ABSTRACT

HOLLINGSWORTH, BRANDON DAVIS. Evaluating Aedes-vectored Disease Control: Risks
and New Approaches. (Under the direction of Drs. Alun L. Lloyd and Michael H. Reiskind).

Aedes-vectored diseases are some of the most widespread and fastest growing infectious
diseases worldwide. Many of the mosquito control measures originally used to drive Aedes
aegypti to near extinction in the Americas, e.g. mass spraying of DDT, are no longer viable, and
there is debate about the effectiveness of ultra-low volume (ULV) spraying for reducing Aedes
populations and their associated disease risks. The recent reemergence of dengue and outbreaks
of Zika and chikungunya have resulted in renewed interest in controlling both Aedes (Stegomyia)
aegypti (Say) and Aedes (Stegomyia) albopictus (Skuse). In response to this, there have been
numerous technologies and strategies proposed to target Aedes mosquitoes, but many of the
strategies are not tested and, even for well-studied strategies, the dynamics during and following
treatments are not fully understood. Mathematical models have proven to be an important tool
for providing insights about Aedes population and Aedes-vectored disease dynamics, particularly
in the absence of experimental data. In this dissertation, | used a combination of mathematical
models, field experiments, and statistical analysis to elucidate the population and disease
dynamics associated with the control of Aedes mosquitoes.

Using mathematical models, |1 examined transmission dynamics following the cessation
of control programs in various disease systems. These simulations showed that use of non-
immunizing controls against endemic diseases, e.g. vector control against dengue, could result in
increases in incidence over some time periods, a phenomenon | termed the divorce effect. In
these situations, | found that using a non-immunizing control, even for a relatively short period,
resulted in a reduction in herd immunity. Once control ended, reemergence of the disease

resulted in large outbreaks that negated any benefit obtained during the period in which the



disease was suppressed. This is an important result for dengue control, which relies heavily on
vector reduction, as the growing prevalence of insecticide resistance could render many control
programs obsolete.

A field experiment | conducted in 2018, examined the population dynamics following the
use of spraying and larval habitat management (LHM) in individual yards, and to quantify their
effectiveness. Pairs of houses were monitored every 4 days over a 33-day period, with one yard
in the pair receiving a single application of the assigned treatment. Individual houses treated
using barrier sprays had significantly reduced mosquito population for the entire post-control
period. LHM did not result in a significant reduction in the population density over the entire
period but resulted in significant reduction after 21 days.

Data from the field experiment were then used to parameterize a model for barrier sprays
and LHM applied to individual yards within a neighborhood. Parameter estimation provided an
estimate of the average lifespan of Ae. albopictus, percentage increase in adult mortality due to
barrier sprays, half-life of the barrier spray’s effect, percentage of larval habitat removed by
LHM, and movement between yards. | then used the model to examine the effect of nine
different control strategies on the neighborhood-wide Ae. albopictus population. These
simulations suggested that treating a quarter of the yards with a combination of barrier sprays
and LHM could reduce the neighborhood-wide Ae. albopictus population by up to 80%, on
average, using targeted treatments. Our results suggested that significant reductions in the
neighborhood-wide population is possible with relatively few treatments, even without perfect
knowledge of the mosquito’s distribution.

The results presented in this dissertation help to better understand the effects of mosquito

control on both Aedes population dynamics and Aedes-vectored disease dynamics. Both the



modeling and experimental results we have presented have implications for future Aedes, and

Aedes-vectored disease, control and will hopefully help guide future control programs.
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CHAPTER 1 - Introduction



Aedes is a genus of mosquitoes found throughout the tropics and subtropics worldwide.
The two most well studied species in the group, Aedes aegypti and Aedes albopictus, are known
to be highly invasive and efficient vectors for several important human arboviruses, most notably
dengue, Zika, and yellow fever (Powell et al., 2018). Both species prefer peridomestic
environments and human hosts and oviposit in a variety of manmade containers. It is this ability
to utilize a variety of containers for oviposition, along with the ability of those eggs to diapause
for months at a time (Hawley, 1988), that enabled both species to invade the tropics and subtropics
worldwide. Ae. aegypti was the first to do this, likely making use of water containers on slave
ships in the sixteenth century and has been present in the Americas since (Powell et al., 2018),
with the first confirmed yellow fever outbreak in 1648 (McNeill, 2010). Ae. albopictus spread
more recently, transported worldwide through the tire trade, first arriving in the US in Texas in
1985 (Sprenger & Wuithiranyagool, 1986). Since then, Ae. aegypti has been largely displaced by
Ae. albopictus in the contiguous US, with its current distribution restricted to the southern most
parts of Florida and Texas, Arizona, and California. Meanwhile, Ae. albopictus is found
throughout the southeastern US, from Texas to Florida and as far north as Virginia, in urban areas
of Arizona, and has recently begun invading California (Hahn et al., 2017). While Ae. albopictus
is thought to be a less efficient vector than Ae. aegypti (Lambrechts et al., 2010), it has been shown
to be a capable vector in laboratory studies (Boromisa et al., 1987) and has been responsible for
outbreaks of dengue (Luo et al., 2017) and chikungunya (Gérardin et al., 2008).

Most Aedes-vectored diseases are members of the genus Flaviviridae, including dengue,
yellow fever, and Zika viruses. In addition to these flaviviruses, Aedes mosquitoes are the main
vectors of chikungunya, an alphavirus, and a known vector of dirofilariasis, dog heartworm.

Dengue virus is a reemerging disease transmitted primarily by Ae. aegypti throughout most of the



tropics. It accounts for the majority of the morbidity and mortality associated with Aedes-vectored
diseases, with between 64 and 159 million cases of dengue in 2017 resulting in between 18 and 50
thousand deaths (James et al., 2018), and is undergoing rapid expansion with an increase of
between 100-400 million cases each year, with further expansion expected in Europe and the US
in the coming decades (Brady & Hay, 2020). Yellow fever was eliminated from much of the
world, thanks to the development of a vaccine, but an estimated 97 thousand cases resulted in an
estimated 4800 deaths in 2017 (James et al., 2018). Both Zika and chikungunya are considered
emerging viruses, having undergone recent expansion outside of their historical ranges (Lowe et
al., 2018). A highly publicized outbreak of Zika in the Americas resulted in between 1.6 million
and 3.1 million cases of Zika in 2017 but resulted in less than 100 deaths (James et al., 2018).
chikungunya, on the other hand, has not seen a large-scale outbreak, but a single mutation allowed
for transmission by Ae. albopictus in the Reunion Islands (Tsetsarkin et al., 2007), resulting in the
highest incidence rate of any recorded arbovirus outbreak (Gérardin et al., 2008), stoking fear of
further outbreaks.

Following the elimination of malaria in the US and much of Central America, there was a
push for the eradication of Ae. aegypti, and the diseases it vectored, throughout the Americas. This
program implemented a combination of container inspections, oiling of aquatic habitats, and
spraying of dichlorodiphenyltrichloroethane (DDT) and resulted in the elimination of Ae. aegypti
in large portions of South America (Soper, 1963). However, the high cost and lack of public
support resulted in the program being discontinued in the US before the complete elimination of
Ae. aegypti (Wilson et al., 2020). With the more recent introduction and spread of Ae. albopictus,
and only isolated Aedes-borne disease outbreaks, the priority for mosquito control programs

shifted to reductions in mosquito nuisance in most of the US (Wilson et al., 2020). Unfortunately,



this shift in priorities, coupled with decreases in funding, resulted in the government agencies
responsible for mosquito and mosquito-borne disease control, e.g. mosquito abatement districts,
being underfunded and ill-prepared to respond to mosquito-borne disease outbreaks in many areas
(National Association of County and City Health Officials, 2017; Rosario et al., 2014). In the
absence of publicly funded mosquito control, private mosquito control companies have increased
in popularity in the last decade (Specialty Consultants, 2017). In contrast to publicly funded
mosquito-control, which often uses ultra-low volume (ULV) applications of insecticides along
with large-scale habitat removal projects aimed at reducing mosquito populations over a large area,
these private companies implement barrier sprays coupled with larval habitat management to
manage mosquito populations within individual yards.

Despite the long history of Aedes-vectored diseases and the renewed interest caused by
outbreaks in recent decades, we still lack efficient proven methods to control outbreaks in the
absence of vaccines. There is debate over the efficacy of ULV applications of insecticides for
Aedes control (Bonds, 2012; Bowman et al., 2016; Faraji & Unlu, 2016; Roiz et al., 2018; Wilson
et al., 2015), despite its acceptance for use against other species, and studies with epidemiological
endpoints are scarce (Bowman et al., 2016; Wilson et al., 2015). The effect of smaller-scale
applications of treatments, similar to what is used by private control companies, on Aedes
populations has only begun to be quantified (Hollingsworth et al., 2020; Hurst et al., 2012;
Richards et al., 2017; Trout et al., 2007; Vandusen et al., 2016) and no work has been done on
their effectiveness against outbreaks. New technologies such as gene drives and the use of
Wolbachia have the potential to drastically reduce Aedes-borne disease (Flores & O’Neill, 2018)
and ongoing trials using Wolbachia show promise (Anders et al., 2018; O’Neill et al., 2018),

however it is still unknown how sustainable they will be.



Used effectively, any of these treatments, or a combination thereof, could potentially eliminate
Aedes-borne disease in an area, but none are without drawbacks. The overuse of insecticides,
either through ULV or barrier sprays, has resulted in the emergence of insecticide resistant Aedes
in many areas (Dusfour et al., 2019; Moyes et al., 2017; Tancredi et al., 2020). Likewise, it has
been suggested that a similar situation could occur following the introduction Wolbachia or gene
drives (Esvelt et al., 2014) into populations. On the other hand, there is no simple evolutionary
response to the physical reduction of larval habitat, but larval habitat reduction is costly, slow, and
exceptionally difficult for Aedes mosquitoes (World Health Organization, 2009).
Dissertation Outline

In this dissertation, | used a combination of modeling and field experiments to elucidate
the effect of non-immunizing controls, particularly the use of insecticides, on Aedes population
and disease dynamics. Chapter 2 discusses an ordinary differential equation (ODE) modeling
study where | examined the transient dynamics following the end of non-immunizing controls,
including the use of insecticides against vector-borne diseases, showing that these controls can
have unintended consequences when not maintained. Chapter 3 discusses a field experiment
conducted in July-Aug 2018 in which | quantified the effects of barrier sprays and larval habitat
reduction on individual treated yards and untreated neighbors. The data collected in this
experiment was then used to estimate parameters for a multi-patch ODE model of Ae. albopictus
across a heterogenous neighborhood, which is discussed in Chapter 4. Using this model, 1
examined the effectiveness of different plans for applications and evaluated the added benefit of
using different amounts of knowledge to target areas with high densities. Chapter 5 ties together

the results of these studies.



Related work

Outside of the work presented in this dissertation, the author has co-authored two peer-
reviewed papers and three other manuscripts at various stages of preparation. A follow-up to the
field experiment presented in Chapter 2 examining the effectiveness of three traps for controlling
Aedes mosquitoes was conducted the following year, for which the author designed and performed
the statistical analysis (Figurski, et al., in prep). The author has also worked on projects to correlate
Aedes population density to land-use variables measured using satellite or aerial observations
(Reiskind, et al., 2020), which would allow for easy identification of high-density areas, and plans
for the release of Wolbachia infected Ae. aegypti [Hollingsworth, et al., in prep] and genetically

engineered mice (Appendix).
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ABSTRACT

The lack of effective vaccines for many endemic diseases often forces policymakers to
enact control programs that rely on non-immunizing controls, such as vector control, in order to
reduce the massive burden of these diseases. It is well known that controls can have
counterintuitive effects, such as the honeymoon effect, in which partially effective controls cause
not only a greater initial reduction in infection than expected for an infection near its endemic
equilibrium, but also large outbreaks during control as a result of accumulation of susceptibles.
Unfortunately, many control measures cannot be maintained indefinitely, and the results of
cessation are not well understood. Here, we examine the results of stopped or failed non-
immunizing control measures in endemic settings. By using a mathematical model to compare
the cumulative number of cases expected with and without the control measures, we show that
deployment of control can lead to a larger total number of infections, counting from the time that
control started, than without any control — the divorce effect. This result is directly related to the
population-level loss of immunity resulting from non-immunizing controls and is seen in model
results from a number of settings when non-immunizing controls are used against an infection
that confers immunity. Finally, we also examine three control plans for minimizing the
magnitude of the divorce effect in seasonal infections and show that they are incapable of
eliminating the divorce effect. While we do not suggest stopping control programs that rely on
non-immunizing controls, our results strongly argue that the accumulation of susceptibility
should be considered before deploying such controls against endemic infections when indefinite
use of the control is unlikely. We highlight that our results are particularly germane to endemic
mosquito-borne infections, such as dengue virus, both for routine management involving vector

control and for field trials of novel control approaches.

16



INTRODUCTION

An estimated 200 million cases of malaria, 390 million cases of dengue fever, and 9
million cases of measles occurred in 2016 [1,2], representing only a portion of the total impact of
endemic disease that year. The burden that this places on local populations, both in terms of
morbidity and mortality and both direct and indirect economic costs, often pressures policy
makers to act to suppress these infections. However, the scientific rationale on which the
implemented policies are based is not always clear, making it difficult to assess whether the risks
associated with control have been adequately addressed.

Eradication— the permanent reduction of worldwide incidence to zero [3]— is the ideal
aim of all control programs. This goal is unrealistic, with only two infections having been
successfully eradicated to date: smallpox and rinderpest [4]. Often, a more realistic goal for a
control program is either long-term suppression or local elimination of the infection. These
goals hold their own challenges though, as they require long-term or even indefinite control
programs, which can face budgetary and public support issues, not to mention the potential for
some controls to fail due to evolution of resistance. Further, if there is a loss of herd immunity in
the population due to the control lowering population exposure to the pathogen, there is the
additional risk that when a control program ends the infection will re-emerge in a post-control
epidemic and reestablish in the population [4].

Naively, one might imagine that lowering the incidence of infection will have no
detrimental effects for the population. However, mathematical modeling has previously revealed
numerous perverse outcomes of application of ineffective control measures (by which we mean
ones that do not bring the basic reproductive number, Ro, below one) in endemic settings.

Perhaps the most famous example is the increased age at infection that results when a population
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is partially vaccinated for rubella, leading to more infections occurring in women of child-
bearing age, where severe complications, such as congenital rubella syndrome, can result when
pregnant women become infected [5-7]. While this certainly represents a potential downside of
the control, the population sees a reduction in rubella prevalence. McLean and Anderson (1988)
showed that when an ineffective control is used against an endemic infection it often results in an
initial drop in prevalence to well below the endemic level, the “honeymoon effect”, but this is
followed by outbreaks that periodically increase prevalence above the endemic level as a
consequence of a build-up of susceptible individuals. Similarly, in a seasonally-forced setting,
Pandey and Medlock [9] found that vaccination against dengue virus could result in a transient
period with periodic outbreaks of larger peak prevalence than occurred before vaccination.
These last two examples illustrate possible negative side effects of ineffective controls: they can
cause transient increases in prevalence while still resulting in a decrease in total incidence.

In the results above, there is higher incidence than expected, but Okamoto et al.[10]
described an even more troubling theoretical result while exploring a model of failed or stopped
combined strategies aimed at controlling dengue virus, e.g. vaccination along with transgenic
vector control. They observed that when control was only transient the total number of
infections that occurred, counting from the time that control started, a quantity they called the
cumulative incidence (CI), could exceed the number of cases that would have been observed had
no control been deployed. Even in situations where control measures had a significant positive
impact over a period of years, the outbreaks that ensued following the cessation, or failure, of
control could lead to an outbreak that was large enough to outweigh the number of cases

prevented during the control period.
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While Okamoto et al. [10] showed that it was possible for transient transgenic controls to
increase the total number of infections, here we demonstrate that this effect—which we call the
divorce effect—is not an artifact of very specific complex models, but quite a general
phenomenon that can occur across a range of models and parameter space when deploying a
control measure that does not confer immunity. By exploring the dynamics of the divorce effect
in the setting of several simple models we gain insights that were not obtainable using the
previous complex models. Conversely, we find that for immunizing controls (e.g. vaccination)
the divorce effect does not occur, even when the duration of protection is relatively short-lived.

We demonstrate the generality of this result for endemic infections by simulating
cessation of control measures in three commonly-used models for pathogen transmission. Unlike
the honeymoon effect, the divorce effect occurs for both ineffective and effective controls,
provided that they are transient. As anticipated, control results in the accumulation of susceptible
individuals resulting in the potential for a large outbreak following the cessation of control. This
outbreak is either triggered by infective individuals that remain in the population or by
reintroduction of infection from outside the control area, and its size increases asymptotically
towards the size of a virgin-soil epidemic as the length of the control period is increased and herd
immunity is lost. Counterintuitively, and comparable to results in Okamoto et al. [10], we see
that the post-control outbreak often results in there being timeframes over which the cumulative
incidence of infection since the start of control is higher than would have occurred in the absence
of control. Further, these outbreaks are significantly larger than the endemic levels of the
infection and would likely overwhelm healthcare providers in the area.

This paper is organized as follows. We first describe the three models we choose to

illustrate the divorce effect: a non-seasonal SIR model, a seasonal SIR model, and a host-vector
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model. We then demonstrate, in each setting, the occurrence of the divorce effect and its
sensitivity to relevant parameters, namely Ro and the duration and strength of control. Further,
for the seasonal SIR model, we explore the sensitivity of the strength of the divorce effect on the
timing of the start and end of the control. Then for the seasonal SIR and seasonal host-vector
model we look at three possible strategies for mitigating the divorce effect and show they are
incapable of eliminating the divorce effect. A crude analytical approximation for the divorce
effect and additional models are explored in the Supplemental Information, as is the impact of
using immunizing controls.

MODELS

To evaluate the magnitude of the Divorce Effect, we simulate the cessation of a short-
term control affecting transmission in three infection systems: a SIR model, a seasonal SIR
model, and a host-vector SIR model. While these are the only models we discuss in detail here,
this result can be seen in most models that have a replenishment of the susceptible population,
including the more general SIRS model, for which host immunity is not life-long, and an age-
structured model with realistic mixing parameters (see Supplemental Information for exploration
of additional forms of transmission models). These results are parameterized for a human
population and mosquito vector, but the results are generalizable to other species.

SIR Model:

We assume a well-mixed population of one million hosts and a non-fatal infection that is
directly transmitted and confers complete life-long immunity. The numbers of susceptible,
infective, and removed individuals are written as S, | and R, respectively. We allow for
replenishment of the susceptible population by births, but assume the population size is constant

by taking per-capita birth and death rates, y, to be equal (this assumption is relaxed in the
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supplemental information). This results in the standard two-dimensional representation of the

SIR model, where the number of removed individuals is R = N — S — I (Equation 1).

. SU+1

Szy(N—S)—ﬂ% (1)
_SU+ 1)

=p—F— — Ut wl

For our simulations, we assume parameters resembling a short-lived infection in a human
population, lasting on average 5 days (average recovery rate, y = 73/year) and that individuals
live on average 60 years (u = .0167/year), allowing the transmission parameter, £, to be
adjusted to achieve the desired value of Ro. In order to reseed infection following cessation of
control and to counter the well-known weakness of infective numbers falling to arbitrarily low
levels in deterministic transmission models, we follow numerous authors in including a constant
background force of infection [11,12] in the model. This represents infectious contacts made
with other populations, and occurs at a rate that is equivalent to there being I, additional infective
individuals within our focal population. For our simulations, we take I, = 1(sensitivity of our
results to I, can be found in the supplemental information).

Seasonal SIR Model:

For the seasonal SIR model, we allow the transmission parameter to fluctuate seasonally
(annually) around its mean, 3,, taking the form given in Equation 2. Seasonal oscillations in the
parameter have relative amplitude 8, = .02 with maxima occurring at integer multiples of 365
days. Noting that seasonally forced models are particularly susceptible to having the number of
infectives fall to unreasonably low numbers between outbreaks [13], we again take I, = 2 in the

background force of infection term.

A(t) = fo(1 + f, cos(2mt)) @

21



Host-Vector Model:

We model an infection with obligate vector transmission. As in other models, we assume
that the host population size is held constant (R = N — S — I), but we allow the vector
population size to fluctuate—so that, for instance, we can model vector control. For simplicity,
we only model the female adult vector population and assume density-dependent recruitment
into the susceptible class (U), with a logistic-type dependence on the total female adult

population size. Infectious vectors (V) arise from interactions with infected hosts (Equation 3).

. SV
S =#(N—S)—ﬂVHW
. SV
U=U+V)(r—kU+V)) —,BHVW—S(L“)U
v =ﬂHVW_61

We assume that host demography and recovery rates are the same as in the SIR model,
with a host population of one million individuals. We assume that the vector lives on average 10
days (o = 36.5/year), the growth constant (r) and density dependence parameter (k) are
parameterized as in Okamoto et al. (2016): r = 304.775/year and k =
1.341x10~7/(vector*year), resulting in an equilibrium vector population of 2 million individuals.
The transmission parameter from host to vector (Snv) is assumed to be 109.5/year and the
parameter for vector to host () is changed to produce the desired Ro. We again assume a
background force of infection (with I,, = 2), representing reintroduction of infection from

outside our focal population.
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Seasonality plays a large role in vector-borne infections and affects many aspects of the
infection and its vector. Temperature affects breeding rates, larval development, and death rates
of the vector, the extrinsic incubation period and transmissibility of the infection itself, and host
encounter rates, while precipitation can affect the availability of appropriate habitat and
encounter rates [14-16]. However, most of these add a level of model complexity which is
unnecessary for this study, so we choose to use a simple forcing term for mosquito recruitment
that fluctuates seasonally with relative magnitude rs (rs = 0.02) about its baseline (r, =
304.775 /year) (Equation 4).

r(t) = ry(1 + ry cos(2mt)) 4)

Control:

We model a control that is applied instantaneously and consistently from time to (which,
for simplicity, we usually take to be equal to zero) to time tend and is instantaneously removed at
the end of the control period. In the SIR and seasonal SIR models, control reduces the
transmission rate by some proportion, ¢, and, in the host vector model, causes a proportional
increase, o, in the vector mortality rate. This results in the transmission parameter given in
Equation 5 for directly transmitted infections and the vector death rate given in Equation 6 for

the vector-borne infections.

(1= By to < t < teng
B©®) = { Bo otherwise ®)
_ 1+0) to<t<tena
(1) = { % otherwise (6)
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While we only look at these control measures in the main text, other controls (such as an increase
in the recovery rate, y) are explored in the Supplemental Information (Figure S2.2), and give

similar results.

Measuring Effectiveness:

There are a number of measures that can be used to quantify the effectiveness of a
control. We want to characterize the total number of cases that occur from the start of control
until a particular point in time, a quantity we call the cumulative incidence (CI). For a directly

transmitted infection, this is calculated as follows

“BOS@IM) p
—drt

CI(t) = N :

(7)

to

i.e. by integrating the transmission term over the time interval from the start of control until the
time, t, of interest. This quantity could be calculated both in the presence of control and in the
baseline, no-control, setting; we distinguish between these two by labeling quantities (e.g. state
variables) in the latter case with a subscript B to denote baseline.

One commonly-used measure of effectiveness is the number of cases averted by control
(CA), Clg(t) - CI(t). This has the disadvantage (particularly in terms of graphical depiction) that
it can become arbitrarily large as t increases. Consequently, some authors choose to utilize a
relative measure of cases averted, dividing by the baseline cumulative incidence (see, for
instance, the work of Hladish et al. [17]). We instead follow our earlier work and use the relative

cumulative incidence (RCI) measure employed by Okamoto et al. [10], calculating the
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cumulative incidence of the model with the control program relative to the cumulative incidence

of the model without the control program (Equation 8).

[£ B@S@I(D)dr

RCI(t) = —; .
I, BSs(@Ip(x)dx

(8)

RCI(t) values above one imply that the control measure has resulted in an increase in the total
number of cases compared to the baseline. Importantly, as time becomes larger, RCI becomes
less sensitive to outbreaks in the system. For a transient control, RCI will approach 1 as t
becomes larger.

We see that the relative cases averted measure employed by Hladish et al. [15] is simply
1-RCI(t). Both relative measures have properties that make them attractive for graphical
depiction although it should be borne in mind that both involve a loss of information on the
actual number of cases averted. For example, an RCI of 1.1 after one year is a much smaller
increase in total cases than an RCI of 1.1 after 10 years, and an RCI of just below one after many
years can represent a large reduction in total incidence. In cases where this information is
pertinent, it may be more appropriate to use non-relative measures such as cases averted. The
choice of measure does not impact the occurrence of the divorce effect; figures that show cases
averted are included in the Supplemental Information (Figure S2.1).

Analogous expressions for Cl and RCI can be written for the host-vector model using the

appropriate transmission terms.
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RESULTS
SIR Model

Simulations show the successful suppression of infection following the implementation
of a control which reduces the transmission parameter, 3, in the population. With infection at
endemic equilibrium, the honeymoon effect [8] states that even a modest reduction in the
transmission parameter will have a large effect on the incidence of the infection due to the
effective reproductive number, Ry, the expected number of new infections each infectious
individual causes, being one. After the control is stopped, the incidence of the infection remains
low for some time as the number of infective individuals builds from very low numbers (Figure
2.1(a), curve). However, once control ends Rt immediately rises above one and continues to
increase while prevalence is low, due to the buildup of the susceptible population (plots of R and
S(t) are provided in the supplemental information: see Figure S2.3). This increased Rt eventually
drives a large outbreak, quickly depleting the susceptible population, at which point incidence
(Figure 2.1(a), black curve), and Ry, again fall to low numbers.

To evaluate the success of the control, we examine the RCI in the period following
introduction of control and see that during and immediately following the control period, when
incidence is low, the RCI decreases towards 0, suggesting a successful control program.
However, once the post-control outbreak begins, RCI increases rapidly resulting in the divorce
effect (RCI1>1) before dropping back below one once the epidemic begins to wane and incidence
falls below endemic levels (Figure 2.1(a)). During the period where RCI>1, lasting
approximately 2 years in our example, the control has not only failed to decrease the total

incidence of infection but has resulted in an increase in total incidence, the divorce effect.

