
ABSTRACT

PAQUETTE, CHRISTOPHER T. Root Bounds for Pham Multivariate Polynomial Systems and
Their Applications. (Under the direction of Hoon Hong.)

This thesis is on the bounds of roots of Pham systems which are type of multivariate polynomial

system of equations. In Chapter 2 we review the previous works on root bounds for univariate poly-

nomials and multi-polynomial system. In the subsequent chapters, we present original contributions.

A summary of results is as follows:

1. Chapter 3: We derive improved versions of the Lagrange bound for univariate polynomial

equations that trade a small or no increase in complexity for higher accuracy.

2. Chapter 4: We derive root size bounds for Pham Systems. We end up using univariate root

size bounds in the process.

3. Chapter 5: We derive quality (overestimation) bounds on our root size bounds for Pham

systems from Chapter 4.

4. Chapter 6: We improve our root size bounds for Pham systems. We prove in certain cases

this improvement approaches the root size.

5. Chapter 7: We define root spread and derive a root spread bound for Pham systems.

6. Chapter 8: We derive ways in which the roots of a Pham system can be related to the roots

of its associated derivative system, across several definitions of relationship.
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CHAPTER

1

INTRODUCTION

Finding bounds on the roots of polynomials has been a fundamental problem in mathematics

for centuries. Many root size bounds for univariate polynomials have been found over this time

period, with widely varying complexities and qualities. Activity includes the works of Lagrange

from the mid 1700’s to Batra et al who published an improvement to one of Lagrange’s bounds

in 2017. There are also other types of bounds on the roots of univariate polynomials, such as

Gauss-Lucas theorem, where the roots of a polynomial provide a bound on where the roots

of the derivative of that polynomial can be. These pursuits can and have been extended into

finding bounds on the roots of multivariate polynomial systems of equations.

For multivariate polynomial systems of equations many things which are true for univariate

polynomials do not generalize. For example Bezout’s theorem provides an upper bound on

the number of roots of a multivariate polynomial system of equations if that number is finite.

But there is no guarantee it is finite, or that that number is achieved. Yet in the case that

the number is finite and equal to the Bezout number there are known root size bounds for

multivariate polynomial systems of equations.

But this requirement being met is not immediately obvious in general. One way around

this is to restrict yourself to a subset of multivariate polynomial systems where it is known to

hold. We have chosen to work with Pham systems. Pham systems are ‘nice’: they exhibit more

univariate-like behavior than general multivariate polynomial systems.

This dissertation will focus on bounding the roots of Pham systems in several ways, finding
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results analogous to known results for univariate polynomials. As univariate polynomials are a

special case of Pham systems we start by first deriving a root size bound for univariate poly-

nomials that improves Lagrange. We then move on to deriving a root size bound for general

Pham systems, show that result has a quality bounded by the coefficient sizes, then improve it.

Next we consider a different method of bounding the roots, a root spread bound. Finally, we

define a ‘derivative’ for Pham systems and using this derive bounds on the roots of derivative

systems which use the roots of the original system.

The thesis is structured as follows.

1. Chapter 2: We review the previous works on root bounds for univariate polynomials and

multi-polynomial system.

2. Chapter 3: We derive improved versions of the Lagrange bound for univariate polynomial

equations that trade a small or no increase in complexity for higher accuracy.

3. Chapter 4: We derive root size bounds for Pham Systems. We end up using univariate

root size bounds in the process.

4. Chapter 5: We derive quality (overestimation) bounds on our root size bounds for Pham

systems from Chapter 4.

5. Chapter 6: We improve our root size bounds for Pham systems. We prove in certain cases

this improvement approaches the root size.

6. Chapter 7: We define root spread and derive a root spread bound for Pham systems.

7. Chapter 8: We derive ways in which the roots of a Pham system can be related to the

roots of its associated derivative system, across several definitions of relationship.

2



CHAPTER

2

REVIEW

2.1 Univariate Polynomials

2.1.1 Root Size Bounds for Univariate Polynomials

To be entirely unambiguous we must define what we mean by a root size bound for a univariate

polynomial.

Definition 1 (Root Size). The root size of f , written as Rf , is defined by

Rf = max
x∈C

f(x)=0

||x||∞

where ||x||∞ = |x|.

We will often write R when the intended f is clear from the context.

We will use the following toy polynomial as a running example throughout this section.

Example 1 (Running example).

f = x2 + 2x + 9

Example 2. For the running example (Example 1), we have

R = 3

3



Definition 2 (Root Size Bound). A function B : C [x] −→ R≥0 is called a root size bound if

∀
f∈C[x]

R ≤ B (f)

There are many known univariate root size bounds (see [29], [16], [5], [39], [21], and more),

we shall limit our more in depth review to a selection of relevant root size bounds.

From now on, let

f = xd + a1x
d−1 + ∙ ∙ ∙ + adx

0

Theorem 1 (Cauchy Root Size Bound [11]).

BC = 1 + max
1≤j≤d

|aj |

This root size bound by Cauchy is an example of one of the oldest known root size bounds.

It is also a root size bound that does not match the geometry of the roots. That is, in general

tBC(f(x)) 6= tdBC(f(x/t)). The disadvantage of this type of root size bound is that to optimize

the bound you must first optimize the scaling of the polynomial, increasing the complexity of

the computation.

Example 3. For the running example (Example 1), we have

BC = 1 + max {2, 9} = 1 + 9 = 10

Theorem 2 (Apocryphal Root Size Bound [35] page 220).

BA = 2 max
1≤j≤d

|aj |
1
j

This is another root size bound. This bound has the advantage of scaling, unlike the Cauchy

root size bound from Theorem 1. For the rest of this section and our own work we shall consider

root size bounds which scale like BA.

Example 4. For the running example (Example 1), we have

BA = 2 max
{

2
1
1 , 9

1
2

}
= 2 max{2, 3} = 6

Theorem 3 (Fujiwara Root Size Bound [19]).

BF = 2 max

{

|a1| , |a2|
1
2 , . . . , |ad−1|

1
d−1 ,

∣
∣
∣
ad

2

∣
∣
∣
1
d

}

The Fujiwara bound is worth noting as it is simple to understand and compute. It is also a

clear improvement of Theorem 2.

4



Example 5. For the running example (Example 1), we have

BF = 2 max

{

2
1
1 ,

(
9
2

) 1
2

}

= 2 max

{

2,
3
√

2

}

=
6
√

2

Note that as BA = a
1
d
d the Fujiwara root size bound is smaller than the apocryphal root size

bound in this case.

Theorem 4 (Lagrange Root Size Bound [26]).

BL = s1 + s2

where s1 and s2 are the two largest ones among

|aj |
1
j , j = 1, . . . , d

Example 6. For the running example (Example 1), note s1 = 3 and s2 = 2. Thus,

BL = 3 + 2 = 5

Proof. Lagrange did not provide a proof. The most recent proof is by Batra-Mignotte-Stefanescu

JSC [4]. They verify s1+s2. The following proof is simpler and more motivating (deriving instead

of verifying).

f (x) = 0

Solve for xd, take the absolute value of both sides, then apply the triangle inequality.

=⇒ rd ≤
d∑

j=1

|aj | r
d−j where r = |x|

By dividing by rd, we have

⇐⇒ 1 ≤
d∑

j=1

(
|aj |

1
j

r

)j

By pulling s1 out from the sum and noting |aj |
1
j ≤ s2 for all other j, we have

=⇒ 1 ≤
(s1

r

)k
−
(s2

r

)k
+

d∑

j=1

(s2

r

)j
where s1 = |ak|

1
k

We consider two cases.

1. r ≤ s1. We are done.

5



2. r > s1. Note

1 ≤
(s1

r

)k
−
(s2

r

)k
+

d∑

j=1

(s2

r

)j

By reindexing the sum, we have

=⇒ 1 ≤
(s1

r

)k
−
(s2

r

)k
+

d−1∑

j=0

(s2

r

)d−j

We may now approximate the sum as a geometric series. Thus,

=⇒ 1 ≤
(s1

r

)k
−
(s2

r

)k
+

s2
r

1 − s2
r

By rewriting
(s1

r

)k
−
(s2

r

)k
, we have

⇐⇒ 1 ≤
(s1

r
−

s2

r

) d−k−1∑

j=0

(s2

r

)d−k−1−j (s2

r

)j
+

s2
r

1 − s2
r

Recall r > s2. Thus,

=⇒ 1 ≤
(s1

r
−

s2

r

) d−k−1∑

i=0

(s2

r

)j
+

s2
r

1 − s2
r

We may now approximate the sum as a geometric series. Thus,

=⇒ 1 ≤
s1
r − s2

r

1 − s2
r

+
s2
r

1 − s2
r

By combining, we have

⇐⇒ 1 ≤
s1
r

1 − s2
r

Simplify,

⇐⇒ 1 ≤
s1

r − s2

As r − s2 > 0, we have

⇐⇒ r − s2 ≤ s1

Move s2 to the right-side.

⇐⇒ r ≤ s1 + s2

Recently Batra et al. [4] improved Lagrange’s bound.

Theorem 5. Define f(x) := xd + a1x
d−1 + ∙ ∙ ∙ + adx

0 where ad 6= 0. Define π to be the

6



lexicographically greatest such that a
1

π1
π1 ≥ ∙ ∙ ∙ ≥ a

1
πd
πd . Finally, define

BB := max






s1 + s2 +
√

(s1 + s2)
2 − 4s2 (s1 − s2)

2

2
,
(
sπ1−1
1 s0

2 + ∙ ∙ ∙ + s0
1s

π1−1
2

)1/(π1−1)






Then we have

BB ≤ BL

Example 7. For the running example (Example 1), note π1 = 2, then we have

BB = max

{
5 +

√
17

2
, 5

}

= 5

Theorem 6 (Univariate Lower Bound). Let f be a polynomial with complex coefficients and

degree d. Then we have the following lower root size bound.

LU = max
1≤j≤d

(
|aj |
(
d
j

)

) 1
j

This theorem is an obvious consequence of Vieta’s formulae.

Example 8. For the running example (Example 1), we have

LU = max

{
2
2
,
3
1

}

= 3

2.1.2 Quality of the Root Size Bounds for Univariate Polynomials

There are many quality results for root size bounds. To look further into this see [41], [13], [3],

[24], [4].

We shall represent the quality of a root size bound with the overestimation. We define

overestimation to be log2
B
R

. Thus to approximate our overestimation we shall use a lower

bound on R.

Theorem 7.

log2

BA

R
≤ 1 + log2 max

1≤j≤d

(
d

j

)

Example 9. Referring back to our f from Example 1, we have

max
1≤j≤2

(
d

j

)

= 2

7



Thus the overestimation bound of the root size bound is

log2

BA

R
≤ 1 + log2 2 = 1 + 1 = 2

Recall R = 3. Thus the overestimation of the root size bound is

log2

6
3

= log2 2 = 1

Proof.

log2

BA

R
≤ log2

2 max
1≤j≤d

|ai|
1
j

max
1≤j≤d

(
|aj |

(d
j)

) 1
j

≤ log2

2 max
1≤j≤2

(
d
j

)
max
1≤j≤d

|aj |
1
j

max
1≤j≤d

|aj |
1
j

= 1 + log2 max
1≤j≤2

(
d

j

)

2.1.3 Relationship Between the Roots of Polynomials and Their Derivatives

Theorem 8 (Rolle’s Theorem for Univariate Polynomials [1]). Let f be a function continuous

on the closed interval [x1, x2] and differentiable on the open interval (x1, x2). If f(x1) = f(x2) =

0 then f ′(z) = 0 for some z ∈ (x1, x2).

Example 10. Let

f(x) = x2 − x − 2

Then

x1 = −1, x2 = 2

Note

f ′(x) = 2x − 1

Thus, f ′(z) = 0 =⇒ z = 1/2. Note

1/2 ∈ (−1, 2)

There are many generalized versions of Rolle’s theorem. A history can be found in [30]. More

recent results include [18].

Theorem 9 (Marden’s Theorem for Univariate Polynomials [40]). Let f be a 3rd degree poly-

nomial, and let the zeroes y1, y2, and y3 of f be non-collinear. There is a unique ellipse inside

the triangle with vertices y1, y2, and y3 which is tangent to the sides at their midpoints. The

foci of that ellipse are the zeroes of the derivative f ′.
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As with Rolle’s theorem there exist generalizations of Marden’s theorem. These results

include a generalization to polynomials with 3 unique roots that may have multiplicity higher

than 1 [27], and a generalization for when the roots of f are the equivalent of the verticies of a

regular n-gon [37].

Theorem 10 (Gauss-Lucas Theorem for Univariate Polynomials [28]). If f is a nonconstant

polynomial with complex coefficients then all roots of f ′ belong to the convex hull of the set of

roots of f .

Example 11. Let

f = x3 + 4 x2 + 2 x + 1

We shall graph the roots of f and f ′. Thus, we have

Figure 2.1: Demonstration of Gauss-Lucas theorem, showing the roots of a polynomial (in
black), their convex hull (in yellow), and the roots of the derivative (in red).

Where the roots of f are in black, the roots of f ′ are in red, and the convex hull of the roots

of f is filled in with yellow. In this example the containment of the red dots inside the yellow

triangle is clear.

Proof. In C any polynomial f(x) can be written as a product of linear factors. So f(x) =
d∑

j=1
(x − αj) where a0 is the leading coefficient. Note that α1, . . . , αn are the roots of f .

Let z be a complex number such that f(z) 6= 0, then we apply the logarithmic derivative.

f ′(z)
f(z)

=
d∑

j=1

1
z − αj

9



Let z be a zero of f ′ and recall f(z) 6= 0 then

d∑

j=1

1
z − αj

= 0

=⇒
d∑

j=1

(
1

z − αj

)(
z̄ − ᾱj

z̄ − ᾱj

)

= 0

=⇒
d∑

j=1

(
z̄ − ᾱj

|z − αj |2

)

= 0

=⇒
d∑

j=1

(
z̄

|z − αj |2

)

=
d∑

j=1

(
ᾱj

|z − αj |2

)

=⇒
d∑

j=1

(
1

|z − αj |2

)

z̄ =
d∑

j=1

(
ᾱj

|z − αj |2

)

Let rj = 1
|z−αj |2

and R =
d∑

j=1
rj . Then, we have Rz̄ =

d∑

j=1
ᾱjrj . Thus z =

d∑

j=1
αj

( rj

R

)
. rj are

nonnegative real numbers for all j. Thus,
d∑

j=1

( rj

R

)
= 1 and so z is a convex combination of the

αj by definition.

We must now cover the case where f(z) = 0. Suppose f(z) = 0 = f ′(z) then by definition

z is a convex combination of the roots α1, . . . , αd, as z = 1 ∙ αj for some j.

There exist several generalizations of Gauss-Lucas. A selection of these generalizations can

be found in [12], [14], and [6].

2.1.4 Newton Identities for Univariate Polynomials

Later we will review a generalized version of the Newton Identities, so we finish our review of

univariate polynomials by recalling the classical Newton Identities for univariate polynomials.

Theorem 11 (Newton Identities for Univariate Polynomials [31]). There are two cases.

For j ≤ d − 1, we have the following.

Pk =
k−1∑

j=1

(−1)j+1γjPk−j + (−1)k+1kγk

10



For j ≥ d, we have the following.

Pk =
d∑

j=1

(−1)j+1γjPk−j

where γk =
∑

1≤π1≤∙∙∙≤πk≤d

xπ1∙∙∙xπk
and Pk =

n∑

j=1
xk

j , k = 1, 2, 3, . . .

2.2 Multivariate Polynomial Systems

Unlike the univariate case, the number of roots of multivariate polynomial systems of equations

are not determined solely by their degree vector. For this dissertation we shall restrict our

domain to multivariate polynomial systems that have exactly the Bezout number of roots, that

is, d1 ∙ ∙ ∙ dn, where di is the degree of Fi.

Example 12 (Running example).

F1 = x2
1 + x1 ∙ x2 + x2

2 + 4x1 + 4x2 + 1

F2 = x2
1 + x1 ∙ x2 + 4x2

2 + x1 + 4x2 + 1

2.2.1 Root Size Bounds for Multivariate Polynomial Systems

There are fewer known root size bounds for multivariate polynomial systems than there are

known root size bounds for univariate polynomials. Additionally, the root size bounds which

are known are often pessimistic.

One such root size bound for multivariate polynomial systems is by Canny.

Theorem 12 (Canny Root Size Bound [8] page 70).

UC =







1 +
∑

1≤i≤n

(di − 1)



 3 a





n

(

1+
∑

1≤i≤n

(di−1)

)n

where

ai(e) ∈ Z, and a = ||F ||∞

Example 13. For the running example (Example 12), we have

a = 4, n = 2, d1 = d2 = 2

11



Thus,

UC = ((1 + 2) 12)2(1+2)2 = 3618

Another root size bound for multivariate polynomial systems is by Yap.

