
ABSTRACT

LAGERGREN, JOHN HEIKKI. Data-Driven Discovery and Augmentation of Mathematical
Models. (Under the direction of Kevin B. Flores.)

Mathematical modeling is a tool by which mathematicians and scientists can rea-

son about the various mechanisms that drive physical and theoretical processes. A well-

calibrated mechanistic model provides both interpretability about the underlying physi-

cal/biological laws that govern a system and generalizability which affords the ability to

predict unseen dynamics beyond a set of observation data. There are many commonly

encountered challenges that confound the capacity to conceive and calibrate these models.

Many of these arise from poor understanding of the relevant dynamics, practical uniden-

tifiability of model parameters, and the presence of uncertainties in the observed data,

model parameters, and the model itself. This thesis presents a set of methodologies that

leverage techniques from deep learning and data science to reduce the effects or presence

of these challenges. Three cases are considered: (i) augmenting traditional mathematical

modeling strategies with data-driven techniques when the governing set of equations is

known, (ii) discovering mathematical models from data using deep learning and sparse

regression when the governing equations are unknown, and (iii) learning the nonlinear

terms comprising the governing system of equations with an end-to-end deep learning

framework when only basic conservation laws are known. In (i), state space reconstruction

is used to replace mechanistic equations, reducing the complexity of the inverse problem,

and resulting in more accurate time-series forecasting and uncertainty quantification. In

(ii), neural networks are shown to denoise and approximate the partial derivatives of data

more accurately than state-of-the-art methods in the presence of biologically realistic forms

and levels of noise, resulting in more robust equation discovery. In (iii), the end-to-end

deep learning framework, nicknamed biologically-informed neural networks, is used to

discover a previously unknown mechanism in cell biology from real-world experimental

data. The results presented in this work are a step toward enabling the application of the

mechanistic modeling strategy to a wider spectrum of intractable data sets arising from

complex systems.

© Copyright 2020 by John Heikki Lagergren

All Rights Reserved

Data-Driven Discovery and Augmentation of Mathematical Models

by
John Heikki Lagergren

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Applied Mathematics

Raleigh, North Carolina

2020

APPROVED BY:

Hien T. Tran Ralph C. Smith

Adriana San Miguel Delgadillo Kevin B. Flores
Chair of Advisory Committee

DEDICATION

To my wife, Ashlie Lagergren, and my parents, Eeva Valentine and James Lagergren.

ii

BIOGRAPHY

John Lagergren graduated summa cum laude with a B.S. in Computational Applied Mathe-

matics with a minor in Physics from East Tennessee State University in December, 2015. He

earned an M.S. in Applied Mathematics from North Carolina State University (NCSU) in De-

cember, 2018, and a Ph.D. in Applied Mathematics from NCSU in December, 2020. During

his graduate studies, John was awarded the NCSU Graduate Fellowship in 2016-2017, the

SAMSI (Statistical and Applied Mathematical Sciences Institute) Graduate Fellowship in

2018-2019, the Winton-Rose Award for Research Excellence in 2020, and had two internships

at Applied Research Associates in 2019 and 2020.

iii

ACKNOWLEDGEMENTS

I am grateful to my advisor, Kevin Flores, for all the time and energy he has invested in

me, and for being an endless source of advice, encouragement, and opportunity. I would

also like to thank my internship mentors, Greg Foderaro and Thomas Paniagua, for the

experience and professional development they provided, and my collaborators, Erica Rutter

and John Nardini, for all of the conversations and useful feedback throughout the years.

Finally, I am grateful to the Applied Mathematics and Biomathematics programs and all

the wonderful people I have worked with at North Carolina State University.

I acknowledge this research was partially supported by grants RTG/DMS-1246991, DMS-

1514929, IOS-1838314, and DMS-1638521 from the National Science Foundation and grant

R21AG059099 from the National Institute of Aging.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . x

Chapter 1 Introduction . 1
1.1 Problem statement . 1
1.2 Dissertation outline . 3
1.3 Publication overview . 4

Chapter 2 Data-driven hybrid modeling . 5
2.1 Introduction . 5
2.2 Methods . 7

2.2.1 Age-structured population data . 7
2.2.2 Mathematical model . 8
2.2.3 State space reconstruction . 9
2.2.4 Bayesian inference . 10
2.2.5 Hybrid methodology . 11
2.2.6 Hybrid uncertainty quantification . 11
2.2.7 Evaluation . 12

2.3 Results . 13
2.3.1 Forecast accuracy . 13
2.3.2 Uncertainty quantification . 14
2.3.3 Practical identifiability analysis . 15

2.4 Summary of contributions . 20
2.5 Discussion . 21

Chapter 3 Neural networks and sparse regression . 24
3.1 Motivation . 24
3.2 Introduction . 25
3.3 Methods . 29

3.3.1 Data generation . 30
3.3.2 Data denoising and library construction . 30
3.3.3 Equation learning . 35

3.4 Results . 38
3.4.1 Derivative calculations . 38
3.4.2 PDE-FIND without pruning . 39
3.4.3 Diffusion-advection equation . 44
3.4.4 Fisher-KPP equation . 45
3.4.5 Nonlinear Fisher-KPP equation . 47

3.5 Summary of contributions . 50
3.6 Discussion . 50

Chapter 4 Biologically-informed neural networks . 54

v

4.1 Motivation . 54
4.2 Introduction . 55

4.2.1 Scratch assay data . 59
4.2.2 Biologically-informed neural networks . 60
4.2.3 Evaluation procedure . 63

4.3 Methods . 64
4.3.1 Data pre-processing . 64
4.3.2 Network design . 64
4.3.3 Training procedure . 66
4.3.4 PDE forward solver . 69
4.3.5 Parameter estimation . 70

4.4 Results . 70
4.4.1 Simulation case study . 70
4.4.2 Reaction-diffusion BINNs for experimental data 71
4.4.3 Delay-reaction-diffusion BINNs for experimental data 73
4.4.4 Guided mechanistic model selection . 74
4.4.5 Model comparison . 76

4.5 Summary of contributions . 80
4.6 Discussion . 80

4.6.1 Conclusions . 84

Chapter 5 Conclusions . 87
5.1 Contributions . 88
5.2 Future work . 91

BIBLIOGRAPHY . 95

APPENDICES . 105
Appendix A Hybrid Modeling . 106

A.1 Parameter distributions . 106
A.2 Parameter values . 106

Appendix B Neural Network Data Denoising . 113
B.1 Error Model Selection . 113
B.2 Comparing spline and bi-spline methods . 115
B.3 Global Spline Calculations . 115
B.4 PDE-FIND without pruning results . 117
B.5 Tables of learned PDEs . 119

Appendix C Biologically-informed Neural Networks 124
C.1 Supporting information . 125

vi

LIST OF TABLES

Table 2.1 Models used to predict the L , P , and A variables for the various hybrid
choices. Either SSR or one of equations (2.1)-(2.3) if used for each
variable. LPA corresponds to the full model, while the first six choices
represent the possible hybrid models. The corresponding estimated
parameters are also indicated for each hybrid model. 13

Table 3.1 The relative mean-squared error (RMSE) between the noiseless data
or true derivative values and our denoised data or derivative com-
putations using finite differences, local splines with constant or
nonconstant variance, global splines with nonconstant variance,
and the ANN for the diffusion-advection equation. "FD" denotes
finite differences, "LCVSP" denotes local splines with constant vari-
ance, "LNCVSP" denotes local splines with nonconstant variance,
"GNCVSP" denotes global splines with nonconstant variance, and
"ANN" denotes the ANN. 40

Table 3.2 The relative mean-squared error (RMSE) between the noiseless data
or true derivative values and our denoised data or derivative compu-
tations using finite differences, local splines with constant or non-
constant variance, global splines with nonconstant variance, and the
ANN for the Fisher-KPP equation. "FD" denotes finite differences,
"LCVSP" denotes local splines with constant variance, "LNCVSP"
denotes local splines with nonconstant variance, "GNCVSP" denotes
global splines with nonconstant variance, and "ANN" denotes the
ANN. 41

Table 3.3 The relative mean-squared error (RMSE) between the noiseless data
or true derivative values and our denoised data or derivative compu-
tations using finite differences, local splines with constant or non-
constant variance, global splines with nonconstant variance, and
the ANN for the Nonlinear Fisher-KPP equation. "FD" denotes fi-
nite differences, "LCVSP" denotes local splines with constant vari-
ance, "LNCVSP" denotes local splines with nonconstant variance,
"GNCVSP" denotes global splines with nonconstant variance, and
"ANN" denotes the ANN. 42

Table 3.4 Inferred parameters for the nonlinear Fisher-KPP Equation data
when performing an inverse problem on Equation (3.21). 49

Table 4.1 BINN-guided delay-reaction-diffusion model parameters. 78
Table 4.2 Generalized least squares (GLS) errors. 78
Table 4.3 Akaike Information Criterion (AIC) scores. 79
Table 4.4 Difference Akaike Information Criterion (∆AIC) scores. 80

Table A.1 Parameter estimates for each hybrid model for the data set with cp a :
0, replicate: 1. 107

vii

Table A.2 Parameter estimates for each hybrid model for the data set with cp a :
0, replicate: 2. 108

Table A.3 Parameter estimates for each hybrid model for the data set with cp a :
0, replicate: 3. 108

Table A.4 Parameter estimates for each hybrid model for the data set with cp a :
05, replicate: 1. 108

Table A.5 Parameter estimates for each hybrid model for the data set with cp a :
05, replicate: 2. 108

Table A.6 Parameter estimates for each hybrid model for the data set with cp a :
05, replicate: 3. 109

Table A.7 Parameter estimates for each hybrid model for the data set with cp a :
10, replicate: 1. 109

Table A.8 Parameter estimates for each hybrid model for the data set with cp a :
10, replicate: 2. 109

Table A.9 Parameter estimates for each hybrid model for the data set with cp a :
10, replicate: 3. 109

Table A.10 Parameter estimates for each hybrid model for the data set with cp a :
25, replicate: 1. 110

Table A.11 Parameter estimates for each hybrid model for the data set with cp a :
25, replicate: 2. 110

Table A.12 Parameter estimates for each hybrid model for the data set with cp a :
25, replicate: 3. 110

Table A.13 Parameter estimates for each hybrid model for the data set with cp a :
35, replicate: 1. 110

Table A.14 Parameter estimates for each hybrid model for the data set with cp a :
35, replicate: 2. 111

Table A.15 Parameter estimates for each hybrid model for the data set with cp a :
35, replicate: 3. 111

Table A.16 Parameter estimates for each hybrid model for the data set with cp a :
50, replicate: 1. 111

Table A.17 Parameter estimates for each hybrid model for the data set with cp a :
50, replicate: 2. 111

Table A.18 Parameter estimates for each hybrid model for the data set with cp a :
50, replicate: 3. 112

Table A.19 Parameter estimates for each hybrid model for the data set with cp a :
100, replicate: 1. 112

Table A.20 Parameter estimates for each hybrid model for the data set with cp a :
100, replicate: 2. 112

Table A.21 Parameter estimates for each hybrid model for the data set with cp a :
100, replicate: 3. 112

Table B.1 Learned Equations for the diffusion-advection equation. 120
Table B.2 Discovered Equations for the Fisher-KPP Equation 121
Table B.3 Discovered Equations for the nonlinear Fisher-KPP Equation. 122

viii

Table C.1 Each column corresponds to an experiment with different initial cell
density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells
per well). 129

Table C.2 Each column corresponds to an experiment with different initial cell
density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells
per well). 129

ix

LIST OF FIGURES

Figure 2.1 Empirically recorded population levels of adult flour beetles over a
period of 82 weeks with normally distributed random observation
error added. Data to the left of the vertical bar are used for parameter
fitting while the data to the right are left for forecast validation. . . . 8

Figure 2.2 Illustration of the hybrid technique applied to modeling the A vari-
able in the flour beetle system given by equations (2.1)-(2.3). The
depicted hybrid model uses a partial model for A, i.e., only equa-
tion (2.3), and training data for L and P to estimate parameters in
the partial model. In this case, the only parameter to estimate for
(2.3) is the initial condition A(0). SSR predictions are used to con-
tinue substituting time series for L and P after the last time point in
the training data, thereby merging nonparametric with parametric
predictions. 12

Figure 2.3 Forecast errors (SRMSE) for each forecasting method for the larvae
(L), pupae (P), and adult (A) population data. Points are the mean
SRMSE over 21 data sets; bars are the standard errors. The full model
corresponds to model choice LPA for each population. The hybrid
models for the larvae, pupae, and adult populations corresponds to
model choices LSA, SPS, and SPA, respectively. These specific hybrid
models shown here had the smallest SRMSE values over all 21 data
sets. 15

Figure 2.4 Prediction with uncertainty quantification for the A variable using
a hybrid model (bottom) and full model (top). Data (black x’s) are
from experiment 1 for which cp a was experimentally set to zero. The
vertical black line separates the training data used for parameter
estimation from the testing data used for evaluating forecast accu-
racy. The 95% credible and prediction intervals are shown as dark
and light grey, respectively. The black line represents the mean of
the credible interval (best fit). 16

Figure 2.5 Pairwise parameter plots for the full model (LPA). The data from
experiment 1 were used for parameter estimation. 17

Figure 2.6 Pairwise parameter plots for a hybrid model (SPA). The data from
experiment 1 were used for parameter estimation 18

Figure 2.7 Correlation coefficients among all pairs of estimated parameters.
Computations were performed for each model choice where the
choices are 1=SSA, 2=SPS, 3=SPA, 4=LSS, 5=LSA, 6=LPS, and 7=LPA.
Coefficients were computed only for pairs of parameters that existed
among the hybrid models. Each star within each subplot represents
a correlation coefficient for a single time series, with 21 total possible
time series. 19

x

Figure 2.8 Rank deficiency for each model choice. The full model is denoted
by LPA and hybrid models are denoted by SSA, SPS, SPA, LSS, LSA,
LPS. The y-axis indicates the number of time series (out of 21 total)
that a particular choice resulted in a certain level of rank deficiency
given by the x-axis. 20

Figure 2.9 Venn diagram illustration of the model parameters estimated for
each choice. Grey boxes contain the model choice, where LPA corre-
sponds the full model, and SSA, SPS, SPA, LSS, LSA, and LPS repre-
sent the hybrid models. 23

Figure 3.1 The two components to learning PDEs from data. The first com-
ponent is to approximate u , ut , ux , ux x , etc., from noisy data. The
second component uses the output from the first component as an
input for the PDE-FIND algorithm to learn a PDE. We also employ a
pruning algorithm after the PDE-FIND step, not depicted here. . . . 29

Figure 3.2 Diagram for using local splines for data denoising and partial deriva-
tive approximation. For a given data point ui , j , shown on the left in
red, in the set of observations, a cubic bi-spline, shown on the right
as a red surface, is fit on a small two-dimensional neighborhood of
size 11×11 centered at ui , j . 32

Figure 3.3 Diagram for using ANNs for data denoising and partial derivative
approximation [Nar20]. An ANN, shown on the left, inputs x and
t pairs and outputs the corresponding approximations for u (x , t).
Using automatic differentiation, the analytic partial derivatives of
the ANN can be used to construct a library of terms for the PDE
learning task, shown on the right. 33

Figure 3.4 Contours of the residual values between the ANN model (u , ux ,, etc.)
and analytical solutions (u0, ux 0, etc.) for the diffusion-advection
data withσ= 0. Top left: Residuals for u , top right: residuals for ux ,
bottom left: residuals for ux x , bottom right: residuals for ut 43

Figure 3.5 Results from the training (left) and validation (right) procedures in
PDE-Find. The Red dashed line denotes the analytical value of ut ,
the blue dots denote the computed ut values from the ANN, and
the black lines denotes the equation for ut that has been computed
with PDE-FIND. 44

xi

Figure 3.6 TPR values for the diffusion-advection equation. We calculated the
TPR, see Equation (3.17), for 1,000 different training-validation splits.
These plots demonstrate the range of TPR values for each case. In
each plot, the lower line in the colored box portion provides the 25%
quartile of the data and the upper line denotes the 75% quartile.
The "x" on each box plot denotes the median TPR value for that
scenario. The length of the upper and lower whiskers are 1.5 times
the interquartile range of the distribution, and diamonds denote
outlier points. Any plot depicted as a solid horizontal line (e.g., the
neural net computations for σ = 0) denotes that that this value is
the majority of the range of the distribution. 45

Figure 3.7 TPR values for the Fisher-KPP Equation. We calculated the TPR, see
Equation (3.17), for 1,000 different training-validation splits. These
plots demonstrate the range of TPR values for each case. In each
plot, the lower line in the colored box portion provides the 25%
quartile of the data and the upper line denotes the 75% quartile.
The "x" on each box plot denotes the median TPR value for that
scenario. The length of the upper and lower whiskers are 1.5 times
the interquartile range, and diamonds denote outlier points. Any
plot depicted as a solid horizontal line (e.g., the finite difference
computations forσ= 0) denote that this value is the majority of the
distribution. 46

Figure 3.8 TPR values for the nonlinear Fisher-KPP Equation. We calculated
the TPR, see Equation (3.17), for 1,000 different training-validation
splits. These plots demonstrate the range of TPR values for each case.
In each plot, the lower line in the colored box portion provides the
25% quartile of the data and the upper line denotes the 75% quartile.
The "x" on each box plot denotes the median TPR value for that
scenario. The length of the upper and lower whiskers are 1.5 times
the interquartile range, and diamonds denote outlier points. Any
plot depicted as a lone solid horizontal line (e.g., the finite difference
computations for σ = 0) denotes that that this value is the whole
range of the data. 48

Figure 4.1 Experimental scratch assay data. Pre-processed cell density pro-
files from scratch assay experiments with varying initial cell den-
sities [Jin16a]. Each subplot corresponds to an experiment with
a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000,
18,000, and 20,000 cells per well). The cell densities are reported at
37 equally-spaced positions and five equally-spaced time points. . . 60

xii

Figure 4.2 Biologically-informed neural networks for reaction-diffusion mod-
els. (A) BINNs are deep neural networks that approximate the solu-
tion of a governing dynamical system. (B) By allowing the terms of
the dynamical system (e.g. diffusivity functionD and growth func-
tion G) to be function-approximating deep neural networks, the
nonlinear forms of these terms can be learned without the need
to specify a mechanistic model or library of candidate terms. (C)
Automatic differentiation is used on compositions of the different
neural network models (e.g. u , D , and G) to construct the PDE that
describes governing dynamical system. (D) The governing system is
used in the neural network objective function to jointly learn and
satisfy the governing PDE while minimizing the error between the
network outputs and noisy observations. 61

Figure 4.3 Reaction-diffusion BINN solutions. Predicted cell density profiles
using BINNs with the governing reaction-diffusion PDE in Equa-
tion (4.15). Each subplot corresponds to an experiment with a differ-
ent initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and
20,000 cells per well). Solid lines represent the numerical solution
to Equation (4.15) using DMLP and GMLP. The markers represent the
experimental scratch assay data. 71

Figure 4.4 Reaction-diffusion BINN terms and discrepancy. Left: learned dif-
fusivity and growth functions, DMLP and GMLP, evaluated over cell
density, u . Right: Predicted cell density profiles using BINNs with
the governing reaction-diffusion PDE in Equation (4.15) for data
with initial cell density 20,000 cells per well. Solid lines represent
the numerical solution to Equation (4.15) using DMLP and GMLP. The
markers represent the experimental scratch assay data. 72

Figure 4.5 Delay-reaction-diffusion BINN solutions. Predicted cell density pro-
files using BINNs with the governing delay-reaction-diffusion PDE
in Equation (4.16). Each subplot corresponds to an experiment with
a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000,
18,000, and 20,000 cells per well). Solid lines represent the numerical
solution to Equation (4.16) using TMLP, DMLP, and GMLP. The markers
represent the experimental scratch assay data. 74

Figure 4.6 Delay-reaction-diffusion BINN terms and discrepancy. Left: learned
diffusivity and growth functions, DMLP and GMLP, evaluated over cell
density, u , and delay function, TMLP, evaluated over time, t . Right:
Predicted cell density profiles using BINNs with the governing delay-
reaction-diffusion PDE in Equation (4.16) for data with initial cell
density 20,000 cells per well. Solid lines represent the numerical
solution to Equation (4.16) using DMLP, GMLP, and TMLP. The markers
represent the experimental scratch assay data. 75

xiii

Figure 4.7 Delay-reaction-diffusion BINN terms. The learned diffusivity, DMLP,
growth, GMLP, and delay, TMLP, functions extracted from the corre-
sponding BINNs with governing delay-reaction-diffusion PDE in
Equation (4.16). Each line corresponds to an experiment with a dif-
ferent initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000,
and 20,000 cells per well). Note that DMLP and GMLP have different
lengths since they are evaluated between the minimum and maxi-
mum observed cell densities corresponding to each data set. 75

Figure 4.8 BINN-guided delay-reaction-diffusion model solutions. Predicted
cell density profiles using the delay-reaction-diffusion model in
Equation (4.17). Each subplot corresponds to an experiment with
a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000,
18,000, and 20,000 cells per well). Solid lines represent the numerical
solution to Equation (4.17) using the parameters that minimizeLGLS

in Equation (4.6). The markers represent the experimental scratch
assay data. 77

Figure 5.1 Multi-dataset extension to BINNs. A neural network surrogate for
the solution of the dynamical system (left) inputs spatiotemporal
vectors,

�

x1 . . . xN t
�

, and predicts the corresponding outputs
for M different data sets. Then, parameter networks, T1, . . . , TL (cen-
ter), input the quantities of interest, u1, . . . , uM , with the option to
include additional conditions, c1, . . . , cM , pertaining to individual
data sets (e.g. initial degree of confluence in scratch assays, patient
characteristics in cancer modeling, etc.) to learn the associated
dynamics. Finally, the quantities of interest, u1, . . . , uM , and the pre-
dicted terms of the governing system, T1, . . . , TL , can be combined
into a single governing PDE (right) that describes the global dynam-
ics that are common across all data sets. 93

Figure A.1 Histogram of each of the parameter estimates among all 7 hybrid
models across all 21 data sets. 107

Figure B.1 Modified Residual computations for various values of γ from the
advection-diffusion data set withσ= 0.25. Top left: results for γ= 0,
Top right: results for γ= 0.5, bottom left: results for γ= 1.0. 114

Figure B.2 TPR values for the diffusion-advection equation when using 1-dimensional
cubic splines versus cubic bi-splines for denoising data and approx-
imating partial derivatives. 115

Figure B.3 TPR values for the Fisher-KPP equation when using 1-dimensional
cubic splines versus cubic bi-splines for denoising data and approx-
imating partial derivatives. 116

Figure B.4 TPR values for the nonlinear Fisher-KPP equation when using 1-
dimensional cubic splines versus cubic bi-splines for denoising data
and approximating partial derivatives. 116

xiv

Figure B.5 TPR values for the diffusion-advection equation. 118
Figure B.6 TPR values for the Fisher-KPP equation. 119
Figure B.7 TPR values for the nonlinear Fisher-KPP equation. 123

Figure C.1 (a) An illustration of an experiment with the IncuCyte ZOOM™system
(Essen BioScience, MI USA). Full details of the experiment and im-
age processing can be found in [Jin16a]. Cells are seeded uniformly
within each well in a 96-well plate at a pre-specified density of be-
tween 10,000 and 20,000 cells per well. A WoundMaker™(Essen
BioScience) is used to create a uniform vertical scratch along the
middle of the well. (b) Microscopy images are collected from a rect-
angular region of the well. (c) Example images corresponding to
experiments initiated with 12,000, 16,000, or 20,000 cells per well. A
PC-3 prostate cancer cell line was used. The image recording time
is indicated on each subfigure and the scale bar corresponds to 300
µm. The green dashed lines in the images in the top row show the
approximate location of the leading edge created by the scratch.
Each image is divided into equally-spaced vertical columns, and
the number of cells in each column divided by the column area is
calculated to yield an estimate of the 1-D cell density. 125

Figure C.2 Predicted cell density profiles using BINNs with the governing reaction-
diffusion PDE in Equation (4.15). The left subplot corresponds to
the set of simulated data using the classical FKPP equation and the
rig!ht subplot corresponds to the Generalized Porous-FKPP equa-
tion. Solid lines represent the numerical solution to Equation (4.15)
using DMLP, and GMLP. Dashed lines represent the noiseless numeri-
cal simulations of the classical FKPP and Generalized Porous-FKPP
equations. The markers represent the numerical simulations of the
classical FKPP and Generalized Porous-FKPP equations with artifi-
cial noise generated by the statistical error model in Equation (4.4). 126

Figure C.3 The learned diffusivity and growth functions DMLP and GMLP evalu-
ated over cell density u . Starting from the left, the first two subplots
correspond to the learned diffusivity and growth functions from
simulated data using the classical FKPP equation. The last two sub-
plots correspond to the learned diffusivity and growth functions
from simulated data using the Generalized Porous-FKPP equation.
Solid lines represent the parameter networks DMLP and GMLP and
dashed lines represent the true diffusivity and growth functions
used to simulate the data. 126

Figure C.4 Modified residuals using BINNs with the governing reaction-diffusion
PDE in Equation (4.15). Each subplot corresponds to an experiment
with a different initial cell density. 127

Figure C.5 Modified residuals using BINNs with the governing delay-reaction-
diffusion PDE in Equation (4.16). Each subplot corresponds to an
experiment with a different initial cell density. 127

xv

Figure C.6 Predicted cell density profiles using the classical FKPP model in
Equation (4.19). Each subplot corresponds to an experiment with a
different initial cell density. 128

Figure C.7 Predicted cell density profiles using the Generalized Porous-FKPP
model in Equation (4.20). Each subplot corresponds to an experi-
ment with a different initial cell density. 128

Figure C.8 The learned diffusivity DMLP, growth GMLP, and delay TMLP functions
extracted from the corresponding BINNs with governing reaction-
diffusion PDE in Equation (4.15) (first row) and delay-reaction-diffusion
PDE in Equation (4.16) (second row). Each line corresponds to an
experiment with a different initial cell density (i.e. 10,000, 12,000,
14,000, 16,000, 18,000, and 20,000 cells per well). Note that DMLP and
GMLP have different lengths since they are evaluated between the
minimum and maximum observed cell densities corresponding to
each data set. 130

Figure C.9 Statistical error model selection. The function-approximating deep
neural network uMLP is trained usingLGLS for different values of γ
across each data set. Each subplot shows the modified residuals
(see Equation (4.6)) as a function of the predicted cell density u .
The columns correspond to different levels of proportionality (i.e.
γ= 0.0,0.2,0.4,0.6) where γ= 0.0 represents the constant variance
(ordinary least squares) case. Each row (a-f) corresponds to an ex-
periment with different initial cell density (i.e. 10,000, 12,000, 14,000,
16,000, 18,000, and 20,000 cells per well). The proportionality con-
stant that results in the most i.i.d. residuals across each data set was
chosen to calibrate the statistical error model in Equation (4.4). . . . 131

Figure C.10 PDE random sampling validation. The BINNs framework is trained
usingLTotal with three ways of including the PDE error termLTotal:
(a) no PDE regularization, (b) PDE regularization at the data loca-
tions, and (c) PDE regularization at 10,000 randomly sampled points
at each training iteration. The first column shows the scratch as-
say data with initial cell density 20,000 cells per well (black dots)
with the corresponding BINNs approximation to the governing PDE
uMLP (surface plot). The second column shows heatmaps of the
modified residual errors (see Equation (4.6)) at each data point. The
third column shows heatmaps of the PDE errors (see Equation (4.7))
evaluated on a 100×100 meshgrid over the input domain. 132

xvi

CHAPTER

1

INTRODUCTION

1.1 Problem statement

Limited understanding of the governing dynamics is an inherent issue when developing a

mathematical model that approximates a dynamical system [Ban14a]. Ideally, a mathemat-

ical model is developed to achieve a balance between model complexity and the ability to

parameterize the model using available data, with the ultimate goal of maximizing predic-

tive accuracy for out-of-sample data. However, even in cases of full observability (i.e., when

every variable in the model is known and observed), accurate parameterization may still be

a challenge due to parameter identifiability-related issues. If parameters are not structurally

identifiable with respect to an observed set of data, one can attempt to re-parameterize the

model and then estimate aggregated parameters [Mes14]. However, a drawback with this

technique is that if the primary goal is to accurately estimate parameters, the aggregated

parameters may not be physically meaningful or interpretable. An alternative approach

is to use subset selection techniques to find identifiable combinations of parameters and

then fix the non-indentifiable parameters to constant values [CA09; Ban15b]. Yet, one then

encounters the issue of having to justify those fixed values from other sources of experi-

mental data in addition to ensuring that model predictions are not sensitive at the values

to which the parameters are fixed.

1

In the event that the posited model suffers from model discrepancy or identifiability-

related issues, alternative paradigms, which we refer to as “non-mechanistic models,” exist

that can forecast time series data in the absence of mechanistic models. These include

empirical dynamical modeling [Ye15], autoregressive models [Bil13], and machine learning

[Par00]. Since these methods do not rely on developing a mechanistic model based on real-

world knowledge, they do not include parameters that correspond to physically/biologically

interpretable quantities. In general, it has been noted that a primary drawback of utiliz-

ing non-mechanistic modeling for predicting unseen dynamics is that one forfeits the

transferability and theoretical understanding afforded by a validated mechanistic model

[Har13].

In the case that no mechanistic model is known, recent efforts have also investigated

methods for learning underlying governing systems of equations directly from observed

spatiotemporal data. Examples of such methods include the Sparse Identification of Non-

linear Dynamics (SINDy) algorithm [Bru16a] and the Equation Learning (EQL) neural

network [Sah18], both of which are used for discovering systems of ODEs, and the PDE

Functional Identification of Nonlinear Dynamics (PDE-FIND) algorithm [Rud17a], which

is used to identify PDE systems. The goal of these methods is to specify the correct terms of

the true equations given a large library of potential candidate terms (such as polynomial

combinations of independent variables, function values, partial derivatives, etc.) with the

aid of sparse regression or nonlinear optimization. A practical challenge arises, however,

because one typically does not have access to noiseless function values or partial deriva-

tives. Instead, one must approximate these values from noisy experimental data. Finite

difference and polynomial spline-based techniques have been reported as state-of-the-art

denoising methods for equation learning in a recent study which also considered several

other numerical methods such as Gaussian kernel smoothing, Tikhonov differentiation,

and spectral differentiation with high-frequency term thresholding [Rud17a]. However,

both of these methods have been found to be prone to inaccuracies in the presence of noise

[Rud17a].

Alternative equation learning approaches have used function-approximating deep neu-

ral networks as surrogate models for the solution of the governing dynamical system [Rai19;

Yan20]. In these approaches, the assumed mechanistic mechanistic model is pre-specified

and then used as a form of regularization in the neural network objective function. The

parameters of the specified model are allowed to be “learnable,” meaning that the parame-

ters of the governing PDE are calibrated while the neural network is trained to minimize

the error between the network outputs and the observed noisy data. This methodology en-

sures that the neural network solution satisfies the physical laws described by the specified

2

model while simultaneously fitting the spatiotemporal data. While these methods have

been demonstrated with data in the presence of noise, they have so far only been applied

to problems where the governing mechanistic PDE is known a priori.

1.2 Dissertation outline

In Chapter 2, we consider the mathematical challenge of modeling noisy experimental data

using equations with practically unidentifiable parameters. We address this challenge by

presenting a new method for the data-driven prediction and uncertainty quantification

of multivariate systems. Traditionally, either mechanistic or non-mechanistic modeling

methodologies have been used for prediction; however, it is uncommon for the two to

be incorporated together. We compare the forecast accuracy of mechanistic modeling,

using Bayesian inference, a non-mechanistic modeling approach based on state space

reconstruction, and a novel hybrid methodology composed of the two. The method is

evaluated using real-world age-structured population data from cannibalistic flour beetles,

in which it is observed that the adults preying on the eggs and pupae result in chaotic

non-equilibrium population dynamics. Additionally, uncertainty quantification methods

for the hybrid models are outlined and illustrated for these data. We perform an analysis

of the results from Bayesian inference for the mechanistic model and hybrid models to

suggest reasons why hybrid modeling methodology may enable more accurate prediction

of multivariate systems compared to traditional approaches.

In Chapter 3, we consider the mathematical challenge of discovering the unknown dy-

namics of a set of observation data when the governing system of equations is unknown. To

address this challenge, we develop methods based on artificial neural networks and sparse

regression for learning partial differential equation (PDE) models from spatiotemporal data

under biologically realistic levels and forms of noise. Recent progress in learning mechanis-

tic models from data have used sparse regression to select candidate terms from a denoised

set of data, including approximated partial derivatives. We analyze the performance in

utilizing previous methods to denoise data for the task of discovering the governing system

of PDEs. We also develop a novel methodology that uses artificial neural networks (ANNs)

to denoise data and approximate partial derivatives. We test the methodology on three

PDE models for biological transport, i.e., the advection-diffusion, classical Fisher-KPP, and

nonlinear Fisher-KPP equations. We show that the ANN methodology outperforms previ-

ous denoising methods, including finite differences and both local and global polynomial

regression splines, in the ability to accurately approximate partial derivatives and learn the

correct PDE model.

3

In Chapter 4, we consider the mathematical challenge of discovering the unknown

dynamics of a set of observation data when the measurements are sparse and only basic

conservation laws governing the system are known. To address this challenge, we extend

scientific machine learning methods to the class of equation learning to be feasible for

biological applications with nonlinear dynamics and where data are often sparse and

noisy. Physics-informed neural networks [Rai19] have recently been shown to approximate

solutions of PDEs from simulated noisy data while simultaneously optimizing the PDE

parameters. However, the success of this method requires the correct specification of the

governing PDE, which may not be known in practice. Here, we present an extension of the

algorithm that allows neural networks to learn the nonlinear terms of the governing system

without the need to specify the mechanistic form of the PDE. Our method is demonstrated

on real-world biological data from scratch assay experiments and used to discover a previ-

ously unconsidered biological mechanism that describes delayed population response to

the scratch.

Finally, in Chapter 5, we summarize our findings and contributions and discuss possi-

bilities for future work.

1.3 Publication overview

The content of this dissertation corresponds to three articles which are at various stages of

review and publication. Of these three articles, [Lag18; Lag20b], corresponding to Chapters

2 and 3, respectively, are published at this time, and [Lag20a], corresponding to Chapter

4, was accepted for publication in October, 2020. In addition, the author has six other

publications and two working papers whose content is not included in this thesis.

4

CHAPTER

2

DATA-DRIVEN HYBRID MODELING

2.1 Introduction

Mechanistic modeling strategies for predicting multivariate biological systems involve the

use of dynamical models, e.g., differential equations, to describe the biological mechanisms

and interactions that affect the evolution of the system [Ban14a; Smi14; Ban09a]. Applica-

tions of this strategy to genetic networks, neuronal networks, and population dynamics

have enabled the prediction of complex and emergent behaviors in these systems [Ban09a].

