
ABSTRACT

ANDREW, TRICITY MARIE. Lattice-Based Surrogate Models for Two-Dimensional Particle
Systems with Internal Collisions. (Under the direction of Mansoor Haider.)

Direct numerical simulation is a useful tool in modeling systems of particles. Results

from direct simulations over many realizations can be used to develop probabilistic surro-

gate models that are able to reproduce key features of the full direct simulations. Lattice-

based models are commonly used in biological applications such as biotransport in tissues

or cancer modeling. These models are useful in analyzing diffusion in crowded media.

This dissertation investigates the connection between continuous model simulations and

lattice-based modeling approaches. We developed two continuous model simulations

of particle movement: Model 1, which simulated a two-dimensional interacting particle

system, and Model 2, which simulated single particle random walks in a two-dimensional

representative volume element (RVE) with obstacles. For both models we used continuous

simulation results to develop probabilistic surrogate models.

In Model 1, we modeled twenty-seven particles undergoing internal collisions with other

particles and with domain boundaries. We considered increasing values of particle radii and

tracked state changes (number of particles per subdomain) for the different subdomains.

These results were used to develop a surrogate Markov chain (MC) model. We observed

linear relationships between subdomain states and the particle radius for each subdomain

type, in addition to good agreement between the continuous and MC model results. This

approach also allowed us to estimate uncertainty for quantities of interest (subdomain

states).

In Model 2, we simulated single particle random walks in a 2D RVE with fixed obstacles.

We considered three different obstacle configurations–equally spaced obstacles, four inter-

nal obstacles, and multisize obstacles. For all three models, we considered a fixed particle

radius with varying obstacle radii. In the equally spaced obstacles case, we also consid-

ered a fixed obstacle radius with varying particle radius. Subdomain types were delineated

based on obstacle locations, and their transition probabilities were determined and used

to build the surrogate lattice model. For both the continuous and surrogate models and for

all obstacle configurations, we observed a linear relationship between the mean squared

displacement and time. As in previous studies, the mean squared displacement was used to

estimate diffusivities for both the continuous and surrogate models. In the equally spaced

obstacles model, we connected the simulated effective diffusivity to a theoretical estimate

of diffusivity, which was found using a Taylor Series expansion for random walks on a 2D



lattice. Our continuous and surrogate models were in good agreement for all obstacle con-

figurations, with the equally spaced obstacles model having the best agreement between

continuous and surrogate results. This study demonstrated that lattice-based surrogate

models can be used to represent direct simulation of diffusion in continuous media with a

prescribed arrangement of obstacles.

The modeling approach developed in this dissertation can be applied to a variety of

materials with different obstacle arrangements, shapes, and symmetries. Internal geometric

properties can be directly incorporated into the modeling and simulation process in order

to enable the calculation of diffusivity and develop a corresponding surrogate model.
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CHAPTER

1

INTRODUCTION AND BACKGROUND

In the modeling of multiscale or heterogeneous systems, direct numerical simulation is

one tool that can be used to analyze and quantify stationary properties of the system. Such

an approach may be considered when the full coupling of governing equations at different

scales is difficult due to computational complexity or the lack of appropriate theoretical

models describing interactions among system variables at the macro- or meso-scale [10,

1]. Examples of direct simulation approaches include the use of representative domains

(volume elements) [13, 14, 19] or agent-based models [2, 16, 25]. Both approaches have been

applied to simulate and identify complex or heterogeneous interactions on microscopic

scales, and have seen wide use in a variety of applications. Direct simulation results can

be used to develop probabilistic or lattice-based surrogate models. In direct simulation

models, cells can be represented as discrete entities and used to model applications such

as cancer progression, cartilage development, wound healing, and other tissue models [5,

28, 3, 6, 24]. Using direct simulation (off-lattice models) we can model particles (or cells) as

discrete objects and incorporate rules for how they move in space or interact with other

particles. While direct simulation requires significant computational power, these methods

give insight into biological processes and can inform more computationally efficient lattice

models.[3]. Lattice-based models are commonly used to study cancer and other tissue

models, such as the Cellular Potts Model (CPM) in the biomedical field [3, 17]. In the CPM,
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a cell is defined for a region of multiple lattice sites [12, 30, 34]. This lattice model allows for

study of biological cell dynamics and has been applied to various biomedical problems,

such as epidermal biology, cancer, angiogenesis, and vasculogenesis [3, 29]. The connection

between off-lattice and lattice-based models is ripe for further investigation.

In this dissertation, we explore the relationship between continuous and lattice-based

surrogate models, investigated in the context of two models: (1) a two-dimensional inter-

acting particle system, and (2) single particle random walks in a two-dimensional periodic

representative volume element (RVE) with circular obstacles. In both models we use results

obtained from direct simulations to systematically develop corresponding probabilistic

surrogate models. Model 1 can be thought of as an initial motivating problem, and is pre-

sented in Chapter 2. In Model 1 we identify state-change probabilities in the continuous

model in order to build a surrogate Markov chain (MC) model. Model 2 is presented in

Chapters 3 - 5. In Model 2, we track different types of transitions in the continuous model

in order to build a surrogate lattice model that preserves particle diffusivity, tailoring the

approach to the different obstacle configurations. Throughout this thesis the term surro-

gate model will be used in the context described above, and we note that the same term

is widely used to characterize response surface models which are more statistical in their

nature and different from the models developed herein. Since Model 1 is delineated by

distinct Markovian states (number of particles in a subdomain), it is possible to build a

corresponding Markov chain model. However, in Model 2 we are most interested in the

mean squared displacement and its relation to diffusion, and, precluding the possibility of

distinct states, we cannot construct a corresponding Markov chain model.

1.1 Two-dimensional interacting particle system

Many interacting particle systems exhibit structure in their stationary response due to

properties of the particles, a finite set of rules governing their interactions, or features or

constraints within the simulation domain. Direct simulation of particle interactions over

multiple realizations of the initial system configuration can potentially provide detailed sets

of information for quantities of interest. In particular, such data sets obtained from direct

simulation can enable quantification of both the mean properties of stationary system

variables as well as uncertainty due to inherent stochasticity. These statistical properties of

the system can be used to develop deterministic models at coarser scales by studying the

mean or expected values of key system variables. Alternatively, these data sets can be used

to develop probabilistic surrogate models [4] that preserve the statistical features of these

system variables using a simpler model representation. Model 1 in this study explores the
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latter idea in the context of a two-dimensional model of colliding circular particles within a

square domain.

When quantities of interest can be tracked by classification into states at each point

in time, and transitions between these states at successive times, Markov chains [26, 33]

provide a framework for developing probabilistic surrogate models. In many systems,

statistical properties of the particle interactions become stationary, i.e., independent of

time, when dynamics are simulated over long time periods and over many realizations. In

this regime, distributions for key quantities of interest can be identified and represented

via a small number of parameters, provided that appropriate probability density functions

can be identified. For example, a stationary variable exhibiting Gaussian-like features can

be represented via the mean and the standard deviation in a normal distribution. Overall,

the success of this approach will depend on several factors. First, the direct simulation

model must be robust and efficient enough to exhibit stationary statistical properties over

appropriate time scales and over many realizations. Second, the number and nature of the

states identified for use in the Markov chain (MC) model must be such that the surrogate

model efficiently reproduces key features of the full continuous (directly simulated) model.

And, lastly, the data (histograms) for stationary quantities of interest obtained using the

surrogate MC model should be self-consistent in that a family of distributions can be

identified to accurately reproduce them via curve-fitting.

Model 1 in this thesis investigates the aforementioned approach in the context of a two-

dimensional model of interacting circular particles within a square domain. The particles

are assumed to all have the same radius and to interact with each other and with the rigid

walls of the square domain via perfectly elastic collisions. System dynamics are captured

using a computational model that enforces conservation of momentum for all collisions.

The stationary quantity of interest is chosen as the number of particles within each of

nine coarser subdomains, classified based on three types of geometric features. Direct

simulation of the continuous model is used to develop a surrogate Markov Chain model

and evaluate its accuracy. The resulting models are then used to quantify mean properties

and uncertainty of the stationary variable as the particle radius is varied.

1.1.1 Model descriptions

In the continuous model, we directly simulate particle interactions within a square, 2D

domain with fixed boundary walls. We consider twenty-seven interacting particles with

equal mass and radius (R ) (Fig. 1.1: Left). We consider the square domain as a union of

nine non-overlapping square subdomains of equal area and with three types (Fig. 1.1). We
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have four corner (L) subdomains (i = 1, 3, 7, 9), four one-wall (I ) subdomains (i = 2, 4, 6, 8),

and one center (C ) subdomain (i = 5). The state of each subdomain at any given time is

the number of particles with centers in a particular subdomain. Initially, the particles are

evenly distributed among the nine subdomains (Fig. 1.1: Left). The particles have a constant

initial speed |v | = 8, but the initial directions are chosen randomly based on a uniform

distribution. Conservation of linear momentum is used to determine particle locations

when a collision occurs with another particle or with the boundary walls.

2R

(a) (b)

4

1 3

4

6

0

4

2

3

(c)

Figure 1.1 Model 1. (a) Continuous model configuration at t = 0. (b) Illustration of surrogate
lattice model. (c) State transition probabilities for building a lattice-based surrogate model.

Within the continuous model, we track the state of each subdomain and its state changes

in order to investigate the time evolution of the number of particles per subdomain and

identify a stationary response. We create a time series recording the number of particles
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(state) for all subdomains. Using this time series, we can identify all state changes within

the system. We then determine the probabilities for transitions between the number of

particles per subdomain at any given time. These probabilities are specialized for each

subdomain type, so we pool the probabilities by subdomain type. We consider M (≤ 27) the

maximum number of particles present in a subdomain at any particular time, α= L , I , C

the subdomain type, and j = 0, ..., M the state of a particular subdomain. Then p j+
α is the

probability that subdomain α gains a particle when it is in state j ; p j−
α is the probability

that subdomain α loses a particle when it is in state j . The probability that a subdomain of

type α remains in state j is:

p j ∗
α = 1−p j+

α −p j−
α , α= L , I , C , J = 0, ..., Ns , (1.1)

where Ns (≤M ) is the maximum number of particles per subdomain to be accounted for

via the states in the Markov chain model (Fig. 1.1 (c)). From these probabilities, we can

assemble tridiagonal transition matrices for the Markov chain model: Pα where α= L , I , C .

The stationary distributions of the three types of transition probability vectors (~πL , ~πI , ~πC )

are computed as the solutions to the linear algebraic equations:

~πC = ~πC PC , ~πI = ~πI PI , ~πL = ~πL PL . (1.2)

The solutions of (2.12) constitute a surrogate Markov chain model for the directly simulated

continuous model.

1.2 Single particle random walks in a periodic representa-

tive volume element

Diffusion is a key transport mechanism in biological systems. Biopolymer structure af-

fects the diffusivity of solutes within biological tissues; however, the relationships between

biopolymer structure of the tissue and diffusivity are not well understood. For example, in

cartilage tissue engineering applications, native cells (or stem cells) are seeded into biomate-

rial scaffolds [11, 20]. The cells need nutrients and growth factors to both sustain themselves

and further construct the extracellular matrix via cellular uptake of these solutes [24]. With

the prevalence of osteoarthritis, this method of cell therapy needs further development [11].

Ideally, replacement scaffolds should have similar properties to native cartilage tissue [27].

A wide variety of scaffold materials are used (e.g., gels, native biopolymers, woven fibers),

and thus the scaffold can have many different microscopic features, properties, shapes,
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and sizes that all affect the diffusivity of the system [9, 21, 36]. Understanding the scaffold

micro-architecture is important in developing successful treatments to repair articular

cartilage [23]. Diffusive transport strongly affects design outcomes for the engineered tissue

and is also relevant for understanding biotransport in native tissues [7].

Previous studies have investigated diffusion via direct simulation by considering single

particle movements on a lattice [32, 35]. In this thesis, we consider random walks on a con-

tinuous domain, a more general case enabling incorporation of a variety of local geometric

features of a material. A surrogate lattice-based model will be built by using transition prob-

abilities observed in the continuous model simulations, based on identifying subdomains

tailored to the geometry of the simulation domain.

Normal diffusion is the term used to describe diffusion that occurs on a homogenous

domain. The mean-squared displacement is calculated by averaging displacement trajec-

tories over a large number of realizations (e.g., typically 2000 realizations for this study).

In normal diffusion, the relationship between mean-squared displacement, 〈r 2〉, and the

diffusion constant, D , is

〈r 2〉= 4D t , (1.3)

where t is the time. [32, 31, 35]

Figure 1.2 Single particle random walks on a 2D lattice with varying obstacle concentrations.
Mean squared displacement, 〈r 2〉 is linearly with time. Reprinted from Biophysical Journal, Vol
66, M.J. Saxton, "Anomalous diffusion due to obstacles: a Monte Carlo Study", Page No. 396,
Copyright 1994, with permission from Elsevier [32].

In prior lattice studies of single particle random walks, it was shown that the associated

mean-squared displacement grows linearly with time, for a large number of time steps. [32].
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Figure 1.3 Single particle random walks on a 2D lattice with varying obstacle concentrations. The
estimate for normalized diffusivity, D ∗, depends upon the number of realizations included in the
average of mean squared displacement. Reprinted from Biophysical Journal, Vol 72, M.J. Saxton,
"Single-particle tracking: the distribution of diffusion coefficients", Page No. 1745, Copyright
1997, with permission from Elsevier [31].

Saxton considered simulations performed on a 2D lattice, with varying obstacle concentra-

tions, C [32]. Typically, Saxton averaged between 104 and 105 displacement trajectories in

order to calculate the mean-squared displacement [31]. Figure 1.2 shows the mean squared

displacement as a function of time. In this figure, the obstacle concentration C varies from

0.0 to 5.0. For the no obstacle case, C = 0.0, we observe that the curve for mean squared

displacement versus time has the greatest slope and that the particle traveled the furthest

relative to its initial location. In this work, simulations were also performed on a 2D lattice,

and diffusivity was estimated according to equation 1.3. Figure 1.3 shows the normalized

diffusivity, D ∗, which is scaled such that D ∗ = 1 in the no obstacle case (C = 0.0). For an

increasing number of realizations (or trajectories), NTRAJ, the values of D ∗ are observed to

reach stationary values (Fig. 1.3)

Vilaseca considered obstructed diffusion on a three-dimensional lattice in order to

study movement in crowded media, showing that obstacles lead to anomolous diffusion

for early time steps [35]. Anomolous diffusion is described by the equation

〈r 2(t )〉= (2d )Γ t α, (1.4)

where d is the dimension, Γ is a generalized transport coefficient (anomolous diffusion

coefficient), and α is the anomolous diffusion exponent. With sufficient timesteps, α= 1

and normal diffusion is also observed in this case. Figure 1.4 illustrates the relationship
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between 〈r 2〉 versus time for a large number of timesteps, such that the relationship is

linear and the system exhibits normal diffusion. When α= 1, we can use equation 1.3 to

study the diffusivity of the system.

Figure 1.4 Plot of 〈r 2〉 versus time in 3D systems studied in Vilaseca, showing that, for large
timesteps, the relationship between 〈r 2〉 versus time is linear. Reproduced from Ref. [35]with
permission from the PCCP Owner Societies.

In developing Model 2 of this thesis, continuous simulations are analyzed for a sufficient

number of timesteps such that the system exhibits normal diffusion. We expand upon on

previous studies by tracking different types of transition probabilities, depending on the

obstacle arrangement and size. We are then able to build corresponding surrogate lattice

models. In the continuous model, a particle can move in any direction θ ∈ [0,2π] with a

spatial stepsize ∆x at each timestep ∆t . We consider the continuous domain as being

composed of subdomains, and we track transition probabilities between these subdomains.

The resulting lattice models more directly relate to the previous studies of diffusivity, as

discussed above. Depending on the model studied, we track between two and twelve

different types of transitions.

1.2.1 Model descriptions

In the continuous model, we simulate a single circular particle moving via random walks

on a 2D domain with obstacles. Simulations are performed on a representative volume

element (RVE) with periodic boundary conditions (BCs). Fixed obstacles are added to the

system, and all collisions between the particle and obstacles are assumed to be perfectly
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elastic. In this model, our states are the subdomain in which the particle is located at a

given point in time. We model a random walk by having the particle choose a random new

direction at each new timestep with a prescribed fixed spatial step size. Over long time

periods and many realizations, continuous model results are used to calculate stationary

values for the probability of state transitions as a particle moves to an adjacent subdomain.

We aim to consider three different obstacle arrangements: (i) four circular obstacles

located completely inside (internal to) the RVE, (ii) an arrangement of full and partial

obstacles on the RVE that generates a regular double-periodic medium, and (iii) equally

spaced obstacles such that the middle column of obstacles is varied in size relative to the

other obstacles. Note that model (ii) represents a more isotropic material as compared to

models (i) and (iii). These obstacle arrangements are visualized in Figs. 1.5-1.6. In developing

this model we aim to: (a) analyze the effects of particle size, obstacle size, and obstacle

arrangement on the diffusivity in 2D RVEs, (b) perform direct simulations using continuous

off-lattice models to obtain baseline probabilities for surrogate lattice-based models, and

(c) use baseline probabilities to develop and analyze a surrogate 2D lattice model on a 3x3

or a 2x2 periodic lattice. Previous studies have used random walks on a lattice model to

investigate properties of diffusivity, but, to our knowledge, none have made connections to

simulations on a continuous domain. These studies have identified a linear relationship

between the mean squared displacement 〈r 2〉 and time [32], [31], where the constant of

proportionality depends on the underlying structure of the domain. These studies have

primarily been on two or three dimensional lattices (i.e., discrete domains), while the

models proposed here are developed on a continuous domain with the lattice model

serving as a surrogate model. We use continuous model simulations and surrogate lattice

model results to study diffusive transport in varying domain geometries.

In this dissertation we use continuous model simulation results to develop probabilistic

surrogate models. In Chapter 2 we present Model 1, which models a two-dimensional

interacting particle system. The particles have perfectly elastic collisions with other particles

and with domain boundaries. We use results from the continuous model to develop a

surrogate Markov chain model using state change probabilities. We analyze and compare

continuous and surrogate model results for varying particle radii. Model 1 can be thought

of as an initial motivating problem for Model 2.

In Chapter 3 we introduce Model 2, which models single particle random walks in a two-

dimensional RVE with circular obstacles. We have three different obstacle configurations:

equally spaced obstacles, four internal obstacles, and multisize obstacles. For each obstacle

configuration we compare results for varying obstacle radii. We first describe the continuous

models, and then describe how we use continuous results to identify transition probabilities

9



(a) (b)

Figure 1.5 Model 2. Domains for deterministic model with numbered subdomains for particle
radius Rpart = 1.0 and obstacle radius Robs = 2.0. (a) Equally spaced obstacles model.(b) Four
internal obstacles model.

(a)

Figure 1.6 Model 2. Domain for deterministic model of multisize obstacles with numbered sub-
domains for particle radius Rpart = 1.0, the first set of obstacle radius Robs1

= 1.0 and the second
set of obstacle radius Robs2

= 2.0.
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for the surrogate lattice-based models. In Chapter 4 we discuss model calibration and

diffusivity estimation. We develop a parameter referred to as the commitment index, Mc ,

which is used to determine when a particle commits to a new subdomain. We also discuss

computation of effective diffusivities from simulation results, as well as determining and

comparing this to a theoretical estimate of the diffusivity. In Chapter 5 we discuss results

from Model 2, beginning with continuous model simulations and then discussing surrogate

model results for all obstacle configurations and obstacle radii values considered. We then

compare the results for the three different obstacle configurations and their diffusivities.

We end Chapter 5 with overall conclusions of this dissertation.
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CHAPTER

2

TWO-DIMENSIONAL INTERACTING

PARTICLE SYSTEM: DEVELOPMENT OF A

MARKOV CHAIN MODEL

2.1 Model descriptions

This chapter describes the development of Model 1, as initially outlined in Chapter 1.

Model 1 directly simulates a system of interacting circular particles within a square domain.

These particles undergo perfectly elastic collisions with boundary walls and with other

particles, and the continuous simulation results are used to develop a surrogate Markov

chain model. We first describe the continuous model used to directly simulate particle

interactions (Sec. 2.1.1) and then outline how the results can be used to develop a surrogate

Markov chains model, to accurately capture the system dynamics in an alternate manner

(Sec. 2.1.2).
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2.1.1 Continuous Model of Particle Interactions

We consider a square domain in two spatial dimensions with four rigid walls. Within this

domain, 27 circular particles having identical mass and radius (R ) are undergoing motion

involving dynamic collisions with the other particles and with the four walls of the domain

(Fig. 2.1-right). To facilitate development of the surrogate model (Sec. 2.1.2), the square

domain is viewed as the union of nine, non-overlapping square subdomains of equal area.

At t = 0, the 27 particles are partitioned into nine groups of three particles each and initially

placed, as illustrated, into each of the nine subdomains (Fig. 2.1-left). The initial direction of

motion for each particle is chosen randomly based on a uniform distribution and prescribed

a constant initial speed |v|. Once the system is set into motion (t > 0), the particles are

assumed to exhibit perfectly elastic collisions with each other and with the four rigid walls

of the square domain, i.e. all collisions conserve linear momentum.

2R

2R

Figure 2.1 Two dimensional dynamic model for perfectly elastic collisions between 27 particles
and four rigid walls in a square domain: (left) the initial state (t = 0) for a sample realization,
(right) an intermediate state (t > 0).

Our goal is to investigate time evolution of the number of particles per subdomain and

delineate the stationary response of this quantity of interest based on the subdomain type

and particle radius R . The three subdomain types are referred to as Corner (two exterior

walls), One-wall (one exterior wall) and Center (no exterior walls) (Fig. 2.2-left). The entire

simulation domain thus consists of four Corner subdomains, four One-wall subdomains,

and one Center subdomain, along with adjacency relationships (Fig. 2.2-right).

Based on the system characteristics described above, we can make the following obser-

vations:
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Figure 2.2 Partitioning of the direct simulation domain into 9 square subdomains of equal area:
(left) subdomains are delineated into three types based on the number of subdomain boundaries,
(right) illustration of adjacency relationships between the 9 subdomains.

1. As the particle radius R → 0, the expected value of the number of particles per subdo-

main in the stationary response should tend to 3.

2. As the particle radius R increases above zero, peripheral exclusion zones along the

four domain walls limit the area that is available to be occupied by each particle in

the Corner and One-wall subdomains.

3. Observation#2 implies that the expected value for the number of particles per subdo-

main should be greatest in the Center subdomain, smaller in the One-wall subdo-

mains, and smallest in the Corner subdomains.

While these three observations can be made about this interacting particle system, the

precise manner in which expected values of the number of particles per subdomain in the

stationary response vary with both R and the subdomain type is not readily ascertained, a

priori.

2.1.2 Markov Chain Model

We aim to identify and quantify system properties of the directly simulated continuous

model via time series ηi (tk ) (i = 1, . . . ,9, tk = k∆t , k = 0, . . . , N ), that track the number of

particles per subdomain, where N is the total number of time steps. A particle is counted

as being located in the i th subdomain at time tk if its center is located in that subdomain

at time tk . Introduce a second time series ci (tk ) =ηi (tk )−ηi (tk−1) (i = 1, . . . , 9, k = 1, . . . , N ).

Assuming that∆t is sufficiently small, this second time series will take one of three values,
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i.e.,

ci (tk ) =











0 if ηi (tk ) =ηi (tk−1)

−1 if ηi (tk ) =ηi (tk−1)−1

+1 if ηi (tk ) =ηi (tk−1) +1

, i = 1, . . . , 9, k = 1, . . . , N . (2.1)

When∆t is small, a state change in which the number of particles in a subdomain changes

by more than one particle is a rare event. Such instances are tracked in the implementation

and adverse affects can be remedied by decreasing ∆t until the resulting state changes

universally obey (2.1).

