
ABSTRACT

MENDLOW, MICAELA ROSE. Analysis and Validation of Three-Dimensional Models
for Corneal Topography from Optical Coherence Tomography Point Cloud Data. (Under
the direction of Mansoor Haider.)

Optical coherence tomography (OCT) presents a promising alternative to traditional

corneal topography due to its high resolution and ability to image both the anterior and

posterior surfaces of the cornea. Accurate maps of both corneal elevation and curvature

are essential to the diagnosis of refractive disorders. Therefore, models constructed from

OCT point cloud data must take both metrics into account. Modeling of the posterior

corneal surface is further complicated by optical distortion in the imaging data caused

by refraction as the light from the OCT scanner crosses the anterior surface boundary.

While there are currently several different techniques for modeling local features of

the cornea, these approaches often involve some fundamental assumptions about the

shape of the surface or surfaces being measured. Zernike polynomials—which form an

orthonormal basis on the unit disc—are widely used in ophthalmology for classifying

spherical aberrations of the eye. Polynomial expansion using Zernike basis functions has

also become a popular choice for 3D modeling of corneal height data due to their ability

to fit complex surface shapes such as one might encounter in a highly diseased cornea.

Recently, it has been proposed that such models could also be used for the computation

of local curvature. However, little research has been done to validate the use of Zernike

elevation models for computing corneal curvature maps from OCT data, particularly in

the context of a two-surface model. Furthermore, selection of the optimal Zernike order

for modeling a particular surface remains a difficult question. Often the topic is not

considered at all, with clinicians selecting a specific model order based on the standard

practices. Most papers that do address the topic of Zernike model order selection focus

only on the accuracy of the surface fit, leaving questions about whether the model is also

the optimal choice for curvature computation.

We investigate and validate the use of finite Zernike polynomial expansions for 3D

modeling of volumetric OCT point cloud data from corneal imaging. The suitability of

each Zernike model order is evaluated according to the accuracy of not only the model fit

but also the meridional (tangential) curvature maps and principal curvatures computed

from those models. A similar analysis—in which we also describe and validate a 3D



refraction correction algorithm from the literature—is performed for the posterior surface.

Our methods are applied to real OCT data from two imaging phantoms with known

design specifications, as well as synthetic data generated from these design equations. In

our analyses, we also consider the impact of quantization error inherent in imaging data

in order to determine whether this results in a theoretical bound on the accuracy of the

models.

Propagation of error within the two-surface model, particularly as it affects curvature,

is analyzed using several statistical techniques. Confidence intervals for the Zernike coef-

ficient estimates from regression analysis are compared to Bayesian density estimates ob-

tained using the delayed rejection adaptive Metropolis (DRAM) algorithm. Uncertainty

from these estimates is propagated through the model using Monte Carlo simulations to

quantify its effect on surface fit and curvature calculations. We also consider several meth-

ods from global sensitivity analysis to evaluate the sensitivity of the principal curvature

estimates to error in the Zernike coefficients.
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Chapter 1

Introduction

Optical coherence tomography (OCT) is a non-invasive medical imaging modality that

uses low-coherence interferometry to produce detailed images of biological tissues [31].

Spectral domain OCT (SDOCT) works by scanning a broadband beam of near-infrared

light from a superluminescent diode through an interferometer consisting of a sample arm,

which contains the object being imaged, and a reference arm. A spectrometer registers

the spectral interference pattern produced when the reflected light from the two arms

is recombined. This interference data, which is a function of wavelength, is then Fourier

transformed to obtain a reflectivity profile of the entire depth scan. In this way, SDOCT

permits simultaneous imaging of multiple tissue layers [17, 69].

Due to its relative ease of operation and micrometer-scale resolution, OCT has enjoyed

widespread use in the field of ophthalmology [47, 48, 57]. While primarily used to diag-

nose and monitor ophthalmic diseases through qualitative analysis of ocular structures

[70, 110], OCT imaging is also being investigated as a potential means for quantita-

tive measurement of various biometrics including principal radius of curvature and local

elevation, curvature, and thickness (pachymetry) maps of the cornea [55, 110]. As the

cornea is responsible for most of the eye’s refractive power, accurate corneal topography

is essential to the detection and management of many eye conditions [23, 44, 56, 62, 69].

Volumetric OCT imaging of the cornea has been proposed for measuring refractive power

before and after surgical procedures [48, 54, 55]. Other possible applications for this tech-

nology include research into the relationship between eye disorders and eye shape [57],

prescriptive lens fitting [44, 56], and contact lens metrology [15].

Placido disc-based topographers—long considered the standard in corneal topography—
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measure curvature by detecting the deviations in concentric rings of light projected onto

the cornea [4, 23, 44]. These devices are only able to measure the anterior surface of

the cornea and rely on assumptions about the internal features of the eye to estimate

refractive power, assumptions that may be inaccurate for people who have certain eye

diseases or who have had refractive surgery [48, 56, 67]. Corneal topography systems us-

ing slit-scanning or Scheimpflug photography are able to measure interior surfaces of the

eye; however, in principle OCT has the potential for superior image resolution and depth

[55, 69, 69, 110]. In fact, OCT has the potential to allow quantitative 3D modeling of the

entire human eye, including the crystalline lens and retina [56, 69]. Recent studies have

assessed the performance of corneal topography from OCT relative to the results of other

widely used topography and keratometry systems. In particular, OCT has been compared

to both Placido disc systems and Scheimpflug photography for mapping the topography

of imaging phantoms and in vivo human corneas [48, 54, 55, 56, 69, 70, 99, 110]. OCT

topography has also been validated against a dedicated mouse keratometer for use on

in vivo mouse corneas and imaging phantoms [52]. Other studies have also investigated

corneal biometry from OCT using imaging phantoms as well as human, porcine, and

guinea pig subjects [18, 66, 67, 71, 72, 100].

One drawback to measuring surface height rather than measuring curvature directly is

that differentiation amplifies errors in the surface fit [44]. However, the standard curvature

maps in ophthalmology involve 2D curvatures [4, 23]. The use of elevation data allows

us to compute the curvature along any direction of our choosing, which is especially

important in cases of off-axis imaging or when the desired reference axis for the curvature

map does not correspond to the one used for data collection [44, 60, 78, 85]. Another

problem with using OCT for corneal topography is that the cornea by its very nature

refracts light from the scanner, leading to unavoidable warping of the posterior surface

data. Several algorithms for correcting this type of optical distortion in three dimensions

have been proposed [52, 69, 110]. The 3D refraction correction algorithm presented in

Chapter 4 is based on [110] and has been validated on imaging phantoms and various

parts of the human eye [16, 17, 18, 29, 48, 54, 55, 56, 110].

In this thesis, we will investigate the mathematical implications of using segmentation

data from volumetric OCT imaging to model both the anterior and posterior surfaces of

two imaging phantoms with known design specificationsi. However, whereas many of the

iSee Section 2.3.
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biometrics reported in the aforementioned studies have involved at least some general

assumptions about the shape of the surface or surfaces being measured [48, 56, 67, 68,

69, 70], our methods are intended to be applicable to an optical body of arbitrary shape.

For this purpose, 3D modeling of elevation data is performed using Zernike polynomialsii,

which form an orthogonal basis on the unit disc and are widely used for modeling corneal

elevation [34, 77, 84, 91]. In addition to their utility in wavefront aberrometry, Zernike

polynomials have been used to fit OCT surface height data [52, 54, 55, 68, 70, 71, 72, 97,

99, 110], as well as to compute local curvature maps for human and mouse corneas [52, 55,

103]. Nevertheless, we are not aware of any rigorous efforts to validate the curvature maps

generated from Zernike polynomial fitting of OCT elevation data. While some papers

do consider different Zernike model orders for fitting phantom cornea data from other

imaging modalities, we have not encountered any literature that examines the impact

of model order selection on curvature mapping or within the context of a multi-surface

model where refraction correction of the posterior surface depends on the anterior surface

fit. There also appears to be minimal research addressing uncertainty propagation and

sensitivity analysis associated with the Zernike elevation and curvature models.

This thesis is structured as follows: Chapter 2 presents the relevant scientific back-

ground and terminology, including the design specifications of the two imaging phantoms.

In Chapter 3, we investigate and validate the use of finite Zernike polynomial expansions

for 3D modeling of synthetic elevation data as well as curvature mapping. In Chapter 4,

we describe a ray tracing algorithm for 3D refraction correction of the posterior lens

surface, which we then validate using synthetic lens data. The implications for curvature

mapping of refraction-corrected surfaces are also discussed. The methods discussed in

Chapters 3–4 are then applied to real OCT data in Chapter 5. Finally, Chapter 6 inves-

tigates the quantification of uncertainty in both the anterior and posterior lens surface

models. As we did not have direct access to the raw OCT data, issues pertaining to imag-

ing and image processing—such as noise reduction, edge detection, parameter estimation

involving OCT scan parameters, and quantification of error in point cloud data—will not

be addressed. Image registration is discussed only insofar as it can be done using point

cloud data.

The OCT data used in this thesis were obtained using an Envisu R4410 SDOCT

Contact Lens Metrology System (Leica Microsystems, Inc., formerly Bioptigen,Inc.; Mor-

iiSee Section 3.1.
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risville, North Carolina), the specifications of which can be found in Section 2.2. Most of

the analyses described in Chapters 3–6 were coded in MATLAB version R2019b (Math-

Works; Natick, Massachusetts).
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Chapter 2

Data Collection & Preprocessing

The analyses described in this thesis were conducted on two test phantoms: a plano-

convex glass lens with an aspheric front surface (the “aspheric lens”), and a positive

meniscus (convex-concave) acrylic lens with a spherical front surface and toric back sur-

face (the “toric lens”). Although we eventually intend to apply these algorithms to human

cornea data, there are a number of important reasons to first validate on such lenses. In

particular, the front and back surfaces of both lenses have known design equations against

which we can easily compare our results. Using lens data also allows us to assess algo-

rithm performance without having to account for motion during data collection, as is

likely to occur when live imaging a human eye [75].

Another benefit to using manufactured test surfaces is that the optical properties of

most lenses are well-defined with respect to their geometrical structure. By contrast, the

field of physiological optics has yet to reach a consensus regarding the optimal reference

axis to use when evaluating anomalies in the human eye, and the impact of such anomalies

on focal properties at the retina. The four refracting surfaces (the anterior and posterior

of the cornea and the anterior and posterior of the crystalline lens) are generally neither

coaxial nor rotationally symmetric [60, 62, 85, 101]. Even if we were to ignore minor

asymmetries, the eye’s other key optical components—the pupil (the central aperture in

the iris which dilates or contracts to control light exposure) and the foveola (the point on

the retina where the resulting image is projected)—also tend to be displaced from any

sort of geometrical axis and can vary significantly from person to person, thus introducing

additional variables that can impact vision quality [60, 62, 101]. Not only does this lead

to the characterization of numerous reference axes for the human eye, but the precise
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definitions of these various axes in the literature are inconsistent and sometimes even

contradictory [60, 85]. Despite widespread agreement on the benefits of a standardized

axis, debate continues as to which of these axes is most appropriate for alignment during

ophthalmological procedures [7, 60, 101]. As we will discuss in the next section, no such

ambiguity exists for the lenses used in this thesis.

2.1 Terminology

While separate ANSI and ISO standards exist for contact lens metrology and corneal to-

pography, and although contact lens metrology is also among Leica’s target applications

for the OCT system, we will mainly focus on concepts that are essential for assessing

the health of the cornea. Most of the following clinical terms are based on the definitions

provided in ANSI Z80.23-2008 (corneal topography systems – standard terminology, re-

quirements) [5], which is largely mirrored by ISO 19980:2012 (ophthalmic instruments –

corneal topographers) [37]. For clarity, a few additional terms not included in the ANSI

standard have been adapted from other sources, including ISO 10343:2014 (ophthalmic

instruments – ophthalmometers) [35] and ISO 18369-1:2017 (contact lenses – vocabulary,

classification system and recommendations for labelling specifications) [36].

Definition 2.1.1 (Optical Axis). Any line along which the path of a light ray exiting

an optical system is coincident with its path upon entry [27]. For a single refracting

surface with some degree of rotational symmetry, the optical axis coincides with the axis

of symmetry. For two such surfaces placed in series, the optical axis would be the line

connecting their centers of curvature.i

Definition 2.1.2 (CT Axis). The corneal topographer (CT) axis is a line parallel or

coincident with the Envisu’s optical axis, which serves to define the z-axis during data

collection [5].

Definition 2.1.3 (Design Equation). A function z
(
ρ, θ
)

which, along with specified

parameters, provides the intended shape of the given lens surface.

iIt is commonly stipulated in the vision community that the human eye lacks a true optical axis
because the centers of curvature of the refracting elements are generally not coaxial [60, 85]. There is
still significant debate as to which of the eye’s axes best serves as a proxy for the optical axis when
conducting the type of analysis discussed in this thesis [7, 60, 85, 101].
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Figure 2.1: The solid curve represents a cross section of the surface z
(
ρ, θ
)

confined to
the meridional plane θ = θk. The radius of curvature at

(
ρ, z(ρ, θk)

)
is the radius of the

osculating circle at that point, indicated by the dashed curve.

The design equations for each lens are defined so that the optical axes of the anterior

and posterior (front and back) surfaces are coincident with one another as well as with

the z-axis. By convention, the z-axis is oriented so that the positive direction points from

the lens toward the OCT probe [6, 38].

Definition 2.1.4 (Lens Vertexii). The point at which a lens’s optical axis crosses one

of its surface boundaries [36]. Unless otherwise specified, we will use this term to describe

the front vertex of the lens.

The sample alignment protocol in the probe’s user manual [51] aims to align the CT

axis with the optical axis of the lens. However, as this protocol must be performed by

hand, we cannot rule out the possibility of non-negligible human error. Therefore it is

iiThis is one place in which we have chosen to depart from the terminology in the ANSI standard,
which defines the term corneal vertex as the “point of tangency of a plane perpendicular to the CT axis
with the corneal surface” [5]. In other words, if we let the CT axis determine the z-axis of the coordinate
system, then the corneal vertex is the point at which the basis vector ez = 〈0, 0, 1〉 is normal to anterior
surface of the eye. However, the standard does not include specific guidelines on the alignment of the
CT axis. Despite claims that it is a “morphologically stable” reference [7, 60], it would appear that
the corneal vertex is not in fact an inherent property of the eye, but instead depends on the choice of
reference axis used for CT alignment.
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helpful to distinguish between the true vertex of the lens and the approximation of the

vertex obtained using the sample alignment protocol. We will refer to the approximate

vertex—that is, point at which the CT axis crosses the front surface of the lens—as the

scan vertex.

Definition 2.1.5 (Meridional Plane). Any plane containing the specified reference

axis [5]. A particular meridian is identified by its angular position 0 ≤ θ < π in standard

cylindrical coordinates (see Section 2.2.1).

Definition 2.1.6 (Meridional Curvatureiii). A measure of local curvature of the

surface z
(
ρ, θ
)

within the meridional plane θ = θk. The meridional curvature of the

resulting plane curve is given by the reciprocal of the radius of its osculating circle, which

is itself a function of ρ. Figure 2.1 illustrates the meridian θ = θk of the surface z
(
ρ, θ
)
,

as well as the meridional radius of curvature at an arbitrary off-axis point
(
ρ, z(ρ, θk)

)
.

By convention, the curvature is considered positive whenever the surface is bend-

ing away from the imaging system (as it would for a healthy cornea). Therefore, to be

consistent with the orientation of our design equation z
(
ρ, θ
)
, we must write the signed

meridional curvature k
(
ρ, θ
)

as

k
(
ρ, θ
)

=
−zρρ

(
ρ, θ
)(

1 +
(
zρ(ρ, θ)

)2
)3/2

, (2.1)

where zρ and zρρ denote the first and second partial derivatives with respect to ρ. The

reciprocal of (2.1) yields the corresponding radius of curvature [5].

The ANSI standard stipulates that curvature results should be reported in units of

keratometric diopters (abbreviated “D”), which are inverse millimeters times the ker-

atometric constant 337.5.iv The maps shown in Figure 2.2 illustrate this convention.

Keratometric diopters were introduced in order to relate the curvature of the cornea to

its refractive power; however, this relationship is only meaningful at the corneal vertex

[44], and even then it is merely an approximation based on assumptions about other

shape properties of the cornea (e.g., curvature of the posterior surface and thickness).

iiiMeridional curvature is also sometimes referred to as tangential curvature.
ivIt is also not unusual to see the term “curvature” used in reference to radius of curvature measure-

ments (in units of millimeters), particularly in older literature that predates the standard.
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Since there is no practical purpose for using keratometric diopters in lieu of inverse mil-

limeters, we will use the latter for the theoretical analyses in Chapters 3–4 and switch to

the former only when discussing the real lens data in Chapters 5–6.

Definition 2.1.7 (Principal Curvatures). The principal curvatures are the maximum

and minimum normal curvaturesv (k1

(
X
)

and k2

(
X
)
, respectively) at the point X, where

a normal curvature is simply the meridional curvature (2.1) within a plane referenced

to the local surface normal vector [5]. Since we are primarily interested in the principal

curvatures at the vertex, we refer to the maximum and minimum curvatures at ρ = 0 as

k1 and k2, respectively; i.e.,

k1 ≡ max
0≤θ<π

k
(
0, θ
)
, k2 ≡ min

0≤θ<π
k
(
0, θ
)
.

The maximum and minimum radii of curvature at the vertex will be denoted by R1 = 1
k2

and R2 = 1
k1

.

Definition 2.1.8 (Principal Meridians). The two meridional planes corresponding to

the principal curvatures at the vertex (i.e., the principal directions) [35].vi

Note that the vertex of an axisymmetric surface (one with continuous rotational

symmetry about the z-axis) is an umbilical point—in other words, the surface is locally

spherical, so there is only one principal radius of curvature R = R1 = R2. For such a

surface, R is sometimes referred to as “the” radius of curvature of the lens, and every

meridian is thus a principal meridian. The continuous rotational symmetry of the front

surfaces of both lenses can be seen in Figures 2.2a–b, where the curvature at the vertex is

vThere is a subtle distinction between the ANSI and ISO corneal topography standards when it
comes to the definitions of principal curvature. While the ANSI definition (referenced above) agrees
with the standard mathematical usage from differential geometry [5], the ISO standard omits the word
“normal” and instead defines the principal curvature simply as the “maximum or minimum curvature
at a point on the surface” [37]. One possible explanation for this omission might be that clinicians tend
to be interested in the principal curvatures at the corneal vertex, where the surface normal vector is
parallel to the CT axis by definition (see footnote ii). However, while many CT systems include an
alignment procedure to ensure that the CT axis is itself perpendicular to the cornea at the point of
incidence [44, 78], neither the ANSI nor ISO standard explicitly states such a requirement. Furthermore,
this leaves some ambiguity regarding the definition of the principal curvatures for off-axis surface points
like the corneal apex.

viAs discussed in footnote v, in practice the normality of the axis at the vertex is often assumed but
not necessarily true. Thus, the principal meridians of a cornea may fail the perpendicularity consequence
of Euclid’s curvature theorem [20], resulting in a condition labeled irregular astigmatism.
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(a) (b)

(c)

Figure 2.2: Meridional curvature maps in keratometric diopters (D) for the (a) front
surface of the aspheric lens, (b) front surface of the toric lens, and (c) back surface of the
toric lens. The dashed lines in (c) indicate the principal meridians.

clearly the same in every radial direction. On the other hand, the back surface of the toric

lens (shown in Figure 2.2c) is not axisymmetric. The principal meridians are indicated

by the dashed lines.

Most corneal topography systems generate a number of different metrics based on the sur-

face data collected. Of these, there are two common measures of curvature that conform

to the ANSI standard [5]: meridional curvature and axial curvaturevii [44, 55]. Within

a given meridian, the axial curvature ka at each lateral coordinate ρ is defined as the

viiAxial curvature is also sometimes referred to as sagittal curvature.
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integral from the reference axis to ρ of the meridional curvature km,

ka
(
ρ
)

=
1

ρ

∫ ρ

0

km
(
x
)
dx.

Whereas the meridional curvature map provides a measure of “instantaneous” curvature,

the axial curvature map is valued by clinicians because of its relationship to refractive

power under ideal circumstances [11, Ch. 4]. To limit the sources of numerical error—

such as that introduced by numerical integration—this thesis will only address the former

metric.

The significance of either the meridional or axial curvature maps depends upon the

accuracy of the reference axis. However, as we noted earlier, perfect alignment of the

CT axis with the lens’ optical axis is difficult even under ideal conditions. We expect

to see some variability in the position of the scan vertex across repeated measurements;

therefore, there may be discrepancies among the local maps produced from independent

scans unless an effort is made to identify the correct axis before calculating curvature.

The use of synthetic OCT data based on known design equations allows us to perform

some preliminary validation of the methods described in Chapters 3 and 4 without having

to address possible misalignment of the CT axis with the sample’s optical axis. For a non-

axisymmetric lens, using synthetic data also avoids the need to account for errors in the

orientation of the principal meridians. Both of these issues will be discussed in Chapter 5.

The ANSI standard also includes several measures of local curvature that do not

depend on the choice of reference axis. For example, according to the mathematical

definition of the principal curvature, the minimum and maximum curvature at each

point depends only on the local normal vector, which is unique (up to its sign). The mean

curvature (H) and Gaussian curvature (κ) of a surface a point X ∈ R2 are, respectively,

the arithmetic mean and the product of the local principal curvatures

H
(
X
)

=
k1

(
X
)

+ k2

(
X
)

2

κ
(
X
)

= k1

(
X
)
k2

(
X
)
.

However, while some of these maps could prove clinically useful, they have not yet been

widely adopted in practice [44]. Therefore, they will not be covered in this thesis.
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Figure 2.3: Envisu metrology assembly with handheld R4410 OCT probe [51].

Figure 2.4: Sample holder (left) and sample positioning stage (right) [51].
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Table 2.1: Technical specifications for the Envisu R4410 SDOCT Contact Lens Metrol-
ogy System [50].

Parameter Value

Central wavelength 883.9 nm
3 dB bandwidth 63.7 nm
Axial pixel resolution in saline 5.2 µm
Optical axial resolution in saline 7.5 µm
Maximum scan depth in saline 11 mm
Recommended use depth in saline 7 mm
Lateral Field of View (diameter) 20 mm
Lateral resolution 23 µm

2.2 OCT Data Collection

Each lens was imaged ex vivo in a saline medium using an Envisu R4410 SDOCT Con-

tact Lens Metrology System (Leica Microsystems, Inc.; Morrisville, NC)viii—shown in

Figure 2.3—at a central wavelength of 883.9 nm. Figure 2.4 depicts the sample position-

ing stage, which facilitates proper orientation and alignment of the lens prior to imaging.

Table 2.1 contains additional technical specifications for the Envisu system.

2.2.1 Image Acquisition

The data collected by the Envisu consist of 2D cross-sectional images, or B-scans, in

meridional planes referenced to and centered at the instrument (CT) axis, which is ap-

proximately aligned with the optical axis of the lens according to the sample alignment

protocol in the user manual [51]. An example of a B-scan from the toric lens can be seen

in Figure 2.5.

The individual depth measurements comprising a B-scan are referred to as A-scans.

Each A-scan contains information for the full axial depth D, including both the front and

back surfaces, in the form of a fixed number of vertical samples. Collectively, the number

of A-scans and samples correspond, respectively, to the horizontal resolution and vertical

resolution of the resulting image.

viiiThe Envisu R4410 is based on Leica’s Envisu S4410 series.
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Figure 2.5: A B-scan of the toric lens obtained using the Envisu R4410.

Volumetric imaging is achieved using a radial sampling pattern, consisting of multiple

B-scans acquired at regular angular intervals 0 ≤ θ < π around the CT axis as shown in

Figure 2.6a. The general structure of the sampling pattern in the xy-plane is illustrated in

Figure 2.6b. Recall from Section 2.1 that the positive z-axis points from the lens toward

the OCT probe along the CT axis, and that θ is measured in the counterclockwise

direction starting from the positive x-axis.ix

The radial sampling pattern has several key advantages over a raster (rectangular)

pattern. With a radial scan, each independent frame of data is a cross-section through

the scan vertex. If the number of A-scans is odd, then the central coordinate of each

frame is the same—i.e.,
(
0, 0
)
. This redundancy is critical for three-dimensional image

registration. Furthermore, radial scan data are not distributed evenly across the surface

(as they would be in a raster scan), and are instead concentrated near the vertex, pro-

viding greater resolution for the region in which we desire the greatest computational

accuracy due to its physiological relevance. Conversely, the main drawback to the radial

pattern is that azimuthal density of the data points falls off near the periphery of the

scan region, resulting in an increased fitting error near the edges.

ixFor in vivo measurements on an upright human subject, the x-axis is taken to lie along the hori-
zontal, with positive values pointing to the right [6, 38].
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Figure 2.6: Illustration of the radial scan pattern (a) as multiple B-scans aligned in R3

at the CT axis, and (b) in the xy-plane perpendicular to the CT axis (the highlighted
points represent a single frame of data).

2.2.2 Segmentation & Outlier Removal

Each B-scan is interpreted, effectively, as an array of pixel indices whose intensities have

been determined by the interference pattern formed via recombination of the light from

the sample and reference arms of the OCT scanner. Before we conduct our own analysis,

a segmentation process is performed to extract point cloud data reflecting the axial (z)

coordinates of the pixels comprising the anterior and posterior surfaces of the lens. We

did not perform any of the image processing ourselves, and the precise segmentation

and outlier removal protocols used on our lens data are considered proprietary by Leica

Microsystems, so this step will be regarded as a black box for the purposes of this thesis.

The following is a somewhat-simplified overview of the underlying concepts.

The main principle involved in segmentation of OCT data is edge detection, which

describes a class of algorithms designed to identify the pixels comprising the surface

boundaries by looking for rapid transitions in the brightness. The end result of this

process is a list of all the A-scans in each B-scan along with the pixel location (using

zero-indexing from the top of the frame) of each surface. We have adopted the convention
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of reporting the pixel index as “−1” if segmentation fails to identify a boundary.

In addition to background white noise that is present in all OCT images, pixel inten-

sities can vary for a number of reasons. More scattering occurs in the reflected light as

the angle of incidence increases, so image contrast tends to suffer near the edges where

the plane tangent to the lens is steeper. If, on the other hand, too much light is reflected

(which can occur for a variety of reasons), the pixels in the vicinity of the surface bound-

ary might be completely saturated, obscuring the exact location of the boundary. These

areas of over- and under-exposure cause image artifacts that, in turn, give rise to outliers

in the point cloud data. Furthermore, particularly strong Purkinje-like reflections [98]

where the angle of incidence is close to zero can cause a narrow vertical band of oversat-

urated pixels throughout the entire B-scan. This effect—which appears in all of our lens

data and is illustrated in Figure 2.5—is most likely to arise in the region immediately

surrounding the scan vertex when the scan axis is coincident with the optical axis, due

to the fact that the latter is normal to the surface at the point of incidence. Because

of this oversaturation, every B-scan in both of our data sets contains a central gap of

20–100 A-scans (out of a total of 1001 A-scans) where the segmentation algorithm was

unable to identify a surface. This is equivalent to 0.32–1.6 millimeters of missing data at

the center of each 16 millimeter frame.

After segmentation, most of the remaining outliers are removed using a combination

of kernel methods and the RANSAC (RANdom SAmple Consensus) algorithm described

in [21]. However, due to the difficulties in developing a robust outlier removal process

that can be automatically applied to a broad range of asymmetric surfaces, some outliers

typically remain in the lens data after this step. Occasionally, segmentation may identify

the wrong surface entirely, particularly in areas of very low contrast. Outlier removal is

only intended to remove isolated points, so clusters of points forming a smooth curve will

not be flagged, even if they cause a jump discontinuity in the surface. Except in these

cases, there is no apparent spatial bias in the noise that remains in the point cloud data

after outlier removal, and the variance of this remaining noise is typically quite small.

A Note About Poor Segmentation Results

RANSAC can also underperform when a heavily-corrupted data set contains an insuffi-

cient ratio of inliers to outliers. While this was not an issue for the aspheric lens data,

it did turn out to be a problem for at least a quarter of the toric lens B-scans. After
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Figure 2.7: Good segmentation results for a frame of toric lens data.
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Figure 2.8: Two frames of toric lens data with poor segmentation results.

segmentation and outlier removal, the toric lens point cloud data should resemble Fig-

ure 2.7. However, visual inspection of the data revealed that 33 of the 120 frames still

contained obvious outliers that had been overlooked by Leica’s outlier removal algorithm.

Two such frames are illustrated in Figure 2.8. For reference, the original B-scan images

corresponding Figure 2.8 are shown in Figure 2.9.

In Figure 2.8a, we can see that edge detection has assigned a number of pixels clearly

on the boundary of the front surface to both the front and back surfaces. Not only is the

outlier removal algorithm unable to identify these points, but their presence also prevents
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(a) (b)

Figure 2.9: Point cloud data from Figure 2.8a (left) and Figure 2.8b (right) superimposed
over the original B-scans.

the algorithm from detecting the handful of outliers near the center. Figure 2.8b depicts

a more common issue with this data set, in which low contrast away from the center in

the original image results in the duplicate assignment of numerous back surface pixels to

both surfaces.

We were instructed by Leica’s senior engineer to exclude the 33 frames of bad seg-

mentation data from our analysis in Chapters 5 and 6. Leica is working on improvements

to their automatic segmentation algorithm in order to eliminate the need for this kind of

manual intervention in the future.

2.2.3 Conversion to 3D

The point cloud data we receive for analysis is reported as a list of pixel indices for

each B-scan describing the boundaries of the anterior and posterior lens surfaces, along

with the corresponding lateral position of the measurement relative to the scan vertex.

These data must next be converted to 3D spatial coordinates, after which a small vertical

adjustment is applied to the entire data set to correct for local deviations introduced by

the OCT scanner’s internal components.
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Even in the ideal situation where segmentation performs perfectly, the point cloud

data will still inherit uniform noise in the form of quantization error from the original

OCT image data. While the height and width of each frame (the distance between the

first and last measurement) is fixed prior to data collection, the pixel dimensions are

determined only by the sampling density. When converting to spatial coordinates, we use

the position corresponding to the center of each pixel. Error due to pixel quantization is

discussed further in Section 2.4.1.

Definition 2.2.1 (Sample Grid). Given the radial sampling pattern, the location of

each point X in the resulting grid shown in Figure 2.6 is most easily defined in terms of

polar coordinates. If W is the width of each frame in millimeters and a is the number of

A-scans per B-scan, then the distance between adjacent A-scans is ∆ρ = W
a−1

. The radial

coordinates corresponding to each A-scan (which we will refer to as the radial sample

grid) can therefore be written as the set

R =

{
ρj = −W

2
+ j ·∆ρ, j = 0, . . . , a− 1

}
=

{
−W

2
,−W

2
+

W

a− 1
,−W

2
+

2W

a− 1
, . . . ,

W

2
− W

a− 1
,
W

2

}
. (2.2)

Each meridional B-scan corresponds to an angular coordinate on the interval
[
0, π
)
. If b

is the total number of B-scans, then the angular distance between consecutive B-scans is

∆θ = π
b
. Thus, the meridional sample grid is given by

Θ =
{
θk = k ·∆θ

∣∣∣ k = 0, . . . , b− 1
}

=

{
0,
π

b
,
2π

b
, . . . ,

(b− 1)π

b

}
, (2.3)

The sample grid S is the cartesian product of R and Θ:

S = R×Θ =
{
X =

(
ρ, θ
)
| ρ ∈ R, θ ∈ Θ

}
. (2.4)

Example 2.2.1. Figure 2.10 depicts ∆ρ and ∆θ on a radial sample grid of dimension

b × a = 9 × 7, along with the specific point X =
(
ρ, θ
)

=
(
2∆ρ, 6∆θ

)
. The sample

grid referenced throughout the rest of this thesis will be considerably denser at b× a =

100× 1001.

While it is convenient to define the sample grid according to the above construction,
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Figure 2.10: Illustration of X =
(
ρ, θ
)

on a sample grid with ρ = 2∆ρ and θ = 6∆θ.

each value of X ∈ S should be thought of as merely a point in R2 rather than an ordered

pair in a particular coordinate system. We will find it useful to express these points in

terms of different coordinate systems depending on the context.

To convert the point cloud data to units of distance, we must first note that, although

the axial depth D is constant across all the A-scans, this measurement does not represent

an actual geometric distance but rather the optical path length (OPL) of the light from

the OCT scanner. The axial depth should be thought of as the OPL between the first

and the last sample in each A-scan. For each surface, our data set will comprise all

the OPL measurements wai (for the anterior surface) and wpi (for the posterior surface)

for each Xi ∈ S, given as the distance in millimeters from the top of the frame to the

particular surface boundary.x Letting f represent the number of samples in each A-scan

(i.e., the vertical resolution of the B-scans), the path length between adjacent samples

can be expressed as ∆z = D
f−1

. The back surface observations wpi are thus obtained by

multiplying ∆z by the vertical pixel index of the corresponding point in the point cloud

xIllustrations of lens data and surface reconstructions throughout this thesis show the front surface
oriented above the back surface—that is, if wa and wp correspond respectively to surface observations
for the front and back surface at the grid point X, then wa > wp. However, this relationship would
technically be reversed if the z-axis represented the distance from the OCT probe as implied. For the
sake of simplicity, we have chosen to invert the data in order to depict the surfaces in their original
spatial configuration within the sample holder, as shown in Figure 2.4.
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data. Note that due to segmentation failures and outlier removal, we are not guaranteed

an observation for every point on the sample grid.

The geometric path length L can be computed by dividing the optical path length by

the refractive index n of the medium through which the light is traveling, meaning that we

must account for the different media at some point (as well as the angle of incidence at the

surface boundaries). The light exiting the sample arm of the Envisu R4410 is sufficiently

close to telecentric (i.e., parallel to the z-axis) that we can convert the observations for

the anterior surface to actual z-coordinate values simply by dividing the observations

by the refractive index ns of the saline medium.xi However, the presence of multiple

media within an A-scan means that refraction occurs at the boundary of the lens. After

accounting for that refraction, we will see that light passing through the front surface at

the point
(
X, wa

)
only appears to intersect the back surface at the point

(
X, wp

)
. The

true coordinates of a particular data point on the posterior surface are determined by the

shape of the lens—specifically the normal vector at the point of incidence on the front

surface. The topic of 3D refraction correction will be addressed in depth in Chapter 4.

When it is not necessary to distinguish between the front and back surface data, we

will drop the superscript and use w interchangeably for both surfaces.

2.2.4 Scanner Calibration

Due to variations in spatial group velocity across the OCT scanner’s internal optical

components, there will be small distortions in scanning field flatness of the imaging

system.xii This optical path length error can be modeled as a function Ez of the lateral

position X =
(
x, y
)
∈ S using a sixth order binomial expansion

Ez
(
X
)

= Ez
(
x, y
)

=
6∑

n=0

cnx
6−nyn,

where the coefficients cn have been obtained by the manufacturer through factory calibra-

tion using a precision optical flat [51, 82]. The corrected location
(
Xi, wi

)
of the particular

xiSince the anterior surface data points are only off by a scalar constant ns, we will generally assume
that the rescaling to compute geometric path length has already been done when referring to the front
surface data points wai .

xiiPrevious papers have discussed the need to account for fan distortion due to the lack of incident ray
telecentricity in the OCT probe [69, 70, 76, 105]. However, the Envisu system is sufficiently telecentric
that fan distortion is effectively negligible compared to the optical path length error [82].
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raw data point
(
Xi, w

′
i

)
after accounting for scanning field flatness is subsequently given

by (
Xi, wi

)
=
(
Xi, w

′
i − Ez

(
Xi

))
.

Note that this correction is applied to all of the data, including the posterior surface,

prior to any adjustments for optical distortion within the lens sample itself. Any images of

B-scans or point cloud data shown throughout this thesis (e.g., Figure 2.5) have already

taken this correction into account, and we will not be modeling this effect in our synthetic

data.

2.3 Imaging Phantoms

The data analyzed in this thesis were collected from two imaging phantoms (i.e., test

surfaces) with known design equations: a) an aspheric lens, consisting of an axisymmetric

front surface and a flat back surface; and b) a toric lens with a spherical front surface,

whose back surface matches the shape of a cap taken from a spindle torus. Both lenses

were submerged in saline and imaged using identical scan dimensions. To minimize the

effects of background imaging noise, each frame was scanned eight times in immediate

succession and then averaged using the Envisu’s registration and averaging tool.

Each of the b = 120 B-scans comprising the two data sets contain a = 1001 A-

scans. The frame width is W = 16 mm, while the axial depth of each frame is D =

15.298 mm containing 2048 samples. Therefore the sample spacings are ∆ρ = W
a−1

=
16

1001−1
= 0.016 mm (16 µm), ∆θ = π

b
= π

120
radians (1.5◦), and ∆z = D

f−1
= 15.298

2048−1
≈

0.0075 mm (7.5 µm). To eliminate concerns about optical effects for the top surface,

we can rescale the axial depth using the refractive index of the imaging medium (see

Table 2.4). The new axial depth and vertical resolution are thus D′ = D/ns ≈ 11.428 mm

and ∆′z ≈ 0.0056 mm (5.6 µm). Note that this overcorrects the OPL between first and

second surfaces, so we will have to multiply those values by ns before dewarping them.

Intensity data for each pixel (i.e., signal strength) is initially stored as a 16–bit un-

signed integer, and subsequently converted to an 8–bit unsigned integer prior to segmen-

tation. The surface boundaries for the lenses vary from one to three pixels in thickness,

with the boundary being thickest at the center. When there are multiple pixels compris-

ing the boundary, the edge detection algorithm essentially chooses the brightest pixel out

of that subset (in the case of three pixels, this generally ends up being the one in the
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Figure 2.11: Rendering of aspheric lens from the design equations.

middle).

2.3.1 Aspheric Lens

The aspheric lens we used is a commercially produced uncoated glass lens with 15 mm

diameter from the Edmund Optics TECHSPEC® Precision line (EO stock #47-728),

made from L-BAL35. The front surface is axisymmetric and designed according to the

(inverted) asphere equation

z
(
ρ, θ
)

= −

 ρ2

Ra

(
1 +

√
1−

(
1 + κ

)
ρ2

R2
a

) + a4ρ
4 + a6ρ

6 + a8ρ
8 + a10ρ

10

 , (2.5)

where Ra = 13.255 mm is the radius of curvature at the vertex, κ = −2.3641 is the conic

constant, and a4, a6, a8, a10 are the 4th, 6th, 8th, and 10th order aspheric coefficients

specified in Table 2.2. Tolerances were not provided for these values, but the surface

accuracy given by the manufacturer is 0.75 µm, as measured by the root mean square of

the residual.

The back surface of the aspheric lens is a flat plane (1/Rp = 0 mm−1), positioned

such that the center thickness is tC = 4.0 mm with a tolerance of ±0.1 mm. Figure 2.11

depicts a graphical rendering of the aspheric lens from the design parameters, which are

summarized in Table 2.2. Additional information about aspheric lenses can be found at

on the Edmund Optics website [19].
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Table 2.2: Design specifications and tolerances for the Edmund Optics TECHSPEC®

Precision Aspheric Lens from [65].

Parameter name Variable Value

Total diameter �T 15.0 +0.0/−0.1 mm

Center thickness tC 4.0± 0.1 mm

Conic constant κ −2.3641

Front radius of curvature Ra 13.255 mm

Back radius of curvature Rp ∞
Higher order terms a4 9.5567× 10−5 mm−4

a6 −2.6095× 10−7 mm−6

a8 1.1246× 10−9 mm−8

a10 −2.9990× 10−12 mm−10

Asphere figure error (RMS) – 0.75 µm

Table 2.3: Target specifications for the Universal Optics toric meniscus lens. (Tolerances
are based on third party measurements of the specific lens artifact.)

Parameter name Variable Value

Total diameter (outer) �Ta 14.0 mm

Total diameter (inner) �Tp 13.1446 mm

Center thickness tC 1.500± 0.002 mm

Front radius of curvature Ra 7.80± 0.01 mm

Back radius of curvature (max) Rp1 9.20± 0.01 mm

Back radius of curvature (min) Rp2 8.40± 0.01 mm

2.3.2 Toric Lens

The other phantom we used is a rigid gas permeable poly(methyl methacrylate) (PMMA)

lens with a spherical front surface and a toric back surface, which was manufactured by

Universal Optics. The toric lens is a positive meniscus lens, meaning that it is a convex-

concave lens configured such that the focal length is positive.
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Figure 2.12: Rendering of toric lens from the design equations.

