
ABSTRACT

LEININGER, DUSTIN ALLEN. Algebraic Topology Gets On My Nerves: TDA with Some Deep
Learning and Chromatic Homology with Some PDEs. (Under the direction of Dr. Andrew
Cooper and Dr. Tye Lidman).

This thesis is comprised of two projects. Chapter 1 contains an introduction to each.

The main results of the first project can be found in Chapter 4. The main results of the

second project can be found in Section 8.3 and Chapter 9.

The first project is contained in chapters 2 through 4. It concerns the relatively new

class of summary statistic in the field of topological data analysis called persistence curves.

We investigate the response of four persistence curves to the presence of three noise types.

We do this by computing the persistence curves for a data set of images as the images are

injected with increasing levels of the three noise types. We then build a machine learning

model to classify the images based on their persistence curves with and without noise. We

then propose and apply three methods for reducing the effects of the noise.

The second project is contained in chapters 5 through 9. It concerns applying the

technology of chromatic homology to smooth manifolds. Chromatic homology is a cate-

gorification of the chromatic polynomial for finite simple graphs which, when evaluated

with coefficients in the deRham complex of a smooth manifold, gives rise to a bicomplex

whose associated spectral sequences converge to the homology of the configuration space

of the manifold over the graph. According to the Hodge Theorem, deRham cohomology

is intimately related to solutions to partial differential equations. We investigate whether

smooth maps between smooth manifolds, or graph morphisms between graphs, induce

maps between their associated bicomplexes. Next, we perform a novel computation which

provides evidence that the intermediate pages of the spectral sequences contain similar

information about solutions to partial differential equations.
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CHAPTER

1

INTRODUCTION

1.1 1st Project: TDA and Machine Learning

1.1.1 Motivation

More and more often data scientists are being asked to distill actionable information from

data sets of unprecedented size and complexity. The robust fields of statistics and data

science provide numerous methods and techniques for modeling large volumes of data.

However, in order to begin building a model for a given data set it is often necessary to have

some qualitative information about the data. This qualitative information informs many

aspects of the initial stages of developing an appropriate model of the data by helping to

1



answer some basics questions such as, should the data set be sliced into smaller sets which

are then analyzed independently? If so, how should it be sliced? Which summary statistics

of a given data set are going to be most informative?

Most often what is meant by ’qualitative information’ is instrinsic structure. With respect

to the question of slicing a data set, it would be helpful to know if the data itself is already

naturally clustered into smaller sets. While methods have been developed to detect the

intrinsic structure of data sets they often rely on embedding the data into a metric space.

For example, k-nearest neighbor attempts resolve a given data set into constituent clusters

but requires a metric to define what counts as a ’nearest neighbor’. What is needed in this

case is a qualitative description of the data that is truly intrinsic to the data, i.e. independent

of the choice of embedding and possibly other choices of representation.

1.1.2 Algebraic Topology and Data

Algebraic topology is a field of mathematics that dates back to the early 20th century and is

primarily concerned with the development and computation of topological (more precisely,

homotopy) invariants of manifolds. Namely, it is seeks to associate to a given manifold

a collection of quantities which remain constant under continuous transformations. In

this way, the homotopy invariants capture and describe the intrinsic structure of the given

manifold. For example, Betti numbers count the number of voids within a given manifold

in various dimensions (more on this later).

While algebraic topology has predominantly been a theoretical subject, beginning in

the early 2000’s algorithms were developed and implemented to apply the tools of algebraic

topology to data sets. These methods were expanded, modified, and improved forming a

new field of study subsequently referred to as Topological Data Analysis (TDA). The goal

of TDA is to leverage the power of homotopy invariants to describe the shape of a given

2



data set (independent of embedding) thereby providing insight into its intrinsic structure.

Subsequently, it has grown from a tool primarily used to qualitatively describe data sets

into one which can provide robust summary statistics of data sets in its own right.

1.1.3 Objective

The aim of this project is to investigate a class of topological summary statistics and attempt

to provide a characterization of them in terms of accuracy as representations of data sets and

in terms of their sensitivity to noise. This was done by computing the topological summary

statistics from a data set of images with increasing levels of various image noise types. An

analysis of the resulting topological statistics was conducted and some pre-processing

methods were proposed to combat the presence of noise and enhance the efficacy of the

statistics overall. As an application, simple deep learning models were constructed and

trained to classify the labeled images based on their topological summaries.

1.2 2nd Project: Chromatic Homology and PDEs

1.2.1 The deRham Complex and Laplace’s Equation

Let M be a smooth orientable manifold and (Ω∗(M ), d) denote it’s deRham complex. Then

a Riemannian metric, g (·, ·), on M induces a co-differential δ : Ωk+1(M )→ Ωk (M ) which

can be used to define a generalized Laplace operator on M know as the Beltrami-Laplace

operator4 :Ωk (M )→Ωk (M )where4=
�

d+δ
�2

.

Furthermore, the Hodge Theorem states that the deRham complex of M has the follow-

ing orthogonal decomposition

Ωk (M ,R) =∆(Ωk (M ,R))⊕H k
d R (M ,R)
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Ωk (M ,R) = d
�

Ωk−1(M ,R)
�

⊕δ
�

Ωk+1(M ,R)
�

⊕H k
d R (M ,R)

from which it follows that the deRham cohomology H ∗(M ) is in fact the space of solutions

to the generalized Laplace equation4α= 0 and thus the dimension of H ∗(M ) is the number

of independent solutions.

Given that the deRham cohomology effectively counts the number of solutions to

Laplace’s equation, it becomes a question as to whether variations and/or augmentations

of the deRham complex count solutions to other PDEs.

Furthermore, the deRham theorem provides an isomorphism between the deRham

cohomology and singular homology of M , I : H ∗
d R (M ,R)→ H Si ng

∗ (M ,R). Therefore, the

deRham cohomology of M , while arising from the smooth structure on M , is in fact in-

dependent of it. Note that this implies that computing cohomology with respect to the

deRham differential eliminates information about the smooth structure of M .

1.2.2 The Chromatic Complex

Let G be a finite simple graph. The chromatic polynomial, PG (λ) is a function which returns

the number of ways to color the vertices of G with λ-many colors such that no adjacent

pair has have the same color. The chromatic complex C H R ∗(G , A) is a homology theory

(with coefficients in an algebra A) which categorifies the chromatic polynomial.

It has been shown that letting A =Ω∗(M ) in the chromatic complex elevates it to a bicom-

plex, C H R ∗∗(G ,Ω(M )). Furthermore, the vertical and horzontal filtrations of the chromatic

bicomplex give rise to spectral sequences which converge to the singular homology of the

configuration space of M over G (denoted MG , see definition 7.2.1).

In the vertical filtration, cohomology is first computed with respect to the deRham

differential while in the horizontal filtration it is first computed with respect to the chromatic

differential. Therefore, the spectral sequence associated to the horizontal filtration preserves

4



more smooth information for longer than that of the vertical filtration.

Therefore, the second project of this thesis is an investigation into the chromatic bi-

complex with the aim of determining whether or not the intermediate pages of the spectral

sequence arising from the horizontal filtration carry information about solutions to PDEs

on the underlying manifold M .
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CHAPTER

2

BACKGROUND

2.1 Algebraic Topology

In statistics, a data set is traditionally thought of as being a discrete sample from an under-

lying space (or distribution) of all such data. This primary aim of much of statistics and

probability theory is to recover properties of this underlying space based on the given data

set. The principal aim of TDA is to describe the shape of the underlying space from which

the given data set is sampled. The primary tool of TDA is persistent homology which is

based on algorithmically computing singular homology.

In algebraic topology, in order to compute the singular homology of a manifold it is
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necessary to first equip it with a combinatorial structure. This combinatorial structure

can then be enhanced by the addition of graded algebras which ultimately allow for the

computation of singular homology.

Therefore, an account of how TDA computes the singular homology of an underlying

space (from which a given data set is drawn) must begin with an explanation of how one

equips a space with a combinatorial structure. Then it will be necessary to describe how

the combinatorial structure of an underlying space may be estimated from a finite data set.

This is the project of the next two sub-sections.

2.1.1 The Simplex Category and Geometric Realizations

Most modern literature in algebraic topology utilizes singular complexes, originally de-

veloped by Eilenberg (1944), when it pertains to singular homology. While often being

practically expedient for theoretical purposes, it relies on infinitely generated modules

over various rings (depending on the application) and is therefore outside of the scope

of modern computers. However, an antecedent of singular complexes, know as simplical

complexes, are finitely generated and compute the same invariants as singular homology.

These are therefore what are commonly used to compute singular homolgy in TDA. From

here on the term homology will refer to simplicial homology.

While simplicial complexes are a rich subject of study in their natural habitat of combi-

natorics, here they are presented in the categorical context which is more amenable to the

topologists perspective. Those readers familiar with simplicial complexes and homology

may feel free to skip to the next subsection.
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Definition 2.1.1. The CoSimplex Category 4c o is given by the following Objects and Mor-

phisms.

O b j (4c o ) = {non-empty, finite ordinals: [n ] = {0, ..., n}}

H o m4c o ([m ], [n ]) =







order preserving functions f : [m ]→ [n ]

e.g. if i ≤ j ∈ [m ] then f (i )≤ f ( j ) ∈ [n ]







Example 2.1.1. Some elements of H o m4c o ([2], [4]).

[2] [4]

4

3

2 2

1 1

0 0

f̂
[2] [4]

4

3

2 2

1 1

0 0

ĝ
[2] [4]

4

3

2 2

1 1

0 0

ĥ

Example 2.1.2. Some elements of H o m4c o ([5], [3]).

[5] [3]

5

4

3 3

2 2

1 1

0 0

ŝ
[5] [3]

5

4

3 3

2 2

1 1

0 0

t̂
[5] [3]

5

4

3 3

2 2

1 1

0 0

v̂

Definition 2.1.2. For each object [n ] ∈O b j (4c o ), there exists a collection of morphisms

called Coface Maps {d̂ i
n}

n+1
i=0 ⊂H o m4c o ([n ], [n +1]) given by

d̂ i
n =







k , k < i

k +1 , k > i
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Similarly, for each object [n + 1] ∈ O b j (4c o ), there exists a collection of morphisms

called Codegeneracy Maps {ŝ i
n+1}

n
i=0 ⊂H o m4c o ([n +1], [n ]) given by

ŝ i
n =







k , k < i

k −1 , k > i







Example 2.1.3. All the co-faces maps in H o m4c o ([2], [3]).

[2] [3]

3

2 2

1 1

0 0

d̂ 0
2

[2] [3]

3

2 2

1 1

0 0

d̂ 1
2

[2] [3]

3

2 2

1 1

0 0

d̂ 2
2

[2] [3]

3

2 2

1 1

0 0

d̂ 3
2

Example 2.1.4. All the codegeneracy maps in H o m4c o ([4], [3]).

[4] [3]

4

3 3

2 2

1 1

0 0

ŝ 0
4

[4] [3]

4

3 3

2 2

1 1

0 0

ŝ 1
4

[4] [3]

4

3 3

2 2

1 1

0 0

ŝ 2
4

[4] [3]

4

3 3

2 2

1 1

0 0

ŝ 3
4

Lemma 2.1.1. For each [n ], [m ] ∈O b j (4c o ), every morphism in H o m4c o ([m ], [n ]) can be

written as a composition of coface and codegenereacy maps. In other words, the coface and

codegenerecy maps generate all morphisms via composition.
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Lemma 2.1.2. The coface and codegeneracy maps obey the following relations











































d j
n+1 ◦d i

n = d i
n+1 ◦d j−1

n , i < j

s j
n−1 ◦ s i

n = s i
n−1 ◦ s j+1

n , i ≤ j

s j
n+1 ◦d j

n = s j
n+1 ◦d j+1

n = I dn−1 , ∀i , j

s j
n+1 ◦d i

n = d i
n−1 ◦ s j−1

n , i < j

s j
n+1 ◦d i

n = d i−1
n−1 ◦ s j

n , i > j +1











































Definition 2.1.3. The Simplex Category 4 is the categorical opposite of4c o . That is to say,

it is given by

O b j (4) =O b j (4c o )

H o m4([n ], [m ]) =H o m4c o ([m ], [n ])

H o m4([n ], [m ]) is H o m4c o ([m ], [n ])where all the arrows have been reversed.

Example 2.1.5. Some elements of H o m4([4], [2]). Compare to Ex 2.1.1.

[2] [4]

4

3

2 2

1 1

0 0

f
[2] [4]

4

3

2 2

1 1

0 0

g
[2] [4]

4

3

2 2

1 1

0 0

h
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Example 2.1.6. Some elements of H o m4([3], [5]). Compare to Ex 2.1.2.

[5] [3]

5

4

3 3

2 2

1 1

0 0

s
[5] [3]

5

4

3 3

2 2

1 1

0 0

t
[5] [3]

5

4

3 3

2 2

1 1

0 0

v

From now on, we will write the morphisms in the simplex category such that arrows

point from left to right. The face and degeneracy maps are similarly defined. Explicitly, they

are given by the following.

Definition 2.1.4. For each object [n +1] ∈O b j (4), there exists a collection of morphisms

called Face Maps {d i
n+1}

n+1
i=0 ⊂H o m4([n +1], [n ]) given by

d i
n =



















k , k < i

omit , k = i

k +1 , k > i



















Similarly, for each object [n ] ∈O b j (4), there exists a collection of morphisms called

Degeneracy Maps {s i
n}

n
i=0 ⊂H o m4c o ([n ], [n +1]) given by

s i
n =



















k , k < i

duplicate , k = i

k −1 , k > i



















See the following two examples where some face and degeneracy maps are written out

explicitly.
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Example 2.1.7. All the faces maps in H o m4([3], [2]).

Compare to Ex 2.1.3.

[3] [2]

3

2 2

1 1

0 0

d 0
2

[3] [2]

3

2 2

1 1

0 0

d 1
2

[3] [2]

3

2 2

1 1

0 0

d 2
2

[3] [2]

3 2

2 2

1 1

0 0

d 3
2

Example 2.1.8. All the degeneracy maps in H o m4([3], [4]).

Compare to Ex 2.1.4.

[3] [4]

4

3 3

2 2

1 1

0 0

s 0
4

[3] [4]

4

3 3

2 2

1 1

0 0

s 1
4

[3] [4]

4

3 3

2 2

1 1

0 0

s 2
4

[3] [4]

4

3 3

2 2

1 1

0 0

s 3
4

As in the cosimplex category, the face and degeneracy maps generate all of the mor-

phisms in the simplex category.

Lemma 2.1.3. The face and degeneracy maps obey the following relations











































d i
n−1 ◦d j

n = d j−1
n−1 ◦d i

n , i < j

s i
n+1 ◦ s j

n = s j+1
n+1 ◦ s i

n , i ≤ j

d j
n+1 ◦ s j

n = d j+1
n+1 ◦ s j

n = I dn , for all

d i
n+1 ◦ s j

n = s j−1
n−1 ◦d i

n , i < j

d i
n+1 ◦ s j

n = s j
n−1 ◦d i−1

n , i > j +1
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Definition 2.1.5. The standard N-Simplex ‖4n‖ ⊂ Rn+1 is the set of points t = (t0, ..., tn )

such that 0≤ ti ≤ 1 for all i ∈ {0, ..., n} and
n
∑

i=0
ti = 1.

Example 2.1.9. The following are the standard n-simplices for small n. The vertices have

been labeled according to standard conventions which will be explained shortly.

‖40‖ =
0

‖41‖ =
0 1

‖42‖ =

0 1

2

‖43‖ = solid tetrahedron with vertices {0, 1, 2, 3}

In order to provide some geometric intuition to the essentially combinatorial simplex

category, it may be equivalently described as follows. To each object [n ] ∈O b j4 associate

the standard n-simplex ‖4n‖. As for H o m4(−,−), it is generated by face and degeneracy

maps. Therefore it suffices to provide appropriate analogues for the standard simplices

to establish an identification. Coface maps correspond to inclusions of codimension-1

simplices and codegeneracy maps correspond to collapse maps to codimension-1 simplices.

Thus face maps correspond to projects onto codimension-1 simplices and degeneracy maps

correspond to expansions into codimension-1 simplices.
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Example 2.1.10. Coface maps {d̂ i
1}

2
i=0 ⊂ H o m4c o ([1], [2]) are represented by the following

inclusions

[1] [2]

2

1 1

0 0

0

1i

0 1

2

d̂ 0
1

[1] [2]

2

1 1

0 0

0

1 i

0 1

2

d̂ 1
1

[1] [2]

2

1 1

0 0

0 1

i

0 1

2

d̂ 2
1

Example 2.1.11. Codegeneracy maps {ŝ i
1 }

1
i=0 ⊂H o m4c o ([2], [1]) are represented by collapsing

two vertices in the 2-simplex to obtain the 1-simplex.

[2] [1]

2

1 1

0 0

0

1c

0 1

2

ŝ 0
1

[2] [1]

2

1 1

0 0

0 1

c

0 1

2

ŝ 1
1
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Example 2.1.12. Face maps {d i
1}

2
i=0 ⊂H o m4([2], [1]) are represented by the following pro-

jections

[2] [1]

2

1 1

0 0

0

1p

0 1

2

d 0
1

[2] [1]

2

1 1

0 0

0

1 p

0 1

2

d 1
1

[2] [1]

2

1 1

0 0

0 1

p

0 1

2

d 2
1

Example 2.1.13. Degeneracy maps {s i
1 }

1
i=0 ⊂H o m4([1], [2]) are represented by duplicating

one vertex in order to expand the 1-simplex into a 2-simplex

[1] [2]

2

1 1

0 0

0

1e

0 1

2

s 0
1

[1] [2]

2

1 1

0 0

0 1

e

0 1

2

s 1
1
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Definition 2.1.6. LetC be a category with objects O b j (C ) and morphisms H o mC (A, B )

for A, B ∈O b j (C ). A Simplicial Object inC is the image of a covariant functor F :4→C .

Equivalently, it is the image of a contravariant functor G :4c o →C .

Specifically, it is a sequence of objects X= {Xn}∞n=0 equipped with morphisms

∂ i
n−1 : Xn → Xn−1 and δi

n+1 : Xn → Xn+1

for each 0≤ i ≤ n which obey the face and degeneracy map relations











































∂ i
n−1 ◦ ∂

j
n = ∂

j−1
n−1 ◦ ∂ i

n , i < j

δi
n+1 ◦δ

j
n =δ

j+1
n+1 ◦δi

n , i ≤ j

∂
j

n+1 ◦δ j
n = ∂

j+1
n+1 ◦δ j

n = I dn , for all

∂ i
n+1 ◦δ

j
n =δ

j−1
n−1 ◦ ∂ i

n , i < j

∂ i
n+1 ◦δ

j
n =δ

j
n−1 ◦ ∂ i−1

n , i > j +1











































Definition 2.1.7. The Geometric Realization ‖X‖ of a simplicial object X= {Xn}∞n=0 is given

by the quotient of the disjoint union
⊔

n

�

‖4n‖×Xn

�

by the relations

�

d i
n (t ), x

�

∼
�

t ,δi
n+1(x )

�

for t ∈ ‖4n+1‖ and x ∈ Xn

�

s i
n (t ), x

�

∼
�

t ,∂ i
n+1(x )

�

for t ∈ ‖4n−1‖ and x ∈ Xn
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Example 2.1.14. Let Set denote the category of finite sets and set maps and define a simplicial

set F :4→ Set, S= {Sn}∞n=0 as follows

F
�

[0]
�

=
�

{a },{b },{c }
	

≡ S0

F
�

[1]
�

=
�

{a , b },{b , c },{a , c }
	

≡ S1

F
�

[n ]
�

= ; ≡ Sn , else

Then the face maps d 0
0 , d 1

0 : [1]→ [0] induce the following maps

{a } {a , b }

; {b } {a , c } ;

{c } {b , c }

∂ 1
0

∂ 0
0

∂ 1
0

∂ 0
0

∂ 1
0

∂ 0
0

‖S‖=

b c

a

For the geometric realization, each element of S0 gets assigned a vertex ‖40‖ and each element

of S1 gets assigned an edge ‖41‖. The relations define how to glue the vertices to the edges.

In other literature simplicial sets (more precisely, their geometric realizations) are called

simplicial complexes. Note that since each face map induces n +1 maps for each element

of Xn , the diagram of a simplicial object will always be a cubic lattice.

Note that Ex 2.1.14 is not complete since it does not include the degenerate simplices

and degeneracy maps. That is, S1 should also contain the degenerate simplices {a , a }, {b , b },

and {c , c }. They are required as the images of the degeneracy map s 0
0 : [0]→ [1]which simply

duplicates the vertex. In the same way, all of the sets Sn are non-empty since they at least

contain the images of the induced degeneracy maps. For instance, the degeneracy maps s 0
1
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and s 1
1 require that S2 be given as follows

F ([2]) =







{a , a , a },{b , b , b },{c , c , c },{a , a , b },

{a , b , b },{a , a , c },{a , c , c },{b , b , c },{b , c , c }







≡ S2

Namely, the degeneracy map s 0
1 duplicates the first element in an element of S1 to obtain

an element of S2, e.g. s 0
1 ({a , b }) = {a , a , b } ∈ S2.

However it is not uncommon to neglect degenerate simplices and degeneracy maps

since they do not contribute to the geometric realization. Namely, in the geometric real-

ization the degenerate 2-simplex {a , a , a } ∈ S2 is collapsed to the degenerate 1-simplex

{a , a } ∈ S1 which is itself collapsed to the vertex {a } ∈ S0.

Finally, it is possible to bring this discussion full circle by noting that each standard

simplex ‖4n‖ can be obtained as the geometric realization of a simplicial set. Namely, let S

be a set with cardinality |S |= n +1 andP (S ) be its power set. Define Si = {s ∈P (S ) | |s |=

i + 1} and note that
n−1
∪

i=0
Si = P (S ). Then the sequence {Si }n−1

i=0 is a simplicial set whose

geometric realization is the standard n-simplex, ‖4n‖.

For instance, if the addition F ([2]) =
�

{a , b , c }
	

≡ S2 had been made to example Ex 2.1.14,

then the union of the sequence of sets would have been
2
∪

i=0
Si =P (S ) where S = {a , b , c }

and the geometric realization would have been the full 2-simplex, ‖42‖.

Definition 2.1.8. A Simplicial Space is a sequence of topological spaces

X= {Xn}∞n=0 equipped with continuous maps

∂ i
n−1 : Xn → Xn−1 and δi

n+1 : Xn → Xn+1
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for each 0≤ i ≤ n which obey the following face and degeneracy map relations











































∂ i
n−1 ◦ ∂

j
n = ∂

j−1
n−1 ◦ ∂ i

n , i < j

δi
n+1 ◦δ

j
n =δ

j+1
n+1 ◦δi

n , i ≤ j

∂
j

n+1 ◦δ j
n = ∂

j+1
n+1 ◦δ j

n = I dn , for all

∂ i
n+1 ◦δ

j
n =δ

j−1
n−1 ◦ ∂ i

n , i < j

∂ i
n+1 ◦δ

j
n =δ

j
n−1 ◦ ∂ i−1

n , i > j +1











































Define a simplicial manifold as a simplicial space where the topological spaces are

smooth manifolds and where the face and degeneracy maps are smooth maps.

Definition 2.1.9. (The Nerve Construction)

Let M be a manifold and {Ui }i∈A be an open cover of M . For I = (i1, ..., ik ) a sequence of

integers i1 ≤ ...≤ ik in A, define l (I ) = k as the length of I and UI =Ui1
∩ ...∩Uik

when the

intersection is non-empty.

