
ABSTRACT

CLEAVES, HELEN LARRABEE. Global Sensitivity Analysis and Reduced Order Modeling
for High-dimensional Systems. (Under the direction of Alen Alexanderian.)

Global sensitivity analysis (GSA) is an area of uncertainty quantification that provides
methods for quantifying how the uncertainty in the output of mathematical models is con-
nected to the uncertainties in the input parameters. GSA methods are commonly used to
identify influential and non-influential model parameters. Understanding which parameters
have the most impact on the output provides valuable insight and can guide input dimen-
sion reduction. A sizable portion of existing GSA techniques focus on the sensitivity analysis
of quantities of interest (QoIs) that are scalar, deterministic, or have a modest number of in-
put parameters. However, there are many practical, real-world models that do not fall into
these categories. Thus, the unifying goal of this thesis is to investigate GSA in the context of
lesser-studied QoIs. We develop derivative-based GSA theory and computational methods for
1) function-valued QoIs, 2) QoIs with high-dimensional input parameters and 3) stochastic
QoIs. The proposed computational methods utilize spectral representations to exploit prob-
lem structure and produce efficient, scalable numerical methods for GSA. The utility of the
proposed techniques and computational methods are demonstrated in the context of a diverse
set of physical and biological systems governed by differential equations. Specific applications
include epidemiology, subsurface flow, biotransport, and molecular dynamics.
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CHAPTER 1

INTRODUCTION

Scientists formulate systems of interconnected mathematical equations to model real-world
phenomena. These mathematical models provide a tangible means for studying the processes
they emulate. For example, models can be used to run simulations, make predictions, or guide
experimental design. However, the insights gained through modeling are only as reliable
as the models they are informed by. In practice, many models have uncertainties in both
inputs and outputs. Mathematical tools are needed for understanding how these uncertainties
impact model behavior. Global sensitivity analysis (GSA) provides tools for addressing this
challenge.

GSA methods apportion the uncertainties in the output of mathematical models to the
uncertainties in the input model parameters [90]. There are a variety of applications for GSA.
For example, GSA can be used to inform input dimension reduction, enable risk assessment,
and guide model development. Traditionally, GSA methods have been developed for scalar
quantities of interest (QoIs). However, scientific progress has generated increasingly intricate
mathematical systems. Many such models give rise to high-dimensional input parameters,
QoIs that are vector-valued (or vectorial), or time- or space-dependent QoIs (referred to as
function-valued or functional QoIs). Furthermore, due in part to increased complexity, such
systems can be computationally expensive to simulate or perform GSA upon. The motivation
for the research presented in this thesis is the development of efficient GSA methods for
lesser-studied QoIs, with an emphasis on QoIs with high-dimensional inputs and outputs
that are expensive to compute. We also explore GSA for stochastic QoIs.

At-a-glance. In this thesis we present generalizations of traditional derivative-based GSA
approaches for the cases of vectorial QoIs and functional QoIs. Additionally, we examine a
known relationship between derivative-based and variance-based GSA techniques for scalar
QoIs and generalize this relation for the cases of vectorial QoIs and functional QoIs. Also
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explored is derivative-based GSA for stochastic QoIs. We present numerical methods for
computing the proposed GSA tools. The numerical procedures for the functional, determin-
istic QoIs achieve efficiency by exploiting model structure via spectral representations. We
demonstrate the effectiveness of the developed GSA approaches and computational methods
by performing numerical studies on QoIs arising from systems of differential equations. For
a more extensive summary of material covered and contributions see section 1.2.

1.1 Survey of literature and existing approaches

.
A great amount of progress has been made in theory and numerical methods for variance-

based GSA over the past three decades [31, 41, 42, 59, 69, 84, 90, 91, 99–102, 104]. The variance-
based GSA tools considered most often in the present work are the Sobol’ indices [91, 99,
100]. Detailed for scalar, vector-valued, and function-valued QoIs in sections 2.1, 3.2, and 4.2
respectively, Sobol’ indices apportion percentages of the total QoI variance to variations in
input parameters. Techniques for estimating classical Sobol’ indices have been explored in
[78, 83, 88, 89, 92].

There are a number of recent efforts targeting variance-based GSA for vectorial or func-
tional QoIs. Specifically, the works [6, 20, 41, 61, 108] discuss variance-based GSA for vectorial
and functional outputs. Similar to their scalar counterparts, computing variance-based GSA
measures for functional QoIs is computationally challenging. The computational challenges
can be reduced significantly by employing surrogate models [3, 6, 31, 46, 94, 104]. However,
surrogate model construction itself becomes computationally challenging for models with
high-dimensional input parameters.

An alternative to Sobol’ indices are Shapley values [79, 80, 103]. Similar to Sobol’ indices,
Shapley values determine the relative importance of parameters based on impact to the out-
put variance. Shapley values are especially popular for models with dependent parameters.
However, the cost of estimating Shapely values often exceeds the cost of computing the Sobol’
indices.

Variance-based GSA emphasizes the second moment of the QoI. However, the variance
does not always characterize the behavior of a distribution sufficiently. The moment-indepen-
dent importance measures [9, 16, 17] address this shortcoming. The works [16, 17] compare
the QoI distribution and the QoI distribution conditioned on a subset of the input variables.
The sensitivity measures constructed in [9] examine the loss entropy of the output. Moment-
independent importance measures can be informative, however, in practice they can be ex-
pensive to estimate.

Another well-studied GSA approach is derivative-based analysis. Generally cheaper to
estimate than variance-based measures, derivative-based measures are often useful for iden-
tifying unimportant inputs. In the present thesis, we focus on the derivative-based global sen-
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sitivity measures (DGSMs) proposed in [59, 101]. For models with statistically independent
inputs, DGSMs can be used to bound the total Sobol’ indices [60, 101]. We discuss DGSMs
for scalar, vector-valued, and function-valued QoIs in sections 2.2, 3.3, and 4.3, respectively.

The active subspace method [27–29] and the corresponding activity scores are another
set of popular derivative-based GSA tools. The active subspace quantifies the directions in
the input parameter space along which the QoI varies most. The activity scores provide
approximate screening indices by utilizing the information gained from the active subspace
computations. In particular, the authors of [28] show that activity scores can be used to
approximate the DGSMs. While active subspace methods have mostly targeted scalar QoIs,
the recent works [54, 114] generalize these methods to vectorial outputs. Further details for
active subspaces for vectorial and functional outputs are discussed in sections 3.3 and 6.5.

Closely related to derivative-based GSA is the parameter screening method referred to as
Morris screening [53, 72]. This approach involves sampling a finite-difference approximation
of the partial derivative of the output with respect to the input parameters at randomly cho-
sen points in the parameter space. Morris screening can be an effective and efficient approach
to input dimension reduction for expensive to evaluate QoIs after which more informative
GSA techniques can be deployed.

1.2 Outline of thesis

This section is an overview of the research and contributions of this thesis. A large portion
of the research contained in the upcoming chapters is either published or submitted for
publication. Specifically, the work accomplished in chapter 4 is based on the article [25],
published in the SIAM Journal on Scientific Computing, the efforts reported in chapter 5
are peer-reviewed and published in the CSRI Summer 2020 Proceedings [85], and the efforts
detailed in chapter 6 have been collected into a manuscript and submitted to a peer-reviewed
journal [26].

CHAPTER 2: BACKGROUND. In this chapter, we review definitions and properties of
Sobol’ indices and DGSMs for scalar QoIs. Also covered in this chapter is the Karhunen–
Loéve expansion—a spectral decomposition instrumental to the computational methods in
both chapter 4 and 6.

CHAPTER 3: GLOBAL SENSITIVITY ANALYSIS FOR VECTORIAL QUANTITIES
OF INTEREST. We review variance-based GSA for vectorial outputs and extend derivative-
based methods for vectorial QoIs. We present numerical results to illustrate the value of
generalizing GSA techniques for vectorial QoIs.
Contributions. GSA for vector-valued QoIs is a natural intermediate step between GSA for
scalar QoIs and the GSA methods developed in chapter 4 for functional QoIs. This chap-
ter studies variance-based GSA and introduces derivative-based GSA for vectorial outputs.
Additionally, we prove the proposed generalization of the DGSMs produces the vectorial
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equivalent of the upper bound on the total Sobol’ index proven in [60, 101] for scalar QoIs.
We also discuss approximation of the vectorial DGSMs via activity scores. We estimate the
generalized total Sobol indices for an application problem describing a genetic feedback loop.

CHAPTER 4: DERIVATIVE-BASED GLOBAL SENSITIVITY ANALYSIS FOR MOD-
ELS WITH HIGH-DIMENSIONAL INPUTS AND FUNCTIONAL OUTPUTS
We present a framework for derivative-based GSA for models with high-dimensional input
parameters and functional outputs. We combine ideas from derivative-based GSA, random
field representation via Karhunen–Loève expansions, and adjoint-based gradient computa-
tion to provide a scalable computational framework for computing the proposed derivative-
based GSA measures. We illustrate the strategy for a nonlinear ODE model of cholera epi-
demics and for elliptic PDEs with application examples from geosciences and biotransport.
Contributions. In this chapter, we develop suitable extensions of DGSMs for functional QoIs.
We adhere to the generalization for the Sobol’ indices proposed in [6, 41] and prove the DGSM
extension can be used to form an upper bound on the functional total Sobol’ index. Fur-
thermore, we present a framework for efficient computation of the functional DGSM-based
bound that combines a low-rank Karhunen–Loève expansion representation of the functional
QoI with adjoint-based gradient computation. Additionally, we present a comprehensive set
of numerical results. In particular, we consider three application problems (i) a nonlinear sys-
tem of ODEs modeling the spread of cholera [51] (ii) a problem motivated by porous medium
flow [1], and (iii) an application problem involving biotransport in tumors [5]. For (i) we nu-
merically compare the DGSM-based upper bound with the functional total Sobol’ indices.
In (ii) we implement the proposed adjoint-based numerical framework to assess parametric
sensitivities of the pressure field on a domain boundary. Lastly, in (iii) we perform a similar
analysis for QoI corresponding to the pressure distribution in certain subdomains of a tumor
model.

CHAPTER 5: GLOBAL SENSITIVITY DRIVEN INPUT DIMENSIONALITY REDUC-
TION FOR REAXFF PARAMETERIZATIONS OF SILICA-BASED GLASSES Accuracy of
classical atomistic molecular dynamics (MD) simulations originates from the quality of the in-
teratomic potential, defining pair-wise atomic energetic interactions. The reactive force field,
ReaxFF is an example of a complex potential having multiple contributions to the system en-
ergy and therefore multiple parameters to define the potential. In an effort to understand the
relationships between these parameters and simulated properties, we deploy a global sensi-
tivity analysis approach to screen these parameters and to guide input dimension reduction.
Contributions. In this chapter, we compute the functional DGSMs defined in chapter 4 to screen
the input parameters for QoIs corresponding to a system of reactive potentials. We analyze
a variety of QoIs arising from the energetic interactions between silicon and oxygen in the
context of silica-based glasses. We include a set of numerical results which reveal several
non-influential parameters of the studied energetic properties.
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CHAPTER 6: STRUCTURE EXPLOITING METHODS FOR FAST UNCERTAINTY QU-
ANTIFICATION IN MULTIPHASE FLOW THROUGH HETEROGENEOUS MEDIA In
this chapter, we present a computational framework for dimension reduction and surrogate
modeling to accelerate uncertainty quantification in computationally intensive models with
high-dimensional inputs and function-valued outputs. The driving application is multiphase
flow in saturated-unsaturated porous media in the context of radioactive waste storage [18,
19]. We demonstrate the effectiveness of the proposed surrogate modeling approach with a
comprehensive set of numerical experiments, where we consider a number of function-valued
(temporally or spatially distributed) QoIs.
Contributions. Our proposed methods are applicable to a broad class of problems involving
systems for which gradient evaluation exceeds the computational budget. We provide a com-
prehensive overview of the motivation application. We propose a fast-to-compute, gradient-
free, screening metric that utilizes ideas from active subspaces [27] to perform initial param-
eter dimension reduction. Following parameter screening, we combine two different spectral
approaches to generate an efficient surrogate model in a reduced-dimensional uncertain pa-
rameter space. We refer to this surrogate as the bispectral surrogate. Additionally, a variety
of statistical studies are conducted with the constructed bispectral surrogate to showcase
the versatility of the surrogate model. In particular, we perform model predictions, compute
variance-based global sensitivity indices, and study statistical model response behavior. Our
computational results also provide valuable insight regarding the response of complex porous
media flow models to uncertainties in material properties.

CHAPTER 7: SENSITIVITY ANALYSIS FOR STOCHASTICALLY FORCED DIFFER-
ENTIAL EQUATIONS We focus on derivative-based GSA for stochastic QoIs. Specifically,
we examine stochastically forced differential equations that give rise to random ordinary dif-
ferential equations (RODEs). We demonstrate the proposed derivative-based GSA methods in
the context of an RODE with a stochastic source term, describing the flow lead in the human
body.
Contributions. We use both analytical and numerical techniques to highlight the subtleties
of incorporating stochasticity into GSA. We accomplish this by proposing and investigating
two possible DGSMs. The two proposed DGSMs measure different properties of the QoI. We
emphasize that the viability of a particular DGSM formulation depends on the QoI being in-
vestigated and the sensitivity information desired. We advocate for a numerical approach for
solving RODEs that is inspired by the work done in [38] and relies on smooth approximations
of a random processes. A major benefit of the deployed scheme is that the resulting RODEs
can be solved using traditional numerical methods for ODEs, while maintaining standard
convergence rates. The proposed numerical method is also straight-forward to implement.

CHAPTER 8: CONCLUSION In this final chapter, we provide concluding remarks and
directions for future work.
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CHAPTER 2

BACKGROUND

Background material for this thesis is covered in this chapter. We discuss Sobol’ and total
Sobol’ indices for scalar quantities of interest (QoIs) in section 2.1. Definitions and properties
for derivative-based global sensitivity measures (DGSMs) for scalar QoIs are presented in
section 2.2. Lastly, in section 2.3, we present details for the Karhunen Loéve expansion (KLE)—
a spectral decomposition utilized in the computational methods proposed in chapter 4 and
chapter 6.

2.1 Sobol indices for scalar outputs

Sobol’ indices are variance-based global sensitivity measures used to rank the relative influ-
ence of input parameters. The information presented in this section is primarily drawn from
[91, 99, 100, 102].

Let θθθ = [θ1 . . . θNp ]
T be the uncertain parameter vector that takes values in Θ ⊆ RNp .

Throughout this thesis, we will abuse notation by denoting both the uncertain variable and
its realizations by the same symbol θθθ. We consider the probability space (Θ,B,µ), where B is
the Borel σ-algebra on Θ and µ is the law of the uncertain parameter vector θθθ. In the present
work, Θ is of the form Θ = Θ1 × Θ2 × · · · × ΘNp , where Θj ⊆ R, j = 1, . . . , Np. We assume
the components of the input parameter vector θj, j = 1, . . . , Np, are real-valued, independent
random variables and admit probability density functions πj(θj), in which case

µ(dθθθ) =
Np

∏
j=1

πj(θj)dθj.

Next, let K = {1,2, . . . , Np} be an index set, U = {j1, j2, . . . , jm} be a subset of K, and Uc be the
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complement of U in K, Uc = K \ U. We denote θθθU = [θj1 θj2 . . . θjm ]
T and consider the scalar

QoI f : Θ → R. We denote the expectation of f as

E{ f } =
∫

Θ
f (θθθ)µ(dθθθ).

We define the conditional expectation of f [98],

E{ f |θθθU} =
∫

Θc
U

f (θθθ)µ(dθθθUc).

where
Θc

U = ∏
j∈Uc

Θj, and µ(dθθθUc) = ∏
j∈Uc

πj(θj)dθj.

Now, we consider the following decomposition for f

f (θθθ) = f0 + ∑
U⊆K
U,∅

fU(θθθU). (2.1)

Where the fU’s are functions of only the corresponding parameter set θθθU . Since the compo-
nents of θθθ are independent we have that for each fU [100]∫

Θj

fU πj(θj)dθj = 0, for all j ∈ U.

Consequently, the fU’s are pairwise orthogonal in L2(Θ), and we refer to (2.1) as the ANOVA
decomposition of f .

Each term in the summation in (2.1) can then be calculated as

f0 = E{ f } ,

f{i} = E{ f |θi} − f0,

f{i, j} = E
{

f |θi,θj
}
− f{i} − f{j} − f0,

...

fU(θθθU) = E{ f |θθθU} − f0,− ∑
V⊂U
V,∅

fV(θθθV).

For clarity, we provide an example. Let f (θθθ) = f (θ1,θ2,θ2). Then, the index set is K = {1,2,3}
and we have the following decomposition for f

f (θ1,θ2,θ3) = f0 + f{1}(θ1) + f{2}(θ2) + f{3}(θ3)+

f{1, 2}(θ1,θ2) + f{1, 3}(θ1,θ3) + f{2, 3}(θ2,θ3)+

f{1, 2, 3}(θ1,θ2,θ3).

7



Where

f0 = E{ f } ,

f{1} = E{ f |θ1} − f0,

f{2} = E{ f |θ2} − f0,

f{3} = E{ f |θ3} − f0,

f{1, 2} = E{ f |θ1,θ2} − f0 − f{1} − f{2},

f{1, 3} = E{ f |θ1,θ3} − f0 − f{1} − f{3},

f{2, 3} = E{ f |θ2,θ3} − f0 − f{2} − f{3},

f{1, 2, 3} = E{ f |θ1,θ2,θ3} − f0 − f{1} − f{2} − f{3} − f{1, 2} − f{1, 3} − f{2, 3}.

We take the variance of both sides of (2.1) resulting in the following decomposition of the
total variance D( f ) = Var{ f } of f according to

D( f ) = ∑
U⊂K
U,∅

DU( f ),

where DU( f ) = EθθθU

{
fU(θθθU)

2}, with EθθθU {·} indicating expectation with respect to θθθU . Then,
we can define the first and total order Sobol’ indices as follows:

SU( f ) =
DU( f )
D( f )

and Stot
U ( f ) =

Dtot
U ( f )

D( f )
, (2.2)

where D( f ) > 0 and
Dtot

U ( f ) = DU( f ) + ∑
V⊂U
U,∅

DV( f ).

Note that,

Stot
U ( f ) =

D( f )− DUc( f )
D( f )

= 1 − DUc( f )
D( f )

= 1 − SUc( f ).

When the index set U is a singleton, U = {j}, j ∈ {1, . . . , Np}, we denote the corresponding
first and total order Sobol’ indices by Sj( f ) and Stot

j ( f ), respectively.
By construction, the first order Sobol’ and total Sobol’ indices have the following proper-

ties [58]

i SU( f ) ∈ [0,1], Stot
U ( f ) ∈ [0,1],

ii ∑
U⊂K
U,∅

SU = 1,

iii SU ≤ Stot
U .

Properties (i) and (ii) prompt the interpretation of both SU and Stot
U as the percentage the
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corresponding parameter sets contribute to the variance of f . The first order Sobol’ index
SU( f ) represents the portion of the total variance that can be apportioned to θθθU alone. On
the other hand, the total Sobol’ index Stot

U quantifies the variation of f due to θθθU , including
the higher order interactions with the other input parameters. If Stot

U ≈ 0 then the parameters
in θθθU are considered unimportant or non-influential. Consequently, the total Sobol’ indices
place an ordering on the relative importance of the input parameters using the convention
if Stot

j ( f ) > Stot
i ( f ) then θj is more important than θi. The last property (iii) is useful for

distinguishing the influence of a parameter (or set of parameters) on their own versus the
influence of the higher-order parameter interactions on the total variance of f .

Error estimate for fixing nonessential parameters in scalar QoIs. The total Sobol’ index
has been linked to the error incurred by fixing a subset of input parameters. In particular, the
relative approximation error given by

ε(θθθU) =
1
D

∫
Θ
( f (θθθ)− f (θθθU ,θθθUc))2 µ(dθθθ). (2.3)

Note, this approximation error is relative to the total variance of the function. Consider the
following the theorem proposed by [102],

Theorem 2.1.1. For an arbitrary θθθU the error ε(θθθU)≥ Stot
U ( f ) and the expected value is E{ε(θθθU)}=

2Stot
U ( f ).

Theorem 2.1.1 further supports the concept of separating the input parameters into impor-
tant and unimportant sets. Explicitly, fixing important parameters (parameters with a large
total Sobol’ index) will result in large relative approximation error. Similarly, (on average)
fixing unimportant parameters to their nominal value results in only a small changes of the
QoI.

Numerical estimation of Sobol’ indices is often done using Monte Carlo (MC) or quasi-
MC sampling [78, 83, 88, 89, 92]. However, due in part to the sheer number of necessary
model evaluations, estimating Sobol’ indices via MC integration can become computationally
impractical for expensive-to-evaluate QoIs. To mitigate computing costs, it is common to
construct a cheap-to-evaluate surrogate model for the QoI and then compute the indices
of the surrogate. In particular, polynomial chaos expansion (PCE) surrogates are a popular
method for estimating the Sobol’ indices; e.g. [4, 15, 31, 104] and section 6.4.2. However, for
models with high-dimensional input parameters, the computations required for surrogate
model construction can become computationally infeasible.

Many important properties of the classical Sobol’ indices rely on the assumption of inde-
pendent inputs. Methods for addressing the formation and interpretation of Sobol’ indices
in the context of dependent inputs is an interesting area of research; see e.g. [48, 105, 111]. A
related topic is the question of robustness to uncertainty in input distribution. To compute the
Sobol’ indices we must assume a distribution for each of the input parameters. However, in
practice these chosen distributions are often a best guess, as there is not enough information
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to determine them exactly. Therefore, to reliably interpret Sobol’ indices, we must understand
the influence of perturbations in parameter distributions on the computed Sobol’ indices; see,
e.g., [49, 50].

The index is a valuable GSA tool. In the present thesis we present details on extensions of
Sobol’ indices for both vector-valued QoIs (Chapter 3) and function-valued QoIs (Chapter 4).
Both chapters also include numerical results concerning the corresponding generalized total
Sobol’ indices computed for real world application problems. Lastly, in Chapter 6, we demon-
strate the viability of the constructed bispectral surrogate model by using it to compute the
total Sobol’ indices of the studied QoIs.

2.2 Derivative-based global sensitivity measures

Derivative-based sensitivity analysis is a prevalent GSA tool for instances when a QoI is differ-
entiable with respect to the input parameters. In practice, derivative-based analysis has been
observed to be less expensive than its variance-based counterpart. When gradients can be es-
timated efficiently, the difference in computational expense makes derivative-based analysis
invaluable for models with high-dimensional input parameters. The focus of this section is
derivative-based global sensitivity measures (DGSMs) for scalar QoIs. The primary references
for this section are [57, 60, 101].

We consider a scalar-valued random variable f : Θ → R. Here f and its partial derivatives
are assumed to be square integrable. We focus on the following commonly used DGSM

νj( f ) =
∫

Θ

( ∂ f
∂θj

)2
µ(dθθθ), j = 1, . . . Np. (2.4)

Unlike total Sobol’ indices (section 2.1), DGSMs cannot be used to place an ordering on the
relative importance of the input variables. Rather, DGSMs are used to identify unimportant
input parameters. Intuitively, if νj( f ) is small, it implies the partial derivative does not change
‘too much’ within the parameter domain, suggesting that changes in θj do not substantially
impact the QoI. Without further assumptions on the input parameters, analyzing nonlinear
systems should be done with caution. Fortunately, for QoIs with independent parameters
the intuition that a small νj( f ) implies θj is unimportant is justified by the existence of a
DGSM-based upper bound on the total Sobol’ index [60],

Theorem 2.2.1. Let f be a scalar random variable satisfying the following assumptions

i f ∈ L2(Θ,B,µ),

ii ∂ f
∂θj

∈ L2(Θ,B,µ),

iii The input parameters θ1, . . . ,θNp are independent random variables, following a Boltzmann mea-
sure,
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then we have the following DGSM-based upper bound for the total Sobol index

Stot
j ( f ) ≤ cp

j
νj( f )

Var{ f } , (2.5)

where the constant cp
j depends on the corresponding pdf for θj.

A measure π is a Boltzmann measure on R if it is absolutely continuous with respect to
the Lebesgue measure and its density can be expressed as dπ(θ) = ce−v(θ)dθ, where c is a
constant and v(θ) is a continuous function. A non-exhaustive list of Boltzmann distributions
includes the normal, exponential, Beta, and Gamma distributions. For a complete list see [60].
The research done in [101] proved the above bound also holds for independent, uniformly
distributed input parameters.

In the case of independent inputs, the DGSM-based bound in (2.2.1) can be used as cri-
terion for input parameter dimension reduction. For dependent input variables, the intuitive
interpretation of the DGSMs can also be used judiciously to implement input dimension re-
duction. Once the input parameter space has been reduced, it is common practice to apply
more computationally expensive and informative GSA tools (such as Sobol’ indices) to the
remaining input variables.

The estimation of νj can be accomplished via a MC sampling procedure. It has been ob-
served in practice that the number of samples required for a sufficiently accurate estimate
of νj’s is less than the number of samples required for Sobol’ indices [57]. Naturally, esti-
mating the DGSMs also involves the computation of the partial derivatives for the QoI with
respect to the input parameters. This is commonly done via finite-difference, the sensitivity
equations (for QoIs originating from systems of differential equations) [68, 93], automatic
differentiation, or complex-step methods. For more general QoIs (e.g. vectorial or functional
QoIs), systems with expensive model evaluations, large input parameter dimension, or combi-
nations therein, direct estimation of the DGSMs can become computationally expensive. One
can also approximate DGSMs via active subspaces and the corresponding activity scores [27,
28].

DGSMs are heavily featured throughout this thesis. In chapter 3, we include details for
extending DGSMs to vector-valued QoIs. Also presented in chapter 3, are details for approx-
imating DGSMs via activity scores. In chapter 4, we propose a novel extension of DGSMs for
function-valued inputs and present an efficient numerical framework for estimating the func-
tional DGSMs. We compute the DGSMs of a reactive potential model in chapter 5 to identify
unimportant model inputs. The relationship between activity scores and DGSMs resurfaces
in chapter 6, wherein we use it to justify the proposed method for input parameter screening.
Lastly, in chapter 7, we discuss DGSMs for stochastic models.
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2.3 Karhunen Loéve expansions

We provide details regarding the Karhunen Loéve expansion (KLE). Throughout this thesis
we will utilize KLEs to facilitate efficient GSA computations for function-valued QoIs. A
function-valued or functional QoI f (θθθ, s), is a function of θθθ ∈ Θ, and s ∈ X when X is a
compact set in Rd, d = 1,2,3. For models governed by systems of differential equations, X

often represents a temporal or spatial domain.
We assume f (s,θθθ) is a mean-squared continuous random process. Such processes admit

spectral representations, as given by a Karhunen Loéve expansion (KLE) [63, 66]:

f (s,θθθ) = f̄ (s) +
∞

∑
i=1

√
λi fi(θθθ)Φi(s). (2.6)

Here f̄ (s) is the mean of the process, (λi,Φi) are the eigenpairs of the covariance operator
Cqoi of the process,

CqoiΦi = λiΦi, i = 1,2, . . . , (2.7)

and fi(θθθ) are the KL modes,

fi(θθθ) =
1√
λi

∫
X

(
f (s,θθθ)− f̄ (s)

)
Φi(s)ds, i = 1,2,3, . . . (2.8)

An approximation fNqoi(s,θθθ) to f (s,θθθ) can be obtained by truncating (2.6) and retaining the
first Nqoi terms in the series. In many physical and biological models the eigenvalues of
Cqoi decay rapidly. Consequently, such QoIs can be represented with sufficient accuracy by a
truncated KLE with a small Nqoi. We refer to such processes to as “low-rank”.

We rely on Nyström’s method to compute the KLE [56]. This approach, as used through-
out the present work, requires sample averaging to approximate the covariance kernel, be-
cause we do not in general have a closed-form expression for the output covariance operator.
Typically, a modest number of QoI evaluations is sufficient for accurately estimating the dom-
inant eigenpairs of the covariance operator Cqoi. To determine a suitable value for the number
Nqoi of terms in a truncated KLE, we consider

rk =
∑k

i=1 λi

∑∞
i=1 λi

. (2.9)

The quantity rk represents the fraction of the average variance of f captured by the first k
eigenvalues. The steps for computing the truncated KLE of f are included in Algorithm 1,
which is adapted from [7]. The truncated KLE of a functional QoI is employed in both chap-
ter 4 and chapter 6.
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Algorithm 1 Computing the truncated KLE of f
.
Input: Quadrature nodes sk and weights wk, k = 1, . . . ,m; Function evaluations yj

k = f (sk,θθθ j),
k = 1, . . . ,m, j = 1, . . . , Ns; rk tolerance 0 < tol < 1.