Theorem 13 (Yap Root Size Bound [42] page 345). If (α1, . . . , αn) is a zero of F , a multivariate

polynomial system with finitely many complex roots, ai(e) ∈ Z, and ∀
i
|αi| 6= 0 then

UY =
(
23/2NK

)Ω
2(n+1) d1∙∙∙dn

where

N =

(1 +
∑

1≤i≤n
di

n

)

K = max
{√

n + 1, ||F1||2 , . . . , ||Fn||2
}

Ω =
∏

1≤i≤n

di +
∏

1≤j≤n

∏

1≤i≤n
i 6=j

di

Example 14. For the running example (Example 12), we have

n = 2, d1 = d2 = 2, N = 10, K = 8, Ω = 8

Thus,

UY =
(
23/2 ∙ 80

)8
212

The last root size bound for multivariate polynomial systems we shall cover is the DMM root

size bound.

Theorem 14 (DMM Root Size Bound [17]). Let F be a multivariate polynomial system such

that DD is the number of roots in (C∗)n and ai(e) ∈ Z, then

UDMM = 2DD%C

where

DD = Number of roots of F ≤
∏

1≤i≤n

di

% =
n∏

i=1

(#ϕi)
Φi

12



C =
n∏

i=1

||Fi||
Φi
∞

where (#ϕi) is the number of lattice points in ϕi, the convex hull of the support of Fi and Φi is

the mixed volume of the polytopes ϕ0, . . . , ϕ̂i, . . . , ϕn.

Example 15. For the running example (Example 12), we have

n = 2, DD = 4, #ϕ1 = ϕ2 = 6, Φ1 = Φ2 = 2, % = 64, ||F1||∞ = ||F2||∞ = 4, C = 44

Thus,

UDMM = 24 ∙ 64 ∙ 44

2.2.2 Other Root Bounds

As for univariate polynomials, root size bounds are not the only way to bound the roots of

multivariate polynomials. Work here is relatively sparse. It includes a multidimensional version

of Rolle’s theorem [20].

2.3 Multivariate Pham Systems

Definition 3 (Pham system). We say that F ∈ C [x]n is a Pham system if it has the following

form

F1 = xd1
1 +

∑

|e|<d1

a1,(e) xe

...

Fn = xdn
n +

∑

|e|<dn

an,(e) xe

where we used the following short-hands: x = (x1, . . . , xn) , e = (e1, . . . , en), xe = xe1
1 ∙ ∙ ∙ xen

n

and |e| = e1 + ∙ ∙ ∙ + en. These short hands will continue to be used for ease of reading.

Example 16.

F1 = x2
1 − i ∙ x1 − x2 − 2

F2 = x2
2 − x1 − x2 + i

Remark 1. Note that the coefficient subscript scheme runs in the opposite direction compared

to the coefficient subscript scheme used for univariate polynomials. This is intentional, as this

13



new scheme is a more straightforward mapping between the monomials and their coefficients.

The univariate coefficient subscript scheme would require more thought to decode from the degree

vector of each monomial in the Pham system, and so was less suitable.

Remark 2. We shall review a brief history of Pham systems.

• Named as a tribute to Frédéric Pham’s earlier work with a related concept in [38].

• Mourrain and Pan in [34] had Pham systems appear as a special class of polynomial

system where they were able to derive a significant improvement to the computation time

of roots.

• Laureano Gonzalez-Vega in [23] found a quantifier elimination algorithm which allows

quantifier elimination for Pham systems with parametric coefficients.

• Pardo and Martin in [36] derived another improvement to the computation time of the

roots of Pham systems.

• Most recently Dratman et al in [15] examined robust algorithms for solving Pham systems.

They showed that all robust algorithm have complexity at least polynomial in the number

of roots of the Pham system. They found a specific algorithm which was quadratic in the

number of roots of the Pham system.

Remark 3. One real-world application of Pham systems is in physics. They appear when ap-

plying the numerical polynomial homotopy continuation method to the two-dimensional nearest-

neighbor φ4 model, as seen in [33], and [32].

2.3.1 Gröbner Bases and Pham Systems

We would like there to be a unique representative for every set of Pham systems with the same

set of roots. Fortunately, it is known that under certain conditions we will have exactly this.

To talk about these conditions we must first get some background on what a Gröbner basis is.

We will then discuss how this relates to Pham systems.

Definition 4 (Gröbner Basis). Fix a monomial order > and let I ⊂ C[x1, . . . , xn] be an ideal.

A Gröbner basis for I is a collection of nonzero polynomials

{F1, . . . , Fn} ⊂ I

such that the ideal of leading terms of F1, . . . , Fn generates the ideal of leading terms of I.
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It is clear from definition that all Pham systems are a Gröbner basis under any total degree

ordering. Pham systems always being a Gröbner basis under any total degree ordering is useful

on it’s own (see for instance [9]). However, we have more.

Definition 5 (Minimal Gröbner Basis). A Minimal Gröbner basis (MGB) is a Gröbner basis

with the additional properties that

(1) The leading coefficient of Fj is one, for all j ∈ {1, . . . , n}.

(2) For each i and j, i 6= j, no leading monomial of Fi is divisible by the leading monomial of

Fj.

Proposition 15. Every Pham System is a MGB under any total degree ordering.

This does not get us to having a unique representative for every set of Pham systems with the

same solution set yet, as is clear from every Pham system being a MGB. This implies that we

need an even stronger condition.

Definition 6 (Reduced Gröbner Basis). A Reduced Gröbner basis (RGB) is a Gröbner basis

with the additional properties that

(1) The leading coefficient of Fj is one, for all j ∈ {1, . . . , n}.

(2) For each i and j, i 6= j, no term of Fi is divisible by the leading monomial of Fj.

Proposition 16. There is a one-to-one correspondence between ideals and varieties (counting

multiplicities).

Proposition 17. There is a one-to-one correspondence between ideals and RGBs.

Together these tell us that RGBs are a unique representative of a variety (counting multiplici-

ties). That is, there is one and only one RGB for each variety (counting multiplicities).

Proposition 18. A Pham System F where d1 = ∙ ∙ ∙ = dn is a RGB under any total degree

ordering.

Proposition 19. Pham Systems where d1 = ∙ ∙ ∙ = dn have a one-to-one correspondence with

their varieties (counting multiplicities).

Proposition 20. Every possible solution set, counting multiplicities, of a Pham system has

one and only one representative Pham system which is also a RGB.

Remark 4. Note that this is not the same as saying every possible set of complex numbers.

Not every possible set of complex numbers has an associated Pham system to which it is the

solution set. In fact, not every possible set of complex numbers has a multivariate polynomial

system that it is the solution to.
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2.3.2 Generalized Newton Identities for Pham Systems

Generalizing the Newton identities into Pham systems has been the subject of several studies.

Starting in 1981 we have work by Aizenberg and Kytmanov [2]. Further work includes [22], [7],

and [25].

Theorem 21 (Generalized Newton Identities [22], Theorem 3.2). Let δ = (d1, . . . , dn), β ∈ Zn

a multi-index such that ||β|| < ||δ||, and ei be the degree index for Fi, Then

Tδ−β +
∑

||β||<||
n∑

i=1
ei||<||δ||

a1(e1) ∙ ∙ ∙ an(en)Te1+∙∙∙+en−β =
∑

n∑

i=1
ei=β

(

Γe1,...,en −
n∏

i=1

di

)

a1(e1) ∙ ∙ ∙ an(en)

where

Γ[e1,...,en] =

∣
∣
∣
∣
∣
∣
∣
∣

e1
1 ... e1

n
...

...

en
1 ... en

n

∣
∣
∣
∣
∣
∣
∣
∣

where the subscript represents which xi you are finding the exponent of.
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CHAPTER

3

IMPROVED ROOT SIZE BOUNDS FOR

UNIVARIATE POLYNOMIALS

Two of the simplest root size bounds for univariate polynomials are the apocryphal root size

bound of 2s1, which uses only the largest coefficient, and the root size bound by Lagrange of

s1 + s2, which uses the largest two coefficients. This leads to a natural question. Can the root

size bound by Lagrange be improved to a root size bound using some linear combination of all

of the coefficients? This chapter will provide a positive answer to that question.

Notation 1. We will use the following notations.

1. f = xd + a1x
d−1 + ∙ ∙ ∙ + adx

0

2. cj = |aj |
1
j

3. s1 ≥ ∙ ∙ ∙ ≥ sd is a sorted list of c1, . . . , cd
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Example 17. Let

f = x2 + 2x + 9

Then,

c1 = 2

c2 = 3

Thus,

s1 = 3

s2 = 2

3.1 Main Results

Theorem 22 (Improved Lagrange Root Size Bound). Let f be a polynomial of degree d. Then

the following BI is a root size bound.

BI =
d∑

j=1

sj − sj+1

qj

where each qj is the only nonnegative root of the polynomial equation zj + ∙ ∙ ∙+ z1 − 1 = 0, and

sd+1 = 0.

Remark 5. An important note is like the Lagrange bound this bound is independent of degree,

allowing for the qj’s to be precomputed. This allows rapid and relatively accurate computation

of the bound for high-degree super-sparse polynomials.

Example 18. Let f = x3 − 3x2 − 4x − 1 then

s1 = 3 s2 = 2 s3 = 1

q1 = 1 q2 > 0.618 q3 > 0.543

Thus,

R ≤
3 − 2

1
+

2 − 1
.618

+
1

.543
< 4.460

Note

BL = s1 + s2 = 5

Finally, by solving we find

R < 4.049
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Thus we have the following inequalities.

R < 4.049 < 4.460 < 5

Corollary 23 (Two Term Improved Lagrange Root Size Bound). Let f be a polynomial of

degree d. Then the following BIcor is a root size bound.

BIcor = s1 +

(
1
qd

− 1

)

s2

Example 19. Recall f from Example 18. By recalling s1 = 3, s2 = 2 and q3 > 0.543, we have

BIcor < 3 +

(
1

0.543
− 1

)

2 < 4.684

Theorem 24 (Quality). We have

BI ≤ BIcor ≤ BL

3.2 Proofs

3.2.1 Proof of Theorem 22

For ease of understanding this proof will be done using multiple smaller lemmas.

Lemma 25. Let g (z) = z1
1 + ∙ ∙ ∙ + zd

d. Then we have

∀
x∈C\{0}

0 = f (x) =⇒ 1 ≤ g

(
c

|x|

)

Proof. Let x ∈ C\ {0}. Assume 0 = f (x). We will show that 1 ≤
(

c1
|x|

)1
+ ∙ ∙ ∙ +

(
cd
|x|

)d
.

Since 0 = f (x) , we have

0 = xd + a1x
d−1 + ∙ ∙ ∙ + adx

0

By dividing through by xd, we have

0 = 1 + a1x
−1 + ∙ ∙ ∙ + adx

−d

By moving the constant coefficient 1 to the LHS, we have

−1 = a1x
−1 + ∙ ∙ ∙ + adx

−d
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By taking the absolute value of both sides, we have

|−1| =
∣
∣
∣a1x

−1 + ∙ ∙ ∙ + adx
−d
∣
∣
∣

By applying the triangular inequality, we have

1 ≤ |a1| |x|
−1 + ∙ ∙ ∙ + |ad| |x|

−d

Rewriting so that |x| is a denominator, we have

1 ≤

(
|a1|

1
1

|x|

)1

+ ∙ ∙ ∙ +

(
|ad|

1
d

|x|

)d

By recalling cj = |aj |
1
j , we have

1 ≤

(
c1

|x|

)1

+ ∙ ∙ ∙ +

(
cd

|x|

)d

By recalling g (z) = z1
1 + ∙ ∙ ∙ + zd

d , we have

1 ≤ g

(
c

|x|

)

Remark 6. Following Lagrange, we hope to find a root size bound that is a linear combination of

cjs. Note if z1, . . . , zd are nonnegative real numbers, 1 ≤ z1
1+∙ ∙ ∙+zd

d implies that 1 ≤ z1+∙ ∙ ∙+zd.

This is illustrated by the following figure where d = 2.
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Figure 3.1: Graph of the line 1 = z1 + z2
2 (in black), and the line 1 = z1 + z2 + z3 (in blue),

showing that the linear surface is below the powered one.

From this, we immediately see |x| ≤ c1 + ∙ ∙ ∙+ cd. However, this is worse than the Lagrange

bound. Thus, we see that we need to do something else. We will use a different coordinate

system.

Notation 2 (Coordinate transformation).

1. π is a permutation of 1, . . . , d such that sj = cπj

2. uj = sj

|x|

3. δj = uj − uj+1 where ud+1 = 0

Lemma 26. Let h (z) = (z1 + ∙ ∙ ∙ + zd)π1 + ∙ ∙ ∙ + zπd
d . Then we have

1 ≤ g

(
c

|x|

)

⇐⇒ 1 ≤ h (δ)

Proof. Immediate from the following repeated rewriting

1 ≤ g

(
c

|x|

)
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⇐⇒ 1 ≤

(
c1

|x|

)1

+ ∙ ∙ ∙ +

(
cd

|x|

)d

⇐⇒ 1 ≤

(
cπ1

|x|

)π1

+ ∙ ∙ ∙ +

(
cπd

|x|

)πd

⇐⇒ 1 ≤

(
s1

|x|

)π1

+ ∙ ∙ ∙ +

(
sd

|x|

)πd

⇐⇒ 1 ≤ uπ1
1 + ∙ ∙ ∙ + uπd

d

⇐⇒ 1 ≤ (δ1 + ∙ ∙ ∙ + δd)
π1 + ∙ ∙ ∙ + δπd

d

⇐⇒ 1 ≤ h (δ)

Now we will carry out a linear overestimation of h. First we will convert 1 < h(z) into set

notation and note an important fact.

Notation 3 (Set notation).

1. A =
{
z ∈ Rd

≥0 : 1 < h (z)
}

2. Let qπ
j be the positive real number such that h

(
0, . . . , 0, qπ

j , 0, . . . , 0
)

= 1

3. H = ConvexHull
{
0, q1

πe1, . . . , q
d
πed

}

Lemma 27. Hc ⊇ A

Proof.

1. Note that as ∀
j

zj ≥ 0, h is a convex function over Rd
≥0.

2. Hence Ac is convex in Rd
≥0 because sublevel sets of convex functions are convex.

3. Note that 0 ∈ Ac.

4. Note that qπ
1 e1, . . . , q

π
d ed ∈ Ac.

5. Then H ⊆ Ac.

6. So Hc ⊇ A.

Lemma 28. Let w (z) = z1
qπ
1

+ ∙ ∙ ∙ + zd
qπ
d
. Then we have

1 ≤ h (δ) =⇒ 1 ≤ w (δ)
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Proof.

Remark 7. We will start with a graphical proof to show the intuition. For simplicity we will

let deg(f) = 2.

Figure 3.2: Graph in the coordinate system δ of the surface 1 = z1 + z2 (in black), the area
above this surface (in yellow), and the surface 1 = z1

q1
+ z2

q2
(in blue) showing that in this

coordinate system 1 = z1 + z2 is above 1 = z1
q1

+ z2
q2

.

The black curve is h(z). The yellow shaded region is the region above h(z). The blue line is

w(z). Unfortunately the curve h(z) is difficult to work with directly. Instead we note that as the

blue line is entirely below the yellow-shaded region it is also a bound.

In higher dimensions h(z) is a hypersurface and w(z) is a hyperplane below that hypersurface.

Now we prove it algebraically. We will divide the proof into two cases.

1. Case: 1 < h (z)

(a) z ∈ A.

(b) z ∈ Hc by Lemma 27.

(c) z /∈ H.

(d) z /∈ ConvexHull {0, qπ
1 e1, . . . , q

π
d ed}.
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(e) @
λ0+∙∙∙+λd=1
λ0,...,λd≥0

z = λ0 ∙ 0 + λ1q
π
1 e1 + ∙ ∙ ∙ + λdq

π
d ed

(f) @
λ1+∙∙∙+λd≤1
λ1,...,λd≥0

z = λ1q
π
1 e1 + ∙ ∙ ∙ + λdq

π
d ed

(g) ∃
λ1+∙∙∙+λd>1
λ1,...,λd≥0

z = λ1q
π
1 e1 + ∙ ∙ ∙ + λdq

π
d ed

(h) ∃
λ1+∙∙∙+λd>1
λ1,...,λd≥0

z = [λ1q
π
1 , ∙ ∙ ∙ , λdq

π
d ]

(i) By applying w (z) = z1
qπ
1

+ ∙ ∙ ∙ + zd
qπ
d
, we have

w (z) =
z1

qπ
1

+ ∙ ∙ ∙ +
zd

qπ
d

(j) By recalling z = [λ1q
π
1 , . . . , λdq

π
d ], we have

w (z) =
λ1q

π
1

qπ
1

+ ∙ ∙ ∙ +
λdq

π
d

qπ
d

(k) By simplifying, we have

w (z) = λ1 + ∙ ∙ ∙ + λd

(l) By recalling λ1 + ∙ ∙ ∙ + λd > 1, we have

1 < w (z)

2. Case: 1 = h(z)

(a) By continuity,

1 = h (z) ≤ w(z)

(b) Thus,

1 ≤ w(z)

Lemma 29. Consider the permutation π. Then for all j

qπ
j ≥ qj

where qπ
j is the unique positive real root of zπj + ∙ ∙ ∙ + zπ1 − 1 = 0 and qj = qI

j where I is the

identity permutation.
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Proof.

