
ABSTRACT 

HOLLINGSWORTH, BRANDON DAVIS. Evaluating Aedes-vectored Disease Control:  Risks 

and New Approaches. (Under the direction of Drs. Alun L. Lloyd and Michael H. Reiskind). 

 

 Aedes-vectored diseases are some of the most widespread and fastest growing infectious 

diseases worldwide.  Many of the mosquito control measures originally used to drive Aedes 

aegypti to near extinction in the Americas, e.g. mass spraying of DDT, are no longer viable, and 

there is debate about the effectiveness of ultra-low volume (ULV) spraying for reducing Aedes 

populations and their associated disease risks.  The recent reemergence of dengue and outbreaks 

of Zika and chikungunya have resulted in renewed interest in controlling both Aedes (Stegomyia) 

aegypti (Say) and Aedes (Stegomyia) albopictus (Skuse).  In response to this, there have been 

numerous technologies and strategies proposed to target Aedes mosquitoes, but many of the 

strategies are not tested and, even for well-studied strategies, the dynamics during and following 

treatments are not fully understood.  Mathematical models have proven to be an important tool 

for providing insights about Aedes population and Aedes-vectored disease dynamics, particularly 

in the absence of experimental data.  In this dissertation, I used a combination of mathematical 

models, field experiments, and statistical analysis to elucidate the population and disease 

dynamics associated with the control of Aedes mosquitoes. 

 Using mathematical models, I examined transmission dynamics following the cessation 

of control programs in various disease systems.  These simulations showed that use of non-

immunizing controls against endemic diseases, e.g. vector control against dengue, could result in 

increases in incidence over some time periods, a phenomenon I termed the divorce effect.  In 

these situations, I found that using a non-immunizing control, even for a relatively short period, 

resulted in a reduction in herd immunity.  Once control ended, reemergence of the disease 

resulted in large outbreaks that negated any benefit obtained during the period in which the 



disease was suppressed.   This is an important result for dengue control, which relies heavily on 

vector reduction, as the growing prevalence of insecticide resistance could render many control 

programs obsolete. 

 A field experiment I conducted in 2018, examined the population dynamics following the 

use of spraying and larval habitat management (LHM) in individual yards, and to quantify their 

effectiveness.  Pairs of houses were monitored every 4 days over a 33-day period, with one yard 

in the pair receiving a single application of the assigned treatment.  Individual houses treated 

using barrier sprays had significantly reduced mosquito population for the entire post-control 

period.  LHM did not result in a significant reduction in the population density over the entire 

period but resulted in significant reduction after 21 days.   

 Data from the field experiment were then used to parameterize a model for barrier sprays 

and LHM applied to individual yards within a neighborhood.  Parameter estimation provided an 

estimate of the average lifespan of Ae. albopictus, percentage increase in adult mortality due to 

barrier sprays, half-life of the barrier spray’s effect, percentage of larval habitat removed by 

LHM, and movement between yards.  I then used the model to examine the effect of nine 

different control strategies on the neighborhood-wide Ae. albopictus population.  These 

simulations suggested that treating a quarter of the yards with a combination of barrier sprays 

and LHM could reduce the neighborhood-wide Ae. albopictus population by up to 80%, on 

average, using targeted treatments. Our results suggested that significant reductions in the 

neighborhood-wide population is possible with relatively few treatments, even without perfect 

knowledge of the mosquito’s distribution. 

 The results presented in this dissertation help to better understand the effects of mosquito 

control on both Aedes population dynamics and Aedes-vectored disease dynamics.  Both the 



modeling and experimental results we have presented have implications for future Aedes, and 

Aedes-vectored disease, control and will hopefully help guide future control programs. 
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CHAPTER 1 – Introduction 
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 Aedes is a genus of mosquitoes found throughout the tropics and subtropics worldwide.  

The two most well studied species in the group, Aedes aegypti and Aedes albopictus, are known 

to be highly invasive and efficient vectors for several important human arboviruses, most notably 

dengue, Zika, and yellow fever (Powell et al., 2018).  Both species prefer peridomestic 

environments and human hosts and oviposit in a variety of manmade containers.  It is this ability 

to utilize a variety of containers for oviposition, along with the ability of those eggs to diapause 

for months at a time (Hawley, 1988), that enabled both species to invade the tropics and subtropics 

worldwide.  Ae. aegypti was the first to do this, likely making use of water containers on slave 

ships in the sixteenth century and has been present in the Americas since (Powell et al., 2018), 

with the first confirmed yellow fever outbreak in 1648 (McNeill, 2010).  Ae. albopictus spread 

more recently, transported worldwide through the tire trade, first arriving in the US in Texas in 

1985 (Sprenger & Wuithiranyagool, 1986).  Since then, Ae. aegypti has been largely displaced by 

Ae. albopictus in the contiguous US, with its current distribution restricted to the southern most 

parts of Florida and Texas, Arizona, and California.  Meanwhile, Ae. albopictus is found 

throughout the southeastern US, from Texas to Florida and as far north as Virginia, in urban areas 

of Arizona, and has recently begun invading California (Hahn et al., 2017).  While Ae. albopictus 

is thought to be a less efficient vector than Ae. aegypti (Lambrechts et al., 2010), it has been shown 

to be a capable vector in laboratory studies (Boromisa et al., 1987) and has been responsible for 

outbreaks of dengue (Luo et al., 2017) and chikungunya (Gérardin et al., 2008).  

 Most Aedes-vectored diseases are members of the genus Flaviviridae, including dengue, 

yellow fever, and Zika viruses.  In addition to these flaviviruses, Aedes mosquitoes are the main 

vectors of chikungunya, an alphavirus, and a known vector of dirofilariasis, dog heartworm.   

Dengue virus is a reemerging disease transmitted primarily by Ae. aegypti throughout most of the 
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tropics.  It accounts for the majority of the morbidity and mortality associated with Aedes-vectored 

diseases, with between 64 and 159 million cases of dengue in 2017 resulting in between 18 and 50 

thousand deaths (James et al., 2018), and is undergoing rapid expansion with an increase of 

between 100-400 million cases each year, with further expansion expected in Europe and the US 

in the coming decades (Brady & Hay, 2020).  Yellow fever was eliminated from much of the 

world, thanks to the development of a vaccine, but an estimated 97 thousand cases resulted in an 

estimated 4800 deaths in 2017 (James et al., 2018).  Both Zika and chikungunya are considered 

emerging viruses, having undergone recent expansion outside of their historical ranges (Lowe et 

al., 2018).  A highly publicized outbreak of Zika in the Americas resulted in between 1.6 million 

and 3.1 million cases of Zika in 2017 but resulted in less than 100 deaths (James et al., 2018).  

chikungunya, on the other hand, has not seen a large-scale outbreak, but a single mutation allowed 

for transmission by Ae. albopictus in the Reunion Islands (Tsetsarkin et al., 2007), resulting in the 

highest incidence rate of any recorded arbovirus outbreak (Gérardin et al., 2008), stoking fear of 

further outbreaks. 

 Following the elimination of malaria in the US and much of Central America, there was a 

push for the eradication of Ae. aegypti, and the diseases it vectored, throughout the Americas.  This 

program implemented a combination of container inspections, oiling of aquatic habitats, and 

spraying of dichlorodiphenyltrichloroethane (DDT) and resulted in the elimination of Ae. aegypti 

in large portions of South America (Soper, 1963).  However, the high cost and lack of public 

support resulted in the program being discontinued in the US before the complete elimination of 

Ae. aegypti (Wilson et al., 2020).  With the more recent introduction and spread of Ae. albopictus, 

and only isolated Aedes-borne disease outbreaks, the priority for mosquito control programs 

shifted to reductions in mosquito nuisance in most of the US (Wilson et al., 2020).  Unfortunately, 
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this shift in priorities, coupled with decreases in funding, resulted in the government agencies 

responsible for mosquito and mosquito-borne disease control, e.g. mosquito abatement districts, 

being underfunded and ill-prepared to respond to mosquito-borne disease outbreaks in many areas 

(National Association of County and City Health Officials, 2017; Rosario et al., 2014).  In the 

absence of publicly funded mosquito control, private mosquito control companies have increased 

in popularity in the last decade (Specialty Consultants, 2017).  In contrast to publicly funded 

mosquito-control, which often uses ultra-low volume (ULV) applications of insecticides along 

with large-scale habitat removal projects aimed at reducing mosquito populations over a large area, 

these private companies implement barrier sprays coupled with larval habitat management to 

manage mosquito populations within individual yards. 

 Despite the long history of Aedes-vectored diseases and the renewed interest caused by 

outbreaks in recent decades, we still lack efficient proven methods to control outbreaks in the 

absence of vaccines.  There is debate over the efficacy of ULV applications of insecticides for 

Aedes control (Bonds, 2012; Bowman et al., 2016; Faraji & Unlu, 2016; Roiz et al., 2018; Wilson 

et al., 2015), despite its acceptance for use against other species, and studies with epidemiological 

endpoints are scarce (Bowman et al., 2016; Wilson et al., 2015).  The effect of smaller-scale 

applications of treatments, similar to what is used by private control companies, on Aedes 

populations has only begun to be quantified (Hollingsworth et al., 2020; Hurst et al., 2012; 

Richards et al., 2017; Trout et al., 2007; Vandusen et al., 2016) and no work has been done on 

their effectiveness against outbreaks.  New technologies such as gene drives and the use of 

Wolbachia have the potential to drastically reduce Aedes-borne disease (Flores & O’Neill, 2018) 

and ongoing trials using Wolbachia show promise (Anders et al., 2018; O’Neill et al., 2018), 

however it is still unknown how sustainable they will be.   
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Used effectively, any of these treatments, or a combination thereof, could potentially eliminate 

Aedes-borne disease in an area, but none are without drawbacks.  The overuse of insecticides, 

either through ULV or barrier sprays, has resulted in the emergence of insecticide resistant Aedes 

in many areas (Dusfour et al., 2019; Moyes et al., 2017; Tancredi et al., 2020).  Likewise, it has 

been suggested that a similar situation could occur following the introduction Wolbachia or gene 

drives (Esvelt et al., 2014) into populations.  On the other hand, there is no simple evolutionary 

response to the physical reduction of larval habitat, but larval habitat reduction is costly, slow, and 

exceptionally difficult for Aedes mosquitoes (World Health Organization, 2009).   

Dissertation Outline 

 In this dissertation, I used a combination of modeling and field experiments to elucidate 

the effect of non-immunizing controls, particularly the use of insecticides, on Aedes population 

and disease dynamics.  Chapter 2 discusses an ordinary differential equation (ODE) modeling 

study where I examined the transient dynamics following the end of non-immunizing controls, 

including the use of insecticides against vector-borne diseases, showing that these controls can 

have unintended consequences when not maintained.  Chapter 3 discusses a field experiment 

conducted in July-Aug 2018 in which I quantified the effects of barrier sprays and larval habitat 

reduction on individual treated yards and untreated neighbors.  The data collected in this 

experiment was then used to estimate parameters for a multi-patch ODE model of Ae. albopictus 

across a heterogenous neighborhood, which is discussed in Chapter 4.  Using this model, I 

examined the effectiveness of different plans for applications and evaluated the added benefit of 

using different amounts of knowledge to target areas with high densities.   Chapter 5 ties together 

the results of these studies. 
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Related work 

 Outside of the work presented in this dissertation, the author has co-authored two peer-

reviewed papers and three other manuscripts at various stages of preparation.  A follow-up to the 

field experiment presented in Chapter 2 examining the effectiveness of three traps for controlling 

Aedes mosquitoes was conducted the following year, for which the author designed and performed 

the statistical analysis (Figurski, et al., in prep).  The author has also worked on projects to correlate 

Aedes population density to land-use variables measured using satellite or aerial observations 

(Reiskind, et al., 2020), which would allow for easy identification of high-density areas, and plans 

for the release of Wolbachia infected Ae. aegypti [Hollingsworth, et al., in prep] and genetically 

engineered mice (Appendix). 
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ABSTRACT 

 The lack of effective vaccines for many endemic diseases often forces policymakers to 

enact control programs that rely on non-immunizing controls, such as vector control, in order to 

reduce the massive burden of these diseases. It is well known that controls can have 

counterintuitive effects, such as the honeymoon effect, in which partially effective controls cause 

not only a greater initial reduction in infection than expected for an infection near its endemic 

equilibrium, but also large outbreaks during control as a result of accumulation of susceptibles. 

Unfortunately, many control measures cannot be maintained indefinitely, and the results of 

cessation are not well understood. Here, we examine the results of stopped or failed non-

immunizing control measures in endemic settings.  By using a mathematical model to compare 

the cumulative number of cases expected with and without the control measures, we show that 

deployment of control can lead to a larger total number of infections, counting from the time that 

control started, than without any control – the divorce effect.  This result is directly related to the 

population-level loss of immunity resulting from non-immunizing controls and is seen in model 

results from a number of settings when non-immunizing controls are used against an infection 

that confers immunity.  Finally, we also examine three control plans for minimizing the 

magnitude of the divorce effect in seasonal infections and show that they are incapable of 

eliminating the divorce effect.  While we do not suggest stopping control programs that rely on 

non-immunizing controls, our results strongly argue that the accumulation of susceptibility 

should be considered before deploying such controls against endemic infections when indefinite 

use of the control is unlikely. We highlight that our results are particularly germane to endemic 

mosquito-borne infections, such as dengue virus, both for routine management involving vector 

control and for field trials of novel control approaches.
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INTRODUCTION 

An estimated 200 million cases of malaria, 390 million cases of dengue fever, and 9 

million cases of measles occurred in 2016 [1,2], representing only a portion of the total impact of 

endemic disease that year.  The burden that this places on local populations, both in terms of 

morbidity and mortality and both direct and indirect economic costs, often pressures policy 

makers to act to suppress these infections.  However, the scientific rationale on which the 

implemented policies are based is not always clear, making it difficult to assess whether the risks 

associated with control have been adequately addressed. 

 Eradication— the permanent reduction of worldwide incidence to zero [3]— is the ideal 

aim of all control programs.  This goal is unrealistic, with only two infections having been 

successfully eradicated to date: smallpox and rinderpest [4]. Often, a more realistic goal for a 

control program is either long-term suppression or local elimination of the infection.  These 

goals hold their own challenges though, as they require long-term or even indefinite control 

programs, which can face budgetary and public support issues, not to mention the potential for 

some controls to fail due to evolution of resistance.  Further, if there is a loss of herd immunity in 

the population due to the control lowering population exposure to the pathogen, there is the 

additional risk that when a control program ends the infection will re-emerge in a post-control 

epidemic and reestablish in the population [4]. 

 Naively, one might imagine that lowering the incidence of infection will have no 

detrimental effects for the population.  However, mathematical modeling has previously revealed 

numerous perverse outcomes of application of ineffective control measures (by which we mean 

ones that do not bring the basic reproductive number, R0, below one) in endemic settings. 

Perhaps the most famous example is the increased age at infection that results when a population 
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is partially vaccinated for rubella, leading to more infections occurring in women of child-

bearing age, where severe complications, such as congenital rubella syndrome, can result when 

pregnant women become infected [5–7].   While this certainly represents a potential downside of 

the control, the population sees a reduction in rubella prevalence.  McLean and Anderson (1988) 

showed that when an ineffective control is used against an endemic infection it often results in an 

initial drop in prevalence to well below the endemic level, the “honeymoon effect”, but this is 

followed by outbreaks that periodically increase prevalence above the endemic level as a 

consequence of a build-up of susceptible individuals. Similarly, in a seasonally-forced setting, 

Pandey and Medlock [9] found that vaccination against dengue virus could result in a transient 

period with periodic outbreaks of larger peak prevalence than occurred before vaccination.  

These last two examples illustrate possible negative side effects of ineffective controls: they can 

cause transient increases in prevalence while still resulting in a decrease in total incidence. 

 In the results above, there is higher incidence than expected, but Okamoto et al.[10] 

described an even more troubling theoretical result while exploring a model of failed or stopped 

combined strategies aimed at controlling dengue virus, e.g. vaccination along with transgenic 

vector control. They observed that when control was only transient the total number of 

infections that occurred, counting from the time that control started, a quantity they called the 

cumulative incidence (CI), could exceed the number of cases that would have been observed had 

no control been deployed. Even in situations where control measures had a significant positive 

impact over a period of years, the outbreaks that ensued following the cessation, or failure, of 

control could lead to an outbreak that was large enough to outweigh the number of cases 

prevented during the control period. 
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 While Okamoto et al. [10] showed that it was possible for transient transgenic controls to 

increase the total number of infections, here we demonstrate that this effect—which we call the 

divorce effect—is not an artifact of very specific complex models, but quite a general 

phenomenon that can occur across a range of models and parameter space when deploying a 

control measure that does not confer immunity. By exploring the dynamics of the divorce effect 

in the setting of several simple models we gain insights that were not obtainable using the 

previous complex models. Conversely, we find that for immunizing controls (e.g. vaccination) 

the divorce effect does not occur, even when the duration of protection is relatively short-lived. 

 We demonstrate the generality of this result for endemic infections by simulating 

cessation of control measures in three commonly-used models for pathogen transmission. Unlike 

the honeymoon effect, the divorce effect occurs for both ineffective and effective controls, 

provided that they are transient. As anticipated, control results in the accumulation of susceptible 

individuals resulting in the potential for a large outbreak following the cessation of control. This 

outbreak is either triggered by infective individuals that remain in the population or by 

reintroduction of infection from outside the control area, and its size increases asymptotically 

towards the size of a virgin-soil epidemic as the length of the control period is increased and herd 

immunity is lost.  Counterintuitively, and comparable to results in Okamoto et al. [10], we see 

that the post-control outbreak often results in there being timeframes over which the cumulative 

incidence of infection since the start of control is higher than would have occurred in the absence 

of control.  Further, these outbreaks are significantly larger than the endemic levels of the 

infection and would likely overwhelm healthcare providers in the area. 

 This paper is organized as follows. We first describe the three models we choose to 

illustrate the divorce effect: a non-seasonal SIR model, a seasonal SIR model, and a host-vector 
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model. We then demonstrate, in each setting, the occurrence of the divorce effect and its 

sensitivity to relevant parameters, namely R0 and the duration and strength of control. Further, 

for the seasonal SIR model, we explore the sensitivity of the strength of the divorce effect on the 

timing of the start and end of the control.  Then for the seasonal SIR and seasonal host-vector 

model we look at three possible strategies for mitigating the divorce effect and show they are 

incapable of eliminating the divorce effect.  A crude analytical approximation for the divorce 

effect and additional models are explored in the Supplemental Information, as is the impact of 

using immunizing controls. 

MODELS 

 To evaluate the magnitude of the Divorce Effect, we simulate the cessation of a short-

term control affecting transmission in three infection systems: a SIR model, a seasonal SIR 

model, and a host-vector SIR model. While these are the only models we discuss in detail here, 

this result can be seen in most models that have a replenishment of the susceptible population, 

including the more general SIRS model, for which host immunity is not life-long, and an age-

structured model with realistic mixing parameters (see Supplemental Information for exploration 

of additional forms of transmission models).  These results are parameterized for a human 

population and mosquito vector, but the results are generalizable to other species. 

SIR Model: 

 We assume a well-mixed population of one million hosts and a non-fatal infection that is 

directly transmitted and confers complete life-long immunity.  The numbers of susceptible, 

infective, and removed individuals are written as S, I and R, respectively. We allow for 

replenishment of the susceptible population by births, but assume the population size is constant 

by taking per-capita birth and death rates, μ, to be equal (this assumption is relaxed in the 
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supplemental information). This results in the standard two-dimensional representation of the 

SIR model, where the number of removed individuals is 𝑅 = 𝑁 − 𝑆 − 𝐼 (Equation 1). 

𝑆̇ = (𝑁 − 𝑆) − 
𝑆(𝐼 + 𝐼𝑏)

𝑁
 (1) 

𝐼̇ = 
𝑆(𝐼 + 𝐼𝑏)

𝑁
− ( + )𝐼 

 For our simulations, we assume parameters resembling a short-lived infection in a human 

population, lasting on average 5 days (average recovery rate, γ = 73/year) and that individuals 

live on average 60 years (μ = .0167/year), allowing the transmission parameter, , to be 

adjusted to achieve the desired value of R0. In order to reseed infection following cessation of 

control and to counter the well-known weakness of infective numbers falling to arbitrarily low 

levels in deterministic transmission models, we follow numerous authors in including a constant 

background force of infection [11,12] in the model. This represents infectious contacts made 

with other populations, and occurs at a rate that is equivalent to there being Ib additional infective 

individuals within our focal population. For our simulations, we take 𝐼𝑏 = 1(sensitivity of our 

results to 𝐼𝑏 can be found in the supplemental information). 

Seasonal SIR Model: 

 For the seasonal SIR model, we allow the transmission parameter to fluctuate seasonally 

(annually) around its mean, β0, taking the form given in Equation 2. Seasonal oscillations in the 

parameter have relative amplitude 𝛽1 = .02 with maxima occurring at integer multiples of 365 

days.  Noting that seasonally forced models are particularly susceptible to having the number of 

infectives fall to unreasonably low numbers between outbreaks [13], we again take 𝐼𝑏 = 2 in the 

background force of infection term. 

