
ABSTRACT

WANG, RUIXUE. Essays on The Effects of Warming Temperatures in Agriculture. (Under the direction
of Roderick Rejesus).

Global climate change has large impact on agriculture. The three essays in this dissertation

study how temperature warming affects on various crops in different regions.

In Chapter 2, we study the relationship between yields of modern rice varieties and three major

weather variables — maximum temperature, minimum temperature, and precipitation. Data from

a long-running farm-level survey in the Philippines, with rich information on planted rice varieties,

allows us to estimate fixed effect econometric models of rice yields. We find that increases in

temperature, especially minimum temperatures, have substantial negative impacts on rice yields.

Yield response to temperatures varies across different varietal groups. Early modern varieties, bred

primarily for higher yields, pest resistance, and/or grain quality traits, demonstrate improved heat-

stress resistance relative to traditional varieties. Moreover, the most recent varietal group bred

for better tolerance to abiotic stresses are even more resilient to warming temperatures. These

results provide some evidence that public investments in breeding rice varieties more tolerant to

warming temperatures have been successful, and continued investments in these breeding efforts

are warranted.

Chapter 3 explores how warming temperatures influence corn yield response to planting density.

Using 1990-2010 field trial data from Wisconsin and econometric models with a variety of specifica-

tions, we find that warming temperatures reduce the yield benefits of increasing planting density.

However, these adverse warming effects are smaller for genetically-modified (GM) corn varieties

with rootworm (RW) resistant traits. Consistent with previous studies, these results support the

notion that varietal improvements through genetic modification may have paved the way for higher

planting densities in US corn production. Moreover, our results imply that expected in-season

temperatures are important considerations when making planting density decisions.

Chapter 4 examines whether crop insurance participation rate influences the impact of extreme

heat on yield risk (i.e., yield variance, skewness, and kurtosis). We utilize a parametric moment-

based method and county-level panel data to evaluate how crop insurance participation affects

the relationship between warming temperatures and the moments of crop yield distributions. Our

results indicate that the yield risk increasing effect of warming is further magnified under high levels

of crop insurance participation. Not only does the moral hazard effect of crop insurance adversely

impact mean yields under climate change, but it also influences the extent by which warming affects

yield variability over time. This supports the notion that crop insurance can serve as a disincentive

for climate change mitigation in agriculture.
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CHAPTER

1

INTRODUCTION

Agriculture is one of the sectors that is the most affected by climate change. As the climate continues

to warm up, the impacts on agricultural production become more severe, farmers face more chal-

lenges in mitigating the negative effects of climate warming and improving production sustainability

under such circumstances. The goal of my dissertation is to explore the influence of three factors i.e.

adopting newly released crop varieties, adjusting planting density, and crop insurance participation

on the sensitivity of crop yield to warming.

In Chapter 2, we attempt to explore the effectiveness of developing and adopting new rice

varieties in addressing the climate change challenge in rice production. For this purpose, we use

farm-level survey data collected from Central Luzon area in the Philippines in the period from

1966 to 2016. The model we use includes climate-MV interaction terms. Such model helps us to

disentangle the warming effects on rice yields by allowing for identifying varietal-group-specific

warming effects. It gives us insight into which rice varietal group is most effective in mitigating

the adverse effects of warming temperatures and whether the recently released modern varieties

mitigate or aggravate the impacts of heat on rice production. Another contribution of this paper is

that the data set we use in our analysis is farm-level panel data rather than aggregate rice production

data or experimental field trial data commonly used by other research. Such data enables us to

better examine rice growth response to warming under actual farmer-managed field conditions.

This chapter is structured as follows. Section 2.2 introduces the empirical setting and data

sources, as well as discusses pertinent background on rice varietal development in the Philippines.

Section 2.3 illustrates the modeling framework that examines the heterogeneity in the resilience

of each varietal group’s yield with respect to weather variables. Section 2.4 explains the estimation

results. Section 2.5 provides various robustness checks and Section 2.6 discusses the conclusions.
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In Chapter 3, we switch to the impacts of plant density on corn production. Previous literature

has provided abundant evidence for the contribution of increasing plant density to crop production

increases. However, this positive effect of plant density increases can be influenced by climate

warming. To determine how the response of yield to plant density increases is affected by warming

temperature, we merge a plot-level field trial data collected by the University of Wisconsin over the

period 1990-2010 with publicly available weather data and estimate regression models with plant

density-temperature interaction terms. In addition, we explore how GM traits influence corn yield

response to increases in planting density as the temperature is heating through estimating models

including GM traits-plant density-temperature interaction terms.

Chapter 3 proceeds as follows. First, we provide a detailed description of the data sources and

our empirical approach that allows us to examine how corn yield responds to changes in plant

density under different temperatures and/or GM traits in Section 3.2. This is followed by a thorough

discussion of estimation results (Section 3.3) and various robustness checks (Section 3.4). Lastly,

conclusions, important implications, and potential avenues for future research are presented in

Section 3.5.

Chapter 4 attempts to address the question of whether crop insurance adoption influences

the effect of warming temperatures on crop yield and yield risk. We are particularly interested in

exploring if increasing crop insurance participation would result in larger increases in the yield risk

response to extreme heat. To accomplish the goals, we use a county-level panel data set including

information on crop (corn and soybeans) yield, weather, and crop insurance participation rate

and estimate stochastic production functions through using parametric moment-based estimation

procedures to determine whether the relationship between extreme heat and all four moments of

the yield distribution (e.g, mean, variance, skewness, kurtosis) is affected by crop insurance use.

Chapter 4 is organized as follows. Section 4.2 describes the county-level panel data utilized in the

study. Section 4.3 describes the parametric moment-based estimation procedures and the empirical

specification. Section 4.4 discusses the estimation results. Section 4.5 provides several robustness

checks, the instrumental variable method, and the cost of risk calculated based on estimates of the

main model. Section 4.6 concludes.
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CHAPTER

2

QUANTIFYING THE YIELD SENSITIVITY

OF MODERN RICE VARIETIES TO

WARMING TEMPERATURES: EVIDENCE

FROM THE PHILIPPINES

This chapter examines the relationship between yields of modern rice varieties and three major

weather variables — maximum temperature, minimum temperature, and precipitation. We use

a long-running farm-level survey data in the Philippines, with rich information on planted rice

varieties and propose fixed effect econometric models, to identify the warming effects on yields

of different rice varieties. The results show that increases in temperature, especially minimum

temperatures, have substantial negative impacts on rice yield and the most recent varietal group bred

for better tolerance to abiotic stresses are even more resilient to warming temperatures compared to

traditional varieties and earlier modern varieties. These results provide some evidence that public

investments in breeding rice varieties more tolerant to warming temperatures have been successful,

and continued investments in these breeding efforts are warranted.

2.1 Introduction

Rice is the most important food crop in the world, with nearly half of the world’s population relying

on it for sustenance every day. It is the main staple food across a number of Asian countries, and it
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is also becoming an increasingly important food crop in Africa and Latin America ([Cha17]). Over

144 million farms cultivate rice across an area of about 167 million hectares (ha) in more than 100

countries ([FAO19]). Rice-based farming systems have also been the main source of income for a

large proportion of rural farmers located in a number of developing countries ([Cha17]).

Given the importance of rice as a major staple food and a source of income for farmers worldwide,

a key challenge is to find strategies that would maintain or improve rice productivity in the future

even in the presence of climate change. Based on the recent climate assessment reports of the

Intergovernmental Panel on Climate Change (IPCC), global warming has intensified over the last 50

years and this warming trend is predicted to persist in the future (see the Figure S2.1). A warming

climate has the potential to adversely affect rice yields and rice quality ([Pen04]; [Iiz06]; [Lym13];

[Kaw16]). For example, extremely high temperatures can lead to spikelet sterility and consequently

reduce rice yields ([Ngu14]; [Bhe16]). These adverse warming effects then have the potential to

compromise food security in countries that rely on it as a food staple.

One strategy that may help address the climate change challenge in rice production is the

development and use of newer rice varieties that are better able to adapt to a progressively warming

climate. Over the years, development and adoption of new rice varieties have been utilized to

overcome a variety of production challenges that have historically arisen in this sector. Since the

Green Revolution in the 1960s, there have been development and consequent adoption of several

generations of modern rice varieties (MVs) aimed at addressing various production challenges such

as lodging, low fertilizer responsiveness, pest problems, and adverse weather conditions (see next

section for more details). The release and subsequent adoption of these MVs have led to remarkable

increases in rice yields over time ([Bar85], [Hay94], [Ots94], [Est06]), especially as compared to the

traditional rice varieties (TVs), which was the only rice varietal group available prior to the Green

Revolution.

With this history of rice varietal development over time, it is likely that there is heterogeneity in

each variety’s (or varietal group’s) yield response to weather variables. The objective of this study is to

determine the yield response of different rice varietal groups to warming temperatures. To achieve

this objective, we utilize farm-level survey data collected every four to five years from 1966 to 2016

in the Central Luzon region of the Philippines ([Moy15]; [Lab15]). Examining the Philippine case

is especially relevant since it is one of the top ten rice-producing countries in the world ([FAO19]),

and the pattern of varietal adoption in this country is representative of other major rice-producing

countries like India, Indonesia, Bangladesh, and Vietnam ([Bre11]; [Pan12]). Since farmers are

tracked over time in the data set utilized, we are able to develop fixed effects econometric models,

which then allows us to identify “varietal-group-specific” yield response to several weather variables

(e.g., minimum temperature, maximum temperature, and precipitation).1 Therefore, the study

results provide interesting insights as to the effectiveness of prior rice varietal development efforts,

1As noted in [Lau08] and [Lab15] there are numerous specifically-named MVs that have been released in the Philippines
since 1966 and it would have been impossible to estimate yield response to weather changes for each of these specifically-
named rice varieties. Hence, in this study, we focus on the yield response of varietal groups (as further defined below) to
weather variables.
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specifically in terms of mitigating the adverse impacts of climate change.

Due to concerns about the effect of climate change on agriculture, there is now a large literature

that has used econometric methods to examine how weather variables influence crop yield outcomes

(See, for example, [Auf06], [Wel10]; [Sar12]; [Lym13] and [Kaw16] for rice; [Sch09] for corn; [Tac15b]

for wheat). There is also another strand of literature that explores the determinants and economic

impacts of particular climate change adaptation practices for different crops (See: [Che14]; [Wan10];

[Der09]; [DF11]; [But13]; [Hua15]). Despite this rich literature on climate change adaptation and

climate change effects on yields, to the best of our knowledge, there has been a limited number of

studies that investigated how the yield impact of weather variables may vary depending on the rice

variety, or the rice varietal group, used by farmers. [Tac16], using a long time-series of field trial data

in the U.S., examined variety-specific yield response to higher temperatures for wheat, but not for

rice. [Has16] examined how the yield response of TVs differ from high yielding rice varieties (HYVs),

using more aggregate region-specific data from Bangladesh. We have not found any study that has

used individual farm-level data to econometrically examine the relationship between rice varietal

use and yield response to weather variables.

Our main contribution is to disentangle the warming effects on rice yields by allowing for

econometrically identifying varietal-group-specific effects. This is important because it will allow

us to know which rice varietal group is most effective in mitigating the adverse effects of warming

temperatures and whether the older MVs had some climate change mitigation features. Although

not all previously released rice MVs are widely used anymore ([Lab15]), it is still important to

determine whether these older varietal groups have historically contributed to climate change

mitigation, especially because they were not specifically bred for this purpose (see more discussion

on this issue below). If these climate change mitigation effects are present for these earlier MVs,

then these are important “spillover” rice breeding effects that need to be recognized. But more

importantly, given that newer rice varieties were developed to be more tolerant to adverse climatic

conditions, providing empirical evidence to show the climate change mitigation effects of these

newer varieties on farmers’ fields allows one to see whether more recent breeding efforts to produce

“climate-change-tolerant-traits” has indeed been successful.

The second contribution is that we exploit actual farm-level panel data in our analysis, rather

than using more aggregate rice production data (e.g., district-level, province-level) or experimental

field trial data, which are the two most commonly used data types in previous literature. The novel

data set used in this study allows one to better examine rice yield response under actual farmer-

managed field conditions. The data set used is also unique in terms of the decades-long time period

it spans, which is relatively rare in terms of the few climate-change studies that utilize individual

farm-level data sets. Furthermore, the farm-level data set we use also has rich information on the

rice varieties used, as well as the other inputs utilized by the grower (e.g., fertilizer, insecticide).

Much of the individual data sets used for climate-change studies in the past do not have rich varietal

information that would allow one to estimate variety-specific (or varietal-group-specific) yield

response to weather variables. Disregarding heterogeneity in the yield response of specific rice
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varieties may lead to inaccurate inferences regarding the yield effects of warming. Hence, having

this unique and novel data set gives us the rare opportunity to study the interactions of rice varietal

traits and the environment it grows in, over a long period of time.

The rest of this chapter is organized as follows. Section 2.2 introduces the empirical setting

and data sources, as well as discusses pertinent background on rice varietal development in the

Philippines. Section 2.3 illustrates the modeling framework that examines the heterogeneity in the

resilience of each varietal group’s yield with respect to weather variables. Section 2.4 explains the

estimation results. Section 2.5 provides various robustness checks and Section 2.6 discusses the

conclusions.

2.2 Empirical Setting and Data Sources

The empirical setting for this study covers six major rice-producing provinces from two adminis-

trative regions in the Philippines: (a) La Union and Pangasinan provinces in Region I (called the

Ilocos region), and (b) Nueva Ecija, Pampanga, Bulacan, and Tarlac provinces in Region III (usually

called the Central Luzon region). For the purpose of this study (and consistent with [Lab15]), the

six provinces in the study area are collectively referred to here as Central Luzon. In 2013, the total

harvested area in the six provinces was 0.9 million ha, with the majority of these under irrigation

(82%). The average rice yield in the study area was 4.7 tons per ha, per cropping season in 2013,

which is slightly higher than the national average. Rice is planted twice a year: (a) the wet season

(WS) production that ranges from May/June to September/October, and (b) the dry season (DS)

production that ranges from November/December to March/April ([Moy15]). The average farm size

in the study area is around 1 ha ([Moy15]). Like many other countries of the world, the Philippines

(and the study area under consideration) have experienced significant warming trends over the years.

Estimates from the Philippine Atmospheric, Geophysical, and Astronomical Services Administration

(PAGASA) suggest that, between 1951 to 2010, average maximum and minimum temperatures in

the Philippines have increased by 0.36◦C and 1.0◦C, respectively.

As previously mentioned, Philippine rice varietal development and utilization roughly follows

the pattern for other major rice-producing countries in Asia ([Bre11]; [Pan12]). The first-generation

MVs (called MV1) were released from the mid-1960s to the mid-1970s, which included the IR5 to IR34

varieties developed by the International Rice Research Institute (IRRI) and the C4 series developed by

the University of the Philippines (UP). Specifically, the release of IRRI’s IR8 variety in the Philippines

and India is widely considered as the event that ignited the Green Revolution for rice production.

Compared to TVs, MV1 achieved higher yields primarily due to their resistance to lodging, their

ability to make more efficient use of solar energy, and their responsiveness to fertilizer ([Lau08]).

Although MV1 are typically higher-yielding (relative to TVs) they were more susceptible to pests and

diseases. The second-generation MVs (called MV2) were released in the mid-1970s to mid-1980s

and included such IRRI-developed varieties like IR36 to IR62. These MV2 varieties incorporated

multiple pest and disease resistance traits (relative to MV1). The third-generation MVs (called MV3)
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were developed and released between the mid-1980s to the late-1990s, and incorporated better

grain quality and stronger host plant resistance ([Lau08]). Lastly, the fourth-generation MVs (called

MV4) were released after 1995. In this period, public rice breeding programs started to focus on the

research and development of varieties specifically for adverse rice production environments, such

as those subject to salinity, floods, and drought ([Lab15]).2

The main data source utilized for this study is from the so-called “Central Luzon Loop Survey”

or simply the “Loop Survey.” It is called the “Loop Survey” because of the sampling strategy used,

where the farm households included in the sample are located along the loop of the main high-

way that passes through the six provinces (Figure 2.1). Face-to-face interviews were conducted to

collect various socio-demographic, input use, and rice production information from the sample

respondents (See [Moy15] for more details on how the survey was conducted over the years and

the different sets of information collected). The loop survey data included WS information for the

following cropping years: 1966, 1970, 1974, 1979, 1982, 1986, 1990, 1994, 1999, 2003, 2008, 2011 and

2015; while DS information was available for 1967, 1971, 1975, 1980, 1987, 1991, 1995, 1998, 2004,

2007, 2012 and 2016.

Note that the loop survey collected production and input use data for each parcel (or field) the

farmers have (i.e., there could be three rice parcels for a particular farm household, and input use

information, say on fertilizer, was collected for each of the three parcels, where the input applied for

each parcel may vary). However, there was no unique identifier used to consistently track parcels

over time. Hence, only a farm-level panel data set can be constructed with the loop survey since

only the farm households can be uniquely tracked over time (and not the parcels for each farm

household). Nevertheless, we still “carry-over” the parcel level data rows (for each farm household)

and run our empirical models using parcel-level observations. But, as discussed further in the next

section, we can only account for farm-level fixed effects (and not parcel-level fixed effects) given the

data structure described here.

As noted above, the loop survey includes data for two growing seasons (DS and WS). It is likely

that the rice yield effect of weather variables varies by season. From 1966 to 1975, only around 20%

of farmers in the Central Luzon region can plant a DS rice because of the lack of irrigation. For

this reason, our DS sample has a relatively small number of observations. Given the limited size of

the dry season data, we focus on the analysis of the WS data. Another major concern is that yield

response to weather variables and input use are likely to vary depending on whether the farm is

irrigated or not. Thus, pooling them together and fitting the model for this kind of pooled data is

inappropriate. With the construction and operation of large scale irrigation systems and wide use of

small pumps for irrigation, the population of farmers having access to irrigated water was growing

rapidly for the period considered. In the data set we used for empirical analysis, 79% of observations

are irrigated operations. For this reason, in this study, the sample of interest was limited to irrigated

rice production planted in the WS.

2As noted in [Lab15], there was an additional varietal group called MV5 that refers to modern rice varieties released
after 2005. However, these varieties do not have substantially different characteristics relative to MV4. Hence, MV4 and
MV5 are considered as the same varietal group–recent MVs in this study.
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Aside from the loop survey data, we also collected monthly average of daily values for mini-

mum temperature (in ◦C) and maximum temperature(in ◦C), and monthly total precipitation (in

mm/month)) from the following sources: (a) the WorldClim data (version 1.4) for 1960-1990, and (b)

the University of East Anglia’s Climatic Research Unit (CRU) data (version 3.23) for years 1990-2016.3

Since these data sets are at higher spatial resolutions (i.e., 0.5-degree resolutions for the CRU data), a

climate downscaling tool (called ClimDown) was used to produce climatic data corresponding to the

municipality level4 where each loop survey household is located (See [Mos14] for more information

on this downscaling process). Therefore, the climate data in this dataset are at the municipality level

and reported at a monthly time-scale for the years covered in the loop survey. This climate data

were then merged to the loop survey data in order to have one unified data set to run our empirical

models.

2.3 Modeling Framework

We use multivariate regression methods to estimate econometric models of the following general

form:

ln(yi j m t ) =α j + f (tmink m t , tmaxk m t , precm t , Vi j m t ;δ,β ,ψ) +γXi j m t +ηt + εi j m t (2.1)

where ln(yi j m t ) is the natural log of rice yield y (in kg/ha) for parcel i and farm j , located in

municipality m , for year t . The other terms in Equation (2.1) are described as follows. The parameter

α j accounts for unobservable time-invariant farm-level fixed effects such as soil quality and farmer

management ability. The function f (·) is what we call the climate function that includes the following

explanatory variables: (a) a vector of weather variables: municipality-level maximum and minimum

temperature for a particular k th growing phase, as well as cumulative growing season precipitation;

and (b) a vector of parcel-level rice varietal group dummy variables Vi j m t .

For the purpose of having a more parsimonious model (and more easily interpretable results),

we classify the hundreds of varieties in the Loop Survey data set into three main varietal groups:

the “TV” group, the “Early MVs” group, and the “Recent MVs” group.5 The TV group is the omitted

category in the regressions, which includes the varieties prior to the Green Revolution. Rice varieties

commonly considered as MV1, MV2 and MV3 are included in the “Early MVs” group, where “Early

MV” is a dummy variable equal to one if the rice variety planted is either considered as MV1, MV2, or

MV3, zero otherwise. In addition, rice varieties commonly classified as MV4 and MV5 are included

in the “Recent MVs” group, where it is represented as a dummy variable equal to one if the rice

variety planted is commonly considered as “Recent MVs”, zero otherwise.

The term Xi j m t is a vector of control variables that include parcel-level input applications (e.g.,

3See http://wwww.worldclim.org/version1 for the WorldClim data and https://crudata.uea.ac.uk/cru/data/hrg/ for
the CRU data. For more information on how these two data sets were constructed see [Hij05] and [Har14], respectively.

4Administrative unit data were collected from the Global Administrative Areas (GADM) database located at
http://www.gadm.org.

5This means that, for the purpose of parsimony, we did not use the more common MV1 to MV5 varietal group
classification as described in the previous section (and as utilized in previous studies like [Lau08] and [Lab15]).
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fertilizer use, pesticide applications, and labor), as well as other farmer/farm socio-demographic

characteristics (e.g., age, education, land tenure). The term ηt is a linear time trend that is common

to all farms in the sample and, in previous studies, it typically represents technological evolution.

However, note that the use of rice varietal group dummies in the specification allows us to separate

at least the “varietal development” part of the technological change from this time trend. The term

εi j m t is the parcel-level idiosyncratic error term, and δ, β ,ψ, and γ are parameter vectors to be

estimated.

Note that the farm-level fixed effects (α j ) allow one to control for potential endogeneity caused

by farm-level, time-invariant unobservables that do not vary across parcels within a farm (i.e., like

unobserved farmer management ability). Given that farm size in our data only averages around

1 to 2 hectares, it is reasonable to expect that these farm-level fixed effects adequately control for

potential endogeneity caused by time-invariant unobservables. Furthermore, we cluster standard

errors at the village level to account for potential correlations among the parcels within a farm and

the spatial correlations among farms within a village.

2.3.1 Climate Function Specification

To estimate Equation (2.1), the function f (tmink m t , tmaxk m t , precm t , Vi j m t ;δ,β ,ψ) needs to be

specified. The weather variables used are minimum temperature (t mi n), maximum temperature

(t ma x ), and precipitation (p r e c ), which are the same weather variables typically used in previous

studies ([Wel10]; [Has16]).6 Note however that these weather variables were only available at the

municipality level (m), and not at the farm or parcel level. As discussed further below, we also run

an alternative specification with the following weather variables: t a v g , d t r , and p r e c . In this

case, the variable t a v g is mean temperature (in ◦C), d t r represents the diurnal temperature range

(which is equal to the difference between t ma x and t mi n), and p r e c is cumulative precipitation

fo the entire season (as previously defined). This alternative specification is also used in [Wel10].

In our main empirical specification, we use t mi n and t ma x by k growing phase, instead of by

month. We decided to do this in order to have a parsimonious specification to facilitate estimation

and for ease of interpretation. Since our focus is on the WS, it is important to note that this growing

season spans 3-6 months and the lengths of the growing season vary across provinces. One can then

designate the main growing phases in each season as k = 1,2,3, where 1 = vegetative phase, 2 =

reproductive phase, and 3 = ripening phase. For example, t ma x3m t would represent the maximum

temperature for the ripening phase (k = 3).

However, the raw climate data set only contain the monthly average of daily minimum tempera-

tures and maximum temperatures, as well as the monthly cumulative precipitation (i.e., the sum of

daily observations within a month). To construct weather variables by growing phase, we need to

assign the monthly weather values to each growing phase for each year and across all provinces in

the survey data. Therefore, data on the “rice growing windows” (i.e., the dates from planting to har-

6Minimum temperature is normally associated with nighttime temperatures and maximum temperature is associated
with daytime temperatures. [Wel10] have shown that these two variables may have differing effects on rice yields.
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vesting) for each growing season in the data are required. For this purpose, we utilized the RiceAtlas

([Lab17]), which contains the planting and harvesting dates for all of the provinces covered by the

Central Luzon Loop Survey. (See Table 2.3 for average maturity and growing phase lengths provided

by RiceAtlas.) However, the RiceAtlas mainly focuses on the “growing windows” from 1979 onwards,

while the Loop survey data covers a longer period of time (i.e. from 1966 to 2016). Information about

“growing windows” for the earlier years of the Loop survey is not available. Thus, we needed to make

reasonable assumptions about the months to include in each phase for earlier years of the Loop sur-

vey data. Before 1979, when TVs and MV1 are the major varieties adopted, growing seasons typically

lasted around 5 to 6 months, and the wet season starts around June and ends in November. The

vegetative phase usually lasts 75-95 days (i.e., 3 months), with the duration of both the reproductive

and ripening phases around one month (see http://www.knowledgebank.irri.org/step-by-step-

production/pre-planting/crop-calendar). Based on the information above, for the years prior to

1979, we take the average weather values from June to September as the vegetative phase value, the

average of September and October as the reproductive phase value, and the average of October and

November as ripening phase value. With the adoption of MV2, the average growth period declined

from about 150 days in the 1960s and 1970s to about 110-120 days in the 1980s and 1990s ([Moy15]).

For growing seasons after 1979, the RiceAtlas provides accurate planting and harvesting dates, and

we, therefore, use this information to properly assign the monthly weather values to appropriate

growing season phases for these years.

Another major component of the climate function f (·) is the rice varietal group dummies (Vi j m t ).

In this study, we designate TV as the base group (e.g., the omitted category) and then use the

notation V r to represent the 2 other varietal groups we defined in the previous section (i.e., r = 1, 2

corresponds to 1 = “Early MVs” and 2 = “Recent MVs”, respectively. The area planted to each varietal

grouping (for each survey year) is presented in Figure 2.2.

Given the notations discussed above, the climate function f (·) can then be fully specified as

follows:
2
∑

r=1

β r Vr
i j m t +

3
∑

k=1

δ1k tmink m t +
3
∑

k=1

δ2k tmaxk m t +δ3precm t +δ4(precm t )
2+

3
∑

k=1

2
∑

r=1

ψr
1k (tmink m t ×Vr

i j m t ) +
3
∑

k=1

2
∑

r=1

ψr
2k (tmaxk m t ×Vr

i j m t )+

2
∑

r=1

ψr
3 (precm t ×Vr

i j m t ) +
2
∑

r=1

ψr
4 ((precm t )

2×Vr
i j m t )

(2.2)

Quadratic precipitation terms is added to the climate function to allow for nonlinear precipitation

effects, which is similar to the specification used in previous research ([Tac15b], [Lob11], [Sch10a]).

The climate-MV interaction terms make it possible to examine whether there is heterogeneity in

each varietal groups’ response to weather variables.
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2.3.2 Specification of Control Variables

The next component of Equation (2.1) that needs to be specified is the vector Xi j m t , which ac-

counts for a number of control variables such as parcel-level input applications and other socio-

demographic farm characteristics. Including these variables in the specification allows us to control

for observable time-varying factors that can influence rice yields, thereby improving the accuracy

and efficiency of our estimations.

The input application variables included in the specification are: fertilizer applications (in

kg/ha), labor use (in man-days/ha), insecticide use, and land size(ha). These are considered as

major determinants of rice yields ([Moy15]). Socio-demographic characteristic included in the

specification is land tenure status, age, education of household head (in no. of years), number of

family members whose primary job is farming, and secondary job is farming. Land tenure status is

represented by a dummy variable “O w n” where this variable is equal to 1 if the land is owned, and it

is zero otherwise (e.g., share tenant, fixed rent leaseholder, or other tenurial arrangements). Table 2.1

provides descriptive statistics for the “economic variables” included in the empirical model, and

Table 2.2 presents the summary statistics for the weather variables.

2.3.3 Marginal Effects

One of the main goals of this chapter is to investigate heterogeneity in the yield response of different

rice varietal groups to weather variables. The yield response is measured by the marginal effect of

changes in weather variables on rice yield. Given the climate function specified in Equation (2.2),

the marginal effect of minimum and maximum temperatures can be calculated using the following:

∂ y

∂ tmink
=δ1k + (ψ

r
1k ×Vr

i j m t ), (2.3)

∂ y

∂ tmaxk
=δ2k + (ψ

r
2k ×Vr

i j m t ) (2.4)

where Vr
i j m t is the parcel-level rice varietal group dummy variables. For example, suppose the rice

variety adopted belongs to the “Early MVs” group, then V1
i j m t = 1. In this case, the marginal yield

effect of a one-unit change in the minimum (maximum) temperature for the k th phase is δ1k +ψr
1k

(δ2k +ψr
2k ) (i.e., the coefficient associated with the weather variable plus the coefficient associated

with the interaction of the weather variables and the varietal grouping dummy). Because TV is

designated as the base varietal grouping, the marginal effects of weather variables tmink m t and

tmaxk m t on TV rice yield are δ1k and δ2k , respectively. On the other hand, the marginal effect of

growing season cumulative precipitation is:

∂ y

∂ prec
=δ3+ (2×δ4×prec) + (ψr

3 ×Vr
i j m t ) + (2×ψ

r
4 ×prec×Vr

i j m t ) (2.5)

The simple marginal effect expressions in Equations (2.3) and (2.4) can easily be interpreted if

there are only a few weather variables to consider for each growing phase and if there are only one

or two rice varietal groups. However, as seen in Equations (2.3) and (2.4) above, our empirical model

includes six “temperature-growing-phase” variables for each of two MV groups. Given the number
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of parameters involved, drawing sensible and consistent inferences using the simple marginal

effect expressions in Equation (2.3) and (2.4) would be difficult and complex. As such, for ease of

interpretation and to facilitate making inferences, we focus on estimating the marginal effect of a

particular “warming scenario”, where we are interested in the cumulative marginal effect of a 1◦C

increase in both t mi n and t ma x in all three rice-growing phases (or for a particular phase).7 The

marginal effect of this specific “warming scenario” can then be calculated respectively for the TVs,

Early MVs, and Recent MVs as follows:
3
∑

k=1

∂ y |V = TV

∂ tmink
+

3
∑

k=1

∂ y |V = TV

∂ tmaxk
=

3
∑

k=1

δ1k +
3
∑

k=1

δ2k (2.6)

3
∑

k=1

∂ y |V = Early MVs

∂ tmink
+

3
∑

k=1

∂ y |V = Early MVs

∂ tmaxk
=

3
∑

k=1

δ1k +
3
∑

k=1

δ2k +
3
∑

k=1

ψ1k 1+
3
∑

k=1

ψ2k 1

(2.7)

3
∑

k=1

∂ y |V =Recent MVs

∂ tmink
+

3
∑

k=1

∂ y |V =Recent MVs

∂ tmaxk
=

3
∑

k=1

δ1k +
3
∑

k=1

δ2k +
3
∑

k=1

ψ1k 2+
3
∑

k=1

ψ2k 2

(2.8)

From these equations, we can calculate the warming yield response of Early MVs and the Recent

MVs as compared to TVs. This allows us to make inferences on whether or not the Early MVs and/or

Recent MVs are more resilient to warming temperatures relative to the TVs.

On the other hand, for calculating the impact of cumulative precipitation (p r e c ), we can directly

derive the marginal effect because we utilize a single cumulative growing-season precipitation

variable in the specification, instead of precipitation in each of the three growing phases. For

example, the estimated marginal effect of a 1mm increase in the cumulative precipitation for the

TVs, Early MVs, and Recent MVs can be calculated as follows:

∂ y |V = TV

∂ prec
=δ3+2×δ4×prec (2.9)

∂ y |V = Early MVs

∂ prec
=δ3+2×δ4×prec+ψ31+2×ψ41×prec (2.10)

∂ y |V =Recent MVs

∂ prec
=δ3+2×δ4×prec+ψ32+2×ψ42×prec (2.11)

Given that a squared precipitation term and its interaction with the varietal group dummy are

7Even though the specific “warming scenario” discussed here is mainly for the purpose of facilitating interpretation, it
is important to note that minimum and maximum temperatures in the Philippines tend to move together and are usually
positively correlated (See [Wel10]; [Pen04]). Our data also supports this behavior (See Supplementary Figure S2.2 and
Supplementary Table S2.3). Therefore, the base “warming scenario” examined here is still is fairly reasonable based on
this positive correlation between t mi n and t ma x . Nevertheless, given that minimum and maximum temperatures are
likely not to move together in exactly 1◦C intervals in reality, we also explore marginal effects for the case where t mi n
and t ma x changes based on projections from climate models (See Section 2.4 below).
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included in Equation (2.2), the marginal impacts of precipitation in Equations (2.9) to (2.11) are a

function involving the value of p r e c . In this study, we calculate the marginal impact of cumulative

precipitation at the mean of p r e c . In addition, we also measure and report the marginal effect of a

1 standard deviation increase in precipitation (at the mean of p r e c ).

2.4 Estimation Results

The fully specified empirical model for this study is primarily based on Equations (2.2) and (2.2)

above. However, in this section, we also present estimation results from four other more parsimo-

nious models, which then build towards the full specification results from Equations (2.2) and (2.2).

The first parsimonious model (Model 1) is our baseline where we do not include the interaction

terms between the temperature variables and the varietal group dummies, for all three growing

phases. In Model 1, we only include the interaction of t mi n for the vegetative growth phase with

the varietal group dummies, and the interaction of t ma x for the ripening phase with the varietal

group dummies.8 In addition, the baseline model also includes the t mi n and t ma x variables in all

phases individually, the fixed effects, and the time trend. The second parsimonious model (Model 2)

includes the interactions of the t mi n and t ma x variables in all growing phases (e.g., the vegetative,

reproductive, and ripening phases), instead of just the varietal group interactions with the vegetative

phase t mi n and the ripening phase t ma x , plus the remaining variables in Model 1. Next, the third

parsimonious model (Model 3) adds on the p r e c and squared p r e c terms to Model 2. The fourth

parsimonious model (Model 4) then includes all variables of Model 3 and adds the interactions of

p r e c and squared p r e c with varietal grouping dummy variables. Lastly, the fully specified model

is Model 5, where all the economic variables (i.e., input application variables and socio-economic

variables) are included in the specification, in addition to the variables in Model 4 (i.e., this is the

full expressions from Equations (2.2) and (2.2)). The parameter estimates for all of these models are

presented in Supplementary Table S2.1 in Appendix A.

The pertinent marginal effects for Models 1 to 5 under a variety of warming scenarios are

presented in Table 2.4.9 Marginal effects for the “baseline” model (Model 1) and the corresponding

P-values are in columns 2 and 3. Model 2 results are presented in columns 4 and 5. Marginal effects

and their P-values for Model 3 are in columns 6 and 7. Marginal effects and their P-values for Model 5

are in columns 8 and 9. Lastly, the marginal effects and their P-values based on the full specification

are shown in columns 10 and 11.

8The vegetative rice-growing phase t mi n and the ripening phase t ma x were chosen in this baseline model based on
a preliminary run of the empirical model without any interactions, but including all the individual t mi n and t ma x
variables in all phases (i.e., vegetative, reproductive, and ripening phases). In this preliminary run, the parameters
associated with the t mi n in the vegetative phase and t ma x in the ripening phase are the largest. Therefore, this
preliminary run suggests that t mi n during the vegetative phase and t ma x during the ripening phase had the largest
impact on rice yields. Therefore, we decided to have an initial parsimonious baseline model that only include the
climate-varietal-group interactions for these two variables.

9The warming scenario considered in Table 2.4 is a 1◦C increase in t mi n and t ma x . We also provide the marginal
effects for a warming scenario that increases t mi n and t ma x by 1 standard deviation in Supplementary Table S2.2 and
Supplementary Figure S2.3 in Appendix A. The pattern of results in both cases are similar.
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For all model specifications, a warming scenario that increases t mi n and t ma x by 1◦C in all

growing phases substantially reduces rice yields, though some of the estimated warming effects

are not statistically significant at the usual levels of significance (i.e., see warming scenario in the

top panel of Table 2.4). The magnitudes of our marginal effects range from -6.6% (for Recent MVs

in the “baseline” model) to -27.5% (for the TVs under Model 3). Results presented in the other

two warming scenarios, where only t mi n or t ma x are increased separately by 1◦C (see middle

panels of Table 2.4), indicate that t mi n is the likely source of the observed negative yield impact of

warming. This result is consistent with results from [Wel10]where t mi n effects were also found to

be the stronger determinant of rice yield losses due to warming temperatures. It is also important to

note that the estimated adverse warming effects observed in Model 3 and Model 4 became higher

(relative to the effects in Models 1 and 2), as one controls for precipitation and its interactions.

However, the observed marginal effects in Model 5 are lower than the estimates in Models 3 and 4

after a set of economic variables are added to the specification. This suggests that controlling for

precipitation and possible time-varying confounding factors may be important in our empirical

context.10

Another important result from Table 2.4 is the heterogeneity of the warming impacts across

the three varietal groups examined. In Figure 2.3, we graphically present the marginal percentage

yield effects of the main warming scenario (e.g, a 1◦C increase in both t mi n and t ma x across

the vegetative, reproductive, and ripening phases) for the three varietal groups. For all five model

specifications, the warming impact is lowest for the Recent MVs varietal group.11 This result provides

some farm-level evidence that rice breeding efforts to improve tolerance to abiotic stresses have

indeed resulted in more resilience to warming temperatures. In addition, we observe in Figure 2.3

that the negative warming effect on yields is smaller for the Early MVs as compared to the TVs (across

all model specifications). This is suggestive of a “spillover” warming tolerance effect from early rice

breeding efforts that were targeted primarily for increasing yields, improving pest resistance, and/or

enhancing quality traits (rather than enhancing tolerance to abiotic stresses).

Next, we utilize the parameter estimates from our fixed-effect models to investigate how pro-

jected future climate change will likely influence potential rice yields of the three varietal groups

examined in this study.12 To complete this climate projection and rice yield simulation exercise,

we utilize the projected climate change values from PAGASA, the main meteorological government

agency in the Philippines. The climate change values from PAGASA are the projected change in sea-

10It should be noted here that although including farm inputs in the specification can help control for confounding
factors, it can also raise endogeneity concerns especially if there are parcel-level unobservables not adequately controlled
for by the farm-level-fixed effects. Nonetheless, this concern is mitigated by the result that the magnitudes of the estimated
effects in Models 3 to 5 are roughly similar.

11In Figure 2.3, there are clear variations in the estimated magnitudes of the marginal effects. However, the confidence
bands do not clearly suggest that the marginal effects are statistically different across varietal groups. This may simply be
due to sample size limitations in the data and perhaps test power issues, which we believe does not wholly invalidate the
inferences made.

