
ABSTRACT

BATES, DYLAN. Virtual Reinforcement Learning for Balancing an Inverted Pendulum
in Real Time. (Under the direction of Hien Tran).

Using a variety of policy-based reinforcement learning techniques, we train a single-

hidden-layer artificial neural network to balance a physically accurate simulation of a

single inverted pendulum. The trained weights and biases of the neural network are then

transferred to a real agent where they can be used to control and balance a real inverted

pendulum, in real time. The virtually trained model is robust to sensor noise, model

errors, and motor play, and is able to recover from physical disturbances to the system.

We also train a radial basis function network using pilco, a model-based technique

that uses Gaussian processes to propagate uncertainties through a probabilistic dynamics

model to reduce model bias for long-term predictions. This technique is significantly more

data-efficient, requiring an order of magnitude fewer samples than previous state-of-the

art algorithms, and is better able to recover from large disturbances to the system. Its

primary limitation is being significantly more computationally expensive and memory

intensive.

This hybrid approach of training a simulation allows thousands of trial runs to be

completed orders of magnitude faster than would be possible in the real world, resulting

in greatly reduced training time and more iterations, producing a more robust model.

Using a physically accurate dynamics model allows the system to overcome the sim-real

gap without requiring domain randomization or a variational autoencoder to create a

domain-invariant latent space. When compared with existing reinforcement learning

methods, the resulting control is smoother, learned faster, and able to withstand forced

disturbances.
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Chapter 1

INTRODUCTION

Machine learning is a the decades-old study of algorithms that let a computer learn

from experience, instead of from manually coding the individual steps. Despite the major

breakthroughs that took place in the 1960s, like neural networks [27], perceptrons [54], and

backpropagation [11, 30], there has been a recent explosion of results in the field stemming

from the rapid increase in computer processing power (specifically graphics processing

units and tensor processing units) in the last 10 years. This second renaissance of machine

learning has allowed computers to do incredible things like diagnose cancer patients better

than doctors [39], generate works in the style of Mozart [49], Shakespeare [9, 10], or Van

Gogh [23], and play games like Go [61] or Dota 2 [44] better than professionals. The

last two are examples of reinforcement learning, and use some of the same algorithms

discussed in Chapter 2.

Machine learning is traditionally split into three broad categories:

• Supervised Learning: input data with desired labeled outputs are fed to the computer

with the goal of correctly predicting the labels,

• Unsupervised Learning: unlabeled data is presented to the computer with the goal

of discovering the underlying structure or generating a model,

• Reinforcement Learning (RL): a computer interacts with an environment by taking

actions and receiving rewards, with the goal of maximizing the rewards in order to

achieve a predefined goal.

Chapter 1 of this dissertation will focus on the basics of RL, and the history of how it has

been applied to our main problem: balancing an inverted pendulum. Chapter 2 will cover

the implementation of several policy-based model-free RL algorithms in detail. Chapter 3

will discuss pilco, a probabilistic model-based algorithm that differs significantly from
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the previously mentioned algorithms. Finally, Chapter 4 will cover the results of each

implementation, both in a simulation and in the real world.

1.1 Machine Learning

Machine learning is a subset of artificial intelligence (AI) describing programs that are

able to learn from experience, making predictions or decisions without being programmed

to do so. Paraphrasing Arthur Samuel [55] from 1959:

How can computers learn to solve problems without being explicitly pro-

grammed? In other words, how can computers be made to do what needs to

be done, without being told exactly how to do it? [34]

In 1959, Samuels was able to write a program that played Checkers better than

he could after 8–10 hours of machine-playing time. In the 60+ years since then, this

field has only grown, with state-of-the-art-versions of fundamentally similar techniques

(tree searches and neural networks) being implemented on hilariously superior hardware,

allowing programs to beat the world champions of Checkers with Chinook in 1994 (64

spaces and 5× 1020 possible moves) [56], Chess with Deep Blue in 1997 (64 spaces and

< 1046 possible positions) [12], and Go with AlphaGo in 2016 (361 spaces and > 2× 10170

possible positions) [61]. Importantly, that latter number is larger than the number of

elementary particles in the observable universe (usually estimated around 1080) meaning

that the game will never be completely solved. AlphaGo and its successors (AlphaGo

Zero [62], AlphaZero [63], and MuZero [57]) use reinforcement learning techniques, similar

to those in Chapter 2.

1.1.1 Neural Networks

One of the main tools used for this type—and indeed in most types—of machine learning

is a neural network. Originally intended to represent the connections between biological

neurons in the brain, an artificial neural network consists of layers of neurons connected

to every other neuron in the adjacent layers, as in Figure 1.1.

For a typical feedforward neural network, neurons a`j in layer ` (1 ≤ j ≤ N`) are

connected to neurons a`+1
j in layer `+ 1 ((1 ≤ j ≤ N`+1), along with biases bj. Neuron

a`j sums the inputs from a`−1
k , 1 ≤ k ≤ N`−1, which are multiplied by weight w`jk, added

to bias b`j, and feeds them forward through a continuous, nonlinear activation function

σ : R→ R that sends its output to all the neurons a`+1
j , 1 ≤ j ≤ N`+1 in the next layer,

as follows:

2
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Input #3

Input #4

Hidden
layer 1
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layer 2

Hidden
layer 3
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Output #2

Output #3

Input
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Output
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Figure 1.1 Artificial neural network containing 3 hidden layers with 5 neurons each. This
network has 103 trainable parameters, as 85 weight parameters (represented by arrows) and
18 bias parameters (represented by non-output nodes).

Figure 1.2 Some common activation functions σ(z).

a`j = σ

(
N∑̀
k=1

w`jka
`−1
k + b`j

)
. (1.1)

This feedforward process is repeated for all neurons a`j (1 ≤ j ≤ N`) in all layers

1 ≤ ` ≤ L until the final values are presented in the output or top layer of the network.

By defining wj0 = bj in every layer, we can simplify Equation 1.1 to

aj = σ

(
N∑
k=0

wjkak

)
, (1.2)

for all layers `, which can speed up computation. By overloading σ(x) as a function from

Rn → Rn such that σ(x)j = σ(xj), we can simplify this even further as

a` = σ
(
w` · a`−1

)
. (1.3)

Common choices of the activation function σ include the sigmoid, hyperbolic tangent,

ReLU, and Softplus functions, seen in Figure 1.2.
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Intended to mimic biological neurons firing when the electrical potential reaches a

certain threshold, the sigmoid function is any continuous function such that lim
z→−∞

= 0

and lim
z→∞

= 1. For example,

σ(z) =
1

1 + e−z
. (1.4)

This has a few benefits over the discrete step function in neurons in the brain:

• σ(z) is continuous,

• σ(z) is differentiable, with derivative σ′(z) = σ(z) (1− σ(z)),

• σ(z) is discriminatory.

Definition 1.1. Let In be the n-dimensional unit cube [0, 1]n. We say that a function

σ(z) is discriminatory if for a measure µ ∈M(In),∫
In

σ
(
y>x+ θ

)
dµ(x) = 0 (1.5)

for all y ∈ Rm and θ ∈ R implies that µ ≡ 0 [13].

However, it is only able to output values between 0 and 1. As a result, large negative

inputs tend to get squished towards 0, which can inhibit learning. Alternate functions

like the hyperbolic tangent function solve this problem by outputting values in the range

[−1, 1], while remaining differentiable.

tanh(z) =
ex − e−x

ex + e−x
(1.6)

This function maps negative inputs to negative outputs, and positive inputs to positive

outputs, which can make learning faster. Additional common activation functions include

ReLU(z) = max(z, 0) (1.7)

and

Softplus(z) = ln(1 + ex), (1.8)

both of which are used in this dissertation, as see in the next chapter.

What makes neural networks so powerful is that they are universal function approx-

imators, being able to approximate any continuous or Lebesgue integrable function to

arbitrary accuracy, given a few conditions.
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Theorem 1.2 (Universal Approximation Theorem—Bounded Depth [13])

Let σ be a continuous discriminatory function. Then finite sums of the form

F (x) =
N∑
j=1

αjσ
(
w>j x+ bj

)
(1.9)

are dense in (In). That is, given any f ∈ C(In) and ε > 0, there is a neural network F (x)

for which

|F (x)− f(x)| < ε for all x ∈ In.

Proof. Let S ⊂ C(In) be the set of functions in the form F (x) as in Equation 1.9. S is a

linear subspace of C(In); we claim that the closure of S is all of C(In).

In order to reach a contradiction, assume that the closure of S is not all of C(In). Then

S—the closure of S—is a closed proper subspace of C(In). By the Hahn-Banach theorem,

there is a bounded linear functional L on C(In), with the property that L(S) = L(S) = 0,

but L 6= 0.

By the Riesz Representation theorem, this bounded linear functional is of the form

L(h) =

∫
In

h(x) dµ(x) (1.10)

for some µ ∈ M(In), for all h ∈ C(In). Since σ(w>x + b) ∈ S for all w and b, we must

have that ∫
In

σ(w>x+ b) dµ(x) = 0 (1.11)

for all w and b. However, since σ is discriminatory, this implies µ ≡ 0, contradicting our

assumption. Hence, S is dense in C(In); therefore continuous functions can be arbitrarily

closely approximated by functions in the form of F (x).

A similar proof can show that for all ε > 0,

‖F − f‖L1 =

∫
In

|F (x)− f(x)| dx < ε (1.12)

and

sup
x∈K
‖F (x)− f(x)‖ < ε (1.13)

for every compact subset K ⊂ Rn if and only if σ is continuous and not a polynomial [50].

This can trivially be extended to functions f ∈ Lp(Rn) since Cc(Rn) is dense in Lp(Rn).
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This says that we can approximate continuous functions with arbitrary precision in

the Lp (1 ≤ p <∞) norm using neural networks with a single hidden layer, given only

mild conditions on the activation function, as long as there are no limits on the number

of neurons or bounds on the weights.

Definition 1.3. A function f(x) : Rn → R is Lebesgue integrable if∫
Rn
|f(x)| dx <∞. (1.14)

Theorem 1.4 (Universal Approximation Theorem—Bounded Width [38])

For any Lebesgue integrable function f(x) and any ε > 0, there exists a fully connected

network F (x) with width N ≤ n+ 4, such that F (x) satisfies∫
Rn
|F (x)− f(x)| dx < ε. (1.15)

The proof can be found in the supplementary material of [38], which is beyond the

scope of this section, although the constructive outline of a “visual proof” can be found

at [43]. We can approximate Lebesgue integrable functions with arbitrary precision in

the L1 norm with ReLU neural networks of width N ≤ n+ 4. For Lp integrable functions

f : Rn → Rm, the bound on the width has been improved to max(n+ 1,m) [48].

Corollary 1.5

There exists a deep neural network with constant width that cannot be approximated by a

shallower neural network without at least an exponential increase in width.

However, in order to approximate a single hidden layer neural network with a narrower

fixed-width deep neural network, there is only a polynomial lower bound on the number of

layers required [38].

Unfortunately, neither Theorems 1.2 and 1.4 nor Corollary 1.5 provide any way of

determining precisely how many neurons or layers, respectively are needed for a given

bound on ε, and provide no guidance on how to assign weights and biases in such a way

to minimize the error between a function and its neural network approximation.

1.1.2 Backpropagation with Gradient Descent

Although the Universal Approximation Theorems are unable to tell us exactly how to

determine the weights and biases (collectively referred to as the paramters θ) of a neural
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network), if we have a loss function quantifying the error between our neural network

function F (θ) and desired function, we can roughly minimize this error function by

computing the gradients of the loss function using an algorithm called backpropogation,

and stepping down the error function surface until we find a local (or ideally global)

minimum using gradient descent.

Backpropagation is a computationally efficient method of computing the gradients of

a loss function of a neural network with respect to the parameter values. Conceptually,

this is just repeated application of the chain rule from calculus. Given a set of weights

w` (1 ≤ ` ≤ L), activation functions σ` (1 ≤ ` ≤ L), and a loss function J(θ), the neural

network can be defined as

F (x) = σL
(
wLσL−1

(
wL−1 . . . σ1

(
w1x

)
. . .
))
. (1.16)

For each pair (xi, yi) such that yi = f(xi), we can define our loss function as whatever

metric best fits our needs (e.g. mean squared error, crossentropy loss, etc.). Then

J (yi, F (xi)) = J
(
yi, σ

L
(
wLσL−1

(
wL−1 . . . σ1

(
w1x

)
. . .
)))

, (1.17)

so that the total derivative with respect to the inputs is

dJ

dx
=

dJ

daL
·
(
σL
)′ ·wL ·

(
σL−1

)′ ·WL−1 . . .
(
σ1
)′ ·w1. (1.18)

For example, computing the mean squared error between data yi and network approx-

imations F (xi) = ŷi (1 ≤ i ≤M), we have

J(θ) =
1

M

M∑
i=1

(yi − ŷi)2 , (1.19)

where we often multiply by a factor of 1/2 to simplify the gradients.

In order to compute the gradient of J(θ) with respect to a weight w`jk, we first define

an auxiliary error

δ` =
(
σ`
)′ · (w`+1

)>
. . .
(
σL−1

)′ · (wL)> ·∇aLJ, (1.20)

from the chain rule (with the transposes coming from the calculation of the gradient), so

that we can say

∇w`J = δ`
(
a`−1

)>
. (1.21)
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In practice, we calculate this recursively from the top layer of the network. For example,

∇wLJ = δL
(
aL−1

)>
=
(
σL
)′ · 1

M
(aL − y)

(
aL−1

)>
= σL(zL)

(
1− σL(zL)

)
·

2

M
(aL − y)

(
aL−1

)>
,

(1.22)

given a sigmoid activation in layer L and mean squared error loss. If we want to calculate

the gradients with respect to weights in earlier layers, we proceed recursively, having

already calculated important values:

∇wL−1J = δL−1
(
aL−2

)>
=
(
σL−1

)′ · (wL)> δL (aL−2
)>
,

(1.23)

where we have already calculated and stored δL in Equation 1.22. By computing δ`−1 in

terms of δ`, backpropagation allows us to compute the gradients in each layer as a few

matrix-vector products, avoiding duplicate multiplications in layer ` and beyond, and

preventing the more computationally expensive matrix-matrix products that would arise

from näıvely computing the gradients forward. This process is handled automatically

through a technique called automatic differentiation or autodiff built into the library

being used.

Once we know the gradients, the simplest way to update the weights is by shifting

them slightly in opposite direction the direction of the gradients in order to decrease the

error. That is,

w` := w` − η∇w`J

= w` − ηδ`
(
a`−1

)>
= w` − η

M

M∑
i=1

δxi,`
(
axi,`−1

)>
,

= w` − η

M

M∑
i=1

∇w` (ŷi − yi)2 ,

(1.24)

for some positive learning rate η. This is known as stochastic gradient descent.

Algorithms that use backpropogation generally fall into one of three categories [36]:

• steepest descent (stochastic gradient descent, Adam)
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Figure 1.3 Single inverted pendulum: the cart can only move with 1 degree of freedom.

• quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, limited-memory BFGS)

• conjugate gradient (Fletcher-Reeves, Polak-Ribière)

The algorithms in Chapter 2 use stochastic gradient descent, while pilco uses limited-

memory BFGS.

1.2 Single Inverted Pendulum

The primary goal of this thesis is to use specific machine learning techniques to balance

an inverted pendulum. Also known as a cartpole, our agent is a single inverted pendulum

attached to a cart on a one-dimensional track, with a four-dimensional continuous state

space: [x, α, ẋ, α̇], corresponding to the x-position (right positive), angle (counterclockwise

positive from 0 vertical), x-velocity, and angular velocity, as indicated in Figure 1.3.