(𝑡) = 𝛽0(1 + 
1

cos(2π𝑡)) (2) 
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Host-Vector Model: 

 We model an infection with obligate vector transmission.  As in other models, we assume 

that the host population size is held constant (𝑅 = 𝑁 − 𝑆 − 𝐼), but we allow the vector 

population size to fluctuate—so that, for instance, we can model vector control. For simplicity, 

we only model the female adult vector population and assume density-dependent recruitment 

into the susceptible class (U), with a logistic-type dependence on the total female adult 

population size. Infectious vectors (V) arise from interactions with infected hosts (Equation 3). 

𝑆̇ = (𝑁 − 𝑆) − 
𝑉𝐻

𝑆𝑉

𝑁
 

𝐼̇ = 
𝑉𝐻

𝑆𝑉

𝑁
− ( + )𝐼 (3) 

𝑈̇ = (𝑈 + 𝑉)(𝑟 − 𝑘(𝑈 + 𝑉)) − 
𝐻𝑉

𝑈(𝐼 + 𝐼𝑏)

𝑁
− 𝛿(𝑡)𝑈 

𝑉̇ = 
𝐻𝑉

𝑈(𝐼 + 𝐼𝑏)

𝑁
− 𝛿𝐼 

 We assume that host demography and recovery rates are the same as in the SIR model, 

with a host population of one million individuals.  We assume that the vector lives on average 10 

days ( = 36.5/year), the growth constant (r) and density dependence parameter (k) are 

parameterized as in Okamoto et al. (2016): 𝑟 = 304.775/year and 𝑘 =

1.341x10−7/(vector*year), resulting in an equilibrium vector population of 2 million individuals.  

The transmission parameter from host to vector (HV) is assumed to be 109.5/year and the 

parameter for vector to host (VH) is changed to produce the desired R0.  We again assume a 

background force of infection (with 𝐼𝑏 = 2), representing reintroduction of infection from 

outside our focal population. 
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 Seasonality plays a large role in vector-borne infections and affects many aspects of the 

infection and its vector.  Temperature affects breeding rates, larval development, and death rates 

of the vector, the extrinsic incubation period and transmissibility of the infection itself, and host 

encounter rates, while precipitation can affect the availability of appropriate habitat and 

encounter rates [14–16].  However, most of these add a level of model complexity which is 

unnecessary for this study, so we choose to use a simple forcing term for mosquito recruitment 

that fluctuates seasonally with relative magnitude rs (rs = 0.02) about its baseline (𝑟0 =

304.775 /year) (Equation 4). 

𝑟(𝑡) = 𝑟0(1 + 𝑟𝑠 cos(2π𝑡)) (4) 

 

Control: 

 We model a control that is applied instantaneously and consistently from time t0 (which, 

for simplicity, we usually take to be equal to zero) to time tend and is instantaneously removed at 

the end of the control period. In the SIR and seasonal SIR models, control reduces the 

transmission rate by some proportion, , and, in the host vector model, causes a proportional 

increase, , in the vector mortality rate.  This results in the transmission parameter given in 

Equation 5 for directly transmitted infections and the vector death rate given in Equation 6 for 

the vector-borne infections. 

𝛽(𝑡) = {
(1 − )𝛽0

𝛽0
 
𝑡0 < 𝑡 < 𝑡𝑒𝑛𝑑

otherwise
(5) 

 

𝛿(𝑡) = {
(1 + )0

0
    

𝑡0 < 𝑡 < 𝑡𝑒𝑛𝑑

otherwise
(6) 
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While we only look at these control measures in the main text, other controls (such as an increase 

in the recovery rate, γ) are explored in the Supplemental Information (Figure S2.2), and give 

similar results. 

 

Measuring Effectiveness: 

 There are a number of measures that can be used to quantify the effectiveness of a 

control. We want to characterize the total number of cases that occur from the start of control 

until a particular point in time, a quantity we call the cumulative incidence (CI). For a directly 

transmitted infection, this is calculated as follows 

 

𝐶𝐼(𝑡) = ∫
β(τ)𝑆(𝜏)𝐼(𝜏)

𝑁
𝑑𝜏

𝑡

𝑡0

, (7) 

 

i.e. by integrating the transmission term over the time interval from the start of control until the 

time, t, of interest. This quantity could be calculated both in the presence of control and in the 

baseline, no-control, setting; we distinguish between these two by labeling quantities (e.g. state 

variables) in the latter case with a subscript B to denote baseline. 

 One commonly-used measure of effectiveness is the number of cases averted by control 

(CA), CIB(t) - CI(t). This has the disadvantage (particularly in terms of graphical depiction) that 

it can become arbitrarily large as t increases. Consequently, some authors choose to utilize a 

relative measure of cases averted, dividing by the baseline cumulative incidence (see, for 

instance, the work of Hladish et al. [17]). We instead follow our earlier work and use the relative 

cumulative incidence (RCI) measure employed by Okamoto et al. [10], calculating the 
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cumulative incidence of the model with the control program relative to the cumulative incidence 

of the model without the control program (Equation 8). 

 

𝑅𝐶𝐼(𝑡) =
∫ 𝛽(𝜏)𝑆(𝜏)𝐼(𝜏)𝑑𝜏

𝑡

𝑡0

∫ 𝑆𝐵(𝜏)𝐼𝐵(𝜏)𝑑𝜏
𝑡

𝑡0

. (8) 

 

RCI(t) values above one imply that the control measure has resulted in an increase in the total 

number of cases compared to the baseline.  Importantly, as time becomes larger, RCI becomes 

less sensitive to outbreaks in the system. For a transient control, RCI will approach 1 as t 

becomes larger. 

 We see that the relative cases averted measure employed by Hladish et al. [15] is simply 

1-RCI(t). Both relative measures have properties that make them attractive for graphical 

depiction although it should be borne in mind that both involve a loss of information on the 

actual number of cases averted. For example, an RCI of 1.1 after one year is a much smaller 

increase in total cases than an RCI of 1.1 after 10 years, and an RCI of just below one after many 

years can represent a large reduction in total incidence.  In cases where this information is 

pertinent, it may be more appropriate to use non-relative measures such as cases averted. The 

choice of measure does not impact the occurrence of the divorce effect; figures that show cases 

averted are included in the Supplemental Information (Figure S2.1). 

 Analogous expressions for CI and RCI can be written for the host-vector model using the 

appropriate transmission terms. 
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RESULTS 

SIR Model 

 Simulations show the successful suppression of infection following the implementation 

of a control which reduces the transmission parameter, , in the population.  With infection at 

endemic equilibrium, the honeymoon effect [8] states that even a modest reduction in the 

transmission parameter will have a large effect on the incidence of the infection due to the 

effective reproductive number, Rt, the expected number of new infections each infectious 

individual causes, being one.  After the control is stopped, the incidence of the infection remains 

low for some time as the number of infective individuals builds from very low numbers (Figure 

2.1(a), curve).  However, once control ends Rt immediately rises above one and continues to 

increase while prevalence is low, due to the buildup of the susceptible population (plots of Rt and 

S(t) are provided in the supplemental information: see Figure S2.3).  This increased Rt eventually 

drives a large outbreak, quickly depleting the susceptible population, at which point incidence 

(Figure 2.1(a), black curve), and Rt, again fall to low numbers. 

 To evaluate the success of the control, we examine the RCI in the period following 

introduction of control and see that during and immediately following the control period, when 

incidence is low, the RCI decreases towards 0, suggesting a successful control program.  

However, once the post-control outbreak begins, RCI increases rapidly resulting in the divorce 

effect (RCI>1) before dropping back below one once the epidemic begins to wane and incidence 

falls below endemic levels (Figure 2.1(a)).  During the period where RCI>1, lasting 

approximately 2 years in our example, the control has not only failed to decrease the total 

incidence of infection but has resulted in an increase in total incidence, the divorce effect.  
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Following this initial outbreak and trough, RCI continues to oscillate around one, and approaches 

one in the long run (see Figure S2.4). 

 Exploring values of R0 and the duration and strength of control shows that the divorce 

effect is present over a wide region of parameter space. Figure 2.1(b) shows the magnitude of the 

divorce effect, quantified by the maximum RCI seen, as a function of R0 and duration of control 

for a perfect control measure ( = 0 during the control period). Perfect control was employed 

here to eliminate any confounding effects from the honeymoon effect that could occur during an 

imperfect control.  We find that for the most biologically relevant area of parameter space 

(R0<20, control lasting less than 20 yrs) the divorce effect always occurs and will result in a 20-

60% increase in cumulative incidence (RCI=1.2-1.6) at its peak.  However, we also find that it is 

possible to avoid the divorce effect if controls are maintained long enough.  For infections with a 

high R0, this requires maintaining the control for decades, and the length of time needed grows as 

R0 is decreased.  The non-monotonic relationship between the magnitude of the divorce effect 

and the length of the control seen here suggests that a control program should either be 

discontinued immediately, if R0 is small, or continued as long as possible to avoid the divorce 

effect (Figure 2.1(b); see also Figure S2.5 in Supplemental Information). 

 Relaxing our assumption of a completely effective control and focusing on a fixed R0 

(R0=5, Figure 2.1(c)), we see that the relationship between the magnitude of the divorce effect 

and the length of the control period varies with the strength of the control.  A steep edge-like 

pattern is seen in Figure 2.1c when control is ineffective but carried out for a long period of time, 

a consequence of the honeymoon effect.  For populations at endemic equilibrium, the 

honeymoon effect means that any reduction in transmission will be sufficient to significantly 

reduce transmission for a period of time.  For controls that are relatively short lived, here 
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approximately 5 years, the control does not outlast the honeymoon period, resulting in the 

magnitude of the divorce effect being relatively insensitive to the effectiveness of the control in 

this region of parameter space.  How the interaction between the effectiveness of control and R0 

affects the magnitude of the divorce effect is explored in the supplemental information (Figure 

S2.6). 

Seasonal SIR Model 

 Temporary control measures in the seasonal SIR model show many of the same dynamics 

as in the non-seasonal model, namely that a successful control is followed by a period of low 

incidence and eventually a post-control outbreak leading to a divorce effect (Figure 2.2(a)) 

before settling back into regular seasonal outbreaks (Figure S2.7).  However, the timing and size 

of the post-control epidemic, and thus the magnitude of the divorce effect, depend not only on R0 

and the length of the control but also the timing of both the onset and end of the control (Figures 

2.2(b) and 2.2(c)).  This leads to a highly nonlinear dependence of the magnitude of the divorce 

effect on R0 and the duration of control (Figure 2.2(b)).  However, the presence of ranges of 

parameter space with smaller magnitudes of the Divorce Effect at regular intervals could allow 

policy makers to determine optimal times to stop control.  These effects become more apparent 

with an increase in seasonality (Figure S2.8).  As seasonality increases, the differences due to 

timing become more pronounced, resulting in more potential for mitigating the divorce effect 

with a properly timed treatment.  Conversely, this also means a larger divorce effect will be seen 

with a poorly timed treatment (Figure S2.8). 

 The oscillatory nature of the relationship between the maximum RCI and R0 (Figure 

2.2(b)) implies a relationship between the timing of the control period and the severity of the 

divorce effect.  While the magnitude is only highly sensitive to the start time for very short 
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control periods, lasting around a year, it is highly sensitive to the end time (Figure 2.2(c)).  This 

means that controls of similar lengths can have significantly different outcomes depending on 

their timing, e.g. a 1 year control ending day 700 results in a maximum RCI around 1.4 while a 

control of the same length ending day 515 results in a maximum RCI near 1.7.  This is a direct 

result of the seasonal forcing function and delaying the outbreak until a period in which R0 is 

larger, similar to results seen when controls are used against epidemics in seasonal settings 

[18,19]. Regardless of start time, the optimal end time occurs shortly after the peak in the 

transmission parameter, β(𝑡), (days 750 and 1155 in Figure 2.2(c)), suggesting this would be the 

best time to end control programs. 

Host-Vector Model 

 The non-seasonal host-vector model has broadly similar dynamics to the non-seasonal 

SIR model in terms of the divorce effect (Figures S2.10 and S2.11), so here we focus instead on 

the seasonal host-vector model.  Following one year of insecticide treatment that reduces the 

average mosquito lifespan by a half (i.e. increases the mosquito death rate by 100%,  = 1) the 

infection is suppressed and there is no seasonal outbreak for the next two years (Figure 2.3).  A 

major outbreak, with approximately eight times the peak prevalence of the pre-control seasonal 

outbreaks, occurs in the third year and results in a maximum RCI of around 1.50, before the 

epidemic fades and incidence again returns to low levels.  The size of this outbreak would almost 

certainly risk overwhelming even the most well-funded medical services. RCI then remains 

above 1 until year 7. The population continues to see large periodic outbreaks, each bringing RCI 

back above 1, for decades until the endemic equilibrium is reached again (Figure S2.12). 
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Mitigating the Divorce Effect 

 It is apparent from earlier results (e.g. Figure 2.1(b)) that avoiding the divorce effect in a 

non-seasonal setting is only possible with a non-immunizing control by maintaining suppression 

for decades, due to the inevitable build-up of susceptible individuals.  Therefore, the goal in 

these situations should be to maintain the control as long as possible or until a vaccine becomes 

available, and we focus instead on the seasonal SIR and host-vector models.  In this section, we 

look at three different treatment plans for deploying a set amount of treatment, twelve one-month 

treatments, and their ability to mitigate the divorce effect.  The first relies on annual controls 

lasting one month when R0 is at its maximum, the second has a month-long control applied in 

response to the prevalence reaching some set level—which we might imagine corresponding to 

an outbreak becoming detectable or reaching a sufficient level to cause concern to local 

authorities—that we take here to be when two hundred individuals out of a million are infective, 

and the third chooses when to implement a month-long control based on minimizing the peak 

RCI.  For comparison, all three use 12 total months of control. 

 With annual monthly control for a directly transmitted seasonal infection, the population 

sees a significant initial reduction in prevalence.  However, as predicted by the honeymoon 

effect, the repeated use of controls results in a diminished effect on the prevalence and seasonal 

outbreaks begin to occur between control periods.  The peak prevalence of these outbreaks 

quickly grows to be significantly larger than the seasonal outbreaks before the control program 

was begun, however they are blunted by the next control period before RCI rises above one.  

Once the program is ended, however, a post-control outbreak quickly brings RCI above one 

(Figure 2.4(a)). 
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 The reactive control has a similar effect following the initial control period, however it 

results in ever more rapid need for control, exhausting all 12 months of treatment in the first four 

years for both the directly transmitted infection (Figure 2.4(b)).  We see that while this results in 

a lower RCI during the control program, it results in an even larger post-control outbreak and a 

larger maximum RCI for both transmission pathways. 

 Intuitively, Figure 2.2(c) suggests choosing a time period to implement the control that 

will minimize the divorce effect.  To do this, we implement a third method which optimally 

chooses the time at which to begin the next control period.  For this, we simulate the first one 

month control period, beginning at time 0.  Then we run simulations with the next one month 

control beginning on all possible days over the next 365 days after the control ends, choosing the 

day that results in the lowest maximum RCI over the next decade, simulating through that 

control period, and repeating.  This plan results in implementing the first three control periods in 

rapid succession and the remainder after the peak of an outbreak, when the control will have the 

least effect on transmission (Figure 2.4(c)), minimizing the magnitude of the divorce effect albeit 

at the cost of not providing significant protection against the infection.  This result, along with 

other earlier results, suggests that the divorce effect is unavoidable and the potential for a divorce 

effect will continue to grow in magnitude unless the control is maintained for decades, regardless 

of the timing of the treatments.  While it may not be possible to eliminate the divorce effect for 

relatively short controls, it may be possible to extend programs without worsening the divorce 

effect and to minimize the divorce effect by carefully choosing the timing of the end of the 

control program once cessation becomes necessary. 

 In the case of host-vector transmission, the yearly control successfully suppresses the 

infection for the first 1.5 years, however the population begins to experience outbreaks during 
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what was traditionally the off-season. After the control program is ended, the population enters a 

period of larger outbreaks occurring every three years (Figure S2.15(a)).  The reactive control 

sees a similar result as the directly transmitted disease, with all twelve treatments used in the first 

4 years (Figure S2.15(b)).  For the third method, the optimal plan was to wait the maximum 

amount of time to deploy the control (Figure S2.15(c)).  This is likely due to the peak of on 

outbreak not occurring within a year of the end of treatment in the seasonal host-vector model. 

Additional Results 

 Results for additional models, along with an analytical approximation to the magnitude of 

the divorce effect are included in the supplemental information. 

DISCUSSION 

 It has long been appreciated that non-immunizing control measures deployed against 

endemic infections will result in a large short-term reduction in prevalence but will lead to a 

reduction in herd immunity, leaving the population at risk of large outbreaks after the cessation 

of control. Here we have shown, in quite general settings, that these outbreaks can be so large as 

to increase, counting from the time that control started, the total incidence of infection above 

what would have occurred if no control had been used—a result we call the divorce effect.  This 

represents a failure for control of the worst kind, namely a control that increases the total 

incidence of the infection.  Unfortunately, many commonly used disease control plans rely on 

temporary non-immunizing controls, meaning that populations may be left at risk of the divorce 

effect once the control measure is ended. 

 Controls that do not confer immunity—including isolation, use of drugs as a prophylaxis 

or to shorten duration of infectiousness or behavioral changes such as social distancing—are 

often deployed in epidemic settings, particularly for new pathogens for which a vaccine is 
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unavailable, but may also be used to blunt seasonal outbreaks of endemic diseases.   In these 

endemic settings, we have shown that it is important to weigh any potential benefit from these 

controls against the risk of post-control outbreaks and the divorce effect.  While there are 

timeframes over which a temporary non-immunizing control has benefits, the severity of the 

post-control outbreak that results in the divorce effect will risk overwhelming even well-

maintained healthcare systems. 

 Vector-borne infections represent the most common situation in which non-immunizing 

controls are regularly used against endemic diseases, e.g. insecticide spraying to combat seasonal 

dengue outbreaks.  The honeymoon effect predicts that insecticides can provide short-term 

benefits in endemic settings but that the additional benefit of continued spraying will decrease 

over time due to the accumulation of susceptibles (i.e. depletion of herd immunity) that results. 

Indeed, Hladish et al. [17] saw precisely these effects using a detailed agent-based model for 

dengue control that employs indoor residual spraying. Cessation of spraying will be expected to 

lead to large post-control outbreaks: again, Hladish et al.’s model exhibited annualized incidence 

of 400% compared to the uncontrolled baseline setting in certain years.  Here, we examine the 

divorce effect directly and show that they are not specific to a host-vector model and that if the 

control is not maintained indefinitely, or at least for a few decades, the damage of the divorce 

effect can quickly outweigh the short-term benefits.  Further, programs implementing 

insecticides may be intended to be indefinite, but the evolutionary pressure imposed can result in 

the rapid and unpredictable evolution of resistance. Without proper monitoring, this could result 

in an increase in total incidence due to the divorce effect before officials realize that resistance 

has developed.  While insecticides, and other non-immunizing controls, will, and should, 
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continue to play an important role in epidemic settings, where herd immunity is negligible, the 

results of this study raise important questions about their use in combating endemic infections. 

 In some instances, control measures are deliberately transient in nature, such as field 

trials for assessing the impact of proposed novel control methods, e.g. a review of field trials of 

dengue vector control showed they lasted between 5 months and 10 years [20]. Multiple year 

field trials such as these can result in considerable build-up of the susceptible population, 

meaning consideration needs to be given to the consequences of this accumulation and the 

potential for large outbreaks to occur in the wake of cessation of the trial. If our results are 

validated, they must be factored not only into the design of such trials but also into the informed 

consent process for trial participation, with participants made aware of the risk of the divorce 

effect and plans put in place to provide a reasonable level of protection during and following the 

study.  As we have shown, these outbreaks can occur months or even many years later, and while 

disease incidence would be observed closely during the trial, our results argue that monitoring 

should continue for an appropriate length of time following the cessation of control. 

Furthermore, we emphasize that the epidemiological consequences of the honeymoon effect—

specifically the relative ease of reducing incidence for an infection near endemic equilibrium—

must be kept in mind when interpreting the results of such trials. Together, these dynamical 

effects argue that susceptibility of the population to infection should be monitored together with 

incidence to fully assess the impact and effectiveness of the control. 

 Additional concerns are raised when an endemic and an epidemic infection share the 

same transmission pathway (e.g. Aedes aegypti vectoring both dengue and Zika). Emergency 

control against the epidemic infection also impacts the endemic infection, leading to the potential 

for the divorce effect to occur in the latter if the control is ceased once the epidemic has 
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subsided. It may be that policy makers have to choose to allow an epidemic of a highly 

publicized, but low risk, epidemic in order to maintain immunity levels of another lower profile, 

but more dangerous, disease.  On the other hand, if the risk due to the epidemic is sufficiently 

high, it may still be advantageous to use the control, however the risks need to be carefully 

compared and an informed decision, that accounts for the divorce effect, needs to be made. 