Since the front surface is spherical, its shape is simply given by

z
(
x, y
)

=
√
R2
a − x2 − y2, (2.6a)

where Ra = 7.8 mm. The back surface is shaped like a “cap” from a spindle torus with

minor and major radii Rp2 = 8.4 mm and Rp1 −Rp2 = 0.8 mm, respectively. The design

equation for this surface can therefore be derived from the general formula for a torus

and written as

z
(
x, y
)

=

√(
Rp1 −Rp2 +

√
R2
p2
− y2

)2

− x2. (2.6b)

Unlike the three other lens surfaces we will consider, the back surface of the toric lens is

not axisymmetric, although it does possess 2nd order discrete rotational symmetry. Hence,

it is the only surface to possess two unique principal radii of curvature: Rp1 = 9.2 mm and

Rp2 = 8.4 mm. The front and back surfaces are positioned such that the center thickness

is tC = 1.5 mm.

A summary of the design parameters for the toric lens is given in Table 2.3. Figure 2.12

illustrates an ideal lens based on these parameters. Validation was performed on behalf

of Universal Optics by an unspecified third party. The radii of curvature were determined

using a Zygo VeriFireTM Asphere (VFA) interferometer to be Ra = 7.814 mm, Rp1 =

9.212 mm, and Rp2 = 8.392 mm. The center thickness was measured at tC = 1.498 mm

using a Lumetrics OptiGauge system.
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Table 2.4: Group refractive indices for saline solution and lens substrates at the sodium
d-line (λNa = 589.3 nm) and near the central wavelength of the Leica Microsystems OCT
system (λOCT = 880 nm).

Material ng(λNa) ng(λOCT )

Saline solution 1.33520 ns = 1.33865

Aspheric lens (L-BAL35) 1.58905 n` = 1.59653

Toric lens (PMMA) 1.49110 n` = 1.49449

2.3.3 Refractive Index

Throughout this thesis, we use the notation ns and n` to refer to the refractive index

of the saline and the lens, respectively. Specifically, these values represent the group

refractive index of the relevant material at the imaging wavelength. By fitting published

refractive index data from [14, 74] to the Conrady dispersion model

np
(
λ
)

= n0 +
A

λ
+

B

λ3.5
,

the absolute phase refractive index for each lens medium can be written as a function of

vacuum wavelength [13].xiii The group refractive index is then given by

ng
(
λ
)

= np
(
λ
)
− λ · n′p

(
λ
)
,

which follows from the relationship between phase velocity and group velocity [11, Ch. 1].

Table 2.4 shows the group refractive indices for the saline solution and the two lenses at

880 nm (roughly the central wavelength of the Envisu), as well as 589.3 nm (the sodium

d-line).xiv

xiiiThe saline solution in which the lenses were suspended during imaging is a proprietary contact lens
packaging solution whose refractive index was provided to us by the manufacturer.

xivWe did not compute the refractive indices ourselves. Both calculations were carried out by Leica.
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2.4 Synthetic Data & Quantization Error

In this chapter, we have discussed a number of potential sources of measurement error in

point cloud data obtained from OCT. These can be divided into two main categories: data

acquisition error and image segmentation error. Sources of data acquisition error include

misalignment of the CT axis and the lens’ optical axis, warping caused by refraction

at surface boundaries within the sample, spatial variations due to the internal optical

components of the OCT probe, digital compression and quantization of signal strength

(e.g., pixel intensity), and pixel quantization of the image plane. Segmentation error can

be caused by fluctuations in pixel intensity due to background noise, areas of over- and

under-saturation due to reflections and scattering, and variations in surface boundary

thickness. Some of the error introduced at this stage is mitigated by outlier removal;

however, the success of the outlier removal algorithm can vary widely depending on the

quality of the data and the shape of the surface, and at best only results in further loss

of data.

Registration of the B-scans to a common reference point is unnecessary, since we are

imaging a stationary lens and may safely assume that the position of the lens remains fixed

with respect to the scan vertex throughout the entire data collection process. In the case of

off-axis imaging, identification of the lens vertex does not affect the surface reconstruction.

Re-alignment (addressed in Chapter 5) is only necessary for the final meridional curvature

calculations and algorithm validation against the design specifications. Dewarping of the

back lens surface due to refraction at the front surface boundary is handled during the

fitting process, and will be the subject of Chapter 4. (Refraction effects are neglected

in Chapter 3, as they do not affect results for the front surface itself.) Errors due to

the internal mechanics of the probe are corrected in pre-processing using the model and

specifications provided to us by the manufacturer, as discussed in Section 2.2.4.

As we lack detailed insight into the specifics of the segmentation algorithm, the “noise”

discussed throughout this thesis will refer to any error remaining in the point cloud data

after segmentation and outlier removal. The exact nature of the noise due to segmen-

tation error can vary from data set to data set, so it is difficult to build a single noise

model for this application. Furthermore, the variance of the noise in good segmentation

results is generally quite small. Given that pixel quantization is both unavoidable and

straightforward to model, quantization error is the only type of noise we have chosen to

account for in the synthetic data for Chapters 3–4.
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The combined error in the OCT data due to both measurement and 3D model selec-

tion is addressed in Appendix B. The impact of this error will be discussed in Chapter 6.

2.4.1 Simulation of Surface Data

In order to evaluate the performance of 3D surface fitting and refraction correction algo-

rithms in the absence of instrument mis-calibration, off-axis imaging (i.e., the center of

the scan pattern does not align with the lens’ axis of symmetry), or segmentation fail-

ures, Chapters 3 and 4 will deal only with synthetic data based on the specified design

parameters and the refractive indices given in Tables 2.4. The synthetic data sets were

constructed by sampling the design equations (2.5–2.6) at all the points Xi in the sample

grid S that fall within the specified diameters from Tables 2.2–2.3 (i.e., �T for both sur-

faces of the aspheric lens, and �Ta and �Tp for the anterior and posterior surfaces of the

toric lens, respectively). To validate the dewarping algorithm described in Section 4.2.2,

optical distortion can be added to the back surface following the protocol developed in

Section 4.3.

To simulate quantization, the axial coordinate is rounded to the closest “pixel” posi-

tion. Thus, the quantized synthetic data point
(
Xi, w

∗
i

)
is given by

w∗i = ∆′z · round
(
wi/∆

′
z

)
,

where wi is the non-quantized data point (after warping, if applicable) and ∆′z = 5.6 ×
10−3 mm is the vertical distance between the samples after correcting the OPL for the first

surface (as described in Section 2.3). Figures 2.13–2.14 show examples of corresponding

frames of synthetic and real data for both lensesxv. For convenience, the design equations

have been vertically translated so that the maximum z-value of the front surface is roughly

the same as for the real data. This translation does not impact our results.

2.4.2 Distribution of Quantization Error

Since the adjusted vertical pixel spacing is ∆′z = 5.6 × 10−3 mm, pixel quantization

introduces a measurement error of up to ±2.8 × 10−3 mm in any individual data point

xvCorrespondence between frames of the synthetic data and OCT data for the toric lens (in Fig-
ure 2.14) was determined by identifying the correct principal directions for the real OCT lens data as
discussed in Section 5.2.3.
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Figure 2.13: Real point cloud data from OCT and synthetic point cloud data generated
from the design equations for the aspheric lens.
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Figure 2.14: Real point cloud data from OCT and synthetic point cloud data generated
from the design equations for the toric lens.
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Figure 2.15: Quantization error in the first frame of synthetic data for the (a) front of
the aspheric lens, (b) front of the toric lens, (c) back of the aspheric lens after warping,
and (d) back of the toric lens after warping.

wi. We will designate the signed error due to quantization by

ε∗i = w∗i − wi.

Figure 2.15 illustrates the signed quantization error in the first frame of synthetic data

for all four lens surfaces when we account for warping of the posterior surface due to re-

fraction. It is important to note that the error introduced by quantization of the synthetic

data is not independent and identically distributed (iid).

Assuming the truexvi position wi of the surface boundary is equally likely to fall

anywhere within the interval
(
w∗i − 1

2
∆′z, w

∗
i + 1

2
∆′z
)
, the quantization error should also

xviOr the apparent position, if warping has occurred.
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Figure 2.16: Q-Q plots of the quantization error in the synthetic data versus the uniform
distribution, for the (a) front of the aspheric lens, (b) front of the toric lens, (c) back of
the aspheric lens after warping, and (d) back of the toric lens after warping.

follow the uniform distribution ε∗i ∼ U
(
− 1

2
∆′z,

1
2
∆′z
)
.xvii The quantile-quantile (Q-Q)

plots in Figure 2.16 demonstrate that this is indeed the case for the synthetic data for

all four surfaces (recall that 1
2
∆′z = 2.8× 10−3 mm).

xviiFor the back surface of the aspheric lens (i.e., the flat plane), this assumption is only valid if we
account for warping due to refraction. In the unwarped case, the true position of the surface—and
therefore also the distribution of the quantization error—is constant rather than uniform.
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Chapter 3

Single-Surface Lens Model

3.1 Zernike Polynomial Interpolation

Originally proposed by physicist Frits Zernike in 1934 [108], the Zernike circle polynomials

are a complete set of polynomials that are orthogonal on the unit disk and represent

optimally balanced aberrations with minimum variance from a unit sphere [24, 53]. Due

to their unique properties, Zernike polynomials are extremely popular within the fields

of optics and optical engineering for modeling wavefront error [11, 24, 63, 101]. They are

also considered the standard method for describing corneal aberrations, as detailed in the

ANSI American National Standard for Ophthalmics for Reporting Optical Aberration in

Eyes (ANSI Z80.28-2017) [6].

Optical Shop Testing by Daniel Malacara [53] is widely viewed as the definitive refer-

ence manual on the background and application of Zernike polynomials. The mathemati-

cal properties of Zernike polynomials are explored in greater depth in Max Born and Emil

Wolf’s classic textbook Principles of Optics [11], as well as Gregory Gbur’s Mathemati-

cal Methods for Optical Physics and Engineering [24]. In addition to the ANSI standard

mentioned above, we will also be borrowing conventions and notation from Malacara,

Born and Wolf, and Gbur.
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3.1.1 Background

The normalized Zernike polynomial of radial index n and meridional index m is given

by

Zm
n

(
ρ, θ
)

=

 Nm
n R

|m|
n

(
ρ
)

cosmθ, m ≥ 0

−Nm
n R

|m|
n

(
ρ
)

sinmθ, m < 0
, (3.1)

where n is a non-negative integer, m is an integer such that −n ≤ m ≤ n and m ≡ n

mod 2, and Nm
n is a normalization constant. The radial polynomials Rm

n are a special

case of Jacobi polynomials and can be written in closed form as

Rm
n

(
ρ
)

=

n−m
2∑

k=0

(−1)k(n− k)!

k!
(
n+m

2
− k
)
!
(
n−m

2
− k
)
!
ρn−2k. (3.2)

The radial index n also determines the order of the Zernike polynomial [6]. The polyno-

mials are illustrated in Figure 3.1.

There are different conventions for normalizing the Zernike polynomials. In keeping

with the ANSI standard, we have chosenNm
n =

√
2(n+1)
1+δm0

(where δij denotes the Kronecker

delta) so that the orthogonality relation for the sequence can be written as

〈
Zm
n , Z

m′

n′

〉
:=

1

π

∫ 2π

0

∫ 1

0

Zm
n

(
ρ, θ
)
Zm′

n′

(
ρ, θ
)
ρdρdθ = δmm′δnn′ . (3.3)

As Jacobi polynomials, the radial polynomials are orthogonal for fixed m under the inner

product 〈
Rm
n , R

m
n′

〉
:= 2(n+ 1)

∫ 1

0

Rm
n

(
ρ
)
Rm
n′

(
ρ
)
ρdρ = δnn′ ,

whereas orthogonality for the angular part is readily illustrated by the properties

1

π

∫ 2π

0

cosmθ cosm′θdθ = (1 + δm0)δmm′ , (m,m′ ≥ 0)

1

π

∫ 2π

0

sinmθ sinm′θdθ = δmm′ , (m,m′ < 0)

1

π

∫ 2π

0

sinmθ cosm′θdθ = 0.

The first few Zernike polynomials are listed in Table 3.1, along with the corresponding
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Figure 3.1: Visual representation of Zernike polynomials from (3.1).

name of the aberration described. The table also illustrates the relationship between the

dual-index ordering system (n, m) and a single-indexing system (j) proposed by Robert

Noll in [64], which assigns even indices to the polynomials with a symmetric cos
(
mθ
)

part, and odd indices to the antisymmetric sin
(
mθ
)

polynomials.i In this thesis, we will

refer to the individual Zernike polynomials using Noll’s indices, although other single-

indexing systems do exist (e.g., see [6]). A longer list of Zernike polynomials can be found

in Appendix A.

iFunctions with azimuthal index m = 0 may have an even or an odd index under Noll’s ordering
scheme.
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Table 3.1: Table of normalized Zernike polynomials with their corresponding aberration
names ordered according to Noll’s single indexing system j [6, 64].

j n m Zj
(
ρ, θ
)

Aberration Name

1 0 0 1 Piston

2 1 1 2ρ cos θ Horizontal tilt

3 1 -1 2ρ sin θ Vertical tilt

4 2 0
√

3
(
2ρ2 − 1

)
Defocus

5 2 -2
√

6ρ2 sin 2θ Astigmatism (oblique)

6 2 2
√

6ρ2 cos 2θ Astigmatism

7 3 -1
√

8
(
3ρ3 − 2ρ

)
sin θ Vertical coma

8 3 1
√

8
(
3ρ3 − 2ρ

)
cos θ Horizontal coma

9 3 -3
√

8ρ3 sin 3θ Vertical trefoil

10 3 3
√

8ρ3 cos 3θ Oblique trefoil

11 4 0
√

5
(
6ρ4 − 6ρ2 + 1

)
Spherical

12 4 2
√

10
(
4ρ4 − 3ρ2

)
cos 2θ Secondary astigmatism

13 4 -2
√

10
(
4ρ4 − 3ρ2

)
sin 2θ Secondary astigmatism (oblique)

14 4 4
√

10ρ4 cos 4θ Quatrefoil

15 4 -4
√

10ρ4 sin 4θ Quatrefoil (oblique)

3.1.2 Zernike Expansion

A function z = f
(
ρ, θ
)

that is continuous for all |ρ| ≤ A—and whose norm according to

the inner product in (3.3) is finite—can be expressed within the disk of radius A as a linear

combination of Zernike polynomials. Using Noll’s single indexing system for notational

simplicity, the generalized Fourier series of f in terms of the Zernike polynomials is given

by

f
(
Aρ, θ

)
=
∞∑
j=1

cjZj
(
ρ, θ
)
, (3.4)

where ρ ∈
[
0, 1
]

and θ ∈
[
0, 2π

]
. The coefficients cj are given explicitly by

cj = 〈f, Zj〉 =
1

π

∫ 2π

0

∫ 1

0

f
(
Aρ, θ

)
Zj
(
ρ, θ
)
ρdρdθ. (3.5)
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The N th order truncation of (3.4) includes all polynomials of radial index less than or

equal to N (for a total of 1
2

(
N + 1

)(
N + 2

)
), and is given by

fN
(
Aρ, θ

)
=

p∑
j=1

cjZj
(
ρ, θ
)
, p =

1

2

(
N + 1

)(
N + 2

)
. (3.6)

Since fN converges to f as N →∞, we will often find it convenient to drop the subscript

notation for the truncation. Even in this case, f should always be understood to imply a

finite Zernike expansion, whereas the exact surface described by the design equation will

be denoted by z.

3.1.3 General Lens Model

In terms of the N th order Zernike expansion in (3.6), our goal is to fit the lens surface

data
(
Xi, wi

)
using the model

wi = f
(
Xi, c

)
=

p∑
j=1

cjZj
(
X′i
)
, (3.7)

where wi is the observed value of the surface height at the lateral coordinate Xi based on

the point cloud data, and c =
[
c1, · · · , cp

]T
are the Zernike coefficients. The grid points

X1, . . . ,Xs comprise the subset SA of the full sample grid S (defined in Section 2.2.3)

that falls within the disk of a specified radius A. That is,

SA =
{
X =

(
ρ, θ
)
∈ S

∣∣ |ρ| ≤ A
}
.

The corresponding values X′1, . . . ,X
′
s are normalized by a factor of A to comply with the

Zernikes’ unit circle domain:

S ′A =
{
X′ =

(
ρ/A, θ

) ∣∣ (ρ, θ) ∈ SA}.
Note that the Zernikes also require ρ ≥ 0. Thus, points

(
ρ, θ
)

in SA (or S ′A) where ρ < 0

will be mapped to
(
− ρ, θ + π

)
.

Due to the linearity of the Zernike expansion, (3.7) can be written more compactly

in matrix form as

w = Xc, (3.8)
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where w =
[
w1, . . . , ws

]T
is the point cloud data and X is the design matrix consisting

of the Zernike polynomials evaluated on S ′A:

X =


Z1

(
X′1
)

Z2

(
X′1
)
· · · Zp

(
X′1
)

...
...

...

Z1

(
X′s
)

Z2

(
X′s
)
· · · Zp

(
X′s
)
 . (3.9)

3.2 Synthetic Data for Single-Surface Model

In this chapter, we are primarily concerned with ensuring that the Zernike polynomial

model (3.7) is an appropriate representation of the four lens surfaces (front and back of

the aspheric and toric lenses) described in Section 2.3. To validate the model, we will use

synthetic data constructed by sampling the design equation z
(
X
)

for each surface at the

points Xi ∈ SA, where A is derived from the relevant diameter listed in Tables 2.2–2.3.

Warping of the back surfaces due to refraction is neglected here (this will be addressed

separately in Chapter 4). Thus, the non-quantized synthetic data points (Xi, wi) are given

by

wi = z
(
Xi

)
,

while the quantized points
(
Xi, w

∗
i

)
mimic an adjusted vertical pixel spacing of ∆′z =

5.6× 10−3 mm according to the formula

w∗i = ∆′z · round
(
wi/∆

′
z

)
,

as described in Section 2.4.1.

Surface 1 (Asphere)

Surface 1 corresponds to the design equation for the front surface of the aspheric lens:

z
(
ρ, θ
)

=
−ρ2

Ra

(
1 +

√
1−

(
1 + κ

)
ρ2

R2
a

) − a4ρ
4 − a6ρ

6 − a8ρ
8 − a10ρ

10, |ρ| ≤ A, (3.10)

where A = 7.5 mm (half of the 15 mm lens diameter) and the principal radius of

curvature is Ra = 13.225 mm. The remaining parameters κ, a4, a6, a8, and a10 can

be found in Table 2.2. The number of points on the sample grid that fall within the

radius A is s = 112440.
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Surface 2 (Plane)

Surface 2 corresponds to the back of the aspheric lens, which is the flat plane

z
(
ρ, θ
)

= 0, |ρ| ≤ A. (3.11)

The domain is again restricted to the disk with radius A = 7.5 mm. As with Surface 1,

the number of sample points is s = 112440.

Surface 3 (Sphere)

Surface 3 corresponds to the design equation for the front of the toric lens, which

follows the outer surface of a sphere of radius Ra = 7.8 mm:

z
(
x, y
)

=
√
R2
a − x2 − y2,

√
x2 + y2 ≤ A. (3.12)

Restricting the domain to the disk of radius A = 7 mm means there are s = 105000

sample points for this surface.

Surface 4 (Torus)

Surface 4 corresponds to the design equation for the back of the toric lens. This is the

cap from the spindle torus, given by

z
(
x, y
)

=

√(
Rp1 −Rp2 +

√
R2

1 − y2
)2

− x2,
√
x2 + y2 ≤ A, (3.13)

where Rp1 = 9.2 mm is the maximum radius of curvature and Rp2 = 8.4 mm is the

minimum principal radius of curvature. The radius of the disk specifying the domain

is A = 6.5723 mm. There are s = 98520 sample points contained within this domain.

Note that some amount of vertical translation is required in order to align the surfaces

with the dewarped lens data for the sake of presentation. This adjustment is not reflected

in the design equations (3.10–3.13) presented here, but it should not impact the results

discussed in Section 3.5.
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3.3 Coefficient Estimation & Surface Reconstruction

To estimate the Zernike coefficients c in (3.7) and (3.8), we want to find the values ĉ that

minimize the model residual in the least squares sense. In other words, we must solve

ĉ = arg min
c

∥∥w −Xc∥∥2
. (3.14)

This is achieved using Moore-Penrose pseudoinverse of X+, which is frequently defined

in terms of the normal equations:

ĉ = X+w =
(
XTX

)−1
XTw.

The value ĉ is also referred to as the ordinary least squares (OLS) solution to (3.14) [58,

Ch. 5].

Although the Zernike polynomials are orthogonal over the continuous domain enclosed

by the unit disk, neither orthogonality nor completeness is guaranteed for an arbitrary

set of discrete data points [53]. Even with oversampling, the hexapolar sampling pattern

comprising SA contains redundancy at the vertex when the number of A-scans is odd.

This is critical to image registration but could cause XTX to be ill-conditioned if the

number of samples s is too small. We can mitigate this effect somewhat by ensuring that

s � p [104]. The highest order Zernike expansion we will consider is N = 20 (which

has p = 231 basis functions), whereas s ranges from 98, 520 to 112, 440 for the synthetic

data discussed in this chapter. As for the actual lens data discussed in Chapters 5 and 6,

after accounting for segmentation failures, cropping, and omission of frames with poor

segmentation results, we are left with s > 30, 000 in even the worst case.

The maximum condition number for any of the design matrices used in this chapter

is only κ
(
XTX

)
≈ 22, so theoretically we could obtain ĉ using the normal equations in

(3.14). However, the uneven distribution of valid data points in the real OCT data can

cause the condition number of XTX to be quite large even when s � p. Therefore, we

will rely on a numerically stable method of obtaining X+ that does not involve forming

the product XTX. The results presented in this thesis are obtained using the MATLAB

backslash command (“\”, or mldivide.m), which generally solves dense overdetermined

systems using a QR decomposition with partial pivoting.

Figure 3.2 depicts surface reconstructions based on theN th order Zernike interpolating
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Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)

Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(a) (b)

Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)

Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(c) (d)

Figure 3.2: Surface reconstructions using an N th order Zernike fit to synthetic data
without noise and with quantization error (QE) for (a) Surface 1, (b) Surface 2, (c)
Surface 3, and (d) Surface 4.
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N = 6 N = 16

N = 6 (QE) N = 16 (QE)

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(a) (b)

N = 6 N = 16

N = 6 (QE) N = 16 (QE)

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(c) (d)

Figure 3.3: Surface error for Zernike fits in Figure 3.2 for (a) Surface 1, (b) Surface 2,
(c) Surface 3, and (d) Surface 4.

polynomial fN
(
X, c
)
, for orders N = 6 (p = 28 polynomials) and N = 16 (p = 153

polynomials) to the synthetic data described in Section 3.2, alongside the exact surface

from the design equation. Fits are provided for both synthetic data without noise and

synthetic data with added quantization error (indicated by “QE”). Maps of the error

between each Zernike model and the design equation are shown in Figure 3.3.

It is apparent that most of the time the additional terms in the Zernike expansion

improve the accuracy of the fit for both the non-quantized and quantized data sets. The

exception is Surface 1 (the aspheric surface, shown in Figure 3.3a) when quantization
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error is present. In this case, the 16th order expansion clearly results in oscillations that

do not occur when N = 6. Overfitting of this nature becomes an even greater concern in

real OCT data, which is likely to have significantly more noise due to measurement and

segmentation error.

3.4 Curvature Mapping

Once we have identified the optimal Zernike fit for our surface data, our objective is to

use this model to generate accurate maps of local curvature. We are especially interested

in determining the principal radii of curvature of the surface.

In Section 2.1, we defined the meridional curvature relative to the meridians through

the z-axis as the partial derivative of a surface function z
(
ρ, θ
)

with respect to ρ. In terms

of the Zernike expansion z ≈ f
(
ρ, θ
)
, this becomes

k
(
ρ, θ
)
≈

(
− fρρ

(
ρ, θ
))

(
1 +

(
fρ
(
ρ, θ
))2
)3/2

. (3.15)

The principal radii of curvature R1 and R2 are the extrema of the reciprocal of (3.15)

evaluated at the vertex ρ = 0:

R1 ≈ max
θ∈[0,π)

(
1 +

(
fρ
(
0, θ
))2
)3/2

(
− fρρ

(
0, θ
)) , R2 ≈ min

θ∈[0,π)

(
1 +

(
fρ
(
0, θ
))2
)3/2

(
− fρρ

(
0, θ
)) . (3.16)

If R1 = R2, this implies that f has continuous rotational symmetry, and we denote the

principal radius of curvature simply by R.ii

The easiest way to obtain the partial derivatives in (3.15) is via a finite difference

method. Using centered finite differences with step size h for both the first and second

iiNote that we can restrict θ to the interval [0, π) because the continuity of the first and second
derivatives ensures that k(0, θ) = k(0, θ + π).
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Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)

Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(a) (b)

Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)

Design equation

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(c) (d)

Figure 3.4: Meridional curvature maps for (a) Surface 1, (b) Surface 2, (c) Surface 3,
and (d) Surface 4.
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N = 6 N = 16

N = 6 (QE) N = 16 (QE)

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(a) (b)

N = 6 N = 16

N = 6 (QE) N = 16 (QE)

N = 6 N = 16

N = 6 (QE) N = 16 (QE)(c) (d)

Figure 3.5: Error for curvature maps in Figure 3.4 for (a) Surface 1, (b) Surface 2, (c)
Surface 3, and (d) Surface 4.

derivative, the estimated meridional curvature k̂ can be expressed in discretized form as

k̂
(
ρ, θ
)

= −

(
f
(
ρ+h,θ

)
−2f
(
ρ,θ
)

+f
(
ρ−h,θ

)
h2

)
(

1 +
(
f
(
ρ+h,θ

)
−f
(
ρ−h,θ

)
2h

)2
)3/2

. (3.17)

For convenience—and to parallel the surface model validation—we will be validating

(3.17) at the points
(
ρ, θ
)
∈ SA for which |ρ| < A. (As long as the step size h is no
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greater than the distance between the data points ∆ρ, the exclusion of points where

|ρ| = A ensures that the central difference method does not require evaluating f outside

its domain.) However, we should note that if f is in fact a suitable model for our data,

(3.17) should be valid for any arbitrary point
(
ρ, θ
)

such that |ρ| ≤ A− h.

Evaluating the reciprocal of (3.17) at all the points in SA where ρ = 0 yields a

discretized solution for the meridional radius of curvature at the vertex as a function of

the meridian θk:

R̂
(
θk
)
≡ 1

k̂
(
0, θk

) = −

(
1 +

(
f
(
h,θk

)
−f
(
h,θk+π

)
2h

)2
)3/2

(
f
(
h,θk

)
−2f
(

0,θk

)
+f
(
h,θk+π

)
h2

) . (3.18a)

The estimated principal curvatures are then given by

R̂1 = max
θk∈Θ

R̂
(
θk
)
, R̂2 = min

θk∈Θ
R̂
(
θk
)
, (3.18b)

where Θ is the meridional sample grid defined in Section 2.2.3. Note that the reparame-

terization
(
− h, θk

)
→
(
h, θk + π

)
in (3.18a) ensures a nonnegative radial input.

Figure 3.4 illustrates examples of the meridional curvature maps for all four surfaces

from solving (2.1) analytically for each design equation, and when using the discretized

formulation shown in (3.17) with a step size of h = A × 10−3 (where A is the radius of

the Zernike fitting region) for the 6th and 16th order Zernike models in Figure 3.2. As

before, results are shown for synthetic data without noise and with added quantization

error. Plots of the local error k̂
(
Xi

)
−k
(
Xi

)
corresponding to each estimate in Figure 3.4

are shown in Figure 3.5. (The true curvature k
(
X
)

is obtained analytically from (2.1)

and the design equations in Section 3.2.)

3.5 Zernike Model Validation

To assess the suitability of the Zernike model (3.7) for the four surfaces described in Sec-

tion 3.2, we will consider both synthetic data with no added noise (ε∗i = 0) and synthetic

data that accounts for pixel quantization. Using the non-quantized data, we will first

demonstrate that the surface fits generated from the linear least squares solution (3.14)
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over the discrete data points are at least as reliable as the fits obtained from numerical

integration of (3.5) using the design equations (3.10-3.13). We will then assess the limi-

tations of the model when quantization error is present. Finally, we will look at how the

modeling error for both non-quantized and quantized synthetic data affects the accuracy

of the meridional curvature and principal radii of curvature calculations. Because the

quantization error is neither Gaussian nor iid (as illustrated in Section 2.4.2), methods of

estimating confidence intervals and sampling densities for the Zernike coefficients do not

apply. Parameter estimation, model calibration, and error propagation will be addressed

further in Chapter 6 in the context of Gaussian noise.

We will use the mean absolute error (MAE) as a measure of average error, in both the

surface reconstruction and the meridional curvature. For the surface fit, this is just the

arithmetic average of the absolute difference between the Zernike model and the design

equation evaluated on the original sample grid:

e =
1

s

s∑
i=1

∣∣∣f(Xi, c
)
− z
(
Xi

)∣∣∣. (3.19)

The centered difference curvature k̂
(
X
)

given in (3.17) is not defined at the two end points

for each of the b meridians, so we determined the MAE in the meridional curvature using

the remaining s− 2b sample points:

ek =
1

s− 2b

s−2b∑
i=1

∣∣∣k̂(Xi

)
− k
(
Xi

)∣∣∣, (3.20)

where k
(
Xi

)
is once again the analytic curvature at Xi based on the design equation. We

selected the MAE over the root mean square error (RMSE) or sum of squares error (SSE)

because the MAE represents an actual tangible value of the average distance between the

data points and the model. While the RMSE provides some useful information regarding

the variance of the error, its interpretation is more abstract and it cannot easily be

converted to other units of measurement. Furthermore, we compared the MAE to both the

RMSE and the absolute maximum error for all of the synthetic data analyses presented

here, and found that all three metrics led to the same interpretation of the results.

To avoid confusion, we will reserve the notation e exclusively for the results of the

linear least squares fit to synthetic data without added noise. We will use e(i) to dis-
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tinguish the MAE of the surface fit when the coefficients are obtained by solving (3.5)

using numerical integration, and e∗ to indicate the MAE for the least squares fit to quan-

tized synthetic data. When this fit to the quantized data is used to calculate k̂
(
X
)
, the

subsequent error will be denoted e∗k.

3.5.1 Model Order Selection

Clearly, the optimal model order to avoid under- or overfitting will depend on the nature

of the surface we want to model. The established precedent for vision research seems to

be limited to only the first 15 Zernike functions listed in Table 3.1 (N = 4); however,

this is likely just a holdover from attempting to model wavefronts using a Taylor series

expansion, and not actually a referendum on best practices [34]. Moreover, while they

may lack clinical significance, the additional terms become essential in the case where

rotational symmetry is lost due to off-axis data collection [107].

Of the previous work we investigated that made similar use of Zernike polynomials

for modeling optical surfaces, the vast majority considered model orders ranging from

N = 4 to N = 14. Zhao et al.—whose research laid the groundwork for the problems

investigated in this thesis—specify an 8th order fit as part of their protocol for error

correction and clinical parameter extraction from SDOCT detailed in [39] and [110], and

the subsequent results on corneal curvature and refractive power from SDOCT presented

by NcNabb et al. in [55] are based on a 5th order Zernike fit. Zernike polynomials have also

been used for surface reconstruction from videokeratography. Smolek and Klyce tested

Zernike models up to order N = 14 on a wide variety of eye conditions and determined

that this was sufficient for all but the most severe corneal diseases [91]. In [88], Sicam

et al. outline an approach involving 5th–10th order fits for various lens phantoms and

cornea data, while Turuwhenua’s proposed improvements to this method in [102] employ

10th–14th order fits for the phantom data. Based on all these results, we decided that a

maximum model order of N = 20 (p = 231 polynomials) would be more than adequate

for our purposes.iii

In attempting to determine a protocol for automatic model order selection based on

corneal height data, Iskander et al. found that the classical information theoretic methods

(i.e., the Akaike information criterion and corrected Akaike information criterion, the

iiiThis was also the maximum order for which we were able to calculate the Zernike coefficients using
numerical integration before the computations became prohibitively expensive.
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minimum description length, and the Hannan-Quinn criterion) yielded unreliable results

[34]. This is due to the nature of most optical surfaces and the construction of the Zernike

polynomials: even for a highly abnormal cornea, the magnitude of the Zernike coefficients

decreases rapidly as the polynomial order increases. In a subsequent paper [1], Alkhaldi

et al. expanded their work to investigate additional information theoretic approaches

as well as resampling methods, and found that most methods either fail to impose a

strong enough penalty on the higher order terms or are computationally demanding. As

an alternative, they illustrated that model order selection can be accomplished through

the use of the efficient detection criterion proposed in [109]. However, the success of

this approach is predicated on the selection of an appropriate penalty function, which

is a non-trivial task. Most recently, Muma and Zoubir proposed a robust version of the

corrected Akaike information criterion based on τ estimation [61], although this approach

does not appear to have been rigorously validated.

Owing to the complicated nature of this problem, the model order selection will not

be addressed in this thesis.

3.5.2 Discrete Fit versus Numerical Integration

Calculating the coefficients directly from (3.5) involves elliptic integrals that must be

solved numerically. We used MATLAB’s integral2.m function, which employs an adap-

tive quadrature method to evaluate the double integral. The discrete Zernike points com-

prising the design matrix X were computed in MATLAB using the zernfun.m function,

written by MathWorks engineer Paul Fricker [22]. We then obtained the least squares

estimate for the coefficients using the MATLAB backslash command.

Figure 3.6 provides a visual rendering of the MAE in the reconstruction of each

surface when the Zernike coefficients are computed using numerical integration (e(i)) as

well as the discrete linear least squares fit without noise (e). The exact values for e(i)

and e are listed in Table 3.2. In most cases, the two methods arrive at nearly identical

results. There are however some notable discrepancies, particularly in the higher model

orders for Surfaces 1 and 2. These discrepancies are due to the limitations of adaptive

quadrature in the presence of very high frequency oscillations like the ones that start to

show up as the Zernike order increases. The reason this appears to cause problems only

for Surfaces 1 and 2 is because the relative contributions from these noisy terms happen

to be disproportionately greater than for Surfaces 3 and 4. By contrast, the error in
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Table 3.2: MAE (in mm) of surface reconstruction when coefficients are obtained via
numerical integration (e(i)) versus OLS fit (e).

Surface 1 Surface 2 Surface 3 Surface 4

N e(i) e e(i) e e(i) e e(i) e

0 6.7×10−1 5.6×10−1 2.2×10−16 8.7×10−15 1.2 1.0 8.7×10−1 7.2×10−1

1 6.7×10−1 5.6×10−1 2.2×10−16 8.7×10−15 1.2 1.0 8.7×10−1 7.2×10−1

2 6.0×10−3 4.9×10−3 5.4×10−16 4.9×10−14 1.2×10−1 9.1×10−2 4.5×10−2 3.5×10−2

3 6.0×10−3 4.9×10−3 6.2×10−16 5.6×10−15 1.2×10−1 9.1×10−2 4.5×10−2 3.5×10−2

4 5.6×10−5 4.6×10−5 2.6×10−14 4.5×10−14 2.2×10−2 1.7×10−2 4.5×10−3 3.5×10−3

5 5.6×10−5 4.6×10−5 2.6×10−14 3.2×10−14 2.2×10−2 1.7×10−2 4.5×10−3 3.5×10−3

6 3.7×10−7 3.6×10−7 2.6×10−14 4.2×10−14 5.3×10−3 4.0×10−3 5.8×10−4 4.4×10−4

7 3.7×10−7 3.6×10−7 2.6×10−14 4.0×10−14 5.3×10−3 4.0×10−3 5.8×10−4 4.4×10−4

8 2.5×10−7 2.3×10−7 2.5×10−14 2.8×10−14 1.4×10−3 1.1×10−3 8.4×10−5 6.3×10−5

9 2.5×10−7 2.3×10−7 2.5×10−14 2.8×10−14 1.4×10−3 1.1×10−3 8.4×10−5 6.3×10−5

10 1.7×10−7 1.3×10−7 2.4×10−14 1.2×10−14 4.1×10−4 3.1×10−4 1.3×10−5 9.8×10−6

11 1.7×10−7 1.3×10−7 2.4×10−14 1.8×10−14 4.1×10−4 3.1×10−4 1.3×10−5 9.8×10−6

12 1.2×10−8 9.4×10−9 6.8×10−14 1.3×10−14 1.3×10−4 9.4×10−5 2.2×10−6 1.6×10−6

13 1.2×10−8 9.4×10−9 6.8×10−14 1.2×10−14 1.3×10−4 9.4×10−5 2.2×10−6 1.6×10−6

14 8.7×10−10 6.9×10−10 4.8×10−13 1.9×10−14 4.0×10−5 2.9×10−5 3.8×10−7 2.8×10−7

15 8.7×10−10 6.9×10−10 4.8×10−13 2.3×10−14 4.0×10−5 2.9×10−5 3.8×10−7 2.8×10−7

16 6.8×10−11 5.2×10−11 4.8×10−13 2.3×10−14 1.3×10−5 9.4×10−6 6.9×10−8 5.0×10−8

17 6.8×10−11 5.2×10−11 5.8×10−13 1.9×10−14 1.3×10−5 9.4×10−6 6.9×10−8 5.0×10−8

18 2.2×10−11 4.0×10−12 8.2×10−12 9.6×10−15 4.2×10−6 3.1×10−6 1.3×10−8 9.1×10−9

19 2.2×10−11 4.0×10−12 8.3×10−12 9.8×10−15 4.2×10−6 3.1×10−6 1.3×10−8 9.1×10−9

20 7.3×10−11 3.1×10−13 2.9×10−11 4.3×10−15 1.4×10−6 1.0×10−6 2.5×10−9 1.7×10−9

the least squares coefficients remains close to machine epsilon regardless of model order.

(Thanks to the built-in optimization in MATLAB’s backslash operation, this is true even

for the ill-conditioned problems discussed in Chapter 5.)

A few general patterns arise that are independent of the method used to obtain the

Zernike coefficients. In particular, because all four surfaces have some degree of rotational

symmetry around the z-axis, the MAE is nearly identical for each pair of consecutive

model orders (N = 0 and 1, N = 2 and 3, etc.) Surfaces 1, 2, and 3 are axisymmetric,

so they only have non-zero contributions from Zernike functions with meridional degree

m = 0, which do not occur with odd radial indices. Note that the apparent fluctuations in

the MAE for Surface 2 are from numerical error near machine precision. While Surface 4

is not axisymmetric, its 2nd order discrete symmetry means that it also will not include

contributions from Zernike functions with odd radial degree.

Convergence rates among the three non-trivial surfaces also tend to be similar for both

numerical integration and linear least squares. While it may initially seem surprising that

Surface 3 is the slowest to converge despite being a simple sphere, this trend makes more
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Figure 3.6: MAE in surface fit for (a) Surface 1, (b) Surface 2, (c) Surface 3, and (d)
Surface 4, when coefficients are obtained using numerical integration versus OLS.

sense once we recall that the Zernike polynomials represent aberrations from a sphere,

and not a sphere itself. In fact, the Zernike polynomials are frequently used for modeling

the difference between the measured surface elevations and a reference sphere in order to

better visualize comparatively small aberrations [84]. This issue will be discussed further

in Chapter 7.

One drawback to using an average measure of the error across the entire surface is that

two model orders with similar average errors might look very different at a local level.

Figure 3.7 shows the local surface error for both numerical methods over an entire cross-

sectional meridian for each of the axisymmetric surfaces (Surfaces 1–3), while Figure 3.8

shows the surface error across both of Surface 4’s principal meridians. In some cases,

the error is considerably higher near the edges of the meridian. While this effect arises

for both methods of computing the Zernike expansion, the least squares estimate tends
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Figure 3.7: Local surface error from integration (left) and OLS (right) for (a) Surface 1,
(b) Surface 2, and (c) Surface 3.

to provide a better fit near the center, where the interpolation points are most densely

concentrated. In the worst cases, such as the orderN = 6 fits shown in Figures 3.7 and 3.8,

this improvement near the center comes at the cost of an amplified error near the edges of

the disk. However, given the decreased SNR in the OCT image data near the periphery,

we already expect that some sacrifice may be necessary in this region.
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Figure 3.8: Local surface error for principal meridians of Surface 4 from integration (left)
and OLS (right).