Now let Nn =
⊔

l (I )=n+1
UI , so that N0 =

⊔

i
Ui is the disjoint union of the elements of {Ui }i∈A,

N1 =
⊔

l (I )=2
Ui ∩Uj is the disjoint union of all non-empty pair-wise intersections of sequential

elements (i ≤ j ) of {Ui }i∈A, etc.

Then N= {Nn}∞n=0 is a simplicial manifold with induced face and degeneracy maps given

by inclusions and repetitions. The face and degeneracy maps between N0 and N1 are given

by

∂ 0
0 : Ui ∩Uj →Uj , ∂ 1

0 : Ui ∩Uj →Ui , δ0
0 : Ui →Ui ∩Ui .

The simplicial manifold N is called the Nerve of the open cover {Ui }i∈A of M .

Theorem 2.1.4. (The Nerve Theorem, Borsuk (1948))

Let M be a manifold and {Ui }i∈A be an enumerable open cover of M . If for any non-empty

subsets of the open cover {Uik
} ⊆ {Ui }i∈A it is the case that ∩

k
Uik

is either empty or contractible,

then the geometric realization of the nerve of {Ui }i∈A, ‖N‖, is homotopy equivalent to M .
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The nerve construction provides a method for generating a simplicial complex from a

manifold given an open cover. The nerve theorem provides sufficient conditions on the open

cover to guarantee that the simplical complex possesses the required information about the

manifold to compute the homology, namely the homotopy type. The last thing to consider

is how to equip a simplicial complex with the algebraic necessities for computing homology.

Before that is attempted, first consider the following example which demonstrates the

nerve construction and theorem in a simple enough case.

Example 2.1.15. Consider the manifold S1 with open cover {Ua ,Ub ,Uc } depicted below:

S1

Ua Ub

Uc

Following the nerve construction 2.1.9, a simplicial complex is constructed by considering

the elements of the open cover and their mutual intersections. In this case each element of the

open cover, as well as all pair-wise intersections, are open intervals. Furthermore, all higher

order intersections (e.g. triple intersections) are empty. Lastly, the face maps of the complex

are induced by inclusion maps and yields the following nerve complex (again ignoring the

degenerate simplices).
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{Ua } {Ua ∩Ub }

; {Ub } {Ua ∩Uc } ;

{Uc } {Ub ∩Uc }

i 1
0

i 0
0

i 1
0

i 0
0

i 1
0

i 0
0

‖N‖ ≈

Because the elements of the open cover and their intersections are contractible, as required

by the nerve theorem 2.1.4, the geometric realization of the nerve complex is in fact homotopy

equivalent to the circle. In this case, the vertices of the triangle are associated with the three

elements of the open cover and the three edges are the three non-empty pair-wise intersections.

2.1.2 The Algebra of Homology

Now that the combinatorial precursor has been covered, it remains to add the algebraic

necessities. Again, the presentation is from the categorical perspective.

Definition 2.1.10. Let R be a commutative ring with identity. An R -Algebra is a ring A with

identity together with a ring homomorphism f : R → A mapping 1R to 1A such that the

subring f (R ) is contained in the center of A.

Definition 2.1.11. A Graded R -algebra is an R -algebra with a direct sum decomposition

into sub-modules,A ∗ = ⊕
i∈Z

Ai . Elements in a given grading Ak are said to be of degree k .

Definition 2.1.12. LetA ∗ andB ∗ be graded algebras. A mapφ :A ∗→B ∗ is a morphism

of graded R -algebras if and only if it respects module structure ofA ∗ andB ∗ as well as

preserves degrees.
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Definition 2.1.13. LetA ∗ be a graded R -algebra. A differential onA ∗ is a map d :A ∗→A ∗

such that d has degree -1, d ◦d= 0.

A graded R -algebra equipped with a differential is called a Differential Graded R -algebra

(DGA, or chain complex) and is denoted (A ∗, d).

Definition 2.1.14. The category of differential graded algebras, DGA, has objects O b j (DGA) =
¦

(A ∗, d) | (A ∗, d) is a DGA
©

with morphisms, denoted H o mDGA

�

(A ∗, d), (B ∗,δ)
�

, given by

the collection of all graded R -algebra morphisms φ :A ∗ →B ∗ such that the following

diagram commutes for each grading i .

Ai+1 B i+1

Ai B i

φ

φ

d δ

Definition 2.1.15. Let (A ∗, d) be a DGA. Then the condition that d ◦ d = 0 implies that

Im(d)⊆Ker(d). Therefore, the Homology of a DGA is a graded R -algebra given by

H∗(A ∗, d) = ⊕
i∈Z

Hi (A ∗, d)where

Hi (A , d) =
Ker

�

d : Ai → Ai−1
�

Im
�

d : Ai+1→ Ai
� .

IfA ∗ is a DGA over a ring R , then H∗(A ∗, d) is said to be the homology of (A ∗, d) with

coefficients in R .

Now that algebraic machinery sufficient for computing homology has been described,

it remains to give a procedure for ascribing this machinery to a simplicial complex.

Definition 2.1.16. (The Homological Construction)

Let S= {Sn}∞n=0 be a simplicial complex and A be an algebra over a ring R . The DGA associ-

ated to S, denoted C∗(S), is constructed in the following manner.
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The nth-grading of C∗(S) is given by Cn (S) = ⊕
e∈Sn

A. In words, each element of Sn has an

associated copy of the algebra A and the nth-grading of C∗(S) is given by the direct sum over

the elements of Sn .

The differential is induced by the face maps of the simplicial complex as an alternating

sum, d j =
∑

(−1)i∂ i
j .

In topological literature, the resulting DGA is often denoted by (C∗(S, R ), d) and is called

a chain complex of S with coefficients in R .

Example 2.1.16. In example 2.1.15 the simplicial (nerve) complex of S1 with open cover

{Ua ,Ub ,Uc } was constructed. Here the example is carried through to the DGA where the

algebra is the integers, Z. For clarity, the generator of each Z summand carries a subscript

corresponding to the elements of the open cover and their intersections. Compare the following

diagram with that of example 2.1.15.

Z〈1a 〉 Z〈1a b 〉

; Z〈1b 〉 Z〈1a c 〉 ;

Z〈1c 〉 Z〈1b c 〉

0 C0(S1,Z) C1(S1,Z) 0

∂ 1
0

∂ 0
0

∂ 1
0

∂ 0
0

∂ 1
0

∂ 0
0

0d00

Therefore, the graded algebra in this case is given by C∗ =C0⊕C1, where

C0(S1,Z) =Z〈1a 〉⊕Z〈1b 〉⊕Z〈1c 〉

C1(S1,Z) =Z〈1a b 〉⊕Z〈1a c 〉⊕Z〈1b c 〉
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The differential is given by a signed sum over the face maps where sign is given by −1 to

the power of the superscript of the face map. In this case, the face maps are induced by the

inclusions in the simplicial complex and thus simply map generators to generators on the

level of the algebras. Specifically, in this case the only non-zero differential map d0 : C1→C0

is given by (w , x , y ) 7→ (x −w , y − x , y −w ) for (w , x , y ) ∈C1.

In fact, the differential d0 can be written as a matrix as follows:

d0 =











−1 0 −1

1 −1 0

0 1 1











.

Because d0 is the only non-zero differential, the homology is given by

H0(S1,Z) =
C0(S1,Z)

Im(d0)
=Z , H1(S1,Z) =Ker(d0) =Z , and Hi (S1,Z) = ;, else.

The computation of the homology groups H∗(S1,Z) could be carried out directly by evalu-

ating the quotients of the algebras. However, given the matrix representation of the differential

d0, it is enough to compute it’s Jordan-normal form to determine the size of it’s image and

kernel.

d̂0 =











1 0 0

0 1 0

0 0 0











.

Lastly, the invariants of primary interest in TDA can be computed.

Definition 2.1.17. Given the homology H∗(S, R ) of a chain complex C∗(S, R ) of a simplicial

complex over R , the Betti Numbers of S are given by the ranks of the homology groups.

Namely:

βi = rank
�

Hi (S, R )
�
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where

rank
�

Hi (S, R )
�

= dimQ

�

Hi (S, R )⊗R Q
�

and Q is the field of fractions over R .

2.1.3 Functors

Now we get to the heart of the machine. The goal of these constructions is to compute

invariants of manifolds. However, what guarantees that a simplicial complex derived from a

manifold captures any information about the manifold and how do the differential graded

algebras extract that information?

The answer is functoriality. In short, functors are maps between categories that preserve

the structure of the objects in the domain category. Notice that the morphisms within a

given category are maps between objects in that category that preserve the structure of

the objects, e.g. the morphisms of the simplex category 2.1.3 preserve the order (and thus

relations 2.1.3) and the morphisms of a DGA 2.1.14 preserve the gradings and algebraic

operations. Therefore, it is enough for a functor between two categories to commute with

the morphisms of those categories to guarantee that the structure of the domain category

is captured by the image of the functor in the co-domain category.

Therefore, what is needed to compute the homology of manifolds are functors between

a category of manifolds (which has not been explicitly defined here), the simplex category,

and the category of DGAs. One such functor is the nerve construction 2.1.9 which describes

how to construct a simplicial complex given a manifold and an open cover. Similarly, the

homological construction 2.1.16 can be thought of as a functor from a category of simplicial

complexes to a category of DGAs. Lastly, computing homology from DGAs can be described

as a functor from DGAs to a category of graded rings.

Note that this review of homology, as it pertains to manifolds, is not a complete picture
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and many details concerning category theoretic underpinnings have been omitted for

brevity. For example, an appropriate category comprised of manifolds with open covers

and morphisms between them has not been discussed. However, what has been presented

should provide sufficient for what follows.

2.2 Topological Data Analysis

In the previous section, a method for computing the homology of a manifold was reviewed.

Namely, given an open cover of the manifold the nerve construction 2.1.9 prescribed

how to generate a simplicial complex and the nerve theorem 2.1.4 provided sufficient

conditions on the open cover to guarantee that the complex captured the homotopy type

of the manifold. Next, the homological construction 2.1.16 demonstrated how to equip the

resulting simplicial complex with the algebraic structure required to obtain a DGA which

could then be used to compute the homology and Betti numbers of a manifold.

Now, the goal of the present section is to describe how this theoretical machinery can

be utilized to analyze data sets. In this case, a given dataD set is thought of as being a finite

sample of some underlying spaceP . It is the homology ofP which is the aim of TDA. As

has been seen in the previous section, this requires an open cover ofP . Therefore, what is

needed at this stage is a procedure for approximating an open cover ofP givenD

2.2.1 Open Covers from Data

The earliest methods for constructing open covers from finite data comes from two papers

Voronoï (1908b) and Voronoï (1908a) which describe an algorithm for generating covers

of Rn (or more generally a finite dimensional metric space) by what are now commonly

referred to as Voronoï Cells (not to be confused with the more modern use of the word cell
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as used in algebraic topology when discussing CW-complexes).

Definition 2.2.1. (Voronoï Cover)

Let V be a metric space with a metric d(−,−) and S⊂ V be a finite set of points in V . For

each point p ∈ S, the cell associated to p is denoted Cp and is given by

Cp = {x ∈V | d(x , p )≤ d(x , p̃ ) for all p̃ 6= p ∈ S}

The collection of Voronoï cells C= {Cp }p∈S is a called the Voronoï cover of V .

The nerve of a Voronoï cover is referred to in the literature as a Delaunay complex, so

called because when V is a Euclidean space the nerve of a Voronoï cover can produce a

Delaunay Triangulation (as first described in Delauney (1934)) of the convex hull of S.

However, if the data set S is known to be a sample from a metric space (V , d(−,−)), then

an estimate of an open cover can be provided by taking the open ε-ball around each point

in S⊂V . The nerve of this type of cover is referred to as the C̆ech Complex and is denoted

C∗(S,ε). The following theorem (which can be found in Carlsson (2009)) improves on the

nerve theorem 2.1.4 by guaranteeing that there exists an ε such that the C̆ech complex

recovers the homotopy type of the underlying space.

Theorem 2.2.1. Let (V , d(−,−)) be a Riemannian manifold. Then there exists a positive e ∈R

such that for each 0 < ε < e there exists a finite subset S ⊂ V such that the C̆ech complex

C∗(S,ε) has the that homotopy type as V .

A similar but computationally cheaper approach is given by the Vietori-Rips Complex,

denoted V R∗(S,ε), in which k + 1 data points {x0, ..., xk+1} ⊂ S form a k -simplex if the

distance between each pair is less than ε. The primary difference between the Cĕch and

Vietoris-Rips complex is that the parameter ε in the C̆ech complex refers to the radii of
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the open balls while the ε parameter in the Vietoris-Rips complex refers to the distance

between the data points themselves.

Example 2.2.1. A common example of how the C̆ech complex and the Vietoris-Rips complex

can differ given the same data set.

x0 x1

x2

(a) (b) (c)

(a) The ε-balls around three data points x0, x1 and x2. (b) the C̆ech Complex for this

arrangement. (c) the Vietoris-Rips complex for this arrangement.

Notice that in example 2.2.1 above the C̆ech complex is 1-dimensional while the Vietoris-

Rips complex is 2-dimensional. This is seen as one of the primary advantages of the Vietoris-

Rips complex over the C̆ech complex. The C̆ech complex is more likely to generate simplices

over a wide range of dimensions while the Vietoris-Rips complex tends to produce simplices

in a narrow range of dimensions.

A concern here is that the Vietoris-Rips complex may miss important features which the

C̆ech complex captures with its higher level of resolution. However, given the relationship

between parameters ε as used by both constructions, there exists the following relationship

(Carlsson 2009)

C∗(S,ε)⊆V R∗(S,ε)⊆C∗(S, 2ε)

which guarantees that for a given C̆ech complex with a fixed ε, there is a choice of ε for

the Vietoris-Rips complex which captures the same structure (here ⊆ relation means sub-
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complex).

The methods described thus far for generating complexes typically start by taking the

entire data set as the vertex set of the complex. However, this may not be necessary and lead

to superfluous simplices which substantially increase the complexity of the computation

but do not ultimately contribute to homology. Consider example 2.1.15 where a simple

simplicial complex was generated using a 3-part open cover of the circle. Because the open

cover was small, the simplicial complex was small and the homology of the circles was

able to be quickly computed in example 2.1.16. However, one could construct a similar

open cover which is much larger. In that case, the simplicial complex and thus the matrix

representation of the differential would have been much larger. This would have greatly

increased the effort needed to compute the exact same homology.

A more recently developed method for generating complexes from data sets (presented

by de Silva and Carlsson (2004)) seeks to mitigate the problem of superfluous simplices.

The Witness Complex does this by using a subset of the data setL ⊂ S (called the landmark

set) as the vertex set and the rest of the data set is used to determine how to construct the

complex from the landmark set.

Definition 2.2.2. (Strong Witness Complex)

Let (V , d(−,−)) be a metric space and L ⊂ V be a finite subset, called the landmark set,

and ε > 0 ∈ R. For each v ∈ V , let dv =min
l∈L

�

d(x , l )
	

. Define the strong witness complex,

W s (V ,L ,ε), in the following way. LetL be the vertex set. A k +1 subset {l0, ..., lk} ⊆L is a

k -simplex if and only if there exists a point v ∈V such that for all 0≤ i ≤ k , d(v, li )≤ dv + ε

(in which case v is called the witness to the k -simplex).

Lastly, the first scheme for generating simplicial complexes from discrete data to be

implemented on a modern computer does not fall nicely within the open cover paradigm

thus far described. However, it deserves remarking upon for its historical importance as
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well as for its contemporary uses.

First developed to formalized the notion of "shape" for sets of points in the plane (Edels-

brunner et al. 1983), α-shapes where then generalized to data sets inR3 (Edelsbrunner and

Mücke 1994). They where then used to develop and implement an algorithm for numerically

computing the Betti numbers of simplicial complexes on the 3-sphere (Delfinado and Edels-

brunner 1995) with Z2 coefficients which was later improved (Edelsbrunner et al. (2002)

and Zomorodian and Carlsson (2005)) to compute the homology of arbitrary simplicial

complexes with a broader range of coefficients.

The essential distinction between the methods described thus far and α-shapes is that

rather than building a simplicial complex up from a vertex set, an α-shape is constructed

by whittling away at the convex hull of the data set. As where the other methods can be

thought of as bottom-up, α-complexes are a more top-down approach.

The result is a polytope called the α-shape of the data set. This is then transformed

into a simplicial complex (called the α-complex) via a relationship between α-shapes and

Delaunay triangulations. A full description of α-shapes and the resulting α-complexes

would require a relatively lengthy exposition of Delaunay triangulations and some discrete

convex geometry which is beyond the scope of the current narrative. The interested reader

is directed to the references for a full description.

2.2.2 Persistent Homology

Note that the methods described in subsection 2.2.1 introduce a new free parameter; ε’s

in the case of the C̆ech, Vietoris-Rips, and Witness complexes, and α in the case of the

α-complex. Different choices of these parameters can give rise to simplicial complexes

with different homology. The natural question is which value of the parameter is best? The

current answer is all of them.
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Persistent Homology is among the primary methods used in TDA to extract qualitative

information from a data set and was first described by Edelsbrunner et al. (2002) which

utilized α-complexes. Persistent homology is the process of iterating through values of the

newly introduced free parameter (usually increasing it’s value), constructing the complex,

and computing homology at each increment of the parameter. The key feature that elevates

this method is that the complex associated to a given value of the free parameter is a

subcomplex of the complex generated by the next increment of the free parameter.

Example 2.2.2. Consider the C̆ech complex in which the free parameter ε is the radius of

an open ball around each point. As the radius of the ε-balls increase, the only change is

that higher dimensional simplices are added to the complex. This means that each complex

generated at a given value of ε is a subcomplex of the complex generated for larger values of

ε.

(a) (b) (c)

(a) ε is small so all intersections of ε-balls are empty, the complex is just a vertex set. (b)

for larger ε the pairwise intersection of the ε-balls is non-empty which produces edges in the

complex (c) for even larger ε the triple intersection of the ε-balls is non-empty which yields a

2-simplex in the complex.

In the literature, a sequence of simplicial complexes {Si }kn=0 is called a filtration if each

Si is a sub-complex of Si+1. That is, if there is an inclusion of simplicial complexes, Si ,→ Si+1.

31



Due to functoriality, an inclusion map between simplicial complexes induces a map on

their homology groups, H∗(Si )
i∗→ H∗(Si+1). In the case of TDA, incrementing by the free

parameter produces such a filtration, (see example 2.2.2 above).

Utilizing the filtration, and the resulting induced maps on the homologies, it is possible

to determine where in a filtration a generator in homology (which represents a topological

feature) first appears and when it subsequently disappears. Notice that in example 2.2.2,

the first complex has trivial first homology, the second complex has one generator in first

homology, and in the third complex that generator has been "filled in" to form the 2-simplex.

Therefore, there was a topological feature (represented by a generator of first homology)

that appeared in the second complex and persisted until the third complex.

The filtration level at which a topological feature (equivalently, generator in homology)

first appears is called its birth and the subsequent level of filtration at which it no longer

appears is called its death. Therefore, once the persistent homology of a data set has been

computed, what is left is a (often large) collection of generators in homology with their

respective births and deaths. This approach allows the data analyst to examine the topo-

logical structure of the data set at various levels of resolution simultaneously as opposed

to attempting to select the single "best" value of the free parameter. The new question is,

which of these generators are "genuine" features of the data set and which are artifacts of

the various choices that have been made?

Edelsbrunner et al. (2002) suggested the following method. The length of time for which

a given topological feature persists is called its lifespan, lifespan = death − birth. Those

generators with relatively longer lifespans represent significant topological features of the

data set while those with relatively shorter lifespans do not. This perspective is largely

motivated by the intuition that it will take more increments of the free parameter for the

open balls to fill in a large cavity in the data set than a small one.
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Example 2.2.3. The C̆ech complex of a configuration of points which are close to one another.

Si Si+1 Si+2 Si+3

For comparison, the C̆ech complex of the same configuration of points but farther apart.

Si Si+1 Si+2

Si+3 Si+4 Si+5

Si+6 Si+7 Si+8

Notice that in the first configuration the homology becomes trivial much faster than in the

second configuration. Namely, the three components in the former have a life span of 1 while

those in the latter have a life span of 5. Similarly, the generator of first homology has a lifespan

of 2 in the first example and a lifespan of 3 in the second.

33



However, assigning significance to ordering the generators by lifespan is not always

reliable and should be used as heuristic rather than a hard rule. Namely, in section 4.1.2

it is shown that noise in a data set tends to flatten the distribution of the lifespans of the

generators.

There are two common methods for visualizing the output of persistent homology

referred to as barcodes and persistence diagrams (Edelsbrunner et al. (2002) and Carlsson

et al. (2005)). In the barcodes representation, the x-axis is time and each topological feature

has an associated interval whose endpoints are its birth and death. These intervals are

usually visually separated by Betti number. Persistence diagrams represent the same data

with a scatter plot wherein each topological feature corresponds to a point in the plane

whose x-ccordinate is its birth and its y-coordinate is its death. In this representation, it is

often necessary to have a persistence diagram for each Betti number.

Example 2.2.4. A barcode for the second set of points in example 2.2.3 would look like the

following.

i i +1 i +2 i +3 i +4 i +5 i +6 i +7 i +8

β0

β1

The bottom three lines represent the three connected components which persist from

time i until time i + 5 when they come together to form a single connected component

and one loop which persists for the rest of recorded time. That is, from time i to time i +5,

β0 ≡ rank(H0) = 3 andβ1 ≡ rank(H1) = 0. At time i+5 this changes to becomeβ0 ≡ rank(H0) = 1

and β1 ≡ rank(H1) = 1.
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Example 2.2.5. Below is an example of two persistence diagrams. Each point represents

a generator in zeroth and first homology respectively. The x-coordinate of each point is its

corresponding generators birth and y-coordinate its death. More about these diagrams the

the data set they were generated from will be discussed later.

0 50 100 150 200 250
Birth

0

50

100

150

200

250

D
ea

th

Betti-0 Persistence Diagram

0 50 100 150 200 250
Birth

0

50

100

150

200

250

D
ea

th

Betti-1 Persistence Diagram
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Persistence diagrams have been shown to be a complete separable metric space (Mileyko

et al. 2011) using the Wasserstein metric. Another popular metric on the space of persistence

diagrams is called the bottle-neck distance. However, while the structure of metric space

makes the study of persistence diagrams amenable to standard statistical methods, it has

been found to be ill-behaved. Namely, the Wasserstein metric and bottle-neck distance

are relatively computationally intensive as compared to more common place metrics.

Furthermore, the average of a persistence diagram is not unique as pointed out in Mileyko

et al. (2011). These, among other issues, make working with persistence diagrams directly

rather difficult. Subsequently, various methods for transforming persistence diagrams into

more agreeable representations has become an industry on its own.

2.2.3 Persistence Curves

One attempt to remedy some of these problems is to vectorize the persistence diagrams.

That is, transform it into a vector in a Euclidean space. Among the most popular of these

methods are so called Persistence Landscapes (Bubenik 2015). These are based on rank

functions.

