
ABSTRACT 

NOSBISCH, JAMIE. Modeling Polarization of the PLC/PKC Signaling Pathway in Fibroblast 
Chemotaxis. (Under the direction of Dr. Jason Haugh). 
 

Cell movement directed by external gradients of soluble chemicals (chemotaxis) is 

critical for a number of physiological processes, including the immune response, wound healing, 

and development. Over the past two decades, a number of mathematical models have been 

proposed to explain how signaling pathways sense external gradients and polarize to bias the 

migration of a cell; however, most of these models are based on theoretical concepts, whereas 

models cast in terms of defined molecules and mechanisms are much less common. In this work, 

a mechanistic, reaction-diffusion model was developed to analyze the phospholipase C (PLC)/ 

protein kinase C (PKC) signaling pathway, which was recently shown to be essential for PDGF 

gradient sensing in mesenchymal cells such as skin fibroblasts. Our goal was to identify 

mechanisms that can amplify this intracellular signaling pathway in shallow external gradients of 

chemoattractant. 

Novel insights from this model include the mechanism of substrate-buffering by 

myristoylated alanine-rich C kinase substrate (MARCKS). We show that phosphorylation of 

MARCKS by membrane-localized PKC constitutes a positive feedback that is sufficient for local 

pathway amplification at the leading edge, while the release of MARCKS and its subsequent 

diffusion and dephosphorylation in the cytosol also serves to suppress the pathway at the rear of 

the cell. By itself, this mechanism only weakly amplifies signaling in a shallow PDGF gradient, 

but it synergizes with two additional feedback loops involving the lipid, phosphatidic acid (PA), 

for substantial signal amplification at shallow gradients and a more robust response to changes in 

PDGF gradient conditions. An analysis of these feedbacks implicated a critical role for DAG 



kinases and the PA-producing enzyme, phospholipase D, in controlling the lipid metabolism and 

thus polarization of the PLC/PKC pathway.  

PLCg1, the specific isozyme of PLC involved in the PLC/PKC signaling pathway in 

fibroblasts, is basally autoinhibited, and recent work detailing the structure of the full-length 

enzyme elucidated a more detailed mechanism for its activation. To better understand the 

kinetics of this process, we developed a rule-based model to investigate how domain interactions 

and reaction rates affect PLCg1 activation. Our model was able to reproduce the increased levels 

of activity associated with known activating mutations of PLCg1 while also predicting faster 

kinetics for mutations affecting the autoinhibition and slower kinetics for mutations affecting the 

rate of membrane binding. A combined model of PLCg1 activation and PLC/PKC polarization 

predicted these activating mutations would also diminish the polarization of the pathway in 

response to shallow gradients of chemoattractants. Based on an analysis of the PLCg1 activation 

model, a modified feedback loop involving PA was formulated in the combined model, and that 

mechanism was found to synergize with MARCKS for polarization of the PLC/PKC pathway. 

These models offer a framework for a mechanistic understanding of PLC/PKC signaling 

in gradient sensing, the kinetics of PLCg1 activation, and how perturbations to PLCg1 activation 

affect the polarization of the PLC/PKC pathway. Testable predictions made by these models can 

be used to guide further study of signal transduction affecting chemotaxis of fibroblast cells. 

Given the role chemotaxis plays in cancer cell metastasis and considering the diseases and 

cancers linked to dysfunction of the PLC and PKC enzymes, further study of this signaling 

pathway will continue to be of vital importance.  
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1.1 Chemotaxis: Cell Migration Directed by a Chemical Gradient 

Directed cell migration, or cell migration biased by external spatial cues, is important for 

a number of physiological phenomena including embryogenesis, angiogenesis, cancer metastasis, 

and wound healing (1). During these events, cells migrate toward a target by sensing gradients of 

surface-bound immobilized ligands (haptotaxis), mechanical stiffness (durotaxis), an electric 

field (galvanotaxis), soluble chemical cues (chemotaxis), or a combination of the above (Fig. 

1.1A). The focus of this work is on chemotaxis which is the process by which cells direct their 

migration based on an external gradient of soluble, chemical cues called chemoattractants (2).  

Many cell types chemotax, but the phenotypic characteristics of their motility may look 

considerably different based on whether they fall under the category of amoeboid (e.g. 

leukocytes) or mesenchymal (e.g. fibroblasts). One example of a biological process where both 

forms of motility come into play is wound healing (Fig. 1.1B). Within hours of wounding, 

inflammation sets in, which relies on rapid migration of amoeboid cells like neutrophils and 

macrophages. These cells respond to gradients of chemokines that elicit rapid wound invasion. 

Once there, these cells are responsible for phagocytosing cellular debris and bacteria and for 

producing growth factors and cytokines (3, 4). Thereafter, the proliferative phase of wound 

healing ensues. During this phase, fibroblast cells respond to gradients of growth factors, in 

particular platelet-derived growth factor (PDGF), by proliferating and migrating to the wound 

site. Relative to the immune response, fibroblast invasion is a much slower process, evolving 

over the course of days to weeks following wounding. Once in the wound, fibroblasts specialize 

in the secretion and deposition of ECM, and they eventually differentiate into myofibroblasts that 

actively contract ECM to close the wound (4, 5). While amoeboid and mesenchymal motility 

phenotypes are considered distinct modes of cell migration, cells can switch phenotypes along 
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this continuum. As a prominent example, metastatic cancer cells undergo an epithelial-to-

mesenchymal transition, accompanied by their net emigration from the primary tumor (Fig 1.1C) 

(6). 

 
Figure 1.1 Directed migration cues for mesenchymal cells. (A) Diagram illustrating the diverse 
types of directional cues that mesenchymal cells respond to. Of note is the hybrid cue where 
chemotactic cues (e.g., growth factors) are bound to ECM scaffolds. (B) During cutaneous 
wound healing, fibroblasts (prototypical mesenchymal cells) respond to both PDGF (chemotaxis) 
and ECM cues (haptotaxis/durotaxis). (C) Likewise, mesenchymal tumor cells emerging from 
primary tumors sense multiple directional cues. Reprinted from Current Opinion in Cell Biology, 
30, James E Bear and Jason M Haugh, Directed migration of mesenchymal cells: where 
signaling and the cytoskeleton meet, 74-82, Copyright (2014), with permission from Elsevier. 
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Certain characteristics differentiate amoeboid motility from mesenchymal motility, as 

summarized in Figure 1.2. Amoeboid migration can be thought of as a “path-finding” mode of 

migration. These cells readily deform, modifying their shape to squeeze through pores they 

encounter in the extracellular matrix (ECM) by extending pseudopods or blebs (7, 8). To 

maintain a fast migration speed (~10 μm/min), their adhesion to the ECM is relatively weak, and 

they rely on having a strongly polarized actin cytoskeleton to promote efficient migration (9). 

Amoeboid cells tend to have a rounded shape with a well-defined leading edge composed of 

branched actin. Amoeboid cells also have a structure at the rear of the cell called a uropod, which 

is where Myosin II motor activity is responsible for a contractile, squeezing force that promotes 

forward protrusion and the release of adhesions from the ECM (10). The importance of these 

properties of amoeboid migration are readily apparent in light of the innate immune response, 

which requires that leukocytes like neutrophils and macrophages quickly and efficiently migrate 

through tissue, intercepting invading pathogens and thus preventing injury and disease (11). 

In contrast to “path-finding” amoeboid motility, mesenchymal cells exhibit “path-

generating” migration. Mesenchymal cells use strong, adhesive connections to crawl through the 

ECM. Rather than trying to squeeze through pores, these cells must apply proteolytic activity of 

matrix metalloproteinases to degrade the ECM in their path, causing them to move much slower 

than amoeboid cells (<1 μm/min) (9). Unlike the strong polarization seen in amoeboid cells, 

mesenchymal cells are only weakly polarized and use multiple competing protrusions called 

lamellipodia for forward migration (12, 13). Mesenchymal cells do not form Myosin II-

containing uropods; instead, Myosin II is found throughout the cell and is associated with 

bundled actin stress fibers that associate with adhesions to generate the necessary traction forces 

for motility (14). These migration properties lend themselves to the biological role of 
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mesenchymal cells like fibroblasts whose primary function is producing ECM in connective 

tissue (15). 

 
Figure 1.2 Mesenchymal vs. amoeboid motility and chemotaxis. The illustrations and table 
compare the structural and dynamic features of mesenchymal migration to those of amoeboid 
cells such as neutrophils and lymphocytes. Reprinted from Current Opinion in Cell Biology, 30, 
James E Bear and Jason M Haugh, Directed migration of mesenchymal cells: where signaling 
and the cytoskeleton meet, 74-82, Copyright (2014), with permission from Elsevier. 

 

1.2 PLC/PKC Signaling Pathway 

Despite distinct differences in the mechanics of chemotaxis between amoeboid and 

mesenchymal cells, the signal transduction pathway responsible for gradient sensing was thought 
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to function similarly in both cell types. While amoeboid cells use receptors of the G protein-

coupled receptor (GPCR) class and mesenchymal cells use receptors of the receptor tyrosine 

kinase (RTK) class, both receptors recruit and activate specific isoforms of the phosphoinositide 

3-kinase (PI3K) enzyme (2). These PI3K isoforms catalyze the conversion of the lipid 

phosphatidylinositol bisphosphate (PIP2) into phosphatidylinositol trisphosphate (PIP3). Biased 

receptor activation by the external gradient of chemoattract leads to biased PI3K activation 

which causes PIP3 accumulation at the membrane of the leading edge in cooperation with other 

feedback loops (16). Several pathways link PI3K activation and PIP3 production to the activation 

of guanine-nucleotide exchange factors (GEFs) which in turn activate the GTPases Rac and 

Cdc42 (17, 18). The lipids PIP2 and PIP3 along with Rac and Cdc42 aid in the recruitment and 

activation of the WAVE and WASP proteins which stimulate the activity of the Arp2/3 complex. 

The Arp2/3 complex nucleates new branched actin filaments which leads to localized actin 

polymerization and protrusion. Together with the mutual antagonism provided by RhoA 

activation of Myosin at the rear, the conceptual model posits that cells polarize and migrate in 

the direction of the gradient (19, 20). 

While this signaling pathway (Fig 1.3) is important for the regulation of motility and 

polarity in many cell types, chemotaxis assays have shown that the GTPases Rac and Cdc42 as 

well as the Arp2/3 complex are not essential for the directional response of fibroblast cells 

toward PDGF (21, 22). In the study by Monypenny et al. 2009, siRNAs were used to inhibit the 

expression of Cdc42 and Rac1 in mouse embryonic fibroblasts. These Cdc42- and Rac1-

deficient cells displayed aberrant morphology, including cell elongation and rounding as well as 

the loss of lamellipodia, and an analysis of the trajectories of these cells showed that their 

migration speed was greatly reduced; however, these cells were still capable of sensing and 
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migrating toward a gradient of PDGF. In the study by Wu et al. 2012, a stable cell line of 

fibroblasts that were depleted of the Arp2/3 complex also showed aberrant morphology without 

dendritic F-actin or lamellipodia; but again, when these cells were placed in chemotaxis 

chambers, they responded normally to gradients of PDGF. These studies suggested that the 

PI3K/GTPase/WAVE/Arp2/3 signaling pathway culminating in localized branched actin 

assembly and protrusion structures are necessary for efficient motility of fibroblasts but are not 

required for sensing external gradients of chemoattractants.  

 

Figure 1.3 Signal transduction pathways controlling myosin contractility and lamellipodial actin 
assembly. Work on chemotaxis has focused almost exclusively on F-actin polymerization 
mediated by the Arp2/3 complex; however, new data suggests an essential role of Myosin II 
regulation through the PLCg/DAG/PKCa pathway. Figure by Jason Haugh and used with 
permission. 

 

To identify the requirements for mesenchymal chemotaxis, Asokan et al. conducted 

chemotaxis experiments using a microfluidic chamber designed to maintain gradients of 
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chemoattractants for multiple hours while also allowing direct observation of the cells (23). The 

cells’ centroid positions were tracked over time, so information about migration speed, 

persistence, and directionality could be extracted (Fig 1.4A). These experiments showed that 

Myosin IIA, PLCg, and PKCa are essential for chemotaxis. The results of these chemotaxis 

experiments were plotted as wind-rose (radial) histograms, in which each leaflet represents the 

count frequency of cells migrating in the corresponding angle bin. For these histograms, 

traveling toward 0° is representative of traveling in the direction of the PDGF gradient. Figure 

1.4B shows that fibroblast cells depleted of the enzymes PLCg1 or PKCa lost their ability to 

chemotax towards a gradient of PDGF. This is quantified (24) in terms of the FMI, or forward 

migration index, which is used to quantify directionality. For the control, the FMI value of 0.42 

indicates positive chemotaxis. For the knockdowns of PLCg1 and PKCa, the FMI values less 

than ~0.1 indicate that chemotaxis was not distinguishable from random migration (23). 

In addition to establishing the requirement of the Myosin IIA isoform and the enzymes 

PLCg and PKCa, localized diacylglycerol (DAG) production by PLCg was also shown to be 

required for mesenchymal chemotaxis. To visualize the intracellular distribution of DAG, the 

tandem C1 domain fragment of the PKCd enzyme was tagged with GFP, and its translocation to 

the plasma membrane was monitored by total internal reflection fluorescence (TIRF) microscopy 

to visualize the accumulation of DAG. Cells expressing this biosensor consistently showed 

significant enrichment of DAG at the leading edge when chemotaxing to gradients of PDGF 

(Fig. 1.4C). 

These results implicated a new signaling pathway responsible for gradient sensing in 

mesenchymal cells. To summarize: activated receptors recruit activate PLCg; the biased 

activation of PLCg results in production of a localized gradient of DAG, which recruits and 
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mediates activation of PKCa. Active PKCa phosphorylates and inactivates Myosin IIA, and this 

mechanical asymmetry biases directional migration (Fig. 1.3) (23).  

  

  

Figure 1.4 Quantitative chemotaxis assay reveals a critical role for PLC/PKC signaling. (A) The 
microfluidic chamber has been adapted to present PDGF gradients of varying steepnesses. (B) 
Wind-rose plots show that the depletion of PLC and PKA by siRNAs block PDGF chemotaxis. 
(C) GFP-tagged tandem CI probe, imaged by TIRF, is preferentially localized in protrusions 
oriented towards the PDGF gradient (0°). Figure adapted from (23) by Jason Haugh and used 
with permission. 
 
 

While these experiments were able to elucidate the pathway responsible for gradient 

sensing in mesenchymal cells, a critical research question remains. Namely, it is not yet clear 

how the cells interpret a shallow external gradient of chemoattractant to execute a robust 

chemotactic response, at the level of the necessary structural and mechanical changes to the 

cytoskeleton. Addressing that question, using mathematical modeling, is the primary focus of 

this thesis. 
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1.3 Mathematical Modeling of Chemotactic Gradient Sensing 

Over the past two decades, a number of mathematical models have been proposed to 

explain the gradient sensing and polarization aspects of chemotaxis. Gradient sensing describes 

the cell’s ability to sense external gradients of chemoattractants and convert that receptor 

occupancy information across the membrane into an amplified, intracellular response while 

polarization describes the changes in the cell’s cytoskeleton and morphology generated by the 

asymmetric redistribution of multiple proteins and lipids (25-27). In general, these models offer 

variations on three different principles such as Turing-type diffusive instabilities, wave-based 

propagation, and most commonly, local excitation and global inhibition mechanisms (28).  

In reaction-diffusion systems, Turing patterns arise when the steady state of the system 

becomes destabilized by diffusion-driven instability. This instability causes minor fluctuations in 

a species concentration to become amplified at different rates until the fluctuation with the 

highest growth rate becomes fixed (29). In the context of polarization, a simple activator-

inhibitor model can display Turing pattern formation if the inhibitor has a much larger diffusivity 

than the activator (30). Meinhardt and Gierer built on this idea with their proposed local self-

activation and lateral inhibition model in which the activator is autocatalytic and locally 

enhances the signal by positive feedback. The inhibitor, which is also activated by the activator, 

provides a much more diffuse negative feedback, and coupled together, will produce a stable 

signaling pattern (31). Similar to the Turing instability model, is the wave-pinning (WP) model 

proposed by Mori et al. 2008 which also relies on an activator-inactivator pair, unequal 

diffusivities, and positive feedback on the activator. In addition, the WP model requires 

conservation of the active and inactive species and that the inhibitor is depleted as activation 
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takes place. These conditions lead to the formation of a decelerating wave front which eventually 

becomes stationary, or pinned, leading to stable pattern formation (32).  

The last category relies on localized excitation and global inhibition (LEGI) while also 

incorporating a response term that is controlled by the difference between those two processes. 

Upon stimulation by a gradient, both the excitation and inhibition processes are activated; 

however, the excitation reacts faster than the inhibition causing the response. In time, the 

response will undergo adaptation and all three processes will reach a steady state. The excitation 

profile will mimic the graded receptor occupancy across the cell while the inhibitor profile is 

proportional to the mean level of receptor occupancy and is uniform across the cell. As a result, 

the excitation exceeds the inhibition at the front of the cell, but as the level of receptor occupancy 

decreases toward the back of the cell, the inhibitor will eventually exceed the excitation. This 

leads to a persistent response at the front of the cell with a limited response at the rear of the cell 

(33, 34). Variations on this model include the two-component LEGI model which introduces an 

additional species that allows for two LEGI mechanisms to happen in parallel leading to 

amplification of the external gradient, something the original LEGI model cannot do (35). A 

balanced inactivation model has also been proposed to explain the clearly distinct front and rear 

regions that form in polarized cells. This variation incorporates a new species that antagonizes 

the response leading to a more switch-like behavior in response to the external gradient (36). 

Positive feedback loops triggered by the response involving autocatalysis, substrate delivery or 

depletion, as well as inhibition of degradation have all been proposed as additions to the LEGI 

model to better explain features of polarization during chemotaxis (26). 

In addition to the large collection of theoretical work that has been done describing 

possible mechanisms for gradient sensing and polarization, a number of biochemistry-based, 
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mechanistic models have also been explored. Based on experiments in Dictyostelium discoideum 

that suggested the phosphoinositides PIP2 and PIP3 may be the source of signal amplification in 

the gradient sensing pathway (37), Narang et al. 2001 proposed a model describing the kinetics 

of the phosphoinositide cycle and how a localized increase in the pool of PIP2 can be generated 

by positive feedback on the PIP2-producing enzyme PI4P5K (phosphatidylinositol-4-phosphate 

5-kinase) at the membrane while global inhibition is happening through a substrate-depletion 

mechanism caused by the formation of inositol triphosphate during PIP2 hydrolysis (38). 

Building on this model, was the model by Levchenko and Iglesias 2002 which introduces the 

GPCR-activated enzyme PI3K as a local activator for PIP3 production and PTEN (phosphatase 

and tensin homolog) as the global inhibitor due to its 3’ lipid phosphatase activity (39). In a 

model describing gradient sensing and polarization in neutrophils, Onsum and Rao 2007 include 

the Rho GTPases Ras and RhoA to link the PI3K/PTEN pathway with F-actin polymerization at 

the front of the cell and myosin contractility at the rear (40). Schneider and Haugh 2005 

developed a model that showed experimental results of PIP3-mediated PDGF gradient sensing in 

fibroblast cells could be quantitatively reproduced by a model that does not contain feedback 

amplification or inhibition mechanisms, including only receptor activation dynamics and PI3K 

exchange from a common cytosolic pool (41).  

 

1.4 Mechanistic Modeling of PLC/PKC Signaling in Fibroblast Chemotaxis 

While new models of chemotaxis continue to be proposed, a “unified” model that 

captures all the features of chemotactic cells does not exist. Given the diversity of cell-biological 

contexts and experimental evidence, it seems misguided to think that any one model will be able 

to explain the chemotactic behaviors of all cell types, much less their molecular requirements 
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and mechanisms. With the ideas embodied by the previously cited models in mind, but asserting 

a more mechanistic emphasis, we formulated and analyzed models to investigate signal 

amplification of the PLC/PKC pathway. Based on the experimental results described above, we 

knew the key species and features that this model needed to include, namely, the PDGF receptor, 

the PLC and PKC enzymes, and the lipid intermediate, DAG. In our model, active PDGF 

receptors at the plasma membrane recruit the PLC enzyme from the cytosol to form active PLC 

at the membrane. Active PLC hydrolyzes PIP2, leaving the lipid product DAG, which recruits 

PKC from the cytosol and forms active PKC. The experimental results from the chemotaxis 

assays suggested active PKC phosphorylates and inactivates Myosin IIA which links this signal 

transduction pathway to changes in the actomyosin cytoskeleton and consequently the cell’s 

motility.  

From this basic description of the biology and consideration of putative feedback 

mechanisms in the literature, and based on fundamentals of chemical reaction engineering, we 

composed partial differential equations describing the intracellular diffusion and transformations 

(formation of complexes and biochemical reactions) of the molecular species in their various 

states. With with the appropriate diffusion constants, initial conditions, and boundary conditions, 

this reaction system was implemented in the Virtual Cell (VCell) software environment (42). A 

two-dimensional cell geometry maintaining the approximate surface area to volume ratio of a 

migrating fibroblast was used for simulations, with the steepness and midpoint concentration of 

PDGF was varied across the length of the cell. With this model, we were able to link the external 

PDGF gradient conditions to the activation of PKC. Based on this fundamental structure, we 

searched the literature for sources of feedback or other mechanisms of regulation that could be 

added to this model to amplify the pathway and polarize the DAG and PKC signaling. As a first 
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step, we considered the influence of the myristoylated alanine-rich C kinase substrate 

(MARCKS) protein, specifically its ability to buffer PIP2 (43-45). We then went on to consider 

other putative feedback mechanisms reported in the literature (46-49), with the lipid intermediate 

phosphatidic acid proving to be a key molecular player. The influence of at least two feedbacks 

is necessary for polarization of PLC/PKC signaling elicited by shallow chemoattractant 

gradients. Finally, we refined our modeling to consider the regulation of the PLCg1 enzyme, at 

the level of its domain structure. By developing this mechanistic model, we also created an 

explicit framework to guide future experimental verification of our proposed feedback 

mechanisms and other model predictions.  

 

1.5 Overview of Dissertation 

In the remainder of this dissertation, mechanisms for signal amplification of the 

PLC/PKC pathway are proposed and analyzed to assess their role in polarizing the intracellular 

signaling pathway in response to gradients of PDGF. Chapter 2 describes the formulation of the 

reaction-diffusion model and investigates the role of MARCKS in signal amplification of the 

PLC/PKC pathway. Our results show that the regulation of MARCKS by active PKC is able to 

amplify the pathway at sufficiently steep gradients. To our knowledge, the buffering ability of 

PIP2 by MARCKS is novel in its method of action for signal amplification. 

In Chapter 3, we build on the results of Chapter 2 and introduce a new lipid species, 

phosphatidic acid (PA), as part of two feedback mechanisms. Our results indicate that these 

feedback loops can synergize with the regulation of MARCKS for substantial signal 

amplification at shallow gradients (10%) and create a more robust response to changes in PDGF 

gradient conditions. An analysis of parameter variations also indicated a critical role for DAG 
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kinases in controlling the lipid metabolism and thus polarization of the PLC/PKC pathway. 

Chapter 3 also includes results gained from a one-dimensional, agent-based model of wound 

invasion developed by Dr. Anisur Rahman, in which the PDGF gradient evolves as a continuum 

while fibroblasts are treated as motile line segments. Based on the characterization of the 

PLC/PKC polarization model, thresholds for polarization based on PDGF gradient conditions 

were applied to the motility of the fibroblasts, such that only cells that are experiencing the 

PDGF gradient conditions necessary for polarization exhibit chemotactic motility. 

Chapter 4 describes the development of a rule-based model using BioNetGen to study the 

activation dynamics of the PLCg1 isozyme. Our results highlight how variations in a particular 

reaction rate lead to increased lifetime of PLCg1 at the membrane corresponding to a proposed 

method of feedback investigated in Chapter 3. This detailed model of PLCg1 activation is also 

combined with the PLC/PKC polarization model and mutations affecting the activation of PLCg1 

are assessed on their ability to polarize the PLC/PKC pathway. 

Chapter 5 concludes the dissertation describing the insights from this work and the 

outlook for future areas of study of PLC/PKC signaling. Given the role chemotaxis plays in 

cancer cell metastasis, and considering numerous diseases implicated by aberrant activation of 

PLC (50-52) and PKC (53-55), further study of this signaling pathway will continue to be of 

vital importance. 
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 CHAPTER 2 

 

A Reaction-Diffusion Model Explains Amplification of the PLC/PKC Pathway in 
Fibroblast Chemotaxis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Adapted from: Mohan K, Nosbisch JL, Elston TC, Bear JE, Haugh JM. A reaction-diffusion 
model explains amplification of the PLC/PKC pathway in fibroblast chemotaxis. Biophysical 
Journal. 2017. July 11,;113(1):185–94. 10.1016/j.bpj.2017.05.035 
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2.1 Introduction 

Chemotaxis, or cell migration directed by spatial gradients of soluble chemicals 

(chemoattractants), is a primary means of organizing cell movements in and between tissues. 

Whereas chemotaxis of fast-moving amoeboid cells (e.g., leukocytes and Dictyostelium 

discoideum) has been extensively studied for decades (1,2), chemotaxis of slow-moving 

mesenchymal cells (e.g., fibroblasts and metastatic cancer cells) is far less well understood (3). 

Fibroblast chemotaxis, elicited by platelet-derived growth factor (PDGF) and other 

chemoattractants, is considered a rate-limiting step in physiological processes that include 

embryonic development and invasion of the fibrin clot during the proliferative phase of wound 

healing (4–8). With regard to the latter, failure to coordinate and regulate the movements and 

functions of fibroblasts and other cell types results in aberrant wound repair, with either 

insufficient or excessive matrix production leading to chronic ulcers or fibrosis, respectively (9). 

Chemotaxis and other forms of directed cell migration are controlled by a network of 

intracellular signaling pathways that modulate the dynamics of the actin cytoskeleton (2,3). In 

the prevailing conceptual model of amoeboid chemotaxis, gradient sensing and biased movement 

are linked through receptor-mediated activation of phosphoinositide 3-kinase (PI3K) and/or the 

small GTPases Rac and Cdc42, which in turn activate nucleation-promoting factors that position 

the Arp2/3 complex at the plasma membrane and thus promote F-actin polymerization by 

dendritic branching of actin filaments with growing barbed ends (10–13). This chemotactic 

‘‘compass’’ is amplified by positive feedback within the signaling circuit at the front of the cell 

and mutual antagonism with active RhoA at the cell rear, and thus it biases Arp2/3- mediated 

membrane protrusion toward the external chemoattractant gradient (14). Numerous mathematical 

models have been proposed to explore these specific concepts and the biochemical pathways 
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involved (reviewed in (15–17)). These models offer variations of principles such as Turing 

instability (or diffusion-driven instability) (18–21), local excitation/ global inhibition (22,23), 

and wave propagation (24). 

Although this view of chemotactic gradient sensing and response parsimoniously 

explains the extensive evidence gathered for amoeboid cells, it is reasonable to question whether 

or not it applies to chemotaxis of weakly polarized, mesenchymal cells. In fibroblasts, signaling 

through PI3K, Rac, and Cdc42 is localized in leading-edge protrusions (lamellipodia) (25–27), 

and this circuit is clearly important for efficient migration and the cell-shape dynamics 

associated with fibroblast turning (28–30); however, studies have also indicated that all of these 

signaling activities are dispensable for fibroblast chemotaxis to PDGF (27,31). Even more 

compelling, fibroblasts with Arp2/3 complex depleted or conditionally knocked out lack 

dendritic F-actin and lamellipodia and show greatly reduced migration speed, as expected, yet 

they still chemotax toward PDGF (32,33). Forced to reevaluate which signaling pathways and 

mechanisms of cytoskeletal regulation are essential for fibroblast chemotaxis, we recently 

showed that PDGF receptor-mediated activation of the phospholipase C (PLC)/protein kinase C 

(PKC) pathway, and PKCa-mediated regulation of myosin IIA motor activity, are required (33). 

This pathway is well-suited for the control of mesenchymal chemotaxis, given the distribution of 

myosin IIA and its role in reining in leading-edge protrusion in mesenchymal cells (3,34). PKCa 

is activated through its binding to the lipid second messenger diacylglycerol (DAG), which is 

formed from hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2) by PLC (35,36). 

Strikingly, in fibroblasts exposed to a shallow PDGF gradient, we found that the density of DAG 

in the plasma membrane is focally enriched at the up- gradient leading edge and much lower 

elsewhere (33), suggesting an internal amplification mechanism that has yet to be explored. 
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In this work, we have developed and analyzed a mechanistic, reaction-diffusion model of 

the PLC/PKC signaling pathway activated in a PDGF gradient. The model includes the major 

proteins (PDGF receptor, PLC, and PKC) and lipids (PIP2 and DAG) in the central pathway, as 

well as the abundant protein myristoylated alanine-rich C kinase substrate (MARCKS), a buffer 

of PIP2 that is neutralized by PKC-mediated phosphorylation (37–39). This mechanism has been 

implicated in fibroblast chemotaxis (40) and constitutes a positive feedback loop that is sufficient 

for local amplification of DAG and active PKC in our model; however, by itself it fails to 

explain the focal enrichment of DAG in a shallow PDGF gradient. To remedy this, we show that 

MARCKS regulation can synergize with other putative feedbacks, which are similarly limited in 

their capacity to enhance amplification. We expect that the model presented here will serve as a 

framework for linking molecular-scale understanding of PDGF gradient sensing to collective 

fibroblast migration during wound invasion and as a guide for the design of live-cell imaging 

experiments. 