3.5.3 Impact of Quantization Error

While much of the noise in our OCT data could be eliminated by improving the seg-

mentation algorithms, the error due to quantization is unavoidable. It is interesting to

observe the model performance on our chosen surfaces in the idealized case of minimal

measurement error. The MAE in surface fit for synthetic data with added quantization

error (e∗) is shown in Table 3.3, alongside the results we obtained in Section 3.5.2 for

the linear least squares fit to synthetic data without noise (e). Corresponding plots for

Surfaces 1, 3 and 4 can be found in Figure 3.15.

It is immediately apparent that the addition of quantization error sets a bound on

the accuracy of the fit, on the order of 10−3 mm to 10−5 mm depending on the surface.

Quantization ends up having the greatest impact on Surface 2 (the flat plane), where it

merely shifts the plane up by a constant 1.7 × 10−3 mm. For Surfaces 1, 3, and 4, we

showed in Section 2.4.2 that the noise introduced by quantization is ε∗i ∼ U
(
− 1

2
∆′z,

1
2
∆′z
)
,
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Table 3.3: MAE (in mm) of surface reconstruction without noise (e) and with quanti-
zation error (e∗).

Surface 1 Surface 2 Surface 3 Surface 4

N e e∗ e e∗ e e∗ e e∗

0 5.6×10−1 5.6×10−1 8.7×10−15 1.7×10−3 1.0 1.0 7.2×10−1 7.2×10−1

1 5.6×10−1 5.6×10−1 8.7×10−15 1.7×10−3 1.0 1.0 7.2×10−1 7.2×10−1

2 4.9×10−3 4.9×10−3 4.9×10−14 1.7×10−3 9.1×10−2 9.1×10−2 3.5×10−2 3.5×10−2

3 4.9×10−3 4.9×10−3 5.6×10−15 1.7×10−3 9.1×10−2 9.1×10−2 3.5×10−2 3.5×10−3

4 4.6×10−5 6.6×10−5 4.5×10−14 1.7×10−3 1.7×10−2 1.7×10−2 3.5×10−3 3.5×10−3

5 4.6×10−5 6.6×10−5 3.2×10−14 1.7×10−3 1.7×10−2 1.7×10−2 3.5×10−3 3.5×10−2

6 3.6×10−7 5.8×10−5 4.2×10−14 1.7×10−3 4.0×10−3 4.0×10−3 4.4×10−4 4.4×10−4

7 3.6×10−7 5.8×10−5 4.0×10−14 1.7×10−3 4.0×10−3 4.0×10−3 4.4×10−4 4.4×10−4

8 2.3×10−7 5.9×10−5 2.8×10−14 1.7×10−3 1.1×10−3 1.1×10−3 6.3×10−5 6.7×10−5

9 2.3×10−7 5.9×10−5 2.8×10−14 1.7×10−3 1.1×10−3 1.1×10−3 6.3×10−5 6.7×10−5

10 1.3×10−7 6.5×10−5 1.2×10−14 1.7×10−3 3.1×10−4 3.6×10−4 9.8×10−6 3.1×10−5

11 1.3×10−7 6.5×10−5 1.8×10−14 1.7×10−3 3.1×10−4 3.6×10−4 9.8×10−6 3.1×10−5

12 9.4×10−9 6.5×10−5 1.3×10−14 1.7×10−3 9.4×10−5 2.1×10−4 1.6×10−6 3.4×10−5

13 9.4×10−9 6.5×10−5 1.2×10−14 1.7×10−3 9.4×10−5 2.1×10−4 1.6×10−6 3.4×10−5

14 6.9×10−10 1.1×10−4 1.9×10−14 1.7×10−3 2.9×10−5 2.2×10−4 2.8×10−7 3.6×10−5

15 6.9×10−10 1.1×10−4 2.3×10−14 1.7×10−3 2.9×10−5 2.2×10−4 2.8×10−7 3.6×10−5

16 5.2×10−11 1.2×10−4 2.3×10−14 1.7×10−3 9.4×10−6 2.2×10−4 5.0×10−8 4.1×10−5

17 5.2×10−11 1.2×10−4 1.9×10−14 1.7×10−3 9.4×10−6 2.2×10−4 5.0×10−8 4.1×10−5

18 4.0×10−12 1.2×10−4 9.6×10−15 1.7×10−3 3.1×10−6 2.4×10−4 9.1×10−9 4.4×10−5

19 4.0×10−12 1.2×10−4 9.8×10−15 1.7×10−3 3.1×10−6 2.4×10−4 9.1×10−9 4.4×10−5

20 3.1×10−13 1.2×10−4 4.3×10−15 1.7×10−3 1.0×10−6 2.4×10−4 1.7×10−9 4.6×10−5

with ∆′z = 5.6 × 10−3 mm. Because this noise is uniform, it is not surprising that the

mean absolute value of the quantization error 1
s

∑s
i=1 |ε∗i | is approximately 1.4×10−3 mm

for all three surfaces. However, Table 3.4 illustrates that lower bound on the accuracy

of the fit for each surface is actually on the same order as the mean signed quantization

error ε∗ = 1
s

∑s
i=1 ε

∗
i .

Figure 3.9 shows the local cross-sectional error in the surface fit for different Zernike

fits for the remaining three surfaces when quantization error is included. For comparison,

we selected three Zernike orders for each surface that result in a low MAE. All the error

Table 3.4: Mean signed quantization error (ε∗) and smallest MAE in surface fit to quan-
tized data (e∗), in millimeters.

Surface 1 Surface 2 Surface 3 Surface 4

ε∗ 5.7× 10−5 1.7× 10−3 −1.5× 10−4 −1.2× 10−5

e∗ 5.8× 10−5 1.7× 10−3 2.1× 10−4 3.1× 10−5
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plots are shown on the same y-axis to accentuate the issues mentioned in Section 3.5.2

that arise for the different surfaces. Figure 3.9a reveals some key differences between

the 4th and 10th order fits to Surface 1 that are obscured by their nearly identical e∗

values from Table 3.3 (6.6 × 10−5 mm and 6.5 × 10−5 mm, respectively). In particular,

the error at the center is almost zero for N = 4, but not for N = 10. The error for

the 6th order fit is also slightly worse near the center than it is for the 4th order fit;

however, the infinity norm is smaller for the 6th order, leading to an average error of just

e∗ = 5.8× 10−5 mm. Recall from Section 2.3 that the manufacturer specification for the

accuracy of the aspheric lens surface is 0.75 µm, in terms of the RMSE. The RMSE in

microns for the quantized synthetic data from Surface 1 is at worst 6.5 × 10−4 µm for

any of the Zernike orders we considered, and for 4 ≤ N ≤ 20 the RMSE ranges from

6.9 × 10−8 µm to 1.6 × 10−7 µm. Therefore, we can be assured that quantization error

alone will not prevent us from obtaining a comparable degree of accuracy in our surface

reconstruction.

Similarly, the local error for Surface 3, depicted in Figure 3.9b, is much larger at the

edges and smaller at the center for N = 12 than for N = 14, despite respective e∗ values

of 2.1 × 10−4 mm and 2.2 × 10−4 mm. The 18th order fit appears to be slightly worse

going by the average error (e∗ = 2.4× 10−4 mm), yet in spite of the noticeable increase

in the oscillations of the local error, the error is nevertheless smaller near the center for

the 18th order fit than for the 14th order fit. These seemingly minor differences are likely

to be amplified as they propagate through the curvature calculations.

Figures 3.9c–d illustrate another concern that arises for surfaces like Surface 4 that

lack continuous rotational symmetry about the z-axis—i.e., any time the CT axis is not

perfectly aligned with the lens’ optical axis during data collection (generally the case even

under optimal conditions). Specifically, the Zernike order that provides the closest fit for

one principal meridian may not be the best choice for the other principal meridian. This

behavior was also true for the non-quantized data (shown in Figure 3.8). Since one of our

primary goals is to minimize the error in the principal radii of curvature, discrepancies

between the principal meridians will necessarily be a significant factor in determining the

optimal Zernike order for any non-axisymmetric surface.
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Figure 3.9: Local surface error for Zernike fit to quantized synthetic data for (a) Sur-
face 1, (b) Surface 3, (c) Surface 4 at 0◦, and (d) Surface 4 at 90◦.

3.5.4 Curvature

In this section, we will consider the impact of Zernike order on the local meridional

curvature and the principal radius (or radii) of curvature, defined respectively in (3.17)

and (3.18). We initially performed all the calculations using scaled finite difference step

sizes of h′ = h/A = 10−2, 10−3, 10−4, 10−5, and 10−6. However, we found that the

magnitude of h′ had a relatively minor impact on our quantities of interest. For all

four surfaces, the principal radii of curvature and the MAE in the meridional curvature

Table 3.5: Actual finite difference step sizes (h = Ah′) for curvature, in millimeters.

Surface 1 Surface 2 Surface 3 Surface 4

h 0.0075 0.0075 0.0070 0.0066
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Figure 3.10: MAE in meridional curvature for (a) Surface 1, (b) Surface 2, (c) Surface 3,
and (d) Surface 4.

(defined in (3.20)) for any given model order were nearly identical using h′ = 10−3, 10−4,

and 10−5, and while the results were slightly less consistent for 10−2 and 10−6, these

effects were dwarfed by the variations due to model order. Thus, we chose to limit our

analysis to a single step size for each surface. The results presented here are based on

a scaled step size of h′ = 10−3, which ensures that the actual finite difference step size

h = A × 10−3 (shown in Table 3.5) remains an order of magnitude smaller than the

distance ∆ρ = 0.016 mm between the data points.

Meridional Curvature

The MAE in the meridional curvature for the different model orders is depicted graph-

ically in Figure 3.10, for both non-quantized (ek) and quantized data (e∗k). The exact

values can be found in Table 3.6. Local curvature error plots based on quantized syn-
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Table 3.6: MAE (in mm−1) in meridional curvature without noise (ek) and with quan-
tization error (e∗k).

Surface 1 Surface 2 Surface 3 Surface 4

N ek e∗k ek e∗k ek e∗k ek e∗k

0 6.9×10−2 6.9×10−2 0.0 0.0 1.3×10−1 1.3×10−1 1.1×10−1 1.1×10−1

1 6.9×10−2 6.9×10−2 3.7×10−15 3.1×10−14 1.3×10−1 1.3×10−1 1.1×10−1 1.1×10−1

2 3.0×10−3 3.0×10−3 2.3×10−12 1.9×10−12 3.7×10−2 3.7×10−2 2.2×10−2 2.2×10−2

3 3.0×10−3 3.0×10−3 6.8×10−13 5.5×10−13 3.7×10−2 3.7×10−2 2.2×10−2 2.2×10−2

4 7.5×10−5 7.3×10−5 2.8×10−12 2.6×10−12 1.6×10−2 1.6×10−2 5.5×10−3 5.5×10−3

5 7.5×10−5 7.3×10−5 2.7×10−12 2.4×10−12 1.6×10−2 1.6×10−2 5.5×10−3 5.5×10−3

6 1.2×10−6 4.2×10−5 3.4×10−12 3.5×10−12 6.8×10−3 6.8×10−3 1.3×10−3 1.3×10−3

7 1.2×10−6 4.2×10−5 3.9×10−12 3.9×10−12 6.8×10−3 6.8×10−3 1.3×10−3 1.3×10−3

8 8.2×10−7 4.3×10−5 4.1×10−12 3.4×10−12 3.0×10−3 2.9×10−3 3.2×10−4 3.2×10−4

9 8.2×10−7 4.3×10−5 4.5×10−12 3.8×10−12 3.0×10−3 2.9×10−3 3.2×10−4 3.2×10−4

10 1.1×10−6 1.6×10−4 3.5×10−12 3.6×10−12 1.3×10−3 1.3×10−3 7.4×10−5 9.5×10−5

11 1.1×10−6 1.6×10−4 4.1×10−12 4.3×10−12 1.3×10−3 1.3×10−3 7.4×10−5 9.5×10−5

12 1.1×10−7 1.6×10−4 4.0×10−12 4.6×10−12 5.4×10−4 6.3×10−4 1.7×10−5 1.0×10−4

13 1.1×10−7 1.6×10−4 2.9×10−12 5.1×10−12 5.4×10−4 6.3×10−4 1.7×10−5 1.0×10−4

14 1.2×10−8 1.1×10−3 4.7×10−12 4.5×10−12 2.3×10−4 4.5×10−4 3.9×10−6 1.4×10−4

15 1.2×10−8 1.1×10−3 4.7×10−12 4.7×10−12 2.3×10−4 4.5×10−4 3.9×10−6 1.4×10−4

16 2.2×10−9 6.9×10−4 6.2×10−12 5.9×10−12 9.4×10−5 4.6×10−4 8.8×10−7 2.6×10−4

17 2.2×10−9 6.9×10−4 6.3×10−12 5.6×10−12 9.4×10−5 4.6×10−4 8.8×10−7 2.6×10−4

18 1.4×10−9 1.4×10−3 5.4×10−12 7.8×10−12 3.9×10−5 1.3×10−3 2.0×10−7 3.5×10−4

19 1.4×10−9 1.4×10−3 5.9×10−12 7.9×10−12 3.9×10−5 1.3×10−3 2.0×10−7 3.5×10−4

20 1.4×10−9 9.1×10−4 5.0×10−12 6.6×10−12 1.6×10−5 1.3×10−3 4.9×10−8 3.8×10−4

thetic data for Surfaces 1, 3, and 4 are shown in Figures 3.11–3.12, juxtaposed with

the corresponding local surface error from Figure 3.9. (Calculation of the derivatives for

Surface 2 involves a lot of arithmetic near machine precision, so the local curvature error

for that surface is not terribly informative.) This discussion will be focused mainly on

the results for the quantized data; however, a similar presentation of the local curvature

errors for the non-quantized data and the local surface errors from Figures 3.7–3.8 can

be seen in Figure 3.14.

Note that both ek and e∗k for Surface 2 (the flat plane) are zero for N = 0 in Table 3.6.

This is due to the fact that the one Zernike basis function for this model order, Z1, is

itself a flat disk with constant curvature 0 mm−1. Furthermore, because the only source

of noise in the quantized synthetic data for this surface was a uniform vertical shift, it is

also not surprising that the average error for the curvature calculation—which relies only

on derivatives of the Zernike functions—is similar for both quantized and non-quantized

data. This is why it is possible to have a average curvature error of less than 10−11 mm−1,

despite the fact that the average surface error is ∼ 10−3 mm.
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Figure 3.11: Local error in surface fit (left) and curvature (right) when quantization
error is present for (a) Surface 1 and (b) Surface 3.

In Section 3.5.3, we noted that the 4th and 10th order fits for Surface 1 had almost

the same average surface error (in fact, the average error for N = 4 was slightly greater

at e∗ = 6.6 × 10−5 mm, versus e∗ = 6.5 × 10−5 mm for N = 10). However, at e∗k =

1.6× 10−4 mm−1, the average curvature error for the 10th order fit is more than double

that of the 4th order fit, which yields e∗k = 7.3×10−5 mm−1. The cause of this is apparent

in Figure 3.11a: the small oscillations we observed in the 10th order fit become magnified

by the curvature calculation, and eventually cause the error to blow up near the edges.

If we compare the exact values for the surface and curvature errors for Surface 3, we

can see that while e∗ is minimized when N = 12, both the 14th or 16th order fits result

in smaller values for e∗k. However, when we look more closely at the local curvature error

cross section shown in Figure 3.11b, it becomes clear that the larger e∗k value for N = 12

is due to an overwhelming contribution towards the edges. In fact, the error near the

center remains very small for the 12th order fit, whereas the error in the 14th order fit is

actually quite large at the center—larger even than for N = 18, which fits rather poorly

everywhere.
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Figure 3.12: Local error in surface fit (left) and curvature (right) for the principal merid-
ians of Surface 4 when quantization error is present.
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Figure 3.13: Local curvature error when quantization error is present in Surface 4 prin-
cipal meridians for Zernike fits of order (a) N = 10 and (b) N = 12.
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Figure 3.14: Local error in surface fit (left) and curvature (right) without noise for (a)
Surface 1, (b) Surface 3, (c) Surface 4 meridian at 0◦, and (d) Surface 4 meridian at 90◦.
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Table 3.7: MAE (in mm) in the meridional radius of curvature without noise (eroc) and
with quantization error (e∗roc).

Surface 1 Surface 3 Surface 4

N eroc e∗roc eroc e∗roc eroc e∗roc

2 7.8×10−1 7.8×10−1 3.8 3.8 2.5 2.5
3 7.8×10−1 7.8×10−1 3.8 3.8 2.5 2.5
4 1.9×10−2 1.8×10−2 1.2 1.2 4.8×10−1 4.8×10−1

5 1.9×10−2 1.8×10−2 1.2 1.2 4.8×10−1 4.8×10−1

6 2.8×10−4 1.0×10−2 4.7×10−1 4.7×10−1 1.1×10−1 1.1×10−1

7 2.8×10−4 1.0×10−2 4.7×10−1 4.7×10−1 1.1×10−1 1.1×10−1

8 1.9×10−4 1.1×10−2 1.9×10−1 1.9×10−1 2.5×10−2 2.5×10−2

9 1.9×10−4 1.1×10−2 1.9×10−1 1.9×10−1 2.5×10−2 2.5×10−2

10 2.9×10−4 4.2×10−2 8.0×10−2 8.3×10−2 5.7×10−3 7.4×10−3

11 2.9×10−4 4.2×10−2 8.0×10−2 8.3×10−2 5.7×10−3 7.4×10−3

12 3.0×10−5 4.1×10−2 3.3×10−2 3.9×10−2 1.3×10−3 8.0×10−3

13 3.0×10−5 4.1×10−2 3.3×10−2 3.9×10−2 1.3×10−3 8.0×10−3

14 3.1×10−6 3.8×10−1 1.4×10−2 2.7×10−2 2.9×10−4 1.1×10−2

15 3.1×10−6 3.8×10−1 1.4×10−2 2.7×10−2 2.9×10−4 1.1×10−2

16 5.1×10−7 1.6×10−1 5.7×10−3 2.8×10−2 6.6×10−5 2.0×10−2

17 5.1×10−7 1.6×10−1 5.7×10−3 2.8×10−2 6.6×10−5 2.0×10−2

18 2.8×10−7 3.3×10−1 2.4×10−3 7.9×10−2 1.5×10−5 2.7×10−2

19 2.8×10−7 3.3×10−1 2.4×10−3 7.9×10−2 1.5×10−5 2.7×10−2

20 2.8×10−7 2.1×10−1 9.6×10−4 8.0×10−2 3.7×10−6 2.9×10−2

For Surface 4, both e∗ and e∗k are at a minimum when N = 10, with N = 12 doing

only slightly worse. The main issue here is that looking only at e∗k for a particular order

obscures the differences between the local curvature errors in the two principal meridians.

This is most apparent for the 8th order fit shown in Figure 3.12, where the curvature error

for the meridian at 90◦ is consistently more than twice the amplitude of the error in the

meridian at 0◦. Figure 3.13 illustrates direct comparisons of the error along the principal

meridians for the 10th and 12th order fits. Although the differences between the two

meridians are not quite as dramatic for either of these Zernike orders as they were for

N = 8, the meridian at 90◦ continues to fare worse in both cases. However, aside from

right at the edges (and perhaps directly in the center), it appears that the meridian at

0◦ suffers more than the meridian at 90◦ when we add the additional terms for the 12th

order fit.

Meridional Radius of Curvature

Note that while the height of the surface is measured in millimeters, the meridional

curvature is given in inverse millimeters. To make direct comparisons between the fitting
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Figure 3.15: MAE in surface fit (left) and radius of curvature (right) for (a) Surface 1,
(b) Surface 3, and (c) Surface 4.

error and the error in the corresponding curvature calculation it is more instructive to

consider the radius of curvature, which is the reciprocal of the curvature and therefore

shares the same units as the surface fit. We will define the mean absolute error in the

meridional radius of curvature in the same manner as (3.20), only this time using the
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reciprocal of the true and calculated values at each point:

eroc =
1

s− 2b

s−2b∑
i=1

∣∣∣∣∣ 1

k̂
(
Xi

) − 1

k
(
Xi

)∣∣∣∣∣ . (3.21)

As before, we will use eroc and e∗roc to respectively indicate the error in the non-quantized

and quantized data.

Table 3.7 shows eroc and e∗roc using Zernike models of order N = 2, 3, . . . 20 for Sur-

faces 1, 3 and 4. The first three Zernike functions shown in Figure 3.1 and Table 3.1

(Z1 = 1, Z2 = 2ρ sin θ, and Z3 = 2ρ cos θ) all clearly have zero curvature, as their second

derivatives with respect to ρ are all zero. As a result, any polynomial expansion of radial

order 0 or 1 will have an infinite radius of curvature everywhere, which renders futile any

error estimates for models of order N = 0 or N = 1. For similar reasons, Surface 2 has

been entirely omitted from this discussion as its true radius of curvature is infinite.

Figure 3.15 depicts the results from Table 3.7 alongside the corresponding surface

errors from Table 3.3. Note that both eroc and e∗roc display the same general convergence

patterns as ek and e∗k from Figure 3.10, just in terms of different units, so our previous

remarks about Zernike order for each surface are still applicable.

As we would expect, the radius of curvature converges much more slowly than surface

fit, for both the non-quantized and quantized synthetic data. For the latter, the average

error in the radius of curvature is at best two to three orders of magnitude greater for

each surface than the smallest surface error we observed in Section 3.5.3. Even using

non-quantized data, the accuracy of eroc appears to be limited to ∼ 10−7 mm. All of

these error values are invariant to the choice of finite difference step size.

Principal Radius of Curvature

While we do want to be able to calculate curvature everywhere, the principal curvatures

at the vertex (discussed in Section 3.4) carry special significance when dealing with

optical components. These values are typically reported in terms of their corresponding

radii of curvature R1 and R2, which were defined in (3.16). Recall that an axisymmetric

surface—such as Surfaces 1, 2, or 3—will satisfy R ≡ R1 = R2. For Surface 4 (the toric

cap), R1 and R2 correspond to the principal radii of curvature at 0◦ and 90◦, respectively.

Figure 3.16 shows estimates of the principal radii of curvature for Surfaces 1, 3, and 4

obtained using (3.18), while the absolute error between each estimate R̂ and the true
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Figure 3.16: Radius of curvature for (a) Surface 1, (b) Surface 3, (c) Surface 4 at 0◦,
and (d) Surface 4 at 90◦.

radius of curvature R is shown in Figure 3.17. The principal curvature error for Surface 2

was trivial for all Zernike orders, for both non-quantized and quantized data, so it will

again be omitted from this discussion. Actual numerical values are listed in Table 3.8,

with R̂ denoting the estimate obtained from the synthetic data without noise and R̂∗

specifying the estimate from quantized data.

As with the surface and curvature errors, the error in R̂∗ for Surface 1 is smallest for

the 6th and 8th order Zernike fits. However, while e∗ and e∗roc were both a little bit lower

for the 6th order fit, it turns out that the 8th order fit produces a slightly better estimate

for the principal radius of curvature with
∣∣R̂∗−R∣∣ = 5.4×10−3 mm for N = 8 compared

to
∣∣R̂∗−R∣∣ = 5.6× 10−3 mm for N = 6. This difference may seem minor; however, recall

that the true value of R is specified to three digits of precision.

As hypothesized, the absolute error in R̂∗ for Surface 3 is minimized for the 12th order
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Figure 3.17: Absolute error in principal radius of curvature for (a) Surface 1, (b) Sur-
face 3, (c) Surface 4 at 0◦ (R1), and (d) Surface 4 at 90◦ (R2).
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Figure 3.18: Absolute errors in principal radii of curvature for Surface 4 (a) without
noise and (b) with quantization error.
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Table 3.8: Principal radius of curvature estimates and absolute error (in mm) without
noise (R̂) and with quantization error (R̂∗).

Surface 1 (R = 13.255 mm)

N R̂
∣∣R̂−R∣∣ R̂∗

∣∣R̂∗−R∣∣
2 12.874 3.8×10−1 12.874 3.8×10−1

3 12.874 3.8×10−1 12.874 3.8×10−1

4 13.263 8.1×10−3 13.264 8.9×10−3

5 13.263 8.1×10−3 13.264 8.9×10−3

6 13.255 2.6×10−4 13.261 5.6×10−3

7 13.255 2.6×10−4 13.261 5.6×10−3

8 13.255 1.7×10−4 13.260 5.4×10−3

9 13.255 1.7×10−4 13.260 5.4×10−3

10 13.255 9.2×10−5 13.247 7.9×10−3

11 13.255 9.2×10−5 13.247 7.9×10−3

12 13.255 8.4×10−6 13.247 8.0×10−3

13 13.255 8.4×10−6 13.247 8.0×10−3

14 13.255 4.0×10−7 13.324 6.9×10−2

15 13.255 3.9×10−7 13.324 6.9×10−2

16 13.255 3.6×10−7 13.380 1.3×10−1

17 13.255 3.7×10−7 13.380 1.3×10−1

18 13.255 4.3×10−7 13.312 5.7×10−2

19 13.255 4.1×10−7 13.312 5.7×10−2

20 13.255 4.4×10−7 13.262 7.2×10−3

Surface 3 (R = 7.8 mm)

N R̂
∣∣R̂−R∣∣ R̂∗

∣∣R̂∗−R∣∣
2 6.078 1.7 6.078 1.7
3 6.078 1.7 6.078 1.7
4 8.769 9.7×10−1 8.766 9.7×10−1

5 8.769 9.7×10−1 8.766 9.7×10−1

6 7.465 3.4×10−1 7.461 3.4×10−1

7 7.465 3.4×10−1 7.461 3.4×10−1

8 7.946 1.5×10−1 7.932 1.3×10−1

9 7.946 1.5×10−1 7.932 1.3×10−1

10 7.742 5.8×10−2 7.718 8.2×10−2

11 7.742 5.8×10−2 7.718 8.2×10−2

12 7.824 2.4×10−2 7.781 1.9×10−2

13 7.824 2.4×10−2 7.781 1.9×10−2

14 7.790 9.7×10−3 7.726 7.4×10−2

15 7.790 9.7×10−3 7.726 7.4×10−2

16 7.804 3.9×10−3 7.749 5.1×10−2

17 7.804 3.9×10−3 7.749 5.1×10−2

18 7.798 1.6×10−3 7.823 2.3×10−2

19 7.798 1.6×10−3 7.823 2.3×10−2

20 7.801 6.3×10−4 7.819 1.9×10−2

Surface 4 (R1 = 9.2 mm)

N R̂1

∣∣R̂1−R1

∣∣ R̂∗1
∣∣R̂∗1−R1

∣∣
2 8.044 1.2 8.045 1.2
3 8.044 1.2 8.045 1.2
4 9.453 2.5×10−1 9.453 2.5×10−1

5 9.453 2.5×10−1 9.453 2.5×10−1

6 9.153 4.7×10−2 9.153 4.7×10−2

7 9.153 4.7×10−2 9.153 4.7×10−2

8 9.209 8.9×10−3 9.206 6.3×10−3

9 9.209 8.9×10−3 9.206 6.3×10−3

10 9.198 1.7×10−3 9.196 3.8×10−3

11 9.198 1.7×10−3 9.196 3.8×10−3

12 9.200 3.1×10−4 9.199 1.2×10−3

13 9.200 3.1×10−4 9.199 1.2×10−3

14 9.200 5.7×10−5 9.204 4.4×10−3

15 9.200 5.7×10−5 9.204 4.4×10−3

16 9.200 8.7×10−6 9.217 1.7×10−2

17 9.200 8.7×10−6 9.217 1.7×10−2

18 9.200 2.9×10−6 9.217 1.7×10−2

19 9.200 2.9×10−6 9.217 1.7×10−2

20 9.200 9.0×10−7 9.218 1.8×10−2

Surface 4 (R2 = 8.4 mm)

N R̂2

∣∣R̂2−R2

∣∣ R̂∗2
∣∣R̂∗2−R2

∣∣
2 7.161 1.2 7.160 1.2
3 7.161 1.2 7.160 1.2
4 8.739 3.4×10−1 8.739 3.4×10−1

5 8.739 3.4×10−1 8.739 3.4×10−1

6 8.326 7.4×10−2 8.326 7.4×10−2

7 8.326 7.4×10−2 8.326 7.4×10−2

8 8.417 1.7×10−2 8.418 1.8×10−2

9 8.417 1.7×10−2 8.418 1.8×10−2

10 8.396 4.0×10−3 8.395 4.6×10−3

11 8.396 4.0×10−3 8.395 4.6×10−3

12 8.401 9.1×10−4 8.395 5.1×10−3

13 8.401 9.1×10−4 8.395 5.1×10−3

14 8.400 2.1×10−4 8.396 3.8×10−3

15 8.400 2.1×10−4 8.396 3.8×10−3

16 8.400 4.6×10−5 8.405 5.4×10−3

17 8.400 4.6×10−5 8.405 5.4×10−3

18 8.400 1.2×10−5 8.389 1.1×10−2

19 8.400 1.2×10−5 8.389 1.1×10−2

20 8.400 1.2×10−6 8.392 7.7×10−3
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fit, despite a higher value of e∗roc for that order than the 14th and 16th order fits (all three

of which have very similar surface errors). In fact,
∣∣R̂∗ − R

∣∣ is four times as large for

N = 14 as it is for N = 12. The absolute error in the principal radius of curvature then

decreases steadily until it once again reaches the same value at N = 20 that it had for

N = 12; however, e∗roc for the 20th order fit is double that of the 12th order fit. Even

though we initially identified the 14th and 16th order fits as possible candidates for the

quantized Surface 3 data given their low e∗ and e∗roc values, we see that the principal

radius of curvature for these models is disproportionately impacted by overfitting—at

N = 14, the error in R̂∗ suddenly jumps up to nearly three times the value of average

radius of curvature error, and
∣∣R̂∗ −R∣∣ remains nearly double e∗roc for N = 16.

The error estimates for both of Surface 4’s principal radii of curvature from non-

quantized and quantized data are shown together on the same plot in Figure 3.18. With

or without quantization error, the estimates for R1 converge faster than the estimates for

R2—at least initially. However, R̂∗1 achieves a clear optimum at N = 12, after which the

error begins to increase again dramatically, while the error in R̂∗2 more or less levels off

starting at N = 10. This suggests that the estimate for R1 is likely to be more sensitive

to the model order than the estimate for R2.

In almost every case, the principal radius of curvature converges faster than average

radius of curvature across the entire surface, which is the result we aimed to achieve

by using the hexapolar sampling pattern. However, the principal radius of curvature

estimates for the non-quantized Surface 1 data stop converging once the absolute error

reaches 10−7 mm at N = 14, which happens to be the same accuracy threshold we noted

for the average radius of curvature error. In fact, the only other radius of curvature

measurement to even attain a minimum error of 10−7 mm is the estimate for R1 from the

20th order Zernike fit to the non-quantized Surface 4 data. Coupled with the fact that∣∣R̂−R∣∣ for Surface 1 is no longer the same for pairs of even and odd Zernike orders after

N = 14, this implies that 10-7 mm may well be a lower bound on the accuracy of our

radius of curvature algorithm.

3.6 Summary

In Section 3.5.2, we confirmed that the error in the Zernike approximation of each surface

is very similar regardless of whether we calculate the coefficients of the Zernike expansion

67



Table 3.9: Results (in mm) for the best Zernike orders for Surfaces 1, 3, and 4 using
quantized data. (Bolded entries indicate optimal results.)

Surface 1 (Aspheric lens, front)

N = 4 N = 6 N = 8

e∗ 6.6×10−5 5.8×10−5 5.9×10−5

e∗roc 1.8×10−2 1.0×10−2 1.1×10−2∣∣R̂∗−R∣∣ 8.9×10−3 5.6×10−3 5.4×10−3

Surface 3 (Toric lens, front)

N = 10 N = 12 N = 14 N = 16

e∗ 3.6×10−4 2.1×10−4 2.2×10−4 2.2×10−4

e∗roc 8.3×10−2 3.9×10−2 2.7×10−2 2.8×10−2∣∣R̂∗−R∣∣ 8.2×10−2 1.9×10−2 7.4×10−2 5.1×10−2

Surface 4 (Toric lens, back)

N = 8 N = 10 N = 12 N = 14

e∗ 6.7×10−5 3.1×10−5 3.4×10−5 3.6×10−5

e∗roc 2.5×10−2 7.4×10−3 8.0×10−3 1.1×10−2∣∣R̂∗1−R1

∣∣ 6.3×10−3 3.8×10−3 1.2×10−3 4.4×10−3∣∣R̂∗2−R2

∣∣ 1.8×10−2 4.6×10−3 5.1×10−3 3.8×10−3

by numerically integrating the design equations or perform a discrete Zernike transform

on the non-quantized synthetic data. With respect to the order of the Zernike expansion,

two of the three non-planar surfaces (spherical Surface 3 and toric Surface 4) displayed

linear convergence, whereas Surface 1 (asphere) converged a bit more slowly. These same

general patterns of linear and sublinear convergence also applied to the curvature in

Section 3.5.4.

We also observed that the choice of Zernike order appears to have a much more

pronounced impact on the accuracy of the curvature than on the accuracy of the surface

reconstruction, particularly for the quantized data. Table 3.9 provides a summary of

the Zernike orders that yielded the best results for Surfaces 1, 3, and 4iv for each of

ivSurface 2 (the flat back surface of the aspheric lens) requires only one Zernike polynomial, so the
fit will predictably get worse as more polynomials are included in the fit.
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Figure 3.19: Absolute error in principal radius (or radii) of curvature from quantized
synthetic data for (a) Surface 1, (b) Surface 3, and (c) Surface 4 relative to established
ISO guidelines for ophthalmometer accuracy [35].

the three quantities of interest we considered: mean absolute error in surface fit (e∗),

mean absolute error in radius of curvature (e∗roc), and absolute error in principal radius of

curvature (
∣∣R̂∗−R∣∣).v For Surface 1, both the 6th and 8th order fits produced comparable

results for all three quantities of interest. However, for Surfaces 3 and 4 the best model

order depends on whether we care more about minimizing the overall error in meridional

curvature or just the error in the principal curvature—in fact, the best Zernike order is

not even the same for both principal curvatures of the toric back surface (Surface 4).

This suggests that the problem of model order selection may have different solutions

depending on which quantity of interest we want to prioritize—an issue we will revisit in

vNote that we have also included N = 4 for Surface 1 and N = 10 for Surface 3. Although other
model orders performed better for these two surfaces using quantized data, these are the orders we chose
for the analysis in Chapter 6, which uses Gaussian error in the synthetic data.
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subsequent chapters.

Another notable conclusion of the results summarized in Table 3.9 is the relationship

between the accuracy of our methods and the shape of the surface we are trying to mea-

sure. Due to its spheroidal shape, Surface 3 is consistently an order of magnitude worse

than Surfaces 1 and 4. The ISO standards for ophthalmometers (ISO 10343:2014) specify

two acceptable thresholds on the accuracy of an ophthalmometer (a device specifically

intended for measuring the principal radius of curvature of a lens): such a device is consid-

ered a “Type A” ophthalmometer if twice of the standard deviation falls within 0.025 mm

of the true value, or a “Type B” ophthalmometer if the result is within 0.05 mm [35].

Figure 3.19 demonstrates some possible problems with using the Zernike polynomial in-

terpolation to achieve these goals. Even using idealized synthetic data with no additional

noise beyond quantization error, we are only just able to meet either of these tolerances

for Surface 3.

So far, we have discussed the implications of modeling each lens surface given ideal

data without optical distortion. However, in a real lens, the back surface will require a

different model from the front surface. In fact, we will see that the back surface model

actually depends on the front surface model, as the precise nature of the refraction at

the front surface boundary is determined by the shape of that boundary. In the following

chapter, we will address the issue of how to incorporate this optical distortion due to

refraction into a multi-surface lens model. We will also consider the implications of our

choice of front surface model for refraction correction of the back surface and revisit the

topic of which back surface model performs best in this context.
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Chapter 4

Optical Distortion Correction for

Two-Surface Lens Model

Although OCT allows for very high resolution imaging, one problem with using light

waves for lens metrology is that lenses by design are meant to refract light. As the light

from the sample arm crosses the anterior lens boundary, the change in refractive index of

the medium through which the light is traveling causes it to bend; however, the imaging

equipment assumes that it continues on its original trajectory. The consequence is that

OCT images of all but the very first surface will appear warped.

Several methods have been proposed for correcting this effect in two dimensions based

on either Snell’s law or Fermat’s principle of least time [73, 105]. However, these algo-

rithms assume that refraction occurs within the same meridional plane as the B-scan. In

the following sections, we will show why this assumption is incorrect, derive an algorithm

for three-dimensional refraction correction, and validate this algorithm using synthetic

data. We will also look at the local curvature estimates obtained using the methods of

Chapter 3 on the dewarped posterior surface data.

4.1 Geometrical Optics

4.1.1 Background

The visible light spectrum consists of electromagnetic waves with wavelengths on the

order of λ = 10−7 m. For many practical applications these wavelengths are at least
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several orders of magnitude smaller than the scale of the other components involved—for

example, the radius of curvature measurements in ophthalmology are typically no smaller

than 10−4 m. In the limiting case as λ approaches zero, Maxwell’s equations of electro-

magnetics give rise to the field of geometrical optics, in which light wave propagation is

reformulated in terms of energy transport along curves called light rays. This approxi-

mation greatly simplifies the task of computing the trajectory of the light from the OCT

scanner, thereby allowing us to account for any refraction effects that occur within the

lens.

Given a monochromatic, homogeneous plane wave with negligible wavelength relative

to other characteristic length scales, Maxwell’s equations can be reduced to a non-linear

partial differential equation known as the eikonal equation:(
∂S
∂x

)2

+

(
∂S
∂y

)2

+

(
∂S
∂z

)2

= n2
(
x, y, z

)
, (4.1)

where the refractive index 0 ≤ n ≤ ∞ is a property of the medium through which the wave

is traveling at the specified point. (A complete derivation of the eikonal equation from

Maxwell’s equations can be found in Born and Wolf’s Principles of Optics [11, Ch. 3].)

The solutions S
(
x, y, z

)
(sometimes called the optical paths) to the eikonal equation are

real scalar-valued functions such that the gradient ∇S indicates the wave’s direction of

propagation.

According to Principles of Optics, light rays are the “orthogonal trajectories to the

geometrical wavefronts S = constant.” Since we know the gradient of S must be orthog-

onal to these geometrical wavefronts, taking the square root of (4.1) allows us to write

the equation for the light ray as

nu = ∇S, (4.2)

where

u =
∇S∥∥∇S∥∥

is a unit vector in the direction of propagation of the light. Furthermore, Fermat’s princi-

pal of least time ensures that the light ray vector nu always points in the same direction

within a single isotropic medium (i.e., local variations in the refractive index n are neg-

ligible).
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Figure 4.1: A light ray nsuin incident to the interface T of the saline and the front of the
lens. The refracted ray n`uref lies in the plane formed by nsuin and the surface normal
vector n. The fact that ns < n` means that θin < θref .

4.1.2 Refraction at the Front Lens Surface

Recall that in Section 2.3 the refractive index of the saline was given by ns = 1.338653,

while the refractive indices of the two lenses were slightly greater at n` = 1.49449 (for

the toric lens) or n` = 1.59653 (for the aspheric lens). If we assume that each medium is

isotropic, we can represent the light ray vectors within the saline and the lens respectively

by nsuin (the incident ray) and n`uref (the refracted ray). We will show that several

properties apply to a light ray traveling between the saline and the lens.

Property 4.1.1. The refracted ray lies in the plane formed by the incident ray and the

vector normal to the front surface of the lens at the point of incidence.

Property 4.1.2. Given that the lens has a higher refractive index than the saline, the

angle of refraction will be smaller than the angle of incidence.

Properties 4.1.1 and 4.1.2 are illustrated in Figure 4.1. The interface between the

saline and the front of the lens, designated by T , represents a jump discontinuity in the

refractive index. We indicate the outward-pointing unit vector normal to T at the point

of incidence by n (not to be confused with the refractive index n). The plane formed by

the incident ray nsuin and the normal vector n is called the plane of incidence. The angle

of incidence (θin) and the angle of refraction (θref ) are defined as the respective angles

between the incident and refracted rays and the normal vector. Note that θin and θref are
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n

Saline
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Figure 4.2: The 2D transition region Σ lies in the plane formed by the incident ray nsuin
and the normal vector n at the point of incidence.

either both measured in the clockwise direction or both measured in the counterclockwise

direction.

