
ABSTRACT

VELLA, MICHAEL RICHARD. Modeling Strategies for Insect Pest Management: Genetic Analyses
and Parameter Estimation. (Under the direction of Alun Lloyd and Fred Gould.)

Insect pests cause substantial annual damages in human health as vectors of disease and in

agriculture. It has proven challenging to mitigate the damages by reducing insect population size

or making the species unable to transmit disease. One of the traditional approaches to reducing

population size is using chemical insecticides, but insect resistance to chemicals requires limited use

of each insecticide or switching to different chemicals. A variety of genetic strategies exist that involve

releasing transgenic strains of a species. Some strategies rely on inundating the population with

transgenics that lower the average fitness of the population, sometimes to the point of eliminating

the population. An example is the use of female-killing strains, which cause death of the females

that inherit the inserted gene. Another set of transgenic strains are examples of gene drives, where

the frequency of the transgene would automatically increase after release. Gene drives can spread a

gene that lowers fitness and suppresses population size, or a gene that prevents the species from

being vectors of disease. In this dissertation, I use mathematical models to analyze several of these

approaches.

In Chapter 2, I explore the evolution of a relatively new class of gene drives and several proposed

countermeasures that would slow the spread or remove the first drive altogether. These CRISPR-

Cas9-based gene drives have the theoretical potential to spread without limit. For this reason, many

countermeasures have been theorized and/or developed to halt or reverse a drive if needed, such

as an additional gene drive that biases inheritance over the first drive. I develop a discrete-time,

allele-frequency model to explore the population genetics of the wild-type, the gene drive, and the

countermeasure alleles. I find surprising oscillatory behavior under certain parameter values and

that different countermeasures may be best to use in different scenarios.

In Chapter 3, I evaluate the effectiveness of several genetic approaches designed to suppress

the population with repeated release. My focus is to compare female-killing strains that have the

killing mechanism at a single locus in the genome and those that are spread across two loci. Each

of these approaches has been built, but previous modeling efforts have only considered female-

killing at one locus. I use a genotype-frequency, differential equation model with age structure



and density-dependent mortality to compare the effectiveness of the approaches. Even though the

genetic elements are inherited independently if spread across two loci, the ability to suppress the

population is similar compared to the one-locus approach.

In Chapter 4, I analyze data showing the development of resistance to insecticides in mosquitoes

in Iquitos, Peru. The resistant allele increased in frequency over the course of many years while

there was spraying of insecticides. Of interest are the parameters for the strength of selection

against mosquitoes with a single copy and two copies of the susceptible allele. I use a discrete-time,

genotype-frequency model as the basis for Bayesian inference. Results from particle Markov chain

Monte Carlo suggest that the cost to susceptibles is recessive or additive, meaning that a single

resistant allele is enough to substantially lessen the negative effects from the insecticide.

Throughout this dissertation, I show the utility of simple models. While population genetics can

sometimes seem comprehendable using reasoning alone, models can illuminate surprising and

unintuitive outcomes.
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Chapter 1

Introduction

1



1.1 Background

Insect pest species pose threats to human health and agricultural yields. Vector-borne diseases cause

over 700,000 deaths annually and amount to billions of dollars in costs (World Health Organization,

2017), while agricultural pests are estimated to cause losses of around 20% of global yields (Savary

et al., 2019). A variety of approaches have been theorized and/or used to lessen the burden of insect

pests. One of the most widespread approaches is the use of chemical insecticides. While insecticides

can be effective at reducing population sizes, insects develop resistance, limiting the extent to

which insecticides can be effective and requiring careful management to keep resistance levels low

(Hemingway and Ranson, 2000; Kelly-Hope et al., 2008).

An alternative set of approaches involve genetic strategies aiming to suppress or eliminate

a species. The simplest genetically engineered strains have dominant lethal genes that cause all

offspring, or only the females (female-killing) to die and reduce population size over the course of

many large, repeated releases (Alphey et al., 2013). Gene drives, rather, are engineered to spread

with only a single release (Alphey et al., 2013). Several mechanisms for gene drive exist, but most

recently, development of gene drives have utilized the CRISPR-Cas9 system (Hsu et al., 2014; Doudna

and Charpentier, 2014) in many different species (e.g., Gantz and Bier, 2015; Champer et al., 2016;

Champer et al., 2017).

Mathematical modeling of population genetics is a valuable tool to assist with combating insect

pests. Considering genetic approaches, models can be useful during each step of development. First,

models can be used to predict expected outcomes of a theoretical idea based on its mechanism and

inheritance patterns. Genetic engineering can be extremely time and resource intensive (see, e.g.,

Gregory et al., 2016), so modeling results at this stage are important to help guide research efforts

towards areas that are most likely to be effective in practice. For constructs that have already been

developed and are being tested in the lab, models are useful to infer model parameters from lab

testing, which can then be used to evaluate theoretical effectiveness outside of the lab. Finally, after

release, models can be used to help analyze insect count and genotype data to measure how the

release has performed.

Models of population genetics can make a range of assumptions that give them varying degrees

of abstraction, even among models that assume spatial homogeneity. For example, models can
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consider allele frequency (e.g., Burt, 2003; Deredec et al., 2008) or genotype frequency (e.g., Huang

et al., 2009; Robert et al., 2013). Some models include density-dependent effects and age structure,

which is important if the population size is being reduced to low numbers (e.g., Robert et al., 2013;

Khamis et al., 2018). Additionally, time can be continuous as in differential equation models (e.g.,

Robert et al., 2013; Khamis et al., 2018) or take discrete steps (e.g., Deredec et al., 2008; Huang

et al., 2009; Alphey et al., 2011; Dhole et al., 2018). Each type of model is useful in certain scenarios

depending on the goal; generally, simple, abstract models can help to explain expected qualitative

behavior, while more detailed models are often needed to quantify effectiveness and to ensure that

the qualitative results still apply in scenarios where the simple model assumptions are strongly

violated.

1.2 Outline

In this dissertation, I consider a broad range of systems using different models. In Chapter 2, I use

a discrete-time, allele-frequency model to evaluate the effectiveness of novel genetic constructs

that are designed to reverse CRISPR-Cas9 gene drives. In Chapter 3, I use a genotype-frequency,

differential equation model with age structure and density-dependent mortality to compare two

genetic alternatives of the female-killing approach. In Chapter 4, I use a genotype-frequency model,

discrete-time model as the basis for Bayesian inference with genotype data from Iquitos, Peru, where

a resistant allele increased in frequency as insecticide spraying occurred. Throughout each chapter,

the common thread is that fairly simple models of population genetics can give valuable insights

that can be used to improve approaches for combating insect pests.
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Chapter 2

Evaluating strategies for reversing

CRISPR-Cas9 gene drives1

1This chapter is published in Scientific Reports: Vella MR, Gunning CE, Lloyd AL & Gould F. (2017) Evaluating strategies
for reversing CRISPR-Cas9 gene drives. Scientific Reports. 7: 11038. doi:10.1038/s41598-017-10633-2. I conducted all
analyses and wrote the manuscript.
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2.1 Abstract

A gene drive biases inheritance of a gene so that it increases in frequency within a population even

when the gene confers no fitness benefit. There has been renewed interest in environmental releases

of engineered gene drives due to recent proof of principle experiments with the CRISPR-Cas9

system as a drive mechanism. Release of modified organisms, however, is controversial, especially

when the drive mechanism could theoretically alter all individuals of a species. Thus, it is desirable

to have countermeasures to reverse a drive if a problem arises. Several genetic mechanisms for

limiting or eliminating gene drives have been proposed and/or developed, including synthetic

resistance, reversal drives, and immunizing reversal drives. While predictions about efficacy of these

mechanisms have been optimistic, we lack detailed analyses of their expected dynamics. We develop

a discrete time model for population genetics of a drive and proposed genetic countermeasures.

Efficacy of drive reversal varies between countermeasures. For some parameter values, the model

predicts unexpected behavior including polymorphic equilibria and oscillatory dynamics. The

timing and number of released individuals containing a genetic countermeasure can substantially

impact outcomes. The choice among countermeasures by researchers and regulators will depend

on specific goals and population parameters of target populations.

2.2 Introduction

Recent work has employed the CRISPR-Cas9 system (Hsu et al., 2014; Doudna and Charpentier,

2014) to create homing drives (HD) that increase the frequency of genetic constructs in a population

even if they lower the fitness of individuals that carry them (Gantz and Bier, 2015). The drive

mechanism exploits homology directed repair (HDR) to replace a targeted, naturally occurring

genomic sequence with an engineered construct (Esvelt et al., 2014; Champer et al., 2016). The HD

construct codes for Cas9 (or any similar endonuclease, such as Cpf1 (Zetsche et al., 2015) and one

or more guide RNAs so that in HD heterozygotes, the combined presence of Cas9 and the guide

RNA(s) converts germline cells into HD homozygotes. The engineered construct may also include a

novel, expressed gene.

An HD can be used in two different ways: for population suppression (“suppression HD”), where
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the drive induces a major genetic load (Burt, 2003), or for population replacement (“replacement

HD”), where the expressed gene in the drive construct induces an intended phenotypic alteration,

such as blocked transmission of a pathogen (Gantz and Bier, 2015). Despite their promise, HDs

carry a number of potential risks, including unforeseen ecological consequences and unintended

geographical spread (Esvelt et al., 2014; National Academies of Sciences, Engineering, and Medicine,

2016). The severity of adverse effects could vary widely, with HD individuals and Cas9 remaining in

the population. For example, the magnitude of such adverse impacts would likely be affected by

the likelihood of undesirable HD migration and by the likelihood of low-probability events such as

horizontal gene flow. In some instances, actions to gradually reduce HD frequency may be viewed

as sufficient, while in other cases, swift, complete elimination of HD and restoration of the wild-type

would be preferred.

It is possible for an HD bearing a fitness cost to naturally go extinct due to evolution against

it, such as the spread of drive-resistant alleles developed via non-homologous end joining (NHEJ)

(Burt, 2003; Unckless et al., 2015; Bull, 2016). This would likely prevent the HD from reaching fixation

but not reduce HD frequencies quickly. HD constructs could also be engineered (i.e., no pre-existing

resistant alleles in the population, and multiple guide RNAs to force simultaneous events of NHEJ for

resistant alleles to arise) to minimize the likelihood of natural resistance (Deredec et al., 2008; Esvelt

et al., 2014). Thus, several countermeasures have been proposed to proactively slow the spread of

an HD and/or remove it from a population. In the case of a suppression HD, one option would be to

release individuals carrying a synthetic allele of the targeted gene that is resistant to the HD (Burt,

2003; Deredec et al., 2008). In this case, the synthetic resistant (SR) allele would have no substantial

fitness advantage over a replacement HD designed to have minimal fitness cost.

A second option that could be useful for stopping either suppression or replacement HDs

involves synthetic CRISPR-Cas9 based “overwriting” or “reversal drives” (RD) (Esvelt et al., 2014;

DiCarlo et al., 2015). CATCHA (Cas9-triggered chain ablation) and ERACR (elements for reversing the

autocatalytic chain reaction) have been proposed as RDs (Gantz and Bier, 2016; Wu et al., 2016). The

CATCHA and ERACR constructs contain guide RNAs but do not include the Cas9 gene, depending

instead on Cas9 present from the HD. The guide RNAs produced by the RD target the HD construct

in the same way that the HD targets the wild-type allele. A third option is using an “immunizing

reversal drive” (IRD) that would target both HD and wild-type populations by including both the

6



Cas9 gene and multiple guide RNAs that target the HD and wild-type sequences (Esvelt et al., 2014).

IRDs are designed to replace both HD-bearing and wild-type individuals, with constructs that have

active Cas9 and guide RNA production but no intended effect on the organism’s phenotype.

The National Academies of Sciences, Engineering, and Medicine report (National Academies

of Sciences, Engineering, and Medicine, 2016) recommended the use of mathematical models

in evaluating strategies for reducing potential harms of gene drives. An intuitively reasonable

expectation, for example, is that RDs could be “employed to eliminate” an HD (Gantz and Bier,

2016). Yet there has been no quantitative assessment to date of the predicted dynamics of reversal

and immunizing drives. Here we present a simple, frequency-only population genetics model to

elucidate the evolutionary dynamics of genetic strategies for countering HDs. We show that SR

alleles and RDs are not guaranteed to eliminate an HD from a population due to the existence,

in general, of a stable polymorphic equilibrium in which the countermeasure co-exists with the

wild-type and HD. An IRD, on the other hand, is much more likely to eliminate an HD but is also

expected to eliminate wildtype alleles and continue production of Cas9.

2.3 Methods

We build on previous deterministic models of HD allelic dynamics that employ non-overlapping

generations (i.e., a discrete-time description) and random mating (Deredec et al., 2008; Unckless

et al., 2015). We add alleles for SR, RD, and IRD as countermeasures. Alleles for natural resistance

are also examined. We assume that Cas9 always produces a double-strand break in wild-type/HD,

HD/RD, wild-type/IRD, and HD/IRD heterozygotes. We assume that resistant alleles arise naturally

(and only) via NHEJ whenever HDR is unsuccessful, such that the homing rate is equivalent to

the probability of HDR. Finally, we assume that fitness costs yield an excess of lethality relative to

wild-type at some point prior to reproduction, and that Cas9 is produced only in the germline. Note

that, due to drive activity, gamete genotype contribution may differ, but conversion occurs only

after somatic mortality via fitness cost is assessed.

We let qW , qH D , qC , and qR be the current generation frequencies of wild-type (W ), HD, coun-

termeasure (C ), and naturally resistant (R ) alleles in the population, respectively. The equations
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predicting the next generation frequencies (q ′) are:

q ′H D =
�

(1− sH D )q
2
H D + (1−hH D sH D )qH D qW (1+ eH D )

+qH D qR (1− sH D /R ) + (1− sH D /C )qH D qC (1− i1)
� 1

w

(2.1)

q ′C =
�

(1− sC )q
2
C + (1−hC sC )qC qW (1+ i2eC )

+ (1− sH D /C )qH D qC (1+ i1eC ) +qC qR (1− sC /R )
� 1

w

(2.2)

q ′R =
�

(1− sR )q
2
R + (1−hR sR )qR qW + (1−hH D sH D )qH D qW (1− eH D )

+ i1(1− sH D /C )qH D qC (1− eC ) + (1− sH D /R )qH D qR

+ (1− sC /R )qC qR + i2(1−hC sC )qC qW (1− eC )
� 1

w
,

(2.3)

where qW = 1−qH D −qC −qR because the frequencies must add to one. The mean population

fitness (w ) can be calculated by subtracting fitness cost deaths from one:

w = 1− sH D q 2
H D − sC q 2

C − sR q 2
R −2

�

hH D sH D qH D qW +hC sC qC qW (2.4)

+hR sR qR qW + sH D /C qH D qC + sH D /R qH D qR + sC /R qC qR

�

.

Parameters eH D and eC are the probabilities of successful copying (homing) for the homing

drive and countermeasure, respectively. The countermeasure allele represents SR when i1 = i2 = 0

(no homing), an RD when i1 = 1 and i2 = 0 (homing only in HD/countermeasure heterozygotes),

and an IRD when i1 = i2 = 1 (homing in both HD/countermeasure and wild-type/countermeasure

individuals).