 

2.2 Materials and Methods 

2.2.1 Basic model description 

Our model consists of partial differential equations and associated boundary and initial 

conditions, which describe receptor-mediated activation of the PLC/PKC pathway (Fig. 2.1A). A 

complete description of the model equations and parameter values is provided in Appendix A. 

Model species, their diffusivity values, and initial conditions are listed in Table A.1; model rate 

equations and the corresponding base-case values of rate constants are listed in Table A.2. 
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Figure 2.1 Reaction-diffusion model of the PLC/PKC pathway. (A) Schematic of the pathway 
describing interactions among signaling proteins (PLC, PKC, and MARCKS) and plasma 
membrane lipids (PIP2 and DAG). Dashed arrows with circles at the end signify catalysis of the 
indicated transition. (B) Heat map plotting the density of free PIP2 (p) as a function of the density 
of membrane- bound MARCKS (mT) and of the density of total PIP2 (pT). A shift from the initial 
condition may be interpreted as changes in PLC-mediated PIP2 hydrolysis and/or PKC 
activation, as indicated. (C) The fractions of membrane-bound MARCKS with i molecules of 
PIP2 bound (mi/mT) are plotted as a function of the density of free PIP2 (p). 

 

The extracellular ligand, PDGF, is recognized by PDGF receptors on the cell surface, 

resulting in receptor binding and dimerization that results in formation of active receptor 

complexes, as modeled previously (41,42). Active receptors recruit inactive PLC enzyme (E) 

from the cytosol to form active PLC at the membrane (e). Active PLC hydrolyzes PIP2 (free-

density p). In the absence of PDGF, the density of PIP2 is maintained through basal synthesis and 
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turnover. PIP2 hydrolysis by PLC generates the lipid second messenger, DAG (d). DAG is 

consumed by a pseudo-first-order reaction that represents the action of DAG kinases and the sub- 

sequent metabolism of phosphatidic acid (43). DAG recruits catalytically competent but inactive 

PKC (C) from the cytosol by reversible binding of the tandem C1 domain of PKCs, forming 

active PKC (c*) at the membrane (35). Membrane-bound PKC is sensitive to dephosphorylation, 

and so the active PKC is converted to an inactive, membrane-bound form (c); this species is 

either autophosphorylated to regenerate active PKC (35) or it dissociates to join the cytosolic 

pool. In addition to the central PLC/PKC pathway described thus far, the model incorporates the 

regulatory protein MARCKS. MARCKS is an abundant substrate of PKC that is present in both 

cytosolic and membrane-bound forms (39). The unphosphorylated, cytosolic form (M) inserts 

into the plasma membrane via its myristoyl group and interacts with PIP2 via its effector domain; 

the latter is a high-avidity, electrostatic interaction, and thus, MARCKS sequesters a substantial 

fraction of the intracellular PIP2 (37,44). The membrane-bound forms of MARCKS are 

phosphorylated by active PKC, causing loss of affinity for the plasma membrane and liberation 

of PIP2; the phosphorylated form of MARCKS (Mp) is cytosolic (38). MARCKS is 

dephosphorylated in the cytosol to complete the cycle. 

 

2.2.2 Modeling MARCKS-membrane interactions 

To model the binding of unphosphorylated MARCKS with the membrane, we assume 

that the reversible insertion of the myristoyl lipid is rate-limiting, whereas the interactions with 

PIP2 at the membrane are in quasi-equilibrium. MARCKS can interact with multiple PIP2 

molecules, which explains the cooperativity of binding (44,45); for simplicity, we model the 

polybasic motif of MARCKS as three equivalent binding sites for PIP2. Therefore, defining mi as 
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the density of membrane-bound MARCKS with i molecules of PIP2 bound, p as the density of 

free PIP2, and KPIP2 as the single-site equilibrium constant, 

                      ,                    (2.1) 

and taking mT as the sum of mi, we obtain 

                                                 .                      (2.2) 

From Eqs. 2.1 and 2.2, the density of PIP2 molecules bound to MARCKS is calculated, and 

hence the density of total PIP2, pT, is related to p as follows: 

                                                                                                             (2.3) 

Equation 2.3 is rearranged as a quadratic and solved for p (Appendix A). 

In our simulations, we assume an initial total PIP2 density (pT) of 5000 molecules/ μm2, 

which corresponds to a concentration of ~10 μm on a whole-cell volume basis (39). Given the 

proposed role of MARCKS as a PIP2 buffer, we assume that 90% of the PIP2 is sequestered by 

MARCKS in resting cells; i.e., the initial free PIP2 density, p, was 500 molecules/ μm2. The total 

cellular concentration of MARCKS has been estimated at ~10 μm, similar to the abundance of 

PIP2 (39). MARCKS is predominantly membrane-localized in resting cells, and so we assume 

that 90% is membrane-associated initially. This sets the initial value of M at 1 μm, and, based on 

the assumed geometry of the cell, the initial value of mT was set at 3727 molecules/ μm2. These 

considerations and Eq. 2.3 determined the value of KPIP2. With this parameter fixed, the 

relationship expressed in Eq. 2.3 is used to calculate the density of free PIP2, which is available 

to be hydrolyzed by PLC, from computed values of pT and mT. This relationship is shown as a 

heat map, with the initial condition labeled as a point (Fig. 2.1B). Changes elicited by PDGF 

stimulation, namely, the activation of PLC and PKC, can be viewed as a shift in the coordinates 
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on this map. Another outcome is that PLC-mediated reduction in free PIP2 affects the occupancy 

of membrane-associated MARCKS, which is calculated directly from Eqs. 2.1 and 2.2. As 

shown for the value of KPIP2 assumed in our model, a decrease in free PIP2 density results in 

lower avidity of MARCKS binding and thus progressively fewer PIP2 molecules bound per 

molecule of MARCKS at the membrane (Fig. 2.1C). 

 

2.2.3 Model implementation 

The PLC/PKC model is implemented in Virtual Cell (http://www.vcell.org), a 

computational environment for modeling and simulation in cell biology (46). The Biomodel and 

primary simulations are publicly available in Virtual Cell under user name jnosbis, Biomodel 

name Mohan chemotaxis 2017. The reaction network as defined in the Virtual Cell interface is 

shown in Fig. 2.2.  

 
Figure 2.2 Reaction network of the PLC/PKC pathway constructed in Virtual Cell. Green 
spheres represent the model species. Yellow squares represent the reaction nodes, black solid 
arrows represent species transformations, and dashed arrows signify catalysis. 
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The base geometry used in our two-dimensional simulations is an ellipse with a major 

axis length of 40 μm and minor axis length of 1.8 μm; these dimensions yield a head-to-tail 

length and a cytosolic volume/membrane area ratio that are typical of a migrating fibroblast. 

Virtual Cell uses a finite-volume method to numerically solve the reaction-diffusion equations, 

and the Fully-Implicit Finite Volume (variable time step) solver was used, with voxel dimensions 

of Dx = Dy = 0.2 μm and a maximum time step of 0.05 s. We confirmed that a fourfold change of 

the spatial resolution did not markedly change the results. The initial conditions were chosen 

such that the system is stationary in the absence of PDGF, after which a linear PDGF gradient is 

applied parallel to the long axis of the domain. Simulations were run for sufficiently long 

(nominally, 2 x 104 s) to ensure a steady state. 

 

2.3 Results 

2.3.1 Regulation of MARCKS by PKC is sufficient to amplify the PLC/PKC pathway 

To the extent that phosphorylation of MARCKS by PKC liberates the PLC substrate 

PIP2, this process constitutes a positive feedback loop, which might amplify the intracellular 

gradients of DAG and active PKC. To explore this possibility, we simulated an idealized 

scenario using our model: the response to a PDGF gradient with subsaturating midpoint 

concentration (0.03 nM) and a drastic relative steepness of 67% (i.e., 0.02 and 0.04 nM at the 

cell’s extrema). The twofold ratio of PDGF concentrations results in a 3.65-fold ratio of receptor 

activation at steady state, owing to the sensitivity of receptor dimerization (41). In the analyses 

that follow, we use the steady-state, front/ back ratio of active PKC density as a metric to assess 

pathway amplification. 
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In the absence of MARCKS regulation or any other feedback in the PLC/PKC pathway, 

it is intuitive that amplification relative to the gradient of receptor activation is not possible. The 

saturability of the protein-protein and protein-lipid interactions involved and the depletion of 

PIP2 by PLC-catalyzed hydrolysis only diminish the ratio of PKC activation relative to that of 

receptor activation. Accordingly, in the absence of MARCKS in our base-case model, the steady-

state PKC activation ratio is 2.71 (Fig. 2.3A). To identify the effect of MARCKS on the 

PLC/PKC pathway, we reasoned that the rate constants describing MARCKS phosphorylation 

(kpm) and dephosphorylation (kdpM) characterize the putative feedback loop. We systematically 

varied these parameters and found that MARCKS regulation is sufficient to enhance the steady-

state PKC activation ratio, achieving values as high as 9.19 for the idealized PDGF gradient 

(Fig. 2.3B), with a similar ratio of free DAG densities (10.5). Maximal amplification requires an 

optimal balance of phosphorylation and dephosphorylation and a sufficiently high MARCKS 

dephosphorylation rate; the optimal value of kpm is approximately proportional to the square root 

of the kdpM value (Fig. 2.3C), consistent with a scaling analysis (Appendix A). We comment on 

this relationship further in the next section. 
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Figure 2.3 Regulation of MARCKS by PKC is sufficient to amplify the PLC/PKC pathway. 
Simulations were done for a steep PDGF gradient (67% relative gradient) with midpoint 
[PDGF] = 0.03 nM, introduced at time = 1200 s. (A) Kinetics of active PKC (c∗) in the absence 
of MARCKS. (B) Surface plot of the steady-state front/back ratio of active PKC (c∗) as a 
function of MARCKS phosphorylation (kpm) and dephosphorylation (kdpM) rate constants. (C) 
Optimal MARCKS phosphorylation rate constant (dots) for each value of the MARCKS 
dephosphorylation rate constant. The line shows the best fit of the log-transformed variables. (D) 
Kinetics of active PKC (c∗) for the base parameter set with kpm = 1 μm−2 s−1 and kdpM = 1 s−1 (see 
also Fig. 2.4). 

 

Considering the space of parameter values shown in Fig. 2.3B, we show additional results 

for the parameter set with kpm and kdpM equal to 1 in their respective units; this parameter set 

yields a PKC activation ratio close to the maximum. The kinetics of the active PKC species at 

the front and rear of the cell are shown (Fig. 2.3D) and may be compared to the “MARCKS null” 

case considered in Fig. 2.3A. With MARCKS, the kinetics of active PKC at both ends of the cell 

show an overshoot and partial adaptation, which is attributed to the rapid liberation and 

hydrolysis of PIP2, followed by slower depletion of the total pool of PIP2 as the steady state is 
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approached (Fig. 2.3D). Without MARCKS, there is no sequestered PIP2, and DAG 

accumulation mirrors the depletion of PIP2; consequently, the rapid initial phase of 

PIP2 hydrolysis is absent (Fig. 2.3A). Regarding the simulation represented in Fig. 2.3D, the 

kinetics of the other model species are shown in Fig. 2.4; the spatiotemporal dynamics of 

MARCKS are particularly interesting and are discussed in the next section. We conclude that the 

influence of MARCKS constitutes a PKC-mediated feedback loop that is sufficient to amplify an 

intracellular gradient of PLC/PKC signaling in cells exposed to a steep PDGF gradient. 

 

 

Figure 2.4 Kinetics of all species for the simulation represented in Fig. 2.3D. 
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2.3.2 Differential buffering of PIP2 by MARCKS as a distinct mode of gradient amplification 

To explore the mechanism by which regulation of MARCKS results in amplification of 

the PLC/PKC pathway, we plot the changes in free PIP2 density at the front and back of the cell 

in terms of the total PIP2 and total membrane-bound MARCKS densities for the same parameter 

set as in Figs. 2.3D and 2.4 (Fig. 2.5A). Receptor-mediated activation of PLC reduces the total 

PIP2 level, whereas activation of PKC tends to reduce the membrane-associated MARCKS. We 

also plot the initial and steady-state levels of PIP2 (bound to MARCKS and free), membrane-

bound MARCKS with various stoichiometries of PIP2 occupancy (mi), and cytosolic MARCKS 

(M, Mp) at the front and back of the cell (Fig. 2.5, B–D). With PKC-mediated MARCKS 

regulation, the level of free PIP2 is higher at the front of the cell, despite a lower total 

PIP2 density there compared to the back (Fig. 2.5, A and B). Accordingly, there is far less 

membrane-bound MARCKS at the front, although the MARCKS there is more avidly bound 

(Fig. 2.5, A and C). Thus, the increase in PKC activity at the front compared to the back leads to 

differential buffering of PIP2 by MARCKS.  
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Figure 2.5 Differential buffering of PIP2 by MARCKS as a distinct mode of gradient 
amplification. These results pertain to the simulation with base parameters and a steep PDGF 
gradient, as in Figs. 2.3D and 2.4, comparing steady-state levels at the front and back of the 
simulated cell and the initial levels. (A) Heat map of free PIP2 (p) as a function total PIP2 (pT) 
and total membrane-bound MARCKS (mT), as introduced in Fig. 2.1B. Circles show how the 
PDGF gradient shifts the steady state at the front and rear of the simulated cell. (B–D) Bar plots 
of free and bound PIP2 levels in the presence and absence of MARCKS (B), membrane-bound 
MARCKS with various numbers of PIP2 bound (C), and cytosolic MARCKS (unphosphorylated, 
M, and phosphorylated, Mp) (D).  

 

MARCKS phosphorylation is accompanied by an increase in the overall concentration of 

MARCKS in the cytosol. Interestingly, the subsequent dephosphorylation of MARCKS yields a 

higher concentration of unphosphorylated MARCKS (M) able to bind PIP2, especially at the 

back of the cell (Fig. 2.5D), with complex kinetics (Fig. 2.4). The concentration of M spikes 

rapidly, and membrane-bound MARCKS initially increases at the back; these responses quickly 
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adapt as PIP2 decays, followed by a second, slow phase that is attributed to cytosolic diffusion. 

The increase in unphosphorylated MARCKS ameliorates the reduction in MARCKS binding 

caused by depletion of free PIP2, more so at the back of the cell, and thus, the differential 

buffering between the front and back is enhanced. 

The scenario described above is that of a long-range inhibition by MARCKS. Consistent 

with this notion, the scaling relationship presented in Fig. 2.3C was interpreted as a trade-off 

between maintaining both substantial MARCKS phosphorylation at the front of the cell and a 

gradient of unphosphorylated MARCKS in the cytosol. If so, then the PKC activation ratio ought 

to be sensitive to parameters that affect the diffusion of MARCKS (diffusivities and 

dimensions/geometry of the simulated domain). A reduction in diffusivity might hypothetically 

reflect transient interaction(s) with less mobile entities, for example, which could differ 

according to the phosphorylation status of MARCKS. In accord with the concept of long-range 

inhibition, reducing the diffusivities of both phospho- and unphosphorylated MARCKS from 

their base value of 32 μm2/s tempers the PKC activation ratio (Fig. 2.6). A systematic variation 

of the two diffusivities further shows that a slightly higher PKC activation ratio can be achieved 

if the diffusivity of phospho-MARCKS modestly exceeds that of unphosphorylated MARCKS 

(Fig. 2.6). The mobility difference allows phosphorylated MARCKS to diffuse more rapidly 

from where it was released from the membrane. Molecular diffusion links time- and 

lengthscales, and therefore, the geometry of the simulated domain is expected to matter as well. 

Consistent with a simplified analysis of such a system (47), we found that the thinning of the 

cell’s height near the leading edge, and especially the formation of thin protrusions such as 

filopodia, enhances PKC phosphorylation of MARCKS there (Fig. 2.7). 
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Figure 2.6 Pathway amplification is affected by MARCKS mobility in the cytosol. These results 
pertain to the simulation with base parameters and a steep PDGF gradient, but with the cytosolic 
diffusion coefficients for unphosphorylated MARCKS (DM) and phosphorylated MARCKS 
(DMp) varied. The base values are DM = DMp = 32 μm2/s. The heat map plots the front/back ratio 
of active PKC as a function of those parameters. 

 

To summarize this section, MARCKS sequesters a large pool of PIP2 that can be made 

available to PLC, locally and rapidly, upon MARCKS phosphorylation by PKC. Moreover, 

MARCKS phosphorylation causes its release from the plasma membrane and distribution of the 

protein throughout the cytosol; once dephosphorylated, MARCKS can rebind the membrane, 

further diminishing PIP2 availability wherever PKC activity is low. In our model, these effects 

combine to differentially buffer PIP2 at the front and back of the cell relative to an external 

gradient of chemoattractant. 
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Figure 2.7 Geometry effects in 3D simulations. 3D geometries with (A) and without (B) a 
filopod-like protrusion are shown. In both cases, the nucleus is a sphere, radius 4 μm, with 
membrane surface given by 

x2  + y2  + (z + 5)2  = 42
 

 
The rest of the cell has a ‘fried egg’ shape, with a radius of 20 μm at z = 0, except for the 
geometry in A, which has a thin, finger like protrusion projecting in positive x direction. The 
plasma membrane surface is given by 
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for negative z and bounded also by the z = 0 plane. H(x) is the Heaviside step function. The 
dimensions of the filopod in A are d = 0.2 μm, Lfil = 5 μm (Lfil = 0 in B). Kinetics of active PKC 
(c*) at the front and back of the geometry with filopod (C) and without filopod (D) for a PDGF 
relative gradient of 67% and midpoint [PDGF] = 0.03 nM. 
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2.3.3 Regulation of MARCKS synergizes with other feedback mechanisms to enhance 

amplification of the PLC/PKC pathway 

In the model calculations shown thus far, we assumed a steep PDGF gradient. Although 

responses to PDGF gradients of that magnitude have been studied in micropipette experiments 

(42), we sought to assess the possibility of substantial pathway amplification in response to a 

shallower PDGF gradient (10% relative steepness). This is important, because the recent 

observations of polarized DAG densities were made in microfluidic devices with PDGF 

gradients of comparable steepness (33). A PDGF gradient of ∼10% relative steepness is also 

consistent with model simulations of dermal wound invasion; such gradients are realistically 

achievable if fibroblasts collectively consume PDGF via receptor-mediated endocytosis and 

lysosomal degradation (48). Under this gradient condition, and applying the same base-case 

parameters as in Figs. 2.3 and 2.5, the PLC/PKC pathway is amplified, but modestly so (the PKC 

activation ratio is 1.5) and thus inconsistent with experiments (Fig. 2.8); variation of the 

MARCKS phosphorylation and dephosphorylation rate constants, as in Fig. 2.3B, did not affect 

this conclusion. This result suggests that other mechanisms are needed to explain the observed 

amplification of the pathway in a shallow gradient. Although various positive feedback loops 

might be considered plausible, we chose to focus on a mechanistically simple one at the level of 

PKC activation. 

 

 

 

 

 



   

 
 

39 

 

Figure 2.8 Kinetics of active PKC (c*) with or without MARCKS for a PDGF gradient with 
relative steepness 10% and midpoint [PDGF] = 0.03 nM. 

 

During the process by which PKC is primed for activation, it is autophosphorylated; 

however, upon DAG-mediated recruitment and activation, PKC is susceptible to 

dephosphorylation, leading to termination of the activation cycle (35). Here, in addition to the 

intramolecular phosphorylation reaction shown in Fig. 2.1A, we propose that phosphorylation of 

PKC might also be maintained via an intermolecular, autocatalytic reaction between active and 

inactive PKC molecules associated with DAG at the membrane (Fig. 2.9A). For the same steep 

PDGF gradient and MARCKS parameters used in Figs. 2.3D and 2.5, we assessed the PKC 

activation ratio between the front and back of the cell with various combinations of intra- (kpc1) 

and intermolecular (kpc2) PKC phosphorylation rate constants (Fig. 2.9B). We found a region of 

the parameter space where the PKC activation ratio is dramatically amplified and selected a 

parameter set (kpc1 = 0.01 s−1 and kpc2 = 1 μm2 s−1) from this region for further study. In response 

to the steep PDGF gradient, the high PKC activation ratio (∼90-fold; the corresponding ratio of 

free DAG densities is ∼16-fold) is achieved because the PKC activity at the back of the cell is 

maintained at a low level; analysis of free PIP2 densities at the front and back shows an even 
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greater contrast in MARCKS regulation, with MARCKS binding at the back of the cell actually 

increasing in response to the gradient (Fig. 2.9C). In the absence of MARCKS, the autocatalytic 

PKC phosphorylation mechanism is sufficient for pathway amplification, but to a far lower 

extent than when the two feedbacks work in concert (Fig. 2.9C; parameter sweeps 

for kpc1 and kpc2 are shown in Fig. 2.10). More critically, any feedback involving PKC only also 

fails to explain the experimentally observed amplification at the level of DAG. 
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Figure 2.9 Regulation of MARCKS synergizes with other feedback mechanisms to enhance 
amplification of the PLC/PKC pathway. (A) Cutout of the pathway schematic depicting the 
addition of intermolecular PKC autophosphorylation as an additional positive feedback. (B) 
Surface plot of the steady-state front/back ratio of active PKC (c∗) as a function of intramolecular 
(kpc1) and intermolecular (kpc2) PKC phosphorylation rate constants for the steep (67%) PDGF 
gradient. (C and D) Characterization of the system with PKC feedback (kpc1 = 0.01 s−1 and kpc2 = 
1 μm−2 s−1). Comparison of the kinetics of active PKC (c∗) and distribution of free PIP2 with 
MARCKS, and the kinetics of active PKC without MARCKS, for steep (67% (C)) and shallow 
(10% (D)) PDGF gradients with midpoint [PDGF] = 0.03 nM, introduced at time = 1200 s. The 
lighter circles on the heat maps are for the base parameter set without PKC feedback; black 
circles are for the parameter set with PKC feedback included. 
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Figure 2.10 Parameter sweeps for intramolecular (kpc1) and intermolecular (kpc2) phosphorylation 
rates in the absence of MARCKS. 

 

 

Turning to the shallow PDGF gradient (10% relative steepness), we assessed the 

amplification of the pathway with both feedbacks in place. Unlike the MARCKS-only case 

(Fig. 2.8), the addition of intermolecular PKC feedback resulted in a substantial PKC activation 

ratio (∼14-fold, or ∼28-fold for the most favorable geometry described in the previous section) 

by enhancing the differential regulation of MARCKS (Figs. 2.9D and 2.11). Indeed, in the 

absence of MARCKS, but with PKC feedback, the pathway is not significantly amplified in 

response to the shallow gradient (Fig. 2.9D). Taken together, these results suggest that although 

regulation of MARCKS is sufficient for some measure of pathway amplification, it can also 

synergize with other feedbacks to achieve greater amplification, which is necessary to explain 

the pathway response to a shallow PDGF gradient. 

 

 

 



   

 
 

43 

 
Figure 2.11 Geometry effects with both positive feedbacks in a shallow gradient. 3D geometries 
with (A) and without (B) a filopod-like protrusion are shown, identical to those shown in Fig. 
2.7. Kinetics of active PKC (c*) at the front and back of the geometry with filopod (C) and 
without filopod (D) for the model with both MARCKS and PKC feedbacks and for a shallow 
PDGF gradient with 10% relative steepness and midpoint [PDGF] = 0.03 nM. 
 

2.3.4 The coupling of MARCKS and PKC feedbacks yields oscillations in certain regions of 

parameter space 

The initial transient kinetics (damped oscillations) seen in (Fig. 2.9D) suggest that the 

system is on the cusp of instability under those conditions. To explore the potential for other 

nonlinear behaviors in the two-feedback system, we kept the same values 

of kpc1 and kpc2 from Fig. 2.9, C and D, and varied the rate constants of MARCKS 

phosphorylation and dephosphorylation. For a particular region of this parameter space, for 

example, kpm = 0.03 μm2 s−1, kdpM = 0.01 s−1, we found that the kinetics of active PKC oscillate at 

the front and back of the simulated domain in response to PDGF stimulation (Fig. 2.12).  



   

 
 

44 

 

Figure 2.12 The PLC/PKC pathway with multiple feedbacks is capable of oscillations. Kinetics 
of active PKC (c∗) at the front and back of the simulated cell for PDGF gradients of varying 
relative steepness as indicated and midpoint [PDGF] = 0.03 nM, introduced at time = 1200 s. 
Deviations from the base parameter values are kpm = 0.03 μm−2 s−1, kdpM = 0.01 s−1, kpc1 =       
0.01 s−1, and kpc2 = 1 μm−2 s−1. 
 

The kinetics of all model species for the 67% PDGF gradient simulation are shown 

in Fig. 2.13. A closer look at the kinetics reveals a cycle in which activation of PKC at the front 

of the cell increases, fueled by the two positive feedbacks, with corresponding increases in 

MARCKS phosphorylation and depletion of membrane-bound MARCKS at the cell front; this is 

followed by dephosphorylation of MARCKS, net diffusion of unphosphorylated MARCKS from 

back to front, and restoration of MARCKS-PIP2 binding at the front (Fig. 2.14). The latter 

process acts as a negative feedback of sorts, with a spatial character. We conclude that the 
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PLC/PKC pathway model, with the amplification mechanisms presented in this article, is a 

substrate-depletion/diffusion oscillator in certain regions of parameter space. 

 

 
Figure 2.13 Kinetics of all species for the simulation represented in Fig. 2.12 with 67% relative 
gradient. 
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Figure 2.14 Expanded view of oscillating species from Fig. 2.13. The dotted vertical line allows 
comparisons across species. 
 

2.4 Discussion 

The mathematical model offered here is the first, to our knowledge, to describe gradient 

sensing through the PLC/PKC signaling pathway, which is required for fibroblast chemotaxis to 

PDGF. This pathway achieves asymmetric force generation via local inactivation of myosin II 

rather than by activation of Arp2/3 complex (32,33). In particular, we evaluated the regulation of 

MARCKS as a newly described positive feedback loop capable of amplifying PLC/PKC 

signaling. Positive feedback or other sources of ultrasensitivity are necessary for the 

amplification, because saturability of molecular interactions and enzymatic depletion of 

substrates generally diminish the sensitivity of the input-output relationship. Additional positive 

feedback in the pathway synergizes with MARCKS regulation and yields high amplification in 
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both steep and shallow gradients of PDGF, although this combination renders the steady state 

unstable in certain regions of parameter space. 

The proposed feedback circuit shares certain qualitative features with hypothetical local 

excitation/global inhibition mechanisms (16), with localized PLC/DAG/PKC signaling and a 

more global distribution of MARCKS via fast diffusion of its phosphorylated form in the 

cytosol. However, since the model presented here is based on molecular mechanisms reported in 

the literature, its topology is distinct from previous theoretical models in certain intriguing ways. 

For one, the inhibitor MARCKS regulates substrate (PIP2) supply and thus not only suppresses 

signaling at the cell rear, but neutralization of this negative regulator (49) is also an important 

part of the local amplification mechanism. Also, the capacity of the mechanism to supply PIP2 is 

directly coupled to the flux of phospho-MARCKS into the cytosol. The global inhibition aspect 

is more complex than envisioned in other models, because it depends on the balance of 

MARCKS phosphorylation and dephosphorylation kinetics, along with MARCKS diffusion and 

its rate of membrane association. Last, and arguably most important, MARCKS is a buffer: it 

regulates the supply of PIP2 by sequestering it, and as such, it does not alter the steady-state 

density of PIP2 under perfectly mixed conditions (if the steady state is stable). The influence of 

such a buffer, the mobility of which is regulated, is a new concept in the study of gradient 

sensing. 

In its membrane-bound state, MARCKS cross-links and anchors actin filaments (50), but 

it remains unclear how this function influences leading-edge dynamics. Moreover, the 

availability of PIP2 potentially influences both the PLC/PKC pathway and PI3K signaling (51); 

though the latter is not required for fibroblast chemotaxis, it certainly affects the efficiency of 

fibroblast movement and turning behavior (27,30). We also recently showed that PI3K signaling 
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is enriched in filopodia (52), consistent with geometry-dependent regulation of MARCKS 

predicted by our model (Fig. 2.7). A more complete yet complex model of fibroblast motility 

would incorporate PI3K and small GTPase signaling and the coordinated regulation of the 

actin cytoskeleton via myosin II and Arp2/3 complex. The influence of PLC signaling on cofilin-

mediated actin severing (53), which has been examined using a quantitative model (54), could 

also be integrated in a more comprehensive framework, along with aspects of phosphoinositide 

dynamics modeled previously (55,56). Extension to other chemotactic cell types might also be 

considered; however, although PKC and MARCKS have been implicated in chemotaxis of, e.g., 

neutrophils (57-60), one can only speculate now whether or not the PLC/PKC pathway is 

amplified, or about its role relative to other signaling pathways in other cell types. 

