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Abstract—In real-life analytics-oriented information-integr-
ation projects, the processes of information curation and inte-
gration cannot be completely automated. Rather, in each large-
scale project the key objectives include maximizing scalability
and throughput, while at the same time keeping the processes
manageable and productive for the human experts in the loop.
In this paper, we describe our experience with addressing these
major objectives in the process of building a scalable end-to-
end data-extraction, integration, and analytics workflow in the
domain of antimicrobial resistance (AMR). The workflow is built
using open-source tools, with the aims of enhancing the efficiency
and accuracy of data collection and integration, while involving
an acceptable level of efforts by collaborative multidisciplinary
teams of humans-in-the-loop. We present the components of the
proposed workflow, outline the challenges encountered in its
development and testing, and discuss the experiences and lessons
learned in enabling AMR experts and data analysts to interact
with the workflow, with some of the lessons potentially applicable
to other application domains.

Index Terms—data analytics, data integration, antimicrobial
resistance, experts-in-the-loop, analysts-in-the-loop

I. INTRODUCTION

In a number of domains, including science and global
health, large amounts of data are often collected independently
by multiple teams or organizations over time. As the entities’
needs evolve, in many cases such data need to be put together,
typically to address the reporting and analytics needs of the
organization. The resulting technical problems of integration
of heterogeneous data have been studied for decades, see, e.g.,
[1]–[3]. At the same time, it is well recognized [4], [5] that
in real-life analytics-oriented information-integration projects,
the processes of information curation and integration cannot be
completely automated; rather, in each large-scale project the
key objectives include maximizing scalability and throughput,
while at the same time keeping the processes manageable and
productive for the human experts in the loop.

In this paper we describe our experience with addressing
these major objectives in the process of building a collabora-
tive data-integration and analytics workflow for the domain of
antimicrobial resistance (AMR). AMR refers to the ability of a
microorganism to cease an antimicrobial from working against
it. It is considered to be “one of the most serious global public

health threats in this century” [6], studied at both the national
and international levels [7]–[10]. Very large volumes of AMR
data have been accumulated worldwide.

In this work, our focus has been on integrating and ana-
lyzing large-scale AMR data in the context of longitudinal
and related studies. (Through the NCSU College of Veterinary
Medicine, the authors have access to over a terabyte of AMR
data appropriate for these purposes.) These studies, aiming
to discover and track historical changes in the degree of
resistance to antimicrobials by bacteria serotypes,1 specifically
increases or decreases in their resistance to the same dosage
of antibiotic medicine, attract considerable ongoing efforts
[11]–[16]. The outcomes of such studies can provide useful
information of assistance to governmental agencies, e.g., the
FDA [17], in decision making involving the approval of
safe and effective antimicrobial drugs. The information can
also help pharmaceutical companies in developing adequate
antibiotics. The ultimate goals of the research are to protect
the public health and prevent a potential global health crisis.

In longitudinal and related studies, AMR experts use data
that are relevant to tracking the AMR status both locally and
globally. The data are collected both in the unprocessed (raw)
form, e.g., data collected from farms, as well as in the form
of summaries. Some of the summarized information is made
publicly available by governmental agencies, e.g., [9], [18].

Historically, it has been challenging for AMR experts to ex-
tract data from published reports, as such extraction is typically
performed manually from PDF files and hence does not scale.
Further, the traditional process of manually integrating raw and
summarized data can be tedious, time consuming, and error
prone, with the additional challenge of enforcing data quality.
There exist software tools that would allow AMR experts to
automate to some degree the individual operations involved
in the data extraction and integration. At the same time, to
the best of our knowledge, there does not exist a general
methodology – let alone a software framework or system –
that would enable AMR scientists to address the problem of
scalable and verifiable information extraction and integration

1A serotype is a distinct variation within a species of bacteria.



for longitudinal and related studies in an end-to-end manner.
This paper introduces a scalable collaborative end-to-end

data-extraction, integration, and analytics workflow for AMR
longitudinal and related studies. The workflow is built using
open-source tools, with the aims of enhancing the efficiency
and accuracy of the data collection and integration, while
keeping the efforts of the humans in the loop at an acceptable
level. We present the components of the proposed workflow,
outline the challenges encountered in the work, and discuss
the experiences and lessons learned in enabling AMR experts
and data analysts to interact with the workflow, with some of
the lessons potentially applicable to other application domains.

The remainder of the paper is structured as follows. In
Section II, we introduce the data and process characteristics
for the relevant AMR data analytics, and outline the challenges
faced by AMR experts in the pipeline. Our proposed workflow,
whose aims and tools are specified in Section III, is introduced
in Sections IV–V. Section VI discusses the challenges that we
faced in the workflow development and testing, as well as the
lessons learned in the process. We conclude in Section VII.

II. BACKGROUND

The proposed scalable end-to-end data-extraction, integra-
tion, and analytics workflow for longitudinal and related stud-
ies has been developed iteratively in a collaboration between
AMR experts and data analysts. We started the project by
studying typical source data and data-processing practices that
are traditionally used in AMR studies, and then articulated
the main tasks of the envisioned workflow (see Section III).
This section describes representative source data and typical
processes applied to the data in their preparation for the
analytics used in the AMR studies, as well as the major pain
points for AMR researchers in these processes.