The following indicator function is also introduced to determine when the i th subdo-

main contains j particles at time tk :

γ
j
i (tk ) =

¨

1 if ηi (tk ) = j

0 if ηi (tk ) 6= j
, i = 1, . . . , 9, j = 0, . . . , M , k = 1, . . . , N , (2.2)

where M (≤ 27) is the maximum number of particles present in a subdomain at any par-

ticular time. Two additional indicator functions are then used to determine when the i th

subdomain (containing j particles at time tk ) gained or lost (respectively) one particle from

a neighboring subdomain as time advanced from t = tk−1 to t = tk :

β
j+

i (tk ) =

¨

γ
j
i (tk ) if ci (tk ) = +1

0 if ci (tk ) 6=+1
, i = 1, . . . , 9, j = 0, . . . , M , k = 1, . . . , N , (2.3)

β
j−

i (tk ) =

¨

γ
j
i (tk ) if ci (tk ) =−1

0 if ci (tk ) 6=−1
, i = 1, . . . , 9, j = 0, . . . , M , k = 1, . . . , N . (2.4)

The quantities in (2.2)-(2.4) are then used to determine probabilities for transitions

between the number of particles per subdomain (states) as now outlined. Let G j
i track the

number of time steps for which the i th subdomain contains j particles during the time

interval [t1, tN ]:

G j
i =

N
∑

k=1

γ
j
i (tk ), i = 1, . . . , 9, j = 0, . . . , M . (2.5)

Then, let δ j+
i and δ j−

i count the number of time steps where the i th subdomain is in state j

and gains or loses (respectively) one particle:

δ
j+
i =

N
∑

k=1

β
j+

i (tk ), δ
j−
i =

N
∑

k=1

β
j−

i (tk ), i = 1, . . . , 9, j = 0, . . . , M . (2.6)

Using (2.5)-(2.6), it then follows that the probabilities of the i th subdomain gaining or
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losing a particle when in a particular state j are, respectively:

γ
j+
i =

δ
j+
i

G j
i

, γ
j−
i =

δ
j−
i

G j
i

, i = 1, . . . , 9, j = 0, . . . , M . (2.7)

These probabilities are now specialized to the subdomains depicted in Fig. 2.2, i.e. four

corner (L) domains (i = 1, 3, 7, 9), four one-wall (I) domains (i = 2, 4, 6, 8) and one center (C)

domain (i = 5). Pooled probabilities for each of the three subdomain types are calculated

as:

p j+
L =

∑

i=1,3,7,9δ
j+
i

∑

i=1,3,7,9 G j
i

, p j+
I =

∑

i=2,4,6,8δ
j+
i

∑

i=2,4,6,8 G j
i

, p j+
C =

δ
j+
5

G j
5

, j = 0, . . . , M , (2.8)

for gaining a particle and as:

p j−
L =

∑

i=1,3,7,9δ
j−
i

∑

i=1,3,7,9 G j
i

, p j−
I =

∑

i=2,4,6,8δ
j−
i

∑

i=2,4,6,8 G j
i

, p j−
C =

δ
j−
5

G j
5

, j = 0, . . . , M , (2.9)

for losing a particle.

By pooling data from (2.8)-(2.9) for each of the three subdomain types, the probability

that a subdomain of type α remains in state j in the Markov chain model is:

p j ∗
α = 1−p j+

α −p j−
α , α= L , I , C , j = 0, . . . , Ns , (2.10)

where Ns (≤M ) is the maximum number of particles per subdomain to be accounted for via

the states in the Markov chain model. As Ns increases past 8-9 particles per subdomain, the

occurrence of such states in a subdomain becomes quite rare. Hence, the model is calibrated

to choose a value for Ns beyond which the associated results exhibit little sensitivity to

further increasing Ns . For illustration, the process of tracking state transitions in the case

Ns = 10 is shown in Fig. 2.3.

The probabilities in equations (2.8)-(2.10) are used to assemble three tridiagonal transi-

tion matrices for the Markov Chain model:

Pα =

















p 0∗
α p 0+

α 0 . . . 0

p 1−
α p 1∗

α p 1+
α . . . 0

...
... ... ...

...

0 . . . p (Ns−1)−
α p (Ns−1)∗

α p (Ns−1)+
α

0 . . . 0 p Ns−
α p Ns ∗

α

















, α= L , I , C . (2.11)

Lastly, stationary distributions of the three types of transition probability vectors (~πC , ~πI ,
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Figure 2.3 Illustration of the Markov chain model for tracking transition probabilities in the
number of particles per subdomain at a snapshot in time when Ns = 10. Note that transition
probabilities are calculated separately for each of the three subdomain types α = L , I , C using
equation (2.10).

~πL ) are computed as the solutions to the linear algebraic equations:

~πC = ~πC PC , ~πI = ~πI PI , ~πL = ~πL PL . (2.12)

The solutions of (2.12) then, effectively, constitute a surrogate Markov chain model for the

directly simulated continuous model. These solutions also facilitate a detailed investigation

of both the expected values and uncertainty for the number of particles per subdomain in

the stationary regime as both the subdomain type and the particle radius are varied.

2.2 Results

We first illustrate some key properties of the continuous model used to directly simulate

particle interactions and discuss its calibration (Sec. 2.2.1). Results are then compared

to those obtained using the surrogate Markov chain model, and also used to study the

stationary response for the number of particles per subdomain, quantifying both expected

values and uncertainty with increasing particle radius (Sec. 2.2.2).
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2.2.1 Continuous Model Results

To quantify uncertainty in the continuous model, simulations were run over a large number

of realizations of the initial particle configuration on a square of side length 30. This length

scale was normalized relative to a particle radius R , i.e. with 0 < R ≤ 1. A large number

of time steps was also required to be in a regime where the average number of particles

per subdomain exhibited a stationary response. This process was then repeated as the

particle radius R was varied in the range [0.1, 0.9] to determine effects of particle size on the

quantity of interest. For each realization, each of the nine subdomains initially contained

three particles. These initial particle positions were not varied across realizations. Particles

were prescribed random initial velocities that were fixed in the sense that they were all

prescribed the same initial speed |v| = 8, but their initial directions were drawn from a

uniform distribution. At each time step, the positions of all 27 particles were updated and

the center of each particle was used to determine if the subdomain in which the particle

resided at the prior time step had changed. Conservation of linear momentum was used

to determine particle locations when a collision with another particle or with one of the

four rigid walls occurred over the duration of one time step. The resulting set of particle

locations was then used to compute the time series ηi (tk ) in Sec. 2.2 that track the number

of particles per subdomain as time advances.

It was determined that a value of N = 2×105 (time steps), corresponding to∆t = 0.0125,

was sufficient for yielding data exhibiting the stationary properties needed to build the

surrogate Markov chain model. This value of N was used in all subsequent simulations.

The stationary nature of the average number of particles in each of the nine subdomains is

illustrated for a single realization in Fig. 2.4 in the case R = 0.5. Mean values of η̄α (α= L , I , C )

of ηi (tk ) (tk = k∆t , k = 1, . . . , N )were obtained by averaging over all times and then pooling

data for each of the three subdomain types, i.e. corner (α = L ↔ i = 1,3,7,9), one-wall

(α = I ↔ i = 2,4,6,8) and center (α = C ↔ i = 5) across all realizations. As illustrated

in Fig. 2.5, 6,000 realizations were sufficient to stabilize variation in this statistic for the

quantity of interest. Specifically, in this regime the mean and standard deviation in the

normal distribution stabilized their values to 3.19 and 0.036, respectively, for the case shown

in Fig. 2.4. Consequently, 6,000 realizations were used in all subsequent simulations.

Via direct simulation using the continuous model, histograms for the average number

of particles per subdomain η̄α were determined as the particle radius R was varied between

0.1 and 0.9. Results pooled for each of the three subdomain types indicated that this statistic

appeared to follow a normal distribution (Fig. 2.6). These results also illustrate observation 3

from Sec. 2.1, i.e. that the Center (α=C ) subdomain (left column) has, on average, a greater
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Figure 2.4 Illustration of the stationary response for the average number of particles per subdo-
main in the case of 27 particles over the 9 subdomains shown in Fig. 2.2. Results are shown for a
single realization in the case R = 0.5 and∆t = 0.0125 (N = 2×105).

Figure 2.5 Illustration of the effect on histograms for the number of particles per subdomain η̄C

as the number of realizations is increased. Results are shown for the center subdomain in the
case R = 0.5.
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Figure 2.6 Histograms and fitted normal distributions for mean values of the number of particles
per subdomain η̄α with varying subdomain type (α = L , I , C ) and particle radius R obtained by
direct simulation using the continuous model.
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Figure 2.7 Effects of varying the maximum number of states per subdomain Ns in the Markov
chain model. Stationary distributions obtained from (2.12) were fit with the probability density
function (2.13) subject to the constraint (2.15) in the case R = 0.5: (a) Center (α = C ), (b) Corner
(α= L), (c) One-wall (α= I ).

α=C, R=0.1 α=I, R=0.1 α=L, R=0.1

α=C, R=0.5 α=I, R=0.5 α=L, R=0.5

α=C, R=0.9 α=I, R=0.9 α=L, R=0.9

Figure 2.8 Distributions for the number of particles in each subdomain type (α = L , I , C ) with
varying particle radius R . Stationary distributions ~πα from the Markov Chain (surrogate) model
are compared to data obtained using the (continuous) direct simulation model. The surrogate
model was fit using the truncated normal distribution (2.13) subject to the constraint (2.15).
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number of particles than the One-wall (α= I ) subdomains (middle column) which, in turn,

have a greater number of particles that the Corner (α= L) subdomains (right column). It

is also observed (Fig. 2.6) that these differences become more pronounced as the particle

radius R was increased from a value of 0.1 to a value of 0.9.

Overall, these results for the continuous model provide data, obtained via direct sim-

ulation into the stationary regime over many realizations, for formulation of the Markov

chain (surrogate) model described in Sec. 2.2. They also illustrate fundamental statistical

properties for the quantity of interest with respect to particle radius R and subdomain type

α= L , I , C that will also be used to evaluate accuracy of the surrogate model.

2.2.2 Markov Chain Model Results

Based on direct numerical simulations performed using the continuous model, the Markov

Chain model was formulated by calculating the transition probabilities in (2.8)-(2.11).

The matrices in (2.11) were then used to determine the three stationary distributions

~πα,α = L , I , C in (2.12). A qualitative analysis of the results indicated that a truncated

normal distribution [18]was well-suited for fitting a probability density function to all three

stationary distributions. This distribution is represented as:

f (x ;µ,σ, a , b ) =
φ( x−µ

σ )

σ
�

Φ
� b−µ
σ

�

−Φ
� b−µ
σ

�� , a ≤ x ≤ b ≤∞, (2.13)

where:

φ(ξ) =
1
p

2π
exp

�

−
1

2
ξ2
�

and Φ(x ) =
1

2

�

1+exp
�

x
p

2

��

. (2.14)

In (2.14),φ(ξ) andΦ(x ) are the probability density function and the cumulative distribution

function of a standard normal distribution, respectively and [a , b ] is the range of the random

variable being considered.

The bounds for the range of our random variable, which is the number of particles per

subdomain (quantity of interest), were prescribed as [a , b ] = [0, Ns ], recalling that Ns is the

maximum number of states per subdomain in the Markov chain model. An appropriate

choice for Ns was determined by increasing its value until curve fits of the truncated normal

distribution to the stationary distributions in the Markov chain model ~πα stabilized their

shape. It should be noted that the occurrence of states becomes rarer as the number

of particles per subdomain increases. The small probability values in ~πα at these larger

values make the process of fitting the truncated normal distribution quite sensitive to the

method of curve-fitting. To address this challenge, the distributions were fit to the data

using constrained optimization via the “fmincon” function in MATLAB (using the SQP
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α = C α = I

α = L

Figure 2.9 Distributions for the number of particles in each subdomain grouped by subdomain
type (α = L , I , C ) to illustrate effects of varying particle radius R . Stationary distributions ~πα
from the Markov Chain (surrogate) model were fit using the truncated normal distribution (2.13)
subject to the constraint (2.15).
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Table 2.1 Values of the parameters µ andσ when the truncated normal distribution (2.13) subject
to the constraint (2.15) was fit to the direct simulation (continuous) model and to the Markov
chain (surrogate) model.

Continuous Model
Radius Center One-wall Corner

µ σ µ σ µ σ
0.1 2.8578 1.7037 2.8287 1.6967 2.8002 1.6904
0.3 2.9632 1.6869 2.8681 1.6670 2.7754 1.6473
0.5 3.0708 1.6559 2.9104 1.6247 2.7545 1.5924
0.7 3.1758 1.5869 2.9603 1.5463 2.7554 1.5057
0.9 3.2613 1.4926 3.0074 1.4453 2.7682 1.3981
Markov Chain model
Radius Center One-wall Corner

µ σ µ σ µ σ
0.1 2.8593 1.7050 2.8301 1.6989 2.8007 1.6927
0.3 2.9634 1.6881 2.8690 1.6686 2.7766 1.6496
0.5 3.0714 1.6573 2.9110 1.6260 2.7558 1.5944
0.7 3.1754 1.5873 2.9597 1.5469 2.7557 1.5071
0.9 3.2582 1.4922 3.0057 1.4457 2.7672 1.3991

α=C

α=I

α=L

Figure 2.10 Linear regression fits for the relationship between the average number of particles
per subdomain η̄α,α= L , I , C and the particle radius R , delineated by subomain type.

option) with incorporation of the following constraint:

µ+
φ
�a−µ
σ

�

−φ
� b−µ
σ

�

Φ
� b−µ
σ

�

−Φ
�a−µ
σ

� −
Ns
∑

j=0

jπ j
α = 0, α= L , I , C . (2.15)
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Table 2.2 Slope, intercept and coefficient of determination (R 2) for a linear regression analysis of
the relationship between the average number of particles per subdomain η̄α,α= L , I , C and the
particle radius R for the continuous and the Markov chain models.

Continuous Markov Chain
Slope Intercept R 2 Slope Intercept R 2

Center 0.3539 3.0067 0.9929 0.3595 3.0039 0.9939
Onewall 0.0826 3.0021 0.9895 0.0868 2.9995 0.9921
Corner -0.1688 2.9946 0.9928 -0.1663 2.9923 0.9903

Equation (2.15), with a = 0 and b = Ns , expresses the condition that the mean of the

truncated normal distribution (2.14) should equal the expected value for the Markov chain

model when Ns states are included in the surrogate model.

An illustration of the process of refining Ns , including fits to the stationary distributions

based on (2.13)-(2.15), is shown in Fig. 2.7. Based on this process, all subsequent results

presented herein employed a value of Ns = 13. The resulting Markov chain stationary

distributions (~πα from (2.12)), corresponding continuous model data, and fits to both

using the truncated normal distribution (2.13) were determined for each subdomain type

(α = L , I , C ) and with varying particle radius R in the range 0.1-0.9 (Fig. 2.8). Excellent

agreement is observed between stationary distributions calculated using the continuous

model and the (surrogate) Markov chain model. The corresponding values of the estimated

parameters µ and σ for the fits shown in Fig. 2.8 (see Table 2.1) demonstrate excellent

agreement between the continuous and surrogate (MC) model for all cases shown in Fig. 2.8.

Effects of increasing the particle radius R for each of the three subdomain types resulted in

significant shifts to the right in the distributions for the Center (α=C ) and One-wall (α= I )

subdomains, and much less pronounced variation for the Corner (α = L) subdomains

(Fig. 2.9).

Lastly, a regression analysis was performed to determine empirical relations between

the mean value of the number of particles per subdomain (η̄α) and the particle radius R for

each of the three subdomain types (α= L , I , C ) (Fig. 2.10, Table 2.2). Results demonstrated

that linear regression provided excellent fits (R 2 > 0.98) for all three subdomain types. In the

Center (α=C ) and Corner (α= L ) cases, the slope and intercept in the regression fits for the

continuous model and the (surrogate) Markov chain model agreed to within 1.6% relative

error. In the case of the One-wall subdomains (α= I ), the relative error was larger at a value

of 5.1%, but it is noted that the slopes for this case are closer to zero as compared to the

other two subdomain cases. The loss of available area as the particle radius R is increased

is reflected in the negative slope for the Corner subdomains where the area available to
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be occupied by particles is significantly reduced as R increases. This is countermanded by

the relatively large positive slope for the Center subdomain for which no available area is

lost with increasing particle radius. Conversely, as→ 0, all three regression lines appear to

converge to a value of 3.00 particles per subdomain, as evidenced by the intercept values in

Table 2.2.

2.3 Discussion and Conclusions

The study considered in this chapter investigated a two-dimensional system of circular

particles interacting, via perfectly elastic collisions, with each other and with the four walls

of a square domain. By partitioning the simulation domain into 9 equal square subdomains,

statistical properties of the system were delineated based on three subdomain types with

differing geometric features. By taking the number of particles per subdomain as the

quantity of interest, a surrogate model was formulated based on Markov chains. The states

in the Markov chain model were the number of particles per subdomain, in each of the

three subdomain categories, with transitions occurring between adjacent subdomains.

Excellent agreement between the directly simulated continuous model and the sur-

rogate (Markov) model was achieved by tracking 14 states, i.e. significantly less than the

total of 27 particles. Statistics for the quantity of interest indicated that a truncated normal

distribution was well-suited to capturing statistical properties in estimates of the number of

particles per subdomain type. Expected values were found to vary linearly with increasing

particle radius R , and increased with R for subdomains with zero walls or one wall, but

decreased for subdomains with two walls. Results of this type can be used to estimate the

aggregate density of particles, via direct simulations in a representative domain, since it

is unclear that such measures can be predicted a priori, except in the limit R → 0. Indeed,

the uniform density in this limiting case is consistent with Brownian motion (diffusion)

on a square with insulated boundaries, yet the density profile as R increases is difficult to

predict analytically. Beyond expected values, the modeling approach presented herein has

the advantage that it includes an estimate of uncertainty via the use of truncated normal

distributions that were demonstrated to be well-suited for analyzing the quantity of interest.

The approach employed in this study may have potential application in other systems

where aggregate properties are unknown but can be investigated via direct simulations of

discrete entities on a representative domain. Success will depend on the ability to accurately

and efficiently compute solutions using the direct model on time scales and for enough

realizations to exhibit stationary statistical properties for the quantities of interest. More

specifically, development of a surrogate model using Markov chains will require that the
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quantities of interest have a readily identified set of states and that the notion of transitions

between these states can be easily defined. When states are continuous rather than discrete

quantities, it is possible that a set of discrete states can still be defined by binning the

random variable into adjoining sub-ranges of the continuous variable. The viability of

this approach for such systems needs further investigation. When accurate Markov chain

surrogate models can developed, they also have the potential to serve as useful tools for

accelerating portions of simulations for complex systems while also providing a quantitative

framework for uncertainty quantification.

Overall, the methods and approach developed in this study for a simpler two-dimensional

system may have potential utility in multiscale modeling of more complex systems with

discrete entities (e.g. particles, polymers or biological cells) exhibiting non-trivial dynamical

interactions that can be directly and efficiently simulated on a representative domain.
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CHAPTER

3

SINGLE PARTICLE RANDOM WALKS IN A

PERIODIC REPRESENTATIVE VOLUME

ELEMENT

3.1 Introduction and Background

Moving on from the initial problem in Chapter 2 (Model 1), we now consider single particle

random walks in a two-dimensional periodic representative volume element with internal

obstacles (Model 2). We begin with an initial example of a particle with a random walk on a

1D lattice, which we use to motivate our 2D random walk models. In our continuous simu-

lations, the particle can move in any direction in a 2D representative volume element (RVE).

We use continuous model simulations to build transition probabilities for the surrogate

model of random walks on a 2D lattice.

3.1.1 Example of random walks on a 1D lattice

We start by considering the simpler case of a single particle random walk on a 1D lattice.

In this instance, the particle begins at location m = 0 and takes a step either left or right
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with equal probabilities (e.g. it may not stay in the same location), changing its location to

m =−1 or m = 1, respectively, after one time step. [15]. Figure 3.1 illustrates this scenario.

When this experiment is repeated many times over a fixed number of time steps, the

resulting histogram of spatial distances traveled for each random walk can be fit by a

normal distribution (Fig. 3.2).

(a)
.

(b)

Figure 3.1 Illustrations of a particle moving in a one-dimensional random walk, having equal
probability of moving one unit to the right or left. (a) The particle’s first step. (b) Molecule loca-
tions possible after N = 4 steps. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer. Diffusion. In: Foundations of Applied Mathematics by M.H. Holmes,
Springer Science + Business Media, LLC (2009) [15]

In contrast with the example given above, our simulations are in two dimensions and

on a continuous domain. We first perform simulations on a continuous (off-lattice) domain

from which we obtain baseline probabilities to build a surrogate 2D lattice model on a

periodic lattice.

Compared to the continuous model, the periodic lattice model is more analogous to

the example in Figure 3.1; however, in contrast to this example, the periodic lattice model

allows for movement in two dimensions. We use the mean squared displacement to esti-

mate the diffusivity for both the deterministic and surrogate models. We aim to analyze the

effects of particle size, obstacle size, and obstacle arrangement on the diffusivity in a 2D

representative volume element (RVE).
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Figure 3.2 Illustrations of 5000 realizations for a particle’s random walk with N = 100 time steps.
Top: The different paths taken during the 5000 realizations. Bottom: Spatial distribution of the
particle’s location after the last timestep. Reprinted by permission from Springer Nature Cus-
tomer Service Centre GmbH: Springer. Diffusion. In: Foundations of Applied Mathematics by M.H.
Holmes, Springer Science + Business Media, LLC (2009) [15].

3.2 Continuous Model Description

We consider a single diffusing particle which moves via random walks in two spatial di-

mensions. In the continuous model, we directly simulate the particle’s movement in a 2D

periodic representative volume element (RVE). The domain has periodic boundary condi-

tions (PBCs), and stationary obstacles with which the particle collides. The RVE has several

different obstacle arrangements that serve as models for varying degrees of solid phase

density (or volume fraction) and material anisotropy. Domains with greater symmetry will

be useful in comparing to previous studies of diffusion on lattice-based models as well

as theoretical relations for diffusion in porous media [32], [31], [35]. Figures 3.3 and 3.4

show the three different obstacle arrangements considered: (i) equally spaced obstacles

(Fig. 3.3(a)), (ii) four internal obstacles (Fig. 3.3(b)), and (iii) multisize obstacles (Fig. 3.4).

With these different arrangements, case (i) models the most isotropic of the materials, case

(ii) models a material that is more transversely isotropic, and case (iii) introduces properties

of a composite material.

We can divide the RVE into nine subdomains of equal size for cases (i) and (ii) and into

four subdomains of equal size in case (iii). Due to differences in obstacle arrangements,

subdomain types are most distinct (from other subdomain types) in the four internal

obstacle case (case (ii)). For the four internal obstacles model, the domain can be divided

into three distinct subdomain types – termed Center (C), Onewall (I), and Corner (L) – as
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(a) (b)

Figure 3.3 Domains for deterministic model with numbered subdomains for particle radius
Rpart = 1.0 and obstacle radius Robs = 2.0. (a) Equally spaced obstacles model.(b) Four internal
obstacles model.

(a)

Figure 3.4 Domain for deterministic model of multisize obstacles with numbered subdomains
for particle radius Rpart = 1.0, the first set of obstacle radius Robs1

= 1.0 and the second set of
obstacle radius Robs2

= 2.0.

determined by subdomain locations in the original domain. Subdomain types are illustrated

in Figures 3.3-3.4.

We run simulations on a 2D RVE with periodic boundary conditions. Each subdomain

is of length l = 10, making the total RVE of size 30×30 for cases (i) and (ii) and size 20×20

for case (iii). We will use the cardinal directions to describe the different boundary walls of

the domain and particle movements to neighboring subdomains (i.e. north, east, south,
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west).

Figure 3.5 Domain diagram for four internal obstacles case with subdomain types labeled. Solid
lines represent the original domain, or the RVE, and dashed lines represent a portion of the ex-
tended domain.

Figure 3.6 shows an illustration of a possible random walk in the four internal obstacle

case. At t = 0, the particle is located in the center subdomain (subdomain 5). At each

timestep of size∆t = 0.05, a new direction is chosen from θ ∈ [0, 2π] via a uniform sampling.

The particle now moves a distance of∆x = v ∆t in the direction of θ . If the particle collides

with an obstacle, we simulate perfectly elastic collisions, with the obstacles remaining

stationary but the particle bouncing off of the obstacle in the appropriate direction. Effects

of the periodic boundary conditions (PBC) on particle motion are shown in Figure 3.7. If a

particle reaches the edge of a boundary wall in the initial RVE, it reenters the simulated

domain on the opposite side but at the same position along the boundary. For example, if

the particle exits from the eastern side of the domain, it will reenter on the western side of

the domain at the same vertical location where the particle exited from the opposite side.

The state of the system at time t is considered to be the subdomain in which the particle

is located. Subdomains are numbered in order to track particle location and state changes,

according to the number of subdomains present (No. 1-9 for the equally spaced obstacles

model (Fig. 3.3(a)) and four internal obstacles model (Fig. 3.3(b)); No. 1-4 for the multisize

obstacles model (Fig. 3.4)). Tracking state changes is important for building the transition

probabilities used in the surrogate model, discussed in greater detail later in this chapter
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(a)

Figure 3.6 Illustration of a particle’s random walk path in the four internal obstacle case. The
larger black circles are obstacles, the red circle indicates the particle’s initial location, and the
light orange circles depict the random walk path that the particle takes.

(a)

Figure 3.7 Illustrations of periodic boundary conditions, with exaggerated stepsizes for clarity.
(a) The particle moves from location (1) to location (2). Location (2) is on the boundary, but
the center of the particle is still in the RVE, so the particle is not considered to have crossed the
boundary yet. (b) The particle moves from location (2) to location (3). Location (3) is over the
boundary, so the particle reenters the RVE from the opposite side of the domain. (c) Particle
moves from location (3) to location (3*).
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(see sections 3.3.1.1, 3.3.2.1, and 3.3.3.1).

