
ABSTRACT

COONS, JANE IVY. Applications of Toric Geometry in Algebraic Statistics. (Under the direction of
Seth Sullivant.)

In the field of algebraic statistics, we use tools from algebra, geometry and combinatorics to

answer questions about statistical models viewed as algebraic varieties. In the present thesis, we

focus on two specific statistical models both of whose associated varieties are toric.

The first models that we discuss are two-way quasi-independence models, or independence

models with structural zeros. We classify the two-way quasi-independence models that have rational

maximum likelihood estimators, or MLEs. We give a necessary and sufficient condition on the bipar-

tite graph associated to the model for the MLE to be rational. In this case, we give an explicit formula

for the MLE in terms of combinatorial features of this graph. We also use the Horn uniformization

to show that for general log-linear modelsM with rational MLE, any model obtained by restricting

to a face of the cone of sufficient statistics ofM also has rational MLE.

Next, we discuss the toric geometry of the Cavender-Farris-Neyman model with a molecular

clock, or CFN-MC model. We give a combinatorial description of the toric ideal of invariants of

the CFN-MC model on a rooted binary phylogenetic tree and prove results about the polytope

associated to this toric ideal. Key results about the polyhedral structure include that the number of

vertices of this polytope is a Fibonacci number, the facets of the polytope can be described using

the combinatorial “cluster" structure of the underlying rooted tree, and the volume is equal to an

Euler zig-zag number. The toric ideal of invariants of the CFN-MC model has a quadratic Gröbner

basis with squarefree initial terms. We show that the Ehrhart polynomial of these polytopes, and

therefore the Hilbert series of the ideals, depends only on the number of leaves of the underlying

binary tree, and not on the topology of the tree itself. We give a formula for the numerator of the

Ehrhart series of these polytopes using the combinatorics of alternating permutations. These results

are analogous to classic results for the Cavender-Farris-Neyman model without a molecular clock.

However, new techniques are required because the molecular clock assumption destroys the toric

fiber product structure that governs group-based models without the molecular clock.
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CHAPTER

1

INTRODUCTION

In this chapter, we outline some background material that will be used in the present thesis. We

give a brief introduction to ideals, varieties and polytopes. We also introduce the notion of alge-

braic statistical models and their maximum likelihood estimates. Finally, we discuss group-based

phylogenetic models and, in particular, the Cavender-Farris-Neyman model.

1.1 Ideals and Varieties

Let C denote the field of complex numbers and let

C[x] :=C[x1, . . . , xn ]

be a polynomial ring in n variables. For each a ∈ Nn , we write xa :=
∏n

i=1 x ai
i . All definitions and

theorems in this section can be found in [22] unless otherwise cited.

Definition 1.1.1. An ideal in C[x] is a set of polynomials, I ⊂C[x] such that

• if f , g ∈ I , then f + g ∈ I , and

• if f ∈ I and h ∈C[x], then f h ∈ I .

A set of polynomials { f1, . . . , fr } ⊂ I is a generating set for I if every element of I has the form

r
∑

i=1

hi fi ,

1



for some hi ∈C[x]. If I has generating set { f1, . . . , fr }, then we write I = 〈 f1, . . . , fr 〉. The Hilbert basis

theorem guarantees that every ideal inC[x] has a finite generating set. A generating set is minimal if

no proper subset of it is also a generating set. Suppose that for some a ∈Cn , f1(a) = · · ·= fr (a) = 0.

Then by definition of an ideal, f (a) = 0 for all f ∈ 〈 f1, . . . , fr 〉. Thus, we may associate to each ideal

the following geometric object.

Definition 1.1.2. Let I ⊂C[x]. The affine variety of I is

{a ∈Cn | f (a) = 0 for all f ∈ I }.

A set of points in Cn is algebraic if it is an affine variety. Given any M ⊂Cn , the Zariski closure of M ,

denoted M is the inclusion-smallest algebraic set containing M . The vanishing ideal of M is

I (M ) := { f ∈C[x] | f (a) = 0 for all a ∈M }.

A polynomial is homogeneous if each of its terms has the same degree. An ideal is homogeneous

if it has a generating set consisting of homogeneous polynomials. In this case, one may also define

the projective variety associated to I . Define the equivalence relation ∼ on Cn+1−{0} by a∼ a′ if

and only if a=λa′ for some λ 6= 0. The n-dimensional complex projective space Pn is

Pn := (Cn+1−{0})/∼ .

For each a ∈Pn and homogeneous polynomial f , the value f (a ) is defined up to a nonzero constant;

however, the zero locus of f is well-defined.

Definition 1.1.3. Let I ⊂C[x] be a homogeneous ideal. The projective variety associated to I is

V (I ) := {a ∈Pn−1 | f (a) = 0 for all f ∈ I }.

All varieties discussed in the following chapters are projective.

Example 1.1.4. Let R =C[x11, x12, x13, x21, x22, x23]. Consider the ideal generated by the 2×2 minors

of the generic 2×3 matrix,
�

x11 x12 x13

x21 x22 x23

�

.

That is, I = 〈x11 x22− x12 x21, x11 x23− x21 x13, x12 x23− x13 x22〉. The affine variety of I is the set of all

2×3 complex matrices all of whose 2×2 minors vanish. This is the set of all 2×3 complex matrices of

rank less than or equal to 1. The projective variety, V (I ), lies in the projective space P5. The elements

of this projective space are equivalence classes of nonzero matrices, where A ∼ B if and only if

A =λB for some λ 6= 0. Scaling a matrix by a nonzero constant does not change its rank, so V (I ) is

the set of all ∼-equivalence classes of matrices whose rank is equal to 1. Note that V (I ) does not

contain the matrix of all 0s since this matrix is not in P5.
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In order to determine if a polynomial f lies in an ideal I , we wish to apply the division algorithm

to f using generators of I ; if the remainder of f upon division is zero, then f is in the ideal. However,

it is not necessarily the case that for any generating set G of I and any f ∈ I , the remainder of f

upon division by G is 0. In fact, one must use a special type of generating set called a Gröbner basis;

the following definitions prepare us to introduce these.

Definition 1.1.5. A term order on C[x] is a relation < on the monomials xa for a ∈Nn such that

• < is a total order,

• if xa < xb, then xaxc < xbxc for all c ∈Nn , and

• every non-empty set of monomials has a <-smallest element.

Many of the term orders that appear in the present thesis are known as weight orders. Fixω ∈Nn .

The weight order defined byω is denoted <ω. We say that xa <ω xb ifω ·a<ω ·b. In order to make

<ω a total order, one fixes another term order to break ties among monomials with the same weight.

Definition 1.1.6. Let f =
∑r

i=1 ci xai be a polynomial in C[x] and let < be a term order on C[x]. The

leading monomial, or initial monomial, of f under the term order<, denoted in<( f ) is the monomial

xa j that is <-maximal over all terms of f . If in<( f ) = xa j , then the leading term of f is LT<(f) := c j xa j .

The initial ideal of an ideal I ⊂C[x] is the ideal

in<(I ) := 〈in<( f ) | f ∈ I 〉.

Example (Example 1.1.4, continued.). Consider the weight order on R defined byω= (1, 2, 4, 2, 1, 3)

corresponding to the variables (x11, x12, x13, x21, x22, x23) of R . Let f1 = x11 x22− x12 x21. The weight of

the terms of f1 areω · (1,0,0,1,0,0) = 2 for x11 x22 andω · (0,1,0,0,1,0) = 4 for x12 x21. So in<ω ( f1) =

x12 x21. We often denote this by f1 = x12 x21− x11 x22 when the term order has already been defined.

We can now define a Gröbner basis of an ideal. As we shall see, Gröbner bases are important

when one wishes to apply the division algorithm to test ideal membership. Futhermore, in Section

1.1.1, we will see that Gröbner bases are essential for computing the vanishing ideal of the image of

a polynomial map.

Definition 1.1.7. Let I ⊂ C[x] be an ideal. Fix a term order < on C[x]. The set {g1, . . . , g s } ⊂ I is a

Gröbner basis if in<(I ) = 〈in<(g1), . . . , in<(g s )〉.

In order to check whether a set of polynomials G is a Gröbner basis, one can use the notion of

the S-polynomial of a pair of polynomials. Let f1, f2 ∈C[x] and let < be a term order onC[x]. For two

monomials xa, xb ∈C[x], their least common multiple is the monomial

LCM(xa, xb) :=
n
∏

i=1

x max{ai ,bi }
i .

3



Let m=LCM(in<( f1), in<( f2)). The S-polynomial of f1 and f2 is

S ( f1, f2) :=
m

LT<( f1)
f1−

m

LT<( f2)
f2.

Theorem 1.1.8 (Buchberger’s Criterion). Fix a term order < and a set of polynomialsG = {g1, . . . , g s }.
Let I = 〈g1, . . . , g s 〉. The following are equivalent:

1. G is a Gröbner basis for I .

2. The remainder of each S-polynomial S (g i , g j ) upon division by G is zero.

More over, this criterion provides an algorithm for computing Gröbner bases. Corollary 2.29 of

[22] describes this algorithm. In fact, Buchberger’s algorithm naturally outputs a Gröbner basis that

satisfies a special property called being reduced.

Definition 1.1.9. A Gröbner basis G with respect to term order < is reduced if for each g , g ′ ∈G , no

term of g ′ is divisible by in<(g ).

Example (Example 1.1.4, continued). Consider the weight order on R withω= (1, 2, 4, 2, 1, 3). Under

this weight order, the generators of I along with their leading terms are f1 = x12 x21 − x11 x22, f2 =

x21 x13− x11 x23 and f3 = x12 x23− x13 x22. We compute the S-polynomial of f1 and f2. We have that

LCM(LT<ω ( f1),LT<ω ( f1)) = x12 x13 x21. Therefore

S ( f1, f2) =
x12 x13 x21

x12 x21
(x12 x21− x11 x22)−

x12 x13 x21

x21 x13
(x21 x13− x11 x23)

= x11 x12 x23− x11 x13 x22

= x11 f3.

Since S ( f1, f2) is a multiple of f3, its remainder upon division by { f1, f2, f3} is zero. One can check

that the same is true for both of the other generators of I . So by Buchberger’s criterion, { f1, f2, f3} is

a Gröbner basis for I with respect to the term order <ω.

A Gröbner basis of an ideal is always a generating set. Moreover, one can use a Gröbner basis to

test ideal membership using the division algorithm.

Theorem 1.1.10. Let I ⊂C[x] be an ideal with Gröbner basis G . Let f ∈C[x]. Then f ∈ I if and only

if the remainder of f upon division by G is zero.

A key feature of algebraic varieties is whether or not they can be written as a union of proper

subvarieties. A variety V is irreducible if whenever V = V1 ∪V2 for two varieties V1 and V2, either

V1 ⊂ V2 = V or vice versa. An ideal I is prime if whenever f g ∈ I , either f ∈ I or g ∈ I . These two

notions are related by the following theorem.

Proposition 1.1.11. A variety V is irreducible if and only if its vanishing ideal I (V ) is prime.

4



Let V be a projective variety. The coordinate ring of V is the C[x]-module, C[V ] :=C[x]/I (V ).

Since I (V ) is homogeneous,C[V ] is finitely generated and graded. Therefore, when V is a projective

variety,C[V ] is a finitely generated, gradedC[x]-module. As such, it can be written as a direct sum,

C[V ] =
⊕

k≥0

C[V ]k ,

where C[V ]k is the degree k graded piece of C[V ].

Definition 1.1.12. The Hilbert function of V is

HFV (k ) = dimCC[V ]k .

The Hilbert series of V is the formal power series,

HilbV (t ) =
∑

k≥0

HFV (k )t
k .

The Hilbert series of V is always a rational function in t .

The Hilbert series encodes quantitative geometric information about a variety. The dimension

of V is one less than the degree of the denominator of its Hilbert series. Moreover, the degree of

the variety is the numerator of the Hilbert series evaluated at zero; this is equal to the number of

intersection points of V with a generic linear space of complementary dimension. To compute the

Hilbert series in practice, we use the fact that the Hilbert series of I is equal to that of in<(I ). So,

knowledge of a Gröbner basis of I is a key ingredient for the computation of a Hilbert series.

Example (Example 1.1.4 continued). The initial ideal of I using the weight order defined byω is

〈x12 x21, x13 x21, x12 x23〉. The k th graded piece of the vector space R/in<ω (I ) has as its basis the set

of all monomials of degree k not divisible by a generator of in<ω (I ). So the first few values of the

Hilbert function of in<ω (I ), and therefore of V (I ), are as follows. First, HFV (I )(0) = 1, since 1 is the

only degree 0 monomial. Then HFV (I )(1) = 6, since each variable has degree 1 and none of them

are in in<ω (I ). The number of quadratic monomials in R is
�7

2

�

= 21. All of these monomials are

in (R/in<ω (I ))2 except for the three generators of in<ω (I ). So HFV (I )(2) = 18. Using Macaulay2 or

another computer algebra software, one can compute that

HilbV (I )(t ) = 1+6t +18t 2+ · · ·=
1+2t

(1− t )4
.

So the dimension of V (I ) is 3 and the degree of V (I ) is 3.

1.1.1 Parametrized Varieties

A common way to describe a variety is to parametrize it by a polynomial map. We will do this

by defining a map of polynomial rings and describing the map it induces between varieties. Let

5



x= (x1, . . . , xn ) and y= (y1, . . . , ym ). Define the function,

φ : C[y]→C[x]

yi 7→φi (x)

where eachφi is a polynomial. The polynomial mapφ induces a morphismφ∗ :Cn →Cm defined by

φ∗(a) = (φ1(a), ...,φm (a)). Then the variety parametrized byφ∗ is the Zariski closure of the image of

φ∗, denoted im(φ∗). The varieties discussed in the present work are all parametrized by polynomial

(in fact, monomial) maps; however, one can also parametrize a variety via a rational map. The

vanishing ideal of a parametrized variety is the kernel of φ; we use the Elimination Theorem to

compute the generators of this vanishing ideal.

Definition 1.1.13. Let R = C[x1, . . . , xn , y1, . . . , ym ] be a polynomial ring. An elimination order, or

block order, < for x1, . . . , xn is a monomial order on R such that for all f ∈ R , if some yi divides

in<( f ), then f ∈C[y1, . . . , ym ].

Theorem 1.1.14. Letφ∗ :Cn →Cm be a morphism of varieties with coordinate functions (φ1, . . . ,φn ).

Let J ⊂C[x1, . . . , xn , y1, . . . , ym ] be the ideal generated by yi −φi (x1, . . . , xn ) for 1≤ i ≤m. Let < be an

elimination order for x1, . . . , xn on R and let G be a Gröbner basis for J with respect to <. Then the

vanishing ideal of the parametrized variety imφ∗ is generated by G ∩C[y1, . . . , ym ].

In other words, in order to find the vanishing ideal of im(φ∗), one can compute a Gröbner basis

for J with respect to an elimination order and take all elements of the Gröbner basis that only use

the variables y1, . . . , ym . In the next section, we will see a parametrization of the variety from Example

1.1.4. One nice property of parametrized varieties is that they are irreducible; equivalently, their

vanishing ideals are prime.

Theorem 1.1.15. Let φ : C[y]→ C[x] be a polynomial map and let φ∗ : Cn → Cm be its associated

morphism of varieties. Then im(φ∗) is an irreducible variety. Its vanishing ideal, ker(φ) is prime.

1.1.2 Toric Varieties

This section introduces toric varieties and ideals and some of their key properties. Much of the

content of this section can be found in Chapter 4 of [38] For a very thorough reference on toric

varieties, we refer the reader to [14]. There are many equivalent definitions of toric ideals and

varieites. The one that is the most relevant to the current work is that a toric ideal can be realized as

the kernel of a monomial map. We will now describe this construction.

Let A ∈Zd×n be an integer matrix. Let C[t] and C[x] be polynomial rings in d and n variables

respectively. The matrix A has a monomial map naturally associated to it. We defineφA :C[x]→C[t]
by

φA(xi ) =
d
∏

j=1

t
ai j

j

for each i . In words, the i th column of A is the exponent vectorφA(xi ).
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Definition 1.1.16. Let A ∈ Zd×n with associated monomial map φA : C[x]→ C[t]. The toric ideal

associated to A, denoted IA ⊂C[x] is the kernel ofφA . The toric variety associated to A is the variety

of IA .

Toric ideals are always generated by binomials. In fact, these binomials can be understood in

terms of the integer kernel of A. These results are summarized in the following theorem.

Theorem 1.1.17. The ideal IA is generated by all binomials of the form xu − xv where Au = Av, or

equivalently, where u−v ∈ ker(A). If 1 ∈ rowspan(A), then IA is homogeneous. Every reduced Gröbner

basis of IA consists solely of binomials.

Of course, the generating set described in Theorem 1.1.17 is infinite. However, one may compute

several finite generating sets by choosing different term orders and computing a Gröbner basis. A

generating set of a toric ideal is often known as a Markov basis.

Example 1.1.18 (Example 1.1.4 continued). Let R and I be as in Example 1.1.4. The matrix A ∈Z5×6

be the matrix

A =

















1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

















where the rows of A are indexed by s1, s2, t1, t2, t3 and the columns of A are indexed by x11, x12, x13,

x21, x22, x23. Then the monomial map

φA : R →C[s1, s2, t1, t2, t3].

is defined by φA(xi j ) = si t j . Let S = C[x, s1, s2, t1, t2, t3] and let J = 〈xi j − si t j 〉 ⊂ S . Let < be an

elimination order for {s1, s2, t1, t2, t3}. We use Macaulay2 to compute a Gröbner basis for J under

one such elimination order and obtain the Gröbner basis,

G ={x13 x22− x12 x23, x13 x21− x11 x23, x12 x21− x11 x22, t3 x22− t2 x23, t3 x21− t1 x23, t2 x21− t1 x22,

s2 x13− s1 x23, t3 x12t2 x13, s2 x12− s1 x22, t3 x11− t1 x13, t2 x11t1 x12, s2 x11− s1 x21,

s2t3− x23, s1t3− x13, s2t2− x22, s1t2− x12, s2t1− x21, s1t1− x11}.

Only the first three polynomials in G lie in R . So

ker(φA) = 〈x13 x22− x12 x23, x13 x21− x11 x23, x12 x21− x11 x22〉= I ,

the ideal described in Example 1.1.4. Consider the binomial f1 = x11 x22−x12 x21. The support vectors

of the two monomials of f1 are u = (1,0,0,0,1,0)T and v = (0,1,0,1,0,0)T respectively. Note that

u−v ∈ ker(A).
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Toric varieties find applications in algebraic statistics as log-linear models, which we shall explore

in Section 1.3. Moreover, they arise in phylogenetics as group-based phylogenetic models after a

linear change of coordinates. Toric ideals are especially nice to study as they have an associated

convex polytope that encodes some of their geometric data. In the next section, we introduce

polytopes and some key definitions and facts pertaining to them. Then we describe their relationship

with toric ideals.

1.2 Polytopes

In this section, we review polytopes and their Ehrhart theory. For a standard reference on polytopes,

we refer the reader to [45].

Definition 1.2.1. A V-polytope is the convex hull of finitely many points inRd . For a matrix A ∈Rd×n ,

we denote the convex hull of its columns by conv(A).

Definition 1.2.2. An H-polytope is the bounded intersection of finitely many half-spaces inRd . For

a matrix B ∈Rm×d and vector z ∈Rm , we write

P (B , z) = {x ∈Rd | B x≤ z}.

In fact, these two definitions are equivalent. This is the content of the following theorem.

Theorem 1.2.3. A set P ⊂Rd is a V-polytope if and only if P is an H-polytope.

Thus, we can simply call these objects polytopes. When a polytope P is presented as the convex

hull of finitely many points, this is known as a V-description. When it is presented as a bounded

intersection of half-spaces, this is known as an H-description. In order to compute a V-description

from an H-description or vice versa, one implements Fourier-Motzkin elimination. This process is

described in Chapter 1.2 of [45]. More generally, if we project a polytope P to obtain a polytope Q , one

can use Fourier-Motzkin elimination to use the H-description for P to compute an H-description of

Q . We take this approach for polytopes arising in mathematical phylogenetics in Chapter 4.

Definition 1.2.4. The dimension of a polytope P is the dimension of the affine hull of P . A face of a

polytope P is the set of all points of P on which some linear functional is maximized; that is, it is a

set of the form

F = {x ∈ P | a ·x≥ a ·y for all y ∈ P }.

for some a. We also include the empty set in the set of faces of P . A vertex of P is a 0-dimensional

face of P . If P has dimensional d , then a facet of P is a (d −1)-dimensional face of P .

Every polytope can be uniquely described as the convex hull of its vertices. When P is full-

dimensional in its ambient space, it also has a unique H-description in terms of its facets.
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Figure 1.1 The polytope described in Example 1.2.5

1

3

2

Example 1.2.5. Let P = conv(V )where

V =







0 1 0 0 1

0 0 1 0 0

0 0 0 1 1






.

In Chapter 3, we will show that P = P (B , z)where

B =































−1 0 0

1 0 0

0 −1 0

0 1 0

0 0 −1

0 0 1

1 1 0

0 1 1































and z=































0

1

0

1

0

1

1

1































In other words, the facets of P are defined by

0≤ x1 ≤ 1 x1+ x2 ≤ 1

0≤ x2 ≤ 1 x2+ x3 ≤ 1

0≤ x3 ≤ 1.

The polytope P has dimension 3 as it contains the standard simplex inR3. It has 5 vertices and 8

2-dimensional facets. It is a square pyramid with a shifted “point", as pictured in Figure 1.1.
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1.2.1 Ehrhart Theory

We turn our attention to the study of Ehrhart functions and series of lattice polytopes. Let P ⊂Rd

be a d -dimensional polytope with integer vertices. Since P is an integer polytope, its volume is

a rational number of the form Vol(P ) = V /d ! where V is an integer; in this case, the normalized

volume of P is V = d !Vol(P ). One can compute the normalized volume by finding unimodular

triangulations of P ; we will introduce these after the following preliminary definitions.

The Ehrhart function, iP (m ), counts the integer points in dilates of P ; that is,

iP (m ) = #(Zd ∩mP ),

where mP = {mv | v ∈ P } denotes the mth dilate of P . The Ehrhart function is, in fact, a polynomial

in m [4, Chapter 3]. We further define the Ehrhart series of P to be the generating function

EhrP (t ) =
∑

m≥0

iP (m )t
m .

The Ehrhart series is of the form

EhrP (t ) =
h∗P (t )
(1− t )d+1

,

where d is the dimension of P and h∗P (t ) is a polynomial in t of degree at most d . Often we just write

h∗(t )when the particular polytope is clear. The coefficients of h∗(t ) have an interpretation in terms

of a shelling of a unimodular triangulation of P , if such a shellable unimodular triangulation exists.

Definition 1.2.6. A triangulation of P is a set of d -dimensional simplices∆1, . . . ,∆s such that

1. the vertices of each∆i are also vertices of P

2. P =
⋃s

i=1∆i , and

3. for all i 6= j ,∆i ∩∆ j is a proper face of each.

A triangulation of P is unimodular if each∆i has normalized volume 1. If P has a unimodular

triangulation with s simplices, then the normalized volume of P is s .

The set of simplices in a triangulation of P forms the set of facets of a simplicial complex. To

each simplicial complex∆, we may associate a monomial ideal called its Stanley-Reisner ideal as

follows. Let∆ have v vertices. For each A ⊂ [v ], let iA ∈ {0, 1}v be the indicator vector for A. Then the

Stanley-Reisner ideal, denoted I∆ is an ideal C[x1, . . . , xv ] defined by

I∆ := 〈xiA | A 6∈∆〉.

The ideal I∆ is minimally generated by all inclusion-minimal non-faces of∆. Note that the generators

of I∆ are squarefree.
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Example (Example 1.2.5 continued). Let P be as in Example 1.2.5. A unimodular triangulation of P

is given by

∆1 =







0 1 0 0

0 0 1 0

0 0 0 1






and ∆2 =







1 0 0 1

0 1 0 0

0 0 1 1






.

So the normalized volume of P is 2. Let C[x] =C[x1, . . . , x5]where each indeterminate corresponds

naturally to a vertex of P in the order given in Example 1.2.5. Let∆ be the simplicial complex with

facets∆1 and∆2. The unique minimal non-face of this triangulation is the edge between (0, 0, 0)T

and (1, 0, 1)T . So the Stanley-Reisner ideal is

I∆ = 〈x1 x5〉.

We can now define the notion of a shelling of a triangulation.

Definition 1.2.7. Let ∆ be a pure d -dimensional simplicial complex with facets ∆1, . . . ,∆s . An

ordering∆1,∆2, . . . ,∆s on these facets is a shelling order if for all 1< r ≤ s ,

r−1
⋃

i=1

�

∆i ∩∆r

�

is a union of facets of∆r .

Equivalently, the order∆1,∆2, . . . ,∆s is a shelling order if and only if for all r ≤ s and k < r , there

exists an i < r such that∆k ∩∆r ⊂∆i ∩∆r and∆i ∩∆r is a facet of∆r . This means that when we

build our simplicial complex by adding facets in the order prescribed by the shelling order, we add

each simplex along its highest dimensional faces. Keeping track of the number of facets that each

simplex is added along gives the following relationship between shellings of a triangulation of an

integer polytope and the Ehrhart series of the polytope, which is proved in [4, Chapter 3].

Theorem 1.2.8. Let P be a polytope with integer vertices. Let {∆1, . . . ,∆s } be a regular unimodular

triangulation of P using no new vertices. Denote by h∗j the coefficient of t j in the h∗ polynomial of P .

If∆1, . . . ,∆s is a shelling order, then h∗j is the number of∆i that are added along j of their facets in

this shelling. Equivalently,

h∗(t ) =
s
∑

i=1

t ai ,

where ai = #{k < i |∆k ∩∆i is a facet of∆i }.

Example (Example 1.2.5 continued). The order∆1,∆2 is a shelling order in which∆1 is added along

none of its facets and∆2 is added along one of its facets. So since P is 3-dimensional, its Ehrhart

series is

EhrP (t ) =
1+ t

(1− t )4
.

One can also see this by computing the Ehrhart polynomial of P . We can see from Figure 1.1

that we add a square of lattice points for each integer dilate of P ; indeed, from the (k − 1)st to
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k th dilate of P , we add a square with edges of length k ; this contains (k + 1)2 lattice points. So

iP (k ) =
∑k

i=0(k + 1)2 = n (n+1)(2n+1)
6 . Multiplying by t k and summing over all k yields the Ehrhart

series.

1.2.2 Toric Ideals and Polytopes

We now describe the connections between toric ideals and polytopes. The following material can be

found in [38].

Let A ∈Zd×n be the matrix defining the monomial mapφA and let IA be the toric ideal obtained

as the kernel ofφA . Then the polytope associated to IA , denoted PA , is the convex hull of the columns

of A. We are especially interested in the case where PA is normal.

Definition 1.2.9. A polytope P ⊂Rd is normal if every lattice point in Zd ∩k P can be written as a

sum of exactly k lattice points in Zd ∩P .

One can study the polytope PA to learn combinatorial information about IA as summarized in

the following theorem.

Theorem 1.2.10. Let IA be a homogeneous toric ideal and let PA be its associated polytope.

1. The dimension of the projective variety V (IA) is the dimension of PA .

2. Suppose that A is such that the integer span of the columns of A is equal to Zd . Then the degree

of IA is the normalized volume of PA .

3. The polytope PA is normal if and only if the Hilbert series of IA is equal to the Ehrhart series of

PA .

4. The square-free initial ideals of IA are the Stanley-Reisner ideals of the regular unimodular

triangulations of PA .

Example (Example 1.2.5). Let A′ be obtained from the matrix A in Example 1.2.5 by adding a row

of all ones. This embeds the polytope in an affine slice of R4. On the level of the toric ideal, this

ensures that the parametrization and therefore the resulting ideal is homogeneous as described in

Theorem 1.1.17. The matrix A′ has a one-dimensional kernel that is generated by (1,−1, 0,−1, 1). So

IA′ = 〈x1 x5− x2 x4〉. Since IA′ is generated by a single quadratic binomial, its degree is 2; note that

this is also equal to the normalized volume of PA′ . One can also check that the Hilbert series of IA′ is

also (1+ t )/(1− t )4. Let < be a term order which picks x1 x5 as the initial term of the generator of IA′ ;

then the initial ideal is in<(IA′ ) = 〈x1 x5〉. This is the Stanley-Reisner ideal of the triangulation given

in the previous example.

1.3 Algebraic Statistical Models

A statistical model is a set of probability distributions or density functions. Typically, a statistical

model is specified as a parametrized family of distributions or as the set of all distributions that satisfy

12



certain properties. All statistical models considered in the present thesis are defined parametrically.

A typical objective in the field of algebraic statistics is to use algebra, geometry and combinatorics

to learn information about some statistical model. We refer the reader to [42] for a reference on

algebraic statistics.

1.3.1 Log-Linear Models

Let A ∈Zd×r with entries ai j . Denote by 1 the vector of all ones in Zr . We assume throughout that

1 ∈ rowspan(A). Let∆r−1 denote the (r −1)-dimensional probability simplex in Rr .

Definition 1.3.1. The log-linear model associated to A is the set of probability distributions,

MA := {p ∈∆r−1 | log p ∈ rowspan(A)}.

These are also known as toric models because, as we will soon see, their Zariski closures are toric

varieties. The matrix A is called the design matrix of the log-linear model.

Log-linear models are discrete exponential families. Algebraic and combinatorial tools are well-

suited for the study of log-linear models since these models have monomial parametrizations. Let

φA denote the monomial map specified by A. Then we have thatMA =φA(Rd )∩∆r−1. Indeed, when

each coordinate of φA(t) is positive, the logarithm of φA(t) is a linear combination of the rows of

A with coefficients t1, . . . , td . Background on log-linear models can be found in [42, Chapter 6.2].

Denote by C[p] :=C[p1, . . . , pr ] the polynomial ring in r indeterminates. Let IA ⊂C[p] denote the

vanishing ideal ofφA(Rd ) over the algebraically closed fieldC. SinceφA is a monomial map and the

row of all ones is in the rowspan of A, IA is a homogeneous toric ideal. So, as described in Theorem

1.1.17, it is generated by binomials whose exponent vectors correspond to elements of the integer

kernel of A.

One of the most common examples of a log-linear model is the independence model. To under-

stand this model, we must first describe some notation and define the notion of independence for

discrete random variables.

Let X and Y be discrete random variables on state spaces [m ] and [n ] respectively. Denote by

P (X = i ) the probability that X takes the value i ∈ [m ], and similarly for Y . Assume that P (X =

i ), P (Y = j )> 0 for all i ∈ [m ], j ∈ [n ]. We write P (X = i , Y = j ) to mean the probability that X takes

the value i and Y takes the value j . The probability of X = i given Y = j is denoted P (X = i | Y = j )

and defined by

P (X = i | Y = j ) =
P (X = i , Y = j )

P (Y = j )
;

this is known as a conditional probability. The random variables X and Y are independent if

P (X = i , Y = j ) = P (X = i )P (Y = j )

for all i ∈ [m ] and j ∈ [n ]. Equivalently, this means that P (X = i | Y = j ) = P (X = i ); so knowledge of
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Y does not give us any more information about X .