12Simulating the effect of projected future climate on rice yields also provides additional insights relative to the 1◦C
warming scenario examined in Table 2.4 since this simulation exercise does not implicitly assume that t mi n and t ma x
change by the same amount (i.e., d t r is not assumed to be constant in the future climate projections).
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sonal minimum temperature, maximum temperature, and precipitation from the average over the

period 1971-2000 to the average over the period 2011-2040. These projected changes are generated

based on the statistical downscaling of three global climate models (GCMs): (1) the BCM2, (2) the

CNCM3, and (3) MPEH5; and two plausible emissions scenarios: (1) the A1B emission scenario, and

(2) the A2 emission scenario.13

The projected changes in t mi n and t ma x and p r e c for each of the six provinces in this

study are presented in Supplementary Table S2.4, Supplementary Table S2.5, and Supplementary

Table S2.6. In addition, the summary statistics for the average across the six Loop survey provinces

by growing phase (in the WS) are provided in Supplementary Table S2.7. Note that Supplementary

Table S2.7 shows that both t mi n and t ma x are predicted to increase in the future. Under most

of the “emission-scenario-GCM-growing phase” combinations examined, the magnitudes of the

changes in t mi n and t ma x are similar (which validates the original “warming scenario” examined

above). However, specifically under the“A1B-CNCM3-Vegetative Phase” combination and the“A2-

CNCM3-Vegetative Phase” combination, the incremental increase in t mi n is double that of the

increase in t ma x , which typically leads to relatively different climate predictions under CNCM3

model (as compared to the other two GCMs).

The percentage change in rice yields due to the projected temperature changes are presented in

Figure S2.4 and Figure S2.5 for the fully specified model (Model 5), and the detailed yield effects

for all models are presented in Supplementary Table S2.8. In general, our results suggest that the

Recent MVs yields are still the ones that are more tolerant to projected warming temperatures for

most of the GCM-emission-scenario combinations examined (with the exception of the results from

the CNCM3 projection model). Results from this analysis also suggest that Early MVs exhibit better

tolerance to projected warming temperatures (as compared to the TVs). These climate projection

results are consistent with the earlier analysis from the warming scenario examined (Table 2.4).

So far, we have focused on the differential warming impacts across different varietal groups

using both the warming scenario and climate projection models. Precipitation effects have not

been discussed. In Figure S2.7, we also show the marginal rice yield response due to a 1 standard

deviation increase in growing season cumulative precipitation p r e c (evaluated at the mean of

p r e c ). Increases in p r e c (at the mean) tend to reduce yields of all three varietal groups. Among

the three varietal groups, the estimated reduction in the Recent MVs yield is the smallest. These

estimates indicate that the Recent MVs is the rice varietal group that is more tolerant to increases in

cumulative precipitation. Although, it should be noted that the Early MVs also exhibit resilience to

13Note that GCMs are powerful computer programs that use physical processes to replicate, as accurately as possible, the
functioning of the global climate system ([Com07]. The BCM2 model was established by the Bjerknes Centre for Climate
Research. On the other hand, the CNCM3 GCM was developed by the Météo-France (Centre National de Recherches
Météorologiques). Lastly, the MPEH5 was developed by the Max Planck Institute for Meteorology. These three GCMs are
considered the most effective at simulating climate for the Philippines ([Tol16]).

On the other hand, the A1B and A2 are two emissions scenarios used in the regional climate projections of the Intergov-
ernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) and were generated by the Geophysical
Fluid Dynamics Laboratory (GFDL) model. The A1 family of scenarios assumes a more integrated world and A1B is based
on a balanced technological emphasis on all energy sources. The A2 scenarios, on the other hand, assumes a more divided
world.
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increases in cumulative precipitation (as compared to the TVs).

2.5 Robustness Checks

As a robustness check, we also estimate similar models as described in Equations (2.2) and (2.2), but

instead of t mi n and t ma x , as the two main temperature variables considered, we instead utilize

average temperature (t a v g ) and diurnal temperature range (d t r ). Cumulative precipitation p r e c

is still included in this robustness check specification (with both linear and quadratic terms). We

still follow the approach from the previous section where we examine four parsimonious models

(Models 1-4) and build-up to a fifth full model specification.14

The estimated marginal yield effects of t a v g and d t r for various warming scenarios and

model specifications are presented in Table 2.5 (and regression results for the specifications are in

Supplementary Table S2.9 in Appendix A). In addition, the marginal effects of a 1◦C increase in t a v g

are graphically shown in Figure 2.4. Our results indicate that increases in t a v g negatively impact

rice yields. However, the magnitudes of the marginal effects for t a v g is smaller than the ones in

the previous section for t mi n and t ma x . In addition, a good number of these marginal effects are

statistically insignificant, which is consistent with previous studies ([Wel10]). This is because, for

most varietal groups in nearly all specifications, t mi n and t ma x have opposing rice yield impacts.

Thus, the opposing temperature impacts may partly cancel each other out. On the other hand, the

marginal effect of d t r is positive (See Table 2.5 (middle panel) and Supplementary Figure S2.8).

Note that an increasing d t r means that t ma x is increasing faster than t mi n , while a decreasing

d t r means that t mi n is growing faster than t ma x . Thus, the positive marginal effect for d t r

supports the notion that increasing t mi n has a negative impact on rice yields (i.e., consistent with

our main specification results in the previous section).

Under all five model specifications, the percentage negative yield impact of t a v g is the highest

for TVs and the lowest for the Recent MVs. This result is consistent with the conclusion we made

based on the models above involving t mi n and t ma x , which provides further evidence as to the

effectiveness of the breeding work done to develop MV4 and MV5. In addition, Figure S2.9 shows the

marginal yield impacts of p r e c at the mean for the model using t a v g and d t r , which also shows

the robustness of the precipitation mitigation effect of the Recent MVs from the earlier regression

runs.

Another robustness check is running separate regressions by varietal groups. The dataset was

divided into three subsamples by varietal groups. We constructed a model specification including

linear terms for t mi n and t ma x , linear and quadratic terms for p r e c , and applied this specification

to each varietal group subsample. The estimated impacts of a +1◦C warming scenario and a 1

standard deviation increase in p r e c for each varietal group subsample are seen in Supplementary

14One subtle difference to note in the baseline model here (Model 1) is that the interactions considered are only for: (a)
t a v g in the reproductive phase, and (b) d t r in the vegetative phase. As in the previous section, this choice was made
since preliminary runs of specifications without interactions indicate that the estimated coefficients associated with
reproductive phase t a v g and vegetative phase d t r are the highest (among the t a v g and d t r coefficients for all three
growing phases separately).
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Table S2.10 and the parameter estimates are reported in Supplementary Table S2.11. In addition, we

graphically show the impact of a 1◦C warming scenario based on the separate regression runs in

Supplementary Figure S2.10, while the impact of a 1 standard deviation increase in p r e c is provided

graphically in Supplementary Figure S2.11. Note that in Supplementary Figure S2.10, we only plot

the confidence interval for early MVs and recent MVs because of the large confidence interval for

the TV group (which is likely due to the small sample size), and this does not easily fit the scale

of the figure. Even though the significance of estimated marginal effects largely decline in these

subsample runs due to the small sample sizes (especially for TVs), the mitigation effect observed for

the Recent MVs is still present.

Since the roll-out and use of the different varieties occurred sequentially through time (i.e., TVs

in earlier years, followed by the release of Early MVs, and then Recent MVs in more recent years),

one other approach to check the robustness of results is by running a specification without varietal

group dummy interactions with weather, but instead interacting the weather variables (by growing

phase) with the time trend. Parameter estimates from this alternative specification are reported in

Supplementary Table S2.12.15 In this specification, varietal development is embedded in the time

trend (along with other rice technologies evolving over time). Hence, if varietal development is the

main driver of rice technological change, then we would expect a pattern where the adverse effect

of warming would be larger in earlier years (where TV is predominant) and it would then slowly

decrease over time as more MVs are released. More recent years will have smaller negative warming

effects than earlier years given the release of MV4 and MV5. This pattern is indeed verified and

shown in Supplementary Figure S2.12 in Appendix A, which supports the robustness of our earlier

results.

Another robustness check we conducted is to examine a specification with both: (a) varietal

group interactions with the weather and (b) time trend interactions with the weather. Compared to

the specification in the previous paragraph, this last specification separates out the warming effect

of varietal groups from the warming effect due to other technologies. Parameter estimates from

this specification are reported in Supplementary Table S2.13 and the pertinent marginal effects are

presented in Supplementary Figure S2.13. Results from this last robustness check are still consistent

with the main pattern of results from the previous analysis, where the adverse warming effect is

smaller for the recent MVs relative to the earlier MVs and the TVs.

The number of observations for TV is relatively small and available only at the beginning several

years of the study period (see Figure 2.2). For this reason, estimates related to TV have large standard

errors and are insignificant in the major model. Due to the difficulty of getting efficient estimators for

15Specifically, results from Model 3 and Model 4 in Supplementary Table S2.12 are the ones that coincide with the
specification and results described here. We also present results from another two specifications (Model 1 and Model 2)
where there are no varietal group interactions with the weather and no time trend interactions with the weather. This
is the case where one has no data on varietal groups and it is assumed that the marginal effect of warming is constant.
In this case, the estimated marginal impact of 1◦C warming scenario is -15.3% from Model 1 and -11.5% from Model 2.
Hence, in this naive specification, we do not adequately capture the heterogeneity in the warming effects (e.g., the larger
warming effects on TVs) and further highlights the importance of having varietal data when exploring climate change
impacts in agriculture.
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TV, we estimate the model without observations for TV to compare the resilience of early MVs and

recent MVs to weather changes. Column 9 in Table S2.15 shows the warming impacts on early MVs

and recent MVs estimated by the major model dropping TV from the data. 1◦C warming scenario

results in a larger reduction in the yield of early MVs than the recent MVs.

Even though the classification of MV5 is completely based on the year of release rather than the

characteristics different from the previous generation of modern varieties. It is still interesting to see

how their resistances to weather variables are different. For this reason, we separate recent MVs into

MV4 and MV5 and estimate the coefficients for them separately. The marginal impact of warming

and precipitation change estimated from these models are provided by Table S2.18 and Table S2.19.

According to the results, both MV4 and MV5 are shown to be more resistant to 1◦C warming than

the earlier varieties and the temperature resilience for MV5 is slightly higher than but close to MV4.

Other robustness checks include estimating the effects of precipitation for three growing phases

rather than the entire growing season, adopting “fixed” growing phase windows (assume each of

the vegetative, reproductive and ripening phase takes two months), interacting input variables

with varietal group dummies, interacting maximum temperature, precipitation and varietal group

dummies and run regressions with a variety of specifications for time control: models controlling for

cubic time trends, year fixed effects, and province-specific time trends. Results from these alternative

models also support the conclusion made from our major analysis. (see Table S2.14 and Table S2.15)

2.6 Conclusions

The main objective of this chapter is to investigate whether modern rice varieties (MVs) mitigate

the adverse yield impacts of climate change, especially the more recent varieties (MV4 and MV5)

specifically bred to be more tolerant to abiotic stresses. By merging Philippine farm-level survey

data (from 1966-2016) with monthly, municipality-level climate data, we are able to estimate fixed

effect econometric models with “weather-varietal group” interactions and assess whether there is

heterogeneity in the warming effects across different rice varietal groups. Results from the analysis

indicate that modern rice varieties mitigate the detrimental effects of warming on rice yields, and

there is evidence that rice varieties in the recent MVs varietal group indeed tend to be more resilient

to a warming climate relative to the earlier rice MVs. Although early modern varieties were not

specifically developed to address climate change and other abiotic stresses, we find that they in

fact partially mitigate the negative yield effects of warming. The presence of some climate change

mitigation effects for these early modern rice varieties can be considered a “spillover” benefit from

rice breeding efforts that were not specifically targeted to improve resilience to climate change.

Moreover, the stronger climate change mitigation effects for recent MVs provides evidence that

there are indeed direct yield benefits from rice-breeding efforts to improve tolerance to abiotic

stresses.

Findings from our study suggest that public rice breeding efforts to develop rice varieties with

“high-temperature tolerance traits” is essential to the maintenance of past rice yield gains, especially
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in a future with global warming. This implies that future public investments in breeding for abiotic

stress tolerance is important for ensuring food security and in reducing climate-change-induced

production risks faced by rice farmers in developing countries. Even though we provide some

evidence on the success of recent breeding efforts to increase resilience to abiotic stress, our results

for rice producers in the Central Luzon region of the Philippines still show that rice yields will be

negatively affected by future climate change even when using MV4 and MV5. Hence, there should be

continued research investments in rice breeding at international centers (i.e., like IRRI) and national

breeding institutions (i.e., such as PhilRice in the Philippines and BRRI in Bangladesh) if rice yield

growth is expected to continue in the future and meet the food demand of a population getting

close to 10 billion by 2050. Specific focus on funding research projects to develop “climate-change-

tolerant” rice varieties should be one of the priorities of funding agencies and donor institutions

interested in global food security and poverty alleviation in developing countries (e.g., Bill and

Melinda Gates Foundation, USAID, etc.).

For rice farmers, our results indicate that rice variety selection is an important adaptation strategy

to climate change. However, the adoption of new rice varieties often demands more knowledge,

better management, and higher cost. Therefore, policies and programs that provide more education

and outreach programs are needed to help producers understand the relationships between climate

(as well as other production environment conditions) and the yield and quality impacts of planting

different rice varieties. Providing small initial subsidies for rice farmers to try out new climate-

change-tolerant varieties may be one policy option that developing country governments can

explore (i.e. if they want to encourage adoption of these varieties). Lastly, providing extension

support to provide information about complementary climate change adaptation strategies (other

than simply adopting more tolerant varieties) would also better arm producers with tools to face a

production environment with higher temperatures and more frequent extreme weather events.

Even though the present study provides important inferences about the likely heterogeneous

effects of warming across different rice varietal groups, it is important to recognize some limitations

in the study. First, the sample size of our survey data is still relatively small and this constrained us to

only focus on climate change effects for irrigated rice farmers in the WS. It may not be appropriate

to extrapolate our data to rainfed rice farmers planting in the dry season. Nevertheless, since climate

change is likely to cause more damage to rice grown in the dry season, it is reasonable to say that

our estimated results can be considered as a lower bound of the warming impacts across rice

varietal groups. Second, the relatively small survey sample also made us focus on developing more

parsimonious models, rather than developing more flexible models that are less parsimonious. We

leave these kinds of efforts for future work. Third, the weather data used in the study was only at

the municipal level (rather than at the farmer level or lower levels of aggregation). Future studies

may consider collecting individual farm-level weather data to improve inferences going forward.

In addition, collecting individual information about other weather variables like radiation and

vapor pressure deficit (VPD) may also be important in better understanding rice yield effects under

climate change in the future ([Kri05], [Wel10], [Gou13]). Lastly, conducting the analysis in this study
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for other countries with more variable weather may also be beneficial in the future.
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Table 2.1 Descriptive statistics for the economic variables

Variable & Units/Definition Units/Definition Mean St Dev Min Max

Yield kg/ha 3890.09 1555.77 306.67 11250.00

Land Tenure 1=owner; 0=other 0.42 0.49 0.00 1.00

Farm size ha 1.32 0.97 0.03 9.00

Age of Head no. of yrs. 52.63 13.65 22.00 94.00

Educ. of Head no. of yrs. 7.25 3.34 0.00 16.00

Primary farming no. of family members 1.09 0.38 1.00 5.00

Secondary farming no. of family members 0.08 0.28 0.00 2.00

Labor man-days/ha 70.14 28.70 0.00 257.75

Nitrogen Fert. kg/ha 81.93 50.51 0.00 483.91

Potassium Fert. kg/ha 11.04 13.50 0.00 127.80

Phosphorus Fert. kg/ha 9.21 8.28 0.00 67.10

Insecticide kg/ha 1.50 2.64 0.00 70.27

Molluscicide kg/ha 0.25 0.97 0.00 10.00

Herbicide kg/ha 0.90 2.42 0.00 32.00

Rodenticide kg/ha 0.01 0.16 0.00 5.00
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Table 2.2 Descriptive statistics for the weather variables in Central
Luzon area

Variable Unit Mean St Dev Min Max

vtmin Deg. C 22.85 0.61 19.91 24.05

vtmax Deg. C 30.50 0.83 27.56 32.00

vtavg Deg. C 26.66 0.67 24.16 28.00

vdt Deg. C 7.65 0.74 5.14 9.45

retmin Deg. C 22.63 0.74 20.15 24.31

retmax Deg. C 30.40 0.79 27.78 32.45

retavg Deg. C 26.48 0.68 24.03 28.07

redt Deg. C 7.76 0.75 5.00 9.50

ritmin Deg. C 22.48 0.81 19.83 24.34

ritmax Deg. C 30.55 0.83 27.62 32.57

ritavg Deg. C 26.43 0.72 24.02 28.13

ridt Deg. C 8.07 0.87 6.00 10.51

Cum. Precip. mm 1386.36 357.47 692.84 3038.72

Notes: The table above displays the descriptive statistics of weather vari-

ables used in the regressions. The first four rows are the growing season

averages of the daily minimum, maximum, and mean temperatures,

as well as the diurnal temperature range for the vegetative phase. The

second four rows are the weather variables for the reproductive phase

and the third four rows show the weather variables for the ripening

phase. The last row is cumulative precipitation for the entire growing

season.

22



Table 2.3 Average maturity of six provinces in Central Luzon area

Maturity Approximate phase durations in days

In days In months Vegetative Ripening Reproductive

La Union 123 4 60 30 30

Pangasinan 123 4 60 30 30

Bulacan 112 4 50 30 30

Nueva Ecija 96 3 35 30 30

Pampanga 123 4 60 30 30

Tarlac 92 3 35 30 30
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Table 2.4 Marginal percentage yield impact of weather variables for different warming scenarios and varietal
groups

Model 1 Model 2 Model 3 Model 4 Model 5

Variables vtmin*V, ritmax*V 3 tmin*V, 3tmax*V add prec, precsq add prec*V, precsq*V add econ var

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1◦C warming scenario:

tmin&tmax: tv -0.195 0.130 -0.169 0.202 -0.275 0.025 -0.266 0.028 -0.240 0.122

tmin&tmax: early mv -0.084 0.116 -0.115 0.049 -0.220 0.000 -0.232 0.000 -0.197 0.024

tmin&tmax: recent mv -0.066 0.201 -0.110 0.060 -0.199 0.006 -0.187 0.008 -0.124 0.198

1◦C increase in tmin:

tmin: tv -0.191 0.276 -0.379 0.094 -0.534 0.015 -0.679 0.004 -0.670 0.007

tmin: early mv -0.111 0.043 -0.100 0.066 -0.229 0.001 -0.239 0.000 -0.236 0.001

tmin: recent mv -0.065 0.363 -0.196 0.110 -0.344 0.031 -0.315 0.020 -0.215 0.109

1◦C increase in tmax:

tmax: tv -0.004 0.978 0.210 0.419 0.260 0.306 0.414 0.121 0.430 0.143

tmax: early mv 0.027 0.562 -0.015 0.774 0.009 0.868 0.007 0.889 0.039 0.560

tmax: recent mv -0.001 0.988 0.087 0.312 0.146 0.169 0.128 0.131 0.091 0.275

1 standard deviation increase in cumulative precipitation:

prec: tv -0.213 0.181 -0.285 0.097

prec: early mv -0.168 0.000 -0.152 0.000

prec: recent mv -0.084 0.207 0.009 0.891

Notes: (1) The table displays coefficients and p-values of marginal yield effect of 1◦C warming scenarios and 1 standard

deviation of increase in p r e c from 5 farm fixed-effect models. Standard errors for each regression are clustered at the

village level. (2) The different models are as follows. Model 1 is the "baseline" model where t mi n and t ma x of each

growing phase and the interactions between t mi n in the vegetative phase (v t mi n) and t ma x in the ripening phase

(r i t ma x ) and dummies for rice varietal groups are included in the specification. Model 2 includes the t mi n and t ma x

variables in all the growing phases(e.g., the vegetative(v t mi n and v t ma x ), reproductive(r e t mi n and r e t ma x ), and

the ripening phase (r i t mi n and r i t ma x )) and their interactions with dummies for rice varietal groups. Model 3 adds on

cumulative precipitation in the growing season (p r e c ) and its quadratic term (p r e c 2) to Model 2. Model 4 adds on the

interactions of p r e c and squared p r e c with varietal grouping dummy variables to Model 3. Model 5 is the specification

including all the "economic variables" described by Table 2.1 in addition to the variables in Model 4. (3) The first column

indicates what weather variables the marginal effects are based on, and which varietal group it pertains to. The three

rows of the first panel indicate the marginal effect of a 1◦C increase in both t mi n and t ma x for the TV, early MVs, and

recent MVs varietal groups separately. The rows of panel 2 refer to the marginal effect of a 1◦C increase in t mi n for the

TV, early MVs, and recent MVs. The rows of the third panel refer to the marginal effect of a 1◦C increase in t ma x for the

TV, early MVs and recent MVs. Lastly, the rows of the fourth panel indicate the marginal effect of a 1 standard deviation of

increase in p r e c for the TV, early MVs, and recent MVs.
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Table 2.5 Marginal percentage yield impact of weather variables: Alternative specification using mean
temperatures & DTR

Model 1 Model 2 Model 3 Model 4 Model 5

Variables vtmin*V, ritmax*V 3 tmin*V, 3tmax*V add prec, precsq add prec*V, precsq*V add econ var

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1◦C warming scenario:

tavg: tv -0.126 0.307 -0.055 0.670 -0.149 0.233 -0.158 0.198 -0.103 0.468

tavg: early mv -0.073 0.100 -0.066 0.165 -0.142 0.004 -0.162 0.001 -0.116 0.075

tavg: recent mv -0.052 0.148 -0.048 0.258 -0.126 0.018 -0.116 0.025 -0.031 0.648

1◦C decrease in diurnal temperature variation:

dtr: tv -0.234 0.256 -0.224 0.382 -0.325 0.190 -0.465 0.047 -0.507 0.034

dtr: early mv -0.018 0.663 -0.017 0.729 -0.087 0.126 -0.085 0.134 -0.100 0.081

dtr: recent mv -0.112 0.048 -0.074 0.369 -0.191 0.066 -0.145 0.116 -0.118 0.225

1 standard deviation increase in cumulative precipitation:

prec: tv -0.246 0.017 -0.281 0.015

prec: early mv -0.156 0.000 -0.142 0.000

prec: recent mv -0.040 0.500 0.015 0.789

Notes: (1) The table displays coefficients and p-values of the marginal yield effect of 1◦C increase in t a v g and 1◦C decrease

d t r for all phases in the growing season and 1 standard deviation increase in p r e c , based on the 5 farm fixed-effect

models estimated. Standard errors for each regression are clustered at the village level. (2) The different models are

as follows. Model 1 is the "baseline" model where t a v g and d t r for the three growing phases and the interactions

between t a v g in the reproductive phase (r e t a v g ) and d t r in the ripening phase (r i d t r ) and dummies for rice varietal

groups are included in the specification. Model 2 includes the t a v g and d t r variables in all the growing phases(e.g.,

the vegetative(v t a v g and v d t r ), reproductive(r e t a v g and r e d t r ), and the ripening phase (r i t a v g and r i d t r )) and

their interactions with the rice varietal group dummies. Model 3 adds on cumulative precipitation for the growing season

(p r e c ) and its quadratic term (p r e c 2) to Model 2. Model 4 adds on the interactions of p r e c and squared p r e c with the

varietal grouping dummy variables to Model 3. Model 5 is the full specification including all the "economic variables"

described by Table 2.1 in addition to the variables in Model 4. (3) The first column indicates what weather variables

the marginal effects are based on, and which varietal group it pertains to. The three rows of the first panel indicate the

marginal effect of a 1◦C increase in t a v g for the TV, early MVs and recent MVs varietal groups separately. The rows of

panel 2 refer to the marginal effect of a 1◦C increase in d t r for the TV, early MVs and recent MVs. Lastly, the rows of the

third panel indicate the marginal effect of a 1 standard deviation of increase in p r e c for the TV, early MVs, and recent

MVs.
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Figure 2.1 The Study Area: Central Luzon Loop Survey

Source: “Changes in rice farming in the Philippines: Insights from five decades of a household-level survey”
(http://irri.org/resources/publications/books/changes-in-rice-farming-in-the-philippines-insights-from-

five-decades-of-a-household-level-survey)
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Figure 2.2 Adoption area of rice varietal group by survey year
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Figure 2.3 Predicted impacts of the 1◦C warming scenario on three rice varietal groups for five model
specifications described by Table 2.4. Impacts are reported as the percentage change in yield. The vertical

solid lines show 90% confidence intervals.
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Figure 2.4 Predicted impacts of a 1◦C increase in t a v g on three rice varietal groups for five model
specifications described by Table 2.5. Impacts are reported as the percentage change in yield. The vertical

solid lines show 90% confidence intervals.
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CHAPTER

3

DO WARMING TEMPERATURES

INFLUENCE YIELD RESPONSE TO

HIGHER PLANTING DENSITY?

This chapter explores how warming temperatures influence corn yield response to planting density.

Using 1990-2010 field trial data from Wisconsin and econometric models with a variety of specifica-

tions, we find that warming temperatures reduce the yield benefits of increasing planting density.

However, these adverse warming effects are smaller for genetically-modified (GM) corn varieties

with rootworm (RW) resistant traits. Consistent with previous studies, these results support the

notion that varietal improvements through genetic modification may have paved the way for higher

planting densities in US corn production. Moreover, our results imply that expected in-season

temperatures are important considerations when making planting density decisions.

3.1 Introduction

Since the development and diffusion of corn hybrids in the 1930s, commercial corn yields in the

United States (US) have increased dramatically over the last 80 years. Data from the US Department

of Agriculture (USDA) National Agricultural Statistics Service (NASS) indicate that US corn yields

have increased eight-fold from roughly 20 bu/acre in the mid-1930s to about 175 bu/acre in 2016.

This tremendous growth implies a yield increase at a rate of about 1.8 bu/acre/year.

Previous literature has posited that a variety of factors, such as varietal improvement (i.e., through
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traditional plant breeding or genetic modification) and better agronomic practices, have contributed

to this observed yield growth ([Duv05]; [Ass18]). However, a number of studies argue that the im-

pressive yield increases seen in US corn can be mainly attributed to increases in planting density or

plant population (i.e., the number of plants per acre), rather than to increases in per-plant yields

(i.e., mainly through technological advances) ([Tol02]; [Tok04]; [Duv05]).

Growth in corn plant populations in the U.S. has roughly tracked the growth in corn yields

from 1964-2016. In this period, yields have more than doubled, from approximately 60 bu/acre

to 175 bu/acre, and at the same time plant population has also more than doubled, from about

14,000 plants/acre to close to 30,000 plants/acre. These figures suggest that yield per plant is only

slightly higher in 2016 as compared to 50 years ago, and therefore support the notion that corn

yield growth may be largely attributed to planting density increases. However, it is likely that the

link between improved corn yields and higher plant densities over time is directly influenced by

warming temperatures due to climate change, as well as varietal improvement and better agronomic

practices ([Lob14]; [Ass18]).

The objective of this study is to determine how the yield response of corn to increasing plant-

ing density is affected by warming temperatures. We are also interested in the role of genetically-

modified (GM) corn varieties with regards to the impact of warming on the “yield-planting-density”

relationship. To accomplish these objectives, we utilize plot-level field trial data collected by the

University of Wisconsin over the period 1990-2010 (See [Shi13]; [Cha15]), which is then merged

with publicly available weather data. Yield regression models with a variety of specifications (and

interaction terms) are then estimated to understand if and how warming temperatures impact corn

yield response to increasing planting density.

There is now a robust literature about corn yield response to increasing planting density, and

how varietal traits and agronomic practices influence this response (See [Ass16]; [Sta06]; [Car87];

[San01]; [Lin16]; [VR11]; [Fro19]; [Por97]). For example, previous research such as [Cou10], [Bro70],

[Bee75], [Cox96], [Wid02], [Naf94], [Nie88], [Var04] have examined the likely impacts of hybrids on a

variety of corn agronomic responses to plant density. However, there have only been a handful of

studies that specifically explored how the contribution of planting density to improved corn yields

are affected by environmental factors and growing conditions. For example, papers such as [San04],

[Abb12], [Bro86], [VA92], and [Muc90]) have examined the impact of soil characteristics (such as

soil water availability and/or soil fertility) on the relationship between corn yields and planting

density. [Ass16] and [Ass18] grouped observations into four hypothetical growth environments based

on yield levels (e.g., low yield, medium yield, high yield, and very high yield environments), then

estimated the corn-yield-planting-density relationship for each subgroup by utilizing maximum

likelihood and least squares based statistical approaches. These studies found that increasing

planting density has a larger positive effect on yield under a high yield environment than a low

yield environment. Similarly, [Cha14] and [Cha15] investigated the effect of planting density on corn

yields for different yield levels. But note that these latter two studies utilized quantile regression

techniques to estimate the “yield-planting-density” function (i.e., rather than defining specific
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yield level subgroups and using maximum likelihood or least squares to estimate the function for

each subgroup). In addition, [Cha14] and [Cha15] also explored how GM traits influence corn yield

response to increases in planting density. They found that the yield benefits of increasing planting

density would be further strengthened when GM varieties are used. We have not found any study

that looked at how temperature changes may affect corn yield response to higher planting density

using econometric methods and long-run field trial data.

Our main contribution is that we examine the role of a specific environmental factor — tem-

perature changes — with respect to how planting density affects corn yields. This has important

implications for corn farmers especially in a world with an increasingly warming climate and the

need for climate change adaptation strategies. Although previous studies have explored how a

“low-yield” environment generally influence corn yield response to planting density, none of these

past studies have particularly investigated how increasing temperatures affect corn yield response to

planting density. A better understanding of the effect of temperature on the “yield-planting-density”

relationship would allow farmers to make better decisions at the start of the season (e.g., planting

density and varietal choices) based on expected in-season temperatures during the growing period

([Sol17]).

The second contribution is the exploration of whether GM traits would cause heterogeneity in

the effect of warming on the “yield-planting-density” relationship. Specific interest is in the GM corn

varieties with rootworm (RW) resistant traits since it is widely believed that below-ground rootworm

protection allows for larger and healthier corn root balls ([Goo19]). These larger and healthier roots

then allow these RW resistant varieties to be more resilient to heat stress and higher temperatures.

Even though there have been previous studies that examined the “triple” inter-relationship among

corn yields, planting density, and GM traits ([Cha14]; [Cha15]), to the best of our knowledge, there

has been no study that examined the “quadruple” inter-relationship among corn yields, planting

density, GM traits, and warming temperatures. Hence, the present study contributes to further

understanding of the so-called genotype (G), environment (E), and management (M) interactions

(G × E ×M) that determine crop yield outcomes (i.e., in our case, G is the GM trait, E is the warming

temperatures, and M is the planting density choice).

Results from our study indicate that corn yield response to planting density varies with tempera-

ture, and the degree of variation with temperature is influenced by the GM traits. In general, the

yield benefits of increasing planting density diminish as temperature increases. But note that the

diminishing yield benefits of higher planting density (in the presence of warming) are mitigated by

the use of GM crop varieties, especially those with RW resistance traits.

Chapter 3 proceeds as follows. First, we provide a detailed description of the data sources and

our empirical approach that allows us to examine how corn yield responds to changes in plant

density under different temperatures and/or GM traits in Section 3.2. This is followed by a thorough

discussion of estimation results (Section 3.3) and various robustness checks (Section 3.4). Lastly,

conclusions, important implications, and potential avenues for future research are presented in

Section 3.5.
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3.2 Data Sources and Empirical Approach

In this study, we use data from three sources: (1) annual corn field trial data collected by University of

Wisconsin researchers over the period 1990-2010; (2) weather data drawn from the work of [Sch09],

which includes interpolated daily minimum and maximum temperature information for 4 kilometer

(km) grid cells within the United States from 1950 to 2017; and (3) county-level Palmer Drought

Severity Index (PDSI) data from the Centers for Disease Control and Prevention(CDC).1

The University of Wisconsin field trial data includes information about plot-level yields (mea-

sured in bushels per acre) and farming inputs applied (e.g., fertilizer and insecticides). Input use

and management practices (e.g., tillage, rotation) utilized in the trial plots are similar to neighboring

commercial fields and are consistent with normal agronomic recommendations ([Cha15]). The

management practices employed are typical of those used on corn farms practicing rainfed agri-

culture in the US corn belt. Fertilizer applications are based on soil type, soil moisture and soil

pH provided by a series of soil tests. Insecticide is only applied when the insect infestation level

is above an action threshold (The pest density or damage level as which insecticide application is

needed to prevent or reduce economic loss). Herbicide is used when it is necessary to control weed

growth. The experimental design for these field trials was a randomized complete block design in

which each corn hybrid variety was grown in at least three separate plots (replicates) at each site

(i.e., to account for field variability). These trials were conducted over the years for the purpose of

evaluating the yield performance of different corn hybrids (e.g., conventional hybrids versus various

GM hybrids). Hence, these trials were not explicitly designed to assess planting density. As such,

management practices are typically the same for plots in each site-year (i.e., which has implications

for our empirical specifications as discussed further below). Further note that this is the same data

set used in [Shi13] and [Cha15] to mainly evaluate the production risk effects of various GM traits.

For the field trial data that spans crop years 1990-2010, a total of 4,748 hybrids were tested in

which 2,653 were conventional hybrids and 2,095 were GM hybrids. Some hybrids were tested in

multiple locations and/or for multiple years. The data includes 31,799 usable yield observations.

However, for the present study, only 28,521 rainfed observations are utilized given the central role of

warming in our analysis. Summary statistics and descriptions of the field-trial variables utilized in

this study are provided in Table 3.1.

The corn field trials were conducted in 12 experimental sites (11 for rainfed corn), which are

located in four production zones in the state of Wisconsin: South, South Central, North, and North

Central (See Figure 3.1). All of the field trial sites are in what is commonly called the Northern

Corn Belt. The South production zone includes three sites in the following cities/villages: Arling-

ton, Janesville, and Lancaster. The South Central production zone includes sites in Fond Du Lac,

Galesville, and Hancock. The Chippewa Falls, Marshfield, Seymour, and Valders filed trial sites are

located in the North Central production zone. Lastly, the North production zone includes exper-

1The PDSI data is from Centers for Disease Control and Prevention. National Environmental Public Health Track-
ing Network. https://data.cdc.gov/Environmental-Health-Toxicology/Palmer-Drought-Severity-Index-1895-2016/en5r-
5ds4/data. Accessed: 4/7/2019.
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imental sites in Spooner and Coleman. In general, the climatic conditions for the field trial sites

within a particular production zone are similar. However, it should be noted that the sites in the

Southern production zone tend to have a more favorable climate as compared to the sites located

in the other zones. The field trial sites in the South Central, North Central and North production

zones typically have a colder climate and a shorter growing season. Figure S3.1 and Figure S3.2

shows box-and-whisker plots of yield and plant density, respectively, for each of the four production

zones. Notice that corn yields generally decrease as one goes further north, which is consistent

with the observation that climate conditions of more southern sites are more favorable for corn.

The temporal pattern of average yield and average planting density for all trial sites are presented

in Figures S3.3 and Figure S3.4. The temporal yield and planting density patterns in the data are

consistent with the national trend where corn plant population growth roughly track the growth in

corn yield.2

The grid-level weather data drawn from the work of [Sch09] were aggregated up to the city

(or village) where the field trial sites are located. After this aggregation, the monthly average daily

minimum (t mi n) and maximum (t ma x ) temperature data are then calculated. The monthly

county-level PDSI data is also matched to the city (or village) where the field trial sites are located.

For field trial sites wholly located in a single county, we use the PDSI value for the specific county

where the trial site is located. However, for field trial sites that are in the border of two or more

counties, we use a county-level average PDSI value for the corresponding counties near these

trial sites. Given the nature of the weather data described above, it is important to note that all

field trial plots within each site-year are assumed to have the same weather given that the t mi n ,

t ma x , and PDSI data are aggregated at the city (or village) where each field trial site is located. All

weather variables are then merged with the plot-level field trial data. The summary statistics for

relevant monthly minimum temperature, maximum temperature, and monthly PDSI are reported

in Table 3.2. Moreover, the yearly changes in minimum temperatures, maximum temperatures, and

PDSI for the period 1990-2010 are presented in Figures S3.9 and S3.10 for each production zone.

3.2.1 Empirical Specification and Estimation Strategies

The main empirical specification to determine how warming temperatures affect corn yield response

to planting density is defined as follows:

ln(yi l z t ) =αz + f (tminl z m t , tmaxl z m t , PDSIw
l z m t , PDSId

l z m t , Dl z t ) +γXi l z t +ηt + εi l z t (3.1)

where ln(yi l z t ) is the natural log of corn yield in bushels per acre (bu/acre) for plot i , field trial

location l , production zone z , and year t . We estimate equation (3.1) using ordinary least squares

(OLS) regression that includes a production zone fixed effect αz to eliminate any concerns about

2In addition, temporal patterns of the number of plots in the filed trial data that planted conventional corn, GM
hybrids with the RW resistance trait, and GM hybrids without the RW resistance trait are presented in Figures S3.6, S3.7,
and S3.8, respectively.

32



time-invariant unobservables at the production zone level.3 We also include a linear time trend ηt

to account for the technological improvement over time. Control variables that represent input use

(or practices) are included in the vector Xi l z t (e.g., fertilizer, tillage, and other variables in Table 3.1).

We call f (·) in equation (3.1) the “weather-plant-density” function, which includes as arguments

the following weather-related variables: tmin, tmax, PDSIw and PDSId for field trial location l ,

production zone z , month m , and year t . Note that PDSIw refers to positive PDSI values that

measures the degree of wetness (w ), while PDSId refers to the absolute value of negative PDSI

values that reflects the degree of dryness (d ). Large PDSId values usually reflects drought conditions,

and large PDSIw typically reflects extremely wet conditions (i.e., flooding).4 The planting density

variable (in ’000s of plants per acre) is also included in f (·) and is represented by Dl z t .

In particular, the “weather-plant-density” function is defined as follows:

δDl z t +
5
∑

m=1

β1m tminl z m t ++
5
∑

m=1

β2m tmaxl z m t +
5
∑

m=1

ψ1m (tminl z m t ×Dl z t )+

5
∑

m=1

ψ2m (tmaxl z m t ×Dl z t ) +
5
∑

m=1

β31m PDSIw
l z m t +

5
∑

m=1

ψ31m (PDSIw
l z m t ×Dl z t )+

5
∑

m=1

β32m PDSId
l z m t +

5
∑

m=1

ψ32m (PDSId
l z m t ×Dl z t ).