A. The Source Data

In their research, AMR experts use diverse sources of
data. Raw data arise from experiments in the laboratories and
are typically stored as spreadsheets. Summarized information
comes from reports published annually by governmental agen-
cies, including NARMS in the U.S. [18] and DANMAP in
Denmark [9], and is formatted as tables in PDF files.

a) Raw Data Stored in Spreadsheets: The raw data in
the format2 shown in Fig. 1 were manually collected by
NCSU College of Veterinary Medicine researchers during their
visits to farms in the U.S. The collected data were screened
in laboratories for certain types of antimicrobial drugs, and
the minimum inhibitory concentration (MIC) indicator was
recorded for each drug, with multiple levels of drug dosage.
The antimicrobials tested for include, e.g., Amikacin (AMI)
and Ampicillin (AMP). Based on the MIC levels, experts
can interpret (label) each sample according to its degree of
resistance to the antimicrobials, with possible values including
“susceptible” (S), “intermediate” (Int), and “resistant” (R). Fig.

2Due to data-confidentiality issues, the data shown in Fig. 1 are the result
of altering original data collected by the researchers.

Fig. 1. The raw-data example for Salmonella isolates includes information,
for each sample, on its collection date, source, serotype, MIC values for
specific antimicrobials, and their interpretations (R/S/Int), with R standing
for “resistant,” Int for “intermediate,” and S for “susceptible.” For instance,
the first row of the table represents a bacteria sample collected from a human
on 02/08/2009; the serotype of this sample is Salmonella A, its MIC of using
Ampicillin (AMP) is less than 1, and its interpretation is “susceptible” (S).

Fig. 2. Squashtogram fragment from [18]; the squashtogram contains data
for serotype Salmonella ser. Newport in year 2015. The first row provides the
statistics for using drug Gentamicin on Salmonella ser. Newport. Specifically,
the percentage of “intermediate” values (%I) is 0%, and of “resistant” (%R)
is 0.4%, with the 95% confidence interval for %R (95% CI for %R) is
[0.0% – 2.4%] . The remaining columns show the distribution of MIC. The
MIC values are not shown (except for the last row), due to most of the values
being between 0.25 and 32, while the table presents only the values between
0.015 and 0.03, as shown in the column header; see [18] for the details.

1 shows an example of possible raw spreadsheet data that
describe Salmonella isolates collected from human samples.

b) Summarized Information Stored as Tables in Reports:
For each serotype being monitored, annual reports of govern-
ment agencies, published as PDF files, provide summary tables
called squashtograms, which describe the status of AMR
among enteric bacteria isolated from humans in that year. Fig.
2 shows a typical example taken from the NARMS 2015 report
[18]. The squashtogram shown in Fig. 2 has attributes Rank,
CLSI Anitimicrobial Class, Antimicrobial Agent, Percentage
of isolates (%I, %R, and 95% CI for %R), and the distri-
bution of MIC. The contents of the squashtogram reflect the
status of antimicrobial resistance for serotype isolates with
respect to each antimicrobial agent tested for.

B. Summarizing the Raw Data

There is a rather straightforward relationship between raw
data stored in the format of Fig. 1 and squashtograms storing
data in the format of Fig. 2. We now outline this relationship
and explain how it is used in summarizing raw data in the
AMR analytics pipeline. The outcomes of summarizing raw
data in the format of Fig. 1 match the format of squashtograms



as in Fig. 2. As a result, the integration step is simple –
intuitively, the process is to append the rows of the summarized
raw data to the rows of the squashtograms.

Consider, for the squashtograms storing data in the format
of Fig. 2, the columns for the percentage of isolates for each
antimicrobial agent tested. In these columns, the value of %I
(percentage of “intermediate,” Int) indicates the proportion
of samples, for a given serotype, whose MIC value is in
a prespecified range between the boundaries of the levels
considered to be “resistant,” R, and “susceptible,” S, for the
same serotype. Similarly, %R (percentage of “resistant,” R)
indicates the proportion of samples for a serotype whose
MIC value exceeds a specific threshold. (These two values
are critical for assessing whether the AMR of the serotype
shows an increasing or decreasing trend.) The 95% CI for
%R value helps the users to determine if the result is reliable.

To illustrate how the values of %I, %R, and 95% CI for
%R in squashtograms are obtained from raw data, we use the
raw data for serotype Salmonella A in the first four rows of
Fig. 1. Using these data, the value of %I for AMP is calculated
as 25% (due to Int being the value of AMP R/S/I in just one
of these four rows). Using similar calculations, we obtain that
the value of %R for AMP is 50%. Finally, the value of 95%
CI for %R is computed as [CIL, CIU ], where

CIL = p− z1−α/2

√
p (1− p)

n
(1)

CIU = p+ z1−α/2

√
p (1− p)

n
(2)

From these formulae and with the values of p = %R (= 0.5,
see above); n = 4 (the sample size for Salmonella A in Fig.
1); and α = 0.05: We arrive at CIL = 0.01 and at CIU =
0.99. As a result, we obtain %I = 25%, %R = 50%, and 95%
CI for %R = [1 - 99] (%) for the AMP R/S/I column for
Salmonella A for the data in Fig. 1. In the remainder of the
paper, we use analogous calculations in aggregating the given
raw data for each antimicrobial agent tested on each serotype.

