
ABSTRACT

WHITE, REBEKAH DALE. Inferring the Microstructural Properties of Cortical Bone from
Ultrasound Attenuation. (Under the direction of Alen Alexanderian.)

Mathematical models are widely used to represent physical and biological phenomena with
the goal of better understanding such systems. Additionally, these models along with data can be
used to formulate and solve inverse problems allowing us to infer specific information about the
systems themselves. This approach is especially useful when the information we seek cannot be
easily ascertained from experimentation. In this dissertation we use these mathematical tools to
develop techniques for characterizing the microstructure of heterogeneous cortical bone. This is of
interest as a quantitative characterization of cortical bone can aid in identifying and diagnosing
degenerative bone diseases such as Osteoporosis. We focus on using ultrasonic attenuation data
to infer the microstructural properties, pore size and pore density, thus providing a non-invasive,
non-ionizing way of characterizing bone.

This work is conducted in stages, where every progression represents a more realistic version
of the problem formulation, with the ultimate goal being able to infer microstructure in-vivo.
The first phase involves determining if ultrasonic attenuation data is dependent upon the
microstructural parameters of interest, pore size and pore density. This is necessary to establish
in order to use ultrasound attenuation to infer microstructural properties. In this phase, we
numerically generate data using simulated 2D monodisperse (pores of the same size) cortical
bone-like structures. We choose an empirical relationship between frequency and attenuation
that is based on the trends in simulated attenuation data. This results in a phenomenological
mathematical model for attenuation. We show that model parameter estimates resulting from
solving an inverse problem allow use to determine low, medium, or high porosity levels in the 2D
cortical bone-like samples. The methods we use involve formulating and solving an Ordinary
Least Squares inverse problem, performing local sensitivity analysis, calculating standard errors,
and performing linear regression. This stage provides proof-of-concept for the more realistic
problem formulations we discuss next.

In phase two of the work, we use two physics-based scattering attenuation models, the
Independent Scattering Approximation (ISA) and the Waterman Truell (WT) model, to represent
attenuation in heterogeneous cortical bone. These models are nested versions of one another,
with the WT model being a higher order model in comparison to the ISA. Since both models
are explicitly dependent upon both pore size and density, we can formulate and solve an inverse
problem to directly estimate these parameters. We use more realistic 3D monodisperse cortical
bone-like structures and numerically generate data using a Finite Difference Time Domain
package. In the second phase of the work, we validate the use of both scattering models to
represent attenuation in cortical bone as well as to infer microstructural properties of simulated
samples.



The third phase of work builds on the second phase, but considers the more realistic problem
formulation where the pores of the bone vary in size (polydisperse). This mimics the structure of
real cortical bone and allows us to use ultrasound attenuation data gathered from in-vitro cortical
bone samples taken from human cadavers. In this phase, we must reformulate our attenuation
models to represent these polydisperse samples. We use a probabilistic approach and illustrate
several ways this can be done. In this phase of work, the quantity of interest is the Probability
Density Function (PDF) on pore size in the bone sample. This will allow us to better quantify
osteoporosis levels in comparison to having only an average pore size estimate. Note that the
inverse problem of estimating a PDF involves an infinite dimensional optimization problem. Thus,
we use the Prohorov Metric Framework to make the inverse problem tractable. We implement
regularization functions to address the ill-posed nature of the inverse problem. In this work,
we show that we can predict attenuation in real cortical bone using these polydisperse models.
Furthermore, using micro CT imaging to validate our results, we show we can accurately estimate
the true PDF on pore size within these samples. Overall, the techniques provided in this work
provide the foundation for solving the problem in-vivo.
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CHAPTER

1

INTRODUCTION

Quantifying physical or chemical properties of heterogeneous materials is of broad interest in
geological, medical, and engineering applications. A major goal is often to answer questions
regarding the structural or chemical composition of media for the purpose of monitoring material
changes or identifying degradation. Non-invasive interrogation techniques have been widely
used to characterize media such as cements and ceramic matrix composites, living tissues, and
even geological samples [8, 45, 86, 91]. Frequently, the use of non-invasive and non-destructive
interrogation tools is of interest to provide routine screening capabilities. This dissertation
focuses on a specific biomedical application. Namely, we aim to develop methodology for inferring
the microstructural properties of human cortical bone through the use of non-invasive and
non-ionizing ultrasonic wave interrogation.

1.1 Motivation

The main motivation of the research in this dissertation is providing a quantitative tool to
characterize the microstructure of cortical bone for the purpose of characterizing stages of
osteoporosis in patients. Osteoporosis is a bone disease that degrades the cortical bone matrix,
thus increasing patient susceptibility to fracture [38, 56]. The disease does so by increasing the
size and density of the pores in the cortical bone [3, 80]. Approximately 70% of appendicular bone
loss is cortical bone, making it the primary focus of our research [2]. To properly characterize
the progression of the disease, one must be able to infer the microstructure of the bone. This
disease affects large percentages of the population and on average results in 20% of men and 33%

of women over the age 50 experiencing osteoporotic fractures [69, 70]. However, early diagnosis
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and treatment can reduce the risk of osteoporosis related injuries [41]. This in turn requires
routine patient screenings, which are only feasible with an approach that utilizes non-invasive,
non-ionizing, and relatively cheap technology. As we will discuss in detail in Chapters 2, 3, and 4,
current approaches are unable to provide this. Therefore, a new approach for characterizing the
microstructural properties of cortical bone is needed. The proposed approach could be broadly
applied the characterization of heterogeneous media, making it of interest in a variety of fields.

1.2 Previous Work

Here, we provide a brief review of literature relevant to this dissertation. We first discuss
broadly the use of ultrasound interrogation to characterize heterogeneities. We then discuss
some background for the physics-based models employed in Chapters 3 and 4. Lastly we discuss
general schemes for inverse problems and how they relate to this work.

Although we are focused on quantifying cortical bone porosity using ultrasound attenuation,
previous works have made use of ultrasound for inferring material properties in a variety of
media. Geological research and oceanography readily employ ultrasound as a means of inference
[51, 77, 100]. An interesting application analogous to our work includes the use of multiple
scattering acoustic waves to estimate the density of fish in a shoal [100]. Rather than using the
attenuation feature, this work uses information regarding the coherent backscattering of the
wave and the mean free path (average distance between two scattering events) to characterize
fish density. An example of the use of ultrasonics in geological applications includes using wave
measurements to estimate the thickness and mechanical properties of ice sheet layers [77]. That
work does not focus on wave scattering, as the waves are traveling through solid sheets of ice.
Rather, the model for these so called Lamb waves (waves propagating in solid plates) determines
the frequency-dependent wavenumbers. Whether dealing with geological samples or materials
such as concrete, often times acoustic waves are used to identify sources or cracks, rather than
evaluating characteristics of the heterogeneities. For example, the work [51] uses acoustic waves
as a form of non-destructive evaluation of concrete damage in the containment walls in nuclear
power plants.

In particular, the characterization of cements and concrete materials using ultrasonic attenu-
ation share many similarities to the efforts of this work. The multiple scattering of acoustical
waves has been used to characterize air voids in cement [86]. The work of [54] extends this work
by considering samples with small-size and large-size air void ranges. In the aformentioned work
they solve an inverse problem to estimate the parametric density functions for the discrete air
void size, which are given by normal or log-normal distributions.

Similar approaches to those taken to evaluate concretes are taken in biological applications.
Specifically, the work [78] studying trabecular bone suggest that microstructural parameters can
be obtained from ultrasonic measurements. Trabecular bone differs significantly from cortical, in
that the fluid filled pores allow for wave attenuation, while the solid bone matrix acts as scatters.
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Multiple scattering ultrasound waves have also been used to investigate lung diseases, where here
the microstructure is characterized by the scattered mean free path [45]. Classical approaches
to diagnosing osteoporosis use what is known as Bone Mineral Density (BMD) evaluation to
characterize osteoporosis. Established approaches using Quantitative Ultrasound empirically
relate measured sound velocities and attenuation values with BMD and fracture risks [52, 63, 96].
Other popular routes of investigation include mathematically modeling the material properties,
such as elasticity, in order to solve an inverse problem. These material model parameters can
then be empirically related to properties such as porosity. This approach was taken in [22]. For a
thorough background of Quantitative Ultrasound (QUS) to asses cortical bone see the review
[53].

An underlying component in the various applications where ultrasound is used to infer
material properties is the mathematical models representing wave propagation. Here, we discuss
previous work related specifically to the physics-based mathematical modeling of ultrasonic
attenuation. Ultimately, the goal is to model ultrasonic attenuation in a heterogeneous medium,
which results from both scattering when the wave hits inclusions and absorption in the medium.
In this work, the pores of the cortical bone act as inclusions or scatterers. The solid bone matrix,
which is assumed to be isotropic and homogenous, is where the absorption occurs. We do not
consider absorption within the fluid filled pores of the bone. Therefore, we aim to mathematically
characterize a plane stress wave as it propagates through the heterogenous medium.

To begin, we consider the attenuation due to absorption. Mathematical derivations that
result in equations representing the energy loss due to absorption in the matrix are given in [16,
17, 20]. To address the attenuation due to scattering, we rely on classical analysis given in [50,
64, 109, 117]. In 1955, [117] established the mathematical model for the scattering of a plane
longitudinal wave by a spherical obstacle in an isotropically elastic solid. This work provides
the mathematical derivation to determine quantities such as the scattering cross section for a
spherical scatterer and is a first step towards solving the more complicated problem of multiple
scattering. Addressing multiple scattering behavior followed in 1961 with the work of Waterman
and Truell [109]. They determined that the behavior of the scattering medium, characterized
by the complex wavenumber, can be determined explicitly by the number of scatters per unit
volume and the individual scattering amplitudes for a single scatter of a fixed size given by radius
r. The work [109] also provided a theoretical extension for determining the complex wavenumber
when one removes the restriction of having identical scatters. There, a statistical approach is
used to account for any number of distributed parameters (e.g., pore size, etc.), where an average
far-field amplitude is calculated by taking the expected value with respect to the probability
density functions of the distributed parameters. The work [58] also addresses what is referred
to as distributed particle size. A theoretical forward model for total scattering cross section is
given by taking an expectation with respect to a Probability Density Function (PDF) on on pore
diameter. This approach is similar to the approaches taken in our work to formulate polydisperse
models.
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An important result of scattering theory is that the statistical average of the wavefield follows
the Dyson equation [73]. Because the multiple scattering terms in Dyson’s equation (i.e., the
effective wave number representation) are written perturbatively, the order of the scattering
model then depends on the order of the terms included. Including only the first order terms
results in the Independent Scattering Approximation (ISA). Including the first and second order
terms results in the Waterman Truell (WT) Model. Both models are considered in this work.
Previously, the ISA has been used to model attenuation in trabecular bone [55, 72]. Additionally,
the ISA has been used for wave propagation in a variety of media, such as cement [86], water
with metallic rods acting as scatterers [42] as well as soft materials with magnetic fields [32].
The WT model has been used with soft 3D acoustic metamaterials [31].

In addition to the mathematical models for ultrasonic wave attenuation, an inverse problem
formulation is also required to infer material properties. Here, we review approaches taken to
solve inverse problems similar to the ones formulated in this dissertation. In general, there exist
many ways to approach solving an inverse problem. When the aim is to estimate scalar or vector
quantities of interest, frequentist and Bayesian approaches have been extensively and successfully
applied to problems in physics and biology [12, 97]. In addition to model parameter estimates,
these frameworks allow us to perform uncertainty quantification, providing information regarding
our confidence in the estimates. When solving inverse problems (as in Chapter 4) where one aims
to estimate a probability measure, one can employ a variety of approaches [10, 13]. For instance,
one could aim to estimate the first and second moments of the corresponding distribution.
However, this makes significant assumptions regarding the form of the probability distribution.
Because our aim is to characterize osteoporosis in terms of the probability density on pore size,
such an approach would be too restrictive. Thus, our aim is to nonparametrically estimate the
probability measure. Although it is possible to formulate an appropriate Bayesian approach to
such an inverse problem, there are certain challenges that arise. These include proper specification
of the prior in order to satisfy inherent constraints. Additionally, computational issues arise
as one cannot impose commonly used MCMC techniques directly in this infinite-dimensional
setting [35, 39]. In this dissertation, we employ a frequentist approach under the Prohorov Metric
Framework (PMF) [5, 84] to formulate and solve the inverse problem posed in Chapter 4. This
approach has been widely used in biological applications where aggregate data is considered and
population level parameters, given by random variables with associated PDFs, are estimated
[6, 7, 9, 11, 14]. There do exists other approaches to nonparametric inverse problems, such as
data-consistent inversion [33]. However, these are employed when the experimental data is given
as a probability measure itself. Overall, the choice of inverse problem formulation depends heavily
on the form of the mathematical model, type of data collection, and goal of the inverse problem.

There have been a number of previous effort on the use of ultrasound for characterizing
material properties that involve formulating and solving inverse problems. Namely, [86] showed
that ultrasonic attenuation could be used to characterize the entrained air voids in cement paste.
Here, the ISA model and was used to estimate the average radius of the spherical air void and the
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volume fraction within the cement. Additionally, the work of [54], which aimed to characterize air
voids in concrete, used an inversion algorithm to estimate the parametric form of a PDF (i.e., the
mean and variance parameters of the distribution). However, only discrete scatterer sizes were
considered. Another work making use of inverse problems is that of [22], which examines cortical
bone thickness and porosity using quantitative ultrasound (QUS). Their approach differs from
ours in several ways. The ultrasonic parameter of interest in [22] is wave velocity, which is used
to estimate material properties via a genetic algorithm optimization scheme. These estimated
material properties are then related to porosity and bone thickness levels via regression. In
contrast, our approach directly estimates the microstructural properties of interest, as there
exists an explicit dependence on them in our attenuation model.

1.3 Approach

The research in this dissertation is done in stages, each progression representing a more realistic
problem formulation, with an overarching theme of formulating and solving inverse problems to
estimate microstructural properties. These inverse problems use some combination of attenuation
data and mathematical modes for ultrasound attenuation. This general theme is depicted in
Figure 1.1.

Figure 1.1 Diagram depicting how our approach utilizes experimental data and mathematical models
to formulate and solve inverse problems resulting in microstructural parameter estimates

In each of the three phases of this work, we consider different cortical bone or cortical bone-like
structures, mathematical models for ultrasound attenuation, and attenuation data. Thus, we
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have different inverse problem formulations and results in each phase. Although fundamentally
different, these phases do build on one another, each establishing proof-of-concept for the next,
more realistic problem formulation. The phases of this work are outlined in Figure 1.2.

Figure 1.2 Diagram illustrating the three phases of this work. This includes the structures con-
sidered, the type of data used, and the mathematical model employed. In the structures, the dark
circles/spheres represent the pores of the cortical bone and the light gray represents the solid bone
matrix

In phase 1 of this work, we consider simplified, 2D cortical bone-like structures that are
monodisperse—all pores are of the same fixed size. These structures are used to numerically
generate attenuation data using a Finite-Difference Time-Domain (FDTD) package. Here, we
also use a phenomenological mathematical model, known as the power law model. This was
chosen simply because it represents the trends in the data, not because of any underlying physics.
The goal of this phase is to establish that attenuation is dependent upon microstructure—defined
by the pore radius r and density ns—which is an important first step in validating our approach.
We use inverse problems to do so by showing that the model parameter estimates, determined
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by solving an OLS inverse problem, differ in relation to the pore size (r) and density (ns) of the
samples.