We investigate how the slope of mean squared displacement 〈r 2〉 versus time changes

with different obstacle configurations and with increasing obstacle radii. We compare these

results for the continuous and surrogate models. After all simulations are completed, the

resulting mean-squared displacement is used to estimate the diffusivity of the system. We

compare these results to the Mackie-Mears relation for diffusivity in porous media D N [φS ],

D N [φS ] =D N
0

�

1−φS

1+φS

�2

, (3.1)

where D N
0 is the diffusivity in a free solution (one without obstacles), and φS is the solid

volume fraction of a mixture [22]. The solid volume fraction can be written as,

φS =
Aobs

ARVE
. (3.2)

where Aobs is the two-dimensional area of obstacles, and ARVE is the two-dimensional area

of the total domain. In calculating Aobs and ARVE, we assume the RVE has a fixed width, w

(that cancels out when we calculate the solid volume fractionφS ).

3.2.1 Model for equally spaced obstacles

To build the equally spaced obstacles model (Fig. 3.3(a)), obstacles are first placed at the

corners of the center subdomain–these obstacles are located entirely within the RVE. Partial

obstacles are then added along the boundary so that there is equal spacing between ob-

stacles. The addition of partial obstacles makes our domain more isotropic than the other

domains considered in this study (though not truly isotropic). Since this domain is the

most isotropic of our domains, it is the most comparable to previous studies of diffusivity

based on lattice models. This will be discussed more in Chapter 4. All obstacles are chosen

to have the same size with radius Robs.

We consider a single particle with radius Rpart which moves in a random walk with a

speed of v = 8. For the deterministic model, we simulate many realizations over Nt = 1×107

timesteps and consider the plot of the mean-squared displacement 〈r 2〉 versus time. The

slope of mean-squared displacement versus time can first be used as a proxy for diffusivity.

In practice, 1500 to 2000 realizations on a High Performance Cluster are sufficient for the

slope to reach stationary values. We first fix the particle radius as Rpart = 1.0 and vary the

obstacle radius Robs from 0.5 to 3.0 in increments of 0.5. This range is chosen to allow

particle movement between obstacles–an obstacle radius greater than 3.0 greatly inhibits
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transitions between subdomains.

After these simulations are completed, we also consider the case in which we fix the

obstacle radius at Robs = 2.0 and vary the particle radius Rpart from 0.5 to 2.5 in increments

of 0.5. For the equally spaced obstacles model, we do not vary the particle radius because

early results using the four internal obstacles case indicated that the system was more

sensitive to varying the particle radius.

3.2.2 Model for four internal obstacles

In the four internal obstacles model (Fig. 3.3(b)), four obstacles are placed at the corners of

the center subdomain–these obstaces are located entirely within the RVE. Obstacle locations

can also be thought of as being located at the intersection of subdomain boundary lines.

Again, all obstacles are chosen to have the same size with radius Robs. As in the equally

spaced obstacles case, we first set the particle radius to Rpart = 1.0 and vary the obstacle

radius, Robs from 0.5 to 3.0. After these simulations are carried out, we also consider the case

in which we fix the obstacle radius at Robs = 2.0 and vary the particle radius Rpart from 0.5 to

2.5 . We use the mean-squared displacement to estimate the diffusivity of the system under

both scenarios (i.e. varying only the particle radius or varying only the obstacle radius).

Figure 3.8 Domain diagram for multisize obstacles to illustrate which obstacle radii are varied. In
simulations Rpart and Robs1

are fixed at 1.0 while Robs2
is varied.
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3.2.3 Model for multisize obstacles

For the multisize obstacle model (Fig. 3.4), we want to structure the RVE such that we can

have one set of obstacles with fixed obstacle radius Robs1
and another set of obstacles with

an obstacle radius Robs2
that we vary. The simplest way to structure this model and maintain

symmetry to allow for simpler bookkeeping in the RVE is to reduce the domain from a 3×3

to a 2× 2 domain. Figure 3.8 illustrates this modified domain. We consider the domain

as having "columns" of obstacles, where all obstacles in the same column have the same

radius. The first set of obstacles we denote as having radius Robs1
and the second set of

columns as having radius Robs2
. We fix the particle radius at Rpart = 1.0, the first set obstacle

radius values at Robs1
= 1.0, and vary the other obstacle radius values Robs2

from 0.5 to 3.0.

We, again, use the mean-squared displacement to estimate the diffusivity of the system. For

this model we do not consider fixing the obstacle radii and varying the particle radius, due

to the added complexity of two different sizes of obstacles and because our simulations on

the equally spaced obstacles model and the four internal obstacles model both indicated

the system was more sensitive to varying the obstacle radius.

(a) (b)

Figure 3.9 Equally spaced obstacles model. (a) Continuous domain with solid red lines indicating
RVE subdomains and dashed gray lines indicating subdomains in the extended domain. Solid
blue circles are obstacles in the original domain, and solid gray circles are obstacles in the ex-
tended domain. The center subdomain (subdomain 5) is highlighted in yellow, with transition
types indicated with a green arrow. Only cardinal direction transitions are possible (in addition
to staying in the current subdomain), so only one arrow is shown. (b) Lattice representation with
red rings representing possible subdomains in the original domain and dashed gray rings indi-
cating possible subdomains in the extended domain. Distinct transition types from subdomain 5
indicated with green arrows and numbers.
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3.3 Surrogate lattice model description

We construct the surrogate lattice models by using the transition probabilities obtained from

the continuous model simulations. The process by which we create transition probabilities

is explained in sections 3.3.1.1, 3.3.2.1, and 3.3.3.1 for the equally spaced obstacles model,

four internal obstacles model, and multisize obstacles model, respectively.

After collecting transition probabilities from the continuous model, we build the lattice

model to keep track of the following:

(i) The initial particle location (subdomain number and corresponding (x , y ) position).

(ii) The current particle location at each time step (subdomain number and correspond-

ing (x , y ) position).

(iii) The previous subdomains the particle was in.

(iv) Transitions to the extended domain, which is used to keep track of net particle dis-

placement.

The lattice model relies on transition probabilities to determine if a particle changes sub-

domains. At each timestep we draw a random number uniformly from 0 to 1 to determine

the particle’s action at that timestep. We run the lattice model for N = 1×107 timesteps and

compare lattice model results for mean squared displacement and diffusivity with those of

the continuous model.

We mimic the domain of the continuous model, with subdomains in the continuous

model corresponding to possible subdomains in the surrogate lattice model. Hence, the

number of subdomains in the lattice model is the same as the number of subdomains in

the corresponding continuous model. This means that we have a 3×3 lattice for the equally

spaced obstacles model (case (i)) and the four internal obstacles model (case (ii)), and a

2×2 lattice for the multisize obstacles model (case (iii)). Although case (i) could be modeled

with a 1×1 lattice, for flexibility in comparing with our other models and versatility in using

the RVE to capture varied obstacle arrangements, we use a 3×3 lattice.

3.3.1 Lattice model for equally spaced obstacles

We first construct the lattice model for the equally spaced obstacles case (Fig. 3.3(a)). Figure

3.9(a) shows the continuous domain and the extended domain with subdomains numbered

1-9, with distinct transitions from the center subdomain indicated with green arrows. Due to

the extensive symmetries in this system, all subdomains are the same in terms of boundary
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edges they share with neighboring subdomains and locations of obstacles. Further, based on

symmetries within each subdomain, we can aggregate transition probabilities by transition

type. Transition types are affected by the length of the boundary edge one subdomain

shares with a neighboring subdomain. Figure 3.12(b) shows the resulting lattice model for

the equally spaced obstacle case, with distinct transitions from subdomain 5 indicated with

green arrows. As particles in this system are most likely to stay in their current subdomain,

we expect transition probability No. 1 in Figure 3.9(b) to be close to 1.

Consider transitions from the center subdomain (subdomain 5), which is highlighted

in Figure 3.9(b). When the particle is in the center subdomain, we make the following

observations of possible transitions:

(i) The particle can stay in its current subdomain (in this case, subdomain 5).

(ii) The particle cannot transition diagonally from this subdomain since subdomain

5 has obstacles at each of its corners. These obstacles block any possible diagonal

transitions.

(iii) If the particle is leaving its current subdomain, the particle can only move in a car-

dinal direction (north, east, south, west). For each possible cardinal direction, the

unobstructed boundary edge between subdomain 5 and the neighboring subdo-

main (subdomains 2, 4, 6, or 8) is the same regardless of which cardinal direction the

particle moves. For example, the probability of transitioning from subdomain 5 to

subdomain 2 (a transition to the north) is the same as the probability of transitioning

from subdomain 5 to subdomain 4 (a transition to the west).

Based on the symmetries in our continuous model, for each obstacle radius and par-

ticle radius configuration we have two resulting probabilities –(1) the probability that a

particle stays in its current subdomain, and (2) the probability of the particle moving to

a neighboring subdomain in a cardinal direction. The probability of diagonal transitions

should be zero, as obstacles are always at the corners blocking those transitions.

3.3.1.1 Tracking transition probabilities for the equally spaced obstacles model

We consider the state of the system to be the subdomain in which the particle is located.

To visualize subdomains and particle locations, recall Figure 3.9. We aim to identify and

quantify system properties of the directly simulated continuous model via the timecourse

η(tk ) (tk = k∆t , k = 0, . . . , N ). This tracks the subdomain the particle is in (its state) over

the total timecourse, where N is the total number of time steps. A particle is counted as

being located in the i th subdomain (i = 1, . . . ,9) at time tk if its center is located in that
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subdomain at time tk . We create a 9×9 matrix S (k ) to count all transitions that have occured

up to the current timestep k = 1, . . . , N , (we initialize S (0) is a 9×9 zero matrix). The rows of

S (k ) correspond with the subdomain in which the particle was located, and the columns of

S (k ) correspond with the subdomain to where the particle moves. S (k ) is updated at each

timestep according to the formula,

S (k )
�

η(tk−1),η(tk )
�

= S (k−1)
�

η(tk−1),η(tk )
�

+1, k = 1, . . . N (3.3)

For example, if the particle is in subdomain 1 (a corner subdomain) (Fig. 3.9(b)) for

timesteps k = 1, . . . , 10, and moves to subdomain 2 (the onewall subdomain to the east) in

the next timestep (k = 11), then we have the following recorded:

η(1) =η(2) = . . .=η(10) = 1

η(11) = 2

S (11)(1, 1) = 10

S (11)(1, 2) = 1

S (11) =













10 1 0 . . . 0

0 0 0 . . . 0
...

...
... ...

...

0 0 . . . . . . 0













(3.4)

We want to build a vector ~p E of transition probabilities, with superscript E indicating

probabilities are for the equally spaced obstacle model. In order to begin creating the vector

~p E , we first create the vector ~T E
i , i = 1, . . . ,9 to count transitions that occurred for each

subdomain i . After timestep k we use the rows of S (k ) to create vector ~T E
i (i = 1, . . . ,9) by

grouping transition sums by transition types. For the equally spaced obstacles model all

subdomains have two possible transitions types–staying in its current subdomain or leaving

in a cardinal direction (as discussed above). Hence ~T E
i has dimensions of 1×2 for i = 1, . . . , 9,

which corresponds to the number of independent transition probabilities (note that the

number of transition probabilities will be different for the other two models).

Specifically, at the current time tk we construct ~T E
i using matrix S (k ), as follows:

~T E
i =



S (k )(i , i ),
∑

j 6=i

S (k )(i , j )



 , i = 1, . . . , 9. (3.5)

The index j indicates other subdomains besides subdomain i that the particle could move

to. These possible subdomains j are dependent on which subdomain i the particle is
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currently in.

For example, for subdomain 5, the particle can stay in its current subdomain (i = 5) or it

can move in a cardinal direction to subdomains i = 2, 4, 6, or 8. Vector ~T E
5 counts when the

particle stayed in subdomain 5 or moved from subdomain 5 in a cardinal direction, and is

created from S by:

~T E
5 = [S

(k )(5, 5), S (k )(5, 2) +S (k )(5, 4) +S (k )(5, 6) +S (k )(5, 8)].

The same process is followed for all ~T E
i for i = 1, . . . , 9. For example, for each subdomain,

~T E
i (1, 1) counts the number of times a particle was in subdomain i and stayed in subdomain

i , and ~T E
i (1, 2) counts the number of times a particle was in subdomain i and moved in a

cardinal direction to one of the four possible subdomains for i = 1, . . . , 9.

Due to the symmetries in the equally spaced obstacles case, we create the transition

probability vector ~p E via:

~p E =
1

N

N
∑

i=1

~T E
i . (3.6)

For the equally spaced model, ~p E is a 1×2 matrix created by averaging the transition sums

for each subdomain.

For example, in our resulting transition probability vector, ~p E the value at ~p E (1,1)

indicates the probability that a particle will stay in its current subdomain, and the value

at ~p E (1, 2) indicates the probability that a particle will move in a cardinal direction to one

of the four possible subdomains. There are more types of transitions for the four internal

obstacle model and the multisize obstacles model, and these differences will be discussed

further in sections 3.3.2.1 and 3.3.3.1. In our simulations, we check the value of the transition

probabilities along the timecourse to ensure that the transition probabilities are reaching

stationary values.
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(a)
.

(b)

(c)
.

(d)

Figure 3.10 Continuous domain for four internal obstacle case. RVE is shown with red boundary
lines and extended domain is shown with gray, dashed boundary lines. Obstacles are indicated by
solid blue circles in RVE and solid gray circles in extended domain. Distinct transition types indi-
cated with green arrow. (a) Illustration of how subdomains are numbered for tracking transition
probabilities. (b) Illustration of transitions from the center subdomain (subdomain 5), with the
center subdomain highlighted in yellow. Note that transitions in any cardinal direction should oc-
cur with the same probability, this is illustrated with a single green arrow indicating there is only
one type of transition possible. From subdomain 5 there are two independent transition proba-
bilities. (c) Illustration of transitions from a subdomain 2, a onewall subdomain, with subdomain
2 highlighted in yellow. From subdomain 2 there are five independent transition probabilities.
(d) Illustrations of transitions from subdomain 1, a corner subdomain, with subdomain 1 high-
lighted in yellow. From subdomain 1 there are five independent transition probabilities.
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(a) (b)

(c) (d)

Figure 3.11 Lattice representation for four internal obstacle case with red rings indicating possi-
ble subdomains in the original domain and dashed gray rings indicating possible subdomains
in the extended domain. Possible transitions are indicated with solid blue lines. Distinct transi-
tion types indicated with green arrows and numbers. (a) Lattice representation. (b) Illustration
of transitions from subdomain 5, the center subdomain (2 distinct transition types). (c) Illustra-
tion of transitions from a subdomain 2, a onewall subdomain (5 distinct transition types). (d)
Illustrations of transitions from subdomain 1, a corner subdomain (5 distinct transition types).
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3.3.2 Lattice model for four internal obstacles

We now construct the lattice model for the four internal obstacle case (Fig. 3.3(b)). Fig-

ure 3.10(a) shows the continuous domain and the extended domain with subdomains

numbered 1-9. Utilizing the symmetries present in the RVE, we aggregate the transition

probabilities by transition type. Transition types are described in Figure 3.10 based off of

transitions from a particular subdomain to another neighboring subdomain.

First consider transitions from the center subdomain, which is highlighted in Figure

3.10(b). When the particle is in the center subdomain (or subdomain 5), we make the

following observations of possible transitions:

(i) The particle can stay in its current subdomain (in this case, subdomain 5).

(ii) The particle cannot transition diagonally from this subdomain since subdomain 5

has obstacles at each of its corners.

(iii) If the particle is leaving its current subdomain, the particle can only move in a car-

dinal direction (north, east, south, west). For each possible cardinal direction, the

unobstructed boundary edge between subdomain 5 and the neighboring subdo-

main (subdomains 2, 4, 6, or 8) is the same regardless of which cardinal direction the

particle moves. For example, the probability of transitioning from subdomain 5 to

subdomain 2 (a transition to the north) is the same as the probability of transitioning

from subdomain 5 to subdomain 4 (a transition to the west).

In summary, there are only two possible types of transitions when a particle is in the

center subdomain–either (1) the particle stays in the current subdomain, or (2) the particle

transitions to another subdomain in a cardinal direction.

Next we consider transitions from a onewall subdomain. Figure 3.10(c) illustrates tran-

sitions from subdomain 2, a onewall subdomain. For transitions from subdomain 2, we

can identify five distinct transition types:

(i) The particle can stay in its current subdomain (in this case, subdomain 2).

(ii) The particle can transition west to subdomain 1 or east to subdomain 3 with equal

probabilities, because the unobstructed subdomain edges between subdomain 2 and

subdomain 1 or subdomain 3 are of equal length.

(iii) Similarly, the particle can move northwest to subdomain 7 or northeast to subdomain

9 with equal probabilities.
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(iv) Transitions west from subdomain 2 to subdomain 8 have a distinct transition proba-

bility.

(v) Transitions east from subdomain 2 to subdomain 5 have a distinct transition proba-

bility.

Finally, we consider transitions from a corner subdomain. Figure 3.10(d) illustrates

transitions from subdomain 1, a corner subdomain. For transitions from subdomain 1, we

can identify five distinct transition types:

(i) The particle can stay in its current subdomain (in this case, subdomain 1).

(ii) The particle can transition east to to subdomain 2 or south to subdomain 4 with equal

probability, because the unobstructed subdomain edge between subdomain 1 and

subdomain 2 or subdomain 4 is of equal length.

(iii) Similarly, the particle can move north to subdomain 7 or west to subdomain 3 (in the

extended domains) with equal probabilities.

(iv) Similarly, the particle can move southwest to subdomain 6 or northeast to subdomain

8 with equal probability.

(v) Lastly, the particle can move northwest to subdomain 9 with a distinct probability.

Now that we have identified transition types in the continuous domain, we can construct

a lattice representation, as illustrated in Figure 3.11. In the lattice model, rings represent

the particle’s location (e.g. ring 5 in the lattice model corresponds with a particle being in

subdomain 5 (the center subdomain) in the continuous model). Figure 3.11(b) illustrates

transitions in the lattice model from the center subdomain (subdomain 5). A particle can

either stay in its current subdomain (transition type 1) or move to another subdomain in a

cardinal direction (transition type 2).

Figure 3.11(c) shows the lattice representations of transitions from onewall subdomains

and Figure 3.11(d) shows lattice representations of transitions from the corner subdomains.

Again, the particle will be most likely to stay in its current subdomain. The onewall subdo-

main has 5 independent transition types, and the corner subdomain has five independent

transition types.

3.3.2.1 Tracking transition probabilities for the four internal obstacles model

Tracking transition probabilities for the four internal obstacle model begins similarly to

the equally spaced model, as discussed in section 3.3.1.1. We want to build vectors ~p F
l of
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transition probabilities, with superscript F indicating probabilities are for the four internal

obstacles model and subscript l = L , I , C to indicate transitions occurring from the corner,

onewall, and center subdomains, respectively. In order to begin creating the vectors ~p F
l

for l = L , I , C , we first create the vectors ~T F
i , i = 1, . . . , 9 to count transitions that occurred

for each subdomain i . The 9×9 matrix S (k ) is created in the same manner as in the equally

spaced obstacles case (Sec. 3.3.1.1) for timesteps k = 1, . . . , N . We use S (k ) to create vectors

~p F
i to count transitions that occurred over the total timecourse when the particle was in

subdomain i for i = 1, . . . ,9. Since the subdomain types for this model are different, the

dimensions of ~T F
i vary based on the subdomain type.

Recall Figure 3.11 (b) - (d) for transition types grouped by subdomain type. Subdomain

5 is the only center subdomain (l =C ), and transitions for this subdomain are similar to

those in the equally spaced obstacles model. The vector ~T F
5 has dimensions 1×2 and is

calculated by

~T F
5 =



S (k )(5, 5),
∑

j=2,4,6,8

S (k )(5, j )



 . (3.7)

The index j indicates other subdomains besides subdomain 5 that the particle could move

to. These possible subdomains are j = 2, 4, 6, and 8.

To consider transitions occurring from a onewall subdomain (l = I ), it is simpler to

consider transitions possible when in subdomain 2. As illustrated in Figure 3.11(c), there

are five possible transition types when the particle is in subdomain 2, with the most likely

being for the particle to remain in subdomain 2. We then have four other transition types.

The vector ~T F
2 has dimensions 1×5 and is calculated by

~T F
2 =



S (k )(2, 2),
∑

j=1,3

S (k )(2, j ),
∑

j=7,9

S (k )(2, j ), S (k )(2, 8), S (k )(2, 5)



 . (3.8)

For the remaining onewall subdomains ( j = 4,6,8), these transitions are counted in the

same manner, following the transition types as numbered in Figure 3.11(c).

To consider transitions occurring from a corner subdomain (l = L ), it is simpler to

consider transitions possible when in subdomain 1 (Fig. 3.11(d)). When in subdomain 1,

there are 5 possible transition types, with the most likely being that the particle remain in

subdomain 1. The vector ~T F
1 has dimension 1×5 and is calculated by

~p F
1 =



S (k )(1, 1),
∑

j=2,4

S (k )(1, j ),
∑

j=6,8

S (k )(1, j ),
∑

j=3,7

S (k )(1, j ), S (k )(1, 9)



 . (3.9)
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For the remaining corner subdomains ( j = 3, 7, 8), these transitions are counted in the same

manner, following the transition types as numbered in Figure 3.11(d).

Now that we have vectors ~T F
i (i = 1, . . . , 9) tracking transitions for each subdomain, we

want to create vectors ~p F
l for the transition probabilities by subdomain type (l = L , I , C ).

For the center subdomain, this is the vector ~T F
5 divided by the sum of components of

the vector ~T F
5 (or the total number of times the particle was in subdomain 5). We denote

the i th component of the vector ~T F
5 as T F

5 (i ). Hence, transition probability vector ~p F
C has

dimension 1×2 and is written as

~p F
C =

~T F
5

∑9
i=1 T F

5 (i )
. (3.10)

For the onewall subdomains, we create the probability vector ~p F
I by summing up the

different onewall transition vectors, ~T F
i for i = 2,4,6,8 and dividing by the sum of these

vectors (the total number of times the particle was in a onewall subdomain). Hence, the

transition probability vector ~p F
I has dimension 1×5 and is written as

~p F
I =

∑

j=2,4,6,8
~T F

j
∑9

i=1

∑

j=2,4,6,8 T F
j (i )

. (3.11)

For the corner subdomains, we create the probability vector ~p F
L by summing up the different

corner transition vectors, ~T F
i for i = 1,3,7,9 and dividing by the sum of these vectors

(the total number of times the particle was in a corner subdomain. Hence, the transition

probability vector ~p F
L has dimension 1×5 and is written as

~p F
L =

∑

j=1,3,7,9
~T F

j
∑9

i=1

∑

j=1,3,7,9 T F
j (i )

. (3.12)

In our simulations, we check the value of the transition probabilities along the timecourse

to ensure that the transition probabilities are reaching stationary values.

3.3.3 Lattice model for multisize obstacles

We similarly construct the lattice model for the multisize obstacles case (Fig. 3.4). Recall for

this obstacle configuration, due to the inherent symmetries of the system, we reduce the

domain to a 2×2 grid. Figure 3.12(a) shows the continuous domain and the extended domain

with subdomains numbered 1-4, with distinct transitions from subdomain 1 indicated with

green arrows.
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(a) (b)

Figure 3.12 Multisize obstacles model. (a) Continuous grid with solid red lines indicating sub-
domains in the original domain and dashed gray lines indicating subdomains in the extended
domain. Solid blue and green circles indicate obstacles in the original domain, with the smaller
green circles indicating obstacles with obstacle radius fixed at Robs1

= 1.0, and the larger blue
circles indicating obstacles with varying obstacle radius Robs2

. Solid gray circles are obstacles in
the extended domain, with the circle size smaller and larger indicating radius Robs1

and Robs2
,

respectively. Subdomain 1 is highlighted in yellow, with distinct transition types indicated with a
green arrow. (b) Lattice representation with solid red rings indicating possible subdomains in the
original domain and dashed gray rings indicating possible subdomains in the extended domain.
Distinct transition types from subdomain 1 indicated with green arrows and numbers.

Due to the inherent symmetry in the system, all subdomains have the same transition

types, although these transition types occur in different directions. For example, subdomain

1 has the same transition probabilities as subdomain 2 but these transition probabilities

occur in opposite directions with respect to the horizontal axis. Based on the symmetries

of this RVE, we can aggregate transition probabilities by transition type. Transition types

are affected by the length of the boundary edge one subdomain shares with a neighboring

subdomain. Figure 3.12(b) shows the resulting lattice model for the multisize obstacle case,

again with distinct transitions from subdomain 1 indicated with green arrows. As particles

in this system are most likely to stay in their current subdomain, we expect transition

probability 1 in Figure 3.12(b) to be close to 1.

