
ABSTRACT

MINSTER, RACHEL LYNN. Randomized Algorithms for Tensors and Matrices with
Applications. (Under the direction of Arvind K. Saibaba.)

This thesis is focused on developing randomized low-rank approximations for matrices and

tensors, as well as applications of these algorithms to areas such as system identification and

kernel interactions. There are three projects that form the core of this thesis.

In the first project, we focus on randomized low-rank approximations for tensors in the

Tucker format. Many applications in data science and scientific computing involve large-scale

datasets that are expensive to store and manipulate. However, these datasets possess inherent

multidimensional structure that can be exploited to compress and store the dataset in an

appropriate tensor format. In recent years, randomized matrix methods have been used to

efficiently and accurately compute low-rank matrix decompositions. Motivated by this success,

we develop randomized algorithms for tensor decompositions in the Tucker representation.

Specifically, we present randomized versions of two well-known compression algorithms, namely,

HOSVD and STHOSVD, and a detailed probabilistic analysis of the error in using both

algorithms. We also develop variants of these algorithms that tackle specific challenges posed by

large-scale datasets. The first variant adaptively finds a low-rank representation satisfying a

given tolerance, which is beneficial when the target-rank is not known in advance. The second

variant preserves the structure of the original tensor, and is beneficial for large sparse tensors

that are difficult to load in memory. We consider several different datasets for our numerical

experiments: synthetic test tensors, and realistic applications such as the compression of facial

image samples in the Olivetti database and word counts in the Enron email dataset.

Our second project concerns randomized algorithms used to accelerate processes for system

identification. Eigensystem Realization Algorithm (ERA) is a data-driven approach for subspace

system identification and is widely used in many areas of engineering. However, the computational

cost of the ERA is dominated by a step that involves the singular value decomposition (SVD) of

a large, dense matrix with block Hankel structure. In this project, we develop computationally

efficient algorithms for reducing the computational cost of the SVD step by using randomized

subspace iteration and exploiting the block Hankel structure of the matrix. We provide a detailed

analysis of the error in the identified system matrices and the computational cost of the proposed

algorithms. We demonstrate the accuracy and computational benefits of our algorithms on two

test problems: the first involves a partial differential equation that models the cooling of steel

rails, and the second is an application from power systems engineering.

In our final project, we develop tensor-based methods for approximating low-rank kernel

interactions. Kernel matrices, which are dense matrices whose entries model pairwise interactions

between sets of points, appear in many applications such as integral equations and Gaussian

processes. The number of interaction points can become quite large, sometimes making these

matrices prohibitively expensive to work with. We can efficiently approximate kernel matrices

by representing them as rank-structured matrices, which is done by identifying and compressing

off-diagonal blocks in a low-rank format. Although the rank-r SVD gives the optimal rank-

r approximation when compressing the off-diagonal blocks, it is computationally expensive.

Fast low-rank algorithms have been developed, but important challenges in computational

and storage costs remain. We present our new tensor-based approach, which builds on an

existing kernel-independent approach employing Chebyshev interpolation. Our approach takes

the resulting block matrix, maps it to a four-dimensional tensor, compresses the tensor using

new tensor compression algorithms, and maps back to a compressed block matrix. We discuss

the computational costs of the proposed algorithms, and also provide extensive numerical tests

that demonstrate the accuracy of the methods.

© Copyright 2021 by Rachel Lynn Minster

All Rights Reserved

Randomized Algorithms for Tensors and Matrices with Applications

by
Rachel Lynn Minster

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Mathematics

Raleigh, North Carolina

2021

APPROVED BY:

Ilse C.F. Ipsen Agnes Szanto

Eric Chi Arvind K. Saibaba
Chair of Advisory Committee

BIOGRAPHY

Rachel Minster was born in Winston-Salem, North Carolina, and later attended the University

of North Carolina at Charlotte, where she received her Bachelor of Science in Mathematics and

her Bachelor of Arts in German in 2016. She then moved to Raleigh to attend North Carolina

State University to further pursue Mathematics, receiving her Masters degree in 2018.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Arvind Saibaba, for his help and guidance throughout my

time at NC State. I have truly enjoyed working with him, and I appreciate all the time and

hard work that went in to helping me through the last several years.

I would also like to thank my friends, family, and husband for supporting me throughout

this entire process.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Overview of the thesis . 2

Chapter 2 Background and Notation . 4
2.1 Singular Value Decomposition . 4
2.2 Randomized SVD . 5
2.3 Subset Selection and Interpolatory Decompositions 6
2.4 Tensor Notation and Preliminaries . 8

2.4.1 HOSVD/STHOSVD . 11
2.4.2 Best Approximation . 13

Chapter 3 Randomized Low-rank Approximation Algorithms for Tucker De-
compositions . 14

3.1 Introduction . 14
3.2 Randomized HOSVD/STHOSVD . 16

3.2.1 Algorithms . 16
3.2.2 Error Analysis . 17
3.2.3 Computational Cost . 21

3.3 Adaptive Randomized Tensor Decompositions . 22
3.4 Structure-preserving decompositions . 24

3.4.1 Algorithm . 24
3.4.2 Error Analysis . 26
3.4.3 Variants . 29

3.5 Numerical Results . 30
3.5.1 Test Problems . 30
3.5.2 Numerical Experiments . 32

3.6 Conclusion . 39
3.7 Acknowledgements . 40

Chapter 4 Efficient Randomized Algorithms for Subspace System Identification 41
4.1 Introduction . 41
4.2 Background . 43

4.2.1 Eigensystem Realization Algorithm . 43
4.2.2 Hankel matrices . 46
4.2.3 Randomized SVD . 48

4.3 Randomized algorithms for Eigensystem Realization 49
4.3.1 Randomized Eigensystem Realization Algorithm 49
4.3.2 Randomized TERA . 52

4.4 Error Analysis . 55
4.4.1 Background and assumptions . 55
4.4.2 Main result . 57
4.4.3 Accuracy of the singular vectors . 59

iv

4.4.4 Stability . 60
4.5 Numerical Results . 60

4.5.1 Heat Transfer . 61
4.5.2 Power system . 66

4.6 Conclusions and Future work . 71
4.7 Acknowledgements . 71

Chapter 5 Efficient Tensor-based Approximations to Kernel Interactions . . . 72
5.1 Introduction . 72
5.2 Background . 74

5.2.1 Kernel approximation using Chebyshev interpolation 76
5.3 Tensor-based approximation algorithms . 79

5.3.1 Mapping to and from Tensors . 80
5.3.2 Method 1: Randomized Interpolatory Tensor Decomposition 81
5.3.3 Method 2: Randomized Interpolatory Tensor Decomposition with

Block Selection . 82
5.3.4 Method 3: Randomized Kronecker Product 84
5.3.5 Computational Cost . 85

5.4 Numerical Results . 86
5.4.1 Standard Parameters . 87
5.4.2 Experiments . 87

5.5 Conclusions . 90

Chapter 6 Conclusions . 91

BIBLIOGRAPHY . 93

v

LIST OF TABLES

Table 3.1 Computational Cost for the HOSVD, R-HOSVD, STHOSVD, and R-
STHOSVD algorithms. The first term in each expression is the cost of
computing an SVD of the mode unfoldings, and the second is the cost of
forming the core tensor. 22

Table 3.2 Summary of sparse tensor examples from the FROSTT database—we
include the details for both the full datasets and the condensed datasets
used in our experiments. 31

Table 3.3 Runtime in seconds of the HOSVD, R-HOSVD, STHOSVD, and R-
STHOSVD algorithms on the Hilbert tensor X with d = 5, averaged over
three runs. Each algorithm is run with target rank (5, 5, 5, 5, 5), and the
randomized algorithms use oversampling parameter p = 5. The STHOSVD
and R-STHOSVD algorithms use the processing order ρ = [1, 2, 3, 4, 5]. . . 33

Table 3.4 Relative error and average runtime in seconds of R-STHOSVD on the
Olivetti dataset for different processing orders. The runtime was averaged
over three runs, and the R-STHOSVD used a target rank of (20, 40, 5)
and an oversampling parameter of p = 5 as inputs. 33

Table 3.5 Rank (size of the core tensor) obtained by the adaptive R-STHOSVD
algorithm (Algorithm 8) with different relative error tolerances ε as the
size of each dimension of X increase. The inputs are ε, block size b = 1,
and processing order ρ = [1, 2, 3]. 34

Table 3.6 A comparison of the adaptive R-STHOSVD algorithm (Algorithm 8)
to STHOSVD. We first obtained the rank of the core tensor with the
requested relative error tolerance from the adaptive algorithm. Then we
compared the actual error of the approximation from the adaptive R-
STHOSVD to that of an STHOSVD with the same rank. The processing
order for all runs was ρ = [2, 1, 3]. *Each STHOSVD was computed with
the corresponding rank found in the second column. 35

Table 3.7 A comparison of the adaptive R-HOSVD algorithm (Algorithm 7) to
HOSVD. We first obtained the rank of the core tensor with the requested
relative error tolerance from the adaptive algorithm. Then we compared
the actual error of the approximation from the adaptive R-HOSVD to
that of an HOSVD with the same rank. *Each HOSVD was computed
with the corresponding rank found in the second column. 36

Table 3.8 The relative error and runtime of both SP-STHOSVD and R-STHOSVD
on the tensors defined in Table 3.2 as the target rank (r, r, r) increases.
The processing order was ρ = [3, 1, 2], and the oversampling parameter
was p = 5. Note that, for simplicity, the rank is the same for each mode,
and that the input rank for the R-STHOSVD was (r + p, r + p, r + p) so
the approximations have the same size. 38

Table 3.9 The relative error and runtime of both SP-STHOSVD and R-STHOSVD
on the condensed NELL-2 dataset as the target rank (r, r, r) increases.
The processing order was ρ = [3, 1, 2], and the oversampling parameter
was p = 5. Note that the rank is the same for each mode for simplicity,
and that the input rank for the R-STHOSVD was (r + p, r + p, r + p) so
the approximations have the same size. 38

vi

Table 3.10 Runtime in hours of SP-STHOSVD on the full Enron dataset with in-
creasing rank (r, r, r, r). The oversampling parameter was p = 5, and the
processing order was ρ = [3, 1, 2, 4]. 39

Table 4.1 Computational complexity of the dominant step, the SVD step, in each of
the four algorithms. Recall that s is the number of block rows and columns
in the block Hankel matrix, m is the number of inputs, ` is the number of
outputs, r is the target rank, and κ and c are the number of iterations
used in cross approximation and the dominant volume submatrix parts of
the CUR-ERA algorithm. 51

Table 4.2 Computational cost of computing RandTERA 54
Table 4.3 Details of the test problems we will use in our numerical experiments, as

well as the size of the largest Hankel matrix Hs that occurs for these test
problems. 61

Table 4.4 Reduced number of inputs m′ and outputs `′ based on the singular value
threshold ε for use in TERA and RandTERA. 68

Table 4.5 Computational time in seconds of the SVD step in the identification
algorithms SVD-ERA, RandSVD-H, TERA, and RandTERA. Note for
s = 1000, the matrix was too large to store explicitly, so we only show the
run times for the other algorithms. 70

Table 5.1 Summary of the computational cost of the various algorithms. The upper
table represents the computational cost of the standard approaches, and
the lower table represents the computational costs associated with the
tensor compression methods proposed. Note that for the lower table we
need to include the cost of forming FS ,FT which costs O(n2(Ns +Nt)).
Here, n is the number of Chebyshev nodes, rt is the tensor target rank,
rm is the matrix target rank, p is the oversampling parameter, and b is
the number of blocks drawn from M. 86

vii

LIST OF FIGURES

Figure 2.1 A Tucker representation of 3-mode tensor X , where the rank of the
Tucker form is less than the original dimensions. 10

Figure 3.1 Left: Relative approximation error for 5-mode Hilbert tensor X ∈
R25×25×25×25×25 defined in (3.19), with target rank (r, r, r, r, r) and over-
sampling parameter p = 5. Right: Actual relative error for X from the
R-HOSVD and R-STHOSVD algorithms compared to the calculated
error bound as the target rank (r, r, r, r, r) increases. Both algorithms
use oversampling parameter p = 5, and R-STHOSVD uses the processing
order ρ = [1, 2, 3, 4, 5]. 32

Figure 3.2 Relative error for X with and without subspace iteration, compressing
just the pixels (mode 2), as the target rank increases. The oversampling
parameter was p = 5. The right hand plot was run with one step of
subspace iteration. 34

Figure 3.3 Relative error for X as target rank increases using the STHOSVD,
compressing pixels and people (modes 2 and 1), plotted with rank given
by the Adaptive R-STHOSVD (Algorithm 8) with the desired relative
error tolerance ε. Processing order was ρ = [2, 1, ∗], and the oversampling
parameter was p = 5. 36

Figure 3.4 Relative error for synthetic sparse tensor X defined in (3.20) with
γ = 2, 10, 200 and increasing target rank (r, r, r). We compare the SP-
STHOSVD algorithm (Algorithm 9) to the STHOSVD and R-STHOSVD
algorithms with inputs of oversampling parameter p = 5 and processing
order ρ = [1, 2, 3]. 37

Figure 3.5 The relative error and runtime of SP-STHOSVD, Tucker-TS [56], and
the One Pass (”Streaming”) algorithm [71] on the synthetic sparse tensor
defined in (3.20) with increasing target rank. The processing order for SP-
STHOSVD was ρ = [1, 2, 3], and the oversampling parameter was p = 5.
We used the suggested parameters for Tucker-TS and the Streaming
algorithm, with a target rank of (r+ p, r+ p, r+ p) so all approximations
have the same size. 39

Figure 4.1 Singular values of the block Hankel matrix Hs as computed by a full
SVD, SVDS-H, and RandSVD-H. We computed the first 20 singular
values using SVDS-H and RandSVD-H and plotted them against the first
20 singular values computed by the full SVD. 62

Figure 4.2 Eigenvalues of the identified Ar matrix using SVD-ERA, SVDS-H, and
RandSVD-H algorithms on the heat transfer problem. We used s = 1000
and a target system size of r = 20 as inputs for each algorithm. 62

Figure 4.3 Relative error in recreated Markov parameters compared to a full SVD
ERA for both the SVDS-H and RandSVD-H algorithms. We used s = 1000
and a target rank of r = 20 as inputs. 63

Figure 4.4 Average run time of the SVD, SVDS, RandSVD, and RandSVD-H al-
gorithms on the heat transfer problem. We averaged the run time over
three runs, and a target system size of r = 20 as inputs for each algorithm. 64

viii

Figure 4.5 Eigenvalues of the identified Ar matrix using CUR-ERA, compared to
those identified by SVD and RandSVD-H on the heat transfer problem
with s = 1000 and a target system size of r = 20. 64

Figure 4.6 Relative error in recreated Markov parameters compared to a full SVD-
ERA for RandSVD-H, SVDS-H, and CUR-ERA. 65

Figure 4.7 Experiments with the heat transfer test problem comparing RandSVD-H
to RSVDeig-H and RSVDqr-H. The top left figure shows the singular
values of Hs computed by all three algorithms, the top right figure shows
the identified eigenvalues of Ar by using the randomized algorithms, and
the bottom left figure shows the average run time in seconds of ERA
using the three randomized algorithms. 66

Figure 4.8 Singular values of block Hankel matrix Hs as computed by a full SVD
and RandSVD-H versus those computed by (left) TERA with varying ε
tolerances and (right) RandTERA with varying ε tolerances. 67

Figure 4.9 Eigenvalues of the identified matrix Âr from SVD-ERA compared to the
identified matrix Âr from RandSVD-H and RandTERA on the power
system test problem with target rank r = 75. 69

Figure 4.10 Relative error in the reconstructed Markov parameters using RandTERA,
TERA, and RandSVD-H algorithms. The relative error is computed using
the system identified using the SVD-ERA. 69

Figure 4.11 Impulse response of the original discrete-time system compared against
that for the systems identified using SVD-ERA, RandSVD-H, TERA,
and RandTERA and excited with impulse input at Generator 1, with
responses from Generator 1 (top) and Generator 2 (bottom). 70

Figure 5.1 Visual of the bounding boxes for source points, Bs, and for target points,
Bt. Note that X ⊂ Bs and Y ⊂ Bt . 75

Figure 5.2 Visual representation of mapping source and target points to Chebyshev
grids, shown by steps 1 and 3. Step 2 shows computing the interactions
between Chebyshev grid. Each numbered step corresponds to a matrix
shown in Figure 5.3. 76

Figure 5.3 Matrices comprising the interaction matrix approximation process, corre-
sponding to steps shown in Figure 5.2. Matrix 1 maps the source points
to a Chebyshev grid, matrix 3 maps the target points to a Chebyshev
grid, and matrix 2 computes the interactions between Chebyshev grids. . 78

Figure 5.4 Cosine of the angles between true and approximate left singular vectors
of M(1) as b increases. 83

Figure 5.5 Box setup for our numerical experiments, where L is the length of both
the source and target boxes, D is the distance between bottom left corners
of boxes, and θ is the angle describing the placement of the target box. . 87

Figure 5.6 Relative error of SVD, RandSVD, and Methods 1, 2 and 3 with respect
to increasing target rank for five different kernels κ(x,y) 88

Figure 5.7 Relative error produced by SVD, RandSVD, and Methods 1, 2, and 3
with increasing target rank for four different side lengths L of the source
and target boxes. 89

Figure 5.8 Relative error produced by SVD, RandSVD, and Methods 1, 2, and 3
with increasing target rank for different, increasing distance between the
source and target boxes. 89

ix

Figure 5.9 Relative error produced by SVD, RandSVD, and Methods 1,2, and 3
with increasing target rank for three different values of n, the number of
Chebyshev nodes. The left figure is n = 10, middle is n = 20, and right
is n = 45. 90

x

Chapter 1

Introduction

Many matrices arising from different applications are large-scale, and pose significant computa-

tional challenges. Many of these large-scale matrices are challenging to store entry-wise, but have

structure (e.g., low-rank, rank-structured, Hankel) that can be exploited to effectively store and

compute with these matrices. For example, if the numerical rank of a matrix is significantly less

than either of the matrix dimensions, a low-rank factorization can be used to efficiently store and

compute with the matrix. Standard algorithms for computing the low-rank factorization, such as

the singular value decomposition or rank-revealing QR factorizations, are still computationally

expensive for large-scale matrices.

Another key idea behind this work is that data and operators arising from different

applications are often inherently multidimensional. As an example, a series of images stored

over time is a natural three-dimensional dataset. Similarly, solutions to a partial differential

equation on a 3D spatial grid can be represented as a four-dimensional array. The most common

low-rank algorithms only handle two-dimensional data in the form of matrices, however, so this

multidimensional structure often goes unrecognized and underutilized. If we instead treat these

datasets as tensors, we can exploit the multidimensional structure for a variety of benefits such

as cost savings and higher accuracy.

Randomized numerical linear algebra is an emerging field, which brings together many

different areas such as random matrix theory, numerical linear algebra, theoretical computer

science, and probability theory. Randomized algorithms are used in increasingly diverse contexts

including solving least squares and other optimization problems, computing low-rank factoriza-

tions, interpolatory decompositions, and eigenvalue problems. They have several benefits, such

as ease of implementation and strong performance guarantees, which make them particularly

useful for large-scale problems and high-performance computing. In this thesis, we present

new, randomized, low-rank approximation algorithms for both matrices and tensors to tackle

challenges in various applications.

1

1.1 Overview of the thesis

We present in this thesis three main projects concerning randomized algorithms for tensors and

matrices in different applications.

Chapter 2: Background. Before we present our main projects, we provide general back-

ground material and results on randomized matrix algorithms and tensors in Chapter 2. This

material is supplemented by chapter-specific background sections in later chapters.

Chapter 3: Randomized Low-rank Approximation Algorithms for Tucker Decom-

positions. Our first major project concerns randomized algorithms for tensor decompositions

in the Tucker form. In this chapter, we present probabilistic error analysis for established

randomized algorithms, namely randomized versions of HOSVD [89] and STHOSVD [17]. We

also develop new randomized algorithms for tensor decompositions. Specifically, we develop a

new adaptive randomized algorithm to compute a tensor decomposition when the target rank is

not known. Another main contribution of this chapter is a randomized algorithm producing a

low-rank decomposition where the core tensor contains entries from the original tensor. This

means the core tensor preserves whatever structure, such as sparsity or non-negativity, the

original tensor has. There are significant benefits of our new algorithm for sparse tensors, as

the intermediate and final decompositions are able to be stored efficiently. In addition to the

algorithm and decomposition, we also provide an analysis of the error and computational cost.

We provide several numerical experiments testing our algorithms on synthetic tensors and

real-world datasets to show the performance of the algorithms. This chapter reproduces our

paper [61] and the supplementary materials to a large extent. We have also included additional

numerical experiments. This is joint work with Misha E. Kilmer.

Chapter 4: Efficient Randomized Algorithms for Subspace System Identification.

In Chapter 4, we present new randomized algorithms for subspace system identification. One of

the more common identification methods used, the Eigensystem Realization Algorithm (ERA),

involves an SVD of a large block Hankel matrix followed by a truncated SVD, which is used to

solve a least-squares optimization problem identifying the system matrices. We aim to reduce

the cost of the ERA by using randomized matrix algorithms. In the first of the new algorithms

we present, we exploit the block Hankel structure of the matrix in question to efficiently compute

matrix-vector products. This is then used to accelerate the standard randomized SVD, reducing

computational costs further. Our second algorithm combines the above techniques with another

model reduction method known as tangential interpolation. These algorithms have lower storage

and computational costs compared to the ERA. In addition, we present error analysis that relates

the error in the system matrix eigenvalues to the singular vectors of the block Hankel matrix.

We also give additional conditions required for the stability of the identified system matrices.

Finally, we present numerical experiments showing the performance of our new algorithms on

2

two different applications. This chapter reproduces our paper [60] in its entirety. This was joint

work with Jishnudeep Kar and Aranya Chakraborrty.

Chapter 5: Efficient Tensor-based Approximations to Kernel Interactions. In the

third project, presented in Chapter 5, we consider low-rank approximation algorithms for kernel

matrices. Building on an existing kernel-independent approach [30], we develop new randomized

algorithms that exploit tensor structure inherent to the approach. Specifically, we first present

a method for mapping a block matrix to and from a four-dimensional tensor. This provides a

framework that allows us to use tensor compression algorithms on a block matrix, which has the

potential for making them more accurate and computationally efficient than standard matrix

algorithms. Within this framework, we develop three main tensor approximation algorithms.

In the first method, we compress each mode using a row interpolatory decomposition, which

combines randomized techniques with subset selection. This results in a core tensor comprised of

entries from the original tensor, and the method is more cost efficient than traditional methods.

In the second algorithm, we take a similar approach as in the first, but we first subsample the

tensor to further reduce computational costs. The third algorithm takes an approach that adapts

the randomized HOSVD to take a Kronecker product of Gaussian random matrices instead of a

single standard Gaussian random matrix. All three tensor methods reduce the computational

costs of compression compared to traditional matrix algorithms. Finally, we present numerical

results for a variety of kernels and problem settings which demonstrate the accuracy of our

algorithms. This was also joint work with Misha E. Kilmer.

Chapter 6: Conclusions. Finally, in Chapter 6, we summarize our conclusions and contri-

butions, also discussing potential future directions stemming from this work.

3

Chapter 2

Background and Notation

In this chapter, we review the singular value decomposition (SVD), which provides the basis

for many of our later algorithms. We also discuss the relevant background for randomized

matrix algorithms, specifically the randomized SVD. Next, we review subset selection methods,

including the strong rank-revealing QR factorization (sRRQR). Finally, we introduce the

necessary background information for working with tensors, and review standard algorithms for

compressing tensors.

2.1 Singular Value Decomposition

We first review the singular value decomposition, or SVD, of a matrix. For a matrix X ∈ Rm×n

of rank k, the SVD of X is

X = UΣV> =
k∑
i=1

σiuiv
>
i ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a diagonal

matrix whose entries are the singular values of X, σi for i = 1, . . . ,min{m,n}, such that

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0. The first k singular values are positive, while the remaining

singular values are zero. The columns ui ∈ Rm of U are called the left singular vectors, and the

columns vi ∈ Rn of V are called the right singular vectors.

In many applications, we do not require the full SVD, but rather a reduced version known

as the truncated SVD. For a rank r, the truncated SVD Xr of a matrix X ∈ Rm×n is defined as

Xr =

r∑
i=1

σiuiv
>
i .

An important result involving the SVD is the Eckart-Young Theorem [28], which states that

the best rank-r approximation to a matrix, with r < k = rank(X), is the truncated rank-r SVD

of that matrix. We reproduce this theorem in the Frobenius norm here.

Theorem 1. Let Xr be the truncated rank-r SVD of a matrix X, i.e., Xr =
∑r

i=1 σiuiv
>
i , with

4

r < k = rank(X). Then,

min
rank(B)=r

‖X−B‖F = ‖X−Xr‖F =

min{m,n}∑
j=r+1

σ2j

1/2

.

2.2 Randomized SVD

It is well-known that computing the full SVD of a matrix costs O(mn2), assuming m ≥ n. When

the dimensions of a matrix X ∈ Rm×n are very large, the computational cost of a full SVD may

be prohibitively expensive. Randomized SVD, popularized by [41], is a computationally efficient

way to compute a rank-r approximation of X. Assuming that X is approximately low-rank or has

singular values that decay rapidly, the randomized SVD delivers a good low-rank representation

of X. Compared to the full SVD, the randomized SVD is much more computationally efficient

across a wide-range of matrices.

The randomized SVD algorithm has two distinct stages. In the first stage, or the range

finding stage, we multiply the matrix X by a random matrix (we choose this to be standard

Gaussian in this paper) to obtain a matrix Y with contains random linear combinations of

the columns of X. We then take a thin QR factorization to obtain a matrix Q whose range

approximates the range of X. By projecting X onto the range of Q, we obtain the low-rank

approximation X ≈ QQ>X. Then, in the second stage, or the post-processing stage, we compute

a thin SVD of the much smaller matrix Q>X = ÛBΣ̂V̂>, and compute its truncated SVD.

We then compute Û = QÛB to obtain the low-rank approximation X̂ = ÛΣ̂V̂>. Algorithm 1

summarizes this process.

Algorithm 1 [Û, Σ̂, V̂] = RandSVD(X, r, p,Ω)

Input: matrix X ∈ Rm×n, target rank r, oversampling parameter p ≥ 0 such that r + p ≤
min{m,n}, standard Gaussian random matrix Ω ∈ Rn×(r+p)

Output: Û ∈ Rm×r, Σ̂ ∈ Rr×r, and V̂ ∈ Rn×r such that X ≈ ÛΣ̂V̂>

1: Multiply Y ← XΩ
2: Compute thin QR factorization Y = QR
3: Form B← Q>X
4: Calculate thin SVD B = ÛBΣ̂V̂>

5: Form Û← QÛB(: , 1 : r)
6: Compress Σ̂← Σ̂(1 : r, 1 : r), and V̂← V̂(: , 1 : r)

The computational cost of the algorithm is

Cost = 2(r + p)O(nnz(X)) +O(r2(m+ n)),

where nnz denotes the number of nonzeros of X.

5

There is an additional version of the randomized SVD algorithm that includes subspace

iterations [41, Algorithm 4.4]. The use of subspace iterations can improve the accuracy of the

low-rank approximation, but it increases the computational cost and the required number of

passes through the matrix. We expand on more details of this version in Algorithm 11 in Chapter

4.

An error bound for Algorithm 1 in the Frobenius norm is presented below, and we will use

this result frequently in our analysis. This theorem can be found in [88, Theorem 3].

Theorem 2. Let X ∈ Rm×n, and Ω ∈ Rn×(r+p) be a Gaussian random matrix. Suppose Q is

obtained from Algorithm 1 with inputs target rank r ≤ rank(X) and oversampling parameter

p ≥ 2 such that r+ p ≤ min{m,n}, and let Br be the rank-r truncated SVD of Q>X. Then, the

error in expectation satisfies

EΩ‖X−QQ>X‖2F ≤ EΩ‖X−QBr‖2F ≤
(

1 +
r

p− 1

)min{m,n}∑
j=r+1

σ2j (X).

We will use two slightly different formulations of this theorem in our later results. Instead of

‖X−QBr‖2F , we will use ‖X− ÛÛ>X‖2F . It is straightforward to show the equivalence between

the two forms, see [65, section 5.3] for the explicit details. We will also use the following result,

which uses Hölder’s inequality [45, Theorem 23.10]:

EΩ‖X−QQ>X̂‖F ≤
√

1 +
r

p− 1

min{m,n}∑
j=r+1

σ2j (X)

1/2

. (2.1)

There have been several developments in recent years to the version of the randomized SVD

algorithm we present here. Adaptive randomized SVD algorithms are an example of such a

development. Found in [41], adaptive algorithms produce a low-rank approximation that satisfies

a given error tolerance. These adaptive versions are useful in applications where the target rank

is not known a priori. Other algorithms, such as the ones in RSVDPACK [80], use approaches

such as an eigenvalue decomposition and a QR decomposition of the smaller matrix B from step

3 instead of a thin SVD to speed up the standard randomized SVD algorithm. For the most

part, we use the version presented in Algorithm 1 as it is sufficient for our purposes, but these

other versions could yield improved timing results.