In the first phase of work, we established that attenuation data varies with changes in
microstructure. The goal for the second phase of work is to determine a mathematical model for
attenuation that is explicitly dependent upon the microstructural parameters of interest. This is
referred to as a physics-based model. Here, we are modeling the loss of wave amplitude, which
results from two sources, absorption in the solid bone matrix and scattering as the wave hits the
pores of the bone. To model the contributions due to scattering, we borrow two models from
classical scattering theory, the ISA and the WT models. These models are nested versions of one
another, differing in the order of scattering they represent. The ISA models first order multiple
scattering where a wave cannot revisit a pore/scatterer it has already visited. The WT models
second order multiple scattering, where a wave can revisit a pore or scatterer it has already hit.
This is depicted in Figure 1.3.

Figure 1.3 Visual comparison of the two physics-based models considered in this work. The Indepen-
dent Scattering Approximation (Left) and the Waterman Truell (Right)

The main goal in the second phase of this work is to establish the use of one or both of these
models for the purposes of 1) predicting attenuation in cortical bone and 2) estimating the
microstructural properties. In phase two we consider 3D monodisperse structures and again
simulate attenuation data using an FDTD package. Furthermore, we only consider attenuation
due to scattering in this phase. We then aim to directly estimate the pore size (r) and density
(ns) using the physics-based model in our OLS inverse problem. Using asymptotic theory we can
then answer questions regarding the confidence levels in these parameter estimates.

In the final phase of this work we aim to use experimental data taken from the femurs of
human cadavers. However, differing from previous work, the pores in human bone are not all
of the same size (monodisperse). Although one could still solve an inverse problem using the
previously established models, this would amount to estimating an average pore size in the
human samples. We, however, are interested in more information than the average pore size.
Thus, we first aim to reformulate the ISA and WT models to represent polydisperse structures,
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where pores are given by a statistical distribution. Here, the microstructural information we seek
to estimate is the associated PDF on pore size (f(r)). Then our second goal is to formulate an
inverse problem that allows us to nonparametrically estimate this PDF. Although one could
impose a parametric density function, such as normal or beta, this would be overly restrictive as
we expect variations in the shape of the PDF as the disease progresses. To accomplish this second
aim, we rely on the Prohorov Metric Framework, which provides approximation schemes with
asymptotic convergence properties. The adopted approximation scheme represents the PDF of
interest using piecewise linear splines. This phase of work provides for a methodology that could
potentially translate to a clinical setting. Although in that setting one must substitute a different
attenuation model and a different form of attenuation data, the methodology of the inverse
problem formulation would be the same and the results would provide quantitative information
regarding microstructure. Each of the three phases comprise a chapter of this dissertation,
respectively, Chapters 2, 3, and 4.

1.4 Contributions to the Field

The key contributions of this dissertation are as follows:

1. We establish that in cortical bone-like structures, ultrasonic wave attenuation is dependent
on microstructure. This provides validation for the novel approach of using ultrasound
to quantitatively characterize human cortical bone for the purpose of diagnosing levels of
osteoporosis.

2. We establish the use of two physics-based models, the ISA and the WT model, for predicting
scattering attenuation in 3D cortical bone mimicking structures. Prior to this, there was
not a proposed mathematical model to represent scattering attenuation in human cortical
bone. Establishing that these models cannot only accurately predict attenuation, but also
allow us to infer microstructural properties of the bone itself provides a crucial step towards
developing a quantitative diagnostic tool.

3. We formulated polydisperse models using a probabilistic approach. Although other works,
such as [58, 109] had proposed how one may theoretically consider a distributed parameter
in a scattering attenuation model, our work explicitly develops three polydisperse models
dependent upon the distributed parameter, pore size, and compares these models in the
context of solving an inverse problem.

4. We combined the PMF and the concept of variational regularization functions, which
penalize various norms of the approximated PDF, in order to stabilize these often ill-
posed inverse problems. Doing so provides a nonparametric approach to characterizing the
underlying distribution on scatterer size in heterogenous materials.
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5. We provide one of the few quantitative approaches to characterizing porosity in cortical bone
using ultrasound. This provides broad contributions to the characterization of inclusion
size in heterogenous materials in general.
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CHAPTER

2

A PHENOMENOLOGICAL MODEL AND
SIMULATED DATA

The work in this chapter is based on the published article [119]. The author shares first authorship
with O. Yousefian. Specifically, O. Yousefian’s contributions include Section 2.2 in addition to
the mathematical model formulation given in Section 2.3. The author’s contributions include the
inverse problem formulation, the sensitivity and standard error analysis (Section 2.4), as well as
determining the functional parameter representation (Section 2.6).

2.1 Introduction

Osteoporosis changes the micro-structure of both cortical and trabecular bone [38, 116] which
leads to fragility fractures [93, 98], higher morbidity and mortality, and reduction of life expectancy
by 1.8 years [29]. Because it constitutes 80 percent of the human skeleton [40], cortical bone
supports the main load of the body and largely contributes to the skeletal mechanical competence.
The micro-architecture of cortical porosity impacts the macroscopic mechanical properties of
cortical bone, and is affected by osteoporosis [68, 92]. It is therefore highly relevant to develop
methods for the quantitative assessment of the micro-architecture of cortical porosity, and we
hypothesize that tracking the micro-structural changes in cortical bone could benefit the diagnosis
of osteoporosis and may enable treatment monitoring [3, 38, 81]. High resolution peripheral
quantitative CT (HR-pQCT) and MRI based techniques can be used for the characterization of
bone, but MRI lacks resolution for imaging micro-structure of cortical bone (200 µm according
to [62]), and CT based methods are ionizing [28, 112]. Both methods have limitations associated
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with cost and availability of the scanners. Quantitative ultrasonic techniques have the advantage
of being relatively low cost and widely available. Additionally, the mechanical nature of ultrasonic
waves makes them sensitive to micro- and macro- mechanical changes of cortical bone. The
correlation between micro-architectural and ultrasonic parameters could be a key factor for the
ultrasonic characterization of the micro-architecture of cortical bone.

A number of studies have been conducted to address the micro-architectural properties
of bone using ultrasonic parameters. Most of them have been applied to the assessment of
trabecular bone [18, 61, 72, 73, 78, 83, 111].Various techniques have been developed to quantify
cortical thickness [49, 76] and speed of sound in cortical bone [26, 65, 89], which is related to the
Young’s modulus [23]. Mandarano-Fiho et al., [65] carried out an experimental study in vitro to
evaluate the influence of cortical bone thickness on ultrasound wave velocity. Sievanen et al., [95]
investigated the association between speed of sound and cortical density, cortical wall thickness,
and the total cortical area. The interaction between ultrasonic waves and the micro-architecture
of cortical bone has not been investigated as thoroughly as it has been for trabecular bone. A
recent study has demonstrated a correlation between ultrasound backscatter and cortical porosity
[46]. Among all ultrasonic parameters, ultrasonic attenuation, and its frequency dependence have
been investigated the least. In a study by Zheng [122], the spectral ratio method was extended
to estimate the broadband ultrasound attenuation (BUA) in cortical bone in axial transmission
using the primary and multiple reflections between the material interfaces.

To support the aforementioned studies, and to enable a deeper understanding of which
parameters of the micro-architecture can be measured when ultrasound propagates in cortical
bone, an appropriate model describing the behavior of attenuation in cortical micro-structures
remains to be proposed. Ideally, such a model would establish relationships between ultrasonic
attenuation and its frequency dependence to micro-architectural parameters of cortical porosity,
which include pore diameter and density. This would ultimately enable one to solve inverse
problems to infer micro-structural properties of cortical porosity from ultrasound measurements.
The study in this chapter focuses on pore diameter and pore density, which are known to be
modified by osteoporosis [38, 116] and of which the mechanical competence of cortical bone
strongly depends on [81]. However, the individual and independent effect of these two parameters
on ultrasonic attenuation is still unclear.

In the present study we use finite differences numerical simulations to measure the attenuation
and its frequency dependence in slabs of porous media simulating simplified cortical bone. Pore
density and pore diameter are modified independently and ultrasound attenuation is measured in
a range of frequencies going from 1 to 8 MHz. A power law model as proposed in [121] is assumed
to describe the behavior of the attenuation as a function of frequency. The model parameter
estimates are observed to change significantly and monotonically with pore density and pore
diameter. The relative sensitivity of all model parameters is studied. This work is the first step
towards the development of the solution to an inverse problem that would allow one to retrieve
cortical pore density and average pore diameter from ultrasonic measurements in cortical bone.
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In Section 2.2 we provide the methodology for the numerical simulations that generate the
data. The mathematical and statistical models, which are used to fit this data, are given in
Section 2.3. Section 2.4 details the standard error methodology and provides the sensitivity
equations for the power law model. The results of this work are given in Section 2.5, and a
conclusion follows in Section 2.7.

2.2 Methodology for Data Collection

2.2.1 Simulation Framework

The finite-difference, time domain (FDTD) SimSonic research freeware (www.simsonic.fr) [26]
can simulate elastic waves propagating in heterogeneous media with finely controlled mechanical
and architectural properties [25, 34, 82]. It is used to simulate wave propagation in porous media
resembling cortical bone. The media are comprised of solid slabs containing a distribution of
fluid-filled pores. The solid phase is given the material properties of pure bone and the fluid
those of water [26]. The independently tunable material properties can be defined at all points
in space, which enables a deep understanding of the specific individual effect of the different
parameters of the porosity. The pore density (ns) and diameter (φ) ranges are respectively chosen
as ns ∈ [3, 16] pore/mm2 and φ ∈ [20, 100] µm according to values found in literature [27, 46,
103]. The bone geometry is generated using a Monte Carlo method for a given pore density and
pore size. Pores are randomly distributed in the solid bone matrix until the required pore density
is reached. Pore volume fraction (ν) is expressed as a function of pore density and diameter:

ν = pore density× area of a single pore = ns ×
πφ2

4
(2.1)

In other words, among the variables in (2.1), pore volume fraction can be derived from the two
independent variables, pore diameter and density. Note that (2.1) holds true only if there is
no intersection between pores, which was true here since the algorithm used to generate the
geometry was not allowing any overlap between pores. Based upon (2.1) and pore density and
diameter range, the pore volume fraction of the studied geometries varies between 0.1 to 13.0%.

Spectroscopy is performed in the 1-8 MHz range with 0.5 MHz frequency intervals. A plane
wave constituted by a Gaussian ultrasonic pulse with a central frequency within the spectroscopy
range and -6dB bandwidth of 20 percent is transmitted through the medium. Figure 2.1 illustrates
an example of a medium geometry and the emitted pulse. The slab dimensions are 10mm by
10mm. Table 2.1 summarizes the material properties used in the simulations, where C11, C22,
C12, and C66 represent the isotropic elastic constants.
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Figure 2.1 Input signal and schematic bone geometry; Pore size: 100 µm; Pore Density: 5 pore/mm2

Table 2.1 Material properties of the solid and fluid phases [26]

Solid Properties Value Fluid Properties Value

Wave speed Cb 4 Wave speed Cb 1.54

(mm/µs) (mm/µs)

Density ρb 1.85 Density ρw 1.00

(g/ml) (g/ml)

C11 29.60 C11 2.37

(GPa) (GPa)

C22 29.60 C22 2.37

(GPa) (GPa)

C12 17.60 C12 2.37

(GPa) (GPa)

C66 6.00 C66 0.00

(GPa) (GPa)

In all simulations, Perfectly Matched Layer (PML) boundary conditions are applied at
both ends of the geometry in the direction of wave propagation with a thickness of 15 times
that of the wavelength so that the effect of reflections at the ends of the slab can be ignored.
Symmetry boundary conditions are chosen in the direction perpendicular to the direction of
wave propagation so that the effect of diffraction can be avoided, and plane wave conditions
are assumed. Simulations are run in 2D and the grid spacing is selected as 10 µm in both
directions, enabling a spatial sampling of over 50 points per wavelength [76]. This is significantly
higher than the minimum proposed value for the spatial-step size, wavelength/20 (i.e. 20 points
per wavelength), which also satisfies the stability condition of the numerical scheme applied in
elastodynamics by [105, 106].
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2.2.2 Attenuation Measurement: Time-Distance Matrix Approach (TDMA)

SimSonic is used to transmit plane waves through the porous-liked media described above. The
propagated signals are recorded at 30 consecutive longitudinal positions along the sample in
the direction of wave propagation. The transducers used in the simulation are large and cover
the whole geometry (the transducer length is the same as slab height). As a result, the signals
measured on these transducers correspond to signals averaged over the whole height of each
slab. Since the pores are uniformly distributed, averaging over multiple slabs is equivalent to
averaging over large slabs using large transducers.

The time-domain recorded signals are stored in a time-distance matrix, s(t̃, x). The matrix
can be converted into the frequency domain, S(ω, x) through Fast Fourier Transform (FFT).
Hence, each element in the frequency-distance matrix, S(ω, x) represents the spectrum at a given
longitudinal position. To satisfy the Courant–Friedrichs–Lewy (CFL) stability condition for the
SimSonic numerical scheme [105, 106] the sampling time step ∆t was chosen as:

∆t = 0.99
1√
d

∆x

cmax
(2.2)

where cmax is the greatest speed of sound in the simulation medium and d is the dimension of
space (d = 2 for 2D simulation) [26]. A Gaussian window (window length = 200) is used over
the signals in frequency domain S(ω, x).

