving continuous relaxation,(4.20). The algorithm on the k th iteration then tries to produce a

better design on each iteration by varying the trust-region radius,∆k , at most∆k elements of v (k ) to

improve the cloaking capability of our design. The algorithm terminates once∆k < 1, which means

that no local improvement could be found and reducing∆k further would not yield a better point.

The algorithm is shown in Algorithm 1.

Given initial trust-region radius∆0 = ∆̄≥ 1 and initial guess v (0) ∈ {0, 1}N
Select an acceptance step parameter ρ̄, and set k ← 0
Evaluate the objective function Ĵ (k )h = Ĵ h (v (k )) and the gradient g (k )h =∇v Ĵ h (v (k ));
while∆k ≥ 1 do

Solve the trust-region (knapsack) subproblem for bv :

bv = argmin
v

g (k )
T

h

�

v − v (k )
�

+ Ĵ (k )h

subject to ‖v − v (k )‖1 ≤∆k

v ∈ {0, 1}N

;
Evaluate the objective Ĵh (bv , u (bv )) by solving state equations with bv ;

Compute the ratio of actual over predicted reduction: ρk =
Ĵ (k )− Ĵ (bv ,u (bv ))

−
�

g (k )
�T �

bv−v k
� ;

if ρk > ρ̄ then
Accept the step: v (k+1) = bv , and evaluate the gradient g (k+1) = Ĵ ′(v (k+1))
if ‖v (k+1)− v (k )‖1 =∆k , then increase the trust-region radius∆k+1 = 2∆k ;

else if ρk > 0 then
Accept the step v (k+1) = bv , and evaluate the gradient g (k+1) = Ĵ ′(v (k+1))
Keep trust-region radius unchanged∆k+1 =∆k

else
Reject the step, set v (k+1) = v (k ), and copy the gradient g (k+1) = g (k )

Reduce the trust-region radius∆k+1 = floor
�

∆k
2

�

;

Set k ← k +1;

Algorithm 1: Steepest-Descent Trust-Region Algorithm.

We interpret Algorithm 1 as a trust-region method for solving MIPDECOs. We choose the l1-

norm trust-region because it is equivalent to the hamming distance between v and v (k ), and hence

floor
�

∆k

�

corresponds to the maximum number of components of v that can change from their
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current value v (k ). One can see easily that the trust-region constraint ‖v − v (k )‖1 ≤∆k is equivalent

to the following affine constraint

N
∑

i=1
v (k )i =0

vi +
N
∑

i=1
v (k )i =1

(1− vi )≤∆k , (4.31)

resulting in a knapsack constraint. The step acceptance and step rejection criteria are taken directly

from the nonlinear trust-region method; see, for example [80] in chapter four.

Our approach is motivated by [38] in which the authors present a convergence analysis for

refining a sequence of control meshes. We empirically evaluate the performance of our algorithm in

the next section.

4.2.6 Numerical Experiments

In this section we describe our experience in solving the nominal cloak design (4.28) and the cloak

design under uncertainty (4.29). We start by stating the common features of both experiments. We

examine the convexity properties of our design problem and then finally present the results for the

nominal and uncertain design in turn.

4.2.6.1 Experimental Setup

We consider the cloaking of three different domains D 1
0 , D 2

0 , and D 3
0 given by

D 1
0 = {x , y | −0.6≤ x ≤ 0.6 0.7≤ y ≤ 1} (Rectangle)

D 2
0 = {x , y | 0.7≤ x ≤ 1 0.7≤ y ≤ 1} (Square)

D 3
0 = {x , y | (x − .85)2+ (y − .85)2 ≤ (.1)2} (Circle).

(4.32)

We run all our tests using a MacOS desktop with a 4-core Intel processor working at 3.3 GHz.

We use the FEniCS package in Python [5] version 2017.2.0 to solve the state and adjoint PDEs using

piecewise linear basis functions. In addition we use the FEniCS default two-point Gauss quadrature

method to build the components of the gradient. To solve the relaxation, we use the Toolkit for

Advanced Optimization (TAO) [22]with the “blmvm" solver, which is a limited-memory line-search

quasi-Newton method for solving bound-constrained problems. We use CPLEX 12.8.0.0 to solve

our trust-region knapsack problem. In our trust-region method, we use ρ̄ = .75, as recommended

by [80]), and an initial trust-region radius of∆0 = 256. All numerical experiments use the following

set of common parameters: wave number k0 = 6π, material constant q = 0.75, and cloak location
ÒD ⊂D , where

D =
�

−1, 1
�

×
�

−1, 1
�

and ÒD =
�

−
5

8
,

5

8

�

×
�

−
5

8
,

5

8

�

. (4.33)
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Preliminary numerical simulations indicate that a 128×128 finite-element mesh provides a good

balance between an efficient solution of the state and adjoint equations and a reliable gradient

evaluation. We create six test problems each for the nominal and uncertain design by taking the

three cloaking regions from (6.3) and two angles of attack for each region, namely, θ = π4 and θ = π2 in

the nominal design. In the case of the design under uncertainty, we consider the same two nominal

angles with an uncertainty set of ±π4 , giving θ ∈
�

0, π2
�

and θ ∈
�

π
4 , 3π

4

�

, respectively.

4.2.6.2 Effect of the Nonconvexity

We investigate the nonconvexity of our optimal design problem in the following experiment. We

first define a parametric function w : [0, 1]→ L 2(Ω̂),

w (t )(x , y ) = t w1+ (1− t )w2, (4.34)

where

w1 =
N
∑

n=1

v 1
n1Ωn\∂ Ωn

, w2 =
N
∑

n=1

v 2
n1Ωn\∂ Ωn

, (4.35)

for the particular choice

v 1
n =







1 n even

0 n odd
and v 2

n =







1 n odd

0 n even.
(4.36)

It follows that 0≤w (t )≤ 1, ∀t ∈ [0,1], and thus w (t ) is a feasible point for the relaxation. We then

discretize the interval [0, 1] into 100 discrete points, t1, ..., t100, calculate w (ti ) for i = 1, .., 100, and nu-

merically solve the PDE constraint in (4.4) using w :=w (ti ). Next, we evaluate the objective J h (w (t ))

on a 128×128 mesh and plot J h (w (t )) versus t for the circle, square and rectangle geometries (we

define these in Section 4.2.6) for θ = π
4 , π2 , for a 20× 20 cloak to demonstrate that the objective

function is nonconvex; see Figure 4.3.

In all cases we see that the objective function is a nonconvex function of t . Because of this

nonconvexity, our quasi-Newton yields only a local minimum. Consequently, we cannot guarantee

that the objective associated with the solution of the relaxation found is a valid lower bound on the

integer solution. In fact, we observe that even the rounding step can improve/reduce the objective

value.

4.2.6.3 Results for the Nominal Problem

Next, we evaluate how well the trust-region method performs from random starting points for all

cloaking domains on a 20×20 mesh and a 40×40 control mesh. For each instance, we create 25
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(b) Square with θ = π
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(c) Rectangle with θ = π
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(f ) Rectangle with θ = π
2 .

Figure 4.3 Nonconvexity of the objective function for a single angle of attack.

random samples of v ∈ {0, 1}N , solve for the state, and plot the corresponding objective value. We

then use each of these samples v as a starting guess for our trust-region method, with θ = π4 , and

plot the objective at the end. The results are shown in Figure 4.4.

We observe that not only has the trust-region method reduced the objective function value in

all cases but also that the variance of the final objective value, is significantly lower. We include

a summary of the comparison in Table 4.1. We conclude that the trust-region method helps de-

sign competitive cloaking devices. We have observed similar behavior also in our designs under

uncertainty.

Next, we investigate solving the relaxation of (4.28), with TAO for the rectangular domain with

θ = π2 for the 20×20 and the 40×40 control mesh (Figures 4.5a and 4.5b respectively). We note that

both the objective function value (Figures 4.5c and 4.5d) and the norm of the projected gradient

(Figures 4.5e and 4.5f) are reduced; in both cases, TAO reduces the projected gradient below 10−3.

We also note that the optimal solution for both mesh sizes is similar.

Next, we apply our rounding strategy (4.30) to obtain a rounded solution to use as a feasible

starting point for our trust-region method. Our numerical results in Table 4.1 demonstrate that

starting the trust-region method with an initial starting point of the rounded relaxation yields a lower

objective value when compared to starting the trust-region method from a randomly generated
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(a) 20×20 nominal.
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(b) 40×40 nominal.

Figure 4.4 Trust-region method applied to 25 randomly generated samples for θ = π
4 and three cloaking

domains. The solid lines show the objective function value at initial guess and the dashed lines of the
corresponding color show the objective value after the trust-region method terminated.

design.

Table 4.1 Comparison of the trust-region method final objective when starting from a random initial binary
cloak versus starting from a cloak yield by rounding the continuous relaxation. We report the sample

objective that was the lowest amoung the 25 samples

Problem Instance
Domain Control Trust-Region Sample Trust-Region Rounded

D 1
0 20×20 0.1201 0.0168

D 2
0 20×20 0.0134 0.0052

D 3
0 20×20 0.0015 0.0011

D 1
0 40×40 0.1081 0.0163

D 2
0 40×40 0.0101 0.0032

D 3
0 40×40 0.0013 0.0010

Next we investigate the value of solving the relaxation. Our numerical experiments demonstrate

that starting the trust-region method with an initial starting point of the rounded relaxation yields a

lower objective value when compared to starting the trust-region method from a randomly generated

design. We demonstrate this for θ = π
4 in Table 4.1 for the both 20× 20 and 40× 40 cloak on all

geometries. We take the smallest objective from the result of our trust-region method after initializing

the method with 25 different samples, as illustrated in Figure 4.4. We also solve the MIPDECO
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(a) 20×20 Relaxation.
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(b) 40×40 Relaxation.
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Figure 4.5 TAO relaxation results on the rectangular region with θ = π
2

for 20×20 control mesh (left column) and 40×40 control mesh (right column).
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relaxation, round it, then apply our trust-region algorithm to determine the objective value. We

observe that in all cases the objective function value obtained by starting with the rounded relaxation

is always lower than the lowest objective function value obtained by starting from 25 random samples.

In the case of the circle geometry, we see only slight gain in using the rounded relaxation when

compared to the sampling approach, however, in the case of the square and rectangle geometries we

see that the objective function value is an order of magnitude smaller using the rounded relaxation

as a starting iterate versus sampling.

Even though the relaxation takes a considerable amount of time to solve and sampling might

appear attractive, we note that the size of the design space for a 20×20 and 40×40 control mesh is

2400 and 21600, respectively, making it unlikely that sampling can beat the rounded relaxation. The

success of our algorithm when started from the rounded relaxation solution is an indication that

our trust-region approach may be able to find good local solutions in this application.
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Figure 4.6 log10 of ||ūθ ||L 2(D0) (the unscattered field) for θ = π
4 and θ = π

2 .

In Figures 4.7e and 4.7f we show a log10 plot of the scattering field, log10(|u + ūθ |), and show that

we reduce the integrand of the objective value in the region of interest to a small value. In addition,

the gradient over the cloaking region, as shown in Figures 4.7c and 4.7d, is small, indicating that

we have found a local optimum to (4.28). The unscattered field in the log10 scale is shown in Figure

4.6, when there is no cloak present (v = 0). When we compare the scattering field produced by our

cloaks in Figure 4.7e and 4.7f with the unscattered field in Figure 4.6 we observe that our cloak

achieves pointwise scattering in a large portion of the rectangular domain to a value on the order of

10−4. Without a cloak the domain has a scatter value on the order of one, demonstrating that our

cloaks are successful at manipulating the incoming incident wave to minimize scattering in our

rectangular domain and inducing cloaking ability. We also observe that the final integer cloak is

quite similar to the relaxation, which indicates the relaxation is a good initial guess.
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(a) Solution: 20×20.
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(b) Solution: 40×40.
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Figure 4.7 Results of the trust-region method applied to the rounded relaxation for θ = π
2 for cloaking

domain D 1
0 .
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We also compare the final discrete design in Figure 4.7 to the solution of the continuous relaxation

in Figure 4.5. We note that the two designs are very similar, which we take as a further indication

that our approach is able to find good-quality cloaking designs.

In Figure 4.8 we show the progress of our trust-region method in terms of objective function

values and trust-region radii as a function of iteration for the 20×20 and 40×40 control meshes. We

observe that our trust-region method is successful at reducing the incumbent objective function for

the small trust-region radii regime, making steady improvement.
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Figure 4.8 Trust-region progress for 20×20 and 40×40 control mesh.