2.3 Subset Selection and Interpolatory Decompositions

In some algorithms discussed in this manuscript, we need to form low-rank approximations by

selecting certain rows or columns of a matrix. One example of a decomposition with subset

selection is the rank-revealing QR decomposition [36]. For matrices X ∈ Rm×n with m ≥ n and

6

a target rank r ≤ k = rank(X), a column-pivoted QR factorization gives

XP = QR = Q

[
R11 R12

0 R22

]
,

where P ∈ Rn×n is a permutation matrix, Q ∈ Rm×m is orthogonal, R11 ∈ Rr×r and R22 ∈
R(m−r)×(n−r) are upper triangular, and R12 ∈ Rr×(n−r). This factorization is considered rank-

revealing if R is formed so that the singular values of R11 are as large as possible, and the

singular values of R22 are as small as possible. This is quantified by the following conditions on

the singular values:

σmin(R11) ≥
σr(X)

π(r, n)
, σmax(R22) ≤ σr+1(X)π(r, n),

where π(r, n) is some function bounded by a polynomial in r and n. If we use the strong

rank-revealing QR (sRRQR) factorization [36, Algorithm 4] with user defined parameter η ≥ 1,

the bounds

σi(R11) ≥
σi(X)

π(r, n)
, σj(R22) ≤ σr+j(X),

for 1 ≤ i ≤ r and 1 ≤ j ≤ n− r, hold with π(r, n) =
√

1 + η2r(n− r).
In our algorithms, we will be using row selection instead of the column selection provided by

the rank-revealing QR as presented. To select well-conditioned rows of a matrix, we use column

selection on the transpose of the matrix. This requires the sRRQR factorization of a short and

fat matrix, i.e., a matrix with more columns than rows. We use the extension result in [13] to

apply sRRQR to this type of matrix.

Specifically, consider a matrix Z ∈ Rm×r with orthonormal columns, where r < m is the

target rank. Then the strong rank-revealing QR decomposition of Z> takes the form

Z>
[
P1 P2

]
= Q

[
R1 R2

]
, (2.2)

where
[
P1 P2

]
∈ Rm×m is a permutation matrix with P1 ∈ Rm×r, Q ∈ Rr×r is orthogonal,

R1 ∈ Rr×r is upper triangular, and R2 ∈ Rr×(m−r). The matrix P1 contains columns of the

identity matrix, and represents the indices of well-conditioned rows of Z (columns of Z>).

We reproduce Lemma 2.1 from [27], which contains error bounds for the sRRQR algorithm.

The bounds in this lemma will be used in our analysis in Chapter 3.

Lemma 1. Let Z ∈ Rm×r with Z>Z = Ir. Applying [36, Algorithm 4] with target rank r and

tuning parameter η ≥ 1 to Z> gives a submatrix P1 ∈ Rm×r of Im with

1√
1 + η2r(m− r)

≤ σj(P>1 Z) ≤ 1, 1 ≤ j ≤ r,

7

and

1 ≤ ‖(P>1 Z)−1‖2 ≤
√

1 + η2r(m− r).

We use the randomized range finder combined with subset selection to produce a low-rank

approximation to a matrix X. The resulting approximation exactly reproduces certain rows of

X, and is therefore called an interpolatory decomposition.

First, we compute a basis Q using the randomized range finding algorithm. Instead of

computing the low-rank approximation QQ>X, as was done in Algorithm 1, we first identify

a set of well-conditioned rows of Q. We obtain these well-conditioned rows by using sRRQR

on Q>. This is implemented as a selection operator denoted by the matrix P, which contains

columns from the identity matrix. We then use the low-rank representation

X ≈ Q(P>Q)−1P>X = AX̂,

where A = Q(P>Q)−1 and X̂ = P>X.

While we used sRRQR here to extract rows of X, we can also use other subset selection

methods. In particular, we will use pivoted QR for a similar tensor algorithm (Algorithm 16)

in Chapter 5. The matrix idea behind Algorithm 16 is exactly the same as the idea described

above, using randomized range finding followed by subset selection, but we use pivoted QR

instead of sRRQR for the subset selection step. The algorithm details for this matrix idea, which

we call Randomized Row Interpolatory Decomposition (RRID), are shown in Algorithm 2. This

approach is related to the SVD via row extraction algorithm [41, Algorithm 5.2].

Algorithm 2 [F,J] = RRID(X, r, p)

Input: matrix X ∈ Rm×n, target rank r, oversampling parameter p such that r+p ≤ min{m,n}
Output: factor matrix F, r + p selected indices J
1: Draw standard random Gaussian matrix Ω ∈ Rn×(r+p)
2: Multiply Y ← XΩ
3: Compute thin QR Y = QR
4: Use pivoted QR on Q> to obtain indices J of well-conditioned rows of Q
5: Compute F← Q(Q(J , :))−1

2.4 Tensor Notation and Preliminaries

We now discuss the necessary background for tensors. For more details, see [48] for a good

review.

We denote a d-mode tensor as X ∈ RI1×···×Id with entries

xi1,...,id , 1 ≤ ij ≤ Ij , j = 1, . . . , d.

8

Tensor Components. Tensors have mode fibers as higher order equivalents to matrix rows

and columns. Just as matrices (tensors of dimension d = 2) have two types of fibers, columns

and rows, a d-mode tensor has d types of fibers. For third-order tensors, the mode fibers have

specific names. Mode-1 fibers x:i2i3 are called column fibers, mode-2 fibers xi1:i3 are called row

fibers, and mode-3 fibers xi1i2: are called tube fibers. In higher dimensions, these components

are just referred to as mode-j fibers. After fibers have been extracted from tensors, they are just

assumed to be column vectors.

Similarly to fibers, we can define slices of a tensor as two-dimensional sections, obtained by

fixing all but two indices of a tensor. For a third-order tensor, horizontal slices are Xi1::, vertical

slices are X:i2:, and frontal slices are X::i3 .

Matricization. A tensor can be “unfolded” into a matrix by reordering the elements, and

this process is known as matricization. There are d different unfoldings for a d-mode tensor.

Each mode-j unfolding arranges the resulting matrix so that the columns of the matrix are

the mode-j fibers of the tensor. The mode-j unfolding is denoted as X(j) ∈ RIj×(
∏
k 6=j Ik) for

j = 1, . . . , d. As an example, consider the 3-mode tensor X ∈ R2×2×2 with slices

X ::1 =

[
1 3

2 4

]
, X ::2 =

[
5 7

6 8

]
.

Then the three mode unfoldings are as follows:

X(1) =

[
1 3 5 7

2 4 6 8

]
, X(2) =

[
1 2 5 6

3 4 7 8

]
, X(3) =

[
1 2 3 4

5 6 7 8

]
.

Tensor product. The tensor product (or mode product) is a fundamental operation for

multiplying a tensor by a matrix. Given a matrix A ∈ RK×Ij , the mode-j product of a tensor

X with A is denoted Y = X ×j A, and has dimensions Y ∈ RI1×...Ij−1×K×Ij+1×···×Id . More

specifically, the product can be expressed in terms of the entries of the tensor as

Y i1,...,ij−1,k,ij+1,...,id =

Ij∑
ij=1

xi1,...,idakij , 1 ≤ k ≤ K, j = 1, . . . , d.

The tensor product can also be expressed as the product of two matrices. That is, we can write

Y(j) = AX(j) for j = 1, . . . , d. Note that tensor products across distinct modes commute, and

multiplying a tensor X with d matrices Aj , j = 1, . . . , d across modes 1, . . . , d respectively is

written as X×d
j=1 Aj . The following lemma will be useful in our analysis.

Lemma 2. Let X ∈ RI1×···×Id and let Πj ∈ RIj×Ij be a sequence of d orthogonal projectors for

9

j = 1, 2, . . . , d. Then,

‖X −X
d

×
j=1

Πj‖2F =
d∑
j=1

‖X
j−1

×
i=1

Πi ×j (I−Πj)‖2F ≤
d∑
j=1

‖X −X ×j Πj‖2F .

The proof of this lemma can be found in [75, Theorem 5.1].

Multirank and the Tucker representation. There are many different definitions for tensor

rank depending on the tensor decomposition form. For the format we will use in this thesis,

the Tucker form, we consider the multirank of a tensor. The Tucker format of a tensor X
of rank (r1, . . . , rd) consists of a core tensor G ∈ Rr1×···×rd and factor matrices {Aj}dj=1 with

each Aj ∈ RIj×rj such that X ≈ G×d
j=1 Aj . We define the desired size of the core tensor,

(r1, . . . , rd), as the target rank. For short, the Tucker representation is written as [G; A1, . . . ,Ad].

A three-dimensional Tucker representation where the rank of the Tucker form is smaller than

the original dimensions is shown in Figure 2.1.

Figure 2.1 A Tucker representation of 3-mode tensor X , where the rank of the Tucker form is less
than the original dimensions.

Note that storing a tensor in Tucker form is beneficial as it requires less storage than a full

tensor when the rank of the Tucker form is significantly less than the original dimensions. For a

d-mode tensor X ∈ RI×I×···×I and target rank (r, r, . . . , r) with r � I, the cost of storing the

Tucker form of X is O(rd + drI), compared to O(Id) for a full tensor.

Kronecker products. The Kronecker product of two matrices A ∈ Rm×n and B ∈ Rk×` is

A⊗B =

a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...

am1B am2B · · · amnB

 ∈ Rmk×n`.

10

We also note some properties of Kronecker products that will be useful in our analysis, namely

(A⊗B)(C⊗D) = AC⊗BD, (A⊗B)> = A> ⊗B>.

Kronecker products are also useful for expressing tensor mode products in terms of matrix-matrix

multiplications. Suppose Y = X×d
j=1 Aj , then

Y(j) = AjX(j)(A
>
d ⊗A>d−1 ⊗ · · · ⊗A>j+1 ⊗A>j−1 ⊗ · · · ⊗A>1). (2.3)

2.4.1 HOSVD/STHOSVD

The Higher Order SVD (HOSVD) and Sequentially Truncated Higher Order SVD (STHOSVD)

are two popular algorithms for computing low-rank tensor decompositions in the Tucker format.

Note that, for these algorithms, the factor matrices Aj all have orthonormal columns.

HOSVD. In the HOSVD algorithm, each mode is handled separately. The factor matrix Aj is

formed from the first rj left singular vectors of X(j). Once all factor matrices Aj are found, the

core tensor is formed by G = X×d
j=1 A>j . Details of the process can be found in Algorithm 3.

Algorithm 3 HOSVD

Input: d-mode tensor X ∈ RI1×···×Id , target rank vector r ∈ Nd
Output: X̂ = [G; A1, . . . ,Ad]
1: for j = 1 : d do
2: Compute SVD of X(j) to obtain X(j) = UΣV>

3: Compress U← U(:, 1 : rj), Σ← Σ(1 : rj , 1 : rj), and V← V(:, rj)
4: Set Aj ← U
5: end for
6: Form G = X×d

j=1 A>j

The error in approximating X using the HOSVD is bounded by the sum of the error in each

mode, as shown in the following theorem, taken from [75, Theorem 5.1].

Theorem 3. Let X̂ = [G; A1, . . . ,Ad] be the rank-r approximation to d-mode tensor X ∈
RI1×···×Id using Algorithm 3. Then

‖X − X̂‖2F ≤
d∑
j=1

‖X ×j (I−AjA
>
j)‖2F =

d∑
j=1

Ij∑
i=rj+1

σ2i (X(j)).

This theorem says that the error in the rank r approximation of the tensor X computed using

the HOSVD is the sum of squares of the discarded singular values from each mode unfolding.

To simplify the upper bound, we introduce the notation

11

∆2
j (X) ≡

Ij∑
i=rj+1

σ2i (X(j)), j = 1, . . . , d. (2.4)

With this notation, the error in the HOSVD satisfies ‖X − X̂‖F ≤
(∑d

j=1 ∆2
j (X)

)1/2
.

STHOSVD. An alternative to the HOSVD is the sequentially truncated HOSVD

(STHOSVD) algorithm which also produces a compressed representation in the Tucker format.

STHOSVD processes the modes sequentially, which makes the order in which the modes are

processed important since we may obtain different approximations by using different orders.

We call the processing order ρ, which is a vector of length d. For the analysis, we will use

ρ = [1, 2, . . . , d] for ease of notation.

At each stage of the STHOSVD algorithm, the core tensor G is unfolded, and the factor

matrix Aj is formed by taking the first rj left singular vectors. The new core tensor G(j) is

obtained by projecting the previous core tensor onto the subspace spanned by the columns of

Aj . We then have a j-th partial approximation, defined as X̂
(j)

= G(j)×j
i=1 Ai. Details for this

approximation process can be found in Algorithm 4.

Algorithm 4 STHOSVD

Input: d-mode tensor X ∈ RI1×···×Id , target rank vector r ∈ Nd, processing order ρ ∈ Nd
Output: X̂ = [G; A1, . . . ,Ad]
1: Set G = X
2: for j = 1:d do
3: Compute SVD of X(ρj) to obtain X(ρj) = UΣV>

4: Compress U← U(:, 1 : rρj), Σ← Σ(1 : rρj , 1 : rρj), and V← V(:, rρj)
5: Set Aρj ← U
6: Update G(ρj) ← ΣV> {Note: overwriting G(ρj) overwrites G}
7: end for
8: G ← G(ρd), in tensor form

The approximation error in this case is the sum of errors in the successive approximations,

and has the same upper bound as that of HOSVD. This is shown in the following theorem,

which assumes that the processing order is ρ = [1, 2, . . . , d]. If a different processing order is

taken, the upper bound will remain the same, so this assumption is made purely for ease of

notation. The proof of this theorem can be found in [75, Theorem 6.5].

Theorem 4. Let X̂ = [G; A1, . . . ,Ad] be the rank-r approximation to d-mode tensor X using

Algorithm 4 with processing order ρ = [1, 2, . . . , d]. Then,

‖X − X̂‖2F =
d∑
j=1

‖X̂
(j−1)

− X̂
(j)
‖2F ≤

d∑
j=1

‖X ×j (I−AjA
>
j)‖2F =

d∑
j=1

∆2
j (X(j)).

12

The computational cost of the STHOSVD is lower than the HOSVD, which was established

in [75] but is also reviewed in Subsection 3.2.3. Although both the error in the HOSVD and

the STHOSVD satisfy the same upper bound, it is not clear which algorithm has a lower error.

There is strong numerical evidence to suggest that STHOSVD typically has a lower error,

although counterexamples to this claim have been found [75]. For these reasons, STHOSVD is

preferable to HOSVD since it has a lower cost and the same worst case error bound. A downside

to STHOSVD is that the processing order ρ has to be determined in advance; some heuristics

for this choice are given in [75].

2.4.2 Best Approximation

We would like to find an optimal rank-r approximation of a given tensor X , which we will

denote as X̂ opt. Let S = {Y ∈ RI1×I2×···×Id : rank(Y(j)) ≤ rj , j = 1, . . . , d}. Then X̂ opt is an

optimal tensor defined as satisfying the condition

min
Y∈S
‖X −Y‖F = ‖X − X̂ opt‖F .

The Eckart-Young theorem [28] states that an optimal rank-r approximation to a matrix A

can be constructed using the SVD truncated to rank-r. Unfortunately, an analog of this result

for Tucker forms does not exist in higher dimensions [47]. The existence of X̂ opt is guaranteed

by [38, Theorem 10.8]; however, this minimizer is not unique since Tucker representations

are not unique [48, Section 4.3]. In general, computing X̂ opt requires solving an optimization

problem that has no closed-form solution. In [24], the higher order orthogonal iteration (HOOI)

was proposed to compute the “best” approximation by generating a sequence of iterates by

repeatedly cycling through the modes sequentially. Because the HOOI algorithm requires many

iterations with the tensor X , its implementation for large-scale tensors is challenging because

of the overwhelming computational cost. Although neither the HOSVD nor the STHOSVD

produce an optimal rank-r approximation, they do satisfy the inequality

‖X − X̂‖F ≤
√
d‖X − X̂ opt‖F . (2.5)

The proofs are available for the HOSVD (Theorem 10.3) and STHOSVD (Theorem 10.5) in [38].

The proof requires the observation that

∆j(X) ≤ ‖X − X̂ opt‖F , j = 1, . . . , d. (2.6)

We highlight this inequality since it will be important for our subsequent analysis. The inequal-

ity (2.5) suggests that the outputs of the HOSVD and the STHOSVD are accurate for low

dimensions and can be employed in three different ways: either as approximations to X̂ opt, as

starting guesses to the HOOI algorithm, or to fit CP models.

13

Chapter 3

Randomized Low-rank

Approximation Algorithms for

Tucker Decompositions

3.1 Introduction

Tensors, or multi-way arrays, appear in a wide range of applications such as signal processing;

neuroscientific applications such as Electroencephalography; data mining; seismic data processing;

machine learning applications such as facial recognition, handwriting digit classification, and

latent semantic indexing; imaging; astronomy; and uncertainty quantification. For example, a

database of gray scale images constitutes a third order array when each image is stored as a

matrix, while a numerical simulation of a system of a partial differential equations (PDEs) in

three-dimensional space when tracking several parameters over time yields a five-dimensional

dataset. Often, these datasets are treated as matrices rather than as tensors, suggesting that

additional structure that could be leveraged for gaining insight and lowering computational cost

is often underutilized and undiscovered.

A key step in processing and studying these datasets involves a compression step either to

find an economical representation in memory or to find principal directions of variability. While

working with tensors there are many possible formats one may consider, and each format is

equipped with a different notion of compression and rank. Examples of tensor formats include

CANDECOMP/PARAFAC (CP), Tucker, Hierarchical Tucker, and Tensor Train, all of which

have their respective benefits (see surveys [48, 32, 21, 22]). The CP format, which represents a

tensor as a sum of rank-1 outer products, gives a compact and unique (under certain conditions)

representation. Tucker generally finds a better fit for data by estimating the subspace of each

mode, while Hierarchical-Tucker and Tensor Train are useful for very high-dimensional tensors,

i.e., tensors with a large number of modes, since the cost of storing the tensor scales exponentially

with the dimension of the tensor [32]. In this chapter, we focus on the Tucker representation

14

which is known to have good compression properties. Given a multilinear rank r, the Tucker

form gives a representation of a tensor as a product of a core tensor and factor matrices typically

having orthonormal columns. Popular algorithms for compression in the Tucker format can be

found in [23, 75, 24], and a survey of approximation techniques can be found in [32]. Using

these algorithms, high compression ratios can be achieved if the target rank for the Tucker

approximation is small compared to the original dimensions. Even if the data is not highly

compressible, representing it in the Tucker format can give insight into its principal directions

[76].

In recent years, randomized matrix algorithms have gained popularity for developing low-

rank matrix approximations (see reviews [41, 54, 26]). These algorithms are easy to implement,

computationally efficient for a wide range of matrices (e.g. sparse matrices, matrices that can be

accessed only via matrix-vector products, and dense matrices that are difficult to load in memory),

and have accuracy comparable with non-randomized algorithms. There is also well-developed

error analysis applicable to several classes of random matrices for randomized algorithms. Even

more recently, randomized algorithms have been developed for tensor decompositions (see

below for a detailed review). Motivated by this success, we analyze existing randomized tensor

algorithms and propose and analyze new randomized tensor algorithms.

Contributions and Contents. In Section 3.2, we present analyses of randomized versions of

HOSVD and STHOSVD (proposed in [89] and [17] respectively). Our contributions here include

the probabilistic analysis of the randomized versions of these algorithms, as well as analysis of

the associated computational costs. In Section 3.3, we present adaptive randomized algorithms

to compute low-rank tensor decompositions for use in applications where the target rank is

not known beforehand. In Section 3.4, we present a new randomized compression algorithm for

large tensors, which produces a low-rank decomposition whose core tensor has entries taken

directly from the tensor of interest. In this sense, the core tensor preserves the structure (e.g.,

sparsity, non-negativity) of the original tensor. For sparse tensors, our algorithm has the added

benefit that the intermediate and final decompositions can be stored efficiently, thus enabling

the computation of low-rank tensor decompositions of large, sparse tensors. We also provide a

probabilistic error analysis of this algorithm. Finally, in Section 3.5, we test the performance of

all algorithms on several synthetic tensors and real-world datasets, and discuss the performance

of the proposed bounds.

Related Work. Several randomized algorithms have been proposed for computing low-rank

tensor decompositions, e.g., Tucker format [17, 88, 51, 57, 73, 29, 89], CP format [29, 6, 10, 78],

t-product [88], tensor networks [5], and Tensor Train format [17, 43]. Our work is most similar to

[17, 29, 89]. The algorithm for randomized HOSVD is presented in [89], and the corresponding

analysis is presented in [29] (both unpublished manuscripts). Randomized and adaptive versions

of the STHOSVD were proposed and analyzed in [17], but our manuscript provides probabilistic

error analysis for a different distribution of random matrices (see Section 3.2 for a justification of

15

our choice). To our knowledge, our proposed algorithm for producing structure-preserving tensor

decompositions and the corresponding error analysis are novel. Related to this algorithm is the

CUR-type decomposition for tensors proposed in [64, 25]. In contrast, our algorithm produces

decompositions in which the core tensor (rather than the factor matrices in the aforementioned

references) retains entries from the original tensor. This allows for the decomposition of extremely

large sparse tensors as the sparsity is maintained at each step of the algorithm.

3.2 Randomized HOSVD/STHOSVD

In this section, we review randomized algorithms that are modified versions of the HOSVD and

STHOSVD. We also develop rigorous error analysis and compare the two algorithms in terms of

computational cost.

3.2.1 Algorithms

To obtain the randomized version of HOSVD, first proposed in [89], a full SVD of each mode

unfolding is replaced with a randomized SVD of each mode unfolding to construct the factor

matrix. The procedure to compute the core tensor remains unchanged. This is reflected in

Algorithm 5, and we call this the R-HOSVD algorithm. The randomized version of STHOSVD

Algorithm 5 Randomized HOSVD

Input: d-mode tensor X ∈ RI1×I2×···×Id , target rank vector r ∈ Nd,
1: oversampling parameter p ≥ 0 satisfying (3.1)

Output: X̂ = [G; A1, . . . ,Ad]
2: for j = 1 : d do
3: Draw random Gaussian matrix Ωj ∈ R

∏
i 6=j Ii×(rj+p)

4: [Û, Σ̂, V̂] = RandSVD(X(j), rj , p,Ωj)

5: Set Aj ← Û
6: end for
7: Form G = X×d

j=1 A>j

is obtained in a similar way; at each step, the SVD of the unfolded core tensor is replaced with

a randomized SVD. This is shown in Algorithm 6 (we call this R-STHOSVD) and is similar

to the algorithm proposed in [17]. We briefly comment on the choice of the random matrices

{Ωj}dj=1. The R-HOSVD proposed in [89] uses standard Gaussian random matrices, which we

also adopt in this chapter. The authors in [17] advocate Ωj constructed as a Khatri-Rao product

of Gaussian random matrices, which is less memory intensive compare to standard Gaussian

random matrices. A recent article [71] also recommends the Sparse Rademacher and Scrambled

Subsampled Randomized Fourier Transform as appropriate choices for the random matrices.

While the standard Gaussian random matrices may be criticized for large storage costs, we

16

note that these matrices need not be stored explicitly and can be generated on-the-fly, either

column-wise or in appropriately sized blocks.

Algorithm 6 Randomized STHOSVD

Input: d-mode tensor X ∈ RI1×I2×···×Id , processing order ρ, target rank vector r ∈ Nd,
1: oversampling parameter p ≥ 0 satisfying (3.5)

Output: X̂ = [G; A1, . . . ,Ad]
2: Set G = X
3: for j = 1 : d do
4: Draw random Gaussian matrix Ωρj ∈ Rzj×(rρj+p), where zj is defined in (3.4)

5: [Û, Σ̂, V̂] = RandSVD(G(ρj), rρj , p,Ωρj)

6: Set Aρj ← Û

7: Update G(ρj) ← Σ̂V̂> {Note: overwriting G(ρj) overwrites G.}
8: end for
9: G ← G(ρd), in tensor form

3.2.2 Error Analysis

In the results below, we assume that the matrices {Ωj}dj=1 are standard Gaussian random

matrices of appropriate sizes. Here, we provide error bounds in expectation, but we can extend

this analysis to develop concentration results that give insight into the tail bounds. These can

be obtained by combining our analysis with the results from, e.g., Theorem 5.8 in [35].

Theorem 5 (Randomized HOSVD). Let X̂ = [G; A1, . . . ,Ad] be the output of Algorithm 5

with inputs target rank r = (r1, r2, . . . , rd) satisfying rj ≤ rank(X(j)) for j = 1, . . . , d and

oversampling parameter p ≥ 2 satisfying

rj + p ≤ min{Ij ,
∏
i 6=j

Ii}, j = 1, . . . , d. (3.1)

Then, the expected error in the approximation satisfies

E{Ωk}dk=1
‖X − X̂‖F ≤

(∑d
j=1

(
1 +

rj
p−1

)
∆2
j (X)

)1/2
(3.2)

≤
(
d+

∑d
j=1 rj
p−1

)1/2

‖X − X̂ opt‖F . (3.3)

Proof. Using Lemma 2 , we can write

E{Ωk}dk=1
‖X − X̂‖2F ≤ E{Ωk}dk=1

d∑
j=1

‖X ×j (I−AjA
>
j)‖2F =

d∑
j=1

EΩj‖X ×j (I−AjA
>
j)‖2F ,

17

where the equality comes from linearity of expectations and the independence of Ωj for each mode

j. We can unfold each term in the summation as ‖X ×j (I−AjA
>
j)‖2F = ‖(I−AjA

>
j)X(j)‖2F .

Then, by applying Theorem 2, we can bound the expected value of the squared error in each

mode to obtain

E{Ωk}dk=1
‖X − X̂‖2F ≤

d∑
j=1

(
1 +

rj
p− 1

)
∆2
j (X).

Finally, Hölder’s inequality gives

E{Ωk}dk=1
‖X − X̂‖F ≤

(
E{Ωk}dk=1

‖X − X̂‖2F
)1/2

≤

 d∑
j=1

(
1 +

rj
p− 1

)
∆2
j (X)

1/2

.

For the second inequality, recall that ∆2
j (X) ≤ ‖X − X̂ opt‖2F from (2.6). Thus, combined with

the previous inequality, we have

E{Ωk}dk=1
‖X − X̂‖F ≤

(
d+

∑d
j=1 rj

p− 1

)1/2

‖X − X̂ opt‖F .

To compare this result to the approximation error obtained using the HOSVD algorithm, we

consider a few special cases. Let r = max1≤j≤d rj . Then, if p = r+ 1, these bounds take the form

E{Ωk}dk=1
‖X − X̂‖F ≤

√
2‖X − X̂HOSVD‖F ≤

√
2d‖X − X̂ opt‖F .

Similarly, if we choose p = d rε e+ 1 for some ε > 0, the error satisfies

E{Ωk}dk=1
‖X − X̂‖F ≤

√
1 + ε‖X − X̂HOSVD‖F ≤

√
d(1 + ε)‖X − X̂ opt‖F .

This shows that the application of a randomized SVD in each mode of the tensor does not

seriously deteriorate the accuracy compared to using an SVD. Note that the computational

costs of these choices are higher.

Now consider the randomized STHOSVD approximation. For the probabilistic error analysis,

it is important to note that at each intermediate step, the partially truncated core tensor is a

random tensor. This is in contrast to the R-HOSVD, where we only needed to account for Ωj

for each mode because the operations are independent across the modes.

For this theorem, we use the same notation introduced in Subsection 2.4.1 for the STHOSVD,

in that the partially truncated core tensor at step j is G(j) = X×j
i=1 A>i , giving a partial

18

approximation X̂
(j)

= G(j)×j
i=1 Ai. For convenience, given a processing order ρ we define

zj =

ρj−1∏
i=ρ1

ri

 ρd∏
i=ρj+1

Ii

 , j = 1, . . . , d. (3.4)

Theorem 6 (Randomized STHOSVD). Let X̂ = [G; A1, . . . ,Ad] be the output of Algorithm 6

with inputs target rank r = (r1, r2, . . . , rd) satisfying rj ≤ rank(G
(j−1)
(j)) for j = 1, . . . , d, process-

ing order ρ, and oversampling parameter p ≥ 2 and

rj + p ≤ min{Ij , zj}, j = 1, . . . , d. (3.5)

Then, the approximation error in expectation satisfies

E{Ωk}dk=1
‖X − X̂‖F ≤

 d∑
j=1

(
1 +

rj
p− 1

)
∆2
j (X)

1/2

(3.6)

≤

(
d+

∑d
j=1 rj

p− 1

)1/2

‖X − X̂ opt‖F . (3.7)

Proof. We first assume that the processing order is ρ = [1, . . . , d] and then consider the general

case. The first equality in Lemma 2 and the linearity of expectations together give

E{Ωk}dk=1
‖X − X̂‖2F =

d∑
j=1

E{Ωk}dk=1
‖X̂

(j−1)
− X̂

(j)
‖2F =

d∑
j=1

E{Ωk}jk=1
‖X̂

(j−1)
− X̂

(j)
‖2F . (3.8)

We have used the fact that the j-th term in the summation does not depend on the random ma-

trices {Ωk}k>j . We first consider E{Ωk}jk=1
‖X̂

(j−1)
− X̂

(j)
‖2F . Since all the Ωk’s are independent,

we can write the expectation in an iterated form as

E{Ωk}jk=1
‖X̂

(j−1)
− X̂

(j)
‖2F = E{Ωk}j−1

k=1

{
EΩj‖X̂

(j−1)
− X̂

(j)
‖2F
}
.