Consider transitions from subdomain 1, which is highlighted in Figure 3.9(b). When the

particle is in subdomain 1, we make the following observations of possible transitions:

(i) The particle can stay in its current subdomain (in this case, subdomain 1).

(ii) The particle cannot transition diagonally from this subdomain since subdomain

1 has obstacles at each of its corners. These obstacles block any possible diagonal

transitions.
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(iii) The particle can move east to subdomain 2 in the original domain with a distinct

transition probability, since this boundary has two obstacles with radius Robs2
.

(iv) The particle can move west to subdomain 2 in the extended domain with a distinct

transition type, since this boundary has two obstacles with radius Robs1
.

(v) the particle can move south to subdomain 3 in the original domain or north to

subdomain 3 in the extended domain with the same probability due to the boundary

edge having one obstacle with radius Robs1
and one obstacle with radius Robs2

.

Based on the symmetries in our continuous model, for each obstacle radius configura-

tion we have four resulting probabilities. The probability of diagonal transitions should be

zero, as obstacles are always at the corners blocking those transitions.

After collecting transition probabilities from the continuous model, we build the lattice

model to keep track of the following:

(i) The initial particle location (subdomain number and corresponding (x , y ) position).

(ii) The current particle location at each time step (subdomain number and correspond-

ing (x , y ) position).

(iii) The previous subdomains the particle was in.

(iv) Transitions to the extended domain, used to keep track of net particle displacement.

(v) A counter to distinguish between horizontal transitions within the original domain

versus horizontal transitions to the extended domain (further explained below).

Since this RVE is composed of 2× 2 subdomains, and, in the horizontal direction, there

is a differing obstacle arrangement to the east versus to the west, we need a counter to

distinguish between horizontal transitions within the original domain and horizontal

transitions to the extended domain. For example, if a particle is located in subdomain 1

and moves east to subdomain 2 (in the original domain), then that boundary edge has two

obstacles with radius Robs2
. However, if a particle is located in subdomain 1 and moves west

to subdomain 2 (in the extended domain), then that boundary edge has two obstacles with

radius Robs1
. We do not need such a counter for vertical transitions, since the boundary in

the vertical direction between any two subdomains has one obstacle with radius Robs1
and

one obstacle with radius Robs2
.

We run the surrogate lattice model for N = 1×107 timesteps and compare lattice model

results for mean squared displacement with those of the continuous model.
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3.3.3.1 Tracking transition probabilities for the multisize obstacles model

Tracking transition probabilities for the multisize obstacles model begins similarly to that

of the equally spaced model, as discussed in section 3.3.1.1. We want to build vectors ~p M of

transition probabilities, with superscript M indicating probabilities are for the multisize

obstacles model. In order to begin creating the vectors ~p M , we first create the vectors ~T M
i ,

i = 1, . . . , 4 to count transitions that occurred for each subdomain i .

As we can see from Figure 3.12, since this domain is 2×2, when either (1) the particle

moves in a cardinal direction (e.g. north) to a subdomain in the original domain, or (2) when

the particle moves in the opposite direction (e.g. south) to a subdomain in the extended

domain, it moves to the same numerically numbered subdomain. For example, when a

particle is in subdomain 1, it can move west into the extended domain and into subdomain

2, or it can move east, staying in the original domain and moving into subdomain 2. With

north-south transitions, the obstacle configuration between subdomains is the same (one

obstacle of radius Robs1
and one obstacle of Robs2

), but with east-west transitions the obstacle

configuration between subdomains is different (either two obstacles with radius Robs1
or

two obstacles with radius Robs2
). Due to this difference, we must keep track of when east-

west transitions occur to subdomains outside the original domain. To track this difference,

we make the matrix S (k ) a 4×5 matrix, with the rows indicating the subdomain the particle

was in, and the columns indicating the subdomain the particle went to. The 5th column

in S (k ) indicates an east-west transition occurred in which the particle moved outside the

original domain.

Other than the column differentiating between in-domain east-west and out-of-domain

east-west transitions, S (k ) is then created in the same manner as in the equally spaced obsta-

cles case (Sec. 3.3.1.1) for timesteps k = 1, . . . , N . We use S (k ) to create vectors ~p M
i to count

transitions that occurred over the total timecourse when the particle was in subdomain i

for i = 1, . . . , 4.

Recall Figure 3.12 (a) - (b) for transition types by subdomain type. We only have one

type of subdomain, but with the obstacles located at different corners. Consider transitions

from subdomain 1. The vector ~T M
1 is calculated by

~T M
1 =

�

S (k )(1, 1), S (k )(1, 2), S (k )(1, 3), S (k )(1, 4) +S (k )(1, 5)
�

. (3.13)

A similar ordering is followed for the remaining three subdomains. For vector ~T M
i , i =

1, 2, 3, 4, we can describe the elements in the following manner:

(i) the element in the (1, 1) position indicates the number of times a particle stayed in its

current subdomain.
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(ii) the element in the (1,2) position indicates the number of times a particle moved

either north or south (note that we do not need to track if it moves within the original

domain since the obstacle configuration is the same for both boundary edges – the

boundary edge has one obstacle of radius Robs1
and one obstacle of radius Robs2

).

(iii) the element in the (1,3) position indicates the number of times a particle moved

either east or west but remained in the original domain (the boundary edge has two

obstacles of radius Robs2
).

(iv) the element in the (1,4) position indicates the number of times a particle moved

either east or west but moved to the extended domain (the boundary edge has two

obstacles of radius Robs1
).

Now that we have vectors ~T M
i (i = 1, . . . , 4) tracking transitions for each subdomain, we

want to create vectors ~p M for the transition probabilities. Due to the symmetries in the

multisize obstacles model, we create the transition probability vector ~p M by

~p M =

∑4
j=1
~T M

j
∑4

i=1

∑4
j=1 T M

j (i )
. (3.14)

In our resulting transition probability vector, ~p M the value at ~p M (1,1) indicates the

probability that a particle will stay in its current subdomain, and the values at ~p M (1, i ) for

i = 2,3,4 indicate the probabilities that a particle will move according to that transition

type. For the transition probability at ~p M (1,2), this indicates the probability of a particle

moving either north or south, and these two transitions occur with equal probability. In

our simulations, we check the value of the transition probabilities along the timecourse to

ensure that the transition probabilities are reaching stationary values.
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CHAPTER

4

MODEL CALIBRATION AND

DIFFUSIVITY ESTIMATION

In this chapter, we introduce some additional concepts used to build and assess the continu-

ous and surrogate models for 2D random walks: a commitment index Mc , and several topics

relating to model diffusivity. Since the particle exhibits a random walk in our continuous

model, Mc allows us to determine when a particle commits to a new subdomain. Without

including Mc , the probability of a particle leaving a particular subdomain is, effectively, too

high due to frequent crossing and recrossing over subdomain boundaries. Incorporating

Mc into our models allows us to identify transition probabilities for the surrogate model

that yield results in better agreement with the continuous model.

For diffusivity, we discuss estimating the effective diffusivity from the mean squared

displacement, 〈r 2〉, simulation results, as well as estimates for∆x used in comparing our

simulated effective diffusivities with theoretical diffusivity estimates for diffusion models

on a 2D lattice. We use equations discussed in literature which relate 〈r 2〉 to the diffusion

constant D , which we will refer to as simulated diffusivity or effective diffusivity (Dcont and

Dsurr for the continuous and surrogate models, respectively). We use a 2D Taylor Series

expansion to find the diffusion equation and theoretical diffusion constant, DTS. We then use

limits involving particle movement on a lattice in two dimensions to relate our simulated
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diffusivity Dsurr to the theoretical diffusivity DTS.

4.1 Commitment index for the continuous model

Figure 4.1 Commitment index, MC , illustration. (a)The particle (solid black circle) has just
crossed the boundary between subdomains (dashed gray line). We call this the 1st-step loca-
tion. Possible particle 2nd-step locations are indicated by the solid black ring. (b) Three possible
2nd-step locations are indicated with the solid red circles. We illustrate some possible next steps
(3rd-step locations) with red rings. (c) For a specific 2nd-step location (solid red circle), the 1st-
step location and ring of possible 2nd-step locations are colored gray (as these steps have passed).
A red ring illustrates the particles’ remaining possible 3rd-step locations. (d) Possible 4th-step
locations are indicated with blue rings.

In comparing preliminary results from the continuous and surrogate models, we ob-

serve that we need to include a commitment index, MC to indicate when a particle has

"committed" to its new subdomain. Due to the random direction at each time step, a parti-

cle frequently crosses and returns across the boundary line between subdomains over a

few time steps. We can think of this boundary recrossing as added noise in our calculation

of transition probabilities. Introducing MC allows us to mitigate some of that noise. For an

illustration of MC and why it is needed, see Figure 4.1, as explained below:

(i) In Figure 4.1(a), we consider a particle that has just crossed the boundary between

subdomains. The particle is just inside the new boundary, and a ring of possible par-

ticle locations after the next step includes some locations that result from recrossing

the boundary between subdomains. We will call the particle’s location at this point

the 1st-step location, as this is its first step into the new subdomain.
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(ii) In Figure 4.1(b), we further consider the possible steps relative to the particle’s 1st-step

location, as illustrated with three solid circles indicating possible 2nd-step locations.

A ring of possible next steps (3rd-step locations) can be drawn around each 2nd-step

location.

(iii) In Figure 4.1(c) we choose one of the possible 2nd-step locations (shown in gray). In

this case, we can reduce the possible 3rd-step locations to the remaining solid red

ring.

(iv) In Figure 4.1(d) we illustrate the remaining possible 3rd-step locations, and after an

additional step, several 4th-step locations are illustrated with blue rings.

With each successive step in which the particle stays in the new subdomain, the set

of possible next-steps resulting in a return back into the previous subdomain becomes

smaller and smaller. For each case of our model (i.e. particle and radius configurations),

we need to calibrate the commitment index by identifying its best value. We do this by

simulating the continuous model and considering varying values of the commitment index.

For example, for MC = 5, the particle must remain in its new subdomain for 5 consecutive

steps to be recorded as being in the new subdomain.

When evaluating a particular value for the commitment index, MC , we construct transi-

tion probabilities using that value of MC and run the lattice model for 1×107 timesteps.

We plot the mean-squared displacement for the lattice model and compare the resulting

slope to that of the mean squared displacement of the continuous model. In practice, by

comparing commitment index values ranging from three to seven, we are able to calibrate

the commitment index for all cases considered, i.e. obstacle radius and particle radius

configuration.

4.2 Estimating diffusivity using mean squared displacement

and Taylor Series expansions on a lattice

In general, our method of comparison for the continuous model and surrogate model is via

slopes of the mean squared displacement versus time. However, we would also like to use

these results to estimate the diffusivity of the system for both the continuous and surrogate

models. Furthermore, we can compare these estimated diffusivities with the theoretical

diffusivity obtained using a Taylor Series expansion for random walks on the lattice. In cases

with a high degree of symmetry, we can relate the diffusivity obtained via mean squared
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displacement with that obtained via a Taylor Series expansion–for our models, this includes

the equally spaced obstacles model (case (i)) and the multisize obstacles model (case (iii)).

The equally spaced obstacles model (case(i)) is the only model with equal probabilities

of moving in the vertical and horizontal directions. We will also consider the theoretical and

estimated diffusivities for the multisize obstacles model by including different probabilities

of moving in the vertical direction or in the horizontal direction. The four internal obstacles

case is too anisotropic to compare with a theoretical diffusivity obtained via a Taylor Series

expansion.

4.2.1 Previous work on using mean squared displacement to estimate

diffusivity

First, we estimate diffusivity using the mean squared displacement 〈r 2〉 for both the con-

tinuous and surrogate models. In normal diffusion in two dimensions, the mean squared

displacement can be related to the diffusivity by the equation

〈r 2〉= 4D t , (4.1)

where t is time and D is the diffusion constant [32], [31]. Other studies have considered

anomolous diffusion (diffusion in which movement is hindered or obstructed), as described

by

〈r 2〉= Γ t α

= 4D (t )t ,
(4.2)

where Γ is a diffusivity constant, α is a constant (α > 0), and D (t ) is the diffusivity as a

function of t [8]. Note that when D (t ) is a constant, this reduces to equation (4.1). Generally,

equation (4.2) holds when there are only a small number of timesteps considered, and,

over longer times, this becomes a linear relationship between 〈r 2〉 and t . [8]. Since our goal

is building a corresponding surrogate model, we will focus on the long term scenario in

which we have a linear relationship between 〈r 2〉 and time. To ensure that the continuous

and surrogate models are in the regime where this relationship is linear, we fit the resulting

mean squared displacement to a power law. We need the constantα≈ 1 in order to consider

our model as exhibiting normal diffusion (we find that α≈ 1 for all cases when the number

of timesteps is N = 1×107).

Once we verify the model exhibits normal diffusion, we can estimate the diffusivity by
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solving equation (4.1) for D :

D =
〈r 2〉
4t

. (4.3)

Note for our case, N is the number of time steps of size∆t = 0.05, so t =N∆t . We can then

estimate the diffusion constant D , by the following equation:

D =
〈r 2〉

4N∆t
. (4.4)

4.2.2 Derivation of linear relation between mean squared displacement

and time on a 2D lattice

In order to relate the estimated diffusivity obtained by mean squared displacement with

the theoretical diffusivity obtained by a Taylor Series expansion (described in the next

section), we need a relation between the mean squared displacement, 〈r 2〉 and the number

of timesteps N . In this section, we will denote the mean squared displacement as 〈r 2
K (N )〉,

with K referring to the number of single particle realizations of a random walk on the lattice,

and N being a particular timestep. We will return to the notation 〈r 2〉 for mean squared

displacement, starting in section 4.2.5.1.

4.2.2.1 Properties and notation for random walks on a 2D lattice

Consider K realizations of a single particle undergoing a random walk on a 2D lattice. In

the surrogate model, the transition possibilities represent the following moves: (1) stay in

current subdomain, (2) move to an adjacent subdomain in the horizontal direction, and (3)

move to an adjacent subdomain in the vertical direction. If the particle moves, it can only

move in a cardinal direction, thus we consider the next location as being due to steps in

either the x or y directions. Let xi (N ) and yi (N ) denote the horizontal and vertical positions

of the i th particle at timestep N , respectively. We can write them as

xi (N ) = xi (N −1) +hx i (N ), for i = 1, ..., K ,

yi (N ) = yi (N −1) +hy i (N ), for i = 1, ..., K ,
(4.5)
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where hx i and hy i are the possible displacements with associated stepsizes of∆x and∆y ,

respectively. In any one timestep, we have three possibilities for displacement,

(i) hx i (N ) =±∆x , hy i (N ) = 0,

(ii) hx i (N ) = 0, hy i (N ) =±∆y ,

(iii) hx i (N ) = hy i (N ) = 0,

(4.6)

where cases (i) (horizontal transition) and (ii) (vertical transition) occur with equal proba-

bility, and case (iii) (no transition) occurs with the highest probability.

4.2.2.2 Some useful limits in evaluating mean squared displacement

In order to evaluate the mean squared displacement,

〈r 2
K (N )〉= lim

K→∞

1

K

K
∑

i=1

x 2
i (N ) + y 2

i (N ), (4.7)

we first identify a few limits that will arise in the derivation to follow:

lim
K→∞

1

K

K
∑

i=1

hx i (N ), (4.8)

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M ) when N 6=M , (4.9)

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M ) when N =M . (4.10)

We will evaluate the above limits for the horizontal transition case (hx i ), but similar re-

sults also hold for the vertical transition case (hy i ). We now evaluate each of the limits in

equations (4.8)-(4.10).

4.2.2.2.1 Evaluating equation (4.8)

We first consider the average displacement in the horizontal direction, over all realizations,

as K →∞,

lim
K→∞

K
∑

i=1

hx i (N ). (4.11)

Let kx 1, kx 2, and kx 3 be the following:

(i) kx 1 : the number of times that hx 1(N ) = 0,
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(ii) kx 2 : the number of times that hx 1(N ) =∆x ,

(iii) kx 3 : the number of times that hx 1(N ) =−∆x .

We can write

lim
K→∞

1

K

K
∑

i=1

hx i (N )

= lim
K→∞

1

K
[kx 1(0) +kx 2(∆x ) +kx 3(−∆x )]

= lim
K→∞

1

K
[kx 2(∆x ) +kx 3(−∆x )]

= lim
K→∞

(∆x )
�

kx 2

K
−

kx 3

K

�

.

(4.12)

For the equally spaced obstacles problem, moving in either the (∆x ) and −(∆x ) directions

is equally likely. Let px be the probability that the particle moves in the horizontal direction.

Then for very large values of K , the ratio

kx 2

K
=

px

2
,

and the ratio
kx 3

K
=

px

2
.

We then write

lim
K→∞

1

K

K
∑

i=1

hx i (N )

= lim
K→∞

(∆x )
�

kx 2

K
−

kx 3

K

�

= lim
K→∞

(∆x )
�px

2
−

px

2

�

= 0.

(4.13)

Following the same process for the vertical direction, we let ky 1, ky 2, and ky 3 be the following:

(i) ky 1 : the number of times that hy 1(N ) = 0,

(ii) ky 2 : the number of times that hy 1(N ) =∆y ,

(iii) ky 3 : the number of times that hy 1(N ) =−∆y .
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Similarly, we find that

lim
K→∞

1

K

K
∑

i=1

hy i (N ) = 0. (4.14)

4.2.2.2.2 Evaluating equation (4.9)

We next want to show that, if N 6=M , then

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M ) = 0. (4.15)

We have three types of cases for hx i (N ) and hx i (M ) :

(i) hx i (N ) =∆x , and hx i (M ) =−∆x (or vice versa),

(ii) hx i (N ) = hx i (M ) =∆x or hx i (N ) = hx i (M ) =−∆x ,

(iii) hx i (N ) = 0 and/ or hx i (M ) = 0.

To describe the frequency of these cases, we define kx 4, kx 5, and kx 6 to be the following,

respectively:

(i) kx 4 : the number of times that hx i (N ) =∆x , and hx i (M ) =−∆x (or vice versa),

(ii) kx 5 : the number of times that hx i (N ) = hx i (M ) =∆x or hx i (N ) = hx i (M ) =−∆x ,

(iii) kx 6 : the number of times that hx i (N ) = 0 and/ or hx i (M ) = 0.

We illustrate the combinations of probabilities for the product in equation (4.15) in Figure

4.2. We now consider the limit:

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M )

= lim
K→∞

1

K

�

kx 4(−(∆x )2) +kx 5(∆x )2+kx 6(0)
�

= lim
K→∞

(∆x )2
�

kx 5

K
−

kx 4

K

�

.

(4.16)

Reviewing Figure 4.2, we observe equal probabilities for events corresponding with kx 4 and

kx 5, and we expect

lim
K→∞

kx 4

K
= lim

K→∞

kx 5

K
. (4.17)
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Figure 4.2 Illustration of probabilities for the three cases for independent events hi (N ) and hi (M ),
where px is the probability of moving horizontally. Cases (ii) and (iii) are associated with the same

probability,
�

px /2
�2

.

Hence,

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M )

= lim
K→∞

(∆x )2
�

kx 5

K
−

kx 4

K

�

= 0.

(4.18)

For the vertical direction, we define ky 4, ky 5, and ky 6 be the following:

i) ky 4 : the number of times that hy i (N ) =∆y , and hy i =−∆y (or vice versa),

ii) ky 5 : the number of times that hy i (N ) = hy i (M ) =∆y or hy i (N ) = hy i (M ) =−∆y ,

iii) ky 6 : the number of times that hy i (N ) = 0 and/ or hy i (M ) = 0.

We can then follow a similar line of reasoning as in the horizontal case to determine that

lim
K→∞

1

K

K
∑

i=1

hy i (N )hy i (M ) = 0, (4.19)

when N 6=M .
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4.2.2.2.3 Evaluating equation (4.10)

In the case N =M , and with kx 1, kx 2, and kx 3 defined as above (in the evaluation of equation

(4.8)),

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M )

= lim
K→∞

1

K

K
∑

i=1

h 2
x i (N )

= lim
K→∞

1

K

�

kx 1(0) +kx 2(∆x )2+kx 3(−∆x )2
�

= lim
K→∞

1

K

�

kx 1(0) + (kx 2+kx 3)(∆x )2
�

= lim
K→∞

�

kx 2+kx 3

K

�

(∆x )2.

(4.20)

Recalling that px was defined above to be the probability of moving either horizontal

direction, then

lim
K→∞

�

kx 2+kx 3

K

�

= px . (4.21)

Hence, for N =M ,

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M )

= lim
K→∞

1

K

K
∑

i=1

h 2
x i (N )

= lim
K→∞

�

kx 2+kx 3

K

�

(∆x )2

= px (∆x )2.

(4.22)

We can again follow a similar line of reasoning to obtain a similar result in the vertical

direction.
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4.2.2.2.4 Summary of limits in equations (4.8) - (4.10)

In summary, we have derived the following values for the limits introduced in equations

(4.8), (4.9), and (4.10), respectively:

lim
K→∞

1

K

K
∑

i=1

hx i (N ) = 0, (4.23)

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M ) = 0 when N 6=M , (4.24)

lim
K→∞

1

K

K
∑

i=1

hx i (N )hx i (M ) = px (∆x )2 when N =M . (4.25)

4.2.2.3 Limits using induction to evaluate mean squared displacement

In considering the mean squared displacement on a lattice , there are two additional limits

involving movements of particles that can be simplified:

lim
K→∞

2

K

K
∑

i=1

xi (N )hx i (M ) = 0 when M >N , (4.26)

lim
K→∞

1

K

K
∑

i=1

x 2
i (N ) =N px (∆x )2. (4.27)

We will evaluate the above limits for the horizontal transition case (xi ), but similar results

also hold for the vertical transition case (yi ). To derive these limits we will use equations

(4.23) - (4.25), as well as equation (4.5) for a particle’s possible horizontal locations:

xi (N ) = xi (N −1) +hx i (N ), (4.28)

4.2.2.3.1 Evaluating equation (4.26)

We use induction to show that

lim
K→∞

2

K

K
∑

i=1

xi (N )hx i (M ) = 0 (4.29)

when M >N .

When N = 0, the left hand side of (4.29) becomes

lim
K→∞

2

K

K
∑

i=1

xi (0)hx i (M ), M > 0. (4.30)
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The value of xi (N ) = 0 for all particles i = 1, ..., K , since this indicates the initial starting

location on the lattice. Hence,

lim
K→∞

2

K

K
∑

i=1

xi (N )hx i (M ) = 0, when N 6=M . (4.31)

When N = 1, equation (4.29) becomes

lim
K→∞

2

K

K
∑

i=1

xi (1)hx i (M ), M > 1

= lim
K→∞

2

K

K
∑

i=1

(xi (0) +hx i (1))hx i (M )

= lim
K→∞

2

K

K
∑

i=1

(xi (0)hx i (M ) +hx i (1)hx i (M ))

= lim
K→∞

2

K

K
∑

i=1

xi (0)hx i (M ) + lim
K→∞

2

K

K
∑

i=1

hx i (1)hx i (M )

= lim
K→∞

2

K

K
∑

i=1

0hx i (M ) + lim
K→∞

2

K

K
∑

i=1

hx i (1)hx i (M )

= lim
K→∞

2

K

K
∑

i=1

hx i (1)hx i (M ).

(4.32)

Applying our result in equation (4.24) to the last line above, it then follows that:

lim
K→∞

2

K

K
∑

i=1

xi (1)hx i (M ) = 0. (4.33)

For N > 1, we employ mathematical induction, first assuming that

lim
K→∞

2

K

K
∑

i=1

xi (N )hx i (M ) = 0, when M >N , (4.34)
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holds for N > 1. We now show that it also holds for N +1> 2:

lim
K→∞

2

K

K
∑

i=1

xi (N +1)hx i (M )

=
2

K

K
∑

i=1

(xi (N ) +hx i (N +1))hx i (M )

=
2

K

K
∑

i=1

(xi (N )hx i (M ) +hx i (N +1)hx i (M ))

=
2

K

K
∑

i=1

xi (N )hx i (M ) +
2

K

K
∑

i=1

hx i (N +1)hx i (M ).