In Tables 4.2 and 4.3 the first column shows the domain and the second column shows the size of

the control mesh. We report the CPU time in seconds for our trust-region method in Tables 4.2 and

4.3 for the nominal angle θ = π4 and θ = π2 , respectively. The tables summarize the computational

effort required to solve the MIPDECO. The first three measures show the CPU time of the relaxation

solve, the CPU time of the forward (state), adjoint and gradient computation, and the CPU time

of the knapsack solve. The CPU time for PDEs/gradient includes computational effort required to

build w (v ). We include this to highlight the additional computational time required going from

20×20 to 40×40 cloak elements, because of the size of each of the respective gradients.

We observe from Tables 4.2 and 4.3 that the computation time for solving the knapsack problems,

denoted as MIPs, is negligible. We also observe that the number of trust-region iterations required

to meet our termination condition is modest. The trust-region methods time is divided into the

amount of time it takes to solve the PDEs, build the gradient, and then solve the knapsack problem.

We note that the number of iterations required to solve (4.28) grows only moderately as we increase

the control mesh from 20×20 to 40×40, even though the design space grows exponentially.

In Table 4.4 we report numerical values of the objective associated with the nominal angles

θ = π
4 and θ = π

2 . The table contains three values: the relaxed objective, Ĵ (u relax), the rounded

89



Table 4.2 CPU times(s) for nominal relaxation and PDE solves, as well as trust-region computation on the
128×128 mesh with θ = π

4 .

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D 1
0 20×20 302.48 98.23 0.26 15 1

D 2
0 20×20 125.93 122.85 0.59 20 5

D 3
0 20×20 35.27 121.39 0.42 20 9

D 1
0 40×40 1497.04 420.39 0.51 20 3

D 2
0 40×40 141.06 1789.25 1.48 79 7

D 3
0 40×40 196.24 1405.30 1.42 68 11

Table 4.3 CPU times(s) for nominal relaxation and PDE solves, as well as trust-region computation on
128×128 mesh with θ = π

2 .

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D 1
0 20×20 76.53 60.31 0.16 11 13

D 2
0 20×20 41.77 84.77 0.22 17 17

D 3
0 20×20 31.43 89.12 0.17 18 21

D 1
0 40×40 202.40 917.72 1.06 40 15

D 2
0 40×40 86.24 671.36 0.72 41 19

D 3
0 40×40 56.55 872.90 0.98 50 23
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relaxation objective function value, Ĵ (u round), and the trust-region objective function value Ĵ (u trust).

In all simulations we are able to reduce the objective for the circle and square cases to a reasonably

small value. The objective associated with the rectangle is much larger by comparison, which is due

to its having a larger area. We see in several cases that our trust-region method is able to reduce

the objective value. We observe that the relaxed objective function value does not always give a

lower bound on the solution. In fact, in some cases, simply rounding already reduces the objective

function value. We believe that this behavior is a result of the nonconvexity of our problem.

Table 4.4 Objective function values for nominal problem.

Problem Instance θ = π4 θ = π2

Domain Control
Relaxed

Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

Relaxed
Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

D 1
0 20×20 0.0142 0.0321 0.0168 0.0010 0.0017 0.0012

D 2
0 20×20 0.0054 0.0077 0.0052 0.0032 0.0097 0.0036

D 3
0 20×20 0.0015 0.0014 0.0011 0.0002 0.0126 0.0017

D 1
0 40×40 0.0168 0.0219 0.0163 0.0029 0.0030 0.0007

D 2
0 40×40 0.0068 0.0077 0.0032 0.0039 0.0187 0.0031

D 3
0 40×40 0.0019 0.0016 0.0010 0.0010 0.0126 0.0008

4.2.6.4 Results for the Uncertainty Problem

We now present our results for (4.29). In Figure 4.9 we compare the design found for the 40×40

instance for a nominal angle of θ = π4 and the design found from solving the uncertainty problem for

15 angles on
�

0, π2
�

for D 1
0 , D 2

0 , and D 3
0 . Similar results for the nominal angle of θ = π2 can be found

in the electronic supplement .1. We see a clear difference in design for the rectangle geometry.

In 4.5 and 4.6 we repeat the computational effort required to solved the uncertainty simulation

for 15 angles. We again take v (0) = 0.5 as a starting guess in TAO. As in the nominal case, solving

the relaxation takes the most computational effort compared with the trust-region method. Even

though more angles are present in the uncertainty problem, the number of trust-region iterations

does not increase drastically. As in the nominal case, the computational time in the trust-region

method is dominated by solving the PDEs and constructing the gradient, not by solving the knapsack

problems. Another similarity is the number of iterations required by our trust-region method, which

increases modestly as we go from optimizing over 20×20 integer variables to 40×40. The number

of trust-region iterations is not dependent on the number of angles since we see similar iteration

counts between a single angle and 15 angles. In the electronic supplement .1 we include plots for all
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(a) Rectangle nominal 40×40.
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(b) Rectangle uncertain 40×40.
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(c) Square nominal 40×40.
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(d) Square uncertain 40×40.
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(e) Circle nominal 40×40.
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(f ) Circle uncertain 40×40.

Figure 4.9 Cloak designs due to 15 uniformly distributed θ ∈
�

0, π2
�

and nominal angle π
4 .
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numerical simulations.

Table 4.5 CPU times(s) for uncertain relaxation, PDE/gradient calculation and knapsack problem on
128×128 mesh for 15 angles where θ ∈

�

0, π2
�

.

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D 1
0 20×20 1094.43 690.49 0.31 19 2

D 2
0 20×20 158.04 762.72 0.34 23 6

D 3
0 20×20 121.82 418.73 0.11 13 10

D 1
0 40×40 1996.71 1005.43 0.23 18 4

D 2
0 40×40 355.67 2444.14 0.77 44 8

D 3
0 40×40 306.21 2664.15 0.79 48 12

Table 4.6 CPU times(s) for uncertain relaxation, PDE/gradient calculation and knapsack problem on
128×128 mesh for 10 angles where θ ∈

�

π
4 , 3π

4

�

.

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D 1
0 20×20 2093.23 430.97 0.18 17 14

D 2
0 20×20 137.17 430.98 0.16 17 18

D 3
0 20×20 135.26 361.15 0.13 14 22

D 1
0 40×40 2495.73 3900.51 0.91 61 16

D 2
0 40×40 326.36 3715.97 0.89 60 20

D 3
0 40×40 62.42 5986.25 1.64 105 24

In Table 4.7, we show the solution quality for the uncertain case. We see in many cases, similar to

the single angle case, that we are able to reduce the objective function value below the relaxed objec-

tive function value with our trust-region method. This is not unexpected because, as demonstrated

in Figure 4.3 for a single angle, our problem is nonconvex.

We also compare nominal design compares with the uncertainty design over a range of angles

for the circular domain. We define the function

f (θ̃ ) = Ĵ h (θ̃ ; v t r u s t ). (4.37)

We take the solution of the trust-region method from the nominal and the uncertainty case with a

given θ̃ , solve the state, and evaluate the objective value to obtain f (θ̃ ). We compare the nominal
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Table 4.7 Objectives for uncertain problem with 15 angles.

Problem Instance θ ∈
�

0, π2
�

θ ∈
�

π
4 , 3π

4

�

Domain Control
Relaxed

Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

Relaxed
Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

D 1
0 20×20 0.0927 0.0941 0.0902 0.0773 0.0770 0.0762

D 2
0 20×20 0.0106 0.0107 0.0083 0.0196 0.0210 0.0190

D 3
0 20×20 0.0042 0.0034 0.0028 0.0086 0.0093 0.0082

D 1
0 40×40 0.0818 0.0818 0.0077 0.0614 0.0647 0.0597

D 2
0 40×40 0.0111 0.0101 0.0071 0.0220 0.0220 0.0183

D 3
0 40×40 0.0043 0.0030 0.0017 0.0197 0.0126 0.0090

design for θ = π4 with the uncertainty design found using 5, 10, and 15 angles from the interval
�

0, π2
�

on the 20×20 and 40×40 control meshes, respectively. We evaluate f on θ̃ =
�

0, π2
�

by breaking the

interval into 100 sample points and then plot the resulting objective value as a function of θ , as

shown in Figure 4.10. We observe that the nominal design produces a lower objective value at π4
when compared to the uncertain designs, which is expected. However, when we move away from

the nominal angle, θ = π4 , we observe that the uncertain design preforms better than the nominal

design. We built the nominal design to cloak for a single angle, so it makes sense that it is superior to

the uncertain design at θ = π4 , which covers several angles. Similarly, because the uncertain design

was developed for several angles, it performs better across a range of angles.
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Figure 4.10 Comparison of nominal versus robust cloak design over a range of angles θ .
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4.3 Conclusions

In this chapter, we introduced a steepest descent trust-region method for MIPDECO using an

adjoint-based gradient. Our approach to MIPDECO is systematic and to our knowledge the first

OTD approach for MIPDECO. We first solve the continuous relaxation of the MIPDECO, then we use

a rounding heuristic to produce a feasible control for the MIPDECO. We use this feasible control as a

starting point for our trust-region method. We have shown that our approach produces minimizers

with lower objective function value when compared to the objective function value of minimizers

produced by random feasible starting guesses. Our numerical solutions have demonstrated that

our algorithm produces quality minimizers for our application problem and is, more importantly,

computationally problem. In fact the computational effort required to solve the integer portion of

the MIPDECO is negligible to the overall effort required to execute the trust-region algorithm.
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CHAPTER

5

A MIXED-INTEGER PDE-CONSTRAINED

OPTIMIZATION FORMULATION FOR

THE CONSTRUCTION OF

ELECTROMAGNETIC CLOAKS WITH

SEVERAL MATERIALS IN 2D

In this chapter we introduce a generalization of the cloaking problem from chapter 4. In this problem

we allow the cloak to be made out of several materials and constrain the maximum mass the cloak.

We study how the introduction of these constraints on the problem affect our trust-region algorithm

and the computational effort to solve the MIPDECO. We follow the same blueprint provided for

the single material problem. We introduce a rounding heuristic that maintains feasibility for this

application and we also introduce two continuations methods to improve our cloak designs. We

then present numerical results to show the effectiveness of the cloaks generated by our trust-region

and continuation approach, and compare these approaches.
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5.1 Introduction

The recent work of Haslinger [41] introduced a topology optimization problem for constructing

electromagnetic cloaks. The formulation assumes that the cloak is made out of a single material. In

our previous work in chapter 4, we posed a mixed-integer partial differential equation constrained

optimization (MIPDECO) formulation based on this topology optimization problem to design an

electromagnetic cloak. Our formulation accounted for uncertainty in the angle of attack of the

electromagnetic wave. Using a reduced-space formulation of MIPDECO for binary electromagnetic

cloaking, our method solved the continuous relaxation, rounded the solution, and used the rounded

solution as an initial starting point in a steepest-descent trust-region method. We chose to solve the

reduced-space problem using the optimize-then-discretize approach where we took advantage of

the adjoint equation associated with the MIPDECO to compute the gradient. In each iteration of the

trust-region method, only the weak state and adjoint equation were solved to update the gradient

for the trust-region problem. The trust-region subproblem is a binary knapsack problem that can be

solved quickly. Hence, our approach for solving MIPDECO problems can be viewed as sequentially

solving PDEs and mixed-integer programs. Our numerical results showed that our trust-region

method was computationally tractable and that the solutions provided effective cloaking ability.

Here, we introduce a generalized topology optimization problem based on Haslinger’s formu-

lation and on our previous work in chapter 4 that allows the electomagnetic cloak to be designed

from several different materials. We extend the single-material formulation from chapter 4 in two

important ways: (1) we allow multiple materials in the cloak with different material properties; and

(2) we add a mass constraint. The material used to build a cloak directly impacts the cost of the cloak,

which can create a financial incentive to build less massive cloaks. If the quality of the cloaking

ability is not adversely impacted, then there is no reason to build more massive cloaks. We add a

mass constraint to place an upper bound on the mass of the electromagnetic cloak.

To design an electromagnetic cloak from multiple materials, we let D ⊂R2 be the computational

domain and D0 ⊂D be the part of the domain we wish to cloak. We let ÒD ⊂D −D0 be the subregion

in which we can design the cloak and Ω̂⊂ ÒD be the topology of the cloak. Our interest is to minimize

the scattering that occurs in D0 to induce optical invisibility. We introduce the following topology

optimization problem to construct an optimal electromagnetic cloak out of p ≥ 1 materials while
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also enforcing an upper bound on the mass of the cloak:

minimize
u , q , Ω̂⊂ÒD

1

2
‖u + ūθ ‖2

2,D0

subject to −∆u −k 2
0

�

1+q1Ω̂
�

u = k 2
0 q1Ω̂ūθ in D ,

∂ u

∂ n
− i k0u = 0 on ∂ D ,

(q (x , y ),ρ(x , y )) ∈ {(0, 0), (q1,ρ1), . . . , (qp ,ρp )},
∫

Ω̂

ρ(x , y )d Ω̂≤C ,

(5.1)

where i =
p
−1, ∂ D is the boundary of the computational domain and

ūθ (x , y ) = e (i k0(x cos(θ )+y sin(θ ))) (5.2)

is the incidence wave in direction d = (cos(θ ), sin(θ )), and k0 is the wave number. The angle θ

at which the incidence wave approaches the cloak is measured from the x-axis and we refer to

θ as the angle of attack. The state variable u represents the electromagnetic field intensity. In

this formulation we allow the cloak to be made out of p materials. Each material has a relative

permittivity qi , with corresponding density ρi for i = 1, . . . , p . We measure the relative permittivity

to zero which corresponds to the uniform permittivity found outside of the cloak in D − Ω̂. The

parameter C serves as an upper bound for the cloaks mass. Because u , ūθ : R2 → C is complex

valued, we split u and ūθ into its real and imaginary parts, u = uRe+ i uIm and ūθ = ūRe+ i ūIm. We

view the problem in term of the real and imaginary parts instead of the complex valued quantities

u and ūθ .