The precise amount by which the light ray is deflected at the saline-lens interface can

be determined using Snell’s law of refraction.

Theorem 4.1.1 (Snell’s Law). For any light ray crossing the boundary T between the

saline and the lens, following relationship holds:

ns sin
(
θin
)

= n` sin
(
θref
)
. (4.3)

In 2D imaging, it is assumed that the plane of incidence at every point coincides

with the plane of the image (i.e., the B-scan). If this were true, these three properties

would be sufficient to determine the impact of refraction for each A-scan so that we can

dewarp the image accordingly. However, in practice there is no reason to assume that the

normal vector at any particular point will lie within the B-scan. Even for an axisymmetric

surface, off-axis imaging will result in precisely this problem. In the next section, we will

develop a more general law of refraction, proving Properties 4.1.1 and 4.1.2 and Snell’s

law in the process.
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Figure 4.3: The boundary of Σ (shown in Figure 4.2) is the piecewise-smooth curve Γ
that runs counterclockwise around ABB′A′. The unit vectors tin and tref are respectively
normal to sides AB and B′A′, while b is the out-of-plane unit vector perpendicular Σ.

4.1.3 Proof of General Boundary Conditions

To understand the behavior of a light ray when the interface T between the two media

consists of an arbitrary smooth surface in R3, we will derive a more general set of bound-

ary conditions using an analogous approach to finding the boundary conditions for an

electric field at a surface discontinuity [11, 95].

Instead of the discontinuous interface T , we imagine a smooth “transition layer” in

which the refractive index changes continuously as we cross from one medium into the

other. Let Σ be a plane element of this transition layer that contains both the incident

ray vector nsuin and the outward-pointing unit vector n normal to T at the point of

incidence. The transition region Σ is illustrated in Figure 4.2. As previously mentioned,

we will prove that the refracted ray n`uref shown in Figure 4.2 must in fact lie in the

same plane as the rest of the image.

The boundary of Σ is the piecewise smooth curve Γ shown in Figure 4.3, running

counterclockwise around the “rectangle” ABB′A′. The upper and lower “sides” of Γ have

length |AB| = δ`in and |B′A′| = δ`ref , and are parallel to and equidistant from the surface

T . They are joined by two perpendicular components of length |A′A| = |BB′| = δh.

If b is the unit vector perpendicular to the plane containing Σ (also shown in Fig-
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ure 4.3), it follows from Stokes’ theorem that∮
Γ

nu · dΓ =
x

Σ

(
∇× nu

)
· b dΣ. (4.4)

The surface integral must be identically zero given (4.2) and properties of vector calculus,

which hold that

∇× nu = ∇×∇S = 0.

Therefore, (4.4) simplifies to ∮
Γ

nu · dΓ = 0. (4.5)

The line integral can be written out in terms of the contributions from each piece of

the curve Γ as∮
Γ

nu · dΓ = nsuin · δ`intin + n`uref · δ`reftref + contributions from the end pieces,

where tin and tref are the unit vectors tangent to their respective sides in the direction

of integration (Figure 4.3). Since this is a dot product, the contribution from the two

perpendicular end pieces approaches zero as δh → 0. Furthermore, in this limiting case

the lengths of the two parallel sides approach a common value δ`in → δ`ref ≡ δ`, and

the two unit tangent vectors are simply given by tin = b× n and tref = −b× n. Thus,

evaluating (4.5) around the entire curve yields∮
Γ

nu · dΓ = nsuin · δ`
(
b× n

)
+ n`uref · δ`

(
− b× n

)
= δ`

(
nsuin − n`uref

)
·
(
b× n

)
= δ`b ·

((
n`uref − nsuin

)
× n

)
= 0,

from which it follows that (
nsuin − n`uref

)
× n = 0. (4.6)

Properties 4.1.1 and 4.1.2 from Section 4.1.2 and Snell’s law all follow from (4.6). We

can immediately see that in order for (4.6) to hold, the incident ray nsuin, the refracted

ray n`uref , and the normal vector n must all lie in the same plane. If we let θin and

θref respectively represent the angles between the normal vector and the incident and
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Figure 4.4: The OPL is the vertical distance between corresponding A-scans.

refracted rays and recall that uin and uref are unit vectors, then we can simplify (4.6) to

get

nsuin × n = n`uref × n

ns
∥∥uin∥∥∥∥n∥∥ sin

(
θin
)

= n`
∥∥uref∥∥∥∥n∥∥ sin

(
θref
)

ns sin
(
θin
)

= n` sin
(
θref
)
.

This is precisely the formula for Snell’s law, given in (4.3).

Furthermore, (4.6) also implies that the tangential component of the ray vector is

the same on both sides of the saline-lens interface. Since the lens has a higher refractive

index than the saline (ns < n`), this means that the component of the refracted ray that

is parallel to n must be larger than the corresponding component of the incident ray.

Therefore, the light ray bends toward the normal vector as it crosses the boundary. For

a convex surface like the front of the aspheric and toric lenses, the net effect is that the

refracted light always bends in the direction of the optical axis.

4.1.4 Path Length

The optical path length (OPL) is the apparent distance between consecutive surfaces

along a given ray vector. As illustrated in Figure 4.4, this is simply the vertical distance
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Figure 4.5: Illustration of optical path length (OPL) versus geometric path length (L)
for a given B-scan. By assumption, the front surface (green) and apparent back surface
(solid blue) are in the same meridional plane as the B-scan, which is defined by the z-axis
and the incident light ray uin. However, the normal vector n may be out-of-plane. The
refracted ray Luref is contained in the plane of incidence formed by uin and n.∗

∗Note that the normal vector at an arbitrary second point on the front surface in the B-scan need
not lie within the particular plane of incidence illustrated in this example. Therefore, the other dewarped
back surface points (represented by the dashed middle curve) may not be contained in the same plane
as the vectors n and uref .

between corresponding surfaces within the same A-scan—i.e., the same horizontal pixel

position in the OCT image.

In terms of the original point cloud data, the OPL between every pair of points(
X, wa

)
and

(
X, wp

)
is the difference

OPL = wa − wp.i

The actual distance traveled by the refracted light ray before it intersects the back surface

(the geometric path length) can be recovered by dividing the OPL by the medium’s

refractive index:

L = OPL/n`.

iRecall from Section 2.3 that we actually divided all the point cloud data by ns in order to correct
the path length for the front surface points, thereby over-correcting the back surface points. Thus, when
calculating the optical path length from the raw data it will also be necessary for us to multiply by ns
to account for this over-correction.
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As discussed in Section 2.2.2, sometimes there is a valid back surface segmentation

result wp at X, but no corresponding front surface point
(
X, wa

)
. For this reason, it is

more robust to calculate the path length using the Zernike interpolated point f
(
X
)

on

the front surface rather than the data point wa.

If we express the lateral coordinate X using Cartesian coordinates, the geometric path

length can also be conceived in terms of the Euclidean distance

L =

√(
x̃− x

)2

+
(
ỹ − y

)2

+
(
z̃ − f

(
x, y
))2

,

where
(
x̃, ỹ, z̃

)
is the (unknown) corrected point of intersection with the back surface of a

light ray crossing the front surface at
(
x, y, f(x, y)

)
. We can express the vector connecting

these two points as

Luref =
〈
x̃− x, ỹ − y, z̃ − f

(
x, y
)〉
. (4.7)

(For the 2D algorithm in Section 4.2.1, we use the 2D analog for L and uref .)

The relationship between the optical path length and the geometric path length is

illustrated in Figure 4.5, which depicts the front surface and apparent back surface as

they would appear according to one 2D frame of point cloud data. While the incident ray

uin is assumed to be parallel to the CT axis, the surface normal vector n—and therefore

the corrected back surface point
(
x̃, ỹ, z̃

)
—may not lie within the meridional plane of the

B-scan.

4.2 Refraction Correction

4.2.1 Dewarping in 2D

Before we develop the 3D algorithm (detailed in Section 4.2.2), we will first consider the

case where refraction correction is performed in 2D using meridional planes determined

by the original sampling pattern (i.e., the B-scans).

Without loss of generality, we can choose to model the front surface of the lens by
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Figure 4.6: Geometry of the angle of incidence θin for a 2D surface.

fitting the point cloud data for each frame to the N th-degree polynomial

p
(
x
)

=
N∑
k=0

ckx
k.ii

For a telecentriciii incident light ray uin = −ey =
〈
0,−1

〉
, the angle of incidence θin

is congruent with the angle between the x-axis and the tangent vector at the point of

incidence

t =
〈
1, p′

(
x
)〉
.

(This follows from some straightforward geometry, illustrated in Figure 4.6.) Thus, θin is

related to the derivative at x according to

tan
(
θin
)

= −p′
(
x
)
, −π

2
≤ θin ≤

π

2
. (4.8)

We use −p′
(
x
)

rather than p′
(
x
)

in order to preserve the convention that angles measured

in the counter-clockwise direction starting from the normal vector are positive, whereas

angles measured in the clockwise direction are negative. This means that θin will have

iiThere are numerous other equally suitable models. However, this is the method currently used by
Leica Microsystems (with N = 20).

iiiIn R2, we let the CT axis define the y-axis of the system rather than the z-axis.
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Figure 4.7: Decomposition of refracted light ray Luref into x- and y-components.

the opposite sign from p′(x).

The angle of refraction can be determined by substituting (4.8) into (4.3), yielding

sin
(
θref
)

=
ns
n`

sin
(
θin
)

= −ns
n`

p′
(
x
)√

1 + p′
(
x
)2
, −π

2
≤ θref ≤

π

2
. (4.9)

Since ns < n`, we can see from (4.8–4.9) that

∣∣ sin (θref)∣∣ < ∣∣ sin (θin)∣∣ ≤ 1,

and that θref must have the same sign as θin. This implies that

∣∣θref ∣∣ < ∣∣θin∣∣ ≤ π

2
, where 0 ≤

(
θref
)(
θin
)
. (4.10)

As explained in Section 4.1.4, the refracted light ray uref travels a distance L = OPL
n`

before crossing the lower surface, where the OPL is determined directly from the original

point cloud data. Projections of Luref onto the y- and x-axis (illustrated in Figure 4.7)
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are respectively given by

∆y = L cos
(
θin − θref

)
(4.11a)

∆x = L sin
(
θin − θref

)
. (4.11b)

Note that when the normal vector is parallel to the z-axis (e.g., at the vertex of the

lens), the slope of the tangent to the front surface is p′(x) = 0, so θin = θref = 0. In this

situation, (4.11) yields ∆y = L and ∆x = 0—that is, the y-coordinate is simply given by

p
(
x
)
−∆y = p

(
x
)
− L and the x-coordinate does not require a correction at all. In fact,

(4.10) implies that ∣∣θin − θref ∣∣ < π

2
,

so 0 < cos
(
θin− θref

)
≤ 1 everywhere and ∆y will therefore always be positive. Since we

know that the back surface is always located below the front surface, it is safe to assume

that the refraction-corrected y-coordinate is always given by p
(
x
)
−∆y.

In Section 4.1.3 we noted that in this particular application—e.g., a lens with a

convex front surface and a refractive index greater than that of the medium in which

it is suspended—the refracted light ray will always bend in the direction of the optical

axis. Specifically, when p′(x) is positive (as in the case depicted in Figure 4.7), the true

x-coordinate will actually be larger than the apparent value, while the opposite will be

true when p′(x) is negative. Based on our observations earlier in this section, we can

conclude that

p′
(
x
)
> 0 ⇐⇒ θin − θref ∈

(
− π

2 , 0
)
⇐⇒ sin

(
θin − θref

)
∈
(
− 1, 0

)
⇐⇒ ∆x < 0,

p′
(
x
)
< 0 ⇐⇒ θin − θref ∈

(
0, π2

)
⇐⇒ sin

(
θin − θref

)
∈
(
0, 1
)

⇐⇒ ∆x > 0.

In other words, ∆x will be positive when the derivative is negative, and negative when

the derivative is positive. Therefore, the refraction-corrected coordinates
(
x̃, z̃
)

of the

back surface are given by

z̃ = p
(
x
)
− L cos

(
θin − θref

)
x̃ = x− L sin

(
θin − θref

)
.

We can also rewrite the cosine and sine in terms of p′(x) and simplify the result using
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trigonometric properties to get

cos
(
θin − θref

)
=

1

1 + p′
(
x
)2

(√
1 +

(
1− n2

s

n2
`

)
p′
(
x
)2

+

(
ns
n`

)
p′
(
x
)2

)

sin
(
θin − θref

)
= −

p′
(
x
)

1 + p′
(
x
)2

(√
1 +

(
1− n2

s

n2
`

)
p′
(
x
)2 − ns

n`

)
.

Once again, we use the fact that ns < n` to deduce that a) cos
(
θin−θref

)
will be strictly

positive for all values of p′
(
x
)
, and b) sgn

(
sin(θin − θref )

)
= − sgn

(
p′(x)

)
.

In summary, the 2D dewarping algorithm asserts that the refraction-corrected coordi-

nates
(
x̃, z̃
)

of the back lens surface for each A-scan can be computed explicitly in terms

of known quantities

x̃ = x + L

p′
(
x
)(√

1 +
(

1− n2
s

n2
`

)
p′
(
x
)2 − ns

n`

)
1 + p′

(
x
)2 (4.12a)

z̃ = p
(
x
)
− L

√
1 +

(
1− n2

s

n2
`

)
p′
(
x
)2

+
(
ns

n`

)
p′
(
x
)2

1 + p′
(
x
)2 , (4.12b)

where L = OPL
n`

is the geometric path length in the direction of the refracted light ray

between the point of incidence
(
x, p(x)

)
and the lower surface (described in Section 4.1.4).

4.2.2 Dewarping in 3D

The main problem with the 2D refraction correction algorithm in Section 4.2.1 is that it

relies on the assumption that the normal vector n lies in the meridional plane. However,

this is only true for surfaces that are symmetric with respect to reflection across an

arbitrary plane through the z-axis (i.e., a surface that does not require odd Zernike

polynomials to fit). Even when imaging a surface that does meet this condition, it can

be virtually impossible to ensure that the CT-axis and optical axis are perfectly aligned,

and small manufacturing defects may cause non-trivial local deviations in the surface

gradient. Thus, we want a general algorithm that will account for refraction in three

dimensions. We have chosen to use the forward ray tracing method proposed by Zhao et
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al. in [110].

To motivate the 3D algorithm, it is more straightforward to return to the vector

notation from Section 4.1. If z = f
(
x, y
)

is the Zernike representation of the top surface,

then the upward-pointing unit normal at some incident point
(
x, y, z

)
=
(
x, y, f(x, y)

)
is

given by

n =
∇
(
z − f

(
x, y
))∣∣∣∇(z − f(x, y))∣∣∣ =

〈
− fx,−fy, 1

〉√
f 2
x + f 2

y + 1
, (4.13)

where fx ≡ fx
(
x, y
)

and fy ≡ fy
(
x, y
)

denote the x and y partial derivatives of f
(
x, y
)
,

evaluated at the point of incidence. Recall that the incident light ray is taken to be

antiparallel to the z-axis, so the corresponding unit vector is given by

uin = −ez =
〈
0, 0,−1

〉
. (4.14)

The corrected z-coordinate for the 3D case can be determined in the same manner

as the y-coordinate in the 2D case (where the incident light ray pointed in the nega-

tive y-direction). Using a similar argument to the one in Section 4.2.1, the true vertical

coordinate for the back surface is given by

z̃ = f
(
x, y
)
−∆z, (4.15a)

where ∆z is the projection of Luref along the vertical axis

∆z = L cos
(
θin − θref

)
. (4.15b)

The 3D case is illustrated in Figure 4.8 (recall that the plane of the image may not

correspond to any of the original B-scans).

To find the angle of incidence, we use the definition of the angle between the two unit

vectors in (4.13–4.14):

cos
(
θin
)

= n · −uin = n · ez =
1√

f 2
x + f 2

y + 1
.
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f(x, y)
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x, y, f(x, y)

)

(x̃, ỹ, z̃)

Front

Back
(dewarped)

z

Figure 4.8: Projection of the refracted light ray uref onto the z-axis in R3. In this case
the normal vector n is not assumed to lie in the meridional plane. Therefore, uref lies
in the plane of incidence (determined by n and uin), so both θin and θref must also be
measured in the plane of incidence.

The angle of refraction is once again given by Snell’s law

sin
(
θref
)

=
ns
n`

sin
(
θin
)

=
ns
n`

√
f 2
x + f 2

y

f 2
x + f 2

y + 1
.

We can now rewrite cos
(
θin − θref

)
explicitly in terms of known quantities using the

same trigonometric properties we employed in Section 4.2.1. The cosine of the difference

becomes

cos
(
θin − θref

)
=

√
1 +

(
1− n2

s

n2
`

)(
f 2
x + f 2

y

)
+ ns

n`

(
f 2
x + f 2

y

)
1 + f 2

x + f 2
y

, (4.15c)

which we can once again see will be strictly positive for ns > n`.

To find the corrected values x̃ and ỹ, we refer back to (4.6). The normal and incident

vectors n and uin are given by (4.13–4.14), while the unit vector for the refracted ray,

uref =
1

L

〈
x̃− x, ỹ − y, z̃ − f

(
x, y
)〉
, (4.16)
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can be obtained from (4.16). Substituting these into (4.6) yields

(
ns
〈
0, 0,−1

〉
− n`
L

〈
x̃− x, ỹ − y, z̃ − f

(
x, y
)〉)
×
〈
− fx,−fy, 1

〉√
f 2
x + f 2

y + 1
= 0.

The first two components of the cross product provide equations for the corrected x- and

y-coordinates (the third simply yields an identity):

x̃ = x+ fx

(
f(x, y)− z̃ − ns

n`
L

)
ỹ = y + fy

(
f(x, y)− z̃ − ns

n`
L

)
.

This can be written explicitly in terms of known quantities by substituting ∆z = f
(
x, y
)
−

z̃ and using (4.15) to simplify the result. The corrected coordinates
(
x̃, ỹ, z̃

)
for the back

surface are thus given by the system

x̃ = x + L

fx

(√
1 +

(
1− n2

s

n2
`

)(
f 2
x + f 2

y

)
− ns

n`

)
1 + f 2

x + f 2
y

(4.17a)

ỹ = y + L

fy

(√
1 +

(
1− n2

s

n2
`

)(
f 2
x + f 2

y

)
− ns

n`

)
1 + f 2

x + f 2
y

(4.17b)

z̃ = f
(
x, y
)
− L

√
1 +

(
1− n2

s

n2
`

)(
f 2
x + f 2

y

)
+ ns

n`

(
f 2
x + f 2

y

)
1 + f 2

x + f 2
y

, (4.17c)

where L is once again the geometric path length between the two surfaces corresponding

to the point of incidence
(
x, y, f(x, y)

)
.

Furthermore, substituting the results of (4.17) into (4.16) also allows us to directly

calculate the components of the refracted ray vector

uref =

uxuy
uz

 =

√
1 +

(
1− n2

s

n2
`

)(
f 2
x + f 2

y

)
1 + f 2

x + f 2
y

 fx

fy

−1

− ns

n`

1 + f 2
x + f 2

y

 fx

fy

f 2
x + f 2

y

 . (4.18)

This result will be useful in the next section.
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4.3 Synthetic Data for Two-Surface Model

To model refraction in our synthetic data, we modified the protocol described in Sec-

tion 3.2 by adding refraction effects to the back surface. In this chapter, the design

equations for the front and back surfaces—za
(
x, y
)

and zp
(
x, y
)
, respectively—have been

translated vertically to produce a center thickness of tc, with an additional vertical trans-

lation δh that ensures za, zp > 0 everywhere and aligns the synthetic data with the real

data for the sake of visual comparison.

Once again, parameter values for the lenses can be found in Tables 2.2–2.3. The values

of the refractive indices ns and n` are specified in Table 2.4.

Aspheric Lens

Design equations for the front and back surfaces of the aspheric lens correspond to

those of Surfaces 1 and 2 in Section 3.2. For simplicity, we have rewritten the original

equations in terms of Cartesian coordinates:

za
(
x, y
)

= δh−
x2+y2

Ra

1 +

√
1−

(
1 + κ

)(x2+y2

R2
a

) − a4

(
x2 + y2

)2 − a6

(
x2 + y2

)3
−a8

(
x2 + y2

)4 − a10

(
x2 + y2

)5
,

(4.19a)

zp
(
x, y
)

= δh− tc, (4.19b)

where
√
x2 + y2 ≤ A = 7.5 mm for both surfaces. The vertical translation constant

used for the aspheric lens data was δh ≈ 5.1 mm.

Toric Lens

The front and back surfaces of the toric lens correspond to Surfaces 3 and 4 in Sec-

tion 3.2:

za
(
x, y
)

=δh−Ra+
√
R2
a−x2−y2,

√
x2+y2≤A=7 mm, (4.20a)

zp
(
x, y
)

=δh−Rp1−tc+
√(

Rp1−Rp2+
√
R2
p1−y2

)2
−x2,

√
x2+y2≤A≈6.57 mm. (4.20b)

For the toric lens data, we used δh ≈ 5.7 mm as the vertical translation constant.

Synthetic data for the front surface is obtained in the same manner as before, by sampling

the design equation at all the points
(
x, y
)
∈ SA ⊂ S. Thus, the front surface data points
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are simply the values
(
x, y, wa

)
where

wa = za
(
x, y
)
. (4.21a)

To construct synthetic data for the back surface we must first determine the distance L

between the two surfaces along each refracted light ray. The warped synthetic data point(
x, y, wp

)
is then obtained by subtracting the OPL from the z-coordinate of the front

surface

wp = wa −OPL = wa − n`L.iv (4.21b)

Quantization error is a measurement error, so we simulate this effect last (in the manner

described in Section 2.4.1).v

Note that (4.17) is the parametric equation for a line through the point
(
x, y, wa

)
,

with direction determined by uref =
〈
ux, uy, uz

〉
. We also know from (4.18) that the

components of uref can be determined explicitly in terms of the refractive indices and

the design equation for the front surface. If
(
x̃, ỹ, zp(x̃, ỹ)

)
indicates the refracted ray’s

true point of intersection with the back surface, then (4.17–4.18) yield the system

x̃ = x + Lux (4.22a)

ỹ = y + Luy (4.22b)

zp
(
x̃, ỹ
)

= wa − Luz, (4.22c)

whereuxuy
uz

 =

√
1+

(
1−n2

s
n2
`

)(
(za)2x+(za)2y

)
1+(za)2x+(za)2y

(za)x
(za)y
−1

− ns
n`

1+(za)2x+(za)2y

 (za)x
(za)y

(za)2
x + (za)2

y

 . (4.23)

As before, (za)x and (za)y denote the partial derivatives of the front surface evaluated

at the point of incidence. If we substitute (4.22a–4.22b) into (4.22c), we see that the

ivIn our data, the vertical alignment of the front surface is already scaled to account for the OPL
within saline, so we actually want to overcorrect the OPL for the back surface by a factor of 1

ns
for our

synthetic data in order to be consistent. The point cloud data shown in Figures 4.9–4.10 were obtained
using OPL = n`

ns
L.

vSince we are overcorrecting the OPL for the back surface, we use the adjusted pixel spacing ∆z

ns
=

∆′z = 5.6× 10−3 mm.
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Figure 4.9: Real point cloud data from OCT of the aspheric lens versus synthetic point
cloud data generated from the design equations (4.19).
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Figure 4.10: Real point cloud data from OCT of the toric lens versus synthetic point
cloud data generated from the design equations (4.20).
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geometric path length is the smallest value of L > 0 that satisfies

zp
(
x+ Lux, y + Luy

)
= wa + Luz, (4.24)

where
(
x, y, wa

)
is the point of incidence on the front surface, zp

(
x, y
)

is the design

equation of the back surface, and ux, uy, uz are given by (4.23).

When the back surface is a flat plane such that zp = C (as is the case for the aspheric

lens), the path length is independent of x̃ and ỹ and we can calculate L directly:

L =
wa − C
uz

. (4.25)

Figure 4.9 shows synthetic point cloud data for the aspheric lens using (4.19), (4.21),

and (4.25). For comparison, the figure also includes real point cloud data from an OCT

image of the aspheric lens before dewarping.

Solving (4.24) for an arbitrary lower surface (e.g., the back of the toric lens) will

generally involve a nonlinear system of equations. In this case, we can reformulate the

problem so that L is the smallest positive root of the function

F
(
L
)

= wa + Luz − zp
(
x+ Lux, y + Luy

)
= 0. (4.26)

This problem can now be solved using an iterative root-finding algorithm with an intelli-

gent initial guess, such as L0 = wa−zp
(
x, y
)
. The synthetic data for the toric lens shown

in Figure 4.10 was constructed in MATLAB using the vectorized Newton-Armijo solver

nsold.m, written by C.T. Kelley [43]. Given the shape of the lens and the assumed angle

of incidence, every A-scan is guaranteed to intersect the back surface somewhere, so we

did not have to consider cases where (4.26) might not have a solution.

4.4 Validation of Two-Surface Model

When we explored the accuracy of Zernike polynomial fitting for the flat plane and toric

cap in Chapter 3 (Surfaces 2 and 4), we assumed we had access to data for these two

surfaces that was uncorrupted by refraction effects. In this section, we will take another

look at the quantities of interest we considered in Section 3.5, only now we will consider

both the front and back surfaces in our lens model. The 3D fitting protocol for the full
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two-surface model can be summarized as follows:

1. Find geometric path length corresponding to all points on the back surface (see

Section 4.1.4).

2. Fit front surface data to the Zernike model fa
(
x, y
)

= fNa

(
r, θ
)

(where Na is the

Zernike order) using the method described in Chapter 3.

3. Use centered finite differences to calculate partial derivatives

fax
(
x, y
)
≈ fa(x+h,y)−fa(x−h,y)

2h

fay
(
x, y
)
≈ fa(x,y+h)−fa(x,y−h)

2h

(4.27)

at every grid point
(
x, y
)

=
(
ρ cos θ, ρ sin θ

)
.

4. Find corrected coordinates for all back surface points via the 3D dewarping algo-

rithm (4.17).

5. Perform a separate Zernike fit fp
(
x, y
)

= fNp

(
r, θ
)

to dewarped back surface points(
x̃, ỹ, z̃

)
.vi.

The Zernike models for both surfaces are then used to calculate the meridional curvature

and principal curvatures using the same methods described in Chapter 3.

The lens data we constructed in Section 4.3 provides a synthetic data set we can

use for validation before testing this protocol on real OCT data in Chapter 5. We have

already validated Step 2 for the front lens surfaces (Surfaces 1 and 3) in Section 3.5, so

this chapter will look specifically at how the protocol affects the surface fit and curvature

results for the back lens surface.

4.4.1 Dewarping Step

To control for the modeling and discretization errors introduced in Steps 2 and 3, we will

first consider the results when Steps 1, 4, and 5 are performed using analytic values for

the front surface. That is, the path length will be given by

L = za
(
x, y
)
− wp,

viSince the Zernike fit is only defined on the unit disk, it is necessary to use only the points that fall
within the appropriate radius A (i.e.,

√
x̃2 + ỹ2 ≤ A).
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Figure 4.11: Average error in the Zernike fit for the back of the aspheric lens (a) without
warping and (b) after dewarping using front surface design equation.
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Figure 4.12: Average error in the Zernike fit for the back of the toric lens (a) without
warping and (b) after dewarping using front surface design equation.

and the partial derivatives used in (4.17) are calculated by differentiating (4.19a) and

(4.20a) directly. In this case, the mean absolute value of the error introduced into the path

length for the quantized back surface data—given by 1
s

∑s
i=1 |Li−L∗i |—is approximately

1.16 × 10−3 mm for the aspheric lens and 1.25 × 10−3 mm for the toric lens. (Recall

from Chapter 3 that the mean absolute value of the quantization error in the synthetic

data for Surfaces 2 and 4 were 1
s

∑s
i=1 |zi − z∗i | ≈ 1.7× 10−3 mm and ≈ 1.4× 10−3 mm,

respectively.) Figures 4.11–4.14 show the mean absolute error in surface fit (e, e∗) and

curvature (ek, e
∗
k) for Zernike fits of different orders to the back surfaces of both lenses,

after dewarping has been performed in this manner. For comparison, these results are
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Figure 4.13: Average error in curvature for the back of the aspheric lens (a) without
warping and (b) after dewarping using front surface design equation.
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Figure 4.14: Average error in curvature for the back of the toric lens (a) without warping
and (b) after dewarping using front surface design equation.

shown alongside the corresponding results from Chapter 3 in which the synthetic data did

not include any refraction effects. Both sets of results are also summarized in Tables 4.1–

4.2.

It is clear from this analysis that the dewarping step itself does not contribute addi-

tional surface error for either the quantized or non-quantized synthetic data. In fact, the

surface error for the quantized aspheric lens data is even slightly mitigated by placing it

in the context of the two surface model. On the other hand, while the average curvature

error is largely unaffected by dewarping for both non-quantized data sets—as well as the

quantized toric lens data—the curvature error in the quantized aspheric lens is greatly
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Table 4.1: MAE fit to the back surfaces (in mm) with no refraction effects versus MAE
when dewarping is done using exact values for the front surface gradient.

Aspheric Lens

e e∗

Np No warping Dewarped No warping Dewarped

0 8.7×10−15 4.2×10−14 1.7×10−3 8.4×10−6

1 8.7×10−15 4.2×10−14 1.7×10−3 8.4×10−6

2 4.9×10−14 1.5×10−14 1.7×10−3 8.9×10−5

3 5.6×10−15 1.4×10−14 1.7×10−3 8.9×10−5

4 4.5×10−14 8.3×10−15 1.7×10−3 1.0×10−4

5 3.2×10−14 7.8×10−15 1.7×10−3 1.0×10−4

6 4.2×10−14 8.4×10−15 1.7×10−3 1.2×10−4

7 4.0×10−14 1.7×10−14 1.7×10−3 1.2×10−4

8 2.8×10−14 7.5×10−15 1.7×10−3 1.2×10−4

9 2.8×10−14 6.9×10−15 1.7×10−3 1.2×10−4

10 1.2×10−14 3.1×10−14 1.7×10−3 1.5×10−4

11 1.8×10−14 3.1×10−14 1.7×10−3 1.5×10−4

12 1.3×10−14 6.9×10−15 1.7×10−3 1.5×10−4

13 1.2×10−14 5.0×10−15 1.7×10−3 1.5×10−4

14 1.9×10−14 6.8×10−15 1.7×10−3 1.6×10−4

15 2.3×10−14 7.0×10−15 1.7×10−3 1.6×10−4

16 2.3×10−14 4.3×10−15 1.7×10−3 1.5×10−4

17 1.9×10−14 5.1×10−15 1.7×10−3 1.5×10−4

18 9.6×10−15 9.5×10−15 1.7×10−3 1.5×10−4

19 9.8×10−15 9.6×10−15 1.7×10−3 1.5×10−4

20 4.3×10−15 2.1×10−15 1.7×10−3 2.0×10−4

Toric Lens

e e∗

Np No warping Dewarped No warping Dewarped

0 7.2×10−1 7.1×10−1 7.2×10−1 7.1×10−1

1 7.2×10−1 7.1×10−1 7.2×10−1 7.1×10−1

2 3.5×10−2 3.4×10−2 3.5×10−2 3.4×10−2

3 3.5×10−2 3.4×10−2 3.5×10−2 3.4×10−2

4 3.5×10−3 3.3×10−3 3.5×10−3 3.3×10−3

5 3.5×10−3 3.3×10−3 3.5×10−3 3.3×10−3

6 4.4×10−4 4.0×10−4 4.4×10−4 4.0×10−4

7 4.4×10−4 4.0×10−4 4.4×10−4 4.0×10−4

8 6.3×10−5 5.5×10−5 6.7×10−5 8.1×10−5

9 6.3×10−5 5.5×10−5 6.7×10−5 8.1×10−5

10 9.8×10−6 8.5×10−6 3.1×10−5 4.7×10−5

11 9.8×10−6 8.5×10−6 3.1×10−5 4.7×10−5

12 1.6×10−6 1.4×10−6 3.4×10−5 5.4×10−5

13 1.6×10−6 1.4×10−6 3.4×10−5 5.4×10−5

14 2.8×10−7 2.4×10−7 3.6×10−5 6.5×10−5

15 2.8×10−7 2.4×10−7 3.6×10−5 6.5×10−5

16 5.0×10−8 4.5×10−8 4.1×10−5 6.9×10−5

17 5.0×10−8 4.5×10−8 4.1×10−5 6.9×10−5

18 9.1×10−9 8.7×10−9 4.4×10−5 7.5×10−5

19 9.1×10−9 8.7×10−9 4.4×10−5 7.5×10−5

20 1.7×10−9 1.8×10−9 4.6×10−5 8.2×10−5

Table 4.2: MAE in curvature (in mm−1) for the back surfaces without refraction effects
and using exact gradient values for dewarping.

Aspheric Lens

ek e∗k
Np No warping Dewarped No warping Dewarped

0 0.0 0.0 0.0 0.0
1 3.7×10−15 1.8×10−13 3.1×10−14 6.0×10−15

2 2.3×10−12 2.0×10−12 1.9×10−12 1.3×10−5

3 6.8×10−13 1.7×10−12 5.5×10−13 1.3×10−5

4 2.8×10−12 1.3×10−12 2.6×10−12 4.0×10−5

5 2.7×10−12 1.6×10−12 2.4×10−12 4.0×10−5

6 3.4×10−12 2.6×10−12 3.5×10−12 1.9×10−4

7 3.9×10−12 2.8×10−12 3.9×10−12 1.9×10−4

8 4.1×10−12 2.5×10−12 3.4×10−12 1.7×10−4

9 4.5×10−12 2.7×10−12 3.8×10−12 1.7×10−4

10 3.5×10−12 4.2×10−12 3.6×10−12 1.1×10−3

11 4.1×10−12 4.7×10−12 4.3×10−12 1.1×10−3

12 4.0×10−12 4.5×10−12 4.6×10−12 5.0×10−4

13 2.9×10−12 4.4×10−12 5.1×10−12 5.0×10−4

14 4.7×10−12 5.8×10−12 4.5×10−12 1.8×10−3

15 4.7×10−12 6.3×10−12 4.7×10−12 1.8×10−3

16 6.2×10−12 5.6×10−12 5.9×10−12 4.0×10−3

17 6.3×10−12 7.8×10−12 5.6×10−12 4.0×10−3

18 5.4×10−12 1.1×10−11 7.8×10−12 1.1×10−3

19 5.9×10−12 1.2×10−11 7.9×10−12 1.1×10−3

20 5.0×10−12 7.1×10−12 6.6×10−12 1.3×10−2

Toric Lens

ek e∗k
Np No warping Dewarped No warping Dewarped

0 1.1×10−1 1.1×10−1 1.1×10−1 1.1×10−1

1 1.1×10−1 1.1×10−1 1.1×10−1 1.1×10−1

2 2.2×10−2 2.2×10−2 2.2×10−2 2.2×10−2

3 2.2×10−2 2.2×10−2 2.2×10−2 2.2×10−2

4 5.5×10−3 5.5×10−3 5.5×10−3 5.5×10−3

5 5.5×10−3 5.5×10−3 5.5×10−3 5.5×10−3

6 1.3×10−3 1.4×10−3 1.3×10−3 1.4×10−3

7 1.3×10−3 1.4×10−3 1.3×10−3 1.4×10−3

8 3.2×10−4 3.3×10−4 3.2×10−4 3.5×10−4

9 3.2×10−4 3.3×10−4 3.2×10−4 3.5×10−4

10 7.4×10−5 8.3×10−5 9.5×10−5 1.0×10−4

11 7.4×10−5 8.3×10−5 9.5×10−5 1.0×10−4

12 1.7×10−5 2.1×10−5 1.0×10−4 2.0×10−4

13 1.7×10−5 2.1×10−5 1.0×10−4 2.0×10−4

14 3.9×10−6 5.3×10−6 1.4×10−4 4.7×10−4

15 3.9×10−6 5.3×10−6 1.4×10−4 4.7×10−4

16 8.8×10−7 1.4×10−6 2.6×10−4 5.1×10−4

17 8.8×10−7 1.4×10−6 2.6×10−4 5.1×10−4

18 2.0×10−7 3.7×10−7 3.5×10−4 9.7×10−4

19 2.0×10−7 3.7×10−7 3.5×10−4 9.7×10−4

20 4.9×10−8 1.1×10−7 3.8×10−4 1.1×10−3
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increased for Np > 1. However, it is also important to note that this new curvature error

is roughly on the same order as the curvature error in the quantized toric lens data.

Therefore, while it appears that dewarping may have a non-trivial impact on the results

of the curvature calculation, there is no reason to believe that the net model error will

be worse for any particular surface shape.

Comparisons of the absolute error (with and without warping) in the estimates for

Rp1 and Rp2 for the toric lens are shown in Figure 4.15, with Table 4.3 providing a

full summary of the principal radius of curvature. Once again, the results for both non-

quantized and quantized data are very similar to the results from Chapter 3. However,

note that the errors in R̂∗p1 and R̂∗p2 for the 14th order Zernike fit are no longer below the

0.025 mm tolerance for Type A opthalmometers mentioned in Section 3.6. This suggests

that the propagation of error through the dewarping step will be an influential factor in

determining the appropriate Zernike order for the back surface curvature calculation.

Since the back surface of the aspheric lens is flat, the true radius of curvature ev-

erywhere is infinite, so measures of the error in its principal radius of curvature are

meaningless. As with the unwarped synthetic data in Chapter 3, when there is no pixel

quantization in the data, the error in the principal curvature (Kp = 0 mm−1) after de-

warping is zero regardless of which Zernike order we use. While this was also true in

Chapter 3 for the quantized synthetic data, it is no longer the case after dewarping (with

the obvious exceptions of Np ∈
{

0, 1
}

). In other words, the dewarping algorithm does

not create error at the vertex for the flat surface, but it does permit the amplification of

existing noise. Figure 4.16 depicts the absolute error in the principal curvature K̂∗p for

the aspheric lens, alongside the error in K̂∗p1 and K̂∗p2 for the toric lens after dewarping

(Kp1 = 1
Rp2
≈ 0.1190 mm−1 and Kp2 = 1

Rp1
≈ 0.1086 mm−1, respectively). Once again,

this figure illustrates that even in the worst case the curvature error in the aspheric lens

is on roughly the same order as the error in the toric lens.

4.4.2 Front Surface Partial Derivatives

Clearly the discretization error from using the finite difference method (4.27) to calculate

the front surface partial derivatives will affect the accuracy of the refraction-corrected

coordinates for the back surface. We can quantify the error in the partial derivatives

fax
(
x, y
)

and fay
(
x, y
)

in a similar manner to the curvature error (3.20) in Section 3.5.4. If

s is the number of sample points and b is the number of B-scans, then the mean absolute
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Figure 4.15: Absolute error in the estimates of Rp1 (top) and Rp2 (bottom) for the toric
lens (a) without warping and (b) after dewarping using front surface design equation.
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tized data after dewarping using front surface design equation.
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Table 4.3: Principal radius of curvature estimates (in mm) for the back surface of the
toric lens, with and without refraction effects.