 While transient non-immunizing controls are common and provide opportunities to 

observe the divorce effect, researchers tend to focus on prevalence or incidence over short 

periods of time and not cumulative measures such as CI or relative measures such as RCI or CA, 

which would expose the divorce effect.  Even when relative measures are used, such as Hladish 

et al. [17], the time frame over which incidence is compared can have a drastic effect on the 

interpretation of the result.  The divorce effect is an easily missed phenomenon, even when 

examining models that lack much of the real-world complexity, but real-world data comes with a 

myriad of other problems.  Often the divorce effect may occur when the system is poorly 

monitored, as with field trials and unintentional control, in systems that, like dengue, have large 

year-to-year variation, or in systems where the failure is associated with other confounding 

socio-economic events such as war or natural disaster, resulting in data that is either scarce or 

difficult to interpret.  The divorce effect may become more apparent in coming years, though, as 

mosquito control is lessened following the end of the Zika epidemic, allowing for a rebound in 

dengue in areas such as South America, and as insecticide resistance problems continue to grow. 

 Careful thought should be given to whether or not it is appropriate to begin new programs 

that rely on non-immunizing controls in endemic settings.  This is an inherently complicated 

decision that must take into account numerous factors, both scientific and sociopolitical, but, in 

light of our results, policymakers should carefully weigh the risks of the divorce effect against 
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other factors, e.g. imminent approval of a new vaccine or political pressure, before implementing 

disease management plans that rely on non-immunizing controls.  Further, it is important that 

when non-immunizing controls are included in these management plans that they are not 

considered possible solutions but instead stop-gaps, and emphasis is placed on the development 

of vaccination as opposed to the indefinite continuation of the program. 

 Currently, control of endemic diseases worldwide, especially vector-borne diseases, relies 

heavily on non-immunizing controls such as insecticide.  Policy makers should begin developing 

exit plans for these disease management programs —guidelines for safely ending the program 

when it becomes clear that indefinite maintenance is unlikely, which should be designed to 

minimize the impact of the divorce effect.  In this paper, we have shown three possible designs 

for exit plans that could minimize the divorce effect.  However, none of these designs were 

capable of eliminating the divorce effect.  Our results suggest there is an inherent cost associated 

with the loss of immunity resulting from these programs. 
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FIGURES 

 

 

 

Figure 2.1:  The divorce effect in the SIR model. (a) Typical time-series showing the 

divorce effect.  Beginning at time zero, a year-long 50% reduction in the transmission parameter 

of an endemic infection (R0 = 5, β = 365 /year, γ = 73 /year) reduces prevalence of the 

infection to near zero for the length of the control, where it remains until time 1.5 yrs, at which 

point a large post-control outbreak occurs.  RCI falls towards zero as prevalence remains low, 

but the post-control outbreak is large enough to bring RCI well above 1 (peak RCI is approx. 

1.4). (b) Magnitude of divorce effect in terms of relative cumulative incidence (RCI).  

Maximum RCI is found as the highest value of RCI observed within 25 yrs following a 100% 

effective control of an infection with 1<R0<20 and lasting between 1 month and 35 years. 

RCI>1 indicates the divorce effect and we see that the divorce effect occurs across a large 

portion of the parameter space, and ubiquitously for controls lasting less than 20 years. β is 

varied to attain the desired R0, all other parameters as in (a).  (c) Maximum RCI for a given 

effectiveness and duration of control.  The maximum RCI is found as the maximum observed 

RCI within 25 yrs after the end of a control that is between 0% and 100% effective and lasts 

between 1 month and 20 years (R0=5).  The ridge between areas of high and low maximum RCI 

results from ineffective controls being maintained long enough for outbreaks due to the 

honeymoon effect deplenishing the population of susceptible individuals before the control 

periods end.  All other parameters as in (a). 
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Figure 2.2:  The divorce effect in the seasonal SIR model. (a) Typical time-series showing 

the divorce effect.  Beginning at time zero, when the transmission parameter is at its maximum, 

a year-long 90% reduction in the transmission parameter of an endemic infection (R0 = 5, β0 =

365 /year, β1 = .02, γ = 73/year) is implemented at the beginning of a seasonal outbreak and 

reduces prevalence of the infection to near zero for the length of the control.  Following the end 

of the control, a large outbreak, many times the size of the regular seasonal outbreaks, occurs 

during the next season.  RCI falls towards zero as prevalence remains low while the control is in 

effect and rises above 1 during the large outbreak the following year (Maximum RCI = 1.2). (b) 

Magnitude of divorce effect in terms of relative cumulative incidence (RCI).  Maximum RCI 

is found as the highest value of RCI observed within 25 yrs following a 100% effective control 

of an infection with 1<R0<20 and lasting between 1 month and 35 years. RCI>1 indicates the 

divorce effect and we see that the divorce effect occurs in most of the parameter space.  β0 is 

varied to attain the desired R0, with all other parameters as in (a).  (c) Effect of timing on the 

magnitude of the divorce effect.  Maximum RCI is the highest RCI observed within 25 yrs 

following a 100% effective control of an infection with R0 = 10 (𝛽 = 730 /year, all other 

parameters as in (a)) beginning and ending on specified days.  Dashed lines represent controls 

lasting either 1, 2, or 3 years.  Unlike the non-seasonal SIR model (Figure 2.1), the magnitude of 

the divorce effect is not solely dependent on R0 and the length of the control. Maximum RCI is 

most sensitive to the day the control is ended, moderately sensitive to the day it is started, and 

only slightly sensitive to the length of the control.  This is due to the timing of the end of the 

control determining the timing of the outbreak.  We also see that continuing the control for 

another year often has little impact on the magnitude of the divorce effect. 
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Figure 2.3:  Divorce Effect in a Seasonal Host-Vector model.  Control is shown in a seasonal 

(rs = .02) host-vector model with R0 = 5.  Beginning at time zero, a control is implemented that 

increases the vector mortality rate by 100% (corresponding to a 50% drop in vector life 

expectancy).  This results in a reduction in prevalence (black curve) of the infection to near zero 

during the control period, where it remains until roughly time 3 yrs, at which point a large post-

control outbreak occurs.  RCI (red curve) falls towards zero during the control period and while 

prevalence remains low, but the post-control outbreak is large enough to bring RCI above 1 

(peak of approx. 1.49). 
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Figure 2.4:  Suggested techniques for mitigating the divorce effect with seasonal 

transmission. We consider an endemic disease, parameterized as in Figure 2.2(a). In all cases, 

twelve 1/12 yr. controls are used, to be consistent with the 1 yr. controls used in other figures, 

reducing the transmission parameter by 90% (ϵ =  .9). (a) Pulsed control for Seasonal SIR 

model.  Control occurs yearly at a fixed time (when R0 is highest) for a fixed time (1/12 yr.) to 

control an endemic disease (parameterized as in Figure 2.2(a)).  The control is effective at 

stopping the outbreak the first year, but seasonal outbreaks in subsequent years are larger, driven 

by an increasing population of susceptible individuals.  Stopping the control program still results 

in a large post-control outbreak and a divorce effect. (b) Reactive Control for Seasonal SIR.  A 

fixed length (1/12 yr.) control is implemented to control an endemic disease (parameterized as in 

Figure 2.2(a)) once prevalence rises above a threshold (200 individuals in a population of 1 

million).  This stops the large early season outbreaks seen in the pulsed control, however the 

frequency of treatment increases as the susceptible population grows.  Stopping the control 

program results in a large outbreak and divorce effect.  (c) Informed Control in seasonal SIR 

model.  The first control period occurs at time 0.  The beginning of the next control period is 

decided at the end of the previous control period, and is the day (allowed to be up to a maximum 

of 365 days later) that will result in the smallest divorce effect if control was stopped after that 

period.  This plan finds that it is optimal to perform the first few treatments relatively quickly, 

then to perform subsequent treatments during the peak in prevalence.  We see that this is capable 

of nearly eliminating the Divorce Effect, but there is only a minimal benefit to the control, with 

large yearly outbreaks. 
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SUPPLEMENTAL INFORMATION 

SIR Model with Changing Population Size 

 We assume a population similar to the SIR model in the main text, with the exception 

that the per capita birth and death rate are allowed to differ.  We have 

 

𝑆̇ = 𝑏𝑁 − 𝜇𝑆 − 𝛽
𝑆(𝐼 + 𝐼𝑏)

𝑁
 

𝐼̇ = 
𝑆(𝐼 + 𝐼𝑏)

𝑁
− ( + )𝐼 

𝑁̇ = (𝑏 − μ)𝑁. 

(S1) 

   

Here b is the per capita birth rate and m is the per capita death rate.  For illustration, we take two 

values of b, 𝑏 = 1.25μ and 𝑏 = .75μ, corresponding to 25% population growth or reduction per 

year.  While this is an extreme case, we expect that any effect on the magnitude of the divorce 

effect would most likely be seen in the extremes.  Since the endemic equilibrium is not well 

defined for a changing population, we simulate the population for a thousand years before 

starting control.  Initial values of N were chosen so that at the end of the thousand years, the 

population size was 1 × 106.  We see that the growth (Figure S2.16a), or decline (Figure 

S2.16b), of the population does not eliminate the divorce effect, but does affect the magnitude 

and timing of the post-control outbreak, with a larger and earlier post-control outbreak in the 

growing population due to a larger number of susceptible individuals being born. 

 

SIR Model with Vaccination 

 To model vaccination against infection, we assume that some portion, 𝑣, of births enter 

the recovered class instead of the susceptible class, while all other dynamics proceed similarly to 

the SIR model (Equations S2.2).  For illustration, we take 𝑣 = .5 and assume the vaccination 

campaign lasts one year before being discontinued.  We see that during the control period the 

proportion of the population that is infective falls significantly more slowly than with 

transmission reduction (Figure S2.17).  Following the end of control, we see a series of post-

control outbreaks that bring the infective proportion of the population above endemic levels, but 

they are not large enough to bring RCI above 1.  This lack of divorce effect is due directly to the 

maintenance of population level immunity due to the vaccination, which keeps the susceptible 
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population from being able to build sufficiently.  It is important to note that, as shown in 

Okamoto et al. [1], it is possible to see the divorce effect in combined controls that involve both 

immunizing and non-immunizing controls. 

 

𝑆̇ = 𝑏(1 − 𝑣)(𝑁 − 𝑆) − 𝛽
𝑆(𝐼 + 𝐼𝑏)

𝑁
 

𝐼̇ = 
𝑆(𝐼 + 𝐼𝑏)

𝑁
− ( + )𝐼 

(S2) 

   

SIRS Model 

 We assume a well-mixed population with parameters defined as in the main text.  

However, instead of permanent immunity, we assume that immunity is lost at per-capita rate 𝑙, 

such that the average length of immunity following an infection is 1/l (Equation S2.3).  For the 

sake of illustration, 𝑙 = 1/10 year−1, corresponding to an average of 10 years of immunity 

following recovery. 

 

𝑆̇ = (𝑁 − 𝑆) − 
𝑆(𝐼 + 𝐼𝑏)

𝑁
 + 𝑙𝑅  

𝐼̇ = 
𝑆(𝐼 + 𝐼𝑏)

𝑁
− ( + )𝐼 

𝑅̇ = 𝛾𝐼 − (𝜇 + 𝑙)𝑅 

(S3) 

   

 Similar to the SIR model, we see suppression of the infection for a period of time during 

and immediately following the control (Figure S2.18).  A large post-control outbreak is seen 

about 3 months after the end of treatment.  This outbreak is sufficiently large to bring the RCI 

above 1, to about 1.45, before the outbreak subsides and prevalence and RCI fall again.  As the 

immune period following infection shrinks towards zero, the SIRS model approaches the 

behavior of an SIS model. This results in the magnitude of the divorce effect being reduced as 

the immune period, and the population of immune individuals, becomes smaller. 

Within-Host Virus Dynamics (HIV) Model 

 We examine the divorce effect in the model for the within-host dynamics of HIV 

presented in Rong and Perelson [2], with all equations and parameters taken directly from their 

text (Equations 4 and Table 1).  Here, T stands for the concentration of target cells, L for latently 

infected cells, T* for actively infected cells, VI for infectious virions, and VNI for non-infectious 
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(defective) virions.  Parameter names and values are given in Table 1. Here, cumulative 

incidence is in terms of actively infectious T cells.  We see that the divorce effect does occur 

following a 25 day treatment that has both a protease inhibitor and reverse transcriptase inhibitor 

with efficacies of 50% (Figure S2.19). 

 

𝑇̇ = λ − 𝑑𝑇𝑇 − (1 − ϵ𝑅𝑇)𝑘𝑉𝐼𝑇 

𝐿̇ = α𝐿(1 − ϵ𝑅𝑇)𝑘𝑉𝐼𝑇 − 𝑑𝐿𝐿 − 𝑎𝐿 

𝑇∗̇ = (1 − α𝐿)(1 − ϵ𝑅𝑇) − δ𝑇∗ + α𝐿 

𝑉𝐼̇ = (1 − ϵ𝑃𝐼)𝑁δ𝑇∗ − 𝑐𝑉𝐼 

𝑉𝑁𝐼
̇ = ϵ𝑃𝐼𝑁δ𝑇∗ − 𝑐𝑉𝑁𝐼 

(S4) 

 

Age-structured Model with Realistic Mixing 

 Here we show the presence of the divorce effect in an age-structured model with realistic 

mixing between groups.  This model, and code, is from a tutorial given by Aaron King and Helen 

Wearing [3].  We assume that there 30 age-groups, with ages 0-19 occurring as single year age 

groups, 20-75 as 5 year age groups.  Transitions between compartments occur according to 

Equation S5, note that we use ∘ to denote elementwise multiplication. In which A is a matrix 

describing transitions between age classes, e.g. aging and deaths, b is a matrix describing births 

with a constant birth rate as its first element and zeros everywhere else. New-born susceptibles 

enter the youngest age class at a rate of b = 100/year, movement between the age classes takes on 

average 1 year for ages 0-20, 5 years for ages 21-75, and death occurs at a constant rate in the 

last age class, occurring on average after 15 years.  𝑆, 𝐼, and 𝑅 are vectors containing the 

numbers of individuals of each age class that are susceptible, infective, or immune, respectively. 

β is a matrix containing the transmission parameters for infection occurring within and between 

age classes, and is constructed by taking a matrix of age-specific contact rates and multiplying it 

by a constant rate of infection per contact.  This contact network is based on [4] and freely 

available online, and the constant rate of infection per contact chosen so that 𝑅0 = 5.  γ is a 

vector containing the rate of recovery of individuals in each age class, but is assumed to be 

constant across all age classes and is the same as the main text (γ = 73 /year).  Control works, 

as in the SIR model, by reducing the transmission parameter by 50% and lasts one year. 
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𝑆̇ = −β𝐼 ∘ 𝑆 + 𝐴𝑆 + b 

𝐼̇ = β𝐼 ∘ 𝑆 + 𝐴𝐼 − γ𝐼 

𝑅̇ = 𝐴𝑅 + γ𝐼 

(S5) 

 We see that, similar to the non-structured SIR model, there is a period of time, lasting 

about 4 years, in which RCI is falling, before a large outbreak brings RCI above 1 (Figure 

S2.20).  Importantly, while the magnitude of the effect varies across groups, due to mixing, its 

presence does not. 

 

ANALYTICAL APPROXIMATION 

 Here we describe a crude analytical approximation for the magnitude of the divorce 

effect in the simplest setting of a non-seasonal directly transmitted infection (i.e. the SIR model), 

and based on the well-known analysis of the size of an outbreak in a closed population [5,6]. We 

assume that the post-control outbreak occurs immediately following the end of the control period 

and that the outbreak happens instantaneously.  Further, we assume that control is perfect, so that 

there are no new cases of infection during the control period, and that all individuals that are 

infective before the control begins recover by the end of the control period. When control begins, 

the population can be subdivided into individuals that are susceptible and those that have 

previously been exposed and will be immune when the control is ended. Assuming R0>1,  the 

numbers in these two groups are determined by the endemic equilibrium, where 𝑆∗ = 𝑁 𝑅0⁄  and 

𝑅∗ = 𝑁(1 − 1 𝑅0⁄ ).  The number in the latter group decays exponentially due to mortality and 

the number of susceptibles grows at the same rate because of births (noting that the population 

size is taken to be constant).  This gives the number of susceptible individuals at the time control 

ends, tend, as 

 𝑆 = 𝑁 (
1

𝑅0
+ (1 −

1

𝑅0
) (1 − 𝑒−𝜇𝑡𝑒𝑛𝑑)) (S6) 

   

 Once the control is ended, the infection is assumed to be reintroduced immediately by a 

small number of infectious individuals and occurs instantaneously, meaning that demography 

does not affect the final outbreak size.  This means that the post-control outbreak size, Z, can be 

found by solving the familiar transcendental equation: 
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 𝑍 = 𝑆 (1 − 𝑒−𝑅0(
𝑍
𝑁

)). (S7) 

   

The post-control outbreak size is then compared to the cumulative number of infections that 

would be expected in the endemic case to find the predicted RCI (Equation S8). 

 
RCI =

𝑍

𝜇𝑁 (1 −
1

𝑅0
) 𝑡

 
(S8) 

   

Results of Analytical Approximation 

 When compared to the simulations, our analytical approximation overestimates the 

magnitude of the divorce effect (Figure S2.21(a)).  This is in direct contrast to simulations where 

the outbreak requires a long accumulation of infectives, often happens years later, and takes 

some time to occur.  This approximation performs best in the most biologically relevant portion 

of parameter space (R0<10 and control lasting less than 20 years), where the error is generally 

below 20% (Figure S2.21(b)), however it performs very poorly for extremely short durations of 

control. 

 

Sensitivity to Background Force of Infection 

 Deterministic compartmental epidemiological models suffer from the well-known 

weakness that the numbers of infectives can fall to arbitrarily low levels. To combat this, a 

background force of infection is often included in such models, representing infections due to 

contact with populations outside the focal population [7]. In our model, this process is accounted 

for by adding Ib to the number of infectives in the transmission term. The background force of 

infection, which is taken to be small compared to the within-patch force of infection at the 

endemic state, ensures that there is a low level of transmission in the population, even as the 

number of infectives falls during the control period, and acts to reseed infection following 

control. In doing this, the background force of infection controls how quickly an outbreak will 

occur following the end of control, and hence can play an important role in determining the 

magnitude of the divorce effect.  In general, a lower background force of infection means a later 

post-control outbreak, and often a larger divorce effect, while a higher background force of 

infection means an earlier post-control outbreak, less time for the build-up of the susceptible 
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population, and a smaller divorce effect. These effects are most noticeable for a short-lived 

control. At a sufficient level, the background force of infection is large enough to drive the 

overall dynamics of the system, eliminating the divorce effect.  When this occurs, the dynamics 

become driven by exogenous factors, similar to a sylvatic infection, reducing the importance of 

local infections.  In addition to affecting the magnitude of the divorce effect, increasing Ib 

increases the rate at which the system approaches its endemic equilibrium following the end of 

control.  This results in subsequent outbreaks being increasingly diminished.  For our 

manuscript, we choose to use a realistic value of 𝐼𝑏 = 1 for our models, compared to an endemic 

level of 183 infective individuals for these parameter values in the nonseasonal model.  Figure 

S2.22 shows that for values of 𝐼𝑏 that are sufficiently large to eliminate the divorce effect would 

require 𝐼𝑏 to be roughly the same size as the endemic infection level. 

 It is well known that seasonally forced models are even more prone to having their 

numbers of infectives falling to low levels between outbreaks, with a background force of 

infection being commonly employed to counter this effect. Stronger seasonality magnifies this 

effect. Hence the background force of infection impacts the magnitude of the divorce effect, and 

given that the timing of control plays an important role in seasonal settings, there is an 

interaction between seasonality, the timing of the control, and the background force of infection 

in such cases.  In general, as seasonality increases so does the difference between the maximum 

and minimum prevalence levels in the population.  This results in an interaction between the 

background force of infection, the magnitude of seasonality, and the timing of the control 

determining the final magnitude of the divorce effect (Figures S2.8 and S2.23).  This is important 

for predicting the magnitude of the divorce effect in real world situations, as there is a large 

amount of uncertainty associated with estimates of all three of these parameters.  Importantly, 

below a specific background force of infection, the divorce effect is seen for all values of these 

parameters. 
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SUPPLEMENTAL FIGURES 

 

Figure S2.1:  Divorce effect in terms of cases averted.  All parameters the same as in Figure 

2.1(b).  When measuring the success of a control program in terms of Cases Averted as opposed 

to RCI, the overall results are retained, with negative values of cases averted corresponding to an 

RCI > 1. Parameters are as in Figure 2.1(b) for comparison. 
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Figure S2.2:  Heat map of divorce effect from a control that increases recovery rate. All 

parameters are as in Figure 2.1(b).  The Divorce Effect is still observed if the control increases 

the recovery rate, , as opposed to decreasing the transmission parameter.  All parameters the 

same as in Figure 2.1.  Control increases  to 730 (previously 73 /year). 