We assume wild-type fitness is 1, and define s to be the fitness cost of homozygotes. The degree

of dominance, h , gives the fraction of the homozygote fitness cost imposed on a heterozygote with

one wild-type allele. We denote fitness costs of HD/R, HD/C, and C/R heterozygotes as sH D /R ,

sH D /C , and sC /R , respectively. We assume fitness costs are recessive, with heterozygotes bearing the

lesser fitness cost of its alleles, unless noted otherwise. Note that the RD and IRD may recode for

the gene interrupted by the HD or eliminate an expressed gene in the HD construct such that the

countermeasure constructs do not carry the same fitness costs as the HD construct.
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2.4 Results

Figure 2.1 shows several examples of countermeasure dynamics that are indicative of behavior over

a broad range of parameter values. In these examples, the countermeasures are deployed against a

suppression HD, and we assume perfect homing. Figure 2.1a shows the rapid spread of the HD in the

absence of countermeasures, where high HD fitness costs would result in population suppression

or extinction. Figure 2.1b-g, compares impacts of release of an SR allele (Figure 2.1b-c); release of an

RD (Figure 2.1d-e); and release of an IRD (Figure 2.1f-g), with each initiated using a single release of

either a 1:1 (Figure 2.1b/d/f) or a 1:10 (Figure 2.1c/e/g) ratio into populations at the end of the 8th

generation after the HD release, when the HD frequency has exceeded 0.2. Regardless of release size,

the systems with SR and RD releases reach stable, polymorphic equilibria in the long term, whereas

the IRD eliminates the HD and reaches fixation. The SR (Figure 2.1b-c) reaches high frequencies

and slowly diminishes HD frequencies, though ongoing conversion of wild-type to HD is sufficient

to maintain the HD in the population. The larger release of RD (Figure 2.1d) immediately brings the

system close to the equilibrium, causing HD frequencies to stay relatively constant. The smaller

RD release (Figure 2.1e) allows HD frequencies to initially increase, which may not be desirable.

However, the subsequent buildup of RD then reduces HD to very low frequencies, in contrast to

what was seen in Figure 2.1d. In this trough of low HD frequency, stochastic loss of HD via drift

may occur, with the HD loss probability increasing as population size decreases (Hartl and Clark,

2007). The IRD does not coexist with other alleles because it maintains an advantage over each of

the other alleles regardless of its frequency and quickly reaches fixation regardless of release size

(Figure 2.1f-g).

Moving to consider replacement HDs, Figure 2.2 shows a set of time series for an HD with

lower fitness cost (sH D ), but with otherwise identical parameter values as shown in Figure 2.1. The

qualitative behavior in the replacement HD setting is similar to the behavior in the suppression HD

setting, but the lower HD fitness cost slows dynamics. The difference is most notable for the RD with

a small release of countermeasure, for which the system exhibits large, slowly damped oscillations

that bring the target HD to low frequencies for many generations (Figure 2.2e). Due to genetic drift,

the likelihood of stochastic loss of an allele increases as the time spent with few copies of that allele

in the population increases (Hartl and Clark, 2007).
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Figure 2.1 Dynamics of a suppression HD, alone (a) and with countermeasures (b-g), which include a
synthetic resistant allele (b,c), reversal drive (d,e), and immunizing reversal drive (f,g). Fitness cost (s ) is
relative to and recessive to wild-type (HD, sH = 1; SR, sC=0.05; RD/IRD, sC=0.2.). We use an initial release
of 0.1% HD, and assume recessive lethality of the HD allele and perfect homing (eH D = eC = 1). Dashed
vertical lines indicate the time of countermeasure release. Large releases (1:1 ratio or countermeasure to
pre-countermeasure-release population) are shown in the left column, and small releases (1:10 ratio) are
shown in the right column. The split axes with gray bars indicate a change in time scale. a: Absent coun-
termeasures, the HD quickly approaches fixation (i.e., would cause population extinction). b,c: Release
of a SR allele allows a brief increase in HD frequency, followed by a decrease to a low but non-zero equi-
librium. d: A large RD release yields allelic frequencies after release that are near the stable equilibrium.
e: A small RD release yields allelic frequencies far from equilibrium, followed by a large transient oscilla-
tion, wherein HD frequencies approach zero. f,g: Release of IRD results in elimination of HD and wild-type
alleles, regardless of release size.
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Figure 2.2 Dynamics of a replacement HD, alone (a) and with countermeasures (b-g), which include a
synthetic resistant allele (b,c), reversal drive (d,e), and immunizing reversal drive (f,g). The fitness cost
of the HD is sH=0.3. See Figure 2.1 for other details. The behavior is qualitatively similar to Figure 2.1, but
the oscillations of the SR and RD are less damped (b-e).
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The polymorphic equilibrium and oscillatory dynamics exhibited by the SR and RD systems are

due to each allele’s frequency-dependent disadvantages relative to other alleles in a “rock-paper-

scissors” type fashion. In this case, the disadvantages result from relative fitness costs and the

effects of drive (for the RD), but similar dynamics have been recognized in many unrelated systems

(Sinervo and Lively, 1996; Durrett and Levin, 1997; Kerr et al., 2002; Cameron et al., 2009). Damped

oscillations about a polymorphic equilibrium mean that initial conditions far from the equilibrium

result in large fluctuations, temporarily bringing HD frequencies near to zero. Initial conditions

close to the equilibrium, on the other hand, do not result in large fluctuations in allelic frequencies,

likely allowing the HD to persist (as visualized in a phase plot in Figure A.1a). Initial conditions are

not important for determining the fate of the IRD, however, as it does not have frequency-dependent

disadvantages to the other alleles.

Relaxing assumptions about fitness but keeping the assumptions of perfect homing and recessive

fitness costs in wild-type heterozygotes, we find that a variety of possible stable equilibria may

exist for the systems beyond those shown in Figures 2.1 and 2.2 (See Appendix A & Figures A.1-A.3).

However, given no fitness cost for heterozygotes containing wild-type alleles, a stable, polymorphic

equilibrium exists for the SR and RD countermeasures for most plausible combinations of HD, C,

and HD/C fitness costs (e.g., when the HD/C heterozygote fitness cost is between the HD and C

homozygote fitness costs). Numerically, we find complex eigenvalues of the Jacobian evaluated at

the polymorphic equilibrium, which indicate oscillatory dynamics (see Appendix A). Additionally,

assuming additive rather than recessive fitness costs in wild-type heterozygotes changes the regions

of parameter space that result in each equilibrium for the SR and RD countermeasures but still

results in uncertain removal of the HD for SR and RDs, and likely removal of the HD for IRDs (Figures

A.4 and A.5).

With a deterministic model, likelihood of stochastic extinction during transient oscillations

cannot be measured directly, but the likelihood increases as the minimum frequency decreases.

Figures 2.3 and 2.4 show the minimum HD frequency achieved within the first 100 generations after

countermeasure release for varying fitness costs and initial conditions, returning to the assumption

of recessive fitness costs and that the cost to the HD/C heterozygote is the minimum of the HD

and C fitness costs. In general, low countermeasure fitness costs yield the greatest reductions in

HD frequencies, both for RD (Figure 2.3) and for SR (Figure 2.4) countermeasures, by lowering the
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HD frequency at the polymorphic equilibrium. When HD frequencies are low, an RD released in

numbers close to that of the current population (1:1 ratio) causes the system to quickly approach

the polymorphic equilibrium instead of exhibiting large transient oscillations that bring the HD

frequency near to 0. A very large RD release that immediately limits HD/wild-type mating would

likely cause stochastic HD elimination (bottom row) in a randomly mating population, but would

require additional time and resources necessary to rear and release a sufficient number of RD

individuals. Unlike the RD, SR cannot be effective when its fitness cost exceeds that of the HD

(Figure 2.4, top-left corner of each panel). As with the RD, SR releases in size equal to the pre-release

population bring the system near to its polymorphic equilibrium, which would prevent the HD

frequency from transiently reaching very small frequencies. However, because oscillations occur on

a slower time-scale than with the RD (see Figure 2.1b/e), the minimum is not always reached within

100 generations. For an IRD, all panels reach minimum frequencies by generation 100.

Finally, we further relax our assumptions to account for less than perfect homing with the

creation of naturally resistant alleles (Figure 2.5). The qualitative behavior found in the case of

perfect homing remains, except that the IRD eventually falls out of the population since it has lower

fitness than naturally resistant alleles. Given imperfect homing, HD frequencies would fall even in

the absence of countermeasures. As with SR, though, the HD is sustained long-term due to a stable,

polymorphic equilibrium (Figure 2.5a).

2.5 Discussion

A variety of genetic approaches have been proposed to counter unintended effects of an HD, but

there has been limited theoretical evaluation of these approaches. Here we compare the dynamics

of SR, RD, and IRD countermeasures upon release into a population prior to HD fixation and find

that the long-term behavior of the system differs greatly between countermeasures. In particular,

SR and RD countermeasures are not guaranteed to eliminate an HD from a population because

these systems often exhibit a stable polymorphic equilibrium. Elimination of the HD via SR or RD

becomes less likely with higher countermeasure fitness costs, as the equilibrium HD frequency

is further from zero, and oscillations around the polymorphic equilibrium are less likely to cause

stochastic loss of the HD. Due to the small magnitude of oscillations with release conditions close to
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Figure 2.3 Minimum HD allele frequency in the first 100 generations after RD release for various fitness
costs, initial conditions, and release ratios. Light shades indicate higher likelihood of stochastic loss of
HD, while dark shades highlight instances where removal of the HD is less likely. Axes show fitness costs of
the HD (x-axis) and RD (y-axis). Initial conditions vary between panels: columns vary the HD pre-release
frequency, and rows vary the RD release size, which is shown as a release ratio (e.g., “4 to 1” releases 4
RD alleles for every pre-release allele). We assume recessive fitness costs and perfect homing. The largest
HD fitness cost (sH D = 1) corresponds to a suppression HD, whereas small HD fitness costs correspond
to a replacement HD. Note that maximum HD frequency varies independently from minimum HD fre-
quency; in small RD releases (top row of panels), the HD frequency can experience large increases before
dropping to the low minimum levels show here. Overall, an RD release appears least likely to eliminate a
target HD when RD fitness costs are large, and when the RD release yields post-release frequencies near
the equilibrium. The higher minimum frequency for larger HD fitness costs in many panels is due to the
smaller amplitudes of oscillations compared to systems with lower HD fitness costs, as seen Figures 2.1
and 2.2. Smaller oscillations result in the system tending directly toward the equilibrium.
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Figure 2.4 Minimum HD allele frequency in the first 100 generations after SR release for various fitness
costs, initial conditions, and release ratios. See Figure 2.3 for details, noting that the legend colors refer to
different minimum frequencies. Similarly to the RD, the SR is least likely to eliminate a target HD when its
fitness costs are large, and when the release yields post-release frequencies near the equilibrium, though
equilibrium frequencies are not identical to RDs. In some of the simulations, the system is not yet at equi-
librium, and the HD is still decreasing in frequency at 100 generations.
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Figure 2.5 Dynamics of an imperfect suppression HD, where the drive fails and produces naturally re-
sistant alleles, alone (a) and with countermeasures (b-g), which include a synthetic resistant allele (b,c),
reversal drive (d,e), and immunizing reversal drive (f,g). Homing is imperfect (eH = eC = 0.9), and unsuc-
cessful homing results in natural resistance via NHEJ with fitness cost sR=0.05. See Figure 2.1 for other
details. The biggest change from accounting for imperfect homing is that the IRD falls out of the popula-
tion in the long-term (f,g) because of low-fitness cost alleles resistant to cutting.
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equilibrium, the frequencies of the HD prior to release and the relative size of the countermeasure

release are important factors in determining the likelihood of HD elimination. If either of these

countermeasures were to fully eliminate the HD, the wild-type allele would ultimately recover to

fixation as long its fitness is higher than the countermeasure.

An IRD that targets both HD and wild-type alleles, on the other hand, would theoretically ensure

the rapid removal of the HD from the population, but would also result in the Cas9 gene and guide

RNAs remaining in the population. Implications of leaving Cas9 in the population are unclear, such

as the likelihood of off-target effects, and future research should seek to evaluate such effects. If any

naturally resistant alleles develop, or with the release of an SR allele, the IRD would eventually fall

out of the population, provided that the cost of the IRD is greater than the resistant allele. These

qualitative differences between countermeasures must be considered when deciding whether they

are suitable tools for mitigating adverse effects of an HD.

The model and subsequent analysis presented here yields critical insights into the qualitative

behavior of, and differences between, genetic countermeasures. Nonetheless, future work could

explore several additional aspects of HD-based countermeasures and provide quantitative risks

associated with them. Models that track population size as well as allele frequency, and that incorpo-

rate demographic stochasticity, could be used to better assess options for eliminating suppression

HDs. For suppression HDs, population size could drastically decrease, and the effects of genetic

drift could predominate (Okamoto et al., 2014). Also deserving of increased attention are the effects

of spatial heterogeneity. In particular, spatial isolation of small populations could limit an allele’s

spread, potentially impacting countermeasure success. Incorporating spatial heterogeneity could

also be useful in assessing the impact of movement between the target population and nearby pop-

ulations on the long-term fates of the relevant constructs. Important consequences of movement

include the likelihood of HD spillover to nearby populations, and whether immigration of wild-type

organisms could sustain a HD in a system where stochastic elimination is otherwise likely. Effects

of spatial heterogeneity may be different for RDs and IRDs, so follow-up modeling studies will be

needed. Finally, effects of assumptions about natural resistance to homing drives should be explored

further. While some work has explored the development of natural resistance to HDs (Burt, 2003;

Unckless et al., 2017; Bull, 2016; Noble et al., 2017; Marshall, Buchman, et al., 2017; Champer et al.,

2017), these findings should be updated as HD limitations are understood.
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Many have proposed countermeasures as emergency tools to mitigate unintended negative

effects that might arise after release of an HD. However, to date only limited theoretical analysis

has addressed countermeasures’ abilities to reverse HDs. Additionally, discussion about counter-

measures has often been ambiguous regarding differences between types of countermeasures and

expectations of countermeasure outcomes. Depending on the severity of unintended effects, coun-

termeasures may have the goal of simply halting the spread of an HD, or possibly removing an HD

from the population and returning the population to its original state. This work is motivated by

a desire to more clearly specify differences between various countermeasure strategies, as well as

to critically assess potential outcomes. Here we show that the RD does not eliminate the HD for

certain release conditions and fitness parameters. The existence of a polymorphic equilibrium with

oscillatory dynamics allows for the HD allele frequency to initially increase, to remain constant, or to

decrease, depending on the reversal release size. In such cases, larger countermeasure fitness costs

decrease the likelihood of long-term eradication of the HD allele. IRDs are expected to effectively

eliminate the HD in a timely manner but leave Cas9 present in the population, though any resistant

alleles would cause the IRD to eventually fall out of the population. RDs leave only guide RNAs if

they successfully eliminate the HD, but given any fitness cost to the RD, the wild-type would be

expected to return. Overall, these results show that no single countermeasure, as currently pro-

posed, should be considered a “silver bullet” for mitigating unintended effects of HDs. As such, we

recommend careful examination of risks associated with each of the countermeasures’ limitations

prior to release.
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Chapter 3

Mathematical modeling of genetic pest

management through female-specific

lethality: Is one locus better than two?1

1This chapter is submitted for publication: Vella MR, Gould F & Lloyd AL. Mathematical modeling of genetic pest
management through female-specific lethality: Is one locus better than two? I conducted all analyses and wrote the
manuscript.
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3.1 Abstract

Many novel genetic approaches are under development to combat insect pests. One genetic strat-

egy aims to suppress or locally eliminate a species through large, repeated releases of genetically

engineered strains that render female offspring unviable under field conditions. Strains with this

female-killing (FK) characteristic have been developed either with all of the molecular components

in a single construct or with the components in two constructs inserted at independently assorting

loci. Strains with two constructs are typically considered to be only of value as research tools and for

producing solely male offspring in rearing factories which are subsequently sterilized by radiation

before release. A concern with the two-construct strains is that once released, the two constructs

would become separated and therefore non-functional. The only FK strains that have been released

in the field without sterilization are single-construct strains. Here, we use a population genetics

model with density dependence to evaluate the relative effectiveness of female killing approaches

based on single- and two-construct arrangements. We find that, in general, the single-construct

arrangement results in slightly faster population suppression, but the two-construct arrangement

can eventually cause stronger suppression and cause local elimination with a smaller release size.