C. Challenges Faced by AMR Experts

In analyzing the traditional pipeline of data collection and
integration for AMR studies as described above, we articulated
the following pain points for AMR experts:

1) Manual extraction of squashtograms from PDF docu-
ments is tedious, time consuming, and error prone;

2) Traditional raw-data summarization into squashtograms
using software such as Excel is not scalable;

3) Even though software tools are available for steps in
the data-extraction and integration process, finding out
which tools would be applicable and how to build the
overall pipeline for each individual AMR project would
be labor intensive, with potentially nontrivial learning-
curve and debugging efforts; and

4) Data quality can be an issue for integrating disparate
large-scale data sources. That is, if some of the pipeline

components produce erroneous outputs, the final conclu-
sions may be incorrect (cf. [19]).

The proposed workflow addresses these pain points, as
described in the following sections.

III. THE WORKFLOW: OBJECTIVES AND TOOLS

We now begin outlining the design of the proposed scalable
end-to-end workflow for information integration and analysis
for AMR longitudinal and related studies. The workflow
incorporates collaborations among humans-in-the-loop in two
capacities: (1) The role of experts-in-the-loop includes provid-
ing feedback on the correctness of the outcomes of individual
workflow stages, as well as selecting inputs and postprocessing
the outputs for their purposes; this role is taken on by AMR
experts. (2) The role of analysts-in-the-loop includes guiding
the data through the workflow pipeline, tuning the steps of the
pipeline in consultation with experts-in-the-loop, and, finally,
driving the feedback loops in the workflow; this role is taken
on by data analysts. We now describe the workflow objectives
and the software tools selected for its implementation.

A. Objectives of the Workflow

With the focus on the %I, %R, and 95% CI for %R
values for antimicrobials with respect to bacteria serotypes,
the following steps need to be performed to enable analytics
over the integrated squashtograms and summarized raw data:

1) Aggregate raw data into the format of squashtograms
(source I: raw-data spreadsheets);

2) Extract squashtograms from reports into readable struc-
tured tables (source II: PDF files); and

3) Integrate the squashtograms from both sources.
Data cleaning is incorporated into the feedback loop in each

stage, to enhance the effectiveness of the data processing.

B. Software Tools Used in the Workflow

Toward achieving the objectives of the workflow, we looked
for software with appropriate functions. Many tools are avail-
able these days for data cleaning, integration, and analytics.
Our selection criteria included ease of use, flexibility, and the
software being open source; we ended up using R [20], SQLite
[21], and Tabula [22]. For table extraction from PDF files,
Tabula [22] provides a web-based user interface appreciated
by experts-in-the-loop. As in the workflow we need to save
the inputs and outputs of each procedure into a database, for
the database functionalities the workflow uses the powerful
and easy to use SQLite [21]. Finally, R [20], a powerful
open-source statistical programming language, provides func-
tionalities needed for implementing statistical methods [23],
processing multiple types of data [24] including time [25] and
strings [26]–[28], performing powerful data visualization [29]–
[31], and connecting with SQLite databases [32].

IV. THE WORKFLOW: FORWARD-FLOW PHASES

Our proposed collaborative data-integration and data-
analytics workflow for AMR performs data processing in



Fig. 3. An overview of the proposed collaborative data-integration and data-
analytics workflow for the AMR domain. Individual stages of the workflow,
represented as boxes, are mapped to specific forward-flow phases (1 through
4, described in Sections IV-B – IV-E). In this Fig., as well as in Figs. 4 and
6, databases are represented by cylinders, and involvement by analysts-in-the-
loop in individual stages is indicated via individual-person symbols. Further,
the solid arrows indicate the forward data-and-control flow (Section IV) in the
workflow, and the directed checkered arrows show the feedback flow (Section
V) focused on working with inappropriate or otherwise surprising results
arising from individual phases. The two-way arrow between the workflow
outputs and the desired outcomes represents validation of individual workflow
iterations by experts-in-the-loop, indicated using the group symbol.

multiple forward-flow phases, including spreadsheet aggrega-
tion, table extraction from summary reports, integration of the
resulting data, and analytics over the outputs. In this section we
provide details on the forward flow of the workflow; Section
V discusses the feedback loops built into the workflow.

A. Workflow Overview

Fig. 3 outlines the proposed collaborative data-integration
and data-analytics workflow for the AMR domain. The work-
flow inputs are selected by experts-in-the-loop. The data-
processing steps carried out in the first two phases help
improve the performance of the downstream data integration
(phase 3) and analytics (phase 4). Toward these goals, phases
1 and 2 of the workflow smooth errors in the input data, unify
the representation of all the data into a structured format,3

and store the data into a database. (All the intermediate and
final outputs of the workflow are stored in the same database.)
Specifically, phase 1 (Section IV-B) cleans and aggregates
raw spreadsheet data, and phase 2 (Section IV-C) extracts
squashtograms from summary reports. (Note that it is not
necessary for phase 2 to follow phase 1; instead, the two
phases can be carried out in parallel, as they process different
types of data.) Then, after the data integration done in phase
3 (Section IV-D), data analytics and visualization are applied
to the data in phase 4 (Section IV-E). Analysts-in-the-loop
are involved in all the four phases; they interact with experts-
in-the-loop at the postprocessing stage of achieving the final
outcomes of the analytics, and also (as described in Section
V) in all the feedback-loop discussions and decisions.