Definition 2.2.3. (Rank Functions)

Given a persistence diagram, define the rank function,λ :R2→R, by

λ(b , d ) =







β b ,d b ≤ d

0 else







where β b ,d is given by rank
�

Im
�

H∗(Sb )→H∗(Sd )
�

�

As in the case of persistence diagrams, all of the non-zero images of λ lie above the

diagonal in the first quadrant of R2. Therefore, the re-scaled rank function is often used

which simply rotates the plane so that the diagonal becomes the x-axis.
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Definition 2.2.4. (Re-scaled Rank Functions)

Given a persistence diagram, let m = d−b
2 , h = d−b

2 , and define λ̃ :R2→R as given by

λ(m , h ) =







βm−h ,m+h h ≥ 0

0 else







Using the notation of the re-scaled rank functions, persistence landscapes are given by

the following definition.

Definition 2.2.5. (Persistence Landscapes)

Given a persistence diagram, the persistence landscape is a function λ :N×R2→ R̄ (where

R̄= [−∞,∞] is the extended real line). For a given k ∈N, it is given by:

λ(k , t ) =λk (t ) = sup
�

m ≥ 0 | β t−m ,t+m ≥ k
�

As described in Bubenik (2015) and Bubenik (2018), persistence landscapes have many

advantages, both computationally and theoretically, over barcodes and persistence dia-

grams. A thorough comparison is beyond the scope of the present discussion and interested

reads are directed to the references.

Following the popularity of persistence landscapes, various other vectorization schemes

have been developed. Many of these, including persistence landscapes, fall under the

general framework of Persistence Curves as defined by Chung and Lawson (2019).

Definition 2.2.6. (Persistence Curves)

Let D be the space of persistence diagrams,F be the set of all functionsψ :D ×R3→R

such that ψ(D ; b , b , t ) = 0 for all (b , b ) ∈ D and D ∈ D, and let T be the set of summary

statistics (i.e. T ∈T is a map that takes a multi-set to a scalar). Lastly, letR represent the

space of functions from R to R.

37



Then, define a map P :D ×F ×T →R where:

P (D ,ψ, T )(t )→ T (ψ(Ft , t )) , t ∈R

P (D ,ψ, T )(t ) is called the persistence curve of D with respect toψ and T .

Example 2.2.6. Let maxk (S ) be the k t h largest number of a set S. Then given a persistence

diagram D , define

l(b ,d )(t ) =



















0 t /∈ (b , d )

t − b t ∈ (b , b+d
2 ]

d − t t ∈ ( b+d
2 , d )



















Then the k t h -persistence landscape is given by λk (t ) =ma xk{l(b ,d )(t ) | (b , d ) ∈D }. Note

that l(b ,d )(t ) =min{t −b , d−t }. To fit persistence landscapes into the framework of persistence

curves, letψ(b , d , t ) =min{t − b , d − t } and T =maxk . Then P (D ,ψ, T )≡λk .

While demonstrating that persistence landscapes fall in the paradigm of persistence

curves is significant, it is not the most enlightening/intuitive example. Therefore, consider

the following example which recovers the Betti Curve which is a function βk :R→R given

by t 7→ rank
�

Hk (St )
�

.

Example 2.2.7. Let 1 :R3→R be given by 1(x , y , t ) 6= 1 if x = y and 0 otherwise. Let
∑

be

the usual summation operation. Then in the language of persistence curves, letψ≡ 1 and

T ≡
∑

and define

P
�

Dk , 1,
∑
�

(t ) =
∑

�

{1(Dk ; d , b , t ) | b ≤ t , d > t }
�

Where 1(Dk ;d , b , t ) indicates that the function 1(d , b , t ) is being evaluated on the gen-

erators in the persistence diagram of generators in kth homology, Dk . For a fixed time t ,
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{1(Dk ;d , b , t ) | b ≤ t , d > t } is the collection of values that 1(Dk ;d , b , t ) takes when evalu-

ated on the subset of generators in Dk whose times of birth and death satisfy b ≤ t and d > t

(those generators in Dk alive at time t ).

Therefore, {1(Dk ;d , b , t ) | b ≤ t , d > t } is a collection of 1’s the size of which is equal to

the number of generators in Dk alive at time t . The summation operation
∑

then adds up

all of the 1’s.

This is just a fancy way of adding up all of the generators in Dk alive at each time t and

is therefore equivalent to the Betti Curve, P (Dk , 1,
∑

)(t ) =βk (t ).

In fact, numerous curves can be generated by varying the functionψ= 1 in the previous

example 2.2.7. It is persistence curves of this type which will be the primary concern going

forward.
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CHAPTER

3

METHODS

Now that the theoretical ground work has been laid, it is time to describe the project. The

previous discussion involved computing the persistent homology and persistence curves

(hereafter referred to as PCs) from a given data set. Therefore, a characterization of this

class of statistical summaries would require computing them for a relatively large number

of data sets. However, in some instances the individual datum within a given data set are

complex enough to be considered as data sets in their own right. In this case, persistence

curves can be computed for each element of the data set and used for comparison. Here, a

data set of images was thought to suffice.

Mathematically, an 8-bit RGB color image is a three dimensional array of integers

each element of which lies in the range [0, 255]. The space of such images will be denoted
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Ig[m , n , 3]where the given image has pixel dimension mxn and three color channels (red,

green, and blue respectively). Thought of in this way, such an image is a structured data set

in itself.

In this study, various PCs, in the style of example 2.2.7, were computed for each image in

a data set of labeled images. The viability of a given PC was then substantiated by attempting

to classify the images, according to their original labels, based on their PCs. This gave a

sense of how well a given PC captured characteristic features of a class of images which

distinguish it from other classes.

After this was accomplished, an investigation into the robustness of the PCs as statistical

summaries was conducted by injecting the images with increasing levels of various noise

types and recomputing their PCs. Methods for filtering out the noise at the level of the PCs

were then proposed and investigated.

3.1 The Data Set

The KTH-TIPS2b data set was used in this study. It is a collection of 4,752, 200x200 pixel, 8-

bit RGB color images of 11 different texture classes. For each of the 11 textures, four samples

were used to generate images which were taken under varying illumination, perspective, and

scale (hence TIPS) at the School of Computer Science and Communication in Stockholm

Sweden. More information about the images in this data set, including how they were

collected, can be found in their paper Mallikarjuna et al. (2006). Figures 1-11 below contain

a sample image from each texture class.
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aluminium brown bread corduroy cork cotton

cracker lettuce linen white bread wood wool

Figure 1 - Figure 11

3.2 Persistence Homology

Persistence Diagrams (PDs) were derived from the images using the software Perseus

(Mischaikow and Nanda 2013) which is implemented in MATLAB. Each image in the KTH-

TIPS2b data set is a 200x200 pixel 8-bit RGB (red-green-blue) image. That means that each

image is represented mathematically by a 200x200x3 array with integer values ranging from

0 to 255. Each of these were split into three 200x200 matrices each of which were analyzed

independently.

Perseus takes in one of these 200x200 matrices. It then iterates through the integers from

0 to 255 and for each element of the matrix, it either changes its value to 0 or 1 depending

on whether the element’s value is above or below the integer respectively. This process is
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referred to as thresholding. It then computes two PDs, one for the Betti-0 invariant and

another for the Betti-1 invariant. See Fig.3.12 for examples.
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Six Persistence Diagrams for Linen

Figure 3.12: The six persistence diagrams for the linen texture example 3.8.

The intuitive way to think about the thresholding process is the following. Each color

channel of an image in the data set is a 200x200 matrix of integer values in the range [0,255].

Now think of a given value in the matrix I m [i , j ] as the value of a function I m :R2→Rwhich

takes (i , j ) 7→ I m [i , j ]. The graph of this function is a surface bounded in the rectangular

prism [0,200]2× [0,255]⊂R3. The thresholding process can then be thought of as taking

sublevel sets of the resulting surface at integer values along the z-axis. Each such sublevel

surface includes into the next which produces the filtration that underlies the persistent
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homology.

See figure 3.13 for an example of an image and its representation as a surface. Further-

more, see example 3.2.1 for how this thresholding process works with this example.
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Example: f(x, y) = 127.5 ( xy
65025 ) sin(4 x

255 ) sin(4 y
255 ) + 127.5

Figure 3.13: A 255x255 pixel gray-scale image artificially generated using the function
f (x , y ) and its representation as a surface in R3.

Because the image in figure 3.13 is an 8-bit gray-scale image. There is only one color

channel and thus only one matrix/surface for which to compute the persistent homology.

For the RGB images in the KTH-TIPS2 data set, there are three color channels and therefore

three matrices/surfaces for which to compute the persistent homology.
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Example 3.2.1. The resulting images and sublevel surfaces of figure 3.13 at six different

threshold values to be read left to right and top to bottom in order of increasing threshold

value.
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3.3 Persistence Curves

Each feature (point) in a persistence diagram has three associated values of interest, birth

(x-coordinate), death (y-coordinate), and lifespan (death - birth). Persistence Curves (PCs)

may be derived from aggregating these quantities in various ways over all the features in

the diagram (see section 2.2.3 for a formal treatment). For this study, the Betti, Life, Midlife,

and Multiplicative Life curves were chosen. Each curve is generated by iterating through

the integers from 0 to 255 and at each integer performing a computation on each feature
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in a given PD which is alive at that time and summing the results of the computations.

The formula for the computation on each feature is what distinguishes the curves and are

described in Fig.3.1.

Curve Formula

Betti 1

Life (death - birth)

Midlife (death + birth)
2

Multiplicative Life death
birth

Table 3.1: Formulas for computing the persistence curves used in this study.

For example, the Betti Curve simply returns 1 for each feature alive at the given threshold

and sums over all of them thus returning the total number features alive at each given time.

For each image in the KTH-TIPS2 data set and each curve type in table 3.1 the analysis

produces six curves. Figure 3.14 demonstrates the six Betti curves for the linen example 3.8

mid-computation. These six curves are concatenated to form a 1,530 dimensional vector

called the Topological Color Profile (abbreviated TCP) of the given image with respect to

the given curve. Figures 4.1 - 4.4 depict the four TCPs of the linen example 3.8, one for each

curve in table 3.1.
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Figure 3.14: The three color channels of the linen example 3.8 alongside their respective
PDs and Betti Curves at threshold 128.

3.4 Noise Injections

In order to determine how robust the PCs were to perturbations, the original images were

injected with increasing amounts of noise and the TCPs regenerated for the noisy images.

For this study the images were injected with Gaussian, speckle, and salt&pepper noise at

increasing levels of signal-to-noise-ratio as measured in decibels (SNRdB) by the Eq.3.1

where I is the image before adding noise and J is the image after adding noise.

SNRdB= log10

�
∑

J 2
i j k

∑

(Ji j k − Ii j k )2

�

(3.1)

Gaussian noise adds mean zero noise to each pixel with a variance determined by
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the SNRdB value. Speckle noise multiplies mean one noise to each pixel with variance

determined by the SNRdB. Finally, salt&pepper noise either maximizes or minimizes a

random sample of the pixel values the size of which is determined by the SNRdB. Due to its

discontinuous nature, salt&pepper noise was expected to be the most obstructive of the

three noise types. The SNRdB values chosen for this study were 1.1 and every two from 2 to

28 totaling 15 SNRdB values. See Figs.18-32 for some examples of noisy images.

Gauss 1.1 Gauss 4 Gauss 8 Gauss 12 Gauss 16

Speckle 1.1 Speckle 4 Speckle 8 Speckle 12 Speckle 16

S&P 1.1 S&P 4 S&P 8 S&P 12 S&P 16

Fig.18 - Fig. 32 The linen example 3.8 injected the three noise types at five of the fifteen
levels of SNRdB.
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3.5 Deep Learning

A test of the relative viability of a given PC was conducted by attempting to classify the

images, according to their original texture classes, based on their TCPs. In order to do this

a, machine learning model was built and trained to classify the data set of TCPs. There are

various machine learning architectures including SVM, Random Forests, and so called deep

learning techniques (such as neural and convolutional networks). The subject of machine

learning is very much a live and evolving rapidly. What follows is a brief description of the

deep learning method used in this study and the interested reader is directed to Goodfellow

et al. (2017) for a formal and modern treatment of the topic in general.

The machine learning architecture chosen for this study was a neural network called a

Multi-Layer Perceptron (MLP). The model takes a TCP as input and returns a prediction as

to the class of the TCP’s associated image in the form of an eleven dimensional vector, one

component for each texture class (also known as a 1-hot encoding). The value of a given

component in the output vector is interpreted as the probability that the image associated

to the input TCP belongs to the texture classes associated to that component.

An MLP makes these predictions by passing the input vector (TCP) through a sequence

of linear transformations with an intermediate non-linear function after each transforma-

tion. The final non-linearity normalizes the vector so that it is interpretable as a probability.

Each operation (application of linear transformation and non-linear function) reduces

the dimension of its input. A vector resulting from one of these operations, if it is not the

final output of the model, is referred to as a hidden layer. The number of hidden layers, the

reduction in dimension after each operation, and the non-linear functions themselves are

all hyper-parameters which have to be tuned by hand for a model to be successful.

The MLP used in this study had one hidden layer of dimension 250. That is, the model

takes an input TCP of dimension 3,060 (see section 4.1 for why this is doubled from 1,530),
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linearly transforms it into a 250 dimensional vector, and passes it to a non-linear function,

in this case a ReLu (rectified linear). The resulting vector (hidden layer) is then passed to

a second linear transformation which reduces its dimension to 11. Finally, it is given to a

final non-linear function, in this case a softmax, which normalizes the vector so that its

components are interpretable as probabilities. See Fig.3.30 for a diagramatic representation

of the architecture.

The components of each linear transformation are parameters of the model. The model

is trained by optimizing these parameters with respect to a loss function which measures the

difference between the models prediction and the correct classification. The loss function

and optimization algorithm used in this study were categorical cross-entropy and the Adam

Optimizer (a variant of stochastic gradient descent). This model was implemented in

TensorFlow using their Python APIs.

TCP
Lin.

Trans.
ReLu

hidden

layer

Lin.

Trans.

Soft

Max
Predict.

Cross

Entrop

Adam

Optimizer

Figure 3.30: Diagram of the MLP architecture.

When training a machine learning model, the data set is split into three parts. The first

is called the training set and is the data on which the model is optimized. In this study, the,

training set accounted for approximately 60% of the images (2,832). The second is called the

validation set which is used when hand tuning the hype-parameters to determine whether

the model is over-fitting to the training set. The final division is the test set which is used

50



to test the model once the hyper-parameters have been settled to again determine if the

model is over-fitting to the training/validation set. In this case, the validation and test sets

made up approximately 20% of the images (960) each. Furthermore, the splitting of the

data set into training, validation, and test sets was uniformly random across each of the

four samples of each texture class.

Lastly, in order to increase the models accuracy it is common to optimize over the

training set multiple times. Each instance of optimizing the model over the entire training

set is called an epoch. In this study, ten such models were trained for twelve epochs and

their average accuracy and error was recorded at each epoch.
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CHAPTER

4

RESULTS AND ANALYSIS

4.1 TCPs and Noise

Recall from section 3.3 that a topologial color profile (TCP) associated to a given image in

the data set is constructed by concatenating the six persistence curves (PCs) resulting from

computing the persistent homology of the image.
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Figure 4.1: The Betti-TCP of the linen example of Figure 3.8. The first three peaks are
the β0-number at each threshold in the red, green and blue color channels respectively.
Similarly, the second three peaks are the β1-number at each threshold in each of the three
color channels respectively.
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Figure 4.2: The Life-TCP of the linen example of Figure 3.8. The first three peaks are the
total lifespans of every generator in zeroth homology alive at each threshold in the red,
green and blue color channels respectively. Similarly, the second three peaks are the total
lifespans of every generator in first homology alive at each threshold in each of the three
color channels respectively.
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Figure 4.3: The Midlife-TCP of the linen example of Figure 3.8. The first three peaks are
the total mid-lives of every generator in zeroth homology alive at each threshold in the red,
green and blue color channels respectively. Similarly, the second three peaks are the total
mid-lives of every generator in first homology alive at each threshold in each of the three
color channels respectively.
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Figure 4.4: The Multiplicativelife-TCP of the linen example of Figure 3.8. The first three
peaks are the total multiplicative-lives of every generator in zeroth homology alive at each
threshold in the red, green and blue color channels respectively. Similarly, the second three
peaks are the total multiplicative-lives of every generator in first homology alive at each
threshold in each of the three color channels respectively.
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4.1.1 Extended Topological Color Profiles

It is argued in Chung and Lawson (2019) that computing the persistent homology and PCs

of a given image misses important information. Namely, generators which intersect the

boundary of the image may not be detected by persistent homology alone. Therefore, they

suggest computing the persistence curves of the "inverse" image as well. This means, for an

8-bit image I m , computing the persistence curves of I m and 255− I m , then concatenating

the resulting TCPs into what will be called the extended TCP (ETCP).

Chung and Lawson (2019) present an example of an artificial image for which the

additional information captured by the inverse is significant. However, that example is

highly atypical compared to natural images where there are far more generators. Alexander

Duality (Hatcher 2001) guarantees that generators in the interior of the image will be

captured by both the image and its inverse. Therefore, the only additional information to

be gained from the inverse image is that related to generators which lie on the boundary.

However, in natural images, the density of generators is generally much higher than that

of the example in Chung and Lawson (2019). Since the boundary of an image grows linearly

in the dimensions and the area grows quadratically, as the density of generators increases

for fixed image dimensions (equivalently, as the size of the image grows with constant

generator density) the contribution of those generators that lie on the the boundary of the

image diminishes and can therefore be ignored.

To verify this, the deep learning model was trained on ETCPs and artificial ETCPs

(aETCP). The aETCPs were generated for a given TCP by reversing the persistence curves

for each color channel (for duality reasons) and concatenating them to the original TCP.

All that is meant by "reversing" a persistence curve is that the thresholding (an thus the

indexing of the vector) are incremented backwards, i.e. C [i ] =C [255− i ]where C is a given

persistence curve.
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Figure 4.5: The Betti ETCP and the Betti aETCP for the linen example 3.8

.

While there are some noticeable differences in the ETCP and aETCPs, they bear a striking

resemblance. Furthermore, as stated, the deep learning model was trained on both the

ETCPs and the aETCPs. As can be seen in figures 4.6 - 4.9, the deep learning model detected

no significant difference between the ETCPs and the aETCPs as it performed equally well

on both data sets.

This result indicates that it suffices to compute only the TCPs which reduces the neces-

sary TDA computations by half.
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Figure 4.6: Training accuracy and loss for the Betti ETCP and the Betti aETCP. Final training
accuracies for the ETCP data and the aETCP data were 97.83% and 98.00% respectively.
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Figure 4.7: Training accuracy and loss for the Life ETCP and the Life aETCP. Final training
accuracies for the ETCP data and the aETCP data were 98.59% and 97.80% respectively.
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Figure 4.8: Training accuracy and loss for the Midlife ETCP and the Midlife aETCP. Fi-
nal training accuracies for the ETCP data and the aETCP data were 98.35% and 97.73%
respectively.
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Figure 4.9: Training accuracy and loss for the Multiplicative ETCP and the Multiplicative
aETCP. Final training accuracies for the ETCP data and the aETCP data were 98.48% and
97.87% respectively.

.

Attempts to train the model on the TCPs alone however, were far less successful; often

only achieving accuracies of approximately 75%. Therefore, while the ETCPs do not carry

significantly more topological information than the TCPs, the deep learning model tends

to prefer the larger input vector. This could be due in part to the fact a larger input vector

implies more free parameters. However, when this was accounted for by increasing the

size of the hidden layer, the model still performed worse on the TCPs alone. This implies

that where the free parameters appear in the deep learning model (before or after the ReLu
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activation function) is just a significant as the total number of free parameters in the model.

While the author is convinced by the evidence that the ETCPs are little to no more

informative than the TCPs, he is not in the mood to argue with the deep learning model.

Therefore, the ETCPs will be used in the rest of the analysis.

4.1.2 The Effects of Noise

As mentioned before, in order to test the ETCPs response to noise, the images in the data

set were injected with Gaussian, speckle, as well as salt&pepper noise at increasing levels

of SNRdB = (1.1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28).

While the response varies for different noise and curve types, there are some pronounced

commonalities. Namely, the number of generators increases with the amount of noise, and

the peaks of the curves tend to drift towards the endpoints of the threshold intervals. See

figure 4.10 for an example of this behavior. Note that because the PCs used in this study

are computed by summing quantities over all generators alive at a given time (see table

3.1), the increase in the number of generators creates serious deviations from the noiseless

ETCPs.

Another enlightening visualization are histograms of the lifespans of the generators

as the amount of noise in the images increases. In line with the intuitive ranking of the

significance of generators in terms of their lifespans described in 2.2.2 it is expected that

image noise will contribute a disproportionate number of relatively small lifespan gen-

erators. However, figure 4.11 shows that even at relatively low levels of noise the lifespan

distribution of the generators broadens and shifts to the center of the threshold interval. In

fact, the noise generally decreases the number of short lived generators and increases the

number long lived generators. An example of this behavior can be seen in figure 4.11.
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Figure 4.10: The Betti ETCPs for the linen example 3.8 with Gaussian noise injected with
SNRdB = (1.1, 4, 8, 12, 16,∞). Where SNRdB=∞ denotes the ETCP without any noise injec-
tion.
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Figure 4.11: The four peaks in a given plot are four histograms of the generators according
to lifespan for the linen example 3.8 in the red color channel, the first two peaks being β0

and β1 generators of the original image; the third and fourth peaks corresponding to the β0

and β1 generators of the inverse image.
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4.2 Filtering Out the Noise

As seen in the previous section 4.1.2, the presence of noise in the images produces three

primary effects; increases the number of generators, broadens the distribution of lifespans

generally tending towards longer lifespans, shifts the constituent PCs of an ETCP towards

their threshold endpoints.

The third effect is the hardest to filter because it is exactly the distribution of the con-

stituent persistence curves that characterizes an ETCP. For instance, one could compute the

center of mass of a PC (thought of as a mass density distribution on the interval [0,255]) and

attempt to apply a transformation to shift that center of mass to the center of the interval.

However, the resulting ETCPs would all look like twelve peaks evenly spaced on the interval

[0,3060].

However, three methods were proposed to mitigate the increase in the number of

generators as well as the broadening of the lifespan distributions. First, the area under

the constituent PCs were normalized to 100. This was expected to counter the effects of

summing over larger numbers of generators as the SNRdB decreased.

Second, the persistence diagrams were truncated according to lifespan before the PCs

were computed. That is, for a given image in the data set, the generators in each of its six

associated persistence diagrams were ordered by lifespan. Then a fixed percentage of the

generators were removed from the top and bottom of the lifespan-ordered list of generators.

The percentages used in this study were 1%, 2%, 3%, 4%, 5%, 8%, and 10%. This was done

with the expectation that it would mitigate the effects of the broadening of the lifespan

distributions.

Finally, the tried and true method of "re-centering" the data by subtracting from each

ETCP the average over all ETCPs was tested. The results for each method can be found in

the following subsections.
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However, before considering the preprocessing methods, see figure 4.12 for the effect

the noise has on the model accuracy without any preprocessing of the ETCPs. Note that as

the SNRdB decreases, the noise dominates the image and the models do no better than

guessing (≈ 9%). Similarly, as the SNRdB increases, the accuracy tends to converge to the

accuracy on the noiseless ETCPs (depicted in figure 4.12 by the red dot). Lastly, note that

salt&pepper noise is by far the most obstructive, particularly to the multiplicative life ETCPs.
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Figure 4.12: The ten pre-trained models were evaluated on the data set of noise injected
ETCPs without any pre-processing. The accuracy of the ten models were average at each
SNRdB and for each noise type. The red dot is the accuracy of the model on the noiseless
ETCPs without pre-processing.
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4.2.1 Area Normalization
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Model Accuracy vs. SNRdB: PC Area Normalization

Figure 4.13: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by area. The accuracies of the ten models were average at each
SNRdB and for each noise type. The red dot is the accuracy of the model on the noiseless
ETCPs with area normalization.