26



Following this initial outbreak and trough, RCI continues to oscillate around one, and approaches
one in the long run (see Figure S2.4).

Exploring values of Ro and the duration and strength of control shows that the divorce
effect is present over a wide region of parameter space. Figure 2.1(b) shows the magnitude of the
divorce effect, quantified by the maximum RCI seen, as a function of Ro and duration of control
for a perfect control measure (4= 0 during the control period). Perfect control was employed
here to eliminate any confounding effects from the honeymoon effect that could occur during an
imperfect control. We find that for the most biologically relevant area of parameter space
(Ro<20, control lasting less than 20 yrs) the divorce effect always occurs and will result in a 20-
60% increase in cumulative incidence (RCI=1.2-1.6) at its peak. However, we also find that it is
possible to avoid the divorce effect if controls are maintained long enough. For infections with a
high Ro, this requires maintaining the control for decades, and the length of time needed grows as
Ro is decreased. The non-monotonic relationship between the magnitude of the divorce effect
and the length of the control seen here suggests that a control program should either be
discontinued immediately, if Ro is small, or continued as long as possible to avoid the divorce
effect (Figure 2.1(b); see also Figure S2.5 in Supplemental Information).

Relaxing our assumption of a completely effective control and focusing on a fixed Ro
(Ro=5, Figure 2.1(c)), we see that the relationship between the magnitude of the divorce effect
and the length of the control period varies with the strength of the control. A steep edge-like
pattern is seen in Figure 2.1c when control is ineffective but carried out for a long period of time,
a consequence of the honeymoon effect. For populations at endemic equilibrium, the
honeymoon effect means that any reduction in transmission will be sufficient to significantly

reduce transmission for a period of time. For controls that are relatively short lived, here
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approximately 5 years, the control does not outlast the honeymoon period, resulting in the
magnitude of the divorce effect being relatively insensitive to the effectiveness of the control in
this region of parameter space. How the interaction between the effectiveness of control and Ro
affects the magnitude of the divorce effect is explored in the supplemental information (Figure
S2.6).
Seasonal SIR Model

Temporary control measures in the seasonal SIR model show many of the same dynamics
as in the non-seasonal model, namely that a successful control is followed by a period of low
incidence and eventually a post-control outbreak leading to a divorce effect (Figure 2.2(a))
before settling back into regular seasonal outbreaks (Figure S2.7). However, the timing and size
of the post-control epidemic, and thus the magnitude of the divorce effect, depend not only on Ro
and the length of the control but also the timing of both the onset and end of the control (Figures
2.2(b) and 2.2(c)). This leads to a highly nonlinear dependence of the magnitude of the divorce
effect on Ro and the duration of control (Figure 2.2(b)). However, the presence of ranges of
parameter space with smaller magnitudes of the Divorce Effect at regular intervals could allow
policy makers to determine optimal times to stop control. These effects become more apparent
with an increase in seasonality (Figure S2.8). As seasonality increases, the differences due to
timing become more pronounced, resulting in more potential for mitigating the divorce effect
with a properly timed treatment. Conversely, this also means a larger divorce effect will be seen
with a poorly timed treatment (Figure S2.8).

The oscillatory nature of the relationship between the maximum RCI and Ro (Figure
2.2(b)) implies a relationship between the timing of the control period and the severity of the

divorce effect. While the magnitude is only highly sensitive to the start time for very short
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control periods, lasting around a year, it is highly sensitive to the end time (Figure 2.2(c)). This
means that controls of similar lengths can have significantly different outcomes depending on
their timing, e.g. a 1 year control ending day 700 results in a maximum RCI around 1.4 while a
control of the same length ending day 515 results in a maximum RCI near 1.7. This is a direct
result of the seasonal forcing function and delaying the outbreak until a period in which Rg is
larger, similar to results seen when controls are used against epidemics in seasonal settings
[18,19]. Regardless of start time, the optimal end time occurs shortly after the peak in the
transmission parameter, B(t), (days 750 and 1155 in Figure 2.2(c)), suggesting this would be the
best time to end control programs.
Host-Vector Model

The non-seasonal host-vector model has broadly similar dynamics to the non-seasonal
SIR model in terms of the divorce effect (Figures S2.10 and S2.11), so here we focus instead on
the seasonal host-vector model. Following one year of insecticide treatment that reduces the
average mosquito lifespan by a half (i.e. increases the mosquito death rate by 100%, c = 1) the
infection is suppressed and there is no seasonal outbreak for the next two years (Figure 2.3). A
major outbreak, with approximately eight times the peak prevalence of the pre-control seasonal
outbreaks, occurs in the third year and results in a maximum RCI of around 1.50, before the
epidemic fades and incidence again returns to low levels. The size of this outbreak would almost
certainly risk overwhelming even the most well-funded medical services. RCI then remains
above 1 until year 7. The population continues to see large periodic outbreaks, each bringing RCI

back above 1, for decades until the endemic equilibrium is reached again (Figure S2.12).
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Mitigating the Divorce Effect

It is apparent from earlier results (e.g. Figure 2.1(b)) that avoiding the divorce effect in a
non-seasonal setting is only possible with a non-immunizing control by maintaining suppression
for decades, due to the inevitable build-up of susceptible individuals. Therefore, the goal in
these situations should be to maintain the control as long as possible or until a vaccine becomes
available, and we focus instead on the seasonal SIR and host-vector models. In this section, we
look at three different treatment plans for deploying a set amount of treatment, twelve one-month
treatments, and their ability to mitigate the divorce effect. The first relies on annual controls
lasting one month when Ro is at its maximum, the second has a month-long control applied in
response to the prevalence reaching some set level—which we might imagine corresponding to
an outbreak becoming detectable or reaching a sufficient level to cause concern to local
authorities—that we take here to be when two hundred individuals out of a million are infective,
and the third chooses when to implement a month-long control based on minimizing the peak
RCI. For comparison, all three use 12 total months of control.

With annual monthly control for a directly transmitted seasonal infection, the population
sees a significant initial reduction in prevalence. However, as predicted by the honeymoon
effect, the repeated use of controls results in a diminished effect on the prevalence and seasonal
outbreaks begin to occur between control periods. The peak prevalence of these outbreaks
quickly grows to be significantly larger than the seasonal outbreaks before the control program
was begun, however they are blunted by the next control period before RCI rises above one.
Once the program is ended, however, a post-control outbreak quickly brings RCI above one

(Figure 2.4(a)).
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The reactive control has a similar effect following the initial control period, however it
results in ever more rapid need for control, exhausting all 12 months of treatment in the first four
years for both the directly transmitted infection (Figure 2.4(b)). We see that while this results in
a lower RCI during the control program, it results in an even larger post-control outbreak and a
larger maximum RCI for both transmission pathways.

Intuitively, Figure 2.2(c) suggests choosing a time period to implement the control that
will minimize the divorce effect. To do this, we implement a third method which optimally
chooses the time at which to begin the next control period. For this, we simulate the first one
month control period, beginning at time 0. Then we run simulations with the next one month
control beginning on all possible days over the next 365 days after the control ends, choosing the
day that results in the lowest maximum RCI over the next decade, simulating through that
control period, and repeating. This plan results in implementing the first three control periods in
rapid succession and the remainder after the peak of an outbreak, when the control will have the
least effect on transmission (Figure 2.4(c)), minimizing the magnitude of the divorce effect albeit
at the cost of not providing significant protection against the infection. This result, along with
other earlier results, suggests that the divorce effect is unavoidable and the potential for a divorce
effect will continue to grow in magnitude unless the control is maintained for decades, regardless
of the timing of the treatments. While it may not be possible to eliminate the divorce effect for
relatively short controls, it may be possible to extend programs without worsening the divorce
effect and to minimize the divorce effect by carefully choosing the timing of the end of the
control program once cessation becomes necessary.

In the case of host-vector transmission, the yearly control successfully suppresses the

infection for the first 1.5 years, however the population begins to experience outbreaks during
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what was traditionally the off-season. After the control program is ended, the population enters a
period of larger outbreaks occurring every three years (Figure S2.15(a)). The reactive control
sees a similar result as the directly transmitted disease, with all twelve treatments used in the first
4 years (Figure S2.15(b)). For the third method, the optimal plan was to wait the maximum
amount of time to deploy the control (Figure S2.15(c)). This is likely due to the peak of on
outbreak not occurring within a year of the end of treatment in the seasonal host-vector model.
Additional Results

Results for additional models, along with an analytical approximation to the magnitude of
the divorce effect are included in the supplemental information.

DISCUSSION

It has long been appreciated that non-immunizing control measures deployed against
endemic infections will result in a large short-term reduction in prevalence but will lead to a
reduction in herd immunity, leaving the population at risk of large outbreaks after the cessation
of control. Here we have shown, in quite general settings, that these outbreaks can be so large as
to increase, counting from the time that control started, the total incidence of infection above
what would have occurred if no control had been used—a result we call the divorce effect. This
represents a failure for control of the worst kind, namely a control that increases the total
incidence of the infection. Unfortunately, many commonly used disease control plans rely on
temporary non-immunizing controls, meaning that populations may be left at risk of the divorce
effect once the control measure is ended.

Controls that do not confer immunity—including isolation, use of drugs as a prophylaxis
or to shorten duration of infectiousness or behavioral changes such as social distancing—are

often deployed in epidemic settings, particularly for new pathogens for which a vaccine is
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unavailable, but may also be used to blunt seasonal outbreaks of endemic diseases. In these
endemic settings, we have shown that it is important to weigh any potential benefit from these
controls against the risk of post-control outbreaks and the divorce effect. While there are
timeframes over which a temporary non-immunizing control has benefits, the severity of the
post-control outbreak that results in the divorce effect will risk overwhelming even well-
maintained healthcare systems.

Vector-borne infections represent the most common situation in which non-immunizing
controls are regularly used against endemic diseases, e.g. insecticide spraying to combat seasonal
dengue outbreaks. The honeymoon effect predicts that insecticides can provide short-term
benefits in endemic settings but that the additional benefit of continued spraying will decrease
over time due to the accumulation of susceptibles (i.e. depletion of herd immunity) that results.
Indeed, Hladish et al. [17] saw precisely these effects using a detailed agent-based model for
dengue control that employs indoor residual spraying. Cessation of spraying will be expected to
lead to large post-control outbreaks: again, Hladish et al.’s model exhibited annualized incidence
of 400% compared to the uncontrolled baseline setting in certain years. Here, we examine the
divorce effect directly and show that they are not specific to a host-vector model and that if the
control is not maintained indefinitely, or at least for a few decades, the damage of the divorce
effect can quickly outweigh the short-term benefits. Further, programs implementing
insecticides may be intended to be indefinite, but the evolutionary pressure imposed can result in
the rapid and unpredictable evolution of resistance. Without proper monitoring, this could result
in an increase in total incidence due to the divorce effect before officials realize that resistance

has developed. While insecticides, and other non-immunizing controls, will, and should,
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continue to play an important role in epidemic settings, where herd immunity is negligible, the
results of this study raise important questions about their use in combating endemic infections.

In some instances, control measures are deliberately transient in nature, such as field
trials for assessing the impact of proposed novel control methods, e.g. a review of field trials of
dengue vector control showed they lasted between 5 months and 10 years [20]. Multiple year
field trials such as these can result in considerable build-up of the susceptible population,
meaning consideration needs to be given to the consequences of this accumulation and the
potential for large outbreaks to occur in the wake of cessation of the trial. If our results are
validated, they must be factored not only into the design of such trials but also into the informed
consent process for trial participation, with participants made aware of the risk of the divorce
effect and plans put in place to provide a reasonable level of protection during and following the
study. As we have shown, these outbreaks can occur months or even many years later, and while
disease incidence would be observed closely during the trial, our results argue that monitoring
should continue for an appropriate length of time following the cessation of control.
Furthermore, we emphasize that the epidemiological consequences of the honeymoon effect—
specifically the relative ease of reducing incidence for an infection near endemic equilibrium—
must be kept in mind when interpreting the results of such trials. Together, these dynamical
effects argue that susceptibility of the population to infection should be monitored together with
incidence to fully assess the impact and effectiveness of the control.

Additional concerns are raised when an endemic and an epidemic infection share the
same transmission pathway (e.g. Aedes aegypti vectoring both dengue and Zika). Emergency
control against the epidemic infection also impacts the endemic infection, leading to the potential

for the divorce effect to occur in the latter if the control is ceased once the epidemic has
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subsided. It may be that policy makers have to choose to allow an epidemic of a highly
publicized, but low risk, epidemic in order to maintain immunity levels of another lower profile,
but more dangerous, disease. On the other hand, if the risk due to the epidemic is sufficiently
high, it may still be advantageous to use the control, however the risks need to be carefully
compared and an informed decision, that accounts for the divorce effect, needs to be made.
While transient non-immunizing controls are common and provide opportunities to
observe the divorce effect, researchers tend to focus on prevalence or incidence over short
periods of time and not cumulative measures such as CI or relative measures such as RCI or CA,
which would expose the divorce effect. Even when relative measures are used, such as Hladish
et al. [17], the time frame over which incidence is compared can have a drastic effect on the
interpretation of the result. The divorce effect is an easily missed phenomenon, even when
examining models that lack much of the real-world complexity, but real-world data comes with a
myriad of other problems. Often the divorce effect may occur when the system is poorly
monitored, as with field trials and unintentional control, in systems that, like dengue, have large
year-to-year variation, or in systems where the failure is associated with other confounding
socio-economic events such as war or natural disaster, resulting in data that is either scarce or
difficult to interpret. The divorce effect may become more apparent in coming years, though, as
mosquito control is lessened following the end of the Zika epidemic, allowing for a rebound in
dengue in areas such as South America, and as insecticide resistance problems continue to grow.
Careful thought should be given to whether or not it is appropriate to begin new programs
that rely on non-immunizing controls in endemic settings. This is an inherently complicated
decision that must take into account numerous factors, both scientific and sociopolitical, but, in

light of our results, policymakers should carefully weigh the risks of the divorce effect against

35



other factors, e.g. imminent approval of a new vaccine or political pressure, before implementing
disease management plans that rely on non-immunizing controls. Further, it is important that
when non-immunizing controls are included in these management plans that they are not
considered possible solutions but instead stop-gaps, and emphasis is placed on the development
of vaccination as opposed to the indefinite continuation of the program.

Currently, control of endemic diseases worldwide, especially vector-borne diseases, relies
heavily on non-immunizing controls such as insecticide. Policy makers should begin developing
exit plans for these disease management programs —qguidelines for safely ending the program
when it becomes clear that indefinite maintenance is unlikely, which should be designed to
minimize the impact of the divorce effect. In this paper, we have shown three possible designs
for exit plans that could minimize the divorce effect. However, none of these designs were
capable of eliminating the divorce effect. Our results suggest there is an inherent cost associated

with the loss of immunity resulting from these programs.
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FIGURES

Figure 2.1: The divorce effect in the SIR model. (a) Typical time-series showing the
divorce effect. Beginning at time zero, a year-long 50% reduction in the transmission parameter
of an endemic infection (R, = 5, B = 365 /year, y = 73 /year) reduces prevalence of the
infection to near zero for the length of the control, where it remains until time 1.5 yrs, at which
point a large post-control outbreak occurs. RCI falls towards zero as prevalence remains low,
but the post-control outbreak is large enough to bring RCI well above 1 (peak RCI is approx.
1.4). (b) Magnitude of divorce effect in terms of relative cumulative incidence (RCI).
Maximum RCI is found as the highest value of RCI observed within 25 yrs following a 100%
effective control of an infection with 1<R0<20 and lasting between 1 month and 35 years.
RCI>1 indicates the divorce effect and we see that the divorce effect occurs across a large
portion of the parameter space, and ubiquitously for controls lasting less than 20 years. B is
varied to attain the desired R, all other parameters as in (a). (c) Maximum RCI for a given
effectiveness and duration of control. The maximum RCI is found as the maximum observed
RCI within 25 yrs after the end of a control that is between 0% and 100% effective and lasts
between 1 month and 20 years (R0=5). The ridge between areas of high and low maximum RCI
results from ineffective controls being maintained long enough for outbreaks due to the
honeymoon effect deplenishing the population of susceptible individuals before the control

periods end. All other parameters as in (a).
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Figure 2.2: The divorce effect in the seasonal SIR model. (a) Typical time-series showing
the divorce effect. Beginning at time zero, when the transmission parameter is at its maximum,
a year-long 90% reduction in the transmission parameter of an endemic infection (R, = 5, By =

365 /year, B; = .02, y = 73/year) is implemented at the beginning of a seasonal outbreak and
reduces prevalence of the infection to near zero for the length of the control. Following the end

of the control, a large outbreak, many times the size of the regular seasonal outbreaks, occurs
during the next season. RCI falls towards zero as prevalence remains low while the control is in
effect and rises above 1 during the large outbreak the following year (Maximum RCI = 1.2). (b)
Magnitude of divorce effect in terms of relative cumulative incidence (RCI). Maximum RCI

is found as the highest value of RCI observed within 25 yrs following a 100% effective control
of an infection with 1<R0<20 and lasting between 1 month and 35 years. RCI>1 indicates the
divorce effect and we see that the divorce effect occurs in most of the parameter space. B, is
varied to attain the desired R, with all other parameters as in (a). (c) Effect of timing on the
magnitude of the divorce effect. Maximum RCI is the highest RCI observed within 25 yrs
following a 100% effective control of an infection with R, = 10 (8 = 730 /year, all other
parameters as in (a)) beginning and ending on specified days. Dashed lines represent controls
lasting either 1, 2, or 3 years. Unlike the non-seasonal SIR model (Figure 2.1), the magnitude of
the divorce effect is not solely dependent on RO and the length of the control. Maximum RCI is
most sensitive to the day the control is ended, moderately sensitive to the day it is started, and
only slightly sensitive to the length of the control. This is due to the timing of the end of the
control determining the timing of the outbreak. We also see that continuing the control for

another year often has little impact on the magnitude of the divorce effect.
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Figure 2.3: Divorce Effect in a Seasonal Host-Vector model. Control is shown in a seasona
(rs = .02) host-vector model with R, = 5. Beginning at time zero, a control is implemented th

increases the vector mortality rate by 100% (corresponding to a 50% drop in vector life

|
at

expectancy). This results in a reduction in prevalence (black curve) of the infection to near zero

during the control period, where it remains until roughly time 3 yrs, at which point a large post-

control outbreak occurs. RCI (red curve) falls towards zero during the control period and while

prevalence remains low, but the post-control outbreak is large enough to bring RCI above 1

(peak of approx. 1.49).
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Figure 2.4: Suggested techniques for mitigating the divorce effect with seasonal
transmission. We consider an endemic disease, parameterized as in Figure 2.2(a). In all cases,
twelve 1/12 yr. controls are used, to be consistent with the 1 yr. controls used in other figures,

reducing the transmission parameter by 90% (e = .9). (a) Pulsed control for Seasonal SIR
model. Control occurs yearly at a fixed time (when Ro is highest) for a fixed time (1/12 yr.) to
control an endemic disease (parameterized as in Figure 2.2(a)). The control is effective at
stopping the outbreak the first year, but seasonal outbreaks in subsequent years are larger, driven
by an increasing population of susceptible individuals. Stopping the control program still results
in a large post-control outbreak and a divorce effect. (b) Reactive Control for Seasonal SIR. A
fixed length (1/12 yr.) control is implemented to control an endemic disease (parameterized as in
Figure 2.2(a)) once prevalence rises above a threshold (200 individuals in a population of 1
million). This stops the large early season outbreaks seen in the pulsed control, however the
frequency of treatment increases as the susceptible population grows. Stopping the control
program results in a large outbreak and divorce effect. (c) Informed Control in seasonal SIR
model. The first control period occurs at time 0. The beginning of the next control period is
decided at the end of the previous control period, and is the day (allowed to be up to a maximum
of 365 days later) that will result in the smallest divorce effect if control was stopped after that
period. This plan finds that it is optimal to perform the first few treatments relatively quickly,
then to perform subsequent treatments during the peak in prevalence. We see that this is capable
of nearly eliminating the Divorce Effect, but there is only a minimal benefit to the control, with

large yearly outbreaks.
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SUPPLEMENTAL INFORMATION
SIR Model with Changing Population Size

We assume a population similar to the SIR model in the main text, with the exception

that the per capita birth and death rate are allowed to differ. We have

. SU+1,)
$ =N — S — ==
SU+1
=2 (51
N=(b-pwN

Here b is the per capita birth rate and m is the per capita death rate. For illustration, we take two
values of b, b = 1.25p and b = .75, corresponding to 25% population growth or reduction per
year. While this is an extreme case, we expect that any effect on the magnitude of the divorce
effect would most likely be seen in the extremes. Since the endemic equilibrium is not well
defined for a changing population, we simulate the population for a thousand years before
starting control. Initial values of N were chosen so that at the end of the thousand years, the
population size was 1 x 10°. We see that the growth (Figure S2.16a), or decline (Figure
S2.16b), of the population does not eliminate the divorce effect, but does affect the magnitude
and timing of the post-control outbreak, with a larger and earlier post-control outbreak in the
growing population due to a larger number of susceptible individuals being born.

SIR Model with VVaccination

To model vaccination against infection, we assume that some portion, v, of births enter
the recovered class instead of the susceptible class, while all other dynamics proceed similarly to
the SIR model (Equations S2.2). For illustration, we take v = .5 and assume the vaccination
campaign lasts one year before being discontinued. We see that during the control period the
proportion of the population that is infective falls significantly more slowly than with
transmission reduction (Figure S2.17). Following the end of control, we see a series of post-
control outbreaks that bring the infective proportion of the population above endemic levels, but
they are not large enough to bring RCI above 1. This lack of divorce effect is due directly to the

maintenance of population level immunity due to the vaccination, which keeps the susceptible
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population from being able to build sufficiently. It is important to note that, as shown in
Okamoto et al. [1], it is possible to see the divorce effect in combined controls that involve both

immunizing and non-immunizing controls.

S=b(1—v)(N—S)—ﬁM
N
SU + 1) (52)
==~ r+ oI

SIRS Model

We assume a well-mixed population with parameters defined as in the main text.
However, instead of permanent immunity, we assume that immunity is lost at per-capita rate [,
such that the average length of immunity following an infection is 1/l (Equation S2.3). For the
sake of illustration, I = 1/10 year™1, corresponding to an average of 10 years of immunity

following recovery.

S'=,u(N—S)—ﬁ’W + IR
, SU+1
i= 20 (53

R=yI—(u+DR

Similar to the SIR model, we see suppression of the infection for a period of time during
and immediately following the control (Figure S2.18). A large post-control outbreak is seen
about 3 months after the end of treatment. This outbreak is sufficiently large to bring the RCI
above 1, to about 1.45, before the outbreak subsides and prevalence and RCI fall again. As the
immune period following infection shrinks towards zero, the SIRS model approaches the
behavior of an SIS model. This results in the magnitude of the divorce effect being reduced as
the immune period, and the population of immune individuals, becomes smaller.

Within-Host Virus Dynamics (HIV) Model

We examine the divorce effect in the model for the within-host dynamics of HIV
presented in Rong and Perelson [2], with all equations and parameters taken directly from their
text (Equations 4 and Table 1). Here, T stands for the concentration of target cells, L for latently

infected cells, T* for actively infected cells, V, for infectious virions, and Vi for non-infectious
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(defective) virions. Parameter names and values are given in Table 1. Here, cumulative
incidence is in terms of actively infectious T cells. We see that the divorce effect does occur
following a 25 day treatment that has both a protease inhibitor and reverse transcriptase inhibitor
with efficacies of 50% (Figure S2.19).
T=A—d;T—(1—egp)kV,T
L=oa,(1—egp)kV,T —d,L—alL
T*=(1—0,)(1—€gr) —8T* + al (S4)
V, = (1 —ep;)NST* — ¢V
Vy; = €p;NST* — cVy;

Age-structured Model with Realistic Mixing

Here we show the presence of the divorce effect in an age-structured model with realistic
mixing between groups. This model, and code, is from a tutorial given by Aaron King and Helen
Wearing [3]. We assume that there 30 age-groups, with ages 0-19 occurring as single year age
groups, 20-75 as 5 year age groups. Transitions between compartments occur according to
Equation S5, note that we use o to denote elementwise multiplication. In which A is a matrix
describing transitions between age classes, e.g. aging and deaths, b is a matrix describing births
with a constant birth rate as its first element and zeros everywhere else. New-born susceptibles
enter the youngest age class at a rate of b = 100/year, movement between the age classes takes on
average 1 year for ages 0-20, 5 years for ages 21-75, and death occurs at a constant rate in the
last age class, occurring on average after 15 years. S, I, and R are vectors containing the
numbers of individuals of each age class that are susceptible, infective, or immune, respectively.
B is a matrix containing the transmission parameters for infection occurring within and between
age classes, and is constructed by taking a matrix of age-specific contact rates and multiplying it
by a constant rate of infection per contact. This contact network is based on [4] and freely
available online, and the constant rate of infection per contact chosen so that R, = 5. yisa
vector containing the rate of recovery of individuals in each age class, but is assumed to be
constant across all age classes and is the same as the main text (y = 73 /year). Control works,

as in the SIR model, by reducing the transmission parameter by 50% and lasts one year.
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S=—BloS+AS+b
[=PBloS+Al—vyI (S5)
R=AR+vyl
We see that, similar to the non-structured SIR model, there is a period of time, lasting
about 4 years, in which RCI is falling, before a large outbreak brings RCI above 1 (Figure
S2.20). Importantly, while the magnitude of the effect varies across groups, due to mixing, its
presence does not.