Output: Eigenpairs (λi,ΦΦΦi) of the output covariance operator, and KL modes evaluations
fi(θθθ j), j = 1, . . . , Ns, i = 1, . . . Nqoi.

1: Compute mean Mk =
1

Ns
∑Ns

j=1 yj
k, k = 1, . . . m.

2: Center process f c
k (sk,θθθ j) = yj

k − Mk, k = 1, . . . ,m.
3: Compute covariance matrix C.

Ckl =
1

Ns−1 ∑Ns
j=1 f c

k (sk,θθθ j) f c
l (sl ,θθθ j), k, l = 1, . . . m.

4: Let W = diag(w1,w2, . . . wm) solve:
W1/2CW1/2vvvk = λkvvvk, k = 1, . . . ,m.

5: Determine Nqoi.
6: for k = 1, . . . m do
7: Compute rk =

∑k
l=1 λl

∑m
l=1 λl

.
8: if rk > tol then
9: Nqoi = k; BREAK

10: end if
11: end for
12: Compute ΦΦΦk = W−1/2vvvk, k = 1, . . . , Nqoi.
13: Compute KL modes.

fi(θθθ j) =
1√
λi

∑m
k=1 wk f c

k (sk,θθθ j)ΦΦΦi(sk), i = 1, . . . , Nqoi, j = 1, . . . , Ns.

14: Compute fNqoi(s,θθθ j) = ∑
Nqoi

k=1

√
λk fi(θθθ j)ΦΦΦk(s).
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CHAPTER 3

GLOBAL SENSITIVITY ANALYSIS FOR VECTORIAL QUANTITIES OF

INTEREST

3.1 Introduction

A large portion of global sensitivity analysis (GSA) literature deals with scalar-valued func-
tions of independent random inputs. In this chapter, we consider vector-valued quantities of
interest (QoIs):

yyy = fff (θθθ), yyy ∈ RNqoi , Nqoi > 1. (3.1)

GSA for vector-valued QoIs has been the subject of recent works [41, 54, 61, 114]. In the
present chapter, we review variance-based GSA for vectorial outputs. Then, we propose
suitable generalizations of derivative-based GSA techniques for vectorial outputs, including
derivative-based global sensitivity measures (DGSMs) and active subspace methods. Due to
the information included, this chapter serves as an informative precursor to the GSA devel-
oped for functional QoIs in chapter 4.

The chapter is organized as follows. In section 3.2, we discuss a generalization of the clas-
sical Sobol indices for vectorial QoIs and corresponding properties. Similarly, a generalization
of the scalar DGSMs is presented in section 3.3. Also in this section, we purpose and prove a
vectorial DGSM-based upper bound on the vectorial total Sobol’ indices. In section 3.4, we dis-
cuss active subspace methods for vectorial QoIs, including an approximation for the vectorial
DGSMs. Lastly, we compute the vectorial total Sobol’ indices for a biochemical feedback loop
and present the numerical results in section 3.5. Concluding remarks are given in section 3.6.

14



3.2 Vectorial Sobol’ indices

At first glance, the straight-forward approach for performing GSA on vectorial QoIs of the
form (3.1) is to apply scalar QoI techniques to each component fi, i = 1, . . . , Nqoi separately.
However, the interpretation of the results can become difficult as the variance of different
components fi can be drastically different and also different sets of parameters might be
important to different components. In section 3.5, a computational example is presented to
illustrate such situations.

We consider the following generalization Sobol’ indices for vectorial QoIs [41]. First, recall
the definitions for Sobol’ and Total Sobol’ indices given in section 2.1 for which K represents
an index set, U ⊆ K, and Uc = K \ U. Now, consider a function fff : Θ → RNqoi , where Nqoi > 1
and Θ ⊆ RNp is the random parameter space.

fff (θθθ) =


f1(θθθ)

f2(θθθ)
...

fNqoi(θθθ)

 .

Let Γ ∈ RNqoi×Nqoi be the covariance matrix of the random vector fff . Moreover, let ΓU be the
covariance matrix corresponding to the random vector E{ fff |θθθU}. Following [41], we define
the first order (vectorial) Sobol’ indices as:

SU :=
Tr(ΓU)

Tr(Γ)
.

It is straightforward to note that

SU( fff ) =
∑

Nqoi
i=1 Var{E{ fi|θθθU}}

∑
Nqoi
j=1 Var

{
f j
} .

We can analogously define the vectorial total Sobol’ indices.

Stot
U ( fff ) = 1 − SUc

We record the following useful representation of SU and Stot
U in terms of the classical (coordi-

natewise) Sobol’ indices.

Lemma 3.2.1. Let SU( fi), Stot
U ( fi) be the classical first order and total Sobol’ indices respectively for
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fi, i = 1, . . . , Nqoi, and assume Var{ fi} > 0, ∀i. Then, we have

SU( fff ) =
Nqoi

∑
i=1

wiSU( fi), U ∈ K, and,

Stot
U ( fff ) =

Nqoi

∑
i=1

wiStot
U ( fi), U ∈ K,

(3.2)

with wi = Var{ fi}/Tr(Γ), i = 1, . . . , Nqoi.

Proof. The first statement follows from the following calculation, where we also use Tr(Γ) =

∑
Nqoi
i=1 Var{ fi}:

Nqoi

∑
i=1

wiSU( fi) =
Nqoi

∑
i=1

 Var{ fi}
∑

Nqoi
j=1 Var

{
f j
}
 Var{E{ fi|θθθU}}

Var{ fi}

=
∑

Nqoi
i=1 Var{E{ fi|θθθU}}

∑
Nqoi
j=1 Var{ fi}

.

= SU( fff ).

Next, we prove the second statement:

Nqoi

∑
i=1

wiStot
U ( fi) =

Nqoi

∑
i=1

wi (1 − SUc( fi))

=
Nqoi

∑
i=1

wi −
Nqoi

∑
i=1

wiSUc( fi)

=
∑

Nqoi
i=1 Var{ fi}

∑
Nqoi
j=1 Var

{
f j
} −

Nqoi

∑
i=1

wiSUc( fi)

= 1 − SUc( fff ) = Stot
U ( fff ).

Note that the first equality results from a property of the classical scalar Sobol’ indices. ■

The above relationship between vectorial and scalar Sobol’ indices is natural. As men-
tioned previously, simply computing the componentwise Sobol’ indices does not account for
the impact of the variance of each fi. The wi’s address this concern by weighting the com-
ponentwise scalar Sobol’ indices by their corresponding contribution to the overall variance.
Therefore, the representation given in by Lemma 3.2.1 is both insightful and supports the
chosen definition for vectorial Sobol’ indices as the natural generalization.

The numerical frameworks and computational concerns for the vectorial Sobol’ indices
are similar to their scalar counterparts (see section 2.1). In particular, for models with high-
dimensional input parameters, or expensive to compute QoIs, computing the Sobol’ indices
via sampling can be infeasible. Analogous to the scalar case, techniques for initial parameter
screening and input dimension reduction can help mitigate some of these computational
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concerns. In the next section, we discuss definitions and properties of derivative-based global
sensitivity measures (DGSMs) for vectorial QoIs.

3.3 DGSMs for vectorial QoIs

Recall from section 2.2, that for scalar QoIs f : Θ → R, the usual DGSMs are given by

νj( f ) =
∫

Θ

(
∂ f
∂θj

)2

µ(dθθθ), j = 1, . . . , Np.

For f : Θ → RNqoi , we introduce the vectorial DGSMs:

N j( fff ) =
Nqoi

∑
i=1

∫
Θ

(
∂ fi

∂θj

)2

µ(dθθθ) =
Nqoi

∑
i=1

νj( fi), j = 1, . . . , Np. (3.3)

The next result illustrates a connection between vectorial total Sobol’ indices and vectorial
DGSMs. We specifically consider the case where the random inputs are independent, iden-
tically distributed (iid) according to either the standard normal distribution of the uniform
distribution.

Proposition 3.3.1. Let fff : Θ → RNqoi be a vector-valued random variable and let Γ be its covariance
matrix. Assume the random inputs θ1, . . . ,θNp are iid and distributed according to standard normal
distribution or the uniform distribution. Then,

Stot
j ( fff ) ≤ cp

j
N j( fff )
Tr(Γ)

, j = 1, . . . , Np

where

cp
j =

(b − a)2/π2, if θj ∼ U(a,b),

σ2
j , if θj ∼N (0,σ2

j ).

Proof. Let Di = Var{ fi}. We recall that for a fixed i ∈ {1, . . . , Nqoi}, using Theorem 2.2.1,

Stot
j ( fi) ≤ cp

j
νj( fi)

Di
,

Therefore, using Lemma 3.2.1,

Stot
j ( fff ) =

Nqoi

∑
i=1

Stot
j ( fi)wi ≤

Nqoi

∑
i=1

cp
j

(
νj( fi)

Di

)(
Di

∑
Nqoi
i=1 Di

)
= cp

j
N j( fff )
Tr(Γ)

.

■

The above result can be extended for independent parameters distributed according to a
Boltzmann distribution. Similar to the scalar case discussed in Theorem 2.2.1, a small vectorial
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DGSM-based upper bound means the vectorial total Sobol’ index is also small, implying the
corresponding parameter is non-influential. Thus, the vectorial DGSM-based upper bound
can be used to screen input parameters and implement dimension reduction.

3.4 Active subspace methods for vectorial QoIs

As previously mentioned, there is a connection between DGSMs for scalar QoIs and the
active subspace [27]. Recall, the active subspace seeks to find low-dimensional subspaces of
the uncertain parameter space most influential to variations of the QoI. Active subspaces give
rise to the so called activity scores. It has been shown that the activity scores can be used to
estimate the DGSMs [28]. In this section, we demonstrate that a similar relationship exists for
vectorial QoIs.

Approaches to generalize active subspace methods for vectorial QoIs are addressed in [54,
114]. In the present work, we take the following approach. Let J ∈ RNqoi×Np be the Jacobian
matrix of fff :

Jij =
∂ fi

∂θj
, i = 1, . . . , Nqoi, j = 1, . . . , Np.

We consider the matrix C ∈ RNp×Np given by,

C = E
{

JTJ
}

.

The symmetric positive semi-definite matrix C plays a central role in the method of active
subspaces. The activity scores are generalized to the vectorial case as follows:

αj( fff ;r) =
r

∑
k=1

λk⟨eeej,uuuk⟩2, j = 1, . . . , Np, r ≤ Np, (3.4)

where (λk,uuuk) are the eigenpairs of C, the eeei’s are the canonical basis vectors in RNp , and the
value of r corresponds to the numerical rank of C. The activity scores are most effective if there
is a large gap in the eigenvalues, especially in the case when r ≪ Np.

To derive a connection between vectorial DGSMs N j( fff ) and the activity scores αj( fff ,r) we
first consider the following technical lemma which provides a useful spectral representation
of N j( f ).

Lemma 3.4.1. We have,

N j( fff ) = ⟨eeej,Ceeej⟩ =
Np

∑
k=1

λk⟨eeej,uuuk⟩2, j = 1, . . . , Np,

where ⟨·, ·⟩ denotes the Euclidean inner product, and eeej is the jth coordinate vector in RNp .
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Proof. For the first equality consider,

⟨ejejej,Cejejej⟩ = Cjj =
Np

∑
k=1

E

{(
∂ fk

∂θj

)2
}

= N j( fff ).

For the second equality, recall the spectral decomposition C = ∑
Np

k=1 λkuuukuuuT
k . We insert this

representation of C into the first equality to get

N j( fff ) = ⟨ejejej,Cejejej⟩ = ⟨eeej,
( Np

∑
k=1

λkuuukuuuT
k

)
eeej⟩

=
Np

∑
k=1

λk⟨eeej,uuuk⟩⟨uuuk,eeej⟩

=
Np

∑
k=1

λk⟨eeej,uuuj⟩2.

■

Now, consider the following proposition which formalizes a connection between DGSMs
and activity scores for vectorial QoIs.

Proposition 3.4.1. For each j ∈ {1, . . . , Np},

αj( fff ;r) ≤ N j( fff ) ≤ αj( fff ;r) + λr+1.

Proof. Consider,

αj( fff ,r) =
r

∑
k=1

λk⟨eeej,uuuk⟩2 ≤
Np

∑
k=1

λk⟨eeej,uuuk⟩2

for r ≤ Np. Using the result of Lemma 3.4.1 we have the first inequality. Similarly, the second
inequality follows from

N j( fff ) =
Np

∑
k=1

λk⟨eeej,uuuk⟩2

=
r

∑
k=1

λk⟨eeej,uuuk⟩2 +
Np

∑
k=r+1

λk⟨eeej,uuuk⟩2

≤
r

∑
k=1

λk⟨eeej,uuuk⟩2 + λr+1

Np

∑
k=r+1

⟨eeej,uuuk⟩2

≤ αj( fff ;r) + λr+1∥eeej∥2
2 = αj( fff ;r) + λr+1,

and the proof is complete. ■

The utility of this result is realized in problems with high-dimensional parameter spaces
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for which the eigenvalues λj decay rapidly to zero; in such cases, this result implies that
N j( fff ) ≈ αj( fff ;r), for a small r.

3.5 A motivating application problem

In this section, we compute and compare the componentwise total Sobol’ indices and the vec-
torial total Sobol’ indices discussed in section 3.2 to analyze a biochemical system modeling
a genetic positive feedback loop [11]. The purpose of this study is to demonstrate that com-
puting the componentwise Sobol’ indices can lead to hard to interpret results, illustrating the
necessity of the vectorial Sobol’ indices.

The reaction rate equations. For the present genetic loop mechanism, the reaction rate
equations (RREs) describing the concentration of system species in the thermodynamic limit
are given by:

ẋ = 2θ2y − 2θ1x2 + θ7m − θ8x,

ẏ = θ1x2 − θ2y + θ4dr − θ3yd0,

ḋ0 = θ4dr − θ3yd0,

ḋr = θ3yd0 − θ4dr,

ṁ = θ5d0 + θ6dr − θ9m,

where x and y are respectively, the protein monomer and dimer concentrations at time t,
the quantity d0 denotes the concentration of the promoter sites that are free of the dimer, dr

denotes the concentration of the promoter sites that are bound to the protein, and m is the
concentration of the mRNA.

The uncertain input is a vector of dimension Np = 9 with entries corresponding to reaction
rates. We model the uncertain parameters as θi = θ̂i + 0.1θ̂iai, where ai ∼U (−1,1), i = 1, . . . , Np.
The nominal values θ̂i of these rate constants were taken from [11] and are as follows:

θ̂θθ =
[
25 1000 50 1000 1 10 3 1 6

]T
.

The initial conditions [11] are given by,

x(0) = 10, y(0) = 0, d0(0) = 20, dr(0) = 0, m(0) = 0.

We consider the state vector,

XXX =
[

x y d0 dr m
]T

,

and note that XXX = XXX(t;θθθ). The quantity of interest considered here is

fff (θθθ) =
1
Tf

∫ T

0
XXX(t;θθθ)dt,
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where Tf = 50 represents the final time.
Vectorial GSA. We begin by computing the componentwise total Sobol’ indices, Sj( fi), for

i = 1, . . . , Nqoi, j = 1, . . . , Np, as well as the vectorial total Sobol’ indices. To do this we use the
software package UQtk [32, 33] to construct third order orthogonal polynomial surrogates for
each of the components of fff . We then compute the componentwise and vectorial total Sobol’
indices with the constructed surrogates, and use the results to approximate the corresponding
indices of the QoI. This framework allows for both efficiency, and a high level of accuracy. In
panels 1–5 of Figure 3.1 we display the total Sobol’ indices for each component of the vector
fff . The vectorial total Sobol’ indices, Stot

j ( fff ) are displayed in panel 6 of Figure 3.1. The dashed
line in Figure 3.1 corresponds to Sj = 0.05. For the componentwise indices, we also report the
standard deviation of the respective components in Table 3.1. We observe that the standard
deviations of the components of fff have a range of different magnitudes. We also note that
the componentwise Sobol’ indices have notable variations across components, while vectorial
indices provide a common ranking of the parameters.
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Figure 3.1 Classical total Sobol’ indices for each fi, i = 1, . . . ,5, and the vectorial indices (the last
panel). Dashed line corresponds to Sj = 0.05.

Next, we use the convention that if Stot
j ( fff ) < 0.05 then the input parameter θj is unim-

portant. The vectorial Sobol’ indices in Figure 3.1 indicate that variables θi, i = 1, . . . ,5 are
inessential. We fix this set of parameters to their nominal values and resample the resulting
system. We denote the reduced QoI as fff r. In the first five panels of Figure 3.2, we compare
pdfs of the components for fff and fff r. In the last panel of Figure 3.2 we display the impact of
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Table 3.1 Standard deviation of the components fi, i = 1, . . . ,5.

component f1 f2 f3 f4 f5

standard deviation 4.87 × 102 2.02 × 103 41.6 41.6 1.55 × 102

fixing the inessential variables on the standard deviation of each component of fff and fff r. We
observe only minor differences between the results for the full model and the reduced model,
indicating that the chosen vectorial Sobol’ indices provide an effective method for identify-
ing unimportant variables for an entire vector and can be used to guide model parameter
reduction.
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Figure 3.2 Comparison of pdfs for full (blue) and reduced (red) model; the reduced model has θ1,θ2,
θ3, θ4, and θ5 fixed at nominal values, last panel: the impact of fixing inessential variables on stan-
dard deviation of the system components.

The next logical step is to compute the DGSM-based upper bound proven in Proposi-
tion 3.3.1 and compare it to the vectorial total Sobol’ indices. However, in chapter 4 we
present a variety of detailed numerical illustrations of the DGSM-based upper bound for
function-valued QoIs. Therefore, to avoid repetition we omit this type of study in the present
chapter.

3.6 Conclusions

We have presented two different GSA approaches for vectorial QoIs. In section 3.2, we gave
definitions for both the vectorial first order and total Sobol’ indices, as well as demonstrat-
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ing their connection with the classic Sobol’ indices for scalar QoIs. We presented vectorial
DGSMs in section 3.3. Their connection to active subspaces and activity scores was discussed,
based on a convenient spectral representation [Proposition 3.4.1]. We proposed using vectorial
DGSMs as a method for input parameter screening, and justified this claim by proving a vec-
torial analog of the DGSM-based bound from section 2.2. We computed the vectorial Sobol’
indices in section 3.5 for a biology-based application problem modeling a genetic positive
feedback loop. The findings of this chapter indicate the presented generalization of classical
GSA techniques are both natural and necessary.
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CHAPTER 4

DERIVATIVE-BASED GLOBAL SENSITIVITY ANALYSIS FOR MODELS

WITH HIGH-DIMENSIONAL INPUTS AND FUNCTIONAL OUTPUTS

The contents of this chapter is related to the work published in [25]. The author of the present
thesis is also lead author on this paper. We would like to give special thanks to our collabora-
tors Meilin Yu, Ralph Smith, and Hayley Guy for their contributions.

4.1 Introduction

In this chapter, we consider mathematical models of the form

y = f (s,θθθ), (4.1)

where s belongs to a compact set X ⊂ Rd with d = 1,2, or 3, and θθθ is an element of an uncer-
tain parameter space Θ ⊆ RNp . We present a mathematical framework for derivative-based
global sensitivity analysis (GSA) for functional quantities of interest (QoIs) of the form (4.1)
and present a scalable computational framework for computing the corresponding derivative-
based GSA measures. We focus on models with independent random input parameters. More-
over, in our target applications, f (s,θθθ) is defined in terms of the solution of a system of
differential equations.

We begin our developments by defining a suitable derivative-based global sensitivity mea-
sure (DGSM) for functional QoIs, in section 4.3, and prove that it provides a computable
bound for the generalized total Sobol’ indices for functional QoIs as defined in [6, 41]; see The-
orem 4.3.1. Next, we present a framework for efficient computation of the functional DGSMs
that uses low-rank representation of the functional QoIs via truncated Karhunen–Loève ex-
pansions (KLEs) [63]. Expressions for DGSMs, and DGSM-based bounds on functional total
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Sobol’ indices for a truncated KLE are established in Theorem 4.3.2 (an introduction to KLEs
is also included in section 2.3 of this thesis). The DGSMs of the approximate models, given by
truncated KLEs, are then computed using adjoint-based gradient computation. This approach
is elaborated for models governed by linear elliptic PDEs in section 4.4.

Additionally, we present a comprehensive set of numerical results that illustrate vari-
ous aspects of the proposed approach and demonstrate its effectiveness. We consider three
application problems: (i) a nonlinear system of ODEs modeling the spread of cholera [51],
where we perform GSA for the infected population as a function of time (section 4.5.1); (ii)
a problem motivated by porous medium flow applications, with permeability data adapted
from [1], where we assess parametric sensitivities of the pressure field on a domain boundary
(section 4.5.2); and (iii) an application problem involving biotransport in tumors [5], where
we consider the pressure distribution in certain subdomains of a tumor model (section 4.5.3).

Chapter overview. This chapter is structured as follows. In section 4.2, we set up the
notation used throughout the chapter, and collect the assumptions on the functional QoIs
under study. We also provide findings for variance-based GSA for functional QoIs, following
the developments in [6, 41], in section 4.2. In section 4.3 we present a mathematical frame-
work for derivative-based GSA of functional QoIs. We elaborate our proposed adjoint-based
framework for models governed by linear elliptic PDEs in section 4.4. This is followed by our
computational experiments that are detailed in section 4.5. Finally, we provide some conclud-
ing remarks in section 4.6.

4.2 Preliminaries

4.2.1 The basic setup

We recall the probability space (Θ,B,µ) as it is defined in 2.1. Next, let X ⊂ Rd, with d = 1,2,
or 3 be a compact set. With this setup, we consider a process, f : X × Θ → R, satisfying the
following assumptions.

Assumption 4.2.1. We assume

1. f ∈ L2(X × Θ) and f is mean square continuous; that is, for any sequence {sn} in X con-
verging to s ∈ X we have that limn→∞ E

{
[ f (sn,θθθ)− f (s,θθθ)]2

}
= 0,

2. ∂ f
∂θj

(s,θθθ)is defined for all s ∈ X and θθθ ∈ Θ, j = 1, . . . , Np,

3. ∂ f
∂θj

(s,θθθ) ∈ L2(X × Θ), j = 1, . . . , Np,

4. and {θj}
Np
j=1, are real-valued independent random variables, and have distribution laws that are

absolutely continuous with respect to the Lebesgue measure.

We remark that (a) is a fundamental assumption on the process f . From this, we can
conclude continuity of the mean and covariance function of the process; see, e.g., Theorem
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7.3.2 in [52] and Theorem 2.2.1 in [2]. This in turn facilitates application of Mercer’s The-
orem [62, 71] (needed below) and implies that f admits a KLE [66]. The assumptions (b)
and (c) are needed in the context of derivative-based global sensitivity analysis. Note that,
Assumption 4.2.1(b) can be relaxed by requiring ∂ f

∂θj
(s,θθθ) be defined almost everywhere in

X × Θ.

4.2.2 Variance-based sensitivity analysis for functional outputs

We first recall the classical Sobol’ indices and Analysis of Variance (ANOVA) decomposition
discussed in section 2.1, which can be defined pointwise in X . We again let K = {1,2, . . . , Np}
be an index set, let U = {j1, j2, . . . , jm} be a subset of K, and let Uc be the complement of U
in K, Uc = K \ U. We denote θθθU = {θj1 ,θj2 , . . . ,θjm}. For each s ∈ X , we have the ANOVA
decomposition [102]

f (s,θθθ) = f0(s) + f1(s,θθθU) + f2(s,θθθUc) + f12(s,θθθ), (4.2)

where f0 is the mean of the process, and

f1(s,θθθU) = E{ f (s, ·)|θθθU} − f0(s), f2(s,θθθUc) = E{ f (s, ·)|θθθUc} − f0(s),

and f12(s,θθθ) = f (s,θθθ)− f0(s)− f1(s,θθθU)− f2(s,θθθUc). This enables decomposing the total vari-
ance D( f ; s) = Var{ f (s, ·)} of f (s, ·) according to

D( f ; s) = DU( f ; s) + DUc( f ; s) + DU,Uc( f ; s),

where DU( f ; s) = EθθθU

{
f1(s,θθθU)

2}, DUc( f ; s) = EθθθUc

{
f2(s,θθθUc)2}, and DU,Uc( f ; s) is the remain-

der. (Here EθθθU {·} indicates expectation with respect to θθθU .) Then, we can define the first and
total Sobol’ indices as follows:

SU( f ; s) =
DU( f ; s)
D( f ; s)

and Stot
U ( f ; s) =

Dtot
U ( f ; s)

D( f ; s)
,

where Dtot
U ( f ; s) = DU( f ; s) + DU,Uc( f ; s). Note that,

Stot
U ( f ; s) =

D( f ; s)− DUc( f ; s)
D( f ; s)

= 1 − DUc( f ; s)
D( f ; s)

= 1 − SUc( f ; s).

When the index set U is a singleton, U = {j}, j ∈ {1, . . . , Np}, we denote the corresponding
first and total Sobol’ indices by Sj( f ; s) and Stot

j ( f ; s), respectively.
Here we assume that D( f ; s) > 0 almost everywhere in X . If D( f ; s) = 0 for some s ∈ X ,

we use the convention SU( f ; s) = 0.
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4.2.3 Functional Sobol’ indices

Following [6, 41], we define the functional first order Sobol’ index as

SU( f ;X ) =

∫
X DU( f ; s)ds∫
X D( f ; s)ds

.

The following lemma provides a simple representation for the functional Sobol’ index in
terms of the pointwise classical Sobol’ indices:

Lemma 4.2.1. We have SU( f ;X ) =
∫

X SU( f ; s)w(s)ds, with w(s) =
D( f ; s)∫

X D( f ;y)dy
.

Proof. The result follows by a straightforward calculation. ■

We can also define the functional total Sobol’ indices

S
tot
U ( f ;X ) =

∫
X Dtot

U ( f ; s)ds∫
X D( f ; s)ds

= 1 −SUc( f ;X ).

Using Lemma 4.2.1, we note

S
tot
U ( f ;X ) = 1 −SUc( f ;X ) =

∫
X
(1 − SUc( f ; s))w(s)ds =

∫
X

Stot
U ( f ; s)w(s)ds. (4.3)

Error estimates for functional Sobol indices. Recall, we can use the total Sobol’ index
of a parameter to rank its importance. In particular, parameters with small Sobol’ indices
can be deemed unimportant. In this section, we briefly discuss the impact of fixing these
unimportant parameters in terms of approximation errors. Let U = {j1, j2, . . . , jm}⊂ {1, . . . , Np}
index the set of important parameters, and suppose we set θθθUc to a nominal vector ηηη. Consider
the “reduced” model:

f (ηηη)(s,θθθU) = f (s,θθθU ,ηηη),

where the right hand side function is understood to be f (s,θθθ), with entries of θθθUc fixed at ηηη.
For U = {j1, j2, . . . , jm} we define ΘU = Θj1 × · · · × Θjm . Integration on ΘU will be with

respect to µ(dθθθU) = ∏m
k=1 πjk(θjk)dθjk .

For ηηη ∈ ΘUc we define the mean-square error

ε ( f ; s;ηηη) =
∫

Θ
( f (s,θθθ)− f (ηηη)(s,θθθU))

2 µ(dθθθ).

We consider the relative mean square error

E( f ;ηηη) =

∫
X

∫
Θ
( f (s,θθθ)− f (ηηη)(s,θθθU))

2 µ(dθθθ)ds∫
X

∫
Θ

f (s,θθθ)2 µ(dθθθ)ds
. (4.4)
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This provides a measure of the error that occurs when fixing the values of θθθUc . Next, consider
the following key lemma, which is is based on the arguments in [102].

Lemma 4.2.2. For every s ∈ X ,
∫

ΘUc
ε ( f ; s;ηηη)µ(dηηη) = 2Dtot

Uc( f ; s).