The model presented here describes regulation of MARCKS combined with a simple 

feedback at the level of PKC, because the MARCKS feedback alone does not sufficiently 

amplify DAG production in a shallow PDGF gradient. Although the introduction of the second, 

putative feedback successfully showed how MARCKS regulation might synergize with other 

sources of nonlinearity, experiments and additional modeling will need to be carried out to 

identify and characterize them. Another aspect that will need to be addressed, both in 

experiments and models, is the robustness/fragility of the gradient-sensing circuit. DAG 

localization in fibroblasts responding to PDGF gradients with varied midpoint concentration and 

steepness remains to be characterized; comparison to such measurements will be critical if 

revisions or refinements of this model are to be meaningfully undertaken. 
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CHAPTER 3 

 

Mechanistic Models of PLC/PKC Signaling Implicate Phosphatidic Acid as a Key 
Amplifier of Chemotactic Gradient Sensing 
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models of PLC/PKC signaling implicate phosphatidic acid as a key amplifier of chemotactic 
gradient sensing. PLoS Comput Biol. 2020 Apr; 16(4): e1007708. 
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3.1 Introduction 

Chemotaxis, the bias of cell movement towards soluble chemical cues (chemoattractants), 

is critical for embryonic development, angiogenesis, the immune response, and wound healing in 

metazoans (1). Fibroblasts, the cells directly responsible for regenerating wounded tissue, 

respond chemotactically to platelet-derived growth factor (PDGF) as a cue to invade the wound; 

this proliferative phase of wound healing typically unfolds over the course of several days (2–5). 

Chemoattractant ligands such as PDGF bind to cognate receptors on the cell surface, and in 

eukaryotic cells this signal is sensed spatially, relying on a gradient of receptor occupancy and 

activation. The activated receptors interface with a network of intracellular signaling pathways 

that modulate the dynamics of the cytoskeleton and thus cell motility. This modulation can be 

achieved by spatially varying the rate of F-actin polymerization or the mechanical influence of 

Myosin II contractility (6,7). In fibroblasts exposed to a steady PDGF gradient, many of the 

prominent signaling pathways that enhance the rate of F-actin polymerization have been found to 

be dispensable for chemotaxis (8–10), whereas regulation of Myosin IIA by phospholipase C 

(PLC)/protein kinase (PKC) signaling, a well-studied pathway activated by many receptors, is 

essential (11). Another key finding in that study was that diacylglycerol (DAG), the lipid product 

of PLC that activates most PKC isoforms, is sharply concentrated in the fibroblasts’ protrusions 

(lamellipodia) exposed to the highest concentration of PDGF (11). Given that the external 

gradients in such experiments are characteristically shallow (typically, ~ 5% across a cell’s 

length), the PLC/PKC signaling circuit must be locally amplified to explain the observed 

polarization of DAG production. What are the biochemical and biophysical mechanisms that 

cause the pathway to polarize? 
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To partially address this question, a reaction-diffusion model of the PLC/PKC signaling 

pathway identified phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) 

by PKC, which increases the availability of the PLC substrate (PIP2) (12–15), as a positive 

feedback loop (PFL); this mechanism is sufficient for polarization in response to an abnormally 

steep external gradient (16). By itself, however, the MARCKS feedback was unable to polarize 

signaling in response to shallow external gradients (≤ 10%), and the system lacked robustness to 

modest changes in the midpoint concentration of chemoattractant. In this work, we address these 

issues through formulation of more mechanistic, partial differential equation models of the 

PLC/PKC pathway. These models consider two additional PFLs supported by literature evidence 

and thus introduce a key molecular player: phosphatidic acid (PA), a lipid intermediate in the 

metabolism of DAG. 

PA is recognized as a signaling molecule affecting a number of cellular functions 

including cell growth and proliferation, vesicular trafficking, and cytoskeletal rearrangement 

(17,18). In the present models, we include reactions by which PA is produced by 

phosphorylation of DAG by DAG kinases or from hydrolysis of phosphatidylcholine by 

phospholipase D (PLD) (19–22). Feedback loops incorporating PA were added to the model 

based on published evidence that: 1) PA binds PLCγ and increases the rate of PIP2 hydrolysis in 

vitro (23); and 2) active PKC can enhance the activity of PLD for increased production of PA 

(24–26). Model simulations show that the MARCKS feedback mechanism synergizes with these 

new feedback loops to polarize PLC/PKC signaling in response to shallow gradients of receptor 

occupancy and over an appreciable range of midpoint occupancy. Subtle asymmetry of the cell 

geometry can also polarize signaling. Focusing on the molecular details, simulations suggest that 

DAG kinases, the enzymes responsible for turnover of DAG, exert a critical and surprisingly 
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positive influence on the responsiveness of the circuit. Finally, we applied the predicted receptor 

occupancy conditions for polarization to a two-state model of cell movement in a hybrid 

(stochastic/continuum) model of wound invasion. This model predicts a hierarchy of chemotactic 

waves that drive more efficient collective invasion than a single chemotactic front. With this 

framework, we can proceed to link signal transduction mechanisms at the molecular level to 

individual and collective cell movements directed by chemoattractant gradients in tissues. 

 

3.2 Results 

3.2.1 New models of the PLC/PKC pathway based on putative feedback mechanisms indicated in 

the literature 

We formulated a biochemically realistic description of the chemotactic sensing circuit in 

fibroblasts, retaining the differential PIP2 buffering by MARCKS from the Mohan model (16) 

and considering two additional PFLs based on published evidence (Fig. 3.1A; see also Materials 

and Methods and Appendix B). The first, PFL 1, considers the modulation of PLC recruitment by 

phosphatidic acid (PA), the lipid produced by phosphorylation of DAG by DAG kinases. Using a 

detergent-phospholipid mixed micelle assay system, it was shown that inclusion of PA enhanced 

PIP2 hydrolysis catalyzed by either unphosphorylated or tyrosine-phosphorylated PLCγ1, by 

reducing the apparent Km for the reaction (23). The details of how PA affects PLC activity are 

not completely understood, but the reduction of the apparent Km is consistent with PA-mediated 

stabilization of PLCγ1 association with the membrane, akin to the effect of the non-catalytic 

interaction of PLCδ with PIP2 (27). Therefore, we modeled the effect of PA as an increased 

lifetime of the receptor-PLCγ1 complex at the membrane (Fig. 3.1A). 
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Figure 3.1 Model of the PLC/PKC network including phosphatidic acid (PA). (A) Model 
schematic depicting the interactions and reactions among signaling proteins and plasma 
membrane lipids. Dashed lines ending in a filled circle indicate that the species enhances the 
associated process. The reactions and interactions shown in red are associated with the 
generation and influence of PA in positive feedback loops (PFLs) labeled (1) and (2). (B) Base 
model geometry and orientation of the receptor occupancy gradient, which is linear in the 
direction of the cell’s long axis, x. (C) Plots illustrating the linear profile of active receptor 
density imposed across the 40 μm length of the cell for varying values of rfrac (relative midpoint 
density) and rsteep (relative steepness, expressed here as a percentage difference across the cell). 
 

PFL 2 considers the effect of active PKC on the activity of phospholipase D1 (PLD1), 

which produces PA by hydrolyzing the abundant lipid, phosphatidylcholine (19,21). In murine 

fibroblasts stimulated with phorbol ester, PKCα interacts with PLD1 and increases the rate of 

phosphatidylcholine hydrolysis. PA produced by this reaction can be dephosphorylated to yield 

DAG, and thus PFL 2 exerts an influence on PLC/PKC signaling independent of PFL 1. We 

model the influence of PLD as a distinct source term for generation of PA, which increases 

according to a Hill function of the active PKC density at the membrane (Fig. 3.1A). 
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To simplify and generalize the handling of receptor dynamics in this model, and 

considering that receptor activation is patterned by an external ligand, we assume a steady 

gradient of occupied/active receptors, r, that is linear in the direction of the cell’s long axis (on 

both the top and bottom of the cell) rather than along the cell’s contour (Fig. 3.1B & 3.1C). In 

the expression for r, rfrac is the average receptor occupancy, expressed as a fraction of a 

characteristic receptor density of 130 μm-2, or 105/cell. The parameter rsteep is the relative 

steepness of the receptor occupancy gradient across the cell; for example, a value of rsteep = 0.1 

corresponds to a 10% difference between the front and back of the cell. 

 

3.2.2 Stabilization of PLC recruitment by phosphatidic acid (PFL 1), combined with 

neutralization of MARCKS by PKC, promotes sensitive and robust gradient sensing 

Considering the network depicted in Fig. 3.1A, with PFL 1 but not PFL 2, we evaluated 

the ability of receptor occupancy gradients (characterized by midpoint occupancy and % 

steepness) to polarize DAG and active PKC. For each of five gradient steepness values, ranging 

from 0% (uniform stimulation) up to 67% (2-fold) difference across the cell, simulations were 

run varying the value of the midpoint receptor occupancy, rfrac. All simulations were run 

sufficiently long to allow a steady state to be achieved, followed by an equally long period with 

the gradient reversed to check the stability of the spatial pattern. The steady-state concentrations 

of active PKC at the front and back of the cell are plotted versus rfrac (Fig. 3.2A). In some 

simulations, the spatial pattern oscillated, in which case the maximum and minimum values of 

the oscillation at each end of the cell are plotted. For examples of the simulated time courses, 

showing the transient behavior with sustained oscillations where applicable, see Fig. 3.3 and Fig. 

3.4. The PKC activity pattern was reversible for all but one of these simulated conditions. The 
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exception is marked with an asterisk in Fig. 3.2A, signifying lack of reversibility here and in 

subsequent figures of this paper. 

 

 

Figure 3.2 Gradient amplification by PFL 1 combined with regulation of MARCKS. (A) The 
concentration of active PKC molecules at the front (red circle) and back (blue circle) of the cell 
are plotted as a function of the mean fractional occupancy of receptors, rfrac, for varying values 
of gradient steepness. When the simulations produced oscillations, the maxima (upward-pointing 
triangles) and minima (downward-pointing triangles) of the oscillations are plotted; the front and 
back are still denoted by shades of red and blue, respectively. The simulation achieving steady 
state with the maximum front/back ratio is denoted by the dashed vertical line. For these 
simulations, the direction of the gradient was reversed after 20,000 s. If the active PKC pattern 
failed to reverse in response, the simulation is marked with an asterisk. (B) Table showing the 
maximum front/back ratio for each gradient steepness in simulations run with PFL1 and either 
with or without MARCKS protein. 
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Figure 3.3 Time courses of all model species for Fig. 3.2A, 10% steepness and rfrac = 0.1. 
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Figure 3.4 Transition from oscillations to stable pattern as rfrac is increased (10% steepness). 

 

For simulations that achieved steady state, the degree of polarization is quantified as the 

ratio of active PKC at the front of the cell over that of the back of the cell, and the value 

of rfrac where this ratio is maximum is marked on each of the plots in Fig. 3.2A. For receptor 

occupancy gradients as shallow as 3%, we found maximum front/back ratios exceeding 10, 

indicating strong and sensitive polarization of the PLC/PKC pathway. Another quality of the 

gradient sensing response is its robustness, of which several features might be considered. For 

example, across the range of % steepness values, the greatest degree of polarization is 

consistently achieved at approximately the same value of rfrac (≈ 0.1), and polarized patterns 

exhibit a consistent density of active PKC at the front of the cell. The aspect of greatest interest 

to us, however, is the range of rfrac values that elicit polarization for a given % steepness, which 

we refer to as dose-response robustness. As might be expected, dose-response robustness is 

enhanced as gradient steepness is increased (Fig. 3.2A); at a modest steepness of 10% (typical in 

magnitude of chemotaxis experiments), the range of rfrac values for which steady polarization 

would be evident spans a factor of 2. The range doubles if oscillatory simulations with 

consistently high front/back ratio are included. 
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It should be noted that the general inability to polarize the gradient sensing circuit at 

high rfrac is not caused by saturation of receptor occupancy, as would be expected at high 

concentrations of chemoattractant; in this model, the relative steepness of receptor activation is 

fixed. Rather, high receptor activation promotes ignition of the positive feedback at the back of 

the cell as well as at the front. 

In previous work (16), it was shown that a single positive feedback was not sufficient for 

a demonstratively amplified response, i.e., without differential buffering of PIP2 by MARCKS. 

Accordingly, simulations with PFL 1 but no MARCKS show similar dose responsiveness with 

respect to rfrac but inconsequential polarization (Fig. 3.2B). These results identify a promising 

gradient sensing circuit that combines differential buffering of PIP2 by MARCKS, and the 

amplification of PLC recruitment by PA, regulation mechanisms supported by evidence in the 

literature. 

 

3.2.3 Analysis of the mechanisms driving PLC/PKC polarization 

The differential buffering of PIP2 by MARCKS was described in detail previously (16), 

and it is important to understand this concept in the context of the present model as well. 

Phosphorylation of MARCKS by active, DAG-bound PKC liberates PIP2 locally, further 

enhancing DAG production by positive feedback. A key aspect of differential buffering is the 

maintenance of certain intracellular gradients. In the cytosol, PLC and PKC are close to uniform, 

whereas there is a gradient of phosphorylated versus unphosphorylated MARCKS in the cytosol. 

Accordingly, a substantial increase in the diffusivities of cytosolic MARCKS species breaks the 

polarization of the present model (Fig 3.5A). A large decrease in the diffusivities also decreases 

polarization, but modestly so. The optimum with respect to diffusivity has been attributed to the 
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ability of dephosphorylated MARCKS to diffuse to the rear of the cell before re-binding 

PIP2 (16). The other important gradients are of total and free PIP2 in the plasma membrane. 

MARCKS-bound PIP2 is protected from hydrolysis, and therefore its spatial range by diffusion is 

substantial. Thus, net diffusion of MARCKS-bound PIP2 from back to front supplies the front of 

the cell with substrate, allowing the free PIP2 density to be much higher at the front despite the 

much higher PLC activity there. Accordingly, reducing the diffusivities of total PIP2 and 

membrane-associated MARCKS prevents polarization, whereas increasing those diffusivities 

enhances the extent of polarization (Fig. 3.5B). 

 

 

Figure 3.5 Analysis of the mechanisms driving PLC/PKC polarization. (A) Sensitivity of the 
results in Fig. 3.2A, 10% gradient steepness, to the indicated fold-changes in MARCKS (M and 
Mp) cytosolic diffusivities (1 = base case). (B) Sensitivity of the results in Fig. 3.2A, 10% 
gradient steepness, to the indicated fold-changes in total PIP2 and membrane-associated 
MARCKS (pT and mT) membrane diffusivities (1 = base case). (C) Plot of the d- and e-nullclines 
(Appendix B) evaluated at the front and back of the cell for the base-case parameters as in Fig. 
3.2A, with 10% gradient steepness and rfrac = 0.1. 

 

To further explain the polarization of the present gradient sensing circuit, we developed a 

steady-state analysis (Appendix B), with the simplifying assumption that diffusion of active PLC 

and DAG-containing species are negligible relative to associated reaction terms. We derived 

nullcline expressions for the membrane-recruited PLC and for the sum of free and PKC-bound 

DAG, which we refer to as the e- and d-nullclines. The intersections of these two curves are 
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fixed points. To construct these curves on a (d, e) phase plane, certain other variables must be 

specified. The e-nullcline includes the local activated receptor density, r, and the cytosolic PLC 

concentration, E. The former is the input to the simulation, with different values at the front and 

back of the cell, whereas the latter is close to spatially uniform and determined from the 

simulation. The d-nullcline is a straight line with a slope that is inversely proportional to the free 

PIP2 concentration, with different values at the front and back of the cell determined from the 

simulation. The phase-plane plot for the case of 10% gradient, rfrac = 0.1 from Fig. 

3.2A illustrates how PFL 1 synergizes with the regulation of MARCKS (Fig 3.5C). PFL 1 is 

directly responsible for the positive slope of the e-nullcline; without PFL 1, the e-nullcline has 

zero slope. In conjunction, regulation of MARCKS is directly responsible for the PIP2 density 

being higher (lower slope of the d-nullcline) at the front versus the back of the cell; without 

MARCKS, free PIP2 can only be lower, not higher, at the front (16). This analysis also shows 

how the situation changes for lower or higher rfrac, lending insight into dose-response 

robustness (Fig. 3.6). 

 

 

Figure 3.6 Phase plots for different rfrac values. These correspond to the simulations analyzed 
in Fig. 3.2A with 10% gradient steepness. The plot with rfrac = 0.1 is the same as in Fig. 3.5A. 
When rfrac = 0.0278, DAG is low at both the front and back of the cell; with rfrac = 0.278, 
DAG is high at both the front and back of the cell. 
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3.2.4 Subtle asymmetry in cell morphology polarizes the PLC/PKC network with PFL 1 and 

influences external gradient sensing 

Given the demonstrated sensitivity of the present gradient sensing circuit and its 

dependence on diffusion of MARCKS in the cytosol, we reasoned that a slight asymmetry in cell 

morphology might be a sufficiently strong spatial cue to polarize signaling in response to 

uniform receptor occupancy. To test this, the cell geometry was altered such that the back end of 

the cell was blunted compared to the front end (Fig. 3.7A). With uniform stimulation and the 

same parameter set used in Fig. 3.2A, the shape asymmetry polarized the signaling network, 

disfavoring the blunted end, for a range of rfrac values (Fig. 3.7B). As expected, this polarization 

requires a gradient of phosphorylated MARCKS, with a dependence on cytosolic MARCKS 

diffusivities similar to polarization induced by an external gradient (Fig. 3.7C, compare to Fig. 

3.5A). 
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Figure 3.7 Subtle asymmetry in cell morphology causes spontaneous polarization of the 
proposed PLC/PKC network and influences external gradient sensing. (A) Comparison of the 
symmetric cell geometry versus the asymmetric cell geometry. (B) Results for the asymmetric 
geometry with uniform receptor occupancy (0% gradient steepness) show spontaneous 
polarization of the system for a particular range of receptor occupancy values. Symbols have the 
same meanings as in Fig. 3.2A. (C) Sensitivity of the results in B to the indicated fold-changes in 
MARCKS (M and Mp) cytosolic diffusivities (1 = base case). (D) Table showing the maximum 
front/back active PKC ratio for each gradient steepness indicated using the asymmetric 
geometry. Consistent with the rest of the paper, the front and back of the cell refer to the ends 
with the highest and lowest receptor activation, respectively. For the front-end blunted 
simulations where the ratio is less than 1 (internal gradient opposite the external gradient), the 
inverse of the ratio is indicated. 

 

The tendency of the asymmetric cell geometry to polarize was also tested with receptor 

occupancy gradients in either direction (Fig. 3.7D). Consistent with the rest of the paper, the 

front of the cell refers here to the right end, with the highest receptor occupancy, and the back of 

the cell is at the left end, with the lowest receptor occupancy. With the blunt end of the cell at the 

back, the maximum degree of active PKC polarization is only modestly affected by receptor 

occupancy gradients of 3% and 10%, relative to uniform stimulation, whereas 30% and 67% 

gradients elicit substantially greater polarization similar to the symmetric geometry 
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(compare Fig. 3.7D and Fig. 3.2B). Consistent with that trend, when the blunt end of the cell was 

at the front (right-to-left gradient), the shape effect opposes the influence of the receptor 

occupancy gradient and dominates for 3% and 10% gradients, whereas the steeper gradients were 

sufficient to overcome the geometry effect. These results indicate that the cell’s local 

morphology can readily alter or play a dominant role in the polarization of PLC/PKC signaling. 

 

3.2.5 The model predicts a critical role of DAG kinases affecting the responsiveness of the 

gradient sensing network through PFL 1 

Having characterized and explained how PFL 1 influences polarization of the signaling 

network, we considered the robustness of this system to substantial changes in rate parameters. 

Each of the rate constants and affinity parameters was increased by 3X and reduced to 0.3X to 

yield a full order-of-magnitude range, and the analysis shown in Fig. 3.2A was repeated for each. 

A plot of the maximum front/back ratios of activated PKC shows that polarization is fairly robust 

to a 3-fold change of each parameter in at least one direction (Fig. 3.8). The changes that break 

the polarization are those that weaken PLC recruitment, alter MARCKS phosphorylation by 

PKC (as explored in (16)), or alter lipid metabolism. The three parameters associated with the 

latter (kDAGK, kPAP, and kbasal,dp) are pseudo-first-order rate constants that reflect enzymatic 

metabolism of DAG and PA. Reasoning that the interconversion of DAG and PA is a pivotal 

aspect that needs to be understood, we devised a simple steady-state analysis assuming negligible 

diffusion of DAG and PA (Appendix B). This analysis predicts a consistent proportional 

relationship between the concentrations of DAG and PA. To verify this conclusion, the steady-

state concentration of PA at the front of the cell was plotted versus that of DAG for all of the 
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simulations analyzed in Fig. 3.2A; each of these points lies approximately on the line predicted 

by the analytical expression (Fig. 3.9A). 

 

 

Figure 3.8 Systematic variation of kinetic parameters (no PFL 2). 

 

The analysis shows that the activity of DAG kinases, reflected in the value of the rate 

constant, kDAGK, directly alters the PA/DAG ratio. Intuitively, diminishing DAG kinase activity is 

expected to result in higher DAG and active PKC levels; however, in the model with PFL 1 and 

a nominal 10% gradient of receptor occupancy, a reduction of kDAGK to 0.3 times its base value 

ablates polarization, whereas an increase of kDAGK to 3 times its base value substantially enhances 

the degree of polarization and dose-response robustness (Fig. 3.9B). Analysis of DAG and PA 

levels for 1x and 3x kDAGK (Fig. 3.9C) shows that as the parameter is increased, the density of 

DAG at the cell front is decreased as expected, but only modestly so (~30% reduction) because 

of the substantially increased abundance of PA; at the rear of the cell, the impact on DAG is 
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relatively far greater (~70% reduction). These effects of increased kDAGK extend to receptor-

activation gradients with 3% steepness (Fig. 3.9D). 
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Figure 3.9 Variation of PA/DAG ratio modulates the sensitivity and dose response of the 
pathway. (A) The final steady-state concentration of PA (dp) is plotted versus the concentration 
of DAG (d) at the front of the cell for each simulation presented in Fig. 3.2. These points fall 
along the line predicted by the equation shown, for which net diffusion of lipids is assumed to be 
slow. (B) Relative to the parameter set associated with Fig. 3.2, the parameter kDAGK was taken at 
0.3 or 3 times its base value, at 10% gradient steepness. Colors and symbols have the same 
meanings as in Fig. 3.2A. The maximum front/back ratio is shown underneath the symbols. (C) 
Bar plots comparing the DAG and PA steady-state concentrations at the front and back of the 
cell for 1x and 3x kDAGK simulations, with 10% steepness and rfrac = 0.1. (D) Same as B, but 
with 3% gradient steepness. For B-D, the direction of the gradient was reversed after 20,000 s. If 
the active PKC pattern failed to reverse in response, the simulation is marked with an asterisk. 
(E) The parameter scaling factor refers to the fold-change by which the parameters kDAGK, kPAP, 
kbasal,dp, and KPA were decreased, while the parameter koff,c was divided by the scaling factor to 
increase its value. These parameter changes increase DAG and PA levels at the front of the cell 
systematically, while maintaining approximately the same PA/DAG ratio and comparable effects 
of PA and DAG on PFL 1 and PKC recruitment, respectively. 
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To further test this analysis, we predicted that we could increase the steady-state levels of 

both DAG and PA, while maintaining the same PA/DAG ratio, by proportional reduction of all 

three of kDAGK, kPAP, and kbasal,dp. To normalize for these changes at the level of PFL 1 and PKC 

activity, we applied the same reduction factor to the PA-PLC affinity parameter, KPA, and to the 

DAG-PKC affinity (by increasing koff,c). With these changes, we were able to maintain 

polarization while increasing DAG and PA levels by almost an order of magnitude (Fig. 3.9E). 

 

3.2.6 PKC-mediated activation of PLD (PFL 2) confers less responsiveness than PFL 1, but the 

two feedbacks can synergize in the polarization of PLC/PKC signaling 

The other putative source of feedback we consider is the ability of active PKC to amplify 

the hydrolysis of phosphatidylcholine by PLD, producing PA and additional DAG upon 

dephosphorylation of PA (PFL 2). Parameters characterizing PFL 2 are a saturation 

constant, KPLD, gain parameter, γ, and Hill coefficient, n. Extensive parameter sweeps 

of KPLD and γ were performed with n fixed at either 1 (Michaelean sensitivity) or 2 (modestly 

ultrasensitive). At a 10% gradient in receptor activation, PFL 2 along with the regulation of 

MARCKS was unable to polarize DAG and active PKC with n = 1, whereas with n = 2, a 

particular combination of KPLD and γ values yielded strong polarization; however, the degree of 

polarization and dose-response robustness are less than those with PFL 1 instead (Fig. 3.10A). 

That said, ultrasensitive PFL 2 shows synergy when combined with PFL 1. Firstly, the inclusion 

of both PFLs (with re-optimization of KPLD and γ for PFL 2) allowed for polarization without 

MARCKS (Fig. 3.10B). When all three feedbacks (PFLs 1 and 2 and regulation of MARCKS) 

were present, both the degree of polarization and the dose-response robustness were dramatically 

enhanced, at the expense of reversibility (Fig. 3.10C). Consistent with these conclusions, 
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polarization of the system with PFL 2 is broken by 3-fold changes in parameters that influence 

PA levels (kDAGK or KPLD) except when all three feedbacks are included (Fig. 3.11). 

 

 

 

Figure 3.10 PFL 2 confers less responsiveness than PFL 1, but the two can synergize in the 
polarization of PLC/PKC signaling. The simulations shown are all at a 10% gradient of receptor 
occupancy. All colors, symbols, and values have the same meanings as in previous figures. (A) 
PFL 2 and MARCKS regulation but no PFL 1. For PFL 2, the parameters KPLD and γVsynth,dp are 
set at 1 and 1, respectively. (B) PFL 1 and PFL 2 but no MARCKS. The parameters KPLD and 
γVsynth,dp are set at 0.1 and 10, respectively. (C) All three feedbacks are included, and KPLD and 
γVsynth,dp are set as in B. For all of these simulations, the direction of the gradient was reversed 
after 20,000 s. If the active PKC pattern failed to reverse in response, the simulation is marked 
with an asterisk. 

 



   

 
 

75 

 

Figure 3.11 Variation of key parameters with PFL 2 included in the system. The parameters 
targeted were kDAGK, which affects the conversion of DAG to PA; KPA, which affects the PA-PLC 
affinity in PFL 1; and KPLD, which affects the sensitivity of PFL 2 to active PKC. Each parameter 
was decreased to 0.3X and increased to 3X. Each plot shows active PKC density vs. rfrac for 
10% gradient steepness, as in Fig. 3.10. 

 

The following section including the text, model development and analysis, and figure 3.12 

were created or performed by Dr. Anisur Rahman.  

3.2.7 Thresholds for chemotactic migration matching those of DAG/PKC polarization yield 

efficient collective invasion and chemotactic wavelets in simulations of wound invasion 

Having characterized the polarization of the proposed PLC/PKC network, we asked how 

it might influence directed cell migration in a physiological context. To address this, we adapted 

a hybrid simulation of wound invasion, in which the concentration of PDGF evolves as a 
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continuum in one dimension, and fibroblasts are treated as motile line segments (28). A key 

prediction of the previous wound invasion model, which did not consider a polarizable gradient 

sensing mechanism, is that the cells can collectively generate a PDGF gradient through receptor-

mediated endocytosis and lysosomal degradation (29), a concept that has since been verified in 

experimental systems (30–33). Thus, fibroblast invasion of the simulated wound is guided by a 

chemotactic wave. This model was modified such that chemotaxis is switched on or off 

according to the receptor activation conditions that yield polarization of PKC activity for the 

modestly robust model and base-case parameters used to generate the results shown in Fig. 3.2. 

When chemotaxis is switched off, the cell moves in a random direction (left or right). The cell 

migration parameters were chosen to be consistent with experimentally measured migration 

speed and chemotactic (forward migration) index values (10,11). 

The movements of the cells in the simulation may be animated to visualize the collective 

behavior (Fig. 3.12A), and the progress of the cell population shows substantially faster invasion 

relative to simulations in which chemotaxis was not allowed (random migration only) (Fig. 

3.12B). This was anticipated because of the chemotactic behavior, but inspection of the 

simulations revealed an emergent property of the system. While the major chemotactic wave at 

the leading front of the cell population, located within the steepest gradient in PDGF 

concentration, remains a primary feature (Fig. 3.12C), the present model predicts the existence of 

chemotactic wavelets that arise and propagate within the plateau region of the PDGF 

concentration profile (Fig. 3.12D). Thus, in the present model, significant chemotaxis occurs 

throughout the wound (Fig. 3.12C & 3.12D), as cells that enter the simulated wound at later 

times are able to create and follow the mesoscopic waves to explore more of the space. These 

results show that even modest dose-response robustness of the circuit is sufficient to affect 
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chemotaxis in tissues, where chemoattractant gradients are dynamic. Indeed, it is the dynamic 

nature of the gradients that makes this possible. 