ANALYTICAL APPROXIMATION

Here we describe a crude analytical approximation for the magnitude of the divorce
effect in the simplest setting of a non-seasonal directly transmitted infection (i.e. the SIR model),
and based on the well-known analysis of the size of an outbreak in a closed population [5,6]. We
assume that the post-control outbreak occurs immediately following the end of the control period
and that the outbreak happens instantaneously. Further, we assume that control is perfect, so that
there are no new cases of infection during the control period, and that all individuals that are
infective before the control begins recover by the end of the control period. When control begins,
the population can be subdivided into individuals that are susceptible and those that have
previously been exposed and will be immune when the control is ended. Assuming Ro>1, the
numbers in these two groups are determined by the endemic equilibrium, where S* = N/R,, and
R*=N(1-1/R,). The number in the latter group decays exponentially due to mortality and
the number of susceptibles grows at the same rate because of births (noting that the population
size is taken to be constant). This gives the number of susceptible individuals at the time control

ends, tend, as
S=N 1+(1 1)(1 ~Htena) S6
=Nz R, e (S6)

Once the control is ended, the infection is assumed to be reintroduced immediately by a
small number of infectious individuals and occurs instantaneously, meaning that demography
does not affect the final outbreak size. This means that the post-control outbreak size, Z, can be

found by solving the familiar transcendental equation:
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Z=S (1 — e_RO(%)). (S7)

The post-control outbreak size is then compared to the cumulative number of infections that

would be expected in the endemic case to find the predicted RCI (Equation S8).

RCT= m (S8)

Results of Analytical Approximation

When compared to the simulations, our analytical approximation overestimates the
magnitude of the divorce effect (Figure S2.21(a)). This is in direct contrast to simulations where
the outbreak requires a long accumulation of infectives, often happens years later, and takes
some time to occur. This approximation performs best in the most biologically relevant portion
of parameter space (Ro<10 and control lasting less than 20 years), where the error is generally
below 20% (Figure S2.21(b)), however it performs very poorly for extremely short durations of

control.

Sensitivity to Background Force of Infection

Deterministic compartmental epidemiological models suffer from the well-known
weakness that the numbers of infectives can fall to arbitrarily low levels. To combat this, a
background force of infection is often included in such models, representing infections due to
contact with populations outside the focal population [7]. In our model, this process is accounted
for by adding I to the number of infectives in the transmission term. The background force of
infection, which is taken to be small compared to the within-patch force of infection at the
endemic state, ensures that there is a low level of transmission in the population, even as the
number of infectives falls during the control period, and acts to reseed infection following
control. In doing this, the background force of infection controls how quickly an outbreak will
occur following the end of control, and hence can play an important role in determining the
magnitude of the divorce effect. In general, a lower background force of infection means a later
post-control outbreak, and often a larger divorce effect, while a higher background force of

infection means an earlier post-control outbreak, less time for the build-up of the susceptible
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population, and a smaller divorce effect. These effects are most noticeable for a short-lived
control. At a sufficient level, the background force of infection is large enough to drive the
overall dynamics of the system, eliminating the divorce effect. When this occurs, the dynamics
become driven by exogenous factors, similar to a sylvatic infection, reducing the importance of
local infections. In addition to affecting the magnitude of the divorce effect, increasing I,
increases the rate at which the system approaches its endemic equilibrium following the end of
control. This results in subsequent outbreaks being increasingly diminished. For our
manuscript, we choose to use a realistic value of I, = 1 for our models, compared to an endemic
level of 183 infective individuals for these parameter values in the nonseasonal model. Figure
S2.22 shows that for values of I, that are sufficiently large to eliminate the divorce effect would
require I, to be roughly the same size as the endemic infection level.

It is well known that seasonally forced models are even more prone to having their
numbers of infectives falling to low levels between outbreaks, with a background force of
infection being commonly employed to counter this effect. Stronger seasonality magnifies this
effect. Hence the background force of infection impacts the magnitude of the divorce effect, and
given that the timing of control plays an important role in seasonal settings, there is an
interaction between seasonality, the timing of the control, and the background force of infection
in such cases. In general, as seasonality increases so does the difference between the maximum
and minimum prevalence levels in the population. This results in an interaction between the
background force of infection, the magnitude of seasonality, and the timing of the control
determining the final magnitude of the divorce effect (Figures S2.8 and S2.23). This is important
for predicting the magnitude of the divorce effect in real world situations, as there is a large
amount of uncertainty associated with estimates of all three of these parameters. Importantly,
below a specific background force of infection, the divorce effect is seen for all values of these

parameters.
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SUPPLEMENTAL FIGURES
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Lowest Number of Cases Averted
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Figure S2.1: Divorce effect in terms of cases averted. All parameters the same as in Figure
2.1(b). When measuring the success of a control program in terms of Cases Averted as opposed
to RCI, the overall results are retained, with negative values of cases averted corresponding to an
RCI > 1. Parameters are as in Figure 2.1(b) for comparison.

54



—h
\I

20

-
(o)}

15

—
on

N
Maximum Observed RCI

-
w

Y
N

—h
.
—h

| | I | ‘I
0 ) 10 15 20 25 30 35

Duration of Control (yrs)

Figure S2.2: Heat map of divorce effect from a control that increases recovery rate. All
parameters are as in Figure 2.1(b). The Divorce Effect is still observed if the control increases
the recovery rate, vy, as opposed to decreasing the transmission parameter. All parameters the

same as in Figure 2.1. Control increases y to 730 (previously 73 /year).
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Figure S2.3: Time-series showing the divorce effect in non-seasonal SIR model. Figure
corresponds to Figure 2.1(a) of the main text. Beginning at time zero, a year-long 50% reduction
in the transmission parameter of an endemic infection (Ro=5) reduces prevalence of the infection
to near zero for the length of the control, where it remains until time 1.5 yrs, at which point a
large post-control outbreak occurs. RCI falls towards zero as prevalence remains low, but the
post-control outbreak is large enough to bring RCI well above 1 (approx. 1.6). Panel 2 shows
that the susceptible population begins to rise during the control period and continues until the
outbreak depletes the susceptible population. Likewise, the reproductive number at time t, Ry,
begins to rise during the control period. Once the control is released and the transmission rate

retains its original value, Rt increases above one and continues to grow until an outbreak occurs.
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Figure S2.4: Long-term time-series for the divorce effect in an SIR model. Figure
corresponds to Figure 2.1(a) of the main text. Following a one year control in which the
transmission parameter is reduced by 50%, the host population continues to experience outbreaks
that bring RCI above one until the infection approaches the endemic state and RCI approaches

one.
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Figure S2.5: Heat maps of divorce effect in SIR model for different strengths of control.

We see that the Divorce Effect occurs in a significant area of the parameter space with controls

that reduce the transmission parameter, £, by 100% (a), 75% (b), and 50% (c). In each case, the

only way to avoid the divorce effect is to maintain control for more than 20 years (or

approximately 40 years in the case of 50% control).
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Figure S2.6: Maximum RCI for a given effectiveness of control and Ro. All controls are
assumed to last for 1 year. The maximum RCI is found as the maximum observed RCI within 25
yrs after the end of a control that is between 0% and 100% effective for an infection with an Ro
of between 0 and 20. The areas of lowered maximum RCI result from outbreaks due to
honeymoon effect outbreaks deplenishing the population of susceptible individuals before the

control periods end.
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Figure S2.7: Long-term time-series for the divorce effect in a seasonal SIR model.
Following a one year control in which the transmission parameter is reduced by 50%, the host
population continues to experience outbreaks that bring RCI above one until the infection

approaches the endemic state and RCI approaches one.
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Figure S2.8: The divorce effect in the seasonal SIR model with higher seasonality. ; = .1,
I, = 10, all other parameters as in Figure 2.2. Here a higher value of I, is taken to adjust for the
higher seasonality of the model. (a) Typical time-series showing the divorce effect.
Beginning at time zero, when the transmission parameter is at its maximum, a year-long 90%
reduction in the transmission rate of an endemic infection (Ro=5) is implemented at the
beginning of a seasonal outbreak and reduces prevalence of the infection to near zero for the
length of the control. Following the end of the control, a small late season outbreak occurs,
followed by a large outbreak during the next season. RCI falls towards zero as prevalence
remains low while the control is in effect, rises slightly during the small late season outbreak,
and rises above 1 during the large outbreak the following year. (b) Magnitude of divorce effect
in terms of relative cumulative incidence (RCI). Maximum RCI is found as the highest value
RCI observed within 25 yrs following a 100% effective control of an infection with 1<R<20 and
lasting between 1 month and 20 years. RCI>1 indicates the divorce effect and we see that
divorce effect occurs in most of the parameter space. Unlike the SIR model (Figure 2.1), the
magnitude of the divorce effect is not solely dependent on Ro. (c) Effect of timing on the
magnitude of the divorce effect. Maximum RCI is the highest RCI observed within 25 yrs
following a 100% effective control of an infection with Ro=10 beginning and ending on specified
days. Dashed lines represent controls lasting either 1, 2, or 3 years. Maximum RCI is most
sensitive to the day the control is ended, moderately sensitive to the day it is started, and only
slightly sensitive to the length of the control. This is due to the timing of the end of the control
determining the timing of the outbreak. We also see that continuing the control for another year

has little impact on the magnitude of the divorce effect.
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Figure S2.9: Maximum RCI for a given basic reproductive number and seasonality in the
directly transmitted model. All controls are assumed to increase the vector mortality rate by
100% and to last for 1 year. The vector reproductive rate is assumed to have some average rate,
r, and some level of seasonality (rs). The maximum RCI is found as the maximum observed RCI
within 25 yrs after the end of a control. Here we see that the divorce effect is present throughout

most of the parameter space.
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Figure S2.10: Time-series of the divorce effect in a non-seasonal vector-borne infection.

Figure shows the result of the non-seasonal host-vector model given in main text. Following a

Proportion of Population Infective

year of control, against an endemic infection (R, = 5), in which the vector lifespan is reduced by

50% (6 = 73/year increased from & = 36.5/year) incidence is reduced to near zero. After the

control is stopped, we see a post-control outbreak in year 3, resulting in the divorce effect (peak

RCI»1.5).

64



20 F 1.7
1.6
O
15} 1.5%
>
1.4 8
(=) 0
X 10 130
< E
£
1.2 é
5 =
1.1
| | | | ‘I

0 5 10 15 20 25 30 35
Duration of Control (yrs)

Figure S2.11: Heat map for non-seasonal host-vector Model. Maximum RCI is the highest
RCI observed within 25 yrs following control of an infection with Ro = 5 beginning and ending
on specified days. We see for the Host-Vector model that, much like the SIR model, the only
way to avoid the divorce effect is to maintain control for more than 20 years. Parameters as

given in the main text. Control decreases vector life-span by 50%.
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Figure S2.12: Long-term time-series for the divorce effect in a seasonal host-vector model.

All parameters are as in Figure 2.3 of the main text. Following a one-year control, a large
outbreak occurs in year 3, that brings RCI above 1. This outbreak deplenishes the susceptible
population, resulting in no outbreaks for the next five years. Each subsequent outbreak is
sufficiently large to bring RCI above 1. Around year 30, the system is still experiencing larger

than normal outbreaks, bringing RCI slightly above 1.
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Figure S2.13: Maximum RCI for a given basic reproductive number and seasonality in the
host-vector model. All controls are assumed to increase the vector mortality rate by 100% and
to last for 1 year. The vector reproductive rate is assumed to have some average rate, r, and
some level of seasonality (rs). The maximum RCI is found as the maximum observed RCI
within 25 yrs after the end of a control. Here we see that the divorce effect is present throughout

the parameter space.
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model. In the pulsed (a), reactive (b), and informed (c) techniques, we see the susceptible

(=]

P ay=
Proportion Infeative

O R0 X

population begin growing with the first treatment and continue growing until the outbreak occurs

after the 12 treatment, at which the susceptible population is quickly depleted. Likewise, the

reproductive number, Ry, increases overall during this time with seasonal fluctuations, and

reductions due to control periods.
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Figure S2.15: Suggested techniques for mitigating the divorce effect in a seasonal host-
vector model. (a) Pulsed control for seasonal SIR model. Control (¢ = 1) occurs yearly at a
fixed time (when Ro is highest) for a fixed time (1 mo.). The control is effective at stopping the
outbreak the first year, but seasonal outbreaks in subsequent years are of varied magnitudes due

to the susceptible population being depleted in some years and replenished in others. An
outbreak in year 2 is large enough to result in the divorce effect. Stopping the control program
results in a large post-control outbreak and a divorce effect. (b) Reactive control for seasonal

SIR. A fixed length (1 mo.) control is implemented once prevalence rises above a threshold
(200 individuals in a population of 1 million). This stops the large outbreaks seen in the pulsed
control, however the frequency of treatment increases as the susceptible population grows, and
all treatments are depleted within the first four years. Stopping the control program results in a
large outbreak and divorce effect. For all panels twelve 1 mo. controls are used to be consistent

with the 1 yr. controls used in other figures. (c) Informed Control in seasonal Host-Vector
model. Control works by increasing vector mortality by 100% for 1 month. The first control
period occurs at time 0. The beginning of the next control period is decided at the end of the
control period, and is the day that will result in the smallest Divorce Effect if control is stopped
after that period (a maximum of 1 year between treatments). We see that this is capable of
nearly eliminating the Divorce Effect, but there is only a negligible benefit to the control, with
large yearly outbreaks. Importantly, this plan recommends waiting the full year, suggesting that

the optimal timing of the next treatment may occur after this period.
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Figure S2.16: The divorce effect in the SIR model with a (a) growing and (b) shrinking
population. The population is (a) growing or (b) shrinking during the simulation at a rate of 25%
per year. Beginning at time zero, a year-long 50% reduction in the transmission parameter of an
endemic infection (Ro=5) reduces prevalence of the infection to near zero for the length of the
control, where it remains until time 2.5 yrs (a) or 3 yrs (b), at which point a large post-control
outbreak occurs. RCI falls towards zero as prevalence remains low, but the post-control
outbreak is large enough to bring RCI well above 1 (peak RCI = 1.67 and 1.64 for the growing
and shrinking population, respectively). Note that, because of the changing population sizes

within and between graphs, prevalence of infection is plotted on a relative scale on both graphs.
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Figure S2.17: Cessation of a vaccination program. A vaccination program is put in place in
which 50% of newborns are vaccinated for one year. All other parameters are as in Figure 2.1.
The vaccination program is discontinued after the first year. While we see post-control

outbreaks that bring incidence above the endemic level, they are not large enough to bring RCI

above one, and RCI approaches 1 in the long run.
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Figure S2.18: Divorce effect in a SIRS model. Beginning at time zero, a year-long 50%
reduction in the transmission parameter of an endemic infection (Ro=5) reduces prevalence of the
infection to near zero for the length of the control, where it remains until time 1.5 yrs, at which
point a large post-control outbreak occurs. RCI falls towards zero as prevalence remains low,
but the post-control outbreak is large enough to bring RCI well above 1 (peak RCI is approx.
1.45).
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Figure S2.19: Divorce effect in the within-host virus dynamics (HIV) model. Beginning at
time zero, a 25 day treatment occurs using a drug that combines a protease inhibitor and a
reverse transcriptase inhibitor, both with 50% efficacy. This successfully reduces the infectious
T cell count to near zero during and immediately following the treatment period. After the end
of treatment, we see a transient increase in infectious T cells, bringing the relative cumulative

incidence of T cell infection above one (max RCI»1.14). After years, RCI eventually approaches

1 from below.
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Figure S2.20: Divorce effect in an age-structured SIR model with realistic mixing. A
control for a directly transmitted infection with Ro = 5 (a) and Ro = 15 (b) in a population of 9000

individuals is implemented at time 0, during which transmission is reduced by 50% for 1 year.

At the end of the year, control is instantaneously removed. RCI quickly falls to 0 during the

control period and remains there until a large outbreak in year 4 brings RCI up above 1 for all

age groups. For the figure, prevalence, the number of individuals currently infective, (dashed
lines) and RCI (solid lines) are shown for the total population, and age groups are shown

aggregated into three groups: preschool (ages 0-5), school age (ages 6-18), and adult (ages 19+).
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Figure S2.21: Analytical approximation of the magnitude of the divorce effect. (a) Heat
map of approximated and simulated magnitude of the Divorce Effect in terms of RCI. The
analytical approximation predicts the divorce effect for all controls lasting less than 20 years,
similar to what is observed in the SIR model (Figure 2.1(b)). However, it overestimates the
observed maximum RCI throughout the parameter space, and does so drastically for a short
control in a system with Ro<3. (b) Relative difference between the observed and predicted
maximum RCI. Calculated as (observed-predicted)/observed. The relative difference is small

(<.25) throughout most of the parameter space except for short controls in systems with Ro<3.
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Figure S2.22: Sensitivity of the magnitude of the divorce effect to the background force of
Infection in the (a) non-seasonal and (b) seasonal SIR models. Figure (a) is parameterized as
in Figure 2.1(a) (R, = 5) and (b) is parameterized as in Figure 2.2(a) (Ry = 5, B; = .02). All
controls are assumed to last one, two, or five years, beginning at t = 0. We see that for a
sufficiently high number of infective individuals visiting our focal population (ly), the divorce
effect is eliminated. We choose a seemingly realistic value of I,, = 1 (stars) for our models,
compared to an endemic level of 183 infective individuals for these parameter values in the
nonseasonal model. This value will keep the number of infectives from falling to arbitrarily
small values while not eliminating the divorce effect. We note that values of I, that are
sufficiently large to eliminate the divorce effect would require I, to be roughly the same size as

the endemic infection level.
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Figure S2.23: Interaction between background force of infection, seasonality, timing of
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CHAPTER 3 - Efficacy and Spatial Extent of Yard-scale Control of Aedes (Stegomyia)
albopictus (Skuse) (Diptera: Culicidae) using Barrier Sprays and Larval Habitat
Management

Brandon Hollingsworth, Pete Hawkins, Alun L. Lloyd, Michael H. Reiskind

*This chapter is published in the Journal of Medical Entomology. Hollingsworth, B., Hawkins, P., Lloyd, A. L., &
Reiskind, M. H. (2020). Efficacy and Spatial Extent of Yard-Scale Control of Aedes (Stegomyia) albopictus
(Diptera: Culicidae) Using Barrier Sprays and Larval Habitat Management. J. Med. Entomol.
https://doi.org/10.1093/jme/tjaa016
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ABSTRACT

The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse), is a peridomestic,
container-ovipositing mosquito commonly found throughout the southeastern United States.
In the US, Ae. albopictus is typically considered a nuisance pest, however, it is capable of
transmitting multiple pathogens. Aedes albopictus is an important pest species and the target
of numerous mosquito-control efforts in the United States. Here, we evaluate the effectiveness
and spatial extent of Ae. albopictus population reduction using a bifenthrin (Al Bifen IT, 7.9%)
barrier spray and larval habitat management (LHM) in a temperate, suburban setting. Sixteen
pairs of adjoining neighbors were randomly assigned to treatment groups with one neighbor
receiving a treatment and the other monitored for evidence of a spill-over effect of the
treatments. Ae. albopictus populations in both yards were monitored for 33 days, with
treatments occurring on the 8" day. Barrier sprays, both alone and combined with LHM,
resulted in a significant reduction in Ae. albopictus abundance post-treatment. While LHM
alone did not result in a significant reduction over the entire post-treatment period, Ae.
albopictus populations were observed to be in decline during this period. No treatments were
observed to have any reduction in efficacy 25 days post-treatment, with treatments involving
LHM having a significantly increased efficacy. Yards neighboring treated yards were also
observed to have reduced population sizes post-treatment, but these differences were rarely
significant. These results provide insights into the population dynamics of Ae. albopictus

following two common treatments and will be useful for integrated pest management plans.
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INTRODUCTION

Aedes (Stegomyia) albopictus (Skuse) is a peridomestic container-ovipositing mosquito
commonly found throughout the world. After its initial introduction in Texas in 1985 (Sprenger
and Wuithiranyagool 1986), it quickly spread throughout the southeastern United States (US)
and now has a range stretching from the Atlantic coast in the east to Texas in the west and from
the southern tip of Florida up to New York in the north, along with areas of recent introduction
in California on the west coast (Hahn et al. 2017). Its preference for ovipoisiting in artificial
containers, along with its propensity for biting humans, makes it one of the most common
nuisance mosquitoes in the US. Unfortunately, controlling Ae. albopictus using traditional
methods such as ultra-low volume applications has proven difficult, suggesting a need for
alternative control strategies (Roiz et al. 2018, Achee et al. 2019). Further, its ability to transmit
dengue, Zika, and chikungunya viruses make it a potential public health threat, and the likely
vector in the case of introduction of these pathogens into the US (Gostin and Hodge 2016,
Messina et al. 2016, Moreno-Madrifian et al. 2018).

Traditionally, mosquito control in the US has been performed by mosquito abatement
districts, with the aim of mitigating community-wide nuisance and risk of disease associated with
mosquitoes. Abatement districts commonly deploy vehicle-based, ultra-low volume (ULV)
application in order to treat large areas with insecticides. These ULV applications are often
coupled with source reduction efforts to remove large oviposition sites, such as tire piles.
However, recent budgetary cuts, including in North Carolina in 2011, have resulted in
underfunded and underprepared mosquito control districts (Rosario et al. 2014).

Within North Carolina, 55% of mosquito control programs self-reported a barely

functional budget (Rosario et al. 2014) and a recent survey of vector-control organizations
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nationwide showed that 84% needed improvement in at least one of five core capacities: routine
mosquito surveillance, surveillance based treatments, larviciding and/or adulticiding, routine
vector control activities, and pesticide resistance testing (NACCHO 2017). These reports,
combined with concerns about the effectiveness of ULV applications for reducing Aedes
populations, and Aedes-vectored disease (Bonds 2012, Wilson et al. 2015, Bowman et al. 2016,
Faraji and Unlu 2016, Roiz et al. 2018), suggest mosquito abatement districts may be ill-
equipped to respond to vector-borne disease outbreaks and highlight a need for new plans for
mosquito-borne disease response. The private mosquito control industry, in contrast, has grown
significantly over the past decade (Specialty Consultants 2016). While this growth has been
mostly driven by a high willingness to pay for mosquito nuisance control (Dickinson and
Paskewitz 2012), fear of potential outbreaks of dengue and Zika virus in the US has likely also
increased enrollment in their services. Unlike mosquito abatement districts, these companies
deploy yard-scale mosquito treatments, the efficacy and spatial scale of which has not been fully
quantified. It is possible that, if shown effective, these yard-scale treatments could provide a
useful tool for precision mosquito control in the event of a mosquito-borne disease outbreak. In
light of this, it is important to quantify the short-term effectiveness of yard-scale treatments and
their effect on the dynamics of nearby mosquito population.

The yard-scale treatments employed by private mosquito control companies typically
target nuisance mosquitoes, including Ae. albopictus, with treatments involving the use of a
combination of an adulticidal barrier spray, most commonly a pyrethroid, and larval habitat
management (LHM), tip-and-toss combined with a long acting larvicide, applied regularly
during mosquito season. The success of these companies and the growth of the industry provides

anecdotal evidence of their effectiveness. However, empirical studies of the effects of barrier
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sprays (Muzari et al. 2014, Fulcher et al. 2015, Stoops et al. 2019), especially when applied to
individual yards (Trout et al. 2007, Hurst et al. 2012, VanDusen et al. 2016, Richards, Balanay,
et al. 2017) have focused on the long term effects of the treatments inside the treated area, and
not on the short-term effects or the spill-over effects in the neighboring yard, which would likely
play a major role in disease dynamics. Similarly, studies of the effect of larval habitat
management, or larval source reduction, on Ae. albopictus have typically focused on
neighborhood or city-wide efforts (Richards et al. 2008, Unlu et al. 2011, 2013, Fonseca et al.
2013, Faraji and Unlu 2016), with mixed results and further investigation about its effectiveness
is needed (Faraji and Unlu 2016).

Here, we report on the efficacy of two standard mosquito control techniques, larval
habitat management, through source reduction, and an adulticidal barrier spray, when applied to
individual yards in the Wake County, NC area. Mosquito abundance from adjacent yards was
also monitored to determine if there was a reduction outside of the treated area.

METHODS
Participant Recruitment

Households were recruited in Wake County, NC (35°47'24.00" N -78°39'0.00" W)
beginning in May, 2018 using a combination of recruitment fliers placed at local community
centers and recruitment emails sent through neighborhood listservs. Recruitment was limited to
pairs of neighboring houses that had not received any professional mosquito treatment that year
(since January 2018) and were willing to participate. Participating houses were enrolled on a
first-come basis and adult residents for each house were met in person for the informed consent
process. All participants received treatments free of charge, and participants not receiving a

barrier spray treatment were offered a free treatment following the end of the study. Designation
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of treatment and neighboring house for each pair was determined at time of informed consent.
Typically, the house belonging to the primary contact for the pair, whoever initiated contact, was
assigned to treatment unless residents preferred otherwise.
Ethical Clearance

Informed consent was obtained from adult residents of all participating houses before the
beginning of the study. All participants were informed about their rights and all risks associated
with their inclusion in the study. Ethical approval was obtained from the North Carolina State
University Institutional Review Board (Approved, NCSU Protocol # 12800, 5/14/2018).
Study Design

We employed a split-split-plot design with sites, consisting of 16 house pairs, randomly
assigned to a LHM by barrier spray (2x2) balanced factorial design and trap locations designated
within each site. Each house pair was assigned to receive either LHM alone, the barrier spray
alone, a combination of both LHM and barrier spray, or no treatment, with four replicates of
each treatment. Three sampling locations were determined within each site (see Figure 3.1).
Each location within a site was sampled concurrently every fourth day over a 33 day period.

After being assigned a treatment, each site was assigned to one of four groups for
sampling, such that each group contained exactly one site assigned to each of the treatment
levels. Sampling was conducted on a rotating basis, with all members of a group sampled on the
same days, e.g. group 1 was sampled on days 1, 5, 9, etc. and group 2 on days 2, 6, 10, etc.
Sampling consisted of 9 trap days at each location occurring on every 4™ day, lasting 24 hours,
and occurred over a period of 36 days, including the pretreatment period, from 6 August, 2018 —

10 September, 2018 due to rotating between groups.
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During each sampling day, 3 BG-Sentinel 2 (Biogents, Regensburg, Germany) traps were
set for 24 hours along a transect, with traps placed in the center and side (approx. 5m from the
property line) of the treatment yard and adjacent neighboring yard (approx. 15m from the
property line), all traps were baited using BG lures (Figure 3.1). Trap bags were collected at the
end of the sampling period and collections frozen until sorted, with numbers of female Ae.
albopictus, male Ae. albopictus, and other mosquitoes recorded for each trap day. Due to low
count numbers of other mosquito species in collections, only female Ae. albopictus counts are
reported here.