The action space is the continuous range of voltages available to the motor, ranging

from −10V to +10V, moving the cart left or right, respectively. The cart will also move

according to the physics of the system, even if no voltage is applied. Our goal is to apply

the appropriate voltage to the motor in order to balance the pendulum vertically above

the cart, without running the cart off the track. The model is virtually trained, entirely

through a simulation in Python. The trained model is then transferred to the real inverted

9



Figure 1.4 Real inverted pendulum with an IP02 servo plant.

pendulum seen in Figure 1.4, where the pole is balanced over the physical cart. The

pendulum in the lab was provided by Quanser Consulting Inc.1

1.2.1 Environment

The environment used was modified from OpenAI Gym2 Cartpole, which has the same

setup, except the motor can only apply a force of −1 or +1, moving the cart left or right,

with no consideration for how fast or how far to move. The simplistic physical model

uses forward Euler’s method for computing future states, which is inherently unstable,

adding energy to the system over long time periods. The lack of important physical

concepts like friction make this an interesting toy problem for testing algorithms, but a

poor representation of the real world.

The first thing we did was update the equations of motion to better reflect reality,

using the equations for horizontal and angular acceleration from [31] that were created to

be as physically accurate as possible, by incorporating friction, the electrodynamics of the

motor, and the viscous damping coefficient as seen at the motor pinion and pendulum axis.

Additionally, the action space was updated to allow a continuous voltage between −10V

and +10V. Finally, the update scheme was changed to a modified version of semi-implicit

Euler’s method, which almost conserves energy, and prevents the system from becoming

unstable over long time intervals.

The equations of motion are recreated from Section 2.2 of [31] here:

1119 Spy Court Markham, Ontario, L3R 5H6, Canada.
2https://gym.openai.com/
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ẍ(t) = −
3r2

mpBp cos(α(t))α̇(t)

`pD(α)
−

4Mp`pr
2
mp sin(α(t))α̇(t)2

D(α)

−
4(Rmr

2
mpBeq +K2

gKtKm)ẋ(t)

RmD(α)
+

3Mpr
2
mpg cos(α(t)) sin(α(t))

D(α)

+
4rmpKgKtVm
RmD(α)

,

(1.25)

α̈(t) = −
3(Mr2

mp +Mpr
2
mp + JmK

2
g )Bpα̇(t)

Mp`2
pD(α)

−
3Mpr

2
mp cos(α(t)) sin(α(t))α̇(t)2

D(α)

−
3(Rmr

2
mpBeq +K2

gKtKm) cos(α(t))ẋ

Rm`pD(α)
+

3(Mr2
mp +Mpr

2
mp + JmK

2
g )g sin(α(t))

`pD(α)

+
3rmpKgKt cos(α(t))Vm

Rm`pD(α)
,

(1.26)

where D(α) = 4Mr2
mp +Mpr

2
mp + 4JmK

2
g + 3Mpr

2
mp sin2(α(t)), and the position is updated

via semi-implicit Euler’s method:

ẋt+1 = ẋt + hẍt,

α̇t+1 = α̇t + hα̈t,

xt+1 = xt + hẋt,

αt+1 = αt + hα̇t,

(1.27)

where h = 1
50

is the time step-size used for implicit Euler.

Parameter values were either measured directly from the pendulum or calibrated using

parameter identification. A complete list of values can be found in Appendix A.

1.2.2 Background

With the current generation of graphics cards offering the “greatest generational leap

ever,” [26] advances in the speed and size of graphics processing units (GPUs) and

tensor processing units (TPUs) have made it possible for current top-of-the-line graphics

cards to have similar compute power as the world’s fastest supercomputers up until 2004

(Table 1.1). This has ushered in an era of massive growth in machine learning, with

the two-year doubling of compute, consistent with Moore’s law abruptly switching to a

3.4-month doubling time around 2012 [4], starting with AlexNet’s highly-optimized GPU

implementation of 2D convolutions [35].This coincided with the release of the GeForce 600
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Table 1.1 Modern graphics cards compared to the fastest supercomputers from 2000–2004.

Supercomputer Cores TFLOPS (Max) Precision Year
IBM ASCI White 8,192 7.226 FP64 2000

NEC Earth Simulator 5,120 35.86 FP64 2002

Consumer GPU Shaders TFLOPS (Max) Precision Year
NVIDIA A100 6,912 9.75 FP64 2020

NVIDIA GeForce RTX 3090 10,496 35.58 FP32 2020
AMD Radeon RX 6900 XT 5,120 46.08 FP16 2020

series graphics cards and emerging mainstream use of GPUs as highly parallel multi-core

systems for big data. Since then, training the largest AI training runs have used more

than 600, 000× more compute than training AlexNet [10], even as algorithmic efficiency

has resulted in a 44× reduction in compute needed to obtain the same performance [25].

These massive gains in compute have not extended to robotic reinforcement learning

problems though, with the primary method of improving training being the development

of new algorithms, and collecting more data—an incredibly slow and expensive process.

Google used Q-learning with deep neural network function approximators called QT-Opt

to collect 800 hours of data, parallelized over 7 grasping robots for 4 months [28]. That

is impractical for most applications. Therefore, the novel approach proposed here is

to leverage the enormous compute provided by modern GPUs to train models entirely

through simulation, after which the trained model can be transferred to a real world

agent, and fine-tuned if necessary.

Using reinforcement learning to train a single inverted pendulum is a proof of concept

that could make other reinforcement learning applications more efficient, letting computers

quickly and efficiently train models before implementing them in the real world. As most

cartpole implementations are either simulations with simplified models or model-free

implementations in the real world, this research is unique in that it we can balance real

inverted pendulums using neural networks trained entirely in a computer.

1.3 Reinforcement Learning

Reinforcement learning (RL) is an area of machine learning focused on using trial-and-

error to interact with a system, performing actions and obtaining rewards quantifying

how good that action is. These rewards encourage the agent to take the optimal action

when presented with the state of its environment, with the goal of maximizing cumulative

rewards, known as the return. RL is often used to optimize and automate physical
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Figure 1.5 Agent-environment interaction loop typical of reinforcement learning.

processes, but most of the time ends up being used for purely virtual tasks.

Most RL problems can be formulated as a type of Markov Decision Process (MDP)

described by a set of states, actions, and a process for describing transition behaviour.

Formally, an MPD is a tuple (S,A, p, R, γ), where S is a finite set of states, A is a finite

set of actions, p is a state transition probability matrix describing the probability of

moving from state s to s′ given action a such that

p(s, a, s′) = P [St+1 = s′|St = s, At = a] , (1.28)

R is a reward function giving the expected rewards from state s given action a so

R(s, a) = E [Rt+1|St = s, At = a] , (1.29)

and γ is a discount factor between 0 and 1.

The goal is to find a deterministic policy π : S → A such that π(s) = a, or a stochastic

policy π : S × A→ [0, 1] such that

π(a|s) = P [At = a|St = s] . (1.30)

An optimal policy π∗ is one that maximizes expected rewards or minimizes expected costs

over any further steps, sometimes called the reward-to-go. Then the optimal action-value
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function maximizes this over all policies so that

Q∗(s, a) = max
π

Qπ(s, a) (1.31)

and all optimal policies achieve the optimal action-value function,

Qπ∗(s, a) = Q∗(s, a). (1.32)

In classical Q-learning, this can be done by defining an update rule in the form of a

Bellman equation

Qk+1(s, a) = Qk(s, a) + η
(
R(s, a) + γmax

a
Qk(s

′, a)−Qk(s, a)
)

= (1− η)Qk(s, a) + ηR(s, a) + ηγmax
a
Qk(s

′, a),
(1.33)

for the state-action value function, describing the maximum expected future rewards for

any (state, action) pair. For finite state and action-spaces, a table of Q-values be made

and updated using this equation. When S is continuous, the process is called least-squares

fitted Q-iteration, and an error function like J = (Q(s, a)− (R(s, a) + γmaxaQk(s
′, a)))2

can be minimized using backpropagation and gradient descent [53].

Algorithm 1: Training with classical Q-learning.

randomly initialize Q(s, a) for each s ∈ S and a ∈ A;
repeat

initialize s;
choose a = arg maxaQ(s, a);
observe R;
compute s′;
update Qk+1(s, a) = Qk(s, a) + η (R(s, a) + γmaxaQk(s

′, a)−Qk(s, a));

until Q(s, a) converges or s is terminal;

Theorem 1.6

Given a finite MDP (S,A, p, R, γ) and a (possibly variable) 0 ≤ ηt < 1, the Q-learning

algorithm in Equation 1.33 converges to the optimal Q-function with probability 1, if∑
t

ηt =∞ and
∑
t

η2
t <∞. (1.34)
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The proof can be found in [68]. Theorem 1.6 guarantees that Qk(s, a)→ Q∗(s, a) as

k →∞ with probability 1. However, this requires a decreasing learning rate ηt, and that

each (state, action) pair is visited infinitely often. Classical Q-learning has the downside of

requiring infinite iterations until an optimal policy is found, or possibly tens of thousands

to find one that is “good enough,” which is unrealistic for many applications. Simulation,

and larger learning rates can help alleviate this issue. In practice, a small constant learning

rate η is used in Algorithm 1 with an ε-greedy policy that takes random actions with

probability ε instead of optimal ones, in order to explore the space and find a near-optimal

solution more quickly [65].

A variation of Equation 1.33 involves creating a second Q-function to estimate the value

of maxaQk(s
′, a), so that one policy is used for value evaluation and one is used to select

the next action. This generally speeds up convergence, especially in noisy environments.

However, this algorithm only works when both S and A are finite, so will not suffice for

our implementation on an inverted pendulum unless we discretize the spaces.

1.4 Literature Review

Single inverted pendulums are ubiquitous benchmark problems used for testing various

controls, due to their nonlinear equations of motion, underactuated pole, and unstable

target equilibrium. They represent one of the real-world control problems listed by the

International Federation of Automatic Control (IFAC) Theory Committee for testing new

and existing control methods [15]. Because the model can be simulated to a high degree

of accuracy, computer simulations are often used to test these controls instead of real

pendulums, as they can be expensive to obtain, time-consuming to set up, and labourious

to maintain. Due to their ubiquity , there have been a plethora of classic control techniques

used to balance them. These techniques generally fall into three categories.

1.4.1 Traditional Controls

It is essentially impossible to exactly recreate a perfect simulation of a real inverted

pendulum in a computer. While things like friction, motor electrodynamics, and viscous

damping coefficients can be included to make the simulation match reality better, various

attempts to do this still neglect the nonlinear Coulomb friction applied to the cart, and

the force on the cart due to the pendulum’s action [20, 31]. In addition, variances in

manufacturing tolerances, imbalances in the setup of the cart, play in the motor, and

general wear and tear on the gears all serve to add unpredictable noise that may cause
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simulated controls to fail, or to perform worse than the simulation predicts. Finally,

nonlinear controllers need to be evaluated quickly for online implementation, posing a

challenge for computationally intensive controllers. Because of this significant hurdle, far

fewer inverted pendulums are constructed and balanced in real life.

A non-comprehensive list of traditional controllers include PID with a Kalman Filter [1,

42], LQR [33, 47], State-Dependent Riccati Equation [14], and power series approximation

of the HJB equation [31].

Proportional-integral-derivative (PID) controllers are a staple of industrial process

control. By first linearizing the space state equations about the unstable equilibrium, the

error e(t) between the current and target states can be fed into the PID-controller

u(t) = kP e(t) + kI

∫ t

0

e(τ) dτ + kD
de(t)

dt
, (1.35)

where kP , kI , and kD are the proportional, integral, and derivative gain constants, respec-

tively. The performance of the controller is directly dependent on the ability to find values

of these constants that work for this specific system. If any of the gain constants are too

high or low, the system can become unstable, oscillate, or fail to balance the pole at all.

Linear-quadratic regulator (LQR) controllers also begin by linearizing the nonlinear

state equations the same way, and using the solution P to the algebraic Riccati equation

to minimize the cost functional

J(x0, u) =

∫ ∞
0

xTQx+Ru2 dt. (1.36)

Then the optimal control is u = −R−1BTPx. Like the PID controller, the performance

of LQR depends directly on the values chosen in Q and R; this can lead to oscillations or

unstable performance if they are off.

In both PID and LQR, a Kalman filter is used to smooth sensor inputs, and provide

an approximation of ẋ and α̇ in the state, although a low-pass derivative filter may work

better if the optimal Kalman parameter values cannot be obtained [6]. The downside

of these controllers is that the linearized state equations differ from the true nonlinear

equations increasingly as the state deviates the unstable equilibrium at the origin. While

they perform well when the pole is essentially straight up, a nonlinear controller may

perform better over a wider range of values, such as during a disturbance.

One solution to this is to use a nonlinear formulation like the state-dependent Riccati
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equation (SDRE). Much like LQR, SDRE starts by solving

A(x)TP (x) + P (x)A(x)− P (x)B(x)R(x)−1B(x)TP (x) +Q(x) = 0 (1.37)

to get P (x) ≥ 0, which is used for the control u = −R(x)−1B(x)TP (x)x. The main

difference between LQR and SDRE is that the design matrices Q(x) and R(x) and the

plant matrices A(x) and B(x) are state-dependent instead of constant. This allows the

same controller to be used to swing-up and balance the pendulum, instead of switching

controllers, as the linearized models would require. The major downside of this technique

is that it requires solving the algebraic Riccati equation at every time step, which can be

computationally expensive and limit the sampling rate. As long as the online compute

resources are fast enough for real time implementation, this results in a controller that is

more stable and robust.

1.4.2 Reinforcement Learning Controls

For a control method to be effective, it must be robust to model errors, sensor noise, and

potential disturbances of the system. Reinforcement learning algorithms can be used as

controllers because they can generalize to new environments, and do not require domain

specific knowledge of the system to achieve satisfactory results; the same algorithm can be

used to balance a pole, drive a car, or play Pong. Due to the costs associated with working

in a real environment, most reinforcement learning algorithms are trained virtually. There

have been several attempts at using various reinforcement learning techniques to control

a real inverted pendulum, but they all suffer from the same issue: most reinforcement

algorithms require a lot of data to perform adequately, and getting data from a real

pendulum is a slow and expensive process.

1.4.2.1 Virtual Training

Through the development of virtual environments like OpenAI Gym, it is now possible

to test reinforcement learning algorithms on a collection of standardized environments.

OpenAI Gym’s Cartpole3 provides a simplified simulation of an inverted pendulum

environment, lacking friction, and featuring a discrete left/right action-space. The original

environment was defined in 1983 [5] and used an Adaptive Critic method to greatly

improve on the Boxes algorithm used to teach a computer-analogue to play noughts and

crosses (tic-tac-toe).

3https://gym.openai.com/envs/CartPole-v0/

17

https://gym.openai.com/envs/CartPole-v0/


The Boxes algorithm [41] starts by discretizing the state space into 225 regions or

“boxes,” creating several hundred independent sub-problems that could each be solved,

finding the optimal action to take any time the pole was in a specific box. The algorithm

is remarkably simple:

Algorithm 2: Boxes algorithm used for Tic-Tac-Toe or Cartpole.

initialize state st and identify which box B(st) it is in;
while the agent survives do

choose action at such that lifetime Q(B(st), at) is maximized;
proceed to the next state st+1 of the environment;

end
Update Q(B(st), at) for every action taken in box B(st)

This is just Q-learning from Algorithm 1, with η = 1 and γ = 0. This can be repeated

until the algorithm becomes optimal (i.e. the algorithm can consistently balance the pole).

The performance is understandably poor, as the discretization requires taking the same

action when presented with different states in the same box. This ends up being a lose-lose

trade-off between algorithmic accuracy and computation time, as refining the boxes results

in a more computationally challenging problem due to the curse of dimensionality, but

further discretizing the boxes erodes performance.