A central challenge when utilizing a mechanistic model for prediction is the ability to ac-

curately parameterize it from available time series data, which can often be sparse and

noisy in biological settings [Ban15a; Ado15b]. Commonly encountered challenges that

confound the ability to accurately parameterize a model can be attributed to problems

related to model discrepancy and parameter identifiability [Vos02; CA09; Smi14]. Thus,

the development of methodologies to reduce the effects or presence of these challenges

may enable the application of the mechanistic modeling strategy to a wider spectrum of

intractable data sets arising from complex biological systems.

Model discrepancy is an inherent issue when developing a mathematical model that

approximates a biological system [Vos02; Ban14a]. Ideally, a mathematical model is devel-

oped to achieve a balance between model complexity and the ability to parameterize the

5

model using available data, with the ultimate goal of maximizing predictive accuracy for

out-of-sample data. A general principle is to reduce the mathematical model description

to the lowest dimension possible, i.e., with the least number of variables and parameters.

Whereas “hold-out" validation approaches are often used to evaluate the ability of the

model to predict out-of-sample data [Gei93], to the best of our knowledge, no systematic

methodologies exist for minimizing model dimensionality while simultaneously maximiz-

ing prediction accuracy. Even in cases of full observability, i.e., when every variable in the

model is a longitudinal covariate in the available time series data, accurate parameteri-

zation may still be a challenge due to identifiability-related issues [III15; Mes14; Cob80;

Rau09]. If parameters are not structurally identifiable with respect to an observed set of

data, one can attempt to reparameterize the model and then estimate aggregated parame-

ters [Mes14]. One drawback with this technique is that if the primary goal is to accurately

estimate parameters, e.g., to infer the kinetic rates of biological interactions, the aggregated

parameters may not be biologically meaningful or interpretable. An alternative approach

is to use subset selection techniques to find identifiable combinations of parameters and

then fix the non-indentifiable parameters to constant values [CA09; Ban15b]. However,

one then encounters the issue of having to justify those fixed values from other sources

of experimental data and be able to ensure that model predictions are not sensitive at the

values to which the parameters are fixed.

Alternative paradigms exist to forecast time series data without a mechanistic model; we

refer to these approaches as “non-mechanistic models”. These include empirical dynamical

modeling [Ye15], autoregressive models, e.g., NARX [Bil13], and machine learning, e.g.,

multi-step ahead prediction [Che06; Par00]. Since these methods do not rely on developing

a mechanistic model based on biological knowledge, they do not include parameters that

correspond to biologically interpretable quantities, e.g., kinetic rates. Thus, if the goal is

to estimate biologically meaningful parameters from time series data, the mechanistic

modeling strategy is a reasonable first approach. In general, it has been noted that a primary

drawback of utilizing non-mechanistic modeling in forecasting is that one forfeits the

transferability and theoretical understanding afforded by a validated mechanistic model

[Har13]. While these concerns have been previously noted, our focus here is to present a

hybrid strategy that leverages the advantages of both mechanistic and non-mechanistic

modeling to maximize predictive accuracy and minimize forecast uncertainty.

We merge two well-known methods, (i) state space reconstruction and (ii) Bayesian

inference, to investigate whether their combination could minimize the drawbacks en-

countered when utilizing each method separately. The state space reconstruction (SSR)

methodology relies on Takens’ theorem of delay embedding and uses time series data to

6

generate a manifold that is one-to-one with the attractor manifold of a dynamical system

[Far87; Cas89; Sug90; Smi92; Jim92; Sau94; Sug94; Sch98; Kug98; Yua04; Hsi05; Str06; Reg05;

Sch06; Ham16]. In theory, since the reconstructed manifold is one-to-one with the attractor

of the real system, one can use it to forecast future dynamics using a nearest neighbor

approach as described in Section 2.2.3. A critical limitation of using SSR for prediction is the

amount of data needed to accurately reconstruct the attractor manifold. Since no biological

knowledge is leveraged, SSR, similar to other non-mechanistic modeling approaches, can

require a large amount of data to build a purely data-driven representation of the under-

lying dynamical system. This attribute can be especially limiting in biological scenarios

for which data are collected at sparse time points. On the other hand, Bayesian inference

methods have been widely applied in modeling of biological systems with this level of data

[Smi14]. However, Bayesian inference relies on fitting parameters for a mechanistic model,

and therefore is also subject to the previously discussed modeling related issues.

Here we describe a hybrid implementation of SSR and Bayesian inference methodolo-

gies in which we reduce model dimensionality by systematically omitting system variables

and replacing them with either data or SSR predictions. To validate our methodology, we

consider a real-world biological data set consisting of 21 time series of cannibalistic flour

beetle, (Tribolium casteneum), population dynamics [Con97]. It was previously found that

combining SSR with mechanistic models enabled more accurate predictions of chaotic

systems, including the flour beetle data set [Ham17]. Our goal in this work is to provide a

hybrid methodology that quantifies the uncertainty, both for the model predictions and

estimated parameters, in addition to forecasts of future time series data. We also provide

a deeper investigation of the hybrid approach than in previous efforts by analyzing the

uncertainty quantification results. We discuss our analysis and suggest possible reasons

why the hybrid approach may yield more accurate predictions.

2.2 Methods

2.2.1 Age-structured population data

We use longitudinal data of total counts for larvae, pupae, and adults in flour beetle popu-

lations. The data come from 7 different experimental conditions in which adult mortality

rates were altered, resulting in non-equilibrium dynamics; 3 replicates were performed in

each condition for a total of 21 data sets [Con97]. Data were sampled every other week over

an 82 week period for a total of 41 data points per time series. To test our methodology under

noisy observation conditions similar to ecological systems, we added normally distributed

7

random observation error to each time series using a coefficient of variation (CV) of 0.2,

which is consistent with reported noise levels in survey data [Fra03; Per13]. The data from

one experiment, shown in Figure 2.1 as black ×’s, exemplify the typical non-equilibrium

time series behavior of the beetle system. As denoted by the vertical line in Figure 2.1, each

time series is divided into a training set (first 32 time points) and a testing set (last 9 time

points). The training set is used for either Bayesian inference or SSR and the testing set is

used to evaluate the accuracy of the considered models.

Figure 2.1 Empirically recorded population levels of adult flour beetles over a period of 82 weeks
with normally distributed random observation error added. Data to the left of the vertical bar are
used for parameter fitting while the data to the right are left for forecast validation.

2.2.2 Mathematical model

We use the previously validated discrete-time age-structured model

L (t) = b A(t −1)e −ce l L (t−1)−ce a A(t−1), (2.1)

P (t) = L (t −1)(1−µ1), (2.2)

A(t) = P (t −1)e −cp a A(t−1)+A(t −1)(1−µa), (2.3)

for flour beetle population dynamics. The total number of larvae, pupae, and adults at time

8

t , are denoted by L (t), P (t), and A(t), respectively. One unit of time is equal to 2 weeks,

which matches the time scale of the data. This model quantifies the stage progression of

beetles from the larval to pupae stage, and pupae to adult stage. Adult larvae are repro-

ductive and contribute to the recruitment rate in equation (2.1). The exponential terms

in equations (2.1) and (2.3) respectively represent cannibalization of larvae by adults or

larvae, and cannibalization of pupae by adults. A more thorough description of the model

and parameters can be found in [Con97]. For reference in the following material we note

that the parameters cp a and µa are assumed to be experimentally known; see [Con97] for

further details.

2.2.3 State space reconstruction

For non-mechanistic prediction we choose direct prediction, a state space reconstruction

technique based on Takens’ method of delayed embedding [Far87; Cas89; Sug90; Smi92;

Jim92; Sau94; Sug94; Sch98; Kug98; Yua04; Hsi05; Str06; Reg05; Sch06; Ham16]. We sum-

marize direct prediction (denoted throughout as SSR) here, and refer the reader to the

supplemental of [Sug12] for a more in depth description of the methodology.

Let the i -th state variable of the system be denoted by Yi . Assume we have N +1 ob-

servations of Yi , namely {Yi (t)}Nt=0, which we refer to as the training data of Yi . We start

by building d +1 dimensional delay-coordinate vector Y d
i (N) = [Yi (N), Yi (N −τ), Yi (N −

2τ), . . . , Yi (N −dτ)]where d is the number of delays andτ is the time delay. The general idea

of SSR is to use the K nearest neighbors, found within the training data in delay-coordinate

space, to predict Yi beyond the end of the training set. As such, SSR begins by building a

library of delay-coordinates from the training data. The nearest neighbors to the current

delay-coordinate vector Y d
i (N),

Y d
i (t

′) = [Yi (t
′), Yi (t

′−τ), Yi (t
′−2τ), . . . , Yi (t

′−dτ)]

Y d
i (t

′′) = [Yi (t
′′), Yi (t

′′−τ), Yi (t
′′−2τ), . . . , Yi (t

′′−dτ)]
...

Y d
i (t

K) = [Yi (t
K), Yi (t

K −τ), Yi (t
K −2τ), . . . , Yi (t

K −dτ)]

are found as a function of Euclidean distance, and the known Yi (t ′+P), Yi (t ′′+P), . . . , Yi (t K +

P) are used in a local model to generate prediction Ŷi (N +P).

Here, our local model is a weighted average of the nearest neighbors

9

Ŷi (N +P) =w1Yi (t
′+P) +w2Yi (t

′′+P) + . . .+wK Yi (t
K +P),

where w j is the weight of the j t h nearest neighbor defined as

w j =
e −(d j /σ)2

∑K
j=1 e −(d j /σ)2

. (2.4)

Here, d j is the distance of the j t h neighbor to Y d
i (N) andσ is a bandwidth parameter we

set asσ= 2.

Additionally, we adopt the methodology in [Ye15] for computing the variance of the SSR

prediction. The weights w j describe the probability of selecting the j th neighbor, where

we assume that the variance of the prediction is given by Var(Ŷi (N +P)) = E[(Yi (t j +P)−
Ŷi (N +P))2]. For the results presented here, in building our delay-coordinates we set τ= 1,

which corresponds to the sample rate of the observed data, and use d = 1 delays. 5 nearest

neighbors are used to build the local model for non-mechanistic prediction.

2.2.4 Bayesian inference

We performed Bayesian inference using a delayed rejection adaptive metropolis (DRAM)

algorithm implemented in MATLAB [Haa06]. Parameter values to initialize the parame-

ter chains were generated using a weighted least squares algorithm, see Section 3.2.3 of

[Ban14a], for each data set and model, i.e., full model or hybrid model, separately. We used

the following lower and upper bounds for each parameter: the initial conditions are given

by L0 ∈ [−50, 550], A0 ∈ [−50, 550], P0 ∈ [−200, 500] and the model parameters are b ∈ [−5, 30],

ce l , ce a ∈ [−0.02, 1], and µ1 ∈ [−1, 1]. These bounds were set by initially choosing an interval

+/-50% around previously estimated parameter values from [Den95] and then increasing

the size of the interval until the tails of each parameter’s posterior distribution was con-

tained completely within the interval. We used flat prior distributions defined between

the upper and lower bounds for each parameter. We set the chain length to 20,000 with a

burn-in length of 20,000. We performed uncertainty quantification, i.e., computation of

95% prediction and credible intervals by sampling from posterior distributions as described

in [Haa06; Smi14].

10

2.2.5 Hybrid methodology

Our approach for combining SSR and Bayesian techniques is split into a training and testing

phase, where the latter phase evaluates prediction accuracy. We describe the procedure

for generating the hybrid prediction model, illustrated in Figure 2.2, and note that the

procedure for generating other hybrid models is similar.

In the training phase, Bayesian inference uses a subset of the dynamical systems model

by dropping one or more of the variables. For example, a hybrid model can be constructed

for inference of parameters in the equation for the A variable by using a partial model

consisting of only equation (2.3) and substituting training data for the remaining L and

P variables as depicted in Figure 2.2. More precisely, since (2.3) contains terms involving

the variable P (t) describing the number of pupae, we simply replace this variable by the

actual number of pupae observed at time t up to the last training time point at t = 32. This

enables (2.3) to be used with Bayesian inference to estimate parameters for the A equation.

In this case the only parameter to estimate is the initial condition A0, since cp a and µa are

experimentally known. We note that SSR is not utilized for Bayesian inference during the

training phase. Instead, SSR is used to train an equation-free prediction for the L and P

variables.

In the testing phase, time series for the unmodeled variables after the training data are

forecasted using SSR predictions. Similar to the training phase, unmodeled variables are

substituted by their SSR predictions inside equations for modeled variables. For example,

once the parameter A0 is estimated for (2.3), we can generate a prediction with this param-

eterized equation by continuing to substitute the SSR prediction for P for the missing time

series P (t) beyond the training data.

Using this approach, there are a total of 7 models corresponding to subsets of the

variables for the full model {L , P, A}. For example, we may choose to use equations (2.1) and

(2.2) to model the L and P variables, and then use either training data or SSR predictions

as a substitution for the A(t) time series.

2.2.6 Hybrid uncertainty quantification

Our methodology for uncertainty quantification in hybrid models is to make a modification

to the input of the forward solution when computing prediction and credible intervals with

the DRAM algorithm [Haa06; Lai11]. We will illustrate the method on the hybrid model

using an equation for the A variable and data/SSR for the L and P variables, as illustrated

in Figure 2.2, and note that computations are similar for other hybrid model choices. We

note that, in this scenario, a posterior distribution is obtained for the parameter A0, and

11

Figure 2.2 Illustration of the hybrid technique applied to modeling the A variable in the flour bee-
tle system given by equations (2.1)-(2.3). The depicted hybrid model uses a partial model for A,
i.e., only equation (2.3), and training data for L and P to estimate parameters in the partial model.
In this case, the only parameter to estimate for (2.3) is the initial condition A(0). SSR predictions
are used to continue substituting time series for L and P after the last time point in the training
data, thereby merging nonparametric with parametric predictions.

the equation A(t) = P (t −1)e −cp a A(t−1)+A(t −1)(1−µa) is used to model the A variable. The

method for computing prediction and credible intervals for times t ≤ 32 is unchanged

from the DRAM algorithm outlined in [Haa06], since we assume that the replacement of

P (t) with training data at times t ≤ 32 are an exact model for the pupae population. At

times t ≥ 33, the trajectory of the forward solution for A is affected by the uncertainty in

the SSR prediction for P . Adopting the notation from Section 2.2.3, the SSR uncertainty is

given by the probability distribution generated by the sample space of nearest neighbors Ω,

where the trajectory of each neighbor is selected with probability w j , given by equation

(2.4). Thus, prediction and credible intervals are obtained for the hybrid model for t ≥ 33

by sampling from the joint density of the posterior distribution for A0 and the sample space

of SSR nearest neighbor trajectories.

2.2.7 Evaluation

The standardized root mean square error (SRMSE) is used to quantify prediction accuracy

for the testing data, e.g., the last 9 time points in Figure 2.1. The SRMSE quantifies the

mean of the squared error over all of the training data, and thus represents an accuracy

score at each of the 9 time points predicted, aggregated over the entire 21 time series in the

experimental data set. We note that the SRMSE normalizes the prediction score with respect

to the standard deviation of the training data. Thus, SRMSE< 1 implies that the prediction is

better than using the mean of the training data, referred to as “naive prediction”, to forecast

future time series. It is expected that, in the long-term, prediction accuracy will converge to

12

SRMSE = 1 since only short-term prediction is possible in chaotic systems.

2.3 Results

We performed parameter estimation and uncertainty quantification for the full model in

equations (2.1)-(2.3) and every hybrid model option corresponding to each subset of the

variables {L , P, A}. For clarity, we will refer to the full model, which does not use SSR, as

“LPA”. The hybrid models will be referred to as SSA, SPS, SPA, LSS, LSA, and LPS where

L, P, and A denote modeled variables and S denotes unmodeled variables replaced with

data and SSR predictions. For example, SSA corresponds to modeling the A variable with

Eq. (2.3) and using data or SSR predictions for the L and P variables. Table 2.1 indicates

the model used for predicting L , P , and A, either data/SSR or one of equations (2.1)-(2.3),

corresponding to each of the seven choices. Parameter estimates, parameter densities, and

prediction intervals for each model/dataset combination can be found in Appendix A or

downloaded in the Open Science Framework [Osf].

Table 2.1 Models used to predict the L , P , and A variables for the various hybrid choices. Either
SSR or one of equations (2.1)-(2.3) if used for each variable. LPA corresponds to the full model,
while the first six choices represent the possible hybrid models. The corresponding estimated
parameters are also indicated for each hybrid model.

Choice L P A Parameters
SSA data/SSR data/SSR Eq. (2.3) A0

SPS data/SSR Eq. (2.2) data/SSR P0,µ1

SPA data/SSR Eq. (2.2) Eq. (2.3) P0, A0,µ1

LSS Eq. (2.1) data/SSR data/SSR L0, b , ce l , ce a

LSA Eq. (2.1) data/SSR Eq. (2.3) L0, A0, b , ce l , ce a

LPS Eq. (2.1) Eq. (2.2) data/SSR L0, P0, b , ce l , ce a ,µ1

LPA Eq. (2.1) Eq. (2.2) Eq. (2.3) L0, P0, A0, b , ce l , ce a ,µ1

2.3.1 Forecast accuracy

We evaluated the forecast accuracy of the full model (LPA), each hybrid model (SSA, SPS, SPA,

LSS, LSA, LPS), and SSR-only model for each of the L , P , and A variables, which are shown in

Figure 2.3. The points in Figure 2.3 show the standardized root mean square errors (SRMSEs)

averaged across all 21 data sets. These quantify the prediction accuracy for the testing set as

13

detailed in Section 2.7. The vertical bars denote the standard errors at each point. A smaller

SRMSE is interpreted as having a better predictive ability. Just using the mean of the training

data as a constant model to forecast would yield an SMRSE equal to 1. We found that the

full model outperformed the SSR method for the L variable for up to 12 weeks of prediction

as shown in the left panel of Figure 2.3. Comparisons between the full model and the SSR

method were less clear for the P and A variables. For example, in the short term, at the first

time point of prediction, SSR outperformed the full model for the P variable, but the full

model outperformed SSR at later time points, e.g. forecast horizon at weeks 6-12 as shown

in the middle panel of Figure 2.3. We observed that the hybrid method, corresponding

to at least one of the hybrid models from the six choices, was able to outperform both

the full model and the SSR method for each of the L , P , and A variables in the first 2-3

time points of prediction and was comparable to the full model in subsequent time points

of the forecast horizon. These results are similar to previous work when combining SSR

methods with Kalman filtering techniques for parameter estimation [Ham17]. Focusing on

the comparison between the hybrid models and the SSR method, we found that hybrid

models were able to outperform SSR and stay below a mean SRMSE of 0.8 for up to 10 weeks

of prediction in the forecast horizon. These results indicate that the hybrid models are the

most accurate choice for predicting future time series as compared to the full model or SSR

alone. This is of particular interest since by replacing modeled variables with data and SSR

predictions, the hybrid approach, while being a more complicated methodology, is actually

a simpler mathematical model in the context of inverse problems. In the following sections

we perform an analysis to investigate several reasons why the hybrid method simplifies the

parameter estimation task. To the best of our knowledge, such an analysis has not been

carried out for a hybrid modeling approach.

2.3.2 Uncertainty quantification

Here we tested our proposed methodology for uncertainty quantification with hybrid

models on the flour beetle data set and model. The top of Figure 2.4 illustrates the full model

fit to experimental data for one time series; only the A variable is shown for comparison to

the hybrid model that does not use the L or P variables. This instance is representative of

a scenario in which the full model prediction is approximately equivalent to the mean of

the training data, and thus performs no better than the naive prediction. In contrast, the

bottom of Figure 2.4 shows the hybrid model for the same experimental data. In addition

to the error between the testing data interval being lower, the hybrid model model also has

narrower 95% credible intervals than the full model, indicating higher confidence in the

14

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
A

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Forecast Horizon (weeks)

SR
M

SE
L

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5
P

Hybrid Model
Full Model
SSR

Figure 2.3 Forecast errors (SRMSE) for each forecasting method for the larvae (L), pupae (P), and
adult (A) population data. Points are the mean SRMSE over 21 data sets; bars are the standard
errors. The full model corresponds to model choice LPA for each population. The hybrid models
for the larvae, pupae, and adult populations corresponds to model choices LSA, SPS, and SPA,
respectively. These specific hybrid models shown here had the smallest SRMSE values over all 21
data sets.

predicted population size at any given time point.

2.3.3 Practical identifiability analysis

The results from Bayesian inference on a model and time series data can be used to pro-

duce other outputs besides credible and prediction intervals. Two outputs in particular,

pairwise parameter plots and the fisher information matrix (FIM), provide key information

about the practical identifiability of parameters in the model, i.e., the ability to estimate

parameters with reasonably low uncertainty levels from the available data in the presence

of noise. Thereby, analysis of correlation plots and the FIM provides insight into difficulties

encountered in the parameter estimation task. We analyzed parameter correlations and

the FIM for the full model and hybrid models to test the hypothesis that hybrid models can

simplify the parameter estimation task by maximizing the level of data information content

with respect to the set of estimated parameters. For example, even though estimation for

the full model (LPA) uses 3 time series, corresponding to the L , P and A variables, and

the estimation for the hybrid SSA only uses a single time series, corresponding to the A

variable, it is not immediately obvious that the gain in the amount of data afforded by using

the full model justifies the additional number of parameters that need to be estimated.

15

Figure 2.4 Prediction with uncertainty quantification for the A variable using a hybrid model
(bottom) and full model (top). Data (black x’s) are from experiment 1 for which cp a was experi-
mentally set to zero. The vertical black line separates the training data used for parameter estima-
tion from the testing data used for evaluating forecast accuracy. The 95% credible and prediction
intervals are shown as dark and light grey, respectively. The black line represents the mean of the
credible interval (best fit).

Moreover, it is unclear how the presence of observation noise or the structure of the model

may independently or synergistically affect the balance between model dimension and the

amount of data used for parameter estimation.

In Figures 2.5 and 2.6 we illustrate the parameter correlation information that is output

from applying Bayesian inference to the full model, LPA, and one of the hybrid models,

SPA, on one of the 21 experiments in the data set. Briefly, parameter correlation informa-

tion can be seen graphically by plotting the values obtained in the Markov chain Monte

Carlo (MCMC) chain used to build the joint posterior distribution of the estimated parame-

ters. For example, if there are p parameters to be estimated, then a p -dimensional vector

(θ̂1,k , . . . , θ̂p ,k) of estimated parameters is obtained at step k in the chain. If the number of

chain iterations used to construct the posterior distribution is equal to M , then a param-

eter pair correlation plot for the i -th vs. j -th parameter is made by plotting M pairs of

points (θ̂i ,k , θ̂ j ,k) for k = 1, . . . , M . Figure 2.5 shows that correlations exist when using the

16

full model between the pairs (A0, P0), (b , P0), (b , L0), (ce l , L0), (ce l , b), (ce a , P0), (ce l , b), (µ1, L0),

(µ1, b), and (µ1, ce l). In contrast, Figure 2.6 shows that no correlations exist for the hybrid

model among the three possible parameter pairs when using SPA, i.e., data/model for the

L variable, and (2.2) and (2.3) for the P and A variables, respectively.

Figure 2.5 Pairwise parameter plots for the full model (LPA). The data from experiment 1 were
used for parameter estimation.

To investigate the presence of parameter correlations among all 21 time series and all

model choices, we computed the linear correlation coefficients (ρ) between all parameter

pairs for any given model as plotted in Figure 2.7. We found that, with the exception of

one pair (b versus ce a), on average the correlation coefficients were lower for any hybrid

model compared to the full model (LPA) and that the full model had many coefficients

17

Figure 2.6 Pairwise parameter plots for a hybrid model (SPA). The data from experiment 1 were
used for parameter estimation

close to 1. We note that correlation, such as that observed between µ1 and b , does not

necessarily indicate that parameters are nonidentifiable unless the Pearson coefficients are

close to ±1 or pairwise plots are single valued. However, the variability in pairwise plots

can be influenced by the level of observation noise, 20% in this case, and the correlation

coefficients, shown in Figure 2.7, are close to 1.

This motivates the analysis of the rank deficiency of the FIM. The FIM has been previ-

ously used in subset selection algorithms that seek to predict which subsets of parameters

are identifiable for a given model and available set of data. Importantly, these FIM based

methods take into account the sensitivity of the model output with respect to parameters

and combines this information with the effect of parameter correlations. For example,

insensitive parameters are more difficult to identify from data since a large change in the

parameter doesn’t affect the model output, and in particular, doesn’t affect how well the

model fits the data. If the number of estimated parameters is given by p , then the FIM is a

p ×p matrix, and the rank of the FIM can be used to estimate the number of parameters

that are practically identifiable [Olu13]. The FIM is equal to
∑N

i=1χ
T (ti)χ(ti), where the

matrix χ(ti) contains sensitivities of the model with respect to parameters at time point

ti in the training data. The k , j -th entry of χ(ti) is given by { ∂ yk (ti)
∂ θ j
} where yk is the k -th

observable, e.g., L , P , or A, and θ j is the j -th model parameter. We used the parameters

estimated from Bayesian inference to compute the FIM for each of the 21 time series and

model choices SSA, SPS, SPA, LSS, LSA, LPS, and LPA.

We determined the rank of the FIM by first computing the singular value decomposition

(SVD), i.e., FIM =U SV T , where S is a diagonal matrix of the singular values of the FIM

18

Figure 2.7 Correlation coefficients among all pairs of estimated parameters. Computations were
performed for each model choice where the choices are 1=SSA, 2=SPS, 3=SPA, 4=LSS, 5=LSA,
6=LPS, and 7=LPA. Coefficients were computed only for pairs of parameters that existed among
the hybrid models. Each star within each subplot represents a correlation coefficient for a single
time series, with 21 total possible time series.

listed in decreasing order, and U and V are orthogonal matrices containing left and right

singular vectors. Since S is a diagonal matrix, it can be viewed as a list {s1, ..., sp }. We used

the location in the list, if any, where the ratio sm
sm+1

> 1010 to indicate that the rank of the FIM

was equal to m . Thus, the rank deficiency is given by p −m , and the number of parameters

that are not practically identifiable increases as a function rank deficiency. We found that

the full model (LPA) had the largest average rank deficiency over all the 21 time series

compared to any of the hybrid models, shown in Figure 2.8. Among the hybrid models,

LPS had more rank deficiency than LSS and LSA, and each of choices LSS and LSA had

more rank deficiency than choices SSA, SPS, and SPA. Hybrids SSA and SPS had no rank

deficiency and SPA had only a rank deficiency of 2 for a single data set out of the 21 total

data sets that were analyzed.

19

Figure 2.8 Rank deficiency for each model choice. The full model is denoted by LPA and hybrid
models are denoted by SSA, SPS, SPA, LSS, LSA, LPS. The y-axis indicates the number of time
series (out of 21 total) that a particular choice resulted in a certain level of rank deficiency given
by the x-axis.

2.4 Summary of contributions

We introduced a hybrid methodology composed of mechanistic Bayesian inference and

non-mechanistic state space reconstruction for modeling multivariate real-world exper-

imental data. The results in this work suggest hybrid modeling can maximize predictive

accuracy by reducing the dimensionality of the inverse problem (i.e., replacing problematic

modeled variables with non-mechanistic SSR predictions). This was further corroborated

using correlation plots and rank deficiency of the Fisher information matrix to show that,

by eliminating equations with parameters that may not be practically identifiable, the

remaining parameters can be more accurately estimated with the available data. Finally, we

demonstrated how to quantify the uncertainty of the hybrid predictions in the form of 95%

prediction and credible intervals by jointly sampling from the posterior distributions of the

modeled parameters and the nearest neighbor sample space for unmodeled variables.

20

2.5 Discussion

We illustrated a hybrid methodology that may be used for minimizing the dimensionality of

parameter inference from time series data while also maximizing predictive accuracy of the

resulting parameterized model that is broadly applicable to multivariate systems. Since this

balance is often the goal when developing predictive models of biological systems for which

data are typically sparse by having either low frequency or few time points relative to the

number of estimated parameters, we hypothesize that the methodology illustrated here may

enable the application of the mechanistic modeling paradigm to a wider range of biological

scenarios for which data limitations or high dimensionality of the system inhibits accurate

parameterization. In particular, in cases where system variables are replaced by interpolated

data during parameter estimation (an example of this is the forcing function method which

has seen applications in physiological modeling [DiS13; DG00]), the SSR/Bayesian hybrid

can serve as a more advanced alternative, giving the opportunity to substitute unmodeled

variables with data while simultaneously having the ability to infer their dynamics beyond

the recorded data. An important feature of the combination of Bayesian inference with

SSR is that uncertainty quantification, i.e., the computation of 95% prediction and credible

intervals, is readily obtained by jointly sampling from the posterior distribution of the

estimated parameters and the SSR sample space defined by the nearest neighbor prediction.

In practice, the ability to ascertain uncertainty in predictions is a necessary feature for

applying the hybrid methodology to real-world scenarios. For example, it would be clearer

to make an ecological management decision based on population densities forecasted by a

hybrid model if one can also associate a level of confidence with those predictions. We note

that hybrid modeling using a Kalman filter approach instead of Bayesian inference was able

to achieve similar levels of improvement in forecast accuracy and parameter estimates over

non-parametric or parametric modeling. The main contrast between using a Kalman filter

and the Bayesian approach presented here is that a Bayesian hybrid model inference allowed

us to readily achieve uncertainty quantification for hybrid models. Additionally, results

from Bayesian inference enabled the analysis of why the hybrid modeling scheme could be

more accurate than the traditional parametric approach. Investigating how uncertainty

quantification can be ascertained under a Kalman filter hybrid modeling framework is left

to future work.

In addition to illustrating uncertainty quantification for hybrid models applied to a

real biological data set, our intent in combining Bayesian inference with SSR in this work

was to also use the results from Bayesian inference to investigate the mechanisms by

which the hybrid technique may alleviate some of the practical identifiability issues that

21

commonly arise in difficult parameter estimation problems. We analyzed the correlation

plots and found that for every pair of parameters, with the exception of b vs. ce a , the average

correlation among all 21 time series was lower for any choice of hybrid model compared

to the full model. We note that both b and ce a are parameters located in the equation for

the L variable, see (2.1), suggesting that estimating parameters for this variable may be

the source of difficulty in general for the flour beetle system. Under this hypothesis, it is

expected that hybrid models containing the L variable will have the same or increased level

of parameter correlations as the full model, since the hybrid models will use less data for

bayesian inference by removing either or both of the equations and corresponding time

series for P and A.

Our analysis of the rank deficiency of the FIM corroborates the finding that the equation

for the L variable is problematic for parameter estimation. For clarity, we show the different

model choices and the corresponding parameters contained within each of them in Figure

2.9. The equation for the L variable contains four parameters, while the P variable contains

two parameters, and the A variable only contains one parameter. The rank deficiency

histograms in Figure 2.8 indicate that the source of parameter non-identifiability stems

from the L variable. For example, the only hybrid model choice with one modeled variable

(SSA, SPS, or LSS) that has any rank deficiency is LSS, which corresponds in part to using

an equation for the L variable and data/SSR for the P and A variables. This deficiency

can be mitigated by including the equation for the A variable in the hybrid model, since

it only contains one parameter, and we see that LSA (L and A variables modeled with

equations) has lower average rank deficiency among the entire experimental data set than

LPA. We observed that the same mitigating effect is not present for LPS (L and P variables

modeled with equations). These findings are in agreement with the forecast accuracy

results in Figure 2.3; the hybrid model choices used in these plots are those with the best

forecast accuracy and these choices also have the lowest rank deficiency. Together with

our parameter correlation analysis, these results suggest that one likely mechanism by

which hybrid modeling increases forecast accuracy is by eliminating variables for which

parameters may not be practically identifiable from the available data and replacing their

inaccurate estimation with non-mechanistic model-based forecasting.

22

Figure 2.9 Venn diagram illustration of the model parameters estimated for each choice. Grey
boxes contain the model choice, where LPA corresponds the full model, and SSA, SPS, SPA, LSS,
LSA, and LPS represent the hybrid models.

23

CHAPTER

3

NEURAL NETWORKS AND SPARSE

REGRESSION

3.1 Motivation

In the previous work, we outlined a general hybrid strategy for circumventing parameter

estimation issues in mechanistic modeling by replacing problematic model equations with

data-driven techniques. However, the hybrid method (i) assumes the a priori knowledge of

the set of governing equations that describe a dynamical system and (ii) relies on the use of

state space reconstruction (SSR) for non-mechanistic modeling, which remains to be tested

in broader contexts. In the event that the mechanisms that drive the governing dynamics

are partially (or completely) unknown, one must resort to using an SSR-only model which

lacks the physical/biological interpretability that a mechanistic model can provide. Other

non-mechanistic approaches exist as alternatives to SSR. For example, machine learning

methods, such as neural networks, have successfully been used in forecasting longitudinal

data within a multi-step-ahead prediction framework [Che06; Par00]. Autoregressive models

are also commonly used in statistical forecasting from longitudinal data and have some

similarities to SSR, e.g., predictions of the future state are based on a non-mechanistic model

of the recent history [Bil13]. However, similarly to SSR, these methods do not provide the

24

interpretability and out-of-sample generalizability of well-calibrated mechanistic models.

This motivates the use of equation learning, a recent field of study that employs data-driven

techniques to discover parsimonious mechanistic models directly from observation data.

Though constantly evolving, there are two dominant approaches to equation learning in

the present moment: (i) sparse regression and (ii) theory-informed neural networks. Below,

we consider the extension of (i) using function-approximating neural networks.

3.2 Introduction

Recent research has investigated methods for discovering systems of differential equations

that describe the underlying dynamics of spatiotemporal data. There are key advantages

to learning and then using mathematical models for prediction instead of using a purely

machine learning based method, e.g., neural networks. First, if the learned mathematical

model is an accurate description of the processes governing the observed data, it has the

ability to generalize from the set of training data to data outside of the training domain.

Second, the learned mathematical model is interpretable, making it informative for sci-

entists to hypothesize the underlying physical or biological laws governing the observed

data. Examples of recent methods for inferring the underlying governing equations in-

clude the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm [Bru16a] and

the Equation Learner (EQL) neural network [Mar16; Sah18], both of which are used for

discovering systems of ordinary differential equations (ODEs), and the PDE Functional

Identification of Nonlinear Dynamics (PDE-FIND) algorithm [Rud17a], which is used to

identify PDE systems. Boninsegna et al. [Bon18] recently extended the SINDy algorithm to

recover stochastic dynamical systems. Model selection criteria (such as Akaike Information

Criteria and Bayesian Information Criteria) have been combined with the SINDy algorithm

to increase robustness to errors, although incorrect models were still selected at noise

levels we consider here [Man17]. The discovery methods mentioned above assume that the

measured data arise from a parameterized n-dimensional dynamical system of the form

ut (x , t) = F (x , t , u , ux , ux x , . . . ,θ) , x ∈ [x0, x f], t ∈ [t0, t f] (3.1a)

u (x , t0) = u0(x), x ∈ [x0, x f] (3.1b)

that describes the time evolution of some quantity of interest, u (x , t), with parameter vector

θ ∈Rk and appropriate boundary conditions.

25

Discovering a general function, F , from noisy data for u is an active area of research.