 

 

Figure 3.12 Simulation of wound invasion with chemotactic switching based on DAG/PKC 
polarization. (A) Depiction of individual cells in the hybrid simulation, in which the 
concentration of PDGF is modeled as a continuum. The cells are initially seeded in the adjacent 
dermis; position along the vertical dimension is for visualization only. As time elapses, the cells 
invade and populate the clot region through a combination of directed migration and 
proliferation. (B) Depth of penetration into the wound at t = 10 days for random migration only 
or with chemotaxis allowed (mean ± s.d., n = 10 simulations each). (C) Spatial profiles of cell 
densities (randomly or chemotactically migrating) and dimensionless PDGF concentration. (D) 
Zoomed-in view of the cell density and PDGF concentration profiles for 1 mm length of the clot 
region, showing chemotactic wavelets. 
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3.3 Discussion 

3.3.1 Novel ways that lipid signaling might enhance chemotactic gradient sensing, corroborated 

by modeling 

While the bulk of the signal transduction literature focuses on proteins and their 

regulation by phosphorylation, it is easy to forget the significance of lipid second messengers. In 

the context of spatial sensing and directed cell migration, phosphoinositides and other plasma 

membrane lipids are uniquely positioned, owing to their peripheral location, slow diffusion, 

relative abundance, and diversity of lipid-protein interactions (14,34). For more than two 

decades, research on lipid-mediated mechanisms of chemotactic gradient sensing has 

emphasized signaling through class I phosphoinositide 3-kinases (PI3Ks), which phosphorylate 

PIP2 to produce phosphatidylinositol (3,4,5)-trisphosphate (35,36). That lipid and its breakdown 

product, phosphatidylinositol (3,4)-bisphosphate, interact with a host of signaling proteins that 

locally enhance F-actin polymerization by affecting activation of the Arp2/3 complex (37). 

However, in most cell types tested, PI3K signaling is not absolutely required for chemotaxis, 

and, in fibroblasts and macrophages, even the Arp2/3 complex is dispensable for chemotaxis 

(10,11). For chemotaxis of fibroblasts and other mesenchymal cells, PLC/PKC signaling is 

required, and so increased focus on this pathway and on DAG as a lipid second messenger is 

warranted. 

The present models consider the dynamics of lipid signaling beyond DAG. Plasma-

membrane DAG is phosphorylated by DAG kinases to produce PA, a lipid second messenger in 

its own right (17,18). With PFL 1, we considered the ability of PA to enhance the observed 

affinity of PLCγ for PIP2 (23), presumably by increasing the lifetime of enzyme binding to 

membranes. We note that PLCβ1 activity, which is fostered by G protein-coupled receptor 
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signaling, is also promoted by PA (38). In the model, this putative feedback locally enhances 

PLC recruitment by activated receptors and the hydrolysis of PIP2. This effect of PA at the cell’s 

leading edge offsets the action of DAG kinases in metabolizing DAG. As a single feedback, PFL 

1 was not sufficient to polarize signaling in the model, requiring also the recruitment and 

activation of PKC by DAG. The necessary action of PKC could involve either or both of two 

mechanisms. The more potent of the two is the neutralizing phosphorylation of MARCKS by 

PKC, which directly synergizes with the enhancement of PLC recruitment by enhancing the 

supply of PIP2 substrate. The less direct route is PFL 2, by which PKC enhances the activity of 

PLD; PLD hydrolyzes phosphatidylcholine to produce PA and thus presents a parallel pathway 

for DAG generation. Highlighting the weaker influence of PFL 2 on polarization in the model, it 

was necessary to add positive cooperativity with respect to active PKC and to fine-tune the 

values of the PFL 2-associated parameters. As one might expect, including all three feedback 

mechanisms in the model, with the provisions for PFL 2, yielded the most sensitive and robust 

gradient sensing circuit. 

 

3.3.2 Robustness and reversibility of polarization 

The key challenges met to varying degrees by our models is to achieve polarization in 

shallow gradients and for an appreciable range of chemoattractant concentration (dose-response 

robustness). These two aspects go hand in hand for our models: greater sensitivity and degree of 

polarization were generally accompanied by greater dose-response robustness. These positive 

aspects could be enhanced, through changes to the parameter values or addition of a feedback, 

but with loss of reversibility; the system is polarized and tends to remain locked in place even 

when the gradient is reversed. This observation is consistent with analyses of other gradient 
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sensing models that show a tradeoff between amplification and self-locking behavior (39–42). 

Self-locking is generally considered undesirable, because it precludes a prompt response to 

dynamic changes in the chemoattractant gradient. To adjust the directionality of movement, a 

cell with its chemotactic signaling polarity locked would have to execute a turn. For a gradual 

response such as wound invasion, such a system might be adequate or even advantageous. 

Obviously, with a 1D wound geometry, persistent chemotaxis would yield the maximum rate of 

invasion. But even with instantaneous switching between polarization states, our hybrid invasion 

model showed efficient invasion, with chemotactic waves arising throughout the volume of the 

wound occupied by cells. 

As suggested previously, a gradient sensing circuit capable of polarizing in response to 

shallow gradients can also polarize in response to an asymmetric cell geometry (16). This is not a 

generality, however. In the context of this model, it is particular to the proposed regulation of 

MARCKS, where the local ratio of plasma membrane area to cytosolic volume affects the 

dynamics. This follows basic ideas discussed in detail elsewhere (43–47). If sensitivity to 

morphology were significant, it could act as an additional feedback mechanism. On the other 

hand, from the perspective of sensing external gradients, any such intrinsic cue might be 

considered a detriment. 

 

3.3.3 Testable hypotheses guided by the models 

Analysis of the present models offers a guide for experiments designed to test certain 

predictions, with polarization of DAG in chemotaxing cells as the essential readout. At a 

phenomenological level, a basic prediction of the models is that there is a minimum threshold of 

receptor activation, determined by the chemoattractant concentration, below which the pathway 
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cannot polarize. Considering the heterogeneity in a cell population, for a suitable gradient one 

should expect to find subpopulations that do or do not show DAG polarization. For the shallow 

gradients typically achieved in chemotaxis chambers, an upper bound on receptor activation is 

also predicted. Whether or not either the minimum threshold or upper bound can be exceeded 

would depend on a cell’s expression level of the cognate receptor. 

Regarding molecular mechanisms, the most basic prediction is the requirement for PKC 

activity, which may be readily tested using isoform-selective inhibitors. The regulation of 

MARCKS requires PKC activity, whereas modulation of PLD requires interaction with 

membrane-associated PKC but not PKC kinase activity (48,49). From there, perturbations 

affecting MARCKS and PLD may be pursued. The line of experimentation outlined above does 

not address PFL1, which does not rely on PKC. The prediction most directly related to PFL 1 

concerns the role of DAG kinases, which consume DAG but produce PA in the process. It is 

predicted that even a partial inhibition of DAG kinase activity (achieved either 

pharmacologically (50,51) or by depleting DAG kinase isoforms), while increasing DAG on a 

whole-cell level, would abrogate polarization for all doses of chemoattractant. Conversely, 

enhancement of DAG kinase activity, which might be achieved by overexpressing one or more 

of the isoforms, is predicted to enhance the dose-response robustness of polarization by 

increasing the upper bound of receptor activation. If true, more cells would be able to polarize at 

higher concentrations of chemoattractant. 

Finally, the effect of cell geometry could be tested by co-expression of or labeling with a 

fluorescent, cytosolic volume marker. Imaged by epifluorescence, the marker would quantify the 

local height of the cytoplasm; the lower this quantity in a lamellipod, the higher the membrane 
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area/volume, and the more likely the DAG is to be enriched there if the predicted geometry 

effect is significant. 

 

3.3.4 Limitations of the models 

The purpose of these models is to provisionally test the plausibility of the proposed 

feedback mechanisms. Modeling of stochastic effects and three-dimensional cell geometries with 

moving boundaries would make the simulations more realistic, with far greater computational 

expense. The topology of the signaling network is also by no means complete. As already noted, 

certain details of the mechanisms considered are incompletely understood, and other mechanisms 

not considered here might also contribute. Regarding the latter, one might consider other 

possible roles of the lipids involved. Whereas we focused on the putative influence of PA on 

PLC, PA has also been reported to enhance phosphatidylinositol 4-phosphate 5- kinase activity 

(52), which could boost the rate of PIP2 generation. In principle, we would expect this effect to 

amplify PFL 1. PIP2 also functions in other capacities that could impact PLC/PKC signaling and 

chemotaxis. For one, PIP2 is the preferred substrate of class I PI3Ks. Although PI3K signaling is 

not absolutely required for mesenchymal chemotaxis, PI3K competes with PLC for the common 

substrate and could be influenced by MARCKS (53). PIP2 is also bound by the actin-modifying 

proteins cofilin and profilin at the plasma membrane (54). Local modulation of free PIP2 and its 

hydrolysis by active PLC is expected to impact cofilin and profilin functions in chemotaxis 

(55,56). Finally, we note that PIP2 is a cofactor for PLD, influencing the enzyme’s membrane 

localization and activity (57). 

One of the key experimental observations that we have yet to adequately explain is the 

ability of phorbol ester (a DAG mimic) to elicit fibroblast chemotaxis when presented as a 
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shallow gradient, even in PLCγ1-null cells (11). This scenario is akin to the model with PFL 2 

only and no MARCKS, for which we could not find any set of parameter values that yielded 

polarization of PKC activity in response to a shallow (≤ 10%) gradient. Whether or not a phorbol 

ester gradient polarizes DAG/PKC is presently unknown; it is possible that chemotaxis occurs 

regardless. If polarization does occur in PLC-null cells executing phorbol ester chemotaxis, the 

nature of the underlying mechanisms will need to be clarified. 

 

3.4 Materials and Methods 

3.4.1 Models of PLC/PKC signaling 

The reaction-diffusion models are composed of partial differential equations and 

associated boundary and initial conditions. The species in the models and their interactions are 

described here; mathematical details and justifications for chosen parameter values are given 

in Appendix B. Within that document, model species, their diffusivity values, and initial 

conditions are listed in Table B.1, and rate equations and base-case values of rate constants are 

listed in Table B.2. Cytosolic species, signified by capital letters, have local concentrations in 

μM, whereas membrane species, signified by lowercase letters, have local densities in #/μm2. 

Rather than explicitly model the ligand-receptor dynamics, in this work we assume a linear 

profile of active receptors (r) as the model input, calculated from Eq. 3.1. 

                                       		# = 130	#(#)* +1 + #-.//0 1 !"#23                                      (3.1) 

As explained under Results, the prefactor determines the midpoint value of r; when the 

dimensionless rfrac = 1, the midpoint value of r = 130/μm2, corresponding to approximately 1 x 

105/cell. The distance from the midpoint, x, is in μm, and it is scaled by the cell length of 40 μm. 
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Therefore, rsteep is the fractional gradient steepness; a value of rsteep = 0.1, for example, 

corresponds to a 10% difference between the values of r at the extreme front and back of the cell. 

Referring to the diagram shown in Fig 3.1A, activated receptors recruit inactive PLC 

enzyme (E) from the cytosol to form active PLC at the membrane (e). Active PLC hydrolyzes 

PIP2 (free-density p). In the absence of stimulation, the density of PIP2 is maintained through 

basal synthesis and turnover. PIP2 hydrolysis by PLC generates the lipid second messenger, 

DAG (d). DAG is phosphorylated by DAG kinases to produce PA (dp), which can be 

dephosphorylated by phosphatidic acid phosphatases to recover DAG (22,58); these are modeled 

as pseudo-first-order reactions. Like PIP2, PA is also subject to basal generation and 

consumption; however, basal generation of PA is intentionally very low. DAG recruits 

catalytically competent but inactive PKC (C) from the cytosol by reversible binding of the 

tandem C1 domain of PKCs, forming active PKC (c*) at the membrane (59). Membrane-bound 

PKC is sensitive to dephosphorylation, and so the active PKC is converted to an inactive, 

membrane-bound form (c); this species is either autophosphorylated to regenerate active PKC or 

it dissociates to join the cytosolic pool. MARCKS is an abundant substrate of PKC that is present 

in both cytosolic and membrane-bound forms (14). The unphosphorylated, cytosolic form (M) 

inserts into the plasma membrane via its myristoyl group and interacts with PIP2 via its effector 

domain; the latter is a high-avidity, electrostatic interaction, and thus, MARCKS sequesters a 

substantial fraction of the intracellular PIP2 (13,60). The membrane-bound forms of MARCKS 

(m) are phosphorylated by active PKC, causing loss of affinity for the plasma membrane and 

liberation of PIP2; the phosphorylated form of MARCKS (Mp) is cytosolic (12). MARCKS is 

dephosphorylated in the cytosol by a pseudo-first-order reaction to complete the cycle. 
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Imposed on this basic network structure are two additional PFLs. As described under 

Results, PFL 1 considers that the PA engages PLC in complex with activated receptors and thus 

extends the enzyme’s mean lifetime (or, reduces its effective off-rate) at the plasma membrane. 

The net rate of PLC recruitment, VPLC, is given by Eq. 3.2. 

                             4$%& = 5'(,*(# − /)9|+ − 5',,,* ;-./0!"1#-.0$"1#
< /                                (3.2) 

In this equation, the parameters characterizing PFL 1 are KPA, the equilibrium constant of 

PA-PLC interaction, and ε, a dimensionless escape probability (see Appendix B). With 

either KPA set to zero or ε set to 1, PFL 1 is turned off. PFL 2 considers that active PKC engages 

and enhances the activity of PLD. This influence on the rate of PA synthesis, VPLD, is modeled as 

a Hill function in Eq. 3.3. 

                                        4$%2 = 434(56,17 1-.8(0!%&:
∗)(

-.(0!%&:∗)(
2                                            (3.3) 

In this equation, the parameters characterizing PFL 2 are KPLD, a saturation constant, γ, a 

dimensionless gain parameter, and n, the Hill coefficient. With either KPLD set to zero or γ set to 

1, PFL 2 is turned off. 

 

3.4.2 Implementation of PLC/PKC models 

The partial differential equation models are implemented in Virtual Cell 

(http://www.vcell.org), a computational environment for modeling and simulation in cell biology 

(61). The Biomodel and primary simulations are publicly available in Virtual Cell under user 

name jnosbis, Biomodel name ‘Nosbisch chemotaxis 2020’. As in Mohan et al. (16), the base 

two-dimensional geometry is an ellipse with a major axis length of 40 μm and minor axis length 

of 1.8 μm (Fig 3.1B); these dimensions were selected according to the important dimensions of a 

migrating fibroblast. For the asymmetric geometry considered in Fig. 3.7, the left end of the 
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ellipse was blunted by changing the y-component of the ellipse equation to have an exponent of 

6, rather than 2, for negative values of x. 

Virtual Cell uses a finite-volume method to numerically solve the reaction-diffusion 

equations, and the Fully-Implicit Finite Volume (variable time step) solver was used, with voxel 

dimensions of Δx = Δy = 0.1 μm and a maximum time step of 0.1 s. We confirmed that the 

computational results were not significantly affected by modest changes to those values. The 

initial conditions are such that the system is stationary in the absence of stimulation. Simulations 

were run for 20,000 s to ensure either a steady state or sustained oscillations. For all simulations, 

the reversibility of the spatial pattern was assessed by reversing the gradient of PDGF receptor 

activation across the cell after a steady state was reached and extending the simulation for 

another 20,000 s. If the spatial pattern achieved a steady state but failed to reverse, then we 

considered that simulation to display locking behavior, and the simulation is marked with an 

asterisk. 

 

The following section including the text, model development and analysis, and figure 3.13 

were created or performed by Dr. Anisur Rahman.  

3.4.3 Wound healing model  

The model of collective cell migration is adapted from the hybrid simulation strategy of 

Monine and Haugh, described in detail previously (28). Briefly, the dimensionless PDGF 

concentration, u, is treated as a continuum, subject to synthesis (only in the clot), interstitial 

diffusion, intrinsic degradation, and degradation by cells (receptor-mediated endocytosis). Local 

receptor activation, r, is given by the algebraic function, r = u2/(1 + u + u2), based on a quasi-

steady-state approximation (29); therefore, u = 1 corresponds to r = 1/3. The local value of r, 
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along with the calculated cell density, determines the cell-mediated degradation of PDGF and the 

net rate of cell proliferation or death. The original code was adapted from C to MATLAB; the 

version that was implemented to generate the results shown in Fig. 3.12 is provided in 

the Supporting Information (S2 Text) of this published paper (see citation on pg. 55). The 

difference in the new model is that the migration behavior, rather than depending on intracellular 

signaling in an analog fashion, switches between random and chemotactically biased states. In 

the random state, the cells move with a diffusivity Dv1 = 3x10-4 mm2/h. Considering a persistence 

time of ~ 0.5–1 h for fibroblasts, this corresponds to a cell speed of ~ 0.03 mm/h (~ 0.5 μm/min) 

(62). In the chemotactic state, the cell movement is governed by diffusion and convection. For 

the base case, the chemotactic (convective) velocity in the direction of the PDGF gradient, Stax, 

was chosen as 0.03 mm/h to match the cell speed estimate given above. The random component 

of the chemotactic cells’ movements was set to a lower value of Dv2 = 1x10-4 mm2/h to represent 

noise in the cell’s movement up-gradient. It is envisioned that the cells’ movements in the other 

two orthogonal dimensions of the tissue would be comparable regardless of migration state, and 

therefore a rough estimate of the associated chemotactic (forward migration) index is ~ 1/3, a 

modest value considering that measured population estimates of this forward migration index are 

≈ 0.2 and include tracks of chemotaxing and non-chemotaxing cells (11). 

The switching between random and chemotactic migration were taken from the 

approximate cut-offs between non-polarizing and polarizing conditions indicated in Fig 3.2, 

supplemented with additional data for rsteep = 0.2, 0.4, and 0.5. For each value of rsteep, the 

lower and upper bounds of rfrac were approximated (at rsteep = 0.67, it was found that the upper 

bound, if it exists, is >> 1), with oscillations considered non-polarizing. These data were used to 

construct a relationship between the value of rfrac (the variable r calculated in the wound 
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healing model) and the corresponding minimum value of rsteep required for polarization; in the 

wound healing model, rsteep was equated to Δr/r, where Δr is the difference in r values 

evaluated +/- 20 μm from the midpoint (matching the cell length in the PLC/PKC models). The 

relationship was fit to Eq. 3.4, reminiscent of an inter-molecular potential. 

                        1∆== 2>?( = 0.01 + ) +1=)#*= 2
(
− (

> 1
=)#*
= 2

>
+ (

> − 13                             (3.4) 

The first term, 0.01, is an homage to the notion that the limit of spatial gradient sensing is 

a ~ 1% difference across a cell’s length (63). The other constant parameter values are a = 

1.7, ropt = 0.12, n = 2, and m = 1.5. A plot of Eq. 3.4 with these parameter values is shown in Fig. 

3.13. 

 

Figure 3.13 Plot of Eq. 3.4. For each cell i in the simulation, its mean receptor activation ri and 
the difference in receptor activation across its length Δri were calculated. Cells with receptor 
activation states above the curve engaged in chemotaxis, whereas those with states below the 
curve engaged in random migration only. 
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CHAPTER 4 

 

A Structure-Based Model of PLCg1 Activation 
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4.1 Introduction 

Chemotaxis, the process by which cells direct their migration based on a soluble chemical 

cue, is a critical process for a number of biological phenomena including embryonic 

development, the immune response, and wound healing (1). Fibroblasts, a type of mesenchymal 

cell, respond chemotactically to gradients of platelet-derived growth factor (PDGF) through a 

phospholipase C (PLC)/ protein kinase C (PKC) signaling pathway (2). Aberrant activation of 

PLCg1, the specific isozyme of PLC involved in this pathway, has been implicated in a number 

of disease states, including immune disorders and cancer metastasis (3, 4). Recent experimental 

work revealing the structure of PLCg1 has provided more detail into the multi-step mechanism of 

PLCg1 activation from its basally autoinhibited state (5, 6). Based on these findings, we 

developed a rule-based model to study the kinetics of PLCg1 activation and investigate how 

known mutations of this enzyme may be functioning in cancer and other diseases. 

To date, 13 mammalian isozymes of PLC, classified in 6 different families based on their 

structures, have been identified. Common to all PLC isozymes is their enzymatic function: 

calcium-dependent hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to form 

diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3) (7). This activity is basally 

autoinhibited by an X-Y linker that separates the X- and Y-boxes of the catalytic core. For the 

PLCg1 isozyme, this X-Y linker region contains a split PH domain, two SH2 domains, and an 

SH3 domain. In the absence of stimulation, these X-Y linker domains sit atop the catalytic core 

and prevent the core from interacting with lipids at the plasma membrane (8). PLCg1 activation 

can be mediated by receptor tyrosine kinases (RTKs), G-protein coupled receptors, cytokine 

receptors, and T cell receptors (9). When activating signals are present, PLCg1 is 
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phosphorylated, leading to a structural rearrangement that shifts the X-Y linker off the catalytic 

core, allowing the enzyme to bind to the membrane and hydrolyze PIP2 (6, 8). 

In this work, we developed a rule-based model to study the kinetics of PLCg1 activation. 

In rule-based modeling, molecular interactions are specified by reaction rules that, when applied 

to molecules and their constituent domains/motifs, generate a reaction network. One advantage 

of rule-based modeling is that anything that is not explicitly constrained by a rule is allowed 

(10). Thus, rules formulated to characterize the canonical path of PLCg1 activation automatically 

generated all possible molecular states and interactions. Using this model, we investigated the 

effects of particular steps in the mechanism on the kinetics and steady-state level of PLCg1 

activation. This approach also allowed us to postulate how known PLCg1 mutations, which have 

been implicated in disease states and cancer and exhibit increased phospholipase activity of 

PLCg1 in vitro (5), disrupt autoregulation. Two mechanisms that have been proposed to explain 

this behavior include mutations that disrupt the autoinhibition of the catalytic core provided by 

the cSH2 domain or mutations that increase the affinity of the uninhibited form of PLCg1 for the 

membrane (5, 6). Our simulations varying the appropriate reaction rates for each mechanism 

were able to reproduce the increased levels of activity, while also predicting faster activation 

kinetics for mutations affecting the autoinhibition and slower kinetics for changes affecting the 

rate of membrane binding. 

Having characterized the mechanism of PLCg1 activation, we sought to test the role of 

the activation dynamics on the polarization of PLC/PKC signaling during chemotactic gradient 

sensing. To do this, we substituted the full PLCg1 activation network into the model of 

PLC/PKC polarization described in Chapter 3. Using a modified version of Positive Feedback 

Loop (PFL) 1, in which the rate of uninhibited PLCg1 binding to the membrane is increased in 
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proportion to the concentration of phosphatidic acid (PA), we found that this extended model 

was able to replicate previous model predictions regarding the synergistic effects of PFL 1, PFL 

2, and the regulation of MARCKS on the ability of the system to polarize as well as the critical 

role of DAG kinases regulating the lipid metabolism of the system. In varying the reaction rates 

associated with mechanisms of aberrant PLCg1 activation, we predict that the increased levels of 

activity are accompanied by a diminished ability to polarize the signaling pathway. 

 

4.2 Materials and Methods 

4.2.1 Rule-based model of PLCg1 activation  

Our model specifies two molecules, the receptor tyrosine kinase (RTK), which is 

assumed to be in its active and phosphorylated state, with a phosphotyrosine site for enzyme 

recruitment, and the enzyme PLCg1. The PLCg1 molecule includes the nSH2 and cSH2 domains, 

the Tyr783 phosphorylation site, and the catalytic core. The Tyr783 site has two states, 

phosphorylated or unphosphorylated, and the core has two states, active or inactive. The cell 

volume is set at 5000 µm3, typical of a large fibroblast cell (11), with the concentration of PLCg1 

equal to 0.02 µM to remain consistent with the PLC/PKC polarization model from Chapter 3. 

The concentration of the RTK (on a whole-cell basis) was set equal to 0.05 µM, or it was varied 

from 0.005 – 0.05 µM to assess the dose response. The full reaction network showing all 17 

species and 53 reactions is illustrated in Figure 4.1, and the values for the base-case rate 

constants are provided in Table 4.1.  
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Figure 4.1 Model schematic of the full reaction network generated by the BioNetGen modeling engine in VCell showing 17 different species and 53 
reactions. Cytosolic species are in blue, species bound to the RTK are in yellow, and active species are in red. The space between the solid blue line and 
dotted blue represent species that are bound to the membrane via the core but are not bound to the RTK. 
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Table 4.1 Brief reaction rule description with base case values for the associated rate constants 

 
 

The values for kon_nSH2 and koff_nSH2 are set at 1 µM-1s-1 and 1 s-1, respectively, yielding a 

dissociation constant of 1µM consistent with the reported ranges for SH2 domain interactions 

with phosphotyrosines (12, 13). The rate kon_nSH2_2 is related to kon_nSH2 by a factor c set equal to 

1000 to account for the faster rate of binding expected when PLCg1 is already bound to the 

membrane (14). This value takes into account both the closer proximity of the nSH2 domain to 

the receptor as well as the likelihood of a more favorable orientation for binding. The rates kact 

and kact_2 are also linked by the factor c and are set at 0.01 s-1 and 10 s-1 while kinact is set at      

0.1 s-1. These rates yield fast membrane binding when the enzyme is bound to the RTK, and 

much slower binding when the enzyme is being activated directly from the cytosol which we 

expect to be highly disfavored. The rates for the cSH2 domain binding and unbinding the core 
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and Tyr783 are set at 100 s-1 and 1 s-1 for both interactions, representing rapid interactions that 

favor the bound state. The phosphorylation and dephosphorylation rate constants were both set at 

1 s-1 and were systematically varied in this work. A summary of the binding rates and 

modifications specified by the reaction rules follows and a molecular depiction of these rules is 

shown in Figure 4.2. 

PLCg1 is basally autoinhibited through the reversible binding of the cSH2 domain to the 

core, provided that the cSH2 is unbound and the core is inactive. PLCg1 can be recruited from 

the cytosol to the membrane via the nSH2 binding to the phosphotyrosine site on the RTK. The 

nSH2 domain can dissociate from the RTK at any point. While PLCg1 is bound to the RTK, 

Tyr783 can be phosphorylated by the RTK. When the cSH2 domain is not bound to the core, it 

can reversibly bind to phosphorylated Tyr783 instead. The cSH2 domain protects phosphorylated 

Tyr783 from dephosphorylation; only when phosphorylated Tyr783 is unbound can it be 

dephosphorylated. When the core is not bound by cSH2, it can bind to the membrane and thus 

become active, regardless of the phosphorylation state of Tyr783. This can happen by direct 

recruitment from the cytosol or, with a frequency enhanced by the aforementioned factor c when 

the nSH2 is bound to the RTK. The use of the same enhancement factor satisfies detailed balance 

for the assembly of the canonically active state, in which both the nSH2 is bound to RTK and the 

core is bound to membrane. 
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Figure 4.2 A molecular depiction of the reaction rules described in Table 4.1. All domains and 
states shown in yellow represent features of the reaction rule that were purposely specified. The 
sites in gray mean that domain can be in any state and bound or unbound when the rule is 
applied.  
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4.2.2 Implementation of the rule-based model 

Using the Virtual Cell (VCell) software environment, twelve reaction rules were 

specified to describe the types of modifications and interactions allowed in the activation of 

PLCg1 as well as the values of those associated rate constants (Fig. 4.2, Table 4.1). From those 

rules, the BioNetGen modeling engine generated a network of 17 species and 53 reactions to 

describe all possible molecular states (Fig. 4.1). This reaction network was solved using VCell’s 

Combined Stiff Solver (IDA/CVODE) with a maximum time step of 1 s. The solver was run for 

5 x 103 s to ensure the system reached a steady state.  

 

4.2.3 Combining the PLCg1 activation model with the PLC/PKC polarization model 

The PLCg1 activation model was combined with the PLC/PKC polarization described in 

Chapter 3. To do this, the reaction VPLC was replaced with the network of species and reactions 

generated for the PLCg1 activation model. This required the addition of 16 new species (the 

RTK species was omitted) to the polarization model with 5 in the cytosol and 11 at the 

membrane. As the receptor is not explicitly modeled in the polarization model, reactions 

involving binding to the RTK in the activation model were replaced with the expression (r – e). 

This expression is analytically calculated in the polarization model to describe the number of 

active receptors (r) that are not bound by active PLC (e). In this combined model, e is equal to 

the sum of the RTK-bound species when it is used in the expression (r – e), and is equal to the 

sum of the active species when it is used in the PIP2 hydrolysis reaction, Vhyd,PLC.  

In Chapter 3, PFL 1 is described, considering the hypothetical effect of PA on extending 

the lifetime of PLC in complex with the receptor at the membrane. This feedback was modeled 

by reducing the off-rate of PLC at the membrane in proportion to the concentration of 
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phosphatidic acid (PA), defined as dp in the model. In the present, combined model, a 

modification of PFL 1 was considered instead, with the rate of activation of PLCg1 binding to 

the membrane (kact) increasing in proportion to dp as given by the following expression; the 

constant KPA is defined in a manner consistent with the corresponding parameter in the original 

PFL 1 and with the same value of 10 µm2.  