Based on our results, there is no a priori reason that males carrying two independently segregating

constructs need to be sterilized prior to release. In some cases, a fertile release would be more

efficient for population suppression.

3.2 Introduction

Insect pests remain a burden to human health and agriculture (World Health Organization, 2017;

Deutsch et al., 2018). Genetic pest management aims to reduce this burden by releasing engineered

insects that either introduce a desired trait into a natural population or reduce the size of the

population. There have historically been several large area-wide inundative releases of male insects

that were rendered sterile by exposure to radiation (Gould and Schliekelman, 2004). In these releases,

local elimination of the target species was achieved as females increasingly mated with the sterile

males rather than the wild-type males with whom they would produce viable offspring. Instead of

using radiation to cause sterility, a contemporary alternative is to genetically engineer strains in
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which the males cause all their offspring or exclusively their daughters to die or to have low fitness

(Alphey, 2002). Genetically engineered strains in a number of species have been cage- or field-tested

(Wise De Valdez et al., 2011; Ant et al., 2012; Harris et al., 2012; Lacroix et al., 2012; Leftwich et al.,

2014; Carvalho et al., 2015; Harvey-Samuel et al., 2015; Gorman et al., 2016).

One approach to developing these functionally-sterile strains involves inserting a repressible,

dominant lethal trait, which can be active in both sexes or in females only (Heinrich and Scott,

2000; Thomas et al., 2000). For either the female-killing (FK, also sometimes referred to as fsRIDL, or

female-specific release of insects carrying dominant lethals) or bisex-killing (BK), in order to rear the

transgenic strain in the generations prior to release, it must be possible to inactivate the dominant

lethal gene. Often this is achieved through a Tet-off system where tetracycline in the diet represses

the activator for a lethal gene (Gossen and Bujard, 1992). For an FK strain, the release generation

is reared on a diet not containing tetracycline. This results in only males surviving. Further, as the

offspring of released FK or BK males would feed on a tetracycline-free diet under field conditions,

the lethal gene is turned on and death ensues.

Intuitively, modeling studies have found that FK can be advantageous over BK because it kills

females while allowing the transgene to propagate through multiple generations in heterozygote

males (Schliekelman and Gould, 2000; Thomas et al., 2000). This would seem especially useful

when females but not males transmit pathogens. However, heterozygous males can also serve as a

reservoir for wild-type alleles, which can make FK less effective than BK under some conditions

(Foster et al., 1988; Gentile et al., 2015). It should be noted that BK strains for mosquito disease

vectors typically require sex-sorting because release of females would be considered unacceptable. It

can also be advantageous to release only males as females do not contribute to genetic suppression

and tend to mate with the released males and thus reduce their efficiency (Rendón et al., 2004)

except in some situations where there is age structuring in the population (Huang et al., 2009).

The full molecular design involves two molecular components: 1. the tetracycline-repressible

transactivator (tTA) with a promoter, and 2. a lethal gene with an enhancer/promoter consisting of

multiple tTA binding sites (tetO) and a core promoter. In the initial two-component systems, tTA

was expressed in females by using a female-specific promoter (Heinrich and Scott, 2000; Thomas

et al., 2000). The second component was a lethal gene (e.g., proapoptotic) driven by a tetO enhancer-

promoter. The two molecular components were built in separate constructs that were inserted
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independently. Subsequently, a simpler, two-component system was developed in which tTA acts as

both the activator and lethal gene. Here, a single construct includes a tTA coding sequence driven

by a tetO enhancer-promoter. In this autoregulated system, high levels of the tTA activator cause

lethality in late stage larvae or in pupae. The mortality is possibly due to a general interference

in transcription (Gong et al., 2005). FK single-construct strains have included a sex-specifically

spliced intron from the transformer or doublesex genes inserted within the tTA gene (Fu et al.,

2007). In these FK strains, only the female tTA transcript encodes a functional protein. A different,

single-construct approach for FK with Aedes aegypti and Aedes albopictus uses a female-specific

indirect flight muscle promoter from the Actin-4 gene (Fu et al., 2010; Labbé et al., 2012). All field

trials with transgenic FK or BK strains have been with single-construct strains.

More recently, two-construct FK strains have been made with an early embryo promoter driving

tTA expression and a tTA-regulated lethal gene that contains a sex-specifically spliced intron (Yan

et al., 2020). An advantage of these strains is that female lethality occurs at the embryo or early larval

stages, which produces considerable savings in larval diet costs in a mass rearing facility. Although it

should be possible to develop any two-component systems as a single construct (Yan and Scott, 2015),

they are typically developed as independently-segregating constructs. Germline transformation in

insects is often achieved through the use of transposable elements such as piggyBac, and due to

the randomness of the insertion process, a large number of injections can be required to obtain

transgenic strains (Gregory et al., 2016). Furthermore, there are often multiple potential choices for

one or both of the components. For this reason, it can be advantageous to separately produce strains

with different promoters and lethal genes, then produce individuals bearing both components by

crossing to test effectiveness of different combinations. The final transgenic insects have the two

components located at two, separate loci (Schetelig and Handler, 2012; Ogaugwu et al., 2013; Scott,

2014; Schetelig et al., 2016; Yan et al., 2020).

FK strains with two constructs are generally thought of as useful research tools with potential to

be used in rearing facilities so that the final generation before release would only produce males

(e.g., Schetelig and Handler, 2012; Ogaugwu et al., 2013; Yan and Scott, 2015). It has been suggested

that independent inheritance of the components would cause a breakdown in the female killing in

the second generation after release (Ogaugwu et al., 2013; Yan and Scott, 2015). However, previous

theoretical studies of FK systems have only modeled the components as being inserted together on
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Table 3.1 1-locus genotypes, with associated viabilities and fitnesses. Viability of genotype i , γa ,S
i , takes

the value listed when the approach causes loss of viability in sex S (for female killing, only when S = F; for
bisex, when S = F or S =M) with timing a (for early approaches, when a = E; for late approaches, when a =
L), and are 1 otherwise. Fitnesses w x

i apply for both hatching (x =H) and male mating competitiveness
(x =M).

i genotype γa ,S
i wx

i

1 kk 1 1
2 Kk 0 1−h · s x

3 KK 0 1− s x

a single locus (Thomas et al., 2000; Schliekelman and Gould, 2000; Alphey et al., 2011; Gentile et al.,

2015).

Here we evaluate the effectiveness of 1- and 2-locus FK, along with BK for comparison. We use

a computational model parameterized for the Aedes aegypti mosquito that is a vector for several

human pathogens. We explore the release of strains with killing in either juveniles or adults. We show

that under reasonable assumptions about fitness costs of the insertions, there is not a substantial

difference between the 1- and 2-locus FK approaches, particularly when compared to the differences

between FK and BK. These results demonstrate the release potential of recently developed 2-locus

FK constructs.

3.3 Methods

Our computational model implements the genetics of FK and BK by separately tracking the number

of individuals in the population of each genotype, with genotype denoted by subscript i . For the

single-locus system (Table 3.1), we let the transgenic allele be represented by K and the wild-type

allele at that locus be represented by k, with a total of N = 3 possible genotypes. For the 2-locus

system (Table 3.2), we let A and B represent the transgenic alleles (i.e., tTA and lethal gene) inserted

at two separate loci with wild-type alleles a and b, respectively, for a total of N = 9 possible diploid

genotypes.

We assume complete effectiveness of the constructs, so when there is no gene repression via

tetracycline, all individuals bearing the functional BKS system and all females with the functional

FK system die, with a (i.e. genotype viability of zero) (see, e.g., Fu et al., 2007; Ogaugwu et al., 2013;
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Table 3.2 2-locus genotypes, with associated viabilities and fitnesses. Viability of genotype i , γa ,S
i , takes

the value listed when the approach causes loss of viability in sex S (for female killing, only when S = F; for
bisex, when S = F or S =M) with timing a (for early approaches, when a = E; for late approaches, when a =
L), and are 1 otherwise. Fitnesses w x

i apply for both hatching (x =H) and male mating competitiveness
(x =M).

i genotype γa ,S
i wx

i

1 aabb 1 1
2 aaBb 1 1−h · s x (1− cA)
3 aaBB 1 1− s x (1− cA)
4 Aabb 1 1−h · s x cA

5 AaBb 0 1−h · s x

6 AaBB 0 1−h · s x cA − s x (1− cA)
7 AAbb 1 1− s x cA

8 AABb 0 1− s x cA −h · s x (1− cA)
9 AABB 0 1− s x

Yan et al., 2020). One copy of K is assumed to be sufficient to induce lethality in the 1-locus system,

and only one copy each of A and B is required in the 2-locus system. We consider lethality acting at

different points in the lifecycle. In insects that experience strong resource competition during larval

stages, having the transgene-induced mortality occur during or shortly after the pupal stage, instead

of during the egg or larval stages, can yield stronger population suppression. This is because the

transgenic juveniles consume resources and thereby increase wild-type juvenile mortality. We model

early mortality (E) as occurring in the embryo and late mortality (L) as occurring in pupal stages or in

adults before mating, and we assume these differentiate whether the individual contributes toward

density-dependent mortality of all individuals in the population. We let γE ,S
i and γL ,S

i represent the

early (embryonic) and late (adult) expected viabilities for individuals of sex S and genotype i. Tables

3.1 and 3.2 give expected viabilities for individuals with each construct and genotype.

We classify constructs into four different approaches depending on when the dominant lethal

gene is active similarly to Gentile et al., 2015: early bisex-killing (E-BK), late bisex-killing (L-BK),

early female-killing (E-FK), and late female-killing (L-FK). We assume male transgenic homozygotes

are released, so mating with wild-type females will produce offspring that are entirely heterozygous,

with a copy of each transgene. If the construct(s) affects both sexes (BK), none of these offspring will

survive to mate and pass on their genes, making bisex 1-locus and 2-locus equivalent in terms of

both population genetics and population dynamics. Female-specific approaches (FK) allow males
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to continue to propagate the transgenes, and thus inheritance differs between 1-locus and 2-locus

approaches. In all, we consider the following six approaches: E-BK, L-BK, 1-locus E-FK (E-FK1),

2-locus E-FK (E-FK2), 1-locus L-FK (L-FK1), and 2-locus L-FK (L-FK2).

Separate from the transgenic, toxin-induced lethality, we account for potential fitness costs

caused by the genetic insertion itself. We allow the fitness costs of inserting a novel genetic element

to manifest at an early stage as a reduction in the ability of a zygote to survive beyond the egg stage,

i.e., the fraction of eggs of that genotype which survive and hatch into larvae. We let the genotype’s

hatching fitness, w H
i , equal the probability of successfully entering the larval stage, with wild-type

hatching fitness w H
1 = 1. We also allow for transgenic fitness costs to males in the form of reduced

mating competitiveness, w M
i , as defined below, with wild-type mating competitiveness w M

1 =1.

We generally assume that the fitness costs are equal for the homozygotes in the 1-locus and

2-locus systems to facilitate a direct comparison between the two systems. The 2-locus system

has the same components as the 1-locus system, which makes equal fitness costs a reasonable

base assumption for the purposes of this work (this assumption is relaxed in Figure 3.3 and Figure

B.1). We let s H and s M be the hatching and mating competitiveness fitness costs, respectively, to

the homozygotes KK and AABB, and we allow the two types of costs to vary independently. For

simplicity, we assume the degree of dominance for the fitness costs, h , is equal for hatching and

mating competitiveness. Unless otherwise noted, we assume costs are additive, with h = 0.5, such

that each copy of the K allele alone contributes a fitness cost of 0.5s x for the 1-locus system (x here

indicates that the fitness cost can either be hatching or mating). For the 2-locus system, we allow for

unequal fitness costs between each of the insertions. We let two copies of the A allele contribute a

fitness cost of s x cA , where cA is the proportion of the total 2-locus fitness cost accounted for by the

A allele, and one copy of the A allele contributes a fitness cost of h · s x cA . A single B allele contributes

a fitness cost of h · s x (1− cA), while being homozygous for B induces a cost of s x (1− cA). Resulting

fitness expressions for all genotypes are listed in Tables 3.1 and 3.2.

We model genotype counts over time using a system of ordinary differential equations adapted

from Robert et al. (2013). We let J M
i (t ) and J F

i (t ) be the number of juvenile (larvae and pupae) males

and females, respectively, of genotype i at time t , and AM
i (t ) and AF

i (t ) be the number of viable adult

male and adult female mosquitoes in the population, respectively, of genotype i at time t . This gives

a maximum of 12 classes of individuals to track (each with different combinations of the 3 genotypes,
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2 sexes, and 2 age classes) for the 1-locus system and 36 classes for the 2-locus system, though

lethality from the genetic construct prevents survival of certain classes. For instance, E-BK only has

five non-zero classes (wild-type male and female juveniles and adults, and male adult homozygote

transgenic, which are released). We also assume a 50:50 sex ratio and equal hatching fitness costs

between males and females, allowing a further reduction in the number of unique classes for late

acting approaches because J M
i (t ) = J F

i (t ) for all i and t . This results in 7 classes for L-FK1 (after

removing 3 juvenile classes and 2 non-viable adult female classes) and 23 classes for L-FK2 (after

removing 9 juvenile classes and 4 non-viable adult female classes). These dimensionality reductions

can be useful when finding analytical solutions, but for simplicity, we computationally simulated all

12 (1-locus) or 36 (2-locus) equations.

Accounting for fitness costs, adult females produce juveniles of genotype i at time t at rate

Bi (t ) =w H
i

∑

m

AF
m (t )λ

∑

n

P (i |m , n )
w M

n AM
n (t )

∑

g w M
g AM

g (t )
, (3.1)

where λ is the per-capita birth rate and P (i |m , n ) is the probability that a juvenile produced from

a mating between a female and male of genotypes m and n , respectively, will be of genotype i .

The fraction gives the probability that a randomly chosen male adult is of genotype n , weighted

by mating competitiveness w M
n . The offspring genotype probabilities are calculated assuming

Mendelian inheritance, and for the 2-locus case, independent segregation of genes at each locus.

Because of the 50:50 sex ratio, half of the hatching juveniles are male and half are female.

Juveniles of each genotype and sex emerge to adulthood at per-capita rate v . We assume juveniles,

adult males, and adult females have per-capita density-independent mortality rates of µJ , µM , and

µF , respectively. Juveniles also undergo density-dependent mortality at a per-capita rate (αJ )β−1,

where J is the total number of juveniles. The strength of density dependence is adjusted by varying

β , with higher β resulting in a faster return to equilibrium population size after a small perturbation.

A value of β = 2 gives the logistic model for population dynamics. By default, we let β = 3 to model

an environment which would be more difficult for successful suppression (e.g., Hibbard et al., 2010).

The equilibrium size of an entirely wild-type population varies with α, and to keep simulations

with different values of β comparable, we choose the value of α so that the equilibrium number of

wild-type females remains the same.
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We assume a continuous release of homozygote engineered males at (daily) rate u M
i = r ·AM

1 (t =

0)/7, where r is the weekly release ratio (engineered:wild-type) based on the equilibrium number of

males prior to the release. By maintaining a constant number of released males, the effective release

ratio increases as the population size decreases. The release genotype is KK for 1-locus (i = 3) and

AABB for 2-locus (i = 9), and because we assume that no females are released, u F
i = 0 for all i .