Definition 1.3.2. The m×n independence modelMm ,n consists of all joint probability distributions

on discrete random variables X and Y on state spaces [m ] and [n ] respectively such that P (X =

i , Y = j ) = P (X = i )P (Y = j ) for all i ∈ [m ], j ∈ [n ].

We claim thatMm ,n is a log-linear model; in fact, its Zariski closure is the projective variety of

all m ×n matrices of rank 1. It is parametrized by the monomial map

φm ,n :C[pi j | 1≤ i ≤m , 1≤ j ≤ n ]→C[s1, . . . , sm , t1, . . . , tn ]

which sends pi j to si t j . In the positive orthant, one may think of si as P (X = i ), t j as P (Y = j ), and

pi j as P (X = i , Y = j ). So this parametrization reflects that X and Y are independent. If we view

(pi j ) as an m×n matrix, we see that it has rank at most one; indeed, it is written as the outer product

(s1, . . . , sm )T (t1, . . . , tn ).

Example 1.3.3. The toric variety from Example 1.1.4 is the Zariski closure of the 2×3 independence

model. Its vanishing ideal is the ideal of 2×2 minors of a generic 2×3 matrix.

1.4 Maximum Likelihood Estimation in Log-Linear Models

Let A ∈ Zd×r be the design matrix for the log-linear statistical model MA . Given independent,

identically distributed (iid) data u ∈Nr , we wish to infer the distribution p ∈MA that is “most likely"

to have generated it. This is the central problem of maximum likelihood estimation.

Definition 1.4.1. LetM be a discrete statistical model inRr and let u ∈Nr be an iid vector of counts

recording the number of occurrences of each outcome in an experiment. The likelihood function is

L (p |u) =
r
∏

i=1

p ui
i .

The maximum likelihood estimate, or MLE, for u is the distribution inM that maximizes the

likelihood function; that is, it is the distribution

p̂= argmax
p∈M

L (p |u).

Note that for a fixed p ∈M , L (p |u) is exactly the probability of observing u from the distribution

p. Hence, the MLE for u is the distribution p̂ ∈M that maximizes the probability of observing u. The

map u 7→ p̂ is a function of the data known as the maximum likelihood estimator. We are particularly

interested in the case when the coordinate functions of the maximum likelihood estimator are

rational functions of the data. In this case, we say thatM has rational MLE.

The log-likelihood function `(p |u) is the natural logarithm of L (p |u). Note that since the natural

log is a concave function, `(p | u) and L (p | u) have the same maximizers. We define the maximum
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likelihood degree ofM to be the number of complex critical points of `(p | u) for generic u. Huh

and Sturmfels [25] show that the maximum likelihood degree is well-defined. In particular,M has

maximum likelihood degree 1 if and only if it has rational maximum likelihood estimator [24]. The

following result of Huh gives a characterization of the form of this maximum likelihood estimator,

when it exists.

Theorem 1.4.2 ([24]). A discrete statistical modelM has maximum likelihood degree 1 if and only if

there exists h= (h1, . . . , hr ) ∈ (C∗)r , a positive integer d , and a matrix B ∈Zd×r with entries bi j whose

column sums are zero such that the map

Ψ :Pr−1 ¹¹Ë (C∗)r

with coordinate function

Ψk (u1, . . . , ur ) = hk

d
∏

i=1

�

r
∑

j=1

bi j u j

�bi k

maps dominantly ontoM . In this case, the function Ψ is the maximum likelihood estimator forM .

In this context, the pair (B , h) is called the Horn pair that defines Ψ, and Ψ is called the Horn

map. For more details about the Horn map and its connection to the theory of A-discriminants, we

refer the reader to [16] and [24].

Example 1.4.3. Consider the matrix,

A =





















1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0





















and the log-linear modelMA that it defines. Let

S = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2)}.

We index the columns of A by the elements of S in the given order. In Chapter 3, we shall see that

MA is the quasi-independence model defined by S , and thatMA has rational MLE. In particular,
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we shall show that the Horn pair associated toMA is

B =









































1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1

1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1

0 0 1 0 0 1 0 0

1 1 0 1 1 0 0 0

−1 −1 −1 −1 −1 −1 0 0

−1 −1 0 −1 −1 0 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1









































with h= (−1,−1, 1,−1,−1, 1, 1, 1). The columns of B and h are also indexed by the elements of S . We

can use this Horn pair to write the MLE as a rational function of the data.

Let u ∈ NS be a vector of counts of iid data for the modelMA . Denote by u++ the sum of all

entries of u, and abbreviate each ordered pair (i , j ) ∈ S by i j . Then for example, the (1, 3) coordinate

of the MLE is

p̂13 = h13(u11+u12+u13)
1(u13+u23)

1(u11+u12+u13+u21+u22+u23)
−1u−1

++

=
(u11+u12+u13)(u13+u23)

u++(u11+u12+u13+u21+u22+u23)
.

Similarly, the (2, 3) coordinate is

p̂23 =
(u21+u22+u23)(u13+u23)

u++(u11+u12+u13+u21+u22+u23)
.

The following theorem, known as Birch’s Theorem, says that the maximum likelihood estimate

for u in a log-linear modelMA , if it exists, is the unique distribution p̂ inMA with the same sufficient

statistics as the normalized data. A proof of this result can be found in [42, Chapter 7].

Theorem 1.4.4 (Birch’s Theorem). Let A ∈ Zn×r such that 1 ∈ rowspan(A). Let u ∈ Rr
≥0 and let

u+ = u1+ · · ·+ur . Then the maximum likelihood estimate in the log-linear modelMA given data u is

the unique solution, if it exists, to the equations Au= u+Ap subject to p ∈MA .

Example (Example 1.4.3, continued). Consider the last row a6 of the matrix A. One sufficient statistic
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ofMA is a6 ·u= u13+u23. We must check that a6 ·u= u++a6 · p̂. Indeed, we compute that

a6 · p̂ =
(u11+u12+u13)(u13+u23)

u++(u11+u12+u13+u21+u22+u23)
+

(u21+u22+u23)(u13+u23)
u++(u11+u12+u13+u21+u22+u23)

= (u13+u23)
(u11+u12+u13+u21+u22+u23)

u++(u11+u12+u13+u21+u22+u23)

=
u13+u23

u++
,

as needed.

In the language of toric geometry, Birch’s theorem says that the maximum likelihood estimate

is the unique intersection point of the positive part of the toric varietyMA with the affine linear

space defined by Au= u+Ap. In practice, to check that a distribution p̂ is the MLE for data u, one

computes the vanishing ideal ofMA and checks that p̂ satisfies the generators ofMA and lies in

this affine linear space. We shall employ this technique to compute MLEs in quasi-independence

models in Chapter 3.

1.5 Group-Based Phylogenetic Models

The field of phylogenetics is concerned with reconstructing evolutionary histories of different

species or other taxonomic units (taxa for short), such as genes or bacterial strains. See [18, 31]

for general background on mathematical phylogenetics. In phylogenetics, we use trees to model

these evolutionary histories. The leaves of these trees represent the extant taxa of interest, while

the internal nodes represent their extinct common ancestors. Branching within the tree represents

speciation events, wherein two species diverged from a single common ancestor. One may use

combinatorial trees to depict only the evolutionary relationships between the taxa, or include branch

lengths to represent time or amount of genetic mutation.

An organism’s DNA is made up of chemical compounds called nucleotides, or bases. There are

four different types of bases: adenine, thymine, guanine and cytosine, abbreviated A,T,G and C.

These bases are split into two different types based upon their chemical structure. Adenine and

guanine are purines, and thymine and cytosine are pyrimidines. Evolution occurs via a series of

substitutions within the DNA of a taxon, wherein one nucleotide gets swapped out for another. In

the phylogenetic models discussed in the present thesis, we assume that base substitutions occur

as a continuous-time Markov process along the edges of a tree, where the edge lengths are the time

parameters in the Markov process [26, 27]. The entries of the transition matrices in this Markov

process are the probabilities of observing a substitution from one base to another at a site in the

genome at the end of the given time interval.

In this section, we discuss a standard phylogenetic model called the Cavender-Farris-Neyman,

or CFN, model. The two possible states of the CFN, model are purine and pyrimidine. This is based

on the observed fact that within group substitutions (purine-purine or pyrimidine-pyrimidine)

are much more common, so a two state model like the CFN model only focuses on cross group
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(a) An example of a rooted binary tree
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1

5

(b) Branch lengths that make this tree equidis-
tant.

Figure 1.2 A rooted binary tree.

substitutions (which are known as transversions). In the CFN model we further assume that the

rate of substitution from purine to pyrimidine is equal to the rate of substitution from pyrimidine

to purine. The algebraic and combinatorial structure of the CFN-model has been studied by a

number of authors and key results include descriptions of the generating set of the vanishing ideal

[39], Gröbner bases [39], polyhedral geometry [8], Hilbert series [8], and connections to the Hilbert

scheme and toric degenerations [40].

1.5.1 Preliminaries on Trees

This section provides a brief background on combinatorial trees and metric trees. A more detailed

description can be found in [18, 31].

Definition 1.5.1. A tree is a connected graph with no cycles. A leaf of the tree T is a node of T of

degree 1. A tree is rooted if it has a distinguished node of degree 2, called the root. A rooted binary

tree is a rooted tree in which all non-leaf, non-root nodes have degree 3. An internal node of T is a

cherry node if it is adjacent to two leaves.

Example 1.5.2. Consider the rooted binary tree in Figure 1.2a. It is rooted with root a . The leaves of

this tree are f , g , h , i and j . This tree is binary, since the three nodes b , c and e that are not the root

or the leaves have degree three. The nodes c and e are both cherry nodes.

Typically, we orient trees with the root at the top of the page and the leaves toward the bottom.

This allows us to think of the tree as being directed, so that time starts at the root and progresses

in the direction of leaves. Labeling the leaves of the tree with the taxa {1, . . . , n} gives a proposed

evolutionary history of these taxa. For any tree T , there exists a unique path between any two nodes

in the tree. This allows us to say that if a and b are nodes of the rooted tree T , then a is an ancestor

of b and b is a descendant of a if a lies along the path from the root of T to b . Furthermore, a rooted

binary tree on n leaves has n −1 internal nodes and 2n −2 edges. Proofs of these facts can be found

in Chapter 2.1 of [44].

Trees may also come equipped with branch lengths, which can represent time, amount of

substitution, etc. The branch lengths are assignments of positive real numbers to each edge in the
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tree. The assignment of branch lengths to the edges of a tree induces a metric on the nodes in the

tree, where the distance between a pair of nodes is the sum of the branch lengths on the unique path

in the tree connecting those nodes. Not every metric on a finite set arises in this way; for example,

the resulting tree metrics must satisfy the four-point condition [9]. In this paper we are interested in

the following restricted class of tree metrics.

Definition 1.5.3. An equidistant tree T is a rooted tree with positive branch lengths such that the

distance between the root and any leaf is the same.

The tree pictured in Figure 1.2b is an example of an equidistant tree. In the phylogenetic modeling

literature, this is known as imposing the molecular clock condition on the model. In other contexts,

an equidistant tree metric is also known as an ultrametric.

1.5.2 The Cavender-Farris-Neyman Model

In this section, we introduce the Cavender-Farris-Neyman model, or CFN model. Note that the

CFN model is also referred to as the binary Jukes-Cantor model and the binary symmetric model

throughout the literature. We will use these results to provide a combinatorial description of the

toric ideal of phylogenetic invariants of the CFN model with the molecular clock, which is the main

object of study in Chapters 4 and 5.

The CFN model describes substitutions at a single site in the gene sequences of the taxa in

question. It is a two-state model, where the states are purine (adenine and guanine) and pyrimidine

(thymine and cytosine). We denote purines with U and pyrimidines with Y . The CFN model assumes

a continuous-time Markov process along a fixed rooted binary tree with positive branch lengths.

The rate matrix for the Markov process in the CFN model is

Q =

U Y
� �

−α α U

α −α Y
,

for some parameter α> 0 that describes the rate of change of purines to pyrimidines or vice versa.

Note that in the CFN model, we assume that the rate of substitution from purine to pyrimidine is

equal to the rate of substitution from pyrimidine to purine. We also assume that the distribution of

states at the root of the tree, or root distribution, is uniform.

Let te > 0 be the branch length of an edge e in the rooted binary tree T . The transition matrix

M e associated to the edge e is the matrix exponential,

M e = exp(Q te )

=

�

(1+ e −2αte )/2 (1− e −2αte )/2

(1− e −2αte )/2 (1+ e −2αte )/2

�

.
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Figure 1.3 A labeling of all nodes of tree T with elements of Z2.

Denote by a (e ) and d (e ) the two nodes adjacent to e so that d (e ) is a descendant of a (e ). Then

the (i , j )th entry of M e , M e (i , j ), is the probability that d (e ) has state j given that a (e ) has state i

for all i , j ∈ {U , Y }.
Let T be a rooted binary tree with edge set E and nodes 1, . . . , 2n −1. For the following section,

we label these nodes so that 1, . . . , n are leaf labels. We can identify the set of states {U , Y } with

elements of the two element group Z2. (Note that it does not matter which identification is chosen;

either U = 0, Y = 1, or Y = 0,U = 1 produce the same results.) Let u ∈Z2n−1
2 be a labeling of all of

the nodes of T by states in the state space, and let ui denote the i th coordinate of u, which is the

labeling of node i . Then the probability of observing the set of states u is

1

2

∏

e∈E

M e (ua (e ), ud (e )). (1.1)

We note that the factor of 1
2 appears in this formula because the distribution of states at the root of

the tree is uniform.

Example 1.5.4. For the tree in Figure 1.3, the probability of observing the states (0, 1, 1, 0, 1) (left to

right and bottom to top) is

1

2
M e1 (1, 0)M e2 (0, 0)M e3 (0, 1)M e4 (1, 1).

We have described the CFN model thus far with all variables observed. However, in typical

phylogenetic analysis we do not have access to the DNA of the unknown ancestral species, and

hence we need to consider a hidden variable model where all internal nodes correspond to hidden

states. In this case, to determine the probability of observing a certain set of states at the leaves,

we sum the probabilities given by Equation (1.1) over all possible labelings of the internal nodes of

the tree. Let v ∈Zn
2 be a labeling of the leaves of T . Since the CFN-MC model assumes a uniform

distribution of states at the root, the probability of observing the set of states v at the leaves is

p (v1, . . . , vn ) =
1

2

∑

(vn+1,...,v2n−1)∈Zn−1
2

∏

e∈E

M e (va (e ), vd (e )). (1.2)

Note that d (e )might be a leaf, in which case vd (e ) = vi for the appropriate value of i .
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Example 1.5.5. Consider the tree from Figure 1.3. We use Equation (1.2) to compute the probability

p (0,1,1) of observing states (0,1,1) at the leaves of T . Summing over all possible labelings of the

internal nodes of T yields

p (0, 1, 1) = 1
2

�

M e1 (0, 0)M e2 (0, 0)M e3 (0, 1)M e4 (0, 1)

+M e1 (1, 0)M e2 (0, 0)M e3 (0, 1)M e4 (1, 1)

+M e1 (0, 1)M e2 (1, 0)M e3 (1, 1)M e4 (0, 1)

+M e1 (1, 1)M e2 (1, 0)M e3 (1, 1)M e4 (1, 1)
�

.

1.6 Summary of Results

The contents of Chapters 2 and 3 of the present work were published in the Journal of Symbolic

Computation [12]. In Chapter 2, we introduce the notion of a facial submodel of a log-linear model.

We prove the following result regarding MLEs of facial submodels of log-linear models with rational

MLE.

Theorem (Theorem 2.2.1). LetM be a log-linear model with rational MLE and letM ′ be a facial

submodel ofM . ThenM ′ also has rational MLE.

The full version of this theorem describes how to obtain the Horn pair forM ′ from that ofM .

In Chapter 3, we introduce two-way quasi-independence models and the bipartite graphs that

they encode. We characterize when a quasi-independence model has rational MLE and compute

the MLE in these cases. In particular, we prove the following theorem.

Theorem (Theorem 3.3.4). LetM be a quasi-independence model with associated bipartite graph

G . ThenM has rational MLE if and only if G is doubly chordal bipartite. In these cases, the MLE of

M has an explicit formula using complete bipartite subgraphs of G .

In Chapter 4, we turn our attention to the Cavendar-Farris-Neyman model with a molecular

clock, or CFN-MC model. The contents of this chapter were published in Advances in Applied

Mathematics [13]. Let T be a rooted binary phylogenetic tree on n leaves. We apply a linear change

of coordinates called the discrete Fourier transform to the CFN-MC model on T to obtain a toric

variety. Let IT denote the toric vanishing ideal of this variety. Let RT denote the polytope associated

to IT . We give an explicit vertex description of this polytope and prove the following results regarding

the V- and H-descriptions of RT .

Theorem (Proposition 4.2.3 and Corollary 4.2.13). The polytope RT has Fn vertices, where Fn denotes

the nth Fibonacci number. The facets of RT can be described using combinatorial features of T called

clusters.

The full version of this theorem gives an explicit facet description of RT .

We then consider the problem of finding a Gröbner basis for IT . We define a special term order

on the polynomial ring of IT and use it to prove the following theorem.
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Theorem (Theorem 4.2.15). For any rooted binary phylogenetic tree T , the CFN-MC ideal IT has a

Gröbner basis consisting of quadratic binomials with squarefree initial terms.

The full version of this theorem describes how to compute these Gröbner bases.

In Chapter 5, we study the Ehrhart theory of the CFN-MC polytopes. In particular, we show

that for a specific tree called a caterpillar tree, the CFN-MC polytope is affinely isomorphic to the

order polytope of the zig-zag poset. The Ehrhart theory of this order polytope is governed by the

combinatorics of alternating permutations; in particular, its volume is equal to the number of

alternating permutations on (n −1) letters. This is the (n −1)st Euler zig-zag number. Then we show

that the Ehrhart polynomial of RT is equal to that of the caterpillar tree for all T . This leads to the

following result, which was also published in [13].

Theorem (Theorem 5.2.1). The CFN-MC polytope RT has normalized volume equal to the (n −1)st

Euler zig-zag number.

Finally, we study the Ehrhart series of these polytopes by analyzing that of the order polytope of

the zig-zag poset. This is the content of our preprint, [11]. We compute the h∗-polynomial of RT by

introducing the swap statistic on alternating permutations. We introduce a family of shellings of the

order polytope of the zig-zag poset and show that the swap statistic counts the number of facets

that each simplex is added along. Let An denote the set of alternating permutations on n letters. We

prove the following theorem.

Theorem (Theorem 5.3.1). The h∗-polynomial of RT is
∑

σ∈An−1
t swap(σ).

22



CHAPTER

2

FACIAL SUBMODELS AND RATIONAL

MAXIMUM LIKELIHOOD ESTIMATES

In this chapter, we introduce the notion of facial submodels of log-linear models, and show that a

facial submodel of a model with rational MLE also has rational MLE. The proof of this result utilizes

Birch’s theorem and the Horn uniformization of a discrete statistical model with rational MLE.

2.1 Preliminaries

Let A ∈Zn×r be the matrix defining the monomial map for the log-linear modelMA . Let IA denote

the vanishing ideal of the Zariski closure ofMA . We assume throughout that 1 ∈ rowspan(A). Let

PA = conv(A), where conv(A) denotes the convex hull of the columns a1, . . . , ar of A.

We assume throughout that PA has n facets, F1, . . . , Fn , and that the i j entry of A, denoted ai j

is equal to the lattice distance between the j th column of A and facet Fi . This is not a restriction,

since one can always reparametrize a log-linear model in this way [30, Theorem 27]. Indeed, given a

polytope Q , a matrix A that satisfies the above condition is a slack matrix of Q , and the convex hull

of the columns of A is affinely isomorphic to Q [21].

Let A be a matrix whose columns are a subset of A. Without loss of generality, assume that the

columns of A are a1, . . . , as .

Definition 2.1.1. The submatrix A is called a facial submatrix of A if PA is a face of PA . The corre-

sponding statistical modelMA is called a facial submodel ofMA .1

1Note that the term “facial submodel” is a slight abuse of terminology becauseMA is not a submodel ofMA . This is
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Let ei denote the i th standard basis vector in Rn . Then ei ·a j = 0 if a j lies on Fi and ei ·a j ≥ 1

otherwise. So under our assumptions on A, this definition of a facial submatrix of A aligns with the

one given in [19] and [30].

2.2 Main Result

We prove the following result concerning the maximum likelihood estimator forMA when A is a

facial submatrix of A. This result was used implicitly in the proof of Theorem 4.4 of [19].

Theorem 2.2.1. Let A ∈Zn×r and let A ∈Zn×s consist of the first s columns of A. Suppose that A is a

facial submatrix of A. LetMA have rational maximum likelihood estimator Ψ given by the Horn pair

(B , h)where B ∈Zd×r and h ∈ (C∗)r . Let B denote the submatrix consisting of the first s columns of B

and let h= (h1, . . . , hs ). ThenMA has rational maximum likelihood estimator Ψ given by the Horn

pair (B , h).

In order to prove Theorem 2.2.1, we check the conditions of Birch’s theorem. We do this using

the following Lemmas.

Lemma 2.2.2. Let Ψ be as in Theorem 2.2.1. Then for generic u ∈ Rs
≥0, Ψ(u) is defined. In this case,

Ψ(u) is in the Zariski closure ofMA .

Proof. Let u ∈Rr
≥0 be given by ui = u i if i ≤ s and ui = 0 if i > s . We claim that when Ψ(u) is defined,

Ψk (u) =Ψk (u) for k ≤ s . Indeed, each factor of Ψk (u) is of the form

�

r
∑

j=1

bi j u j

�bi k

for each i = 1, . . . , d . If the i th factor of Ψk is not identically equal to one, then bi k 6= 0. So the i th

factor has the nonzero summand bi k uk and is generically nonzero when evaluated at a point u

of the given form. In particular, this implies that Ψk (u) is defined for a generic u of the given form

since having u j = 0 for j > s does not make any factor of Ψk identically equal to zero. Setting each

bi j = 0 when j > s gives that Ψk (u) =Ψk (u)when k ≤ s .

The elements of IA are those elements of IA that belong to the polynomial ring k [p1, . . . , ps ]. Let

f ∈ IA . Since f ∈ IA as well, f (Ψ(u)) = f (Ψ(u)) = 0, as needed.

Next we check that the sufficient statistics Au/u+ are equal to those of Ψ(u).

Lemma 2.2.3. Let c be a row of A. Then

c ·u
u+
= c ·Ψ(u).

because the log-linear modelMA does not include distributions on the boundary of the probability simplex. Technically,
MA is a submodel of the closure ofMA .
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Proof. Let c be the row of A corresponding to c. Define a sequence u(i ) ∈Rr
≥0 by

u (i )j =







u j if j ≤ s

ε(i )j if j > s ,

where limi→∞ε
(i )
j = 0 for each j . We choose each ε(i )j > 0 generically so that Ψ(u(i )) is defined for all

i .

Since u is generic, we have that limi→∞ u (i )+ = u+ 6= 0. Similarly, we have that limi→∞ c ·u(i ) = c ·u.

So

lim
i→∞

c ·u(i )

u (i )+
=

c ·u
u+

.

Since Ψ(u(i )) is the maximum likelihood estimate inMA for each u(i ), by Birch’s theorem we have

that

c ·u(i )

u (i )+
= c ·Ψ(u(i ))

=
s
∑

i=1

c jΨ j (u
(i )) +

r
∑

j=s+1

c jΨ j (u
(i )).

By the arguments in the proof of Lemma 2.2.2, when k ≤ s , no factor of Ψk (u(i )) involves only

summands u (i )j for j > s . So limi→∞Ψk (u(i )) =Ψk (u).

Finally, we claim that for k > s , limi→∞Ψk (u(i )) = 0. Without loss of generality, we may assume

that PA is a facet of PA . Indeed, if it were not, we could simply iterate these arguments over a

saturated chain of faces between PA and PA in the face lattice of PA . Let α= (a1, . . . , ar ) be the row

of A corresponding to the facet PA of PA . Then a j = 0 if j ≤ s and a j ≥ 1 if j > s . Since Ψ(u(i )) is the

maximum likelihood estimate inMA for u(i ), by Birch’s theorem we have that

α ·Ψ(u(i )) =
1

u (i )+
(as+1u (i )s+1+ · · ·+ar u (i )r )

=
1

u (i )+
(as+1ε

(i )
s+1+ · · ·+ar ε

(i )
r ).

Since u+ 6= 0, we also have that

lim
i→∞
α ·Ψ(u(i )) = lim

i→∞

1

u (i )+
(as+1ε

(i )
s+1+ · · ·+ar ε

(i )
r )

=
1

u+
lim

i→∞
(as+1ε

(i )
s+1+ · · ·+ar ε

(i )
r )

= 0.

Furthermore, for all i and k , Ψk (u(i ))> 0. So limi→∞Ψk (u(i ))≥ 0. Since each ai > 0 for i > s , this
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implies that limi→∞Ψk (u(i )) = 0 for all k > s .

So we have that

c ·u
u+
= lim

i→∞

c ·u(i )

u (i )+

= lim
i→∞

c ·Ψ(u(i ))

= c ·Ψ(u) +
r
∑

j=s+1

c j

�

lim
i→∞

Ψ j (u
(i ))
�

= c ·Ψ(u),

as needed.

Proof of Theorem 2.2.1. First, note that Ψ is still a rational function of degree zero since deleting

columns of B does not affect the remaining column sums. So (B , h) is a Horn pair.

By Lemma 2.2.2, we have that Ψ(u) ∈MA . Since 1 ∈ rowspan(A), it follows from Lemma 2.2.3

that
∑s

k=1Ψk (u) = 1. Defining a sequence {u(i )}∞i=1 as in the proof of Lemma 2.2.3, we have that

Ψk (u) = limi→∞Ψk (u(i )). So Ψk (u)≥ 0 since each Ψk (u(i ))> 0. Furthermore, for generic choices of u,

we cannot have Ψk (u) = 0. Indeed, for k ≤ s , the i th factor of Ψk (u) has nonzero summand bi k uk .

So none of these factors is zero for generic choices of u of the given form. Therefore Ψ(u) ∈MA =

MA ∩∆s−1.

By Lemma 2.2.3,
A ·u
u+
= A ·Ψ(u).

So by Birch’s theorem, Ψ is the maximum likelihood estimator forMA .

Note thatΨ is a dominant map. Indeed, for generic p ∈MA ,Ψ(p) is defined. Since p is a probability

distribution, p+ = 1. By Birch’s Theorem, p is the MLE for data vector p. So Ψ(p) = p.

We close this chapter by noting that we believe that a natural generalization of Theorem 2.2.1 is

also true.

Conjecture 2.2.4. Let A ∈Zn×r and A ∈Zn×s a facial submatrix of A. Then the maximum likelihood

degree ofMA is greater than or equal to the maximum likelihood degree ofMA .
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CHAPTER

3

QUASI-INDEPENDENCE MODELS WITH

RATIONAL MAXIMUM LIKELIHOOD

ESTIMATOR

Let X and Y be two discrete random variables with m and n states, respectively. Quasi-independence

models describe the situation in which some combinations of states of X and Y cannot occur

together, but X and Y are otherwise independent of one another. This condition is known as

quasi-independence in the statistics literature [5]. Quasi-independence models are basic models

that arise in data analysis with log-linear models. For example, quasi-independence models arise

in the biomedical field as rater agreement models [1, 29] and in engineering to model system

failures at nuclear plants [10]. There is a great deal of literature regarding hypothesis testing under

the assumption of quasi-independence, see, for example, [7, 20, 34]. Results about existence and

uniqueness of the maximum likelihood estimate in quasi-independence models as well as explicit

computations in some cases can be found in [5, Chapter 5]. The main result of the present chapter

is 3.3.4, which gives a complete classification of quasi-independence models with rational MLE and

a formula for the MLE in these cases.

3.1 Preliminaries

In order to define quasi-independence models, let S ⊂ [m ]× [n ] be a set of indices, where [m ] =

{1,2, . . . , m}. These correspond to a matrix with structural zeros whose observed entries are given
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by the indices in S . We often use S to refer to both the set of indices and the matrix representation

of this set and abbreviate the ordered pairs (i , j ) in S by i j . For all r , we denote by∆r−1 the open

(r −1)-dimensional probability simplex in Rr ,

∆r−1 := {x ∈Rr | xi > 0 for all i and
r
∑

i=1

xi = 1}.

Definition 3.1.1. Let S ⊂ [m ]× [n ]. Index the coordinates ofRm+n by (s1, . . . , sm , t1, . . . , tn ) = (s, t). Let

RS denote the real vector space of dimension #S whose coordinates are indexed by S . Define the

monomial mapφS :Rm+n →RS by

φS
i j (s, t) = si t j .

Let A(S ) be the 0/1-matrix that defines this monomial map. The quasi-independence model associ-

ated to S is the model,

MS :=φS (Rm+n )∩∆#S−1.

We note that the Zariski closure ofMS is a toric variety since it is parametrized by monomials.

To any quasi-independence model, we can associate a bipartite graph in the following way.

Definition 3.1.2. The bipartite graph associated to S , denoted GS , is the bipartite graph with in-

dependent sets [m ] and [n ] with an edge between i and j if and only if (i , j ) ∈ S . The graph GS is

chordal bipartite if every cycle of length greater than or equal to 6 has a chord. The graph GS is

doubly chordal bipartite if every cycle of length greater than or equal 6 has at least two chords. We

say that S is doubly chordal bipartite if GS is doubly chordal bipartite.

We can now state the key result of this chapter.

Theorem 3.1.3. Let S ⊂ [m ]× [n ] and letMS be the associated quasi-independence model. Let GS be

the bipartite graph associated to S. ThenMS has rational maximum likelihood estimate if and only

if GS is doubly chordal bipartite.

Theorem 3.3.4 is a strengthened version of Theorem 3.1.3 in which we give an explicit formula

for the MLE when GS is doubly chordal bipartite. The outline of the rest of the chapter is as follows.

In Section 3.2, we apply the results of Chapter 2 to show that if GS is not doubly chordal bipartite,

thenMS does not have rational MLE. The main bulk of the chapter is in Sections 3.3, 3.4 and 3.5,

where we show that if GS is doubly chordal bipartite, then the MLE is rational and we give an explicit

formula for it. Section 3.3 covers combinatorial features of doubly chordal bipartite graphs and gives

the statement of the main Theorem 3.3.4. Sections 3.4 and 3.5 are concerned with the verification

that the formula for the MLE is correct.