 



   

56 

 

Figure S2.3:  Time-series showing the divorce effect in non-seasonal SIR model.  Figure 

corresponds to Figure 2.1(a) of the main text.  Beginning at time zero, a year-long 50% reduction 

in the transmission parameter of an endemic infection (R0=5) reduces prevalence of the infection 

to near zero for the length of the control, where it remains until time 1.5 yrs, at which point a 

large post-control outbreak occurs.  RCI falls towards zero as prevalence remains low, but the 

post-control outbreak is large enough to bring RCI well above 1 (approx. 1.6).  Panel 2 shows 

that the susceptible population begins to rise during the control period and continues until the 

outbreak depletes the susceptible population.  Likewise, the reproductive number at time t, Rt, 

begins to rise during the control period.  Once the control is released and the transmission rate 

retains its original value, Rt increases above one and continues to grow until an outbreak occurs. 
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Figure S2.4:  Long-term time-series for the divorce effect in an SIR model.  Figure 

corresponds to Figure 2.1(a) of the main text.  Following a one year control in which the 

transmission parameter is reduced by 50%, the host population continues to experience outbreaks 

that bring RCI above one until the infection approaches the endemic state and RCI approaches 

one. 
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Figure S2.5:  Heat maps of divorce effect in SIR model for different strengths of control.  

We see that the Divorce Effect occurs in a significant area of the parameter space with controls 

that reduce the transmission parameter, , by 100% (a), 75% (b), and 50% (c).  In each case, the 

only way to avoid the divorce effect is to maintain control for more than 20 years (or 

approximately 40 years in the case of 50% control). 
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Figure S2.6:  Maximum RCI for a given effectiveness of control and R0.  All controls are 

assumed to last for 1 year.  The maximum RCI is found as the maximum observed RCI within 25 

yrs after the end of a control that is between 0% and 100% effective for an infection with an R0 

of between 0 and 20.  The areas of lowered maximum RCI result from outbreaks due to 

honeymoon effect outbreaks deplenishing the population of susceptible individuals before the 

control periods end. 
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Figure S2.7:  Long-term time-series for the divorce effect in a seasonal SIR model.  

Following a one year control in which the transmission parameter is reduced by 50%, the host 

population continues to experience outbreaks that bring RCI above one until the infection 

approaches the endemic state and RCI approaches one. 
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Figure S2.8:  The divorce effect in the seasonal SIR model with higher seasonality.  β1 = .1, 

𝐼𝑏 = 10, all other parameters as in Figure 2.2.  Here a higher value of 𝐼𝑏 is taken to adjust for the 

higher seasonality of the model.  (a) Typical time-series showing the divorce effect.  

Beginning at time zero, when the transmission parameter is at its maximum, a year-long 90% 

reduction in the transmission rate of an endemic infection (R0=5) is implemented at the 

beginning of a seasonal outbreak and reduces prevalence of the infection to near zero for the 

length of the control.  Following the end of the control, a small late season outbreak occurs, 

followed by a large outbreak during the next season.  RCI falls towards zero as prevalence 

remains low while the control is in effect, rises slightly during the small late season outbreak, 

and rises above 1 during the large outbreak the following year. (b) Magnitude of divorce effect 

in terms of relative cumulative incidence (RCI).  Maximum RCI is found as the highest value 

RCI observed within 25 yrs following a 100% effective control of an infection with 1<R0<20 and 

lasting between 1 month and 20 years. RCI>1 indicates the divorce effect and we see that 

divorce effect occurs in most of the parameter space.  Unlike the SIR model (Figure 2.1), the 

magnitude of the divorce effect is not solely dependent on R0. (c) Effect of timing on the 

magnitude of the divorce effect.  Maximum RCI is the highest RCI observed within 25 yrs 

following a 100% effective control of an infection with R0=10 beginning and ending on specified 

days.  Dashed lines represent controls lasting either 1, 2, or 3 years.  Maximum RCI is most 

sensitive to the day the control is ended, moderately sensitive to the day it is started, and only 

slightly sensitive to the length of the control.  This is due to the timing of the end of the control 

determining the timing of the outbreak.  We also see that continuing the control for another year 

has little impact on the magnitude of the divorce effect. 
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Figure S2.9:  Maximum RCI for a given basic reproductive number and seasonality in the 

directly transmitted model.  All controls are assumed to increase the vector mortality rate by 

100% and to last for 1 year.  The vector reproductive rate is assumed to have some average rate, 

r, and some level of seasonality (rs).  The maximum RCI is found as the maximum observed RCI 

within 25 yrs after the end of a control.  Here we see that the divorce effect is present throughout 

most of the parameter space. 
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Figure S2.10:  Time-series of the divorce effect in a non-seasonal vector-borne infection.  

Figure shows the result of the non-seasonal host-vector model given in main text.  Following a 

year of control, against an endemic infection (𝑅0 = 5), in which the vector lifespan is reduced by 

50% (δ = 73/year increased from δ = 36.5/year) incidence is reduced to near zero.  After the 

control is stopped, we see a post-control outbreak in year 3, resulting in the divorce effect (peak 

RCI»1.5). 
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Figure S2.11:  Heat map for non-seasonal host-vector Model.  Maximum RCI is the highest 

RCI observed within 25 yrs following control of an infection with R0 = 5 beginning and ending 

on specified days.  We see for the Host-Vector model that, much like the SIR model, the only 

way to avoid the divorce effect is to maintain control for more than 20 years.  Parameters as 

given in the main text.  Control decreases vector life-span by 50%. 
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Figure S2.12:  Long-term time-series for the divorce effect in a seasonal host-vector model.  

All parameters are as in Figure 2.3 of the main text.  Following a one-year control, a large 

outbreak occurs in year 3, that brings RCI above 1.  This outbreak deplenishes the susceptible 

population, resulting in no outbreaks for the next five years.  Each subsequent outbreak is 

sufficiently large to bring RCI above 1.  Around year 30, the system is still experiencing larger 

than normal outbreaks, bringing RCI slightly above 1. 
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Figure S2.13:  Maximum RCI for a given basic reproductive number and seasonality in the 

host-vector model.  All controls are assumed to increase the vector mortality rate by 100% and 

to last for 1 year.  The vector reproductive rate is assumed to have some average rate, r, and 

some level of seasonality (rs).  The maximum RCI is found as the maximum observed RCI 

within 25 yrs after the end of a control.  Here we see that the divorce effect is present throughout 

the parameter space. 
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Figure S2.14:  Suggested techniques for mitigating the divorce effect in the seasonal SIR 

model. In the pulsed (a), reactive (b), and informed (c) techniques, we see the susceptible 

population begin growing with the first treatment and continue growing until the outbreak occurs 

after the 12th treatment, at which the susceptible population is quickly depleted.  Likewise, the 

reproductive number, Rt, increases overall during this time with seasonal fluctuations, and 

reductions due to control periods. 
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Figure S2.15:  Suggested techniques for mitigating the divorce effect in a seasonal host-

vector model. (a) Pulsed control for seasonal SIR model.  Control (𝜎 = 1 ) occurs yearly at a 

fixed time (when R0 is highest) for a fixed time (1 mo.).  The control is effective at stopping the 

outbreak the first year, but seasonal outbreaks in subsequent years are of varied magnitudes due 

to the susceptible population being depleted in some years and replenished in others.  An 

outbreak in year 2 is large enough to result in the divorce effect.  Stopping the control program 

results in a large post-control outbreak and a divorce effect. (b) Reactive control for seasonal 

SIR.  A fixed length (1 mo.) control is implemented once prevalence rises above a threshold 

(200 individuals in a population of 1 million).  This stops the large outbreaks seen in the pulsed 

control, however the frequency of treatment increases as the susceptible population grows, and 

all treatments are depleted within the first four years.  Stopping the control program results in a 

large outbreak and divorce effect.  For all panels twelve 1 mo. controls are used to be consistent 

with the 1 yr. controls used in other figures.  (c) Informed Control in seasonal Host-Vector 

model.  Control works by increasing vector mortality by 100% for 1 month.  The first control 

period occurs at time 0.  The beginning of the next control period is decided at the end of the 

control period, and is the day that will result in the smallest Divorce Effect if control is stopped 

after that period (a maximum of 1 year between treatments).  We see that this is capable of 

nearly eliminating the Divorce Effect, but there is only a negligible benefit to the control, with 

large yearly outbreaks.  Importantly, this plan recommends waiting the full year, suggesting that 

the optimal timing of the next treatment may occur after this period. 
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Figure S2.16:  The divorce effect in the SIR model with a (a) growing and (b) shrinking 

population. The population is (a) growing or (b) shrinking during the simulation at a rate of 25% 

per year.  Beginning at time zero, a year-long 50% reduction in the transmission parameter of an 

endemic infection (R0=5) reduces prevalence of the infection to near zero for the length of the 

control, where it remains until time 2.5 yrs (a) or 3 yrs (b), at which point a large post-control 

outbreak occurs.  RCI falls towards zero as prevalence remains low, but the post-control 

outbreak is large enough to bring RCI well above 1 (peak RCI = 1.67 and 1.64 for the growing 

and shrinking population, respectively). Note that, because of the changing population sizes 

within and between graphs, prevalence of infection is plotted on a relative scale on both graphs. 
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Figure S2.17:  Cessation of a vaccination program.  A vaccination program is put in place in 

which 50% of newborns are vaccinated for one year.  All other parameters are as in Figure 2.1.  

The vaccination program is discontinued after the first year.  While we see post-control 

outbreaks that bring incidence above the endemic level, they are not large enough to bring RCI 

above one, and RCI approaches 1 in the long run. 
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Figure S2.18: Divorce effect in a SIRS model.  Beginning at time zero, a year-long 50% 

reduction in the transmission parameter of an endemic infection (R0=5) reduces prevalence of the 

infection to near zero for the length of the control, where it remains until time 1.5 yrs, at which 

point a large post-control outbreak occurs.  RCI falls towards zero as prevalence remains low, 

but the post-control outbreak is large enough to bring RCI well above 1 (peak RCI is approx. 

1.45). 
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Figure S2.19:  Divorce effect in the within-host virus dynamics (HIV) model.  Beginning at 

time zero, a 25 day treatment occurs using a drug that combines a protease inhibitor and a 

reverse transcriptase inhibitor, both with 50% efficacy.  This successfully reduces the infectious 

T cell count to near zero during and immediately following the treatment period.  After the end 

of treatment, we see a transient increase in infectious T cells, bringing the relative cumulative 

incidence of T cell infection above one (max RCI»1.14).  After years, RCI eventually approaches 

1 from below. 
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Figure S2.20:  Divorce effect in an age-structured SIR model with realistic mixing.  A 

control for a directly transmitted infection with R0 = 5 (a) and R0 = 15 (b) in a population of 9000 

individuals is implemented at time 0, during which transmission is reduced by 50% for 1 year.  

At the end of the year, control is instantaneously removed.  RCI quickly falls to 0 during the 

control period and remains there until a large outbreak in year 4 brings RCI up above 1 for all 

age groups. For the figure, prevalence, the number of individuals currently infective, (dashed 

lines) and RCI (solid lines) are shown for the total population, and age groups are shown 

aggregated into three groups: preschool (ages 0-5), school age (ages 6-18), and adult (ages 19+). 
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Figure S2.21:  Analytical approximation of the magnitude of the divorce effect.  (a)  Heat 

map of approximated and simulated magnitude of the Divorce Effect in terms of RCI.  The 

analytical approximation predicts the divorce effect for all controls lasting less than 20 years, 

similar to what is observed in the SIR model (Figure 2.1(b)).  However, it overestimates the 

observed maximum RCI throughout the parameter space, and does so drastically for a short 

control in a system with R0<3. (b) Relative difference between the observed and predicted 

maximum RCI.  Calculated as (observed-predicted)/observed.  The relative difference is small 

(<.25) throughout most of the parameter space except for short controls in systems with R0<3. 
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Figure S2.22:  Sensitivity of the magnitude of the divorce effect to the background force of 

Infection in the (a) non-seasonal and (b) seasonal SIR models.  Figure (a) is parameterized as 

in Figure 2.1(a) (𝑅0 = 5) and (b) is parameterized as in Figure 2.2(a) (𝑅0 = 5, β1 = .02).  All 

controls are assumed to last one, two, or five years, beginning at t = 0.  We see that for a 

sufficiently high number of infective individuals visiting our focal population (Ib), the divorce 

effect is eliminated.  We choose a seemingly realistic value of 𝐼𝑏 = 1 (stars) for our models, 

compared to an endemic level of 183 infective individuals for these parameter values in the 

nonseasonal model.  This value will keep the number of infectives from falling to arbitrarily 

small values while not eliminating the divorce effect.  We note that values of 𝐼𝑏 that are 

sufficiently large to eliminate the divorce effect would require 𝐼𝑏 to be roughly the same size as 

the endemic infection level. 
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Figure S2.23:  Interaction between background force of infection, seasonality, timing of 

control, and the magnitude of the divorce effect.  (a)  Increasing seasonality (β1 = .1 in 

contrast to β1 = .02 in Figure S2.22) increases the variation in the divorce effect seen at 

differing background force of infections.  (b) Likewise, the timing of the start of the control 

(days 0, 73, 146, 219, 292) has a significant effect on the magnitude of the divorce effect seen at 

a particular background force of infection. 
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CHAPTER 3 - Efficacy and Spatial Extent of Yard-scale Control of Aedes (Stegomyia) 

albopictus (Skuse) (Diptera: Culicidae) using Barrier Sprays and Larval Habitat 

Management 

Brandon Hollingsworth, Pete Hawkins, Alun L. Lloyd, Michael H. Reiskind 
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ABSTRACT 

 The Asian tiger mosquito, Aedes (Stegomyia) albopictus (Skuse), is a peridomestic, 

container-ovipositing mosquito commonly found throughout the southeastern United States.  

In the US, Ae. albopictus is typically considered a nuisance pest, however, it is capable of 

transmitting multiple pathogens.  Aedes albopictus is an important pest species and the target 

of numerous mosquito-control efforts in the United States.  Here, we evaluate the effectiveness 

and spatial extent of Ae. albopictus population reduction using a bifenthrin (AI Bifen IT, 7.9%) 

barrier spray and larval habitat management (LHM) in a temperate, suburban setting.  Sixteen 

pairs of adjoining neighbors were randomly assigned to treatment groups with one neighbor 

receiving a treatment and the other monitored for evidence of a spill-over effect of the 

treatments.  Ae. albopictus populations in both yards were monitored for 33 days, with 

treatments occurring on the 8th day.  Barrier sprays, both alone and combined with LHM, 

resulted in a significant reduction in Ae. albopictus abundance post-treatment.  While LHM 

alone did not result in a significant reduction over the entire post-treatment period, Ae. 

albopictus populations were observed to be in decline during this period.  No treatments were 

observed to have any reduction in efficacy 25 days post-treatment, with treatments involving 

LHM having a significantly increased efficacy.  Yards neighboring treated yards were also 

observed to have reduced population sizes post-treatment, but these differences were rarely 

significant.  These results provide insights into the population dynamics of Ae. albopictus 

following two common treatments and will be useful for integrated pest management plans. 
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INTRODUCTION 

 Aedes (Stegomyia) albopictus (Skuse) is a peridomestic container-ovipositing mosquito 

commonly found throughout the world.  After its initial introduction in Texas in 1985 (Sprenger 

and Wuithiranyagool 1986), it quickly spread throughout the southeastern United States (US) 

and now has a range stretching from the Atlantic coast in the east to Texas in the west and from 

the southern tip of Florida up to New York in the north, along with areas of recent introduction 

in California on the west coast (Hahn et al. 2017).  Its preference for ovipoisiting in artificial 

containers, along with its propensity for biting humans, makes it one of the most common 

nuisance mosquitoes in the US.  Unfortunately, controlling Ae. albopictus using traditional 

methods such as ultra-low volume applications has proven difficult, suggesting a need for 

alternative control strategies (Roiz et al. 2018, Achee et al. 2019).  Further, its ability to transmit 

dengue, Zika, and chikungunya viruses make it a potential public health threat, and the likely 

vector in the case of introduction of these pathogens into the US (Gostin and Hodge 2016, 

Messina et al. 2016, Moreno-Madriñán et al. 2018). 

 Traditionally, mosquito control in the US has been performed by mosquito abatement 

districts, with the aim of mitigating community-wide nuisance and risk of disease associated with 

mosquitoes.  Abatement districts commonly deploy vehicle-based, ultra-low volume (ULV) 

application in order to treat large areas with insecticides.  These ULV applications are often 

coupled with source reduction efforts to remove large oviposition sites, such as tire piles.  

However, recent budgetary cuts, including in North Carolina in 2011, have resulted in 

underfunded and underprepared mosquito control districts (Rosario et al. 2014).   

 Within North Carolina, 55% of mosquito control programs self-reported a barely 

functional budget (Rosario et al. 2014) and a recent survey of vector-control organizations 
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nationwide showed that 84% needed improvement in at least one of five core capacities: routine 

mosquito surveillance, surveillance based treatments, larviciding and/or adulticiding, routine 

vector control activities, and pesticide resistance testing (NACCHO 2017).  These reports, 

combined with concerns about the effectiveness of ULV applications for reducing Aedes 

populations, and Aedes-vectored disease (Bonds 2012, Wilson et al. 2015, Bowman et al. 2016, 

Faraji and Unlu 2016, Roiz et al. 2018), suggest mosquito abatement districts may be ill-

equipped to respond to vector-borne disease outbreaks and highlight a need for new plans for 

mosquito-borne disease response.  The private mosquito control industry, in contrast, has grown 

significantly over the past decade (Specialty Consultants 2016).  While this growth has been 

mostly driven by a high willingness to pay for mosquito nuisance control (Dickinson and 

Paskewitz 2012), fear of potential outbreaks of dengue and Zika virus in the US has likely also 

increased enrollment in their services.  Unlike mosquito abatement districts, these companies 

deploy yard-scale mosquito treatments, the efficacy and spatial scale of which has not been fully 

quantified.  It is possible that, if shown effective, these yard-scale treatments could provide a 

useful tool for precision mosquito control in the event of a mosquito-borne disease outbreak.  In 

light of this, it is important to quantify the short-term effectiveness of yard-scale treatments and 

their effect on the dynamics of nearby mosquito population. 

 The yard-scale treatments employed by private mosquito control companies typically 

target nuisance mosquitoes, including Ae. albopictus, with treatments involving the use of a 

combination of an adulticidal barrier spray, most commonly a pyrethroid, and larval habitat 

management (LHM), tip-and-toss combined with a long acting larvicide, applied regularly 

during mosquito season.  The success of these companies and the growth of the industry provides 

anecdotal evidence of their effectiveness.  However, empirical studies of the effects of barrier 
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sprays (Muzari et al. 2014, Fulcher et al. 2015, Stoops et al. 2019), especially when applied to 

individual yards (Trout et al. 2007, Hurst et al. 2012, VanDusen et al. 2016, Richards, Balanay, 

et al. 2017)  have focused on the long term effects of the treatments inside the treated area, and 

not on the short-term effects or the spill-over effects in the neighboring yard, which would likely 

play a major role in disease dynamics.  Similarly, studies of the effect of larval habitat 

management, or larval source reduction, on Ae. albopictus have typically focused on 

neighborhood or city-wide efforts (Richards et al. 2008, Unlu et al. 2011, 2013, Fonseca et al. 

2013, Faraji and Unlu 2016), with mixed results and further investigation about its effectiveness 

is needed (Faraji and Unlu 2016). 

 Here, we report on the efficacy of two standard mosquito control techniques, larval 

habitat management, through source reduction, and an adulticidal barrier spray, when applied to 

individual yards in the Wake County, NC area.  Mosquito abundance from adjacent yards was 

also monitored to determine if there was a reduction outside of the treated area.  

METHODS 

Participant Recruitment 

 Households were recruited in Wake County, NC (35°47'24.00" N -78°39'0.00" W) 

beginning in May, 2018 using a combination of recruitment fliers placed at local community 

centers and recruitment emails sent through neighborhood listservs.  Recruitment was limited to 

pairs of neighboring houses that had not received any professional mosquito treatment that year 

(since January 2018) and were willing to participate.  Participating houses were enrolled on a 

first-come basis and adult residents for each house were met in person for the informed consent 

process.  All participants received treatments free of charge, and participants not receiving a 

barrier spray treatment were offered a free treatment following the end of the study.  Designation 
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of treatment and neighboring house for each pair was determined at time of informed consent.  

Typically, the house belonging to the primary contact for the pair, whoever initiated contact, was 

assigned to treatment unless residents preferred otherwise.  

Ethical Clearance 

 Informed consent was obtained from adult residents of all participating houses before the 

beginning of the study.  All participants were informed about their rights and all risks associated 

with their inclusion in the study.  Ethical approval was obtained from the North Carolina State 

University Institutional Review Board (Approved, NCSU Protocol # 12800, 5/14/2018). 

Study Design 

 We employed a split-split-plot design with sites, consisting of 16 house pairs, randomly 

assigned to a LHM by barrier spray (2x2) balanced factorial design and trap locations designated 

within each site.  Each house pair was assigned to receive either LHM alone, the barrier spray 

alone, a combination of both LHM and barrier spray, or no treatment, with four replicates of 

each treatment.  Three sampling locations were determined within each site (see Figure 3.1).  

Each location within a site was sampled concurrently every fourth day over a 33 day period. 

 After being assigned a treatment, each site was assigned to one of four groups for 

sampling, such that each group contained exactly one site assigned to each of the treatment 

levels.  Sampling was conducted on a rotating basis, with all members of a group sampled on the 

same days, e.g. group 1 was sampled on days 1, 5, 9, etc. and group 2 on days 2, 6, 10, etc.  