We study how the introduction of several materials can improve cloaking ability and how much

of an impact the mass constraint has on the quality of the cloaking ability. The introduction of

this mass constraint makes the design problem more complex by adding an additional resource

constraint. In some instances, we have observed inconsistent optimal solutions as we vary the

upper bound on the mass, due to the nonconvexity of the objective function. Hence, we introduce a

continuation scheme to create a heuristic that improves the electromagnetic cloaks in a sequential

manner. We show that by using our continuation method, we obtain cloaks with improved cloaking

ability when compared to producing cloaks by means of only solving the relaxation, rounding,

and then applying our trust-region method. We provide numerical experiments and cloak designs

obtained from our approach and report the computational effort.

Chapter Outline: In Section 5.2, we define the infinite-dimensional MIPDECO for electromagnetic

cloaking. This formulation allows multiple materials to be used in the cloaking device and sets

an upper bound on the mass of the cloak. In Section 5.3, we derive the optimality conditions to
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produce an adjoint-based gradient in infinite dimensions using the formal Lagrangian approach

and we discuss the discretization of the state and adjoint equation and the gradient. In Section 5.4,

we introduce a rounding scheme that enforces our mass constraint. We then discuss a trust-region

method for MIPDECO with constraints on the control variable. Next we introduce our continuation

method. We provide numerical experiments in Section 5.5 to demonstrate the cloaking ability of

cloaks produced by our trust-region method and we comment on the computational effort to solve

our problems. We then conclude by summarizing our results in Section 5.6.

5.2 Multi-Material Electromagnetic Cloak

For our MIPDECO based on the topology optimization problem introduced in (5.1), we assume that

the cloak Ω̂ is a box. We then partition the cloak Ω̂ into a finite number of non-overlapping uniform

squares, Ω̂n , for n = 1, . . . , N . We refer to this partition as the control mesh and assume that

Ω̂=
N
⋃

n=1

Ω̂n and
�

Ω̂n \ ∂ Ω̂n

�

∩
�

Ω̂m \ ∂ Ω̂m

�

= ; for n 6=m .

We define two vectors, the relative permittivity vector q ∈Rp , p ≥ 1, which is relative to the uniform

permittivity found outside the cloak, D − Ω̂, and the density vector ρ ∈Rp :

q =













q1

q2
...

qp













, ρ =













ρ1

ρ2
...

ρp













. (5.3)

We define a decision vector v ∈ {0, 1}p N that defines the design of our cloak as

v =













v1

v2
...

vN













, where each vn =













v 1
n

v 2
n
...

v
p
n













, (5.4)

for n = 1, . . . , N control elements. We illustrate a sample design in Figure 5.1, where we have two

materials, yellow and red, and purple corresponds to no material. In this formulation we associate

the binary vector vn with the n-th control element Ω̂n by defining a material function, w (x , y ),

w =
N
∑

n=1

�

q T vn

�

1Ω̂n\∂ Ω̂n
=

N
∑

n=1

p
∑

i=1

qi v i
n1Ω̂n\∂ Ω̂n

. (5.5)
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Figure 5.1 An illustration of a 4×4 grid of control elements in which the goal is to cloak the region D0. In this
case D0 is a rectangle in the top region domain. We choose from two materials build our cloak in this

illustration.

To ensure that at most one type of material is selected in each control element, we add special-order-

set of type one (SOS1) constraints [30, 99, 100]:

p
∑

i=1

v i
n ≤ 1 ∀n = 1, . . . , N . (5.6)

If vn = 0 then we we place no material in the control element Ω̂n . This type of constraint has

been studied extensively and the structure of this constraint can be exploited when preforming

branch-and-bound.

In addition, we add a constraint on the the mass of the cloak. We compute the mass of the cloak

as the sum of the individual mass contributions from each Ω̂n :

m (v ) =
N
∑

n=1

�

∫

Ω̂n

p
∑

i=1

ρi v i
n d Ω̂n

�

=
N
∑

n=1

�

∫

Ω̂n

ρT vn d Ω̂n

�

=
N
∑

n=1

ρT vn |Ω̂n |, (5.7)

where

|Ω̂n |=
∫

Ω̂n

1d Ω̂n , (5.8)

and we add the constraint m (v )≤C . We experiment with different values of C to illustrate the effect

the mass constraint has on the optimal design and its cloaking ability. We now summarize our new
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MIPDECO formulation:

minimize
u ,v,w

J (u , v, w ) =
1

2|D0|
‖u + ūθ ‖2

2,D0

subject to −∆u −k 2
0 (1+w )u = k 2

0 w ūθ in D

∂ u

∂ n
− i k0u = 0 on ∂ D

w =
N
∑

n=1

�

q T vn

�

1Ω̂n\∂ Ω̂n

vn ∈ {0, 1}p ∀n = 1, . . . , N ,
p
∑

i=1

v i
n ≤ 1 ∀n = 1, . . . , N

m (v )≤C ∀n = 1, . . . , N ,

(5.9)

where C is an upper bound on the mass of the cloak. We note that (5.9) is a full-space formulation

of the MIPDECO. We established in chapter 4 that for any given v both the state u and control

function w are uniquely defined. Therefore, we solve a reduced-space formulation where instead of

optimizing over (u , v, w ), we optimize over v . The objective function of this reduced approach can

be viewed asJ (v ) =J (u (v ), v, w (v )). We can obtain the gradient efficiently using the adjoint-based

gradient [97]. We also introduce a scaling parameter |D0|=
∫

D0
1d D0 so that the objective function

value is normalized to accurately measure the quality of our cloak.

5.3 Optimality Conditions and Discretization

In chapter 4, we outlined how to obtain the gradient of the objective, ∇vJ (v ), by means of the

adjoint-based approach [97]. We omit the details here and provide a summary instead.
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To build the gradient, we pose the partial Lagrangian associated with (5.9):

L (uRe, uIm, v,λRe,λIm;θ )

=
1

2|D0|

∫

D0

�

uRe+ ūRe

�2
+
�

uIm+ ūIm

�2
d D0

+

∫

D

∇uRe ·∇λRed D +

∫

∂ D

k0uImλRed ∂ D

−
∫

D

�

λRe

�

k 2
0 (1+w )uRe+k 2

0 w ūRe

��

d D

+

∫

D

∇uIm ·∇λImd D −
∫

∂ D

k0uReλImd ∂ D

−
∫

D

�

λIm

�

k 2
0 (1+w )uIm+k 2

0 w ūIm

��

d D ,

(5.10)

where uRe, uIm are the solution to the real and imaginary part of the state equation, and λRe,λIm are

the adjoint (multiplier) variables associated with the real and imaginary state equation, respectively.

The reader may be curious why this Lagrangian does not take into account the SOS1 and mass

constraints. The reason is because these constraints do not contain the state variables, so they

have no contribution to the total derivative ∇vJ and we treat these constraints explicitly in the

reduced-space optimization problem. We follow our approach from chapter 4 to derive the weak

state and adjoint equations for our new formulation (5.9). The weak state equations are

0=LλRe
[λ̃Re] =

∫

D

∇uRe ·∇λ̃Red D +

∫

∂ D

k0uImλ̃Red ∂ D (5.11)

−
∫

D

λ̃Re

�

k 2
0 (1+w )uRe+k 2

0 w ūRe

�

d D ∀λ̃Re ∈H 1(D ),

0=LλIm
[λ̃Im] =

∫

D

∇uIm ·∇λ̃Imd D −
∫

∂ D

k0uReλ̃Imd ∂ D (5.12)

−
∫

D

λ̃Im

�

k 2
0 (1+w )uIm+k 2

0 w ūIm

�

d D , ∀λ̃Im ∈H 1(D ),
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and the weak adjoint equations are

0=LuRe
[ũRe] =

1

|Θ(s )|

∫

D0

�

uRe+ ūRe

�

ũRed D0

+

∫

D

∇ũRe ·∇λRed D −
∫

D

λRek 2
0 (1+q w )ũRed D (5.13)

−
∫

∂ D

k0ũReλImd ∂ D , ∀ũRe ∈H 1(D ),

0=LuIm
[ũIm] =

1

|Θ(s )|

∫

D0

�

uIm+ ūIm

�

ũImd D0

+

∫

D

∇ũIm ·∇λImd D −
∫

D

λImk 2
0 (1+q w )ũImd D (5.14)

+

∫

∂ D

k0ũImλRed ∂ D , ∀ũIm ∈H 1(D ).

Once we have solved for the state and adjoint variables we build each component of the gradient,

v i
n , by calculating the integral:

∇v i
n
J (v ) =−

∫

Ω̂n

�

k 2
0 qi (uReλRe+uImλIm) +k 2

0 qi (ūReλRe+ ūImλIm)
�

d Ω̂n ,

for n = 1, . . . , N and i = 1, . . . , p .

To solve the weak state and adjoint equations numerically, we discretize the infinite dimensional

equations using the finite-element method (FEM). We represent each solution to the weak state

and adjoint equations as a linear combination of piecewise linear basis functions, with a mesh

discretization parameter of h in both the x and y dimension. We denote these solutions for a fixed

h as u h
Re, u h

Im,λh
Re,λh

Im. We choose piecewise linear elements to obtain second-order accuracy in

the state and adjoint variable approximations, as discussed in chapter 4. Once we have solved for

the FEM approximation of the state and adjoint equations we produce a discretized gradient by

applying a two-point Gaussian quadrature rule to the following integral using the FEM solutions:

∇v i
n

J h (v ) =−
∫

Ω̂n

�

k 2
0 qi (u

h
Reλ

h
Re+u h

Imλ
h
Im) +k 2

0 qi (ū
h
Reλ

h
Re+ ū h

Imλ
h
Im)
�

d Ω̂n , (5.15)

for n = 1, . . . , N and i = 1, . . . , p . We call∇v J h the approximation to the true gradient∇vJ .
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5.4 Solving the Multi-material Cloaking Problem

In chapter 4, we introduced a steepest-descent trust-region method. In this approach we first solve

a continuous relaxation of (5.9). This relaxation of (5.9) relaxes v to be continuous, 0≤ v ≤ 1. Next

we take the relaxed solution and apply a rounding heuristic to obtain a feasible solution for (5.9).

Then we apply a discrete steepest-descent trust-region method to improve this rounded solution. A

continuation scheme is then provided to further improve the cloak designs.

5.4.1 A Rounding Heuristic for the Relaxation

Here, we present a deterministic rounding heuristic inspired by the feasibility pump, a heuristic

for obtaining good initial guesses for mixed-integer linear programming (MILP) and mixed-integer

nonlinear programming (MINLP) problems [1, 9, 11, 31, 33]. Let ṽ ∈ [0,1]p N and w̃ ∈ [0, qp ]N

be the solution of the relaxation of (5.9), and construct an integer feasible point, v ∈ [0,1]p N and

w ∈ {0, q1, . . . , qp }N , that is as close as possible to (ṽ , w̃ ). Letting wn = q T vn , where wn is the constant

value of w on Ω̂n , we formulate this problem as the following MILP:

minimize
v,w

||w − w̃ ||1

subject to wn = q T vn

N
∑

n=1

ρT vn |Ω̂n | ≤C

p
∑

i=1

v i
n ≤ 1 ∀n = 1, . . . , N

vn ∈ {0, 1}p ∀n = 1, . . . , N

w ∈RN

v ∈ {0, 1}p N .

(5.16)

We let our initial guess for our trust-region method be the solution (v, w ) of (5.16), which is the

point that has a feasible, discrete cloaking pattern defined by w̄ that is as close as possible to the

continuous relaxation.

We could use the `2-norm typically used in the feasibility pump in the objective. Unlike the full

feasibility pump, however, we solve only a single MILP to obtain our rounded initial guess instead

of a mixed-integer quadratic program that could take significantly more effort to solve.
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5.4.2 Steepest-Descent Trust-Region Method for MIPDECO

We generalize our trust-region method from chapter 4 to include additional constraints with Algo-

rithm 2. We decompose solving the MIPDECO into iteratively solving PDEs to obtain the gradients

and a binary linear program.