3.2 Quasi-independence Models with Non-Rational MLE

In this section, we show that when S is not doubly chordal bipartite, the ML-degree ofMS is strictly

greater than one. We can apply Theorem 2.2.1 to quasi-independence models whose associated
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Figure 3.1 The double-square graph associated to the matrix in Example 3.2.1

1

2

3

1

2

3

bipartite graphs are not doubly chordal bipartite using cycles and the following “double square"

structure.

Example 3.2.1. The minimal example of a chordal bipartite graph that is not doubly chordal bipartite

is the double-square graph. The matrix of the double-square graph has the form







? ? 0

? ? ?

0 ? ?






,

or any permutation of the rows and columns of this matrix. The resulting graph, pictured in Figure

3.1 is two squares joined along an edge. This is a 6-cycle with exactly one chord and as such, is not

doubly chordal bipartite.

Remark 3.2.2. A bipartite graph is doubly chordal bipartite if and only if it is chordal bipartite and

does not have the double-square graph as an induced subgraph.

We now compute the maximum likelihood degree of models associated to the double square

and to cycles of length greater than or equal to 6.

Proposition 3.2.3. The maximum likelihood degree of the quasi-independence model whose associ-

ated graph is the double square is 2.

Proof. Without loss of generality, let

S = {11, 12, 21, 22, 23, 32, 33},

so that GS is a double-square graph. Then the vanishing ideal ofMS is the ideal I (MS )⊂C[pi j | i j ∈
S ] given by

I (MS ) = 〈p11p22−p12p21, p22p33−p23p32〉.

Define the hyperplane arrangement

H := {p ∈CS | p++
∏

i j∈S

pi j = 0},

where p++ denotes the sum of all the coordinates of p. Then Proposition 7 of [2] implies that the
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ML-degree ofMS is the number of solutions to the system

I (MS ) + 〈A(S )u+u+A(S )p〉

that lie outside ofH for generic u. Since A(S ) encodes the row and column marginals of u, the MLE

for u can be written in matrix form as







u11+α u12−α 0

u21−α u22+α+β u23−β
0 u32−β u33+β







for some α and β . So computing the MLE is equivalent to solving for α and β in the system

(u11+α)(u22+α+β )− (u12−α)(u21−α) = 0

(u22+α+β )(u33+β )− (u23−β )(u32−β ) = 0.

Expanding gives two equations of the form

αβ + c1α+ c2β + c3 = 0 (3.1)

αβ +d1α+d2β +d3 = 0,

where each ci , di are polynomials in the entries of u.

Solving for α=−(c2β + c3)/(β + c1) in the first equation of (3.1) and substituting into the second

gives a degree 2 function of β , which can have at most two solutions. Indeed, for generic choices of

u , this equation has exactly two solutions, neither of which lie onH . For example, take u11 = u12 =

u21 = u22 = 1 and u23 = u32 = u33 = 2. By performing this substitution in (3.1) with these values for

u, we obtain the degree 2 equation

−β2

β +4
+

7β

β +4
+2β −2= 0. (3.2)

After clearing denominators, we obtain that β2+13β −8= 0. This polynomial has two distinct roots

neither of which lie onH , and (3.2) is defined at both of these roots. These are generic conditions

on the data; so since there exists a u for which (3.1) has exactly two solutions, the ML-degree ofMS

is 2.

Proposition 3.2.4. Let Sk ⊂ [k ]× [k ] be a collection of indices such that GSk
is a cycle of length 2k .

Then the ML-degree ofMSk
is k if k is odd and (k −1) if k is even.

Proof. Without loss of generality, we may assume that Sk = {(i , i ) | i ∈ [k ]}∪ {(i , i +1) | i ∈ [k −1]}∪
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{(k , 1)}. Since GSk
consists of a single cycle, the ideal I (MSk

) is principal. Indeed, it is given by

I (MSk
) = 〈

k
∏

i=1

pi ,i −
k
∏

i=1

pi ,i+1〉, (3.3)

where we set pk ,k+1 = pk ,1. LetH be the hyperplane arrangement,

H = {p | p++
∏

i j∈S

pi j = 0}.

By Proposition 7 of [2], ML-degree ofMSk
is the number of solutions to

I (MSk
) + 〈A(Sk )u−u+A(Sk )p〉. (3.4)

that lie outside ofH .

The sufficient statistics of u are of the form ui ,i +ui ,i+1 and ui−1,i +ui ,i where we set u0,1 = uk ,1.

So computing solutions to Equation (3.4) is equivalent to solving for α ∈C in the equation

k
∏

i=1

(ui ,i +α)−
k
∏

i=1

(ui ,i+1−α) = 0. (3.5)

The MLE is then of the form pi ,i = (ui ,i +α)/u++ and pi ,i+1 = (ui ,i+1 −α)/u++. The degree of this

polynomial is k when k is odd and k −1 when k is even.

Furthermore, we claim that for generic u, none of these solutions lie inH . Indeed, without loss

of generality, suppose that p is a solution to (3.4) with p 1,1 = 0. Then we have that α=−u1,1. So the

first term of (3.5) is 0. But then there exists an i such that

ui ,i+1−α= ui ,i+1+u1,1 = 0,

which is a non-generic condition on u. Similarly, since u is generic, we may assume that u++ 6= 0.

But if p++ = 0, then since each p i ,i = (ui ,i +α)/u++ and p i ,i+1 = (ui ,i+1−α)/u++, this implies that

u++ = 0, which is a contradiction. So for generic values of u , the roots of (3.5) give rise to exactly k ,

resp. k −1, solutions to (3.4) that lie outside ofH . So the ML-degree ofMSk
is k if k is odd and k −1

if k is even.

Theorem 3.2.5. Let S be such that GS is not doubly chordal bipartite. ThenMS does not have rational

MLE.

Proof. Suppose that GS is not doubly chordal bipartite. Then it has an induced subgraph H that is

either a double square or a cycle of length greater than or equal to 6. Without loss of generality, let

the edge set E (H ) be a subset of [k ]× [k ]. Let A = A(S ) and let A be the submatrix of A consisting of

the columns indexed by elements of E (H ).

Let the coordinates of PA and PA be indexed by (x1, . . . , xm , y1, . . . , yn ). We claim that A is a facial
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submatrix of A. Indeed, A consists of exactly the vertices of PA that satisfy xi = 0 for k < i ≤m and

yj = 0 for k < j ≤ n . Since PA is a 0/1 polytope, the inequalities xi ≥ 0 and yj ≥ 0 are valid. So this

constitutes a face of PA .

Therefore, by Propositions 3.2.3 and 3.2.4, A has a facial submatrix A such thatMA has ML-

degree strictly greater than 1. So by Theorem 2.2.1, the ML-degree ofMA =MS is also strictly greater

than 1, as needed.

3.3 The Clique Formula for the MLE

In this section we state the main result of the chapter, which gives the specific form of the rational

maximum likelihood estimates for quasi-independence models when they exist. These are described

in terms of the complete bipartite subgraphs of the associated graph GS . A complete bipartite

subgraph of GS corresponds to an entirely nonzero submatrix of S . This motivates our use of the

word “clique" in the following definition.

Definition 3.3.1. A set of indices C = {i1, . . . , ir } × { j1, . . . , js } is a clique in S if (iα, jβ ) ∈ S for all

1≤α≤ r and 1≤β ≤ s . A clique C is maximal if it is not contained in any other clique in S .

We now describe some important sets of cliques in S .

Notation 3.3.2. For every pair of indices (i , j ) ∈ S , we let Max(i j ) be the set of all maximal cliques

in S that contain (i , j ). We let Int(i j ) be the set of all containment-maximal pairwise intersections

of elements of Max(i j ). Similarly, we let Max(S ) denote the set of all maximal cliques in S and Int(S )

denote the set of all maximal intersections of maximal cliques in S .

Example 3.3.3. Let m = 8 and n = 9. Consider the set of indices

S = {11, 12, 21, 22, 23, 28, 31, 32, 33, 34, 41, 45, 51, 56, 57, 65, 76, 86, 87, 89},

where we replace (i , j )with i j for the sake of brevity. The corresponding matrix with structural zeros

is






























? ? 0 0 0 0 0 0 0

? ? ? 0 0 0 0 ? 0

? ? ? ? 0 0 0 0 0

? 0 0 0 ? 0 0 0 0

? 0 0 0 0 ? ? 0 0

0 0 0 0 ? 0 0 0 0

0 0 0 0 0 ? 0 0 0

0 0 0 0 0 ? ? 0 ?































.

We will use this as a running example. The bipartite graph GS associated to S is pictured in Figure 3.2.

In this figure, we use white circles to denote vertices corresponding to rows in S and black squares
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Figure 3.2 The bipartite graph associated the matrix S in Example 3.3.3

to denote vertices corresponding to columns in S . Note that GS is doubly chordal bipartite since its

only cycle of length 6 has two chords.

In this case, the set of maximal cliques in S is

Max(S ) =
�

{11, 21, 31, 41, 51},{11, 12, 21, 22, 31, 32},{21, 22, 23, 31, 32, 33},{21, 22, 23, 28},

{31, 32, 33, 34},{41, 45},{51, 56, 57},{45, 65},{56, 76, 86},{56, 57, 86, 87},{86, 87, 89}
	

.

The set of maximal intersections of maximal cliques in S is

Int(S ) =
�

{11, 21, 31},{21, 22, 31, 32},{21, 22, 23},{31, 32, 33},{41},{51},{45},

{56, 57},{56, 86},{86, 87}
	

.

Note, for example, that {31, 32} is the intersection of the two maximal cliques {11, 12, 21, 22, 31, 32}
and {31, 32, 33, 34}. However it is not in Int(S ) because it is properly contained in the intersection of

maximal cliques,

{11, 12, 21, 22, 31, 32}∩ {21, 22, 23, 31, 32, 33}= {21, 22, 31, 32}.

Let u= (ui j | (i , j ) ∈ S ) be a matrix of counts. For any C ⊂ S , we let C + denote the sum of all the

entries of u whose indices are in C . That is,

C + =
∑

(i , j )∈C

ui j .

Similarly, we denote the row and column marginals ui+ =
∑

j :(i , j )∈S ui j and u+ j =
∑

i :(i , j )∈S ui j . The

sum of all entries of u is u++ =
∑

(i , j )∈S ui j .
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Theorem 3.3.4. Let S ⊂ [m ]× [n ] be a set of indices with associated bipartite graph GS and quasi-

independence modelMS . ThenMS has rational maximum likelihood estimate if and only if GS is

doubly chordal bipartite. In particular, if u = (ui j | (i , j ) ∈ S ) is a matrix of counts, the maximum

likelihood estimate for u has i j th entry

p̂i j =

ui+u+ j

∏

C ∈Int(i j )

C +

u++
∏

D∈Max(i j )

D +

where the sets Max(i j ) and Int(i j ) are as in Notation 3.3.2.

Over the course of the next two sections, we prove various lemmas that ultimately allow us to

prove Theorem 3.3.4.

Example 3.3.5. Consider the set of indices S from Example 3.3.3. Let u be a matrix of counts.

Consider the maximum likelihood estimate for the (2, 1) entry, p̂21. The maximal cliques that contain

21 are {11, 21, 31, 41, 51},{11, 12, 21, 22, 31, 32}, {21, 22, 23, 28} and {21, 22, 23, 31, 32, 33}. The maximal

intersections of maximal cliques that contain 21 are {11, 21, 31}, {21, 22, 23} and {21, 22, 31, 32}. Since

S is doubly chordal bipartite, we apply Theorem 3.3.4 to obtain that the numerator of p̂21 is

(u21+u22+u23+u28)(u11+u21+u31+u41+u51)(u11+u21+u31)(u21+u22+u23)(u21+u22+u31+u32).

The denominator of p̂21 is

u++(u11+u21+u31+u41+u51)(u11+u12+u21+u22+u31+u32)(u21+u22+u23+u28)(u21+u22+u23+u31+u32+u33).

We note that when a maximal clique is a single row or column, as is the case with {21,22,23,28}
and {11, 21, 31, 41, 51}, we have cancellation between the numerator and denominator.

In order to prove Theorem 3.3.4, we show that p̂ satisfies the conditions of Birch’s theorem. First,

we investigate the intersections of a fixed column of the matrix with structural zeros with maximal

cliques and their intersections. We prove useful lemmas about the form that these maximal cliques

have that allow us to show that the conditions of Birch’s Theorem are satisfied. In particular, we use

them to prove Corollary 3.5.1, which states that the column marginal of the formula in Theorem

3.3.4 given by the fixed column is equal to that of the normalized data.

3.4 Intersections of Cliques with a Fixed Column

In this section we prove some results that will set the stage for the proof of Theorem 3.3.4 that

appears in Section 3.5. To prove that our formulas satisfy Birch’s theorem, we need to understand

what happens to sums of these formulas over certain sets of indices.

Let S ⊂ [m ]× [n ] and let j0 ∈ [n ]. Without loss of generality, we assume that (1, j0), . . . , (r, j0) ∈ S ,
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and that the last (i , j0) 6∈ S for all i > r . Let

Nj0
:= {(1, j0), . . . , (r, j0)}.

We consider j0 to be the index of a column in the matrix representation of S , and 1, . . . , r to be the

indices of its nonzero rows. Now let T0 | · · · | Th be the coarsest partition of [n ]with the property that

whenever j , k ∈ T`,

{i ∈ [r ] | (i , j ) ∈ S}= {i ∈ [r ] | (i , k ) ∈ S}.

In the matrix representation of S , each T` corresponds to a set of columns whose first r rows are

identical. The fact that we take T0 | · · · | Th to be the coarsest such partition ensures that the supports

of the columns in distinct parts of the partition are distinct.

Define the partition B0 | · · · | Bh of S ∩ ([r ]× [n ]) by B` = {(i , j ) | j ∈ T`}. Note that one of the

B` may be empty, in which case we exclude it from the partition. We call these B` the blocks of S

corresponding to column j0. We fix j0 and B0, . . . , Bh for the entirety of this section, and we assume

without loss of generality that j0 ∈ T0.

Denote by rows j0 (Bα) the set of all i ∈ [r ] such that (i , j ) ∈ Bα for some column index j . Note

that this is a subset of the first 1, . . . , r rows of S , and that in the matrix representation of S , the

columns whose indices are in Bα may not have the same zero patterns in rows r +1, . . . m . Similarly,

for each j ∈ [n ], define rows j0 ( j ) to be the set of all i ∈ [r ] such that (i , j ) ∈ S ; that is, the elements of

rows j0 ( j ) are the row indices of the nonzero entries of column j in the first r rows of S . Note that

the dependence on j0 in this notation stems from the fact that the column j0 is used to obtained

the partition B0 | · · · | Bh .

Example 3.4.1. Consider the running example S from Example 3.3.3, and let j0 = 1 be the first

column of S . In this case, r = 5 since only the first 5 rows entries of column j0 are nonzero. Then the

blocks associated to j0 consist of the following columns.

T0 = { j0}= {1} T1 = {2}

T2 = {3} T3 = {4}

T4 = {5} T5 = {6, 7}

T6 = {8} T7 = {9}.

We note that although columns 6 and 7 are not the same over the whole matrix, their first five

rows are the same. Since these are the nonzero rows of column j0, columns 6 and 7 belong to the

same block.
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The Bi associated to each of these sets of column indices are

B0 = {11, 21, 31, 41, 51} B1 = {12, 22, 32}

B2 = {23, 33} B3 = {34}

B4 = {45} B5 = {56, 57}

B6 = {28} B7 = ;

For instance, rows j0 (B1) = {1, 2, 3} and rows j0 (B5) = {5}.

The following proposition characterizes what configurations of the rows of the Bα’s are allowable

in order to avoid a cycle with exactly one chord. We call the condition outlined in Proposition 3.4.2

the double-squarefree, or DS-free condition.

Proposition 3.4.2 (DS-free condition). Let S be doubly chordal bipartite. Letα,β ∈ [h ]. If rows j0 (Bα)∩
rows j0 (Bβ ) is nonempty, then rows j0 (Bα)⊂ rows j0 (Bβ ) or rows j0 (Bβ )⊂ rows j0 (Bα).

Proof. For the sake of contradiction, suppose without loss of generality that rows j0 (B1)∩ rows j0 (B2)

is nonempty but neither is contained in the other. Then let i0, i1 ∈ rows j0 (B1) and i1, i2 ∈ rows j0 (B2)

so that i0 6∈ rows j0 (B2) and i2 6∈ rows j0 (B1). We have i0, i1, i2 ∈ rows j0 ( j0) by definition. Let j1 ∈ T1

and j2 ∈ T2. Then the {i0, i1, i2}× { j0, j1, j2} submatrix of S is the matrix of a double-square, which

contradicts that S is doubly chordal bipartite.

Proposition 3.4.2 implies that the sets rows j0 (Bα) over all α have a tree structure ordered by

containment. In fact, we will see that this gives a tree structure on the maximal cliques in S that

intersect Nj0
. (Recall that Nj0

= {(i , j0) ∈ S}= [r ]×{ j0}).

Example 3.4.3. The matrix S from Example 3.3.3 is doubly chordal bipartite, and as such, satisfies

the DS-free condition. If we append a tenth column, (0,?,?,?,0,0,0,0)T to obtain a matrix S ′, this

introduces a new block B8 which just contains column 10. This matrix violates the DS-free condition

since rows j0 (B1) = {1,2,3} and rows j0 (B8) = {2,3,4}. Their intersection is nonempty, but neither is

contained in another. Indeed, the {1, 2, 4}×{1, 2, 10} submatrix of S ′ is the matrix of a double-square.

For each pair of indices i j such that (i , j ) ∈ S , let xi j be the polynomial obtained from p̂i j

by simultaneously clearing the denominators of all p̂k`. That is, to obtain xi j , we multiply p̂i j by

u++
∏

D∈Max(S )D
+ so that

xi j = ui+u+ j

∏

C ∈Int(i j )

C +
∏

D∈Max(S )\Max(i j )

D +.

Our main goal in this section is to derive a formula for the sum,

∑

i∈rows j0 (Bα)

xi j0
.
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This is the content of Lemma 3.4.9. This formula allows us to verify that the j0 column marginal of p̂

matches that of the normalized data. In order to simplify this sum, we must first understand how

maximal cliques and their intersections intersect Nj0
. For each Bα with α ∈ [h ] and rows j0 (Bα) 6= ;,

we let Dα be the clique,

Dα = {(i , j ) | i ∈ rows j0 (Bα) and rows j0 (Bα)⊂ rows j0 ( j )}.

In other words, Dα is the largest clique that contains Bα and intersects Nj0
. We call Dα the clique

induced by Bα.

Example 3.4.4. Consider our running example S with j0 = 1 and blocks B0, . . . , B7 as described in

Example 3.4.1. Then Nj0
=N1 = {11, 21, 31, 41, 51}. The cliques induced by B0, . . . , B7 are

D0 = {11, 21, 31, 41, 51},

D1 = {11, 12, 21, 22, 31, 32},

D2 = {21, 22, 23, 31, 32, 33},

D3 = {31, 32, 33, 34},

D4 = {41, 45},

D5 = {51, 56, 57}, and

D6 = {21, 22, 23, 28}.

There is no D7 since the block B7 is empty. Note that these are exactly the maximal cliques in S that

intersect N1. The next proposition proves that this is the case for all DS-free matrices with structural

zeros.

We note that when Dα is the clique induced by Bα, all of the nonzero rows of Dα lie in [r ] by

definition of an induced clique. We continue to use the notation rows j0 (Dα) since the formation of the

set Bα depends on the specified column j0. For any clique C , let cols(C ) = { j | (i , j ) ∈C for some j }.

Proposition 3.4.5. For all α ∈ [h ], Dα is a maximal clique. Furthermore, any maximal clique that

has nonempty intersection with Nj0
is induced by some Bα.

Proof. We will show that Dα is maximal by showing that we cannot add any rows or columns to

it. We cannot add any columns to Dα by definition. We cannot add any of rows 1, . . . , r to Dα since

all nonzero rows of Bα are already contained in Dα. We cannot add any of rows r +1, . . . , m to Dα
since j0 is a column of Dα whose entries in rows r +1, . . . , m are zero. Note that if we can add one

element (i , j ) to Dα, then by definition of a clique, we must either be able to add all of {i }× cols(Dα)

or rows j0 (Dα)×{ j } to the clique. Since we cannot add any rows or columns to Dα, it is a maximal

clique.

Now let D be a maximal clique that intersects Nj0
. For the sake of contradiction, suppose that

D 6=Dα for each α ∈ [h ].
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Figure 3.3 The poset P ( j0) for Example 3.4.7

Let j1 be a column in D such that rows j0 ( j1) is minimal among all columns of D . We must

have that (i , j1) ∈ Bα for some i ∈ [r ] and α ∈ [h ]. Since D 6=Dα, it must be the case that column j1

has a nonzero row i1 ∈ [r ] that is not in D . Since D is maximal, there must exist another column

j2 in D that has a zero in row i1. Therefore, we have that rows j0 ( j1) 6⊂ rows j0 ( j2). Furthermore,

rows j0 ( j2) 6⊂ rows j0 ( j1) by the minimality of j1. But since D is nonempty, the intersection of rows j0 ( j1)

and rows j0 ( j2)must be nonempty. This contradicts Proposition 3.4.2, as needed.

Proposition 3.4.5 shows that the maximal cliques that intersect Nj0
are exactly the cliques that

are induced by some Bα. The DS-free condition gives a poset structure on the set of these maximal

cliques D0, . . . , Dh that intersect Nj0
nontrivially.

Definition 3.4.6. Let P ( j0) denote the poset with ground set {D0, . . . Dh} and Dα ≤Dβ if and only if

rows j0 (Dα)⊂ rows j0 (Dβ ).

Recall that for a poset P and two elements of its ground set, p , q ∈ P , we say that q covers p if

p < q and for any r ∈ P , if p ≤ r ≤ q , then r = p or r = q . We denote such a cover relation by p lq .

The Hasse diagram of a poset is a directed acyclic graph on P with an edge from p to q whenever

p l q . In the case of P ( j0), the Hasse diagram of this poset is a tree since the DS-free condition

implies that any Dα is covered by at most one maximal clique.

Example 3.4.7. In our running example S with j0 = 1 and blocks B0, . . . B6 and associated cliques

D0, . . . , D6, the Hasse diagram of the poset P ( j0) is pictured in Figure 3.3.

The next proposition shows that the cover relations in this poset, denoted DαlDβ correspond

to maximal intersections of maximal cliques that intersect Nj0
nontrivially. Denote by cols(Dα) the

nonzero columns of the clique Dα. We note that if DαlDβ , then cols(Dβ )⊂ cols(Dα). In particular,

this means that if C =Dα ∩Dβ , then C = rows j0 (Dα)× cols(Dβ ).

Proposition 3.4.8. Let C =Dα∩Dβ . Then C is maximal among all pairwise intersections of maximal

cliques if and only if DαlDβ or Dβ lDα in P ( j0).

Proof. Suppose without loss of generality that DαlDβ in P ( j0). For the sake of contradiction, suppose

that Dα∩Dβ 6∈ Int(S ). Then there exists another maximal clique that contains Dα∩Dβ . By Proposition
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3.4.5 and the fact that Dα ∩Dβ intersects Nj0
nontrivially, we can write this maximal clique as Dγ for

some γ ∈ [h ].
Note that we have rows j0 (C ) = rows j0 (Dα) and cols(C ) = cols(Dβ ). Therefore C = rows j0 (Dα)×

cols(Dβ ). So rows j0 (Dα) ( rows j0 (Dγ) and cols(Dβ ) ( cols(Dγ). In particular, this second inclusion

implies that rows j0 (Dγ)( rows j0 (Dβ ). Indeed, suppose that i ≤ r is a row of Dγ that is not a row of

Dβ . Then there exists a column j of Dβ for which (i , j ) 6∈ S . But since j is also a column of Dγ, this

contradicts that Dγ is a clique. So we have the proper containments

rows j0 (Dα)( rows j0 (Dγ)( rows j0 (Dβ ),

which contradicts that DαlDβ in P ( j0). So Dα ∩Dβ must be maximal.

Now let C =Dα ∩Dβ ∈ Int(S ). For the sake of contradiction, suppose that Dα does not cover Dβ
or vice versa. Since C is nonempty, without loss of generality we must have rows j0 (Dα)⊂ rows j0 (Dβ )

by the DS-free condition. So there exists a Dγ such that Dα <Dγ <Dβ in P ( j0). Therefore we have

that

rows j0 (Dα)( rows j0 (Dγ)( rows j0 (Dβ ).

Let (i , j ) ∈ C . Then i is a row of Dα, so it is a row of Dγ. Furthermore, since j is a column

of Dβ , rows j0 (Dβ ) ⊂ rows j0 ( j ). So rows j0 (Dγ) ⊂ rows j0 ( j ) and j is a column of Dγ. Therefore, C (
Dγ ∩Dβ . This containment is proper since rows j0 (Dα)( rows j0 (Dγ). So we have contradicted that C

is maximal.

We can now state the key lemma regarding the sum of the xi j s over {i : (i , j0) ∈ Dα} for any

α ∈ [h ].

Lemma 3.4.9. Let S be DS-free and let Dα be a maximal clique that intersects Nj0
. Then

∑

i∈rows j0 (Dα)

xi j0
= u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dα)⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )⊂rows j0 (Dα)

D +
�� ∏

E ∈Max(S )
Nj0∩Dα∩E=;

E +
�

(3.6)

In order to prove this, we will sum the entries xi j0
over all i ∈ rows j0 (Dβ ) for each β . We will do

this inductively from the bottom of P ( j0). The key idea of this induction is as follows.

Remark 3.4.10. If Dα1
, . . . , Dα` are covered by Dβ in P ( j0), then the rows of Nj0

∩Dβ are partitioned

by each Nj0
∩Dαk

along with the set of rows that are in Dβ and not in any Dαk
. The fact that this is a

partition follows from the DS-free condition. Therefore, summing the xi j0
that belong to each clique

covered by Dβ and adding in the xi j0
s for rows i that are not in any clique covered by Dβ will give us

the sum of xi j0
over all i ∈ rows j0 (Dβ ).

The next proposition focuses on the factors of the right-hand side of Equation (3.6) that corre-

spond to elements of Int(S ). It will be used to show that when we perform the induction and move

upwards by one cover relation from Dα to Dβ in the poset P ( j0), all but one of these factors stays the
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same. The only one that no longer appears in the product corresponds to the maximal intersection

Dα ∩Dβ .

Proposition 3.4.11. Let DαlDβ in P ( j0). Let C ∈ Int(S ) intersect Nj0
nontrivially so that rows j0 (Dα)⊂

rows j0 (C ). Then either C =Dα ∩Dβ or rows j0 (Dβ )⊂ rows j0 (C ).

Proof. Without loss of generality, let C = D1 ∩D2. Proposition 3.4.8 tells us that C must be of

this form. By the same proposition, we may assume without loss of generality that D2 lD1, so

rows j0 (C ) = rows j0 (D2). Suppose that rows j0 (Dβ ) 6⊂ rows j0 (D2). Since rows j0 (Dα) ⊂ rows j0 (D2) and

rows j0 (Dα)⊂ rows j0 (Dβ ), we must have that rows j0 (D2)∩ rows j0 (Dβ ) is nonempty. So by the DS-free

condition, rows j0 (D2)( rows j0 (Dβ ). So we have the chain of inclusions,

rows j0 (Dα)⊂ rows j0 (D2)( rows j0 (Dβ ).

But since Dβ covers Dα in P ( j0), and every element of P ( j0) is covered by at most one element, this

implies that α= 1 and β = 2, so C =Dα ∩Dβ , as needed.

The following proposition focuses on the factors of the right-hand side of Equation (3.6) that

correspond to elements of Max(S ). It gives a correspondence between the factors of this product for

Dα and all but one of the factors of this product for Dβ when we have the cover relation DαlDβ in

P ( j0).

Proposition 3.4.12. For any Dα, Dβ ∈ P ( j0), define the following sets:

Rα = {D ∈Max(S ) |D ∩Nj0
6= ;, rows j0 (D )⊂ rows j0 (Dα)}∪ {E ∈Max(S ) |Nj0

∩Dα ∩E = ;}

Rβ = {D ∈Max(S ) |D ∩Nj0
6= ;, rows j0 (D )( rows j0 (Dβ )}∪ {E ∈Max(S ) |Nj0

∩Dβ ∩E = ;}.

If DαlDβ in P ( j0), then Rα =Rβ .

Proof. First let D ∈Rα. If rows j0 (D )⊂ rows j0 (Dα) and D ∩Nj0
6= ;, then since rows j0 (Dα)( rows j0 (Dβ ),

we have that rows j0 (D )( rows j0 (Dβ ). So D ∈Rβ .

Otherwise, we have Nj0
∩Dα ∩D = ;. There are now two cases.

Case 1: If Nj0
∩D = ;, then Nj0

∩Dβ ∩D = ; as well. So D ∈Rβ .

Case 2: Suppose that Nj0
∩D 6= ; and Dα ∩D = ;. If Dβ ∩D is empty as well, then D ∈Rβ .

Otherwise, suppose Dβ ∩D 6= ;. Then we must have that rows j0 (D )( rows j0 (Dβ ) by the fact that

rows j0 (Dβ ) 6⊂ rows j0 (D ) and the DS-free condition. So D ∈ Rβ in this case as well. Note that it is

never the case that Nj0
∩D 6= ; and Dα ∩D 6= ; but Nj0

∩D ∩Dα = ; since j0 is a column of Dα. So we

have shown that Rα ⊂Rβ .

Now let D ∈Rβ . We have two cases again.

Case 1: First, consider the case in which rows j0 (D )( rows j0 (Dβ ) and D ∩Nj0
6= ;. If rows j0 (D )⊂

rows j0 (Dα), then D ∈Rα, as needed. Otherwise, by the DS-free condition, there are two cases.
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Case 1a: If rows j0 (Dα)( rows j0 (D ), then we have the chain of containments,

rows j0 (Dα)( rows j0 (D )( rows j0 (Dβ ),

which contradicts that DαlDβ in P ( j0). So this case cannot actually occur.

Case 1b: If rows j0 (Dα)∩ rows j0 (D ) = ;, then we have that Nj0
∩Dα ∩D = ;. Therefore, D ∈Rα, as

needed.

Case 2: The final case is when Nj0
∩Dβ ∩D = ;. In this case, since rows j0 (Dα)⊂ rows j0 (Dβ ), we

have that Nj0
∩Dα ∩D = ; as well. So D ∈Rα. So we have shown that Rβ ⊂Rα, as needed.

Remark 3.4.13. Note that Proposition 3.4.12 implies that whenever Dα and Dβ are covered by the

same element of P ( j0), we have that Rα =Rβ . This shows that the left-hand side of Equation (3.6) for

Dα and Dβ consist of the same terms that come from cliques in Max(S ).

Let Dα1
, . . . , Dα` lDβ . As we discussed in Remark 3.4.10, in order to sum the values of xi j0

over

Nj0
∩Dβ , we must understand the sum over xi j0

for those rows i such that i ∈ rows j0 (Dβ ) but

i 6∈ rows j0 (Dαk
) for all k . The following proposition concerns the sum of the xi j0

over these values of

i .