The PDE-FIND approach from [Rud17a] builds a large library of candidate terms,

Θ =
�

1 u · · · u p ux · · · u p �ux ux x · · · u p �ux x u 2
x ux �ux x u 2

x x

�

, (3.2)

whose columns represent potential terms comprising F and � represents element-wise

multiplication. Identifying F can now be re-cast as a sparse regression problem for the

following linear system

ut =Θξ (3.3)

where the unknown vector ξ is a sparse vector whose nonzero entries correspond to the

terms predicted to comprise F . In this work, we will assume that the true dynamical system,

F , is only comprised of a few simple terms (e.g., for the diffusion-advection equation,

F = D ux x − c ux , D , c ∈ R), so that a simple library with p = 2 and up to second order

derivatives is sufficient to discover F . Even in this limited setting, a practical challenge

arises because one typically does not have access to the noiseless values of u (x , t) or its

partial derivatives. Instead, one must approximate these values from noisy experimental

data. Here, our goal is to investigate the performance of existing denoising methods (to

limit the amount of noise in ut and Θ) that are used in conjunction with PDE-FIND and to

present a novel denoising methodology relying on artificial neural networks (ANNs). We

note that in this work we assume that the denoising methods considered sufficiently reduce

the noise levels in order to neglect the so-called “error-in-variables” problem, i.e., where

the covariates on the right hand side of the sparse regression equation (3.3) are inaccurately

observed or contain noise. The error-in-variables problem may lead to biased estimates in

high-dimensional sparse regression settings when the covariate noise is large [Ros10]. In

future work, we will explore the use of alternative sparse regression methods that are able

to construct unbiased estimates when there is additive noise in the observed covariates

[Dat17; Loh12; Che13].

Several methods have been used for denoising data to approximate u (x , t) and its partial

derivatives (ut , ux , ux x , etc.). The most prevalent methods that have been proposed are (i)

finite difference approximations or (ii) the use of cubic splines for interpolation followed by

partial differentiation of the fitted splines. However, both of these methods have been found

to be prone to inaccuracies in the presence of noise [Rud17a]. Recent work has considered

recovery of dynamical systems with high amounts of noise added to the time derivative

26

measurement (ut) by transforming the data into a spectral domain [Sch17]. Zhang et

al. [Zha18] recently proposed using sparse Bayesian regression, which allows for error bars

for each candidate term in the discovered equation. However, although their method was

robust, the noise in this study was also added only to the time derivative term (ut) instead

of the observed data (u (x , t)). Importantly, it has been noted that introducing noise to the

observed data itself (u (x , t)) hinders the recovery of the correct PDE, thus, developing a

method of denoising data for u (x , t) has been identified as a current challenge for learning

PDEs [Sch17]. To the best of our knowledge, the use of finite differences or utilizing splines

are the two methods that, in practice, yield the most accurate approximations for the library

terms involved in PDE learning. The primary challenge involved with using these methods

for numerical differentiation, which we further test in this work, is that they are sensitive to

noise levels and can amplify noise as the order of the derivative increases. This challenge

inhibits learning PDEs for practical biological applications where data may have large

noise levels due to many sources of error, including the data collection process, imprecise

measurement tools, and the inherent stochastic nature of biological processes [Ban14a;

Cod08]. For example, for ecological measurements of population abundance, typical data

sets can have noise levels on the order of a coefficient of variation equal to 0.2 [Fra03; Per13].

Notably, adding this biologically relevant level of noise to the observation u (x , t) has not

been considered in previous PDE learning work.

In this work, we are concerned with the performance of various denoising methods in

recovering u and its derivatives from noisy data. There is much theory on approximating

noiseless continuous functions, e.g., the Stone-Weierstrass Theorem ensures that any

compactly-supported and continuous function can be uniformly approximated arbitrarily

well with polynomial functions. Similarly, Hornik [Hor91] proved that a single hidden layer

ANN can approximate a continuous function and its derivatives arbitrarily well under

some reasonable assumptions. How such methods perform in the presence of noise is

not as well understood. Evaluating the performance of these methods in the presence of

noise is a crucial task for equation learning methods, as poor derivative estimation hinders

these methods’ ability to uncover the correct underlying equations. We thus perform a

systematic investigation in this work on the accuracy of these different denoising strategies

in (i) estimating u and its derivatives, and (ii) learning equations from these computations

in the presence of varying amounts of noise. We include finite difference and local spline

computations in this study because of their successful use in recent equation learning

work which used lower amounts of noise than is considered here [Rud17a]. We investigate

the use of ANNs as an alternative approach to these methods since they have not been

considered previously. Because ANNs must be fit to an entire set of spatiotemporal data

27

(affording a global context that may help to decrease overfitting), we also consider a global

spline method for a comparison between different global methods.

An additional, yet realistic, complication that has not been considered is the presence

of non-constant error noise in the spatiotemporal data used for PDE learning. For example,

proportional error noise can occur when the variance of the data is proportional to the

size of the measurement, e.g., population size or density [Ban11]. Non-constant error noise

may also occur when the observed processes occur on different time scales [Joh14]. In the

scenario that one has a mathematical model for the biological process generating the data,

e.g., u (x , t), the non-constant error noise can be accounted for with a statistical model used

in conjunction with the mathematical model [And74]. For example, for a set of observed

data at space points xi , i = 1, . . . , M and time points t j , j = 1, . . . , N , a general statistical

model is given by

Ui , j = u (xi , t j) +wi , j �Ei , j , (3.4)

where the noiseless observations are corrupted by noise modeled by the random variable

wi , j �Ei , j . Finite difference methods assume wi , j �Ei , j = 0 while regression methods using

splines often assume the variance of wi , j �Ei , j is constant. More generally, the error term

Ei , j may instead be generated by a probability distribution that is weighted by

wi , j =
�

β1uγ1 (xi , t j), . . . ,βn uγn (xi , t j)
�

T (3.5)

for γ ≥ 0 and β1, . . . ,βn ∈ R. Constant error noise is modeled by assuming γ = 0 and

β1, . . . ,βn = 1. Proportional error noise is modeled by assuming γ> 0,β1, . . . ,βn 6= 0 [Ban09b].

We hypothesize that the assumption of constant variance error leads finite difference and

spline approximations to yield poor estimates of the noiseless data u (x , t) and its partial

derivatives when the data contain proportional error noise. In this work, we investigate this

hypothesis and develop a methodology using ANNs as a model for u (x , t) in conjunction

with an appropriate statistical error model that accounts for the presence of proportional

error when denoising spatiotemporal data.

The denoising methods present in this work focus on spatiotemporal data for learn-

ing PDEs, however the methods we describe can be readily applied to learning ODEs. We

choose to focus our study on a specific set of diffusive PDE models, which have provided a

wealth of insight into many biological transport phenomena, including ecological migra-

28

tion and invasion [Has05], neuronal transport [Jon84], cancer progression [Bal14; Ste15;

Roc15; Rut17], and wound healing [Mai04; Nar16]. We demonstrate that an ANN can be

used with a non-constant error statistical model to accurately approximate u (x , t) from

noisy proportional error data better than finite difference and spline methods. We further

demonstrate that the PDE-FIND algorithm can more accurately infer the governing PDE

equations from data when its library of terms is constructed using an ANN-based method

than these other methods.

Figure 3.1 The two components to learning PDEs from data. The first component is to approxi-
mate u , ut , ux , ux x , etc., from noisy data. The second component uses the output from the first
component as an input for the PDE-FIND algorithm to learn a PDE. We also employ a pruning
algorithm after the PDE-FIND step, not depicted here.

3.3 Methods

The process of learning a system of equations from noisy data can be divided into two

main components: (1) the data denoising and library construction component, in which

the underlying dynamical system u (x , t) and its partial derivatives are approximated from

the noisy realizations of
�

Ui , j

	M ,N

i=1, j=1
in (3.4), and (2) the equation learning component, in

which, given approximations for u , ut , ux , ux x , etc., one employs an algorithm that can

effectively uncover the mechanistic form of F in (3.1a) (Figure 3.1). Below, we describe

the mathematical models used for data generation, the method of constructing a library

from noisy data, and equation learning. All of the denoising methods were implemented in

Python 2.7 using the Scipy package for polynomial splines and the Keras machine learning

library for ANNs. All code and accompanying animations are available athttps://github.
com/biomathlab/PDElearning/.

29

https://github.com/biomathlab/PDElearning/
https://github.com/biomathlab/PDElearning/

3.3.1 Data generation

We consider three diffusive PDE models for biological transport in this work, each of which

has been used previously to interpret biological data [Jin16b; Mai04; She90a; Sib99]. These

models include the diffusion-advection equation

ut =−c ux +D ux x , D , c ∈R (3.6)

the classical Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP) Equation

ut =D ux x + r u − r u 2, D , r ∈R (3.7)

and the nonlinear Fisher-KPP Equation

ut =D u ux x +D u 2
x + r u − r u 2, D , r ∈R (3.8)

where D is the diffusion coefficient, r is the intrinsic population growth rate, and c is the

advection rate.

Assume u (x , t) denotes the solution to one of the above mathematical models. We

generate noisy data by using Equation (3.4) with wi , j = σu (xi , t j) (i.e., β = σ and γ = 1)

in which all Ei , j terms are simulated as i.i.d. normal random variables with mean zero

and variance one. We generate six data sets for each mathematical model, settingσ= 0,

0.01, 0.05, 0.10, 0.25, and 0.50. For Equation (3.6), we use its analytical solution to compute

u (x , t). For Equations (3.7) and (3.8) we use finite difference computations to numerically

approximate u (x , t). The numerical step sizes in these computations were chosen small

enough to not introduce significant noise into the solution. We use M = 101 spatial locations

and N = 300 time points to generate data for the diffusion-advection equation and M = 199

spatial locations and N = 99 time points for the Fisher-KPP and nonlinear Fisher-KPP

Equations. As a preprocessing step, each data set is scaled to [0, 1] in order to consistently

measure errors across the various data sets and noise levels.

3.3.2 Data denoising and library construction

In data denoising, we are interested in approximating the noisy data set, {Ui , j }M ,N
i=1, j=1, with

some representation, f (x , t |θ). Computation of f depends on parameters, θ , such as knots

30

for polynomial splines or weights and biases for an ANN. This representation should match

the dominant pattern of the data, so θ is chosen by finding the values that minimize the

generalized least squares (GLS) cost function 1

J f (θ) =
1

M N

M ,N
∑

i=1, j=1

�

f (xi , t j |θ)−ui , j

| f (xi , t j |θ)|γ

�2

. (3.9)

Note that this cost function accounts for the statistical error model in (3.4) and also reduces

to the ordinary least squares (OLS) estimator when γ= 0. In the case when the statistical

error model is incorrectly specified, the resulting residuals can exhibit non-i.i.d. behavior

[Ban14a], violating our assumptions on Equation (3.4). When the appropriate error model

and cost function are not known a priori, residual computations and difference-based

methods can provide insight into how to select these [Ban16]. Some methodology for

choosing an appropriate error model is explained in Section B.1 in Appendix B. Thus,

θ̂ = arg minθ J f (θ) so that f (x , t |θ̂)≈ u (x , t). From this representation, we can then take

partial derivatives of f with respect to x and t to estimate the partial derivatives of u .

3.3.2.1 Finite differences and spline approximations

Finite differences. We use central difference formulas on interior points and forward dif-

ferences at the boundaries to obtain first order derivative approximations. For higher order

derivatives (e.g. ux x), first order finite difference rules are repeated on the corresponding

previous order derivative approximations.

Finite difference approximations can be obtained accurately, efficiently, and directly

from noiseless data, however, their accuracy quickly deteriorates in the presence of observa-

tion error. Following [Rud17a], we also employ polynomial spline regression. To thoroughly

investigate the performance of spline computations for data denoising, we will consider

three separate methods of spline computation in this work: local splines with a constant

variance (CV) error model (i.e., γ= 0), local splines with a nonconstant variance error (NCV)

model (i.e., γ= 1), and global splines with a NCV error model.

Local splines. For a given data point ui , j in the set of observations, we fit a cubic bi-spline

on a small two-dimensional neighborhood of size 11×11 centered at ui , j by minimizing

Equation (3.9). Denoised function and derivative approximations are then obtained using

evaluations and the analytic derivatives of the fitted polynomial at the center point ui , j .

See Figure 3.2 for a visual diagram of the local spline method. Note that since we only

1Note that function values f (xi , t j |θ) less than 1e-4 in absolute value are set equal to one in the denominator
| f (xi , t j |θ)|γ during all training and evaluation for practical implementation.

31

approximate derivatives up to second order, higher order splines are not considered. For

values of ui , j close to the boundary, we evaluate along the spline approximation that is

nearest to the boundary. We found that cubic bi-spline approximations were generally

more robust than the one-dimensional cubic splines used in [Rud17a], see Section B.2 in

Appendix B, and Figures B.2-B.4.

Figure 3.2 Diagram for using local splines for data denoising and partial derivative approxima-
tion. For a given data point ui , j , shown on the left in red, in the set of observations, a cubic bi-
spline, shown on the right as a red surface, is fit on a small two-dimensional neighborhood of size
11×11 centered at ui , j .

Global splines. We perform global spline approximation of {Ui , j }M ,N
i=1, j=1 by minimizing

Equation (3.9) for γ= 1 with

S (x , t) =
K ,L
∑

k=1,l=1

ck ,l Sk ,l (x , t), (3.10)

where Sk ,l (x , t) are normalized bivariate cubic bi-splines defined on the knot locations

(x , t)k ,l = {x̃k , ..., x̃k+4}× {t̃l , ..., t̃l+4} [Die81]. To implement this approximation, we estimate

a smoothness coefficient, the knot locations, and the spline coefficients by splitting the

data into training and validation sets (50%/50%). The optimal values were chosen to be

those that minimized the error (3.9) on the validation set. Details on implementation of

this procedure are provided in Section B.3 in Appendix B. Derivative estimates are obtained

analytically from the final form of S (x , t) by evaluating the analytic derivatives of each

32

Sk ,l (x , t) term.

3.3.2.2 Artificial neural network approximations

An artificial neural network (ANN), denoted h (~x |θ), was used to approximate u (x , t), with

one hidden layer of the form

h (~x |θ) = a2

�

W2

�

a1(W1 ~x + b1)
�

+ b2

�

(3.11)

where ~x = [x t]T and ai (·) represents the continuous nonlinear activation function for the

ith layer. The matrices Wi and vectors bi (typically called weights and biases) comprise

the total set of trainable parameters, θ = {W1, b1, W2, b2}, of the network. We note that the

use of one hidden layer in a neural network is a sufficient condition to make it a universal

function approximator under the assumption that the activation function is bounded and

non-constant [Hor91]. This result extends to ANNs with multiple hidden layers, however,

we found that while training multi-layer ANNs resulted in faster convergence, the derivative

approximations were worse. The task is therefore to find the optimal parameters θ ∗ such

that h (x , t |θ ∗) ≈ u (x , t). The fitted surface function h (x , t |θ ∗) and the computation of

analytic derivatives of this function are used to approximate u (x , t) in (3.4) and its partial

derivatives for library construction in the PDE learning task. See Figure 3.3 for a diagram of

the ANN method.

𝜕𝑥!𝐼 𝜕𝑥

𝑡
𝑢

𝑥

Data denoising neural network Library construction

Θ = 1 𝑢 𝑢! 𝑢" 𝑢𝑢" ⋯ 𝑢"𝑢"" ,

𝜕𝑡

𝑢#

Figure 3.3 Diagram for using ANNs for data denoising and partial derivative approximation
[Nar20]. An ANN, shown on the left, inputs x and t pairs and outputs the corresponding approx-
imations for u (x , t). Using automatic differentiation, the analytic partial derivatives of the ANN
can be used to construct a library of terms for the PDE learning task, shown on the right.

33

We found that the choice of activation function, ai (·), in the ANN plays an important role

in the accuracy of the partial derivative approximations. Typical activations like sigmoid

and hyperbolic tangent yield oscillations in higher order derivative terms (e.g., see Sup-

plementary Movie S1 available at https://github.com/biomathlab/PDElearning/).

To mitigate this, we chose to use the “softplus” activation function which takes the form

log(1+ e z). This function has many desirable properties for approximating u (x , t) (e.g.

smoothness and infinitely many derivatives) which help ensure that the ANN can approxi-

mate the true function and its partial derivatives sufficiently well [Hor91]. However, the

softplus function is unbounded, which violates an assumption of ANNs as universal approx-

imators. While the assumptions on activation functions in [Hor91] are sufficient conditions

and not necessary, one can address the unboundedness of the softplus function by in-

cluding an `2-regularization penalty on the activations ai in (3.11), but we found that no

regularization was needed for the 18 data sets considered in this paper.

It becomes necessary to include an additional squared error term in the loss function

to penalize function values outside [0, 1]. Without this term, the function values can blow

up during training sinceJh (θ)→ 1 as h (~x |θ)→+∞when γ= 1. Thus, the complete loss

function used for training the ANN is

L (θ) =
1

M N

M ,N
∑

i=1, j=1

�

h (xi , t j |θ)−ui , j

|h (xi , t j |θ)|γ

�2

+
1

M N

∑

h 6∈[0,1]

h 2 (3.12)

where the first term corresponds to the generalized least squares cost function (3.9) and

the second term corresponds to the additional squared error term to penalize function

values outside [0, 1].

We used 1,000 neurons in the hidden layer of the ANN. This choice was large enough

to have maximal capacity to fit the data, while still allowing the optimization of θ to be

computationally feasible on a desktop computer (3.4 GHz Intel Core i5 processor, 8gb

RAM) without the need for GPU processing. The network parameters θ are optimized

using the first-order gradient-based “Adam” optimizer [Kin14] with default parameters

and a batch size of 10. We note that a small batch size paired with the adaptive moment

estimation in Adam helps the ANN escape local minima during training which stabilizes

convergence across various datasets. In order to prevent overfitting, the data were randomly

split into training and validation sets (90%/10%) when training the ANN. The optimal

network parameters were chosen to be those that minimized the error (3.9) on the validation

set. We did not train the ANNs for some fixed number of epochs since (i) the parameters of

each network are randomly initialized and (ii) the networks are trained on different data

34

https://github.com/biomathlab/PDElearning/

sets which can lead to faster or slower convergence rates. Instead, early stopping of 50 (i.e.

stopping training once validation error had not decreased for 50 consecutive epochs) was

used to ensure convergence regardless of the data set or initial parameter values.

Representative examples of results from the bi-spline and ANN methods are shown

in Supplementary Movies S2 and S3, respectively. All movies for all methods and noise levels

considered in this work can be found athttps://github.com/biomathlab/PDElearning/
animations/.

3.3.3 Equation learning

We use the PDE-FIND algorithm [Rud17a] to discover the form of F in Equation (3.1a) using

computations of u , ux , ux x , and ut from the ANN, spline, and finite difference methods.

Prior to implementing PDE-FIND, the numerical approximations are scaled from [0, 1] back

into their original scales. We discuss the PDE-FIND implementation in Section 3.3.3.1 and

an additional pruning method in Section 3.3.3.2 that is used to remove extra terms from

the final learned equation. We further discuss how we analyze our results in Section 3.3.3.3.

3.3.3.1 PDE-FIND implementation

Once u (x , t) and its partial derivatives have been computed, a large library of potential

PDE terms is formed column-wise in the matrix, Θ, given by

Θ =
�

1 u · · · u p ux · · · u p �ux ux x · · · u p �ux x u 2
x ux �ux x u 2

x x

�

(3.13)

where each column of Θ is some vectorization of the written term. All spline methods and

the ANN have difficulty capturing the early dynamics of the diffusion-advection equation,

so we skip the first 20 timepoints from the denoised data when building Θ for all data sets

and denoising strategies. To reduce the computational time, only every fifth remaining

timepoint is included in Θ. Hence, while the data sets for the diffusion-advection equation

begin with N = 300 timepoints, only (300-20)/5=56 timepoints are used in constructing Θ.

We set p = 2 resulting in d = 12 columns inΘ. Each column ofΘ thus represents a candidate

term comprising F , so we assume

ut ≈Θξ, (3.14)

where ξ is a vector whose nonzero entries correspond to the true terms of F . The vector

35

https://github.com/biomathlab/PDElearning/animations/
https://github.com/biomathlab/PDElearning/animations/

ξ is estimated using methods from sparse regression [Ris15]. Sequential threshold ridge

regression was found to be a suitable method for estimating ξ for PDE-FIND in a previous

study [Rud17a]. However, we found that the Greedy algorithm performed well for the data

and models we considered in this work. The Greedy algorithm computes

ξ̂= arg min
ξ∈Rd

1

M N
‖ut −Θξ‖2

2, subject to ‖ξ‖0 ≤ k (3.15)

for some sparsity parameter, k [Zha09].

The tolerance for which we solve Equation (3.15) for a given data set is treated as a hy-

perparameter that is found by splitting the library data into separate training and validation

sets, and then optimizing over the validation set. In this training-validation procedure, we

randomly divide our data points for ut into 5-by-5 tiles of adjacent spatiotemporal points

and then randomly assign 50% of these tiles to a training data set, u train
t , and the remaining

50% to a validation set, u validate
t . We split the corresponding rows of Θ into Θtrain and Θvalidate.

We perform our hyperparameter search over 51 tolerance values, k , between 0 and 103. For

each value, we estimate ξ̂ from the training set. For each estimate, we then compute its

mean-squared error (MSE) over the validation set. We choose the hyperparameter corre-

sponding to the ξ̂ estimate with the smallest MSE on the validation data. The equation

that results from sparse regression with this hyperparameter is our final equation from the

PDE-FIND algorithm. We refer to the validation MSE from the final equation "val0" in the

remaining text.

3.3.3.2 Pruning method

We chose a 50-50 training and validation split for the data to avoid overfitting to the training

data with a large validation set. Even so, we will demonstrate in Section 3.4.2 below that

PDE-FIND is able to learn small but systematic biases from the ANN’s fit to u and its

derivatives by incorporating extra terms into the final equations. Pruning methods have

previously been developed that remove extra terms that do not significantly increase an

algorithm’s performance, see for example [And99; Mac95]. Accordingly, we implement the

following pruning method after the PDE-FIND implementation described in Section 3.3.3.1

for all methods in order to delete the extra terms from the final equation.

The pruning procedure starts with a reduced library of candidate terms, Θ̃, for the right

hand side of Equation (3.1a) that correspond to the nonzero entries of ξ̂ that resulted from

our training-validation procedure. We then perform a sensitivity test for the remaining

terms as follows. Suppose d̃ terms remain in Θ̃, and let Θ̃i , i = 1, . . . , d̃ denote the further-

36

reduced library where the i th column of Θ̃ has been removed. For each value of i , we find

the least squares solution (without regularization) on the training data to the equation

u train
t = Θ̃train

i ξi . (3.16)

We then use our ξ̂i estimate and compute the MSE over the validation data when the i th

term has been removed and call this computation vali . We then remove any candidate

terms for our library that result in vali/val0 < 1+α for some α> 0. After this pruning step,

we perform one final round of training without regularization over the fully reduced library

to find the final form of our underlying equation.

It is important to note that choice of the α pruning threshold value warrants careful

decision. If this value is chosen too high, then too few terms will be selected and the learned

equation will be incomplete. If the chosen value is too small, then the final equation will

admit extra terms arising from the systematic errors in derivative estimation. We will

demonstrate below that the arbitrary choice of α= 0.25 provides promising results for the

diffusion-advection and Fisher-KPP Equations, while α= 0.05 is suitable for the nonlinear

Fisher-KPP Equation.

3.3.3.3 Accuracy metrics

To quantitatively assess the accuracy in recovering the correct PDE that generated the

data, i.e., using the combined PDE-FIND with pruning methodology described above, we

introduce the true positive ratio (TPR) for a given vector ξ as:

TPR(ξ) =
TP

TP + FN + FP
, (3.17)

where TP ("True Positive") denotes the number of correctly-specified nonzero coefficients

in ξ, FN ("False Negative") denotes the number of coefficients in ξ that are incorrectly

specified as zero, and FP ("False Positive") denotes the number of coefficients in ξ that

are incorrectly specified as nonzero. Recall that the nonzero entries of ξ correspond to the

relevant terms in an equation (i.e., for a library ofΘ = [1 u ux ux x],ξ= [0 1 2 0]T corresponds

to the equation ut = u+2ux). For example, when trying to learn Equation (3.6), an equation

of the form ut = ux x+u ux would have TP= 1 (the nonzero coefficient for ux x is correct), FN

= 1 (the missing ux term is incorrect), FP = 1 (the nonzero u ux term is incorrect), resulting

in a final score of TPR = 1/3. Note that the TPR value is similar in nature to the Jaccard

index: larger TPR values suggest that the true equation form has been better approximated,

37

and TPR = 1 signifies that the correct equation form has been recovered.

We note that the learned equation from the PDE-FIND method with pruning was often

found to be sensitive to the random split of ut and Θ into training and validation data.

Therefore, we performed PDE learning for 1,000 different random training-validation data

splits of ut and Θ for each data set and for each computational method (finite differences,

splines, and ANN). We then consider the distribution of TPR(ξ̂) scores to assess the overall

performance of the methodology. We declare the most commonly-learned equation among

the 1,000 data splits as the final learned equation for each data set and computational

method.

3.4 Results

In this section, we detail our results using the ANN to denoise data for u (x , t) and compute

partial derivatives. In addition, we test the accuracy of using the ANN method in conjunction

with PDE-FIND to learn PDEs. Analogous results are presented for finite differences and

splines. We begin by demonstrating the accuracy of the partial derivative calculations in

Section 3.4.1, we explain why PDE-FIND finds small systematic bias terms in Section 3.4.2,

and then we detail the accuracy in learning of the diffusion-advection, Fisher-KPP, and

nonlinear Fisher-KPP equations in Sections 3.4.3-3.4.5.

3.4.1 Derivative calculations

We found that the finite difference method most accurately approximates u and its deriva-

tives for the advection-diffusion equation forσ= 0 (Table 3.1). This result is not surprising,

as finite difference computations assume that there is no error in the data. For all other

values ofσ, we observe that the ANN produces the most accurate derivative calculations,

although either the local or global NCV splines outperform the ANN at inferring u (x , t)

when the data are very noisy (σ> 0.25). It is important to note that the ANN’s derivative

calculations are often several orders of magnitude more accurate than the spline and

finite difference approximations, and this disparity between the computations appears to

increase withσ (Table 3.1). For example, atσ= 0.01, the ANN’s relative mean squared error

(RMSE) for ut is four orders of magnitude smaller than the RMSE for finite differences and

at least two orders of magnitude smaller than the RMSE for all spline methods. Atσ= 0.50,

the ANN’s RMSE for ut has become six orders of magnitude smaller than the RMSE for

finite differences and at least four orders of magnitude smaller than the RMSE for all spline

methods. The other derivative computations show similar results.

38

Similarly, we find that the ANN is most accurate for computing derivatives from noisy

data from the Fisher-KPP Equation (Table 3.2) and the nonlinear Fisher-KPP Equation

(Table 3.3). Recall that we do not have analytical solutions to these equations, so we used

finite difference computations on the noiseless data (σ= 0) as an estimate for the analytical

derivative values for the Fisher-KPP and nonlinear Fisher-KPP Equations. Again, in both

cases we observe that the finite difference calculations perform best in computing the

RMSE forσ= 0, but on average, the ANN provides the best calculations for the derivatives

for larger values ofσ. One of the local spline methods is consistently the most accurate at

inferring u from noisy data. The disparity between the RMSE derivative calculations for

the ANN as compared to the splines or finite differences again appears to increase withσ

for these two equations.

3.4.2 PDE-FIND without pruning

We found that, in general, the PDE-FIND method learns the wrong equation, even when

no noise is added to the data (Section B.4 in Appendix B, Figures B.5-B.7). Each denoising

method resulted in accurate estimates for u (x , t) and its partial derivatives in this case,

however. For example, the residuals between the ANN model and the analytical values

for u , ut , ux , and ux x were small when σ = 0 (Figure 3.4). We observed that, while small,

the ANN residuals include systematic biases comprised of regions of over- and under-

prediction. For example, all points near (x , t) = (0.6,0.4) for the ANN’s calculation for ux

appear to over-predict the true value for ux in this region (Figure 3.4). This contradicts the

assumption of independence in {εi , j }M ,N
i=1, j=1 for the statistical model in Equation (3.4). As we

will now demonstrate, these small, systematic error terms from the ANN cause PDE-FIND

to learn the incorrect equation.

We illustrate here that PDE-FIND learns the incorrect equation when training data for

ut is comprised of ut at all spatial points for the first half of the given time points and the

validation data is comprised of all spatial points for the second half of all time points. Recall

that in our actual implementation discussed below, we randomly split the training and

validation data in 5×5 bins of adjacent spatiotemportal points. Using denoised values for

u (x , t) and its partial derivatives from the ANN in the case where σ = 0 in the data, our

training-validation procedure without pruning learns an equation of the form

ut = a + b ux + c ux x +d u 2+ e u + f u 2ux + g u 2ux x , a , ..., g ∈R. (3.18)

Similarly, the learned equations using finite difference and spline computations are

39

Table 3.1 The relative mean-squared error (RMSE) between the noiseless data or true derivative
values and our denoised data or derivative computations using finite differences, local splines
with constant or nonconstant variance, global splines with nonconstant variance, and the ANN
for the diffusion-advection equation. "FD" denotes finite differences, "LCVSP" denotes local
splines with constant variance, "LNCVSP" denotes local splines with nonconstant variance,
"GNCVSP" denotes global splines with nonconstant variance, and "ANN" denotes the ANN.

σ Method U RMSE Ut RMSE Ux RMSE Ux x RMSE
0.00 FD 0.00e+00 5.39e-05 5.77e-04 3.69e-02
0.00 LCVSP 1.22e-02 1.12e+00 3.33e-02 4.86e+01
0.00 LNCVSP 8.08e-04 1.41e+02 2.83e+00 5.56e+01
0.00 GNCVSP 7.47e-03 1.76e+02 1.51e+04 2.88e+07
0.00 ANN 2.86e-04 3.96e-01 8.47e-03 3.75e-01
0.01 FD 1.02e-04 2.08e+02 4.34e-01 3.52e+01
0.01 LCVSP 1.11e-02 7.34e+00 4.93e-02 4.87e+01
0.01 LNCVSP 7.83e-04 4.39e+02 3.29e+00 5.72e+01
0.01 GNCVSP 2.63e-03 1.05e+01 1.36e+02 1.19e+05
0.01 ANN 8.40e-04 7.71e-02 1.15e-02 6.93e-01
0.05 FD 2.51e-03 2.42e+03 9.97e+00 1.01e+03
0.05 LCVSP 1.19e-02 7.47e+01 2.62e-01 5.01e+01
0.05 LNCVSP 1.10e-03 1.95e+04 3.04e+01 2.49e+02
0.05 GNCVSP 1.64e-02 2.82e+06 4.34e+04 1.50e+09
0.05 ANN 5.61e-04 1.95e-01 7.71e-03 7.90e-01
0.10 FD 1.00e-02 4.04e+03 7.59e+01 3.78e+03
0.10 LCVSP 1.04e-02 2.32e+02 1.38e+00 5.45e+01
0.10 LNCVSP 1.97e-03 1.44e+04 2.13e+01 2.77e+02
0.10 GNCVSP 1.81e-01 1.76e+02 1.59e+03 7.96e+06
0.10 ANN 9.51e-04 1.23e-01 1.44e-02 7.69e-01
0.25 FD 6.28e-02 9.04e+04 2.20e+02 3.65e+04
0.25 LCVSP 2.51e-02 6.21e+03 5.83e+00 2.42e+02
0.25 LNCVSP 6.76e-03 1.64e+05 3.98e+02 3.42e+03
0.25 GNCVSP 3.73e-01 1.31e+03 1.42e+02 1.93e+06
0.25 ANN 7.29e-03 1.53e+00 4.49e-02 7.21e-01
0.50 FD 2.41e-01 2.58e+06 1.39e+03 1.05e+05
0.50 LCVSP 3.71e-02 3.78e+04 6.68e+01 7.95e+02
0.50 LNCVSP 3.49e-02 3.86e+05 1.32e+03 7.24e+03
0.50 GNCVSP 2.08e-02 3.51e+02 2.96e+04 2.58e+10
0.50 ANN 6.34e-02 3.43e+00 1.05e-01 1.44e+00

40

Table 3.2 The relative mean-squared error (RMSE) between the noiseless data or true derivative
values and our denoised data or derivative computations using finite differences, local splines
with constant or nonconstant variance, global splines with nonconstant variance, and the ANN
for the Fisher-KPP equation. "FD" denotes finite differences, "LCVSP" denotes local splines
with constant variance, "LNCVSP" denotes local splines with nonconstant variance, "GNCVSP"
denotes global splines with nonconstant variance, and "ANN" denotes the ANN.

σ Method U RMSE Ut RMSE Ux RMSE Ux x RMSE
0.00 FD 0.00e+00 3.16e-05 4.46e-04 4.67e-03
0.00 LCVSP 6.28e-05 2.83e-04 2.83e-03 2.01e-01
0.00 LNCVSP 3.80e-06 9.43e-02 5.54e-01 5.17e-01
0.00 GNCVSP 2.56e-02 3.36e+00 6.51e+01 2.96e+03
0.00 ANN 4.86e-04 6.98e-02 1.18e-01 2.66e+00
0.01 FD 9.82e-05 4.84e+00 6.47e+01 1.19e+03
0.01 LCVSP 6.91e-05 1.89e-01 1.56e+00 2.19e+00
0.01 LNCVSP 1.00e-05 1.49e+01 6.29e+00 9.63e+00
0.01 GNCVSP 1.01e-01 7.29e+00 2.91e+02 6.24e+03
0.01 ANN 3.90e-04 3.85e-02 1.19e-02 2.55e+00
0.05 FD 2.52e-03 9.49e+01 9.43e+02 6.78e+04
0.05 LCVSP 2.20e-04 8.85e+00 5.83e+01 2.39e+02
0.05 LNCVSP 1.71e-04 6.06e+02 2.20e+03 6.22e+02
0.05 GNCVSP 8.33e-03 1.90e+01 3.96e+03 3.39e+03
0.05 ANN 4.67e-04 1.03e-02 1.63e-02 1.57e+00
0.10 FD 9.95e-03 4.05e+02 2.81e+03 2.02e+05
0.10 LCVSP 6.80e-04 1.64e+01 6.66e+01 9.35e+02
0.10 LNCVSP 6.17e-04 1.22e+03 1.73e+03 2.65e+03
0.10 GNCVSP 3.90e-02 1.13e+01 3.20e+03 5.94e+03
0.10 ANN 8.46e-04 4.26e-02 5.29e-02 1.23e+00
0.25 FD 6.30e-02 2.92e+03 3.29e+04 3.92e+05
0.25 LCVSP 4.14e-03 2.26e+02 5.65e+02 1.44e+04
0.25 LNCVSP 4.07e-03 5.17e+03 9.49e+03 2.05e+04
0.25 GNCVSP 1.81e-02 4.53e+02 1.28e+05 3.27e+03
0.25 ANN 6.41e-03 6.94e-02 1.04e-01 5.90e+00
0.50 FD 2.38e-01 9.22e+03 1.01e+05 1.04e+06
0.50 LCVSP 1.52e-02 5.44e+02 1.32e+03 3.22e+04
0.50 LNCVSP 3.29e-02 2.36e+04 2.19e+04 7.33e+04
0.50 GNCVSP 1.87e-01 2.82e+01 1.14e+03 2.33e+04
0.50 ANN 6.60e-02 5.48e-01 8.98e-01 3.52e+01

41

Table 3.3 The relative mean-squared error (RMSE) between the noiseless data or true derivative
values and our denoised data or derivative computations using finite differences, local splines
with constant or nonconstant variance, global splines with nonconstant variance, and the ANN
for the Nonlinear Fisher-KPP equation. "FD" denotes finite differences, "LCVSP" denotes local
splines with constant variance, "LNCVSP" denotes local splines with nonconstant variance,
"GNCVSP" denotes global splines with nonconstant variance, and "ANN" denotes the ANN.