The j-th term, which measures the difference in the sequential iterates, can be expressed as

‖X̂
(j−1)

− X̂
(j)
‖2F = ‖G(j−1)

j−1

×
i=1

Ai ×j (I−AjA
>
j)‖2F .

Now let

Zj ≡ I⊗ · · · ⊗ I︸ ︷︷ ︸
d−j terms

⊗Aj−1 ⊗ · · · ⊗A1.

19

If we unfold the difference X̂
(j−1)

− X̂
(j)

along the j-th mode, using (2.3) we have

‖X̂
(j−1)

− X̂
(j)
‖2F = ‖(I−AjA

>
j)G

(j−1)
(j) Z>j ‖2F

≤ ‖(I−AjA
>
j)G

(j−1)
(j) ‖

2
F .

(3.9)

The inequality comes as Zj has orthonormal columns for every j since the factor matrices Aj

all have orthonormal columns.

Now, let Γj = G
(j−1)
(j) = X(j)Zj for simplicity. We take expectations and bound this last

quantity in (3.9) using Theorem 2 (keeping {Ωk}j−1k=1 fixed), as

EΩj‖(I−AjA
>
j)Γj‖2F ≤

(
1 +

rj
p− 1

) Ij∑
i=rj+1

σ2i (Γj). (3.10)

We recall the definition and properties of Loewner partial ordering; see Section 7.7 in [42]. Let

M,N ∈ Rn×n be symmetric; M � N means N −M is positive semidefinite. For S ∈ Rn×m,

then S>MS � S>NS. Furthermore, λi(M) ≤ λi(N) for i = 1, . . . , n. Since Zj has orthonormal

columns, ZjZ
>
j is a projector so that

ΓjΓ
>
j = X(j)ZjZ

>
j X>(j) � X(j)X

>
(j),

and the singular values of Γj , which are squared eigenvalues of ΓjΓ
>
j , satisfy

Ij∑
i=rj+1

σ2i (Γj) ≤
Ij∑

i=rj+1

σ2i (X(j)) = ∆2
j (X). (3.11)

To summarize, (3.8),(3.9),(3.10),(3.11) combined give

E{Ωk}dk=1
‖X − X̂‖2F ≤

d∑
j=1

E{Ωk}j−1
k=1

(
1 +

rj
p− 1

)
∆2
j (X) =

d∑
j=1

(
1 +

rj
p− 1

)
∆2
j (X).

The equality follows since the tensor X is deterministic. Finally, we have by Hölder’s inequality

and (2.4) that

E{Ωk}dk=1
‖X − X̂‖F ≤

 d∑
j=1

(
1 +

rj
p− 1

)
∆2
j (X)

1/2

≤

(
d+

∑d
j=1 rj

p− 1

)1/2

‖X − X̂ opt‖F .

In the general case, when the processing order does not equal ρ = [1, . . . , d], the proof is

similar. We only need to work with the processed order, and we omit the details.

We make several observations regarding Theorem 6. First, the upper bound for the error is

the same for the R-STHOSVD as for the R-HOSVD (Theorem 5); however, once again, we note

20

that the performance of the two algorithms may be different. Second, this result says that the

upper bound for R-STHOSVD is independent of the processing order. This means that while

some processing orders may result in more accurate decompositions, every processing order

has the same worst-case error bound. Our recommendation is to pick a processing order that

minimizes the computational cost; see Subsection 3.2.3 for details, and Table 3.4 for numerical

results. Third, the discussion following Theorem 5 regarding the choice of the oversampling

parameter is applicable to the R-STHOSVD as well.

3.2.3 Computational Cost

We discuss the computational costs of the proposed randomized algorithms and compare them

against the HOSVD and the STHOSVD algorithms. We make the following assumptions. First,

we assume that the tensors are dense and our implementations take no advantage of their

structure. Second, we assume that the target ranks in each dimension are sufficiently small,

i.e., rj � Ij so that we can neglect the computational cost of the QR factorization and the

truncation steps of the RandSVD algorithm. Third, we assume that the random matrices used

in the algorithms are standard Gaussian random matrices. If other distributions are used, the

computational cost may be lower. Finally, for the STHOSVD and R-STHOSVD algorithms, we

assume that the processing order is ρ = [1, 2, . . . , d].

The computational cost of both HOSVD and STHOSVD was discussed in [75], and is

reproduced in Table 3.1. In this chapter, we also provide an analysis of the computational cost of

R-HOSVD and R-STHOSVD, which is summarized in Table 3.1. The table includes the costs for

both a general tensor X ∈ RI1×I2×···×Id with target rank r = (r1, r2, . . . , rd), as well as for the

special case when X ∈ RI×I×···×I with target rank r = (r, r, . . . , r). For ease of notation, denote

the product
∏j
k=i Ik by Ii:j , and similarly

∏j
k=i rk = ri:j for 1 ≤ i ≤ j ≤ d. The dominant costs

of each algorithm lie in computing the SVD of the unfoldings (the first term in each summation)

and forming the core tensor (the second term in each summation). We can see from Table 3.1

that the savings in randomizing both algorithms is roughly r/I. Since by assumption r � I, the

randomized algorithms are expected to be much faster. See Subsection 3.5.2 for experiments

exploring this.

Processing order. The error in the approximation obtained using the R-STHOSVD depends

on the choice of the processing order; see the numerical experiment in Subsection 3.5.2. However,

Theorem 6 suggests that the worst case error is independent of the processing mode. For this

reason, we choose a processing order that minimizes the computational cost. Since the dominant

cost at each step j is a randomized SVD with a cost of O(rρ1:ρjIρj :ρd), we can minimize this

cost by choosing to process the modes in decreasing order of sizes; i.e., we process the largest

modes first. Note that this is in contrast to the approach taken by [75] for the STHOSVD, in

that they process in the order of increasing mode sizes to minimize the cost of the standard

SVD at each step.

21

Table 3.1 Computational Cost for the HOSVD, R-HOSVD, STHOSVD, and R-STHOSVD algo-
rithms. The first term in each expression is the cost of computing an SVD of the mode unfoldings, and
the second is the cost of forming the core tensor.

Algorithm Cost for X ∈ RI1×···×Id Cost for X ∈ RI×···×I

HOSVD O
(∑d

j=1 IjI1:d +
∑d

j=1 r1:jIj:d

)
O
(
dId+1 +

∑d
j=1 r

jId−j+1
)

R-HOSVD O
(∑d

j=1 rjI1:d +
∑d

j=1 r1:jIj:d

)
O
(
drId +

∑d
j=1 r

jId−j+1
)

STHOSVD O
(∑d

j=1 Ijr1:j−1Ij:d +
∑d

j=1 r1:jIj+1:d

)
O
(∑d

j=1 r
j−1Id−j+2 + rjId−j

)
R-STHOSVD O

(∑d
j=1 r1:jIj:d +

∑d
j=1 r1:jIj+1:d

)
O
(∑d

j=1 r
jId−j+1 + rjId−j

)

3.3 Adaptive Randomized Tensor Decompositions

In the algorithms described in the previous section, we had to assume prior knowledge of the

target rank. This knowledge may not be available, or may be difficult to estimate, in practice.

Given a tensor X , it is often desirable to produce a decomposition X̂ that satisfies

‖X − X̂‖F ≤ ε‖X‖F ,

where 0 < ε < 1 is a user-defined parameter. Note that there may not be a unique tensor X̂
that satisfies this inequality, but it is desirable to find a tensor with a small multirank that does

satisfy this inequality. We first explain the adaptive randomized algorithm to find a low-rank

matrix approximation, and then explain how this can be extended to the tensor case.

Several adaptive randomized range finders for matrices have been proposed in the litera-

ture [41, 86]. Given a matrix X and a tolerance ε > 0, the goal is to find a matrix Q with

orthonormal columns that satisfies

‖X−QQ>X‖ ≤ ε‖X‖. (3.12)

The number of columns of Q is taken to be the rank of the low rank approximation. The adaptive

algorithms begin with a small number of columns of the random matrix Ω to estimate the

range Q and then sequentially increase the number of columns of Ω until the matrix Q satisfies

(3.12). In this chapter, we use a version of the adaptive randomized range finding algorithm first

proposed by [59] and subsequently refined in Algorithm 2 in [86]. We use Algorithm 2 from [86]

and assume that it can be invoked as Q = AdaptRangeFinder(X, ε, b), where X is the matrix

to be approximated, ε is the requested relative error tolerance, and b is a blocking integer to

determine how many columns of Ω to draw at a time.

Adaptive R-HOSVD. We now explain how the adaptive range finder can be used for

computing tensor factorizations. For the R-HOSVD, we apply this adaptive matrix algorithm to

22

each mode unfolding X(j). This gives a factor matrices Aj for each mode j = 1, . . . , d. Given

some tolerance ε, the approximation error ‖X − X̂‖F ≤ ε‖X‖F can be achieved if we choose

the factor matrices Aj to satisfy

‖X(j) −AjA
>
j X(j)‖F = ‖X ×j (I−AjA

>
j)‖F ≤ ε‖X‖F /

√
d.

Thus, we have apportioned an equal amount of error tolerance to each mode unfolding. Combined

with Lemma 2, this ensures that an overall relative error ε is achieved. This approach is

summarized in Algorithm 7. Suppose we want a more flexible approach, in which a different

tolerance εj is chosen for mode j = 1, . . . , d. This may be necessary, if we know in advance that

we want to avoid compressing along some modes. In general, we may use any sequence εj , so

long as it satisfies (
∑d

j=1 ε
2
j) = ε2. Indeed, setting εj = 0 for selected modes ensures that no

compression is performed across those modes. Note that the choice εj = ε/
√
d for j = 1, . . . , d

automatically satisfies this equality.

Algorithm 7 Adaptive R-HOSVD

Input: d-mode tensor X ∈ RI1×I2×···×Id , tolerance ε ≥ 0, blocking integer b ≥ 1
Output: X̂ = [G; A1, . . . ,Ad]
1: for j = 1 : d do
2: Aj = AdaptRangeFinder(X(j),

ε√
d
, b)

3: end for
4: Form G = X×d

j=1 A>j

Adaptive R-STHOSVD. The same approach can be extended to the R-STHOSVD algo-

rithm. We define the intermediate tensors X (j) = X×j
i=1 AiA

>
i for j = 1, . . . , d and X (0) = X .

Analogously, we define the intermediate core tensor G(j) = X×j
i=1 A>i with G(0) = G. Further-

more, we choose the processing order ρ = [1, 2, . . . , d] for simplicity. In this case, we choose the

factor matrices Aj in order to ensure that the successive iterates satisfy

‖X (j−1) −X (j)‖F = ‖G(j−1)
j−1

×
i=1

Aj ×j (I−AjA
>
j)‖F ≤

ε√
d
‖X‖F , j = 1, . . . , d.

Applying the first part of Lemma 2, we obtain

‖X −X (d)‖2F =

d∑
j=1

‖X (j−1) −X (j)‖2F ≤ ε2‖X‖2F .

The details are provided in Algorithm 8, which uses a general processing order. As with R-

HOSVD, we may elect to use the same error tolerance ε/
√
d for each mode unfolding, or use a

23

different tolerance εj for iterate j = 1, . . . , d.

Algorithm 8 Adaptive R-STHOSVD

Input: d-mode tensor X ∈ RI1×I2×···×Id , processing order ρ, tolerance ε ≥ 0, blocking integer
b ≥ 1

Output: X̂ = [G; A1, . . . ,Ad]
1: Set G ← X
2: for j = 1 : d do
3: Aρj = AdaptRangeFinder(G(ρj),

ε√
d
, b)

4: Update G(ρj) ← A>ρjG(ρj)

5: end for
6: G ← G(ρd), in tensor format

3.4 Structure-preserving decompositions

In this section, we are interested in computing a low-rank decomposition in the Tucker format in

which the core tensor G ∈ Rr1×···×rd has entries that are explicitly taken from the original tensor

X ∈ RI1×···×Id . That is, X ≈ G×d
j=1 Aj where Aj ∈ RIj×rj with j = 1, . . . , d are the factor

matrices (that do not necessarily have orthonormal columns). We call such a decomposition

structure-preserving since the core tensor retains favorable properties (e.g., sparsity, nonnegativity,

binary or integer counts) of the original tensor. This generalizes a related decomposition proposed

for matrices in [19]. Related to the structure-preserving decompositions, prior work includes a

higher-order interpolatory decomposition [64, 25, 55] of the form

X ≈ G
d

×
j=1

Cj , G = X
d

×
j=1

C†j ,

where the matrices {Cj}dj=1 have entries from the original tensor (specifically, columns selected

from the appropriate mode-unfoldings), and † represents the Moore-Penrose pseudoinverse.

3.4.1 Algorithm

We first explain our algorithm for a matrix X and then generalize it to tensors. We compute

a basis Q using the randomized range finding algorithm. Instead of computing the low-rank

approximation QQ>X, as was done in Algorithm 1, we first identify a set of well-conditioned

rows of Q. This is implemented as a selection operator denoted by the matrix P, which contains

columns from the identity matrix. We then use the low-rank representation

X ≈ Q(P>Q)−1P>X = AX̂,

24

where A = Q(P>Q)−1 and X̂ = P>X. We see that the matrix A does not have orthonor-

mal columns, but is well-conditioned, and that the matrix X̂ contains rows from the matrix

X as determined by the selection operator P. We use strong rank-revealing QR (sRRQR)

factorization [36, 27] for subset selection; other possibilities are discussed in Subsection 3.4.3.

The idea behind our algorithms is the following: at each step, given the core tensor G we

first unfold this tensor and use a randomized range finder on the unfolding to obtain a basis

Qj . Then, we use the sRRQR algorithm to determine the selection operator that identifies

well-conditioned rows of Qj ; we use these same selection operator to select rows of G(j) which

then determines the core tensor for the next step. The details of the algorithm are provided in

Algorithm 9. A few things are worth noting. First, the algorithm is structure-preserving in two

ways: the core tensor at each step contains elements from the original tensor, so that the final

core tensor also has entries from the original tensor; and the low-rank approximation reproduces

certain elements of the tensor exactly (in exact arithmetic). Second, in contrast to Algorithms 5

and 6, the factor matrices do not have orthonormal columns; if orthonormal columns are desired,

a postprocessing step can be performed (a thin-QR factorization of each factor matrix to obtain

the basis, followed by an aggregation step in which the core tensor is multiplied with all the

triangular factors). Third, the resulting tensor is of rank-(r1 + p, . . . , rd + p), which is also in

contrast to other algorithms that produce decompositions of the rank (r1, . . . , rd). Once again,

these factors can be recompressed using a post-processing step; see, for example, [51].

Algorithm 9 Structure-preserving STHOSVD (SP-STHOSVD)

Input: d-mode tensor X ∈ RI1×I2×···×Id , target rank vector r ∈ Nd,
1: oversampling parameter p ≥ 0 satisfying (3.14), processing order ρ

Output: X̂ = [G; A1, . . . ,Ad]
2: Set G = X
3: for j = 1 : d do
4: Draw Gaussian matrix Ωρj ∈ Rz

′
j×(rρj+p), where z′j is defined in (3.13)

5: Form Y ← G(ρj)Ωρj

6: Thin QR factorization Y = QρjR
7: Use strong RRQR on Q>ρj with parameter η = 2

Q>ρj
[
S1 S2

]
= Z

[
N11 N12

]
,

where S =
[
S1 S2

]
is a permutation matrix, Z is an orthogonal matrix, and N11 is upper

triangular
8: Let Pρj = S1 ∈ RIρj×(rρj+p) which contains the columns from the identity matrix
9: Form Aρj = Qρj (P

>
ρjQρj)

−1

10: Update G(ρj) ← P>ρjG(ρj)

11: end for
12: Set G = G(ρd), in tensor format

25

Algorithm 9 is particularly beneficial for sparse tensors. Although sparse tensors can be

efficiently stored in an appropriate tensor format (e.g., [3]), a straightforward application of

either Algorithm 5 or Algorithm 6 produces dense intermediate tensors that may be prohibitively

expensive to store, even though the final decomposition may be economical in terms of storage

costs. On the other hand, in Algorithm 9, each intermediate core tensor is sparse, and only

contains entries from the original tensor. Therefore, the intermediary core tensors can be

efficiently stored in the same sparse tensor format. Additionally, the sparse tensor format permits

cheaper tensor and matrix product computations.

Computational Cost. For simplicity, we assume a processing order of ρ = [1, 2, . . . , d]. The

two dominant costs of Algorithm 9 for each mode are obtaining the basis Qj and computing an

sRRQR to determine Pj . Let nnz(G(j)) denote the number of nonzeros in the core tensor at

step j. Letting `j = rj + p, the cost of forming the product of the (unfolded) core tensor with

a random matrix Ωj , over all d modes is O(
∑d

j=1 nnz(G
(j))`j). Computing an sRRQR of an

Ij × `j matrix with parameter η = 2 (parameter was called f in [36]) costs O(Ij`
2
j) per mode.

Combining both the dominant costs gives a total cost of O
(∑d

j=1 nnz(G
(j))`j +

∑d
j=1 Ij`

2
j

)
.

This analysis shows that the computational cost of SP-STHOSVD is significantly smaller than

the other algorithms presented thus far, particularly with a sparse tensor. Even when the original

tensor is dense, there is a savings in computational cost compared to STHOSVD since a full SVD

is not computed, and compared to R-STHOSVD since the core tensor G(j) is only multiplied

once per iteration. We use the processing order in Subsection 3.2.3.

3.4.2 Error Analysis

We now present the error analysis for Algorithm 9. There are two major difficulties here in

extending the proofs of Lemmas 3 and 4. First, we have to work with an oblique projector

Πj = Qj(P
>
j Qj)

−1P>j , whereas in the previous analysis we used an orthogonal projector. As a

consequence, we can no longer use the Pythagorean theorem to obtain Lemma 2; instead we

have to employ the triangle inequality, resulting in a weaker bound. Second, we have to work

with the factor matrices Aj which no longer have orthonormal columns. Let us define `i = ri + p,

g(I, r) =
√

1 + 4r(I − r), and fp(r) =
√

1 + r
p−1 , and given a processing order ρ we also define

z′j =

ρj−1∏
i=ρ1

`i

 ρd∏
i=ρj+1

Ii

 , j = 1, . . . , d. (3.13)

We are able to derive the following error bound.

Theorem 7. Let X̂ = [G; A1, . . . ,Ad] be the output of Algorithm 9 with inputs target rank r =

(r1, . . . , rd) satisfying rj ≤ rank(G
(j−1)
(j)) for j = 1, . . . , d, a processing order of ρ = [1, 2, . . . , d],

26

and oversampling parameter p ≥ 2 satisfying

rj + p < min{Ij , z′j}, j = 1, . . . , d (3.14)

Furthermore, let η = 2 be the sRRQR parameter. Then,

1. the matrices {Aj}dj=1 each contain an `j × `j identity matrix and

1 ≤ ‖Aj‖2 ≤ g(Ij , `j), j = 1, . . . , d,

2. X̂ exactly reproduces
∏d
i=1 `i entries of the original tensor X (in exact arithmetic), and

3. the expected approximation error satisfies

E{Ωk}dk=1
‖X − X̂‖F ≤

d∑
j=1

(
j∏

k=1

g(Ik, `k)

)
fp(rj)∆j(X)

≤
d∑
j=1

(
j∏

k=1

g(Ik, `k)

)
fp(rj)‖X − X̂ opt‖F .

Proof. We tackle each item individually:

1. Consider the factor matrices Aj = Qj(P
>
j Qj)

−1 for j = 1, . . . , d. Since Pj contains columns

from the identity matrix, it is easy to verify that Aj contains the identity matrix as its submatrix.

The lower bound on ‖Aj‖2 follows immediately from this fact. For the upper bound, since Qj

has orthonormal columns,

‖Aj‖2 = ‖(P>j Qj)
−1‖2 ≤ g(Ij , `j). (3.15)

The last step follows from [27, Lemma 2.1], where η = 2 is used as the tuning parameter for the

sRRQR algorithm.

2. Let Ij be the chosen index set for each Pj , j = 1, . . . , d. Then if we pick the corresponding

elements from X̂ , denoted by X̂ (I1, . . . , Id), we have

X̂ (I1, . . . , Id) = X̂
d

×
j=1

P>j =

(
G

d

×
j=1

Aj

)
d

×
j=1

P>j = G.

Note that the last equality comes as P>j Aj = (P>j Qj)(P
>
j Qj)

−1 = I for j = 1, . . . , d. Then as

G consists of elements of the original tensor X by construction, X̂ reproduces
∏d
j=1 `j elements

of X .

27

3. Next, let G(j) = X×j
i=1 P>i denote the partially truncated core tensor after the j-th step

of Algorithm 9. Also let X̂
(j)

= G(j)×j
i=1 Ai be the j-th partial approximation of X . Then, by

the triangle inequality and the linearity of expectations, we have

E{Ωk}dk=1
‖X − X̂‖F ≤

d∑
j=1

E{Ωk}dk=1
‖X̂

(j−1)
− X̂

(j)
‖F . (3.16)

Consider the term ‖X̂ (j−1) − X̂ (j)‖F . We can simplify X̂ (j)
as

X̂ (j)
= G(j)

j

×
i=1

Ai =
(
G(j−1) ×j P>j

) j

×
i=1

Ai

= G(j−1)
j−1

×
i=1

Ai ×j AjP
>
j = G(j−1)

j−1

×
i=1

Ai ×j Πj .

Therefore, X̂ (j−1) − X̂ (j)
= G(j−1)×j−1

i=1 Ai ×j (I−Πj). Repeated use of the submultiplicativity

inequality ‖MN‖F ≤ ‖M‖F ‖N‖2 gives,

‖X̂ (j−1) − X̂ (j)‖F ≤ ‖G(j−1) ×j (I−Πj)‖F
j−1∏
i=1

‖Ai‖2. (3.17)

Now, observe that ΠjQjQ
>
j = QjQ

>
j , implying that I−Πj = (I−Πj)(I−QjQ

>
j). Therefore,

once again using the submultiplicativity inequality,

‖G(j−1) ×j (I−Πj)‖F = ‖G(j−1) ×j (I−Πj)(I−QjQ
>
j)‖F

≤ ‖G(j−1) ×j (I−QjQ
>
j)‖F ‖I−Πj‖2.

(3.18)

We note that Πj 6= I since rank(Πj) ≤ rank(Qj) = rj + p < min{Ij , z′j}, and Πj 6= 0 since Qj

has orthonormal columns and P>j Qj is invertible. Therefore, we can use [72, Theorem 2.1] to

conclude ‖I−Πj‖2 = ‖Πj‖2. Once again using [27, Lemma 2.1]

‖I−Πj‖2 = ‖Πj‖2 = ‖(P>j Qj)
−1‖2 ≤ g(Ij , `j).

Combining this inequality with (3.15),(3.18),and (3.17), we have

‖X̂
(j)
− X̂

(j−1)
‖F ≤ ‖G(j−1) ×j (I−QjQ

>
j)‖F

j∏
i=1

g(Ii, `i).

Taking expectations, and using the independence of the random matrices, we obtain

28

E{Ωk}dk=1
‖X̂

(j)
− X̂

(j−1)
‖F = E{Ωk}j−1

k=1
EΩj‖G(j−1) ×j (I−QjQ

>
j)‖F

j∏
i=1

g(Ii, `i)

= E{Ωk}j−1
k=1

EΩj‖(I−QjQ
>
j)G

(j−1)
(j) ‖F

j∏
i=1

g(Ii, `i)

≤

(
j∏
i=1

g(Ii, `i)

)
fp(rj)E{Ωk}j−1

k=1

 Ij∑
i=rj+1

σ2i (G
(j−1)
(j))

1/2

.

In the last step, we have used (2.1) and kept the random matrices {Ωk}j−1i=1 fixed. By construction

G
(j−1)
(j) is a submatrix of the mode-unfolding X(j). Arguing as in the proof of Theorem 6, we

can show
∑Ij

i=rj+1 σ
2
i (G

(j−1)
(j)) ≤ ∆2

j (X), for j = 1, . . . , d and, therefore,

E{Ωk}dk=1
‖X̂

(j)
− X̂

(j−1)
‖F ≤

(
j∏
i=1

g(Ii, `i)

)
fp(rj)E{Ωk}j−1

k=1
∆j(X).

Plugging this into (3.16), and using (2.6) we get the desired bound.

In this result, we have assumed the standard processing order ρ = [1, . . . , d]. The analysis

can be extended to other processing orders; however, note that in this case the upper bound

derived here will depend on the processing order, which is in contrast to the bound in Theorem 6.

Although the error bound in Theorem 7 can be much higher than Theorem 6, numerical results

suggest that the bound is somewhat pessimistic and, in practice, Algorithm 9 produces accurate

low-rank decompositions.

3.4.3 Variants

One can easily develop several variations of Algorithm 9 that may be beneficial in applications.

1. SP-HOSVD. In Algorithm 9, we handled all the modes sequentially; they can however be

handled independently. For each mode j = 1, . . . , d, we obtain a basis Qj and a selection

operator Pj . The resulting decomposition is of the form X ≈ X̂ = G×d
j=1 Aj where the

core tensor G = X×d
j=1 P>j and the factor matrices are of the form Aj = Qj(P

>
j Qj)

−1

for j = 1, . . . , d. The error analysis is similar to Theorem 7 and we found that it has the

same upper bound.

2. Range finding. We used a basic version of the randomized range finding algorithm to

obtain the matrices Qj . Other variations are certainly possible; for example, the adaptive

range finding algorithm in Section 3.3, randomized subspace iteration [41, Algorithm 4.3],

or other deterministic or randomized rank-revealing decompositions.

29

3. Subset selection. In Algorithm 9, we used the sRRQR algorithm for the subset selection

step. In practice, this is computationally expensive, and an alternative is to use the

Column-Pivoted QR factorization. This algorithm has lower computational cost but is

known to fail for certain adversarial cases [36]. Besides deterministic algorithms for subset

selection, there are several randomized techniques available, such as uniform sampling and

leverage score sampling that can be used instead of sRRQR.

3.5 Numerical Results

In this section, we study the accuracy and the computational cost of our algorithms on several

synthetic and real-world tensors. Most of our results were run on a desktop with a 3.4 GHz

Intel Core i7 processing unit and 16GB memory. A few experiments were run on the NCSU

Mathematics Department HPC Cluster with 72GB memory. We used two tensor packages in

matlab, namely Tensor Toolbox [3] and Tensorlab [79].

3.5.1 Test Problems

We briefly describe the different tensors that we use to validate our algorithms.

1. Hilbert Tensor. Our first test tensor is a synthetic, super-symmetric tensor (invariant

under the permutation of indices), where each entry is defined as

X i1i2...id =
1

i1 + i2 + · · ·+ id
1 ≤ ij ≤ Ij , j = 1, . . . , d. (3.19)

We call this the Hilbert tensor, which generalizes the Hilbert matrix (d = 2). When d = 5 and

each Ij = 25, this tensor has 255 = 9, 765, 625 nonzero entries. The singular values of each

mode-unfolding decay rapidly, which suggests that the randomized algorithms proposed in this

chapter are likely to be accurate.

2. Synthetic Sparse tensor. For our second example, we construct a three-dimensional

sparse tensor X ∈ R200×200×200 as the sum of outer products as

X =

10∑
i=1

γ

i2
xi ◦ yi ◦ zi +

200∑
i=11

1

i2
xi ◦ yi ◦ zi, (3.20)

where xi,yi, zi ∈ Rn are sparse vectors for all i, and ◦ denotes the outer product. The sparse

vectors are all generated using the sprand command with 5% nonzeros each. In this instance,

the tensor X has 185, 211 nonzeros in total. Furthermore, γ is a user-defined parameter which

determines the strength of the gap between the first ten terms and the last terms.

30

3. Olivetti Dataset. The classification of facial images, or “tensorfaces” as popularized

by [76], has two main steps. The first is a compression phase, where a higher order SVD is

applied to a training images dataset, arranged as a tensor, to compute a low-rank decomposition.