Given an initial trust-region radius,∆0 = ∆̄≥ 1, and an initial guess v (0) ∈ {0, 1}N
Select a acceptance step parameter ρ̄ > 0, and set k ← 0
Evaluate the objective function J (k )h = J h (v (k )) and the gradient g (k )h =∇v J h (v (k ));
while∆k ≥ 1 do

Solve the trust-region subproblem for bv :

bv =minimize
v

g (k )
T

h

�

v − v (k )
�

+ J (k )h

subject to ‖v − v (k )‖1 ≤∆k
p
∑

i=1

v i
n ≤ 1 ∀n = 1, . . . , N

m (v )≤C

v ∈ {0, 1}p N

Evaluate the objective Jh (bv , u (bv ) by solving the state equations with bv ;

Compute the ratio of actual over predicted reduction: ρk =
J (k )−J (bv ,u (bv ))

−
�

g (k )
�T �

bv−v k
� ;

if ρk > ρ̄ then
Accept the step: v (k+1) = bv and evaluate the gradient g (k+1) =∇v J h (v (k+1))
if ‖v (k+1)− v (k )‖1 =∆k then increase the trust-region radius∆k+1 = 2∆k ;

else if ρk > 0 then
Accept the step v (k+1) = bv and evaluate the gradient g (k+1) =∇v J h (v (k+1))
Keep trust-region radius unchanged∆k+1 =∆k

else
Reject the step, set v (k+1) = v (k ) and copy the gradient g (k+1) = g (k )

Reduce the trust-region radius∆k+1 = floor
�

∆k
2

�

;

Set k ← k +1;

Algorithm 2: Steepest-Descent Trust-Region Algorithm.

In every iteration of our trust-region method we begin by solving the discretized state equation

given a v (k ). Next we build the discretized adjoint system by substituting the approximate state

solution u h
Re, u h

Re and solve the adjoint system for λh
Re,λh

Re. Once we have the FEM approximation to
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the state and adjoint equations, we build the gradient (5.15) by applying a quadrature rule. We use

this gradient in our trust-region subproblem. The constraints in our application problem are linear,

so the trust-region subproblem is still a mixed-integer linear program (MILP).

5.4.3 Continuation Algorithm

We introduce a continuation method in Algorithm 3 that we use to attempt to improve on the design

of our cloaks. We do this for s different mass upper bounds C1, . . . , Cs that are ordered from least to

greatest. We introduce a sequence of l ≥ 1 control meshes Ω̂1, . . . , Ω̂l , in which the k -th control mesh

Ω̂k corresponds to a 2k−1Ñ × 2k−1Ñ mesh. We choose Ñ with the intention that this size would

produce the coarsest of the control meshes to be examined in our continuation method. We note

that this ordering implies the following two propositions:

Proposition 1. Any feasible solution of (5.9) on the control mesh Ω̂k is a feasible solution on Ω̂k+1.

Proof. The control mesh Ω̂k+1 is a relaxation of the control mesh Ω̂k . Therefore a feasible solution

for Ω̂k is a feasible solution for Ω̂k+1.

Proposition 2. Any feasible solution of (5.9) with mass upper bound Cl is feasible for a mass upper

bound Cl+1 ≥Cl .

Proof. A feasible solution v satisfies m (v )≤Cl ≤Cl+1, therefore m (v )≤Cl+1.

We start the algorithm by first solving the relaxation of (5.9), rounding with (5.16), and executing

our trust-region method on the coarsest mesh, with C =C1. We note there are many possible paths

for continuation, such as first along the control mesh and then along the mass upper bound, or first

along the mass upper bound and then along the control mesh. We illustrate these two continuation

paths in Figure 5.2. We choose the following orientation while performing continuation: moving left

to right corresponds to refining the control mesh, and moving from top to bottom corresponds to

increasing the mass upper bounds. We define a general list L :

L = ((Cl , Ω̂k )) for some l , k , (5.17)

which defines the sequence of problems to be solved. The order of the sequence determines the

continuation path taken and any order is acceptable as long as the feasible region of the previous

problem is a subset of the feasible region of the current problem. We assume the first problem in

the list corresponds to the coarsest mesh and the smallest mass upper bound.
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(a) Stage 1 continuation on the mass, then in stage 2
continuation on the control mesh.

(b) Stage 1 continuation on the control mesh, then in
stage 2 continuation on the mass.

Figure 5.2 5.2a: Continuation method with emphasis on continuation in control mesh size. Stage one of the
continuation is represented with black arrows and stage two of the continuation is represented by red lines.

5.2b: Continuation method with emphasis on continuation on the mass upper bound. Stage one is
represented with black arrows and stage two is represented with red arrows.

5.5 Numerical Experiments

We consider cloaking of an object in the region

D0 = {x , y | −0.6≤ x ≤ 0.6, 0.7≤ y ≤ 1} (Rectangle). (5.18)

We run all our experiments using a MacOS desktop with a four core Intel processor working at

3.3GHz. We use the FEniCS version 2017.2.0 package in Python [5] to solve the state and adjoint

PDEs using piecewise linear basis functions. We solve all the PDEs on a 128×128 FEM mesh using

triangular elements. In addition we use FEniCS’s default two-point Gauss quadrature method to

build the components of the gradient. To solve the relaxation we use the “trust-constr” solver in

SciPy [52], which is a trust-region method for optimization problems with constraints. For this solver,

we set the termination condition to be once the two-norm of the gradient is 10−4. We use CPLEX

12.8.0.0 when solving our trust-region subproblem and when applying our rounding heuristic (5.16)

to the relaxed solution of (5.9). In our trust-region method, we use ρ̄ = 0.75, as recommended by

[80] and an initial trust-region radius of∆0 = 256. All numerical experiments use the following set of

common parameters: wave number k0 = 6π and cloak location, ÒD ⊂D , where

D =
�

−1, 1
�

×
�

−1, 1
�

and ÒD =
�

−
5

8
,

5

8

�

×
�

−
5

8
,

5

8

�

. (5.19)

In Table 5.1, we list the material relative permittivity, density, and the color that we use for means

of plotting. If we choose to not place material in a region we color the cloak element blue. We let

the incidence wave approach the domain at angle θ = π
2 for all simulations. For our numerical
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Given list L of problems, (C1, Ω̂1)← pop(L ) // select first element of list
Using the trust-region method 2, solve (5.9) using the mass upper bound and control mesh
(C1, Ω̂1) to obtain trust-region solution v1,1.

while L is not empty do
(Cl , Ω̂k )← pop(L ) // select next element of the list
if vl ,k−1 solved then

Initialize the trust-region method starting point to be vl ,k−1 and solve (5.9) using
(Cl , Ω̂k ) to produce trust-region solution vl ,k . // continuation in the
control mesh

else
Initialize the trust-region method starting point to be vl−1,k and solve (5.9) using
(Cl , Ω̂k ) to produce trust-region solution vl ,k . // continuation in the mass
upper bound

Algorithm 3: Continuation Algorithm.

Table 5.1 Material relative permittivity, density and plotting color.

qi ρi Color
0.1875 1/6 Green
0.3750 1/2 Yellow
0.5625 2/3 Black
0.7500 1.0 Red

experiments we use mass upper bounds C1 = 0.30, C2 = 0.40, and C3 = 0.45, and we examine 10×10,

20×20, and 40×40 control meshes.

We experiment with both a single material and four materials. For the one material case, we use

the red material, and for the four material case we use all the materials in Table 5.1. In Section 5.5.1,

we establish if it is advantageous to build a cloak out of several materials versus a single material.

5.5.1 One Material

We first validate our model by comparing our results with the results from [41]. Next we conduct a

computational experiment that solves (5.9) with a single material using the approach by solving the

relaxation of (5.9), rounding the relaxation using (5.16), and performing our trust-region method

using the rounded relaxation as an initial starting point. We compare the objective values of solving

this problem with the mass constraint to our results in chapter 4, which did not constrain the mass

of the cloak, but did use the same material. We also report in this table the mass of the cloak. When

we examine the objective function values in Table 5.2 to the objective function values in chapter 4,

we observe that the objective values in Table 5.2 are an order of magnitude higher. Our conclusion
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Table 5.2 The trust-region solution objective function value for a given mass upper bound and control mesh
and the mass of the cloak. We solve the problem by solving the relaxation of (5.9) using one material, then

start our trust-region method with an initial guess generating by applying the rounding heuristic (5.16).

C
10×10 20×20 40×40

Objective Constraint Objective Constraint Objective Constraint
0.30 0.1001 0.2968 0.0379 0.2968 0.0194 0.2998
0.40 0.0549 0.3750 0.0278 0.3984 0.0080 0.3994
0.45 0.0541 0.4375 0.0175 0.4492 0.0139 0.4404

is that the introduction of the mass constraint can negatively affect the cloaking ability of the cloak.

We observe that for C = 0.30 and C = 0.40 the mass constraint is almost active. We make several

conclusions from Table 5.2. First, when C = 0.45, the mass constraint is not active in the local

solutions we find. As we solve the problem on more refined control meshes, we find lower objective

function values. This indicates that on more refined control meshes, where there is more choice in

the construction of the cloak, we are able to drive the objective function value lower. Second, we find

that when the upper bound for the mass is increased, there is an improvement in the cloaking ability.

In Figure 5.3, we show the designs produced by the trust-region method and in Figure 5.4 we show

the integrand of the objective function value of (5.9) on the computational domain for different

mass upper bounds and control meshes. We see that cloaking ability is improved as we refine the

control mesh. In Table 5.3 we report the computational effort required to solve the problem. When

we compare the computational effort incurred by the introduction of the mass constraint with

our results in chapter 4, we do not see a significant increase and the trust-region iterations are

comparable. This indicates that our trust-region method for MIPDECO is still computationally

tractable with linear constraints.

Table 5.3 CPU times in seconds when solving from scratch with one material including the PDE/gradient
calculations and knapsack problems on a 128×128 FEM mesh where θ = π

2 .

Solution CPU Time(s) Trust-Region Solution
C Control Relaxation PDEs Gradient MIPs Iterations Figure

0.30 10×10 707.64 40.13 26.03 0.23 11 5.3a,5.4a
0.30 20×20 12432.87 74.45 172.13 1.62 21 5.3b,5.4b
0.30 40×40 3750.88 231.97 2078.87 14.24 66 5.3c,5.4c
0.40 10×10 564.90 47.77 31.15 0.29 13 5.3d,5.4d
0.40 20×20 10072.67 70.88 163.72 1.23 20 5.3e,5.4e
0.40 40×40 82182.54 223.39 1999.44 12.40 64 5.3f,5.4f
0.45 10×10 393.83 43.21 28.79 0.27 12 5.3h,5.4h
0.45 20×20 10791.47 102.02 234.94 1.704 29 5.3g,5.4g
0.45 40×40 67686.60 170.82 1563.98 8.44 49 5.3i,5.4i
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(i) C = 0.45 N = 40.

Figure 5.3 Cloak designs obtained when solving from scratch with one material.
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(f ) C = 0.40 N = 40.
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(i) C = 0.45 N = 40.

Figure 5.4 Scattering field in log10 obtained when solving from scratch with one material.
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Figure 5.5 Cloak designs obtained when solving from scratch with four materials.

5.5.2 Four Materials

In our next experiment, we examine solving (5.9) with four materials and compare the results with

the previous experiment. We compare Table 5.5, which reports the objective function value and mass

of the final cloak for four materials, to Table 5.3 that reports the same for one material. We see that

the objective function value for the four material case is slightly worse than the one material case,

but is on the same order of magnitude. This indicates that it is not necessarily advantageous to build

a cloak out of several materials, at least from the approach of solving the relaxation, rounding, and

applying the trust-region method. In Figures 5.5 and 5.6, we report the designs and scattering field

associated with using four materials. Our results follow a similar trend with our observations and

conclusions for one material, mainly that cloaking ability improves as we either refine the control

mesh or allow for a larger mass upper bound. The computational time for solving the problem using

different mass upper bounds and control meshes is reported in Table 5.5. Because of the way we

113



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(a) C = 0.30 N = 10.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(b) C = 0.30 N = 20.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(c) C = 0.30 N = 40.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(d) C = 0.40 N = 10.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(e) C = 0.40 N = 20.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(f ) C = 0.40 N = 40.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(g) C = 0.45 N = 10.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(h) C = 0.45 N = 20.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

(i) C = 0.45 N = 40.

Figure 5.6 Scattering field in log10 obtained when solving from scratch with four materials.

Table 5.4 The trust-region solution objective function value for a given mass upper bound and control mesh
and the mass of the cloak. We solve the problem by solving the relaxation of (5.9) using one material, then

start our trust-region method with an initial guess generating by applying the rounding heuristic (5.16).