In the decades since, the emergence of reinforcement learning has lead to several other

techniques, including vanilla Policy Gradient, Actor-Critic, and Deep Q-Learning being

used with varying degrees of success. However, basic reinforcement learning algorithms

like these tend to be slow and data-intensive, requiring thousands of trials for the policies

to converge. Even so, the ease of use and implementation of OpenAI Gym has lead to

the environment being used as the de-facto way of benchmarking the success of new

algorithms like Deep Deterministic Policy Gradient [37], Trust Region Policy Optimization

[59], and Proximal Policy Optimization [60]. These algorithms are benchmarked on a

variety of OpenAI environments in [19]. However, the discrete action space and simplified

dynamics of the system make it difficult to replicate the results in the real world. To use

reinforcement learning to balance a real pendulum, the model is usually trained from

scratch on a real pole.
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1.4.2.2 Real World Training

Generally, the algorithms used to train a model in a simulation perform poorly in the real

world. Running thousands of trials on a real pole with physical resets is excruciatingly

slow, making many these same algorithms intractable in practice. They all suffer from the

same issue: most reinforcement algorithms require a lot of data to perform adequately,

and getting data from a real pendulum is a slow and expensive process. Although some

data-efficient algorithms are better than others, requiring only a few seconds or minutes

of online time interacting with the pendulum, there is a severe computational burden:

the total time training can be orders of magnitude higher.

One technique that performs well is called Neural Fitted Q-Iteration [53], which does

not require a model and is relatively data-efficient. This technique is a modification of

a tree-based regression method using neural networks with an enhanced weight update

that can learn directly from real-world interactions; it is a Markov Decision Process.

Unlike traditional Q-learning, which requires an overwhelming number of iterations until

a near-optimal policy is found, Neural Fitted Q-Iteration uses offline learning, enabling

more advanced batch supervised learning algorithms like Rprop [52] to use the entire set

of transition experiences when updating the neural network parameters. This drastically

reduces the amount of data required, proportionally reducing training time on a real agent

or in simulation. As a bonus, Rprop is insensitive to the learning parameters, meaning

time-consuming hyperparameter optimization is not necessary to achieve quick learning.

Alternative data-efficient model-based strategies like Probabilistic Inference for Learn-

ing Control (pilco) [16] are also able to learn effective policies with very little data

by incorporating model uncertainty with a probabilistic dynamics model for long-term

planning. Essentially, this algorithm creates a probabilistic model using very few data

points, and refines the model as more data is collected. Ultimately, this results in a drastic

reduction in required training to achieve satisfactory results.

1.4.3 Virtual Training

While reinforcement learning algorithms can be benchmarked in a virtual environment,

unless care is taken to closely match the environment to reality, it can be difficult to

replicate a model’s success on a real agent. There is already work being done to bridge

the simulation-reality gap of training agents in a simulation for real-world deployment.

Researchers at OpenAI are using two interconnected long short-term memory neural

networks defining a value function and agent policy to be trained in simulation and

implemented in the real world to solve a Rubik’s cube using a robotic hand [45]. They are
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using Proximal Policy Optimization to train the control policies and use automatic domain

randomization to train on a large distribution over randomized environments. Despite not

being able to model accurate physics in the simulations, domain randomization allows

them to successfully solve a cube 60% of the time.

Researchers at Microsoft are using AirSim to generate simulated training data for

drones to navigate obstacle courses by imitating expert behavior [8]. Specifically, they

encode images with an 8-layer Resnet and decocde them with six transpose convolutional

layers. By using a cross-modal variational autoencoder, they are able to learn a rich

low-dimensional state representation from simulated or real data, which enables the drones

to learn a control policy that directly transfers to real-world environments. The learned

policy is robust to changes in weather, lighting, and background changes.

Researchers from deepsense.ai collaborated with Volkswagen AG to train a parallelized

architecture with CARLA, a high-fidelity model-based driving simulator, to generate up

to 100 years of synthetic semantic segmentation data for training 10 virtual models [46].

The models were trained using a parallelized version of Proximal Policy Optimization on

GPUs, and were implemented in 9 driving scenarios over the course of over 400 test drives

with a real car. This paper also contains an excellent review of existing reinforcement

learning methods that use synthetic data for both simulated and real-world robotics.

Researchers from MIT are using standard Policy Gradient techniques with a multi-

layer convolutional neural network to train a car to drive up to 10km [3]. They used a

variety of different simulation techniques as baselines, including imitation learning from

an expert human and training in CARLA, using domain randomization and domain

adaptation in order to bridge the simulation-reality gap. Finally, they trained the same

agent on a data-driven simulator VISTA, which uses images from real driving data to

simulate the camera views from new trajectories along the same route. This provided

unprecedented levels of realism to the simulation, allowing the incredibly basic control

algorithm to achieve near-human performance, generalizing across changes in lighting,

weather, and road type. The models trained in VISTA required no human interventions,

even on unfamiliar roads, and showed the ability to recover when placed in near-crash

situations.

1.5 Discussion

Our agent is a single inverted pendulum, which we teach to balance by using reinforcement

learning to train a parametrized policy πθ in a simulation. Once training is finished, we

can recreate πθ in MATLAB in a Simulink block. At this point, the model is built with
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Quanser QUARC, loaded to the controller, and tested on a real inverted pendulum.

The idea of using virtual reinforcement learning to train a single inverted pendulum is

just a proof of concept that could make other machine learning applications more efficient.

If successful, these algorithms could be used for complex robotics, reusable rockets, and

other expensive or dangerous agents where it would be prohibitively difficult to test new

controls on a real plant. The goals are twofold:

• find the algorithm that will train a virtual pole to balance as quickly as possible,

• find the algorithm that is the most robust for a real inverted pendulum.

These goals are necessarily at odds with one another, as increased training time often

leads to increased robustness. By training in a simulation we can drastically speed up

the training process, as we can spend more time learning, and less time resetting the

experiment and running slow trials. This extends the lifetime of the agent, reducing the

amount of wear and tear it experiences, and allows it to experience important edge-case

environmental states that would be rare or dangerous in the real world—like a car avoiding

a collision.

The rest of this dissertation focuses on the implementation of four reinforcement

learning algorithms trained with this virtual paradigm, and the results when transferred

to the real world.
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Chapter 2

REINFORCEMENT LEARNING

One of the ways we learn is by interacting with our environment and observing the

outcome of such an interaction. Depending on the task, there may be an implicit “reward”

associated with the action, like the distance travelled for a child learning to ride a bike, or

the score achieved while playing a video game. Reinforcement learning is the process of

an agent exploring an environment, and using trial-and-error to maximize the numerical

reward associated with the actions it takes. Put simply: we drop a robot into an unfamiliar

environment, and it learns to take the optimal actions through repeated efforts, without

being told which actions to take. The most common reinforcement learning problems

can be formulated as Markov Decision Processes (MDPs). MDPs are described by a set

of states S, actions A, rewards R and a process p(st, at, st+1) for describing transition

behaviour. The goal is to find an optimal policy π∗ : S → A that maximizes expected

rewards (or minimizes expected costs) for each state. While some MDPs can be solved

using dynamic programming or linear programming techniques, reinforcement learning

presents two key advantages: sampling and function approximation.

By sampling actions from the action-space, we can simplify large-dimensional problems

and optimize performance, since we do not have to find optimal trajectories for every

possible action. For continuous action-spaces, this can make difficult problems easy, and

impossible problems possible. Additionally, due to the universal function approximation

properties of neural networks mentioned in Chapter 1, it is possible to solve problems in

large state spaces, where it would be infeasible to obtain an analytical solution due to the

curse of dimensionality.

As seen in Figure 2.1, there are myriad reinforcement learning algorithms that we can

use to attempt to navigate unfamiliar environments, each of which has its own advantages,

disadvantages, and quirks. In the rest of this chapter, we will be focusing on model-free

implementations, where we observe the states and rewards as they occur, instead of
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Figure 2.1 A non-exhaustive taxonomy of some Reinforcement Learning algorithms from [2].

assuming we have a full set of transition probabilities to optimize. This lets us perform

online learning, observing states directly from an agent (or simulation). Additionally,

since we have continuous state and action-spaces, we will primarily focus on policy-based

algorithms, where we directly optimize the same policy we use to select actions (called an

on-policy algorithm), as opposed to optimizing the value function like in Q-learning.

This dissertation will give a detailed description of 4 of these algorithms, presented in

order of increasing complexity.

2.1 Preliminaries

The goal of reinforcement learning is to make an agent choose the optimal policy to

maximize the rewards it will receive. In our case, the agent is the inverted pendulum, the

policy is an artificial neural network with one hidden layer that decides how much voltage

to apply to the motor, and the rewards correspond to how long the pole stays balanced.

2.1.1 Policies

We define a deterministic policy π : S → A, defining what action to take given the state

of the environment. We also define a stochastic policy π : S × A → [0, 1], defining a
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distribution over actions for each state, such that

π(a|s) = P [At = a|St = s] . (2.1)

In this section, we will use a neural network parametrized by weights and biases

collectively referred to as θ to describe a policy that inputs the state of the environment

and a probability distribution of actions actions. We define πθ as a one-hidden-layer

artificial neural network seen in Figure 2.2 so that

πθ(a|s) = P [a|s, θ] . (2.2)

The input layer consists of four neurons, corresponding to the state vector [x, α, ẋ, α̇]. This

feeds forward to the 32-neuron hidden layer, with ReLU activation. 32 neurons were chosen

somewhat arbitrarily, as it was more than enough to regularly balance the pole. While

more neurons (or more layers) may result in faster training speed, neither are necessary

for the agent to learn to balance itself. See Section 4.1.2 for further discussion on this.

The top layer consists of two neurons defining the normal probability distribution

N(µ, σ) the actions are sampled from. The first neuron uses linear activation and corre-

sponds to the mean of the distribution, while the second neuron uses Softplus (ln(1 + ex))

activation (guaranteeing it will be positive) and corresponds to the standard deviation of

the normal distribution.

Definition 2.1. A trajectory τ is a sequence of states and actions

τ = (s0, a0, s1, a1, . . . ) . (2.3)

The first state s0 is sampled from the starting distribution ρ0, then at each time step t > 0,

the actions are sampled from the policy π and the state is updated from the Equations of

Motion 1.25–1.27.

Let πθ a policy with parameters θ. Given a trajectory of states and actions τ =

(s0, a0, . . . , sT+1), we define the probability of τ given actions sampled from πθ to be

P (τ |θ) = ρ0(s0)
T∏
t=0

P (st+1|st, at)πθ(at, st). (2.4)
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Figure 2.2 Artificial neural network approximation of πθ.

2.1.2 Rewards

Formally, the reward function rt = R(st, at, st+1) can depend on the current state, action,

and future state of the environment. For an inverted pendulum, it is much simpler. After

initializing the reward function as an empty vector r = [ ], for every time step t that the

pendulum remains upright, we set rt = 1. Specifically, if the pole remains between ±12◦

and the cats stays within ±0.4m of the centre of the track, we set rt = 1.

Given a trajectory τ , our goal is to choose the policy πθ that allows the pole to remain

balanced by maximizing

R(τ) =
T∑
t=0

rt. (2.5)

This sum diverges over infinite timescales. A common technique to prevent this (and

to emphasize getting rewards now rather than later in the future), involves the idea of a

discounted reward. That is, we define γ ∈ (0, 1] so that our cumulative discounted reward

at time step t is

Rt =
∞∑
k=0

γkrt+k. (2.6)

This is known as the rewards-to-go, as it gives us the sum of discounted future rewards.

In addition to guaranteeing the sum converges, discounting has the additional benefit of

prioritizing rewards now over rewards later. The value of γ can be tuned to provide the

optimal combination of current and future rewards. Small values of γ prioritize actions

resulting in rewards now, while larger values prioritize rewards over a longer time frame.

If we normalize R by subtracting the mean and dividing by the standard deviation, we
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can simultaneously encourage and discourage roughly half of the possible actions [29].

Definition 2.2. The expected return for a policy π is

J(π) = E
τ∼π

[R(τ)]

=

∫
τ

P (τ |π)R(τ),
(2.7)

judging the performance of the given policy.

This is the quantity that we want to maximize. Under the policy-based algorithms in

this chapter, that means we are looking for the optimal policy π∗ such that

π∗ = arg max
π

J(π). (2.8)

However, since these algorithms are model-free, we do not have complete knowledge of the

set of transition probabilities allowing us to simply maximize the function. By computing

the gradient of this policy performance, also known as the policy gradient, we can use

gradient descent (or technically gradient ascent) to find the set of parameters θ that

maximize this quantity:

θk+1 = θk + η∇θJ(π). (2.9)

2.1.3 Training

For each of the algorithms in this section, the general outline is roughly the same: the agent

interacts with the environment, acting according to a policy πθ until an exit condition

is met—in our case running off the track (|x| > 0.4) or falling (|α| > 12◦). When that

happens, we use our normalized discounted rewards and loss function specific to that

algorithm to update the parameters θ using backpropagation with gradient ascent. This

encourages the agent to take actions that increase J(πθ), and discourages the agent from

taking actions that decrease it, hopefully balancing the pole for longer next time.

As seen in Algorithm 3, the model is fed the current state st and outputs a probability

distribution of actions to be taken. The policy πθ samples an action at from the distribution,

clips it to [−10, 10] due to the physical limitations of the motor, and uses the Equations

of Motion 1.25–1.27 to step forward in time, generating the new state st+1. If the pole

remains balanced and the cart is still on the track, then rt = 1 is appended to the rewards

vector and training continues. If the model fails to meet these criteria, training stops, the

rewards are discounted and normalized, and the parameters θ are updated using gradient
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Algorithm 3: Pseudocode for training all the algorithms in this chapter.

initialize state s0 so {x, α, ẋ, α̇} ∈ [−0.05, 0.05];
initialize t = 0 repeat

choose action by sampling at ∼ π( · |st);
clip at to [−10,+10];
calculate st+1 using Equations of Motion;
if |x| > 0.4 or |α| > 12◦ then

Crashed;
compute log-likelihoods lnπθ(at|st);
normalize discounted rewards Rt =

∑
k γ

krt+k;
compute loss;
update parameters using with gradient ascent or Adam optimizer;
r ≡ 0, t = 0;

else
rt = 1, t := t+ 1;

end

until
∑

t rt = 500 and training is finished;

ascent with the Adam optimizer [32]; we found a learning rate of η = 0.01 tended to

perform the best.

Training is considered finished when the undiscounted finite-horizon return exceeds

500. In practice, it would be better to keep track of a running reward value

Rr := (1− ε)Rr + εR(τ), (2.10)

initialized at 0 that will exceed say Rr > 475 when the agent consistently balances for 500

time steps (balancing for 10 seconds) without crashing. Depending on the hyperparameters

chosen for the learning rate and γ, this can take anywhere from 19 individual trials—taking

well under a minute on Google Colab’s1 Tesla GPUs—to well over 2000 trials, testing the

free resource limits and my patience. At this point, optional additional training with a

smaller learning rate can help make the model more robust.

Once training is finished, the weights and biases of πθ can be loaded into MATLAB

and the neural network recreated in a single block in Simulink. At this point, the model

can be built with Quanser QUARC, loaded to the controller, and tested on a real inverted

pendulum.

1https://research.google.com/colaboratory/faq.html
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2.2 Policy Gradient

Vanilla Policy Gradient is one of the simplest methods in reinforcement learning [2].

Sometimes called the REINFORCE algorithm [65], it maximizes the expected return for

a policy by reinforcing actions that lead to longer lifetimes. It does this by shifting the

parameters θ in such a way that increases J(πθ) with the goal of maximizing Equation 2.7.

Therefore, we compute the analytical policy gradient with respect to each of the weights

and biases in θ, so we can shift them in the direction that maximizes the expected return.

To this end, the gradient of J(πθ) for a trajectory τ = (s0, a0, . . . , sT+1) is

∇θJ(πθ) = ∇θ E
τ∼πθ

[R(τ)]

= ∇θ

∫
τ

P (τ |θ)R(τ)

=

∫
τ

∇θP (τ |θ)R(τ)

=

∫
τ

P (τ |θ)
P (τ |θ)

∇θP (τ |θ)R(τ)

=

∫
τ

P (τ |θ)∇θP (τ |θ)
P (τ |θ)

R(τ)

=

∫
τ

P (τ |θ)∇θ lnP (τ |θ)R(τ)

= E
τ∼πθ

[∇θ lnP (τ |θ)R(τ)] .