By assuming an exponential decay for the propagated signal [73], the amplitude of the signals
contained in the frequency-distance matrix can be approximated as:

|S(ω, x)| = e−α(ω)x. (2.3)

Hence, for each frequency, if ln |S(ω, x)| versus xi is plotted, the absolute value for the slope of
the linear fit to the data represents the attenuation coefficient, α(ω). As an example, Figure 2.2
depicts the attenuation spectroscopy in 1-8 MHz frequency range for pore diameter: 100 µm and
pore density: 5 pore/mm2. For each plot of the attenuation versus frequency, the Root Mean
Square Error (RMSE) values was calculated to estimate the goodness of the power law fit. For
all fits, the RMSE values were in a range of 0.007 (Pore Density: 3 pore/mm2 - Pore Diameter:
20 µm) to 3.013 (Pore Density: 16 pore/mm2 - Pore Diameter: 120 µm).
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Figure 2.2 Attenuation spectroscopy; Pore size: 100 µm, Pore density: 5 pore/mm2 RMSE value for
power law fit: 1.441

2.3 Mathematical and Statistical Models

2.3.1 Effect of absorption on attenuation

Both scattering and absorption contribute to the total amount of attenuation. To study their
effects independently, two different sets of simulations are run on 2D geometries with different pore
diameters and pore densities: 1) Simulations that do not account for absorption and exclusively
address the effect of scattering. 2) Simulations that take both absorption and scattering into
account. To run the second group of simulations, the value for the absorption coefficient needs to
be included in the material properties. To obtain this value a simple procedure is implemented.
The total attenuation coefficient is the sum of absorption coefficient and scattering coefficient.
By isolating the effect of scattering through running absorption-less simulations, the scattering
coefficient is obtained. The experimentally measured value for the attenuation coefficient is
reported in the literature to be 50 dB/cm [90] at 5 MHz. This value accounts for both scattering
and absorption. The average attenuation coefficient from group 1 simulations for geometries
with pore diameter of 60 µm and pore densities ranging from [5 25] pore/mm2 is 11.9 dB/cm
at 5 MHz. By subtracting this value, which is purely due to scattering (scattering attenuation
coefficient), from the total value of 50 dB/cm, an absorption coefficient of 38.1 dB/cm is obtained
at 5 MHz and used as an input parameter for simulations that take absorption into account. A
linear dependence of absorption with respect to frequency is assumed. By employing the same
approach, the absorption coefficient of 29 dB/cm is used for geometries with a constant pore
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density of 10 pore/mm2 and pore diameters ranging from [40 120] µm. The difference between
absorption coefficients in groups 1 and 2 is due to the fact that the average scattering coefficient
is different for the two groups. It was also assumed that the bone matrix is a homogeneous
medium and the viscoelasticity of the matrix or the absorption coefficient is the same for both
compressional and shear waves. The attenuation coefficient is plotted versus pore diameter
and pore concentration for absorbing and non-absorbing simulations (Figure 2.3). An offset is
observed in the plots where absorption is taken into account. The difference between the two
cases is depicted in Figure 2.3 and suggests that although absorption significantly increases the
overall value of attenuation, the offset is constant with respect to pore diameter and pore density.
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Figure 2.3 Attenuation coefficient versus (a) pore density and (b) pore diameter

The dotted line in Figure 2.3 shows the shift in attenuation due to absorption. It can be
observed that the difference, αw/abs−αw/oabs, is approximately constant with respect to changing
pore diameter or density. Based on the results shown in Figure 2.3, it can be concluded that the
dependence of attenuation upon pore density and pore diameter is not affected by the inclusion
of absorption. Therefore, the simulations presented in the rest of this article do not account for
absorption.
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2.3.2 Scattering Regime and choice of pore diameter and pore density as
microstructural parameters of interest

Based on the values for pore size and the frequency range, the scattering regime is low to
intermediate (wavelength > scatterer size). In this regime, some of the energy is lost during
propagation can be attributed due to scattering. The elastic mean free path is the characteristic
length describing the exponential decay of the wave, averaged over many realizations of scatterers
distributions (coherent wave). Because the simulated transducers are so large and the pores
uniformly distributed, it can be assumed that a sufficient number of realizations of scatterer
distribution is taken into account in the average. The Coherent Potential Approximation [94]
states the elastic mean free path is inversely proportional to the scatterer density and to the
scattering cross section ls = (nsσ)−1, with ns the pore density and σ the scattering cross section
[104]. The scattering cross section is a function of the pore diameter. Because pore density and
pore diameter contribute to bone mechanical competence, and influence the elastic mean free
path and therefore the scattering attenuation, they were chosen as parameters of interest for
this study. The attenuation of elastic waves in porous media and its dependence on pore volume
fraction parameters have been studied in seismology [30, 44, 108], civil-structure engineering [86]
as well as biomedical ultrasound [48, 99, 101, 110]. These studies reveal that changes in porosity
in media such as dry porous rock, porous sandstone containing gas and water, cement paste with
entrained air voids and trabecular bone affect the scattering and attenuation of the propagated
wave which can be used to characterize the porous medium.

2.3.3 Mathematical model for attenuation due to scattering

Mathematical models are used to represent physical and biological systems to investigate
hypotheses regarding the underlying physical process. A mechanistic model hypothesizes the
relationships between physically interpretable parameters and variables, while a phenomenological
model captures the qualitative trends of the desired dynamics. Here, the physical process of
interest is wave propagation in bone. We begin by developing a phenomenological model that
describes the trends seen in numerical simulation for the attenuation in bone-mimicking porous
media as a function of ultrasonic wave frequency. This mathematical model is given by

α(ω) = aωb + c,

where α represents the attenuation coefficient, which is dependent on frequency, ω. The model
parameters are given by θ = [a b c].

To make meaningful inferences regarding parameter estimates, one must also take into account
error incurred in the data collection process. One does so by specifying a statistical model, which
represents the observation process regarding data collection. to account for the uncertainty we
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would expect in observational data, we consider the following statistical error model

Y (ω) = α(ω,θ0) + E(ω), (2.4)

where Y (ω) is a random variable, θ0 is the nominal parameter vector, and the E are assumed to
be independent and identically distributed with mean 0 and variance σ2

0. A realization of this
statistical error model is given by

y(ω) = α(ω,θ0) + ε(ω), ω ∈ [ω0, ωF ], (2.5)

where ε is a specific realization of the random variable E. This is a reasonable specification of
the statistical error model since the numerical simulation that generates the data likely allots
the same error to each data point. It is important to note that both the mathematical and
statistical model need to be correctly specified to make meaningful inferences regarding parameter
estimates.

2.4 Sensitivity and Standard Error Methodology

Since we assume an absolute error statistical model, given in (3.21), we estimate the model
parameters by solving an inverse problem with an ordinary least squares (OLS) formulation,
following [12, 15]. Solving this inverse problem corresponds to minimizing the sum of squared
errors between the data and the model output when we treat all observations as equally important.

The OLS estimator is given by

ΘOLS = ΘN
OLS = argminθ

N∑
j=1

[Yj − α(ωj ,θ)]2,

where Yj is a random variable corresponding to the observation process and N represents the
number of frequency points. A realization of the random variable, ΘOLS , is given by

θ̂OLS = θ̂NOLS = argminθ
N∑
j=1

[yj − α(ωj ,θ)]2,

where yj is realization of Yj . With the parameter estimate, θ̂ (where we now suppress the
dependence of the estimate on the OLS formulation), we can compute the sensitivity matrix as

χj,k =
∂α(ωj , θ̂)

∂θ̂k
, j = 1, . . . , N, k = 1, . . . , p,

where p = 3 represents the number of model parameters. Specifically, since the model given in
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(2.4) can be explicitly differentiated with respect to the parameters, we have that

∂α(ωj , θ̂)

∂a
= ωbj , (2.6)

∂α(ωj , θ̂)

∂b
= a log(ωj)ω

b
j , (2.7)

∂α(ωj , θ̂)

∂c
= 1, j = 1, . . . , N. (2.8)

Notice that χ = χN ∈ RN×p is dependent on the number of frequency points as well as the
parameter estimate, θ̂ = [â b̂ ĉ]. The true, constant variance is a random variable given by

σ2
0 =

1

N
E

[
N∑
j=1

[Yj − α(ωj ,θ0)]2

]
,

where E[·] refers to the expected value. Then, we estimate this variance, adjusting for the bias,
by

σ̂2 =
1

N − p

[
N∑
j=1

[yj − α(ωj , θ̂)]2

]
.

We can then estimate the covariance matrix as

Σ̂N = σ̂2
[
χ(θ̂)Tχ(θ̂)

]−1
.

Then, the asymptotic standard errors are given as

SEk(θ0) =
√

(ΣN
0 )kk, k = 1, . . . , p,

which are estimated by

SEk(θ̂) =

√
(Σ̂N (θ̂))kk, k = 1, . . . , p.

The confidence interval for parameter estimate θ̂k with a confidence level of 100(1 − α)%, is
given by

[θ̂k − t1−α/2SEk(θ̂), θ̂k + t1−α/2SEk(θ̂)],

where α ∈ [0, 1] and t1−α/2 is computed from the Student’s t distribution with N − p degrees of
freedom [15].

2.5 Results and Discussion

The model parameter estimates (θ̂ = [â b̂ ĉ]) versus pore diameter (φ) and pore density (ns)
are given in Figure 2.4. From these figures we see that there is a consistent trend relating the
parameter estimates to pore diameter and density. For instance, Figure 2.4 shows that for all
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densities and diameters ≤ 60µm the estimates for a and c are constant. Then, as diameter
increases, the estimates for a increase while the estimates for c decrease. Similarly, in Figure 2.4
we see a somewhat linear relationship between the estimates for b and the pore diameter, where
the estimates increase as diameter decreases. From this we gather how it may be possible to infer
pore diameter and density from the estimates of the model parameters.

Figure 2.4 Parameter estimates versus pore diameter ([20 40 60 80 100] µm) and pore density ([3 5 6
7 8 10 12 14 15 16] pore/mm2)

Since our goal is to infer micro-architectural information from these parameter estimates, we
wish to determine which parameters have the most significant influence on the model solution.
To do so, we use local sensitivity analysis to examine how the model output changes with respect
to perturbations in the nominal parameter estimates for a given data set. That is, we use the
methodology laid out in Section 2.4 to estimate model parameters for data sets corresponding to
pore diameters [20 40 60 80 100] µm, and pore densities [3 5 6 7 8 10 12 14 15 16] pore/mm2.
We then calculate the sensitivity of the model with respect to these estimates using (2.6)-(2.8).
These sensitivities are plotted versus frequency (MHz) for pore diameter 60 µm and given in
Figure 2.5. The sensitivity plots for the other pore diameters considered follow a similar trend
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and can be found in [120]. Note that the parameter estimates themselves are given in the legend.
For a more convenient comparison, the sensitivities of the estimates for a and b have been plotted
versus all densities and frequencies in Figure 2.6.

The parameter estimates and corresponding 95% confidence intervals are given in Figure 2.7.
For comparison, 80% confidence intervals are given for pore diameter 60µm in Figure 2.8. To see
confidence intervals for the other pore diameters considered see [120].

2.5.0.1 Pore Diameter 60µm
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Figure 2.5 Local model sensitivity to parameter estimates for pore diameter 60 µm, densities of [3 5
6 7 8 10 12 14 15 16] pore/mm2, and frequency 1-8 MHz
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Figure 2.6 Local sensitivity to â and b̂ for pore diameter 60 µm, densities of [3 5 6 7 8 10 12 14 15
16] pore/mm2, and frequency 1-8 MHz

Notice that the sensitivity of the model with respect to estimates of c (denoted ĉ) will be
constant and equal to 1 from (2.8). Furthermore, we see from the sensitivity figures that as
frequency increases, so does the sensitivity of the model with respect to the estimates of a
and b (denoted â and b̂ respectively). This is intuitive looking at (2.6) and (2.7) as both are
increasing functions of frequency. g We then observe that model sensitivity to â and b̂ depends
heavily on pore diameter. There is a general trend that for smaller diameters (φ = 20 µm and
φ = 40 µm), the model is sensitive only to â. Similarly, we see that the model is sensitive only to
b̂ for larger diameters (φ = 100 µm) (see [120]). For intermediate pore diameters (φ = 60 µm and
φ = 80 µm), model sensitivity to â and b̂ depends on pore density. For instance, from Figure 2.5
we see that for φ = 60 µm at low densities (3 and 5 pore/mm2) the model is sensitive to â.
However, as density increases, model sensitivity to b̂ increases while sensitivity to â decreases.
For higher densities (≥ 14 pore/mm2), model sensitivity to â and b̂ are roughly the same. A
similar trend is seen for φ = 80 µm, except here the model is only slightly more sensitive to â
as b̂ for density 3 pore/mm2. As density increases, sensitivity to â decreases while sensitivity
to b̂ increases. For high densities (≥ 14 pore/mm2) the model is only sensitive to b̂. For pore
diameter φ = 100 µm, the model is only sensitive to b̂ (see [120]).

Next, we address the confidence interval figures. In general, the size of the confidence intervals
depends on the level of confidence desired, the parameter estimates themselves, and the relative
sensitivity of the model to these estimates. Notice that relative to parameter estimate size, the
confidence intervals for ĉ are significantly larger than for â and b̂ for all diameters and densities.
This is due to the fact that the model is not sensitive to ĉ, which makes difficult estimating
this parameter with high confidence. Furthermore, we found there is not a strictly monotone
trend in confidence interval width with respect to increasing density and diameter. This is due
to the standard errors and resulting confidence interval widths’ (see Section 2.4) dependence
on multiple factors. We do, however, note that it is common for the confidence intervals for all
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Figure 2.7 Parameter estimates and corresponding 95% confidence intervals for â, b̂, and ĉ for pore
diameter 60 µm and densities of [3 5 6 7 8 10 12 14 15 16] pore/mm2
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Figure 2.8 Parameter estimates and corresponding 80% confidence intervals for â, b̂, and ĉ for pore
diameter 60 µm and densities of [3 5 6 7 8 10 12 14 15 16] pore/mm2
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estimates to widen as density increases (e.g., see Figure 2.7). This could be an artifact of the
numerical simulation that results in the data from which the parameter estimates are derived.
Furthermore, as pore density increases the scattering regime changes. This affects the parameters
estimated when fitting the power law model to data for these higher densities.
Since 95% confidence in parameter estimates may be higher than the acceptable level of confidence,
80% confidence intervals have been given for pore diameter 60 µm (see Figure 2.7 and Figure 2.8).
As expected, the intervals are significantly wider when 95% confidence is desired. Furthermore,
we still see the trend of wider intervals at higher densities in these figures.

2.6 Functional Parameters

Establishing that we can accurately and confidently estimate the parameters for the power
law model allows us to address the next goal of relating the model parameters to the micro-
architectural ones. In Figure 2.4 we see that there is a clear dependence of parameter estimates
on diameter and density. Furthermore, we have established that there exist density and diameter
ranges for which our model is more or less sensitive to certain parameters. With this in mind, we
propose the following model

α(ω) = a(φ, ns)ω
b(φ,ns) + c,

where the sensitive model parameters (a and b) are themselves a function of the micro-architectural
ones. With a model of this form, we can infer pore diameter (φ) and density (ns) from the
estimates of a and b. We begin by noting the pattern between the estimates b̂ and pore size (φ)
and density (ns) from Figure 2.4. We see a somewhat linear trend between the estimates b̂ and
pore diameter. However, from Figure 2.9, we note that this relationship is not bijective.

Figure 2.9 Left: Estimates b̂ versus pore diameter for all densities considered. Right: Linear fit of b̂av
versus pore diameter
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b̂av = −0.0269φ+ 3.7078 (2.9)

Table 2.2 Nominal pore diameter versus estimated range based on the linear relationship (2.9)

φ0 φ̂

20 11 - 33
40 24 - 47
60 34 - 64
80 61 - 102
100 74 - 111
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Figure 2.10 Linear fit of estimates â versus pore density for φ = [20 40 60 80 100] µm

2.7 Conclusions

The overall goal of the research in this chapter was to investigate a phenomenological relationship
between parameters of the porosity (pore density and diameter) and frequency dependent
attenuation. To do this, we developed a phenomenological model that describes the attenuation
of ultrasonic waves in a random, non-absorbing porous medium with controlled pore size and
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pore density mimicking the simplified structure of cortical bone. Absorbing media were also
considered, but it was shown that, although it did offset the overall values for attenuation,
the attenuation due to absorption was not a function of pore density and pore diameter. We
numerically generated data using a 2D finite-difference time domain SimSonic research freeware,
which simulates elastic waves propagating in heterogeneous media. 2D simulations were chosen
because of the high computational cost of 3D simulations. However to assess how the attenuation
results might be different with more realistic pore shapes as well as due to out of plane diffraction,
3D simulations were also performed on a few cases. Spherical non overlapping pores, randomly
distributed in a bone matrix, were chosen as a geometry map mimicking a simplified geometry
of 3D cortical bone slabs. The location of emitter/receivers were chosen as in 2D simulations:
a plane wave was transmitted through the porous medium and the propagated signals were
recorded at 30 consecutive longitudinal positions along the sample in the direction of wave
propagation. The transducers used in the simulation had the same height and depth as the slabs’.
As a result, the signals measured on these transducers corresponded to signals averaged over
the whole height and depth of each slab. Since the pores were uniformly distributed, averaging
over multiple slabs is equivalent to averaging over large slabs using large transducers. The same
boundary conditions and emitting signal as 2D simulations were chosen. The results revealed
that the difference in attenuation between 2D and 3D models for a given structure was around 10
- 15 %. We then fit this model to the simulated data using an ordinary least squares framework
for the inverse problem. With the resulting estimates, we performed local sensitivity analysis
and calculated confidence intervals for the parameters estimated.