Proposition 3.4.14. Let Dα1
, . . . , Dα` lDβ . Let r1, . . . , ra be the rows of Dβ that are not in any Dαk

for

k = 1, . . . ,`. Then

a
∑

i=1

xri j0
= u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dβ )⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (Dβ )

D +
�� ∏

E ∈Max(S )
Nj0∩Dβ∩E=;

E +
��

a
∑

i=1

uri+

�

(3.7)

Proof. Without loss of generality, we will let D2, . . . , D`lD1, and let rows 1, . . . , a be the rows of D1

that are not rows of any Dα for α= 2, . . . ,`. Let i ∈ [a ]. Recall that

xi j0
= ui+u+ j0

∏

C ∈Int(i j0)

C +
∏

D∈Max(S )\Max(i j0)

D +.

We first consider the maximum cliques D with (i , j0) 6∈D . If Nj0
∩D1 ∩D = ;, then D + is a term of

xi j0
for all i = 1, . . . , a . So D + is a factor of both the left-hand and right-hand sides of Equation (3.7).

Otherwise, we have Nj0
∩D1∩D 6= ;. In particular, this means that Nj0

∩D 6= ;. Since rows j0 (D1)∩
rows j0 (D ) 6= ;, and (i , j0) 6∈D , we must have rows j0 (D )( rows j0 (D1)by the DS-free condition. Further-

more, for all maximal cliques D with rows j0 (D )( rows j0 (D1), we have (i , j0) 6∈D . Indeed, D ∩Nj0
6= ;,

so by Proposition 3.4.5, we have D =Dγ for some γwith Dγ <D1 in P ( j0). So rows j0 (Dγ)⊂ rows j0 (Dα)

for some α ∈ {2, . . . ,`}. Since (i , j0) 6∈Dα, we have (i , j0) 6∈Dγ as well.

Therefore, the factors D + corresponding to maximal cliques in each xi j0
are the same for all

i ∈ [a ], and are exactly those with rows j0 (D )( rows j0 (D1) or Nj0
∩D1 ∩D = ;.

Now let (i , j0) ∈C where C ∈ Int(S ) and C ∩Nj0
6= ;. By Proposition 3.4.8, we have C =Dγ ∩Dδ

where Dγ lDδ in P ( j0). Since C ∩D1 is nonempty, we must have that rows j0 (Dγ) ⊂ rows j0 (D1) or
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rows j0 (D1) ⊂ rows j0 (Dγ), and similarly for Dδ. But since i ∈ [a ], (i , j0) 6∈ Dα for any Dα < D1. So we

must have rows j0 (D1)⊂ rows j0 (Dγ)⊂ rows j0 (Dδ). Therefore, rows j0 (D1)⊂ rows j0 (C ).

Furthermore, we have that (i , j0) ∈C for all C ∈ Int(S )with rows j0 (D1)⊂ rows j0 (C ). So the factors

C + corresponding to maximal intersections of maximal cliques are exactly those with rows j0 (D1)⊂
rows j0 (C ) in each xi j0

.

Therefore, we have that

a
∑

i=1

xi j0
=

a
∑

i=1

ui+u+ j0

� ∏

C ∈Int(i j0)

C +
�� ∏

D∈Max(S )\Max(i j0)

D +
�

=
� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (D1)⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (D1)

D +
�� ∏

E ∈Max(S )
Nj0∩D1∩E=;

E +
��

a
∑

i=1

ui+u+ j0

�

= u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (D1)⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (D1)

D +
�� ∏

E ∈Max(S )
Nj0∩D1∩E=;

E +
��

a
∑

i=1

ui+

�

,

as needed.

Finally, the following proposition gives a way to write D +β as a sum over its intersections with

the elements of P ( j0) that it covers, along with the rows of Dβ that are not rows of any clique that it

covers.

Proposition 3.4.15. Let Dα1
, . . . , Dα` lDβ . Let r1, . . . , ra be the rows of Dβ that are not in any Dαi

for

i = 1, . . . ,`. Then

D +β =
a
∑

i=1

uri++
∑̀

i=1

(Dαi
∩Dβ )

+. (3.8)

Proof. Without loss of generality, we will let D2, . . . , D`lD1, and let rows 1, . . . , a be the rows of D1

that are not rows of any Dα for α= 2, . . . ,`. First note that each ui j that appears on the right-hand

side of Equation (3.8) is a term of D +1 . Indeed, if (i , j ) ∈Dα ∩D1 for some α= 2, . . . ,`, this is clear.

Otherwise, we have i ∈ [a ]. For the sake of contradiction, suppose that there exists a column

j so that (i , j ) 6∈ D1 but (i , j ) ∈ S . But then rows j0 (D1)∩ rows j0 ( j ) is non-empty. So by the DS-free

condition, either rows j0 (D1) ⊂ rows j0 ( j ) or rows j0 ( j ) ( rows j0 (D1). If rows j0 (D1) ⊂ rows j0 ( j ), then j

is a column of D1 by definition, which is a contradiction. If rows j0 ( j )( rows j0 (D1), then column j

belongs to some block Bη with rows j0 (Dη)( rows j0 (D1). But this contradicts that row i is not in any

Dα for α= 2, . . . ,`.

Now it remains to show that all the terms in D +1 appear in the right-hand side of Equation (3.8). Let

(i , j ) ∈D1. If i ∈ [a ], then ui j is a term in the right-hand side, as needed. Otherwise, i ∈ rows j0 (Dα) for

some α ∈ {2, . . . ,`}. Since cols(D1)⊂ cols(Dα) by definition, we must have j ∈ cols(Dα). So (i , j ) ∈Dα.

Therefore, ui j is a term in (Dα ∩D1)+. Finally, since Dγ ∩Dδ = ; for all γ,δ ∈ {2, . . . , l }with γ 6=δ, no

term is repeated.
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We can now use these propositions to prove Lemma 3.4.9.

Proof of Lemma 3.4.9. We will induct over the poset P ( j0). For the base case, we let Dα be minimal

in P ( j0). First, by Proposition 3.4.15 we have that

D +α =
∑

i∈rows j0 (Dα)

ui+

since Dα does not cover any element of P ( j0).

Let C ∈ Int(S ) with rows j0 (Dα) ⊂ rows j0 (C ) such that C ∩Nj0
6= ;. Then for any i ∈ rows j0 (Dα),

(i , j0) ∈C . So C ∈ Int(i j0) and C + is a factor of xi j0
.

If C ∈ Int(i j0), then Nj0
∩C 6= ;. It remains to be shown that all factors of xi j0

, C + corresponding

to maximal intersections of maximal cliques have rows j0 (Dα)⊂ rows j0 (C ).

Let (i , j0) ∈Dα. Let Dβ and Dγ be maximal cliques such that C =Dβ ∩Dγ ∈ Int(i j0). Then we have

rows j0 (Dα)∩ rows j0 (Dβ ) and rows j0 (Dα)∩ rows j0 (Dγ) nonempty. Since Dα is minimal, this implies

that rows j0 (Dα) ⊂ rows j0 (Dβ ), rows j0 (Dγ). So rows j0 (Dα) ⊂ rows j0 (C ). Therefore the factors of each

xi j0
with (i , j0) ∈Dα that correspond to maximal intersections of maximal cliques are

∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dα)⊂rows j0 (C )

C +,

as needed. The other factors of each xi j0
for (i , j0) ∈Dα are of the form

∏

E ∈Max(S )
(i , j0)6∈E

E +.

Since all (i , j0) ∈Dα are contained in the same maximal cliques when Dα is minimal in P ( j0), the

terms corresponding to maximal cliques in each xi j0
are of the form

∏

E ∈Max(S )
Nj0∩Dα∩E=;

E +,
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as needed. So we have that

∑

(i , j0)∈Dα

xi j0
=

∑

(i , j0)∈Dα

ui+u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dα)⊂rows j0 (C )

C +
�� ∏

E ∈Max(S )
Nj0∩Dα∩E=;

E +
�

= u+ j0

� ∑

i∈rows j0 (Dα)

ui+

�� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dα)⊂rows j0 (C )

C +
�� ∏

E ∈Max(S )
Nj0∩Dα∩E=;

E +
�

= u+ j0
D +α

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dα)⊂rows j0 (C )

C +
�� ∏

E ∈Max(S )
Nj0∩Dα∩E=;

E +
�

.

Since Dα is the only maximal clique whose rows are contained in Dα, we have that

D +α =
∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )⊂rows j0 (Dα)

D +.

So the lemma holds for the base case.

Without loss of generality, let D2, . . . , D`lD1 in P ( j0). Let rows 1, . . . , a be the rows of D1 that are

not in any Dα with α= 2, . . . ,`. We have the following chain of equalities.
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∑

(i , j0)∈D1

xi j0
= u+ j0

a
∑

i=1

xi j0
+
∑̀

α=2

∑

(i , j0)∈Dα

xi j0

= u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dβ )⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (Dβ )

D +
�� ∏

E ∈Max(S )
Nj0∩Dβ∩E=;

E +
��

p
∑

i=1

ui+

�

+
∑̀

α=2

∑

(i , j0)∈Dα

xi j0

= u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dβ )⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (Dβ )

D +
�� ∏

E ∈Max(S )
Nj0∩Dβ∩E=;

E +
��

a
∑

i=1

ui+

�

+
∑̀

α=2

u+ j0

� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (Dα)⊂rows j0 (C )

C +
�� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )⊂rows j0 (Dα)

D +
�� ∏

E ∈Max(S )
Nj0∩Dα∩E=;

E +
�

= u+ j0

� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (D1)

D +
�� ∏

E ∈Max(S )
Nj0∩D1∩E=;

E +
�

×
��

a
∑

i=1

ui+×
∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (D1)⊂rows j0 (C )

C +
�

+
�∑̀

α=2

∏

C ∈Int(S )
rows j0 (Dα)⊂rows j0 (C )

C +
��

= u+ j0

� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )(rows j0 (D1)

D +
�� ∏

E ∈Max(S )
Nj0∩D1∩E=;

E +
�

×
� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (D1)⊂rows j0 (C )

C +
��

a
∑

i=1

ui++
∑̀

α=2

(Dα ∩D1)
+
�

= u+ j0

� ∏

D∈Max(S
D∩Nj0 6=;)

rows j0 (D )(rows j0 (D1)

D +
�� ∏

E ∈Max(S )
Nj0∩D1∩E=;

E +
�� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (D1)⊂rows j0 (C )

C +
��

D +1
�

= u+ j0

� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )⊂rows j0 (D1)

D +
�� ∏

E ∈Max(S )
Nj0∩D1∩E=;

E +
�� ∏

C ∈Int(S )
C∩Nj0 6=;

rows j0 (D1)⊂rows j0 (C )

C +
�

The second equality follows from Proposition 3.4.14. The third equality is an application of

the inductive hypothesis. The fourth equality follows from Proposition 3.4.12 along with Remark

3.4.13. The fifth equality follows from Proposition 3.4.11. The sixth equality follows from Proposition
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3.4.15. The seventh inequality follows from the fact that D1 is the only clique whose rows are equal

to rows j0 (D1). This completes our proof by induction.

3.5 Checking the Conditions of Birch’s Theorem

In the previous section, we wrote a formula for the sum of xi j0
where i ranges over the rows of some

maximal clique Dα. Since the block B0 induces its own maximal clique, Lemma 3.4.9 allows us to

write the sum of the xi j0
s for 1 ≤ i ≤ r in the following concise way. This in turn verifies that the

proposed maximum likelihood estimate p̂ has the same sufficient statistics as the normalized data

u/u++, which is one of the conditions of Birch’s theorem.

Corollary 3.5.1. Let S be DS-free. Then for any column j0,

r
∑

i=1

xi j0
= u+ j0

∏

D∈Max(S )

D +.

Proof. The poset P ( j0) has a unique maximal element D0 with rows j0 (D0) = rows j0 ( j0). Note that D0

may include more columns than j0 since it may have columns whose nonzero rows are the same as

or contain those of j0.

By Proposition 3.4.8, there are no maximal intersections of maximal cliques C with rows j0 (D0)⊂
rows j0 (C ), since D0 is maximal in P ( j0). It follows from Proposition 3.4.5 that a maximal clique D

intersects Nj0
if and only if it has rows j0 (D )⊂ rows j0 (D0).

Since Nj0
⊂D0, we have that Nj0

∩D0 ∩E =Nj0
∩E for any clique E . By Lemma 3.4.9, we have

r
∑

i=1

xi j0
= u+ j0

� ∏

D∈Max(S )
D∩Nj0 6=;

rows j0 (D )⊂rows j0 (D0)

D +
�� ∏

E ∈Max(S )
Nj0∩D0∩E=;

E +
�

= u+ j0

� ∏

D∈Max(S )
D∩Nj0 6=;

D +
�� ∏

E ∈Max(S )
E∩Nj0=;

E +
�

= u+ j0

∏

D∈Max(S )

D +,

as needed.

Now we will address the condition of Birch’s theorem which states that the maximum likelihood

estimate must satisfy the equations definingMS .

Lemma 3.5.2. Let S be doubly chordal bipartite. Let u ∈RS be a generic matrix of counts. Then the

point (p̂i j | (i , j ) ∈ S ) specified in Theorem 3.3.4 is in the Zariski closure ofMS .

In order to prove this lemma, we must first describe the vanishing ideal ofMS . We denote this
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ideal I (MS ). It is a subset of the polynomial ring in #S variables,

R =C[pi j | i j ∈ S ].

Proposition 3.5.3. Let S be chordal bipartite. Then I (MS ) is generated by the 2× 2 minors of the

matrix form of S that contain no zeros. That is, I (MS ) is generated by all binomials of the form

pi j pk`−pi`pk j ,

such that (i , j ), (k ,`), (i ,`), (k , j ) ∈ S.

Proof. This follows from results in [3, Chapter 10.1]. The loops on S correspond to cycles in GS . The

df 1 loops as defined in [3, Chapter 10.1] are those whose support does not properly contain the

support of any other loop; that is, they correspond to cycles in GS with no chords. Since GS is chordal

bipartite, each of these cycles contain exactly four edges. Therefore the df 1 loops on S all have

degree two, and each corresponds to a 2× 2 minor of S by definition. Theorem 10.1 of [3] states

that the df 1 loops form a Markov basis forMS . Therefore, by the Fundamental Theorem of Markov

Bases [15, Theorem 3.1], the 2×2 minors of S form a generating set for I (MS ).

Example 3.5.4. Consider the matrix S from Example 3.3.3. In Figure 3.2, we see that G (S ) has exactly

one cycle. This cycle corresponds to the only 2×2 minor in S that contains no zeros, which is the

{2,3} × {1,2} submatrix. Therefore the (complex) Zariski closure ofMS is the variety of the ideal

generated by the polynomial p21p32−p31p22.

Proposition 3.5.5. Let S be set of indices such that GS is doubly chordal bipartite. Let {i1, i2}×{ j1, j2}
be a set of indices that corresponds to a 2×2 minor of S that contains no zeros. Let p̂i1 j1

, p̂i2 j2
, p̂i1 j2

, p̂i1 j2

be as defined in Theorem 3.3.4. Then

p̂i1 j1
p̂i2 j2

= p̂i1 j2
p̂i2 j1

(3.9)

Proof. The terms ui1+, ui2+, u+ j1
and u+ j2

each appear once in the numerator on each side of Equa-

tion (3.9), and u 2
++ appears in both denominators. Furthermore if (i1, j1) and (i2, j2) are both con-

tained in any clique in S , then (i1, j2) and (i2, j1) are also in the clique by definition. So any term

that is squared in the numerator or denominator on one side of Equation (3.9) is also squared on

the other side. Therefore it suffices to show that Max(i1 j1)∪Max(i2 j2) =Max(i1 j2)∪Max(i2 j1) and

Int(i1 j1)∪ Int(i2 j2) = Int(i1 j2)∪ Int(i2 j1).

First, we will show that Max(i1 j1) ∪Max(i2 j2) = Max(i1 j2) ∪Max(i2 j1). Let D ∈ Max(i1 j1). If

(i2, j1) ∈D , then we are done.

Now suppose that (i2, j1) 6∈D . Since D intersects column j1, by Proposition 3.4.5 we know that D

has the form Dα for some block of columns Bα that are identical on rows j1 ( j1). Let rows j1 (Dα) denote

the set of nonzero rows of Dα that are also nonzero rows of j1. Since (i2, j1) 6∈D , we have that i2 6∈
rows j1 (Dα)while i1 ∈ rows j1 (Dα). Since rows j1 ( j2)∩ rows j1 (Dα) is nonempty, and since rows j1 ( j2) 6⊂
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rows j1 (Dα), we must have that rows j1 (Dα)⊂ rows j1 ( j2)by the DS-free condition. Therefore (i1, j2) ∈Dα
by definition of Dα. So Dα =D ∈Max(i1, j2), as needed.

Switching the roles of i1 and i2 or the roles of j1 and j2 yields the desired equality.

Now let C ∈ Int(i1, j1). Then C =Dα ∩Dβ where Dβ lDα in the poset P ( j1) by Proposition 3.4.8.

If (i2, j1) ∈C , then we are done.

Now suppose that (i2, j1) 6∈C . Then we have that i2 6∈ rows j1 (Dβ ), whereas i1 ∈ rows j1 (Dα) and i1 ∈
rows j1 (Dβ ). So we must have that rows j1 (Dβ )( rows j1 ( j2)by the DS-free condition. Since rows j1 (Dα)∩
rows j1 ( j2) is nonempty, we must have that rows j1 (Dα) ⊂ rows j1 ( j2). This follows from the DS-free

condition and the fact that Dα covers Dβ in the poset P ( j1). Therefore (i1, j2) ∈Dα, Dβ by definition

of these cliques. So C ∈ Int(i1, j2), as needed.

Again, switching the roles of i1 and i2 or the roles of j1 and j2 in the above proof yields the desired

equality.

Proof of Lemma 3.5.2. By Proposition 3.5.3, the vanishing ideal ofMS consists of all fully-observed

2×2 minors of S . By Proposition 3.5.5, each of these 2×2 minors vanishes when evaluated on p̂.

We can now prove Theorem 3.3.4.

Proof of Theorem 3.3.4. Let GS be doubly chordal bipartite. Let u ∈ RS
+ be a matrix of counts. By

Corollary 3.5.1, the column marginals of u++p̂ are equal to those of u. Switching the roles of rows

and columns in all of the proofs used to obtain this corollary shows that the row marginals are

also equal. Corollary 3.5.1 also implies that p̂++ = 1 since the vector of all ones is in the rowspan of

A(S ). So by Lemma 3.5.2 and the fact each p̂ is positive, p̂ ∈MS . Hence by Birch’s theorem, p̂ is the

maximum likelihood estimate for u. The other direction is exactly the contrapositive of Theorem

3.2.5.
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CHAPTER

4

THE CAVENDER-FARRIS-NEYMAN

MODEL WITH A MOLECULAR CLOCK

Let T be an n-leaf, rooted, binary phylogenetic tree with labeled edge lengths. Recall from Section

1.5 that the CFN model on T arises as a two-state continuous-time Markov process along T with

transition matrices M e associated to each edge e in T . Recall further that the probability of observing

the states (v1, . . . , vn ) at the leaves of T under the CFN model is

p (v1, . . . , vn ) =
1

2

∑

(vn+1,...,v2n−1)∈Zn−1
2

∏

e∈E

M e (va (e ), vd (e )).

4.1 The Discrete Fourier Transform

In the following discussion, we perform a linear change of coordinates on the probability coordinates

and introduce new free parameters in terms of the entries of the transition matrices. This allows

us to realize this parametrization as a monomial map. In order to accomplish this, we first provide

some background concerning group-based models and the discrete Fourier transform. We always

assume that G is a finite abelian group.

Definition 4.1.1. Let M e = exp(Q te ) be a transition matrix arising from a continuous-time Markov

process along a tree. Let G be a finite abelian group under addition with order equal to the number

of states of the model, and identify the set of states with elements of G . The model is group-based

with respect to G if for each transition matrix M e arising from the model, there exists a function

f e : G →R such that M e (g , h ) = f e (g −h ) for all g , h ∈G .
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In particular, note that the CFN-MC model is group-based with respect to Z2 with function

f e :Z2→R defined by

f e (0) = (1+exp(−2αte ))/2 and f e (1) = (1−exp(−2αte ))/2.

Definition 4.1.2. The dual group Ĝ =Hom(G ,C×) of a group G is the group of all homomorphisms

χ : G → C×, where C× denotes the group of non-zero complex numbers under multiplication.

Elements of the dual group are called characters. Let 1 denote the constant character that maps all

elements of G to 1.

Throughout this section, we will make use of the following classical theorems. Proofs of these

can be found in [32].

Proposition 4.1.3. Let G be a finite abelian group. Its dual group Ĝ is isomorphic to G . Furthermore,

for two finite abelian groups G1 and G2, ÛG1×G2
∼= Ĝ1 × Ĝ2 via χ((g1, g2)) = χ1(g1)χ2(g2) for g1 ∈G1

and g2 ∈G2 and some χ1 ∈ Ĝ1 and χ2 ∈ Ĝ2.

Definition 4.1.4. Let f : G →C be a function. The discrete Fourier transform of f is the function

f̂ : Ĝ →C, χ 7→
∑

g∈G

χ(g ) f (g ).

The discrete Fourier transform is the linear change of coordinates that allows us to view Equation

(1.2) as a monomial parametrization. We can write the Fourier transform of p over Zn
2 in equation

(1.2) as

p̂ (χ1, . . . ,χn ) =
∑

(g1,...,gn )∈Zn
2

p (g1, . . . , gn )
n
∏

i=1

χi (g i ).

Let Ẑ2 = {1,φ}, whereφ denotes the only nontrivial homomorphism from Z2 to C. Then Z2 and Ẑ2

are isomorphic via the map that identifies 0 to 1 and 1 withφ. Using this fact, we can write p̂ as a

function of n elements of Z2 as

p̂ (i1, . . . , in ) =
∑

( j1,..., jn )∈Zn
2

(−1)i1 j1+···+in jn p ( j1, . . . , jn )

for all (i1, . . . , in ) ∈Zn
2 .

The following theorem, independently discovered by Evans and Speed in [17] and Hendy and

Penny in [23], describes the monomial parametrization obtained from the discrete Fourier transform.

A detailed account can also be found in Chapter 15 of [42].

Theorem 4.1.5. Let p (g1, . . . , gn ) be the polynomial describing the probability of observing states

(g1, . . . , gn ) ∈ G n at the leaves of phylogenetic tree T under a group-based model. Denote by π the

distribution of states at the root of the tree. Let f e : G →R denote the function associated to edge e by
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the definition of a group based model. Then the Fourier transform of p is

p̂ (χ1, . . . ,χn ) = π̂
�

n
∏

i=1

χi

� ∏

e∈E (T )

ˆf e
� ∏

l∈λ(e )
χl

�

,

where λ(e ) is the set of all leaves that are descended from edge e .

Note that since π is the uniform distribution,

π̂(χ) =
1

2
(χ(0) +χ(1)) =







1, if χ = 1,

0, if χ =φ.

Interpreting this in the context of the Fourier transform of p and using the isomorphism of Z2 and

Ẑ2 gives that

p̂ (g1, . . . , gn ) =







∏

e∈E (T )
ˆf e
�∑

l∈λe g l

�

, if
∑n

i=1 g i = 0

0, if
∑n

i=1 g i = 1.
(4.1)

Consider the Fourier transform of each f e (g ). In the case of the CFN-MC model, we can think of the

discrete Fourier transform as a simultaneous diagonalization of the transition matrices via a 2×2

Hadamard matrix. Indeed, letting H =

�

1 1

1 −1

�

gives that

H −1M e H =

�

a e
0 0

0 a e
1

�

,

where a e
1 = exp(−2αte ) and a e

0 = 1. (Although a e
0 = 1 for all e , it is useful to think of a e

0 as a free param-

eter for the following discussion.) Note that these values are exactly those obtained by performing

the discrete Fourier transform on f e :

ˆf e (1) = f e (0)1(0) + f e (1)1(1)

=
1+exp(−2αte )

2
+

1−exp(−2αte )
2

= 1

ˆf e (φ) = f e (0)φ(0) + f e (1)φ(1)

=
1+exp(−2αte )

2
−

1−exp(−2αte )
2

= exp(−2αte ).

Using these new parameters, the isomorphism of Z2 and Ẑ2 and equation (4.1), we can see that

p̂ (g1, . . . , gn ) =







∏

e∈E (T )a
e
i (e ), if

∑n
i=1 g i = 0

0, if
∑n

i=1 g i = 1,
(4.2)
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1 1 1 0 1 0

e3

e2

e1

e4

e5

e6 e7

e8

e9 e10

(a) A leaf labeling of T with elements of Z2 that
sum to 0

1 1 1 0 1 0

v3 v4

v2

v1

v5

(b) The path system associated to this labeling

Figure 4.1 The tree T referenced in Example 4.1.6

where i (e ) denotes the sum in Z2 of the group elements at all leaves descended from e . Note that

this is, in fact, a monomial parametrization, as desired.

Example 4.1.6. Consider the tree T in Figure 4.1a. We compute p̂ (1,1,1,0,1,0). Using Equation

(4.2), we see that

p̂ (g1, . . . , gn ) = a e1
1 a e2

0 a e3
1 a e4

1 a e5
1 a e6

1 a e7
0 a e8

1 a e9
1 a e10

0 .

Let e1, e2, e3 be edges of rooted binary tree T that are adjacent to a single node v , where v = d (e1)

and v = a (e2) = a (e3). Then i (e1) = i (e2)+i (e3), so i (e1)+i (e2)+i (e3) = 0. In particular, this means that

at any internal node, the edges adjacent to that node have an even number of 1’s. Since the labels

at the leaves of the tree sum to 0, if e1, e2 are the edges adjacent to the root, then i (e1) + i (e2) = 0.

Therefore, to each labeling of the leaves of T with elements of Z2 that sum to 0 we may associate

a set of disjoint paths, or path systems, between leaves of T . Furthermore, given a set of disjoint

paths between leaves of T , we obtain a labeling of the leaves that sums to 0 by assigning a 1 to each

leaf included in one of the paths and a 0 elsewhere. So labelings of the leaves of T that sum to 0 and

sets of disjoint paths between leaves of T are in bijection with one another.

Definition 4.1.7. Let Zn ,even
2 denote the set of all labelings of the leaves of T with elements of Z2

that sum to 0. The path system associated to a labeling (i1, . . . , in ) ∈Z
n ,even
2 is the unique set of paths

in T that connect the leaves of T that are labeled with 1 and do not use any of the same edges. We

often denote a path system by P.

In this context, the edges for which a e
1 appears in the parametrization (4.2) of p̂ (i1, . . . , in ) for

(i1, . . . , in ) ∈Z
n ,even
2 are exactly those that appear in the path system associated to (i1, . . . , in ).

Example 4.1.8. The path system associated to the labeling (1,1,1,0,1,0) from Example 4.1.6 is

pictured in Figure 4.1b. Notice that the bold edges e in T are exactly those for which a e
1 appears in

the parametrization of p̂ (1, 1, 1, 0, 1, 0).

We now restrict the parametrization of the CFN model to trees that satisfy the molecular clock

condition, which restricts us to a lower-dimensional subspace of the parameter space and provides
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a new combinatorial way of interpreting the Fourier coordinates. The molecular clock condition

imposes that if e1, . . . , es and f1, . . . , fr are two paths from an internal node v to leaves descended

from v , then te1
+ · · ·+ tes

= t f1
+ · · ·+ t fs

. On the level of transition matrices, this means that

M e1 . . . M es = exp(Q te1
) . . . exp(Q tes

)

= exp(Q (te1
+ · · ·+ tes

))

= exp(Q (t f1
+ · · ·+ t fr

))

=M f1 . . . M fr .

Since we can apply the Fourier transform to diagonalize the resulting matrices on both sides of

this equation, we see that the products of the new parameters satisfy the identities:

a e1
0 . . . a es

0 = a
f1
0 . . . a

fr
0 and a e1

1 . . . a es
1 = a

f1
1 . . . a

fr
1 .

In particular, this means that we may define new parameters a v
0 and a v

1 for each internal node

v by

a v
i = a e1

i . . . a es
i

for i = 0, 1 where e1, . . . , es is a path from v to any leaf descended from v . Note that if v is a leaf, then

a v
i = 1. So we may exclude it from the parametrization, and restrict to a parametrization by a v

0 and

a v
1 where v is an internal node. Furthermore, note that for any edge e1 and i = 0,1, we have the

relations

a a (e1)
i

�

a d (e1)
i )−1 = a e1

i . . . a es
i (a

es
i )
−1 . . . (a e2

i )
−1

= a e1
i , (4.3)

where e1, . . . , es is a path from the ancestral node a (e1) to a leaf descended from d (e1).

Let (i1, . . . , in ) ∈Z
n ,even
2 . Let P be the path system associated to i1, . . . , in . Denote by Int(T ) the set

of all internal nodes of tree T .

Definition 4.1.9. We say that v is the top-most node of a path in P if both of the edges descended

from v are in a path in P. In other words, v is the node of the path that includes it that is closest to

the root. The top-set Top(i1, . . . , in ) is the set of all top-most nodes of paths in P. The top-vector is

the vector in RInt(T ) with v component equal to 1 if v ∈ Top(i1, . . . , in ) and 0 otherwise. We denote

the top-vector of a particular path system P by [P] or xP, depending upon the context.

Example 4.1.10. Consider the path system associated to labeling (1,1,1,0,1,0) ∈Zn ,even
2 pictured

in Figure 4.1b. The top-set of this path system is Top(1,1,1,0,1,0) = {v1, v3}. The top-vector is

(1, 0, 1, 0, 0) ∈RInt(T ).
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For each internal node v , we define two new parameters b v
0 and b v

1 by

b v
0 =







(a v
0 )

2 if v is the root, and

a v
0 otherwise,

(4.4)

b v
1 =







(a v
1 )

2 if v is the root, and

(a v
1 )

2(a v
0 )
−1 otherwise.

We now rewrite the parametrization of p̂ (i1, . . . , in ) from Equation (4.2) in terms of these new param-

eters using Equation (4.3). Let P be the path system associated to (i1, . . . , in ). The choice of b v
0 or b v

1

in the new parametrization will depend upon the position of v in P.

Let v be an internal node of T that is not the root. Let e1, e2, e3 be the edges adjacent to v so that

v = d (e1) and v = a (e2) = a (e3). By Equation (4.3), a e1
i , a e2

i and a e3
i are the only parameters in which

some a v
0 or a v

1 appear.