 

!!"#	(1 + &$%'&) and !!"#_(	(1 + &$%'&) 

 

The initial concentration of PLCg1 was set at 0.02 µM to match both models. Consistent 

with the polarization model, the diffusivities or all cytosolic PLCg1 species were set at 19 µm2/s, 

and the diffusivities for all receptor and/or membrane-bound species were set at 0.01 µm2/s. All 

other initial concentrations, diffusion constants, and rate constants remained the same as the base 

case values in the polarization model described in Chapter 3 and Appendix B. This includes the 

on- and off-rates for PLC binding to the receptor, which are set at 0.1 µM-1s-1 and 0.1 s-1, 

respectively. Aside from this change to the on- and off-rates of PLC binding the receptor to 

match the polarization model, all rate constants remained the same as the base case values for the 

reactions from the PLCg1 activation model. 

 

4.3 Results 

4.3.1 A structure-based model of PLCg1 activation 

We developed a model of PLCg1 to study its activation kinetics in light of recent 

structural data elucidating a multi-step activation process involving multiple domains and 

phosphorylation. The PLCg1 enzyme is basally autoinhibited by an X-Y linker region containing 
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a number of regulatory domains (e.g. PH, SH2, and SH3 domains) that sit on top of the enzyme’s 

catalytic core and prevent it from interacting with lipids at the plasma membrane. The full 

network of reactions is depicted in Figure 4.1, while a cartoon depiction (Fig. 4.3A) and the 

associated reaction terms (Fig. 4.3B) in Figure 4.3 describe the canonical path for PLCg1 

activation. This series of steps starts with an active RTK, such as PDGF receptors, which has a 

phosphotyrosine residue on the C-terminal tail. The N-terminal SH2 (nSH2) domain of the 

autoinhibited PLCg1 enzyme binds to the phosphotyrosine residue of the receptor, thus recruiting 

the inactive enzyme from the cytosol. Once bound, the receptor phosphorylates the Tyr783 

residue of PLCg1, which is located between the C-terminal SH2 (cSH2) domain and the SH3 

domain. The cSH2 domain is usually bound to a C2 domain next to the Y-box of the catalytic 

core, an interaction that prevents the cSH2 domain from readily binding phosphotyrosine while 

also effectively covering the surface of the core providing autoinhibition. When Tyr783 is 

phosphorylated, it serves as an intramolecular ligand that competes with the C2 domain for 

binding the cSH2 domain. Upon the cSH2 domain binding Tyr783, a substantial rearrangement 

occurs that shifts the X-Y linker region off of the catalytic core. This exposes a hydrophobic 

ridge on the catalytic core allowing the enzyme to insert itself into the membrane and start 

hydrolyzing PIP2 into DAG and IP3 (6).  

This description of PLCg1 activation permits a two-step inactivation process for the 

enzyme to completely dissociate from the membrane (Fig. 4.3C). When the core is bound to the 

membrane and actively hydrolyzing PIP2, it is possible for the nSH2 domain to dissociate from 

the RTK. While the core is independently bound to the membrane, it remains active. Given the 

close proximity of the enzyme to the receptor, the nSH2 domain has a chance to rebind the 

receptor. By the same token, while the nSH2 domain is bound to the receptor, the core may 
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dissociate from the membrane and become inactive; however, it remains in close proximity to 

the membrane and has a chance to rebind. Only when the nSH2 domain unbinds the receptor and 

the core dislodges from the membrane will PLCg1 return to the cytosol. We predicted that this 

two-step inactivation process controls the lifetime of the enzyme at the membrane. 

 
Figure 4.3 Illustration of PLCg1 activation. (A) Cartoon depicting the steps of PLCg1 activation. 
Shown is the regulatory and catalytic regions of the PLCg1 enzyme oriented in the N-terminal to 
C-terminal direction. The catalytic core separated into an X and Y box are shown in green with 
the regulatory X-Y linker region containing the nSH2 and cSH2 domains on top. The dimerized 
and activated RTK is shown in the membrane with a phosphotyrosine site shown. (B) Molecular 
depiction of the canonical pathway for PLCg1 activation in the model with the reaction rates 
shown for each step. (C) Cartoon showing the two-step inactivation process for PLCg1. 
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4.3.2 Tyr783 phosphorylation helps relieve autoinhibition leading to PLCg1 activation  

Considering the proposed role of Tyr 783 phosphorylation in occupying cSH2 and thus 

relieving the autoinhibition of PLCg1, we explored the effects of the Tyr783 phosphorylation and 

dephosphorylation rates and the affinity of the cSH2 domain binding to phospho-Tyr783 (Kp = 

kbind,p /kunbind,p) on the level of PLCg1 activation. Tyr783 can only be phosphorylated when the 

nSH2 domain is bound to the receptor, and it cannot be dephosphorylated when the cSH2 

domain is bound. 

We first considered two extreme cases in which the PLCg1 enzyme was “mutated” such 

that it could not be phosphorylated (nonphosphorylatable) or it was constitutively 

phosphorylated (phosphomimetic). These mutants served as limiting cases for PLCg1 activity, 

while variations were made to the phosphorylation and dephosphorylation rates to explore 

intermediate behavior. Our model description permits PLCg1 activation without phosphorylation 

of Tyr783, in the infrequent event that the cSH2 domain spontaneously unbinds the core, and the 

core binds to the membrane and becomes active before the autoinhibitory influence of cSH2 is 

reestablished. This results in the low level of activation seen for the nonphosphorylatable mutant 

(Fig. 4.4A). For the phosphomimetic case, increasing the value of kbind,p (and thus Kp) resulted in 

progressively higher levels of PLCg1 activity for a given receptor input with a key prediction 

being that Kp >> 1 is required, but the value Kp need not be greater than or even comparable to 

Kc, the affinity constant of the autoinhibition; with Kp = 10 and Kc = 100, the phosphomimetic 

“mutant” is substantially activated relative to the nonphosphorylatable one (Fig. 4.4A). Even 

modest relief of a strong autoinhibition is effective relative to no relief. 

Considering then the “wild-type” PLCg1, with varying rates of Tyr783 phosphorylation 

(Fig. 4.4B) or dephosphorylation (Fig. 4.4C), it is increasingly more or less likely for the cSH2 
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domain to be occupied by the Tyr783 site and not the core, leading to higher levels of activation. 

Interestingly, the effect of increasing the phosphorylation rate apparently saturates (Fig. 4.4B; 

compare kphos values of 10 and 100 s-1) well below the level of the phosphomimetic case, 

suggesting that the full model is parameterized in such a way that a substantial portion of the 

PLCg1 in the cytosol is dephosphorylated between encounters with the RTK. 
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Figure 4.4 Dose-response dynamics for Tyr783 phosphorylation. (A) The fraction of active 
PLCg1 is plotted as a function of the initial receptor concentration while the parameter Kp was 
varied. The legend for this plot corresponds to the same line color and symbols used in plots for 
B and C. Plots where the Tyr783 phosphorylation rate (B) and dephosphorylation rate (C) were 
varied for Kp = 10 and Kp = 100. 
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4.3.3 The parameter kact increases the lifetime of active PLCg1 at the membrane 

Given the ability of PLCg1 phosphorylation to increase enzyme activation, we asked 

whether this effect is accompanied by an increased lifetime of the enzyme at the membrane. To 

test this, we ran the simulation for 5000 s to achieve steady-state and then switched off the 

reactions that allow PLCg1 to be recruited from the cytosol. Running the simulation for 5000 s 

more, we were able to monitor the decay of the active species in time. The half-life for decay, 

calculated as the time it takes for the fraction of active PLCg1 to reach half its steady-state 

concentration, remained relatively insensitive to kphos despite ten-fold changes in the rate in either 

direction (Fig. 4.5A). 

The reaction rate, kact, was analyzed in a similar manner such that kact and kact_2 were both 

varied ten-fold in either direction relative to the base case value. After 5000 s, the rates kon_nSH2 

and kact but not kact_2 were set equal to zero. The time courses for the decay of active PLCg1 

clearly show slower rates of decay with increasing rates of kact corresponding with higher values 

for the half-life of decay (Fig 4.5B). This slower decay, or increased lifetime at the membrane, 

with increasing values of kact suggests that the ability of the enzyme to quickly rebind the 

membrane when it is still anchored to the receptor by the nSH2 domain is playing an important 

role in maintaining the activity of PLCg1. Changing certain other parameters, including the 

phosphorylation rate, does not have this effect. 
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Figure 4.5 Decay of active species once PLCg1 can no longer leave the cytosol. Time courses 
for (A) kphos and (B) kact showing the decay of active PLCg1 species once the rates kon_nSH2 and 
kact were set to zero at 5000 s preventing any PLCg1 from leaving the cytosol. The second plot 
shows the same time course on a log scale for the fraction of active PLCg1. The third plot shows 
the half-life for decay, calculated as the time it takes for the fraction of active PLCg1 to reach 
half its steady-state concentration. 

 

4.3.4 Activating mutations and their effect on the kinetics of PLCg1 activation 

A number of mutations in the PLCg1 enzyme have been implicated in various disease 

states and cancers, and in vitro activity assays have been used to confirm that such disease-linked 

substitutions or deletions possess higher phospholipase activity. Now that the full structure of the 

PLCg1 enzyme has been reported, the mutations can be mapped to the structure of the protein. 

Although these mutations were distributed in a few different regions, they all appear to overlap 

with the surfaces associated with autoinhibition of PLCg1 (5). Two possible mechanisms 



   

 
 

112 

describing how these mutations are functioning include disruption of the cSH2 interaction with 

the core and enhancement of the affinity of the core for the membrane (6). 

Using our model, we mimicked the mechanisms attributed to these mutations by varying 

parameters associated with the cSH2 domain binding the core (Kc = kbind,c /kunbind,c) (Fig. 4.6A) 

and the uninhibited enzyme binding the membrane (Ka = kact /kinact) (Fig. 4.6B). We found that 

varying the Kc parameters, such that the cSH2 domain interaction with the core is hampered, 

resulted in increased levels of PLCg1 activity consistent with the in vitro experimental results. 

Moreover, we observed that the time to reach half of the steady-state was shorter (faster kinetics) 

for all of the mutated Kc parameter sets (Fig. 4.6C). Varying the Ka parameters, such that the 

uninhibited enzyme has higher affinity for the membrane, also resulted in higher PLCg1 activity; 

however, in contrast to decreasing Kc, increasing Ka yields slower activation kinetics (Fig. 4.6D). 

Considering all of the hypothetical mutants, there is greater than five-fold difference in the t1/2 

values when Kp = 100, and that increases to seven-fold when Kp = 10 (Fig. 4.7). This stark 

difference in activation kinetics could be used to help distinguish and characterize the actual 

PLCg1 mutants. 
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Figure 4.6 The effects of activation mutations on the kinetics of PLCg1 activation. (A) Cartoon 
depicting the effects of Kc mutations on the location of the cSH2 relative to the core. (B) Cartoon 
depicting the effects of Ka mutations on the ability of the uninhibited enzyme to bind the 
membrane. Time course plotting the saturation of the fraction of active PLCg1 when the (C) Kc 
parameters and (D) Ka parameters were varied with the wild-type case shown in black. The table 
shows the half-life for saturation, calculated as the time it takes for the fraction of active PLCg1 
to reach half its steady-state concentration. 
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Figure 4.7 The effects of activation mutations on the kinetics of PLCg1 activation (Kp = 10). 
Time course plotting the saturation of the fraction of active PLCg1 when the (A) Kc parameters 
and (B) Ka parameters were varied with the wild-type case shown in black. The table shows the 
half-life for saturation, calculated as the time it takes for the fraction of active PLCg1 to reach 
half its steady-state concentration. 
 

4.3.5 A modified version of PFL 1 can amplify the signaling pathway in a combined model of 

PLCg1 activation and PLC/PKC polarization 

In the PLC/PKC polarization model presented in Chapter 3, a feedback loop, PFL 1, was 

proposed to consider the modulation of PLC recruitment to the membrane by phosphatidic acid 

(PA). We found that the proposed ability of PA to increase the lifetime of PLC in complex with 

the receptor at the membrane synergized with the regulation of MARCKS by PKC to promote 

sensitive and robust polarization. Our earlier analysis of the reaction rate kact in the PLCg1 

activation model showed that the lifetime of active PLCg1 is sensitive to this rate. Hence, we 

decided to merge the PLC/PKC polarization model with the PLCg1 activation model and see if 
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we could reproduce the effects of PFL 1 but with a more detailed hypothesis of how PA 

influences PLCg1 activation.  

A description of how the two models were combined is explained in the Materials and 

Methods Section 4.2.3. Of note is that all the base-case values for the reaction rates in the 

polarization model and the activation model remained the same in the combined model, and the 

rates for kon_nSH2 and koff_nSH2 were chosen to remain consistent with the kon,e and koff,e rates from 

the polarization model. Modified PFL 1, PFL 1*, was implemented to replace PFL 1 from the 

polarization model which increased the rate kact in proportion to the PA concentration. Results 

from the combined model with PFL 1* and MARCKS at a gradient steepness of 10% show that 

PFL 1* is able to synergize with MARCKS to amplify the signaling pathway and even to a 

slightly higher value than what was observed with PFL 1 in the polarization model. The 

combined model did not produce the oscillatory dynamics observed in the polarization model for 

this set of parameters (Fig. 4.8A). The time courses for the simulations showing the highest 

amplification also displayed slightly different kinetics (Fig. 4.8B). The initial spike of PKC 

activity when the gradient is applied at 2000 s has been attributed to the rapid release of PIP2 by 

MARCKS when PKC is activated. This feature is less prominent in the combined model, 

suggesting that the kinetics of PLCg1 activation are somewhat slower. 
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Figure 4.8 Gradient amplification by PFL 1* combined with the regulation of MARCKS in a 
combined model of PLCg1 activation and PLC/PKC polarization. (A) The concentration of 
active PKC molecules at the front (red circle) and back (blue circle) of the cell are plotted as a 
function of the mean fractional occupancy of receptors, rfrac, for varying values of gradient 
steepness. When the simulations produced oscillations, the maxima (upward-pointing triangles) 
and minima (downward-pointing triangles) of the oscillations are plotted; the front and back are 
still denoted by shades of red and blue, respectively. The simulation achieving steady state with 
the maximum front/back ratio is denoted by the dashed vertical line and its time course is plotted 
in (B). 
 
 

The combined model with PFL 1* was able to recapitulate key findings from the 

polarization model, including the critical role of DAG kinases in the responsiveness of the 

system. The combined model showed that reducing the rate kDAGK by 0.3 times its base value 
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greatly diminished the polarization of the pathway, whereas increasing the rate to 3 times its base 

value enhanced the amplification (Fig. 4.9A). Performing an analysis of the DAG and PA 

concentrations at the front and back of the cell as kDAGK was increased demonstrates a similar 

explanation for this observation: the concentration of DAG at the back of the cell is reduced to a 

much greater extent than it is at the front when the rate of kDAGK was increased (Fig. 4.9B). When 

PFL 2 from the polarization model was added to the combined model with PFL 1* and 

MARCKS, the level of amplification was substantially increased in line with the observed 

synergistic effect of all three feedback mechanisms in the polarization model (Fig. 4.9C).  

Using the combined model with PFL 1* and MARCKS, we wanted to test what effects 

the activating mutations would have on the polarization of the pathway. To this end, we tested 

the Kc and Ka mutation mechanisms by increasing kunbind,c by 10 times its base case value and 

decreasing kinact by 10 times its base case value. Noting that these parameter variations shifted 

the does response to lower levels of mean fractional occupancy, we observed that both of these 

mutations diminished the polarization of the pathway (Fig. 4.9D). 
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Figure 4.9 The effect of parameter variations on the sensitivity of the pathway. (A) Relative to 
the base case parameter set associated with the PLC/PKC polarization model, the parameter 
kDAGK was taken at 0.3 or 3 times its base value. Colors and symbols have the same meanings as 
in Figure 4.8. The maximum front/back ratio is shown underneath the symbols. (B) Bar plots 
comparing the DAG and PA steady-state concentrations at the front and back of the cell for 1x 
and 3x kDAGK simulations, with rfrac = 0.077. (C) PFL 2 is added to PFL 1* and MARCKS and 
the parameters KPLD and γVsynth,dp are set at 0.1 and 10, respectively. (D) The parameters kunbind,c 
and kinact are taken at 10x and 0.1x their base case values listed in Table 4.1. 
 
 
 
4.4 Discussion 

Recent work detailing the structure of the full-length PLCg1 enzyme elucidated a more 

detailed mechanism for its activation (5, 6). This multi-step process relies on the coordination 

and interaction of a number of different domains along with the phosphorylation of Tyr783 in 

order to relieve the basal autoinhibition of the enzyme when an activating signal is present. 

While the activation of PLCg1 is important for chemotaxis, platelet aggregation, and T cell 

activation in the immune response (2, 15, 16), failure to regulate the activation of PLCg1 
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enzymes has been implicated in the emergence of immune disorders and some cancers (3). To 

better understand the kinetics of PLCg1 activation, we developed a rule-based model using the 

BioNetGen modeling engine in VCell to investigate how the domain interactions, binding rates, 

and the phosphorylation of Tyr783 impact the activation of the enzyme.  

We first investigated the phosphorylation of Tyr783 and its role in releasing the 

autoinhibition of the enzyme. The phosphorylation itself is not expected to affect the 

autoinhibition; however, it serves as a binding site for the cSH2 domain which is normally bound 

to a C2 domain blocking the catalytic core. When the cSH2 domain binds Tyr783, a structural 

rearrangement occurs that uncovers the core enabling it to bind the membrane. Our simulations 

indicated faster rates of phosphorylation and cSH2 binding Tyr783 could increase the magnitude 

of PLCg1 activation. Most evidence indicates that Tyr783 is necessary for releasing the 

autoinhibition of the PLCg1 enzyme; however, a number of other experiments have identified 

additional sites of phosphorylation that play a role in activation. Depending on the cell type, the 

receptor, and whether experiments were carried out in vitro or in whole cells, different 

phosphorylation sites have been shown to either increase the level of activity or can even serve 

as a replacement for Tyr783 (17-19). In future work, this model can be used to try to distinguish 

between these different phosphorylation sites and predict how they function in the activation of 

PLCg1. 

This model predicted that certain reaction rates affected the lifetime of active PLCg1 

species. We found that the fast dynamics of Tyr783 phosphorylation made the lifetime relatively 

insensitive to changes in the parameter kphos but increasing kact led to a much longer lifetime of 

the active species. We attributed this response to the two-step inactivation process that requires 

the enzyme to dissociate from the membrane and the receptor before it reenters the cytosol. 
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Increasing the rate of kact allowed for the enzyme to quickly rebind the membrane if it was still 

bound to the receptor when it dissociated. We can see how this two-step method of inactivation 

can lead to a number of futile cycles of the enzyme unbinding then rebinding the receptor or the 

membrane to prolong activation. This method of increasing enzyme activation by increasing the 

lifetime of the enzyme at the membrane was explored in Chapter 3 with PFL 1. We proposed PA 

was able to increase the rate of PIP2 hydrolysis by increasing the time the PLC enzyme was at 

the membrane. We modeled this as a decrease in the effective off-rate of the PLC enzyme in 

proportion to the concentration of the enzyme present. In our combined model with a more 

comprehensive look at PLCg1 activation, we modified PFL 1 from the polarization model and 

made the rate kact increase in proportion to the concentration of PA. The results from the 

combined model indicated the modified feedback loop in conjunction with the regulation of 

MARCKS could polarize the pathway providing additional support for the role of PA in 

increasing PLCg1 activity by increasing the lifetime of the active species at the membrane.  

This model was also able to reproduce reported results from mutant PLCg1 experiments 

that showed a number of disease- and cancer-associated mutations caused increased enzyme 

activity (5). Two mechanisms that have been postulated to explain the function of these 

activation mutations include disruptions to the cSH2 domain and its ability to maintain 

autoinhibition (Kc mutations) and mutations to the enzyme that allow the uninhibited form to 

more readily bind the membrane (Ka mutations). While both mutations led to increased activity, 

the Kc mutations sped up the kinetics suggesting the Kc mutations shifted the equilibrium of the 

system while the Ka mutations drastically slowed down the kinetics. Another mechanism that has 

been speculated for the function of the activation mutations include mutations in nSH2 domain 

that increase its affinity for phosphorylated kinases. In our model, this would involve mutations 
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affecting Kn = kon_nSH2 / koff_nSH2 which would most certainly increase the concentration of the 

active species.  

Despite the prevalence of PLCg1 mutants in cancer and disease, there are currently no 

drug compounds or pharmacological inhibitors available for the study and treatment of PLC-

related diseases (3). With the new PLCg1 structural data, it’s possible that drugs could be 

developed to selectively target the activation process of the enzyme e.g. compounds that help 

stabilize the cSH2 domain providing autoinhibition. This model is limited by only including a 

few of the domains that are pertinent to its regulation. In the future, we could expand this model 

to include additional domains such as the PH and SH3 domains. While this contributes to an 

increase in the combinatorial complexity of the system, it would allow us to investigate other 

mechanisms of disease. For example, the split PH domain in the X-Y linker is also associated 

with maintaining the autoinhibition of the core. It binds to the hydrophobic ridge of the core 

while also interacting with the cSH2 domain (6). As a result, mutations in the split PH domain 

could also contribute to the unregulated release of autoinhibition. The SH3 domain, also found in 

the X-Y linker, interacts with a number of signaling and adaptor proteins, which has made it a 

potential drug target for PLCg1 (20). When proteins bind the SH3 domain, they could help 

stabilize the autoinhibited form. On the other hand, the SH3 domain binds to the cSH2 to help 

maintain autoinhibition and mutations in the SH3 domain could lead to disruptions in 

autoinhibition similar to the PH domain. By using an expanded version of this model, we can try 

to address some of these questions and gain a better understanding of how PLCg1 functions in 

cancer and disease. 
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CHAPTER 5 

 

Summary and Future Directions 
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5.1 Summary of Work and Important Insights 

This work was motivated by recent insights into fibroblast chemotaxis, indicating the 

necessity of PLCg1 and PKCa in PDGF gradient sensing, the strongly polarized intracellular 

gradient of DAG, and the requirement for inactivation of Myosin IIA at the leading edge to 

create the asymmetric force needed for directed cell migration (1). Although these experiments 

were able to elucidate the pathway responsible for gradient sensing in mesenchymal cells, it was 

not clear how the cells interpret a shallow external gradient of chemoattractant to execute a 

robust chemotactic response. To answer this question, we developed a mechanistic model of the 

PLC/PKC signaling pathway to analyze proposed feedback mechanisms and assess their role in 

polarizing the intracellular signaling pathway in response to gradients of PDGF. We also 

developed a rule-based model of PLCg1 activation to study the kinetics of enzyme activation. 

This activation model was combined with the polarization model to investigate how changes in 

PLCg1 activation affect the polarization of PLC/PKC pathway. 

We start by describing the formulation and analysis of our mechanistic, reaction-diffusion 

model, which to our knowledge, is the first mathematical model to describe gradient sensing 

through the PLC/PKC signaling pathway. In particular, we investigated the role of MARCKS as 

a feedback mechanism and found that the regulation of MARCKS by active PKC is capable of 

amplifying the pathway. The bias in PKC activation and thus MARCKS phosphorylation at the 

front of the cell leads to an increase in the availability of the PLC substrate, PIP2, as MARCKS 

dissociates from the membrane and enters the cytosol. The faster diffusion of cytosolic 

MARCKS allows the unphosphorylated form to accumulate and rebind PIP2 at the rear of the 

cell to suppress signaling. This buffering-ability of MARCKS to differentially control the rear 

versus front densities of free PIP2 is a new concept in the study of gradient sensing; however, by 
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itself this mechanism is incapable of polarizing PLC/PKC signaling in response to shallow 

gradients (≤ 10%), and this system lacks robustness to modest changes in the midpoint 

concentration of PDGF. 

To address these issues, we considered two new feedback loops supported by 

experimental evidence in the literature, introducing an additional lipid species, PA, an 

intermediate in the metabolism of DAG. For PFL 1, the effective off-rate for PLC dissociating 

from the membrane decreases in proportion to the concentration of PA. This results in an 

increased lifetime of the PLC active state, based on experiments showing that PA binds to 

PLCg1 and increases the rate of PIP2 hydrolysis (through reduction of the apparent Michaelis 

constant, Km) in a detergent-phospholipid mixed micelle assay system (2). For PFL 2, the 

production of PA is enhanced by the concentration of active PKC which is based on experiments 

showing PKC can interact with and promote activity of the PA-producing enzyme, PLD (3-5). 

We found that the MARCKS feedback mechanism synergizes with PFLs 1 and 2 to polarize 

PLC/PKC signaling in response to shallow gradients of receptor occupancy and over an 

appreciable range of midpoint occupancy. Our simulations also implicated DAG kinases, 

enzymes responsible for converting DAG to PA, as critical players in the responsiveness of this 

pathway. Lipid metabolism may be a heretofore unappreciated yet crucial feature of gradient 

sensing via the PLC/PKC pathway. 

PLCg1, the specific isozyme of PLC involved in fibroblast chemotaxis, is basally 

autoinhibited and has a much more complex path to activation than simply binding the receptor 

at the membrane. Recent work detailing the structure of the full-length PLCg1 enzyme elucidated 

a more detailed mechanism for its activation (6). To better understand the kinetics of PLCg1 

activation, we developed a rule-based model to investigate how the domain interactions, binding 
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rates, and the phosphorylation of Tyr783 impact the activation of the enzyme. Results from the 

PLCg1 activation model suggest that the rate of uninhibited PLCg1 binding to the membrane 

sensitively affects the lifetime of the active enzyme. Given the similarity of this mechanism to 

the action of PFL 1 in the PLC/PKC polarization model, we created a modified version of PFL 1, 

in which the activation rate was increased in proportion to the concentration of PA. Like the 

original PFL 1, this modified version synergizes with the MARCKS feedback to polarize the 

PLC/PKC signaling pathway. We found our model was also able to reproduce the increased 

levels of activity associated with known mutations of PLCg1 while also predicting faster 

activation kinetics for mutations affecting the autoinhibition and slower kinetics for mutations 

affecting the rate of membrane binding. The combined model of PLCg1 activation and PLC/PKC 

polarization predicted that these activating mutations impair the polarization of the pathway in 

response to shallow gradients of chemoattractants.  

 

5.2 Future Modeling and Experimental Work 

Our mechanistic models of PLC/PKC signaling with newly considered positive feedback 

loops characterize polarization of the pathway in shallow gradients of PDGF or other 

chemoattractants, offering explanations of how this pathway is used by chemotaxing fibroblasts. 

This model preserves a certain economy of parameters, and thus is not comprehensive. With 

further experimental study, we may find that the proposed feedbacks are not contributing to the 

signaling amplification, while other mechanisms not explored here are important. For example, 

we investigated the role of PA on PLC, but PA has also been shown to enhance 

phosphatidylinositol 4-phosphate 5- kinase activity, which increases the production of PIP2 (7). 

We would expect this feedback to synergize with PFL 1, leading to greater amplification of the 
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pathway. Our PLCg1 activation model is also limited in that it only accounts for a subset of the 

domains and phosphorylation sites associated with regulation of the enzyme. Both the split PH 

and SH3 domains in the regulatory X-Y linker region of the enzyme interact with the core and 

may play important roles in controlling the stabilization of the autoinhibited state (6). In the 

present model, such effects are included only implicitly, in describing the interaction of the cSH2 

domain with the core. Multiple mutations affecting the activity of PLCg1 have also been reported 

in these domains, warranting further study (Fig. 5.1). A handful of studies have also reported 

conflicting results on the ability of PLCg1 phosphorylation sites besides Tyr783 to enhance 

activation of the enzyme, and further experimental and modeling efforts could be directed toward 

deciphering these results and interpreting how the sites contribute to the activation process (8-

10).  
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Figure 5.1 Substitutions of PLC-γ1 found in cancers activate the enzyme. (a) Position (n = 26) 
and frequency of substitutions (red spheres) in PLC-γ1 for a cohort of 370 patients with adult T 
cell leukemia/lymphoma. (b) Mutations from (a) mapped onto the structure of PLC-γ1. (c) Basal 
phospholipase activity of mutant forms of PLC-γ1 in cells. Data represent the mean ± SEM of 
triplicate samples from a single experiment representative of three independent 
experiments. Inset shows mutant forms of PLC-γ1 with the lowest relative basal activity. 
Immunoblots of cell lysates are presented in the same order as the bar graph. Reprinted from 
eLife 2019;8:e51700 DOI: 10.7554/eLife.51700, Hajicek et al. Structural basis for the activation 
of PLC-γ isozymes by phosphorylation and cancer-associated mutations, Copyright (2019) 
Hajicek et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 
International License (creativecommons.org/licenses/by/4.0/), which permits unrestricted use and 
redistribution. 