C
10×10 20×20 40×40

Objective Constraint Objective Constraint Objective Constraint
0.30 0.0981 0.2968 0.0606 0.2994 0.0334 0.2996
0.40 0.0608 0.3984 0.0558 0.3951 0.0162 0.3995
0.45 0.0599 0.4166 0.0312 0.4498 0.0153 0.4497
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Table 5.5 CPU times in seconds when solving from scratch with four materials including the PDE/gradient
calculations and knapsack problems on a 128×128 FEM mesh where θ = π

2 .

Solution CPU Time(s) Trust-Region Solution
C Control Relaxation PDEs Gradient MIPs Iterations Figure

0.30 10×10 721.05 45.72 104.57 1.07 12 5.5a,5.6a
0.30 20×20 3196.71 358.80 2990.04 19.43 96 5.5b,5.6b
0.30 40×40 112647.39 377.80 12528.02 84.12 100 5.5c,5.6c
0.40 10×10 3260.25885 47.66 107.44 1.35 13 5.5d,5.6d
0.40 20×20 3124.09 76.65 727.46 6.81 20 5.5e,5.6e
0.40 40×40 117127.11 360.20 12486.30 88.30 100 5.5f,5.6f
0.45 10×10 667.87 45.92 108.52 0.48 12 5.5g,5.6g
0.45 20×20 3892.93 114.48 972.96 5.39 31 5.5h,5.6h
0.45 40×40 107674.43 206.25 7029.62 41.39 56 5.5i,5.6i

have introduced the MIPDECO (5.9), the four-material problem has four times as many variables as

its one-material counterpart. When we take this into account, we see that the computational effort

required to construct the gradient for the trust-region method for the four material problem on a

given run is about four times greater than its one material counterpart. The computational effort

of building the gradient for the multi-material problem is just a multiple of building the gradient

for the one material problem. The multiplication factor that determines the effort is the number of

materials. This experiment shows that the designs found for the refined control meshes are cloaks

made out of mostly red and green material on the most refined control meshes. It is not surprising

that this is the case, because this green material is the least massive material and has the smallest

relative permittivity. When compared to the one material case, we replace more massive red material

with less massive green material to create a cloak. Even though the cloaking ability is slightly worse,

one can imagine the advantage of such a cloak.

5.5.3 Continuation

Solving the problem from scratch with four materials in some instances of C and control mesh size

produced cloaks whose cloaking ability were slightly worst than their one material counterparts. This

makes multi-material cloaking look less attractive. We address this concern with our continuation

approach and show that the continuation produces superior cloaks. One benefit of the continuation

methods is that we only solve one problem from scratch, which means only one relaxation must be

solved.

In Figure 5.7, we provide the upper bound on the mass and the control meshes we use in our

continuation method. In Figure 5.9, we present the designs from performing the continuation on

the control mesh, and in Figure 5.10, we present the corresponding scattering effect. We observe
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(0.40, 40 ⇥ 40)
<latexit sha1_base64="ncNf8gF+ECxG3OLa/SSTARXOAOk=">AAAB+3icbVDLSgNBEOz1GeNrjUcvg0GIIMusLOgx6MVjBPOAZAmzk9lkyOyDmVkxLPkVLx4U8eqPePNvnCR70MSChqKqm+6uIBVcaYy/rbX1jc2t7dJOeXdv/+DQPqq0VJJJypo0EYnsBEQxwWPW1FwL1kklI1EgWDsY38789iOTiifxg56kzI/IMOYhp0QbqW9Xatjx8IWHe5pHTCEPn/ftKnbwHGiVuAWpQoFG3/7qDRKaRSzWVBClui5OtZ8TqTkVbFruZYqlhI7JkHUNjYlZ5Ofz26fozCgDFCbSVKzRXP09kZNIqUkUmM6I6JFa9mbif1430+G1n/M4zTSL6WJRmAmkEzQLAg24ZFSLiSGESm5uRXREJKHaxFU2IbjLL6+S1qXjYse996r1myKOEpzAKdTAhSuowx00oAkUnuAZXuHNmlov1rv1sWhds4qZY/gD6/MHTB2SBA==</latexit><latexit sha1_base64="ncNf8gF+ECxG3OLa/SSTARXOAOk=">AAAB+3icbVDLSgNBEOz1GeNrjUcvg0GIIMusLOgx6MVjBPOAZAmzk9lkyOyDmVkxLPkVLx4U8eqPePNvnCR70MSChqKqm+6uIBVcaYy/rbX1jc2t7dJOeXdv/+DQPqq0VJJJypo0EYnsBEQxwWPW1FwL1kklI1EgWDsY38789iOTiifxg56kzI/IMOYhp0QbqW9Xatjx8IWHe5pHTCEPn/ftKnbwHGiVuAWpQoFG3/7qDRKaRSzWVBClui5OtZ8TqTkVbFruZYqlhI7JkHUNjYlZ5Ofz26fozCgDFCbSVKzRXP09kZNIqUkUmM6I6JFa9mbif1430+G1n/M4zTSL6WJRmAmkEzQLAg24ZFSLiSGESm5uRXREJKHaxFU2IbjLL6+S1qXjYse996r1myKOEpzAKdTAhSuowx00oAkUnuAZXuHNmlov1rv1sWhds4qZY/gD6/MHTB2SBA==</latexit><latexit sha1_base64="ncNf8gF+ECxG3OLa/SSTARXOAOk=">AAAB+3icbVDLSgNBEOz1GeNrjUcvg0GIIMusLOgx6MVjBPOAZAmzk9lkyOyDmVkxLPkVLx4U8eqPePNvnCR70MSChqKqm+6uIBVcaYy/rbX1jc2t7dJOeXdv/+DQPqq0VJJJypo0EYnsBEQxwWPW1FwL1kklI1EgWDsY38789iOTiifxg56kzI/IMOYhp0QbqW9Xatjx8IWHe5pHTCEPn/ftKnbwHGiVuAWpQoFG3/7qDRKaRSzWVBClui5OtZ8TqTkVbFruZYqlhI7JkHUNjYlZ5Ofz26fozCgDFCbSVKzRXP09kZNIqUkUmM6I6JFa9mbif1430+G1n/M4zTSL6WJRmAmkEzQLAg24ZFSLiSGESm5uRXREJKHaxFU2IbjLL6+S1qXjYse996r1myKOEpzAKdTAhSuowx00oAkUnuAZXuHNmlov1rv1sWhds4qZY/gD6/MHTB2SBA==</latexit><latexit sha1_base64="ncNf8gF+ECxG3OLa/SSTARXOAOk=">AAAB+3icbVDLSgNBEOz1GeNrjUcvg0GIIMusLOgx6MVjBPOAZAmzk9lkyOyDmVkxLPkVLx4U8eqPePNvnCR70MSChqKqm+6uIBVcaYy/rbX1jc2t7dJOeXdv/+DQPqq0VJJJypo0EYnsBEQxwWPW1FwL1kklI1EgWDsY38789iOTiifxg56kzI/IMOYhp0QbqW9Xatjx8IWHe5pHTCEPn/ftKnbwHGiVuAWpQoFG3/7qDRKaRSzWVBClui5OtZ8TqTkVbFruZYqlhI7JkHUNjYlZ5Ofz26fozCgDFCbSVKzRXP09kZNIqUkUmM6I6JFa9mbif1430+G1n/M4zTSL6WJRmAmkEzQLAg24ZFSLiSGESm5uRXREJKHaxFU2IbjLL6+S1qXjYse996r1myKOEpzAKdTAhSuowx00oAkUnuAZXuHNmlov1rv1sWhds4qZY/gD6/MHTB2SBA==</latexit>

(0.40, 20 ⇥ 20)
<latexit sha1_base64="3JHoWRfgMjhu9nXroWaF8z3E+G0=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmQ0CPQS8eI5gHJEuYncwmQ2YfzPSKYcmvePGgiFd/xJt/4yTZgyYWNBRV3XR3+YkUGgj5tgobm1vbO8Xd0t7+weGRfVxu6zhVjLdYLGPV9anmUkS8BQIk7yaK09CXvONPbud+55ErLeLoAaYJ90I6ikQgGAUjDexylTh1clkjfRAh17hGLgZ2hThkAbxO3JxUUI7mwP7qD2OWhjwCJqnWPZck4GVUgWCSz0r9VPOEsgkd8Z6hETWLvGxx+wyfG2WIg1iZigAv1N8TGQ21noa+6QwpjPWqNxf/83opBNdeJqIkBR6x5aIglRhiPA8CD4XiDOTUEMqUMLdiNqaKMjBxlUwI7urL66Rdc1ziuPf1SuMmj6OITtEZqiIXXaEGukNN1EIMPaFn9IrerJn1Yr1bH8vWgpXPnKA/sD5/AEXzkgA=</latexit><latexit sha1_base64="3JHoWRfgMjhu9nXroWaF8z3E+G0=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmQ0CPQS8eI5gHJEuYncwmQ2YfzPSKYcmvePGgiFd/xJt/4yTZgyYWNBRV3XR3+YkUGgj5tgobm1vbO8Xd0t7+weGRfVxu6zhVjLdYLGPV9anmUkS8BQIk7yaK09CXvONPbud+55ErLeLoAaYJ90I6ikQgGAUjDexylTh1clkjfRAh17hGLgZ2hThkAbxO3JxUUI7mwP7qD2OWhjwCJqnWPZck4GVUgWCSz0r9VPOEsgkd8Z6hETWLvGxx+wyfG2WIg1iZigAv1N8TGQ21noa+6QwpjPWqNxf/83opBNdeJqIkBR6x5aIglRhiPA8CD4XiDOTUEMqUMLdiNqaKMjBxlUwI7urL66Rdc1ziuPf1SuMmj6OITtEZqiIXXaEGukNN1EIMPaFn9IrerJn1Yr1bH8vWgpXPnKA/sD5/AEXzkgA=</latexit><latexit sha1_base64="3JHoWRfgMjhu9nXroWaF8z3E+G0=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmQ0CPQS8eI5gHJEuYncwmQ2YfzPSKYcmvePGgiFd/xJt/4yTZgyYWNBRV3XR3+YkUGgj5tgobm1vbO8Xd0t7+weGRfVxu6zhVjLdYLGPV9anmUkS8BQIk7yaK09CXvONPbud+55ErLeLoAaYJ90I6ikQgGAUjDexylTh1clkjfRAh17hGLgZ2hThkAbxO3JxUUI7mwP7qD2OWhjwCJqnWPZck4GVUgWCSz0r9VPOEsgkd8Z6hETWLvGxx+wyfG2WIg1iZigAv1N8TGQ21noa+6QwpjPWqNxf/83opBNdeJqIkBR6x5aIglRhiPA8CD4XiDOTUEMqUMLdiNqaKMjBxlUwI7urL66Rdc1ziuPf1SuMmj6OITtEZqiIXXaEGukNN1EIMPaFn9IrerJn1Yr1bH8vWgpXPnKA/sD5/AEXzkgA=</latexit><latexit sha1_base64="3JHoWRfgMjhu9nXroWaF8z3E+G0=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmQ0CPQS8eI5gHJEuYncwmQ2YfzPSKYcmvePGgiFd/xJt/4yTZgyYWNBRV3XR3+YkUGgj5tgobm1vbO8Xd0t7+weGRfVxu6zhVjLdYLGPV9anmUkS8BQIk7yaK09CXvONPbud+55ErLeLoAaYJ90I6ikQgGAUjDexylTh1clkjfRAh17hGLgZ2hThkAbxO3JxUUI7mwP7qD2OWhjwCJqnWPZck4GVUgWCSz0r9VPOEsgkd8Z6hETWLvGxx+wyfG2WIg1iZigAv1N8TGQ21noa+6QwpjPWqNxf/83opBNdeJqIkBR6x5aIglRhiPA8CD4XiDOTUEMqUMLdiNqaKMjBxlUwI7urL66Rdc1ziuPf1SuMmj6OITtEZqiIXXaEGukNN1EIMPaFn9IrerJn1Yr1bH8vWgpXPnKA/sD5/AEXzkgA=</latexit>