3In this project we have focused on data represented via relations.

Fig. 4. Workflow phase 1: Spreadsheet-data cleaning and aggregation.
Individual processes are represented as boxes. Agg.1 . . . Agg.N refer to
squashtograms obtained by aggregating raw data from laboratory analyses.

B. Phase 1: Spreadsheet-Data Cleaning and Aggregation

Traditionally, AMR domain experts use software such as
Excel to summarize raw data into squashtograms. As this
approach is not scalable, some level of automation is called
for if the process is to be applied to large amounts of data.

Phase 1 of the proposed workflow semi-automates the data-
aggregation process; Fig. 4 provides an outline. In this phase,
the input spreadsheet data supplied by experts-in-the-loop are
loaded into the database. Then analysts-in-the-loop perform
cleaning of the stored data, including removal of the leading
and trailing whitespaces, as well as correcting typos and other
data errors. For these purposes, phase 1 of the workflow
uses standard automated data-analytics functions, such as the
trimws function, as well as simple statistical functions, such
as counts() or table() in R.

Following the data-cleaning part of phase 1, analysts-in-the-
loop aggregate the data using an algorithm developed by the
authors of this paper, see Algorithm 1 for the pseudocode. The
algorithm takes as input the portion of raw spreadsheet data for
a fixed year and fixed bacteria serotype, and implements the
approaches described in Section II to calculate the percentage
of intermediate (%I) and resistant (%R) isolates for the year
and serotype, as well as the associated necessary statistics,
including 95% CI of %R and the distribution of MIC. To
facilitate the downstream integration with the squashtograms
extracted from summary reports in phase 2 (Section IV-C), Al-
gorithm 1 returns the aggregation outputs in the squashtogram
format, see Fig. 5 for an illustration. The aggregated outputs
also contain additional columns, with information about the
serotypes and years used for aggregating the spreadsheet data.
Finally, the outputs of Algorithm 1 get adorned with an
additional dataSource column, whose values indicate that
the data were derived from raw laboratory data, as well as
potentially the sources of the samples (e.g., humans). The
column addition is done to make compatible, in phase 3
(Section IV-D) of the workflow, the schemas of the aggregated
tables and of the squashtograms extracted in phase 2 (Section
IV-C) from published summary reports.

All the squashtograms returned by Algorithm 1 are loaded
into the main (SQLite) database. The aggregated information is
now ready to be examined by analysts-in-the-loop, potentially
in consultation with experts-in-the-loop.

Phase 1 of our proposed workflow makes the process of
aggregating spreadsheet data into the squashtogram format
more efficient than the traditional baseline used by AMR
scientists. Phase 1 accomplishes this objective by supplying



Fig. 5. Fragment of data aggregated by Algorithm 1 into the template of
Fig. 2. Using the data of Fig. 1 for Salmonella A, the value of %I is 25,
%R is 50, and 95% CI of %R is [1 - 99], see Sec. II for the details. (The
columns for year, serotype, and dataSource are not shown.)

analysts-in-the-loop with Algorithm 1, as well as by taking
advantage of the existing data-analytics functions and pack-
ages in R. Note that the traditional domain-specific time-
consuming and labor-intensive iterative data cleaning, data
aggregation, and parameter setup in software such as Excel
have all been replaced by Algorithm 1. This potential for
efficiency improvements is significant, as it can significantly
decrease the time and efforts required for data analysts in their
processing potentially large volumes of input spreadsheet data.

Algorithm 1: Spreadsheet-Data Aggregation
Data: Subset of spreadsheet data selected based on fixed

values year and serotype.
Result: Squashtogram with fields I, R, CIL, CIU ,

MIC, year, and serotype.
begin

I = ∅, R = ∅, CIL = ∅, CIU = ∅,MIC = ∅;
for each antimicrobial agent i do

Ii ← occurrence percentage of string ‘Int’;
Ri ← occurrence percentage of string ‘R’;

CILi
← Ri − z1−α/2

√
Ri(1−Ri)

n , see Eq. (1);

CIUi
← Ri + z1−α/2

√
Ri(1−Ri)

n , see Eq. (2);
I ← I ∪ Ii; /* ∪ denotes row binding

of values into a column */
R← R ∪Ri;
CIL ← CIL ∪ CILi

;
CIU ← CIU ∪ CIUi ;

end
for each antimicrobial agent i do

for each MIC dosage j do
MICij ← occurrence percentage of j;
MICi ←MICi ∪MICij ;

end
MIC ←MIC ∪MICi;
year ← year;
serotype← serotype;

end
S ← combine the columns I, R, CIL, CIU , MIC,

year, and serotype into squashtogram;
return S.

end

C. Phase 2: Table Extraction from Summary Reports

In the traditional AMR expert-driven data-analytics pipeline,
extracting squashtograms from summary reports is not easy to
perform. The challenges include high time and labor costs
of manual efforts, as well as potential unfamiliarity of AMR
experts with other available software tools. This barrier typi-
cally prevents AMR experts from getting more comprehensive
downstream data-analytics results, as, clearly, it is not easy to
perform joint analysis over the aggregated spreadsheet data
and tables from summary reports without having access in
the database to the tables extracted from the reports. In the
proposed workflow, support for summary-table extraction from
reports plays an important role in empowering both analysts-
in-the-loop and experts-in-the-loop with new important types
of downstream data analytics on AMR data.