Sampling consisted of 9 trap days at each location occurring on every 4th day, lasting 24 hours, 

and occurred over a period of 36 days, including the pretreatment period, from 6 August, 2018 – 

10 September, 2018 due to rotating between groups.   
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 During each sampling day, 3 BG-Sentinel 2 (Biogents, Regensburg, Germany) traps were 

set for 24 hours along a transect, with traps placed in the center and side (approx. 5m from the 

property line) of the treatment yard and adjacent neighboring yard (approx. 15m from the 

property line), all traps were baited using BG lures (Figure 3.1).  Trap bags were collected at the 

end of the sampling period and collections frozen until sorted, with numbers of female Ae. 

albopictus, male Ae. albopictus, and other mosquitoes recorded for each trap day.  Due to low 

count numbers of other mosquito species in collections, only female Ae. albopictus counts are 

reported here.  

Insecticide Application 

 Insecticide applications occurred the day before the third round of sampling at each site, 

e.g. day 8 for group 1 and day 9 for group 2, (13 August – 16 August, 2018), denoted Day 0 

(grey dashed bar in Figure 3.1), and were performed between the hours of 1400 and 1700.  

Treatments were carried out by a trained, licensed applicator from a local mosquito control 

company.  For houses receiving LHM or combined treatment, the yard was initially surveyed for 

larval habitat by the applicator and primary researcher.  All containers with standing water were 

emptied and removed if possible and the larvicide, Altosid (AI 1.5% (S)-Methoprene , Zoecon, 

Schaumburg, IL), was applied to any standing bodies of water that could not be removed and did 

not contain fish, e.g. birdbaths.  In yards that received the barrier spray or combined treatment, 

the applicator applied Bifen IT (AI 7.9% bifenthrin, Control Solutions, Pasadena, TX) as a 

barrier spray around the property and to any resting habitat, e.g. dense foliage, with care taken to 

avoid any flowering or fruiting plants and any ponds, consistent with the EPA/FIFRA pesticide 

label.  Barrier sprays were performed throughout the front, back, and side of the yard and to any 

fences using a Stihl SR450 mist blower with the applicator walking approximately 3-4 km/hour, 
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applying approximately 1 gallon of mixed product, containing approximately 1 oz Bifen IT, per 

1000 ft2.  For houses assigned to the combined treatment group, LHM was performed before 

application of the barrier spray. 

Statistical Model 

 To evaluate the reduction in the female Ae. albopictus population due to the treatments, 

we modeled the number of female Ae. albopictus in the trap as a Poisson random variable using a 

generalized linear mixed model with a log-link function (Bolker et al. 2009, Zuur et al. 2010).  

All models included a random intercept for the study site, with correlation between traps at the 

same site, the trapping date, and an observation level random effect to account for overdispersion 

(Harrison 2014). Fixed effects were modeled as a LHM by barrier spray by location by days 

since treatment factorial design, with day taken as a covariate for comparisons between 

treatments and locations and as a factor for comparisons between days.  The average 

pretreatment mosquito count was then used as a per location offset.  All models were fit in R (R 

Development Core Team 2019) using the lme4 package (Bates et al. 2015), with means and 

contrasts calculated using the emmeans package (Lenth 2019).   

 The percent reduction in mosquito population due to treatment is found as the contrast 

between the treatment and control group ((1 − contrast) ∗ 100%).  Multiple comparisons 

against a control, either the untreated yards or the first day post-control, were performed using a 

Dunnett adjustment. Pairwise multiple comparisons were conducted using a Tukey adjustment, 

while comparisons of individual days against the average of the days used a Bonferroni method 

(Longnecker and Ott 2015). Where not specifically noted, we test the contrast been a treatment 

and the untreated group using the appropriate adjustment.  Confidence intervals for all estimates 

are given at the 95% level and contrasts are considered significant at the α = .05 level. 



   

88 

RESULTS 

 Aedes albopictus counts for 429 trap-days were recorded (3 days, 1 of which was 

pretreatment, were lost due to trap failures) (Figure 3.2).  There was no significant overall trend 

with regard to mosquito abundance for the control group (95% CI for slope (-.0311, .0010)) over 

the study period, suggesting that mosquito populations were not declining throughout the study 

period.  However, counts in the post-treatment period were significantly lower than the 

pretreatment period for the control group (Table S3.1). 

Treatment Effects 

 Overall, we found that all treatment groups exhibited a decrease in the mosquito count 

during the entire post-treatment period.  Compared to the pretreatment mean, pairs of houses in 

the LHM treatment group had a 63.9% (47.5%, 75.1%) mean reduction in the abundance of 

female Ae. albopictus, the barrier spray treatment group had a reduction of 77.1% (66.8%, 

84.2%), and the combined treatment group had a reduction of 74.6% (62.8%, 84.2%) (Table 

S3.1).  The application of LHM resulted in a 40.9% (𝑝 = .0866) mean reduction in the 

abundance of female Ae. albopictus across the pair of yards over the post-treatment period, the 

barrier spray resulted in a 62.5% (𝑝 = 1.87x10−4) mean reduction, and combining the 

treatments resulted in a 58.5% (𝑝 = .00123) mean reduction. 

 Inside the treated yards, LHM resulted in a 33.3% (p = .457) mean reduction in female 

Ae. albopictus abundance over the post-treatment period, the barrier spray in a 62.2% (p =

.00808) mean reduction, and the combined treatment in a 59.5% (p = .0176) mean reduction.  

In the untreated neighboring yard, LHM resulted in a 54.6% (𝑝 = .209) mean reduction over the 

post-treatment period, the barrier spray in a 62.5% (𝑝 = .0796) mean reduction, and the 

combined treatment in a 58.6% (𝑝 = .143) mean reduction (Table S3.2). 
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Edge and Spill-over Effects 

 In general, Ae. albopictus counts were higher at the side and neighbor trap locations for 

the barrier spray group and lower for treatments that included LHM.  However, we found no 

significant difference in the reduction of Ae. albopictus counts between the traps at the center, 

side, and neighboring locations, regardless of treatment (Table S3.2). 

Temporal Trends 

 The day immediately following treatment application, reduction due to treatment in the 

mean female Ae. albopictus abundance in treated yards was not significant for any treatment, 

with the largest reduction, 60.7% (𝑝 = .0717), occurring when only the barrier spray was 

applied.  Similarly, the reduction was not significant in the neighboring yards, despite the barrier 

spray resulting in a mean reduction of  68.9% (𝑝 = .0921) and the combined treatment resulting 

in a 72.4% (𝑝 = .0865) mean reduction.   

 In treated yards, the greatest reduction due to treatment was seen 17 days post-treatment 

when a barrier spray was applied, and 25 days post-treatment for LHM and combined treatments.  

Similar results were seen for neighboring yards, with the exception of when the combined 

treatment was implemented for which the greatest reduction occurred 9 days post-treatment  

(Figure 3.3).  However, the reduction in abundance due to treatment was not significantly lower 

than the mean post-treatment reduction for any treatment in either the treated or neighboring 

houses (Table S3.3).  

 To determine if the Ae. albopictus population rebounded post-treatment, we examined 

four models for the change in treatment effectiveness over time.  Based on AIC (Longnecker and 

Ott 2015), overall trends were best described using a linear fit for the time since treatment, 

compared to quadratic fits (Δ𝐴𝐼𝐶 = 14.1), cubic fits (Δ𝐴𝐼𝐶 = 28), or treating time as a factor 
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(Δ𝐴𝐼𝐶 = 62).  Within treated yards, estimates for trends in the Ae. albopictus reduction due to 

all treatments were positive, suggesting that treatments became increasingly effective during the 

post-treatment period.  However, this trend was only significant for LHM (p=.0336).  Estimates 

of the trends for reduction due to the barrier spray and LHM in the neighboring yard were 

negative, but neither was significant (Table S3.4). 

 Contrasts between the effects 25 days post-treatment and the effects one day post-

treatment also fail to show any evidence of a rebound in the Ae. albopictus population.  25 days 

post-treatment, treatment with LHM resulted in Ae. albopictus populations being reduced by 

70.6% (𝑝 = .0123) of its size one day post-treatment.  The combined treatment and barrier spray 

also saw an increased reduction 25 days post-treatment compared to after one day, but neither 

was significant.  Ae. albopictus populations in neighboring yards were lower 25 days post-

treatment than one day post-treatment when the focal house was treated with LHM, showing a 

significant additional reduction 25 days post-treatment (73.2% reduction, 𝑝 = .0361) (Table 

S3.5).  These results, combined with the overall trends provide no evidence that there is a loss in 

effectiveness of treatments 25 days post-treatment, and that there is significant evidence that Ae. 

albopictus populations in yards treated with, and neighboring to yards treated with, LHM are still 

declining 25 days post-treatment. 

DISCUSSION 

 The results of our study concur with previous studies that the yard-scale application of 

barrier sprays using the pyrethroid, bifenthrin, in conjunction with LHM can successfully 

suppress Ae. albopictus populations in yards in the temperate US (Trout et al. 2007, VanDusen et 

al. 2016, Richards, Volkan, et al. 2017) and our estimates of the overall effect of bifenthrin 

barrier sprays are in the range of previous studies.  In addition to these estimates, the design of 
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this study allowed for the decoupling of the effects of LHM and barrier spray, and trapping 

repeatedly at short intervals allowed the estimation of how the effectiveness of treatments 

changed over the 25 days following treatment.  Our study showed that bifenthrin barrier sprays 

quickly reduced the Ae. albopictus population by 60% and continued having an effect at 25 days, 

with little change in effectiveness over the 25 days post-treatment, while LHM effectiveness 

increased over the study period, having no effect immediately following treatment and only 

began to have an effect after about 21 days.  While we did not find any evidence of an increased 

effect with combined treatments, the difference in timing of the effects suggest that there is an 

added benefit of using both treatments.  In addition to measuring the effectiveness inside of 

treated yards, we were able to measure the effect of these treatments in untreated neighboring 

yards.  Estimates in the untreated neighboring yards were on the same scale as in treated yards, 

suggestive of a spill-over effect of the treatments, but the differences were not significant.  These 

estimates suggests that it may not be necessary to treat every yard to successfully reduce Ae. 

albopictus counts across a neighborhood, significantly reducing the risk posed by noncompliant 

houses. 

 While our results show that bifenthrin barrier sprays and LHM have an effect beyond 25 

days post-treatment and may reduce Aedes populations beyond the perimeter of the treated yard,  

future studies need to maintain surveillance more than 25 days post-treatment and should 

monitor the mosquito populations further than 15m beyond the treated area.  We also failed to 

see a significant decrease in numbers in the untreated neighboring yards, despite estimates of 50-

60% reduction due, in part, to large variability in the results, something future studies should 

take into account.  Previous studies of barrier sprays have also shown that the timing, with 

respect to the mosquito season, of treatments has an impact on the effectiveness of the control 
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(Williams et al. 2019), with increased effectiveness later in the season, suggesting that the 

effectiveness of the barrier sprays would be lessened earlier in the season, something that should 

be accounted for. 

 Our results show that it is possible to locally reduce Ae. albopictus populations using 

these treatments for significant periods of time.  Applicators could deploy yard-scale treatments, 

such as barrier sprays and LHM, to target “hot-spot” yards containing large mosquito 

populations, which has been shown to be effective (Unlu et al. 2016), a strategy that could prove 

more effective than traditional neighborhood- and city-scale ULV applications.  In addition, the 

estimated effects of the treatment on untreated neighboring yards, while not significant, suggests 

that an economically optimal strategy for deploying treatments may exist for temporarily 

reducing the mosquito population in a neighborhood or town in response to mosquito-borne 

disease outbreaks, e.g. spraying some proportion of yards.  However, the efficacy and cost-

effectiveness of such a plan would be highly dependent on the costs and accuracy of determining 

yards with consistently larger Ae. albopictus populations.   

 Control of Ae. albopictus populations using strategically deployed yard-scale treatments 

could also help prevent the emergence and spread of insecticide resistance in local populations 

when it is not necessary to suppress the entire population.  Targeting specific yards and other 

habitats with large mosquito populations could mean that applicators are able to apply a higher 

concentration than what is possible from vehicle-based ULV applications.  Fewer mosquitoes 

will be exposed to a sublethal dose, while leaving other areas untreated could serve as a natural 

refuge for susceptible populations.  This would serve as a high-dose/refuge approach, similar to 

what is suggested for resistance management in crop pests (Gould 1998, Tabashnik et al. 2004, 
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Gould et al. 2018), and possibly creating a reservoir for genes beneficial for resistance 

management (Maino et al. 2019). 

 Yard-scale control of mosquitoes with a combination of a barrier spray and LHM 

successfully suppressed mosquito populations in treated and adjacently neighboring yards in our 

study.  However, while we show an estimated reduction of 59.5% in the 25 days post-treatment, 

it is unclear if this would be sufficient to satisfy private customers.  The use of LHM alone, with 

a longer effective period and an estimated 40.9% reduction over the initial 25 days post-

treatment, may prove preferable for long-term reduction of nuisance due to Ae. albopictus.  

Barrier sprays provided an immediate reduction of the Ae. albopictus, an important addition for 

applications performed commercially or in response to an Aedes-borne disease outbreak.  

However, whether the additional reduction provided by barrier sprays would be sufficient for 

stopping an outbreak of an Aedes-vectored disease, e.g. dengue, would depend on the vectoral 

capacity of the local population (Fouet and Kamdem 2019).  Yard-scale applications of barrier 

sprays could prove preferable to ULV spraying when used as part of a well-designed integrated 

vector management program as it allows for targeted “hot-spot” treatments.  For instance, 

targeted barrier sprays could be used to supplement ongoing neighborhood-wide LHM, which 

has previously been shown to reduce Ae. albopictus populations (Fonseca et al. 2013), in 

response to a disease outbreak ,or as part of ongoing activities (Roiz et al. 2018).  While the 

results presented above show the potential of yard-scale treatments to reduce Aedes populations, 

much more information is needed to be able to optimally deploy yard-scale targeted controls as 

part of an integrated management plan.  Key amongst this is the scale and magnitude of the 

spatial heterogeneity of the Ae. albopictus population, techniques to quickly and efficiently 
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identify “hot-spots”, and a framework for determining optimal treatment patterns (Baldacchino et 

al. 2015, Fouet and Kamdem 2019). 
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TABLES 

Table 3.1:  Mean count of Ae. albopictus on given day after treatment, aggregated for each 

trap location, yard, and treatment pair within each treatment group. 

 Day 

 Pre-
treatment 

1 5 9 13 17 21 25 

Combined Total 10.08 5.33 4.58 2.75 3.50 3.91 3.25 2.17 

Treated 10.625 6.25 4.75 3.25 3.75 4.5 3.38 1.75 

Center 12.12 8.00 8.25 5.00 4.25 7.00 4.00 1.25 

Side 9.13 4.50 1.25 1.50 3.25 2.00 2.75 2.25 

Neighbor 9 3.50 4.25 1.75 3.00 2.75 3.00 3.00 

Barrier 
Spray 

Total 20.63 7.00 5.92 6.75 6.67 5.58 6.83 5.08 

Treated 15.25 5.00 4.25 4.38 4.75 4.13 7.25 3.50 

Center 13.63 1.50 2.50 3.75 2.75 3.75 4.00 2.50 

Side 16.88 8.50 6.00 5.00 6.75 4.50 10.50 4.50 

Neighbor 31.38 11.00 9.25 11.50 10.50 8.50 6.00 8.25 

LHM Total 14.17 12.75 5.75 4.33 7.25 7.25 6.17 3.33 

Treated 13.88 10.88 6.00 4.50 8.13 7.75 5.38 3.13 

Center 9.38 8.50 5.25 4.50 6.50 5.75 6.50 3.00 

Side 18.38 13.25 6.75 4.50 9.75 9.75 4.25 3.25 

Neighbor 22.00 16.50 5.25 4.00 5.50 6.25 7.75 3.75 

Control Total 14.17 16.67 12.5 8.45 13.17 6.67 13.64 8.42 

Treated 13.75 12.00 11.25 6.86 13.00 6.13 13.86 9.00 

Center 11.13 10.75 6.75 4.00 6.25 7.50 5.33 4.50 

Side 16.38 13.25 15.75 9.00 19.75 4.75 20.25 13.5 

Neighbor 15.14 26.00 15.00 11.25 13.50 7.75 13.25 7.25 
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Table 3.2:  Percent reduction in adult female Ae. albopictus population due to treatment 

and p-values.  Percent reduction is found as the contrast between the reduction seen in the 

treated and control yards for each treatment and time period.  Differences that are significant at 

the 𝛼 = .1 (.) and 𝛼 = .05 (*) are denoted. 

 

 Pair Treated Neighbor 

Combined  Post-treatment 58.5 (.0012)* 59.5 (.0176)* 58.6 (.143) 
Day 1  37.6 (.534) 72.4 (.0865). 
Day 5  58.9 (.109) 58.1 (.330) 
Day 9  46.9 (.376) 82.8 (.133) 

Day 13  63.1 (.0539). 65.3 (.209) 
Day 17  40.0 (.527) 35.1 (.805) 
Day 21  69.2 (.0223)* 60.6 (.304) 
Day 25  81.2 (.00233)* 28.0 (.882) 

Barrier 
Spray  

Post-treatment 62.5 (1.88x10−4)* 62.2 (.00808)* 62.5 (.0796). 
Day 1  60.7 (.0717). 68.9 (.0921). 
Day 5  65.4 (.0351)* 67.3 (.120) 
Day 9  47.0 (.351) 37.0 (.730) 

Day 13  73.4 (.00524)* 64.8 (.1626) 
Day 17  53.7 (.205) 49.3 (.514) 
Day 21  57.9 (.102) 77.9 (.0275)* 
Day 25  67.3 (.0288)* 53.9 (.412) 

LHM Post-treatment 40.9 (.0866). 33.3 (.457) 54.6 (.209) 
Day 1  -04.3 (.996) 35.1 (.754) 
Day 5  25.5 (.795) 63.8 (.202) 
Day 9  11.0 (.972) 53.9 (.431) 

Day 13  35.4 (.576) 66.3 (.168) 
Day 17  00.2 (1.00) 38.4 (.741) 
Day 21  60.8 (.0857). 59.2 (.304) 
Day 25  63.7 (.0668). 53.5 (.461) 
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FIGURES 

 

 

Figure 3.1:  Trap locations within the treated and neighboring yards.  The center trap was 

placed near the center of the treatment yard.  The side trap was then set in the treatment yard, 

approximately 5m from the edge of the neighboring yard, and the neighbor trap was placed 

approximately 15m into the neighboring yard to form a transect. 
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Figure 3.2:  Mean number of female Ae. albopictus for each treatment and location 

combination.  Treatment occurred on day 0 (grey dashed line).  The average counts suggest an 

effect of the combined and barrier spray treatments. 
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Figure 3.3:  Estimated percent reduction in female Ae. albopictus count due to treatment 

(dot) and 95% confidence interval (bars) on individual days in the treated and neighbor 

yards.  A value of 0 (dashed line) represents no difference from no treatment group.  Only a few 

individual days differ significantly from the no treatment group.  There is no overall trend 

showing a loss of effectiveness over 25 days, and treated yards that received LHM had 

reductions on day 25 that were significantly larger than the average reduction. 
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SUPPLEMENTAL TABLES 

Table S3.1.  Estimated percent reduction in adult female Ae. albopictus population in each 

treatment group, and 95% confidence intervals. 

 Pair Treated Neighbor 

Combined  Post-treatment 74.6 
(62.8, 82.7) 

75.4 
(60.8, 84.9) 

73.9 
(49.2, 86.6) 

Day 1 
 

57.7 
(16.3, 78.6) 

69.9 
(21.7, 88.5) 

Day 5 
 

72.8 
(44.1, 86.8) 

64.9 
(11.6, 86.2) 

Day 9 
 

76.9 
(53.8, 88.5) 

85.8 
(57.4, 95.2) 

Day 13 
 

69.1 
(38.9, 84.9) 

74.1 
(31.1, 90.3) 

Day 17 
 

76.2 
(50.4, 88.6) 

74.8 
(32.6, 90.6) 

Day 21 
 

75.4 
(49.1, 88.1) 

73.1 
(28.7, 89.9) 

Day 25 
 

88.7 
(74.2, 95.0) 

70.7 
(23.3, 88.8) 

Barrier 
Spray  

Post-treatment 77.1 
(66.8, 84.2) 

77.0 
(63.0, 85.7) 

76.4 
(55.1, 87.6) 

Day 1 
 

73.4 
(47.3, 86.5) 

66.2 
(21.9, 85.3) 

Day 5 
 

77.1 
(54.2, 88.6) 

72.6 
(35.9, 88.3) 

Day 9 
 

76.9 
(53.8, 88.5) 

66.9 
(23.4, 85.8) 

Day 13 
 

77.9 
(55.6, 89.0) 

73.8 
(38.3, 88.9) 

Day 17 
 

81.6 
(62.5, 91.0) 

80.3 
(52.6, 91.9) 

Day 21 
 

66.3 
(34.2, 82.8) 

84.9 
(62.9, 93.9) 

Day 25 
 

82.3 
(61.9, 90.9) 

81.1  
(50.5, 92.8) 
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Table S3.1 (Continued).  Estimated percent reduction in adult female Ae. albopictus 

population in each treatment group, and 95% confidence intervals. 