(0.40, 10 ⇥ 10)
<latexit sha1_base64="FIXi6EFn0c6oZjZpxA4jEorYXkI=">AAAB+3icbVBNSwMxEJ31s9avWo9egkWoIEtWCnosevFYwX5Au5Rsmm1Ds9klyYpl6V/x4kERr/4Rb/4b03YP2vpg4PHeDDPzgkRwbTD+dtbWNza3tgs7xd29/YPD0lG5peNUUdaksYhVJyCaCS5Z03AjWCdRjESBYO1gfDvz249MaR7LBzNJmB+RoeQhp8RYqV8qV7Fbwxce7hkeMY08fN4vVbCL50CrxMtJBXI0+qWv3iCmacSkoYJo3fVwYvyMKMOpYNNiL9UsIXRMhqxrqSR2kZ/Nb5+iM6sMUBgrW9Kgufp7IiOR1pMosJ0RMSO97M3E/7xuasJrP+MySQ2TdLEoTAUyMZoFgQZcMWrExBJCFbe3IjoiilBj4yraELzll1dJ69L1sOvd1yr1mzyOApzAKVTBgyuowx00oAkUnuAZXuHNmTovzrvzsWhdc/KZY/gD5/MHQt6R/g==</latexit><latexit sha1_base64="FIXi6EFn0c6oZjZpxA4jEorYXkI=">AAAB+3icbVBNSwMxEJ31s9avWo9egkWoIEtWCnosevFYwX5Au5Rsmm1Ds9klyYpl6V/x4kERr/4Rb/4b03YP2vpg4PHeDDPzgkRwbTD+dtbWNza3tgs7xd29/YPD0lG5peNUUdaksYhVJyCaCS5Z03AjWCdRjESBYO1gfDvz249MaR7LBzNJmB+RoeQhp8RYqV8qV7Fbwxce7hkeMY08fN4vVbCL50CrxMtJBXI0+qWv3iCmacSkoYJo3fVwYvyMKMOpYNNiL9UsIXRMhqxrqSR2kZ/Nb5+iM6sMUBgrW9Kgufp7IiOR1pMosJ0RMSO97M3E/7xuasJrP+MySQ2TdLEoTAUyMZoFgQZcMWrExBJCFbe3IjoiilBj4yraELzll1dJ69L1sOvd1yr1mzyOApzAKVTBgyuowx00oAkUnuAZXuHNmTovzrvzsWhdc/KZY/gD5/MHQt6R/g==</latexit><latexit sha1_base64="FIXi6EFn0c6oZjZpxA4jEorYXkI=">AAAB+3icbVBNSwMxEJ31s9avWo9egkWoIEtWCnosevFYwX5Au5Rsmm1Ds9klyYpl6V/x4kERr/4Rb/4b03YP2vpg4PHeDDPzgkRwbTD+dtbWNza3tgs7xd29/YPD0lG5peNUUdaksYhVJyCaCS5Z03AjWCdRjESBYO1gfDvz249MaR7LBzNJmB+RoeQhp8RYqV8qV7Fbwxce7hkeMY08fN4vVbCL50CrxMtJBXI0+qWv3iCmacSkoYJo3fVwYvyMKMOpYNNiL9UsIXRMhqxrqSR2kZ/Nb5+iM6sMUBgrW9Kgufp7IiOR1pMosJ0RMSO97M3E/7xuasJrP+MySQ2TdLEoTAUyMZoFgQZcMWrExBJCFbe3IjoiilBj4yraELzll1dJ69L1sOvd1yr1mzyOApzAKVTBgyuowx00oAkUnuAZXuHNmTovzrvzsWhdc/KZY/gD5/MHQt6R/g==</latexit><latexit sha1_base64="FIXi6EFn0c6oZjZpxA4jEorYXkI=">AAAB+3icbVBNSwMxEJ31s9avWo9egkWoIEtWCnosevFYwX5Au5Rsmm1Ds9klyYpl6V/x4kERr/4Rb/4b03YP2vpg4PHeDDPzgkRwbTD+dtbWNza3tgs7xd29/YPD0lG5peNUUdaksYhVJyCaCS5Z03AjWCdRjESBYO1gfDvz249MaR7LBzNJmB+RoeQhp8RYqV8qV7Fbwxce7hkeMY08fN4vVbCL50CrxMtJBXI0+qWv3iCmacSkoYJo3fVwYvyMKMOpYNNiL9UsIXRMhqxrqSR2kZ/Nb5+iM6sMUBgrW9Kgufp7IiOR1pMosJ0RMSO97M3E/7xuasJrP+MySQ2TdLEoTAUyMZoFgQZcMWrExBJCFbe3IjoiilBj4yraELzll1dJ69L1sOvd1yr1mzyOApzAKVTBgyuowx00oAkUnuAZXuHNmTovzrvzsWhdc/KZY/gD5/MHQt6R/g==</latexit>

(0.30, 10 ⇥ 10)
<latexit sha1_base64="LzxLhlbo0IVaxqOvWBK4c2S3H6Q=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSBEkGVGBT0GvXiMYB6QLGF2MpsMmX0wMyuGJb/ixYMiXv0Rb/6Nk2QPmljQUFR1093lJ1Jog/G3s7K6tr6xWdgqbu/s7u2XDspNHaeK8QaLZazaPtVciog3jDCStxPFaehL3vJHt1O/9ciVFnH0YMYJ90I6iEQgGDVW6pXKVexe4DOCu0aEXCOCT3ulCnbxDGiZkJxUIEe9V/rq9mOWhjwyTFKtOwQnxsuoMoJJPil2U80TykZ0wDuWRtQu8rLZ7RN0YpU+CmJlKzJopv6eyGio9Tj0bWdIzVAvelPxP6+TmuDay0SUpIZHbL4oSCUyMZoGgfpCcWbk2BLKlLC3IjakijJj4yraEMjiy8ukee4S7JL7y0rtJo+jAEdwDFUgcAU1uIM6NIDBEzzDK7w5E+fFeXc+5q0rTj5zCH/gfP4AQUyR/Q==</latexit><latexit sha1_base64="LzxLhlbo0IVaxqOvWBK4c2S3H6Q=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSBEkGVGBT0GvXiMYB6QLGF2MpsMmX0wMyuGJb/ixYMiXv0Rb/6Nk2QPmljQUFR1093lJ1Jog/G3s7K6tr6xWdgqbu/s7u2XDspNHaeK8QaLZazaPtVciog3jDCStxPFaehL3vJHt1O/9ciVFnH0YMYJ90I6iEQgGDVW6pXKVexe4DOCu0aEXCOCT3ulCnbxDGiZkJxUIEe9V/rq9mOWhjwyTFKtOwQnxsuoMoJJPil2U80TykZ0wDuWRtQu8rLZ7RN0YpU+CmJlKzJopv6eyGio9Tj0bWdIzVAvelPxP6+TmuDay0SUpIZHbL4oSCUyMZoGgfpCcWbk2BLKlLC3IjakijJj4yraEMjiy8ukee4S7JL7y0rtJo+jAEdwDFUgcAU1uIM6NIDBEzzDK7w5E+fFeXc+5q0rTj5zCH/gfP4AQUyR/Q==</latexit><latexit sha1_base64="LzxLhlbo0IVaxqOvWBK4c2S3H6Q=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSBEkGVGBT0GvXiMYB6QLGF2MpsMmX0wMyuGJb/ixYMiXv0Rb/6Nk2QPmljQUFR1093lJ1Jog/G3s7K6tr6xWdgqbu/s7u2XDspNHaeK8QaLZazaPtVciog3jDCStxPFaehL3vJHt1O/9ciVFnH0YMYJ90I6iEQgGDVW6pXKVexe4DOCu0aEXCOCT3ulCnbxDGiZkJxUIEe9V/rq9mOWhjwyTFKtOwQnxsuoMoJJPil2U80TykZ0wDuWRtQu8rLZ7RN0YpU+CmJlKzJopv6eyGio9Tj0bWdIzVAvelPxP6+TmuDay0SUpIZHbL4oSCUyMZoGgfpCcWbk2BLKlLC3IjakijJj4yraEMjiy8ukee4S7JL7y0rtJo+jAEdwDFUgcAU1uIM6NIDBEzzDK7w5E+fFeXc+5q0rTj5zCH/gfP4AQUyR/Q==</latexit><latexit sha1_base64="LzxLhlbo0IVaxqOvWBK4c2S3H6Q=">AAAB+3icbVDLSgNBEOz1GeMrxqOXwSBEkGVGBT0GvXiMYB6QLGF2MpsMmX0wMyuGJb/ixYMiXv0Rb/6Nk2QPmljQUFR1093lJ1Jog/G3s7K6tr6xWdgqbu/s7u2XDspNHaeK8QaLZazaPtVciog3jDCStxPFaehL3vJHt1O/9ciVFnH0YMYJ90I6iEQgGDVW6pXKVexe4DOCu0aEXCOCT3ulCnbxDGiZkJxUIEe9V/rq9mOWhjwyTFKtOwQnxsuoMoJJPil2U80TykZ0wDuWRtQu8rLZ7RN0YpU+CmJlKzJopv6eyGio9Tj0bWdIzVAvelPxP6+TmuDay0SUpIZHbL4oSCUyMZoGgfpCcWbk2BLKlLC3IjakijJj4yraEMjiy8ukee4S7JL7y0rtJo+jAEdwDFUgcAU1uIM6NIDBEzzDK7w5E+fFeXc+5q0rTj5zCH/gfP4AQUyR/Q==</latexit>

(0.30, 20 ⇥ 20)
<latexit sha1_base64="JSW2PAIN1AsCb/xRVNf3dZD5C+4=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmo6DHoBePEcwDkiXMTmaTIbMPZnrFsORXvHhQxKs/4s2/cZLsQRMLGoqqbrq7/EQKDYR8W4W19Y3NreJ2aWd3b//APiy3dJwqxpsslrHq+FRzKSLeBAGSdxLFaehL3vbHtzO//ciVFnH0AJOEeyEdRiIQjIKR+na5SpwLcl4jPRAh17hGzvp2hThkDrxK3JxUUI5G3/7qDWKWhjwCJqnWXZck4GVUgWCST0u9VPOEsjEd8q6hETWLvGx++xSfGmWAg1iZigDP1d8TGQ21noS+6QwpjPSyNxP/87opBNdeJqIkBR6xxaIglRhiPAsCD4TiDOTEEMqUMLdiNqKKMjBxlUwI7vLLq6RVc1ziuPeXlfpNHkcRHaMTVEUuukJ1dIcaqIkYekLP6BW9WVPrxXq3PhatBSufOUJ/YH3+AERhkf8=</latexit><latexit sha1_base64="JSW2PAIN1AsCb/xRVNf3dZD5C+4=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmo6DHoBePEcwDkiXMTmaTIbMPZnrFsORXvHhQxKs/4s2/cZLsQRMLGoqqbrq7/EQKDYR8W4W19Y3NreJ2aWd3b//APiy3dJwqxpsslrHq+FRzKSLeBAGSdxLFaehL3vbHtzO//ciVFnH0AJOEeyEdRiIQjIKR+na5SpwLcl4jPRAh17hGzvp2hThkDrxK3JxUUI5G3/7qDWKWhjwCJqnWXZck4GVUgWCST0u9VPOEsjEd8q6hETWLvGx++xSfGmWAg1iZigDP1d8TGQ21noS+6QwpjPSyNxP/87opBNdeJqIkBR6xxaIglRhiPAsCD4TiDOTEEMqUMLdiNqKKMjBxlUwI7vLLq6RVc1ziuPeXlfpNHkcRHaMTVEUuukJ1dIcaqIkYekLP6BW9WVPrxXq3PhatBSufOUJ/YH3+AERhkf8=</latexit><latexit sha1_base64="JSW2PAIN1AsCb/xRVNf3dZD5C+4=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmo6DHoBePEcwDkiXMTmaTIbMPZnrFsORXvHhQxKs/4s2/cZLsQRMLGoqqbrq7/EQKDYR8W4W19Y3NreJ2aWd3b//APiy3dJwqxpsslrHq+FRzKSLeBAGSdxLFaehL3vbHtzO//ciVFnH0AJOEeyEdRiIQjIKR+na5SpwLcl4jPRAh17hGzvp2hThkDrxK3JxUUI5G3/7qDWKWhjwCJqnWXZck4GVUgWCST0u9VPOEsjEd8q6hETWLvGx++xSfGmWAg1iZigDP1d8TGQ21noS+6QwpjPSyNxP/87opBNdeJqIkBR6xxaIglRhiPAsCD4TiDOTEEMqUMLdiNqKKMjBxlUwI7vLLq6RVc1ziuPeXlfpNHkcRHaMTVEUuukJ1dIcaqIkYekLP6BW9WVPrxXq3PhatBSufOUJ/YH3+AERhkf8=</latexit><latexit sha1_base64="JSW2PAIN1AsCb/xRVNf3dZD5C+4=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQxCBFlmo6DHoBePEcwDkiXMTmaTIbMPZnrFsORXvHhQxKs/4s2/cZLsQRMLGoqqbrq7/EQKDYR8W4W19Y3NreJ2aWd3b//APiy3dJwqxpsslrHq+FRzKSLeBAGSdxLFaehL3vbHtzO//ciVFnH0AJOEeyEdRiIQjIKR+na5SpwLcl4jPRAh17hGzvp2hThkDrxK3JxUUI5G3/7qDWKWhjwCJqnWXZck4GVUgWCST0u9VPOEsjEd8q6hETWLvGx++xSfGmWAg1iZigDP1d8TGQ21noS+6QwpjPSyNxP/87opBNdeJqIkBR6xxaIglRhiPAsCD4TiDOTEEMqUMLdiNqKKMjBxlUwI7vLLq6RVc1ziuPeXlfpNHkcRHaMTVEUuukJ1dIcaqIkYekLP6BW9WVPrxXq3PhatBSufOUJ/YH3+AERhkf8=</latexit>

(0.30, 40 ⇥ 40)
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Figure 5.7 Parameters for the continuation method. The first parameter is the value of C and the second
parameter is the control mesh size.

the same behavior as in our previous experiments. The cloaking ability is enhanced as either we

refine the control mesh, or lessen the restriction on the mass upper bound and refine the mesh

simultaneously. Even though we can choose from several materials, our continuation solutions favor

the red material. We note that the objective function values we find from our continuation scheme

in Table 5.6 are better than the objective function values obtained from solving each instance of

the problem from scratch with four materials in Table 5.4 or one material in Table 5.2. Moreover,

when we compare the objective function values in Table 5.7 with our previous results in chapter

4, the objective functions values are on the same order of magnitude or better. Even with a mass

constraint, we can build a cloak out of four materials that is competitive with a cloak made out of

one material without a mass constraint. We also observe that when we look at the computational

effort of performing the continuation in Table 5.7, the average trust-region iterations required are

lower than solving the problem from scratch.