Proof. Let s ∈ X be fixed. Consider the ANOVA decomposition of f (s,θθθ), as defined in (4.2):

f (s,θθθ) = f0(s) + f1(s,θθθU) + f2(s,θθθUc) + f12(s,θθθU ,θθθUc).

By substituting this into the expression for ε ( f ; s;ηηη) and simplifying we have

ε ( f ; s;ηηη) =
∫

Θ

[
f2(s,θθθUc) + f12(s,θθθU ,θθθUc)− f2(s,ηηη)− f12(s,θθθU ,ηηη)

]2
µ (dθθθ). (4.5)

Using the properties of ANOVA [100, 102],∫
ΘUc

f2(s,θθθUc)µ(dθθθUc) =
∫

θθθUc
f12(s,θθθU ,θθθUc)µ(dθθθUc) =

∫
ΘU

f12(s,θθθU ,θθθUc)µ(dθθθU) = 0,

we can simplify (4.5) to get, for a fixed ηηη ∈ ΘUc ,

ε ( f ; s;ηηη) =
∫

Θ

[
f 2
2 (s,θθθUc) + f 2

12(s,θθθU ,θθθUc) + f 2
2 (s,ηηη) + f 2

12(s,θθθU ,ηηη)
]

µ(dθθθ)

=Uc ( f ; s) + DUc,U( f ; s) + f 2
2 (s,ηηη) +

∫
ΘU

f 2
12(s,θθθU ,ηηη)µ(dθθθU).

Integrating the above expression over ΘUc gives the desired result. ■

The following proposition quantifies the error in (4.4) in terms of the functional total
Sobol’ indices. This result is a straightforward modification of the error estimate presented
in [6]; we provide a proof for completeness.

Proposition 4.2.1.
∫

ΘUc
E( f ;ηηη)µ(dηηη) ≤ 2Stot

θθθUc
( f ,X ).

Proof. First note that the denominator is a constant and

∫
X

∫
Θ

f (s,θθθ)2 µ(dθθθ)ds =
∫

X

[
D( f ; s) +

(∫
Θ

f (s,θθθ)µ(dθθθ)
)2
]

ds ≥
∫

X
D( f ; s)ds. (4.6)

Next, consider the expectation of the numerator in (4.4):

∫
ΘUc

∫
X

∫
Θ
( f (s,θθθ)− f (ηηη)(s,θθθU))

2 µ(dθθθ)dsµ(dηηη) =
∫

ΘUc

∫
X

ε ( f ; s;ηηη) dsµ(dηηη)

=
∫

X

∫
ΘUc

ε ( f ; s;ηηη) µ(dηηη)ds = 2
∫

X
Dtot

Uc ( f ; s)ds, (4.7)

where changing the order of integration is justified by Tonell’s theorem, and the last equality
follows from Lemma 4.2.2. The desired result follows from (4.7) and (4.6). ■
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The estimate in Proposition 4.2.1 says that when fixing θθθUc to a nominal parameter ηηη ∈ ΘUc ,
in average, the relative error E( f ;ηηη) is bounded by 2Stot

θθθUc
( f ,X ).

4.3 Derivative-based GSA for functional QoIs

Let us first consider a scalar-valued random variable g : Θ → R. Here g and its partial deriva-
tives are assumed to be square integrable. We recall from section 2.2 the following commonly
used DGSM:

νj(g) =
∫

Θ

( ∂g
∂θj

)2
µ(dθθθ).

DGSMs can be used to screen for unimportant variables. This is justified by the relation be-
tween DGSMs and total Sobol’ indices, which was first addressed in [101] for scalar-valued
random variables. While the estimation of νj requires a Monte Carlo (MC) sampling proce-
dure, it has been observed that in practice the number of samples required for estimation of
νj’s does not need to be very large to provide sufficient accuracy in identifying unimportant
variables [57]. We present the following result which partially explains this phenomenon.

Proposition 4.3.1. Assume that

aj ≤
( ∂g

∂θj
(θθθ)
)2

≤ bj, j = 1, . . . , Np, for all θθθ ∈ Θ.

Consider the MC estimator

ν
(NMC)
j (g) :=

1
NMC

NMC

∑
k=1

( ∂g
∂θj

(θθθk)
)2

,

with θθθk independent and identically distributed according to the law of θθθ. Then,

Var
{

ν
(NMC)
j (g)

}
≤ 1

NMC

(
bj − νj(g)

)(
νj(g)− aj

)
≤ 1

4NMC
(bj − aj)

2, (4.8)

for j = 1, . . . , Np.

Proof. We recall the following result: if a random variable X satisfies a ≤ X ≤ b and E{X}= m,
then

Var{X} ≤ (b − m)(m − a) ≤ (b − a)2/4. (4.9)

The first inequality is known as the Bhatia–Davis inequality [14]. The second inequality
gives a corollary of the Bhatia-Davis inequality, known as Popoviciu’s inequality, that says
Var{X} ≤ (b− a)2/4, for a random variable satisfying a ≤ X ≤ b. Note that clearly aj ≤ νj(g)≤
bj, for j = 1, . . . , Np. Applying the inequality (4.9) with X =

( ∂g
∂θj

)2 and (b,m, a) = (bj,νj(g), aj),

j = 1, . . . , Np, we obtain Var
{( ∂g

∂θj

)2
}
≤
(
bj − νj(g)

)(
νj(g) − aj

)
≤ 1

4 (bj − aj)
2. Therefore, for
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j = 1, . . . , Np,

Var
{

ν
(Ns)
j (g)

}
=

1
Ns

Var
{( ∂g

∂θj

)2
}
≤ 1

Ns

(
bj − νj(g)

)(
νj(g)− aj

)
≤ 1

4Ns
(bj − aj)

2.

■

This proposition says that if the partial derivatives do not vary ’too much’ (i.e., aj and bj

are not too far from one another), indicating a desirable regularity property of the parameter-
to-QoI mapping, then the MC estimator ν

(NMC)
j (g) will have a small variance for a modest

choice of NMC. In such cases the MC sample size for estimating νj(g) does not need to be
very large.

Functional DGSMs. Next, we turn to DGSMs for functional QoIs. We propose the follow-
ing definition for a functional DGSM

Nj( f ;X ) =
∫

X

∫
Θ

( ∂ f
∂θj

(s,θθθ)
)2

µ(dθθθ)ds =
∫

X
νj( f (s, ·))ds, (4.10)

which is a natural choice. These indices can be normalized in different ways to make their
comparison easier. For instance, we may consider the normalized indices

Nj( f ;X )

∑
Np

k=1Nk( f ;X )
, j = 1, . . . , Np.

We can relate Nj( f ;X ) to the corresponding functional total Sobol’ indices Stot
j ( f ;X ), j =

1, . . . , Np, analogously to the scalar case. Specifically, we present the following result that
shows functional total Sobol’ indices can be bounded in terms of the proposed functional
DGSMs.

Theorem 4.3.1. Let f (s,θθθ) be a random process satisfying Asummption 4.2.1. Suppose θj are inde-
pendent and distributed according to uniform or normal distribution, for i = 1, . . . , Np. Then,

S
tot
j ( f ;X ) ≤ cp

j
Nj( f ;X )

Tr(Cqoi)
, j = 1, . . . , Np, (4.11)

where Cqoi is the covariance operator of the random function f (s,θθθ), and

cp
j =

(b − a)2/π2, if θj ∼ U(a,b),

σ2
j , if θj ∼N (0,σ2

j ).

Proof. For a fixed s ∈ X , by the results in [59],

Stot
j ( f ; s) ≤

cp
j

D( f ; s)
νj( f ; s). (4.12)
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Then, using (4.3),

S
tot
j ( f ;X ) =

∫
X

Stot
j ( f ; s)w(s)ds

≤
∫

X

cp
j

D( f ; s)
νj( f ; s)w(s)ds = cp

j
Nj( f ;X )∫

X D( f ; s)ds
.

(4.13)

Now, let Cqoi be the covariance operator of the random process f (s,θθθ), and let c(s, t) be its
covariance function. As a consequence of Mercer’s Theorem [62, 71], we have∫

X
D( f ; s)ds =

∫
X

Var{ f (s, ·)} ds =
∫

X
c(s, s)ds = Tr(Cqoi).

Combining this with (4.13) we obtain the desired result. ■

The DGSM-based upper bounds on the functional total Sobol’ indices provided by The-
orem 4.3.1 enable identifying inputs with small total Sobol’ indices, hence providing an ef-
ficient way of identifying unimportant parameters. Note that the theorem is stated for θj

that are distributed uniformly or normally, because these distributions are commonly used
in modeling under uncertainty. However, the result holds for other families of distributions.
Specifically, in [60], it is shown that (4.12) holds for the Boltzmann family of distributions
with appropriate choices of the constants cp

j , j = 1, . . . , Np, which provides immediate exten-
sion of Theorem 4.3.1 to Boltzmann family of distributions. We mention that an important
class of Boltzmann distributions is the family of log-concave distributions that includes Nor-
mal, Exponential, Beta, Gamma, Gumbel, and Weibull distributions [60].

Similar to the case of scalar QoIs, estimating functional DGSM often requires fewer sam-
ples than are required for direct calculation of the Sobol’ indices via MC Sampling. The
following result, which is similar to Proposition 4.3.1, provides a bound on the variance of
the corresponding MC estimator, given appropriate boundedness assumptions on the partial
derivatives of the functional QoI.

Proposition 4.3.2. Assume that there exist non-negative integrable functions aj and bj, defined on
X such that for each s ∈ X ,

aj(s) ≤
(∂ f (s,θθθ)

∂θj

)2
≤ bj(s), j = 1, . . . , Np, for all θθθ ∈ Θ.

Consider the MC estimator

N
(NMC)
j ( f ;X ) :=

1
NMC

NMC

∑
k=1

∫
X

( ∂ f
∂θj

(s,θθθk)
)2

ds,
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with θθθk independent and identically distributed according to the law of θθθ. Then,

Var
{
N
(NMC)
j ( f ;X )

}
≤ 1

4NMC
∥bj − aj∥2

L1(X ), j = 1, . . . , Np.

Proof. First note that N(Ns)
j ( f ;X ) is indeed an estimator for Nj( f ;X ). This is seen by noting

that, using Tonelli’s Theorem,

Nj( f ;X ) =
∫

X
νj( f ; s)ds =

∫
X

∫
Θ

( ∂ f
∂θj

(s,θθθ)
)2

µ(dθθθ)ds =
∫

Θ

∫
X

( ∂ f
∂θj

(s,θθθ)
)2

ds µ(dθθθ).

Then, applying Popoviciu’s inequality to the random variable Gj(θθθ) =
∫

X

(
∂ f
∂θj

(s,θθθ)
)2

ds, which
satisfies ∥aj∥L1(X ) ≤ Gj ≤ ∥bj∥L1(X ), gives:

Var
{

Gj
}
≤ 1

4

(
∥bj∥L1(X ) − ∥aj∥L1(X )

)2
≤ 1

4
∥bj − aj∥2

L1(X ), j = 1, . . . , Np,

where we also used the reverse triangle inequality. This completes the proof. ■

The indices Nj can be computed by sampling the partial derivatives. Gradient computa-
tion can be performed using various techniques. The simplest approach is to use the finite
difference method. However, this approach becomes prohibitive for computationally inten-
sive models with a large number of input parameters. For models governed by differential
equations, one can use the so called sensitivity equations for computing derivatives. We demon-
strate this in one of our numerical examples in 4.5. Unfortunately, this approach also suffers
from the curse of dimensionality, and becomes cumbersome for complex systems. Another
approach, not explored in the present work, is that of automatic differentiation. The chal-
lenges of gradient computation are compounded for models governed by expensive-to-solve
PDEs with high-dimensional input parameters. For such models, we propose an approach
that combines low-rank KLEs and adjoint-based gradient computation.

With the strategy of using low-rank KLEs for the purposes of computing DGSMs in mind,
we examine functional QoIs of the form

f (s,θθθ) =
Nqoi

∑
i=1

γi fi(θθθ)ϕi(s), (4.14)

where ϕi are orthonormal with respect to L2(X ) inner product, {γi} are non-negative and
sorted in descending order, E{ fi} = 0, i = 1, . . . , Nqoi, and E

{
fi f j
}
= δij. Suppose also that fi

have square integrable partial derivatives.

Theorem 4.3.2. Let f be a random process of the form (4.14). Suppose θj are indepenent and dis-
tributed according to uniform or normal distribution for j = 1, . . . , Np. Then the following hold:

1. Nj( f ;X ) = ∑
Nqoi
i=1 γ2

j νj( fi), j = 1, . . . , Np.
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2. We have the bound

S
tot
j ( f ;X ) ≤ cp

j
Nj( f ;X )

∑
Nqoi
i=1 γ2

i

= cp
j

∑
Nqoi
i=1 γ2

i νj( fi)

∑
Nqoi
i=1 γ2

i

, j = 1, . . . , Np,

where,

cp
j =

(b − a)2/π2, if θj ∼ U(a,b),

σ2
j , if θj ∼N (0,σ2

j ).

Proof. First, we note

νj( f (s, ·)) =
∫

Θ

( ∂

∂θj

Nqoi

∑
i=1

γi fi(θθθ)ϕi(s)
)2

µ(dθθθ) =
∫

Θ

(Nqoi

∑
i=1

γi
∂ fi(θθθ)

∂θj
ϕi(s)

)2
µ(dθθθ)

=
Nqoi

∑
i,k=1

γiγk

(∫
Θ

∂ fi(θθθ)

∂θj

∂ fk(θθθ)

∂θj
µ(dθθθ)

)
ϕi(s)ϕk(s).

Therefore,

Nj( f ;X ) =
∫

X
νj( f (s, ·))ds

=
∫

X

(Nqoi

∑
i,k

γiγk

∫
Θ

∂ fi(θθθ)

∂θj

∂ fk(θθθ)

∂θj
µ(dθθθ)ϕi(s)ϕk(s)

)
ds

=
Nqoi

∑
i,k=1

γiγk

(∫
Θ

∂ fi(θθθ)

∂θj

∂ fk(θθθ)

∂θj
µ(dθθθ)

)∫
X

ϕi(s)ϕk(s)ds

=
Nqoi

∑
i=1

γ2
i

[∫
Θ

(∂ fi(θθθ)

∂θj

)2
µ(dθθθ)

]
=

Nqoi

∑
i=1

γ2
j νj( fi).

This establishes the first assertion of the theorem. Next, letting Cqoi be the covariance oper-
ator of f (s,θθθ), it is straightforward to see that Tr(Cqoi) = ∑

Nqoi
i=1 γ2

i . Thus, combining the first
assertion of the theorem with Theorem 4.3.1, we have

S
tot
j ( f ;X ) ≤ cp

j
Nj( f ;X )

∑
Nqoi
i=1 γ2

i

= cp
j

∑
Nqoi
i=1 γ2

i νj( fi)

∑
Nqoi
i=1 γ2

i

, j = 1, . . . , Np.

■

Computing DGSMs for functional outputs. To enable efficient computation of functional
DGSMs, we use a truncated KLE of f . Let (λi(Cqoi),ϕi) be the eigenpairs of the covariance
operator of f ; we consider the truncated KLE

f (s,θθθ) ≈ f̂ (s,θθθ) := f̄ (s) +
Nqoi

∑
i=1

σi fi(θθθ)ϕi(s), with σi =
√

λi(Cqoi), (4.15)
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where f̄ is the mean of the process and the KL modes fi are given by

fi(θθθ) =
1
σi

∫
X
( f (s,θθθ)− f̄ (s))ϕi(s)ds, i = 1, . . . , Nqoi. (4.16)

In many applications of interest, where the process f is defined in terms of the solution
of a differential equation, the eigenvalues λi(Cqoi) decay rapidly, and thus a small Nqoi can
be afforded. Such processes, which we refer to as low-rank, are common in physical and
biological applications. Computing the KLE numerically can be accomplished e.g., using
Nyström’s method, which is the approach taken in the numerical experiments in the present
work. We refer to [7], for a convenient reference for numerical computation of KLEs using
Nyström’s method. We point out that this process requires approximating the covariance
function of f , through sampling, when solving the eigenvalue problem for {λi(Cqoi)}i≥1 and
the corresponding eigenvectors {ϕi}i≥1. This computation requires an ensemble of model
evaluations { f (·,θθθk)}NMC

k=1 . Typically a modest sample size NMC is sufficient for computing the
dominant eigenpairs of Cqoi. This is demonstrated in our numerical results in 4.5.

The approximate model f̂ can then be used as a surrogate for f for the purposes of
sensitivity analysis. Specifically we compute the functional DGSMs of f̂ as a proxy for those
of f . The computation of functional DGSMs for f̂ and the DGSM-based bound on functional
Sobol’ indices is facilitated by Theorem 4.3.2.

The expression for the functional DGSM given in 4.3.2 requires computing DGSMs for the
KL modes fi, i = 1, . . . , Nqoi, which are scalar-valued random variables. Differentiability of fi

can be established by requiring certain boundedness assumptions on the partial derivatives.
We consider a generic KL mode, which we denote by

F(θθθ) :=
∫

X
( f (s,θθθ)− f̄ (s))v(s)ds, (4.17)

where we use a generic v ∈ L2(X ) in the place of the eigenvectors.

Proposition 4.3.3. Let f be a process satisfying 4.2.1, and moreover assume partial derivatives of f
with respect to θj, j = 1, . . . , Np satisfy∣∣∣∣ ∂ f

∂θj
(s,θθθ)

∣∣∣∣ ≤ zj(s), for all (s,θθθ) ∈ X × Θ, (4.18)

where zj ∈ L2(X ), j = 1, . . . , Np. Let F be as in (4.17). Then, for j = 1, . . . , Np,

1.
∂F
∂θj

(θθθ) =
∫

X

∂ f
∂θj

(s,θθθ)v(s)ds,

2. and
∂F
∂θj

∈ L2(Θ).

Proof. Showing (a) amounts to establishing the standard requirements for differentiating un-
der the integral sign; see e.g. see Theorem 2.27 in [39]. Without loss of generality, we assume
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f̄ ≡ 0. First, we note that for each θθθ ∈ Θ,

∫
X

∣∣∣∣ ∂ f
∂θj

(s,θθθ)v(s)
∣∣∣∣ ds ≤

[∫
X

( ∂ f
∂θj

(s,θθθ)
)2

ds
]1/2[∫

X
v(s)2 ds

]1/2
< ∞, j = 1, . . . , Np,

where we used the Cauchy–Schwarz inequality and 4.2.1(b),(c). Next, we note that | ∂ f
∂θj

(s, ·)v(·)|
≤ zj|v| and applying the Cauchy–Schwartz inequality, we get that

∫
X |zj(s)v(s)|ds < ∞. Thus,

assertion (a) follows from Theorem 2.27 in [39]. The assertion (b) of the proposition follows
from, 4.2.1(c) and

∫
Θ

( ∂F
∂θj

(θθθ)
)2

µ(dθθθ) =
∫

Θ

(∫
X

∂ f
∂θj

(s,θθθ)v(s)ds
)2

µ(dθθθ)

≤
∫

Θ

[∫
X

( ∂ f
∂θj

(s,θθθ)
)2

ds
][∫

X
v(s)2 ds

]
µ(dθθθ) = ∥v∥2

L2(X )

∥∥∥∥ ∂ f
∂θj

∥∥∥∥2

L2(X ×Θ)

< ∞

■

Note that the assumption (4.18) can in fact be used to conclude ∂F
∂θj

∈ L∞(Θ); we showed
square integrability of these partial derivatives for clarity as this is the result needed for the
purposes of derivative-based GSA. Note also that the assumption (4.18) can be relaxed in the
statement of the proposition by requiring local (in Θ) boundedness of the partial derivatives
by square integrable (in X ) functions.

The above framework, based on low-rank KLEs, is useful as it provides a natural setting
for deploying an adjoint-based approach for computing the derivatives of the KL modes,
in models governed by PDEs (or ODEs). The computational advantage of adjoint-based ap-
proach is immense: the cost of computing the gradient of fi’s does not scale with the di-
mension of the input parameter θθθ. This leads to a computationally efficient and scalable
framework for computing DGSMs. We detail this approach in the next section for models
governed by elliptic PDEs and demonstrate its effectiveness in numerical examples in 4.5.

4.4 Adjoint-based GSA for models governed by elliptic PDEs

We consider a linear elliptic PDE with a random coefficient function:

−∇ · (κ∇p) = b in D,

p = g on ΓD,

κ∇p · n = h on ΓN .

(4.19)

The coefficient field κ is modeled as a log-Gaussian random field whose covariance operator
is given by Cpar. As is common practice in the uncertainty quantification community, we
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represent the random field coefficient κ using a truncated KLE. Namely, let

â(x,θθθ) = ā(x) +
Np

∑
j=1

√
λj(Cpar)θjej(x)

be a truncated KLE of the log-permeability field, a(x,θθθ) = logκ(x,θθθ). We consider the weak
form of the PDE. The associated trial and test function spaces are, respectively,

Vg = {v ∈ H1(D) : v |ΓD= g}, V0 = {v ∈ H1(D) : v |ΓD= 0}.

The weak form of (4.19) is as follows: find p ∈ Vg such that

⟨eâ(x,θθθ)∇p,∇ p̃⟩ = ⟨b, p̃⟩+ ⟨h, p̃⟩ΓN , for all p̃ ∈ V0, (4.20)

where ⟨·, ·⟩ is the L2(D) inner product, and ⟨·, ·⟩ΓN is L2(ΓN) inner product. Let X a closed
subset of D, and let Q : L2(D)→ L2(X ) be the restriction operator

Qu = u
∣∣
X

.

Below we also need the adjoint Q∗ of Q: it is straightforward to see that Q∗ : L2(X )→ L2(D)

is given by

(Q∗u)(x) =

u(x), x ∈ X

0, x <X .
.

We consider the QoI,
f (x,θθθ) =Qp(x,θθθ),

and consider its truncated KLE

f (x,θθθ) ≈ f̂ (x,θθθ) := f̄ (x) +
Nqoi

∑
i=1

σi fi(θθθ)ϕi(x), with σi =
√

λi(Cqoi). (4.21)

where

fi(θθθ) =
1
σi

∫
X

(
f (x,θθθ)− f̄ (x)

)
ϕi(x)dx =

1
σi

∫
X

(
Qp(x,θθθ)− f̄ (x)

)
ϕi(x)dx,

where p is the solution of (4.20). We consider adjoint-based computation of ∂ fi
∂θj

for i, j ∈
{1, . . . , Nqoi} × {1, . . . , Np}.

Computing gradient of fi’s. To compute the gradient we follow a formal Lagrange ap-
proach. We consider the Lagrangian

L(p,θθθ,q) =
1
σi

∫
X
(Qp − f̄ )ϕi dx + ⟨eâ(x,θθθ)∇p,∇q⟩ − ⟨b,q⟩ − ⟨h,q⟩ΓN .
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Here q is a Lagrange multiplier, which in the present context is referred to as the adjoint
variable. Taking variational derivatives of L with respect to q, and p, give the state and the
adjoint equations, respectively. In particular, the adjoint equation is found by considering

d
dϵ

L(p + ϵ p̃,θθθ,q) |ϵ=0 = 0, for all p̃ ∈ V0.

This gives,
1
σi
⟨Q p̃,ϕi⟩X + ⟨eâ(x,θθθ)∇ p̃,∇q⟩ = 0, for all p̃ ∈ V0.

The weak form of the adjoint equation can be stated as: find q ∈ V0 such that

⟨eâ(x,θθθ)∇q,∇ p̃⟩ = − 1
σi
⟨Q∗ϕ, p̃⟩, for all p̃ ∈ V0.

The strong form of the adjoint equation is

−∇ · (κ∇q) = − 1
σi
Q∗ϕi in D,

q = 0 on ΓD,

κ∇q · n = 0 on ΓN .

(4.22)

Letting p and q be the solutions of the state and adjoint equations respectively,

(∇θθθ fi)
Tθ̃θθ =

d
dϵ

L(p,θθθ + ϵθ̃θθ,q) |ϵ=0 = ⟨(â(x, θ̃θθ)− ā(x))eâ(x,θθθ)∇p,∇q⟩, θ̃θθ ∈ RNp . (4.23)

In particular, letting θ̃θθ be the jth coordinate direction in RNp , we get

∂ fi

∂θj
=
√

λj(Cpar)⟨ejeâ(x,θθθ)∇p,∇q⟩.

We can also consider a QoI of the form

f (·,θθθ) = p(·,θθθ)
∣∣
ΓN

,

as done in one of our numerical examples in section 4.5. Computing the gradient for this QoI
can be done in a similar way as above, except, in this case the adjoint equation takes the form:

−∇ · (κ∇q) = 0 in D,

q = 0 on ΓD,

κ∇q · n = − 1
σi

ϕi on ΓN .

(4.24)

Notice that evaluating the adjoint-based expression for the gradient of fi, requires two PDE
solves: we need to solve the state (forward) equation (4.19) and the adjoint equation (4.22)
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Moreover the forward solves can be reused across the KL modes, and thus, computing the
gradient of f̂ in (4.21) requires 1+ Nqoi PDE solves, independently of the dimension Np of the
uncertain parameter θθθ. As shown in our numerical examples, a small Nqoi often results in suit-
able representations of the QoI f , due to the, often observed, rapid decay of the eigenvalues
λi(Cqoi).

DGSM computation. In practice, the KLE should be computed numerically. As men-
tioned before, this can be accomplished using Nyström’s method, which is the approach
taken in the present work, and requires an ensemble of model evaluations { f (·,θθθk)}NMC

k=1 , typ-
ically with a modest sample size NMC. The model evaluations can be used to compute the
approximate KLE following Algorithm 1 in [7]. This same set of samples can be used for
computing the DGSMs, νj( fi), j = 1, . . . , Np, i = 1, . . . , Nqoi. These require an additional adjoint
solve per KL mode, and for each sample point θθθk, k = 1, . . . , NMC. Thus, the overall computa-
tional cost is NMC(1 + Nqoi) PDE solves. Note that the computational cost, in terms of PDE
solves, is independent of the dimension Np of the uncertain parameter vector. To compute the
DGSM-based bound on functional Sobol’ indices we also need to compute Tr(Cqoi); this can
be approximated accurately by summing the dominant eigenvalues of Cqoi, available from
computing the KLE of f . The steps for DGSM computation using the present strategy are
outlined in Algorithm 2. In step 5 of Algorithm 2, getKLE indicates a procedure that given

Algorithm 2 Algorithm for computing Bj := Nj( f ;X )/Tr(Cqoi), j = 1, . . . , Np.

Input: Parameter samples {θθθk}NMC
k=1

Output: Approximate DGSM-based bounds B̂j, j = 1, . . . , Np
1: for k = 1, . . . , NMC do
2: solve forward model (4.19) with κ = expâ(·,θθθk)

3: compute QoI f (·,θθθk)
4: end for
5: [{λi}

Nqoi
i=1 ,{ϕi}

Nqoi
i=1 ] = getKLE({ f (·,θθθk)}NMC

k=1 )
6: for k = 1, . . . , NMC do
7: for i = 1, . . . , Nqoi do
8: solve adjoint problem (4.22) with κ = expâ(·,θθθk)

9: compute ∂ fi(θθθ
k)

∂θj
, j = 1, . . . , Np using ((4.23))

10: end for
11: end for

12: compute ν̂j( fi) =
1

NMC
∑NMC

k=1

[
∂ fi(θθθ

k)
∂θj

]2

13: compute T = ∑
Nqoi
i=1 λi

14: compute B̂j = ∑
Nqoi
i=1 λiν̂j( fi)/T, j = 1, . . . , Np

sample realizations of the process f , computes its KLE numerically. As mentioned before,
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this can be done, e.g., using Nyström’s method; see e.g., Algorithm 1 in [7] or section 2.3 in
chapter 2.

4.5 Numerical examples

In this section, we present three numerical examples. In section 4.5.1, we consider an exam-
ple involving a nonlinear ODE system with a time-dependent QoI, which is used to illus-
trate functional DGSMs and the DGSM-based bound derived in Theorem 4.3.1. sections 4.5.2
and 4.5.3 concern models governed by elliptic PDEs that have spatially distributed QoIs in
one and two space dimensions, respectively. For the PDE-based examples we implement the
adjoint-based GSA framework described in section 4.4 and illustrate its effectiveness.

4.5.1 Sensitivity analysis for a model of cholera epidemics

Consider the cholera model developed in [51]. We analyze the sensitivity of the infected
population as a function of time to uncertainties in model parameters. This problem was also
studied in [6] within the context of variance-based GSA for time-dependent processes.