 Pair Treated Neighbor 

LHM Post-treatment 63.9 
(47.5, 75.1) 

59.4 
(34.6, 74.9) 

71.4 
(44.7, 85.2) 

Day 1 
 

29.3 
(-36.4, 63.4) 

29.4 
(-65.1, 69.8) 

Day 5 
 

50.7 
(3.3, 74.9) 

69.7 
(24.9, 87.8) 

Day 9 
 

61.3 
(22.6, 80.7) 

75.8 
(38.7, 90.5) 

Day 13 
 

46.3 
(-0.1,72.6) 

74.9 
(36.6, 90.1) 

Day 17 
 

60.4 
(20.6, 80.2) 

76.1 
(39.3, 90.6) 

Day 21 
 

68.6 
(36.1, 84.5) 

72.2 
(30.2, 88.9) 

Day 25 
 

79.2 
(56.2, 90.1) 

81.1 
(54.7, 92.3) 

Control Post-treatment 38.9 
(.122, 57.4) 

39.2 
(3.2, 62.8) 

37.1 
(-19.0, 66.7) 

Day 1 
 

32.2 
(-28.7, 64.3) 

-8.8 
(-147, 52.1) 

Day 5 
 

33.8 
(-25.6, 65.2) 

16.3 
(-90.7, 63.2) 

Day 9 
 

56.5 
(.14.6, 79.1) 

47.5 
(-22.8, 77.6) 

Day 13 
 

16.9 
(-56.2, 55.8) 

25.4 
(-70.7, 32.6) 

Day 17 
 

60.3 
(22.7, 79.6) 

61.2 
(7.4, 83.8) 

Day 21 
 

19.9 
(-53.4, 58.2) 

31.9 
(-56.9, 70.4) 

Day 25 
 

42.8 
(-9.1, 70.0) 

59.3 
(3.5, 82.8) 
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Table S3.2.   Percent of reduction at the center trap location seen at the side and neighbor 

trap locations, along with associated p-values.  An asterisk indicates differences that are 

significant at the 𝑝 < .05 level and a period indicates differences significant at the 𝑝 < .1 level.  

Dunnett adjustment for comparisons against a control is used to calculate p-values 

 Combined Barrier Spray LHM 

Side 150% (.5588) 49.0% (.1825) 97.4% (.9950) 

Neighbor 117% (.8978) 66.5% (.5424) 140% (.6500) 
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Table S3.3.  Comparison of treatment effectiveness between given days and the post-

treatment average. An asterisk indicates differences that are significant at the 𝑝 < .05 level and 

a period indicates differences significant at the 𝑝 < .1 level.  A Bonferroni-type adjustment for 

multiple comparisons used to calculate p-values. 

  Treated Neighboring 

  Combined Barrier 

Spray 

LHM Combined Barrier 

Spray 

LHM 

D
ay

 

1 .632 (.1179) .163 

(.9880) 

.642 

(.0755). 

.176 

(.9979) 

.405 

(.5815) 

1.05 

(.0140)* 

5 .117 (.9924) -.0161 

(.9880) 

.221 

(.6269) 

.356 

(.9979) 

.158 

(.7447) 

.0606 

(.9177) 

9 -.0710 

(.9924) 

-.00454 

(.9880) 

-.0602 

(.9116) 

-.695 

(.9979) 

.378 

(.5815) 

-.204 

(.9177) 

13 .257 (.9592) -.05518 

(.9880) 

.321 

(.5663) 

.00114 

(.9979) 

.108 

(.7504) 

-.1594 

(.9177) 

17 -.0365 

(.9924) 

-.270 

(.9793) 

-.0333 

(.9116) 

-.0295 

(.9979) 

-.227 

(.7281) 

-.216 

(.9177) 

21 .00307 

(.9924) 

.436 

(.8972) 

-.304 

(.5663) 

.0454 

(.9979) 

-.539 

(.5815) 

-.0392 

(.9177) 

25 -.903 

(.1105) 

-.252 

(.9793) 

-.786 

(.0755). 

.146 

(.9979) 

-.284 

(.7281) 

-.490 

(.7982) 

 

Table S3.4.  Temporal trends of percent reduction due to treatment in treated and 

untreated yards.  An asterisk indicates differences that are significant at the 𝑝 < .05 level and a 

period indicates differences significant at the 𝑝 < .1 level. 

 Treated Neighboring 

Combined -3.24 (.1034) 3.03 (.3651) 

Barrier Spray -.119 (.9976) .116 (.9986) 

LHM 3.74 (.0336)* -.856 (.9248) 
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Table S3.5.  Additional percent reduction on day 25 post-treatment compared to 1 day 

post-treatment.  An asterisk indicates differences that are significant at the 𝑝 < .05 level and a 

period indicates differences significant at the 𝑝 < .1 level.  Dunnett adjustment for multiple 

comparisons against 1 day post-treatment used for comparisons. 

 Treated Untreated 

Combined 73.2% (.0171)* 2.6% (1.000) 

Barrier Spray 29.9% (.8298) 44.6% (.5747) 

LHM 70.6% (.0123)* 73.2% (.0361)* 
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 CHAPTER 4 - Targeted treatments against Aedes (Stegomyia) albopictus (Diptera:  

Culicidae) in heterogeneous landscapes: insights from a data-driven model  
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ABSTRACT 

 Aedes (Stegomyia) albopictus (Skuse) has become a ubiquitous nuisance and potential 

vector throughout much of the United States since its introduction in 1985.  The emergence of 

new Aedes-vectored arboviruses, the reemergence of dengue and yellow fever, and uncertainty 

surrounding the effectiveness of ultra-low volume insecticide applications have led to interest in 

developing novel control plans for quickly and efficiently reducing Aedes populations in 

response to outbreaks of disease.  However, spatial heterogeneity in the distribution of Ae. 

albopictus can make designing efficient control programs difficult.  I parameterized a two-patch 

model of mosquito dynamics using data collected during a field experiment.  Our best-fit model 

estimated that the mean adult lifespan was around 31 days, the barrier spray initially reduced the 

adult lifespan to 3 days with a 9 day half-life for its effectiveness, and that larval habitat 

management resulted in a reduction of larval habitat >50%.  I then used our parameter estimates 

to simulate 9 different control plans across a synthetic neighborhood of 81 interconnected yards.  

These control plans vary in the level of knowledge of the mosquito distribution that is assumed 

and the proportion of houses that are treated.  Using the best fit model, I predicted that treating 

25% of houses is sufficient to reduce the neighborhood-wide mosquito population by 51.3%, 

even when houses are randomly selected.  When I allowed for targeted control through imperfect 

or perfected knowledge of the mosquito distribution, the impact of treating 25% of houses 

increases to 71% and 82%, respectively.  These predictions suggest that there is little added 

benefit of treating more than 25% to 50% of yards in a neighborhood, and that perfect 

knowledge of the population distribution is not necessary to achieve high levels of reduction. 
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INTRODUCTION 

 Since its introduction into the United States (US) in Texas in 1985 (Sprenger & 

Wuithiranyagool, 1986), Aedes (Stegomyia) albopictus (Skuse) has spread throughout much of 

the US.  Currently in the US, populations of Ae. albopictus are ubiquitous from Texas to Florida 

and as far north as Virginia and Washington, DC, and populations in heavily urbanized areas in 

Arizona and New York (Hahn et al., 2017).  More recently, Ae. albopictus was introduced into 

California and is spreading rapidly (Hahn et al., 2017).  This spread has been facilitated by the 

ability of Ae. albopictus’ to oviposit in a variety of man-made containers, e.g. tires and 

accumulated trash, and the ability of eggs to undergo diapause, lasting for months (Hawley, 

1988).  Aedes albopictus prefers peridomestic environments, where containers are plentiful, 

putting it in close contact with human populations.  This proximity to humans, combined with 

high population densities and preference for human hosts, often results in high levels of nuisance 

and disease risk.  Nuisance is often the main concern associated with Ae. albopictus populations 

in the US, as opposed to risk to public health (Lambrechts et al., 2010).  However, it has been 

shown in laboratory settings to be a competent vector for dengue (Boromisa et al., 1987) and was 

the main vector in outbreaks of dengue in Hawaii in 2001 (Effler et al., 2005) and Guangzhou, 

China in 2014 (Luo et al., 2017) and chikungunya on Reunion Island from  2005-2006 (Gérardin 

et al., 2008).  For these reasons, Ae. albopictus is considered a potential culprit for future 

arboviral outbreaks in the US  (Gostin & Hodge, 2016; Messina et al., 2016; Moreno-Madriñán 

et al., 2018). 

 While Ae. albopictus exists across a large area of the US, its abundance can vary 

significantly across relatively small spatial scales, on the order of 10s of meters (Hollingsworth 

et al., 2020; Reiskind et al., 2017).  This variation in abundance is due to the low vagility of Ae. 
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albopictus and the small size and heterogeneous distribution of its preferred oviposition and 

resting habitat.  It has been estimated that most female Ae. albopictus move as little as 250m in 

their lifetime (Marini et al., 2019) and rarely more that 1km under their own volition (Medeiros 

et al., 2017).  In Hollingsworth et al. (2020), traps set in suburban yards in the Raleigh, NC area 

recorded between 1 and 43 female Ae. albopictus per trap night, with counts per trap night 

differing by up to 27 female Ae. albopictus between adjacent neighbors and low levels of 

correlation, ρ = .212.  This fine-scale spatial heterogeneity and low movement rates results in 

population structure that can have important implications for the effectiveness of control 

programs. 

 Mosquito control in the US has historically been performed by mosquito abatement 

districts and targeted species commonly responsible for disease in the region.  Until the 

elimination of malaria in the US in 1951 (Williams, 1963), this was often the malaria vector, 

Anopheles quadrimaculatus Say.  More recently, the focus has switched to controlling Culex 

mosquitoes following the introduction of West Nile virus (WNV) and the reemergence of eastern 

equine encephalitis (EEE) and St. Louis encephalitis (SLE) (Wilson et al., 2020).  However, 

recent outbreaks of Zika and dengue in the Americas, a high willingness to pay for mosquito 

nuisance control (Dickinson & Paskewitz, 2012; Dupont, 2003), the continued spread of 

container Aedes (Hahn et al., 2017; Hopperstad & Reiskind, 2016), and the expected 

reemergence and spread of Aedes-vectored diseases (Wilson et al., 2020) have generated interest 

in developing plans for the control of Aedes mosquitoes.  Recently, the focus of mosquito control 

in much of the US, performed by decentralized mosquito abatement districts and a rapidly 

growing private pest control industry, is minimizing nuisance as much as disease risk (Wilson et 

al., 2020).  Mosquito abatement districts typically attempt to control mosquito populations over 
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large areas using a combination of ultra-low volume (ULV) sprays deployed from vehicle-based 

sprayers and removal or treatment of significant oviposition habitats, e.g. drainage areas and 

swamps.  In contrast, private pest control companies, responsible for treatment of individual 

yards, have chosen to rely instead on barrier sprays, typically pyrethroid based, applied to private 

properties in conjunction with a reduction in oviposition habitat to control peridomestic, pest 

mosquito species (Hollingsworth et al., 2020).   

 While there is a growing body of literature supporting the effectiveness of barrier sprays 

for reducing Aedes populations within treated areas (Fulcher et al., 2015; Hollingsworth et al., 

2020; Hurst et al., 2012; Muzari et al., 2014; Richards et al., 2017; Stoops et al., 2019; Trout et 

al., 2007; Vandusen et al., 2016), larger-scale chemical-based control of Ae. albopictus has 

proven more difficult, and there continues to be a significant debate about the effectiveness of 

ULV spraying against Aedes mosquitoes (Bonds, 2012; Bowman et al., 2016; Faraji & Unlu, 

2016; Roiz et al., 2018; Wilson et al., 2015).  In addition to questions about effectiveness, 

uniform treatments with ULV spraying over large areas presents an inherent risk for the 

emergence of resistant populations of Ae. albopictus, something that has been seen worldwide 

(Dusfour et al., 2019; Moyes et al., 2017; Tancredi et al., 2020) and to other insect populations, 

e.g. butterflies, in the area (Oberhauser et al., 2009).  However, recent work on honeybees 

suggests that they may be unaffected by ULV spraying in field settings (Boyce et al., 2007; 

Pokhrel et al., 2018). 

 One approach that has been suggested to help mitigate many of these issues is the 

development of Integrated Vector Management (IVM) plans (Achee et al., 2019; Fouet & 

Kamdem, 2018; Roiz et al., 2018).  These approaches follow the guidelines of Integrated Pest 

Management (IPM) plans that have been developed in previous decades for crop pests (Gould, 
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1998; Gould et al., 2018; Knipling, 1972; Tabashnik et al., 2004) and seek to integrate 

knowledge about the ecology and evolution of their targeted species to create more effective, 

sustainable plans.  While IPM has been successful in reducing the costs associated with 

agricultural pests, the development of IVM for mosquito species, especially Aedes mosquitoes, 

has been much slower.  Within the IVM framework, many have advocated for targeted 

treatments of areas with dense Aedes populations (Baldacchino et al., 2015; Fouet & Kamdem, 

2018; Unlu et al., 2016), allowing areas with smaller populations to remain untreated.  If targeted 

control can be accurately implemented across heterogeneous landscapes, it is expected that 

treatments will have an increased effect on the overall mosquito population compared to non-

targeted treatments.  This would allow IVMs to provide a cost-effective approach to managing 

Aedes populations across a large heterogeneous landscape (Roiz et al., 2018). 

 Empirical evidence for the effect of yard-based treatments outside of their treatment area 

is scarce, so I used data collected in Hollingsworth et al. (2020) to test the effectiveness of 

different control strategies deployed across a neighborhood.  This experiment measured the 

effectiveness of two common treatments, larval habitat management (LHM) and barrier sprays, 

over a 25-day post-treatment period.  LHM is a common mosquito control technique that aims to 

reduce the presence of oviposition and larval development habitat, most notably standing water, 

in an area.  This is commonly done through “tip-and-toss”, where containers are emptied and 

removed so that they do not refill.  Barrier-sprays are applications of chemical based adulticides, 

that are applied to foliage and other resting spots, along with the edge of the treated area.  

Hollingsworth et al. (2020) conducted a longitudinal study of 16 pairs of adjacent yards 

randomly assigned to a factorial, LHM by barrier spray, experimental design.  They showed that 
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barrier sprays not only reduced the populations within treated yards, but likely reduced the 

population in untreated neighboring yards.  

 To explore the effectiveness of targeted controls implemented in heterogeneous 

neighborhoods, I used data collected in Hollingsworth (2020) to estimate parameters for a model 

of targeted yard-based treatments in suburban neighborhood settings.  Using these parameters, I 

then simulated the mosquito population in the neighborhood under various theoretical control 

strategies to predict the neighborhood-wide reduction in the mosquito population.  By examining 

how population reduction changes with the proportion of yards treated in the model, I assessed 

the benefit of targeted treatments with different levels of knowledge about the mosquito 

population’s distribution across the neighborhood. 

 In the following sections of this chapter, I will (1) describe the formulation of the model 

for neighborhood-wide Ae. albopictus population dynamics, (2) describe how parameter 

estimation was performed using a modified version of this model, (3) present the results of 

parameter estimation and model simulations, and (4) discuss implications of the modeling 

results. 

METHODS 

Model Formulation 

Within Patch Dynamics 

 Populations in each yard were modeled using a two life-stage model, representing the 

aquatic juvenile and terrestrial adult stages (Equations 1).  Juvenile mosquitoes are recruited into 

the model at a constant per adult female rate, b, die at per capita rate d(J), and emerge as adults 

at per capita rate e(J), where both the per capita mortality and emergence rate can be a function 

of juvenile density.  After emergence, adults die at per capita rate dA. 
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𝐽̇ = 𝑏𝐴 − 𝑑(𝐽)𝐽 − 𝑒(𝐽)𝐽 

𝐴̇ = 𝑒(𝐽)𝐽 − 𝑑𝐴𝐴 

(1) 

 

 Density dependence is assumed to only act on the aquatic juvenile stage where the 

population is constrained by intraspecific competition for resources.  Density dependence is 

often modelled as only affecting the juvenile death rate, but experimental results suggest that 

density dependence affects both the mortality rate and the time to emergence (Alto et al., 2005; 

Hancock et al., 2016; Legros et al., 2009), and that the relationship is roughly linear in both cases 

(Hancock et al., 2016).  However, others have made alternative assumptions (Legros et al., 2009; 

Walsh et al., 2012).  I chose to model both the juvenile mortality rate and the time to emergence 

as linearly dependent on the juvenile density.  Too examine how these assumptions affect our 

results, I compared results for three different models, comprised of all combinations of functions 

given in Table 1 that include density dependence parameters either in the larval mortality rate 

(𝑘𝐿), emergence rate (𝑘𝐸), or both. 

Baseline Linear 

𝑑(𝐽) = 𝑑𝐽𝐽 𝑑(𝐽) = 𝑑𝐽 (1 +
𝐽

𝑘𝐿
) 

𝑒(𝐽) = 𝑒 e(𝐽) = e (1 +
𝐽

𝑘𝐸
)

−1

 

Table 4.1:  Equations for the dependence of the per capita juvenile mortality and 

emergence rates on the density of juveniles within a patch. 

Control 

 Mosquito control is assumed to affect the population in two ways.  Larval habitat 

management is assumed to reduce the density-dependence parameters, kL and kE, by some 
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proportion, R, e.g. 𝑘̂𝐿 = 𝑘𝐿(1 − 𝑅), and barrier sprays are assumed to result in a proportional 

increase, C, in the adult mortality rate, i.e. 𝑑̂𝐴 = 𝑑𝐴(1 + 𝐶) .  Each of these controls is temporary 

and their effectiveness is assumed to decay exponentially over time, with constants 𝑟𝑅 and 𝑟𝐶 

respectively (Equation 2).  In general, I use parameters denoted with carets, e.g. 𝑑̂(𝐽), to 

represent parameters that have been modified by a control measure. 

 
𝑅̇ = −𝑟𝑅𝑅 

𝐶̇ = −𝑟𝐶𝐶 

(2) 

Movement 

 Mosquitoes are assumed to move between neighboring yards at an average per capita 

rate, 𝑚, that is biased by the presence of suitable habitat in the yards, which has been observed in 

Ae. aegypti (Edman et al., 1998).  This assumes that individual mosquitoes will search in the 

general area for suitable habitat and will be more likely to move from a yard with very little 

habitat to a yard with more habitat than vice versa.  I chose to use the equilibrium number of 

juveniles present (without movement) as a surrogate for the availability of habitat.  This requires 

the additional assumption that larval habitat removal does not alter the environment in a way that 

affects what the adults perceive as appropriate habitat, e.g. it involves treating and removing 

containers, not landscaping.  This may be the case if adults seek out resting habitat, e.g. bushes, 

as opposed to oviposition habitat, e.g. containers, as resting habitat would be less likely to be 

removed during LHM. 

 To do this, I assume that the average per capita movement rate between patch 𝑖 and 𝑗, 

with equilibrium values of juveniles 𝐽𝑖
∗ and  𝐽𝑗

∗, at per capita rate 𝑚
𝐽𝑗

∗

𝑛𝐽𝑖
∗, where 𝑛 is the total 

number of yards neighboring patch 𝑖.  This gives the total emigration rate from patch 𝑖 as 
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𝑚
∑ 𝐶𝑗,𝑘𝐽𝑘

∗
𝐾

𝑛𝐽𝑖
∗ , where 𝐶𝑗,𝑘 is the connectivity matrix for patches in the neighborhood.  In the case of a 

homogeneous distribution of habitat in the neighborhood, in which 𝐽𝑖
∗ = 𝐽𝑗

∗, this reduces to 

unbiased movement between yards at per capita rate 𝑚.  Importantly, in heterogeneous 

neighborhoods, 𝐽𝑖
∗are assumed independent random variables, 𝐽𝑖

∗~lognorm(μ, σ2).  This means 

that in the heterogeneous neighborhood, 𝔼 [𝑚
∑ 𝐶𝑗,𝑘𝐽𝑘

∗
𝑘

nJi
∗ ] = m and 𝔼 [m

Jj
∗

nJi
∗] =

𝑚

𝑛
, giving an 

expected mean per capita movement rate 𝑚.  This gives the full multi-patch model given in 

Equations 3, where 𝑀𝑖,𝑗 is the matrix of movement rates. 

 

𝐽𝑖̇ = 𝑏𝐴𝑖 − 𝑑𝐿(𝐽𝑖)𝐽𝑖 − 𝑒̂(𝐽𝑖)𝐽𝑖 

𝐴𝑖
̇ = 𝑒̂(𝐽𝑖)𝐽𝑖 − 𝑑̂𝐴𝐴𝑖 + 𝑀𝑖,𝑗𝐴𝑖  

𝑅̇i = −𝑟𝑅Ri 

𝐶̇i = −𝑟𝐶Ci 

(3) 

 

 I note that the movement kernel results in heterogeneity in the equilibrium adult 

population size between patches, even if there is no heterogeneity in larval habitat.  This is a 

result of patches along the boundary having less migration into them due to an assumption of no 

migration into or out of the neighborhood. 