No warping (Rp1 = 9.2 mm)

Np R̂p1
∣∣R̂p1−Rp1 ∣∣ R̂∗p1

∣∣R̂∗p1−Rp1∣∣
2 8.044 1.2 8.045 1.2
3 8.044 1.2 8.045 1.2
4 9.453 2.5×10−1 9.453 2.5×10−1

5 9.453 2.5×10−1 9.453 2.5×10−1

6 9.153 4.7×10−2 9.153 4.7×10−2

7 9.153 4.7×10−2 9.153 4.7×10−2

8 9.209 8.9×10−3 9.206 6.3×10−3

9 9.209 8.9×10−3 9.206 6.3×10−3

10 9.198 1.7×10−3 9.196 3.8×10−3

11 9.198 1.7×10−3 9.196 3.8×10−3

12 9.200 3.1×10−4 9.199 1.2×10−3

13 9.200 3.1×10−4 9.199 1.2×10−3

14 9.200 5.7×10−5 9.204 4.4×10−3

15 9.200 5.7×10−5 9.204 4.4×10−3

16 9.200 8.7×10−6 9.217 1.7×10−2

17 9.200 8.7×10−6 9.217 1.7×10−2

18 9.200 2.9×10−6 9.217 1.7×10−2

19 9.200 2.9×10−6 9.217 1.7×10−2

20 9.200 9.0×10−7 9.218 1.8×10−2

Dewarped (Rp1 = 9.2 mm)

Np R̂p1
∣∣R̂p1−Rp1 ∣∣ R̂∗p1

∣∣R̂∗p1−Rp1∣∣
2 8.093 1.1 8.092 1.1
3 8.093 1.1 8.092 1.1
4 9.429 2.3×10−1 9.428 2.3×10−1

5 9.429 2.3×10−1 9.428 2.3×10−1

6 9.160 4.0×10−2 9.154 4.6×10−2

7 9.160 4.0×10−2 9.154 4.6×10−2

8 9.207 7.4×10−3 9.198 1.6×10−3

9 9.207 7.4×10−3 9.198 1.6×10−3

10 9.199 1.3×10−3 9.184 1.6×10−2

11 9.199 1.3×10−3 9.184 1.6×10−2

12 9.200 2.3×10−4 9.178 2.2×10−2

13 9.200 2.3×10−4 9.178 2.2×10−2

14 9.200 4.2×10−5 9.162 3.8×10−2

15 9.200 4.2×10−5 9.162 3.8×10−2

16 9.200 5.9×10−6 9.152 4.8×10−2

17 9.200 5.9×10−6 9.152 4.8×10−2

18 9.200 2.4×10−6 9.121 7.9×10−2

19 9.200 2.4×10−6 9.121 7.9×10−2

20 9.200 9.7×10−7 9.099 1.0×10−1

No warping (Rp2 = 8.4 mm)

Np R̂p2
∣∣R̂p2−Rp2 ∣∣ R̂∗p2

∣∣R̂∗p2−Rp2∣∣
2 7.161 1.2 7.160 1.2
3 7.161 1.2 7.160 1.2
4 8.739 3.4×10−1 8.739 3.4×10−1

5 8.739 3.4×10−1 8.739 3.4×10−1

6 8.326 7.4×10−2 8.326 7.4×10−2

7 8.326 7.4×10−2 8.326 7.4×10−2

8 8.417 1.7×10−2 8.418 1.8×10−2

9 8.417 1.7×10−2 8.418 1.8×10−2

10 8.396 4.0×10−3 8.395 4.6×10−3

11 8.396 4.0×10−3 8.395 4.6×10−3

12 8.401 9.1×10−4 8.395 5.1×10−3

13 8.401 9.1×10−4 8.395 5.1×10−3

14 8.400 2.1×10−4 8.396 3.8×10−3

15 8.400 2.1×10−4 8.396 3.8×10−3

16 8.400 4.6×10−5 8.405 5.4×10−3

17 8.400 4.6×10−5 8.405 5.4×10−3

18 8.400 1.2×10−5 8.389 1.1×10−2

19 8.400 1.2×10−5 8.389 1.1×10−2

20 8.400 1.2×10−6 8.392 7.7×10−3

Dewarped (Rp2 = 8.4 mm)

Np R̂p2
∣∣R̂p2−Rp2 ∣∣ R̂∗p2

∣∣R̂∗p2−Rp2∣∣
2 7.226 1.2 7.225 1.2
3 7.226 1.2 7.225 1.2
4 8.697 3.0×10−1 8.695 3.0×10−1

5 8.697 3.0×10−1 8.695 3.0×10−1

6 8.339 6.1×10−2 8.337 6.3×10−2

7 8.339 6.1×10−2 8.337 6.3×10−2

8 8.413 1.3×10−2 8.409 8.5×10−3

9 8.413 1.3×10−2 8.409 8.5×10−3

10 8.397 2.9×10−3 8.387 1.3×10−2

11 8.397 2.9×10−3 8.387 1.3×10−2

12 8.401 6.1×10−4 8.384 1.6×10−2

13 8.401 6.1×10−4 8.384 1.6×10−2

14 8.400 1.3×10−4 8.368 3.2×10−2

15 8.400 1.3×10−4 8.368 3.2×10−2

16 8.300 2.6×10−5 8.355 4.5×10−2

17 8.400 2.6×10−5 8.355 4.5×10−2

18 8.300 7.2×10−6 8.347 5.3×10−2

19 8.400 7.2×10−6 8.347 5.3×10−2

20 8.400 3.5×10−8 8.335 6.5×10−2
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Figure 4.17: MAE in front surface partial derivatives for the (a) aspheric lens and (b)
toric lens. (Due to symmetry, the average error is the same for both partial derivatives.)

error in the x and y partial derivatives for the front surface are given by

ex =
1

s− 2b

s∑
i

∣∣∣∣fax (Xi)−
∂za(Xi)

∂x

∣∣∣∣ , ey =
1

s− 2b

s∑
i

∣∣∣∣fay (Xi, c)−
∂za(Xi)

∂y

∣∣∣∣ , (4.28)

where X =
(
x, y
)

and ∂za(Xi)
∂x

and ∂za(Xi)
∂y

are the analytic derivatives of the design equa-

tions (4.19a) and (4.20a).

Note that the symmetry of both front surfaces means that ex = ey, so we do not need

to look at both errors separately to see how the Zernike order affects the estimate of the

partial derivatives. Figure 4.17 shows the error from (4.28) when the finite differences

are calculated using a scaled step size of h = 10−3. (As with the curvature, the partial

derivatives are not particularly sensitive to the step size.) It is interesting to see that the

error in partial derivatives follows a very similar trend to the curvature error we found

in Section 3.5.4 (Figure 4.17), likely due to the similar discretization methods used to

obtain the related values.

4.4.3 Full Implementation

In Section 4.4.1, we saw that when exact values for the front surface and front surface

derivatives are used in the dewarping algorithm, the results for the non-quantized data

after dewarping are very similar to the ones we obtained when we were not considering

warping at all. This implies that the algorithm we used to add the refraction effects to
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the synthetic data is not itself a major source of computational error.

If instead of the exact values for the front surface we use the Zernike approximation

za
(
X
)
≈ fNa

(
X
)
, it is therefore reasonable to infer that any differences between the

dewarped results and those of the unwarped surfaces in Chapter 3 are primarily due to

errors introduced during the dewarping step. In particular, the finite difference derivatives

contain discretization error (which is explored in Section 4.4.2), and any modeling error

from the front surface will also propagate to the back surface due to the use of the

interpolated z-coordinate in the dewarping algorithm. Measurement error in the point

cloud data for either surface will be included in the OPL calculation; however, this is

only a concern for the quantized synthetic data. For the non-quantized data, the OPL

will be exactly the same as it was in Section 4.4.1.

Rather than running every possible combination of Zernike orders for the front and

back surface fits, we selected a subset of six orders to try for the front surface: Na ∈{
6, 8, 10, 12, 14, 16

}
. The front surfaces of both lenses are axisymmetric, so the odd-

ordered polynomials are unnecessary. Recall that the design matrix (3.9) for an N th order

Zernike polynomial model fit to s sample points consists of each of the p = 1
2

(
N+1

)(
N+

2
)

Zernike polynomials evaluated at all s locations
(
ρ, θ
)

on the original sample grid.

Perhaps the most expensive part of constructing the design matrix is finding the powers of

ρ in the radial polynomials (3.2), which involves a cost of O
(
sN
)
. Given this exponential

increase in computational load, running the algorithms described in this thesis on a

typical 64-bit desktop processor (the kind likely to be found in a clinical setting) starts

to become impractical around N = 18 for data sets containing s ∼ 105 points. Since

overfitting is much more likely to pose a problem in real clinical applications where noisy

data are inevitable—and considering that similar research discussed in Section 3.5.1 did

not exceed N = 14—we decided that it was not necessary to include front surface Zernike

models for which Na > 16.

Non-quantized Data

Figures 4.18–4.20 depict the various quantities of interest pertaining to surface fit and

curvature for the back surface of each lens when dewarping is performed using non-

quantized synthetic data for both surfaces. Results are included for front surface Zernike

models za ≈ fNa , where Na ∈
{

8, 10, 12, 14, 16
}

. For comparison, the plots also depict

the results we obtained in Chapter 3 when refraction effects were not included in the
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Figure 4.18: Average error in posterior (a) surface fit and (b) curvature, and absolute
error in (c) R̂p1 and (d) R̂p2 from non-quantized toric lens data after dewarping using
front surface Zernike fit. Results with no warping/dewarping from Chapter 3 are included
for comparison.

synthetic data. Note that the absence of noise in the synthetic data means that the OPL

used in the calculations contains no simulated measurement error.

For the first few Zernike orders, the dewarped results for the toric lens (Figure 4.18)

are comparable to those of the unwarped data. However, this trend breaks around zp ≈ f8.

Despite the lack of noise in the synthetic data, we can see that the choice of Zernike order

for the front surface ultimately determines the accuracy of the surface fit and curvature

measurements for the back surface, no matter how many Zernike polynomials we include

in the back surface fit. Table 4.4 shows the relationship between the error in the partial

derivatives for each of the five front surface Zernike models and the corresponding best

case accuracy of the back surface measurements after dewarping. Recall that elevation

and radius of curvature are both measured in units of millimeters, while the partial
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Table 4.4: Best case error results for front surface derivatives and back surface radii of
curvature after dewarping non-quantized toric lens data using za ≈ fNa .

Front Surface Back Surface

Na ex/ey e eroc

∣∣R̂p1−Rp1∣∣ ∣∣R̂p2−Rp2∣∣
8 1.3×10−3 ∼ 10−4 mm ∼ 10−4 mm ∼ 10−3 mm ∼ 10−3 mm

10 4.6×10−4 ∼ 10−5 mm ∼ 10−4 mm ∼ 10−3 mm ∼ 10−3 mm

12 1.5×10−4 ∼ 10−5 mm ∼ 10−4 mm ∼ 10−3 mm ∼ 10−3 mm

14 5.3×10−5 ∼ 10−6 mm ∼ 10−5 mm ∼ 10−4 mm ∼ 10−4 mm

16 1.9×10−5 ∼ 10−6 mm ∼ 10−5 mm ∼ 10−4 mm ∼ 10−4 mm

derivative error (ex = ey) is dimensionless. Given the results of Chapter 3, it should not

be surprising that the elevation is as much as two orders of magnitude better than the

radius of curvature measurements in some cases.

What is somewhat surprising is how the choice of front surface Zernike order affects

the principal curvatures for certain back surface Zernike orders. On average, the back

surface measurements become more accurate as the Zernike order for the front surface

model is increased. However, as we can see in Figures 4.18a–b, when we use an 8th

order Zernike model to fit the back surface, suddenly it is the 8th order model for the

front surface that produces the best estimates for both principal radii of curvature—out-

performing even the case without refraction effects. This result is an anomaly for the

maximum principal radius of curvature (Rp1); however, for Rp2 there does appear to be

a trend of matched front and back Zernike orders producing the best results.

Figure 4.19 illustrates the average surface and curvature errors for the back surface

of the asphere after dewarping, as well as the non-warped results for the flat surface

from Chapter 3. Although the surface error (Figure 4.19a) for the dewarped results

is consistently several orders of magnitude higher than the error without warping, the

maximum error for the dewarped case is still quite small at just e ∼ 10−8 mm (recall that

the minimum surface error for the toric lens was e ∼ 10−6 mm). Furthermore, neither the

Zernike order of the front surface fit nor that of the back surface seem to have a notable

impact on the surface error, which is only ∼ 10−10 mm even in the best case.

This stands in contrast to the average curvature error in Figure 4.19b, which is quite

sensitive to the Zernike order of both the front and back surfaces. Since Z1

(
ρ, θ
)

is just
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Figure 4.19: Average error in posterior (a) surface fit and (b) curvature from non-
quantized aspheric lens data after dewarping using front surface Zernike fit.
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Figure 4.20: Absolute error in K̂p for the non-quantized aspheric lens data after dewarp-
ing using front surface Zernike fit.

a flat disc (Table 3.1), the average curvature error for zp ≈ f0 is exactly zero regard-

less of how dewarping is performed. The curvature error is also very small (at most

∼ 10−14 mm−1) for zp ≈ f1 due to the fact that the two additional basis polynomials in-

cluded when Np = 1 merely represent tilt. Furthermore, while this is slightly larger than

the average error we obtained without warping (ek ∼ 10−15 mm−1), it is an entire order

of magnitude smaller than what we got in Section 4.4.1 using the exact front surface

values in the dewarping algorithm.

Unlike with the toric lens, when we dewarp the back of the aspheric lens using the

Zernike approximation for za, there is in fact a positive correlation between the Zernike
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order of the back surface fit and the back surface curvature error. In fact, this also was not

true for either the non-warped asphere results or when dewarping was performed using

the exact values for the front surface—in both of those cases, the average curvature error

was ek ∼ 10−12 mm−1 for all the back surface fits of order Np ≥ 2. This is likely due to

the propagation of modeling and discretization error through the dewarping calculation.

The error in the finite difference derivatives—which ranged from ex ∼ 10−8 for Na ∈{
12, 14, 16

}
to ex ∼ 10−7 when Na ∈ {8, 10}—almost appears to set an upper bound on

the error in the average curvature for the back surface. For comparison, the smallest we

are able to make the average curvature error for the toric lens is ek ∼ 10−5 mm−1.

For the non-quantized data, the absolute error in the back surface principal curva-

ture estimate for the aspheric lens was
∣∣K̂p − Kp

∣∣ ≡ 0 mm−1 regardless of the Zernike

order selected for the back surface, for both the non-warped case in Chapter 3 and after

dewarping using analytic values for za and its partial derivatives. As we can see in Fig-

ure 4.20, dewarping error clearly has a strong impact on the principal curvature results.

While there does not appear to be an obvious trend in the accuracy of the principal

curvature estimates with respect to either the front or back Zernike order, once again the

maximum principal curvature error for the aspheric lens is just ∼ 10−8 mm−1, while the

minimum error for either principal curvature of the toric lens is ∼ 10−5 mm−1.

Quantized Data

In Section 3.6, we proposed that when using quantized synthetic data, the best Zernike

orders for fitting the front surfaces of the aspheric and toric lenses seemed likely to fall

respectively in the sets Na ∈
{

6, 8, 10, 12
}

and Na ∈
{

10, 12, 14, 16
}

. The average partial

derivative errors in Section 4.4.2 provide further evidence to suggest that these models

will introduce the least additional error to the back surface during dewarping when both

surfaces contain quantization error. These results are illustrated in Figures 4.21–4.23,

with one small adjustment: the toric lens demonstrated nearly identical outcomes for

za ≈ f14 and za ≈ f16, so the latter order has been replaced by Na = 8. For comparison,

these plots also include the corresponding error calculations from Section 4.4.1, where we

used quantized data for the back surface only and analytic values for the front surface.

When both surfaces contain quantization error, the MAE in the path length L∗ be-

comes roughly 1.55 × 10−3 mm for the aspheric lens and 1.65 × 10−3 mm for the toric

lens—a very modest increase from what we had in Section 4.4.1 (where the path length
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Figure 4.21: Average surface error from quantized synthetic data for the back of the (a)
aspheric lens and (b) toric lens after dewarping. Results are depicted using both the front
surface design equations and Zernike fits to quantized data.

was determined using analytic values for za). The surface error for the front surface of

the aspheric lens is ∼ 10−5 mm for all four of the selected Zernike models, and the error

in the partial derivatives (which is dimensionless) is also ∼ 10−5 for all four models. For

the toric lens, the front surface error is ∼ 10−3 mm for za ≈ f8, and ∼ 10−4 mm for the

remaining three models. Similarly, the partial derivative error is ∼ 10−3 for Na = 8 and

∼ 10−4 for Na ∈ {10, 12, 14}. Given that the errors due to Zernike fitting are at least

an order of magnitude smaller than the error in the data itself (except in the case of

za ≈ f8 for the toric lens), it is reasonable to expect that using these Zernike models in

place of the analytic function for the front surface in the dewarping algorithm should not

dramatically alter the surface fit or curvature results for the back surface.

For reasons already discussed, it is no surprise that the back surface models zp ≈ f0

and zp ≈ f1 would produce the best results across the board for the aspheric lens. What

is somewhat surprising is that the surface errors (Figure 4.21a) for these two models are

actually an entire order of magnitude smaller when using the Zernike fit to quantized data

for the front surface versus the exact values for the function and its partial derivatives.

For the remaining back surface models (Np ≥ 2), the surface error is virtually identical for

all five front surface models (the four Zernike fits and the analytic function za), following

a gradually increasing trend but remaining on the order of 10−4 mm throughout. This

positive correlation between the error and the back surface Zernike order is much more

pronounced for the two curvature computations (Figures 4.22a and 4.23a), although
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Figure 4.22: Average curvature error from quantized synthetic data for the back of the
(a) aspheric lens and (b) toric lens after dewarping.

once again there are no obvious differences between the five front surface models. This

indicates that while overfitting poses a potentially significant problem in the accurate

calculation of the back surface curvature for the aspheric lens, error propagation from

the front surface may not ultimately be as great a cause for concern. It is also worth

noting that the error in the principal curvature estimate is consistent with the scale of

the error in the two principal curvatures for the toric lens, shown in Figures 4.23b–c.

Not including za ≈ f8, the four remaining models for the front surface of the toric lens

(including the analytic one) produce very similar average surface fit and curvature results

for the back surface. For these four front surface models, the surface MAE (Figure 4.21b)

converges to ∼ 10−5 mm for back surface fits of order Np ≥ 8. The curvature MAE

(Figure 4.22b) also drops to its minimum value of ∼ 10−4 mm−1 when zp ≈ f8, and while

it does increase slightly for the higher order fits, it maintains the same order of magnitude

for all the back surface models up to Np < 20. The average curvature error for za ≈ f8

is comparable, although the error in the fit for this front surface model only converges

to ∼ 10−4 mm. For back surface Zernike fits of order 6 ≤ Np < 20, the absolute error in

both principal curvatures is never worse than ∼ 10−4 mm−1 for any of the front surface

models, including za ≈ f8. Furthermore, we can see from Figures 4.23b–c that regardless

of which front surface model we use, the principal curvature estimates will likely be most

accurate using a Zernike fit to the back surface of order Np ∈
{

8, 10, 12
}

(we ignore the

odd orders due to the surface’s rotational symmetry).

The obvious standout for the back surface is zp ≈ f8, which results in the lowest error
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Figure 4.23: Absolute error after dewarping in (a) K̂∗p for aspheric lens and (b) K̂∗p1 and

(c) K̂∗p2 for the toric lens.

in both principal curvatures for nearly every front surface model. We can also see that for

the right Zernike fit to the back surface, the principal curvature does in fact end up being

quite sensitive to the dewarping algorithm. Somewhat surprisingly, it is the 8th order fit

to the front surface that produces the most accurate estimate of K̂∗p1 , performing better

in this aspect than even the analytic function za itself. However, while za ≈ f8 does at

least as well for both principal curvatures as the other front surface models everywhere

else, it also yields the worst approximation of K̂∗p2 when zp ≈ f8. Instead it is za ≈ f10

that produces by far the best estimate for the minimum curvature, despite its otherwise

modest performance. This underscores the difficulty in trying to simultaneously identify

suitable models for both the front and back lens surfaces in this application.
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4.5 Summary

We have presented a model for the second of two surfaces being imaged via OCT (Sec-

tions 4.1–4.2.1), as well as a technique for adding refractive error to the design equations

in order to construct synthetic lens data (Section 4.3). We validated the dewarping step

by showing in Section 4.4.1 that, in most cases, using the exact front surface gradient

computed from the design equations on this new synthetic data produces elevation and

curvature results very similar to those obtained when no refraction effects are considered.

For the toric lens, the error introduced by using a front surface Zernike model and

finite difference derivatives (Section 4.4.2) effectively created a lower bound on the error

for most of the back surface quantities of interest, even for the non-quantized synthetic

data. This bound also did not seem to be affected by the choice of finite difference step

size, which implies that it is mainly the Zernike fit and not the numerical derivative that

is responsible for this additional error. In other words, the error from the front surface

model propagates through to the back surface, giving rise to yet another consideration

when determining the best Zernike order for modeling the front surface. This effect was

also somewhat noticeable (although to a much lesser extent) for the mean posterior

curvature of the aspheric lens, but did not seem to be a major concern for the surface

fit or principal curvature. This is likely due to the superior accuracy of the numerical

derivatives from the front surface Zernike model.

When considering the quantized synthetic data in Section 4.4.3, we observed that the

choice of front surface Zernike order Na did not make a notable difference on the back

surface quantities of interest for the aspheric lens. Since the posterior aspheric lens is flat,

the error naturally increases as the back surface order Np increases and begins modeling

noise in the data. The error in the surface fit jumps from ∼ 10−6 mm for Np ∈
{

0, 1
}

to

∼ 10−4 mm for Np ≥ 2, whereas the error in the curvature goes from effectively zero to

around 10−5 mm−1 for Np = 2 and continues to increase steadily to about 10−3 mm−1

for Np = 20.

Table 4.5 shows the elevation and radius of curvature errors for each combination

of the four front surface models and three best back surface models for the toric lens.

The table also includes the corresponding error for each posterior Zernike model from

Chapter 3, where we did not consider refraction effects at all. As was the case for no

refraction, Np = 10 still provides the best results for mean elevation and mean radius of

curvature, regardless of the front surface model used—i.e., all three front surface models
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Table 4.5: Results (in mm) for the posterior toric lens for each back surface model order
Np after dewarping using front surface model order Na (versus without refraction effects).

N = 8 N = 10 N = 12

e∗


No warping 6.7×10−5 3.1×10−5 3.4×10−5

Na = 8 1.4×10−4 1.4×10−4 1.4×10−4

Na = 10 8.5×10−5 6.4×10−5 7.9×10−5

Na = 12 8.1×10−5 6.1×10−5 6.9×10−5

Na = 14 8.3×10−5 5.3×10−5 6.3×10−5

e∗roc


No warping 2.5×10−2 7.4×10−3 8.0×10−3

Na = 8 3.5×10−2 3.4×10−2 5.0×10−2

Na = 10 2.6×10−2 1.3×10−2 3.6×10−2

Na = 12 2.7×10−2 1.6×10−2 2.3×10−2

Na = 14 2.9×10−2 9.3×10−3 2.1×10−2

∣∣R̂∗1−R1

∣∣


No warping 6.3×10−3 3.8×10−3 1.2×10−3
Na = 8 1.4×10−2 1.3×10−2 2.4×10−2

Na = 10 2.6×10−4 1.6×10−2 3.5×10−2

Na = 12 2.0×10−3 2.2×10−2 3.3×10−2

Na = 14 3.5×10−3 1.9×10−2 2.9×10−2

∣∣R̂∗2−R2

∣∣


No warping 1.8×10−2 4.6×10−3 5.1×10−3

Na = 8 3.7×10−3 7.9×10−3 1.8×10−2

Na = 10 1.0×10−2 1.4×10−2 2.7×10−2

Na = 12 8.6×10−3 1.8×10−2 2.5×10−2

Na = 14 6.8×10−3 1.6×10−2 2.1×10−2

produce comparable results for these two quantities of interest, with Na = 8 being a bit

worse than the others. However, the error in the estimates for Rp1 and Rp2 are at least

an order of magnitude smaller for Np = 8 than for the other two orders, while the mean

elevation and curvature errors are not considerably worse. In most cases, the estimates

for the back surface quantities of interest obtained after dewarping are worse than when

we did not consider refraction, although not dramatically so.

We also note that the best front surface model for the back surface quantities of

interest seems to be Na = 14 (even though there are other models that do better for

specific metrics), whereas the model that produced the best overall front surface results

in Chapter 3 was Na = 12. However, Na = 14 did in fact have a slightly lower mean
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Figure 4.24: Absolute error in (a) R̂∗p1 and (b) R̂∗p2 for the toric lens after dewarping
using Zernike fit to quantized front surface data.

radius of curvature error. As both the curvature calculation and the refraction correction

algorithm rely on derivatives of the front surface, it is not surprising that the front surface

model with the best curvature estimate would also be the most accurate for dewarping

the back surface. (Note that in Chapter 6 we use Na = 10 for the toric lens, despite the

slightly inferior results shown here. This choice is explained further in Section 6.3.1.)

As shown in Figure 4.24, most of the front and back surface model combinations

in Table 4.5 meet the 0.025 mm tolerance on principal radius of curvature required for

“Type A” ophthalmometers (as specified in [35]), with Np = 14 being right on the line

but still below the 0.05 mm “Type B” threshold. In other words, we are still able to stay

within the tolerance for both instruments given an intelligent selection of Zernike model

orders for each surface.

The data used in this section is, of course, idealized. Real OCT data sets will have

gaps where segmentation has failed and additional noise beyond quantization error. Fur-

thermore, the algorithm we are using to construct the warped synthetic data for the

posterior surface is based on the same set of equations we use to subsequently dewarp

those points, so we are not truly validating the entire refraction correction algorithm.

The next chapter will address how well this two-surface lens model fits our real OCT

data and how accurately the model is able to predict surface curvature.
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Chapter 5

Application to Imaging Data

5.1 Full Lens Model

5.1.1 Realignment

In order for two topographic maps to be comparable to one another, the values they

report must be calculated at the same surface locations. This is particularly true of

parameters like meridional curvature that depend on the choice of reference axis [101]. For

the analyses in Chapters 3 and 4, we constructed synthetic data that was already centered

at the lens vertex and aligned with the design equation. However, perfect alignment is

unlikely with real OCT data, even when imaging a stationary lens. In practice, the CT

axis will not generally be centered with (or, in the case of a living eye, even parallel to) the

chosen reference axis.i Since measurements made with respect to the wrong reference axis

iAs discussed in Chapter 2, realignment for the human eye can be particularly challenging due to the
lack of strict geometrical significance of the commonly used reference points, much less agreement as to
the appropriate reference axis to use when diagnosing different eye conditions [7, 60, 62, 85, 101]. Some
ophthalmological diseases can result in deformed or displaced reference points, and even in a healthy
eye the relative position of certain reference points can change depending on the circumstances [60]
(e.g., the location of the pupil center varies as the pupil dilates or contracts to accommodate different
amounts of ambient light). Therefore, realignment in the eye cannot be performed by simply translating
the origin without accounting for the angle between the axes [78]. Although procedures do exist to
approximately identify the various other reference axes once a data set has already been collected [101],
these transformations rely on assumptions about the structure of the eye which may not be accurate for
an individual subject—hence the need for technology that can obtain precise 3D measurements of the
interior surfaces of a living eye [7, 62]. However, as the Envisu’s tip/tilt alignment protocol (described
in [51]) is reasonably accurate for the stationary lens, the resulting error from misalignment is not likely
to be nearly as significant for our lens analysis as it would be for the human eye.
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Lens vertex

Scan vertex

(a) (b)

Figure 5.1: (a) Slight misalignment of radial scanning pattern relative to lens vertex.
(b) Radial grid re-centered at the lens vertex for calculating final results.

can have a significant impact on the accuracy of the subsequent calculations, accurate

realignment is critical.

Figure 5.1a illustrates the position of the lens vertex relative to the scan vertex in

the case of off-axis imaging. The latter is taken to be the origin of the xy-plane during

imaging; however, because the lens’ refractive power is referenced to its optical axis,

the grid must be re-centered at the lens vertex (as shown in Figure 5.1b) before the

final measurements are computed. Since we are assuming that the CT axis is parallel

to the optical axis (see footnote i), this re-centering can be accomplished by identifying

the lateral “offset” between the scan vertex and the lens vertex, translating each grid

point accordingly, and then interpolating the data set at the translated grid points before

calculating any curvature results.

Recall that the z-axis of the point cloud data is defined by the CT axis. Given that

the lens is rotational symmetric around the optical axis (and locally concave down in this

coordinate system), it is trivial to see that the vertex of the lens must be a local maximum.

We can approximate the location of this point by constructing a 3D representation of

the front lens surface using Zernike polynomials and using an optimization routine to
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Figure 5.2: Meridians at (a) 0◦ and (b) 90◦ for the aspheric lens without realignment.
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Figure 5.3: Meridians at (a) 0◦ and (b) 90◦ for the aspheric lens after realignment.

identify the local maximum closest to the scan vertex. This approach is detailed further

in Section 5.1.2.

Figures 5.2–5.5 illustrate the meridians at 0◦ and 90◦ for the design equation and best-

fitting Zernike polynomial for the front surfaces of both lenses (respectively N = 4 and

N = 8 for the aspheric lens and toric lens), before and after re-centering. For simplicity,

the y-axis in these figures is aligned with the optical axis of the design equation, so that

x = 0 denotes the location of the lens vertex. Note that because realignment of the
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Figure 5.4: Meridians at (a) 0◦ and (b) 90◦ for the toric lens without realignment.
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Figure 5.5: Meridians at (a) 0◦ and (b) 90◦ for the toric lens after realignment.

fitted data is done using the full three dimensional front surface model, the re-centered

meridians in Figures 5.3 and 5.5 are not a simple translation of the meridians shown in

Figures 5.2 and 5.4.

The ANSI standard on corneal topography details a different method of correcting

de-centration between two data sets using a Zernike decomposition of the difference of

the two sets of points [5, §D.1]. This method is based on the assumption that the two

surfaces are nearly spherical, in which case the x- and y-coordinates of the offset would
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be roughly proportional to the amount of horizontal and vertical tilt in the difference

surface, or c1
1 and c−1

1 in the Zernike expansion (3.6). We compared this approach with

the maximum point method described above, and found that the latter was at least as

good (and in many cases significantly better) at reducing the error from misalignment in

our data regardless of which quantity of interest we were measuring. The two main draw-

backs to employing our method instead of the ANSI approach are the (small) additional

computational cost of the optimization routine and the possible loss of accuracy due to

the wrong choice of Zernike model to perform the fit—i.e., choosing a Zernike order that

gives a poor approximation of the surface shape near the lens vertex. However, in our

case the computational cost was insignificant compared to the overall cost of the other

algorithms used, and we considered multiple Zernike models to ensure the best fit to the

data.

Regardless of the method used, a three dimensional data set is required for realign-

ment. As the true vertex may be located between meridians, 2D interpolation within a

cross-sectional frame is inadequate for identification of this point. In fact, the maximum

point for each frame will not even necessarily correspond to the same position on the lens

surface. Without a data set that includes the true lens vertex, interpolation of the data

must be done in 3D in order to most accurately locate the lens vertex. However, if there

are rapid changes in surface curvature near the vertex, even 3D interpolation may not

be sufficient to describe the surface shape in this region. Therefore, realignment of the

imaging axis should ideally be incorporated into the data collection process to mitigate

the need for subsequent interpolation. Together with Leica Microsystems, we have filed

a provisional patent application [28] for a method that would improve axial alignment of

the CT scanner during imaging. This method has not yet been incorporated into their

hardware, and therefore will not be discussed further in this thesis.

5.1.2 Model Overview

The entire process of fitting a two-surface lens and computing its curvature—including

realignment with the design equation—can be broken down into the following steps:

1. Anterior Surface Fit.

Fit the front surface data to the N th
a order Zernike polynomial fa

(
X, c
)
≡ fNa

(
X
)
,
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where the values of X correspond to grid points in the sample grid SA
ii whose

origin is located at the scan vertex O =
(
0, 0
)

(defined in Section 2.2.3). That is,

for anterior lens surface height data
(
Xi, wi

)
—where Xi =

(
ρi, θi

)
—compute the

linear least squares estimates for the ma = 1
2
(Na + 1)(Na + 2) Zernike coefficients

c =
[
c1, . . . , cm

]T
in the model

wi = fa
(
Xi, c

)
. (5.1)

2. Posterior Surface Fit.

Find the dewarped back surface coordinates
(
X̃i, w̃i

)
data corresponding to the ge-

ometric path length measurements
(
Xi, Li

)
. Dewarping is performed using fa(X, c)

at the un-translated sample points Xi =
(
xi, yi

)
=
(
ρi cos θi, ρi sin θi

)
as described

in Section 4.4:

x̃i = xi + Li

∂fa

∂x

(√
1+

(
1−n2

s
n2
`

)((
∂fa

∂x

)2
+
(

∂fa

∂y

)2)
−ns

n`

)
1+
(

∂fa

∂x

)2
+
(

∂fa

∂y

)2
ỹi = yi + Li

∂fa

∂y

(√
1+

(
1−n2

s
n2
`

)(
f2x+f2y

)
−ns

n`

)
1+
(

∂fa

∂x

)2
+
(

∂fa

∂y

)2
w̃i = fa(xi, yi) −Li

√
1+

(
1−n2

s
n2
`

)((
∂fa

∂x

)2
+
(

∂fa

∂y

)2)
+ns

n`

((
∂fa

∂x

)2
+
(

∂fa

∂y

)2)
1+
(

∂fa

∂x

)2
+
(

∂fa

∂y

)2 ,

(5.2a)

where the partial derivatives at each point are computed using central differences

∂fa

∂x
(xi, yi) ≈ fa(xi+h,yi)−fa(xi−h,yi)

2h
and ∂fa

∂y
(xi, yi) ≈ fa(xi,yi+h)−fa(x,y−h)

2h
.

Fit the dewarped points to the N th
p order Zernike polynomialiii fp

(
X, c
)
≡ fNp

(
X
)
,

to obtain the back surface model

w̃i = fp
(
X̃i, c

)
. (5.2b)

iiRecall that the lens radius A is used to normalize the radial coordinate when fitting the data to
the appropriate Zernike polynomial (see Section 3.1), and therefore fa(X, c) is not defined for ‖X‖ > A.

iiiThe front and back model orders Na and Np do not need to be the same.
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Note that due to the dewarping algorithm, the anterior surface model is inherently

part of the posterior surface model.

3. Realignment.

Find a “reasonable” value of X0 that maximizes the objective function fa
(
X
)
; i.e.,

X0 = max
‖X‖≤A

fa
(
X
)
.

If there is a unique solution, then X0 is the approximate lateral position of the lens

vertex and the shifted sample grids are given by

S̃ =
{
Z = X + X0 | X ∈ S

}
and S̃A =

{
Z ∈ S̃ | ‖Z‖ ≤ A

}
.

If X0 is not unique, or if there is no local maximum within a reasonably small

neighborhood of the origin, do not shift the sample grid.iv

4. Surface Height and Curvature.

Calculate the surface fit at every point Z ∈ S̃A using the anterior and posterior lens

models

ẑa = fa
(
Z
)

and ẑp = fp
(
Z
)
.

Calculating the meridional curvature on the shifted grid S̃A (whose meridians now

run through the lens vertex) requires a change of coordinates to compute the partial

derivatives with respect to ρ∗, where ρ∗ = 0 at the lens vertex. A mild abuse of

notation allows us to express the local anterior and posterior meridional curvature

at a point Z on the shifted grid as

k̂a = −
∂2fa

(
Z
)

∂ρ2
∗

(
1 +

(
∂fa
(
Z
)

∂ρ∗

)2
)−3/2

(5.3)

ivTo obtain the results described in this chapter, we used the MATLAB algorithm fminsearch to
calculate the local minimum of the objective function −fa(X) closest to the origin and subject to
the constraint ‖X‖ ≤ 1.5 mm. The constraint was enforced by using an output function to abort the
optimization protocol if the test point X ever fell outside the specified region. In such a case, the algorithm
would not compute an offset.
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and

k̂p = −
∂2fp

(
Z
)

∂ρ2
∗

(
1 +

(
∂f p
(
Z
)

∂ρ̃∗

)2
)−3/2

. (5.4)

Principal curvatures of the front and back surfaces are obtained by evaluating the

maximum and minimum values of (5.3) and (5.4) at the lens vertex, X0.

5.1.3 Quantities of Interest

In Chapters 3 and 4 we used the mean absolute error in surface fit (ẑa, ẑp) and curvature

(k̂a, k̂p) as a measure of model accuracy. In this chapter, we will be looking at slightly

different quantities. In addition to the principal curvature value at the vertex, we will

also consider the root mean square (RMS) error in the surface fit and twice the standard

deviation of both the surface fit and curvature (i.e., the interval
[
µ− 2σ, µ+ 2σ

]
, where

µ and σ are respectively the mean and standard deviation of the signed error in the

relevant metric). The RMS error allows us to compare our results to the asphere figure

error tolerance provided by Edmund Optics [65], whereas the 2σ interval is recommended

by the ANSI corneal topography standard for specifying curvature tolerance [5, §5.4].

In each case described here, the “error” refers to the difference between the computed

value of the given metric and the intended value based on the design specifications of

the lens, as recommended by the ANSI standard. A detailed discussion of the model

error (i.e., the difference between the data and a particular model) can be found in

Appendix B.

In addition to considering these “average error” measurements across the full diameter

of each lens surface, we will further be breaking the lens surface into three zones based on

the distance from the vertex in the radial plane. These three zones—which are detailed in

Table 5.1 and come from the ANSI standard on corneal topography [5, §5.4]—represent

the region of the lens closest to the optical axis (the “central diameter”), the periphery

of the lens (the “outer diameter”), and the region in between the two (the “middle

diameter”).

To accurately determine surface error, it is also necessary to align the test surface

with the design equation in the z-direction. The offset ∆z is the difference between the

design equation za
(
X
)

and the Zernike fit fa
(
Z
)

at the lens vertex:

∆z = za
(
O
)
− fa

(
X0

)
.
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The surface error at each point is then given by

ei =
(
fa
(
Zi
)

+ ∆z
)
− za

(
Xi

)
,

where Zi ∈ S̃A and Xi ∈ SA are corresponding points in the shifted and unshifted sample

grids. The same principle can also be used to calculate the back surface error, with the

caveat that using different offsets for the front and back surfaces suggests a discrepancy

between the computed lens thickness and the design thickness. Such a discrepancy could

be due to a number of factors unrelated to the accuracy of the dewarping algorithm,

such as manufacturing tolerances on the thickness of the lens or an error in the calculated

refractive index of the lens substrate. Note that it is not necessary to consider the vertical

offset when analyzing the curvature errors for either surface.

We will also be discussing curvature in terms of keratometric diopters (D) rather

than inverse millimeters, as the former are more readily understood in a clinical context

(having arisen from an effort to relate the shape properties of the anterior corneal surface

to the refractive power of the entire cornea [45]). Diopters are obtained by multiplying

the curvature in inverse millimeters by the keratometric constant, 337.5 [5].

5.2 Results for OCT Data

In the following section, we will use the metrics discussed in Section 5.1 to evaluate

the performance of our four models: 1) front surface fit (ẑa), 2) front surface curvature

(k̂a), 3) back surface fit (ẑp), and 4) back surface curvature (k̂p). For each of these four

models, we will consider both the results of the synthetic data with quantization error

(as a benchmark for best-case performance) as well as the results obtained using the real

Table 5.1: Analysis zones from [5] for assessing accuracy of curvature estimates.

Zone name Constraints on radial coordinate

Central diameter ρ ≤ 1.5 mm
Middle diameter 1.5 mm< ρ ≤ 3 mm
Outer diameter ρ > 3 mm
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OCT data for each lens.

As explained in Section 5.1, surface fit accuracy will be evaluated using two quantities:

the RMS error between the design equation and the interpolated values ẑa/ẑp from the

Zernike model (5.1–5.2), and the 2σ interval of the same error across each of the zones

from Table 5.1. Curvature accuracy will be assessed using the principal curvature and

the 2σ interval of the error according to zone between the modeled curvature k̂a/k̂p from

(5.3–5.4) and the corresponding curvature value computed analytically from the design

equation.

5.2.1 Anterior Surface Fit

Based on the analyses from Ch. 3, we can narrow down the range of Zernike models that

are worth considering for the front surface. We achieved the most accurate results for the

synthetic asphere data with Na ∈
{

4, 6, 8, 10, 12
}

, whereas the synthetic data for the front

surface of the toric lens performed best when Na ∈
{

10, 12, 14, 16
}

. Figures 5.6a and 5.7a

show the RMS error in surface fit for the quantized synthetic data for these Zernike

models—across the entire lens surface as well as within each zone. The corresponding 2σ

error intervals are illustrated in Figures 5.8a and 5.9a. We have also included Na = 14

for the aspheric lens and Na = 8 for the toric lens to see what happens to the results

when the model doesn’t fit quite as well.

For the most part, the RMS error plots for the synthetic data (Figures 5.6a and 5.7a)

reveal that the error for the best models tends to be lowest across the central diameter.