4.5.1.1 Model description

A population of Npop individuals is split into susceptible, infectious, and recovered individ-
uals, which are denoted by S, I, and R, respectively. The concentrations of highly-infectious
bacteria, BH and lowly-infectious bacteria, BL are also considered. These concentrations are
measured in cells per milliliter. According to the model developed in [51], the time-evolution
of the state variables is governed by the following system of ODEs.

dS
dt

= bNpop − βLS
BL

κL + BL
− βHS

BH

κH + BH
− bS

dI
dt

= βLS
BL

κL + BL
+ βHS

BH

κH + BH
− (γ + b)I

dR
dt

= γI − bR

dBH

dt
= ξ I − χBH

dBL

dt
= χBH − δBL

(4.25)

with initial conditions (S(0), I(0), R(0), BH(0), BL(0)) = (S0, I0, R0, BH0 , BL0). The parameter units
and nominal values from [51] are compiled in Table 4.1. We consider a total population
of Npop = 10,000 and let the initial states be as follows: S0 = Npop − 1, I0 = 1, R0 = 0, and
BH0 = BL0 = 0. We solve the problem up to time T = 150 using the ode45 solver provided in
Matlab [70].
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Table 4.1 Cholera model parameters from [6, 51].

Model Parameter Symbol Units Values
Rate of drinking BL cholera βL

1
week 1.5

Rate of drinking BH cholera βH
1

week 7.5

BL cholera carrying capacity κL
# bacteria

mℓ 106

BH cholera carrying capacity κH
# bacteria

mℓ
κL
700

Human birth and death rate b 1
week

1
1560

Rate of decay from BH to BL χ 1
week

168
5

Rate at which infectious individuals ξ # bacteria
# individuals·mℓ·week 70

spread BH bacteria to water
Death rate of BL cholera δ 1

week
7
30

Rate of recovery from cholera γ 1
week

7
5

To simplify the notation we use a generic vector y ∈ R5 to denote the state vector y =

(y1,y2,y3,y4,y5)T = (S, I, R, BH, BL)
T and denote the right hand side of the ODE system by

g(y; c), where ccc = (βL, βH,κL,b,χ,ξ,δ,γ) is the vector of uncertain model parameters. The
uncertainties in iccc are parameterized by a random vector θθθ ∈ R8 with iid U(−1,1) entries as
follows:

ci(θi) =
1
2
(ai + bi) +

1
2
(bi − ai)θi, i = 1, . . . ,8,

with [ai,bi] the physical parameter ranges for ci, adapted from [6]. The solution of the system
is a random process, yyy = yyy(t;θθθ). We focus on the infected population I(t,θθθ) = y2(t;θθθ), for
t ∈ [0,150]. In Figure 4.1, we depict the time evolution of I(t,θθθ) at the nominal parameter
vector given by θθθ = (0,0, . . . ,0)T ∈ R8.
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Figure 4.1 The infected population I(t;θθθ) with θθθ = 0.
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4.5.1.2 Derivative-based GSA

To compute the partial derivatives sssj(t;θθθ) =
∂yyy(t;θθθ)

∂θj
, j = 1, . . . ,8, needed for DGSM computation,

we rely on the so called direct approach; this involves integrating the sensitivity equations [68,
93] along with the ODEs describing the system state. Specifically, we need to integrate the
system

yyy′ = ggg(yyy;ccc(θθθ)), yyy(0) = yyy0,

sss′i = Jsssi +
∂ggg
∂θi

, sssi(0) = 000, i = 1, . . . , Np.

Here J is the Jacobian Jij =
∂gi
∂θj

= ∂gi
∂cj

∂cj
∂θj

, i, j = 1, . . . , Np. In the present example this results in

an “augmented state vector” [yyyT sssT
1 · · · sssT

8]
T ∈ R45.

First, we consider the pointwise-in-time DGSMs, νj( f (t, ·)), j = 1, . . . ,8, for t ∈ [0,150] in
Figure 4.2 (left). To ensure an accurate estimate of the DGSMs, we approximate the integral
over the parameters with a Monte Carlo sample of size 105. As seen in Figure 4.2 (left), these
pointwise-in-time DGSMs are not straightforward to interpret. A clearer picture is obtained
by considering

Nj(I; [0, t]) :=
∫ t

0
νj(I(s, ·))ds, t ∈ [0,150],

which amounts to computing the functional DGSMs over successively larger time intervals;
the results are reported in Figure 4.2 (right).

Finally, to get an overall picture, we compute the DGSM-based upper bounds on the
functional Sobol’ indices, as given by Theorem 4.3.1, with X = [0,150]; see Figure 4.3, where
we report the functional total Sobol’ indices along with the DGSM-based bounds which are
computed with Monte Carlo (MC) sample sizes of 105 and 100. Note that a small MC sample
is very effective in detecting the unimportant parameters.

By Theorem 4.3.1, we know that a small DGSM-based bound for a given parameter implies
the corresponding total Sobol’ index is small, indicating the parameter is unimportant. In
the present experiment, we set an importance tolerance of 0.05. A parameter whose DGSM-
based bound is smaller than this importance tolerance will be considered unimportant. The
results reported in Figure 4.3 indicate that unimportant parameters are given by θj with
j ∈ {1,4,5,7}. This is consistent with results reported in [6], where the statistical accuracy
of the reduced model, obtained by fixing these unimportant parameters was demonstrated
numerically. Both panels of Figure 4.3 show the same information; however, in the right
panel we use a logarithmic scale in the vertical axis to clearly illustrate the bound derived in
Theorem 4.3.1, for the small functional Sobol’ indices.
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Figure 4.2 Pointwise-in-time DGSMs νj(I(t, ·)) (left) and functional DGSMs Nj(I; [0, t]) (right) for
t ∈ [0,150].
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Figure 4.3 Left: The functional Sobol indices and the corresponding bounds proven in Theorem 4.3.1
for the cholera model; right: the same information as in the left plot, except we use log-scale on y-
axis to clearly show Stot

j (I;X ) and the corresponding bound, for small indices; the dashed black line
indicates y = 0.05 that could be a reasonable tolerance to decide which random input is unimportant.

4.5.2 Sensitivity analysis in a subsurface flow problem

In this section, we elaborate our proposed approach for sensitivity analysis and dimension
reduction on a model problem motivated by subsurface flow applications.

4.5.2.1 Model description

We consider the following equation modeling the fluid pressure in a single phase flow prob-
lem:

−∇ ·
( κ

η
∇p
)
= b, in D

p = 0 on ΓD,
κ

η
∇p · n = 0, on ΓN

(4.26)
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Figure 4.4 Mean log-permeability field. The black dots indicate point source locations.

The domain is D = (−1,1) × (0,1), ΓD is the union of the left, bottom, right parts of the
boundary, and ΓN is the top boundary. The right hand side function b(x) is defined as a sum
of mollified point sources, b(x) = ∑4

i=1 αiδxi(x), where

δxi(x) =
1

2πL

{
− 1

2L
∥x − xi∥2

2

}
,

with x1 = (−0.6,0.2), x2 = (−0.2,0.4), and x3 = (0.2, .6), and x4 = (0.6,0.8). We chose (α1,α2,α3,α4)

= (2,5,5,2). In this problem, we assume viscosity is η = 1 and consider uncertainties in the
permeability field κ, which is modeled as a log-Gaussian process:

logκ(x,ω) =: a(x,ω) = ā(x) + σaz(x,ω), x ∈ D,ω ∈ Ω, (4.27)

where Ω is an appropriate sample space, and z(x,ω) is a Gaussian process with mean zero
and covariance function given by

cz(x,y) = exp
{
−|x1 − y1|

ℓx
− |x2 − y2|

ℓy

}
, x,y ∈ D.

In the present example, we use ℓx = 1/2 and ℓy = 1/4, implying stronger correlations in the
horizontal direction. The covariance operator Cpar is defined by Cparu =

∫
X cz(·,y)u(y)dy. The

mean of the process ā(x) is adapted from the simulated permeability data from the Society
for Petroleum Engineers (SPE) 2001 Comparative Solutions Project [1]; see Figure 4.4. For this
problem we use σa = 1.6. We use a truncated KLE to represent the log-permeability field:

a(x,ω) ≈ ā(x) +
Np

∑
k=1

√
λk(Cpar)θk(ω)ek(x), (4.28)

where θk, k = 1,2, . . . , Np are independent standard normal random variables, and λk(Cpar)

and ek(x) are the eigenpairs of the covariance operator Cpar of a(x,ω) (which is defined in
terms of the correlation function cz as before). Note that when using the truncated KLE,
the uncertainty in the log permeability field is characterized by the random vector θθθ =
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Figure 4.5 Left: the normalized eigenvalues of the log-permeability field covariance operator; right:
the ratios rk, for k = 1, . . . ,1000.

[θ1 θ2 . . . θNp ]
T ∈ RNp .

To establish the truncation level, we consider the ratio

rk =
∑k

i=1 λi

∑∞
i=1 λi

, k = 1,2,3, . . . ,

where λi’s are the eigenvalues of the covariance operator Cpar. We depict the normalized
eigenvalues, λk/λ1 in Figure 4.5 (left) and plot the ratios rk, for k = 1, . . . ,1000. We find that
rk > 0.9, for k = 126; thus, we retain Np = 126 in the KLE of the log-permeability field. We
will see shortly (see section 4.5.2.3) that this is an unnecessarily large parameter dimension
for the quantity of interest under study.

As an illustration, in Figure 4.6, we show two realizations of the resulting log-permeability
field (left) along with the corresponding pressure fields (right) obtained by solving (4.26).

4.5.2.2 The quantity of interest and its spectral representation

We consider the following quantity of interest:

f (x,θθθ) := p(x,θθθ)
∣∣
ΓN

.

A few realizations of f (x,θθθ) are plotted in (4.7) (left). To compute the KLE of f , we use a
sample average approximation of its covariance function, which is then used to solve the dis-
cretized generalized eigenvalue problem for its KL modes. The first 30 normalized eigenval-
ues of the covariance operator of f , which we denote by Cqoi, are plotted in Figure 4.7 (middle,
red color); these correspond to computing the KLE of the QoI using sampling with a Monte
Carlo (MC) sample of size NMC = 1000. We also plot the eigenvalues of the log-permeability
field covariance operator Cpar, in the same plot (blue color); note that the eigenvalues of Cqoi

decay significantly faster than those of Cpar, as expected. To assess the impact of the MC
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Figure 4.6 Realizations of the log-permeability field (left), and the corresponding pressure fields
(right).

sample size on computation of the dominant eigenvalues of Cqoi, we report the normalized
eigenvalues of Cqoi computed using successively larger sample sizes, in Figure 4.7 (right). We
observe that a sample of size O(100) can be used for computing the dominant eigenvalues
reliably.
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Figure 4.7 A few realizations of the QoI (left), eigenvalues of the output covariance operator versus
those of the log-permeability field (middle). Eigenvalues of the output covariance, with successively
larger MC samples sizes for computing the output KLE (right).

The fast decay of eigenvalues of Cqoi indicates the potential for output dimension reduc-
tion. We note four orders of magnitude reduction in the size of the eigenvalues of Cqoi with
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only 15 modes in Figure 4.7 (right). Hence, we consider a low-rank approximation of f ,

f (x,θθθ) ≈ f̂ (x,θθθ) = f̄ (x) +
Nqoi

∑
i=1

√
λi(Cqoi) fi(θθθ)ϕi(x) (4.29)

with Nqoi = 15. While this provides a low-rank approximation to f , the dimension of θθθ is still
high, and is determined by the truncation of the KLE of the log-permeability field at Np = 126.
Below, we use global sensitivity analysis to reduce the dimension of θθθ.

4.5.2.3 Derivative-based GSA
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Figure 4.8 Left: DGSM-based bound in (Theorem 4.3.1) calculated for various sample sizes. Right:
standard deviation fields for full model versus that of the reduced model.

We begin by calculating the DGSM-based bounds on functional Sobol’ indices from (The-
orem 4.3.1) for f̂ defined in (4.29). As seen before, this process requires sampling the QoI; we
compute the DGSM-based bounds by using MC samples of size NMC = 100,500,1,000, and
100,000. The resulting bounds for the first 19 parameters are reported in Figure 4.8 (left).

Note that Figure 4.8 (left) displays the bounds for only the first 19 modes, because the
bounds for the remaining 107 modes were all well below the chosen importance tolerance of
0.01. We note that the results calculated with NMC = 500,1,000, and 100,000 provide a consis-
tent classification of important and unimportant parameters. This indicates that in practice,
a modest sample size is sufficient for obtaining informative estimates of the DGSM-based
bounds from (Theorem 4.3.1).

The computed DGSM-based bounds indicate that the parameter KL modes θj, with j ∈
{1,2,3,4,5,6,7,8,9,10,12,14} were above the chosen importance tolerance of 0.01 and the re-
maining modes can be fixed at a nominal value of zero. This effectively reduces the parameter
dimension from Np = 126 to Np = 12. We denote the resulting reduced model, now a function
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of only 12 variables, by f r. To test that f r reliably captures the variability of the true model
f , we sample both reduced and full models 105 times to compare their statistical properties.
In Figure 4.8 (right), we compare the standard deviation of the full and reduced models over
the spatial domain X = [−1,1] of the QoI. In Figure 4.9 we report PDFs of f (x, ·) and f r(x, ·),
at x = −0.75, − 0.25, 0.25, 0.75. We note that the reduced model captures the distribution of
the QoI at the considered points closely.
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Figure 4.9 pdf estimate for equally spaced points, [−1,1].

4.5.3 Application to biotransport in tumors

In this section, we apply our derivative-based GSA methods to a biotransport problem. Specif-
ically, we consider biotransport in cancerous tumors with uncertain material properties. We
focus on the resulting uncertainties in the pressure field in a spherical tumor when a single
needle injection occurs at the center of the tumor.
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4.5.3.1 Model description

Restricting our attention to a 2D cross-section, we consider Darcy’s law constrained by con-
servation of mass in a 2D physical domain D ⊂ R2 given by a circle of radius Rtumor = 5 mm
with an inner circle of radius Rneedle = 0.25 mm, modeling the injection site, removed; see
Figure 4.10. The inner and outer boundaries of the physical domain D are denoted by ΓN and
ΓD, respectively. The fluid pressure p is governed by the following elliptic PDE:

Table 4.2 Model parameters for the biotransport problem.

Parameter Symbol Nominal Value [unit]

Permeability κ 0.5 [md]
Viscosity η 8.9 × 10−4 [Pa · s]
Inflow rate Q 1 [mm2/min]

ΓN

r = 1

r = 2

r = 3

Rtumor = 5 mm

ΓD

D

Figure 4.10 The domain D. The inner and
outer boundaries are equipped with Neu-
mann and Dirichlet boundary conditions
and are denoted by ΓN and ΓD, respec-
tively.

−∇ ·
(

κ

η
∇p
)
= 0 in D,

p = 0 on ΓD,

∇p · n =
Qη

2πRneedleκ
on ΓN.

(4.30)

Here κ is the absolute permeability field, η is the fluid dynamic viscosity, Q represents the
volume flow rate per unit length, and n is the outward-pointing normal of the inner boundary
ΓN. The nominal values for the parameters in (4.30) are given in Table 4.2. These values are
selected according to those used in previous experimental and numerical studies of fluid
transport in tumors [24, 67, 87]. As has been discussed by many researchers, tumor structure
can be highly complicated due to its invasive nature. In general, a tumor consists of loosely
organized abnormal cells, fibers, vasculature, and lymphatics [23]. This results in randomly
formed tumor tissues with structural heterogeneity.

In this subsection, the permeability field is modeled as a log-Gaussian random field as
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follows. Let z(x,ω) be a centered Gaussian process with the following covariance function:

cz(x,y) = exp
{
−1
ℓ
∥x − y∥1

}
, x,y ∈ D, (4.31)

where ℓ > 0 is the correlation length. Then, we define the log-permeability a = logκ as in
(4.27), where the pointwise mean and variance of the process are given by ā ≡ ln(0.5) + σ2

a

and σ2
a = 0.25, respectively. Note that ā is selected to ensure that the mode of the κ distribution

at each spatial point is 0.5 md, which is the nominal value for κ given in Table 4.2. We can
represent a(x,ω) using a truncated KLE as in (4.28).

4.5.3.2 The quantity of interest and its spectral representation

We consider the following QoI:
f (x,θθθ) =Qp, (4.32)

where, as in section 4.4, Q is the restriction operator to a closed subset X of D. In this
case, X is an annulus with the inner boundary given by the inner boundary ΓN of D and
with the outer boundary having a radius Rout = 1 mm, 2 mm, or 3 mm (see Figure 4.10). The
corresponding truncated KLE of f reads

f̂ (x,θθθ) := f̄ (x) +
Nqoi

∑
k=1

√
λk(Cqoi) fk(θθθ)ϕk(x), (4.33)

where the KL modes fi are defined as before, and λk(Cqoi) and ϕk(x) are the eigenpairs of the
QoI covariance operator Cqoi.

4.5.3.3 Derivative-based GSA

As in section 4.5.2.3, we calculate the DGSM-based bounds on functional Sobol’ indices from
Theorem 4.3.1 for the QoI defined in (4.33) and follow the adjoint-based framework outlined
in section 4.4. As mentioned previously, a small DGSM-based bound for a given parameter
implies that the corresponding functional total Sobol’ index is small and thus, the parameter
is deemed unimportant. In the experiments in this section, we set an importance tolerance of
0.025. In Figure 4.11, we study the effects of the MC sampling size NMC, the KLE dimension
Np of the input and Nqoi of the output, annulus size (i.e., size of X ), and correlation length
ℓ on DGSM-based bounds. Note that Figure 4.11 displays the DGSM-based bounds for the
first 37 modes, beyond which the DGSM-based bounds were all below the chosen importance
tolerance. Below, we explain the numerical experiments reported in Figure 4.11, in detail.

In the first test, we examine the effect of the MC sample size NMC as needed in our ap-
proach for computing DGSMs (see Algorithm 2). Similar to the observation in section 4.5.2.3,
a modest sample size is sufficient for obtaining informative estimates of the DGSMs. Specifi-
cally, we present one set of test results in Figure 4.11 (top left). Here, the outer radius of the
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annulus is 1 mm, the correlation length is 0.5 mm, and we consider an input dimension of
Np = 150, and an output dimension of Nqoi = 50. We observe that a sample size of NMC = 750
is sufficient for obtaining a reliable estimation of DGSMs-based bounds. Therefore, the MC
sample size in the following tests is fixed at NMC = 750.

We then test the effects of the annulus size and correlation length on DGSMs. In these tests,
the input and output dimensions are Np = 150 and Nqoi = 50, respectively. From Figure 4.11
(top right and bottom left), we observe that when the annulus size increases or the correla-
tion length decreases, the QoI is sensitive to more KL terms of the input. Interestingly, most
of these sensitive parameters are from relatively high-order terms. For example, as shown
in Figure 4.11 (bottom left), when the correlation length decreases from 2.0 mm to 0.5 mm,
the importance of KL modes θj, with j ∈ {9,10,17,22,23} gradually grow. Implication of such
issues on reduced-order modeling (ROM) will be discussed in the next section. Next, we ex-
amine the impact of increasing Np and Nqoi. As seen in Figure 4.11 (bottom right), increasing
the input and output dimensions beyond the selected values of Np = 150 and Nqoi = 50 does
not result in noticeable changes in DGSM estimates.

4.5.3.4 Insights on ROM assisted by DGSMs

From the global sensitivity analysis, we find that the QoI is only sensitive to several selected
KL terms of the input. This can be used to guide ROM based on DGSMs. In this section, we
compare two ROM approaches: one is based on the GSA with DGSMs (termed as DGSM-
based ROM) and the other is based on directly selecting the first k-terms of the KLE of the
random input field (termed as KL-based ROM). Generally, the reduced-order model of the
input can be written as follows:

ã(x,ω) = ā(x) + ∑
k∈S

√
λk(Cpar)θk(ω)ek(x), (4.34)

where S is the set which consists of the indices of the KL terms used in ROM. We evaluate
the performance of the two ROM methods on recovering the PDFs of pressures at different
locations in the flow field.

As shown in Figure 4.12, we select three points on the mesh with different distances from
the center of the domain: the point P1 is on the inner boundary with a large relative standard
deviation (RSD) of the pressure (RSD = 0.143); the point P2 is close to the inner boundary
with a moderate RSD (RSD = 0.105); and the point P3 is far from the inner boundary with a
relatively small RSD (RSD = 0.0845). In the DGSM-based ROM, the first n KL terms which
the QoI is most sensitive to are used to reconstruct the reduced-order model of the pressure
field. In the KL-based ROM, the first n KL terms, corresponding to the n largest eigenvalues
of the input covariance operator, are used to reconstruct the reduced-order model. An MC
sampling approach is used to construct PDFs from the full model, which includes all the
KL terms, and those from the reduced-order models with different fidelities. The case with a
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Figure 4.11 The functional DGSM-based bounds of pressure fields in a tumor with uncertain perme-
ability. Top left: Convergence study with the MC sample size NMC = 500, 750, and 1500. Top right:
Comparison of DGSM-based bounds for different annulus sizes, namely the annulus outer radii of
1 mm, 2 mm, and 3 mm. Bottom left: Comparison of DGSM-based bounds for different correlation
lengths, namely 0.5 mm, 1 mm, and 2 mm. Bottom right: DGSM-based bounds calculated with differ-
ent combinations of the KLE dimensions of the input and output.

small correlation length (ℓ = 0.5 mm) and a large annulus size (Rout = 3 mm) is studied here.
An MC sample of size 6000 was found sufficient for constructing the PDFs.

From Figure 4.13, we observe that at P1, where the pressure variance is large, the reduced-
order model with only the first seven most sensitive KL terms can nearly recover the PDF
of the full model. Its performance is comparable to that of the KL-based ROM with the first
30 KL terms. This is not a surprise, because, as seen from the last figure in Figure 4.11, the
first seven most sensitive KL terms θj, with j ∈ {1,6,9,10,17,22,23}, are within the first 30 KL
terms used in the KL-based ROM. Similar conclusions can be drawn at P2 where a moderate
pressure variance is observed. At P3, we find that the DGSM-based ROM with the first seven
most sensitive KL terms does not recover the PDF well; however, the PDFs obtained using
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Figure 4.12 Distribution of the points where PDFs of pressures are extracted, and the corresponding
RSD field (contour).

the DGSM-based ROMs with more KL terms, such as that with the first 15, 30 and 45 most
sensitive KL terms, gradually approach the PDF of the full model. On the other hand, with
the same number of KL terms, the KL-based ROM makes very slow progress towards the full
model PDF. All these observations indicate that the DGSM-based ROM can be a much more
efficient reduced-order modeling approach than the KL-based ROM that involves a priori
truncation of

4.6 Conclusions

We have presented a mathematical framework for GSA of models with functional outputs,
and have proposed an efficient computational method for identifying unimportant inputs that
is suitable for models with high-dimensional parameters. The latter is done by combining the
proposed functional DGSMs, “low-rank” KLEs of output QoIs, and adjoint-based gradient
computation. In particular, the computational complexity of the proposed approach, in terms
of the number of required model evaluations, does not scale with dimension of the parameter.
The effectiveness of the proposed framework is illustrated numerically in applications from
epidemiology, subsurface flow, and biotransport.

The proposed approach is effective in finding unimportant input parameters. This ap-
proach also paves the way for an efficient surrogate modeling approach: the low-rank KLE of
the model output can be used to construct efficient-to-evaluate surrogate models by comput-
ing surrogate models for the KL modes, in the reduced parameter space, which is identified
using the functional DGSMs. The latter can be done using various methods including orthog-
onal polynomial approximations [63, 98, 110], multivariate adaptive regression splines [40],
or active subspace approaches [27]. We mention that active subspace methods have also
been used directly for dimension reduction in models with vectorial outputs. Namely, [114]
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Figure 4.13 Comparison of PDFs constructed from the DGSM-based ROM (left column) and KL-
based ROM (right column) with variable fidelity at points P1, P2 and P3.

presents a gradient-based input dimension reduction method for such models. The method
proposed in [114] finds a set of important directions in the input parameter space by consid-
ering ridge approximations of the model output and by minimizing an upper bound on the
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approximation error. The approach in [114] is related to the present work when the goal of
GSA is input dimension reduction.

In future work, we seek to investigate generalizations to cases of models with correlated
inputs. While the proposed DGSMs can be computed for such models in the same way,
the corresponding variance-based indices need to be generalized. We are also interested in
applying the proposed method to more complex physical applications such as multiphase
flow in geological formations.

54



CHAPTER 5

GLOBAL SENSITIVITY DRIVEN INPUT DIMENSIONALITY REDUCTION

FOR REAXFF PARAMETERIZATIONS OF SILICA-BASED GLASSES

The contents of this chapter is related to the work published in [85]. The author of the present
thesis is also lead author on this publication. We would like to give special thanks to Mark
Wilson and Sandia National Laboratories for the opportunity to pursue this work.

5.1 Introduction

Molecular dynamics (MD) simulations with reactive potentials provide the capability to gain
chemically specific, atomic-scale insight into a broad range of material science applications
with examples including dislocation dynamics, chemical kinetic processes, and crack propa-
gation. Each of these examples represent a complex dynamic process where MD can expose
the atomic-scale origins of the given phenomena, which can prove useful for designing pre-
ventative or predictive measures.

ReaxFF is a reactive interatomic potential [21, 106, 107] which can be utilized by the MD
simulation package LAMMPS [82]. Given an accurate parameterization, LAMMPS paired
with ReaxFF is capable of computing highly specific chemical data. Every unique material
system and physics of interest requires a corresponding unique parameterization. There are
72 parameters involved in a reactive potential parameterization for a single element, and
for compounds involving multiple distinct elements the parameter dimension is significantly
larger. Due in part to the shear amount parameters that need to be estimated, creating novel
parameterizations is a challenging and time consuming task. To make ReaxFF more extensible
for projects that require fast analysis of novel (multi-component) material systems, in the
present work we use global sensitivity analysis (GSA) to identify non-influential parameters
to the ReaxFF parameterization.
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We focus our analysis on a well-utilized, existing parameterization for the elements sil-
icon (Si) and oxygen (O) in the context of silica-based glasses [81]. We study a variety of
quantities of interest (QoIs) corresponding to the energetic interactions between Si and O,
and screen for non-influential parameters by computing derivative-based global sensitivity
measures (DGSMs) [25, 57] for the associated input parameters. The studied QoIs include
isolated (single) atom energy, radial bond energy, and angular bending energy.

This chapter is is organized as follows: In section 5.2, we explain the uncertain parameter
space and give a brief overview of the studied objectives. We provide a set of numerical results
and explanations in section 5.3. Lastly, in section 5.4, we include possibilities for future work
and closing remarks.

5.2 ReaxFF parameters and QoIs

We provide a brief overview of how ReaxFF works, the parameters associated with a given
compound, and expand on the QoIs to be studied.

Parameters of ReaxFF. ReaxFF is a bond order-based interatomic potential, which means
it treats bond order as a continuous function of interatomic distance. Due in part to this mod-
eling approach, ReaxFF is able to compute atomic-scale chemical behavior. ReaxFF is known
for its near-first principles accuracy. For brevity we do not include the precise analytical
equations in the present work. A detailed breakdown of the analytical form of the involved
potentials can be found in [106].

There are six different parameter types in the ReaxFF potentials: atom-type, bond-type, off-
diagonal-type, angle-type, torsion-type, and hydrogen bond-type. Furthermore, depending on the
compound being considered and the QoI being studied, different sub-groupings of elements
have their own subset of parameters. In the present work, we study compounds containing O
and Si, arranged in varying combinations, and involving up to four total atoms. We use the
subscripts 1 and 2 to indicate O and Si, respectively. Therefore, we denote the parameter type
subsets as θθθa

i , θθθb
ij, θθθod

ij , θθθ
ag
ijk, θθθt

ijkl for types atom-type i, bond-type i-j, off-diagonal-type i-j, angle-
type i-j-k and torsion-type i-j-k-l, respectively, for i, j,k, l ∈ {1, 2}. Note that we do not have a
notation for hydrogen bond parameters because the simulations in the present work do not
involve the element hydrogen. Consequently, hydrogen bond parameters are unnecessary.