1. Let uπ
j (z) = zπj + ∙ ∙ ∙ + zπ1 − 1

2. Then uI
j (z) ≥ uπ

j (z) for all 1 ≤ j ≤ d and 0 ≤ z ≤ 1

(a) Recall uπ
j (z),

uπ
j (z) =

j∑

k=1

zπk − 1

(b) By letting e1 < ∙ ∙ ∙ < ej be a permutation of π1, . . . , πj , we have

uπ
j (z) =

j∑

k=1

zek − 1

(c) By noting k ≤ ek, we have

zk ≥ zek for all 0 ≤ z ≤ 1

(d) Thus,

uI
j (z) ≥ uπ

j (z)

3. qI
j ≤ qπ

j

(a) By letting z = qI
j in item 2. we have,

0 = uI
j (q

I
j ) ≥ uπ

j (qI
j )

(b) Note,

uπ
j (1) ≥ 0

(c) Thus, by Intermediate Value Theorem

qI
j ≤ qπ

j

Proof of Theorem 22. With the above lemmas we may prove the theorem. Observe,

0 = f (x)

By Lemma 26, we have

=⇒ h (δ) ≥ 1
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By Lemma 28, we have

=⇒ w (δ) ≥ 1

By recalling w(δ) =
δ1

qπ
1

+ ∙ ∙ ∙ +
δd

qπ
d

, we have

⇐⇒
δ1

qπ
1

+ ∙ ∙ ∙ +
δd

qπ
d

≥ 1

By recalling δj = uj − uj+1 and uδ+1 = 0, we have

⇐⇒
u1 − u2

qπ
1

+ ∙ ∙ ∙ +
ud−1 − ud

qπ
d−1

+
ud

qπ
d

≥ 1

By recalling uj =
sj

|x|
, we have

⇐⇒
s1
|x| −

s2
|x|

qπ
1

+ ∙ ∙ ∙ +

sd−1

|x| − sd
|x|

qπ
d−1

+
sd
|x|

qπ
d

≥ 1

Simplifying, we have

⇐⇒
s1 − s2

qπ
1

+ ∙ ∙ ∙ +
sd−1 − sd

qπ
d−1

+
sd

qπ
d

≥ |x|

By recalling Lemma 29, we have

=⇒
s1 − s2

q1
+ ∙ ∙ ∙ +

sd−1 − sd

qd−1
+

sd

qd
≥ |x|

Proposition 30.

1 ≤
qπ
j

qj
≤ 2

Proof. From Lemma 29 we have 1 ≤
qπ
j

qj
, and by [10] and [24] we have that 1/2 ≤ qπ

j ≤ 1, for

all j and π. Thus,
qπ
j

qj
≤ 1

1/2 = 2.

Example 20 (Accuracy loss). We would like to know in practice how much information we

are losing by approximating qπ
j with qI

j . Thus, let π = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}. We have the

following graph, where qI
j is in red and qπ

j is in blue.
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Figure 3.3: Graph showing both qπ
j and qI

j for j from 1 to 10, where
π = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}. The blue curve is qπ

j and the red curve is qI
j .

As is clear, in all cases the starting value and ending value are the same. As the figure

demonstrates in the middle qI
j drops significantly more sharply than qπ

j at first, and then begins

to decline very slowly until qI
d = qπ

d .

3.2.2 Proof of Theorem 24

1. We have BI =
d∑

j=1

sj−sj+1

qj
, we want to show BI ≤ BL.

BI =
d∑

j=1

sj − sj+1

qj

By writing out the sum, we have

BI =
s1

q1
+

s2

q2
−

s2

q1
+ ∙ ∙ ∙ +

sd

qd−1
−

sd

qd

By pulling out each sj , we have

BI = s1

(
1
q1

)

+ s2

(
1
q2

−
1
q1

)

+ ∙ ∙ ∙ + sd

(
1

qd−1
−

1
qd

)
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By noting qj ≥ qj+1 and s2 ≥ sj for all 2 ≤ j ≤ d, we have

BI ≤ s1

(
1
q1

)

+ s2

(
1
q2

−
1
q1

)

+ ∙ ∙ ∙ + s2

(
1

qd−1
−

1
qd

)

By factoring, we have

BI ≤ s1

(
1
q1

)

+ s2

(
1
q2

−
1
q1

+ ∙ ∙ ∙ +
1

qd−1
−

1
qd

)

By noting q1 = 1, we have

BI ≤ s1 + s2

(
1
q2

−
1
1

+ ∙ ∙ ∙ +
1

qd−1
−

1
qd

)

By cancelation, we have

BI ≤ s1 +

(
1
qd

− 1

)

s2

As lim
d→∞

(
1
qd

− 1
)

= 1, we have

BI ≤ s1 + s2

Thus,

BI ≤ BL

Remark 8. Corollary 23 is a consequence of this proof.

In summary, there are many univariate root size bounds. Two of those root size bounds

are 2 s1 and s1 + s2. Considering these bounds one naturally wonders if there is an improved

bound of the form p1 s1 + ∙ ∙ ∙ + pd sd where pj 6= 0. We have derived such a bound, as it is a

trivial rewriting of BI , and the proof requires an entirely different approach than the proof of

the prior bounds.
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CHAPTER

4

ROOT SIZE BOUNDS FOR PHAM

SYSTEMS

We start by recalling the definition of a Pham system.

Definition 7 (Pham system). We say that F ∈ C [x]n is a Pham system if it has the following

form

F1 = xd1
1 +

∑

|e|<d1

a1,(e) xe

...

Fn = xdn
n +

∑

|e|<dn

an,(e) xe

where we used the following short-hands: x = (x1, . . . , xn) , e = (e1, . . . , en), xe = xe1
1 ∙ ∙ ∙ xen

n

and |e| = e1 + ∙ ∙ ∙ + en. These short hands will continue to be used for ease of reading.

We will use the following toy Pham system throughout this chapter.

Example 21 (Running example).

F1 = x2
1 − i ∙ x1 − x2 − 2

F2 = x2
2 − x1 − x2 + i
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Definition 8 (Root Size). The root size of F , written as RF , is defined by

RF = max
x∈Cn

F (x)=0

||x||∞

We will often write R when the intended F is clear from the context.

Example 22. For the running example (Example 38), we have

RF ≈ 1.998

Notation 4. To convey our results concisely we will use the following notations.

1. bi,j =
∑

|e|=j

∣
∣ai,(e)

∣
∣ (bi,di

= 1) ci,j =
(

bi,j

bi,di

) 1
di−j

2. si,1 ≥ ∙ ∙ ∙ ≥ si,di
is a sorted list of ci,0, . . . , ci,di−1

Example 23. For the running example (Example 38), we have

b1,0 = 2 b2,0 = 1

b1,1 = 2 b2,1 = 2

b1,2 = 1 b2,2 = 1

c1,0 =
√

2 c2,0 = 1

c1,1 = 2 c2,1 = 2

Thus,
s1,1 = 2 s2,1 = 2

s1,2 =
√

2 s2,2 = 1

4.1 Main Results

Theorem 31 (Improved Lagrange Root Size Bound for Pham Systems). The following U I is

a root size bound.

U I = max
1≤i≤n




di∑

j=1

si,j − si,j+1

qj





where again each qj is the only positive root of zj + ∙ ∙ ∙ + z1 − 1 = 0, and si,di+1 = 0

Remark 9. An important note is like the univariate Improved Lagrange bound this bound is

independent of degree, allowing for the qj’s to be precomputed. This allows rapid and relatively

accurate computation of the bound for high-degree super-sparse Pham systems.
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Example 24. For the running example (Example 38), we have

U I ≤ max{2.875, 2.619} = 2.875

Theorem 32 (Lagrange Root Size Bound for Pham Systems). The following UL is a root size

bound.

UL = max
1≤i≤n

(si,1 + si,2)

Example 25. For the running example (Example 38), we have

UL = max {s1,1 + s1,2, s2,1 + s2,2} = max
{

2 +
√

2, 2 + 1
}

= 2 +
√

2 < 3.415

Theorem 33 (Apocryphal Root Size Bound for Pham Systems). The following UA is a root

size bound.

UA = 2 s∗,1

where s∗,1 = max
1≤i≤n

si,1

Example 26. For the running example (Example 38), we have

UA = 2max{s1,1, s2,1} = 2max{2, 2} = 4

4.2 Proofs

The proofs shall be done in two parts. First we shall derive a general setup useful for proving

all three theorems, then we shall split into a second part which is different for each theorem.

Part 1:

Let ρ ∈ Cn be such that F (ρ) = 0 and R = ||ρ||
∞

. Let k be such that R = |ρk|.

Then, from Fk (ρ) = 0, we have

0 = ρdk
k +

∑

|e|<dk

ak,(e)ρ
e

By moving ρdk
k to the left hand side and taking absolute values of both sides, we have

∣
∣
∣ρdk

k

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

|e|<dk

ak,(e)ρ
e

∣
∣
∣
∣
∣
∣
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From the triangular inequality, we have

∣
∣
∣ρdk

k

∣
∣
∣ ≤

∑

|e|<dk

∣
∣ak,(e)ρ

e
∣
∣

By distributing the absolute values, we have

|ρk|
dk ≤

∑

|e|<dk

|ak,(e)||ρ1|
e1 ∙ ∙ ∙ |ρn|

en

Since |ρk| ≥ |ρ1| , . . . , |ρn|, we have

|ρk|
dk ≤

∑

|e|<dk

|ak,(e)||ρk|
|e|

Recalling R = |ρk|, we have

R
dk ≤

∑

|e|<dk

|ak,(e)|R
|e|

By collecting in R, we have

R
dk ≤

∑

0≤j<dk




∑

|e|=j

∣
∣ak,(e)

∣
∣



R
j

Recall bk,j =
∑

|e|=j

∣
∣ak,(e)

∣
∣ for 0 ≤ j < dk. Then we have

R
dk ≤

∑

0≤j<dk

bk,jR
j

Suppose that all bk,j are zero. Then all ak,(e) are zero. Hence Fk = xdk
k . Thus ρk = 0. Hence

R = 0. Since U∗ = 0 we obviously have R = 0 = U∗. Thus from now on assume that some bk,j

are non-zero.

Consider the univariate polynomial

g (r) = rdk −
∑

0≤j<dk

bk,jr
j

where r is a new variable. We will try to bound R from above by studying the graph of g.

Observe

1. g
(
R
)
≤ 0.
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2. The leading coefficient of g is positive. Thus the graph of g becomes eventually positive

for sufficiently large r.

3. The coefficients of g have exactly one sign variation. Thus by Descartes rule of signs, the

polynomial g has one and only one positive real root. Let us call it r∗.

Thus we conclude R ≤ r∗.

Thus, it suffices to find a root size bound of g.

At this point we reach the second part of the proofs. The outcome depends on which uni-

variate root size bound we choose to bound g with.

Part 2:

Proof. Proof of Theorem 31.

We will use the improved Lagrange bound, obtaining

R ≤
di∑

j=1

sk,j − sk,j+1

qj

The right hand side is difficult to compute from the coefficients of F since it is not easy to

determine k. Thus we will trade-off accuracy for efficiency, by taking the maximum, as

R ≤ max
1≤i≤n




di∑

j=1

si,j − si,j+1

qj



 = U I

Proof. Proof of Theorem 32.

We will use the Lagrange bound, obtaining

R ≤ sk,1 + sk,2

The right hand side is difficult to compute from the coefficients of F since it is not easy to

determine k. Thus we will trade-off accuracy for efficiency, by taking the maximum, as

R ≤ max
1≤i≤n

(si,1 + si,2) = UL
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Proof. Proof of Theorem 33.

We will use the apocryphal bound, obtaining

R ≤ 2 sk,1

The right hand side is difficult to compute from the coefficients of F since it is not easy to

determine k. Thus we will trade-off accuracy for efficiency, by taking the maximum, as

R ≤ 2 s∗,1 = UA

In summary, as a step between univariate polynomials and general multivariate polynomial

systems it makes sense to have a root size bound specialized for Pham systems. We have derived

several such bounds and left a framework that can convert any univariate root size bound into

a related root size bound for Pham systems.
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CHAPTER

5

QUALITY OF THE ROOT SIZE BOUNDS

FOR PHAM SYSTEMS

In the previous chapter we derived three root size bounds for Pham systems. But having only

a root size bound is of limited use. Therefore, we would like to know how good they are, that

is their quality. We shall represent the quality of a root size bound with the overestimation.

We define overestimation to be log2
U∗

R
. As before, we first need definitions and appropriate

notations, some new and some recalled.

Definition 9 (Lower Root Size). The lower root size of F , written as RF , is defined by

RF = min
x∈Cn

F (x)=0

||x||∞

We will often write R when the intended F is clear from the context.

We will use the following toy Pham system throughout this chapter.

Example 27 (Running example).

F1 = x2
1 − i ∙ x1 − x2 − 2

F2 = x2
2 − x1 − x2 + i
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Example 28. For the running example (Example 38), we have

R ≈ 1.202

Notation 5. To convey our results concisely we will use the following notations.

1. bi,j =
∑

|e|=j

∣
∣ai,(e)

∣
∣ (bi,di

= 1) ci,j =
(

bi,j

bi,di

) 1
di−j

ci,j =
(

bi,di−j

bi,0

) 1
di−j

2. si,1 ≥ ∙ ∙ ∙ ≥ si,di
is a sorted list of ci,0, . . . , ci,di−1

3. si,1 ≥ ∙ ∙ ∙ ≥ si,di
is a sorted list of ci,0, . . . , ci,di−1

Example 29. For the running example (Example 38), we start by recalling the bi,j which were

computed in Example 23.

b1,0 = 2 b2,0 = 1

b1,1 = 2 b2,1 = 2

b1,2 = 1 b2,2 = 1

Then we compute,
c1,0 = 1√

2
c2,0 = 1

c1,1 = 1 c2,1 = 2

Thus,
s1,1 = 1 s2,1 = 2

s1,2 = 1√
2

s2,2 = 1

5.1 Main Results

In this section we begin with theorems, then convey experimental results, then finally compar-

isons to other known root size bounds.

Theorem 34 (Overestimation Bound of the Improved Lagrange Root Size Bound for Pham

Systems). We have

log2

U I

R
≤ log2 max

1≤i≤n




di∑

j=1

si,j − si,j+1

qj



 + log2 min
1≤i≤n

di∑

j=1

si,j − si,j+1

qj

where again each qj is the only positive root of zj + ∙ ∙ ∙ + z1 − 1 = 0, and si,di+1 = si,di+1 = 0.
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Example 30. For the running example (Example 38), we have

log2

U I

R
≤ log2 max {2.875, 2.619} + log2 min {1.438, 2.619}

= log2(2.875) + log2 (1.438)

≤ 1.524 + .525

= 2.049

Theorem 35 (Overestimation Bound of the Lagrange Root Size Bound for Pham Systems).

We have

log2

UL

R
≤ log2 max

1≤i≤n
(si,1 + si,2) + log2 min

1≤i≤n
(si,1 + si,2)

Example 31. For the running example (Example 38), we have

log2

UL

R
≤ log2 max

{
2 +

√
2, 2 + 1

}
+ log2 min

{

1 +
1
√

2
, 2 + 1

}

= log2(2 +
√

2) + log2

(

1 +
1
√

2

)

≤ 1.772 + 0.772

= 2.544

Corollary 36 (Overestimation Bound of the Lagrange Root Size Bound for Large Constant

Coefficients). Suppose that
∣
∣ai,(0,...,0)

∣
∣ is sufficiently large so that si,1 = ci,0 for all i. Then we

have

log2

(
UL

R

)

≤ log2

(
(1 + w)

(
1 + w

1
d−1

))

where w = max
1≤i≤n

si,2

si,1
and d = max

1≤i≤n
di.

Example 32. Let F be the following.

F1 = x3
1 + 5 x1x2 + 25 x1 + 8000

F2 = x3
2 − x1x2 − x1 − 8000

Then clearly si,1 = ci,0 for all i.

Note

w = 1/4, d = 3
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Then we have,

log2

(
UL

R

)

≤ log2

(
5
4

(

1 +

(
1
4

) 1
3−1

))

= log2

(
5
4
∙
3
2

)

= log2

15
8

≤ 0.907

Theorem 37 (Overestimation Bound of the Apocryphal Root Size Bound for Pham Systems).

We have

log2

(
UA

R

)

≤ 2 + d log2

s∗,1
c∗,0

where s∗,1 = max
1≤i≤n

si,1, d = max
1≤i≤n

di, c∗,0 = max
1≤i≤n

ci,0

Example 33. For the running example (Example 38), we have

log2

(
UA

R

)

≤ 2 + 2 log2

(
2

21/2

)

= 2 + 2 log2 21/2

= 2 + 1

= 3

5.1.1 Experimental Quality

• Figure 5.1. The figure compares overestimation for random Pham systems with a fixed

degree vector and number of variables. The horizontal axis represents overestimation while

the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient

is randomly chosen from the integers between -10 and 10 using independently identically

uniformly distributed coefficients.