Insecticide Application

Insecticide applications occurred the day before the third round of sampling at each site,
e.g. day 8 for group 1 and day 9 for group 2, (13 August — 16 August, 2018), denoted Day 0
(grey dashed bar in Figure 3.1), and were performed between the hours of 1400 and 1700.
Treatments were carried out by a trained, licensed applicator from a local mosquito control
company. For houses receiving LHM or combined treatment, the yard was initially surveyed for
larval habitat by the applicator and primary researcher. All containers with standing water were
emptied and removed if possible and the larvicide, Altosid (Al 1.5% (S)-Methoprene , Zoecon,
Schaumburg, IL), was applied to any standing bodies of water that could not be removed and did
not contain fish, e.g. birdbaths. In yards that received the barrier spray or combined treatment,
the applicator applied Bifen IT (Al 7.9% bifenthrin, Control Solutions, Pasadena, TX) as a
barrier spray around the property and to any resting habitat, e.g. dense foliage, with care taken to
avoid any flowering or fruiting plants and any ponds, consistent with the EPA/FIFRA pesticide
label. Barrier sprays were performed throughout the front, back, and side of the yard and to any

fences using a Stihl SR450 mist blower with the applicator walking approximately 3-4 km/hour,
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applying approximately 1 gallon of mixed product, containing approximately 1 oz Bifen IT, per
1000 ft2. For houses assigned to the combined treatment group, LHM was performed before
application of the barrier spray.

Statistical Model

To evaluate the reduction in the female Ae. albopictus population due to the treatments,
we modeled the number of female Ae. albopictus in the trap as a Poisson random variable using a
generalized linear mixed model with a log-link function (Bolker et al. 2009, Zuur et al. 2010).
All models included a random intercept for the study site, with correlation between traps at the
same site, the trapping date, and an observation level random effect to account for overdispersion
(Harrison 2014). Fixed effects were modeled as a LHM by barrier spray by location by days
since treatment factorial design, with day taken as a covariate for comparisons between
treatments and locations and as a factor for comparisons between days. The average
pretreatment mosquito count was then used as a per location offset. All models were fitin R (R
Development Core Team 2019) using the Ime4 package (Bates et al. 2015), with means and
contrasts calculated using the emmeans package (Lenth 2019).

The percent reduction in mosquito population due to treatment is found as the contrast
between the treatment and control group ((1 — contrast) * 100%). Multiple comparisons
against a control, either the untreated yards or the first day post-control, were performed using a
Dunnett adjustment. Pairwise multiple comparisons were conducted using a Tukey adjustment,
while comparisons of individual days against the average of the days used a Bonferroni method
(Longnecker and Ott 2015). Where not specifically noted, we test the contrast been a treatment
and the untreated group using the appropriate adjustment. Confidence intervals for all estimates

are given at the 95% level and contrasts are considered significant at the o = .05 level.
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RESULTS

Aedes albopictus counts for 429 trap-days were recorded (3 days, 1 of which was
pretreatment, were lost due to trap failures) (Figure 3.2). There was no significant overall trend
with regard to mosquito abundance for the control group (95% CI for slope (-.0311, .0010)) over
the study period, suggesting that mosquito populations were not declining throughout the study
period. However, counts in the post-treatment period were significantly lower than the
pretreatment period for the control group (Table S3.1).
Treatment Effects

Overall, we found that all treatment groups exhibited a decrease in the mosquito count
during the entire post-treatment period. Compared to the pretreatment mean, pairs of houses in
the LHM treatment group had a 63.9% (47.5%, 75.1%) mean reduction in the abundance of
female Ae. albopictus, the barrier spray treatment group had a reduction of 77.1% (66.8%,
84.2%), and the combined treatment group had a reduction of 74.6% (62.8%, 84.2%) (Table
S3.1). The application of LHM resulted in a 40.9% (p = .0866) mean reduction in the
abundance of female Ae. albopictus across the pair of yards over the post-treatment period, the
barrier spray resulted in a 62.5% (p = 1.87x10~*) mean reduction, and combining the
treatments resulted in a 58.5% (p = .00123) mean reduction.

Inside the treated yards, LHM resulted in a 33.3% (p = .457) mean reduction in female
Ae. albopictus abundance over the post-treatment period, the barrier spray in a 62.2% (p =
.00808) mean reduction, and the combined treatment in a 59.5% (p = .0176) mean reduction.
In the untreated neighboring yard, LHM resulted in a 54.6% (p = .209) mean reduction over the
post-treatment period, the barrier spray in a 62.5% (p = .0796) mean reduction, and the

combined treatment in a 58.6% (p = .143) mean reduction (Table S3.2).
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Edge and Spill-over Effects

In general, Ae. albopictus counts were higher at the side and neighbor trap locations for
the barrier spray group and lower for treatments that included LHM. However, we found no
significant difference in the reduction of Ae. albopictus counts between the traps at the center,
side, and neighboring locations, regardless of treatment (Table S3.2).

Temporal Trends

The day immediately following treatment application, reduction due to treatment in the
mean female Ae. albopictus abundance in treated yards was not significant for any treatment,
with the largest reduction, 60.7% (p = .0717), occurring when only the barrier spray was
applied. Similarly, the reduction was not significant in the neighboring yards, despite the barrier
spray resulting in a mean reduction of 68.9% (p = .0921) and the combined treatment resulting
ina 72.4% (p = .0865) mean reduction.

In treated yards, the greatest reduction due to treatment was seen 17 days post-treatment
when a barrier spray was applied, and 25 days post-treatment for LHM and combined treatments.
Similar results were seen for neighboring yards, with the exception of when the combined
treatment was implemented for which the greatest reduction occurred 9 days post-treatment
(Figure 3.3). However, the reduction in abundance due to treatment was not significantly lower
than the mean post-treatment reduction for any treatment in either the treated or neighboring
houses (Table S3.3).

To determine if the Ae. albopictus population rebounded post-treatment, we examined
four models for the change in treatment effectiveness over time. Based on AIC (Longnecker and
Ott 2015), overall trends were best described using a linear fit for the time since treatment,

compared to quadratic fits (AAIC = 14.1), cubic fits (AAIC = 28), or treating time as a factor
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(AAIC = 62). Within treated yards, estimates for trends in the Ae. albopictus reduction due to
all treatments were positive, suggesting that treatments became increasingly effective during the
post-treatment period. However, this trend was only significant for LHM (p=.0336). Estimates
of the trends for reduction due to the barrier spray and LHM in the neighboring yard were
negative, but neither was significant (Table S3.4).

Contrasts between the effects 25 days post-treatment and the effects one day post-
treatment also fail to show any evidence of a rebound in the Ae. albopictus population. 25 days
post-treatment, treatment with LHM resulted in Ae. albopictus populations being reduced by
70.6% (p = .0123) of its size one day post-treatment. The combined treatment and barrier spray
also saw an increased reduction 25 days post-treatment compared to after one day, but neither
was significant. Ae. albopictus populations in neighboring yards were lower 25 days post-
treatment than one day post-treatment when the focal house was treated with LHM, showing a
significant additional reduction 25 days post-treatment (73.2% reduction, p = .0361) (Table
S3.5). These results, combined with the overall trends provide no evidence that there is a loss in
effectiveness of treatments 25 days post-treatment, and that there is significant evidence that Ae.
albopictus populations in yards treated with, and neighboring to yards treated with, LHM are still
declining 25 days post-treatment.

DISCUSSION

The results of our study concur with previous studies that the yard-scale application of
barrier sprays using the pyrethroid, bifenthrin, in conjunction with LHM can successfully
suppress Ae. albopictus populations in yards in the temperate US (Trout et al. 2007, VanDusen et
al. 2016, Richards, Volkan, et al. 2017) and our estimates of the overall effect of bifenthrin

barrier sprays are in the range of previous studies. In addition to these estimates, the design of
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this study allowed for the decoupling of the effects of LHM and barrier spray, and trapping
repeatedly at short intervals allowed the estimation of how the effectiveness of treatments
changed over the 25 days following treatment. Our study showed that bifenthrin barrier sprays
quickly reduced the Ae. albopictus population by 60% and continued having an effect at 25 days,
with little change in effectiveness over the 25 days post-treatment, while LHM effectiveness
increased over the study period, having no effect immediately following treatment and only
began to have an effect after about 21 days. While we did not find any evidence of an increased
effect with combined treatments, the difference in timing of the effects suggest that there is an
added benefit of using both treatments. In addition to measuring the effectiveness inside of
treated yards, we were able to measure the effect of these treatments in untreated neighboring
yards. Estimates in the untreated neighboring yards were on the same scale as in treated yards,
suggestive of a spill-over effect of the treatments, but the differences were not significant. These
estimates suggests that it may not be necessary to treat every yard to successfully reduce Ae.
albopictus counts across a neighborhood, significantly reducing the risk posed by noncompliant
houses.

While our results show that bifenthrin barrier sprays and LHM have an effect beyond 25
days post-treatment and may reduce Aedes populations beyond the perimeter of the treated yard,
future studies need to maintain surveillance more than 25 days post-treatment and should
monitor the mosquito populations further than 15m beyond the treated area. We also failed to
see a significant decrease in numbers in the untreated neighboring yards, despite estimates of 50-
60% reduction due, in part, to large variability in the results, something future studies should
take into account. Previous studies of barrier sprays have also shown that the timing, with

respect to the mosquito season, of treatments has an impact on the effectiveness of the control
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(Williams et al. 2019), with increased effectiveness later in the season, suggesting that the
effectiveness of the barrier sprays would be lessened earlier in the season, something that should
be accounted for.

Our results show that it is possible to locally reduce Ae. albopictus populations using
these treatments for significant periods of time. Applicators could deploy yard-scale treatments,
such as barrier sprays and LHM, to target “hot-spot” yards containing large mosquito
populations, which has been shown to be effective (Unlu et al. 2016), a strategy that could prove
more effective than traditional neighborhood- and city-scale ULV applications. In addition, the
estimated effects of the treatment on untreated neighboring yards, while not significant, suggests
that an economically optimal strategy for deploying treatments may exist for temporarily
reducing the mosquito population in a neighborhood or town in response to mosquito-borne
disease outbreaks, e.g. spraying some proportion of yards. However, the efficacy and cost-
effectiveness of such a plan would be highly dependent on the costs and accuracy of determining
yards with consistently larger Ae. albopictus populations.

Control of Ae. albopictus populations using strategically deployed yard-scale treatments
could also help prevent the emergence and spread of insecticide resistance in local populations
when it is not necessary to suppress the entire population. Targeting specific yards and other
habitats with large mosquito populations could mean that applicators are able to apply a higher
concentration than what is possible from vehicle-based ULV applications. Fewer mosquitoes
will be exposed to a sublethal dose, while leaving other areas untreated could serve as a natural
refuge for susceptible populations. This would serve as a high-dose/refuge approach, similar to

what is suggested for resistance management in crop pests (Gould 1998, Tabashnik et al. 2004,
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Gould et al. 2018), and possibly creating a reservoir for genes beneficial for resistance
management (Maino et al. 2019).

Yard-scale control of mosquitoes with a combination of a barrier spray and LHM
successfully suppressed mosquito populations in treated and adjacently neighboring yards in our
study. However, while we show an estimated reduction of 59.5% in the 25 days post-treatment,
it is unclear if this would be sufficient to satisfy private customers. The use of LHM alone, with
a longer effective period and an estimated 40.9% reduction over the initial 25 days post-
treatment, may prove preferable for long-term reduction of nuisance due to Ae. albopictus.
Barrier sprays provided an immediate reduction of the Ae. albopictus, an important addition for
applications performed commercially or in response to an Aedes-borne disease outbreak.
However, whether the additional reduction provided by barrier sprays would be sufficient for
stopping an outbreak of an Aedes-vectored disease, e.g. dengue, would depend on the vectoral
capacity of the local population (Fouet and Kamdem 2019). Yard-scale applications of barrier
sprays could prove preferable to ULV spraying when used as part of a well-designed integrated
vector management program as it allows for targeted “hot-spot” treatments. For instance,
targeted barrier sprays could be used to supplement ongoing neighborhood-wide LHM, which
has previously been shown to reduce Ae. albopictus populations (Fonseca et al. 2013), in
response to a disease outbreak ,or as part of ongoing activities (Roiz et al. 2018). While the
results presented above show the potential of yard-scale treatments to reduce Aedes populations,
much more information is needed to be able to optimally deploy yard-scale targeted controls as
part of an integrated management plan. Key amongst this is the scale and magnitude of the

spatial heterogeneity of the Ae. albopictus population, techniques to quickly and efficiently
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identify “hot-spots”, and a framework for determining optimal treatment patterns (Baldacchino et

al. 2015, Fouet and Kamdem 2019).
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TABLES

Table 3.1: Mean count of Ae. albopictus on given day after treatment, aggregated for each

trap location, yard, and treatment pair within each treatment group.

Day

Pre- 1 5 9 13 17 21 25
treatment

Combined | Total 10.08 533 458 275 350 391 325 217
Treated 10.625 6.25 475 325 3.75 4.5 3.38 1.75
Center 12.12 800 825 500 425 7.00 4.00 1.25
Side 9.13 450 125 150 325 200 275 225
Neighbor 9 350 425 175 3.00 275 3.00 3.00
Barrier | Total 20.63 700 592 675 6.67 558 683 508
>pray Treated 15.25 500 425 438 4.75 4.13 7.25 3.50
Center 13.63 1.50 250 375 275 375 4.00 250
Side 16.88 850 6.00 500 6.75 4.50 10.50 4.50
Neighbor 31.38 11.00 9.25 11.50 10.50 850 6.00 8.25
LHM | Total 14.17 12.75 575 433 725 725 617 3.33
Treated 13.88 10.88 6.00 450 813 775 538 313
Center 9.38 850 525 450 650 575 650 3.00
Side 18.38 13.25 6.75 450 9.75 9.75 425 3.25
Neighbor 22.00 16.50 5.25 400 550 625 775 375
Control | Total 14.17 16.67 125 845 13.17 6.67 13.64 8.42
Treated 13.75 12.00 11.25 6.86 13.00 6.13 13.86 9.00
Center 11.13 10.75 6.75 4.00 6.25 750 533 450
Side 16.38 13.25 15.75 9.00 19.75 4.75 20.25 13.5
Neighbor 15.14 26.00 15.00 11.25 1350 7.75 13.25 7.25
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Table 3.2: Percent reduction in adult female Ae. albopictus population due to treatment

and p-values. Percent reduction is found as the contrast between the reduction seen in the

treated and control yards for each treatment and time period. Differences that are significant at
the a = .1 (.) and a = .05 (*) are denoted.

Pair Treated Neighbor
Combined | Post-treatment 58.5(.0012)* 59.5 (.0176)* 58.6 (.143)
Day 1 37.6 (.534) 72.4 (.0865).
Day 5 58.9 (.109) 58.1 (.330)
Day 9 46.9 (.376) 82.8 (.133)
Day 13 63.1 (.0539). 65.3 (.209)
Day 17 40.0 (.527) 35.1 (.805)
Day 21 69.2 (.0223)* 60.6 (.304)
Day 25 81.2 (.00233)*  28.0(.882)
Barrier | Post-treatment 62.5 (1.88x107%)* 62.2 (.00808)* 62.5 (.0796).
Spray Day 1 60.7 (.0717). 68.9 (.0921).
Day 5 65.4 (.0351)* 67.3 (.120)
Day 9 47.0 (.351) 37.0(.730)
Day 13 73.4 (.00524)*  64.8(.1626)
Day 17 53.7 (.205) 49.3 (.514)
Day 21 57.9 (.102) 77.9 (.0275)*
Day 25 67.3 (.0288)* 53.9 (.412)
LHM | Post-treatment 40.9 (.0866). 33.3 (.457) 54.6 (.209)
Day 1 -04.3 (.996) 35.1(.754)
Day 5 25.5 (.795) 63.8 (.202)
Day 9 11.0 (.972) 53.9 (.431)
Day 13 35.4 (.576) 66.3 (.168)
Day 17 00.2 (1.00) 38.4 (.741)
Day 21 60.8 (.0857). 59.2 (.304)
Day 25 63.7 (.0668). 53.5 (.461)
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FIGURES

Treatment Yard Neighboring Yard

5m|
(] «><15—mn
Center  Side Neighbor

Trap

Trap Trai

Figure 3.1: Trap locations within the treated and neighboring yards. The center trap was

placed near the center of the treatment yard. The side trap was then set in the treatment yard,
approximately 5m from the edge of the neighboring yard, and the neighbor trap was placed

approximately 15m into the neighboring yard to form a transect.
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Figure 3.2: Mean number of female Ae. albopictus for each treatment and location
combination. Treatment occurred on day 0 (grey dashed line). The average counts suggest an

effect of the combined and barrier spray treatments.
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Figure 3.3: Estimated percent reduction in female Ae. albopictus count due to treatment
(dot) and 95% confidence interval (bars) on individual days in the treated and neighbor
yards. A value of 0 (dashed line) represents no difference from no treatment group. Only a few
individual days differ significantly from the no treatment group. There is no overall trend
showing a loss of effectiveness over 25 days, and treated yards that received LHM had

reductions on day 25 that were significantly larger than the average reduction.
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SUPPLEMENTAL TABLES

Table S3.1. Estimated percent reduction in adult female Ae. albopictus population in each

treatment group, and 95% confidence intervals.

Pair Treated Neighbor

Combined | Post-treatment 74.6 75.4 73.9
(62.8, 82.7) (60.8, 84.9) (49.2, 86.6)

Day 1 57.7 69.9
(16.3, 78.6) (21.7, 88.5)

Day 5 72.8 64.9
(44.1, 86.8) (11.6, 86.2)

Day 9 76.9 85.8
(53.8, 88.5) (57.4,95.2)

Day 13 69.1 74.1
(38.9, 84.9) (31.1, 90.3)

Day 17 76.2 74.8
(50.4, 88.6) (32.6,90.6)

Day 21 75.4 73.1
(49.1, 88.1) (28.7, 89.9)

Day 25 88.7 70.7
(74.2, 95.0) (23.3, 88.8)

Barrier | Post-treatment 771 77.0 76.4
Spray (66.8, 84.2) (63.0, 85.7) (55.1, 87.6)

Day 1 73.4 66.2
(47.3, 86.5) (21.9, 85.3)

Day 5 77.1 72.6
(54.2, 88.6) (35.9, 88.3)

Day 9 76.9 66.9
(53.8, 88.5) (23.4, 85.8)

Day 13 77.9 73.8
(55.6, 89.0) (38.3, 88.9)

Day 17 81.6 80.3
(62.5, 91.0) (52.6,91.9)

Day 21 66.3 84.9
(34.2, 82.8) (62.9, 93.9)

Day 25 82.3 81.1
(61.9,90.9) (50.5,92.8)
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Table S3.1 (Continued). Estimated percent reduction in adult female Ae. albopictus

population in each treatment group, and 95% confidence intervals.

Pair Treated Neighbor
LHM | Post-treatment 63.9 59.4 71.4
(47.5,75.1)  (34.6,74.9)  (44.7,85.2)
Day 1 29.3 294
(-36.4,63.4)  (-65.1, 69.8)
Day 5 50.7 69.7
(3.3,74.9) (24.9, 87.8)
Day 9 61.3 75.8
(22.6, 80.7) (38.7,90.5)
Day 13 46.3 74.9
(-0.1,72.6)  (36.6,90.1)
Day 17 60.4 76.1
(20.6,80.2)  (39.3,90.6)
Day 21 68.6 72.2
(36.1, 84.5) (30.2, 88.9)
Day 25 79.2 81.1
(56.2,90.1)  (54.7,92.3)
Control | Post-treatment 38.9 39.2 37.1
(.122, 57.4) (3.2,62.8)  (-19.0, 66.7)
Day 1 32.2 -8.8
(-28.7,64.3)  (-147,52.1)
Day 5 33.8 16.3
(-25.6,65.2) (-90.7, 63.2)
Day 9 56.5 47.5
(.14.6,79.1) (-22.8,77.6)
Day 13 16.9 25.4
(-56.2,55.8) (-70.7, 32.6)
Day 17 60.3 61.2
(22.7,79.6) (7.4, 83.8)
Day 21 19.9 319
(-53.4,58.2) (-56.9, 70.4)
Day 25 42.8 59.3
(-9.1, 70.0) (3.5, 82.8)
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Table S3.2. Percent of reduction at the center trap location seen at the side and neighbor

trap locations, along with associated p-values. An asterisk indicates differences that are

significant at the p < .05 level and a period indicates differences significant at the p < .1 level.

Dunnett adjustment for comparisons against a control is used to calculate p-values

Combined Barrier Spray LHM
Side 150% (.5588) 49.0% (.1825) 97.4% (.9950)
Neighbor 117% (.8978) 66.5% (.5424) 140% (.6500)
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Table S3.3. Comparison of treatment effectiveness between given days and the post-

treatment average. An asterisk indicates differences that are significant at the p < .05 level and

a period indicates differences significant at the p < .1 level. A Bonferroni-type adjustment for

multiple comparisons used to calculate p-values.

Treated Neighboring
Combined Barrier LHM Combined | Barrier LHM
Spray Spray
1 .632(.1179) | .163 .642 176 405 1.05
(.9880) (.0755). | (.9979) (.5815) | (.0140)*
5 117 (.9924) | -.0161 221 .356 .158 .0606
(.9880) (.6269) | (.9979) (.7447) | (.9177)
9 -.0710 -.00454 -.0602 -.695 .378 -.204
(.9924) (.9880) (9116) | (.9979) (.5815) | (.9177)
- 13 .257 (.9592) | -.05518 321 .00114 .108 -.1594
8 (9880) | (5663) |(9979) | (7504) |(.9177)
17 -.0365 -.270 -.0333 -.0295 -.227 -.216
(.9924) (.9793) (.9116) (.9979) (.7281) (.9177)
21 .00307 436 -.304 .0454 -.539 -.0392
(.9924) (.8972) (.5663) (.9979) (.5815) (.9177)
25 -.903 -.252 -.786 146 -.284 -.490
(.1105) (.9793) (.0755). | (.9979) (.7281) | (.7982)

Table S3.4. Temporal trends of percent reduction due to treatment in treated and

untreated yards. An asterisk indicates differences that are significant at the p < .05 level and a

period indicates differences significant at the p < .1 level.

Treated Neighboring
Combined -3.24 (.1034) 3.03(.3651)
Barrier Spray -.119 (.9976) .116 (.9986)
LHM 3.74 (.0336)* -.856 (.9248)
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Table S3.5. Additional percent reduction on day 25 post-treatment compared to 1 day

post-treatment. An asterisk indicates differences that are significant at the p < .05 level and a

period indicates differences significant at the p < .1 level. Dunnett adjustment for multiple

comparisons against 1 day post-treatment used for comparisons.

Treated Untreated
Combined 73.2% (.0171)* 2.6% (1.000)
Barrier Spray 29.9% (.8298) 44.6% (.5747)
LHM 70.6% (.0123)* 73.2% (.0361)*
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CHAPTER 4 - Targeted treatments against Aedes (Stegomyia) albopictus (Diptera:
Culicidae) in heterogeneous landscapes: insights from a data-driven model

Brandon Hollingsworth, Michael H. Reiskind, Alun L. Lloyd.
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ABSTRACT

Aedes (Stegomyia) albopictus (Skuse) has become a ubiquitous nuisance and potential
vector throughout much of the United States since its introduction in 1985. The emergence of
new Aedes-vectored arboviruses, the reemergence of dengue and yellow fever, and uncertainty
surrounding the effectiveness of ultra-low volume insecticide applications have led to interest in
developing novel control plans for quickly and efficiently reducing Aedes populations in
response to outbreaks of disease. However, spatial heterogeneity in the distribution of Ae.
albopictus can make designing efficient control programs difficult. | parameterized a two-patch
model of mosquito dynamics using data collected during a field experiment. Our best-fit model
estimated that the mean adult lifespan was around 31 days, the barrier spray initially reduced the
adult lifespan to 3 days with a 9 day half-life for its effectiveness, and that larval habitat
management resulted in a reduction of larval habitat >50%. | then used our parameter estimates
to simulate 9 different control plans across a synthetic neighborhood of 81 interconnected yards.
These control plans vary in the level of knowledge of the mosquito distribution that is assumed
and the proportion of houses that are treated. Using the best fit model, | predicted that treating
25% of houses is sufficient to reduce the neighborhood-wide mosquito population by 51.3%,
even when houses are randomly selected. When | allowed for targeted control through imperfect
or perfected knowledge of the mosquito distribution, the impact of treating 25% of houses
increases to 71% and 82%, respectively. These predictions suggest that there is little added
benefit of treating more than 25% to 50% of yards in a neighborhood, and that perfect

knowledge of the population distribution is not necessary to achieve high levels of reduction.
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INTRODUCTION

Since its introduction into the United States (US) in Texas in 1985 (Sprenger &
Wouithiranyagool, 1986), Aedes (Stegomyia) albopictus (Skuse) has spread throughout much of
the US. Currently in the US, populations of Ae. albopictus are ubiquitous from Texas to Florida
and as far north as Virginia and Washington, DC, and populations in heavily urbanized areas in
Arizona and New York (Hahn et al., 2017). More recently, Ae. albopictus was introduced into
California and is spreading rapidly (Hahn et al., 2017). This spread has been facilitated by the
ability of de. albopictus’ to oviposit in a variety of man-made containers, e.g. tires and
accumulated trash, and the ability of eggs to undergo diapause, lasting for months (Hawley,
1988). Aedes albopictus prefers peridomestic environments, where containers are plentiful,
putting it in close contact with human populations. This proximity to humans, combined with
high population densities and preference for human hosts, often results in high levels of nuisance
and disease risk. Nuisance is often the main concern associated with Ae. albopictus populations
in the US, as opposed to risk to public health (Lambrechts et al., 2010). However, it has been
shown in laboratory settings to be a competent vector for dengue (Boromisa et al., 1987) and was
the main vector in outbreaks of dengue in Hawaii in 2001 (Effler et al., 2005) and Guangzhou,
Chinain 2014 (Luo et al., 2017) and chikungunya on Reunion Island from 2005-2006 (Gérardin
et al., 2008). For these reasons, Ae. albopictus is considered a potential culprit for future
arboviral outbreaks in the US (Gostin & Hodge, 2016; Messina et al., 2016; Moreno-Madrifian
etal., 2018).