Not all of input parameters are uncertain. For example, there is an atom-type param-
eter corresponding to atomic mass—a known value for all elements in the periodic table.
Therefore, this parameter is fixed for every element. In Table 5.1 we summarize the input
parameters for each QoI.

The input parameters are assumed to be independent, and uniformly distributed such that
θj ∼ U (aj,bj) where aj and bj are the lower and upper bounds corresponding to parameter θj.
The upper and lower bound for each parameter were determined by numerical experimen-
tation. The interval for each θj was established around the published values defined in the

56



Table 5.1 Summary of the studied QoIs, corresponding x units, and involved parameters. Note that
for QoIs Bij, and Aijk, i, j,k ∈ {1, 2}, the inclusion of certain subsets of θθθod

ij , θθθ
ag
ijk, and θθθt

ijkl in θθθ depends
on the compound being modeled.

Symbol QoI x units involved parameters
Si(θθθ) single atom energy none θθθ = [θθθa

i ]
T

Bij(x,θθθ) radial bond energy Angstrom θθθ = [θθθa
i θθθb

ij θθθod
ij ]

T

Aijk(x,θθθ) angular bending energy degree θθθ = [θθθa
i θθθb

ij θθθod
ij θθθ

ag
ijk θθθt

ijkl ]
T

work of Pitman et al [81]. Then, the QoI functions were evaluated with parameters sampled
from these intervals. Upper and lower bounds were modified until regions were found for
which LAMMPS and ReaxFF did not error. The intention was to test the extent at which the
parameter space is limited by the calculation done by LAMMPS and ReaxFF, rather then by
the physical meaning of the parameters.

QoI overview. We consider three QoI types: isolated (single) atom energy, radial bond
energy, and angular bending energy. We denote these QoIs as Si(θθθ), Bij(x,θθθ), and Aijk(x,θθθ),
respectively. The subscripts i, j,k ∈ {1, 2}, correspond to the element numbers. We assume
a QoI depends on all possible relevant parameters. Assuming very little about which input
parameters are relevant to a QoI allows us to develop a framework that can be applied to
a wide range of QoIs. Note, the single atom energy is a function of the input parameters θθθ

only, while the remaining two QoIs are also functions of an independent state variable x. A
summary of the QoIs and corresponding input parameters is provided in Table 5.1. Note that
the parameter type subsets required for a particular combination of QoI and compound can
vary. Specifically, certain parameter subsets are only included if they have physical meaning.
For example, there are no off-diagonal interactions in the Bij when i = j. Therefore, θθθod

jj would
not be included in θθθ in this instance.

We compare the following examples for clarity. Consider the radial bond energy between
O and Si. This QoI is denoted by B12(x,θθθ), where x corresponds to the distance between the
two atoms measured in Angstroms. In this case θθθ = [θθθa

1 θθθa
2 θθθb

12 θθθod
12]

T. We compare this with
the radial bond energy between O and O. This QoI is denoted by B11(x,θθθ), with θθθ = [θθθa

1 θθθb
11]

T.
Note that modeling more complex molecules will require even larger input parameter sets,
leading to a rapid increase in parameter dimension. This emphasizes the need for efficient
input dimension reduction.

We briefly describe the LAMMPS simulation for each QoI studied. For Si(θθθ) a single atom
is placed in a “box”, and LAMMPS calculates the associated potential energy. For Bij(x,θθθ),
two atoms are placed 1 Angstrom apart and then separated to a distance of 14.9 Angstrom.
LAMMPS calculates the potential energy of the bond at intervals of 0.1 Angstrom. For this
QoI x represents distance. The simulation for Aijk(x,θθθ) involves three atoms. The atoms are
initialized with an angle of 10 degrees between them. Then, a radial atom is moved until the
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angle between all three atoms is equal to 180 degrees. LAMMPS measures the angular energy
at ten degree intervals. In this case, x corresponds to degrees.

5.3 Numerical results

We consider compounds combining the elements O and Si that involve up to four atoms. We
use 1 to label O atoms and 2 to label Si atoms. and compute the derivative-based global sensi-
tivity measures (DGSMs) for a variety of QoIs. (Definitions and properties for scalar DGSMs
and functional DGSMs were covered in sections 2.2 and 4.3 of this thesis, respectively.) Pa-
rameters with DGSMs equal to zero are considered non-influential. Note, this is an extremely
tight tolerance. Our intention was to eliminate only the parameters that had no impact on
the studied QoIs. In future work, it would be possible to raise this tolerance and eliminate a
larger subset of inputs. For all DGSM computations we use finite differences to approximate
the partial derivatives, and for the function-valued QoIs we use the composite trapezoid rule
to compute the integral over the state space. A summary of the studied QoIs, total number
of parameters, non-influential parameter numbers, and total amount of QoI samples used is
provided in Table 5.2. We denote the number of samples used to estimate the integral over
the parameter space as Ns. Note that Ns varies slightly for some of the studied QoIs. This
is because for some of the QoIs a small number of the simulations were abandoned due to
timeout error.

Isolated (Single) Atom Energy. Recall, Sj(θθθ), j = 1,2 is a scalar QoI, corresponding to the
isolated (single) atom energy. We fix six of the atom-type parameters and assume Sj(θθθ) is a
function of the remaining Np = 26 atom-type parameters. Using a sample size of Ns = 1,000
we compute the DGSMs for both element 1 and element 2. Observe that from the original 26
input parameters, 24 are non-influential. This suggests that the single atom energy for both
O and Si depends on the same two input parameters, only.

Radial Bond Energy. Next, we compute the functional DGSMs for the radial bond energy
Bij(x,θθθ). In the case of i = j = 1,2 the radial bond energy is assumed to be a function of Np = 42
atom-type and bond-type parameters. Recall, there are no off-diagonal-type parameters when
i = j. We compute the functional DGSMs for B11 and B22 with Ns = 1,000. The QoI B11 has
12 non-influential parameters and B22 has 17 non-influential parameters. Therefore, the input
parameter dimension of B11 and B22 can be reduced to 30 and 25, respectively. Note, there
were several parameters that were influential for B11 that were non-influential for B22. This
could be due in part to the differences in the atomic structure of the two different elements,
and the associated bonding behaviors.

We also compute the functional DGSMs for B12 with Ns = 1,000. This QoI is assumed to
be a function of two sets of atom-type parameters, one set of bond-type parameters, and one
set of off-diagonal-type parameters. After excluding fixed parameters the input parameter
dimension for B12 is Np = 73. There are 33 non-influential parameters, reducing the input
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Table 5.2 List of studies performed in this work. Each quantity of interest (QoI), isolated (single)
atom energy (Si(θθθ)) radial bond energy (Bij(x,θθθ)), angular bending energy (Aijk(x,θθθ)) is listed with
their respective varied parameters, total number of samples (Ns), total non-influential parameters,
and number of samples with LAMMPS errors (Ne). Subscripts denote atom types, where 1 repre-
sents O and 2 represents Si.

QoI parameters Np non-
influential

Ns Ne

S1(θθθ) [θθθa
1]

T 26 24 1000 0

S2(θθθ) [θθθa
2]

T 26 24 1000 0

B11(x,θθθ) [θθθa
1 θθθb

11]
T 42 12 1000 0

B22(x,θθθ) [θθθa
2 θθθb

22]
T 42 17 1000 0

B12(x,θθθ) [θθθa
1 θθθa

2 θθθb
12 θθθod

12]
T 73 33 1000 0

A111(x,θθθ) [θθθa
1 θθθb

11 θθθ
ag
111 θθθt

1111]
T 56 15 1000 0

A222(x,θθθ) [θθθa
2 θθθb

22 θθθ
ag
222]

T 49 12 991 9

A122(x,θθθ) [θθθa
1 θθθa

2 θθθb
11 θθθb

12 θθθod
12 θθθ

ag
122 θθθ

ag
212]

T 103 28 974 26

A212(x,θθθ) [θθθa
1 θθθa

2 θθθb
12 θθθb

22 θθθod
12 θθθ

ag
122 θθθ

ag
212]

T 103 27 980 20

A121(x,θθθ) [θθθa
1 θθθa

2 θθθb
11 θθθb

12 θθθod
12 θθθ

ag
121 θθθ

ag
112 θθθt

1111]
T 110 31 988 12

A112(x,θθθ) [θθθa
1 θθθa

2 θθθb
11 θθθb

12 θθθod
12 θθθ

ag
121 θθθ

ag
112 θθθt

1111]
T 110 21 984 16

dimension from 73 to 40.
Angular Bending Energy. Recall, Aijk(x,θθθ) represents the angular bending energy. For

the case when i = j = k = 1 A111 is a function of Np = 56 atom-type, bond-type, angle-type,
and torsion-type parameters. For i = j = k = 2 A222 is a function of Np = 49 atom-type, bond-
type, and angle-type parameters. We compute the DGSMs for A111 with Ns = 1,000 and
determine there are 15 non-influential parameters. Similarly, we use Ns = 991 to compute
the DGSM values for A222. This QoI had 13 non-influential parameters. The 2 parameter
difference between A111 and A222 could once again be a consequence of the atomic structure
of the two different elements, and the associated bonding behaviors.

The QoIs A122 and A212 are functions of Np = 103 atom-type, bond-type, off-diagonal-
type, and angle-type, parameters. We use Ns = 974 and Ns = 980 samples to compute the
DGSMs for A122 and A212 respectively. There are 28 non-influential parameters for A122 and
27 non-influential parameters for A212. In this instance, the QoIs shared all the same non-
influential parameters except one parameter corresponding to bond over-coordination energy.
This difference could be a consequence of the structure of the compound.
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For the QoIs A121 and A112 we have Np = 110 parameters. We compute the DGSM values
with Ns = 988 and Ns = 984 samples for A121 and A112, respectively. The results are used to
determine there are 31 non-influential parameters for A121 and 32 non-influential parameters
for A112. Similar to the previous mixed atom angular bending energy, this difference may be
a consequence of the atomic structure.

5.4 Conclusions

A global sensitivity approach was utilized to identify non-influential parameters of the reac-
tive potentials used by ReaxFF. We focused on energetic interactions between Si and O, and
calculated DGSM values for single atom energy, radial bond energy, and angle bending en-
ergy, for a variety of atom combinations. The computed sensitivity measures indicated that
several of input parameters are insignificant in this material system. This information could
be used to inform the user of parameters that are non-influential during the optimization
process for Si-based glass ReaxFF input parameters.

With respect to the parameter space, we made several simplifying assumptions, includ-
ing parameter independence. Also, the parameter intervals were determined experimentally.
Future efforts to better map out the parameter space and relationships between parameters
is needed. Future work could also include comparing results for elements in similar periodic
categories and compounds with similar structures in order to look for trends.

We observed DGSM values equal to zero for many parameters. In future studies, a
nonzero importance threshold could be enforced on the DGSM values to reduce the input
dimension to a size for which more informative, but computationally expensive GSA tools,
can be applied. Once the input dimension is reduced, the accuracy of the reduced simula-
tions can be evaluated by comparing to simulations computed in the full parameters space.
Additionally, input parameter dimension reduction informs which parameters need precise
estimation for different QoIs to achieve an accurate parameterization.
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CHAPTER 6

STRUCTURE EXPLOITING METHODS FOR FAST UNCERTAINTY

QUANTIFICATION IN MULTIPHASE FLOW THROUGH

HETEROGENEOUS MEDIA

The contents of this chapter is related to the research contained in [26]. The author of the
present thesis is also lead author on this manuscript. We would like to give special thanks to
our collaborator Bilal Saad.

6.1 Introduction

Low permeability argillites are considered as suitable host rocks for underground radioactive
waste storage to retain radionuclides locally. However, hydrogen gas produced by corrosion
of steel engineered barriers can represent a threat to the installation safety. A significant
impact of this production is the overpressurization of hydrogen around alveolus leading to
opening fractures in the surrounding host rock and inducing groundwater flow and transport
of radionuclides outside of the geological repositories. This problem renews the mathematical
interest in the equations describing multiphase multicomponent flows through porous media,
within the present context. An important aspect of improving the prediction fidelity of such
models is to account for the various sources of uncertainty in the governing equations.

Performing uncertainty analysis on the models under study using a direct Monte Carlo
sampling approach is infeasible. This is due to the high cost of model simulations and the
need for a large number of such simulations. Therefore, there is a need for quick-to-evaluate
surrogate models that accurately capture the underlying physics and statistical properties of
the quantities of interest (QoIs). Surrogate modeling, however, is a formidable task for the
applications considered in the present work. Models describing flow through porous media

61



exhibit distinct challenges with regards to uncertainty quantification including expensive sim-
ulations, high-dimensional uncertain parameters, and function-valued outputs. Addressing
these challenges effectively requires understanding and exploiting the problem structure. To
this end, we propose a framework that deploys a sensitivity analysis approach to reduce the
dimensionality of the input parameter and utilizes the spectral properties of the output QoI
to generate an efficient surrogate model.

QoI: f = f(s,θ)

reduce output dimension:
fNqoi

(s,θ) = f0(s) +
∑Nqoi

i=1 fi(θ)Φi(s)

reduce input dimension:
(reduced parameter θr)

PCE of KL modes:
fPC
i (θr) =

∑NPC

k=0 fikΨk(θr)

bispectral surrogate:
fPC
Nqoi

(s,θr) = f0(s) +
∑Nqoi

i=1 fPC
i (θr)Φi(s)

Figure 6.1 A schematic of the proposed bispectral surrogate modeling approach.

Related work. The modeling of underground radioactive waste storage involves simulat-
ing the coupled transport of multiphase multicomponent flow in porous medium. Equations
governing this type of flow in porous media are nonlinear and involve simulation of complex
phenomena such as the appearance and the disappearance of the gas phase leading to the
degeneracy of the equations satisfied by the saturation. There have been significant research
efforts dealing with mathematical and numerical models for simulating the transport migra-
tion of radionuclides. The articles [18, 19] present test-cases and set up benchmark examples
to address some of the specific problems encountered when numerically simulating gas mi-
gration in underground nuclear waste repositories. In [8, 19, 76] different choices of primary
variables have been proposed to tackle the degeneracy of the equations satisfied by the satu-
ration. In [10], the authors study a two compressible and partially miscible phase flow model
in porous media, applied to gas migration in an underground nuclear waste repository in the
case where the velocity of the mass exchange between dissolved hydrogen and hydrogen in
the gas phase is supposed finite. Also presented is a numerical scheme based on a two-step
convection/diffusion-relaxation strategy to simulate the non-equilibrium model. There have
also been efforts to quantify uncertainty in models of multiphase flow [22, 73, 74, 86, 97, 109].

The tools from uncertainty quantification that are relevant to the present work include
global sensitivity analysis (GSA) and surrogate modeling. GSA provides insight into how
uncertainties in model parameters influence model outputs by identifying the input parame-
ters a QoI is sensitive to. This increases overall understanding of the underlying physics and
guides parameter dimension reduction. The Sobol’ indices [100], derivative-based global sen-
sitivity measures (DGSMs) [57, 59, 101], and active subspace methods [27, 28] are examples of
GSA tools widely used in practice. These concepts were originally conceived for scalar QoIs.
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Recent works such as [6, 25, 114] generalize standard GSA tools to the case of vector- and
function-valued QoIs. In particular, [6, 41] concern variance-based GSA using Sobol’ indices
for such QoIs. The article [25] studies DGSMs for function-valued QoIs. A generalization of
active subspace methods for vectorial outputs is presented in [114].

For expensive-to-compute QoIs calculating GSA measures such as Sobol’ indices is com-
putationally expensive. A common method for mitigating the computational cost is to con-
struct a cheap-to-evaluate surrogate model for the QoI and then apply GSA techniques to the
surrogate. For example, polynomial chaos expansions (PCEs) have been a popular approach
for accelerating the computation of Sobol’ indices; see, e.g., [4, 15, 31, 104]. Surrogate model
construction, however, is itself a computationally challenging task, especially in the case of
models with high-dimensional input parameters. For such models it is also possible to use
a multilevel approach: initial parameter screening can be performed using cheap, but less
precise, tools and further dimension reduction is performed through more rigorous methods
such as a variance-based analysis using accurate surrogate models constructed in a reduced-
dimensional parameter space; see e.g., [47].

For function-valued QoIs, a straightforward approach is to compute surrogate models
for every grid point in a discretized computational domain. This approach, however, can be
inefficient and ignores an important problem structure—the low-rank structure of the output.
Specifically, in many applications, function-valued QoIs can be represented via a spectral
representation, such as a Karhunen–Loéve expansion (KLE), with a small number of terms.
This problem structure can be exploited for surrogate modeling: instead of approximating a
field quantity at every point in a computational grid, one can approximate a few dominant
modes of the output QoI. Such surrogate models can also be used to accelerate GSA methods;
see e.g., [6, 25, 45, 64].

Our approach and contributions. In the present work, we seek to construct surrogate
models for fast analysis of computationally intensive models with high-dimensional parame-
ters and function-valued QoIs. We consider QoIs of the form

f = f (s,θθθ), s ∈ X , θθθ ∈ Θ,

where Θ ⊆ RNp is the uncertain parameter domain and X is compact subset of Rd, with
d ∈ {1,2,3}. In practice, s can represent a spatial or temporal point. Our focus in the present
work is models of flow in porous media, and f (s,θθθ) is an observable in a multiphase flow
problem. Our approach identifies and exploits low-dimensional structures in both input and
output spaces. Specifically, we utilize approximate GSA measures for fast input parameter
screening, and low-rank spectral representations of output fields.

We propose a fast-to-compute screening metric that utilizes ideas from active subspaces [27]
to perform initial parameter dimension reduction. The proposed screening metrics do not
require gradient computation in the parameter space. This makes the proposed methods ap-
plicable to a broad class of problems involving complex physics systems for which adjoint
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solvers, which are essential for gradient computation in high dimensions, are not necessarily
available. Following parameter screening, we combine two different spectral approaches—
KLEs and PCEs—to generate an efficient surrogate model in a reduced-dimensional uncertain
parameter space. The overall surrogate model constructed takes the form,

f PC
Nqoi

(s,θθθr) = f0(s) +
Nqoi

∑
i=1

f PC
i (θθθr)Φi(s),

where Φi’s are orthogonal basis functions in L2(X ) obtained from a KLE of f (s,θθθ) and f PC
i

are approximate KL modes as functions of a reduced-dimensional parameter vector θθθr ⊆ Rnp ;
these KL modes are represented by PCEs,

f PC
i (θθθr) =

NPC

∑
k=0

fikΨk(θθθ
r),

where Ψk’s are a basis consisting of multivariate orthogonal polynomials in L2(Θ) and NPC

is specified based on the choice of truncation strategy. Thus, the overall surrogate model can
be expressed as

f (s,θθθ) ≈ f0(s) +
Nqoi

∑
i=1

NPC

∑
k=0

fikΨk(θθθ
r)Φi(s). (6.1)

We refer to the class of surrogate models of the form (6.1) as bispectral surrogates due to the
use of spectral representations in L2(X ) and L2(Θ). In Figure 6.1, we provide a schematic
of the proposed bispectral surrogate modeling framework. We point out that the proposed
approach is non-intrusive and requires only the ability to evaluate the governing model at a
sample of uncertain inputs. See section 6.5 for details.

While computing a surrogate model from a truncated KLE by replacing the KL modes
with PCEs (or other surrogates) is not new, see e.g., [6, 45, 64], we build upon this approach
by including a gradient-free input dimension reduction approach as a first step. This enables
the PCEs for the KL modes to be built in a lower-dimensional space. Thus, a major contribu-
tion of this chapter is a synergy of known techniques combined with a novel input dimension
reduction strategy to furnish an integrated surrogate modeling approach. We also provide a
detailed computational procedure for the proposed framework, making the present work a
self-contained guide. We elaborate our approach on an intricate multiphase multicomponent
flow model for which a comprehensive presentation is also given. In our numerical results,
we implement the proposed approach for both spatially- and temporally-varying QoIs. Addi-
tionally, a variety of statistical studies are conducted with the constructed bispectral surrogate.
These tests are intended to showcase the versatility of the surrogate model and explore the
physical phenomenon under study. In particular, we perform model predictions, compute
variance-based global sensitivity indices, and study statistical model response behavior. In
addition to demonstrating the effectiveness of the proposed strategy, our computational re-
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sults provide valuable insight regarding the response of complex porous media flow models
to uncertainties in material properties.

Chapter overview. In section 6.2 we present a detailed overview of the multiphase multi-
component flow model that is central to the present work. We also provide a description of
our choice of numerical solver for the governing equations. In section 6.3, we discuss model-
ing the uncertainties in material properties, as well as give a brief explanation of the model
response and relevant QoIs. We supply a concise overview of KLEs, PCEs, and bispectral sur-
rogates in section 6.4. In section 6.5 we provide a detailed framework, including algorithms,
for the proposed dimension reduction and surrogate modeling approach. Our computational
results are presented in section 6.6. Finally, we provide closing comments in section 6.7.

6.2 Model description

6.2.1 Mathematical formulation of the continuous problem.

Here we state the physical model used in this work. We consider a porous medium saturated
with a fluid composed of two phases, liquid (l) and gas (g), and a mixture of two components,
water (w) and hydrogen (h). The spatial domain Ω a bounded open subset of Rℓ (ℓ = 1,2, or
3) and the problem is considered in the time interval [0, Tf ], where Tf > 0 is the final time. To
define the physical model, we write the mass conservation of each component in each phase

ϕ∂t(ρ
w
l Sl + ρw

g Sg) +∇ · (ρw
l Vl + ρw

g Vg + JJJw
l + JJJw

g ) = f w, (6.2)

ϕ∂t(ρ
h
l Sl + ρh

gSg) +∇ · (ρh
l Vl + ρh

gVg + JJJh
l + JJJh

g) = f h, (6.3)

where ϕ(x) is the given porosity of the medium, Sα(t, x) the saturation of the phase α ∈ {l, g},
with the two saturations summing to one. Also, pα(t, x) is the pressure of the phase α, ρ

β
α is

the density of the component β ∈ {w, h} in the phase α, and ρα = ρh
α + ρw

α is the density of the
phase α. The velocity of each fluid, Vα is given by Darcy’s law

Vα = −K
krα(Sα)

µα

(
∇pα − ρα(pα)g

)
,

where K(x) is the intrinsic (given) permeability tensor of the porous medium, krα the relative
permeability of the α-phase, µα the constant α-phase’s viscosity, pα the α-phase’s pressure,
and g, the gravity vector. For further details of the model we refer to the presentation of the
benchmark [18, 19]. Following the Fick’s law, the diffusive flux of a component β in the phase
α is given by

JJJβ
α = −ϕSαραDβ

α∇X β
α ,

where coefficient Dβ
α is the Darcy scale molecular diffusion coefficients of β-component in α-

phase and X β
α = ρ

β
α/ρα is the component β molar fraction in phase α. Diffusive fluxes satisfy
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∑β JJJβ
α = 0 for each α ∈ {l, g}.

The capillary pressure law, which links the jump of pressure of the two phases to the
saturation, is

pc(Sl) = pg − pl .

This function is decreasing ( dpc
dSl

(Sl) < 0 for all Sl ∈ [0,1]), and satisfies pc(1) = 0.
In the following, the water is supposed only present in the liquid phase (no vapor of water

due to evaporation). Thus, (6.2)–(6.3) could be rewritten as

ϕ∂t(Sl ρw
l ) +∇ · (ρw

l Vl) +∇ · (ϕSl ρl Dh
l ∇Xh

l ) = f w, (6.4)

ϕ∂t(Sl ρh
l + Sg ρh

g) +∇ · (ρh
l Vl + ρh

gVg)−∇ · (ϕSl ρl Dh
l ∇Xh

l ) = f h. (6.5)

The system (6.4)–(6.5) is not complete; to close the system, we use the ideal gas law and the
Henry’s law

ρh
g =

Mh

RT
pg and ρh

l = MhHh pg, (6.6)

where the quantities Mh, Hh, R and T represent respectively the molar mass of hydrogen, the
Henry’s constant for hydrogen, the universal constant of perfect gases and T the temperature.
By these formulation, the system (6.4)–(6.5) is closed and we choose the liquid pressure and
the density of dissolved hydrogen as unknowns. From (6.6), the Henry’s law combined to
the ideal gas law, to obtain that the density of hydrogen gas is proportional to the density of
hydrogen dissolved

ρh
g = Cρh

l where C =
1

HhRT
= 52.51.

Note that the density of water ρw
l in the liquid phase is constant and from the Henry’s

law, we can write
ρl∇X h

l = X w
l ∇ρh

l .

Then the system (6.4)–(6.5) can be written as

ϕ∂t (Sl ρw
l ) +∇ · (ρw

l Vl) +∇ ·
(
ϕSl X w

l Dh
l ∇ρh

l

)
= f w, (6.7)

ϕ∂t

(
m(Sl)ρ

h
l

)
+∇ ·

(
ρh

l Vl + Cρh
l Vg

)
−∇ ·

(
ϕSl X w

l Dh
l ∇ρh

l

)
= f h, (6.8)

where m(Sl) = Sl + CSg.

A van Genuchten-Mualem model with the parameters n, Sαr and pr as given in Table
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6.1 (left) is used for the relative permeabilities and capillary pressure:

pc(Sle) = pr

(
S−1/υ

le − 1
)1/n

,

krl (Sle) =
√

Sle

(
1 −

(
1 − S1/υ

le

)υ)2
,

krg(Sle) =
√

1 − Sle

(
1 − S1/υ

le

)2υ
,

with the effective saturation

Sle = (Sl − Slr)/(1 − Slr − Sgr),

where Slr and Sgr are the liquid and gas residual saturations, respectively, and υ = 1 − 1/n.

6.2.2 Numerical solver

As is well known, the modeling of underground radioactive waste storage involves simula-
tion of complex phenomena such as the appearance and the disappearance of the gas phase
leading to the degeneracy of the equations satisfied by the saturation. This is mainly due to
the migration of gas produced by the corrosion of nuclear waste packages within a complex
heterogeneous domain. To overcome this difficulty, an important consideration, in the mod-
elling of multiphase flow with mass exchange between phases, is the choice of the primary
variables that define the thermodynamic state of the system. Different choices of primary vari-
ables have been proposed [8, 19, 76]. In this chapter, we consider pressure of the liquid phase
and density of dissolved hydrogen the primary unknowns in the multiphase flow system.

A cell-centered finite volume scheme is used for the space discretization and an implicit
Euler scheme for the temporal discretization. The nonlinear system is solved with a fixed
point method.

In the following section, we present the numerical results on a test case dedicated to solve
and understand of the main numerical problems concerning gas phase appearance produced
by injecting of hydrogen in a one-dimensional homogeneous porous domain fully saturated
with water (inspired from the MoMaS benchmark on multiphase flow in porous media [18]
for more details).

6.2.3 Numerical experiment

We consider a one-dimensional domain with the benchmark setup described in [18]. The
spatial domain Ω is the interval (0, L), with L = 200 meters, and the final simulation time
is Tf = 106 years. The parameters for porous medium, fluid characteristics, and initial and
boundary conditions are presented in [18] and summarized in Table 6.1.

Initial conditions are uniform over the whole domain with pure liquid water at fixed
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Table 6.1 Left: parameter values for the porous medium and fluid characteristics used in test case
1. Right: parameter values for domain size, boundary and initial conditions, total injection time and
total simulation time.

Parameter Value
ϕ [-] 0.15
K [m2] 5 × 10−20

pr [Pa] 2 × 106

n [-] 1.54
Slr [-] 0.4
Sgr [-] 0
ρw

l [Kg · mol−3] 103

µl [Pa · s] 1 × 10−3

µg [Pa · s] 9 × 10−6

Hh [mol.Pa−1.m−3] 7.65 × 10−6

Mh [Kg · mol−1] 2 × 10−3

Dh
l [m2 · s−1] 3 × 10−9

Parameter Value
L [m] 200
qh [kg/m2/year] 5.57 × 10−6

pinit [Pa] 106

Tinj [years] 5 × 105

Tf [years] 106

liquid pressure and no hydrogen present,

pl(0, x) = pinit and ρh
l (0, x) = 0, x ∈ Ω.

For boundary conditions, a constant flux of hydrogen and zero water flow rate were imposed
on the left boundary

ρw
l VVl − Jh

l = 0,

ρh
l VVl + ρh

gVVg + Jh
l =

qh 0 ≤ t ≤ Tinj,

0 t > Tinj.

On the right boundary, Dirichlet boundary conditions the same as the initial conditions are
imposed.