If v is not in any path in P, then P does not use edges e1, e2 or e3. So the factors of p̂ (i1, . . . , in ) in

Equation (4.2) associated to these edges are

a e1
0 a e2

0 a e3
0 = a a (e1)

0 (a v
0 )
−1 ·a v

0 (a
d (e2)
0 )−1 ·a v

0 (a
d (e3)
0 )−1

= a a (e1)
0 (a d (e2)

0 )−1(a d (e3)
0 )−1 · (a v

0 )
2(a v

0 )
−1

= a a (e1)
0 (a d (e2)

0 )−1(a d (e3)
0 )−1 ·a v

0 ,

by Equation (4.3). So if v is not in any path in P, a v
0 is the only factor of p̂ (i1, . . . , in ) involving v .

Similarly, consider the case where v is in a path in P, but it is not the top-most node of a path in

P. Then this path includes e1, and without loss of generality, we may assume it includes e2 and not

e3. Then the factors of p̂ (i1, . . . , in ) involving e1, e2 and e3 are

a e1
1 a e2

1 a e3
0 = a a (e1)

1 (a v
1 )
−1 ·a v

1 (a
d (e2)
1 )−1 ·a v

0 (a
d (e3)
0 )−1

= a a (e1)
1 (a d (e2)

1 )−1(a d (e3)
0 )−1 · (a v

0 )(a
v
1 )(a

v
1 )
−1

= a a (e1)
0 (a d (e2)

0 )−1(a d (e3)
0 )−1 ·a v

0 ,

by Equation (4.3). So in this case, we have again that a v
0 is the only factor of p̂ (i1, . . . , in ) involving v .

Finally, consider the case where v is the top-most node of a path in P. Then this path includes

e2 and e3 but not e1. Then the factors of p̂ (i1, . . . , in ) involving e1, e2 and e3 are

a e1
0 a e2

1 a e3
1 = a a (e1)

0 (a v
0 )
−1 ·a v

1 (a
d (e2)
1 )−1 ·a v

1 (a
d (e3)
1 )−1

= a a (e1)
0 (a d (e2)

1 )−1(a d (e3)
1 )−1 · (a v

0 )
−1(a v

1 )
2
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by Equation (4.3). So in this case, (a v
0 )
−1(a v

1 )
2 is exactly the factor of p̂ (i1, . . . , in ) involving v .

An analogous argument shows that when v is the root, the factor of p̂ (i1, . . . , in ) involving v is

(a v
0 )

2 when v is not the top-most node of a path in P, and (a v
1 )

2 when v is the top-most node of a

path in P. Note that it can never be the case that the root is in a path and is not the top-most node.

So the new parameters b v
0 and b v

i for each internal node v of T allow us to rewrite the parametriza-

tion in Equation (4.2) as

p̂ (i1, . . . , in ) =
∏

v∈Top(i1,...,in )

b v
1 ×

∏

v∈Top(i1,...,in )

b v
0 , (4.5)

where Top(i1, . . . , in ) denotes the compliment of Top(i1, . . . , in ) in the set of all internal nodes of T .

Example 4.1.11. Consider the parametrization of p̂ (1, 1, 1, 0, 1, 0) given in Example 4.1.6 for the tree

T pictured in 4.1a. First, we verify the identity in Equation (4.3) for a e1
1 . We have that a (e1) = v1 and

d (e1) = v2. We have defined a v1
1 = a e1

1 a e2
1 a e3

1 and a v2
1 = a e2

1 a e3
1 . Therefore

a v1
1 (a

v2
1 )
−1 = a e1

1 a e2
1 a e3

1 (a
e3
1 )
−1(a e2

1 )
−1

= a e1
1 .

Note that while the choices of paths from v1 and v2 to leaves descended from them was not unique,

the molecular clock condition implies that the above holds for any such choice of paths.

Substituting the identities in Equation (4.3) into p̂ (1, 1, 1, 0, 1, 0), and applying the fact that if l is

a leaf of T then a l
i = 1 for i = 0, 1 yields

p̂ (1, 1, 1, 0, 1, 0) = a v1
1 (a

v2
1 )
−1a v2

0 (a
v3
0 )
−1a v3

1 a v3
1 a v2

1 (a
v4
1 )
−1a v4

1 a v4
0 a v1

1 (a
v5
1 )
−1a v5

1 a v5
0

= (a v1
1 )

2a v2
0 (a

v3
1 )

2(a v3
0 )
−1a v4

0 a v5
0 .

Substituting the new parameters, b v
0 and b v

1 as defined in Equation (4.4) yields

p̂ (1, 1, 1, 0, 1, 0) = b v1
1 b v2

0 b v3
1 b v4

0 b v5
0 ,

as needed.

Note that two labelings of the leaves with group elements (i1, . . . , in ) and ( j1, . . . , jn ) have the

same top-sets if and only if p̂ (i1, . . . , in ) = p̂ ( j1, . . . , jn ). Therefore, Equation (4.5) allows us to define

new coordinates that are indexed by valid top-sets of path systems in T . These coordinates are in

the polynomial ring

C[r] :=C[rk1,...,kn−1
: (k1, . . . , kn−1) = [P] for some path system P]

where (i1, . . . , in ) ranges over all elements of Zn ,even
2 . By applying this change of coordinates, we

effectively quotient by the linear relations among the p̂ coordinates that arise from the fact that
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their parametrizations in terms of the b v
i parameters are equal. This restricts our attention to

equivalences classes of labelings in Zn ,even
2 with the same top-sets.

Definition 4.1.12. Label the internal nodes of T with v1, . . . , vn−1. The CFN-MC ideal IT is the kernel

of the map

C[r]−→C[b v
i | i = 0, 1, v ∈ Int(T )]

rk1,...,kn−1
7−→

n−1
∏

i=1

b vi
ki

,

where (k1, . . . , kn−1) ranges over all indicator vectors corresponding to top-sets of path systems in T .

Note that the polynomials in the ideal IT evaluate to zero for every choice of parameters in the

CFN-MC model for the tree T . In particular, these polynomials are phylogenetic invariants of the

CFN-MC model. Another important observation is that IT is the kernel of a monomial map. This

implies that IT is a toric ideal and can be analyzed from a combinatorial perspective.

An equivalent way to define the CFN-MC ideal is as the kernel of the map

C[r]−→C[t0, . . . , tn−1]

rk1,...,kn−1
7−→ t0

∏

ki=1

ti , (4.6)

where t0 is a homogenizing indeterminate. Note that these indeterminates ti are not related to the

branch lengths in T . From this perspective, we define the matrix AT associated to this monomial

map to be the matrix whose columns are the indicator vectors of top-sets of path systems in T with

an added homogenizing row of ones. Our goal in the next two chapters is to study the ideals IT for

binary trees and the corresponding polytopes RT (to be defined in detail in Section 4.2).

Example 4.1.13. Let T be the tree pictured in Figure 1.2a. The CFN-MC ideal IT is in the polynomial

ring C[r] =C[r0000, r1000, r0100, r0010, r0001, r1010, r1001, r0011]where each subscript is the indicator vec-

tor of a top-set of a path system in T indexed alphabetically by the internal nodes of T . Therefore,

the parametrization in Equation (4.6) is given by

r0000 7→ t0

r1000 7→ t0ta

r0100 7→ t0tb

r0010 7→ t0tc

r0001 7→ t0td

r1010 7→ t0ta tc

r1001 7→ t0ta td

r0011 7→ t0tc td .

The matrix AT associated to this monomial map is obtained by taking its columns to be all of

the subscripts of an indeterminate in C[r] and adding a homogenizing row of ones. In this case, this
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matrix is

AT =

















1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 0

0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 1

0 0 0 0 1 0 1 1

















.

We can write IT implicitly from its parametrization using standard elimination techniques [38,

Algorithm 4.5]. This ideal is generated by the binomials

r0000r0011− r0010r0001 r0000r1010− r1000r0010

r1000r0011− r1010r0001 r0000r1001− r1000r1010

r1000r0011− r0010r1001 r0010r1001− r1010r0001.

In fact, these are exactly the binomials described in the proof of Proposition 4.2.29; in this setting,

the first column are the elements of the “Lift" set and the second column are the elements of the

“Swap" set.

We conclude this section by remarking that the combinatorial interpretation for the parametriza-

tion of the Fourier coordinates described in this section relies upon having a model with only two

states. One starting point for future work towards applying the molecular clock condition to models

with three or more states may be to give a comparable combinatorial description of the non-zero

Fourier coordinates in these models.

4.2 The CFN-MC Polytope

In this section we give a description of the combinatorial structure of the polytope associated to the

CFN-MC model. In particular, we show that the number of vertices of the CFN-MC polytope is a

Fibonacci number and we give a complete facet description of the polytope. One interesting feature

of these polytopes is that while the facet structure varies widely depending on the structure of the

tree (e.g. some trees with n leaves have exponentially many facets, while others only have linearly

many facets), the number of vertices is fixed. Similarly, we will see in Chapter 5 that the volume also

does not depend on the number of leaves.

Let T be a rooted binary tree on n leaves. For any path system P in T , let xP ∈Rn−1 have i th

component xP
i = 1 if i is the highest internal node in some path in P and xP

i = 0 otherwise. Hence

xP is the top-vector of P as discussed in the previous section.

Definition 4.2.1. Let T be a rooted binary tree on n leaves. The CFN-MC polytope RT is the convex

hull of all xP for P a path system in T .

Example 4.2.2. For the tree in Figure 1.2a, the polytope RT is the convex hull of the column vectors

of the matrix AT in Example 4.1.13.
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We note that the convex hull of the column vectors of AT is actually a subset of the hyperplane

{x ∈Rn | x0 = 1}. To obtain RT , we identify this hyperplane withRn−1 by deleting the first coordinate.

We write conv(AT ) to mean the convex hull of the column vectors of AT after we have deleted the

first coordinate.

Recall that the Fibonacci numbers are defined by the recurrence Fn = Fn−1 + Fn−2 subject to

initial conditions F0 = F1 = 1.

Proposition 4.2.3. Let T be a rooted binary tree on n ≥ 2 leaves. The number of vertices of RT is Fn ,

the n-th Fibonacci number.

Proof. We proceed by induction on n . For the base cases, we note that if T is the 2-leaf tree, then

RT = conv
�

0 1
�

, and if T is the 3-leaf tree, then RT = conv

�

0 1 0

0 0 1

�

.

Let T be an n-leaf tree with n ≥ 4. Let l1 and l2 be leaves of T that are adjacent to the same

internal node a , so that a is a cherry node. Leaves l1 and l2 exist because every rooted binary tree

with n ≥ 2 leaves has a cherry.

Let T ′ be the tree obtained from T by deleting leaves l1 and l2 and their adjacent edges so that a

becomes a leaf. If P is a path system in T with a /∈ Top(P), then we can realize the top-vector of P

without the a -coordinate as the top-vector of a path system in T ′. Furthermore, any path system in

T ′ can be extended to a path system in T without a in its top-set. So the number of vertices of RT

with a -coordinate equal to 0 is the number of vertices of RT ′ , which is Fn−1 by induction.

Let a ′ be the direct ancestor of a in T . Let T ′′ be the tree obtained from T by deleting l1, l2 and

a , and all edges adjacent to a , and merging the two remaining edges incident to a ′ so that a ′ is no

longer a node. In the case where a ′ is the root of T , we simply delete it and its other incident edge to

form T ′′. If P is a path system in T with a ∈ Top(P), then note that a ′ /∈ Top(P). Furthermore, edge

a a ′ is not an edge in any path in P. Therefore, we can realize the top-vector of P without the a -

and a ′-coordinates as the top-vector of a path system in T ′′. Furthermore, any path system in T ′′

can be extended to a path system in T with a in its top-set. So the number of vertices of RT with

a -coordinate equal to 1 is the number of vertices of RT ′′ , which is Fn−2 by induction.

Therefore, the total number of vertices of RT is Fn−2+ Fn−1 = Fn , as needed.

In order to give a facet description of the CFN-MC polytope of a tree, we define several inter-

mediary polytopes between the CFN polytope and the CFN-MC polytope, along with linear maps

between them. The CFN polytope is the analogue of the CFN-MC polytope for the CFN model; it is

obtained by taking the convex hull of the indicator vectors of path systems P in T indexed by the

edges in the path system. We will trace the known description of the facets of the CFN polytope

through these linear maps via Fourier-Motzkin elimination to arrive at the facet description of the

CFN-MC polytope. See [45, Chapter 1] for background on Fourier-Motzkin elimination.

Let T be a rooted binary tree with n leaves, oriented with the root as the highest node and the

leaves as the lowest nodes. Then T has n −1 internal nodes. The internal nodes will now be labeled

by 1, . . . , n −1.
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Remark 4.2.4. For the remainder of the thesis, we have changed the convention of labeling the

nodes so that 1, . . . , n −1 label the internal nodes of the trees, whereas in Section 4.1 we used 1, . . . , n

to denote the leaves. This is because of the importance that the internal nodes now play in the

combinatorics of the CFN-MC model, whereas in Section 4.1 the leaves were the main objects of

interest in analyzing and simplifying the parametrization.

Let v be a non-root node in T . Denote by e (v ) the unique edge that has v = d (e (v )). Introduce a

poset Int(T )whose elements are the internal nodes of T and with relations v ≤w if v is a descendant

of w . The Haase diagram of Int(T ) is the tree T with leaf and edge incident to a leaf removed. Recall

that an order ideal of Int(T ) is a subset of Int(T ) that is downwards closed. Let I be an order ideal of

Int(T )with s elements. Then the number of edges not below an element of I is 2(n − s −1), since T

has 2n −2 edges and each node in I has exactly two edges directly beneath it.

Definition 4.2.5. Let T be a tree, Int(T ) the associated poset, and I an order ideal of Int(T ). Denote

by T − I the tree obtained by removing all nodes and edges descended from any node in I . The edge

set of T − I , denoted E (T − I ), is the set of all edges in T that are not descended from an element of

I . Notice T − I includes all maximal nodes of I , and all edges that join a node in I with an internal

node outside of I .

Definition 4.2.6. Let P be a path system between leaves of T . Let [x, y]PI be the point inRI ⊕RE (T−I )

defined by

xi =







1 if i is the top-most node in some path in P

0 otherwise,

for all i ∈ I and

yj =







1 if e ( j ) is an edge in some path in P

0 otherwise,

for all e ( j ) ∈ E (T − I ). The polytope RT (I ) is the convex hull of all [x, y]PI for all path systems P in T .

If I is the set of all internal nodes of T , then this polytope is exactly RT , and [x, y]PI = xP = [P].

Example 4.2.7. Let T be the 4-leaf tree pictured in Figure 4.2. Let the distinguished order ideal in

the set of internal nodes of T be I = {3}. Then RT (I ) is the convex hull of the following 6 vertices

with coordinates corresponding to the labeled edge or node.





























e (2) 0 1 1 0 0 0

e (3) 0 1 1 0 0 0

e (4) 0 1 0 1 0 1

e (5) 0 0 1 1 0 1

3 0 0 0 0 1 1

The dotted lines in Figure 4.2b shows the paths through T that realize the vertex
�

1 1 1 0 0
�T

in RT (I ).
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1

2 3

4 5 6 7

e (2) e (3)

e (4) e (5) e (6) e (7)

(a) Leaf and edge labels in the
tree T

(b) Two paths in T that correspond to the same vertex of RT (I ).

Figure 4.2 The four-leaf tree in Example 4.2.7

For any order ideal I with maximal node r , let a and b be the direct descendants of r . This

scenario is pictured in Figure 4.3. Then we can define a linear map

φI ,r :R(I−{r })⊕RE (T−(I−{r }))→RI ⊕RE (T−I ),

sendingφI ,r

�

(x′, y′)
�

= (x, y)where















xi = x ′i if i ∈ I −{r }

yj = y ′j if e ( j ) ∈ E (T − I )

xr =
−y ′r+y ′a+y ′b

2 .

Note that if r is the root, then y ′r is undefined. So we interpret the formula for xr as if y ′r = 0,

and we have xr =
y ′a+y ′b

2 . But in this case, RI−{r } lies in the hyperplane defined by y ′a = y ′b . So

xr = y ′a = y ′b . Here, x′ has elements indexed by nodes in I − {r } and y′ has elements indexed by

nodes in E (T − (I −{r })). Then x has elements indexed by nodes in I and y has elements index by

nodes in E (T − I ).

a

r

b

ea eb

er

Figure 4.3 The edges and nodes surrounding node r .

Proposition 4.2.8. The functionφI ,r maps RT (I −{r }) onto RT (I ).

Proof. We show that for all path systems P in T , the image of [x′, y′]PI−{r } underφI ,r is [x, y]PI . If r is

a node in a path in P, then the path includes exactly two edges about r . So we have the following
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cases.

Case 1: Suppose that y ′a = y ′b = y ′r = 0. Then e (a ), e (b ) and e (r ) are not edges in any path in P,

so r cannot be the highest node in any path in P. After applyingφI ,r , we have xr = 0, xi = x ′i for all

i ∈ I −{r }, and yj = y ′j for all e ( j ) ∈ E (T − I ). So, the image of [x′, y′]PI−{r } underφI ,r is [x, y]PI in this

case.

Case 2: Suppose that y ′a = y ′r = 1 and y ′b = 0. In this case, the path in P containing r passes

through r along e (a ) and then upwards out of r along e (r ). So, r is not the highest node in this path.

Since all paths in P are disjoint, r is not the highest node in any path in P. ApplyingφI ,r gives

xr =
y ′a + y ′b − y ′r

2
= 0,

as needed. So, the image of [x′, y′]PI−{r } underφI ,r is [x, y]PI in this case. The case where y ′b = y ′r = 1

and y ′a = 0 is analogous.

Case 3: Suppose that y ′a = y ′b = 1 and y ′r = 0. In this case, the path in P containing r comes up to

r along e (a ) and then back downwards along e (b ). So, r is the highest node in this path. Applying

φI ,r gives

xr =
y ′a + y ′b − y ′r

2
= 1,

as needed. So, the image of [x′, y′]PI−{r } underφI ,r is [x, y]PI in this case.

So, every vertex of RT (I −{r })maps to a vertex of RT (I ) underφI ,r . Furthermore, every vertex

[x, y]PI of RT (I ) is the image of [x′, y′]PI−{r }. The result holds by linearity of the mapφI ,r .

Definition 4.2.9. Let I be an order ideal in the poset consisting of all internal nodes of T . A node

v ∈ I is called a cluster node if v is connected by edges to three other internal nodes. A connected

set of cluster nodes of T is called a cluster. Given a cluster C ⊆ I , NI (C ) denotes the neighbor set of

C , which is the set of all internal nodes of T that lie in I −C and are adjacent to some node in C .

When I is the set of all internal nodes of T , we denote the neighbor set by N (C ). Denote by m (C )

the maximal node of C .

Note that the maximal node of a cluster always exists since the cluster is a connected subset of

the rooted tree T .

Example 4.2.10. Consider the tree T in Figure 4.4. Then the set of nodes marked with triangles,

{b , c } forms a cluster since b and c are both cluster nodes and are adjacent. The neighbor set of

this cluster, N ({b , c }), is the set of nodes marked with squares, {a , d , e , f }. The maximal element is

m ({b , c }) = b .

The main result of this section is Corollary 4.2.13, which gives a list of the facet defining inequal-

ities of the polytopes RT . This result is obtained by proving the following more general results for

the polytopes RT (I ). This facet description depends on the underlying structure of the clusters in T .

Theorem 4.2.11. The polytope RT (I ) is the solution to the following set of constraints:
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d e f

a

c

b

Figure 4.4 An example of a cluster b , c , which are marked with triangles, and the elements of their neigh-
bor set, which are marked with squares.

• ys = yt , where edges e (s ) and e (t ) are joined to the root.

• −yi ≤ 0, i maximal in I

• yi − yj − yk ≤ 0, where e (i ), e ( j ), e (k ) are three distinct edges that meet at a single node not in I ,

• yi + yj + yk ≤ 2, where e (i ), e ( j ), e (k ) are three distinct edges that meet at a single node not in I ,

• −xi ≤ 0, for all i ∈ I ,

• xi + x j ≤ 1 for all i , j ∈ I with i and j adjacent

• xi + yi ≤ 1 for i maximal in I

• 2
∑

i∈C xi +
∑

j∈NI (C )
x j + ym (C ) ≤ #C +1 for all clusters C ⊂ I .

Note that if m (C ) is not a maximal node of I , then there is no coordinate ym (C ). In this case, the

final cluster inequality in Theorem 4.2.11 reduces to

2
∑

i∈C

xi +
∑

j∈NI (C )

x j ≤ #C +1.

Note that we have chosen to write all of our inequalities with all indeterminates on the left side and

using all ≤ inequalities, as this will facilitate our proof of Theorem 4.2.11.

Example 4.2.12. Consider the tree T in Figure 4.5. Note that the only cluster in T is {c }. Let I ⊂ Int(T )

be the order ideal {b , c , d , e }. Then RT (I ) lies in the hyperplane yb = yf and has facets:

yf − yg − yh ≤ 0, xb + xc ≤ 1,

−yf + yg − yh ≤ 0, xc + xd ≤ 1,

−yf − yg + yh ≤ 0, xc + xe ≤ 1,

yf + yg + yh ≤ 2, xb + yb ≤ 1,

xb +2xc + xd + xe ≤ 2

and −xi ≤ 0 for all i ∈ I .
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a

b

c

d e f

g h

Figure 4.5 The tree T in Example 4.2.12

Proof of Theorem 4.2.11. We proceed by induction on the size of the order ideal I .

When #I = 0, RT (;) is the polytope associated to the CFN model, as described in [39]. It follows

from the results in [8, 39] that RT (;) has facets defined by yi − yj − yk ≤ 0 and yi + yj + yk ≤ 2 for all

distinct i , j , k such that e (i ), e ( j ), and e (k ) that meet at the same internal node.

Let #I ≥ 1 and let 1, . . . , r be the maximal nodes of I . Suppose that RT (I −{r }) has its facets

defined by the proposed inequalities. About node r , we have the edges and nodes depicted in Figure

4.3. Note that it is possible that a , b or both are leaves. In the case that a is a leaf, the inequalities

below in which x ′a is a term would not exist, and similarly for b and x ′b .

We use Fourier-Motzkin elimination along with the linear mapφI ,r to show that the facets of

RT (I ) are defined by a subset of the proposed inequalities.

Recall that primed coordinates such as y ′a indicate coordinates of RT (I −{r }). In order to project

RT (I −{r }) onto RT (I ), we “contract" onto r by replacing y ′b with 2xr + y ′r − y ′a , since underφI ,r ,

xr =
−y ′r + y ′a + y ′b

2
.

Then we use Fourier-Motzkin elimination to project out y ′a .

By the inductive hypothesis, the following are the inequalities in RT (I −{r }) that involve y ′a or

y ′b . Note that these are the only types of inequalities that we need to consider, since any inequalities

not involving y ′a or y ′b remain unchanged by Fourier-Motzkin elimination.

−y ′a ≤ 0,

−y ′b ≤ 0,

x ′a + y ′a ≤ 1,

x ′b + y ′b ≤ 1,

2
∑

i∈C

x ′i +
∑

j∈NI−{r }(C )

x ′j + y ′a ≤ #C +1,

y ′a − y ′b − y ′r ≤ 0,

−y ′a + y ′b − y ′r ≤ 0,

−y ′a − y ′b + y ′r ≤ 0,

y ′a + y ′b + y ′r ≤ 2,

2
∑

i∈D

x ′i +
∑

j∈NI−{r }(D )

x ′j + y ′b ≤ #D +1,

where C

ranges over all clusters that contain a and are contained in the subtree beneath a , and D ranges

overall clusters that contain b and are contained in the subtree beneath b . The same is true of C
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and D throughout the following discussion. Note that if a (resp. b ) is not a cluster node, then no

such C (resp. D ) exists.

ApplyingφI ,r yields the following inequalities, labeled by whether the coefficient of ya is positive

or negative in order to facilitate Fourier-Motzkin elimination.

−xr ≤ 0 (0)

xr + yr ≤ 1 (00)

ya − yr −2xr ≤ 0 (1+)

ya + xa ≤ 1 (2+)

ya − yr − xr ≤ 0 (3+)

ya +2
∑

i∈C

xi +
∑

j∈NI−{r }(C )

x j ≤ #C +1 (4+)

−ya ≤ 0 (1−)

−ya + yr + xb +2xr ≤ 1 (2−)

−ya + xr ≤ 0 (3−)

−ya + yr +2xr +2
∑

i∈D

xi +
∑

j∈NI−{r }(D )

x j ≤ #D +1 (4−)

If, without loss of generality, a is an internal node and b is a leaf, then inequalities 2− and 4− do

not exist. If both a and b are leaves, then inequalities 2+, 4+, 2− and 4− do not exist.

We perform Fourier-Motzkin elimination to obtain the following 17 types of inequalities, labeled

by which of the above inequalities where combined to obtain them. The inequalities from RT (I −{r })
that did not contain y ′a or y ′b also remain facet-defining inequliaties for RT (I ).
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−xr ≤ 0 (0)

xr + y4 ≤ 1 (00)

−2xr − yr ≤ 0 (1+1−)

xb ≤ 1 (1+2−)

−xr − yr ≤ 0 (1+3−)

2
∑

i∈D

xi +
∑

j∈NI−{r }(D )

x j ≤ #D +1 (1+4−)

xa ≤ 1 (2+1−)

2xr + xa + xb + yr ≤ 2 (2+2−)

xr + xa ≤ 1 (2+3−)

2
∑

i∈D∪{r }
xi + yr +

∑

j∈NI (D∪{r })
x j ≤ #D +2 (2+4−)

−xr − yr ≤ 0 (3+1−)

xr + xb ≤ 1 (3+2−)

−yr ≤ 0 (3+3−)

2
∑

i∈D

xi +
∑

j∈NI (D )

x j ≤ #D +1 (3+4−)

2
∑

i∈C

xi +
∑

j∈NI−{r }(C )

x j ≤ #C +1 (4+1−)

2
∑

i∈C∪{r }
xi + yr +

∑

j∈NI (C∪{r })
x j ≤ #C +2 (4+2−)

2
∑

i∈C

xi + xr

∑

j∈NI (C )

x j ≤ #C +1 (4+3−)

2xr +2
∑

i∈C

xi +2
∑

j∈D

x j + yr +
∑

k∈NI−{r }(C )

xk +
∑

l∈NI−{r }(D )

xl ≤ #C +#D +2 (4+4−)

The inequalities encompassed by 4+2− (resp. 2+4−) give the proposed inequalities for all clusters

of size greater than or equal to 2 that contain r and for which all other nodes are contained in

the a -subtree (resp. b -subtree). The inequalities given by 4+3− (resp. 1+4−) are all of the proposed

inequalities for clusters containing a (resp. b ) and not r . Inequality 2+2− gives the inequality for the

cluster {r }. Finally, the inequalities given by 4+4− encompass all clusters with the highest node r

that contain nodes in both the a− and b -subtrees.

Note also that inequalities 1+1−, 1+2−, 1+3−, 1+4−, 2+1−, 3+1−, 3+4− and 4+1− are all redundant

as they are positive linear combinations of other inequalities on the list. For instance, inequality

1+1− can be obtained by adding together two copies of inequality 0 and 3+3−. Inequality 1+4− can

be obtained by adding together inequalities 3+4− and 0.

Note that if, without loss of generality, a is an internal node and b is a leaf, then the irredundant
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inequalities 2+2−,2+4−, 3+2−, 3+4−, 4+2− and 4+4− would not exist. This is because b is not an

internal node and r is not a cluster node in this case. Similarly, if a and b are both leaves, then the

irredundant inequalities 2+2−, 2+3−, 2+4−, 3+2−,3+4−, 4+2− and 4+4− would not exist.

The remaining inequalities, along with the others that are unchanged because they did not

involve y ′a and y ′b are exactly those that we claimed would result from contracting onto r , as needed.

Corollary 4.2.13. The facet-defining inequalities of RT are:

• xi ≥ 0, for all 1≤ i ≤ n −1,

• xi + x j ≤ 1, for all pairs of adjacent nodes, i and j , and

• 2
∑

i∈C xi +
∑

j∈NT (C )
x j ≤ #C +1 for all clusters C in T .

Proof. Let r be the root of T . Since r is not a descendent of any edge, we interpret the coordinate yr

in RT to be zero. The fact that the facet defining inequalities of RT are a subset of the inequalities

given in Corollary 4.2.13 along with the inequality xr ≤ 1 follows directly from Theorem 4.2.11, since

xr ≤ 1 is obtained by setting yr = 0 in xr + yr ≤ 1. Note further that xr ≤ 1 is a redundant inequality,

since for any node a adjacent to r , this inequality can be obtained by summing xr + xa ≤ 1 and

−xa ≤ 0. So indeed, the facet defining inequalities of RT are a subset of the proposed inequalities.

Now we must show that none of the proposed inequalities are redundant. To do this, we find

n −1 affinely independent vertices of RT that lie on each of the proposed facets.

For all facets of the form {x | xi = 0}, the 0 vector, along with each of the standard basis vectors

e j such that j 6= i are n −1 affinely independent vertices that lie on the face. So, {x | xi = 0} is a facet

of RT .

Consider a face of the form F = {x | xi + x j = 1}where i and j are adjacent nodes of T . Without

loss of generality, let i be a descendant of j . First, note that ei , e j ∈ F .

Let k 6= i , j be an internal node of T . If k is not a node in the i -subtree, then ei +ek ∈ F , since

either k is in the subtree of T rooted at the descendant of j not equal to i , or k lies above j . In the

first case, since the i - and k -subtrees are disjoint, we may choose any paths with highest nodes i

and k , which yield the desired vertex. In the second case, picking a path with highest node i , and a

path with highest node k that passes through the descendant of j not equal to i yields that ei +ek is

a vertex of RT . Similarly, for all k in the i -subtree, e j +ek ∈ F . Since every standard basis vector is in

the linear span of

{ei , e j }∪ {ei +ek | k 6= j , k not in the i -subtree}∪ {e j +ek | k 6= i , k in the i -subtree},

these n −1 vectors are linearly independent.

Finally, consider a face of the form F = {x | 2
∑

c∈C xc +
∑

i∈N (C ) xi = #C +1}, for some cluster C

in T . Then #N (C ) = #C +2. First note that u j =
∑

i∈N (C ) ei −e j is a vertex of RT for all j ∈N (C ). If j

is the highest node of N (C ), then the i -subtrees for i ∈N (C ), i 6= j are disjoint. So any two paths
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with highest nodes i , k ∈N (C ), i 6= k 6= j are disjoint. If j is not the highest node in N (C ), let k be

the highest node. Then we may use any paths with highest nodes i for all i ∈N (C )with i 6= j , k , and

then a path with highest node k that passes through j . Since the path between k and j contains

only j , k and elements of C , this path does not pass through any i -subtree for i ∈ N (C ), i 6= j , k .

So, these paths are disjoint, as needed. So, {u j | j ∈N (C )} is a set of #C + 2 linearly independent

vertices of RT that lie on F .