Notice that for each of the ETCPs in figure 4.13, the disparity between Gaussian and speckle

noise has essentially vanished. Furthermore, comparing to figure 4.12, the uptake in ac-

curacy for Gaussian and Speckle noise is sharper indicating that the method is filtering

out some of that noise. However, the area normalization has had little to no effect on the

presence of salt & pepper noise with the exception of the multiplicative life ETCPs.
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4.2.2 Lifespan Truncation
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Model Accuracy vs. SNRdB: 1% Truncation

Figure 4.14: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 1% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 1% truncation.

As can bee seen in figure 4.14, removing as little as 1% of the generators by lifespan yields

a marked increase in the accuracy of the models evaluated on the data injected with

salt&pepper noise (with the exception of the multiplicative life ETCPs). It is expected

that this is because salt&pepper noise min/maxs the pixel values creating generators with

relatively very long lifespans. Therefore, removing some fraction of the generators with the
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longest and shortest lifespans eliminates exactly those erroneous generators.

Furthermore, note that at this level of truncation, the accuracy of the models in the

presence of Gaussian and speckle noise are practically unchanged.
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Model Accuracy vs. SNRdB: 2% Truncation

Figure 4.15: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 2% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 2% truncation.

In figure 4.15, the accuracy of the models in the presence of salt&pepper noise appears to

improve as more of the longest and shortest lived generators are omitted. The multiplicative

life ETCPs begin showing some improvement with respect to salt&pepper noise.
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Model Accuracy vs. SNRdB: 3% Truncation

Figure 4.16: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 3% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 3% truncation.

At the 3% truncation level depicted in 4.16, the improvement of the accuracy of the

models with respect to salt&pepper noise is very pronounced. In fact, in the case of Betti

and Midlife ETCPs, the models perform slightly better in the presence of salt&pepper noise

at high SNRdB than the other noise types.

However, salt&pepper noise still demonstrates the sharpest decrease in accuracy as the

SNRdb decreases. Lastly, comparing to figure 4.12, it appears that accuracy of the models

in the presence of Gaussian and speckle noise is unchanged.
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Model Accuracy vs. SNRdB: 4% Truncation

Figure 4.17: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 4% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 4% truncation.

According to figure 4.17, when 4% of the longest and shortest lived generators are

removed, the accuracy of the models in the presence of salt&pepper noise is better or

comparable to the accuracy of the models in the presence of Gaussian and speckle noise at

the highest SNRdB for all ETCPs. This likely indicates that at SNRdb=28, salt&pepper noise

min/maxs approximately 3%-4% of the pixel values in a given image.
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Model Accuracy vs. SNRdB: 5% Truncation

Figure 4.18: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 5% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 5% truncation.

As seen in figure 4.18, the trend continues as the accuracy of the models in the presence

of salt&pepper noise continues to improve for each of the ETCPs with out significantly

effecting their accuracy in the presence of Gaussian and speckle noise.

Just for good measure, figures 4.19 and figure 4.20 display the result of higher levels of

truncation and verify that this trend continues. While the salt&pepper noise continues to

be the most obstructive noise at smaller values of SNRdB, it also continues to significantly

improve at higher values of SNRdB as the truncation percentage increases.
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However, at the higher truncation levels the accuracy of the models in the presence of

Gaussian and speckle noise begins to suffer as compared to figure 4.12. This is particularly

pronounced for the Life ETCPs.
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Model Accuracy vs. SNRdB: 8% Truncation

Figure 4.19: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 8% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 8% truncation.
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Model Accuracy vs. SNRdB: 10% Truncation

Figure 4.20: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by removing the 10% longest lived and shortest lived generators.
The accuracies of the ten models were average at each SNRdB and for each noise type. The
red dot is the accuracy of the model on the noiseless ETCPs with 10% truncation.
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4.2.3 Re-Centering
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Model Accuracy vs. SNRdB: Re-Centering the Average

Figure 4.21: The ten pre-trained models were evaluated on the data set of ETCPs injected
with noise and normalized by subtracting from each ETCPs the average over all ECTPs. The
accuracies of the ten models were average at each SNRdB and for each noise type. The red
dot is the accuracy of the model on the noiseless ETCPs.

As expected, re-centering the ETCPs resulted in increased performance of the models across

all SNRdBs. In particular, note that in all but the multiplicative life ETCPs, the models do

about two times better than guessing as the lowest SNRdB. Also, as in the area normalization

case, the accuracy of the models in the presence of Gaussian and speckle noise track much

closer together. Furthermore, with the exception of multiplicative life, the re-centering
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method displays the greatest improvement in the presence of salt&pepper noise at lower

levels of SNRdB.

4.2.4 Training on Images Directly

For a more general comparison, a model was constructed which classified the images in

the KTH-TIPS2 data set by taking the images themselves directly as input. The size of the

images versus the number of training samples prohibited the use of MLPs alone as the

images were too large when vectorized. Therefore, a convolutional neural network (CNN)

was required to satisfactorily classify the images.

This model consisted of two convolutional layers (with max pooling and ReLu activation

functions) with a single layered MLP on top. The training, validation, and test sets were

generated in the same manner as before and no pre-processing was applied. Again, ten

such models were trained and evaluated on the entire data set after being injected with the

three noise types at the 15 levels of SNRdB. The results of the analysis can be found below

in figure 4.22.

The CNN models display the correct limiting behavior in the presence of noise. For

small values of SNRdB, the images are dominated by noise and the models had to guess

at the correct classification. For 11 texture classes the probability of guessing correctly is

9%. As the SNRdB increases the noise in the images reduces to zero and the accuracy of the

models converged to their accuracy on the data set of noiseless images.

Comparing to figure 4.12, the CNN-based model performed better in the presence of all

three noise types than any of the four unfiltered ETCPs used in this study, particularly with

respect to Salt&Pepper noise. This is unsurprising as CNNs are a much more sophisticated

machine learning architecture then MLPs.

However, when normalized by area, the MLPs trained on the ETCPs slightly outperform
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the CNNs in the presence of Gaussian and speckle noise. Furthermore, for higher levels

of lifespan truncation and higher values of SNRdB, the MLPs outperform the CNNs in the

presence of Salt&Pepper noise. Lastly, after re-centering the ETCPs, the MLPs perform

comparably well to the CNNs for all but the smallest values of SNRdB where the MLPs

perform better.

0 5 10 15 20 25 ∞
SNRdB

20

40

60

80

100

Ac
cu

ra
cy

Model Accuracy vs. SNRdB: Training on Images
gaussian
speckle
salt_pepper

Figure 4.22: The ten pre-trained CNN models were evaluated on the data set of images
injected with noise. The accuracies of the ten models were average at each SNRdB and for
each noise type. The red dot is the accuracy of the model on the noiseless images.
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4.2.5 Conclusions Concerning the Proposed Filtration Methods

Of the pre-processing methods attempted, the area normalization had the greatest posi-

tive impact on the accuracy of the models in the presence of Gaussian and speckle noise.

However, lifespan truncation did the most to improve the accuracy in the presence of

salt&pepper noise for each of the ETCPs. But, the truncation methods comes with a slight

trade-off in the accuracy of the models in the presence of Gaussian and speckle noise for

higher levels of truncation. Finally, re-centering the ETCPs produced the greatest improve-

ment in the accuracy of the models for small values of SNRdB with the exception of the

multiplicative life ETCPs. The re-centering method also greatly improved the accuracy in

the presence of salt&pepper noise particularly for the betti and midlife ETCPs. However,

the truncation method appears to have been more effective against salt&pepper noise than

re-centering in the case of the life ETCPS and re-centering was only comparably effective

to area normalization in the case of Multiplicative life ETCPs.
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CHAPTER

5

ALGEBRAIC PRELIMINARIES

5.1 Differential Graded Algebras

Definition 5.1.1. Let R be a commutative ring with identity. An R -Algebra is a ring A with

identity together with a ring homomorphism f : R → A mapping 1R to 1A such that the

subring f (R ) is contained in the center of A.

Definition 5.1.2. A Graded R -algebra is an R -algebra with a direct sum decomposition

into sub-modules,A ∗ = ⊕
i∈Z

Ai . Elements in a given grading Ak are said to be of degree

k . For v ∈ A j and w ∈ Ak , then v w ∈ A j+k . That is to say that degrees are additive over

multiplication, deg(v w ) = deg(v ) +deg(w ).
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Definition 5.1.3. LetA ∗ andB ∗ be graded R -algebras. A mapφ :A ∗→B ∗ is a morphism

of graded R -algebras if and only if it respects multiplication and degrees. That is, for w ∈ A j

and v ∈ Ak it holds thatφ(w ) ∈ B j ,φ(v ) ∈ B k , andφ(w · v ) =φ(w ) ·φ(v ) ∈ B j+k .

Note that the previous two definitions form the definition of the category of graded

R -algebras, GRA. This perspective will be relevant later when considerations of functoriality

become relevent.

Definition 5.1.4. Similarly, a Bigraded R -algebra is an R -algebra with a direct sum decom-

position into submodulesA ∗∗ = ⊕
p ,q∈Z

Ap ,q . Elements in a given grading Ap ,q are said to be of

bidegree (p , q ). For v ∈ Ap ,q and w ∈ As ,t , then v w ∈ Ap+s ,q+t . That is to say that bidegrees

are again additive over multiplication, bideg(v w ) = bideg(v ) +bideg(w ).

Definition 5.1.5. Let A ∗∗ and B ∗∗ be bigraded R -algebras. A map φ : A ∗∗ → B ∗∗ is a

morphism of bigraded R -algebras if and only if it respects multiplication and degrees. That

is, for w ∈ Ai , j and v ∈ Ak ,l it holds thatφ(w ) ∈ B i , j ,φ(v ) ∈ B k ,l , andφ(w ·v ) =φ(w )·φ(v ) ∈

B i+k , j+l .

Similarly, the previous two definitions form the definition of the category of bigraded R -

algebras, BGRA. This perspective will be relevant later when considerations of functoriality

become relevent.

Definition 5.1.6. LetA ∗ be a graded R -algebra. A differential onA ∗ is a map d :A ∗→A ∗

such that d has degree +1, d ◦d= 0, and for products d(v w ) = d(v )w + (−1)deg(v )v d(w ).

A graded R -algebra equipped with a differential is called a Differential Graded R -algebra

(DGA, or cochain complex) and is denoted (A ∗, d).
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Definition 5.1.7. Let (A ∗, d) be a DGA. Then the condition that d ◦ d = 0 implies that

Img(d) ⊆ Ker(d). Therefore, the Cohomology of a DGA is a graded R -algebra given by

H ∗(A ∗, d) = ⊕
i∈Z

H i (A ∗, d)where

H i (A , d) =
Ker

�

d : Ai → Ai+1
�

Img
�

d : Ai−1→ Ai
�

and multiplication on H ∗(A ∗, d) is induced by the multiplication onA ∗.

Similarly, a digraded differential R -algebra, (A ∗∗, d), is a bigraded R -algebra with a map

d : A ∗∗ → A ∗∗ with bidegree (n , k ) such that d ◦ d = 0. The cohomology of a bigraded

differential R -algebra is given in the same manner as in definition 5.1.7.

Definition 5.1.8. Let (A ∗, d) and (B ∗,δ) be two DGAs. Then a map between them φ :

A ∗→B ∗ is a morphism of DGAs (commonly reffered to as a co-chain map) is a morphism

between them as graded R -algebras with the additional condition that it commutes with

the differentials.

In other words, a graded R -algebra morphism φ :A ∗→B ∗ is a co-chain map if and

only if the following diagram commutes for each i .

Ai+1 B i+1

Ai B i

φ

φ

d δ
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Definition 5.1.9. LetA ∗ = ⊕
k∈Z

Ak be a graded R -algebra such that eachAk is finitely gener-

ated. Then the q-Dimension ofA ∗ is given by

qdim(A ) =
∞
∑

k=0

q k rank(Ak )

where

rank(Ak ) = dimQ (Ak ⊗R Q )

and Q is the field of fractions over R .

The q-dimension is often used in categorifications because it has the following very

useful properties.

Lemma 5.1.1. LetA ∗ andB ∗ be graded R -algebras. Then

qdim(A ∗⊕B ∗) = qdim(A ∗) +qdim(B ∗)

qdim(A ∗⊗B ∗) = qdim(A ∗) ·qdim(B ∗)

Example 5.1.1. Consider the graded R -algebraA ∗ = Z[x ]/〈x 2〉. Then the q-dimension ofA ∗

is given by

qdim(A ∗) = 1+q

Furthermore, the q-dimension of it’s k t h tensor power is given by

qdim(A ⊗k ) = (1+q )k

Finally, the Graded Euler Characteristic of a graded R -algebraA ∗ is given by

χq (A ∗) =
∞
∑

k=0

(−1)k qdim(Ak )
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5.2 Spectral Sequences

Definition 5.2.1. A cohomological spectral sequence is a collection of bigraded differential

R -algebras {E ∗∗r , dr }r∈N where the differentials are all of bidegree (r,1− r ) and E p ,q
r+1 is iso-

morphic to H p ,q (E ∗∗r , dr ). Furthemore, the multiplication maps on each page are induced

by the multiplication maps on the preceding page.

Each bigraded R -algebra E ∗∗r of a spectral sequence {E ∗∗r , dr }r∈N is called the r t h -page

of the spectral sequence.

Example 5.2.1. The 2nd -page, (E ∗∗2 , d2), of a typical cohomological spectral sequence where

arrows represent the d2 differentials

· · · · · · · ·

· · E 03
2 E 13

2 E 23
2 E 33

2 · ·

· · E 02
2 E 12

2 E 22
2 E 32

2 · ·

· · E 01
2 E 11

2 E 21
2 E 31

2 · ·

· · E 00
2 E 10

2 E 20
2 E 30

2 · ·

· · · · · · · ·

Definition 5.2.2. The r t h -total complex of a spectral sequence {E ∗∗r , dr }r∈N is given by

To t ∗r (E
∗∗
r ) =⊕n To t n

r (E
∗∗
r )where

To t n
r (E

∗∗
r ) = ⊕

p+q=n
E p ,q

r

i.e. take direct sums along lines of slope of negative-one on the r t h -page.
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Theorem 5.2.1. McCleary (1985) Each page of a cohomological spectral sequence E p ,q
r is

isomorphic to a quotient of submodules of the zero-th page E p ,q
0 .

Proof. Consider the differentials coming into and out of the (p , q )t h grading on the r t h and

(r +1)s t pages of the spectral sequence

E p−r,q−(1−r )
r

dr−→ E p ,q
r

dr−→ E p+r,q+(1−r )
r

E p−(r+1),q−(1−(r+1))
r+1

dr+1−→ E p ,q
r+1

dr+1−→ E p+(r+1),q+(1−(r+1))
r

and denote

Z p ,q
r =Ker(dr ) and B p ,q

r = Img(dr )

Z p ,q
r+1 =Ker(dr+1) and B p ,q

r+1 = Img(dr+1)

Then the condition that dr ◦dr = 0 implies that

B p ,q
r ⊂ Z p ,q

r ⊂ E p ,q
r

B p ,q
r+1 ⊂ Z p ,q

r+1 ⊂ E p ,q
r+1

Furthermore, by definition

E p .q
r+1
∼= Z p ,q

r /B p ,q
r

E p .q
r+2
∼= Z p ,q

r+1/B p ,q
r+1

However, since Z p ,q
r+1 is a submodule of Er+1

∼= Z p ,q
r /B p ,q

r , it can be writen as Z p ,q
r+1
∼=

Z̃ p ,q
r+1/B p ,q

2 where Z̃ p ,q
r+1 is some submodule of Z p ,q

r . Similary, since Br+1 is a submodule of

Er+1
∼= Z p ,q

r /B p ,q
r , it can be writen as B p ,q

r+1
∼= B̃ p ,q

r+1/B p ,q
2 where B̃ p ,q

r+1 is some submodule of

Z p ,q
r .
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Therefore E p ,q
r+2 can be written as subquotient of submodules of E p ,q

r+1 in the following

way.

E p ,q
r+2
∼= Z p ,q

r+1/B p ,q
r+1
∼= (Z̃ p ,q

r+1/B p ,q
2 )/(B̃ p ,q

r+1/B p ,q
2 )∼= Z̃ p ,q

r+1/B̃ p ,q
r+1

Iterating this process, we get a tower of submodules on the E ∗∗0 page

B̃ p ,q
0 ⊂ B̃ p ,q

1 ⊂ ...⊂ B̃ p ,q
r ⊂ ... ⊂ Z̃ p ,q

r ⊂ ...Z̃ p ,q
1 ⊂ Z̃ p ,q

0 ⊂ E p ,q
0

such that for each r , E p ,q
r+1
∼= Z̃ p ,q

r /B̃ p ,q
r .

In addition each differential is a map

dr+1 : Z̃ p ,q
r /B̃ p ,q

r −→ Z̃ p ,q
r /B̃ p ,q

r

such that Ker(dr+1) = Z̃ p ,q
r+1/B̃ p ,q

r and Img(dr+1) = B̃ p ,q
r+1/B̃ p ,q

r .

Definition 5.2.3. An element of E p ,q
0 which is also in Z̃ p ,q

r is said to be an r-cocycle. An

element of E p ,q
0 which is also an element of B̃ p ,q

r is said to be an r-coboundary. Denote

Z̃ p ,q
∞ =

∞
∩

r=0
Z̃ p ,q

r and call an element of Z̃ p ,q
∞ an∞-cocycle. Similary, denote B̃ p ,q

∞ =
∞
∪

r=0
B̃ p ,q

r

and call an element of B̃ p ,q
∞ an∞-coboundary. From the proof of Thm 5.2.1, it is clear that

B̃ p ,q
∞ ⊂ Z̃ p ,q

∞ . Then, the∞-page of the cohomological spectral sequence is defined to be

E p ,q
∞
∼= Z̃ p ,q

∞ /B̃ p ,q
∞ .

Definition 5.2.4. The r t h -page of a spectral sequence {E ∗∗r , dr }r∈N is said to be bounded if

there exist n , m ∈N such that

E p ,q
r =







6= 0 if |p | ≤ n and |q |<m

= 0 otherwise







That is, the r t h page is only non-zero inside of some finite sub-rectangle on the.
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Note that by Thm 5.2.1, if the r t h -page is bounded, then so is every subsequent page.

It is often the case that the calculation of a spectral sequence terminates after a finite

number of pages. That is, there exists some smallest N ∈N such that for all m ≥N , E ∗∗m
∼= E ∗∗∞.

In this case we say that the spectral sequence collapses on the N t h -page.

For instance, suppose that a spectral sequence is bounded on its r t h page. Since the

magnitude of the slopes of the differentials increases, after a finite number of pages either

the domain or codomain of every differential map will lie outside of the finite subrectangle

in which the spectral sequence is exclusively non-zero. At this point all of the differentials

(and all subsequent differentials on all subsequent pages) will be zero maps. Thus every

page thereafter will be isomorphic to one another. Therefore, if the spectral sequence is

bounded on its r t h page, then it will collapse after a finite number of pages.

5.3 Filtrations of DGAs

Definition 5.3.1. Let A ∗ be a graded R -algebra. Then a filtration of A ∗ is a family of

subalgebras {F p (A ∗)}p∈Z, such that either,

...⊂ F p+1(A ∗)⊂ F p (A ∗)⊂ F p−1(A ∗)⊂ ... (decreasing filtration)

or ...⊂ F p−1(A ∗)⊂ F p (A ∗)⊂ F p+1(A ∗)⊂ ... (increasing filtration)

Furthermore, if (A ∗, d) is a DGA, then the filtration must also be such that it is preserved

by the differential, d : F p (A∗)→ F p (A∗).

Let F ∗(A ∗) = {F p (A ∗)}p∈Z be a filtration of the graded R -algebraA ∗. Furthermore,

denote F p (An ) = F p (A ∗)∩An .
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Definition 5.3.2. A filtration of a DGA {F p (A ∗)}p∈Z is said to be bounded if and only if for

each n there exists some s = s (n ) and t = t (n ) such that

{0}= F s (An )⊂ F s−1(An )⊂ ...⊂ F t+1(An )⊂ F t (An ) = An , F ∗ is decreasing

{0}= F s (An )⊂ F s+1(An )⊂ ...⊂ F t−1(An )⊂ F t (An ) = An , F ∗ is increasing

Definition 5.3.3. The associated bigraded R -algebra ofA ∗ with respect to F ∗ is given as

follows

E p ,q
a s s o c (A

∗, F ∗) =







F p (Ap+q )/F p+1(Ap+q ), F ∗ is decreasing

F p (Ap+q )/F p−1(Ap+q ), F ∗ is increasing







Definition 5.3.4. A spectral sequence {E ∗∗r , dr }r∈N is said to converge to a graded R -algebra

A ∗ if and only if there is a filtration F ∗ ofA ∗ such that

E p ,q
∞
∼= E p ,q

a s s o c (A
∗, F ∗)

Theorem 5.3.1. McCleary (1985) Let (A ∗, d) be a DGA such that deg(d ) = +1. Then a de-

creasing filtration F ∗(A ∗) on (A ∗, d) determines a spectral sequence {E ∗∗r , dr }r∈N where

deg(dr ) = (r, 1− r ) and

E p ,q
0 = E p ,q

a s s o c (A
∗, F ∗)

E p ,q
1 =H p+q

�

F p (A ∗)/F p+1(A ∗)
�

Furthermore, if the filtration is bounded, then the spectral sequence converges to H ∗(A∗, d),

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗(A ∗, d), F ∗
�

Note that a filtration F ∗ on a DGA (A ∗, d) induces a filtration on its cohomology H ∗(A ∗, d)
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because F ∗ is preserved by the differential. Therefore, E p ,q
a s s o c

�

H ∗(A ∗, d), F ∗
�

is well defined.

The goal here is that the∞-total complex of the spectral sequence be isomorphic to

H ∗(A ∗, d).

To t ∗∞
�

E ∗∗∞
�∼=H ∗(A ∗, d)

However, this may only be true up to some extensions for arbitrary DGAs.

5.4 Bicomplexes and Their Filtrations

Definition 5.4.1. A bigraded R -algebraA ∗∗ is a bicomplex if there are two maps ∂ and d

such that for each i , (A i ,∗, d) and (A ∗,i ,∂ ) are DGAs and

d ◦ ∂ + ∂ ◦d= 0.

Example 5.4.1. A typical bicomplex
�

A ∗∗; d,∂
�

.

· · · ·

· A03 A13 A23 A33 ·

· A02 A12 A22 A32 ·

· A01 A11 A21 A31 ·

· A00 A10 A20 A30 ·

· · · ·

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
d d d d

d d d d

d d d d

The total complex of a bicomplex is defined in the same manner as the r t h -total complex

of a spectral sequence and is itself a DGA. Namely, it is given by Tot∗(A ∗∗) = ⊕
n

Totn (A ∗∗)
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where:

Totn (A ∗∗) = ⊕
p+q=n

A p ,q and D= d+ ∂

Note that the condition in the definition that d ◦ ∂ + ∂ ◦d= 0 is necessary to ensure the

that map D is a genuine differential on the total complex.