To validate our solver we ran simulations with the nominal parameters, and report the
phase pressures and gas saturation at the inflow boundary. Our results are consistent with
those reported in [8, 19, 76]. Figure 6.2 shows the gas saturation (left) and the phase pressures
(right), with respect to time (years) during and after injection. For 0 < t < 13 × 103 years,
the gas saturation remains zero, all injected hydrogen dissolves into the liquid phase, the
whole domain is saturated with water, and the liquid pressure remains constant. At t ≈
13 × 103 years, the maximum solubility is reached and the gas phase start to appears at the
injection boundary. Gas saturation keeps growing along the period of hydrogen injection.
When injection stops at t = 5 × 105 years, gas saturation starts decreasing until it disappears.
A negative water flux is observed (see Figure 6.3) as water comes from right to left to fill in
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the empty space. At the end of the simulation, the gas pressure keeps decreasing and the
liquid pressure gradient goes to zero, as the system reaches a steady state.
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Figure 6.2 Gas saturation (left) and liquid and gas pressures (right) at the inflow boundary.
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Figure 6.3 Liquid (left) and gas (right) flux at the outflow boundary.

6.3 Modeling under uncertainty

We seek to understand the impact of uncertainty in heterogeneous material properties on
model predictions. Specifically, we focus on uncertainties in porosity and absolute perme-
ability. Our goal is to understand the impact of uncertainties in material properties on the
gas phase appearance/disappearance in a two phase flow produced by hydrogen injection
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through a porous medium, which is initially fully saturated with water.

6.3.1 Modeling uncertainty in material properties

While in the setup of the benchmark problem constant values for porosity and permeability
were used, allowing for spatially varying porosity and permeability provides a more realistic
representation. This leads to representation of these quantities as random fields.

We model the porosity, ϕ, as a random field as follows. Let Z(x,ω) be a Gaussian process,
with exponential covariance function c(x,y) = e−|x−y|/ℓ, where ℓ > 0 is the correlation length.
We chose ℓ= 10 m (recall the length of the domain is 200 m). The covariance operator of Z is
defined by

[Cparu](x) =
∫

Ω
c(x,y)u(y)dy, u ∈ L2(Ω). (6.9)

We define the random porosity field by

ϕ(x,ω) = F−1
B (FG(Z(x,ω));αbeta, βbeta) . (6.10)

Here F−1
B (·;αbeta, βbeta) is the inverse CDF of a Beta(αbeta, βbeta) distribution and FG is the

CDF of a standard normal distribution. This ensures that for every x ∈ Ω the porosity is
distributed according to Beta(αbeta, βbeta). The random permeability field is obtained using a
Kozeny–Carman relation [30, 65]:

K(ϕ) ∝
ϕ3

(1 − ϕ)2 .

We set the proportionality constant in the above relation so that K(ϕ̄) = K̄, where ϕ̄ and K̄
are the nominal porosity and permeability values listed in Table 6.1 (left). The values of αbeta

and βbeta in (6.10) are set such that the mode of the porosity distribution (at each x ∈ Ω) is
the nominal porosity of ϕ̄ = 0.15. Specifically, we chose αbeta = 20 and found βbeta from the
formula for the mode of a Beta distribution: (αbeta − 1)/(αbeta + βbeta − 2) = ϕ̄. We depict
the distributions for pointwise porosity and permeability values along with the porosity per-
meability relation in Figure 6.4 (left). We note that the present setup provides a physically
meaningful range of values for porosity and permeability, for the application problem under
study.

To facilitate uncertainty quantification, we consider a truncated KLE of the Gaussian ran-
dom field Z(x,ω) used in definition of ϕ(x,ω) in (6.10). That is, we consider

Z(x,ω) ≈
Np

∑
i=1

√
λiθiei(x), (6.11)

where (λi, ei), i = 1, . . . , Np are the eigenpairs of the covariance operator of Z(x,ω); see e.g., [7,
13, 63] for details about the use of KL expansions for representing random fields in mathe-
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Figure 6.4 Left: the porosity permeability relation and the distributions of pointwise porosity and
permeability. Right: a few realizations of the porosity field.

matical models. For the present problem, we let Np = 100, which enables capturing over 96
percent of the average variance of the process. Notice that with the present setup, the uncer-
tainty in the porosity field is fully captured by the vector θθθ = [θ1 θ2 · · · θNp

]T, where θi’s
are the KLE coefficients in (6.11). As an illustration, we show a few realizations of the random
porosity field in Figure 6.4 (right).

6.3.2 The QoIs under study

We focus on dynamics of hydrogen in gas phase by focusing on time evolution of gas satu-
ration and pressure at the inflow boundary and gas flux at the outflow boundary. The units
for gas pressure and gas flux are [bar] and [kg/m2/year], respectively. These time-dependent
QoIs are indeed random field quantities due to randomness in porosity and permeability
fields. Notice that since the uncertainty in porosity field is encoded in the coefficients θθθ

en (6.11), the randomness in these QoIs is also parameterized by the vector θθθ of the KL coeffi-
cients. We denote the uncertain gas saturation at inflow boundary and gas flux at the outflow
boundary by S(t,θθθ), and Q(t,θθθ), respectively. In Figure 6.5, we depict a few realizations of
these uncertain QoIs.

We also consider the gas saturation throughout the domain, at various points in time. We
denote this QoI by S(x,θθθ; t∗), where t∗ is a fixed time. Figure 6.6 (left) shows a few realizations
of this QoI at t∗ = 300,091 years. To further illustrate the impact of spatial heterogeneity on
the flow model, we also report a plot of the gas saturation in the space-time domain in
Figure 6.6 (right).

Performing statistical studies and predictions on the QoIs outlined above is challenging
due to the high cost of solving the governing equations and the high-dimensionality of the
input and output spaces. A major aim of this chapter is to present a surrogate modelling
framework that approximates the time- or space-dependent QoIs efficiently by reducing the
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input and output dimensions and using suitable approximations.
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Figure 6.5 A few realizations of the time evolution of left: gas saturation at the inflow boundary,
right: gas flux at the outflow boundary.
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Figure 6.6 Left: gas saturation at t∗ = 300,091 years, right: space time evolution of gas saturation.

6.4 Spectral representations of random processes

6.4.1 Karhunen Loéve expansions

Here we briefly recall Karhunen Loéve expansion (KLE) representation of a function-valued
output f (s,θθθ). We assume f is a mean-square continuous random process. Such a processes
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admits a KLE [63, 66] given as:

f (s,θθθ) = f̄ (s) +
∞

∑
i=1

√
λi fi(θθθ)Φi(s). (6.12)

Here f̄ (s) is the mean of the process, (λi,Φi) are the eigenpairs of the covariance operator Cqoi

of the process, and fi(θθθ) are the KL modes as defined in (2.8). An approximation fNqoi(s,θθθ)
to f (s,θθθ) can be obtained by truncating (6.12) and retaining the first Nqoi terms in the series.
In many physical and biological models the eigenvalues of Cqoi decay rapidly. Consequently,
such QoIs can be represented with sufficient accuracy by a truncated KLE with a small Nqoi.
Such processes are referred to as “low-rank”.

Once again we rely on Nyström’s method to compute the KLE [56], using a sample aver-
age to approximate the covariance kernel. The steps for computing the truncated KLE of f
are included in Algorithm 1.

Note that evaluating the truncated KLE of f requires computing the KL modes, which
in turn requires a model evaluation. To convert the truncated KLE into an efficient surrogate
model for f , we need a cheap-to-evaluate representation for the KL modes. This approach is
similar to the one taken by [6, 64], in which PCE surrogates are constructed for the modes of
the related spectral representations. In section 6.5, we modify this approach by first reducing
the dimension of the input parameter and then constructing the KL modes surrogates in the
reduced uncertain parameter space.

6.4.2 Polynomial chaos expansions for fi(θθθ).

Recall, the polynomial chaos expansion of a square integrable function g(θθθ) is a series ap-
proximation of the form

g(θθθ) ≈
NPC

∑
k=0

ckΨk(θθθ), (6.13)

where {Ψk}NPC
k=0 are a predetermined set of orthogonal polynomials, and {ck}NPC

k=0 are the cor-
responding expansion coefficients [63]. Following a total order truncation [63], NPC is given
by

NPC + 1 =
(Nord + Np)!

Nord!Np!
,

where Nord is the maximum total polynomial degree and Np is the dimension of θθθ. There are
a variety of approaches for determining the expansion coefficients {ck}NPC

k=0 including quadra-
ture or regression based methods [63]. For this application, we implement sparse linear re-
gression [37, 112]. In this method, the expansion coefficients are found by solving

min
ccc∈RNPC

∥ΛΛΛccc − ddd∥2
2, subject to

NPC

∑
k=0

|ck| ≤ τ (6.14)
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where ΛΛΛ ∈ RNs×NPC is defined by Λij = Ψj(θθθi),
ddd = (g(θθθ1), g(θθθ2), . . . , g(θθθNs))

T is a vector containing model evaluations, and τ is the sparsity
control parameter. Determining Nord and τ may be done with trial and error or with a cross-
validation process, as detailed in section 6.6.

6.4.3 Bispectral surrogates

Earlier we broached the subject of utilizing PCEs to convert a truncated KLE into a surrogate
model for f . Consider the truncated KLE of f ,

fNqoi(s,θθθ) = f̄ (s) +
Nqoi

∑
i=1

√
λi fi(θθθ)Φi(s). (6.15)

By replacing the KL modes in (6.15) with PCEs we construct a surrogate model for f of the
form

f PC
Nqoi

(s,θθθ) = f̄ (s) +
Nqoi

∑
i=1

√
λi f PC

i (θθθ)Φi(s), (6.16)

where f PC
i (θθθ) is the PCE for fi(θθθ), i = 1, . . . , Nqoi. Once constructed, a bispectral surrogate can

be used to characterize the statistical properties of the field QoI very efficiently.
To provide further insight, we also consider the approximation error for a bispectral sur-

rogate.

Proposition 6.4.1. Let ∥·∥ represent the L2 norm on Θ×X . The total error of the bispectral surrogate
f PC
Nqoi

can be bounded as follows:

∥ f − f PC
Nqoi

∥2 ≤ ∥ f − fNqoi∥
2 + ∥ fNqoi − f PC

Nqoi
∥2 =

∞

∑
i=Nqoi+1

λi +
Nqoi

∑
i=1

λi

[NPC

∑
k=0

(ci,k − ĉi,k)
2 ∥Ψk∥2

L2(Θ)

]
+

Nqoi

∑
i=1

λi

[ ∞

∑
j=1+NPC

c2
i,j
∥∥Ψj

∥∥2
L2(Θ)

]
.

Proof. Consider the truncated KLE of f given by

f PC
Nqoi

(s,θθθ) = f̄ (s) +
Nqoi

∑
i=1

√
λi f PC

i (θθθ)Φi(s).

The total error in the product space is given by

∥ f − f PC
Nqoi

∥2 ≤ ∥ f − fNqoi∥2 + ∥ fNqoi − f PC
Nqoi

∥2

We consider the first term

∥ f − fNqoi∥2
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= ∥
∞

∑
i=1

√
λi fi(θθθ)Φi(s)−

Nqoi

∑
i=1

√
λi fi(θθθ)Φi(s)∥2

=
∫

Θ

∫
X

 ∞

∑
i=Nqoi+1

√
λi fi(θθθ)Φi(s)

2

dsµ(dθθθ)

=
∞

∑
i,j=Nqoi+1

√
λi

√
λj

∫
Θ

fi(θθθ) f j(θθθ)
∫

X
Φi(s)Φj(s)dsµ(dθθθ)

=
∞

∑
i=Nqoi+1

λi

∫
Θ

fi(θθθ)
2µ(dθθθ) =

∞

∑
i=Nqoi+1

λi.

Changing the order of infinite sums and integral is a consequence of the Dominated Conver-
gence Theorem and reording of integrals is a justified by Fubini’s Theorem. The orthogonality
of the eigenfunctions in L2(X ) justifies the simplification in the second to last line, and the
last step is a consequence of the KL modes properties.

Next, we consider the second error term. Let

f PC
i =

NPC

∑
k=0

ĉi,kΨk(θθθ),

where ĉi,k represents the numerical approximation of the exact PCE coefficients ci,k and recall,
fi = ∑∞

k=0 ci,kΨk(θθθ) we have

∥ fNqoi − f PC
Nqoi

∥2 = ∥
Nqoi

∑
i=1

√
λi fi(θθθ)Φi(s)−

Nqoi

∑
i=1

√
λi f PC

i (θθθ)Φ(s)∥2

=
∫

Θ

∫
X

(Nqoi

∑
i=1

√
λiΦi(s)

[
fi(θθθ)− f PC

i (θθθ)
])2

dsµ(dθθθ)

=
Nqoi

∑
i,j=1

√
λi

√
λj

∫
Θ
( fi − f PC

i )( f j − f PC
j )

∫
X

Φi(s)Φj(s)dsµ(dθθθ)

=
Nqoi

∑
i=1

λi

∫
Θ
( fi(θθθ)− f PC

i (θθθ))2µ(dθθθ)

=
Nqoi

∑
i=1

λi

∫
Θ

(
∞

∑
k=0

ci,kΨk(θθθ)−
NPC

∑
k=0

ĉi,kΨk(θθθ)

)2

µ(dθθθ)

=
Nqoi

∑
i=1

λi

∫
Θ

(
NPC

∑
k=0

(ci,k − ĉi,k)Ψk(θθθ) +
∞

∑
k=1+NPC

ci,kΨk(θθθ)

)2

µ(dθθθ)

=
Nqoi

∑
i=1

λi

NPC

∑
k=1

(ci,k − ĉi,k)
2 ∥Ψk∥2

L2(Θ) +
Nqoi

∑
i=1

λi

∞

∑
j=1+NPC

c2
i,j
∥∥Ψj

∥∥2
L2(Θ)

The simplification in the third line a consequence of the orthogonality of the PCE basis func-
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tions.
Thus, we have a bound on the total error

∥ f − f PC
Nqoi

∥2 ≤ ∥ f − fNqoi∥2 + ∥ fNqoi − f PC
Nqoi

∥2

=
∞

∑
i=Nqoi+1

λi +
Nqoi

∑
i=1

λi

NPC

∑
k=1

(ci,k − ĉi,k)
2 ∥Ψk∥2

L2(Θ) +
Nqoi

∑
i=1

λi

∞

∑
j=1+NPC

c2
i,j
∥∥Ψj

∥∥2
L2(Θ)

. □ (6.17)

■

The first term in the upper bound in (6.17) corresponds to KLE truncation error, the second
term corresponds to error due to inexact PCE coefficients, and the third term corresponds to
PCE truncation error. Controlling the total error involves a balance between computational
cost, accuracy requirements, and the properties of the process. The KLE truncation error gets
smaller as Nqoi increases. However, increasing the number of terms in the KLE increases the
number of eigenpairs that need accurate approximations. Also, a larger Nqoi results in more
KL modes, each of which requires a sufficiently accurate PCE. Similarly, the PCE error can be
minimized by increasing the maximum polynomial degree, Nord. However, this increases the
total number of coefficients, which increases the number of unknowns in (6.13), resulting in
increased computational cost.

The function-valued QoIs in the present work are low-rank processes with a high- dimen-
sional input parameter. Therefore, a modest Nqoi will give a sufficiently small KLE truncation
error. However, for large Np, estimating the PCE coefficients for each KL mode with sufficient
accuracy can become computationally expensive. Our approach for addressing this challenge
is presented in the next section.

6.5 Method

In this section, we present our approach for reducing the dimensionality of the random
vector θθθ = [θ1 θ2 . . . θNp

]T and constructing a cheap-to-compute bispectral surrogate for
function-valued QoIs under study. We begin by describing a screening procedure for input
dimension reduction in section 6.5.1. Then, we discuss our surrogate modeling approach that
uses a truncated KLE of the output (section 6.4.1) along with generalized PCEs for the output
KL modes (section 6.5.2). We also show how the surrogate model can be used to efficiently
compute the correlation function of the output, as well as cross-correlation of two function-
valued QoIs.

6.5.1 Parameter screening

Consider a function-value QoI f (s,θθθ) : X × Θ → R, where Θ ⊆ RNp is the sample space of
the uncertain parameters and X ⊆ Rd is a compact set, which is the domain of an indepen-
dent variable. The independent variable can be either time, in which case d = 1, or spatial
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location in which case d ∈ {1,2,3}. Here we consider the case of d = 1, as it applies to our
application problem, but the procedure below can be generalized to the case of d ∈ {2,3} in
a straightforward manner.

Parameter screening can be done using functional derivative-based global sensitivity mea-
sures (DGSMs) given by [25]:

Nj( f ) =
∫

X

∫
Θ

(
∂ f (s,θθθ)

∂θj

)2

µ(dθθθ)ds, j = 1, . . . , Np,

where µ is the law of the parameter vector θθθ. These DGSMs can be used to screen for “unim-
portant” inputs, which can be fixed at their respective nominal values. These functional
DGSMs, however, require gradient evaluations. For complex models with high-dimensional
parameters, such as the one considered in the present work, gradient computations is chal-
lenging. While adjoint-based gradient computation can overcome this, adjoint solvers are not
always available for complex flow solvers and implementing them might be infeasible. Here
we derive a screening indices based on ideas from active subspace methods [27] and activity
scores [28] that approximate the functional DGSMs and circumvent gradient computation.

Let us briefly recall the concept of the active subspace and activity scores [28]. Fix s ∈ X

and let (λk,uuuk), k = 1, . . . , Np be the eigenpairs of the matrix

G =
∫

Θ
[∇ f (s,θθθ)][∇ f (s,θθθ)]Tµ(dθθθ), (6.18)

where we assume the eigenvalues are sorted in descending order. In many cases there ex-
ists an M such that λM ≪ λM+1, representing a gap in the eigenvalues. The active subspace
corresponds to the subspace spanned by eigenvectors {uuuk}M

k=1; this subspace captures the
directions in the uncertain parameter space along which the QoI varies most. The case of a
one-dimensional active subspace is surprisingly common [27]. The activity scores [28] utilize
the active subspace structure to provide approximate screening indices, given by

αj[ f (s, ·); M] =
M

∑
k=1

λk⟨eeej,uuuk⟩2, j = 1, . . . , Np, M ≤ Np,

where ⟨·, ·⟩ denotes the Euclidean inner product and eeej is the jth coordinate vector in RNp .
One can use the activity scores to approximate functional DGSMs according to∫

X
αj[ f (s, ·); M]ds, j = 1, . . . , Np.

Note that with M = Np, we recover the exact DGSMs [28]. Computing the activity scores
still requires gradient computation, as seen in the definition of the matrix G in (6.18). For
cases where full model gradients are unavailable, [27] proposes constructing a linear model
for f (s,θθθ) and using the gradient of the linear model to approximate the matrix G. We build
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on this idea to define a screening index for function-valued QoIs. First, we construct a global
linear approximation f̃ for the QoI

f̃ (s,θθθ) = b0(s) +
Np

∑
j=1

bj(s)θj. (6.19)

Next, we use the activity scores for f̃ as a “surrogate” for the scores of f . Note that ∇ f̃ (s,θθθ) =
bbb(s), where bbb(s) = [b1(t) b2(t) · · · bNp(t)]

T. The matrix G(s) in (6.18), using f̃ in place of
f then simplifies to G(s) = bbb(s)bbb(s)T. This rank one matrix can be written as

G(s) = λuuu(s)uuu(s)T,

where λ = ∥bbb(s)∥2
2, and uuu(s) = bbb(s)/∥bbb(s)∥2. (Here ∥·∥2 denotes the Euclidean vector norm.)

Hence, the corresponding active subspace for f̃ is 1-dimensional resulting in activity scores

α̃j(s) = b2
j (s), j = 1, . . . , Np.

This gives rise to the following approximate functional DGSMs:

Ñj( f ) :=
∫

X
b2

j (s)ds.

This relationship motivates the following normalized screening indices

sj =
Ñj( f )

∑
Np

l=1 Ñl( f )
, j = 1, . . . , Np.

Henceforth, we refer to sj as the screening index of f with respect to parameters θj.
The purpose of the screening indices sj is to inform input parameter dimension reduction.

Let Kr be an ordered index set with cardinality np < Np, corresponding to parameters with a
screening index above some user-chosen tolerance tol ∈ (0,1). We denote the reduced input
parameter vectors θθθr, where each component θr

i , i = 1, . . . ,np corresponds to the ith element
of Kr.

Next, we discuss the computation of the global linear model for f . This is done by comput-
ing a linear model at each point s ∈ X , which can be done efficiently using linear regression.
Recall that X is assumed to be a (compact) subset of R (i.e., in one space dimension). Specif-
ically, we assume X = [s0, sF]. We discretize X using a grid

s0 = s1 < s2 < s3 < · · · < sm = sF.

Denote b̄bb(s) = [b0(s) b1(s) b2(s) · · · bNp(s)]
T, with bj, j = 0, . . . , Np as in (6.19). We require

a set of model evaluations,
yi

k = f (sk,θθθi), i = 1, . . . , Ns.
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The number of samples required depends on computational budget as well as the application
problem under study. We show in our numerical results that a modest Ns is adequate for the
proposed approach, and the application problem considered herein.

Let yyyk = [y1
k y2

k · · · yNs
k ]T ∈ RNs , and define the matrix

A =



1 θθθT
1

1 θθθT
2

1 θθθT
3

...
...

1 θθθT
Ns


. (6.20)

The vectors b̄bb(sk) can be computed numerically by solving linear least squares problems

b̄bb(sk) = argmin
bbb∈RNs+1

∥Abbb − yyyk∥
2
2, (6.21)

for k = 1, . . . ,m. Note that here we assume A has full column rank and we are in the overde-
termined case, i.e. Ns > Np + 1. Under these assumptions, the QR factorization A = QR may
be used to solve the linear regression problem in (6.21) by

b̄bb(sk) = R−1QTyyyk.

Then, for each k = 1, . . . ,m, the cost of computing bbbk is one matrix-vector product with QT and
one triangular solve. The procedure for computing the global linear model is summarized
in Algorithm 3. In the case where the dimension of θθθ is larger than the number of available
function evaluations, i.e. Ns < Np + 1, other methods for solving the linear regression in
Equation (6.21), e.g. using SVD, can be used.

6.5.2 Polynomial chaos surrogates for KL modes

To form a surrogate model, we construct a PC surrogate f PC
i (θθθr),i = 1, . . . Nqoi in the reduced

parameter space. Explicitly, we have the following training data for the KL mode surrogates:
the input parameter samples W = {θθθr

j}
Ns
j=1 and, for each KL mode fi i = 1, . . . Nqoi, we have the

evaluations Fi = { fi(θθθ j)}Ns
j=1. For each KL mode fi, we use the corresponding training data to

solve the optimization problem (6.14) for the coefficients ccc; see Algorithm 4 for more details.
Observe that each input parameter sample θθθr

j is the reduced version of the original input
parameter sample, whereas the data points in Fi correspond to the KL mode fi evaluated on
the full parameter θθθ j. Utilizing the data this way has two benefits. Firstly, we do not require
more model evaluations. Secondly, the KL modes corresponding to the exact QoI capture the
behavior of f more accurately than the KL modes corresponding to an f re-evaluated in the
reduced parameter space. After the PCE for each KL mode is computed, we replace each fi(θθθ)
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Algorithm 3 Computing the screening indices sj, j = 1, . . . , Np: the overdetermined case.

Input: Function evaluations yi
k = f (sk,θθθi), i = 1, . . . , Ns, k = 1, . . . ,m; quadrature weights wk,

k = 1, . . . ,m.
Output: Sensitivity measures sj, j = 1, . . . , Np.

1: Form the matrix A in (6.20) and compute its QR factorization, A = QR.
2: for k = 1 to m do
3: Compute zzzk = QTyyyk.
4: Solve Rb̄bb(sk) = zzzk.
5: end for
6: for j = 1 to Np do

7: Compute Ñj = ∑
Np

k=1 wkbj(sk)
2.

8: end for
9: for j = 1 to Np do

10: Compute sj = Ñj/(∑k Ñk).
11: end for

in the KL expansion (2.6) with the corresponding f PC
i to form a (reduced space) bispectral

surrogate for f :

f (t,θθθ) ≈ f PC
Nqoi

(t,θθθr) = f̂ (t) +
Nqoi

∑
i=1

√
λi f PC

i (θθθr)Φi(t). (6.22)

In section 6.6 we demonstrate the proposed approach for dimension reduction and surrogate
modeling for temporally varying QoI S(t,θθθ) and Q(t,θθθ), as well as spatially varying QoI
S(x,θθθ).

Bispectral surrogates of the form (6.22) can be sampled efficiently to study the statistical
properties of the QoI. As seen below, such surrogates can also be used to efficiently compute
the correlation structure of function-valued outputs.

6.5.3 Correlation structure of the output

Let f : X × Θ → R be a random process with mean f̄ (s) and assume f admits a surrogate
f PC
Nqoi

of the form in (6.22). It is straightforward to show that the covariance operator of f PC
Nqoi

satisfies

c f (s1, s2) = Cov{ f PC
Nqoi

(s1, ·), f PC
Nqoi

(s2, ·)}

=
Nqoi

∑
i=1

Nqoi

∑
j=1

NPC

∑
k=1

ηk
i ηk

j ∥Ψk∥2
L2(Θ)Φi(s1)Φj(s2), (6.23)

for ηk
i = ci,k

√
λi and ∥·∥L2(Θ) denotes the L2 norm on Θ. Let us define

Bij :=
m

∑
k=1

ηk
i ηk

j ∥Ψk∥2
L2(Θ), i, j = 1, . . . , Nqoi,
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Algorithm 4 Computing the surrogate model f PC
Nqoi

.
Input: Reduced input parameters θθθr

j ∈ Rnp , j = 1, . . . Ns; KL mode evaluations f k
i = fi(θθθ j), i =

1, . . . , Nqoi, j = 1, . . . , Ns; highest polynomial degree Nord; sparsity parameter τ; polynomial
basis Ψk, k = 1 . . . NPC.

Output: Surrogate model f PC
Nqoi

(t,θθθr) and polynomial KL mode expansions f PC
i (θθθr), i =

1, . . . , Nqoi.
1: for i = 1 to Nqoi do
2: Let dddi = [ fi(θθθ1), . . . , fi(θθθNs)]

and Λkj = Ψk(θθθ
r
j ).

3: Solve
min

ccci∈RNPC
∥ΛΛΛccci − dddi∥2

2

4: end for
5: Form fi(θθθ

r) = ∑NPC
k=1 ci,kΨk(θθθ

r), i = 1, . . . , Nqoi.

6: Form f PC
Nqoi

(s,θθθr) = ∑
Nqoi

k=1

√
λi(C) f PC

i (θθθr)Φi(s).

and

ppp(s) := [Φ1(s) Φ2(s) . . . ΦNqoi(s)]
T.

We can rewrite the expression in (6.23) as

c f (s1, s2) = ⟨ppp(s1),Bppp(s2)⟩,

where ⟨·, ·⟩ denotes the Euclidean inner product. Using this, we an also obtain the correlation
function of f PC

Nqoi
:

ρ f (s1, s2) =
c f (s1, s2)√

c f (s1, s1)
√

c f (s2, s2)
. (6.24)

We can also compute the cross-covariance function of two random processes represented
via bispectral surrogates. Consider a random process g approximated by the surrogate model

gPC
Mqoi

= ḡ(s) +
Mqoi

∑
j=1

MPC

∑
k=0

√
γjdj,kΨk(θθθ

r)Φ̃j(s),

where Mqoi is the number of KL modes, (γj, Φ̃j(s)) are the eigenpairs corresponding to the
covariance function of g, MPC is the maximum polynomial degree, and di,k are the PCE
coefficients. A calculation similar to the one above gives the cross–covariance function of f PC

Nqoi

81



and gPC
Mqoi

as
c f g(s1, s2) = ⟨ppp(s1), B̃qqq(s2)⟩,

where
qqq(s) := [Φ̃1(s) Φ̃2(s) . . . Φ̃Mqoi(s)]

T,

B̃i,j :=
m

∑
k=1

ηk
i η̃k

j ∥Ψk∥2
L2(Θ), i = 1, . . . , Nqoi, j = 1, . . . Mqoi,

with η̃k
j = dj,k

√
γj. We can also compute the cross-correlation function,

ρ f g(s1, s2) =
c f g(s1, s2)√

c f (s1, s1)
√

cg(s2, s2)
, (6.25)

where cg is the covariance function of gPC
Mqoi

.