We determined that model sensitivity to parameter estimates depends on pore diameter
and density. Namely, we determined via the analytical partial derivatives that the model is
not sensitive to c. Furthermore, for small diameters (φ = 20 µm and φ = 40 µm) the model
is sensitive mainly to estimates of a; whereas for large diameters, (φ = 100 µm) the model is
sensitive mainly to estimates of b. For intermediate diameters (φ = 60 µm and φ = 80 µm)
sensitivity depends on pore density, where the model is more sensitive to â at low densities
and more sensitive to b̂ at high densities. We also calculated asymptotic standard errors and
confidence intervals for the parameter estimates to determine for what diameters and densities
we can accurately estimate the model parameters. We found that for parameter estimates the
model was sensitive to (a and b) we could estimate parameters with a high level of confidence.
In general, the 95% confidence intervals for these estimates were wider at high densities (≥ 14

pore/mm2).
The model developed and analyzed in this study was based on 2D numerical simulations

mimicking the wave propagation within the simplified models of cortical bone. Unlike an
experimental study, the simulation tool enabled the independent control over the micro-structural
parameters such as pore diameter and pore density, which was needed to establish the parametric
model. This justifies the choice of simplified microstructures over real cortical microstructures. In
subsequent chapters of this dissertation, efforts will be directed towards the development of an
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inverse problem, which should enable to infer pore density and pore diameter from attenuation
measurements. Possible dependence of the attenuation on porosity itself, rather than porosity
parameters (pore density and diameter) will be studied in the future to determine the sensitivity
of attenuation to pore volume fraction. In Chapter 4 we will study polydisperse pore distributions
instead of the monodisperse case studied here, to describe more realistic cortical porosities.

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under grant
number AFOSR FA9550-15-1-0298, in part by the US Department of Education Graduate
Assistance in Areas of National Need (GAANN) under grant number P200A120047, and in part
by the National Institute of Health under grant number R03EB022743.

32



CHAPTER

3

A 3D PHYSICS-BASED MODEL FOR
MONODISPERSE SAMPLES AND

SIMULATED DATA

This chapter is based on the work in [114]. The author was lead author on this article. Her
contributions to this research include investigating the attenuation models, formulating the
inverse problem (Section 3.4), solving the optimization problems (Section 3.5), and performing
all numerical experiments.

3.1 Introduction

The work in this chapter aims to characterize the microstructure of complex heterogeneous media
mimicking cortical bone using ultrasonic interrogation. This work is an improvement on the work
in Chapter 2, which established that attenuation is affected by microstructure, as here we aim
to mathematically model attenuation as explicitly dependent upon pore size and density. This
allows us to infer directly the microstructural parameters by formulating and solving inverse
problems. This provides a higher resolution technique for quantifying levels of osteoporosis
present in cortical bone. As previously mentioned, Osteoporosis is one of the most common bone
diseases and leads to the degradation of both trabecular and cortical bone, resulting in an on
average increase in both pore size (radius) and the number of pores present (density) [38, 116],
although for later stages, merging of very large pores can lead to a decrease in pore density [57].
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This degradation results from aging, menopause, as well as certain medications and leads to an
increase in susceptibility to fracture [38, 56]. On average, 20% of men and 33% of women over age
50 will experience osteoporotic fractures [69, 70], with more than 8.9 million fractures worldwide
annually [60]. Furthermore, studies show that in women, 80% of appendicular bone loss during
menopause is attributed to cortical bone degradation [21]. Early diagnosis and treatment can
reduce the risk of osteoporosis related injuries [41].

The classical approach to quantifying markers of osteoporosis, such as Bone Mineral Density
(BMD) evaluation has been shown to be inadequate in predicting fractures due to a significant
BMD overlap between subjects who experienced a fracture and subjects who didn’t [66]. Further-
more, magnetic resonance (MR) imaging can be used to characterize cortical bone porosity [88],
but it is costly, has a poor resolution, and is infeasible in practice at large scales for screening
purposes. Thus, a non-invasive, non-ionizing method for quantifying osteoporosis is needed.
Quantitative ultrasound (QUS) can potentially provide just that. Furthermore, it has been shown
in [36, 43] that ultrasound parameters such as speed of sound and backscattering coefficient
relate to the microstructural parameters of bone including trabecular thickness and pore volume
fraction albeit for trabecular bone [25, 79, 110]. Among all the QUS parameters, it has been shown
that changes in pore size and density in cortical bone have a significant impact on attenuation as
it affects the scattering of waves. This was done using phenomenological modeling of ultrasonic
attenuation and provides information regarding porosity at the resolution of low, medium, or high
porosity, but was unable to capture more detailed microstructural properties [119]. In comparison,
physics-based models, such as the Independent Scattering Approximation (ISA) have been shown
to predict attenuation in trabecular bone samples [74] as well as in simulated 2D cortical bone
samples [118]. A higher order model used to calculate wave attenuation, the Waterman Truell
(WT) model, has been used for heterogeneous structures such as 3D acoustic metamaterials [31].
Furthermore, quantifying the size and density of air voids entrapped in cement using ultrasonic
attenuation has been researched. Specifically, simplex methods were used to calibrate the ISA to
the experimental data and produce microstructural parameter estimates [85].

In this work we aim to quantify pore size and density for structures mimicking cortical
bone using ultrasonic attenuation. To do so, we generate frequency dependent attenuation data
using the SimSonic FDTD Matlab package [24] to simulate wave propagation in monodisperse
structures with pores randomly distributed. We consider pore radii ranging from 50 to 100µm

and densities ranging from 20 to 50 pores/mm3. These values correspond to porosity values
reported in the literature for cortical bone [47, 103]. To retrieve the micro-architectural properties
of porosity from attenuation data, we then formulate and solve an inverse problem, fitting the
WT and ISA models to the simulated data sets. This produces estimates for pore radius and
density, which are compared to the nominal values used to generate the data. Estimates closely
matching the nominal values, indicate both models are capable of inferring the microstructural
parameters associated with random heterogeneous media similar to that of cortical bone.

The ultimate goal is to infer the microstructure of cortical bones in humans in vivo. This
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present work provides a crucial step towards being able to do so. We validate the use of the ISA
along with the higher order WT model to estimate the microstructural parameters, pore radius
and pore density, based solely on attenuation data, which had not been done for cortical bone-like
samples. This is important as both models are explicitly dependent on pore radius and density,
allowing them to be reformulated to consider polydisperse (pores of varying size) structures,
which would be expected from in vitro experiments. Thus, this work provides the foundation for
approaching such real world problems. Furthermore, validating the use of ultrasonic attenuation
to perform this analysis is promising, as ultrasound is non-invasive, non-ionizing, and relatively
cheap compared to typical bone imaging techniques such as MRI.

We begin by introducing both the ISA and the WT models in Section 3.2, explaining how
they model attenuation that is dependent on frequency as well as microstructure. From here,
we discuss in detail the numerical simulation that allows us to simulate attenuation data in
heterogenous structures in Section 3.3. This is followed in Section 3.4 by the inverse problem
formulation where our specific objective is to calibrate both models and estimate the “true” or
nominal microstructure. Next, in Section 3.5 we provide the results of solving these inverse
problems followed by a discussion. Final conclusions are then presented in Section 4.7.

3.2 Mathematical Models

We seek to infer the microstructure of cortical bone from ultrasonic attenuation data. This requires
a mathematical model that relates the microstructural parameters of interest to attenuation
measurements. Here we consider two such physics-based models that predict attenuation as
a function of pore size and density. The first model considered is based on the Independent
Scattering Approximation (ISA), which has been used to characterize trabecular bone [74] as
well as air voids in cement [87]. The second, higher-order model, is based on the Waterman Truell
approximation and has been used to describe soft 3D acoustic metamaterials [31]. We consider
formulations of these models to describe 3D monodisperse structures (fixed pore radius). Here,
we give a brief overview of wave propagation in heterogeneous media describing how attenuation
is calculated and its dependence on the approximation (ISA or WT) scheme used.

Consider a time-harmonic wave propagating in the direction x. The energy density, 〈e〉,
decays exponentially according to

〈e〉(x) ∝ e−αx, (3.1)

where α is the attenuation coefficient, which we aim to model mathematically. The attenuation
is comprised of energy loss due to both scattering when the wave hits a pore, and absorption in
the solid bone. Thus,

α = αabs + αscatt. (3.2)
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The energy loss due to absorption can be approximated as

αabs = (1− ξ)αa(ω), (3.3)

where αa(ω) is the absorption coefficient for the matrix (solid bone), and ξ represents the volume
fraction which is explicitly calculated using the microstructural parameters pore radius (r) and
density (ns). We see that as pore volume fraction decreases, there is more attenuation due
to absorption as there is more solid bone matrix. The energy loss due to scattering can be
approximated as

αscatt = −Im[keff], (3.4)

where keff represents the complex, effective wavenumber. The ISA and WT models provide
varying levels of approximations of this effective wavenumber. Following [74], consider that in a
random scattering medium the coherent field, which is characterized by keff, is the solution of
Dyson’s equation. Specifically, the “self-energy” in Dyson’s equation incorporates all multiple
scattering terms. This is referred to a perturbative method resulting in a Taylor Series [37]
solution given by

k2
eff ≈ k2

0 + 4πnsf0(ω; r) +
4π2n2

s

k2
l0

[
f2

0 (ω; r)− f2
π(ω; r)

]
, (3.5)

where k0 is the wavenumber, and fθ is a scattering function dependent directly on pore radius,
r, and θ is the angle of incidence. The simplest approximation, the ISA, includes only the linear
terms. The WT model is higher order, including the quadratic terms.

3.2.1 Independent Scattering Approximation

As mentioned, the ISA is considered a first-order approximation in that it considers only the
first order terms in the Taylor series expansion. Thus, it estimates the effective wavenumber as

k2
eff ≈ k2

0 + 4πnsf0(ω; r). (3.6)

Notice, this representation describes the scattering of the wave as it hits a pore as being
independent, i.e., once the wave hits a scatterer (pore), it never returns to the same scatterer.
Furthermore by the Optical Theorem [59] we have that the forward scattering function, fθ, can
be related to the scattering cross section γscatt as

γscatt =
−4π

k
Im(f0). (3.7)
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Thus, for the ISA we have that (see Appendix for details)

1

2
nsγ

scatt(ω; r) ≈ −Im
[(
k2

0 + 4πnsf0(ω; r)
)1/2]

, (3.8)

which gives the following ISA attenuation model

α(ω;ns, r) =
(
1− ξ

)
αa(ω) +

1

2
nsγ

scatt(ω; r), (3.9)

where the volume fraction is explicitely calculated as ξ = 4
3πr

3ns. Furthermore,

γscatt(ω; r) = 4π
∞∑
m=0

1

2m+ 1
[|Am|2 +m(m+ 1)

kl
ks
|Bm|2], (3.10)

where kl and ks are longitudinal and shear wave numbers respectively. The unknown coefficients,
Am and Bm, are determined by solving[

H11 H12

H21 H22

][
Am

Bm

]
=
−1

kl
(−i)m+1(2m+ 1)

[
J11

J21

]
, (3.11)

where

H11 = −
(
m2 −m− (ksr)

2

2

)
hm(klr)− 2(klr)hm+1(kl), (3.12)

H12 = m(m+ 1)

[
(m− 1)hm(ksr)− (ksr)hm+1(ksr)

]
, (3.13)

H21 = (m− 1)hm(klr)− (klr)hm+1(klr), (3.14)

H22 = −
(
m2 −m− (ksr)

2

2

)
hm(ksr)− (ksr)hm+1(ksr), (3.15)

and

J11 = −
(
m2 −m− (klr)

2

2

)
jm(klr)− 2(klr)jm+1(klr), (3.16)

J21 = (m− 1)jm(klr)− (klr)jm+1(klr). (3.17)

Note that jm(·) is the spherical Bessel function of the first kind of order m, and hm(·) is the
spherical Bessel function of the third kind of order m.

3.2.2 Waterman Truell Model

Recall that the Waterman Truell approximation is referred to as second-order due to the
truncation of the Taylor series at the second-order terms. Thus, the effective wavenumber is
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approximated as

k2
eff ≈ k2

0 + 4πnsf0(ω; r) +
4π2n2

s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]
. (3.18)

Notice here we allow for multiple scattering where a wave can revisit a scatter more than once.
In far-field, scattering amplitude of the longitudinal wave fθ is calculated as [85]

fθ(ω; r) =
∞∑
n=0

−Am(im)Pm(cos(θ)), (3.19)

where Am is defined in (3.11), and Pm refers to the Legendre polynomial of degree m.

3.3 FDTD Simulation of Ultrasonic Attenuation Data

In the present work we consider numerically simulated frequency dependent attenuation data.
This allows fine-tuned control of the microstructural parameters of interest as well as direct
comparison with the monodisperse ISA and WT models’ predictions for attenuation. Furthermore,
it allows us to consider the attenuation only resulting from scattering. Having nominal or “true”
pore radii and densities that we use to generate the data is essential for determining the efficacy
of solving the inverse problem to infer these. We now discuss the specifics of this process.

The heterogeneous structure. To generate the random heterogenous structures for a
given pore radius (r) and density (ns), a Monte Carlo method [75] is implemented to randomly
distribute pores throughout the media until the desired number of pores is achieved. The
algorithm used to generate structures does not allow overlap between pores. The slab dimensions
are 200 mm× 200 mm× 10 mm. Material properties of cortical bone and water are assigned to
the solid and fluid phases respectively of the binary structures. Pore radius ranges from 50 to
100µm and pore density from 20 to 50 pores/mm3.

Emitting pulse. To solve the inverse problem, a frequency sweep is needed to capture the
frequency dependent attenuation. To do so, Gaussian pulses with a central frequency within the
spectroscopy range of 1 to 8 MHz with 1 MHz intervals and −6 dB bandwidth of 20 percent
are transmitted through the medium. We assume 30 receivers are placed throughout the depth
of structure to record the signal as it propagates. The emitter and all of the receivers are large
such that they cover the width of structure and the pores are uniformly distributed. Hence, the
transmitted wave is a plane wave, and the recorded signals are averaged over the whole width of
the structure.

Boundary conditions. Perfectly matched layers at the two ends of structure in the wave
propagation direction, reduce reflections from those boundaries. Symmetric boundary conditions
in the direction perpendicular to the wave propagation are implemented to eliminate diffraction
and ensure plane wave transmission.