Definition 5.4.2. Let (A ∗∗;dA ,∂A ) and (B ∗∗;dB ,∂B ) be two bicomplexes. Then a map

φ :A ∗∗→B ∗∗ is a morphism of bicomplexes if it is a morphism fromA ∗∗ toB ∗∗ as bigraded

R -algebras that also commutes with the differentials dA and dB .

Note that, as in the case with DGAs, commuting with the differential means that a

bicomplex morphism will induced maps on the bigraded space resulting from computing

cohomology with respect to those differentials.

Theorem 5.4.1. Let (B ∗,δB ) and (C ∗,δC ) be DGAs. Then their tensor productB ∗⊗C ∗ is the

total complex of a bicomplex with total differential given by D= (−1)p IdB ⊗δC +δB ⊗ IdC .

Proof. Given (B ∗,δB ) and (C ∗,δC ), recall that their tensor product is given by

B ∗⊗C ∗ =⊕
n

�

⊕
p+q=n

�

B p ⊗C q
�

�

Define a bigraded spaceA ∗∗ where Ap ,q = B p ⊗C q . The differentials δB and δC induce

the differentials on the bigraded R -algebra ∂ =δB ⊗ IdC and d= (−1)p IdB ⊗δC . Multipli-

cation onA ∗∗ is induced by multiplication onB ∗ andC ∗, (b1⊗ c1)(b2⊗ c2) = (b1b2)⊗ (c1c2).

Therefore (A ∗∗; d,∂ ) is a bicomplex.

From theA ∗∗, the total

Tot∗(A ∗∗) =⊕
n

�

⊕
p+q=n

Ap ,q
�

=⊕
n

�

⊕
p+q=n

�

B p ⊗C q
�

�

=B ∗⊗C ∗

and total differential D= (−1)p IdB ⊗δC +δB ⊗ IdC are given by Def 5.2.2.

88



The sign factor (−1)p in the definition of d in the preceding theorem is called the sign

trick in some texts. It is a convention which guarantees that the the total differentials d and

∂ are anti-commutative as required by the definition of a bicomplex. Note that without it

they are commutative.

Theorem 5.4.2. A finite tensor product of DGAs is a DGA.

Proof. Let (B ∗,δB ), (C ∗,δC ), and (D∗,δD ) be DGAs and consider the triple tensor product

B ∗⊗C ∗⊗D∗. The first pair of factors can be realized as a single DGA,B ∗⊗C ∗ = Tot∗(A ∗∗)

as in Thm 5.4.1. ThenB ∗⊗C ∗⊗D∗ = Tot∗(A ∗∗)⊗D∗ which is again a tensor product of two

DGAs. Repeating the process reduces it to a single DGA.

For a finite tensor product of DGAs, iterating the process resolves it into a single DGA.

Lemma 5.4.3. Given two DGAs (B ∗,δB ) and (C ∗,δC ), their direct sum is a DGA given by

A ∗ =⊕
i

�

B i ⊕C i
�

, d=δB +δC

Multiplication onA ∗ is given by (b1, c1)(b2, c2) = (b1b2, c1c1).

Definition 5.4.3. Let (A ∗∗; d,∂ ) be a bicomplex and (Tot∗(A ∗∗), D) be its total complex. The

horizontal filtration of the (Tot∗(A ∗∗), D) is induced by a filtration on the rows of (A ∗∗; d,∂ )

as follows.

�

F i
h

�

Tot∗(A ∗∗)
�

�p ,q
=







Ap ,q if q ≥ i

0 else







Definition 5.4.4. Let (A ∗∗;d,∂ ) be a bicomplex and (Tot∗(A ∗∗), D) be its total complex.

Then the vertical filtration of the total complex is induced by a filtration on the columns of

the bicomplex. Specifically, it is given by

�

F i
v

�

Tot∗(A ∗∗)
�

�p ,q
=







Ap ,q if p ≥ i

0 else
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Note that each level of both filtrations F i
∗

�

Tot∗(A ∗∗)
�

are themselves bicomplexes. Com-

pare the following examples of horizontal and vertical filtrations respectively to the typical

bicomplex in Ex. 5.4.1.

Example 5.4.2. F 1
h

�

Tot∗(A ∗∗)
�

and F 2
h

�

Tot∗(A ∗∗)
�

of a typical bicomplex are obtained by

taking the total complex of the following bicomplexes respectively.

· · · ·

· A03 A13 A23 A33 ·

· A02 A12 A22 A32 ·

· A01 A11 A21 A31 ·

0 0 0 0 0 0

0 0 0 0

∂ ∂ ∂

∂ ∂ ∂

∂ ∂ ∂
d d d d

d d d d

· · · ·

· A03 A13 A23 A33 ·

· A02 A12 A22 A32 ·

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

∂ ∂ ∂

∂ ∂ ∂
d d d d

Example 5.4.3. F 1
v

�

Tot∗(A ∗∗)
�

and F 2
v

�

Tot∗(A ∗∗)
�

of a typical bicomplex are obtained by

taking the total complex of the following bicomplexes respectively.

0 · · ·

0 0 A13 A23 A33 ·

0 0 A12 A22 A32 ·

0 0 A11 A21 A31 ·

0 0 A10 A20 A30 ·

0 · · ·

∂ ∂

∂ ∂

∂ ∂

∂ ∂
d d d

d d d

d d d

0 0 · ·

0 0 0 A23 A33 ·

0 0 0 A22 A32 ·

0 0 0 A21 A31 ·

0 0 0 A20 A30 ·

0 0 · ·

∂

∂

∂

∂
d d

d d

d d
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Theorem 5.4.4. Let (A ∗∗;d,∂ ) be a bounded bicomplex and F ∗h denote the horizontal fil-

tration. There exists a spectral sequence {E ∗∗r , dr }r∈N arising from the application of F ∗h to

(A ∗∗; d,∂ ) given by

E p ,q
0 =A q ,p where d0 = ∂

E p ,q
1 =H q ,p (A ∗∗)where d1 = d

where

H q ,p (A ∗∗) =
Ker

�

A q ,p ∂→A q ,p+1
�

Img
�

A q ,p−1 ∂→A q ,p
�

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗�Tot∗(A ∗∗), D
�

, F ∗h
�

Proof. We wish to apply Thm 5.3.1 where the the filtration is the horizontal filtration F ∗h

and the DGA is the total complex with its total differential To t ∗(A∗∗, D ). Then it must be

shown that F ∗h is a bounded decreasing filtration and that deg(D ) = +1.

Recall that deg(d) = +1 = deg(∂ ) by assumption. Therefore the differential D = d+ ∂

has bidegree (+1,+1) in the bicomplex. It is clear then from Ex 5.4.2 that D preserves the

horizontal filtration of (A ∗∗; d,∂ ). Therefore, the total differential D on the total complex of

the bicomplex To t ∗(A ∗∗) preserves the induced filtrations on the total complex and has

total degree +1.

D : F i
h

�

Tot j (A ∗∗)
�

→ F i
h

�

Tot j+1(A ∗∗)
�

Furthermore, notice that the multiplication onA ∗∗ also respects the filtration since bide-

grees are additive.

Since F i
h

�

Tot∗(A ∗∗)
�

⊆ F i−1
h

�

Tot∗(A ∗∗)
�

for all i , F ∗h is a decreasing filtration. Furthermore,

since the bicomplex (A ∗∗; d,∂ ) is bounded by assumption, the horizontal filtration of the
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total complex is a bounded filtration.

Lastly, notice from Ex 5.4.2 that only one of the two differentials of the bicomplex

preserves the quotient of subsequent filtrations.

∂ : F i
h

�

Tot∗(A ∗∗)
��

F i+1
h

�

Tot∗(A ∗∗)
�

→ F i
h

�

Tot∗(A ∗∗)
��

F i+1
h

�

Tot∗(A ∗∗)
�

It follows from Thm 5.3.1 that the horizontal filtration gives rise to a spectral sequence.

The differential d0 = ∂ on E ∗∗0 is the differential which preserves the quotient of subsequent

filtrations. Furthermore, sinceA ∗∗ is bounded by assumption, the horizontal filtration will

be bounded.

Therefore, by Thm 5.3.1 the horizontal filtration induces a spectral sequence {E ∗∗r , dr }r∈N

where deg(dr ) = (r, 1− r ) and

E p ,q
0 = E p ,q

a s s o c

�

Tot∗(A ∗∗), F ∗h
�

where d0 = ∂

E p ,q
1 =H p+q

�

F p
h

�

Tot∗(A ∗∗)
�

/F p+1
h

�

Tot∗(A ∗∗)
�

�

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗�Tot∗(A ∗∗), D
�

, F ∗h
�

Note that the convergence claim follows directly from Thm 5.3.1.

Therefore, the first thing to show is that

E p ,q
a s s o c

�

Tot∗(A ∗∗), F ∗h
�

=A q ,p

This can be done by unwinding the definitions as follows. First, recall from Def 5.3.3

that

E p ,q
a s s o c

�

Tot∗(A ∗∗), F ∗h
�

= F p
h

�

Totp+q (A ∗∗)
��

F p+1
h

�

Totp+q (A ∗∗)
�
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F p
h

�

Totp+q (A ∗∗)
�

= F p
h

�

Tot∗(A ∗∗)
�

∩Totp+q (A ∗∗)

F p+1
h

�

Totp+q (A ∗∗)
�

= F p+1
h

�

Tot∗(A ∗∗)
�

∩Totp+q (A ∗∗)

Now, by Def 5.4.3 and Def 5.2.2 respectively that

F p
h

�

Tot∗(A ∗∗)
�i , j
=







A i , j if j ≥ p

0 else







F p+1
h

�

Tot∗(A ∗∗)
�i , j
=







A i , j if j ≥ p +1

0 else







Totp+q (A ∗∗) = ⊕
i+ j=p+q

A i , j

Therefore, we find that

F p
h

�

Totp+q (A ∗∗)
�

= ⊕
i+ j=p+q

j≥p

A i , j

F p+1
h

�

Totp+q (A ∗∗)
�

= ⊕
i+ j=p+q

j≥p+1

A i , j

Then we get that.

E p ,q
a s s o c

�

Tot∗(A ∗∗), F ∗h
�

=
�

⊕
i+ j=p+q

j≥p

A i , j
�À�

⊕
i+ j=p+q

j≥p+1

A i , j
�

= ⊕
i+ j=p+q

j=p

A i , j

=A q ,p

As for the claims about E ∗∗1 and d1. By Def 5.2.1, E ∗∗1 is given by cohomology on E ∗∗0 . As

for d1, it is induced by d̄ in the natural way.
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Now, the second claim to be proved is that

E p ,q
1 =H q ,p (A ∗∗) where H q ,p (A ∗∗) =

Ker
�

A q ,p ∂→A q ,p+1
�

Img
�

A q ,p−1 ∂→A q ,p
�

.

We have just shown that (E p ,q
0 , d0) = (A q ,p ,∂ ). By Thm 5.3.1, the 1s t -page of the spectral

sequence is given by computing cohomology on the 0t h -page. However, that is exactly

H q ,p (A ∗∗) as desribed.

Theorem 5.4.5. Let (A ∗∗; d,∂ ) be a bounded bicomplex and F ∗v denote the vertical filtration.

There exists a spectral sequence {E ∗∗r , dr }r∈N arising from the application of F ∗v to (A ∗∗; d,∂ )

given by

E p ,q
0 =A p ,q where d0 = d

E p ,q
1 =H p ,q (A ∗∗)where d1 = ∂

where

H p ,q (A ∗∗) =
Ker

�

A p ,q d→A p ,q+1
�

Img
�

A p ,q−1 d→A p ,q
�

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗�Tot∗(A ∗∗), D
�

, F ∗v
�

Proof. The proof is analogous to that of Thm 5.4.4.

Given a bounded bicomplex (A ∗∗, d,∂ )with total complex (To t ∗(A ∗∗, D ), the spectral

sequences arising from the vertical and horizontal filtrations of (A ∗∗, d,∂ ) both converge

to H ∗
�

Tot∗(A ∗∗). That is, the total complex of the infinity page of both spectral sequences

are isomorphic to the cohomology of the total complex of the bicomplex.
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CHAPTER

6

GRAPH COLORINGS AND BICOMPLEXES

6.1 Preliminary on Graphs

Definition 6.1.1. A Graph is a pair G = (V (G ), E (G )) consisting of a finite set V (G ) = {vi }ni=0

and a set of two-element subsets of V (G ), e = {vi , v j } ∈ E (G ). Elements of V (G ) are called

vertices and elements of E (G ) are called edges.

Let G and H be graphs. Then a morphism of graphs is a set map f : V (G )→V (H ) such

that if {vi , v j } ∈ E (G ) then { f (vi ), f (v j )} ∈ E (H ) and is denoted f : G →H .

The objects which have been defined as graphs here are more commonly called finite

simple graphs in graph theory literature as they do not contain loops or multi-edges and have
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a finite number of vertices. Furthermore, note that for a given graph morphism f : G →H ,

the set map f : V (G )→V (H ) induces a set map f : E (G )→ E (H ).

Definition 6.1.2. A graph G is a subgraph of H if and only if there exists a graph morphism

f : G →H such that f : V (G )→V (H ) is injective.

Definition 6.1.3. Two vertices vi , v j ∈V (G ) of a graph G are connected if and only if there

exists a sequence of edges {ek}nk=0 ⊆ E (G ) such that vi ∈ e1, v j ∈ en , for each k ∈ {0, ..., n −

1} ek ∩ ek+1 6= ;, and each vertex in V (G ) appears in at most two edges in the sequence.

Furthermore, each vertex in V (G ) is connected to itself.

Lemma 6.1.1. Let G be a graph. Then the connectedness relation is an equivalence relation

on the vertex set V (G ).

Definition 6.1.4. Given a graph G , an equivalence class in V (G ) under the connectedness

relation is called a connected component. Denote the set of connected components of G by

π0(G ) = {Ci }ni=0.

Each connected component of a graph G has a unique associated subgraph. Let Ci ∈

π0(G ). Then Ci ⊆V (G ). Define the subgraph G Ci as given by V (G CI ) =Ci and E (G Ci ) = {e ∈

E (G ) | there exists vi ∈Ci s.t. vi ∈ e }.

Lemma 6.1.2. Let G and H be graphs and f : G →H be a graph morphism. Then there is

an induced map f∗ :π0(G )→π0(H ).

Proof. It is enough to show that f : G →H preserves the connectedness relation. Therefore,

let vi ∈ V (G ) be connected to v j ∈ V (G ) by the sequence of edges S = {ek}nk=0 ⊆ E (G ). If

f (vi ) = f (v j ) ∈ V (H ), then connectedness is preserved since each vertex is connected to

itself by definition.
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Suppose that f (vi ) 6= f (v j ) ∈V (H ). Then let Sr = {ekr
}mr=0 be the maximal subsequence

of S such that the induced map on the edge sets is such that f |Sr
: Sr → E (H ) is injective.

Then f (vi ) is connected to f (v j ) by the sequence of edges { f (ekr
)}mr=0 ⊆ E (H ).

6.2 The Chromatic Complex

The contents of this section can be found in the literature at Helme-Guizon and Rong

(2005a) and Helme-Guizon and Rong (2005b).

Definition 6.2.1. Let G be a graph and S ⊆ E (G ). Then GS is defined as the subgraph of G

given by V (GS ) =V (G ) and E (GS ) = S ⊆ E (G ).

If V (G ) is given a total ordering V (G ) = {v0, ..., vm}, then E (G ) will inherit a lexicograph-

ical ordering, E (G ) = {e0, ..., en}. Similarly, the connected components of a given subgraph

GS inherit a total order wherein two components bear the same relation as their least ver-

tices. Finally, for a given subgraph GS , let kS denote its number of connected components,

kS = |π0(GS )|.

Definition 6.2.2. A subgraph GS is said to be in the i t h -state if GS has exactly i -many edges,

|S |= i .

Definition 6.2.3. Given a graph G , a graph coloring of G with λ-many colors is a map

c : V (G )→{i }λi=1 such that if {v j , vk} ∈ E (G ), then c (v j ) 6= c (vk ).

Definition 6.2.4. For a given graph G the Chromatic Polynomial, PG (λ), is a function which

returns the number colorings of a graph G using λ-many colors.

Note that for the empty graph on n vertices, all possible colorings of the vertices are

permissible since there are no edges. In this case, PG (λ) =λn . Furthermore, the chromatic

polynomial obeys the following recursive relation.

97



Lemma 6.2.1. (Deletion-Contraction Rule) Given a graph G and edge e ∈ E (G ), let G \ e

denote the subgraph of G such that V (G \ e ) =V (G ) and E (G \ e ) = E (G ) \ e (i.e. the e -edge

is deleted from G ). Let G /e denote the graph obtained by contracting the e -edge in G and

identifying its vertices.

The chromatic polynomial for the graph G then has the following property:

PG (λ) = PG \e (λ)−PG /e (λ) (6.1)

Proof. (Sketch) For motivation, it is enough to consider the graph G where V (G ) = {v, w }

and E (G ) =
�

e = {v, w }
	

(two vertices connected by one edge). In this case it is clear what

effect the presence of e , its deletion, and its contraction have on the possible colorings of

G . In G \ e all colorings of v and w are allowed. The number of all colorings is the sum of

colorings in which v and w have the same color plus the number of colorings in which v ,

and w have different colors. In G /e , v and w must have the same color while in G they

must have different colors. We therefore find that

PG \e (λ) = PG (λ) +PG /e (λ)

A simple rearrangement of terms yields the desired relation. The reader is directed to ?? for

more details.

Corollary 6.2.1.1. Using the result for the empty graph as a base case, the Deletion Contrac-

tion Rule can be resolved into an explicit form called the State Sum Formula which is given

by:

PG (λ) =
∑

i≥0

(−1)i
∑

s⊆E (G )
|s |=i

λks

Suppose that |E (G )|= n . Then the collection of all subsets S ⊆ E (G ) is in bijection with
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the collection of all binary n-tuples ε wherein the j t h element of ε is ’1’ if the j t h edge of

E (G ) is in S and ’0’ otherwise. In this way, the subgraphs GS can be equivalently denoted

GS =Gε.

Let G be a graph and GS be a subgraph in the i t h -state. For each edge e ∈ E (G ) \S , let

S ′ = S ∪{e }. Then GS ′ is a subgraph of G in the (i +1)s t -state. Furthermore, GS is a subgraph

of GS ′ .

Suppose e ∈ E (G ) \S is the j t h edge in E (G ). Then we can equivalently denote GS =Gε

and GS ′ =Gε′ where ε′ is obtain from ε by altering the j t h element of ε from a ’0’ to a ’1’.

Then the graph homomorphism which realizes Gε as a subgraph of Gε′ can be denoted

iε∗ : Gε→Gε′ where ε∗ is obtained from ε by altering the j t h element of ε from a ’0’ to an ’∗’.

Similarly, let kε denote the number of connected components of the subgraph Gε,

Definition 6.2.5. Given a graph G , all of its subgraphs of the form Gε and their respective

inclusion maps iε∗ can be organized into a cubic lattice called the Chromatic Diagram. The

subgraphs Gε form the vertices, the inclusion maps iε∗ form the edges, and subgraphs are

organized into columns of increasing state.

The Chromatic Diagram of a graph G is often called its Hasse Diagram in other literature

where the subgraphs are organized into rows of increasing state. See Example 6.2.1 below.
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Example 6.2.1. G = 1 2

3

i = 0 i = 1 i = 2 i = 3

G100 G110

G000 G010 G101 G111

G001 G011

i∗00

i0∗0

i00∗

i1∗0

i10∗

i∗10

i01∗

i∗01

i0∗1

i11∗

i1∗1

i∗11

With this technology, the state sum formula has the advantage that it can be expressed

diagrammatically. Consider this representation in the following example 6.2.2 where the

chromatic polynomial of the complete graph on three vertices is computed. The substitution

λ= 1+q has been made for reasons which will be made clear shortly.
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Example 6.2.2. G = 1 2

3

& λ= 1+q

i = 0 i = 1 i = 2 i = 3

(1 + q)2

G100

(1 + q)

G110

+ +

(1 + q)3

G000

(1 + q)2

G010

(1 + q)

G101

(1 + q)

G111

+ +

(1 + q)2

G001

(1 + q)

G011

(−1)0 · (1+q )3 (−1)1 ·3(1+q )2 (−1)2 ·3(1+q ) (−1)3 · (1+q )

i∗00

i0∗0

i00∗

i1∗0

i10∗

i∗10

i01∗

i∗01

i0∗1

i11∗

i1∗1

i∗11

PG (1+q ) = (1+q )3−3(1+q )2+3(1+q )− (1+q )

The Chromatic Diagram of a graph can be made into a DGA with the following definitions

and prescriptions which effectively categorifies the chromatic polynomial.
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Definition 6.2.6. Given a graded R -algebraA ∗ and a graph G , to each subgraph Gε assign

the graded R -algebraA ⊗kε = (A ∗)⊗kε . Then the i t h Chromatic Co-Chain Group is given by

C H R i (G ,A ) = ⊕
|ε|=i
A ⊗kε

That is, take direct sums of the assigned graded R -algebras along subgraphs of the same

state (along columns of the diagram).

Notice that each inclusion map iε∗ represents adding an edge to some Gε in state j to

obtain some other Gε′ in state j +1. Adding an edge does one of two things to the connected

components of Gε. It either decreases kε by one, or it preserves kε. That is to say, either

kε′ = kε −1 or kε′ = kε.

Therefore, to each inclusion iε∗ : Gε→Gε′ assign the following map between the graded

R -algebras assigned to Gε and Gε′ .

Definition 6.2.7. To each iε∗ assign the map (−1)ε∗∂ i
ε∗

:A ⊗kε →A ⊗kε′ . Each (−1)ε∗∂ i
ε∗

is a

called a per-edge map and is given by the following:

1. (−1)ε∗ is 1 if the number of ones in ε∗ before the asterisk is even, and −1 if the number

of such ones on odd.

2. If kε′ = kε, then ∂ i
ε∗
= IdA ⊗kε .

3. If kε′ = kε−1, then ∂ i
ε∗
= IdA ∗ on all of the tensor factors except the two corresponding

to the components of Gε which become connected upon adding the edge. On those

two tensor factors ∂ i
ε∗

is given by the multiplication, m :A ∗⊗A ∗→A ∗ which maps

to the tensor factor in the codomain A ⊗kε′ which corresponds to the connected

component in Gε′ which resulted from adding the edge to Gε.
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Definition 6.2.8. Note that the Chromatic Diagram is always a cubic lattice and the as-

signment (−1)ε∗ to the per-edge maps gives it a balanced coloring. Therefore, summing

the per-edge maps along the columns produces a differential on the co-chain groups. The

result is a co-chain complex called the Chromatic Complex and is denote
�

C H R ∗(G ,A ),∂
�

where each differential ∂ is a signed sum of per-edge maps.

Note that the chromatic complex is always bounded by the number of edges in the

graph which is finite for finite graphs.