The second step is a classification phase, in which the decomposed tensor is used to classify

images in the test dataset. We focus on the first step to efficiently decompose the tensor formed

using training images from the Olivetti dataset [2]. This dataset contains 400 images (64× 64

pixels) of 40 people in 10 different poses and can be expressed as a three dimensional tensor

X ∈ R40×4096×10, in which the three modes represent people, pixels, and poses, respectively.

4. FROSTT database. Our final test problems come from the formidable repository of sparse

tensors and tools (FROSTT) database [69]. From this database, we choose two representative

large, sparse tensors whose features are summarized in Table 3.2. The NELL-2 dataset [15] is

Table 3.2 Summary of sparse tensor examples from the FROSTT database—we include the details
for both the full datasets and the condensed datasets used in our experiments.

Original Tensor Order Size Nonzeros

NELL-2 3 12092× 9184× 28818 76, 879, 419
Enron 4 6066× 5699× 244268× 1176 54, 202, 099

Condensed Tensor Order Size Nonzeros

NELL-2 3 807× 613× 1922 19, 841
Enron 3 405× 380× 9771 6, 131

a portion of the Never Ending Language Learning knowledge base from the “Read the Web”

project at Carnegie Mellon University. NELL is a machine learning system that relates different

entities, creating a three-dimensional dataset whose modes represent entity, relation, and entity.

The Enron dataset [67] contains word counts in emails released during an investigation by the

Federal Energy Regulatory Commission. Here, the modes represent sender, receiver, word, and

date, respectively.

Although our implementation of SP-STHOSVD is capable of handling both full tensors

in Table 3.2, the tensors are too large to compute the approximation error. In order to be

able to compute this error, we first pared down the tensors, which allows us to compare the

performance of our SP-STHOSVD algorithm with other algorithms. For the NELL-2 dataset

[15], we subsample every 15 elements in each mode to obtain a tensor X ∈ R807×613×1922. For

the Enron dataset [67], we first condense the dataset to three dimensions by summing over the

fourth mode. Then we subsample this tensor by taking every 15 elements from the first two

modes, and every 25 from the third mode. This results in a tensor X ∈ R405×380×9771.

31

3.5.2 Numerical Experiments

We now describe the experiments performed on the test tensors introduced in the previous

subsection.

Fixed rank

Our first experiment compares the accuracy of the HOSVD and STHOSVD algorithms with

their randomized counterparts, R-HOSVD and R-STHOSVD (Algorithms 5 and 6). As inputs,

we take X as defined in (3.19) with d = 5 modes and Ij = 25 for j = 1, . . . , d. For each algorithm,

we use the target rank (r, r, r, r, r), where r varies from 1 to 25, and the same oversampling

parameter p = 5 was used in every mode. Since this is a super-symmetric tensor, the processing

order of modes does not affect the results, so we take the processing order ρ = [1, 2, 3, 4, 5]. The

relative error is plotted in Figure 3.1, where we can see that the approximation error of all four

algorithms is very similar and that the randomized algorithms are also highly accurate. The

0 5 10 15 20 25
10−15

10−12

10−9

10−6

10−3

100

Target rank

R
el
at
iv
e
E
rr
or

Hilbert Tensor Error

HOSVD
STHOSVD
R-HOSVD
R-STHOSVD

0 5 10 15 20 25
10−15

10−12

10−9

10−6

10−3

100

Target rank

R
el
at
iv
e
E
rr
or

Error bound comparison

R-STHOSVD
R-HOSVD
Error Bound

Figure 3.1 Left: Relative approximation error for 5-mode Hilbert tensor X ∈ R25×25×25×25×25

defined in (3.19), with target rank (r, r, r, r, r) and oversampling parameter p = 5. Right: Actual
relative error for X from the R-HOSVD and R-STHOSVD algorithms compared to the calculated
error bound as the target rank (r, r, r, r, r) increases. Both algorithms use oversampling parameter
p = 5, and R-STHOSVD uses the processing order ρ = [1, 2, 3, 4, 5].

comparison of the cost in Subsection 3.2.3 implies that the proposed randomized algorithms

are less expensive compared to their deterministic counterparts. To illustrate this, we report

the runtime of the HOSVD, R-HOSVD, STHOSVD, and R-STHOSVD algorithms on X as

the size of each dimension increases. For inputs, we fixed the target rank to be (5, 5, 5, 5, 5),

the oversampling parameter as p = 5, and we used processing order ρ = [1, 2, 3, 4, 5] in the

sequential algorithms. The runtime in seconds, averaged over three runs, is shown in Table 3.3.

The analysis of the computational cost implies that the randomized algorithms should be a

factor of I/(r + p) = 2.5 faster than the non-randomized algorithms. This is evident in our

results. Also, the sequential algorithms are significantly faster than the HOSVD/R-HOSVD

32

algorithms.

Table 3.3 Runtime in seconds of the HOSVD, R-HOSVD, STHOSVD, and R-STHOSVD algorithms
on the Hilbert tensor X with d = 5, averaged over three runs. Each algorithm is run with target rank
(5, 5, 5, 5, 5), and the randomized algorithms use oversampling parameter p = 5. The STHOSVD and
R-STHOSVD algorithms use the processing order ρ = [1, 2, 3, 4, 5].

HOSVD R-HOSVD STHOSVD R-STHOSVD
25 3.0030 1.2609 0.6455 0.2875

Ij 35 14.5255 5.5288 3.1974 1.2090
1 ≤ j ≤ d 45 70.0536 17.3744 15.0629 3.5587

50 101.4981 27.7725 21.9745 5.5606

We now compare the numerical performance of the R-HOSVD and R-STHOSVD algorithms

to the theoretical bounds derived in (3.3), (3.7). Since the upper bound obtained using both

the theorems is the same (see (3.2) and (3.6)), we display this bound only once. We run both

algorithms with increasing target rank (r, r, r, r, r), oversampling parameter p = 5, and processing

order ρ = [1, 2, 3, 4, 5]. From the right panel of Figure 3.1, we can see the error in the STHOSVD

and R-STHOSVD are both comparable to the theoretical bound, which shows that the analysis

captures the behavior of the error quite well.

Next, we present an experiment that justifies the choice of processing order described in

Subsection 3.2.3. We consider the Olivetti dataset described in Subsection 3.5.1. In Table 3.4,

we compare the relative error and runtime of R-STHOSVD, averaged over three runs, for all

six different processing orders ρ. To account for the randomness, we set the same initial seed

for each run, take the target rank as (20, 40, 5), and the oversampling parameter as p = 5. We

can see that all processing orders have comparable relative errors, so we instead focus on the

runtime. Our heuristic, which involves processing the modes in decreasing size per mode, has

the shortest average time as expected from the analysis in Subsection 3.2.3. It is clear from the

runtime that processing the largest mode first (mode 2 in this case) had the fastest runtime,

and processing the smallest mode first had the slowest runtime.

Table 3.4 Relative error and average runtime in seconds of R-STHOSVD on the Olivetti dataset for
different processing orders. The runtime was averaged over three runs, and the R-STHOSVD used a
target rank of (20, 40, 5) and an oversampling parameter of p = 5 as inputs.

Processing Order [1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1]

Relative Error 0.1652 0.1608 0.1669 0.1633 0.1576 0.1602

Average Time (sec) 0.0774 0.0933 0.0271 0.0246 0.1094 0.0952

Finally, we examine the effect of computing additional subspace iterations in our randomized

algorithms. We apply the randomized algorithms to the Olivetti dataset [2]. The results are

33

described in Figure 3.2. As all the modes have different dimensions, we only compress the largest

(the pixels). The first plot shows the standard algorithms, but there is a noticeable difference in

the error for the randomized and standard algorithms. This can be explained by the fact that

the singular values of the data do not decay sufficiently quickly. To fix this, we add one step of

subspace iteration (see [41] for details) to the randomized SVD, giving the second plot. Here the

difference is almost nonexistent.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Target rank of pixels

R
el
at
iv
e
er
ro
r

Error without Subspace Iteration

HOSVD
STHOSVD
R-HOSVD
R-STHOSVD

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Target rank of pixels

R
el
at
iv
e
er
ro
r

Error with Subspace Iteration

HOSVD
STHOSVD
R-HOSVD
R-STHOSVD

Figure 3.2 Relative error for X with and without subspace iteration, compressing just the pixels
(mode 2), as the target rank increases. The oversampling parameter was p = 5. The right hand plot
was run with one step of subspace iteration.

Adaptive algorithms

We now demonstrate the performance of our adaptive algorithms, Algorithms 7 and 8. Taking

the Hilbert tensor X defined in (3.19) with d = 3, we give as input relative error tolerance ε,

processing order ρ = [1, 2, 3], and blocking integer b = 1. The size of the core tensor obtained

from the adaptive R-STHOSVD algorithm is shown in Table 3.5. In the Ij = 25, j = 1, 2, 3 case,

we can see that the error and corresponding rank are close to those shown in the left-hand plot

of Figure 3.1.

Table 3.5 Rank (size of the core tensor) obtained by the adaptive R-STHOSVD algorithm (Algo-
rithm 8) with different relative error tolerances ε as the size of each dimension of X increase. The
inputs are ε, block size b = 1, and processing order ρ = [1, 2, 3].

tolerance ε
10−3 10−4 10−5 10−6 10−7

25 (4, 4, 4) (5, 5, 5) (6, 6, 6) (7, 7, 7) (8, 8, 8)
I 50 (5, 5, 5) (6, 6, 6) (7, 7, 7) (8, 8, 8) (9, 9, 9)

1 ≤ j ≤ d 100 (5, 5, 5) (6, 6, 6) (8, 8, 8) (9, 9, 9) (10, 10, 10)

34

To show the performance of the adaptive algorithms on the Olivetti dataset, with a processing

order ρ = [2, 1, 3], we initialize the adaptive R-STHOSVD algorithm with different desired

relative tolerances ε, and obtain an approximate decomposition. In Table 3.6, we display the

rank of this decomposition r (the size of the core tensor) as well as the actual relative error of the

decomposition. In each instance, we observe that the resulting error of the decomposition is lower

than the desired error. Next, with r as the target rank, we compute a low-rank decomposition

using STHOSVD with the same processing order. The resulting error of this decomposition

is only slightly smaller than the error in the adaptive algorithm, suggesting that the adaptive

algorithm is capable of adaptively estimating the target rank.

Table 3.6 A comparison of the adaptive R-STHOSVD algorithm (Algorithm 8) to STHOSVD. We
first obtained the rank of the core tensor with the requested relative error tolerance from the adaptive
algorithm. Then we compared the actual error of the approximation from the adaptive R-STHOSVD
to that of an STHOSVD with the same rank. The processing order for all runs was ρ = [2, 1, 3]. *Each
STHOSVD was computed with the corresponding rank found in the second column.

Error tolerance ε Corresponding rank r Actual error Rank-r STHOSVD error*

0.25 (3, 10, 1) 0.1995 0.1995
0.2 (10, 23, 1) 0.1799 0.1796
0.15 (22, 51, 5) 0.1421 0.1403
0.1 (32, 114, 8) 0.0965 0.0946
0.05 (38, 237, 10) 0.0400 0.0381
0.01 (40, 381, 10) 0.0057 0.0055

We also recreate the results shown in Table 3.6, comparing the adaptive R-HOSVD and

HOSVD algorithms. On the Olivetti dataset, we initialize the adaptive R-HOSVD algorithm

with different error tolerances ε and obtain an approximate decomposition. In Table 3.7, we

display the rank of this decomposition r (the size of the core tensor) as well as the actual

relative error of the decomposition. In each instance, we observe that the resulting error of the

decomposition is lower than the desired error. Next, with r as the target rank, we compute a

low-rank decomposition using HOSVD. The resulting error of this decomposition is only slightly

smaller than the error in the adaptive algorithm, suggesting that the adaptive algorithm is

capable of adaptively estimating the target rank.

Next, we consider the relative error obtained by only compressing two modes of the tensor,

namely the people and pixels (modes 1 and 2 respectively), formed using the Olivetti dataset.

We only present results corresponding to the sequentially truncated algorithms here in the form

of “heat” plots which display the relative error as a function of the target rank; see Figure 3.3.

In general, we see that the error decreases with increasing rank for both the randomized

and deterministic algorithms. We also compare the performance of the adaptive randomized

STHOSVD algorithm (Algorithm 8) by displaying the target rank obtained for a given relative

error ε. For all the fixed rank algorithms discussed above, the oversampling parameter was p = 5,

35

Table 3.7 A comparison of the adaptive R-HOSVD algorithm (Algorithm 7) to HOSVD. We first
obtained the rank of the core tensor with the requested relative error tolerance from the adaptive
algorithm. Then we compared the actual error of the approximation from the adaptive R-HOSVD to
that of an HOSVD with the same rank. *Each HOSVD was computed with the corresponding rank
found in the second column.

Error tolerance ε Corresponding rank r Actual error Rank-r HOSVD error*

0.25 (13, 11, 3) 0.1768 0.1709
0.2 (20, 23, 5) 0.1560 0.1498
0.15 (27, 52, 7) 0.1276 0.1223
0.1 (34, 116, 9) 0.0869 0.0811
0.05 (39, 239, 10) 0.0353 0.0329
0.01 (40, 382, 10) 0.0057 0.0053

and the processing order was ρ = [2, 1, ∗]. The third mode is not compressed, indicated here by

the asterisk.

Figure 3.3 Relative error for X as target rank increases using the STHOSVD, compressing pixels
and people (modes 2 and 1), plotted with rank given by the Adaptive R-STHOSVD (Algorithm 8)
with the desired relative error tolerance ε. Processing order was ρ = [2, 1, ∗], and the oversampling
parameter was p = 5.

Algorithms for Sparse Tensors

We now test our randomized algorithms on sparse tensors. First, consider the synthetic sparse

tensor X defined in (3.20). For three different γ values γ = 2, 10, 200, we compare the SP-

STHOSVD algorithm to the STHOSVD and R-STHOSVD algorithms by plotting the relative

error as the target rank (r, r, r) increases. Note that we are only comparing to the sequentially

truncated algorithms in Figure 3.4, since they have lower cost and comparable errors. As inputs

to our test algorithms, we used oversampling parameter p = 5 and processing order ρ = [1, 2, 3].

36

We can see that the error for the sparse algorithm is only slightly higher for smaller values of r,

suggesting that the error analysis in Theorem 7 may be pessimistic.

0 50 100 150 200
Rank

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

SP-STHOSVD
STHOSVD
R-STHOSVD

0 50 100 150 200
Rank

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

SP-STHOSVD
STHOSVD
R-STHOSVD

0 50 100 150 200
Rank

10-8

10-6

10-4

10-2

100

R
el

at
iv

e
er

ro
r

SP-STHOSVD
STHOSVD
R-STHOSVD

Figure 3.4 Relative error for synthetic sparse tensor X defined in (3.20) with γ = 2, 10, 200 and
increasing target rank (r, r, r). We compare the SP-STHOSVD algorithm (Algorithm 9) to the
STHOSVD and R-STHOSVD algorithms with inputs of oversampling parameter p = 5 and processing
order ρ = [1, 2, 3].

Next, we test our SP-STHOSVD algorithm on the real-world sparse tensors. Note that

this algorithm does not have a truncation step, which means that the rank of the resulting

approximation given target rank (r, r, r) will be (r+p, r+p, r+p). To compare the approximations

of SP-STHOSVD with R-STHOSVD, we use a target rank (r+ p, r+ p, r+ p) with an additional

oversampling parameter p = 5. We ran the SP-STHOSVD and the R-STHOSVD algorithms

on the condensed Enron tensor (details in Table 3.2) with processing order ρ = [3, 1, 2] and

increasing target rank (r, r, r). The relative errors obtained are shown in Table 3.8. We can see

that the error for SP-STHOSVD is higher than that of the R-STHOSVD, as is anticipated from

the theory. We also compare the runtime of these two algorithms averaged over three runs to

see their respective costs, which are also shown in Table 3.8. We see that the SP-STHOSVD, in

addition to preserving the structure, has significantly lower computational costs.

We now show results for the structure preserving algorithms on a different dataset, namely

the condensed NELL-2 dataset [15], whose details are shown in Table 3.2. Recall that we are

condensing the dataset in order to compare to our other algorithms, specifically R-STHOSVD.

We compared both the relative error and average runtime of the algorithms with increasing

target rank (r, r, r) and oversampling parameter p = 5. The runtime was averaged over three

runs, and both algorithms used processing order ρ = [3, 1, 2]. We see similar results to those

shown in Table 3.8, in that the relative error is slightly higher for SP-STHOSVD than for

R-STHOSVD, but the runtime for SP-STHOSVD is significantly less.

We also compared our SP-STHOSVD algorithm to two recent single-pass algorithms from

[56, 71]. These experiments were all run on the NCSU Mathematics Department HPC Cluster

37

Table 3.8 The relative error and runtime of both SP-STHOSVD and R-STHOSVD on the tensors
defined in Table 3.2 as the target rank (r, r, r) increases. The processing order was ρ = [3, 1, 2], and the
oversampling parameter was p = 5. Note that, for simplicity, the rank is the same for each mode, and
that the input rank for the R-STHOSVD was (r + p, r + p, r + p) so the approximations have the same
size.

Enron

Relative Error Runtime in seconds
Target Rank SP-STHOSVD R-STHOSVD SP-STHOSVD R-STHOSVD

20 0.6015 0.2081 0.4086 31.5615
45 0.3854 0.1259 0.7965 34.5802
70 0.3548 0.0870 1.3276 36.6431
95 0.2038 0.0632 2.3465 39.3095
120 0.1503 0.0458 2.8175 39.7169
145 0.0976 0.0332 3.5659 42.0969
170 0.0756 0.0239 6.2158 45.8429
195 0.0578 0.0180 6.8285 50.2907

Table 3.9 The relative error and runtime of both SP-STHOSVD and R-STHOSVD on the condensed
NELL-2 dataset as the target rank (r, r, r) increases. The processing order was ρ = [3, 1, 2], and the
oversampling parameter was p = 5. Note that the rank is the same for each mode for simplicity, and
that the input rank for the R-STHOSVD was (r + p, r + p, r + p) so the approximations have the same
size.

NELL-2

Relative Error Runtime in seconds
Target Rank SP-STHOSVD R-STHOSVD SP-STHOSVD R-STHOSVD

30 0.2968 0.1319 0.5690 17.0642
60 0.2282 0.0914 0.9606 18.9203
90 0.1950 0.0699 1.5889 23.3303
120 0.1666 0.0573 2.0706 28.9399
150 0.1431 0.0478 2.1310 33.6867
180 0.1201 0.0417 2.3678 39.0644
210 0.1181 0.0367 3.0832 45.5227
240 0.1095 0.0326 3.7282 52.4856

with 72GB memory. First, we ran all three algorithms on the synthetic sparse tensor defined in

(3.20) with γ = 200. The results are shown in Figure 3.5. Note that the Tucker TensorSketch

(Tucker-TS) algorithm from [56] ran out of memory for target ranks higher than (15, 15, 15), so

we only show results for smaller ranks. We can see that the relative error is similar for both our

SP-STHOSVD algorithm and the One Pass Streaming algorithm from [71], while the runtime is

less for the SP-STHOSVD.

We also compared the performance of SP-STHOSVD on the Enron dataset, condensed

and full, to the algorithms from [56, 71]. For both the condensed and full datasets, the other

two algorithms ran out of memory for all ranks that we tried, so we only have results for

SP-STHOSVD. Since we have already presented results on the condensed Enron dataset in

38

0 50 100 150 200
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Target Rank

R
el
at
iv
e
er
ro
r

Synthetic sparse tensor error

SP-STHOSVD
Streaming
Tucker TS

0 50 100 150 200
10−1

100

101

102

Target Rank

R
u
n
ti
m
e
(s
ec
)

Synthetic sparse tensor runtime

SP-STHOSVD
Streaming
Tucker TS

Figure 3.5 The relative error and runtime of SP-STHOSVD, Tucker-TS [56], and the One Pass
(”Streaming”) algorithm [71] on the synthetic sparse tensor defined in (3.20) with increasing target
rank. The processing order for SP-STHOSVD was ρ = [1, 2, 3], and the oversampling parameter was
p = 5. We used the suggested parameters for Tucker-TS and the Streaming algorithm, with a target
rank of (r + p, r + p, r + p) so all approximations have the same size.

Table 3.8, we just show the runtime for SP-STHOSVD on the full Enron datset in Table 3.10.

Table 3.10 Runtime in hours of SP-STHOSVD on the full Enron dataset with increasing rank
(r, r, r, r). The oversampling parameter was p = 5, and the processing order was ρ = [3, 1, 2, 4].

r 10 20 50 200

Runtime (hours) 3.23 5.28 11.40 41.64

3.6 Conclusion

In this chapter, we developed new randomized algorithms and analysis for low-rank tensor

decompositions in the Tucker form. Specifically, we proposed adaptive algorithms for problems

where the target rank is not known beforehand and algorithms that preserve the structure of the

original tensor. We also provided probabilistic analysis of randomized compression algorithms,

R-HOSVD and R-STHOSVD, as well as for the newly proposed algorithms. We showed, through

the analysis and numerical examples, that using randomized techniques still allows for accurate

approximations to tensors, and that the approximation error is comparable to deterministic

algorithms, with much lower computational costs.

39

3.7 Acknowledgements

We would like to thank our coauthor Misha E. Kilmer, as well as Ilse Ipsen for reading through

the chapter and giving useful feedback.

40

Chapter 4

Efficient Randomized Algorithms for

Subspace System Identification

4.1 Introduction

Linear Time Invariant (LTI) systems form one of the most important classes of dynamic systems

existing in the physical world. LTI systems closely approximate the linear behavior of any

nonlinear physical process around a desired operating point, and provide insights on how the

system will behave in response to any small-signal change in its equilibrium state. The state-space

representation of a LTI discrete-time system can be written as

xk+1 = Axk + Buk, x0 = x(0)

yk = Cxk + Duk,
(4.1)

where n is the order of the system, k = 0, 1, 2, . . . is the sampling index, xk ∈ Rn is the state

vector, uk ∈ Rm is the input vector, and yk ∈ R` is the output vector at sampling instant k,

with m and ` being the number of inputs and outputs, respectively. The matrix A ∈ Rn×n

is referred to as the state matrix, B ∈ Rn×m is the input matrix, C ∈ R`×n is the output

matrix, and D ∈ R`×m is the input-output feedthrough matrix. In the majority of practical

applications, however, these four matrices may not be exactly known to the system modeler

because of different kinds of model and operational uncertainties. In that case, one must estimate

these matrices from sampled measurements of the input sequence {uk} and the output sequence

{yk}. This process is referred to as system identification. Since the state may be represented

in different coordinate frames without changing input-output characteristics, the more formal

definition of system identification is given as the process of estimating (A,B,C,D) up to a

similarity transformation (TAT−1,TB,CT−1,D), where T ∈ Rn×n is an invertible matrix. As

mentioned, such a transformation does not change the input-output behavior or the transfer

function of the system. We assume that the system to be identified is observable and reachable

[53]. There exists a vast literature on system identification with a variety of numerical algorithms,

41

developed for various applications such as electric power systems, process control, mechanical

systems, aerospace applications, civil and architectural applications, and chemical and biological

processes to name a few. For a survey of these methods, please see [1, 53, 74, 77]. In this chapter,

we focus on identifying the system matrices when the inputs {uk} are in the form of impulse

functions.

One of the most common identification methods used for identifying LTI models in practice

is known as the Eigensystem Realization Algorithm (ERA), which was initially proposed in

[52], but can be found in many other sources such as [77]. ERA is a subset of a broader class

of identification methods called subspace system identification, and is a purely data-driven

approach consisting of two main steps. In the first step, this algorithm computes the singular

value decomposition (SVD) of a block Hankel matrix, constructed using the impulse response

data. In the second step, the truncated SVD is used to solve a least-squares optimization problem

to identify the system matrices. The first step is computationally expensive since it has cubic

complexity in the dimensions of the matrix. To reduce the computational cost, the tangential

interpolation-based ERA (TERA) [50] was proposed. This method reduces the number of inputs

and outputs, thus reducing the dimensions of the matrix whose SVD needs to be computed.

Another algorithm, known as CUR-ERA [49], uses the CUR decomposition to efficiently compute

the low-rank decomposition of the block Hankel matrix. While these algorithms have successfully

lowered the costs, important challenges remain.

Contributions and Content. We propose new randomized algorithms for tackling the

computational costs of ERA. The first algorithm (Section 4.3.1) accelerates the standard

randomized SVD by exploiting the block Hankel structure to efficiently perform matrix-vector

products. The second algorithm (Section 4.3.2) employs similar ideas as the first algorithm in

combination with the TERA. The resulting algorithms are efficient both in terms of storage costs

and computational costs. In Section 4.4, we derive new error bounds that provide insight into

the accuracy and stability of the system matrices identified using the approximation algorithms.

The error analysis is not tied to any particular algorithm and in this sense is fairly general.

Finally, we demonstrate the benefits of the proposed algorithms on two different applications:

first, a heat transfer problem for cooling of steel rails, and second, a dynamic model of an electric

power system with multiple generators and loads.

Comparison to related work. While TERA works with smaller matrices, it still has cubic

complexity in the number of time measurements. This is computationally demanding when the

dynamics of the system are slow, and many measurements in time are needed to fully resolve the

dynamics. The CUR-ERA algorithm has similar storage and computational complexity as the

algorithms we propose but numerical experiments (see Section 4.5) suggest that our algorithm is

more accurate. Furthermore, the randomized algorithms developed here can exploit parallelism

in multiple ways; the matrix-vector products can be parallelized across multiple random vectors

as well as over the input/output pairs. This makes it attractive for implementations on high

42

performance computing platforms. If the target rank for the low-rank decomposition is not known

in advance, one can use randomized range finding algorithms [59, 87] to estimate the target rank.

Two other features make our contributions attractive: first, the block Hankel structure that we

exploit here can be adapted to any other matrix-free low-rank approximation algorithm, for

example, based on the Lanczos bidiagonalization [68], and second, the error analysis developed

here is informative for any approximation algorithm. There are other randomized algorithms for

system identification [81, 85] but they tackle slightly different settings.

4.2 Background

In this section, we first review the Eigensystem Realization Algorithm (Section 4.2.1), the

associated computational costs, and motivate the need for efficient algorithms. We also review

the key ingredients needed to construct our algorithms: algorithms for storing and computing

with Hankel matrices (Section 4.2.2), and randomized SVD (Section 4.2.3) for computing the

low-rank factorizations.

4.2.1 Eigensystem Realization Algorithm

ERA was first proposed in [52], but we follow the formulation in [50]. Other references for the

ERA include [77, 74]. Now, assuming the initial condition x0 = 0 ∈ Rn, and given a sequence of

inputs {ui} for i = 0, 1, . . . , the outputs observed are

yk =

k−1∑
j=0

hk−j−1uj , k = 0, 1, . . . , (4.2)

where the matrices {hk} are called the Markov parameters and are given by

hk =

{
D k = 0

CAk−1B k = 1, . . . , 2s− 1.
(4.3)

The system is excited m times using impulse input excitations. That is, we take

u
(j)
k =

{
ej k = 0

0 k > 0
j = 1, . . . ,m.

Here ej is the jth column of the m×m identity matrix. The outputs from each impulse excitation

can be used to construct the Markov parameters {hk}. The ERA uses the Markov parameters to

recover the system matrices. If data using impulse inputs is not available, then one can estimate

the Markov parameters from the general input data [46].

These Markov parameters are first arranged to form the block Hankel matrix Hs ∈ R(s`)×(sm)

43

defined as

Hs =

h1 h2 . . . hs

h2 h3 . . . hs+1

...
... . .

. ...

hs hs+1 . . . h2s−1

=

CB CAB . . . CAs−1B

CAB CA2B . . . CAsB
...

... . .
. ...

CAs−1B CAsB . . . CA2s−2B

 .
(4.4)

Here, s is a chosen parameter that determines the number of block rows and columns of Hs. It is

known that this matrix can be factorized into the observability matrix Os and the controllability

matrix Cs, as Hs = OsCs, where

Os =

C

CA
...

CAs−1

 , Cs =
[
B AB . . . As−1B

]
.

If the system is assumed to be reachable and observable, then R(Hs) = R(Os), where R(·)
denotes the range (or column space) of a matrix. We can obtain a basis for Os using the reduced

SVD of Hs = UnΣnV
>
n . Then, partition the left singular vectors as

Un =

[
Υf

∗

]
=

[
∗

Υl

]
,

where Υf ,Υl ∈ R(s−1)`×n and ∗ denote blocks that do not affect the remaining computations.

We can obtain A using the formula A = Υ†fΥl, where † denotes the Moore-Penrose inverse.

Furthermore, we can obtain the output matrix C and the input matrix B using the formulas

C =
[
I` 0

]
Υf , B = ΣnV

>
n

[
Im

0

]
. (4.5)

The matrix D can be identified as the Markov matrix h0 and, therefore, we will not discuss its

estimation in future sections.