The resulting system of differential equations (with time dependence of J S
i (t ), AS

i (t ), and Bi (t )

omitted for simplicity of notation) is

d J S
i

d t
=

1

2
γE ,S

i Bi − J S
i (αJ )β−1−µJ J S

i − v J S
i (3.2)

d AS
i

d t
= vγL ,S

i J S
i −µS AS

i +µ
S
i , (3.3)

for i = 1..N and S = F or M . All model parameters are listed in Table 3.3 and are based on those used

for Ae. aegypti by Robert et al. (2013). While the rates of mortality, larval production, and emergence

to adulthood apply to Ae. aegypti, the resulting population dynamics, simulated with different

strengths of density dependence, would likely be similar to many other species. All numerical

simulations of the differential equations have initial conditions at the wild-type equilibrium.

In order to explore the effects of demographic stochasticity and genetic drift, we also run simu-

lations using an analogous continuous time Markov chain model (for details, see Appendix B.1).

3.4 Results

Each of the FK (female-killing) and BK (bisex-killing) genetic strategies has the goal of causing

the population to decline by reducing the number of reproductive adult females. The strength of

density-dependent mortality moderates the reductions in population size because stronger density

dependence (higher β ) causes the juvenile mortality rates to decrease more quickly as population

size decreases from equilibrium. In a system with strong density dependence, the weekly release

ratio (r ) must be larger to achieve the same amount of population suppression as in a system with

weak density dependence. Large r can result in target population extinction. In contrast, small r

results in a new, lower equilibrium population density, where the proportion of individuals that die

due to bearing the transgene is not high enough to outweigh the increased survival of juveniles due
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Table 3.3 Model parameters.

Parameter Description Value/range Reference
µJ Density-independent per-capita

juvenile mortality rate
0.03 day−1 Rueda et al., 1990

µM Adult male per-capita mortality
rate

0.28 day−1 Muir and Kay, 1998,
Fouque et al., 2006

µF Adult female per-capita mortality
rate

0.10 day−1 Muir and Kay, 1998,
Fouque et al., 2006

λ Female per-capita larval produc-
tion rate

8 day−1 Harrington et al.,
2001, Styer et al.,
2007

v Per-capita rate of emergence to
adulthood

0.14 day−1 Muir and Kay, 1998

β Strength of density dependence
(see text)

2 to 4

AF
1 (0) Equilibrium number of wild-type

females
2000

r Weekly release ratio of transgenic:
equilibrium wild-type males

0 to 12

α Density dependence parameter
chosen based on β and AF

1 (0)
Dependent on
β and AF

1 (0)
w H

i , w M
i Egg hatching and male mating

competitiveness fitnesses of geno-
type i

See Tables 3.1
and 3.2

s H , s M Egg hatching and male mating
competitiveness fitness costs to ho-
mozygotes

0 to 1 (0.2 and
0.1 default,

respectively)
h Fitness cost degree of dominance

(percent of s x incurred in heterozy-
gotes)

0 to 1 (0.5
default)

cA Proportion of s contributed by A
(2-locus)

0.5 to 1 (0.55
default)

γE ,S
i ,γL ,S

i Viabilities of genotype i for early
(E; embryonic) and late (L; adult)
approaches in sex S

See Tables 3.1
and 3.2
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to decreased density-dependent mortality in the smaller population.

Figure 3.1 demonstrates the outcome of release for each genetic approach at r = 1 under the

deterministic model (see Figure B.1 for time series with multiple release ratios). At this release ratio,

approaches that are late-acting (i.e., mortality in pre-mated adults, indicated by "L-") reduce the

number of viable females to a lower number than approaches that are early-acting (i.e., mortality in

the embryonic life stage, indicated by "E-"). BK approaches reduce the number of females faster

and to lower levels than female-specific approaches with late-acting mortality, but the opposite is

true for early-acting mortality. Among FK approaches, 1-locus reduces the number of females more

quickly initially, but 2-locus eventually suppresses the population slightly more than 1-locus. Overall,

this suggests that L-BK is most effective, followed by L-FK, E-FK, and E-BK, with little difference

between 1- and 2-locus FK. Under stronger density dependence (higher values of β ), releases result

in weaker suppression of the population, with none of the approaches causing extinction of the

population if β = 4.

In general, large release ratios result in extinction (the population goes to an equilibrium size of

zero), and small release ratios result in a suppressed but non-zero equilibrium population size. For

most sets of parameters, there is a critical release ratio, rc , above which the release is large enough

to cause the population to go extinct. With such a large number of released males, population

extinction is the only stable equilibrium, meaning the release will cause extinction regardless of

initial population size. For ongoing release at release ratios below rc , there is a non-zero stable

equilibrium for the number of viable adult females, meaning that release will not push a wild-type

population to extinction. A population size of zero is also stable, meaning the release could protect

against re-invasion of the wild-type if continued after population extinction, but the system will

approach the non-zero equilibrium unless starting from very low population sizes, i.e., it is a bistable

system with a low invasion threshold (as shown in Figure B.2 with time series starting from multiple

initial conditions). Mathematical details on the shift in qualitative behavior at rc and analysis using

Mathematica Version 12.0 (Wolfram Research, Inc., 2019) can be found in Appendix B.2 and Figure

B.3.

Figure 3.2A shows how release ratios affect stable equilibria when β = 3. As a result of the

bifurcation, each of the lines is discontinuous, jumping from a non-zero equilibrium to a zero

equilibrium at rc . The smallest release size required to cause extinction for each approach is r L BS
c =
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Figure 3.1 Effect of transgenic releases on population size over time for various strengths of density de-
pendence. The number of viable adult females (relative to pre-release equilibrium) over time is plotted
for deterministic simulations with adults for each genetic approach released at a continual weekly release
ratio of 1:1 transgenic males to the pre-release equilibrium wild-type males (r = 1). Line type differentiates
embryo (early-acting, dashed line) and adult (late-acting, solid line) mortality, and line color differentiates
bisex (red), 1-locus female-killing (blue), and 2-locus female-killing (green) constructs. Releases are less
effective as strength of density dependence (β ) increases across panels from left to right. Simulations use
fitness parameters s H = 0.2, s M = 0.1, and cA = 0.55 and the remaining parameters as listed in Table 3.3.
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0.86 < r L F K 2
c = 2.52 < r L F K 1

c = 2.86 < r E F K 2
c = 4.74 < r E F K 1

c = 5.40 < r E BS
c = 5.97. This order of

effectiveness matches that of Figure 1 and mirrors the results for single locus constructs in Gentile

et al. 2015. However, when r is smaller than r L BS
c and extinction does not occur, L-BK has a higher

equilibrium population size than either of the late FK methods. There is a small relative difference

between the different FK approaches, with similar equilibrium sizes when r is below the critical

release ratios and 1-locus FK requiring a release ratio less than 15% larger than 2-locus FK to cause

extinction.

In settings where release causes the population to go extinct, we can consider the time it takes

to reach extinction after starting release (Figure 3.2B). Given that deterministic simulations will only

approach extinction asymptotically, we use the time it takes for the number of females to reach

less than 0.05% of the pre-control equilibrium, which is suppression to below 1 adult female when

starting from a pre-release equilibrium of 2000. The times using this threshold are comparable to

the average time to extinction in stochastic simulations (see Figure B.4). Once release ratios are high,

L-BK drops the population under 0.05% of the equilibrium faster than late FK methods. Also, both

of the 1-locus FK approaches are slightly faster than the respective 2-locus FK approaches, though

the differences are small for practical purposes. At r = 12, for example, the times are 86 (L-BK), 114

(L-FK1), 119 (L-FK2), 133 (E-BK), 149 (E-FK1), and 153 (E-FK2) days. The results are similar for β = 2

(see Figure B.5).

Overall, FK1 and FK2 are quite similar. If either of the A or B alleles in 2-locus FK becomes fixed in

the population, the 2-locus approach becomes nearly identical to 1-locus FK, where one copy of the

unfixed allele causes mortality in females. For example, if all individuals in the population already

have the B allele, only one copy of the A component is additionally necessary, just as a single copy

of the K allele causes mortality. In this case, the long-term equilibrium can be identical to 1-locus

FK, though a fitness cost to the fixed allele decreases the average fitness of the entire population

and makes the population size lower for 2-locus FK than 1-locus FK. Whether one of the 2-locus FK

alleles become fixed depends on the fitness costs and release ratios of the system (see Appendix B.3,

Figure B.6, and Figure B.7).

An observation from Figure 3.2A is that L-BK, L-FK2, and L-FK1 cause a similar level of sup-

pression when the release ratio is near r = 0.8. Previous work has suggested that L-FK allows the

wild-type allele to propagate in heterozygous males, making it less effective than L-BK (Gentile
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Figure 3.2 Release outcomes across different release ratios. A: Long-term, stable equilibria for number of
viable adult females (relative to pre-release equilibrium) for different r , found by simulating the system
of differential equations until at steady-state. The asterisks indicate r = 1, for which the equilibrium
values correspond to the middle panel of Figure 3.1. Each genetic approach exhibits a bifurcation at a
critical release ratio, rc, indicated by a solid circle. Above the rc of each approach, that approach only
has an equilibrium at zero. This makes each line have a discontinuity, visible with the red line (L-BK).
Above r = 2.52, two or more approaches lead to extinction of the population and hence have equilibria at
zero: this is indicated using a grey line. Note that below rc , each system exhibits bistability, with both non-
zero and zero count stable equilibria. Only the non-zero equilibrium is plotted, which is the equilibrium
reached when starting simulations from the wild-type equilibrium. B: Time until the number of viable
adult females is under 0.05% of equilibrium in deterministic simulations for different r. Color and line type
match that of Figure 3.1. Parameters are β = 3, s H = 0.2, s M = 0.1, and cA = 0.55, as in Figure 3.1.
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et al., 2015). This is true at high release ratios, but not at all release ratios. Without fitness costs, the

strategies are equally effective if the number of released males is equal to the number of wild-type

males in the population at equilibrium: heterozygotes carry both wildtype and transgenic alleles,

and therefore the survival of heterozygous males does not affect allele frequency. At small release

ratios, when L-BK release results in low transgenic frequency and thus a large equilibrium popu-

lation size, survival of heterozygous males would allow the transgenic allele to propagate further

and increase in frequency, explaining why L-FK has a lower equilibrium than L-BK in this narrow

window of small releases.

The main difference exhibited between FK1 and FK2 can also be explained by their propagation

of the transgenic and wild-type alleles. When the components are separated across two loci, the

A and B alleles become unlinked, with some individuals only inheriting one allele or the other,

while having linked components guarantees inheritance of the transgenic allele and reduces the

population size more quickly initially. Eventually, however, the accumulation of transgenic alleles

in the 2-locus system causes production of a higher proportion of unviable genotypes and greater

population suppression (Figure 3.2).

Results over a wide range of fitness parameters highlight the minimal differences between FK1

and FK2. We use the time it takes to suppress the number of viable females to under 0.05% of the

equilibrium when there is a high release ratio of r = 7 as a way to measure effectiveness (Figure 3.3).

For each approach and degree of dominance (h), there is a region with low fitness costs where there

is fairly little variation between the time it takes to suppress the population below the threshold. As

one or both of the fitness costs increase, there is a margin of longer times separating the successful

suppression region from the unsuccessful region. As evident from Figure 3.2, long times to reduce the

population indicate that the release ratio of r = 7 is only slightly greater than rc for those parameter

values, and a system with even higher fitness costs have rc > 7, so suppression below 0.05% of

equilibrium is not achieved.

There is little difference between FK1 and FK2, particularly for L-FK, since the release ratio

is much higher than rc in most of the region with successful release. Even with different fitness

costs, FK1 and FK2 do not differ drastically in time until extinction; FK2 would be substantially

less effective only if the costs become large enough for the release to become too small to cause

extinction (i.e., r becomes smaller than rc because of the higher costs). Unpacking the differences
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between all approaches, for the E-BK approach, neither h nor s H affect the length of time for

reduction; only released males experience costs so the degree of dominance does not affect results,

and all offspring that inherit a transgene are inviable so hatching costs do not affect results. For

E-BK, increasing the cost to male mating competitiveness drastically decreases release efficacy

because doing so effectively reduces the release ratio (fewer of the released males successfully mate

and contribute to population reduction), and with no surviving transgenic offspring, the release

ratio is the main contributing factor to E-BK efficacy. When s H = 1 and h = 1, none of the offspring

survive for the E-FK1 and E-FK2 approaches, making the times shown identical to E-BK. Decreasing

these parameters makes a difference for FK approaches because the males are subject to fitness

costs. Dominant fitness costs (bottom row) actually enable successful population reduction for

higher male mating costs. With large, dominant mating costs, FK approaches have few mating adult

males, becoming effectively similar to the highly effective L-BK, which has no adult males. The full

explanation for increased effectiveness with higher degrees of dominance relates to the propagation

of wild-type alleles, similar to the previous description: homozygote males that are being released

are affected regardless of h , and when h > 0, the fitness cost also reduces the spread of wild-type

alleles in heterozygotes. This effect is also evident in other transgenic systems, such as two-locus

underdominance, where dominant transgenic allele fitness costs prevent the wild-type from being

maintained in the population at small frequencies (Dhole et al., 2018).

3.5 Discussion

The recent literature on FK systems makes the assumption that strains built with constructs inserted

at two independent loci will not be as useful for field releases as those built with a single construct.

The assumption is that the two constructs will separate from each other in the second generation

after a release and will become non-functional. Our modeling results demonstrate that a 2-locus

FK (FK2) should behave similarly to a 1-locus FK (FK1) and would not present any significant

disadvantages in its ability to suppress a population. We generally made the assumption that the

2-locus and 1-locus approaches would have similar total fitness costs because they have the same

components. If the total cost of the 2-locus approach was less than for the 1-locus approach, the

2-locus approach would likely be preferred. The reverse also holds. Importantly, based on our results,
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Figure 3.3 Effects of fitness cost variation on release efficacy for weekly release ratio r = 7 and β =
3. Each column of panels shows the results for a different genetic approach, while each row of panels
depicts a different degree of dominance, h . Within each individual panel, the hatching fitness cost, s H ,
increases from 0 to 1 along the x-axis, and the cost to male mating competitiveness, s M , increases from
0 to 1 along the y-axis. For every point, a deterministic simulation was run with a unique combination
of genetic approach and fitness parameters, and color indicates the number of days until the number of
viable adult females is under 0.05% of equilibrium. Darker colors show faster times, with a minimum time
of 73 days, and lighter colors show slower times up to 500 days. White areas indicate that the number of
females did not fall below the threshold within 500 days. The colored points in the middle row correspond
to the times in Figure 3.2B at r = 7.
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there is no a priori, general reason for genetic engineers to favor a 1-locus system. The choice will

likely depend on specific biological and genetic characteristics of the target species.

Assuming equal costs, FK1 is slightly faster at initial population reduction, but FK2 can eventually

suppress the population to lower numbers. FK2 also has a slightly lower critical release ratio than

FK1, meaning a smaller release size is necessary to guarantee extinction. For many combinations

of fitness costs and release ratios, one of the FK2 alleles would be driven to fixation, resulting in a

genetic system similar to FK1. The differences between FK1 and FK2 are much smaller than between

FK and BK approaches. Comparing FK and BK approaches, our results are generally similar to

previous work (Gentile et al., 2015). Late acting approaches cause extinction with a lower release

ratio than early acting approaches, with L-BK causing extinction with a lower release ratio than

L-FK, and E-FK causing extinction with a lower release ratio than E-BK.

While our modeling results indicate that L-BK outperforms the other methods, there are other

considerations that affect which approach may be best suited for a given scenario. In our model, pa-

rameterized for mosquitoes, density-dependent mortality during early life-stages was an important

factor and caused early-acting approaches to result in less population reduction than late-acting

approaches. In species with little density-dependent dynamics in juveniles, the difference in effec-

tiveness between early and late-acting would be minor, though this is not the case for many pest

species.