(3.2)

The growing season is specified as spanning 5-months (m = 1, 2, ..., 5) from May to September. Theψ

parameters associated with the interaction terms in equation (3.2) give us insight into how weather

variables affect corn yield response to planting densities.

The specification in equations (3.1) and (3.2) are consistent with previous studies that examined

crop yield effects of weather variables (See [Sch10a]; [Lob11]; [Lob07]; [Wel10]; [Tac15a]; [Pen04]).

These studies typically use the following variables in their specifications: t mi n , t ma x , and a

weather variable that reflects water-availability (e.g., typically quadratic functions of precipitation

or rainfall). However, in contrast with these aforementioned studies, our specification above utilizes

a drought index, specifically the PDSI, as a measure of water-availability rather than quadratic

functions of precipitation or rainfall levels.5 A drought index like PDSI is appropriate as a measure

of water/moisture availability because its values are referenced to local climate, which allows one to

calculate dryness or wetness relative to local norms ([Xu13]; [Kol14]). In addition, local soil attributes

are partly accounted for when calculating drought indices, which is an important factor in a crop’s

ability to handle extreme dryness or wetness. Using both the positive and negative PDSI values in

our specification also adequately account for nonlinearities in the effects of water availability (i.e.,

3As mentioned above, plant density and other production inputs are the same for all plots for each site-year combina-
tion. Therefore, there is no variation in plant density for each field trial location and year. Therefore, we use production
zone fixed effects rather than plot or field trial site fixed effect in our empirical specifications. This means that identification
mainly comes from across production zone variation and variation across years.

4PDSI values range from -10 to +10. As alluded to above, negative PDSI values reflect dryness, while positive PDSI
values reflect wetness. Typically, PDSI values of -4 or below represents extreme drought, while PDSI values of 4 or above
reflects an extremely wet environment (i.e., flood conditions).

5Although we use PDSI in our main specification, we also conduct robustness checks below where we utilize a quadratic
precipitation specification.
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typically reflected by having a quadratic precipitation term in previous studies).

Another feature of the specification in equation (3.2) is the linear relationship between planting

density (D) and crop yields. Previous studies have typically assumed a quadratic specification for

planting density (See [Ass18] for example). However, a linear specification is appropriate in our

case given that the range of our planting density data do not usually reach the reported “optimal”

planting density levels recommended for Wisconsin (i.e., the yield-maximizing planting density

level where corn yields plateau (the “turning point”) and consequently decreases in a quadratic

specification). For example, [Sta06] suggests that the optimal planting densities for Wisconsin are

approximately 39,984 plants per acre for non-GM corn and 42,290 plants per acre for GM corn with

the Bt trait (for the period between 2002 and 2004). Based on field trial data locations across the

corn belt, [Ass18] indicates that optimal planting density ranges from 30,500 plants per acre (in

1987) to about 37,900 plants per acre in the 2007-2016 period. In our field trial data from 1990-2010,

the range of planting density values is from about 18,250 plants per acre to around 33,409 plants

per acre. This data range is more consistent with the upward sloping (and close to linear) part of

the corn yield response function to planting density, which again supports our linear specification.

Furthermore, a straightforward regression of the natural log of corn yield on planting density using

our data set indicates a relationship that is very close to linear and without a turning point (See

Figure S3.5).

3.2.2 Marginal Effects

To achieve the study objective of assessing how the yield impact of planting density changes with

temperature, we calculate the marginal effect of planting density on corn yields under different

temperature scenarios based on the empirical model specified in equations (3.1) and (3.2). The

marginal percentage effect of increasing plant density is the percentage change in corn yields as a

result of a 1 unit (in this case, 1000 plants per acre) increase in planting density. This marginal effect

calculation can be expressed as follows:

∂ ln(yt )
∂Dt

=δ+
5
∑

m=1

ψ1m tminm t +
5
∑

m=1

ψ2m tmaxm t +
5
∑

m=1

ψ31m PDSIw
m t (3.3)

if PDSI in each month is positive, and:

∂ ln(yt )
∂Dt

=δ+
5
∑

m=1

ψ1m tminm t +
5
∑

m=1

ψ2m tmaxm t +
5
∑

m=1

ψ32m PDSId
m t (3.4)

if all monthly PDSI’s are negative.

In order to examine how temperature changes influence the yield response to planting density,

we calculate marginal effects under two warming scenarios: (1) a warming scenario where both tmin

and tmax change by 1◦C increments, and (2) a warming scenario where tmin and tmax changes

separately by 1◦C increments. To calculate the marginal effects of planting density under the first

warming scenario, we first assume that both the monthly tmin and tmax variables deviate from their

means by the following amounts: −1◦C, −2◦C, −3◦C, −4◦C, +1◦C, +2◦C, +3◦C, +4◦C. This calculation
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structure allows us to see how corn yield response to planting density changes as both the minimum

and maximum temperatures change (holding PDSI constant at its mean).6 The marginal effect of

planting density under the first warming scenario can then be expressed as follows:

∂ ln(yt )
∂Dt

=δ+
5
∑

m=1

ψ1m ( tmin m t +k ) +
5
∑

m=1

ψ2m ( tmax m t +k ) +
5
∑

m=1

ψ31m PDSI m t (3.5)

where tmin m t , tmax m t , and PDSI m t are set at the means in month m and year t , and the nine

assumed temperature deviations are where k =−4,−3, .., 0, ..,+3,+4.7

Under the second warming scenario, the marginal effects of planting density are calculated

assuming that tmin and tmax separately changes in 1◦C increments (where k =−4,−3, .., 0, ..,+3,+4).

The marginal effect of planting density when only tmin changes can be calculated as follows:

∂ ln(yt )
∂Dt

=δ+
5
∑

m=1

ψ1m ( tmin m t +k ) +
5
∑

m=1

ψ2m tmax m t +
5
∑

m=1

ψ31m PDSI m t , (3.6)

where tmax and the PDSI’s are held at their mean values. On the other hand, the marginal effect of

planting density when only tmax changes can be expressed as follows:

∂ l n (yt )
∂Dt

=δ+
5
∑

m=1

ψ1m tmin m t +
5
∑

m=1

ψ2m ( tmax m t +k ) +
5
∑

m=1

ψ31m PDSI m t (3.7)

where tmin and the PDSI’s are held at their mean values.

The marginal effect calculations above assume that changes in temperature occur in all months

of the season. However, previous literature has argued that the June to August months are the critical

months for corn growth. During this period, crop growth is frequently affected by environmental

stresses such as high temperatures ([McW99]). Since silking occurs in the summer time, stress

conditions that happen two weeks before or after silking typically lead to substantial reductions in

yield (see [McW99]). Therefore, we also calculate the marginal effects of increasing planting density

under both the warming scenarios described above, but only imposing changes in the temperatures

for the June to August months (i.e., and where temperatures in the other months are set at their

means).

Another issue of interest in this study is to determine the role of GM corn varieties, especially

those that have RW resistant traits, with regards to how corn yield responds to planting density under

different warming scenarios (i.e., the “quadruple” inter-relationship among corn yields, planting

density, GM traits, and warming temperatures). Given this interest, we modify the “weather-planting-

density” function in (3.2) to allow for “triple” interaction terms among the planting density variable,

the weather variables, and GM corn varietal dummy variables. In this case, the corn varieties in the

field trial data set are categorized into three groups: conventional varieties, GM-RW hybrids, and

6We understand that changes in temperatures also likely affects PDSI (i.e., increasing temperature may result in more
drier conditions (and lower PDSI’s)). Hence, the marginal effect calculation where we hold PDSI’s constant at the mean
can be considered a lower bound for the effect of warming temperatures on the corn yield response to planting density.

7For the purpose of calculating the marginal effect in equation (3.5), as well as in equations (3.6), (3.7), (3.9), (3.10), and
(3.11), the term PDSI m t is calculated by taking the average over all PDSI’s of each month in the data (i.e., both negative
and positive) and the mean PDSI values provided by Table 3.2. Thus, the superscript for the PDSI variable (e.g., w or d )
has been omitted in these marginal effect expressions.
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other GM hybrids. Note that GM-RW hybrids are those varieties that have RW resistance, either

as a single-trait GM crop with only RW resistance, or a “multi-stack” variety with RW resistance

combined with other traits (i.e., such as a double-stack GM with combined above-ground corn borer

resistance together with below-ground RW resistance). The “other GM hybrids” category includes

those GM varieties with GM traits, but specifically without the RW resistance trait (e.g., single-trait

Bt corn with resistance only to European corn borers).

With the GM variety categorization above, the “weather-planting-density” specification in (3.2)

is modified as follows (to include the GM variety dummies and triple interaction terms):

δDl z t +
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∑
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ζr Vr
i l z t +
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where V r
i l z t represents the GM variety dummy variables for plot i , field trial location l , production

zone z , and year t . In the specification above, conventional corn hybrids are designated as the base

group (e.g., the omitted category) and V r are dummy variables that represent the two GM varietal

groups, where r = 1 corresponds the GM-RW hybrids, and r = 2 refers to the other GM hybrids.

Among the 28,521 plots in the field trial data, there are 17,680 with conventional corn, 4,044 with

GM-RW hybrids, and 6,797 with the other GM hybrids. The change in varietal adoption rate over

time for the four production zones are shown in Figure S3.6, Figure S3.7 and Figure S3.8.

Given the “weather-planting-density” specification in equation (3.8), the marginal yield effect

of increasing planting density for conventional corn under the first warming scenario (for k =

−4,−3, .., 0, ..,+3,+4) can then be calculated as follows:

∂ ln(yt )
∂Dt

=δ+
5
∑

m=1

ψ1m ( tmin m t +k ) +
5
∑

m=1

ψ2m ( tmax m t +k ) +
5
∑

m=1

ψ31m PDSI m t (3.9)

where the weather variables are set at their mean values in all 5 months of the growing season. On

the other hand, the marginal effect of increasing planting density for the GM-RW hybrids can be
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written as:

∂ ln(yt )
∂Dt

=δ+η1+
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(3.10)

where the weather variables are again set at their mean values in all 5 months of the growing

season. Similarly, the marginal effect of increasing planting density for the other GM hybrids can be

calculated as follows:

∂ ln(yt )
∂Dt

=δ+η2+
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(3.11)

where the weather variables are again set at their mean values in all 5 months of the growing season.

Although not shown here, similar marginal effect calculations can also be computed for the second

warming scenario, and for the case where we only consider temperature changes in the June to

August months.

3.3 Estimation Results and Marginal Effects

The main empirical model as specified in equations (3.1) and (3.2) are estimated by OLS and, in the

spirit of conciseness, the parameter estimates are presented in Appendix B (See Table S3.1).8

3.3.1 Warming Effects

To determine the influence of warming on the yield effects of planting density, we calculate the

marginal effects of increasing planting density under the two warming scenarios described in the

previous section and present results in Table 3.3. For the first warming scenario, where both tmin and

tmax are assumed to change by 1◦C increments, we find that the yield benefit of increasing planting

density is reduced by 1.86% for every 1◦C increase in the minimum and maximum temperatures in

each month of the cropping season. This result suggests that the yield benefits of increasing planting

density diminish in the presence of warming.

As described in the previous section, we also calculate the marginal effect of increasing planting

8Consistent with equation (3.1), results presented here is for the case where ln(yi l z t ) is the dependent variable. We also
ran all the models where the dependent variable is the actual yield in bu/acre (i.e., not taking the natural logarithms).
Results for those runs are consistent with what is presented here and is available from the authors upon request.
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density as temperature deviates from the mean by 1◦C increments (see equation (3.5)). The results

of these marginal effect calculations are graphically presented in Figure 3.2. The mean temperature

result in Figure 3.2 indicates that, for average weather conditions in the study area (e.g., average

minimum and maximum temperatures, as well as average PDSI), increasing planting density would

negatively affect corn yields (albeit by a relatively small percentage amount). Moreover, as the

minimum and maximum temperatures increase relative to the mean, increasing planting density

becomes more detrimental to corn yields (e.g., a 1000 plants per acre increase in planting density

results in more than 5% yield reduction when minimum and maximum temperatures increase

by more than 3◦C from the mean). On the other hand, note that increasing planting density has

a positive marginal effect on yield when temperatures are lower than the mean. The diminishing

marginal effect of increasing planting density in a warming environment is consistent with the idea

that inter-plant competition for nutrients and resources (i.e., water) intensifies as planting density

increases, and this competition escalates further when temperatures increase.

Results from the second warming scenario, where we assume that tmin and tmax increases

separately in 1◦C increments in all months, are fairly consistent with the marginal effect estimates

calculated in the first warming scenario described above (See Table 3.3). But we note that increases

in tmax tend to have a larger negative impact on the yield effects of increasing planting density

(as compared to the impact of increases in tmin). Previous study has also claimed that tmax plays

a stronger role that tmin in creating variability for Wisconsin corn (see [Kuc08]). This suggests

that increases in daytime temperatures are more likely to negatively influence yield response to

increasing planting density.

For the case where the two warming scenarios are applied only to the critical growth months of

June to August, the marginal effect estimates are still largely consistent with the results from the

earlier results where warming affects all growing season months (See Table 3.3 and Figure 3.3). The

general pattern of results in Figure 3.3 is almost the same as in Figure 3.2. However, the magnitudes

of the warming effects are relatively smaller for the case where warming is only felt in the June to

August months.

3.3.2 GM traits and Warming Effects

The role of GM traits is examined based on the empirical specification in equations (3.1) and

(3.8). Parameter estimates for the specification that includes the GM dummy variables (and the

corresponding interactions) are presented in Table S3.2. Similar to the results in Table S3.1, the

planting density effect on corn yields is positive if GM traits and weather variables are not taken

into account.

The marginal effects of increasing planting density that considers GM traits under our two

warming scenarios are presented in Table 3.4. Results from these marginal effect calculations

generally suggest that the negative effect of warming is more strongly felt for conventional corn

varieties, as compared to the GM-RW hybrids and other GM hybrids. That is, the marginal yield

effect of increasing planting density is more negatively affected by warming when conventional
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varieties are used.

To better visualize the role of GM traits, we also graph the marginal effects of increasing planting

density under the first warming scenario (i.e., increasing both tmin and tmax in all months), but

separating it out by the hybrid type – conventional, GM-RW, and other GM (See Figure 3.4). First, at

the mean temperature levels, it is important to note that increasing planting density results in a

negative yield impact for conventional corn yields. In contrast, for GM-RW hybrids and other GM

hybrids, the marginal yield effect of increasing planting density is positive at mean temperature

levels. Second, the positive marginal effect of increasing planting density is higher for GM-RW

hybrids as compared to the other GM hybrids. Moreover, even at temperatures above or below the

mean level, the positive marginal effect of planting density for GM-RW hybrids is still consistently

larger than the other GM hybrids. Lastly, the slope of the marginal effect line for the conventional

hybrids is steeper than those of the GM-RW and other GM hybrids, suggesting that the marginal

effect of increasing planting density diminishes more rapidly (as temperature rises) for conventional

corn, relative to the GM-RW and other GM hybrids. Overall, these results provide some evidence

that the typical yield benefits of increasing planting density can be more easily maintained under

warming conditions if corn varieties with GM traits are used. This outcome suggests that corn

varieties with GM traits (especially GM-RW hybrids) may be more efficient in utilizing nutrients

and moisture even under intensified inter-plant competition due to increasing planting density

and higher temperatures. Moreover, the GM trait results here support the idea that the use of GM

varieties may have facilitated the increases in planting density over time.

3.4 Robustness Checks

To verify the strength and stability of our results, we conduct several robustness checks that consider

the following alternatives to our main empirical specification (as described in equations (3.1) and

(3.2)): (a) the main specification without including the managerial inputs and practices (Xi l z t )

as control variables, (b) the main empirical specification that includes interaction term between

the time trend and the plant density, and (c) the main specification but using a quadratic form of

precipitation of the May-September growing season as a measure of water availability (instead of

PDSI).

We conduct the first robustness check, which excludes the managerial inputs, to account for

concerns that input choices in the production process may be endogenous. However, note that this

endogeneity concern may be largely mitigated by the fact the data set used in this study is based on

field trial data rather than actual farm-level production data collected through a survey. Estimation

results for the first robustness check are presented in Table S3.3, and the corresponding marginal

effects of increasing planting density for our two warming scenarios are reported in Table 3.5.

Figure 3.5 shows the marginal percentage impact of increasing planting density for the warming

scenario where both tmin and tmax of each month change by 1◦C increments when managerial

inputs are not considered in the specification. Results from this first robustness check are largely
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consistent with our main warming results reported in the previous section. The magnitudes of the

warming effects on the corn yield response to increasing planting density are very similar to the

original results above. Overall, the first robustness check still strongly supports the notion that yield

effects of increasing planting density diminish as temperature levels increase.

The second robustness check aims to show whether our results still hold when one assumes that

the marginal effect of increasing planting density is not constant through time. Parameter estimates

for the second robustness check that include interaction terms between the time trend and planting

density are presented in Table S3.4, and the corresponding marginal effects are presented in Table 3.6.

Moreover, Figure 3.6 graphically shows the marginal impacts of increasing planting density under the

first warming scenario in five-year increments (from 1990-2010). Again, the second robustness check

validates our results from the main specification in the previous section. The patterns of results in

Figure 3.6 (for all years) are consistent with our main specification result in Figure 3.2. An interesting

pattern to note in Figure 3.6 is that the marginal yield impact of increasing planting density (for all

temperature levels) shifted upward through time. This is consistent with the observation that GM

adoption has increased through time, which in turn may have brought about better yield response

to increasing planting density even in warming temperatures (see section 3.2 above).

Then, we conduct a third robustness check where we replace PDSI as a measure of water avail-

ability with a quadratic function of precipitation (e.g., we added p r e c and p r e c 2, instead of the

PDSI variables in equations (3.1) and (3.2)).9. For this last robustness check, the parameter estimates

are reported in Table S3.5 for the case where GM traits are not yet considered, and the corresponding

marginal effects of increasing planting density for this specification are presented in Table 3.7.

The visual representation of the marginal planting density effects for this last robustness check

(under the first warming scenario) is presented in Figure 3.7. All of the results for this last robustness

check are fairly consistent with the direction and magnitudes of the marginal impacts of increasing

planting density using the main specification. Even when we use precipitation as a measure of

water availability, the marginal yield response to increasing planting density deteriorates when

temperature levels increase.

In consideration the possibility that the year effect changes over the experimental period, we run

a regression controlling year fixed effects rather than linear time trend in our major models. Besides,

to consider the potential nonlinear plant density effect, we also run a regression adding quadratic

term of plant density into the main model.The changes in the marginal impact of plant density as a

result of 1◦C warming are presented in Table 3.9 and Table 3.10 and the density impacts at different

temperatures estimated by these two alternative models are visually presented by Figure 3.9 and

Figure 3.10 .The results from these two models are consistent with our major analysis.

Parameter estimates for the specification where a quadratic form of precipitation is used and

GM traits are considered can be seen in Table S3.6. Moreover, the marginal effects associated with

9For this robustness check, we use the mean of monthly cumulative precipitation for the whole growing season. But
further note that we also ran an additional specification that uses monthly cumulative precipitation. The results are
similar to what is presented here. Results for the specification that uses monthly precipitation are available from the
authors upon request
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this specification is presented in Table 3.8. A corresponding graphical representation of the marginal

effects of increasing planting density under the first warming scenario, and separated out by GM

type, are shown in Figure 3.8. These robustness check results with precipitation used as a measure

of water availability are still consistent with the results from the main specification above. At mean

temperatures, the marginal effect of increasing planting density is still the strongest for GM-RW

hybrids and is higher than both the conventional and other GM hybrids. At larger positive deviations

from mean temperatures, this pattern still holds (as before). But note that, for mean temperatures,

the marginal effect of increasing planting density for conventional corn is still positive (as compared

to it being negative in the main specification). Lastly, note that the slope of the marginal effect line

for conventional corn is still the steepest among the three hybrid groups. However, in contrast to

the main specification results (with PDSI), the slope of the marginal effect line for GM-RW is flatter

than the other GM hybrids. Nonetheless, even when precipitation is used as a measure of water

availability, these robustness check results still support the notion that yield benefits of increasing

planting density are better maintained under warming conditions when corn varieties with GM

traits are utilized.

3.5 Conclusions

This study aims to explore how yield response to planting density is influenced by warming tempera-

ture and to understand the role of GM traits in this situation. Plot-level field trial data from Wisconsin

over the period 1990-2010, as well as the corresponding weather data for these field trial locations,

are used to fulfill the study objectives. Yield regression models are then developed with interaction

terms among planting density, weather variables, and GM hybrid dummy variables to ascertain the

impact of warming and GM traits on the corn yield response to increasing planting density. Results

from these models suggest that the yield benefits of increasing planting density largely diminish as

temperature levels increase, and the rate of deterioration is larger for conventional corn hybrids

without GM traits. Corn varieties with RW resistance GM traits generally are better able to maintain

the yield benefits of increasing planting density under warming conditions. These results indicate

that inter-plant competition for resources (e.g., nutrients and moisture) is further intensified as

planting density increases and when temperatures rise, which the results in diminishing benefits.

But corn hybrids with GM traits may be more efficient in utilizing these resources such that they

perform better than conventional varieties even in situations with increasing planting density and

warming temperatures.

Findings from the present study point to a couple of important implications. First, results from

the study highlight the important role that expected growing season temperatures should play when

farmers make planting density decisions and varietal choices at the start of the season. Increasing

planting density does not necessarily result in yield benefits even at mean temperatures when

conventional corn hybrids are used. And yield increases from higher planting density still diminish

under warming temperatures. Hence, growers would likely benefit from optimizing planting density
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and variety choices by partly conditioning these decisions on temperature forecasts for the growing

season ([Sol17]). For example, if forecasted summer season temperature is higher than normal,

then based on our results it may be prudent to not increase planting density for conventional corn

production (or only increase it slightly for GM varieties). Second, the study findings also imply

that further research investments in developing corn varieties that are more tolerant to higher

temperatures would likely facilitate higher optimal planting densities going forward. Not only will

more heat-tolerant varieties directly reduce heat-related losses, but these types of varieties may also

indirectly provide planting density induced yield benefits. Therefore, public and private research

investments for developing heat-tolerant corn varieties (i.e., either through genetic modification or

traditional plant breeding) would be important to continue the trend of increasing planting density

and yields into the future, especially if climate change continues to result in warmer temperatures.

Although the present study provides important insights regarding the role of warming and GM

traits on the yield response to increasing planting density, there are study limitations that need

to be acknowledged. First, the geographical scope of the current study is limited to the Northern

corn belt and the data is from experimental field trial data rather than actual farmer data from

commercial corn production. Future studies may consider using actual farm production data (i.e.,

data collected through farm surveys or through precision agriculture technologies) and expanding

the geographical scope to more areas in the corn belt (or other locations and other corn-producing

countries). Exploring the “yield-planting density” relationship in warmer climates (e.g., tropical

locations) may also be beneficial. Second, the empirical analysis here would also be further improved

if we had a true panel data set at the plot (or trial location) level. This would allow for using plot

(or location) fixed effects and better identification of the planting density and warming effects on

yields. In addition, a long-term field trial data explicitly aimed to examine how planting density

influence yields (e.g., field trials designed specifically to explore planting density effects (instead

of variety effects) on yields) would also help in more precisely teasing out the warming and GM

trait effects. Lastly, having data for a longer period (i.e., more than 30 years) would also allow one

to more accurately estimate the long-run effects of warming on the yield response to increasing

planting density. We leave all these potential extensions for future work.
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Table 3.1 Descriptive statistics of variables for Wisconsin data

Variable Unit Mean SD Median Min Max

Yield bu/acre 176.46 40.26 178.53 21 289.81

plant density 1000 plants per acre 28.44 1.95 28.18 18.25 33.41

pcorn 1 if previous crop is corn 0.29 0.46 0 0 1

psoy 1 if previous crop is soybean 0.61 0.49 1 0 1

palf 1 if previous crop is alfalfa/hay 0.07 0.26 0 0 1

pwhe 1 if previous crop is wheat 0.02 0.13 0 0 1

plup 1 if previous crop is lupine 0 0.06 0 0 1

ft Fall tillage, 1 if yes, 0 if no 0.51 0.5 1 0 1

st spring tillage, 1 if yes, 0 if no 0.92 0.27 1 0 1

ic apply insecticide, 1 if yes, 0 if no 0.38 0.49 0 0 1

fertilizer N lbs acre−1 122.86 41.76 130 0.5 201.5

conventional 1 if conventional corn is planted 0.62 0.49 1 0 1

RW 1 if expressing Bt trait for corn rootworm 0.14 0.35 0 0 1

other GM 1 if without Bt trait for corn rootworm 0.24 0.43 0 0 1
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Table 3.2 Summary statistics of weather variables

Month Variable Mean SD Median Min Max

May. tmin(◦C) 7.03 2.153 7.01 1.58 12.26

tmax(◦C) 19.60 2.092 19.60 13.76 24.74

PDSI 0.78 1.676 0.96 -4.11 5.53

prec(mm) 98.65 47.23 90.43 23.73 310.79

Jun. tmin(◦C) 12.82 1.748 13.08 7.95 16.47

tmax(◦C) 24.96 1.732 24.93 20.36 29.46

PDSI 0.95 2.060 1.09 -4.72 7.06

prec(mm) 122.89 58.20 117.34 20.42 355.04

Jul. tmin(◦C) 14.97 1.754 15.10 9.88 19.07

tmax(◦C) 26.98 1.778 26.98 22.07 31.20

PDSI 0.98 2.246 1.03 -4.95 6.99

prec(mm) 102.46 49.64 94.27 18.28 268.96

Aug. tmin(◦C) 14.23 1.891 14.28 9.45 19.74

tmax(◦C) 26.08 1.629 26.34 21.56 29.96

PDSI 0.81 2.127 0.73 -5.05 7.17

prec(mm) 105.92 58.41 92.95 20.86 367.83

Sep. tmin(◦C) 9.54 1.634 9.57 4.47 12.87

tmax(◦C) 21.85 1.981 21.81 16.39 26.75

PDSI 0.52 2.147 0.31 -3.74 6.59

prec(mm) 83.50 44.75 75.75 8.17 235.18
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Table 3.3 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All Months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax -0.0186 0.000 -0.0055 0.000

tmin -0.0066 0.000 0.0116 0.000

tmax -0.0121 0.000 -0.0170 0.000

Notes: (1) The results here are estimated through our main specification in equations (3.1) and (3.2). (2) The first column

indicates what weather variables the marginal effects of plant density are based on. The first row indicates a 1◦C increase

in both tmin and tmax. The second row refers to a warming scenario where only tmin increases by 1◦C. The third row

refers to a 1◦C increase in tmax. (3) The second and the third column report coefficients and p-values of the changes in the

marginal effects of plant density as a result of warming scenarios (both tmin and tmax, and tmin and tmax separately)

where temperature of each month of the May-September growing season increases by 1◦C. The last two columns provide

coefficients and p-values of the changes in the marginal effects of warming scenarios where the temperature of each

month from June to August increases by 1◦C.
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Table 3.4 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax Conventional -0.0279 0.000 -0.0069 0.000

GM-RW -0.0127 0.227 0.0123 0.388

Other GM -0.0019 0.490 -0.0002 0.960

tmin Conventional -0.0194 0.000 0.0118 0.000

GM-RW -0.1480 0.000 0.0458 0.000

Other GM -0.0016 0.620 -0.0240 0.000

tmax Conventional -0.0085 0.000 -0.0186 0.000

GM-RW 0.1353 0.000 -0.0334 0.030

Other GM -0.0004 0.908 0.0238 0.000

Notes: (1) The table displays coefficients and p-values of the changes in the marginal effects of plant density as a result

of 1◦ warming. The results are calculated from the estimated results of the model specification in equations (3.1) and

(3.8) (the specifications including interactions among the weather, plant density, and GM varietal dummy variables). (2)

The first column indicates what weather variables the marginal effects of plant density are based on. The first row of the

first panel indicates a 1◦C increase in both tmin and tmax. The first row of the second panel refers to a scenario where

only tmin increases by 1◦C. The first row of the third panel refers to a situation where only tmax increases by 1◦C. (3) The

second column indicates the hybrid groups: “RW” is GM hybrids expressing Bt trait for corn rootworm. “other GM” refer

to GM hybrids without Bt trait for corn rootworm. (4)The third and fourth column report coefficients and p-values of

the changes in marginal effects of plant density as a result of warming scenarios (both tmin and tmax, and tmin and

tmax separately) where the temperature of each month of the May-September growing season increases by 1◦C. The

last two columns provide coefficients and p-values of the changes in marginal effects of warming scenarios where the

temperature of each month from June to August increases by 1◦C.
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Table 3.5 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All Months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax -0.0195 0.000 -0.0056 0.000

tmin -0.0042 0.000 0.0154 0.000

tmax -0.0153 0.000 -0.0209 0.000

Notes: (1) The table shows the results of the first robustness check (the main specification without including managerial

inputs and practices as control variables). (2) The first column indicates what weather variables the marginal effects

of plant density are based on. The first row indicates a 1◦C increase in both tmin and tmax. The second row refers to a

warming scenario where only tmin increases by 1◦C. The third row refers to a 1◦C increase in tmax. (3) The second and

the third column report coefficients and p-values of the changes in the marginal effects of plant density as a result of

warming scenarios (both tmin and tmax, and tmin and tmax separately) where the temperature of each month of the

May-September growing season increases by 1◦C. The last two columns provide coefficients and p-values of the changes

in the marginal effects of warming scenarios where the temperature of each month from June to August increases by 1◦C.

Table 3.6 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All Months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax -0.0191 0.000 -0.0053 0.000

tmin -0.0069 0.000 0.0110 0.000

tmax -0.0122 0.000 -0.0163 0.000

Notes: (1) The table shows the results of the second robustness check (the model specification includes the interaction

term between plant density and the time trend in addition to the independent variables of the main specification). (2) The

first column indicates what weather variables the marginal effects of plant density are based on. The first row indicates a

1◦C increase in both tmin and tmax. The second row refers to a warming scenario where only tmin increases by 1◦C. The

third row refers to a 1◦C increase in tmax. (3) The second and the third column report coefficients and p-values of the

changes in the marginal effects of plant density as a result of warming scenarios (both tmin and tmax, and tmin and

tmax separately) where the temperature of each month of the May-September growing season increases by 1◦C. The last

two columns provide coefficients and p-values of the changes in the marginal effects of warming scenarios where the

temperature of each month from June to August increases by 1◦C.
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Table 3.7 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All Months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax -0.0161 0.000 -0.0030 0.000

tmin -0.0049 0.000 0.0190 0.000

tmax -0.0112 0.000 -0.0220 0.000

Notes: (1) The table shows the results of the third robustness check which replaces PDSI as a measure of water availability

with a quadratic form of the mean of monthly cumulative precipitation for the whole growing season. (2) The first column

indicates what weather variables the marginal effects of plant density are based on. The first row indicates a 1◦C increase

in both tmin and tmax. The second row refers to a warming scenario where only tmin increases by 1◦C. The third row

refers to a 1◦C increase in tmax. (3) The second and the third column report coefficients and p-values of the changes in the

marginal effects of plant density as a result of warming scenarios (both tmin and tmax, and tmin and tmax separately)

where the temperature of each month of the May-September growing season increases by 1◦C. The last two columns

provide coefficients and p-values of the changes in the marginal effects of warming scenarios where the temperature of

each month from June to August increases by 1◦C.
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Table 3.8 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax Conventional -0.0104 0.000 0.0084 0.000

GM-RW 0.0018 0.547 0.0051 0.331

other GM -0.0053 0.030 -0.0151 0.000

tmin Conventional 0.0086 0.000 0.0280 0.000

GM-RW -0.0282 0.000 -0.0222 0.001

other GM -0.0176 0.000 -0.0456 0.000

tmax Conventional -0.0190 0.000 -0.0197 0.000

GM-RW 0.0300 0.000 0.0272 0.000

other GM 0.0123 0.000 0.0305 0.000

Notes: (1) The table displays coefficients and p-values of the change in the marginal effect of plant density as a result of 1◦

warming. The results are calculated from the estimated results of the model specification in equations (3.1) and (3.8)

that replaces monthly PDSI as a measure of water availability with a quadratic form of the mean of monthly cumulative

precipitation for the whole growing season. (2) The first column indicates what weather variables are the marginal effects

of plant density based on. The first row of the first panel indicates a 1◦C increase in both tmin and tmax. The first row of

the second panel refers to a scenario where only tmin increases by 1◦C. The first row of the third panel refers to a situation

where only tmax increases by 1◦C. (3) The second column indicates the hybrid groups: “RW” is GM hybrids expressing

Bt trait for corn rootworm. “other GM” refer to GM hybrids without Bt trait for corn rootworm. (4)The third and fourth

column report coefficients and p-values of the change in marginal effect of plant density as a result of warming scenarios

(both tmin and tmax, and tmin and tmax separately) where temperature of each month of the May-September growing

season increases by 1◦C. The last two columns provide coefficients and p-values of the change in the marginal effect of

warming scenarios where the temperature of each month from June to August increases by 1◦C.
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Table 3.9 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All Months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax -0.012 0.000 -0.002 0.052

tmin -0.010 0.000 0.018 0.000

tmax -0.002 0.084 -0.020 0.000

Notes: (1) The results here are estimated through our main specification in equations (3.1) and (3.2) but replacing linear

time trend with year fixed effects. (2) The first column indicates what weather variables the marginal effects of plant

density are based on. The first row indicates a 1◦C increase in both tmin and tmax. The second row refers to a warming

scenario where only tmin increases by 1◦C. The third row refers to a 1◦C increase in tmax. (3) The second and the third

column report coefficients and p-values of the changes in the marginal effects of plant density as a result of warming

scenarios (both tmin and tmax, and tmin and tmax separately) where temperature of each month of the May-September

growing season increases by 1◦C. The last two columns provide coefficients and p-values of the changes in the marginal

effects of warming scenarios where the temperature of each month from June to August increases by 1◦C.

Table 3.10 Estimated changes in the effects of plant density on yield as a result of 1◦C warming

All Months Jun-Aug

Estimates P-value Estimates P-value

tmin & tmax -0.021 0.000 -0.008 0.000

tmin -0.010 0.000 0.003 0.087

tmax -0.011 0.000 -0.011 0.000

Notes: (1) The results here are estimated through our main specification in equations (3.1) and (3.2) but adding quadratic

term of plant density. (2) The first column indicates what weather variables the marginal effects of plant density are

based on. The first row indicates a 1◦C increase in both tmin and tmax. The second row refers to a warming scenario

where only tmin increases by 1◦C. The third row refers to a 1◦C increase in tmax. (3) The second and the third column

report coefficients and p-values of the changes in the marginal effects of plant density as a result of warming scenarios

(both tmin and tmax, and tmin and tmax separately) where temperature of each month of the May-September growing

season increases by 1◦C. The last two columns provide coefficients and p-values of the changes in the marginal effects of

warming scenarios where the temperature of each month from June to August increases by 1◦C.
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Figure 3.1 Map of research locations of Wisconsin field experimental data Web:
http://corn.agronomy.wisc.edu/HT/images/Map.jpg. Accessed: 4/7/2019
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Figure 3.2 Marginal percentage effect of plant densities as t mi n and t ma x of each month deviate from the
mean by 1◦C increments

Notes: The main specification in equations (3.1) and (3.2) is implemented. The Impacts are reported as the percentage

change in yield. The vertical solid lines show 90% confidence interval.
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Figure 3.3 Marginal percentage effect of plant densities as t mi n and t ma x of each month from June to
August deviate from the mean by 1◦C increments

Notes: The main specification in equations (3.1) and (3.2) is implemented. Impacts are reported as the percentage change

in yield. The vertical solid lines show 90% confidence intervals.
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Figure 3.4 Marginal impacts of plant density for the three varietal groups

(3.1) and (3.8)

Notes: The figure shows the results of the model specification in equations (models including interaction terms among

weather, planting density and GM varietal group dummy variable). Impacts are reported as the percentage change in

yield. The vertical solid lines show 90% confidence intervals.
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Figure 3.5 Marginal percentage effect of plant density as t mi n and t ma x of each month deviate from the
mean by 1◦C increments

Notes: The figure shows the results of the model with all variables of the main specification except the managerial inputs

and practices. Impacts are reported as the percentage change in yield. The vertical solid lines show 90% confidence

intervals.
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Figure 3.6 Marginal impact of plant density across years estimated by the model including the interaction
term between time trend and plant density

Notes: The figure shows the results of the model with all variables of the main specification and the interaction term

between time trend and plant density. Impacts are reported as the percentage change in yield. The vertical solid lines

show 90% confidence intervals.
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Figure 3.7 Marginal percentage effect of plant densities as t mi n and t ma x of each month deviate from the
mean by 1◦C increments

Notes: The figure shows the results of the model with the main specification that replaces PDSI as a measure of water

availability with a quadratic function of precipitation.
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Figure 3.8 Marginal impacts of plant density for the three varietal groups

Notes: The figure shows the results of the model specification in equations (3.1) and (3.8) replacing PDSI as a measure of

water availability with a quadratic function of precipitation. Impacts are reported as the percentage change in yield. The

vertical solid lines show 90% confidence intervals.
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Figure 3.9 Marginal percentage effect of plant densities as t mi n and t ma x of each month deviate from the
mean by 1◦C increments

Notes: The difference between this model and the main specification (the specification in equations (3.1) and (3.2)) is that

this model controls for year fixed effects rather than linear time trend. The Impacts are reported as the percentage change

in yield. The vertical solid lines show 90% confidence intervals.
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Figure 3.10 Marginal percentage effect of plant densities as t mi n and t ma x of each month deviate from
the mean by 1◦C increments

Notes: This model includes a quadratic term of plant density in addition to the explanatory variables adopted in the main

specification. The Impacts are reported as the percentage change in yield. The vertical solid lines show 90% confidence

intervals.
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Figure 3.11 Marginal impacts of plant density for the three varietal groups

Notes: The model specification is the same as the model specification in equations (3.1) and (3.8) except it controls for

year fixed effect rather than linear time trend. Impacts are reported as the percentage change in yield. The vertical solid

lines show 90% confidence intervals.
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Figure 3.12 Marginal impacts of plant density for the three varietal groups

Notes: The model adds a quadratic term of plant density into the specification in (3.1) and (3.8) except it controls for year

fixed effect rather than linear time trend. Impacts are reported as the percentage change in yield. The vertical solid lines

show 90% confidence intervals.
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CHAPTER

4

WARMING TEMPERATURES, YIELD RISK,

AND CROP INSURANCE PARTICIPATION

In this chapter, we examine how crop insurance participation rate influences the impact of extreme

heat on mean yield and yield risk (i.e., yield variance, skewness, and kurtosis) of corn and soybeans

in the US. We utilize county-level panel data and parametric moment-based method to evaluate

how crop insurance participation affects the relationship between warming temperatures and the

moments of crop yield distributions. Our results indicate that the yield risk increasing effect of

warming is further increased by high-level insurance participation.