σ Method U RMSE Ut RMSE Ux RMSE Ux x RMSE
0.00 FD 9.71e-36 2.21e-05 1.52e-04 1.34e-01
0.00 LCVSP 1.53e-05 4.19e-05 1.09e-03 5.71e+00
0.00 LNCVSP 2.88e-06 3.14e-02 2.12e-02 5.59e+00
0.00 GNCVSP 1.61e-02 3.91e+01 1.87e+02 1.42e+02
0.00 ANN 8.73e-04 1.41e+01 6.16e+00 1.40e+02
0.01 FD 1.02e-04 2.21e+02 9.16e+03 8.26e+02
0.01 LCVSP 2.01e-05 1.02e+01 6.20e+02 3.32e+00
0.01 LNCVSP 7.98e-06 2.99e+01 6.26e+02 1.77e+01
0.01 GNCVSP 2.95e-03 5.76e+00 1.05e+02 1.30e+03
0.01 ANN 6.87e-04 5.55e+00 6.58e+01 1.90e+02
0.05 FD 2.43e-03 5.45e+03 2.65e+05 3.35e+04
0.05 LCVSP 1.57e-04 2.74e+02 6.84e+03 6.69e+01
0.05 LNCVSP 1.35e-04 8.13e+02 6.56e+03 5.10e+02
0.05 GNCVSP 2.73e-03 6.13e+00 1.55e+02 1.26e+03
0.05 ANN 1.08e-03 8.26e+00 1.68e+00 1.70e+02
0.10 FD 1.01e-02 2.30e+04 1.16e+06 5.69e+04
0.10 LCVSP 6.20e-04 1.32e+03 1.73e+04 7.23e+01
0.10 LNCVSP 5.37e-04 1.12e+04 1.77e+04 4.97e+03
0.10 GNCVSP 8.57e-04 3.94e+03 5.23e+03 6.72e+01
0.10 ANN 1.84e-03 1.93e+01 1.10e+01 2.04e+02
0.25 FD 6.25e-02 1.47e+05 4.95e+06 9.86e+05
0.25 LCVSP 4.00e-03 5.69e+03 1.24e+05 1.54e+03
0.25 LNCVSP 3.88e-03 2.89e+04 1.39e+05 4.75e+03
0.25 GNCVSP 5.79e-03 3.15e+03 3.09e+03 8.96e+02
0.25 ANN 6.34e-03 2.58e+01 2.34e+01 2.59e+02
0.50 FD 2.43e-01 5.73e+05 1.92e+07 2.46e+06
0.50 LCVSP 1.38e-02 2.87e+04 4.16e+05 1.13e+04
0.50 LNCVSP 1.49e-02 3.94e+04 4.45e+05 3.38e+04
0.50 GNCVSP 3.57e-02 1.42e+04 1.11e+04 7.11e+02
0.50 ANN 6.89e-02 6.49e+01 1.97e+02 4.88e+02

42

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8
t

u− u0 for ANN with σ = 0

−0.020
−0.015
−0.010
−0.005
0.000
0.005
0.010
0.015
0.020

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

t

ux− ux0 for ANN with σ = 0

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

t

uxx− uxx0 for ANN with σ = 0

−6

−4

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

t

ut− ut0 for ANN with σ = 0

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure 3.4 Contours of the residual values between the ANN model (u , ux ,, etc.) and analytical
solutions (u0, ux 0, etc.) for the diffusion-advection data withσ= 0. Top left: Residuals for u , top
right: residuals for ux , bottom left: residuals for ux x , bottom right: residuals for ut .

ut = a ux + b ux x + c u 2ux , a , b , c ∈R (3.19)

and

ut = a ux + b ux x + c u 2ux +d u 2ux x + e u 2
x , a , ..., e ∈R, (3.20)

respectively.

Each of these equations are incorrect and have extra terms on the right hand side of

the learned PDE for the diffusion-advection equation. In Figure 3.5, we depict illustrative

portions of the training and validation sets comparing the analytical values of ut against

the computed values of ut and PDE-FIND’s selected equation using ANN approximations.

We found that PDE-FIND selects Equation (3.18) in place of the true diffusion-advection

43

equation because it recovers the ANN’s incorrect computations of ut in both the training

and validation data. In doing so, PDE-FIND fits the erroneous ut computations from the

ANN approximation by including extra terms in the learned PDE.

0.0 0.2 0.4 0.6 0.8 1.0
x

−75

−50

−25

0

25

50

75

u t

Training data for ut

Analytic ut

Computed ut

Θ ̂ξ

0.0 0.2 0.4 0.6 0.8 1.0
x

−20

−10

0

10

20

u t

Validation data for ut

Analytic ut

Computed ut

Θ ̂ξ

Figure 3.5 Results from the training (left) and validation (right) procedures in PDE-Find. The
Red dashed line denotes the analytical value of ut , the blue dots denote the computed ut values
from the ANN, and the black lines denotes the equation for ut that has been computed with
PDE-FIND.

3.4.3 Diffusion-advection equation

We tested whether implementing an additional pruning step with PDE-FIND could remove

the extra terms resulting from the biases discussed in Section 3.4.2. For the diffusion-

advection equation, we found that for all values of σ except σ = 0.01, PDE-FIND with

pruning achieves the highest median TPR when using ANN approximations (Figure 3.6).

The ANN’s median value is TPR = 1 (meaning that over half of the simulations yielded the

correct equation form) forσ= 0,0.05,0.10, and 0.25. The ANN resulted in a median TPR

= 0.667 atσ= 0.50. In contrast, the spline methods only achieve a median TPR = 1 at the

lower noise levelsσ= 0, 0.01, and 0.05 for the local methods, and never achieve a median

TPR = 1 for the global method. Forσ≥ 0.10, the medians for the all spline methods were

TPR≤0.5. The finite difference method resulted in a median TPR = 1 atσ= 0.01, but the

median TPR = 0 for larger values ofσ.

Table B.1 in Appendix B shows the most commonly learned PDEs for each denoising

method at each noise level. We found that the ANN method, used in conjunction with PDE-

FIND with pruning, resulted in the correct PDE forσ= 0, 0.05, 0.10, 0.25. The ANN specifies

44

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
io

PDE-FIND with pruning Results for the Diffusion-Advection Equation

FD
LCVSP
LNCVSP
GNCVSP
ANN

Figure 3.6 TPR values for the diffusion-advection equation. We calculated the TPR, see Equation
(3.17), for 1,000 different training-validation splits. These plots demonstrate the range of TPR val-
ues for each case. In each plot, the lower line in the colored box portion provides the 25% quartile
of the data and the upper line denotes the 75% quartile. The "x" on each box plot denotes the
median TPR value for that scenario. The length of the upper and lower whiskers are 1.5 times the
interquartile range of the distribution, and diamonds denote outlier points. Any plot depicted as
a solid horizontal line (e.g., the neural net computations forσ= 0) denotes that that this value is
the majority of the range of the distribution.

the incorrect equation forσ= 0.01 andσ= 0.50. However in both of these cases, the extra

terms have small parameter values (e.g. 0.001) that a scientist with an understanding of

the system under consideration may manually neglect. On the other hand, PDE-FIND

cannot discover the correct equation with finite difference or spline computations for

σ≥ 0.10. These results suggest that the ANN method enables PDE-FIND with pruning to

learn the diffusion-advection equation accurately at biologically realistic noise levels, e.g,

σ= 0.05, 0.10, and 0.25.

3.4.4 Fisher-KPP equation

We tested the PDE-FIND with pruning method in conjuction with several denoising strate-

gies using data from the Fisher-KPP Equation. We found that the ANN method had a

median TPR = 1 (meaning that the correct equation is specified for at least half of the

45

training-validation data splits) forσ= 0,0.01,0.05, and 0.10 (Figure 3.7). In contrast, the

finite difference calculations only had a median TPR = 1 at σ = 0, and the local spline

methods only have median TPR = 1 at σ = 0,0.01 while the global spline method never

achieves a median TPR = 1. The accuracy in using PDE-FIND with the spline and finite

difference methods quickly deteriorates for high noise levels. The finite difference method

resulted in a median TPR= 0 forσ≥ 0.05, and the all spline methods result in a median TPR

less than 0.667 at σ = 0.05,0.10. At σ = 0.25,0.50, the local spline methods have median

TPR = 0 while the global spline method maintains a median TPR = .667. The ANN had a

median TPR = 0.6 and 0.5 forσ= 0.25 and 0.5, respectively.

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

io

PDE-FIND with pruning Results for the Fisher-KPP Equation

FD
LCVSP
LNCVSP
GNCVSP
ANN

Figure 3.7 TPR values for the Fisher-KPP Equation. We calculated the TPR, see Equation (3.17),
for 1,000 different training-validation splits. These plots demonstrate the range of TPR values
for each case. In each plot, the lower line in the colored box portion provides the 25% quartile
of the data and the upper line denotes the 75% quartile. The "x" on each box plot denotes the
median TPR value for that scenario. The length of the upper and lower whiskers are 1.5 times the
interquartile range, and diamonds denote outlier points. Any plot depicted as a solid horizontal
line (e.g., the finite difference computations forσ= 0) denote that this value is the majority of the
distribution.

Table B.2 in Appendix B shows the most commonly chosen PDEs resulting from the PDE-

FIND with pruning method. We found that PDE-FIND with pruning is able to discover the

46

correct equation form forσ= 0, 0.01, 0.05, and 0.10 when using the ANN approximations.

While PDE-FIND is unable to specify the correct equations with ANN data for σ = 0.25

and 0.50, all of the terms in the Fisher-KPP equation were included in the learned PDEs.

In contrast, using the local spline methods for denoising resulted in only learning the

correct PDE forσ≤ 0.01. Forσ, the spline methods resulted in large errors in the derivative

approximations and did not recover the ux x terms forσ= 0.05, 0.10 and did not yield any

terms on the right hand side of the learned PDE forσ= 0.25, 0.50. The global spline method

never recovers the ux x term in its final recovered equation, but does recover the u and u 2

terms. Similarly, the finite difference method resulted in only learning the true equation

form forσ= 0. These results suggest that only the ANN method enables PDE-FIND with

pruning to learn the Fisher-KPP equation for reasonably high noise levels ofσ= 0.05, 0.10,

whereas the spline methods cannot forσ> 0.05.

3.4.5 Nonlinear Fisher-KPP equation

We found that the PDE-FIND with pruning method was not able to recover the correct PDE

from data that has been generated by the nonlinear Fisher-KPP Equation for all denoising

strategies considered. PDE-FIND could not achieve a median TPR = 1 for any of these

methods, meaning that the correct equation was never specified for over half of the training-

validation data splits (Figure 3.8). All methods have median TPR ≤ 0.8 at σ = 0. When

using ANN approximations, the PDE-FIND with pruning method has median TPR = 0.8 at

σ= 0.01 and 0.05, TPR = 0.6 atσ= 0.10 and 0.25, and TPR = 0.5 atσ= 0.50. When using

local spline computations, PDE-FIND with pruning has median TPR = 0.8 atσ= 0.01, TPR

= 0.5 at σ = 0.05,0.10, and 0.25, and TPR = 0 at σ = 0.50. When using the global spline

computation, PDE-FIND with pruning has median TPR = 0.4 atσ= 0, 0.01, 0.05, 0.25,and

0.50 and TPR = 0.5 atσ= 0.10. When using finite difference computations, PDE-FIND with

pruning has median = 0.50 atσ= 0.01 and 0.05 and TPR = 0 forσ≥ 0.10.

While all of the denoising strategies lead to incorrect equations, the ANN strategy re-

covers the most relevant terms in its final equations. Table B.3 in Appendix B shows the

most-commonly chosen PDEs resulting from the PDE-FIND with pruning method. We

found that all methods except the global splines predict the true equation with an extra

Fickian diffusion term, ux x , for σ = 0. The global splines do not recover the u ux and u 2
x

terms. When using the ANN approximations, the PDE-FIND with pruning algorithm re-

covers the true equation with added Fickian diffusion at σ = 0.05, and it recovers three

of the correct terms but excludes u ux x at σ = 0.01. For larger values of σ with the ANN

approximations, PDE-FIND with pruning recovers three correct terms, excludes the u ux x

47

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
io

PDE-FIND with pruning Results for the nonlinear Fisher-KPP Equation

FD
LCVSP
LNCVSP
GNCVSP
ANN

Figure 3.8 TPR values for the nonlinear Fisher-KPP Equation. We calculated the TPR, see Equa-
tion (3.17), for 1,000 different training-validation splits. These plots demonstrate the range of TPR
values for each case. In each plot, the lower line in the colored box portion provides the 25% quar-
tile of the data and the upper line denotes the 75% quartile. The "x" on each box plot denotes
the median TPR value for that scenario. The length of the upper and lower whiskers are 1.5 times
the interquartile range, and diamonds denote outlier points. Any plot depicted as a lone solid
horizontal line (e.g., the finite difference computations forσ = 0) denotes that that this value is
the whole range of the data.

term, and includes an extra Fickian diffusion term (as well as an additional constant term

atσ= 0.50). When using local spline computations, the PDE-FIND with pruning algorithm

recovers three correct terms, excludes the u ux x term, and adds an extra Fickian diffusion

term at σ = 0.01. For σ = 0.05− 0.25, the final equation recovers two correct terms but

excludes the u ux x and u 2
x terms. Atσ= 0.50, all terms are deleted when using local spline

computations. When using global spline computations, PDE-FIND with pruning recovers

only the reaction terms whenσ= 0.10. For all other noise levels, it replaces the nonlinear

diffusion terms with Fickian diffusion. When using finite difference computations, the

PDE-FIND with pruning algorithm correctly recovers two terms but excludes the u ux x and

u 2
x terms atσ= 0.01 and 0.05. For larger values ofσ, no correct terms are included in the

final equation form.

We investigated if the recovered terms from the PDE-FIND with pruning algorithm

using ANN approximations can be used as the specified mathematical model in an inverse

48

problem methodology (cf., [Ban09b]) to recover the final parameter estimate values from

the nonlinear Fisher-KPP Equation. If we take the union of all terms that are included in

the final equations in Table B.3 in Appendix B for the ANN method using noisy data (σ> 0),

then we have an equation of the form

ut = a ux x + b u ux x + c u 2
x +d u + e u 2+ f ; a , . . . , f ∈R. (3.21)

We estimated the parameters a , ..., f in Equation (3.21) for each value ofσ by simulating

the solution to this PDE using the method of lines and minimizing Equation (3.9) using

the Nelder-Mead algorithm. We input the equations from Table B.3 in Appendix B for the

ANN method as the initial guess for each data set. We find that performing this inverse

problem leads to accurate parameter estimates for the true terms in the nonlinear Fisher-

KPP Equation and small coefficient values for the incorrect terms (ux x and 1) for σ =

0, 0.01, 0.05, and 0.25 (Table 3.4). Atσ= 0.10 and 0.50, this inverse problem methodology

leads to small coefficient estimates for u ux x in addition to ux x and 1. Note that this same

process would not lead to ultimately recovering the true equation and parameter estimates

from the spline or finite difference approximations because their final equations never

included the correct u ux x term in the final equation for noisy data (σ> 0).

Table 3.4 Inferred parameters for the nonlinear Fisher-KPP Equation data when performing an
inverse problem on Equation (3.21).

True Equation
ut = .02u ux x + .02u 2

x +10u −10u 2

σ Revised Equation
0.00 ut = 2.3×10−12ux x + .017u ux x + .021u 2

x +10.0u −10.0u 2−1.60×10−8

0.01 ut = 1.4×10−5ux x + .021u ux x + .019u 2
x +10.0u −10.0u 2−1.38×10−8

0.05 ut = 2.5×10−4ux x + .0034u ux x + .029u 2
x +9.9u −10.0u 2−2.86×10−8

0.10 ut = 6.1×10−4ux x +8.42×10−4u ux x + .023u 2
x +9.38u −9.52u 2−2.44×10−4

0.25 ut = 7.2×10−4ux x + .015u ux x + .024u 2
x +9.8u −9.14u 2+3.53×10−7

0.50 ut = 2.1×10−3ux x −3.72×10−3u ux x + .032u 2
x +9.7u −7.5u 2+1.38×10−6

49

3.5 Summary of contributions

We introduced a novel ANN-based method for robust data denoising and partial derivative

approximation in the presence of biologically realistic forms and levels of noise. Based on

the numerical experiments in this work, the neural network derivative approximations

were up to four orders of magnitude more accurate compared to polynomial splines, a

state-of-the-art denoising method. Further, using automatic differentiation to construct

a library of candidate terms thought to comprise the unknown governing system, the

superior denoising capabilities of the ANN also translated to more accurate discovery of

the unknown PDE with noise levels up to 25%. Finally, this work also showcased significant

extensions to the PDE-FIND sparse regression algorithm involving training/validation

partitioning and pruning to identify sensitive PDE terms that constitute a strong signal in

the data.

3.6 Discussion

The novel use of the ANN method presented here is a significant step toward making PDE

learning more achievable in realistic scenarios with noisy biological data. Because an ANN

is a fully differentiable function, it can be used to approximate derivative computations to

build the library of terms needed for PDE learning. The current practice to build a library of

terms for learning PDEs when noise is present in the observed data u (x , t) is to use finite

difference or local spline approximations for small amounts of noise [Rud17a; Zha18]. Finite

difference and spline-based techniques have been reported as state-of-the-art denoising

methods for equation learning in a recent study by Rudy et al. [Rud17a]. We note that Rudy

et al. also considered several other numerical methods such as Gaussian kernel smoothing,

Tikhonov differentiation, spectral differentiation with high-frequency term thresholding

and found that the most reliable and robust method was polynomial interpolation. We

expanded on their use of local uni-variate polynomial splines by implementing local bi-

variate splines which we found to be more robust for function and derivative approximation,

and also implemented global spline approximations as a closer comparison to the per-

formance of the ANN as a global approximation method. Our findings suggest that finite

difference and spline methods are highly sensitive to the amount of noise in the data in

the range of less than 5% noise. We showed that the ANN method outperforms spline and

finite difference approximations of the partial derivatives of u (x , t), even when some spline

methods better approximated u (x , t) than the ANN, in the presence of significant levels of

non-constant error noise . It is important to note that this level of noise and nonconstant

50

variance are typical phenomena encountered in biological data [Ban11].

We compared polynomial spline approximations and ANNs as global methods to de-

noise data because there exist previous theoretical results regarding the ability of polynomi-

als and ANNs to approximate continuous functions up to arbitrary precision on compact

domains [Hor91; Sto48]. This theory is only relevant in the case of noiseless data and in

the limit of a large number of neurons or right hand side terms. In practice, neither of

these assumptions is realistic when dealing with biological data, which tends to have a

large noise-to-signal ratio, and where one is required to optimize hyperparameters (e.g.,

number of neurons, smoothness, knots) for a given data set. To the best of our knowledge,

there has not been a direct comparison between the practical performance of polynomial

splines and ANNs in approximating a continuous function and its partial derivatives from

noisy non-constant variance data. We also note that derivative estimation is often ignored

in the optimization for various methods, e.g., splines and ANNS, used to approximate a

function f (x , t |θ) for u (x , t). For example, Equation (3.9) does not consider the ability

of fx (x , t |θ) to approximate ux (x , t) or ft (x , t |θ) to approximate ut (x , t). The numerical

results presented here are the first such comparison between various local and global ap-

proximation methods in their ability to estimate both u (x , t) and its derivatives. We found

that the ANN is comparable to spline methods in approximating u (x , t) and more accurate

in approximating its spatial and temporal derivatives. The disparity between the accuracy

of ANNs and other methods in estimating derivatives sharply increased with higher noise

in the data. These results suggest the need for further theoretical investigation into the

fidelity of derivative estimation from the function approximation methods considered here

in the presence of realistic forms and levels of noise. Since a number of heuristics were

used in the development of our proposed method, this suggests that future modifications

to the network architecture may increase denoising and derivative approximation accu-

racy. We postulate that one reason for the superior performance of our proposed ANN for

derivative approximation is that the chosen activation function (i.e. softplus) is sufficiently

smooth. This satisfies conditions in [Hor91] that ensure the capability of ANNs to converge

sufficiently close to the true partial derivatives in addition to the underlying dynamical

system. Our results suggest that ANNs outperform other methods considered here in this

respect for the biological transport models we considered (Tables 3.1 - 3.3).

The importance of our denoising methodology results is underscored by the need

for accurate derivative estimates in equation learning techniques. We note that while

methods such as Bayesian inference and Kalman Filtering have been commonly used in

the mathematical modeling literature [Smi13] for denoising data, we did not compare these

approaches in this work as they require specifying a mathematical model for the data a priori.

51

In contrast, the two step procedure we performed is used to learn a mathematical model

from the data, which requires a model-free method to first denoise the data and numerically

approximate derivatives. Indeed, we found that the PDE-FIND algorithm can successfully

recover the true equations underlying u (x , t)when u (x , t) and its derivatives have been

accurately recovered. For example, the ANN outperforms all splines methods in computing

the derivatives of u for the advection-diffusion equation whenσ> 0 (See Table 3.1), and

in turn the ANN computations allow PDE-FIND to learn the correct underlying equation

form for σ = 0.05,0.10, and 0.25, whereas all finite difference and spline computations

fail in identifying the underlying equation for σ > 0.05 (See Figure 3.6). Using the ANN

estimates, we found that PDE-FIND could be used to learn the Fisher-KPP Equation for

up to 10% noise levels (σ = 0.1), whereas the other methods fail at 5% (σ = 0.05). None

of the methods we considered were able to learn the nonlinear Fisher-KPP Equation, but

the ANN computations lead to an equation that can then be used with an inverse problem

methodology [Ban09b] to infer which terms are meaningful. We found in this study that

identifying the correct underlying equation under the high levels of observation noise

we considered was a challenging problem for current state-of-the-art equation learning

methods, even under the restriction of setting p = 2 in Equation (3.2). Future work will

investigate correctly inferring models equations from much larger libraries for the current

equation learning method.

We focused on three common transport models in this work. These models are broadly

relevant across several fields in biology and have been used previously to describe the

movement and growth of a varying array of spatiotemporal processes, e.g., wound heal-

ing [Jin16b; Joh14; Mai04; She90a], cancer progression [Bal14; Rut17; Ste15], and animal

development and herd migration [Fra03; Has05; Sib99]. In future work, we aim to extend

the results of this study to more complex PDE models in biology, such as systems of PDEs

used to model several subpopulations, processes in higher spatial dimensions, and more

complex non-linearities used to describe migration.

There are several reasonable explanations for the difficulties in learning the nonlinear

Fisher-KPP Equation. Three of the terms in Equation (3.8) are the product of two terms

including u or its derivatives (u 2,u 2
x , and u ux x). In practice, these terms may be inaccurate

approximations from noisy data (as demonstrated in Table 3.3). Multiplying two inaccurate

terms may lead to an even larger amount of uncertainty associated with these estimates. We

postulate that the high level of uncertainty in these types of terms resulting from the product

of inaccurate estimates likely increases the difficulty of learning to include them in the

process of PDE learning. Furthermore, it must be noted that the data for this equation was

generated numerically by the finite difference method. Though some analytical solutions

52

to the Fisher-KPP equations are known, they come either in series form, which is beyond

the scope of this article as it would require learning an infinite number of polynomial terms

(p =∞), or in traveling wave form, which would be indistinguishable for PDE-FIND from

the advection equation [Mur02]. The finite difference methods used to approximate the

spatial derivatives in the nonlinear Fisher-KPP equation introduce second and fourth-order

error terms which lead to numerical dispersion and diffusion effects that may account for

the recovery of some unexpected terms.

We found that the use of pruning following our implementation of the PDE-FIND

algorithm increased our ability to recover the correct equation in terms of the TPR. It may

be argued that these additional terms learned from the PDE-FIND implementation without

pruning would be removed from the final equation if more regularization (i.e., a larger

value of k in implementation of the Greedy algorithm) were used. However, when faced

with the issue of learning the governing equation from actual data in practice, one will not

have the ability to know when the specified equation is correct or not. We thus need to

identify the correct hyperparameters without any a priori knowledge. We observed that

the systematic biases in our ANN (depicted in Figure 3.4) make it difficult to choose a

hyperparameter value that leads to the correct equation because these biases are present

in the training and validation data. The pruning algorithm is a way to correct for when the

incorrect hyperparameter has been chosen by ensuring that all terms in the learned PDE

are sufficiently sensitive to constitute a strong signal in the data, instead of resulting from a

bias in our approximation methods.

Our use of pruning to remove terms from learned PDEs could be improved in future

work. While effective, our implementation is somewhat crude, in which we pre-specify a

threshold level to prune parameters based on out-of-sample MSE values on the validation

data set. Previous studies have discussed F-statistics as one way to infer the increase in

variance that pruning a variable will lead to, but there are still many different interpretations

of these results which makes a definitive statistical pruning method challenging to ascertain

[Bur95].

53

CHAPTER

4

BIOLOGICALLY-INFORMED NEURAL

NETWORKS

4.1 Motivation

In the previous work, we outlined a general strategy for utilizing artificial neural networks

(ANNs) for the denoising and partial derivative approximation of data in the presence of

biologically realistic forms and levels of noise. Automatic differentiation is used on the

network outputs to construct a library of candidate terms thought to comprise the unknown

governing PDE that describes the time evolution of the dynamical system. By (i) using the

library of candidate terms from the ANN method and (ii) extending PDE-FIND, a sparse

regression algorithm, with training/validation data partitioning and a pruning algorithm

that automatically removes unnecessary candidate terms, we developed a methodology

that significantly exceeds state-of-the-art methods in their ability to both denoise and

learn equations from data. However, our method (and the sparse regression approach

in general) assumes that the governing system of equations can be written as a linear

combination of nonlinear candidate terms. In the event that the true system contains terms

that can not be represented this way, e.g., if a true term contains exponents that also must be

estimated, then this method will ultimately fail to capture the true dynamics. Further, ANNs

54

are severely prone to overfitting, and can require complex regularization strategies based

on domain expertise (if applicable) or heuristics. Other approaches exist as alternatives,

e.g., physics-informed neural networks [Rai19], however, these methods require the a priori

specification of the governing system of ODEs/PDEs, which significantly limits their use for

equation learning. Below, we take insights from this work together with physics-informed

neural networks to produce a robust end-to-end neural-network-based equation learning

methodology, nicknamed biologically-informed neural networks, that can be applied on

a wide spectrum of physical and biological problems (for both ODE and PDE systems) in

which the available data are noisy and sparse and the governing dynamics are unknown

and highly nonlinear.

4.2 Introduction

Collective migration refers to the coordinated migration of a group of individuals [Fri09;

Vic95]. This process arises in a variety of biological and social contexts, including pedestrian

dynamics [Hel95], tumor progression [Gal13], and animal development [McL15]. In the

presence of many individuals, differential equation models provide a flexible framework

to investigate collective behavior as a continuum [Arc11; Dys15; Joh12; Nar16; Top12]. A

challenge for mathematicians and scientists is to use mathematical models together with

spatiotemporal data of collective migration to validate assumptions about the underlying

physical and biological laws that govern the observed dynamics. Several factors contribute

to the difficulty of this task, even for simple systems/data, some of which include biological

forms and levels of noise in the observation process, poor understanding of the underlying

dynamics, a large number of candidate mathematical models, implementation of compu-

tationally expensive numerical solvers, etc. This work provides a data-driven tool which

can alleviate many of these problems by enabling the rapid development and validation of

mathematical models from sparse noisy data. The methodology is demonstrated using a

case study of scratch assay experiments.

Scratch assays are a widely adopted experiment in cellular biology used to study col-

lective cell migration in vitro as cell populations re-colonize empty spatial regions. These

experiments have been used previously to observe population-wide behavior in many

different contexts, including wound healing [Aok17; Cha14; Mat04; Nik06] and cancer pro-

gression [Har17]. Mathematical modeling of scratch assays plays an important role in the

quantification and analysis of population dynamics. This is because (i) the equations and

parameters comprising mathematical models are interpretable, providing information

about the underlying physical and biological mechanics that drive the observed system,

55

and (ii) when properly calibrated, they are generalizable, affording the ability to make

accurate predictions beyond the data set used for calibration.

Reaction-diffusion partial differential equations (PDEs) are frequently used to model

scratch assay experiments [Jin16a; Arc11; Nar16; Joh15; Mai04]. The general one-dimensional

reaction-diffusion equation that describes the rate of change of a quantity of interest u (x , t)

(e.g. cell density) is

ut = (Dux)x +Gu , x ∈ [x0, x f], t ∈ [t0, t f], (4.1)

in which the rate of change of u (i.e. ut) is a function of diffusion, modeled by the function

D, and reaction or growth, modeled by the function G . Note that D and G depend on

the application, and choosing the correct/optimal mechanistic models for these terms is

the focus of many current research efforts and remains an open question. The classical

Fisher–Kolmogorov–Petrovsky–Piskunov (FKPP) equation is a reaction-diffusion equation

that has been used to model a wide spectrum of growth and transport of biological processes.

In particular, the FKPP model assumes a scalar diffusivity functionD =D and logistic growth

functionG = r (1−u/K)with intrinsic growth rate r and carrying capacity K [Bal14; Mai04].

Variants of the reaction-diffusion equation have also been used to account for different types

of cell interactions during scratch assay experiments. For example, the nonlinear diffusivity

functionD = 1−α4/3+3α (u/K − 2/3)2 with cell-to-cell adhesion coefficient αwas used to

model dynamics in which neighboring cells prevent other cells from migrating [Ang09].

Alternatively, a diffusivity function of the formD =D (1+α(u/K)2) can be used to model

dynamics in which cells promote the migration of others [Nar16]. Additional variants of

reaction-diffusion equation models have captured cell migration in the presence of growth

factors [Dal95], during melanoma progression [Har17], and in response to different drug

treatments [Joh15].

A recent study quantitatively investigated the role of initial cell density by conducting a

suite of scratch assay experiments on PC-3 prostate cancer cells with systematically varying

initial cell densities [Jin16a]. The experimental data was used to calibrate the FKPP equation

as well as a variant model known as the Generalized Porous-FKPP equation, which assumes

that diffusivity increases with cell density u by using a diffusivity functionD =D (u/K)m

with diffusion coefficient D , carrying capacity K , and exponent m . Like the FKPP equation,

the growth term is also described by the logistic growth function G = r (1− u/K). While

the calibrated models approximated the experimental data well in many cases in [Jin16a],

the presence of systematic biases between the model solutions and experimental data

indicate the existence of additional governing mechanisms that may not be accounted

56

for in these mathematical models. However, the existence of a large number of possible

biophysical mechanisms that could play a role in scratch assay dynamics makes the testing

of mathematical models against these experimental data computationally challenging.

Thereby, this scenario motivates the use of equation learning methods to discover the

diffusion and reaction terms directly from the experimental data.

Enabled by advances in computing power, algorithms, and the amount of available data,

the field of equation learning has recently emerged as a powerful tool for the automated

identification of underlying physical laws governing a set of observation data. The basic

assumption in this field is that measured data arise from some unknown n-dimensional

dynamical system of the form

ut =F (x , t , u , ux , ux x , . . . ;θ), x ∈ [x0, x f], t ∈ [t0, t f], (4.2)

with quantity of interest u = u (x , t), parameter vector θ ∈Rk , and appropriate initial and

boundary conditions. An example quantity of interest for modeling cell migration dynamics

is the cell density (cells/mm2) at location x and time t . The measured data {ui , j }M ,N
i , j=1 for a set

of spatial points xi , i = 1, . . . , M , and set of time points t j , j = 1, . . . , N , are assumed to be

corrupted by some form of observation error that may be known or unknown in practice.

The goal of equation learning methods is to identify the closed form ofF in Equation (4.2)

directly from the noisy measurements ui , j . Note that, in order to simulate the learned

equation, either the noisy or a denoised version of the initial condition can be used along

with an assumed boundary condition (e.g. no-flux) that describes the biological process

generating the data.

Two primary sets of methodology have been used in field of equation learning to date:

sparse regression [Bru16b; Rud17b] and theory-informed neural networks [Rai19; Yan20]. In

the sparse regression framework, numerical methods (e.g. finite differences or polynomial

splines) are used to denoise u and approximate the partial derivatives ut , ux , ux x , etc. from

a set of data. The approximations are then used to construct a library of nonlinear candi-

date terms (e.g. 1, u , u 2, ux , . . . , u 2
x u 2

x x , etc.) thought to comprise the governing system of

ordinary differential equations (ODEs) or PDEs. The data relating ut to all possible model

terms inside the library are formulated as a linear regression problem in which sparsity

promoting techniques are used to select a small subset of library terms that produce the

most parsimonious model. While the sparse regression framework has been successfully

demonstrated to circumvent searching through a combinatorially large space of possible

candidate models, it can require large amounts of training data and the numerical methods

used for denoising and differentiation are not robust to biologically realistic forms and

57

levels of noise, leading to inaccuracies in both the constructed library and learned equa-

tions [Lag20d]. Further, the method assumes the unknown functionF in Equation (4.2)

can be written as a linear combination of nonlinear candidate terms, which may not be

true in practice.

An alternative approach uses function-approximating deep neural networks, i.e., multi-

layer perceptrons (MLPs), as surrogate models, uMLP(x , t), for the solution of the governing

dynamical system [Rai19; Yan20]. In this approach, the assumed mechanistic form ofF
in Equation (4.2) is pre-specified and then used as a form of regularization in the neural

network objective function. The parameters ofF are allowed to be “learnable,” meaning

that the parameters of the governing PDE are calibrated while the neural network is trained

to minimize the error between uMLP(xi , t j) and the data, ui , j . This methodology ensures that

the neural network solution satisfies the physical laws described byF while simultaneously

fitting the spatiotemporal data. Theory-informed neural networks have been demonstrated

with smaller amounts of data in the presence of noise, however, they have so far only been

applied to problems where the governing mechanistic PDE is known a priori.

Hybrid approaches that combine neural networks and sparse regression have also been

suggested to address some of the issues surrounding the above methods [Lag20d; Bot19].

In these approaches, neural networks are used as surrogate models for u (x , t) and then

used to construct the library of candidate terms for sparse regression using automatic

differentiation. These methods have been shown to accurately learn the governing system

of equations for a variety of reaction-diffusion models from spatiotemporal data with

biologically realistic levels of noise [Lag20d].