Simulation parameters. The grid step of ∆x = 20µm exceeds the 20 points per wavelength
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spatial sampling requirement proposed by Bossy [24] ensuring the accuracy of the simulation
results while keeping the computational costs sufficiently low. Choosing CFL = 0.99, temporal
grid step is defined as:

∆t = 0.99
1√
d

∆x

cmax
, (3.20)

where ∆x is the spatial grid step, cmax is the highest speed of sound in the simulation medium
and d is the dimension of space (d = 3 for 3D simulation). The procedure for measuring the
attenuation and spectroscopy are given in [118, 119]. Figure 3.1 depicts the simulated 3D structure
with monodisperse, randomly distributed pores.

Figure 3.1 Schematic of 3D structures: dimensions 10mm × 20mm × 20mm

3.4 Inverse Problem

Solving the forward problem involves taking the microstructural parameters, pore radius and
density, and using the mathematical models (i.e. ISA or WT based) to predict attenuation. Here,
we are interested in solving the inverse problem, where one takes attenuation data along with a
mathematical model and attempts to estimate the pore radius and density of a sample. To do
so, we must formulate and then solve the inverse problem. The first step is to model the data
observation process.

Here, we consider that a realization of the data generation procedure is given by

yj = α(ωj ;ns0 , r0) + εj , j = 1, . . . , N (3.21)

where N is the number of frequency points, and εj ’s are an i.i.d. error terms. This is referred to
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as an absolute error model and results in an ordinary least squares (OLS) formulation [12, 15]
of the inverse problem, where all data observations are treated as equally important. The cost
function we wish to minimize is given by

J(ns, r) =
N∑
j=1

[yj − α(ωj ;ns, r)]
2, (3.22)

where yj represents the attenuation data collected at frequency points ωj , j = 1, . . . , N , and α
represents the corresponding model solution.

Solving this inverse problem results in estimates for pore radius and density, which allow the
model to best fit the attenuation data (in terms of the summed squared errors), and are given by

(n̂s, r̂) = arg min
(ns,r)

J(ns, r). (3.23)

3.5 Optimization Results and Discussion

We now present the results of calibrating both the ISA and WT models to the simulated data
by solving the inverse problem laid out in Section 3.4. The optimization is done using Matlab’s
fmincon, an interior point algorithm. We considered eleven simulated 3D monodisperse structures
with combinations of pore radii (r) ranging from 50 to 100µm and pore densities (ns) ranging
from 20 to 50 pores/mm3. Figure 3.2 provides representative results for two specific datasets,
where the nominal microstructural parameters are given in the titles and the resulting estimates
for each model are given in the inlet boxes.

Figure 3.2 Optimized ISA vs WT based models and resulting parameter estimates for nominal
pore density ns = 30 pores/mm3 and radius r = 75µm (Left), and nominal pore density ns = 50
pores/mm3 and radius r = 50µm (Right)
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We see that the ISA and WT based models produce similar parameter estimates, which
correspond well to the nominal parameter values. Furthermore, both calibrated models correspond
to the simulated attenuation data. These results validate the use of both the ISA and the WT
models for inferring pore radius and density from simulated attenuation data. To fully see how
accurately each model predicts microstructure, Figures 3.3 and 3.4 contain comparisons of the
nominal parameter values versus the estimates for each model. These result from optimizing
both models to the eleven datasets generated from combinations of pore radiuses and densities
given above. Notice we consider each parameter, either pore radius or density, separately and
the closer the pattern lies to the line y = x, the more accurate the estimates.

Figure 3.3 True pore radius (r0) vs. estimated pore radius (r̂) for the ISA model (Left) and WT
model (Right). The corresponding nominal densities are given in the legend

Figure 3.4 True pore density (ns0) vs. estimated pore density (n̂s) for the for the ISA model (Left)
and WT model (Right). The corresponding nominal radii are given in the legend
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We see from the patterns in Figure 3.3 that the estimates for both models not only align
well with each other but also with the nominal pore radii. Figure 3.4 shows a less linear pattern,
implying we are less accurate in inferring the nominal pore density. This difficulty in accurately
estimating both pore density and pore radius simultaneously results from a high correlation
between the two parameters. Correlation coefficients are calculated using the OLS estimate for the
covariance matrix following [12], and for all the datasets fall in the interval [−0.9986, −0.9584],
implying a strong negative linear relationship. This is somewhat expected; notice when calculating
the attenuation due to scattering, αscatt, in (3.5), we have pore density (ns) multiplied by forward
scattering pressure (fθ), which is explicitly a function of pore radius (r). This indicates there
could be some tradeoff between these parameter values that result in the same overall attenuation
value. However, studies show that pore density is less relevant in predicting fracture risk, due
to the fact that for advanced bone porosity, merging of large pores leads to a decrease in pore
density [57]. Overall, these results still show acceptable estimates that are informative regarding
the microstructure of the simulated samples.

As noted above, both the ISA and WT models produce similar parameter estimates. This is
in part due to the fact that their forward model attenuation predictions are similar for the radii,
pore density levels, and frequencies considered in this work. Specifically, we see little effects due
to second order scattering, and similar forward model predictions result in similar microstructural
parameter estimates. It is worth noting that this may not be true in different regimes. Namely, if
one expects large amounts of second order scattering, as is the case for high porosity mediums,
there may be a more significant difference between the ISA and WT model predictions.

3.5.1 Consistency Across Multiple Realizations

As mentioned in Section 3.3, the data is numerically simulated using a Monte Carlo approach to
arranging pores within the geometry. To ensure that the results presented in Section 3.5 aren’t
dependent on the random geometry, we generate multiple data realizations for a given pore
radius and density combination. We can then compare across realizations the calibrated models’
attenuation predictions and the resulting parameter estimates. We consider five realizations and
provide representative results in Figure 3.5 for samples with a pore radius of 100µm and density
of 40pores/mm3.

We see that the model fit to data as well as the accuracy of the resulting parameter estimates
is not dependent upon the random geometry of the sample, as there is little variation across
realizations. This further justifies the use of both models for inferring the microstructure of media
mimicking cortical bone, by showing the results are not an artifact of the numerical simulation
process, but rather dependent on the microstructure itself.
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Figure 3.5 Comparison of model calibration across five random geometries with pore density ns = 40
pores/mm3 and radius r = 100µm

3.6 Conclusions

Previously used phenomenological modeling of attenuation is not capable of providing detailed
information regarding microstructure, such as the distribution of pore radius, and thus cannot be
applied to experimental samples. Therefore, physics-based models for attenuation are essential.
As shown in the present work, such models can be used to infer porosity in structures mimicking
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cortical bone.
We proposed the use of two physics-based models for frequency dependent attenuation, the

Independent Scattering Approximation (ISA) and Waterman Truell (WT) models, to describe
heterogeneous media mimicking cortical bone. Both models are based on approximation schemes
for predicting effective wavenumbers, with the ISA describing independent scattering modes
and the higher-order WT model describing higher order multiple scattering. We then generated
attenuation data using a numerical FDTD package, allowing us to control the nominal microstruc-
tural parameters, pore size and density. The simulated structures contained pores arranged
randomly within the 3D media mimicking cortical bone. Based on the data generation process,
we formulated an inverse problem to infer the microstructure of samples from attenuation data.

We demonstrated that both calibrated models predicted attenuation values in line with data
as well as parameter estimates that closely matched the nominal values. Despite the similar
predictions given by the ISA and WT models, investigating both is still of interest, as we may
not have this behavior in the next chapter we examine bone samples with varying pore sizes
(i.e., polydisperse) are examined. Monodisperse models were chosen here as a first step. This
also enabled us to investigate the contributions of pore radius and pore density to attenuation.
This is critical because the evolution of these parameters with osteoporosis is not monotonic.
In osteopenic bone and for early stages of osteoporosis, both radius and pore density begin to
increase. However, at later stages of osteoporosis, pores start to merge into larger pores, which
reduces pore density [1]. One of the results of the present study is to show that changes in pore
density do not affect ultrasound attenuation as much as changes in pore radius.

We also verified that our results were consistent across realizations of the random geometry
of the data simulation process. This validated the use of both models in predicting ultrasonic
attenuation in cortical bone-like structures as well as in inferring the microstructure of these
samples solely from ultrasound data. In doing so, this work provides a necessary step towards
solving more complex, real-world problems, where experimental data is used. In Chapter 4 of this
dissertation, we will consider such experimental cortical bone samples in addition to addressing
the effects of absorption.
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CHAPTER

4

A 3D PHYSICS-BASED MODEL FOR
POLYDISPERSE SAMPLES AND

EXPERIMENTAL DATA

This chapter is based on [113] of which the author was lead. The work in Section 4.5 were
contributions made by collaborators. Specifically, we would like to acknowledge Dr. Maryline
Talmant and Dr. Quentin Grimal from Sorbonne Université for performing the experiments and
acquiring the data. We would also like to acknowledge Yasamin Karbalaeisadegh for processing
the CT images and developing the algorithm to approximate the nominal PDF. All other work
in this chapter reflects the author’s direct contributions.

4.1 Introduction

In Chapters 2 and 3 we have discussed in detail the motivation for establishing a quantitative
approach for characterizing the cortical bone microstructure. Additionally, we have motivated
the importance of this work in diagnosing osteoporosis, a degenerative bone disease affecting
millions of people annually. The motivation behind the work in this chapter is to address a
more realistic problem formulation. We aim to infer microstructure in a way that translates to
to a clinical setting, where real human cortical bone will be evaluated. This results in several
significant differences from the work previously done. The first is that we consider variations in
pores in human bone. While one can model the pores as being approximately the same size, that
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would not allow enough level of resolution to accurately diagnose stages of the disease. Therefore,
one aim of this work is to consider polydisperse structures, where pores vary in size. To do
so, we must formulate mathematical models for attenuation in these polydisperse structures.
Additionally, unlike in numerically simulated structures, one cannot neglect absorption in human
bone. Therefore, we account for attenuation due to absorption and scattering. These fundamental
changes greatly affect the inverse problem, where we now need to estimate microstructural
properties to a level that is adequate for diagnosing osteoporosis. This results in an inverse
problem formulation that produces estimates of the Probability Density Function (PDF) on
pore size and the scalar absorption coefficient. Ultimately, we wish to validate this methodology
using experimental attenuation data gathered from human cadaver bone samples. Success in this
phase of work, will provide strong proof-of-concept for applying this methodology to patients
in-vivo, which is the end goal of this work.

The Independent Scattering Approximation (ISA) has been shown to accurately predict
attenuation values in monodisperse 2D structures simulating cortical bone [118]. Additionally,
the ISA and Waterman Truell (WT) models have been shown to accurately predict scattering
attenuation in 3D simulated bone-like structures, as detailed in Chapter 3. There, both models
were used to infer the microstructure of these monodisperse samples, validating their use in
inferring pore radius and density from numerically generated (using Finite-Difference Time-
Domain software) data. However, attenuation due to absorption was not considered. In dealing
with air voids entrapped in cement, forward ISA model propagation using normal distributions on
pore size and corresponding volume fractions were shown to align better with experimental data
compared to monodisperse model inputs [85]. In formulating polydisperse theoretical models,
a formulation for the WT model was provided in [31], however this model lacks dependence
upon the PDF on pore size and is therefore not amenable to the inverse problem we wish to
solve. Additionally, a probabilistic approach was taken in [50] to address the randomness in
scatterer configuration by averaging the statistical ensemble of scatterers and thus deriving
average values for wave functions. This is not amenable to our problem as we do not wish to
address scatter configuration, but rather randomness in scatterer radius. Most similar to our
work is the theoretical polydisperse extension for the WT model presented in [109]. This model
introduces the idea of dependence upon a distributed parameter. However, the mathematical
form of the polydisperse model differs from the models we implement (see Section 4.2.1), and
there are no numerical results presented. This model was, however, used to study the influence
of particle size on acoustic wave attenuation. In [71] it was found that the size distribution was
an important characteristic that cannot be accounted for by simply substituting the mean of
the distribution. The aforementioned work focused solely on forward model propagation for
suspensions of solid particles in a fluid matrix. In terms of the inverse problem formulation,
extensive analysis into the Prohorov Metric Framework has been done in [5, 9]. This inverse
problem methodology was successfully used to detect degradation in ceramic matrix composites
[8]. In estimating the air void size distribution in hardened concrete samples, the work [54]
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estimated parametric density functions where there were two categories of void size, small and
large, each with a normal or log-normal distribution. The previously mentioned work modeled
solely ultrasonic scattering attenuation.

To solve a realistic problem of characterizing real human cortical bone, we first develop
mathematical models for ultrasound attenuation in these structures. We do so by formulating
what we refer to as polydisperse attenuation models, which are dependent upon a PDF on pore
radius (f(r)) rather than a scalar value (r). There are multiple ways of formulating such models
using a probabilistic approach. In this chapter, we highlight three such ways using the Waterman
Truell (WT) scattering attenuation model. We also compare these three models in reference
to the specific problem we wish to solve. Once we have established theoretical, physics-based
models to represent attenuation in polydisperse structures, we can then formulate an appropriate
inverse problem. Our approach differs significantly from previous work as we no longer wish to
estimate a scalar model parameter, but rather a PDF. This results in an infinite dimensional
optimization problem, for which we use the Prohorov Metric Framework to provide a meaningful
approximations scheme to formulate a tractable inverse problem. Additionally, we use variational
regularization functions to stabilize the ill-posed inverse problem. The last component needed to
solve this problem then is the attenuation data. We begin by validating this approach using data
generated with the mathematical models and parametric PDFs. We then consider experimental
data taken from the femurs of human cadavers. We can establish baseline “true” microstructure
(in terms of the PDF on pore radius) using microCT imaging of the bone samples and algorithm
to approximate pore size and density within the sample. Subsequently, we solve the inverse
problem using the experimental data to establish that we can infer the true PDF on pore size in
human cortical bone samples with this approach.

The work in this chapter makes several key contributions. The first is in establishing how to
formulate polydisperse models for heterogeneous media that capture the inherently distributed
sizes on the heterogeneities. Although we focus on cortical bone, the proposed framework has broad
applications to any media where the scatters are not assumed to be of the same size. Furthermore,
we validated these formulations for two scattering models, the ISA and WT, which are widely
used to model heterogeneous media via ultrasound. We illustrated that not only do these models
allow us to predict attenuation in such structures, but also to infer microstructural properties
by solving an inverse problem. Implementing the variational regularization in conjunction with
the Prohorov Metric Framework is another area of novelty in this work and showed to be
important in attaining accurate PDF estimates. As the Prohorov Metric Framework is widely
used in formulating inverse problems for biological applications, this technique could be useful
in addressing ill-posed problems and when we only have access to sparse noisy data. The level
of resolution in inferring the microstructure of the cortical bone is also a key contribution. Not
only do we attain distribution level information, but we do so in a nonparametric way that does
not impose restrictive structures on the PDF (i.e., normal, beta, or log-normal distributions).
Overall, we have developed an approach for inferring cortical bone microstructure at the level
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required for diagnostic purposes. We validated these results using real human cortical bone
data. This methodology has the potential to translate to clinical settings where patients can be
assessed in real time in-vivo using non-invasive, non-ionizing, and widely available ultrasound.
More broadly, this work has applications related to the quantification of nonhomogeneous media
using ultrasound waves.