4.1 Introduction

Agriculture is one sector in the economy that is considered to be most vulnerable to climate change

because it relies heavily on favorable weather conditions to achieve good crop yield outcomes. A

large and growing literature has documented that the likely impacts of climate change and warming

temperatures on agricultural crop production (See [D’A16]; [Wel10]; [Ros14]; [Tac15a]; [Sch09], among

others). In general, this literature provides evidence that climate change has strong negative impacts

on mean yields for a variety of crops, locations, modeling approaches, and climate predictions. For

example, [Ske08] have shown that approximately 31% of historical crop yield losses in the United

States (US) can be attributed to droughts and extreme heat (i.e., with remaining losses associated

with excess moisture (e.g., floods), extreme cold (e.g., freeze), hail, and other weather-related causes).

Aside from climate change impacts on mean yields, there is also a number of previous studies

that have examined the effects of climate change and/or weather variables on yield risk (or yield
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variability) ([Che04]; [Che05]; [Isi06]; [McC08]; [Kim09]; [Bar10]; [Bou10]; [Tac12]; [Att14]; [Ray15];

[Urb12]; [Urb15]; [Tol17]; [Tac18]; [Con20]). Most of these papers indicate that climate change and

warming temperatures increases yield risk (and also simultaneously decrease mean yields). Given

that most farmers are risk-averse ([Cha96]), farmers typically view the climate change impacts on

inter-annual yield variability and/or yield risk – particularly, downside risk – as at least as important

as the direct effect of climate change on mean yields.

With the importance of managing yield risk in agriculture, governments all over the world have

supported programs and policies that help farmers mitigate the adverse effects of low yield (or

revenue) outcomes. One such program that is becoming more ubiquitous in agriculture globally is

crop insurance. In the US, for example, crop insurance is now considered the centerpiece risk man-

agement program in agriculture, and the federal government has provided over $70 million in crop

insurance subsidies to farmers since 2004 ([Tol17]). Given the widespread use of crop insurance in the

US, it is likely that adoption of this risk management tool influence farm management behavior (e.g,

input use), and these changes in behavior consequently affect eventual yield outcomes (e.g., mean

yield and yield risk) ([Ann15]). Therefore, further understanding of the inter-relationships among

mean yields, yield risk, climate change, and crop insurance is critical for continued improvements

in US agricultural productivity.

This chapter addresses the question of whether crop insurance adoption influences the effect

of warming temperatures on yield risk. In particular, we are interested in exploring if increasing

crop insurance participation would result in larger increases in the yield risk response to extreme

heat. A county-level panel data set that includes rich information on yields, weather variables, and

crop insurance participation is constructed to help accomplish the goals of the study. Stochastic

production functions are estimated using parametric moment-based estimation procedures (See

[Ant83], [Ant84], and [Cha04]) to determine whether the relationship between extreme heat and all

four moments of the yield distribution (e.g, mean, variance, skewness, kurtosis) is affected by crop

insurance use.

As already mentioned above, a number of studies have already explored the impact of climate

change on mean yields and yield risk. The study of [Ann15] is the closest to the present study in

spirit because they investigate how crop insurance influence the mean yield response to extreme

heat using county-level corn and soybean data in the US. Based on fixed effects regression models,

[Ann15] find that subsidized crop insurance tends to further increase the direct negative impact

of extreme heat on mean yields. This result implies that subsidized crop insurance encourages

moral hazard behavior, where farmers have lower incentives to use climate adaptation strategies

(i.e., discourages adoption of practices that would makes their operations more resilient to extreme

heat) ([Dol01]; [Sch10b]; [Ske01]; [Ske08]; [DF14]; [O’C13]).1 Note that [Ann15] examine how extreme

1Even though several past studies have indicated that the main mechanism by which subsidized crop insurance
exacerbates the negative mean yield effect of climate change is likely through this moral hazard effect (i.e., crop insurance
reduce incentives to adopt climate-change-mitigation practices), it is also possible that the so-called “extensive margin
effect” of crop insurance (i.e., where marginal lands are brought into production) can be another mechanism for which
crop insurance amplify the yield risk response to extreme heat ([Wu99]; [Goo04]; [Yu17]). However, it is important to note
that [Sch10b] also argue that well-designed, unsubsidized crop insurance may encourage (rather than discourage) use of
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heat affects mean yield (rather than yield risk), and the role that crop insurance plays in shaping

the relationship between extreme heat and mean yields. Our study contributes to the literature by

specifically exploring the role of crop insurance in shaping the relationship between extreme heat

and yield risk.2 If subsidized crop insurance products indeed encourage moral hazard behavior

and discourage the use of climate adaptation practices, then it is important to empirically examine

whether crop insurance also strongly influence the effect of extreme heat on the higher moments

of the yield distribution (i.e., not just influencing the direct effect of extreme heat on mean yields).

Does crop insurance participation further exacerbate the yield-risk-increasing effect of climate

change?

This chapter proceeds as follows. Section 4.2 describes the county-level panel data utilized in the

study. Section 4.3 describes the parametric moment-based estimation procedures and the empirical

specification . Section 4.4 discusses estimation results. Section 4.5 provides several robustness

checks, instrumental variable method and the cost of risk calculated based on estimates of the main

model. Section 4.6 concludes.

4.2 Data

The county-level panel data set constructed for this study is based on information from publicly

available sources. The county-level corn and soybean data on yields and acreage planted for the

period 1989-2017 were drawn from the National Agricultural Statistics Service (NASS) database.

County-level data on farmers’ expenditures on seed, fuel, fertilizer, and other chemicals, and total

production costs were collected from the Bureau of Economic Analysis (BEA). Crop insurance data

from 1989-2017 were gathered from the Summary of Business database of the Risk Management

Agency (RMA), which includes county-level data on liabilities, insurance plan used, coverage levels,

and insured acreage.3 The weather data used in the analysis is from the data made available by

[Sch09]. This weather database includes interpolated daily minimum and maximum temperatures

for 4 km grid cells within the US from 1950 to 2017. We aggregated this to the county-level by taking

the area-weighted average of recorded weather for all grids in each county. Note that the county-level

panel data developed for this study starts from 1989 since the RMA data on insurance coverage

climate-mitigation-strategies and serve as a complement (rather than a substitute) to crop insurance. They argue that
“Accurately priced uncertainties that reflect climate risk can act to incentivize risk reduction through price signals and risk
management stipulations. When the probability of an increased climate risk is perceived, this possibility is reflected in
insurance prices, leading to a more expensive contract. Such a signal can act as a warning to the client and provide an
incentive to use other forms of adaptation.” Note, however, that crop insurance in the US (and in most other countries) are
subsidized and the argument of [Sch10b]may not apply in this case.

2Note that a related paper by [Con20] examine how crop insurance participation influence the effect of droughts on
the upper and lower partial variance of yields. Our study builds on [Con20] since we investigate how crop insurance
affects the magnitude of the warming impact (not just the effect magnitude of specific drought events) on the variance,
skewness, and kurtosis of the yield distributions. Admittedly, we do not separately examine the upper and lower variance
effect as in [Con20], but we explore the effects on skewness and kurtosis which this previous study did not.

3The insurance data used for this study only considers individual-level yield and revenue policies (e.g., Yield Protection
(YP) and Revenue Protection (RP)), and excluded area-triggered policies (e.g., county-level policies like Area Risk Protection
Insurance (ARPI)). Majority of insured corn and soybean producers utilize RP or YP, and only a small proportion use
area-triggered products.
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levels are available only from 1989 forward.

We build the county-level panel data for this study by first merging the NASS data with both the

BEA and RMA datasets. This allows us to calculate a “liability ratio” as our measure of crop insurance

participation at the county-level ([Goo04]). The liability ratio of crop insurance participation is the

ratio of total actual liability in the county (for each year) over a measure of total possible liability.

Total actual liability for each county-year is reported in the RMA Summary of Business database. On

the other hand, total possible liability (for each county-year) is calculated by taking the product of

the following: the Chicago Board of Trade (CBOT) futures market price for the crop, total planted

acres for the crop,4 the average crop yield for the preceding ten years, and the maximum coverage

level available ([Goo04]). Appropriate CBOT prices from the Bridge® database were used to be

consistent with how RMA calculates the projected price used in their yield and revenue policies.5

We chose the aforementioned “liability ratio” as our measure of crop insurance participation (i.e.,

in contrast to the ratio of insured to planted acres in [Ann15]) because this measure accounts for

increasing “effective” crop insurance participation through increases in coverage level. Note that the

liability ratio can increase with a higher coverage level, even when insured acreage does not change.

Consistent with [Ann15] and [Bur16] the weather variables of interest in this study are: degree

days for moderate heat, degree days for extreme heat, and precipitation. The degree day measures

provide information about the number of days a crop is exposed to certain temperature ranges. For

corn, we use degree days between 10-29◦C as the measure of moderate heat, and degree days above

29◦C as the measure for extreme heat. For soybeans, we use 10-30◦C as the measure for moderate

heat, and degree days above 30◦C as the measure for extreme heat.6 The advantage of representing

warming in this way is that it allows for capturing the nonlinear relationship between temperatures

and yield. The degree day measures are the sums of daily exposures over the April-September

growing season. The precipitation variable represents the cumulative sum of precipitation received

(in m) over the April-September growing season. The county-level aggregates of these weather

variables are then merged together with the NASS, BEA, and RMA datasets to produce the final data

set used in this study.

Lastly, we limit the geographical coverage of our analysis to only those counties east of the

4As noted in [Ann15], it is possible that there are cases where the reported NASS planted acres value in their database
is lower than the true planted acres (or the insured acres reported by RMA). This is because NASS values are only based on
a sub-sample of larger farms in a county (e.g., it is not based on a complete enumeration of all farms, as in the agricultural
census). Hence, when the aforementioned situation happens, the liability ratio measure (and even the ratio of insured
acres to planted acres) becomes greater than one. Consistent with the approach of [Ann15], we use the “maximum”
planted acres value for each county-year to avoid having situations where the liability ratio is greater than one.

5The data about state-level projected price discovery periods and contract months can be found on USDA website at:
https://www.rma.usda.gov/en/Policy-and-Procedure/Insurance-Plans/Commodity-Exchange-Price-Provisions-CEPP.

6We use the method in [Sch09] to calculate D D M and D D H . For example, suppose D D H is to measure the degree days
above 29◦C and D D M is degree days between 10-29◦C, if the maximum temperature of that day is lower than 29◦C, the
D D H of that day is 0; if the minimum temperature of that day is above 29◦C, the D D H of that day is equal to the difference
between the average temperature and 29◦C (t Av g −29; t Av g = (t M i n + t M a x )/2); if 29◦C is between the maximum and
minimum temperature of that day, D D H of that day is ((t Av g −29)×a c o s ((2×29− t M a x − t M i n )/(t M a x − t M i n ))+
(t M a x − t M i n )× s i n (a c o s ((2×29− t M a x − t M i n )/(t M a x − t M i n )))/2)/π. The D D H of the entire growing season
is the sum of daily degree days above 29◦C from April 1s t to September 30nd . The D D M is the difference between degree
days above 29◦C and degree days above 10◦C.
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100-degree meridian but not including Florida (as is done in [Ann15]) (See Figure S4.1 for the states

included in the data set). This allows us to focus more on counties with primarily rainfed (rather

than irrigated) corn and soybean operations, and to examine the interactions among yield risk,

extreme heat, and crop insurance for this farm type. Descriptive statistics for the yield, weather, and

input expenditure variables used in the study are presented in Table 4.1, and the summary statistics

for the various crop insurance participation measures are in Table 4.2.

4.3 Empirical Strategy

4.3.1 Parametric Moment-based Estimation Method

To examine the inter-relationships among yield risk, extreme heat, and crop insurance adoption,

we use the parametric moment-based framework of [Ant83] and [Ant84] for estimating stochastic

production functions. Let the crop production process be represented by the stochastic production

function:

y =µ(x) + ε, (4.1)

where y is crop yield; x is a vector that includes weather variables, a crop insurance participation

measure, and relevant interaction terms; and ε is an error term where E (ε|x) = 0 and is assumed to

be independently distributed.

Evaluating the risk implications of any element in x can be done through the evaluation of the

moments of the production function – mean, variance, skewness, and kurtosis. The first moment

(i.e., the mean yield) can be represented as follows: M1(x) = E [µ(x)]. The higher moments of the

production function represents risk exposure and can be expressed as follows:

ε̂i = [y −µ(x)]i =Mi (x) + vi , ∀i = 2, 3, 4 (4.2)

where ε̂i is the i t h power of the predicted residuals from regression specified in equation (4.1), Mi (x)

is the i t h moment function, and vi is the error term. Equation (4.2) represents variance when i = 2,

skewness when i = 3, and kurtosis when i = 3.

In general, the variance, skewness, and kurtosis of yield vary with vector x. For example, x1

can be variance increasing, variance neutral, or variance decreasing. Similarly, a specific x variable

can be skewness increasing, skewness neutral, or skewness decreasing. The same pattern can be

observed with kurtosis. Note that equation (4.2) above goes beyond the typical mean-variance

approach that has been commonly used in the past (as in [Jus78]). This is relevant in situations

where exposure to downside risk (i.e., asymmetric risk effects) is a concern and skewness (kurtosis)

effects are important.

To estimate equations (4.1) and (4.2), we utilize the linear moment method (LMM) put forward

by [Ant83]. With this method, the moments of the yield distribution are assumed to be parametric

linear functions of independent variables such that:

y = xβ1+ ε (4.3)

ε̂i = xβi + vi , ∀i = 2, 3, 4. (4.4)
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Note that equations (4.3) and (4.4) exhibit heteroscedasticity, which implies that heteroscedasticity

robust standard errors need to be used in the estimation. If endogeneity is not a concern (e.g., more

on this below), equations (4.3) and (4.4) can simply be parametrically estimated by ordinary least

squares (OLS) with heteroscedasticity robust standard errors.

4.3.2 Empirical Specification

To achieve the objectives of this study, we implement the parametric moment based estimation

method above using the following empirical specification:

yj t =α1 j +β11I n s j t +β12D D M
j t +β13D D H

j t +β14P r e c j t +β15P r e c 2
j t+

β16(I n s j t ×D D M
j t ) +β17(I n s j t ×D D H

j t ) +β18(I n s j t ×P r e c j t )+

β19(I n s j t ×P r e c 2
j t ) +β110s t +β111s t 2+γ1t + ε j t

(4.5)

where yj t is corn or soybean yield (in bu/ac) for county j in period t (for t = 1,2,3, ... denoting

years from 1989 to 2017); I n s j t is the liability ratio measure of insurance participation ([Goo04]);

D D M
j t is the degree day measure for moderate heat (in thousand of Celsius); D D H

j t is the degree

day measure for extreme heat (in hunred of Celsius); P r e c j t is cumulative precipitation during the

growing season (in m); the α, β , and γ coefficients are parameters to be estimated (where α1 j are

county fixed-effects, γ1t are year fixed effect); and ε j t is the error term. The β110s t and β111s t 2 are

included in the specification to control for state-specific time trends (i.e., quadratic time trends).

Following equation (4.5), the higher moment functions can then be represented as:

ε̂i
j t =αi j +βi 1I n s j t +βi 2D D M

j t +βi 3D D H
j t +βi 4P r e c j t +βi 5P r e c 2

j t+

βi 6(I n s j t ×D D M
j t ) +βi 7(I n s j t ×D D H

j t ) +βi 8(I n s j t ×P r e c j t )+

βi 9(I n s j t ×P r e c 2
j t ) +βi 10s t +βi 11s t 2+γi t + ε j t

(4.6)

where, i = 2, 3, 4 refers to the i t h power of the error term ε and represents the variance, skewness and

kurtosis of the yield distribution. For the variance of yield (i = 2), a positive (negative) parameter es-

timate indicates that the corresponding variable increases (decreases) yield variability. For skewness

of yield (i = 3), a positive (negative) parameter estimate indicates that the corresponding variable

decreases (increases) the exposure to downside risks. For kurtosis of yield (i = 4), a positive (negative)

parameter estimate indicates that the corresponding variable increases (decreases) production risk.

Since the aim of this chapter is to examine how crop insurance participation affects the impact

of extreme heat on yield risk, the parameter of interest is: βi 7. After estimating the parameters in

equations (4.5) and (4.6), we can make inferences on how crop insurance participation influence the

impact of extreme heat on the moments of the yield distribution. For example, if the parameter β23

is positive and significant (i.e., extreme heat increases yield variance), then a positive and significant

β27 parameter suggests that having insurance coverage would further magnify the impact of extreme

heat on yield variability. This result implies that farmers with higher crop insurance coverage tend

to experience larger yield variability due to extreme heat (relative to farmers without (or with lower)

insurance coverage).
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We also utilize the parameter estimates from equations (4.5) and (4.6) to calculate the marginal

impacts of a specific warming scenario where daily minimum and maximum temperatures increase

by 1◦C.7 This analysis allows us to see how the specific warming event defined above affects the

mean, variance, skewness, and kurtosis of yields, at different levels of insurance participation. For

example, one would be able to compare the mean yield impact of the warming scenario for the case

when there is no insurance coverage in the county (I n s j t = 0), versus the situation when there is a

70% participation rate (I n s j t = 0.7).

4.4 Estimation Results

Tables 4.3 and 4.4 show the parameter estimates from the corn and soybean models that account

for county-level fixed effect, year fixed effect, state-specific linear and quadratic time trend, and the

crop insurance participation rate measured using the liability ratio (see equations (4.5) and (4.6)).

For uninsured counties, the effect of weather variables on the moments of the yield distribution is

represented by the coefficients associated with the weather variable by itself (i.e., without considering

the interactions). On the other hand, for insured counties, the effect of weather events is the sum of

the single weather variable coefficient plus the coefficient associated with the (weather × insurance

participation) interaction terms.

In both Table 4.3 and 4.4, the interaction terms between D D H and insurance participation for

the mean, variance, and kurtosis functions are statistically significant (at the 10% significance level).

However, this interaction term is statistically insignificant in the skewness function. These results

suggest that, for both corn and soybeans, crop insurance program participation significantly affects

the impact of extreme heat on the mean, variance, and kurtosis of yield. Hence, the yield risk profile

resulting from an extreme heat event is largely affected by the extent of insurance coverage.

In terms of mean yield, the detrimental effect of extreme heat is significantly higher for insured

counties than uninsured counties. As insurance participation increases, the magnitude of the impact

also increases. For corn, relative to an uninsured county, the negative mean yield impact of a unit

increase in D D H further increases by 47.34 bushels per acre with insurance participation. For

soybeans, the increase is 17.98 bushels per acre. This result implies that participating in insurance

programs likely induces farmers to not adopt climate change adaptation practices, such that the

impact of higher temperatures on mean yields worsens in the presence of insurance coverage (e.g.,

this result is consistent with the moral hazard story in [Ann15]).

Insurance participation also significantly affects the impact of extreme heat on the variance

and kurtosis of corn and soybean yields. For both corn and soybeans, the variance and kurtosis

of yields increase as D D H increases (i.e., see parameter estimates for the single D D H variable in

Tables 4.3 and 4.4). Moreover, parameter estimates associated with the interaction terms of D D H

7Since we use degree day measures (D D M and D D H ) in our empirical specification (i.e., not daily minimum and
maximum temperatures directly), we examined the impact of degree day changes that is equivalent to the warming
scenario described above. For example, a daily minimum and maximum temperature increase of 1◦C would be equivalent
to an increase in D D H by 0.24 and an increase in D D M by 0.14 for area planting corn and an increase in D D H by 0.18
and an increase in D D M by 0.15 in area planting soybeans(in the degree day units we utilize).
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and insurance participation indicate that the magnitude of the D D H effect on yield variance and

kurtosis becomes larger as insurance participation in the county increases. This implies that the

detrimental effect of extreme heat on production risk is higher for counties with higher levels of

crop insurance participation, and this added effect is mainly through the statistically significant

increases in yield variance and kurtosis.

To better visualize the warming response of the mean, variance, skewness, and kurtosis yields

under varying levels of crop insurance participation, we present estimated marginal effects for a

particular warming scenario where daily minimum and maximum temperatures increase by 1◦ (See

Table 4.5). Parameter estimates from Tables 4.3 and 4.4 are used to calculate the marginal effects for

this particular warming scenario. The results from this analysis suggest that higher levels of crop

insurance participation further exacerbate the detrimental mean and risk effects of warming in

corn and soybeans.

In the empirical analysis conducted so far, we only consider a single insurance participation

variable that lumps participation in yield protection (YP) based plans and revenue protection (RP)

based plans together. To take into account the potential difference between the effects of these two

types of insurance programs, we also ran another specification where we separate participation

in YP and RP insurance plans (See Table 4.6 and Table 4.7). Participation in these two types of

insurance plans still intensify the effects of D D H on the mean, variance, and kurtosis of yields. We

also notice that the magnitude of the additional RP participation effect on yield seems to larger than

the additional YP participation effect. For higher moments, RP participation significantly increases

the sensitivity of variance and kurtosis to D D H (except the kurtosis of corn), while the impacts of

YP participation on them are statistically insignificant and seem to smaller. Given that RP covers

both yield and price losses (and YP only coves yield losses), it seems reasonable to expect that RP

plans may induce greater moral hazard effects than YP plans. The YP and RP marginal effects for the

warming scenario where daily minimum and maximum temperatures increase by 1◦ are presented

in Table 4.8 and Table 4.9. The results here are still largely consistent with our discussion above.

4.5 Robustness Checks

4.5.1 Alternative Fixed Effect Models

We conduct robustness checks to investigate whether the estimation results remain “robust” under

alternative specifications described in the following paragraphs. The first robustness check is where

we estimate similar models to the ones in Tables 4.3 and 4.4, but where we control for county-specific

time trends (See Appendix Tables S4.3 and S4.4). These regression runs still generate results that

are comparable to those discussed in the previous section (e.g., same significance and signs, plus

roughly the same coefficient magnitudes).

The second robustness check is where we include managerial input expenditures as additional

control variables (e.g., fertilizer expenditures, fuel expenditures, labor expenditures, etc.). Regression

run results are presented in Appendix Tables S4.5 and S4.6). The estimation results here still support
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our findings in the previous section, though much of the input variable coefficients are largely

insignificant.

To better compare our results with the previous literature (for example, [Ann15]), we also conduct

a third robustness check that uses an “area ratio” measure of crop insurance participation (i.e., the

ratio of planted acres to the maximum total planted acres) rather than a liability ratio measure (See

Appendix Tables S4.7 and S4.8). The sign and significance of the main interaction terms of interest

(D D H × Ins) are still consistent with the model runs in the previous section using a liability-based

insurance participation measure. However, we note that the magnitudes of the coefficients on the

relevant interaction terms are smaller here compared to the estimates from the model using the

liability ratio insurance measure. This is expected given that the area ratio measure only captures

changes in the area insured (e.g., the “extensive margin” effects) and not the changes in insurance

protection levels through increases in coverage choices (even with no change in area insured).

4.5.2 Potential Endogeneity and Instrumental Variables

Based on the empirical specification in equations (4.5) and (4.6), there are potential endogeneity

concerns with regards to the insurance participation variable since there may be unobservables that

simultaneously influence the outcome variable y and the aforementioned explanatory variables

(e.g., unobserved management ability, for example). We partly control for this potential endogeneity

issue by including county fixed effects (α1 j ) that controls for time-invariant unobservables. The

time trends also control for time-varying unobservables that affect the full sample. However, there

may still be other time-varying unobservables at the county-level that can cause endogeneity issues

(e.g., time-varying soil quality for example). Therefore, we also use an instrumental variable (IV)

estimation procedure (e.g., two-stage least squares (2SLS)) within the moment-based framework to

address further concerns about potential endogeneity. (See [DF14] for an application of this type of

approach).8

An appropriate instrument should be correlated with the potentially endogenous variable, but

have no independent direct effects on the dependent variable. In our specification, the depen-

dent variables of interest are the mean yield, and the higher moments of the yield distribution.

Hence, legitimate instrumental variables should be uncorrelated with the yield and yield risk, but

correlated with insurance participation rates. The previous literature provides several sources of

exogenous variation that can be utilized to instrument for insurance participation. The first set

of instrumental variables we use in this study are important national insurance policy changes.

For example, [Sch14] employed indicators of the years when essential policy changes occurred as

instruments for insurance participation. An indicator variable for the year after 1994 was shown

to be an essential instrument. This can be explained by the fact that the multiple policy changes

caused by the passage of 1994 Farm Bill (such as the introduction of CAT, elimination of annual

disaster relief programs and short period mandatory insurance participation) had shifted the trend

8In the IV approach used here, we implement the IV approach in the mean and higher moment functions and assume
that it is adequate to control for endogeneity in all of the moments of the yield distribution.
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in the insurance participation. The second set of possible instruments we utilize is based on the

policy changes related to subsidy rates. [Yu17] use the national subsidy rates for yield protection

(YP) and revenue protection (RP) policies at the 65% and 75% coverage levels as their instrumental

variables for crop insurance adoption (See Figure S4.4 ).

We made use of the instrumental variables described above to check the robustness of our

results. The estimated IV results are shown in Appendix Table S4.9 and Table S4.10. The sign of the

interactions between D D H and insurance participation rate are the same with the major model.

4.5.3 Evaluating the Cost of Risk

To further understand how extreme heat and crop insurance influence farmers’ responses to changes

in risk exposure, we calculate the “cost of risk” (also called the risk premium) based on the parameters

estimated in equations (4.5) and (4.6). When a decision-maker is risk averse, he/she is willing to

give up an amount of money to replace risky wealth with the expected value of this wealth. For

example, assume the wealth received by an individual is y =µ+u where u is a random variable, if

the individual is a risk averse decision-maker, he/she would be willing to pay R to eliminate u such

that (E U (y +u ) =U (y +E (u )−R )), where R is the “cost of risk” (or risk premium) for this person.

In our case, the cost of risk can be defined as the amount of yield that a farmer is willing give up in

order to replace random yield with the mean yield.

First, assume that the utility of the representative farmer exhibits constant relative risk aversion

(CRRA), which is a behavioral assumption supported by previous empirical studies (See, [Cha96] for

example). The utility function of yield under CRRA can then be defined as follows:

U (y ) =







1
1−θ y 1−θ , if θ > 0,θ 6= 1

ln y , if θ = 1
(4.7)

where θ is the Arrow-Pratt relative risk aversion coefficient, which measures the degree of relative

risk aversion. Based on the utility function in equation (4.7), the cost of risk can be defined as a

function of the mean, variance, skewness and kurtosis of yield (See [Cha04]):

R (x)≈
4
∑

i=2

−[1/(i !)](U i /U 1)Mi (x) (4.8)

where U i ≡ ∂ i U /∂ y i is the i t h derivative of the utility function with respect to y , evaluated at

y =µ(x). With the risk coefficient θ , the cost of risk is given by:

R3(x)≈
θ

2

M2(x)
µ(x)

−
θ (θ +1)

6

M3(x)
µ(x)2

+
θ (θ +1)(θ +2)

24

M4(x)
µ(x)3

(4.9)

From equation (4.9), we evaluate how the cost of risk responds to changes in the weather variables

(e.g., increasing days of extreme heat) for different levels of insurance participation. We first fix the

other variables at their means, and then see how the cost of risk will change as the D D H and/or

D D M values increase (or decrease) (due, for instance, to a 1◦C and 2◦C in daily minimum and

maximum temperatures). This step allows us to observe how the cost of risk is affected by extreme

heat, and then compare the contribution of each higher moment (e.g., the variance, skewness, and
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kurtosis) to the change in the cost of risk. Note that a higher (lower) cost of risk indicates an increase

(a reduction) in the farmers’ exposure to risk. We then repeat this first step, but now utilizing different

levels of insurance participation rate from 0 and 1 (e.g., increasing in 0.1 increments). This will

allow us to observe how the response of the cost of risk to extreme heat is influenced by insurance

participation rates. For example, we can observe whether a high crop insurance participation rate

will result in a larger yield risk response to extreme heat. Based on previous literature ([Shi13];

[Gan15]), the most commonly used relative risk aversion parameter is between 1 and 3. In this

research, we evaluate the cost of risk at θ = 3.

Table 4.10 provides information on the estimated total cost of risk and the decomposition of this

cost of risk (i.e., the contribution of variance, skewness, and kurtosis are separately presented). Cost

of risk is evaluated under three temperature scenarios (i.e., at the mean temperature, and when

there is a 1◦C and a 2◦C increase in daily minimum and maximum temperatures) and different

levels of insurance participation. Under the average temperature of our data set, the cost of risk

constitutes about 0.7% to 2.6% of the mean yield. Most of the cost of risk can be attributed to the

variance.

For corn, as temperature increases in our 1◦C warming scenario, the cost of risk increases at

all insurance participation rates and the impact of the warming temperature on the cost of risk

increases as crop insurance participation rate increases (see top panel of the last two columns

in Table 4.10). Without insurance coverage the 1◦C warming scenario only increases the cost of

risk by 0.3 bushels per are. However, as insurance participation increases the marginal impact of

the warming scenario increases to 0.83 bushel per acre. A similar result is observed for a more

serious warming scenario (where both daily minimum and maximum temperature experience a

2◦C increase), though the magnitudes of warming effects are of course higher. The pattern of results

for soybeans is similar to that of corn (see bottom panel of the last two columns in Table 4.10), with

the exception that higher temperatures seem to reduce the cost risk at lower levels of insurance

participation (which is somewhat counterintuitive).

4.6 Conclusions

The main objective of this study is to determine whether crop insurance participation influences

the effect of warming temperatures on the mean, variance, skewness, and kurtosis of corn and

soybean yields. To the best of our knowledge, this study is one of the first to carefully explore how the

adverse production risk impacts of extreme heat is affected by the level of crop insurance coverage.

County-level data from 1989-2017 and a parametric moment-based empirical approach were utilized

to achieve the study objective. Results from our empirical analysis suggest that higher levels of

crop insurance participation statistically worsen the adverse risk impacts of extreme heat. The

detrimental effect of extreme heat on production risk is manifested in the statistically larger variance

and kurtosis observed at higher insurance participation rates. Moreover, we also validate findings in

previous literature (see [Ann15]) where the negative mean yield effect of warming intensifies under
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higher levels of insurance participation.

These findings are consistent with the argument that crop insurance promotes moral hazard

behavior such that insured farmers are less likely to adopt practices that help mitigate the adverse

mean yield and production risk effects of climate-change-induced warming. Hence, the new insight

here is that the disincentive effect of crop insurance seems to not only affect mean yields but also the

variability of yields (e.g., production risk). This is further evidence of the “unintended consequence”

of subsidizing crop insurance and encouraging higher participation levels. Crop insurance tends to

discourage the adoption of climate change adaptation practices, and consequently intensifies the

negative effect of warming on yield variability.

Even though the empirical results from our study contributes to further understanding of the

effect of crop insurance on warming-related risk increases, it is important to recognize the limita-

tions of the study and mention promising opportunities for future research. First, the empirical

approach used here is primarily based on a more traditional parametric moment-based approach.

Although this traditional approach has a long track record of use in various agricultural economics

studies (such as [Shi13]), there have also been recent studies that utilized more flexible econo-

metric approaches for investigating higher moment yield effects (See, for example, [Tac12] for an

entropy-based approach and [Li18] for a non-parametric approach). The use of these more recent

approaches may provide more insights as to the risk effects of warming under crop insurance.

Second, although we attempt to control for all sources of endogeneity, further investigation of this

issue using alternative instruments and IV approaches may also be useful here. We leave this for

future research.

Third, the main behavioral mechanism we posit as the source of the negative crop insurance

effect is moral hazard. However, theoretically, it can also possibly be adverse selection. Nonetheless,

in our context, we believe that is likely moral hazard rather than adverse selection given that the

level of participation in the crop insurance program is already fairly high (i.e., it includes most of the

high and low-risk producers). Future studies that can separate out the moral hazard and adverse

selection effect would be important. Fourth, the particular insurance plans considered in this study

are individual YP and RP products in the US. We did not include other types of insurance plans (e.g.,

area-based plans, weather index-based plans, etc.) in the analysis. Hence, it may be important to

also extend the research to other plans of insurance in other countries. For example, considering

the effects of weather index insurance, which is more ubiquitous in developing countries. Lastly,

the empirics in this study was based on a county-level data set rather than a farmer-level data set.

Future research using individual farm-level survey data might yield richer insights as to how crop

insurance coverage affects the risk impacts of warming.
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Table 4.1 Descriptive statistics for the economic variables

Variable Units N Mean St.Dev Min Max

Corn yield bu/acre 38,101 124.039 37.169 0.000 246.700

Soybeans yield bu/acre 36,095 37.709 10.673 0.700 73.100

D D H Celsius and days in handred 74,196 0.435 0.494 0.000 5.377

D D M Celsius and days in thousand 74,196 1.858 0.422 0.739 3.161

P r e c m 74,196 0.623 0.154 0.121 1.705

Fertilizer and lime dollars per acre 72,653 152.119 229.052 2.916 12750.000

production dollars per acre 72,653 1798.826 4366.109 34.092 274560.000

petroleum dollars per acre 72,653 74.220 151.274 1.817 5815.000

hired labor dollars per acre 72,653 177.183 564.713 1.549 33117.660

seed dollars per acre 72,653 69.514 125.134 0.648 8480.770

Table 4.2 Descriptive statistics for crop insurance participation rate

Variable Mean St.Dev Min Max

Liability Ratio 0.341 0.233 0.000 2.124

Area Ratio 0.461 0.252 0.000 2.439

Liability Ratio_Yield Protection 0.108 0.108 0.000 1.488

Liability Ratio_Revenue Protection 0.233 0.252 0.000 2.108

Area Ratio_Yield Protection 0.192 0.172 0.000 1.351

Area Ratio_Revenue Protection 0.269 0.277 0.000 2.411
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Table 4.3 Estimated response of the mean, variance, skewness, and kurtosis of corn yield to weather
variables, insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 13.46 -100.9 4796.7 -502838.3

(1.21) (-0.45) (0.36) (-1.03)

D D H -26.26∗∗∗ 195.7∗∗∗ 4094.7 703296.1∗∗∗

(-6.33) (4.07) (0.84) (5.00)

P r e c 71.46∗∗ 323.4 -38060.3 -347392.5

(2.55) (0.64) (-1.23) (-0.30)

P r e c 2 -49.86∗∗ -242.5 31606.0 292430.5

(-2.66) (-0.66) (1.56) (0.35)

Ins -45.75 762.6∗ 742.5 992410.6

(-1.66) (1.92) (0.02) (0.76)

D D M *Ins 39.39∗∗∗ -254.6 -11227.5 -1126785.0

(3.13) (-1.27) (-0.46) (-1.38)

D D H *Ins -47.34∗∗∗ 366.7∗∗ 9113.2 1337087.3∗∗

(-3.08) (2.59) (0.34) (2.13)

P r e c *Ins 25.07 -2126.8 52043.1 -374344.6

(0.32) (-1.57) (0.45) (-0.09)

P r e c 2*Ins -30.81 1759.6∗ -39767.7 1089532.0

(-0.53) (1.82) (-0.47) (0.34)

Observations 38101 38101 38101 38101

R squared 0.606 0.0779 0.0101 0.0410

Time Controls State State State State

Crop Corn Corn Corn Corn

Ins Measure LR LR LR LR

Model FE FE FE FE

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.4 Estimated response of the mean, variance, skewness, and kurtosis of soybean yield to weather
variables, insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 10.49∗∗∗ -32.72∗∗∗ 78.08 -7826.0∗∗

(3.88) (-2.78) (0.24) (-2.52)

D D H -11.78∗∗∗ 9.537∗ 152.0 2456.6

(-7.94) (1.77) (1.11) (1.38)

P r e c 40.52∗∗∗ -37.50 -809.0 -9882.3

(5.75) (-1.14) (-0.98) (-1.09)

P r e c 2 -24.68∗∗∗ 20.33 694.5 5463.8

(-5.04) (0.85) (1.19) (0.79)

Ins -15.47∗∗∗ 33.21 -494.6 8466.3

(-2.89) (0.95) (-1.01) (1.06)

D D M *Ins 12.63∗∗∗ -28.29∗ -47.70 -8457.5∗

(5.05) (-1.82) (-0.16) (-1.83)

D D H *Ins -17.98∗∗∗ 49.46∗∗ 306.1 15465.7∗∗

(-5.93) (2.42) (0.67) (2.35)

P r e c *Ins 4.058 -10.95 1952.8 -194.4

(0.31) (-0.11) (1.24) (-0.01)

P r e c 2*Ins -8.256 17.30 -1508.2 5899.9

(-0.93) (0.26) (-1.42) (0.35)

Observations 36095 36095 36095 36095

R squared 0.575 0.0522 0.0104 0.0316

Time Controls State State State State

Crop Soybeans Soybeans Soybeans Soybeans

Ins Measure LR LR LR LR

Model FE FE FE FE

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.5 The marginal impact of 1◦C warming scenario on the mean and higher moments of yield for
different insurance participation rates

Corn Soybean

Ins Ptc mean variance skewness kurtosis mean variance skewness kurtosis

0 -4.41 32.78 1651.49 98182.36 -0.55 -3.10 38.36 -709.39

0.1 -4.99 38.00 1712.84 114460.70 -0.69 -2.63 43.09 -558.98

0.2 -5.58 43.23 1774.20 130739.04 -0.82 -2.17 47.82 -408.57

0.3 -6.16 48.45 1835.55 147017.38 -0.96 -1.71 52.55 -258.16

0.4 -6.74 53.68 1896.90 163295.72 -1.09 -1.24 57.27 -107.76

0.5 -7.33 58.90 1958.25 179574.06 -1.22 -0.78 62.00 42.65

0.6 -7.91 64.13 2019.60 195852.40 -1.36 -0.32 66.73 193.06

0.7 -8.49 69.35 2080.96 212130.75 -1.49 0.14 71.46 343.47

0.8 -9.08 74.58 2142.31 228409.09 -1.62 0.61 76.19 493.88

0.9 -9.66 79.80 2203.66 244687.43 -1.76 1.07 80.91 644.29

1 -10.24 85.03 2265.01 260965.77 -1.89 1.53 85.64 794.69

Notes: The table displays the estimated marginal impacts of 1◦C warming scenario where daily minimum and maximum

temperature increase by 1◦C on mean and higher moments of yield for different levels of insurance participation. The

results are calculated based on the estimates from our major model (model in Table 4.3 and Table 4.4).
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Table 4.6 Estimated response of the mean, variance, skewness, and kurtosis of corn yield to weather
variables, insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 16.67 -156.2 4430.6 -573490.5

(1.42) (-0.73) (0.31) (-1.27)