For all c ∈C , let wc = ec +
∑

i∈Ac
ei where Ac is a set of #C −1 elements of N (C ) such that (1) if

i ∈N (C ) is adjacent to c , then i 6∈ Ac , (2) there exist i , j 6∈ Ac that are in the left and right subtrees

beneath c , respectively, and (3) if i is the highest node in N (C ), then i 6∈ Ac . Note that at least one

such set exists for all c ∈C . Then wc is a vertex of RT since it results from the path system containing

a path with highest node c that passes through i and j , where i , j are the descendants of c not in

Ac that exist by condition (2), and a path with highest node k for all k ∈ Ac . Furthermore, wc ∈ F for

all c ∈C .

Note that {u j | j ∈N (C )}∪ {wc | c ∈ C } is a linearly independent set, since {u j | j ∈N (C )} is a

linearly independent set of vectors that have all coordinates corresponding to elements of C equal

to 0, and each wc has a unique nonzero coordinate corresponding to c ∈C .

Let k be an internal node of T such that k 6∈C ∪N (C ). If k is a descendant of j for some j ∈N (C )

that is not the highest node of N (C ), then zk = u j +ek is a vertex of RT that lies on F . Otherwise, k

is either a descendant of only the highest node, i , of N (C ), or not a descendant of any element of

N (C ). In either of these cases, zk =ui +ek is a vertex of RT that lies on F .

Also, {u j | j ∈ N (C )} ∪ {wc | c ∈ C } ∪ {zk | k 6∈ C ∪N (C )} is a linearly independent set as each

element of {u j | j ∈N (C )}∪ {wc | c ∈C } has coordinates corresponding to nodes not in C or N (C )

equal to 0, and each zk has a unique nonzero coordinate corresponding to k 6∈N (C )∪C . This set also

has cardinality #C +2+#C +n −2#C −3= n −1. So, since we have found n −1 linearly independent

vertices of RT that lie on F , F is a facet of RT .

We conclude this section with the remark that the number of facets of RT varies widely for

different tree topologies. For a tree with n leaves and no cluster nodes, there are 2n −3 facets of RT

corresponding to each non-negativity condition and each of the facets arising from adjacent nodes.

In contrast, the following is an example of a construction of trees with exponentially many facets.

Example 4.2.14. Let m be a positive integer. We construct a tree Tm with 4m +5 leaves as follows.

Begin with a path, or “spine", of length m . To the top node of this spine, attach a single pendant leaf;

this top node becomes the root of Tm . Attach a balanced 4-leaf tree descended from every node of

the spine, with two attached to the node at the bottom of the spine. There are 2m +1 cluster nodes

in Tm : the nodes that are in the spine and the root of each of the balanced 4-leaf trees descended

from the spine. Figure 4.6 depicts this tree for m = 3.

Let S be the set of all nodes in the spine, and let A be any set of nodes immediately descended

from a spine node. Then S ∪A is a cluster. Clusters of this form account for 2m+1 facets of RT for this

(4m +5)-leaf tree.

67



Figure 4.6 The tree construction for T3 described in Example 4.2.14. “Spine" nodes are marked with a
circle.

The aim of this section is to prove the following theorem.

Theorem 4.2.15. For any rooted binary phylogenetic tree T , the CFN-MC ideal IT has a Gröbner basis

consisting of homogeneous quadratic binomials with squarefree initial terms.

To accomplish this, we show that for most trees T , the CFN-MC ideal is the toric fiber product of

the ideals of two smaller trees. In these cases, we can use results from [41] to describe the generators

of IT in terms of the generators of the ideals of these smaller trees. We then handle the case of trees

for which IT is not a toric fiber product; such trees are called cluster trees.

For simplicity of notation, we switch to denoting the top-vector associated to a path system

P by [P]. As before, note that it is possible to have two different path systems P and Q for which

[P] = [Q]. We often make use of the following notion of restriction of a path system to a subtree.

Definition 4.2.16. Let T be a tree and let T ′ be a subtree of T . Let P be a path system in T . Then

the restriction of P to T ′ is the path system P′ in T ′ obtained by the following procedure for each

path P ∈P. If the top-most node of P is not in Int(T ′), delete P . Otherwise, intersect the edges of P

with the edges of T ′ to obtain a path P ′, and add P ′ to P′.

Note that if P′ is the restriction of P to T ′, then [P′] is equal to [P] on each coordinate in Int(T ′).

4.2.1 Toric Fiber Products

Let T be a tree that has an internal node v that is adjacent to exactly two other internal nodes. There

are two cases for the position of v within T , both of which provide a natural way to divide T into

two smaller trees, T ′ and T ′′.

If v is the root, then let T ′ be the tree with v as a root in which the right subtree of v is equal to

the right subtree of T and the left subtree of v is a single edge. Let T ′′ be the tree with v as a root in

which the left subtree of v is equal to the left subtree of T and the right subtree of v is a single edge.

This decomposition is pictured in Figure 4.7a.
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(a) Splitting T into T ′ and T ′′ where distinguished node (a ) is the root.
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(b) Splitting T into T ′ and T ′′ where distinguished node (c ) is not the root.

Figure 4.7 Decomposition of T into T ′ and T ′′ via a node adjacent to exactly two internal nodes

If v is not the root, then v is adjacent to two internal nodes and a leaf in T . Let T ′ be the tree

consisting of all non-descendants of v (including v itself) with a cherry added below v . Let T ′′ be

the tree consisting of v and all of its descendants. This decomposition is pictured in Figure 4.7b.

In either case, notice that [P] is the top-vector of a path system in T if and only if the restrictions

of [P], [P′] and [P′′] to T ′ and T ′′ respectively are top-vectors of path systems in T ′ and T ′′ that

agree on v . The following lemma makes this observation precise.

Lemma 4.2.17. Suppose that T has an internal node v that is adjacent to exactly two other internal

nodes. Let T ′ and T ′′ be the induced trees defined above depending upon the position of v within T .

Let P be a path system in T ′ and let R be a path system in T ′′. Then there exists a path system P∨R
in T such that [P∨R]i = [P]i for each i ∈ Int(T ′) and [P∨R] j = [R] j for each j ∈ Int(T ′′).

Proof. First, consider the case where v is the root. Then T ′ is the tree with root v whose left subtree

is equal to that of T and whose right subtree is a single leaf. Similarly, T ′′ is the tree with root v

whose right subtree is equal to that of T and whose left subtree is a single leaf. Let P be a path

system in T ′ and let R be a path system in T ′′.

If [P]v = [R]v = 0, then no path in P or R passes through v . So each path in P and R is also a

path in T . So we let P∨R=P∪R, where the edge set of each path is a subset of the edges of T .

If [P]v = [R]v = 1, then let P be the path of P whose top-most node is v and let R be the path of

R whose top-most node in v . Let P R be the path in T with edge set equal to that of P on the left

subtree of T and that of R on the right subtree of T . This is a path in T with top-most node v . In this

case, let P∨R= (P∪R∪{P R })\{P, R }, where the edge set of each path is a subset of the edges of T .

Now consider the case where v is not the root. Let ` be the leaf of T that is adjacent to v . Then

T ′ consists of all non-descendants of v and two leaves below v . One of these leaves is `; let m be

the other leaf below v in T ′. The tree T ′′ consists of v and all of its descendants. Let P be a path

system in T ′ and let R be a path system in T ′′.
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First, suppose [P]v = [R]v = 0. Since [P]v = 0, we may assume that any path in P that passes

through v passes through ` and not m . Since v is the root of T ′′, and [R]v = 0, no path in R passes

through v or `. So we let P∨R=P∪R, where the edge set of each path is a subset of the edges of T .

Now suppose [P]v = [R]v = 1. Then P contains the path in T ′ between leaves m and `. So we let

P∨R= (P∪R) \ {P }, where the edge set of each path is a subset of the edges of T .

One implication of Lemma 4.2.17 is that the matrix AT of IT can be obtained by pairing together

all columns in AT ′ and AT ′′ that agree on v , and consolidating the rows corresponding to v and

the homogenizing rows of ones from each. This translates exactly to the operation on toric ideals

known as the toric fiber product, which was introduced in [41].

Let IT ⊂C[r], IT ′ ⊂C[x], IT ′′ ⊂C[y]. Consider the map ξIT ′ ,IT ′′ fromC[r] toC[x]⊗CC[y] defined as

follows. For any path system P in T , let P′ and P′′ be the restrictions of P to T ′ and T ′′ respectively.

Then

ξIT ′ ,IT ′′ (r[P]) = x[P′]⊗ y[P′′].

Following the notation of [41], the kernel of ξIT ′ ,IT ′′ is the toric fiber product IT ′ ×A IT ′′ . Here,A is

the matrix

A =

�

1 1

0 1

�

,

where the first row corresponds to the homogenizing row of ones, and the second row corresponds

to the shared node v of T ′ and T ′′. By Lemma 4.2.17, we can join any path systems in T ′ and T ′′

that whose top-vectors agree on v to create a path system in T .

Proposition 4.2.18. Suppose that T has an internal node v that is adjacent to exactly two other

internal nodes. Let T ′ and T ′′ be the induced trees defined above depending upon the position of v

within T . Then IT
∼= IT ′ ×A IT ′′ .

Proof. The monomial map of which IT is the kernel is given by

ψT : C[r]→C[t0, . . . , tn−1]

r[P] 7→ t0

∏

[P]i=1

ti

Let S be the two-leaf tree rooted at v , and letC[z] =C[z0, z1] be its associated polynomial ring.

Denote by P the restriction of P to S , by P′ the restriction of P to T ′ and by P′′ the restriction of P

to T ′′. Then we have the identity

ψS (z[P])ψT (r[P]) =ψT ′ (x[P′])ψT ′′ (y[P′′]). (4.7)
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The map defining the toric fiber product IT ′ ×A IT ′′ can be written

ξIT ′ ,IT ′′ : C[r]→C[t0, . . . , tn−1]

r[P] 7→
�

t0

∏

[P′]i=1

ti

��

t0

∏

[P′′]i=1

ti

�

Notice that t0 and tv can only appear in the image of ξIT ′ ,IT ′′ with exponent 2. Therefore we may

replace these variables by their square roots in the formula for the image of each r[P] in the map

ξIT ′ ,IT ′′ without changing the kernel. This yields the same map asψT . Therefore,

IT = kerψT
∼= kerξIT ′ ,IT ′′ = IT ′ ×A IT ′′ .

Let G1 be a Gröbner basis for IT ′ with weight vectorω1, and let G2 be a Gröbner basis for IT ′′

with weight vector ω2. From these, we define several sets of polynomials in C[r] that together

form a Gröbner basis for IT with respect to some weighted monomial order. Let P1, . . . ,Pd and

Q1, . . . ,Qd be path systems in T ′ such that f =
∏d

i=1 x[Pi ] −
∏d

i=1 x[Qi ] ∈ G1. We arrange these so

that [Pi ]v = [Qi ]v for all i . Note that f can always be written in this form since the parameter tv

must appear with the same power in the image of each monomial underψT ′ in order for f to be

in its kernel. Let R ( f ) denote the set of all d -tuples (R′1, . . . ,R′d ) of path systems in T ′′ such that

[Ri ]v = [Pi ]v .

By Lemma 4.2.17, for any path systems P in T ′ and R in T ′′ with [P]v = [R]v , we can find a

path system P∨R in T such that [P∨R]i = [P]i for each i ∈ Int(T ′) and [P∨R] j = [R] j for each

j ∈ Int(T ′′).

Define the set

Lift( f ) =

¨

d
∏

i=1

r[Pi∨Ri ]−
d
∏

i=1

r[Qi∨Ri ] : (R1, . . . ,Rd ) ∈R ( f )

«

.

Then let

Lift(G1) =∪ f ∈G1
Lift( f ),

and similarly define Lift(G2).

We now define another family of polynomials that is contained in the Gröbner basis for IT .

Let [P1], . . . , [Pr ] be the top-vectors of paths in T ′ with v -coordinate 0 and let [Q1], . . . , [Qs ] be the

top-vectors of paths in T ′′ with v -coordinate 0. (Note that these Pi and Qi are unrelated to those in

the previous paragraph). Define the set Quad0(T ) to be the set of all 2×2 minors of the matrix M0(T )

with (i , j )th entry equal to r[Pi∨Q j ]. Define Quad1(T ) and M1(T ) analogously over all top-vectors in

T ′ and T ′′ with v -coordinate equal to 1. Elements of Quadk are of the form

r[Pi∨Q j ]r[Pi ′∨Q j ′ ]− r[Pi∨Q j ′ ]r[Pi ′∨Q j ],
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where [Pi ], [Q j ], [Pi ′ ] and [Q j ′ ] all take value k on their v -coordinate. Define

Quad(T ) =Quad0(T )∪Quad1(T ).

Letω be a weight vector onC[r] so that Quad(T ) is a Gröbner basis for the ideal generated by

all elements of Quad(T ). Such a weight vector exists by the proof of Proposition 2.6 in [41]. Since

the A -matrix of the toric fiber product is invertible, Theorem 2.9 of [41] implies the following

proposition. Denote by ξ∗IT ′ ,IT ′′
the pullback of ξIT ′ ,IT ′′ . In other words, ξ∗IT ′ ,IT ′′

is a map from the

Cartesian products of the affine spaces associated to C[x] and C[y] to the affine space associated to

C[r]. If P and Q are path systems in T ′ and T ′′ respectively whose top-vectors agree on v , then the

[P∨Q] coordinate of ξ∗IT ′ ,IT ′′
(α,β ) is α[P]+β[Q].

Proposition 4.2.19. Suppose that T has an internal node v that is adjacent to exactly two other nodes.

Let T ′ and T ′′ be the induced trees defined above depending upon the position of v within T . Then

Lift(G1)∪Lift(G2)∪Quad(T ) is a Gröbner basis for IT with respect to weight vector ξ∗IT ′ ,IT ′′
(ω1,ω2)+εω

for sufficiently small ε> 0.

In particular, note that since the Lift operation preserves degree, and since the elements of

Quad(T ) are quadratic, if G1 and G2 consist of quadratic binomials, then IT has a Gröbner basis

consisting of quadratic binomials.

4.2.2 Cluster Trees

Trees that do not have an internal node that is adjacent to exactly two other internal nodes do not

have the toric fiber product structure described in the previous section. These are the trees whose

internal nodes are comprised of one large cluster and its neighbor nodes. In this case, we exploit

the toric fiber product structure of a subtree, and describe a method for lifting the Gröbner basis

for the subtree to a Gröbner basis for the entire tree that maintains the degree of the Gröbner basis

elements.

Definition 4.2.20. A rooted binary tree T is called a cluster tree if there exists a cluster C in T such

that every internal node of T is either in C or in N (C ). Note that if T is a cluster tree, then C is

uniquely determined by T .

Equivalently, if T has n leaves, then T is a cluster tree if and only if T has a cluster of size (n−3)/2.

Note that this implies that if T is a cluster tree, then T has an odd number of leaves. It also follows

from the definition of a cluster tree that the root of T must be adjacent on one side to a single leaf.

Example 4.2.21. The following tree is an example of a cluster tree with {ρ′} as its distinguished

cluster.

ρ′

a b

ρ

72



Let T be a cluster tree with root ρ. Consider the tree T ′ obtained from T by deleting ρ and its

adjacent edges. Let ρ′ be the root of T ′. Then by Proposition 4.2.18, the CFN-MC ideal of T ′, IT ′ is

the toric fiber product IU1
×A IU2

where U1 and U2 are the cluster trees with root ρ′ and maximal

clusters given by the left and right subtrees of ρ′ respectively. So we call T ′ a bicluster tree.

Example 4.2.22. From the previous example, T ′, U1 and U2 are as follows.

ρ′

a b

T ′

ρ′

a

U1

ρ′

b

U2

We are interested in defining when we can add a path with highest node at ρ to a path system in

the larger cluster tree, T . This motivates the following definition of root-augmentability.

Definition 4.2.23. A path system P is root-augmentable if there exists a path P ′ between the leaves

of T that has the root as its top-most node and is disjoint from all paths in P. In other words, [P]

has root-coordinate equal to 0, but setting it equal to 1 would still yield a valid top-vector.

Let T be a cluster tree and P be a path system T . Then P is root-augmentable if and only if this

path system does not already have a path with highest node ρ and the restriction of the path system

to T ′ has the following property.

Definition 4.2.24. A path system P in a bicluster tree T ′ is root-leaf traversable if there exists a path

from the root to some leaf that does not include any internal node that is the top-most node of some

path in P.

Since T ′ is a bicluster tree, in order for a path system in T ′ to be root-leaf traversable, one must

be able to add a path fromρ′ through the clusters of either U1 or U2 to a leaf. Note that a path system

is root-leaf traversable if and only if removing all of the maximal nodes of paths in the path system

leaves ρ′ in the same connected component as some leaf of T ′. Therefore, root-leaf traversability is

well-defined over classes of path systems with the same top-set. We often say that [P] is root-leaf

traversable if P is root-leaf traversable.

Note that we cannot use the same definition for root-augmentability and root-leaf traversability.

Indeed, in a cluster tree, any path system all of whose paths do not contain the root must be root-

leaf traversable. Root-augmentability should be thought of as the non-trivial notion of root-leaf

traversability for cluster trees.

We can now define a special type of term order on the polynomial ring of the CFN-MC ideal of a

cluster tree, and its analogue for that of a bicluster tree.

Definition 4.2.25. Let S be a cluster tree with CFN-MC ideal IS ⊂ C[x]. A term order < on C[x] is

liftable if

1. IS has a <-Gröbner basis consisting of degree 2 binomials, and
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2. < is a block order on IS with blocks

{x[P] |P not root augmentable}> {x[P] |P root augmentable}

where the order induced on each block is graded.

Definition 4.2.26. Let S be a bicluster tree with CFN-MC ideal IS ⊂C[x]. A term order < on C[x] is

liftable if

1. IS has a <-Gröbner basis consisting of degree 2 binomials, and

2. < is a block order on IS with blocks

{x[P] |P not root-leaf traversable}> {x[P] |P root-leaf traversable}

where the order induced on each block is graded.

If G is the <-Gröbner basis for the CFN-MC ideal of a cluster or bicluster tree for a liftable turn

order <, then G is liftable.

Definition 4.2.27. Let S be a cluster tree with CFN-MC ideal IS ⊂C[x]. Let< be a term order onC[x].
Let f =

∏d
i=1 x[Pi ]−

∏d
i=1 x[Qi ] be a binomial in IS whose leading term is

∏d
i=1 x[Pi ]. We say that f

satisfies the liftability property with respect to < if

#{P |P not root-augmentable} ≥ #{Q |Q root augmentable}.

We define the liftability property when S is a bicluster tree analogously with respect to root-leaf

traversability. When the monomial order has been previously specified, we just say that the polyno-

mial satisfies the liftability property.

Note that a term order < is liftable if and only if it induces a quadratic Gröbner basis all of whose

elements satisfy the liftability property with respect to <.

Let IU1
⊂C[x], IU2

⊂C[y], IT ′ ⊂C[z] and IT ⊂C[r]. Note that if T is the smallest cluster tree with

five leaves, then U1 and U2 are both trees with three leaves, so IU1
and IU2

are the zero ideal. Therefore,

they vacuously have liftable Gröbner bases. By induction, letω1,ω2 be weight vectors that induce

liftable orders on IU1
and IU2

, respectively. Let G1 be the liftable Gröbner basis for IU1
and G2 the

liftable Gröbner basis for IU2
. Let a be the weight vector on C[z] defined by a(z[P]) = 1 if P is not

root-leaf traversable and a(zP) = 0 if P is root-leaf traversable.

Proposition 4.2.28. Let T ′ be a bicluster tree. Let U1 and U2 be the unique cluster trees obtained from

the left and right subtrees of T ′ such that IT ′ = IU1
×A IU2

. There exist a weight vectorω on C[z] and

ε, k > 0 such that ξ∗U1,U2
(ω1,ω2) +εω+k a induces a liftable order on IT ′

Proof. By Lemma 4.2.17, we can write any path system in the bicluster tree T ′ as P ∨Q where

P is a path system in U1, Q is a path system in U2, and the top-vectors of P and Q agree on the
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root of T ′. Let f be an element of the Gröbner basis for IT ′ described in Proposition 4.2.19. If

f = z[P1∨Q1]z[P2∨Q2]− z[P1∨Q2]z[P2∨Q1] ∈Quadi (T ′), then

ξ∗U1,U2
(ω1,ω2)(z[P1∨Q1]z[P2∨Q2]) =ω1(x[P1]) +ω2(y[Q1]) +ω1(x[P2]) +ω2(y[Q2])

= ξ∗U1,U2
(ω1,ω2)(z[P1∨Q2]z[P2∨Q1]).

We find ε > 0 and weight vector ω to “break ties" for leading monomials of each element of

Quadi (T ′). If f is a 2×2 minor of M1(T ′), then every variable in f is not root-leaf traversable. So the

choice of leading monomial does not affect the liftability property. If f is a 2×2 minor of M0(T ′), then

there is only one case in which the number of root-leaf traversable variables in the two monomials

of f varies. Without loss of generality, let P1,Q1 be root augmentable and P2,Q2 not. Then P2∨Q2

is not root-leaf traversable, while P1 ∨Q1,P1 ∨Q2 and P2 ∨Q1 are. So, we must select anω so that

z[P1∨Q1]z[P2∨Q2] is chosen as the leading monomial of f .

We define this weight vectorω by assigning its values on the entries of M0(T ′). Arrange path

systemsA1, . . . ,Ar in U1 so that ifAi is root augmentable andA j is not, then i < j . Arrange path

systemsB1, . . . ,Bs in U2 so that ifBi is root augmentable andB j is not, then i < j .

Defineω(z[Ai∨B j ]) = 2i+ j for all i and j . Let i1 < j1 and i2 < j2. Then

ω(z[Ai1∨B j2 ]
z[A j1∨Bi2 ]

) = 2i1+ j2 +2i2+ j1

≤ 2 j1+ j2−1+2 j1+ j2−1

= 2(2 j1+ j2−1)

= 2 j1+ j2

< 2i1+i2 +2 j1+ j2

=ω(z[Ai1∨Bi2 ]
z[A j1∨B j2 ]

)

Soω chooses the correct leading term of f ∈Quad1(T ). We can allowω to be any weight vector

on the entries of M1(T ′) that chooses leading terms as in Proposition 2.6 of [41]. Pick ε to be small

enough so that for all g ∈Lift(G1)∪Lift(G2),

LTξ∗U1,U2
(ω1,ω2)(g ) = LTξ∗U1,U2

(ω1,ω2)+εω(g ).

Now we must add k a for some k ≥ 0 to ensure that the correct leading term is chosen for each

f ∈Lift(G1)∪Lift(G2). Without loss of generality, let

f = z[P1∨R1]z[P2∨R2]− z[Q1∨R1]z[Q2∨R2] ∈Lift(G1).

An analysis of all possible cases shows that the only instance in which the terms of f have a

varying number of root-leaf traversable indices but ξ∗U1,U2
(ω1,ω2)may not select the correct leading

term occurs when, without loss of generality, P1,R1 and Q2 are not root augmentable and P2,R2

and Q1 are root augmentable. In this case, P1 ∨R1 is not root-leaf traversable and P2 ∨R2,Q1 ∨R1
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and Q2 ∨R2 are, but x[P1]x[P2]− x[Q1]x[Q2] may not have x[P1]x[P2] as its leading term. Suppose that

under the weight vector ξ∗U1,U2
(ω1,ω2), z[Q1∨R1]z[Q2∨R2] is the leading term of f . Adding sufficiently

many copies of a will change this, but we must show that adding a does not change the Gröbner

basis G =Lift(G1)∪Lift(G2)∪Quad(T ′).

Define the binomial f = z[Q1∨R1]z[Q2∨R2]− z[P1∨R2]z[P2∨R1]. Note that the polynomial f ∈Lift(G1)

with z[Q1∨R1]z[Q2∨R2] as the leading term under ξ∗U1,U2
(ω1,ω2) + εω, and both terms of f have all

root-leaf traversable indices. Since f and f have the same leading term, G −{ f } is still a Gröbner

basis under ξ∗U1,U2
(ω1,ω2) + εω. Let G ′ be G with all such f ∈ Lift(G1) ∪ Lift(G2) that violate the

liftability property removed. Then every binomial in G ′ satisfies the liftability property, and G ′ is

still a Gröbner basis.

Let g =m1−m2 ∈ IT ′ be a binomial. Then there exists a sequence g1, . . . , g r ∈G ′ so that g reduces

to 0 upon division by the elements of this sequence in order. Suppose that m1 is the leading term

of g in the order induced by ξ∗U1,U2
(ω1,ω2) +εω, but m2 is the leading term in the order induced

by ξ∗U1,U2
(ω1,ω2) +εω+a. Then m2 has more variables whose indices are not root-leaf traversable

than m1. We claim that division by the same g1, . . . , g r , possibly in a different order, still reduces

g to 0. To divide g by one of g1, . . . , g r , pick a g i whose leading term divides m2. One must exist

because all of the g i satisfy the liftability property, so it is impossible to divide m1 by any g i and

decrease the number of root-leaf traversable variables in it. So, we may choose an element of G ′

to proceed with the reduction of g , and G ′ is still a Gröbner basis for the weight order induced by

ξ∗U1,U2
(ω1,ω2) +εω+a.

For any path system P in T , let P′ be the path system in T ′ obtained from P by deleting any

path in P that contains the root ρ of T . Define two mapsψ,ψ′ :C[r]→C[z] by

ψ(r[P]) = z[P′]

and

ψ′(r[P]) =







z[P′] if [P]ρ = 1, and

1 if [P]ρ = 0.

Let < be a monomial order on C[z]whose existence is established by Proposition 4.2.28 and let

G< be the liftable Gröbner basis that it induces on IT ′ . Then define a monomial order ≺ on C[r] by

rb ≺ rc if and only if

• ψ(rb)<ψ(rc), or

• ψ(rb) =ψ(rc) andψ′(rb)<ψ′(rc).

In words, to determine which of two monomials is bigger, we delete the root and see which is

bigger in the order on T ′. If those are equal, then we only look at the indices with the root-coordinate

equal to 1, and then delete the root from those and see which is bigger in the order on T ′.

Denote byF the Gröbner basis for IT ′ induced by the term order < onC[x]. Let f = z[P1]z[P2]−
z[Q1]z[Q2] ∈F . Define the set Root( f ) to be the set of all possible binomials in IT that result from
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treating P1,P2,Q1 and Q2 as path systems in T , with or without an added path with top-most node

ρ. Specifically,

Root( f ) = {ri1[P1]ri2[P2]− r j1[Q1]r j2[Q2]}

where i1, i2, j1, j2 ∈ {0, 1} are such that

• i1+ i2 = j1+ j2, and

• i1 = 1 only if P1 is root-leaf traversable, and similarly for i2, j1, j2.

Denote by Root(T ) =
⋃

f ∈G<
Root( f ). Define the set

Swap(ρ) = {r1[P]r0[Q]− r0[P]r1[Q]}

where P and Q range over all root-leaf traversable path systems in T ′. Define the set G≺ =Root(T )∪
Swap(ρ). For the sake of brevity, we use an underline to indicate the leading term of a polynomial.

Proposition 4.2.29. The term order ≺ described above is liftable. In particular, G≺ is a Gröbner basis

for IT with respect to ≺.

Proof. First, we show that G≺ constitutes a Gröbner basis. Since, as explained in Section 3, IT is

toric, it suffices to show that every binomial in IT can be reduced via the elements of G≺. Let
∏d

i=1 r[Pi ]−
∏d

i=1 r[Qi ] ∈ IT . Then if we arrange the terms in each monomial as a table with the vector

representing each [Pi ] (resp. [Qi ]) as a row, the column sums of each of these tables are equal. By

the definition of ≺, we have
d
∏

i=1

ψ(r[Pi ])≥
d
∏

i=1

ψ(r[Qi ]).

For all Pi ,Qi , we haveψ(r[Pi ]) = z[P′i ] andψ(r[Qi ]) = z[Q′i ].

We can use the elements ofF to reduce
∏d

i=1 z[P′i ]−
∏d

i=1 z[Q′i ] in IT ′ . The properties of the order

on IT ′ induced by< guarantee that (without loss of generality) if we divide by z[P′1]z[P′2]−z[R′1]z[R′2] in

this reduction, then the number of R′1 and R′2 that are root-leaf traversable is at least the number of

P′1 and P′2 that are root-leaf traversable. Therefore, there is a corresponding element ri1[P′1]
ri2[P′2]

−
r j1[R′1]

r j2[R′2]
∈ Root(z[P′1]z[P′2] − z[R′1]z[R′2]) with ri1[P′1]

ri2[P′2]
= r[P1]r[P2]. Note that by definition of ≺,

ri1[P′1]
ri2[P′2]

is indeed the leading term of this binomial.

This Gröbner basis reduction using elements Root(T ) ends in a binomial of the form

d
∏

k=1

rik [Rk ]−
d
∏

k=1

r jk [Rk ]

where
∑d

k=1 ik =
∑d

k=1 jk . At this point, we can use elements of Swap(ρ) to match the columns of

each monomial that correspond to the root. Note that it follows from the multiplicative property of

monomial orders that we can always reduce the leading term this way by dividing by some element

of Swap(ρ).
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Now we can check that ≺ is a liftable term order on the elements of G≺. Any binomial in Swap(ρ)

has one term that is root-augmentable and one that is not. So the choice of leading term of elements

of Swap(ρ) does not affect the liftability property.

Let f = r[P1]r[P2]− r[Q1]r[Q2] ∈ Root(T ). Then in particular,ψ(r[P1]r[P2]) 6=ψ(r[Q1]r[Q2]). There are

several cases.

If [P1]ρ = [P2]ρ = [Q1]ρ = [Q2]ρ = 1, then neither monomial in f has a root-augmentable term.

So the leading term of f does not affect the liftability property.

If [P1]ρ = [Q1]ρ = 1 and [P2]ρ = [Q2]ρ = 0, without loss of generality, then [P1] and [Q1] are

both not root-augmentable, and [P′1] and [Q′1] both are root-leaf traversable. If [P2] and [Q2] are

both root-augmentable or are both not root-augmentable, then the choice of leading term of f

does not affect the liftability property. Suppose that [P2] is not root-augmentable and [Q2] is. Then

underψ, z[P′1]z[P′2] > z[Q′1]z[Q′2] since z[P′1]z[P′2] has one root-augmentable term and z[Q′1]z[Q′2] has two

root-augmentable terms.

If [P1]ρ = [P2]ρ = [Q1]ρ = [Q2]ρ = 0, then the number of root-augmentable terms in either

monomial in f is the same as the number of root-leaf traversable terms in each underψ. So, since

< is liftable, the monomial with the fewest root-augmentable terms is chosen as the leading term of

f , as needed.

Proof of Theorem 4.2.15. If T is the tree with three leaves, then IT = 〈0〉and the result holds vacuously.