 

Our differential equation models are deterministic, but adding stochasticity to the model 

would enable a more realistic view of the dynamics of the pathway and enable us to investigate 

phenomena such as spontaneous polarization and breakdown of polarity. To simulate all species 

in our model stochastically would be exceedingly computationally expensive; however, a hybrid 

strategy, where highly abundant cytosolic species are still treated deterministically while the 
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membrane-bound species are treated stochastically, might address this problem (11). Both 

Chapter 2 and Chapter 3 explored the effects of asymmetric cell geometry and found them to be 

important, on par with asymmetric receptor occupancy. In future modeling work, a three-

dimensional and deformable geometry, more representative of the shape of a fibroblast and how 

it changes over time could provide valuable insights (12). 

Another layer of complexity is linking polarization of the pathway at the level of a single 

cell to multi-cell dynamics in tissues, as envisioned in cutaneous wound healing. We were able 

to link the thresholds of polarization based on PDGF gradient conditions from our PLC/PKC 

polarization model to a one-dimensional wound invasion model, in which only the cells that are 

experiencing the PDGF gradient conditions necessary for polarization exhibit chemotactic 

motility. As a bridge between these two scales of complexity, it would also be interesting to link 

our polarization model to the mechanics of cell migration such as how the inactivation of Myosin 

IIA by active PKC affects adhesion formation and actin polymerization (13).  

An analysis of our mechanistic models has also provided a number of experimentally 

testable predictions. One of the most basic predictions is the requirement for PKC activity for 

both the regulation of MARCKS and feedback on PLD through PFL 2. The necessity of PKCa 

in polarizing the pathway can be tested using isoform-selective inhibitors such as Gö6976 (14). 

If PKCa is required for signal amplification then perturbations affecting MARCKS and PLD 

individually could be pursued. A testable prediction of PFL 1 concerns the role of DAG kinases. 

Based on our results, a partial inhibition of DAG kinase activity using inhibitors (15, 16) or by 

depleting DAG kinase isoforms would prevent polarization of the pathway while overexpressing 

one or more of the DAG kinase isoforms should enhance polarization with more cells polarizing 

at higher concentrations of chemoattractant. 
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5.3 Outlook 

In this work, we have developed models for PLC/PKC signaling polarization in fibroblast 

cells exposed to a gradient of chemoattractant and PLCg1 activation kinetics. While these models 

have direct implications for the study of fibroblast dysfunction in chronic wounds (17), aberrant 

activation of the PLCg1 and PKCa enzymes is also associated with numerous other pathological 

conditions. Both enzymes have been implicated in tumor development and metastasis of multiple 

cancers (18-21) while PLCg1 is associated with inflammatory and autoimmune diseases related 

to T cell receptor signaling (18, 22) and PKCa is associated with cardiovascular diseases like 

heart failure and atherosclerosis (23, 24). To gain a better understanding of the mechanisms 

driving these diseases and cancers, the study of PLC/PKC signaling will continue to be of vital 

importance.  
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Appendix A 
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A.1 Modeling Details for Chapter 2 

A.1.1 Reaction-diffusion model: general considerations 

Molecular species (Table A.1) reside in either the cytosol or the plasma membrane. In 

general terms, taking Ci as the concentration of cytosolic species i (µM), the reaction diffusion 

(conservation) equations are posed as follows. 

)*)
)+

= 	-).(*)	 +	/+,) 

 

Here, t is time (s), Di is the molecular diffusivity of species i (µm2/s), and RV,i is the volumetric 

production rate of species i (µM/s). The boundary condition for each species at the membrane 

surface, S, equates the diffusive flux due to Fick’s first law to the net rate of production at the 

membrane, RS,i (µm-2 s-1) 

-)(0 ∙ .*))|- = (0.00166	µ7	µ8.)/-,) 

 

The constant on the right-hand side incorporates Avogadro’s number and the conversion of 

volume units from L to µm3. This is done automatically in the Virtual Cell software.  

 

For the membrane species, taking ci as the area density of membrane species i (#/µm2), the 

reaction-diffusion (conservation) equations are generally of the following form: 

)9)
)+

= 	-)∇(9)	 +	;) 

Here, ri is the production rate of membrane species i.  

 

 



   

 
 

139 

A.1.2 Molecular diffusivities  

Diffusivities of receptor species and membrane-bound PLC are each assigned D = 0.01 

µm2/s, which is typical of transmembrane receptors and effectively immobile. We assume 

approximate equivalence of the diffusivities for PIP2, DAG, DAG-PKC, and DAG-PKC*, with a 

nominal lipid diffusion value of D = 0.5 µm2/s. Diffusivities of cytosolic species vary modestly 

according to hydrodynamic radius, scaling approximately with molecular weight (MW) as D ∝ 

MW -1/3 and are of the order of magnitude estimated from photobleaching measurements in 

cytoplasm (1). Of these, only the diffusivities of MARCKS/phospho-MARCKS affect the 

results, and these were systematically varied as described in Chapter 2. 

 

Table A.1 List of model species, their diffusivities, and their initial concentrations/densities. 

Variable Description Localization Diffusivity 
(µm2/s) 

Initial 
condition 

= Inactive PLC enzyme cytosol 19 0.03 µM 
7 Unphosphorylated 

MARCKS 
cytosol 32 1 µM 

7p Phosphorylated 
MARCKS 

cytosol 32 0 

* Inactive PKC cytosol 24 0.3 µM 
r0 Free receptor membrane 0.01 130 µm-2 
r1 Receptor-ligand complex membrane 0.01 0 
r2 Receptor dimer (active) membrane 0.01 0 
> Active PLC enzyme membrane 0.01 0 
?T Total PIP2 membrane 0.5 5000 µm-2 
8T Total membrane 

MARCKS 
membrane 0.5 3727 µm-2 

' Free DAG membrane 0.5 0 

9∗ Active DAG-PKC membrane 0.5 0 
9 Inactive DAG-PKC membrane 0.5 0 
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A.1.3 Receptor dynamics 

We adopt our previously published model, which was trained on kinetic measurements of 

PDGF receptor phosphorylation (2, 3), with the local concentration of PDGF ligand, [L], as the 

input. The production rates, in units of # μm-2s-1, and their associated fit or estimated parameters 

are as follows. 

;!0 	= 	 !#(130	B8
/( −	;0) 	−	!122,3 D

[F]
&4,3

;0 − ;5H	

;!1 	= 	 !122,3 D
[F]
&4,3

;0 − ;5H − !#;5 	− 	2(!6;5(	 − !/6;()		

;!2 	= 	 !6;5
(	 − !/6;( − !7;(	

 

The rate constants are kt = 0.02/60 s-1, koff,L= 0.1 s-1 (arbitrarily fast), KD,L = 1.5 nM, kx = 

0.3/60/130 μm2s-1, k-x = 0.07/60 s-1, ke = 0.15/60 s-1. The initial surface receptor density of 130 

μm-2 corresponds to approximately 105 per cell. 

 

A.1.4 Production rates for the PLC/PKC pathway 

For the variables downstream of the receptor species, we define here the production rates 

for the cytosolic species, RV,i and RS,i, and for the membrane species, ri, in terms of the rates of 

particular transformations, Vj.  

 

Inactive PLC enzyme (E): Diffusion only in the cytoplasm; recruited to the membrane with net 

flux VPLC.	

/+,8 = 0;			/-,8 = −K$39  
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Unphosphorylated MARCKS (M): Generated by dephosphorylation of MARCKS at rate VdpM; 

recruited to the membrane with net flux VMARCKS. 

/+,: = K;&:; 			/-,: = −K:%<9=- 

 

Phosphorylated MARCKS (Mp): Consumed by dephosphorylation of MARCKS; generated at the 

membrane, coincident with phosphorylation of membrane-associated MARCKS, with flux Vpm.  

/+,:& = −K;&:; 			/-,:& = K&> 

 

Inactive PKC (C): Diffusion only in the cytoplasm; binds DAG in an active form with net flux 

VPKC, and is released from DAG as the inactive form with flux Voff,c. 

/+,9 = 0;			/-,9 = −K$=9 + K122," 

 

We turn now to the production rates of the remaining membrane species.  

 

Active PLC enzyme (e): Recruited with the aforementioned net flux VPLC. 

;7 = K$39 	 

 

Total PIP2 (pT): Synthesized with rate Vsynth,p; consumed with basal and active PLC-mediated 

rates Vhyd,basal and Vhyd,PLC, respectively. 

;&! = K?@A#B −	KB@;,C!?!D −	KB@;,$39  
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Total membrane MARCKS (mT): Recruited to the membrane with the aforementioned net flux 

VMARCKS; released from the membrane, coincident with phosphorylation of membrane-associated 

MARCKS, with the aforementioned flux Vpm. 

;>! = K:%<9=- −	K&> 

 

Free DAG (d): Produced from active PLC-mediated hydrolysis of PIP2 with the aforementioned 

rate Vhyd,PLC ; consumed via DAGK-mediated phosphorylation with net rate VDAGK. Also, free 

DAG is reduced/recovered by binding/dissociation of PKC species, with the aforementioned 

fluxes VPKC and Voff,c. 

;; = KB@;,$39 −	K4%E= −	K$=9 +	K122," 

 

Active DAG-PKC (c*): Recruited from the cytosol with the aforementioned flux, VPKC. 

Deactivated via dephosphorylation with rate Vdpc. Recovered via intra- and inter-molecular 

phosphorylation of the inactive form with rates Vpc1 and Vpc2, respectively. 

;"∗ = K$=9 −	K;&" +	K&"5 +	K&"( 

 

Inactive DAG-PKC (c): Generated via dephosphorylation of the active form with the 

aforementioned rate Vdpc. Lost via intra and inter-molecular phosphorylation of the inactive form, 

with the aforementioned rate Vpc1 and Vpc2, respectively, and via dissociation from DAG with the 

aforementioned flux Voff,c. 

;" = K;&" −	K&"5 −	K&"( −	K122," 
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A.1.5 Rate laws for the PLC/PKC pathway 

All rate laws describing the transformations downstream of receptor activation are listed 

in Table A.2. Like the receptor dynamics, most of the rate laws are based on simplified, mass-

action principles. In the category of heterogeneous binding (recruitment from the cytosol to the 

membrane), we assume a net rate with the form	

K = !1A9F*)|- −	!1229) , 

where cj is the density of the membrane species to which species i binds. This is assumed to 

apply to VPLC (PLC binding to receptor, ignoring PFL1) and VPKC (PKC binding to DAG).  

 

Another category of simple reactions is that of the pseudo-first-order reactions, where the 

corresponding enzymatic activity catalyzing the reaction is implied to be constant. Such rate laws 

take the form 

K = !G6A*) 		or		K = !G6A9) 

 

for a cytosolic or membrane species, respectively. This form is assumed to apply to VdpM 

(dephosphorylation of MARCKS), Vhyd,basal (basal rate of PIP2 consumption, which could be by 

hydrolysis or dephosphorylation), Voff,c [dissociation of inactive PKC from DAG (followed by 

rapid re-phosphorylation in the cytosol)], VDAGK (consumption of DAG, e.g. by the action of 

DAG kinase), Vpc1 (intramolecular autophosphorylation of PKC while bound to DAG), and Vdpc 

(dephosphorylation of PKC while bound to DAG).  

 

Finally, a third category of simple reactions is the pseudo-second-order (enzymatic) reaction in 

the membrane, of the form 
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K = !G6A9F9) . 

This is assumed to apply to Vhyd,PLC [PLC-catalyzed PIP2 hydrolysis; species e, p (free PIP2)], and 

Vpm [MARCKS phosphorylation; species c*, m], and Vpc2 (intermolecular autophosphorylation of 

PKC while bound to DAG; species c*, c). 

 

This leaves only two unique rate laws: Vsynth and VMARCKS. For the former, we assume by default 

that the PIP2 synthesis rate is constant. For VMARCKS (binding of unphosphorylated MARCKS to 

the membrane), we assume that MARCKS initially associates with the membrane via reversible 

insertion of its myristoyl lipid and is stabilized by quasi-equilibrium binding to PIP2. For the sake 

of simplicity, we model the polybasic motif of MARCKS as three equivalent binding sites for 

PIP2. Defining mi as the density of membrane-bound MARCKS with i molecules of PIP2 bound, 

p as the density of free (unbound) PIP2, and KPIP2 as the (single-site) equilibrium constant of 

MARCKS-PIP2 binding, 

8) = O
4 − Q
Q
R&$H$(?8)/5 

85 = 3&$H$(?80; 		8( = &$H$(?85; 		8. =
&$H$(?8(

3
	 

 

If we take mT as the sum of mi, and assume that only m0 can dissociate from the membrane, we 

obtain the rate law as follows. 

8I = 80{1 + 3&$H$(?[1 + &$H$(?(1 + &$H$(?/3)]} = 80(1 + &$H$(?). 

K:%<9=- = !1A,>7|- −
!122,>8I

(1 + &$H$(?).
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This makes sense if one considers the probability that any of the 3 equivalent PIP2-binding sites 

on MARCKS is unoccupied; that probability is equal to 1/(1 + &$H$(?).  

 

In this formulation, we must distinguish the density of free PIP2, p, from the density of total PIP2, 

pT. We define the function g(&$H$(?) as the average number of PIP2 molecules bound per 

molecule of MARCKS: 

V(&$H$(?) = 	
1
8I

WQ8) =	

.

)J5

3&$H$(?[1 + &$H$(?(2 + &$H$(?)]
(1 + &$H$(?).

=	
3&$H$(?
1 + &$H$(?

 

 

This result makes sense if one considers that each molecule of MARCKS at the membrane offers 

3 PIP2 binding sites, each with fractional occupancy &$H$(?/(1 + &$H$(?). From the definition of 

p, 

? = ?I − V(&$H$(?)8I 

 

Solving the resulting quadratic equation for p,  

? =
&$H$(?I − 3&$H$(8I − 1 + [(&$H$(?I − 3&$H$(8I − 1)( + 4&$H$(?I]5/(

2&$H$(
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Table A.2 Reaction rate expressions describing the PLC/PKC pathway. Note that the free PIP2 
concentration, p, is calculated based on the variables pT and mT, assuming pseudo-equilibrium of 
PIP2-MARCKS interactions. 
 

Rate Description Expression Base parameters 

VPLC	 Net PLC binding ##$,&$'%|( − ##)),&( 
##$,&: 10 μM-1s-1 

##)),&: 0.1 s-1 

Vsynth	 Production of free PIP2 **+$,-	(,-./01.0) 2.5 μm-2s-1 

Vhyd,basal	 Basal PIP2 consumption #/+0,12*233 #/+0,12*23,: 0.005 s-1 

Vhyd,PLC	 PIP2 hydrolysis by PLC #-+0,456(3 #-+0,456: 0.005 μm2s-1 

VMARCKS	 Net MARCKS binding to PIP2 ##$,74|( −
##)),758

(1 + 8494'3):
 

##$,7: 792 μM-1μm-2s-1 

##)),7: 1 s-1 

8494': 0.00135 μm2 

Vpm	 MARCKS phosphorylation #;7,∗58 #;7: 1 μm2s-1 

Vdpm	 MARCKS dephosphorylation #0;<4; #0;<: 1 s-1 

Vbasal,dp	 Basal PA consumption #12*23,0;9; #12*23,0;: 1 s-1 

VDAGK	 DAG consumption #=>?@9 #=>?@: 1 s-1 

VPKC	 Net PKC binding to DAG ##$,A9:|( − # ∗#)),A ,∗ 
##$,A: 1 μM-1s-1 

# ∗#)),A: 0.1 s-1 

Vdpc	 Dephosphorylation of PKC #0;A,∗ #0;A: 1 s-1 

Vpc1	 PKC phosphorylation (intra) #;AB, #;AB: 1 s-1 

Vpc1	 PKC phosphorylation (inter) #;A', #;A': 0 μm2s-1 

Voff,c	 Dissociation of inactive PKC ##)),A, ##)),A: 0.1 s-1 

 

A.1.6 Specification of adjustable parameters 

PLC activity: The parameters kon,e and koff,e were chosen to yield fast kinetics and an 

effective dissociation constant of 10 nM, reflecting the binding of the PLC SH2 domains (4). The 

initial PLC concentration of 0.03 µM (30 nM) is a nominal value corresponding to ~ 4 x 104 

copies per cell. With these parameters assumed, the value of khyd,PLC was adjusted so that the 

PDGF gradient stimulation would elicit substantial hydrolysis of PIP2.   
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PIP2 dynamics: We assume an initial total PIP2 density (pT) of 5000 µm-2, which 

corresponds to a concentration ~10 µM on a whole-cell volume basis. Given the proposed role of 

MARCKS as a PIP2 buffer, we assume that 90% of the PIP2 is sequestered by MARCKS in 

resting cells; i.e., the initial free PIP2 density p was 500 µm-2, as determined by the ratio of 

Vsynth/khyd,basal. The value of khyd,basal = 0.005 s-1 corresponds to a lifetime of 3 minutes, consistent 

with turnover measurements (6). 

 

MARCKS dynamics: As stated in Chapter 2, we assume a total cellular concentration of 

MARCKS of 10 µM, similar to the abundance of PIP2 (5). MARCKS is predominantly 

membrane-localized in resting cells, and so we assume that 90% is membrane-associated. This 

set the initial value of M at 1 µM, and, considering the assumed geometry of the cell, the initial 

value of mT was set at 3727 µm-2. The latter value, together with the assumed initial values of pT 

= 5000 µm-2 and p = 500 µm-2, constrained the value of KPIP2 at 0.00135 µm2 and thus the value 

of m0. The initial ratio of m0/M constrains the ratio of kon,m/koff,m, and we set a nominal value of 

koff,m = 1 s-1. The resulting on-rate of kon,m = 792 µM-1 µm-2 s-1 corresponds to a value of ≈ 1 µm 

s-1 (with unit conversions and Avogadro’s number), which is the same magnitude as DM/L; i.e., 

MARCKS insertion is close to diffusion-limited. As discussed in Chapter 2, the MARCKS 

phosphorylation and dephosphorylation rate constants, kpm and kdpM, were systematically varied, 

and the values listed in Table A.2 were selected for further analysis.  

 

DAG and PKC dynamics: The rate constant kDAGK was assigned a nominal value of 1 s-1 

which determines the magnitude of d. Together with the initial concentration of PKC (nominally, 

0.3 µM), the kinetics of DAG binding (kon,c = 1 µM-1s-1 and koff,c = 0.1 s-1, for a dissociation 
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constant of 0.1 µM, which is lower for the full-length PKC than the individual C1 domains 

(7,8)), and the kinetics of PKC dephosphorylation and rephosphorylation (both nominally 1 s-1), 

the magnitude of active PKC, c*, is determined. This can be adjusted along with kpc to affect the 

rate of MARCKS phosphorylation. 

 

A.1.7 Scaling analysis of MARCKS phosphorylation, diffusion, and dephosphorylation 

The conservation equation and membrane boundary condition for phosphorylated 

MARCKS are reprised as follows. 

)7&

)+
= 	-:&.(7&	 −	!;&>7&	 

-:&Xn ∙ .7&	Z|- = (0.00166	µM	µm.)!&>9∗8I 

 

The partial differential equation implies a dynamic length scale, δ, over which the gradient in Mp 

significantly varies: 

] = D
-:&
!;&>

H
5/(

 

 

The boundary condition implies that 

-:&
Δ7&

]
	~	(0.00166	µM	µm.)!&>9∗8I 

Δ7&	~	(0.00166	µM	µm.)
!&>

X-:&!;&>Z
5/( 9

∗8I 

 

where ΔMp is the magnitude of the variation in Mp. The above indicates that kpm/kdpM1/2 is a key 

parameter grouping that determines the optimal gradient in phospho-MARCKS. 
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The output of the model indicates that the sum of Mp and M is approximately uniform at steady 

state (Fig. 2.5D), and so ΔM ≈ –ΔMp. This is expected when DMp = DM (as assumed in most of 

the simulations) and the diffusion of membrane-bound MARCKS is relatively slow. To show 

this, 

)(7& +7)
)+

= 	-:.((7& +7) = 0 

-:Xn ∙ .(7& +7)Z|- = (0.00166	µM	µm.)(K&> − K:%<9=-) 

)8
)+

= 	-:.(8	 + K:%<9=- − K&> = 0 

-:Xn ∙ .(7& +7)Z|- = (0.00166	µM	µm.)-:.(8	 ≈ 0 

 

We conclude that the variation in M, ΔM, which determines the differential binding of MARCKS 

to PIP2, is equal to and opposite ΔMp. 
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Appendix B 
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B.1 Modeling Details for Chapter 3 

B.1.1 General forms of the differential equations and boundary conditions 

Species (Table B.1) reside in either the cytosol or the plasma membrane. For each 

cytosolic species i, we can write a general conservation equation as follows. 

)*)
)+

= 	-)∇(*)	 +	/+,) 

 

Here, Ci is the local concentration of species i (μM), t is time (s), Di is the molecular diffusivity 

of species i (μm2/s), and RV,i is the volumetric production rate of species i (μM/s). The associated 

boundary condition at the plasma membrane surface, S, equates the diffusive flux to the net rate 

of production at the membrane, RS,i (μm-2s-1). 

-)(a ∙ ∇*))|- = (0.00166	µM	µm.)/-,) 

 

The constant on the right-hand side incorporates Avogadro’s number and the conversion of 

volume units from L to μm3, which is done automatically in Virtual Cell. For each membrane 

species i, conservation equations have the following form: 

)9)
)+

= 	-)∇(9)	 +	;) 

 

Here, ci is the local area density of membrane species i (#/μm2), Di is the molecular diffusivity of 

membrane species i (μm2/s), and ri is the production rate of membrane species i. 

 

B.1.2 Molecular diffusivities and initial concentrations 



   

 
 

153 

The assigned diffusivity of receptor-bound PLC is 0.01 μm2/s, which is typical of 

transmembrane receptors and effectively immobile. We assigned diffusivities for PIP2, DAG, 

PA, DAG-PKC, and DAG-PKC* equal to 0.5 μm2/s, a value typical for plasma membrane lipids. 

Diffusivities of cytosolic species vary modestly according to hydrodynamic radius, scaling 

approximately with molecular weight (MW) as D ∝	MW-1/3 and are of the order of magnitude 

estimated from photobleaching measurements in cytoplasm. These diffusivity values are the 

same as those assumed in Mohan et al. (1). Initial conditions are also the same as in Mohan et al., 

except for the initial concentration of inactive PLC enzyme, which was modestly reduced from 

0.03 to 0.02 μM. As explained previously (1), the initial abundance of membrane-bound 

MARCKS, together with its affinity for PIP2, was chosen such that 90% of the PIP2 molecules 

and 90% of the MARCKS molecules in the cell are initially in complex. 

 

Table B.1 List of model species, their diffusivities, and their initial concentrations/ densities 

 

Variable Description Compartment 
Diffusivity 

(μm2/s) 
Initial 

Condition 

E Inactive PLC enzyme Cytosol 19 0.02 μM 

M Unphosphorylated MARCKS Cytosol 32 1 μM 

Mp Phosphorylated MARCKS Cytosol 32 0 

C Inactive PKC Cytosol 24 0.3 μM 

e Active PLC enzyme Membrane 0.01 0 

pT Total PIP2 Membrane 0.5 5000 μm-2 

mT Total membrane MARCKS Membrane 0.5 3727 μm-2 

d Free DAG Membrane 0.5 0 

dp PA Membrane 0.5 0 

c* Active DAG-PKC Membrane 0.5 0 

c Inactive DAG-PKC Membrane 0.5 0 
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B.1.3 Production rates 

Here, we define the aforementioned production rates for the cytosolic species (RV,i and 

RS,i) and membrane species (ri) in terms of the net rates of reactions, Vj. Rate law expressions for 

the Vj’s are covered in the next section. 

 

Inactive PLC enzyme (E): Recruited to the membrane with net flux VPLC. 

/+,8 = 0;			/-,8 = −K$39  

 

Unphosphorylated MARCKS (M): Generated by dephosphorylation at rate VdpM; recruited to the 

membrane with net flux VMARCKS. 

/+,: = K;&:; 			/-,: = −K:%<9=- 

 

Phosphorylated MARCKS (Mp): Consumed by dephosphorylation at rate VdpM; generated by 

phosphorylation of membrane-associated MARCKS, with flux Vpm. 

/+,:& = −K;&:; 			/-,:& = K&> 

 

Inactive PKC (C): Binds DAG in an active form with net flux VPKC; recovered by release of 

inactive DAG-PKC with flux Voff,c. 

/+,9 = 0;			/-,9 = −K$=9 + K122," 

 

Active PLC enzyme (e): Recruited with net flux VPLC. 

;7 = K$39  
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Total PIP2 (pT): Synthesized at a constant rate, Vsynth,p; consumed with basal and active PLC-

catalyzed rates (Vbasal,p and Vhyd,PLC, respectively). 

;&! = K?@A#B,& −	KC!?!D,& −	KB@;,$39  

 

Total membrane MARCKS (mT): Recruited to the membrane with the net flux VMARCKS; released 

from the membrane through phosphorylation by PKC with flux Vpm. 

;>! = K:%<9=- −	K&> 

 

Free DAG (d): Produced from PLC-catalyzed hydrolysis of PIP2 with rate Vhyd,PLC; consumed 

via diacylglycerol kinase (DAGK)-mediated phosphorylation with rate VDAGK; consumed by net 

binding to PKC with rate VPKC; recovered by release of inactive DAG-PKC with rate Voff,c. In 

addition, the present models include generation of DAG from dephosphorylation of PA by PA 

phosphatase, with rate VPAP. 

;; = KB@;,$39 −	K4%E= −	K$=9 +	K122," + K$%$ 

 

PA (dp): Produced via DAGK-catalyzed phosphorylation with rate VDAGK and by phospholipase 

D (PLD)-catalyzed hydrolysis of phosphatidylcholine with rate VPLD; consumed with basal rate 

Vbasal,dp and conversion of PA to DAG by PA phosphatase with rate VPAP. 

;;& = K4%E= + K$34 − KC!?!D,;& −	K$%$ 

 

Active DAG-PKC (c*): Recruited from the cytosol with net rate, VPKC; deactivated via 

dephosphorylation with rate Vdpc; recovered via re-phosphorylation of the inactive form with rate 

Vpc. 
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;"∗ = K$=9 −	K;&" +	K&" 

 

Inactive DAG-PKC (c): Generated via dephosphorylation of the active form with rate Vdpc; 

consumed by phosphorylation with rate Vpc; dissociates from DAG with rate Voff,c. 

;" = K;&" −	K&" −	K122," 

 

B.1.4 Rate law expressions 

All rate laws are listed in Table B.2. As explained in Mohan et al. (1), most of them are 

based on simplified kinetic principles (mass-action binding, pseudo-first-order and pseudo-

second-order reactions). For VMARCKS (binding of unphosphorylated MARCKS to the 

membrane), we assume that MARCKS initially associates with the membrane via reversible 

insertion of its myristoyl lipid, and is stabilized by quasi-equilibrium binding to PIP2; the 

polybasic motif of MARCKS is modeled as three equivalent binding sites for PIP2. As 

previously derived (1), these assumptions allow one to calculate p, the density of free (unbound) 

PIP2 from pT, mT, and the single-site equilibrium constant of MARCKS-PIP2 binding, KPIP2. 

? =
&$H$(?I − 3&$H$(8I − 1 + [(&$H$(?I − 3&$H$(8I − 1)( + 4&$H$(?I]5/(

2&$H$(
 

 

The rate laws involving p, including VMARCKS, are given in Table B.2. 