Beyond population dynamics, there are economic and social factors that differ between ap-

proaches. For some systems, it will be necessary to engineer constructs into lab strains and then

backcross the construct or constructs into a strain that have a genetic makeup similar to the targeted

population. In general, it should be easier to do the backcrossing with a one-locus system. Rearing

costs are also expected to vary between approaches. With E-FK, juvenile females experience mortal-

ity before consuming food, whereas E-BK, L-BK and L-FK require rearing of juveniles of both sexes.

Furthermore, BK approaches typically require sexing to remove females prior to release, which

increases the total rearing costs and is often difficult to do with complete accuracy. When releasing

a species that is a disease vector, sexing accuracy is meaningful from a social perspective as release

of females could contribute to disease transmission. Though it would not apply for many species of

interest, in a system where releasing females is acceptable because neither the females nor their

larvae can cause damage, L-BK could be more effective when releasing females because the released
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females’ progeny would increase density-dependent competition in larvae, then die before reaching

adulthood.

Apart from engineering and rearing, for most agricultural pests, the juvenile stages of males and

females cause damage to crops and livestock. In the first generations of transgenic pest releases,

the late acting approaches will leave feeding immatures in the environment, and E-FK will result in

male immatures that still cause damage. This may not be favored by farmers even though the overall

population could be decreasing rapidly, and E-BK could be preferred. Finally, even if late-acting

mortality may be ideal for a given scenario, controlling the timing of mortality at the intended life

stage may not always be feasible, for example due to leaky expression of the lethal gene.

The model used here has several limitations. An important factor that could affect population

genetics is spatial heterogeneity. For example, in a spatial model of FK2, it would be possible,

particularly in small populations, for different patches to have different transgenic alleles reach

fixation. A spatial model would also be useful to determine if FK2 has any differences in resilience to

wild-type reinvasion. The details of such a spatial model, including rates of release, would depend

on species. A species-specific model could also implement different forms of density-dependence,

age-structure, and mating parameters. Finally, given its generality, our model does not account for

any potential mechanisms for resistance development. Depending on the mechanism of lethality,

there may be advantages for having both components for lethality inserted together. While these

areas require further investigation, our results indicate that overall, there is little difference in the

pest population suppression efficacies of 1-locus FK and 2-locus FK.
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Chapter 4

Inference of selection coefficients for

insecticide resistance in Iquitos, Peru1

1The methods and results of this chapter will form part of a manuscript currently in preparation: Baltzegar J, Vella
MR, et al. Evolution of Knockdown Resistance (kdr) Haplotypes in Response to Pyrethroid Selection in Aedes Aegypti. I
conducted all analyses included here and wrote this chapter.
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4.1 Abstract

The use of chemical insecticides is one of the most commonly used methods to suppress insect

populations and reduce the spread of vector-borne diseases. However, the effectiveness of insecti-

cides has been hindered by the development of resistance to insecticides. Much research has been

conducted in the lab to determine characteristics of resistant alleles. For example, studies have

suggested that fitness costs against the susceptible, wild-type allele are dominant, where pheno-

typic resistance is not induced by a single copy of a resistant allele. The degree of dominance is an

important quantity affecting the ability of a resistant allele to increase in frequency in a population.

Recently published data shows an increase in frequency of resistant alleles in Aedes aegypti in Iquitos,

a city in Northern Peru, and analysis of the data suggests that the costs were closer to recessive than

dominant, unlike lab experiment results. Here, we construct a hidden Markov model to conduct

inference. We model the genotype frequencies in the population, accounting for random genetic

drift, and we allow for an overdispersion in sampling by using a Dirichlet-Multinomial distribution.

Inference using particle Markov chain Monte Carlo indicates that a single resistant allele is enough

to substantially lessen the negative effects from the insecticide, strengthening the claim that costs

are not dominant. Given the flexibility in model specification allowed by particle Markov chain

Monte Carlo, our approach may be applicable to other problems concerning inference fitness cost.

4.2 Introduction

Vector-borne diseases such as malaria, lymphatic filariasis, and dengue cause substantial risk to

human health throughout the world, with 80% of the world at risk from at least 1 disease and over

700,000 deaths annually (World Health Organization, 2017). For dengue alone, the global cost was

estimated to be $8.9 billion in 2013, with an estimated 390 million infections, of which 96 million

were apparent (Bhatt et al., 2013). It has proven to be difficult to find an effective treatment or

develop an effective and safe vaccine for dengue. This is in part due to there being at least four

serotypes of the virus that cause infection (Sridhar et al., 2018). In the absence of an effective way to

treat or prevent the disease, many efforts to control the spread of the disease have focused on its

vector.
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The dengue virus is transmitted primarily by the mosquito Aedes aegypti, which is also a vector

for the Zika, yellow fever, and chikungunya viruses. Ae. aegypti is well adapted to urban environments

and exhibits several traits that make efforts to suppress the population size challenging. The species

has high reproductive capacity, is able to use standing water from small sources (e.g., aluminum

cans) as breeding sites, and can quickly adapt to different environmental conditions (Carvalho and

Moreira, 2017). While new approaches, including Wolbachia and releases of transgenic mosquitoes,

show promise as control methods, they are still under development and would likely be used in an

integrated approach along with the use of chemical insecticides (Alphey et al., 2013).

Large-scale, chemical-based eradication campaigns have been the primary control method used

since at least the 1940s, when DDT was shown to be a powerful tool in reducing insect populations

(Camargo, 1967). Major concerns about DDT’s negative impact on the environment and human

health eventually halted its use as an insecticide. However, the eradication potential of DDT was also

limited by mosquitoes resistant to the chemical’s killing mechanism, which prevented eradication

in areas and also reinfested previously eradicated areas (Camargo, 1967). More recently developed

insecticide classes include organophosphates, pyrethroids, chitin synthesis inhibitors, and juvenile

hormone analogues (Carvalho and Moreira, 2017). Pyrethroids, a widely used class of insect neuro-

toxins, function by inhibiting inactivation of voltage-gated sodium channels, leading to paralysis

and death (Du et al., 2016). Resistance to pyrethroids is widespread and has been found to be the

result of a variety of different single nucleotide polymorphisms in the targeted sodium channel

protein, such as the F1534C mutation, named for the position of the mutation on the protein and the

amino acids of the mutation (Du et al., 2016). Interestingly, many of these mutations are associated

with knock-down resistance (kdr) to both pyrethroids and DDT (Brengues et al., 2003).

Ae. aegypti has been well studied in Iquitos, Peru, where the species was considered eradicated

by the late 1950s, had returned by 1984, and was large enough in population size to cause a dengue

outbreak in 1990 (Phillips et al., 1992). As part of various entomological and epidemiological research

efforts, mosquitoes have been collected from Iquitos since the 1990s, while there were a series of

city-wide spraying campaigns of pyrethroid insecticides from 2002-2014 (Getis et al., 2003; Morrison

et al., 2004; LaCon et al., 2014; Gunning et al., 2018). Baltzegar (2020) later genotyped collected

mosquitoes for specific kdr mutations and among other results, showed a temporal increase in the

F1534C allele frequency in the population.
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Details about how susceptible alleles are selected against compared to resistant alleles are of

broad interest. An important factor for how a resistant allele spreads in a population is the extent that

heterozygotes (with one copy of the allele) are resistant to insecticides compared to homozygotes

(with two copies). For example, if the heterozygote is mostly susceptible to insecticides, the resistant

allele would take much longer to initially increase in frequency than if the heterozygote is mostly

resistant (Conner and Hartl, 2004). Bioassays based on the phenotypic response to insecticide expo-

sure have shown that mosquitoes heterozygous for pyrethroid resistance are still mostly susceptible

despite having a copy of the resistant allele (e.g. Saavedra-Rodriguez et al., 2007, Fan and Scott,

2020). This means a dominant fitness cost, (i.e., lower relative survival and reproductive success),

to the susceptible allele. This could make sense mechanistically if a single copy of the susceptible

allele is enough for the neurotoxin to cause death. However, analysis of the Iquitos data by Baltzegar

(2020) shows that the cost is closer to being recessive, with one resistant allele being enough to

give mosquitoes insecticide resistance. Baltzegar notes that findings from real-world data could

differ from findings based on laboratory conditions for several reasons, including complexities of

phenotypic resistance that extend beyond kdr mutations (Smith et al., 2019).

There are many existing approaches for the analysis of allele frequency data. Bank et al. (2014)

and Tataru et al. (2017) give overviews of methods for inference of fitness costs. The majority

of approaches used to analyze allele frequencies are based on the Wright-Fisher model, which

makes simplifying assumptions about mating and allele inheritance (Tataru et al., 2017). A natural

setup for inference is to treat the system as a hidden Markov model (HMM), where the true allele

frequencies (unobserved, hidden states) advance forward in time according to the model, and

observations (data) are assumed to be sampled from those hidden states. Parameter estimation with

maximum likelihood estimation (MLE) or many Bayesian approaches rely on computing sampling

likelihoods integrated over all possible allele frequencies. This calculation is frequently facilitated

by approximating the Wright-Fisher model as a diffusion process (e.g., Malaspinas et al., 2012;

Mathieson and McVean, 2013; Schraiber et al., 2016; He et al., 2020) and assuming that the samples

are distributed binomially (or multinomially in the case of multiple alleles). Alternatively, calculation

of the likelihood can be avoided by using simulation-based methods such as approximate Bayesian

computation (ABC). Foll et al. (2015) establish one such approach, Wright-Fisher ABC (WFABC), and

demonstrate its effectiveness for parameter estimation. Baltzegar (2020) uses WFABC to analyze the
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Iquitos data, but given the surprising result of recessive costs, additional analysis with a different

approach is warranted.

Here, we perform Bayesian inference on the Iquitos data to understand the fitness parameters

of the F1534C mutation, with particular interest in determining whether susceptibility to insecticide

spraying is dominant or recessive. We use a genotype frequency model based on Wright-Fisher

assumptions to build an HMM. To account for non-random experimental sampling, we allow for

sampling variance to be larger than that of a multinomial distribution through the use of a Dirichlet-

multinomial distribution. Using particle Markov chain Monte Carlo (pMCMC) to produce parameter

posterior distributions, we find that susceptibility is closer to recessive than dominant, supporting

the previously conducted analysis of the data. While the computation required for our approach

would likely make it ill-suited for data extending over many hundreds of generations, it could

potentially be used for inference on many types of short-term experiments.

4.3 Methods

4.3.1 Mathematical model of population genetics

We use a genotype-frequency model as the basis to evaluate the spread of the F1534C mutation in

Iquitos, Peru. Our model assumes the population is well-mixed with random mating and operates

on discrete (non-overlapping) generations of mosquitoes, with each generation lasting one month.

Populations of Ae. aegypti are known to have high degrees of spatial clustering and age structure

(Getis et al., 2003; LaCon et al., 2014). Some of this structure can be captured in models with more

complexity (Magori et al., 2009; Huang et al., 2009), but we use a simple model as it is generally

easier to parameterize and use for inference. We also assume the population is contained, without

immigration or emigration of mosquitoes.

We let allele R represent the F1534C mutation resistant allele, while allele S represents the wild-

type, susceptible allele. The frequencies of each possible genotype are denoted by XR R , XSR , and

XSS , with ~X (t ) denoting the vector of all three genotype frequencies at generation t . For brevity, we

omit the vector notation from all vector variables as specific elements of the vector will include a

subscript for genotype i . The frequency of the R allele in the population is expected to be low until

spraying begins because the mutation would likely confer a fitness cost (e.g., proportionately less
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individuals successfully mate or individuals contribute proportionately fewer offspring) in absence

of spraying. Samples from before spraying began indicate that the R allele was maintained at a low

frequency, which could be due to mutation/selection balance or pre-existing resistance from DDT

when the population was re-established (Baltzegar, 2020). For simplicity, we do not consider de novo

mutations and assume the initial genotype frequencies begin at Hardy-Weinberg equilibrium (see

Conner and Hartl, 2004 for background). Letting p (t ) denote the genotype probabilities of offspring

entering generation t , we can calculate p (1) from the starting allele frequency of the resistance

allele, R0:

p (1) =
�

pR R (1) =R 2
0 , pSR (1) = 2R0(1−R0), pSS (1) = (1−R0)

2
�

. (4.1)

While there is spraying, mosquitoes with an S allele suffer a loss in fitness. Specifically, assuming

RR is the favored genotype while under selection, SS and SR individuals have proportionately fewer

offspring. By using a discrete-generation model, fitness is purely a measure of the mosquitoes’

contributions to the mating pool, and it does not matter whether the fitness costs manifest as larval

death, adult death, or fewer offspring. The fitness cost to SS individuals relative to RR mosquitoes is

denoted by s , and the fitness cost to SR individuals is h · s , where h is the degree of dominance of

the cost to the S allele.

Using the current frequencies, X (t ), the genotype probabilities of the next generation, p (t +1),

can be calculated based on the probabilities of each of the six possible matings. The assumption

of a well mixed and randomly mating population allows the probability of a given mating to be

calculated as the product of the pair of genotype frequencies. Each pairing of different genotypes is

multiplied by a factor of two to account for the two possible couplings of males and females. The

offspring probabilities from each mating are calculated assuming Mendelian inheritance. Fitness

costs, as described above, result in a relative reduction in the SR and SS frequencies. The resulting

set of difference equations to calculate p (t +1) from X (t ) (omitting dependence on time for brevity)

is:

pR R =
�

X 2
R R +0.25X 2

SR +XR R XSR

� 1

w

pSR = (1−h s )
�

2XR R XSS +XR R XSR +XSS XSR +0.5X 2
SR

� 1

w

pSS = (1− s )
�

X 2
SS +0.25X 2

SR +XSS XSR

� 1

w
,

(4.2)
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where the mean fitness, w , is the sum of the un-normalized frequencies and normalizes so that
∑

i pi = 1.

4.3.2 Genetic drift

Regardless of population size, the expected value of X i (t +1) is equal to pi (t ). However, the relative

variance of X i (t +1) increases with decreasing population size due to randomness involving surviving

and mating. This effect is termed genetic drift. The amount of drift is characterized by the effective

population size, Ne . Ne is often much smaller than the total (census) population size because it

accounts for factors in population structure that decrease genetic diversity, such as non-random

mating and variability in number of offspring per female (Saarman et al., 2017). Stochasticity from

genetic drift can thus be incorporated into our model by assuming a mosquito count equal to Ne

in each generation. We let the genotype counts in the next generation, C (t + 1), be distributed

multinomially based on the probabilities from (4.2). Then we have:

C (t +1)∼Multinomial
�

n =Ne , prob= p (t )
�

X (t +1) =
C (t +1)

Ne
.

(4.3)

As in Baltzegar (2020), we assume Ne = 500 in each generation based on the analysis done by

Saarman et al. (2017).

The density function X (t +1)|X (t ),θ ∼ f (X (t +1)|X (t ), s , h , Ne ), for t ∈ [1, . . . , T ], represents the

iteration from generation t to t +1 as described in (4.2) and (4.3), where T is the total number of

generations. Here, f (·) is a Markov process as it depends only on the current state of the system

X (t ), and not previous states, as shown in Figure 4.1.