The proposed workflow makes the process of table ex-
traction from summary reports easier for analysts-in-the-loop,
by taking advantage of existing open-source tools such as
Tabula [22]. As shown in Fig. 6, analysts-in-the-loop can
start this phase by downloading publicly available source
summary reports selected by experts-in-the-loop; such reports
are typically available in the form of PDF files [9], [18].
Then analysts-in-the-loop, guided by the choice of individual
tables in the reports by experts-in-the-loop, can automatically
capture and extract the selected tables from the PDF files
using Tabula. Note that detecting the tables to be extracted
requires a collaboration between machines and humans-in-
the-loop: In our experience, analysts-in-the-loop have manu-
ally checked whether the table areas automatically detected
in the PDF files by Tabula are correct and the tables are
indeed the tables preselected by experts-in-the-loop. If the
captured tables have been detected correctly, they are next
automatically extracted and loaded into the main database as
the output of phase 2. (Before being loaded into the database,
the captured squashtograms get augmented with an additional
dataSource column, with information about the type of
report, e.g., NARMS, from which the data were derived, as
well as with columns with information about the serotypes
and years for which each squashtogram had been developed,
see caption to Fig. 2 for an illustration. The column addition
is done to make compatible, in phase 3 of the workflow, see
Section IV-D, the schemas of the final squashtograms and of
the aggregated tables obtained in phase 1, see Section IV-B,
from raw data.) Analysts-in-the-loop can then discuss the final
squashtograms with experts-in-the-loop. If further cleaning of
the final squashtograms is needed, our workflow also provides
a method to assist analysts-in-the-loop in the cleaning; the
method builds on Algorithm 2 developed by the authors of
this paper, and is discussed in detail in Section V.

D. Phase 3: Table Integration

As outlined in Fig. 3, phase 3 of the proposed workflow
integrates the aggregated spreadsheet data obtained in phase
1, see Section IV-B, with the summary information extracted
in phase 2 from published reports, see Section IV-C.



Fig. 6. Workflow phase 2: Table extraction from summary reports (e.g.,
NARMS [18]). Individual processes are represented by boxes. Squ.1 . . .
Squ.N refer to squashtograms extracted from reports, while Squ.1' . . .
Squ.N' refer to the respective cleaned tables output into the main database.

The data integration is started by analysts-in-the-loop in
phase 3 of the workflow by importing into R from the database
the stored aggregated raw tables and squashtograms, and by
then using functions such as rbind() in R to perform row
binding [33], which puts all the input rows into the same table.
(Recall that phase 1 and phase 2 have been designed in such a
way that their outputs have the same schema – Fig. 3 refers to
the use in phase 3 of this schema unification as “annotation.”)

Via phases 1–3, our workflow assists analysts-in-the-loop
in connecting the raw data available from spreadsheets to
the information provided by published summary reports. As
discussed earlier, integrating data from the two kinds of
sources enables AMR experts-in-the-loop to perform on the
resulting data certain types of analytics that would otherwise
be challenging or even impossible to apply.

E. Phase 4: Data Analytics over the Integrated Tables

Recall that in the traditional expert-driven AMR pipeline,
data analytics over integrated data is not immediately feasible,
due to challenges arising in table extraction from summary re-
ports and hence in data integration. In phase 4 of the proposed
workflow, see Fig. 3, analysts-in-the-loop take advantage of the
integrated information, by performing on it data analytics and
visualization. In the remainder of this section we provide two
examples of possible analytics, and then summarize the data-
analytics experience of the team with the proposed workflow.

1) Hypothesis Testing: Recall that in preparation for phase
3 (data integration), the data in the workflow are enhanced
with additional information, to harmonize the schemas of
the integration inputs. After integrating the harmonized data,
analysts-in-the-loop can enable hypothesis testing to check
if there is a statistically significant difference, for specific
serotype and year values, between the aggregated raw data
from laboratory sources and the summary reports.

For example, suppose experts-in-the-loop would like to
see if the percentages of resistance (%R) for Salmonella
Typhimurium are different between the raw data available for
2009 and the 2009 NARMS data. Analysts-in-the-loop can
locate in the integrated data the values of %R and the respective
sample sizes for the serotype for 2009, see Fig. 7. A two-
sample proportion test [34] can then be performed on the
highlighted data, to determine whether, for the given %R values
and sample sizes, there is a statistically significant difference
between the data from the two data sources. Suppose p1 is
the value of %R from the raw data, and p2 is %R from the
NARMS data. The hypothesis would be H0 : p1 = p2 vs.