6.6 Numerical results

In this section, we demonstrate the dimension reduction and surrogate modeling approach
proposed in section 6.5 for temporally and spatially varying QoIs discussed in section 6.3. In
section 6.6.1, we detail surrogate model construction for gas saturation at the inflow boundary.
To provide further insight, we also consider surrogate modeling for gas flux at the outflow
boundary in section 6.6.2 and for gas saturation across the spatial domain in section 6.6.3.
Finally, in section 6.6.4, we use the surrogates constructed in section 6.6.1 and 6.6.2 to better
understand the behavior and properties of the corresponding QoIs.

6.6.1 Gas saturation at the outflow boundary

Here we focus on gas saturation at the inflow boundary, i.e., S(t,θθθ). Recall that the input
parameter θθθ parameterizes the uncertainty in the porosity field, as described in section 6.3.1,
and has dimension Np = 100. For the present numerical study, we computed a database of 550
model evaluations, which we use for parameter screening and surrogate model construction.

Input parameter screening. We use Algorithm 3 with Ns = 500 full model evaluations
to compute the screening indices sj, j = 1,2, . . . , Np, for S(t,θθθ). The remaining 50 realizations
were used for validation of the linear models computed as a part of the algorithm. In Fig-
ure 6.7 (left) and (middle), we report representative comparisons of the linear model versus
the exact model, at the validation points at selected times. Note that the linear models cap-
ture the overall behavior of the model response. In Figure 6.7 (right), we report the screening
indices that are above the importance threshold tol = 0.002. The parameters with screening
indices below tol are considered unimportant. This reduces the input parameter dimension
from Np = 100 to np = 10 and the resulting reduced parameter is θθθr = [θ1 . . . θ10]

T.
Spectral representation of the QoI. Next, we compute the KLE of S(t,θθθ) using Algo-
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Figure 6.7 Fifty point comparison of the true model to the linear model for S(t,θθθ) at left: t = 400,234
years, middle: t = 500,106 years. Right: screening indices sj for S(t,θθθ) calculated using Algorithm 3
with 500 full QoI samples. Scores above tol = 0.002 displayed only.

rithm 1. This requires solving the eigenvalue problem (2.7), with Cqoi being the covariance
operator of S(t,θθθ). We use a sample average approximation of Cqoi with sample size Ns ∈
{100, 200, 350, 550} exact QoI evaluations, as detailed in Algorithm 1. In Figure 6.8 (left), we
show the computed (dominant) eigenvalues of Cqoi. We note that the dominant eigenvalues
are approximated well even with Ns = 100. We use the computations corresponding Ns = 550
in what follows. We note that the eigenvalues of the output covariance operator decay rapidly.
We also report rk from equation (2.9) in Figure 6.8 (right). Recall, rk represents the fraction
of the average variance of f captured by the first k eigenvalues. We note that rk exceeds 0.99
for k ≥ 5. This indicates that S(t,θθθ) is a low-rank process and a KL expansion with Nqoi = 5
provides a suitable approximation of the QoI. Consequently, we consider the truncated KL
expansion of S(t,θθθ)
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Figure 6.8 Left: comparison of ratio λk/λ1, k = 1 . . . ,30 for λi(Cqoi) corresponding to S(t,θθθ) com-
puted with various sample sizes, right: rk as defined in (2.9), k = 1, . . . ,10, for S(t,θθθ). Dotted line cor-
responds to 0.99.
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SNqoi(t,θθθ) = S̄(t) +
Nqoi

∑
i=1

√
λi(Cqoi)Si(θθθ)Φi(t), (6.26)

where Nqoi = 5. The next step is to compute PCEs for the KL modes Si(θθθ), i = 1, . . . , Nqoi.
PCE surrogates of the KL modes. Next, we construct a bispectral surrogate for S(t,θθθ)

which we denote SPC
Nqoi

. Recall that the components of θθθr are sampled from a Gaussian distri-
bution. Hence, we utilize the np-variate Hermite polynomials as the orthogonal basis for the
PC expansions, with np = 10. We use the sparse-regression approach (see section 6.4.2) for
computing PCEs of the output KL modes (see section 6.5.2). To determine suitable values for
the maximum polynomial degree Nord and the sparsity parameter τ, we use a 10-fold cross
validation procedure, which we briefly explain next.

1 1.5 2 2.5 3 3.5 4

6.3 · 10−3

4.0 · 10−3

2.5 · 10−3

1.5 · 10−3

τ

eN
o
r
d

τ

Nord = 1
Nord = 2
Nord = 3
Nord = 4

0 2 · 105 5 · 105 7 · 105 1 · 106

3.0 · 10−3

2.0 · 10−3

1.0 · 10−3

0.0

time[years]

sa
m
p
le

st
an

d
ar
d
d
ev
ia
ti
on

S(t, θθθ)

SPC
Nqoi

(t,θθθr)

Figure 6.9 Left: cross validation results for τ = {1,1.1, . . . ,3.9,4} and Nord = {1,2,3,4} for gas satu-
ration, right: comparison of sample standard deviations of S(t,θθθ) and SPC

Nqoi
(t,θθθr) computed on 200

sample points.

Note that for each evaluation of SNqoi(t,θθθ j), j = 1, . . . , Ns, there is a corresponding KL mode
evaluation Si(θθθ j), for i = 1, . . . , Nqoi. We separate the parameter samples into W = {θθθr

j}350
j=1 and

Ŵ = {θθθr
j}550

j=351. Similarly, for each i = 1, . . . Nqoi, we have Fi = {Si(θθθ j)}350
j=1 and F̂i = {Si(θθθ j)}550

j=351.
We partition W and Fi, i = 1, . . . , Nqoi 10 different ways, such that each data partition has a

35 point validation set and a 315 point training set. Let Wk and Fk
i , denote the kth such data

partition, k = 1, . . . ,10. Next, for every combination of Nord ∈ {1, . . . 4}, τ ∈ {1,1.1,1.2, . . . ,3.9,4},
k = 1, . . . ,10, and i = 1, . . . , Nqoi we solve the optimization problem (6.14); in our computations,
we use the solver SPGL1 [12]. For the components of that data vector of ddd in (6.14), we use the
training set of Fk

i . Therefore, every combination of k, Nord and τ results in a surrogate model
denoted as gk

Nord,τ(s,θθθr).
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To assess the accuracy of each bispectral surrogate we compute the average relative error

erel(gk
Nord,τ)=

∑M
j=1
∫

X

[
S(t,θθθ j)− gk

Nord,τ(s,θθθr
j )
]2 ds

∑M
j=1
∫

X S(t,θθθ j)2 ds


1
2

, (6.27)

where X = [0, Tf ], M = 35 and θθθ j is the input parameter in the full space corresponding to θθθr
j

in the validation set of Wk.
We repeat the process for each of the 10 partitions, and compute the average of erel across

all partitions

eNord
τ =

1
10

10

∑
k=1

erel(gk
Nord,τ).

The cross validation errors corresponding to S(t,θθθ) are displayed in Figure 6.9 (left). The
smallest eNord

τ corresponds with Nord = 2 and τ = 3.5.

0.01 0.01 0.02 0.02 0.03
0

50

100

150

200

250

gas saturation at t = 100, 099

p
d
f

S(t, θθθ)

SPC
Nqoi

(t, θθθr)

0.01 0.01 0.02 0.02 0.03
0

50

100

150

200

250

gas saturation at t = 200, 200

p
d
f

S(t, θθθ)

SPC
Nqoi

(t, θθθr)

0.01 0.01 0.02 0.02 0.03
0

50

100

150

200

250

gas saturation at t = 300, 091

p
d
f

S(t, θθθ)
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Figure 6.10 Comparison of normalized histograms for S(t,θθθ) and pdf estimates of the surrogate
SPC

Nqoi
(t,θθθr) for a variety of times t ∈ [0, Tf ].

Computing the overall bispectral surrogate. Once we have determined appropriate val-
ues for Nord and τ we follow Algorithm 4 to construct a surrogate model from the trun-
cated KLE expansion of the function-valued QoI. To determine PCE for each KL mode Si(θθθ),
i = 1, . . . , Nqoi, we use the solver SPGL [12] to implement sparse linear regression over the
entire 350 point data set Fi. We use the resulting expansions to form the overall bispectral
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surrogate:

SPC
Nqoi

= S̄(t) +
Nqoi

∑
i=1

√
λ(Cqoi)SPC

i (θθθr)Φi(t).

Note that in numerical computations, S̄(t) is the sample mean S̄(t) = 1
Ns

∑Ns
j=1 S(t,θθθ j).

Next, we assess the effectiveness of the bispectral surrogate to reflect the statistical prop-
erties of the true model. First, we compare the sample standard deviations of SPC

Nqoi
(t,θθθr) and

S(t,θθθ) computed over the testing set Ŵ. The results are shown in Figure 6.9 (right). Note, the
surrogate model does an excellent job capturing the behavior of S(t,θθθ). Then, we compute
the pdf of SPC

Nqoi
(t,θθθr) with 100,000 surrogate evaluations and compare with the normalized

histograms of the 550 exact model evaluations. In Figure 6.10 clockwise from upper left we
show the pdf estimates for a few representative simulation times. Note that pdf estimates
closely match the distribution of the full model.

6.6.2 Gas flux at the outflow boundary

In this section, we study gas flux at the outflow boundary, denoted by Q(t,θθθ). A few real-
izations of Q(t,θθθ) are shown in Figure 6.5 (right). The global linear model is computed with
500 model realizations. A representation of the linear model at time t = 500,106 years is dis-
played in Figure 6.11 (left). Next, we compute the screening indices sj. In Figure 6.11 (middle)
we display sj, j = 1 . . . ,10 above tol = 0.02 only. Therefore, dimension reduction results in
the reduced input parameter θθθr = [θ1 . . . θ10]

T. Next, we compute the KLE and truncate at
Nqoi = 7 terms. Then, we construct the surrogate model using the data sets W and Fi, where
the Fi’s for this instance consist of the KL modes computed for Q(t,θθθ). We use the 10-fold
cross validation technique described in section 6.6.1 to choose the sparse linear regression pa-
rameters Nord = 2 and τ = 4. Finally, we use these values to generate the bispectral surrogate
QPC

Nqoi
(t,θθθr). As before, to assess the effectiveness of the surrogate to capture the statistical prop-
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Figure 6.11 Left: comparison of the true model to the linear model for Q(t,θθθ) at t = 500,106 years,
middle: screening indices for Q(t,θθθ), right: comparison of sample standard deviations of Q(t,θθθ) and
QPC

Nqoi
(t,θθθr) computed with 200 sample points.
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erties of the true model we compare the sample standard deviation of the full model Q(t,θθθ)
and the surrogate QPC

Nqoi
(t,θθθr), computed on 200 validation samples. Results are displayed in

Figure 6.11 (right). Lastly, using 100,000 samples of QPC
Nqoi

(t,θθθr) we compute pdf estimates at
equally spaced points in time and compare to normalized histograms created with 550 full
model evaluations; see Figure 6.12. The results in Figure 6.12 and Figure 6.13 (right) demon-
strate that the constructed surrogate for gas flux approximates the distribution of the full
model reliably.
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Figure 6.12 Comparison of normalized histograms for Q(t,θθθ) and pdf estimates of the surrogate
QPC

Nqoi
(t,θθθr) for a variety of times t ∈ [0, Tf ].

6.6.3 Gas saturation across the domain

In this section, we focus on a spatially varying QoI. Let S(x,θθθ; t∗) represent the QoI gas satura-
tion across the spatial domain for a fixed time t∗. In particular, we include surrogate results
at t∗ ∈ {100,099, 300,091, 600,043} years. We display several realizations for each QoI in Fig-
ure 6.14 (top). The surrogate models for spatial QoIs are computed via a similar procedure.
Hence, for brevity, we include procedure details for t∗ = 600,043 years only. The relevant
parameter values for the other QoIs are included in Table 6.2.

We consider the (spatial) global linear model for S(x,θθθ; t∗). In Figure 6.13 (left) the lin-
ear model at x = 65.5 meters is displayed. The global linear model was observed to perform
similarly at other values of x. Next, we compute the screening indices sj and use the impor-
tance tolerance tol = 0.002 for dimension reduction resulting in the reduced input parameter
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θθθr = [θ1 θ2 . . . θ8]
T. In Figure 6.13 (middle) we display the screening indices corresponding

to these parameters.
Next, we compute the KLE of S(x,θθθ; t∗) using Nyström’s method with 550 model evalu-

ations. In Figure 6.13 (right) we report the normalized eigenvalues of the output covariance
operator Cqoi for S(x,θθθ; t∗). This result is included to demonstrate that the gas saturation
process is also low-rank in space. We truncate the KLE at Nqoi = 5 terms.

As before, the PCE for the KL modes are computed with sparse linear regression using 350
full model realizations. Once again, the cross validation procedure described in section 6.6.1
is used to determine Nord = 3 and τ = 2.8. Lastly, the computed PCEs for each KL mode
is used to construct the bispectral surrogate SPC

Nqoi
(x,θθθr). To evaluate the effectiveness of the

Table 6.2 Surrogate parameter values and erel errors for surrogate models.

surrogate for fixed t or x Nqoi Nord error

SPC
Nqoi

(t,θθθ) x = 0 meters 5 2 3.4813 · 10−2

QPC
Nqoi

(t,θθθ) x = 200 meters 7 2 7.5019 · 10−3

SPC
Nqoi

(x,θθθ) t∗ = 100,099 years 7 2 3.0397 · 10−2

SPC
Nqoi

(x,θθθ) t∗ = 300,091 years 11 2 2.1690 · 10−2

SPC
Nqoi

(x,θθθ) t∗ = 600,043 years 5 3 8.3110 · 10−2

surrogate models for t∗ ∈ {100,099, 300,091, 600,043}, we compare the sample standard
deviation of S(x,θθθ; t∗) and SPC

Nqoi
(x,θθθr) for 200 sample points. These results are displayed in

Figure 6.14 (bottom). Observe, for t∗ = 100,099 and t∗ = 300,091 years the surrogate model
replicates the sample standard deviation well. For t∗ = 600,043 years note that while we are
underestimating the sample standard deviation, we are still capture the overall behavior of
the full model. The capability of the computed bispectral surrogate to replicate true model
behavior can also be tested by computing the average relative error defined in (6.27).Table 6.2
contains the values for erel computed over the validation set Ŵ for each surrogate presented
in this section, as well as those in sections 6.6.1 and 6.6.2. Note that for the spatially varying
QoIs, we let X = [0,200] and for temporally varying we let X = [0, Tf ], in (6.27). Note, the
error across all surrogates is less than 8%, and in four out the five surrogates is less than
4%. The largest erel corresponds to SPC

Nqoi
(c,θθθ) at t = 600,043 years, in which case we are also

underestimating the standard deviation.
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the linear model for gas saturation across the domain, middle: screening indices for S(x,θθθ; t∗), right:
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Figure 6.14 Top row, left to right: sample realizations of S(x,θθθ; t∗) for times 100,099, 300,091, and
600,043 years; bottom row, left to right: comparison of sample standard deviation of S(x,θθθ; t∗) and
SPC

Nqoi
(x,θθθ; t∗) computed on 200 sample points.

6.6.4 Using the surrogate model

Here we illustrate the use of surrogates for temporally varying QoIs in performing statistical
studies. In particular, we perform model prediction, variance-based global sensitivity analysis,
and a study of output correlation structure.

Model prediction. We consider using SPC
Nqoi

(t,θθθr) and QPC
Nqoi

(t,θθθr) for making predictions.
Recall, these bispectral surrogates correspond to gas saturation at the inflow boundary and
gas flux at the outflow boundary. We study three observables of interest: maximum gas sat-
uration, denoted Smax, maximum gas flux, denoted Qmax, and the first time for which gas
saturation rises above 20% of Smax. We compute 100,000 realizations of each surrogate, extract
the pertinent observables, and use the samples to compute pdf estimates. In Figure 6.15, we
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compare the pdf estimates against the normalized histograms computed using exact model
evaluations. These results indicate the utility of the surrogates for estimating the statistical
properties of model observables.
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Figure 6.15 Comparison of normalized histograms and pdf estimates for left: max saturation value of
Smax, middle: first time SPC

Nqoi
(t,θr) is above 20% Smax, right: max flux value Qmax.

Variance based sensitivity analysis via Sobol’ indices. total Sobol’ indices provide an
informative global sensitivity analysis tool that apportions percentages of QoI variance due
to input parameter variations. While total Sobol’ indices are traditionally applied to scalar
QoIs [99, 100], there exist extensions for variance based analysis to function-valued QoIs [6,
41], referred to as functional total Sobol’ indices.

In general, calculating Sobol’ indices for computationally intensive models is challeng-
ing. This involves an expensive sampling procedure that requires a large number of model
evaluations. An efficient-to-evaluate surrogate model can be used to accelerate this process.
We use the temporal surrogates to compute total Sobol’ indices for both function-valued and
scalar QoIs. In particular, we compute the functional total Sobol’ indices for SPC

Nqoi
(t,θθθr) and

QPC
Nqoi

(t,θθθr), both of which are functions in t, and we compute the total Sobol’ indices for the
scalar QoIs Smax and Qmax. In each case, we compute the total Sobol’ indices via sampling,
using a variety of samples sizes: Ns = {1,000,10,000,50,000}.

The results in the top row of Figure 6.16 show the functional Sobol’ indices for SPC
Nqoi

(t,θθθr)

and QPC
Nqoi

(t,θθθr). Note that the magnitudes in the top row of Figure 6.16 are similar to those
in Figure 6.7 (right) and Figure 6.11 (middle). This provides further support for the original
input parameter importance ranking and subsequent dimension reduction. In the bottom
row of Figure 6.16 we report the total Sobol’ indices for Smax and Qmax. We also note that
for the gas saturation QoIs Figure 6.16 (left: top and bottom), the importance ranking of the
input parameters is similar. In contrast, there is more variability in ranking for gas flux QoIs
Figure 6.16 (right: top and bottom).

Finally, we mention that for many applications, the total Sobol’ indices can be used for fur-
ther input parameter dimension reduction. For the present model however, we did not reduce
the input parameter further because the surrogate model computed was already efficient and
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Figure 6.16 From top left counter clockwise: functional total Sobol’ indices for SPC
Nqoi

(t,θθθr), functional

total Sobol’ indices for QPC
Nqoi

(t,θθθr), total Sobol’ indices for Smax, total Sobol’ indices for Qmax.
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Figure 6.17 Left: correlation matrix for SPC
Nqoi

(t,θθθr) computed using the analytic formula in (6.24),

middle: correlation matrix for QPC
Nqoi

(t,θθθr) computed using the analytic formula in (6.24) right: cross-

correlation structure of SPC
Nqoi

(t,θθθr) and QPC
Nqoi

(t,θθθr) computed using the analytic formula in (6.25).

sufficiently accurate.
Correlation structure Lastly, we illustrate the use of the bispectral surrogates for comput-

ing the correlation structure of the output, which is a useful tool for understanding overall
model dynamics. Using equation (6.24) we compute the correlation function of SPC

Nqoi
(t,θθθr)

and QPC
Nqoi

(t,θθθr). The resulting heat maps are shown in Figure 6.17 (left) and (middle), respec-
tively. The results for SPC

Nqoi
(t,θθθr) suggest significant correlations across time. This behavior

is also seen in the correlation function of QPC
Nqoi

(t,θθθr), except the sudden shift in dynam-
ics at the time t = 500,000 years; recall, this the time gas injection stops. We also compute
the cross-correlation between SPC

Nqoi
(t,θθθr) and QPC

Nqoi
(t,θθθr) using the formula in (6.25); see Fig-

ure 6.17 (right). The heat map suggests there is large cross-correlation between the two QoI
for both early and late times.
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6.7 Conclusion

We have presented a structure exploiting non-intrusive framework for efficient dimension
reduction and surrogate modeling for models with high-dimensional inputs and outputs.
The proposed parameter screening metric utilizes approximate global sensitivity measures
for function-valued outputs that rely on concepts from global sensitivity analysis and active
subspace methods. An efficient bispectral surrogate model was constructed from a truncated
KLE of the QoI by approximating the KL modes with PCEs. Note, these KL mode PCEs were
constructed in the reduced parameter space.

We deployed our framework for fast uncertainty analysis in a multiphase multicompo-
nent flow model. The efficiency and effectiveness of the surrogate model was demonstrated
with a comprehensive set of numerical experiments, where we consider a number of function-
valued (temporally or spatially distributed) QoIs. In particular, our results indicate that it is
possible to use a modest amount of model realizations to reduce both the input and output
dimensions and construct an efficient surrogate model. The proposed framework not only
provides efficient surrogates, it also reveals and exploits the low-dimensional structures in
model input and output spaces, which provides further insight into the behavior of the gov-
erning model.

Our approach relies on the screening metrics being sufficiently accurate surrogates for the
derivative based global sensitivity measures for the function-valued QoIs under study. This in
turn assumes the global linear model constructed within the parameter screening procedure
leads to a sufficient approximation of the activity scores. It is observed that this global linear
model can successfully capture one-dimensional active subspaces in a wide range of appli-
cations [27]. The success of this strategy for obtaining approximate activity scores was also
observed in the present work, in the context of a complex nonlinear flow model. However, for
models that exhibit highly nonlinear parameter dependence a linear model might fail to pro-
vide accurate global sensitivity information. In [43, 96], global quadratic models were used
effectively to accelerate active subspace discovery for scalar-valued QoIs. Exploring quadratic
models within our framework provides an interesting direction for future work and would
allow application of the proposed strategy to a broader class of problems.
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CHAPTER 7

SENSITIVITY ANALYSIS FOR STOCHASTICALLY FORCED

DIFFERENTIAL EQUATIONS

7.1 Introduction

The previous chapters have focused on global sensitivity analysis (GSA) for deterministic
systems. In this chapter, we investigate GSA for stochastic systems of the form:

ẋxx(t,θθθ,ω) = fff (xxx;θθθ) + zzz(t,θθθ,ω), (7.1)

where θθθ is a vector sampled from an uncertain parameter space Θ ⊆ RNp , the function fff (xxx;θθθ)
corresponds to a deterministic process, and for every θθθ ∈ Θ, we have zzz(t,θθθ,ω) : T × Ω → Rn

is a vector–valued stochastic process, where ω is an element of a sample space Ω, and t ∈
T = [0 Tf ], for some final time Tf .

Recall, GSA seeks to quantify the uncertainty in the model output as a consequence of
the uncertainty in model inputs. While this is often straightforward for deterministic models,
the intrinsic stochasticity in systems of the form (7.1) means there is an additional source
of uncertainty to contend with. The intention of this chapter is to examine the behavior of
derivative-based GSA in systems of the form (7.1). In particular, we focus our exploration
on derivative-based global sensitivity measures (DGSMs) for solutions to random ordinary
differential equations (RODEs) arising from stochastically forced ordinary differential equa-
tions. We will model the forcing term zzz(t,θθθ,ω) in (7.1) via solutions to stochastic differential
equations (SDEs) solved using the Stratonovich interpretation of the stochastic integral.

The contributions of this chapter are as follows. Two candidate derivative-based global
sensitivity measures (DGSMs) are proposed and investigated. Each proposed DGSM is for-
mulated to measure the sensitivity of a different aspect of the QoIs. Our results indicate the
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need for careful treatment of this type of analysis. We demonstrate the behaviors of the two
proposed DGSMs on a biological model describing the evolution of lead in the body [36].
Numerical and analytic tools are deployed in our exploration. We also include details re-
garding more practical concerns, such as the difference between RODEs and SDEs as well as
the properties of zzz for which the system in (7.1) is mathematically valid. We include details
for generating realizations of the forcing term. This approach utilizes an easy-to-implement
numerical framework for solving SDEs via smooth approximations to the stochastic process.

This chapter is organized as follows. In section 7.2, we provide relevant definitions for
RODEs, SDEs, and emphasize key differences between the two. Also included in this sec-
tion are definitions for Brownian motion, geometric Brownian motion, and the Ornstein-
Uhlembeck process.

In section 7.3, we provide details for a system of RODEs describing the movement of
lead in the human body. The numerical scheme for generating realizations of the stochastic
forcing term is described in section 7.4.1. Definitions of the explored DGSMs are provided
in section 7.4.2. We compute and compare the proposed DGSMs in section 7.5 for a QoI
extracted from the lead in the body model. In particular, we perform analysis of the QoI when
the model is forced by geometric brownian motion and when it is forced by the Ornstein-
Uhlembeck process. Discussion and concluding remarks are provided in section 7.6.

7.2 Random ordinary differential equations

In this section, we cover background concepts including definitions for random ordinary dif-
ferential equations (RODEs) and their distinction from stochastic differential equations (SDEs).
We also discuss three random processes used in stochastically forced differential equations.

In general, RODEs are ordinary differential equations that have random coefficients, ran-
dom initial conditions, random forcing terms, or a combination therein. Formally, consider
definition 3.4 from [75],

Definition 7.2.1 (Random Ordinary Differential Equation). A random ordinary differential equa-
tion on Rd,

dXt

dt
= f (Xt(ω), t,ω), Xt(ω) ∈ Rd, (7.2)

is a non-autonomous ordinary differential equation for almost all ω ∈ Ω, where Ω is a sample space.

In the present work, we focus on stochastically forced RODEs of the form (7.1), and
consider solutions pathwise in Ω. Specifically, we assume for almost all θθθ, zzz(t,θθθ,ω) is an almost
surely path-continuous stochastic process (meaning for almost all ω ∈ Ω we have zzz(t,θθθ,ω) is
continuous in t). Therefore, for a fixed realization of the forcing term, the RODE in (7.1) simplifies
to an equation whose solution can be analyzed with standard tools from ordinary differential
equations.
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SDEs versus RODEs. The difference between RODEs and SDEs is a common source of
confusion we will briefly address. The differential form of an SDE is given by Definition 5.1.1
in [77]

Definition 7.2.2 (Stochastic Differential Equation). The differential form of a stochastic differential
equation is given by

dXt

dt
= b(t, Xt) + σ(t, Xt)

dBt

dt
, b(t, x), σ(t, x) ∈ R, (7.3)

and dBt
dt is a white noise process.

A white noise process is a highly irregular random process that can be thought of as
the continuous analog of a discrete random walk. Based on the formulation in (7.3), another
common intuitive understanding of white noise is as the infinitesimal change in the Brow-
nian motion, Bt (see Definition 7.2.3). The mathematically rigorous incorporation of white
noise into differential equations is highly technical, and generates an entirely different in-
terpretations of calculus. Yet another level of complexity arises from the fact that there are
dissimilar, equally valid, interpretations of stochastic calculus. The two most common are
Itô and the Stratonovich calculus. For more information on stochastic calculus see e.g., [55,
77]. In the present work, we will focus on the Stratonovich interpretation. This is partially a
consequence of the chosen numerical method (see section 7.4.1).

At first glance, the formulation in (7.3) does not appear vastly dissimilar from the defi-
nition given for RODEs. However the mathematical interpretation of (7.3) and (7.2) are very
different. Simply put, the solutions to RODEs have sample paths which are differentiable
with respect to t and SDEs do not. That may sound contradictory. How can a solution to a
differential equation not be differentiable? SDEs are often written in a differential form, but
are understood as stochastic integrals. Thus, 7.3 can be written in the form [77]

Xt =
∫ Tf

0
b(t, Xt)dt + “

∫ Tf

0
σ(t, Xt)dBt”, b(t, x), σ(t, x) ∈ R.

Note, the quotations around the second term are intentional. How we interpret this term
determines the version of stochastic calculus we will be working in. This distinction is im-
portant because the different interpretations of stochastic integral will, in general, result in
different answers. In the present work, we use the Stratonovich interpretation, which we
denote

∫ Tf
0 σ(t, Xt) ◦ dBt.

The stochastic forcing term. There are many path-continuous stochastic processes that
we can use as forcing terms to generate RODEs. In this section we give definitions for three
such processes: the standard Brownian motion, the geometric Brownian motion (GBM), and
the Ornstein-Uhlenbeck (OU) process.

We consider the following definition for the canonical Brownian motion [35] (also known
as a standard Weiner process)
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Definition 7.2.3. A one dimensional Brownian motion is a real-valued process B(t) = Bt, t ≥ 0 with
the following properties

i If t0 < t1 < . . . < tn, then B(t0), B(t1)− B(t0), . . . , B(tn)− B(tn−1) are independent.

ii If s, t ≥ 0, then B(s + t)− B(s) ∼N (0, t).

iii With probability one, t 7→ Bt is continuous.