(2.11)

Expanding the gradient of lnP (τ |θ) in the last step, we get

∇θ lnP (τ |θ) = ∇θ

[
ln ρ0(s0) +

T∑
t=0

(lnP (st+1|st, at) + ln πθ(at|st))

]

= ∇θ ln ρ0(s0) +
T∑
t=0

(∇θ lnP (st+1|st, at) +∇θ ln πθ(at|st))

=
T∑
t=0

∇θ lnπθ(at|st),

(2.12)

where the gradients of any term not depending on θ are 0, so that

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)R(τ)

]
. (2.13)
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This is the gradient of the cost function used for gradient ascent in Algorithm 4.

Algorithm 4: Training with vanilla Policy Gradient

input : a parametrized policy πθ(at|st)
Initialize parameters θ and state s0 ∼ ρ0;
repeat

sample a trajectory τ from πθ(at|st);
∇θJ(πθ) =

∑
t∇θ ln πθ(at|st)R(τ);

θ := θ + η∇θJ(πθ)|θ;
until training is complete;

At this point, we can choose any arbitrary advantage function, relative to the current

policy, depending on the current action and state, giving us

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)Aπθ(st, at)

]
. (2.14)

In general, we should choose our advantage function Aπθ(st, at) so that the gradient

term ∇θ lnπθ(at|st)Aπθ(st, at) points in the direction of increased πθ(at|st) if and only if

Aπθ(st, at) > 0. Therefore, for vanilla policy gradient we choose Aπθ to be the normalized

version of our discounted rewards-to-go Rt from Equation 2.6. This has three benefits:

regularity, causality, and performance.

2.2.0.1 Regularity

By normalizing the discounted rewards, we are able to simultaneously encourage actions

that lead to longer lifetimes, while discouraging the actions that directly lead to the

pendulum failing. Tweaking the value discount factor γ plays a big role in which actions

should be discouraged, which plays a big role in training speed and reliability. See

Section 4.1.1 for details.

2.2.0.2 Causality

If we replaced the rewards-to-go with the finite-horizon return

R̂(τ) =
T∑
t=0

γtrt, (2.15)
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then each step increases the log-probabilities of each action proportional to R̂(τ), the

discounted sum of all rewards ever obtained. Due to causality, an action at time t has

no bearing on rewards obtained at any times t′ < t. By discarding terms that reinforce

actions proportional to past rewards, we reduce the variance in the estimates of the policy

gradient, therefore reducing the number of trajectories needed.

For completeness, we can rewrite the policy gradient in Equation 2.14 as

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Aπθ(st, at)

]

= E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)
T∑
t′=t

Rt′(st′ , at′ , st′+1)

]
,

(2.16)

where Rt′(st′ , at′ , st′+1) is the normalized version of the discounted rewards in Equation 2.6.

2.2.0.3 Performance

The calculated loss function J(πθ) does not estimate our performance metric that we wish

to maximize (expected return) even in expectation. Rather, given the current parameters

and actions sampled from the current parameters, the loss function has a local positive

gradient of performance. It offers no guarantees that gradient ascent will continue to

improve performance from the updated parameters. In fact, the loss function can explode

to infinity while performance craters.

Unlike Q-learning, which converges to the optimal Q-function under the right condi-

tions, vanilla Policy Gradient is only guaranteed to converge to a local optimum, given

a small enough learning rate η [65]. Experimentally, smaller step sizes lead to more

consistent convergence, while larger step sizes learn faster, but with higher variance.

2.3 Actor-Critic

One of the largest problems that Policy Gradient faces is the large variance and noisy

gradients. Due to the random sampling of actions, there is a high variability in log probabil-

ities of the actions and therefore rewards. Given an initial sample, the possible subsequent

trajectories can deviate wildly, with actions sampled from the same distribution producing

different future states that end the run at different times. During backpropagation this

can lead to noisy gradients, causing learning to take excruciatingly long, or unstable

performance if training is ended too soon. The goal of Actor-Critic is to reduce the variance

by subtracting a baseline from the rewards, while keeping the value in expectation the
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Figure 2.3 Neural network approximation of πθ, representing Actor and Critic.

same, avoiding bias.

Therefore, we want to subtract a baseline b(st) that depends only on the state so that

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ lnπθ(at|st)

(
T∑
t′=t

Rt′ − b(st)

)]
. (2.17)

We begin the same way as Policy Gradient but with two neural networks: actor and

critic. The actor is our policy πθ, parametrized by the same neural network as Figure 2.2

and predicting the optimal actions to take, and the critic is a value function V (st) judging

the quality of the corresponding states. Since we do not know the value of V (st), we

approximate it by adding an additional head to the top layer of πθ, as seen in Figure 2.3,

and use gradient descent to minimize the difference between the predicted value and

actual value of the normalized discounted rewards.

This results in an auxiliary function V̂ π(st) approximating the value function V (st)

used in our calculations of the advantage function Aπθ(at, st) and for our parameter

update.

Lemma 2.3 (Expected Grad-Log-Prob (EGLP))

Given a parameterized probability distribution Pθ over a random variable x we have that

E
x∼Pθ

[∇θ lnPθ(x)] = 0. (2.18)

Proof. Recall that all probability distributions are normalized so that∫
x

Pθ(x) = 1. (2.19)
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Then taking the gradient of both sides with respect to θ gives

∇θ

∫
x

Pθ(x) = 0. (2.20)

.

Using the same log-derivative trick from Equation 2.11, we get

0 = ∇θ

∫
x

Pθ(x)

=

∫
x

∇θPθ(x)

=

∫
x

Pθ(x)
∇θPθ(x)

Pθ(x)

=

∫
x

Pθ(x)∇θ lnPθ(x)

= E
x∼Pθ

[∇θ lnPθ(x)] .

(2.21)

Corollary 2.4

For any baseline function b that depends only on the current state,

E
at∼πθ

[∇θ ln πθ(at|st)b(st)] = 0. (2.22)

In order to find best baseline, we begin by defining the state-action value function,

Qπθ(s, a) = E
τ∼πθ

[R(τ)|s0 = s, a0 = a] , (2.23)

which gives the expected return if you start in state s, take an arbitrary action a and

follow the policy πθ to calculate all future actions and states. We also define the state

value function,

V πθ(s) = E
τ∼πθ

[R(τ)|s0 = s] , (2.24)

which gives the expected return if you start in a state s and act according to policy πθ.

The subtle difference between these two formulae can be expressed by the equation

V πθ(s) = E
a∼τ

[Qπθ(s, a)] . (2.25)
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We can exploit this relationship to calculate an advantage function

Aπθ(s, a) = Qπθ(s, a)− V πθ(s), (2.26)

describing how much better it is to take a specific action a in state s, over the expected

value from randomly selecting an action according to the policy’s default behaviour [58].

Then we have

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)Aπθ(st, at)

]

= E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st) (Qπθ(st, at)− V π(st))

]

= E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)Qπθ(st, at)−
T∑
t=0

∇θ ln πθ(at|st)V π(st)

]

= E
τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)Qπθ(st, at)

]
− E

τ∼πθ

[
T∑
t=0

∇θ ln πθ(at|st)V π(st)

]
= ∇θJ(πθ)− 0,

(2.27)

due to the fact that

E
τ∼πθ

[∇θ lnπθ(at|st)Qπ(st, at)] = E
τ∼πθ

[
∇θ lnπθ(at|st) E

τ∼πθ
[Qπθ(st, at)]

]
= E

τ∼πθ
[∇θ lnπθ(at|st)Aπθ(st, at)]

= ∇θJ(πθ),

(2.28)

and

E
τ∼πθ

[∇θ ln πθ(at|st)V π(st)] = E
τ∼πθ

[
E

at∼πθ
[∇θ lnπθ(at|st)V πθ(st)]

]
= E

τ∼πθ

[
E

at∼πθ
[∇θ lnπθ(at|st)]V πθ(st)

]
= E

τ∼πθ
[0 ·V πθ(st)]

= 0,

(2.29)

using Corollary 2.4 of the EGLP Lemma.

33



We choose this to be our advantage function, inserting it into Equation 2.14, so that

∇θJ(πθ) = E
τ∼πθ

[
−

T∑
t=0

∇θ ln πθ(at|st) (Qπθ(st, at)− V πθ(st))

]
, (2.30)

where we make the entire quantity negative so we can minimize the expected costs

(negative expected rewards) with gradient descent. In fact, Equation 2.26 is the best

possible choice of baseline [58], as subtracting the expected return minimizes the variance

in the gradients. Therefore, getting a good approximation of V πθ(s) is fundamental to

reducing variance.

Unfortunately, we cannot calculate V πθ(s) analytically in practice, so we estimate

it using the critic from the additional node on the top layer of our neural network, or

create an auxiliary neural network πφ explicitly to estimate the expected return. This

critic provides an estimate V̂ π
φ of the state value function such that V̂ π

φ (s) ≈ V π(s), and

this error is minimized through gradient descent with mean squared error loss (MSE). In

this case, we have an auxiliary critic loss function

L(φ) = E
st,Rt∼πθ

[(
V̂ π
φ (st)−Rt

)2
]
, (2.31)

that we can simply add to our actor loss from Equation 2.30 which we are also trying

to minimize, if the networks predicting πθ and V̂ π share parameters as in Figure 2.3. Since

we are only estimating V (st), the advantage function Aπθ(st, at) that minimizes variance

is also an estimation, meaning variance is still reduced at the expense of introducing some

bias into the model.

Algorithm 5: Training with Actor-Critic

input : a parametrized policy πθ(at|st)
Initialize parameters θ and state s0 ∼ ρ0;
repeat

sample a trajectory τ from πθ(at|st);
fit V̂ πθ to rewards through MSE;
Qπθ(st, at) =

∑
k γ

krt+k;

Âπθ(st, at) = Qπθ(st, at)− V̂ πθ(st);

∇θJ(πθ) = −
∑

t∇θ ln πθ(at|st)Âπθ(st, at);
θ := θ − η∇θJ(πθ)|θ

until training is complete;
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2.4 Proximal Policy Optimization

Although Actor-Critic reduces the large variance of Policy Gradient, it is still subject

to hyperparameter optimization on things like the learning rate η and discount factor γ.

This optimization process is meant to speed up training time, finding the hyperparameter

set that can train the quickest and most efficiently. Unfortunately, this can be a time-

consuming and computationally expensive process, ironically slowing down the same

training it is meant to speed up. Based on the ideas from Trust Region Policy Optimization

[59], Proximal Policy Optimization (PPO) seeks to achieve the same goal, while being

easier to implement and producing better results. Intuitively, we want to take the largest

step possible in the right direction, implying a large learning rate. However, in addition to

large learning rates being unstable or converging to suboptimal solutions, the loss function

J(πθ) does not estimate our performance metric that we wish to maximize (expected

rewards) even in expectation. Rather, given the current parameters and actions sampled

from the current parameters, the loss function will move the parameters θ in the direction

that locally improves performance, but offers no guarantees that gradient descent will

continue to improve performance from the updated parameters. PPO addresses this by

taking the largest step it can while restricting policy updates to a stable region around

the current policy.

Much like Actor-Critic, PPO contains both an actor and a critic. The actor is identical

to the Policy Gradient neural network in Figure 2.2, deciding actions and the critic is a

neural network seen in Figure 2.4 judging the quality of those actions. As such, it inputs

both the state st and sampled action at, and outputs the estimation of the value function

Qφ(st, at). The critic’s loss is identical to actor-critic, minimizing mean-squared error

between the predicted and calculated normalized discounted rewards as in Equation 2.31,

however the actor’s loss is entirely different.

We start by calculating a ratio between current and previous policy

rt(θ) =
πθ(at|st)
πθold(at|st)

, (2.32)

such that rt(θold) = 1. Since we are evaluating two different policies on the same actions

and states, rt(θ) > 1 if the actions taken are more likely under the new policy than the

old one. This lets us define a surrogate objective function

L̂(θ) = E
τ∼πθ

[rt(θ)A
πθ ] . (2.33)
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Figure 2.4 Neural network approximation of Q̂φ(st, at), representing Critic network only.

This is an equivalent metric to our actor loss, encouraging actions that perform better

than the expected value, with the caveat that maximizing the surrogate objective will

lead to excessively large policy updates if rt(θ) is large. To remedy this, we introduce a

parameter ε that tells us how far from the current policy we are able to step.

Then the final surrogate objective function is

L(θ) = E
τ∼πθ

[min (rt(θ)A
πθ , clip (rt(θ), 1− ε, 1 + ε)Aπθ)] . (2.34)

This has the property such that if Aπθ(st, at) > 0, that is if the action performed

better than the critic expected it to, the objective will increase with πθ(at|st) only until

πθ(at|st) > (1 + ε)πθold(at|st), at which point the objective will update no further than

(1 + ε)Aπθ(st, at).

Similarly, if Aπθ(st, at) < 0 and the action performed worse than the critic expected it

to, the objective will increase as πθ(at|st) decreases only until πθ(at|st) < (1−ε)πθold(at|st),
at which point the objective will update no further than (1 − ε)Aπθ(st, at). In both of

these cases, this ensures that the new policy remains reasonably close to the old policy,

instead of performing dangerously worse. We used ε = 0.2 based on the suggested value

in [60].

2.5 Improving Vanilla Policies

There are a number of techniques we can use in order to potentially improve training

speed and robustness, however most of them are at odds with each other. For example,

changing some of the hardcoded constants in Algorithm 3 can drastically change the
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Algorithm 6: Training with Proximal Policy Optimization

input : a parametrized policy πθ(at|st) and critic Qφ(st, at)
Initialize parameters θ, φ, and state s0 ∼ ρ0;
repeat

sample a trajectory τ from πθ(at|st);
fit Q̂φ to sampled rewards Rt =

∑
k γ

krt+k ;

Âπθ(st, at) = Rt − Q̂φ(st, at);
Optimize L(θ) using θ := arg max

θ
L(θ) with Adam;

until training is complete;

performance.

While we tested some of these techniques, the various permutations between them

result in an exploding number possible configurations to test. For the results reported

in Chapter 4, we tried to standardize as much as possible, changing only one variable

at a time. One of the things we test is how well the pendulum is able to respond to a

disturbance, like getting tapped. Although the pendulums are not disturbed while training

in the simulation they are initialized at an angle of α ∈ [−0.05, 0.05], which is up to

2.86◦ from vertical. This was default to the environment in Gym’s Cartpole, based on the

original environment defined in [5]. Increasing the initialization angles would force the

model to learn how to overcome them; this would likely take many more trials, increasing

training time. Training the pendulum until it can balance for more than 10 seconds will

ensure the trained model is more robust, but this takes longer, even in a simulation.

Similarly, adding noise to the measurements could help overcome sensor noise and model

errors, again at the expense of training speed for large amounts of noise.

Actor-Critic and PPO share the same structure of training two neural networks, trying

to choose optimal actions and judge those actions, respectively. However, Actor-Critic’s

actor and critic shared the bottom layers of their neural network in Figure 2.3, while

PPO’s critic was a separate network in Figure 2.4, that judged the value of states and

actions. The idea was that the more information the critic network receives, the more

accurate predictions it will be able to make. Once again, this slightly slows training, as

there are more parameters that need to be updated during gradient descent. PPO also

has a hyperparameter ε that did not seem to significantly affect performance.

The main hyperparameter value we augmented for Chapter 4 was the reward discount

factor γ. Intuitively, this controls how much the agent values rewards now over rewards in

the future, with γ = 0.9 giving the rewards a half-life of 0.13 seconds, γ = 0.99 a half-life

of 1.38 seconds, and γ = 0.999 a half-life of 13.8 seconds. Based on the amount of foresight
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Figure 2.5 Attempted ways of annealing γ over time to improve performance.

each γ implies, we also experimented with increasing or decreasing γ as training progresses.