All three approaches (i.e. sparse regression, theory-informed neural networks, and

hybrids) however, suffer from the model specification problem, in which the governing

ODE/PDE model must be specified a priori either explicitly or as a library of candidate

terms. Thus, (i) if the true dynamical system contains terms that are not included in the

regularization term for theory-informed neural networks, or (ii) if the true terms cannot be

represented as a linear combination of nonlinear candidate terms for sparse regression, then

these methods will ultimately fail to recover the true system. Further, detecting this issue

when determining what the “true” system is in real-use cases is an open question. Where

systems with scalar or linear dynamics may be suitable for these approaches, biological

systems pose a particular challenge in this respect, since many of the underlying mechanics

driving these systems are nonlinear. For example, the Generalized Porous-FKPP model

contains a nonlinear diffusivity functionD =D (u/K)m) with unknown exponent m . These

issues help explain why, to the best of our knowledge, equation learning methods have not

yet been successfully applied to real-world biological population-level data.

58

In this work, biologically-informed neural networks (BINNs), an extension of physics-

informed neural networks (PINNs) [Rai19], are presented as a solution to the library specifi-

cation problem for systems with biological/physical constraints. In this framework, the

right-hand-side functionF of the PDE in Equation (4.2) is assumed to be a combination of

biologically relevant terms. For example, the general form of reaction-diffusion models can

be described by the two right-hand-side terms in Equation (4.1) meaning that the equation

learning problem is transformed from learningF to learning the diffusivity and growth

functionsD and G . Rather than assigning mechanistic forms to each function as in previ-

ous equation learning studies, each function is replaced with a separate neural network.

This approach leverages the ability of deep neural networks to approximate continuous

functions arbitrarily well [Hor91]. Importantly, the form of each learned neural network

function can be visualized, thereby enabling a data-driven tool for user-guided conjec-

ture of new mathematical equations that describe each separate term in F . Moreover,

formulating the equation learning task within the BINNs framework enables the modeler

to use domain expertise to include qualitative constraints on the parameter networks (e.g.

specifying nonlinear functions that are non-negative, monotone increasing/decreasing,

etc.) by selecting appropriate activation functions and loss terms for the optimization.

While BINNs can be used to discover a wide range of governing equations across the

biological and physical sciences, including systems of ODEs and PDEs, in this work they

are demonstrated using reaction-diffusion PDEs. The BINNs methodology is first tested

using synthetic data and then demonstrated on experimental data from scratch assay

experiments with variable initial cell densities [Jin16a]. Notably, each data set is noisy and

sparse, containing only five time measurements across 38 spatial locations. BINNs are

used to discover the nonlinear forms of the diffusivity function and growth term of the

governing reaction-diffusion equation. Persistent model discrepancy is used to motivate

the incorporation of a novel delay term which may have important implications for the

reproducibility and modeling of scratch assays. The learned nonlinear forms of the diffusion,

growth, and delay terms are used to guide the selection of a mechanistic model with

biologically interpretable parameters that remove virtually all of the model discrepancy.

4.2.1 Scratch assay data

Biologically-informed neural networks (BINNs) are evaluated on experimental scratch

assay data from [Jin16a]. A typical scratch assay involves (i) growing a cell monolayer up to

some desired initial cell density, (ii) creating a “scratch” in the interior of the monolayer to

produce an empty region, and (iii) recording longitudinal measurements of the cell density

59

during re-colonization of the area. One-dimensional cell density profiles are obtained

by manually counting the cells within vertical columns of the two-dimensional image

data. See Figure C.1 in Appendix C for a visualization of the experiment. For these data,

the cell density profiles were reported for six varying initial cell density levels (i.e. 10,000,

12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). To make the cell density profiles

compatible with neural network training, the data are pre-processed by rescaling the x and

t variables to the scales of millimeters (mm) and days, respectively (see Methods Section

for more details). Further, the cell density profile at the left boundary is removed from the

data because it was identified as an outlier across each of the six data sets. The resulting

pre-processed cell densities at 37 spatial points and five time points are shown in Figure 4.1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 10,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000
Initial cell density: 12,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000
Initial cell density: 16,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 18,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000
Initial cell density: 20,000 cells per well

Figure 4.1 Experimental scratch assay data. Pre-processed cell density profiles from scratch
assay experiments with varying initial cell densities [Jin16a]. Each subplot corresponds to an
experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and
20,000 cells per well). The cell densities are reported at 37 equally-spaced positions and five
equally-spaced time points.

4.2.2 Biologically-informed neural networks

BINNs are centered around a function-approximating deep neural network, or MLP, de-

noted by uMLP(x , t)which acts as a surrogate model that approximates the solution to the

60

governing equation described by Equation (4.2) (Figure 4.2A). In this work, the governing

PDE is assumed to contain two terms,D andG , that describe the general reaction-diffusion

model in Equation (4.1). Since the true forms of the diffusivity and growth functions are

unknown, they are approximated by neural networks D =DMLP(u) and G =GMLP(u) (Fig-

ure 4.2B). Both DMLP and GMLP are continuously differentiable functions that input the

predicted cell density uMLP(x , t) and output the corresponding diffusivity or growth value.

The advantage of using MLPs for the terms of the governing PDE is that the nonlinear forms

of these terms can be learned without specifying them explicitly (or as a library of candidate

terms), thus circumventing the model specification problem. Automatic differentiation

(Figure 4.2C) is used to numerically differentiate compositions of uMLP, DMLP, and GMLP in

order to construct the general reaction-diffusion model in Equation (4.1). The resulting

PDE (Figure 4.2D) is used to regularize uMLP during training so that uMLP not only fits the

data ui , j but also satisfies the governing reaction-diffusion system.

𝜕𝑢
𝜕𝑡 =

𝜕
𝜕𝑥 𝐷 '

𝜕𝑢
𝜕𝑥 + 𝐺 ' 𝑢

	𝑥

	𝑡
𝑢+𝑢+	𝑢

	𝐷

	𝐺

Biologically-informed neural network Parameter networks

		𝐼

		𝜕𝑥

		𝜕𝑡

		𝜕𝑥

Auto. differentiation Governing dynamical systemA B C D

Figure 4.2 Biologically-informed neural networks for reaction-diffusion models. (A) BINNs are
deep neural networks that approximate the solution of a governing dynamical system. (B) By
allowing the terms of the dynamical system (e.g. diffusivity functionD and growth function G)
to be function-approximating deep neural networks, the nonlinear forms of these terms can
be learned without the need to specify a mechanistic model or library of candidate terms. (C)
Automatic differentiation is used on compositions of the different neural network models (e.g. u ,
D , and G) to construct the PDE that describes governing dynamical system. (D) The governing
system is used in the neural network objective function to jointly learn and satisfy the governing
PDE while minimizing the error between the network outputs and noisy observations.

To ensure that the fit to the data and the fidelity to the governing PDE are simultaneously

optimized, the BINNs are trained with gradient-based methods using the following multi-

part objective function:

LTotal =LGLS+LPDE+LConstr. (4.3)

61

The first term,LGLS, concerns the generalized least squares (GLS) distance between uMLP(xi , t j)

and the corresponding observed data, ui , j . The observation process is assumed to be de-

scribed by a statistical error model of the form

ui , j = u (xi , t j) +wi , j � εi , j , (4.4)

in which the measured data ui , j are a combination of the underlying dynamical system

u (xi , t j) and some random variable wi , j � εi , j where � represents element-wise multipli-

cation [Ban14b]. In general, the independent and identically distributed (i.i.d.) random

variable εi , j is modeled by an n-dimensional normal distribution with mean zero and

variance one that is weighted by

wi , j =
�

ω1uγ1 (xi , t j) . . . ωn uγn (xi , t j)
�

T, (4.5)

for γ≥ 0 andω1, . . . ,ωn ∈Rwhere n is the dimensionality of the system. Note that (i) noise-

less data are modeled by lettingω1, . . . ,ωn = 0, (ii) constant-variance error used in ordinary

least squares is modeled by letting γ = 0,ω1, . . . ,ωn = 1, and (iii) non-constant-variance

error (e.g. proportional error) used in generalized least squares is modeled by letting γ > 0,

ω1, . . . ,ωn 6= 0. Therefore, to account for the statistical error model in Equation (4.4), the

GLS objective function

LGLS =
1

M N

M ,N
∑

i=1, j=1

�

uMLP(xi , t j)−ui , j
�

�uMLP(xi , t j)
�

�

γ

�2

, (4.6)

is used with proportionality constant γ= 0.2. Note that γwas tuned numerically following

the methodology suggested in [Lag20d] (see Methods Section for more details).

The next termLPDE ensures uMLP satisfies the solution of the governing PDE. For ease of

notation, let ûi , j ≡ uMLP(xi , t j), D̂i , j ≡DMLP(uMLP(xi , t j)), and Ĝi , j ≡GMLP(uMLP(xi , t j)). Then

for the reaction-diffusion equation, the error term takes the following form:

LPDE =
1

M N

M ,N
∑

i=1, j=1

�

∂ ûi , j

∂ t
︸ ︷︷ ︸

LHS

−
�

∂

∂ x

�

D̂i , j

∂ ûi , j

∂ x

�

+ Ĝi , j ûi , j

�

︸ ︷︷ ︸

RHS

�2

, (4.7)

where LHS and RHS denote the left-hand- and right-hand-sides of the governing PDE,

respectively. Thus, by drivingLPDE to zero, the RHS is trained to match the LHS. Through

this process, the nonlinear forms of DMLP and GMLP are learned despite not being directly

observed. See the Methods Section for additional implementation details, including a

62

random sampling procedure that enforces this PDE constraint everywhere in the input

domain during training.

Biological information and domain expertise are incorporated into the BINNs frame-

work by adding penalties in the loss termLConstr. For the reaction-diffusion equation, the

diffusivity and growth rates are assumed to be within biologically feasible ranges [Dmin, Dmax]

and [Gmin,Gmax], respectively. Further, diffusion is also assumed to be non-decreasing and

growth to be non-increasing with respect to cell density. The corresponding constraints

take the form:

LConstr =
1

M N

� M ,N
∑

i=1, j=1
D̂<Dmin

D̂>Dmax

�

D̂i , j

�2
+

M ,N
∑

i=1, j=1
∂ D̂ /∂ û<0

�

∂ D̂i , j

∂ ûi , j

�2

(4.8)

+
M ,N
∑

i=1, j=1
Ĝ<Gmin

Ĝ>Gmax

�

Ĝi , j

�2
+

M ,N
∑

i=1, j=1
∂ Ĝ /∂ û>0

�

∂ Ĝi , j

∂ ûi , j

�2 �

.

The maximum and minimum diffusivity and growth rates considered in [Jin16a] were used

to force DMLP and GMLP to stay within biologically realistic ranges. The constraints on DMLP

and GMLP shown in Equation (4.8) were used for all computational results in this work. See

the Methods Section for biological motivations and numerical implementation details of

these constraints.

4.2.3 Evaluation procedure

Because the model prediction, uM LP (x , t), is only a surrogate model for the dynamical

system, u (x , t), it is possible that this approximation may contain errors, particularly in

areas where the PDE constraint given by Equation (4.7) is not satisfied. To ensure that the

inferred diffusion and growth terms lead to biologically realistic dynamics, the reaction-

diffusion equation given by Equation (4.1) is solved numerically with a method-of-lines

approach usingD =DMLP and G =GMLP. Note that this model is well-defined because DMLP

and GMLP are continuously differentiable functions of the cell density, u . Further, BINNs

are retrained multiple times for each data set in which the forward simulation using the

learned PDE terms that yields the smallest GLS error (Equation (4.6)) is saved. All fits to

the data shown in the Results Section are numerical solutions to the PDE in Equation (4.1)

using the learned diffusivity and growth functions. See the Methods Section for numerical

implementation details of the PDE forward solver.

63

4.3 Methods

All methods herein were implemented in Python 3.6.8 using the PyTorch 1.2.0 deep learning

library. All data and code are made publicly available at https://github.com/jlager/
binns. The following section is intended to make BINNs feasible for a wide range of biolog-

ical applications. In particular, this section covers (i) the importance of data pre-processing,

(ii) strategies for using real-world knowledge to design effective neural network models, (iii)

the complete training protocol ranging from selecting appropriate statistical error models

and hyperparameters to balancing the multi-objective error function, and (iv) numerical

implementation details for forward solving BINNs-guided PDEs.

4.3.1 Data pre-processing

Input and output standardization are common practice to stabilize neural network train-

ing [The09]. Since the scratch assay data in [Jin16a] reported cell densities on the order

of u = O (10−3) cells/µm2 at spatial locations on the order of x = O (103) µm for time points

on the order of t =O (10) hours, these variables needed to be standardized. Without stan-

dardization, the neural network models failed to converge for these data because (i) the

network inputs (x and t) differed by several orders of magnitude from each other and (ii) the

network inputs (x and t) and outputs (u) also differed by several orders of magnitude. By

rescaling x and t to millimeters (mm) and days, respectively, the adjusted variables ranged

from x =O (1)mm, t =O (1) days, and cell density u =O (103) cells/mm2. Standardizing x and

t addressed (i) while (ii) is addressed by using scaling factors discussed in the following

section. The cell density profile at the left boundary was removed since it was consistently

larger than the remaining cell densities across all six data sets.

4.3.2 Network design

BINNs are centered around uMLP, a function-approximating multilayer perceptron (MLP)

(also known as an artificial neural network). MLPs, like polynomials [Sto48], are in the class

of universal function approximators, meaning that they can approximate any continuous

bounded functions on a closed interval arbitrarily well under some reasonable assump-

tions [Hor91]. For the scratch assay data in the present work, uMLP inputs spatiotemporal

vectors x=
�

x , t
�

and outputs the corresponding approximations to the cell density u . To

give uMLP sufficient capacity to approximate the solution to the governing PDE, the network

is chosen to have three hidden layers with 128 neurons in each layer, resulting in a model

64

https://github.com/jlager/binns
https://github.com/jlager/binns

with approximately 30,000 total parameters. Concretely, uMLP takes the form

uMLP(x) =α ·φ
�

σ
�

σ
�

σ(xW1+ b1)W2+ b2

�

W3+ b3

�

W4+ b4

�

, (4.9)

where the trainable parameters Wi and bi denote weight matrices and bias vectors for

the i th layer,σ(·) andφ(·) denote nonlinear activation functions, and α denotes a scaling

factor. Each hidden layer uses a “sigmoid” activation function (i.e.σ(x) = 1/(1+ e −x)) while

the output layer uses a “softplus” activation function (i.e.φ(x) = ln(1+ e x)). The softplus

activation function is a particular design choice since it is a continuously differentiable

function that forces the predicted cell densities to be non-negative, and has been previously

shown to be well-suited for biological transport models [Lag20d]. Finally, to account for

the difference in scale between the inputs (x , t = O (1)) and outputs (u = O (103)), the

MLP outputs are post-multiplied by the experimentally validated carrying capacity (i.e.

α= 1.7×103) from [Jin16a]. Note that in practice, if values like this are unknown, one can

simply let α be the maximum observed cell density or some other similar quantity. The

key here is to ensure the orders of magnitude between the network inputs and outputs

are similar so that the parameters of the MLP do not have to account for the change of

scale [The09].

The terms of the governing PDE are modeled with neural networks DMLP(uMLP), GMLP(uMLP),

etc. All of these MLPs share the same number of layers as uMLP but use 32 neurons per layer.

These networks are chosen to be smaller for both computational efficiency and because

the parameter dynamics are assumed to be simpler than the cell density dynamics u . The

hidden layers use sigmoid activation functions. The output layer for DMLP uses a softplus

activation because diffusion is assumed to be non-negative for all cell densities. Since

the growth term can be negative (e.g. logistic growth when the cell density exceeds the

carrying capacity), a linear output (i.e. no activation function) is used in the final layer

for GMLP. A discovered third term (see the Results Section) of the governing PDE, denoted

TMLP, uses the sigmoid activation function for the output layer to constrain its outputs to

(0, 1). Finally, as with uMLP, the inputs and outputs of DMLP and GMLP are also standardized.

In particular, the inputs of both networks (i.e. uMLP) are divided by the carrying capacity

K = 1.7× 103 while the outputs of DMLP are multiplied by 0.096 mm2/day and the outputs

of GMLP are multiplied by 2.4 1/day. These values were the maximum diffusion and growth

values considered in [Jin16a]. Similar to uMLP, the input and output scaling factors ensure

the MLP parameters do not have to account for changes in scale. No standardization was

used for TMLP since it is a function of t , meaning its inputs and outputs of the same order

(i.e. O (1)).

65

4.3.3 Training procedure

The BINN parameters (i.e. weights and biases of uMLP, DMLP, GMLP, and TMLP) are optimized

using the first-order gradient-based Adam optimizer [Kin17]with default hyper-parameters

and minibatch-optimization. To prevent over-fitting, the scratch assay data were randomly

partitioned into 80%/20% training and validation sets. The network parameters were up-

dated iteratively to minimizeLTotal in Equation (4.3) on the training set and saved on relative

improvement in validation error. In other words, the model parameters were saved if the rel-

ative difference between (i) the validation error in the current iteration and (ii) the smallest

recorded validation error exceeded 5%. Finally, since the parameters of each BINN are ran-

domly initialized and applied to different data sets, early stopping of 5,000 (i.e. training was

stopped if the relative validation error did improve for 5,000 consecutive epochs) was used

to guarantee the convergence of each BINN independently. The implementation details of

each term inLTotal (i.e.LGLS,LPDE, andLConstr) are discussed in more detail below.

The first term,LGLS, in Equation (4.6) corresponds to the generalized least squares (GLS)

distance between uMLP and the observation data ui , j . Since the error process is assumed

to be i.i.d., the parameters of the statistical model in Equation (4.4) (i.e. γ) must first be

calibrated. Following [Lag20d], uMLP is trained usingLGLS as an objective function for γ=

0.0, 0.2, 0.4, 0.6 (recall thatγ= 0.0 represents the ordinary least squares case) for each data set.

After qualitative assessment of the modified residual errors (see Figure C.9 in Appendix C),

γ= 0.2 was identified as the value that produced the most i.i.d. residuals across each of the

six data sets. Using the calibrated statistical error model,LGLS is evaluated at each training

iteration using mini-batches (i.e. randomly selected subsets) of input/output data. In

general, using a small batch size acts as an additional form of regularization that helps neural

networks escape local minima during training and allows for better generalization [Kes17].

However, this significantly increases the computational cost of training due to the increased

number of training iterations needed to converge. Therefore, BINNs were trained using

mini-batches of size 37 (i.e. 1/4 the number of points in the training set) which was found

to balance the accuracy and computational cost.

To ensure uMLP satisfies the solution of the governing PDE, the terms LPDE in Equa-

tion (4.7) and LConstr in Equation (4.8) are included in LTotal as a form of regularization.

However, since the scratch assay data are sparse, simply training uMLP usingLTotal at the

observed data locations can result in unrealistic dynamics in between data points. There-

fore, to ensure uMLP satisfies the solution of a governing PDE everywhere in the input

domain, LPDE and LConstr are evaluated at 10,000 uniformly randomly sampled points

xi ∈ [xmin, xmax] and t j ∈ [tmin, tmax] at each training iteration. Without the random sampling

66

procedure, uMLP can severely overfit to the data. To illustrate the importance of the random

sampling procedure, the model fits, GLS errors, and PDE errors are shown in Figure C.10 in

Appendix C for three cases in which (i) no PDE regularization is used, (ii) PDE regularization

is used at the data locations, and (iii) PDE regularization is used at 10,000 randomly sampled

points. In particular, Figure C.10 shows that in option (i) uMLP overfits the data practically

everywhere in the input domain, (ii) uMLP overfits everywhere except at the data locations

(see vertical lines in third subplot of row b), and (iii) the random sampling procedure results

in the smallest amount of PDE error and the largest amount of GLS error. The desired

behavior is shown in option (iii) since uMLP fits the data as accurately as allowed by the

governing PDE.

The third error term,LConstr, constrains DMLP, GMLP, and TMLP to exhibit biologically re-

alistic values and dynamics. Choosing appropriate constraints can be ambiguous when the

relevant literature gives conflicting suggestions. For example, when designing a derivative

constraint for the diffusivity network DMLP, [Ang09] suggest that diffusion should decrease

with cell density due to cell-to-cell adhesion whereas [Nar16] suggest the opposite in which

cells promote the migration of others. To mitigate this, BINNs were trained without any

constraints on DMLP and GMLP in order to visualize the collective behavior of the parameter

networks (see Figure C.8 in Appendix C). Note that TMLP was still forced to be non-decreasing

(see the Results Section). The network evaluations in Figure C.8 showed unrealistic parame-

ter dynamics for some data sets, but their collective behavior was used to design derivative

constraints that forced DMLP to increase as a function of cell density and GMLP to decrease

with cell density for the set of scratch assay data considered in this work. Concretely, the

diffusion term DMLP was constrained to values between 0.0 and 0.096 mm2/day and the growth

term GMLP to values between −0.48 and 2.4 1/day. The maximum and minimum diffusion

values and maximum growth value were chosen based on values used in [Jin16a]. The

minimum growth value was chosen to be negative 20% of the maximum growth value to

allow GMLP to output negative values for cell densities near the carrying capacity if needed.

The sigmoid output activation function for the delay term TMLP constrained its outputs to

between 0 and 1. Derivative terms were used inLConstr to constrain DMLP and TMLP to be

non-decreasing and GMLP to be non-increasing. For ease of notation, let ûi , j ≡ uMLP(xi , t j),

D̂i , j ≡ DMLP(uMLP(xi , t j)), Ĝi , j ≡ GMLP(uMLP(xi , t j)), and T̂i , j ≡ TMLP(t j), then the constraint

67

term can be written concretely as

LConstr =
1

M N

�

α1

M ,N
∑

i=1, j=1
D̂<0.0

D̂>0.096

�

D̂i , j

�2
+α2

M ,N
∑

i=1, j=1
∂ D̂ /∂ û<0

�

∂ D̂i , j

∂ ûi , j

�2

+ (4.10)

α3

M ,N
∑

i=1, j=1
Ĝ<−0.48

Ĝ>2.4

�

Ĝi , j

�2
+α4

M ,N
∑

i=1, j=1
∂ Ĝ /∂ û<0

�

∂ Ĝi , j

∂ ûi , j

�2

+α5

M ,N
∑

i=1, j=1
∂ T̂ /∂ t̂<0

�

∂ T̂i , j

∂ ûi , j

�2 �

.

Since the parameter networks and their derivatives occur at different scales with respect to

each other and with respect to the error termsLGLS andLPDE, each term of Equation (4.10) is

weighted by a factorαi . In particular, each constraint is weighted based on the input/output

scaling factors of the corresponding neural network (see Network Design subsection).

Concretely, the terms in Equation (4.10) are weighted by α1 = 1/0.096×1010, α2 = K/0.096×1010,

α3 = 1/2.4×1010,α4 = K/2.4×1010, andα5 = 1010. Note that the weight factors for the derivative

constraints on DMLP and GMLP (i.e.α2 andα4) include the carrying capacity K = 1.7×103 since

K was used as an input scaling factor for these networks. The factor 1010 was chosen large

enough to guarantee that DMLP, GMLP, and TMLP exhibited the desired behavior. Boundary

conditions can also be included in theLConstr term, however, since they were unknown for

the scratch assay data considered in this work, no boundary conditions were used to train

uMLP.

Finally, the GLS errors at the initial condition (i.e. data locations where t = 0) were

weighted by a factor of 10 during training. This was found to improve the generalization

accuracy of DMLP, GMLP, and TMLP when evaluated using a numerical PDE solver. The rea-

son for this is because the cell density at t = 0 may not satisfy a governing dynamical

system since the measurement is taken directly after the scratch assay protocol is per-

formed [Jin16a]. However, the initial condition “sets the stage” for the governing dynamics

to drive the temporal evolution of the system. Therefore, by weighting the initial condition

more heavily inLGLS, the PDE error termLPDE must conform uMLP to satisfy the govern-

ing system for t > 0 as dictated by uMLP at t = 0. This step forced DMLP, GMLP, and TMLP to

learn more generalizable representations of the diffusivity, growth, and delay functions,

respectively. The weighting factor was numerically validated using the mean GLS error

across each scratch assay experiment for weighting factors 1, 10, and 102. Note that this

weighting factor makes BINNs sensitive to the random choice of training/validation split,

since some data points in the initial condition may be more informative than others for

equation learning and ultimate model generalizability. This observation was also noted in

68

a recent equation learning study in which the random split of training and validation sets

was found to influence the structure of the learned equation [Lag20d]. Adopting a strategy

similar to this previous study, BINNs were trained 20 times for each data set (using different

random training/validation splits). The BINN for which the numerical simulations resulted

in the smallest GLS error was saved as the best model.

4.3.4 PDE forward solver

The numerical implementation details are provided for systems describing quantity of

interest u (x , t) that are governed by the following equation:

ut =
�

Q (u , ux , t)
�

x
+ F (u), (4.11)

u (x , t0) =φ(x),

ux (x0, t) = ux (x f , t) = 0,

for x ∈ [x0, x f], and t ∈ [t0, t f]. Note that the reaction-diffusion model in Equation (4.1)

is an example of Equation (4.11) where Q (u , ux , t) = D(u , t)ux and F (u) = G (u , t)u . In

Equation (4.11), the initial condition is denoted byφ(x) and the boundary conditions are

assumed to be no-flux boundary conditions. Note that the no-flux condition represents a

zero net flux boundary condition which does not preclude cells moving across the boundary,

but instead reflects the situation in which the flux in the positive and negative x -directions

are equal, giving rise to zero total flux. The spatial and temporal domains are discretized

into equispaced grids as:

xi = i∆x , t j = j∆t , (4.12)

for i = 0, . . . , 200 and j = 0, . . . , 1, 000. For notational convenience, let ui (t) = u (xi , t). Then,

the method-of-lines approach is used to solve Equation (4.11) with the numerical discretiza-

tion from [Kur00] that is given by

�

Q (u , ux , t)
�

x
≈

Pi+1/2(t)−Pi−1/2(t)
∆x

, (4.13)

where Pi+1/2(t) is an estimate for the rightwards diffusive flux at location xi that is given by

Pi+1/2(t) =
1

2

�

Q
�

ui (t),
ui+1(t)−ui (t)

∆x
, t
�

+Q
�

ui+1(t),
ui+1(t)−ui (t)

∆x
, t
��

. (4.14)

69

The no-flux boundary conditions at x0 and x200 are implemented by incorporating the ghost

points x−1 and x201 satisfying u−1(t) = u1(t) and u201(t) = u199(t). The Scipy integration

subpackage (version 1.4.1) is used to integrate Equation (4.11) over time using an explicit

fourth order Runge-Kutta Method.

4.3.5 Parameter estimation

The parameters of each mechanistic model were optimized using the Limited-memory

BFGS algorithm with bound constraints (L-BFGS-B) in Python’s Scipy package with default

tolerance values to minimize the generalized least squares error function in Equation (4.6)

with the adjusted statistical error model in Equation (4.4) with γ= 0.2. The parameters for

Equations (4.19) and (4.20) were initialized using the values from [Jin16a]. The parameters

for Equation (4.17) were initialized by fitting each PDE term in Equations (4.18a)-(4.18c) to

the corresponding parameter network solutions in Figure 4.7 using ordinary least squares.

Finally, the diffusivity and growth function parameters were bounded using Dmin = 0 mm2/day,

Dmax = 0.096 mm2/day, mmin = 0, mmax = 4, rmin = 0 1/day, and rmax = 2.4 1/day (all of which come

from [Jin16a]), while the delay function parameters β0 and β1 were bounded by [−10, 10].

4.4 Results

4.4.1 Simulation case study

Since the diffusivity and growth terms are inferred by BINNs through learning DMLP and

GMLP, respectively, the ability of BINNs to learn biologically accurate representations of these

terms must first be tested. To investigate this, data were simulated using the classical FKPP

and Generalized Porous-FKPP equations with parameter values from [Jin16a] for the scratch

assay data with initial cell density 20,000 cells per well. Additionally, the simulated data

were obscured with artificial observation error using the statistical model in Equation (4.4)

with γ= 0.2. Each simulation used the initial condition from the scratch assay data with

initial cell density 20,000 cells per well. Using the same level of sparsity (i.e. 37 spatial points

and five time points), the BINNs framework was shown to (i) approximate the dynamical

system accurately and (ii) approximate the general forms of the diffusivity and growth

terms. See Figures C.2 and C.3 in Appendix C for the model and parameter fits, respectively.

This case study demonstrates that BINNs are able to learn accurate representations of

the diffusivity and growth functions from biologically realistic noisy sparse data, however,

further analysis, like model selection and comparison, is omitted here and instead explored

70

using experimental data.

4.4.2 Reaction-diffusion BINNs for experimental data

As described in the previous sections, the diffusivity and growth functions are approximated

by deep neural networks,D =DMLP(u) andG =GMLP(u), resulting in a governing PDE of the

form

ut = (DMLP(u)ux)x +GMLP(u)u , (4.15)

where DMLP and GMLP are functions of the cell density u . A BINN was trained for each data

set with varying initial cell density. The resulting numerical PDE solutions using the trained

DMLP and GMLP are shown in Figure 4.3.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 10,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 12,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 16,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 18,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Initial cell density: 20,000 cells per well

Figure 4.3 Reaction-diffusion BINN solutions. Predicted cell density profiles using BINNs with
the governing reaction-diffusion PDE in Equation (4.15). Each subplot corresponds to an exper-
iment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000
cells per well). Solid lines represent the numerical solution to Equation (4.15) using DMLP and
GMLP. The markers represent the experimental scratch assay data.

While the model fits shown in Figure 4.3 are excellent for lower initial cell densities,

there still remains a significant amount of model discrepancy at higher initial cell densities.

GLS residual errors were computed to provide an additional way of visualizing the model

71

discrepancy (see Figure C.4 in Appendix C) in which non-i.i.d. residuals are clearly present

at higher initial cell densities. To investigate the specific form of the model discrepancy,

Figure 4.4 shows the learned diffusivity and growth functions with the corresponding model

fit for the data set with an initial cell density of 20,000 cells per well.

Figure 4.4 Reaction-diffusion BINN terms and discrepancy. Left: learned diffusivity and growth
functions, DMLP and GMLP, evaluated over cell density, u . Right: Predicted cell density profiles
using BINNs with the governing reaction-diffusion PDE in Equation (4.15) for data with initial
cell density 20,000 cells per well. Solid lines represent the numerical solution to Equation (4.15)
using DMLP and GMLP. The markers represent the experimental scratch assay data.

Figure 4.4 reveals clear model discrepancy in two main areas: (i) at high cell densities (i.e.

x ∈ [0, 0.25]mm and x ∈ [1.75, 2.0]mm for t ∈ [0, 1] days) where diffusion is negligible and

the dynamics are governed primarily by growth; and (ii) at low cell densities (i.e. x ∈ [0.5, 1.5]

mm for t ∈ [0, 1] days) where growth is negligible and the dynamics are primarily governed

by diffusion. In particular, the discrepancy is largest for early time points where the diffusion

and growth dynamics appear too rapid. The solutions of DMLP and GMLP are also qualitatively

similar to the classical FKPP equation in which the learned diffusivity function is relatively

constant while the learned growth function is approximately linearly decreasing with cell

density, u . However, despite DMLP and GMLP learning biologically realistic functions for the

diffusivity and growth, the persistent model discrepancy observed across multiple data

sets with high initial cell densities (see Figure 4.3) suggests that the reaction-diffusion

equation described in Equation (4.15) may be insufficient to fully capture the underlying

dynamics of cell migration for these data. From a mathematical modeling perspective, the

model discrepancy at early time points suggests the existence of a time delay that scales the

72

magnitude of the density-dependent diffusion and growth rates. Biological reasons behind

this phenomenon may include cell damage from the scratch assay protocol or changes

in cell functions where more cells become immobile/non-proliferative as the cell density

approaches carrying capacity [Dyd20; Pou95; Neu20]. See the Discussion Section for more

details.

4.4.3 Delay-reaction-diffusion BINNs for experimental data

Motivated by the model discrepancy for data sets with high initial cell density, the reaction-

diffusion equation in Equation (4.15) was modified by including a time delay described

by an additional neural network function TMLP(t). The new term TMLP(t) is a continuously

differentiable function of time that is constrained to be non-decreasing and output val-

ues between 0 and 1. In this way, TMLP can scale the strength of the density-dependent

diffusivity and growth terms in time. Letting the diffusivity,D, and growth, G , terms of the

governing PDE be functions of u and t , they are replaced with D = TMLP(t)DMLP(u) and

G = TMLP(t)GMLP(u). This results in a governing PDE of the form

ut =
�

TMLP(t)DMLP(u)ux

�

x
+TMLP(t)GMLP(u)u ,

which simplifies to

ut = TMLP(t)
�

(DMLP(u)ux)x +GMLP(u)u
�

, (4.16)

where DMLP and GMLP are functions of the cell density u and TMLP is a function of time t .

Note that TMLP was chosen to be separable from DMLP and GMLP since the density-dependent

dynamics of diffusion and growth are assumed to be consistent throughout time. Further, it

was assumed that both DMLP and GMLP are scaled by the same time delay; see the Discussion

Section for more details. BINNs governed by the PDE in Equation (4.16) were trained for

each data set with varying initial cell density. The resulting forward simulations using the

trained TMLP, DMLP, and GMLP networks are shown in Figure 4.5.

The model fits shown in Figure 4.5 demonstrate that virtually all of the model discrep-

ancy across each initial cell density was removed by including a time delay. This is confirmed

further using GLS residual errors (see Figure C.5 in Appendix C) where the residuals are ap-

proximately i.i.d. even at higher initial cell densities. Similar to the reaction-diffusion case,

Figure 4.6 shows the learned diffusivity, growth, and delay functions with the corresponding

model fit for the data set with initial cell density of 20,000 cells per well.

Figure 4.6 shows that the model discrepancy in areas with high and low cell densities

73

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 10,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 12,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 16,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 18,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Initial cell density: 20,000 cells per well

Figure 4.5 Delay-reaction-diffusion BINN solutions. Predicted cell density profiles using BINNs
with the governing delay-reaction-diffusion PDE in Equation (4.16). Each subplot corresponds to
an experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and
20,000 cells per well). Solid lines represent the numerical solution to Equation (4.16) using TMLP,
DMLP, and GMLP. The markers represent the experimental scratch assay data.

at early time points has been practically eliminated. This is most clearly seen in the delay-

reaction-diffusion model solution at the second time point (i.e. t = 0.5 days), which matches

the data more accurately than the reaction-diffusion model in Equation (4.15) at the same

time point (see Figure 4.4). Moreover, DMLP and GMLP for the delay-reaction-diffusion BINN

learned similar forms of the diffusivity and growth compared to the reaction-diffusion case.

However, the delay term TMLP reveals that the diffusion and growth dynamics described by

DMLP and GMLP are scaled down for early time points (i.e. t < 1) before TMLP converges to 1,

allowing DMLP and GMLP to come into full effect. This observation is of particular importance

since the majority of scratch assay data are reported within this time delay region (i.e. 4, 6,

12, or 24 hrs) [Aok17; Arc11; Bin07; Mat04]. Importantly, not accounting for a time delay

within this region may potentially explain why scratch assay experiments are notoriously

difficult to reproduce [Jin16a].