• Figure 5.2. The figure compares overestimation for random Pham systems with a fixed

degree vector and number of variables. The horizontal axis represents overestimation while

the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient is

randomly chosen from the rationals between -10 and 10 using independently identically
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d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 5.1: Overestimation of U I(F ) where F are Pham systems with independently identically
uniformly distributed integer coefficients between -10 and 10.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 5.2: Overestimation of U I(F ) where F are Pham systems with independently identically
uniformly distributed rational coefficients between -10 and 10.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 5.3: Overestimation of U I(F ) where F are Pham systems with independently identically
uniformly distributed integer coefficients between -10 and 10, except the constant coefficient,
which is defined to be zero.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 5.4: Overestimation of U I(F ) where F are Pham systems with independently identically
uniformly distributed integer coefficients between -10 and 10, except the constant coefficient,
which is defined to be ‘large’.
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uniformly distributed coefficients. The numerator was chosen between -44810 and 44810

with divisor 4481.

Remark 10. Figure 5.2 and Figure 5.1 are close enough to identical the differences are

accounted for by noise, thus the behavior for rational coefficients and integer coefficients

appears to be the same.

• Figure 5.3. The figure compares overestimation for random Pham systems with a fixed

degree vector and number of variables. The horizontal axis represents overestimation while

the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each non-constant

coefficient is randomly chosen from the integers between -10 and 10 using an independent

identical uniform distribution. Constant coefficients were defined to be 0.

Remark 11. As d goes up and the domain the coefficients are chosen from remains con-

stant the independent identical uniform distribution case shown in figure 5.1 approaches

the c∗,0 = 0 case shown in figure 5.3.

• Figure 5.4. The figure compares overestimation for random Pham systems with a fixed

degree vector and number of variables. The horizontal axis represents overestimation while

the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each non-

constant coefficient is randomly chosen from the integers between -10 and 10 using an

independent identical uniform distribution. Constant coefficients were defined such that

ci,0 = 20 max
1≤j<d

ci,j . Systems that would result in a function with ci,0 = 0 were regenerated

until a system that did not have ci,0 = 0 was found.

5.1.2 Comparison to Other Bounds

We will now discuss experimental comparisons of the overestimation of U I to the overestimation

of the Canny, Yap, and DMM root size bounds. We begin with the following graphs.

• Figure 5.5. The figure compares the overestimation of U I for random Pham systems

with a fixed degree vector and number of variables with the overestimation of known

multivariate root size bounds. The horizontal axis represents overestimation while the

vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient

is randomly chosen from the integers between -10 and 10 using an independent identical

uniform distribution.
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d = 2, n = 2 d = 3, n = 2

Figure 5.5: Overestimation of U I(F ) (in blue), UDMM (F ) (in green), UY (F ) (in red) and
UC(F ) (in yellow) where F are Pham systems with independently identically uniformly dis-
tributed coefficients between -10 and 10.

d = 2, n = 2 d = 3, n = 2

Figure 5.6: Overestimation of U I(F ) (in blue), UDMM (F ) (in green), UY (F ) (in red) and
UC(F ) (in yellow) where F are Pham systems with independently identically uniformly dis-
tributed coefficients between -10 and 10, except the constant coefficient, which is defined to be
zero.

d = 2, n = 2 d = 3, n = 2

Figure 5.7: Overestimation of U I(F ) (in blue), UDMM (F ) (in green), UY (F ) (in red) and
UC(F ) (in yellow) where F are Pham systems with independently identically uniformly dis-
tributed coefficients between -10 and 10, except the constant coefficient, which is defined to be
‘large’.
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We must start our discussion by reiterating that our root size bounds are specialized for

Pham systems, and so can take advantage of their structure. In exchange they do not

hold for non-Pham multivariate polynomial systems. The other root size bounds are root

size bounds for all multivariate polynomial systems with integer coefficients and d1 ∙ ∙ ∙ dn

many roots and so do not and cannot account for this structure. Thus it is expected that

our root size bounds will perform significantly better within their more limited scope.

From best to worst in terms of overestimation it went U I , the DMM root size bound, the

Yap root size bound, then the Canny root size bound for both the d = 2 and d = 3 cases.

Note that some subsets of this order are known for all multivariate polynomial systems

of equations with integer coefficients and d1 ∙ ∙ ∙ dn many roots. Specifically the DMM root

size bound is known to always be smaller than the Canny root size bound. On the other

hand, the Canny and Yap root size bounds are known to be incomparable.

• Figure 5.6. The figure compares the overestimation of U I for random Pham systems

with a fixed degree vector and number of variables with the overestimation of known

multivariate root size bounds. The horizontal axis represents overestimation while the

vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each non-constant

coefficient is randomly chosen from the integers between -10 and 10 using an independent

identical uniform distribution. Constant coefficients were defined to be 0.

This case is very similar to the independently identically uniformly distributed coefficient

case for all tested bounds.

• Figure 5.7. The figure compares the overestimation of U I for random Pham systems

with a fixed degree vector and number of variables with the overestimation of known

multivariate root size bounds. The horizontal axis represents overestimation while the

vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each non-

constant coefficient is randomly chosen from the integers between -10 and 10 using an

independent identical uniform distribution. Constant coefficients were defined such that

ci,0 = 20 max
1≤j<d

ci,j . Systems that would result in a function with ci,0 = 0 were regenerated

until a system that did not have ci,0 = 0 was found.

Note this particular comparison is not particularly fair to the other bounds. U I is specif-

ically good in this case. Thus the other bounds are negatively affected by the large c∗,0

while our bound is improved by it.
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Now that we have seen all of these comparisons we are willing to conjecture that U I will

always be at least as good as the other bounds.

Proposition 38. For every Pham system F , we have U I ≤ UC , where the Canny Bound

is denoted UC .

First recall the Canny Bound, recorded earlier in this dissertation as Theorem 12.

Proof. We will start with the case d = 1.

U I = max
1≤i≤n




di∑

j=1

si,j − si,j+1

qj



 ≤ 2 max
1≤i≤n

si,1 = 2s∗,1 ≤ 2 a ≤ 3 a ≤ (3 a)n

So we are done with the d = 1 case.

Let d ≥ 2 and recall

U I = max
1≤i≤n




di∑

j=1

si,j − si,j+1

qj



 ≤ 2 max
1≤i≤n

si,1

Note that for each Fi there are exactly
(
n+j−1
n−1

)
terms of total degree j

U I ≤ 2

((
n + j − 1

n − 1

)

a

) 1
di−j

As Pham systems are monic the base is greater than 1, so we may drop the exponent,

and drop the −1 from the choose.

U I ≤ 2

(
n + j

n

)

a

By noting j ≤ d, we have

U I ≤ 2

(
n + d

n

)

a

By applying the well-known inequality
(
n+d

n

)
≤
(

e(n+d)
n

)n
, we have

U I ≤ 2

(
e(n + d)

n

)n

a

There are two cases.

Case 1: n ≥ d

U I ≤ 2

(
e(2n)

n

)n

a
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By simplifying, we have

U I ≤ 2n+1 en a

By noting 2n+1 < D
nDn

C
C , en < 3nDn

C , and a ≥ 1, we have

U I < (3 DC a)nDn
C

Thus,

U I < UC

Case 2: n < d

U I ≤ 2

(
e(2d)

n

)n

a

By simplifying and dropping the nn in the denominator, we have

U I < 2n+1 en dn a

By noting 2n+1 < 3nDn
C , dn < Dn

C en < 3n, a ≥ 1, we have

U I < (3 DC a)nDn
C

Thus,

U I < UC

Proposition 39. For every Pham system F , we have U I ≤ UY , where the Yap Bound is

denoted UY .

First we recall the Yap root size bound, recorded earlier in this dissertation as Theorem 13.

Proof. By noting K ≥ 1, K > s∗,1, and Ω > 1, we have

s∗,1 ≤ KΩ.

Thus,

2 s∗,1 ≤ 23/2KΩ

By noting that N ≥ 1 and adding more terms, we have

2 s∗,1 ≤ 23Ω/2 KΩ NΩ 2(n+1) d1∙∙∙dn
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Thus,

U I ≤ UY

Conjecture 40. For every Pham system F , we have U I ≤ UDMM .

A proof is made difficult by the DMM root size bound’s use of lattice points, which are

difficult to usefully bound below.

5.2 Proofs

5.2.1 Overestimation Bound of the Root Size Bound for Pham Systems

Lemma 41. The following LI is a lower root size bound.

LI = max
1≤i≤n

1
di∑

j=1

si,j−si,j+1

qj

Lemma 42. The following LL is a lower root size bound.

LL = max
1≤i≤n

1
si,1 + si,2

Lemma 43. The following LA is a lower root size bound.

LA =
1
2

max
1≤i≤n

1
si,1

As with the proofs of Theorems 31, 32, and 33, the proofs shall be done in two parts. First

we shall derive a general setup useful for proving all three lemmas, then we shall split into a

second part which is different for each lemma.

Part 1:

We will prove that L∗ ≤ R. Let us first deal with a special case. Suppose that a1,(0,...,0) = ∙ ∙ ∙ =

an,(0,...,0) = 0. Then one sees immediately that L∗ = 0 and R = 0. Thus we have L∗ ≤ R.

Hence, from now on, let k be such that ak,(0,...,0) 6= 0. Let ρ ∈ Cn such that F (ρ) = 0 and

||ρ||∞ = R. Then, we have

0 = ρdk
k +

∑

|e|<dk

ak,(e)ρ
e
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By moving ak,(0,...,0) to the left hand side and taking absolute values of both sides, we have

∣
∣ak,(0,...,0)

∣
∣ =

∣
∣
∣
∣
∣
∣
ρdk

k +
∑

0<|e|<dk

ak,(e)ρ
e

∣
∣
∣
∣
∣
∣

From the triangular inequality, we have

∣
∣ak,(0,...,0)

∣
∣ ≤

∣
∣
∣ρdk

k

∣
∣
∣+

∑

0<|e|<dk

∣
∣ak,(e)ρ

e
∣
∣

By distributing the absolute values, we have

∣
∣ak,(0,...,0)

∣
∣ ≤ |ρk|

dk +
∑

0<|e|<dk

|ak,(e)||ρ1|
e1 ∙ ∙ ∙ |ρn|

en

Since for k we have R ≥ |ρ1| , . . . , |ρn|, we have

∣
∣ak,(0,...,0)

∣
∣ ≤ Rdk +

∑

0<|e|<dk

∣
∣ak,(e)

∣
∣R|e|

By collecting in R, we have

∣
∣ak,(0,...,0)

∣
∣ ≤ Rdk +

∑

0<j<dk

∑

|e|=j

∣
∣ak,(e)

∣
∣Rj

By recalling bk,j =
∑

|e|=j

∣
∣ak,(e)

∣
∣ for 0 ≤ j < dk and bk,dk

= 1, we have

bk,0 ≤ bk,dk
Rdk +

∑

0<j<dk

bk,jR
j =

∑

0<j≤dk

bk,jR
j

Recall that bk,0 6= 0. Then R > 0.

By dividing both side by bk,0 Rdk , we have

(
1
R

)dk

≤
∑

0<j≤dk

bk,j

bk,0

(
1
R

)dk−j

By reindexing, we have (
1
R

)dk

≤
∑

0≤j<dk

bk,dk−j

bk,0

(
1
R

)j
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Consider the univariate polynomial

g (r) = rdk −
∑

0≤j<dk

bk,dk−j

bk,0
rj

where r is a new variable. We will try to bound 1
R from above (equivalently bound R from

below) by studying the graph of g.

Observe

1. g
(

1
R

)
≤ 0.

2. The leading coefficient of g is positive. Thus the graph of g becomes eventually positive

for sufficiently large r.

3. The coefficients of g have exactly one sign variation. Thus by Descartes rule of signs, the

polynomial g has one and only one positive real root. Let us call it r∗.

Thus we conclude 1
R ≤ r∗, equivalently R ≥ 1

r∗ .

Thus, it suffices to find a root size bound of g.

At this point we reach the second part of the proofs. As before, the outcome depends on which

univariate root size bound we choose to bound g with.

Part 2:

Proof of Lemma 41. We will use the improved bound, obtaining

1
R

≤
dk∑

j=1

sk,j − sk,j+1

qj

equivalently

R ≥
1

dk∑

j=1

sk,j−sk,j+1

qj

The right hand side is difficult to compute from the coefficients of F since it is not easy to

determine k. Thus we will trade-off accuracy for efficiency, by taking the maximum, hence we

have

R ≥ max
1≤i≤n
bi,0 6=0

1
di∑

j=1

si,j−si,j+1

qj
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When bk,0 = 0, we have sk,1 = ∞ and in turn 1
dk∑

j=1

sk,j−sk,j+1
qj

= 0. Thus we can drop safely the

condition bk,0 6= 0, obtaining

R ≥ max
1≤i≤n

1
di∑

j=1

si,j−si,j+1

qj

Proof of Lemma 42. We will use the Lagrange bound, obtaining

1
R

≤ sk,1 + sk,2

equivalently

R ≥
1

sk,1 + sk,2

The right hand side is difficult to compute from the coefficients of F since it is not easy to

determine k. Thus we will trade-off accuracy for efficiency, by taking the maximum, hence we

have

R ≥ max
1≤i≤n
bi,0 6=0

1
si,1 + si,2

When bi,0 = 0, we have si,1 = ∞ and in turn 1
si,1+si,2

= 0. Thus we can drop safely the condition

bi,0 6= 0, obtaining

R ≥ max
1≤i≤n

1
si,1 + si,2

Proof of Lemma 43. We will use the apocryphal bound, obtaining

1
R

≤ 2 sk,1

equivalently

R ≥
1

2 sk,1

The right hand side is difficult to compute from the coefficients of F since it is not easy to

determine k. Thus we will trade-off accuracy for efficiency, by taking the maximum, hence we

have,

R ≥
1
2

max
1≤i≤n
bi,0 6=0

1
si,1
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When bi,0 = 0, we have si,1 = ∞ and in turn 1
2 si,1

= 0. Thus we can drop safely the condition

bi,0 6= 0, obtaining

R ≥
1
2

max
1≤i≤n

1
si,1

5.2.2 Overestimation Bound of the Improved Lagrange Root Size Bound for

Pham Systems

Note
U I

R
≤

U I

R

Thus,

U I

R
≤

max
1≤i≤n

(
di∑

j=1

si,j−si,j+1

qj

)

max
1≤i≤n

1
di∑

j=1

si,j−si,j+1
qj

By taking logarithm and simplifying, we have

log2

(
U I

R

)

≤ log2 max
1≤i≤n




di∑

j=1

si,j − si,j+1

qj



 + log2 min
1≤i≤n

di∑

j=1

si,j − si,j+1

qj

5.2.3 Overestimation Bound of the Lagrange Root Size Bound for Pham

Systems

Note
UL

R
≤

UL

R

Thus,

UL

R
≤

max
1≤i≤n

si,1 + si,2

max
1≤i≤n

1
si,1+si,2

By taking logarithm and simplifying, we have

log2

(
UL

R

)

≤ log2 max
1≤i≤n

(si,1 + si,2) + log2 min
1≤i≤n

(si,1 + si,2)
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5.2.4 Overestimation Bound of the Lagrange Root Size Bound for Pham

Systems with Large Constant Coefficients

While a corollary of Theorem 35 neither the result nor is the proof is obvious, and so Corollary

36 requires proof.

Suppose that
∣
∣ai,(0,...,0)

∣
∣ is sufficiently large so that si,1 = ci,0 for all i.

Then we have si,1 ≥ si,2 ≥ ci,1, . . . , ci,di−1.

Since bi,di
= 1, we have

sdi
i,1 = bi,0 sdi−1

i,2 ≥ bi,1 ∙ ∙ ∙ s1
i,2 ≥ bi,di−1

Let wi = si,2

si,1
. Note the following inequalities and simplifications.

ci,0 =
(

bi,di
bi,0

) 1
di−0

=

(
1

s
di
i,1

) 1
di−0

=

(
1

s
di
i,1

s0
i,2

s0
i,1

) 1
di

= 1
si,1

w
0
di
i

ci,1 =
(

bi,di−1

bi,0

) 1
di−1

≤

(
s1
i,2

s
di
i,1

) 1
di−1

=

(
1

s
di−1
i,1

s1
i,2

si,1

) 1
di−1

= 1
si,1

w
1

di−1

i

ci,2 =
(

bi,di−2

bi,0

) 1
di−2

≤

(
s2
i,2

s
di
i,1

) 1
di−2

=

(
1

s
di−2
i,1

s2
i,2

s2
i,1

) 1
di−2

= 1
si,1

w
2

di−2

i

...
...