While Ae. albopictus exists across a large area of the US, its abundance can vary
significantly across relatively small spatial scales, on the order of 10s of meters (Hollingsworth

et al., 2020; Reiskind et al., 2017). This variation in abundance is due to the low vagility of Ae.
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albopictus and the small size and heterogeneous distribution of its preferred oviposition and
resting habitat. It has been estimated that most female Ae. albopictus move as little as 250m in
their lifetime (Marini et al., 2019) and rarely more that 1km under their own volition (Medeiros
etal., 2017). In Hollingsworth et al. (2020), traps set in suburban yards in the Raleigh, NC area
recorded between 1 and 43 female Ae. albopictus per trap night, with counts per trap night
differing by up to 27 female Ae. albopictus between adjacent neighbors and low levels of
correlation, p = .212. This fine-scale spatial heterogeneity and low movement rates results in
population structure that can have important implications for the effectiveness of control
programs.

Mosquito control in the US has historically been performed by mosquito abatement
districts and targeted species commonly responsible for disease in the region. Until the
elimination of malaria in the US in 1951 (Williams, 1963), this was often the malaria vector,
Anopheles quadrimaculatus Say. More recently, the focus has switched to controlling Culex
mosquitoes following the introduction of West Nile virus (WNV) and the reemergence of eastern
equine encephalitis (EEE) and St. Louis encephalitis (SLE) (Wilson et al., 2020). However,
recent outbreaks of Zika and dengue in the Americas, a high willingness to pay for mosquito
nuisance control (Dickinson & Paskewitz, 2012; Dupont, 2003), the continued spread of
container Aedes (Hahn et al., 2017; Hopperstad & Reiskind, 2016), and the expected
reemergence and spread of Aedes-vectored diseases (Wilson et al., 2020) have generated interest
in developing plans for the control of Aedes mosquitoes. Recently, the focus of mosquito control
in much of the US, performed by decentralized mosquito abatement districts and a rapidly
growing private pest control industry, is minimizing nuisance as much as disease risk (Wilson et

al., 2020). Mosquito abatement districts typically attempt to control mosquito populations over
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large areas using a combination of ultra-low volume (ULV) sprays deployed from vehicle-based
sprayers and removal or treatment of significant oviposition habitats, e.g. drainage areas and
swamps. In contrast, private pest control companies, responsible for treatment of individual
yards, have chosen to rely instead on barrier sprays, typically pyrethroid based, applied to private
properties in conjunction with a reduction in oviposition habitat to control peridomestic, pest
mosquito species (Hollingsworth et al., 2020).

While there is a growing body of literature supporting the effectiveness of barrier sprays
for reducing Aedes populations within treated areas (Fulcher et al., 2015; Hollingsworth et al.,
2020; Hurst et al., 2012; Muzari et al., 2014; Richards et al., 2017; Stoops et al., 2019; Trout et
al., 2007; Vandusen et al., 2016), larger-scale chemical-based control of Ae. albopictus has
proven more difficult, and there continues to be a significant debate about the effectiveness of
ULV spraying against Aedes mosquitoes (Bonds, 2012; Bowman et al., 2016; Faraji & Unlu,
2016; Roiz et al., 2018; Wilson et al., 2015). In addition to questions about effectiveness,
uniform treatments with ULV spraying over large areas presents an inherent risk for the
emergence of resistant populations of Ae. albopictus, something that has been seen worldwide
(Dusfour et al., 2019; Moyes et al., 2017; Tancredi et al., 2020) and to other insect populations,
e.g. butterflies, in the area (Oberhauser et al., 2009). However, recent work on honeybees
suggests that they may be unaffected by ULV spraying in field settings (Boyce et al., 2007;
Pokhrel et al., 2018).

One approach that has been suggested to help mitigate many of these issues is the
development of Integrated Vector Management (IVM) plans (Achee et al., 2019; Fouet &
Kamdem, 2018; Roiz et al., 2018). These approaches follow the guidelines of Integrated Pest

Management (IPM) plans that have been developed in previous decades for crop pests (Gould,
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1998; Gould et al., 2018; Knipling, 1972; Tabashnik et al., 2004) and seek to integrate
knowledge about the ecology and evolution of their targeted species to create more effective,
sustainable plans. While IPM has been successful in reducing the costs associated with
agricultural pests, the development of IVM for mosquito species, especially Aedes mosquitoes,
has been much slower. Within the IVM framework, many have advocated for targeted
treatments of areas with dense Aedes populations (Baldacchino et al., 2015; Fouet & Kamdem,
2018; Unlu et al., 2016), allowing areas with smaller populations to remain untreated. If targeted
control can be accurately implemented across heterogeneous landscapes, it is expected that
treatments will have an increased effect on the overall mosquito population compared to non-
targeted treatments. This would allow 1VMs to provide a cost-effective approach to managing
Aedes populations across a large heterogeneous landscape (Roiz et al., 2018).

Empirical evidence for the effect of yard-based treatments outside of their treatment area
is scarce, so | used data collected in Hollingsworth et al. (2020) to test the effectiveness of
different control strategies deployed across a neighborhood. This experiment measured the
effectiveness of two common treatments, larval habitat management (LHM) and barrier sprays,
over a 25-day post-treatment period. LHM is a common mosquito control technique that aims to
reduce the presence of oviposition and larval development habitat, most notably standing water,
in an area. This is commonly done through “tip-and-toss”, where containers are emptied and
removed so that they do not refill. Barrier-sprays are applications of chemical based adulticides,
that are applied to foliage and other resting spots, along with the edge of the treated area.
Hollingsworth et al. (2020) conducted a longitudinal study of 16 pairs of adjacent yards

randomly assigned to a factorial, LHM by barrier spray, experimental design. They showed that
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barrier sprays not only reduced the populations within treated yards, but likely reduced the
population in untreated neighboring yards.

To explore the effectiveness of targeted controls implemented in heterogeneous
neighborhoods, | used data collected in Hollingsworth (2020) to estimate parameters for a model
of targeted yard-based treatments in suburban neighborhood settings. Using these parameters, |
then simulated the mosquito population in the neighborhood under various theoretical control
strategies to predict the neighborhood-wide reduction in the mosquito population. By examining
how population reduction changes with the proportion of yards treated in the model, | assessed
the benefit of targeted treatments with different levels of knowledge about the mosquito
population’s distribution across the neighborhood.

In the following sections of this chapter, I will (1) describe the formulation of the model
for neighborhood-wide Ae. albopictus population dynamics, (2) describe how parameter
estimation was performed using a modified version of this model, (3) present the results of
parameter estimation and model simulations, and (4) discuss implications of the modeling
results.

METHODS
Model Formulation
Within Patch Dynamics

Populations in each yard were modeled using a two life-stage model, representing the
aquatic juvenile and terrestrial adult stages (Equations 1). Juvenile mosquitoes are recruited into
the model at a constant per adult female rate, b, die at per capita rate d(J), and emerge as adults
at per capita rate e(J), where both the per capita mortality and emergence rate can be a function

of juvenile density. After emergence, adults die at per capita rate da.

117



J=bA—d(D] —e()]

A=e(D]—dyA

(1)

Density dependence is assumed to only act on the aquatic juvenile stage where the
population is constrained by intraspecific competition for resources. Density dependence is
often modelled as only affecting the juvenile death rate, but experimental results suggest that
density dependence affects both the mortality rate and the time to emergence (Alto et al., 2005;
Hancock et al., 2016; Legros et al., 2009), and that the relationship is roughly linear in both cases
(Hancock et al., 2016). However, others have made alternative assumptions (Legros et al., 2009;
Walsh et al., 2012). | chose to model both the juvenile mortality rate and the time to emergence
as linearly dependent on the juvenile density. Too examine how these assumptions affect our
results, | compared results for three different models, comprised of all combinations of functions
given in Table 1 that include density dependence parameters either in the larval mortality rate

(k.), emergence rate (kg), or both.

Baseline Linear
d() = d;J () = d, (1 + kLL)
e() = e e(]) = e(1 + L)_l
kg

Table 4.1: Equations for the dependence of the per capita juvenile mortality and
emergence rates on the density of juveniles within a patch.
Control

Mosquito control is assumed to affect the population in two ways. Larval habitat

management is assumed to reduce the density-dependence parameters, ki and kg, by some
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proportion, R, e.g. k;, = k(1 — R), and barrier sprays are assumed to result in a proportional

increase, C, in the adult mortality rate, i.e. d, = d4(1 + C) . Each of these controls is temporary

and their effectiveness is assumed to decay exponentially over time, with constants 1 and r¢

respectively (Equation 2). In general, | use parameters denoted with carets, e.g. d(J), to
represent parameters that have been modified by a control measure.

R = —1zR

. (2)

C=-rC
Movement

Mosquitoes are assumed to move between neighboring yards at an average per capita

rate, m, that is biased by the presence of suitable habitat in the yards, which has been observed in
Ae. aegypti (Edman et al., 1998). This assumes that individual mosquitoes will search in the
general area for suitable habitat and will be more likely to move from a yard with very little
habitat to a yard with more habitat than vice versa. | chose to use the equilibrium number of
juveniles present (without movement) as a surrogate for the availability of habitat. This requires
the additional assumption that larval habitat removal does not alter the environment in a way that
affects what the adults perceive as appropriate habitat, e.g. it involves treating and removing
containers, not landscaping. This may be the case if adults seek out resting habitat, e.g. bushes,
as opposed to oviposition habitat, e.g. containers, as resting habitat would be less likely to be

removed during LHM.

To do this, I assume that the average per capita movement rate between patch i and j,

*

with equilibrium values of juveniles J; and J;, at per capita rate m n]; where n is the total

number of yards neighboring patch i. This gives the total emigration rate from patch i as

119



Ciwlr S . . . .
ZKn—]”‘]" where C; ;. is the connectivity matrix for patches in the neighborhood. In the case of a

homogeneous distribution of habitat in the neighborhood, in which J; = J7, this reduces to
unbiased movement between yards at per capita rate m. Importantly, in heterogeneous
neighborhoods, /;are assumed independent random variables, J; ~lognorm(y, 62). This means

Jj

nJ;

Sk Cinlic
nJ;

that in the heterogeneous neighborhood, E [m ] =mand E [m ] = % giving an

expected mean per capita movement rate m. This gives the full multi-patch model given in
Equations 3, where M; ; is the matrix of movement rates.
Jo = bA; = d U] — U]
A, = 6] — daA; + My A,
(3)
Ri = _rRRi

Ci = —‘r‘CCi

| note that the movement kernel results in heterogeneity in the equilibrium adult
population size between patches, even if there is no heterogeneity in larval habitat. This is a
result of patches along the boundary having less migration into them due to an assumption of no
migration into or out of the neighborhood.
Parameter Estimation
Model Modification

For parameter estimation, | used a two-patch formulation of our model, corresponding to
the experimental units which consist of one treated and one untreated yard. | denote dynamics
occurring it the treated yard with a subscript T and neighboring yards with subscript N. Each

patch was assumed to have density-dependence parameters taken from a distribution with means,
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HkOr Hy, , and corresponding covariance matrices. This allows us to account for the possibility
of neighboring yards being more similar than yards from different pairs. For movement, | replace
biased movement based on the ratio of mosquito population sizes with biasing parameters, gr
and gy. These parameters account for any increased (or decreased) movement, compared to the
average movement rate, out of the treated yard or neighboring yard, respectively. For parameter
estimation, gr and g, are assumed to be random effects that vary between pairs of yards with
mean one and covariance matrix. This allows for the possibility that higher than average
movement in one direction may correlate with below average movement in the other. These

modifications give the two-patch formulation seen in Equations 4.

jr =bAr —d(r)Jr — eUr)r
Ar = é(p)Ir — dsAr — m(graAr — gnAy)
Jn =DbAy —dUn)]y — Uiy "
Ay = e(N)In — dpAn + m(gr At — gy Ay)
R = —13R

C = —TCC

Estimated Parameters

In all model fits, | estimated fixed-effects parameter values for the initial effect of barrier
spray treatments, C(0), the proportional reduction in larval habitat due to LHM, R(0), and the
movement rate, m. A single density-dependence parameter per model, either k; or kg, along
with the movement biasing parameters were estimated as random effects, with means and

covariance matrices. In addition to these parameters, either (a) b, d4, and . (b) b and d, or (c)
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d4 and r; where estimated, giving a total of 6 model fits. AIC scores of the fits were then used
to choose the best fit for each model. All other biological parameters, e.g. d. and e, are fixed
using the functions estimated in Mordecai et al (2018) and the average temperature over the
study period taken from NOAA’s Global Historical Climate Network for the Raleigh-Durham
International Airport (Menne et al., 2012). | assumed the number of adults, A(0), and juveniles,
J(0), present at the beginning of the experiment is at the equilibrium value for the patch in the
absence of movement. Hollingsworth et al. (2020) found no evidence for a loss of effect for
LHM, rg, and initial parameter estimates agreed with this result, therefore I chose to fix rz = 0.
Parameter Estimation Method

| estimated all parameters using a non-linear mixed-effects model, with variables treated
as discussed in the previous section. Parameter estimation was done within the nlmixr package
(Fidler et al., 2019) in R (R Development Core Team, 2019). This package implements multiple
estimation methods, but I chose to use SAEM (Delyon et al., 1999), due to its wide use in
nonlinear mixed-effects modeling and ability to incorporate multiple observation types, i.e.
observations from both treated and neighboring yards, concurrently. Briefly, SAEM works by
dividing the parameter estimation method into two stages, an exploration and smoothing stage.
The exploration stage works by using the Markov Chain Monte Carlo (MCMC) algorithm to find
the general neighborhood of the maximum likelihood estimate, defined by the log-likelihood
function. Once the exploration stage has converged, the smoothing stage uses an iterative
process of (1) using MCMC to calculate a set of individual parameters from the population
parameters from the previous step and (2) calculating new population parameters as the mean of
the individual parameters from all previous steps of the smoothing stage. Parameter estimates

were initialized using parameters from literature (Mordecai et al., 2017) where possible and best
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guesses where not. Initial estimates along with their sources are listed in Table S4.1. All
parameters were constrained to biologically plausible values through transforms, either a log
transform to maintain non-negativity or, in the case of the reduction in larval habitat due to
LHM, a logit transform to constrain the parameter to [0,1]. Diagnostic plots from model fits
were inspected for any violation of assumptions using the xpose package (Jonsson & Karlsson,
1998) and are discussed in the supplemental information.
Simulations
Neighborhood Configuration

| simulated an artificial neighborhood as 81 interconnected patches arranged in a 9x9
grid, with each patch representing a single yard in a suburban neighborhood. Movement was
assumed to only happen between adjacent neighbors, with diagonal neighbors not considered
adjacent. The system was assumed to be closed, i.e. no movement into or out of the
neighborhood, a situation which may occur in neighborhoods surrounded by roads or other
barriers to Aedes movement. Dynamics within yards, along with movement between yards, was
parameterized using the estimates from our best fit model. Empirical data suggested that the
number of mosquitoes per yard was well described by a log-normal distribution (Figure 4.1), so |
estimated the mean, p, and variance, o2, associated with this distribution to use in our
simulations. To explore the effects that heterogeneity in larval habitat across the neighborhood
had on our results, | also examined situations in which larval habitat is homogeneous across all
patches or has twice the variance. For the sake of comparison, p was fixed across all
simulations. The population was assumed to be at equilibrium at the start of the simulation.

Simulations were conducted using the deSolve package (Soetaert et al., 2010) and all figures
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were produced using the ggplot2 package (Wickham, 2016) in R (R Development Core Team,
2019).
Control Strategies

| evaluated nine different treatment plans, described below (Table 4.2). These plans vary
in the scale at which decisions are made (household vs. neighborhood) and the amount of
information that is used (naive vs informed). | ran 100 simulations of 5 treatments occurring
every 3 weeks (21 days) using each treatment plan in our simulated neighborhood and recorded
the mean reduction in adult female mosquito numbers across the neighborhood for the post-
control period (105 days) in each simulation. Within a simulation, yards in which control was
implemented did not change over time but could change between simulations. For plans that can
vary in the proportion of houses that are treated, as opposed to those that have a strict spatial
pattern, | simulated the control across all possible numbers of treated houses (1 to 81).

Naive plans are those that do not leverage any information about the distribution of the
mosquito population in the neighborhood. Here, | tested seven naive plans. Five of these plans
used spatial patterns and would assume neighborhood-wide acceptance. They were (1) treating a
grid of houses, (2) treating all yards around the perimeter of the neighborhood, (3) treating all
yards except those along the perimeter of the neighborhood, i.e. interior yards, (4) treating the
yards in such a way that every yard is either treated or neighbors exactly one treated yard, and
(5) treating rings of yards, starting with yards along the neighborhood perimeter. The remaining
two plans are a neighborhood-level decision to randomly choose a proportion of yards to be
treated and a laissez-faire system, allowing individual homeowners to decide on treatment, that

assumes all homeowners are equally likely to opt in. For both the neighborhood-level decision
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and the laissez-faire system, | examined the effect of varying the percentage of yards in the
neighborhood that are treated.

In addition to the naive plans, I tested two informed plans. The first assumes perfect
knowledge of the mosquito distribution and treats the given proportion of the yards with the
largest populations. The second assumes that while we do not have perfect knowledge of the
distribution, we have some imperfect knowledge, such that houses with higher mosquito
densities are proportionally more likely to be chosen for treatment. This is done by randomly
sampling from the yards, with the probability of being chosen weighted by their equilibrium
mosquito density. For each of these, | examined the effect of varying the percentage of yards in
the neighborhood that are treated. In actuality, treatment decisions made by homeowners are
likely somewhere between the “laissez-faire” and partial knowledge strategies described here.
Sensitivity Analysis

| examined the effects of our choice of neighborhood size and the uncertainty in
parameter estimates on our prediction of the mean reduction in the neighborhood-wide mosquito
population. Results were produced for neighborhoods of 49, 121, and 169 patches and were
compared to those from our 81-patch neighborhood. Sensitivity of our results to the parameter
estimates was done through simulation in the FME package (Soetaert & Petzoldt, 2010) using
100 sample parameter values drawn from their 95% confidence intervals using Latin hypercube
sampling. Results of this analysis are discussed in the supplemental information.

Cost-Benefit Analysis

| assumed a constant marginal cost for treatments, m,, i.e. treating an additional yard

always costs the same amount, and that there is a constant benefit, ), in monetary terms, of a

reduction in mosquito population size, relative to the equilibrium population size. To determine
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the proportion of yards to treat, | found when the marginal cost equaled the marginal benefit, i.e.
m,. = nB(p), where B(p), the marginal benefits curve, is the additional reduction in the
neighborhood-wide mosquito population size due to treating an additional yard past the current

proportion of yards treated, p. The proportion of yards, p, that satisfies this occurs when p =
B1 (%) and | refer to % as our cost-benefit ratio. However, a closed form solution to the

marginal benefits curve does not exist, so | estimated it by approximating the slope of the cost-
benefits curve obtained from our simulations using a first-order approximation.
RESULTS

Parameter Estimation

Best fit parameters for each model are provided in Table 4.3. Since the model
incorporating linear density-dependence terms in both the mortality and emergence rates is most
biologically tractable, the results focus on Model 3. The third set of estimated parameters
provided the best overall fit, according to AIC (Table 4.4). The model fit estimated an adult
mortality rate of .03 /day (95% CI of (.00891, .112)) and an initial increase in adult mortality of
1150% (95% CI of (232%, 5660%)) due to the barrier spray. This means that the barrier spray
initially reduces the average lifespan of adult mosquitoes in the treated yard from 31.6 days to
2.75 days. This effect was estimated to decay at a rate of .0802 (95% CI of (.0218, .296)), giving
a half-life of around 9 days. LHM is predicted by the model to be capable of reducing more than
50% (95% ClI of (.500, 1.00)) of the available larval habitat. The mean movement rate of adult
Ae. albopictus between yards was estimated to be 4.42 /day (95% CI of (2.18, 8.98)), however
there was significant between yard variation (BSV) (Table 4.3).

Simulations
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| simulated the dynamics in the synthetic neighborhood using the best fit model and
parameters. | note here that the 95% confidence intervals reported are a result of randomness in
the simulations, e.g. the population distribution and treatment pattern, and not a result of
parameter uncertainty. Within the parameter space given by the 95% confidence intervals, there
was little variation in the mean reduction predicted by our model (Supplemental Information).

Figure 4.2 shows an example run for a 9x9 neighborhood, in which 25% of the houses are
randomly assigned to receive treatment, using the neighborhood-level naive decision plan.
Under this plan, our model predicted that all yards in the neighborhood will see some level of
suppression due to treatments. Spatial heterogeneity in carrying capacity did not directly affect
this observation but did create variation in how much reduction was seen in the yards. Within
the 95% confidence for the estimated movement rate (2.18, 8.98), changes in the movement rate
had no discernable effect on the simulation results, and all yards saw a reduction in population
numbers. This is a direct result of migration of mosquitoes from untreated yards into treated
yards, were they experience an increase in mortality, and are unlikely to return or be replaced by
migration out of the treated yard. This also suggests that our results are robust to uncertainty in
the movement rate within this confidence interval.
Evaluating Control Plans

Figure 4.3 shows how the reduction in the mosquito population, in percentage of
equilibrium population size, changes with the percentage of the neighborhood that is treated.
Our simulations suggest that near complete suppression of the Ae. albopictus population (= 97%
reduction) neighborhood-wide is possible through the treatment of all yards in the neighborhood
(Figure 4.3: Central Panel). For the treatment plans where the number of treated yards can be

varied, we see that most of the benefit is obtained by treating a relatively small number of yards.
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The extent to which this occurs changes drastically with both the control plan implemented and
the level of spatial heterogeneity present in the neighborhood.

None of the spatially patterned plans, nor the plan using naive neighborhood-level
decision to randomly treat a proportion of the yards, outperformed the laissez-faire strategy in
any situation (Figure 4.3). These plans would require considerable effort compared to the
laissez-faire strategy, with no additional benefit, so | choose not to discuss them in detail.

Under the assumption of homogeneous distribution of larval habitat in the neighborhood,
simulations showed no difference in how treatment plans perform (Top Panel, Figure 4.3).
However, the laissez-faire treatment plan had a significantly larger standard deviation than the
others, due to uncertainty in the number of houses receiving treatment. All treatments plans saw
large reductions in the neighborhood-wide population size occur with only a small percentage of
the neighborhood treated. For instance, treating 25% of yards resulted in approximately a 60%
reduction in the neighborhood-wide mosquito population (95% CI of (48.0%, 72.0%) for laissez-
faire control and in the range (58.2%, 61.8%) for all others.

Under the assumption that the spatial heterogeneity follows either the observed
distribution or a distribution with double the observed variance, simulations clearly showed the
benefit of using knowledge about the population’s distribution. Under the observed level of
between yard variation, the use of imperfect knowledge increased the reduction in the
neighborhood-wide population from 51.3% (95% CI of (29.9%, 72.7%)) to 71.4% (95% CI of
(61.5%, 81.3%)) when a quarter of the yards are treated. Using perfect knowledge increased this
reduction to 82.4% (95% CI of (78.9%, 86.1%)). Likewise, with 50% of yards treated there was
an increase in reduction from 75.0% (95% CI of (64.3%, 85.8%)) under the laissez-faire plan to

87.2% (95% CI of (83.2%, 91.3%)) and 91.4% (95% CI of (90.1%, 92.7%)) utilizing imperfect
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and perfect knowledge, respectively. The benefit of using knowledge of the mosquito population
distribution was seen to increase further with an increased heterogeneity in the carrying capacity
between yards (Figure 4.3).
Cost-Benefit Analysis

| used our estimates of the marginal benefit curve, B(p), obtained from the first order
approximation of the derivative of the cost-benefit curves (Figure 4.3), to numerically find the
relation between the cost-benefit ratio and percentage of yards that should be treated so that the
marginal benefit and cost are equal (Figure 4.4). As in the cost-benefit curves, there is no
difference between plans under the assumption of a homogeneous distribution of larval habitat
between yards. When heterogeneity in larval habitat was taken into account, plans taking
advantage of perfect, and to a lesser extent imperfect, knowledge saw a steep drop in the
percentage of yards treated until approximately 25%, at which point decrease slows. This
suggests that it would rarely be beneficial, for the neighborhood as a whole, to treat more than
25% of yards in a neighborhood when information about the distribution is used to inform which
yards to treat. This is similar to the results seen with the cost-benefit curve, where a 25% of the
yards being treated resulted in a neighborhood-wide reduction of 71.4% or 82.4% (Cls given
previously) depending on how much information is known.

DISCUSSION

Our results suggested that the yard-scale population dynamics of Ae. albopictus were best
described by a model that incorporated density dependence in both the larval mortality rate and
the emergence rate. This concurs with experimental data that shows that both rates vary with
larval density (Alto et al., 2005; Hancock et al., 2016). Our best fit parameter estimates for this

model suggest that the average lifespan of Ae. albopictus in the Raleigh, NC area was around 31
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days, which falls between the presumed lifespan of around 20 days (Hawley, 1988) used in other
models of Ae. albopictus dynamics and the estimate of 104 days, taken from laboratory studies,
from Mordecai et al. (2017), and is at the high end of previous estimates of between 4 and 32
days obtained from a review of mark-recapture studies (Brady et al., 2013). 1 also found that the
use of barrier spray treatments resulted in an additional increase in adult mortality of around
1150%, which decreases by half every 9 days. In a single isolated patch, a 1150% increase in
adult mortality would be expected to result in a much larger decrease in Ae. albopictus counts
than was observed in Hollingsworth et al. (2020). However, the high movement rate suggests
that the mosquitoes caught in yards post-barrier spray may be likely new immigrants from
neighboring yards. Further, a half-life of 8.64 days would result in a decrease in the effect to
155% after 25 days, the length of post-control observation, which would be a sufficient reduction
in impact to allow populations to begin to rebound. The movement rate | estimated suggests that
Ae. albopictus routinely moves between yards multiple times a day. While this may seem
contrary to their short dispersal range, it is not unexpected since study yards were often <30m
across with much of the available resting habitat along the edge, meaning that it was only a short
flight into neighboring yards. Our model also suggests that LHM is effective in removing the
larval habitat within treated yards, with estimates suggesting it removes 50-100% (95% CI) of
the habitat.