Reduced order model. In some applications, the goal is not only to identify the system but

also obtain a reduced order model of the system. That is, we seek the reduced system matrices

Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ R`×r and Dr ∈ R`×m which approximate the dynamics of the

original system (4.1). To accomplish this, as before, we first compute a rank r approximation to

44

the matrix Hs as

Hs ≈ UrΣrV
>
r ,

where r ≤ n. We partition the left singular vectors Ur as

Ur =

[
Υ

(r)
f

∗

]
=

[
∗

Υ
(r)
l

]
,

such that Υ
(r)
f ,Υ

(r)
l ∈ R(s−1)`×r. Then, we compute the reduced order model Ar =

[
Υ

(r)
f

]†
Υ

(r)
l

such it that minimizes the least squares problem

min
Â∈Rr×r

‖Υ(r)
f Â−Υ

(r)
l ‖.

The reduced order output matrix Cr and the input matrix Br are computed using the formulas

Cr =
[
I` 0

]
Ur, Br = ΣrV

>
r

[
Im

0

]
. (4.6)

Other papers, such as [49], use a slightly different representation for the system matrix Ar than

the one used in [52]. In this alternate representation, A′r is obtained using A′r = Σ
−1/2
r Υ†fΥlΣ

1/2
r .

Then, B′r and C′r are obtained using

C′r =
[
I` 0

]
ΥfΣ

1/2
r , B′r = Σ1/2

r V>r

[
Im

0

]
.

Note that the two formulations are equivalent up to a similarity transformation, and this

results in the same Markov parameters and input-output behavior of the system. If r = n, then

the ERA determines the system matrices (A,B,C,D) and there is no model reduction step. On

the other hand, if the target rank r < n, then the reduced order model is guaranteed stability

under the conditions of [49, Theorem 3].

Computational Cost. We briefly review the range of possible parameters.

1. State space: In the power system applications, the dimension of the state space n is around

102, whereas in applications with partial differential equations (e.g., the heat transfer

application in Section 4.5) this dimension can be large, i.e., 103 − 104.

2. Input dimension: The number of inputs m is in the range 1− 102.

3. Output dimension: The number of outputs ` is also in the range 1 − 102. In certain

applications, the number of outputs is also the dimension of the state space.

4. Sample size: When the dynamics of the system are slow, the number of samples 2s− 1

can be large, i.e., 102 − 105.

45

The dominant cost of ERA is the cost of storing and factorizing the matrix Hs, which is of size

s`× sm. The cost of storing the matrix Hs is O(s2`m) entries, whereas the cost of computing

the SVD is O(s3`mmin{`,m}) floating point operations (flops). In the applications we consider,

forming and factoring Hs is expensive and is infeasible in some of the large-scale examples.

The algorithms we propose are both efficient in storage and computational cost and make ERA

applicable to larger problem sizes.

4.2.2 Hankel matrices

Structured matrices such as circulant and Hankel matrices are computationally efficient to work

with since matrix-vector products (matvecs) can be accelerated using the Fast Fourier Transform

(FFT). We first review circulant matrices. Circulant matrices are completely determined by

their first column

x =
[
x1 . . . xN

]>
,

and are diagonalized by the Fourier matrix. Let the circulant matrix X be defined as

X =

x1 xN . . . x2

x2 x1 . . . x3
...

...
. . .

...

xN xN−1 . . . x1

 ,

and let FN be the N ×N Fourier matrix with entries (FN)jk = e2πi(j−1)(k−1)/N where i =
√
−1

and j, k = 1, . . . , N . Then the eigenvalue decomposition of X is X = F∗Ndiag(FNx)FN , where

x = X(:, 1) is the first column of X. This means that the circulant matrix has eigenvalues

FNx. This result implies that matvecs y = Xv can be performed efficiently using FFTs as

y = IFFT(FFT(v) � FFT(x)), where � is the elementwise product and FFT(·) and IFFT(·)
denote the fast Fourier and inverse fast Fourier transforms respectively. The computational cost

involves 2 FFTs and one inverse FFT, and can be implemented efficiently in O(N log2N) flops.

Hankel matrices have constant entries along every anti-diagonal; that is, given the parameters

h1, h2, . . . , h2s−1, the Hankel matrix is

Hs =

h1 h2 . . . hs

h2 h3 . . . hs+1

...
... . .

. ...

hs hs+1 . . . h2s−1

 .

This corresponds to the single input/single output (SISO) case. Note that permuting a Hankel

matrix with the reverse identity permutation matrix Js results in a Toeplitz matrix (constant

46

entries along every diagonal). That is,

Js =

0 0 . . . 0 1

0 0 . . . 1 0
...

... . .
. ...

...

0 1 . . . 0 0

1 0 . . . 0 0

, HsJs =

hs hs−1 . . . h2 h1

hs+1 hs . . . h3 h2
...

...
. . .

...
...

h2s−2
... . . . hs hs−1

h2s−1 h2s−2 . . . hs+1 hs

.

We can use this to our advantage while computing matrix-vector products with Hankel matrices.

To compute the matrix-vector product y = Hsv, we first write y = (HsJs)(Jsv) so that

X2s

[
Jsv

0s

]
=

[
HsJs Bs

Bs HsJs

][
Jsv

0s

]
=

[
y

∗

]
,

where ∗ denotes the part of a computation which we can ignore and

Bs =

0 h2s−1 . . . hs+2 hs+1

h1 0 h2s−1 . . . hs+2

...
...

. . .
...

...

hs−2
... . . . 0 h2s−1

hs−1 hs−2 . . . h1 0

.

This means that we can also efficiently compute matvecs with Hankel matrices by embedding

it within a 2s× 2s circulant matrix X2s defined by the vector

x2s =
[
hs hs+1 . . . h2s−1 0 h1 h2 . . . hs−1

]>
.

Thus, only the first row and the last column need to be stored to compute matrix-vector products

with the Hankel matrix Hs. A summary of the algorithm to compute matvecs with Hs is given

in Algorithm 10.

Algorithm 10 y = Hankel-matvec(hc,hr,v)

Input: last column hc ∈ Rs, first row hr ∈ Rs of a Hankel matrix Hs, vector v ∈ Rs
Output: matvec y = Hsv ∈ Rs

1: Form circulant vector x =
[
h>c 0 hr(1 : end− 1)

]>
2: Pad the vector v to get v̂ =

[
v 0s

]>
3: Take z = IFFT(FFT(x)� FFT(v̂)).
4: Extract y = z(1 : s)

47

4.2.3 Randomized SVD

We can efficiently compute a rank r approximation of an M ×N matrix X using a randomized

version of the SVD [41] (henceforth called RandSVD). The idea is to find a matrix Q whose

range approximates that of X. This is done by first drawing a standard Gaussian random matrix

Ω ∈ RN×(r+p), where r is the desired target rank, and p ≥ 0 is an oversampling parameter

(typically, p ≤ 20). Then, the matrix Y = XΩ consists of random linear combinations of the

columns of X. This means that we can get a matrix Q such that R(X) ≈ R(Q) by taking a thin

QR factorization Y = QR. If X has singular values that decay rapidly, or rank(X) is exactly r,

then R(Q) is a good approximation for R(X). We can then approximate X by the low-rank

representation X ≈ QQ>X; this can then be converted into the appropriate SVD format. The

procedure is summarized in Algorithm 1.

Algorithm 11 [Û, Σ̂, V̂]=RandSVD(X, r, p)

Input: matrix X ∈ RM×N with target rank r, oversampling parameter p such that r + p ≤
min{M,N}, and number of subspace iterations q ≥ 0

Output: Û ∈ RM×r, Σ̂ ∈ Rr×r, and V̂ ∈ RN×r
1: Draw standard Gaussian random matrix Ω ∈ RN×(r+p)
2: Multiply Y = (XX>)qXΩ
3: Compute thin QR factorization Y = QR
4: Form B = Q>X
5: Calculate thin SVD B = UBΣV>

6: Set Û = QUB(:, 1 : r), Σ̂ = Σ(1 : r, 1 : r), and V̂ = V(:, 1 : r).

RandSVD is computationally beneficial compared to the full SVD. In this chapter, we use

a variation of the RandSVD that uses q ≥ 0 steps of the subspace iteration [41, Algorithm

4.4]. Note that for numerical stability, we perform orthogonalization during and in between

the subspace iterations. Assuming M ≥ N , the cost of the full SVD is O(MN2). On the other

hand, if the cost of a matrix-vector product with X (or its transpose) is TX, then the cost of

the randomized SVD can be expressed as

Cost = (2q + 1)(r + p)TX +O(r2(M +N)) flops. (4.7)

We will use RandSVD in different ways in the system identification algorithms that we derive.

We have found RandSVD with q = 0, 1, 2 subspace iterations to be computationally efficient and

sufficiently accurate for our purposes; however, there are several new randomized algorithms

developed that have been reviewed in the recent paper [58]. In Section 4.5.1, we compare the

performance of Algorithm 11 to other other randomized SVD algorithms.

48

4.3 Randomized algorithms for Eigensystem Realization

In this section, we derive two randomized algorithms for efficient computation of the system

matrices. The first algorithm accelerates the standard randomized SVD using the block Hankel

structure of Hs (Section 4.3.1); the second algorithm is a randomized variant of the Tangential

Interpolation-based ERA (TERA) and is applicable when the number of inputs and outputs are

large.

4.3.1 Randomized Eigensystem Realization Algorithm

Our first approach accelerates the computation of the system matrices by combining two

ingredients: first, we replace a reduced SVD of Hs by a RandSVD to obtain an approximate

basis for Os; second, we additionally exploit the block Hankel structure of Hs to accelerate the

matvecs involving Hs and H>s in the RandSVD. As we will show, each of these steps decreases

the computational complexity yielding an efficient algorithm overall.

Block Hankel Matrices

We first explain how we exploit the block Hankel structure of the matrix Hs defined in (4.4). The

multiplication process for Hankel matrices can be extended to block Hankel matrices. Suppose

we have to compute y = Hsx for a given vector x. Let us define the index sets

Ii = {i, i+ `, . . . , i+ (s− 1)`}, i = 1, . . . , `

Jj = {j, j +m, . . . , j + (s− 1)m}, j = 1, . . . ,m.

If we denote Hs(Ii,Jj) as the s× s submatrix obtained by extracting the rows and the columns

defined by the appropriate index sets, then it is clear that Hs(Ii,Jj) is a Hankel matrix, and

that

y(Ii) =
m∑
j=1

Hs(Ii,Jj)x(Jj), i = 1, . . . , `,

where y(Ii) and x(Jj) are the s× 1 vectors obtained from y and x, respectively.

Algorithm 12 gives the details of the procedure described here in MATLAB-like notation. It

is important to note the following points. First, we need not actually form either the full block

Hankel matrix or the intermediate Hankel matrices for each block element. Since the Hankel

matrices are defined by the first row and the last column, we extract these quantities from

the blocks {hk}2s−1k=1 as and when required. Second, since each Hankel matvec costs O(s log2 s)

flops, the overall cost of one matvec is O(`ms log2 s) flops, compared to O(`ms2) flops using the

näıve approach. Finally, we can easily adapt this algorithm to compute H>s x as well; the main

difference involves taking as inputs the transpose of the Markov parameters {h>k }
2s−1
j=1 instead.

49

Algorithm 12 y = Block-Hankel-matvec({hk}2s−1k=1 ,x, s)

Input: blocks {hk}2s−1k=1 of Hankel matrix H ∈ Rs`×sm, vector x ∈ Rsm, dimension s ≥ 1
Output: matvec y = Hsx
1: for i = 1 : ` do
2: for j = 1 : m do
3: Extract first row jr and last column jc as

jr =
[
h1(i, j) h2(i, j) · · · hs(i, j)

]
,

jc =
[
hs(i, j) hs+1(i, j) · · · h2s−1(i, j)

]>
4: Compute ŷ = Hankel-matvec(jc, jr,x(j : m :end))
5: Compute y(i : ` : end) = y(i : ` : end) + ŷ(1 : s)
6: end for
7: end for

Randomized ERA

We now incorporate the block Hankel multiplication algorithm, Algorithm 12, with RandSVD

in order to accelerate the system identification process. This is simple to do; every time we need

to multiply Hs or H>s , we use block Hankel multiplication instead. This is beneficial in two

ways: to reduce the computational cost by two orders of magnitude (one from RandSVD and

one from using block Hankel structure), and to reduce storage. We need not store Hs explicitly

or even form the full matrix to begin with. All we need are the blocks that make up Hs. This is

a major benefit over the standard algorithms.

First, we use the RandSVD algorithm to compute a low-rank approximation of Hs with

target rank r ≤ n to obtain ÛrΣ̂rV̂
>
r . As mentioned earlier, the matvecs involving Hs or H>s

are handled using Algorithm 12. Then, in the system identification phase, we partition the left

singular vectors as

Ûr =

[
Υ̂f

∗

]
=

[
∗

Υ̂l

]
,

where Υ̂f and Υ̂l are both (s−1)`×r. The system matrices can then be recovered as Âr = Υ̂†fΥ̂l,

Ĉr =
[
I` 0

]
Ûr, B̂r = Σ̂rV̂

>
r

[
Im

0

]
.

As before, the matrix Dr is simply the first Markov parameter h0. We will refer to this randomized

ERA that uses block Hankel multiplication as RandSVD-H. Now, we review the computational

cost of this algorithm and in Section 4.2.1, we derive error bounds for the recovered system

matrices.

50

Computational cost. We now examine the computational cost of the three system identifica-

tion algorithms described so far, namely the ERA using a full SVD, ERA using RandSVD, and

RandSVD-H. The dominant cost of each algorithm is the SVD step, so we focus our attention

there. The complexity of the SVD step for these algorithms is shown in Table 4.1. Recall that

the size of the matrix we are computing with is s`× sm, the target rank for each RandSVD is r,

and the size of the system is n. The cost of the full SVD is then O(s3m`min{`,m}) flops. To

analyze the RandSVD based algorithms, we follow the analysis of cost in (4.7). For a standard

RandSVD, the cost of a matvec is O(s2`m) flops. If the matrix Hs is stored explicitly as we

do in our implementation, then the storage cost is O(ms2`) entries; however, RandSVD can

be implemented without storing Hs explicitly, in which case the cost of storage is O(ms`)

entries. When we use block Hankel structure to accelerate the RandSVD, the cost of a matvec

is reduced to O(`ms log2 s) flops and the storage cost is also O(ms`) entries. This shows that,

as anticipated, replacing the SVD with a RandSVD reduces the cost, and then exploiting the

block Hankel structure reduces the cost even further. We also include, for comparison purposes,

the computational and storage costs of CUR-ERA [49].

Table 4.1 Computational complexity of the dominant step, the SVD step, in each of the four algo-
rithms. Recall that s is the number of block rows and columns in the block Hankel matrix, m is the
number of inputs, ` is the number of outputs, r is the target rank, and κ and c are the number of
iterations used in cross approximation and the dominant volume submatrix parts of the CUR-ERA
algorithm.

System ID Algorithm Computational Cost Storage cost

Full SVD O(s3m`min{`,m}) O(s2m`)
RandSVD O(rs2`m+ r2s(`+m) O(s2m`)

RandSVD-H O(r`ms log2 s+ r2s(`+m)) O(sm`)
CUR-ERA O(κr3 + r2sκc(`+m)) O(sm`)

CUR-ERA. The CUR-ERA algorithm relies on the principle of finding a maximum volume

sub-matrix for computing a low-rank approximation, that is, a sub-matrix of specified dimensions

with the largest determinant in absolute magnitude. Finding the maximum volume sub-matrix

is a combinatorial optimization problem and, hence, one has to settle for heuristics to compute

a nearly maximum volume sub-matrix in a reasonable computational time. CUR-ERA uses

certain heuristics for finding the cross approximation of a matrix, and finding a dominant

volume submatrix. Note that in the computational cost in Table 4.1, κ and c are the number of

iterations used in the cross approximation and the dominant volume submatrix, respectively. It

is clear from the table that our algorithms have a comparable computational cost. Also, the

randomized SVD algorithm does not involve a combinatorial optimization problem, is known to

be computationally efficient and accurate for a range of problems, and has well-developed error

analysis. This makes the RandSVD-H beneficial in practical applications. In addition, as we will

51

show in numerical experiments in Section 4.5, our algorithms are more accurate.

4.3.2 Randomized TERA

This approach is inspired by the tangential interpolation approach for model reduction. The goal

of TERA is to reduce the dimension of the Markov parameters by projecting the parameters

into a lower dimensional space. This reduces the size of the block Hankel matrix but preserves

the block Hankel structure, therefore, reducing the computational cost of the SVD step [50]. We

briefly review the TERA approach and describe our acceleration using RandSVD.

TERA. In this approach, we seek two orthogonal projection matrices

P1 = W1W
>
1 , rank(W1) = `′

P2 = W2W
>
2 , rank(W1) = m′,

where the matrices W1 and W2 have orthonormal columns. To compute P1, we first arrange

the Markov parameters in the matrix

Hw =
[
h1 . . . h2s−1

]
∈ R`×m(2s−1). (4.8)

We then solve the optimization problem

min
rank(P)=`′

‖PHw −Hw‖2F .

The optimal solution can be constructed using the SVD of Hw = UwΣwV>w . We take W1 =

Uw(:, 1 : `′); that is, we take W1 to be the first `′ left singular vectors of Hw. Similarly, to

construct the matrix W2, we first arrange the Markov parameters into the matrix

He =

h1

...

h2s−1

 ∈ R`(2s−1)×m. (4.9)

We then solve the optimization problem

min
rank(P)=m′

‖He −HeP‖2F .

The optimal solution can be constructed using the SVD of He = UeΣeV
>
e . We take W2 = Ve(:

, 1 : m′); that is, we take W2 to be the first m′ right singular vectors of He. Having obtained

the matrices W1 and W2, we construct the projected Markov parameters as

h̃i = W>
1 hiW2 ∈ R`

′×m′ , i = 1, . . . , 2s− 1.

52

The block Hankel matrix Hs is “projected” using the matrices W1 and W2 arranged in diagonal

blocks to obtain the reduced-size block Hankel matrix

H̃s =

W>

1

W>
1

. . .

W>
1

h1 h2 . . . hs

h2 h3 . . . hs+1

...
... . .

. ...

hs hs+1 . . . h2s−1

W2

W2

. . .

W2

 . (4.10)

It is important to observe that due to this projection, the block Hankel structure is preserved,

and we can express H̃s in terms of the “projected” Markov parameters as

H̃s =

h̃1 h̃2 . . . h̃s

h̃2 h̃3 . . . h̃s+1

...
... . .

. ...

h̃s h̃s+1 . . . h̃2s−1

 ∈ R(`′s)×(m′s). (4.11)

If `′ � ` and m′ � m, then the size of the matrix H̃s is much less than Hs. The dimensions `′

and m′ are determined by the singular value decay of the matrices Hw and He. Retaining a larger

number of singular vectors (that is, large `′ and m′) results in a more accurate approximation

to Hs but results in a larger matrix H̃s and in a higher computational cost.

Recovering system matrices. The next steps mimic the standard ERA approach to recon-

struct the system matrices but we must carefully account for the dimensions of the projected

system. We compute the approximate SVD of H̃s = ŨrΣ̃rṼ
>
r , and partition the left singular

vectors as

Ũr =

[
Υ̃f

∗

]
=

[
∗

Υ̃l

]
.

The system matrices can be recovered as

Ãr = Υ̃†fΥ̃l ∈ Rr×r, C̃r =
[
W1 0

]
Ũr, B̃r = Σ̃rṼ

>
r

[
W>

2

0

]
. (4.12)

Computational cost. To motivate the need for accelerating TERA using RandSVD, we first

review the computational cost which has three components. Computing the projection matrices

W1 and W2 involves a computational cost of O
(
s(`m2 +m`2)

)
flops. The SVD of H̃s now

costs

O(s3`′m′min{`′,m′}) flops,

and, similar to earlier algorithms, the cost recovery of the system matrices is negligible compared

to the cost of the SVD. Although the computational cost is significantly reduced (assuming

`′ � ` and m′ � m), the cost of the SVD still dominates the computational cost and has cubic

53

scaling with s. We now propose a new algorithm to lower this cost.

Algorithm 13 RandTERA

Input: blocks {hk}2s−1k=1 of the block Hankel matrix H ∈ Rs`×sm, target rank 1 ≤ r ≤ n, integers
`′ ≤ `, m′ ≤ m.

1: Form Hw using (4.8) and compute its SVD UwΣwV>w . Set W1 = Uw(:, 1 : `′)
2: Form He using (4.9) and compute its SVD UeΣeV

>
e . Set W2 = Ve(:, 1 : m′)

3: Form ĥi = W>
1 hiW2 for i = 1, . . . , 2s− 1.

4: Compute [Ũr, Σ̃r, Ṽr]=RandSVD(H̃s, r, p). {Matvecs are computed using Algorithm 12}
5: Compute system matrices using (4.12)

RandTERA. It is worth pointing out that the “projected” Hankel matrix H̃s still retains its

block Hankel structure. To reduce the computational cost, we combine the following ingredients

that were used previously: we use the RandSVD to compute the rank−r approximation to H̃s,

and the matvecs involving H̃s can be accelerated using the block Hankel structure (as described

in Section 4.3.1). The main difference is that we use the “projected” Markov parameters {h̃i}2s−1i=1

rather than the Markov parameters {hi}2s−1i=1 . As a result, the computational cost of the SVD

step is reduced to

O
(
r`′m′s log2 s+ r2s(m′ + `′)

)
flops.

We call this algorithm RandTERA, and a complete description of this algorithm is given in

Algorithm 13. A breakdown of the computational cost of the RandTERA is given below in

Table 4.2.

Table 4.2 Computational cost of computing RandTERA

Stage Computational Cost (flops)

Computing W1,W2 O
(
s(`m2 +m`2)

)
SVD step O

(
r`′m′s log2 s+ r2s(m′ + `′)

)

Regarding the storage cost, since only the projected Markov parameters need to be stored,

the storage cost is O(sm′`′) entries, which is potentially lower than RandSVD-H which requires

O(sm`) entries.

54

4.4 Error Analysis

In this section, we analyze the accuracy of RandERA in Section 4.3.1, and derive bounds on

the accuracy of the recovered system matrix Ar. Our derivation is not tied to the randomized

algorithms used to compute the approximations; this makes the analysis applicable to more

general settings.

4.4.1 Background and assumptions

We first review the necessary background information and clearly state our assumptions needed

for the analysis.

Canonical Angles. Given Hs = UΣV>, partition Ur = U(:, 1 : r), the left singular vectors

corresponding to the top r singular values of Hs, as

Ur =

[
Υf

∗

]
=

[
∗

Υl

]
∈ Rs`×r.

Note that we have dropped the superscripts (r), compared to Section 4.2.1, to make the notation

manageable. We can recover the matrix Ar as Ar = Υ†fΥl. Similarly, let Ĥs = ÛΣ̂V̂> be an

approximation to Hs with left singular vectors Ûr partitioned as

Ûr =

[
Υ̂f

∗

]
=

[
∗

Υ̂l

]
∈ Rs`×r,

and we can compute the approximate system matrix Âr = Υ̂†fΥ̂l ∈ Rr×r. Let the canonical

angles between the subspaces R(Ur) and R(Ûr) be denoted by

0 ≤ θ1 ≤ · · · ≤ θmax ≤ π/2.

If we collect the angles into a diagonal matrix Θ, then U>r Ûr has the SVD

U>r Ûr = P (cos Θ)Q>.

Let PUr denote the orthogonal projector onto R(Ur); similarly, let P
Ûr

denote the orthogonal

projector onto R(Ûr). Then, the distance between the two subspace R(Ur) and R(Ûr) is given

by

‖PUr −P
Ûr
‖2 = ‖(I −PUr)PÛr

‖2 = ‖ sin Θ‖2 = sin θmax.

See [70, Chapter II.4] for more details on canonical angles between subspaces.

55

Pseudoinverses. We recall some facts about the perturbation of pseudoinverses [11, Section

2.2.2]. If M ,E ∈ Rn×r such that rank(M) = rank(M + E) = r, then

‖(M + E)† −M †‖2 ≤
√

2‖M †‖2‖(M + E)†‖2‖E‖2 (4.13)

Furthermore, if ‖E‖2‖M †‖2 < 1, then

‖(M + E)†‖2 ≤
‖M †‖2

1− ‖E‖2‖M †‖2
. (4.14)

If A ∈ Rm×r and B ∈ Rr×n such that rank(A) = rank(B) = r, then by [11, Theorem 2.2.3]

(AB)† = B†A†. (4.15)

Accuracy of eigenvalues. A norm based approach, i.e., ‖A−Âr‖, is not meaningful since Ar

(and Âr) can only be determined up to a similarity transformation. To compare the approximate

system matrix Âr with Ar, we compare the eigenvalues of these two matrices since the eigenvalues

remain unchanged by a similarity transformation. We measure the accuracy of the eigenvalues

of Â using the spectral variation, which we now define. Let A,B ∈ Rn×n; the spectral variation

between A and B is defined as [9, Section VI.3]

sv (ψ(B), ψ(A)) = max
1≤j≤n

min
1≤i≤n

|λi(A)− λj(B)|, (4.16)

where ψ(·) denotes the spectrum of the matrix.

We briefly list the various assumptions that are required for our main result.

Assumption 1. We assume:

A1. System matrix: Assume that Ar = Υ†fΥl ∈ Rr×r is diagonalizable and let W ∈ Rr×r be

the matrix of eigenvectors.

A2. Singular vectors: Assume that the subblocks Υf of the singular vectors Ur are full rank,

that is rank(Υf) = r.

A3. Markov parameters: Assume the Markov parameters converge to hi → 0 for i > s.

A4. Canonical angles: Assume that the canonical angles are sufficiently small and satisfy

η ≡ 2 sin θmax‖Υ†f‖2 < 1. (4.17)

Assumption A1 is rather strong but can be weakened, if different perturbation results

are used; see [9, Chapter VIII. 1]. Assumption A2 ensures that the least squares problem

minA ‖ΥfA−Υl‖F has a unique solution. Assumption A3 is also made in [52], and is necessary

to ensure the stability of the system. Finally, Assumption A4 ensures that the approximate

singular vectors are sufficiently accurate.

56

4.4.2 Main result

We are ready to state our main theorem.

Theorem 8. With the notation in Section 4.4.1 and Assumption 1,

sv (ψ(Âr), ψ(Ar)) ≤ κ2(W)η

(
1 +

√
2‖Υ†f‖2
1− η

)
,

where κ2(W) = ‖W ‖2‖W−1‖2 is the condition number of the eigenvectors W of Ar.

The theorem identifies several factors that can cause large errors during the identification

step. First, the eigenvectors of W may be ill-conditioned, i.e., κ2(W) can be large. The best

case scenario is when A is normal, so that the condition number is 1. Second, the norm of the

pseudoinverse ‖Υ†f‖2 ≥ 1 can be large. However, Assumption A3 ensures that lims→∞ ‖Υf‖2 = 1;

see [49, Lemma 5] for a detailed argument. Finally, if the singular vectors of the low-rank

approximation are not computed accurately, then the canonical angles can be large, i.e., sin θmax

can be close to 1. This can be mitigated, for example, by taking several subspace iterations.

The first three assumptions are intrinsic to the system (A,B,C,D) and only Assumption A4

depends on the choice of the numerical method. The theorem is applicable to the randomized

algorithms developed here, namely, RandERA and RandTERA. However, it is important in a

larger context, since it is applicable to any approximation algorithm for ERA, including TERA.

Proof of Theorem 8. There are several steps involved in this proof.

1. Introducing a similarity transformation. Let Z ∈ Rr×r be an orthogonal matrix;

we will leave the specific choice of this matrix to step 2. Since Ar is diagonalizable, using a

perturbation theorem for diagonalizable matrices [9, Theorem VIII.3.1], we have

sv (ψ(Âr), ψ(Ar)) = sv (ψ(ZÂrZ
>), ψ(A)) ≤ κ2(W)‖Ar −ZÂrZ

>‖2. (4.18)

The equality in the above equation is because the eigenvalues of Âr and ZÂrZ
> are the same.

We first discuss the choice of Z before analyzing the error in the term ‖Ar −ZÂrZ
>‖2.

2. Choosing Z. Recall that the SVD of U>r Ûr is P (cos Θ)Q>. Using the unitary invariance

of the 2-norm, ‖Ur − ÛrZ
>‖2 = ‖UrZ − Ûr‖2. Now, we choose Z = PQ> and verify that Z is

orthogonal. By the triangle inequality and the unitary invariance of the 2-norm,

‖UrZ − Ûr‖2 ≤ ‖UrZ −UrU
>
r Ûr‖2 + ‖(I −UrU

>
r)Ûr‖2

≤ ‖UrZ −UrP (cos Θ)Q>‖2 + ‖(I −UrU
>
r)P

Ûr
Ûr‖2

≤ ‖PQ> − P (cos Θ)Q>‖2 + ‖(I −PUr)PÛr
‖2‖Ûr‖2

≤ ‖I − cos Θ‖2 + ‖ sin Θ‖2.