Fig. 7. Example of integrated data for 2009 Ampicillin (AMP) testing for
Salmonella Typhimurium: The first row shows the value of %R obtained by
aggregating the values for 145 samples of raw data sourced from laboratory
analyses; the value of %R in the second row comes from a summary report.
(For readability, some of the required columns are not shown.)

H1 : p1 6= p2. Using the data in Fig. 7, we have p̂1 = 0.186,
n1 = 145; p̂2 = 0.28, and n2 = 371. Then the test statistic is
z = −220.6, indicating that the p-value is approximately zero
under the assumption that the proportion difference follows a
standard normal distribution. As a result, analysts-in-the-loop
can conclude that the percentages of resistance (%R) between
the two data sources are statistically different for these values
of serotype and year. This result should be further discussed
with experts-in-the-loop. After the communication, feedback
loops might be activated, as outlined in Section V.

2) Visualization: %R and the corresponding value of 95%
CI over time are major measurements tracked in summary
reports such as NARMS [18] and DANMAP [9]. To enable
comparisons between summarized raw-data results and the
information published in summary reports, analysts-in-the-
loop can use time plots, see, e.g., Fig. 8. On our team, experts-
in-the-loop have reported that working with visualizations such
as the one shown in Fig. 8, combined with the hypotheses
testing described earlier, facilitates value comparisons over
time for the AMR experts’ research purposes, and enables
them to formulate further research questions, some of which
can also be addressed within the proposed workflow.

3) Enabling Better Data-Analytics Capabilities: In our
experience, phases 1–4 of the proposed workflow have assisted
analysts-in-the-loop on our team in enabling experts-in-the-
loop to use data analytics that would be challenging to do or
even not feasible using the traditional expert-driven pipeline.
As an example, comparing AMR trends between different
countries is easier to do with the proposed workflow: Analysts-
in-the-loop and experts-in-the-loop can take this opportunity
as the next step in examining the global AMR trends.

V. FEEDBACK LOOPS IN THE WORKFLOW

In this section we discuss the feedback loops built into
the proposed workflow. The purpose of the feedback loops
is to assist analysts-in-the-loop, in collaboration with experts-
in-the-loop, in identifying and correcting potential errors made
in the forward-flow phases of the workflow.

A. General Overview

Due to the presence of multiple forward-flow data-
processing stages in the proposed workflow, see Fig. 3, and to
the involvement in the workflow of humans-in-the-loop with
different backgrounds, it could be challenging for analysts-
in-the-loop to pinpoint, without help from experts-in-the-loop,



Fig. 8. Example visualization over integrated data, showing the percentage
of resistance (%R, solid lines) and its 95% confidence interval (95% CI,
dashed lines) of Salmonella Typhimurium using Ampicillin. The red lines
shown for the years 2009–10 represent aggregations over raw data (cf. Fig.
1). The blue lines represent NARMS data for 2009 through 2015 (cf. Fig. 2).

the causes of any anomalous data-analytics outputs. To address
this issue, we introduced a feedback loop into each data-
processing phase, to help analysts-in-the-loop revise, together
with experts-in-the-loop, the work done in that phase, thus
ensuring acceptable quality of the final data-analytics results.

Generally, for each forward-flow workflow phase, analysts-
in-the-loop collect the phase outputs as feedback that is used
jointly with experts-in-the-loop to evaluate the appropriateness
of the work done in the phase. The workflow also admits
domain knowledge as another form of feedback if needed.

In the rest of this section we describe the feedback loop for
each forward-flow phase, and discuss how collaborations be-
tween analysts-in-the-loop and experts-in-the-loop can lever-
age the feedback to tune the forward flows of the workflow.

B. Feedback Loop for Phase 1

For the phase of spreadsheet-data aggregation, the feedback
loop (checkered arrow in Fig. 4) takes as input the resulting
aggregated values. By examining these values and discussing
them with experts-in-the-loop as needed, analysts-in-the-loop
can discover potentially missing data-cleaning steps or erro-
neous aggregation steps in the work performed in the phase.

a) Data Cleaning: As an illustration, if some aggregated
values output by phase 1 are associated with empty serotype
values, analysts-in-the-loop might notice that the original
spreadsheet data used for the aggregation contain rows with
missing values in the Serotype column. This realization would
prompt the analysts to decide, together with experts-in-the-
loop, whether to impute the missing values or to delete entire
rows in the input data. Further, if some output values are asso-
ciated with very similar names for serotypes, e.g., “Salmonella
Typhimurium C” vs. “Salmonella Typhimurium.c”’, analysts-
in-the-loop could posit that the Serotype column in the input
data could contain typos and, in consultation with experts-in-
the-loop, brainstorm ways for correcting them.

b) Data Aggregation: This feedback loop could also be
helpful in identification of erroneous aggregation steps. For
example, suppose that the aggregated percentage of resistance
(%R) for Ampicillin (AMP) for Salmonella A is 25%, vs. 50%
as shown in Fig. 5. When consulted about this discrepancy,
experts-in-the-loop could inform analysts-in-the-loop that the
aggregated percentage is erroneous. In this case, analysts-in-
the-loop could recheck the aggregation algorithms of phase 1
for errors, while at the same time making sure that the anomaly
is not caused by incorrect data-cleaning steps.