Example 6.2.3. G = 1 2

3

i = 0 i = 1 i = 2 i = 3

A⊗2

G100

A∗

G110

⊕ ⊕

A⊗3

G000

A⊗2

G010

A∗

G101

A∗

G111

⊕ ⊕

A⊗2

G001

A∗

G011

C H R 0(G ,A ) C H R 1(G ,A ) C H R 2(G ,A ) C H R 3(G ,A )

∂ 0
∗00

∂ 0
0∗0

∂ 0
00∗

−∂ 1
1∗0

−∂ 1
10∗

∂ 1
∗10

−∂ 1
01∗

∂ 1
∗01

∂ 1
0∗1

∂ 2
11∗

−∂ 2
1∗1

∂ 2
∗11

∂ 0 ∂ 1 ∂ 2

Where:
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C H R 0(G ,A ) =A ⊗3

C H R 1(G , A) =⊕
3
A ⊗2

C H R 2(G ,A ) =⊕
3
A

C H R 3(G ,A ) =A

C H R ∗(G ,A ) =
3
⊕

i=0
C H R i (G ,A )

∂ 0 = ∂ 0
∗00+ ∂

0
0∗0+ ∂

0
00∗

∂ 1 =−∂ 1
1∗0+ ∂

1
∗10− ∂

1
10∗+ ∂

1
∗01− ∂

1
01∗+ ∂

1
0∗1

∂ 2 = ∂ 2
11∗− ∂

2
1∗1+ ∂

2
∗11

Example 6.2.4. Specifically, recalling Ex 5.1.1, letA ∗ = Z[x ]/〈x 2〉. Then the categorification

of the chromatic polynomial is demonstrated by

PG (1+q ) =
∑

i≥0

(−1)i
∑

S⊆E (G )
|S |=i

(1+q )kS

=
∑

i≥0

(−1)i
∑

S⊆E (G )
|S |=i

qdim(A ⊗kS )

=
∑

i≥0

(−1)i qdim

�

⊕

|S |=i

A ⊗kS

�

=χq

�

C H R ∗(G ,A )
�

Furthermore (and more generally), ifA ∗ is a graded R -module such that the ring R is

a principal ideal domain and for each i , Ai is finitely generated, then χq

�

C H R ∗(G ,A )
�

=

χq

�

H ∗
C H R (G ,A )

�

where H ∗
C H R (G ,A ) is the graded R -algebra resulting from computing the

cohomology of the chromatic complex.
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6.3 The Chromatic Bicomplex

Theorem 6.3.1. (Baranovsky and Sazdanovic 2012) Let G be a graph and (A ∗,δ) be a DGA.

Then the chromatic complex C H R ∗(G , (A ∗,δ)) defines a bicomplex
�

C H R ∗∗(G , (A ,δ)); d̄ ,∂
�

called the Chromatic Bicomplex of G with respect to (A ∗,δ). The differential d̄ is induced

by δ and differential ∂ is the chromatic differential.

Proof. First note that the i t h co-chain group of the Chromatic Complex, C H R i (G , (A ∗,δ))

is a direct sum of tensor products of (A ∗,δ)with itself. By Thm 5.4.1 and Def 5.4.3, this is

itself a DGA
�

C H R i (G , (A ∗,δ))∗, d̄
�

where the differential d̄ is induced by δ.

Therefore C H R ∗(G , (A ∗,δ))∗ is a bigraded space where one grading is given by the

chromatic complex and the other is given by the total grading on direct sums of tensor

powers of (A ∗,δ).

For consistency of notation, we will denote the bigraded space by

C H R ∗∗(G , (A ,δ)) =C H R ∗(G , (A ∗,δ))∗

where the first ∗ is the grading on the chromatic complex and the second ∗ is the grading

on each
�

C H R i (G , (A ∗,δ))∗, d̄
�

C H R i∗(G , (A ,δ)) =C H R i (G , (A ∗,δ))∗

C H R ∗ j (G , (A ,δ)) =C H R ∗(G , (A ∗,δ)) j

Furthermore, we have just shown that for each i ,
�

C H R i∗(G , (A ,δ)), d̄
�

is a DGA.

Now it remains to show that C H R ∗ j (G , (A ,δ)) is a DGA for each j . It is enough to show

that the chromatic differential preserves C H R ∗ j (G , (A ,δ)). Recall that the total degree of a

tensor product of elements of a DGA is the sum of the degrees of the factors. The chromatic
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differential is a signed sum of per-edge maps. Each per-edge map is either the identity

map, or multiplication both of which preserves the total degree. Therefore, the chromatic

differential preserves the total degree as well.

Therefore,
�

C H R ∗ j (G , (A ,δ)),∂
�

is a DGA for each j where the differential is just the

chromatic differential.

Finally, it remains to be shown that the differentials d̄ and ∂ anti-commute. However,

as shown in the following lemma, they in fact commute. This issue is resolved shortly after

the lemma by the addition of a sign convention.

In the following lemma, it is assumed that the multiplication in the DGA (A ∗,δ) is

super-commutative. That is, for w ∈ Ak and v ∈ Al it is the case that w · v = (−1)k l v ·w .

This assumption will require an additional sign factor in the definition of the chromatic

differential. However, if the multiplication in the DGA (A ∗,δ) is commutative, then this

sign factor may be omitted and the lemma still holds.

Lemma 6.3.2. The differentials d̄ and ∂ commute.

Proof. An element of a chain group in C H R ∗∗(G , (A ,δ)) is a direct sum of tensor prod-

ucts over R of elements in A ∗. It will be enough to check the desired properties on a

basic element
k
⊗

n=1
αn . The more general properties will then follow from the linearity of the

differentials.

Recall that the chromatic differential, ∂ , is given by a signed sum of per edge maps ∂ε∗ .

Therefore, it suffices to show that d̄ commutes with the per-edge maps ∂ε∗ which are given

on a basis element by

∂ε∗

�

k
⊗

n=1
αn

�

=







k
⊗

n=1
αn if kε′ = kε

s(i , j )α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗αk if kε′ = kε −1
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where: s(i , j ) = (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

where in the first case the edge being added preserves the number of connected components

of the subgraph (kε′ = kε) and thus the per edge map is the identity map. In the second case,

the edge being added reduces the number of connected components by 1 by connecting

the i t h component to the j t h component. The additional sign factor s (i , j ) is exactly the

one alluded to in the preceding remarks.

Recall that the differential d̄ of a basic element in the formal tensor product is given by

the extended Leibniz rule as follows

d̄
�

k
⊗

n=1
αn

�

=
k
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αk

The induced differential d̄ clearly commutes with the per-edge map in the case that

kε′ = kε since the per-edge map is the identity map. Consider the case in which adding the

edge connects the i t h and j t h components.

First consider d̄ ◦ ∂ε∗
�

k
⊗

n=1
αn

�

:

d̄ ◦ ∂ε∗
�

k
⊗

n=1
αn

�

= d̄

 

(−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗αk

!

= (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

�

i−1
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αi ∧α j ⊗ ....α̂ j ...⊗αk

+ (−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δ(αi ∧α j )⊗ ....α̂ j ...⊗αk

+
j−1
∑

n=i+1

(−1)
deg(α j )+

n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ....⊗δαn ⊗ ...α̂ j ...⊗αk

+
k
∑

n= j+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗δαn ⊗ ...⊗αk

!
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Note that the term

(−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δ(αi ∧α j )⊗ ....α̂ j ...⊗αk

expands under the product rule to become

(−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δ(αi )∧α j ⊗ ....α̂ j ...⊗αk +(−1)
i
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧δ(α j )⊗ ....α̂ j ...⊗αk

Therefore, the composition d̄ ◦ ∂ε∗
�

k
⊗

n=1
αn

�

becomes

= (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

�

i−1
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αi ∧α j ⊗ ....α̂ j ...⊗αk

+ (−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δ(αi )∧α j ⊗ ....α̂ j ...⊗αk

+ (−1)
i
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧δ(α j )⊗ ....α̂ j ...⊗αk

+
j−1
∑

n=i+1

(−1)
deg(α j )+

n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ....⊗δαn ⊗ ...α̂ j ...⊗αk

+
k
∑

n= j+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗δαn ⊗ ...⊗αk

!

Now compute the composition ∂ε∗ ◦ d̄
�

k
⊗

n=1
αn

�

and show it is equivalent.

∂ε∗ ◦ d̄
�

k
⊗

n=1
αn

�

= ∂ε∗

�

k
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αk

�
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= (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

i−1
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗αk

+ (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

(−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαi ∧α j ⊗ ...α̂ j ...⊗αk

+ (−1)
deg(α j )·

�

1+
j−1
∑

n=i+1
deg(αn )

�

j−1
∑

n=i+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...⊗δαn ⊗ ...α̂ j ...⊗αk

+ (−1)
(deg(α j )+1)·

j−1
∑

n=i+1
deg(αn )

(−1)

j−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧δα j ⊗ ...α̂ j ...⊗αk

+ (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

k
∑

n= j+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗δαn ⊗ ...⊗αk

= (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

�

i−1
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗αk

+ (−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαi ∧α j ⊗ ...α̂ j ...⊗αk

+ (−1)deg(α j )
j−1
∑

n=i+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...⊗δαn ⊗ ...α̂ j ...⊗αk

+ (−1)

j−1
∑

n=i+1
deg(αn )

(−1)

j−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧δα j ⊗ ...α̂ j ...⊗αk

+
k
∑

n= j+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗δαn ⊗ ...⊗αk

!

Notice that the following product simplifies:

(−1)

j−1
∑

n=i+1
deg(αn )

(−1)

j−1
∑

m=1
deg(αm )

= (−1)

j−1
∑

n=i+1
deg(αn )+

j−1
∑

m=1
deg(αm )

= (−1)

j−1
∑

n=i+1
deg(αn )+

j−1
∑

m=i+1
deg(αm )+

i
∑

m=1
deg(αm )

= (−1)
2

j−1
∑

n=i+1
deg(αn )+

i
∑

m=1
deg(αm )

= (−1)
i
∑

m=1
deg(αm )
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Therefore we find the composition becomes:

= (−1)
deg(α j )·

j−1
∑

n=i+1
deg(αn )

�

i−1
∑

n=1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαn ⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗αk

+ (−1)
i−1
∑

m=1
deg(αm )

α1⊗ ...⊗δαi ∧α j ⊗ ...α̂ j ...⊗αk

+
j−1
∑

n=i+1

(−1)
deg(α j )+

n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...⊗δαn ⊗ ...α̂ j ...⊗αk

+ (−1)
i
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧δα j ⊗ ...α̂ j ...⊗αk

+
k
∑

n= j+1

(−1)
n−1
∑

m=1
deg(αm )

α1⊗ ...⊗αi ∧α j ⊗ ...α̂ j ...⊗δαn ⊗ ...⊗αk

!

Comparing this to what was computed earlier, we see they are equivalent. Thus d̄ ◦∂ε∗ =

∂ε∗ ◦ d̄ from which it follows that d̄ ◦ ∂ = ∂ ◦ d̄ .

In order for C H R ∗∗(G , (A ,δ)) to be a bicomplex, the differentials d and ∂ must anti-

commute. The preceding lemma shows that d̄ and ∂ in fact commute. However, this can

be fixed with the sign-trick mentioned in Thm 5.4.1. Therefore define d = (−1)p d̄ . Then
�

C H R ∗∗
�

G , (A ,δ)
�

; d,∂
�

is a genuine bicomplex and the proof of Thm 6.3.1 is complete.

Theorem 6.3.3. Applying the horizontal filtration F ∗h to the chromatic bicomplex results in

a spectral sequence {E ∗∗r , dr }r∈N given by

E p ,q
0 =C H R q ,p (G , (A ,δ))where d0 = ∂

E p ,q
1 =H q ,p (C H R ∗∗(G , (A ,δ)))where d1 = d̄

where

H q ,p (C H R ∗∗(G , (A ,δ))) =
Ker

�

C H R q ,p ∂→C H R q ,p+1
�

Img
�

C H R q ,p−1 ∂→C H R q ,p
�
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Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗�Tot∗(C H R ∗∗), D
�

, F ∗h
�

Proof. The result follows directly from Thm 5.4.4.

Theorem 6.3.4. Applying the vertical filtration F ∗v to the chromatic bicomplex results in a

spectral sequence given by

E p ,q
0 =C H R p ,q (G , (A ,δ))where d0 = d̄

E p ,q
1 =H p ,q (C H R ∗∗(G , (A ,δ)))where d1 = ∂

where

H p ,q (C H R ∗∗(G , (A ,δ))) =
Ker

�

C H R p ,q d→C H R p .q+1
�

Img
�

C H R p ,q−1 d→C H R p ,q
�

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗�Tot∗(C H R ∗∗), D
�

, F ∗v
�

Proof. The result follows directly from Thm 5.4.5.

6.4 de Rham Cohomology in Particular

Definition 6.4.1. Let M be a smooth manifold. The de Rham Complex associated to M is

the space of smooth differential forms on M with coefficients inR along with the derivative,
�

Ω∗(M ), d
�

.
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Note that Ω∗(M ) is a DGA with a super-commutative multiplication given by the wedge

product of differential forms and where deg(d) = +1. Letting φ ∈ Ωk (M ) and ψ ∈ Ωl (M ),

then multiplication is given byφ ∧ψ= (−1)k lψ∧φ and the derivative acts on products by

d
�

φ∧ψ
�

= d(φ)∧ψ+(−1)kφ∧d(ψ). In fact, each grading ofΩ∗(M ) is an infinite dimensional

real vector space.

The cohomology of the de Rham complex is denoted H ∗(M ).

Theorem 6.4.1. (Bott and Tu 1982) Let
�

Ω∗(M ), dM

�

and
�

Ω∗(N ), dN

�

be the de Rham com-

plexes of smooth manifold M and N respectively. Then the following isomorphism holds

H ∗�Ω∗(M )⊗Ω∗(N )
� ∼=←→H ∗(M )⊗H ∗(N )

∼=←→H ∗(M ×N )

Proof. This is a standard result of the Kunneth isomorphism in the context of de Rham

cohomology. However, it will be useful later to be familiar with the details of the map chain

map K : Ω∗(M )⊗Ω∗(N )→ Ω∗(M ×N ) which realizes the isomorphism H ∗(M )⊗H ∗(N ) ∼=

H ∗(M ×N ). It is described in the following.

Consider the product manifold M ×N . There are natural projection maps from M ×N

onto the first and second factors which induce maps on the de Rham complexes as follows

M ×N N

M

π1

π2 Ω∗(M ×N ) Ω∗(N )

Ω∗(M )

π∗1

π∗2

Then the map K :Ω∗(M )⊗Ω∗(N )→Ω∗(M ×N ) is given by

w ⊗ v 7→π∗1(w )∧π
∗
2(v )

This map is clearly a well defined chain map since pullbacks commute with the derivative
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which also obeys a product rule over wedge products.

The claim that it is an isomorphism on the level of cohomology is omitted here as it is a

standard result and quite technical. The reader is referred to Bott and Tu (1982) for details

in the de Rham cohomology setting specifically and Hatcher (2001) more generally.

Theorem 6.4.2. Let M and N be smooth manifolds. Then there is an isomorphism

Ω∗(M tN )∼=Ω∗(M )⊕Ω∗(N )

which induces the following isomorphism

H ∗�Ω∗(M tN )
�∼=H ∗�Ω∗(M )⊕Ω∗(N )

�∼=H ∗(M )⊕H ∗(N )

Proof. The isomporphisms are induced via pullbacks of the inclusions

M tN N

M

i1

i2 Ω∗(M tN ) Ω∗(N )

Ω∗(M )

i ∗1

i ∗2

Ω∗(M tN )
I ∗←→Ω∗(M )⊕Ω∗(N )

For (w , v ) ∈Ω∗(M )⊕Ω∗(N ), (w , v ) 7→w + v ∈Ω∗(M tN ). Since M tN is a disjoint union,

every element of Ω∗(M tN ) is uniquely writen as w + v for w ∈Ω∗(M ) and Ω∗(N ).

Theorem 6.4.3. Let G be a graph and (Ω∗, d) the de Rham complex of a smooth manifold.

Applying the horizontal filtration F ∗h to the chromatic bicomplex

�

C H R ∗∗
�

G , (Ω, d)
�

; d,∂
�
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results in a spectral sequence {E ∗∗r , dr }r∈N given by

E p ,q
0 =C H R q ,p (G , (Ω∗, d))where d0 = ∂

E p ,q
1 =H q ,p (C H R ∗∗(G , (Ω∗, d)))where d1 = d̄

where

H q ,p (C H R ∗∗(G , (Ω∗, d))) =
Ker

�

C H R q ,p ∂→C H R q ,p+1
�

Img
�

C H R q ,p−1 ∂→C H R q ,p
�

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗�Tot∗(C H R ∗∗), D
�

, F ∗h
�

Proof. The result follow directly from Thm 5.4.4.

Theorem 6.4.4. Let G be a graph and (Ω∗, d) the de Rham complex of a smooth manifold.

Applying the vertical filtration F ∗v to the chromatic bicomplex

�

C H R ∗∗
�

G , (Ω, d)
�

; d,∂
�

results in a spectral sequence {E ∗∗r dr }r∈N given by

E p ,q
0 =C H R p ,q

�

G , (Ω∗, d)
�

where d0 = d̄

E p ,q
1 =C H R p ,q

�

G , H ∗� where d1 = ∂

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗
�

Tot∗
�

C H R ∗∗
�

G , (Ω, d)
��

, D
�

, F ∗v
�
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Proof. The existence of the spectral sequence itself, the claim concerning the first page

and its differential, as well as the convergence claim all follow directly from Thm 5.4.5. It

remains to show that E p ,q
1 =C H R p ,q

�

G , H ∗
�

where d1 = ∂ .

Recall from Thm 5.4.5 that E ∗∗1 =H p ,q (C H R ∗∗(G , (Ω∗, d)))where

H p ,q (C H R ∗∗(G , (Ω∗, d))) =
Ker

�

C H R p ,q d→C H R p .q+1
�

Img
�

C H R p ,q−1 d→C H R p ,q
�

Therefore, by definition, to obtain E p ,q
1 from E p ,q

0 the de Rham cohomology of

C H R p∗(G , (Ω∗c , d))

is computed for each p considered as a DGA.

However, for each p , C H R p∗(G , (Ω∗, d)) is the direct sum of tensor products of Ω∗ with

itself. By Thm 6.4.1 and Thm 6.4.2 the cohomology is isomorphic to the same direct sum of

tensor products of H ∗ with itself. Therefore lettingA ∗ =Ω∗ on the first page and computing

the second page from the first is equivalent to lettingA ∗ =H ∗ on the first page.
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CHAPTER

7

MANIFOLDS AND SIMPLICIES

7.1 Simplicial Manifolds

Definition 7.1.1. A Simplicial Space is a sequence of topological spaces

X= {Xn}∞n=0 equipped with continuous maps

∂ i
n−1 : Xn → Xn−1 and δi

n+1 : Xn → Xn+1
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for each 0≤ i ≤ n which obey the following face and degeneracy map relations











































∂ i
n−1 ◦ ∂

j
n = ∂

j−1
n−1 ◦ ∂ i

n , i < j

δi
n+1 ◦δ

j
n =δ

j+1
n+1 ◦δi

n , i ≤ j

∂
j

n+1 ◦δ j
n = ∂

j+1
n+1 ◦δ j

n = I dn , for all

∂ i
n+1 ◦δ

j
n =δ

j−1
n−1 ◦ ∂ i

n , i < j

∂ i
n+1 ◦δ

j
n =δ

j
n−1 ◦ ∂ i−1

n , i > j +1











































For brevity, a simplicial manifold will refer to a simplicial space where the topological

spaces are smooth manifolds and where the face and degeneracy maps are smooth maps.

Definition 7.1.2. (The Nerve Construction)

Let M be a manifold and {Ui }i∈A be an open cover of M . For I = (i1, ..., ik ) a sequence of

integers i1 ≤ ...≤ ik in A, define l (I ) = k as the length of I and UI =Ui1
∩ ...∩Uik

when the

intersection is non-empty.

Now let Nn =
⊔

l (I )=n+1
UI , so that N0 =

⊔

i
Ui is the disjoint union of the elements of {Ui }i∈A,

N1 =
⊔

l (I )=2
Ui ∩Uj is the disjoint union of all non-empty pair-wise intersections of sequential

elements (i ≤ j ) of {Ui }i∈A, ect.

Then N= {Nn}∞n=0 is a simplicial manifold with induced face and degeneracy maps given

by inclusions and repetitions. The face and degeneracy maps between N0 and N1 are given

by

∂ 0
0 : Ui ∩Uj →Uj , ∂ 1

0 : Ui ∩Uj →Ui , δ0
0 : Ui →Ui ∩Ui

The simplicial manifold N is called the Nerve of the open cover {Ui }i∈A of M .

Theorem 7.1.1. (The Nerve Theorem, Borsuk (1948))

Let M be a manifold and {Ui }i∈A be an enumerable open cover of M . If for any non-empty

subsets of the open cover {Uik
} ⊆ {Ui }i∈A it is the case that ∩

k
Uik

is either empty or contractible,

then the geometric realization of the nerve of {Ui }i∈A, ‖N‖ is homotopy equivalent to M .
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For more details on simplicial objects and how they induce (co)homological structures,

see Section 2.1.

7.2 The Simplicial Bicomplex

Definition 7.2.1. (Eastwood and Hugget 2007) Let G be a graph and M be a smooth mani-

fold. The Graph Configuration Space MG of M with respect to G is given as follows.

For |V (G )| = n , denote the n-fold Cartesian product of M with itself by M n = M ×n .

Then each factor of M in M n corresponds to a vertex in V (G ). Each e ∈ E (G ) consists of

two vertices in V (G ), e = {vi , v j }. Therefore for each e ∈ E (G ) defines a subspace of M n as

follows

De =
�

(m1, ..., mn ) ∈M n
�

� mi =m j where e = {vi , v j }
	

Now let DE (G ) = ∪
e∈E (G )

De and define MG =M n \DE (G ).

Lemma 7.2.1. (Bendersky and Gitler 1991) Let G be a graph, M be a smooth manifold. There

is a bicomplex called the Simplicial Bicomplex
�

S I M ∗∗(G , M ); d,∂
�

associated to DE (G ) ⊂M n

arising from the nerve construction Ex 7.1.2 and the de Rham complex.

Proof. Let G be a graph and M a smooth manifold. Suppose |V (G )|= n and the E (G ) has

a total order and consider the topological subspace DE (G ) ⊂M n . Since the collection of

sub-diagonals {De }e∈E (G ) is an open cover of DE (G ), it has an associated simplicial space

given by its nerve with respect {De }e∈E (G ).

Namely, for S ⊆ E (G ), define D̄S = ∩
e∈S

De . Then following the procedure in Ex 7.1.2, for

each each j ,

Nj =
⊔

|S |= j+1

D̄S

Furthermore, it is clear that for each S ⊂ E (G ), D̄S
∼= M r (S ) for some function r (S ). For
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example, when S is a singleton set S = {e }, then D̄S =De
∼=M n−1.

The function r (S ) is the number of connected components of the subgraph GS . Recalling

notation from Sec 6.2, GS =Gε and kS = kε, it is the case that

Nj ≡
⊔

|S |= j+1

D̄S =
⊔

|ε|= j+1

M kε

Therefore the nerve N= {Vj }∞j=0 is in fact a simplicial manifold.

Since Nj is a smooth manifold for each j , consider the de Rham complex for each j ,

Ω∗(Nj ). Since the de Rham complex is a contravariant functor, the simplicial face maps ∂ i
j−1 :

Nj →Nj−1 induce maps on the de Rham complexes ∂ i
j :Ω∗(Nj )→Ω∗(Nj+1). Appropriately

signed sums of the induced maps produce the usual simplicial differentials ∂ j :Ω∗(Nj )→

Ω∗(Nj+1).

Lastly, note that since DE (G ) ⊂M n , the simplicial structure can be augmented by defining

N−1 =M n and a differential ∂−1 :Ω∗(N−1)→Ω∗(N0)which is the signed sum of pullbacks of

the inclusions ie : De →M n .