This is what we would expect given that the goal of the hexapolar sampling pattern is

to bias the least squares fit toward the center. This is even more pronounced for the real

data—Figures 5.6–5.9 show that the RMS error and 2σ intervals are smallest for the

central diameter and get progressively worse as we move toward the outside of the fitting

region. Note that we have excluded some of the higher order Zernike polynomials for

the real data due to the rapid increase in overfitting error. We have also included some

polynomials of lower order than were used for the synthetic data in order to see whether

the underfitting error is as problematic as the overfitting error. Furthermore, while the

rotational symmetry in the synthetic data ensures that odd Zernike polynomials are not

needed for the fit, the odd polynomials do come into play for the real data due to the

slight axial misalignments during imaging.

As we observed with the synthetic data in Ch. 3, the error from the real data is once
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Figure 5.6: RMS surface error for the anterior aspheric lens from (a) synthetic data and
(b) real lens data.
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Figure 5.7: RMS surface error for the anterior toric lens from (a) synthetic data and (b)
real lens data.

again higher overall for the spherical surface (i.e., the front of the toric lens, shown in

Figures 5.7b and 5.9b) than for the aspheric surface (Figures 5.6b and 5.8b). This is due

to the fact that spheroids are rather difficult to model using Zernike polynomials and

results in overfitting even without much noise present. This pattern is especially true of

the 2σ intervals for the outer diameter, which is an entire order of magnitude greater

for the anterior toric lens. A method for addressing this issue is discussed further in

Chapter 7.

In both cases, the results for the real data are several orders of magnitude greater
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Figure 5.8: Mean surface error and 2σ interval for the anterior aspheric lens from (a)
synthetic data and (b) real lens data.
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Figure 5.9: Mean surface error and 2σ interval for the anterior toric lens from (a) syn-
thetic data and (b) real lens data.

than the corresponding error for the synthetic data. This could be due in part to gaps

and greater levels of noise in the real segmentation data. However, it could also be related

to the manufacturing tolerances. While we were not provided with a tolerance for the

toric lens surface accuracy, note that the RMS error in the asphere for both the central

diameter is, for some model orders, even smaller than the 0.75 µm RMS figure error

indicated in the manufacturing specifications. The error in the middle and outer zones

are each approximately one order of magnitude larger than the previous one, but even

at its worst the error is only about 0.02 mm.
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For the toric lens, the 2σ intervals are smallest for the 6th–10th order fits, revealing

that both underfitting and overfitting are potential concerns. Without knowing the man-

ufacturer’s surface error tolerances, it is difficult to say how much of the error in the

outer zone is due to the difficulties using Zernike polynomials to fit a spherical surface

and how much is due to manufacturing error in the lens.

5.2.2 Anterior Surface Curvature

There are two values we care about in assessing the accuracy of the curvature model:

principal curvature and mean curvature error. The front principal curvatures for both

lenses—in keratometric diopters, as discussed in Section 5.1.3—are shown in Figures 5.10–

5.11. Note that while there is a single principal curvature value for the synthetic data,

the results from the real lens data may still be slightly off-center even after performing

the axial realignment discussed in Section 5.1.1. Thus, the intervals depicted in Fig-

ures 5.10b and 5.11b represent the entire range of meridional curvatures measured at the

approximate lens vertex after realignment. Figures 5.12–5.13 show the mean curvature

error and 2σ interval by zone, also in keratometric diopters.

All the principal curvature measurements from the synthetic asphere data (Fig-

ure 5.10a) are within ±0.25 D of the design value. This is also true for the mean value of

the principal curvature from the real aspheric lens data using the 4th–7th order Zernike

fits (Figure 5.10b), although the error is larger for the two highest order models. In fact,

for both the 4th and 5th order models, the entire range of principal curvature measure-

ments falls within a quarter of a diopter of the design specification. However, Figure 5.12b

reveals that the mean curvature error is worse for the 3rd and 5th order fits than for the

4th order fit, particular in the outer diameter zone. For the 4th order fit, the 2σ error in-

terval for the curvature is within ±0.25 D over the central zone, and well within ±0.5 D

throughout the middle diameter zone. Note that the mean curvature for the real data is

extremely sensitive to both underfitting and overfitting—particularly in the outer region.

The results for the toric lens tell a very different story. The principal curvature for

the synthetic data (Figure 5.11a) is only within 0.25 D of the design value when Na = 12.

However, for the real toric lens data (Figure 5.11b), not only are the mean values of the

principal curvature less than a quarter of a diopter off for the 8th–11th order fits, but the

entire range of principal curvature measurements for the 8th order fit falls within 0.25 D

of the specified design parameter. This is particularly interesting given that the principal
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Figure 5.10: K̂a for the aspheric lens from (a) synthetic data and (b) real data.
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Figure 5.11: K̂a for the toric lens from (a) synthetic data and (b) real data.

curvature from the 8th order fit to the synthetic data is off by over half a diopter.

There are also some notable differences between the mean curvature error for the two

lenses, shown in Figures 5.12–5.13. In particular, the synthetic toric lens data is much

more sensitive to underfitting (Figure 5.13a) than the synthetic aspheric lens data. In

fact, even without any added noise (Figure 5.13b), we need at least a 10th order fit before

any of the 2σ intervals comes close to being within ±0.5 D, and half a diopter also appears

to be the best we can do for any Zernike model using the quantized data. This suggests

that it may be extremely difficult to accurately measure the curvature for this type of

surface using our approach, as the noise present in the real data is likely to result in

overfitting for the higher order Zernike models. Indeed, Figure 5.13c illustrates that the
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Figure 5.12: Mean curvature error and 2σ interval for the anterior aspheric lens using
(a) synthetic data and (b) real lens data.
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Figure 5.13: Mean curvature error and 2σ interval for the anterior toric lens using (a)
quantized synthetic data, (b) non-quantized synthetic data, and (c) real lens data. (Note
different y-axis limits for synthetic and real data.)
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2σ interval for the curvature is, at best, still not quite within half a diopter when Na = 8.

However, note that for this particular model, the 2σ intervals for the central and middle

diameters are actually larger for the synthetic data, both quantized and non-quantized,

than for the real data.

5.2.3 Posterior Surface Fit After Dewarping

Recall that the posterior surface model is more complicated than the anterior sur-

face model, as the front surface model is necessary for performing dewarping. Fig-

ures 5.14 and 5.15 show the overall RMS surface error for each of the back surfaces

after dewarping has been performed using the four best front surface models for the

given data set based on the results in Sections 5.2.1–5.2.2. Note that the vertical align-

ment step for the real data (described in Section 5.1.3) means that the errors for the

real and synthetic data sets are not obtained in a strictly identical manner (recall that

realignment is not performed on the synthetic data).v This is why the RMS surface error

for the back surface model zp ≈ f0 is exactly zero when we are using the real aspheric

lens data as shown in Figure 5.14b, but ∼ 10−6 mm when using the synthetic data as

shown in Figure 5.14a. Since f0 is a flat plane (like the design equation for the back of

the asphere), any error in this model would be uniform, and would also be eliminated by

the vertical realignment.

For the higher model orders, the overall RMS error for the back surface of the aspheric

lens is about 10−4 mm from synthetic data and about 10−3–10−2 mm from the real data.

The RMS error for the back surface of the toric lens is also about 10−4 from synthetic

data (Figure 5.15a). In each case, the error is actually comparable to the overall RMS

error we saw in Section 5.2.1 for the front surface of the same data set: Figure 5.6 shows

that the error over the full diameter is around 10−4 mm for the synthetic aspheric lens

data and 10−2 mm for the real aspheric lens data, while the overall RMS error for the

synthetic toric lens data (in Figure 5.7a) is about 10−4–10−3 mm. The error in the back

surface fit is highest for the real toric lens data (Figure 5.15b); however, this value is also

comparable to the front surface error of roughly 10−2–10−1 mm for the real toric lens

data shown in Figure 5.7b. This is likely due to the propagation of error from the front

vFor this analysis, we chose to perform vertical realignment on the front and back lens surfaces
independently so that any systematic error in the lens (e.g., in the thickness or refractive index) would
not have a disproportionate effect on our evaluation of the surface fit accuracy.
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Figure 5.14: RMS surface error for the posterior aspheric lens after dewarping with
anterior Zernike models za, using (a) quantized synthetic data and (b) real lens data.
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Figure 5.15: RMS surface error for the posterior toric lens after dewarping using (a)
synthetic data and (b) real lens data.

surface through the dewarping algorithm.

In all but one or two cases, the RMS error in the back surface is comparable regardless

of which of the four front surface models we choose. Figures 5.16 and 5.17 show the mean

and 2σ interval in the surface error (according to zone) for the back surface of each data

set, after dewarping has been performed using the front surface model that appeared to

yield the best results in Sections 5.2.1–5.2.2: i.e., za ≈ f6 for the synthetic aspheric lens

data, za ≈ f4 for the real aspheric lens data, za ≈ f10 for the synthetic toric lens data,

and za ≈ f8 for the real toric lens data. As with the front surface, the outer zone is once
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Figure 5.16: Mean surface error and 2σ interval for the posterior aspheric lens after
dewarping a) quantized synthetic data (za ≈ f6), and b) real lens data (za ≈ f4).

again the region with the greatest amount of error.

Unlike any of the other data sets, the error for the back surface of the asphere from

the real data (Figure 5.16b) is heavily biased, suggesting that the vertical realignment

may have shifted the entire surface too much in one direction. However, the 2σ intervals

for this surface are actually smaller than the corresponding front surface intervals we saw

in Figure 5.8b. Because the back of the asphere is flat, overfitting causes the error to

increase—particularly in the outer zone—as the Zernike order of zp increases. Obviously

the best model for this surface would be zp ≈ f0, although zp ≈ f1 seems to produce

acceptable results. This makes sense given that the odd Zernike polynomials included

in f1 only serve to capture any uniform horizontal tilt present in the surface, whereas

the Envisu’s sample alignment protocol ensures that the back of the aspheric lens is

perpendicular to the CT axis during data collection. The higher model orders are also

acceptable if the region of interest is restricted to the central and middle zones.

The front surfaces of both lenses are axisymmetric, so we only had to worry about

axial realignment before computing the errors in Sections 5.2.1–5.2.2. This is also true for

the back surface of the aspheric lens. However, the back surface of the toric lens has two

distinct principal curvatures, so any discrepancy between the rotational orientation of the

lens during imaging and that of the design equation will result in additional surface (and

curvature) error. To account for this discrepancy, the results for the real toric lens data

(Figure 5.17b) have been rotated about the optical axis—as approximated by the axial

realignment step—so that the principal meridians are aligned with the design equation
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Figure 5.17: Mean surface error and 2σ interval for the posterior toric lens after de-
warping a) quantized synthetic data (za ≈ f10), b) real lens data after reorientating the
data to align the principal axes with the design equation (za ≈ f8), and c) real lens data
without principal axis reorientation (za ≈ f8).

prior to error calculation.vi For comparison, Figure 5.17c shows the surface error for the

back of the toric lens if we do not reorient the meridians to align the principal directions.

Note that reorienting the meridians does not significantly impact the error in the central

and middle zones, but the improvement in the outer zone is substantial.

To determine the principal directions for reorientation purposes, the principal cur-

vatures were calculated along the translated meridians at angular increments of 1.5◦.

Depending on the order of the Zernike fit to the back surface (zp), we found that the

minimum curvature was equally likely to be located at either 19.5◦ or 21◦ (respectively

the 14th or 15th frame of imaging data). The direction of the principal meridians was

viAs with axial and vertical realignment, this correction is not necessary for the synthetic data.
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not affected by our choice of front surface model za. For this type of lens (that is, one

such that |Rp1 −Rp2| > 0.3 mm), the ISO standard on ophthalmology stipulates that

compliant devices be able to measure the principal meridians to within ±2◦ [35]. Since

we have no way of knowing the precise original orientation of the lens during imaging, we

cannot verify that our method satisfies this accuracy requirement, nor can we confirm the

robustness without repeated measurements. Future validation of the principal meridians

obtained in this manner will likely require a finer angular grid.

Overall, the 2σ intervals for the surface error are slightly larger for the back of the

toric lens than they were for the front (Figure 5.9b), which is likely due to the propagation

of error from the front surface through the dewarping process. Furthermore, it is difficult

to identify a best Zernike order for the back surface of the toric lens just from the surface

fit alone, as all the models shown in Figure 5.17b seem to produce comparable results.

5.2.4 Posterior Surface Curvature After Dewarping

For both the synthetic and real aspheric lens data, the error in the back principal curva-

ture (Figure 5.18) is well under 0.25 D no matter which combination of front and back

surface models we use. The principal curvature error for the real data is slightly worse

for za ≈ f3 but comparable for the other front surface orders, once again confirming that

za ≈ f4 is a good choice for the front surface model.

Figure 5.20b shows the 2σ error interval for the overall curvature by zone when

za ≈ f4, and we can see that the error interval for each zone is within about a quarter

diopter for up to a third order fit to the back surface. As with the surface error, the

best results for the principal curvature and the overall curvature from the real asphere

data occur with the models zp ≈ f0 and zp ≈ f1. However, in the interest of allowing

our model some leeway to account for manufacturing error (i.e., deviations in the lens

surface from a perfect plane) or residual optical error that might not have been fully

corrected by dewarping, it is worth selecting the highest order model that still produces

reasonable results. In this case, the best choice for the back surface model may actually

be zp ≈ f3—even for this model, the various measures of curvature for the back surface

of the aspheric lens are still more accurate than the best front surface curvature results

depicted in Figures 5.12–5.10.

Like the principal curvature results for the back surface of the aspheric lens, the

principal curvatures for the back of the toric lens (shown in Figure 5.19) are fairly similar
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Figure 5.18: Back principal curvature for aspheric lens after dewarping, using (a) quan-
tized synthetic data and (b) real lens data.
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Figure 5.19: Back principal curvatures (Kp1 = 40.18 D, Kp2 = 36.67 D) for the toric
lens after dewarping, using (a) synthetic data and (b) real lens data.

for most of the front surface models. Once again, the lowest order front surface model

shown for the real lens data, za ≈ f5, produces slightly different results compared to

the three higher order models, which appear to be comparable to one another. Since we

obtained the best front surface curvature estimates with za ≈ f8, this seems like the best

choice for the back surface model as well.

The only cases in which both the minimum and maximum curvature are within a

quarter diopter of the design values for the real data is when we use a 6th order or higher

front surface fit and either a 12th or 13th order back surface fit. However, while the error

130



0 1 2 3 4 5

Zernike order (back surface)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

B
a
c
k
 c

u
rv

a
tu

re
 e

rr
o
r 

(D
) 0.25 D

0.50 D

Full diameter

Central diameter

Middle diameter

Outer diameter

(a) (b)

Figure 5.20: Mean curvature error and 2σ interval for the posterior aspheric lens after
dewarping a) synthetic data (za ≈ f6), and b) real lens data (za ≈ f4).

in the principal curvature and the surface fit does not seem to increase rapidly as the

order of the back surface fit increases, overfitting does have a significant impact on the

mean curvature error, shown in Figure 5.21—for back surface models of order Np ≥ 9,

the overall curvature error becomes so large that we could not include it in the figures

without obscuring the better results. Since the accuracy of the local surface curvature

is important to us, this means that zp ≈ f12 and zp ≈ f13 are not viable models for

this application. The next best back surface models for principal curvature are zp ≈ f6

and zp ≈ f7, and it is clear from Figure 5.21 that zp ≈ f6 also provides the best local

curvature estimates for the real data.

Note that while the principal axis reorientation did not have a major impact on the

surface fit for the posterior toric lens in the central and middle zones, the curvature es-

timates in these zones are substantially better after reorientation. Without reorientation

(Figure 5.21d), the 2σ error intervals for zp ≈ f6 are close to 2 D; however, with reori-

entation (Figure 5.21c) these intervals drop to close to 0.5 D. Figures 5.21a and 5.21b

show that for zp ≈ f6, the error intervals are perhaps even slightly worse for the quan-

tized synthetic data, even when warping (and subsequent dewarping) is not taken into

account. However, if segmentation data can be cleaned up to the point that a higher

order back surface fit (such as zp ≈ f10) could be used without overfitting, this could at

least partially mitigate some of the mean curvature error. For the quantized synthetic

data, the error intervals for the back surface model zp ≈ f10 are all around a quarter

diopter. This also indicates that it may be very difficult to reduce the size of the 2σ error
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Figure 5.21: Mean curvature error and 2σ interval for the posterior toric lens from a)
quantized synthetic data dewarped using za ≈ f10, b) quantized synthetic data without
warping/dewarping, and real lens data dewarped using za ≈ f8 c) with axis reorientation
and d) without axis reorientation.

intervals to less than a quarter of a diopter for real data obtained at this resolution.

For both the real and synthetic toric lens data, the best curvature results for the

back surface are comparable in magnitude to (if not slightly better than) the best front

surface results shown in Figure 5.13. For the quantized synthetic data, the smallest 2σ

error interval for the front surface ends up being plus or minus a quarter to half a diopter

depending on the zone, whereas for the back surface the smallest error interval is about

±0.25 D for each zone. For real data, the 2σ interval for the central zone is around ±1 D

for the front surface and ±0.5 D for the back surface. The middle zone interval is about

±1 D for both surfaces, while the outer zone is largest at roughly −8 to 4 D for the front

and ±3 D for the back.
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5.3 Summary

In Section 5.2, we saw that the best Zernike models for the aspheric lens when using real

data were za ≈ f4 and zp ≈ f3, while the toric lens was best modeled by za ≈ f8 and

zp ≈ f6. The error—as compared to the design specifications—in our estimates of surface

fit, curvature, and central lens thickness (tC) based on these models are summarized in

Table 5.2. Most of these results have all been discussed in the previous section with the

exception of tC , which was within about 0.02 mm of its design value for the aspheric lens

and 0.0002 mm for the toric lens. Note that the tolerance on the design thickness for the

aspheric lens is several orders of magnitude larger than that of the toric lens, at 0.1 mm

versus 0.002 mm.

We estimated the anterior and posterior principal curvatures of the aspheric lens as

being within the ranges 25.43–25.63 D and 0.11–0.15 D, respectively—both of which are

well within a quarter diopter of their design values of Ka = 25.46 D and Kp = 0.0 D.

The anterior curvature of the toric lens was estimated to be 43.04–43.21 D, also within

a quarter diopter of its design value of Ka = 43.27 D. For the posterior toric lens, the

estimates of the maximum and minimum curvatures were 40.15 D and 37.03 D. This

is extremely close to the design value of Kp1 = 40.18 D for the maximum curvature,

but slightly over a quarter diopter from the minimum curvature’s design value of Kp2 =

36.67 D.

To compare these results to those of the previous sections, we can also look at the

corresponding principal radii of curvature. For the aspheric lens, the anterior radius of

curvature estimates vary from 13.169 mm to 13.274 mm, which is at worst 0.086 mm from

the design radius of Ra = 13.255 mm. This is not quite within the 0.05 mm tolerance

for “Type B” ophthalmometers; however, the mean value of 13.221 mm does meet this

requirement.vii The estimates for the anterior radius of curvature of the toric lens range

from 7.81 mm to 7.84 mm, deviating by at most 0.04 mm from the design value of

Ra = 7.80 mm—an order of magnitude better than the estimates obtained using the same

model order with idealized synthetic data in Chapter 3. The maximum and minimum

posterior radii were estimated to be 9.12 mm and 8.41 mm, which differ from their design

values of Rp1 = 9.20 mm and Rp2 = 8.40 mm by 0.08 mm and 0.01 mm, respectively.

Although we were able to obtain better estimates of these quantities with the idealized

synthetic data in Chapter 4, this required using at least an 8th order Zernike fit for the

viiThe tolerance on the design value of Ra for the aspheric lens was not provided by the manufacturer.
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Table 5.2: Error in elevation and curvature estimates from real lens data.

Aspheric Lens

Front (za ≈ f4) Back (zp ≈ f3)

RMS error – overall 5.96 µm 5.18 µm

RMS error – central zone 0.15 µm 0.28 µm

RMS error – middle zone 0.88 µm 1.22 µm

RMS error – outer zone 7.68 µm 6.65 µm

Curvature error – overall 0.04± 0.24 D −0.13± 0.07 D

Curvature error – central zone 0.07± 0.08 D −0.13± 0.02 D

Curvature error – middle zone 0.08± 0.13 D −0.13± 0.04 D

Curvature error – outer zone 0.02± 0.29 D −0.13± 0.09 D

Absolute maximum error in K 0.17 D 0.15 D

Absolute error in tC 0.019 mm

Toric Lens

Front (za ≈ f8) Back (zp ≈ f6)

RMS error – overall 16.04 µm 28.49 µm

RMS error – central zone 0.39 µm 5.12 µm

RMS error – middle zone 3.08 µm 13.97 µm

RMS error – outer zone 21.16 µm 37.46 µm

Curvature error – overall −0.92± 2.58 D 0.22± 1.14 D

Curvature error – central zone −0.04± 0.41 D −0.09± 0.22 D

Curvature error – middle zone 0.06± 0.45 D 0.04± 0.34 D

Curvature error – outer zone −1.62± 3.23 D 0.43± 1.49 D

Absolute maximum error in K 0.23 D
0.03 D (Kp1)

0.34 D (Kp2)

Absolute error in tC 0.0002 mm

back surface; for the 6th order fit used here, the estimates for both of the posterior radii

fell at or slightly above the 0.05 mm threshold.viii

Figures 5.22–5.23 depict the meridional curvature maps of the three curved surfaces

viiiNote that the tolerance on the design values of Ra, Rp1 , and Rp2 for the toric lens is ±0.01 mm.
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(a) (b) (c)

Figure 5.22: Meridional curvature maps based on the design equations for the (a) ante-
rior aspheric lens, (b) anterior toric lens, and (c) posterior toric lens.

(a) (b) (c)

Figure 5.23: Meridional curvature maps from OCT data for the (a) anterior aspheric
lens, (b) anterior toric lens, and (c) posterior toric lens.

generated from the OCT data using the Zernike models in Table 5.2, as well as maps of

the design curvature for comparison. Recall that the anterior toric lens (Figures 5.22b) is

spherical and therefore has a constant curvature. Error maps for all four lens surfaces are

shown in Figure 5.24. The curvature of the posterior aspheric lens is 0, so its curvature

map corresponds to its error map, Figure 5.24c.

The maps for the anterior and posterior aspheric lens appear reasonable, with the

local curvature error never exceeding ±1 D at any point for either lens surface. The

curvature maps for the toric lens are less accurate, with especially large errors (� 5 D)

around the periphery. These edge errors are similar to what we saw in Chapter 3 when
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Figure 5.24: Local curvature error for the (a) anterior aspheric lens, (b) anterior toric
lens, (c) posterior aspheric lens, and (d) posterior toric lens.

performing the same computations with synthetic data, so they may be unavoidable for

some surfaces. Their influence can likely be at least partially mitigated by imaging a larger

area and shrinking the diameter of the region of interest when reporting results. Another

possible source of error for the toric lens is the difficulty determining the vertex due to

the missing data in the very center of each lens, which would lead to the curvatures being

computed along the incorrect meridians. Short of eliminating reflections and improving

segmentation, an alternative solution might be using a 3D measure of local curvature such

as Gaussian curvature, which completely avoids the issue of locating the lens vertex.

We will discuss the results of this chapter in greater detail in Chapter 7.
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Chapter 6

Uncertainty Analysis

Research has been done involving uncertainty analysis in imaging data, including esti-

mation of quantization error in image processing [42, 81, 106], uncertainty estimation in

edge detection and segmentation algorithms [3, 12], uncertainty quantification in image

reconstruction [10], and estimation and propagation of uncertainty through an entire

imaging analysis pipeline [96]. Additionally, there has been work involving model cali-

bration in the use of orthogonal polynomial moment descriptors of image intensity data

[2, 46]. However, since we do not have access to the original imaging data or segmenta-

tion algorithms, we are not able to include any of these image processing steps in our

uncertainty analysis. Instead, this chapter will address only the contributions associated

with fitting the point cloud data to a three dimensional surface, as well as dewarping and

curvature estimation based on the 3D surface model.

The first two sections of this chapter summarize the relevant mathematical and sta-

tistical models for the aspheric and toric lenses (Figure 6.1). Section 6.3 addresses model

calibration, including identifiability and obtaining density estimates for the Zernike coef-

ficients for the front and back surface. In Section 6.4 we will evaluate how the error in our

coefficient estimates propagates through the models to impact the estimates of surface fit

and curvature. In the final section, Section 6.5, we will employ several methods of global

sensitivity analysis to evaluate how the different coefficients affect the estimates of the

anterior and posterior principal curvatures based on the model response. All of the sta-

tistical methods and algorithms used for the analyses in Sections 6.3–6.5 are described in

greater detail in Uncertainty Quantification: Theory, Implementation, and Applications

and its upcoming second edition, both by Ralph C. Smith [89, 90].
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Figure 6.1: Renderings of the aspheric lens (left) and the toric lens (right) from the
design equations in Section 2.3.

Many of the methods used in this chapter are predicated on the assumption that

the error in the data is (at a minimum) independent and identically distributed (iid)

with a mean value of 0 [9, 89]. As the error in the real OCT data is clearly not iid

(see Appendix B), we will conduct our statistical analyses using synthetic data per the

method described in Section 4.3. However, instead of quantization error (which, as we

pointed out in Section 2.4.2, is not iid), the noise added to the synthetic data used in this

chapter is
iid∼ N

(
0, σ2

0

)
. Appendix B describes the synthetic data for this chapter in more

detail, as well as an explanation of how we chose the error variance σ2
0 = 0.0001 mm.

It is worth commenting that the parameter estimation in Section 6.3.2 as well as the

global sensitivity analyses in Section 6.5 were repeated for multiple choices of the finite

difference step size used in the dewarping algorithm as well as the curvature estimation.

We also compared the finite difference differentiation with the complex-step method

discussed in [90, Ch. 8]. In every case, the results we obtained were identical to the ones

presented in this chapter.

6.1 Mathematical Models

In Chapters 3–4 we developed mathematical models for the anterior lens surface, as well

as the refraction-corrected posterior lens surface. In particular, we modeled both the

anterior and posterior axial elevation at the radial coordinate X ∈ R2 using a truncated
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Table 6.1: Order of the Zernike expansion used to fit each lens surface (N), as well as
the total number of terms in the complete expansion (m).

Surface N m

Aspheric lens front 4 15
Aspheric lens back 2 6
Toric lens front 10 66
Toric lens back 8 45

Zernike polynomial series of the form

f
(
X, c
)

=
m∑
j=1

cjZj
(
X′
)
, (6.1)

where the normalized coordinate X′ ∈ R2 has been scaled to fit within the unit disk do-

main of the Zernike basis functions (see Section 3.1). As in previous chapters, c indicates

the parameter vector containing all the Zernike coefficients.

We have selected the following orders for the finite polynomial expansion for each lens

surface: Na = 4 and Np = 2 for the front and back of the aspheric lens (respectively), and

Na = 10 and Np = 8 for the front and back of the toric lens. This information, along with

the total number of terms m = (N+1)(N+2)
2

in the corresponding expansion, is summarized

in Table 6.1. Although these orders were not the optimal ones according to the analyses

in Chapters 3 and 4, we will show in Section 6.3.1 that they are the highest order models

for which the magnitude of the non-zero coefficients is greater than the numerical error

in the coefficient estimates.

6.1.1 Anterior Lens Model

The anterior surface of each lens (which we will denote by fa) is modeled using the Zernike

transform (6.1) with appropriate number of polynomials ma indicated in Table 6.1

fa
(
X, c
)

=
ma∑
j=1

cjZj
(
X′
)
, X ∈ R2, (6.2)

139



where c =
[
c1, . . . , cma

]T
is the vector of Zernike coefficients. The observed axial elevations

are

zi = fa
(
Xi, c

)
=

ma∑
j=1

cjZj
(
X′i
)
.

For a set of s discrete axial elevation values z =
[
z1, . . . , zs

]T
, the model can be written

as the linear system

z = Xc, (6.3a)

where the design matrix X consists of the Zernike polynomials Zj evaluated at the

normalized sample points X′i:

X =


Z1

(
X′1
)

Z2

(
X′1
)
· · · Zma

(
X′1
)

...
...

...

Z1

(
X′s
)

Z2

(
X′s
)
· · · Zma

(
X′s
)
 . (6.3b)

6.1.2 Posterior Lens Model

We can formulate the back surface problem in two different ways. The first approach

is the one used in Chapters 4–5, where we treat refraction correction as part of the

data preprocessing step and simply model the posterior axial elevation the same way we

modeled the anterior elevation. In the second approach, we will consider the dewarping

step to be part of the model itself.

Posterior Model I

The first model is simply a Zernike expansion fp of the dewarped back surface, analogous

to the front surface model fa in Section 6.1.1. That is, the axial elevation of the posterior

surface at the dewarped point X̃ is given by

fp
(
X̃, c
)

=

mp∑
j=1

cjZj
(
X̃′
)
, X̃ ∈ R2 (6.4)
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where the number of terms mp in the back surface model may differ from ma in the front

surface model. The observations are the (non-distorted) points

z̃i = fp
(
X̃i, c

)
=

mp∑
j=1

cjZj
(
X̃′i
)
.

As in Section 6.1.1, we can represent this model in terms of the linear system

z = Xc, (6.5a)

except this time we let z̃ =
[
z̃1, . . . , z̃s

]T
be the vector of refraction-corrected posterior

surface observations, and we evaluate the Zernike polynomials in the design matrix X at

the dewarped coordinates X̃i:

X =


Z1

(
X̃′1
)

Z2

(
X̃′1
)
· · · Zmp

(
X̃′1
)

...
...

...

Z1

(
X̃′s
)

Z2

(
X̃′s
)
· · · Zmp

(
X̃′s
)
 . (6.5b)

We will refer to this model as the “surface fit model” or the “linear model”.

Posterior Model II

One issue with the surface fit model is that it assumes the dewarped points are the actual

observations, and thereby fails to account for any error propagation due to refraction cor-

rection. Prior to dewarping, the actual back surface measurements consist of the optical

path lengths (OPLs) between associated pairs of anterior and posterior data points—that

is, the vertical distance (in the OCT image) between the front and back surfaces at the

same radial coordinate. The OPLs are then converted to geometric path lengths (GPLs)

by accounting for the refractive indices (see Section 4.1.4).i

In order to incorporate the effects of optical distortion into our statistical analysis, we

can consider an alternative model that includes the 3D refraction correction algorithm

described in Section 4.2.2 and returns the GPL based on the Zernike model (6.4) of

iRecall that at any given sample point X for which there is a back surface segmentation result, there
may not be a corresponding segmentation result for the front surface. To get around this, we computed
the distance between surfaces using the Zernike model fa rather than the point cloud data for the front
surface.
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the back surface elevation (denoted here by z̃). Letting x =
(
X, fa

)
=
(
x, y, fa

)
and

x̃ =
(
x̃, ỹ, z̃

)
=
(
X̃, z̃

)
respectively denote the Cartesian representations of the anterior

point of incidence and the refraction-corrected posterior point of incidence, the GPL

model can be written as

g
(
X, c
)

=

√(
x− x̃

)2

+
(
y − ỹ

)2

+
(
fa − z̃

(
X̃, c
))2

. (6.6a)

The GPL observations Li corresponding to the points xi and x̃i are assumed to fit the

dewarping model

x̃ = x + Luref , z̃
(
X̃, c
)

=

mp∑
j=1

cjZj
(
X̃′
)
, (6.6b)

where the unit direction vector uref for the refracted light ray at the anterior point of

incidence x is given by (4.18); that is,

uref =

√
1+
(

1−n2
s

n2
`

)((
fax
)2

+
(
fay
)2
)

1+
(
fax
)2

+
(
fay
)2

fax

fay

−1

− ns

n`

1+
(
fax
)2

+
(
fay
)2

 fax

fay(
fax
)2

+
(
fay
)2

. (6.6c)

Recall that fax ≡
∂fa(X)
∂x

and fay ≡
∂fa(X)
∂y

are the x- and y-partial derivatives of the front

surface at the point of incidence, and n` and ns are the refractive indices of the lens and

the saline imaging medium (which we treat as known and fixed). Finally, we assume the

coefficients of fa ≡ fa
(
X
)

have been determined and fixed, so they are not included in

the parameter vector c for the posterior surface model.

Unlike the surface fit model (6.5), the GPL model (6.6) is not linear with respect to the

parameters. The forward problem associated with this model is addressed in Section 4.3.

6.1.3 Normalized Model

As illustrated in Section 6.3, our estimates of the Zernike coefficients for a single surface

can vary in order of magnitude from 10−5 mm to 100 mm. This can pose problems for

certain statistical methods, such as those involving numerical estimation of derivatives

or Monte Carlo sampling of the parameters. It can be helpful in these situations to use

an alternate model formulation for which the parameters have been normalized to have

the same order of magnitude.
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Consider the discrete Zernike transform based on (6.1):
z1

...

zs

 =


Z1

(
X′1
)
· · · Zm

(
X′1
)

...
...

Z1

(
X′s
)
· · · Zm

(
X′s
)


c1

...

cm

 . (6.7)

For the parameter-normalized model, we want to find a way to rewrite this system in

terms of the normalized parameter vectorii θ =
[
θ1, . . . , θm

]T
, where the values of each

θj are the same order of magnitude. One way to accomplish this is by constructing an

invertible linear function h
(
θj; c

∗
j

)
= cj that always maps the same value to each of

the nominal values c∗j computed using the linear least squares fit for each surface (see

Section 6.3). If we let the mean parameter values θ∗j = 1
2
, then

h
(
θj; c

∗
j

)
= 2c∗jθj (6.8)

is one possible map.iii

We can now represent the parameter vector in terms of the normalized parameter

vector using the linear system
c1

...

cm

 = 2


c∗1 0. . .

0 c∗m



θ1

...

θm

 .
Plugging this into (6.7), we obtain the parameter-normalized model

z1

...

zs

 = 2


Z1

(
X′1
)
· · · Zm

(
X′1
)

...
...

Z1

(
X′s
)
· · · Zm

(
X′s
)


c∗1 0. . .

0 c∗m



θ1

...

θm

 .
If we let c∗ =

[
c∗1, . . . , c

∗
m

]T
and c∗D = diag(c∗) (that is, the m ×m diagonal matrix for

iiNote that the Zernike coefficients cj are already technically “normalized Zernike coefficients” be-
cause they correspond to normalized Zernike polynomials. To avoid confusion, we will refer to the values
θj as “normalized parameters”, rather than coefficients.

iiiWe also tried the parameter mapping h(θj ; c
∗
j ) = 2

5c
∗
j

(
θj + 2

)
,which maps the interval [0, 1] to[

0.8c∗j , 1.2c
∗
j

]
; however, this did not change the results presented in this chapter.
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which c∗ comprises the diagonal entries), we can write this more compactly as

z =
(
2Xc∗D

)
θ = Xnθ, (6.9a)

where the normalized design matrix is now

Xn = 2


Z1(X′1) ··· Zm(X′1)

...
...

Z1(X′s) ··· Zm(X′s)



c∗1 0. . .

0 c∗m

=


2c∗1Z1(X′1) ··· 2c∗mZm(X′1)

...
...

2c∗1Z1(X′s) ··· 2c∗mZm(X′s)

. (6.9b)

Once the normalized parameter vector θ has been computed, the corresponding unscaled

coefficient vector c can be recovered using (6.8).

Note that the parameter-normalized model is a still linear; we have simply used the

nominal values of the Zernike coefficients to scale the associated columns of the design

matrix so that the dimensionless parameters θi will all have roughly the same order of

magnitude. Because the values of the Zernike coefficients are very different for each lens

surface, each locally-normalized model will have a different design matrix.

The normalized model (6.9) can be used for both the linear surface models (6.3) and

(6.5). The same principles involved here can also be applied to the GPL model (6.6).

6.2 Statistical Models

Since this chapter is concerned with quantifying model uncertainty through a statistical

framework, we consider the following statistical formulations of the models (6.2), (6.4),

and (6.6) presented in Section 6.1:

γ = fa
(
X, c0

)
+ ε (6.10)

γ̃ = fp
(
X̃, c0

)
+ ε (6.11)

ζ = g
(
X, c0

)
+ ε (6.12)

where γ, γ̃, and ζ respectively denote random vectors for the anterior surface elevation

measurements at the points X =
[
X1, . . . ,Xs

]T
, the refraction-corrected posterior surface

elevation measurements at the refraction-corrected points X̃ =
[
X̃1, . . . , X̃s

]T
, and the

GPL measurements at the points X. The combined measurement and modeling error
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for each model—represented by the random vector ε—is assumed to be iid with mean

0 and constant but unknown variance σ2
0 (see Appendix B). The random vectors and

realizations for each of the aforementioned quantities are summarized below.

Quantity of interest Random variable Realization

Front surface elevation γ =
[
γ1, · · · , γs

]T
w =

[
w1, · · · , ws

]T
Back surface elevation (dewarped) γ̃ =

[
γ̃1, · · · , γ̃s

]T
w̃ =

[
w̃1, · · · , w̃s

]T
Geometric path length (GPL) ζ =

[
ζ1, · · · , ζs

]T
L =

[
L1, · · · , Ls

]T
Measurement/modeling error ε =

[
ε1, · · · , εs

]T
ε =

[
ε1, · · · , εs

]T
As with their mathematical counterparts, the statistical models (6.10)–(6.12) can easily

be formulated in terms of the normalized parameters θ =
[
θ1, . . . θm

]T
(see Section 6.1.3).

In this chapter, we are only interested in quantifying the uncertainty related to the

Zernike coefficients. The remaining model inputs (the refractive indices of the lens and

saline) will be treated as known and fixed. Because the Zernike polynomials represent

types of spherical aberrations, the corresponding values of their coefficients have a real

physical significance—particularly within the field of ophthalmology. The shape char-

acteristics of the Zernike polynomials are discussed in greater depth in Chapter 3, and

Appendix A contains a list of the first 66 polynomial functions (according to Noll’s in-

dexing scheme) along with their visual representations. Interpretation of actual Zernike

coefficient values is discussed in Chapter 7.

The vector c0 in (6.10)–(6.12) represents the “true” but unknown values of the Zernike

coefficients for each model, which we are attempting to determine from our data. We do

this using the ordinary least squares (OLS) estimator

c = arg min
c∈Rm

s∑
i=1

(
γi − f

(
Xi, c

))2

. (6.13)

Note that the unbiased estimator for the error variance,

σ2 =
1

s−m
[
γ − f (X, c)

]T [
γ − f (X, c)

]
=

1

s−m
RTR, (6.14)

is simply the cost functional J =
∑s

i=1

(
γi−f (Xi, c)

)2
of (6.13) divided by the number of

degrees of freedom, which is itself a scalar constant. Therefore, the least squares estimate
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for the coefficient vector c0 can also be thought of as the set of coefficients ĉ that minimize

the estimated error variance σ̂2. (The random vector R in (6.14) denotes the estimator

for the model residual.)

As discussed in Section 3.5.2, the OLS problem for the linear surface models (6.3) and

(6.5) can be solved using the Moore-Penrose pseudoinverse of the design matrix, denoted

by X+:

c = arg min
c∈Rm

∥∥γ −Xc∥∥2
=
(
XTX

)−1
XTγ = X+γ.

The magnitude of the OLS estimates ĉi based on the linear models for the front and

back surfaces are shown in Figures 6.2, 6.4, 6.6, and 6.8, alongside the values obtained

by solving for the coefficients directly using numerical integration (see Section 3.5.2). We

will use these linear models for the parameter identification and model order reduction

in Section 6.3.1, as well as for the anterior surface parameter densities in Section 6.3.2.

However, in order to account for as much error as possible in the dewarping step, the

posterior surface parameter densities in Section 6.3.2 are obtained using the nonlinear

GPL model (6.6). The associated optimization problem

c = arg min
c∈Rm

∥∥ζ − g(X, c)∥∥2

is solved using the MATLAB function lsqnonlin.m with the solution to the linear prob-

lem (6.11) as an initial guess.iv Note that the theory behind some of the methods described

in Sections 6.4 and 6.5 can be applied directly to the linearly parameterized anterior lens

model, for which it is possible to compute the parameter means and variances explic-

itly. Due to the nonlinearity of the GPL model, however, sampling methods are required

to study the uncertainty propagation and sensitivity associated with the posterior lens

parameters. For consistency, we will apply the same methods to both models.

6.3 Model Calibration

6.3.1 Reduced Order Model

One of the first things that is apparent from the magnitude of the coefficient estimates

shown in Figures 6.2, 6.4, 6.6, and 6.8 is that most of them seem to hover around

ivWe solved the nonlinear problem for the normalized parameters θ and then rescaled them.
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Table 6.2: The `2 condition number of the Fisher information matrix XT
nXn.