(4.35)

Using the inductive hypothesis in equation (4.34) and equation (4.24) (i.e. both terms are

zero), we then obtain the result:

lim
K→∞

2

K

K
∑

i=1

xi (N +1)hx i (M ) = 0 for M >N . (4.36)

4.2.2.3.2 Evaluating equation (4.27)

We now use mathematical induction to show that

lim
K→∞

1

K

K
∑

i=1

x 2
i (N ) =N px (∆x )2. (4.37)

When N = 1, equation (4.37) becomes

lim
K→∞

1

K

K
∑

i=1

x 2
i (1) = lim

K→∞

1

K

K
∑

i=1

(xi (0) +hi (1))
2. (4.38)

We note that xi (0) is simply the starting location, which is recorded as xi (0) = 0. Hence,

lim
K→∞

1

K

K
∑

i=1

x 2
i (1) = lim

K→∞

1

K

K
∑

i=1

h 2
i (1) = px (∆x )2, (4.39)

by (4.25).
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When N = 2, equation (4.37) becomes

lim
K→∞

1

K

K
∑

i=1

x 2
i (2) = lim

K→∞

1

K

K
∑

i=1

(xi (1) +hi (2))
2

= lim
K→∞

1

K

K
∑

i=1

(x 2
i (1) +2xi (1)hi (2) +h 2

i (2))

= lim
K→∞

1

K

K
∑

i=1

x 2
i (1) + lim

K→∞

2

K

K
∑

i=1

xi (1)hi (2) + lim
K→∞

1

K

K
∑

i=1

h 2
i (2).

(4.40)

Using (4.25), we can rewrite this as

lim
K→∞

1

K

K
∑

i=1

x 2
i (2) = 2px (∆x )2+ lim

K→∞

2

K

K
∑

i=1

xi (1)hi (2)

= 2px (∆x )2+0,

(4.41)

by equation (4.26).

We now consider the inductive step, assuming that, for N > 2,

lim
K→∞

1

K

K
∑

i=1

x 2
i (N ) =N px (∆x )2, (4.42)

holds for N . We now show that it also holds for N +1:

lim
K→∞

1

K

K
∑

i=1

x 2
i (N +1) = lim

K→∞

1

K

K
∑

i=1

(xi (N ) +hi (N +1))2

= lim
K→∞

1

K

K
∑

i=1

�

x 2
i (N ) +2xi (N )hi (N +1) +h 2

i (N +1)
�

= lim
K→∞

1

K

K
∑

i=1

x 2
i (N ) + lim

K→∞

2

K

K
∑

i=1

xi (N )hi (N +1)

+ lim
K→∞

1

K

K
∑

i=1

h 2
i (N +1).

(4.43)

Using the inductive hypothesis in equation (4.42) and equation (4.25), we obtain:

lim
K→∞

1

K

K
∑

i=1

x 2
i (N +1) =N px (∆x )2+ lim

K→∞

2

K

K
∑

i=1

xi (N )hi (N +1) +px (∆x )2

= (N +1)px (∆x )2+ lim
K→∞

2

K

K
∑

i=1

xi (N )hi (N +1).

(4.44)
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Using (4.26),the last term above is zero, so that:

lim
K→∞

1

K

K
∑

i=1

x 2
i (N +1) = (N +1)px (∆x )2. (4.45)

Thus

lim
K→∞

1

K

K
∑

i=1

x 2
i (N +1) =N px (∆x )2, for all N ≥ 1. (4.46)

4.2.2.3.3 Summary of limits in equations (4.26) and (4.27)

In summary,

lim
K→∞

2

K

K
∑

i=1

xi (N )hx i (M ) = 0 for M >N , (4.47)

lim
K→∞

1

K

K
∑

i=1

x 2
i (N +1) =N px (∆x )2. (4.48)

Both (4.47) and (4.48) also hold in the y direction due to similar reasoning.

4.2.2.4 Evaluating the mean squared displacement

We now want to use the properties from Sections 4.2.2.2 and 4.2.2.3 to evaluate the mean

squared displacement of K random walkers, 〈r 2
K (N )〉, in order to show that the mean

squared displacement is linear in time. Recall equation (4.7):

〈r 2
K (N )〉=

1

K

K
∑

i=1

x 2
i (N ) + y 2

i (N ), (4.49)

Substituting our results in (4.48) into (4.49), the mean squared displacement becomes

〈r 2
K (N )〉= lim

K→∞

1

K

K
∑

i=1

x 2
i (N ) + y 2

i (N )

=N px (∆x )2+N py (∆y )2

=N
�

px (∆x )2+py (∆y )2
�

.

(4.50)
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Since in the equally spaced lattice model,∆x =∆y , we can simplify (4.50) as follows:

〈r 2
K (N )〉= lim

K→∞

1

K

K
∑

i=1

x 2
i (N ) + y 2

i (N )

=N
�

px (∆x )2+py (∆y )2
�

=N
�

px (∆x )2+py (∆x )2
�

=N (px +py )(∆x )2.

(4.51)

In (4.51), px and py are the probabilities of making a transition in the horizontal and vertical

directions, respectively. Hence, the mean squared displacement, 〈r 2
K (N )〉, grows linearly

in time; i.e. it increases in linear proportion to the current number of timesteps N . In the

surrogate lattice model, we denote q as the probability of staying in the current subdomain,

and thus 1= q +px +py . We can rewrite equation (4.51) as

〈r 2
K (N )〉=N (1−q )(∆x )2 (4.52)

In this section, we’ve shown that mean squared displacement grows linearly in time. We

will come back to these results after deriving the diffusion equation using a Taylor Series

expansion in the next section.

4.2.3 Deriving the diffusion equation for the equally spaced obstacles

model

In addition to approximating the diffusivity using the mean squared displacement, we also

want to derive an equation for the theoretical diffusivity in the lattice model. We aim to

compare the theoretical diffusivity (discussed in this section) to the estimated diffusivities,

obtained using the mean squared displacement from our simulations of the surrogate

model. Among the models considered, the equally spaced obstacles model is the most

reasonable model to compare diffusivities since the particle has equal probabilities of

moving to subdomains in the horizontal or vertical direction.

We begin by using a Taylor Series expansion to derive the diffusion equation for a

particle which can move in cardinal directions in two dimensions. Let u (x , y , t ) be the

density of particles (assuming a fixed volume and uniform particle mass), and q be the

probability that a particle stays in its current subdomain. We assume all four directions

(north, east, south, west) occur with equal probability, and the probability of a transition to

a neighboring lattice point is (1−q ). The resulting particle density at location (x , y ) after a
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single timestep∆t is given by

u (x , y , t +∆t ) = q u (x , y , t ) +
1

4
(1−q )

�

u (x +h , y , t ) +u (x −h , y , t ) +u (x , y +k , t )

+u (x , y −k , t ) ] , (4.53)

where h horizontal step size and k is the vertical step size. Multiplying both sides of equation

(4.53) by 4, we have,

4u (x , y , t +∆t ) =4q u (x , y , t ) + (1−q ) [ u (x −h , y , t ) +u (x +h , y , t ) +u (x , y +k , t )

+u (x , y −k , t ) ] .
(4.54)

Consider the following Taylor Series expansions:

u (x , y , t +∆t ) = u (x , y , t ) +ut (x , y , t )(∆t ) +
1

2
ut t (x , y , t )(∆t )2+

1

6
ut t t (x , y , t )(∆t )3+ ...(4.55)

u (x +h , y , t ) = u (x , y , t ) +ux (x , y , t )(∆x ) +
1

2
ux x (x , y , t )(∆x )2+

1

6
ux x x (x , y , t )(∆x )3+ ...(4.56)

u (x −h , y , t ) = u (x , y , t )−ux (x , y , t )(∆x ) +
1

2
ux x (x , y , t )(∆x )2−

1

6
ux x x (x , y , t )(∆x )3+ ...(4.57)

u (x , y +k , t ) = u (x , y , t ) +u y (x , y , t )(∆y ) +
1

2
u y y (x , y , t )(∆y )2+

1

6
u y y y (x , y , t )(∆y )3+ ...(4.58)

u (x , y −k , t ) = u (x , y , t )−u y (x , y , t )(∆y ) +
1

2
u y y (x , y , t )(∆y )2−

1

6
u y y y (x , y , t )(∆y )3+ ...(4.59)

Using these Taylor Series expansions in equation (4.54), we have

4 [ u +ut (∆t ) +
1

2
ut t (∆t )2+

1

6
ut t t (∆t )3+O ((∆t )4) ]

=4q u + (1−q ) [ u +ux (∆x ) +
1

2
ux x (∆x )2+

1

6
ux x x (∆x )3+O ((∆x )4)

+u −ux (∆x ) +
1

2
ux x (∆x )2−

1

6
ux x x (∆x )3+O ((∆x )4)

+u +u y (∆y ) +
1

2
u y y (∆y )2+

1

6
u y y y (∆y )3+O ((∆y )4)

+u −u y (∆y ) +
1

2
u y y (∆y )2−

1

6
u y y y (∆y )3+O ((∆y )4) ] .

(4.60)

Simplifying the above equation, we obtain

4 [ ut (∆t ) +
1

2
ut t (∆t )2+

1

6
ut t t (∆t )3+O ((∆t )4) ]

= (1−q )
�

ux x (∆x )2+O ((∆x )4) +u y y (∆y )2+O ((∆y )4)
�

,
(4.61)

67



which can be reduced to

ut (∆t ) +O ((∆t )2) =
(1−q )

4

�

ux x (∆x )2+u y y (∆y )2+O ((∆y )4) +O (∆x )4)
�

. (4.62)

For our model we assume a uniform 2D square lattice , so that∆x =∆y . Using this fact

and dividing by∆t , we can rewrite equation (4.62) as

ut +O (∆t ) =
(1−q )

4

�

ux x

(∆x )2

(∆t )
+u y y

(∆x )2

(∆t )
+O

�

(∆x )4

(∆t )

��

. (4.63)

Finally, we can write the diffusion equation,

ut ≈
(1−q )(∆x )2

4(∆t )

�

ux x +u y y

�

, (4.64)

where the diffusion constant, D , is given by

D =
(1−q )(∆x )2

4(∆t )
. (4.65)

4.2.4 Deriving the diffusion equation for the multisize obstacles model

Due to obstacle arrangements in the multisize obstacles model, the particle has a different

diffusivity in the vertical direction than in the horizontal direction. We follow the same

procedure for deriving the diffusion equation as in section 4.2.3, but this time we denote

(i) q1 is the probability that the particle stays in its current subdomain;

(ii) q2 is the probability that the particle moves to a subdomain in the horizontal direction;

(iii) q3 is the probability that the particle moves to a subdomain in the vertical direction.

Note that q1+q2+q3 = 1. We can then write the relation,

u (x , y , t +∆t ) =q1u (x , y , t ) +
q2

2
u (x +h , y , t ) +

q2

2
u (x −h , y , t ) +

q3

2
u (x , y +k , t )

+
q3

2
u (x , y −k , t ).

(4.66)
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Using the Taylor Series expansions in equations (4.55) - (4.59), we can rewrite the above

equation as

u +ut (∆t ) +
1

2
ut t (∆t )2+

1

6
ut t t (∆t )3+O ((∆t )4)

=q1u +
q2

2

�

u +ux (∆x ) +
1

2
ux x (∆x )2+

1

6
ux x x (∆x )3+O ((∆x )4)

�

+
q2

2

�

u −ux (∆x ) +
1

2
ux x (∆x )2−

1

6
ux x x (∆x )3+O ((∆x )4)

�

+
q3

2

�

u +u y (∆y ) +
1

2
u y y (∆y )2+

1

6
u y y y (∆y )3+O ((∆y )4)

�

+
q3

2

�

u −u y (∆y ) +
1

2
u y y (∆y )2−

1

6
u y y y (∆y )3+O ((∆y )4)

�

.

(4.67)

Simplifying, we have

u +ut (∆t ) +O ((∆t )2)

= q1u +q2u +q3u +
q2

2

�

ux x (∆x )2+O ((∆x )4)
�

+
q3

2

�

u y y (∆y )2+O ((∆y )4)
�

.

(4.68)

Using the fact that q1+q2+q3 = 1, and dividing by∆t , we can rewrite equation (4.68) as,

ut +O ((∆t )) =
q2

2
ux x

(∆x )2

(∆t )
+

q3

2
u y y

(∆y )2

(∆t )
+
O ((∆x )4+ (∆y )4)

(∆t )
. (4.69)

For our model, we assume a uniform 2D square lattice so that∆x =∆y . We simplify to find

the diffusion equation for the multisize obstacles,

ut =
(∆x )2

2(∆t )

�

q2ux x +q3u y y

�

. (4.70)

We can then consider the horizontal diffusivity, DH , to be

DH =
q2(∆x )2

2(∆t )
, (4.71)

and the vertical diffusivity, DV , to be

DV =
q3(∆x )2

2(∆t )
. (4.72)
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4.2.4.1 Consistency between the multisize and equally spaced obstacles models

We should be able to obtain the diffusion equation for the equally spaced obstacles model

(eq. (4.64)) using the resulting diffusion equation for the multisize obstacles model (eq. (5.15))

by setting q2 = q3, since, in the equally spaced obstacles model, there is an equal probability

of moving vertically or horizontally. If we let q2 = q3, we can rewrite equation (5.15) as

ut =
(∆x )2

2(∆t )

�

q2ux x +q2u y y

�

. (4.73)

We can simplify this as

ut =
q2(∆x )2

2(∆t )

�

ux x +u y y

�

. (4.74)

The relation

q1+q2+q3 = 1⇒ q2+q3 = 1−q1. (4.75)

When q2 = q3, we can write

1−q1 = 2q2⇒ q2 =
(1−q1)

2
. (4.76)

Using this result in equation (4.74), we have

ut =
(1−q1)(∆x )2

4(∆t )

�

ux x +u y y

�

, (4.77)

which is the diffusion equation for the equally spaced obstacles model (eq. (4.64)), as

obtained in section 4.2.3.

4.2.5 Relating estimated diffusivity and theoretical diffusivity

We will now use the notation Dsurr and DTS as the diffusion constants for the surrogate model

and theoretical calculation, respectively. Table 4.1 contains a summary of the notation used

in this chapter. Recall from Chapter 3, that the estimate for the diffusion constant from the

surrogate mean squared displacement simulations is

Dsurr =
〈r 2

surr〉
4N∆t

, (4.78)

and that the estimate for the diffusion constant using a Taylor Series expansion (eq. 4.65) is

DTS =
(1−q )(∆x )2

4∆t
. (4.79)
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Table 4.1 Notation for different variables and parameters used in calculating the diffusivity.

Notation Description
Dsurr Diffusivity for surrogate model obtained via simulation results
DTS Diffusivity for surrogate model obtained via Taylor Series expansion
〈r 2

surr〉 Mean squared displacement of surrogate model, obtained via simulation
results

N Number of time steps for surrogate model
q Probability that the particle stays in the current subdomain
px Probability that a particle moves to a subdomain to the east or to the west

(i.e. the particle makes a horizontal transition)
py Probability that a particle moves to a subdomain to the north or to the

south
(i.e. the particle makes a vertical transition)

In (4.79)∆x is the appropriate step-size for the lattice model. We want to relate these two

estimates for diffusivity. Our first step is making an appropriate choice for∆x in equation

(4.79), which is a nontrivial task.

Figure 4.3 Illustration of possible linear distances for a particle to leave the subdomain at when
the particle is at a particular location.

4.2.5.1 Selecting the appropriate∆x for theoretical diffusivity

In order to continue relating Dsurr and DTS, we need to choose an appropriate∆x . In the

continuous model, a particle at any arbitrary location in a subdomain has many different

net distances it could travel to reach the next subdomain. Figure 4.3 illustrates possible

linear distances to neighboring subdomains given a particular particle location. From this

figure, we can see that the particle’s distance to a neighboring subdomain is dependent
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upon where it is located in the current subdomain and over which boundary it will cross.

Our aim in this section will be to determine an approximate average value for∆x .

In the continuous model each subdomain has side length L = 10, and our stepsize in

time is∆t = 0.05. When the particle is at a node representing a particular subdomain in the

continuous model, we can record the particle’s location (for the purposes of the surrogate

model) as the (x , y ) coordinates at the center of that subdomain in the continuous model.

Thus, a natural inclination for the surrogate model stepsize in space is∆x =∆y = L = 10.

However, based on Figure 4.3, it is unclear if∆x = L = 10 is the best choice, and we need to

determine the appropriately sized∆x for estimating the diffusivity DTS.

We use results from earlier in this chapter (sec. 4.2.2.4) to relate the two equations for

the diffusion constant (i.e. eq. (4.78) and (4.79) ). Our diffusivity Dsurr comes from the mean

squared displacement results based on the surrogate model, which we will refer to as 〈r 2
surr〉.

Recall, from equation (4.7) that :

〈r 2
surr〉=

1

K

K
∑

i=1

(x 2
i + y 2

i ), (4.80)

where xi and yi are horizontal and vertical locations, respectively, and K is the number of

realizations. As K →∞, we recall from equation (4.52) that:

〈r 2
surr〉=

1

K

K
∑

i=1

(x 2
i + y 2

i )

=N (1−q )(∆x )2,

(4.81)

where N is the number of timesteps. Solving for N ,

N =
〈r 2

surr〉
(1−q )(∆x )2

. (4.82)

We can substitute N from equation (4.82) into equation (4.78), yielding

Dsurr =
〈r 2

surr〉

4
�

〈r 2
surr〉

(1−q )(∆x )2

�

∆t

=
〈r 2

surr〉
〈r 2

surr〉
·
(1−q )(∆x )2

4∆t

=
〈r 2

surr〉
〈r 2

surr〉
·DTS.

(4.83)

This result shows us that Dsurr =DTS, but we must still choose an appropriate∆x .
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In summary, after choosing an appropriate value of∆x , we expect

Dsurr ≈DTS

≈
(1−q )(∆x )2

4∆t

(4.84)

We will estimate∆x in two ways:

(i) Comparing the ratio of Dsurr to DTS. Since we determine that Dsurr ≈DTS, if we deter-

mine the ratio by which these two values differ using an initial∆x = 10, we can use

that ratio to approximate the effective∆x .

(ii) Using line integrals to find the average distance for an arbitrarily located particle to a

neighboring subdomain.

4.2.6 Comparing the ratio of Dsurr to DTS to estimate∆x

We relate∆x to L via a constant αwhere

∆x =
L

α
. (4.85)

We can then rewrite equation (4.84) as

Dsurr ≈DTS

≈
(1−q )(∆x )2

4∆t

≈
(1−q )( Lα )

2

4∆t

≈
(1−q )L 2

4α2∆t

≈
1

α2

(1−q )L 2

4∆t

≈
1

α2
DTS

�

�

∆x=10
,

(4.86)

where DTS|∆x=10 indicates DTS when∆x = L = 10. Hence, once we determine the ratio,

DTS|∆x=10

Dsurr
≈α2, (4.87)

we can use the estimated α to find the appropriate∆x for the Taylor Series approximation

by equation (4.85).
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4.2.7 A theoretical estimate for∆x

We use a set of boundary integrals to evaluate a particle’s average distance from the next

subdomain in order to help determine the appropriate∆x for the lattice model. We describe

the particle as being located at an arbitrary position (ξ,η) in a subdomain, Ω. We first

evaluate the average distance when there are no obstacles and then consider the case

where there are obstacles. For the no obstacles case, the particle radius does not need to be

considered because (1) the center of the particle determines its subdomain location, and

(2) when there are no obstacles, there is nothing for the particle to collide with. However, in

the case with obstacles, we need to consider the area that will be excluded due to particle-

obstacle collisions.

Figure 4.4 Subdomain Ωwith a particle located at an arbitrary position (ξ,η). Boundaries are
denoted as Γi for i = 1, 2, 3, 4.

4.2.7.1 Average distance between subdomains (no obstacles)

For the no obstacle case, Figure 4.4 shows a subdomain with its boundary edges and

particle location labeled. We introduce the following line integrals, written in terms of the
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particle’s distance to all points along each boundary:

(i) For Γ1 : I1 =

∫ 5

−5

Æ

(s −ξ)2+ (−5−η)2d s ,

(ii) For Γ2 : I2 =

∫ 5

−5

Æ

(−5−ξ)2+ (s −η)2d s ,

(ii) For Γ3 : I3 =

∫ 5

−5

Æ

(s −ξ)2+ (5−η)2d s ,

(ii) For Γ4 : I4 =

∫ 5

−5

Æ

(5−ξ)2+ (s −η)2d s .

(4.88)

Since the length of each boundary edge is L = 10, the total length of the subdomain’s

boundary is 4L = 40. Hence, we can represent the average distance that the particle travels

from (ξ,η) to any neighboring subdomain as

1

40
(I1+ I2+ I3+ I4) . (4.89)

Over the entire subdomain, the average distance from a particle to any neighboring

subdomain (according to equation (4.89) is

davg =
1

100

∫ 5

−5

∫ 5

−5

�

I1+ I2+ I3+ I4

40

�

dξdη. (4.90)

Using Maple, we find an approximate value of davg ≈ 6.5176.

Figure 4.5 Subdomain Ωwith a particle located at an arbitrary position (ξ,η) .
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Figure 4.6 Close up of subdomain Ω to show distances Rpart, Robs, and r . Distance r must be
included in calculation of average distance a particle is from a neighboring subdomain.

4.2.7.2 Average distance between subdomains with obstacles

For the case with equally spaced obstacles, Figure 4.5 shows the domain with boundary

edges and particle location labeled. In our calculations, we need to consider both the

obstacle radius Robs and the particle radius Rpart. This will lead to an excluded distance

r where r = Robs+Rpart (see Fig. 4.6). We make the following observations regarding the

different boundaries:

(i) Γ1 has a y -axis boundary at y =−5, and varies along the x -axis for x ∈ [−5+ r, 5− r ].

(ii) Γ2 has a x -axis boundary at x =−5, and varies along the y -axis for y ∈ [−5+ r, 5− r ].

(iii) Γ3 has a y -axis boundary at y = 5, and varies along the x -axis for x ∈ [−5+ r, 5− r ].

(iv) Γ4 has a x -axis boundary at x = 5, and varies along the y -axis for y ∈ [−5+ r, 5− r ].

We introduce the following line integrals, written in terms of the particle’s distance to

all points along each boundary:

(i) For Γ1 : I1 =

∫ 5−r

−5+r

Æ

(s −ξ)2+ (−5−η)2d s

(ii) For Γ2 : I2 =

∫ 5−r

−5+r

Æ

(−5−ξ)2+ (s −η)2d s

(ii) For Γ3 : I3 =

∫ 5−r

−5+r

Æ

(s −ξ)2+ (5−η)2d s

(ii) For Γ4 : I4 =

∫ 5−r

−5+r

Æ

(5−ξ)2+ (s −η)2d s

(4.91)
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(a)
.

(b)

Figure 4.7 Subdomain regions used in calculating the average distance to a neighboring subdo-
main. (a) General dimensions and location of excluded regions (gray). (b) Region 1 is highlighted
in yellow.

(a)
.

(b)

Figure 4.8 Subdomain regions used in calculating the average distance to a neighboring subdo-
main, where gray regions are the exclusion zone. (a) Region 2 is highlighted in yellow. (b) Region 3
is highlighted in yellow.

For simplicity we did not consider Region 3 (Fig. 4.8) since evaluation of the distance

integrals is more complicated and the particle spends little time in this region. Since the

boundary edge on each side is of length l = 10− 2r , the total length of the subdomain’s

boundary is 4(10−2r ). Hence, we can represent the average distance that the particle travels

from (ξ,η) to any neighboring subdomain as

I ∗(ξ,η) =
(I1+ I2+ I3+ I4)

4(10−2r )
. (4.92)
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To compute an average distance across the entire subdomain, we need to decompose

the subdomain into three different regions, as illustrated in Figures 4.7 and 4.8. Regions are

drawn based on the excluded area, as the bounds on ξ and η depend on where obstacles

are located. We will use line integrals to determine arbitrary distances to the boundary edge

given a particle’s location in both Region 1 and Region 2.

For Region 1, the bounds of both ξ and η are from −5+ r to 5− r , and the total area of

that region is (10−2r )2. We can then describe the average distance from an arbitrary point

in Region 1 as

J1 =
1

(10−2r )2

∫ 5−r

−5+r

∫ 5−r

−5+r

I ∗(ξ,η)dηdξ. (4.93)

For Region 2, we pick one of the 4 subregions to evaluate the distance, as the distance to

boundaries will be the same for all regions due to symmetry of the subdomain. We choose

the subregion located at the bottom of the subdomain, with bounds η ∈ [−5+ r, 5− r ] and

ξ ∈ [−5,−5+ r ]. We can describe the average distance from an arbitrary point in Region 2

as:

J2 =
1

r (10−2r )

∫ 5−r

−5+r

∫ −5+r

−5

I ∗(ξ,η)dηdξ. (4.94)

We then estimate the average distance from a particle to any neighboring subdomain, over

the whole subdomain, using the weighted average:

dapprox =m1 J1+m2 J2, (4.95)

where m1 and m2 are weights determined by the rations of the respective areas in Regions

1 and 2. The total area we are estimating over is a = (10−2r )2+4(10−2r )r , so

m1 =
(10−2r )2

(10−2r )2+4(10−2r )r
, and m2 =

4r (10−2r )
(10−2r )2+4(10−2r )r

. (4.96)

Using Maple, we find values for dapprox based on the different obstacle radius Robs values.