This chapter is organized as follows. We begin by introducing the required background from
probability for modeling polydisperse structures in Section 4.2. We present various polydisperse
formulations of the WT model for scattering attenuation in Section 4.2.1 and introduce the
polydisperse WT and ISA models for total attenuation in Section 4.3.1. In Section 4.4 we lay out
the inverse problem formulation and introduce both the approximation scheme and regularization
functions considered in this work. Following this, we introduce the experimental setup used to
collect in-vitro attenuation data from human cadaver cortical bone samples in Section 4.5. The
computational results using both simulated and experimental data are presented in Section 4.6
Overall conclusions are given in Section 4.7.

4.2 Mathematical Models

We seek to model frequency dependent ultrasonic attenuation in polydisperse cortical bone. The
ultimate goal is to infer bone microstructure, and therefore the formulation of our polydisperse
model should be conducive for solving an inverse problem. We accomplish this by reformulating
two previously established models for monodisperse cortical bone-like structures which were
discussed in Chapter 3: the Independent Scattering Approximation (ISA) and the Waterman
Truell (WT) models. Recall that these models are obtained via first and second order Taylor
series approximations of the effective wave number. In Chapter 3, both of these models were
shown to be effective in inferring microstructure for simulated structures with a fixed pore size.
Our goal is to reformulate these models to predict attenuation in polydisperse structures.

First, note that for monodisperse samples the attenuation depends on a fixed pore radius
r. In contrast, in polydisperse samples the pore radius is a random variable, R : (Ω,A,P) →
(ΩR,B(ΩR)). Here Ω is a sample space, A a sigma-algebra on Ω, and P a probability measure.
Furthermore, ΩR is a closed and bounded subset of [0,∞), and B(ΩR) the Borel sigma-algebra
on ΩR. The law of R is a probability measure LR on ΩR defined by

LR(E) = P(R ∈ E), E ∈ B(ΩR),

which is uniquely characterized by the corresponding cumulative distribution function (CDF),
FR, given by FR(r) = LR([−∞, r)); see [115]. We consider a set of admissible probability laws on
ΩR, which we denote by P(ΩR) that describe plausible distribution laws for R. Each element of
P(ΩR) has a corresponding CDF FR. Assuming the elements of P(ΩR) are absolutely continuous
with respect to the Lebesgue measure, they admit probability density functions (PDFs). That is,
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for each LR ∈ P(ΩR), we have a density function fR that satisfies,

LR(E) =

∫
E
fR(r) dr, E ∈ B(ΩR).

Henceforth, we shall omit the subscript R from the CDFs and PDFs and, as is common, denote
the values taken by R as r. Our goal is to formulate polydisperse attenuation models that depend
upon a density function f(r). Having such a model allows us to formulate and solve an inverse
problem that uses the model and experimental data to estimate this PDF, providing valuable
information about the microstructure of cortical bone.

There are several ways to reformulate a monodisperse model to represent the polydisperse
structures depending on the level of averaging desired. In Section 4.2.1 we derive three polydisperse
model formulations using the scattering portion of the WT attenuation model. Note that we only
focus on scattering attenuation because this is where the differences in the various formulations
arise. Then, in Section 4.3.1, we present the polydisperse formulation of the ISA model considered
in this work.

4.2.1 Averaging Approaches for Deriving Polydisperse Models

To understand how polydisperse formulations can arise based on various levels of averaging, we
first consider the monodisperse WT model form [109], which presents attenuation as a sum of
contributions due to scattering and attenuation, and is given as follows,

αwt(ω;ns, αa, r) = αabs + αscatt (4.1)

= (1− ξ)αaω − Im[keff],

where ω is frequency, r is pore radius, αa is the absorption coefficient, ξ is the volume fraction,
and the complex effective wavenumber is approximated as

k2
eff ≈ k2

0 + 4πnsf0(ω; r) +
4π2n2

s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]
.

Noting the definition of volume fraction, ξ, and incorporating the wavenumber approximation,
we have the following attenuation model,

αwt(ω;ns, αa, r) =

(
1− 4

3
πr3ns

)
αaω

−Im
[
k2

0 + 4πnsf0(ω; r) +
4π2n2

s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]]1/2

, (4.2)

where k0 is the reference wavenumber, ns is pore density, and fθ(ω; r) is a scattering function.
This scattering function is defined in (3.19) in Chapter 3.

Defining an average αabs is straightforward—we can consider taking the expectation over r.

49



On the other hand, the scattering attenuation in (4.2) depends on pore radius r through the
r-dependent scattering function. As a result, there are several ways to express the average effects
of a randomly distributed pore radius on the scattering attenuation model. The first model we
consider consists of taking the expected value of the monodisperse WT model with respect to
the pore radius, distributed according to f(r):

ᾱ
(1)
scatt(ω;ns, αa,f) =

∫
ΩR

αscatt(ω;ns, αa, r)f(r)dr

=

∫
ΩR

−Im
[
k2

0 + 4πnsf0(ω; r) +
4π2n2

s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]]1/2

f(r)dr. (4.3)

Here, ΩR denotes the set of admissible pore radii.
One can also consider an average k2

eff,

〈k2
eff〉 =

∫
ΩR

k2
0 + 4πnsf0(ω; r) +

4π2n2
s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]
f(r)dr,

which leads to the second formulation of the polydisperse WT model:

ᾱ
(2)
scatt(ω;ns, αa,f) = −Im

[
〈k2

eff〉
]1/2

= −Im
[ ∫

ΩR

k2
0 + 4πnsf0(ω; r) +

4π2n2
s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]
f(r)dr

]1/2

= −Im
[
k2

0 +

∫
ΩR

4πnsf0(ω; r) +
4π2n2

s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]
f(r)dr

]1/2

.(4.4)

Alternatively, one can consider an average scattering function,

〈fθ〉 =

∫
ΩR

fθ(ω; r)f(r)dr.

This leads to the third formulation of the polydisperse model given as

ᾱ
(3)
scatt(ω;ns, αa,f) = −Im

[
k2

0 + 4πns〈f0〉+
4π2n2

s

k2
0

[
〈f0〉2 − 〈fπ〉2

]]1/2

= −Im

[
k2

0 + 4πns

∫
ΩR

f0(ω; r)f(r)dr

+
4π2n2

s

k2
0

[(∫
ΩR

f0(ω; r)f(r)dr

)2

−
(∫

ΩR

fπ(ω; r)f(r)dr

)2]]1/2

,

which is the formulation proposed by [109].
The choice of the polydisperse model formulation is at the discretion of the modeler. Although

all three models represent valid polydisperse formulations, differing only in the method of
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averaging over r, one model may be more or less conducive to solving a specific problem. For
example, one model may better allow us to solve the forward or inverse problems, relative to the
other models. In the following Section, (4.3), we examine how these models differ in the regime
of our problem.

4.3 Comparison of Polydisperse WT Scattering Attenuation Mod-
els

Recall that our goal is to estimate the nominal PDF on pore radius. Here, we investigate the
viability of these models in solving this estimation problem. We do so by comparing the respective
forward model solutions as well as their sensitivities. In general, the sensitivity of the model
with respect to this quantity of interest affects the confidence one has in the resulting estimate.
Thus, one question of interest is how sensitive are the WT polydisperse models (4.3) - (4.5) to
the PDF of interest. To investigate the models’ forward solutions as well as their sensitivity with
respect to the PDF of interest, we consider a parametric Beta density function given as

fBeta(r) =
(r − a)p−1(b− r)q−1

B(p, q)(b− a)p+q−1
, a ≤ r ≤ b; p, q > 0, (4.5)

where p, q are referred to as the shape parameters and B(p, q) =
∫ 1

0 t
p−1(1− t)q−1 dt. We then

perform local sensitivity analysis of the models with respect to the Beta parameters p and q.
First, Figure 4.1 shows the difference in forward model (α(i)

scatt) solution with an input Beta
density function with p = 2 and q = 4, where αa = 0 and ns = 150 pore/(mm3). We see that all
three model formulations produce very similar forward model solutions.
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Figure 4.1 Comparison of forward model solutions with an input Beta distribution with p (Left) and
q (right)

Next, we determine the models’ sensitivity with respect to the Beta parameters. Using finite
differences we can calculate the sensitivity of the model with respect to the Beta distribution
parameters as

∂α(i)(ω;αa, fBeta(r, p, q))

∂p
≈ α(i)(ω;αa, fBeta(r, p+ δp, q))− α(i)(ω;αa, fBeta(r, p, q))

δp

∂α(i)(ω;αa, fBeta(r, p, q))

∂p
≈ α(i)(ω;αa, fBeta(r, p, q + δq))− α(i)(ω;αa, fBeta(r, p, q))

δq
,

where δp and δq are strictly positive step lengths for p and q respectively. Figure 4.2 shows
sensitivities of each of the three models with respect to the Beta distribution parameters, where
p = 2, q = 4, and δp = δq = 1e− 04.
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Figure 4.2 Comparison of model sensitivity versus frequency with respect to p (Left) and q (right)

Although all three models show similar sensitivity with respect to the Beta distribution parameters,
we see a slight increase in sensitivity for Model 2 formulation (4.4).

In our computations we have performed the parameter inversion for the ISA, which is
equivalent to Model 1 formulation of the WT without the quadratic terms in keff. Furthermore,
the inverse problem has been solved using Model 2 formulation of the WT. Both produced very
similar estimates of the PDF, indicating that the estimation of the PDF is not dependent upon
the model formulation, in the present application. However, the pros and cons of the different
model formulations in different scenarios is an interesting avenue for future work.

4.3.1 Polydisperse ISA and WT Model Formulation

Here, we provide both the ISA and WT models for total attenuation (αscatt + αabs) that are
considered in this work. First, in formulating the polydisperse version of the ISA, we rely on
the monodisperse equations given in [114]. Specifically, we use αscatt(ω;ns, r) = nsγscatt(ω; r)/2,
where γscatt is the scattering cross section. We note that in this case, the polydisperse reformulation
is straightforward and mirrors that in (4.3). The polydisperse ISA model is given as

ᾱisa(ω;αa,f) = αaω

(
1−

∫
ΩR

4

3
πr3nsf(r)dr

)
+

1

2

∫
ΩR

γscatt(ω; r)nsf(r)dr, (4.6)

where γscatt(ω; r) was previously defined in (3.10) of Chapter 3.
Next, we present the WT polydisperse model for total attenuation. We note that the derivation

for the scattering attenuation is given above and concludes with (4.4). Thus, our WT model is
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given as

ᾱwt(ω;αa,f) = αaω

(
1−

∫
ΩR

4

3
πr3nsf(r)dr

)
−Im

[
k2

0 +

∫
ΩR

4πnsf0(ω; r) +
4π2n2

s

k2
0

[
f2

0 (ω; r)− f2
π(ω; r)

]
f(r)dr

]1/2

. (4.7)

Note that in the polydisperse models given by (4.6) and (4.7), the dependence on pore density ns
has been omitted, as this parameter will be fixed when solving the inverse problems. The choice
to fix this parameter is due to identifiability issues when trying to simultaneously estimate both
ns and f. Furthermore, previous studies show that pore density is not significant in determining
osteoporosis levels [57, 102].

Figure 4.3 illustrates the forward model solutions of both the polydisperse ISA and WT
models. On the left is a graph of the input PDF, fbeta(r), which is given by a beta density
function with shape parameters p = 3 and q = 8 (see Section 4.6.1 for more details). The right
figure provides the forward model solutions in the case where pore density is ns = 130 pores/mm3

and αa = 9.99 dB/(cm MHz).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

10

15

20

25

Radius (r)

f
b
e
ta
(r
)

Beta Density Function

0 2 4 6 8
0

20

40

60

80

100

120

Frequency (ω)

A
tt

en
u
at

io
n

(ᾱ
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We see from Figure 4.3 that in this example, the ISA and WT forward model solutions
produce nearly identical results. This is a notable observation as this indicates that both models
may produce similar inverse problem estimates. As a result, it is helpful to understand why the
correspondence between these two models exists. The main reason is that attenuation due to
absorption (αabs) dominates in the regime of our problem, and this term is identical for both the
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ISA and WT models. However, the attenuation due to scattering is not negligible. In comparing
the scattering term (αscatt) for the ISA and WT, we see that these values are similar. The reason
for this correspondence is that second order multiple scattering is insignificant in this example.
We note this may not always be the case as the scattering regime is dependent upon the specific
microstructure. Therefore, we cannot yet conclude that the higher order terms of the WT provide
no additional information in terms of reconstructing the nominal PDF on pore size. Thus, a full
comparison of the two models’ inverse problem solutions will be examined in this work.

4.4 Inverse Problem

We use the mathematical models described in Section 4.2 along with measurement data to
solve inverse problems, producing estimates of the underlying PDF for pore radius along with
the scalar absorption coefficient (αabs). To facilitate the estimation of this PDF, we rely on
the Prohorov Metric Framework (PMF) [5, 12, 84], which is discussed briefly in Section 4.4.1.
Following that in Section 4.4.2 we discuss the inverse problem formulation using our adopted
approximation scheme, along with all relevant constraints. Lastly, in Section 4.4.3, we discuss a
regularization technique to address the ill-posed nature of the inverse problem.

4.4.1 The Prohorov Metric Framework

Recall that the distribution law of the pore radius is an element of the set P(ΩR) of admissible
probability measures on (ΩR,B(ΩR)). As mentioned before, we consider the case where elements
of P(ΩR) are absolutely continuous with respect to the the Lebesgue measure. Therefore, each
element of P(ΩR) is fully described by its CDF, which has an associated PDF. The inverse
problem is then formulated by seeking a PDF for the pore size, which is consistent with the
governing model and measurement data. Notice that the set of admissible PDFs being a subset
of L1(ΩR), we have an infinite-dimensional optimization problem. The PMF provides a rigorous
approximation scheme for tackling such inverse problems. Namely, assuming existence of an
underlying PDF, f0(r), that generates the data, one can prove convergence of the solution of
the discretized problem to f0(r) in the limit as the number of data points and dimension of the
discretization go to infinity [5, 12, 84]. In this work, we adopt the discretization of P(ΩR), from
the PMF and consider

Pn(ΩR) =

{
L∈ P(ΩR)

∣∣∣∣dLdλ =

n∑
m=1

cmlm(r), cm ≥ 0 and
n∑

m=1

cm

∫
ΩR

lm(r)dr = 1

}
,

where for each L∈ Pn(ΩR) we consider the corresponding PDF f= dL
dλ , which is the Radon–

Nikodym derivative of L with respect to the Lebesgue measure, λ. Here, cm’s represent the
spline coefficients and lm’s are the linear splines (see Section 4.4.3).

In the PMF, convergence of probability measures is studied with respect to the Prohorov
Metric, which we briefly recall here, for readers convenience. For every closed subset F of ΩR,
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we denote Fε = {r ∈ ΩR : inf r̂∈F |r − r̂| < ε}. The Prohorov distance between two probability
measures P and G is defined as

ρ(P,G) = inf {ε > 0 : G(F) ≤ P (Fε) + ε and P (F) ≤ G(Fε) + ε, for all F closed in ΩR} .