Using targeted applications of adulticides and LHM has been suggested as a possible
alternative to ULV spraying for the control of Aedes mosquitoes (Baldacchino et al., 2015; Fouet
& Kamdem, 2018; Unlu et al., 2016). Simulations suggest that it should be possible to achieve
greater than a 70% reduction in the neighborhood-wide population while treating approximately

25% of yards with targeted barrier sprays and LHM, even without perfect knowledge about the
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underlying spatial distribution of the population. This suggests that targeted controls, using a
combination of barrier sprays and LHM, are a viable option for controlling Aedes mosquitoes in
suburban areas and could prove preferential to ULV sprays under some situations.

The predicted reduction in the neighborhood-wide population density from our best fit
model are robust to changes in parameter values within our estimated 95% confidence intervals
(Supplemental Information). This suggests that the results will likely extend to models of Ae.
aegypti, as well as container Aedes found in other regions, e.g. Aedes notoscriptus in California
and Aedes koreicus in Europe, as life history traits (Mordecai et al., 2017) and movement (Juarez
et al., 2020; Medeiros et al., 2017) have not been found to differ vastly between the species in the
US. Other questions about the use of targeted controls can initially be addressed within the
modeling framework developed here, including the probability of insecticide resistance
emergence and the inclusion of epidemiological endpoints for viral disease. In addition, this
model, and the parameter estimates | present, can be used to inform optimal treatment strategies
for reducing either the disease risk or nuisance associated with Ae. albopictus.

Our analysis had several limitations, some of which reflect the experimental data on
which it builds. Our estimate of the reduction in larval habitat due to LHM produced a large
95% confidence interval (50%, 100%) and | had insufficient information to estimate the rate at
which larval habitat recovers following treatment. This was due to limitations of the experiment
the data was taken from (Hollingsworth et al., 2020), which only trapped 25 days post-treatment.
However, previous experiments measuring the reduction in larval habitat following mitigation
have also estimated 43-98% reductions in habitat (Tun-Lin et al., 2009). As discussed in
Hollingsworth et al. (2020), LHM only began to show a significant effect 21 days post-treatment

and the effect was still increasing at 25 days. A delay in effect of this length is not surprising,
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given our estimate of an average lifespan of 31 days for Ae. albopictus in the area. | also lacked
any information about the mosquito population in yards surrounding those in the experiment.
Because of this, | chose to assume a closed system during parameter estimation. It is also
possible that the use of ordinary differential equation (ODE) models are inappropriate at this
scale, as the populations within each yard are small, on the order of tens to hundreds or smaller
following treatment. However, ODE models are often used to understand underlying dynamics
before introducing the increased complexity of stochastic processes. Lastly, our model assumes
that the spatial distribution of larval habitat does not change over time, i.e. “hot-spots” do not
move. There is some disagreement in the literature as to the validity of this assumption, but at
least two studies have suggested it is the case for Ae. aegypti (Barrera, 2011; Estallo et al., 2013).
Future modeling efforts can relax this assumption and evaluate the impact of unstable “hot-
spots” of larval habitat.

Decisions concerning where to treat are almost always informed, to some extent. These
decisions are made either by homeowners who have experienced nuisance or by mosquito
control professionals who have based their choices on observational data. For that reason, it is
likely that a true laissez-faire system would be a combination of the laissez-faire strategy, as
presented here, and the partial knowledge strategy. If homeowners are sufficiently
knowledgeable about the mosquito population in their yard, a voucher program that lowers the
cost of treatments, thus increasing the number of homeowners choosing treatment, may be more
effective at increasing the neighborhood-wide reduction than extensive mosquito surveillance.

These models, parameterized using field data on the impact of controls, indicate the
likely effectiveness of targeted controls and can provide guidelines for implementation of

efficient mosquito control. However, models cannot replace field experiments to evaluate the
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effectiveness of different strategies, and the results | present here should be experimentally
tested. Experiments and control programs operating at the neighborhood-scale are expensive and
require extensive coordination, and our results should be used as a starting point for these
programs. Importantly, our models suggest that it is likely that neither detailed data on the
distribution of Aedes in the area nor access to every yard is necessary for the treatment programs
to successfully reduce the population density of Ae. albopictus neighborhood wide. However,

the use of some information about the distribution of mosquitoes substantially improves control.
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Figure 4.1: Distribution of mean Ae. albopictus counts in yards during the study period.
Measurements taken after treatments were not included. Red curve is the best fit lognormal

distribution that the yards were sampled from for the simulations.
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Figure 4.2: Example simulation runs. Number of adult female Ae. albopictus from
simulations of a 9x9 neighborhood treated with 25% of the houses chosen randomly
(neighborhood-level decision) for treatment. Fits from the observed data are in the center panel,
with changes in the variation in larval habitat and movement rate increasing from left to right and
top to bottom, respectively. Results are shown for a homogeneous population distribution, the
observed population distribution, and a distribution with the observed variance doubled. The
effect of the movement rate is also shown, using the estimated movement rate (m = 4.42 /day,
center row) and the bounds of its 95% confidence interval (m = 2.18, top row, and m = 8.98,
bottom row). We see no difference in the simulation results due to uncertainty in the estimate of

the movement parameter.
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Figure 4.3: Cost-benefit curves. Mean and 95% confidence intervals for percent reduction in
the mean neighborhood-wide Ae. albopictus population size (benefit) resulting from various
levels of control (cost). Strategies relying on spatial patterns of treatments (shapes) are displayed
based on the percentage of yards they treat in the 9x9 neighborhood, e.g. the checkered pattern
results in treating 50% of yards. Results from the observed data are in the center panel, with
variance increasing from top to bottom. Mean neighborhood-wide population size was found as
the average across all yards over the entire post-treatment period (105 days). Simulations are
conducted using the best-fit parameters for the three potential models with 100 simulations run
per treatment level. Colors correspond to different treatment plans. When all yards are treated,
the best fit model predicts a 97% reduction in the neighborhood wide population over the post
treatment period. We see that under the assumption of a heterogenous distribution of larval
habitat (top panel), all plans have a similar effect. However, as variance between yards
increases, the plans using either perfect or imperfect knowledge outperform the naive plans.
Importantly, the plans that take advantage of knowledge of the population (either perfect or
imperfect) reach high levels of control with a small percentage of yards being treated. Under the
observed distribution (center panel), treating 25% of houses is predicted to result in a reduction
of 71% and 82% for the plans using imperfect knowledge and perfect knowledge, respectively,
as opposed to a 51% reduction under the laissez-faire system. As spatial heterogeneity increases,
the added benefit of information is increased, while the benefits curves for the uninformed plans
becomes more linear. With the variance in the availability of larval habitat doubled (bottom
panel), we predict 74% and 83% reduction in population size for the plans using imperfect or
perfect knowledge, respectively, compared with a 41% reduction under the laissez-faire system.
None of the other naive plans, either choosing a proportion at a neighborhood-level or spatial

patterns (shapes), i.e. checkered pattern and with-in one, outperformed the laissez-faire system.
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Figure 4.4: Cost-benefit analysis. Proportion of yards to treat for varying cost-benefit ratios, as
suggested from our best model fit. Values are calculated as explained in the text, with a GAM
used to estimate a smooth curve. Here, m, is the cost of treating a single yard and 1 is the
benefit, in monetary terms, of a reduction of 1% of the equilibrium population size in the
neighborhood-wide mosquito population. Like previous results, there is no significant difference
between plans under the assumption of the uniform distribution. For control programs using
perfect knowledge, and to a lesser extent imperfect knowledge, the percentage of yards that
should be treated falls rapidly for low cost-benefit ratios before leveling off. This suggests that a

large benefit would be necessary to treat need to treat more than around 25% of the yards.
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TABLES

Table 4.2: Treatment plans. List of treatment plans, how yards are selected, the level of

knowledge that is used, and example of treatment plans for a 36-yard neighborhood (6x6 grid).

Treatment Plan

How yards are selected

Information Needed

Example

Checkered Spatial Pattern None
Perimeter Spatial Pattern None
Interior Spatial Pattern None

151



Table 4.2: Treatment plans (Continued). List of treatment plans, how yards are selected, the

level of knowledge that is used, and example of treatment plans for a 36-yard neighborhood (6x6

Example

-

1l

1l

grid).
Treatment Plan How yards are selected Information Needed
Within-one Spatial Pattern None
Rings Spatial Pattern None
Laissez-faire Homeowner Decision None

(p=.2)
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Table 4.2: Treatment plans (Continued). List of treatment plans, how yards are selected, the

level of knowledge that is used, and example of treatment plans for a 36-yard neighborhood (6x6
grid).

Treatment Plan How yards are selected Information Needed | Example

Neighborhood Level | Neighborhood Level Decision | None

Imperfect Knowledge | Neighborhood Level Decision | Intermediate

Perfect Knowledge Neighborhood Level Decision | High

(p=.2)
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Table 4.3: Best fit parameter estimates for the three models. Parameters that were not directly estimated are denoted with an

asterisk (*). 95% confidence intervals for all estimated parameters are given, along with the estimated amount of between subject

variation (BSV) that was estimated by the fitting process

Model 1 Model 2 Model 3
Parameter Biological Interpretation Estimate Treated Neighbor Estimate Treated Neighbor Estimate Treated BSV | Neighbor BSV
(units) BSV (%CV) | BSV (%CV) BSV (%CV) | BSV (%CV) (%CV) (%CV)
b Birth Rate 6.92 - - 6.92* - - 6.92* - -
(/(female*day))
d, Density-independent Larval | .0112* - - .0112* --- --- .0112* --- -
Mortality Rate
(/day)
k; Density-dependent Larval 17.9 2.55 1.95 143 1.05 951
Mortality Rate (10.4, 30.6) (35.1, 586)
e Density-independent 5.16e-2* 5.16e-2* 5.16e-2*
Emergence Rate
(/day)
kg Density-dependent - - - 1.97 1167 134.65 36.3** --- -
Emergence Rate (.785,4.94)
dy Adult Mortality Rate 1.45 .0499 .0316
(/day) (1.11, 1.90) (.0458, .0545) (.00891, .112)
c(0) Initial Increase in Adult 125% - - 2460% - --- 1150% - -
Mortality (105%, 148%) (1050%, 5740%) (232%,
(%) 5660%)
Te Rate of Loss of Effect of .00803 1.17 .0802
Barrier Spray (.000409, .158) (.0487, 27.6) (.0218, 8.98)
(/day)
R(0) Initial Reduction in Larval 82.6% - - 53.7% - - 100% - -
Habitat (57.1%, 94.4%) (3.28%, 96.5%) (91.3%, 100%)
(%)
TR Rate of Loss of Effect of 0* - - 0* -— - 0* -— -
LHM
(/day)
m Per Capita Movement Rate 27.7 22.03 31.50 12.8 43.02 .0612 4.42 5.05 21.6
(/day) (.141, 5.47e3) (.015, 1.09e4) (2.18,8.98)
AIC of Best 4378 3378 5074
Fit
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Table 4.4: AIC (and AAIC) values for each of the model fits. Model 3 fitting the adult death rate (d4) and the rate of decay of the

effectiveness of the barrier spray (r;), along with the carrying capacity term (k;), initial effect of the barrier spray (c), proportion of

larval habitat reduction (), movement rate (m), and the between subject variation as described in the model description provided the

best fit.
Fit parameters Model 1 Model 2 Model 3
b, d,, and 1, NA 3467 15619
band d, 4751 10693 25684
d, and 7, 4378 3378 5074
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SUPPLEMENTAL INFORMATION

Equilibria of Models

Model equilibria where found by setting the derivative to zero and solving for the state
variables J and A for the single-patch model. Equilibria incorporating movement where not
analytically solvable. | used the Maple software (Maple 2016, 2016) to solve for all equilibria.
Non-trivial equilibria for the three models are given in Table S4.1. For brevity, the equilibrium
values for adults, A*, is given in terms of the equilibrium value of the juveniles, J*.
Initial Values for Parameters

Initial values for parameters are given in Table S4.2.
PE model diagnostics

Diagnostic plots were used to determine overall model fit and to detect any violation of
assumptions. | see that our best fit model had a slight tendency to underestimate the number of
mosquitoes in the yard and shows signs of heteroskedasticity (Figure S4.1). The qg-plot of the
conditional weighted residuals (CWRES) shows some deviation from the assumption of
normality for observations in the furthest upper and lower quantiles, but the assumption seems to
hold overall (Figure S4.2). The visual predictive check (VPC) suggests that the model vastly
overpredicts the variation in the data. This is seen in the 95% confidence intervals for the data
(Figure S4.3, dashed line) not falling within the 95% confidence interval predicted by simulation.
However, VPC have been shown to be poor measures of fit when there is a significant variation
in treatments and a small number of replicates per treatment, as seen here (Karlsson & Savic,
2007).

Sensitivity to Neighborhood Size
To examine the assumption of no movement into or out of the neighborhood on our

results, results were produced as described in the main text for neighborhoods of 49, 121, and
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169 yards. As the neighborhood size is increased, the proportion of yards along the boundary
decreases, and the effect of this assumption decreases. We see that as the number of patches
increases, the mean reduction predicted by the model remains relatively unchanged, while the
variation in the reduction is reduced (Figure S4.4). This suggests that our results are not
significantly affected by our boundary condition.

Sensitivity to model parameters

Sensitivity to model parameters was found by simulating the results using 100 random draws of
the fitted parameters, i.e. d, k., C(0), r¢, R(0), and m, from their 95% confidence intervals
using Latin hypercube sampling. A 95% confidence interval for the mean reduction in
population size and the standard error of the predicted reduction were then calculated using the
sensRange() function in the FME package (Soetaert & Petzoldt, 2010). Uncertainty in parameter
estimates results in a significant amount of variation in the proportional reduction in the
neighborhood-wide mosquito population. However, our main results still hold (Figure S4.5).
Identifiability of model parameters

Identifiability of model parameter sets was determined using the collinearity of parameter
estimates. Collinearity was calculated using the collin() function in the FME package (Soetaert
& Petzoldt, 2010). Potential parameter sets were chosen based on the ability to estimate all
control parameters (C(0), R(0), r.) while retaining a collinearity value less than 20.
Collinearity of parameter sets used in the best fit for each model suggested that all parameters

were identifiable from data.
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SUPPLEMENTAL FIGURES

DV vs. IPRED | model.2patch.Both.ode.2
Ofv: 4663.4, Eps shrink: NA [1]
CMT: Meighbor CMT: Treated

fUsers/Brandon/Desktop/Projects/PE_nimixr

Figure S4.1: Observed data (DV) vs individual prediction (IPRED).
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QQ plot of CWRES | model.2patch.Both.ode.2
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Figure S4.2: QQ-plot for CWRES. Figure shows some deviation of the residuals from normal

for predictions in the highest and lowest quantile, but overall seems to fit the assumption well.
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cmt: Heighbor cmt: Treated

time

Figure S4.3: VPC plot. VPC suggests that the model drastically over predicts the variation in
the data. Seen here as the bounds of the 95% confidence intervals for the observed data (dotted
lines) not falling within the 95% confidence interval of their predicted values. However, VPC is
known to be inconclusive when differences in treatment are high and replication for treatments is

low as it is here.
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Figure S4.4: Cost-benefit curves for differing neighborhood sizes. Mean and 95%
confidence intervals for percent reduction in the mean neighborhood-wide Ae. albopictus
population size (benefit) resulting from various levels of control (cost). Mean neighborhood-
wide population size was found as the average across all yards over the entire post-treatment
period (105 days). Simulations are conducted using the best-fit parameters for the three potential
models with 50 simulations run per treatment level. Colors correspond to different treatment
plans. We see that as the neighborhood size increases (Panels), the mean reduction predicted
does not change. However, the variation in the mean reduction decreases as the neighborhood

size increases.
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Figure S4.5: Sensitivity of mean reduction to parameter values. Mean (black line), 50%
confidence interval (dark grey area), and 90% confidence interval (light grey area) of results

using 100 random draws of parameter values from within their estimated 95% confidence

intervals. (A) The strategy using perfect knowledge. (B) The strategy using partial knowledge.

(C) The strategy using an uninformed neighborhood-level decision. There is significant
variation in the mean reduction that is predicted due to uncertainty in the parameter values.

However, this variation does not affect our main conclusions.
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SUPPLEMENTAL TABLES

Table S4.1: Equilibrium values. Equilibrium values for each model. For brevity, the

equilibrium value of adults, A*, is given in terms of the equilibrium value for juveniles, J*.

[

Model g A
Model 1 ky(be —dyd;, —dye) eJ*
dady, "dy
Model 2 —kgd, d, £ \/(kEdeA)Z —4(dyd;)(kge)(dy — b) ekgL”
2d,d,; "dy(kg + L)
Model 3

—(dad) (kg + k) £ \/(kE + kp)?(dady)? — 4(dydy) (kgky)(—be + d d, + edy) ekgl”
2d,d; "dy(kg + LY
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Table S4.2: Initial guesses for model parameterization and source, unless a best guess was

used.
Parameter Initial Guess Source
b 6.921 Mordecai et al. (2017)
ki, 10
kg 10
dy .009601 Mordecai et al. (2017)
€(0) 5
Tc .06666
R(0) Nl
m Nl
gr BSV 1
gn BSV 1
k BSV: Treated 1
k BSV: Neighbor 1
Cov(gr,gn) A1
Cov(kr, ky) i
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CHAPTER 5 — Conclusions
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Better understanding the impacts of mosquito control on Aedes population dynamics,
both in the short- and long-term, are vital for the development of efficient control programs.
Without this knowledge, control programs run the risk of being ineffective at reducing local
population sizes or mitigating outbreaks of Aedes-vectored diseases. Without proper monitoring
and an understanding of underlying population, genetics, and transmission dynamics, it is
possible for poorly thought out, reactive controls to make the situation worse in the long-term,
even when they appear to be successful in the short term. In this dissertation, | examined the
dynamics resulting from the use of non-immunizing controls, most notably insecticide
applications, against Aedes mosquitoes and the diseases they vector, with the hope of providing
improved guidance for their use.

Chapter 2 of this the dissertation discussed the divorce effect. A phenomenon which
occurs when outbreaks following the cessation of a control program were large enough to negate
any benefit of the initial control program. | showed that during the time that incidence was
suppressed by the control, from the time control is initiated until the infection reemerged, the
population quickly lost herd immunity. This reduction in herd immunity puts populations at risk
of a major outbreak upon reemergence, and the outbreak that occurs after reemergence almost
always resulted in more infections than would have occurred if no control had been used. This
represents a worst-case scenario for disease control in which it results in an increase in the
number of infections. Importantly, I showed that this result was not unique to any disease
system or control method and that, with very few exceptions, controls needed to be maintained
for decades to avoid consequences related to the divorce effect.

In Chapter 3, I quantified the effect of two common mosquito control techniques, barrier

sprays and larval habitat management (LHM), and how their effectiveness changes over time,
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information that would be critical for deploying them in response to an Aedes-vectored disease
outbreak. This was done using a field experiment conducted in 2018 in which | examined the
temporal dynamics of Aedes albopictus populations in yards treated with barrier sprays or LHM,
as well as in untreated neighboring yards. | was able to show that both the barrier spray and
combined treatment were able to significantly reduce the Ae. albopictus populations within
treated yards and found some evidence for a reduction in untreated neighboring yards. 1 also
found that while LHM did not result in a significant reduction in the population over the entire
post-treatment period, it did result in a significant reduction on the final days of sampling and
evidence of a downward trajectory in the population sizes. This suggested that future studies of
the effects of LHM should monitor yards for more than 25 days post-treatment.

In Chapter 4, | showed modeling results that suggest that treating 25% of yards using a
combination of barrier sprays and LHM, deployed every three weeks, was sufficient to reduce
the neighborhood-wide population by more than 50% if yards were chosen at random and more
than 80% if the distribution of Ae. albopictus if yards with the highest densities were precisely
targeted. These results were produced using a model | developed for the implementation of
LHM and barrier sprays across a heterogenous neighborhood. To do this, | used a nonlinear
mixed effects model to estimate the parameters for control, density-dependence, and adult
mortality from the data collected in Chapter 3. | then simulated the effects of 9 different
strategies for deploying treatments in a heterogenous neighborhood and examined the effect of
using targeted controls compared to more naive plans. These results suggested that the use of
targeted controls may be useful for both the reduction of nuisance and disease risk caused by Ae.

albopictus.
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The work presented in this dissertation has added to the literature on the dynamics during
and following mosquito control. The divorce effect, presented in Chapter 2, suggested that the
use of insecticides to combat vector-borne diseases may be putting local populations at risk of
major outbreaks. Outbreaks that could erase the benefits from years of successful suppression of
disease like dengue. | then showed, using the data in Chapter 3 and the model in Chapter 4, that
the use of targeted controls can suppress Aedes populations across a large area. If these methods
prove as effective in field trials as the models suggest, they could provide a method to efficiently

reduce the risk of outbreak due to the introduction, or reintroduction, of Aedes-vectored diseases.
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Appendix A - Locally Fixed Alleles: A method to localize gene drive to island populations

Sudweeks, J., Hollingsworth, B., Blondel, D. v., Campbell, K. J., Dhole, S., Eisemann, J. D.,
Edwards, O., Godwin, J., Howald, G. R., Oh, K. P., Piaggio, A. J., Prowse, T. A. A., Ross, J. v.,
Saah, J. R., Shiels, A. B., Thomas, P. Q., Threadgill, D. W., Vella, M. R., Gould, F., &
Lloyd, A. L.

*This appendix was published in Scientific Reports. Sudweeks, J., Hollingsworth, B., Blondel, D. v., Campbell, K.
J., Dhole, S., Eisemann, J. D., Edwards, O., Godwin, J., Howald, G. R., Oh, K. P., Piaggio, A. J., Prowse, T. A. A.,
Ross, J. v., Saah, J. R., Shiels, A. B., Thomas, P. Q., Threadgill, D. W., Vella, M. R., Gould, F., & Lloyd, A. L.

(2019). Locally Fixed Alleles: A method to localize gene drive to island populations. Scientific Reports, 9(1), 1-10.
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Invasive species pose a major threat to biodiversity on islands. While successes have been achieved
using traditional removal methods, such as toxicants aimed at rodents, these approaches have
limitations and various off-target effects on island ecosystems. Gene drive technologies designed to
eliminate a population provide an alternative approach, but the potential for drive-bearing individuals
to escape from the target release area and impact populations elsewhere is a major concern. Here we
propose the “Locally Fixed Alleles” approach as a novel means for localizing elimination by a drive to an
island population that exhibits significant genetic isolation from neighboring populations. Our approach
is based on the assumption that in small island populations of rodents, genetic drift will lead to alleles
at multiple genomic loci becoming fixed. In contrast, multiple alleles are likely to be maintained in larger
populations on mainlands. Utilizing the high degree of genetic specificity achievable using homing
drives, for example based on the CRISPR/Cas9 system, our approach aims at employing one or more
locally fixed alleles as the target for a gene drive on a particular island. Using mathematical modeling,
we explore the feasibility of this approach and the degree of localization that can be achieved. We

show that across a wide range of parameter values, escape of the drive to a neighboring population in
which the target allele is not fixed will at most lead to modest transient suppression of the non-target
population. While the main focus of this paper is on elimination of a rodent pest from an island, we

also discuss the utility of the locally fixed allele approach for the goals of population suppression or
population replacement. Qur analysis also provides a threshold condition for the ability of a gene drive
to invade a partially resistant population.

Genetic modification of pest species has been suggested as a means to address a wide variety of pest problems,
including those impacting human health, pre- and post-harvest crop losses, and conservation of endangered
species'=. One approach to genetic pest management involves introducing a DNA sequence into the pest genome
that causes its own over-representation in future generations by inducing super-Mendelian inheritance; generally
referred to as gene drive. An engineered gene coding for a desirable trait, e.g. one that renders the pest species less
troublesome (e.g. reduction of vector competence of a mosquito species) can be linked to the gene drive sequence
in order to increase its frequency in the population. Alternatively, the gene drive sequence can be engineered
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to disrupt a gene critical to fitness, or to deliver a payload that achieves this aim, and thereby suppress, or even
eliminate, a population.

Ever since such drives were proposed, concerns have been raised in the peer-reviewed literature and in the
popular media about unintended consequences of releases and ethical dimensions of the work. These include fail-
ure of the genetic construct being driven, but also the spread of gene drives beyond the region in which spread is
intended and approved by the local population and governing authorities? '*. ‘The nature and seriousness of these
concerns differ between different gene drive technologies and applications (for instance, considerations would
be quite different for an approach intended to replace a human disease-vectoring mosquito species by a variant
that is refractory to the pathogen than for removal of an invasive species that causes ecological damage). These
concerns are most acute in the case of drives that are designed to suppress and eliminate a population: spread of
such a drive could have a risk of leading to global eradication of a species that is a pest in one area but a valuable
component of an ecosystem in other areas (e.g. mice and rats). As a result, there is much interest in the ability to
design gene drives that exhibit spatial localization, i.e. ones that have the ability to spread in a given region but
will not spread globally.