A function like γ = 1− 0.10.03` smoothly increases from γ ≈ 0.822 to γ ≈ 1 as the length

of each trial ` increases from 25 time steps (0.5 seconds) to 500 time steps (10 seconds).

Intuitively, this should work well since attempts that fail early on need to encourage

the agent to take more greedy actions to survive immediately, while longer-lasting trials

should consider a longer time-horizon, ensuring the cart does not run off the track while

trying to balance. However, this function gets very small for ` < 10, corresponding to

trials that fail almost immediately. On the other hand, γ = min
(

1,
(
`

50

)− 1
12

)
ranges from

γ = 1 for 50 or fewer time steps (≤ 1 second) and decreases to γ ≈ 0.825 for 500 time

steps. This function was designed so that after the discounted rewards are normalized,

only the last 25 time steps of actions are discouraged. Intuitively, whether a trial lasts 0.5

seconds or 9.5 seconds, only the actions right before it fails directly lead to the crash, so

should be the only ones strongly discouraged; 0.5 seconds was chosen arbitrarily. However,

this neglects that the actions immediately preceding those lead to the pole being put in a

state that it failed to recover from, so should probably be discouraged as well. In practice,

neither annealing method improved performance for Policy Gradient, taking more than

45% longer to find a reaonable policy on average, so were not attempted for Actor-Critic

or PPO. A third attempt, with γ = 1− 0.10.0036`+1, which interpolates between γ = 0.9

for ` = 0 and γ = 0.9984 for ` = 500 was also attempted, but still failed to improve

performance. All three alternative γ functions can be seen in Figure 2.5.

Each algorithm we tested has many modifications intended to improve performance, to

the point where the line between different algorithms significantly blurs, as in Figure 2.1.

For example, the REINFORCE algorithm with a baseline is just a lower variance version

of Policy Gradient, but this is the vanilla Actor-Critic we used where we choose the

baseline to be the state value function V (st). There are several changes we can make to

Actor-Critic, like using Temporal Difference methods during the update of both networks
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[65]. PPO has several modifications to the loss function, like introducing a constraint to

minimize the KL-Divergence between πθ and πθold to ensure the policy update does not

deviate too far from the previous step. The original PPO paper [60] actually introduces

several potential surrogate objective functions, including one with an entropy parameter.

Entropy is a measure of uncertainty in a probability distribution P , defined as

H(P ) = E [lnP (x)]. It is often considered beneficial to maximize entropy, based on

the idea that sampled policies that generate similar rewards should be equally probable.

By adding an entropy bonus (with yet another hyperparameter to tune) to the loss

function of an algorithm, we can encourage a neural network to keep a wide distribution,

encouraging exploration of the state space, and preventing premature convergence to

suboptimal policies, which effectively halt learning. RL algorithms with entropy are

sometimes referred to as soft algorithms [2]. Although soft algorithms have seen a lot of

success in imporoving the efficiency of the Policy Gradient based algorithms, maximizing

entropy also increases the variance in policies (something we spent a lot of time reducing),

which can increase training time. Once again, a variety of entropy coefficients failed to

improve performance for Policy Gradient, so were ignored for Actor-Critic and PPO.

Another change in performance comes from using an experience buffer to store

experiences in the form of states, actions, rewards, and transitions. Unlike on-policy

algorithms that use these samples once for a policy update then ignore them, off-policy

algorithms can replay these experiences, using them for future policy updates as well.

This is one of the things pilco does by default. In fact, as we will see in Chapter 3,

one of the reasons pilco is so data-efficient is that it combines several techniques like

adding noise, modeling uncertainty, and replaying experiences in order to outperform

other state-of-the-art RL algorithms by an order of magnitude.
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Chapter 3

PROBABILISTIC INFERENCE

FOR LEARNING CONTROL

In Deisenroth’s girthy 2010 PhD thesis [17], he introduced pilco: Probabilistic Inference

for Learning Control, a probabilistic dynamics model for efficient reinforcement learning

on continuous action and state spaces. Unlike the model-free approaches in Chapter 2, this

algorithm is model-based, using Gaussian processes (GPs) along with remarkably little

data to learn a probability distribution over plausible dynamics models. By averaging

over these models and taking uncertainty into account, pilco is able to drastically reduce

model bias, and achieve state-of-the-art data-efficiency [16], only being surpassed in recent

years by modifications of the same algorithm.

In the decade since, a number of extensions to pilco have been introduced, extending

the ideas of pilco for more computational efficiency, incorporating constraints, and active

exploration of the state space. Some of these implementations include Deep pilco [21],

SafePILCO [51], and AEpilco [69].

For a transition f : S × A→ S from an unknown dynamics system

st+1 = f(st, at), (3.1)

pilco uses a squared exponential kernel to define a Gaussian posterior predictive distri-

bution. By mapping uncertain test inputs through the Gaussian process dynamics model,

it produces a Gaussian approximation of the desired posterior distribution, which can be

used to analytically compute the gradients to minimize the expected return

J(πθ) =
T∑
t=0

E
st

[c(st)] , s0 ∼ N (µ0,Σ0), (3.2)
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where the initial state s0 is sampled from a normal distribution. Instead of using gra-

dient descent (although it can), vanilla pilco minimizes this cost function (negative

rewards) through conjugate gradient or (more commonly) limited-memory Broyden-

Fletcher-Goldfarb-Shanno algorithm (BFGS).

3.0 Gaussian Processes

Given inputs xi ∈ RD and noisy observations yi = h(xi) + εi ∈ R, where εi is (assumed

Gaussian) noise (εi ∼ N (0, σ2
ε)), the act of estimating h is known as regression. If h is a

deterministic function defined by a finite number of parameters θ, regression aims to find

the parameter set θ∗ such that h(θ∗, xi) best explains the corresponding observations yi,

i = 1, . . . , N . By using a Bayesian freamework, we can determine a probability distribution

over θ that expresses uncertainty in our estimations. By using non-parametric models

instead, we can learn the shape of h directly from data, along with a few assumptions

about smoothness, which is usually more reasonable than the assumptions in a parametric

model.

Definition 3.1. A Gaussian process {Xt}t∈T is a collection of random variables Xt, such

that every finite subset F ⊂ T of those random variables has a multivariate Gaussian

(normal) distribution.

That is, {Xt}t∈T is a stochastic process where every finite linear combination
∑
t∈F

atXt

has a Guassian distribution (or is identically 0).

Given data D composed of inputs xi ∈ X and outputs yi assumed to come from

a function yi = h(xi) + εi as above, a Gaussian process infers a posterior distribution

p(h|D) over h from the Gaussian process prior p(h), the data D, and assumptions on the

smoothness of h [17]. This posterior distribution can be used to estimate function values

h(x∗) given new inputs x∗ ∈ RD.

A multivariate Gaussian distribution can be fully specified by a mean vector µ and

covariance matrix Σ, such that X ∼ N (µ,Σ) with

Σ = cov [xi, xj] = E
[
(xi − µi)(xj − µj)>

]
, (3.3)

where the diagonal elements represent the variance σ2
i of the i-th random variable, while

the off-diagonal elements σij describe the correlation between the i-th and j-th random

variables. Similarly, a Gaussian process can be fully defined by a mean function mh( · )
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and covariance function

kh(x, x
′) = E

h
[(h(x)−mh(x)) (h(x)−mh(x

′))]

= cov
h

[h(x), h(x′)] ,
(3.4)

with x, x′ ∈ RD. This is also known as the kernel of h.

Definition 3.2. A function k : X × X → R is called a kernel on X if there exists a

Hilbert space H and a map φ : X → H with

k(x, y) = 〈φ(x), φ(y)〉 (3.5)

for all x, y ∈ X , where φ is called a feature map and H is a feature space of k.

If we assume that mh ≡ 0 (we can always add it back later), the Gaussian process can

be completely defined by the kernel. A number of functions can be chosen for the kernel,

including linear, periodic, and squared exponential functions, which can be composed or

linearly combined in order to select which type of functions from the space of all possible

functions are more probable [24]. This choice is arbitrary and can be made based on a

priori domain knowledge, increasing their ability to capture relevant trends in the data.

Definition 3.1 tells us that any finite set of function values h(xi), i = 1, . . . , N is jointly

Gaussian distributed. Therefore, the distribution of h(X) can be defined as

p(h(X)) = N (mh(X), kh(X,X)) , (3.6)

where kh(X,X) is the full N ×N covariance matrix of all function values. Importantly,

this has grows as N2, making it very memory intensive for a large number of samples N .

The process of finding a posterior distribution on h with Bayesian inference is known

as kriging. The general steps are as follows:

1. Specify a prior on the unknown quantity h

2. Observe transition data D

3. Compute a posterior distribution over h using evidence from the observations.

This lets us predict the value of h at a new point by combining the Gaussian prior with

a Gaussian likelihood function for each of the observed values to compute a weighted

average of the known values of the function in the neighborhood of that point.
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Figure 3.1 Samples from the GP prior along with the 95% confidence interval of the
marginal distribution. Without any observations, the prior uncertainty about the underly-
ing function is constant everywhere.

3.0.1 Priors

A Gaussian process defines a probability distribution over possible functions, with each

sample from a multivariate Gaussian distribution representing one possible realization

of function values. If we have not yet observed any training data, this is our prior

distribution PX , defined around mj ≡ 0, as seen in Figure 3.1. This distribution has

the same dimensionality as the number of test points N = |X|, with associated N ×N
covariance matrix.

Definition 3.3. A radial basis function (RBF) is a function ψ : [0,∞) → R with the

property that

ψ(x) = ψ (‖x‖) or ψc(x) = ψ (‖x− c‖) . (3.7)

Instead of using neural networks to approximate a function, vanilla pilco uses an

RBF called a squared exponential (SE) kernel

kSE(xp, xq) = κ2exp

(
−1

2
(xp − xq)>Λ−1(xp − xq)

)
= κ2exp

(
D∑
i=1

−‖xpi − xqi‖
2

2`2
i

)
,

(3.8)

with xp, xq ∈ RD, where κ2 is the signal variance of h and Λ = diag (`2
1, . . . , `

2
D) is a

diagonal matrix of the characteristic length scales `i, i = 1, . . . , D, roughly describing

the distance at which points become more correlated. Usually we add a noise covariance

function δpqσ
2
ε such that kh = kSE + δpqσ

2
ε , where δpq is the Kronecker delta and σ2

ε is the
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noise variance. All of the hyperparameters of h can be optimised by maximum likelihood,

when training the model.

3.0.2 Observations

Ultimately, the point of kriging is to find a model that describes the observed states well

enough to make predictions on the optimal actions to choose, given new states. To this end,

we need to ensure that the Gaussian process corresponding to our SE kernel is expressive

enough to represent the function learned by our data with sufficient accuracy. To this

end, it would be incredibly helpful if SE kernels were universal function approximators,

the same way neural networks are (see Theorem 1.2).

Consider a function

h(x) =
∑
i∈Z

lim
N→∞

N∑
n=1

γn exp

(
−
(
x− (i+ n

N
)
)2

λ2

)
, (3.9)

with x ∈ R, λ ∈ R+, variance λ2

2
, and normal weights γn ∼ N (0, 1), n = 1, . . . , N . As

N →∞, we can replace the sums with an integral over R as

h(x) =
∑
i∈Z

∫ i+1

i

γ(s) exp

(
−(x− s)2

λ2

)
ds

=

∫ ∞
−∞

γ(s) exp

(
−(x− s)2

λ2

)
ds,

(3.10)

with γ(s) ∼ N (0, 1). This is Gaussian noise convolved with a Gaussian kernel, meaning h

is a Gaussian process according to Definition 3.1.

Notably, the prior mean function, calculated by averaging h over γ is

E
γ

[h(x)] = 0, (3.11)

because E [γ(s)] = 0. Additionally, because the prior mean is 0, we can calculate the prior

covariance function by completing the square, giving

cov [h(x), h(x′)] = κ2 exp

(
−(x− x′)2

2λ2

)
, (3.12)

for suitable κ2 [17].

Therefore, the prior mean function and the prior covariance function of h(x) in

Equation 3.9 correspond to the assumptions we made in Section 3.0.1: that we have a
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prior mean function mh ≡ 0 and prior covariance function given Equation 3.8. That is,

the Gaussian prior implicitly assumes functions h that can be described by the function

in Equation 3.9. All we have to prove is that h is a universal function approximator.

Definition 3.4. A continuous kernel k on a compact domain X is universal if the space

of all functions induced by k is dense in C(X ), i.e. for every function f ∈ C(X ) and every

ε > 0 there exists a function g induced by k with

‖f − g‖∞ ≤ ε. (3.13)

Theorem 3.5 (Universal Power Series Kernels [64])

A kernel k(x, x′) = k (〈x, x′〉) defined on Rn with power series expansion

k(r) =
∞∑
i=0

air
i (3.14)

is a universal kernal if and only if ai > 0 for all i.

The proof can be found in [64], which relies on the span of an injective feature map

being an algebra.

Lemma 3.6

Let k be a universal kernel on X . Then the normalization

k∗(x, x′) =
k(x, x′)√

k(x, x)k(x′, x′)
(3.15)

also defines a universal kernel on X .

Proof. Let φ : X → H be a feature map of k and α(x) = k(x, x)−1/2 so that αφ : X → H

is a feature map of k and k is a kernel.

Let f ∈ C(X ) and ε > 0. For a = ‖α‖∞ we get an induced function g = 〈w, φ( · )〉
with ∥∥α−1f − g

∥∥
∞ ≤

ε

a
. (3.16)

Then

‖f − 〈w, αφ( · )〉‖∞ ≤ ‖α‖∞
∥∥α−1f − g

∥∥
∞ ≤ ε. (3.17)

By Definition 3.4, k∗(x, x′) is universal.
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Theorem 3.7 (Universal RBF Kernel [64])

The radial basis function (RBF) kernel

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
(3.18)

is universal.

Proof. First note that the kernel k(x, x′) = exp (γ〈x, x′〉) is universal by Theorem 3.5.

exp

(
−‖x− x

′‖2

2σ2

)
= exp

(
−
(
‖x‖2 − 2〈x, x′〉+ ‖x′‖2)

2σ2

)

=
exp

(
〈x,x′〉
σ2

)
exp

(
‖x‖2
2σ2

)
exp

(
‖x′‖2
2σ2

)
=

exp
(
〈x,x′〉
σ2

)
√

exp
(
‖x‖2
σ2

)
exp

(
−‖x′‖

2

σ2

)
=

exp (γ〈x, x′〉)√
exp

(
γ ‖x‖2) exp

(
γ ‖x′‖2) ,

(3.19)

for γ =
1

σ2
, meaning the RBF kernel k(x, x′) is also universal, by Lemma 3.6.

An alternative proof can be found in [40]. Therefore, functions h of the form in

Equation 3.9 that are described by an RBF kernel are universal function approximators

on compact subsets of RD, approximating functions arbitrarily closely in the ∞-norm.

3.0.3 Posterior

Given a set of input vectors X and observed function values y with yi = h(xi) + εi,

i = 1, . . . , N , the posterior distrubition over h is given by

p(h|X, y, θ) =
p(y|h,X, θ)p(h|θ)

p(y|X, θ)
, (3.20)

by Bayes’ theorem.
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Figure 3.2 Samples from the GP posterior after having observed 8 function values (+’s).
The posterior uncertainty depends on the location of the training inputs.

Then the likelihood of h is a finite probability distribution given by

p(y|h,X, θ) =
N∏
i=1

p(yi|h(xi), θ)

=
N∏
i=1

N
(
yi|h(xi), σ

2
ε

)
= N

(
y|h(X), σ2

εI
)
,

(3.21)

where I is the identity matrix. This posterior Gaussian process has mean

E
h

[h(x)|X, y, θ] = kh(x̃, X)
(
kh(X,X) + σ2

εI
)−1

y, (3.22)

and covariance

cov
h

[h(x), h(x′)|X, y, θ] = kh(x, x
′)− kh(x,X)

(
kh(X,X) + σ2

εI
)−1

kh(X, x
′), (3.23)

where x, x′ ∈ RD are arbitrary vectors called test inputs. As seen in Figure 3.2, the GP

posterior significantly reduces the prior uncertainty about h from the GP prior seen in

Figure 3.1 with only a few samples.