Next we present the designs in Figure 5.11 and the scattering fields in Figure 5.12 for continuation

on the mass upper bound. We observe that the refinement of the control mesh is helpful at reducing

the objective function value and therefore creating better cloaking ability. The cloaks obtained from

the continuation method still favor red material. The computational effort required for performing

this continuation in Table 5.9 is comparable.

We compare the effectiveness between solving the four material problem from scratch, using

control mesh continuation, and using cloak mass continuation in Figure 5.8. Between the control

mesh continuation and the cloak mass continuation, they are comparable in the quality of cloaks
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Table 5.6 Objective function value and cloak mass for control mesh continuation.

C
10×10 20×20 40×40

Objective Constraint Objective Constraint Objective Constraint
0.30 0.0981 0.2968 0.0218 0.2994 0.0084 0.2999
0.40 0.0362 0.3906 0.0081 0.3984 0.0021 0.3979
0.45 0.0348 0.4218 0.0110 0.4335 0.0026 0.4335

produces. The objective function values of the two continuation schemes are on the same order of

magnitude. The control mesh continuation produces slightly lower objective values on the more

refined control meshes, 20×20 and 40×40. This makes a strong case that control mesh refinement

plays a powerful role at enhancing the cloaking ability of a cloak. In both cases, the objective function

values from conducting continuation in either Tables 5.6 or 5.8 are better than when solving from

scratch in Tables 5.2 and 5.4, and comparable to the objective function values found in chapter 4.

10 × 10 20 × 20 40 × 40
Control Mesh

0.00

0.02

0.04

0.06

0.08

0.10

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

FS C = 0.30
FS C = 0.40
FS C = 0.45
CC C = 0.30
CC C = 0.40
CC C = 0.45

(a) Control mesh continuation.
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Figure 5.8 5.8a: Comparison between the control mesh continuation and solving the problem from scratch
with several different mass upper bounds. We use FS to denote the from scratch experiments and CC to

denote the control mesh continuation experiments. 5.8b: Comparison between the mass continuation and
solving the problem from scratch for several different control meshes. We use CM to denote mass

continuation experiments.

5.6 Conclusion

In this chapter we introduced a MIPDECO formulation for designing electromagnetic cloaks using

multiple materials, while also enforcing a constraint on the mass of the cloak. We introduced a
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Figure 5.9 Cloak designs obtained with control mesh continuation.

Table 5.7 CPU times in seconds from control mesh continuation including the PDE/gradient calculations
and knapsack problems on a 128×128 FEM mesh where θ = π

2 .

Solution CPU Time(s) Trust-Region Solution
C Control Relaxation PDEs Gradient MIPs Iterations Figure

0.30 10×10 288.29 88.36 199.70 1.55 23 5.9a,5.10a
0.30 20×20 - 69.70 651.68 6.78 19 5.9b,5.10b
0.30 40×40 - 88.79 3188.87 20.60 24 5.9c,5.10c
0.40 10×10 - 65.54 155.88 1.40 17 5.9d,5.10d
0.40 20×20 - 55.97 515.63 2.98 22 5.9e,5.10e
0.40 40×40 - 70.34 2481.67 12.78 25 5.9f,5.10f
0.45 10×10 - 33.09 78.31 0.34 10 5.9g,5.10g
0.45 20×20 - 54.15 473.93 2.12 15 5.9h,5.10h
0.45 40×40 - 70.45 2405.10 12.09 19 5.9i,5.10i
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Figure 5.10 Scattering field in log10 with control mesh continuation.

Table 5.8 Objective function value and cloak mass for mass continuation.

C
10×10 20×20 40×40

Objective Constraint Objective Constraint Objective Constraint
0.30 0.0981 0.2968 0.0218 0.2994 0.0084 0.2999
0.40 0.0362 0.3906 0.0122 0.3307 0.0031 0.3273
0.45 0.0348 0.4218 0.0122 0.3307 0.0031 0.3273
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Figure 5.11 Cloak designs obtained with mass continuation.

Table 5.9 CPU times in seconds from mass continuation including the PDE/gradient calculations and
knapsack problems on a 128×128 FEM mesh where θ = π

2 .

Solution CPU Time(s) Trust-Region Solution
C Control Relaxation PDEs Gradient MIPs Iterations Figure

0.3 10×10 272.46 87.47 206.15 1.81 23 5.11a,5.12a
0.3 20×20 - 69.20 659.69 6.72 19 5.11b,5.12b
0.3 40×40 - 89.04 3333.24 19.53 24 5.11c,5.12c

0.40 10×10 - 68.54 150.36 1.57 18 5.11d,5.12d
0.40 20×20 - 37.65 361.92 1.51 10 5.11e,5.12e
0.40 40×40 - 70.30 2742.36 13.61 19 5.11f,5.12f
0.45 10×10 - 32.74 76.38 0.46 9 5.11g,5.12g
0.45 20×20 - 33.54 339.41 1.00 9 5.11h,5.12h
0.45 40×40 - 33.59 1295.91 5.98 9 5.11i,5.12i
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Figure 5.12 Scattering field in log10 with mass continuation.
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trust-region method to solve this problem. The trust-region method was shown in our numerical

experiments to be computationally tractable, even with the mass constraint. Instead of solving the

our problem with the branch-and-bound method, which could be computationally intractable

in practice [34, 102], our method only requires the solutions of PDEs and mixed-integer linear

programming problems. Our numerical experiments demonstrated the effect the mass constraint

and the control mesh refinement had on the effectiveness of the electromagnetic cloak. We showed

that solving the MIPDECO problem from scratch is not as favorable as applying a continuation

method. The continuation method we introduced was successful at producing superior cloaks when

compared to solving our problem from scratch in each instance.
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CHAPTER

6

A MIXED-INTEGER PDE-CONSTRAINED

OPTIMIZATION FORMULATION FOR

THE CONSTRUCTION OF

ELECTROMAGNETIC CLOAKS WITH A

SINGLE MATERIAL IN 3D

In this chapter we introduce a model for binary electromagnetic cloaking in 3D. This new model is a

direct generalization of the 2D cloaking problem with a single material. The problem itself naturally

introduces a large number of integer variables. We study how to build a 20× 20× 20 cube cloak.

We show that even with 8000 integer variables present in the problem, our trust-region method

is successful in producing quality local solutions. Furthermore we show that like in the 2D case,

the bottleneck of MIPDECO from our perspective is not the number of integer variables present

in the problem. In fact, solving the integer portion of the MIPDECO during the execution of our

trust-region method adds negligible time compared to the time taken to solve the PDEs and building

the gradient.
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6.1 Electromagnetic Cloaking Design for a Single Material in 3D

In this section we study the binary electromagnetic cloaking MIPDECO in 3D. The nature of the 3D

problem introduces a large amount of integer variables. The purpose of this section is to illustrate

that our trust-region method for MIPDECO is computationally tractable when a large number of

integer variables are present. We show this with numerical experiments.

The remainder of the section will proceeds as follows: we first pose 3D formulation based on the

2D formulation presented in Section 4.2. We then present numerical experiments that demonstrate

the success of our trust-region method when a large amount of integer variables are present. We

note that there are many similarities between solving the 2D problem and 3D. Because of this fact

we omit repetitive details that are shared between the two sections.

6.1.1 A Formulation for 3D Binary Electromagnetic Cloaking

We first revisit our model based on [41] and presented in Section 4.2 for a single angle of attack. We

let D ⊂R3 be the computational domain and D0 ⊂D be the part of the domain that we wish to cloak.

We let ÒD ⊂D −D0 be the subregion in which we can design the cloak and Ω̂⊂ ÒD the cloak. The only

significant difference in the 2D and the 3D model is that the incident wave can now travel is a three

dimensional space instead of a two dimension space. We define the traveling (incident) wave to be

ûψ,θ and define the 3D MIPDECO (with scaling) as

minimize
u ,v,w

J (u , v, w ) =
1

2|D0|
‖u − ûψ,θ (ψ,θ )‖2

2,D0

subject to −∆u −k 2
0 (1+q w )u = k 2

0 q w ûψ,θ in D

∂ u

∂ n
− i k0u = 0 on ∂ D

w =
N
∑

n=1

vn1Ω̂n\∂ Ω̂n

vn = {0, 1} ∀n = 1, . . . , N ,

(6.1)

where

ûψ,θ (ψ,θ ) = exp(i k0(x sin(ψ)cos(θ ) + y sin(ψ)sin(θ ) + z cos(ψ))) (6.2)

is the traveling wave with respect to which we are cloaking with normalized wave direction

(sin(ψ)cos(θ ), sin(ψ)sin(θ ), cos(ψ)), and wave number k0. We note that we will enforce the notation

for the spherical representation of the direction at which the wave travels. The quantityψmeasures

the angle between the positive z axis and θ measures the angle in the (x , y ) plane from the positive

x axis. The quantity q is the electromagnetic permittivity between and the cloaked device region
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and the outside the cloak device region. The state variable u represents the electromagnetic field

intensity and 1 is the indicator function of the cloak. We introduce the scaling factor 1
|D0| , as seen

in the multiple material problem to ensure that the objective function cannot be made arbitrarily

small.

In this formulation, we generalize how we conceptualize Ω̂, Ω̂n and D0. In the 2D problem, Ω̂was

a square subdomain. In this formulation Ω̂ is a cube. In the 2D formulation, Ω̂n were squares, in this

formulation they are now cubes. We generalize the cloaking domains we used for the 2D formulation,

which were a circle, square and rectangle, to become a sphere, cube, and prism respectively.

We note that the derivations and analysis conducted in 4.2 is still valid in this current formulation.

The state, adjoint and gradient equation in 4.2.3 still hold for this problem. The only difference is

that the integrals are in R3 instead of R2.

6.1.2 Numerical Experiments

In this section we describe our numerical experiments. We apply our trust-region method (Algorithm

1) to the 3D problem.

6.1.2.1 Experimental Setup

We consider the cloaking of three different domains D̄ 1
0 , D̄ 2

0 , and D̄ 3
0 given by

D̄ 1
0 = {x , y , z | −0.6≤ x ≤ 0.6 0.7≤ y ≤ 1 0.7≤ z ≤ 1} (Rectangular Prism)

D̄ 2
0 = {x , y , z | 0.7≤ x ≤ 1 0.7≤ y ≤ 1 0.7≤ z ≤ 1} (Cube)

D̄ 3
0 = {x , y , z | (x −0.85)2+ (y −0.85)2+ (z −0.85)2 ≤ (.1)2} (Sphere).

(6.3)

We note that we use the same computational resources to solve this problem as we used in 4.2.6.

All numerical experiments use the following set of common parameters: wave number k0 = 6π,

material constant q = 0.75, spectral angles θ = π4 andψ= π4 , and cloak location ÒD ⊂D , where

D =
�

−1, 1
�

×
�

−1, 1
�

×
�

−1, 1
�

and ÒD =
�

−
5

8
,

5

8

�

×
�

−
5

8
,

5

8

�

×
�

−
5

8
,

5

8

�

. (6.4)

We solve the state and adjoint equation on a 32×32×32 FEM mesh and will limit ourselves to a

20×20×20 cloak; this instance of a cloaking mesh admits a MIPDECO that has 8000 integer variables

respectively. The goal of our experiment is to show that our trust-region method can solve problems

with a large number of integer variables. The focus of this experiment is not to solve the state to

high accuracy. Because this is an elliptic problem, the FEM matrices (for both the state and adjoint

operator) will become progressively more ill-conditioned as we refine the mesh. The difficulties

associated with solving the Helmholtz equation numerically as the space dimension increases is
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well known. A summary of these difficulties, and approaches to address them is discussed in [27].