4.3.3 Sampling

The experimental sample size varies between months. We denote the sample size in generation t by

Ns (t ). We assume the sampling distribution at generation t is independent of sampling in previous

generations, meaning there is only dependence on the state in that generation, X (t ). Additionally,

while sampling removes mosquitoes from the population, we assume the resulting effect on the

population genetics is minor enough to ignore.
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If we were to assume that samples of individual mosquitoes in a given generation, nk , k ∈

[1, . . . , Ns (t )] are independent and identically distributed (i.i.d.), then the sampling could be approx-

imated by a multinomial distribution, Y ∼Multinomial (n =Ns , prob= X ) (with time dependence

omitted for brevity). The sampling distribution would have the following properties:

f
�

y
�

� X , Ns

�

=
Ns !

∏�

yi

�

!

∏

X
yi

i (4.4)

E[Yi |X , Ns ] =Ns X i (4.5)

Var[Yi |X , Ns ] =Ns X i (1−X i ) , (4.6)

where i = 1, i = 2, and i = 3 correspond to genotypes RR, SR, and SS, respectively.

However, random sampling poorly depicts the mosquito collection process. Sampled mosquitoes

are not independent because there are often multiple mosquitoes collected from each sampled

house. The samples are also not identically distributed because any spatial heterogeneity in genotype

frequencies would result in different underlying sampling probabilities at different locations. Thus,

we employ an overdispersed sampling distribution with added variance compared to a multinomial

distribution. The Dirichlet distribution, which is a multivariate extension of the Beta distribution,

can provide a means to such overdispersion. Given parameter ~α, whereαi > 0, we let Z ∼Dirichlet(α),

with properties:

f (z |α) =
Γ
�∑

i αi

�

∏

i Γ (αi )

∏

i

zαi−1
i (4.7)

E[Zi |α] =
αi

∑

i αi
(4.8)

Var[Zi |α] =
αi

∑

i αi

�

1− αi
∑

i αi

�

∑

i αi +1
, (4.9)

where Γ (·) is the gamma function. The expected values are equal to the proportions of αi , and the

variances decrease with increasing
∑

i αi .

We consider drawing samples Z (t ) from a Dirichlet distribution parameterized by α= A ·X (t ),

where A scales X (t ), the vector of frequencies in the population at time t . Because α is propor-

tional to X (t ), E[Zi (t )] = X i (t ). Note that
∑

i AX (t ) = A
∑

i X (t ) = A. If we then let the data Y (t )∼
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Multinomial(n =Ns (t ), prob= Z (t )), we can calculate the joint probability density of Y (t ) and Z (t )

(with time dependence omitted):

f
�

y , z
�

� X , A
�

= f
�

y
�

� z
�

f (z | X , A) (4.10)

=
N !

∏

i yi !

∏

i

z
yi
i ·

Γ (A)
∏

i Γ (AX i )

∏

i

z AX i−1
i (4.11)

=
N ! Γ (A)

∏

i yi ! Γ (AX i )

∏

i

z
yi+AX i−1
i . (4.12)

The second product term in (4.12) is the kernel (i.e., the probability density function up to a mul-

tiplicative constant) of a Dirichlet distribution parameterized by α = y + AX . We can write the

probability density function as an integral over z which equals one, giving us:

∫

z

Γ
�∑

i yi +AX i

�

∏

i Γ (yi +AX i )

∏

i

z
yi+AX i−1
i dz = 1 (4.13)

Γ (Ns +A)
∏

i Γ (yi +AX i )

∫

z

∏

i

z
yi+AX i−1
i dz = 1 (4.14)

∫

z

∏

i

z
yi+AX i−1
i dz =

∏

i Γ (yi +AX i )
Γ (Ns +A)

. (4.15)

Now, writing 4.12 as the marginal probability distribution of Y with respect to Z and using 4.15 to

re-write the integral, we get:

f
�

y
�

� X , A
�

=

∫

z

N ! Γ (A)
∏

i yi ! Γ (AX i )

∏

i

z
yi+AX i−1
i dz (4.16)

=
N ! Γ (A)

∏

i yi ! Γ (AX i )

∏

i Γ (yi +AX i )
Γ (Ns +A)

(4.17)

=
N ! Γ (A)
Γ (Ns +A)

∏

i

Γ (yi +AX i )
yi ! Γ (AX i )

, (4.18)

which is the Dirichlet-multinomial distribution parameterized by AX . This distribution commonly

arises when using a Dirichlet distribution as the prior for a multinomial distribution and has also

been used for inferring genetic structure from genomic samples (e.g., Kitakado et al., 2006; Cowell,

2016). While the mean of the distribution is equal to the multinomial distribution, the variance is

Var[Yi (t )|X i (t ), A] =Ns (t )X i (t ) (1−X i (t ))
Ns (t ) +A

1+A
, (4.19)
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which is an inflation of the multinomial distribution variance given in (4.6) by the factor Ns (t )+A
1+A . Thus,

A affects the amount of overdispersion, and the Dirichlet-multinomial distribution approaches

a multinomial distribution as A approaches infinity. We let the Dirichlet-multinomial sampling

density in (4.18) be given by Y |X ,θ ∼ g (Y |X , A). To allow for calculation of likelihoods when X i (t ) = 0

but Yi (t ) > 0, in practice we parameterize the distribution with AX + 0.0001. This has a minimal

effect on the properties of the distribution but accounts for the possibility of additional sampling

error, e.g., if a sample was mislabeled. Sampling is visualized in context of the full HMM in Figure

4.1.

�⃗�(1) … …𝑅!

𝑔(𝑌(𝑡)|�⃗�(𝑡), 𝐴)

𝑓(�⃗� 𝑡 |�⃗� 𝑡 − 1 , 𝑠, ℎ, 𝑁")

�⃗�(𝑡) �⃗�(𝑇)

𝑌(𝑇)𝑌(1) 𝑌(𝑡)

Hidden states

Observations

Figure 4.1 Hidden Markov model schematic. The true genotype frequencies in the population at time t ,
~X (t ), are governed by a Markov model with density f ( ~X (t )| ~X (t −1), s , h , Ne ). At each generation, genotype

observations ~Y (t ) are generated by Dirichlet-multinomial sampling based on the true genotype frequen-
cies in the population, with density represented by g ( ~Y (t )| ~X (t ), A). The genotype frequencies in the first
generation are generated based on the initial R allele frequency, R0.
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4.3.4 Model analysis

We conduct Bayesian inference on the HMM using particle Markov chain Monte Carlo (pMCMC).

This approach uses a particle filter, running forward simulations to produce unbiased estimates of

the marginal likelihood L̂
�

y (1 : T )|θ
�

. These estimates are used in the calculation of the Metropolis-

Hastings acceptance ratio, and the resulting Markov chain converges to the joint posterior distri-

bution f (x1:T ,θ |y1:T ) (see Appendix C). We implement pMCMC with a multivariate normal pro-

posal distribution and adaptive Metropolis-Hastings acceptance in R (R Core Team, 2019) using

the package nimble (Valpine et al., 2017). For parameters in range [0,1], we use uninformative

priors s ∼ Beta(1,1), h ∼ Beta(1,1), and R0 ∼ Beta(1,1). For A, we use the uninformative prior

A ∼Gamma(0.01, 0.01). To improve the time to convergence, we initialize the parameters using their

maximum likelihood estimates, ignoring process error (i.e., X (t +1) = p (t +1)) and assuming Y (t )

is distributed multinomially.

4.3.5 Experimental data

As described above, mosquitoes were collected from Iquitos, Peru, over the course of over two

decades and were genotyped for specific kdr mutations by Baltzegar (2020). The F1534C mutation,

which we focus on here, was found in few mosquitoes in the year 2000 but in nearly every mosquito

by the end of sampling in 2017. For our analysis, we let t = 1 correspond to October, 2002, and

T = 87 correspond to December, 2009. Pyrethroid insecticides were used from 2002 until 2014, but

we exclude data from past 2009 because another kdr mutation that begins to increase in frequency

after 2009 may affect the fitness costs of the F1534C allele (Baltzegar, 2020). The sample size (of

genotyped mosquitoes) in each month, Ns (t ), varied. Of the 87 months considered, samples in 35

months consisted of 10 or less mosquitoes, and samples from only 2 months consisted of over 100

mosquitoes.

4.4 Results

We first calibrate the particle filter to determine an appropriate number of particles to use for

pMCMC. While the pMCMC algorithm is valid for any number of particles, small numbers of
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particles can result in poor mixing, with the Markov chain getting stuck at values that happened

to produce a high marginal likelihood estimate. The reason for this is evident in Figure 4.2, which

demonstrates how likelihood estimates of the data are affected by the number of particles. If the filter

uses few particles, the underlying dynamics of the system are less likely to be captured, resulting in

high variances of marginal log likelihood estimates and lower average estimates. The variance of

the estimates decreases with increasing numbers of particles but with decreasing marginal benefits

of adding particles. The time it takes to run the particle filter increases linearly with the number of

particles because each particle requires an additional forward simulation. For this reason, we choose

to calibrate at 1000 particles, which offers a balance between keeping the variance of the marginal

log likelihood estimates low and the run times low. The outcomes of this calibration are expected to

be similar for other parameter sets, though more particles could be needed for parameter values that

are not likely and have low marginal log likelihood. Initializing pMCMC at high-likelihood values

produced from maximum likelihood estimation lessens the chances of this happening.

With the choice of 1000 particles for the particle filter, we can evaluate the performance of

pMCMC on simulated data. We choose an arbitrary set of parameters, s = 0.3, h = 0.2, R0 = 0.2,

and A = 10, and simulate from the Markov process and sampling distributions ( f (·) and g (·)) to

produce simulated population genotype frequencies x1:T and data y1:T . The simulated frequencies

and samples are shown in Figure 4.3. Inference for pMCMC is based on convergence of the Markov

chain for each parameter to the appropriate posterior distributions. Visually, based on trace plots

(which plot the values of each parameter in their Markov chains) for 60,000 iterations of pMCMC,

independent chains each appear to converge fairly quickly, with A taking the most iterations to

converge at around 10,000 (Figure 4.4). Results for other simulations and initial parameter values

(not shown here) suggest fairly robust convergence, though some scenarios can take many more

iterations to converge. We choose to discard the first 30,000 iterations to ensure convergence. We also

consider several diagnostics to measure convergence quantitatively. In the 30,000 iterations after

burn-in (second half as shown in Figure 4.4), we see there is somewhat substantial autocorrelation,

with over 50 lag sometimes needed to make the samples independent (Figure 4.5). The resulting

effective sample sizes for each parameter are A : 5367, h : 4460, R0 : 5377, and s : 4992, suggesting

that 60,000 iterations with 30,000 iterations of burn-in produces sufficient sampling of the posterior

distributions. Finally, the Gelman-Rubin statistic is 1 for each parameter, indicating that the 3 chains
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Figure 4.2 Particle filter calibration on experimental data. 100 bootstrap filters were run with each num-
ber of particles (x-axis) to allow comparison of time to run and mean and standard deviation of the esti-
mated marginal log likelihood values (LL). The bootstrap filter was run using parameters s = 0.3, h = 0.2,
R0 = 0.2, and A = 5.
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have converged (Gelman, Rubin, et al., 1992).
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Figure 4.3 Simulated genotype frequencies and data with pMCMC estimates and 95% credible interval
(CI). A simulation was run with parameters s = 0.3, h = 0.2,R0 = 0.2, and A = 10, with sample sizes Ns as
in the experiment, producing a time series of true genotype frequencies (black line) and samples (points,
scaled in size by sample size). The pMCMC posterior mean genotype frequency estimates are shown by
the red line, and the shaded region shows the 95% CI.

Having established convergence, we look at the posterior distributions. The posterior distribu-

tion of each parameter contained the true value (used to generate the simulated data) within its 95%

credible interval, with mean (95% credible interval) of: A = 9.22 (5.48, 12.25), h = 0.183 (0.024, 0.443),

R0 = 0.24 (0.115, 0.398), and s = 0.324 (0.195, 0.453). pMCMC also gives samples from the smoothing

distribution, f (x1:T |y1:T ), which we use to construct 95% credible intervals for the frequencies. In
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Figure 4.4 Trace plots from pMCMC on the simulated data shown in Figure 4.3. Three independent
Markov chains of 60,000 iterations each are shown in different colors. The true parameter values were
s = 0.3, h = 0.2, R0 = 0.2, and A = 10, and it is evident that the Markov chains converge to posterior distribu-
tions containing these values.
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Figure 4.5 Autocorrelation for each parameter in a single Markov chain from Figure 4.4. Each plot shows
a different parameter, with bars showing the correlation between Markov chain values of that parameter
that are different numbers of samples apart (lag, on the x-axis).
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this case, the 95% credible intervals contain the true frequencies for nearly the entire time series

(Figure 4.3).

We similarly run pMCMC on the genotype frequency data collected from Iquitos, Peru. The trace

plots appear to show that each parameter has converged (Figure 4.6). The Gelman-Rubin statistic

is 1 for each parameter, further suggesting convergence, and the effective sample sizes of A : 4307,

h : 2880, R0 : 4251, and s : 4115, while lower than with the simulated data, are still large enough to

approximate the posterior distribution.

The estimates of the probability density functions show smooth distributions (diagonal of

Figure 4.7). The mean (95% CI) for each parameter is: A = 4.61 (2.88,6.97), h = 0.178 (0.011,0.560),

R0 = 0.276 (0.140,0.452), and s = 0.185 (0.084,0.281). The estimated cost to SS is small, and while

the degree of dominance has a high degree of uncertainty, it can be concluded that the fitness

cost is more likely to be recessive than dominant. These results mirror those found by Baltzegar

(2020). The posterior distributions demonstrate correlation between parameters, with a particularly

strong correlation between h and s and between R0 and s (-0.667 and -0.757, respectively), as well

as between h and R0 (0.513) (Figure 4.7). These correlations make sense intuitively. For example,

without large samples in the first several generations, a low initial frequency and large fitness cost

may not be possible to distinguish from a higher initial frequency and lower costs.

We can use the samples from the smoothing distribution obtained from pMCMC to construct

mean state estimates and 95% CIs (Figure 4.8). Overall, it appears plausible that the 95% credible

interval contains the true population frequencies, given that there is high sampling variance. One of

the biggest sources of discrepancy is in late 2003 and 2004, where frequencies of sampled heterozy-

gote are consistently less than the state estimates. In later years, the state estimates suggest that the

S allele is maintained in the population in heterozygotes. Low estimates for h produce this type of

dynamics because there is little difference in fitness between RR and SR mosquitoes.

4.5 Discussion

We employ pMCMC to infer selection parameters of insecticide resistance in Iquitos, Peru. Our

approach using an HMM allows a flexible formulation of model and sampling functions, and we

can account for increased sample variance that results from non-random sampling of mosquitoes.
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Figure 4.6 Trace plots from pMCMC on experimental data. Three independent Markov chains of 30,000
iterations after 30,000 iterations of burn-in are shown in different colors. The Markov chains appear to
have converged.
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Our results suggest that the initial frequency of the F1534C mutation in the population was fairly

high, the fitness cost to homozygote susceptibles was small, and the degree of dominance of that

cost is either recessive or co-dominant. The result of non-dominant fitness costs provide support

for the conclusions found by Baltzegar (2020) using WFABC, which contrasted with previous results

from lab experiments.

Many assumptions could affect the parameter estimates found here. A major assumption of

the model is that of spatial homogeneity. Spatial heterogeneity could significantly alter genotype

frequency dynamics, slowing the spread of resistance because the resistant allele would take time

to migrate throughout the city. High initial frequencies of the resistant allele, as estimated, would

make this factor slightly less impactful because the resistant allele would likely already be present

in most sub-populations when spraying begins. However, the spatial distribution of mosquitoes

would also affect dynamics. With small populations within each house and limited movement

between houses, there would likely be much higher homozygosity in the population because small

subpopulations experience high amounts of genetic drift. This could explain the over-estimation of

estimated heterozygote frequencies compared to the sampled data.