Evaluating the marginal likelihood in the denominator of Equation 3.20 gives the

normalizing constant ∫
p(y|X, h, θ)p(h|θ) dh. (3.24)

This integral ends up being analytically intractable, requiring numerical methods to
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solve [66]. Instead of integrating out a hyper-prior p(θ) on the hyperparamters and

approximating using Monte Carlo methods, pilco instead finds a reasonable point-

estimate θ̂ by maximizing the marginal likelihood in Equation 3.24 as

θ̂ = arg max
θ

log p(y|X, θ). (3.25)

By using evidence maximization, a compromise is made between data fit and model

complexity that helps avoid overfitting.

3.0.4 Predictions

In order to use Gaussian processes to make predictions and learn, we need to compute

the posterior predictive distribution of h(x∗) for any test input x∗.

From Definition 3.1, the function values for training inputs X and test inputs X∗ are

jointly Gaussian with

p(h, h∗|X,X∗) = N

([
mh(X)

mh(X∗)

]
,

[
K kh(X,X∗)

kh(X∗, X) K∗

])
, (3.26)

with h = [h(x1, . . . , h(xn)]> and K is the kernel matrix with Kij = kh(xi, xj).

For test predictions x∗ ∈ RD and observed values y∗ ∈ R, the predictive marginal

distribution p (h(x∗)|D, x∗) of the function value is Gaussian, from Equation 3.26. This

has mean

mh(x∗) = E
h

[h(x∗)|X, y]

= kh(x∗, X)
(
K + σ2

εI
)−1

y

= kh(x∗, X)β,

(3.27)

and covariance

σ2
h(x∗) = var

h
[h(x∗)|X, y]

= kh(x∗, x∗)− kh(x∗, X)
(
K + σ2

εI
)−1

kh(X, x∗),
(3.28)

with β = (K + σ2
εI)
−1
y.

For multivariate predictions with y∗ ∈ RE, the same process is used to train E

independent Gaussian process models, with the same training inputs X, but separate

training targets ya = [ya1 , . . . , y
a
N ], a = 1, . . . , E. Then the predictive distribution of h(x∗)
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is a multivariate Gaussian with mean

µ∗ =
[
mh1(x∗) . . . mhE(x∗)

]
, (3.29)

and covariance

Σ∗ = diag
([
σ2
h1

. . . σ2
hE

])
, (3.30)

from Equation 3.27 and 3.28, respectively.

While testing, instead of sampling from a distribution, we can use a deterministic

RBF network policy

π(x, θ) =
N∑
i=1

βiφi(x),

φi(x) = exp

(
−1

2
(x− µi)TΛ−1(xi − µi)

)
,

(3.31)

which is equivalent to the mean of a Gaussian process, as φi(x) is just our SE kernel from

Equation 3.8. Here, N is the number of basis functions of the RBF network. If the policy

receives D dimensional inputs and implements an E-dimensional control signal, we need

to optimize N(D + E) + (D + 2)E parameters.

3.0.5 Rewards

Unlike the normalized discounted rewards in Equation 2.6 used for the algorithms in

Chapter 2, pilco uses a bounded exponential cost function (negative rewards) that

saturates at c(x) = 1 when x is not close to the target:

c(x) = 1− exp

(
−‖x− xtarget‖2

σ2
c

)
∈ [0, 1] (3.32)

where σc controls the width of c. In [16], learning was robust to the size of σc, with the

model still able to learn how to balance an inverted pendulum with σc = 10−6, although

there is no guarantee this type of cost will result in policy convergence. Unlike traditional

quadratic costs this cost function merely encodes that a state is simply “far away” from

the target state.
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This is used in the value function

V π(s0) = E
τ

[
T∑
t=0

c(st)

]

=
T∑
t=0

E
st

[c(st)] ,

(3.33)

where τ is the trajectory of states [s0, . . . , sT ], with the goal of minimizing expected costs.

3.1 Implementing PILCO

In order to use pilco to predict a function h(x) or learn a control, we have to specify our

training set X, testing set x∗, and targets y. Ultimately, we are trying to predict future

states st+1 given current inputs st and actions at.

We introduce new quantities ∆t = st+1−st+ε as training targets, where ε ∼ N (0,Σε),

Σε = diag (σε1 , . . . , σεD). This is the function h that we will be estimating through the

Gaussian process regression outlined in Section 3.0. We consider an unknown dynamics

system

st+1 = f(st, at), (3.34)

with continuous states s ∈ RD, actions a ∈ R, and tuples (st, at) ∈ RD+1 as training inputs.

To obtain the state distributions p(s1) through p(sT ), we make a series of predictions one

time step at a time, mapping uncertain test inputs through the GP dynamics model.

3.1.1 Dynamics Model Learning

To predict a future state st+1 from p(st), we require a joint distribution p(st, at). We do this

by first analytically computing the mean µa and covariance Σa of the predictive control dis-

tribution p(at) by integrating out the state. Next, compute the cross-covariance cov [st, at]

and approximate the joint state-control distribution p(xt) := p(st, at) = N (xt|µt,Σt)

by a Gaussian with matching moments. Although p(at) and p(st, at) are not necessarily

Gaussian or even unimodal, we assume a joint Gaussian distribution as in the bottom right

of Figure 3.3. As bimodal distributions can lead to the policy prematurely converging to

an unfavourable minimum, approximating the control with a Gaussian is more robust than

a better fitting variational distribution that minimizes the KL-divergence, for example.

Such a distribution is likely to produce overconfident predictions that are not well suited

for optimal control [7].
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Figure 3.3 GP prediction at an uncertain input. The input distribution p(st, at) is assumed
Gaussian (lower right panel). When propagating it through the GP model (upper right
panel), we obtain the shaded distribution p(∆t), upper left panel. We approximate p(∆t)
by a Gaussian with the exact mean and variance (upper left panel).

The Gaussian process yields predictions one time step in the future

p(st+1|st, at) = N (st+1|µt+1,Σt+1) ,

µt+1 = st + E
f

[∆t] ,

Σt = var
f

[∆t] .

(3.35)

To get to st+1 we need to predict the distribution

p(∆t) =

∫
p (f(xt)|xt) p(xt) dxt. (3.36)

We integrate out the random variable xt = (st, at), where p (f(xt)|xt) is obtained from the

posterior GP distribution. As in Equation 3.24, this integral is analytically intractable, so

we approximate p(∆t) using a Gaussian, as seen in the upper left of Figure 3.3. Since we

know the mean and variance of the posterior GP, from Equation 3.22 and 3.23, we can

ensure the moments match.

At this point, a Gaussian approximation to p(xt+1) is just N (xt+1|µt+1,Σt+1) with

µt+1 = µt + µ∆

Σt+1 = Σt + cov [st,∆t] + cov [∆t, st] ,
(3.37)

where cov [∆t, xt] = cov [st, at] Σ−1
a cov [at,∆t], which can often be computed analytically,

as in Equation 3.27 and 3.28. However, each of these calculations involves inverting an
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N ×N matrix, which involves O(EN3) computations per gradient step, for E different

target dimensions. This is only practical for somewhat short rollouts, being unsuited for

tasks requiring a large number of trials. Optimizing the dynamics model for just one trial

of an inverted pendulum takes ∼ 30 minutes on a CPU.

By recursively feeding the output state distribution with uncertainty as the input

state distribution with uncertainty as the next time step, this allows the agent to consider

long-term consequences of a particular parametrization, minimizing cumulative expected

costs. Predictions at uncertain test inputs scale with O(E2N2D), where N is the number

of trials, D is the dimensionality of the input, and E is the dimensionality of the output.

To this end, we calculate the analytic gradients of the value function

dV πθ(s0)

dθ
=

T∑
t=0

d

dθ
E
st

[c(st)] , (3.38)

where
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E
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)
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E
st

[c(st)]

)
dΣt

dθ
,

(3.39)

and µt and Σt are the moments of the state distribution p(st) = N (st|µt,Σt). Through

repeated application of the chain rule, these gradients can be determined analytically,

allowing the value function to be minimized using conjugate gradients, or BFGS.

By default, pilco uses a limited-memory version of BFGS: a Quasi-Newton method

that iteratively computes an estimate of the inverse Hessian in order to minimize the

value function V (θ) [36]. It is O(N2), and implemented through SciPy.

Given a positive definite matrix M0 like the identity I, the search direction is set to

ρk = Mk∇V (θk), (3.40)

using the gradients determined from backpropagation. Next, a line search is performed

along ρ, giving the update for the parameters at step k

θk+1 = θk − ηkρk. (3.41)
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Finally, the Hessian is updated according to

Mk+1 = Mk

(
1 +

ψ>Mψ

δ>ψ

)
δδ>

δ>ψ
−
(
δψ>M +MψδT

δ>ψ

)
, (3.42)

where ψ = ∇V (θk+1)−∇V (θk) and δ = θk+1 − θk.
The algorithm implemented in the penultimate step of Algorithm 7, detailing a

high-level view of pilco in full.

Algorithm 7: Training with pilco. This is generally quite slow.

Initialize controller parameters θ ∼ N (0, I);
Apply random control signals and record data;
repeat

Learn probabilistic dynamics model with all data;
Model-based policy search;
repeat

Approximate inference for policy evaluation;

Gradient based policy improvement; get dJπ(θ)
dθ

;

until convergence;
Set π∗ = π(θ∗);
Apply π∗ to system (single trial) and record data

until task learned;

3.1.2 Testing

Once a Gaussian process dynamics model is successfully learned (e.g. in a simulation), it can

be tested on a real plant, like our inverted pendulum. This is a relatively straightforward

process compared to learning the GP dynamics model, because all of the optimization

is done. The test points x∗ are completely deterministic, defined as single point with no

variance to worry about. Algorithm 8 describes the process in MATLAB.

Due to physical constraints on the controller, pilco makes the somewhat baffling

decision to squash the control to within the amplitude limits [−amax, amax] by calculating

π(x∗) = amax sin (π̃(x∗)) , (3.43)

with π̃(x∗) = β>π kπ(Xπ, x∗), x∗ ∈ RD. While other squashing functions were introduced

later [18], they are still periodic, instead of something reasonable like the hyperbolic tangent
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Algorithm 8: Testing an optimized dynamics model. This is run in real time.

input : GP means X = xi ∈ RD, i = (1, . . . , N)
input : Targets y ∈ RN

input : Lengthscales Λ = diag(`2
1, . . . , `

2
D)

input : SE kernel K ∈ RN×N with optional noise σ2
ε

Calculate β = (K + σ2
εI)
−1
y;

repeat
Collect the next state st;

Calculate kh(xi, st) = exp
(
−1

2
(xi − st)TΛ−1(xi − st)

)
;

Then kh(X, st) = [kh(x1, st), . . . , kh(xn, st)]
>;

Set π∗ = β>kh(X, st);
Perform action sin(π∗) to system;

until task failed;

function seen in Figure 1.2 or a saturation clip function used for PPO in Algorithm 6,

both of which locally approximate the identity function at the origin, and are bounded in

[−1, 1]. By using sine, the output actually decreases when the predicted control rises past

at = π/2, producing unfavourable actions in the wrong direction.

Because we no longer have to optimize a controller after every trial, this is able to run

in real time, without any computational or memory issues. There is no longer a limit on

the number of steps N that can be computed, meaning individual tests can run for as

long as required, or until the task fails.

3.1.3 Extensions

How does pilco learn so well? Part of its success stems from the fact that it experiences

compounding improvements from all of the tweaks suggested in Section 2.5. While each

marginal improvement might only improve training by a comparatively small percentage,

using all of them at once results in a drastic reduction of data needed to learn simple

models. This can be seen in Table 4.1, as the best trial for the policy-based algorithms

was usually considerably faster than the average result. Although this was due to policies

being learned from “lucky” initializations, keeping an experience buffer of all previous

states makes a lucky initialization at some point in training increasingly likely, which is

then incorporated into the probabilistic model.

Given the extreme data-efficiency this algorithm is able to obtain, it is almost surprising

that it has been improved in recent years. Unsurprisingly, each extension is a modification

of the original algorithm designed to tackle a specific problem inherent in the system.
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Figure 3.4 Cost per trial for pilco and Deep pilco for cartpole swing-up task [22].

3.1.3.1 Deep PILCO

The most obvious downside presented by pilco is the massive computational demands

required to optimize the controller, making it impractical for many data points or high-

dimensional state spaces [67], due to the fact that its distribution propagation adds a

squared term to the state space dimensionlity. As such, we were unable to replicate the

same training steps from from Chapter 2, due to out-of-memory errors when training for

500 time steps.

This is addressed by Deep pilco [22], which uses Bayesian deep dynamics models

with approximate variational inference, by using a recurrent neural network (RNN)

with Dropout as a surrogate for a variational Bayesian approximation. It uses the same

Algorithm 7 as pilco, but uses deep neural networks instead of Gaussian processes, which

are capable of scaling to high-dimensional state spaces, scaling with O(ED). Although it

takes approximately twice as many trials to learn a given task, the learned models have

reduced cost and variance, when compared with vanilla pilco, as seen in Figure 3.4.

3.1.3.2 SafePILCO

Further training speedups are found in SafePILCO [51], which extends the original algo-

rithm with safety constraints embedded in the training procedure. By avoiding known

dangerous states, this reduces the uncertainty in the distribution propagated through

the Gaussian processes, leading to more confident predictions and earlier convergence.

SafePILCO was able to balance a virtual inverted pendulum for 2 seconds (100 timesteps)

after only 3 trials (with an additional 5 random pre-training rollouts, collecting data

without optimizing the controller).

Additionally, SafePILCO was implemented entirely in Python, allowing it to take
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advantage of OpenAI Gym environments and TensorFlow GPU access. Helpfully, the

authors made their code available1, included vanilla pilco implemented in Python as

well, which allowed us to take advantage of the GPU speedups and use our custom Gym

environment defined in Chapter 1. This step alone resulted in a 2–3× speedup over vanilla

pilco implemented on a CPU in MATLAB for the same number of trials.

3.1.3.3 Active Exploration PILCO

Another thing pilco fails to consider is the accuracy of the dynamic model it learns,

instead only optimizing cumulative rewards. By using information entropy to describe

samples, Active Exploration pilco [69] is able to obtain informative policy parameters in

the policy improvement state, increasing data-efficiency even further. It achieves this by

incorporating an information entropy criterion JE(X) = ln (|Σ(X)|) into the long-term

sample prediction during the policy evaluation stage. Then the policy evaluation objective

function becomes

J(πθ) =
T∑
t=0

E
xt

[c(xt)] + α
T∑
t=0

ln (|Σ(X)|) . (3.44)

By actively selecting samples in a way that maximizes entropy early on, AEpilco is

able to more closely match the predicted cost function to the real cost function, slightly

reducing the number of trials required to swing up an inverted pendulum, with an even

greater reduction found in problems with a higher dimensional state space. By using an

exponentially decaying exploration parameter, AEpilco was able to decrease the number

of trials by up to 50% across a variety of tasks.

3.1.4 Hyperparameter Optimization

The training steps laid out in Algorithm 7 are incredibly data-efficient by default. However,

there is an enormous amount of tweaking that can be performed in order to get the best

performance out of the system without actually modifying pilco like the algorithms in

the previous section.

In addition to the number of radial basis functions defining the learned dynamics

model (chosen to be 32, corresponding the number of neurons in the hidden layer used

by the algorithms in Chapter 2), you can also change the number of steps a trial goes

for. Google Colab’s GPUs ran out of memory when running for the full 500 time steps.