Now define

S I M p ,q (G , M ) =Ωq (Np )

by construction, it is clear that for each p and q , S I M p ,∗(G , M ) =Ω∗(Np ) and S I M ∗,q (G , M ) =

Ωq (N∗) are DGAs with differentials given by the derivative d and simplicial map ∂ respec-

tively. Lastly, because the de Rham complex is functorial, the differentials d and ∂ commute.

Applying the sign trick guarantees that they anti-commute.

Note that the simplicial bicomplex S I M ∗∗(G , M ) is not entirely contained in the sec-

ond quadrant (p , q ≥ 0) because it incorporates the augmentation N−1 = M n so that

S I M −1,∗(G , M ) =Ω∗(N−1) =Ω∗(M n ). To facilitate later exposition it is helpful to rectify this

with a degree shift of +1 in the simplicial grading.
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Now, the induced face maps ∂ i
j (of which the simplicial differential ∂ j is a signed sum)

are pullbacks under inclusions of sub-diagonals considered as intersections of higher

dimensional sub-diagonals.

Example 7.2.1. Suppose the graph G consisted of three vertices V (G ) = {v1, v2, v3} and two

edges E (G ) = {e1 = {v1, v2} , e2 = {v2, v3}}.

Then N0 =M 3, N1 =De1
tDe2

, and N2 =De1
∩De2

where

De1
=
�

(m1, m1, m3) ∈M 3
	∼=M 2

De2
=
�

(m1, m2, m2) ∈M 3
	∼=M 2

De1
∩De2

=
�

(m1, m1, m1) ∈M 3
	∼=M

Then the two simplicial face maps are given by the inclusion of subspaces as diagonals

∂ 0
1 ≡ iD0

: De1
∩De2

→De2
, ∂ 1

1 ≡ iD1
: De1

∩De2
→De1

Then the induced maps, after applying the de Rham complex, are pullbacks under these

inclusions of subdiagonals.

In order to more easily recall the nature of the simplicial differential in this case, we will

equivalently denote ∂ ≡D ∗ whenever convenient.
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Theorem 7.2.2. Let G be a graph and M be a smooth manifold. Applying the horizontal

filtration F ∗h to the simplicial bicomplex

�

S I M ∗∗�G , M
�

; d,∂
�

results in a spectral sequence {E ∗∗r dr }r∈N given by

E p ,q
0 = S I M q ,p

�

G , M
�

where d0 = ∂

E p ,q
1 =H q ,p (S I M ∗∗(G , M ))where d1 = d̄

where

H q ,p (S I M ∗∗(G , M )) =
Ker

�

S I M q ,p ∂→ S I M q ,p+1
�

Img
�

S I M q ,p−1 ∂→ S I M q ,p
�

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗
�

Tot∗
�

S I M ∗∗�G , M
��

, D
�

, F ∗h
�

To t ∗∞(E
∗∗
∞)
∼=H ∗

�

Tot∗
�

S I M ∗∗�G , M
��

, D
�

∼=H ∗ �M n , DE (G )

�

Proof. The existence and claims concerning the first and second pages follow directly from

Thm 5.4.4. The additional claim about convergence follows from the fact that this is an

Anderson Spectral Sequence (Anderson 1972).

In short, the geometric realization of the simplicial space ‖V‖ is weakly equivalent

to the pair (M , DE (G )), so the spectral sequence converges to the relative cohomology,

H ∗
�

M n , DE (G )

�

.
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Theorem 7.2.3. Let G be a graph and M be a smooth manifold. Applying the vertical filtra-

tion F ∗v to the simplicial bicomplex

�

S I M ∗∗�G , M
�

; d,∂
�

results in a spectral sequence {E ∗∗r dr }r∈N given by

E p ,q
0 = S I M p ,q

�

G , M
�

where d0 = d̄

E p ,q
1 =H p ,q (S I M ∗∗(G , M ))where d1 = ∂

where

H p ,q (S I M ∗∗(G , M )) =
Ker

�

S I M p ,q d̄→ S I M p+1,q
�

Img
�

S I M p−1,q d̄→ S I M p ,q
�

Furthermore, the spectral sequence converges and

E p ,q
∞
∼= E p ,q

a s s o c

�

H ∗
�

Tot∗
�

S I M ∗∗�G , M
��

, D
�

, F ∗v
�

To t ∗∞(E
∗∗
∞)
∼=H ∗

�

Tot∗
�

S I M ∗∗�G , M
��

, D
�

∼=H ∗ �M n , DE (G )

�

Proof. Same as in the previous theorem, the existence and claims concerning the first and

second pages follow directly from Thm 5.4.5. The additional claim about convergence

follows from the fact that this is an Anderson Spectral Sequence (Anderson 1972).

In short, the geometric realization of the simplicial space ‖V‖ is weakly equivalent

to the pair (M , DE (G )), so the spectral sequence converges to the relative cohomology,

H ∗
�

M n , DE (G )

�

.
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Lemma 7.2.4. (Eastwood and Hugget 2007) Let G be a graph and M be a compact orientable

smooth manifold of dimension m. Then the following isomorphism holds

H ∗ �M n , DE (G )

�∼=Hmn−∗(MG )

Proof. By Lefschetz Duality, if A is a compact, locally contractible subspace of a closed

orientable n-maifold X , then for all i ,

Hi (X , X \A;Z)∼=H n−i (A;Z)

Letting A =MG ≡M ×n\DE (G ) and X =M ×n and X =M ×n . Then X \A =M ×n\
�

M ×n \DE (G )

�

=

DE (G ), and thus H ∗(M ×n , DE (G );R)∼=Hmn−∗(MG ;R).

The requirement that M be compact can be relaxed if the deRham complex is restricted

to the sub-complex of compactly supported forms called the compactly supported de Rham

complex, Ω∗c (M ). This is because the compactness requirements of the Lefschetz duality

theorem can be relaxed by restricting to compact supports.
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CHAPTER

8

SIMPLICIAL AND CHROMATIC

RELATIONS

8.1 A Morphism of Bicomplexes

Recall from Ex 7.2.1, that we equivalently denote ∂ ≡D ∗ in the simplicial bicomplex. We

will do so in the following theorem to avoid confusion with the chromatic differential. There

is no threat from confusing the differential d in the two bicomplexes as they are indeed the

same smooth derivative albeit induced slightly differently in the different contexts although

not in anyways that matter significantly as will be shown.
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Theorem 8.1.1. Given a graph G and smooth manifold M , there exists a map from the

chromatic bicomplex to the simplicial bicomplex

ψ :
�

C H R ∗∗
�

G , (Ω, d)
�

; d,∂
�

→
�

S I M ∗∗(G , M ); d, D ∗�

Proof. Let G be a graph and M be a manifold and recall from Thm 6.4.1 and Lemma 6.4.2

that there are maps

Ω∗(M )⊗Ω∗(M ) K→Ω∗(M ×M )

Ω∗(M )⊕Ω∗(M ) I ∗←→Ω∗(M tM )

By definition C H R i ,∗ is the direct sum of tensor powers of Ω∗(M ) corresponding to

connected components of all subgraphs Gε in the i t h state. Furthermore, recall that the

subgraphs are ordered by their least vertex. Suppose that there are n subgraphs in the i t h

state and denote the number of connected components of the j t h subgraph in the i t h state

by kε j
.

Now recall that S I M i ,∗ is the de Rham complex of a disjoint union of cartesian powers

of M with itself. Each term in the disjoint union corresponds to a subgraph in the i t h state

and the cartesian power of a given term is the number of connected components of the

corresponding subgraph.

We can therefore generically write

C H R i ,∗ =
n
⊕

j=1

�

Ω∗(M )⊗kε j
� K−→

n
⊕

j=1

�

Ω∗
�

M kε j
�

�

I ∗←→Ω∗
� n
t

j=1
M kε j

�

= S I M i ,∗

To demonstrated that this is a morphism of bicomplexes, it remains to show that K and

I ∗ commute with the differentials. In the case of the derivatives d, K and I ∗ were shown to

be de Rham chain maps in Thm 6.4.1 in such a way that they naturally take the derivative d
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on C H R ∗∗ to the derivative d on S I M ∗∗.

Therefore it remains to show that K and s commute with the chromatic differential

∂ . However, recall that ∂ is a signed sum of per-edge maps. Therefore, it is sufficient to

demonstrate that K commutes with per-edge maps. Furthermore, each per-edge map is

either identity or the wedge product. Since everything commutes with identity, the problem

reduces to showing K commutes with wedge products.

Now, the wedge productA ∗⊗A ∗ ∧→A ∗ is formally defined as the image of the alterna-

tion map from the formal tensor product to its exterior algebra. However, for the de Rham

complex of a manifold the wedge product can be equivalently defined by the composition

∧=D ∗ ◦K :Ω∗(M )⊗Ω∗(M )→Ω∗(M )

where D ∗ is the pullback under the diagonal embedding D : M →M ×M . That is to say

that it is defined as the map which makes the following diagram commute

Ω∗(M )⊗Ω∗(M ) Ω∗(M ×M )

Ω∗(M )

K

∧ D ∗

Recall that K =π∗1∧π
∗
2 was define in Thm 6.4.1. So it seems that this definition is circular

in that it is definining the wedge product in terms of a map K which is itself defined in

terms of the wedge product. However, this is resolved by defining the wedge product in the

definition K =π∗1 ∧π
∗
2 as formal wedge product (thought of as the image of the alternation

map) and then taking the above diagram to define the per-edge maps which are simply

inconveniently labeled by the same symbol.

With this definition of the per-edge maps, K commutes with them by definition. Fur-

thermore, the diagram also includes the diagonal pullback maps in such a way that it is
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clear that K takes ∂ to D ∗ as needed.

Theorem 8.1.2. (Baranovsky and Sazdanovic 2012) Given a graph G and a smooth manifold

M . The spectral sequences arising from the vertical filtrations of the chromatic and simplicial

bicomplexes are isomorphic on their 1s t -pages, E ∗∗1 (C H R , Fv )∼= E ∗∗1 (S I M , Fv ).

Proof. By Thm 8.1.1, the map between the chromatic and simplicial bicomplexesψ= I ∗◦K

induces a mapψ∗ on the 1s t -pages of the spectral sequences because it commutes with

the differentials.

By Thm 6.4.1 and Thm 6.4.2, the maps K and I ∗ induce isomorphisms on cohomology

when computed with respect to the de Rham differential. Under the vertical filtration,

cohomology is computed with respect to the de Rham differential in order to obtain the

1s t -page from the 0t h -page. Therefore,ψ∗ : E ∗∗1 (C H R , Fv )→ E ∗∗1 (S I M , Fv ) is an isomophism

which takes direct sums of tensor powers of H ∗(M ) to the de Rham cohomology of the

disjoint unions of Cartesian powers of M .

Corollary 8.1.2.1. (Baranovsky and Sazdanovic 2012) Given a graph G and a smooth man-

ifold M , the spectral sequences arising from the vertical filtrations of the chromatic and

simplicial bicomplexes converge to H ∗
�

M n , DE (G )

�∼=Hmn−∗(MG ).

Conjecture 8.1.1. Given a graph G and a smooth manifold M , the spectral sequences arising

from the horizontal filtrations of the chromatic and simplicial bicomplexes are isomorphic

on their 2nd -pages E ∗∗2 (C H R , Fh )∼= E ∗∗2 (S I M , Fh ).

It is clear that the E1 pages of the spectral sequences arising from the horizontal fil-

trations of the bicomplexes will in general not be isomorphic. However, they have the

same limit. Therefore, it is an open question as to under what circumstances they become

isomorphic (if any) before the limit is achieved. The conjecture that they are isomorphic on

and after their E2 pages is based on the fact that the reduction from infinitely generated
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algebras to finitely generated algebras occurs after cohomology has been computed with

respect to the deRham differential. In the case of the horizontal filtration, this would be on

the E2 page. In conjunction with the commutativity of the differentials in the underlying

bicomplexes, this hints that an isomorphism is likely on their E2 pages.

8.2 An Example Vertical Filtration Computation

In the following, let G be the two-vertex one-edge graph, M = R1, and Ω∗c (M ) be the de

Rham complex of compactly supported differential forms on M with coefficients in R.

Then the chromatic complex is given by

Example 8.2.1. G =

i = 0 i = 1

0 0

0 Ω∗c (M )⊗Ω
∗
c (M ) Ω∗c (M ) 0

∂ 0
∗

∂ 0

Where:

∂ 0(α⊗β ) =α∧β

The de Rham complex can be written more explicitly as follows

Ω∗c (M ) =Ω
0
c (M )⊕Ω

1
c (M )

Ω∗c (M )⊗Ω
∗
c (M ) =

�

Ω0
c (M )⊗Ω

0
c (M )

�

⊕
�

Ω0
c (M )⊗Ω

1
c (M )

⊕
Ω1

c (M )⊗Ω0
c (M )

�

⊕
�

Ω1
c (M )⊗Ω

1
c (M )

�
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The chromatic bicomplex is formed by substituting in the above expansions of Ω∗c (M )

and Ω∗c (M )⊗Ω
∗
c (M ) in the chromatic complex with the smooth differentials. Note that by

Thm 6.3.4 this is also the 0t h -page of the spectral sequence arising from the verical filtration.

Example 8.2.2. C H R ∗∗
�

G , (Ωc , d)
�

= E ∗∗0 (C H R , Fv )

where G = & M =R1

0 0

0 Ω1
c (M )⊗Ω

1
c (M ) 0 0

0
Ω0

c (M )⊗Ω
1
c (M )

⊕
Ω1

c (M )⊗Ω0
c (M )

Ω1
c (M ) 0

0 Ω0
c (M )⊗Ω

0
c (M ) Ω0

c (M ) 0

0 0

∂

∂

∂

d̄ d̄

d̄ d̄

Similarly the simplicial bicomplex is given by the following. Again, note that by Thm

7.2.3 the simplicial bicomplex is the 0t h -page of the spectral sequence arising from the

vertical filtration.
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Example 8.2.3. S I M ∗∗(G , M ) = E ∗∗0 (S I M , Fv )

where G = & M =R1

0 0

0 Ω2
c (M ×M ) 0 0

0 Ω1
c (M ×M ) Ω1

c (M ) 0

0 Ω0
c (M ×M ) Ω0

c (M ) 0

0 0

∂

∂

∂

d̄ d̄

d̄ d̄

Now, the spectal sequences arising from the vertical filtrations can be computed and

their convergence results verified. By Thm 8.1.2, the spectral sequences are isomorphic on

their 1s t -pages. It is therefore enough to compute one of them.

Consider E ∗∗0 (S I M , Fv ). Computing the 1s t -page from the 0t h page is equivalent to

computing the de Rham cohomology of each column. Since the compactly supported de

Rham cohomologies of M =R1 and M ×M ∼=R2 are known (Lee 2013), the 1s t -pages of the

spectral sequences arising from the vertical filtrations are given by the following.
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Example 8.2.4. E ∗∗1 (S I M , Fv )∼= E ∗∗1 (C H R , Fv )

where G = & M =R1

0 0

0 H 2
c (M ×M ) 0 0

0 H 1
c (M ×M ) H 1

c (M ) 0

0 H 0
c (M ×M ) H 0

c (M ) 0

0 0

∂

∂

∂

0 0

0 R 0 0

0 0 R 0

0 0 0 0

0 0

∂

∂

∂

In this case the spectral sequence collapses on the 1s t -page. The∞-total complex is

therefore equal to the 1s t -total complex and is given by

To t 2
∞ =R⊕R , To t n

∞ = 0 else

In this example M n \DE (G ) is just R2 set-minus the diagonal. Therefore the singular

homology of M n \DE (G ) is readily apparent and given by

H0 =R⊕R , Hn = 0 else

Therefore, To t ∗∞
∼=Hmn−∗(M n \DE (G )) exactly in accordance with Thm 7.2.2 and Thm

7.2.4.

131



8.3 Functoriality in the Bicomplexes

Both the chromatic and simpicial bicomplexes are constructions that takes two inputs,

a graph G and a smooth manifold M . They output bicomplexes,
�

C H R ∗∗
�

G , (Ω, d)
�

;d,∂
�

and
�

S I M ∗∗(G , M ); d, D ∗
�

respectively. A natural question (pun intended) is whether or not

these constructions are functorial in any sense. That is, which morphisms (if any) of graphs

and smooth manifolds induce maps between their associated bicomplexes? Addressing

this question is subject of this section.

8.3.1 Functoriality in the Manifold

Let’s start with a discussion of the functoriatily of the chromatic bicomplex with respect

to smooth manifolds. Since the chromatic bicomplex arises from the chromatic complex

(which takes a graph G and a graded R -algebraA ∗), it makes sense to begin by establishing

the functoriality of the chromatic complex with respect to the input algebra.

Theorem 8.3.1. Let G be a graph,A ∗ andB ∗ be graded R -algebras, and φ :A ∗→B ∗ be

a graded R -algebra morphism. Then there is an induced morphism φ∗ : C H R ∗(G ,A )→

C H R ∗(G ,B )which in turn induces a map on chromatic cohomology,φ∗ : H ∗
C H R (G ,A )→

H ∗
C H R (G ,B ).

Proof. First, the induced mapφ∗ : C H R ∗(G ,A )→C H R ∗(G ,B ) is given as follows. By defi-

nition C H R i (G ,A ) is the direct sum of tensor powers ofA ∗ corresponding to connected

components of all subgraphs Gε in the i t h state. Furthermore, recall that the subgraphs

are ordered by their least vertex. Suppose that there are n subgraphs in the i t h state and

denote the number of connected components of the j t h subgraph in the i t h state by kε j
.
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Then C H R i (G ,A ) and C H R i (G ,B ) can be written as follows.

C H R i (G ,A ) =
n
⊕

j=1

�

(A ∗)⊗kε j
�

and C H R i (G ,B ) =
n
⊕

j=1

�

(B ∗)⊗kε j
�

Then the induced map φ∗i : C H R i (G ,A ) → C H R i (G ,B ) is just the corresponding

direct sum of tensor powers ofφ.

φ∗i : C H R i (G ,A )→C H R i (G ,B )

n
⊕

j=1

�

φ⊗kε j
�

:
n
⊕

j=1

�

(A ∗)⊗kε j
�

→
n
⊕

j=1

�

(B ∗)⊗kε j
�

Now, to show that this also induces a map on chromatic cohomology, it is enough to

show that it commutes with the chromatic differential on both complexes. However, each

chromatic differential ∂ is a signed sum of per-edge maps. Each per-edge map is either

given by multiplication or identity. Everything commutes with the identity maps. Since

graded R -algebra morphisms respect multiplication by definition, they also commute with

the multiplicative per-edge maps.

That is to say that the following square is commutative for each i :

C H R i+1(G ,A ) C H R i+1(G ,B )

C H R i (G ,A ) C H R i (G ,B )

φ∗i+1

φ∗i
∂ ∂

To lift this to the level of the chromatic bicomplex, it suffices to check if a morphism

of DGAs (a co-chain map) φ : (A ∗, d)→ (B ∗,δ) induces a map between the chromatic

bicompelexes
�

C H R ∗∗
�

G , (A , d)
�

; d,∂
�

and
�

C H R ∗∗
�

G , (B ,δ)
�

; d,∂
�

.
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Theorem 8.3.2. Let G be a graph, (A ∗, d) and (B ∗,δ) be DGAs, and φ : A ∗ → B ∗ be a

co-chain map. Then there is an induced morphism between the chromatic bicomplexes

φ∗ :
�

C H R ∗∗
�

G , (A , d)
�

; d,∂
�

−→
�

C H R ∗∗
�

G , (B ,δ)
�

; d,∂
�

which in turn induces a map on their spectral sequences.

Proof. Recall from definition 5.1.8 that a co-chain map is a graded R -algebra morphims.

Therefore the induced map on the bicmplexes φ∗ is defined as in the previous theorem

8.3.1 which demonstrates that it commutes with the chromatic differentials. As a co-chain

map, it also commutes with with the differentials of the DGAs by definition. Therefore,

according to definition 5.4.2, it is a bicomplex morphism and thereby induces morphisms

on the resulting spectral sequences.

A smooth map F : M →N between smooth manifolds induced a co-chain map on their

associated deRham complexes, F ∗ :Ω∗(N )→Ω∗(M ) (Lee 2013). The following theorem then

follows directly from theorem 8.3.2.

Theorem 8.3.3. Let G be a graph, and F : M → V be a smooth map between smooth

manifolds. Then there is an induced morphism between the chromatic bicomplexes

F ∗ :
�

C H R ∗∗
�

G , (ΩV , dV )
�

; d,∂
�

−→
�

C H R ∗∗
�

G , (ΩM , dM )
�

; d,∂
�

which in turn induces a map on their spectral sequences.

Similarly, smooth maps between manifolds induces maps between simplicial bicom-

plexes as the following theorem shows.
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Theorem 8.3.4. Let G be a graph, and F : M → V be a smooth map between smooth

manifolds. Then there is an induced morphism between the simplicial bicomplexes

F ∗ :
�

S I M ∗∗(G , V ); d, D ∗�−→
�

S I M ∗∗(G , M ); d, D ∗�

Proof. For the simplicial bicomplex, recall from lemma 7.2.1 that S I M p ,q (G , M ) =Ωq (Np )

where Np ≡
⊔

|S |=p+1
D̄S =

⊔

|ε|=p+1
M kε where S ⊆ E (G ) and kε is the number of connected

components of the the subgraph Gε =GS ⊆G .

Now, a smooth map F : M → V between smooth manifolds extends over Cartesian

products and disjoint unions and therefore induces a smooth map

F :
⊔

|ε|=p+1

M kε −→
⊔

|ε|=p+1

V kε

This in turn induces a co-chain map between their respective deRham complexes

F ∗ :Ω∗
�

⊔

|ε|=p+1

V kε

�

−→Ω∗
�

⊔

|ε|=p+1

M kε

�

which is equivalent to

F ∗ : S I M p ,∗(G , V )−→ S I M p ,∗(G , M )

It remains to show that F ∗ commutes with the simplicial differential D ∗. However, according

to lemma 7.2.1, the simplicial differential is a signed sum of pullbacks of inclusion maps

which embed subdiagonals into higher order subdiagonals. In this case the smooth map

clearly commutes.

For example, let DM : M →M ×M be the diagonal embedding map which takes m 7→

(m , m ) and DV : V →V ×V be the diagonal embedding map which takes v 7→ (v, v ). Lastly,

let m ∈M and F (m ) ∈ V be its image under F . Then DV

�

F (m )
�

= (F (m ), F (m )) ∈ V ×V
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and (F × F ) ◦DM (m ) = (F × F )(m , m ) = (F (m ), F (m )) ∈V ×V .

8.3.2 Functoriality in the Graph

Now, let’s consider the functoriality in the graph input. First, note that graph morphisms

do not, in general, induce maps between their respective chromatic polynomials (Tutte

1984). However, the benefit of categorification is that the additional structure allows for

the possibility of functoriality which is not present in the original construction. Let’s see if

that’s true here.

Since the spectral sequences converge to the homology of configuration space H∗(MG ),

let’s start there and work backwards. In their paper Eastwood and Hugget (2007) show that

the graph configuration spaces are functorial with respect to the graph.

Lemma 8.3.5. (Eastwood and Hugget 2007) Let M be a smooth manifold andφ : G →H be

a graph morpism between graphs. Thenφ induces a smooth mapφ∗ : MH →MG .