While the definition of the Prohorov metric is rather abstract, it does have desirable theoretical
properties. Specifically, we have that convergence in Prohorov metric is equivalent to weak∗

convergence. That is, if for all n we have Gn, G ∈ P(ΩR), then limn→∞ ρ(Gn, G) = 0 if and only
if ∫

ΩR

h(r)dGn(r)→
∫

ΩR

h(r)dG(r), for any h ∈ CB(ΩR),

see, e.g., [5, 12, 19], for details. Additionally, we note that in this application we are specifically
interested in the PDF, f(r). The discretization we adopt directly approximates the PDF and
provides convergence of both the PDF and CDF; whereas other approximation schemes may
only provide convergence in CDF; see [9].

4.4.2 Inverse Problem Formulation

We use the mathematical models given in Section 4.2 to approximate the physical process of
attenuation. However, one must also model the observation process to account for errors in data
acquisition. This is done using a statistical model. We use an absolute error model

yj = ᾱ(ωj ;αa,f) + εj , j = 1, . . . , N, (4.8)

where ωj ’s are frequencies, yj are the corresponding attenuation measurements, N represents
the number of frequency points, and εj ’s are independent and identically distributed (iid) error
terms. This leads to an Ordinary Least Squares (OLS) formulation of the inverse problem [12,
15], which we discuss next. The inverse problem uses (4.8) to estimate the unknown absorption
coefficient αa and the PDF, f(r), of pore radii.

As mentioned above, we derive our approximation scheme from the PMF. Thus, our density
function is approximated using piecewise linear splines as

f(r) ≈ fn(r) =

n∑
m=1

cmlm(r), (4.9)

where again cm represent the spline coefficients, lm represent the basis functions given by linear
splines, and n represents the number of basis functions. Thus, the inverse problem is to determine

(α̂a, ĉ) = arg min
(αa,c)∈(0,∞)×Rn

s

J(αa, c),
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where J is the cost functional

J(αa, c) =
∑
j

(ᾱ(ωj ;αa, c)− yj)2 + γG(c). (4.10)

Here G(c) is a regularizing penalty function, which we discuss in more detail in Section 4.4.3,
and γ > 0 is a regularization parameter. Furthermore,

Rn
s =

{
c ∈ Rn≥0 :

n∑
m=1

cm

∫
ΩR

lm(ξ)dξ = 1

}
.

Notice this results in an optimization problem with linear equality constraints.

4.4.3 Regularization Functions

The regularization function G(c) in (4.10) is included to address the ill-posed nature of the
problem. In this work, we consider two types of regularizations based on L2 and H1 penalties,
which we describe next. Let us first consider the linear splines used to approximate the PDF.
We use a uniform partition of ΩR. Namely, we consider grid points {r0, . . . , rn+1} ⊂ ΩR, where
our fixed step is given by h = ri+1 − ri for i = 1, . . . , n. Then we use

li(r) =


r−ri−1

h , r ∈ [ri−1, ri],

ri+1−r
h , r ∈ [ri, ri+1],

0, elsewhere,

(4.11)

for i = 1, . . . , n. In the present work, we assume the PDF vanishes on the end-points, i.e.,
c0 = cn+1 = 0. Therefore, we do not consider the half-splines l0(r) and ln+1(r).

Identifying the vector c with the corresponding fn, we write the L2 regularization function as

Gl2(c) := Gl2(fn) =

∫
ΩR

|fn(r)|2 dr = cTMc, (4.12)

where the mass matrix M is defined according to Mij =
∫

ΩR
li(r)lj(r) dr, i, j = 1, . . . , n. Lastly,

we consider an H1 regularization to enforce smoothness in the estimated PDF, which is reasonable
as we would expect the nominal PDF on pore radius to be differentiable. This regularization
function is given as

Gh1(c) := Gh1(fn) =

∫
ΩR

∣∣∇fn(r)
∣∣2dr = cTKc, (4.13)

where the stiffness matrix K is defined according to Kij =
∫

ΩR
l′i(r)l

′
i+1(r)dr.

It is worth noting that these penalties can be combined. For example, we can consider

γl2Gl2(fn) + γh1Gh1(fn). (4.14)
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which encourages smoothness in the estimated PDF in addition to penalizing its L2 norm. The
derivations of each of these regularization functions is provided in Appendix B.

4.5 Experimental Data Acquisition

To validate the use of the polydisperse models for predicting both attenuation and the distribution
on pore radius in human cortical bone samples, experimental data is needed. In addition
to acquiring experimental attenuation data, CT scans of the bone samples are also taken,
allowing us to determine the “true” or nominal distribution on pore radius for each sample. This
allows evaluating the accuracy of our estimated PDFs and aids in calibrating the regularization
parameters, γ. We provide brief overview of this experimental setup in Section 4.5.1. Following
this, we discuss how the CT images of the samples are processed and provide the algorithm we
developed to determine the porosity of the 3D sample from the 2D CT scans in Section 4.5.2.
We provide the computational results of using this experimental data to solve inverse problems
in Section 4.6.2.

4.5.1 Experimental Setup

We have cortical bone samples from the femurs of eight human cadavers. We cut these bone
samples in 5 × 4 × 3mm cubes; see Figure 4.4 (Left). Transducers with central frequencies of
5 and 10 MHz are used to transmit the ultrasonic pulse through the bone sample (Figure 4.4
Right). The amplitude of the wave after traveling through the bone sample is then measured.
One can then calculate attenuation. A Fast Fourier Transform with a Gaussian window is then
used to convert the attenuation to the time domain. A schematic of this is given in Figure 4.5.

Figure 4.4 Left: Experimental cortical bone samples. Right: transducers
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Figure 4.5 Schematic for experimental setup

4.5.2 Image Processing of CT Scans

Here, we discuss how the 2D CT scans of the cortical bone samples are processed to determine a
nominal or “true” distribution on pore radius. This is not essential to solving the inverse problem
but is done to provide a way of examining the effectiveness of the estimation strategy. Suppose
that a result scan produces a bone image like that given in Figure 4.6.
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Figure 4.6 2D micro CT image of experimental cortical bone sample

We convert each 2D scan into a binary structure, differentiating between pixels corresponding
to bone versus pixels corresponding to pores [67]. Then, pore volume fraction (ξ) can be obtained
by dividing the pore volume (the summation of all the pore pixels) by the total volume (number
of pixels) of the sample. Next, we estimate the radius of every pore within the sample by
determining the number of 3D pores (or objects) from the binary structures. In cortical bone,
we see the phenomenon of having one large interconnected pore, resembling a scaffold with
numerous branches. We set a volume threshold of 20000 pixels, such that any object with smaller
volume is considered a separate pore. Using this threshold, first, the independent pores that do
not belong to any larger network are automatically detected based on the connectivity of the
pixels in the 3D structure. As the interconnected network of pores cannot be estimated as an
individual object, an algorithm based on the connectivity of pore cross sections between the
2D layers of the bone samples must recognize the branches as separate objects and find the
equivalent pore size for each branch. We proceed as follows:

1. Consider 2D transverse layers (layer1, . . . , layeri) of the 3D sample, where i is the number
of 2D slices.

2. Beginning at layer 1, label each pore cross section pore1, . . . , porej , where j is the total
number of pore cross sections in that layer.

3. Consider layer 2 and compare the pore cross sections of that layer to those of the same
location in the previous layer.

4. Repeat steps 1 and 2 for all i layers of the sample.

5. If a given layer, x + 1, contains bone pixels at the same location the previous layer, x,
reports pore pixels, we say an individual pore has completely been detected.
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6. After detection of each pore, the location of the corresponding pixels is saved and then the
pixels are nullified (changed to bone tissue) to avoid over-counting. In the case that the
pore pixels corresponding to a label on layer x are associated with two or more pore labels
on layer x+ 1, only one of the multiple cross sections (on layer x+ 1) is chosen as part of
the initial object. The others are counted as parts of other objects in later iterations of the
algorithm.

7. Repeat the previous steps for all j pores until all the pore pixels are changed to bone.

8. We have now detected every object in the sample and labeled them as individual pores or
branches

Once this procedure is complete, we can determine the number of pores as well as the size of
each pore in the 3D sample. To begin, we assume pores have either a spherical or cylindrical
shape. This assumption simplifies the calculations to obtain the effective radii and can be justified
by semi-cylindrical shape of the pores in cortical bone. We categorize the pores in our sample as
either based on their aspect ratio, i.e., the ratio of the length of the pore (transverse direction) to
the maximum radii of the cross sections. Any pore with an aspect ratio of 3 or larger is assumed
to be cylindrical. All others are assumed to be spherical. Thus, based on the assumed shape
of an individual object and the volume (sum of pixels in object), the radius of the object is
determined as:

rsph = (1/2)×
(

6Vsph
π

)1/3

rcyl = (1/2)×
(

4Vcyl
hπ

)1/2

.

Here, Vsph, Vcyl are volume of the spherical pores and cylindrical pores respectively. The maximum
length of the cylindrical pores is given by h. With the set of the radii measurements, one can use
a Kernel Density Estimate (KDE) to approximate the true distribution on pore size in a given
sample.

4.6 Computational Results

In this section we provide the computational results of solving the inverse problems laid out
in Section 4.4. We begin in Section 4.6.1 with a numerical illustration that provides a proof-
of-concept of our inverse problem formulation. There, we generate synthetic, noisy data using
the WT forward model with an input Beta distribution for the pore radius. We then solve the
inverse problem with both the ISA and WT models to verify we can reconstruct the analytical
Beta density function. We use the regularization approach to stabilize the inverse problem.
Additionally, we compare the resulting reconstructions across various approximation dimensions,
i.e. values of n in (4.9). In Section 4.6.2 inverse problems are solved using the experimental
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data, producing estimates of the underlying PDF on pore radius in the human cortical bone
samples. These estimates are constructed nonparametrically and their accuracy is determined
by comparison with the “true” density functions determined according to Section 4.5.2. We also
illustrate the effects various choices of regularization have on the reconstructed PDFs.

4.6.1 Proof-of-Concept Illustrations

To provide a proof-of-concept, we aim to reconstruct the PDF in the simplified case where data
is simulated using the WT model and the pore radius is assumed to be distributed according to
a Beta distribution. We then use both the ISA and WT models to solve the inverse problem laid
out in Section 4.4 and compare the estimated PDFs to the analytical PDF.

To begin, we simulate data using the WT model with an input PDF given by a Beta density
function given in (4.5). We then produce simulated data using the model

yj = ᾱwt(ωj ;αa,fBeta(p, q, r)) + εj , j = 1, . . . , N,

where εj ’s are realizations of iid N(0, s2) random variables. This Beta distribution was chosen as
it mimics an observed distribution on pore radius based on CT images from cadaver samples.
With this data, we solve the inverse problem to reconstruct fBeta(r) using the PMF as described
earlier. Here, we choose shape parameters p = 2 and q = 4. The noise level is chosen to be s = 4.
This corresponds to a percentage noise level of 7% the average attenuation value. Representative
results are given in Figure 4.7 for n = 21 splines and ns = 150 pores/mm3. Here, we use
regularization of the form (4.14) with parameters, γl2 = 1 and γh1 = 0.05, which were chosen
based on numerical experimentations.
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Figure 4.7 Left: ISA and WT model solutions versus simulated data. Right: The estimated ISA and
WT PDFs versus the analytical beta density function
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Figure 4.7 shows that resulting estimated PDFs for the ISA and WT models are nearly
identical and consistent with the “true” input PDF. This indicates that we can reconstruct an
input PDF from noisy simulated data using the proposed framework. Furthermore, we estimated
α̂a,ISA = 9.19 dB/(cm MHz) and α̂a,WT = 9.15 dB/(cm MHz), which are close to the true value
of αa = 9.99 dB/(cm MHz) used in generating the data.

Additionally, we examine if this approach can differentiate between varying levels of bone
degradation. To do so, we simulate data using the higher order WT attenuation model with
input PDFs given by Beta density functions. We consider two input Beta density functions. One
has shape parameters p = 2 and q = 5 and results in an expected value of pore radius as 0.2857.
The other has shape parameters p = 5 and q = 3 and results in a higher expected value of 0.6250.
These two cases allow us to represent varying levels of bone degradation. Figure 4.8 provides the
results of solving the inverse problem using n = 27 spline bases functions and a regularization
term to stabilize the reconstructions. We see from this figure that using the polydisperse ISA
model we are able to reconstruct the analytical input density functions using piecewise linear
splines. Furthermore, we do so for varying pore radius distributions.
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Figure 4.8 The ISA estimated PDFs vs. the analytical Beta PDFs for cases of low and high bone
degradation

Overall, the results depicted in Figures 4.7 an 4.8 provide proof-of-concept for the inverse
problem formulation where we aim to non-parametrically estimate an underlying PDF as well as
scalar absorption coefficient from attenuation data.

We also investigate the impact of the approximation dimension n in (4.9) on the reconstruction.
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In theory, increasing n provides more accurate estimates (see Section 4.4.1). However, one must
take into account the increase in computational costs as well as numerical errors incurred in
doing so. Therefore, we wish to empirically determine an appropriate value for n, such that
further increases in the dimension provide negligible improvements in the reconstructions. The
grid refinement study in Figure 4.9 provides representative results of the estimated PDF for
various values of n. We see that increasing n beyond 20 has a negligible impact on the estimated
PDF.
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Figure 4.9 Comparison of the resulting PDF estimate (f̂n) for different values of n

4.6.2 Solving the Inverse Problem Using Experimental Data

In this section, we use experimental attenuation data, described in Section 4.5 to solve the inverse
problem laid out in Section 4.4. To provide a means of assessing the reliability of estimated
PDFs on pore radius, we approximate the nominal underlying PDF by calculating the Kernel
Density Estimate (KDE) of the radii data gathered using the CT scans and the algorithm laid
out in Section 4.5.2. The KDE is constructed using an empirical sample of pore radii with
approximately 6,000 realizations per bone sample. Additionally, the CT scans are used to obtain
a nominal value for the pore density, ns, for each dataset. We have an average pore density of
156 pores/mm3, where the variance is (σ = 33 pores/mm3). As previously mentioned, the pore
density will be fixed when solving the inverse problem. Here, we fix pore density to the nominal
value determined by the CT scans. In general, one would not have a nominal pore density and
would need to fix this parameter at an acceptable value, often determined from literature or
experimentation.
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We first consider the effects of various regularizations on the reconstructed PDFs. To do
so, we compare the approximated PDFs to the KDEs for various regularization parameter
values (γl2 , γh1). Representative results using Dataset 2 are depicted in Figure 4.11. Here, we
consider: no regularization, L2 regularization, and a combination of L2 and H1 regularizations.
Note that the specific regularization parameter values are chosen empirically through trial and
error. In these results, we used n = 27 linear splines for approximating the PDFs (see (4.9));
this was observed to provide a good balance between quality of the estimated PDFs and the
computational cost of solving the inverse problem.
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Figure 4.10 Comparison of reconstructed PDF for various regularization parameters for Dataset 2

We notice from Figure 4.10 (left) that without any regularization, the reconstructed PDFs
do not accurately capture the shape of the “true” density function. However, from the middle
graph, we see that using an L2 regularization improves this reconstruction. Ultimately, we see
that incorporating an H1 regularization (right) results in much better reconstructions in this
case. Specifically, we see that using a combination of L2 and H1 terms provides a reconstruction
that is clearly superior to ones obtained by using no regularization or L2 regularization only. In
our numerical experiments, we find that using the H1 regularization alone provided sufficiently
accurate reconstructions (see below). To provide a full picture, we used only an H1 regularization
on all eight datasets; see Figure 4.11.
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Figure 4.11 Comparison of f̂n(r) versus the KDE using both the ISA and WT models across eight
datasets for: γl2 = 0, γh1 = 0.03, n = 27

We see by comparing the Dataset 2 graph in Figure 4.11 to the far right graph in Figure 4.10,
the combination L2 and H1 regularization provides negligible improvement over only an H1

penalty. Overall, we find that it is necessary to have anH1 penalty to have a smooth approximation
to the KDE. It should be noted, that in solving this inverse problem, we do not seek an exact
reconstruction of the KDEs. Specifically, these KDEs only provide a rough approximation to
the true PDF due to errors in the CT scans, and from assumptions made in the algorithm that
processes the CT scans. With this in mind, the nonparametric estimates, f̂n, given in 4.11 are
considered to infer the true microstructure of the bone samples well.