Aspheric lens front Toric lens front Aspheric lens back Toric lens back

1.4952× 1013 1.6308× 1015 8.1287× 1010 3.6867× 1013

10−5 mm, while a select few are orders of magnitude greater. We hypothesize that the

Zernike basis functions associated with the smallest coefficients provide negligible contri-

butions to the overall shape of each lens surface. If this proves correct, we can construct

reduced order models (ROMs) consisting of only the “significant” basis functions. One ad-

vantage to using ROMs is that they are much more computationally efficient, particularly

for the Monte Carlo methods used to assess uncertainty.

Furthermore, for some coefficients—such as those that are very small relative to the

other parameters—it may be difficult to uniquely estimate their magnitude if perturba-

tions in these parameters have minimal effect on the model response. A parameter vector

c is identifiable with respect to a subspace I
(
c
)

of the parameter space if the model

response is one-to-one—that is, if f
(
c1
)

= f
(
c2
)

implies c1 = c2 for all c1, c2 ∈ I
(
c
)

[89,

Ch. 6]. For a linearly-parameterized problem like z = Xc (where z ∈ Rs and c ∈ Rm), the

identifiable subspace I
(
c
)

is defined by range of the transpose of the s×m design matrix

X, which is equivalent to the range of the m×m Fisher information matrix XTX:

I
(
c
)

= R
(
XT
)

= R
(
XTX

)
.

The unidentifiable subspace NI
(
c
)

is simply the orthogonal complement of I
(
c
)
; i.e.,

NI
(
c
)

= N
(
X
)

= N
(
XTX

)
.

Clearly, if the design matrix X (and hence XTX) is nonsingular, this means it is full

rank and all the parameters are identifiable [86, Ch. 3]. However, although the sample

grid S (described in Section 2.2.3) was deliberately selected in part to ensure that the

design matrix X would be well-conditioned—and therefore nonsingular—this is no longer

the case once the parameters have been normalized. In fact, the design matrix Xn for the

normalized problem z = Xnθ is very ill-conditioned, indicating that some of the normal-

ized parameters are indeed unidentifiable. As illustrated by the `2 condition numbers in

Table 6.2, this is the case for all four lens surfaces.
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Figure 6.2: Zernike coefficients of the front surface of the aspheric lens, using numerical
integration and linear least squares.
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Figure 6.3: Singular values of XT
nXn (left) and components of the right singular vectors

corresponding to the singular values above the dashed line (right) for the anterior surface
of the aspheric lens.

For a general matrix A, the right singular vectors corresponding to the nonzero sin-

gular values of A comprise a basis for the range of AT . Therefore, to construct a basis for

the identifiable subspace I
(
θ
)

= R
(
XT
nXn

)
v we can use the MATLAB function svd.m to

find the singular value decomposition

XT
nXn = UΣV T ,

vThe design matrix X (and therefore also Xn) may be quite large if we have many observations,
making direct computations on X very inefficient. We do not have this problem if we use the Fisher
information matrix XTX.
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Figure 6.4: Zernike coefficients of the front surface of the toric lens.
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Figure 6.5: Singular values (left) and right singular vectors (right) for the anterior surface
of the toric lens.

where U ∈ Rm×m and V ∈ Rm×m are orthogonal matrices whose columns represent the

left- and right-singular vectors of XT
nXn (respectively), and

Σ =


σmax 0

. . .

0 σmin


is the m×m diagonal matrix of singular values arranged from largest to smallest.vi

viWe know that XT
nXn has no truly zero singular values because the normalized design matrix is

constructed by scaling each of the linearly-independent columns of X by a nonzero scalar quantity, as
shown in (6.9b).
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Figure 6.6: Zernike coefficients of the back surface of the aspheric lens.
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Figure 6.7: Singular values (left) and right singular vectors (right) for the posterior
surface of the aspheric lens.

Note that the `2 condition number of a matrix is the ratio of its largest to smallest

singular values—i.e., κ
(
XT
nXn

)
= σmax

σmin
. Therefore, a large condition number (such as

those in Table 6.2) indicates that the smallest singular value σmin is many orders of

magnitude smaller than σmax. By delineating between the singular values that exceed

some reasonable tolerance τ and those that are small enough to ignore, we can use the

corresponding columns of V to form the bases for R
(
XT
nXn

)
and N

(
XT
nXn

)
[33, 89].

Once we have determined which parameters are unidentifiable for each surface, we

can set those coefficients equal to zero to obtain the reduced order model (ROM). We can

then compute the OLS estimates for the remaining coefficients using the ROM. Since each
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Figure 6.8: Zernike coefficients of the posterior surface of the toric lens.
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Figure 6.9: Singular values (left) and right singular vectors (right) for the posterior
surface of the toric lens.

normalized parameter θi is linearly mapped to a Zernike coefficient ci, the unidentifiable

parameters of the normalized model correspond to unidentifiable parameters in the non-

normalized model.

The singular values of XT
nXn for each lens surface are shown in Figures 6.3, 6.5, 6.7,

and 6.9, along with the components of the right singular vectors corresponding to σi > τ .

As hypothesized, the components of the right singular vectors do indeed correspond to

the “significant” coefficients (circled in red) in Figures 6.2, 6.4, 6.6, and 6.8.

The tolerance τ = 5 × 10−3 (illustrated by the dashed line) was selected empirically

by visual inspection of singular values. For both anterior surfaces as well as the posterior
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Figure 6.10: Error variance (σ̂2) according to the number of Zernike polynomials in-
cluded in the reduced order model (ROM) for the posterior toric lens.

surface of the aspheric lens, this tolerance coincides with a large gap in the singular

values. Furthermore, most of the smallest singular values are clustered relatively close

together below τ , while the singular values that exceed the tolerance show a steep rate

of change in magnitude.

No gap exists between the singular values on either side of τ for the back of the

toric lens (Figure 6.9). There is still a clear change in the slope that occurs between σ12

and σ13, so it is tempting to infer that this means we only need the first 12 singular

values. However, since the delineation between σ12 and σ13 is not definitive, we consider

an alternative motivation for setting the tolerance at the proposed value.

Recall from (6.14) that the cost function for the OLS estimator is directly proportional

to the error variance estimator

σ2 =
1

s−m
RTR,

where R is the estimator for the residual vector. To see if τ = 5 × 10−3 is indeed an

appropriate value for the tolerance, we consider what happens to the error variance when

the reduced order model is constructed using only the first 7 singular values, then the

first 8 singular values, up through the first 17 singular values—that is, the 5 singular

values on either side of σ12. In each case, the specific parameters included in the model

are determined by the space spanned by the right singular vectors. If we denote the set

of Zernike coefficients in the 7-parameter model by C7 = {c1, c4, c6, c11, c12, c14, c22}, then
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the coefficients in the higher-order models are the sets

C8 = C7 ∪ {c24} , C9 = C8 ∪ {c37} , C10 = C9 ∪ {c26} , C11 = C10 ∪ {c28} ,

C12 = C11 ∪ {c38} , C13 = C12 ∪ {c8} , C14 = C13 ∪ {c9} , C15 = C14 ∪ {c39} ,

C16 = C15 ∪ {c15} , C17 = C16 ∪ {c19} .

Figure 6.10 shows the error variance estimates σ̂2 for each of these 11 reduced order

models. It is clear from this illustration that each new parameter included in the ROM

helps improve the fit to the data—up to the 12th parameter. After that, the error variance

remains the same no matter how many more parameters are included. This affirms our

choice of τ = 5 × 10−3, which also results in a 12-term ROM for the back of the toric

lens. Another way of saying this is that XT
nXn for the back surface of the toric lens has

rank 12. For the front of the aspheric and toric lenses, the rank is 3 and 6, respectively,

while the back of the aspheric lens (a flat plane) is rank 1. The Zernike basis functions

corresponding to the identifiable coefficients are summarized in Table 6.4 and Figure 6.11.

(For comparison, recall that the true shape of both lenses is illustrated in Figure 6.1.)

The error variance estimates σ̂2 for both the full and reduced order models for all

for surfaces are shown in Table 6.3. In each case, the error variance σ̂2 for the reduced

order model (when the unidentifiable parameters are fixed at 0 before computing the

OLS estimates) differs by well under 0.01% from the error variance estimate when all

coefficients are included in the fit. In fact, for both front surface models the variance

estimate is slightly lower when using the ROM.

The difference in axial elevation using the full model and the ROM for each surface

is depicted in Figure 6.12.

Table 6.3: OLS error variance estimates (σ̂2) in square millimeters for all lens surfaces,
using the full model (all Zernike coefficients) versus the reduced order model.

All coefficients Reduced order

Aspheric lens front 9.9631× 10−5 9.9628× 10−5

Toric lens front 9.9688× 10−5 9.9683× 10−5

Aspheric lens back 7.0113× 10−5 7.0113× 10−5

Toric lens back 8.5486× 10−5 8.5488× 10−5

153



Table 6.4: Zernike polynomials included in reduced order models for each lens surface.

Formula
Asphere Asphere Toric Toric

Front Back Front Back

Z1 1 X X X X
Z4

√
3
(
2ρ2 − 1

)
X X X

Z6

√
6ρ2 cos 2θ X

Z11

√
5
(
6ρ4 − 6ρ2 + 1

)
X X X

Z12

√
10
(
4ρ4 − 3ρ2

)
cos 2θ X

Z14

√
10ρ4 cos 4θ X

Z22

√
7
(
20ρ6 − 30ρ4 + 12ρ2 − 1

)
X X

Z24

√
14
(
15ρ6 − 20ρ4 + 6ρ2

)
cos 2θ X

Z26

√
14
(
6ρ6 − 5ρ4

)
cos 4θ X

Z28

√
14ρ6 cos 6θ X

Z37 3
(
70ρ8 − 140ρ6 + 90ρ4 − 20ρ2 + 1

)
X X

Z38

√
18
(
56ρ8 − 105ρ6 + 60ρ4 − 10ρ2

)
cos 2θ X

Z56

√
11
(
252ρ10 − 630ρ8 + 560ρ6 − 210ρ4 + 30ρ2 − 1

)
X

Z1 Z4 Z11

(a)

Z1 Z4 Z11

Z22 Z37 Z56

Z1 Z4 Z6 Z11

Z12 Z14 Z22 Z24

Z26 Z28 Z37 Z38

(b) (c)

Figure 6.11: Significant Zernike polynomials for (a) the aspheric lens, (b) the front of
the toric lens, and (c) the back of the toric lens.
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(a) (b)

(c) (d)

Figure 6.12: Difference between the full Zernike fit and the reduced order model for (a)
the anterior aspheric lens, (b) the anterior toric lens, (c) the posterior aspheric lens, and
(d) the posterior toric lens.

6.3.2 Model Calibration

Now that we have determined the identifiable coefficients and constructed reduced order

models for each surface, our next goal is to obtain estimates for the parameters and

quantify the associated uncertainty. In order to account for some of the error in the

refraction correction step, we will use the nonlinear GPL model (6.6) for the posterior

surface rather than the linear model. This is the model we will be using for the remainder

of the chapter.
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We will approach parameter estimation for the identifiable Zernike coefficients first

from a frequentist perspective, in which we attempt to estimate the true but unknown

parameter vector c0, along with sampling distributions for the parameter estimate ĉ. We

will then repeat the analysis from a Bayesian perspective, in which the parameters them-

selves are treated as random variables whose probability distributions are conditioned

upon the observed data. The methods employed for both analyses are discussed in much

greater detail in [89, Ch. 7–8].

Frequentist Parameter Estimation

In Section 6.2, we explained how to find the OLS estimator c for the true model parame-

ters c0, using either the Moore-Penrose pseudoinverse (for the linear front surface model)

or the MATLAB function lsqnonlin.m (for the nonlinear GPL model). These estimators

required the assumption that the errors εi be iid with zero mean and constant variance

σ0, which is corroborated in Appendix B. The residuals shown in Appendix B further sug-

gest that the errors are normally distributed.vii Therefore, we may assume that the sam-

pling distributions for the parameter estimators are also normal [9, 86, 89]—specifically,

c ∼ N
(
c0, σ

2
0

(
χ(c)Tχ(c)

)−1
)

.

The estimator for the parameter covariance σ2
0

(
χ(c)Tχ(c)

)−1
is

V
(
c
)

= σ2
(
χ(c)Tχ(c)

)−1
, (6.15)

where σ2 is the error variance estimator from (6.14) and the sensitivity matrix χ(c) is

defined as

χ(c) =


∂g1

(
c
)

∂c1

· · ·
∂g1

(
c
)

∂cm
...

...

∂gs
(
c
)

∂c1

· · ·
∂gs
(
c
)

∂cm

 . (6.16)

Note that for the linear model, the sensitivity matrix is equal to the design matrix X, so

the covariance estimator is simply

V
(
c
)

= σ2
(
XTX

)−1
. (6.17)

viiWe also know this to be true because the synthetic data were explicitly constructed using the
addition of normally distributed noise.
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To construct the sensitivity matrix (6.16) for the GPL model, recall that the GPL at

a particular point is given by the function

gi
(
c
)

= g
(
Xi, c

)
=

√(
xi − x̃i

)2

+
(
yi − ỹi

)2

+
(
fai − z̃i

(
c
))2

.

The dewarped axial coordinate z̃i is also a linear function of the parameters

z̃i
(
c
)

= z̃
(
X̃i, c

)
=
[
X
]
i∗c,

where
[
X
]
i∗ denotes the ith row of the design matrix X defined in (6.5b). Taking the

partial derivative with respect to the parameter cj yields

[
χ(c)

]
ij

=
∂gi
(
c
)

∂cj
=
z̃i − fai
gi

[
X
]
ij
.

The values of z̃i, gi, and the front surface point fai are the same regardless of whether

we use the Zernike coefficients or the normalized parameters θ. Given the definition

(6.9a) of the normalized the design matrix Xn, the relationship between the ijth entry

of the normalized sensitivity matrix χn(θ) and that of the full sensitivity matrix can be

expressed as

[
χn(θ)

]
ij

=
∂gi
(
θ
)

∂θj
=
z̃i − fai
gi

[
Xn

]
ij

=
z̃i − fai
gi

· 2c∗j
[
X
]
ij

= 2c∗j
[
χ(c)

]
ij
.

The transformation between the two sensitivity matrices is therefore given by

χn(θ) = 2χ(c)c∗D =⇒ χ(c) =
1

2
χn(θ)c∗D

−1

where

c∗D =


c∗1 0. . .

0 c∗m

 .
Note that this mirrors the relationship between the normalized and non-normalized design

matrices for the linear model:

Xn = 2Xc∗D =⇒ X =
1

2
Xnc

∗
D
−1.
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If we let Vn
(
θ
)

= σ2
(
XT
nXn

)−1
be the covariance of the normalized model, the covari-

ance V
(
c
)

can be recovered from the normalized covariance according to the relationship

V
(
c
)

= σ2
(
XTX

)−1
= σ2

((
1
2
Xnc

∗
D
−1
)T (1

2
Xnc

∗
D
−1
))−1

= σ2
(

1
4
c∗D
−1XT

nXnc
∗
D
−1
)−1

(6.18)

= 4c∗D

(
σ2
(
XT
nXn

)−1
)
c∗D = 4c∗DVn(θ)c∗D. (6.19)

The standard error SEck associated with estimate of the kth parameter ĉk—that is, the

square root of the estimate’s covariance with itself—maps to the standard error of the

normalized parameter SEθk according to

SEck =
√[

V̂
(
c
)]
kk

=
√

4c∗k
[
V̂n
(
θ
)]
kk
c∗k = 2c∗k

√[
V̂n
(
θ
)]
kk

= 2c∗kSEθk , (6.20)

which is consistent with (6.8). It can easily be shown that the relationships (6.19) and

(6.20) apply to the covariance and standard error of the nonlinear GPL model as well.

Tables 6.5–6.8 show the OLS estimates ĉ for the identifiable Zernike coefficients of each

lens surface along with their 95% confidence intervals, constructed using a t-distribution

with s − m degrees of freedom. We performed this analysis on both the reduced order

models and the full version where all the Zernike polynomials were included in the fit. For

comparison, Tables 6.5–6.8 also show the “true” coefficient values (which we’ll label c
(i)
j ),

obtained by numerically integrating the design equations (as discussed in Section 6.3.1).

The key observations from Tables 6.5–6.8 are summarized below.

For every coefficient in both aspheric lens surfaces, c
(i)
j lies well within the 95% con-

fidence interval. The coefficient estimates ĉj for both the full model and the ROM are

all well within 1% of c
(i)
j . Furthermore, both sets of coefficient estimates agree up to

six significant figures for the front surface and are within 0.001% for the back surface,

providing further evidence that the reduced order models are sufficient.

Both sets of estimates for the front of the toric lens also agree up to six significant

figures, and the confidence intervals for all but two of the coefficients—c4 and c56—

contain their respective “true” coefficient values. In the case of c4, the “true” value falls

just outside of the confidence interval, which is the same for both the full model and the

ROM, but both estimates ĉ4 differ from c
(i)
4 by < 0.01%. The estimates for c56 are once

again the same for both the full and reduced order models; however, c
(i)
56 lies well outside
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the 95% confidence interval for both models (which are nearly identical), and differs from

both estimates ĉ56 by almost 15%. The remaining coefficient estimates for the front of

the toric lens are well within 1% of c
(i)
j for both the full model and the ROM.

For the back of the toric lens, there are three parameters whose 95% confidence

intervals do not contain c
(i)
j : c6, c14, and c37. The confidence interval for ĉ6 is slightly

narrower for the ROM than the full model, despite the estimate also being slightly worse;

however, both estimates are still only ∼ 0.1% away from c
(i)
6 . The relative error in the

ROM estimate for c14 is significantly worse at just under 3.5%, but the relative error in

the estimate using the full model is nearly 4% (the two estimates differ from one another

by roughly 0.5%). Both estimates for c37 are nearly 10.5% off from the “true” value, with

the ROM estimate being slightly better than the estimate from the full model.

For the first three surfaces (the two front surfaces and the back surface of the aspheric

lens), the relative error in the coefficient estimates increases as the coefficient index

increases, regardless of whether we use the full model or the ROM. This is not strictly

true for the back of the toric lens. In addition to the three coefficients for which the “true”

value lies outside the 95% confidence interval, there are also several parameter estimates

ĉj whose relative errors exceed 1% despite the fact that their confidence intervals do

contain c
(i)
j . Both the ROM and full model estimates for c24 are off by a bit under 4%,

while the estimates for c38 (which are within 0.6% of one another) both differ from the

“true” value by nearly 20%. For c26 and c28, the ROM estimates are significantly worse

than the full model estimates, and differ from one another by roughly 6% and 3.5%,

respectively. The relative error in c26 is 1% for the full model estimate, but increases to

5% for the ROM. Similarly, the relative error goes from 8% to 12% for the two estimates

of c28. The estimates for each of the remaining coefficients agree to within 0.1%.

Bayesian Parameter Estimation

In the frequentist approach to parameter estimation, the parameter estimator c is a

random variable that approximates the fixed but unknown true value of the parameter

c0. The estimator has an associated sampling distribution, which specifies the probability

that a particular value is equal to c0. The Bayesian approach to parameter estimation

treats the parameters themselves as the random vector C—rather than fixed values—with

realizations c and some prior probability density π0

(
c
)
.
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Table 6.5: Zernike coefficient estimates (in mm) and 95% confidence intervals using ordinary least squares (OLS) for full
anterior aspheric lens model with all coefficients and reduced order lens model.

Integration OLS (All coefficients) OLS (Reduced model)

OLS 95% confidence interval OLS 95% confidence interval

ĉ1 4.58226 4.58230
(
4.58224, 4.58235

)
4.58230

(
4.58224, 4.58235

)
ĉ4 −6.33748×10−1 −6.33710×10−1

(
−6.33764×10−1,−6.33655×10−1

)
−6.33710×10−1

(
−6.33764×10−1,−6.33655×10−1

)
ĉ11 −5.60707×10−3 −5.59018×10−3

(
−5.63818×10−3,−5.54217×10−3

)
−5.59018×10−3

(
−5.63818×10−3,−5.54218×10−3

)

Table 6.6: Coefficient estimates and 95% confidence intervals for full and reduced posterior aspheric lens models.

Integration OLS (All coefficients) OLS (Reduced model)

OLS 95% confidence interval OLS 95% confidence interval

ĉ1 3.20400 3.20403
(
3.20397, 3.20409

)
3.20403

(
3.20397, 3.20409

)
ĉ4 −1.22051 −1.22044

(
−1.22050,−1.22039

)
−1.22044

(
−1.22050,−1.22039

)
ĉ11 −1.17874×10−1 −1.17856×10−1

(
−1.17913×10−1,−1.17799×10−1

)
−1.17856×10−1

(
−1.17913×10−1,−1.17799×10−1

)
ĉ22 −2.27060×10−2 −2.26500×10−2

(
−2.27069×10−2,−2.25932×10−2

)
−2.26500×10−2

(
−2.27069×10−2,−2.25932×10−2

)
ĉ37 −5.47311×10−3 −5.49497×10−3

(
−5.55149×10−3,−5.43845×10−3

)
−5.49497×10−3

(
−5.55148×10−3,−5.43846×10−3

)
ĉ56 −1.47927×10−3 −1.26240×10−3

(
−1.31255×10−3,−1.21225×10−3

)
−1.26240×10−3

(
−1.31255×10−3,−1.21226×10−3

)
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Table 6.7: Coefficient estimates and 95% confidence intervals for full and reduced anterior toric lens models.

Integration OLS (All coefficients) OLS (Reduced model)

OLS 95% confidence interval OLS 95% confidence interval

ĉ1 1.66754 1.66755
(
1.66750, 1.66760

)
1.66754

(
1.66750, 1.66758

)

Table 6.8: Coefficient estimates and 95% confidence intervals for full and reduced posterior toric lens models.

Integration OLS (All coefficients) OLS (Reduced model)

OLS 95% confidence interval OLS 95% confidence interval

ĉ1 2.22439 2.22436
(
2.22430, 2.22442

)
2.22436

(
2.22430, 2.22442

)
ĉ4 −8.45313×10−1 −8.45317×10−1

(
−8.45380×10−1,−8.45253×10−1

)
−8.45317×10−1

(
−8.45380×10−1,−8.45253×10−1

)
ĉ6 6.91482×10−2 6.90762×10−2

(
6.90046×10−2, 6.91478×10−2

)
6.90741×10−2

(
6.90026×10−2, 6.91457×10−2

)
ĉ11 −4.33250×10−2 −4.32913×10−2

(
−4.33573×10−2,−4.32253×10−2

)
−4.32914×10−2

(
−4.33574×10−2,−4.32254×10−2

)
ĉ12 8.35447×10−3 8.31336×10−3

(
8.24284×10−3, 8.38388×10−3

)
8.31210×10−3

(
8.24163×10−3, 8.38258×10−3

)
ĉ14 −3.39284×10−3 −3.52714×10−3

(
−3.60374×10−3,−3.45054×10−3

)
−3.50901×10−3

(
−3.58306×10−3,−3.43495×10−3

)
ĉ22 −4.38993×10−3 −4.38291×10−3

(
−4.45209×10−3,−4.31374×10−3

)
−4.38314×10−3

(
−4.45232×10−3,−4.31397×10−3

)
ĉ24 1.27769×10−3 1.32561×10−3

(
1.25446×10−3, 1.39676×10−3

)
1.32562×10−3

(
1.25451×10−3, 1.39673×10−3

)
ĉ26 −5.44659×10−4 −5.49006×10−4

(
−6.23479×10−4,−4.74534×10−4

)
−5.18261×10−4

(
−5.86114×10−4,−4.50407×10−4

)
ĉ28 3.33321×10−4 3.59759×10−4

(
2.80739×10−4, 4.38779×10−4

)
3.72016×10−4

(
2.97455×10−4, 4.46577×10−4

)
ĉ37 −5.57099×10−4 −4.99005×10−4

(
−5.54369×10−4,−4.43642×10−4

)
−4.99141×10−4

(
−5.54505×10−4,−4.43778×10−4

)
ĉ38 2.14390×10−4 1.71763×10−4

(
1.10177×10−4, 2.33349×10−4

)
1.72813×10−4

(
1.11250×10−4, 2.34377×10−4

)

161



The solution to the inverse problem is the posterior probability density of C given the

observations
(
χi, wi

)
. As explained in [41, 89], the posterior density is given by Bayes’

theorem:

π
(
c|w
)

=
π
(
w|c
)
π0

(
c
)

π
(
w
) =

π
(
w|c
)
π0

(
c
)∫

Rm π
(
w|c
)
π0

(
c
)
dc
. (6.21)

The likelihood function π
(
w|c
)

= Lw
(
c
)

in (6.21) is the probability of obtaining the

vector of discrete observations w given a particular parameter realization c ∈ C. For

errors εi
iid∼ N

(
0, σ2

)
, the likelihood function can be written

π
(
w|c
)

= Lw
(
c, σ2

)
=

1

(2πσ2)s/2
e−SSc/2σ2

, (6.22a)

where SSc is the sum of squares error

SSc =
s∑
i=1

[
wi − fi

(
c
)]2

= RTR. (6.22b)

Rather than trying to use numerical integration to solve (6.21), we will estimate the

posterior density stochastically using the delayed rejection adaptive Metropolis (DRAM)

algorithm detailed in [25, 26]. The DRAM algorithm is a modified Metropolis Markov

chain Monte Carlo (MCMC) method, whose stationary distribution (given a sufficiently

long chain) estimates the posterior density (6.21). We provide a brief overview of the

algorithm here; additional information about the use of DRAM specifically (as well as

MCMC methods in general) can be found in [89, Ch. 8].

The idea behind the Metropolis algorithm is that a candidate parameter value c∗ is

drawn from a multivariate Gaussian proposal distribution and either accepted (i.e., ck =

c∗) with probability determined by the prior density and the likelihood function (6.22), or

rejected in favor of the previous state (ck = ck−1). During the adaptive Metropolis (AM)

stage—which follows an initial nonadaptive period—the chain covariance matrix is then

updated to account for this new parameter value. Note that the adaptive algorithm is

not a true Markovian process, as the updated proposal distribution is determined by the

entire sample path of the chain. The inclusion of the delayed rejection (DR) step means

that instead of setting ck = ck−1 if the candidate c∗ is rejected, an alternative second

stage candidate is constructed based on both ck−1 and the rejected candidate.

The results in this section were generated using a MATLAB implementation of DRAM
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Figure 6.13: Joint sample points for the significant Zernike coefficients of the front sur-
face of the aspheric lens.
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Figure 6.14: Sample paths for the front surface of the aspheric lens.
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Figure 6.15: Parameter densities for the front surface of the aspheric lens.
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Figure 6.16: Joint sample points for the significant Zernike coefficients of the front sur-
face of the toric lens.

(mcmcrun.m) that is available as part of the MCMC Toolbox [49] developed by Marko

Laine, one of the co-authors of [25]. We ran the algorithm using the default noninforma-

tive Gaussian prior with infinite variance, which simulates a uniform distribution. The

sum of squares error (6.22b) for the four lens surfaces was computed using the normalized

ROMs discussed in Sections 6.1.3 and 6.3.1, and the initial parameter distributions corre-

spond to the OLS sampling distributions in Tables 6.5–6.8. For each surface, we ran the

algorithm for an initial shorter burn-in period to allow the chain to reach its stationary

distribution, then re-ran the algorithm using the posterior densities from this first run

as the initial distributions. Figures 6.13–6.22 show the joint sample points, paths, and

marginal parameter density estimates from this second run.

We used 50000 iterations for the burn-in period for both front surfaces, as well as the

back of the aspheric lens. The back of the toric lens required twice as many iterations to
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Figure 6.17: Sample paths for the front surface of the toric lens.
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Figure 6.18: Parameter densities for the front surface of the toric lens.
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Figure 6.19: Sample path (left) and density (right) for c1 for the back surface of the
aspheric lens.

stabilize. For the second run, we used 100000 iterations for the first three surfaces and

250000 for the back of the toric lens. These values were selected to ensure smoothness

when constructing the kernel density estimates shown in Figures 6.15, 6.18, 6.19, and 6.22.

The fact that the chains have burned-in is clear from the sample paths from the second

run, which are depicted in Figures 6.14, 6.17, 6.19, and 6.21.

The dashed lines in the density estimates represent the “true” value c
(i)
j of the cor-

responding Zernike coefficient as computed directly from the design equation using nu-

merical integration. These values are also listed in Tables 6.10–6.13 along with the mean

(ĉj = 1
s

∑s
i=1 c

i
j) and standard error of the corresponding chain and the OLS results from

the previous section. This “true” value falls within three standard deviations of the mean

for every coefficient save c56 for the front surface of the toric lens. In fact, this is also

true for the OLS results, even for the coefficients that were outside the 95% confidence

interval. The estimate ĉ56 from DRAM is slightly worse than the OLS estimates, but like

the OLS estimates it is still within 15% of c
(i)
56 . In most other cases, the DRAM estimates

are actually slightly closer than the OLS estimates to the “true” coefficient values, with

the exception of c11, c12, c14, c22, c24, and c28 for the back of the toric lens. However, none

of the differences in either direction correspond to a particularly significant change in the

relative error of the estimate when compared to c
(i)
j .

We also have the option to treat the error variance σ2 as another parameter with

likelihood

π
(
w, c|σ2

)
= Lw,q

(
σ2
)

=
1

(2πσ2)s/2
e−SSc/2σ2

. (6.23)
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Figure 6.20: Joint sample points for the significant Zernike coefficients of the back surface of the toric lens.
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Figure 6.21: Sample paths for the back surface of the toric lens.
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Figure 6.22: Parameter densities for the back surface of the toric lens.
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Table 6.9: Error variance (σ̂2) in square millimeters from OLS and DRAM.

OLS DRAM

Aspheric lens front 9.9628× 10−5 9.9629× 10−5

Toric lens front 9.9683× 10−5 9.9684× 10−5

Aspheric lens back 7.0113× 10−5 7.0114× 10−5

Toric lens back 8.5488× 10−5 8.5491× 10−5

The conjugate prior of (6.23) is an inverse gamma distribution that depends on the sum

of squares error SSck for the current iteration. During the AM step, the variance estimate

is updated by sampling from this new distribution after the updated value ck has been

assigned but prior to the computation of the updated covariance matrix. The mean of

the chain error variance for each surface is Table 6.9. In each case, we see that the chain

variance is slightly greater than the initial OLS estimate; however, the OLS values of σ̂2

are all well within 0.005% of their Bayesian estimates.

The joint sample points in Figures 6.13, 6.16, and 6.20 mostly indicate that most of

the parameters appear to be independent or only very weakly correlated (ρcjck < 0.4).

However, there are several cases where the correlation is more significant. For the front

of the aspheric lens, the correlation between c4 and c11 is ρc4c11 ≈ 0.5, and ρc37c56 ≈ 0.46

for the front of the toric lens. The back of the toric lens has two groups of moderately

correlated Zernike coefficients, with the strength of the correlation increasing within

each group as the coefficient index increases. In the first group, c1 is correlated with c4

(ρc1c4 ≈ 0.47), which in turn is correlated with c11 (ρc4c11 ≈ 0.55), which is correlated

with c22 (ρc11c22 ≈ 0.58), which is then also correlated with c37 (ρc22c37 ≈ 0.65). In the

second group, c24 is correlated with both c12 and c38 (ρc12c24 ≈ 0.48 and ρc24c38 ≈ 0.52).

To better understand these correlations, we can look at the corresponding Zernike

basis functions in Table 6.4 and Figure 6.11. Every pair of correlated coefficients are

associated with polynomials of the same azimuthal degree. Z1, Z4, Z11, Z22, Z37, and Z56

are all degree 0—that is, continuously rotationally symmetric—while Z12, Z24, and Z38

are all degree 2 with an azimuthal component of cos 2θ. Furthermore, the correlations only

occur between consecutive polynomials within each subgroup, which are also the surfaces

with the most local similarity to one another. The correlations are positive because the

central concavity of the basis functions alternates.
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Table 6.10: Comparison of the mean and standard error (in mm) for Zernike coefficients of the anterior aspheric lens using
OLS and DRAM.

Integration OLS (All coefficients) OLS (Reduced model) DRAM (Reduced model)

Mean Std Error Mean Std Error Mean Std Error

ĉ1 4.58226 4.58230 3.43202×10−5 4.58230 3.43196×10−5 4.58230 3.39635×10−5

ĉ4 −6.33748×10−1 −6.33710×10−1 3.31144×10−5 −6.33710×10−1 3.31138×10−5 −6.33719×10−1 3.33166×10−5

ĉ11 −5.60707×10−3 −5.59018×10−3 2.91833×10−5 −5.59018×10−3 2.91828×10−5 −5.59184×10−3 2.91718×10−5

Table 6.11: Comparison of the Zernike coefficients (in mm) of the anterior toric lens using OLS and DRAM.

Integration OLS (All coefficients) OLS (Reduced model) DRAM (Reduced model)

Mean Std Error Mean Std Error Mean Std Error

ĉ1 3.20400 3.20403 3.55717×10−5 3.20403 3.55709×10−5 3.20403 3.56598×10−5

ĉ4 −1.22051 −1.22044 3.45220×10−5 −1.22044 3.45213×10−5 −1.22044 3.43356×10−5

ĉ11 −1.17874×10−1 −1.17856×10−1 3.45895×10−5 −1.17856×10−1 3.45887×10−5 −1.17881×10−1 3.45340×10−5

ĉ22 −2.27060×10−2 −2.26500×10−2 3.45716×10−5 −2.26500×10−2 3.45708×10−5 −2.26785×10−2 3.42154×10−5

ĉ37 −5.47311×10−3 −5.49497×10−3 3.43589×10−5 −5.49497×10−3 3.43582×10−5 −5.49221×10−3 3.41482×10−5

ĉ56 −1.47927×10−3 −1.26240×10−3 3.04893×10−5 −1.26240×10−3 3.04886×10−5 −1.26030×10−3 3.00953×10−5
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Table 6.12: Comparison of the Zernike coefficients (in mm) of the posterior aspheric lens using OLS and DRAM.

Integration OLS (All coefficients) OLS (Reduced model) DRAM (Reduced model)

Mean Std Error Mean Std Error Mean Std Error

ĉ1 1.66754 1.66755 3.01538×10−5 1.66754 2.50077×10−5 1.66754 2.50681×10−5

Table 6.13: Comparison of the Zernike coefficients (in mm) of the posterior toric lens using OLS and DRAM.

Integration OLS (All coefficients) OLS (Reduced model) DRAM (Reduced model)

Mean Std Error Mean Std Error Mean Std Error

ĉ1 2.22439 2.22436 3.58474×10−5 2.22436 3.58477×10−5 2.22436 3.56549×10−5

ĉ4 −8.45313×10−1 −8.45317×10−1 3.86174×10−5 −8.45317×10−1 3.86176×10−5 −8.45317×10−1 3.86220×10−5

ĉ6 6.91482×10−2 6.90762×10−2 4.35250×10−5 6.90741×10−2 4.35034×10−5 6.90741×10−2 4.32744×10−5

ĉ11 −4.33250×10−2 −4.32913×10−2 4.00983×10−5 −4.32914×10−2 4.00985×10−5 −4.32910×10−2 3.96996×10−5

ĉ12 8.35447×10−3 8.31336×10−3 4.28715×10−5 8.31210×10−3 4.28442×10−5 8.31186×10−3 4.28481×10−5

ĉ14 −3.39284×10−3 −3.52714×10−3 4.65672×10−5 −3.50901×10−3 4.50231×10−5 −3.50962×10−3 4.40338×10−5

ĉ22 −4.38993×10−3 −4.38291×10−3 4.20559×10−5 −4.38314×10−3 4.20562×10−5 −4.38310×10−3 4.23420×10−5

ĉ24 1.27769×10−3 1.32561×10−3 4.32547×10−5 1.32562×10−3 4.32290×10−5 1.32598×10−3 4.32016×10−5

ĉ26 −5.44659×10−4 −5.49006×10−4 4.52758×10−5 −5.18261×10−4 4.12519×10−5 −5.18611×10−4 4.06306×10−5

ĉ28 3.33321×10−4 3.59759×10−4 4.80405×10−5 3.72016×10−4 4.53292×10−5 3.72485×10−4 4.51206×10−5

ĉ37 −5.57099×10−4 −4.99005×10−4 3.36581×10−5 −4.99141×10−4 3.36584×10−5 −4.99689×10−4 3.38290×10−5

ĉ38 2.14390×10−4 1.71763×10−4 3.74414×10−5 1.72813×10−4 3.74275×10−5 1.73317×10−4 3.76089×10−5
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6.4 Uncertainty Propagation

Once we have quantified the uncertainty in the parameter estimates ĉi, we want to see

how the parameter means and covariances we computed in Section 6.3.2 will propagate

through our models to impact the accuracy of the model fit to the data and the uncer-

tainty associated with any model-based predictions. These are respectively quantified by

the credible interval (determined by the mean and variance of the model response) and

the prediction interval (which indicates where future observations are likely to fall given

the measurement error).

So far in this chapter we have only been looking at the axial elevation models

fa ≡ fa
(
X, c
)

=
ma∑
j=1

cjZj
(
X′
)
, fp ≡ fp

(
X̃, c
)

=

mp∑
j=1

cjZj
(
X̃′
)

from Section 6.1. These both correspond to the statistical model

γ = f
(
c
)

+ ε,

where f
(
c
)

is the relevant model response, γ is a random vector of observations, and ε is a

vector of measurement errors with εi
iid∼ N

(
0, σ2

0

)
. For radial coordinates X =

(
ρ, θ
)

within

the calibration domain (which we have defined in previous chapters), we can construct

a distribution for the model response by Monte Carlo sampling of the parameters from

their respective distributions and evaluating the mean and variance of the responses f
(
ci
)

at the point X. The mean response and variance are then used to construct the credible

interval at X. The prediction interval is then constructed by adding the error variance

estimate σ̂2 to the estimated variance of the model response [89, Ch. 9].

In the previous chapters, we also considered the local meridional curvature, which we

modeled as

ka = −∂
2fa

∂ρ2

(
1 +

(
∂fa

∂ρ

)2
)−3/2

, kp = −∂
2fp

∂ρ2

(
1 +

(
∂f p

∂ρ

)2
)−3/2

, (6.24)

and estimated using finite difference derivatives as described in Section 3.4.viii In both

viiiRecall that the curvature must then be multiplied by the constant 337.5 to convert to units of
diopters (D).
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Figure 6.23: Prediction intervals for central elevation of the (a) anterior aspheric lens,
(b) anterior toric lens, (c) posterior aspheric lens, and posterior toric lens (d) at 0◦, and
(e) at 90◦. (Credible intervals are also depicted but are too narrow to be visible.)
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Figure 6.24: Prediction and credible intervals for meridional curvature of the (a) anterior
aspheric lens, (b) anterior toric lens, and posterior toric lens (c) at 0◦, and (d) at 90◦.

Chapters 3 and 5, we saw that the Zernike polynomials provide a more accurate estimate

of both the axial elevation and the meridional curvature closer to the center of the lens—

particularly within the central 3 mm diameter region. Therefore, we will restrict our focus

to this region.

Figures 6.23–6.24 show the 95% credible and prediction intervals for the axial eleva-

tion and meridional curvature of each lens surface—over the central 3 mm—for a single

meridian. To obtain these interval estimates, we ran 5000 realizations of each model us-

ing parameter values sampled from the MCMC chains generated by DRAM. This was

done using the function mcmcpred.m, which is included in the MCMC Toolbox [49]. Since
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the back surface of the toric lens is not rotationally symmetric, we have included both

principal meridians rather than just a single meridian. The back surface of the aspheric

lens was not included for the curvature because the ROM is already a flat surface. In

both figures, although the range of the y-axis is not the same for each subfigure, the scale

is consistent.

Note that the 95% credible intervals for the axial elevation—shown in Figure 6.23—

are too small to be seen in these illustrations, and that in every case the expected model

fit is very close to the design equation. As expected, most of the data points lie within

their 95% prediction intervals.

The credible intervals for the curvature (Figure 6.24) are much larger, illustrating that

the uncertainty in the parameter estimates is amplified by the derivatives in the model.

This effect is least significant for the front of the aspheric lens—shown in Figure 6.24a—

however, even in this case the model predicts a curvature estimate that is consistently

lower than the design curvature across the entire central diameter of the lens. The credible

intervals are much larger for both of the toric lens surfaces, yet we still end up with too

much oscillation in the predicted curvature (the design curvature is constant across the

entire meridian). As we saw in Chapters 3 and 5, the estimated curvature of the front

surface of the toric lens (Figure 6.24b) is by far the worst of all the curvature estimates.