D D H -26.84∗∗∗ 257.1∗∗∗ 5822.7 883515.1∗∗∗

(-5.72) (5.02) (0.79) (4.18)

P r e c 81.02∗∗∗ -56.81 -23371.5 41056.3

(3.08) (-0.12) (-0.91) (0.04)

P r e c 2 -52.24∗∗∗ 49.87 21690.9 120464.2

(-2.94) (0.14) (1.28) (0.15)

YP Ins 5.963 -1550.1∗∗ 55226.0 -1229006.3

(0.17) (-2.47) (1.26) (-0.70)

RP Ins -46.92 935.1∗∗ -11177.8 870364.2

(-1.68) (2.22) (-0.31) (0.70)

D D M *YP Ins 25.70 574.2∗ -17523.5 1045157.7

(1.69) (1.96) (-1.08) (1.00)

D D H *YP Ins -24.00∗∗ -224.7 10523.7 -490843.6

(-2.30) (-1.09) (1.02) (-0.68)

P r e c *YP Ins -52.27 1584.7 -93442.1 -1145316.0

(-0.58) (1.13) (-0.95) (-0.24)

P r e c 2*YP Ins -15.19 -1146.5 65786.4 568399.4

(-0.22) (-1.12) (0.94) (0.18)

D D M *RP Ins 43.25∗∗∗ -260.5 -3915.7 -531518.0

(3.78) (-1.32) (-0.21) (-0.84)

D D H *RP Ins -59.42∗∗∗ 343.7∗∗ -1021.7 654197.8

(-4.36) (2.14) (-0.05) (1.20)

P r e c *RP Ins 24.55 -2561.1 71221.4 -2278628.1

(0.30) (-1.68) (0.55) (-0.47)

P r e c 2*RP Ins -32.38 2077.9∗ -59266.3 2341435.3

(-0.54) (1.90) (-0.62) (0.65)

Observations 38101 38101 38101 38101

R squared 0.610 0.0726 0.0103 0.0376

Time Controls State State State State

Crop Corn Corn Corn Corn

Ins Measure LR LR LR LR

Model FE FE FE FE

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.7 Estimated response of the mean, variance, skewness, and kurtosis of soybean yield to weather
variables, insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 10.67∗∗∗ -31.37∗∗∗ -75.26 -7446.1∗∗∗

(4.00) (-3.00) (-0.24) (-3.23)

D D H -12.19∗∗∗ 12.19∗∗ 259.6∗ 3507.6∗

(-7.96) (2.26) (1.77) (1.87)

P r e c 46.10∗∗∗ -60.32∗ -1077.5 -16964.6∗∗

(6.29) (-1.84) (-1.22) (-2.05)

P r e c 2 -27.51∗∗∗ 29.45 956.8 8873.1

(-5.31) (1.21) (1.51) (1.34)

YP Ins 23.55∗∗ -7.445 -1925.8∗ -3989.1

(2.43) (-0.11) (-1.74) (-0.29)

RP Ins -25.42∗∗∗ 1.630 -478.2 255.4

(-4.91) (0.05) (-1.18) (0.04)

D D M *YP Ins 4.533 -47.14∗ 867.6 -13587.8

(1.00) (-1.76) (1.54) (-1.50)

D D H *YP Ins -11.28∗∗ 7.322 -804.9 2248.2

(-2.05) (0.27) (-1.32) (0.24)

P r e c *YP Ins -63.87∗∗ 171.3 3115.8 54889.3

(-2.51) (0.92) (1.17) (1.39)

P r e c 2*YP Ins 27.41 -42.20 -3225.0 -16295.9

(1.30) (-0.31) (-1.59) (-0.54)

D D M *RP Ins 15.79∗∗∗ -13.57 -216.1 -5061.0

(6.34) (-0.82) (-0.83) (-1.00)

D D H *RP Ins -19.82∗∗∗ 55.72∗∗ 583.1 19286.8∗∗

(-7.24) (2.44) (1.24) (2.13)

P r e c *RP Ins 17.31 -2.399 2513.3 5675.5

(1.29) (-0.03) (1.67) (0.30)

P r e c 2*RP Ins -16.81∗ 7.574 -1744.8 623.2

(-1.82) (0.14) (-1.68) (0.04)

Observations 36095 36095 36095 36095

R squared 0.579 0.0547 0.0123 0.0361

Time Controls State State State State

Crop Soybeans Soybeans Soybeans Soybeans

Ins Measure LR LR LR LR

Model FE FE FE FE

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.8 The marginal impact of 1◦C warming scenario on the mean and higher moments of yield for
different YP insurance participation rates

Corn Soybeans

Ins Ptc mean variance skewness kurtosis mean variance skewness kurtosis

0 -4.10 39.75 2014.26 131477.81 -0.59982 -2.42826 35.00451 -467.527

0.1 -4.31 42.40 2021.39 134330.64 -0.73344 -2.98806 33.42933 -626.445

0.2 -4.53 45.04 2028.51 137183.47 -0.86707 -3.54787 31.85416 -785.364

0.3 -4.75 47.69 2035.63 140036.29 -1.00069 -4.10767 30.27899 -944.283

0.4 -4.96 50.33 2042.76 142889.12 -1.13432 -4.66747 28.70382 -1103.2

0.5 -5.18 52.98 2049.88 145741.95 -1.26795 -5.22727 27.12865 -1262.12

0.6 -5.39 55.62 2057.00 148594.78 -1.40157 -5.78707 25.55347 -1421.04

0.7 -5.61 58.26 2064.13 151447.60 -1.5352 -6.34687 23.9783 -1579.96

0.8 -5.82 60.91 2071.25 154300.43 -1.66883 -6.90667 22.40313 -1738.88

0.9 -6.04 63.55 2078.38 157153.26 -1.80245 -7.46647 20.82796 -1897.79

1 -6.26 66.20 2085.50 160006.08 -1.93608 -8.02627 19.25278 -2056.71

Notes: The table displays the estimated marginal impacts of 1◦C warming scenario where daily minimum and maximum

temperature increase by 1◦C on mean and higher moments of yield for different yield protection insurance participation

rates. The results are calculated based on the estimates from our major model (model in Table 4.6 and Table 4.7).

Table 4.9 The marginal impact of 1◦C warming scenario on the mean and higher moments of yield for
different RP insurance participation rates

Corn Soybeans

Ins Ptc mean variance skewness kurtosis mean variance skewness kurtosis

0 -4.10 39.75 2014.26 131477.81 -0.59982 -2.42826 35.00451 -467.527

0.1 -4.92 44.34 1935.05 139718.93 -0.72014 -1.63914 42.1787 -199.704

0.2 -5.74 48.94 1855.83 147960.04 -0.84047 -0.85002 49.35289 68.11784

0.3 -6.56 53.53 1776.61 156201.15 -0.96079 -0.06089 56.52708 335.9401

0.4 -7.37 58.12 1697.40 164442.26 -1.08112 0.728232 63.70127 603.7624

0.5 -8.19 62.71 1618.18 172683.37 -1.20144 1.517356 70.87547 871.5846

0.6 -9.01 67.30 1538.96 180924.48 -1.32177 2.30648 78.04966 1139.407

0.7 -9.83 71.90 1459.74 189165.60 -1.44209 3.095605 85.22385 1407.229

0.8 -10.65 76.49 1380.53 197406.71 -1.56242 3.884729 92.39804 1675.051

0.9 -11.47 81.08 1301.31 205647.82 -1.68274 4.673853 99.57223 1942.874

1 -12.29 85.67 1222.09 213888.93 -1.80307 5.462977 106.7464 2210.696

Notes: The table displays the estimated marginal impacts of 1◦C warming scenario where daily minimum and maximum

temperature increase by 1◦C on mean and higher moments of yield for different revenue protection insurance participation

rates. The results are calculated based on the estimates from our major model (model in Table 4.6 and Table 4.7).
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Table 4.10 Estimated cost of risk for corn and soybeans

COR due to variance COR to skewness COR due to kertosis Total COR Change in COR

mean +1◦C +2◦C mean +1◦C +2◦C mean +1◦C +2◦C mean +1◦C +2◦C +1◦C +2◦C

Ins Corn

0 1.97 2.33 2.87 0.11 -0.01 -0.17 0.06 0.12 0.23 2.14 2.44 2.94 0.30 0.80

0.1 1.87 2.28 2.91 0.10 -0.02 -0.19 0.05 0.12 0.25 2.02 2.38 2.97 0.36 0.95

0.2 1.76 2.22 2.94 0.10 -0.03 -0.22 0.04 0.12 0.28 1.89 2.31 3.00 0.42 1.11

0.3 1.65 2.17 2.98 0.09 -0.04 -0.25 0.03 0.12 0.30 1.77 2.24 3.03 0.47 1.26

0.4 1.54 2.11 3.01 0.08 -0.06 -0.27 0.02 0.12 0.33 1.65 2.17 3.07 0.53 1.42

0.5 1.44 2.05 3.05 0.08 -0.07 -0.30 0.01 0.12 0.35 1.53 2.11 3.10 0.58 1.57

0.6 1.33 2.00 3.09 0.07 -0.08 -0.33 0.00 0.12 0.38 1.41 2.04 3.13 0.63 1.73

0.7 1.23 1.94 3.12 0.06 -0.09 -0.36 -0.01 0.12 0.40 1.29 1.97 3.17 0.68 1.88

0.8 1.12 1.88 3.16 0.06 -0.10 -0.39 -0.02 0.12 0.43 1.17 1.90 3.20 0.74 2.04

0.9 1.02 1.83 3.20 0.05 -0.11 -0.42 -0.02 0.12 0.46 1.05 1.83 3.24 0.79 2.19

1 0.92 1.77 3.24 0.05 -0.12 -0.45 -0.03 0.12 0.49 0.93 1.77 3.28 0.83 2.35

Soybeans

0 0.49 0.40 0.32 0.05 0.02 -0.03 0.01 -0.01 -0.03 0.55 0.40 0.26 -0.15 -0.29

0.1 0.48 0.40 0.36 0.04 0.00 -0.05 0.01 -0.01 -0.02 0.53 0.39 0.29 -0.14 -0.24

0.2 0.47 0.41 0.39 0.03 -0.01 -0.08 0.01 0.00 -0.01 0.51 0.39 0.31 -0.12 -0.20

0.3 0.46 0.41 0.43 0.02 -0.03 -0.10 0.01 0.00 0.01 0.49 0.38 0.33 -0.10 -0.16

0.4 0.45 0.42 0.46 0.01 -0.05 -0.13 0.01 0.01 0.02 0.47 0.38 0.35 -0.09 -0.11

0.5 0.44 0.43 0.50 0.00 -0.06 -0.16 0.01 0.01 0.03 0.45 0.37 0.38 -0.07 -0.07

0.6 0.43 0.43 0.53 -0.01 -0.08 -0.18 0.01 0.01 0.05 0.43 0.37 0.40 -0.06 -0.03

0.7 0.42 0.44 0.57 -0.02 -0.09 -0.21 0.01 0.02 0.06 0.41 0.36 0.42 -0.04 0.02

0.8 0.41 0.44 0.61 -0.03 -0.11 -0.24 0.01 0.02 0.08 0.39 0.36 0.45 -0.03 0.06

0.9 0.40 0.45 0.65 -0.04 -0.12 -0.27 0.01 0.03 0.09 0.37 0.35 0.47 -0.01 0.10

1 0.39 0.46 0.68 -0.05 -0.14 -0.30 0.01 0.03 0.11 0.35 0.35 0.49 0.00 0.15

Notes: (1)The table displays the cost of risk (COR) calculated based on the major model under three temperature scenarios

and different insurance participation rate. (2) The first column shows the insurance participation rate. (3) The table shows

the cost of risk under three temperature scenarios: 1) the average temperature of the dataset used; 2) both t mi n and

t ma x increase by 1◦C; 3) both t mi n and t ma x increase by 2◦C.
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CHAPTER

5

CONCLUSION

The research goal of Chapter 2 is to investigate whether modern rice varieties (MVs) mitigate

the adverse yield impacts of climate change, especially the more recent varieties (MV4 and MV5)

specifically bred to be more tolerant to abiotic stresses. To acheive this goal, we estimate fixed

effect econometric models with “weather-varietal group” interactions and assess whether there

is heterogeneity in the warming effects across different rice varietal groups. Results suggest that

compared to traditional varieties (TV) and earlier rice MVs, the recent MVs tend to be more resilient

to a warming climate relative to the earlier rice MVs. The stronger warming mitigation effects

for recent MVs provides evidence that there are indeed direct yield benefits from rice-breeding

efforts to improve tolerance to abiotic stresses. Although early modern varieties were not specifically

developed to address climate change and abiotic stresses, we find that they in fact partially mitigate

the negative yield effects of warming compared to TVs. The presence of some climate change

mitigation effects for these early modern rice varieties can be considered a “spillover” benefit from

rice breeding efforts that were not specifically targeted to improve resilience to climate change.

Chapter 3 aims to explore how yield response to planting density is influenced by warming

temperature and to understand the role of GM traits in this situation. To fulfill the study objectives,

we develop and estimate models with interaction terms among planting density, weather variables,

and GM hybrid dummy variables to ascertain the impact of warming and GM traits on the corn

yield response to increasing planting density. Results from the analysis show that the yield benefits

of increasing planting density largely diminish as temperature levels increase, and the rate of

deterioration is larger for conventional corn hybrids without GM traits. Corn varieties with RW

resistance GM traits generally are better able to maintain the yield benefits of increasing planting

density under warming conditions. These results suggest that inter-plant competition for resources
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(e.g., nutrients and moisture) tends to be further intensified as planting density increases and

heating temperature.Therefore, as warming occurs, the yield benefits of plant density decreases.

However, corn hybrids with GM traits may be more efficient in utilizing natural resources such that

they perform better than conventional varieties even in situations with increasing planting density

and warming temperatures.

In Chapter 4, we explore whether crop insurance participation influences the effect of warming

temperatures on the mean, variance, skewness, and kurtosis of corn and soybean yields. Through

estimating a parametric moment-based empirical model, we found that higher levels of crop insur-

ance participation statistically worsens the adverse risk impacts of extreme heat. The detrimental

effect of extreme heat on production risk is manifested in the statistically larger variance and kurtosis

observed at higher insurance participation rates. Moreover, we also validate findings in previous

literature (see [Ann15]) where the negative mean yield effect of warming intensifies under higher lev-

els of insurance participation. These findings are consistent with the argument that crop insurance

promote moral hazard behavior such that insured farmers are less likely to adopt practices that help

mitigate the adverse mean yield and production risk effects of climate-change induced warming.

Hence, the new insight here is that the disincentive effect of crop insurance seems to not only affect

mean yields, but also the variability of yields (e.g., production risk). This is further evidence of the

“unintended consequence” of subsidizing crop insurance and encouraging higher participation

levels. Crop insurance tend to discourage adoption of climate change adaptation practices, and

consequently intensifies the negative effect of warming on yield variability.
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Table S2.1 Regression results for the five main model specifications in Table 2.4

Model 1
vtmin*V,ritmax*V

Model 2
add 3 tmin*V,3 tmax*V

Model 3
add prec,precsq

Model 4
add prec*V,precsq*V

Model 5
add econ var

year -0.000 -0.000 0.001 0.002 0.000

(0.003) (0.003) (0.003) (0.003) (0.003)

vtmin -0.186 -0.048 -0.207 -0.203 -0.258

(0.168) (0.313) (0.300) (0.378) (0.426)

retmin -0.084∗∗ -0.599∗ -0.583∗ -0.548 -0.309

(0.038) (0.325) (0.322) (0.362) (0.398)

ritmin 0.079 0.269 0.255 0.072 -0.103

(0.055) (0.222) (0.235) (0.318) (0.332)

vtmax 0.009 0.076 0.260 0.337∗ 0.439∗∗

(0.021) (0.168) (0.166) (0.176) (0.193)

retmax -0.079 0.159 0.108 0.146 0.046

(0.052) (0.251) (0.249) (0.250) (0.241)

ritmax 0.066 -0.025 -0.108 -0.070 -0.055

(0.132) (0.105) (0.099) (0.137) (0.140)

prec -0.001∗∗∗ -0.004 -0.004

(0.000) (0.003) (0.003)

prec × prec 0.000 0.000 0.000

(0.000) (0.000) (0.000)

early MVs -2.391 0.923 1.148 0.925 -0.166

(2.999) (3.654) (3.459) (4.478) (5.030)

recent MVs -2.530 0.143 -0.303 -1.110 -2.823

(3.574) (4.279) (4.121) (5.217) (5.524)

early MVs × vtmin 0.081 -0.023 -0.023 -0.024 0.047

(0.179) (0.347) (0.318) (0.385) (0.435)

early MVs × retmin 0.530 0.469 0.433 0.208

(0.336) (0.338) (0.378) (0.414)

early MVs × ritmin -0.228 -0.141 0.030 0.180

(0.231) (0.240) (0.321) (0.342)

early MVs × vtmax -0.094 -0.188 -0.266 -0.357∗

(0.170) (0.164) (0.173) (0.191)

early MVs × retmax -0.258 -0.246 -0.282 -0.170

(0.242) (0.241) (0.242) (0.232)

early MVs × ritmax 0.031 0.127 0.184∗ 0.141 0.136

(0.127) (0.108) (0.107) (0.141) (0.144)

recent MVs × vtmin 0.126 -0.231 -0.097 -0.111 0.024

(0.183) (0.367) (0.367) (0.398) (0.462)

recent MVs × retmin 0.608∗ 0.528 0.480 0.164

(0.346) (0.347) (0.380) (0.418)

recent MVs × ritmin -0.194 -0.241 -0.004 0.267

(0.233) (0.248) (0.333) (0.362)

recent MVs × vtmax -0.005 -0.135 -0.237 -0.408∗∗

(0.172) (0.172) (0.179) (0.203)

recent MVs × retmax -0.146 -0.070 -0.092 0.073

(0.264) (0.275) (0.270) (0.266)

recent MVs × ritmax 0.003 0.027 0.091 0.043 -0.004

(0.153) (0.113) (0.107) (0.145) (0.156)
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Table S2.1 Continued

Model 1
vtmin*V,ritmax*V

Model 2
add 3 tmin*V,3 tmax*V

Model 3
add prec,precsq

Model 4
add prec*V,precsq*V

Model 5
add econ var

early MVs × prec 0.003 0.004

(0.003) (0.003)

early MVs × prec × prec -0.000 -0.000

(0.000) (0.000)

recent MVs × prec 0.003 0.004

(0.003) (0.003)

recent MVs × prec × prec -0.000 -0.000

(0.000) (0.000)

Land Tenure -0.019

(0.043)

Farm size -0.055∗∗∗

(0.019)

Age of Head -0.001

(0.002)

Educ. of Head 0.009

(0.010)

Primary farming -0.002

(0.026)

Secondary farming 0.066

(0.109)

Labor 0.002∗∗

(0.001)

Nitrogen Fert. 0.002∗∗∗

(0.001)

Potassium Fert. 0.003∗∗∗

(0.001)

Phosphorus Fert. -0.001

(0.003)

Insecticide 0.004

(0.004)

Molluscicide -0.023

(0.014)

Herbicide 0.005

(0.005)

Rodenticide 0.074

(0.065)

Constant 13.152∗∗ 10.217 10.858∗ 9.209 12.854∗

(6.257) (6.394) (6.494) (6.988) (7.607)

Observations 1150 1150 1150 1150 1069

Adj R-squared 0.299 0.302 0.332 0.335 0.392

Number of Farmers 180 180 180 180 180

Notes: (1) The dependent variable of each regression is the natural log of rice yield. (2) v t mi n , r e t mi n , and r i t mi n ,

respectively, are the average of the monthly minimum temperatures for the vegetative, reproductive and ripening phase;

v t ma x , r e t ma x , and r i t ma x , respectively, are the average of monthly maximum temperatures for the vegetative,

reproductive and ripening phase. The variable p r e c is the cumulative precipitation for the entire growing season. (3)

Units for t mi n and t ma x is ◦C and for prec it is in mm.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S2.2 Marginal percentage yield impacts of 1 standard deviation warming scenarios

Model 1 Model 2 Model 3 Model 4 Model 5

Variables vtmin*V, ritmax*V 3 tmin*V, 3tmax*V add prec, precsq add prec*V, precsq*V add econ var

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1 standard deviation increase in tmin and tmax:

tmin&tmax: tv -0.112 0.218 -0.090 0.410 -0.144 0.174 -0.140 0.237 -0.120 0.434

tmin&tmax: early mv -0.037 0.373 -0.070 0.128 -0.119 0.004 -0.129 0.002 -0.105 0.121

tmin&tmax: recent mv -0.032 0.400 -0.034 0.346 -0.098 0.018 -0.086 0.060 -0.049 0.456

1 standard deviation increase in tmin:

tmin: tv -0.113 0.313 -0.256 0.075 -0.353 0.012 -0.475 0.002 -0.474 0.003

tmin: early mv -0.063 0.078 -0.062 0.076 -0.133 0.001 -0.142 0.001 -0.143 0.001

tmin: recent mv -0.035 0.452 -0.105 0.165 -0.216 0.030 -0.189 0.037 -0.118 0.199

1 standard deviation increase in tmax:

tmax: tv 0.001 0.996 0.166 0.422 0.209 0.299 0.335 0.118 0.353 0.135

tmax: early mv 0.026 0.481 -0.008 0.859 0.014 0.746 0.013 0.769 0.038 0.481

tmax: recent mv 0.003 0.937 0.071 0.300 0.119 0.159 0.103 0.129 0.070 0.303

Notes: (1) The table displays coefficients and p-values of marginal yield effect of warming scenarios where both t mi n and

t ma x in each growing phase increases by 1 standard deviation. The results are estimated based on 5 farm fixed-effect

models. Standard errors for each regression are clustered at the village level. (2) The different models are as follows.

Model 1 is the "baseline" model where t mi n and t ma x of each growing phase and the interactions between t mi n

in the vegetative phase (v t mi n) and t ma x in the ripening phase (r i t ma x ) and dummies for rice varietal groups

are included in the specification. Model 2 includes the t mi n and t ma x variables in all the growing phases(e.g., the

vegetative(v t mi n and v t ma x ), reproductive(r e t mi n and r e t ma x ), and the ripening phase(r i t mi n and r i t ma x ))

and their interactions with dummies for each rice varietal group. Model 3 adds on the cumulative precipitation for the

growing season (p r e c ) and its quadratic term (p r e c 2) to Model 2. Model 4 adds on the interactions of p r e c and squared

p r e c with the varietal grouping dummy variables to Model 3. Model 5 is the specification including all the "economic

variables" in addition to the variables in Model 4. (3) The first column indicates what weather variables are the marginal

effects based on, and which varietal group it pertains to. The three rows of the first panel indicate the marginal effect of

a 1 standard deviation increase in both t mi n and t ma x in each growing phase for the TV, early MVs, and recent MVs

varietal groups separately. The rows of panel 2 refer to the marginal effect of a 1 standard deviation increase in t mi n in

each growing phase for TV, early MVs, and recent MVs. Lastly, the rows of the third panel refer to the marginal effect of a 1

standard deviation increase in t ma x in each growing phase for the TV, early MVs, and recent MVs.

Table S2.3 Correlations between maximum and minimum temperatures by growing phase

Phase Variable tmin

Vegetative tmax 0.5060(0.0000)

Reproductive tmax 0.5207(0.0000)

Ripening tmax 0.4404(0.0000)

Note: The table displays correlations between the minimum and

maximum temperature for 32 municipalities (34 municipalities

in 2015) across 13 survey years. Number of observations = 418.

P-values are in parentheses.
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Table S2.4 Predicted change in t mi n between 1971-2000 and 2011-2041 for six provinces, by quarter of the
year

BCM2(2011-2040) CNCM3(2011-2040) MPEH5(2011-2040)

Provinces DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

A1B

La Union 0.5 0.5 0.3 0.4 0.9 0.9 0.5 0.7 0.7 0.9 0.3 0.4

Pangasinan 0.5 0.4 0.2 0.4 0.7 0.5 0.3 0.6 0.4 0.6 0.3 0.4

Nueva Ecija 0.5 0.3 0.3 0.4 0.7 0.5 0.3 0.7 0.5 0.6 0.3 0.4

Pampanga 0.5 0.4 0.2 0.4 0.7 0.4 0.2 0.6 0.5 0.6 0.4 0.4

Bulacan 0.6 0.4 0.3 0.4 0.8 0.6 0.4 0.7 0.6 0.7 0.4 0.5

Tarlac 0.5 0.3 0.2 0.3 0.6 0.4 0.3 0.5 0.4 0.5 0.4 0.3

A2

La Union 0.6 0.7 0.3 0.4 0.6 0.7 0.3 0.5 0.7 0.7 0.3 0.5

Pangasinan 0.5 0.5 0.2 0.4 0.5 0.4 0.2 0.5 0.6 0.5 0.3 0.4

Nueva Ecija 0.5 0.5 0.3 0.4 0.5 0.4 0.3 0.5 0.6 0.6 0.3 0.5

Pampanga 0.5 0.5 0.2 0.3 0.6 0.4 0.2 0.4 0.6 0.5 0.3 0.4

Bulacan 0.6 0.6 0.3 0.4 0.6 0.5 0.3 0.5 0.7 0.7 0.4 0.5

Tarlac 0.4 0.4 0.2 0.3 0.5 0.3 0.2 0.3 0.5 0.5 0.3 0.3

Notes: The climate projection dataset was generated and completed under a cooperation project between the Philippine

Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA-DOST), the Food and Agriculture Or-

ganization of the United Nations (FAO) and FAO-AMICAF Philippines. Climate projections are based on the statistical

downscaling of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B(business-as-

usual scenario) and A2(differentiated world scenario)). DJF, December to February; MAM, March to May; JJA, June to

August; SON, September to November. Unit for temperature change is Celsius.
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Table S2.5 Predicted change in t ma x between 1971-2000 and 2011-2041 for six provinces, by quarter of the
year

BCM2(◦C) CNCM3(◦C) MPEH5(◦C)

Provinces DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

A1B

La Union 0.2 0.5 0.5 0.6 0.5 0.4 0.1 0.7 0.1 0.4 0.2 0.4

Pangasinan 0.4 0.5 0.3 0.5 0.6 0.5 0.1 0.8 0.2 0.4 0.3 0.4

Nueva Ecija 0.4 0.6 0.4 0.5 0.6 0.6 0.1 0.7 0.2 0.4 0.3 0.3

Pampanga 0.5 0.6 0.3 0.4 0.7 0.6 0.2 0.8 0.3 0.5 0.3 0.4

Bulacan 0.4 0.5 0.4 0.4 0.5 0.5 0.1 0.6 0.2 0.3 0.3 0.3

Tarlac 0.4 0.7 0.3 0.5 0.8 0.7 0.1 1 0.2 0.6 0.4 0.4

A2

La Union 0.4 0.7 0.4 0.2 0.3 0.5 0 0.6 0.6 0.4 0.1 0.3

Pangasinan 0.5 0.7 0.2 0.3 0.4 0.5 0.1 0.6 0.5 0.4 0.3 0.4

Nueva Ecija 0.5 0.8 0.3 0.3 0.4 0.5 0.1 0.5 0.4 0.4 0.4 0.3

Pampanga 0.5 0.8 0.2 0.3 0.5 0.5 0.1 0.5 0.6 0.4 0.4 0.4

Bulacan 0.4 0.7 0.3 0.3 0.3 0.5 0.1 0.5 0.5 0.3 0.3 0.3

Tarlac 0.6 0.9 0.2 0.4 0.6 0.6 0.2 0.6 0.6 0.4 0.5 0.5

Table S2.6 Predicted change in cumulative precipitation (p r e c ) between 1971-2000 and 2011-2041 for six
provinces, by quarter of the year

BCM2(◦C) CNCM3(◦C) MPEH5(◦C)

Provinces DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON

A1B

La Union -20.7% -23.6% 0.2% 10.5% 8.2% 10.5% 9.3% 35.5% 27.1% 24.8% 12.2% 17.6%

Pangasinan 8.4% -4.2% -1.5% 4.3% 39.1% 22.9% 20.0% 30.0% 36.0% 57.9% 15.4% 22.1%

Nueva Ecija 8.0% -1.4% -2.2% 10.1% 24.6% 32.0% 11.4% 19.7% 26.0% 58.5% 13.0% 14.2%

Pampanga 24.5% 3.1% -0.2% 8.4% 59.0% 20.4% 22.3% 17.7% 46.0% 60.7% 14.9% 12.9%

Bulacan -1.7% -6.5% -4.0% 8.3% 17.6% 10.2% 12.4% 16.2% 20.2% 35.6% 13.9% 18.6%

Tarlac 27.5% 3.3% -2.1% 14.7% 49.1% 19.7% 21.1% 20.9% 51.1% 64.8% 15.9% 17.0%

A2

La Union -7.2% -17.6% -4.3% 28.2% 9.1% 5.3% 5.6% 8.1% 30.7% 41.4% 10.3% 28.6%

Pangasinan 19.6% -11.2% -2.8% 11.7% 29.4% 2.6% 11.4% 10.9% 24.3% 35.4% 9.4% 28.1%

Nueva Ecija 17.9% -8.0% -4.6% 14.2% 13.9% 12.8% 9.2% 6.0% 19.2% 36.7% 8.2% 24.3%

Pampanga 26.4% -12.6% 2.0% 11.8% 37.7% 9.1% 11.3% 6.0% 33.1% 32.9% 3.9% 24.5%

Bulacan 2.8% -12.8% -3.4% 12.6% 14.8% 6.1% 7.1% 1.2% 13.0% 31.6% 9.2% 28.0%

Tarlac 32.9% -12.3% -2.0% 15.5% 32.9% 6.0% 10.6% 11.8% 41.7% 33.2% 4.8% 26.5%
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Table S2.7 Predicted change in t mi n and t ma x between 1971-2000 and 2011-2041 averaged over all
provinces, by WS growing-phase

Vegetative Reproductive Ripening

mean sd mean sd mean sd

tmin (in Celsius)

A1B bcm2 0.28 0.030 0.33 0.054 0.39 0.028

cncm3 0.34 0.056 0.43 0.158 0.66 0.065

mpeh5 0.33 0.040 0.35 0.065 0.40 0.042

A2 bcm2 0.28 0.032 0.33 0.052 0.39 0.034

cncm3 0.29 0.030 0.37 0.097 0.48 0.059

mpeh5 0.32 0.031 0.35 0.069 0.46 0.065

tmax (in Celsius)

A1B bcm2 0.38 0.037 0.43 0.048 0.49 0.038

cncm3 0.17 0.111 0.38 0.313 0.74 0.097

mpeh5 0.32 0.030 0.34 0.048 0.34 0.048

A2 bcm2 0.27 0.038 0.30 0.014 0.31 0.032

cncm3 0.15 0.072 0.30 0.222 0.53 0.047

mpeh5 0.38 0.059 0.40 0.045 0.34 0.065
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Table S2.8 Predictions of log rice yield (kg/ha) change for TVs, Early MVs and Recent MVs across
CGM-estimation scenario combinations

Model 1 Model 2 Model 3 Model 4 Model 5

vtmin*V, vtmax*V 3 tmin*V, 3tmax*V add prec, precsq add prec*V, precsq*V add econ var

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

tv_a1b_bcm2 -0.048 0.334 -0.024 0.713 -0.060 0.342 -0.055 0.455 -0.055 0.536

tv_a2_bcm2 -0.050 0.186 -0.046 0.253 -0.081 0.041 -0.095 0.047 -0.097 0.109

tv_a1b_cncm3 -0.027 0.704 -0.044 0.608 -0.150 0.097 -0.198 0.143 -0.238 0.118

tv_a2_cncm3 -0.035 0.505 -0.059 0.302 -0.137 0.019 -0.167 0.047 -0.186 0.055

tv_a1b_mpeh5 -0.061 0.159 -0.050 0.270 -0.089 0.040 -0.098 0.040 -0.099 0.103

tv_a2_mpeh5 -0.058 0.185 -0.019 0.754 -0.049 0.408 -0.061 0.364 -0.071 0.389

earlymv_a1b_bcm2 -0.010 0.637 -0.002 0.950 -0.038 0.250 -0.061 0.135 -0.065 0.194

earlymv_a2_bcm2 -0.018 0.283 -0.006 0.821 -0.042 0.162 -0.064 0.087 -0.072 0.105

earlymv_a1b_cncm3 0.023 0.478 0.080 0.292 0.008 0.921 -0.056 0.599 -0.096 0.410

earlymv_a2_cncm3 0.005 0.818 0.038 0.419 -0.018 0.713 -0.057 0.376 -0.077 0.281

earlymv_a1b_mpeh5 -0.024 0.190 -0.020 0.392 -0.059 0.018 -0.075 0.010 -0.076 0.044

earlymv_a2_mpeh5 -0.022 0.278 -0.008 0.814 -0.044 0.238 -0.072 0.127 -0.083 0.134

recentmv_a1b_bcm2 -0.011 0.591 0.008 0.786 -0.017 0.579 -0.036 0.312 -0.046 0.345

recentmv_a2_bcm2 -0.014 0.411 -0.002 0.931 -0.032 0.295 -0.049 0.180 -0.052 0.248

recentmv_a1b_cncm3 0.018 0.603 0.039 0.621 -0.017 0.839 -0.072 0.501 -0.113 0.372

recentmv_a2_cncm3 0.004 0.871 0.010 0.839 -0.035 0.516 -0.066 0.314 -0.084 0.288

recentmv_a1b_mpeh5 -0.018 0.319 -0.018 0.458 -0.051 0.074 -0.060 0.048 -0.051 0.201

recentmv_a2_mpeh5 -0.017 0.399 0.007 0.829 -0.020 0.577 -0.042 0.336 -0.048 0.370

Notes: The table shows the predicted changes in the natural log of the yield of three varietal groups under various global

climate models and emission scenarios between 1971-2000 and 2011-2041. Projections on seasonal temperature increase

and rainfall change are provided by PAGASA. The first panel shows the predicted changes in the average yield of TV under

6 combinations of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and

A2). The second panel shows the predicted changes in the average yield of MV1-MV3 under 6 combinations of three

global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and A2). The third panel shows

the predicted changes in the average yield of recent MVs under 6 combinations of three global climate models (BCM2,

CNCM3, and MPEH5) and two emission scenarios (A1B and A2).
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Table S2.9 Regression results for the alternative model specifications in Table 2.5

Model 1
retavg*V, vdtr*V

Model 2
add 3 tavg*V,3 dtr*V

Model 3
add prec,precsq

Model 4
add prec*V,precsq*V

Model 5
add econ var

year 0.001 0.001 0.003 0.004 0.002

(0.003) (0.003) (0.003) (0.003) (0.002)

vtavg -0.021 0.277 0.254 0.342 0.385

(0.058) (0.237) (0.252) (0.274) (0.277)

retavg -0.210 -0.220 -0.268 -0.204 -0.019

(0.140) (0.402) (0.384) (0.414) (0.395)

ritavg 0.106 -0.112 -0.135 -0.296 -0.470

(0.073) (0.366) (0.385) (0.429) (0.449)

vdtr 0.215 -0.030 0.149 0.194 0.279

(0.204) (0.283) (0.274) (0.247) (0.234)

redtr -0.011 0.309 0.248 0.205 0.057

(0.030) (0.371) (0.371) (0.352) (0.327)

ridtr 0.030 -0.056 -0.072 0.067 0.170

(0.034) (0.178) (0.181) (0.211) (0.217)

prec -0.001∗∗∗ -0.004∗∗ -0.005∗∗

(0.000) (0.002) (0.002)

prec × prec 0.000∗ 0.000∗∗ 0.000∗∗

(0.000) (0.000) (0.000)

early MVs 0.692 2.438 2.170 1.117 1.193

(3.323) (3.819) (3.640) (4.015) (4.169)

recent MVs -0.534 1.591 0.990 -1.000 -1.747

(3.799) (4.308) (4.214) (4.827) (4.969)

early MVs × vtavg -0.264 -0.273 -0.338 -0.343

(0.256) (0.270) (0.294) (0.299)

early MVs × retavg 0.052 0.032 0.013 -0.079 -0.251

(0.114) (0.440) (0.416) (0.447) (0.420)

early MVs × ritavg 0.220 0.268 0.413 0.581

(0.386) (0.399) (0.441) (0.459)

early MVs × vdtr -0.215 0.010 -0.069 -0.129 -0.221

(0.199) (0.285) (0.276) (0.252) (0.241)

early MVs × redtr -0.326 -0.262 -0.218 -0.065

(0.369) (0.369) (0.350) (0.329)

early MVs × ridtr 0.109 0.093 -0.033 -0.121

(0.181) (0.182) (0.212) (0.224)

recent MVs × vtavg -0.361 -0.354 -0.453 -0.463

(0.244) (0.264) (0.274) (0.288)

recent MVs × retavg 0.073 0.079 0.108 0.045 -0.140

(0.132) (0.413) (0.398) (0.418) (0.405)

recent MVs × ritavg 0.289 0.269 0.450 0.675

(0.370) (0.391) (0.433) (0.455)

recent MVs × vdtr -0.121 0.147 0.034 -0.048 -0.216

(0.198) (0.287) (0.284) (0.249) (0.249)

recent MVs × redtr -0.319 -0.231 -0.164 0.076

(0.367) (0.369) (0.352) (0.337)

recent MVs × ridtr 0.022 0.062 -0.109 -0.249

(0.184) (0.187) (0.220) (0.240)
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Table S2.9 Continued

Model 1
retavg*V, vdtr*V

Model 2
add 3 tavg*V,3 dtr*V

Model 3
add prec,precsq

Model 4
add prec*V,precsq*V

Model 5
add econ var

early MVs × prec 0.004∗ 0.004∗∗

(0.002) (0.002)

early MVs × prec × prec -0.000∗ -0.000∗∗

(0.000) (0.000)

recent MVs × prec 0.004∗∗ 0.004∗∗

(0.002) (0.002)

recent MVs × prec × prec -0.000∗∗ -0.000∗∗

(0.000) (0.000)

Land Tenure -0.018

(0.041)

Farm size -0.053∗∗∗

(0.018)

Age of Head -0.001

(0.002)

Educ. of Head 0.010

(0.010)

Primary farming 0.020

(0.029)

Secondary farming 0.039

(0.097)

Labor 0.002∗∗

(0.001)

Nitrogen Fert. 0.002∗∗∗

(0.000)

Potassium Fert. 0.003∗∗∗

(0.001)

Phosphorus Fert. -0.002

(0.003)

Insecticide 0.003

(0.005)

Molluscicide -0.026∗

(0.015)

Herbicide 0.006

(0.005)

Rodenticide 0.098

(0.071)

Constant 6.540 5.096 4.405 3.558 6.300

(6.269) (5.843) (5.796) (5.150) (5.846)

Observations 1150 1150 1150 1150 1069

Adj R-squared 0.299 0.298 0.322 0.329 0.393

Number of Farmers 180 180 180 180 180

Notes: (1) All regressions use the natural log of yield as the dependent variable. (2) v t a v g , r e t a v g , and r i t a v g respec-

tively are the average of daily mean temperature in the vegetative, reproductive and ripening phase; v d t r , r e d t r , and

r i d t r respectively are the average of daily diurnal temperature ranges for the vegetative, reproductive and ripening

phase. The variable p r e c is cumulative precipitation for the entire growing season. (3) Unit for t a v g and d t r is ◦C. Unit

for p r e c is mm.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.