In addition to spatially heterogeneous mosquito behavior, spraying was highly heterogeneous in

reality because certain parts of the city were sprayed at certain times. As suggested by Baltzegar (2020),

assuming a constant selection pressure, as we did here, would likely result in under-estimation of

the fitness costs; the true effect would be strong when and where spraying occurs, while the overall

effect including non-sprayed areas would appear weaker.

The model also assumed discrete-time, non-overlapping generations of one month in time.

Given the spatial heterogeneity of the system as discussed above, continuous-time models would not

be expected to substantially increase the model’s representation of reality and may produce similar

results to those here. We also expect a discrete-time model with overlapping generations to produce

similar results given that the changes in frequency happen over extended time periods, though if

using a model with spatial heterogeneity, overlapping generations would likely be important. Finally,

shorter or longer generation times than one month would likely increase or decrease the estimated

strength of selection, respectively, because it would correspond to faster or slower changes in a

single generation.

The methodology described here could potentially be extended to other problems. Part of the
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motivation for our choices of model and sampling functions is that they could be altered, in some

cases minimally, to apply to a variety of other problems. For example, caged experiments or field

trials can often be described by well-defined dynamical models and sampling functions, but properly

accounting for the sources of stochasticity can be challenging. The model here could be expanded

to account for overlapping generations, multiple sub-populations, additional alleles or loci, or non-

Mendelian inheritance such as gene drives. However, there are several possible issues that could

arise. First, for any more complex model than that shown here, the computational burden could

quickly become too high, especially if many more particles are needed to consistently estimate

the likelihood. Also, after adding additional model parameters, all parameters may no longer be

identifiable, i.e., two or more parameters could affect the model output similarly enough that each

could take a range of values. Correlation between parameters was already evident in the simple

model here, which resulted in high degrees of uncertainty around parameter estimates but did not

interfere with convergence. In scenarios with many parameters and limited sampling, convergence

could take substantially longer. In such cases, some of the parameters would likely need to be

set to a constant to enable estimation of the remaining parameters (by nature of the inference

problem and not this methodology). A related issue is that the posterior distribution of the states

could be multimodal. For example, if modeling a population as two meta-populations, the overall

genotype frequencies are the additive combination of frequencies of the meta-populations, which

would thus require appropriate data to accurately determine the composition of the individual

meta-populations.

While our model has several limitations, the parameter estimates here suggest that susceptibility

is not dominant to the F1534C mutation. This is an important contribution to the understanding

of insecticide resistance and adds to the previous analysis done by Baltzegar (2020). These results

suggest the need for further analysis of the data using other models and investigation of dominance

with lab experiments. While there are many potential issues, our approach using pMCMC may also

be possible to extend to other inference problems.
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Appendix A

Mathematical analysis of reversing gene

drives1

We examine the qualitative behavior of the system for various fitness costs and assumptions. Figure

A.1 shows different qualitative behavior present with specific sets of parameter values by using

phase plots, which illustrate the change in allele frequencies in one generation for a grid of initial

conditions. The allele frequencies are displayed in DeFinetti diagrams (Hoppensteadt and Peskin,

2013), where the sum of the frequencies at each point adds to 1. The qualitative difference between

the RD and IRD seen in Figures 2.1 and 2.2 is visible in Figure A.1a (RD) and Figure A.1c (IRD), which

have parameter values identical to those in Figure 2.2. Increasing the fitness cost to individuals with

a copy of both the HD and countermeasure (sH D /C ) changes the qualitative behavior of the system.

For the RD, with sH D /C = 0.6, trajectories spiral outward, toward the edges of the system (Figure

A.1b). For the IRD, increasing sH D /C to 0.9 demonstrates bistability, where the system can reach

fixation of either the IRD or the HD, depending on initial conditions (Figure A.1d).

To consider a range of values of sH D , sC , and sH D /C , equilibria and their stabilities were computed

numerically. Stability was calculated by finding the eigenvalues (λi ) of the Jacobian of the system

evaluated at that equilibrium, and checking if |λi | ≤ 1 for all i . We assumed perfect homing (eH D =

eC = 1) such that qR = 0 at all times, and recessive fitness costs in wild-type heterozygotes (hH D =

1This appendix is included as supplementary online material for the publication: Vella MR, Gunning CE, Lloyd
AL & Gould F. (2017) Evaluating strategies for reversing CRISPR-Cas9 gene drives. Scientific Reports. 7: 11038.
doi:10.1038/s41598-017-10633-2.
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hC = 0) in Figures A.2 and A.3 and additive fitness costs in wild-type heterozygotes (hH D = hC = 0.5)

in Figures A.4 and A.5.

Different equilibria are stable for different regions of parameter values, as indicated by color

in Figures A.2 and A.4. For each of the three countermeasures, Figures A.2 and A.4 illustrate the

long-term behavior seen for different values of the HD fitness cost (sH D ), HD/C heterozygote fitness

cost (sH D /C ) and the countermeasure fitness cost (sC ). Each row of the figure depicts a different

countermeasure (SR, RD or IRD), and different panels across a row depict different countermeasure

fitness costs. Within each panel, the HD fitness cost is shown on the horizontal axis and the HD/C

heterozygote fitness cost on the vertical. Using HD, C, and W as abbrevations for homing drive,

countermeasure, and wild-type alleles, respectively, the colors indicate the stable equilibrium

as follows: red for HD fixation, blue for C fixation, green for an equilibrium that consists of a

combination of C and W (i.e., no HD at equilibrium), purple for an equilibrium with a combination

of HD and C, orange for an equilibrium with a combination of HD, C, and W, and yellow for bistability,

when two of the previously listed equilibria are both stable. For SR and RD countermeasures, the

bistable regions have both HD fixation and a combination of C and W as stable equilibria, with initial

conditions determining the long-term behavior of the system. For the IRD, the bistable regions have

both HD and IRD fixation as stable equilibria, as shown in the example of Figure A.1d. The difference

for the IRD is because unlike the SR and RD, the IRD maintains a relative fitness advantage over

W even in the absence of the HD. Finally, the brown regions indicate that those parameter values

do not result in any stable equilibria with valid frequencies (i.e., each frequency in range [0,1]).

Such cases often result in oscillatory dynamics away from an unstable, polymorphic equilibrium, as

depicted in Figure A.1b.

Figures A.3 and A.5 correspond to Figures A.2 and A.4, respectively, and show the HD frequency at

equilibrium. The empty areas of the figures indicate that the system does not always reach the same

equilibrium (i.e., bistable or no stable ). The SR and RD countermeasures only have stable equilibria

without HD present when the countermeasure fitness cost is 0 (sC = 0). The IRD, on the other hand,

often has a stable equilibrium without any HD. In regions where there are intermediate frequencies

of HD at equilibrium, the equilibrium HD frequency tends to increase as countermeasure fitness

decreases. This explains the decrease in minimum HD frequency with decreasing countermeasure

fitness costs shown in Figures 2.3 and 2.4, since oscillations around smaller frequencies of HD must
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reach small HD frequencies.
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Figure A.1 Phase plots, showing change in allele frequencies in one generation for a grid of initial con-
ditions, for RD (a,b) and IRD (c,d). DeFinetti diagrams (Hoppensteadt and Peskin, 2013) show allele fre-
quencies with gray lines showing the allele frequency change in one generation, going toward the dot.
Blue lines follow separate trajectories for 100 generations, starting from the red squares. a/c) parameter
values from Figure 2.2 (sH D = 0.3, sC = sH D /C = 0.2) demonstrate the stable polymorphic equilibrium for
the RD and countermeasure fixation for the IRD. b) RD system with increased heterozygote fitness cost
(sH D /C = 0.6), resulting in no stable equilibria with frequencies in range [0,1] (brown region in Figure A.2).
Trajectories oscillate away from the unstable, polymorphic equilibrium. d) IRD system with increased het-
erozygote fitness cost (sH D /C = 0.9), resulting in a bistable system (yellow region in Figure A.2). Some initial
conditions lead to HD fixation and others lead to countermeasure fixation. Note that near the edge of
the triangle, stochastic loss of the allele with small frequency becomes likely in a finite, randomly mating
population.
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Figure A.2 Possible long-term behaviors of the system for each countermeasure and various fit-
ness costs, assuming perfect homing (eH D = eC = 1) and no fitness costs in wild-type heterozygotes
(hH D = hC = 0). Colors indicate which alleles are present in the single stable equilibrium of the system
(e.g., green indicating that only countermeasure and wild-type are present at equilibrium), if there are
multiple stable solutions (yellow), or if there are no stable solutions where all frequencies exist in range
[0,1] (brown). The axes show fitness costs of the HD (x-axis) and HD/C heterozygote (y-axis), and the fit-
ness cost of the countermeasure varies across columns. Type of countermeasure varies across rows. Black
points indicate parameter combinations used in other figures.
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Figure A.3 Frequency of the HD at equilibrium for each countermeasure and varying fitness costs,
assuming perfect homing (eH D = eC = 1) and recessive fitness costs in wild-type heterozygotes
(hH D = hC = 0). Blue and red areas indicate regions of countermeasure and HD fixation, respectively, from
Figure A.2, and intermediate shades show the HD frequency for stable polymorphic equilibria (orange in
Figure A.2). Plot details are otherwise identical to Figure A.2.
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Figure A.4 Possible long-term behaviors of the system for each countermeasure and various fitness
costs, assuming perfect homing (eH D = eC = 1) and additive fitness costs in wild-type heterozygotes
(hH D = hC = 0.5). The axes show fitness costs of the HD (x-axis) and HD/C heterozygote (y-axis), and the
fitness cost of the countermeasure varies across columns, and colors indicate the same types of behav-
ior as in Figure A.2. Compared with recessive fitness costs in wild-type heterozygotes (Figure A.2), the
SR countermeasure becomes more likely to result in removal of wild-type, and the RD countermeasure
becomes more likely to have no stable equilibria.
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Figure A.5 Frequency of the HD at equilibrium for each countermeasure and varying fitness costs,
assuming perfect homing (eH D = eC = 1) and additive fitness costs in wild-type heterozygotes
(hH D = hC = 0.5). Blue and red areas indicate regions of countermeasure and HD fixation, respectively,
from Figure A.4, and intermediate shades show the HD frequency for stable polymorphic equilibria (or-
ange in Figure A.4). Plot details are otherwise identical to Figure A.4.
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Appendix B

Further exploration of 1- and 2-locus

female-killing1

B.1 Stochastic simulations

In order to understand the importance of demographic stochasticity (e.g. to simulate extinction

events) and genetic drift, we formulated a stochastic model that is analogous to our deterministic

model. Specifically, the rates of each process (birth, maturation and death) that appear in the

deterministic model were taken to be rates of a continuous-time, discrete-state Markov process

model. This model was simulated using a tau-leaping approach. The steps are as follows:

1. calculate each of the rates k j (t ) in the system at time t

2. advance the time step by the time step τ

3. approximate the number of times each event occurred using a Poisson distribution with mean

τk j (t )

4. adjust the states accordingly before repeating all steps

We ran simulations in R (R Core Team, 2019) using the adaptivetau package (Johnson, 2019), which

uses automatic selection of τwith adaptive explicit-implicit tau-leaping (Cao et al., 2007).

1This appendix will be included as supplementary online material for the manuscript: Vella MR, Gould F & Lloyd AL.
Mathematical modeling of genetic pest management through female-specific lethality: Is one locus better than two?
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For each approach, we ran 300 stochastic simulations for each value in a range of release ratios

with the default parameters from the main text. Simulations were stopped after 1000 days. The

mean time until there were no adult females in the stochastic simulations (Figure B.4) is similar to

the time until 99.95% reduction in deterministic simulations (as shown in Figure 3.2B). In stochastic

simulations, random fluctuations can cause the population to go extinct even when r is below rc .

As r approaches rc and the equilibrium population size becomes smaller, extinction occurs within

1000 days in a higher percentage of stochastic simulations. Because the mean is taken from the

simulations that go extinct, the mean time until extinction is biased downwards, most notably when

extinction times frequently exceed 1000 days. For this reason, Figure B.4 only shows outcomes when

at least 200 of the 300 simulations reached extinction. While smaller wild-type populations would

increase the variance in stochastic simulations, the results suggest the deterministic simulations

represent the overall dynamics well.

B.2 Equilibrium analysis

For the 1-locus system, we analytically solved for equilibria and calculated their stabilities using

the eigenvalues of the Jacobian - a standard analytic approach for dynamical systems (Strogatz,

2001). The system exhibits a saddle-node bifurcation as r increases. Here this means that when

r is small, there is a non-zero stable equilibrium for number of viable females, but past a critical

release ratio, rc , the only stable equilibrium is a population size of zero. The bifurcation diagram is

shown in Figure B.3, which shows the same stable equilibria as Figure 3.2a but also shows unstable

equilibria. For the 2-locus system, we could not find an analytical solution, but simulation results

indicate similar dynamics are present.

Below rc , the system is bistable, with dynamics bringing the population to extinction if beginning

below the unstable equilibrium and bringing the population to a non-zero, stable equilibrium

when beginning above the unstable equilibrium. While the unstable equilibrium which serves

as the threshold for whether the system goes to zero or goes to the non-zero equilibrium is in

multiple dimensions, there is also a threshold when beginning from a wild-type only population.

The bistability in a 1-locus L-FK system is illustrated in Figure B.2. Simulations beginning with low

numbers of wild-type individuals (the initial number of juveniles and males are reduced equally to
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the number of females) go to extinction instead of the non-zero, stable equilibrium. This means

that even when the release ratio is below rc in a system, release could bring the population size to

zero following population reduction by another method, such as spraying pesticides. In practice,

however, it could be difficult to achieve enough suppression to bring the system below the unstable

equilibrium. Additionally, in an area already without any wild-type individuals, ongoing release

below rc could prevent (small-scale) immigration of wild-type from re-establishing a population.

B.3 2-locus population genetics with additive fitness costs

As noted in the main text, if either the A or B alleles are at fixation in a population, the population

genetics of 2-locus FK becomes effectively equivalent to 1-locus FK. For example, if B is at fixation,

all that is needed is a single copy of A to cause lethality. For some sets of fitness parameters, either A

or B is driven to fixation, while other parameters result in intermediate frequencies of both alleles.

This effect is illustrated in Figure B.6A, which shows allele frequencies over time for both 1-locus

and 2-locus L-FK with parameters cA = 0.75, s M = 0.25, and h = 0.5, and several different values of

s H . When s H = 0.1 (left column), the B allele goes to fixation in most simulations, but the A allele

can go to fixation in stochastic simulations despite having higher costs than B. The A allele would

also go to fixation in deterministic simulations if starting from a much higher frequency than the

B allele. At moderate costs (middle column), the B allele always goes to fixation, and at high costs

(right column), both alleles reach intermediate frequencies. EFK exhibits similar behavior.

The possible allele outcomes for 2-locus L-FK with different combinations of fitness parameters

are shown in Figure B.7. Here, simulations were conducted with additional transgenic adult male

and females in the system at time 0. One set of simulations began with the A allele at 0.5 frequency in

adults by adding AAbb adult males and females (in number equal to the wild-type adult equilibria)

to the population, while another set similarly began with extra aaBB adults. When fitness costs are

equal between the A and B alleles (cA = 0.5, left column), the inheritance of A and B is completely

symmetric in deterministic simulations. At high release ratios, the population goes to extinction

regardless of initial condition (grey areas), but at lower release ratios, there are two possible outcomes.

The A and B alleles are attracted toward equal intermediate frequencies when s H is high compared

to the release ratio (with the intermediate frequency indicated by shades of green). When s H is small
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and the release ratio is large enough, the system is attracted toward an equilibrium with whichever

of the alleles begins at higher frequency reaching fixation (dark red areas), while the other allele

reaches an intermediate frequency. In these cases, the hatching fitness cost is small enough to be

outweighed by the influx of AA or BB in released adult males.