Several approaches have been suggested to achieve localization of gene drives. Drives that exhibil an invasion
threshold, such as the engineered underdominance (EU) approach, provide a natural means to achieve locali-
zation'*15, These drives exhibit frequency-dependent dynamics where the drive can only spread if its frequency
exceeds a particular level—the invasion threshold. Below this level, the frequency of the drive will decrease, lead-
ing to its loss from the population, Spread of a threshold drive across a patchy environment is more difficult, and
becomes highly unlikely or even impossible when the invasion threshold is 50% or higher!®Y. Other approaches
have been suggested to achieve localization, including killer-rescue'®, multi-locus assortment'®, sex-linked
genome editors® and daisy-chain drive?'. Theoretical analysis has suggested the ability of daisy-chain drive to
simultaneously achieve spread and localization to a single area is only possible in a limited set of circumstances,
and this concern also pertains to some other gene drives developed to be localized®. While all of these localized
drives could change characteristics of pests in a population, their ability to locally suppress populations is ques-
tionable**#, although see also®.

In this paper, we propose a localization method, the “Locally Fixed Alleles” (LFA) approach, that can be uti-
lized for relatively small populations that exhibit a significant degree of genetic isolation from other populations.
This method is particularly suited for elimination of pest species from small oceanic islands, where the target
population has small effective population size and for which there is naturally limited gene flow with other popu-
lations. While multiple alleles are expected to be commonly maintained at loci in large populations, genetic drift
in small island populations is predicted to result in fixation of alleles at some loci in the genome®**.

Utilizing the high degree of genetic specificity of homing drives based on the CRISPR/Cas9 system®, our
approach aims at employing one or more locally fixed alleles as the target for a gene drive on a particular island.
Such a drive can spread to individuals carrying that allele, but individuals that do not have that specific allele are
naturally resistant to the drive. For example, polymorphisms that occur in targeted Cas9 guide RNA binding sites
or protospacer adjacent motifs (PAM) may effectively limit gene drive activity”” such that a drive can spread to
individuals carrying alleles that form functional sites, but individuals with alternate alleles are naturally resistant
to the drive. By design, we would search for alleles that are fixed in the population on the target island but not
fixed in populations beyond that island. Consequently, the drive could be expected to result in only limited tran-
sient suppression beyond the island. A special case of this approach, the “private allele” (PA) approach (dubbed
“precision drive” by Esvelt ef al.; see also'?), occurs when the target allele is specific to the target population, but
absent from other populations. We emphasize that the LFA approach does not require the target allele be a private
allele, simply that it not be fixed in non-target populations.

The LFA approach can be used with a variety of different gene drives (e.g. standard homing drives, sex-biasing
drives, and so on). Here, for simplicity, we illustrate the method using a standard homing drive?* aimed at popu-
lation elimination. We describe this in the setting of removal of a rodent species, such as the house mouse, Mus
musculus, from an island. Invasive mice, and other rodents, are a particular concern for species conservation?®,
having significantly impacted many island ecosystems, including causing extinctions of endemic island vertebrate,
invertebrate and plant species?>!. Although an island release would involve procedures that attempt to confine
the gene drive mice to the island, unintended escape of these mice must be considered a possibility. Here, we use
mathematical modeling to explore the impact that escape of drive individuals would have on mainland populations.

While the focus of this study is on a drive that can eliminate a rodent pest species from an island, the LFA
approach can be used more generally for drives aimed at population suppression or replacement provided that
the drive bears some fitness cost. These more general settings are discussed in detail in the Supplementary
Information, including some important differences in the dynamics from the elimination setting discussed in
the main text.

This paper is organized as follows: we first introduce the mathematical model, then briefly describe the
single-patch (island-only) dynamics before discussing those seen in a two-patch (island-mainland) setting.
Supplementary information includes the derivation of an analytic threshold condition for the ability of drive to
invade a partially susceptible population, an exploration of the sensitivity of results to various drive and ecologi-
cal/demographic parameters, initial results of a stochastic model for the dynamics of LFA, and discussion of the
use of LFA in more general population suppression and replacement settings.

Methods

We employ a continuous-time non age-structured island-mainland model that describes the population dynam-
ics and genelics of two populations. As our primary concern here is the impact of escape from the island, we
assume unidirectional migration from the island to the mainland. (We recognize that migration from mainland
to island would be an important consideration in the period following successful suppression or eradication from
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the island, but this is not the topic of this study.) Throughout, we assume a 50:530 sex ratio and so track numbers
of female individuals. For an n-genotype system, denoting genotypes with a subscript and denoting island pop-
ulation numbers with superscript I (N7) and mainland population numbers with a superscript M (N%'), we have

dN/ T el I '
N _ AN N — N
d f( 1 n) HiN; (1)

AN
d; :fM(NlM, ---,N,f“) + ,LLN,I.

(2)

Here, the functions f"and f* describe the population dynamics and genetics that occur on island and mainland,
respectively, and we assume unidirectional migration with per-capita migration rate equal to p.

We assume that island and mainland populations both undergo random mating (i.e. are well-mixed) and
exhibit logistic-type population dynamics. Our description of population dynamics is based on an earlier model*
for the population genetics and dynamics of gene drive in an island mouse population. Per-capita birth and death
rates both change linearly with population size, with different coefficients on mainland and island (see™ and
references therein). Within either the island or mainland, and in the absence of migration, genotype dynamics
are described by

N bi(t)max(l —qyN;, 0) — pN, — aNY N,
d j j (3)

Here, superscripts denoting the location have been suppressed for clarity on both state variables and parameters.
The functions &(#), described below, depict the genotype-specific birth rates in the absence of density depend-
ence. For an entirely wild-type population, b(t) would equal AN, where A is the per-capita fecundity rate. The &,(t)
are multiplied by a function that describes the linear density-dependent decline in per-capita birth rates with total
population size. (Note that the max function is required to ensure that birth rates remain non-negative.)
Per-capita death rates are assumed to increase linearly with overall population size but be independent of geno-
type. The density-independent component of the per-capita death rate (ie. the reciprocal of the average lifespan
when the population is at low density) is written as p, while the coefficient « describes the density-dependent
linear increase in per-capita mortality. With these population dynamics, a single patch has a wild-type carrying
capacity of N = p(R, — 1)/(Ag + «), where the basic reproductive number, Ry, (i.e. the average number of
female offspring of a female over its lifetime, at low population density) is equal to A/p.

Population genetics is determined by the functions b,(¢) which give the genotype-specific birth rates (c.f. the
model of Robert ef al.**) before accounting for the effects of density-dependence

b1 = ,\Wizzw,

Tk 2N (€))

Here, A is the baseline per-capita birth rate for females. P(i]j,k) gives the proportion of offspring from a mating
involving individuals of types j and k that will have genotype i. The effects of the gene drive on biasing of inher-
itance are coded into these quantities. (The 216 entries of P(i]j.k), together with a fully written out set of model
equations, appear in the Maple worksheet in the Supplementary Information.) The w; describe genotype-specific
relative fitnesses, which we assume here to act at the embryonic stage and be equal in males and females of a given
genotype.

As mentioned above, we use a simple homing-based elimination drive to illustrate the LFA method. We
consider three alleles: the drive allele (D), the susceptible (S) allele, i.e. the target for the drive, and an allele
that is resistant to the drive (R). All individuals in the target (island) population initially have the genotype SS,
but those in the non-target (mainland) population can have SS, RS or RR genotypes. We assume only a single
resistance allele in the mainland population. A large mainland population could have a number of different
alleles that would be resistant to the drive, but they would all act similarly in being unaffected by the drive.
Therefore our 3-allele model is sufficient for capturing dynamics of these cases. Note that here we are consid-
ering natural resistance to the drive, rather than drive-resistant alleles that are generated de novo as a result of
the drive, e.g. by non-homologous end joining during homing. As a consequence, our model over-estimates
the ability of the drive to spread and suppress populations™. Given that we are trying to evaluate the risk and
implications of escape of drive, this assumption is conservative for our purposes. Homing is assumed to occur
during gametogenesis, meaning that successful homing leads to an SD heterozygote individual giving rise to
only D gametes. (Homing exclusively in the germline at any point during development would have the same
consequences.) Successful homing occurs with probability e. The fitness, w;, of §5, RR, or SR individuals is
assumed to be 1. The fitness of DD individuals is (1-s), and the fitness of SD and RD individuals is (1-hs), where
s is the fitness cost of the drive and k is the degree of dominance of the fitness cost, For instance, a recessive
lethal drive has s =1 and & = 0. Notice that we assume there is no fitness cost for the RR individuals that occur
naturally in the non-target population.

We employ parameters (see Table 1) that are appropriate for Mus musculus populations, largely based on those
used by Backus & Gross® (see also™). For this set of parameters, the basic reproductive number of a wild-type
population is 3.5. Assuming an island of area 6 hectares, these parameters lead to an equilibrium population size
of 1000 females. We assume that the mainland has a population size that is 100 times larger than this.
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Parameter Value Source

A | Female fecundity rate 8.4 (year) Backus & Gross™

Island: 6.427 x 107 (mouse) ™!
Mainland: 6.427 x 10~ (mouse) ™'

p | Density independent per-capita death rate 2.4 (year)™' Backus & Gross™

Tsland: 5.000 x 10~ (mouse)~' (year)~'
Mainland: 5.000 x 10~ (mouse) ™! (year)~!

q Coefficient quantifying density-dependent decline in birth rate Backus & Gross™

@ Coeflicient quanlifying density-dependent increase in death rate Backus & Gross™

w; | Genotype specific fitness Dependent on sand it
jt | Per-capita migration rate from island to mainland Varied (107*-1.2 x 107" (year)")
s Drive allele fitness cost 0.8

Non-threshold drive: 0.3

h Degree of dominance of fitness cost of drive allele “Threshold drive: 0.8

e Homing probability 0.95

Table 1. List of Parameters and Their Values.

Results

Single patch model. The single-patch behavior of the standard homing drive that we use here has been
well-studied previously*?***¥. Depending on the drive parameters s, h and e, several qualitatively different behav-
iors can occur following release of drive into an otherwise entirely susceptible population: guaranteed fixation
of the drive, guaranteed loss of the drive, co-existence of drive and susceptible alleles at a stable polymorphic
equilibrium or invasion threshold behavior (i.e. drive either goes to fixation or is lost, depending on its initial
frequency) resulting from the existence of an unstable polymorphic equilibrium, Elimination of the population
is possible when the drive remains in the population {going to a stable equilibrium with a positive frequency—
either fixation or a polymorphic equilibrium) and imposes a cost that is sufficiently high to bring the reproductive
number of the population below one.

We illustrate these dynamics using two sets of parameters: one for which the drive can spread through a sus-
ceptible population regardless of its frequency (no invasion threshold scenario), and another for which the drive
can only spread when its frequency exceeds an invasion threshold (invasion threshold scenario). In both cases we
consider a fitness cost of s =0.8 and a homing probability of e = 0.95. The two scenarios differ only in the dom-
inance, h, of the drive. For the no invasion threshold scenario we take h = 0.3, while for the invasion threshold
scenario we take s = 0.8, which leads to an invasion threshold frequency of approximately 0.621 (corresponding
to a ratio of approximately 1.64:1 drive:wild-type individuals). Releases occur into a population that is at carrying
capacity, and population sizes are assessed relative to this carrying capacity.

Figure 1 shows the population dynamics that result from drive releases in these two scenarios. For the no
invasion threshold scenario (green curve), even a small release of drive individuals, so that the initial relative
population size is only just above one, leads to spread of the drive allele and hence reduction and eventual elim-
ination of the population. For the invasion threshold scenario (blue and red curves), spread of the drive, and
hence the fate of the population, depends on whether the release frequency of the drive is above (blue curve) or
below (red curve) the invasion threshold. A sufficiently large release (blue curve) leads to fixation of the drive and
elimination of the population, while an insufficient release (red curve) leads to loss of the drive and recovery of
the population following a transient period of reduction.

Island-mainland model. We now turn to the main question of how migration from an island population on
which drive individuals have been released will impact a mainland population that has a mix of susceptible and
resistant individuals. To present something approaching a worst-case scenario, we first assume that the frequency
of resistant individuals on the mainland is rather low, with a resistance allele frequency of 5% and susceptible
allele frequency of 95%. We take our island population to be 1/100™ the size of the mainland population, with
unidirectional migration from the island to the mainland occurring at per-capita rate of 0.012 per yeat, corre-
sponding to movement at the rate of one mouse per month at baseline.

For the invasion threshold drive scenario, we consider an island release that is above threshold, so that the
drive approaches fixation in the long run (Fig. 2, upper panel, red curve) and the island population is successfully
eliminated (Fig. 2, upper panel, blue curve). Even though drive individuals migrate from the island to the main-
land, the large size of the mainland population means that the drive frequency remains small and never exceeds
the invasion threshold. Thus, the drive cannot spread on the mainland, leaving the size and genetic composition
of the mainland population largely unaffected.

The situation is different in the no invasion threshold scenario. The drive is able to spread on the main-
land even when present at the low frequencies that arise due to migration of drive individuals from the island.
Individuals with a resistance allele are unaffected by the drive, however, and so spread only occurs through the
susceptible individuals. Again, the drive spreads on the island (Fig. 3, upper panel, red curve) causing successful
elimination of the island population (Fig. 3, upper panel, blue curve). On the mainland, drive spreads through the
susceptible portion of the population (Fig. 3, lower panel, red dashed curve) causing a reduction in the population
size (Fig. 3, lower panel, blue curve) due to fitness costs incurred by drive-bearing individuals. Because they are
unaffected by the drive, resistant individuals benefit from having a larger relative fitness in the presence of drive
individuals and so their frequency increases (Fig. 3, lower panel, red dot dashed curve), while the drive frequency
decreases, As the frequency of resistant individuals increases, the average fitness of the population returns to the
level seen initially, and density-dependent dynamics returns the population to its original size. In this setting, we
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Figure 1. Island population dynamics for the no invasion threshold and invasion threshold scenarios. In

both scenarios the drive has an 80% fitness cost (s = 0.8) but have differing degrees of dominance: for the no
invasion threshold scenario (green curve) we take h = 0.3, while for the invasion threshold scenario we take
h=0.8. Population sizes are plotted relative to pre-release equilibrium population numbers. In the no invasion
threshold scenario, arbitrarily small releases of drive individuals lead to invasion and fixation of the drive allele,
leading to suppression of the population (green curve; release of 100 homozygous drive individuals, 0.1:1
release ratio). In the invasion threshold scenario, invasion of the drive depends on whether the initial release
exceeds the invasion threshold (for this choice of parameters, the invasion threshold frequency for drive is
0.621, corresponding to approximately 1.64 drive individuals for each wild-type individual). Red curve depicts
a sub-threshold release (1630 homozygous drive females; 1.63:1 release ratio), leading to loss of the drive allele
and only temporary suppression of the population before its return to carrying capacity. Blue curve depicts a
successful release (1650 homozygous drive females; 1.65:1 release ratio), for which the drive invades and reaches
fixation, leading to elimination of the population. Values of other parameters are given in Table 1.

Island
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Figure 2, Island and mainland population dynamics (blue curves) and genetics (red curves) in the invasion
threshold scenario (s= 0.8 and h = 0.8), following an above-threshold release of drive individuals on the island
(1650 drive homozygotes released at t =0; release ratio 1.65:1). Left axis (blue) denotes population size relative
to pre-release equilibrium, right axis (red) denotes allele frequency. The drive spreads on the island (dashed red
curve shows allele frequency for drive), suppressing its population (solid blue curve shows relative population
size). Migration from the mainland to the island (at baseline, on average one island individual travels to the
mainland a month) leads to a low drive frequency on the mainland that does not exceed the invasion threshold
there. Consequently, the mainland population is largely unaffected. (Dot-dashed line denotes frequency of
resistance allele. Note that the target allele being fixed means that the resistant allele is not present on the island).
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Figure 3. Island and mainland population dynamics and genetics in the no invasion threshold scenario
(s=0.8 and /1= 0.3). As in Fig. 2, blue curves and axes denote population sizes, measured relative to pre-release
equilibria, while red curves and axes denote allele frequencies. One hundred homozygous drive individuals
(0.1:1 release ratio) are released at time t =0. We assume that resistance is very low on the mainland (allele
frequency of just 5%), representing a rather pessimistic scenario in terms of the susceptibility of the mainland
population to the drive. The drive spreads to fixation and suppresses the island population. Migration to

the mainland (at baseline, on average one island individual travels to the mainland a month) means that

the drive is introduced to the mainland, where it can spread through the susceptible population, but not the
resistant population. The total population undergoes a temporary suppression as the drive spreads through the
susceptible population. The frequency of resistant alleles increases as a result of drive, and density dependent
population regulation returns the mainland population to the pre-release equilibrium level.

see a transient reduction in the mainland population size before a recovery due to the presence of resistance. The
genetic composition of the mainland undergoes a shift during this process, with a reduction in the frequency of
susceptible alleles (although not their elimination) and a corresponding increase in the frequency of resistance
(see Supplementary Information and Supplementary Fig. 3).

In the Supplementary Information we show that high levels of resistance prevent the spread of drive on the
mainland. Using a linear invasion analysis, we show that drive cannot invade when the initial frequency of the
resistant allele is above 1 — hs/[e(1 — hs)].

Figures 4 and 5 explore how the magnitude of population suppression and the maximum allele frequency
of the gene drive observed on the mainland depend on the initial level of resistance on the mainland and the
migration rate from the island to the mainland in the no invasion threshold scenario. Naturally, the level of
transient suppression (fractional reduction below initial equilibrium) on the mainland depends strongly on
the frequency of resistant and susceptible individuals there (Fig, 4), although an important observation is that
the level of transient suppression is considerably lower than the initial frequency of susceptible individuals,
The level of migration is seen to have little impact on the level of suppression. Similarly, the initial composi-
tion of the mainland population impacts the peak drive frequency reached on the mainland, while the level of
migration again has little impact (Fig, 5). For the assumed demographic and drive parameters, 10% or higher
levels of resistance on the mainland lead to a transient population suppression of at most 20% and peak drive
frequency below 30%. Alternative choices for demographic and drive parameters would impact these numbers
(see sensitivity analyses in the Supplementary Information). Obviously, in the PA setting, drive would be una-
ble to spread on the mainland, but Figs 4 and 5 reveal that even in situations for which the susceptible allele is
not absent, but only fairly uncommon on the mainland, the levels of suppression that would result would be
small, and quite likely smaller than natural fluctuations in population size that might result from demographic
or environmental stochasticity.

The peak level of suppression and the maximum drive frequency on the mainland occur at roughly similar
times. The timing of these events is relatively insensitive to the initial frequency of resistance on the mainland and
the migration rate over a wide range of conditions (see Supplementary Information and Supplementary Figs 1
and 2), with dynamics playing out over the course of 10 to 20 years. High initial levels of resistance, however, can
lead to much slower spread of the drive on the mainland. As mentioned above, drive cannot invade when the ini-
tial frequency of the resistant allele is above 1 — hs/[e(1 — hs)]. Invasion of drive will occur only slowly (and with
alow peaklevel) when the frequency of resistance is not too far below this level. Supplementary Fig. 4 shows that
the peak level of suppression on the mainland is almost independent of the size of the release on the island, while
the time until this suppression occurs is only weakly dependent on the release size.
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Figure 4. Maximum level of transient suppression seen on the mainland following an island release of 100
homozygous drive individuals in the no invasion threshold scenario (s = 0.8 and h = 0.3) across combinations
of different migration rates and initial frequencies of resistant alleles on the mainland. Different levels of
suppression are denoted by different colors (see color key on figure). Low initial resistance frequencies depict
pessimistic scenarios (mainland is almost entirely susceptible to the drive), while high initial resistance
frequencies approach the private allele scenario discussed in the text. The white region of the figure denotes
initial levels of resistance that exceed the threshold level above which drive cannot invade the mainland.
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Figure 5. Maximum drive frequency observed on the mainland following an island release. Maximum drive
frequency is indicated by color, All other details as in Fig, 4,

Discussion

There is a fundamental tension between the ability of a gene drive to spread locally within a target area and
its ability to invade populations beyond that area. For a non-threshold gene drive designed for suppression or
elimination, the potential impact outside the targeted area can be of serious concern even if there is a likelihood
that resistance to the drive will evolve before irreversible damage is done. Indeed, such concerns were strongly
expressed in many of the seminal early papers on gene drive (e.g.”). Clearly, mechanisms that give some level
of control over the spread of a gene drive are prerequisites for the deployment of a gene drive for suppression or
elimination of a targeted population if other populations of the species contribute positively to biodiversity or
economics. Utilizing the high degree of genetic specificity exhibited by homing drives, the LFA approach provides
one option to limit the impact of unintended spread of a drive. In the fortunate, although perhaps rather unlikely
special case of private alleles, where all individuals in non-target populations lack the susceptible allele and the
susceptible allele is fixed on the island, the drive would be completely confined to the target population.

The LFA approach is related to two-step gene drive approaches that first spread a target allele into a popula-
tion and then release a second drive that is specific to the target allele. For example, Esvelt et al.! suggested this
approach for island populations, arguing that containment would happen provided that release of the second
drive occurred before any individuals bearing the first drive escaped the island. The uncertainty involved in this
scenario could be problematic for some stakeholders and regulatory autherities. In our approach, naturally occur-
ring targeted alleles are expected to be fixed within small island populations due to genetic drift or founder effects
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that have occurred in the past. These targeted alleles may be present in other locations, but as long as they are not
fixed, impacts on populations in those locations should be transient.

As demonstrated by other mathematical models (e.g.*>*) some spatially limited gene drive mechanisms are
unlikely to function well for strongly suppressing populations, because these require extremely large releases,
which are neither feasible nor advisable for pest species on islands (but see™ for an alternative approach for local-
ized suppression of mainland populations). In this regard, the LFA approach stands out for its predicted ability to
efficiently eliminate a small mostly isolated population without impacting other populations beyond a transient
effect. The LFA approach could also be useful in the setting of a suppression or replacement drive that does not
lead to elimination of the island population, although, as discussed in detail in the Supplementary Information
(Section §.5), persistence of the drive on the island will mean continual reintroductions of drive to the mainland
via migration, most likely leading to maintenance of drive on the mainland at a low frequency.

Our analysis employed a deterministic model, which allows for continuous migration from island to mainland.
This model describes the average behavior of the system and so gives a good indication of expected dynamics in a
large well-mixed mainland population. It describes the magnitude of suppression and its timing, but does not account
for the discrete numbers of individuals in populations. Given that migration from the island to mainland is antici-
pated to occur as relatively infrequent events that involve small numbers of individuals, a stochastic model would be
more realistic. Such a model would allow questions about the likelihood of the occurrence of migration events and
of resulting transient spread of the drive, and distributions of the magnitude and timing of any transient suppression
that results. However, we would not expect the qualitative results of such a model to predict a qualitatively differ-
ent outcome from the current model in terms of impacts on the overall mainland population (see Supplementary
Information for results from a stochastic model and some additional discussion of the impact of stochasticity).

For this proof-of-concept study of the LFA approach, we employed a highly simplified description of the pop-
ulation dynamics and genetics of the system, Many ecological and behavioral complexities, such as Allee effects™,
the spatial and social structures of mouse populations, and mouse mating behavior, will impact the dynamics of
population suppression and elimination under the action of gene drives. More refined models that include such
features will have to be developed if the use of this approach is to be considered for a real-world release program.

It is important to recognize that one of the outcomes of mice arriving on the mainland that have a homing
drive with no threshold is that the frequency of the resistant allele will increase. If after the mice are eliminated
from the island a mouse or a few mice carrying the now more common resistant allele migrate to the island, it is
likely that the new population on the island would no longer be a good target for the previously used construct.
However, if recolonization was started by one or a few individuals, founder effects and drift would be likely to
result in other fixed alleles that could be targeted.

There are a number of technical and societal challenges in moving the LFA from concept to application. While
there is empirical evidence of lower polymorphism in small island populations (e.g.*'-*), not every fixed allele
in an island population will be a good target for a CRISPR-based gene drive. Appropriate targets will depend on
the intended nature of the drive (e.g. if it is to be sex-specific, employ a split-drive design, etc), impacting the
number of available loci. Furthermore, these alleles will optimally have at least two sites that can be targeted by
the CRISPR-CAS nuclease complex to decrease the chance of drive failure due to resistant alleles arising through
non-homologous end joining™. It will be critical that full genomes of individuals be scanned for the best possi-
ble targets and those targets will need to be scrutinized for potential problems. Also, because the LFA approach
requires that the target allele is fixed, island populations will need to be sampled and evaluated extensively before
moving ahead with any genetic engineering to ensure an acceptably high probability that the targeted allele is
truly fixed on the island. This will require focused sequencing of the target loci in a large number of individuals,
but it should be recognized that 100% assurance is not possible.

At a societal level, lack of an ecological impact ofan LFA in a non-target location of the specific target species
must be assured. Models that include details of the species biology, population structure and genetics will be
critical in moving toward regulatory approval. But assurance of lack of an ecological impact of LFA constructs on
the non-targeted populations may not be sufficient for some stakeholders who will have a concern with even one
engineered individual arriving in their area.

Beyond direct impacts of an LEA, researchers must be cognizant of the fact that in developing the technology
for LFA in a problematic species, they are also developing tools that could be used by others to construct unre-
stricted gene drives in that species. There will always be tradeoffs in developing new technologies and there are
unlikely to be simple decisions. Vigilance and input from diverse stakeholders “early and often™* will be critical
in coming to decisions.
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S.1. Threshold for Invasion of Drive into Partially Susceptible/Partially Resistant Mainland Population

It can be shown that there is a threshold level of resistance above which drive cannot invade the
mainland. This threshold can be derived by examining the stability of a drive-free equilibrium state of
the single patch model, using the standard approach of linearizing the model about the equilibrium (see,
for example?). This process involves calculation of the eigenvalues of the lacobian matrix (i.e. the matrix
of the partial derivatives of the right-hand sides of the differential equations (egns 3 in the main text)
with respect to the state variables of the model) evaluated at the equilibrium of interest. The 6x6
Jacobian matrix and its eigenvalues are easily calculated with the assistance of a computer algebra
package (e.g. Maple [Maplesoft, a division of Waterloo Maple, Inc., Waterloo, Ontaria] or Mathematica
[Wolfram Research, Inc., Champaign, IL]). A Maple worksheet providing details of the calculations is
provided as a supplementary file.