Parameter Estimation 

Model Modification 

 For parameter estimation, I used a two-patch formulation of our model, corresponding to 

the experimental units which consist of one treated and one untreated yard.  I denote dynamics 

occurring it the treated yard with a subscript T and neighboring yards with subscript N.  Each 

patch was assumed to have density-dependence parameters taken from a distribution with means, 
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μ⃑⃑𝑘𝐸
or μ⃑⃑𝑘𝐿

 , and corresponding covariance matrices.  This allows us to account for the possibility 

of neighboring yards being more similar than yards from different pairs. For movement, I replace 

biased movement based on the ratio of mosquito population sizes with biasing parameters, 𝑔𝑇 

and 𝑔𝑁.  These parameters account for any increased (or decreased) movement, compared to the 

average movement rate, out of the treated yard or neighboring yard, respectively.  For parameter 

estimation, 𝑔𝑇 and 𝑔𝑁 are assumed to be random effects that vary between pairs of yards with 

mean one and covariance matrix.  This allows for the possibility that higher than average 

movement in one direction may correlate with below average movement in the other.  These 

modifications give the two-patch formulation seen in Equations 4. 

 

 

J̇T = b𝐴𝑇 − 𝑑̂(𝐽𝑇)𝐽𝑇 − 𝑒̂(𝐽𝑇)𝐽𝑇 

𝐴̇T = 𝑒̂(𝐽𝑇)𝐽𝑇 − 𝑑̂𝐴𝐴𝑇 − m(𝑔𝑇𝐴𝑇 − 𝑔𝑁𝐴𝑁) 

𝐽Ṅ = b𝐴𝑁 − d(𝐽𝑁)𝐽𝑁 − e(𝐽𝑁)𝐽𝑁 

ȦN = e(JN)JN − dAAN + m(gT AT − gN AN) 

𝑅̇ = −𝑟𝑅𝑅 

𝐶̇ = −𝑟𝐶𝐶 

(4) 

 

Estimated Parameters 

 In all model fits, I estimated fixed-effects parameter values for the initial effect of barrier 

spray treatments, 𝐶(0), the proportional reduction in larval habitat due to LHM, 𝑅(0), and the 

movement rate, 𝑚.  A single density-dependence parameter per model, either 𝑘𝐿 or 𝑘𝐸, along 

with the movement biasing parameters were estimated as random effects, with means and 

covariance matrices.  In addition to these parameters, either (a) 𝑏, 𝑑𝐴, and 𝑟𝐶 (b) 𝑏 and 𝑑𝐴 or (c) 
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𝑑𝐴 and 𝑟𝐶 where estimated, giving a total of 6 model fits.    AIC scores of the fits were then used 

to choose the best fit for each model.  All other biological parameters, e.g. dL and e, are fixed 

using the functions estimated in Mordecai et al (2018) and the average temperature over the 

study period taken from NOAA’s Global Historical Climate Network for the Raleigh-Durham 

International Airport (Menne et al., 2012).  I assumed the number of adults, 𝐴(0), and juveniles, 

𝐽(0), present at the beginning of the experiment is at the equilibrium value for the patch in the 

absence of movement.  Hollingsworth et al. (2020) found no evidence for a loss of effect for 

LHM, 𝑟𝑅, and initial parameter estimates agreed with this result, therefore I chose to fix 𝑟𝑅 = 0.     

Parameter Estimation Method 

 I estimated all parameters using a non-linear mixed-effects model, with variables treated 

as discussed in the previous section.  Parameter estimation was done within the nlmixr package 

(Fidler et al., 2019) in R (R Development Core Team, 2019).  This package implements multiple 

estimation methods, but I chose to use SAEM (Delyon et al., 1999), due to its wide use in 

nonlinear mixed-effects modeling and ability to incorporate multiple observation types, i.e. 

observations from both treated and neighboring yards, concurrently.  Briefly, SAEM works by 

dividing the parameter estimation method into two stages, an exploration and smoothing stage.  

The exploration stage works by using the Markov Chain Monte Carlo (MCMC) algorithm to find 

the general neighborhood of the maximum likelihood estimate, defined by the log-likelihood 

function.  Once the exploration stage has converged, the smoothing stage uses an iterative 

process of (1) using MCMC to calculate a set of individual parameters from the population 

parameters from the previous step and (2) calculating new population parameters as the mean of 

the individual parameters from all previous steps of the smoothing stage.  Parameter estimates 

were initialized using parameters from literature (Mordecai et al., 2017) where possible and best 
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guesses where not.  Initial estimates along with their sources are listed in Table S4.1.  All 

parameters were constrained to biologically plausible values through transforms, either a log 

transform to maintain non-negativity or, in the case of the reduction in larval habitat due to 

LHM, a logit transform to constrain the parameter to [0,1].  Diagnostic plots from model fits 

were inspected for any violation of assumptions using the xpose package (Jonsson & Karlsson, 

1998) and are discussed in the supplemental information. 

Simulations 

Neighborhood Configuration  

 I simulated an artificial neighborhood as 81 interconnected patches arranged in a 9x9 

grid, with each patch representing a single yard in a suburban neighborhood.  Movement was 

assumed to only happen between adjacent neighbors, with diagonal neighbors not considered 

adjacent.  The system was assumed to be closed, i.e. no movement into or out of the 

neighborhood, a situation which may occur in neighborhoods surrounded by roads or other 

barriers to Aedes movement.  Dynamics within yards, along with movement between yards, was 

parameterized using the estimates from our best fit model.  Empirical data suggested that the 

number of mosquitoes per yard was well described by a log-normal distribution (Figure 4.1), so I 

estimated the mean, μ, and variance, σ2, associated with this distribution to use in our 

simulations.  To explore the effects that heterogeneity in larval habitat across the neighborhood 

had on our results, I also examined situations in which larval habitat is homogeneous across all 

patches or has twice the variance.  For the sake of comparison, μ was fixed across all 

simulations.  The population was assumed to be at equilibrium at the start of the simulation.  

Simulations were conducted using the deSolve package (Soetaert et al., 2010) and all figures 
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were produced using the ggplot2 package (Wickham, 2016) in R (R Development Core Team, 

2019). 

Control Strategies 

 I evaluated nine different treatment plans, described below (Table 4.2).  These plans vary 

in the scale at which decisions are made (household vs. neighborhood) and the amount of 

information that is used (naïve vs informed).  I ran 100 simulations of 5 treatments occurring 

every 3 weeks (21 days) using each treatment plan in our simulated neighborhood and recorded 

the mean reduction in adult female mosquito numbers across the neighborhood for the post-

control period (105 days) in each simulation.  Within a simulation, yards in which control was 

implemented did not change over time but could change between simulations.  For plans that can 

vary in the proportion of houses that are treated, as opposed to those that have a strict spatial 

pattern, I simulated the control across all possible numbers of treated houses (1 to 81).   

 Naïve plans are those that do not leverage any information about the distribution of the 

mosquito population in the neighborhood.  Here, I tested seven naïve plans.  Five of these plans 

used spatial patterns and would assume neighborhood-wide acceptance.  They were (1) treating a 

grid of houses, (2) treating all yards around the perimeter of the neighborhood, (3) treating all 

yards except those along the perimeter of the neighborhood, i.e. interior yards, (4) treating the 

yards in such a way that every yard is either treated or neighbors exactly one treated yard, and 

(5) treating rings of yards, starting with yards along the neighborhood perimeter.  The remaining 

two plans are a neighborhood-level decision to randomly choose a proportion of yards to be 

treated and a laissez-faire system, allowing individual homeowners to decide on treatment, that 

assumes all homeowners are equally likely to opt in.  For both the neighborhood-level decision 
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and the laissez-faire system, I examined the effect of varying the percentage of yards in the 

neighborhood that are treated. 

 In addition to the naïve plans, I tested two informed plans.  The first assumes perfect 

knowledge of the mosquito distribution and treats the given proportion of the yards with the 

largest populations.  The second assumes that while we do not have perfect knowledge of the 

distribution, we have some imperfect knowledge, such that houses with higher mosquito 

densities are proportionally more likely to be chosen for treatment.  This is done by randomly 

sampling from the yards, with the probability of being chosen weighted by their equilibrium 

mosquito density. For each of these, I examined the effect of varying the percentage of yards in 

the neighborhood that are treated.  In actuality, treatment decisions made by homeowners are 

likely somewhere between the “laissez-faire” and partial knowledge strategies described here.  

Sensitivity Analysis 

 I examined the effects of our choice of neighborhood size and the uncertainty in 

parameter estimates on our prediction of the mean reduction in the neighborhood-wide mosquito 

population.  Results were produced for neighborhoods of 49, 121, and 169 patches and were 

compared to those from our 81-patch neighborhood.  Sensitivity of our results to the parameter 

estimates was done through simulation in the FME package (Soetaert & Petzoldt, 2010) using 

100 sample parameter values drawn from their 95% confidence intervals using Latin hypercube 

sampling.  Results of this analysis are discussed in the supplemental information. 

Cost-Benefit Analysis 

 I assumed a constant marginal cost for treatments, 𝑚𝑐, i.e. treating an additional yard 

always costs the same amount, and that there is a constant benefit, η, in monetary terms, of a 

reduction in mosquito population size, relative to the equilibrium population size.  To determine 
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the proportion of yards to treat, I found when the marginal cost equaled the marginal benefit, i.e. 

𝑚𝑐 = η𝐵(𝑝), where 𝐵(𝑝), the marginal benefits curve, is the additional reduction in the 

neighborhood-wide mosquito population size due to treating an additional yard past the current 

proportion of yards treated, 𝑝. The proportion of yards, 𝑝, that satisfies this occurs when 𝑝 =

𝐵−1 (
𝑚𝑐

η
), and I refer to 

𝑚𝑐

η
 as our cost-benefit ratio. However, a closed form solution to the 

marginal benefits curve does not exist, so I estimated it by approximating the slope of the cost-

benefits curve obtained from our simulations using a first-order approximation. 

RESULTS 

Parameter Estimation 

 Best fit parameters for each model are provided in Table 4.3.  Since the model 

incorporating linear density-dependence terms in both the mortality and emergence rates is most 

biologically tractable, the results focus on Model 3.  The third set of estimated parameters 

provided the best overall fit, according to AIC (Table 4.4).  The model fit estimated an adult 

mortality rate of .03 /day (95% CI of (.00891, .112)) and an initial increase in adult mortality of 

1150% (95% CI of (232%, 5660%)) due to the barrier spray.  This means that the barrier spray 

initially reduces the average lifespan of adult mosquitoes in the treated yard from 31.6 days to 

2.75 days.  This effect was estimated to decay at a rate of .0802 (95% CI of (.0218, .296)), giving 

a half-life of around 9 days.  LHM is predicted by the model to be capable of reducing more than 

50% (95% CI of (.500, 1.00)) of the available larval habitat.  The mean movement rate of adult 

Ae. albopictus between yards was estimated to be 4.42 /day (95% CI of (2.18, 8.98)), however 

there was significant between yard variation (BSV) (Table 4.3).   

Simulations 
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 I simulated the dynamics in the synthetic neighborhood using the best fit model and 

parameters.  I note here that the 95% confidence intervals reported are a result of randomness in 

the simulations, e.g. the population distribution and treatment pattern, and not a result of 

parameter uncertainty.  Within the parameter space given by the 95% confidence intervals, there 

was little variation in the mean reduction predicted by our model (Supplemental Information).  

 Figure 4.2 shows an example run for a 9x9 neighborhood, in which 25% of the houses are 

randomly assigned to receive treatment, using the neighborhood-level naïve decision plan.  

Under this plan, our model predicted that all yards in the neighborhood will see some level of 

suppression due to treatments.  Spatial heterogeneity in carrying capacity did not directly affect 

this observation but did create variation in how much reduction was seen in the yards.  Within 

the 95% confidence for the estimated movement rate (2.18, 8.98), changes in the movement rate 

had no discernable effect on the simulation results, and all yards saw a reduction in population 

numbers.  This is a direct result of migration of mosquitoes from untreated yards into treated 

yards, were they experience an increase in mortality, and are unlikely to return or be replaced by 

migration out of the treated yard.  This also suggests that our results are robust to uncertainty in 

the movement rate within this confidence interval. 

Evaluating Control Plans 

 Figure 4.3 shows how the reduction in the mosquito population, in percentage of 

equilibrium population size, changes with the percentage of the neighborhood that is treated.  

Our simulations suggest that near complete suppression of the Ae. albopictus population (≈ 97% 

reduction) neighborhood-wide is possible through the treatment of all yards in the neighborhood 

(Figure 4.3:  Central Panel).  For the treatment plans where the number of treated yards can be 

varied, we see that most of the benefit is obtained by treating a relatively small number of yards.  



   

128 

The extent to which this occurs changes drastically with both the control plan implemented and 

the level of spatial heterogeneity present in the neighborhood. 

 None of the spatially patterned plans, nor the plan using naïve neighborhood-level 

decision to randomly treat a proportion of the yards, outperformed the laissez-faire strategy in 

any situation (Figure 4.3).  These plans would require considerable effort compared to the 

laissez-faire strategy, with no additional benefit, so I choose not to discuss them in detail. 

 Under the assumption of homogeneous distribution of larval habitat in the neighborhood, 

simulations showed no difference in how treatment plans perform (Top Panel, Figure 4.3).  

However, the laissez-faire treatment plan had a significantly larger standard deviation than the 

others, due to uncertainty in the number of houses receiving treatment.  All treatments plans saw 

large reductions in the neighborhood-wide population size occur with only a small percentage of 

the neighborhood treated.  For instance, treating 25% of yards resulted in approximately a 60% 

reduction in the neighborhood-wide mosquito population (95% CI of (48.0%, 72.0%) for laissez-

faire control and in the range (58.2%, 61.8%) for all others. 

 Under the assumption that the spatial heterogeneity follows either the observed 

distribution or a distribution with double the observed variance, simulations clearly showed the 

benefit of using knowledge about the population’s distribution.  Under the observed level of 

between yard variation, the use of imperfect knowledge increased the reduction in the 

neighborhood-wide population from 51.3% (95% CI of (29.9%, 72.7%)) to 71.4% (95% CI of 

(61.5%, 81.3%)) when a quarter of the yards are treated.  Using perfect knowledge increased this 

reduction to 82.4% (95% CI of (78.9%, 86.1%)).  Likewise, with 50% of yards treated there was 

an increase in reduction from  75.0% (95% CI of (64.3%, 85.8%)) under the laissez-faire plan to 

87.2% (95% CI of (83.2%, 91.3%)) and 91.4% (95% CI of (90.1%, 92.7%)) utilizing imperfect 
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and perfect knowledge, respectively.  The benefit of using knowledge of the mosquito population 

distribution was seen to increase further with an increased heterogeneity in the carrying capacity 

between yards (Figure 4.3). 

Cost-Benefit Analysis 

 I used our estimates of the marginal benefit curve, 𝐵(𝑝), obtained from the first order 

approximation of the derivative of the cost-benefit curves (Figure 4.3), to numerically find the 

relation between the cost-benefit ratio and percentage of yards that should be treated so that the 

marginal benefit and cost are equal (Figure 4.4).  As in the cost-benefit curves, there is no 

difference between plans under the assumption of a homogeneous distribution of larval habitat 

between yards.  When heterogeneity in larval habitat was taken into account, plans taking 

advantage of perfect, and to a lesser extent imperfect, knowledge saw a steep drop in the 

percentage of yards treated until approximately 25%, at which point decrease slows.  This 

suggests that it would rarely be beneficial, for the neighborhood as a whole, to treat more than 

25% of yards in a neighborhood when information about the distribution is used to inform which 

yards to treat.  This is similar to the results seen with the cost-benefit curve, where a 25% of the 

yards being treated resulted in a neighborhood-wide reduction of 71.4% or 82.4% (CIs given 

previously) depending on how much information is known. 

DISCUSSION 

 Our results suggested that the yard-scale population dynamics of Ae. albopictus were best 

described by a model that incorporated density dependence in both the larval mortality rate and 

the emergence rate.  This concurs with experimental data that shows that both rates vary with 

larval density (Alto et al., 2005; Hancock et al., 2016).  Our best fit parameter estimates for this 

model suggest that the average lifespan of Ae. albopictus in the Raleigh, NC area was around 31 
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days, which falls between the presumed lifespan of around 20 days (Hawley, 1988) used in other 

models of Ae. albopictus dynamics and the estimate of 104 days, taken from laboratory studies, 

from Mordecai et al. (2017), and is at the high end of previous estimates of between 4 and 32 

days obtained from a review of mark-recapture studies (Brady et al., 2013).  I also found that the 

use of barrier spray treatments resulted in an additional increase in adult mortality of around 

1150%, which decreases by half every 9 days.  In a single isolated patch, a 1150% increase in 

adult mortality would be expected to result in a much larger decrease in Ae. albopictus counts 

than was observed in Hollingsworth et al. (2020).  However, the high movement rate suggests 

that the mosquitoes caught in yards post-barrier spray may be likely new immigrants from 

neighboring yards.  Further, a half-life of 8.64 days would result in a decrease in the effect to 

155% after 25 days, the length of post-control observation, which would be a sufficient reduction 

in impact to allow populations to begin to rebound.  The movement rate I estimated suggests that 

Ae. albopictus routinely moves between yards multiple times a day.  While this may seem 

contrary to their short dispersal range, it is not unexpected since study yards were often <30m 

across with much of the available resting habitat along the edge, meaning that it was only a short 

flight into neighboring yards.  Our model also suggests that LHM is effective in removing the 

larval habitat within treated yards, with estimates suggesting it removes 50-100% (95% CI) of 

the habitat. 

 Using targeted applications of adulticides and LHM has been suggested as a possible 

alternative to ULV spraying for the control of Aedes mosquitoes (Baldacchino et al., 2015; Fouet 

& Kamdem, 2018; Unlu et al., 2016).  Simulations suggest that it should be possible to achieve 

greater than a 70% reduction in the neighborhood-wide population while treating approximately 

25% of yards with targeted barrier sprays and LHM, even without perfect knowledge about the 
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underlying spatial distribution of the population.  This suggests that targeted controls, using a 

combination of barrier sprays and LHM, are a viable option for controlling Aedes mosquitoes in 

suburban areas and could prove preferential to ULV sprays under some situations. 

 The predicted reduction in the neighborhood-wide population density from our best fit 

model are robust to changes in parameter values within our estimated 95% confidence intervals 

(Supplemental Information).  This suggests that the results will likely extend to models of Ae. 

aegypti, as well as container Aedes found in other regions, e.g. Aedes notoscriptus in California 

and Aedes koreicus in Europe, as life history traits (Mordecai et al., 2017) and movement (Juarez 

et al., 2020; Medeiros et al., 2017) have not been found to differ vastly between the species in the 

US.  Other questions about the use of targeted controls can initially be addressed within the 

modeling framework developed here, including the probability of insecticide resistance 

emergence and the inclusion of epidemiological endpoints for viral disease.  In addition, this 

model, and the parameter estimates I present, can be used to inform optimal treatment strategies 

for reducing either the disease risk or nuisance associated with Ae. albopictus.   

 Our analysis had several limitations, some of which reflect the experimental data on 

which it builds.  Our estimate of the reduction in larval habitat due to LHM produced a large 

95% confidence interval (50%, 100%) and I had insufficient information to estimate the rate at 

which larval habitat recovers following treatment.  This was due to limitations of the experiment 

the data was taken from (Hollingsworth et al., 2020), which only trapped 25 days post-treatment.  

However, previous experiments measuring the reduction in larval habitat following mitigation 

have also estimated 43-98% reductions in habitat (Tun-Lin et al., 2009).  As discussed in 

Hollingsworth et al. (2020), LHM only began to show a significant effect 21 days post-treatment 

and the effect was still increasing at 25 days.  A delay in effect of this length is not surprising, 
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given our estimate of an average lifespan of 31 days for Ae. albopictus in the area.  I also lacked 

any information about the mosquito population in yards surrounding those in the experiment.  

Because of this, I chose to assume a closed system during parameter estimation.  It is also 

possible that the use of ordinary differential equation (ODE) models are inappropriate at this 

scale, as the populations within each yard are small, on the order of tens to hundreds or smaller 

following treatment.  However, ODE models are often used to understand underlying dynamics 

before introducing the increased complexity of stochastic processes.  Lastly, our model assumes 

that the spatial distribution of larval habitat does not change over time, i.e. “hot-spots” do not 

move.  There is some disagreement in the literature as to the validity of this assumption, but at 

least two studies have suggested it is the case for Ae. aegypti (Barrera, 2011; Estallo et al., 2013).  

Future modeling efforts can relax this assumption and evaluate the impact of unstable “hot-

spots” of larval habitat. 

 Decisions concerning where to treat are almost always informed, to some extent.  These 

decisions are made either by homeowners who have experienced nuisance or by mosquito 

control professionals who have based their choices on observational data.  For that reason, it is 

likely that a true laissez-faire system would be a combination of the laissez-faire strategy, as 

presented here, and the partial knowledge strategy.  If homeowners are sufficiently 

knowledgeable about the mosquito population in their yard, a voucher program that lowers the 

cost of treatments, thus increasing the number of homeowners choosing treatment, may be more 

effective at increasing the neighborhood-wide reduction than extensive mosquito surveillance. 