Table 4.2 shows the values of the average distance a particle would have to travel to reach

another subdomain. We note that the range of values for dapprox in Table 4.2 is between

5.58 and 6.51. Based off the subdomains in the continuous model, we would expect the

minimum for distances between subdomains to be L
2 = 5, since that is the distance from

the center of one subdomain to the boundary of a neighboring subdomain, and we would

expect the maximum distance between subdomains to be L
2

p
2 ≈ 7.07. We note that the

computed values for dapprox in Table 4.2 are all between 5 and 7.07.

We will come back to these calculations in Chapter 5 when evaluating results based on
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Table 4.2 Resulting average distance dapprox to a neighboring subdomain based on different val-
ues of the obstacle radius Robs. The value for Robs refers to the no obstacle case.

Obstacle radius Robs 0 0.5 1.0 1.5 2.0 2.5 3.0
r =Robs+Rpart 0 1.5 2.0 2.5 3.0 3.5 4.0
dapprox 6.5176 6.1108 5.9658 5.8257 5.6952 5.5792 5.4822

simulations using both the continuous model and the surrogate (2D) lattice model.
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CHAPTER

5

RESULTS FOR SINGLE PARTICLE

RANDOM WALKS IN A PERIODIC RVE

We now consider simulations based on the continuous and surrogate lattice models, as

described in chapters 3 and 4. Continuous model domains are illustrated again in Figures

5.1 and 5.2. We compare the results for the continuous model simulations for each obstacle

arrangement and then compare with simulation results from their resulting surrogate

lattice model simulations. Throughout our simulations, a sufficient number of timesteps

and realizations were used to reach stationary values (107 timesteps and 2000 realizations

were typical). At first we do not consider the commitment index Mc (section 4.1), since

identifying optimal values of Mc is inherently tied to surrogate model simulations. Thus,

in the initial discussion of the continuous model and its transition probabilities, Mc is

effectively zero (i.e. we count a transition as having occurred at any time that the particle

crosses the boundary between subdomains). Thus, our initial transition probabilities for

a particle staying in its current subdomain are lower than they will be in the best set of

lattice models, due to the particle crossing the boundary between subdomains repeatedly

before more fully committing to a new subdomain. In a later section, the optimal values

for Mc are determined through evaluations of the lattice model. Preliminary transition

probabilities are created from the continuous simulation results for varied values of Mc .
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For each obstacle configuration and radius value, optimal values of Mc is are determined

according to which value gives 〈r 2〉 versus time results that are in closest agreement with the

continuous model. We then compare the resulting surrogate model with its corresponding

continuous model.

(a) (b)

Figure 5.1 Domains for continuous model with numbered subdomains for particle radius Rpart =
1.0 and obstacle radius Robs = 2.0. (a) Equally spaced obstacles model.(b) Four internal obstacles
model.

(a)

Figure 5.2 Domain for continuous model of multisize obstacles with numbered subdomains for
particle radius Rpart = 1.0, and obstacle radii Robs1

= 1.0 and Robs2
= 2.0.
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5.1 Continuous Model Results

We now consider results for the three obstacle configurations: equally spaced obstacles

(sec. 5.1.1), four internal obstacles (sec.5.1.2), and multisize obstacles (sec. 5.1.3), as de-

picted in Figure 5.1 and 5.2.

5.1.1 Equally spaced obstacles

For the continuous model simulations, we first consider the model with equally spaced

obstacles (Fig. 5.1). The following two cases were considered: (1) fixing the particle radius

to Rpart = 1.0 and varying the obstacle radius Robs from 1.0 to 3.0, and (2) fixing the obstacle

radius to Robs = 2.0 and varying the particle radius Rpart from 1.0 to 2.5.

5.1.1.1 Fixed particle radius and varying obstacle radius

Before considering the mean squared displacement, we first verified that there were a

sufficient number of time steps to ensure that the transition probabilities in the continuous

model reached stationary values. These transition probabilities were later averaged over

many realizations to build the surrogate model discussed later on in this chapter.

Figure 5.3 illustrates transition probabilities for transitions from subdomain 6 over

the course of one realization. Transition probabilities were calculated after pooling all

transitions across realizations, but results in this figure are useful for illustrating that 107

timesteps is sufficient for probabilities to approach stationary values. Figure 5.3(a) shows

the domain for the equally spaced obstacles model, with subdomain 6 highlighted in yellow.

Figure 5.3(b) is scaled such that all transition probabilities are plotted, however, since the

probability of staying in the current subdomain (subdomain 6) is much greater than for

other types of transitions, only the probability of staying the current subdomain is visible.

Figure 5.3(c) is scaled to better illustrate the probability that the particle stays in subdomain

6. From this plot we see that the transition probability varied a lot over early timesteps

but that it approaches a stationary value at later timesteps (the actual recorded value at

the end was 0.96398). Figure 5.3(d) is scaled to illustrate cardinal direction transitions,

over a finer and smaller range (e.g. small fluctuations in the probability appear amplified).

From this figure we observe that the four cardinal direction transitions also vary a lot

initially but eventually approach stationary values. These values are all between 0.008

and 0.009, and they were averaged together across all realizations in creating the actual

transition probability for the surrogate model. We also observe that cardinal direction

transitions are much less likely than staying in the current subdomain, so these transition
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(a) (b)

(c) (d)

Figure 5.3 Equally spaced obstacles model. Transitions from subdomain 6 are shown to illustrate
convergence of transition probabilities. (a) Simulation domain with subdomain 6 highlighted in
yellow. Red boundary lines indicate subdomains in the original domain, and grey boundary lines
indicated subdomains in the extended domain. Blue circles represent obstacles. (b) Plot of all
transition probabilities. At this scale, only the probability of staying int he current subdomain is
visible. (c) Plot of transition probability for staying in subdomain 6. (d) Plot of transition proba-
bilities for transitions from subdomain 6 to subdomains in cardinal directions (i.e. transitions to
subdomains 3, 4, 5, 9).
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probabilities take a greater number of timesteps to reach stationary values. The remaining

transition probabilities remain at zero throughout the timecourse (appearing as a solid light

blue line in the graph). These results also verify the consistency of our continuous model,

i.e. obstacles are inhibiting particle movement and the particle does not make diagonal

transitions.

An example of transition probabilities after one realization is shown in Table 5.1. In this

example, the particle radius Rpart = 1.0, and the obstacle radius Robs = 1.0. The rows indicate

the subdomain a particle came from, and the columns indicate the subdomain a particle

went to during the transition to a new subdomain. Consider three distinct groupings of

probabilities by type:

(i) Staying in the current subdomain. Along the main diagonal are the transition proba-

bilities for a particle staying in its current subdomain.These probabilities of staying

are approximately 0.96 or 0.97 (close to one), indicating that a particle is much more

likely to stay in a given subdomain than to travel to another subdomain, within a

given time step.

(ii) Moving to a neighboring subdomain in a cardinal direction. Transition probabilities

for cardinal direction transitions are the next most likely at approximately 0.008 or

0.009. For example, considering transition from subdomain 6, the corresponding

cardinal-direction subdomains are subdomains 3, 4, 5, and 9.

(iii) Transitions that should not occur (diagonal transitions). Diagonal transitions should

not occur due to obstacles blocking such transitions. Therefore, these corresponding

transition probabilities should be zero. For example, considering transitions from

subdomain 6, the corresponding diagonal transitions are subdomains 1, 2, 7, and 8,

and these values were all recorded as zero.
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Table 5.1 Equally spaced obstacles model. Transition probabilities by subdomain for particle radius Rpart = 1.0 and obstacle
radius Robs = 1.0 for one realization (Mc = 0).

Subdomain after transition
1 2 3 4 5 6 7 8 9

Subdomain
before
transition

1 0.96544 0.00884 0.00863 0.00870 0.00000 0.00000 0.00874 0.00000 0.00000
2 0.00841 0.96490 0.00804 0.00000 0.00872 0.00000 0.00000 0.00852 0.00000
3 0.00869 0.00855 0.96554 0.00000 0.00000 0.00902 0.00000 0.00000 0.00944
4 0.00912 0.00000 0.00000 0.96560 0.00956 0.00916 0.00918 0.00000 0.00000
5 0.00000 0.00899 0.00000 0.00891 0.96453 0.00855 0.00000 0.00884 0.00000
6 0.00000 0.00000 0.00858 0.00842 0.00838 0.96398 0.00000 0.00000 0.00905
7 0.00834 0.00000 0.00000 0.00837 0.00000 0.00000 0.96425 0.00872 0.00862
8 0.00000 0.00872 0.00000 0.00000 0.00881 0.00000 0.00894 0.96474 0.00914
9 0.00000 0.00000 0.00920 0.00000 0.00000 0.00929 0.00889 0.00918 0.96375
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After establishing stationary values for the transition probabilities when using 107

timesteps, we performed many realizations of the continuous simulation. We determined

a sufficient number of realizations for the slope of 〈r 2〉 versus time to reach stationary

values. Due to MATLAB memory constraints, the continuous model was run on a high

performance cluster (HPC) in batches of 50 realizations. We ran enough realizations to

yield stationary values in quantities of interest, such as the slope of the linear relationship

between mean squared displacement, 〈r 2〉 and time (Our simulations used a timestep

∆t = 0.05, so time= timestep×0.05). These results were then pooled and averaged across

all subdomains by transition type. Figure 5.4 shows the effects of increasing the number of

realizations on the plot of mean squared displacement versus the time (with Rpart = 1.0 and

Robs = 1.0). Based on these results, we determined that 2000 realizations was sufficient to:

(1) consider the relationship between mean squared displacement and time to be linear,

and (2) for the slope to have reached a stationary value.

(a)
.

(b)

Figure 5.4 Equally spaced obstacles model. Effect of increasing number of realizations on mean
squared displacement for Rpart = 1.0 and Robs = 1.0. (a) Mean squared displacement averages
for increasing number of realizations, (b) Linear fit of mean squared displacement averages for
increasing number of realizations.

In the same manner, we determined that 2000 realizations was sufficient to reach

stationary values for all obstacle radius values. We analyze the slope of 〈r 2〉 versus time for

(1) an increasing number of realizations and (2) an increasing obstacle radius size. Figure 5.5

and Table 5.2 show the resulting slope values. We observe that, as the number of realizations

approaches 2000, the slope value approaches a stationary value. We also observe that the
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slope strictly decreases as the obstacle radius increases, which verifies that larger obstacles

can inhibit outward drift of the particle.

Figure 5.5 illustrates how the slope of mean squared displacement changes as the

obstacle radius is varied. The slope appears to reach a stationary value for each obstacle

radius by 2000 realizations, at which point the slope is monotonically decreasing as the

obstacle radius increases. This decrease is expected, as more of the domain is obstructed by

obstacles, hindering the particle movement, and the particle is more likely to be occasionally

“trapped” between a few obstacles.

Figure 5.5 Equally spaced obstacles model. Slope of 〈r 2〉 vs. time for increasing values of obstacle
radius Robs, where Rpart = 1.0.

After determining a sufficient number of realizations, we returned to using our results

to determine the transition probabilities needed to build the lattice model. For the equally

spaced obstacles model, we have two distinct probabilities: (1) the probability that a par-

ticle remains in its current subdomain, and (2) the probability that a particle moves to

another subdomain in a cardinal direction. Aggregating by transition type was done after

all realizations were completed. Figure 5.6 illustrates the different transition types. Our

resulting probabilities are summarized in Table 5.3. As the obstacle radius increases, the

probability of staying in the current subdomain increases, due to a greater obstacle size
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Table 5.2 Equally spaced obstacles model. Slope of mean squared displacement versus time for
increasing number of realizations when particle radius Rpart = 1.0 and for varied obstacle radius
Robs.

Number of realizations
600 1000 1500 1800 2000

Obstacle radius

0.5 2.9272 2.9758 3.0065 2.9920 2.9915
1.0 2.8653 2.9256 2.9717 2.9331 2.9044
1.5 2.9169 2.7864 2.7737 2.7537 2.7507
2.0 2.3515 2.3970 2.4085 2.4549 2.4731
2.5 2.4210 2.4261 2.3465 2.3455 2.3376
3.0 2.0733 2.0964 2.0735 2.0836 2.0765

being more likely to inhibit a particle’s movement. In section 5.2.1 we will revisit transition

probabilities with the appropriate commitment index Mc when discussing the surrogate

model results.

Figure 5.6 Equally spaced obstacles model. Diagram showing transition types based on subdo-
main type. Distinct transitions are indicated with green arrows, and transition types are num-
bered in the surrogate model representation. In the continuous model, red lines indicate bound-
aries between subdomains in the original RVE, dashed lines indicate subdomain boundaries in
the extended domain, solid blue circles indicate obstacles in the original RVE, and solid gray cir-
cles indicate obstacles in the extended domain. In the surrogate model, red circles correspond to
subdomains in the original RVE, gray dashed circles correspond to subdomains in the extended
domain, and blue lines indicate possible transitions.

The rows in Table 5.3 correspond with the transition probability vector ~p E (section
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Table 5.3 Equally spaced obstacles model. Transition probabilities by type for particle radius
Rpart = 1.0 and varying obstacle radius Robs for after 2000 realizations (for Mc = 0).

Probability by transition type
Obstacle radius 1 2

0.5 0.96149 9.6233×10−3

1.0 0.96503 8.7426×10−3

1.5 0.96834 7.9142×10−3

2.0 0.97166 7.0840×10−3

2.5 0.97527 6.1814×10−3

3.0 0.97971 5.0726×10−3

3.3.1.1) . For example, for obstacle radius Robs = 0.5,

~p E = [0.96149, 0.0096233]. (5.1)

Note that for the equally spaced obstacles case, there are four possible subdomains

corresponding with a cardinal direction transition, and each has the transition probability

~p E (2) (calculated to be ~p E (2)≈ 0.0096 when Robs = 1.0), so, when confirming that all possible

transition probabilities add to one, we verify

p E (1) +4p E (2) = 1. (5.2)

Continuing with the Robs = 1.0 case, we can account for the slight difference from 1 due to

rounding error, and these sums are within 0.02% of 1.00 for all cases. Note that in the actual

surrogate model, resulting transition probabilities are taken directly from the continuous

model results in MATLAB, so less rounding error is involved.

5.1.1.2 Fixed obstacle radius and varying particle radius

After determining the relationship between obstacle radius and slope of the resulting mean

squared displacement, we investigated how changing the particle radius affects this result.

We fixed the obstacle radius at Robs = 2.0 and varied the particle radius Rpart from 0.5 to

2.5. Increasing the particle radius beyond Rpart = 2.5 caused the gap between obstacles to

be too small for the particle to travel in between the obstacles, and the particle is trapped

in its initial subdomain. Figure 5.7 shows the relationship between increasing particle

radius and the slope of the mean squared displacement versus time. These slope values are
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summarized in Table 5.4

Figure 5.7 Equally spaced obstacles model. Slope of 〈r 2〉 vs. time for increasing values of particle
radius Rpart, where Robs = 2.0.

Table 5.4 Equally spaced obstacles model. Slope of mean squared displacement versus time for
increasing number of realizations when obstacle radius Robs = 2.0 and for varied particle Rpart.

Number of realizations
- 600 1000 1500 1800 2000

Particle radius

0.5 2.8865 2.8568 2.7523 2.7111 2.6703
1.0 2.3515 2.3970 2.4085 2.4549 2.4731
1.5 2.5177 2.4432 2.3366 2.3101 2.2825
2.0 2.0615 2.0533 2.1070 2.1095 2.1031
2.5 1.7061 1.7337 1.7544 1.7569 1.7420

In Figure 5.8 we compare the results from varying the obstacle radius (with Rpart = 1.0)

and varying the obstacle radius (with Robs = 2.0). We observe that the model has similar

sensitivity to varied particle radius as to varied obstacle radius. For the sake of brevity, in
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the remaining continuous models (four internal obstacles, multisize obstacles), we will

focus on varying the obstacle radius size for a fixed particle radius. We will also focus on

varying obstacle radius value for the surrogate models.

Figure 5.8 Equally spaced obstacles model. Comparing slope of 〈r 2〉 vs. time for varied particle
radius value and varied obstacle radius values.

5.1.2 Model for four internal obstacles

5.1.2.1 Fixed particle radius and varying obstacle radius

We next considered the model with four internal obstacles (Fig. 5.9(a)). We only considered

the case of fixed particle radius Rpart = 1.0 and varying obstacle radius Robs between 1.0

to 3.0. We again first verified that a sufficient number of time steps were used so that the

transition probabilities in the continuous model reached stationary values. These transition

probabilities were later averaged over all realizations to build the surrogate model discussed

later in on this chapter.

To explain the convergence of transition probabilities, consider transitions from subdo-

main 6 (a one-wall subdomain), as illustrated in Figures 5.9(a) - (d). Figure 5.9(a) illustrates

the continuous domain, with subdomain 6 highlighted. Figure 5.9(b) is best for visualizing
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(a) (b)

(c) (d)

Figure 5.9 Four internal obstacles model. Transitions from subdomain 6 are shown to illustrate
convergence of transition probabilities. (a) Simulation domain with subdomain 6 highlighted
in yellow. Red boundary lines indicate subdomains in the original domain, and grey boundary
lines indicated subdomains in the extended domain. Blue circles represent obstacles. (b) Plot of
probability for staying in subdomain 6. (c) Plot of transition probabilities for cardinal direction
transitions (i.e. transitions to subdomains 3, 4, 5, and 9). (d) Plot of transition probabilities for
transitions from subdomain 6 to subdomains in diagonal directions (i.e. transitions to subdo-
mains 1, 2, 7, and 8, where 2 and 8 are blocked by obstacles and remain at zero).
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the probability of staying in the current subdomain. This figure is summarized below:

(i) The probability of staying in subdomain 6 appears to reach a stationary value by

1×107 timesteps.

(ii) At this scale on the y -axis, the eight remaining transition probabilities appear near

zero. Hence, we need to consider a finer scale.

The remaining eight transition probabilities are much smaller in magnitude, and are

visualized in Figure 5.9(c), which is summarized below:

(i) The transition from subdomain 6 to subdomain 4 corresponds with a transition in

the horizontal direction, and is not hindered by any obstacles; thus, this is the next

greatest magnitude of transition probability.

(ii) The transitions from subdomain 6 to subdomains 3 and 9 correspond to vertical

transitions, with only one obstacle along the boundary between that subdomain

and subdomain 6. Thus, these are the next 2 greatest probabilities. As mentioned in

Chapter 3, transition probabilities of the same type are averaged; e.g. for transitions

from subdomain 6 to a vertical-direction subdomain (e.g. subdomains 3 and 9).

(iii) Finally, the transition from subdomain 6 to subdomain 5 is a transition in the hori-

zontal direction that is hindered by two obstacles, making this transition have the

next greatest probability.

In Figure 5.9(c) the magnitude on the y -axis is small, and these transition probabilities are

at or near stationary values.

Finally, Figure 5.9(d) illustrates the remaining transition probabilities and is summarized

below:

(i) In this instance, transitions to subdomains 1 and 7 correspond with diagonal transi-

tions. These transition probabilities are very small due to a particle having a much

higher likelihood of a transition across the wider subdomain boundary for cardinal

directions than at the corner.

(ii) The transition probabilities from subdomain 6 to subdomains 8 and 2 are both zero,

which is expected as these transitions correspond to transitions in the diagonal direc-

tion that are blocked by obstacles. This provides a good consistency check that the

obstacle collision simulations are correctly implemented.
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In Figure 5.9(d), the magnitude on the y-axis is now very small, and these transition proba-

bilities are also at or near stationary values.

Based on these results, we determined that 107 timesteps was sufficient for transition

probabilities to reach stationary values. Similar results regarding magnitude and conver-

gence of transition probabilities by transition type occurred for the other subdomains.

(a) (b)

Figure 5.10 Four obstacle model for Rpart = 1.0 and Robs = 1.0. Effect of increasing number of
realizations on mean squared displacement. (a) Mean squared displacement averages for increas-
ing number of realizations, (b) Linear fit of mean squared displacement averages for increasing
number of realizations.

As in the equally spaced obstacles case, we ran the continuous model on a high per-

formance cluster (HPC) in batches of 50 realizations. We ran enough realizations to yield

stationary values in quantities of interest. These results were then pooled and averaged

by subdomain type. Figure 5.10 shows how increasing the number of realizations affects

the plot of mean squared displacement versus time, for Rpart = 1.0 and Robs = 1.0. Based

on these results, we determine that 2000 realizations was sufficient: (1) to consider the

relationship between mean squared displacement and time to be linear and (2) for the

slope to have reached a stationary value.

In the same manner, we determined that 2000 realizations was sufficient for stationarity

for all obstacle radius values. We analyzed the slope of 〈r 2〉 versus time for (1) an increasing

number of realizations and (2) an increasing obstacle radius size. Figure 5.11 and Table 5.5

show the resulting slope values. We observe that, as the number of realizations approaches

2000, the slope value approaches a stationary value. We also observe that the slope mostly
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Figure 5.11 Four internal obstacles model. Slope of 〈r 2〉 vs. time for increasing values of obstacle
radius Robs, where Rpart = 1.0.

Table 5.5 Four internal obstacles model. Slope of mean squared displacement versus time for
increasing number of realizations when particle radius Rpart = 1.0 and for varied obstacle radius
Robs.

Number of realizations
600 1000 1500 1800 2000

Obstacle radius

0.5 3.1524 3.1519 3.1350 3.1498 3.1170
1.0 3.1371 3.0308 3.1063 3.0633 3.0459
1.5 2.9055 2.8895 2.8775 2.8767 2.8631
2.0 2.8922 2.8870 2.8793 2.9043 2.8914
2.5 2.3267 2.4173 2.4915 2.5472 2.5876
3.0 2.5768 2.5233 2.5154 2.5678 2.5700
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decreases as the obstacle radius increases, meaning the particle does not travel as far when

larger obstacles are involved. The value of the slope does increase between Robs = 1.5 and

Robs = 2.0 from 0.1432 to 0.1446.

Figure 5.12 Four internal obstacles model. Diagram showing transition types based on subdo-
main type. Distinct transitions are indicated with green arrows, and transition types are num-
bered in the surrogate model representation. In the continuous model, red lines indicate bound-
aries between subdomains in the original RVE, dashed lines indicate subdomain boundaries in
the extended domain, solid blue circles indicate obstacles in the original RVE, and solid gray cir-
cles indicate obstacles in the extended domain. In the surrogate model, red circles correspond to
subdomains in the original RVE, gray dashed circles correspond to subdomains in the extended
domain, and blue lines indicate possible transitions.

After determining a sufficient number of realizations, we returned to using our results

to build the transition probabilities to be used in the surrogate lattice model. For the

four internal obstacles model, we have twelve distinct probabilities (as detailed in section

3.3.2.1), with two probabilities for transitions from center the subdomain, five probabilities

for transitions from onewall subdomains, and five probabilities for transitions from corner

subdomains. Aggregating by transition type was carried out after all realizations were

completed. Transition types are labeled by subdomain type in Figure 5.12. Our resulting

probabilities (when Mc = 0) are summarized in Tables 5.6 - 5.8. The rows in these tables
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Table 5.6 Four internal obstacles model. Transition probabilities for center subdomain (C) by
transition type for particle radius Rpart = 1.0 and varying obstacle radius Robs for after 2000 realiza-
tions (for Mc = 0).

Probability by transition type
Obstacle radius 1 2

0.5 0.96160 9.5959×10−3

1.0 0.96492 8.7682×10−3

1.5 0.96826 7.9345×10−3

2.0 0.97167 7.0811×10−3

2.5 0.97520 6.1998×10−3

3.0 0.97971 5.0736×10−3

Table 5.7 Four internal obstacles model. Transition probabilities for onewall subdomain (I) by
transition type for particle radius Rpart = 1.0 and varying obstacle radius Robs for after 2000 realiza-
tions (for Mc = 0).

Probability by transition type
Obstacle radius 1 2 3 4 5

0.5 0.95538 1.1107×10−2 1.3266×10−4 1.2929×10−2 9.2035×10−3

1.0 0.95671 1.0741×10−2 1.3599×10−4 1.3365×10−2 8.1691×10−3

1.5 0.95790 1.0446×10−2 1.4010×10−4 1.3862×10−2 7.0601×10−3

2.0 0.95877 1.0249×10−2 1.4911×10−4 1.4554×10−2 5.8756×10−3

2.5 0.95930 1.0093×10−2 1.5779×10−4 1.5536×10−2 4.6658×10−3

3.0 0.95941 1.0060×10−2 1.7029×10−4 1.6809×10−2 3.3223×10−3

Table 5.8 Four internal obstacles model. Transition probabilities for corner subdomain (L) by
transition type for particle radius Rpart = 1.0 and varying obstacle radius Robs for after 2000 realiza-
tions (for Mc = 0).