Building a preconditioner (which will be dependent on the binary variable v ) for both the relaxation

and the electromagnetic cloaking MIPDECO is nontrivial exercise and is beyond the scope of this

thesis.

In Table 6.1 we show the computational effort required to execute our trust-region algorithm.

We provide solution Figures for each run in the appendix. The solution figures can be interpreted as

“x-y slices” of the cloak. Level zero is the bottom of the cloak and we move to the top of the cloak

which is denoted as level twenty. We note that considerable computational effort is required to solve

the relaxation. To alleviate this cost, a feasible starting guess may be used, however in computational

experiments we have observed that we obtain better objective function values using the rounded

relaxation as a starting guess for our trust-region method than using a randomly generated feasible

starting guess. We also report the computational effort to preform the three components of our

trust-region method: solve the state and adjoint equations, build the gradients and solve a knapsack

problems. We observe that that for our experiments the computational effort is dominated by

building the gradient. In this instance, because we used a coarse mesh (32×32×32) the cost to solve

the state and adjoint is negligible compared to gradient computation. In real application problems,

where the mesh would be expected to be at least 128×128×128, we would see solving the state and

adjoint equation would take the most amount of time. The amount of time to solve the knapsack

problem, denoted “MIPs”, takes negligible time in the overall computational expense of executing

the trust-region method. Even with many more integer variables present in the 3D MIPDECO versus

the 2D MIPDECO, we see a similar amount of trust-region steps required to locate a local minimum.

As we observed in the 2D problem, the computational effort for solving MIPDECO is not hindered by

the presence of a large amount of integer variables, which is an extremely encouraging observation;

because this means that our approach scales well with the number of integer variables present

in the problem. We do not observe an exponential like time increase when comparing the effort

required to solve the 2D single material problem versus the 3D single material problem.

Table 6.1 CPU times(s) for 3D relaxation, PDE/gradient calculation and knapsack problem on a 32×32×32
FEM mesh where θ = π

4 ,ψ= π
4 .

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs Gradient MIPs Iterations Figure

D̄ 1
0 20×20×20 91569.07 2129.87 34022.25 1.54 31 .2.1

D̄ 2
0 20×20×20 51535.83 3223.75 51119.53 3.28 44 .2.2

D̄ 3
0 20×20×20 22122.63 1781.35 28734.25 1.36 26 .2.3

In Table 6.2 we report the objective function values for the relaxed solution, the rounded solution

126



and the trust-region solution. In Figure 6.1, 6.2, 6.3 we show the progress of our trust-region method

for the three different cloaking regions. We plot the trust-region radius and objective function value

as a function of iteration count. We observe that our trust-region method is successful at significantly

reducing the objective function value in a reasonable amount of iterations.

Table 6.2 Objectives for 3D problem.

Problem Instance θ = π4 ,ψ= π4

Domain Control
Relaxed

Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

D̄ 1
0 20×20×20 0.0775 0.1489 0.0805

D̄ 2
0 20×20×20 0.2642 0.3286 0.2691

D̄ 3
0 20×20×20 0.0062 1.0060 0.0112
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Figure 6.1 Trust-region progress on rectangular prism experiment.
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Figure 6.2 Trust-region progress on cube experiment.
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Figure 6.3 Trust-region progress on sphere experiment.
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6.1.3 Conclusion

In this chapter we posed a model that describes 3D binary electromagnetic cloaking with a single

material which results in a reduced space MIPDECO problem. The model is a generalization of

the 2D problem posed in Section 4.2.1. We derived the optimality conditions to produce a reduced

gradient and applied our trust-region method. We showed that even with 8000 integer variable

present in the problem, which is considered a large amount of integer variables, our trust-region

method is successful at finding a local minimum to the problem in a reasonable amount of iterations.

The fact that our method is still computationally tractable, even for a 3D PDE, is very promising.

This indicates that our method can be applied to many problems in the class of MIPDECO.
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CHAPTER

7

FUTURE WORK

In this chapter we highlight directions for the future research regarding the topics discussed in this

thesis.

7.0.1 The Immersed Interface Method and PDE Constrained Optimization Problems

A first natural direction for future work is to solve Maxwell’s equations in three dimensions. We can

use the tools developed for the one and two dimensional problem as a template to develop and

analyze methods for Maxwell’s equations in three dimensions. In this thesis we focused on a finite

difference approach to solve interface problems, using the FDTD method as a template which we

generalized. When using finite difference methods for interface problems, we assumed that the

solution has sufficient regularity away from the interface. That is to say we search for solutions to

satisfy Maxwell’s equations in a classical sense. We can redo this analysis, using the IIM with the

finite-element time domain (FETD) method, in order to find solutions that satisfy the equations in

a weak sense.

Another direction is studying optimal control of Maxwell equations with interfaces. In general

PDE optimization problems have been solved using the finite-element approach. Of course interface

control problems can be solved with with our finite-difference approach, but there needs to be

sufficient regularity in the state and control; in the absence of such regularity we need to search

for non classical solutions to Maxwell’s equations. This is a natural reason to derive the IIM using

the FETD approach. We can derive the gradient and Hessian by using adjoint and second order
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adjoint approach, then apply an use either trust-region or line search to solve the problem. To our

knowledge interface control problems have not been solved for Maxwell equations.

7.0.2 Mixed-Integer Partial-Differential Equation Constrained Optimization Theory

In this thesis we focused on using a trust-region method for solving MIPDECO. We constructed

a gradient by solving the state and adjoint equation. In our method we do not use the Hessian.

We can easily derive the Hessian by using the formal Lagrangian approach. Of course including

Hessian information will lead to quicker convergence to a local minimum (both for the relaxation

and trust-region solve), but it is not clear if this approach is viable for MIPDECO. The main reason

is because the introduction of the Hessian makes our trust-region sub problem, which is a linear

integer program (knapsack problem) in the steepest descent case, into a quadratic integer program,

which is significantly harder to solve. These questions need to be studied further. Other methods

that are classical to optimization can be modified for MIPDECO such as line search (Newton or

quasi-Newton) and the augmented Lagrangian approach.

The electromagnetic cloaking problem studied in this thesis can be viewed as a single stage

binary risk-neutral PDE optimization problem. An interesting direction would be to study the

general case - multi-stage binary risk adverse-PDE optimization (MBRAPDEO). The combination

of our trust-region method and techniques from stochastic programming can be combined to

numerically solve this class of problems. Such problems have not been studied in depth due to the

computational intractability of solving MIPDECO.

Another direction, which is purely theoretical, is motivated by the study and development of

cuts in finite dimensional integer programming. A popular technique in integer programming is

to introduce these cuts to the feasible region in order to make the problem more computationally

tractable. The motivation is to introduce possibly several additional inequality constraints to the

original integer program that isolates local minimums. Even thought the introduction of these

additional constraints can cause more computational effort to solve the relaxation, the hope is

branch and bound terminates “quickly” and does not take exponential time. Our interest is to

introduce “cuts” in infinite dimension, for convex problems, which isolate the infinite dimensional

minimums of the reduced space formulation. These “cuts” can be constructed with the intention

to produce quality controls for a given MIPDECO. This can help both the OTD or DTO approach

for MIPDECO. In the OTD case the cuts would appear in our knapsack sub problem. In the OTD

the infinite dimensional cuts would be discretized, which then could easily be passed to a MINLP.

Because these cuts are introduced in the infinite dimensional space rather than the discretized

space they maintain some physical proprieties of the control (which in finite dimensions can be

lost).

A final direction is applying our methodology to mixed-integer optimal control. In optimal con-
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trol, bang-bang problems have already been viewed with tools from integer programming. The DTO

approach is often used to solve these problems and there has been no study on the OTD approach

to our best knowledge. We believe an alternative formulation of these problems combined with our

algorithm can produce good local solutions, while also maintaining computational tractability.
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141



.1 Simulations for 2D Binary Electromagnetic Cloaking using a Single

Material

This portion of the appendix shows the solution of the relaxation, its rounding, the final trust-

region design, the final gradients, and the scattering field for the different test problems defined in

Section 4.2.6.
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.1.1 Nominal angle θ = π
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(c) Trust-Region Solution.
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Figure 1 Rectangle 20x20: Nominal angle θ = π
4 .
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.1.3 Nominal angle θ = π
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(e) Gradient Evaluated with Trust-Region
Solution..
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Figure 3 Rectangle 40x40: Nominal angle θ = π
4 .
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(b) Rounded Relaxation.
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(b) Rounded Relaxation.
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Figure 5 Square 20x20: Nominal angle θ = π
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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Figure 7 Square 40x40: Nominal angle θ = π
4 .
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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.1.10 15 Angles θ ∈
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(c) Trust-Region Solution.
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Figure 9 Circle 20x20: Nominal angle θ = π
4 .
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.1.11 Nominal angle θ = π
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1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

0.0

0.2

0.4

0.6

0.8

1.0

(c) Trust-Region Solution.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

0.0001

0.0000

0.0001

0.0002

0.0003

(d) Gradient Evaluated with Rounded
Relaxation.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

0.000100

0.000075

0.000050

0.000025

0.000000

0.000025

0.000050

0.000075

(e) Gradient Evaluated with Trust-Region
Solution..
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.1.12 15 Angles θ ∈
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(b) Rounded Relaxation.
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(f ) log10 Scattering Field.

Figure 11 Circle 40x40: Nominal angle θ = π
4 .
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.1.13 Nominal angle θ = π
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(f ) log10 Scattering Field.

Figure 12 Circle 40x40: 15 Angles θ ∈
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.1.14 15 Angles
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(e) Gradient Evaluated with Trust-Region
Solution..
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(f ) log10 Scattering Field.

Figure 13 Rectangle 20x20: Nominal angle θ = π
2 .
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.1.15 Nominal angle θ = π
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(e) Gradient Evaluated with Trust-Region
Solution..
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(f ) log10 Scattering Field.

Figure 14 Rectangle 20x20: 15 Angles
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.1.16 15 Angles
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(f ) log10 Scattering Field.

Figure 15 Rectangle 40x40: Nominal angle θ = π
2 .
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.1.17 Nominal angle θ = π
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(e) Gradient Evaluated with Trust-Region
Solution..
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(f ) log10 Scattering Field.

Figure 16 Rectangle 40x40: 15 Angles
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.1.18 15 Angles
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(f ) log10 Scattering Field.

Figure 17 Square 20x20: Nominal angle θ = π
2 .
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.1.19 Nominal angle θ = π
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(f ) log10 Scattering Field.

Figure 18 Square 20x20: 15 Angles
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.1.20 15 Angles
�

π
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(f ) log10 Scattering Field.

Figure 19 Square 40x40: Nominal angle θ = π
2 .
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.1.21 Nominal angle θ = π
4
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(e) Gradient Evaluated with Trust-Region
Solution..
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(f ) log10 Scattering Field.

Figure 20 Square 40x40: 15 Angles
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(f ) log10 Scattering Field.

Figure 21 Circle 20x20: Nominal angle
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.1.22 15 Angles
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.1.23 Nominal angle θ = π
2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

0.0

0.2

0.4

0.6

0.8

1.0

(a) Relaxation.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

0.0

0.2

0.4

0.6

0.8

1.0

(b) Rounded Relaxation.
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(f ) log10 Scattering Field.

Figure 22 Circle 20x20: 15 Angles
�

π
4 , 3π

4

�

.

166



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
y

0.0

0.2

0.4

0.6

0.8

1.0

(a) Relaxation.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

0.0

0.2

0.4

0.6

0.8

1.0

(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(e) Gradient Evaluated with Trust-Region
Solution..

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

(f ) log10 Scattering Field.

Figure 23 Circle 40x40: Nominal angle
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(b) Rounded Relaxation.
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(c) Trust-Region Solution.
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(e) Gradient Evaluated with Trust-Region
Solution..
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(f ) log10 Scattering Field.

Figure 24 Circle 40x40: 15 Angles
�

π
4 , 3π

4

�

.

169



.2 Simulations for 3D Electromagnetic Cloaking using a Single Material

This portion of the appendix shows the solutions yielded by our trust-region method in Section

6.1.2.
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.2.1 Rectangle: 20x20x20 discretization θ = π
4 ,ψ= π
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(f ) Level 6.
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(j) Level 10.
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(k) Level 11.
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(t) Level 20.
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.2.2 Square: 20x20x20 discretization θ = π
4 ,ψ= π
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.2.3 Circle: 20x20x20 discretization θ = π
4 ,ψ= π
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