97



Table S2.10 Marginal yield impacts from the separate regressions by varietal group

TV Early MVs Recent MVs

Method Estimates P-value Estimates P-value Estimates P-value

tmin(+1 ◦C) -1.04 0.551 -0.30 0.000 -0.16 0.323

tmax(+1 ◦C) 0.42 0.819 0.03 0.970 0.09 0.358

prec(1 sd) -0.52 0.295 -0.15 0.000 0.02 0.913

tmin+tmax(+1 ◦C warming scenario) -0.62 0.824 -0.30 0.001 -0.06 0.513

Notes: The table displays estimated change in the natural log of rice yields caused by 1 ◦C increase in t mi n ,

t ma x , both t mi n and t ma x and 1 standard deviation of increase in p r e c , by running regressions for

varietal groups separately. Columns 2 and 3 are the marginal effects and P-value for the TV subsample,

respectively. Columns 4 and 5 are the marginal effects and P-value for the MV1-MV3 subsample, respectively.

Columns 6 and 7 are the marginal effects and P-value for the recent MVs subsample, respectively.
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Table S2.11 Regression results from the separate regressions by varietal groups

TV Early MVs Recent MVs

lnyield lnyield lnyield

year -0.034 0.004 0.011

(0.059) (0.004) (0.008)

vtmin 0.054 -0.233∗∗ -0.378∗∗∗

(2.275) (0.099) (0.109)

retmin -0.687 -0.108∗∗ 0.019

(2.018) (0.052) (0.132)

ritmin -0.403 0.040 0.202∗∗∗

(1.444) (0.073) (0.066)

vtmax 0.160 0.053 0.122

(1.026) (0.038) (0.078)

retmax 0.804 -0.103 -0.083

(1.278) (0.072) (0.086)

ritmax -0.547 0.053 0.055

(0.725) (0.048) (0.077)

prec -0.006 -0.001∗∗∗ -0.000

(0.008) (0.000) (0.001)

prec × prec 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Constant 90.536 7.962 -12.832

(157.576) (7.482) (15.530)

Observations 97 762 291

Adj R-squared -0.110 0.319 0.398

Number of Farmers 69 154 97

Notes: (1) All regressions use the natural log of yield as the dependent variable. As explanatory variables, we use linear

terms for t mi n and t ma x for each growing phase, and linear and quadratic terms for p r e c . (2) The first column

indicates the weather variables the marginal effects are based on. Note that v t mi n ,r e t mi n , and r i t mi n , respectively,

are the average of daily maximum temperature in the vegetative, reproductive and ripening phase; v t ma x , r e t ma x ,

and r i t ma x , respectively, are the average of daily maximum temperature in the vegetative, reproductive and ripening

phase. Note that p r e c is cumulative precipitation for the entire growing season.(3) Column 2 is on the subsample for TV,

column 3 is on the subsample for MV1-MV3 and column 4 is the results for the recent MVs. (4) Unit for t mi n and t ma x

is ◦C. Unit for p r e c is mm.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S2.12 Regression results for the model specifications without interactions between rice varietal
grouping dummies and weather variables

Model 1 Model 2 Model 3 Model 4

year 0.001 -0.001 -.128 -.179∗

(0.003) (0.003) (.081) (.069)

early MVs 0.351∗∗∗ 0.272∗∗ 0.404∗∗∗ 0.329∗∗

(0.100) (0.107) (0.124) (0.130)

recent MVs 0.379∗∗∗ 0.339∗∗∗ 0.480∗∗∗ 0.440∗∗∗

(0.113) (0.118) (0.133) (0.135)

vtmin -0.225∗∗∗ -0.200∗∗∗ 28.166∗∗∗ 33.948∗∗∗

(0.080) (0.066) (10.038) (12.346)

retmin -0.106∗∗∗ -0.104∗∗∗ -10.203 -5.944

(0.036) (0.035) (6.419) (7.319)

ritmin 0.108∗∗ 0.098∗∗ -3.034 -10.890

(0.050) (0.042) (6.958) (6.719)

vtmax 0.082∗∗∗ 0.091∗∗∗ -6.765 -6.594

(0.025) (0.028) (5.578) (6.097)

retmax -0.085 -0.094 -19.884∗∗∗ -24.842∗∗∗

(0.061) (0.065) (7.324) (7.046)

ritmax 0.073∗∗ 0.094∗∗ 7.439∗ 8.855∗

(0.036) (0.042) (4.426) (4.717)

prec -0.001∗∗ -0.001∗∗∗ -0.005 -0.059

(0.000) (0.000) (0.050) (0.054)

prec × prec 0.000 0.000∗ -0.000 0.000

(0.000) (0.000) (0.000) (0.000)

year × vtmin -0.014∗∗∗ -0.017∗∗∗

(0.005) (0.006)

year × retmin 0.005 0.003

(0.003) (0.004)

year × ritmin 0.002 0.006

(0.003) (0.003)

year × vtmax 0.003 0.003

(0.003) (0.003)

year × retmax 0.010∗∗∗ 0.012∗∗∗

(0.004) (0.004)

year × ritmax -0.004∗ -0.004∗

(0.002) (0.002)

year × prec 0.000 0.000

(0.000) (0.000)

year × prec × prec 0.000 -0.000

(0.000) (0.000)
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Table S2.12 Continued

Model 1 Model 2 Model 3 Model 4

Land Tenure -0.026 -0.026

(0.045) (0.040)

Farm size -0.042∗∗ -0.028

(0.019) (0.018)

Age of Head -0.001 -0.001

(0.002) (0.002)

Educ. of Head 0.008 0.007

(0.009) (0.009)

Primary farming -0.015 0.016

(0.029) (0.029)

Secondary farming 0.094 0.078

(0.136) (0.106)

Labor 0.002∗∗ 0.003∗∗∗

(0.001) (0.001)

Nitrogen Fert. 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001)

Potassium Fert. 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001)

Phosphorus Fert. -0.001 -0.001

(0.003) (0.002)

Insecticide 0.005 0.004

(0.004) (0.005)

Molluscicide -0.026∗∗ -0.027∗∗

(0.013) (0.012)

Herbicide 0.007 0.006

(0.005) (0.005)

Rodenticide 0.031 0.019

(0.037) (0.039)

Constant 8.627 12.575∗∗ 268.518 369.735∗∗∗

(5.725) (5.735) (162.685) (139.922)

Observations 1150 1069 1150 1069

Adj R-squared 0.328 0.381 0.348 0.407

Number of Farmers 180 180 180 180

Other Factors Included N Y Y Y

Notes: The dependent variable is the natural log of rice yield. The independent variables of Model 1 include the maximum

and minimum temperature for each growing phase, growing season cumulative precipitation, linear time trend, and

varietal grouping dummies. Model 2 includes the independent variables of Model 1 and the economic variables described

by Table 2.1. Model 3 includes the interactions between time trend and weather variables in addition to the variables of

Model 1. Model 4 includes the independent variables of Model 3 and the economic variables described by Table 2.1.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S2.13 Regression results for the model specifications with both varietal group interactions with
weather and time trend interactions with the weather

inter weather and time trend add input

year -0.090 0.160

(0.105) (0.097)

early MVs 2.128 1.930

(4.662) (5.353)

recent MVs 1.061 1.466

(5.531) (5.833)

vtmin 57.055∗∗∗ 60.98287∗∗∗

(15.532) (15.783)

retmin -13.240 -11.419

(9.836) ((10.809))

ritmin -12.577 -16.707

(11.254) (10.517)

vtmax -7.264 -9.243

(8.624) (10.334)

retmax -36.945∗∗∗ -37.789∗∗∗

(12.122) ((13.578))

ritmax 16.745∗∗ 14.141∗

(7.511) (7.267)

prec -0.053 -0.061

(0.069) (0.074)

prec × prec 0.000 0.000

(0.000) (0.000)

year × vtmin -0.029∗∗∗ -0.031∗∗∗

(0.008) (0.008)

year × retmin 0.007 0.006

(0.005) (0.005)

year × ritmin 0.006 0.008

(0.006) (0.005)

year × vtmax 0.004 0.005

(0.004) (0.005)

year × retmax 0.019∗∗∗ 0.019∗∗∗

(0.006) (0.007)

year × ritmax -0.008∗∗ -0.007∗

(0.004) (0.004)

year × prec 0.000 0.000

(0.000) (0.000)

year × prec × prec 0.000 -0.000

(0.000) (0.000)

early MVs × vtmin 0.468 0.562

(0.401) (0.456)

early MVs × retmin 0.184 -0.018

(0.366) (0.407)

early MVs × ritmin 0.029 0.133

(0.303) (0.319)

early MVs × vtmax -0.154 -0.244

(0.159) (0.180)

early MVs × retmax -0.608∗∗ -0.498∗

(0.275) (0.297)

early MVs × ritmax 0.160 0.129

(0.172) (0.183)

recent MVs × vtmin 0.944∗ 1.087∗

(0.495) (0.556)
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Table S2.13 Continued

inter weather and time trend add input

recent MVs × retmin 0.054 -0.204

(0.402) (0.443)

recent MVs × ritmin -0.129 0.038

(0.341) (0.344)

recent MVs × vtmax -0.183 -0.336

(0.201) (0.231)

recent MVs × retmax -0.831∗∗ -0.675∗

(0.346) (0.379)

recent MVs × ritmax 0.329 0.243

(0.209) (0.212)

early MVs × prec 0.002 0.003

(0.003) (0.003)

early MVs × prec × prec -0.000 -0.000

(0.000) (0.000)

recent MVs × prec 0.001 0.002

(0.003) (0.003)

recent MVs × prec × prec -0.000 -0.000

(0.000) (0.000)

Land Tenure -0.017

(0.040)

Farm size -0.038∗∗

(0.019)

Age of Head -0.001

(0.002)

Educ. of Head 0.008

(0.010)

Primary farming 0.024

(0.027)

Secondary farming 0.064

(0.097)

Labor 0.002∗∗∗

(0.001)

Nitrogen Fert. 0.002∗∗∗

(0.001)

Potassium Fert. 0.003∗∗∗

(0.001)

Phosphorus Fert. -0.000

(0.003)

Insecticide 0.004

(0.004)

Molluscicide -0.027∗∗

(0.012)

Herbicide 0.005

(0.005)

Rodenticide 0.066

(0.061)

Constant 192.672 330.580∗

(209.098) (192.177)

Observations 1150 1069

Adj R-squared 0.360 0.418

Number of Farmers 180 180

Notes: The dependent variable is the natural log of rice yield. Independent variables include both varietal group interac-

tions with weather and time trend interactions with the weather. Model 2 includes the independent variables of Model 1

and the economic variables described by Table 2.1.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S2.14 Marginal percentage yield impact of weather variables on early MVs and recent MVs for different
warming scenarios (results from Alternative Model 1-5

Alternative Mode 1 Alternative Model 2 Alternative Model 3 Alternative Model 4 Alternative Model 5

Variables cubic year trends year fixed effect province-specific trend prec of 3 phases 2 months phases

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1◦C warming scenario:

tmin&tmax: tv -0.250 0.101 -0.327 0.078 -0.237 0.138 -0.156 0.460 -0.143 0.483

tmin&tmax: early mv -0.206 0.017 -0.280 0.042 -0.191 0.027 -0.051 0.635 -0.039 0.775

tmin&tmax: recent mv -0.133 0.159 -0.277 0.057 -0.137 0.086 0.019 0.884 0.007 0.964

1◦C increase in tmin:

tmin: tv -0.676 0.006 -0.583 0.006 -0.765 0.004 0.019 0.911 -0.488 0.073

tmin: early mv -0.241 0.000 -0.133 0.152 -0.254 0.001 -0.027 0.706 -0.183 0.068

tmin: recent mv -0.225 0.103 0.111 0.402 -0.247 0.024 0.066 0.742 -0.213 0.224

1◦C increase in tmax:

tmax: tv 0.425 0.144 0.256 0.300 0.528 0.097 -0.175 0.561 0.345 0.217

tmax: early mv 0.035 0.599 -0.147 0.158 0.063 0.387 -0.024 0.740 0.144 0.173

tmax: recent mv 0.092 0.279 -0.388 0.001 0.110 0.158 -0.047 0.724 0.220 0.030

1 standard deviation increase in cumulative precipitation:

prec: tv -0.287 0.096 -0.409 0.121 -0.278 0.124 -0.680 0.016 -0.142 0.225

prec: early mv -0.153 0.000 -0.053 0.234 -0.162 0.000 -0.173 0.000 -0.097 0.000

prec: recent mv 0.015 0.817 -0.008 0.914 -0.020 0.803 -0.128 0.461 -0.095 0.339

Notes: (1) The table displays coefficients and p-values of marginal yield effect of 1◦C warming scenarios and 1 standard

deviation of increase in p r e c from five alternative farm fixed-effect models. Standard errors for each regression are

clustered at the village level. (2) The models are constructed based on the major model (Model 5 described in Table 2.4.

The difference between the alternative models in the table above and the major model are: Alternative Model 1 adds a

cubic time trend (the quadratic time trend is omitted). Alternative Model 2 controls for year fixed effect rather than linear

time trend. Alternative Model 3 includes province-specific time trends. Alternative model 4 estimates the coefficients of

precipitation of each of the three growing phases rather than the entire growing season. In Alternative Model 5, we assume

that the length of each growing phase is 2 months (June and July are vegetative growing phase, August and September are

reproductive season, and October and November are ripening phase).
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Table S2.15 Marginal percentage yield impact of weather variables on early MVs and recent MVs for different
warming scenarios (results from Aternative Model 6 - 10)

Alternative Model 6 Alternative Model 7 Alternative Model 8 Alternative Model 9 Alternative Model 10

Variables interact V and input interact ritmax, prec & V interact tmax, prec and V drop TV drop TV, year fixed effect

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1◦C warming scenario:

tmin&tmax: tv -0.240 0.122 -0.383 0.012 -0.551 0.009

tmin&tmax: early mv -0.197 0.024 -0.141 0.014 -0.178 0.065 -0.157 0.076 -0.242 0.123

tmin&tmax: recent mv -0.124 0.198 -0.068 0.443 -0.076 0.443 -0.065 0.526 -0.203 0.218

1◦C increase in tmin:

tmin: tv -0.670 0.007 -0.131 0.351 0.233 0.508

tmin: early mv -0.236 0.001 -0.220 0.001 -0.212 0.003 -0.207 0.004 -0.085 0.396

tmin: recent mv -0.215 0.109 -0.166 0.073 -0.272 0.014 -0.153 0.269 0.215 0.112

1◦C increase in tmax:

tmax: tv 0.430 0.143 -0.252 0.169 -0.784 0.088

tmax: early mv 0.039 0.560 0.079 0.179 0.034 0.708 0.050 0.440 -0.157 0.160

tmax: recent mv 0.091 0.275 0.098 0.288 0.196 0.010 0.087 0.350 -0.418 0.001

1 standard deviation increase in cumulative precipitation:

prec: tv -0.285 0.097 -0.291 0.047 -0.869 0.007

prec: early mv -0.152 0.000 -0.155 0.000 -0.138 0.004 -0.137 0.000 -0.016 0.694

prec: recent mv 0.009 0.891 -0.064 0.253 0.038 0.662 0.024 0.734 0.035 0.690

Notes: (1) The table displays coefficients and p-values of marginal yield effect of 1◦C warming scenarios and 1 standard

deviation of increase in p r e c from five alternative farm fixed-effect models. Standard errors for each regression are

clustered at the village level. (2) The models are constructed based on the major model (Model 5 described in Table 2.4.

The difference between the alternative models here and the major model are: Alternative Model 6 adds the interactions

between input variables (quantity of insecticide, herbicide, rodenticide, molluscicide, labor and fertilizer per hectare into

the specification of Model 5 described in Table 2.4). Alternative Model 7 adds the interaction between r i t ma x , linear

and quadratic p r e c and varietal grouping dummies into the Model 1 described in Table 2.4. Alternative Model 8 adds the

interactions between t ma x of three rice growing phases, linear and quadratic p r e c and varietal grouping dummies

into our major model (Model 5 described in Table 2.4). Model 9 and 10 drop the observations for traditional varieties to

compare the estimated the warming impacts on the early MVs and recent MVs. Model 10 controls for year-fixed effects

rather than linear time trend.
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Table S2.16 Regression results for Alternative Model 1 - 5 described in Table S2.14

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

year -0.137 -0.003 0.000 0.007∗∗

(0.419) (0.005) (0.004) (0.004)

year × year

year × year × year 0.000

(0.000)

vtmin -0.264 -0.696 -0.418 0.197 -0.191

(0.424) (0.424) (0.458) (0.391) (0.276)

retmin -0.300 0.265 -0.231 -0.452 -0.253

(0.398) (0.476) (0.418) (0.393) (0.305)

ritmin -0.111 -0.151 -0.115 0.274 -0.044

(0.335) (0.316) (0.353) (0.291) (0.297)

vtmax 0.422∗∗ 0.130 0.486∗∗ -0.243 0.369∗∗

(0.197) (0.183) (0.213) (0.287) (0.158)

retmax 0.067 0.553∗ 0.052 -0.051 0.036

(0.254) (0.311) (0.247) (0.221) (0.189)

ritmax -0.064 -0.427∗∗ -0.009 0.119 -0.060

(0.142) (0.206) (0.150) (0.177) (0.145)

prec -0.004 -0.007∗ -0.005∗ -0.001

(0.003) (0.004) (0.003) (0.003)

prec × prec 0.000 0.000∗ 0.000∗ 0.000

(0.000) (0.000) (0.000) (0.000)

early MVs -0.206 -2.470 0.130 -2.989 -1.321

(5.017) (6.288) (5.332) (6.484) (4.291)

recent MVs -2.945 -1.453 -1.964 -5.356 -2.160

(5.521) (5.938) (5.814) (6.705) (4.291)

early MVs × vtmin 0.053 0.511 0.191 -0.370 0.161

(0.433) (0.440) (0.457) (0.438) (0.288)

early MVs × retmin 0.202 -0.227 0.127 0.505 0.237

(0.414) (0.476) (0.434) (0.415) (0.310)

early MVs × ritmin 0.181 0.165 0.193 -0.181 -0.093

(0.342) (0.314) (0.360) (0.298) (0.311)

early MVs × vtmax -0.343∗ -0.103 -0.395∗ 0.277 -0.200

(0.194) (0.173) (0.207) (0.292) (0.150)

early MVs × retmax -0.193 -0.680∗∗ -0.168 -0.114 -0.133

(0.248) (0.319) (0.237) (0.219) (0.198)

early MVs × ritmax 0.146 0.380∗ 0.098 -0.012 0.132

(0.147) (0.204) (0.149) (0.178) (0.147)

recent MVs × vtmin 0.023 0.930∗ 0.136 -0.162 0.154

(0.462) (0.502) (0.488) (0.450) (0.425)

recent MVs × retmin 0.152 -0.481 0.121 0.299 0.222

(0.419) (0.498) (0.436) (0.410) (0.306)

recent MVs × ritmin 0.275 0.245 0.260 -0.091 -0.102

(0.365) (0.331) (0.383) (0.325) (0.352)
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Table S2.16 Continued

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

recent MVs × vtmax -0.388∗ -0.329∗ -0.421∗ 0.258 -0.297

(0.212) (0.188) (0.221) (0.296) (0.185)

recent MVs × retmax 0.051 -0.666∗ 0.052 0.010 -0.008

(0.276) (0.348) (0.269) (0.247) (0.240)

recent MVs × ritmax 0.003 0.351 -0.049 -0.141 0.180

(0.156) (0.226) (0.166) (0.206) (0.174)

early MVs × prec 0.004 0.006 0.004 0.001

(0.003) (0.004) (0.003) (0.003)

early MVs × prec × prec -0.000 -0.000∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000)

recent MVs × prec 0.004 0.007∗ 0.005 0.000

(0.003) (0.004) (0.003) (0.003)

recent MVs × prec × prec -0.000 -0.000∗∗ -0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Land Tenure -0.017 -0.016 -0.014 0.004 -0.012

(0.042) (0.038) (0.043) (0.040) (0.042)

Farm size -0.056∗∗∗ -0.041∗ -0.057∗∗∗ -0.062∗∗∗ -0.041∗∗

(0.020) (0.022) (0.019) (0.020) (0.021)

Age of Head -0.001 -0.000 -0.001 -0.001 -0.001

(0.002) (0.002) (0.002) (0.002) (0.002)

Educ. of Head 0.009 0.009 0.006 0.006 0.009

(0.010) (0.009) (0.010) (0.010) (0.009)

Primary farming -0.001 0.047 -0.004 0.012 0.023

(0.026) (0.030) (0.027) (0.027) (0.027)

Secondary farming 0.062 -0.026 0.067 0.079 -0.005

(0.110) (0.072) (0.109) (0.106) (0.104)

Labor 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Nitrogen Fert. 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Potassium Fert. 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

Phosphorus Fert. -0.001 0.001 -0.001 -0.000 -0.000

(0.003) (0.003) (0.003) (0.003) (0.003)

Insecticide 0.004 0.001 0.001 0.004 0.003

(0.004) (0.003) (0.005) (0.005) (0.004)

Molluscicide -0.023∗ -0.029∗∗ -0.022 -0.025∗ -0.029∗∗

(0.014) (0.012) (0.015) (0.014) (0.013)

Herbicide 0.005 0.006 0.005 0.006 0.005

(0.005) (0.004) (0.005) (0.005) (0.005)

Rodenticide 0.073 0.115∗∗ 0.073 0.004 0.078

(0.066) (0.055) (0.066) (0.037) (0.070)

vprec 0.009

(0.008)

vprec × vprec -0.000∗

(0.000)
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Table S2.16 Continued

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

reprec -0.013∗

(0.007)

reprec × reprec 0.000∗

(0.000)

riprec 0.004

(0.004)

riprec × riprec -0.000

(0.000)

early MVs × vprec -0.009

(0.008)

early MVs × vprec × vprec 0.000∗

(0.000)

early MVs × reprec 0.010

(0.008)

early MVs × reprec × reprec -0.000

(0.000)

early MVs × riprec -0.005

(0.004)

early MVs × riprec × riprec 0.000

(0.000)

recent MVs × vprec -0.006

(0.008)

recent MVs × vprec × vprec 0.000

(0.000)

recent MVs × reprec 0.013∗

(0.007)

recent MVs × reprec × reprec -0.000∗

(0.000)

recent MVs × riprec -0.005

(0.004)

recent MVs × riprec × riprec 0.000

(0.000)

year=1970 -0.759∗

(0.445)

year=1974 -1.017∗∗

(0.403)

year=1979 -0.489

(0.422)

year=1982 -0.448

(0.446)

year=1986 -0.697

(0.435)

year=1990 -0.612

(0.458)

year=1994 -0.508

(0.479)
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Table S2.16 Continued

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

year=1999 -0.844∗

(0.439)

year=2003 -0.488

(0.429)

year=2008 -0.330

(0.437)

year=2011 -0.841∗

(0.491)

year=2015 0.046

(0.440)

La Union 0.000

(.)

Nueva Ecija -5.170

(10.944)

Pampanga -50.860∗∗

(20.305)

Pangasinan 0.000

(.)

Tarlac 0.000

(.)

La Union × year 0.010∗∗

(0.004)

Nueva Ecija × year 0.003

(0.006)

Pampanga × year 0.025∗∗

(0.010)

Pangasinan × year 0.005

(0.006)

Tarlac × year 0.007

(0.007)

Constant 195.632 18.664∗∗ 15.412 12.134 -5.313

(556.175) (7.157) (9.653) (9.794) (9.844)

Observations 1069 1069 1069 1069 1069

Adj R-squared 0.392 0.433 0.392 0.394 0.389

Number of Farmers 180 180 180 180 180
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Table S2.17 Regression results for Alternative Model 6 - 10 described in Table S2.15

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

year -0.002 0.001 0.001 0.001

(0.003) (0.003) (0.003) (0.004)

vtmin -0.161 -0.111 0.208 -0.197∗∗ -0.138

(0.433) (0.154) (0.536) (0.076) (0.094)

retmin -0.065 -0.114∗∗∗ 0.305 -0.082∗ 0.082

(0.417) (0.040) (0.407) (0.044) (0.062)

ritmin -0.276 0.094∗ -0.280 0.072 -0.029

(0.337) (0.055) (0.254) (0.058) (0.078)

vtmax 0.157 0.079∗∗∗ -2.749 0.079∗∗ 0.007

(0.197) (0.029) (5.023) (0.036) (0.060)

retmax 0.263 -0.100∗ 3.258 -0.100∗ -0.089

(0.255) (0.058) (6.830) (0.060) (0.055)

ritmax -0.168 5.505∗∗∗ 7.170 0.071∗ -0.075

(0.162) (1.805) (5.131) (0.042) (0.079)

prec -0.004 0.214∗∗∗ -0.001∗∗∗ -0.000

(0.003) (0.068) (0.000) (0.000)

prec × prec 0.000 -0.000∗∗∗ -0.000∗∗ 0.000∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

early MVs -1.442 180.866∗∗∗ 243.318∗∗∗

(5.521) (53.886) (91.765)

recent MVs -4.226 172.062∗∗∗ 225.542∗∗ -3.011∗ 0.329

(5.815) (55.682) (97.657) (1.803) (1.335)

early MVs × vtmin -0.050 -0.089 -0.394

(0.448) (0.134) (0.543)

early MVs × retmin -0.030 -0.387

(0.429) (0.415)

early MVs × ritmin 0.357 0.335

(0.346) (0.265)

early MVs × vtmax -0.078 2.840

(0.195) (4.915)

early MVs × retmax -0.394 -2.840

(0.260) (7.062)

early MVs × ritmax 0.243 -5.910∗∗∗ -7.823

(0.167) (1.806) (5.197)

recent MVs × vtmin -0.058 -0.034 -0.528 -0.005 0.410∗∗

(0.473) (0.142) (0.555) (0.138) (0.166)

recent MVs × retmin -0.061 -0.354 -0.031 -0.252∗∗∗

(0.437) (0.422) (0.083) (0.080)

recent MVs × ritmin 0.408 0.376 0.090 0.142

(0.364) (0.287) (0.083) (0.091)

recent MVs × vtmax -0.117 2.695 -0.047 -0.241∗∗∗

(0.212) (5.357) (0.060) (0.056)

recent MVs × retmax -0.197 -5.699 0.207∗∗ -0.015

(0.277) (7.535) (0.091) (0.114)

recent MVs × ritmax 0.169 -5.671∗∗∗ -4.197 -0.123 -0.005

(0.168) (1.861) (5.793) (0.079) (0.100)

early MVs × prec 0.003 -0.233∗∗∗ -0.329∗∗∗

(0.003) (0.068) (0.123)

early MVs × prec × prec -0.000 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000)

recent MVs × prec 0.003 -0.223∗∗∗ -0.304∗∗ 0.001 0.001

(0.003) (0.072) (0.130) (0.001) (0.001)

recent MVs × prec × prec -0.000 0.000∗∗∗ 0.000∗∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Land Tenure -0.015 -0.017 -0.031 -0.028

(0.043) (0.041) (0.041) (0.036)

Farm size -0.056∗∗∗ -0.038∗ -0.050∗∗ -0.032

(0.020) (0.021) (0.021) (0.024)
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Table S2.17 Continued

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

Age of Head -0.001 -0.001 -0.002 -0.002

(0.002) (0.002) (0.002) (0.002)

Educ. of Head 0.006 0.006 0.007 0.005

(0.010) (0.010) (0.010) (0.010)

Primary farming 0.003 0.006 -0.001 0.051

(0.027) (0.028) (0.028) (0.033)

Secondary farming 0.085 0.039 0.050 -0.034

(0.097) (0.095) (0.106) (0.069)

Labor 0.000 0.002∗∗ 0.002∗∗ 0.003∗∗

(0.003) (0.001) (0.001) (0.001)

Nitrogen Fert. -0.002 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.003) (0.001) (0.001) (0.001)

Potassium Fert. 0.011 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗

(0.009) (0.001) (0.001) (0.001)

Phosphorus Fert. -0.007 -0.001 -0.002 0.000

(0.009) (0.003) (0.003) (0.002)

Insecticide -0.077∗∗ 0.004 0.005 0.002

(0.032) (0.005) (0.005) (0.004)

Molluscicide -0.025 -0.023 -0.019 -0.026∗

(0.017) (0.014) (0.016) (0.014)

Herbicide 0.127 0.008 0.006 0.006

(0.157) (0.005) (0.005) (0.004)

Rodenticide 0.133∗∗ -0.003 -0.080 -0.012

(0.061) (0.039) (0.056) (0.064)

early MVs × Insecticide 0.082∗∗

(0.031)

recent MVs × Insecticide 0.084∗

(0.037)

early MVs ×Molluscicide 0.063∗

(0.029)

recent MVs ×Molluscicide 0.000

(.)

early MVs ×Herbicide -0.122

(0.156)

recent MVs ×Herbicide -0.124

(0.157)

early MVs × Rodenticide 0.460∗

(0.206)

recent MVs × Rodenticide -0.203∗∗

(0.071)

early MVs × Labor 0.002

(0.003)

recent MVs × Labor 0.001

(0.004)

early MVs ×Nitrogen Fert. 0.005

(0.003)

recent MVs ×Nitrogen Fert. 0.003

(0.003)

early MVs × Phosphorus Fert. 0.007

(0.010)

recent MVs × Phosphorus Fert. 0.004

(0.010)

early MVs × Potassium Fert. -0.007

(0.010)

recent MVs × Potassium Fert. -0.009

(0.009)

prec × vtmax 0.002

(0.007)

prec × prec × vtmax 0.000

(0.000)
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Table S2.17 Continued

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

early MVs × prec × vtmax -0.002

(0.007)

recent MVs × prec × vtmax -0.002

(0.007)

early MVs × prec × prec × vtmax -0.000

(0.000)

recent MVs × prec × prec × vtmax -0.000

(0.000)

prec × retmax -0.003

(0.008)

prec × prec × retmax 0.000

(0.000)

early MVs × prec × retmax 0.003

(0.009)

recent MVs × prec × retmax 0.006

(0.009)

early MVs × prec × prec × retmax -0.000

(0.000)

recent MVs × prec × prec × retmax -0.000

(0.000)

ritmax × prec -0.007∗∗ -0.010

(0.002) (0.006)

ritmax × prec × prec 0.000∗∗ 0.000

(0.000) (0.000)

early MVs × ritmax × prec 0.008∗∗∗ 0.010

(0.002) (0.006)

recent MVs × ritmax × prec 0.007∗∗ 0.006

(0.002) (0.007)

early MVs × ritmax × prec × prec -0.000∗∗∗ -0.000

(0.000) (0.000)

recent MVs × ritmax × prec × prec -0.000∗∗ -0.000

(0.000) (0.000)

year=1970 0.000

(.)

year=1974 -0.314

(0.213)

year=1979 0.265

(0.154)

year=1982 0.341∗

(0.162)

year=1986 0.070

(0.171)

year=1990 0.161

(0.155)

year=1994 0.297

(0.202)

year=1999 -0.085

(0.188)

year=2003 0.360∗

(0.176)

year=2008 0.473∗∗

(0.161)

year=2011 -0.024

(0.199)

year=2015 0.836∗∗∗

(0.238)

Constant 19.402∗ -156.727∗∗ -226.807∗ 9.608 14.473∗∗

(7.935) (54.463) (96.142) (6.535) (4.319)

Observations 1069 1150 1069 973 973

Adj R-squared 0.401 0.336 0.412 0.353 0.399

Number of Farmers 180 180 180 180 180
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Table S2.18 Marginal percentage yield impact of weather variables on early MVs and recent MVs for different
warming scenarios

Main Model Alternative Model 1 Alternative Model 2 Alternative Model 3 Alternative Model 4 Alternative Model 5

Variables 4 varietal group cubic year trends year fixed effect province-specific trend prec of 3 phases 2 months phases

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1◦C warming scenario:

tmin&tmax: tv -0.253 0.112 -0.266 0.095 -0.308 0.074 -0.252 0.124 -0.162 0.459 -0.149 0.476

tmin&tmax: early mv -0.204 0.024 -0.214 0.019 -0.257 0.051 -0.199 0.027 -0.055 0.642 -0.043 0.767

tmin&tmax: mv4 -0.117 0.356 -0.129 0.300 -0.258 0.107 -0.144 0.199 0.030 0.856 0.043 0.803

tmin&tmax: mv5 -0.092 0.381 -0.104 0.300 -0.211 0.152 -0.085 0.368 -0.014 0.928 0.012 0.934

1◦C increase in tmin:

tmin: tv -0.683 0.006 -0.690 0.005 -0.578 0.005 -0.779 0.004 0.013 0.942 -0.481 0.076

tmin: early mv -0.238 0.001 -0.244 0.000 -0.128 0.213 -0.256 0.001 -0.028 0.711 -0.177 0.078

tmin: mv4 -0.148 0.302 -0.156 0.281 0.117 0.445 -0.205 0.084 0.137 0.512 -0.076 0.662

tmin: mv5 -0.287 0.185 -0.306 0.169 0.185 0.336 -0.274 0.215 -0.110 0.624 -0.206 0.437

1◦C increase in tmax:

tmax: tv 0.430 0.141 0.424 0.144 0.270 0.200 0.527 0.097 -0.175 0.561 0.333 0.233

tmax: early mv 0.035 0.623 0.030 0.674 -0.130 0.200 0.057 0.449 -0.027 0.724 0.134 0.234

tmax: mv4 0.031 0.770 0.027 0.799 -0.375 0.002 0.062 0.553 -0.107 0.443 0.119 0.360

tmax: mv5 0.195 0.263 0.202 0.259 -0.396 0.009 0.189 0.302 0.096 0.518 0.218 0.274

1 standard deviation increase in cumulative precipitation:

prec: tv -0.291 0.092 -0.293 0.090 -0.415 0.115 -0.283 0.118 -0.675 0.018 -0.146 0.216

prec: early mv -0.154 0.000 -0.156 0.000 -0.050 0.271 -0.165 0.000 -0.173 0.000 -0.098 0.000

prec: mv4 -0.039 0.674 -0.033 0.714 -0.045 0.653 -0.065 0.524 -0.148 0.592 -0.124 0.508

prec: mv5 0.114 0.309 0.116 0.306 0.039 0.720 0.096 0.434 -0.043 0.851 -0.042 0.627

Notes: (1) The table displays coefficients and p-values of marginal yield effect of 1◦C warming scenarios and 1 standard

deviation of increase in p r e c from five alternative farm fixed-effect models. Standard errors for each regression are

clustered at the village level.(2) Main model in this table have the same setup with our main model (Model 5 described

in Table 2.4) but but separate recent MVs into MV4 and MV5. The Alternative Mode 1-5 have the similar setup with

Alternative Model 1-5 described by Table S2.14, but separate recent MVs into MV4 and MV5.
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Table S2.19 Marginal percentage yield impact of weather variables on early MVs and recent MVs for different
warming scenarios

Alternative Model 6 Alternative Model 7 Alternative Model 8 Alternative Model 9 Alternative Model 10

Variables interact V and input interact ritmax, prec & V interact tmax, prec & V drop TV drop TV, year effect

Estimates P-value Estimates P-value Estimates P-value Estimates P-value Estimates P-value

1◦C warming scenario:

tmin&tmax: tv -0.262 0.128 -0.408 0.006 -0.578 0.009

tmin&tmax: early mv -0.207 0.025 -0.152 0.005 -0.208 0.037 -0.164 0.070 -0.230 0.151

tmin&tmax: mv4 -0.090 0.420 -0.113 0.284 -0.146 0.246 -0.054 0.669 -0.197 0.291

tmin&tmax: mv5 -0.036 0.724 -0.131 0.277 0.120 0.436 -0.057 0.583 -0.180 0.310

1◦C increase in tmin:

tmin: tv -0.507 0.029 -0.155 0.264 0.188 0.603

tmin: early mv -0.227 0.001 -0.240 0.000 -0.219 0.002 -0.210 0.003 -0.075 0.451

tmin: mv4 -0.140 0.345 -0.203 0.030 -0.366 0.002 -0.068 0.610 0.256 0.058

tmin: mv5 -0.200 0.372 -0.218 0.072 0.278 0.412 -0.263 0.266 0.191 0.426

1◦C increase in tmax:

tmax: tv 0.245 0.344 -0.253 0.171 -0.765 0.102

tmax: early mv 0.020 0.769 0.087 0.127 0.011 0.909 0.046 0.491 -0.154 0.192

tmax: mv4 0.050 0.712 0.090 0.316 0.220 0.019 0.015 0.882 -0.453 0.001

tmax: mv5 0.164 0.376 0.087 0.433 -0.158 0.522 0.206 0.300 -0.370 0.037

1 standard deviation increase in cumulative precipitation:

prec: tv -0.227 0.227 -0.305 0.038 -0.856 0.009

prec: early mv -0.151 0.000 -0.160 0.000 -0.139 0.000 -0.139 0.000 -0.012 0.785

prec: mv4 -0.111 0.229 -0.139 0.004 -0.022 0.832 -0.010 0.912 0.011 0.915

prec: mv5 0.076 0.523 -0.056 0.389 0.829 0.011 0.102 0.418 0.048 0.703

Notes: (1) The table displays coefficients and p-values of marginal yield effect of 1◦C warming scenarios and 1 standard

deviation of increase in p r e c from five alternative farm fixed-effect models. Standard errors for each regression are

clustered at the village level.(2) Alternative Mode 6-10 have the similar setup with alternative models in Table S2.15 but

separate recent MVs into MV4 and MV5.
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Table S2.20 Regression results for models described in Table S2.18

Main Model
4 varietal groups

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

year 0.000 -0.176 -0.002 0.001 0.008∗∗

(0.003) (0.477) (0.005) (0.004) (0.004)

year × year 0.000

(.)