Probability by transition type
Obstacle radius 1 2 3 4 5

0.5 0.95236 1.0912×10−2 1.3042×10−4 1.2712×10−2 1.2923×10−4

1.0 0.95314 1.0390×10−2 1.3129×10−4 1.2844×10−2 1.3243×10−4

1.5 0.95352 9.8880×10−3 1.3399×10−4 1.3149×10−2 1.3379×10−4

2.0 0.95382 9.4388×10−3 1.3689×10−4 1.3448×10−2 1.3630×10−4

2.5 0.95400 8.9760×10−3 1.4082×10−4 1.3811×10−2 1.4138×10−4

3.0 0.95379 8.5664×10−3 1.4594×10−4 1.4322×10−2 1.4506×10−4

97



correspond to values of the transition probability vector ~p F
i (section 3.3.2.1 ), for i =C , I , L

(center, onewall, corner), with Table 5.6 corresponding to ~p F
C , Table 5.7 corresponding

to ~p F
I , Table 5.8 corresponding to ~p F

L . For example, the transition probability vector for

transitions from the center subdomain, when Robs = 1.0 is

~p F
C = [0.9659, 0.0088]. (5.3)

Note that for the four internal obstacles case, the number of possible transitions de-

pends on the subdomain type, with some transition types corresponding to movements to

multiple other subdomains. This means that when confirming that all possible transition

probabilities add to one, we verify

~p F
C (1) +4 ~p F

C (2) = 1, (5.4)

~p F
I (1) +2 ~p F

I (2) +2 ~p F
I (3) + ~p

F
I (4) + ~p

F
I (5) = 1, (5.5)

~p F
L (1) +2 ~p F

L (2) +2 ~p F
L (3) +2 ~p F

L (4) + ~p
F

L (5) = 1, (5.6)

for the center (C ), onewall (I ) , and corner (L) subdomains, respectively.

From these tables, we observe that the particle is most likely to remain in its current

subdomain for all subdomain types and obstacle radius values, with probabilities ranging

from 0.95 to 0.98. Our next most likely type of transition involves transitions in a cardinal

direction, with transition probabilities near 0.01. Finally, the rarest type of transition are

diagonal transitions, which have transition probabilities near 0.0001 or 0.0002.

5.1.3 Multisize obstacles

Figure 5.13 Multisize obstacles model. Diagram showing the continuous model RVE.
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As described in Section 3.2.3, for the multisize obstacle model, we use a 2x 2 RVE instead

of the 3x 3 RVE used in the four internal obstacles and equally spaced obstacles models.

Figure 5.13 illustrates the domain for the multisize obstacles model. We fixed the particle

radius Rpart = 1.0 and fixed the first ”column" of obstacles radii to Robs1
= 1.0. For the

remaining column of obstacles, the obstacle radius Robs2
was varied from 0.5 to 3.0. Since

the results were more sensitive to varying the obstacle radius in the four internal obstacles

and the equally spaced obstacles models, we fixed the particle radius Rpart = 1.0 and only

varied the obstacle radius Robs2
for the multisize obstacles case.

We verified the number of timesteps needed to reach stationarity for the multisize

obstacles model, and we concluded that 107 timesteps was again sufficient. The adequate

number of realizations for the multisize case was also determined in the same manner as in

the other cases, and found to be 2,000. For brevity, we do not show an example of transition

probabilities reaching stationary values over one realization. We again observed that the

probability of staying was significantly larger than the other transition probabilities. Figure

5.14 shows the effect of increasing number of realizations on the plot of mean squared

displacement versus time.

(a) (b)

Figure 5.14 Multisize obstacle model with Rpart = 1.0, Robs1
= 1.0, and Robs2

= 1.0. Effect of in-
creasing number of realizations on mean squared displacement. (a) Mean squared displacement
averages for increasing number of realizations, (b) Linear fit of mean squared displacement aver-
ages for increasing number of realizations.

Figure 5.15 and Table 5.9 compare how the slope of mean squared displacement versus

time changes as the second column of obstacle radii (Robs2
) increases, and as the number
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of realizations increases. The slope appears to reach a stationary value for each obstacle

radius by 2000 realizations. Considering just the 2000 realizations case, the slope is mostly

decreasing, except for at Robs2
= 1.5, where there is a very slight increase.

Figure 5.15 Multisize obstacles model. Slope of 〈r 2〉 versus time for increasing values of obstacle
radius Robs2

, where Rpart = 1.0, Robs1
= 1.0.

Table 5.9 Multisize obstacles model. Slope of mean squared displacement versus time for increas-
ing number of realizations when particle radius Rpart = 1.0, Robs1

= 1.0, and for varied obstacle
radius Robs2

.

Number of realizations
600 1000 1500 1800 2000

Obstacle radius

0.5 0.1557 0.1543 0.1512 0.1498 0.1494
1.0 0.1317 0.1329 0.1356 0.1368 0.1368
1.5 0.1247 0.1277 0.1340 0.1355 0.1369
2.0 0.1198 0.1246 0.1301 0.1315 0.1331
2.5 0.1255 0.1243 0.1248 0.1257 0.1250
3.0 0.1140 0.1151 0.1134 0.1135 0.1136
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After determining a sufficient number of realizations, we returned to using our results

to determine the transition probabilities needed to build the surrogate lattice model. For

the multisize obstacles model, we have four distinct probabilities (as detailed in 3.3.3.1).

Aggregating by transition type was done after all realizations were completed. Transition

types are shown in Figure 5.16. Our resulting probabilities (when the commitment index

Mc = 0) are summarized in Table 5.10.

Figure 5.16 Multisize obstacles model. Diagram showing transition types based on subdomain
type. Distinct transitions are indicated with green arrows, and transition types are numbered
in the surrogate model representation. For continuous models, red lines indicate boundaries
between subdomains in the original RVE, dashed lines indicate subdomain boundaries in the ex-
tended domain, solid blue circles indicate obstacles in the original RVE, solid gray circles indicate
obstacles in the extended domain. For surrogate models, red circles correspond to subdomains
in the original RVE, gray dashed circles correspond to subdomains in the extended domain, and
blue lines indicate possible transitions.

For the multisize obstacles case, transition type 2 has two possible subdomains to which

the particle could transition. In this case, we need to verify that

~p M (1) +2 ~p M (2) + ~p M (3) + ~p M (4) = 1. (5.7)

We observe that the particle is most likely to remain in its current subdomain for all

subdomain types and obstacle radius values, with probabilities ranging from 0.74 to 0.92.

We start seeing a difference in transition probabilities by transition type once Robs2
> 1.0,
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Table 5.10 Multisize obstacles model. Transition probabilities for center subdomain by transi-
tion type for particle radius Rpart = 1.0, Robs1

= 1.0 and varying obstacle radius Robs2
after 2000

realizations (for Mc = 0).

Probability by transition type
Obstacle radius Robs2

1 2 3 4
0.5 0.96324 9.1974×10−3 9.9067×10−3 8.4528×10−3

1.0 0.96503 8.7331×10−3 8.7534×10−3 8.7496×10−3

1.5 0.96661 8.3340×10−3 7.5820×10−3 9.1406×10−3

2.0 0.96803 7.9905×10−3 6.3746×10−3 9.6181×10−3

2.5 0.96926 7.6896×10−3 5.0753×10−3 1.0288×10−3

3.0 0.97029 7.4213×10−3 3.6445×10−3 1.1226×10−3

and then transitions of type 3 have a greater magnitude.

5.2 Lattice Model Results

The surrogate lattice model is built using transition probabilities determined based on sim-

ulations using the continuous model. We initially ran the surrogate model using transition

probabilities obtained when the commitment index Mc = 0 (introduced in sec. 4.1), but

this lead to disagreement between the continuous and surrogate models. Consequently,

we then tested increasing values for Mc until the surrogate model was in better agreement

with the continuous models. Once the appropriate value for Mc was selected, we ran 2000

realizations for the surrogate models and then compared our results to those obtained

using the continuous models. Since our continuous results showed that our models were

more sensitive to varying obstacle radius than to varying particle radius, we only considered

the surrogate models for the case of varying obstacle radius.

5.2.1 Model for equally spaced obstacles

Surrogate model simulations began by identifying the optimal values of Mc for varying

obstacle radius, with the particle radius fixed at Rpart = 1.0. For each obstacle radius Robs we

ran the surrogate model multiple times using probabilities obtained using the continuous

model as the commitment index Mc was varied from 3 to 8. We determined the value

for Mc by comparing the continuous and surrogate plots of mean squared displacement

〈r 2〉 versus time. Figure 5.17 shows several such results for the case where Rpart = 1.0 and

Robs = 2.0. In this instance, we observe that Mc = 5 yields the best results for the surrogate
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Figure 5.17 Equally spaced obstacles. 〈r 2〉 versus time for continuous model and resulting surro-
gate model when commitment index Mc is varied. Results shown for particle radius Rpart = 1.0
and obstacle radius Robs = 1.0.

model.

We consider the resulting slope of 〈r 2〉 versus time to be a quantity of interest. Figure 5.18

shows the resulting average slope over different batches of 50 realizations, and a cumulative

average slope for up to 2000 realizations. These figures demonstrate that these slopes reach

stationary values with an increasing number of realizations, and that Mc = 5 is the best

choice for the commitment index in the case of Rpart = 1.0 and Robs = 2.0.

Figure 5.19 visualizes these results for the best values of Mc for all cases in which the

obstacle radius was varied. Note that the best value for Mc ranges from Mc = 4 (Robs = 3) up

to Mc = 7 (Robs = 0.5). Based on these results, it appears that our slope values for both the

continuous and surrogate cases have reached stationary values. We also observe very good

agreement between the continuous and surrogate models.

In Figure 5.20 we show the resulting slope of 〈r 2〉 versus time for increasing obstacle

radius values, showing results for the continuous model and the surrogate model with the

best Mc value. We summarize these slope values and their percent difference in Table 5.11.

The slope values for the continuous and surrogate model have a correlation coefficient of

R = 0.9863.

After finding the appropriate Mc values, we are able to update the transition probabilities

accordingly. Our resulting Mc values and probabilities are summarized in Table 5.12. As the

obstacle radius increases, the probability of staying in the current subdomain increases,

due to a greater obstacle size being more likely to inhibit a particle’s outward movement.
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(a)
.

(b)

(c)
.

(d)

Figure 5.18 Equally spaced obstacles. Slope of 〈r 2〉 versus time for an increasing number of re-
alizations, along with a cumulative average of the slope value. Shown for particle radius 1.0 and
obstacle radius 2.0. (a) Mc = 3, (b) Mc = 4, (c) Mc = 5, (d) Mc = 6

Table 5.11 Equally spaced obstacles. Slope values for 〈r 2〉 versus time for continuous model and
surrogate model with the best Mc values.

Robs Mc Continuous model slope Surrogate model slope Percent difference
0.5 7 2.9984 2.8770 4.049%
1.0 6 2.9044 2.8468 1.983%
1.5 5 2.7507 2.7506 0.004%
2.0 5 2.4731 2.5094 1.468%
2.5 4 2.3376 2.4310 3.996%
3.0 4 2.0765 2.1016 1.209%
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(a) (b)

(c) (d)

.
(e) (f )

Figure 5.19 Equally spaced obstacles. Slope of 〈r 2〉 vs. time for increasing number of realizations,
along with a cumulative average of the slope value. For Rpart = 1.0. (a) Robs = 0.5, Mc = 7, (b)
Robs = 1.0, Mc = 6, (c) Robs = 1.5, Mc = 5, (d) Robs = 2.0, Mc = 5, (e) Robs = 2.5, Mc = 4, and (f)
Robs = 3.0, Mc = 4.
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Figure 5.20 Equally spaced obstacles. Slope of 〈r 2〉 versus time for continuous model and re-
sulting surrogate model with best Mc values. Results for particle radius Rpart = 1.0 and varying
obstacle radius Robs.
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The rows in Table 5.12 correspond with the transition probability vector ~p E (section 3.3.1.1).

Table 5.12 Equally spaced obstacles model. Transition probabilities by type for optimal Mc for
particle radius Rpart = 1.0 and varying obstacle radius Robs after 2000 realizations.

Probability by transition type
Obstacle radius Mc 1 2

0.5 7 0.99276 1.8099×10−3

1.0 6 0.99291 1.7724×10−3

1.5 5 0.99297 1.7573×10−3

2.0 5 0.99371 1.5734×10−3

2.5 4 0.99384 1.5401×10−3

3.0 4 0.99493 1.2676×10−3

5.2.1.1 Diffusivity for equally spaced obstacles

5.2.1.1.1 Simulated diffusivities

Having obtained results for 〈r 2〉 for both the continuous and surrogate models, we can

estimate the diffusivity D , as discussed in section 4.2.1. We first estimate the simulated

diffusivity via the equation

D =
〈r 2〉
4t
=
〈r 2〉

4N (∆t )
, (5.8)

where N is the number of timesteps. Equation 5.8 allows us to estimate diffusion con-

stants from simulated results for the continuous and surrogate models (Dcont and Dsurr,

respectively), where

Dcont =
〈r 2

cont〉
4N (∆t )

,

Dsurr =
〈r 2

surr〉
4N (∆t )

.
(5.9)

Figure 5.21 shows the resulting estimated diffusivity versus time for each obstacle radius

value. For a final comparison we average the last 100, 000 values (last 10%) of Dcont and Dsurr,

as summarized in Table 5.13. The continuous and surrogate diffusivities have a correlation

coefficient of R = 0.9784.
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(a) (b)

(c) (d)

(e) (f )

Figure 5.21 Equally spaced obstacles model. Estimated diffusivity for continuous and surrogate
models for Rpart = 1.0. (a) Robs = 0.5, Mc = 7, (b) Robs = 1.0, Mc = 6, (c) Robs = 1.5, Mc = 5, (d)
Robs = 2.0, Mc = 5, (e) Robs = 2.5, Mc = 4, (f) Robs = 3.0, Mc = 4.
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Table 5.13 Equally spaced obstacles model. Table showing commitment index Mc , probability of
staying in current subdomain q , and diffusivities obtained via simulation for the continuous and
surrogate models (Dcont and Dsurr, respectively) for each obstacle radius value.

Obstacle radius MC q Dcont Dsurr Percent difference
0.5 7 0.99276 0.7550 0.7100 5.960%
1.0 6 0.99291 0.7314 0.7084 3.145%
1.5 5 0.99297 0.6759 0.6862 1.524%
2.0 5 0.99371 0.6146 0.6165 0.309%
2.5 4 0.99384 0.5885 0.6016 2.226%
3.0 4 0.99493 0.5188 0.5187 0.019%

5.2.1.1.2 Using the ratio of Dsurr to DTS to find∆x

In the previous section we used simulation results to estimate diffusivities for the continu-

ous and surrogate models using the equations:

Dcont =
〈r 2

cont〉
4N (∆t )

,

Dsurr =
〈r 2

surr〉
4N (∆t )

.
(5.10)

In section 4.2 we discussed comparing our simulated surrogate estimate for diffusivity Dsurr

to a theoretical estimate using a Taylor Series expansion. In section 4.2.3 we found the

Taylor Series Expansion estimate for diffusivity of a random walk on a lattice to be:

DTS =
(1−q )(∆x )2

4(∆t )
, (5.11)

where q is the probability of staying in the current subdomain,∆t is the timestep, and∆x

is the effective spatial stepsize, which needs to be estimated. In section 4.2.6 we related

Dsurr and DTS using the relation

Dsurr ≈DTS

≈
1

α2
DTS|∆x = 10,

(5.12)
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where DTS|∆x=10 is calculated according to equation (5.11) using an initial estimate∆x =

L = 10, and α is a constant such that

∆x =
L

α
. (5.13)

Thus, determining the ratio
DTS|∆x=10

Dsurr
≈α2, (5.14)

allows us to estimate the appropriate∆x for DTS using equation (5.13).

Table 5.14 shows the resulting estimates for the diffusion constant for the surrogate

model Dsurr, the diffusion constant using∆x = L = 10 for the Taylor Series result DTS|∆x=10

, α2, and the final resulting DTS using equation (5.13). The estimated α2 has mean 5.0466

and standard deviation 0.0888, and∆x has mean 4.4519 and standard deviation 0.0397.

We calculated the correlation coefficient for the obstacle radius value and α2, and found

R = 0.5532, indicating that the value of α2 is not correlated with the obstacle radius value,

and suggesting that it could be considered constant across obstacle radius values.

Table 5.14 Equally spaced obstacles model. Table showing diffusivity and effective∆x .

Obstacle radius q α2 ∆x Dcont Dsurr DTS DTS|∆x=10

0.5 0.99276 5.1048 4.4260 0.7550 0.7100 0.7100 3.6243
1.0 0.99291 5.0027 4.4709 0.7314 0.7084 0.7084 3.5440
1.5 0.99297 5.1224 4.4184 0.6759 0.6862 0.6862 3.5149
2.0 0.99371 5.0907 4.4321 0.6146 0.6165 0.6165 3.1384
2.5 0.99384 5.0728 4.4399 0.5885 0.6016 0.6016 3.0517
3.0 0.99493 4.8863 4.5239 0.5188 0.5187 0.5187 2.5343

5.2.1.1.3 Integral distance derivation

In section 4.2.7.2, we discussed using integrals to evaluate a particle’s average distance to

neighboring subdomains, dapprox. Table 5.15 shows the integral approximations of distances

for each value of Robs (as shown previously in section 4.2.7.2).

While values for dapprox in Table 5.15 are larger than the values for∆x shown in Table

5.14, the values for dapprox are closer to the values for∆x in Table 5.14 than to L = 10 (the

subdomain length in the continuous model). In Table 5.14 the surrogate model results
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Table 5.15 Equally spaced obstacles model. Resulting average distance dapprox to a neighboring
subdomain based on different values of the obstacle radius Robs. The value for Robs refers to the
no obstacle case.

Obstacle radius Robs 0 0.5 1.0 1.5 2.0 2.5 3.0
r =Robs+Rpart - 1.5 2.0 2.5 3.0 3.5 4.0

dapprox 6.5176 6.1108 5.9658 5.8257 5.6952 5.5792 5.4822

for diffusivity are based on probabilities generated from the continuous model. In initial

simulations, Mc = 0, and the 〈r 2〉 value in the surrogate model was significantly greater than

in the continuous model (e.g. the slope of that curve was greater in magnitude). Increasing

the value of Mc led to a decreasing value for the slope, until we found a value for Mc for

which continuous and surrogate model results were in much better agreement.

The need for Mc was due to the inherent randomness in particles engaging in random

walks (as in the continuous model) – for an arbitrarily large number of realizations, there will

be some realization(s) in which the particle moves back-and-forth repeatedly. This skews

the probability of a transition higher, and leads to a surrogate model in which the particle

travels much further outward than in the continuous model. The integral approximation

dapprox assumes: (1) the particle is equally likely to transition to any neighboring subdomain,

and (2) the particle is equally likely to be located anywhere in a particular subdomain at any

given time. However, in the continuous model, moving back-and-forth near subdomain

boundaries is more common, and the particle tends to be located near subdomain edges

for many timesteps near when a transition occurs. This bias towards boundary re-crossing

is more pronounced when the obstacle radius is smaller or nonexistant (e.g. Robs = 0.5), and

for these values we also see greater discrepancy with the estimate of∆x from Table 5.14 .

5.2.2 Four internal obstacles

As in the equally spaced obstacles case, for the four internal obstacles case we began by

identifying the optimal values of Mc for Rpart = 1.0 and varying obstacle radius. For each

obstacle radius Robs we ran the surrogate model multiple times using probabilities obtained

using the continuous model as the commitment index Mc was varied from 3 to 8. We

determined the value for Mc by comparing the continuous and surrogate plots of mean

squared displacement 〈r 2〉 versus time. We consider the resulting slope of 〈r 2〉 versus time

to be a quantity of interest.

Figure 5.22 visualizes these resulting slopes versus increasing number of realizations
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for the best values was Mc = 4 in all cases. Based on these results, it appears that our slope

values for both the continuous and surrogate cases have reached stationary values.

In Figure 5.23 we show the resulting slope of 〈r 2〉 versus time for increasing obstacle

radius value, showing results for the continuous model and the surrogate model with the

best Mc value. We summarize these slope results and percent differences in Table 5.16.

The correlation coefficient for the continuous slope values and surrogate slope values

was R = 0.9689. Although we had good agreement between the continuous and surrogate

models in the four internal obstacles case, the agreement was not as good as in the equally

spaced obstacles case.

Table 5.16 Four internal obstacles model. Slope values for 〈r 2〉 versus time for continuous model
and surrogate model with the best Mc values.

Robs Mc Continuous model slope Surrogate model slope Percent difference
0.5 4 3.1170 3.0410 2.438%
1.0 4 3.0459 2.9181 4.196%
1.5 4 2.8631 2.7416 4.244%
2.0 4 2.8914 2.6702 7.650%
2.5 4 2.5876 2.5195 2.632%
3.0 4 2.5700 2.3744 7.611%

After finding the appropriate Mc values, we are able to update the transition probabilities

accordingly. Our resulting Mc values and probabilities are summarized in Table 5.17 -5.19.

The probability of staying in a particular subdomain is dependent on the type of subdomain

(center, onewall, corner). The rows in Table 5.17 correspond with the transition probability

vector ~p F
C , the rows in Table 5.18 correspond with the transition probability vector ~p F

I , and

the rows in Table 5.19 correspond with the transition probability vector ~p F
L , as detailed

in section 3.3.2.1. For all subdomain types, the particle is most likely to stay in its current

subdomain, especially when in the center subdomain, which has the most obstacles along

its boundary.

5.2.2.1 Diffusivity for four internal obstacles

For the four internal obstacles case, we only considered the simulated diffusivity. Since

this model has much fewer symmetries, we cannot relate the simulated diffusivities to

a theoretical diffusivity from a Taylor Series expansion. The Taylor Series expansion in
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(a) (b)

(c) (d)

.
(e) (f )

Figure 5.22 Four internal obstacles model. Slope of 〈r 2〉 vs. time over differing number of realiza-
tions, along with a cumulative average of the slope value. For Rpart = 1.0. (a) Robs = 0.5, Mc = 4,
(b) Robs = 1.0, Mc = 4, (c) Robs = 1.5, Mc = 4, (d) Robs = 2.0, Mc = 4, (e) Robs = 2.5, Mc = 4, and (f)
Robs = 3.0, Mc = 4.
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Table 5.17 Four internal obstacles model. Transition probabilities for center subdomain (C) by
transition type for particle radius Rpart = 1.0 and varying obstacle radius Robs for after 2000 realiza-
tions (for Mc = 4).

Probability by transition type
Obstacle radius 1 2

0.5 0.96160 9.5959×10−3

1.0 0.96492 8.7682×10−3

1.5 0.96826 7.9345×10−3

2.0 0.97167 7.0811×10−3

2.5 0.97520 6.1998×10−3

3.0 0.97971 5.0736×10−3

Table 5.18 Four internal obstacles model. Transition probabilities for onewall subdomain (I)
by transition type for particle radius Rpart = 1.0 and varying obstacle radius Robs for after 2000
realizations (for Mc = 4).

Probability by transition type
Obstacle radius 1 2 3 4 5

0.5 0.95538 1.1107×10−2 1.3266×10−4 1.2929×10−2 9.2035×10−3

1.0 0.95671 1.0741×10−2 1.3599×10−4 1.3365×10−2 8.1691×10−3

1.5 0.95790 1.0446×10−2 1.4010×10−4 1.3862×10−2 7.0601×10−3

2.0 0.95877 1.0249×10−2 1.4911×10−4 1.4554×10−2 5.8756×10−3

2.5 0.95930 1.0093×10−2 1.5779×10−4 1.5536×10−2 4.6658×10−3

3.0 0.95941 1.0060×10−2 1.7029×10−4 1.6809×10−2 3.3223×10−3

Table 5.19 Four internal obstacles model. Transition probabilities for corner subdomain (L) by
transition type for particle radius Rpart = 1.0 and varying obstacle radius Robs for after 2000 realiza-
tions (for Mc = 4).