Given that we assume equal fitness of susceptible and resistant types, in the absence of drive there is no
selection between susceptible and resistant types and so we have non-unique drive-free equilibria:

A‘Ys{_; = (l — qR)zx‘V*A, I\TSR = 2{1;{(1 — Q‘R)f\’m, J\TRR = qi:yﬂr*, N’sn = 11\""Rr) =Npp=10

Here gg is the frequency of the resistant allele and N* is the wild-type (i.e. drive-free) equilibrium
population size [equal to (A-p)/(Ag+0) ) . We note that these equilibria form a curve in phase space.

The linear stability analysis gives six eigenvalues, one of which is zero (corresponding to neutral stability
along the curve of drive-free equilibria), one equal to p-i and three equal to —A(gp+a)/(hg+a). We see
that these last four eigenvalues are negative (note that A must be greater than p in order for N* to be
positive). The ability of drive to invade (from low initial frequency) is determined by the sign of the final

eigenvalue, whose value is equal to A[(1-gr){1-hs)e-hs](gp+a)/(Ag+a). Invasion is only possible if this
guantity is positive, and so consideration of the quantity in square brackets leads to the condition

qr <1—hs/{e(1 —hs)}.

Another way to derive this threshold (and one that immediately applies to a number of previous studies
in the literature) is by considering a discrete-time (discrete generations) description framed in terms of
allele frequencies (see, for example®?).

If the allele frequencies for Susceptible, Drive and Resistant alleles in the current generation are written
as gs, gp and gg, it can be shown that the frequency of the drive allele in the next generation, g, will be
given by

;1
o = ({1 —s}qh + {1 — hslqs qp {1+ €} + {1 — hs}qz qp );
where W is the mean fitness, which equals

= 1-sqp — 2hsqp(gs +qz )-

=l

When thinking about invasion of drive into a population that initially consists of susceptible and

resistant alleles, gp will be small, and so the following linear equation can be derived for the change in
the frequency of the drive allele from one generation to the next:

ap—ap ~qp ({1 —hslgs {1+ e} + {1 —hs}qgg —1).
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(This equation is correct to first order in gy .)

We see that the drive frequency can only increase if the term in parentheses is positive, meaning that

e(1-hs)—hs

9r < e(1-hsy ’

which may be written as

qr <1 —hs/{e(1 - hs)}.

S.2. Additional Details of Dynamics on the Mainland: Timing of Suppression and Peak Drive Level;
Long-Term Dynamics

Supplemental Figures 1 and 2 explore the timing of (1) suppression on the mainland and (2) the peak
level of drive seen on the mainland. These two events occur at similar times (but not at exactly the same
time). We note that over a wide range of initial levels of resistance and migration rates, there is only
weak dependence of either time on these guantities, and that these times increase substantially as the
initial level of resistance approaches the non-invasion threshold.

Supplemental Figure 3 explores the composition of the mainland population that remains after the
transient spread of drive, showing the long-term (100 year) frequency of the susceptible allele. We note
that, while the transient spread of drive leads to the reduction of susceptible alleles on the mainland, it
does not lead to their elimination.

Supplemental Figure 4 shows that the peak level of suppression and the maximum drive frequency on
the mainland are almost independent of the size of the release on the island (that they are not constant
cannot be seen at the scale shown on this figure: both curves exhibit a very weak dependence on
release size). The time until the peak suppression occurs is only weakly dependent on the release size
for biologically plausible release sizes, varying only by about 3 years for release sizes between 1 and
1000 individuals, but continuing to increase in the limit as the release size approaches zero. In the
deterministic model, invasion is possible from arbitrarily small releases, although it takes increasingly
long for drive to increase to appreciable levels from extremely small release levels, hence the time to
minimum continues to increase. Note that the model behaves qualitatively differently when the release
size is zero from when the release size is non-zero.
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Supplemental Figure 1. Dependence of the time until the mainland population achieves its minimum on
the initial level of resistance on the mainland and the migration rate from the island. All other details are
as in Figure 4 of the main text. The white region of the figure denotes initial levels of resistance that
exceed the threshold level above which drive cannot invade the mainland.
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Supplemental Figure 2. Dependence of the time until the drive frequency achieves its maximum on the
mainland on the initial level of resistance on the mainland and the migration rate from the island. All
other details are as in Figure 4 of the main text.
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Supplemental Figure 3. Frequency of the susceptible allele on the mainland 100 years after an island
release in the no invasion threshold scenario (s = 0.8 and h = 0.3) across combinations of different
migration rates and initial frequencies of resistant alleles on the mainland. All other details are as in
Figure 4 of the main text. Note that susceptible alleles remain in the population after the transient
spread and loss of drive on the mainland. The white region of the figure denotes initial levels of
resistance that exceed the threshold level above which drive cannot invade the mainland.
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Supplemental Figure 4. (Both panels) Maximum level of transient suppression (dashed blue curve; read
scale on left axis), time taken for this level of suppression to occur (red curve, read scale on right axis)
and maximum level of gene drive (solid blue curve; read scale on left axis) seen on mainland following
releases of various sizes on the island under the no invasion threshold scenario. Initial frequency of
resistance on the mainland is equal to 0.05 and migration occurs at a per-capita rate of 0.012 per year.
All other parameters are as in Figure 3 of the main text. Circles on the vertical axis denote that the
curves are not continuous when the release size is zero: the behavior of the model is qualitatively
different between zero and positive release sizes. The bottom panel depicts the same results but using a
logarithmic scale on the horizontal axis to emphasize the mathematical behavior as the release size
approaches zero.
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S.3. Sensitivity of Results to Parameter Values

In this section we explore how model results, specifically the maximum level of suppression seen on the
mainland and the peak level reached by drive on the mainland, depend on the drive and ecological
parameters used. Such a sensitivity analysis provides increased confidence in the utility of the LFA
approach.

Before exploring the impact of individual parameters in detail, we performed a global sensitivity analysis
involving four parameters: the fitness cost of the drive, s, the dominance of this fithess cost, h, the
homing probability, e, and the demographic parameter A, the female fecundity parameter (i.e. the
female per-capita birth rate of the population at low population densities, when density-dependent
reductions in birth rate can be ignhored). As discussed below (S.3.2.1), for the logistic model, if we choose
to fix the equilibrium population size, there is only one demographic parameter, the net per-capita
birth/death rate at low population densities, that can be independently varied. We choose to do this by
varying the per-capita birth rate (female fecundity, ).

Given that we have little to no information on the uncertainties of these parameters about their
baselines, we employed uniform distributions for their possible values (Table S.1), following the
approach taken by Prowse et al.? in their sensitivity analysis of the Y-CHOPE Y chromosome shredding
gene drive. We then used a sampling-based variation decomposition approach® (Fourier Analysis
Sensitivity Test, FAST, implemented using the SAFE Toolbox®) to assess the contributions of the
uncertainties in different parameters to the variation seen in model outputs across the parameter
space. This approach is somewhat akin to more familiar analysis of variance statistical methods. 5000
simulation runs were carried out, each using a set of parameters sampled from the parameter space
described in Table S.1.

Supplemental Table 1: Baseline values and assumed distributions for parametric sensitivity analysis.

Parameter Baseline Distribution
s 0.8 U(0.65,0.95)
h 0.3 U{0.1,0.5)

e 0.95 U{0.7,1.0)

A 8.4 U{(6,10)

Across the simulation runs based on 5000 sets of parameters, the range of observed maximum
suppression values fall between less than 1% and 40.4%, with a mean of 20.8% and standard deviation
of 0.08% (coefficient of variation of 38.8%). For the maximum drive frequency, the range of observed
values was between less than 1% and 53.7%, with a mean of 31.8% and standard deviation of 12.2%
(coefficient of variation of 38.2%).

For maximum suppression observed on the mainland, the first order effects of the four parameters
explained 84% cf the variation. Two of the drive parameters, h and e, and the demographic parameter
explained fairly similar amounts of variation (26%, 22%, and 23%, respectively), while the fitness cost s
explained just 12% of the variation. This analysis says that if we wished to predict the impact of LFA on
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mainland population suppression, reducing the uncertainty in either h, e, or & has a bigger impact on the
confidence in our predictions than reducing uncertainty in s.

For maximum drive frequency observed on the mainland, the first order effects of the four parameters
explained 94% of the variation. The drive fitness parameters s and A have the biggest impact, explaining
47% and 38% of variation, respectively. The homing probability h has a much smaller impact, explaining
8% of variation, while the demographic parameter X has very little impact on the maximum drive
frequency, explaining less than 0.1% of variation (see 5.3.2.1 for more discussion on this).

$.3.1. Sensitivity to Drive Parameters

Figure S.5 shows the dependence of the maximum levels of suppression and drive seen on the mainland
on the drive fitness cost and dominance of this fitness cost. Results are shown for the region of drive
parameter space for which the island population is eliminated and for which no threshold behavior is
observed (Deredec et al.2 and Alphey and Bonsall” provide analytic expressions for the locations of these
boundaries). The dashed line on the plot shows the boundary between the parameter regions for which
drive becomes fixed or approaches a polymorphic equilibrium with wild-type?”’.

Figure 5.6 shows sensitivity of outcomes over a region of drive parameter space assuming different
values for the homing probability, and Figure S.7 shows dependence of outcomes on the initial level of
resistance on the mainland assuming different values for the homing probability.
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Supplemental Figure 5: Heatmaps showing the dependence of (panel a) the maximum suppression
observed on the mainland and (panel b) the maximum level of drive seen on the mainland on the drive
parameters s and h. The scales on the color bars are chosen to be the same as in Figures 4 and 5. White
regions on this figure denote combinations of drive parameters that either lead to threshold behavior,
loss of drive or for which the drive fails to lead to elimination of the island population. The initial
frequency of the resistance allele on the mainland is 95%, and the migration rate is 0.012/year. All other
parameters are as in Figures 4 and 5 of the main text. The black asterisk denotes the drive parameters
used in Figures 4 and 5 of the main text. The dashed line denotes the boundary between the region of
parameter space where drive approaches fixation (to the left of the line) and where drive approaches a
polymorphic equilibrium with wild-type (to the right of the line}.
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Supplemental Figure 6: Heatmaps showing the dependence of (panels a and c) the maximum
suppression observed on the mainland and (panels b and d) the maximum level of drive seen on the
mainland on the drive parameters s and f, and for homing probabilities of (panels a and b) 0.8 and
(panels c and d) 0.5. The scales on the color bars are chosen to be the same as in Figures 4 and 5 of the
main text. White regions on this figure denote combinations of drive parameters that either lead to
threshold behavior, loss of drive or for which the drive fails to lead to elimination of the island
population. The initial frequency of the resistance allele on the mainland is 95%, and the migration rate
is 0.012/year. All other parameters are as in Figures 4 and 5 of the main text. The black asterisk denotes
the drive parameters used in Figures 4 and 5 of the main text. The dashed curve denotes the boundary
between the region of parameter space where drive approaches fixation (to the left of the curve) and
where drive approaches a polymorphic equilibrium with wild-type (to the right of the curve).
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Supplemental Figure 7. (Panel a) Maximum population suppression seen on the mainland and (Panel b)
maximum drive frequency seen on mainland for various levels of mainland initial resistant allele
frequency, and for different values of the homing probability. In all cases, drive parameters are taken to

equal 5=0.8 and h=0.3. All other parameters are as in Figure 3. of the main text.
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$.3.2. Sensitivity to Demographic and Density Dependence Parameters
$.3.2.1 Logistic Model

We also explore the dependence of our results to demographic and density dependence parameters.
The dynamics of the deterministic logistic model involves two parameter combinations: the per-capita
growth rate of the population at low densities (A—p) and the per-capita rate of change of the population
growth rate. In order to make comparisons across parameter values, we choose to keep the equilibrium
population size fixed. This leaves us with the single parameter combination A—p that can be varied in
order to explore the impact of demographic parameters within this demographic model. Here, we
choose to vary A in order to achieve this. The primary impact of varying parameters in this way is to
change the stability of the positive equilibrium of the logistic model. A natural way to characterize this is
by calculating the return time of the equilibrium, a measure of the time taken for perturbations of the
population about its equilibrium to decay that is commonly used in the theoretical ecology literature®.
More precisely, the return time is calculated as the reciprocal of the absolute value of the largest
eigenvalue of the Jacobian matrix of the model at its positive equilibrium, 1/|f'(N*)|, which for this
model simply equals 1/(A—p). Longer return times mean that the population responds more slowly to
perturbations away from equilibrium (the equilibrium is “less stable” in this sense).

Figure 5.8(a) shows how the maximum suppression seen on the mainland varies as A is changed, and
Figure 5.8(b) reinterprets these results in terms of the resulting return time to equilibrium. We see that
the maximum suppression seen on the mainland varies in an intuitive fashion as A is changed. Longer
equilibrium return times lead to higher levels of suppression: longer return times mean that the
population responds more slowly to perturbations in its size and thus the fitness cost imposed by drive
can push the population down to lower levels. The variation in the maximum suppression as A changes
can also be expressed in terms of the elasticity®, the ratio between the percentage change in maximum
suppression and the percentage change in A, calculated at the baseline parameter set and assuming that
the percentage change in L is small. This elasticity is equal to -1.22, which means that an X% change in L
leads to an approximate change of -1.22X% in the maximum suppression.

Figure 5.8(c) shows that the maximum mainland drive frequency depends only weakly on the
demographic parameter A. This is not surprising: at the level of a single patch, population genetics and
ecological dynamics are uncoupled (see’, for example). The weak dependence seen in the figure reflects
the impact of migration between two populations whose sizes are varying. Changing the level of density
dependence on the island leads to changing the timing of population reduction on the island, hence
changing the numbers of drive individuals moving from the island to mainland over time. Similarly,
changing the level of density dependence on the mainland changes the timing of population reduction
on the mainland. This, in turn, changes the impact of arriving drive-bearing individuals: how they alter
mainland drive frequency depends on the relative numbers of arriving and mainland individuals.
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Supplemental Figure 8: Dependence of: (panel a) the maximum suppression observed on the mainland,
and (panel c) the maximum drive frequency seen on the mainland as the intrinsic per-capita growth rate
of the population () is varied. Panel (b) reinterprets the results of panel (a) in terms of the return time
to equilibrium (see text for more details). All other parameters are kept fixed at the baseline values used
in Figure 3, except for the parameters g that describe the linear decline in the per-capita birth rate with
increasing population size. The g parameters are varied so as to keep island and mainland population
sizes fixed as A is changed. The red dot on each panel corresponds to the baseline set of demographic
parameters used in Figure 3 of the main text.
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$.3.2.2. Generalized Logistic Model

In the previous section, the sensitivity of model results to the demographic assumptions of the logistic
model was explored. As discussed, fixing the equilibrium population size leaves us with relatively little
ability to impact demography within the confines of the logistic model framework. We can make a more
general exploration of the impact of density dependence by employing a slightly more general
population dynamics framework, the generalized logistic model'®!?, Here we assume that the linearly
increasing per-capita death rate of the logistic model is replaced by a nonlinear term that involves the
exponent 3-1:

N
Ciit = AN(1 — gN) — pN — aN”

A B value of 2 corresponds to the logistic model employed in the main text and by Backus & Gross'2.
Values of 3 above 2 correspond to stronger density dependence, values below 2 to weaker density
dependence.

As before, we keep the equilibrium population size constant when making comparisons. There are
various ways to do this while varying B, but we employ the simplest choice: we keep the parameters 4, g
and p fixed, and choose an appropriate value of a. To further simplify our exploration here, we only
employ the generalized logistic model on the mainland, maintaining the baseline logistic dynamics on
the island. (This means that the timeseries of numbers of migrants arriving on the mainland is kept the
same as we vary 3, and we explore how changing density dependence on the mainland alters the impact
of these migrants on the mainland population.) Furthermore, we assume that density dependence only
occurs in the death process on the mainland, i.e. we set the mainland value of g equal to zero.

As expected higher levels of suppression are seen for weaker density dependence (P<2) and lower levels
for stronger density dependence ($>2), compared to the logistic model (B=2). The elasticity, calculated
at the baseline level of the parameter, is -1.22.
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Supplemental Figure 9. Dependence of: (panel a) the maximum suppression observed on the mainland,
and (panel c) the maximum drive frequency seen on the mainland as the parameter f} that determines
the strength of density dependence is varied. Panel (b) reinterprets the results of panel (a) in terms of
the return time to equilibrium (see text for more details). It is assumed that density dependence on the
mainland only occurs via deaths (i.e. the mainland g parameter is set equal to zero). All other
parameters are kept fixed at the baseline values used in Figure 3 of the main text, except for the
coefficient ¢ of the density dependent (nonlinear} mortality term on the mainland. This parameter is
varied so as to keep the baseline (pre-release equilibrium) mainland population size fixed as f3 is
changed. The red dot on each panel corresponds to the baseline set of demographic parameters used in
Figure 3 of the main text.
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S.4. Stochastic Model

We formulate a stochastic model in the familiar way by reinterpreting the birth, death and migration
rates of the deterministic model as rates at which discrete transitions occur in a continuous-time,
discrete state Markov chain model (see, for example, Renshaw™®). Numbers of individuals of each
genotype are now integer-valued quantities and processes in the model occur discretely: for instance,
migration events involve the movement of a single individual from the island to the mainland. Standard
stochastic simulation methods can be used to produce a collection of realizations (simulation runs) of
the model.

Because the model is stochastic, repeated simulation starting from the same initial condition leads to
variation in observed dynamics. One way to summarize this variability is by a histogram that depicts the
distribution of model outcomes across a collection of simulation runs.

An important difference between stochastic and deterministic models is that invasion of drive is no
longer guaranteed in the stochastic model, even for choices of parameters and initial conditions for
which invasion is certain in the deterministic model. For instance, just by chance it could happen that a
drive individual that arrives on the mainland dies before having any offspring there. In general,
branching process theory can be used to calculate the probabilities that the arrival of a single drive
individual will lead to successful invasion of drive or the failure of drive to spread. These probabilities
naturally depend on a number of drive-related parameters. Furthermore, repeated introduction of drive
is more likely to lead to successful establishment of drive than a single introduction. For the baseline
drive parameters used in the main text (and in this Appendix), numerical simulation shows that the
probability of successful spread of drive following the arrival of a single drive individual is approximately
0.315.

For parameters corresponding to Figure 3. in the main text, with a mainland population of N = 100,000,
a per-capita migration rate of 0.012/year and the rather pessimistic assumption that the frequency of
the resistant allele on the mainland is only 5% (target allele frequency of 95%), we see that the
stochastic model gives results that correspond closely to those obtained from the deterministic model.
We see a relatively small variation in both the maximum level of suppression and maximum drive
frequency seen on the mainland about the values predicted by the deterministic model (Figure 5.10).

For a lower level of migration, p=0.0012/year, we see (Figure S.11) that drive fails to invade on the
mainland in a large number of realizations (5,356 out of 10,000). This occurs because at this level of
migration, no drive individuals migrated to the mainland before extinction happened on the island in
about 14% of the realizations (1,440 out of 10,000). Even if drive-bearing individuals arrived on the
mainland, invasion was not guaranteed to occur: drive failed to invade in 3,916 out of the 8,560
realizations in which drive arrived on the mainland (note that some realizations involved two or more
arriving migrants). Neither of these two phenomena are captured by the deterministic model, in which
migration is a continually-occurring process (minute fractions of individuals continually move from island
to mainland) and in which drive can invade from arbitrarily low levels (so the arrival of a fraction of a
drive-bearing individual will lead to invasion of drive). Consequently, the deterministic model is in one
sense overly pessimistic about the impact of drive on the mainland, in that it predicts that drive is
guaranteed to (transiently) invade the mainland. On the other hand, variation about the average
behavior in the stochastic model means that the deterministic model can underestimate the impact of

198



drive when it does invade, although we see that this variation is not so large when the mainland
population is large. We note that for the realizations in which drive fails to invade, we do see a non-zero
maximum suppression: this reflects the variation that a stochastic wild-type population exhibits about
its carrying capacity. (Note that these values would be larger if we observed the population over a
longer time interval.)

Supplemental Figure 10. Histograms showing (a) maximum suppression seen on the mainland and (b)
maximum frequency reached by drive on the mainland across 10,000 realizations of the stochastic
madel. Parameter values are as in Figure 3. of the main text, with a per-capita migration rate of
0.012/year and a mainland population size of 100,000.
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Supplemental Figure 11. Histograms showing (a) maximum suppression seen on the mainland and {(b)
maximum frequency reached by drive on the mainland across 10,000 realizations of the stochastic
model. Parameter values are as in Figure S.10, except that the per-capita migration rate is now lower, at
0.0012/year. Note that the observed results now exhibit bimodality: there are now a substantial number
of simulation runs for which the maximum drive frequency is 0 (or low) and the maximum suppression is
low. Note that the choice of scale on the vertical axis (chosen to allow the upper part of the bimodal
distributions to be clearly visualized) truncates the lower parts of the bimodal distributions. 5,356 out of
10,000 simulation runs fall into the lower parts of the two distributions.
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S.5. Population Suppression and Population Replacement

We conclude with a brief description of the dynamics of the model in the case where the island
population is suppressed but not eliminated. We assume that drive bears a positive fitness cost, but that
the cost imposed (either at fixation or at the polymorphic equilibrium, depending on the outcome of the
population genetics) is not sufficient to lead to elimination. This setting can either describe a drive that
is intended to suppress the island population or one that is designed as a population replacement
strategy. (Expressions for the threshold conditions governing the population genetic outcome are given
in%, as are the allele frequencies at the polymorphic equilibrium (if it exists). Alphey and Bonsall”
further provide threshold conditions for the elimination of a population given the population genetic
outcome.)

The primary difference in the dynamics here is that drive will remain in the island population, and hence
there will be continual introduction of drive to the mainland by migration. Given that drive is
outcompeted on the mainland, this leads to the establishment of a polymorphic equilibrium between
drive, resistant and wild-types, with the level of drive typically low. We note that if the drive fitness cost
is low, these dynamics, specifically the reduction in the level of drive that occurs following its initial
transient rise, can take a long time to play out.

Figure 5.12 shows typical time series of the dynamics of the LFA model with a suppression drive that
does not achieve elimination. Figure 5.13 shows variation in the maximum level of suppression seen on
the mainland, maximum mainland drive frequency, and long-term mainland drive frequency (at =100
years) over a region of drive parameter space. (Note that we restrict the fitness cost s to be greater than
0.1 in order for our 100 year timescale to be appropriate to capture dynamics: as mentioned above, very
low fitness costs lead to a very long timescale for the loss of drive on the mainland.) Figure S.14 explores
the variation in the same quantities for the baseline suppression drive parameters, over a range of
frequencies of resistance on the mainland and levels of migration. Results are also shown for a second
set of drive parameters, with a lower fitness cost (s=0.3, h=0.3).
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Supplemental Figure 12. Suppression/replacement dynamics. Top Panel: Island dynamics, showing relative
population size (blue solid curve; left axis) and drive allele frequency (red dashed curve; right axis). Middle Panel:
Mainland dynamics: relative population size (blue solid curve; left axis), and drive and resistant allele frequencies

(red dashed and red dot-dashed curves, respectively; right axis). Bottom Panel: allele frequencies as in the previous

panel, but depicted on a logarithmic scale. A drive th

at does not achieve elimination on the island is deployed

[5=0.6 and h=0.3). For these parameters, the drive achieves fixation on the island but the resulting genetic load is

not sufficient to cause elimination. This leads to a continual migration of drive-bearing individuals to the mainland.

Initially, dynamics on the mainland play out much as

reintroduction of drive to the mainland by the migrants from the island leads to a polymorphic equilibrium for
which drive is present at a low level (most visible on lower panel). Other parameters are as in Figure 3 of the main
text, with homing probability of 0.95, initial resistance allele frequency of 95% on the mainland and per-capita

migration rate of 0.012/year.

seen for an elimination drive. However, the continual

Island

1 T T 1 T T T 1
Qo5 0.5
N7
c
=
E 0 Il L Il 1 1 1 0
= 0 5 10 15 20 25 30 35 40 45 50
& Mainland
o T = T T T T 1
o W—
% i ——Total population
o | I-’ - — Drive frequency 0.5
o 05 ,’:,'\\ --—-Resistant frequency

Al ~
O == I il - | L L O
0 5 10 15 20 25 30 35 40 45 50
P . . . 10°
E—— - RPN = = Drive frequency
,’ T~a - —-—-Resistant frequency
// e
/
! Il L Il 1 1 1 ] 10-5

25 30 35 40 45 50
time (years)

Allele frequency

202



Supplemental Figure 13. Heatmaps showing the dependence of (panel a) the maximum suppression
observed on the mainland, (panel b) the maximum level of drive seen on the mainland, and (panel c) the
drive frequency on the mainland after 100 years, on drive fitness parameters s and h over regions of
parameter space for which the drive does not have an invasion probability and suppresses the island
population, but does not does not lead to extinction. The black asterisk denotes the drive parameters
used in Figures S.12. All other parameters are as in Figure 5.12. The scales on the color bars in panels (a)
and (b) are chosen to be the same as in Figures 4 and 5 of the main text. White regions on this figure
denote combinations of drive parameters that either lead to threshold behavior, loss of drive or for
which the drive leads to elimination of the island population. The dashed curve denotes the boundary
between the region of parameter space where drive approaches fixation (to the left of the curve) and
where drive approaches a polymorphic equilibrium with wild-type (to the right of the curve). (Note that

with the homing probability of 0.95 used here, the dashed curve lies in the region of drive space that
leads to extinction of the island population.)
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Supplemental Figure 14. Heatmaps showing the dependence of (panel a) the maximum suppression
observed on the mainland, (panel b) the maximum level of drive seen on the mainland, and (panel c) the
drive frequency on the mainland after 100 years, on initial level of resistance on the mainland and the
migration rate, for drive parameters s=0.6 and h=0.3 that lead to threshold-free suppression but not
extinction of the island population. Panels (d), (g), and (f) show the same information but for a drive
with s=0.3 and h=0.3. The scales on the color bars in panels (a) and (d), and (b) and (e) are chosen to be
the same as in Figures 4 and 5 of the main text. All other parameters are as in Figure S.12.
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