...
...

ci,di−1 =
(

bi,1

bi,0

) 1
1

≤

(
s
di−1
i,2

s
di
i,1

) 1
1

=

(
1

s1
i,1

s
di−1
i,2

s
di−1
i,1

) 1
1

= 1
si,1

w
di−1

1
i

Since wi ≤ 1, we have

1
si,1

w
0
di
i ≥

1
si,1

w
1

di−1

i ≥
1

si,1
w

2
di−2

i ≥ ∙ ∙ ∙ ≥
1

si,1
w

di−1

1
i

Thus we have

si,1 ≤
1

si,1
w

0
di
i =

1
si,1

si,2 ≤
1

si,1
w

1
di−1

i

Next we recall the following inequality.

log2

UL

R
≤ log2 max

1≤i≤n
(si,1 + si,2) + log2 min

1≤i≤n
(si,1 + si,2)
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Note si,2 = si,1wi and recall si,1 ≤ 1
si,1

, and si,2 ≤ 1
si,1

w
1

di−1

i . Thus,

log2

UL

R
≤ log2 max

1≤i≤n
(si,1 + si,1wi) + log2 min

1≤i≤n

(
1

si,1
+ w

1
di−1

i

1
si,1

)

By pulling out the si,1’s where possible, we have

log2

UL

R
≤ log2 max

1≤i≤n
(si,1 (1 + wi)) + log2 min

1≤i≤n

(
1

si,1

(

1 + w
1

di−1

i

))

Take max
1≤i′≤n

wi′ first. Note this is the important trick, as it will allow us to apply the outer min

and max.

log2

UL

R
≤ log2 max

1≤i≤n

(

si,1

(

1 + max
1≤i′≤n

wi′

))

+ log2 min
1≤i≤n

(
1

si,1

(

1 + max
1≤i′≤n

w
1

di′−1

i′

))

Now we may separate the i and i′ components. Thus,

log2

UL

R
≤ log2

((

1 + max
1≤i′≤n

wi′

)

max
1≤i≤n

(si,1)

)

+ log2

((

1 + max
1≤i′≤n

w
1

di′−1

i′

)

min
1≤i≤n

(
1

si,1

))

By applying log properties, we have

log2

UL

R
≤ log2

(

1 + max
1≤i′≤n

wi′

)

+log2 max
1≤i≤n

(si,1)+log2

(

1 + max
1≤i′≤n

w
1

di′−1

i′

)

+log2 min
1≤i≤n

(
1

si,1

)

Note we may rewrite the min as a max in the denominator. Thus,

log2

UL

R
≤ log2

(

1 + max
1≤i′≤n

wi′

)

+log2 max
1≤i≤n

(si,1)+log2

(

1 + max
1≤i′≤n

w
1

di′−1

i′

)

+log2



 1
max
1≤i≤n

si,1





By applying log properties and simplifying, we have

log2

UL

R
≤ log2

(

1 + max
1≤i′≤n

wi′

)(

1 + max
1≤i′≤n

w
1

di′−1

i′

)

Note w = max
1≤i′≤n

wi′ and d = max
1≤i≤n

di. Thus,

log2

UL

R
≤ log2

(
(1 + w)

(
1 + w

1
d−1

))
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5.2.5 Overestimation Bound of the Apocryphal Root Size Bound for Pham

Systems

Note

log2

(
UA

R

)

≤ log2

(
UA

R

)

Thus,

log2

(
UA

R

)

≤ log2 2 max
1≤i≤n

(si,1) + log2 2 min
1≤i≤n

(si,1)

Recall s∗,1 = max
1≤i≤n

si,1 and substitute min
1≤i≤n

si,1 ≤ max
1≤i≤n

min
0<j≤di

(
bi,0

bi,j

) −1
j−0

.

Remark 12. This substitution is the key step in this proof, as it will eventually allow us to write

in terms of ci,j and ci,0. Without this step further simplification is quite difficult. Unfortunately

this step also represents significant information loss for some Pham systems.

log2

(
UA

R

)

≤ 2 + log2 s∗,1 + log2 max
1≤i≤n

min
0<j≤di

(
bi,0

bi,j

) −1
j−0

Combine logs,

log2

(
UA

R

)

≤ 2 + log2







s∗,1

max
1≤i≤n

min
0<j≤di

(
bi,0

bi,j

) 1
j−0







Write the denominator in terms of ci,∗, recalling ci,j = b
1

di−j

i,j and bi,di
= 1,

log2

(
UA

R

)

≤ 2 + log2









s∗,1

max
1≤i≤n

min

{

min
0<j<di

(
c
di−0
i,0

c
di−j
i,j

) 1
j−0

,

(
c
di−0
i,0

1

) 1
di−0

}









Distribute the exponents,

log2

(
UA

R

)

≤ 2 + log2








s∗,1

max
1≤i≤n

min

{

min
0<j<di

c
di/j
i,0

c
di/j−1
i,j

,
c
di/di
i,0

1

}







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Simplify by pulling the s∗,1 inside the max min,

log2

(
UA

R

)

≤ 2 + log2







1

max
1≤i≤n

min

{

min
0<j<di

c
di/j
i,0

s
di/j
∗,1

,
ci,0

s∗,1

}







Note the exponents of ci,0 and s∗,1 are the same for the first component of the min,

log2

(
UA

R

)

≤ 2 + log2







1

max
1≤i≤n

min

{

min
0<j<di

(
ci,0

s∗,1

)di/j
,

ci,0

s∗,1

}







As ci,0 ≤ s∗,1, we have min

{

min
0<j<di

(
ci,0

s∗,1

)di/j
,

ci,0

s∗,1

}

=
(

ci,0

s∗,1

)di

, thus

log2

(
UA

R

)

≤ 2 + log2







1

max
1≤i≤n

(
ci,0

s∗,1

)di







Let d = max
1≤i≤n

di then

log2

(
UA

R

)

≤ 2 + log2







1

max
1≤i≤n

(
ci,0

s∗,1

)d







Unfortunately the above step is necessary, as without it there is no way to further simplify.

Thus, information is lost for Pham systems where there is a significant difference in the size of

the largest di compared other dis.

Note that d has no relation with i, so we pull it out of the max

log2

(
UA

R

)

≤ 2 + log2








1
(

max
1≤i≤n

ci,0

s∗,1

)d








By recalling c∗,0 = max
1≤i≤n

ci,0, we have

log2

(
UA

R

)

≤ 2 + d log2

s∗,1
c∗,0
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5.3 Experiments

Now that we have bounds on the overestimation of our root size bounds we would like to ex-

perimentally check the overestimation of that overestimation, defined as log2
2Overestimation Bound

2Overestimation .

We shall check the overestimation of the overestimation of the U I root size bound.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 5.8: Overestimation of the overestimation of U I(F ) where F are Pham systems with
independently identically uniformly distributed coefficients between -10 and 10.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 5.9: Overestimation of the overestimation of U I(F ) where F are Pham systems with
independently identically uniformly distributed coefficients between -10 and 10, except the
constant coefficient, which is defined to be ‘large’.

Figure 5.8. The figure compares the overestimation of the overestimation for random Pham

systems with a fixed degree vector and number of variables. The horizontal axis represents

overestimation of the overestimation while the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient is

randomly chosen from the integers between -10 and 10 using independently identically uniformly

distributed coefficients.

Remark 13. In practice the overestimation of the overestimation is pessimistic compared to
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the overestimation, as the lower root size bounds we have are lower bounds for R, and R ≥ R.

In cases where R >> R the overestimation is particularly pessimistic.

Figure 5.9. The figure compares the overestimation of the overestimation for random Pham

systems with a fixed degree vector and number of variables. The horizontal axis represents

overestimation of the overestimation while the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each non-constant

coefficient is randomly chosen from the integers between -10 and 10 using an independent

identical uniform distribution. Constant coefficients were defined such that ci,0 = 20 max
1≤j<d

ci,j .

Systems that would result in a function with ci,0 = 0 were regenerated until a system that did

not have ci,0 = 0 was found.

Remark 14. In this case the constant coefficient is somehow dominant, and so R will normally

be closer to R than in the uniform distribution case.

In summary, when giving a root size bound it is useful to be able to bound the quality in

terms of the coefficient size, number of variables, and the degree. We have given such quality

bounds for our root size bounds. In the case where the constant coefficient, c∗,0 is always the

largest for every equation we have that the quality is bound above by 2, which does not depend

on the number of variables, the degree, or the coefficient size beyond the requirement.
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CHAPTER

6

IMPROVEMENT OF THE ROOT SIZE

BOUNDS FOR PHAM SYSTEMS

In chapter 4 we derived root size bounds for Pham systems. A natural question to arise is

how can we improve those root size bounds? We will start this chapter with an exploration of

the special case where our Pham system is a univariate polynomial, and move on to exploring

improving the root size bounds for more general Pham systems.

We begin with definitions.

Definition 10 (Bounding Sequence). Let F be a Pham system, and let

Ui,∗(F ) = (Ui,0(F ), Ui,1(F ), . . .) be the sequence recursively defined by

Ui,j(F ) =






U(F ) if j = 0
(
∑

|e|<di

∣
∣ai,(e)

∣
∣Ui,j−1(F )|e|

)1/di

if j > 0

Where U(F ) is any root size bound of F . We will often write Ui,j when the intended F is clear

from the context.
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Example 34. Let

F1 = x2
1 − 10x1 − x2 − 1

F2 = x2
2 − x1 − x2 − 1

By letting Ui,0 = U I , we have

U1,∗(F ) = (11.61803, 11.34894, 10.92760, 10.69729, . . .)

U2,∗(F ) = (11.61803, 4.92301, 4.15595, 4.01043, . . .)

Definition 11 (Ui,∗ Limit). Let F be a Pham system, and let Ui,∗(F ) = (Ui,0(F ), Ui,1(F ), . . .).

Then we define Ûi to be the following.

Ûi = lim
j→∞

Ui,j

Example 35. Let

F1 = x2
1 − 10x1 − x2 − 1

F2 = x2
2 − x1 − x2 − 1

Then we have the following.

Û1(F ) ≈ 10.47024

Û2(F ) ≈ 3.92348

Graphically it looks like the following
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Figure 6.1: Ui,j for j from 0 to 5, where Ui,0 = U I (in blue), and Ri (in red). Note R1 6= R2

and Û1 6= Û2.

A question to arise is does Ûi = Ri for all Pham systems? Tragically, the answer is no.

Example 36. Let

F1 = x2
1 + x1 + x2 + 1

F2 = x2
2 + x1 + x2 + 1

Then we have the following figures.
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Figure 6.2: Ui,j for j from 0 to 5, where Ui,0 = U I (in blue), and Ri (in red). Note that Ui,j

does not approach Ri.

where Ui,0 = U I . Note which root size bound is chosen for Ui,0 does not affect Ûi.

However Ûi = Ri is possible.

Example 37. Let

F1 = x2
1 − x1 − x2 − 1

F2 = x2
2 − x1 − x2 − 1

Then we have the following figures.
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Figure 6.3: Ui,j for j from 0 to 5, where Ui,0 = U I (in blue), and Ri (in red). Note that Ui,j

approaches Ri.

where Ui,0 = U I . Note which root size bound is chosen for Ui,0 does not affect Ûi.

6.1 Main Results

It is sensible to begin with the special case of our Pham system being a univariate polynomial,

as this may hint at what will hold true for larger polynomial systems.

Theorem 44 (Improvement of the Root Size Bound for Univariate Polynomials). Let f =

xd −
∑

e<d

aex
e. If ∀

e
ae ≥ 0 then Û = R.

In other words, U∗ will approach the root size when our Pham system is a univariate

polynomial whose non-leading coefficients are all non-positive.

Theorem 45 (Improvement of the Root Size Bound for Pham Systems). If ∀
i

Fi = xd
i − g (x)

where g(x) =
∑

|e|<d

aex
e and ∀

|e|<d
ae = a1,(e) = ∙ ∙ ∙ = an,(e) ≥ 0 then Ûi = Ri.

That is to say, if the non-leading terms of the Pham system are the same for every Fi then

we have lim
j→∞

Ui,j = Ri.

6.2 Proofs

6.2.1 Improvement of the Root Size Bound for Univariate Polynomials

Proof. Note Û exists.
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By definition

Uj =
(
|ad−1|U

d−1
j−1 + ∙ ∙ ∙ + |a0|

)1/d

Thus,

lim
j→∞

Uj = lim
j→∞

(
|ad−1|U

d−1
j−1 + ∙ ∙ ∙ + |a0|

)1/d

As powering to a positive exponent is a monotonically increasing function, we have

lim
j→∞

Uj =

(

lim
j→∞

|ad−1|U
d−1
j−1 + ∙ ∙ ∙ + lim

j→∞
|a0|

)1/d

By basic limit rules, we have

lim
j→∞

Uj =

(

|ad−1| lim
j→∞

Ud−1
j−1 + ∙ ∙ ∙ + |a0|

)1/d

Recalling the definition of Û , we have

Û =

(

|ad−1| lim
j→∞

Ud−1
j−1 + ∙ ∙ ∙ + |a0|

)1/d

Note lim
j→∞

Uj−1 = Û . Thus,

Û =
(
|ad−1| Û

d−1 + ∙ ∙ ∙ + |a0|
)1/d

As ∀
e

ae ≥ 0, we have

Û =
(
ad−1Û

d−1 + ∙ ∙ ∙ + a0

)1/d

By definition,

R =
(
ad−1R

d−1
+ ∙ ∙ ∙ + a0

)1/d

Next we recall

Û ≥ R

Thus,

Û = R

Now that we have a univariate result we will generalize the main idea of the proof into a

related proof for multivariate Pham systems.
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6.2.2 Improvement of the Root Size Bound for Pham Systems

Proof. Note Ûi exists.

By definition

Ui,j = max
1≤i≤n

(
|ad−1,0,...,0|U

d−1
i,j−1 + ∙ ∙ ∙ + |a0,...,0|

)1/d

But as g(x) is the same for all i, we have Uk = U1,k = ∙ ∙ ∙ = Un,k. Thus,

Uj =
(
|ad−1,0,...,0|U

d−1
j−1 + ∙ ∙ ∙ + |a0,...,0|

)1/d

Thus

lim
j→∞

Uj = lim
j→∞

(
|ad−1,0,...,0|U

d−1
j−1 + ∙ ∙ ∙ + |a0,...,0|

)1/d

As powering to a positive exponent is a monotonically increasing function, we have

lim
j→∞

Uj =

(

lim
j→∞

|ad−1,0,...,0|U
d−1
j−1 + ∙ ∙ ∙ + lim

j→∞
|a0,...,0|

)1/d

By basic limit rules, we have

lim
j→∞

Uj =

(

|ad−1,0,...,0| lim
j→∞

Ud−1
j−1 + ∙ ∙ ∙ + |a0,...,0|

)1/d

Recalling the definition of Û , we have

Û =

(

|ad−1,0,...,0| lim
j→∞

Ud−1
j−1 + ∙ ∙ ∙ + |a0,...,0|

)1/d

Note lim
j→∞

Uj−1 = Û . Thus,

Û =
(
|ad−1,0,...,0| Û

d−1 + ∙ ∙ ∙ + |a0,...,0|
)1/d

As ∀
e

ae > 0, we have

Û =
(
ad−1,0,...,0Û

d−1 + ∙ ∙ ∙ + a0,...,0

)1/d

Remark 15. Note so far in this proof very little differs from the univariate argument. The

remaining part is where more work was needed.

Note for any solution set (x1, . . . , xn) we have

xd
1 = ∙ ∙ ∙ = xd

n
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Thus,

|x1| = ∙ ∙ ∙ = |xn|

Thus we have equality in the following.

R =
(
ad−1,0,...,0R

d−1
+ ∙ ∙ ∙ + a0,...,0

)1/d

Finally, we recall

Û ≥ R

Thus,

Û = R

As this was true independent of i, we have

Ûi = Ri

6.3 Experiments

• Figure 6.4. The figure compares overestimation for random Pham systems with a fixed

degree vector and number of variables. The horizontal axis represents overestimation while

the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient

is randomly chosen from the integers between -10 and 10 using independently identically

uniformly distributed coefficients. The blue bars shows the quality of U I while the green

bars shows the quality of max
1≤i≤n

Ui,10(F ) where Ui,0 = U I .

Remark 16. There appears to be a general across-the-board reduction in the overestima-

tion, so the bound is improved. The histogram of max
1≤i≤n

Ui,10(F ) seems to keep a similar

shape to the histogram of Ui,0.

• Figure 6.5. The figure compares overestimation for random Pham systems with a fixed

degree vector and number of variables. The horizontal axis represents overestimation while

the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient

is randomly chosen from the integers between -10 and 0 using independently identically
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d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 6.4: Overestimation of max
1≤i≤n

Ui,10(F ) (in green) and U I(F ) (in blue) where F are Pham

systems with independently identically uniformly distributed coefficients between -10 and 10.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 6.5: Overestimation of max
1≤i≤n

Ui,10(F ) (in green) and U I(F ) (in blue) where F are Pham

systems with independently identically uniformly distributed coefficients between 0 and 10.
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uniformly distributed coefficients. The blue bars shows the quality of U I while the green

bars shows the quality of max
1≤i≤n

Ui,10(F ) where Ui,0 = U I .

Remark 17. There is clear improvement from the prior experiment with random coeffi-

cient signs, as expected. This case does not suffer information loss from using the absolute

value and triangular inequality.

In summary, it is always useful to be able to improve results you already have. In light of

this we have shown a method for improving root size bounds, and have shown that it can be

used to find an upper bound on the size of each coordinate of the roots. In certain cases we

have that the improvement scheme approaches the root size.
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CHAPTER

7

ROOT SPREAD BOUNDS FOR PHAM

SYSTEMS

In chapter 4 we derived root size bounds for Pham systems. In this chapter we will formulate

a definition for “root spread”. We will then derive root spread bounds for Pham systems.

Definition 12 (Root Spread). The root spread of F is denoted by S and defined as

S =
R−R

2

R+R
2

Remark 18. This definition can, of course, be written more succinctly as

S =
R − R

R + R

The long-form definition was chosen to emphasis that the root spread is found by taking the

average of the difference of R and R divided by the average of the sum of R and R, which is

more natural.