When cA > 0.5 (middle and right columns), some parameter sets result in the B allele reaching

fixation even in simulations beginning with a higher frequency of A (black areas). As cA increases,

the B allele is pushed to fixation in systems with larger values of s H because the cost to the B allele

is smaller. Likewise, the higher cost of the A allele decreases the (dark red) region where it reaches

fixation. In a small region of parameter space, the A allele increases in frequency and imposes a

large enough genetic load to cause population extinction, while the B allele would reach fixation

without causing extinction (light right areas). As s M increases, the primary effect is to reduce the

effective release size, and thus larger releases are needed to drive an allele to fixation.

In terms of population suppression, the efficacy of 2-locus FK does not significantly depend on

the allele frequency dynamics. The amount of suppression is slightly greater when either the A or B

allele reaches fixation as long as there are fitness costs; the costs to the fixed allele impose a genetic

load on the entire population. This phenomenon is responsible for sudden, minor decreases in

the 2-locus equilibria in Figure 3.2A and Figure B.5A, which happens when the release ratios are

large enough to cause one allele to become fixed. However, compared to 1-locus FK, 2-locus FK

results in greater suppression even when neither allele is fixed because of the additional propagation

of transgenic alleles, as described in the main text. As shown in Figure B.6B, the number of adult

females over time reaches a smaller number in 2-locus L-FK than in 1-locus L-FK regardless of

whether an allele reaches fixation, with a larger difference in suppression when s H is larger.

B.4 Additional figures
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Figure B.1 Effect of transgenic releases on population size over time for various strengths of density de-
pendence and release ratios. The number of viable adult females (relative to pre-release equilibrium) over
time is plotted in deterministic simulations. Release ratios vary across rows, with adults for each genetic
approach released at a continual weekly release ratio of 3:10, 1:1, and 7:1 transgenic males to the pre-
release equilibrium wild-type males (middle row is equivalent to Figure 3.1). Line type and colors vary by
approach as in the main text, with the addition of squares and triangles to show 2-locus E-FK and 2-locus
L-FK with double the total fitness costs (s H = 0.4, and s M = 0.2, with cA = 0.55). The remaining simulations
use the default parameters from the main text: s H = 0.2, s M = 0.1, cA = 0.55, and the remaining parameters
as listed in Table 3.3. As strength of density dependence (β ) increases and release size (r ) decreases, the
releases are less effective. If 2-locus FK has higher costs (symbols), it can become less effective than 1-locus
FK, but at high release ratios, there is little difference in the number of total females over time.
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Figure B.2 Bistability of a 1-locus L-FK system with release below rc. Each line represents a different
starting number of wild-type females, with the initial number of adult males and juveniles are reduced by
the same amount as the females (0.01 begins with 1/100 of the wild-type equilibrium count of each class).
Lower initial counts could represent suppression from a method such as spraying of insecticides, or new
immigration into a population that had already been eliminated. Each simulation has a release ratio of
r = 2 beginning at time 0, and the number of females (relative to the wild-type equilibrium) over time is
shown. A log scale for the number of adult females is used in order to illustrate behavior at small values.
Simulations starting from low counts of wild-type result in population extinction, whereas higher initial
counts result in the population reaching a non-zero equilibrium. Note that only a single dimension of the
system is plotted, which means the time-series can exhibit different dynamics at the same value of relative
adult females. Fitness parameters are equal to the default values from the main text: s H = 0.2, cA = 0.55,
and s M = 0.1.
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Figure B.3 Bifurcation diagram for 1-locus approaches, with the default parameter values from the
main text. Analytical solutions and their corresponding eigenvalues were calculated. Here, the number of
adult females in real, positive solutions is plotted for varying r . A log scale for the number of adult females
is used in order to illustrate small equilibria. The grey line at the x-axis indicates the stable solution of 0
for all approaches (an extinct population with only released adult males remaining). Otherwise, approach
varies with line color and type as in previous figures. The systems exhibit a saddle-node bifurcation, where
at small values of r , there are two stable solutions (thick lines, one at zero and one positive) with an unsta-
ble solution (thin lines) in between. When r reaches rc , the positive stable and unstable solutions collide.
For larger r , the only equilibrium is the stable equilibrium at 0.
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Figure B.4 Time until no adult females remaining in stochastic simulations. For each approach and
value of r , 300 stochastic simulations were conducted for up to 1000 days. Thick lines show the mean
time until there were zero adult females left in the population, and the ribbons show the 2.5% and 97.5%
quantiles. Data is only plotted for values of r where at least 200 simulations resulted in 0 adult females
by day 1000. Color and line type indicate approaches as in previous figures. Parameters are the default
in the main text: β = 3, s H = 0.2, s M = 0.1, cA = 0.55, and h = 0.5. The mean times are similar to Figure
3.2B in the main text, which shows that the time until falling below 1 adult female (from 2000 wild-type at
equilibrium) in deterministic simulations is a good approximation of the stochastic simulations.
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Figure B.5 Release outcomes across different release ratios with β = 2. A: Long-term, stable equilibria
for number of viable adult females (relative to equilibrium) for different r , found by simulating the system
of differential equations until at steady-state. The asterisks indicate r = 1, for which the equilibrium
values correspond to the simulations in the left-column, center-row panel of Figure B.1. Each genetic
approach exhibits a bifurcation at a critical release ratio, rc , indicated by a solid circle. Above the rc of
each approach, that approach has an equilibrium at zero, making a discontinuity as seen with the red
line for L-BK. Above r = 0.64, two or more approaches lead to extinction of the population and hence
have equilibria at zero: this is indicated using a grey line. Each of the 2-locus FK (green lines) approaches
exhibit a discontinuity where r becomes large enough to drive one of the alleles to fixation, decreasing the
equilibrium population size (as explained in Appendix B.3 and illustrated in Figure B.6 and B.7). B: Time
until the number of viable adult females is under 0.05% of equilibrium in deterministic simulations for
different r . Color and line type match that of previous figures. Fitness parameters are equal to the default
values from the main text: s H = 0.2, cA = 0.55, and s M = 0.1.
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Figure B.6 2-locus L-FK juvenile allele frequencies over time at r=2 for different hatching fitness costs.
A: Allele frequency in juveniles shows different possible outcomes of A (dark green) and B (light green)
allele frequencies for 2-locus LFK, and the K allele frequency in 1-locus LFK. The maximum possible allele
frequency for 1-locus (or 2-locus when one allele is at fixation) is 0.5, when all individuals are heterozy-
gous. B: Corresponding relative adult females in the population over time. Fitness parameters are cA = 0.75,
s M = 0.25, and h = 0.5. Deterministic simulations (thick lines) and 10 stochastic simulations (thin lines)
are shown. At low hatching fitness costs (left column), the B allele goes to fixation in most simulations, but
the A allele can also go to fixation despite having higher costs than B. At moderate costs (middle column),
the B allele always goes to fixation, and at high costs (right), both alleles reach intermediate frequencies.
See Figure B.7 for the outcomes of allele frequencies across parameter space.

89



cA = 0.5 cA = 0.75 cA = 1
s

M
=

0
s

M
=

0.25
s

M
=

0.5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

weekly release ratio (r)

ho
m

oz
yg

ot
e 

ha
tc

hi
ng

 fi
tn

es
s 

co
st

 (s
H

)

0.00
0.25
0.50
0.75
1.00

B allele
frequency

B fixed

B or A fixed

B fixed or
pop. extinct

pop. extinct

Figure B.7 Allele frequency outcomes from deterministic simulations of 2-locus L-FK for various fitness
parameters and release ratios when degree of dominance h= 0.5. At each unique set of fitness param-
eters (male mating competitiveness fitness cost, s M , differing between rows of panels; proportion of the
total cost accounted for by the A allele, cA , differing between columns of panels; hatching fitness cost, s H ,
differing across the y-axis of each panel) and weekly release ratio (r , differing across the x-axis of each
panel), long-term outcomes of two simulations with different initial conditions were compared. The sys-
tems were perturbed by adding transgenic adult male and females to the system at time 0. One simulation
began with aaBB and the other AAbb males and females in equal numbers to the wild-type equilibrium
number of males and females. In some regions of parameter space, r is large enough (toward the right side
of each panel) to cause the system to go extinct in both simulations (grey regions). At lower r , there are
four potential outcomes, three of which are illustrated in Figure B.6 (panel parameters indicated by yellow
points): 1. the A and B alleles end at an intermediate frequency in both simulations (B frequency is indi-
cated by shade of green), 2. the B allele goes to fixation in both simulations (black regions), 3. whichever al-
lele was at higher frequency at time 0 goes to fixation (dark red), or 4. the B allele goes to fixation if starting
at a higher frequency, while the system goes extinct if beginning with additional A alleles in the population
(light red).
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Appendix C

Particle Markov chain Monte Carlo

Simplifying notation from the main text, we let X t and Yt be random variables representing the

vectors of true genotype frequencies of the population and the data, respectively, at generation

t ∈ [1, . . . , T ]. The aim of particle Markov chain Monte Carlo (pMCMC) is to infer the joint posterior

distribution of the states and parameters (represented by the random variable θ ) given the data:

f (x1:T ,θ |y1:T )∝ g (y1:T |x1:T ,θ ) π(θ ) f (x1:T |θ ) (C.1)

=

�

T
∏

t=1

g (yt |xt ,θ )

�

π(θ ) f (x1|θ )

�

T
∏

t=2

f (xt |xt−1,θ )

�

, (C.2)

where g (yt |xt ,θ ) is the likelihood of the data given the states of the system and the parameters

at each generation, π(θ ) is the prior for the parameters, f (x1|θ ) is the density function of the

initial frequencies, and f (xt |xt−1,θ ) is the frequency transition density function. The posterior

distribution is not possible to calculate directly, so we instead turn to MCMC approaches to sample

from the posterior. Here we give a brief overview of the particle filter algorithm and particle marginal

Metropolis-Hastings (PMMH) (Andrieu et al., 2010), which we implement via the nimble R package

(Michaud et al., 2017).

C.1 Bootstrap filter

A particle filter can be used to approximate the marginal likelihood L̂
�

y1:T |θ
�

and to sample from

f (x1:T |y1:T ,θ ). Broadly, the particle filter operates by using f (xt |y1:t ,θ ) to sequentially sample from
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f (xt+1|y1:t+1,θ ) using importance resampling. In the simple case of the bootstrap filter, this is done

by progagating particles forward according to the Markov model and weighting each particle based

on the sampling likelihood. The steps of a bootstrap particle filter given θ ∗ (where each step is

repeated for all j = 1 . . . J particles) are as follows:

1. sample x
( j )
1 ∼ f (x1|θ ∗)

2. calculate initial weights W
j

1 = g
�

y1|x
( j )
1 ,θ ∗

�

for t = 2 . . . T :

3. resample particles x
( j )
t−1 based on weights W

( j )
t−1

4. sample x
( j )
t ∼ f (x ( j )t |x

( j )
t−1,θ ∗)

5. calculate weights W
( j )

t = g (yt |x
( j )
t ,θ ∗).

The marginal likelihoods at each time step L̂ (yt |y1:t−1,θ ∗) = 1
J

∑J
j=1 W

( j )
t can be used to obtain an

estimate of the marginal likelihood L̂
�

y1:T |θ ∗
�

=
∏T

t=1
1
N

∑J
j=1 W

( j )
t . Importantly, L̂ is an unbiased

estimate of the marginal likelihood. After completing the bootstrap filter, a randomly selected particle

sequence can also be selected, giving a sample from the smoothing distribution f (x1:T |y1:T ,θ ∗).

Resampling in Step 3 is important as it reduces particle degeneracy, a condition where very few

particles have most of the weight. There are several options for resampling particles, the simplest of

which is multinomial resampling, which uses weighted sampling based on particle weights, thus

making high-weight particles likely to be replicated. In the steps above, resampling occurs at every

time step, which allows the particles to be treated as being of equal weight. However, it can be

advantageous to resample only when particle degeneracy becomes high. The amount of degeneracy

is related to the effective sample size of particles, E SSt =
1

∑

j

�

w
( j )
t

�2 , where w
( j )
t is the normalized

weight of particle j at time t .

C.2 Particle marginal Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm is used to stochastically sample from a posterior distri-

bution when direct sampling is not possible. In the MH algorithm, a Markov chain is generated

by proposing candidate parameters at random from a proposal distribution around the current
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parameter value. The candidate parameter is accepted with probability equal to the ratio of the

likelihood of the candidate value given data to the likelihood of the current value. Intuitively, this

allows the random walk parameter values to explore parameter space while spending more time

in areas with high probability density, and the Markov chain converges to the targeted posterior

distribution.

PMMH uses the estimates of the marginal likelihood from the particle filter in the MH acceptence

ratio in order to jointly sample from the joint posterior distribution from (C.1). Andrieu et al. (2010)

show that unbiased estimates of the marginal likelihood obtained from a particle filter, even with

high variance due to few particles, produce samples from the appropriate target distribution and

converges to the desired joint posterior. The PMMH algorithm, run for M iterations, is as follows:

1. choose initial parameter values θ (0)

2. obtain the marginal likelihood estimate L̂ (0)
�

y1:T |θ (0)
�

using the bootstrap filter

for m = 1 . . . M :

3. generate proposal θ ∗ ∼ q (θ |θ (m−1))

4. obtain the marginal likelihood estimate L̂ (m )
�

y1:T |θ ∗
�

using the bootstrap filter

5. evaluate a =
L̂ (m )(y1:T |θ ∗) π(θ ∗)

L̂ (m−1)(y1:T |θ (m−1))π(θ (m−1))
q (θ (m−1)|θ ∗)
q (θ ∗|θ (m−1))

6. generate a random number u ∼Uniform(0, 1)

7. if a > u set θ (m ) = θ ∗, else set θ (m ) = θ (m−1).

The proposal distribution, q (θ |θ (m−1)), can take a variety of forms, but the multivariate normal

distribution is standard. The covariance matrix and scale of the proposal distribution can be difficult

to tune in some cases, though adaptive approaches can be employed to handle this. Additionally, at

each iteration, after running the bootstrap filter, a particle can be sampled with its full state history

to obtain a proposal sample from the smoothing distribution, i.e., f (x1:T |y1:T ,θ ∗). (Note that this

sample is relevant to the convergence of PMMH.)

After enough iterations, the samples will be drawn from the stationary distribution, which is

the posterior distribution. Thus, it is important to ensure convergence of the Markov chains. It is
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standard to discard early values in the chain before convergence (burn-in), and the chains must then

be run for many iterations (especially if there is high autocorrelation, which reduces the effective

length of the chain because each sample is not independent) to achieve adequate sampling of the

posterior distribution. Multiple, independent chains are also typically run, and the extent that the

chains converge can be quantified by using the Gelman-Rubin statistic (Gelman, Rubin, et al., 1992).

94


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Outline

	Evaluating strategies for reversing CRISPR-Cas9 gene drives
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements

	Mathematical modeling of genetic pest management through female-specific lethality: Is one locus better than two?
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Acknowledgements

	Inference of selection coefficients for insecticide resistance in Iquitos, Peru
	Abstract
	Introduction
	Methods
	Mathematical model of population genetics
	Genetic drift
	Sampling
	Model analysis
	Experimental data

	Results
	Discussion

	References
	APPENDICES
	Mathematical analysis of reversing gene drives
	Further exploration of 1- and 2-locus female-killing
	Stochastic simulations
	Equilibrium analysis
	2-locus population genetics with additive fitness costs
	Additional figures

	Particle Markov chain Monte Carlo
	Bootstrap filter
	Particle marginal Metropolis-Hastings