 These models, parameterized using field data on the impact of controls, indicate the 

likely effectiveness of targeted controls and can provide guidelines for implementation of 

efficient mosquito control.  However, models cannot replace field experiments to evaluate the 
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effectiveness of different strategies, and the results I present here should be experimentally 

tested.  Experiments and control programs operating at the neighborhood-scale are expensive and 

require extensive coordination, and our results should be used as a starting point for these 

programs.  Importantly, our models suggest that it is likely that neither detailed data on the 

distribution of Aedes in the area nor access to every yard is necessary for the treatment programs 

to successfully reduce the population density of Ae. albopictus neighborhood wide.  However, 

the use of some information about the distribution of mosquitoes substantially improves control. 
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FIGURES 

 
Figure 4.1:  Distribution of mean Ae. albopictus counts in yards during the study period.  

Measurements taken after treatments were not included.  Red curve is the best fit lognormal 

distribution that the yards were sampled from for the simulations. 
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Figure 4.2:  Example simulation runs.  Number of adult female Ae. albopictus from 

simulations of a 9x9 neighborhood treated with 25% of the houses chosen randomly 

(neighborhood-level decision) for treatment.  Fits from the observed data are in the center panel, 

with changes in the variation in larval habitat and movement rate increasing from left to right and 

top to bottom, respectively.  Results are shown for a homogeneous population distribution, the 

observed population distribution, and a distribution with the observed variance doubled.  The 

effect of the movement rate is also shown, using the estimated movement rate (𝑚 = 4.42 /day, 

center row) and the bounds of its 95% confidence interval (𝑚 = 2.18, top row, and 𝑚 = 8.98, 

bottom row).  We see no difference in the simulation results due to uncertainty in the estimate of 

the movement parameter. 
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Figure 4.3:  Cost-benefit curves.  Mean and 95% confidence intervals for percent reduction in 

the mean neighborhood-wide Ae. albopictus population size (benefit) resulting from various 

levels of control (cost).  Strategies relying on spatial patterns of treatments (shapes) are displayed 

based on the percentage of yards they treat in the 9x9 neighborhood, e.g. the checkered pattern 

results in treating 50% of yards.  Results from the observed data are in the center panel, with 

variance increasing from top to bottom.  Mean neighborhood-wide population size was found as 

the average across all yards over the entire post-treatment period (105 days).  Simulations are 

conducted using the best-fit parameters for the three potential models with 100 simulations run 

per treatment level.  Colors correspond to different treatment plans.  When all yards are treated, 

the best fit model predicts a 97% reduction in the neighborhood wide population over the post 

treatment period.  We see that under the assumption of a heterogenous distribution of larval 

habitat (top panel), all plans have a similar effect.  However, as variance between yards 

increases, the plans using either perfect or imperfect knowledge outperform the naïve plans.  

Importantly, the plans that take advantage of knowledge of the population (either perfect or 

imperfect) reach high levels of control with a small percentage of yards being treated.  Under the 

observed distribution (center panel), treating 25% of houses is predicted to result in a reduction 

of 71% and 82% for the plans using imperfect knowledge and perfect knowledge, respectively, 

as opposed to a 51% reduction under the laissez-faire system.  As spatial heterogeneity increases, 

the added benefit of information is increased, while the benefits curves for the uninformed plans 

becomes more linear.  With the variance in the availability of larval habitat doubled (bottom 

panel), we predict 74% and 83% reduction in population size for the plans using imperfect or 

perfect knowledge, respectively, compared with a 41% reduction under the laissez-faire system.  

None of the other naïve plans, either choosing a proportion at a neighborhood-level or spatial 

patterns (shapes), i.e. checkered pattern and with-in one, outperformed the laissez-faire system. 
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Figure 4.4:  Cost-benefit analysis. Proportion of yards to treat for varying cost-benefit ratios, as 

suggested from our best model fit.  Values are calculated as explained in the text, with a GAM 

used to estimate a smooth curve.  Here, 𝑚𝑐 is the cost of treating a single yard and η is the 

benefit, in monetary terms, of a reduction of 1% of the equilibrium population size in the 

neighborhood-wide mosquito population.  Like previous results, there is no significant difference 

between plans under the assumption of the uniform distribution.  For control programs using 

perfect knowledge, and to a lesser extent imperfect knowledge, the percentage of yards that 

should be treated falls rapidly for low cost-benefit ratios before leveling off.  This suggests that a 

large benefit would be necessary to treat need to treat more than around 25% of the yards. 
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TABLES 

 

Table 4.2:  Treatment plans.  List of treatment plans, how yards are selected, the level of 

knowledge that is used, and example of treatment plans for a 36-yard neighborhood (6x6 grid).  

Treatment Plan How yards are selected Information Needed Example 

Checkered Spatial Pattern None       

      

      

      

      

      
 

Perimeter Spatial Pattern None       

      

      

      

      

      
 

Interior Spatial Pattern None       
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Table 4.2:  Treatment plans (Continued).  List of treatment plans, how yards are selected, the 

level of knowledge that is used, and example of treatment plans for a 36-yard neighborhood (6x6 

grid).  

Treatment Plan How yards are selected Information Needed Example 

Within-one Spatial Pattern None       

      

      

      

      

      
 

Rings Spatial Pattern None       

      

      

      

      

      
 

Laissez-faire Homeowner Decision None       

      

      

       

      

      

(p=.2) 
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Table 4.2:  Treatment plans (Continued).  List of treatment plans, how yards are selected, the 

level of knowledge that is used, and example of treatment plans for a 36-yard neighborhood (6x6 

grid). 

Treatment Plan How yards are selected Information Needed Example 

Neighborhood Level Neighborhood Level Decision None       

      

      

       

      

      

(p=.2) 

Imperfect Knowledge Neighborhood Level Decision Intermediate       

      

      

       

      

      

(p=.2) 

Perfect Knowledge Neighborhood Level Decision High       

      

      

       

      

      

(p=.2) 
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Table 4.3:  Best fit parameter estimates for the three models.  Parameters that were not directly estimated are denoted with an 

asterisk (*).  95% confidence intervals for all estimated parameters are given, along with the estimated amount of between subject 

variation (BSV) that was estimated by the fitting process 

  Model 1 Model 2 Model 3 

Parameter Biological Interpretation 

(units) 

Estimate Treated 

BSV (%CV) 

Neighbor 

BSV (%CV) 

Estimate Treated 

BSV (%CV) 

Neighbor 

BSV (%CV) 

Estimate Treated BSV 

(%CV) 

Neighbor BSV 

(%CV) 

𝑏 Birth Rate 

(/(female*day)) 

6.92 --- --- 6.92* --- --- 6.92* --- --- 

𝑑𝐿 Density-independent Larval 

Mortality Rate 

(/day) 

.0112* --- --- .0112* --- --- .0112* --- --- 

𝑘𝐿  Density-dependent Larval 

Mortality Rate 

17.9 

(10.4, 30.6) 

2.55  1.95  --- --- --- 143 

(35.1, 586) 

1.05 .951 

𝑒 Density-independent 

Emergence Rate 

(/day) 

5.16e-2* --- --- 5.16e-2* --- --- 5.16e-2* --- --- 

𝑘𝐸  Density-dependent 

Emergence Rate 

--- --- --- 1.97 

(.785,4.94) 

1167 134.65 36.3** --- --- 

𝑑𝐴 Adult Mortality Rate 

(/day) 

1.45 

(1.11, 1.90) 

--- --- .0499 

(.0458, .0545) 

--- --- .0316 

(.00891, .112) 

--- --- 

𝐶(0) Initial Increase in Adult 

Mortality 

(%) 

125% 

(105%, 148%) 

--- --- 2460% 

(1050%, 5740%) 

--- --- 1150% 

(232%, 

5660%) 

--- --- 

𝑟𝐶 Rate of Loss of Effect of 

Barrier Spray 

(/day) 

.00803 

(.000409, .158) 

--- --- 1.17 

(.0487, 27.6) 

--- --- .0802 

(.0218, 8.98)  

--- --- 

𝑅(0) Initial Reduction in Larval 

Habitat  

(%) 

82.6% 

(57.1%, 94.4%) 

--- --- 53.7% 

(3.28%, 96.5%) 

--- --- 100% 

(91.3%, 100%) 

--- --- 

𝑟𝑅 Rate of Loss of Effect of 

LHM 

(/day) 

0* --- --- 0* --- --- 0* --- --- 

𝑚 Per Capita Movement Rate 

(/day) 

27.7 

(.141, 5.47e3) 

22.03 

 

31.50    12.8 

(.015, 1.09e4) 

43.02 .0612 4.42 

(2.18, 8.98) 

5.05 21.6 

AIC of Best 

Fit 

 4378   3378   5074   
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Table 4.4:  AIC (and 𝚫AIC) values for each of the model fits.  Model 3 fitting the adult death rate (𝑑𝐴) and the rate of decay of the 

effectiveness of the barrier spray (𝑟𝑐), along with the carrying capacity term (𝑘𝐿), initial effect of the barrier spray (𝑐), proportion of 

larval habitat reduction (𝑟), movement rate (𝑚), and the between subject variation as described in the model description provided the 

best fit. 

Fit parameters Model 1 Model 2 Model 3 

𝑏, 𝑑𝐴, and 𝑟𝐶  NA 3467 15619 

𝑏 and 𝑑𝐴 4751 10693 25684 

𝑑𝐴 and 𝑟𝑐 4378 3378 5074 

.
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SUPPLEMENTAL INFORMATION 

Equilibria of Models 

 Model equilibria where found by setting the derivative to zero and solving for the state 

variables 𝐽 and 𝐴 for the single-patch model.  Equilibria incorporating movement where not 

analytically solvable.  I used the Maple software (Maple 2016, 2016) to solve for all equilibria.  

Non-trivial equilibria for the three models are given in Table S4.1.  For brevity, the equilibrium 

values for adults, 𝐴∗, is given in terms of the equilibrium value of the juveniles, 𝐽∗. 

Initial Values for Parameters 

 Initial values for parameters are given in Table S4.2. 

PE model diagnostics 

 Diagnostic plots were used to determine overall model fit and to detect any violation of 

assumptions.  I see that our best fit model had a slight tendency to underestimate the number of 

mosquitoes in the yard and shows signs of heteroskedasticity (Figure S4.1).  The qq-plot of the 

conditional weighted residuals (CWRES) shows some deviation from the assumption of 

normality for observations in the furthest upper and lower quantiles, but the assumption seems to 

hold overall (Figure S4.2).  The visual predictive check (VPC) suggests that the model vastly 

overpredicts the variation in the data.  This is seen in the 95% confidence intervals for the data 

(Figure S4.3, dashed line) not falling within the 95% confidence interval predicted by simulation.  

However, VPC have been shown to be poor measures of fit when there is a significant variation 

in treatments and a small number of replicates per treatment, as seen here (Karlsson & Savic, 

2007).  

Sensitivity to Neighborhood Size 

 To examine the assumption of no movement into or out of the neighborhood on our 

results, results were produced as described in the main text for neighborhoods of 49, 121, and 
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169 yards.  As the neighborhood size is increased, the proportion of yards along the boundary 

decreases, and the effect of this assumption decreases.  We see that as the number of patches 

increases, the mean reduction predicted by the model remains relatively unchanged, while the 

variation in the reduction is reduced (Figure S4.4).  This suggests that our results are not 

significantly affected by our boundary condition. 

Sensitivity to model parameters 

Sensitivity to model parameters was found by simulating the results using 100 random draws of 

the fitted parameters, i.e. 𝑑𝐴, 𝑘𝐿, 𝐶(0), 𝑟𝐶, 𝑅(0), and 𝑚, from their 95% confidence intervals 

using Latin hypercube sampling.  A 95% confidence interval for the mean reduction in 

population size and the standard error of the predicted reduction were then calculated using the 

sensRange() function in the FME package (Soetaert & Petzoldt, 2010).  Uncertainty in parameter 

estimates results in a significant amount of variation in the proportional reduction in the 

neighborhood-wide mosquito population.  However, our main results still hold (Figure S4.5). 

Identifiability of model parameters 

Identifiability of model parameter sets was determined using the collinearity of parameter 

estimates.  Collinearity was calculated using the collin() function in the FME package (Soetaert 

& Petzoldt, 2010).  Potential parameter sets were chosen based on the ability to estimate all 

control parameters (𝐶(0), 𝑅(0), 𝑟𝐶) while retaining a collinearity value less than 20.  

Collinearity of parameter sets used in the best fit for each model suggested that all parameters 

were identifiable from data. 
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SUPPLEMENTAL FIGURES 

 

Figure S4.1:  Observed data (DV) vs individual prediction (IPRED). 
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Figure S4.2:  QQ-plot for CWRES.  Figure shows some deviation of the residuals from normal 

for predictions in the highest and lowest quantile, but overall seems to fit the assumption well. 
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Figure S4.3:  VPC plot.  VPC suggests that the model drastically over predicts the variation in 

the data.  Seen here as the bounds of the 95% confidence intervals for the observed data (dotted 

lines) not falling within the 95% confidence interval of their predicted values.   However, VPC is 

known to be inconclusive when differences in treatment are high and replication for treatments is 

low as it is here. 
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Figure S4.4:  Cost-benefit curves for differing neighborhood sizes.  Mean and 95% 

confidence intervals for percent reduction in the mean neighborhood-wide Ae. albopictus 

population size (benefit) resulting from various levels of control (cost).  Mean neighborhood-

wide population size was found as the average across all yards over the entire post-treatment 

period (105 days).  Simulations are conducted using the best-fit parameters for the three potential 

models with 50 simulations run per treatment level.  Colors correspond to different treatment 

plans.  We see that as the neighborhood size increases (Panels), the mean reduction predicted 

does not change.  However, the variation in the mean reduction decreases as the neighborhood 

size increases. 
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Figure S4.5:  Sensitivity of mean reduction to parameter values.  Mean (black line), 50% 

confidence interval (dark grey area), and 90% confidence interval (light grey area) of results 

using 100 random draws of parameter values from within their estimated 95% confidence 

intervals.  (A)  The strategy using perfect knowledge.  (B)  The strategy using partial knowledge.  

(C)  The strategy using an uninformed neighborhood-level decision.  There is significant 

variation in the mean reduction that is predicted due to uncertainty in the parameter values.  

However, this variation does not affect our main conclusions. 
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SUPPLEMENTAL TABLES 

Table S4.1:  Equilibrium values.  Equilibrium values for each model.  For brevity, the 

equilibrium value of adults, 𝐴∗, is given in terms of the equilibrium value for juveniles, 𝐽∗. 

Model (𝑱∗, 𝑨∗) 

Model 1 
(

𝑘𝐿(𝑏𝑒 − 𝑑𝐴𝑑𝐿 − 𝑑𝐴𝑒)

𝑑𝐴𝑑𝐿

,
𝑒𝐽∗

𝑑𝐴

) 

Model 2 
(

−𝑘𝐸𝑑𝐿𝑑𝐴 ± √(𝑘𝐸𝑑𝐿𝑑𝐴)2 − 4(𝑑𝐴𝑑𝐿)(𝑘𝐸𝑒)(𝑑𝐴 − 𝑏)

2𝑑𝐴𝑑𝐿

,
𝑒𝑘𝐸𝐿∗

𝑑𝐴(𝑘𝐸 + 𝐿∗)
) 

Model 3 
(

−(𝑑𝐴𝑑𝐿)(𝑘𝐸 + 𝑘𝐿) ± √(𝑘𝐸 + 𝑘𝐿)2(𝑑𝐴𝑑𝐿)2 − 4(𝑑𝐴𝑑𝐿)(𝑘𝐸𝑘𝐿)(−𝑏𝑒 + 𝑑𝐿𝑑𝐴 + 𝑒𝑑𝐴)

2𝑑𝐴𝑑𝐿

,
𝑒𝑘𝐸𝐿∗

𝑑𝐴(𝑘𝐸 + 𝐿∗)
) 
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Table S4.2:  Initial guesses for model parameterization and source, unless a best guess was 

used. 

Parameter Initial Guess Source 

𝑏 6.921 Mordecai et al. (2017) 

𝑘𝐿 10  

𝑘𝐸 10  

𝑑𝐴 .009601 Mordecai et al. (2017) 

𝐶(0) 5  

𝑟𝐶  .06666  

𝑅(0) .1  

𝑚 .1  

𝑔𝑇 BSV 1  

𝑔𝑁 BSV 1  

𝑘 BSV: Treated 1  

𝑘 BSV: Neighbor 1  

Cov(𝑔𝑇,𝑔𝑁) .1  

Cov(𝑘𝑇, 𝑘𝑁) .1  
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CHAPTER 5 – Conclusions 
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Better understanding the impacts of mosquito control on Aedes population dynamics, 

both in the short- and long-term, are vital for the development of efficient control programs.  

Without this knowledge, control programs run the risk of being ineffective at reducing local 

population sizes or mitigating outbreaks of Aedes-vectored diseases.  Without proper monitoring 

and an understanding of underlying population, genetics, and transmission dynamics, it is 

possible for poorly thought out, reactive controls to make the situation worse in the long-term, 

even when they appear to be successful in the short term.  In this dissertation, I examined the 

dynamics resulting from the use of non-immunizing controls, most notably insecticide 

applications, against Aedes mosquitoes and the diseases they vector, with the hope of providing 

improved guidance for their use. 

 Chapter 2 of this the dissertation discussed the divorce effect.  A phenomenon which 

occurs when outbreaks following the cessation of a control program were large enough to negate 

any benefit of the initial control program.  I showed that during the time that incidence was 

suppressed by the control, from the time control is initiated until the infection reemerged, the 

population quickly lost herd immunity.  This reduction in herd immunity puts populations at risk 

of a major outbreak upon reemergence, and the outbreak that occurs after reemergence almost 

always resulted in more infections than would have occurred if no control had been used.  This 

represents a worst-case scenario for disease control in which it results in an increase in the 

number of infections.  Importantly, I showed that this result was not unique to any disease 

system or control method and that, with very few exceptions, controls needed to be maintained 

for decades to avoid consequences related to the divorce effect. 

 In Chapter 3, I quantified the effect of two common mosquito control techniques, barrier 

sprays and larval habitat management (LHM), and how their effectiveness changes over time, 
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information that would be critical for deploying them in response to an Aedes-vectored disease 

outbreak.  This was done using a field experiment conducted in 2018 in which I examined the 

temporal dynamics of Aedes albopictus populations in yards treated with barrier sprays or LHM, 

as well as in untreated neighboring yards.  I was able to show that both the barrier spray and 

combined treatment were able to significantly reduce the Ae. albopictus populations within 

treated yards and found some evidence for a reduction in untreated neighboring yards.  I also 

found that while LHM did not result in a significant reduction in the population over the entire 

post-treatment period, it did result in a significant reduction on the final days of sampling and 

evidence of a downward trajectory in the population sizes.  This suggested that future studies of 

the effects of LHM should monitor yards for more than 25 days post-treatment. 

 In Chapter 4, I showed modeling results that suggest that treating 25% of yards using a 

combination of barrier sprays and LHM, deployed every three weeks, was sufficient to reduce 

the neighborhood-wide population by more than 50% if yards were chosen at random and more 

than 80% if the distribution of Ae. albopictus if yards with the highest densities were precisely 

targeted.  These results were produced using a model I developed for the implementation of 

LHM and barrier sprays across a heterogenous neighborhood.  To do this, I used a nonlinear 

mixed effects model to estimate the parameters for control, density-dependence, and adult 

mortality from the data collected in Chapter 3.  I then simulated the effects of 9 different 

strategies for deploying treatments in a heterogenous neighborhood and examined the effect of 

using targeted controls compared to more naïve plans.  These results suggested that the use of 

targeted controls may be useful for both the reduction of nuisance and disease risk caused by Ae. 

albopictus. 
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 The work presented in this dissertation has added to the literature on the dynamics during 

and following mosquito control.  The divorce effect, presented in Chapter 2, suggested that the 

use of insecticides to combat vector-borne diseases may be putting local populations at risk of 

major outbreaks.  Outbreaks that could erase the benefits from years of successful suppression of 

disease like dengue.  I then showed, using the data in Chapter 3 and the model in Chapter 4, that 

the use of targeted controls can suppress Aedes populations across a large area.  If these methods 

prove as effective in field trials as the models suggest, they could provide a method to efficiently 

reduce the risk of outbreak due to the introduction, or reintroduction, of Aedes-vectored diseases.  
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APPENDIX 
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Appendix A - Locally Fixed Alleles:  A method to localize gene drive to island populations 

Sudweeks, J., Hollingsworth, B., Blondel, D. v., Campbell, K. J., Dhole, S., Eisemann, J. D., 

Edwards, O., Godwin, J., Howald, G. R., Oh, K. P., Piaggio, A. J., Prowse, T. A. A., Ross, J. v., 

Saah, J. R., Shiels, A. B., Thomas, P. Q., Threadgill, D. W., Vella, M. R., Gould, F., &  

Lloyd, A. L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This appendix was published in Scientific Reports.  Sudweeks, J., Hollingsworth, B., Blondel, D. v., Campbell, K. 

J., Dhole, S., Eisemann, J. D., Edwards, O., Godwin, J., Howald, G. R., Oh, K. P., Piaggio, A. J., Prowse, T. A. A., 

Ross, J. v., Saah, J. R., Shiels, A. B., Thomas, P. Q., Threadgill, D. W., Vella, M. R., Gould, F., & Lloyd, A. L. 

(2019). Locally Fixed Alleles: A method to localize gene drive to island populations. Scientific Reports, 9(1), 1–10.  
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