Probability by transition type
Obstacle radius 1 2 3 4 5

0.5 0.95236 1.0912×10−2 1.3042×10−4 1.2712×10−2 1.2923×10−4

1.0 0.95314 1.0390×10−2 1.3129×10−4 1.2844×10−2 1.3243×10−4

1.5 0.95352 9.8880×10−3 1.3399×10−4 1.3149×10−2 1.3379×10−4

2.0 0.95382 9.4388×10−3 1.3689×10−4 1.3448×10−2 1.3630×10−4

2.5 0.95400 8.9760×10−3 1.4082×10−4 1.3811×10−2 1.4138×10−4

3.0 0.95379 8.5664×10−3 1.4594×10−4 1.4322×10−2 1.4506×10−4
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Figure 5.23 Four internal obstacles model. Slope of 〈r 2〉 versus time for continuous model and
resulting surrogate model with best Mc values (Mc = 4 for all cases). Results for particle radius
Rpart = 1.0 and varying obstacle radius Robs.

the equally spaced obstacle case and in the multisize obstacle case relied on heavily on

symmetric RVEs and symmetric transition probabilities. In the equally spaced obstacles

case, we had only cardinal direction transitions, each of which had an equally probability

of occurring, thus, we only had two total transition probabilities (stay versus leave), only

one of which was an independent transition probability. In the multisize obstacles case,

we also only had cardinal direction transitions, and four total probabilities (stay, leave

vertically, leave horizontally in RVE, leave horizontally to extended domain), three of which

were independent transition probabilities. However, in the four internal obstacles case,

we had both cardinal direction transitions and diagonal transitions, and, additionally, the

transition types and probabilities were highly depended on the subdomain type. We had

twelve total transition probabilities, with two for the center subdomain, five for the onewall

subdomain, and five for the corner subdomain. Of the twelve transition probabilities, nine

were independent of the other subdomain-specific transition probabilities. Thus, when

considering a Taylor Series expansion, we were unable to make many of the necessary

assumptions needed to carry out such an investigation.

We estimated the effective diffusivities for the continuous and surrogate models (Dcont

and Dsurr, respectively) using 〈r 2〉 simulation results according to equation (5.9). Figure
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(a) (b)

(c) (d)

(e) (f )

Figure 5.24 Four internal obstacles model. Estimated diffusivity for continuous and surrogate
models for Rpart = 1.0 when Mc = 4. (a) Robs = 0.5, (b) Robs = 1.0, (c) Robs = 1.5, (d) Robs = 2.0, (e)
Robs = 2.5, (f) Robs = 3.0.
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5.24 shows the resulting estimated diffusivity versus time for each obstacle radius value.

For a final comparison we average the last 100,000 values (last 10%) of Dcont and Dsurr, as

summarized in Table 5.20. The correlation coefficient for Dcont and Dsurr was R = 0.9722.

Table 5.20 Four internal obstacles model. Table showing the diffusivities obtained via simulation
for the continuous and surrogate models (Dcont and Dsurr, respectively) for each obstacle radius
value (commitment index Mc = 4 for all cases).

Obstacle radius Dcont Dsurr Percent difference
0.5 0.7815 0.7667 1.894%
1.0 0.7587 0.7322 3.493%
1.5 0.7159 0.6804 4.959%
2.0 0.7245 0.6634 8.433%
2.5 0.6499 0.6165 5.139%
3.0 0.6531 0.5878 9.998%

5.2.3 Multisize obstacles

As in the cases of equally spaced obstacles and four internal obstacles, for the multisize

obstacles model we began by identifying the optimal values of Mc . We fixed Rpart = 1.0

and Robs1
= 1.0 and varied Robs2

. For each obstacle radius Robs we ran the surrogate model

multiple times using probabilities obtained using the continuous model as the commit-

ment index Mc was varied from 3 to 8. We determined the value for Mc by comparing

the continuous and surrogate plots of mean squared displacement 〈r 2〉 versus time, again

considering the resulting slope of 〈r 2〉 versus time to be a quantity of interest.

Figure 5.25 visualizes these resulting slopes versus increasing realizations for the best

values of Mc for all cases in which the obstacle radius was varied. Note that the best value for

Mc ranges from Mc = 5 (Robs = 3) up to Mc = 6 (Robs = 0.5). Based on these results, it appears

that our slope values for both the continuous and surrogate cases have reached stationary

values. We also observe agreement between the continuous and surrogate models.

In Figure 5.26 we show the resulting slope of 〈r 2〉 versus time for increasing obstacle

radius values, showing results for the continuous model and the surrogate model with the

best Mc value. We summarize these slope results and their percent difference in Table 5.21.

The correlation coefficient for continuous and surrogate model results was R = 0.8789.

After finding the appropriate Mc values, we are able to update the transition probabilities

accordingly. Our resulting Mc values and probabilities are summarized in Table 5.22. The
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(a) (b)

(c) (d)

.
(e) (f )

Figure 5.25 Multisize obstacles model. Slope of 〈r 2〉 vs. time over differing number of realizations,
along with a cumulative average of the slope value. For Rpart = 1.0. (a) Robs = 0.5, Mc = 7, (b)
Robs = 1.0, Mc = 6, (c) Robs = 1.5, Mc = 5, (d) Robs = 2.0, Mc = 5, (e) Robs = 2.5, Mc = 4, and (f)
Robs = 3.0, Mc = 4.
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Figure 5.26 Multisize obstacles model. Slope of 〈r 2〉 versus time for continuous model and result-
ing surrogate model with best Mc values. Results for Rpart = 1.0, Robs1

= 1.0, and varying Robs2
.

Table 5.21 Multisize obstacles model. Slope values for 〈r 2〉 versus time for continuous model and
surrogate model with the best Mc values. Rpart = 1.0, Robs1

= 1.0.

Robs2
Mc Continuous model slope Surrogate model slope Percent difference

0.5 6 2.9870 3.0059 0.632%
1.0 6 2.7357 2.8531 4.291%
1.5 6 2.7376 2.8939 5.709%
2.0 6 2.6618 2.4751 7.014%
2.5 5 2.4995 2.5904 3.637%
3.0 5 2.2710 2.3651 4.144%
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rows in Table 5.22 correspond with the transition probability vector ~p M (section 3.3.3.1).

Table 5.22 Multisize obstacles model. Transition probabilities for center subdomain by transition
type for particle radius Rpart = 1.0, Robs1

= 1.0 and varying obstacle radius Robs2
for after 2000

realizations (for Mc = 0).

Probability by transition type
Robs2

Mc 1 2 3 4
0.5 6 0.99253 1.8680×10−3 2.0159×10−3 1.7147×10−3

1.0 6 0.99291 1.7715×10−3 1.7764×10−3 1.7725×10−3

1.5 6 0.99324 1.6894×10−3 1.5339×10−3 1.8510×10−3

2.0 6 0.99352 1.6203×10−3 1.2909×10−3 1.9522×10−3

2.5 5 0.99316 1.7098×10−3 1.1322×10−3 2.2850×10−3

3.0 5 0.99339 1.6502×10−3 8.1439×10−4 2.4950×10−3

5.2.3.1 Diffusivity for multisize obstacles

For the multisize obstacles case, we again estimate the effective diffusivities from simulation

results for the continuous and surrogate models (Dcont and Dsurr, respectively) according to

equation (5.9). Figure 5.27 shows the resulting estimated diffusivity versus time for each

obstacle radius value. For a final comparison we average the last 100, 000 values (last 10%)

of Dcont and Dsurr, as summarized in Table 5.23. The diffusivities for the continuous and

surrogate models are correlated, with a correlation coefficient of R = 0.8503.

Table 5.23 Multisize obstacles model. Table showing commitment index Mc , probability of stay-
ing in current subdomain q , and diffusivities obtained via simulation for the continuous and
surrogate models (Dcont and Dsurr, respectively) for each obstacle radius value.

Obstacle radius Mc q Dcont Dsurr Percent difference
0.5 6 0.9925 0.7509 0.7428 1.084%
1.0 6 0.9929 0.6842 0.7261 6.133 %
1.5 6 0.9932 0.6943 0.7418 6.845 %
2.0 6 0.9935 0.6746 0.6290 6.755%
2.5 5 0.9932 0.6205 0.6440 3.785%
3.0 5 0.9939 0.5667 0.5942 4.859 %

120



(a) (b)

(c) (d)

(e) (f )

Figure 5.27 Multisize obstacles model. Estimated effective diffusivity for continuous and surro-
gate models for Rpart = 1.0, Robs1

= 1.0 (based on simulation results). (a) Robs2
= 0.5, Mc = 6. (b)

Robs2
= 1.0, Mc = 6. (c) Robs2

= 1.5, Mc = 6. (d) Robs2
= 2.0, Mc = 6. (e) Robs2

= 2.5, Mc = 6. (f)
Robs2

= 3.0, Mc = 6.
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Based on the structure in the multisize obstacles model, we expect to have different

inherent diffusivities in the horizontal and vertical directions. In section 4.2.4, we used the

following probabilities:

(i) q1 is the probability that the particle stays in its current subdomain;

(ii) q2 is the probability that the particle moves to a subdomain in the horizontal direction;

(iii) q3 is the probability that the particle moves to a subdomain in the vertical direction;

and found the diffusion equation to be:

ut =
(∆xM )2

2(∆t )

�

q2ux x +q3u y y

�

. (5.15)

We can then consider the horizontal diffusivity, DH , to be

DH =
q2(∆xM )2

2(∆t )
, (5.16)

and the vertical diffusivity, DV , to be

DV =
q3(∆xM )2

2(∆t )
, (5.17)

where ∆xM is the effective spatial step size, and DH and DV are horizontal and vertical

diffusivities, respectively. However, due to one column of obstacles having radius Robs1
= 1.0

and the other column of obstacles having varying radius Robs2
, the particle has a bias in

either the right or left direction, depending on where it is currently located. Thus, we cannot

use these equations to calculate∆xM as in the equally spaced obstacles model.

We consider simulation results in light of horizontal versus vertical diffusion. In the

surrogate model we record the horizontal and vertical mean square displacements, 〈r 2
H 〉

and 〈r 2
V 〉, respectively, by using the center coordinate of the corresponding subdomain in

the continuous model. Figure 5.28 shows these displacements.

Although we cannot calculate the horizontal and vertical diffusivities directly, we can

calculate the ratio
DH

DV
, (5.18)

using the ratio
〈r 2

H 〉
〈r 2

V 〉
. (5.19)
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(a) (b)

(c) (d)

(e) (f )

Figure 5.28 Multisize obstacles model. Horizontal and vertical mean squared displacements for
the surrogate model. Rpart = 1.0, Robs1

= 1.0. (a) Robs2
= 0.5, Mc = 6. (b) Robs2

= 1.0, Mc = 6. (c)
Robs2

= 1.5, Mc = 6. (d) Robs2
= 2.0, Mc = 6. (e) Robs2

= 2.5, Mc = 6. (f) Robs2
= 3.0, Mc = 6.
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(a) (b)

(c) (d)

(e) (f )

Figure 5.29 Multisize obstacles model. Ratio of horizontal diffusivity to vertical diffusivity Rpart =
1.0, Robs1

= 1.0. (a) Robs2
= 0.5, Mc = 6. (b) Robs2

= 1.0, Mc = 6. (c) Robs2
= 1.5, Mc = 6. (d) Robs2

= 2.0,
Mc = 6. (e) Robs2

= 2.5, Mc = 6. (f) Robs2
= 3.0, Mc = 6.
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We illustrate the ratio of diffusivities in Figure 5.29. In the multisize obstacles case, depend-

ing on the value of Robs2
, the RVE is more open in either the horizontal or vertical direction.

This effect on the diffusivity is subtle except for in our most extreme case, Robs2
= 3.0 (de-

picted in Figure 5.30), where the average boundary length obstructed is greater in the

horizontal direction than in the vertical direction, and so our ratio DH /DV < 1.

Figure 5.30 Multisize obstacles model. RVE illustrating case where Robs1
= 1.0 and Robs2

= 3.0 (to
scale).

5.3 Model comparison

The models for 2D diffusion via random walks in a RVE with obstacles, developed in this

chapter, can help identify the relationships between geometric features of the material

being modeled and diffusivity of the particle undergoing diffusive transport. To this end,

we compare the simulated diffusivity versus the varied obstacle radius (Robs or Robs2
) for

the equally spaced obstacles model, the four internal obstacles model, and the multisize

obstacles model in Figure 5.31(a). We also summarize the corresponding diffusivities in

Table 5.24.

We observe that the continuous models were most similar to each other for small

obstacle radii and that this difference tends to increase as the obstacles increase in size.

The continuous model and corresponding surrogate model were in best agreement for the

equally spaced obstacles model. This finding suggests that the accuracy of our approach
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for developing a surrogate lattice model may decrease as the complexity of the material

being modeled increases.

(a) (b)

Figure 5.31 Comparison of diffusivity versus obstacle radius for all models considered. (a) Contin-
uous models only. (b) Continuous and surrogate models.

Table 5.24 Diffusivity across obstacle radii for all models considered.

Obstacle radius
0.5 1.0 1.5 2.0 2.5 3.0

Equally spaced
obstacles model

Dcont 0.7550 0.7314 0.6759 0.6146 0.5885 0.5188
Dsurr 0.7100 0.7084 0.6862 0.6165 0.6016 0.5187

Four internal
obstacles model

Dcont 0.7509 0.6842 0.6943 0.6745 0.6205 0.5667
Dsurr 0.7428 0.7261 0.7418 0.6290 0.6440 0.5942

Multisize
obstacles model

Dcont 0.7815 0.7587 0.7159 0.7245 0.6499 0.6531
Dsurr 0.7667 0.7322 0.6804 0.6634 0.6165 0.5878

For comparison purposes, we also ran a continuous model simulation with obstacle

collisions turned off, i.e. Ro b s = 0. For this special case, we again ran the continuous model

for 107 time steps over 2000 realizations. For the obstacle free model, the slope of 〈r 2〉 versus

time was 2.1026, and the diffusivity from simulation results (averaging the last 100,000

timesteps) was Dcont = 0.8733.

With the addition of the obstacle-free simulation, we can also compare our diffusivity
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estimates to the classical Mackie-Mears relation [22] used in many continuum porous

media models [3].

D N [φS ] =D N
0

�

1−φ2

1+φS

�2

. (5.20)

In equation (5.20),φS is the solid volume fraction in a mixture, D N
0 is the diffusivity in a free

solution (one without obstacles) and, thus, D N [φS ] describes the diffusivity with varying

porosity [22]. For our three models of a porous medium, we calculate the corresponding

solid volume fractions as follows:

φS
E =

9πR 2
obs

900
,

φS
F =

4πR 2
obs

900
,

φS
M =

2πR 2
obs1
+2πR 2

obs2

400
,

(5.21)

whereφS
E ,φS

F , andφS
M are the solid volume fractions for the equally spaced obstacles model,

the four internal obstacles model, and the multisize obstacles model, respectively. Note

that we assume a constant thickness in the RVE and obstacles and recall that the RVE is

of size 30×30 for the first two models and 20×20 for the multisize obstacles model. We

plot model diffusivities versus solid volume fraction along with the Mackie-Mears relations

in Figure 5.32. The estimated diffusivities from our models compared to those from the

Mackie-Mears relation are shown in Tables 5.25 - 5.27.

The Mackie-Mears relation applies to dilute solutions and assumes isotropy in the

material through which the particle is diffusing. Based on Fig. 5.32, we first observe that the

relations predicted for our three models are much closer to each other than to the (classical)

Mackie-Mears relation. Second, we observe that relationships between diffusivity and the

RVE solid volume fraction predicted by our three models are significantly different from

those observed by the classical Mackie-Mears model. The first observation suggests that

while each of our three models produces differing relations, the nature of the anisotropy may

be similar. This is likely due to the property that all three models are comprised of circular

obstacles of similar sizes arranged along principal (coordinate) directions in the RVE. Lastly,

the second observation suggests that the accuracy of relations between diffusivity and

solid volume fraction in porous material models could be improved using the approach

developed herein.
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(a) (b)

(c) (d)

Figure 5.32 Comparison of effective diffusivity for continuous simulations and corresponding
Mackie-Mears relation. (a) Equally spaced obstacles model. (b) Four internal obstacles model.
(c) Multisize obstacles. (d) All models considered and Mackie-Mears relation. (a)-(c) plotted at a
different scale.
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Table 5.25 Diffusivity across obstacle radii and corresponding solid volume fraction for equally
spaced obstacles model and Mackie-Mears relation.

Obstacle radius 0.5 1.0 1.5 2.0 2.5 3.0
Solid volume fraction 0.0079 0.0314 0.0707 0.1257 0.1963 0.2827

Diffusivity Dcont 0.7550 0.7314 0.6759 0.6146 0.5885 0.5188
Mackie-Mears Relation 0.8463 0.7702 0.6579 0.5269 0.3941 0.2730

Table 5.26 Diffusivity across obstacle radii and corresponding solid volume fraction for four
internal obstacles model and Mackie-Mears relation.

Obstacle radius 0.5 1.0 1.5 2.0 2.5 3.0
Solid volume fraction 0.0035 0.0140 0.0314 0.0559 0.0873 0.1257

Diffusivity Dcont 0.7815 0.7587 0.7159 0.7245 0.6499 0.6531
Mackie-Mears Relation 0.8612 0.8259 0.7702 0.6983 0.6154 0.5269

Table 5.27 Diffusivity across obstacle radii and corresponding solid volume fraction for multi-
sized obstacles model and Mackie-Mears relation.

Obstacle radius 0.5 1.0 1.5 2.0 2.5 3.0
Solid volume fraction 0.0196 0.0314 0.0511 0.0785 0.1139 0.1571

Diffusivity Dcont 0.7509 0.6842 0.6943 0.6745 0.6205 0.5667
Mackie-Mears Relation 0.8073 0.7702 0.7119 0.6375 0.5527 0.4635

5.4 Conclusions

Direct numerical simulation is a useful tool in modeling systems of particles. Direct simula-

tion approaches using representative volume elements or agent-based models have both

been used to analyze system interactions in various applications [13, 14, 2, 25, 3]. When

carried out over many realizations, such simulations can yield information used to develop

probabilistic surrogate models that are able to reproduce essential features of the full direct

simulation [4]. Lattice-based models are commonly used in biological applications such

as tissue modeling or cancer modeling [3, 14]. Previous studies have used lattice models

of single particles to analyze diffusion in crowded media [32, 31], and local, microscopic

properties of the material strongly affect the overall diffusivity.

In this dissertation, we developed continuous model simulations of particle movement

and then used these results to develop probabilistic surrogate models. We developed two

different models: Model 1, which simulated a two-dimensional particle system, and Model

2, which simulated 2D single particle random walks for different obstacle configurations.

In Model 1 we modeled twenty-seven particles which had perfectly elastic collisions with

other particles and with domain boundaries. We considered varying values of particle
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radii, tracking state changes for the different subdomains and used these results to develop

a surrogate Markov chain (MC) model. Continuous and MC model results were in good

agreement, and we observed a linear relationship between subdomain states and the

particle radius size for each subdomain type. The approach used was also able to provide

estimates of uncertainty for the quantities of interest.

In Model 2 we simulated single particle random walks in a 2D RVE with obstacles. We

considered varying obstacle configurations (equally spaced obstacles, four internal ob-

stacles, and multisize obstacles). For each obstacle configuration we considered a fixed

particle radius with varying obstacle radii, and, in the equally spaced obstacles model, we

also considered a fixed obstacle radius and varying particle radius. We divided the RVE into

subdomains based on obstacle location. Subdomain transition probabilities were devel-

oped and used to construct the surrogate lattice model. As described in previous studies,

we observed a linear relationship between the mean squared displacement and time. The

mean squared displacement was used to estimate diffusivities for both the continuous

models and surrogate models. Additionally, we related the equally spaced obstacle model’s

effective diffusivity from simulation results to a theoretical estimate of diffusivity, which

we obtained by (1) using a Taylor Series expansion of random walks on a 2D lattice and

(2) approximating an effective∆x for the theoretical diffusivity estimate on the lattice. We

evaluated the effect of obstacle configuration and obstacle radius size on the slope of mean

squared displacement versus time and on the estimated diffusivity.

The continuous and surrogate models were in good agreement for all obstacle configu-

rations, and were in best agreement for the less anisotropic models, in particular the equally

spaced obstacle model. This study showed that direct simulation of diffusion in continuous

media with obstacles can be represented via lattice-based surrogate models. Our surrogate

models efficiently preserved key features of the continuous model. In future studies, this

approach can be applied to a variety of materials with different obstacle arrangements,

shapes, and symmetries.

In Chapter 2 we introduced Model 1, which models a two-dimensional interacting

particle system and serves as an initial motivating problem. We directly simulated the con-

tinuous model, which consisted of twenty-seven particles that exhibited perfectly elastic

collisions with other particles and with obstacle boundaries. We partitioned the domain

into nine subdomains, enabling us to track state-changes (number of particles in subdo-

main) for the different subdomain types. We then used these results to develop a surrogate

Markov chain (MC) model. We observed excellent agreement between the continuous

model and surrogate model results. A truncated normal distribution was well-suited to

fitting a probability density function for each of the three subdomain types. In addition
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to good agreement between continuous model results and expected values from the MC

model, using a probability density function also provided an estimate of uncertainty. We

observed a linear relationship between average number of particles and the particle ra-

dius size for each subdomain type, with the average number of particles decreasing as the

particle radius increased in the corner subdomain, and the average number of particles

increasing as the particle radius increased in the center subdomain.

In Chapter 3 we described Model 2, which models single particle random walks in a

2D representative volume element. We described the three different continuous model

obstacle configurations – equally spaced obstacles, four internal obstalces, and multisize

obstacles. Subdomains within the RVE were identified based on obstacle positions, and, in

the four internal obstacles case, we had three distinct subdomain types (center, onewall,

and corner). For all models we fixed the particle radius at Rpart = 1.0 and varied the obstacle

radius Robs (or, in the multisize obstacles case, we also fixed Robs1
= 1.0 and varied Robs2

). In

the equally spaced obstacles model, we also considered fixed obstacle radius Robs = 2.0 and

varying particle radius Rpart. We observed similar sensitivity to varying particle radius as to

varying obstacle radius, so we chose to focus on varying obstacle radius for the other two

models.

In the second half of Chapter 3 we discussed development of the surrogate model. We

used results from the continuous model to develop transition probabilities for the surrogate

model. Each model had a different number of transition probabilities: the equally spaced

obstacles model had two transition probabilities, the four internal obstacles model had

twelve transition probabilities, and the multisize obstacles model had three transition

probabilities. The equally spaced obstacles model and multisize obstacles model only had

cardinal direction transitions, but in the four internal obstacles model, there were both

cardinal direction transitions and diagonal transitions.

In Chapter 4 we discussed model calibration and diffusivity estimation. We introduced

the commitment index Mc for identifying when a particle commits to a new subdomain (due

to the particle’s random walk, it has a tendency to cross and recross a boundary between

subdomains multiple times). In order to estimate the diffusivity for the continuous and

surrogate models, we used results from previous studies relating a particle’s mean squared

displacement 〈r 2〉 and diffusivity [32, 31, 35]. We also developed a theoretical estimate for

diffusivity DTS using a 2D Taylor Series expansion for a random walk on a lattice. Limits

for a random walk on a 2D lattice were used in order to relate and compare the effective

diffusivity from surrogate result Dsurr with the theoretical diffusivity DTS, which then allowed

us to identify an effective∆x for DTS.

In Chapter 5 we presented results for Model 2. We first discussed continuous model
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results for each obstacle configuration. Transition probabilities from the continuous model

were developed for increasing values of Mc , comparing the resulting surrogate model results

to identify the best value for Mc for each obstacle configuration and radius. The resulting

transition probabilities were dependent on the obstacle configuration and obstacle radius

value. For all obstacle configurations, the probability of staying in the current subdomain

was overwhelmingly more likely than any type of transition.

For all three obstacle configurations, we had good agreement between the continuous

and surrogate models. We used the mean squared displacement 〈r 2〉 to compute an effective

diffusivity for all models, which we also compared between continuous and surrogate

models (Dcont and Dsurr, respectively). For the equally spaced obstacles configuration, we

also computed a theoretical estimate for diffusivity, DTS, using a Taylor Series expansion of a

random walk on a 2D lattice. We then related the effective diffusivity for the surrogate model

Dsurr to DTS by finding an effective∆x . For the multisize obstacle case, we also estimated

horizontal versus vertical diffusivity via the ratio of DH /DV .

Lastly, the effects of the three different obstacle configurations on diffusivity were com-

pared. We also evaluated the diffusivity versus solid volume fraction for all models and

compared these results to the classical Mackie-Mears relationship for diffusion in porous

media. Our models were in better agreement with each other than with the Mackie-Mears

relationship.

Overall, the techniques developed in this dissertation allow for internal geometric

properties to be directly incorporated into the modeling and simulation process, enabling

the calculation of diffusivity and the identification of an associated surrogate model that

can be incorporated into lattice-based modeling frameworks, where diffusive transport

is one of many important interacting mechanisms. In Model 1 we showed that a Markov

chain model can be developed when the quantities of interest can be uniquely identified as

states with transitions among the states (e.g. number of particles per subdomain). However,

in Model 2, the quantity of interest was the mean squared displacement, so a Markov chain

model was not possible, but a surrogate lattice model efficiently reproduced characteristics

of the continuous model. Since this approach is versatile, the RVE geometry can be set up

in many ways in the continuous model and can be tailored to the specific material being

investigated. However, continuous model simulations are time-intensive and require the

use of HPC. This approach could also be extended to a 3D RVE, but one would need to

balance the complexity of the model under consideration with the specific HPC resources

available to ensure that results can be obtained in a practical amount of computation time.
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