Next, using the PDF reconstruction corresponding to dataset 2 and obtained via the H1

regularization, we examine the model fit and also compare the estimated cumulative distribution
function (CDF) with the corresponding “true” CDF. The estimated CDF is obtained by integrating
the estimated PDF. Figure 4.12 provides the model (both ISA and WT) fit to the experimental
data as well as the estimated PDFs and CDFs.
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Figure 4.12 Left: model predictions versus experimental data; right: CDF versus KDE (we used
γl2 = 0, γh1 = 0.03, n = 27). The CDF estimate corresponds to the PDF estimate 2 in top row of
Figure 4.11

From Figure 4.12 (left) we note that we do not have experimental data in the frequency
range 6–7 Mhz due to the bandwidth of the transducers. However, the attenuation data aligns
well at the endpoints of these frequency ranges. Despite this, we see that both the ISA and WT
model solutions fit the attenuation data well and closely match one another. We are able to
nonparametrically estimate f(r), capturing both the mean of the function (r̄isa = r̄wt = 0.026

mm and r̄dat = 0.028 mm) as well as the overall shape. Similarly, we see accurate predictions
of the underlying CDF for both the ISA and WT. The negligible difference between results
obtained using the two models indicates the higher order terms of the WT model do not increase
the accuracy of the reconstructions. Also, in estimating the absorption coefficient, we see both
models provide similar estimates (α̂a,ISA = 9.27 dB/(cm MHz) and α̂a,WT = 9.37 dB/(cm MHz)).
However, the nominal value of this parameter from experimentation is not known, and therefore
we cannot compare the models’ accuracy in determining this.

4.7 Conclusions

In this work we discussed several ways of formulating polydisperse attenuation models using
probabilistic approximations. We then introduced polydisperse formulations of the previously
established Independent Scattering Approximation (ISA) and the Waterman Truell (WT) models
and compared their forward model predictions with an input analytical Beta density function.
We then formulated an inverse problem and approximation scheme using the Prohorov Metric
Framework (PMF) and introduced regularization functions to address the ill-posed nature of
the inverse problem. We then provided illustrative results by solving the inverse problem using
simulated noisy data and reconstructed the input Beta density function using the piecewise
linear spline approximation scheme. Following this, we performed experiments to measure the
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attenuation in-vitro from human cadaver cortical bone samples. We used micro CT to determine
the baseline “true” microstructure of the samples in the form of a Kernel Density Estimate. We
then solved the inverse problem using the experimental data and compared the reconstructed
probability density functions (PDFs) to the KDE.

We were able to obtain close estimates of the underlying PDF on pore radius from the
attenuation data in all eight cortical bone samples considered. We found that an H1 regularization
function was required to stabilize the inverse problem and provide accurate estimates. We also
found little variation between the ISA and WT models’ forward predictions and estimated PDFs.
This indicates that the higher order terms of the WT model are not necessary for predicting
information regarding the underlying microstructure of cortical bone in our specific application.

In future work, we will adapt the proposed methodology to backscattering attenuation models
to predict microstructures in-vivo. Doing so could enable diagnosing osteoporosis in human
patients using non-invasive, non-ionizing ultrasound interrogation.
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CHAPTER

5

CONCLUSIONS

This dissertation provides a quantitative tool for characterizing the microstructure of cortical
bone using ultrasound attenuation data. To characterize bone diseases, one must be able to
infer the microstructure of the cortical bone. Many current approaches are invasive, ionizing,
or generally infeasible for the routine screening of patients. Because of this, an approach that
utilized ultrasound interrogation to determine the size and density of pores within the cortical
bone was desired. To provide a quantitative tool, we took an inverse problems approach, which
uses data along with mathematical models to estimate the microstructural parameters.

In Chapter 2, we began by establishing that ultrasound attenuation is dependent upon the
microstructural parameters, pore size and density. This was done using 2D monodisperse, cortical
bone-like structures. Simulating attenuation data and physically modeling attenuation using the
phenomenological, power-law model allowed us to formulate and solve an Ordinary Least Squares
(OLS) inverse problem. Analyzing the resulting parameter estimates’ standard errors showed
we could estimate the model parameters with a high degree of confidence. We then determined,
using linear regression, invertible relationships between these model parameter estimates and the
microstructural parameters. Ultimately, this methodology provided a low resolution approach
to characterize porosity of the 2D monodisperse samples from ultrasound data. This provided
proof-of-concept for inferring microstructural information using ultrasound waves.

We built on this work in Chapter 3. There we used two physics-based models for wave
attenuation, the Independent Scattering Approximation (ISA) and the Waterman Truell (WT)
model, as these explicitly model the dependence of wave attenuation on pore size and density.
We also considered more realistic 3D monodisperse structures, which were used to numerically
generate data. We again used the models and data to solve an OLS inverse problem. Doing
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so showed that we could estimate the pore size and density in the 3D monodisperse samples,
providing a higher resolution approach to characterize microstructure than in Chapter 2 work.
The major contribution of the work in Chapter 3 was establishing both the ISA and WT
models for not only predicting wave attenuation in cortical bone, but also for the purpose of
inferring microstructure. Doing so provides the foundation for considering more realistic problem
formulations.

The final phase of the work in this dissertation was detailed in Chapter 4 where we considered
polydisperse samples in which the pores varied in size. Thus, the pore size had an inherent
statistical distribution with an associated PDF. Characterizing microstructure in terms of the
PDF on pore size provides more diagnostic information than the average pore size estimates
of previous work. To solve this more realistic problem, we reformulated the two models (ISA
and WT) from Chapter 3 to represent the polydisperse structures. We used the Prohorov Metric
Framework to make this infinite-dimensional inverse problem tractable and implemented varia-
tional regularization functions to stabilize the inverse problem. There, we gathered experimental
attenuation data using bone samples taken from human cadavers. MicroCT imaging allowed us
to establish a baseline or “true” PDF on pore size within the samples. In solving the inverse
problem, we showed that we are able to accurately reconstruct the nominal PDF on pore size.
Thus, the approach taken in Chapter 4 provided a high resolution approach for inferring the
microstructure of real human cortical bone samples, solely from attenuation data. Overall, the
methodology given in this dissertation provides a quantitative tool for characterizing in-vitro
cortical bone microstructure using non-invasive, non-ionizing ultrasound.

In future work, we aim to apply the methodology laid out in this dissertation to the scenario
where data is taken in-vivo, which would be the case when characterizing the microstructure
of the cortical bone in a living patient. To do so, one would need a mathematical model for
attenuation that took into account backscattering as well as the layered tissues that the wave
must pass through prior to the cortical bone. Another point of difference would be the aggregate
nature of the experimental data in the in-vivo setting [15]. In the current work, we focus on
cubic cortical bone sections, for which emitting and receiving transducers cover the entire area
of the incident faces of the cube. Thus, we account for the entire geometry of the bone sample.
When considering this experiment on a live patient, one would not be able to fully characterize
the entire geometry of the cortical bone. Rather one would have multiple realizations of that
geometry dependent on where, physically, the ultrasonic pulse was emitted relative to the patient.
Because of this, the aggregate nature of the attenuation data would need to be accounted for
when solving the inverse problem.

Other areas of future work involve improving the methodology in the last phase of this work
(Chapter 4). Investigating the effects of various boundary conditions on the PDF could be of
interest. Also, using the techniques in [4] to more accurately specify the form of the error in the
data observations could be investigated in the future. Furthermore, using more rigorous ways
of determining the optimal regularization function tuning parameter, such as L-curve [107] is
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another area of future work to better fine tune the result.
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APPENDIX

A

RELATIONSHIP BETWEEN ISA AND
WT VIA THE OPTICAL THEOREM

Here we address the mathematical relationship between the ISA and the WT model formulations.
The Optical Theorem [59] says

γscatt =
−4π

k0
Im[f0(ω; r)], (A.1)

where ω is frequency, r is radius, and k0, γscatt, and f0 were previously defined in (3.19) and
(3.10). The ISA uses the following effective wavenumber approximation

k2
eff ≈ k2

0 + 4πnsf0(ω; r). (A.2)

We wish to show that 1
2nsγ

scatt is an approximation to −Im(keff) up to a linearization. We thus
need to show,

ns
2π

k0
Im[f0(ω; r)] ≈ Im

(
k2

0 + 4πnsf0(ω; r)

)1/2

. (A.3)

Note the following Taylor Series approximation

(1 + y)1/2 = 1 +
y

2
+ O(y2). (A.4)
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Furthermore,

(k2
0 + 4πnsf0(ω; r))1/2 = k0

(
1 + ns

4π

k2
0

f0(ω; r)

)1/2

(A.5)

Equations (A.4) and (A.5) imply

k0

(
1 +

4π

k2
0

nsf0(ω; r)

)1/2

≈ k0

(
1 + ns

2π

k2
0

f0(ω; r)

)
= k0 + ns

2π

k0
f0(ω; r).

Thus, considering the right-hand side of (A.3)

Im(keff) = Im
(
k2

0 + 4πnsf0(ω; r)

)1/2

≈ Im
[
k0 + ns

2π

k0
f0(ω; r)

]
,

and since k0 is real,

Im
[
k0 + ns

2π

k0
f0(ω; r)

]
= ns

2π

k0
Im[f0(ω; r)].

Thus, we have shown (A.3), up to a linearization as seen above.
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APPENDIX

B

PENALTY FUNCTION DERIVATION

Here, we discuss the derivations of the three regularization functions given in Chapter 4,
Section 4.4.3.

We begin with the penalization on the L2 norm of the estimated PDF, which is given as∫
ΩR

|fn(r)|2dr =

∫
ΩR

fn(r) ·fn(r)dr =

∫
ΩR

∑
i

∑
j

cicjli(r) · lj(r)dr

=
∑
i

∑
j

cicj

∫
ΩR

li(r) · lj(r)dr, i, j = 1, . . . , n

= cTMc, (B.1)

where c = [c1 c2 . . . cn]T are the spline coefficients and M is known as the mass matrix whose
entries are given by Mij =

∫
ΩR
li(r) · lj(r)dr. Let us determine the specific entries for the stiffness

matrix in (B.1). Noting that if |i− j| > 1 then li(r) · lj(r) = 0 provides the following cases:
1.) i = j:

∫
ΩR

li(r) · lj(r)dr =

∫
ΩR

li(r) · li(r)dr

=

∫ ri

ri−1

(
r − ri−1

h

)(
r − ri−1

h

)
dr +

∫ ri+1

ri

(
ri+1 − r

h

)(
ri+1 − r

h

)
dr

=
1

3
h+

1

3
h =

2

3
h

2.) |i - j| = 1:
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Without loss of generality, let j = i+ 1 and thus,∫
ΩR

li(r) · lj(r)dr =

∫
ΩR

li(r) · li+1(r)dr =

∫ ri+1

ri

(
ri+1 − r

h

)(
r − ri−1

h

)
dr =

1

6
h.

Therefore, we have the following mass matrix, where empty entires are zero

M = h


2/3 1/6

1/6
. . . . . .
. . . . . . 1/6

1/6 2/3

 .

Thus, our L2 regularization function is of the form

Gl2(fn) = cTMc (B.2)

Next, we derive the penalty on the H1 norm of the PDF given by∫
ΩR

∣∣∇fn(r)
∣∣2dr =

∫
ΩR

∇fn(r) · ∇fn(r)dr

=
∑
i

∑
j

cicj

∫
ΩR

∇li(r) · ∇lj(r)dr, i, j = 1, . . . , n

= cTKc,

where here K is known as the stiffness matrix whose entries are given by Kij =
∫

ΩR
∇li(r) ·

∇lj(r)dr. Note that for linear splines we have the following:

l′i(r) =


1
h , r ∈ [ri−1, ri]

−1
h , r ∈ [ri, ri+1]

0, elsewhere

and therefore consider again the following cases:
1.) i = j ∫

ΩR

∇li(r) · ∇lj(r)dr =

∫
ΩR

l′i(r) · l′i(r)dr

=

∫ ri

ri−1

(
−1

h

)(
−1

h

)
dr +

∫ ri+1

ri

(
1

h

)(
1

h

)
dr

=
1

h
+

1

h
=

2

h
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2.) |i− j| = 1 Again, without loss of generality consider j = i+ 1∫
ΩR

∇li(r) · ∇lj(r)dr =

∫
ΩR

l′i(r) · l′i+1(r)dr

=

∫ ri+1

ri

(
1

h

)(
−1

h

)
dr

=
−1

h
.

Thus, we have that the stiffness matrix is given by

K =
1

h


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 .

This provides the following regularization function

Gh1(fn) = cTKc.

87


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Motivation
	Previous Work
	Approach
	Contributions to the Field

	A Phenomenological Model and Simulated Data
	Introduction
	Methodology for Data Collection
	Simulation Framework
	Attenuation Measurement: Time-Distance Matrix Approach (TDMA)

	Mathematical and Statistical Models
	Effect of absorption on attenuation
	Scattering Regime and choice of pore diameter and pore density as microstructural parameters of interest
	Mathematical model for attenuation due to scattering

	Sensitivity and Standard Error Methodology
	Results and Discussion
	Functional Parameters
	Conclusions

	A 3D Physics-Based Model for Monodisperse Samples and Simulated Data
	Introduction
	Mathematical Models
	Independent Scattering Approximation
	Waterman Truell Model

	FDTD Simulation of Ultrasonic Attenuation Data
	Inverse Problem
	Optimization Results and Discussion
	Consistency Across Multiple Realizations

	Conclusions

	A 3D Physics-Based Model for Polydisperse Samples and Experimental Data
	Introduction
	Mathematical Models
	Averaging Approaches for Deriving Polydisperse Models

	Comparison of Polydisperse WT Scattering Attenuation Models
	Polydisperse ISA and WT Model Formulation

	Inverse Problem
	The Prohorov Metric Framework
	Inverse Problem Formulation
	Regularization Functions

	Experimental Data Acquisition
	Experimental Setup
	Image Processing of CT Scans

	Computational Results
	Proof-of-Concept Illustrations
	Solving the Inverse Problem Using Experimental Data

	Conclusions

	Conclusions
	Bibliography
	APPENDICES
	Relationship Between ISA and WT via The Optical Theorem
	Penalty Function Derivation