We will use the following toy Pham system throughout this chapter.
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Example 38 (Running example).

F1 = x2
1 − i ∙ x1 − x2 − 2

F2 = x2
2 − x1 − x2 + i

Example 39. For the running example (Example 38), we have

S ≈
1.998 − 1.202
1.998 + 1.202

≤ 0.2488

7.1 Main Results

Theorem 46 (Improved Lagrange Root Spread Bound for Pham Systems). We have

S ≤
1 − u

1 + u

where u = 1

max
1≤i≤n

(
di∑

j=1

si,j−si,j+1
qj

)

min
1≤i≤n

(
di∑

j=1

si,j−si,j+1
qj

)

Example 40. For the running example (Example 38), we have

0.2421 ≤ u

Thus,

S ≤
1 − 0.2421
1 + 0.2421

≤ 0.6102

Theorem 47 (Lagrange Root Spread Bound for Pham Systems). We have

S ≤
1 − v

1 + v

where v = 1
max

1≤i≤n
(si,1+si,2) min

1≤i≤n
(si,1+si,2)

Example 41. For the running example (Example 38), we have

0.1715 ≤ v

Thus,

S ≤
1 − 0.1715
1 + 0.1715

≤ 0.7073
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Theorem 48 (Apocryphal Root Spread Bound for Pham Systems). We have

S ≤
1 − 1

4ζd

1 + 1
4ζd

where

ζ =
c∗,0
s∗,1

c∗,0 = max
1≤i≤n

ci,0 d = max
1≤i≤n

di

Remark 19. As
(

c∗,0

s∗,1

)
≤ 1, we have that 1−ζ

1+ζ ≥ 3
5 . It is clear that lim

c∗,0→∞
S → 0. Thus, this

bound is not useful for cases with relatively large c∗,0. On the other hand, when c∗,0 is relatively

small this bound will prove competitive with Theorem 47.

Example 42. For the running example (Example 38), we have

0.1250 ≤ ζ

Thus,

S ≤
1 − 0.1250
1 + 0.1250

≤ 0.7778

7.2 Proofs

Proof of Theorem 46. Note

S =
R−R

2

R+R
2

=
R − R

R + R
=

1 − R

R

1 + R

R

Thus in order to bound S from above, we need to bound R

R
from below. We have

R

R
≥

LI

U I

By applying the definitions of U I and LI , we have

R

R
≥

max
1≤i≤n

1
di∑

j=1

si,j−si,j+1
qj

max
1≤i≤n

(
di∑

j=1

si,j−si,j+1

qj

)
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By rewriting the numerator, we have

R

R
≥

1

min
1≤i≤n

(
di∑

j=1

si,j−si,j+1
qj

)

max
1≤i≤n

(
di∑

j=1

si,j−si,j+1

qj

)

By simplifying, we have

R

R
≥

1

max
1≤i≤n

(
di∑

j=1

si,j−si,j+1

qj

)

min
1≤i≤n

(
di∑

j=1

si,j−si,j+1

qj

)

By recalling u = 1

max
1≤i≤n

(
di∑

j=1

si,j−si,j+1
qj

)

min
1≤i≤n

(
di∑

j=1

si,j−si,j+1
qj

) , we have

R

R
≥ u

Hence,

S ≤
1 − u

1 + u

Proof of Theorem 47. Note

S =
R−R

2

R+R
2

=
R − R

R + R
=

1 − R

R

1 + R

R

Thus in order to bound S from above, we need to bound R

R
from below.

We have
R

R
≥

LL

UL

By applying the definitions of UL and LL, we have

R

R
≥

max
1≤i≤n

1
si,1+si,2

max
1≤i≤n

(si,1 + si,2)
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By rewriting the numerator, we have

R

R
≥

1
min

1≤i≤n
(si,1+si,2)

max
1≤i≤n

(si,1 + si,2)

By simplifying, we have

R

R
≥

1

max
1≤i≤n

(si,1 + si,2) min
1≤i≤n

(
si,1 + si,2

)

By recalling v = 1
max

1≤i≤n
(si,1+si,2) min

1≤i≤n
(si,1+si,2)

, we have

R

R
≥ v

Hence,

S ≤
1 − v

1 + v

Proof of Theorem 48. Recall

S =
1 − R

R

1 + R

R

Thus in order to bound S from above, we need to bound R

R
from below.

Note
R

R
≥

LA

UA

By applying the definitions of UA and LA, we have

R

R
≥

1
2 max

1≤i≤n

1
si,1

2 s∗,1

By converting the numerator into bi,j notation, we have

R

R
≥

1
2 max

1≤i≤n
min

0<j≤di

(
bi,0

bi,j

) 1
j−0

2 s∗,1
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By recalling bi,di
= 1 and cdi−j

i,j = bi,j , we have

R

R
≥

1
4

max
1≤i≤n

min

{

min
0<j<di

(
c
di−0
i,0

c
di−j
i,j

) 1
j−0

,

(
c
di−0
i,0

1

) 1
di−0

}

s∗,1

By simplifying, we have

R

R
≥

1
4

max
1≤i≤n

min

{

min
0<j<di

c
di/j
i,0

c
di/j−1
i,j

, ci,0

}

s∗,1

Make the RHS smaller by replacing ci,j in the denominator of the min with s∗,1 and combine

the now redundant minimums.

R

R
≥

1
4

max
1≤i≤n

min
0<j≤di

c
di/j
i,0

s
di/j−1
∗,1

s∗,1

As s∗,1 has nothing to do with i or j, pull the s∗,1 inside the max min.

R

R
≥

1
4

max
1≤i≤n

min
0<j≤di

c
di/j
i,0

s
di/j
∗,1

By rewriting, we have
R

R
≥

1
4

max
1≤i≤n

min
0<j≤di

(
ci,0

s∗,1

)di/j

As ci,0

s∗,1
≤ 1 we have min

0<j≤di

(
ci,0

s∗,1

)di/j
=
(

ci,0

s∗,1

)di

. Thus,

R

R
≥

1
4

max
1≤i≤n

(
ci,0

s∗,1

)di

By recalling d = max
1≤i≤n

di, we have

R

R
≥

1
4

max
1≤i≤n

(
ci,0

s∗,1

)d

Note d has nothing to do with i. Thus,

R

R
≥

1
4

( max
1≤i≤n

ci,0

s∗,1

)d
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By recalling c∗,0 = max
1≤i≤n

ci,0, we have

R

R
≥

1
4

(
c∗,0
s∗,1

)d

By recalling ζ = c∗,0

s∗,1
, we have

R

R
≥

1
4
ζd

Hence,

S ≤
1 − 1

4ζd

1 + 1
4ζd

7.3 Experiments

In this section we will define overestimation of the root spread bound to mean Root Spread Bound
Root Spread .

Note the difference between this definition and the one used for the root size bound, where log 2

was taken.

Figure 7.1. The figure compares the overestimation of the root spread for random Pham

systems with a fixed degree vector and number of variables. The horizontal axis represents

overestimation of the overestimation while the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each coefficient is

randomly chosen from the integers between -10 and 10 using independently identically uniformly

distributed coefficients.

Remark 20. As the lower bound of the overestimation is one, it is easily seen from the figure

that the overestimation is low in this case. The largest point of interest is that as the degree

increases the overestimation actually goes down. This appears to be because we always choose

coefficients between -10 and 10, so the relative size of the constant coefficient is going down.

Figure 7.2. The figure compares the overestimation of the root spread for random Pham

systems with a fixed degree vector and number of variables. The horizontal axis represents

overestimation of the overestimation while the vertical axis represents frequency.

Given n = 2 and d we generated 10,000 Pham systems randomly where each non-constant

coefficient is randomly chosen from the integers between -10 and 10 using an independent

identical uniform distribution. Constant coefficients were defined such that ci,0 = 20 max
1≤j<d

ci,j .

Systems that would result in a function with ci,0 = 0 were regenerated until a system that did

not have ci,0 = 0 was found.
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d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 7.1: Overestimation of S(F ) (Theorem 46) where F are Pham systems with indepen-
dently identically uniformly distributed coefficients between -10 and 10.

d = 3, n = 2 d = 4, n = 2 d = 5, n = 2 d = 6, n = 2

Figure 7.2: Overestimation of S(F ) (Theorem 46) where F are Pham systems with indepen-
dently identically uniformly distributed coefficients between -10 and 10, except the constant
coefficient, which is defined to be ‘large’.
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Remark 21. From earlier we have that as the constant coefficient gets larger S is going to zero.

Based on the figures S approaches zero more quickly than the root spread bound does. Thus, the

closer S gets to 0 the larger the relative gap will be.

In summary, the spread of the roots is bounded above, and that bound appears to behave

in unexpected ways. That is, the root spread bound appears to get closer to the root spread

the smaller the constant coefficient is relative to the other coefficients.
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CHAPTER

8

RELATIONSHIP BETWEEN THE ROOTS

OF PHAM SYSTEMS AND THEIR

DERIVATIVES

We must first define what we mean by derivative.

Definition 13 (Derivative of a Pham System). Given a Pham system F as defined previously

the corresponding derivative system ∂F is

∂1F1 = xd1−1
1 +

1
d1

∂1g1(x1, ..., xn)

...

∂nFn = xdn−1
n +

1
dn

∂ngn(x1, ..., xn)

where each Fi and gi is a polynomial in the variables x1, ..., xn and deg(gi(x1, ..., xn)) < di such

that i = 1,...,n.
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Example 43. Let

F1 = x3
1 + (1 + i) x2

1 + x2
2 − i x1 − x2 − 2

F2 = x3
2 − x2

1 + (2 + 2 i) x2
2 − x1 − x2 − i

Then

∂1F1 = x2
1 +

2(1 + i)
3

x1 −
i

3

∂2F2 = x2
2 +

2(2 + 2 i)
3

x2 −
1
3

Remark 22. Note ∂F is monic. This does not affect the roots but is needed for the derivative

system to be a Pham system.

Remark 23. We chose this definition of derivative as it has the following useful properties:

1. The derivative is also a Pham system.

2. Taking the derivative then permuting the xis or permuting the xis then taking the deriva-

tive will have the same outcome. This is ideal for applications as the choice of which

variable is the i-th is often arbitrary.

While other definitions of derivative might have all of these properties this was the one we chose

to work with.

Theorem 49. The average of the roots of F is the same as the average of the roots of ∂F ,

counting multiplicity.

Example 44.

F1 = x3
1 + (1 + i) x2

1 + x2
2 − i x1 − x2 − 2

F2 = x3
2 − x2

1 + (2 + 2 i) x2
2 − x1 − x2 − i

Let F be the Pham system F = {F1, F2} then the average values of the roots of F are

(
−1
3

+
−1
3

i

)

,

(
−2
3

+
−2
3

i

)

As a point is the average if and only if it is the average coordinate-wise it is sufficient to observe

the x1 and x2 coordinates. The following plots show the overlap of the coordinates of the averages

of the roots.
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Figure 8.1: Coordinates of the roots and the coordinate-wise average of the roots of F (in
black) and ∂F (in red) showing the overlap of the averages.

The following example shows Theorem 49 does not hold for non-Pham multivariate poly-

nomial systems, even if they have no roots at infinity.

Example 45.

F1 = x2
1 + x1x2 + 3x2

2 + 4x2 + 2

F2 = 3x2
1 + 3x1x2 + 4x2

2 + 2x1 + 4x2 + 3

Let F be the multivariate system {F1, F2}. The following graphs show that the coordinates of

the averages of the roots do not coincide.
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Figure 8.2: Coordinates of the roots and the coordinate-wise average of the roots of F (in
black) and ∂F (in red) showing the failure to overlap of the averages.

If instead we look at the system {F2, F1} the roots of the original system are the same as the

roots of F , but we have ∂F = {∂F2
∂x1

, ∂F1
∂x2

}. Then the following graphs show that the coordinates

of the averages of the roots still do not coincide.
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Figure 8.3: Coordinates of the roots and the coordinate-wise average of the roots of F (in
black) and ∂F (in red) showing the failure to overlap of the averages.

8.1 Main Results

For this chapter we must have a definition for relationship to make sense of what we mean when

we say the roots of F and the roots of ∂F have a relationship. Each definition of relationship

we use will have a different subsection dedicated to it.

8.1.1 Convex Hull

In this subsection we say the roots of F and the roots of ∂F have a relationship if the i-th

coordinate of the roots of ∂F are contained in the convex hull of the i-th coordinate of the

roots of F . This is Gauss-Lucas theorem in the special case that F is a univariate polynomial,

and so can be said to be a direct analog of Gauss-Lucas theorem for Pham systems.

Conjecture 50. For 1 ≤ i ≤ n, the i-th coordinate of the roots of the derivative system ∂F

are contained inside the convex hull formed by the i-th coordinate of the roots of the original

system F .

This conjecture is false.
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Example 46 (Counterexample:).

F1 = x3
1 + 20 x1 x2

F2 = x3
2 + 5 x2

1 + 3 x1 x2

Let F be the Pham system F = {F1, F2}. The plots are as follows.

Figure 8.4: The coordinates of the roots of F (in black) their coordinate-wise convex hulls (in
yellow), and the coordinates of the roots of ∂F (in red). Note that in the graph on the right
some of the red dots are outside the yellow triangle.

Note that while all of the x1 roots of ∂F are contained in the convex hull of the x1 roots of F

the same is not true for the x2 roots, and so the conjecture is false.

We have shown that the i-th coordinate of the roots of a derivative system are not always

contained in the convex hull of the i-th coordinate of the roots of its Pham system. Thus we will

now find sufficient conditions for which the i-th coordinate of the roots of the derivative system

will be contained in the convex hull of the i-th coordinate of the roots of its Pham system.

Corollary 51. Given a 2nd degree n variable Pham system F , the derivative system ∂F has

only one root, and each i-th coordinate of this root is contained in the convex hull of the i-th

coordinate of the roots of F.
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This is straightforward from Theorem 49.

Next we will need the following definition.

Definition 14 (Triangular Decoupled-Derivative Pham system). We say that F ∈ C [x]n is a

Triangular Decoupled-Derivative Pham system if it has the following form

F1 = g1(x1)

F2 = g2(x2) + h2(x1)

...

Fn = gn(xn) + hn(x1, . . . , xn−1)

where deg(gi) = di and deg(hi) < di

Example 47. The following F it a triangular decoupled-derivative Pham system.

F1 = x3
1 − x2

1 − x1 − 1

F2 = x3
2 + x1 + x2 + 16

Theorem 52. If F is a triangular decoupled-derivative Pham system then the convex hull of the

i-th coordinate of the roots of F contains the i-th coordinate of the roots of ∂F for 1 ≤ i ≤ n.

Example 48. We would like to verify the theorem with an example. Referring back to F from

Example 47, we have the following figures.
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Figure 8.5: The coordinates of the roots of F (in black) their coordinate-wise convex hulls (in
yellow), and the coordinates of the roots of ∂F (in red). In all cases the red dots are inside the
yellow objects.

Thus we have verified the theorem for F , as coordinates of the roots of ∂F are contained in the

yellow triangles, which are the convex hulls of the coordinates of the roots of F .

Proof.

Observe

F1(x1, . . . , xn) = g1(x1)

This is a univariate polynomial and so we may apply Gauss-Lucas and so we are done.

Suppose that the convex hull for the i-th coordinate of the roots of F containing the i-th

coordinate of the roots of ∂F is true for 1 ≤ i ≤ k − 1. Then consider

Fk(x1, . . . , xn) = gk(xk) + hk(x1, . . . , xk−1)

The x1 through xk−1 roots can be found through sequential substitution, so hk(x1, . . . , xk−1) =

C`,k where ` is the multi-index of the particular choice of x1 through xk−1 roots.
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WLOG choose C1,k = Ck. Then

Fk(x1, . . . , xn) = Fk(xk) = gk(xk) + Ck.

Fk(xk) is a univariate polynomial, so Gauss-Lucas theorem must hold between Fk(xk) and

F ′
k(xk).

Observe that
∂

∂xk
Fk(x1, . . . , xn) =

d

dxk
gk(xk) = g′k(xk) = F ′

k(xk)

Thus the earlier substitution does not change ∂F , and as C1,k is by definition a solution set of

F for x1 through xk−1 the xk coordinates of the roots of Fk are all also roots of F . Hence the

convex hull for the i-th coordinate of the roots of F contains the i-th coordinate of the roots of

∂F for 1 ≤ i ≤ k, and so by induction we are done.

8.1.2 Separate Planes

In the previous section we considered a definition of relationship involving the convex hull. Now

we will instead define relationship using a larger convex object. Specifically, we will say the

roots of F and the roots of ∂F have a relationship if the smallest circle containing all of the i-th

coordinate of the roots of F contains all of the i-th coordinate of the roots of ∂F for 1 ≤ i ≤ n.

As we are now dealing with circles we may compare magnitudes, and thus we can apply our

results from Chapter 4.