Proof. A point m ∈ MH is a map m : V (H ) → M such that if e = [v, w ] ∈ E (H ), then

m (v ) 6=m (w ). Similarly, a point n ∈MG is a map n : V (G )→M such that if e = [v, w ] ∈ E (G )

then n (v ) 6= n (w ). Thought of in this way, the graph morphism φ induces a map from

MH to MG via pre-composition. for v ∈ V (G ), the map φ∗(m ) : V (G ) → M is given by

φ∗(m )(v ) =m
�

φ(v )
�

. Becauseφ is a graph morphism, if [v, w ] ∈ E (G ) then [φ(v ),φ(w )] ∈

E (H ). Therefore m (φ(v )) 6=m (φ(w ))which by definition of φa s t implies that φ∗(m )(v ) 6=

φ∗(m )(w ).

With this in mind, it follows that a graph morphismφ : G →H induces a map on the

homologies of the graph configuration spacesφ∗ : H∗(MH )→H∗(MG ). Dualizing (using the

isomorphism of lemma 7.2.4) yields the map φ∗ : H ∗(M , DE (G ))→H ∗(M , DE (H )). Because

these are the limit spaces of the spectral sequences arising the chromatic and simplicial
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bicomplexes, if they are functorial in their graph inputs, then the functoriality must be

covariant. That’s at least a start.

It is known that certain morphisms between graphs produce morphisms between their

associated chromatic complexes. Namely, the chromatic complex categorifies the deletion-

contraction rule 6.1 (Helme-Guizon and Rong 2005a). Let G be a graph and e ∈ E (G ). Then

there is an inclusion map ie : G /e ,→G and a map pe : G →G \ e . Helme-Guizon and Rong

(2005a) Show that these are co-chain maps which give rise to a short exact sequence in

their respective chromatic complexes

0→C H R i−1(G /e )
p ∗e→C H R i (G )

i ∗e→C H R i (G \ e )→ 0

which in turn gives rise to a long exact sequence on the chromatic cohomology

0→H 0
c h r (G )

i ∗e→H 0
c h r (G \ e )

γ∗

→H 0
c h r (G /e )

p ∗e→H 1
c h r (G )

i ∗e→ ...

where γ∗ is the connecting homomorhism.

In fact, in Jasso-Hernandez and Rong (2006) it is shown how any inclusion of subgraphs

induces co-chain map on the chromatic complexes. However, note that this construction

is contravariant. Therefore, while these graph morphisms induce co-chain maps which lift

to the spectral sequences arising from their chromatic bicomplexes, they do not recover

the functoriality of the Eastwood and Hugget (2007) construction.

In addition, it has been shown that the chromatic homology is completely determined

by the chromatic polynomial when computed with rational coefficients (Chumtov et al.

2008) as well as with integer coefficients (Lowrance and Sazdanovíc 2017). However, this

does not hold for all choices of algebras (see Pabiniak et al. (2008) for an example with

coefficients in A3).
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This, in conjunction with the aformentioned fact that graph morphisms do not in

general induce maps between their respective chromatic polynomials, implies that the

likelihood of the existence of covariant functoriality in the chromatic complex, and thus

resulting bicomplex, is small.

Considering all of this, as well as the authors numerous attempts at establishing functo-

riality, the author is fairly confident in the following conjecture.

Conjecture 8.3.1. A graph morphism does not induce a covariant morphism on chromatic

(bi)complexes.

Note that if there were such a functoriality in the simplicial bicomplex, then it would get

carried over to the chromatic bicomplex via their relationship as described in 8.1. Therefore,

the lack in the chromatic complex implies the lack in the simplicial bicomplex.

138



CHAPTER

9

CHROMATIC HOMOLOGY AND PDES?

9.1 An Example Computation

Here an attempt is made to compute the E ∗∗2 page of the spectral sequence arising from the

horizontal filtration of the chromatic bicomplex. As the simplest non-trivial computation,

consider the graph G = P1 and M =R1 with the compactly supported deRham complex,

Ω∗c (M ). Because the manifold is known in this example, the notation will be simplified to

Ωc . Compare this computation to that of horizontal filtration worked out in section 8.2.

Notice that on simpler graphs (multiple vertices and no edges) the computation re-

duces to deRham cohomology with compact supports when there is only one vertex, and
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tensor products thereof for multiple vertices which can be computed via the the Kunneth

Isomorphism (as in Hatcher (2001) and Lee (2013) for example).

For completeness, the E ∗∗0 page is built up from the chromatic complex in the following

two examples.

Example 9.1.1. G =

The chromatic diagram and resulting chromatic complex these choices of G and M is

given by:

i = 0 i = 1

0 0

0 Ω∗c ⊗Ω
∗
c Ω∗c 0

∂ 0
∗

∂ 0

Where:

∂ 0(α⊗β ) =α∧β

For M = R1, the graded space and its tensor power can be written out explicitely as

follows:

Ω∗c =Ω
0
c ⊕Ω

1
c

Ω∗c ⊗Ω
∗
c =

�

Ω0
c ⊗Ω

0
c

�

⊕
�

Ω0
c⊗Ω

1
c

⊕
Ω1

c⊗Ω0
c

�

⊕
�

Ω1
c ⊗Ω

1
c

�

With this expanded form, the chromatic complex can now be written as the following.
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Example 9.1.2. M =R1

Ω∗c

0 Ω0
c Ω1

c 0
d̄

Ω∗c ⊗Ω
∗
c

0 Ω0
c ⊗Ω

0
c

Ω0
c⊗Ω

1
c

⊕
Ω1

c⊗Ω0
c

Ω1
c ⊗Ω

1
c 0

d̄ d̄

Adding the chromatic differentials to the diagram results is the bicomplex which is

the E ∗∗0 page of the spectral sequence arising from the vertical filtration of the chromatic

bicomplex.

Example 9.1.3. E ∗∗0

G = & M =R1

0 0 0

0 Ω0
c Ω1

c 0 0

0 Ω0
c ⊗Ω

0
c

Ω0
c⊗Ω

1
c

⊕
Ω1

c⊗Ω0
c

Ω1
c ⊗Ω

1
c 0

0 0 0

d̄

d̄ d̄

∂ ∂
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Theorem 9.1.1. The E ∗∗1 page is given by

G = & M =R1

0 0 0

0 0 0 0 0

0 E 00
1 E 10

1 E 20
1 0

0 0 0

d̄ d̄

Where:

E 00
1 = { f ⊗ g ∈Ω0

c ⊗Ω
0
c | f · g = 0}

E 10
1 =

�

(α⊗ g , f ⊗β ) | α · g + f ·β = 0
	

E 20
1 =Ω

1
c ⊗Ω

1
c

The proof is given as the sequence of following lemmas.

Lemma 9.1.2.

E 00
1 = { f ⊗ g ∈Ω0

c ⊗Ω
0
c | f ∧ g = 0}

= { f ⊗ g ∈Ω0
c ⊗Ω

0
c | f · g = 0}

= { f ⊗ g ∈Ω0
c ⊗Ω

0
c | supp( f )∩ supp(g ) = ;}

Proof. Note that E 00
1 is given by the kernel of

∂ :Ω0
c ⊗Ω

0
c →Ω

0
c
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That is

E 00
1 =Ker(∂ ) = { f ⊗ g ∈Ω0

c ⊗Ω
0
c | f ∧ g = 0}

Since f and g are smooth compactly supported functions on R1, the wedge product is just

the point-wise product, f ∧g = f ·g . Therefore, the condition that f ∧g = 0 is equivalent

to f and g having disjoint support.

Lemma 9.1.3.

E 01
1 = 0

Proof. It is enough to show that ∂ : Ω0
c ⊗Ω

1
c → Ω

1
c is surjective. Therefore, let h ∈ Ω0

c and

U ⊂R1 be open and such that supp(h )⊂U . Then there exists a bump function, ρU , with

compact support in U such that its restriction to supp(h ) is constant 1. Therefore, h ⊗ρU ∈

Ω0
c ⊗Ω

0
c is such that ∂ (h ⊗ρU ) = h ·ρU = h .

Lemma 9.1.4.

E 10
1 =

�

(α⊗ g , f ⊗β ) | α∧ g + f ∧β = 0
	

=
�

(α⊗ g , f ⊗β ) | α · g + f ·β = 0
	

Proof. E 10
1 is given by the kernel of the map

∂ :
�

Ω1
c ⊗Ω

0
c

�

⊕
�

Ω0
c ⊗Ω

1
c

�

→Ω1
c

where

∂
�

α⊗ g , g ⊗β
�

=α∧ g + f ∧β

Therefore,

E 10
1 =Ker(∂ ) = {(α⊗ s , t ⊗β ) | α∧ s + t ∧β = 0}
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Furthermore, since f , g ∈Ω0
c the wedge products are just point-wise products.

Lemma 9.1.5.

E 11
1 = 0

Proof. It is enough to show that the map

∂ :
�

Ω1
c ⊗Ω

0
c

�

⊕
�

Ω0
c ⊗Ω

1
c

�

→Ω1
c

is surjective.

Let w ∈Ω1
c and U ⊂R1 be open and such that supp(w )⊂U . Then there exists a bump

function,ρU , with compact support in U such that its restriction to supp(w ) is the constant

1. Therefore

(w ⊗ρU , 0⊗0) ∈
�

Ω1
c ⊗Ω

0
c

�

⊕
�

Ω0
c ⊗Ω

1
c

�

is such that ∂
�

w ⊗ρU , 0⊗0
�

=w ·ρU +0 ·0=w .

Lemma 9.1.6.

E 20
1 =Ω

1
c ⊗Ω

1
c

Proof. Here the vertical maps coming into and out of Ω1
c ⊗Ω

1
c are both zero maps.
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Theorem 9.1.7. The E ∗∗2 page is given by

G = & M =R1

0 0 0

0 0 0 0 0

0 0 0 E 20
2 0

0 0 0

Where:

E 20
2 =

Ω1
c ⊗Ω

1
c

Img(d̄ )

The proof is given as the sequence of following lemmas.

Lemma 9.1.8.

E 00
2 = 0

Proof. It is enough to show that the kernel of d̄ : E 00
1 → E 10

1 is zero. The kernel is given by

the following.

Ker(d) = { f ⊗ g ∈Ω0
c ⊗Ω

0
c | f · g = 0 &

�

d f ⊗ g , f ⊗dg
�

= (0, 0)}

The condition that
�

d f ⊗ g , f ⊗dg
�

= (0,0) is equivalent to d f = 0 and dg = 0. Since

f , g ∈Ω0
c , it follows that f = 0 and g = 0.
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Lemma 9.1.9.

E 10
2 = 0

Proof. It is enough to show that the kernel of d̄ : E 10
1 → E 20

1 is contained in the image of

d̄ : E 00
1 → E 10

1 .

Explicitly they are given by the following.

Ker(d̄ ) = {(α⊗ g , f ⊗β ) | α · g + f ·β = 0 & −α⊗dg +d f ⊗β = 0}

Img(d̄ ) = {(ds ⊗ t , s ⊗dt ) | s · t = 0}

Let (α⊗ g , f ⊗β ) ∈Ker(d̄ ). Then α⊗dg = d f ⊗β . Since the tensor product is over R, this

implies that α= λd f and dg = 1
λβ for some non-zero constant, λ ∈R. Therefore, we can

rewrite (α⊗ g , f ⊗β ) = (λd f ⊗ g , f ⊗λd f ).

The condition that α · g + f ·β = 0 then becomes λd f · g + f ·λdg = 0. By the product

rule, this is equivalent to λd( f · g ) = 0. This implies that f · g = 0 since f , g ∈Ω0
c .

Lemma 9.1.10.

E 20
2 =

E 20
1

Img(d̄ )

where

E 20
1 =Ω

1
c ⊗Ω

1
c

Img(d̄ ) = {−α⊗dg +df ⊗β | α · g + f ·β = 0}

The details of the calculation of E 20
2 are to be found in the next section.
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9.2 The Problem Child

As seen in lemma 9.1.10, E 20
2 is given by

E 20
2 =

E 20
1

Img(d̄ )

where

E 20
1 =Ω

1
c ⊗Ω

1
c

Img(d̄ ) = {−γ⊗dg +d f ⊗η | γ · g + f ·η= 0}

Note that the requirement

γ · g + f ·η= 0 (9.1)

will be essential to the following computations.

Let’s start by determining the necessary and sufficient conditions for two elements of

Ω1
c ⊗Ω

1
c to the in the same class. Let α⊗β ,ω⊗ν ∈Ω1

c ⊗Ω
1
c such that [α⊗β ] = [ω⊗ν] ∈ E 20

2 . It

follows that there exists−γ⊗d f +dg ⊗η ∈ Img(d̄) such that α⊗β −ω⊗ν=−γ⊗d f +dg ⊗η.

This analysis will rely on the fact that an element α ∈Ω1
c is exact if and only if

∫

α= 0

(Bott and Tu 1982). If this is the case, then there exists p ∈ Ω0
c such that dp = α. In such

cases, p will be called the primitive of α. Furthermore, note that in this context it also holds

that if ds = dt for s , t ∈Ω0
c , then s = t .

The computation proceeds by cases via partial integration. Namely, integrating the

equation

α⊗β −ω⊗ν=−γ⊗d f +dg ⊗η (9.2)
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in the first and second factors respectively results in the equations.

β ·
∫

α−ν ·
∫

ω=−d f ·
∫

γ (9.3)

α ·
∫

β −ω ·
∫

ν= dg ·
∫

η (9.4)

There are 16 cases to consider. They are summarized in the table below.

∫

β = 0,
∫

ν= 0
∫

β = 0,
∫

ν 6= 0
∫

β 6= 0,
∫

ν= 0
∫

β 6= 0,
∫

ν 6= 0

∫

α= 0,
∫

ω= 0
∫

α= 0,
∫

ω= 0
∫

α= 0,
∫

ω= 0
∫

α= 0,
∫

ω= 0
∫

α= 0,
∫

ω 6= 0
∫

α= 0,
∫

ω 6= 0
∫

α= 0,
∫

ω 6= 0
∫

α= 0,
∫

ω 6= 0
∫

α 6= 0,
∫

ω= 0
∫

α 6= 0,
∫

ω= 0
∫

α 6= 0,
∫

ω= 0
∫

α 6= 0,
∫

ω= 0
∫

α 6= 0,
∫

ω 6= 0
∫

α 6= 0,
∫

ω 6= 0
∫

α 6= 0,
∫

ω 6= 0
∫

α 6= 0,
∫

ω 6= 0

Table 9.1: 16 cases to consider for determining if [α⊗β ] = [ω⊗ν] ∈ E 20
2 . For each of the

four choices of assumptions about
∫

β and
∫

ν, there are four choices for
∫

α and
∫

ω.

Given non-zero α,β ,ω,ν ∈ Ω1
c , the goal is to determine whether or not there exists

f , g ∈ Ω0
c and γ,η ∈ Ω1

c such that equations 9.3, 9.4, and 9.1 are satisfied. To do this, the

following computational procedure was used.

A given case in table 9.1 determines which, if any, of the 1-formsα,β ,ω,ν are exact. For a

given case, the exact 1-forms, if any, are rewritten using their primitives and substituted into

equations 9.3 and 9.4. The resulting equations are then solved for the unknowns f , g ,γ,η.

The resulting equations are then substituted into equation 9.2. The structure of tensor

products is then used to produce a coupled pair of equations which are further solved for

f , g ,γ,η in terms of α,β ,ω,ν (or their primitives). Finally, the results of that analysis are

substituted into equation 9.1 to determine what differential equation α,β ,ω,ν (or their

primitives) must satisfy in order for α⊗β andω⊗ν to be in the same class in E 20
2 .
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Often it is the case that not all of the terms f , g ,γ,η (or their primitives) can be eliminated

in the course of the computation. In those cases the final result is interpreted as a differential

equation, for given α,β ,ω,ν (or their primitives), in the remaining term(s). Then, whether

or not α⊗β is in the same class as ω⊗ν in E 20
2 is determined by the existence (or lack

thereof) of a solution to the resulting differential equation.

Starting with the first column, suppose that
∫

β = 0 and
∫

ν = 0. Then β and ν are

exact. Let s , m ∈Ω0
c be the primitives of β and ν respectively and write β = ds and ν= dm .

Applying this to equation 9.4 yields 0= dg
∫

ηwhich implies that
∫

η= 0. Therefore, η ∈Ω1
c

is exact. Denote its primitive by q ∈Ω0
c so that η= dq . Applying all of this to equation 9.3

yields

ds ·
∫

α−dm ·
∫

ω=−d f

∫

γ (9.5)

9.2.1 The First Case in the First Column

The first case is first column is that
∫

α= 0 and
∫

ω= 0. Thenα andω are exact. Let p , n ∈Ω0
c

be the primitives of α andω respectively and write α = dp andω = dn . Applying this to

equation 9.5 yields 0=−d f
∫

γ which implies that
∫

γ= 0. Therefore, γ ∈Ω1
c is exact. Let

r ∈ Ω0
c be γ’s primitive and write γ = dr . Applying the results to equation 9.2 yields the

following.

dp ⊗ds −dn ⊗dm =−dr ⊗d f +dg ⊗dq

Applying equation 9.1 gives the following result:

mdn +p ds = 0
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9.2.2 The Second Case in the First Column

For the second case in the first column, it is assumed that
∫

α= 0 and
∫

ω 6= 0. Again, this

implies that α ∈ Ω1
c is exact and can thus be written α = dp for p ∈ Ω0

c . Applying this to

equation 9.5 yields the equation −dm
∫

ω=−d f
∫

γwhich simplifies to the following.

m

∫

ω= f

∫

γ

Because
∫

ω 6= 0 by assumption, it follows that
∫

γ 6= 0. Solving for f and substituting into

equation 9.2 gives the equation

dp ⊗ds +

�∫

ω
∫

γ
γ−ω

�

⊗dm = dg ⊗dq (9.6)

In order for the equality to hold, two of the three tensor products must combine. This

can only happen if one of their factors are equal up to a scalar multiple. Letting λ0 6= 0 ∈R,

this requirement leads to the following six cases.

λ0g = p

λ0dg =

∫

ω
∫

γ
γ−ω

λ0dp =

∫

ω
∫

γ
γ−ω

λ0q = s

λ0s =m

λ0q =m

There is a symmetry in the first three cases and another in the last pair. Therefore, only

three of the six cases will be worked out in detail here. They are λ0g = p , λ0q = s , and
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λ0s =m .

First, substituting λ0g = p into equation 9.6 allows for the following simplification

�∫

ω
∫

γ
γ−ω

�

⊗dm = dp ⊗d
�

1

λ0
q − s

�

Because the tensor product is over R, it follows that the respective factors of the tensor

product are equal up to a scalar multiple. Therefore, letting λ1 6= 0 ∈R the following pair of

equations are obtained.

λ1

��∫

ω
∫

γ

�

γ−ω

�

= dp

�

1

λ1

�

m =
�

1

λ0

�

q − s

Solving for γ and q yields

γ=

� ∫

γ
∫

ω

�

�

ω+
1

λ1
dp

�

q =
�

λ0

λ1

�

m +λ0s

Recalling that η= dq , these equations can be substituted into equation 9.1 to produce the

following equation

� ∫

γ
∫

ω

�

�

ω+
1

λ1
dp

�

·

�∫

ω
∫

γ

�

m +
1

λ0
p ·
�

λ0

λ1
dm +λ0ds

�

= 0

Simplifying yields the following

ω ·m +
1

λ1
d(p ·m ) +p ·ds = 0

As mentioned, casesλ0g = p ,λ0dg =
∫

ω
∫

γ
γ−w andλ0dp =

∫

ω
∫

γ
γ−w are symmetric. Therefore
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the computations of the latter two cases are omitted and the results simply stated.

dg =
∫

ω
∫

γ
γ−ω ⇒ ω ·m +λ1d(p ·m ) +p ·ds = 0

dp =
∫

ω
∫

γ
γ−ω ⇒ ω ·m +d(p ·m ) +p ·ds = 0

Next, let λ0q = s . Then equation 9.6 simplifies to.

�∫

ω
∫

γ
γ−ω

�

⊗dm = d
�

1

λ0
g −p

�

⊗ds

Again, since the tensor product is overR, letting λ1 6= 0 ∈R allows this to be rewritten as the

following pair of equations.

λ1

�∫

ω
∫

γ
γ−ω

�

=
1

λ0
dg −dp

1

λ1
dm = ds

Note that the second equation implies that m = λ1s = λ0λ1q . Solving for γ in the first

equation and substituting into equation 9.1 yields the following equation.

� ∫

γ
∫

ω

�

�

1

λ1

�

1

λ0
dg −dp

�

+ω
�

·

�∫

ω
∫

γ

�

·λ1s +
1

λ0
g ·ds = 0

Simplifying this result leads to

1

λ0
d(g · s )− s ·dp +λ1s ·ω= 0

Note that in this case, a dependence on g remains. Therefore the statement in this case is,

under these assumptions, [α⊗β ] = [ω⊗η] ∈ E 20
2 if and only if there exists g ∈Ω0

c such that

1
λ0

d(g · s )− s ·dp +λ1s ·ω= 0 holds where β = ds , ν= dm , and α= dp .
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Finally, as previously mentioned, the assumptions that λ0s = m and λ0q = m are

symmetric. Therefore, only the first will be computed in detail. Letting λ0s =m , equation

9.6 becomes
�

1

λ0
dp +

�∫

ω
∫

γ

�

·γ−ω

�

⊗dm = dg ⊗dq

Again letting λ1 6= 0 ∈R, this splits into the following two equations.

λ1

�

1

λ0
dp +

�∫

ω
∫

γ

�

·γ−ω

�

= dg

1

λ1
dm = dq

Note that the second equation simplifies to m =λ1q =λ0s . Solving the first equation for γ

and substituting into equation 9.1 yields the following.

� ∫

γ
∫

ω

�

·
�

−
1

λ0
dp +

1

λ1
dg +ω

�

·

�∫

ω
∫

γ

�

·m + g ·
�

1

λ1

�

·dm = 0

Simplifying gives the following.

−
1

λ0
s ·dp +m ·ω+

�

1

λ1

�

·d(m · g ) = 0

The last of the six cases similarly gives

q =m ⇒ −
1

λ0
s ·dp +m ·ω+d(m · g ) = 0

This concludes the computations for the second case in first column of table 9.1. The

remaining 14 cases can be computed using the same procedure and are omitted from the

current discourse for brevity.
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9.2.3 Conclusion

As seen in the previous computation, computing the spectral sequences arising from the

horizontal filtration of the chromatic complex is highly non-trivial. The other twelve cases

can be computed using the same methods and a complete characterization of the condi-

tions under which [α⊗β ] = [ω⊗η] ∈ E 20
2 can be obtained. However, those computations

are omitted here for brevity.

The take away from the exercise is that the characterization depends on whether or

not one out of a collection of differential equations is satisfied (the boxed equations).

In fact, a similar computation can be done to characterize the conditions under which

[α⊗β ] = [0] ∈ E 20
2 . In this case, it is determined by the existence of solutions to coupled

differential equations on R1.

While the author cannot provide a general proof at this time, there is enough evidence

to make the following conjecture.

Conjecture 9.2.1. Let M be a smooth manifold and G be a finite simple graph. Then the

intermediate pages of the spectral sequence arising from the horizontal filtration of the chro-

matic complex are determined by the existence of solutions to coupled systems of differential

equations on M , the form and couplings of the which are determined by the connectivity

information of G (as captured by the subgraphs GS ), the page of the spectral sequence, and

M itself.
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