4.4.4 Guided mechanistic model selection

The diffusion, growth, and delay networks, DMLP, GMLP, and TMLP, were used to guide the

selection of biologically realistic mechanistic models for downstream use in a traditional

74

Figure 4.6 Delay-reaction-diffusion BINN terms and discrepancy. Left: learned diffusivity and
growth functions, DMLP and GMLP, evaluated over cell density, u , and delay function, TMLP, eval-
uated over time, t . Right: Predicted cell density profiles using BINNs with the governing delay-
reaction-diffusion PDE in Equation (4.16) for data with initial cell density 20,000 cells per well.
Solid lines represent the numerical solution to Equation (4.16) using DMLP, GMLP, and TMLP. The
markers represent the experimental scratch assay data.

mathematical modeling framework. Each network solution corresponding to the six scratch

assay data sets is shown in Figure 4.7.

0 500 1000 1500
Cell density (cells/mm^2)

0.00

0.02

0.04

0.06

0.08

Di
ffu

siv
ity

 (m
m

2 /d
ay

)

DMLP

0 500 1000 1500
Cell density (cells/mm^2)

0.0

0.5

1.0

1.5

2.0

Gr
ow

th
 (1

/d
ay

)

GMLP

0.0 0.5 1.0 1.5 2.0
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

e
(u

ni
tle

ss
)

TMLP

10,000 initial cells per well
12,000 initial cells per well
14,000 initial cells per well
16,000 initial cells per well
18,000 initial cells per well
20,000 initial cells per well

Figure 4.7 Delay-reaction-diffusion BINN terms. The learned diffusivity, DMLP, growth, GMLP, and
delay, TMLP, functions extracted from the corresponding BINNs with governing delay-reaction-
diffusion PDE in Equation (4.16). Each line corresponds to an experiment with a different initial
cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well). Note that DMLP

and GMLP have different lengths since they are evaluated between the minimum and maximum
observed cell densities corresponding to each data set.

From Figure 4.7, the learned diffusivities for each experiment with different initial

75

cell density are non-zero when u = 0 and appear increasing and concave up (like power

laws) with respect to the cell density u . On the other hand, the learned growth terms are

approximately linear, which is consistent with logistic models, and the learned delay terms

all exhibit sigmoidal dynamics. Note that the outlying GMLP solution for the scratch assay

data set with 10,000 initial cells per well is likely an artifact of the observed cell densities in

that experiment not approaching the carrying capacity, and therefore leading to unrealistic

learned dynamics. Based on qualitative analysis of these plots, the following mechanistic

delay-reaction-diffusion equation is proposed to satisfy each scratch assay data set:

ut =T (t)
�

(D(u)ux)x +G (u)u
�

, (4.17)

with diffusivity, growth, and delay functions

D =D0+D
� u

K

�m

, (4.18a)

G = r u
�

1−
u

K

�

, (4.18b)

T =
1

1+ e −(β1t+β0)
, (4.18c)

respectively. The diffusivity functionD in Equation (4.18a) is a combination of the classical

FKPP and Generalized Porous-FKPP diffusivity function, with baseline cell diffusivity D0,

diffusion coefficient D , and exponent m . The growth function G in Equation (4.18b) is

chosen to be the logistic growth function with intrinsic growth rate r and carrying capac-

ity K . The delay function T in Equation (4.18c) is represented by the logistic regression

function with parameters β0 and β1. One advantage of using a mathematical model with

specified functional forms and parameters described by Equation (4.18a)-(4.18c) is that

standard parameter estimation techniques can now be used. This enables a comparison

of the BINN-guided model in Equation (4.17) to other mechanistic models, namely, the

classical FKPP and Generalized Porous-FKPP equations.

4.4.5 Model comparison

The BINN-guided delay-reaction-diffusion model in Equation (4.17) was compared to the

classical FKPP equation

ut = (D ux)x + r u
�

1− u
K

�

, (4.19)

76

with diffusion coefficient D , intrinsic growth rate r , and carrying capacity K and General-

ized Porous-FKPP equation

ut = (D (u
K)

m ux)x + r u
�

1− u
K

�

, (4.20)

with additional exponent m . These models were used as a baseline for comparison since

they have been identified as the current state-of-the-art in modeling these data [Jin16a;

War19]. The parameters of each model were optimized numerically using the generalized

least squares error function in Equation (4.6) with the adjusted statistical error model in

Equation (4.4) with γ= 0.2. Note that the carrying capacity was fixed at K = 1.7×103 cells/mm2

and not optimized because it was empirically validated in [Jin16a]. The resulting model

fits and parameter values for the classical FKPP and Generalized Porous-FKPP models are

shown in Figures C.6 and C.7 and Tables C.1, and C.2 in Appendix C. The solutions of the

BINN-guided delay-reaction-diffusion model in Equation (4.17) to each data set are shown

in Figure 4.8.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 10,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 12,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 16,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 18,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Initial cell density: 20,000 cells per well

Figure 4.8 BINN-guided delay-reaction-diffusion model solutions. Predicted cell density profiles
using the delay-reaction-diffusion model in Equation (4.17). Each subplot corresponds to an ex-
periment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000
cells per well). Solid lines represent the numerical solution to Equation (4.17) using the parame-
ters that minimizeLGLS in Equation (4.6). The markers represent the experimental scratch assay
data.

77

The predicted cell density profiles in Figure 4.8 closely matched the scratch assay data

which suggests that the proposed model in Equation (4.17) with Equations (4.18a)-(4.18c)

successfully captured the learned dynamics from TMLP, DMLP, and GMLP. The optimized

parameter values across each data set are shown in Table 4.1. Note that the parameters

were rescaled to µm and hours (hr) for comparison with [Jin16a] and [War19].

Table 4.1 BINN-guided delay-reaction-diffusion model parameters.

Initial cell density
Parameter 10,000 12,000 14,000 16,000 18,000 20,000
D0 (µm2/hr) 95.7 353.3 482.1 604.3 804.0 675.8
D (µm2/hr) 3987.1 3166.4 3775.0 3773.8 2201.8 1954.9
m (unitless) 1.5976 3.4708 1.9060 3.5173 3.2204 0.9876
r (1/hr) 0.0525 0.0714 0.0742 0.0798 0.0772 0.0951
β0 (unitless) -1.0292 -3.3013 -3.1953 -2.9660 -1.2695 -4.0651
β1 (1/hr) 0.2110 0.2293 0.2761 0.2180 0.1509 0.4166

Table of model parameters for Equation (4.17) calibrated for each scratch assay data set.
Each column corresponds to an experiment with different initial cell density (i.e. 10,000,
12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

Table 4.1 reveals that many of the parameters relating to density-dependent diffusion

and growth show trends (e.g. D0 and r increasing) with initial cell density similar to [Jin16a].

The implications of this observation are considered in the Discussion Section. To compare

the three models quantitatively, the generalized least squares (GLS) errors were computed

for each model and data set and reported in Table 4.2.

Table 4.2 Generalized least squares (GLS) errors.

Initial cell density
Model 10,000 12,000 14,000 16,000 18,000 20,000
classical FKPP 786.80 557.28 616.76 619.12 685.17 964.19
Porous-FKPP 681.18 540.29 418.57 566.89 744.44 928.38
BINN-guided model 557.01 317.18 410.79 393.15 307.74 386.52

Table of GLS errors between the model solutions and scratch assay data. Each column
corresponds to an experiment with different initial cell density (i.e. 10,000, 12,000, 14,000,
16,000, 18,000, and 20,000 cells per well). Bold numbers represent the minimum GLS error
across the three models.

78

The results in Table 4.2 showed that Equation (4.17) with Equations (4.18a)-(4.18c)

fit each data set more accurately than the classical FKPP or Generalized Porous-FKPP

models. This behavior is not surprising given that the BINN-guided model is more complex.

Therefore, model selection methods, which balance model accuracy with model complexity,

were also used to compare the quality of each model relative to the others. In particular,

the modified Akaike Information Criterion (AIC) from [Ban17]was used to account for the

statistical error model in Equation (4.4). See Table 4.3 for the AIC scores across each model

and data set.

Table 4.3 Akaike Information Criterion (AIC) scores.

Initial cell density
Model 10,000 12,000 14,000 16,000 18,000 20,000
classical FKPP 1239.6 1175.8 1194.5 1195.2 1214.0 1277.2
Porous-FKPP 1214.9 1172.0 1124.8 1180.9 1231.3 1272.2
BINN-guided model 1183.7 1079.5 1127.3 1119.2 1073.9 1116.1

Table of AIC scores for each model and scratch assay data set. Each column corresponds to
an experiment with different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000,
and 20,000 cells per well). Bold numbers represent the minimum AIC score across the
three models.

The results in Table 4.3 showed that the BINN-guided delay-reaction-diffusion model

outperforms the classical FKPP and Generalized Porous-FKPP models across all data sets

except with initial cell density 14,000 cells per well. This discrepancy follows from Table (4.6)

where the additional parameters in Equation (4.17) only slightly decreased the GLS error

for the data set with initial density of 14,000. Finally, to quantify the “value” of adding the

novel delay term in Equation (4.18c) the differences between AIC scores for each model

and the minimum AIC score, denoted by∆AIC, are shown in Table 4.4.

Table 4.4 suggests that the delay term is most impactful for data sets with large initial

density (i.e. 18,000 and 20,000 cells per well) since the∆AIC scores are significantly larger

for these data sets. Biological analysis and explanations for these results are considered in

the following Discussion Section.

79

Table 4.4 Difference Akaike Information Criterion (∆AIC) scores.

Initial cell density
Model 10,000 12,000 14,000 16,000 18,000 20,000
classical FKPP 55.90 96.26 69.71 76.01 140.08 161.11
Porous-FKPP 31.23 92.54 0.00 61.70 157.42 156.11
BINN-guided model 0.00 0.00 2.53 0.00 0.00 0.00

Table of AIC differences (∆AIC) between each model and scratch assay data set. Each
column corresponds to an experiment with different initial cell density (i.e. 10,000, 12,000,
14,000, 16,000, 18,000, and 20,000 cells per well). Each∆AIC score represents the difference
between a model’s AIC score and the minimum recorded AIC score for that data set.

4.5 Summary of contributions

We introduced biologically-informed neural networks (BINNs), an extension of physics-

informed neural networks, to be feasible for applications with poorly understood dynamics

(e.g., only knowledge of basic conservation laws) and sparse noisy observations. In this

framework, neural networks are used to (i) approximate the solution of an unknown PDE

and (ii) learn the nonlinear terms comprising the governing system without the need to

specify the mechanistic form of each term. Applying our methodology to experimental

cell migration data of PC-3 prostate cancer cells, to the best of our knowledge, we are the

first to successfully use equation learning methods to discover a previously unconsidered

real-world biological mechanism describing delayed population response. Using the dis-

covered dynamics, we posited a new mechanistic equation that fit the experimental scratch

assay data more accurately and had lower AIC scores compared to state-of-the-art models.

Based on the success of this work, we believe BINNs can enable the rapid development

and validation of new mathematical models for a broad range of real-world applications

throughout the natural sciences.

4.6 Discussion

In this work, biologically-informed neural networks (BINNs) were introduced as a flex-

ible and robust equation learning method for real-world biological applications. The

BINNs framework was demonstrated using experimental biological data from scratch

assays [Jin16a] and used to discover a delay term that had not yet been considered in the

modeling of these data. The trained diffusivity, growth, and delay networks were used to

guide the selection of the mechanistic model in Equation (4.17) with Equations (4.18a)-

80

(4.18c), which was shown to model the data more accurately than the current state-of-the-

art models (i.e. classical FKPP and Generalized Porous-FKPP equations). The results shown

in this work suggest that the BINNs framework can be successfully applied to a wide range

of biological and physical problems where the data are sparse and the governing dynamics

are unknown. The biological motivations for various aspects of the BINNs framework and

significance of the results are discussed in the following paragraphs.

The model solutions in Figure 4.3 and Figure 4.4 indicated that using only density-

dependent diffusivity and growth functionsD(u) and G (u)was not sufficient to fully cap-

ture the scratch assay dynamics. Figure 4.4 highlighted this discrepancy at the second time

measurement (t = 0.5 days) in which the model failed to capture the areas of both high

and low cell density, despite lettingD and G be universal function-approximating neural

networks. In particular, the model solutions in the areas of high cell density (i.e. x ∈ [0.0, 0.5]

and x ∈ [1.5,2.0]) showed exponential convergence to the carrying capacity, which suc-

cessfully captured the data for later time points (t ≥ 1 days) but over-predicted for early

time points (t < 1 days). Similarly, diffusion in areas of low cell density (i.e. x ∈ [0.5,1.5])

over-predicted the cell density profile for early time points but then matched the data

accurately for later time points. From a mathematical perspective, this motivates the exis-

tence of a time delay that scales the density-dependent dynamics to be reduced for early

time points and larger for later time points. There are also several biological motivations

for considering a time delay. For example, [Dyd20] showed how cells are damaged at the

borders of the scratch as a result of the experimental scratch assay protocol. Cell damage

can potentially inhibit the communication between cells and physically block healthy cells

from diffusing into uncolonized spatial regions. Another source of delay may stem from

changes in density-dependent cell functions (e.g. differentiation, division, and senescence).

Studies have shown that cells are more likely to terminally differentiate when cell popu-

lations approach carrying capacity [Pou95; Neu20]. Therefore, scratch assay experiments

that are performed for high density populations may contain fewer mobile/proliferative

cells at the borders of the scratch, thus causing a time delay in the cell migration dynamics.

A general framework for incorporating the delay term may be to consider diffusivity

and growth functionsD =DMLP(u , t) and G =GMLP(u , t), respectively. However, since the

dynamics of diffusion and growth are assumed to be consistent throughout time, the

diffusion and growth terms were chosen to be separable functions composed of diffusivity

D(u), growth G (u), and delay T (t). Additionally, it was assumed that both diffusion and

growth were scaled by the same time delay T (t) as opposed to a diffusion delay TD(t) and

growth delay TG(t). This assumption may not be accurate if the time delay is a result of

density-dependent changes in cell function where cells become mobile and proliferative at

81

different rates. In particular, since migration and proliferation have very different timescales,

it might be natural to expect that the delays would also have different timescales. However,

since the numerical solutions using T (t) matched the data sufficiently accurately, this

question is left for future work. Finally, T (t)was constrained to output values between 0

and 1 and forced to be increasing with time. These constraints were chosen to ensure that

the delay term modeled the time-dependent changes in cell dynamics for early time points

but converged to unity by later time points.

In this work, BINNs revealed that the reaction-diffusion system in Equation (4.1) with

cell density-dependent diffusivity and growth functions was insufficient to capture the data

dynamics. However, the model discrepancy for data sets with large initial cell density moti-

vated the development of a time delay which significantly improved the model accuracy and

resolved the observed discrepancy. The diffusivity, growth, and delay networks were used

to posit a mechanistic model (i.e. Equation (4.17) with Equations (4.18a)-(4.18c)). Using

the logistic growth model (Equation (4.18b)) for the growth function and logistic regression

(Equation (4.18c)) for the delay function followed straightforwardly from the parameter net-

work solutions in Figure 4.7, however, the diffusivity function in Equation (4.18a) warrants

further discussion.

Opinions vary between the biological validity of (i) the classical FKPP and (ii) the Gener-

alized Porous-FKPP diffusivity functions. For example, one study compared (i) and (ii) using

experimental wound size data and found that (ii) with m = 4 provided the best fit to the

data [She90b]. Another study fit (i) and (ii) to experimental cell migration data with different

cell populations and found that one population was best described by constant diffusivity

in (i) and the other by nonlinear diffusivity with m = 1 in (ii) [Sen07]. These studies do not

reveal which approach is best, but they demonstrate that care is warranted. The diffusivity

network (DMLP) solutions showed significant variability across the scratch assay data sets,

so the posited mechanistic model was chosen to respect the observed variability while also

being as simple as possible. Therefore, Equation (4.18a) was chosen to be a combination

of the diffusivity functions in (i) and (ii). This way both (i) and (ii) can be seen as nested

models of the posited diffusivity function by setting either D = 0 or D0 = 0. Yet the posited

diffusivity is still simple, as it only increases the number of parameters with respect to (ii)

by one. It may be the case that the true diffusivity function is even more complex, such as a

linear combination of powers:

D =D0+D1

� u

K

�m1

+D2

� u

K

�m2

,

with baseline diffusivity D0, diffusion rates D1 and D2, carrying capacity K , and exponents

82

m1 and m2. However, these considerations are beyond the scope of the present work and

left for future work.

The parameters of (i) the classical FKPP in Equation (4.19), (ii) the Generalized Porous-

FKPP in Equation (4.20), and (iii) the BINN-guided model in Equation (4.17) with Equa-

tions (4.18a)-(4.18c) were optimized numerically for each scratch assay data set. The opti-

mized parameters for (i) in Table C.1 all fall within the ranges reported in [Jin16a]. However,

this is not the case for any set of parameter values for (ii) as shown in Table C.2. This is

likely due to the parameter optimization being conducted using the adjusted statistical

error model in Equation (4.4) with γ= 0.2 and since the exponent m in the Porous-FKPP

diffusivity function was not fixed at m = 1 as in [Jin16a]. However, in both (i) and (ii), the

diffusion coefficient, D , and intrinsic growth rate, r , showed variability with initial cell

density, similar to the conclusions drawn in [Jin16a]. Therefore, in theory, if the delay term in

Equation (4.18c) accounts for the time it takes for density-dependent growth and diffusion

to become active in the system, which may be a function of initial cell density, then the

variability among diffusion coefficients and intrinsic growth rates for the BINN-guided

delay-reaction-diffusion model should be reduced across the scratch assay experiments.

However, from the optimized parameter values in Table 4.1, the baseline diffusion rate

D0 and intrinsic growth rate r generally increase with initial cell density and the diffusion

coefficient D generally decreases with initial cell density. This observation may indicate

(i) practical identifiability issues between the diffusion, growth, and delay terms or (ii) the

existence additional mechanisms that are not accounted for in the model. To confirm this, a

Bayesian parameter estimation framework can be used to examine practical identifiability

of parameters [Lag18; Ado15a]. Then, a possible strategy to mitigate this issue would be

to optimize the parameters of Equation (4.17) with Equations (4.18a) and (4.18b) jointly

across each scratch assay data set while allowing the delay parameters in Equation (4.18c)

to be tuned separately for each set. This exploration is left for future work.

The BINN-guided delay-reaction-diffusion model was compared to the baseline clas-

sical FKPP and Generalized Porous-FKPP models using both GLS errors and modified

AIC scores. The GLS errors in Table 4.2 showed that the BINN-guided model fits the data

more accurately than the baseline models across each scratch assay data set. However,

this improvement in accuracy is due to the increased model complexity (i.e. number of

parameters and PDE terms) in the BINN-guided model. Therefore, to rank the quality of

each model, AIC scores were also computed since they balance model accuracy with model

complexity. The AIC scores reported in Table 4.3 indicate that the BINN-guided model also

exceeds the baseline models in terms of relative quality across each scratch assay data set

except with initial cell density 14,000 cells per well, in which the Generalized Porous-FKPP

83

model has a slightly smaller AIC score. In other words, Tables 4.2 and 4.3 indicate that the

BINN-guided model performs as well or better than the state-of-the-art in modeling the

suite of scratch assay experiments from [Jin16a]. In particular, this advantage is afforded by

including the delay term in Equation (4.18c). To quantify the relative value of adding the

delay term, the AIC scores from Table 4.3 are used to compute difference AIC (∆AIC) scores

in Table 4.4 in which the∆AIC score for a fixed model and data set is given by the difference

between the corresponding AIC score and the minimum AIC score across all models for

the given data set. The∆AIC scores in Table 4.4 indicate that the relative value of the delay

term is largest for data sets with initial cell density 18,000 and 20,000 cells per well. This

observation is supported by the relevant biology discussed at the beginning of this section,

in which large initial cell densities either (i) result in more damaged cells near the borders

of the scratch, (ii) cause more cells in the population to have terminally differentiated away

from mobile/proliferative cell functions, or (iii) some combination of (i) and (ii) and other

potentially unconsidered biological sources, all of which increase the potential time delay

before the density-dependent diffusion and growth dynamics become the primary drivers

of the temporal evolution of the system.

4.6.1 Conclusions

BINNs, a robust and flexible framework for equation learning with sparse and noisy data,

was demonstrated and used to posit a mechanistic equation that outperforms the state-

of-the-art in modeling experimental scratch assay data. The development, training, and

evaluation of BINNs and the resulting model selection and analysis were reported to justify

these claims. The discovered time delay term may have important implications for the

reproducibility and modeling of scratch assays, since the majority of the reported data fall

within the time delay region. Some of the drawbacks of the BINNs method and opportunities

for future work and development are discussed below.

Since BINNs rely on multilayer perceptrons (MLPs), the learned dynamics may not

generalize well outside the training domain. For example, in the present work, if the ob-

served cell densities for a particular experiment do not approach the carrying capacity

(e.g. the scratch assay data set with 10,000 initial cells per well) then the learned dynamics

given by DMLP and GMLP may lead to biologically unrealistic behavior (see GMLP solutions in

Figure 4.7). Further, since none of the scratch assay data reported values that significantly

exceeded the empirically set carrying capacity, GMLP would likely not generalize well to a

scenario with exceedingly large observed cell densities. Options for mitigating this issue

include (i) replacing unrealistic MLP terms with mechanistic models (e.g. logistic growth

84

instead of GMLP) if the particular dynamics are known a priori, or (ii) adding additional

constraints which force the MLP terms to satisfy specific values (e.g. GMLP(u = K) = 0).

An opportunity for future development is quantifying the uncertainty of both the ap-

proximate solution, uMLP, and the parameter networks, DMLP, GMLP, and TMLP. From the

frequentist perspective, so called “subagging” (i.e. subsample aggregating) can be used to

build posterior distributions of the model solutions and parameter networks [Buh12]. In

this framework, one simply samples N training/validation splits and trains a BINN for each

split. Then kernel density estimation or some other equivalent methodology can be used to

build distributions from the N number of trained BINNs. Alternatively, from the Bayesian

perspective, physics-informed neural networks were recently extended to Bayesian physics-

informed neural networks (B-PINNs) [Yan20]. In this framework, Bayesian neural networks

are substituted for uMLP and regularized using a pre-specified governing PDE. In the BINNs

framework, Bayesian neural networks could also be substituted for DMLP, GMLP, and TMLP to

quantify the uncertainty of the PDE terms in addition to the model solution.

While BINNs were demonstrated using one-dimensional reaction-diffusion PDEs for

scratch assay data in this work, they can be applied on a wide spectrum of physical and

biological problems (for both ODE and PDE systems) in which the governing dynamics

are unknown and highly nonlinear. A straightforward next step for this work would be

to evaluate BINNs on the two-dimensional scratch assay image data that were used to

construct the one-dimensional cell density profiles in [Jin16a]. Further, more complicated

cell dynamics could be incorporated into the governing system in the present work by

including PDE terms that describe cell population heterogeneity or additional biological

mechanisms for damaged (but not dead) cells at the borders of the scratch.

BINNs were used to address a canonical problem in the field of collective cell migration

by analyzing how the combination of density-dependent cell motility and proliferation

drive the temporal dynamics of cell invasion during an experimental scratch assay. This

novel framework revealed new mechanistic and biological insights into this process by

guiding the derivation of a mathematical model that has not been considered previously

using traditional mathematical modeling approaches. The classical FKPP and Generalized

Porous-FKPP models are ubiquitous in modeling cell migration and proliferation, yet the

BINNs methodology presented here revealed that these models may fail to incorporate all

of the relevant mechanisms underlying this process. These results suggest that new models

incorporating a time delay may be necessary to accurately capture the dynamics within the

first day of a scratch assay, i.e., just after the scratch is introduced. Based on the success of

this work, BINNs establish a new paradigm for data-driven equation learning from sparse

and noisy data that could enable the rapid development and validation of mathematical

85

models for a broad range of real-world applications throughout biology including ecology,

epidemiology, and cell biology.

86

CHAPTER

5

CONCLUSIONS

Throughout this work we presented a number of data-driven methods for augmenting and

discovering mathematical models using observation data. There are various amounts of

data and domain knowledge spanning the field of mathematical modeling, we considered

the following three scenarios: (i) full knowledge of the governing system (i.e., a specified

mathematical model) with sparse observation data, (ii) no knowledge of the governing

system (i.e., unspecified mathematical model) with large amounts of data, and (iii) basic

knowledge of the governing system (e.g., conservation laws) with sparse observation data. In

the preceding chapters we considered ways of incorporating techniques from data science

(e.g., state space reconstruction) and machine learning (e.g., neural networks) to address

the mathematical challenges associated with each case. Our proposed methods are widely

applicable to real-world scientific problems across the natural sciences, however, biological

applications were used specifically as a test bed to evaluate these methods because of their

notorious difficulty. The mathematical challenges and our proposed solutions in each of

the cases above are discussed in the following section.

87

5.1 Contributions

A key challenge in case (i), and in parameter estimation generally, is that a set of available ob-

servation data may be insufficient to accurately parameterize a set of governing equations.

This is true particularly in cases where one of more of the modeled variables contain corre-

lated parameters and issues related to practical identifiability. We addressed this challenge

by proposing a hybrid method that utilizes both mechanistic and non-mechanistic mod-

eling strategies to systematically eliminate problematic system variables. The equations

associated with unmodeled variables are replaced with the raw data for those variables.

The remaining equations for the modeled variables are then calibrated to fit the data, in

which the unmodeled variables are supplemented with the corresponding data. After esti-

mating the parameters of the subset of equations, in order to make a prediction, state space

reconstruction (SSR) is used to obtain model-free predictions of the unmodeled variables.

Then, using the SSR predictions to supplement the unmodeled variables together with the

calibrated equations for the modeled variables, joint predictions can be made to forecast

future time series dynamics.

This work resulted in multiple mathematical and scientific contributions. First, by sim-

ply replacing subsets of model equations with data, the dimensionality of the inverse prob-

lem is decreased since fewer parameters need to be estimated. This translates to increased

prediction accuracy of the hybrid method compared to the full model and model-free

methods independently. Further, when utilizing Bayesian inference for modeled variables

and SSR for unmodeled ones, we proposed a novel method for quantifying the uncertainty

of the model predictions. We obtain 95% credible and prediction intervals by jointly sam-

pling from the posterior parameter distributions of the modeled variables and the nearest

neighbor trajectories in delay-coordinate space of the unmodeled variables. Using correla-

tion plots and rank deficiency of the Fisher information matrix (FIM), we confirmed that

hybrid models generally reduce the practical unidentifiability of the parameters for the

set of equations describing flour beetle population dynamics. In particular, our analysis

concluded that the model for the Larva population contained correlated parameters which

hindered the ability to obtain accurate parameter estimates. By replacing the correspond-

ing equation with data/SSR predictions, the parameter correlations in the hybrid model

were eliminated and the resulting time series predictions were more accurate. In summary,

We proposed a hybrid methodology that can minimize the dimensionality of parameter

inference while maximizing predictive accuracy of the resulting model. This methodology

is broadly applicable to multivariate dynamical systems, particularly when developing

predictive models for biological applications where data are typically sparse. We hypothe-

88

size that this methodology can enable mechanistic modeling to a wider range of problems

across the natural sciences in which limited amounts of data and high dimensionality of

the system inhibit accurate parameterization with traditional techniques.

Where case (i) dealt with full system knowledge and sparse data, case (ii) considers the

opposite, in which no system dynamics are known but lots of data are available. The key

mathematical challenge in this scenario is how to utilize the informative set of observation

data to discover the dynamics that drive the temporal evolution of the system. A popular

equation learning method involves the use of data denoising and partial derivative approx-

imation to formulate the equation learning task as a sparse regression problem. Traditional

approaches relied on the use of finite differences and polynomial splines for data denoising,

which are prone to inaccuracy in the presence of large amounts of noise. We addressed this

challenge by developing an equation learning pipeline based on a combination of neural

networks and sparse regression. First, we denoise the observation data using an artificial

neural network (ANN) as a surrogate model for the solution of the unknown governing

differential equation. Then, using automatic differentiation of the ANN outputs to obtain

partial derivative estimates, we construct a library of candidate terms thought to comprise

the unknown system. Discovering the governing PDE is formulated as a sparse regression

problem for the linear system given by the candidate library, in which the nonzero elements

of the solution vector correspond to the small number terms that most accurately describe

the data. A final parameter estimation procedure on the discovered equation is then used

to fine-tune the model parameters.

The use of ANNs for data denoising and partial derivative approximation resulted in

multiple scientific contributions to the field of data-driven discovery and equation learning.

First, we showed that ANNs can be used to identify appropriate statistical error models

(e.g., the proportionality constant in a generalized least squares problem) describing the

error process in a set of observation data. Next, using ANNs together with the calibrated

error model to denoise and approximate the partial derivatives of the data, we showed that

under biologically realistic forms and levels of noise, ANNs can approximate derivatives

up to four orders of magnitude more accurately compared to polynomial splines, and

up to six orders of magnitude compared to finite differences for the advection-diffusion

and Fisher-KPP models considered in this work. We note that polynomial interpolation

was identified as the most robust denoising method by [Rud17b] after comparing against

alternative methods such as Gaussian kernel smoothing, Tikhonov differentiation, and

spectral differentiation with high-frequency term thresholding. Using the denoised data

values and partial derivative estimates from the ANN to construct the library of candidate

terms, we demonstrated that accurate PDE models could be discovered with noise levels

89

up to 25%. Further, we introduced modifications to the PDE-FIND algorithm, including

training/validation data partitioning and a pruning algorithm, that significantly increased

the robustness of the algorithm. The novel use of ANNs method presented in this work is a

major step toward enabling equation learning in realistic scenarios with noisy observation

data.

Finally, in case (iii), we consider the intersection of cases (i) and (ii), in which only basic

information about the dynamics is known and the available data are sparse and noisy. In

this scenario, due to poor understanding of the governing system, one does not have a set

of equations with which to proceed using the hybrid modeling strategy. Similarly, without

a large data set, unconstrained function-approximating ANNs will easily overfit the data,

leading to inaccuracies in the denoised data values and partial derivative approximations.

Therefore, to address the mathematical challenge of equation learning with sparse data,

we draw from cases (i) and (ii) in order to maximize the benefits of each strategy in the

current setting. Namely, we develop biologically-informed neural networks (BINNs), a

neural network-based equation learning methodology that learns to approximate a set of

observation data while simultaneously learning the governing dynamics. To prevent the

network from overfitting, we introduce a regularization term that uses automatic differenti-

ation to force the network outputs to satisfy a governing PDE. However, since only basic

information about the dynamics is known (e.g., diffusion, reaction, etc.), the mechanistic

models comprising these terms are replaced with additional neural networks that learn the

appropriate dynamics. Thus, by training BINNs to minimize the distance to the data while

satisfying the general form of a governing PDE, the nonlinear terms of the PDE are also

learned. In this work we use simulated scratch assay data from the classical Fisher-KPP

and Generalized Porous Fisher-KPP models as a proof of concept, and then apply BINNs

to real-world experimental scratch assay data describing the dynamics of cell invasion

for a population of PC-3 prostate cancer cells. The discovered dynamics from the trained

BINNs are used to posit a new mechanistic model where traditional mathematical modeling

techniques are used to conduct a model comparison study.

Our work on BINNs has resulted in multiple contributions to mathematics, machine

learning, and biology. First and foremost, BINNs are a novel methodology that extend

standard theory-informed neural networks to the class of equation learning algorithms,

particularly in scenarios with poorly understood dynamics and sparse noisy data. For the

first time, to the best of our knowledge, we used neural networks to identify an appropriate

statistical error model for real-world experimental scratch assay data. Further, using our

methodology, we are the first to use neural network-based equation learning methods to

discover a previously unconsidered biological mechanism describing delayed population

90

response. This discovery may have important implications in future scratch assay studies,

since most experiments record and model data in the early-time scratch assay dynamics,

which are most affected by our discovered delay term. In this work we also used BINNs to

posit a new state-of-the-art mathematical model for modeling scratch assay experiments.

By conducting a model comparison study using model error and Akaike Information Criteria

(AIC), we demonstrated that our posited model was more accurate and produced better

AIC scores compared to previous state-of-the-art models for the scratch assay experiments

considered in this work. Based on the success of this work, BINNs may enable the rapid

development and validation of new mathematical models for a broad range of real-world

applications throughout the natural sciences.

5.2 Future work

Overall, this work is aimed at the larger goal of enabling and accelerating the validation

of new mathematical models from real-world data. Since BINNs can be seen as an exten-

sion/combination of our previous works, i.e., ANN-based equation learning (i.e., using

neural networks for discovering new dynamics) and hybrid modeling (i.e., replacing model

terms with data-driven methods), the future work of this dissertation is discussed in the

context of BINNs. In particular, below, we discuss quantifying the uncertainty of BINNs, how

BINNs can be extended to address practical unidentifiability and overfitting to individual

data sets, and finally some plans for developing a fully machine learning pipeline connect-

ing experimental data in the form of vector, image, or unstructured point cloud/graph data

to an interpretable and generalizable mechanistic equation that describes and quantifies

the uncertainty of the dynamics that drive the data.

In our work on BINNs, we used neural networks to posit a new mechanistic equation

for describing scratch assay dynamics of cell populations, however, we did not quantify

the uncertainty of the parameters or model solutions. A reasonable and straightforward

step to quantifying the uncertainty is to repeat the parameter estimation procedure of the

posited PDE model in a Bayesian context. Similar to the hybrid model, Bayesian inference

using a delayed rejection adaptive metropolis (DRAM) algorithm can be performed to

obtain posterior distributions for the model parameters and to compute 95% credible and

prediction intervals for the solution of the posited PDE. However, recent work has also been

done to extend physics-informed neural networks (PINNs) to a Bayesian framework using

Bayesian neural networks (BNNs) [Yan20]. In this approach, a neural network surrogate

for the solution of the dynamical system is replaced with a BNN that acts as a prior for

a Hamiltonian Monte Carlo or variational inference framework for estimating posterior

91

distributions. However, unlike PINNs, which require the specification of a mechanistic

PDE, the BINNs framework, which uses neural networks for the PDE terms, could also

be replaced with BNNs. Therefore, BINNs would utilize BNNs to quantify the uncertainty

of both the model solution as well as the nonlinear terms comprising the unknown PDE.

Further, this framework may be even more robust to large noise levels due to the capability

of BNNs to avoid overfitting.

Another opportunity for future work involves extending the BINNs framework to in-

corporate multiple data sets (e.g., experimental replicates) in parallel to address practical

unidentifiability of parameters or to learn global physical/biological dynamics that capture

broad system behavior. For example, it is well known that how data is collected can signifi-

cantly impact the ability accurately parameterize mathematical models [Ban14c]. In [Nar20],

we demonstrated that accurately parameterizing various characteristics of cell populations

depends crucially on the time scale at which the data are collected. Therefore, by combining

multiple data sets that each describe similar quantities of interest (e.g., cell density) with

varying time scales in a parallel equation learning framework, one can conceivably better

parameterize mathematical models at the population level. Further, combining multiple

data sets in a BINNs-inspired equation learning framework can lead to the discovery of

broad scale governing dynamics that encompass multiple data sets rather than capturing

more narrow, experiment-specific properties. An example application of this framework is

in modeling tumor growth in humans. It is uncommon for patients to receive more than

1-2 tumor scans, however, there is a large number of patients in various stages of cancer. By

developing an equation learning framework that can utilize tumor data from a population

of patients, one can discover transferable dynamics at the human population level, and

can be further augmented and fine-tuned with patient-specific characteristics.