Theorem 53 (Separate Planes). Let i be arbitrary. We have RF,i ≥ R∂F,i if

cdi
i,0

10di di
≥ cdi−1

∗,0 max
1≤μ≤n

j 6=0

cμ,j

Remark 24. The 10di and di from Theorem 53 have no special meaning and arise as a result

of strengthening the starting condition, RF,i ≥ R∂F,i, done in the proof for simplification.

Example 49. Let

F1 = x2
1 + x2 − 40000

F2 = x2
2 + x1 + 40000

Then

d1 = d2 = 2

c1,0 = c2,0 = c∗,0 = 200
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max
1≤μ≤n

j 6=0

cμ,j = 1

Thus the condition is
2002

200

?
≥ 200 ∙ 1

Which simplifies into

200 ≥ 200

Thus the condition is met. We would like to verify the theorem in this case. We present the

following graph of the complex plane where the coordinates of the roots of F are black and the

coordinates of the roots of ∂F are red.

The blue circle marks the smallest circle centered at the average of the i-th coordinate of the

roots of F containing all of the i-th coordinate of the roots of F . It is clear in both cases that

the red dot is contained inside the blue circle. Thus we have verified the theorem in this case.

Definition 15 (Triangular Pham system). We say that F ∈ C [x]n is a Triangular Pham

system if it has the following form

F1 = xd1
1 + h1(x1)

F2 = xd2
2 + h2(x1, x2)

...

Fn = xdn
n + hn(x1, . . . , xn)

where deg(hi) < di

Example 50.

F1 = x2
1 + x1 + 1

F2 = x3
2 − x1 x2 + x1 + 1

F3 = x3
3 + x1 x3 + x2 x3 + 1

Theorem 54. Given a Triangular Pham system where di ∈ {1, 2, 3} the i-th coordinate of the

roots of ∂F are contained inside the smallest circle centered at the average value of the roots

which contains all of the i-th coordinate of the roots of F .

Example 51. We would like to verify the theorem for the Triangular Pham system from Ex-

ample 50. We present the following graph of the complex plane where the coordinates of the

roots of F are black and the coordinates of the roots of ∂F are red:
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Figure 8.6: The coordinates of the roots of F (in black) their coordinate-wise maximum sizes
(in blue), and the coordinates of the roots of ∂F (in red). In all cases the red dots are inside
the blue circle.

It is clear that the red dots are contained inside the blue circle that marks the smallest

circle centered at the average of the i-th coordinate of the roots of F containing all of the i-th

coordinate of the roots of F . Thus we have verified the theorem in this case. Note that the x1

and x2 roots have multiplicity greater than 1. In fact, every x1 root has multiplicity 9 and every

x2 root has multiplicity 3. This is a natural result of the triangular structure.

Proof. Note there is nothing to contain if di = 1 so it is vacuously true, and di = 2 has already

been proven. Thus we only need to prove this for di = 3.

As the Pham system is triangular we have that F1 is a univariate polynomial. Thus by

Gauss-Lucas Theorem we have that the circle containing all of the x1 roots of F must contain

all of the x1 roots of ∂F .

Suppose that the circle centered at the average value of the roots of F containing all of the k-

th coordinate of the roots of F contains the k-th coordinate of the roots of ∂F for 1 ≤ k ≤ i−1.

WLOG let every coordinate of the roots of F be centered at 0. This will enable us to use larger

magnitude as an equivalent for containment, simplifying notation.

Let the degree of Fi = 3.

Note Fi(x1, . . . , xn) = x3
i + hi(x1, . . . , xi) = Fi(x1, . . . , xi).

Let Fi(xi) = Fi(α1,j , . . . , α(i−1),j , xi) where αm,j is the m-th coordinate of the j-th root of F . Fi
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is a univariate polynomial, and hence by Gauss-Lucas theorem the roots of ∂Fi
∂xi

are contained

in the convex hull of the roots of F . For every choice of m, we have

RFi
≥ R ∂Fi

∂xi

Thus we have containment of the union of the roots of ∂Fi
∂xi

inside the convex hull of the union

of the roots of Fi for all possible m’s. The union of the convex hulls of the roots of Fi(xi) is

equivalent to the convex hull of the i-th coordinates of the roots of F . Hence,

RF,i = RFi

di = 3, thus the derivatives are degree 2 polynomials. For 1 ≤ k ≤ i − 1

RF,k ≥ R∂F,k

Thus, we have the constant term of some ∂Fi
∂xi

is larger than the constant term of ∂Fi
∂xi

for all

choices of x1 through xi−1, and thus that

R ∂Fi
∂xi

,i
≥ R ∂Fi

∂xi
,i

Proposition 55. Given a Triangular Pham system the i-th coordinate of the roots of F are

not all contained inside the smallest circle centered at the average value of the roots of F which

contains all of the i-th coordinate of the roots of ∂F .

This is the equivalent of saying that when the system is translated to be centered at 0 the

largest root of the original system is greater than or equal to the smallest root of the derivative

system in every coordinate.

Proof. Let F be a Triangular Pham System. WLOG let the coordinates of the roots of F have

average 0.

As the system is triangular we have that F1 is a univariate polynomial, and hence the circle

containing all of the x1 roots of F must contain all of the x1 roots of ∂F . Thus the smallest

i-th coordinate of the roots of ∂F is not larger than RF,i.

Suppose that the circles centered at the origin containing all of the k-th coordinate of the

roots of ∂F do not contain all of the k-th coordinate of the roots of F for 1 ≤ k ≤ i − 1.

Consider Fi(x1, . . . , xn) = xdi
i + hi(x1, . . . , xi) = Fi(x1, . . . , xi).

and F̂i(xi) = Fi(α1,j , . . . , α(i−1),j , xi) where α`,j is the `-th coordinate of the j-th root of F .
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Consider the roots of the derivative system of F̂ , ∂F̂ , β1,j through βk,j . and the xi roots of ∂F ,

γ1,j through γk,j

Define the constant term of ∂F̂ to be ĉj for each F̂ and define the constant term of ∂Fi
∂xi

for

after the j-th set of x1 through xi−1 roots of F are input into Fi to be cj . By the inductive

assumption max(ĉj) ≥ min(cj).

∀m, let B ≥ βm,j , and γ ≤ γm,j

By Vieta’s formulas −1n max(ĉj) =
∏n

m=1 βm,j ≤ Bn and −1n min(cj) =
∏n

m=1 γm,j ≥ γn

Thus as max(ĉj) ≥ min(cj), B ≥ γ.

Conjecture 56. The i-th coordinate of the roots of ∂F are contained inside the smallest circle

centered at the average value of the roots of F which contains all of the i-th coordinate of the

roots of F .

Remark 25. Initial testing was done with a mix of 200 thousand 2 variable degree 3 and degree

4 Pham systems where the coefficients were chosen using an identical independent uniform

distribution. Later testing has included the following.

• 100,000 2 variable degree 4 Pham systems where integer coefficients were chosen between

-10 and 10 using an identical independent uniform distribution, except the constant co-

efficient which was defined to be zero. This case was a reasonable choice for searching

for counterexamples as it is the case where the quality of the root size bounds for Pham

system is not defined. This gives the roots less known structure.

• 100,000 2 variable degree 4 Pham systems where the first system had coefficients chosen

between -10,000 and 10,000 using an identical independent uniform distribution and the

second system had coefficients chosen between -10 and 10 using an identical independent

uniform distribution, except the constant coefficient in both cases, which was defined to

be zero. Similar to the above case, this case also considered that different coefficient sizes

between the equations can cause distortion favoring one variable.

• 75,000 2 variable degree 3 Pham systems where the coefficients were chosen using a bi-

nomial distribution. In the univariate case this is known to cause the roots to cluster

around the real line. This case was a reasonable choice for searching for counterexamples

as ∂F would not have the same coefficient distribution, and so is likely to have a different

structure.

8.1.3 Same Plane

In the previous sections we considered a definition of relationship involving the convex hull and

the smallest circle containing all of the i-th coordinates of the roots of F . Now we will define
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relationship to involve a similar convex object. We will say the roots of F and the roots of ∂F

have a relationship if the smallest circle centered at the average containing the minimum of the

infinity norms of the roots of F contains all of the coordinates of all of the roots of ∂F . This is

another way of saying we are going to put the largest coordinate of each root of F and all of

the coordinates of all of the roots of ∂F on the same graph, then compare the smallest result

for F with the largest result for ∂F .

Theorem 57 (Same Plane). We have RF ≥ R∂F if

∀
i

ci,0 ≥ 4 max
1≤k≤di−1

ci,k

Example 52. Let

F1 = x3
1 + 5 x1x2 + 25 x1 + 8000

F2 = x3
2 − x1x2 − x1 − 64

It is easy to verify that the condition holds for this system. We would like to verify the theorem

for this example. We present the following graph of the complex plane where all of the coordinates

of the roots of F are black and all of the coordinates of the roots of ∂F are red.

88



Figure 8.7: The coordinates of the roots of F (in black), RF (in grey), and the coordinates of
the roots of ∂F (in red), and R∂F (in green). All red dots are contained inside the grey circle,
and there are black dots inside the green circle.

The grey circle is the circle centered at the origin, the average of the roots of F , of radius RF ,

as all of the red points are inside the circle Theorem 57 is verified for this example. Note that

even though the grey circle is far outside the green circle, some of the coordinates of the roots

of F are still inside the green circle, so the results are not separated.

Example 53. Let

F1 = x3
1 + 5 x1x2 + 25 x1 + 8000

F2 = x3
2 − x1x2 − x1 − 8000

It is easy to verify that the condition holds for this system. We present the following graph of

the complex plane where all of the coordinates of all of the roots of F are black and all of the

coordinates of all of the roots of ∂F are red.
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Figure 8.8: The coordinates of the roots of F (in black), RF (in grey), and the coordinates of
the roots of ∂F (in red), and R∂F (in green). All red dots are contained inside the grey circle,
and there are no black dots inside the green circle.

The grey circle is the circle centered at the origin, the average of the roots of F , of radius RF

and the green circle is the circle centered at the origin with radius R∂F .

Note in this example the coordinates of the roots are fully separated as the green circle contains

none of the black roots.

Example 54. Let

F1 = x3
1 + 5 x1x2 + 25 x1 + 4

F2 = x3
2 − x1x2 − x1 − 4

It is easy to verify that the condition does not hold for this Pham system, graphing in the same

way as in example 52 we will see RF < R∂F , and hence we see that the C1 from 57 is not

always true.
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Figure 8.9: The coordinates of the roots of F (in black), RF (in grey), and the coordinates of
the roots of ∂F (in red), and R∂F (in green). All red dots are not contained inside the grey
circle, so R∂F is not always greater than RF .

8.2 Proofs

For the proofs we will need the following lemmas.

Lemma 58. Let ∂F = (H1, . . . , Hn). Then we have

Hi = xdi−1
i +

∑

e1,...,en≥0
|e|≤di−2

ei + 1
di

ai,(e1,...,ei+1,...,en) xe

Proof. It is elementary, but error-prone. Thus we will go slowly step by step.

Hi =
1
di

∂

∂xi
Fi

By applying the definition of Fi, we have

Hi =
1
di







∂

∂xi
xdi

i +
∑

e1,...,en≥0
|e|≤di−1

ai,(e)
∂

∂xi
xe1

1 ∙ ∙ ∙ xen
n






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By evaluating ∂
∂xi

, we have

Hi =
1
di





di xdi−1

i +
∑

e1,...,en≥0
|e|≤di−1

ei ai,(e) xe1
1 ∙ ∙ ∙ xei−1

i ∙ ∙ ∙ xen
n







Note ei ≥ 1 as we cannot have a negative exponent. Thus,

Hi =
1
di










di xdi−1
i +

∑

e1,...,en≥0
ei≥1

|e|≤di−1

ei ai,(e1,...,en) xe1
1 ∙ ∙ ∙ xei−1

i ∙ ∙ ∙ xen
n










By distributing the 1/di, we have

Hi = xdi−1
i +

∑

e1,...,en≥0
ei≥1

e1+∙∙∙+en≤di−1

ei

di
ai,(e1,...,en) xe1

1 ∙ ∙ ∙ xei−1
i ∙ ∙ ∙ xn

Now reindex our sum such that ei → e′i + 1.

Hi = xdi−1
i +

∑

e1,...,e
′
i+1,...,en≥0

e′i+1≥1

e1+∙∙∙+e
′
i+1+∙∙∙+en≤di−1

e′i + 1
di

ai,(e1,...,e′i+1,...,en) xe1
1 ∙ ∙ ∙ x

e′i
i ∙ ∙ ∙ xen

n

As i is no longer used, let i′ = i. Thus,

Hi = xdi−1
i +

∑

e1,...,ei+1,...,en≥0
ei+1≥1

e1+∙∙∙+ei+1+∙∙∙+en≤di−1

ei + 1
di

ai,(e1,...,ei+1,...,en) xe1
1 ∙ ∙ ∙ xei

i ∙ ∙ ∙ xen
n

By simplifying the sum indices, we have

Hi = xdi−1
i +

∑

e1,...,ei+1,...,en≥0
ei≥0

e1+∙∙∙+ei+∙∙∙+en≤di−2

ei + 1
di

ai,(e1,...,ei+1,...,en) xe1
1 ∙ ∙ ∙ xen

n
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Finally, remove the redundant ei + 1 ≥ 0 and simplify.

Hi = xdi−1
i +

∑

e1,...,en≥0
|e|≤di−2

ei + 1
di

ai,(e1,...,ei+1,...,en) xe1
1 ∙ ∙ ∙ xen

n

Lemma 59. We have

U I
∂F ≤ 2 max

1≤i≤n
max

1≤k≤di−1







∑

e1,...,en≥0
e1+∙∙∙+en=k

ei

di

∣
∣ai,(e1,...,en)

∣
∣







1
di−k

Proof. By definition, we have

U I
∂F = max

1≤i≤n




di−1∑

j=1

ti,j − ti,j+1

qj





where ti,1 ≥ ∙ ∙ ∙ ≥ ti,di−1 are in decreasing order among ei
di

ci,j for 1 ≤ j < di − 1.

Unfortunately this cannot be easily worked with as written, so we shall approximate. Note

U I
∂F ≤ UA

∂F

Then by Theorem 33 and Lemma 58, we have

U I
∂F ≤ 2 max

1≤i≤n
max

0≤k≤di−2







∑

e1,...,en≥0
e1+∙∙∙+en=k

ei + 1
di

∣
∣ai,(e1,...,ei+1,...,en)

∣
∣







1
di−1−k

Reindex such that ei + 1 → e′i.

= 2 max
1≤i≤n

max
0≤k≤di−2









∑

e1,...,e
′
i−1,...,en≥0

e1+∙∙∙+e′i−1+∙∙∙+en=k

e′i
di

∣
∣
∣ai,(e1,...,e

′
i,...,en)

∣
∣
∣









1
di−1−k
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Rename the dummy symbol e′i with ei.

= 2 max
1≤i≤n

max
0≤k≤di−2







∑

e1,...,ei−1,...,en≥0
e1+∙∙∙+ei−1+∙∙∙+en=k

ei

di

∣
∣ai,(e1,...,en)

∣
∣







1
di−1−k

By rearranging the sum index and the exponent, we have

= 2 max
1≤i≤n

max
0≤k≤di−2







∑

e1,...,ei−1,...,en≥0
e1+∙∙∙+en=k+1

ei

di

∣
∣ai,(e1,...,en)

∣
∣







1
di−(k+1)

Reindex k + 1 with k
′
.

= 2 max
1≤i≤n

max
0≤k′−1≤di−2








∑

e1,...,ei−1,...,en≥0

e1+∙∙∙+en=k
′

ei

di

∣
∣ai,(e1,...,en)

∣
∣








1

di−k
′

Rearrange the sum index.

= 2 max
1≤i≤n

max
1≤k′≤di−1








∑

e1,...,ei−1,...,en≥0

e1+∙∙∙+en=k
′

ei

di

∣
∣ai,(e1,...,en)

∣
∣








1

di−k
′

By renaming the dummy symbol k′ with k, we have

= 2 max
1≤i≤n

max
1≤k≤di−1







∑

e1,...,ei−1,...,en≥0
e1+∙∙∙+en=k

ei

di

∣
∣ai,(e1,...,en)

∣
∣







1
di−k

Since 0
di

= 0, we have

= 2 max
1≤i≤n

max
1≤k≤di−1







∑

e1,...,ei,...,en≥0
e1+∙∙∙+en=k

ei

di

∣
∣ai,(e1,...,en)

∣
∣







1
di−k
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Simplify the presentation.

= 2 max
1≤i≤n

max
1≤k≤di−1







∑

e1,...,en≥0
e1+∙∙∙+en=k

ei

di

∣
∣ai,(e1,...,en)

∣
∣







1
di−k

8.2.1 Averages of the Roots of Pham Systems and Their Derivative Systems

Proof. Note that ∂F is also a Pham system. Let δ = {d1, ..., dn} be the index of the degrees

of the Fi’s where each di is the degree of the polynomial Fi. Further let pi = (0,...,0,1,0,...,0)

where the 1 is in the i-th place, ei a multi-index of the degrees of the xj ’s in the polynomial

Fi and ai,(ei) are the coefficients of the term with degree index ei in the i-th equation, while

bi(ei) are the coefficients of the term of ∂F with degree index ei. Recall Γ[e1,...,en] denotes the

determinant

Γ[e1,...,en] =

∣
∣
∣
∣
∣
∣
∣
∣

e1
1 ... e1

n
...