Let T have n > 3 leaves. If T is a cluster tree, then by induction on n , we may apply Proposition

4.2.29, and IT has a liftable Gröbner basis. By definition of a liftable term order, this Gröbner basis

consists of quadratic binomials. Otherwise, IT splits as a toric fiber product. So Proposition 4.2.19

and induction on n imply that IT has a quadratic Gröbner basis with squarefree initial terms.

Corollary 4.2.30. The CFN-MC polytope has a regular unimodular triangulation and is normal.

Proof. By Theorem 4.2.15, the CFN-MC ideal has a quadratic Gröbner basis. Elements of this Gröbner

basis correspond to elements of the kernel of a 0/1 matrix. The only quadratic binomials that could

be generators of a toric ideal have the form a 2− b c or a b − c d for some indeterminates a , b , c , d

in the polynomial ring. However, the type a 2− b c is not possible in a toric ideal whose associated

matrix is a 0/1 matrix. Since Theorem 4.2.15 shows that IT has a quadratic Gröbner basis, and the

leading term of each element of the Gröbner basis is squarefree, so the leading term ideal of IT

with respect to the liftable term order ≺ is generated by squarefree monomials. Therefore, it is the

Stanley-Reisner ideal of a regular unimodular triangulation of RT [38, Theorem 8.3].
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CHAPTER

5

EHRHART THEORY OF THE CFN-MC

MODEL

In this section, we compute the Hilbert series of the CFN-MC ideal for each rooted binary tree T .

In particular, we show that this Hilbert depends only on the number of leaves of T and not on the

topology of T . To accomplish this, we use Ehrhart theory of the polytopes RT . Our approach is

inspired by the work of Buczynska and Wisniewski, who proved a similar result for ideals arising

from the CFN model without the molecular clock [8], and of Kubjas, who gave a combinatorial proof

of the same result [28].

The Ehrhart theory of the CFN-MC polytopes is determined by permutation statistics on alter-

nating permutations. In the following section, we provide some introductory definitions related to

the combinatorics of alternating permutations.

5.1 Alternating Permutations and Order Polytopes

5.1.1 Alternating Permutations

The zig-zag poset Zn on ground set {z1, . . . , zn} is the poset with exactly the cover relations z1 <

z2 > z3 < z4 > . . . . That is, this partial order satisfies z2i−1 < z2i and z2i > z2i+1 for all i between 1

and bn−1
2 c. The order polytope ofZn , denoted O (Zn ) is the set of all n-tuples (x1, . . . , xn ) ∈Rn that

satisfy 0≤ xi ≤ 1 for all i and xi ≤ x j whenever zi < z j inZn . In Section 5.2, we will show that O (Zn )

is affinely isomorphic to the CFN-MC polytope on a caterpillar tree; this will allow us to study the

Hilbert series of a CFN-MC ideal by analyzing the Ehrhart theory of O (Zn ).
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Definition 5.1.1. An alternating permutation on n letters is a permutationσ such thatσ(1)<σ(2)>

σ(3)<σ(4)> . . . . That is, an alternating permutation satisfiesσ(2i −1)<σ(2i ) andσ(2i )>σ(2i +1)

for 1≤ i ≤ bn2 c.

We denote by An the set of all alternating permutations. Notice that alternating permutations

coincide with order-preserving bijections from [n ] toZn .

The number of alternating permutations of length n is the nth Euler zig-zag number En . The

sequence of Euler zig-zag numbers starting with E0 begins 1, 1, 1, 2, 5, 16, 61, 272, . . . . This sequence

can be found in the Online Encyclopedia of Integer Sequences with identification number A000111

[33]. The exponential generating function for the Euler zig-zag numbers satisfies

∑

n≥0

En
x n

n !
= tan x + sec x .

Furthermore, the Euler zig-zag numbers satisfy the recurrence

2En+1 =
n
∑

k=0

�

n

k

�

Ek En−k

for n ≥ 1 with initial values E0 = E1 = 1. A thorough background on the combinatorics of alter-

nating permutations can be found in [36]. The following new permutation statistic on alternating

permutations is central to our results.

Definition 5.1.2. Let σ be an alternating permutation. The permutation statistic swap(σ) is the

number of i < n such that σ−1(i ) < σ−1(i + 1)− 1. Equivalently, this is the number of i < n such

that i is to the left of i + 1 and swapping i and i + 1 in σ yields another alternating permutation.

The swap-set Swap(σ) is the set of all i < n for which we can perform this operation. We say thatσ

swaps to τ if τ can be obtained fromσ by performing this operation a single time.

We will also make use of the following two features which can be defined for any permutation.

Letσ ∈ Sn .

Definition 5.1.3. A descent ofσ is an index i ∈ [n −1] such thatσ(i )>σ(i +1). An inversion ofσ is

any pair (i , j ) for 1≤ i < j ≤ n such thatσ−1( j )<σ−1(i ).

When we writeσ in one-line notation, a descent is a position onσ where the value ofσ drops.

An inversion is any pair of values in [n ]where the larger number appears before the smaller number

inσ.

5.1.2 Order Polytopes

To every finite poset on n elements one can associate a polytope inRn by viewing the cover relations

on the poset as inequalities on Euclidean space.

Definition 5.1.4. The order polytope O (P ) of any poset P on ground set p1, . . . , pn is the set of all

v ∈Rn that satisfy 0≤ vi ≤ 1 for all i and vi ≤ v j if pi < pj is a cover relation in P .
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Order polytopes for arbitrary posets have been the object of considerable study, and are discussed

in detail in [35]. In the case of O (Zn ), the facet defining inequalities are those of the form

−vi ≤ 0 for i ≤ n odd (5.1)

vi ≤ 1 for i ≤ n even

vi − vi+1 ≤ 0 for i ≤ n −1 odd, and

−vi + vi+1 ≤ 0 for i ≤ n −1 even.

Note that the inequalities of the form −vi ≤ 0 for i even and vi ≤ 1 for i odd are redundant. The

order polytope ofZn is also the convex hull of all (v1, . . . , vn ) ∈ {0, 1}n that correspond to labelings of

Zn that are weakly consistent with the partial order on {p1, . . . , pn}.
In [35], Stanley gives the following canonical unimodular triangulation of the order polytope of

any poset P on ground set {p1, . . . , pn}. Letσ : P → [n ] be a linear extension of P . Denote by ei the

i th standard basis vector inRn . The simplex∆σ is the convex hull of vσ0 , . . . , vσn where vσ0 is the all

1’s vector and vσi = vσi−1−eσ−1(i ). Lettingσ range over all linear extensions of P yields a unimodular

triangulation of O (P ). Hence, the normalized volume of O (P ) is the number of linear extensions of

P . In particular, this means that the volume of O (Zn ) is the Euler zig-zag number, En .

Example 5.1.5. Consider the case when n = 4. The zig-zag posetZ4 is pictured in Figure 5.1. The

order polytope O (Z4) has facet defining inequalities

−v1 ≤ 0

−v3 ≤ 0

v1− v2 ≤ 0

v3− v4 ≤ 0.

v2 ≤ 1

v4 ≤ 1

−v2+ v3 ≤ 0

The vertices of O (Z4) are the columns of the matrix











0 0 0 1 0 1 0 1

0 1 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 1 0 1 1 1 1











.

The alternating permutations on 4 elements, which correspond to linear extensions of Z4 are

1324, 1423, 2314, 2413, and 3412. Note that there are E4 = 5 such alternating permutations, so the

normalized volume ofO (Z4) is 5. The simplex in the canonical triangulation ofO (Zn ) corresponding

to 1423 is

∆1324 = conv











1 0 0 0 0

1 1 1 1 0

1 1 0 0 0

1 1 1 0 0











.
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z1

z2

z3

z4

Figure 5.1 The zig-zag posetZ4

Consider this order of the simplices of the canonical triangulation:

∆3412,∆2413,∆2314,∆1423,∆1324.

This particular ordering of the facets is one of the shelling orders that will be established and proved

in the next section. The fact that this is a shelling order can be checked directly in this example, for

instance:

∆2314 ∩ (∆3412 ∪∆2413) = conv











1 1 0 0

1 1 1 0

1 0 0 0

1 1 1 0











which is a facet of∆2314. Since the intersection consists of a single facet, it will contribute a 1 to the

coefficient of t in h∗O (Z4))
(t ) = 1+3t + t 2.

5.2 Ehrhart Function of the CFN-MC Polytope

The goal of this section is to prove the following theorem.

Theorem 5.2.1. For any rooted binary tree T with n leaves, the normalized volume of RT is En−1, the

(n −1)st Euler zig-zag number.

The proof of Theorem 5.2.1 has two parts. First, we give a unimodular affine isomorphism

between the CFN-MC polytope associated to the caterpillar tree and the order polytope of the

so-called “zig-zag poset", which is known to have the desired normalized volume [36]. The second,

and more difficult, part is to show that the volume and Ehrhart polynomial of the CFN-MC polytope

are the same for any n-leaf tree by giving a bijection between the lattice points in (mRT ∩Zn−1) and

(mRT ′ ∩Zn−1)where T and T ′ are related by a single tree rotation. Since any two binary trees on n

leaves are connected by a sequences of rotations, this proves the theorem.

5.2.1 Caterpillar Trees

For a class of trees known as caterpillar trees, we can find a unimodular affine map between the

CFN-MC polytope and the order polytope of a well-understood poset.
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Definition 5.2.2. A caterpillar tree Cn on n leaves is the unique rooted tree topology with exactly

one cherry.

Proposition 5.2.3. Let D be the n ×n diagonal matrix with Di i = 1 if i is odd and Di i = −1 if i is

even. Let a be the vector in Rn with ai = 0 if i is odd and ai = 1 if i is even. The rigid motion of Rn

defined by

φ(x) =D x+a

is a unimodular affine isomorphism from RCn+1
to O (Zn ).

Proof. First note that det D =±1, soφ is a unimodular affine isomorphism. The image of x underφ

is coordinate-wise by

φ(x)i =







xi if i is odd, and

1− xi if i is even.

By Corollary, 4.2.13, the facet-defining inequalities of RCn+1
are of the form −xi ≤ 0 for i ≤ n and

xi+xi+1 ≤ 1 for i ≤ n−1. Substitutionφ(x) into each of these equations yields exactly the inequalities

in Equation (5.1), as needed.

Corollary 5.2.4. The Ehrhart functions of the CFN-MC polytope RCn+1
and the order polytope O (Zn )

are equal for all n. This further implies that the normalized volume of RCn+1
is the nth Euler zig-zag

number, En .

Proof. The Ehrhart functions iRCn+1
(m ) and iO (Zn )(m ) are equal becauseφ is a lattice-point preserv-

ing transformation from mRCn+1
to mO (Zn ). The leading coefficient of the Ehrhart polynomial of a

polytope is the volume of that polytope. This volume is En
n ! for O (Zn ) and so, for RCn+1

as well [36].

So the normalized volume of RCn+1
is En .

5.2.2 The Ehrhart Function and Rotations

We give an explicit bijection between the lattice points in the m-th dilate of RT and of RT ′ where

m ∈Z+ and T and T ′ differ by one rotation. This shows that the Ehrhart polynomials of RT and RT ′

are the same. Since any tree can be obtained from any other tree by a finite sequence of rotations,

this along with Corollary 5.2.4 proves Theorem 5.2.1.

Let b , c , e be three consecutive nodes of a tree T , where c is a descendant of b , and e is a

descendant of c . Note that node e need not be an internal node of T . There is a unique rotation

associated to the triple (b , c , e ); namely, this move prunes c , the edge c e and the e -subtree from

below b , and reattaches these on the other edge immediately below b to yield a new tree, T ′. This

rotation, and its effect on the internal structure of T is depicted in Figure 5.2. Note that it is also

possible for b to be the root, in which case node a in this figure does not exist. A rotation splits the

vertices of RT into two natural categories: the ones that are also vertices of RT ′ and the ones that are

not.
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a
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a
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c

d e f

T ′

Figure 5.2 A rotation performed by pruning c and its right subtree and reattaching in the right subtree of
b .

Definition 5.2.5. Let the tree T ′ be obtained from T by the rotation associated to (b , c , e ) as pictured

in Figure 5.2. A vertex of RT is maintaining if it is also a vertex of RT ′ . A vertex of RT is nonmaintaining

if it is not a vertex of RT ′ .

We use the following definition to give a characterization of the maintaining and nonmaintaining

vertices of RT .

Definition 5.2.6. Let S be the top-set of a path system in T . Let x be an internal node of T . Then x

is blocked in S if for every path from x to a leaf descended from x , there exists a y ∈ S that lies on

this path.

Note that if x is blocked in S , then for every path system P that realizes S , we cannot add another

path to P with top-most node above x that passes through x .

Example 5.2.7. Let T be the tree pictured in Figure 5.3 with a path system P drawn in bold. Note

that up to a swap of the leaves below node h , P is the only path system in T that realizes top-set

{a , d , e , g }.
By definition, a , d , e and g are all blocked in {a , d , e , g }. Furthermore, node c is blocked in

{a , d , e , g } since any path from c to a leaf descended from c passes through either d or e , but

d , e ∈ {a , d , e , g }. On the other hand, f is not blocked in {a , d , e , g }, since there is a path from f to

leaf l that only passes through h , and h 6∈ {a , d , e , g }. Similarly, b is not blocked in {a , d , e , g }.

Proposition 5.2.8. Let [P] be a vertex of RT with associated top-set V . Let a , b , c , d , e and f be as in

tree T in Figure 5.2.

(i) If b , c 6∈V , then [P] is maintaining.

(ii) If b ∈V , then [P] is maintaining if and only if d is not blocked in V .
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a
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f

g h

l

Figure 5.3 Nodes a , c , d , e and g are the nodes that are blocked in top-set {a , d , e , g }.

(iii) If c ∈V , then [P] is maintaining if and only if f is not blocked in V .

Proof. To prove (i), let b , c 6∈ V . Then since all paths in P are disjoint, there can be at most one

P ∈P that is not contained entirely in the d -, e - or f -subtrees, or in T without the b -subtree. If no

such P exists, then P is still a path system that realizes V in T ′, as needed. In particular, if b is the

root of T , then no such path can exist since in this case, every path is contained in the b -subtree.

Now suppose that such a P ∈P does exist. Then it must be the case that b is the direct descendent

of some node a . We can modify P to be a path P ′ in T ′ as follows.

If a b , b c , c d ∈ P , then let P ′ be the path in T ′ obtained from P by replacing edges b c and c d

with edge b d , and leaving all others the same. If a b , b c , c e ∈ P , then P ′ = P is also a path in T ′, and

we do not need to modify it. If a b , b f ∈ P , then let P ′ be the path in T ′ obtained by replacing edge

b f in P with edges b c and c f , and leaving all others the same. Since b , c 6∈V , these are the only

cases. Then (P−{P })∪{P ′} is a path system in T ′ and [(P−{P })∪{P ′}] = [P]. So [P] is maintaining.

To prove (ii), let b ∈V . Suppose that [P] is maintaining. Then there exists a path system P′ in T ′

such that [P′] = [P]. Let P ∈P′ have top-most node b . Then b d ∈ P and P includes a path P from

d to a leaf descended from d . Since all paths in P′ are disjoint, no path in P′ has its top-most node

along P . So d is not blocked in V .

Suppose that d is not blocked in V . Then there exists a path P̂ from d to a leaf descended from

d with none of its nodes in V . Let P be the path system in T that realizes V , and let P ∈P have

top-most node b . We may assume that P̂ is contained in P . P also includes a path P from f to a

leaf descended from f . Let P ′ = P̂ ∪P ∪{b d , b c , c f }. Then P′ = (P−{P })∪{P ′} is a path system in

T ′ with [P′] = [P]. So [P] is maintaining.

To prove (iii), let c ∈V . Suppose that [P] is maintaining. Then there exists a path system P′ in T ′

such that [P′] = [P]. Let P ∈P′ have top-most node c . Then c f ∈ P and P includes a path P from f

to a leaf descended from f . Since all paths in P′ are disjoint, no path in P′ has top-most node along

P . So f is not blocked in V .

Suppose that f is not blocked in V . Let P1 ∈P have top-most node c . Since f is not blocked in

V , there exists a path P from f to a leaf descended from f such that no node on P is in V . Note that

this path may be contained in some path P2 ∈P. If such P2 exists, it must have top-most node above
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P1

P2

a

b

c

d e f

P1 and P2 in T

P ′2

P ′1

a

b

c

d e f

P ′1 and P ′2 in T ′

Figure 5.4 Proposition 5.2.8 (iii): In this case, P1 contains all dashed edges descended from d . P̂1 contains
all dotted edges descended from e . P contains all thick solid edges descended from f . P̂2 contains all thick
solid edges above b .

b . So b f ∈ P2 in this case. Let P̂2 = P2− (P ∪{b f }). These paths are illustrated in Figure 5.4.

Furthermore, P1 contains a path P1 from d to a leaf descended from d , and P̂1 from e to a leaf

descended from e .

Let P ′1 be the path in T ′ with top-most node c ,

P ′1 = P̂1 ∪P ∪{c e , c f }.

If there exists a P2 ∈P that contains f , let P ′2 be the path in T ′,

P ′2 = P1 ∪ P̂2 ∪{b d }.

Then P′ = (P−{P1, P2})∪{P ′1 , P ′2 }, or (P−{P1})∪{P ′1 } if no such P2 exists, is a path system in T ′

[P′] = [P]. So v is maintaining.

For simplicity, if the b -coordinate of [P] is equal to 1 (ie. [P]b = 1) and [P] is nonmaintaining,

we say that [P] is b -nonmaintaining, and similarly for node c .

Proposition 5.2.9. The b -nonmaintaining vertices of RT are in bijection with the c -nonmaintaining

vertices of RT ′ . Similarly, the c -nonmaintaining vertices of RT are in bijection with the b -nonmaintaining

vertices of RT ′

Proof. Let [P] be a b -nonmaintaining vertex of RT . Then by Proposition 5.2.8, d is blocked in the

top-set V of [P]. So the path P ∈P with top-most node b passes through the e -subtree of T . Let P ′

be the path in T ′ given by

P ′ = (P −{b c , b f })∪{c f }.

Then P′ = (P−{P })∪P ′) is a path system in T ′ that matches [P] on all coordinates other than the
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b - and c -coordinates, and that has b -coordinate equal to 0 and c -coordinate equal to 1. Since d

is blocked in P′, [P′] is c -nonmaintaining in T ′. (Note that the node labels do not match those of

Proposition 5.2.8 since we are applying the result to the tree obtained after the rotation has been

performed.) Performing the reverse operation on a c -nonmaintaining vertex [P′] of T ′ shows that

this is a bijection.

Definition 5.2.10. If [P] is nonmaintaining, let P′ be the path system described in the proof of

Proposition 5.2.9, so that [P′]b = [P]c , [P′]c = [P]b , and [P′]matches [P] for all other nodes of T .

Proposition 5.2.9 allows us to define the following involution between the vertices of RT and RT ′ :

φT ,T ′ : vert(RT )→ vert(RT ′ )

[P] 7→







[P], if [P] is maintaining

[P′], if [P] is nonmaintaining.

We now turn our attention to the integer lattice points in the m th dilates of RT and RT ′ for m ∈Z+.

Let v ∈Zn−1∩mRT . Recall that by Corollary 4.2.30, RT is normal. So, we may write v= [P1]+· · ·+[Pm ]

for some [P1], . . . , [Pm ] ∈ vert(RT ). We call [P1]+· · ·+[Pm ] a representation of v. Such a representation

is minimal if it uses the smallest number of nonmaintaining vertices over all representations of v.

For each vertex [Pi ] of RT , let Vi denote the top-set associated to [Pi ].

Definition 5.2.11. A representation [P1] + · · ·+ [Pm ] = v ∈mRT ∩Zn−1 is d -compressed if

• all of [P1], . . . , [Pm ]with b -coordinate equal to 1 are maintaining, or

• for all [Pi ]with b , c /∈Vi , d is blocked in Vi .

Similarly, this representation is f -compressed if

• all of [P1], . . . , [Pm ]with c -coordinate equal to 1 are maintaining, or

• for all [Pi ]with b , c /∈Vi , f is blocked in Vi .

If [P1] + · · ·+ [Pm ] is both d -compressed and f -compressed, then we say that the representation is

d f -compressed.

Consider the mapφT ,T ′
m : (mRT ∩Zn−1)→ (mRT ′ ∩Zn−1) defined by

φT ,T ′

m (v) =
m
∑

i=1

φT ,T ′ ([Pi ])

where
∑m

i=1[Pi ] is a minimal representation of v. Both the well-definedness of this map, as well as

the fact that it is a bijection follow Lemmas 5.2.12 and 5.2.13 below.

Lemma 5.2.12. If [P1]+· · ·+[Pm ] is a minimal representation of v ∈mRT ∩Zn−1, then [P1]+· · ·+[Pm ]

is d f -compressed.
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In the proofs of Lemmas 5.2.12 and 5.2.13, we use the following notation. For all top-sets S and

all nodes x of T , denote by S x the intersection of S with the set of internal nodes of the x -subtree.

For all w ∈Rn−1, denote by wx the restriction of w to the coordinates corresponding to nodes in the

x -subtree. For all path systems P in T , denote by Px the set of all paths in P that are contained in

the x -subtree.

Proof of Lemma 5.2.12. We prove the contrapositive. Suppose that the representation [P1]+· · ·+[Pm ]

is not d f -compressed. Then this representation is either not d -compressed or not f -compressed.

We show that [P1] + · · ·+ [Pm ] is not minimal in both cases.

If [P1] + · · ·+ [Pm ] is not d -compressed, then it must be the case that both conditions in the

definition of a d -compressed representation fail. Since the first condition fails, there exists a [Pi ]with

b -coordinate equal to 1 which is nonmaintaining. Without loss of generality, we may assume that

[P1] is this b -nonmaintaining vertex. Since the second condition fails, there exists a [Pi ]with b , c 6∈
Vi and where d is not blocked in Vi . Without loss of generality, we may also assume that [P2] is this

vertex with b , c 6∈V2 but where d is not blocked in [P2]. We claim that V1 = (V1− (V d
1 ∪V e

1 ))∪V d
2 ∪V e

2

and V2 = (V2− (V d
2 ∪V e

2 ))∪V d
1 ∪V e

1 are valid top-sets in T with associated path systems P1 and P2

respectively. We further claim that [P1] and [P2] are maintaining. The operation described in this

proof is illustrated for an example tree T and top-sets V1 and V2 in Figure 5.5.

Let P ∈P1 with top-most node b . Let P̂ be the path from b to a leaf below f contained in P . Let

P be a path from d to a leaf descended from d that does not contain any nodes in V2; this exists

since d is not blocked in V2. Let P ′ = P̂ ∪{b c , c d }∪P . Then

P1 = (P1− ({P }∪Pd
1 ∪P

e
1 ))∪{P

′}∪Pd
2 ∪P

e
2

realizes V1. Also, d is not blocked in V1, so [P1] is maintaining.

If there is no path in P2 that contains edges c d or c e , then it is clear that

P2 = (P2− (Pd
2 ∪P

e
2 ))∪P

d
1 ∪P

e
1

realizes V2. Otherwise, suppose that Q ∈ P2 is a path that contains c d or c e . Let Q̂ be the path

contained in Q without the edges in the c -subtree. Let P be the path in P1 with top-most node b ,

and let P̃ be the path contained in P from e to a leaf descended from e ; this exists since d is blocked

in V1. Let Q ′ = Q̂ ∪{c e }∪ P̃ . Then

P2 = (P2− ({Q}∪Pd
2 ∪P

e
2 ))∪{Q

′}∪Pd
1 ∪P

e
1

realizes V2, as needed. Since b and c 6∈V2, [P2] is maintaining.

This operation preserves the number of times each internal node is a top-most node. So, v=

[P1] + [P2] + [P3] + · · ·+ [Pm ] is a representation of v using fewer nonmaintaining vertices, and

[P1] + · · ·+ [Pm ] is not minimal.

If [P1] + · · ·+ [Pm ] is not f -compressed, we proceed by a similar argument. Without loss of

88



a
b

c

d

e

f

g h i j

A b -nonmaintaining path system P1

realizing V1 = {b , g , h , i }

a
b

c

d

e

f

g h i j

A path system P2 realizing
V2 = {a , e , j }with d not blocked in V2

a
b

c

d

e

f

g h i j

The b -maintaining path system P1

realizing V1 = {b , e , i }

a
b

c

d

e

f

g h i j

The path system P2 realizing
V2 = {a , g , h , j }

Figure 5.5 Proof of Lemma 5.2.12, The first row of trees contain path systems – one whose top-set is b -
nonmaintaining, and one without b or c in its top-set, but with d not blocked in its top-set. The second
row of trees are the path systems obtained by performing the operation in the proof of Lemma 5.2.12. Note
that the representation given by the path systems in the second row is d f -compressed.
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g h i j

A c -nonmaintaining path system P1

realizing V1 = {c , i , j }

a
b

c

d

e

f

g h i j

A path system P2 realizing
V2 = {a , d , e , i }with f not blocked in V2

a
b

c

d

e

f

g h i j

The path system P1 realizing
V1 = {d , e , i , j }

a
b

c

d

e

f

g h i j

The c -maintaining path system P2

realizing V2 = {b , e , i }

Figure 5.6 Proof of Lemma 5.2.12, The first row of trees contain path systems – one whose top-set is c -
nonmaintaining, and one without b or c in its top-set, but with f not blocked in its top-set. The second
row of trees are the path systems obtained by performing the operation in the proof of Lemma 5.2.12. Note
that the representation given by the path systems in the second row is d f -compressed.
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generality, we may assume that [P1] is c -nonmaintaining and that f is not blocked in [P2]. Then we

claim that V1 = (V1− (V c
1 ))∪V c

2 and V2 = (V2− (V c
2 ))∪V c

1 are valid top-sets in T with associated path

systems P1 and P2 respectively. Furthermore, we claim that [P1] and [P2] are maintaining. Figure

5.6 shows an example of a path system that is not f -compressed and the path system obtained from

it by performing this operation.

Since f is not blocked in V2, we may assume that for all P ∈P2, b c 6∈ P . This is because b 6∈V2,

and any P ∈ P2 with top-most node above b may pass through the f -subtree instead of the c -

subtree since f is not blocked in V2. So, in both P1 and P2, all paths that intersect the c -subtree are

contained entirely within the c -subtree. So P1 = (P1−Pc
1 )∪P

c
2 and P2 = (P2−Pc

2 )∪P
c
1 are path

systems that realize V1 and V2, respectively. Since b , c 6∈V1, [P1] is maintaining. Furthermore, since

f is not blocked in V2, and since V
f

2 =V
f

2 , f is not blocked in V2 and [P2] is maintaining.

This operation preserves the number of times each internal node is used as a top-most node. So

v= [P1]+[P2]+[P3]+· · ·+[Pm ] is a representation of [P] using fewer c -nonmaintaining vertices.

Lemma 5.2.13. Let v, u ∈mRT ∩Zn−1 such that vb + vc = ub +uc and vx = ux for all x 6= b , c . Let

v= [P1]+· · ·+[Pm ] be a d f -compressed representation of v and let u= [Q1]+· · ·+[Qm ] be any represen-

tation of u. If the multiset {[Q1], . . . , [Qm ]} contains fewer b -nonmaintaining or c -nonmaintaining

vertices than the multiset {[P1], . . . , [Pm ]}, then [P1] + · · ·+ [Pm ] is not a minimal representation of v.

Proof. First suppose that the set {[Q1], . . . , [Qm ]} contains fewer b -nonmaintaining vertices than

{[P1], . . . , [Pm ]}. Then without loss of generality, let [P]1 be b -nonmaintaining. For all i , let Vi denote

the top-set corresponding toPi and let Ui denote the top-set corresponding toQi . Figure 5.7 depicts

an example of this case and of the procedure that we describe in the following proof.

Since [P1] + · · ·+ [Pm ] is d -compressed, for all Vi with b , c /∈Vi , d is blocked in Vi . Without loss

of generality, let [P1], . . . , [Pr ] and [Q1], . . . , [Qr ′ ] be the b -nonmaintaining vertices where r ′ < r . Let

[Pr+1], . . . , [Ps ] and [Qr ′+1], . . . , [Qs ] be the rest of the vertices with b or c coordinate equal to 1. Note

that by assumption, there are the same number of vertices summed in the representations of u and

v.

Let Vi = (Vi −V d
i )∪U d

i for all i . We claim that each of the Vi are valid top-sets, and that the

collection of all corresponding [Pi ] has the same number of b -nonmaintaining vertices as the [Qi ],

and the same number of c -nonmaintaining vertices as the [Pi ].

First, let i ≤ r ′. Then since [P]i and [Q]i are both b -nonmaintaining, d is blocked in both Vi

and Ui . So c d 6∈Pi ,Qi . Therefore, all paths in Pi and Qi that intersect the d -subtree are contained

entirely within the d -subtree. So Pi = (Pi −Pd
i )∪Q

d
i is a path system that realizes Vi , as needed.

Next, let r ′ < i ≤ s . Then [Q]i either is b -maintaining or has c -coordinate equal to 1. In either

case, d is not blocked in Ui . So there exists a path Q from d to a leaf descended from d with no node

along Q in Ui . Let P ∈Pi be the path with either b or c as its top-most node.

If P has b as its top-most node, then let P̂ be the path from b to a node below f that is contained

in P . Let P ′ = P̂ ∪{b c , c d }∪Q . Then

Pi = (Pi − ({P }∪Pd
i ))∪{P

′}∪Qd
i
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realizes Vi .

If P has c as its top-most node, then let P̂ be the path from c to a leaf below e that is contained

in P . Let P ′− P̂ ∪{c d }∪Q . Then

Pi = (Pi − ({P }∪Pd
i ))∪{P

′}∪Qd
i

realizes Vi .

Note that in all cases when r ′ < i ≤ s , d is not blocked in Vi . Since r ′ < r , this means that there

are fewer b -nonmaintaining vertices in {[P1], . . . , [Ps ]} than in {[P1], . . . , [Ps ]}. Furthermore, since

the paths in the f -subtrees remain unchanged, this operation cannot create new c -nonmaintaining

vertices.

Finally, let i > s . Then b , c 6∈Vi ,Ui . Since d is blocked in every Vi , all paths in Pi that intersect

the d -subtree are contained entirely in the d -subtree. So P= (Pi −Pd
i )∪Q

d
i is a path system that

realizes Vi .

Since
m
∑

i=1

[Pi ]
d =

m
∑

i=1

[Qi ]
d ,

and since [Pi ]
d
= [Qi ]d for all i , [P1]+ · · ·+[Pm ] is a representation of v using fewer nonmaintaining

vertices than [P1] + · · ·+ [Pm ]. So [P1] + · · ·+ [Pm ] is not minimal. An example of the operation used

to obtain [P1], . . . , [Pm ] is illustrated in Figure 5.7.