 

The net rate of PLC binding to the membrane, VPLC, is also given in Eq. 3.2 of Chapter 3 

and has been modified in the following ways relative to the model presented in Mohan et al. In 

the association rate, active receptor density, r, is taken as a model input (Eq. 3.1 in Chapter 3), 

and we account for the depletion of free PLC binding sites (density r–e). The dissociation rate 
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accounts for positive feedback loop (PFL) 1 and considers that receptor-bound PLC is in pseudo-

equilibrium with the local concentration of PA (dp). Taking KPA as the associated equilibrium 

constant, the density of membrane-bound PLC that is bound to PA according to this 

approximation is < @$%0&
BC@'%0&

= (, while the density of membrane-bound PLC that is not bound to PA 

is < B
BC@'%0&

= (. While bound to PA, if PLC dissociates from the active receptor complex, it will 

either dissociate from PA and join the cytosolic pool or rebind the receptor (by diffusion-

controlled capture) before that happens. Taking > as a (presumably low) constant probability that 

PLC will dissociate from PA before recapture, we obtained the rate expression given in Table 

B.2 and in Eq. 3.2 of Chapter 3. The rate of PA production by PLD, VPLD, is a new reaction in 

the present models. It introduces a second route of PA generation and reflects the influence of 

PFL 2. A Hill function is assumed, as explained in Chapter 3 (Eq. 3.3). 
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Table B.2 Reaction rate expressions 

Rate Description Expression Base parameters 

VPLC	
Net PLC binding with 

enhancement by PA  

(PFL 1) 

##$,&($ − ()%|( − ##)),& ?
1 + >84>9;
1 + 8D>9; @

( 

##$,&: 0.1 μM-1s-1 

##)),&: 0.1 s-1 

>: 0.01 

84>: 10 μm2 

Vsynth,p	 Production of free PIP2 **+$,-,; **+$,-,;: 2.5 μm-2s-1 

Vbasal,p	 Basal PIP2 consumption #12*23,;3 #12*23,;: 0.005 s-1 

Vhyd,PLC	 PIP2 hydrolysis by PLC #-+0,456(3 #-+0,456: 0.0005 μm2s-1 

VMARCKS	
Net MARCKS binding to 

PIP2 
##$,74|( −

##)),75
(1 + 8494'3):

 

##$,7: 792 μM-1μm-2s-1 

##)),7: 1 s-1 

8494': 0.00135 μm2 

Vpm	 MARCKS phosphorylation #;7,∗5 #;7: 1 μm2s-1 

Vdpm	
MARCKS 

dephosphorylation 
#0;<4; #0;<: 0.3 s-1 

Vbasal,dp	 Basal PA consumption #12*23,0;9; #12*23,0;: 1 s-1 

VDAGK	 DAG conversion to PA #=>?@9 #=>?@: 1 s-1 

VPAP	 PA conversion to DAG #4>49; #4>4: 1 s-1 

VPKC	 Net PKC binding to DAG ##$,A9:|( − ##)),A,∗ 
##$,A: 1 μM-1s-1 

##)),A: 0.1 s-1 

Vdpc	 Dephosphorylation of PKC #0;A,∗ #0;A: 1 s-1 

Vpc	 PKC re-phosphorylation #;A, #;A: 1 s-1 

Voff,c	
Dissociation of inactive 

PKC 
##)),A, ##)),A: 0.1 s-1 

VPLD	
Production of PA with 

enhancement by active 

PKC (PFL 2) 

**+$,-,0; ?
1 + A(845=,∗)$
1 + (845=,∗)$ @

 

**+$,-,0;: 0.0001 μm-2s-1 

A: variable 

845=: variable 

.:	2	
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B.1.5 Specification of rate parameters 

Where reasonable, we kept values of rate constants the same as in the previous modeling 

study (1). Exceptions and new rate parameters are discussed below.  

 

In the Mohan model, parameters kon,e and koff,e in VPLC were chosen to yield fast kinetics 

and a dissociation constant (koff,e/kon,e) of 10 nM. To achieve that, the previous value of kon,e (10 

μM-1s-1, or 107 M-1s-1) was at the high end of the observed range for protein-protein interactions. 

Furthermore, those kinetics did not account for enhancement of PLC recruitment by PA. 

Therefore, we reduced the value of kon,e by two logs, to 0.1 μM-1s-1 (105 M-1s-1), well within the 

observed range for protein-protein interactions, to offset the effect of PA (characterized by the 

chosen value of the escape probability, > = 0.01). The other new parameter associated with VPLC 

is the PLC-PA equilibrium constant, KPA. For the base case, it was set to an order-of-magnitude 

value of 10 μm2, since the maximum values of d and dp are ~ 1 μm-2. The new way we are 

handling receptor activation in these models results in a substantially higher magnitude of the 

active receptor density; even though the characteristic receptor density is the same, the receptor 

dynamics considered in Mohan et al. resulted in a small fraction of receptors activated, even at 

saturating [PDGF]. To adjust for that, such that a comparable rate of PIP2 hydrolysis was 

achieved, we reduced the initial PLC concentration modestly (0.02μM, from 0.03 μM) and the 

value of khyd,PLC by a factor of 10 (0.0005 μm2s-1, from 0.005 μm2s-1). The other parameter that 

was adjusted, modestly, is the pseudo-first-order rate constant characterizing MARCKS 

dephosphorylation in the cytosol (0.3 s-1, reduced from 1 s-1). Collectively these changes bring 

the effects of MARCKS regulation on the PKC pathway in line with those characterized in 

Mohan et al. (1).  
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In the modeling by Mohan et al., PA was an implicit variable, as the phosphorylation of 

DAG by DAGKs was considered irreversible. As stated above, the present models consider the 

reverse reaction, with rate VPAP and pseudo-first-order rate constant kPAP. As a base case, we 

chose kPAP = kDAGK = 1 s-1. The effect of this parameter on the relative densities of DAG and PA 

are elucidated in the following section. PA is also generated by a newly considered reaction: 

hydrolysis of phosphatidylcholine catalyzed by PLD. I n the associated rate expression, VPLD, the 

phosphatidylcholine concentration does not appear, as it is assumed relatively abundant and 

approximately constant. To simplify the analysis, we chose an extremely low value of the basal 

synthesis rate (Vsynth,dp), such that the effect of this reaction is negligible in the absence of PFL 2. 

In effect, the rate constant for PLD is the product, bVsynth,dp, and that is why it is stated that way 

in the caption of Fig. 3.10. As explained in Chapter 3, extensive parameter sweeps of KPLD and b	

were run to determine optimal values for amplification by PFL 2 in conjunction with MARCKS, 

PFL 1, or both MARCKS and PFL 1.  

 

B.1.6 Steady state analysis of DAG and PA levels (no PFL 2) 

A steady-state analysis, assuming negligible spatial gradients of the lipid species, predicts 

a consistent proportional relationship between the concentrations of DAG and PA, dependent on 

just four parameters (kDAGK, kbasal,dp, kPAP, and Vsynth,dp). The derivation for this relationship 

follows, starting with the reaction-diffusion equation for PA: 

)'&
)+

= 	-)∇('& +	;;& 

 

Assuming a steady state has been reached and neglecting the diffusion term,		
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)'&
)+

= 0 ≈ ;;& 	= 	K4%E= + K$34 − KC!?!D,;& −	K$%$ 

 

Substituting in the rate expressions, with no PFL 2 (VPLD = Vsynth,dp) and rearranging,  

!4%E=' + K?@A#B,;& − !C!?!D,;&'& −	!$%$'& 	≈ 0 

!4%E=' + K?@A#B,;& ≈ (!C!?!D,;& +	!$%$)'& 

'& ≈ D
!4%E=

!C!?!D,;& + !$%$
H' +

K?@A#B,;&
!C!?!D,;& + !$%$

 

 

For our set of parameters, the second term is negligible, and therefore  

'& ≈ D
!4%E=

!C!?!D,;& + !$%$
H'	

	

Another, related analysis was to plot e- and ‘DAG’-nullclines with free DAG (d) on the abscissa 

and active PLC (e) on the ordinate. For the e-nullcline, 

;7 = K$39 = !1A,7(; − >)=|- − !122,7 D
1 + c&$%'&
1 + &M%'&

H > = 0; 

> =
	!1A,7;=|-

	!1A,7=|- + !122,7 O
1 + c&$%'&
1 + &M%'&

R
, 

 

and the linear relationship between dp and d derived above, in the absence of PFL 2, is invoked. 

The concentration of PLC in the cytosol, E, was approximately uniform at steady state, and its 

value was obtained from the corresponding simulation. The e-nullcline equation also includes the 

local density of active receptors, r. For the ‘DAG’-nullcline, we consider both free and bound 

forms of DAG:  
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;; + ;"∗ + ;" = KB@;,$39 −	K4%E= + K$%$ 	= 	 !B@;,$39 	e	?	 − 	!4%E=' + !$%$'& = 0	 

 

 

Incorporating the approximately proportional relationship between dp and d derived above, the 

DAG-nullcline is, approximately, 	

> = D
!C!?!D,;&

!C!?!D,;& + !$%$
H

!4%E=
!B@;,$39	?

'. 

 

The local densities of free PIP2, p, at the front and back of the cell were obtained from the 

corresponding simulation. 
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Appendix C 
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C.1 VCell Math Description Code for PLCg1 Activation Model 

 
MathDescription { 
 
Constant  _F_ 96485.3321; 
Constant  _F_nmol_ 9.64853321E-5; 
Constant  _K_GHK_ 1.0E-9; 
Constant  _N_pmol_ 6.02214179E11; 
Constant  _PI_ 3.141592653589793; 
Constant  _R_ 8314.46261815; 
Constant  _T_ 300.0; 
Constant  K_millivolts_per_volt 1000.0; 
Constant  KMOLE 0.001660538783162726; 
 
 
Constant  kact_2_r10_0 10.0; 
Constant  kact_2_r10_1 10.0; 
Constant  kact_2_r10_2 10.0; 
Constant  kact_r11_0  0.01; 
Constant  kact_r11_1  0.01; 
Constant  kact_r11_2  0.01; 
Constant  kbind_c_r07_0 100.0; 
Constant  kbind_c_r07_1 100.0; 
Constant  kbind_c_r07_2 100.0; 
Constant  kbind_c_r07_3 100.0; 
Constant  kbind_p_r08_0 100.0; 
Constant  kbind_p_r08_1 100.0; 
Constant  kbind_p_r08_2 100.0; 
Constant  kbind_p_r08_3 100.0; 
Constant  kdp_783_r05_0 1.0; 
Constant  kdp_783_r05_1 1.0; 
Constant  kdp_783_r05_2 1.0; 
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Constant  kdp_783_r05_3 1.0; 
Constant  kdp_783_r05_4 1.0; 
Constant  kdp_783_r05_5 1.0; 
Constant  kinact_r12_0 0.1; 
Constant  kinact_r12_1 0.1; 
Constant  kinact_r12_2 0.1; 
Constant  kinact_r12_3 0.1; 
Constant  kinact_r12_4 0.1; 
Constant  kinact_r12_5 0.1; 
Constant  koff_nSH2_r03_0 1.0; 
Constant  koff_nSH2_r03_1 1.0; 
Constant  koff_nSH2_r03_2 1.0; 
Constant  koff_nSH2_r03_3 1.0; 
Constant  koff_nSH2_r03_4 1.0; 
Constant  koff_nSH2_r03_5 1.0; 
Constant  koff_nSH2_r03_6 1.0; 
Constant  koff_nSH2_r03_7 1.0; 
Constant  kon_nSH2_2_r02_0 1000.0; 
Constant  kon_nSH2_2_r02_1 1000.0; 
Constant  kon_nSH2_2_r02_2 1000.0; 
Constant  kon_nSH2_r01_0 1.0; 
Constant  kon_nSH2_r01_1 1.0; 
Constant  kon_nSH2_r01_2 1.0; 
Constant  kon_nSH2_r01_3 1.0; 
Constant  kon_nSH2_r01_4 1.0; 
Constant  kp_783_r04_0 1.0; 
Constant  kp_783_r04_1 1.0; 
Constant  kp_783_r04_2 1.0; 
 
Constant  Kr_r01_0  0.0; 
Constant  Kr_r01_1  0.0; 
Constant  Kr_r01_2  0.0; 
Constant  Kr_r01_3  0.0; 
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Constant  Kr_r01_4  0.0; 
Constant  Kr_r02_0  0.0; 
Constant  Kr_r02_1  0.0; 
Constant  Kr_r02_2  0.0; 
Constant  Kr_r03_0  0.0; 
Constant  Kr_r03_1  0.0; 
Constant  Kr_r03_2  0.0; 
Constant  Kr_r03_3  0.0; 
Constant  Kr_r03_4  0.0; 
Constant  Kr_r03_5  0.0; 
Constant  Kr_r03_6  0.0; 
Constant  Kr_r03_7  0.0; 
Constant  Kr_r04_0  0.0; 
Constant  Kr_r04_1  0.0; 
Constant  Kr_r04_2  0.0; 
Constant  Kr_r05_0  0.0; 
Constant  Kr_r05_1  0.0; 
Constant  Kr_r05_2  0.0; 
Constant  Kr_r05_3  0.0; 
Constant  Kr_r05_4  0.0; 
Constant  Kr_r05_5  0.0; 
Constant  Kr_r06_0  0.0; 
Constant  Kr_r06_1  0.0; 
Constant  Kr_r06_2  0.0; 
Constant  Kr_r06_3  0.0; 
Constant  Kr_r07_0  0.0; 
Constant  Kr_r07_1  0.0; 
Constant  Kr_r07_2  0.0; 
Constant  Kr_r07_3  0.0; 
Constant  Kr_r08_0  0.0; 
Constant  Kr_r08_1  0.0; 
Constant  Kr_r08_2  0.0; 
Constant  Kr_r08_3  0.0; 
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Constant  Kr_r09_0  0.0; 
Constant  Kr_r09_1  0.0; 
Constant  Kr_r09_2  0.0; 
Constant  Kr_r09_3  0.0; 
Constant  Kr_r10_0  0.0; 
Constant  Kr_r10_1  0.0; 
Constant  Kr_r10_2  0.0; 
Constant  Kr_r11_0  0.0; 
Constant  Kr_r11_1  0.0; 
Constant  Kr_r11_2  0.0; 
Constant  Kr_r12_0  0.0; 
Constant  Kr_r12_1  0.0; 
Constant  Kr_r12_2  0.0; 
Constant  Kr_r12_3  0.0; 
Constant  Kr_r12_4  0.0; 
Constant  Kr_r12_5  0.0; 
 
Constant  kunbind_c_r06_0 1.0; 
Constant  kunbind_c_r06_1 1.0; 
Constant  kunbind_c_r06_2 1.0; 
Constant  kunbind_c_r06_3 1.0; 
Constant  kunbind_p_r09_0 1.0; 
Constant  kunbind_p_r09_1 1.0; 
Constant  kunbind_p_r09_2 1.0; 
Constant  kunbind_p_r09_3 1.0; 
 
Constant  Size_cell  5000.0; 
Constant  PLCgamma1_init_uM 0.02; 
Constant  RTK_init_uM 0.05; 
Constant  s10_init_uM 0.0; 
Constant  s11_init_uM 0.0; 
Constant  s12_init_uM 0.0; 
Constant  s13_init_uM 0.0; 
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Constant  s14_init_uM 0.0; 
Constant  s15_init_uM 0.0; 
Constant  s16_init_uM 0.0; 
Constant  s2_init_uM  0.0; 
Constant  s3_init_uM  0.0; 
Constant  s4_init_uM  0.0; 
Constant  s5_init_uM  0.0; 
Constant  s6_init_uM  0.0; 
Constant  s7_init_uM  0.0; 
Constant  s8_init_uM  0.0; 
Constant  s9_init_uM  0.0; 
 
VolumeVariable   Compartment::s10 
VolumeVariable   Compartment::s11 
VolumeVariable   Compartment::s12 
VolumeVariable   Compartment::s13 
VolumeVariable   Compartment::s14 
VolumeVariable   Compartment::s15 
VolumeVariable   Compartment::s16 
VolumeVariable   Compartment::s2 
VolumeVariable   Compartment::s3 
VolumeVariable   Compartment::s4 
VolumeVariable   Compartment::s5 
VolumeVariable   Compartment::s6 
VolumeVariable   Compartment::s7 
VolumeVariable   Compartment::s8 
VolumeVariable   Compartment::s9 
 
Function  Compartment::J_r01_0  (((kon_nSH2_r01_0 * RTK) * PLCgamma1) - (Kr_r01_0 * s2)); 
Function  Compartment::J_r01_1  (((kon_nSH2_r01_1 * RTK) * s3) - (Kr_r01_1 * s4)); 
Function  Compartment::J_r01_2  (((kon_nSH2_r01_2 * RTK) * s8) - (Kr_r01_2 * s5)); 
Function  Compartment::J_r01_3  (((kon_nSH2_r01_3 * RTK) * s10) - (Kr_r01_3 * s9)); 
Function  Compartment::J_r01_4  (((kon_nSH2_r01_4 * RTK) * s14) - (Kr_r01_4 * s12)); 
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Function  Compartment::J_r02_0  (((kon_nSH2_2_r02_0 * RTK) * s6) - (Kr_r02_0 * s7)); 
Function  Compartment::J_r02_1  (((kon_nSH2_2_r02_1 * RTK) * s13) - (Kr_r02_1 * s11)); 
Function  Compartment::J_r02_2  (((kon_nSH2_2_r02_2 * RTK) * s16) - (Kr_r02_2 * s15)); 
Function  Compartment::J_r03_0  ((koff_nSH2_r03_0 * s2) - ((Kr_r03_0 * RTK) * PLCgamma1)); 
Function  Compartment::J_r03_1  ((koff_nSH2_r03_1 * s4) - ((Kr_r03_1 * RTK) * s3)); 
Function  Compartment::J_r03_2  ((koff_nSH2_r03_2 * s5) - ((Kr_r03_2 * RTK) * s8)); 
Function  Compartment::J_r03_3  ((koff_nSH2_r03_3 * s7) - ((Kr_r03_3 * RTK) * s6)); 
Function  Compartment::J_r03_4  ((koff_nSH2_r03_4 * s9) - ((Kr_r03_4 * RTK) * s10)); 
Function  Compartment::J_r03_5  ((koff_nSH2_r03_5 * s11) - ((Kr_r03_5 * RTK) * s13)); 
Function  Compartment::J_r03_6  ((koff_nSH2_r03_6 * s12) - ((Kr_r03_6 * RTK) * s14)); 
Function  Compartment::J_r03_7  ((koff_nSH2_r03_7 * s15) - ((Kr_r03_7 * RTK) * s16)); 
Function  Compartment::J_r04_0  ((kp_783_r04_0 * s2) - (Kr_r04_0 * s5)); 
Function  Compartment::J_r04_1  ((kp_783_r04_1 * s4) - (Kr_r04_1 * s9)); 
Function  Compartment::J_r04_2  ((kp_783_r04_2 * s7) - (Kr_r04_2 * s11)); 
Function  Compartment::J_r05_0  ((kdp_783_r05_0 * s5) - (Kr_r05_0 * s2)); 
Function  Compartment::J_r05_1  ((kdp_783_r05_1 * s8) - (Kr_r05_1 * PLCgamma1)); 
Function  Compartment::J_r05_2  ((kdp_783_r05_2 * s9) - (Kr_r05_2 * s4)); 
Function  Compartment::J_r05_3  ((kdp_783_r05_3 * s10) - (Kr_r05_3 * s3)); 
Function  Compartment::J_r05_4  ((kdp_783_r05_4 * s11) - (Kr_r05_4 * s7)); 
Function  Compartment::J_r05_5  ((kdp_783_r05_5 * s13) - (Kr_r05_5 * s6)); 
Function  Compartment::J_r06_0  ((kunbind_c_r06_0 * PLCgamma1) - (Kr_r06_0 * s3)); 
Function  Compartment::J_r06_1  ((kunbind_c_r06_1 * s2) - (Kr_r06_1 * s4)); 
Function  Compartment::J_r06_2  ((kunbind_c_r06_2 * s5) - (Kr_r06_2 * s9)); 
Function  Compartment::J_r06_3  ((kunbind_c_r06_3 * s8) - (Kr_r06_3 * s10)); 
Function  Compartment::J_r07_0  ((kbind_c_r07_0 * s3) - (Kr_r07_0 * PLCgamma1)); 
Function  Compartment::J_r07_1  ((kbind_c_r07_1 * s4) - (Kr_r07_1 * s2)); 
Function  Compartment::J_r07_2  ((kbind_c_r07_2 * s9) - (Kr_r07_2 * s5)); 
Function  Compartment::J_r07_3  ((kbind_c_r07_3 * s10) - (Kr_r07_3 * s8)); 
Function  Compartment::J_r08_0  ((kbind_p_r08_0 * s9) - (Kr_r08_0 * s12)); 
Function  Compartment::J_r08_1  ((kbind_p_r08_1 * s10) - (Kr_r08_1 * s14)); 
Function  Compartment::J_r08_2  ((kbind_p_r08_2 * s11) - (Kr_r08_2 * s15)); 
Function  Compartment::J_r08_3  ((kbind_p_r08_3 * s13) - (Kr_r08_3 * s16)); 
Function  Compartment::J_r09_0  ((kunbind_p_r09_0 * s12) - (Kr_r09_0 * s9)); 
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Function  Compartment::J_r09_1  ((kunbind_p_r09_1 * s14) - (Kr_r09_1 * s10)); 
Function  Compartment::J_r09_2  ((kunbind_p_r09_2 * s15) - (Kr_r09_2 * s11)); 
Function  Compartment::J_r09_3  ((kunbind_p_r09_3 * s16) - (Kr_r09_3 * s13)); 
Function  Compartment::J_r10_0  ((kact_2_r10_0 * s4) - (Kr_r10_0 * s7)); 
Function  Compartment::J_r10_1  ((kact_2_r10_1 * s9) - (Kr_r10_1 * s11)); 
Function  Compartment::J_r10_2  ((kact_2_r10_2 * s12) - (Kr_r10_2 * s15)); 
Function  Compartment::J_r11_0  ((kact_r11_0 * s3) - (Kr_r11_0 * s6)); 
Function  Compartment::J_r11_1  ((kact_r11_1 * s10) - (Kr_r11_1 * s13)); 
Function  Compartment::J_r11_2  ((kact_r11_2 * s14) - (Kr_r11_2 * s16)); 
Function  Compartment::J_r12_0  ((kinact_r12_0 * s6) - (Kr_r12_0 * s3)); 
Function  Compartment::J_r12_1  ((kinact_r12_1 * s7) - (Kr_r12_1 * s4)); 
Function  Compartment::J_r12_2  ((kinact_r12_2 * s11) - (Kr_r12_2 * s9)); 
Function  Compartment::J_r12_3  ((kinact_r12_3 * s13) - (Kr_r12_3 * s10)); 
Function  Compartment::J_r12_4  ((kinact_r12_4 * s15) - (Kr_r12_4 * s12)); 
Function  Compartment::J_r12_5  ((kinact_r12_5 * s16) - (Kr_r12_5 * s14)); 
 
 
Function  Compartment::K_PLCgamma1_total           ((Size_cell * PLCgamma1_init_uM) + (Size_cell * s2_init_uM) + 
(Size_cell * s3_init_uM) + (Size_cell * s4_init_uM) + (Size_cell * s5_init_uM) + (Size_cell * s6_init_uM) + (Size_cell * s7_init_uM) 
+ (Size_cell * s8_init_uM) + (Size_cell * s9_init_uM) + (Size_cell * s10_init_uM) + (Size_cell * s11_init_uM) + (Size_cell * 
s12_init_uM) + (Size_cell * s13_init_uM) + (Size_cell * s14_init_uM) + (Size_cell * s15_init_uM) + (Size_cell * s16_init_uM)); 
Function  Compartment::K_RTK_total     ((Size_cell * RTK_init_uM) + (Size_cell * s2_init_uM) + (Size_cell * s4_init_uM) + 
(Size_cell * s5_init_uM) + (Size_cell * s7_init_uM) + (Size_cell * s9_init_uM) + (Size_cell * s11_init_uM) + (Size_cell * 
s12_init_uM) + (Size_cell * s15_init_uM)); 
Function  O0_PLCgamma1_active       (s6 + s7 + s11 + s13 + s15 + s16); 
Function  O0_PLCgamma1_cytosol      (PLCgamma1 + s3 + s8 + s10 + s14); 
Function  O0_PLCgamma1_dpTyr783     (PLCgamma1 + s2 + s3 + s4 + s6 + s7); 
Function  O0_PLCgamma1_inactive      (PLCgamma1 + s2 + s3 + s4 + s5 + s8 + s9 + s10 + s12 + s14); 
Function  O0_PLCgamma1_pTyr783      (s5 + s8 + s9 + s10 + s11 + s12 + s13 + s14 + s15 + s16); 
Function  O0_PLCgamma1_RTK_bound    (s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15); 
Function  O0_PLCgamma1_RTK_bound_inactive          (s2 + s4 + s5 + s9 + s12); 
Function  O0_PLCgamma1_tot        (PLCgamma1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10 + s11 + s12 + s13 + s14 + 
s15 + s16); 
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Function  O0_RTK_tot           (RTK + s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15); 
Function  Compartment::PLCgamma1    ((K_PLCgamma1_total - (Size_cell * s2) - (Size_cell * s3) - (Size_cell * s4) - (Size_cell 
* s5) - (Size_cell * s6) - (Size_cell * s7) - (Size_cell * s8) - (Size_cell * s9) - (Size_cell * s10) - (Size_cell * s11) - (Size_cell * s12) - 
(Size_cell * s13) - (Size_cell * s14) - (Size_cell * s15) - (Size_cell * s16)) / Size_cell); 
Function  Compartment::RTK        ((K_RTK_total - (Size_cell * s2) - (Size_cell * s4) - (Size_cell * s5) - (Size_cell * s7) - 
(Size_cell * s9) - (Size_cell * s11) - (Size_cell * s12) - (Size_cell * s15)) / Size_cell); 
 
CompartmentSubDomain Compartment { 
          OdeEquation s2 { 
                    Rate      (J_r05_0 + J_r07_1 + J_r01_0 - J_r03_0 - J_r06_1 - J_r04_0); 
                    Initial       s2_init_uM; 
          } 
          OdeEquation s3 { 
                    Rate      ( - J_r11_0 + J_r05_3 - J_r07_0 - J_r01_1 + J_r03_1 + J_r12_0 + 
J_r06_0); 
                    Initial       s3_init_uM; 
          } 
          OdeEquation s4 { 
                    Rate      ( - J_r07_1 + J_r05_2 + J_r01_1 - J_r03_1 + J_r12_1 - J_r10_0 - 
J_r04_1 +  J_r06_1); 
                    Initial       s4_init_uM; 
          } 
          OdeEquation s5 { 
                    Rate      (J_r07_2 - J_r03_2 - J_r05_0 + J_r01_2 - J_r06_2 + J_r04_0); 
                    Initial       s5_init_uM; 
          } 
          OdeEquation s6 { 
                    Rate      (J_r11_0 + J_r05_5 + J_r03_3 - J_r12_0 - J_r02_0); 
                    Initial       s6_init_uM; 
          } 
          OdeEquation s7 { 
                    Rate      (J_r05_4 - J_r03_3 - J_r12_1 + J_r10_0 - J_r04_2 + J_r02_0); 
                    Initial       s7_init_uM; 
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          } 
          OdeEquation s8 { 
                    Rate      (J_r07_3 - J_r05_1 + J_r03_2 - J_r01_2 - J_r06_3); 
                    Initial       s8_init_uM; 
          } 
          OdeEquation s9 { 
                    Rate      ( - J_r07_2 + J_r09_0 - J_r03_4 - J_r05_2 + J_r01_3 + J_r12_2 - 
J_r10_1 + J_r04_1 + J_r06_2 - J_r08_0); 
                    Initial       s9_init_uM; 
          } 
          OdeEquation s10 { 
                    Rate      ( - J_r11_1 - J_r07_3 + J_r09_1 - J_r05_3 + J_r03_4 - J_r01_3 + 
J_r12_3 + J_r06_3 - J_r08_1); 
                    Initial       s10_init_uM; 
          } 
          OdeEquation s11 { 
                    Rate      ( - J_r05_4 + J_r09_2 - J_r03_5 - J_r12_2 + J_r10_1 - J_r08_2 + 
J_r04_2 + J_r02_1); 
                    Initial       s11_init_uM; 
          } 
          OdeEquation s12 { 
                    Rate      ( - J_r03_6 - J_r09_0 + J_r01_4 + J_r12_4 - J_r10_2 + J_r08_0); 
                    Initial        s12_init_uM; 
          } 
          OdeEquation s13 { 
                    Rate      (J_r11_1 - J_r05_5 + J_r09_3 + J_r03_5 - J_r12_3 - J_r08_3 - 
J_r02_1); 
                    Initial       s13_init_uM; 
          } 
          OdeEquation s14 { 
                    Rate      ( - J_r11_2 - J_r09_1 + J_r03_6 - J_r01_4 + J_r12_5 + J_r08_1); 
                    Initial       s14_init_uM; 
          } 
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         OdeEquation s15 { 
                    Rate      ( - J_r03_7 - J_r09_2 - J_r12_4 + J_r10_2 + J_r08_2 + J_r02_2); 
                    Initial       s15_init_uM; 
         } 
         OdeEquation s16 { 
                    Rate      (J_r11_2 + J_r03_7 - J_r09_3 - J_r12_5 + J_r08_3 - J_r02_2); 
                    Initial       s16_init_uM; 
         } 
} 
 
} 
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C.2 VCell Math Description Code for Combined PLCg1 Activation Model and PLC/PKC Polarization Model 
 
 
MathDescription { 
 
Constant  _F_ 96485.3321; 
Constant  _F_nmol_ 9.64853321E-5; 
Constant  _K_GHK_ 1.0E-9; 
Constant  _N_pmol_ 6.02214179E11; 
Constant  _PI_ 3.141592653589793; 
Constant  _R_ 8314.46261815; 
Constant  _T_ 300.0; 
Constant  AreaPerUnitArea_nuclear_membrane1.0; 
Constant  AreaPerUnitArea_plasma_membrane1.0; 
 