...

en
1 ... en

n

∣
∣
∣
∣
∣
∣
∣
∣

where the superscripts represent which Fi you are considering and the subscript which xi

variable you are finding the exponent of. Then by [22] we know that the sum T1,i of the first

power of the i-th coordinate of the roots of the Pham system can be written as

T1,i =
∑

e1+...+en=δ−pi

(Γ[e1,...,en] −
n∏

k=1

dk) ∙ a1,(e1) ∙ ∙ ∙ an,(en)

= ((di − 1)
∏

k 6=i

dk −
n∏

k=1

dk) ∙ a1,(d1p1) ∙ ∙ ∙ ai,((di−1)pi) ∙ ∙ ∙ an,(dnpn)

= −ai,(0...(di−1)...0)

∏

k 6=i

dk

because e1 + ∙ ∙ ∙ + en = δ − pi is equivalent to ej = djpj , j 6= i, and ei = (di − 1)pi and all

coefficients aj,(djpj) are 1 by definition. Similarly the sum T ′
1,i of the i-th coordinate ∂F is

T ′
1,i =

−(di − 1)ai,(0,...,(di−1),...,0)

∏

k 6=i

(dk − 1)

di
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Thus the sum of the roots for ∂F is

T ′
1,i =

−(di − 1)ai,(0,...,(di−1),...,0)

∏

k 6=i

(dk − 1)

di
=

−ai,(0,...,(di−1),...,0)

n∏

k=1

(dk − 1)

di

The number of roots of a Pham system is known to be
n∏

k=1

dk thus the average of the i-th

coordinate of the roots of F is

T1,i
n∏

k=1

dk

=

−ai,(0,...,(di−1),...,0)

∏

k 6=i

(dk)

n∏

k=1

dk

=
−ai,(0,...,(di−1),...,0)

di

Similarly the average of the i-th coordinate of the roots of ∂F is

T ′
1,i

n∏

k=1

(dk − 1)
=

−ai,(0,...,(di−1),...,0)

n∏

k=1

(dk − 1)

di

n∏

k=1

(dk − 1)
=

−ai,(0,...,(di−1),...,0)

di

=⇒
T1,i
n∏

k=1

dk

=
T ′

1,i
n∏

k=1

(dk − 1)

As this is true for every such i, the average of the roots is the same.

8.2.2 Separate Planes

Lemma 60. Given a Pham system F then RF,i ≥ R∂F,i if U I
F ≤ 1 and Ξ ≤ 1

di

( ci,0

5

)di where

Ξ = max
1≤i≤n

1≤j≤di−1

ci,j

Proof of Lemma 60. This proof is long as a sacrifice to answer natural questions about where

this condition arises from. We will prove Lemma 60 by repeated rewriting and strengthening

(emphasized in red color) the condition RF,i ≥ R∂F,i. Let us begin!

RF,i ≥ R∂F,i

Using our bounds from Lemma 41 and Theorem 31, we have

⇐= LI
F,i ≥ U I

∂F,i

Strengthen the condition further by noting LA
F,i ≤ LI

F,i. Thus,

⇐= LI
F,i ≥ U I

∂F,i
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From Lemma 43 and Lemma 59, we have

⇐⇒
1
2

min
1≤k≤di






bi,0 −
∑

1≤j≤di−1

bi,j

1 +
∑

1≤j≤di−1

bi,j






1
k

≥ 2 max
1≤μ≤n

1≤`≤dμ−1







∑

e1,...,en≥0
|e|=`

eμ

dμ

∣
∣aμ,(e)

∣
∣







1
dμ−`

Since
ei

di
< 1 we may drop it to strengthen the condition. Thus,

⇐=
1
2

min
1≤k≤di






bi,0 −
∑

1≤j≤di−1

bi,j

1 +
∑

1≤j≤di−1

bi,j






1
k

≥ 2 max
1≤μ≤n

1≤`≤dμ−1







∑

e1,...,en≥0
|e|=`

∣
∣aμ,(e)

∣
∣







1
dμ−`

Now we can rewrite RHS in terms of bμ,` and move the 2 over. Thus,

⇐⇒ min
1≤k≤di






bi,0 −
∑

1≤j≤di−1

bi,j

1 +
∑

1≤j≤di−1

bi,j






1
k

≥ 4 max
1≤μ≤n

1≤`≤dμ−1

b
1

dμ−`

μ,`

Now rewrite min as a for all statement to get the following.

⇐⇒ ∀
1≤k≤di






bi,0 −
∑

1≤j≤di−1

bi,j

1 +
∑

1≤j≤di−1

bi,j






1
k

≥ 4 max
1≤μ≤n

1≤`≤dμ−1

b
1

dμ−`

μ,`

By moving the denominator to the RHS, we have

⇐⇒ ∀
1≤k≤di



bi,0 −
∑

1≤j≤di−1

bi,j





1
k

≥ 4



1 +
∑

1≤j≤di−1

bi,j





1
k

max
1≤μ≤n

1≤`≤dμ−1

b
1

dμ−`

μ,`

By raising everything to the k, we have

⇐⇒ ∀
1≤k≤di



bi,0 −
∑

1≤j≤di−1

bi,j



 ≥ 4k



1 +
∑

1≤j≤di−1

bi,j



 max
1≤μ≤n

1≤`≤dμ−1

b
k

dμ−`

μ,`

We want bi,0 alone on the RHS. Thus, we move
∑

1≤j≤di−1

bi,j to the RHS.

⇐⇒ ∀
1≤k≤di

bi,0 ≥
∑

1≤j≤di−1

bi,j + 4k



1 +
∑

1≤j≤di−1

bi,j



 max
1≤μ≤n

1≤`≤dμ−1

b
k

dμ−`

μ,`

By rewriting ∀
k

as a max, we have

⇐⇒ bi,0 ≥
∑

1≤j≤di−1

bi,j +



1 +
∑

1≤j≤di−1

bi,j



 max
1≤k≤di



4k max
1≤μ≤n

1≤`≤dμ−1

b
k

dμ−`

μ,`




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As U I
F ≤ 1 we have ci,j ≤ 1 thus we have bi,j ≤ 1. Thus,

⇐= bi,0 ≥
∑

1≤j≤di−1

bi,j +



1 +
∑

1≤j≤di−1

1



 max
1≤k≤di



4k max
1≤μ≤n

1≤`≤dμ−1

b
k

dμ−`

μ,`





By simplifying, we have

⇐⇒ bi,0 ≥
∑

1≤j≤di−1

bi,j + di max
1≤k≤di



4k max
1≤μ≤n

1≤`≤dμ−1

b
k

dμ−`

μ,`





By splitting the index space for k, we have

⇐⇒ bi,0 ≥
∑

1≤j≤di−1

bi,j + di max





max

1≤k≤di−1



4k max
1≤μ≤n

1≤`≤dμ−1

b
k

dμ−`

μ,`



 , 4di max
1≤μ≤n

1≤`≤dμ−1

b
di

dμ−`

μ,`






Replace b∗ with c∗.

⇐⇒ cdi
i,0 ≥

∑

1≤j≤di−1

cdi−j
i,j + di max





max

1≤k≤di−1



4 max
1≤μ≤n

1≤`≤dμ−1

cμ,`





k

,



4 max
1≤μ≤n

1≤`≤dμ−1

cμ,`





di






Let Ξ = max
1≤μ≤n

1≤`≤dμ−1

cμ,`, then we have

⇐⇒ cdi
i,0 ≥

∑

1≤j≤di−1

cdi−j
i,j + di max

{

max
1≤k≤di−1

(
4k Ξk

)
, 4di Ξdi

}

By taking the di-th root of both sides, we have

⇐⇒ ci,0 ≥




∑

1≤j≤di−1

cdi−j
i,j + di max

{

max
1≤k≤di−1

(
4k Ξk

)
, 4di Ξdi

}




1
di

By applying the triangle inequality, we have

⇐= ci,0 ≥




∑

1≤j≤di−1

cdi−j
i,j





1
di

+ d
1
di
i max

{

max
1≤k≤di−1

4
k
di Ξ

k
di , 4 Ξ

}

Since
k

di
< 1 we may drop it from the exponent of the 4.

⇐= ci,0 ≥




∑

1≤j≤di−1

cdi−j
i,j





1
di

+ 4 d
1
di
i max

{

max
1≤k≤di−1

Ξ
k
di , Ξ

}

Recalling UI,F ≤ 1 we have cμ,` < 1. Thus,

⇐⇒ ci,0 ≥




∑

1≤j≤di−1

cdi−j
i,j





1
di

+ 4 d
1
di
i max

{

max
1≤k≤di−1

Ξ
1
di , Ξ

}
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As the max across k is unused we may drop it. Thus,

⇐⇒ ci,0 ≥




∑

1≤j≤di−1

cdi−j
i,j





1
di

+ 4 d
1
di
i max

{
Ξ

1
di , Ξ

}

As Ξ
1
di ≥ Ξ, we have

⇐⇒ ci,0 ≥




∑

1≤j≤di−1

cdi−j
i,j





1
di

+ 4 d
1
di
i Ξ

1
di

Recalling ci,j < 1, we have

⇐= ci,0 ≥




∑

1≤j≤di−1

ci,j





1
di

+ 4 (di Ξ)
1
di

Take the largest possible c in the first sum, Ξ, we have,

⇐= ci,0 ≥




∑

1≤j≤di−1

Ξ





1
di

+ 4 (di Ξ)
1
di

We may now evaluate the sum and increase the multiplier by 1 to di.

⇐= ci,0 ≥ (di Ξ)
1
di + 4 (di Ξ)

1
di

By combining like terms, we have

⇐⇒ ci,0 ≥ 5 (diΞ)
1
di

Solve for Ξ.

⇐⇒
1
di

(ci,0

5

)di

≥ Ξ

Proof of Theorem 53. Let F be a Pham system and t = 1
2c∗,0

. We can apply Lemma 60 to F

by scaling by t when t Ξ ≤ 1
di

(
t ci,0

5

)di

holds. Thus we will prove Theorem 53 by repeated

rewriting and strengthening (emphasized in red color) the condition t Ξ ≤ 1
di

(
t ci,0

5

)di

.

t Ξ ≤
1
di

(
t ci,0

5

)di

We begin by getting all of the t’s on the RHS.

⇐⇒ Ξ ≤
1
di

(ci,0

5

)di

tdi−1
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By recalling t =
1

2c∗,0
, we have

⇐⇒ Ξ ≤
1
di

(ci0

5

)di 1

2di−1cdi−1
∗,0

By combining the 2di−1 and the 5di , we have

⇐⇒ Ξ ≤
1
di

(ci,0

10

)di−1 (ci,0

5

) 1

cdi−1
∗,0

Rearrange by combining the 1/5 and 1/di.

⇐⇒ Ξ ≤
ci,0

5 di

(ci,0

10

)di−1 1

cdi−1
∗,0

Since ζi,0 ≥ 1 and 1 < 5 < 10, we have

⇐⇒ Ξ ≤
1
di

(ci,0

10

)di 1

cdi−1
∗,0

By moving cdi−1
∗,0 to the LHS, we have

⇐⇒ cdi−1
∗,0 Ξ ≤

1
di

(ci,0

10

)di

By recalling Ξ = max
1≤μ≤n

j 6=0

cμ,j , we have

⇐⇒ cdi−1
∗,0 max

1≤μ≤n
j 6=0

cμ,j ≤
1
di

(ci,0

10

)di

Rewrite.

⇐⇒
cdi
i,0

10di di
≥ cdi−1

∗,0 max
1≤μ≤n

j 6=0

cμ,j

8.2.3 Same Plane

Proof of Main result (Theorem 57). We will derive it by repeated rewriting and strengthening

(emphasized in red color) the condition RF ≥ R∂F . Let us begin!

Using our bounds from Lemma 41 and Theorem 31, we have

⇐= LI
F ≥ U I

∂F

Strengthen the condition further by noting LA
F ≤ LI

F . Thus,

⇐= LA
F ≥ U I

∂F
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Thus, from Lemma 43 and Lemma 59 we have the following.

⇐⇒
1
2

max
1≤i≤n

min
1≤j≤di

(
bi,0

bi,j

) 1
j

≥ 2 max
1≤i≤n

max
1≤k≤di−1







∑

e1,...,en≥0
|e|=k

ei

di

∣
∣ai,(e)

∣
∣







1
di−k

Since
ei

di
< 1 we may drop it to strengthen the condition. Thus,

⇐=
1
2

max
1≤i≤n

min
1≤j≤di

(
bi,0

bi,j

) 1
j

≥ 2 max
1≤i≤n

max
1≤k≤di−1







∑

e1,...,en≥0
|e|=k

∣
∣ai,(e)

∣
∣







1
di−k

By rewriting the RHS in terms of bi,k, we have

⇐⇒
1
2

max
1≤i≤n

min
1≤j≤di

(
bi,0

bi,j

) 1
j

≥ 2 max
1≤i≤n

max
1≤k≤di−1

b
1

di−k

i,k

Multiply by 2 and pull the resulting 4 inside.

⇐⇒ max
1≤i≤n

min
1≤j≤di

(
bi,0

bi,j

) 1
j

≥ max
1≤i≤n

max
1≤k≤di−1

4b
1

di−k

i,k

Strengthen the condition by making it true for all i instead of just for the maximum.

⇐= ∀
i

min
1≤j≤di

(
bi,0

bi,j

) 1
j

≥ max
1≤k≤di−1

4b
1

di−k

i,k

Rewrite min as a for all statement to get the following.

⇐⇒ ∀
i

∀
1≤j≤di

(
bi,0

bi,j

) 1
j

≥ max
1≤k≤di−1

4b
1

di−k

i,k

By raising everything to the j and moving bi,j to the RHS, we have

⇐⇒ ∀
i

∀
1≤j≤di

bi,0 ≥ max
1≤k≤di−1

4jbi,j b
j

di−k

i,k

As the LHS has no js we may rewrite the condition.

⇐⇒ ∀
i

bi,0 ≥ max
1≤j≤di

1≤k≤di−1

4jbi,j b
j

di−k

i,k

Split the index space for j on the RHS.

⇐⇒ ∀
i

bi,0 ≥ max





max

1≤j≤di−1
1≤k≤di−1

4jbi,j b
j

di−k

i,k , max
j=di

1≤k≤di−1

4jbi,j b
j

di−k

i,k






Simplify,
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⇐⇒ ∀
i

bi,0 ≥ max





max

1≤j≤di−1
1≤k≤di−1

4jbi,j b
j

di−k

i,k , max
1≤k≤di−1

4dibi,di
b

di
di−k

i,k






By recalling bi,di
= 1, we have

⇐⇒ ∀
i

bi,0 ≥ max





max

1≤j≤di−1
1≤k≤di−1

4jbi,j b
j

di−k

i,k , max
1≤k≤di−1

4dib
di

di−k

i,k






Write everything in terms of ci,∗.

⇐⇒ ∀
i

cdi
i,0 ≥ max





max

1≤j≤di−1
1≤k≤di−1

4jcdi−j
i,j cj

i,k, max
1≤k≤di−1

4dicdi
i,k






Take the di-th root of both sides.

⇐⇒ ∀
i

ci,0 ≥ max





max

1≤j≤di−1
1≤k≤di−1

4
j
di c

1− j
di

i,j c
j
di
i,k, max

1≤k≤di−1
4ci,k






Since
j

di
≤ 1 we may drop it from 4

j
di to strengthen the condition. Thus,

⇐= ∀
i

ci,0 ≥ 4max





max

1≤j≤di−1
1≤k≤di−1

c
1− j

di
i,j c

j
di
i,k, max

1≤k≤di−1
ci,k






Separate the maximums and pull ci,j out from the max across k.

⇐⇒ ∀
i

ci,0 ≥ 4max

{

max
1≤j≤di−1

ci,j

(

max
1≤k≤di−1

ci,k

ci,j

) j
di

, max
1≤k≤di−1

ci,k

}

As k and j run across the same indices max
ci,k

ci,j
≥ 1. Thus,

⇐= ∀
i

ci,0 ≥ 4max

{

max
1≤j≤di−1

ci,j max
1≤k≤di−1

ci,k

ci,j
, max

1≤k≤di−1
ci,k

}

Simplify,

⇐⇒ ∀
i

ci,0 ≥ 4max

{

max
1≤j≤di−1

max
1≤k≤di−1

ci,k, max
1≤k≤di−1

ci,k

}

Max across j is no longer being used, so we may drop it.

⇐⇒ ∀
i

ci,0 ≥ 4max

{

max
1≤k≤di−1

ci,k, max
1≤k≤di−1

ci,k

}

Maximums are identical, so we may merge them.

⇐⇒ ∀
i

ci,0 ≥ 4 max
1≤k≤di−1

ci,k
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In summary, Gauss-Lucas theorem for univariate polynomials is well known. Generalizing

into Pham systems first required defining derivative. The chosen definition is also a Pham

system, along with several other valuable properties. We then looked at several different ways

to relate the roots of the derivative with the roots of the original Pham system, to find an analog

for Gauss-Lucas theorem. A general conjecture was given and proven for a certain family of

Pham systems.
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