The standard Brownian motion is a path-continuous, nowhere differentiable, random pro-
cess. Arising in disciplines ranging from biology to economics, the Brownian motion is a
fundamental component in stochastic analysis. The Brownian motion has mean zero and co-
variance Cov(Bt, Bs) = t, for t ≤ s. Therefore, the long-term behavior of Brownian motion (i.e.
behavior as t → ∞) is a process with infinite variance and zero mean. This makes Bt a poor
choice for modeling physical phenomena for which control over the long-term behavior is
necessary.

Another path-continuous stochastic process considered in the present work is the geomet-
ric Brownian motion (GBM). Commonly used in stock market modeling, the GBM solves the
following SDE [77]

dXt = µXtdt + σXt ◦ dBt (7.4)

where Bt is the standard Brownian motion, µ ∈ R and σ > 0. The Stratonovich solution to
(7.4) is given by [77]

Xt = X0eµt+σBt . (7.5)
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Figure 7.1 Left to right: GBM realizations when µ < −σ2/2, µ = −σ2/2, and µ > −σ2/2, with initial
valued X0 = 5.

The formulas for the mean and variance of the Stratonovich GBM are [77]:

E{Xt} = X0e(µ+σ2/2)t, and Var{Xt} = X2
0e(2µ+σ2)t(eσ2t − 1) (7.6)
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Different choices of σ and µ will change the long-term behavior of both the mean and variance
of the process, Indeed, For µ < −σ2/2 The long-term mean of the process will decay to zero.
In the case of µ = −σ2/2, the longterm mean of the GBM be the initial value X0. Lastly, the
mean of the process will tend towards infinity when µ > −σ2/2. We display realizations of
the GBM under these three conditions (left)-(right), respectively, in Figure 7.1.

Lastly, we consider the Ornstein-Uhlenbeck (OU) process. The OU process solves the
following SDE [77]:

dXt = k(µ − Xt)dt + σ ◦ dBt, (7.7)

where µ ∈ R, σ > 0, and k > 0. The solution is given by

Xt = X0e−kt + µ(1 − e−kt) + σ
∫ t

0
e−k(t−s) ◦ dBs. (7.8)

The OU process is referred to as mean-reverting because as t grows, the solution in (7.8) drifts
towards its long-term mean, µ. The rate at which mean-reversion occurs is controlled by the
parameter k, the larger k is the faster the mean reversion happens. In Figure 7.2 we display
several realizations of the OU process simulated with various k values sampled from the
interval [0.01 0.5]. All simulations were done with µ = 35, X0 = 5, and σ = 1.
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Figure 7.2 Realizations of the OU process for various k, and µ = 35, X0 = 5, and σ = 1.

The mean and variance of an OU process is as follows [95]:

E{Xt} = X0e−kt + µ(1 − e−kt), Var{Xt} =
σ2

2k
(1 − e−2kt). (7.9)

The long-term variance of the OU process is σ2/2k. This, combined with the mean-reversion
property allows easy control over the time evolution of the OU process. Therefore, (7.8) is
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an ideal candidate for modeling random terms for which it is necessary to control long-term
behavior.

7.3 Motivating application

Consider the compartment model displayed in Figure 7.3, that describes how lead enters the
body, dissolves in the blood stream, and is absorbed by the surrounding tissue and bone. We
investigate this linear model because it is an interesting application and its formulation allows
for both easy numerical and analytic investigation. Details for this model are taken from [36,
113]. We denote the level of lead (in µg) in blood, tissue, and bone at time t by x1, x2, and x3,

blood x1 tissue x2bone x3

L(t, θθθ, ω)

k12

U

k13

k31

S

k21

Figure 7.3 Flow of lead in and out of the human body.

respectively. The parameters U and S are the (constant) rates in micrograms/day (µg/day)
at which lead is excreted from blood and tissue, respectively. The rate at which lead moves
from compartment i to compartment j is denoted by kij and is measured in µg/day. The
forcing term L(t,θθθ,ω) corresponds to the amount of lead entering the body at time t and is
measured in µg/day. In practice, the amount of lead entering the blood can flucuate randomly
in time. Thus, we model L(t,θθθ,ω) with a path-continous stochastic process to account for this
behaviour. Consequently, the system in Figure 7.3 becomes a system RODEs of the form (7.1).

Modeling the stochastic forcing term We model the noise L via the GBM (7.5) or the
OU process (7.8), and let X0 = L0 be the amount of lead entering the system at time t = 0.
Note, we do not use the canonical Brownian motion Bt to force this model. Recall, we have
no way of controlling the longterm behavior of Bt. Furthermore, the Brownian motion takes
on negative values. Thus, from a modeling standpoint Bt does not make physical sense for
the amount of lead entering the blood at time t.

Modeling the uncertainty in the input The numerical experiments conducted in the
present work consider the following uncertain parameter vector

θθθ =
[
U k12 k21 k13 k31 S L0 σ

]T
, (7.10)
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Table 7.1 Model parameters for (7.11) [36].

Model parameter Symbol Units Nominal Value
Rate of lead removed from blood U µg/day 0.021
Rate of lead transferred from blood to tissue k12 µg/day 0.011
Rate of lead transferred from tissue to blood k21 µg/day 0.012
Rate of lead transferred from blood to bone k13 µg/day 3.5e − 5
Rate of lead transferred from bone to blood k31 µg/day 0.0039
Rate of lead removed from tissue S µg/day 0.016
Amount of lead entering the blood at t = 0 L0 µg 49.3

Table 7.2 Noise parameter values used to simulate zzz(t,θθθ,ω) in (7.11).

Noise type Parameter symbol Units Nominal Value
GBM σ unitless 0.1
GBM µ unitless −σ2/2
OU σ unitless 1.0
OU µ µg 35.0
OU k unitless 0.2

where θ1, . . . ,θ6 correspond to the rates from the compartment model in Figure 7.3, L0 =

L(0,θθθ,ω), and σ is a noise parameter. Nominal values for θθθ and the other noise parameters
are given in Table 7.1. The uncertainties of the first seven entries of the parameter vector θθθ

are modeled according to θi = θ̂i + 0.1θ̂iai where ai ∼ U (−1,1) with θ̂i corresponding to the
nominal value for θi, for i = 1 . . . 7. For i = 8 we use θ8 = θ̂8 + 0.5θ̂8a8, with a8 ∼ U (−1,1).

The linear system. The model described in Figure 7.3 translates into the following inho-
mogeneous system of linear differential equations:

ẋ̇ẋx = A(θθθ)xxx + zzz(t,θθθ,ω), (7.11)

where

A(θθθ) =


−(U + k12 + k13) k21 k31

k12 −(S + k21) 0

k13 0 −k31

 and zzz(t,θθθ,ω) =


L(t,θθθ,ω)

0

0

 ,

with,

xxx(0,θθθ,ω) =
[
0 0 0

]T
.
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7.4 Methods

In this section, we first present a numerical framework for approximating solutions to SDEs.
The approach is adapted from the work presented in [38]. We then propose two possible
derivative-based global sensitivity measures (DGSMs), each of which measures a different as-
pect of the QoI. Lastly, we analytically investigate the expectation of the solution of (7.11) with
respect to ω in order to provide further insight into the behavior of the proposed sensitivity
measures.

7.4.1 Smooth random functions for approximating noise in dynamical systems

We are solving RODEs arising from ODEs with stochastic forcing terms. The stochastic forc-
ing terms are assumed to be almost-surely path-continuous. This means that for almost all ω

we can implement traditional numerical techniques for solving differential equations. How-
ever, due to the possible low regularity of the incorporated stochastic process, the traditional
numerical solution techniques do not retain their usual convergence rates when applied to
RODEs. There are a variety of ways to cope with these irregularity, such as time averaging
methods proposed in [44]. For the present work, we focus on a simple-to-implement alterna-
tive inspired by the approach taken in [38]. The article [38] considers solving SDEs using a
truncated Fourier series with random coefficients to approximate the white noise. The authors
refer to these approximations as big smooth random functions. Big smooth random functions
refer to both periodic big smooth random functions and non-periodic big smooth random functions.
Periodic big smooth random functions are defined as follows [38]:

Definition 7.4.1 (Periodic big smooth random function). For some interval
[−M

2 , M
2

]
, a periodic

big smooth random function approximation of a function f takes the form:

f (x) ≈ a0 +
2√
π

m

∑
j=1

[
aj cos

(
2π jx

M

)
+ bj sin

(
2π jx

M

)]
, m =

⌊
M
λ

⌋
(7.12)
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where λ > 0 is the so-called "wave number" and the random coefficients are independent with aj, bj,
∼N (0, 2

(2m+1 )λ).

Non-periodic big smooth random functions are handled by creating a periodic big smooth
random function on a larger interval of length M′ ≫ M, and restricting the resulting series
appropriately. The limiting behavior of the integrals of big smooth random functions are
well-behaved. In particular, as λ → 0 the solution of an SDE containing a big smooth random
function approximation of the white noise will converge in probability to the Stratonovich
solution (Theorem 5.1 in [38]).

Included in [38] is an introduction to using the software package Chebfun [34] to solve
stochastic differential equations. Chebfun is an open-source Matlab-based package. We use
Chebfun to get smooth approximations of the stochastic processes defining the stochastic
forcing term of the studied RODEs. Solving SDEs using big smooth random functions is not
a new concept. However, the benefit of Chebfun is it provides an easy-to-implement approach
for computing several smooth approximations to a stochastic process. In turn, this smooth
approximations allows the use of traditional numerical ODE solution techniques, making it
simple to generate many QoI realizations. The ability to easily sample the QoI is invaluable
as the estimation of several GSA tools rely on sampling.

We numerically investigate the impact of the wave number λ on the QoI x1(t,θθθ,ω) from
(7.11), which corresponds to the amount of lead in the blood at time t. For this study we used
a Intel core i7 dual core processor along with Matlab version R2018a. Timing results may
vary for different machines and software versions.

Table 7.3 Columns left to right: noise type, wave number, seconds compute one smooth white noise
sample, seconds to compute one realizations of noise term, seconds to solve one realization of x1
from system in (7.11).

noise type wave number white noise L(t,θθθ, ·) ODE solve
GBM λ = 0.1 17.6 156.86 18.04
GBM λ = 10.0 0.39 1.47 0.96
OU λ = 0.1 16.50 183.49 22.47
OU λ = 10.0 0.37 1.62 0.91

For λ = 0.1 and λ = 10 we compute NΩ = 1,000 samples of x(t,θθθ, ·) with the components
of θθθ and noise parameters fixed at their nominal values (see Table 7.1). In Table 7.3 for OU
and GBM noise types we report the amount of time in seconds it takes to simulate one sample
of the white noise term, the stochastic forcing term, and the QoI solutions for both values of
λ. In the top row of Figure 7.4 we compare different realizations of the QoI computed with
the forcing term L modeled by GBM. In particular, compare the value of x1 when the smooth
approximation of the GBM is computed with λ = 0.1 (black) and λ = 10 (red). We observe
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Figure 7.4 Top row: comparison of realizations for x1(t,θθθ,ω) with GBM noise computed with λ =
0.1 (black) and λ = 10 (red). Bottom row: comparison of realizations for x1(t,θθθ,ω) with OU noise
computed with λ = 0.1 (black) and λ = 10 (red).

that the QoI behavior is very similar for both λ values. We repeat the same study for the case
of OU forcing and display the results in the bottom row of Figure 7.4. Once again, we observe
similar behavior of the two computed realizations of the QoI. In the top row of Figure 7.5,
we display the mean (left) and standard deviation (right) over time of the QoI forced by
GBM calculated with NΩ = 1,000. In Figure 7.5 (bottom left and right), we display the same
values for the case of OU forcing. Observe, the QoI expectation and standard deviation of x1

with λ = 0.1 is reasonably similar to the expectation and standard deviation computed with
λ = 10 for both noise types. We also note that the amount of time to run the simulations
is significantly less for λ = 10 than for λ = 0.1. Therefore, for the numerical studies in the
present work we choose to simulate the stochastic forcing term with λ = 10.
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Figure 7.5 Top: mean (left) and standard deviation (right) comparison of x1(t,θθθ,ω) with NΩ = 1,000
simulations of the GBM noise computed with λ = 0.1 (black) and λ = 10 (red). Bottom: mean (left)
and standard deviation (right) comparison of x1(t,θθθ,ω) with NΩ = 1,000 simulations of the OU noise
computed with λ = 0.1 (black) and λ = 10 (red).

7.4.2 Derivative-based global sensitivity analysis

We want to understand how uncertainties in the vector of input parameters θθθ impact QoIs
extracted from the solutions of RODEs. To this end, we propose two derivative-based global
sensitivity measures (DGSMs). Let y(t,θθθ,ω) represent the quantity of interest (QoI) and con-
sider

1. Global-in-time DGSMs for ω-averaged model:

ν
(1)
j =

∫ T

0

∫
Θ

(
∂Y
∂θj

)2

µ(dθθθ)dt, where Y(t,θ) =
∫

Ω
y(t,θθθ,ω)P(dω). (7.13)
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2. Global-in-time stochastic DGSMs:

ν
(2)
j (ω) =

∫ T

0

∫
Θ

(
∂y
∂θj

)2

µ(dθθθ)dt. (7.14)

The proposed DGSMs consider the sensitivity of different properties of the QoI. In the case
of ν

(1)
j we take partial derivatives after averaging over the stochastic variable. In other words,

ν
(1)
j considers the sensitivity of the average stochastic behavior of the model. In contrast, ν

(2)
j

considers the sensitivity of the process pathwise, i.e, ω by ω. In section 7.5 we compare the
DGSMs numerically.

7.4.3 Analytical investigations of ν
(1)
jν
(1)
jν
(1)
j

In this section, we analytically compute the expectation of the QoI xxx(t,θθθ,ω) from (7.11) with
respect to the stochastic variable. We then use the results to gain insight into the behavior of
the proposed measure ν

(1)
j .

We have [113],

xxx(t,θθθ,ω) = etAXXX0 + etA
∫ t

0
e−sAzzz(s,θθθ,ω) ds, where XXX0 = xxx(0) (7.15)

Consider EΩ {xxx(t,θθθ,ω)},

EΩ {xxx(t,θθθ,ω)} =
∫

Ω
etAXXX0 P(dω) + etA

∫
Ω

∫ t

0
e−sAzzz(s,θθθ,ω) dsP(dω) (7.16)

= etAXXX0 + L0etA
∫ t

0
e−sA

∫
Ω

L(s,θθθ,ω)eee1 P(dω)ds, (7.17)

where eee1 is the canonical basis vector in R3. The change in the order if the integrals is justified
by the Fubini-Tonelli Theorem.

We continue our analytic exploration by substituting the expectation of the noise term
with respect to Ω with the known mean of each of the processes. We first consider the case
when L(t,θθθ,ω) is modeled via GBM (7.5). Let b = µ + σ2/2:

EΩ {xxx(t,θθθ,ω)} = etAXXX0 + etA
∫ t

0
L0ebse−sAeee1 ds

= etAXXX0 + L0etA
∫ t

0
e−s(A−bI)eee1 ds

= etAXXX0 + L0etA
[
− (A − bI)−1e−s(A−bI)

∣∣∣∣t
0
eee1

]
= etAXXX0 + L0etA

[
− (A − bI)−1e−t(A−bI) + (A − bI)−1

]
eee1

= etAXXX0 +−L0etA
[

e−t(A−bI)(A − bI)−1 − (A − bI)−1
]

eee1
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= etAXXX0 +−L0etA
[

e−t(A−bI) − I
]
(A − bI)−1eee1

= etAXXX0 +−L0

[
ebtI − etA

]
(A − bI)−1eee1

= etAXXX0 +−L0

[
e(µ+σ2/2)tI − etA

]
(A − (µ + σ2/2)I)−1eee1.

Now, consider the special case when µ =−σ2/2, i.e. no drift. We can then simplify further

EΩ {xxx(t,θθθ,ω)} = etAXXX0 − L0

[
I − etA

]
A−1eee1. (7.18)

Observe, in (7.18) the parameter σ has vanished from the expression completely.
Next, consider the case when L(t,θθθ,ω) is modeled via the OU process (7.8). Starting from

line (7.17) and substituting the known mean of the OU process we have

EΩ {xxx(t,θθθ,ω)} =

etAXXX0+L0etA
∫ t

0
e−sA

(
L0e−ks + µ(1 − e−ks)

)
eee1 ds

= etAXXX0+L0etA
[

L0

∫ t

0
e−kse−sA ds + µ

∫ t

0
e−sA ds − µ

∫ t

0
e−kse−sA ds

]
eee1

= etAXXX0+L0etA
[

L0

∫ t

0
e−s(kI+A) ds + µ

∫ t

0
e−sA ds − µ

∫ t

0
e−s(kI+A) ds

]
eee1

= etAXXX0+L0etA
[

L0

(
− (kI + A)−1e−t(kI+A) + (kI + A)−1

)
+ µ

(
− A−1e−tA + A−1

)
− µ

(
− (kI + A)−1e−t(kI+A) + (kI + A)−1

)]
eee1

= etAXXX0+L0etA
[

L0

(
− e−t(kI+A)(kI + A)−1 + (kI + A)−1

)
+ µ

(
− e−tAA−1 + A−1

)
− µ

(
− e−t(kI+A)(kI + A)−1 + (kI + A)−1

)]
eee1

= etAXXX0+L0

[
L0

(
− e−kt(kI + A)−1 + etA(kI + A)−1

)
= etAXXX0+L0

[
L0

(
− e−kt(kI + A)−1 + etA(kI + A)−1

)
− µ

(
− e−kt(kI + A)−1 + etA(kI + A)−1

)
− µ

(
A−1 − etAA−1

)]
eee1

= etAXXX0+L0

[
L0

(
− e−kt(kI + A)−1 + etA(kI + A)−1

)
+ µ

(
e−kt(kI + A)−1 − etA(kI − A)−1

)
− µ

(
A−1 − etAA−1

)]
eee1
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= etAXXX0+L0

[(
(µ − L0)e−ktI + (L0 − µ)etA

)
(kI + A)−1 − µ

(
I − etA

)
A−1

]
eee1

= etAXXX0 + L0

[(
(µ − L0)

(
e−ktI − etA

))
(kI + A)−1 − µ

(
I − etA

)
A−1

]
eee1. (7.19)

Note, the parameter σ has been eliminated once again. The next step in computing ν
(1)
j is to

evaluate the partial derivatives with respect to the uncertain parameters (7.10). In the case of
both GBM and OU noise, it is straightforward to see that the partial derivative with respect
to σ with be zero. This means, ν

(1)
j will always rank σ as unimportant.

7.5 Numerical results

In this section we investigate the DGSMs proposed in 7.4.2 to analyze their utility for identi-
fying non-essential model variables. We consider the system in (7.11) describing lead transfer
in the human body. We focus our investigation on the QoI x1(t,θθθ,ω), which represents the
amount of lead in the blood at time t. We estimate the DGSMs to analyze the sensitivity
of x1 in two different setups. Specifically, we consider the case when the stochastic forcing
term L(t,θθθ,ω) is modeled with a GBM (section 7.5.1) and when L(t,θθθ,ω) is modeled with an
OU process (section 7.5.2). In both cases The Matlab package Chebfun is used to simulate
realizations of the stochastic forcing term using a wave number of λ = 10 (section 7.4.1).

Estimating the proposed DGSMs. We first explain the different approaches implemented
to numerically estimate the DGSMs. Let Y(t,θθθ) =

∫
Ω x1(t,ω,θθθ)P(dω). To compute ν

(1)
j (7.13)

we approximate Y using a Monte Carlo (MC) estimate with NΩ samples of x1. All solutions
for x1 are computed via ode45. The partial derivatives ∂Y

∂θj
, j = 1, . . . , Np are computed using

a complex-step method with step size h = 0.01. Next, we use NΘ samples to approximate
the integral of Θ. Lastly, the composite trapezoid rule is used to evaluate the integral over
the time domain T = [0 Tf ]. To estimate ν

(2)
j (ω) (7.14) we construct the corresponding sen-

sitivity equations [68, 93] to compute the partial derivatives ∂x1
∂θj

, j = 1, . . . , Np. The resulting
augmented system is solved using ode45. We utilize NΘ samples of the input parameters to
approximate the integral over the uncertain parameter space. Finally, we integrate over the
time using composite trapezoid rule.

7.5.1 Derivative-based GSA for the GBM forcing term

We focus on simulations of the system in (7.11) forced by a GBM with µ =−σ2/2, i.e. no drift.
Recall, the uncertain parameter is given as θθθ ∈ R8, with θθθ = [U k12 k21 k13 k31 S L0 σ]. The
model is simulated on the time interval T = [0 365] days. A few realizations the GBM repre-
sentations of the forcing term L(t,ω,θθθ) are displayed in Figure 7.6 (left). The corresponding
QoI realizations are displayed in Figure 7.6 (right). We utilize NΩ = 1,000 and NΘ = 500 to
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estimate ν
(1)
j and ν

(2)
j and normalize the resulting values as follows

νj
(i) =

ν
(i)
j

∑
Np

k=1 ν
(i)
k

, i = 1,2.
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Figure 7.6 Left: a few realizations of the noise term L constructed with a GBM, right: corresponding
trajectories of x1.

In Figure 7.7 we display pdf estimates for νj
(2) computed with NΩ = 1,000 samples. Ob-

serve, all of the pdf estimates are skewed. In order to compare νj
(2) with νj

(1) we compute
the median of the νj

(2) pdfs as well as the 10th and 90th percentiles. We display these re-
sults alongside νj

(1) in Figure 7.8. We choose an importance tolerance of tol = 0.05 and use
the convention that a νj

(i), i = 1,2 value below tol implies the corresponding parameter θj

is unimportant. We observe that in the case of θ4 in Figure 7.8 the tol falls within the 90th
percentile of νj

(2). This means that νj
(2) unimportance rankings of this parameter changes with

the realizations of ω.
We also note the two DGSMs report similar values for every input parameter, except θ8.

Recall, from the investigation in section 7.4.3 that the partial derivative of Y(t,θθθ) with respect
to θ8 is zero because Y does not depend on θ8. Thus, the result ν̄

(1)
8 = 0 provides a numerical

illustration of the analytic derivation from the previous section. In comparison, the median
value for ν̄

(2)
8 is above 0.1. This disparity between ν̄

(1)
8 and ν̄

(2)
8 is further illustration of the

subtleties involved in stochastic sensitivity analysis. By averaging over the stochastic variable
first ν

(1)
j is reduced to the deterministic case when L = EΩ {L}. Therefore, with ν

(1)
j we are

analyzing the impact of parameters on the average behavior of the QoI. In contrast, ν
(2)
j

accounts the possible impact of the different realizations of the stochastic noise by returning
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Figure 7.7 Estimated pdfs for νj
(2), j = 1. . . . , Np, computed with NΩ = 1,000 samples.
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Figure 7.8 Comparison of normalized DGSMs νj
(1) (black) and median of νj

(2) (red) estimated for x1
with GBM forcing term. Dashed line corresponds to tol = 0.05.
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a distribution of parameter sensitivities. Put another way, ν
(2)
j tells us that the sensitivity of the

QoI to σ depends on the realization of the noise, and ν
(1)
j tells us that the stochastic average

value of the QoI is not sensitive to σ. Which DGSM we choose depends on the sensitivity
information we are interested in.

7.5.2 Derivative-based GSA for the OU forcing term

In this section we consider the same uncertain parameter as the previous study in the case
when the system in (7.11) is forced by an OU process (7.7), with noise parameter values µ =

35µg and k = 0.2. A few realization of the OU process and corresponding QoI are displayed
in Figure 7.9 left and middle, respectively. No simplifying assumptions are made for the OU
noise case.

For this study we modify the numerical approach utilized for ν
(1)
j . Specifically, we replace

the MC estimate of Y(t,θθθ) with the analytical formula given in (7.19). All other numerical
procedures remain the same. We utilize sample sizes NΩ = 500 and NΘ = 80 for the compu-
tations of ν

(1)
j and ν

(2)
j . In Figure 7.9 (right) we compare the normalized values of νj

(1) (black)

and the sample median of νj
(2) (red). We use the importance tolerance tol = 0.007. Note, the

two proposed DGSMs once again rank the first seven parameters similarly and disagree for
θ8, as expected.
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Figure 7.9 Left: a few realizations of the noise term L constructed with the OU process, middle: cor-
responding trajectories of x1, right: comparison of normalized DGSMs for νj

(1) (black) and median of
νj
(2) (red) estimated for x1 with OU forcing term. Results above 7 × 10−3 displayed only.

7.6 Conclusion

In this chapter we demonstrated the need for careful treatment of derivative-based global
sensitivity analysis for stochastically forced ordinary differential equations. We also discussed
a straight-forward, easy-to-implement numerical approach for solving RODEs that enables
the use of traditional numerical methods for solving ordinary differential equations.

We proposed two different DGSMs, each considering the sensitivity of a different aspect
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of the QoI. In the case of ν
(1)
j , we are analyzing sensitivity of the average stochastic behavior

of the QoI with respect to the uncertain parameters. Since we are averaging over the stochas-
tic behavior first and then evaluating sensitivity, there is potential for loss of information. In
comparison, ν

(2)
j considers sensitivity of the process to the uncertain parameters as a function

of ω. This means that while we are analyzing the sensitivity of the full process, parameter
importance can change depending on the noise realization. Therefore, the appropriate DGSM
formulation depends on the QoI behavior we want to analyze. We computed and compared
the two DGSMs for an RODE describing lead in the body. In spite of measuring different
quantities, the proposed DGSMs gave similar rankings for many of the input variables. How-
ever, the DGSMs did not agree for every uncertain parameter.

Future work should seek to formalize under what circumstances ν
(1)
j parameter rankings

are consistent with those of ν
(2)
j . Analysis of other types of RODEs (random coefficients

or random initial conditions), as well as a nonlinear system of RODEs would also provide
further insight into derivative-based GSA for stochastic systems.
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CHAPTER 8

CONCLUSION

In this thesis we studied GSA methods for a variety of QoI types. In chapter 3, we generalized
derivative-based GSA approaches and properties to the case of vector-valued outputs. In
chapter 4, we presented methods for derivative-based global sensitivity measures (DGSMs)
for functional QoIs. In chapter 6, we proposed a parameter screening metric inspired by active
subspace methods for functional QoIs. Lastly, in chapter 7, we proposed and investigated two
possible DGSMs for the case of stochastic QoIs.

Computational efficiency was central in the development of our numerical methods. In
chapter 4, the truncated Karhunen–Loéve expansion (KLE) is combined with adjoint-based
gradient computation to obtain a numerical approach for computing the functional DGSMs
for which the computational cost did not scale with the input parameter dimension. In chap-
ter 6, we presented a structure exploiting, gradient-free, non-intrusive framework for efficient
dimension reduction and surrogate modeling for models with high-dimensional inputs and
outputs. In chapter 7, the proposed computational methods that used smooth approximations
of the stochastic forcing terms which allowed traditional numerical ODE solutions methods
to be used while retaining known convergence rates.

We utilized our proposed GSA methods by studying QoIs arising from a wide variety of
applications, including disease modeling, subsurface flow, and biotransport. The presented
numerical results illustrate that our proposed GSA methods and corresponding computa-
tional approaches are efficient and informative.

Future work for chapter 4 could develop extensions for derivative-based GSA for function-
valued QoIs with correlated parameters. While the proposed numerical methods for estimat-
ing the functional DGSMs do not rely on parameter independence, the relationship between
DGSMs and the total Sobol’ indices fails in the case of correlated parameters.

The computational approaches proposed in chapters 4 and 6 rely on effectively approxi-
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mating the functional QoI with a low-rank KLE. However, in some cases, one might require
considerably more terms in the truncated KLE to approximate the true process well. Future
work should seek to develop numerical methods for computing the proposed GSA methods
for QoIs that cannot be sufficiently estimated via low-rank KLEs.

A future direction for the parameter screening method proposed in chapter 6 could inves-
tigate different approaches for approximating the active subspace and activity scores. Addi-
tionally, the bispectral surrogates in chapter 6 model the KL modes using polynomial chaos
expansions. One could explore alternative surrogate modeling techniques for the KL modes,
such as multivariate adaptive regression splines (MARS) or neural networks, to determine
their suitability.
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