Constant  c_active_diffusionRate 0.5; 
Constant  c_active_init_molecules_um_2 0.0; 
Constant  C_diffusionRate 24.0; 
Constant  c_diffusionRate 0.5; 
Constant  c_init_molecules_um_2 0.0; 
Constant  C_init_uM  0.3; 
Constant  d_diffusionRate 0.5; 
Constant  d_init_molecules_um_2 0.0; 
Constant  d_p_diffusionRate 0.5; 
Constant  d_p_init_molecules_um_2 0.0; 
Constant  gamma  1000000.0; 
Constant  k_basal_dp  1.0; 
Constant  k_basal_p  0.005; 
Constant  k_DAGK  1.0; 
Constant  k_dpc  1.0; 
Constant  k_dpm  0.3; 
Constant  k_hyd_PLC  5.0E-4; 
Constant  K_millivolts_per_volt 1000.0; 
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Constant  k_PA  10.0; 
Constant  k_PAP  1.0; 
Constant  k_pc  1.0; 
Constant  k_PIP2  0.00135; 
Constant  k_PLD  1.0; 
Constant  k_pm  1.0; 
Constant  kact  0.01; 
Constant  kact_2  10.0; 
Constant  kbind_c  100.0; 
Constant  kbind_p  100.0; 
Constant  kdp_783  1.0; 
Constant  kinact  0.1; 
Constant  KMOLE  0.001660538783162726; 
Constant  koff_c  0.1; 
Constant  koff_m  1.0; 
Constant  koff_nSH2  1.0; 
Constant  kon_c  1.0; 
Constant  kon_m  792.0; 
Constant  kon_nSH2  1.0; 
Constant  kon_nSH2_2 1000.0; 
Constant  kp_783  1.0; 
Constant  kunbind_c  1.0; 
Constant  kunbind_p  1.0; 
Constant  M_diffusionRate 32.0; 
Constant  m_diffusionRate 0.5; 
Constant  m_init_molecules_um_2 3727.0; 
Constant  M_init_uM  1.0; 
Constant  M_p_diffusionRate 32.0; 
Constant  M_p_init_uM 0.0; 
Constant  n  2.0; 
Constant  netValence_r01_0 1.0; 
Constant  netValence_r01_1 1.0; 
Constant  netValence_r01_2 1.0; 
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Constant  netValence_r01_3 1.0; 
Constant  netValence_r01_4 1.0; 
Constant  netValence_r02_0 1.0; 
Constant  netValence_r02_1 1.0; 
Constant  netValence_r02_2 1.0; 
Constant  netValence_r03_0 1.0; 
Constant  netValence_r03_1 1.0; 
Constant  netValence_r03_2 1.0; 
Constant  netValence_r03_3 1.0; 
Constant  netValence_r03_4 1.0; 
Constant  netValence_r03_5 1.0; 
Constant  netValence_r03_6 1.0; 
Constant  netValence_r03_7 1.0; 
Constant  netValence_r04_0 1.0; 
Constant  netValence_r04_1 1.0; 
Constant  netValence_r04_2 1.0; 
Constant  netValence_r05_0 1.0; 
Constant  netValence_r05_2 1.0; 
Constant  netValence_r05_4 1.0; 
Constant  netValence_r05_5 1.0; 
Constant  netValence_r06_1 1.0; 
Constant  netValence_r06_2 1.0; 
Constant  netValence_r07_1 1.0; 
Constant  netValence_r07_2 1.0; 
Constant  netValence_r08_0 1.0; 
Constant  netValence_r08_2 1.0; 
Constant  netValence_r08_3 1.0; 
Constant  netValence_r09_0 1.0; 
Constant  netValence_r09_2 1.0; 
Constant  netValence_r09_3 1.0; 
Constant  netValence_r10_0 1.0; 
Constant  netValence_r10_1 1.0; 
Constant  netValence_r10_2 1.0; 



   

 
 

178 

Constant  netValence_r11_0 1.0; 
Constant  netValence_r11_1 1.0; 
Constant  netValence_r11_2 1.0; 
Constant  netValence_r12_0 1.0; 
Constant  netValence_r12_1 1.0; 
Constant  netValence_r12_2 1.0; 
Constant  netValence_r12_3 1.0; 
Constant  netValence_r12_4 1.0; 
Constant  netValence_r12_5 1.0; 
Constant  netValence_V_basal_dp 1.0; 
Constant  netValence_V_basal_p 1.0; 
Constant  netValence_V_DAGK 1.0; 
Constant  netValence_V_dpc 1.0; 
Constant  netValence_V_hyd_PLC 1.0; 
Constant  netValence_V_MARCKS 1.0; 
Constant  netValence_V_off_c 1.0; 
Constant  netValence_V_PAP 1.0; 
Constant  netValence_V_pc 1.0; 
Constant  netValence_V_PKC 1.0; 
Constant  netValence_V_pm 1.0; 
Constant  netValence_Vsynth_dp 1.0; 
Constant  netValence_Vsynth_p 1.0; 
Constant  PLCgamma1_diffusionRate 19.0; 
Constant  PLCgamma1_init_uM 0.02; 
Constant  pT_diffusionRate 0.5; 
Constant  pT_init_molecules_um_2 5000.0; 
Constant  rfrac  0.0; 
Constant  rsteep1  0.0; 
Constant  rsteep2  0.0; 
Constant  s10_diffusionRate 19.0; 
Constant  s10_init_uM 0.0; 
Constant  s11_diffusionRate 0.01; 
Constant  s11_init_molecules_um_2 0.0; 
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Constant  s12_diffusionRate 0.01; 
Constant  s12_init_molecules_um_2 0.0; 
Constant  s13_diffusionRate 0.01; 
Constant  s13_init_molecules_um_2 0.0; 
Constant  s14_diffusionRate 19.0; 
Constant  s14_init_uM 0.0; 
Constant  s15_diffusionRate 0.01; 
Constant  s15_init_molecules_um_2 0.0; 
Constant  s16_diffusionRate 0.01; 
Constant  s16_init_molecules_um_2 0.0; 
Constant  s2_diffusionRate 0.01; 
Constant  s2_init_molecules_um_2 0.0; 
Constant  s3_diffusionRate 19.0; 
Constant  s3_init_uM  0.0; 
Constant  s4_diffusionRate 0.01; 
Constant  s4_init_molecules_um_2 0.0; 
Constant  s5_diffusionRate 0.01; 
Constant  s5_init_molecules_um_2 0.0; 
Constant  s6_diffusionRate 0.01; 
Constant  s6_init_molecules_um_2 0.0; 
Constant  s7_diffusionRate 0.01; 
Constant  s7_init_molecules_um_2 0.0; 
Constant  s8_diffusionRate 19.0; 
Constant  s8_init_uM  0.0; 
Constant  s9_diffusionRate 0.01; 
Constant  s9_init_molecules_um_2 0.0; 
Constant  Voltage_nm  0.0; 
Constant  Voltage_pm  0.0; 
Constant  VolumePerUnitVolume_cytosol 1.0; 
Constant  VolumePerUnitVolume_extracellular 1.0; 
Constant  VolumePerUnitVolume_nucleus 1.0; 
Constant  Vsynth_dp  1.0E-4; 
Constant  Vsynth_p  2.5; 
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VolumeVariable   subdomain1::C 
VolumeVariable   subdomain1::M 
VolumeVariable   subdomain1::M_p 
VolumeVariable   subdomain1::PLCgamma1 
VolumeVariable   subdomain1::s10 
VolumeVariable   subdomain1::s14 
VolumeVariable   subdomain1::s3 
VolumeVariable   subdomain1::s8 
 
MembraneVariable   subdomain0_subdomain1_membrane::c 
MembraneVariable   subdomain0_subdomain1_membrane::c_active 
MembraneVariable   subdomain0_subdomain1_membrane::d 
MembraneVariable   subdomain0_subdomain1_membrane::d_p 
MembraneVariable   subdomain0_subdomain1_membrane::m 
MembraneVariable   subdomain0_subdomain1_membrane::pT 
MembraneVariable   subdomain0_subdomain1_membrane::s11 
MembraneVariable   subdomain0_subdomain1_membrane::s12 
MembraneVariable   subdomain0_subdomain1_membrane::s13 
MembraneVariable   subdomain0_subdomain1_membrane::s15 
MembraneVariable   subdomain0_subdomain1_membrane::s16 
MembraneVariable   subdomain0_subdomain1_membrane::s2 
MembraneVariable   subdomain0_subdomain1_membrane::s4 
MembraneVariable   subdomain0_subdomain1_membrane::s5 
MembraneVariable   subdomain0_subdomain1_membrane::s6 
MembraneVariable   subdomain0_subdomain1_membrane::s7 
MembraneVariable   subdomain0_subdomain1_membrane::s9 
 
Function  subdomain0_subdomain1_membrane::J_r01_0      (kon_nSH2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * ((t > 
2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15)) 
* PLCgamma1)); 
Function  subdomain0_subdomain1_membrane::J_r01_1     (kon_nSH2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * ((t > 
2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15)) 
* s3)); 
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Function  subdomain0_subdomain1_membrane::J_r01_2       (kon_nSH2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * ((t > 
2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15)) 
* s8)); 
Function  subdomain0_subdomain1_membrane::J_r01_3      (kon_nSH2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * ((t > 
2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15)) 
* s10)); 
Function  subdomain0_subdomain1_membrane::J_r01_4       (kon_nSH2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * ((t > 
2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + s15)) 
* s14)); 
Function  subdomain0_subdomain1_membrane::J_r02_0       (kon_nSH2_2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * 
((t > 2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + 
s15)) * s6)); 
Function  subdomain0_subdomain1_membrane::J_r02_1      (kon_nSH2_2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * 
((t > 2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + 
s15)) * s13)); 
Function  subdomain0_subdomain1_membrane::J_r02_2       (kon_nSH2_2 * (((130.0 * rfrac * (1.0 + (rsteep1 * x / 40.0)) * 
((t > 2000.0) && (t < 20000.0))) + (130.0 * rfrac * (1.0 + (rsteep2 * x / 40.0)) * (t > 20000.0)) - (s2 + s4 + s5 + s7 + s9 + s11 + s12 + 
s15)) * s16)); 
Function  subdomain0_subdomain1_membrane::J_r03_0       (koff_nSH2 * s2); 
Function  subdomain0_subdomain1_membrane::J_r03_1       (koff_nSH2 * s4); 
Function  subdomain0_subdomain1_membrane::J_r03_2       (koff_nSH2 * s5); 
Function  subdomain0_subdomain1_membrane::J_r03_3       (koff_nSH2 * s7); 
Function  subdomain0_subdomain1_membrane::J_r03_4       (koff_nSH2 * s9); 
Function  subdomain0_subdomain1_membrane::J_r03_5       (koff_nSH2 * s11); 
Function  subdomain0_subdomain1_membrane::J_r03_6       (koff_nSH2 * s12); 
Function  subdomain0_subdomain1_membrane::J_r03_7       (koff_nSH2 * s15); 
Function  subdomain0_subdomain1_membrane::J_r04_0       (kp_783 * s2); 
Function  subdomain0_subdomain1_membrane::J_r04_1       (kp_783 * s4); 
Function  subdomain0_subdomain1_membrane::J_r04_2       (kp_783 * s7); 
Function  subdomain0_subdomain1_membrane::J_r05_0       (kdp_783 * s5); 
Function  subdomain1::J_r05_1        (kdp_783 * s8); 
Function  subdomain0_subdomain1_membrane::J_r05_2       (kdp_783 * s9); 
Function  subdomain1::J_r05_3       (kdp_783 * s10); 
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Function  subdomain0_subdomain1_membrane::J_r05_4       (kdp_783 * s11); 
Function  subdomain0_subdomain1_membrane::J_r05_5       (kdp_783 * s13); 
Function  subdomain1::J_r06_0       (kunbind_c * PLCgamma1); 
Function  subdomain0_subdomain1_membrane::J_r06_1       (kunbind_c * s2); 
Function  subdomain0_subdomain1_membrane::J_r06_2       (kunbind_c * s5); 
Function  subdomain1::J_r06_3       (kunbind_c * s8); 
Function  subdomain1::J_r07_0       (kbind_c * s3); 
Function  subdomain0_subdomain1_membrane::J_r07_1       (kbind_c * s4); 
Function  subdomain0_subdomain1_membrane::J_r07_2       (kbind_c * s9); 
Function  subdomain1::J_r07_3       (kbind_c * s10); 
Function  subdomain0_subdomain1_membrane::J_r08_0       (kbind_p * s9); 
Function  subdomain1::J_r08_1       (kbind_p * s10); 
Function  subdomain0_subdomain1_membrane::J_r08_2       (kbind_p * s11); 
Function  subdomain0_subdomain1_membrane::J_r08_3       (kbind_p * s13); 
Function  subdomain0_subdomain1_membrane::J_r09_0       (kunbind_p * s12); 
Function  subdomain1::J_r09_1       (kunbind_p * s14); 
Function  subdomain0_subdomain1_membrane::J_r09_2       (kunbind_p * s15); 
Function  subdomain0_subdomain1_membrane::J_r09_3       (kunbind_p * s16); 
Function  subdomain0_subdomain1_membrane::J_r10_0       ((kact_2 * (1.0 + (k_PA * d_p))) * s4); 
Function  subdomain0_subdomain1_membrane::J_r10_1       ((kact_2 * (1.0 + (k_PA * d_p))) * s9); 
Function  subdomain0_subdomain1_membrane::J_r10_2       ((kact_2 * (1.0 + (k_PA * d_p))) * s12); 
Function  subdomain0_subdomain1_membrane::J_r11_0       ((kact * (1.0 + (k_PA * d_p))) * s3); 
Function  subdomain0_subdomain1_membrane::J_r11_1       ((kact * (1.0 + (k_PA * d_p))) * s10); 
Function  subdomain0_subdomain1_membrane::J_r11_2       ((kact * (1.0 + (k_PA * d_p))) * s14); 
Function  subdomain0_subdomain1_membrane::J_r12_0       (kinact * s6); 
Function  subdomain0_subdomain1_membrane::J_r12_1       (kinact * s7); 
Function  subdomain0_subdomain1_membrane::J_r12_2       (kinact * s11); 
Function  subdomain0_subdomain1_membrane::J_r12_3       (kinact * s13); 
Function  subdomain0_subdomain1_membrane::J_r12_4       (kinact * s15); 
Function  subdomain0_subdomain1_membrane::J_r12_5       (kinact * s16); 
Function  subdomain0_subdomain1_membrane::J_V_basal_dp    (k_basal_dp * d_p); 
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Function  subdomain0_subdomain1_membrane::J_V_basal_p    (k_basal_p * ( - (1.0 / 2.0) * ((3.0 * k_PIP2 * m) - (k_PIP2 * pT) - 
sqrt(((9.0 * (k_PIP2 ^ 2.0) * (m ^ 2.0)) - (6.0 * (k_PIP2 ^ 2.0) * m * pT) + ((k_PIP2 ^ 2.0) * (pT ^ 2.0)) + (6.0 * k_PIP2 * m) + (2.0 * 
k_PIP2 * pT) + 1.0)) + 1.0) / k_PIP2)); 
Function  subdomain0_subdomain1_membrane::J_V_DAGK    (k_DAGK * d); 
Function  subdomain0_subdomain1_membrane::J_V_dpc      (k_dpc * c_active); 
Function  subdomain1::J_V_dpm       (k_dpm * M_p); 
Function  subdomain0_subdomain1_membrane::J_V_hyd_PLC   (k_hyd_PLC * (s6 + s7 + s11 + s13 + s15 + s16) * ( - (1.0 / 2.0) * 
((3.0 * k_PIP2 * m) - (k_PIP2 * pT) - sqrt(((9.0 * (k_PIP2 ^ 2.0) * (m ^ 2.0)) - (6.0 * (k_PIP2 ^ 2.0) * m * pT) + ((k_PIP2 ^ 2.0) * 
(pT ^ 2.0)) + (6.0 * k_PIP2 * m) + (2.0 * k_PIP2 * pT) + 1.0)) + 1.0) / k_PIP2)); 
Function  subdomain0_subdomain1_membrane::J_V_MARCKS   ((kon_m * M) - ((koff_m * m) / (1.0 - ((1.0 / 2.0 * ((3.0 * k_PIP2 * 
m) - (k_PIP2 * pT) - sqrt(((9.0 * (k_PIP2 ^ 2.0) * (m ^ 2.0)) - (6.0 * (k_PIP2 ^ 2.0) * m * pT) + ((k_PIP2 ^ 2.0) * (pT ^ 2.0)) + (6.0 * 
k_PIP2 * m) + (2.0 * k_PIP2 * pT) + 1.0)) + 1.0)) * (3.0 - ((1.0 / 2.0 * ((3.0 * k_PIP2 * m) - (k_PIP2 * pT) - sqrt(((9.0 * (k_PIP2 ^ 
2.0) * (m ^ 2.0)) - (6.0 * (k_PIP2 ^ 2.0) * m * pT) + ((k_PIP2 ^ 2.0) * (pT ^ 2.0)) + (6.0 * k_PIP2 * m) + (2.0 * k_PIP2 * pT) + 1.0)) 
+ 1.0)) * (( - (3.0 / 2.0) * k_PIP2 * m) + ((1.0 / 2.0) * k_PIP2 * pT) + ((1.0 / 2.0) * sqrt(((9.0 * (k_PIP2 ^ 2.0) * (m ^ 2.0)) - (6.0 * 
(k_PIP2 ^ 2.0) * m * pT) + ((k_PIP2 ^ 2.0) * (pT ^ 2.0)) + (6.0 * k_PIP2 * m) + (2.0 * k_PIP2 * pT) + 1.0))) + (5.0 / 2.0)))))))); 
Function  subdomain0_subdomain1_membrane::J_V_off_c     (koff_c * c); 
Function  subdomain0_subdomain1_membrane::J_V_PAP     (k_PAP * d_p); 
Function  subdomain0_subdomain1_membrane::J_V_pc      (k_pc * c); 
Function  subdomain0_subdomain1_membrane::J_V_PKC     ((kon_c * d * C) - (koff_c * c_active)); 
Function  subdomain0_subdomain1_membrane::J_V_pm      (k_pm * c_active * m); 
Function  subdomain0_subdomain1_membrane::J_Vsynth_dp    (Vsynth_dp * (1.0 + (gamma * ((k_PLD * c_active) ^ n))) / (1.0 + 
((k_PLD * c_active) ^ n))); 
Function  subdomain0_subdomain1_membrane::J_Vsynth_p    Vsynth_p; 
Function  subdomain0_subdomain1_membrane::KFlux_plasma_membrane_cytosol    (AreaPerUnitArea_plasma_membrane / 
VolumePerUnitVolume_cytosol); 
Function  subdomain1::Size_cytosol    (VolumePerUnitVolume_cytosol * vcRegionVolume('subdomain1')); 
Function  subdomain0::Size_extracellular    (VolumePerUnitVolume_extracellular * vcRegionVolume('subdomain0')); 
Function  subdomain1_subdomain2_membrane::Size_nuclear_membrane         (AreaPerUnitArea_nuclear_membrane * 
vcRegionArea('subdomain1_subdomain2_membrane')); 
Function  subdomain2::Size_nucleus    (VolumePerUnitVolume_nucleus * vcRegionVolume('subdomain2')); 
Function  subdomain0_subdomain1_membrane::Size_plasma_membrane         (AreaPerUnitArea_plasma_membrane * 
vcRegionArea('subdomain0_subdomain1_membrane')); 
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Function  subdomain0_subdomain1_membrane::sobj_subdomain11_subdomain00_size  
vcRegionArea('subdomain0_subdomain1_membrane'); 
Function  subdomain1_subdomain2_membrane::sobj_subdomain22_subdomain11_size  
vcRegionArea('subdomain1_subdomain2_membrane'); 
Function  UnitFactor_uM_um3_molecules_neg_1         (1000000.0 / 6.02214179E8); 
Function  subdomain0::vobj_subdomain00_size          vcRegionVolume('subdomain0'); 
Function  subdomain1::vobj_subdomain11_size          vcRegionVolume('subdomain1'); 
Function  subdomain2::vobj_subdomain22_size          vcRegionVolume('subdomain2'); 
 
CompartmentSubDomain subdomain2 { 
          BoundaryXm      Flux 
          BoundaryXp       Flux 
          BoundaryYm      Flux 
          BoundaryYp       Flux 
} 
 
CompartmentSubDomain subdomain1 { 
          BoundaryXm      Flux 
          BoundaryXp       Flux 
          BoundaryYm      Flux 
          BoundaryYp       Flux 
          PdeEquation M { 
                     Rate        J_V_dpm; 
                     Diffusion      M_diffusionRate; 
                     Initial        M_init_uM; 
          } 
          PdeEquation M_p { 
                     Rate         - J_V_dpm; 
                     Diffusion      M_p_diffusionRate; 
                     Initial        M_p_init_uM; 
          } 
          PdeEquation C { 
                     Rate        0.0; 
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                     Diffusion      C_diffusionRate; 
                     Initial        C_init_uM; 
         } 
         PdeEquation  PLCgamma1 { 
                     Rate        (J_r05_1 - J_r06_0 + J_r07_0); 
                     Diffusion      PLCgamma1_diffusionRate; 
                     Initial        PLCgamma1_init_uM; 
         } 
         PdeEquation s3 { 
                     Rate        (J_r05_3 + J_r06_0 - J_r07_0); 
                     Diffusion      s3_diffusionRate; 
                     Initial        s3_init_uM; 
         } 
         PdeEquation s8 { 
                     Rate        ( - J_r05_1 - J_r06_3 + J_r07_3); 
                     Diffusion      s8_diffusionRate; 
                     Initial        s8_init_uM; 
         } 
         PdeEquation s10 { 
                     Rate        ( - J_r05_3 + J_r06_3 - J_r07_3 - J_r08_1 + J_r09_1); 
                     Diffusion      s10_diffusionRate; 
                     Initial        s10_init_uM; 
         } 
         PdeEquation s14 { 
                     Rate        (J_r08_1 - J_r09_1); 
                     Diffusion      s14_diffusionRate; 
                     Initial        s14_init_uM; 
         } 
} 
 
CompartmentSubDomain subdomain0 { 
         BoundaryXm       Flux 
         BoundaryXp        Flux 
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         BoundaryYm       Flux 
         BoundaryYp        Flux 
} 
 
MembraneSubDomain subdomain1 subdomain0 { 
         Name           subdomain0_subdomain1_membrane 
         BoundaryXm       Value 
         BoundaryXp        Value 
         BoundaryYm       Value 
         BoundaryYp        Value 
         PdeEquation pT { 
                     Rate        ( - J_V_basal_p + J_Vsynth_p - J_V_hyd_PLC); 
                     Diffusion      pT_diffusionRate; 
                     Initial        pT_init_molecules_um_2; 
         } 
         PdeEquation d { 
                     Rate        ( - J_V_PKC + J_V_hyd_PLC + J_V_off_c + J_V_PAP - 
J_V_DAGK); 
                     Diffusion      d_diffusionRate; 
                     Initial        d_init_molecules_um_2; 
         } 
         PdeEquation c_active { 
                     Rate        (J_V_PKC - J_V_dpc + J_V_pc); 
                     Diffusion      c_active_diffusionRate; 
                     Initial        c_active_init_molecules_um_2; 
         } 
         PdeEquation c { 
                     Rate        (J_V_dpc - J_V_pc - J_V_off_c); 
                     Diffusion      c_diffusionRate; 
                     Initial        c_init_molecules_um_2; 
         } 
         PdeEquation m { 
                     Rate        (J_V_MARCKS - J_V_pm); 
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                     Diffusion      m_diffusionRate; 
                     Initial        m_init_molecules_um_2; 
        } 
        PdeEquation d_p { 
                     Rate        (J_Vsynth_dp - J_V_basal_dp - J_V_PAP + J_V_DAGK); 
                     Diffusion      d_p_diffusionRate; 
                     Initial        d_p_init_molecules_um_2; 
        } 
        PdeEquation s2 { 
                     Rate        ( - J_r03_0 - J_r04_0 + J_r05_0 - J_r06_1 + J_r07_1 + J_r01_0); 
                     Diffusion     s2_diffusionRate; 
                     Initial        s2_init_molecules_um_2; 
        } 
        PdeEquation s4 { 
                     Rate        (J_r01_1 - J_r03_1 - J_r04_1 + J_r05_2 + J_r06_1 - J_r07_1 - 
J_r10_0 + J_r12_1); 
                     Diffusion      s4_diffusionRate; 
                     Initial        s4_init_molecules_um_2; 
        } 
        PdeEquation s5 { 
                     Rate        (J_r01_2 - J_r03_2 + J_r04_0 - J_r05_0 - J_r06_2 + J_r07_2); 
                     Diffusion      s5_diffusionRate; 
                     Initial        s5_init_molecules_um_2; 
        } 
        PdeEquation s6 { 
                     Rate        ( - J_r02_0 + J_r03_3 + J_r05_5 + J_r11_0 - J_r12_0); 
                     Diffusion     s6_diffusionRate; 
                     Initial        s6_init_molecules_um_2; 
        } 
        PdeEquation s7 { 
                     Rate        (J_r02_0 - J_r03_3 - J_r04_2 + J_r05_4 + J_r10_0 - J_r12_1); 
                     Diffusion      s7_diffusionRate; 
                     Initial        s7_init_molecules_um_2; 
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       } 
       PdeEquation s9 { 
                     Rate        (J_r01_3 - J_r03_4 + J_r04_1 - J_r05_2 + J_r06_2 - J_r07_2 - 
J_r08_0 + J_r09_0 - J_r10_1 + J_r12_2); 
                     Diffusion      s9_diffusionRate; 
                     Initial         s9_init_molecules_um_2; 
       } 
       PdeEquation s11 { 
                     Rate        (J_r02_1 - J_r03_5 + J_r04_2 - J_r05_4 - J_r08_2 + J_r09_2 + 
J_r10_1 - J_r12_2); 
                     Diffusion      s11_diffusionRate; 
                     Initial        s11_init_molecules_um_2; 
       } 
       PdeEquation s12 { 
                     Rate        (J_r01_4 - J_r03_6 + J_r08_0 - J_r09_0 - J_r10_2 + J_r12_4); 
                     Diffusion      s12_diffusionRate; 
                     Initial        s12_init_molecules_um_2; 
       } 
       PdeEquation s13 { 
                     Rate        ( - J_r02_1 + J_r03_5 - J_r05_5 - J_r08_3 + J_r09_3 + J_r11_1 - 
J_r12_3); 
                     Diffusion      s13_diffusionRate; 
                     Initial        s13_init_molecules_um_2; 
       } 
       PdeEquation s15 { 
                     Rate        (J_r02_2 - J_r03_7 + J_r08_2 - J_r09_2 + J_r10_2 - J_r12_4); 
                     Diffusion      s15_diffusionRate; 
                     Initial        s15_init_molecules_um_2; 
       } 
       PdeEquation s16 { 
                     Rate        ( - J_r02_2 + J_r03_7 + J_r08_3 - J_r09_3 + J_r11_2 - J_r12_5); 
                     Diffusion      s16_diffusionRate; 
                     Initial        s16_init_molecules_um_2; 
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      } 
      JumpCondition M { 
                     InFlux        - (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_V_MARCKS); 
                     OutFlux      0.0; 
      } 
      JumpCondition M_p { 
                     InFlux       (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_V_pm); 
                     OutFlux      0.0; 
      } 
      JumpCondition C { 
                     InFlux       ( - (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_V_PKC) + (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * 
J_V_off_c)); 
                     OutFlux      0.0; 
      } 
      JumpCondition PLCgamma1 { 
                     InFlux       ((UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_r03_0) - (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * 
J_r01_0)); 
                     OutFlux      0.0; 
      } 
      JumpCondition s3 { 
                     InFlux       ((( - (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_r01_1) + (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * 
J_r03_1)) - (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * J_r11_0)) + 
(UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * J_r12_0)); 
                     OutFlux      0.0; 
      } 
      JumpCondition s8 { 



   

 
 

190 

                     InFlux       ( - (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_r01_2) + (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * 
J_r03_2)); 
                     OutFlux      0.0; 
      } 
      JumpCondition s10 { 
                     InFlux       ((( - (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_r01_3) + (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * 
J_r03_4)) - (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * J_r11_1)) + 
(UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * J_r12_3)); 
                     OutFlux      0.0; 
      } 
      JumpCondition s14 { 
                     InFlux       ((( - (UnitFactor_uM_um3_molecules_neg_1 * 
KFlux_plasma_membrane_cytosol * J_r01_4) + (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * 
J_r03_6)) - (UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * J_r11_2)) + 
(UnitFactor_uM_um3_molecules_neg_1 * KFlux_plasma_membrane_cytosol * J_r12_5)); 
                     OutFlux      0.0; 
      } 
} 
 
MembraneSubDomain subdomain2 subdomain1 { 
      Name              subdomain1_subdomain2_membrane 
      BoundaryXm          Value 
      BoundaryXp           Value 
      BoundaryYm          Value 
      BoundaryYp  Value 
      JumpCondition M { 
                     InFlux       0.0; 
                     OutFlux      0.0; 
      } 
      JumpCondition M_p { 
                     InFlux       0.0; 
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                     OutFlux       0.0; 
      } 
      JumpCondition C { 
                     InFlux        0.0; 
                     OutFlux       0.0; 
      } 
      JumpCondition PLCgamma1 { 
                     InFlux        0.0; 
                     OutFlux       0.0; 
      } 
      JumpCondition s3 { 
                     InFlux        0.0; 
                     OutFlux       0.0; 
      } 
      JumpCondition s8 { 
                     InFlux        0.0; 
                     OutFlux       0.0; 
      } 
      JumpCondition s10 { 
                     InFlux        0.0; 
                     OutFlux       0.0; 
      } 
      JumpCondition s14 { 
                     InFlux        0.0; 
                     OutFlux       0.0; 
      } 
} 
} 