Algorithm 2: Finding Columns For Value Splitting
Data: Multilevel squashtogram headers I with n layers

and m columns, target (correct) squashtogram
headers T with n layers and m columns.

Result: Index of column designated for value splitting.
begin

j ← 1; /* Checking starts from 1 */
Mj ← 1;
while Mj > 0.7 do

/* user-defined threshold 0.7 */
for i← 1..n do

cij ← stringsim(Iij , Tij);
/* string-similarlity function;

others can be used */
end
Mj ←

∑
cij
n ;

j ← j + 1;
end
return j.

end

C. Feedback Loop for Phase 2

For the phase of extracting tables from summary reports,
the feedback loop (checkered arrow in Fig. 6) takes as input
the extracted tables. For instance, when using Tabula to extract
tables, analysts-in-the-loop could find that multiple columns in
the resulting tables are squeezed together into a single column,
as shown in Fig. 9. Since this result is not appropriate for
downstream data processing, analysts-in-the-loop can retrace
the extraction process in search of possible solutions.

The problem illustrated in Fig. 9 is caused by the input
squashtograms tables having multiple layers in their headers,
see the first two rows in Fig. 10 (cf. Fig. 2). A straightforward
way to address this issue would be to manually split up
the erroneous columns. However, this solution does not scale
in the number of tables to be extracted. Moreover, manual
correction may introduce typos and other errors.

To aid analysts-in-the-loop in addressing this issue, we have
developed an algorithm to split up the erroneous columns, see
Algorithm 2 for the pseudocode. Given the erroneous table
headers (e.g., the first two rows in Fig. 9) as the source, and the
correct table headers provided by analysts-in-the-loop (e.g., the
first two rows in Fig. 10) as the target, the algorithm identifies



Fig. 9. Example of table extracted using Tabula; we can see that data from
columns %I through 95% CI are squeezed into a single column. As a result,
the information in this table cannot be used for downstream data analysis.

Fig. 10. Information obtained from the table of Fig. 9 by splitting values in
its last column. The resulting table can be used for downstream data analysis.

the next column in the source-table headers to be split up (e.g.,
the last column in Fig. 9).

Specifically, for each column Ij in the source-table header
I with n header rows, Algorithm 2 first computes the string
similarity cij = stringsim(Iij , Tij) between each source-
table cell value Iij and the corresponding target-table cell
value Tij . It then computes the match rate Mj between Ij and
the column Tj in the target-table header, using the averaged
string similarities between the cell values:

Mj =

∑
i cij
n

. (3)

If the match rate of any column is below a threshold prespec-
ified by analysts-in-the-loop, the algorithm returns the index
j of the column, as an indication that the column should be
split up. Analysts-in-the-loop can then use functions such as
cSplit() in R [28] to split up the identified column in the
entire source table (rather than just in the header), based on
the delimiters used in the source table. Analysts-in-the-loop
can apply this process iteratively on the source table, until all
its incorrectly extracted columns are identified and split up.

As an example, Algorithm 2 has been used to split up the

Fig. 11. The matching-percentage improvement resulting from applying
Algorithm 2 to tables obtained from summary reports via automatic extraction.
The matching percentage shown is for individual tables from the NARMS
2015 report [18], and is measured between (a) the tables published in [18]
and (b) the originally extracted tables (time split = 0), as well as the tables
obtained via the first iteration/split (1) and the second iteration/split (2). In our
experience, the splitting process done according to Algorithm 2 has resulted
in tables with 80% matching percentage on average.

last column of the table shown in Fig. 9, resulting in the
table of Fig. 10. To compute the string similarities in the
example, we used the R function stringsim() [26] with
the similarity-measure method Damerau-Levenshtein [35].

Fig. 11 shows the number of iterations (split times) and
the improvement of the degree to which the source table
values match the values of the ground-truth squashtogram table
(from the original summary reports), achieved by splitting up
columns with Algorithm 2. The match degree is measured by
counting, after each split, the number of matching cell values
between the two tables. We use the formal notion of matching
percentage, defined as follows.

Definition V.1. Let a cell value of the source table I (after
column splitting) be Iij , and its corresponding cell value in
the ground-truth table C be Cij . Then the matching percentage
MPIC for I and C is

MPIC =

∑
i

∑
j yij

nm
(4)

where

yij =

{
1, if Iij = Cij

0, otherwise.
(5)

(n, resp. m, is the number of rows, resp. columns, in C.) Note
that it goes to 0 when we cannot find corresponding Iij for
Cij , due to the different numbers of columns in I and C.

D. Feedback Loop for Phase 3

For the phase of data integration, the feedback loop takes as
input the statistics collected on the integrated tables. Analysts-
in-the-loop can use the statistics to detect errors made in the



data-integration process. For example, suppose we know how
many antimicrobial agents should be in the integrated table.
Then, in case discrepancies are found between the correct
total number of agents and the total number of agents present
in the integrated table, the analysts-in-the-loop can activate
the feedback loop. As one option, the row-binding function
rbind() used for the integration could be examined.

E. Feedback Loop for Phase 4

For the phase of visualizing and analyzing the integrated
data, analysts-in-the-loop can detect errors made in the data-
visualization or analytics steps by looking for any surprising
(potentially incorrect) results and by discussing the findings
with experts-in-the-loop.