To get around this, instead of shortening the trial to decrease N , you can increase the

subsampling parameter, which applies the same action for several time steps in a row,

1https://github.com/nrontsis/PILCO
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without creating a new input point. This effectively reduces the time step size from 1
50

s

to 1
25

s or even 1
10

s, with subsampling parameters of 2 and 5, respectively. The same 10

second rollout would only require N = 100 time steps, which is far more reasonable.

On the other hand, for tasks that have very short rollouts before failure (like balancing

an inverted pendulum), you can run several trials before optimization, collecting data

points without bothering to optimize the controller. You can also change the number of

iterations the BFGS optimization runs for, and the number of times the optimization

restarts, if it gets stuck in a local minimum.

One of the biggest differences between pilco and the algorithms in Chapter 2 is

that pilco has a target state, which we defined as zero velocity, centred at the unstable

equilibrium at the origin. Instead of a maximizing a rewards function encouraging the

agent to take actions that lead to longer lifetimes, it minimizes a cost function quantifying

the distance from the current state to the target state. Each component of the target

state can be individually weighted to provide the best control, much the same way the

parameters in LQR need to be tuned for optimal performance.

Importantly, pilco automatically employs many of the techniques discussed in Sec-

tion 2.5. In addition to keeping an experience buffer of all previously encountered states,

it also has a noise parameter which can be fixed to specify a certain amount of signal

noise during training and testing, which can help increase robustness to noisy sensors.

However by default, signal variance, signal noise, and lengthscales are all optimised by

maximum likelihood when training the model, in addition to the model hyperparameters,

as in Equation 3.25.

This comprehensive customization, combined with the probabilistic dynamics modeling

uncertainty allows pilco to push the limits of data-efficiency to unprecedented levels,

outperforming state-of-the-art methods by more than an order of magnitude [16]. While it

is not appropriate for every learning task, restricted to short rollouts and low-dimensional

environments, pilco and its variants are promising algorithms that could leave slow,

high-variance algorithms in the past.
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Chapter 4

RESULTS

We trained each of the algorithms in Chapter 2 and Chapter 3 across several different

hyperparameters. For the policy-based algorithms in Chapter 2, we changed the learning

rate η and discount factor γ. Smaller values of η took longer to train, so we only report

training curves for η = 10−2, with γ = {0.9, 0.99, 0.999}. For pilco, we changed the

number of trials J before optimization on the controller began (pre-optimization rollouts)

and the subsampling parameter S. Due to the large variance present in several of these

configurations, we trained each combination ten times for a maximum of 1000 episodes

each (10 for pilco), or until it learned to balance in the simulation for 500 time steps (10

seconds). Due to memory issues, we only trained pilco for 100 time steps (2S seconds),

but tested it for the full 500. Training was considered successful if the final model was

able to keep the virtual pendulum upright (|α| < 12◦) without running off the track

(|x| < 0.4m) for all 500 time steps.

4.1 Virtual Training

After training in a simulation, all the tested algorithms were able to balance a virtual

inverted pendulum, though they took different amounts of time to learn their policies.

Among policy-based algorithms, Actor-Critic performed slightly better than Policy Gradi-

ent across most discount factors, with γ = 0.99 resulting in the fastest learning on average,

as well as the most consistent learning for both algorithms. PPO was able to achieve

very fast learning times, but only infrequently. While half of the successful simulations

learned to balance a pole, more than half of all attempts crashed Google Colab due to

numerical instability. Specifically, due to the denominator of the surrogate objective in

Equation 2.32, the ratio occasionally explodes past floating point precision, returning

inf or nan. These unrecoverable attempts are not recorded in Table 4.1 or Figure 4.1.
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Table 4.1 Training results for all three policy-based algorithms from Chapter 2 across differ-
ent rewards discount factors γ. Bold numbers represent the least number of trials for each
column, italics are the best for each algorithm.

Algorithm γ Success % Average # Trials Best # Trials
PG 0.9 60% 339 202
PG 0.99 100% 245 80
PG 0.999 80% 340 118
AC 0.9 50% 300 91
AC 0.99 100% 250 19
AC 0.999 90% 255 46

PPO 0.9 50% 72 32
PPO 0.99 50% 258 23
PPO 0.999 50% 135 38

Figure 4.1 Policy Gradient, Actor Critic, and Proximal Policy Optimization for a variety
of discount factors γ. The mean trial is graphed, along with ±1 standard deviation, up to a
maximum of 500 time steps.

However, when PPO does not crash, it trains among the quickest of all the algorithms

tested, which is supported by results in the literature [60]. Among the trials that completed

1000 iterations without learning a sufficient policy or crashing, most appeared to get stuck

in a local optimum where the gradients failed to improve policy performance. For very

short rollouts, where the pendulum falls almost immediately, the loss function performs

unintuitively, encouraging actions that directly lead to the pendulum falling (Policy

Gradient) or discouraging all actions resulting in unstable performance (Actor-Critic and

PPO). Dynamically changing the hyperparameters η, γ, and ε may help resolve these

issues.

Similarly, pilco also had surprisingly varied results depending on the hyperparameters

chosen, as seen in Table 4.2 and Figure 4.2. When subsampling was not used, rolling out a

trial for 100 time steps was very memory-intensive, regularly crashing Google Colab with
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Table 4.2 Training results for pilco across different numbers of pre-optimization rollouts J
and subsampling S hyperparameters.

Algorithm J S Success % Average # Trials Best # Trials
pilco 0 1 10% 4 4
pilco 0 2 20% 5 3
pilco 2 1 70% 2.3 1
pilco 2 2 80% 2.4 1
pilco 4 1 100% 1.6 1
pilco 4 2 70 % 2.7 1

Figure 4.2 pilco across different hyperparameters. S represents how many time steps a new
data point is sampled; J is the number of trials before optimization starts. The mean trial is
graphed, along with ±1 standard deviation, up to a maximum of 500 time steps. Note: the
x-axis only goes up to 10—not 1000 as in Figure 4.1.

out-of-memory errors before a policy could be learned. By increasing the subsampling

parameter S to 2, the algorithm takes 2 time steps before observing transition dynamics.

While this loses some granularity in the control, it doubles the length observations, because

100 samples lasts four seconds instead of two. On average, using subsampling resulted in

slightly slower training, but a greater number of successful rollouts.

Because a limit of 100 time steps was chosen, with up to 10 rollouts, it was common

for the program to crash between 100 and 500 time steps, before all 10 trials had finished.

This could be drastically reduced by collecting transition data, performing J trials before

attempting to optimize the dynamics model. These pre-optimization rollouts usually gave

the optimizer “free” data that helped it learn the dynamics without wasting time and

memory optimizing the model. In the best case scenario, pilco was able to learn the a

sufficient policy after a single optimization of the pre-optimization rollouts. Compared

to the other algorithms, this is effectively learning after only a 1 trial (compared to a

best-case of 19 and an average case of 72 for the other algorithms, as seen in Table 4.1).
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4.1.1 Normalized Rewards

In each of the policy-based networks, we include the normalized discounted rewards-to-go,

described in Equation 2.6. The discount factor γ prevents ensures the rewards are finite,

and encourages the agent to seek immediate rewards instead of rewards over a longer

time-horizon, depending on the value chosen. However, this can still result in some rewards

that vary over a large range of magnitudes, especially in the case of large γ or a long

trial. Unfortunately, neural networks are not invariant to the scale of their input, and

normalizing input values can result in large improvements in performance on their own

[36]. As a rule of thumb, if something can be normalized, it probably should be normalized.

As a bonus, normalizing rewards causes the agent to encourage and discourage roughly

half of the actions, instead of encouraging all actions but encouraging bad actions less.

For Actor-Critic, the critic network is trying to estimate the normalized discounted

rewards—an estimate of the value function V πθ(s)—given only the state at each time

step. Even though it shares many of the parameters with the policy network defining

the distribution each action is sampled from, finding a good estimation is essentially an

impossible task. Given identical states the same amount of time before the pole falls and

the trial ends, the normalized discounted rewards-to-go associated with that time step

will differ depending on the length of the trial. The critic has no way of knowing how long

any particular trial is, so has no reasonable way to accurately estimate the value function.

The critic loss will necessarily be high, meaning less weight will be put on minimizing the

actor loss.

By discounting but not normalizing the rewards, this apparently solves that issue

entirely. After discounting only, identical states have identical rewards when they occur

the same amount of time before a trial ends. Since the critic only has access to the state

of the environment, it will predict the same value function given the same state, enabling

it to learn the function much better. It turns out, this is a non-issue. The critic network

is not trying to estimate the state-action value function Q(s, a); that would make the

gradients identically 0. Rather, it trying to estimate the expected return for a given state,

which the normalized discounted reward for that action only provides a sample estimate of.

Value estimates for the same states should be the same, regardless of when in a trial they

occur. Instead of encouraging actions that lead to longer lifetimes like Policy Gradient,

Actor-Critic encourages actions that perform better than expected, regardless of whether

the action ends up being particularly good. Similarly, this discourages actions that are

worse than expected, even if they do not cause the pole to fall. If the current action is

worse than the average action for that state, take another action.
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Table 4.3 Training results for unnormalized Actor-Critic with different γ.

Algorithm γ Success % Average # Trials Best # Trials
AC Unnormalized 0.9 30% 548 374
AC Unnormalized 0.99 50% 603 345
AC Unnormalized 0.999 30% 636 346

Figure 4.3 Discounted Rewards vs Normalized Discounted Rewards for Actor Critic.

As seen in Figure 4.3, the rule of thumb holds true: normalize everything. Despite not

being able to exactly learn the value function, performance of the normalized discounted

rewards was superior to unnormalized discounted rewards, especially for larger values of γ.

Comparing Table 4.3 to Actor-Critic’s rows in Table 4.1, we can see that the unnormalized

rewards only learned to balance less than half as often, usually taking more than twice

as long to get there. Large values of γ result in considerably larger discounted rewards

towards the beginning of a long episode, to the point where even a small percentage

error will result in a massive critic loss, which will give it far too much weight during

optimization. Normalizing the discounted rewards keeps the values in a much smaller

range, so the optimizer can focus primarily on updating the policy parameters instead.

4.1.2 Network Size

One thing that remained constant across all four algorithms was the size of the networks

used. The policy-based algorithms in Chapter 2 were all represented by neural networks

with a single hidden layer containing 32 neurons each. Due to the differences in the top

layer and value functions for each network, Policy Gradient had 226 trainable parameters,

Actor-Critic had 259 (value function), and PPO had 451 (226 for πθ and 225 for V̂φ).

Similarly, pilco’s RBF network was composed of 32 squared exponential kernels, consisting

of 166 trainable parameters. This network size was chosen completely arbitrarily, as this

was enough to learn to balance the inverted pendulum with Policy Gradient early on. In
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Table 4.4 Training results for Policy-Gradient with γ = 0.99 different numbers of neurons
in the single hidden layer. *: 0 neurons represents a direct connection from inputs to outputs
with no hidden layers.

Neurons Parameters Success % Average # Trials Best # Trials
0∗ 10 40% 502 295
1 9 60% 556 210
2 16 40% 409 137
4 30 60% 314 128
8 58 60% 384 187
16 114 40% 533 358
32 226 100% 245 80
64 450 100% 209 32

Table 4.4, we can see the effect of running Policy Gradient with γ = 0.99 and the same

configuration as the previously reported results, but with a different numbers of neurons

in the hidden layer.

Somewhat surprisingly, all of the smaller networks were able to learn an acceptable

policy about half of the time. A policy defined by a shallow network with only 1 hidden

layer neuron and 9 trainable parameters was still able to balance the pendulum within 210

trials, and a policy with no hidden layers at all was still able to learn within 295 trials. For

comparison, LQR is a linear controller—effectively a neural network with no hidden layers,

no biases, a single output neuron with linear activation, and only 4 parameters—and it

is still able to balance an inverted pendulum. That being said, the weights must still

be tuned to achieve optimal performance when minimizing the LQR objective. On the

other hand, larger networks were also able to consistently learn to balance the inverted

pendulum, presumably taking advantage of nonlinearities in the system to learn faster.

If fact, if we plot a few surfaces in Figure 4.4, we can see that the learned policy is

basically linear in x and α for each of the four algorithms.

A cross section in x and α can be seen in Figures 4.5 and 4.6, respectively. The control

appears to be far more sensitive to the angle than position, especially in the case of pilco,

which explains why it moves around the environment so much, as we will see. For some

reason, PPO only cares about positive values of x. For the most part, the sensitivity plots

of ẋ and α̇ look mostly the same, but with higher amplitudes.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

Figure 4.4 Surface plots showing the sensitivity of the controller to changes in x and α.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

Figure 4.5 Cross section of Figure 4.4, showing each algorithm’s sensitivity to changes in x.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

Figure 4.6 Cross section of Figure 4.4, showing each algorithm’s sensitivity to changes in α.

66



4.2 Real World Balancing

Once training is complete and a policy that can balance the pole for 10 seconds has been

successfully learned, the neural network or radial basis function network can be downloaded

as a series of matrices W1, b1, W2, b2 corresponding to the weights and biases of each layer

of the neural network or X, y, K, Λ corresponding to the Gaussian process means, targets,

squared exponential kernel, and lengthscales. These can be loaded into MATLAB, where

the network is recreated in a single block in Simulink. While later versions of MATLAB

have neural network support, the version we are using does not, meaning each network

must be recreated from scratch, using Equation 1.2 or Algorithm 8. During testing, we

ignore output neurons corresponding to the value functions and distribution variances,

using only the predicted means of each distribution for the controller. This significantly

reduces noise that was added to the model during training, which usually makes the real

model more robust.

The following pages are going to contain a whirlwind of colours and graphs, which

will be labeled and described in detail. In Figure 4.7, we can see the x-coordinate of the

state space for each controller as implemented for 20 seconds on a real inverted pendulum

described in Section 1.2. As you can see, the controller allows the cart to oscillate back

and forth along the track, each algorithm with its own frequency and amplitude. This is

unlike traditional controllers like LQR (Figure 4.7 (e)) that minimize the distance from

the origin by keeping the cart nearly still at x = 0. This is due to the way each controller

was trained. For the policy-based algorithms, we run a trial until the pendulum falls

or the cart runs off of the track (Algorithm 3). Through hundreds of trials, the agent

eventually learns not to let |x| > 0.4m; it continues to obtain rewards for any other values.

Because it is not explicitly encouraged to keep the cart stationary, it does not. Decreasing

the acceptable range of x-coordinates during would help keep the cart closer to the origin,

at the expense of increased training time, since the cart would fail and reset more often.

Notably, the oscillatory behaviour and biases to one side or another are usually reflected

in the simulated trials as well, although the amplitude of the oscillations is usually a little

larger in real life. Because the simulation matches the real agent so well, the actions it

takes are essentially the same, given the same states as input.

One notable exception to this is pilco. Unlike the policy-based algorithms, pilco is

given a target state [0, 0, 0, 0], with the goal of minimizing the distance to the target,

quantified as the cost function in Equation 3.32. As a result, trained pilco models are

usually very stable in a simulation, centred at the target state. However, this particular

trained model lets the cart slowly wander across the track to the very edge; sometimes

67



it runs off the track completely. This can easily be seen in Figure 4.5, as changes in the

x-coordinate have almost no effect on the controller, even at extreme values. A likely

explanation for this is that due to the extreme data-efficiency of pilco, it trained the

model over the course of 2 or 3 trials—not two or three hundred. It probably never

encountered an exit condition from letting |x| > 0.4m, so it never learned to avoid that.

In Figure 4.8, we can see the angle of the pendulum during the same 20 second

rollout on the real pendulum. Once again, we observe that controller lets the pendulum

oscillate back and forth—sometimes up to 2◦ in each direction—as it never was explicitly

encouraged not to do that. Although, pilco lets the cart move across the track freely, it

generally remains very close to upright as it does so, having the smallest average deviation

from vertical. Once again, LQR blows every other controller out of the water, with the

pendulum angle rarely rising above the quantized sensor noise. This raises an interesting

point: while reinforcement learning algorithms are capable of learning from scratch, they

generally learn exactly what they are rewarded for—in this case remaining relatively

upright and on the finite length of track. If the goal is to minimize the cart movement,

pendulum angle, or control effort, the desired behaviour has to be explicitly rewarded.