This is particularly true at the apex, where the true curvature from the design equation

is nearly 0.25 D lower than the lower bound of the credible interval.

6.5 Global Sensitivity Analysis

In Section 6.4, we looked at the collective impact of the uncertainty in the parameter

estimates on our local meridional curvature predictions. Next, we will use methods from

global sensitivity analysis to understand how much the uncertainty in each parameter

(or some combination of parameters) contributes to the uncertainty in the curvature as

the parameters are varied across the entire range of allowed values. Specifically, we will

consider the way in which the different parameters affect the model predictions related

to the principal curvatures of the two lenses. Parameters that have a noticeable impact

on the model response, whether on their own or in combination with other parameters,

are termed influential.

Recall that the curvatures K1 and K2 are the maximum and minimum values of the
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meridional curvature (6.24) at the vertex ρ = 0. If we denote the curvature at the vertex

by k
(
0, θ, c

)
, then the anterior principal curvature of both lenses is

Ka = max
θ∈[0,π)

ka
(
0, θ, c

)
, (6.25)

and the posterior principal curvatures of the toric lens are

Kp1 = max
θ∈[0,π)

kp
(
0, θ, c

)
, and Kp2 = min

θ∈[0,π)
kp
(
0, θ, c

)
. (6.26)

As mentioned in Section 6.4, the ROM for the back surface of the aspheric lens is already

flat, so we will not discuss it here. The two front surfaces are rotationally symmetric,

so their design equations will only produce one true principal curvature. We showed in

Section 6.3.1 that the ROMs for the two front surfaces consist of a linear combination of

rotationally symmetric polynomials—therefore, the front surface models fa will also be

associated with only one principal curvature value, Ka.
ix

For the back of the toric lens, the choice of meridian does not affect the sensitivity

measures—i.e., the results for Kp1 are identical to those for Kp2 . However, the difference

between the two principal curvatures is also clinically significant. Therefore, we will con-

sider two quantities of interest for the back surface of the toric lens: Kp1 and Kp1 −Kp2 .

Obviously both of these quantities will be affected by the values of the coefficients in

the back surface model fp, but since fa is used to dewarp the data before fitting it to

the model, the front surface coefficients will also influence the back surface curvature.

In addition to looking at the sensitivities associated with the back surface coefficients,

we will also consider the sensitivity of the posterior curvature to just the front surface

coefficients, while the back surface coefficients are fixed at the mean values found in

Section 6.3.2.

In this section, we compare three different methods of ranking the parameters’ in-

fluence on the quantities of interest described above: parametric analysis (i.e., centered

parameter study), Morris screening, and Sobol’ analysis. To ensure that the relative

magnitudes of the Zernike coefficients do not affect the rankings, we use the normalized

parameters discussed in Section 6.1.3. We also compare the ROMs to the full models to

ixIt is less obvious that the full models using all the Zernike coefficients will also be rotationally
symmetric given the noise in the data, however the contributions from the odd Zernike polynomials are
so small that they have a negligible effect on the principal curvature. This was not the case for the real
data in Chapter 5 due to off-axis imaging.
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determine whether setting any of the parameters to zero has an effect on the ranking of

the remaining parameters. All of the algorithms involved are described in detail in [90,

Ch. 9].

The simplest of the three methods is the centered parameter study, in which we

perturb each normalized parameter θi about its mean value of 1
2

by ±20% and mea-

sure the relative change in the given quantity of interest. The results (shown in Fig-

ures 6.25, 6.27, 6.29, 6.31, 6.33, and 6.35) provide a ranking of the parameters’ influence

over the specified model response, but they do not account for possible interactions be-

tween inputs nor do they quantify the relative amount of influence of each parameter.

Morris screening—proposed by Max Morris in [59]—is a derivative-based sensitivity

method that based on estimating the distribution of the elementary effects

di =
K
(
θ + ∆ei

)
−K

(
θ
)

∆
≈
∂K
(
θ
)

∂θi
(6.27)

One of the main advantages to this method over parametric analysis is that, in addition to

ranking influential parameters and identifying those with little influence, Morris screening

also accounts for interactions between parameters. (It does not, however, quantify relative

influence.)

The general idea described in [59] involves discretizing the parameter space into an

m-dimensional `-level sample space Γ`
x, and then computing elementary effects for r

random samplings θj ∈ Γ` using the forward difference method in (6.27). The Morris

sensitivity measures are the mean and standard deviation of the sampling distribution

of the elementary effects:

µ∗i =
1

r

r∑
j=1

∣∣dji ∣∣ , µi =
1

r

r∑
j=1

dji ,

σ2
i =

1

r − 1

r∑
j=1

(
dji − µi

)
,

(6.28a)

where the elementary effect associated with θi of the jth sample is

dji =
K
(
θj + ∆ei

)
−K

(
θj
)

∆
, (6.28b)

xFor example, the `-level sample space corresponding to [0, 1] would be
[
0, 1

`−1 ,
2
`−1 , . . . , 1−

1
`−1 , 1

]
.

177



and the step size ∆ is chosen so that ∆ei ∈ Γ`.

The mean µi quantifies the individual effect of θi on the model response; however, on

its own it can fail to identify an influential parameter if there are a lot of sign changes in

the derivatives across the sample space. We avoid this problem by using µ∗i in combination

with the standard deviation σi, which quantifies any nonlinearity in the response as well

as any interactions with other parameters.

To obtain the Morris measures in this section, we used r = 40 parameter samplings,

a discretization level of ` = 41, and a step size of ∆ = 1
`−1

= 1
40

. (Other values were also

tried without any effect on the results.) Although the strategy described in [59] assumes

that the parameters are uniformly distributed across the m-dimensional unit hypercube,

the choice of density did not appear to affect our results, which is consistent with ob-

servations in [90]. We obtained the exact same results up to at least six decimal places

for both the uniform distribution on the unit hypercube and the normalized parameter

distributions corresponding to the results from Section 6.3.2.

Variance-based sensitivity analysis (particularly the indices proposed by Ilya Sobol’

in [94]) is not only able to account for higher order interactions, but unlike the first

two methods it actually provides a qualitative measure of the relative influence of each

parameter. The Sobol’ indices Si (with higher order indices denoted Sij, etc.) quantify

the influence of each parameter θi or combination of parameters on the model response

in terms of the corresponding partial variances. The total sensitivity indices STi were

introduced by Homma and Saltelli to combine all the effects of a parameter θi on the

model response, including higher order interactions [30]. The first order sensitivity indices

and total sensitivity indices are given by

Si =
var
(
E
(
K|θi

))
var
(
K
) and STi = 1−

var
(
E
(
K|θ∼i

))
var
(
K
) =

E
(

var
(
K|θ∼i

))
var
(
K
) . (6.29)

Because the Sobol’ indices represent a fractional contribution from each parameter to

the total variance, all of the main effects indices and higher order indices taken together

will sum to 1. Also, note that the total effects index for a given parameter will always be

greater than or equal to its main effects index.

The first order and total sensitivity indices are generally estimated using Monte Carlo

or quasi-Monte Carlo methods, such as Andrea Saltelli’s eponymous algorithm described

in [79, 80]. Following the recommendations in [80, 90], we used the updated Saltelli
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Table 6.14: First order Sobol’ indices (Si), total Sobol’ indices (STi), and Morris mea-
sures (µ∗i , σi) for the front of the aspheric lens.

Si STi µ∗i σi

c1 < tol < tol < tol < tol
c4 0.9988 0.9988 52.6856 53.2901
c11 0.0012 0.0012 1.8000 1.8229

Table 6.15: Sobol’ indices and Morris measures for the front of the toric lens.

Si STi µ∗i σi

c1 < tol < tol < tol < tol
c4 0.8505 0.8505 116.4786 115.5792
c11 0.1190 0.1190 43.5637 43.6195
c22 0.0246 0.0246 19.8123 19.9642
c37 0.0052 0.0052 9.0835 9.1877
c56 0.0008 0.0008 3.4606 3.5003

estimators for the main effects Si and the Jansen estimators [40] for the total effects

STi . Although this is the most efficient algorithm for computing the Sobol’ indices, it is

important to note that these estimators assume independence among the parameters so

the results may be misleading for correlated inputs.

The greatest drawback to variance-based sensitivity analysis is that it is extremely

computationally intensive, as the estimation of each separate index requires sufficient

model evaluations to ensure coverage of the entire sample space. To improve efficiency,

[80] recommends using low-discrepancy Sobol’ sequences [92, 93] rather than true ran-

dom sampling.xi However, even with the use of quasi-random sampling, some of the Sobol’

analyses for the full models took over a week to run on a dedicated multicore high per-

formance computing cluster. The ROMs required 200000–400000 iterations to converge,

while the full models took much longer to run but required only 20000–30000 iterations

for convergence. Convergence of the Sobol’ indices is demonstrated in Appendix C.

The Sobol’ indices and Morris measures for each of the quantities of interest are

xiThe Sobol’ sequences were generated using the MATLAB command sobolset.m.
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Table 6.16: Sobol’ indices and Morris measures for the back surface of the toric lens.

Kp1 Kp1 −Kp2

Si STi µ∗i σi Si STi µ∗i σi

c1 < tol < tol < tol < tol < tol < tol < tol < tol
c4 0.9574 0.9574 91.5187 92.2200 < tol < tol < tol < tol
c6 0.0020 0.0023 5.2880 5.3486 0.7593 0.8648 10.5760 10.6973
c11 0.0377 0.0377 18.1528 18.3611 < tol < tol < tol < tol
c12 0.0003 0.0006 2.4645 2.4928 0.1161 0.2135 4.9291 4.9856
c14 < tol < tol < tol < tol < tol < tol < tol < tol
c22 0.0022 0.0022 4.3499 4.3554 < tol < tol < tol < tol
c24 < tol < tol 0.9302 0.9122 0.0160 0.0347 1.8605 1.8243
c26 < tol < tol < tol < tol < tol < tol < tol < tol
c28 < tol < tol < tol < tol < tol < tol < tol < tol
c37 0.0001 0.0001 0.9368 0.9440 < tol < tol < tol < tol
c38 < tol < tol 0.2295 0.2312 0.0010 0.0022 0.4589 0.4624

shown in Figures 6.26, 6.28, 6.30, 6.32, 6.34, and 6.36, for both the ROMs and the full

models. The numerical values of the Sobol’ indices and Morris measures obtained using

the ROMs are also listed in Tables 6.14–6.17.

Immediately clear from Figures 6.25–6.36 is that we consistently obtain nearly the

same sensitivity measures for the identifiable parameters regardless of whether we use

the full model or the ROM. Furthermore, both the centered parameter study and Morris

screening produce the same parameter rankings for every quantity of interest. In each

case, the Morris measure σi is very similar to µ∗i , which indicates that higher order

interactions among parameters do not have a significant impact on the model response.

In Figures 6.25–6.30, we can see that all three methods of sensitivity analysis lead to

the same conclusions for the anterior principal curvatures Ka of both lenses as well as the

maximum posterior curvature Kp1 of the toric lens. The Sobol’ indices Si and STi for each

of these quantities are nearly equal and the first order indices appear to sum to 1, both of

which are consistent with our previous observation that there are not many higher order

effects. Note that the moderate parameter correlations we observed in Section 6.3.2 for

the axial elevation model do not appear to cause problems for the curvature model.

From the magnitude of the Sobol’ indices we can also infer that c4 is the most in-
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Table 6.17: Sobol’ indices and Morris measures of the front surface Zernike coefficients
for the posterior quantities of interest of the toric lens.

Kp1 Kp1 −Kp2

Si STi µ∗i σi Si STi µ∗i σi

c1 0.1115 0.5541 5.6922 5.5819 0.1286 0.8754 0.4496 0.4412
c4 0.3583 0.7885 21.7062 21.5445 0.1222 0.8557 1.0421 1.0350
c11 0.0568 0.1642 6.6185 6.6268 0.0007 0.0925 0.1229 0.1233
c22 0.0078 0.0276 3.2474 3.2725 0.0005 0.0092 0.1082 0.1093
c37 0.0023 0.0056 1.1631 1.1769 0.0002 0.0006 0.0790 0.0800
c56 0.0001 0.0003 0.1044 0.1057 < tol < tol 0.0117 0.0118

fluential parameter for all three principal curvatures—in fact, it is the sole influential

parameter for the principal curvature of the aspheric lens. This makes sense given that

Z4 (also referred to as the “defocus” term) is the first of the rotationally symmetric poly-

nomials in each model that does not possess zero curvature, and in each case c4 is at

least one order of magnitude larger than the next largest parameter. For both toric lens

curvatures, the next most influential coefficient is c11, and for Ka there also appears to

be a small contribution from c22 as well.

When looking at the effect of the front surface parameters on the two back surface

responses (Figures 6.33–6.36), c4 is once again the most influential coefficient. As was

the case with the anterior curvature, the values of c11 and c22 used to construct the front

surface also appear to influence the posterior curvature. However, this time c1 is almost as

influential as c11. This is likely because Z1 (the “piston” term) governs the axial distance

between the two surfaces, and this in turn will influence the radial coordinates of the

dewarped points.

For the difference in posterior principal curvatures, Figures 6.31–6.32 indicate that the

most influential back surface parameters are the coefficients c6, c12, and c24, respectively.

Once again, we recall that these all correspond to Zernike polynomials with azimuthal

degree 2, as illustrated in Table 6.4. From Figure 6.11, we can see that Z6, Z12, and

Z24 all share the same general saddle shape characteristic. The front surface coefficients

with the most influence on this quantity of interest (Figures 6.33–6.36) appear to be c4

followed by c1.
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As evidenced by the fact that
∑

i Si < 1 and STi > Si, there appears to be some

statistical dependence among the parameters for the front and back Zernike coefficients

with regard to the posterior principal curvatures (Figures 6.32 and 6.34). Furthermore,

the fact that the Sobol’ rankings for the front surface coefficients do not agree with the

rankings produced by the two other methods suggests an algebraic dependence among

the front surface parameters.

It is also worth noting that the relative error from the parametric analysis as well as

the magnitude of the Morris measures are all quite small when compared to the effect

from the back surface coefficients, although this is not necessarily proof that the front

coefficients exert less influence as we did not consider both sets of coefficients in the same

analysis.
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Figure 6.25: Centered parameter study for the anterior principal curvature (Ka) of the
aspheric lens.
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Figure 6.26: Sobol’ indices (Si, STi) and Morris measures (µi, σi) for the anterior prin-
cipal curvature of the aspheric lens.
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Figure 6.27: Centered parameter study for the anterior principal curvature of the toric
lens.
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Figure 6.28: Sobol’ indices and Morris measures for the anterior principal curvature of
the toric lens.
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Figure 6.29: Centered parameter study of the back surface Zernike coefficients for the
posterior maximum curvature (Kp1) of the toric lens.
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Figure 6.30: Sobol’ indices and Morris measures of the back surface Zernike coefficients
for the posterior maximum curvature of the toric lens.
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Figure 6.31: Centered parameter study of the back surface Zernike coefficients for the
difference in the posterior principal curvatures (Kp1 −Kp2) of the toric lens.
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Figure 6.32: Sobol’ indices and Morris measures of the back surface Zernike coefficients
for the difference in the posterior principal curvatures of the toric lens.
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Figure 6.33: Centered parameter study of the front surface Zernike coefficients for the
posterior maximum curvature of the toric lens.
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Figure 6.34: Sobol’ indices and Morris measures of the front surface Zernike coefficients
for the posterior maximum curvature of the toric lens.
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Figure 6.35: Centered parameter study of the front surface Zernike coefficients for the
difference in the posterior principal curvatures of the toric lens.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Front surface coefficient index

0

0.2

0.4

0.6

0.8

1

S
i

All coefficients

Reduced order

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Front surface coefficient index

0

0.2

0.4

0.6

0.8

1

S
T

i
All coefficients

Reduced order

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Front surface coefficient index

0

0.2

0.4

0.6

0.8

1

1.2

* i

All coefficients

Reduced order

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Front surface coefficient index

0

0.2

0.4

0.6

0.8

1

1.2

i

All coefficients

Reduced order

Figure 6.36: Sobol’ indices and Morris measures of the front surface Zernike coefficients
for the difference in the posterior principal curvatures of the toric lens.
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Chapter 7

Discussion

In this thesis, we have investigated the propagation of error when using Zernike polyno-

mial models for anterior and posterior corneal topography. Using synthetic point cloud

data, we evaluated the suitability of each Zernike model order by considering the accu-

racy of not only the model fit but also the local curvature maps and principal curvatures

computed from each model. We performed a similar analysis of model order in the con-

text of a two-surface problem where the front surface model is used in correcting optical

distortion in the back surface data prior to fitting those points. Although many papers

have been written on Zernike model order selection for corneal surface fitting (discussed

in depth in Section 3.5.1), few have rigorously focused on the accuracy of both elevation

and curvature mapping. Furthermore, little previous work has been done to validate the

use of Zernike elevation models for computing corneal curvature maps from OCT data,

particularly for surfaces requiring refraction correction.

Table 7.2 contains a summary of the elevation and curvature errors obtained in Chap-

ter 5 using the real OCT lens data, according to the zones described in Table 7.1. Recall

that the anterior and posterior aspheric lens data were modeled using finite Zernike poly-

Table 7.1: Analysis zones used in Table 7.2.

Central zone Middle zone Outer zone

ρ ≤ 1.5 mm 1.5 mm < ρ ≤ 3 mm ρ > 3 mm
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Table 7.2: RMS elevation error and mean curvature error (± one standard deviation),
and compared to quantized synthetic data using same model orders.

Aspheric Lens

Front (za ≈ f4) Back (zp ≈ f3)

RMS surface error
Synthetic data

Full 6 mm 0.07 µm 0.10 µm

OCT data
Full 6 mm 0.63 µm 0.88 µm
Central zone 0.15 µm 0.28 µm
Middle zone 0.88 µm 1.22 µm
Outer zone 7.68 µm 6.65 µm

Mean curvature error
Synthetic data

Full 6 mm 0.00± 0.01 D 0.00± 0.01 D

OCT data
Full 6 mm 0.07± 0.11 D −0.13± 0.03 D
Central zone 0.07± 0.08 D −0.13± 0.02 D
Middle zone 0.08± 0.13 D −0.13± 0.04 D
Outer zone 0.02± 0.29 D −0.13± 0.09 D

Toric Lens

Front (za ≈ f8) Back (zp ≈ f6)

RMS surface error
Synthetic data

Full 6 mm 0.72 µm 0.40 µm

OCT data
Full 6 mm 2.20 µm 10.53 µm
Central zone 0.39 µm 5.12 µm
Middle zone 3.08 µm 13.97 µm
Outer zone 21.16 µm 37.46 µm

Mean curvature error
Synthetic data

Full 6 mm 0.17± 0.52 D −0.04± 0.21 D1

OCT data
Full 6 mm 0.01± 0.43 D −0.03± 0.29 D
Central zone −0.04± 0.41 D −0.09± 0.22 D
Middle zone 0.06± 0.45 D 0.04± 0.34 D
Outer zone −1.62± 3.23 D 0.43± 1.49 D

1 The curvature error over the 6 mm using the quantized synthetic data
for the posterior toric lens without warping was −0.05± 0.22 D.
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nomial expansions of order Na = 4 and Np = 3, while the Zernike orders for the toric

lens were Na = 8 and Np = 6. The diameter of the full circular region used in surface

fitting was 15 mm for the anterior and posterior aspheric lens, 14 mm for the anterior

toric lens, and 13.1 mm for the posterior toric lens.

As we observed in Section 5.3, the error in both the surface fit and curvature are

substantially greater in the outer zone due to a combination of increased noise in the

segmentation data and the edge effects noted in Section 3.5. Furthermore, it is not unusual

for researchers to restrict the region of interest to the central 6 mm zone when evaluating

the accuracy of corneal topography [70, 99, 110]. To facilitate comparisons, we have

included in Table 7.2 the RMS elevation error and mean curvature error across this

central 6 mm region. We have also included the elevation and curvature errors from

the quantized synthetic data described in Chapters 3 and 4—using the same Zernike

elevation models as the real data—to illustrate a possible bound on the accuracy of this

computation.

For the anterior aspheric lens, the RMS error across the 6 mm region between the

fitted Zernike model and the design surface was 0.63 µm, which is actually slightly lower

than the manufacturer’s specified tolerance of 0.75 µm [65]. The error for the posterior

aspheric lens was only slightly greater at 0.88 µm. The RMS elevation error for the toric

lens was at least one order of magnitude higher, at 2.20 µm and 10.53 µm for the fronti

and back surfaces, respectively. These errors are considerably smaller than the difference

between corneal elevation maps produced by OCT and Scheimpflug imaging—in one

study, the RMS of this difference was measured at 0.04 mm for the anterior corneal

surface and 0.06 mm for the posterior surface [99]. Our results are also in line with [70],

in which OCT data from a reference sphere and an aspheric surface were each fit to a

conic of revolution, resulting in RMS surface errors of 0.8 µm and 2.6 µm, respectively.

In terms of relative errors,ii our results correspond to an error of about 0.005% for the

anterior aspheric lens, 0.03% for the anterior toric lens, and 0.12% for the posterior toric

lens, whereas the relative errors for the sphere and asphere in [70] were about 0.003% and

0.03%. Note that we expected the error in the posterior toric lens to be higher than the

other surfaces due to the propagation of error from the front surface during dewarping.

iRecall that the anterior surface of the toric lens is spherical.
iiIn the same manner described in [52], we determined the relative error by dividing the RMS error

by the design value of the principal radius of curvature (or, in the case of the posterior toric lens, the
average of the two principal radii).
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Restricting the region of interest to the central 6 mm also results in considerable

improvements to the meridional curvature maps. For both surfaces of the aspheric lens,

the interval
[
µ − σ, µ + σ

]
is well within ±0.25 D, and the 3σ interval—which contains

99.7% of the measurements—is within half a diopter of the true curvature. The results

for the toric lens are not quite as accurate, with only one standard deviation (about 68%

of the measurements) falling within 0.5 D of the true curvature for the front surface,

and roughly 1.5σ (∼ 87% of the measurements) doing the same for the back surface.

However, these errors are comparable to—and, in some cases, better than—the errors for

the quantized synthetic data over the same region.

The relatively high curvature error in both cases is caused by the unavoidable oscil-

lations that arise when using Zernike polynomials to fit a spherical or spheroidal surface,

as Zernike polynomials are only intended to model aberrations from a sphere rather than

a sphere itself. Furthermore, as we saw in Section 6.4, the credible intervals for the cur-

vature in the central zone are quite large for both toric lens surfaces, indicating that

the error in the initial fit is amplified by the local curvature calculation. However, it is

interesting to note that the while error propagation from the anterior toric lens showed

a pronounced effect on the posterior surface fit, the standard error in the posterior cur-

vature map from the OCT data is only a bit worse than the error we obtained using

synthetic data with no warping effects.

Corneal elevation maps from Zernike polynomials are typically displayed relative to

a curved reference surface in order to equalize the dynamic range between largest height

values near the apex of the eye and much smaller values near the periphery [84]. Due

to the approximately spherical shape of the central cornea, a sphere is a popular choice

of reference surface. Subtracting the best fit sphere from our point cloud data prior to

Zernike polynomial fitting (and then adding it back for the final model) would likely

mitigate some of the oscillation in the model. However, while this would help in the

case of a surface that is close to spherical, it is not necessarily beneficial for other types

of surfaces. For example, applying this to the anterior asphere data actually made our

results substantially worse.

Our approach to mapping local curvature is similar to the one used in [52, 55], al-

though neither paper addresses the local accuracy of their curvature maps. Both studies

also used analytic differentiation of the Zernike polynomials to compute the curvatures.

We do not believe that the numerical differentiation used in this thesis is a major contrib-
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Table 7.3: Principal radii of curvature and central thickness (tC) in millimeters, from
synthetic data with quantization error (QE) and from real data.

Aspheric lens Toric lens

Ra tC Ra Rp1 Rp2 tC

Design value 13.255 4.0 7.800 9.200 8.400 1.500
Synthetic data (QE)1 13.264 — 7.932 9.154 8.337 —
Real data2 13.221 4.0 7.826 9.115 8.406 1.500
Real data (BFC to Zernike)3 13.221 — 7.814 9.115 8.416 —
Real data (BFC to data)4 13.135 — 7.795 9.015 8.573 —

1 Note that the estimates for the non-quantized synthetic data were comparable.
2 Ra is the mean value of the meridional radii of curvature at the lens vertex.
3 Best fit conic (or biconic) from the central 6 mm of the Zernike elevation maps.
4 Best fit conic (or biconic) from the central 6 mm of corrected point cloud data.

utor to our overall curvature error; however, using the pre-computed analytic derivatives

for each Zernike mode would be more computationally efficient as it would reduce the

number of required model evaluations.

The principal radii of curvature for the two lenses—from the real data as well as the

quantized synthetic data—are depicted in Table 7.3. Both values for the anterior radius

Ra from the real data have been approximated by the mean radius of curvature at the lens

vertex after realignment. The posterior aspheric lens is flat—i.e., its radius of curvature

is infinite—so it was omitted from the table. We have also included the central thickness

estimates (tC) from real data. Notably, both of our thickness measurements agreed with

their design values to within the specified number of significant figures.

Before comparing our results to other published values, it is important to point out

a difference in how they were computed. We are using the Zernike representation of the

lens surface to estimate the location of the lens vertex and compute the maximum and

minimum meridional radii of curvature at that point (this is also the method advocated

in [55]). Currently, the standard practice for calculating the radius (or radii) of curvature

for a corneal surface is using an ordinary least squares fit to a conic or biconic of rotation

[62, 87]. The biconic model allows for a surface that is not axially symmetry, such as an
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astigmatic cornea or the posterior surface of the toric lens, and has the form

z − z0 =

1
Rx

(
x− x0

)2
+ 1

Ry

(
y − y0

)2

1 +
√

1− 1+κx
R2

x

(
x− x0

)2 − 1+κy
R2

y

(
y − y0

)2
, (7.1)

where Rx, Ry are the principal radii of curvature, and κx, κy are essentially conic con-

stants. To obtain the conic model, simply set Rx = Ry and κx = κy in (7.1). Both the

conic and biconic models rely on assumptions about the symmetry of the surface being

measured—assumptions that may be reasonable for a healthy cornea, but are less ac-

curate when modeling a surface with significant irregularity [34, 62]. However, for the

sake of comparison, we have included in Table 7.3 the values for the principal radii of

curvature obtained by fitting the central 6 mm of the sampled points from the Zernike

elevation models to either a conic (for the two anterior surfaces) or a biconic (for the

posterior toric lens). We have also included the results of fitting just the central 6 mm of

point cloud data after refraction correction has been applied to the posterior toric lens

surface. We performed these fits using the MATLAB function lsqcurvefit.m. All of the

published results referenced below were obtained using a similar approach.

Using the methods described in Chapter 3, we computed the mean value of the anterior

principal radii of the aspheric lens to be 13.221 mm (range: 13.168–13.274 mm), which

differs from the design value of 13.255 mm by 0.034± 0.053 mm. We obtained the same

value using the best fit conic to the Zernike map. For the anterior toric lens, the mean

value of meridional radius of curvature at the lens vertex was 7.826 mm (7.810–7.841 mm),

for an error of 0.026±0.015 mm, while the best fit conic yielded a slightly better estimate

of 7.815 mm. The synthetic aspheric lens data provided a better estimate of Ra than the

OCT data using the same Zernike model order, with an error of only 0.009 mm. However,

at 0.132 mm the error for the synthetic toric lens data was an entire order of magnitude

worse than for either of the estimates from the real toric lens data. These estimates are

comparable in accuracy to other anterior radius of curvature measurements from OCT

of imaging phantoms. Reported errors in the measured value of Ra from OCT include:

0.02–0.04 mm for three calibration spheres [48], 0.03 mm for the PMMA cornea of a

water cell model eye [68, 69], 0.05 ± 0.03 mm for repeated measurements of a rigid gas

permeable contact lens [110], and 0.12 ± 0.08 mm for repeated measurements of the

calibration sphere in [70].

For the toric lens, the maximum and minimum posterior radii (Rp1 ,Rp2) were 9.115 mm
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and 8.406 mm when measured from OCT data using the method described in this thesis,

versus 9.154 mm and 8.337 mm from the synthetic data using the same Zernike surface

model. The error in Rp1 for the real data, 0.085 mm, is about twice that of the synthetic

data, 0.046 mm. However, the estimate for Rp2 is actually an order of magnitude better

when using the real data versus the synthetic data, with respective errors of 0.006 mm

and 0.063 mm. Using the biconic fit to the Zernike maps, we obtained the same value

for Rp1 and a slightly worse estimate of Rp2 (8.416 mm). In comparison, the PMMA

cornea in [69] had a posterior radius of curvature error of 0.13 mm, while the error for

the contact lens in [110] was 0.03 ± 0.02 mm. Additionally, the base curvatures of six

other contact lenses were measured to within 0.02 mm using OCT in [48].

Despite concerns regarding their suitability for modeling every possible type of eye

condition [91], Zernike polynomials remain widely used within the field of ophthalmology

[103]. While their primary application has been quantifying wavefront errors, they are

gaining popularity as a basis for modeling corneal surfaces [91]. The Zernike coefficients

from elevation mapping do not necessarily correspond to those of wavefront aberrometry,

and have instead taken on their own significance: these coefficients have been used to

evaluate the success of optical distortion correction [70] and determine correlations be-

tween the strength of certain aberrations in different surfaces of the same eye (including

both the cornea and crystalline lens) [71], as well as simply reported along with other

biometrics [99].

One of the drawbacks to using Zernike coefficients as a diagnostic tool, however, is that

their magnitude—and even their relative importance—is entirely dependent on the value

used to normalize the radial coordinate ρ. The coefficients also depend on the orientation

of the surface [62]. Furthermore, the choice of normalization constant is not standardized.

It is common in wavefront aberrometry to use the radial extent of the entrance pupil,

but even this can vary from person to person, making it difficult to compare Zernike

coefficients from different eyes [83]. For a surface such as a lens, it is even less clear what

value to choose for this purpose. Although we did not find that the accuracy of our fit or

curvature estimates was affected by the scaling parameter, the fact that we did not use

the same value for all the lens surfaces means that we cannot compare the estimates of

their Zernike coefficients. Nor can we conclude that the values obtained in Section 6.3.2

have any sort of absolute significance, even relative to other coefficients for the same

surface. Because scaling does not affect the azimuthal component, Zernike polynomials
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can be grouped into “families” of related aberrations that share the same frequency. For

example, Z5, Z6, Z12, and Z13—whose azimuthal parts are either sin 2θ or cos 2θ—are

all types of astigmatism. While the precise contribution of each term will depend on the

scaling, there will still be a collective contribution of astigmatism to the overall surface

shape. We saw this in Section 6.5, where our quantities of interest tended to be sensitive

to Zernike coefficients belonging to the same family. However, a different scaling could

change the relative rankings of the coefficients within each family. The adoption of a

more rigorous criterion for selecting the radial scaling parameter would make this sort of

sensitivity analysis more meaningful.

It is common for clinicians and researchers to consider only lower order corneal aber-

rations for diagnostic purposes. While the results of our sensitivity analysis suggest that

this may be valid for certain quantities of interest like principal curvature, higher order

Zernike aberrations that have no individual clinical significance may still impact vision

in nontrivial ways [84, 91]. To evaluate this, the global sensitivity analysis techniques

discussed in Section 6.5 could be applied to other shape descriptors such as the conic

constants κx, κy in the biconic fit (7.1), or to corneal biometrics like the combined re-

fractive power of both surfaces. Another application of the model calibration techniques

in Chapter 6 would be to treat the refractive indices of the lens and saline as parameters

rather than fixed inputs in order to evaluate their contribution to model uncertainty.

Ideally, we would also perform these analyses on real OCT data.

There are several areas to consider when trying to improve the accuracy of our ele-

vation and curvature estimates from OCT imaging: the data collection stage, the image

processing stage, and the modeling stage. Only the final stage has been discussed in

this thesis. However, the accuracy of our models is limited by the quality of the data,

so improvements in the first two stages would have a significant impact on our results.

While the image resolution is fixed for a given SDOCT system, it is possible to reduce

the vertical pixel spacing by padding the spectral range of scanner’s light source during

data collection, thereby reducing the magnitude of the quantization error. The use of 3D

algorithms for image segmentation and outlier removal, such as the methods described in

[66], could possibly reduce the edge detection failure rate and eliminate the need for visual

inspection to identify B-scans with problematic segmentation results (see Section 2.2.2).

This sort of approach could also help remove some of the biased noise that prevented us

from using the OCT data in our uncertainty analysis.
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One mathematical technique that would likely improve the curvature estimates would

be using a different cost function other than the sum of squares error when fitting the

data. While ordinary least squares worked well for the aspheric lens, the OLS models

for the toric lens were highly oscillatory and therefore far less accurate in their first and

second derivative estimates across the entire surface. Adding penalty terms to the cost

function that address sign changes in these derivatives would help reduce the overall error

in the curvature. Weighting functions could also be considered to minimize oscillations

in specific areas of concern. Such an approach would also improve the accuracy of the

dewarping algorithm—which depends heavily on the anterior surface gradient—thereby

leading to an improved posterior surface fit. Similar reasoning involving the importance of

local curvature accuracy has so far motivated the development of at least one promising

algorithm for fitting Zernike polynomials to point cloud data [32].

Other projects we are currently working on that are related to the material presented

in this thesis include methods for correcting the misalignment in off-axis imaging (see

[28]) and 3D pachymetry mapping.
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Appendix A

Table of Zernike Polynomials

Table A.1: The first 66 Zernike basis functions (ordered according to Noll’s index j), cor-
responding to all polynomials up to and including radial order N = 10. The polynomials
have been normalized to preserve the orthogonality relation in (3.3).
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Appendix B

Error Distribution for OCT Data &

Synthetic Data for UQ

All of the uncertainty quantification methods in Chapter 6 are predicated on the assump-

tion that the noise in the data is independent and identically distributed (iid). We have

already noted in Section 2.4 that the error in the quantized synthetic data is not iid,

as there are patterns that appear when the residuals are plotted as a function of radial

position. It turns out that similar patterns do in fact appear in the residuals for the real

point cloud data used in Chapter 5, which are plotted in Figure B.1. In addition, there

is also a significant amount of unaccommodated model error.

A third issue with using the real data for model calibration involves the off-axis

imaging discussed in Section 5.1.1. Because the real data are not centered with respect

to the Zernike basis, different Zernike functions are required to construct the model and

therefore we would not be able to compare the estimated coefficient values to those

obtained by integrating the design equations. Performing a second fit after realignment

would double the computational cost, and many of the methods used in Chapter 6 are

Table B.1: Model error variance σ2 computed from real data, in square millimeters.

Aspheric lens front Toric lens front Aspheric lens back Toric lens back

2.1554× 10−5 9.2203× 10−5 4.8743× 10−5 6.4319× 10−5
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Figure B.1: Residuals for the 1st (left) and 60th (right) frames of real data for the (a)
front of the asphere, (b) front of the toric lens, (c) back of the asphere, and (d) back of
the toric lens.

215



-0.05 0 0.05

Quantiles of normal distribution

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Q
u

a
n

ti
le

s
 o

f 
re

s
id

u
a
ls

-0.05 0 0.05

Quantiles of normal distribution

-0.4

-0.2

0

0.2

0.4

Q
u

a
n

ti
le

s
 o

f 
re

s
id

u
a
ls

(a) (b)

-0.05 0 0.05

Quantiles of normal distribution

-0.2

-0.1

0

0.1

0.2

Q
u

a
n

ti
le

s
 o

f 
re

s
id

u
a
ls

-0.05 0 0.05

Quantiles of normal distribution

-0.5

0

0.5

Q
u

a
n

ti
le

s
 o

f 
re

s
id

u
a

ls
(c) (d)

Figure B.2: Q-Q plots of real data residuals vs. N (0, σ2) for the (a) front of the asphere,
(b) front of the toric lens, (c) back of the asphere, and (d) back of the toric lens.
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Figure B.3: Q-Q plots of synthetic data residuals vs. N
(
0, σ2

)
for the (a) front of the

asphere, (b) front of the toric lens, (c) back of the asphere, and (d) back of the toric lens.
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Figure B.4: Residuals for the 1st frame of synthetic data for the (a) front of the asphere,
(b) front of the toric lens, (c) back of the asphere, and (d) back of the toric lens.

already extremely expensive.

For the reasons discussed above, we have chosen to conduct the uncertainty quantifi-

cation in Chapter 6 on a new synthetic data set rather than on the real point cloud data

or the quantized synthetic data. This new synthetic data set is constructed in the manner

discussed in Section 4.3, except instead of adding quantization error we have added Gaus-

sian error (which also has the benefit of allowing us to make certain assumptions about

the distribution of error in the Zernike coefficients). Figures B.5–B.6 show examples of

the synthetic data with normally distributed noise along with the corresponding frame

of point cloud data for each lens surface.

Although the mean value of the error across all the point cloud data for each surface

is fairly small (∼ 10−15 mm for both front surfaces and ∼ 10−8–10−7 mm for the back

surfaces), we see in Figure B.1 that this is due to a systematic, antisymmetric bias in
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Table B.2: Zernike order N used to fit each lens surface.

Surface Real data Synthetic data

Aspheric lens front 4 4
Aspheric lens back 3 2
Toric lens front 8 10
Toric lens back 6 8

some of the frames. Furthermore, in addition to the non-iid nature of the quantization

error, some of the frames also appear to exhibit error with non-constant variation. This

is confirmed in the Q-Q plots in Figure B.2, which compare the residuals for the real

data to a normal distribution with zero mean and constant variance σ2 computed from

the data. The precise values of σ2 for each surface are shown in Table B.1. These are also

the values used to construct the synthetic data in Figures B.5–B.6. The residuals for this

new synthetic data shown in Figure B.4 and the Q-Q plots in Figure B.3 both confirm

that the noise is indeed
iid∼ N

(
0, σ2

)
.

Table B.2 lists the Zernike order of the model used to fit each data set. These were

selected based on the results of Chapters 3 and 5.
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Figure B.5: Real axial elevation data and synthetic data with normally distributed noise
for the front surface of the (a) aspheric lens and (b) toric lens.
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Figure B.6: Real geometric path length (GPL) data and synthetic GPL data with nor-
mally distributed noise for the back surface of the (a) aspheric lens and (b) toric lens.
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Appendix C

Convergence of Sobol’ Indices

Figures C.1–C.2 illustrate the convergence of the estimated Sobol’ indices discussed Sec-

tion 6.5 according to their 95% bootstrap confidence intervals, as recommended in [8, 80].

The confidence intervals were determined using the MATLAB function bootci with 10000

subsamples. For the reduced order models, 200000 model evaluations were required for

convergence of both front surfaces as well as for the back of the toric lens; however, nearly

twice as many evaluations were needed when considering the sensitivity of the posterior

curvature to the anterior surface coefficients after dewarping.

For the results in Section 6.5 that were based on the full models, we used 20000

evaluations for both front surfaces as well as the back of the toric lens after dewarping.

We needed 30000 evaluations for the back of the toric lens without dewarping. We have

not included confidence intervals for the full models due to the computational cost of the

bootstrap method.
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Figure C.1: Convergence of first order Sobol’ indices (Si) for (a) the principal curvature
of the anterior aspheric lens, (b) the principal curvature of the anterior toric lens, (c)
the maximum principal curvature of the posterior toric lens with respect to the back
surface coefficients, (d) the difference in principal curvatures of the posterior toric lens
with respect to the back surface coefficients, (e) the maximum principal curvature of the
posterior toric lens with respect to the front surface coefficients (after dewarping), and
(f) the difference in principal curvatures of the posterior toric lens with respect to the
front surface coefficients (after dewarping).
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Figure C.2: Convergence of total Sobol’ indices (STi) for (a) the principal curvature
of the anterior aspheric lens, (b) the principal curvature of the anterior toric lens, (c)
the maximum principal curvature of the posterior toric lens with respect to the back
surface coefficients, (d) the difference in principal curvatures of the posterior toric lens
with respect to the back surface coefficients, (e) the maximum principal curvature of the
posterior toric lens with respect to the front surface coefficients (after dewarping), and
(f) the difference in principal curvatures of the posterior toric lens with respect to the
front surface coefficients (after dewarping).
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