year × year × year 0.000

(0.000)

vtmin -0.257 -0.265 -0.688 -0.417 0.193 -0.191

(0.427) (0.425) (0.422) (0.461) (0.402) (0.282)

retmin -0.323 -0.311 0.257 -0.244 -0.459 -0.246

(0.405) (0.406) (0.480) (0.428) (0.417) (0.308)

ritmin -0.103 -0.113 -0.148 -0.118 0.279 -0.044

(0.333) (0.337) (0.319) (0.354) (0.301) (0.300)

vtmax 0.436∗∗ 0.414∗∗ 0.137 0.479∗∗ -0.245 0.372∗∗

(0.193) (0.194) (0.189) (0.212) (0.287) (0.157)

retmax 0.054 0.081 0.560∗ 0.063 -0.049 0.019

(0.244) (0.253) (0.312) (0.252) (0.224) (0.188)

ritmax -0.060 -0.072 -0.427∗∗ -0.015 0.120 -0.058

(0.142) (0.145) (0.209) (0.152) (0.178) (0.145)

prec -0.004 -0.004 -0.007∗ -0.005∗ -0.001

(0.003) (0.003) (0.004) (0.003) (0.003)

prec × prec 0.000 0.000 0.000∗ 0.000∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

early MVs -0.303 -0.359 -2.686 -0.038 -3.029 -1.353

(5.063) (5.053) (6.269) (5.347) (6.510) (4.296)

MV4 -2.644 -2.740 -1.258 -1.627 -4.952 -2.311

(5.815) (5.805) (6.261) (6.101) (7.329) (5.266)

MV5 -5.073 -5.198 -2.688 -4.411 -5.770 -2.395

(5.440) (5.474) (5.895) (5.773) (6.987) (4.819)

early MVs × vtmin 0.042 0.050 0.502 0.185 -0.369 0.164

(0.438) (0.436) (0.441) (0.462) (0.451) (0.293)

early MVs × retmin 0.222 0.215 -0.220 0.141 0.513 0.239

(0.421) (0.421) (0.478) (0.444) (0.444) (0.314)

early MVs × ritmin 0.180 0.181 0.168 0.197 -0.185 -0.098

(0.342) (0.342) (0.313) (0.360) (0.305) (0.314)

early MVs × vtmax -0.355∗ -0.338∗ -0.101 -0.390∗ 0.276 -0.201

(0.190) (0.191) (0.173) (0.206) (0.293) (0.148)

early MVs × retmax -0.178 -0.207 -0.684∗∗ -0.180 -0.115 -0.128

(0.234) (0.246) (0.320) (0.240) (0.219) (0.196)

early MVs × ritmax 0.138 0.150 0.385∗ 0.100 -0.014 0.129

(0.145) (0.148) (0.203) (0.150) (0.178) (0.148)

MV4 × vtmin 0.122 0.131 0.959∗ 0.200 -0.069 0.259

(0.469) (0.470) (0.503) (0.493) (0.492) (0.474)

MV4 × retmin 0.119 0.104 -0.502 0.079 0.275 0.274

(0.417) (0.422) (0.493) (0.432) (0.433) (0.338)

MV4 × ritmin 0.294 0.298 0.238 0.295 -0.082 -0.129

(0.342) (0.342) (0.314) (0.360) (0.323) (0.377)

MV4 × vtmax -0.441∗∗ -0.419∗ -0.336∗ -0.442∗ 0.224 -0.455∗

(0.217) (0.219) (0.192) (0.233) (0.327) (0.245)

MV4 × retmax -0.059 -0.083 -0.725∗ -0.061 -0.073 -0.045

(0.294) (0.301) (0.373) (0.294) (0.283) (0.242)

MV4 × ritmax 0.100 0.105 0.416 0.037 -0.083 0.287

(0.190) (0.188) (0.251) (0.189) (0.269) (0.208)
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Table S2.20 Continued

Main Model
4 varietal groups

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

MV5 × vtmin 0.501 0.490 0.949 0.705 -0.462 -0.749

(0.599) (0.598) (0.646) (0.616) (0.572) (0.777)

MV5 × retmin -0.130 -0.141 -0.435 -0.232 0.542 0.379

(0.484) (0.494) (0.572) (0.502) (0.545) (0.344)

MV5 × ritmin 0.025 0.035 0.249 0.032 -0.203 0.645

(0.454) (0.454) (0.417) (0.473) (0.524) (0.529)

MV5 × vtmax -0.149 -0.120 -0.287 -0.167 0.276 -0.031

(0.262) (0.282) (0.237) (0.275) (0.286) (0.218)

MV5 × retmax 0.096 0.065 -0.602 0.060 0.174 0.157

(0.270) (0.282) (0.365) (0.276) (0.404) (0.289)

MV5 × ritmax -0.182 -0.167 0.223 -0.231 -0.180 -0.241

(0.241) (0.241) (0.303) (0.270) (0.374) (0.292)

early MVs × prec 0.004 0.004 0.006∗ 0.004 0.001

(0.003) (0.003) (0.004) (0.003) (0.003)

early MVs × prec × prec -0.000 -0.000 -0.000∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

MV4 × prec 0.004 0.004 0.007∗ 0.004 0.000

(0.003) (0.003) (0.004) (0.003) (0.004)

MV4 × prec × prec -0.000 -0.000 -0.000∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

MV5 × prec 0.005∗ 0.005∗ 0.008∗ 0.005∗ 0.000

(0.003) (0.003) (0.004) (0.003) (0.004)

MV5 × prec × prec -0.000 -0.000 -0.000∗ -0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Land Tenure -0.016 -0.013 -0.015 -0.011 0.005 -0.010

(0.041) (0.040) (0.037) (0.042) (0.040) (0.040)

Farm size -0.054∗∗∗ -0.056∗∗∗ -0.041∗ -0.056∗∗∗ -0.061∗∗∗ -0.041∗∗

(0.019) (0.020) (0.022) (0.019) (0.020) (0.021)

Age of Head -0.001 -0.001 -0.000 -0.002 -0.001 -0.000

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Educ. of Head 0.008 0.008 0.008 0.005 0.006 0.009

(0.010) (0.010) (0.010) (0.010) (0.011) (0.009)

Primary farming 0.003 0.005 0.046 0.001 0.014 0.019

(0.026) (0.027) (0.029) (0.027) (0.028) (0.028)

Secondary farming 0.049 0.045 -0.028 0.047 0.074 -0.022

(0.102) (0.102) (0.071) (0.102) (0.104) (0.091)

Labor 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗ 0.002∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Nitrogen Fert. 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Potassium Fert. 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗ 0.003∗∗∗ 0.003∗∗ 0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Phosphorus Fert. -0.001 -0.001 0.001 -0.001 0.000 0.000

(0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

Insecticide 0.004 0.004 0.001 0.001 0.004 0.003

(0.004) (0.004) (0.003) (0.005) (0.005) (0.004)

Molluscicide -0.025 -0.025∗ -0.031∗∗ -0.024 -0.026∗ -0.030∗∗

(0.015) (0.015) (0.013) (0.016) (0.015) (0.014)

Herbicide 0.005 0.005 0.006 0.005 0.006 0.005

(0.005) (0.005) (0.004) (0.005) (0.005) (0.005)

Rodenticide 0.094∗ 0.093∗ 0.123∗∗ 0.096∗ 0.010 0.092

(0.048) (0.049) (0.048) (0.050) (0.043) (0.063)
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Table S2.20 Continued

Main Model
4 varietal groups

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

vprec 0.009

(0.008)

vprec × vprec -0.000

(0.000)

reprec -0.013∗

(0.007)

reprec × reprec 0.000∗

(0.000)

riprec 0.004

(0.004)

riprec × riprec -0.000

(0.000)

early MVs × vprec -0.009

(0.008)

early MVs × vprec × vprec 0.000

(0.000)

early MVs × reprec 0.010

(0.008)

early MVs × reprec × reprec -0.000

(0.000)

early MVs × riprec -0.005

(0.004)

early MVs × riprec × riprec 0.000

(0.000)

MV4 × vprec -0.007

(0.010)

MV4 × vprec × vprec 0.000

(0.000)

MV4 × reprec 0.013

(0.009)

MV4 × reprec × reprec -0.000

(0.000)

MV4 × riprec -0.006

(0.005)

MV4 × riprec × riprec 0.000

(0.000)

MV5 × vprec -0.004

(0.009)

MV5 × vprec × vprec 0.000

(0.000)

MV5 × reprec 0.009

(0.012)

MV5 × reprec × reprec -0.000

(0.000)

MV5 × riprec -0.005

(0.007)

MV5 × riprec × riprec 0.000

(0.000)

year=1970 -0.765∗

(0.446)

year=1974 -1.015∗∗

(0.408)

year=1979 -0.482

(0.427)
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Table S2.20 Continued

Main Model
4 varietal groups

Alternative Model 1
cubic trend

Alternative Model 2
year fixed effect

Alternative Model 3
province-specific trend

Alternative Model 4
prec of 3 phases

Alternative Model 5
2 months phases

year=1982 -0.439

(0.450)

year=1986 -0.693

(0.437)

year=1990 -0.610

(0.460)

year=1994 -0.491

(0.488)

year=1999 -0.828∗

(0.447)

year=2003 -0.493

(0.428)

year=2008 -0.331

(0.437)

year=2011 -0.801

(0.492)

year=2015 0.056

(0.435)

La Union 0.000

(.)

Nueva Ecija -3.261

(11.644)

Pampanga -49.164∗∗

(20.725)

Pangasinan 0.000

(.)

Tarlac 0.000

(.)

La Union × year 0.009∗

(0.005)

Nueva Ecija × year 0.002

(0.006)

Pampanga × year 0.025∗∗

(0.010)

Pangasinan × year 0.004

(0.006)

Tarlac × year 0.006

(0.007)

Constant 12.918∗ 247.694 18.211∗∗ 14.683 11.966 -5.953

(7.622) (633.656) (7.389) (9.738) (9.971) (9.812)

Observations 1069 1069 1069 1069 1069 1069

Adj R-squared 0.390 0.389 0.428 0.389 0.387 0.389

Number of Farmers 180 180 180 180 180 180
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Table S2.21 Regression results for models described in Table S2.19

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

year -0.002 0.002 0.000 0.001

(0.003) (0.003) (0.003) (0.004)

vtmin -0.146 -0.110 0.158 -0.200∗∗ -0.129

(0.439) (0.156) (0.553) (0.077) (0.096)

retmin -0.092 -0.122∗∗∗ 0.305 -0.081∗ 0.089

(0.428) (0.041) (0.421) (0.045) (0.063)

ritmin -0.269 0.076 -0.275 0.071 -0.034

(0.338) (0.058) (0.261) (0.060) (0.082)

vtmax 0.144 0.087∗∗∗ -2.812 0.077∗∗ 0.006

(0.195) (0.030) (5.106) (0.037) (0.068)

retmax 0.272 -0.105∗ 3.226 -0.099 -0.081

(0.262) (0.061) (6.940) (0.063) (0.058)

ritmax -0.171 5.548∗∗∗ 6.946 0.068 -0.080

(0.165) (1.798) (5.228) (0.044) (0.083)

prec -0.004 0.215∗∗∗ 0.308∗∗ -0.001∗∗∗ -0.000

(0.003) (0.068) (0.130) (0.000) (0.000)

prec × prec 0.000 -0.000∗∗∗ -0.000∗∗ 0.000∗ 0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

early MVs -1.676 181.926∗∗∗ 234.291∗∗

(5.560) (53.769) (94.069)

MV4 -3.962 140.162∗∗ 154.291 -2.826 0.899

(6.030) (57.487) (113.810) (2.368) (1.881)

MV5 -7.305 199.208∗∗∗ 127.225 -4.530∗ -0.426

(6.120) (72.991) (147.601) (2.507) (2.080)

early MVs × vtmin -0.069 -0.084 -0.354

(0.455) (0.134) (0.559)

early MVs × retmin -0.002 -0.388

(0.439) (0.429)

early MVs × ritmin 0.350 0.335

(0.347) (0.272)

early MVs × vtmax -0.067 2.864

(0.193) (5.004)

early MVs × retmax -0.401 -2.800

(0.265) (7.185)

early MVs × ritmax 0.244 -5.953∗∗∗ -7.617

(0.168) (1.801) (5.295)

MV4 × vtmin 0.057 -0.047 -0.546 0.102 0.467∗∗

(0.482) (0.137) (0.590) (0.173) (0.199)

MV4 × retmin -0.094 -0.294 -0.085 -0.272∗∗∗

(0.435) (0.440) (0.089) (0.093)

MV4 × ritmin 0.404 0.286 0.125 0.136

(0.351) (0.298) (0.112) (0.099)

MV4 × vtmax -0.131 4.844 -0.083 -0.260∗∗∗

(0.238) (5.764) (0.072) (0.059)

MV4 × retmax -0.377 -7.505 0.081 -0.070

(0.307) (8.228) (0.134) (0.179)

MV4 × ritmax 0.313 -4.562∗∗ -2.116 -0.029 0.032

(0.202) (1.927) (6.611) (0.121) (0.154)

MV5 × vtmin 0.383 -0.063 0.203 0.394 0.288

(0.652) (0.162) (0.790) (0.457) (0.461)

MV5 × retmin -0.268 -1.021∗ -0.311 -0.180

(0.456) (0.570) (0.294) (0.261)

MV5 × ritmin 0.192 0.907∗ -0.136 0.158

(0.483) (0.471) (0.231) (0.210)
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Table S2.21 Continued

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

MV5 × vtmax 0.139 -5.596 0.184 -0.189

(0.293) (6.644) (0.211) (0.184)

MV5 × retmax -0.173 9.882 0.247 0.041

(0.290) (8.460) (0.153) (0.150)

MV5 × ritmax -0.047 -6.596∗∗∗ -8.651 -0.271 -0.068

(0.259) (2.425) (7.734) (0.227) (0.222)

early MVs × prec 0.003 -0.235∗∗∗ -0.317∗∗

(0.003) (0.068) (0.126)

early MVs × prec × prec -0.000 0.000∗∗∗ 0.000∗∗

(0.000) (0.000) (0.000)

MV4 × prec 0.003 -0.180∗∗ -0.215 0.001 0.001

(0.003) (0.075) (0.148) (0.001) (0.001)

MV4 × prec × prec -0.000 0.000∗∗ 0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

MV5 × prec 0.004 -0.270∗∗ -0.107 0.001 0.001

(0.003) (0.104) (0.225) (0.002) (0.002)

MV5 × prec × prec -0.000 0.000∗∗ 0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.000) (0.000)

Land Tenure -0.013 -0.012 -0.028 -0.027

(0.041) (0.039) (0.040) (0.035)

Farm size -0.055∗∗∗ -0.035 -0.050∗∗ -0.032

(0.019) (0.021) (0.020) (0.024)

Age of Head -0.001 -0.002 -0.002 -0.002

(0.002) (0.002) (0.002) (0.002)

Educ. of Head 0.005 0.006 0.006 0.005

(0.010) (0.010) (0.011) (0.010)

Primary farming 0.007 0.008 0.004 0.048

(0.027) (0.028) (0.028) (0.032)

Secondary farming 0.069 0.008 0.036 -0.035

(0.096) (0.094) (0.099) (0.067)

Labor 0.000 0.002∗∗ 0.002∗∗ 0.003∗∗

(0.003) (0.001) (0.001) (0.001)

Nitrogen Fert. -0.003 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.003) (0.001) (0.001) (0.001)

Potassium Fert. 0.010 0.004∗∗∗ 0.003∗∗∗ 0.002∗∗

(0.009) (0.001) (0.001) (0.001)

Phosphorus Fert. -0.006 -0.001 -0.001 0.000

(0.009) (0.003) (0.002) (0.002)

Insecticide -0.077∗∗ 0.003 0.005 0.002

(0.032) (0.005) (0.005) (0.004)

Molluscicide -0.038 -0.025 -0.021 -0.027∗

(0.037) (0.015) (0.016) (0.015)

Herbicide 0.130 0.008 0.005 0.006

(0.157) (0.006) (0.005) (0.004)

Rodenticide 0.137∗∗ 0.020 -0.011 0.001

(0.061) (0.041) (0.077) (0.098)

early MVs × Insecticide 0.083∗∗∗

(0.031)

MV4 × Insecticide 0.084∗∗

(0.041)

MV5 × Insecticide 0.067

(0.051)
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Table S2.21 Continued

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

early MVs ×Molluscicide 0.075

(0.047)

MV4 ×Molluscicide 0.015

(0.054)

MV5 ×Molluscicide 0.000

(.)

early MVs ×Herbicide -0.124

(0.155)

MV4 ×Herbicide -0.129

(0.158)

MV5 ×Herbicide -0.084

(0.158)

early MVs × Rodenticide 0.467∗∗

(0.211)

MV4 × Rodenticide -0.253

(0.226)

MV5 × Rodenticide -0.004

(0.175)

early MVs × Labor 0.002

(0.003)

MV4 × Labor -0.000

(0.004)

MV5 × Labor 0.002

(0.004)

early MVs ×Nitrogen Fert. 0.005

(0.003)

MV4 ×Nitrogen Fert. 0.003

(0.003)

MV5 ×Nitrogen Fert. 0.003

(0.003)

early MVs × Phosphorus Fert. 0.007

(0.010)

MV4 × Phosphorus Fert. 0.008

(0.009)

MV5 × Phosphorus Fert. -0.000

(0.011)

early MVs × Potassium Fert. -0.006

(0.010)

MV4 × Potassium Fert. -0.010

(0.009)

MV5 × Potassium Fert. -0.006

(0.010)

prec × vtmax 0.002

(0.007)

prec × prec × vtmax -0.000

(0.000)

early MVs × prec × vtmax -0.002

(0.007)

MV4 × prec × vtmax -0.004

(0.008)

MV5 × prec × vtmax 0.009

(0.009)

early MVs × prec × prec × vtmax -0.000

(0.000)

MV4 × prec × prec × vtmax 0.000

(0.000)

MV5 × prec × prec × vtmax -0.000

(0.000)
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Table S2.21 Continued

Alternative Model 6
interact MV and input

Alternative Model 7
interact ritmax, prec and MV

Alternative Model 8
tmax, prec and MV

Alternative Model 9
drop TV

Alternative Model 10
no TV, year effect

prec × retmax -0.003

(0.009)

prec × prec × retmax 0.000

(0.000)

early MVs × prec × retmax 0.003

(0.009)

MV4 × prec × retmax 0.009

(0.010)

MV5 × prec × retmax -0.016

(0.011)

early MVs × prec × prec × retmax -0.000

(0.000)

MV4 × prec × prec × retmax -0.000

(0.000)

MV5 × prec × prec × retmax 0.000∗

(0.000)

ritmax × prec -0.007∗∗∗ -0.009

(0.002) (0.006)

ritmax × prec × prec 0.000∗∗∗ 0.000

(0.000) (0.000)

early MVs × ritmax × prec 0.008∗∗∗ 0.010

(0.002) (0.006)

MV4 × ritmax × prec 0.006∗∗ 0.003

(0.003) (0.008)

MV5 × ritmax × prec 0.009∗∗ 0.011

(0.003) (0.011)

early MVs × ritmax × prec × prec -0.000∗∗∗ -0.000

(0.000) (0.000)

MV4 × ritmax × prec × prec -0.000∗∗ -0.000

(0.000) (0.000)

MV5 × ritmax × prec × prec -0.000∗∗ -0.000

(0.000) (0.000)

year=1970 0.000

(.)

year=1974 -0.326

(0.218)

year=1979 0.266

(0.162)

year=1982 0.352∗∗

(0.168)

year=1986 0.078

(0.173)

year=1990 0.165

(0.156)

year=1994 0.307

(0.217)

year=1999 -0.084

(0.190)

year=2003 0.373∗∗

(0.180)

year=2008 0.482∗∗∗

(0.162)

year=2011 0.037

(0.204)

year=2015 0.871∗∗∗

(0.222)

Constant 19.446∗∗ -158.360∗∗∗ -214.984∗∗ 9.478 14.158∗∗∗

(7.974) (54.448) (98.765) (6.577) (4.461)

Observations 1069 1150 1069 973 973

Adj R-squared 0.394 0.336 0.409 0.350 0.394

Number of Farmers 180 180 180 180 180
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IPCC AR5

Figure S2.1 Annually and globally averaged combined land and ocean surface temperature anomalies
relative to the average over the period 1986 to 2005. Colors indicate different data sets
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Figure S2.2 Average minimum temperature and maximum temperature trends across survey years for the
study area
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Figure S2.3 The 1 standard deviation warming impact on three rice varietal groups estimated by the 5
models based on Equation 2.1 and Equation 2.2 (specifications described by Table 2.4). Impacts are reported

as the percentage change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.4 Predicted warming impacts under the A1B scenario and Model 5 described by Table 2.4. Impacts
are reported as the percentage change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.5 Predicted warming impacts under the Scenario A2 and Model 5 described by Table 2.4. Impacts
are reported as the percentage change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.6 Predicted changes in yields of three varietal groups at the average of predicted temperature
changes of the six GCM-emission-scenarios. Impacts are reported as the percentage change in yield. The

vertical solid lines show 90% confidence intervals.
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Figure S2.7 Marginal effects of a 1 standard deviation increase in p r e c for Model 4 and Model 5 described by
Table 2.4. Impacts are reported as the percentage change in yield. The vertical solid lines show 90%

confidence intervals.
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Figure S2.8 Predicted impacts of 1◦C decrease in d t r on three rice varietal groups for 5 model specifications
described by Table 2.5. Impacts are reported as the percentage change in yield. The vertical solid lines show

90% confidence intervals.
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Figure S2.9 Marginal effects of a 1 standard deviation increase in p r e c for Model 4 and Model 5 described by
Table 2.5. Impacts are reported as the percentage change in yield. The vertical solid lines show 90%

confidence intervals.
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Figure S2.10 The 1◦C warming impacts on three rice varietal groups estimated by running separate
regressions by varietal groups (Models are described in Table S2.11). Impacts are reported as the percentage

change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.11 The marginal impact of a 1 standard deviation increase in p r e c on three rice varietal groups
estimated by running separate regressions by varietal groups (Models are described in Table S2.11). Impacts

are reported as the percentage change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.12 The marginal impact of 1◦C warming scenario across years estimated from 2 specifications
described by Table S2.12 (Model 1 here is Model 3 in Table S2.12 and Model 2 here is Model 4 in Table S2.12).

Impacts are reported as the percentage change in yield. The vertical solid lines show 90% confidence
intervals.
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Figure S2.13 The average marginal impact of 1◦C warming scenario across years estimated from the models
by Table S2.13 (Models include interaction terms between varietal group dummies and weather variables

and interaction terms between time trend and weather). Impacts are reported as the percentage change in
yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.14 Predicted impacts of 1◦C warming scenario on different rice varietal groups estimated from
Alternative Model 1 to Alternative Model 5 described by Table S2.14. Impacts are reported as the percentage

change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.15 Predicted impacts of 1◦C warming scenario on different rice varietal groups estimated from
Alternative Model 5 to Alternative Model 10 described by Table S2.15. Impacts are reported as the percentage

change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.16 Predicted impacts of 1◦C warming scenario on different rice varietal groups estimated from
main model and Alternative Model 1 to Alternative Model 5 described by Table S2.18. Impacts are reported as

the percentage change in yield. The vertical solid lines show 90% confidence intervals.
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Figure S2.17 Predicted impacts of 1◦C warming scenario on different rice varietal groups estimated from
Alternative Model 6 to Alternative Model 10 described by Table S2.19. Impacts are reported as the percentage

change in yield. The vertical solid lines show 90% confidence intervals.
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Table S3.1 Regression results of the main model specification

lnyield

plant density 0.329∗∗∗

(0.019)

tmin5 0.168∗∗∗

(0.031)

tmin6 -0.153∗∗∗

(0.042)

tmin7 0.211∗∗∗

(0.038)

tmin8 -0.446∗∗∗

(0.033)

tmin9 0.451∗∗∗

(0.029)

tmax5 -0.031

(0.026)

tmax6 0.071∗

(0.038)

tmax7 0.170∗∗∗

(0.031)

tmax8 0.306∗∗∗

(0.031)

tmax9 -0.135∗∗∗

(0.027)

tmin5 × plant density -0.004∗∗∗

(0.001)

tmin6 × plant density 0.003∗∗

(0.001)

tmin7 × plant density -0.007∗∗∗

(0.001)

tmin8 × plant density 0.015∗∗∗

(0.001)

tmin9 × plant density -0.014∗∗∗

(0.001)

tmax5 × plant density 0.000

(0.001)

tmax6 × plant density -0.001

(0.001)

tmax7 × plant density -0.005∗∗∗

(0.001)

tmax8 × plant density -0.011∗∗∗

(0.001)
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Table S3.1 Continued

tmax9 × plant density 0.005∗∗∗

(0.001)

PDSI5(wet) -0.077∗∗

(0.033)

PDSI6(wet) -0.148∗∗∗

(0.039)

PDSI7(wet) 0.146∗∗∗

(0.029)

PDSI8(wet) -0.466∗∗∗

(0.037)

PDSI9(wet) 0.021

(0.035)

PDSI5(dry) -1.479∗∗∗

(0.067)

PDSI6(dry) 1.885∗∗∗

(0.121)

PDSI7(dry) 0.000

(0.087)

PDSI8(dry) -1.363∗∗∗

(0.088)

PDSI9(dry) -0.652∗∗∗

(0.077)

PDSI5(wet) × plant density 0.001

(0.001)

PDSI6(wet) × plant density 0.006∗∗∗

(0.001)

PDSI7(wet) × plant density -0.005∗∗∗

(0.001)

PDSI8(wet) × plant density 0.016∗∗∗

(0.001)

PDSI9(wet) × plant density -0.000

(0.001)

PDSI5(dry) × plant density 0.051∗∗∗

(0.002)

PDSI6(dry) × plant density -0.065∗∗∗

(0.004)

PDSI7(dry) × plant density -0.003

(0.003)

PDSI8(dry) × plant density 0.046∗∗∗

(0.003)

PDSI9(dry) × plant density 0.023∗∗∗

(0.003)
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Table S3.1 Continued

year 0.009∗∗∗

(0.000)

RW 0.039∗∗∗

(0.005)

other GM 0.040∗∗∗

(0.003)

1 if previous crop is corn 0.080∗∗∗

(0.027)

1 if previous crop is wheat 0.120∗∗∗

(0.027)

1 if previous crop is alfalfa or alfalfa/hay 0.185∗∗∗

(0.026)

1 if previous crop is soybean 0.095∗∗∗

(0.026)

1 if previous crop is lupine -0.175∗∗∗

(0.035)

fall tillage, 1 if yes, 0 if no 0.000

(0.002)

spring tillage, 1 if yes, 0 if no -0.037∗∗∗

(0.004)

apply insecticide, 1 if yes, 0 if no -0.062∗∗∗

(0.004)

fertilizer N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.662

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum and

maximum temperature(tmin and tmax), and monthly PDSI from May to September), the interactions between plant

density and weather variables, and the managerial inputs and practices described in Table 3.1. The model also includes

linear time trend and production zone fixed effect model. Units for tmin and tmax are ◦C. Unit for plant density is 1000

acre−1. In consideration of the possible heteroskedasticity, Huber-White’s robust standard errors are calculated and shown

in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.2 Regression results of the model specification in equations (3.1) and (3.8)

lnyield

planting density 0.267∗∗∗

(0.045)

RW × planting density -2.025∗∗∗

(0.132)

other GM × planting density -0.126∗

(0.072)

tmin5 0.282∗∗∗

(0.056)

tmin6 0.504∗∗∗

(0.087)

tmin7 -0.244∗∗∗

(0.077)

tmin8 -0.650∗∗∗

(0.059)

tmin9 0.702∗∗∗

(0.054)

tmax5 0.068

(0.044)

tmax6 -0.155∗∗

(0.071)

tmax7 0.380∗∗∗

(0.048)

tmax8 0.364∗∗∗

(0.056)

tmax9 -0.372∗∗∗

(0.047)

tmin5 × planting density -0.008∗∗∗

(0.002)

tmin6 × planting density -0.020∗∗∗

(0.003)

tmin7 × planting density 0.009∗∗∗

(0.003)

tmin8 × planting density 0.022∗∗∗

(0.002)

tmin9 × planting density -0.023∗∗∗

(0.002)

tmax5 × planting density -0.003∗

(0.002)

tmax6 × planting density 0.007∗∗∗

(0.003)

tmax7 × planting density -0.012∗∗∗

(0.002)

tmax8 × planting density -0.013∗∗∗

(0.002)

tmax9 × planting density 0.013∗∗∗

(0.002)
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Table S3.2 Continued

RW × tmin5 3.550∗∗∗

(0.559)

RW × tmin6 4.771∗∗∗

(0.556)

RW × tmin7 -4.341∗∗∗

(0.617)

RW × tmin8 -1.386∗∗∗

(0.374)

RW × tmin9 1.354∗∗∗

(0.342)

other GM × tmin5 -0.389∗∗∗

(0.140)

other GM × tmin6 -0.646∗∗∗

(0.144)

other GM × tmin7 0.546∗∗∗

(0.141)

other GM × tmin8 1.269∗∗∗

(0.157)

other GM × tmin9 -1.293∗∗∗

(0.127)

RW × tmax5 -2.967∗∗∗

(0.395)

RW × tmax6 -2.851∗∗∗

(0.558)

RW × tmax7 1.108∗∗∗

(0.373)

RW × tmax8 2.100∗∗∗

(0.535)

RW × tmax9 -1.829∗∗∗

(0.414)

other GM × tmax5 -0.004

(0.114)

other GM × tmax6 -0.544∗∗∗

(0.138)

other GM × tmax7 -0.091

(0.108)

other GM × tmax8 -0.705∗∗∗

(0.125)

other GM × tmax9 1.038∗∗∗

(0.108)

PDSI5(wet) -0.594∗∗∗

(0.070)

PDSI6(wet) 0.149

(0.091)
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Table S3.2 Continued

PDSI7(wet) -0.397∗∗∗

(0.064)

PDSI8(wet) -0.583∗∗∗

(0.070)

PDSI9(wet) -0.166∗∗∗

(0.063)

PDSI5(dry) -4.155∗∗∗

(0.462)

PDSI6(dry) 2.785∗∗∗

(0.294)

PDSI7(dry) 0.386∗

(0.210)

PDSI8(dry) -2.973∗∗∗

(0.251)

PDSI9(dry) -0.447∗∗

(0.183)

PDSI5(wet) × planting density 0.020∗∗∗

(0.002)

PDSI6(wet) × planting density -0.005

(0.003)

PDSI7(wet) × planting density 0.014∗∗∗

(0.002)

PDSI8(wet) × planting density 0.021∗∗∗

(0.003)

PDSI9(wet) × planting density 0.006∗∗∗

(0.002)

PDSI5(dry) × planting density 0.147∗∗∗

(0.017)

PDSI6(dry) × planting density -0.097∗∗∗

(0.011)

PDSI7(dry) × planting density -0.018∗∗

(0.008)

PDSI8(dry) × planting density 0.103∗∗∗

(0.009)

PDSI9(dry) × planting density 0.016∗∗

(0.007)

RW × PDSI5(wet) 2.185∗∗∗

(0.381)

RW × PDSI6(wet) -2.111∗∗∗

(0.438)

RW × PDSI7(wet) 0.998∗∗∗

(0.236)

RW × PDSI8(wet) -0.148

(0.479)

RW × PDSI9(wet) 1.175∗∗∗

(0.295)
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Table S3.2 Continued

other GM × PDSI5(wet) 0.609∗∗∗

(0.115)

other GM × PDSI6(wet) -0.156

(0.128)

other GM × PDSI7(wet) 0.681∗∗∗

(0.089)

other GM × PDSI8(wet) 0.904∗∗∗

(0.132)

other GM × PDSI9(wet) -0.364∗∗∗

(0.133)

RW × PDSI5(dry) 5.027∗∗∗

(0.618)

RW × PDSI6(dry) 3.669∗∗∗

(1.292)

RW × PDSI7(dry) -3.996∗∗∗

(0.473)

RW × PDSI8(dry) 2.584∗∗

(1.062)

RW × PDSI9(dry) -0.459

(0.881)

other GM × PDSI5(dry) 3.768∗∗∗

(0.503)

other GM × PDSI6(dry) -3.970∗∗∗

(0.433)

other GM × PDSI7(dry) 0.189

(0.272)

other GM × PDSI8(dry) 4.147∗∗∗

(0.386)

other GM × PDSI9(dry) -0.420

(0.275)

RW × tmin5 × planting density -0.116∗∗∗

(0.018)

RW × tmin6 × planting density -0.162∗∗∗

(0.018)

RW × tmin7 × planting density 0.145∗∗∗

(0.021)

RW × tmin8 × planting density 0.051∗∗∗

(0.012)

RW × tmin9 × planting density -0.046∗∗∗

(0.011)

RW × tmax5 × planting density 0.095∗∗∗

(0.013)

RW × tmax6 × planting density 0.096∗∗∗

(0.018)

RW × tmax7 × planting density -0.039∗∗∗

(0.012)
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Table S3.2 Continued

RW × tmax8 × planting density -0.071∗∗∗

(0.018)

RW × tmax9 × planting density 0.064∗∗∗

(0.014)

other GM × tmin5 × planting density 0.012∗∗

(0.005)

other GM × tmin6 × planting density 0.023∗∗∗

(0.005)

other GM × tmin7 × planting density -0.018∗∗∗

(0.005)

other GM × tmin8 × planting density -0.040∗∗∗

(0.005)

other GM × tmin9 × planting density 0.042∗∗∗

(0.004)

other GM × tmax5 × planting density 0.000

(0.004)

other GM × tmax6 × planting density 0.017∗∗∗

(0.005)

other GM × tmax7 × planting density 0.003

(0.004)

other GM × tmax8 × planting density 0.022∗∗∗

(0.004)

other GM × tmax9 × planting density -0.034∗∗∗

(0.004)

RW × PDSI5(wet) × planting density -0.073∗∗∗

(0.012)

RW × PDSI6(wet) × planting density 0.072∗∗∗

(0.015)

RW × PDSI7(wet) × planting density -0.035∗∗∗

(0.008)

RW × PDSI8(wet) × planting density 0.003

(0.016)

RW × PDSI9(wet) × planting density -0.038∗∗∗

(0.010)

RW × PDSI5(dry) × planting density -0.172∗∗∗

(0.022)

RW × PDSI6(dry) × planting density -0.129∗∗∗

(0.044)

RW × PDSI7(dry) × planting density 0.146∗∗∗

(0.017)

RW × PDSI8(dry) × planting density -0.089∗∗

(0.035)

RW × PDSI9(dry) × planting density 0.012

(0.029)
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Table S3.2 Continued

other GM × PDSI5(wet) × planting density -0.020∗∗∗

(0.004)

other GM × PDSI6(wet) × planting density 0.005

(0.004)

other GM × PDSI7(wet) × planting density -0.024∗∗∗

(0.003)

other GM × PDSI8(wet) × planting density -0.030∗∗∗

(0.005)

other GM × PDSI9(wet) × planting density 0.012∗∗∗

(0.005)

other GM × PDSI5(dry) × planting density -0.133∗∗∗

(0.018)

other GM × PDSI6(dry) × planting density 0.142∗∗∗

(0.015)

other GM × PDSI7(dry) × planting density -0.008

(0.010)

other GM × PDSI8(dry) × planting density -0.142∗∗∗

(0.013)

other GM × PDSI9(dry) × planting density 0.013

(0.009)

1 if previous crop is corn -0.006

(0.032)

1 if previous crop is wheat 0.038

(0.032)

1 if previous crop is alfalfa or alfalfa/hay 0.090∗∗∗

(0.031)

1 if previous crop is soybean 0.001

(0.031)

1 if previous crop is lupine -0.092∗∗∗

(0.033)

fall tillage, 1 if yes, 0 if no -0.001

(0.003)

spring tillage, 1 if yes, 0 if no -0.048∗∗∗

(0.005)

apply insecticide, 1 if yes, 0 if no -0.076∗∗∗

(0.005)

fertilizer N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.705

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum

and maximum temperature(tmin and tmax), and monthly PDSI from May to September), GM variety dummies, and

managerial inputs and practices. The specification also includes linear time trend, production fixed effect and the

interactions among plant density, weather variables, and GM variety dummies. Units for tmin and tmax are ◦C. Unit for

plant density is 1000 acre−1. In consideration of the possible heteroskedasticity, Huber-White’s robust standard errors are

calculated and shown in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.3 Regression results of the main model specification without including the managerial inputs and
practices as control variables

lnyield

planting density 0.396∗∗∗

(0.020)

year 0.012∗∗∗

(0.000)

tmin5 0.142∗∗∗

(0.029)

tmin6 -0.310∗∗∗

(0.041)

tmin7 0.061

(0.042)

tmin8 -0.237∗∗∗

(0.033)

tmin9 0.498∗∗∗

(0.033)

tmax5 -0.070∗∗∗

(0.025)

tmax6 0.195∗∗∗

(0.037)

tmax7 0.237∗∗∗

(0.034)

tmax8 0.210∗∗∗

(0.031)

tmax9 -0.100∗∗∗

(0.027)

tmin5 × planting density -0.003∗∗∗

(0.001)

tmin6 × planting density 0.009∗∗∗

(0.001)

tmin7 × planting density -0.001

(0.002)

tmin8 × planting density 0.007∗∗∗

(0.001)

tmin9 × planting density -0.016∗∗∗

(0.001)

tmax5 × planting density 0.002∗

(0.001)

tmax6 × planting density -0.006∗∗∗

(0.001)

tmax7 × planting density -0.008∗∗∗

(0.001)

tmax8 × planting density -0.008∗∗∗

(0.001)

tmax9 × planting density 0.004∗∗∗

(0.001)
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Table S3.3 Continued

PDSI5(wet) -0.046

(0.033)

PDSI6(wet) -0.168∗∗∗

(0.042)

PDSI7(wet) 0.212∗∗∗

(0.029)

PDSI8(wet) -0.363∗∗∗

(0.038)

PDSI9(wet) 0.011

(0.037)

PDSI5(dry) -1.738∗∗∗

(0.068)

PDSI6(dry) 1.443∗∗∗

(0.110)

PDSI7(dry) 0.220∗∗∗

(0.074)

PDSI8(dry) -1.538∗∗∗

(0.096)

PDSI9(dry) -0.134

(0.082)

PDSI5(wet) × planting density 0.001

(0.001)

PDSI6(wet) × planting density 0.006∗∗∗

(0.001)

PDSI7(wet) × planting density -0.007∗∗∗

(0.001)

PDSI8(wet) × planting density 0.013∗∗∗

(0.001)

PDSI9(wet) × planting density -0.000

(0.001)

PDSI5(dry) × planting density 0.060∗∗∗

(0.002)

PDSI6(dry) × planting density -0.048∗∗∗

(0.004)

PDSI7(dry) × planting density -0.010∗∗∗

(0.003)

PDSI8(dry) × planting density 0.052∗∗∗

(0.003)

PDSI9(dry) × planting density 0.004

(0.003)

Observations 28521

R-squared 0.641

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum and

maximum temperature(tmin and tmax), and monthly PDSI from May to September), and the interactions between

plant density and weather variables. The model also includes linear time trend and production zone fixed effect model.