Figures 4.9 and 4.10 show the final two variables in the state space: ẋ and α̇. These

sometimes look like noisy versions of x and α because they were calculated numerically,

through a digital filter.

Finally, we have Figure 4.11, showing the voltage applied to the controller; these

are the actions at that our networks output. Unsurprisingly, most of the controllers also

exhibit oscillatory behaviour, as they are calculated in response to oscillatory states. With

the notable exception of Policy Gradient, each controller is mostly able to keep the voltage

under 2V. What is more interesting is the amount of noise each controller exhibits. Policy

Gradient appears noisiest, which results in the highest voltages being sent to the motor.

Unlike the other controllers, which appear fairly smooth to the naked eye, Policy Gradient

is visibly slightly jerky, as it moves along the track. Perhaps a smoothing filter of some

kind could help improve performance, as long as does not cause a delay in the control.

4.3 Forced Disturbances

We have shown that each algorithm is able to balance a real inverted pendulum for at

least 20 seconds, although they usually continue balancing much longer than that, if

unperturbed. So what happens if we perturb the pendulum? In this section, we let the

pendulum balance on its own, waiting for it to begin the steady-state oscillations seen in

the previous section, then tap the pendulum gently. There was no way to standardize
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.7 State response x-coordinate for each algorithm over 20 seconds, steady.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.8 State response α-coordinate for each algorithm over 20 seconds, steady.

70



(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.9 State response ẋ-coordinate for each algorithm over 20 seconds, steady.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.10 State response α̇-coordinate for each algorithm over 20 seconds, steady.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.11 Control effort actions chosen by each algorithm for 20 seconds, steady.
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the force of impact, so the magnitude of each disturbance varies. Sometimes a tap would

cause the pendulum to fall, so we reset and tapped slightly lighter next time. However, in

cases where the same pendulum was tapped several times, the magnitudes were usually

very similar. As a result, the reported values in Table 4.5 are close to the maximum

disturbance that each model can recover from.

Table 4.5 How each trained model reacted to a disturbance. Bold numbers are better.

Algorithm Max Angle Max Voltage Cart Movement Overcompensation
PG 1.8◦ 10V 282mm 3.2◦

AC 2.5◦ 7.3V 175mm 5.5◦

PPO 0.9◦ 9.9V 247mm 8.7◦

pilco 3.2◦ 8.4V 550mm 3.7◦

pilco 6.4◦ 10V 770mm 7.4◦

In Figure 4.12, which shows the x values of the cart, we can see that after getting

tapped, the models resumed their oscillatory behaviour, albeit with a larger amplitude.

Interestingly, Policy Gradient and PPO resumed their normal behaviour relatively quickly,

while Actor-Critic took longer to reach steady state. Strangely enough, getting tapped

actually reduced the amount pilco travelled along the track, at least temporarily.

The same phenomenon can be seen for the angles α, as seen in Figure 4.13. Among the

policy-based algorithms, Actor-Critic performed the best, absorbing a 2.5◦ disturbance

without even saturating the motor. By comparison, Policy Gradient saturated the motor to

recover from a 1.8◦ disturbance, and PPO was unable to recover from any disturbances of 1◦

or greater. Interestingly, it was able to absorb the initial disturbance but overcompensated,

moving so quickly in the other direction that it deflected to 8.7◦, as seen in Table 4.5.

A possible reason Actor-Critic was able to handle the disturbance so well was the lack

of control noise when compared to other algorithms. That does not explain why PPO

performed so poorly though—perhaps the asymmetry of the controller.

Surprisingly, pilco was able to recover from the largest disturbance, displacing the

pendulum 3.2◦, without saturating the motor. In fact, it was able to withstand an

impressive 6.4◦ disturbance, on par with a well-tuned LQR control, but fell immediately

after. This was surprising because this was tested on several different models trained with

pilco, and only one of them was able to consistently recover from being tapped. In the

others, the pole usually remained upright, but the tap would send the cart careening

down the track, where it would inevitably fall off.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco: note expanded axis

(e) Linear-Quadratic Regulator

Figure 4.12 State response x-coordinate for each algorithm over 20 seconds, with a forced
disturbance (a light tap on the pole) 10 seconds in.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.13 State response α-coordinate for each algorithm over 20 seconds, with a forced
disturbance (a light tap on the pole) 10 seconds in.
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Figures 4.14–4.16 show the remaining variables in the state space ẋ and α̇, and the

voltage corresponding to the output of the controller. In all cases, the motor was briefly

saturated, or nearly so in the case of Actor-Critic and pilco, implying they could take a

little more.

4.4 Discussion

As we have seen, all of the tested algorithms are able to train a virtual model well enough

that it is able to balance a real inverted pendulum, while being robust to model errors,

sensor noise, and disturbances of the system. However, not every hyperparamter combina-

tion resulted in a model that learned to balance every time. This optimization process

took some trial-and-error in order to find a values that would train most consistently.

Even among fully trained algorithms, the performance in balancing the pole was

underwhelming, with the cart oscillating across the track, and some of the controllers

only being able to withstand the lightest disturbances. That being said, most of these

algorithms were implemented in their vanilla form, with hardcoded hyperparameters

specifying the conservative initial and terminal states of each trial. The algorithms did

exactly what they were supposed to: keep the pole upright and the cart on the track.

With a modified reward and loss function, more favourable results could be obtained.

Reinforcement learning is not always the best strategy to approach a task. While it

excels at learning a policy from scratch, policy-based algorithms offer no guarantees that

the policy will converge to the optimal one. Often, prior information on the environment

can be used to find a better traditional solution. Reinforcement learning, imitation learning,

or transfer learning can be used to build on that traditional solution, allowing the best

of both worlds. When the environment is unknown or simply too large for traditional

techniques to be implemented, that is where policy-based algorithms excel.

4.4.1 Improving Results

As discussed in Section 2.5, there are a number of techniques we can use in order to

improve on the goals outlined in Section 1.5. As a reminder, we wanted to:

• find an algorithm that will train a virtual pole to balance as quickly as possible

• ensure the algorithm is robust enough to be used on a real inverted pendulum.

In order to meet the first goal, we used a relatively large learning rate. Smaller

learning rates helped balance the virtual pendulum about as well as the models with
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.14 State response ẋ-coordinate for each algorithm over 20 seconds, with a forced
disturbance (a light tap on the pole) 10 seconds in.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.15 State response α̇-coordinate for each algorithm over 20 seconds, with a forced
disturbance (a light tap on the pole) 10 seconds in.
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(a) Policy Gradient (b) Actor-Critic

(c) Proximal Policy Optimization (d) pilco

(e) Linear-Quadratic Regulator

Figure 4.16 Control effort actions chosen by each algorithm for 20 seconds, with a forced
disturbance (a light tap on the pole) 10 seconds in.
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η = 10−2 reported in Table 4.1, but regularly took over 2500 trials to get there, which

was determined to be too long. However, there is some evidence that smaller learning

rates are able to learn more consistently; annealing the value of η over time may be

a good compromise. Additionally, the 32 neurons in the hidden layer were also chosen

arbitrarily, simply because it worked. As seen in Table 4.4, fewer neurons were still able

to balance the pendulum, but having more neurons in the hidden layer tends to increase

training speed, even if they are not necessary for learning. As we discussed in Corollary 1.5,

increasing approximating power requires an exponential increase in width, but perhaps

only a polynomial increase in depth; increasing the number of layers in a neural network

may speed up training more than increasing the number of neurons in one layer.

Larger increases in speed came from switching algorithms. Actor-Critic improved on

Policy Gradient by subtracting a baseline from the rewards function, reducing variance in

the gradients. Additional variance reduction techniques, like collecting several trials of

data before updating the parameters, similar to mini-batches in stochastic gradient descent

could also be used. PPO provided further increases in training speed on the trials that it

managed to learn an acceptable policy. However, its numerical instability and low success

rate make the current implementation difficult to recommend for this purpose, especially

considering its relative inability to recover from being tapped. Perhaps optimizing the

hyperparameters or introducing entropy could help regularize its performance.

Nevertheless, the fastest, most stable, and most fascinating algorithm tested was pilco.

With the ability to learn a reasonable policy from a single rollout, the unprecedented

data-efficiency combined with the excellent ability to recover from a disturbance make

this algorithm fast and robust: exactly what we want. It is not without its problems

though. While a competent high school student could understand the ideas behind most

simple policy-based algorithms and Q-learning, pilco is considerably more complex both

to understand and to run. It was the only algorithm that was not coded from scratch for

this dissertation. While there are numerous hyperparameters that can be tweaked and

optimized, choosing a reasonable set is fairly straightforward: collect enough data to learn

without running out of memory. Accordingly, its twin Achilles’ heels are the computational

complexity and strict memory requirements, making this algorithm impractical for high-

dimensional environments or problems with many data points. Although training in a

simulation allows it to take advantage of fast GPU compute, being able to solve the

one-trial optimizations in under a minute, the longer the trials lasted, the slower the

optimization got, occasionally taking more than 30 minutes for a single optimization step

before running out of memory. pilco is efficient because it has to be. If more than a

handful of trials were needed, it will run out of memory before finding an acceptable
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policy, more often than not. Variations and extensions to pilco resolve some of these

issues, extending its use-case beyond toy problems.

4.5 Conclusion

We have shown that it is possible to quickly and consistently train a simulation of an

inverted pendulum that is robust enough to balance in the real world. For small tasks,

pilco provides the best performance, training incredibly quickly in good conditions, while

simultaneously being able to absorb disturbances that it did not encounter during training.

Traditional policy-based algorithms like Actor-Critic and PPO were also able to obtain

some excellent results given the right hyperparameter set, and could likely do even better

with some small changes like annealing the learning rate and using an experience buffer or

entropy. Using virtual environments to balance an inverted pendulum with reinforcement

learning is a proof of concept that could make other reinforcement learning applications

more efficient. By letting computers train models in a simulation, they can quickly and

efficiently collect large quantities of data, highlighting specific, rare, or dangerous states

that would be difficult to obtain in the real world.

While this dissertation has been focused on the task of balancing a specific inverted

pendulum, it would be reasonable to extend the applications to other controls where

reinforcement learning is not normally used. We have already seen cars, drones, and robots

trained in a simulation using Policy Gradient and PPO. It is not a stretch to imagine

Actor-Critic being trained for satellite altitude adjustment and landing reusable rockets,

or pilco being used to optimize radiation therapy and control bipedal robots. The biggest

challenge reinforcement learning faces is the data-inefficiency of the algorithms. By using

techniques like domain randomization and variational autoencoders to bridge the sim-real

gap, training in a simulation presents a viable solution to that problem, opening the door

for reinforcement learning controls to be used in applications outside of academic research.

82



BIBLIOGRAPHY

[1] Abeysekera, B. & Wanniarachchi, W. K. “Modelling and Implementation of PID
Control for Balancing of an Inverted Pendulum” (2018), pp. 43–53.

[2] Achiam, J. Spinning Up in Deep Reinforcement Learning. OpenAI. 2018.

[3] Amini, A. et al. “Learning Robust Control Policies for End-to-End Autonomous
Driving From Data-Driven Simulation”. IEEE Robotics and Automation Letters
5.2 (2020), pp. 1143–1150.

[4] Amodei, D. et al. AI and Compute. 2018. url: https://openai.com/blog/ai-
and-compute/.

[5] Barto, A. G. et al. “Neuronlike adaptive elements that can solve difficult learning
control problems”. IEEE Transactions on Systems, Man, and Cybernetics SMC-
13.5 (1983), pp. 834–846.

[6] Bernstein, A. “Modeling and Control: Applications to a Double Inverted Pendulum
and Radio Frequency Interference”. PhD thesis. North Carolina State University,
2018.

[7] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[8] Bonatti, R. et al. “Learning Visuomotor Policies for Aerial Navigation Using Cross-
Modal Representations”. CoRR (2020). arXiv: 1909.06993.

[9] Branwen, G. GPT-3 Creative Fiction. https://www.gwern.net/GPT-3. 2020.

[10] Brown, T. B. et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.
14165 [cs.CL].

[11] Bryson, A. E. “A gradient method for optimizing multi-stage allocation processes”.
Proceedings of the Harvard University Symposium on digital computers and their
applications. 1961.

[12] Campbell, M. et al. “Deep Blue”. Artificial Intelligence 134 (2002), pp. 57–83.

[13] Cybenko, G. “Approximation by superpositions of a sigmoidal function”. Mathe-
matics of Control, Signals and Systems. Vol. 2. 1989, pp. 303–314.

[14] Dang, P. & Frank L, L. “Controller for swing-up and balance of single inverted
pendulum using SDRE-based solution”. 31st Annual Conference of IEEE Industrial
Electronics Society, 2005. IECON 2005. 2005.

83

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://arxiv.org/abs/1909.06993
https://www.gwern.net/GPT-3
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165


[15] Davison, E. & Theory, I. F. of Automatic Control. Technical Committee on. Bench-
mark Problems for Control System Design: Report of the IFAC Theory Committee.
International Federation of Automatic Control, 1990.

[16] Deisenroth, M. & Rasmussen, C. “PILCO: A Model-Based and Data-Efficient
Approach to Policy Search”. ICML. 2011, pp. 465–472.

[17] Deisenroth, M. P. “Efficient Reinforcement Learning with Gaussian Processes”.
PhD thesis. Karlsruhe Institute of Technology, 2010.

[18] Deisenroth, M. P. et al. “Gaussian Processes for Data-Efficient Learning in Robotics
and Control”. IEEE Transactions on Pattern Analysis and Machine Intelligence
37.2 (2015), pp. 408–423.

[19] Duan, Y. et al. “Benchmarking Deep Reinforcement Learning for Continuous
Control”. ICML. 2016. arXiv: 1604.06778 [cs.LG].

[20] Florian, R. “Correct equations for the dynamics of the cart-pole system” (2005).

[21] Gal, Y. “Uncertainty in Deep Learning”. PhD thesis. University of Cambridge, 2016.

[22] Gal, Y. et al. “Improving PILCO with Bayesian Neural Network Dynamics Models”.
Data-Efficient Machine Learning workshop, ICML. Vol. 4. 2016.

[23] Gatys, L. A. et al. A Neural Algorithm of Artistic Style. 2015. arXiv: 1508.06576
[cs.CV].
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Appendix A

PARAMETER VALUES

Table A.1 contains the model parameter values used for the Equations of Motion in

simulation. Some of these values found in the technical specifications of the Quanser

User Manual were found to be incorrect, and were determined experimentally through

parameter identification in [31].
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Table A.1 Model parameter values used in Equation 1.25–1.27.

Parameter Description Value

Bp
Viscous Damping Coefficient, as seen at the

Pendulum Axis
0.0024N · m · s/rad

Beq
Equivalent Viscous Damping Coefficient, as seen

at the Motor Pinion
5.4N · m · s/rad

g Gravitational Constant 9.8m/s2

Ip
Pendulum Moment of Inertia, about its Center

of Gravity
8.539× 10−3kg · m2

Jp Pendulum’s Moment of Inertia at its Hinge 3.344× 10−2kg · m2

Jm Rotor Moment of Inertia 3.90× 10−7kg · m2

Kg Planetary Gearbox Ratio 3.71
Kt Motor Torque Constant 0.00767N · m/A
Km Back Electromotive Force (EMF) Constant 0.00767V · s/rad

`p
Pendulum Length from Pivot to Center Of

Gravity
0.3302m

M Cart Mass 0.94kg
Mp Pendulum Mass 0.230kg
Rm Motor Armature Resistance 2.6Ω
rmp Motor Pinion Radius 6.35× 10−3m
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