More formally, for a set of M data sets, each describing quantity of interest ui , i =

1, . . . , M , that are functions of some common spatial domain, Ω (e.g. Cartesian coordinates

x , y , z , etc.), and time, t , a neural network surrogate model can be trained to predict all

quantities of interest from the shared input domain. Then, replacing the terms comprising

the conservation laws of a governing PDE, the network outputs can be used together with

data-set-specific properties (e.g. initial degree of confluence in scratch assays, patient

characteristics in cancer modeling, etc.) as inputs to a set of parameter networks, T1, . . . , TL ,

that learn the governing dynamics. By forcing the predicted solutions to each data set to

satisfy a common set of governing PDEs, the global dynamics across all data sets can be

learned. An example illustration of this framework is shown in Figure 5.1.

Finally, to allow BINNs to be used more effectively in the natural sciences, a set of meth-

ods must be developed to accurately process and quantify incoming experimental data. Ex-

92

Figure 5.1 Multi-dataset extension to BINNs. A neural network surrogate for the solution of the
dynamical system (left) inputs spatiotemporal vectors,

�

x1 . . . xN t
�

, and predicts the corre-
sponding outputs for M different data sets. Then, parameter networks, T1, . . . , TL (center), input
the quantities of interest, u1, . . . , uM , with the option to include additional conditions, c1, . . . , cM ,
pertaining to individual data sets (e.g. initial degree of confluence in scratch assays, patient char-
acteristics in cancer modeling, etc.) to learn the associated dynamics. Finally, the quantities of
interest, u1, . . . , uM , and the predicted terms of the governing system, T1, . . . , TL , can be combined
into a single governing PDE (right) that describes the global dynamics that are common across all
data sets.

perimental data typically comes in the form of images or unstructured point clouds/graphs.

For example, in the case of scratch assay and cancer patient data, the experimental data

typically comes in the form of images. However, quantifying image data is a laborious and

time consuming task, often requiring expert supervision and verification. Machine learning

has recently emerged as a powerful tool for the fast and accurate processing of structured

and unstructured data, however, it can require large amounts of annotated training data,

which can be difficult to obtain in practice. Further, traditional machine learning-based

methods do not necessarily preserve physically realistic object properties (e.g., contiguity)

which can hinder the analysis and equation discovery of the quantified data. Thus, a key

challenge in this area is the development of data-efficient learning algorithms that alleviate

the burden of manual image processing while maintaining physically meaningful object

properties. Though not discussed in this dissertation, we have developed methods based

on convolutional neural networks for semantic segmentation that mimics the human task

of object tracing [Rut18; Rut19], and an extension of the tracing algorithm into higher di-

mensions [Lag20c]which were shown to be more accurate than state-of-the-art models,

orders of magnitude faster than manual segmentation, and ensured that physically realistic

regions are generated for each segmented object. Further, we have developed novel deep

93

learning methods for the unsupervised processing of unstructured point cloud data [Pan20].

Thus, an opportunity exists for combining the above methods that automatically extract

quantifiable data from structured and unstructured sources together with the BINNs frame-

work for a fully end-to-end equation learning methodology. This framework would be a

significant step toward the overall goals of this dissertation by enabling the wide-spread

use of novel mathematical models in conjunction with real-world data.

94

BIBLIOGRAPHY

[Ado15a] Adoteye, K. et al. “Correlation of parameter estimators for models admitting
multiple parameterizations”. International Journal of Pure and Applied Mathe-
matics 105.3 (2015). Publisher: Academic Publications, Ltd., pp. 497–522.

[Ado15b] Adoteye, K. et al. “Optimal design of non-equilibrium experiments for genetic
network interrogation”. Applied Mathematics Letters 40 (2015), pp. 84–89.

[And99] Anders, U. & Korn, O. “Model selection in neural networks”. Neural Networks
12.2 (1999), pp. 309–323.

[And74] Anderssen, R. S. & Bloomfield, P. “Numerical differentiation procedures for
non-exact data”. en. Numerische Mathematik 22.3 (1974), pp. 157–182.

[Ang09] Anguige, K. & Schmeiser, C. “A one-dimensional model of cell diffusion and
aggregation, incorporating volume filling and cell-to-cell adhesion”. en. J. Math.
Biol. 58.3 (2009), p. 395.

[Aok17] Aoki, K. et al. “Propagating Wave of ERK Activation Orients Collective Cell Mi-
gration”. Developmental Cell 43.3 (2017), 305–317.e5.

[Arc11] Arciero, J. C. et al. “Continuum Model of Collective Cell Migration in Wound
Healing and Colony Expansion”. en. Biophysical Journal 100.3 (2011), pp. 535–
543.

[Bal14] Baldock, A. L. et al. “Patient-Specific Metrics of Invasiveness Reveal Significant
Prognostic Benefit of Resection in a Predictable Subset of Gliomas”. en. PLOS
ONE 9.10 (2014), e99057.

[Ban16] Banks, H. et al. “Use of difference-based methods to explore statistical and
mathematical model discrepancy in inverse problems”. Journal of Inverse and
Ill-posed Problems 24 (2016).

[Ban09a] Banks, H. T. & Tran, H. T. Mathematical and Experimental Modeling of Physical
and Biological Processes. 2009.

[Ban09b] Banks, H. T. & Tran, H. T. Mathematical and Experimental Modeling of Physical
and Biological Processes. en. Google-Books-ID: SSRapIe8p3QC. CRC Press,
2009.

[Ban11] Banks, H. T. et al. “Estimation of Cell Proliferation Dynamics Using CFSE Data”.
en. Bulletin of Mathematical Biology 73.1 (2011), pp. 116–150.

[Ban14a] Banks, H. T. et al. Modeling and Inverse Problems in the Presence of Uncertainty.
English. Boca Raton: Chapman and Hall/CRC, 2014.

95

[Ban15a] Banks, H. T. et al. “Model comparison tests to determine data information
content”. Applied Mathematics Letters 43 (2015), pp. 10–18.

[Ban15b] Banks, H. T. et al. “Uncertainty quantification in modeling HIV viral mechanics”.
eng. Mathematical biosciences and engineering: MBE 12.5 (2015), pp. 937–964.

[Ban14b] Banks, H. T. et al. Modeling and inverse problems in the presence of uncertainty.
Chapman and Hall/CRC, 2014.

[Ban14c] Banks, H. T. et al. Modeling and inverse problems in the presence of uncertainty.
Chapman and Hall/CRC, 2014.

[Ban17] Banks, H. & Joyner, M. L. “AIC under the framework of least squares estimation”.
Applied Mathematics Letters 74 (2017), pp. 33 –45.

[Bil13] Billings, S. A. Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio-Temporal Domains. en. John Wiley & Sons, 2013.

[Bin07] Bindschadler, M. & McGrath, J. L. “Sheet migration by wounded monolayers
as an emergent property of single-cell dynamics”. en. Journal of Cell Science
120.5 (2007), pp. 876–884.

[Bon18] Boninsegna, L. et al. “Sparse learning of stochastic dynamical equations”. The
Journal of Chemical Physics 148.24 (2018), p. 241723.

[Bot19] Both, G.-J. et al. DeepMoD: Deep learning for Model Discovery in noisy data.
2019. arXiv: 1904.09406 [physics.comp-ph].

[Bru16a] Brunton, S. L. et al. “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”. Proceedings of the National
Academy of Sciences (2016), p. 201517384.

[Bru16b] Brunton, S. L. et al. “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”. Proceedings of the National
Academy of Sciences 113.15 (2016), pp. 3932–3937. eprint:https://www.pnas.
org/content/113/15/3932.full.pdf.

[Buh12] Buhlmann, P. “Bagging, Boosting and Ensemble Methods”. Handbook of Com-
putational Statistics (2012).

[Bur95] Burgess, A. N. “Non-linear model identification and statistical significance tests
and their application to financial modelling”. en. Artificial Neural Networks,
1995., Fourth International Conference on. 1995, pp. 312–317.

[Cas89] Casdagli, M. “Nonlinear prediction of chaotic time series”. Physica D: Nonlinear
Phenomena 35.3 (1989), pp. 335–356.

96

https://arxiv.org/abs/1904.09406
https://www.pnas.org/content/113/15/3932.full.pdf
https://www.pnas.org/content/113/15/3932.full.pdf

[Cha14] Chapnick, D. A. & Liu, X. “Leader cell positioning drives wound-directed col-
lective migration in TGF beta-stimulated epithelial sheets”. en. Mol. Biol. Cell
25.10 (2014), pp. 1586–1593.

[Che13] Chen, Y. et al. “Robust Sparse Regression under Adversarial Corruption”. en.
International Conference on Machine Learning. 2013, pp. 774–782.

[Che06] Cheng, H. et al. “Multistep-ahead time series prediction”. Lecture Notes in Com-
puter Science: Advances in Knowledge Discovery and Data Mining 3918.765-774
(2006).

[CA09] Cintrón-Arias, A. et al. “A sensitivity matrix based methodology for inverse
problem formulation”. Journal of Inverse and Ill-posed Problems 17.6 (2009),
pp. 545–564.

[Cob80] Cobelli, C. & DiStefano, J. J. “Parameter and structural identifiability concepts
and ambiguities: a critical review and analysis”. en. American Journal of Physi-
ology - Regulatory, Integrative and Comparative Physiology 239.1 (1980), R7–
R24.

[Cod08] Codling, E. A. et al. “Random walk models in biology”. Journal of The Royal
Society Interface 5.25 (2008), pp. 813–834.

[Con97] Constantino, R. F. et al. “Chaotic dynamics in an insect population”. Science
276 (1997), pp. 1881–1882.

[Dal95] Dale, P. D. et al. “Travelling waves in wound healing”. en. FORMA 10.3 (1995),
pp. 205–222.

[Dat17] Datta, A. & Zou, H. “Cocolasso for high-dimensional error-in-variables regres-
sion”. English (US). Ann. Statist. 45.6 (2017), pp. 2400–2426.

[DG00] De Gaetano, A. & Arino, O. “Mathematical modelling of the intravenous glucose
tolerance test”. Journal of Mathematical Biology 40.2 (2000), pp. 136–168.

[Den95] Dennis, B. et al. “Nonlinear Demographic Dynamics: Mathematical Models,
Statistical Methods, and Biological Experiments”. en. Ecological Monographs
65.3 (1995), pp. 261–282.

[Die81] Dierckx, P. “An Algorithm for Surface-Fitting with Spline Functions”. en. IMA J
Numer Anal 1.3 (1981), pp. 267–283.

[DiS13] DiStefano, J. Dynamic Systems Biology Modeling and Simulation. en. Academic
Press, 2013.

[Dyd20] Dydowiczova, A. et al. “Improved multiparametric scrape loading-dye transfer
assay for a simultaneous high-throughput analysis of gap junctional intercellu-
lar communication, cell density and viability”. Sci Rep. 10 (2020).

97

[Dys15] Dyson, L. & Baker, R. E. “The importance of volume exclusion in modelling
cellular migration”. en. J. Math. Biol. 71.3 (2015), pp. 691–711.

[Far87] Farmer, J & Sidorowich, J. “Predicting chaotic time series”. Phys. Rev. Lett. 59
(1987), pp. 845–848.

[Fra03] Francis, C. R. I. C. et al. “Quantifying annual variation in catchability for com-
mercial and research fishing”. en. Fishery Bulletin 101.2 (2003), pp. 293–304.

[Fri09] Friedl, P. & Gilmour, D. “Collective cell migration in morphogenesis, regenera-
tion and cancer”. en. Nat Rev Mol Cell Biol 10.7 (2009), pp. 445–457.

[Gal13] Gallaher, J. & Anderson, A. R. A. “Evolution of intratumoral phenotypic hetero-
geneity: the role of trait inheritance”. en. Interface Focus 3.4 (2013), p. 20130016.

[Gei93] Geisser, S. Predictive Inference. en. Google-Books-ID: wfdlBZ_iwZoC. CRC Press,
1993.

[Haa06] Haario, H. et al. “DRAM: Efficient adaptive MCMC”. Statistics and Computing
16.4 (2006), pp. 339–354.

[Ham16] Hamilton, F. et al. “Ensemble Kalman filtering without a model”. Physcial Review
X 6 (2016), p. 011021.

[Ham17] Hamilton, F. et al. “Hybrid modeling and prediction of dynamical systems”.
arXiv:1701.08141 [math] (2017). arXiv: 1701.08141.

[Har17] Haridas, P. et al. “Quantifying rates of cell migration and cell proliferation in
co-culture barrier assays reveals how skin and melanoma cells interact during
melanoma spreading and invasion”. eng. J. Theor. Biol. 423 (2017), pp. 13–25.

[Har13] Hartig, F. & Dormann, C. F. “Does model-free forecasting really outperform
the true model?” en. Proceedings of the National Academy of Sciences 110.42
(2013), E3975–E3975.

[Has05] Hastings, A. et al. “The spatial spread of invasions: new developments in theory
and evidence”. en. Ecology Letters 8.1 (2005), pp. 91–101.

[Hel95] Helbing, D. & Molnár, P. “Social force model for pedestrian dynamics”. Phys.
Rev. E 51.5 (1995). Publisher: American Physical Society, pp. 4282–4286.

[Hor91] Hornik, K. “Approximation capabilities of multilayer feedforward networks”.
Neural Networks 4.2 (1991), pp. 251 –257.

[Hsi05] Hsieh, C.-H. et al. “Distinguishing random environmental fluctuations from
ecological catastrophes for the North Pacific Ocean”. Nature 435.7040 (2005),
pp. 336–340.

98

[Osf] “https://osf.io/hx7bj/” ().

[III15] III, J. D. Dynamic Systems Biology Modeling and Simulation. en. Google-Books-
ID: nWoYAgAAQBAJ. Academic Press, 2015.

[Jim92] Jimenez, J et al. “Forecasting on chaotic time series: A local optimal linear-
reconstruction method”. Phys. Rev. A 45.6 (1992), p. 3553.

[Jin16a] Jin, W. et al. “Reproducibility of scratch assays is affected by the initial degree of
confluence: Experiments, modelling and model selection”. Journal of Theoreti-
cal Biology 390 (2016), pp. 136 –145.

[Jin16b] Jin, W. et al. “Reproducibility of scratch assays is affected by the initial degree
of confluence: Experiments, modelling and model selection”. en. Journal of
Theoretical Biology 390 (2016), pp. 136–145.

[Joh12] Johnston, S. T. et al. “Mean-field descriptions of collective migration with strong
adhesion”. Phys. Rev. E 85.5 (2012), p. 051922.

[Joh14] Johnston, S. T. et al. “How much information can be obtained from tracking the
position of the leading edge in a scratch assay?” en. Journal of The Royal Society
Interface 11.97 (2014), p. 20140325.

[Joh15] Johnston, S. T. et al. “Estimating cell diffusivity and cell proliferation rate by
interpreting IncuCyte ZOOM assay data using the Fisher-Kolmogorov model”.
BMC Systems Biology 9.38 (2015).

[Jon84] Jones, C. K. R. T. “Stability of the travelling wave solution of the FitzHugh-
Nagumo system”. en. Transactions of the American Mathematical Society 286.2
(1984), pp. 431–431.

[Kes17] Keskar, N. S. et al. “On Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima”. arXiv:1609.04836 [cs, math] (2017). arXiv: 1609.04836.

[Kin17] Kingma, D. P. & Ba, J. “Adam: A Method for Stochastic Optimization”. arXiv:
1412.6980 (2017). arXiv: 1412.6980.

[Kin14] Kingma, D. P. & Ba, J. L. “Adam: A method for stochastic optimization”. Proc.
3rd Int. Conf. Learn. Representations. 2014.

[Kug98] Kugiumtzis, D et al. “Regularized local linear prediction of chaotic time series”.
Physica D: Nonlinear Phenomena 112.3 (1998), pp. 344–360.

[Kur00] Kurganov, A. & Tadmor, E. “New High-Resolution Central Schemes for Nonlin-
ear Conservation Laws and Convection–Diffusion Equations”. en. Journal of
Computational Physics 160.1 (2000), pp. 241–282.

99

[Lag18] Lagergren, J. et al. “Forecasting and uncertainty quantification using a hybrid
of mechanistic and non-mechanistic models for an age-structured population
model.” Bulletin of Mathematical Biology 80.6 (2018).

[Lag20a] Lagergren, J. et al. “Biologically-informed neural networks guide mechanistic
modeling from sparse experimental data.” arXiv:2005.13073 (2020).

[Lag20b] Lagergren, J. et al. “Learning partial differential equations for biological trans-
port models from noisy spatiotemporal data.” Proceedings of the Royal Society
A 476.2234 (2020).

[Lag20c] Lagergren, J. et al. “Region growing with convolutional neural networks for
biomedical image segmentation”. arXiv:2009.11717 (2020).

[Lag20d] Lagergren, J. H. et al. “Learning partial differential equations for biological
transport models from noisy spatio-temporal data”. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences 476.2234 (2020),
p. 20190800. eprint: https://royalsocietypublishing.org/doi/pdf/
10.1098/rspa.2019.0800.

[Lai11] Laine, M. “DRAM - Delayed Rejection Adaptive Metropolis.” (2011).

[Loh12] Loh, P.-L. & Wainwright, M. J. “High-dimensional regression with noisy and
missing data: Provable guarantees with nonconvexity”. EN. Ann. Statist. 40.3
(2012), pp. 1637–1664.

[Mac95] Mackay, D. J. C. “Probable networks and plausible predictions — a review of
practical Bayesian methods for supervised neural networks”. Network: Compu-
tation in Neural Systems 6.3 (1995), pp. 469–505.

[Mai04] Maini, P. K. et al. “Travelling Waves in a Wound Healing Assay”. Applied Mathe-
matics Letters 17 (2004), pp. 575–580.

[Man17] Mangan, N. M. et al. “Model selection for dynamical systems via sparse regres-
sion and information criteria”. Proc. R. Soc. A 473.2204 (2017), p. 20170009.

[Mar16] Martius, G. & Lampert, C. H. “Extrapolation and learning equations”. arXiv
preprint arXiv:1610.02995 (2016).

[Mat04] Matsubayashi, Y. et al. “ERK Activation Propagates in Epithelial Cell Sheets and
Regulates Their Migration during Wound Healing”. Current Biology 14.8 (2004),
pp. 731–735.

[McL15] McLennan, R. et al. “Neural crest migration is driven by a few trailblazer cells
with a unique molecular signature narrowly confined to the invasive front”. en.
Development 142.11 (2015), pp. 2014–2025.

100

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2019.0800
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2019.0800

[Mes14] Meshkat, N. et al. “On Finding and Using Identifiable Parameter Combinations
in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web
Implementation”. PLOS ONE 9.10 (2014), e110261.

[Mur02] Murray, J. D. Mathematical Biology I. An Introduction. en. Ed. by Antman, S. S.
et al. 3rd. Vol. 17. Interdisciplinary Applied Mathematics. New York, NY: Springer
New York, 2002.

[Nar20] Nardini, J. et al. “Learning equations from biological data with limited time
samples.” Bulletin of Mathematical Biology 82.119 (2020).

[Nar19] Nardini, J. T. & Bortz, D. M. “The influence of numerical error on parameter
estimation and uncertainty quantification for advective PDE models”. Inverse
Problems 35.6 (2019), p. 065003.

[Nar16] Nardini, J. T. et al. “Modeling keratinocyte wound healing: cell-cell adhesions
promote sustained migration”. Journal of Theoretical Biology 400 (2016), pp. 103–
117.

[Neu20] Neurohr, G. E. & Amon, A. “Relevance and Regulation of Cell Density”. Trends
in Cell Biology 30.3 (2020), pp. 213 –225.

[Nik06] Nikolic, D. L. et al. “Role of boundary conditions in an experimental model of
epithelial wound healing”. en. American Journal of Physiology - Cell Physiology
291.1 (2006), pp. C68–C75.

[Olu13] Olufsen, M. S. & Ottesen, J. T. “A practical approach to parameter estimation
applied to model predicting heart rate regulation”. en. Journal of Mathematical
Biology 67.1 (2013), pp. 39–68.

[Pan20] Paniagua, T. et al. “A simple deconvolutional mechanism for point clouds and
sparse unordered data.” Proceedings of the AAAI Conference on Artificial Intel-
ligence 34.10 (2020).

[Par00] Parlos, A. G. et al. “Multi-step-ahead prediction using dynamic recurrent neural
networks”. Neural Networks 13.7 (2000), pp. 765–786.

[Per13] Perretti, C. et al. “Model-free forecasting outperforms the correct mechanis-
tic model for simulated and experimental data”. Proceedings of the National
Academy of Sciences 110 (2013), pp. 5253–5257.

[Pou95] Poumay, Y. & Pittelkow, M. R. “Cell Density and Culture Factors Regulate Ker-
atinocyte Commitment to Differentiation and Expression of Suprabasal K1/K10
Keratins”. Journal of Investigative Dermatology 104.2 (1995), pp. 271 –276.

101

[Rai19] Raissi, M. et al. “Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential
equations”. Journal of Computational Physics 378 (2019), pp. 686 –707.

[Rau09] Raue, A. et al. “Structural and practical identifiability analysis of partially ob-
served dynamical models by exploiting the profile likelihood”. en. Bioinformat-
ics 25.15 (2009), pp. 1923–1929.

[Reg05] Regonda, S et al. “Local polynomial method for ensemble forecast of time series”.
Nonlin. Proc. in Geophys. 12 (2005), pp. 397–406.

[Ris15] Rish, I. & Grabarnik, G. Y. Sparse Modeling: Theory, Algorithms, and Applications.
Boca Raton, FL: CRC Press, 2015.

[Roc15] Rockne, R. C. et al. “A patient-specific computational model of hypoxia-modul-
ated radiation resistance in glioblastoma using 18F-FMISO-PET”. Journal of
The Royal Society Interface 12.103 (2015).

[Ros10] Rosenbaum, M. & Tsybakov, A. B. “Sparse recovery under matrix uncertainty”.
EN. Ann. Statist. 38.5 (2010), pp. 2620–2651.

[Rud17a] Rudy, S. H. et al. “Data-driven discovery of partial differential equations”. Sci-
ence Advances 3.4 (2017), e1602614.

[Rud17b] Rudy, S. H. et al. “Data-driven discovery of partial differential equations”. Sci-
ence Advances 3.4 (2017). eprint: https://advances.sciencemag.org/
content/3/4/e1602614.full.pdf.

[Rut18] Rutter, E. et al. “Automated object tracing for biomedical image segmentation
using a deep convolutional neural network.” Lecture Notes in Computer Science
11073 (2018).

[Rut19] Rutter, E. et al. “A convolutional neural network method for boundary optimiza-
tion enables few-shot learning for biomedical image segmentation.” Lecture
Notes in Computer Science 11795 (2019).

[Rut17] Rutter, E. M. et al. “Mathematical Analysis of Glioma Growth in a Murine Model”.
Scientific Reports 7 (2017).

[Sah18] Sahoo, S. et al. “Learning Equations for Extrapolation and Control”. Proceedings
of the 35th International Conference on Machine Learning. Ed. by Dy, J. & Krause,
A. Vol. 80. Proceedings of Machine Learning Research. Stockholmsmässan,
Stockholm Sweden: PMLR, 2018, pp. 4442–4450.

[Sau94] Sauer, T. “Time series prediction by using delay coordinate embedding”. Time
Series Prediction: Forecasting the Future and Understanding the Past. Addison
Wesley, 1994, pp. 175–193.

102

https://advances.sciencemag.org/content/3/4/e1602614.full.pdf
https://advances.sciencemag.org/content/3/4/e1602614.full.pdf

[Sch17] Schaeffer, H. “Learning partial differential equations via data discovery and
sparse optimization”. Proc. R. Soc. A 473.2197 (2017), p. 20160446.

[Sch06] Schelter, B. et al. Handbook of time series analysis: recent theoretical develop-
ments and applications. John Wiley and Sons, 2006.

[Sch98] Schroer, C. G. et al. “Predicting chaos most of the time from embeddings with
self-intersections”. Phys. Rev. Lett. 80.7 (1998), p. 1410.

[Sen07] Sengers, B. G. et al. “Experimental characterization and computational mod-
elling of two-dimensional cell spreading for skeletal regeneration.” Journal of
the Royal Society, Interface 4.17 (2007), pp. 1107–1117.

[She90a] Sherratt, J. A. & Murray, J. D. “Models of epidermal wound healing”. en. Proc. R.
Soc. Lond. B 241.1300 (1990), pp. 29–36.

[She90b] Sherratt, J. A. et al. “Models of epidermal wound healing”. Proceedings of the
Royal Society of London. Series B: Biological Sciences 241.1300 (1990), pp. 29–
36. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/
rspb.1990.0061.

[Sib99] Sibert, J. R. et al. “An advection–diffusion–reaction model for the estimation of
fish movement parameters from tagging data, with application to skipjack tuna
(Katsuwonus pelamis)”. Canadian Journal of Fisheries and Aquatic Sciences
56.6 (1999), pp. 925–938.

[Smi92] Smith, L. A. “Identification and prediction of low dimensional dynamics”. Phys-
ica D: Nonlinear Phenomena 58.1 (1992), pp. 50–76.

[Smi13] Smith, R. C. Uncertainty Quantification: Theory, Implementation, and Applica-
tions. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2013.

[Smi14] Smith, R. C. Uncertainty quantification: theory, implementation, and applica-
tions. English. OCLC: 875327904. Philadelphia: SIAM, 2014.

[Ste15] Stepien, T. L. et al. “A data-motivated density-dependent diffusion model of
in vitro glioblastoma growth”. en. Mathematical Biosciences and Engineering
12.6 (2015), pp. 1157–1172.

[Sto48] Stone, M. H. “The Generalized Weierstrass Approximation Theorem”. en. Math-
ematics Magazine 21.5 (1948), p. 237.

[Str06] Strelioff, C. C. & Hübler, A. W. “Medium-term prediction of chaos”. Phys. Rev.
Lett. 96.4 (2006), p. 044101.

103

https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.1990.0061
https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.1990.0061

[Sug94] Sugihara, G. “Nonlinear forecasting for the classification of natural time series”.
Philosophical Transactions of the Royal Society of London. Series A: Physical
and Engineering Sciences 348.1688 (1994), pp. 477–495.

[Sug90] Sugihara, G. & May, R. M. “Nonlinear forecasting as a way of distinguishing
chaos from measurement error in time series”. Nature 344.6268 (1990), pp. 734–
741.

[Sug12] Sugihara, G. et al. “Detecting Causality in Complex Ecosystems”. en. Science
338.6106 (2012), pp. 496–500.

[The09] Theodoridis, S. & Koutroumbas, K. “Chapter 5 - Feature Selection”. Pattern
Recognition (Fourth Edition). Ed. by Theodoridis, S. & Koutroumbas, K. Fourth
Edition. Boston: Academic Press, 2009, pp. 261 –322.

[Top12] Topaz, C. M. et al. “Locust Dynamics: Behavioral Phase Change and Swarming”.
en. PLOS Computational Biology 8.8 (2012), e1002642.

[Vic95] Vicsek, T. et al. “Novel type of phase transition in a system of self-driven parti-
cles”. Physical Review Letters 75.6 (1995). arXiv: cond-mat/0611743, pp. 1226–
1229.

[Vos02] Voss, H et al. “Nonlinear dynamical system identification from uncertain and
indirect measurements.” Int J Bif Chaos 14 (2002), pp. 1905–1924.

[War19] Warne, D. J. et al. “Using Experimental Data and Information Criteria to Guide
Model Selection for Reaction–Diffusion Problems in Mathematical Biology”. en.
Bull Math Biol 81.6 (2019), pp. 1760–1804.

[Yan20] Yang, L. et al. B-PINNs: Bayesian Physics-Informed Neural Networks for For-
ward and Inverse PDE Problems with Noisy Data. 2020. arXiv: 2003.06097
[stat.ML].

[Ye15] Ye, H. et al. “Equation-free mechanistic ecosystem forecasting using empiri-
cal dynamic modeling”. en. Proceedings of the National Academy of Sciences
112.13 (2015), E1569–E1576.

[Yua04] Yuan, G et al. “Estimating the predicability of an oceanic time series using linear
and nonlinear methods”. J. Geophys. Res. 109 (2004), p. C08002.

[Zha18] Zhang, S. & Lin, G. “Robust data-driven discovery of governing physical laws
with error bars”. Proc. R. Soc. A 474.2217 (2018), p. 20180305.

[Zha09] Zhang, T. “Adaptive forward-backward greedy algorithm for sparse learning
with linear models”. Advances in Neural Information Processing Systems. 2009,
pp. 1921–1928.

104

https://arxiv.org/abs/2003.06097
https://arxiv.org/abs/2003.06097

APPENDICES

105

APPENDIX

A

HYBRID MODELING

A.1 Parameter distributions

Each hybrid model has its own set of parameters that need to be estimated in the context

of a given inverse problem. One question that arises is how do the parameter estimates

vary among different model choices? Figure A.1 shows how the parameters vary among

the hybrid models across all 21 data sets. From this we see that each parameter is roughly

normally distributed with relatively no outliers.

A.2 Parameter values

To get a closer look, in the following pages we present all of the individual parameter

estimates for each hybrid (and full) model applied to each data set. There are 7 experimental

conditions determined by the value of cp a which is used to quantify the survival probability

of a pupa in the presence of adult flour beetles at a given time. For each of the 7 values of

cp a , there are three replicates which yields a total of 21 unique data sets.

106

Figure A.1 Histogram of each of the parameter estimates among all 7 hybrid models across all 21
data sets.

Table A.1 Parameter estimates for each hybrid model for the data set with cp a : 0, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 87.5656 - - - -
SPS - 17.8686 - - - - 0.2182
SPA - 0.3122 126.6186 - - - 0.2182
LSS 264.9027 - - 8.6070 0.0084 0.0181 -
LSA 235.4855 - 108.3916 4.7567 0.0095 0.0117 -
LPS 289.5294 -18.0937 - 7.0309 0.0246 0.0150 0.2135
LPA 267.6326 4.2396 112.3060 8.7363 0.0191 0.0128 0.2430

107

Table A.2 Parameter estimates for each hybrid model for the data set with cp a : 0, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 105.8837 - - - -
SPS - 42.6744 - - - - 0.1729
SPA - 19.4947 80.4809 - - - 0.1989
LSS 253.5396 - - 8.9462 -0.0015 0.0328 -
LSA 260.9683 - 94.5207 6.8836 0.0008 0.0255 -
LPS 164.6181 22.9624 - 8.4204 0.0026 0.0259 0.1569
LPA 257.5946 0.3385 21.9302 16.0772 0.0263 0.0143 0.2036

Table A.3 Parameter estimates for each hybrid model for the data set with cp a : 0, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 93.2149 - - - -
SPS - 3.4573 - - - - 0.2470
SPA - -1.1486 119.4034 - - - 0.2627
LSS 270.5929 - - 5.7954 0.0081 0.0131 -
LSA 269.7489 - 117.1913 4.2792 0.0014 0.0180 -
LPS 233.8927 11.6517 - 4.4630 0.0126 0.0145 0.0083
LPA 320.5320 4.6590 106.3479 8.3933 0.0169 0.0113 0.3285

Table A.4 Parameter estimates for each hybrid model for the data set with cp a : 05, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 93.6535 - - - -
SPS - -9.6514 - - - - 0.2523
SPA - -10.2065 99.3673 - - - 0.2096
LSS 270.2898 - - 5.2134 0.0055 0.0115 -
LSA 341.4744 - 114.3748 8.6488 0.0154 0.0162 -
LPS 267.5685 37.7745 - 5.7037 0.0105 0.0111 0.2443
LPA 301.3494 -43.0801 130.9987 8.5879 0.0081 0.0174 0.1578

Table A.5 Parameter estimates for each hybrid model for the data set with cp a : 05, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 95.4528 - - - -
SPS - -59.6550 - - - - 0.2412
SPA - -5.7144 84.5839 - - - 0.2102
LSS 225.0079 - - 6.3634 0.0159 0.0122 -
LSA 245.6442 - 93.2592 7.0331 0.0065 0.0176 -
LPS 257.2530 4.2089 - 7.1117 0.0194 0.0141 0.3901
LPA 169.1556 4.4937 107.6186 8.2696 0.0339 0.0127 0.1209

108

Table A.6 Parameter estimates for each hybrid model for the data set with cp a : 05, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 91.1832 - - - -
SPS - 6.7107 - - - - 0.2362
SPA - 27.9214 98.6414 - - - 0.1860
LSS 194.6385 - - 6.6468 0.0097 0.0138 -
LSA 257.2298 - 139.9384 5.7910 0.0169 0.0119 -
LPS 256.7528 10.8231 - 3.5677 0.0170 0.0095 0.1807
LPA 247.1146 16.0416 122.5166 11.3146 0.0102 0.0227 0.2247

Table A.7 Parameter estimates for each hybrid model for the data set with cp a : 10, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 79.1244 - - - -
SPS - -1.0929 - - - - 0.1982
SPA - -30.0912 79.3693 - - - 0.2220
LSS 284.3427 - - 7.1667 0.0203 0.0141 -
LSA 198.1921 - 77.9394 7.2244 0.0111 0.0144 -
LPS 223.2605 -0.4444 - 5.8579 0.0419 0.0105 0.2058
LPA 171.9203 -27.0930 71.1554 16.3337 0.0257 0.0187 0.2154

Table A.8 Parameter estimates for each hybrid model for the data set with cp a : 10, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 73.8780 - - - -
SPS - 20.0653 - - - - 0.2848
SPA - 0.8115 99.8802 - - - 0.2241
LSS 262.1010 - - 6.2641 0.0081 0.0121 -
LSA 287.7510 - 115.5338 5.9965 0.0074 0.0130 -
LPS 234.6461 34.8923 - 6.8348 0.0030 0.0138 0.1482
LPA 185.1986 8.2924 141.0987 10.2721 0.0139 0.0190 0.1369

Table A.9 Parameter estimates for each hybrid model for the data set with cp a : 10, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 93.7121 - - - -
SPS - 6.4716 - - - - 0.2284
SPA - 33.0567 34.7667 - - - 0.2454
LSS 225.0365 - - 11.7217 0.0091 0.0187 -
LSA 208.4282 - 59.9405 27.3955 0.0198 0.0289 -
LPS 203.9533 7.2728 - 9.7588 0.0120 0.0155 0.1035
LPA 201.6383 -10.4708 128.0393 13.0707 0.0163 0.0158 0.1621

109

Table A.10 Parameter estimates for each hybrid model for the data set with cp a : 25, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 117.0499 - - - -
SPS - 3.0593 - - - - 0.1395
SPA - 49.3746 75.1271 - - - 0.1948
LSS 311.8632 - - 18.3808 0.0191 0.0280 -
LSA 237.8213 - 96.1909 14.8132 0.0176 0.0215 -
LPS 205.1371 7.9529 - 8.6078 0.0085 0.0207 -0.0051
LPA 205.7767 -13.5553 119.2023 11.1854 0.0108 0.0183 0.0774