For example, in Fig. 8, the AMR trends (%R) calculated
for the years 2009–10 based on the raw data for those years
that come from laboratory sources, are at odds with the trends
coming from the NARMS report for the same years. Moreover,
using two-sample proportion testing as described in Section
IV-E1, a statistically significant difference (p-value ≈ 0) is
found between the percentages of resistance (%R) for the two
data sources. This issue could be due to the different area
coverage in collecting the testing samples. Indeed, the raw
data in this example originate from sources in North Carolina,
while the NARMS data come from all U.S. states. Still, this
issue could also be partly due to errors coming from the data
sources. Hence, analysts-in-the-loop should consult experts-in-
the-loop for appropriate interpretations.

F. Data Provenance in Feedback Loops

In our experience with the proposed workflow, we have
identified opportunities for utilizing data-provenance tech-
niques in further enriching the feedback loops built into the
workflow. Indeed, data provenance can help analysts-in-the-
loop identify more precisely the origins of the potentially
erroneous outcomes of phases of the forward flow of the
workflow. As a result, the workflow outcomes can be made
more accurate, and the workflow process more efficient. Ex-
isting data-provenance approaches, see, e.g., [36], [37], often
leverage annotations in the input data to help in retracing
the origins of the problems in the outputs, including the case
of data aggregation. We are currently working on extending
the feedback loops in the proposed workflow to include data-
provenance approaches.

VI. CHALLENGES AND LESSONS LEARNED

In this section we discuss the challenges that we faced in
our workflow building and testing experience, as well as the
lessons learned in the process.

A. Leveraging Humans-In-the-Loop in Analytics Workflows

Our proposed workflow involves collaborative work by
humans-in-the-loop on preparing and processing data. The
human-effort costs thus incurred in data-analytic solutions
are nontrivial and nonnegligible. It might appear that such
human involvement should be ultimately eliminated. Perhaps

surprisingly, in our workflow building and testing experience
we found that such collaborations improve the quality of
the data-integration and analytics outcomes, and thus help
bring about better data-analytics solutions than in the fully
automated cases. The reason is, work done by humans and by
machines is complementary instead of duplicative. In addition,
collaborations between humans-in-the-loop further solidify the
results obtained in the integration and analytics pipeline.

B. Collaborations on Multidisciplinary Teams

Collaborations on multidisciplinary teams introduce the
challenge of knowledge and experience translation between
experts with different backgrounds. At the same time, the
results obtained with the help of our workflow show that ulti-
mately collaborating on multidisciplinary teams is a rewarding
experience, which gives all the participants better insights and
is likely to markedly improve final workflow outcomes.

C. Communicating between Experts via Visualization

From our experience in this project, using data visualization
for communications between analysts-in-the-loop and experts-
in-the-loop is superior to using structured (e.g., relational)
aggregation or integration results for the same purpose. This
way, collaborations between the humans-in-the-loop on such
interdisciplinary projects can be made more productive.

D. Introducing NLP into Data-Analytics Workflows

In the proposed workflow, analysts-in-the-loop semi-
automatically extract tables from summary reports. At the
same time, any natural-language captions or notes that ac-
company the tables in the source files have to be extracted
manually. There is thus an opportunity for introducing natural
language processing (NLP) techniques such as those of [38]
into this and similar workflows, with the aim of automatically
extracting both tables and their associated natural text.

E. Developing Extensible Workflows

We observe that data-analytics workflows in different ap-
plication domains, as discussed in the literature, can overlap
to large degrees both with each other and with the workflow
introduced in this paper. If a workflow is not extensible,
(partially) reusing it for analyzing data in a new domain can
be challenging. We posit that in building workflows for a
domain, it is worth focusing on making them more general
and easier to be migrated to other domains in the future.
This can be accomplished, for example, by setting up general
extensible workflow pipelines for interacting with humans-in-
the-loop, by developing general methodologies for modeling
human knowledge for specific domains, and by coordinating
standalone data-analytics tools, see, e.g., [19], [39].

VII. CONCLUSION

In this paper we reported on our experience of develop-
ing a scalable collaborative end-to-end data-integration and
data-analytics workflow for antimicrobial-resistance (AMR)
research. We also reported on the experiences, challenges,
and lessons learned in using this workflow to integrate and



analyze data from the AMR domain. Our workflow contains
multiple phases that can process data in a bidirectional manner,
i.e., via the forward flow and feedback loops, and allows
for interventions by analysts-in-the-loop and experts-in-the-
loop, with the potential of improving the quality and usability
of the workflow outcomes. Collaborations between analysts-
in-the-loop and experts-in-the-loop in data integration and
analytics in the workflow are supported and, more importantly,
encouraged. Specifically, we found that incorporating domain
knowledge into the data-analytics process can aid in more
efficient discovery and mitigation of potential errors, and thus
in improved reliability of the final analytics outcomes. With
the help of the incorporated open-source tools and of the new
algorithms developed by the authors, the proposed workflow
can help humans-in-the-loop alleviate the time and labor costs
of performing data analytics. We posit that the workflow can
be a promising solution for analyzing data for the AMR
domain, as well as potentially for other domains that have
similar data characteristics and data-processing requirements.
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