(4.19)

Since the canonical angles satisfy 0 ≤ θi ≤ π/2, we have cos2 θi ≤ cos θi and, therefore, for

57

i = 1, . . . , r,

(1− cos θi)
2 = 1− 2 cos θi + cos2 θi ≤ 1− cos2 θi = sin2 θi.

Therefore, ‖I − cos Θ‖2 ≤ ‖ sin Θ‖2. Together with (4.19), we have

‖Ur − ÛrZ
>‖2 = ‖UrZ − Ûr‖2 ≤ 2‖ sin Θ‖2. (4.20)

3. Ensuring rank(Υ̂f) = r. Choose M = Υf , which has rank r, and M + E = Υ̂fZ
>.

We now show that M + E also has rank r. Using Weyl’s theorem on perturbation of singular

values [11, Theorem 2.2.8],

|σr(Υ̂fZ
>)− σr(Υf)| ≤ ‖E‖2 = ‖Υf − Υ̂fZ

>‖2 ≤ ‖Ur − ÛrZ
>‖2 ≤ 2‖ sin Θ‖2.

We have used the fact that Υf and Υ̂fZ
> are submatrices of Ur and ÛrZ

>, respectively. Since

σr(Υf) = 1/‖Υ†f‖2, we can rearrange to get

σr(Υ̂fZ
>) ≥ 1

‖Υ†f‖2
− 2‖ sin Θ‖2 > 0,

since by assumption, η = 2‖ sin Θ‖2‖Υ†f‖2 < 1. This shows that both Υ̂f and Υ̂fZ
> have rank

r. Therefore, by (4.15), (Υ̂fZ
>)† = ZΥ̂†f . Furthermore, (4.14) applies and

‖ZΥ̂†f‖2 ≤
‖Υ†f‖2

1− 2‖ sin Θ‖2‖Υ†f‖2
. (4.21)

4. Error in ‖Ar −ZÂrZ
>‖2. Write both matrices in terms of their factors, and add and

subtract the term Υ†fΥ̂lZ
> to get

‖Ar −ZÂrZ
>‖2 = ‖Υ†fΥl −Υ†fΥ̂lZ

> + Υ†fΥ̂lZ
> −ZΥ̂†fΥ̂lZ

>‖2

≤ ‖Υ†f‖2‖Υl − Υ̂lZ
>‖2 + ‖Υ† −ZΥ̂†f‖2‖Υ̂lZ

>‖2.
(4.22)

Note that, by Assumption A2, rank(Υf) = r. In step 3, we showed that rank(Υ̂fZ
>) = r. As

before, with M = Υf and M + E = Υ̂fZ
>, (4.13) applies and

‖Υ†f −ZΥ̂†f‖2 ≤
√

2‖Υ†f‖2‖ZΥ̂†f‖2‖Υf − Υ̂fZ
>‖2.

Plugging this into (4.22), we have

‖Ar −ZÂrZ
>‖2 ≤ ‖Υ†f‖2

(
‖Υl − Υ̂lZ

>‖2 +
√

2‖ZΥ̂†f‖2‖Υf − Υ̂fZ
>‖2
)
.

We have used the fact that ‖Υ̂lZ
>‖2 ≤ ‖ÛrZ

>‖2 = 1; the inequality is because Υ̂lZ
> is a

58

submatrix of ÛrZ
> and the equality follows since ÛrZ

> has orthonormal columns. Similarly,

‖Υl − Υ̂lZ
>‖2 ≤ ‖Ur − ÛrZ

>‖2, ‖Υf − Υ̂fZ
>‖2 ≤ ‖Ur − ÛrZ

>‖2,

so that

‖Ar −ZÂrZ
>‖2 ≤ ‖Υ†f‖2‖Ur − ÛrZ

>‖2
(

1 +
√

2‖ZΥ̂†f‖2‖
)
. (4.23)

5. Finishing the proof. Plug (4.20) and (4.21) into (4.23) to obtain

‖Ar −ZÂrZ
>‖2 ≤ (2‖ sin Θ‖2‖Υ†f‖2)

(
1 +

√
2‖Υ†f‖2

1− 2‖ sin Θ‖2‖Υ†f‖2

)
.

Plug this bound into (4.18) to finish the proof.

An important aspect of the proof of Theorem 8 is the choice of the orthogonal matrix Z that

determines the similarity transformation. Our proof used this idea from [44, Theorem 5]. It is

worth pointing out that the matrix Z = PQ> is also the solution to the orthogonal Procrustes

problem

min
Z∈Rr×r
Z>Z=Ir

‖UrZ − Ûr‖F .

Therefore, the matrix Z = PQ> is the matrix that “best rotates” the columns Ur to align with

the columns of Ûr. Note, however, that in the proof we use the 2-norm instead of the Frobenius

norm.

4.4.3 Accuracy of the singular vectors

Theorem 8 shows that the accuracy of the approximation algorithms to the ERA depend on

the canonical angles between the exact and approximate subspaces R(Ur) and R(Ûr). Insight

into the accuracy between these subspaces can be obtained by standard perturbation theory.

Suppose there are numbers α ≥ 0 and δ > 0 such that

σr+1(Ĥs) ≥ α+ δ, σr(Hs) ≤ α.

Let Ûr, V̂r be the matrices containing the left and right singular vectors corresponding to the

first r singular values of Ĥs, which are taken to be the diagonals of the matrix Σ̂r. Then, by [70,

Chapter V.4, Theorem 4.4],

‖ sin Θ‖2 ≤
max{‖HsV̂r − ÛrΣ̂r‖2, ‖H>s Ûr − V̂rΣ̂r‖2}

δ
.

In Section 4.3.1, the randomized subspace iteration is used to construct the low-rank approxima-

tion Ĥs. We can use more special purpose error bounds to quantify the accuracy of the singular

vectors. Specifically, one may use techniques developed in Section 3.2 of [65]. We omit a detailed

59

statement of the results.

4.4.4 Stability

The discrete dynamical system with the system matrix Ar is stable if the eigenvalues of Ar lie

inside the unit circle; that is, the spectral radius ρ(Ar) < 1. Assumption A3 in Section 4.4.1

means that the Markov parameters decay after some finite time. Then, by [49, Theorem 3],

there exists a positive integer s such that the identified reduced order model is a stable discrete

dynamical system. Theorem 8 can also be used to determine when the approximate discrete

dynamical system with the system matrix Âr is stable.

We consider the spectral radius of Âr, and write

ρ(Âr) = max
1≤j≤r

|λj(Âr)| = |λj∗(Âr)|,

for some index j∗. Similarly, let i∗ be the index such that λi∗(Ar) is the closest eigenvalue to

λj∗(Âr). If i∗ and j∗ are not unique, break the tie in some fashion. Therefore, we have the series

of inequalities

ρ(Âr) ≤ |λj∗(Âr)− λi∗(Ar)|+ |λi∗(Ar)| ≤ sv (Ψ(Âr),Ψ(Ar)) + ρ(Ar).

By Theorem 8, the approximate discrete dynamical system is stable if

κ2(W)η

(
1 +

√
2‖Υ†f‖2
1− η

)
< 1− ρ(Ar).

By assumption, η < 1; the above equation gives an additional condition on η for stability. This

condition can be informative for the numerical method used to compute the singular vectors Ûr.

4.5 Numerical Results

To test our algorithms, we consider two test problems which pose different challenges. The first

test problem is generated from a LTI model of a controlled heat transfer process for optimal

cooling of a steel profile [63]. The second test problem is generated from a LTI state-space

model of an electrical power generation system with 50 generators [8]. The dimensions of the

variables related to both test problems are shown in Table 4.3. The heat transfer test problem

has a relatively large system size n but a small number of inputs and outputs, while the

power system test problem has a relatively small system size but a much larger number of

inputs and outputs. All our experiments were run in MATLAB, and our timing experiments

were run on the NCSU HPC Cluster with 72GB memory. MATLAB Code for the algorithms,

test models, and some of the numerical experiments included in this section can be found at

https://github.com/rlminste/RandSysID.

60

https://github.com/rlminste/RandSysID

Table 4.3 Details of the test problems we will use in our numerical experiments, as well as the size of
the largest Hankel matrix Hs that occurs for these test problems.

System System Size n Inputs m Outputs ` Largest Hs dim.

Heat Transfer 1357 7 6 24, 000× 28, 000
Power System 155 50 155 155, 000× 50, 000

4.5.1 Heat Transfer

We first test our algorithms on the heat transfer test problem, which has a large system size but

a relatively small number of inputs and outputs. This system also has slow dynamics, so a large

value of s is needed to capture the transient behavior. The model for this test problem is not

in standard form, so we will need to convert it to standard form before we are able to use our

algorithms. The original continuous form after spatial discretization is

E
dx

dt
= Aox + Bou

y = Cox + Dou.

To convert it to standard form, we use the Cholesky factorization of E = LL>. Then,

the continuous standard form system matrices are found by computing Ac = L−1AoL
−>,

Bc = L−1Bo, and Cc = CoL
−>. Note that Dc = Do remains unchanged. The continuous-time

matrices are converted into appropriate discrete-time matrices using MATLAB’s c2d command.

It is worth noting that the continuous-time matrices are only used in the construction of the

Markov parameters but are not used explicitly in the system identification algorithms.

For this heat transfer problem, we will compare accuracy and speed of our algorithms that

take advantage of the block Hankel structure of Hs, i.e., RandSVD-H (see Section 4.3.1), to

the standard ERA that uses a full SVD. We also contrast these two algorithms with another

algorithm we call SVDS-H, which uses the MATLAB command svds, but we instead use the

block Hankel multiplication described in Algorithm 12.

Accuracy

We consider several numerical experiments to test the accuracy of our algorithms. For each

experiment, we used s = 1000 and a target rank of r = 20; that is, we are performing model

reduction in addition to the system identification. For RandSVD-H, we used q = 1 for the number

of subspace iterations and p = 20 for the oversampling parameter. In our first experiment, we

compare the first 20 singular values of the block Hankel matrix Hs ∈ R6000×7000 as computed by

a full SVD to the first 20 singular values computed by the SVDS-H and RandSVD-H algorithms.

The singular values are plotted in Figure 4.1; we see that they are in good agreement with each

other.

Next we compare the eigenvalues of the identified Âr matrices using the SVDS-H and

61

0 5 10 15 20
10

-10

10
-8

10
-6

10
-4

10
-2

Singular Values of H
s

Full SVD

SVDS-H

RandSVD-H

Figure 4.1 Singular values of the block Hankel matrix Hs as computed by a full SVD, SVDS-H, and
RandSVD-H. We computed the first 20 singular values using SVDS-H and RandSVD-H and plotted
them against the first 20 singular values computed by the full SVD.

RandSVD-H algorithms to the eigenvalues of Ar identified using the full SVD ERA algorithm.

The results are shown in Figure 4.2, where we can see that the eigenvalues of Âr computed using

SVDS-H and RandSVD-H align well with those of Ar computed using the full SVD accurately.

0.988 0.99 0.992 0.994 0.996 0.998

Re

-6

-4

-2

0

2

4

6

Im

10
-3 Eigenvalue Comparison

SVD-ERA

SVDS-H

RandSVD-H

Figure 4.2 Eigenvalues of the identified Ar matrix using SVD-ERA, SVDS-H, and RandSVD-H
algorithms on the heat transfer problem. We used s = 1000 and a target system size of r = 20 as
inputs for each algorithm.

In order to quantitatively evaluate the accuracy of the identified eigenvalues, we consider

the Hausdorff distance metric, defined between the spectra of the two matrices Ar and Âr,

hd(ψ(Ar), ψ(Âr)) = max
{
sv
(
ψ(Ar), ψ(Âr)

)
, sv

(
ψ(Âr), ψ(Ar)

)}
. (4.24)

Note that the Hausdorff distance is related to the spectral variation, defined in (4.16), as it

measures how close two sets are to each other. We use Hausdorff distance hd instead of spectral

62

variation since the spectral variation of two sets depends on the order of the sets in question,

while the Hausdorff distance does not. For both algorithms SVDS-H and RandSVD-H, we

computed the Hausdorff distance between the spectra of Âr and Ar and we saw that for both

algorithms hd ≈ 10−14.

The final measure of accuracy we will consider for this test problem is the relative error in

the Markov parameters. Let Ar,Br,Cr be the system matrices identified by the full SVD-ERA,

and let Âr, B̂r, Ĉr be the system matrices identified using another method. The relative error

in the Markov parameters is then defined as

Mk =
‖CrA

k
rBr − ĈrÂ

k
rB̂r‖2

‖CrAk
rBr‖2

, k = 1, . . . , 2s− 1. (4.25)

We compute this error for the identified matrices using the SVDS-H and RandSVD-H algorithms,

and plot the results in Figure 4.3. Both algorithms produce comparable error in the Markov

parameters, and this error is very low in both cases. These results combined with those from

Figure 4.2 show that our algorithms are very accurate compared to the standard algorithms.

0 500 1000 1500 2000
10

-15

10
-14

10
-13

10
-12

10
-11

10
-10

R
e
la

ti
v
e
 E

rr
o
r

Markov Parameter Error

SVDS-H

RandSVD-H

Figure 4.3 Relative error in recreated Markov parameters compared to a full SVD ERA for both the
SVDS-H and RandSVD-H algorithms. We used s = 1000 and a target rank of r = 20 as inputs.

Timing

We now consider the average run time of the three algorithms on the heat transfer problem.

The results, shown in Figure 4.4, clearly indicate that using the block Hankel structure as in

SVDS-H and RandSVD-H significantly reduces the computational cost, and using a randomized

algorithm reduces that cost further, as RandSVD-H is computationally the least expensive of

the three. We also see from the plots that the SVDS and RandSVD-H algorithms, which both

exploit the block Hankel structure, show approximately linear scaling with s confirming the

analysis of the computational costs.

63

10
3

10
-1

10
0

10
1

10
2

10
3

10
4

S
e
c
o
n
d
s

Runtime Comparison

SVD

SVDS-H

RandSVD

RandSVD-H

Figure 4.4 Average run time of the SVD, SVDS, RandSVD, and RandSVD-H algorithms on the heat
transfer problem. We averaged the run time over three runs, and a target system size of r = 20 as
inputs for each algorithm.

Comparison to CUR-ERA

The final test we consider with this application is how CUR-ERA compares to the randomized

algorithms we analyzed in the previous experiments. For CUR-ERA, we used the default

parameters suggested in the code provided by the authors of [49]. The maxvol tolerance is 10−4,

and the iterations stop when the relative error of the subsequent iterations is less than 10−4.

For our experiments, we start with the accuracy of the eigenvalues, plotted in Figure 4.5. In

0.985 0.99 0.995 1

Re

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Im

CUR-ERA Comparison

CUR-ERA

SVD

RandSVD-H

Figure 4.5 Eigenvalues of the identified Ar matrix using CUR-ERA, compared to those identified by
SVD and RandSVD-H on the heat transfer problem with s = 1000 and a target system size of r = 20.

this figure, we see that the eigenvalues of Ar identified by CUR-ERA are not as accurate as

those identified by RandSVD-H. To quantify this, we compute the Hausdorff distance between

the spectrum of the Ar matrix identified by CUR-ERA and the spectrum of the Âr matrix

64

identified by SVD-ERA when s = 1000. We find that this distance is approximately 4.0× 10−4,

supporting the claim that CUR-ERA is less accurate than RandSVD-H (we experimented with

several different choices of CUR-ERA parameters and are reporting the choice which gave the

smallest error). At the same time, the CUR-ERA algorithm took 0.83 seconds compared to

0.66 seconds for RandSVD-H (averaged over three runs). Finally, we show the relative error

in the Markov parameters, computed as defined in (4.25), for CUR-ERA, RandSVD-H, and

SVDS-H. The results are shown in Figure 4.6, and we see that the error shown here confirms

the accuracy comparison, thus far. The accuracy of CUR-ERA is lower than that obtained from

either RandSVD-H or SVDS-H. In all cases, CUR-ERA took two iterations to converge.

0 500 1000 1500 2000
10

-15

10
-10

10
-5

10
0

R
e
la

ti
v
e
 E

rr
o
r

Markov Parameter Error

SVDS-H

RandSVD-H

CUR-ERA

Figure 4.6 Relative error in recreated Markov parameters compared to a full SVD-ERA for
RandSVD-H, SVDS-H, and CUR-ERA.

Comparing Randomized SVD algorithms

We now compare our algorithms with more recent randomized SVD algorithms available in the

literature. Specifically, we considered Algorithms 4 and 5 from RSVDPACK [80], which are similar

to Algorithm 1 but differ in how they postprocess the low-rank approximation to obtain the

approximate SVD. We adapted these algorithms to incorporate block Hankel multiplication, and

we denote the resulting eigenvalue decomposition based algorithm as RSVDeig-H ([80, Algorithm

4]), and the resulting QR decomposition based algorithm as RSVDqr-H ([80, Algorithm 5]). We

use the same parameters for RSVDeig-H and RSVDqr-H as we do for RandSVD-H. First, we

compare the singular values of Hs, the identified system matrix Ar using RandSVD-H and the

two randomized algorithms RSVDeig-H and RSVDqr-H. These results are shown in Figure 4.7.

We observe from the plot that all the algorithms produce similar results, both in terms of

the singular values of Hs and the eigenvalues of Ar. Finally, we compare the average runtime

using all the randomized algorithms. We observe that all four algorithms are competitive but

65

RSVDeig-H is the fastest, and for smaller s values, RSVDqr-H is also faster than RandSVD-H.

Therefore, since randomized SVD algorithm as described in Algorithm 1 is competitive with these

variants, we continue to use it in the rest of our experiments but we note that an improvement

in timing could be made by using these variants.

0 5 10 15 20
10

-8

10
-6

10
-4

10
-2

Singular Values of H
s

RandSVD-H

RSVDeig-H

RSVDqr-H

0.99 0.995 1

Re

-5

0

5

Im

10
-3 Eigenvalues

RandSVD-H

RSVDeig-H

RSVDqr-H

10
3

10
-1

10
0

S
e
c
o
n
d
s

Runtime

RandSVD-H

RSVDeig-H

RSVDqr-H

Figure 4.7 Experiments with the heat transfer test problem comparing RandSVD-H to RSVDeig-H
and RSVDqr-H. The top left figure shows the singular values of Hs computed by all three algorithms,
the top right figure shows the identified eigenvalues of Ar by using the randomized algorithms, and
the bottom left figure shows the average run time in seconds of ERA using the three randomized
algorithms.

4.5.2 Power system

For our next application, we consider the system identification of an electric power system

model. Identification is an important component of power system modeling as the operating

points in a power grid keep changing due to changes in loads, renewable generation profiles,

and the network topology. All of this motivates the need for fast algorithms that can quickly

update the small-signal model of the grid about these changing operating points from time to

time [16]. The updated models, in turn, enable operators to make real-time control decisions for

ensuring system stability. For the test problem, we consider a prototype model of reasonably

large dimension, namely the IEEE 50-generator model with 145 buses, n = 155 state variables,

and m = 50 input variables, as listed in Table 4.3. Details about the physical meaning of

the states and model parameters of this test system can be found in [20]. The original IEEE

66

50-generator model is nonlinear. The model is, therefore, first linearized about a chosen power

flow solution. The resulting LTI model is excited by 50 impulse functions injected through the

excitation input terminals of the generators. All ` = 155 states are measured, and are considered

as outputs. The output matrix for this example is, therefore, the identity matrix.

An important feature of this problem is that it has a significantly larger number of inputs

and outputs with a relatively small system size n = 155. Since the computational cost of

RandSVD-H scales linearly with the product of the number of inputs and outputs, this suggests

that RandTERA may have be computationally advantageous if the number of inputs and

outputs can be reduced. Therefore, our experiments will compare RandTERA to RandSVD-H

both in terms of accuracy and computational costs. For this problem, we again perform system

identification as well as model reduction, taking the target rank to be r = 75. We found that

model reduction (by using a truncated rank) is necessary for this power system test problem

to achieve reasonable accuracy. If no model reduction is performed or if the target rank is too

large, we encounter numerical instability in the eigenvalue reconstructions both in SVD-ERA

and RandSVD-H.

Accuracy

First, we will examine the accuracy of both RandTERA and RandSVD-H on the power system

test problem. For all the experiments for testing accuracy, we will use s = 500, and target rank

r = 75. For the randomized algorithms, we use an oversampling parameter p = 20, and q = 1

subspace iterations. Note that the full Hankel matrix for the accuracy experiments is of size

77500× 25000.

0 50 100 150
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Singular Values of H
s

Full SVD

RandSVD-H

TERA: .1

TERA: .05

TERA: .01

0 50 100 150
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Singular Values of H
s

Full SVD

RandSVD-H

RandTERA: .1

RandTERA: .05

RandTERA: .01

Figure 4.8 Singular values of block Hankel matrix Hs as computed by a full SVD and RandSVD-H
versus those computed by (left) TERA with varying ε tolerances and (right) RandTERA with varying
ε tolerances.

67

Choice of `′ and m′. In our first experiment, we will investigate the choice of the reduced

number of inputs and outputs `′ and m′ for the tangential algorithms (TERA and RandTERA).

To choose these parameters, we compute the singular values of Hw and He defined in (4.8),

(4.9). The indices `′ and m′ are chosen to be the largest integers such that

`′ = arg min
k
{1 ≤ k ≤ ` |σk(Hw) ≥ εσ1(Hw)}

m′ = arg min
k
{1 ≤ k ≤ m |σk(He) ≤ εσ1(He)} .

That is, they are chosen to be the smallest indices for which the singular values are within a

threshold ε of the largest singular value. The values of `′ and m′ for different ε thresholds are

shown in Table 4.4.

Table 4.4 Reduced number of inputs m′ and outputs `′ based on the singular value threshold ε for
use in TERA and RandTERA.

ε m′ `′

0.1 14 18
0.05 21 33
0.01 30 59

Accuracy of eigenvalues. We first compare the accuracy of the singular values of the

computed block Hankel matrix Hs. First, we show in Figure 4.8 the effect of different ε values

on the accuracy of singular values computed by TERA and RandTERA. We can see that the

smaller the tolerance ε, the more accurate the singular values. Also, the singular values computed

using TERA and RandTERA are less accurate compared to RandSVD-H, but the singular

values computed by RandTERA are comparable with those of TERA. This shows that the

randomized algorithms are accurate compared to their deterministic counterparts.

Next, we consider the eigenvalues of the identified Âr matrix using the RandSVD-H and

RandTERA algorithms compared with the eigenvalues of the original Ar matrix. We use the

parameters listed above, but we fix ε = 10−2. These results are shown in Figure 4.9. We can see

that our algorithms identify the state matrix with eigenvalues very close to the true eigenvalues.

To quantify how close they are, we consider the Hausdorff distance again as defined in (4.24).

We computed the Hausdorff distance between the spectrum of the Ar matrix identified by an

SVD-ERA and the spectra of the Ar matrices identified by RandSVD-H and RandTERA. We

used s = 500 for all algorithms, and saw that for RandSVD-H, hd ≈ 2.7× 10−4. For RandTERA,

hd ≈ 3.0× 10−3.

Our final measure of accuracy is the relative error in the Markov parameters as defined

in (4.25). We plot this relative error in Figure 4.10, and make two observations. The first is that

RandSVD-H has a much lower relative error than either TERA or RandTERA. The second

68

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

Re

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Im

Eigenvalue Comparison

SVD-ERA

RandSVD-H

RandTERA

Figure 4.9 Eigenvalues of the identified matrix Âr from SVD-ERA compared to the identified matrix
Âr from RandSVD-H and RandTERA on the power system test problem with target rank r = 75.

0 200 400 600 800 1000

10
-3

10
-2

10
-1

10
0

R
e
la

ti
v
e
 E

rr
o
r

Markov Parameter Error

RandSVD-H

RandTERA

TERA

Figure 4.10 Relative error in the reconstructed Markov parameters using RandTERA, TERA, and
RandSVD-H algorithms. The relative error is computed using the system identified using the SVD-
ERA.

is that the error from RandTERA is very accurate compared to the error from TERA, so

the randomization is not causing a significant loss in the accuracy. We can see in Figure 4.10,

that the relative error increases with increasing k. This is because the identification techniques

using impulse response fail to identify the well damped poles (i.e., the poles whose real part

is significantly lesser than 1) accurately, since information corresponding to these modes have

to be obtained from the first few Markov parameters only. In Figure 4.11, we compare the

impulse response of the original full, discrete-time model with that of the models identified

using RandSVD-H and RandTERA (an impulse input was fed into Generator 1). The top plot

shows the speed response of Generator 1 while the bottom plot shows that for Generator 2. We

see that both the identified models have similar performance for Generator 1 and are close to

the original trajectory, whereas in Generator 2, the trajectories from all algorithms match each

69

other closely, with only minor deviations from the “true” trajectory in the the first 2 seconds.

The results for the other generators were observed to follow similar matching trends.

0 1 2 3 4 5 6 7 8 9

time

-0.05

0

0.05

0.1

R
o
to

r
s
p
e
e
d

Impulse Response

original

SVD-ERA

RandSVD-H

RandTERA

TERA

0 1 2 3 4 5 6 7 8 9

time

-5

0

5

10

R
o
to

r
s
p
e
e
d

10
-3

original

SVD-ERA

RandSVD-H

RandTERA

TERA

Figure 4.11 Impulse response of the original discrete-time system compared against that for the
systems identified using SVD-ERA, RandSVD-H, TERA, and RandTERA and excited with impulse
input at Generator 1, with responses from Generator 1 (top) and Generator 2 (bottom).

Timing

We next examine the computational cost of RandSVD-H and RandTERA on the power system

test problem. We show in Table 4.5 the average CPU time of both of these algorithms compared

to a full SVD as s increases. As before, we averaged over three different runs, and used the same

parameters for the randomized algorithms, r = 75, p = 20 and q = 1. We see that RandTERA

is much cheaper compared to RandSVD-H, and both are much cheaper than a full SVD as

expected. Note that for s = 1000, the matrix size was 155, 000× 50, 000 and since this matrix

was too large to store explicitly, we do not report the computational cost using the SVD.

Table 4.5 Computational time in seconds of the SVD step in the identification algorithms SVD-ERA,
RandSVD-H, TERA, and RandTERA. Note for s = 1000, the matrix was too large to store explicitly,
so we only show the run times for the other algorithms.

s size of Hs SVD RandSVD-H TERA RandTERA

500 77, 500× 25, 000 1634.4 20.3 339.7 6.6
700 108, 500× 35, 000 4292.0 28.4 795.2 11.7
1000 155, 000× 50, 000 N/A 41.9 1983.9 18.0

70

4.6 Conclusions and Future work

We have presented two different randomized algorithms for accelerating the computational cost

of system identification using ERA. The first algorithm accelerates the randomized subspace

iteration by efficiently computing matrix vector products using the block Hankel structure. The

second algorithm uses the previous algorithm, but on a matrix with a reduced number of inputs

and outputs using tangential interpolation. The algorithms no longer have the cubic scaling

with s, which controls the number of time steps. The error analysis relates the accuracy of the

eigenvalues of the identified system matrix to the accuracy of the singular vectors of the block

Hankel matrix Hs. Numerical experiments from different applications show that our algorithms

are both accurate and computationally efficient.

There are several avenues for future work. First, the analysis in Section 4.4 is general and does

not make assumptions on the specific algorithm used to compute the low-rank approximation to

Hs. The analysis can be specialized by using specific results for the accuracy of the singular

vectors, for example, following the approaches in [62, 65, 68]. Second, the paper assumes that

we have access to the Markov parameters. This is not the case when it is possible to excite the

system using general inputs. One possibility, as mentioned earlier, is to use the approach in [46]

which may not be feasible when a large number of Markov parameters need to be estimated.

Algorithms such as MOESP and N4SID (see [77, Chapter 9]) can be used for general inputs but

also suffer from high computational costs. However, we can combine the block Hankel structure

with randomized algorithms for the general input case as well. Such techniques which involve

identification using general input can be extremely accurate in identifying the well-damped

poles as they constant excite the system with a persistently exciting signal. This is an ongoing

research direction.

4.7 Acknowledgements

We would like to thank our coauthors, Jishnudeep Kar and Aranya Chakraborrty, as well as

Eric Hallman for useful comments and for generously sharing his code with us.

71

Chapter 5

Efficient Tensor-based

Approximations to Kernel

Interactions

5.1 Introduction

Kernel methods are used to model pairwise interactions among a set of points. They are popular

in many applications in numerical analysis and scientific computing such as integral equations,

radial basis functions, Gaussian processes, machine learning, geostatistics and spatiotemporal

statistics, and Bayesian inverse problems. A major challenge in working with kernel methods

is that the resulting kernel matrices are dense, and are difficult to store and compute with

when the number of interaction points is large. Many fast kernel summation methods have been

developed over the years including the Barnes-Hut algorithm [4], Fast Multipole Method [33],

Fast Gauss Transform [34], etc.