Table A.11 Parameter estimates for each hybrid model for the data set with cp a : 25, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 94.3111 - - - -
SPS - 46.3850 - - - - 0.1855
SPA - 7.3573 70.5916 - - - 0.2384
LSS 300.5890 - - 8.5072 0.0115 0.0121 -
LSA 243.5118 - 99.8626 13.9622 0.0205 0.0145 -
LPS 320.7861 -27.6091 - 10.6516 0.0100 0.0129 0.1880
LPA 225.4208 106.1507 111.8993 6.7875 0.0848 0.0051 -0.0000

Table A.12 Parameter estimates for each hybrid model for the data set with cp a : 25, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 74.2800 - - - -
SPS - 5.5289 - - - - 0.1968
SPA - -22.5522 99.0768 - - - 0.1987
LSS 234.1530 - - 3.5936 0.0104 0.0032 -
LSA 341.6403 - 64.9878 6.6088 0.0213 0.0136 -
LPS 273.6266 -20.6973 - 5.3360 0.0068 0.0092 0.2640
LPA 245.0015 30.8203 155.5782 6.5300 0.0078 0.0131 -0.0289

Table A.13 Parameter estimates for each hybrid model for the data set with cp a : 35, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 115.5389 - - - -
SPS - -18.4751 - - - - 0.0224
SPA - -34.9826 99.1463 - - - 0.0517
LSS 261.7244 - - 9.1461 0.0171 0.0155 -
LSA 235.4640 - 113.0659 4.7266 0.0375 0.0082 -
LPS 241.1091 45.9677 - 10.0909 0.0151 0.0176 0.0426
LPA 175.6418 65.0242 70.0661 2.4126 0.1533 0.0019 -0.7355

110

Table A.14 Parameter estimates for each hybrid model for the data set with cp a : 35, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 117.8667 - - - -
SPS - 15.0357 - - - - 0.1671
SPA - 1.7302 105.5667 - - - 0.1495
LSS 295.0432 - - 7.2311 0.0059 0.0116 -
LSA 216.9816 - 141.3938 10.8090 0.0407 0.0150 -
LPS 284.7066 97.4666 - 5.2911 0.0037 0.0101 0.1484
LPA 280.2145 -0.1963 107.4857 6.9163 0.0173 0.0104 0.0934

Table A.15 Parameter estimates for each hybrid model for the data set with cp a : 35, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 76.9842 - - - -
SPS - 1.6093 - - - - 0.2265
SPA - 9.5439 80.1815 - - - 0.1938
LSS 318.6050 - - 6.9155 0.0124 0.0110 -
LSA 214.6931 - 66.1158 7.1972 0.0525 0.0103 -
LPS 264.4815 -9.1458 - 6.6379 0.0117 0.0106 0.1854
LPA 203.1091 -11.1508 110.6879 8.8650 0.0935 0.0075 0.1933

Table A.16 Parameter estimates for each hybrid model for the data set with cp a : 50, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 128.0039 - - - -
SPS - 15.0019 - - - - 0.1666
SPA - 24.1235 94.8902 - - - 0.2008
LSS 120.0218 - - 7.2009 0.0085 0.0126 -
LSA 391.7925 - 139.1012 11.9511 0.0110 0.0273 -
LPS 249.4874 57.5170 - 7.6681 0.0075 0.0147 0.1601
LPA 265.8448 51.1741 75.4596 6.2343 0.0673 0.0084 0.2951

Table A.17 Parameter estimates for each hybrid model for the data set with cp a : 50, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 99.8908 - - - -
SPS - 6.6477 - - - - 0.1566
SPA - -5.8578 102.9241 - - - 0.1320
LSS 225.0992 - - 7.0927 0.0072 0.0120 -
LSA 240.7469 - 32.2565 11.1816 0.0062 0.0179 -
LPS 276.5789 -80.6655 - 5.0354 0.0059 0.0094 -0.0032
LPA 200.3636 57.9480 182.4789 8.7927 0.0109 0.0117 0.0198

111

Table A.18 Parameter estimates for each hybrid model for the data set with cp a : 50, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 109.8883 - - - -
SPS - -6.7587 - - - - 0.2016
SPA - -12.8388 102.8847 - - - 0.2092
LSS 284.9632 - - 10.3289 0.0766 0.0141 -
LSA 255.4330 - 110.8994 7.0262 0.1958 0.0125 -
LPS 214.9260 30.3981 - 10.0889 0.0236 0.0140 0.1016
LPA 202.2075 13.8686 123.5118 11.4685 0.0322 0.0138 0.0289

Table A.19 Parameter estimates for each hybrid model for the data set with cp a : 100, replicate: 1.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 73.4071 - - - -
SPS - -59.6402 - - - - 0.1925
SPA - 29.5418 161.9890 - - - 0.2680
LSS 263.0473 - - 6.6799 0.0212 0.0102 -
LSA 307.2219 - 87.6893 19.9009 0.0365 0.0180 -
LPS 266.0186 -11.8024 - 9.5711 0.0121 0.0121 0.2868
LPA 217.2470 -28.3068 115.2743 21.3916 0.0189 0.0185 0.2453

Table A.20 Parameter estimates for each hybrid model for the data set with cp a : 100, replicate: 2.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 137.2379 - - - -
SPS - 3.3028 - - - - 0.2330
SPA - 16.6531 19.8224 - - - 0.1920
LSS 296.7728 - - 9.1518 0.1006 0.0127 -
LSA 260.3605 - 138.0497 9.1080 0.0383 0.0142 -
LPS 285.7502 21.4619 - 9.9246 0.0110 0.0128 0.2222
LPA 281.3465 -0.6882 85.0033 11.7834 0.0074 0.0162 -0.2808

Table A.21 Parameter estimates for each hybrid model for the data set with cp a : 100, replicate: 3.

Model L0 P0 A0 b ce l ce a µ1

SSA - - 59.7707 - - - -
SPS - -13.8199 - - - - 0.2208
SPA - 10.5866 72.3512 - - - 0.1208
LSS 232.6881 - - 9.6878 0.0195 0.0122 -
LSA 271.5676 - 185.1406 14.3152 0.0576 0.0168 -
LPS 258.6513 2.7035 - 9.6504 0.0203 0.0130 0.1579
LPA 233.4159 21.9667 106.5528 14.2631 0.0739 0.0140 0.0277

112

APPENDIX

B

NEURAL NETWORK DATA DENOISING

B.1 Error Model Selection

This section is based on [Ban14a], and we are concerned with the selection of an appropriate

error model from a given data set, {Ui , j }M ,N
i=1, j=1. A common and flexible error model is given

by the nonconstant variance error model

Ui , j = f (xi , t j |θ0) + f γ(xi , t j |θ0)εi , j , (B.1)

in which εi , j
i .i .d .∼ N (0,σ2). This error model is flexible in that it can account for both

constant variance error models (when γ= 0) and nonconstant variance error model (when

γ> 0). In the latter case, we can quantify the extent of the variance’s dependence on f (x , t)

with estimation of γ. Computing and plotting residuals is a useful way to estimate an

appropriate value of γ from data.

From Equation (B.1), we observe that the modified residuals,

ri , j =
Ui , j − f (xi , t j |θ)

f γ(xi , t j |θ)
, i = 1, ..., M ; j = 1, ..., N (B.2)

113

Figure B.1 Modified Residual computations for various values of γ from the advection-diffusion
data set withσ = 0.25. Top left: results for γ= 0, Top right: results for γ= 0.5, bottom left: results
for γ= 1.0.

should be M N realizations of an i .i .d . random variable when γ has been chosen correctly

and θ ≈ θ0. One can thus choose the correct form of Equation B.1 for a given data set and

mathematical, f (x , t ;θ), as follows: (i). Pick a value of γ, (ii). compute θ̂ by minimizing

the generalized cost function, i.e., θ̂ = arg minθ
∑M ,N

i=1, j=1 r 2
i , j , and (iii). compute and plot

each ri , j . For the correct value of γ, the plotted modified residual computations will appear

i .i .d . Note this method can be used for error models different from Equation (B.1). For

example, Nardini and Bortz [Nar19] used residual computations to demonstrate that a

spatially-autocorrelated error model can account for numerical error arising from a PDE’s

discretization scheme during an inverse problem methodology.

As an example, we have plotted the modified results for the advection-diffusion dataset

withσ= 0.25 in Figure B.1 for γ= 0,0.5, and 1.0. For each value of γ, we trained the ANN

on the assumption that data was of the form given by Equation (B.1). For γ = 0 and 0.5,

we observe that the residuals do not appear i .i .d ., as they fan out with increasing values

of u (x , t). At γ= 1.0, however, we see that the variance of the modified residuals appears

constant, suggesting that γ= 1.0 is the appropriate value from the data.

114

B.2 Comparing spline and bi-spline methods

We compared the accuracy in learning the correct PDE when using 1-dimensional cubic CV

splines versus cubic CV bi-splines for denoising data and approximating partial derivatives

(Figures B.2,B.3,B.4). We found that PDE-FIND with pruning always has a higher TPR value

when using bi-spline computations as compared to 1-dimensional splines.

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os
iti
ve
 R
at
io

PDE-FIND with pruning Results for the Diffusion-Advection Equation

1d Splines
Bi-splines

Figure B.2 TPR values for the diffusion-advection equation when using 1-dimensional cubic
splines versus cubic bi-splines for denoising data and approximating partial derivatives.

B.3 Global Spline Calculations

We are concerned with approximating {Ui , j }M ,N
i=1, j=1 with a global spline representation of

the form

S (x , t) =
K ,L
∑

k=1,l=1

ck ,l Sk ,l (x , t), (B.3)

where Sk ,l (x , t) are normalized bivariate cubic B-splines defined on the knot locations

115

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0
Tr
ue
 P
os
iti
ve
 R
at
io

PDE-FIND with pruning Results for the Fisher-KPP Equation

1d Splines
Bi-splines

Figure B.3 TPR values for the Fisher-KPP equation when using 1-dimensional cubic splines
versus cubic bi-splines for denoising data and approximating partial derivatives.

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
io

PDE-FIND with pruning Results for the nonlinear Fisher-KPP Equation

1d Splines
Bi-splines

Figure B.4 TPR values for the nonlinear Fisher-KPP equation when using 1-dimensional cubic
splines versus cubic bi-splines for denoising data and approximating partial derivatives.

116

(x , t)k ,l = {x̃k , ..., x̃k+4} × {t̃l , ..., t̃l+4}. In order to do so, we need to estimate a smoothing

parameter, s , the knot locations, {(x , t)k ,l }K ,L
k=1,l=1, and the spline coefficients, c = {ck ,l }K ,L

k=1,l=1.

To obtain these estimates, we split {Ui , j }M ,N
i=1, j=1 into a training and validation set (50%/50%).

Recall that bivariate splines need to be fit to data on a rectangular grid domain, so we

maintain this structure in the training and validation set by selecting all spatial points but

only every other time point for the training data. The remaining points are placed in the

validation data. While the (50%/50%) training and validation split here is not equivalent to

the (90%/10%) split used to train the ANN, we found that implementing the global splines

on a (90%/10%) took too much time for practical computation (training one data set took

over a day on an Intel i7 6-core 3.5GHz desktop computer).

To find the optimal value of s , we set we begin with s =M N +
p

2M N , a previously-

proposed upper bound on this smoothing parameter [Die81], and find the knot locations

and coefficient values that minimize the GLS cost functionJS (θ) (Equation (2.4) from in the

main text) on the validation data. Further description of identification of spline locations

of coefficients is given below. We then continue to divide s in half and re-compute S (x , t)

for the updated values of s untilJS (θ) begins to increase on the validation data. We then

compute S (x , t) for a finer grid of s values around whichever value minimizedJS (θ) and

ultimately select whichever of these value minimizeJS (θ) on the validation data.

For a given value of s , we find the spline locations and coefficents in a similar manner

to that described in [Ban14a]. We first fit the global spline model to the training data using

a constant variance (OLS) error model. This first-pass spline computation allows us to

estimate u (xi , t j) for the training data and in turn estimateJ (θ). We now iteratively fit the

cubic spline method to the training data usingJ (θ)with γ= 1.0 until the number of knot

locations (determined by the Scipy bisplev algorithm) does not change by more than one

over five consecutive calculations. We then fix the knot locations and iteratively estimate

the spline coefficients, ck ,l , by minimizingJ (θ)with γ= 1 until either the maximum of the

relative absolute difference between consecutive estimates, i.e., the inf-norm, converges

within 10−2 or 100 such computations have been performed.

B.4 PDE-FIND without pruning results

We found that using PDE-FIND without pruning results in learning the wrong equation

when applied to data from biological transport models, even when no noise is added to the

data. We evaluated accuracy, using the true positive ratio (TPR) as a metric, for the diffusion-

advection (Figure B.5), Fisher-KPP (Figure B.6), and nonlinear Fisher-KPP equations (Figure

B.7).

117

For the diffusion-advection equation, we found that the TPR value of the final learned

equation when using ANN approximations is higher for all values ofσ when using pruning

with PDE-FIND than without pruning (Figure B.5). In general, for small values of σ, we

observed that pruning enables PDE-FIND to better learn the true equation when using CV

local spline and finite difference computations, but it harms the ability to learn the true

equation for larger values ofσ. For example, the median TPR value increases after pruning

when using finite difference approximations from TPR = 0.33 to 0.5 forσ= 0. However, the

TPR instead decreases from TPR = 0.33 to 0 atσ= 0.05 and from TPR = 0.5 to 0 atσ= 0.10.

The median TPR value when using spline approximations increases from TPR = 0.3 to 0.5

at σ = 0 and from TPR = 0.33 to 1 at σ = 0.01. At σ = 0.10, the median values decreased

from TPR = 1.0 to 0.5.

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
io

PDE-FIND without pruning Results for the Diffusion-Advection Equation

FD
SP
ANN

Figure B.5 TPR values for the diffusion-advection equation.

For the Fisher-KPP equation, the median TPR value for PDE-FIND with the ANN compu-

tations always increases after using pruning (Figure B.6). The median value for PDE-FIND

with finite difference computations increases forσ= 0, 0.01, but decreases from TPR = 0.5

to 0 forσ= 0.05 and from TPR= 0.45 to 0 forσ= 0.10. The median TPR value for PDE-FIND

with CV local spline computations increases forσ= 0,0.01,0.05, and 0.10, but decreases

from TPR = 0.4 to 0 at both σ = 0.25 and 0.50. Thus, pruning always helped PDE-FIND

118

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0
Tr
ue
 P
os
iti
ve
 R
at
io

PDE-FIND without pruning Results for the Fisher-KPP Equation

FD
SP
ANN

Figure B.6 TPR values for the Fisher-KPP equation.

learn the true equation when using the ANN method, and helps the other computational

methods for small noise levels.

For the nonlinear Fisher-KPP qquation, the median TPR value always improved the

accuracy of the PDE-FIND method when using ANN approximations (Figure B.7). When

using finite difference approximations, the median TPR value increases forσ= 0, 0.01.05.

The median value decreases from TPR = 0.3 to 0 atσ= 0.10 for finite difference approxima-

tions. When using CV local spline approximations, the median TPR value increases when

σ = 0 and 0.01. The median TPR value decreased from TPR = 0.3 to 0 at σ = 0.50. While

the median value is never TPR = 1 for this equation, these results suggest that pruning in

general helps reduce the number of incorrect terms in the library.

B.5 Tables of learned PDEs

This section contains tables of the final learned PDEs for data from each equation consid-

ered at a given noise level. The equation form is the one most commonly selected by the

PDE-FIND method with pruning over the 1,000 different training-validation splits of ut

and Θ. The provided parameter values are the mean value for these parameters when the

equation form was the final learned equation.

119

Table B.1 Learned Equations for the diffusion-advection equation.

True Equation
ut = 0.01ux x −0.8ux

σ Method Learned Equation
0.0 FD ut =−0.799974ux +0.010414ux x −0.000350u 2ux

0.01 FD ut =−0.800226ux +0.009940ux x

0.05 FD ut = 0
0.10 FD ut = 0
0.25 FD ut = 0
0.50 FD ut = 0
0.0 LCVSP ut =−0.807744ux +0.011464ux x +0.000670u 2ux +0.000012u 2ux x

0.01 LCVSP ut =−0.793993ux +0.011877ux x

0.05 LCVSP ut =−0.796512ux +0.012290ux x

0.10 LCVSP ut =−0.774238ux

0.25 LCVSP ut =−0.709333ux

0.50 LCVSP ut = 0
0.0 LNCVSP ut =−0.820792ux +0.011752ux x

0.01 LNCVSP ut =−0.819847ux +0.011726ux x

0.05 LNCVSP ut =−0.819094ux +0.012085ux x

0.10 LNCVSP ut =−0.790680ux

0.25 LNCVSP ut =−0.760747ux

0.50 LNCVSP ut =−0.729489ux

0.0 GNCVSP ut =−0.764276ux

0.01 GNCVSP ut =−0.694783ux

0.05 GNCVSP ut =−0.611367ux

0.10 GNCVSP ut =−0.581202ux

0.25 GNCVSP ut = 0
0.50 GNCVSP ut = 0
0.0 ANN ut =−0.809223ux +0.010963ux x

0.01 ANN ut =−0.802903ux +0.011107ux x −0.000074u 2ux x +0.000765u 2
x

0.05 ANN ut =−0.810360ux +0.010693ux x

0.10 ANN ut =−0.808996ux +0.009535ux x

0.25 ANN ut =−0.795770ux +0.009386ux x

0.50 ANN ut =−0.801987ux +0.007888ux x +0.000835u 2
x

120

Table B.2 Discovered Equations for the Fisher-KPP Equation

True Equation
ut = 0.02ux x +10.0u −10.0u 2

σ Method Learned Equation
0.0 FD ut = 0.020086ux x −9.994321u 2+9.995583u

0.01 FD ut =−10.154641u 2+9.950923u
0.05 FD ut = 0
0.10 FD ut = 0
0.25 FD ut = 0
0.50 FD ut = 0
0.0 LCVSP ut = 0.020474ux x −9.993088u 2+9.996574u

0.01 LCVSP ut = 0.019600ux x −9.972429u 2+9.977920u
0.05 LCVSP ut =−10.130441u 2+9.925709u
0.10 LCVSP ut =−10.087935u 2+9.916230u
0.25 LCVSP ut = 0
0.50 LCVSP ut = 0
0.0 LNCVSP ut = 0.020435ux x −9.991312u 2+9.994767u

0.01 LNCVSP ut = 0.019522ux x −9.977385u 2+9.982515u
0.05 LNCVSP ut =−10.121782u 2+9.916090u
0.10 LNCVSP ut =−10.087677u 2+9.926292u
0.25 LNCVSP ut = 0
0.50 LNCVSP ut = 0
0.0 GNCVSP ut =−10.264500u 2+10.229065u

0.01 GNCVSP ut =−8.598153u 2+9.375428u
0.05 GNCVSP ut =−10.346971u 2+10.122676u
0.10 GNCVSP ut =−10.007866u 2+10.075741u
0.25 GNCVSP ut =−9.312518u 2+9.304600u
0.50 GNCVSP ut =−5.621682u 2+7.104374u
0.0 ANN ut = 0.023272ux x −9.307794u 2+9.533177u

0.01 ANN ut = 0.023017ux x −9.397175u 2+9.600546u
0.05 ANN ut = 0.020534ux x −9.733768u 2+9.837442u
0.10 ANN ut = 0.022343ux x −9.287166u 2+9.587605u
0.25 ANN ut = 0.011912ux x −11.160631u 2+12.537031u

+0.071219u ux x −0.105350u 2
x

0.50 ANN ut =−0.015750ux +0.013682ux x −8.688903u 2

+12.179728u −0.034142u 2ux +0.077472u ux x −0.109284u 2
x

121

Table B.3 Discovered Equations for the nonlinear Fisher-KPP Equation.

True Equation
ut = 0.020000u ux x +0.020000u 2

x +10.000000u −10.000000u 2

σ Method Learned Equation
0.0 FD ut = 0.000178ux x −9.996233u 2+9.996516u +0.019671u ux x +0.019729u 2

x

0.01 FD ut =−10.268294u 2+10.210714u
0.05 FD ut =−9.531702u 2+9.731417u
0.10 FD ut = 0
0.25 FD ut = 0
0.50 FD ut = 0
0.0 LCVSP ut = 0.000760ux x −10.013375u 2+10.013144u +0.018798u ux x +0.018324u 2

x

0.01 LCVSP ut = 0.005632ux x −9.820662u 2+9.789693u +0.017619u 2
x

0.05 LCVSP ut =−10.393255u 2+10.287537u
0.10 LCVSP ut =−10.264929u 2+10.194679u
0.25 LCVSP ut =−10.146329u 2+10.082739u
0.50 LCVSP ut = 0
0.0 LNCVSP ut = 0.000738ux x −10.011882u 2+10.011901u +0.018874u ux x +0.018394u 2

x

0.01 LNCVSP ut = 0.005585ux x −9.828360u 2+9.796878u +0.017437u 2
x

0.05 LNCVSP ut =−10.396293u 2+10.285593u
0.10 LNCVSP ut =−10.333053u 2+10.259315u
0.25 LNCVSP ut =−9.875062u 2+9.794690u
0.50 LNCVSP ut = 0
0.0 GNCVSP ut =−0.025827ux x −10.407031u 2+10.439599u

0.01 GNCVSP ut =−0.010336ux x −10.663675u 2+10.575536u
0.05 GNCVSP ut =−0.009571ux x −10.670700u 2+10.563083u
0.10 GNCVSP ut =−9.792682u 2+9.824648u
0.25 GNCVSP ut =−0.017669ux x −10.233510u 2+10.177806u
0.50 GNCVSP ut =−0.023890ux x −9.392645u 2+9.576821u
0.0 ANN ut = 0.009869ux x −9.295491u 2+9.237594u −0.032329u ux x +0.016924u 2

x

0.01 ANN ut =−9.398164u 2+9.389853u +0.024833u 2
x

0.05 ANN ut = 0.009080ux x −9.311857u 2+9.245655u −0.032236u ux x +0.016673u 2
x

0.10 ANN ut =−0.006456ux x −8.965042u 2+9.140129u +0.027012u 2
x

0.25 ANN ut =−0.010203ux x −7.927777u 2+8.551556u +0.034169u 2
x

0.50 ANN ut = 0.285757−0.026084ux x −5.419017u 2+6.724382u +0.044730u 2
x

122

σ = 0.00 σ = 0.01 σ = 0.05 σ = 0.10 σ = 0.25 σ = 0.50

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
io

PDE-FIND without pruning Results for the nonlinear Fisher-KPP Equation

FD
SP
ANN

Figure B.7 TPR values for the nonlinear Fisher-KPP equation.

123

APPENDIX

C

BIOLOGICALLY-INFORMED NEURAL

NETWORKS

124

C.1 Supporting information

a

b

c

Figure C.1 (a) An illustration of an experiment with the IncuCyte ZOOM™ system (Essen Bio-
Science, MI USA). Full details of the experiment and image processing can be found in [Jin16a].
Cells are seeded uniformly within each well in a 96-well plate at a pre-specified density of be-
tween 10,000 and 20,000 cells per well. A WoundMaker™ (Essen BioScience) is used to create a
uniform vertical scratch along the middle of the well. (b) Microscopy images are collected from
a rectangular region of the well. (c) Example images corresponding to experiments initiated
with 12,000, 16,000, or 20,000 cells per well. A PC-3 prostate cancer cell line was used. The image
recording time is indicated on each subfigure and the scale bar corresponds to 300 µm. The green
dashed lines in the images in the top row show the approximate location of the leading edge cre-
ated by the scratch. Each image is divided into equally-spaced vertical columns, and the number
of cells in each column divided by the column area is calculated to yield an estimate of the 1-D
cell density.

125

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Classical FKPP Solution

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Porous-FKPP Solution

Figure C.2 Predicted cell density profiles using BINNs with the governing reaction-diffusion PDE
in Equation (4.15). The left subplot corresponds to the set of simulated data using the classical
FKPP equation and the rig!ht subplot corresponds to the Generalized Porous-FKPP equation.
Solid lines represent the numerical solution to Equation (4.15) using DMLP, and GMLP. Dashed
lines represent the noiseless numerical simulations of the classical FKPP and Generalized Porous-
FKPP equations. The markers represent the numerical simulations of the classical FKPP and
Generalized Porous-FKPP equations with artificial noise generated by the statistical error model
in Equation (4.4).

0 500 1000 1500
Cell density (cells/mm2)

0.00

0.02

0.04

0.06

0.08

Di
ffu

siv
ity

 (m
m

2 /d
ay

)

Classical FKPP Diffusion
Pred
True

0 500 1000 1500
Cell density (cells/mm2)

0.0

0.5

1.0

1.5

2.0

Gr
ow

th
 (1

/d
ay

)

Classical FKPP Growth
Pred
True

0 500 1000 1500
Cell density (cells/mm2)

0.00

0.02

0.04

0.06

0.08

Di
ffu

siv
ity

 (m
m

2 /d
ay

)

Porous-FKPP Diffusion
Pred
True

0 500 1000 1500
Cell density (cells/mm2)

0.0

0.5

1.0

1.5

2.0

Gr
ow

th
 (1

/d
ay

)

Porous-FKPP Growth
Pred
True

Figure C.3 The learned diffusivity and growth functions DMLP and GMLP evaluated over cell den-
sity u . Starting from the left, the first two subplots correspond to the learned diffusivity and
growth functions from simulated data using the classical FKPP equation. The last two subplots
correspond to the learned diffusivity and growth functions from simulated data using the Gener-
alized Porous-FKPP equation. Solid lines represent the parameter networks DMLP and GMLP and
dashed lines represent the true diffusivity and growth functions used to simulate the data.

126

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100

M
od

ifi
ed

 re
sid

ua
ls

Initial cell density: 10,000 cells per well

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100
Initial cell density: 12,000 cells per well

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100
M

od
ifi

ed
 re

sid
ua

ls
Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100
Initial cell density: 16,000 cells per well

0 200 400 600 800 1000 1200 1400 1600
Cell density (cells/mm2)

100

50

0

50

100

M
od

ifi
ed

 re
sid

ua
ls

Initial cell density: 18,000 cells per well

0 200 400 600 800 1000 1200 1400 1600
Cell density (cells/mm2)

100

50

0

50

100
Initial cell density: 20,000 cells per well

Figure C.4 Modified residuals using BINNs with the governing reaction-diffusion PDE in Equa-
tion (4.15). Each subplot corresponds to an experiment with a different initial cell density.

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100

M
od

ifi
ed

 re
sid

ua
ls

Initial cell density: 10,000 cells per well

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100
Initial cell density: 12,000 cells per well

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100

M
od

ifi
ed

 re
sid

ua
ls

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0 200 400 600 800 1000 1200 1400 1600

100

50

0

50

100
Initial cell density: 16,000 cells per well

0 200 400 600 800 1000 1200 1400 1600
Cell density (cells/mm2)

100

50

0

50

100

M
od

ifi
ed

 re
sid

ua
ls

Initial cell density: 18,000 cells per well

0 200 400 600 800 1000 1200 1400 1600
Cell density (cells/mm2)

100

50

0

50

100
Initial cell density: 20,000 cells per well

Figure C.5 Modified residuals using BINNs with the governing delay-reaction-diffusion PDE in
Equation (4.16). Each subplot corresponds to an experiment with a different initial cell density.

127

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 10,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 12,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000
Ce

ll
de

ns
ity

 (c
el

ls/
m

m
2)

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 16,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 18,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Initial cell density: 20,000 cells per well

Figure C.6 Predicted cell density profiles using the classical FKPP model in Equation (4.19). Each
subplot corresponds to an experiment with a different initial cell density.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 10,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 12,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 14,000 cells per well

0.0 days
0.5 days
1.0 days
1.5 days
2.0 days

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

500

1000

1500

2000

Initial cell density: 16,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Ce
ll

de
ns

ity
 (c

el
ls/

m
m

2)

Initial cell density: 18,000 cells per well

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position (mm)

0

500

1000

1500

2000

Initial cell density: 20,000 cells per well

Figure C.7 Predicted cell density profiles using the Generalized Porous-FKPP model in Equa-
tion (4.20). Each subplot corresponds to an experiment with a different initial cell density.

128

Table C.1 Each column corresponds to an experiment with different initial cell density (i.e.
10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

Initial cell density
Parameter 10,000 12,000 14,000 16,000 18,000 20,000
D (µm2/hr) 309.7 253.8 681.8 540.9 735.7 978.5
r (1/hr) 0.0437 0.0438 0.0483 0.0490 0.0540 0.0649

Table C.2 Each column corresponds to an experiment with different initial cell density (i.e.
10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per well).

Initial cell density
Parameter 10,000 12,000 14,000 16,000 18,000 20,000
D (µm2/hr) 1851.8 465.0 2993.4 2370.8 2377.8 2017.1
m (unitless) 0.9704 0.3001 0.9923 0.9879 0.8265 0.6235
r (1/hr) 0.0435 0.0436 0.0481 0.0484 0.0526 0.0639

129

0 250 500 750 1000 1250 1500
Cell density (cells/mm^2)

0.00

0.02

0.04

0.06

0.08
Di

ffu
siv

ity
 (m

m
2 /d

ay
)

DMLP

0 250 500 750 1000 1250 1500
Cell density (cells/mm^2)

0.0

0.5

1.0

1.5

2.0

Gr
ow

th
 (1

/d
ay

)

GMLP

10,000 initial cells per well
12,000 initial cells per well
14,000 initial cells per well
16,000 initial cells per well
18,000 initial cells per well
20,000 initial cells per well

0 250 500 750 1000 1250 1500
Cell density (cells/mm^2)

0.00

0.02

0.04

0.06

0.08

Di
ffu

siv
ity

 (m
m

2 /d
ay

)

DMLP

0 250 500 750 1000 1250 1500
Cell density (cells/mm^2)

0.0

0.5

1.0

1.5

2.0

Gr
ow

th
 (1

/d
ay

)

GMLP

0.0 0.5 1.0 1.5 2.0
Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

e
(u

ni
tle

ss
)

TMLP

Figure C.8 The learned diffusivity DMLP, growth GMLP, and delay TMLP functions extracted from
the corresponding BINNs with governing reaction-diffusion PDE in Equation (4.15) (first row)
and delay-reaction-diffusion PDE in Equation (4.16) (second row). Each line corresponds to an
experiment with a different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and
20,000 cells per well). Note that DMLP and GMLP have different lengths since they are evaluated
between the minimum and maximum observed cell densities corresponding to each data set.

130

0 500 1000 1500
200

150

100

50

0

50

100

150

200

M
od

ifi
ed

 R
es

id
ua

ls

a = 0.0

0 500 1000 1500

40

20

0

20

40

 = 0.2

0 500 1000 1500
20

15

10

5

0

5

10

15

20
 = 0.4

0 500 1000 1500

4

2

0

2

4

 = 0.6

0 500 1000 1500
200

150

100

50

0

50

100

150

200

M
od

ifi
ed

 R
es

id
ua

ls

b

0 500 1000 1500

40

20

0

20

40

0 500 1000 1500
20

15

10

5

0

5

10

15

20

0 500 1000 1500

4

2

0

2

4

0 500 1000 1500
200

150

100

50

0

50

100

150

200

M
od

ifi
ed

 R
es

id
ua

ls

c

0 500 1000 1500

40

20

0

20

40

0 500 1000 1500
20

15

10

5

0

5

10

15

20

0 500 1000 1500

4

2

0

2

4

0 500 1000 1500
200

150

100

50

0

50

100

150

200

M
od

ifi
ed

 R
es

id
ua

ls

d

0 500 1000 1500

40

20

0

20

40

0 500 1000 1500
20

15

10

5

0

5

10

15

20

0 500 1000 1500

4

2

0

2

4

0 500 1000 1500
200

150

100

50

0

50

100

150

200

M
od

ifi
ed

 R
es

id
ua

ls

e

0 500 1000 1500

40

20

0

20

40

0 500 1000 1500
20

15

10

5

0

5

10

15

20

0 500 1000 1500

4

2

0

2

4

0 500 1000 1500
Cell density (cells/mm^2)

200

150

100

50

0

50

100

150

200

M
od

ifi
ed

 R
es

id
ua

ls

f

0 500 1000 1500
Cell density (cells/mm^2)

40

20

0

20

40

0 500 1000 1500
Cell density (cells/mm^2)

20

15

10

5

0

5

10

15

20

0 500 1000 1500
Cell density (cells/mm^2)

4

2

0

2

4

Figure C.9 Statistical error model selection. The function-approximating deep neural network
uMLP is trained usingLGLS for different values of γ across each data set. Each subplot shows the
modified residuals (see Equation (4.6)) as a function of the predicted cell density u . The columns
correspond to different levels of proportionality (i.e. γ= 0.0,0.2,0.4,0.6) where γ= 0.0 represents
the constant variance (ordinary least squares) case. Each row (a-f) corresponds to an experiment
with different initial cell density (i.e. 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000 cells per
well). The proportionality constant that results in the most i.i.d. residuals across each data set
was chosen to calibrate the statistical error model in Equation (4.4).

131

Figure C.10 PDE random sampling validation. The BINNs framework is trained usingLTotal with
three ways of including the PDE error termLTotal: (a) no PDE regularization, (b) PDE regular-
ization at the data locations, and (c) PDE regularization at 10,000 randomly sampled points at
each training iteration. The first column shows the scratch assay data with initial cell density
20,000 cells per well (black dots) with the corresponding BINNs approximation to the governing
PDE uMLP (surface plot). The second column shows heatmaps of the modified residual errors
(see Equation (4.6)) at each data point. The third column shows heatmaps of the PDE errors (see
Equation (4.7)) evaluated on a 100×100 meshgrid over the input domain.

132

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Problem statement
	Dissertation outline
	Publication overview

	Data-driven hybrid modeling
	Introduction
	Methods
	Age-structured population data
	Mathematical model
	State space reconstruction
	Bayesian inference
	Hybrid methodology
	Hybrid uncertainty quantification
	Evaluation

	Results
	Forecast accuracy
	Uncertainty quantification
	Practical identifiability analysis

	Summary of contributions
	Discussion

	Neural networks and sparse regression
	Motivation
	Introduction
	Methods
	Data generation
	Data denoising and library construction
	Equation learning

	Results
	Derivative calculations
	PDE-FIND without pruning
	Diffusion-advection equation
	Fisher-KPP equation
	Nonlinear Fisher-KPP equation

	Summary of contributions
	Discussion

	Biologically-informed neural networks
	Motivation
	Introduction
	Scratch assay data
	Biologically-informed neural networks
	Evaluation procedure

	Methods
	Data pre-processing
	Network design
	Training procedure
	PDE forward solver
	Parameter estimation

	Results
	Simulation case study
	Reaction-diffusion BINNs for experimental data
	Delay-reaction-diffusion BINNs for experimental data
	Guided mechanistic model selection
	Model comparison

	Summary of contributions
	Discussion
	Conclusions

	Conclusions
	Contributions
	Future work

	Bibliography
	APPENDICES
	Hybrid Modeling
	Parameter distributions
	Parameter values

	Neural Network Data Denoising
	Error Model Selection
	Comparing spline and bi-spline methods
	Global Spline Calculations
	PDE-FIND without pruning results
	Tables of learned PDEs

	Biologically-informed Neural Networks
	Supporting information