Units for tmin and tmax are ◦C. Unit for plant density is 1000 acre−1. In consideration of the possible heteroskedasticity,

Huber-White’s robust standard errors are calculated and shown in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.4 Regression results of the second robustness check

lnyield

plant density 0.328∗∗∗

(0.019)

t -0.007

(0.005)

t × plant density 0.001∗∗∗

(0.000)

tmin5 0.173∗∗∗

(0.031)

tmin6 -0.112∗∗

(0.044)

tmin7 0.200∗∗∗

(0.039)

tmin8 -0.462∗∗∗

(0.033)

tmin9 0.441∗∗∗

(0.029)

tmax5 -0.025

(0.026)

tmax6 0.018

(0.042)

tmax7 0.194∗∗∗

(0.032)

tmax8 0.315∗∗∗

(0.031)

tmax9 -0.118∗∗∗

(0.028)

tmin5 × plant density -0.004∗∗∗

(0.001)

tmin6 × plant density 0.002

(0.002)

tmin7 × plant density -0.007∗∗∗

(0.001)

tmin8 × plant density 0.016∗∗∗

(0.001)

tmin9 × plant density -0.014∗∗∗

(0.001)

tmax5 × plant density -0.000

(0.001)

tmax6 × plant density 0.001

(0.001)

tmax7 × plant density -0.006∗∗∗

(0.001)
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Table S3.4 Continued

tmax8 × plant density -0.012∗∗∗

(0.001)

tmax9 × plant density 0.004∗∗∗

(0.001)

PDSI5(wet) -0.030

(0.036)

PDSI6(wet) -0.199∗∗∗

(0.042)

PDSI7(wet) 0.170∗∗∗

(0.030)

PDSI8(wet) -0.467∗∗∗

(0.037)

PDSI9(wet) 0.014

(0.036)

PDSI5(dry) -1.475∗∗∗

(0.067)

PDSI6(dry) 1.946∗∗∗

(0.120)

PDSI7(dry) -0.005

(0.086)

PDSI8(dry) -1.414∗∗∗

(0.086)

PDSI9(dry) -0.624∗∗∗

(0.076)

PDSI5(wet) × plant density -0.000

(0.001)

PDSI6(wet) × plant density 0.007∗∗∗

(0.001)

PDSI7(wet) × plant density -0.006∗∗∗

(0.001)

PDSI8(wet) × plant density 0.016∗∗∗

(0.001)

PDSI9(wet) × plant density -0.000

(0.001)

PDSI5(dry) × plant density 0.051∗∗∗

(0.002)

PDSI6(dry) × plant density -0.067∗∗∗

(0.004)

PDSI7(dry) × plant density -0.003

(0.003)

PDSI8(dry) × plant density 0.048∗∗∗

(0.003)

PDSI9(dry) × plant density 0.022∗∗∗

(0.003)
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Table S3.4 Continued

1 if previous crop is corn 0.089∗∗∗

(0.026)

RW 0.036∗∗∗

(0.004)

other GM 0.039∗∗∗

(0.003)

1 if previous crop is wheat 0.128∗∗∗

(0.027)

1 if previous crop is alfalfa or alfalfa/hay 0.193∗∗∗

(0.026)

1 if previous crop is soybean 0.102∗∗∗

(0.026)

1 if previous crop is lupine -0.175∗∗∗

(0.035)

fall tillage, 1 if yes, 0 if no 0.000

(0.002)

spring tillage, 1 if yes, 0 if no -0.038∗∗∗

(0.004)

apply insecticide, 1 if yes, 0 if no -0.063∗∗∗

(0.004)

fertilizer N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.662

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum and

maximum temperature(tmin and tmax), and monthly PDSI from May to September), the interactions between plant

density and weather variables, and the managerial inputs and practices described in Table 3.1. The model also includes

linear time trend, and production zone fixed effect model. The density effect is allowed to vary across years by including

the interaction between plant density and time trend. Units for tmin and tmax are ◦C. Unit for plant density is 1000 acre−1.

In consideration of the possible heteroskedasticity, Huber-White’s robust standard errors are calculated and shown in

parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.5 Regression results of the model using a quadratic form of precipitation as measure of water
availability

lnyield

plant density 0.352∗∗∗

(0.020)

tmin5 0.135∗∗∗

(0.031)

tmin6 -0.501∗∗∗

(0.042)

tmin7 0.055

(0.034)

tmin8 -0.133∗∗∗

(0.030)

tmin9 0.615∗∗∗

(0.034)

tmax5 -0.043∗

(0.023)

tmax6 0.405∗∗∗

(0.029)

tmax7 0.210∗∗∗

(0.032)

tmax8 0.058∗∗

(0.028)

tmax9 -0.272∗∗∗

(0.026)

tmin5 × plant density -0.003∗∗∗

(0.001)

tmin6 × plant density 0.016∗∗∗

(0.001)

tmin7 × plant density -0.001

(0.001)

tmin8 × plant density 0.004∗∗∗

(0.001)

tmin9 × plant density -0.021∗∗∗

(0.001)

tmax5 × plant density 0.001

(0.001)

tmax6 × plant density -0.012∗∗∗

(0.001)

tmax7 × plant density -0.008∗∗∗

(0.001)

tmax8 × plant density -0.002∗∗

(0.001)

tmax9 × plant density 0.010∗∗∗

(0.001)
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Table S3.5 Continued

prec 0.030∗∗∗

(0.007)

prec × plant density -0.001∗∗∗

(0.000)

prec × prec × plant density 0.000∗∗∗

(0.000)

year 0.011∗∗∗

(0.000)

RW 0.034∗∗∗

(0.005)

other GM 0.026∗∗∗

(0.003)

1 if previous crop is corn 0.023

(0.025)

1 if previous crop is wheat 0.094∗∗∗

(0.025)

1 if previous crop is alfalfa or alfalfa/hay 0.125∗∗∗

(0.024)

1 if previous crop is soybean 0.004

(0.024)

1 if previous crop is lupine -0.177∗∗∗

(0.040)

fall tillage, 1 if yes, 0 if no -0.027∗∗∗

(0.003)

spring tillage, 1 if yes, 0 if no -0.005

(0.003)

apply insecticide, 1 if yes, 0 if no -0.057∗∗∗

(0.003)

fertilizer N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.627

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum and

maximum temperature(tmin and tmax), and a quadratic form of the mean of monthly cumulative precipitation for

the whole growing season, the interactions between plant density and weather variables, and the managerial inputs

and practices described in Table 3.1. The model also includes linear time trend and production zone fixed effect model.

Units for tmin and tmax are ◦C. Unit for plant density is 1000 acre−1. In consideration of the possible heteroskedasticity,

Huber-White’s robust standard errors are calculated and shown in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.6 Regression results of the model specification measuring water availability with a quadratic form of
precipitation

lnyield

planting density 0.516∗∗∗

(0.047)

RW × planting density -1.617∗∗∗

(0.091)

other GM × planting density -0.322∗∗∗

(0.070)

tmin5 0.255∗∗∗

(0.057)

tmin6 -0.575∗∗∗

(0.091)

tmin7 -0.610∗∗∗

(0.061)

tmin8 0.359∗∗∗

(0.049)

tmin9 0.362∗∗∗

(0.042)

tmax5 -0.180∗∗∗

(0.048)

tmax6 0.493∗∗∗

(0.070)

tmax7 0.448∗∗∗

(0.043)

tmax8 -0.339∗∗∗

(0.048)

tmax9 0.161∗∗∗

(0.036)

tmin5 × planting density -0.008∗∗∗

(0.002)

tmin6 × planting density 0.019∗∗∗

(0.003)

tmin7 × planting density 0.023∗∗∗

(0.002)

tmin8 × planting density -0.014∗∗∗

(0.002)

tmin9 × planting density -0.012∗∗∗

(0.002)

tmax5 × planting density 0.006∗∗∗

(0.002)

tmax6 × planting density -0.016∗∗∗

(0.002)

tmax7 × planting density -0.016∗∗∗

(0.002)
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Table S3.6 Continued

tmax8 × planting density 0.013∗∗∗

(0.002)

tmax9 × planting density -0.005∗∗∗

(0.001)

RW × tmin5 -0.524∗∗∗

(0.141)

RW × tmin6 1.353∗∗∗

(0.182)

RW × tmin7 -0.146

(0.236)

RW × tmin8 0.277

(0.208)

RW × tmin9 0.057

(0.210)

other GM × tmin5 -0.567∗∗∗

(0.108)

other GM × tmin6 0.629∗∗∗

(0.128)

other GM × tmin7 1.385∗∗∗

(0.096)

other GM × tmin8 0.214∗∗

(0.103)

other GM × tmin9 -0.920∗∗∗

(0.111)

RW × tmax5 0.586∗∗∗

(0.147)

RW × tmax6 -0.430∗∗

(0.184)

RW × tmax7 0.155

(0.153)

RW × tmax8 -1.131∗∗∗

(0.185)

RW × tmax9 -0.667∗∗∗

(0.171)

other GM × tmax5 0.397∗∗∗

(0.088)

other GM × tmax6 -1.274∗∗∗

(0.119)

other GM × tmax7 -0.464∗∗∗

(0.077)

other GM × tmax8 0.216∗∗

(0.089)

other GM × tmax9 0.171∗

(0.089)

RW × tmin5 × planting density 0.018∗∗∗

(0.005)
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Table S3.6 Continued

RW × tmin6 × planting density -0.050∗∗∗

(0.006)

RW × tmin7 × planting density 0.002

(0.008)

RW × tmin8 × planting density -0.002

(0.007)

RW × tmin9 × planting density -0.004

(0.007)

RW × tmax5 × planting density -0.023∗∗∗

(0.005)

RW × tmax6 × planting density 0.015∗∗

(0.006)

RW × tmax7 × planting density -0.004

(0.005)

RW × tmax8 × planting density 0.036∗∗∗

(0.006)

RW × tmax9 × planting density 0.025∗∗∗

(0.006)

other GM × tmin5 × planting density 0.018∗∗∗

(0.004)

other GM × tmin6 × planting density -0.023∗∗∗

(0.004)

other GM × tmin7 × planting density -0.049∗∗∗

(0.003)

other GM × tmin8 × planting density -0.002

(0.004)

other GM × tmin9 × planting density 0.029∗∗∗

(0.004)

other GM × tmax5 × planting density -0.014∗∗∗

(0.003)

other GM × tmax6 × planting density 0.043∗∗∗

(0.004)

other GM × tmax7 × planting density 0.017∗∗∗

(0.003)

other GM × tmax8 × planting density -0.010∗∗∗

(0.003)

other GM × tmax9 × planting density -0.004

(0.003)

prec 0.124∗∗∗

(0.017)

prec × prec -0.001∗∗∗

(0.000)

prec × planting density -0.004∗∗∗

(0.001)

prec × prec × planting density 0.000∗∗∗

(0.000)

151



Table S3.6 Continued

RW × prec -0.517∗∗∗

(0.029)

other GM × prec -0.042∗

(0.023)

RW × prec × prec 0.002∗∗∗

(0.000)

other GM × prec × prec 0.000∗

(0.000)

RW × prec × prec × planting density -0.000∗∗∗

(0.000)

other GM × prec × prec × planting density -0.000∗∗

(0.000)

pcorn 0.047∗

(0.027)

1 if previous crop is wheat 0.113∗∗∗

(0.027)

1 if previous crop is alfalfa or alfalfa/hay 0.166∗∗∗

(0.026)

1 if previous crop is soybean 0.044∗

(0.026)

1 if previous crop is lupine -0.067∗

(0.038)

fall tillage, 1 if yes, 0 if no -0.037∗∗∗

(0.003)

spring tillage, 1 if yes, 0 if no 0.006

(0.003)

apply insecticide, 1 if yes, 0 if no -0.055∗∗∗

(0.004)

fertilizern N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.665

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum and

maximum temperature(tmin and tmax), and a quadratic form of the mean of monthly cumulative precipitation for the

whole growing season), GM variety dummies, and managerial inputs and practices. The specification also includes linear

time trend, production fixed effect and the interactions among plant density, weather variables, and GM variety dummies.

Units for tmin and tmax are ◦C. Unit for plant density is 1000 acre−1. In consideration of the possible heteroskedasticity,

Huber-White’s robust standard errors are calculated and shown in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.7 Regression results of the model controlling for year fixed effects

lnyield

plant density 0.083∗∗∗

(0.022)

tmin5 0.457∗∗∗

(0.043)

tmin6 0.055

(0.055)

tmin7 -0.105∗∗

(0.049)

tmin8 -0.470∗∗∗

(0.038)

tmin9 0.354∗∗∗

(0.033)

tmax5 -0.316∗∗∗

(0.033)

tmax6 0.315∗∗∗

(0.044)

tmax7 0.153∗∗∗

(0.037)

tmax8 0.168∗∗∗

(0.037)

tmax9 -0.229∗∗∗

(0.032)

tmin5 × plant density -0.016∗∗∗

(0.001)

tmin6 × plant density -0.003

(0.002)

tmin7 × plant density 0.003∗

(0.002)

tmin8 × plant density 0.017∗∗∗

(0.001)

tmin9 × plant density -0.012∗∗∗

(0.001)

tmax5 × plant density 0.010∗∗∗

(0.001)

tmax6 × plant density -0.010∗∗∗

(0.002)

tmax7 × plant density -0.003∗∗

(0.001)

tmax8 × plant density -0.008∗∗∗

(0.001)

tmax9 × plant density 0.008∗∗∗

(0.001)

153



Table S3.7 Continued

PDSI5(wet) 0.011

(0.039)

PDSI6(wet) -0.146∗∗∗

(0.048)

PDSI7(wet) 0.243∗∗∗

(0.034)

PDSI8(wet) -0.695∗∗∗

(0.043)

PDSI9(wet) 0.132∗∗∗

(0.039)

PDSI5(dry) -1.180∗∗∗

(0.071)

PDSI6(dry) 1.252∗∗∗

(0.140)

PDSI7(dry) 0.669∗∗∗

(0.105)

PDSI8(dry) -0.773∗∗∗

(0.099)

PDSI9(dry) -0.965∗∗∗

(0.087)

PDSI5(wet) × plant density -0.000

(0.001)

PDSI6(wet) × plant density 0.005∗∗∗

(0.002)

PDSI7(wet) × plant density -0.009∗∗∗

(0.001)

PDSI8(wet) × plant density 0.025∗∗∗

(0.001)

PDSI9(wet) × plant density -0.004∗∗∗

(0.001)

PDSI5(dry) × plant density 0.041∗∗∗

(0.002)

PDSI6(dry) × plant density -0.038∗∗∗

(0.005)

PDSI7(dry) × plant density -0.029∗∗∗

(0.004)

PDSI8(dry) × plant density 0.025∗∗∗

(0.003)

PDSI9(dry) × plant density 0.034∗∗∗

(0.003)
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Table S3.7 Continued

RW 0.047∗∗∗

(0.005)

other GM 0.046∗∗∗

(0.003)

1 if previous crop is corn 0.159∗∗∗

(0.028)

1 if previous crop is wheat 0.148∗∗∗

(0.028)

1 if previous crop is alfalfa or alfalfa/hay 0.261∗∗∗

(0.027)

1 if previous crop is soybean 0.165∗∗∗

(0.027)

1 if previous crop is lupine -0.223∗∗∗

(0.036)

fall tillage, 1 if yes, 0 if no -0.006∗∗

(0.003)

spring tillage, 1 if yes, 0 if no -0.020∗∗∗

(0.004)

apply insecticide, 1 if yes, 0 if no -0.059∗∗∗

(0.004)

fertilizer N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.689

Notes: Table regresses plot-level log of yield on plant density, weather variables(monthly average of daily minimum and

maximum temperature(tmin and tmax), and monthly PDSI from May to September), the interactions between plant

density and weather variables, and the managerial inputs and practices described in Table 3.1. The model also includes

year fixed effects and production zone fixed effect model. Units for tmin and tmax are ◦C. Unit for plant density is 1000

acre−1. In consideration of the possible heteroskedasticity, Huber-White’s robust standard errors are calculated and shown

in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S3.8 Regression results of the model including quadratic term of plant density

lnyield

plant density 0.123∗∗∗

(0.025)

plant density × plant density 0.004∗∗∗

(0.000)

tmin5 0.051

(0.034)

tmin6 0.259∗∗∗

(0.055)

tmin7 0.151∗∗∗

(0.039)

tmin8 -0.553∗∗∗

(0.033)

tmin9 0.424∗∗∗

(0.029)

tmax5 0.134∗∗∗

(0.030)

tmax6 -0.193∗∗∗

(0.046)

tmax7 0.232∗∗∗

(0.031)

tmax8 0.333∗∗∗

(0.030)

tmax9 -0.151∗∗∗

(0.027)

tmin5 × plant density 0.000

(0.001)

tmin6 × plant density -0.011∗∗∗

(0.002)

tmin7 × plant density -0.005∗∗∗

(0.001)

tmin8 × plant density 0.019∗∗∗

(0.001)

tmin9 × plant density -0.013∗∗∗

(0.001)

tmax5 × plant density -0.006∗∗∗

(0.001)

tmax6 × plant density 0.009∗∗∗

(0.002)

tmax7 × plant density -0.007∗∗∗

(0.001)

tmax8 × plant density -0.012∗∗∗

(0.001)

tmax9 × plant density 0.006∗∗∗

(0.001)
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Table S3.8 Continued

PDSI5(wet) 0.255∗∗∗

(0.041)

PDSI6(wet) -0.485∗∗∗

(0.048)

PDSI7(wet) 0.244∗∗∗

(0.030)

PDSI8(wet) -0.441∗∗∗

(0.038)

PDSI9(wet) -0.031

(0.037)

PDSI5(dry) -1.558∗∗∗

(0.067)

PDSI6(dry) 2.179∗∗∗

(0.120)

PDSI7(dry) -0.031

(0.084)

PDSI8(dry) -1.659∗∗∗

(0.087)

PDSI9(dry) -0.387∗∗∗

(0.078)

PDSI5(wet) × plant density -0.010∗∗∗

(0.001)

PDSI6(wet) × plant density 0.017∗∗∗

(0.002)

PDSI7(wet) × plant density -0.009∗∗∗

(0.001)

PDSI8(wet) × plant density 0.016∗∗∗

(0.001)

PDSI9(wet) × plant density 0.001

(0.001)

PDSI5(dry) × plant density 0.054∗∗∗

(0.002)

PDSI6(dry) × plant density -0.075∗∗∗

(0.004)

PDSI7(dry) × plant density -0.002

(0.003)

PDSI8(dry) × plant density 0.057∗∗∗

(0.003)

PDSI9(dry) × plant density 0.014∗∗∗

(0.003)

157



Table S3.8 Continued

RW 0.037∗∗∗

(0.004)

other GM 0.042∗∗∗

(0.003)

year 0.008∗∗∗

(0.000)

1 if previous crop is corn 0.064∗∗

(0.026)

1 if previous crop is wheat 0.103∗∗∗

(0.027)

1 if previous crop is alfalfa or alfalfa/hay 0.165∗∗∗

(0.026)

1 if previous crop is soybean 0.072∗∗∗

(0.026)

1 if previous crop is lupine -0.173∗∗∗

(0.032)

fall tillage, 1 if yes, 0 if no -0.002

(0.002)

spring tillage, 1 if yes, 0 if no -0.043∗∗∗

(0.004)

apply insecticide, 1 if yes, 0 if no -0.060∗∗∗

(0.004)

fertilizer N 0.000∗∗∗

(0.000)

Observations 28521

R-squared 0.665

Notes: Table regresses plot-level log of yield on linear and quadratic plant density, weather variables(monthly average of

daily minimum and maximum temperature(tmin and tmax), and monthly PDSI from May to September), the interactions

between plant density and weather variables, and the managerial inputs and practices described in Table 3.1. The model

also includes linear time trend and production zone fixed effect model. Units for tmin and tmax are ◦C. Unit for plant

density is 1000 acre−1. In consideration of the possible heteroskedasticity, Huber-White’s robust standard errors are

calculated and shown in parentheses.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Figure S3.1 Distribution of yield for four production zones
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Figure S3.2 Distribution of plant density for four production zones

Notes: In the two figures above, each box plot corresponds to the plant density of plots in a production zone. The solid line

in each distribution is the median. The upper hinge and the lower hinge are the 75t h and the 25t h percentile values of

plant density separately. The upper adjacent line represents 75t h p e r c e n t i l e v a l ue +1.5× i n t e r q ua n t i l e r a ng e

and the lower adjacent line represents 25t h p e r c e n t i l e v a l ue −1.5× i n t e r q ua n t i l e r a ng e .
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Figure S3.3 The change in the average corn yields in four production zones over years
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Figure S3.4 The change in the average of plant density in four production zones over years

160



4.
8

5
5.

2
5.

4
na

tu
ra

l l
og

 o
f y

ie
ld

15 20 25 30 35
planting density, 1000s per acre

Figure S3.5 Regression of the natural log of yield on a quadratic form of plant density
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Figure S3.6 The change in number of plots planting conventional corn over years
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Figure S3.7 The change in number of plots planting GM corn with Bt trait for corn rootworm
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Figure S3.8 The change in number of plots planting GM corn without Bt trait for corn rootworm
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Figure S3.9 The change in tmin and tmax across years

Notes: tmin and tmax are the average of monthly minimum and maximum temperature during the May-September

growing season.
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Figure S3.10 The change in PDSI across years

Notes: PDSI here are the average of monthly PDSI during the May-September growing season.
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Table S4.1 The difference in the responses of the mean and higher central moments of corn and soybean
yields to extreme heat between uninsured and insured field

Crop Approach Time Trend Ins Ptc Mean Variance Skewness Kurtosis

corn FE state LR -47.34*** 366.7** 9113.2 1337087.3**

corn FE county LR -55.57*** 418.8** 18761.5 2465340.9*

soybeans FE state LR -17.98*** 49.46** 306.1 15465.7**

soybeans FE county LR -18.52*** 49.30*** 326.5 14051.3***

Notes: (1) The table displays the marginal impact of insurance participation on the sensitivity of the mean and higher

central moments of corn and soybeans yield to extreme heat (degree days above 29º C for corn and 30º C for soybeans,

measured in hundreds, for the months April-September). (2) All models control for county-level fixed effect and use

liability ratio to measure insurance participation rate. The model for the first row and the third row accounts for year

fixed effect and state-specific linear and quadratic time trend. The model that corresponds the second and the fourth row

accounts for year fixed effect, and county-specific linear and quadratic time trend.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.

Table S4.2 The difference in the responses of the mean and higher central moments of corn and soybean
yields to extreme heat between uninsured and insured field

Crop Approach Time Trend Ins Mean yield Variance of yield Skewness of yield Kurtosis of yield

YP RP YP RP YP RP YP RP

corn FE state LR -24.00** -59.42*** -224.7 343.7** 10523.7 -1021.7 -490843.6 654197.8

corn FE county LR -20.27 -68.86*** -317.6* 367.7* 12959.4 2319.8 -749463.2* 1018961.5

soybeans FE state LR -11.28** -19.82*** 7.322 55.72** -804.9 583.1 2248.2 19286.8**

soybeans FE county LR -9.137 -21.30*** 5.881 53.66*** -535.0 639.1 585.0 18688.4**

Notes: (1) The table displays the marginal impact of yield and revenue protection program participation on the sensitivity

of the mean and higher central moments of corn and soybeans yield to extreme heat (degree days above 29º C for corn

and 30º C for soybeans, measured in hundreds, for the months April-September). (2) All models control for county-level

fixed effect and use liability ratio to measure insurance participation rate. The model for the first and third row accounts

for year fixed effect and state-specific linear and quadratic time trend. The model that corresponds to the second and

fourth row accounts for year fixed effect and county-specific linear and quadratic time trend.

***Significant at 1% level. **Significant at 5% level. *Significant at 10% level.
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Table S4.3 Estimated response of the mean, variance, skewness, and kurtosis of yield to weather variables,
insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 14.39 -53.06 4867.2 -28037.3

(1.19) (-0.24) (0.45) (-0.05)

D D H -24.49∗∗∗ 141.6∗∗∗ -84.51 143611.3

(-5.36) (3.03) (-0.02) (0.66)

P r e c 76.97∗∗ 322.0 -35910.7 -135032.2

(2.57) (0.65) (-1.09) (-0.14)

P r e c 2 -52.26∗∗ -257.6 27908.1 -23725.5

(-2.58) (-0.70) (1.27) (-0.03)

Ins Ptc -24.84 524.7 11344.7 1269840.6

(-0.86) (1.55) (0.29) (0.83)

D D M *Ins Ptc 37.11∗∗ -173.4 -18231.3 -1669024.7

(2.31) (-0.72) (-0.55) (-1.16)

D D H *Ins Ptc -55.57∗∗∗ 418.8∗∗ 18761.5 2465340.9∗

(-3.14) (2.43) (0.54) (1.95)

P r e c *Ins Ptc 1.168 -2226.3 45395.3 -256776.2

(0.01) (-1.62) (0.39) (-0.06)

P r e c 2 *Ins Ptc -18.27 1944.9∗∗ -31340.0 1617158.4

(-0.30) (2.07) (-0.37) (0.56)

Observations 38101 38101 38101 38101

R squared 0.651 0.160 0.0381 0.113

Time Controls County County County County

Crop Corn Corn Corn Corn

Ins Ptc Measure Lb Ratio Lb Ratio Lb Ratio Lb Ratio

Model FE FE FE FE

Input Expenditure No No No No

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S4.4 Estimated response of the mean, variance, skewness, and kurtosis of yield to weather variables,
insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 12.36∗∗∗ -26.61∗∗ 26.48 -5697.0∗∗

(4.17) (-2.56) (0.09) (-2.23)

D D H -11.93∗∗∗ 6.645 118.3 1860.3

(-7.68) (1.34) (1.03) (0.98)

P r e c 41.89∗∗∗ -35.66 -521.6 -10755.2∗

(6.13) (-1.15) (-0.77) (-1.86)

P r e c 2 -25.10∗∗∗ 19.51 491.7 6692.1

(-5.49) (0.91) (1.07) (1.56)

Ins Ptc -4.345 33.42 -243.4 5140.8

(-0.51) (0.83) (-0.38) (0.61)

D D M *Ins Ptc 9.240∗∗ -33.51∗∗ -108.4 -7757.6

(2.72) (-2.10) (-0.36) (-1.70)

D D H *Ins Ptc -18.52∗∗∗ 49.30∗∗∗ 326.5 14051.3∗∗∗

(-5.09) (2.88) (0.75) (3.02)

P r e c *Ins Ptc -1.227 -11.64 1623.5 3783.8

(-0.09) (-0.14) (1.23) (0.23)

P r e c 2 *Ins Ptc -5.392 23.20 -1232.4 2750.8

(-0.58) (0.42) (-1.46) (0.25)

Observations 36095 36095 36095 36095

R squared 0.627 0.132 0.0376 0.100

Time Controls County County County County

Crop Soybeans Soybeans Soybeans Soybeans

Ins Ptc Measure Lb Ratio Lb Ratio Lb Ratio Lb Ratio

Model FE FE FE FE

Input Expenditure No No No No

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S4.5 Estimated response of the mean, variance, skewness, and kurtosis of corn yield to weather
variables, insurance participation, interaction terms, and input expenditures.

Mean Variance Skewness Kurtosis

D D M 14.78 -116.3 7142.8 -516567.8

(1.34) (-0.49) (0.56) (-1.02)

D D H -26.43∗∗∗ 199.2∗∗∗ 3300.2 678180.1∗∗∗

(-6.41) (3.86) (0.69) (4.79)

P r e c 72.88∗∗ 349.6 -36452.6 -307836.3

(2.57) (0.68) (-1.19) (-0.26)

P r e c 2 -51.54∗∗ -265.4 30776.0 254127.2

(-2.70) (-0.71) (1.52) (0.30)

Ins -43.68 725.7∗ 8541.9 1067033.0

(-1.56) (1.76) (0.24) (0.75)

D D M *Ins 38.59∗∗∗ -204.4 -16133.1 -1124627.9

(3.14) (-0.92) (-0.66) (-1.25)

D D H *Ins -47.81∗∗∗ 350.1∗∗ 12955.4 1418539.9∗∗

(-3.14) (2.31) (0.48) (2.06)

P r e c *Ins 23.94 -2303.6 50271.6 -950746.4

(0.30) (-1.65) (0.42) (-0.22)

P r e c 2*Ins -28.64 1895.8∗ -37996.6 1567360.8

(-0.48) (1.91) (-0.44) (0.48)

Fertilizer and lime -0.00371∗∗ 0.0379 -1.144 268.4

(-2.51) (0.58) (-0.57) (0.85)

production -0.000122 -0.000838 -0.0457 -10.84

(-0.71) (-0.26) (-0.18) (-0.89)

petroleum 0.000473 -0.00428 -0.672 -103.4

(0.11) (-0.04) (-0.08) (-0.17)

hired labor 0.000368 0.0103 0.567 101.1

(0.39) (0.40) (0.33) (1.34)

seed 0.00472∗ -0.0511 3.342 -317.7

(1.88) (-0.69) (1.23) (-1.08)

Observations 37302 37302 37302 37302

R squared 0.596 0.0767 0.0109 0.0403

Time Controls State State State State

Crop Corn Corn Corn Corn

Ins Measure LR LR LR LR

Model FE FE FE FE

Input Expenditure Yes Yes Yes Yes

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S4.6 Estimated response of the mean, variance, skewness, and kurtosis of soybean yield to weather
variables, insurance participation, interaction terms, and input expenditures

Mean Variance Skewness Kurtosis

D D M 10.81∗∗∗ -32.41∗∗ 88.59 -7607.5∗∗

(3.91) (-2.72) (0.26) (-2.46)

D D H -11.92∗∗∗ 10.23∗ 147.0 2507.7

(-8.03) (1.91) (1.04) (1.36)

P r e c 41.77∗∗∗ -23.03 -591.2 -4871.5

(5.89) (-0.85) (-0.80) (-0.81)

P r e c 2 -25.90∗∗∗ 9.811 539.0 1637.4

(-5.25) (0.52) (1.05) (0.37)

Ins -15.06∗∗ 42.74 -319.1 12216.2

(-2.63) (1.22) (-0.61) (1.57)

D D M *Ins 12.64∗∗∗ -28.38∗ -72.89 -9063.6∗

(5.05) (-1.73) (-0.24) (-1.80)

D D H *Ins -18.00∗∗∗ 48.18∗∗ 342.5 15831.3∗∗

(-6.16) (2.36) (0.73) (2.31)

P r e c *Ins 1.350 -40.82 1503.2 -10101.3

(0.10) (-0.44) (1.03) (-0.54)

P r e c 2*Ins -5.438 40.37 -1182.3 14006.8

(-0.58) (0.67) (-1.20) (1.08)

Fertilizer and lime -0.00188∗∗ -0.00517 -0.0152 -1.479

(-2.71) (-1.12) (-0.22) (-1.02)

production -0.0000252 0.00000978 0.00133 -0.0514

(-0.65) (0.04) (0.22) (-0.61)

petroleum 0.000544 0.00933 0.0240 3.012

(0.33) (0.96) (0.12) (1.27)

hired labor 0.000279∗ -0.000412 -0.0249 0.249

(1.77) (-0.17) (-0.75) (0.34)

seed 0.00258∗∗∗ 0.00191 0.0324 0.632

(3.05) (0.31) (0.40) (0.34)

Observations 35351 35351 35351 35351

R squared 0.565 0.0535 0.0109 0.0330

Time Controls State State State State

Crop Soybeans Soybeans Soybeans Soybeans

Ins Measure LR LR LR LR

Model FE FE FE FE

Input Expenditure Yes Yes Yes Yes

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S4.7 Estimated response of the mean, variance, skewness, and kurtosis of corn yield to weather
variables, “area-ratio” insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 12.40 -181.0 9941.4 -479942.7

(1.01) (-0.73) (0.65) (-0.80)

D D H -26.40∗∗∗ 217.3∗∗∗ 1397.4 568915.6∗∗∗

(-6.38) (4.02) (0.31) (4.00)

P r e c 87.61∗∗∗ 434.8 -33036.1 117655.3

(2.90) (0.79) (-0.82) (0.08)

P r e c 2 -59.01∗∗∗ -374.0 27780.5 -254989.1

(-2.94) (-0.95) (1.06) (-0.23)

Ins -29.67 347.1 16772.1 1213635.6

(-1.24) (0.95) (0.46) (0.75)

D D M *Ins 28.64∗∗∗ -32.16 -18639.5 -1103011.3

(2.95) (-0.17) (-0.93) (-1.19)

D D H *Ins -30.20∗∗∗ 215.3∗ 13415.5 1498706.9∗∗

(-3.01) (1.88) (0.71) (2.44)

P r e c *Ins -12.54 -1916.4 26335.5 -2096022.7

(-0.18) (-1.39) (0.23) (-0.45)

P r e c 2*Ins -5.242 1660.6 -20365.3 2613128.4

(-0.10) (1.64) (-0.24) (0.75)

Observations 38101 38101 38101 38101

R squared 0.602 0.0837 0.0110 0.0445

Time Controls State State State State

Crop Corn Corn Corn Corn

Ins Measure AR AR AR AR

Model FE FE FE FE

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S4.8 Estimated response of the mean, variance, skewness, and kurtosis of soybean yield to weather
variables, “area-ratio” insurance participation, and the interactions between them

Mean Variance Skewness Kurtosis

D D M 11.16∗∗∗ -34.38∗∗ 91.97 -8058.4∗∗

(3.84) (-2.56) (0.26) (-2.26)

D D H -12.74∗∗∗ 12.29∗∗ 177.5 2801.9∗

(-7.44) (2.28) (1.17) (1.91)

P r e c 39.79∗∗∗ -25.34 -1041.9 -9301.0

(5.62) (-0.75) (-1.15) (-0.86)

P r e c 2 -24.62∗∗∗ 11.62 869.6 4988.2

(-4.80) (0.47) (1.34) (0.62)

Ins -11.60∗∗ 39.76 -530.6 8301.5

(-2.61) (1.58) (-1.33) (1.52)

D D M *Ins 6.793∗∗∗ -19.47 -34.68 -6710.6

(3.38) (-1.49) (-0.14) (-1.62)

D D H *Ins -9.033∗∗∗ 27.62∗ 142.7 10086.8∗∗

(-3.32) (1.95) (0.39) (2.24)

P r e c *Ins 6.155 -47.28 1952.0 -3251.9

(0.62) (-0.63) (1.50) (-0.17)

P r e c 2*Ins -6.913 41.33 -1501.9∗ 6797.4

(-1.03) (0.83) (-1.75) (0.51)

Observations 36095 36095 36095 36095

R squared 0.571 0.0518 0.0103 0.0308

Time Controls State State State State

Crop Soybeans Soybeans Soybeans Soybeans

Ins Measure AR AR AR AR

Model FE FE FE FE

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

171



Table S4.9 Estimated response of the mean, variance, skewness, and kurtosis of corn yield to weather
variables, insurance participation, and the interactions between them (mean IV approach)

Mean Variance Skewness Kurtosis

D D M -33.46 -1021.8∗∗∗ 51847.9 -10700718.6

(-0.98) (-2.72) (0.56) (-0.74)

D D H -5.011 -167.0 54649.4 -3808578.3

(-0.19) (-0.52) (0.89) (-0.20)

P r e c -155.2 1326.0 772407.8∗∗∗ 50266617.9

(-1.14) (0.68) (2.58) (0.94)

P r e c 2 103.0 -1212.5 -425712.0∗∗ -24858083.4

(1.17) (-0.91) (-2.36) (-0.66)

Ins -604.9∗ -463.2 2592681.4∗∗ 224647714.4

(-1.66) (-0.12) (2.46) (1.32)

D D M *Ins 203.9∗∗ 1160.1 -235993.7 10203545.9

(2.23) (1.27) (-0.91) (0.22)

D D H *Ins -121.3 2014.4∗∗ -190594.5 8999423.0

(-1.62) (2.13) (-0.92) (0.14)

P r e c *Ins 718.7 -10547.6∗ -2642400.7∗∗ -205182971.3

(1.63) (-1.79) (-2.50) (-1.15)

P r e c 2*Ins -511.0∗ 8485.1∗∗ 1590617.6∗∗ 119931815.5

(-1.76) (2.06) (2.38) (0.93)

Observations 38098 38098 38098 38098

R squared 0.511 0.0723 -1.011 -1.182

Time Controls State State State State

Crop Corn Corn Corn Corn

Ins Measure LR LR LR LR

Model IV IV IV IV

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table S4.10 Estimated response of the mean, variance, skewness, and kurtosis of soybean yield to weather
variables, insurance participation, and the interactions between them (mean IV approach)

Mean Variance Skewness Kurtosis

D D M 0.293 -145.2∗∗ 5288.9∗∗ -47641.7∗

(0.02) (-2.00) (2.32) (-1.76)

D D H -16.10∗∗∗ -23.94 588.0 -697.2

(-4.70) (-1.07) (1.54) (-0.09)

P r e c -83.30 -155.1 14024.9∗∗∗ 149508.0∗

(-1.58) (-0.93) (2.71) (1.69)

P r e c 2 54.77 76.80 -8878.0∗∗ -108902.9∗

(1.56) (0.65) (-2.38) (-1.65)

Ins -230.5∗∗ 487.5∗ 27522.1∗∗∗ 464469.3∗∗∗

(-2.49) (1.72) (2.58) (3.25)

D D M *Ins 40.71 105.1 -12661.1∗∗∗ 12583.2

(1.34) (0.85) (-2.71) (0.26)

D D H *Ins -0.787 114.5 -556.0 25187.2

(-0.08) (1.39) (-0.31) (0.94)

P r e c *Ins 389.8∗∗ -1093.2 -42770.6∗ -1234539.5∗∗∗

(2.41) (-1.62) (-1.91) (-2.80)

P r e c 2*Ins -260.2∗∗ 863.4∗ 27089.5 889527.3∗∗∗

(-2.38) (1.66) (1.64) (2.64)

Observations 36088 36088 36088 36088

R squared 0.370 -0.190 -0.507 0.0320

Time Controls State State State State

Crop Soybeans Soybeans Soybeans Soybeans

Ins Measure LR LR LR LR

Model IV IV IV IV

Input Expenditure NO NO NO NO

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure S4.1 The states included in the analysis

Notes: The blued states in the figure above are the states included.
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Figure S4.2 Annually averaged insurance participation rate over the period 1989-2017
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Figure S4.3 Annually averaged yield protection and revenue protection insurance product participation rate
over the period 1989-2017
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Figure S4.4 Annually averaged subsidy rate for insurance with 65% and 75% coverage level over the period
1989-2017
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