Rank-structured matrices are a class of dense matrices that are useful for efficiently rep-

resenting kernel matrices. In this approach, the kernel matrix is represented as a hierarchy of

subblocks, and certain off-diagonal subblocks are approximated in a low-rank format. There are

several different types of hierarchical formats for rank-structured matrices, including H-matrices,

H2-matrices, hierarchically semi-separable (HSS) matrices, and hierarchically off-diagonal low-

rank (HODLR) matrices. For more details on hierarchical matrices, see [37, 40, 31, 12, 39, 66].

If the number of interaction points is n, then the matrix can be stored approximately using

O(n(log n)α) entries rather than n2 entries, and the cost of forming matrix-vector products

(matvecs) is O(n(log n)β) flops, where α, β ≥ 0 are nonnegative integers depending on the format

and the algorithm for computing the rank-structured matrix. A major challenge in working with

rank-structured matrices is the high cost of computing low-rank approximations.

Low-rank approximations arise due to kernel interactions corresponding to two sets of

points: the source points and the target points. Assuming that the kernel is sufficiently smooth

72

and the source and target points are well-separated, it is reasonable to approximate the

interactions between the two sets of points by a low-rank matrix. This is explained more clearly

in Subsection 5.2. The matrix representing the interactions between these sets of points can be

compressed using the singular value decomposition (SVD). However, the cost of the SVD can

be large when the number of source and target points are large, and also because the low-rank

approximations need to be computed repeatedly over several sets of source and target points.

Over the years, there have been many efforts to compute efficient low-rank approximations in

the context of kernel methods. While it is not our goal to do a comprehensive survey, we mention

a few important works to set our work in the right context. The low-rank approximations can be

generally classified into three different schemes: analytic, semi-analytic, and algebraic methods.

Analytic methods employ Taylor expansions or other kernel-dependent function expansions

to approximate a kernel; the Fast Multipole Method (FMM) is an example of an analytic method.

These methods are generally the most accurate, but one major downside of analytic methods is

that they are specific to the kernel in question, and require the development of a new expansion

for each new kernel. Semi-analytic methods instead only require evaluations of the kernel, and can

be implemented in a kernel-independent manner. These methods approximate the interactions

between large sets of points by computing interactions between smaller, strategically selected,

sets of points. There are many examples of semi-analytic methods in recent work, including

[14, 82, 18, 84, 83]. The third type of method, algebraic methods, also only require kernel

evaluations. The difference between algebraic and semi-analytic is that algebraic methods work

directly with the matrix-vector product of the kernel. These methods then employ numerical

linear algebra methods for approximation. The most commonly used algebraic method is the

adaptive cross approximation (ACA). One recent example of an algebraic method is [7], which

builds on the ACA to create a more efficient method.

Our approach falls into the semi-analytic category, and builds on the black-box fast multipole

method (BBFMM) low-rank approximation approach in Fong and Darve [30], which uses

Chebyshev interpolation to approximate the kernel interactions. In this method, instead of

computing the kernel interactions between every pair of points given, the interactions are only

computed between points on Chebyshev grids. This significantly reduces the number of kernel

evaluations needed. This work is also similar to the semi-analytic methods in [14, 82], as the new

approaches in these papers also use some form of Chebyshev interpolation to reduce the number

of kernel interactions. Our work differs in the subsequent low-rank approximation techniques, as

we use tensor-based methods instead of the matrix techniques presented in these papers.

Contributions and Contents. In this chapter, we propose new tensor-based methods to

compute efficient low-rank kernel approximations in two spatial dimensions. Our approach

is based on the BBFMM approach, which uses Chebyshev interpolation, and has four steps:

mapping the block matrix representing the kernel interactions between Chebyshev grids into a

four dimensional tensor; using novel tensor approximation algorithms; mapping the resulting

73

tensor approximation to obtain a compressed block matrix; and further compressing the block

matrix to obtain a low-rank matrix approximation. Though the proposed approach is kernel-

independent, we demonstrate the performance of our algorithms on a wide variety of kernels as

well as different source and target point configurations. The resulting algorithms are accurate

and computationally efficient. One of the algorithms (Section 5.3, Method 2) dramatically cuts

down the number of kernel evaluations compared to standard approaches. It is worth pointing

out that the novelty in our approach lies both in the use of the tensor-based approach as well as

in the tensor compression methods themselves. The use of tensor decompositions allows us to

exploit the latent multidimensional structure in order to obtain efficiently computed, accurate

approximations. We anticipate that this tensor-based compression approach is more broadly

applicable to block matrices.

We first review, in Section 5.2, the problem setup and the black-box fast multipole method

from [30]. Then, in Section 5.3, we present our new tensor-based approach described above.

Finally, we show the accuracy of our algorithms in various settings in Section 5.4.

5.2 Background

Before we present our low-rank approximation algorithms, we review the necessary background

information. We explain in detail the problem setup and the underlying assumptions, and review

the Chebyshev interpolation approach at the heart of the BBFMM.

Problem Setup and Notation

The computational bottleneck of working with rank-structured matrices involves the efficient

low-rank approximation of the off-diagonal blocks. Before showing how to compute these off-

diagonal blocks efficiently, we define the problem setup that we will use in the rest of this chapter.

Let X = {x1,x2, . . . ,xNs} and Y = {y1,y2, . . . ,yNt} be Ns and Nt source and target points,

respectively. These points are assumed to be enclosed by two boxes, Bs and Bt, defined as

Bs = [a1, b1]× [a2, b2],

Bt = [c1, d1]× [cd, d2],
(5.1)

such that X ⊂ Bs and Y ⊂ Bt. These bounding boxes are plotted in Figure 5.1 for visualization.

Then, for the kernel κ : R2 × R2 → R, let the interaction matrix K(X ,Y) be defined as

K(X ,Y) =

κ(x1,y1) κ(x1,y2) . . . κ(x1,ynt)

κ(x2,y1) κ(x2,y2) . . . κ(x2,yNt)
...

...
. . .

...

κ(xNs ,y1) κ(xNs ,y2) . . . κ(xNs ,yNt)

 . (5.2)

We can only represent blocks in low-rank form if those blocks are admissible. There are two

74

Figure 5.1 Visual of the bounding boxes for source points, Bs, and for target points, Bt. Note that
X ⊂ Bs and Y ⊂ Bt

types of admissibility, weakly admissible and strongly admissible. Note that the diameters of

the bounding blocks Bs and Bt are

diam(Bs) =
√

(b1 − a1)2 + (b2 − a2)2,

diam(Bt) =
√

(d1 − c1)2 + (d2 − c2)2.
(5.3)

We define the distance dist(Bs, Bt) between these blocks as the minimum distance between any

two points from Bs and Bt. Specifically,

dist(Bs, Bt) = min
(xs,ys)∈Bs
(xt,yt)∈Bt

(√
(xt − xs)2 + (yt − ys)2

)
. (5.4)

The domains Bs and Bt are considered strongly admissible if they satisfy

max{diam(Bs),diam(Bt)} ≤ η dist(Bs, Bt), (5.5)

where η > 0 is the admissibility parameter. This means two sets of points are strongly admissible

if they are sufficiently well-separated. Two blocks are weakly admissible if there is no overlap

between them.

We now formally state the problem we seek to address. Given points X ⊂ Bs and Y ⊂ Bt,
we seek to compute the pairwise kernel interactions between the sets of points, i.e., K(X ,Y).

This is expensive both from a computational and storage perspective. If we simply compute

the kernel interaction for each pair of points, this requires NsNt kernel interactions and the

cost of storage is O(NsNt). As Ns and Nt can get quite large (for our later numerical examples

Ns = Nt = 2000), computing K(X ,Y) can become computationally challenging. Assuming that

the points are well-separated so that the kernel interactions between the source and targets can

be treated as a smooth function, the matrix K(X ,Y) can be approximated in a low-rank format.

75

However, computing this low-rank approximation is computationally expensive. To this end, our

goal is to compute an approximation to K(X ,Y) with a cost that is linear in Ns and Nt, which

we accomplish using the black-box FMM (BBFMM) approach.

5.2.1 Kernel approximation using Chebyshev interpolation

In this chapter, we use the BBFMM approach to obtain a low-rank approximation to the kernel

κ [30], which is based on Chebyshev interpolation. The general idea of this method is to treat

the kernel as a multidimensional function over 4 spatial variables: two variables representing

the sources and two variables representing the targets. Then we use Chebyshev interpolation

of the multidimensional function. Assuming the number of Chebshev grid points is n for each

dimension, instead of computing the pairwise interactions between the source and target points,

we only need to compute n4 kernel interactions. We choose n, the number of Chebyshev nodes,

to be significantly smaller than either Ns or Nt so that the Chebyshev approximation is much

more efficient to evaluate than the dense matrix K(X ,Y). A visual representation of this process

is provided in Figure 5.2 but the details will be given later in this section.

Figure 5.2 Visual representation of mapping source and target points to Chebyshev grids, shown by
steps 1 and 3. Step 2 shows computing the interactions between Chebyshev grid. Each numbered step
corresponds to a matrix shown in Figure 5.3.

Chebyshev interpolation

It is easiest to first give details for interpolating a function g: [a, b] → R using Chebyshev

interpolation. We first construct the Chebyshev points of the first kind in the interval [−1, 1];

these are given by ξk = cos
(
2k−1
2n π

)
for k = 1, . . . , n. Using the mapping I[a,b]: [−1, 1]→ [a, b]

defined as

I[a,b](x) = (x+ 1)
(b− a)

2
+ a, (5.6)

76

we obtain the Chebyshev points in the interval [a, b] as xck = I[a,b](ξk) for k = 1, . . . , n. This

mapping is invertible, with the inverse I−1[a,b](x) = 2 (x−a)
(b−a) − 1. Recall that for a function g(x)

with x ∈ [a, b], the Chebyshev interpolation polynomial of degree n− 1 is

πn−1(x) =
n−1∑
k=0

ckTk(I
−1
[a,b](x)),

where Tk(x) = cos(k cos−1(x)) is the Chebyshev polynomial of degree k, and ck are the coefficients

of the Chebyshev polynomials. The coefficients ck can be obtained using the interpolating condi-

tions and the discrete orthogonality of the Chebyshev polynomials. If we define an interpolating

polynomial S
[a,b]
n (x, y) as

S[a,b]
n (x, y) =

1

n
+

2

n

n−1∑
k=1

Tk

(
I−1[a,b](x)

)
Tk

(
I−1[a,b](y)

)
, (5.7)

then the polynomial πn−1(x) can also be expressed as

πn−1(x) =

n∑
k=1

g(xck)S
[a,b]
n (xck, x). (5.8)

Kernel approximation

This simple one-dimensional Chebyshev approximation can be extended to obtain an approxi-

mation to the kernel, κ: R2 × R2 → R. Consider two points x ∈ Bs and y ∈ Bt, respectively

the bounding boxes of the sources and targets. We can consider the kernel κ as a function f :

R4 → R, i.e.,

f(x1, x2, y1, y2) = κ(x,y). (5.9)

Assuming the bounding boxes Bs and Bt are strongly admissible, the kernel can be approximated

by a degenerate representation. Let {xc1j}nj=1, {xc2j}nj=1, {yc1j}nj=1, and {yc2j}nj=1 denote the

Chebyshev points of the first kind over the intervals [a1, b1], [a2, b2], [c1, d1] and [c2, d2] respectively.

Using Chebyshev approximation to f , the approximation to κ takes the form

κ(x,y) ≈
∑
i,j,k,`

f(xc1i, x
c
2j , y

c
1k, y

c
2`)S

[a1,b1]
n (xc1i, x1)S

[a2,b2]
n (xc2j , x2)S

[c1,d1]
n (yc1k, y1)S

[c2,d2]
n (yc2`, y2).

(5.10)

It is straightforward to extend it to the case where the number of Chebyshev points are different

along each dimension but we avoid this for simplicity. We denote by X c = {xc1, . . . ,xcn2} the n2

Chebyshev grid points over the source domain Bs, and by Yc = {yc1, . . . ,ycn2} the n2 Chebyshev

grid points over the target domain Bt.

We now show how this kernel approximation can be used to obtain a low-rank approximation

to the matrix K(X ,Y). A visual representation of this approximation is shown in Figure 5.3

and consists of three matrices. We start with matrix 2, whose entries are defined as the pairwise

77

kernel interactions between Chebyshev grid points X c and Yc, the mapped source and target

points, respectively. This matrix, which we call M ∈ Rn2×n2
, is defined as

M = K(X c,Yc) =

κ(xc1,y

c
1) κ(xc1,y

c
2) . . . κ(xc1,y

c
n2)

κ(xc2,y
c
1) κ(xc2,y

c
2) . . . κ(xc2,y

c
n2)

...
...

. . .
...

κ(xcn2 ,y
c
1) κ(xcn2 ,y

c
2) . . . κ(xcn2 ,y

c
n2)

 ∈ Rn
2×n2

. (5.11)

Figure 5.3 Matrices comprising the interaction matrix approximation process, corresponding to steps
shown in Figure 5.2. Matrix 1 maps the source points to a Chebyshev grid, matrix 3 maps the target
points to a Chebyshev grid, and matrix 2 computes the interactions between Chebyshev grids.

The other two matrices in this approximation, represented by steps 1 and 3 in Figures 5.2

and 5.3, interpolate the source points X and target points Y to Chebyshev grids X c and Yc,
respectively. Let the matrix interpolating X to X c be denoted as Fs, which will have dimensions

Ns×n2. Then let the matrix interpolating Y to Yc be denoted as Ft, which will have dimensions

Nt×n2. These matrices correspond to the portions of (5.10). We compute Fs and Ft columnwise,

using the Hadamard product, i.e.,

Fs(:, j) = S[a1,b1]
n (xcj,1,x

′
1)� S[a2,b2]

n (xcj,2,x
′
2) ∈ RNs ,

where x′1 ∈ RNs is a vector of all the x-coordinates of the source points, and x′2 ∈ RNs is a

vector of all the y-coordinates of the source points. Ft is formed similarly, using target points

{yi} and Chebyshev grid points {yci} instead, and letting y′1 and y′2 be defined as vectors of the

x- and y- coordinates, respectively, of the target points. Having computed Fs and Ft in this

manner, we have an approximation to the interaction matrix

K(X ,Y) ≈ FsMF>t . (5.12)

The details of this approximation process are given in Algorithm 14.

Once the approximation in (5.12) is computed using Algorithm 14, the cost of storing the

low-rank approximation is O(n2(Ns + Nt)). This is also the cost of a matrix-vector product

78

Algorithm 14 Black-box FMM

Input: number of nodes n, kernel κ, Ns source points, Nt target points
Output: Fs ∈ RNs×n2

,M ∈ Rn2×n2
,Ft ∈ RNt×n2

1: Construct Chebyshev points X c and Yc
2: Compute M with entries Mij = κ(xci ,y

c
j)

3: for j = 1 : n2 do

4: Compute F1
s(:, j) = S

[a1,b1]
n (xcj,1,x

′
1)

5: Compute F2
s(:, j) = S

[a2,b2]
n (xcj,2,x

′
2)

6: Compute F1
t (:, j) = S

[c1,d1]
n (ycj,1,y

′
1)

7: Compute F2
t (:, j) = S

[c2,d2]
n (ycj,2,y

′
2)

8: end for
9: Compute Fs = F1

s � F2
s

10: Compute Ft = F1
t � F2

t

with the approximation. While this cost is smaller than O(NsNt), it can be further reduced by

compression using the SVD. We will develop new tensor-based approximation algorithms in the

next sections that will reduce the computational cost required to compute these approximations.

5.3 Tensor-based approximation algorithms

In this section, we will describe our approach for compressing block matrices using a tensor-based

framework. This framework is based on the BBFMM approach described in Section 5.2.1. There

are four main steps in this process:

Algorithm Framework

Step 1: Map block matrix M ∈ Rn2×n2
to tensor M ∈ Rn×n×n×n.

Step 2: Compress M to obtain low-rank approximation M̂ = [G; A,B,C,D].

Step 3: Map M̂ back to block matrix M̂.

Step 4: Recompress M̂ using rank-rm SVD to obtain approximation M̂r = ÛΣ̂V̂>.

We first describe the process of mapping to and from tensors, which form steps 1 and 3 of

the general algorithmic framework. The three variants on this framework we will present help to

reduce the computational cost compared to the SVD.

79

5.3.1 Mapping to and from Tensors

Suppose M is a block matrix with blocks M(k,`) ∈ Rm×n defined as follows:

M =

M(1,1) M(1,2) . . . M(1,q)

M(2,1) M(2,2) . . . M(2,q)

...
...

. . .
...

M(p,1) M(p,2) . . . M(p,q)

 ∈ Rmp×qn.

We can naturally reshape this into a four-dimensional tensor M ∈ Rm×n×p×q by taking each

block M(k,`) as slices for the third and fourth modes, i.e. M:,:,k,` = M(k,`).

Now let

M̂ = G ×1 A×2 B×3 C×4 D,

be an approximation to M in the Tucker format, computed using any suitable approach. To

map this approximation back to a block matrix, we extract the slices for the third and fourth

modes, as

M̂:,:,k,` = M̂×3 e>k ×4 e>`

= G ×1 A×2 B×3 e>k C×4 e>` D

= G ×1 A×2 B×3 Ck,: ×4 D`,:,

(5.13)

where the notation Ck,: refers to the k-th row of factor matrix C, and similarly for D`,:. Recall

that, for a tensor X and matrix Y of compatible dimensions, mode-1 tensor multiplication

X ×1 Y can be expressed as X ×1 Y = YX(1). Similarly, mode-2 tensor multiplication X ×2 Y

can be expressed as X ×2 Y = X(2)Y
>. Thus, recognizing that G ×3 Ck,: ×4 D`,: is a matrix,

we can then reorder the multiplication from the last line of (5.13) and rewrite the mode 1 and 2

products such that

M̂:,:,k,` = A(G ×3 Ck,: ×4 D`,:)B
> = AĜ(k,`)B>,

where Ĝ(k,`) = G ×3 Ck,: ×4 D`,:. Thus, an approximation to the block M(k,`) is

M(k,`) ≈ M̂:,:,k,` = AĜ(k,`)B>.

80

This allows us to form an approximation to the full block matrix

M ≈

A

. . .

A

Ĝ(1,1) . . . Ĝ(1,q)

...
. . .

...

Ĝ(p,1) . . . Ĝ(p,q)

B>

. . .

B>

= (Ip ⊗A)

Ĝ(1,1) . . . Ĝ(1,q)

...
. . .

...

Ĝ(p,1) . . . Ĝ(p,q)

 (Iq ⊗B>).

To summarize, the framework we developed here allows us to take a block matrix, map

it to a four-dimensional tensor, compress it in tensor form, and map the result back to an

approximation of the original block matrix. This allows us to use tensor compression methods,

which often are more computationally efficient than standard matrix methods, to approximate

block matrices. This technique can be applied to our block matrix M from Subsection 5.2.1

simply by letting all dimensions m,n, p, q be the number of Chebyshev nodes in each spatial

dimension, n. We will describe in more detail how we will apply this technique to obtain an

approximation for M.

5.3.2 Method 1: Randomized Interpolatory Tensor Decomposition

The first compression algorithm we present follows the same steps as the Algorithm Framework

at the start of the section. In step 2, to compress the tensor we use a variation of the structure-

preserving randomized algorithm that we previously proposed in [61, Algorithm 5.1]. In mode 1,

we apply the Randomized Row Interpolatory Decomposition (RRID) with target rank rt and

oversampling parameter p along each mode to obtain the low-rank approximation

M(1) ≈ AP>1 M(1),

Here P1 ∈ Rn×(rt+p) has columns from the identity matrix corresponding to the index set J1.
This process is repeated across each mode to obtain the other factor matrices B,C,D and the

index sets J2,J3,J4. Finally, we have the low-rank Tucker representation

M ≈ M̂ = [G; A,B,C,D], G = M(J1,J2,J3,J4).

In contrast to Algorithm 9 in which we used sequential truncation, our low-rank approach can be

described as the structure-preserving HOSVD algorithm. After obtaining the compressed tensor,

we map our core tensor and factor matrices to block matrix approximation M̂ as described

in Section 5.3.1. Finally, to obtain an approximation of the desired rank rm, we compute the

rank-rm SVD of M̂. The details of this algorithm are given in Algorithm 15.

To analyze the computational cost of this algorithm, assume that the target tensor rank is

81

(rt, rt, rt, rt) and the target matrix rank is rm. First, we discuss the cost of tensor compression.

We apply the RRID algorithm to each mode unfolding of size n× n3. This costs O(rtn
4) flops.

After mapping the compressed tensor to a matrix of size n(rt + p)× n(rt + p); to compress this

matrix further we use the Randomized SVD with cost O(rmr
2
t n

2) flops.

Algorithm 15 Method 1: Randomized Interpolatory Tensor Decomposition

Input: block matrix M, number of nodes n, tensor target rank (rt, rt, rt, rt), matrix target rank
rm, oversampling parameter p such that rt + p ≤ n and rm + p ≤ n(rt + p)

Output: approximation M̂r = ÛΣ̂V̂>

1: Map matrix M to tensor M ∈ Rn×n×n×n {Step 1}
2: Compute [A,J1] = RRID(M(1), rt, p) {Start Step 2: Tensor Compression}
3: Compute [B,J2] = RRID(M(2), rt, p)
4: Compute [C,J3] = RRID(M(3), rt, p)
5: Compute [D,J4] = RRID(M(4), rt, p)
6: Form core tensor G = M(J1,J2,J3,J4) {End Step 2}
7: Map M̂ = [G; A,B,C,D] back to block matrix M̂ {Step 3}
8: Apply RandSVD with target rank rm and oversampling parameter p to obtain M̂r = ÛΣ̂V̂>

{Step 4}

5.3.3 Method 2: Randomized Interpolatory Tensor Decomposition with

Block Selection

Our second compression algorithm aims to further reduce the cost of computing the tensor

decomposition, by working with a subsampled tensor rather than the entire tensor. Recall that

we have assumed that the number of Chebyshev grid points in each spatial dimension is the

same. Suppose we are given an index set I with cardinality |I| = b representing the subsampled

fibers. In the first step of the algorithm, we process mode 1. We consider the subsampled tensor

X = M(:, I, I, I) and apply the RRID algorithm to X(1) obtain the matrix A and the index

set J1. We then have a low-rank approximation to M as

M(1) ≈ AP>1 X(1), M ≈M(J1, :, :, :)×1 A.

Here P1 ∈ Rn×r has columns from the identity matrix corresponding to the index set J1. This

process is repeated across each mode to obtain the other factor matrices B,C,D and the index

sets J2,J3,J4. Finally, we have the low-rank Tucker representation

M ≈ M̂ = [G; A,B,C,D], G = M(J1,J2,J3,J4).

After obtaining the compressed tensor as before, we map our core tensor and factor matrices to

block matrix approximation M̂ as described in Section 5.3.1. Finally, to obtain an approximation

82

of the desired rank rm, we compute the rank-rm SVD of M̂. The summary of all steps for our

second variation is described in Algorithm 16.

Compared with Method 1, in each mode we are working with the subsampled version of

the mode unfolding rather than the entire mode-unfolding. In other words, setting b = n we

can recover Method 1. In numerical experiments, we found that taking b ∼ 3-5 is sufficient for

obtaining an accurate tensor decomposition. Furthermore, as long as the subsampled indices

covered the range of the indices {1, . . . , n}, the accuracy of the tensor decomposition was not

affected by the choice of indices. In practice, we chose b = 3 with I = {1, dn/2e, n}.
To examine the accuracy of Method 2, we present an experiment involving the canonical angles

for Method 2 compared to Method 1. The setup for this experiment is given in Subsection 5.4.1.

For mode 1 of tensor M, we compute the angles between the left singular vectors computed by

using M(1) and the left singular vectors computed by using X(1) with b = 1, 2, 3, 4. The cosine

of these angles are plotted in Figure 5.4. In the figure, we see that choosing b = 3 or b = 4 gives

an accurate representation, as all the canonical angles are nearly zero for those values of b. We

can increase b to be larger in order to obtain higher accuracy if needed, but we found that b = 3

was sufficient for good accuracy.

0 5 10 15

index

0

0.2

0.4

0.6

0.8

1

1.2

c
o
s
 o

f
a
n
g
le

 b
/w

 s
in

g
u
la

r
v
e
c
to

rs

cos of angles for mode 1

b = 1

b = 2

b = 3

b = 4

Figure 5.4 Cosine of the angles between true and approximate left singular vectors of M(1) as b
increases.

Now consider the computational cost. At the first step, the unfolded matrix X(1) has

dimensions n× b3. Applying subset selection for each mode requires O(rtnb
3) flops; this is also

the cost for the entire tensor decomposition. To compute the low-rank matrix decomposition,

we require an additional O(rmr
2
t n

2) flops. The number of kernel evaluations are 4nb3 + r4t ; in

practice, this is much smaller than n4 since we choose b, rt � n.

83

Algorithm 16 Method 2: Randomized Interpolatory Tensor Decomposition with Block Selection

Input: block matrix M, number of nodes n, tensor target rank (rt, rt, rt, rt), index set I ⊂
{1, . . . , n} with cardinality b such that b3 ≥ rt, matrix target rank rm, oversampling
parameter p such that rt + p ≤ min{n, b3} and rm + p ≤ n(rt + p)

Output: approximation M̂r = ÛΣ̂V̂>

1: Map matrix M to tensor M ∈ Rn×n×n×n {Step 1}
2: Form X = M(:, I, I, I) {Start Step 2: Tensor Compression}
3: Compute [A,J1] = RRID(X(1), rt, p)
4: Form X = M(I, :, I, I)
5: Compute [B,J2] = RRID(X(2), rt, p)
6: Form X = M(I, I, :, I)
7: Compute [C,J3] = RRID(X(3), rt, p)
8: Form X = M(I, I, I, :)
9: Compute [D,J4] = RRID(X(4), rt, p)

10: Form core tensor G = M(J1,J2,J3,J4) {End Step 2}
11: Map M̂ = [G; A,B,C,D] back to block matrix M̂ {Step 3}
12: Apply RandSVD with target rank rm and oversampling parameter p to obtain M̂r = ÛΣ̂V̂>

{Step 4}

5.3.4 Method 3: Randomized Kronecker Product

In the third compression algorithm, we are essentially computing R-HOSVD for the tensor

compression step. However, the random matrix is generated as the Kronecker product of Gaussian

random matrices. More specifically, consider three Φ,Ψ,Ω ∈ Rn×(rt+p) which are standard

Gaussian random matrices. Here (rt, rt, rt, rt) is the target tensor rank and p is the oversampling

parameter. In mode 1, we form the tensor

X = M×2 Φ> ×3 Ψ> ×4 Ω> ∈ Rn×(rt+p)×(rt+p)×(rt+p),

and compute the left singular vectors of the mode-1 unfolding X(1) to obtain the factor matrix

A. We call this the Randomized Kronecker Product approach since using the definition of mode

products

X(1) = M(1)(Ω⊗Ψ⊗Φ) ∈ Rn×(rt+p)
3
.

To obtain the factor matrices B,C and D, we follow a similar procedure along modes 2, 3, and

4. Finally, to obtain the core tensor we compute G = M ×1 A> ×2 B> ×3 C> ×4 D>. The

rest of the algorithm resembles Method 1 and is detailed in Algorithm 17. The asymptotic cost

of Method 3 is the same as Method 1. However, a potential advantage over Method 1 is the

reduction in the number of random entries generated. In Method 1, in using a RRID along each

mode, we need to generate n3(rt + p) random numbers, whereas in Method 3, we only need to

generate 3n(rt + p) random numbers.

84

Algorithm 17 Method 3: Randomized Kronecker Product

Input: block matrix M, number of nodes n, tensor target rank (rt, rt, rt, rt), matrix target rank
rm, oversampling parameter p such that rt + p ≤ n and rm + p ≤ n(rt + p)

Output: approximation M̂r = ÛΣ̂V̂>

1: Map matrix M to tensor M ∈ Rn×n×n×n {Step 1}
2: Draw Φ,Ψ,Ω ∈ Rn×(rt+p) Standard Gaussian random matrices {Start Step 2: Tensor

Compression}
3: Form X = M×2 Φ> ×3 Ψ> ×4 Ω>

4: Compute thin-SVD X(1) = UΣV>; Set A = U(:, 1 : rt + p).

5: Form X = M×1 Φ> ×3 Ψ> ×4 Ω>

6: Compute thin-SVD X(2) = UΣV>; Set B = U(:, 1 : rt + p).

7: Form X = M×1 Φ> ×2 Ψ> ×4 Ω>

8: Compute thin-SVD X(3) = UΣV>; Set C = U(:, 1 : rt + p).

9: Form X = M×1 Φ> ×2 Ψ> ×3 Ω>

10: Compute thin-SVD X(4) = UΣV>; Set D = U(:, 1 : rt + p).

11: Form core tensor G = M×1 A> ×2 B> ×3 C> ×4 D> {End Step 2}
12: Map M̂ = [G; A,B,C,D] back to block matrix M̂ {Step 3}
13: Apply RandSVD with target rank rm and oversampling parameter p to obtain M̂r = ÛΣ̂V̂>

{Step 4}

5.3.5 Computational Cost

Suppose we use the SVD to compress interaction matrix κ(X ,Y); the cost of compression is

then O(max{Ns, Nt}min{Ns, Nt}2) flops. If the number of sources and targets are large, then

this cost scales cubically with the number of points. By using the BBFMM, the cost of forming

the kernel approximation κ(X ,Y) ≈ FSMF>T becomes O(n2(Ns +Nt) +n4) flops, since forming

FS ,FT cost O(n2(Ns +Nt)) flops and forming M costs O(n4) flops. Since the cost of storage of

the BBFMM approximation can be large when n is large, we have proposed various techniques

for compressing M.

We now summarize the costs of the various compression techniques at our disposal. It should

be noted that to obtain a low-rank approximation to κ(X ,Y), we need to include the cost of

forming FS and FT which cost O(n2(Ns +Nt)) flops. If the SVD is used for compressing M,

then the cost is O(n6) flops; if RandSVD is used instead of SVD, then the cost is O(n4rm) flops.

Methods 1 and 3 both cost O
(
rtn

4 + n2r2t rm
)

flops, whereas Method 2 costs O(b3nrt + n2r2t rm)

flops. Method 2 is the most computationally efficient of the proposed algorithms if b, rt � n,

and if b = n, Method 2 has the same cost as Methods 1 and 3. Note that Methods 1 and 3

have comparable cost to RandSVD directly computed on M, but typically the tensor rank rt

is chosen to be smaller than rm, so we expect the tensor-based methods to be more efficient

for the same accuracy. As mentioned earlier, Method 3 may be preferable to Method 1 since it

requires generating fewer random numbers.

Another potential benefit of Method 2 is the number of kernel evaluations needed to form

M. In nearly all the other approaches, the matrix M needs to be formed explicitly requiring n4

85

Table 5.1 Summary of the computational cost of the various algorithms. The upper table represents
the computational cost of the standard approaches, and the lower table represents the computational
costs associated with the tensor compression methods proposed. Note that for the lower table we need
to include the cost of forming FS ,FT which costs O(n2(Ns +Nt)). Here, n is the number of Chebyshev
nodes, rt is the tensor target rank, rm is the matrix target rank, p is the oversampling parameter, and
b is the number of blocks drawn from M.

Approximation Method Cost Kernel Evals. Storage

SVD on κ(X ,Y) O(max{Ns, Nt}min{Ns, Nt}2) NsNt O(r(Ns +Nt))
BBFMM O(n2(Ns +Nt) + n4) n4 O(n4 + n2NsNt)

BBFMM + SVD O(n6 + n2(Ns +Nt)) n4 O(r(Ns +Nt))

Compression Method Cost Kernel Evals. Storage

RandSVD O(n4rm) n4 O(r(Ns +Nt))
Method 1 O

(
rtn

4 + n2r2t rm
)

n4 O(r(Ns +Nt))
Method 2 O(b3nrt + n2r2t rm) b3n+ (rt + p)4 O(r(Ns +Nt))
Method 3 O

(
rtn

4 + n2r2t rm
)

n4 O(r(Ns +Nt))

kernel evaluations. In Method 2, only a portion of the tensor M needs to be formed. That is,

we only need b3n+ (rt + p)4 kernel evaluations. Assuming b = rt = p = 5 and n = 30, we only

need (b3n+ (rt + p)4)/n4 ≈ 0.017. In other words, we only need 2% of the kernel evaluations,

which can be beneficial if the kernel evaluations are expensive.

There are other benefits to using our tensor-based compression method. Consider a time-

dependent problem in which the source and target points are changing in time but are contained

within the same bounding boxes Bs and Bt. Although the matrices FS ,FT change in time, the

kernel interactions in M do not change, and the matrix approximation M̂ can be precomputed

and deployed efficiently in the time dependent problem. This can yield significant reductions in

computational cost and has low storage costs since the resulting approximations can be stored

efficiently.

5.4 Numerical Results

In this section, we present numerical results that demonstrate the accuracy of our algorithms.

We first explain the standard parameters used in most of our experiments, and then test our

algorithms in various situations.

All experiments were conducted on a laptop with 8GB memory and a 2.5 GHz Intel Core

i5 processor. We will first present experiments varying the choice of kernel, then experiments

varying the box parameters for the source and target points, and finally an experiment testing

the accuracy with different numbers of Chebyshev nodes.

86

5.4.1 Standard Parameters

For most of the experiments we use to test our algorithms, we will use the kernel κ(x,y) =

1/‖x− y‖ and n = 30 Chebyshev nodes. For the randomized algorithms, we use oversampling

parameter p = 5 and no subspace iterations. For all experiments, we take target ranks rt = rm

for simplicity. For Method 2, we will take b = 3.

We define our source and target boxes in the following way. Let the source box have one

vertex at the origin and side length L. The target box also has side length L, and let D be

the distance between the bottom left vertices. Finally, define θ to be the angle describing the

placement of the targets box in relation to the sources box. A visual representation of this

setup is in Figure 5.5. Unless otherwise stated, we will use L = 5, D = 10, and θ = π/4. In the

boxes defined in this manner, we will generate Ns = 2000 and Nt = 2000 uniformly randomly

distributed source and target points, respectively. To relate these parameters back to our setup

in Figure 5.1, the value of D loosely corresponds to the admissibility parameter η in that it

determines how well-separated the boxes are. Similarly, L is somewhat related to the diameter

of each box.

Figure 5.5 Box setup for our numerical experiments, where L is the length of both the source and
target boxes, D is the distance between bottom left corners of boxes, and θ is the angle describing the
placement of the target box.

5.4.2 Experiments

In our first experiment, we consider the relative error in the approximation to K(X ,Y) produced

by our algorithms for various commonly used kernels. In Figure 5.6, we plot the relative error

produced by using an SVD and RandSVD of matrix M compared to the relative error produced

by our three methods (Algorithms 15, 16, 17). For each kernel, the relative errors produced by

each algorithm are all very close to each other.

87

0 10 20
10-8

10-6

10-4

10-2

re
la

tiv
e

er
ro

r

SVD
RandSVD
Method 1
Method 2
Method 3

0 10 20
10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

0 10 20

10-10

10-5

100

re
la

tiv
e

er
ro

r

0 10 20
10-8

10-6

10-4

10-2

re
la

tiv
e

er
ro

r

0 10 20
10-8

10-6

10-4

10-2

re
la

tiv
e

er
ro

r

Figure 5.6 Relative error of SVD, RandSVD, and Methods 1, 2 and 3 with respect to increasing
target rank for five different kernels κ(x,y)

Next, we change the side length L of the source and target point boxes, and use the standard

parameters in Subsection 5.4.1 for everything else. We keep the same number of source and

target points, just increasing the size of the boxes in which we generate those points. Starting

with a box side length of L = 1, we increase to L = 5, then L = 10, and finally L = 30, to

examine how the relative error changes. We keep the distance fixed at D = 50. The relative

errors produced by our three methods as well as SVD and RandSVD are shown in Figure 5.7.

We note that the relative error increases as L increases. This is to be expected, because as

the box size increases but the number of points remains constant, the distinction between the

source points and target points becomes less clear. This also means that the source and target

boxes are not as well-separated for larger L values. In the figure, we see that all five algorithms

perform similarly to each other with the different side length values.

In this next experiment, we keep the box side length fixed at L = 5, and instead change the

distance between source and target boxes. We still keep the number of points Ns and Nt the

same, and we examine the relative error produced by SVD, RandSVD, and our three methods

as the boxes become more well separated. This again is plotted as the target rank increases,

and the results are shown in Figure 5.8. We start with the boxes D = 7.1 apart, and increase

to D = 10 then D = 15, and finally D = 20. As the boxes get farther apart, the relative error

decreases, supporting our assumption that the source and target points must be well-separated

to produce accurate results.

Finally, we test the accuracy of our algorithms with different values of n, the number of

Chebyshev nodes. We keep all other parameters the same as the standard parameters detailed

88

0 5 10 15 20

target rank

10
-15

10
-10

10
-5

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

0 5 10 15 20

target rank

10
-15

10
-10

10
-5

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

0 5 10 15 20

target rank

10
-15

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

0 5 10 15 20

target rank

10
-5re

la
ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

Figure 5.7 Relative error produced by SVD, RandSVD, and Methods 1, 2, and 3 with increasing
target rank for four different side lengths L of the source and target boxes.

0 5 10 15 20

target rank

10
-4

10
-2

10
0

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

0 5 10 15 20

target rank

10
-5

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

0 5 10 15 20

target rank

10
-10

10
-5

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

0 5 10 15 20

target rank

10
-10

10
-5

10
0

re
la

ti
v
e
 e

rr
o
r

SVD

RandSVD

Method 1

Method 2

Method 3

Figure 5.8 Relative error produced by SVD, RandSVD, and Methods 1, 2, and 3 with increasing
target rank for different, increasing distance between the source and target boxes.

in Subsection 5.4.1. The relative errors produced by SVD, RandSVD, and Methods 1, 2, and 3

are plotted in Figure 5.9. We see that the error decreases as the number of nodes n increases,

89

and that again, our new algorithms perform extremely similarly to the standard matrix-based

methods.

0 2 4 6
target rank

10-4

10-3

10-2

re
la

tiv
e

er
ro

r
SVD
RandSVD
Method 1
Method 2
Method 3

0 5 10 15
target rank

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

SVD
RandSVD
Method 1
Method 2
Method 3

0 20 40
target rank

10-15

10-10

10-5

100

re
la

tiv
e

er
ro

r

SVD
RandSVD
Method 1
Method 2
Method 3

Figure 5.9 Relative error produced by SVD, RandSVD, and Methods 1,2, and 3 with increasing
target rank for three different values of n, the number of Chebyshev nodes. The left figure is n = 10,
middle is n = 20, and right is n = 45.

5.5 Conclusions

In this chapter, we developed new, tensor-based algorithms to compute efficient low-rank kernel

approximations. Our tensor-based framework built on the black-box fast multipole method

with four steps. We mapped a block matrix to a four-dimensional tensor, compressed the

tensor using three new tensor compression algorithms, mapped the compressed tensor back to a

compressed block matrix representation, and finally compressed the block matrix to obtain a low-

rank matrix approximation. The tensor compression algorithms we presented are accurate and

computationally efficient, with one method significantly reducing the number of needed kernel

evaluations. These benefits were shown explicitly for several different experimental conditions

through our numerical experiments and our analysis of the computational complexity.

90

Chapter 6

Conclusions

In this thesis, we developed new randomized algorithms for tensors and matrices in various

applications. First, we presented new randomized algorithms and analysis for low-rank tensor

approximation algorithms in the Tucker format. This included adaptive algorithms for problems

where the target rank is unknown as well as algorithms that preserve the structure of the original

tensor. These algorithms are more computationally efficient than standard tensor compression

algorithms, and we also showed that the structure preserving algorithms are particularly beneficial

for large, sparse tensors. We also provided probabilistic analysis for our new algorithms as well

as for previously developed algorithms, namely R-HOSVD and R-STHOSVD.

Next, we presented two new randomized algorithms that accelerate the traditional system

identification algorithm, ERA. Our first algorithm efficiently computes matrix vector products

by exploiting block Hankel structure. The second algorithm also takes advantage of block Hankel

structure, but with a matrix that has a reduced number of inputs and outputs from tangential

interpolation. These algorithms reduced the computational cost associated with traditional ERA,

and we showed that they are accurate as well. We also included error analysis on the accuracy

and stability of the system matrices identified using the approximation algorithms.

In our final chapter, we presented randomized tensor-based methods for approximating kernel

interactions efficiently. Our methods fit into a framework where we, building on the black-box

multipole method, map the resulting block matrix to a four-dimensional tensor, compress the

tensor, and map back to a low-rank block matrix approximation. Within this framework, we

developed three new tensor compression algorithms. The first two algorithms combine randomized

techniques and subset selection to reduce computational cost of traditional methods, and the

third algorithm takes a Kronecker product of random matrices in order to reduce the number of

generated random entries. These algorithms are accurate and computationally efficient compared

to standard matrix algorithms, and in addition to fitting within a framework for computing

efficient low-rank kernel approximations, can be applicable to other situations.

Potential future directions. There are several potential research directions that stem from

this work. First, we can extend the structure preserving decomposition idea from Chapter 3

91

to other tensor decomposition formats such as the tensor train decomposition. There are also

many applications involving large, sparse multidimensional data where our algorithms would

be helpful, such as in image processing. An open direction for system identification is working

with the general input problem instead of impulse input as we covered in Chapter 4. Work

is currently being done in this area. A first direction for our work with kernel methods is to

provide analysis for the algorithms presented in Chapter 5. Also, constructing rank-structured

matrices with our low-rank approximation algorithms is a natural extension for this work. There

are also other potential applications for the tensor compression algorithms we developed as well

as for the technique we use to map a block matrix to a tensor and back. One example is for

approximating matrices constructed from clustering large-scale data.

92

BIBLIOGRAPHY

[1] A. C. Antoulas. Approximation of large-scale dynamical systems, volume 6. Society for

Industrial and Applied Mathematics, 2005.

[2] AT&T Laboratories at Cambridge. Olivetti database of faces. https://cs.nyu.edu/

~roweis/data.html, 2002.

[3] B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored

tensors. SIAM Journal on Scientific Computing, 30(1):205–231, December 2007.

[4] J. Barnes and P. Hut. A hierarchical O(n log n) force-calculation algorithm. Nature,

324(6096):446–449, 1986.

[5] K. Batselier, W. Yu, L. Daniel, and N. Wong. Computing low-rank approximations of

large-scale matrices with the tensor network randomized SVD. SIAM Journal on Matrix

Analysis and Applications, 39(3):1221–1244, 2018.

[6] C. Battaglino, G. Ballard, and T. G. Kolda. A practical randomized CP tensor decomposition.

SIAM Journal on Matrix Analysis and Applications, 39(2):876–901, 2018.

[7] M. Bebendorf and S. Kunis. Recompression techniques for adaptive cross approximation.

The Journal of Integral Equations and Applications, pages 331–357, 2009.

[8] P. Benner and J. Saak. Linear-quadratic regulator design for optimal cooling of steel profiles.

Technical Report SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische Simu-

lation für Physik und Kontinuumsmechanik, TU Chemnitz, D-09107 Chemnitz (Germany),

2005.

[9] R. Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013.

[10] D. J. Biagioni, D. Beylkin, and G. Beylkin. Randomized interpolative decomposition of

separated representations. Journal of Computational Physics, 281:116–134, 2015.

[11] Å. Björck. Numerical methods in matrix computations, volume 59. Springer, 2015.

[12] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Lecture notes, 21:2003,

2003.

[13] M. E. Broadbent, M. Brown, K. Penner, I. Ipsen, and R. Rehman. Subset selection

algorithms: Randomized vs. deterministic. SIAM undergraduate research online, 3(01),

2010.

[14] L. Cambier and E. Darve. Fast low-rank kernel matrix factorization using skeletonized

interpolation. SIAM Journal on Scientific Computing, 41(3):A1652–A1680, 2019.

93

https://cs.nyu.edu/~roweis/data.html
https://cs.nyu.edu/~roweis/data.html

[15] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr., and T. M. Mitchell.

Toward an architecture for never-ending language learning. In AAAI, volume 5, page 3,

2010.

[16] G. Chavan, M. Weiss, A. Chakrabortty, S. Bhattacharya, A. Salazar, and F. Ashrafi.

Identification and predictive analysis of a multi-area WECC power system model using

synchrophasors. IEEE Transactions on Smart Grid, 8(4):1977–1986, 2017.

[17] M. Che and Y. Wei. Randomized algorithms for the approximations of Tucker and the

Tensor Train decompositions. Advances in Computational Mathematics, 45(1):395–428,

2019.

[18] C. Chen, S. Aubry, T. Oppelstrup, A. Arsenlis, and E. Darve. Fast algorithms for evaluating

the stress field of dislocation lines in anisotropic elastic media. Modelling and Simulation

in Materials Science and Engineering, 26(4):045007, 2018.

[19] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin. On the compression of low rank

matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404, 2005.

[20] J. H. Chow and K. W. Cheung. A toolbox for power system dynamics and control engineering

education and research. IEEE Transactions on Power Systems, 7(4):1559–1564, 1992.

[21] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic. Tensor

networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor

decompositions. Foundations and Trends® in Machine Learning, 9(4-5):249–429, 2016.

[22] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. P. Mandic. Ten-

sor networks for dimensionality reduction and large-scale optimization: Part 2 applications

and future perspectives. Foundations and Trends® in Machine Learning, 9(6):431–673,

2017.

[23] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.

SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[24] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(r1, r2, ..., rn)

approximation of higher-order tensors. SIAM journal on Matrix Analysis and Applications,

21(4):1324–1342, 2000.

[25] P. Drineas and M. W. Mahoney. A randomized algorithm for a tensor-based generalization

of the singular value decomposition. Linear algebra and its applications, 420(2-3):553–571,

2007.

[26] P. Drineas and M. W. Mahoney. RandNLA: randomized numerical linear algebra. Commu-

nications of the ACM, 59(6):80–90, 2016.

94

[27] Z. Drmač and A. K. Saibaba. The discrete empirical interpolation method: Canonical

structure and formulation in weighted inner product spaces. SIAM Journal on Matrix

Analysis and Applications, 39(3):1152–1180, 2018.

[28] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.

Psychometrika, 1(3):211–218, 1936.

[29] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz. Randomized CP tensor

decomposition. Machine Learning: Science and Technology, 1(2):025012, 2020.

[30] W. Fong and E. Darve. The black-box fast multipole method. Journal of Computational

Physics, 228(23):8712–8725, 2009.

[31] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices. Computing,

70(4):295–334, 2003.

[32] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor approxi-

mation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[33] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of

computational physics, 73(2):325–348, 1987.

[34] L. Greengard and J. Strain. The fast Gauss transform. SIAM Journal on Scientific and

Statistical Computing, 12(1):79–94, 1991.

[35] M. Gu. Subspace iteration randomization and singular value problems. SIAM Journal on

Scientific Computing, 37(3):A1139–A1173, 2015.

[36] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR

factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

[37] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. part i: Introduction to

H-matrices. Computing, 62(2):89–108, 1999.

[38] W. Hackbusch. Tensor spaces and numerical tensor calculus, volume 42. Springer Science

& Business Media, 2012.

[39] W. Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49. Springer, 2015.

[40] W. Hackbusch and S. Börm. Data-sparse approximation by adaptive H2-matrices. Com-

puting, 69(1):1–35, 2002.

[41] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Prob-

abilistic algorithms for constructing approximate matrix decompositions. SIAM review,

53(2):217–288, 2011.

[42] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

95

[43] B. Huber, R. Schneider, and S. Wolf. A randomized Tensor Train singular value decompo-

sition. In Compressed Sensing and its Applications, pages 261–290. Springer, 2017.

[44] B. Hunter and T. Strohmer. Performance analysis of spectral clustering on compressed,

incomplete and inaccurate measurements. arXiv preprint arXiv:1011.0997, 2010.

[45] J. Jacod and P. Protter. Probability essentials. Springer Science & Business Media, 2012.

[46] J.-N. Juang, M. Phan, L. G. Horta, and R. W. Longman. Identification of observer/Kalman

filter Markov parameters-theory and experiments. Journal of Guidance, Control, and

Dynamics, 16(2):320–329, 1993.

[47] T. G. Kolda. A counterexample to the possibility of an extension of the Eckart–Young

low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM

Journal on Matrix Analysis and Applications, 24(3):762–767, 2003.

[48] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review,

51(3):455–500, 2009.

[49] B. Kramer and A. A. Gorodetsky. System identification via CUR-factored Hankel approxi-

mation. SIAM Journal on Scientific Computing, 40(2):A848–A866, 2018.

[50] B. Kramer and S. Gugercin. Tangential interpolation-based eigensystem realization algo-

rithm for MIMO systems. Mathematical and Computer Modelling of Dynamical Systems,

22(4):282–306, 2016.

[51] D. Kressner and L. Perisa. Recompression of Hadamard products of tensors in Tucker

format. SIAM Journal on Scientific Computing, 39(5):A1879–A1902, 2017.

[52] S.-Y. Kung. A new identification and model reduction algorithm via singular value

decomposition. In Proc. 12th Asilomar Conf. on Circuits, Systems and Computers, Pacific

Grove, CA, November, 1978, 1978.

[53] L. Ljung. System Identification: Theory for the user. Prentice Hall, 1999.

[54] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends®
in Machine Learning, 3(2):123–224, 2011.

[55] M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-CUR decompositions for tensor-based

data. SIAM Journal on Matrix Analysis and Applications, 30(3):957–987, 2008.

[56] O. A. Malik and S. Becker. Low-rank Tucker decomposition of large tensors using Ten-

sorSketch. In Advances in Neural Information Processing Systems, pages 10096–10106,

2018.

[57] O. A. Malik and S. Becker. Fast randomized matrix and tensor interpolative decomposition

using CountSketch. Advances in Computational Mathematics, 46(6):1–28, 2020.

96

[58] P.-G. Martinsson and J. Tropp. Randomized numerical linear algebra: Foundations &

algorithms. arXiv preprint arXiv:2002.01387, 2020.

[59] P. G. Martinsson and S. Voronin. A randomized blocked algorithm for efficiently computing

rank-revealing factorizations of matrices. SIAM Journal on Scientific Computing, 38(5):S485–

S507, 2016.

[60] R. Minster, A. K. Saibaba, J. Kar, and A. Chakrabortty. Efficient randomized algorithms

for subspace system identification. arXiv preprint arXiv:2003.11872, 2020.

[61] R. Minster, A. K. Saibaba, and M. E. Kilmer. Randomized algorithms for low-rank tensor

decompositions in the Tucker format. SIAM Journal on Mathematics of Data Science,

2(1):189–215, 2020.

[62] Y. Nakatsukasa. Accuracy of singular vectors obtained by projection-based SVD methods.

BIT Numerical Mathematics, 57(4):1137–1152, 2017.

[63] Oberwolfach Benchmark Collection. Steel profile. hosted at MORwiki – Model Order

Reduction Wiki http://modelreduction.org/index.php/Steel_Profile, 2005.

[64] A. K. Saibaba. HOID: higher order interpolatory decomposition for tensors based on Tucker

representation. SIAM Journal on Matrix Analysis and Applications, 37(3):1223–1249, 2016.

[65] A. K. Saibaba. Randomized subspace iteration: Analysis of canonical angles and unitarily

invariant norms. SIAM Journal on Matrix Analysis and Applications, 40(1):23–48, 2019.

[66] S. A. Sauter and C. Schwab. Boundary element methods. In Boundary Element Methods,

pages 183–287. Springer, 2010.

[67] J. Shetty and J. Adibi. The Enron email dataset database schema and brief statistical

report. Information sciences institute technical report, University of Southern California, 4,

2004.

[68] H. D. Simon and H. Zha. Low-rank matrix approximation using the Lanczos bidiagonaliza-

tion process with applications. SIAM Journal on Scientific Computing, 21(6):2257–2274,

2000.

[69] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu, and G. Karypis. FROSTT: The

formidable repository of open sparse tensors and tools. http://frostt.io/, 2017.

[70] G. W. Stewart and J. G. Sun. Matrix perturbation theory. Computer Science and Scientific

Computing. Academic Press, Inc., Boston, MA, 1990.

[71] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell. Low-rank Tucker approximation of a

tensor from streaming data. SIAM Journal on Mathematics of Data Science, 2(4):1123–1150,

2020.

97

http://modelreduction.org/index.php/Steel_Profile
http://frostt.io/

[72] D. B. Szyld. The many proofs of an identity on the norm of oblique projections. Numerical

Algorithms, 42(3-4):309–323, 2006.

[73] C. E. Tsourakakis. MACH: Fast randomized tensor decompositions. In Proceedings of the

2010 SIAM International Conference on Data Mining, pages 689–700. SIAM, 2010.

[74] P. Van Overschee and B. De Moor. Subspace identification for linear systems: The-

ory—Implementation—Applications. Springer Science & Business Media, 2012.

[75] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen. A new truncation strategy for

the higher-order singular value decomposition. SIAM Journal on Scientific Computing,

34(2):A1027–A1052, 2012.

[76] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces.

In European Conference on Computer Vision, pages 447–460. Springer, 2002.

[77] M. Verhaegen and V. Verdult. Filtering and system identification: a least squares approach.

Cambridge university press, 2007.

[78] N. Vervliet and L. De Lathauwer. A randomized block sampling approach to canonical

polyadic decomposition of large-scale tensors. IEEE Journal of Selected Topics in Signal

Processing, 10(2):284–295, 2016.

[79] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer. Tensorlab 3.0.

http://www.tensorlab.net, 2016.

[80] S. Voronin and P.-G. Martinsson. RSVDPACK: An implementation of randomized algo-

rithms for computing the singular value, interpolative, and CUR decompositions of matrices

on multi-core and GPU architectures. arXiv preprint arXiv:1502.05366, 2015.

[81] T. Wu, V. M. Venkatasubramanian, and A. Pothen. Fast parallel stochastic subspace

algorithms for large-scale ambient oscillation monitoring. IEEE Transactions on Smart

Grid, 8(3):1494–1503, 2016.

[82] Z. Xu, L. Cambier, F.-H. Rouet, P. L’Eplatennier, Y. Huang, C. Ashcraft, and E. Darve. Low-

rank kernel matrix approximation using skeletonized interpolation with endo-or exo-vertices.

arXiv preprint arXiv:1807.04787, 2018.

[83] X. Ye, J. Xia, and L. Ying. Analytical low-rank compression via proxy point selection.

SIAM Journal on Matrix Analysis and Applications, 41(3):1059–1085, 2020.

[84] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algorithm in

two and three dimensions. Journal of Computational Physics, 196(2):591–626, 2004.

98

http://www. tensorlab. net

[85] D. Yu and S. Chakravorty. A computationally optimal randomized proper orthogonal

decomposition technique. In 2016 American Control Conference (ACC), pages 3310–3315.

IEEE, 2016.

[86] W. Yu, Y. Gu, and Y. Li. Efficient randomized algorithms for the fixed-precision low-rank

matrix approximation. SIAM Journal on Matrix Analysis and Applications, 39(3):1339–1359,

2018.

[87] W. Yu, Y. Gu, and Y. Li. Efficient randomized algorithms for the fixed-precision low-rank

matrix approximation. SIAM Journal on Matrix Analysis and Applications, 39(3):1339–1359,

2018.

[88] J. Zhang, A. K. Saibaba, M. E. Kilmer, and S. Aeron. A randomized tensor singular

value decomposition based on the t-product. Numerical Linear Algebra with Applications,

25(5):e2179, 2018.

[89] G. Zhou, A. Cichocki, and S. Xie. Decomposition of big tensors with low multilinear rank.

arXiv preprint arXiv:1412.1885, 2014.

99

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Overview of the thesis

	Background and Notation
	Singular Value Decomposition
	Randomized SVD
	Subset Selection and Interpolatory Decompositions
	Tensor Notation and Preliminaries
	HOSVD/STHOSVD
	Best Approximation

	Randomized Low-rank Approximation Algorithms for Tucker Decompositions
	Introduction
	Randomized HOSVD/STHOSVD
	Algorithms
	Error Analysis
	Computational Cost

	Adaptive Randomized Tensor Decompositions
	Structure-preserving decompositions
	Algorithm
	Error Analysis
	Variants

	Numerical Results
	Test Problems
	Numerical Experiments

	Conclusion
	Acknowledgements

	Efficient Randomized Algorithms for Subspace System Identification
	Introduction
	Background
	Eigensystem Realization Algorithm
	Hankel matrices
	Randomized SVD

	Randomized algorithms for Eigensystem Realization
	Randomized Eigensystem Realization Algorithm
	Randomized TERA

	Error Analysis
	Background and assumptions
	Main result
	Accuracy of the singular vectors
	Stability

	Numerical Results
	Heat Transfer
	Power system

	Conclusions and Future work
	Acknowledgements

	Efficient Tensor-based Approximations to Kernel Interactions
	Introduction
	Background
	Kernel approximation using Chebyshev interpolation

	Tensor-based approximation algorithms
	Mapping to and from Tensors
	Method 1: Randomized Interpolatory Tensor Decomposition
	Method 2: Randomized Interpolatory Tensor Decomposition with Block Selection
	Method 3: Randomized Kronecker Product
	Computational Cost

	Numerical Results
	Standard Parameters
	Experiments

	Conclusions

	Conclusions
	BIBLIOGRAPHY