Now suppose that the set {[Q1], . . . , [Qm ]} contains fewer c -nonmaintaining vertices than the

set {[P1], . . . , [Pm ]}. Figure 5.8 depicts an example of this case and of the procedure that we describe

in the following proof. Without loss of generality, let [P1] be c -nonmaintaining. Since [P1] + · · ·+
[Pm ] is f -compressed, for all Vi with b , c /∈ Vi , f is blocked in Vi . Without loss of generality, let

[P1], . . . , [Pr ] and [Q1], . . . , [Qr ′ ] be the c -nonmaintaining vertices where r ′ < r . Let [Pr+1], . . . , [Ps ]

and [Qr ′+1], . . . [Qs ] be the rest of the vertices with b or c coordinate equal to 1. Note that by assump-

tion, there are the same number of vertices summed in the representations of u and v.

Let Vi = (Vi −V
f

i )∪U
f

i for all i . We claim that each of the Vi are valid top-sets, and that the

collection of all Vi has the same number of c -nonmaintaining vertices as the Ui , and the same

number of b -nonmaintaining vertices as the Vi .

First, let i ≤ r ′. Then since [Pi ] and [Qi ] are both c -nonmaintaining, f is blocked in both Vi and

Ui . Therefore, all paths in Pi and Qi that intersect the f -subtree are contained entirely within the

f -subtree. So Pi = (Pi −P
f
i )∪Q

f
i is a path system that realizes Vi , as needed.

Next, let r ′ < i ≤ s . Then [Qi ] is either c -maintaining or has b -coordinate equal to 1. In either

case, f is not blocked in Ui . So there exists a path Q from from f to a leaf descended from f with no

node along Q in Ui .
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A path system realizing V1 = {b , d }
where [P1] is b -nonmaintaining
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e
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g h i j

A path system realizing
V2 = {c , i , j }
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g h i j

A path system realizing V3 = {a , e , g , h}
with d blocked in V3

a
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e

f

g h i j

A path system realizing U1 = {b , h , e , j }
where [Q1] is b -maintaining
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g h i j

A path system realizing U2 = {b , g , i }
where [Q2] is b -maintaining

a
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c
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g h i j

A path system realizing
U3 = {a , d }
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g h i j

A path system realizing
V1 = {b , h}where [P1] is b -maintaining

a
b
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d

e

f

g h i j

A path system realizing
V2 = {c , g , i , j }

a
b

c

d

e

f

g h i j

A path system realizing
V3 = {a , d , e }

Figure 5.7 Proof of Lemma 5.2.13. This figure illustrates the case where {[Q1], . . . , [Qm ]} contains fewer b -nonmaintaining vertices than {[P1], . . . , [Pm ]}.
The first row of trees are path systems that realize v = [P1] + [P2] + [P3] ∈ 3RT . The second row of trees are path systems that realize the vector u =
[Q1] + [Q2] + [Q3] ∈ 3RT that satisfies the assumptions of the lemma. The third row of trees are a new set of path systems that realize v using fewer b -
nonmaintaining vertices, which we obtained by applying the procedure discussed in the proof of the lemma.
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A path system realizing V1 = {c , f }
in which [P1] is c -nonmaintaining
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A path system realizing V2 = {c , g }
in which [P2] is c -maintaining
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A path system realizing
V3 = {a , d , i , j } in which f is blocked
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A path system realizing U1 = {c , g , i }
where [Q1] is c -maintaining
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A path system realizing U2 = {b , j }
in which f is blocked
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A path system realizing
U3 = {a , d , f }
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g h i j

A path system realizing V1 = {c , i }
where [P1] is c -maintaining

a
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e
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g h i j

A path system realizing
V2 = {c , g , j }where [P2] is c -maintaining

a
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c

d

e

f

g h i j

A path system realizing
V3 = {a , d , f }

Figure 5.8 Proof of Lemma 5.2.13. {[Q1], . . . , [Qm ]} contains fewer c -nonmaintaining vertices than {[P1], . . . , [Pm ]}. The first row of trees are path systems
that realize v= [P1] + [P2] + [P3] ∈ 3RT . The second row of trees are path systems that realize u= [Q1] + [Q2] + [Q3] ∈ 3RT , which satisfies the assumptions of
the lemma. The third row of trees are a new set of path systems that realize v using fewer c -nonmaintaining vertices, which we obtained by applying the
procedure discussed in the proof of the lemma.

94



Consider the case when b ∈ Vi . Let P ∈Pi with b as its top-most node, and let P̂ be the path

from b to a leaf below c that is contained in P . Let P ′ = P̂ ∪{b f }∪Q . Then

Pi = (Pi − ({P }∪P
f
i ))∪{P

′}∪Q f
i

realizes Vi .

Now suppose that c ∈Vi . If there does not exist P ∈Pi with a node above b as its top-most node

that passes through the f -subtree, then all paths in Pi that intersect the f -subtree are contained in

the f -subtree. So Pi = (Pi −Pd
i )∪Q

d
i is a path system that realizes Vi .

If there does exist P ∈Pi with top-most node above b that passes through the f -subtree, let P̂

denote P without the portion of P that lies in the f -subtree. Let P ′ = P̂ ∪Q . Then

Pi = (Pi − ({P }∪P
f
i ))∪{P

′}∪Q f
i

is a path system that realizes Vi .

Note that in all cases when r ′ < i ≤ s , f is not blocked in Vi . Since r ′ < r , this means that there

are fewer c -nonmaintaining vertices in {[P1], . . . , [Ps ]} than in {[P1], . . . , [Ps ]}. Furthermore, since

the paths in the d -subtrees remain unchanged, this operation cannot create new b -nonmaintaining

vertices.

Finally, let i > s . Then b , c 6∈Vi ,Ui . Since f is blocked in every Vi , all paths in Pi that intersect

the f -subtree are contained entirely in the f -subtree. So P= (Pi −P
f
i )∪Q

f
i is a path system that

realizes Vi .

Since
m
∑

i=1

[Pi ]
f =

m
∑

i=1

[Qi ]
f ,

and since [Pi ] f = [Qi ] f for all i , [P1]+ · · ·+[Pm ] is a representation of v using fewer nonmaintaining

vertices than [P1] + · · ·+ [Pm ]. So [P1] + · · ·+ [Pm ] is not minimal. An example of the operation used

to obtain [P1], . . . , [Pm ] is illustrated in Figure 5.8.

Corollary 5.2.14. The mapφT ,T ′
m is well-defined.

Proof. It suffices to show that all minimal representations of v ∈mRT ∩Zn−1 have the same number

of b - and c -nonmaintaining vertices. This follows from Lemma 5.2.13.

Corollary 5.2.15. The mapφT ,T ′
m is a bijection.

Proof. It suffices to show thatφT ′,T
m is the inverse map ofφT ,T ′

m . Suppose that it is not. Then there

exists some v ∈mRT ∩Zn−1 such that v= [P1]+· · ·+[Pm ] is a minimal representation, butφT ,T ′ ([P1])+

· · ·+φT ,T ′ ([Pm ]) =φT ,T ′
m (v) is not a minimal representation ofφT ,T ′

m (v).

Let [Q1] + · · ·+ [Qm ] =φT ,T ′
m (v) be minimal. Consider the image φT ′,T

m (φT ,T ′
m (v)) =φT ′,T ([Q1]) +

· · ·+φT ′,T ([Qm ]). The set {φT ′,T ([Q1]), . . . ,φT ′,T ([Qm ])} contains fewer nonmaintaining vertices than

{[P1], . . . , [Pm ]} because φT ′,T maps maintaining vertices to maintaining vertices by the proof of
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Proposition 5.2.9. The set {φT ′,T ([Q1]), . . . ,φT ′,T ([Qm ])}also satisfies all of the assumptions of Lemma

5.2.13. So, [P1]+ · · ·+[Pm ]was not actually a minimal representation of v and we have reached a

contradiction.

Theorem 5.2.16. For all rooted binary trees T with n leaves, the Hilbert series of IT is equal to the

Hilbert series of ICn
.

Proof. Every rooted binary tree can be obtained from the caterpillar tree by a finite sequence of

rotations. So, it follows from Corollary 5.2.15 that the number of lattice points in the m th dilates

of RT is equal to that of RCn
for all trees T with n leaves. So, the Ehrhart polynomials and hence,

the Ehrhart series of RT and RCn
are equal. The Ehrhart series of RT is equal to the Hilbert series of

IT .

Proof of Theorem 5.2.1. The leading coefficient of the Ehrhart polynomial of a polytope is the (un-

normalized) volume of the polytope. We have shown the equality of the Ehrhart polynomials of RCn

and RT for any n-leaf tree T . So, RCn
and RT have the same normalized volumes. This is the (n −1)st

Euler zig-zag number by Corollary 5.2.4.

5.3 The h ∗-Polynomial of the Order Polytope of the Zig-Zag Poset

Using Proposition 5.2.3 and Theorem 5.2.16, we can now study the Ehrhart theory of O (Zn ) in order

to compute the Hilbert series of each CFN-MC ideal on a rooted binary tree with n +1 leaves. The

goal of this section is to prove the following theorem relating the h∗-polynomial of O (Zn ) and the

swap statistic.

Theorem 5.3.1. The numerator of the Ehrhart series of O (Zn ) is

h∗O (Zn )
(t ) =

∑

σ∈An

t swap(σ).

Remark 5.3.2. Alternate formulas for the h∗-polynomial of the order polytope of a poset P exist, as

described in [37, Chapter 13.3]. However, many of these formulas refer to the Jordan-Hölder set of P

and in particular, descents in the permutations in this set, which we will discuss in more detail in

Section 5.4. In the case ofZn , the elements of this Jordan-Hölder set are not alternating or inverse

alternating permutations because they arise from linear extensions with respect to a natural labeling

ofZn . The elements of the Jordan-Hölder set do not have as nice of a combinatorial description as

the alternating permutations, and there is not an obvious bijection between swaps in alternating

permutations and descents in elements of the Jordan-Hölder set.

In this section we describe a family of shelling orders on the simplices of the canonical triangu-

lation of O (Zn ). Letσ be an alternating permutation. We will denote by vert(σ) the set of all vertices

of the simplex∆σ. Note that this is the set of all 0/1 vectors v of length n that have vi ≤ v j whenever

σ(i )<σ( j ).
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Proposition 5.3.3. The simplices∆σ and∆τ are joined along a facet if and only ifσ swaps to τ or τ

swaps toσ.

Proof. Simplices ∆σ and ∆τ are joined along a facet if and only if vert(σ) and vert(τ) differ by a

single element. Since every simplex in the canonical triangulation of O (Zn ) has exactly one vertex

with the sum of its components equal to i for 0 ≤ i ≤ n and the all 0’s and all 1’s vector are in

every simplex in this triangulation, this occurs if and only if there exists an i with 1 ≤ i ≤ n − 1

such that vert(σ)−{vσi }= vert(τ)−{vτi }. By definition of each vσj and vτj , this occurs if and only if

σ−1( j ) = τ−1( j ) for all j 6= i , i + 1 and eσ−1(i )+ eσ−1(i+1) = eτ−1(i )+ eτ−1(i+1). This is true if and only if

swapping the positions of i and i +1 inσ yields τ, as needed.

Denote by inv(σ) the number of inversions of a permutation σ; that is, inv(σ) is the number

of pairs i < j such that σ(i ) > σ( j ). We similarly define a non-inversion to be a pair i < j with

σ(i )<σ( j ). We call an inversion or non-inversion (i , j ) relevant if i < j −1; that is, if it is not required

by the structure of an alternating permutation. Note that performing a swap on an alternating

permutation always increases its inversion number by exactly one.

The following lemma relates relevant non-inversions to swaps in between them.

Lemma 5.3.4. Let σ be an alternating permutation. Let a , b ∈ [n ] such that (σ−1(a ),σ−1(b )) is a

relevant non-inversion ofσ. Then there exists a k with a ≤ k < b such that k is a swap ofσ.

Proof. We proceed by induction on b −a . If b −a = 1, then since (i , j ) is a relevant non-inversion, a

is a swap inσ.

Let b −a > 1. Consider the position of a +1 inσ. There are three cases. Ifσ−1(a +1)<σ−1(b )−1,

then (σ−1(a +1),σ−1(b )) is a relevant non-inversion, and we are done by induction. Ifσ−1(a +1)>

σ−1(b ), then a is a swap inσ. Ifσ−1(a +1) =σ−1(b )−1, then note thatσ−1(a )<σ−1(a +1)−1 since

otherwise, a , a +1, b would be an adjacent increasing sequence inσ, which would contradict that

σ is alternating. So a is a swap inσ, as needed.

Theorem 5.3.1 follows as a corollary of Theorem 1.2.8, Proposition 5.3.3 and the following

theorem.

Theorem 5.3.5. Letσ1, . . . ,σEn
be an order on the alternating permutations such that if i < j then

inv(σi ) ≥ inv(σ j ). Then the order ∆σ1 , . . . ,∆σEn on the simplices of the canonical triangulation of

O (Zn ) is a shelling order.

Note that since performing a swap increases inversion number by exactly one, the condition of

Theorem 5.3.5 implies that ifσ j swaps toσi , then i < j . For any alternating permutationσ, define

the exclusion set of σ, excl(σ) to be the set of all vσk ∈ vert(σ) such that k is a swap in σ. In other

words,

excl(σ) = {v | v ∈∆σ −∆τ for some τ such thatσ swaps to τ}.

In the proof of Theorem 5.3.5, we will show that Proposition 5.3.3 implies that in order to prove

Theorem 5.3.5, it suffices to check that if inv(σ) ≤ inv(τ), then excl(σ) 6⊂ vert(τ). This fact follows

from the next two propositions.
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Proposition 5.3.6. An alternating permutationσmaximizes inversion number over all alternating

permutations τwith excl(σ)⊂ vert(τ).

Proof. Consider a vertex vσk ∈ vert(σ). Note that we may read all of the non-inversions (i , j ) with

σ(i )≤ k <σ( j ) from vσk since these correspond to pairs of positions in vσk with a 0 in the first position

and a 1 in the second. That is to say, we have vσk (i ) = 0, vσk ( j ) = 1, and i < j .

We claim that every relevant non-inversion ofσ can be read from an element of excl(σ) in this

way. By Lemma 5.3.4, there exists a swap k inσ withσ(i )≤ k <σ( j ), and the relevant non-inversion

(i , j ) can be read from vσk in the manner described above.

Therefore, all relevant non-inversions inσ can be found as a non-adjacent 0−1 pair in a vertex in

excl(σ). In particular, we can count the number of relevant non-inversions inσ from the vertices in

excl(σ). Furthermore, if excl(σ)⊂ vert(τ), then all non-inversions inσmust also be non-inversions in

τ, thoughτ can contain more non-inversions as well. Soσminimizes the number of non-inversions,

and therefore maximizes the number of inversions, over all τwith excl(σ)⊂ vert(τ).

Proposition 5.3.7. Let S ⊂ vert(O (Zn )) be contained in vert(σ) for some alternating σ. Then there

exists a unique alternating σ̂ that maximizes inversion number over all alternating permutations

whose vertex set contains S.

Proof. Let S = {s0, s1, . . . , sr } ordered by decreasing coordinate sum. We can assume that S contains

both the all zeroes and all ones vectors since those vectors belong to the simplex∆σ for any alternat-

ing permutationσ. Since S ⊂ vert(σ) for some alternatingσ, if si ( j ) = 0, then sk ( j ) = 0 for all k > i .

For i = 1, . . . , r , let mi be the number of positions in si that are equal to zero, and let ni =mi −mi−1

(with n1 =m1).

Let τ be any alternating permutation such that S ⊆ vert(τ). The 0-pattern of each si partitions

the entries of all τ with S ⊂ vert(τ) as follows: For 1≤ k ≤ r , the nk positions j such that sk ( j ) = 0

and sk−1( j ) = 1 are the positions of τ such that τ( j ) ∈ {mk−1+1, . . . , mk }.
The positions of inversions and non-inversions across these groups are fixed for all τwith S ⊂

vert(τ). We can build an alternating permutation σ̂ that maximizes the inversions within each group

as follows. For 1≤ k ≤ r , let j k
1 , . . . , j k

nk
be the positions of σ̂ that must take values in {mk−1+1, . . . , mk },

as described above. We place these values in reverse; i.e. map j k
l to mk − l + 1. The permutation

obtained in this way need not be alternating, so we switch adjacent positions that need to contain

non-descents in order to make the permutation alternating. Note that we never need to make such

a switch between groups, since the partition given by S respects the structure of an alternating

permutation.

This permutation is unique because within the k th group, arranging the values in this way

is equivalent to finding the permutation on nk elements with some fixed non-descent positions

that maximizes inversion number. To obtain this permutation, we begin with the permutation

mk mk − 1. . . mk−1 + 1 and switch all the positions that must be non-descents. The alternating

structure of the original permutation implies that none of these non-descent positions can be

adjacent, so these transpositions commute and give a unique permutation.
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Example 5.3.8. Let n = 7 and let
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We will construct σ̂, the alternating permutation that maximizes inversion number overall alter-

nating permuations whose vertex set contains S . The second and third vertices in S are the only

one that gives information about the position of each character; we will denote them w1 and w2,

respectively. Since w1 has 0’s in exactly the first, third and seventh positions, we know that 1, 2 and 3

are in these positions. We insert them into these positions in decreasing order, so that σ̂ has the

form

3 2 1.

The zeros added in w2 are in the fourth, fifth and sixth positions. Placing them in decreasing

order yields the permutation

3 2 6 5 4 1.

However, this permutation cannot be alternating, since there must be an ascent from position 5 to

position 6. To create this ascent, we switch the entries in these positions, yielding a permutation of

the form

3 2 6 4 5 1.

Finally, the only character missing is 7, which must go in the remaining space. This gives the

permutation

σ̂= 3 7 2 6 4 5 1.

Proof of Theorem 5.3.5. First, we claim that it suffices to show that for any alternating permutations

σ and τ, if inv(τ)≥ inv(σ) then excl(σ) 6⊂ vert(τ). Indeed, for any ρ with inv(ρ)≥ inv(σ), by Proposi-

tion 5.3.3 we have that∆σ∩∆ρ is a facet of∆σ if and only ifσ swaps toρ. This is the case if and only if

∆σ∩∆ρ =∆σ\{vi } for some vi ∈ excl(σ). So if∆σ∩∆τ 6⊂∆σ∩∆ρ for anyρ such that inv(ρ)≥ inv(σ)

with∆σ∩∆ρ a facet of∆σ, then we must have excl(σ)⊂ vert(τ). The contrapositive of this statement

shows that if excl(σ) 6⊂ vert(τ), then the given order on the facets of the triangulation is a shelling.

If inv(τ)> inv(σ), then sinceσmaximizes inversion number over all alternating permutations

that contain the exclusion set ofσ by Proposition 5.3.6, excl(σ) 6⊂ vert(τ). Furthermore, Proposition

5.3.7 implies that if inv(τ) = inv(σ), then excl(σ) 6⊂ vert(τ) becauseσ is the unique permutation that

maximizes inversion number of all alternating permutation that contain its exclusion set.

Proof of Theorem 5.3.1. Let∆σ1 , . . . ,∆σEn be a shelling order as described in Theorem 5.3.5. Then
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by Proposition 5.3.3, each∆σi is added in the shelling along exactly swap(σi ) facets. Therefore, by

Theorem 1.2.8,

h∗O (Zn )
(t ) =

∑

σ∈An

t swap(σ),

as needed.

Corollary 5.3.9. Let T be a rooted binary tree on n leaves. Then the Hilbert series of IT has numerator,

∑

σ∈An−1

t swap(σ)

Proof. By Theorem 5.2.16, the Hilbert series of IT is equal to that of ICn
. By Proposition 5.2.3, the

Hilbert series of ICn
is equal to the Ehrhart series of O (Zn−1). So the corollary follows directly from

Theorem 5.3.1.

We conclude this section by remarking that not all of the shellings described in Theorem 5.3.5

can be obtained from EL- or CL-labelings of the lattice of order ideals ofZn . Denote by J (Zn ) the

distributive lattice of order ideals of Zn ordered by inclusion. Saturated chains in J (Zn ) are in

bijection with elements of An via the map that sends an alternating permutationσ to the chain of

order ideals,

I0 ( I1 ( I2 ( · · ·( In

where I j = {σ−1(1), . . . ,σ−1( j )} [37, Chapter 3.5].

Definition 5.3.10. Let P be a graded bounded poset and let E (P ) be the set of cover relations of P .

An EL-labeling of P is a labeling λ of E (P )with integers such that

• each closed interval [a , b ] of P has a unique λ-increasing saturated chain, and

• this λ-increasing chain lexicographically precedes all other saturated chains from a to b .

A poset that has an EL-labeling is called EL-shellable.

For more details on poset shellability, we refer the reader to [43]. If P is EL-shellable with EL-

labeling λ, then lexicographic order on the saturated chains of P with respect to λ gives a shelling of

the order complex of P [6]. In the case of J (Zn ), its order complex is isomorphic to the canonical

triangulation of the order polytope O (Zn ) via the bijection described above. So finding EL-labelings

of J (Zn ) is one way to construct shellings of the canonical triangulations of O (Zn ). However, not all

of the shellings described in Theorem 5.3.5 can be obtained in this way.

Proposition 5.3.11. There exist shelling orders on the canonical triangulation of O (Zn ) given by the

conditions of Theorem 5.3.5 that cannot be obtained from EL-labelings of J (Zn ).

Proof. For the sake of readability, we discuss these shellings on the level of alternating permutations.

The “position of σ in a shelling order" is taken to mean the position of ∆σ in that shelling order
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for the canonical triangulation of O (Zn ). All of the shellings described in Theorem 5.3.5 begin

with the unique alternating permutationσ that maximizes inversion number over all alternating

permutations; this permutation exists by Proposition 5.3.7. Note thatσ−1(1) is n −1 or n , depending

upon the parity of n .

We address the case where n ≥ 5 is odd. Thenσ is of the form

σ= (n −1) n (n −3) (n −2) . . . 4 5 2 3 1.

Let λ be an EL-labeling of the cover relations of J (Zn ) that induces a shelling with σ is its first

element. (Note that if no such EL-labeling exists, the proposition holds trivially.)

The sets ;,{pn},{pn−2} and {pn−2, pn} are the order ideals of J (Zn ) that comprise the interval

[;,{pn−2, pn}]. The chain corresponding toσ begins with ;l {pn}l {pn−2, pn}. So this must must be

the uniqueλ-increasing chain in the interval [;,{pn−2, pn}]. As such, it lexicographically precedes the

chain ;l{pn−2}l{pn−2, pn}. This implies that any permutationσwithσ−1(1) = n andσ−1(2) = n−2

will precede any permutation τwith τ−1(2) = n and τ−1(1) = n −2.

In particular, letσ be obtained fromσ by switching the positions of 3 and 4. Let τ be obtained

fromσ by switching the positions of 1 and 2. Then in any EL-shelling,σ will come before τ. How-

ever, σ and τ have the same inversion number and have exactly one swap position, so they are

interchangeable in any order given by the conditions of Theorem 5.3.5.

An analogous argument works when n ≥ 6 is even, and can be adapted for the case when

n = 4.

This proposition and proof can also be adapted to show that not all shellings arising from

Theorem 5.3.5 can be obtained from CL-labelings of J (Zn ).

5.4 The Swap Statistic Via Rank Selection

An alternate proof of Theorem 5.3.1 relies heavily on the concepts of rank selection and flag f -vectors

developed for general posets in Sections 3.13 and 3.15 of [37]. We will focus our attention to the

zig-zag poset,Zn . Denote by J (Zn ) the distributive lattice of order ideals inZn ordered by inclusion.

Let S = {s1, . . . , sk } ⊂ [0, n ], where [0, n ] = {0, . . . , n}. We always assume that s1 < s2 < . . .< sk . Denote

by αn (S ) the number of chains of order ideals I1 ( · · ·( Ik in J (Zn ) such that #I j = s j for all j . Define

βn (S ) =
∑

T⊂S

(−1)#(S−T )αn (T ).

By the Principle of Inclusion-Exclusion, or equivalently, via Möbius inversion on the Boolean lattice,

αn (S ) =
∑

T⊂S

βn (S ).

In Section 3.13 of [37], the function αn : 2[0,n ] → Z is called the flag f-vector of Zn and βn :

101



2[0,n ] → Z is called the flag h-vector of Zn . For any poset P of size n , let ω : P → [n ] be an order-

preserving bijection that assigns a label to each element of P ; in this case, ω is called a natural

labeling. Then for any linear extensionσ : P → [n ], we may define a permutation of the labels by

ω(σ−1(1)), . . . ,ω(σ−1(n )). The Jordan-Hölder setL (P,ω) is the set of all permutations obtained in

this way. The following result for arbitrary finite posets can be found in chapter 3.13 of [37].

Theorem 5.4.1 ([37], Theorem 3.13.1). Let S ⊂ [n −1]. Then βn (S ) is equal to the number of permuta-

tions τ ∈L (P,ω)with descent set S .

The order polynomial of a poset P ,ΩP (m ) is the number of order preserving maps from P to [m ].

The Ehrhart polynomial of O (Zn ) evaluated at m is equal to the order polynomial ofZn evaluated

at m +1 [35]. We also have the following equality of generating functions from Theorem 3.15.8 of

[37]. We restate the relevant special case of this theorem here.

Theorem 5.4.2 ([37], Theorem 3.15.8). Letω : P → [n ] be an order-preserving bijection. Then

∑

m≥0

ΩP (m )x
m =

∑

σ∈L (P,ω) x
1+des(σ)

(1− x )p+1
,

where p is the cardinality of P .

Therefore, since iO (Zn )(m ) =ΩO (Zn )(m +1), we have that

EhrO (Zn )(t ) =

∑

σ∈L (O (Zn ),ω)
x des(σ)

(1− x )n+1
.

It follows that the h∗-polynomial of O (Zn ) is

h∗O (Zn )
(t ) =

∑

S⊂[n−1]

βn (S )t
#S . (5.2)

So, Theorem 5.3.1 will follow from Equation 5.2 and the following theorem, which is analogous

to Theorem 3.13.1 in [37].

Theorem 5.4.3. Let S ⊂ [n − 1]. Then βn (S ) is the number of alternating permutations ω with

Swap(ω) = S.

To prove this theorem, for every S = {s1, . . . , sn} ⊂ [n −1], we will find define a functionφS that

maps chains of order ideals of sizes s1, . . . , sk to alternating permutations whose swap set is contained

in S . Let I1, . . . , Ik be a chain of order ideals in J (Zn )with sizes #I j = s j . Let wi be the vertex of O (Zn )

that satisfies

wi ( j ) =







0 if j ∈ Ii

1 if j 6∈ Ii .

Define φS (I1, . . . , Ik ) to be the unique alternating permutation that maximizes inversion number

over all alternating permutations whose vertex set contains {w1, . . . , wk }. This map is well-defined

by Proposition 5.3.7.
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LetψS be the map that sends an alternating permutationωwith Swap(ω)⊂ S to the chain of

order ideals (I1, . . . , Ik ) where each I j = {ω−1(1), . . . ,ω−1(s j )}. Since every alternating permutation

ω is a linear extension ofZn , each I j obtained in this way is an order ideal. They form a chain by

construction, so the mapψS is well-defined. We will show thatψS is the inverse ofφS in the proof

of Theorem 5.4.3.

Example 5.4.4. Consider the zig-zag poset on seven elementsZ7 pictured in Figure 5.9. Let S = {3, 6},
and let I1 = {a , c , g } and I2 = {a , c , d , e , f , g } be the given order ideals of sizes 3 and 6 respectively.

Then the vectors w1 and w2 are

w1 =

























0

1

0

1

1

1

0

























and w2 =

























0

1

0

0

0

0

0

























.

Notice that these are the same vectors w1 and w2 as in Example 5.3.8. So the unique alternating

permutationφS (I1, I2) that maximizes inversion number over all alternating permutations whose

vertex set contains {w1, w2} is the same permutation as in Example 5.3.8,

φS (I1, I2) = 3 7 2 6 4 5 1.

Note that Swap(3726451) = {3} ⊂ {3, 6}= S .

Now letω= 3726451. We will recover our original order ideals I1 and I2 by findingψS (ω). For

clarity, we will treatω as a map from {a , . . . , g } to {1, . . . , 7}. The first order ideal ofψS (ω) consists of

the inverse images of 1, 2, and 3 inω. That is,

I1 = {ω−1(1),ω−1(2),ω−1(3)}= {a , c , g }.

The second order ideal ofψS (ω) consists of the inverse images of 1 through 6 inω. So we obtain

I2 = {ω−1(1), . . . ,ω−1(6)}= {a , c , d , e , f , g }.

Note that this is, in fact, the chain of order ideals with which we began.

Proof of Theorem 5.4.3. Let S = {s1, . . . , sk } ⊂ [n −1]. We will show that αn (S ) is the number of alter-

nating permutations whose swap set is contained in S by showing that the mapφS described above

is a bijection.

Let I1, . . . , Ik be a chain of order ideals in J (Zn ) with sizes #I j = s j . It is clear from the definitions
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c

d

e

f

g

Figure 5.9 The zig-zag posetZ7

ofφS andψS that

ψS (φS (I1, . . . , Ik )) = (I1, . . . , Ik ).

Since φS is injective, it suffices to show thatψS is also injective. We will show that φS (I1, . . . , Ik ) is

the only alternating permutation that maps to (I1, . . . , Ik ) underψS .

Since ω = φS (I1, . . . , Ik ) is the unique alternating permuation that maximizes inversion num-

ber over all alternating permutations with {w1, . . . , wk } in their vertex sets, any other alternating

permutationσ that maps to (I1, . . . , Ik ) underψS must have fewer inversions thanω.

Letσ be such a permutation. Since each inversion between the sets I1,Zn − Ik and I j − I j−1 for

all 1< j ≤ k are fixed, the additional non-inversion must be contained in one of these sets. Without

loss of generality, let this be R = I j − I j−1. Denote byσ|R the restriction ofσ to the domain R . Let

(σ−1(a ),σ−1(b )) be the non-inversion ofσ|R that is not required by the alternating structure. Then

by Lemma 5.3.4, there exists a k such that a ≤ k < b and k is a swap inσ. Since a ≤ k < b ,σ−1(k )

andσ−1(k +1) are in R , so k is also a swap inσ|R as well. So the swap set ofσ is not contained in S

and we have reached a contradiction.

Therefore,ω is the only alternating permutation that can map to (I1, . . . , Ik ) underψS , andψS is

the inverse map of φS . So αn (S ) is equal to the number of alternating permutations whose swap

set is contained in S . By the Principle of Inclusion-Exclusion, βn (S ) is the number of alternating

permutations whose swap set is equal to S .

Theorem 5.3.1 follows as a corollary of Theorem 5.4.3.

Proof of Theorem 5.3.1. Equation 5.2 states that

h∗O (Zn )
(t ) =

∑

S⊂[n−1]

βn (S )t
#S .

Theorem 5.4.3 tells us that βn (S ) is the number of alternating permutations with swap set S . So the

sum
∑

#S=k βn (S ) is the number of alternating permutationsσ with swap(σ) = k . So

h∗O (Zn )
(t ) =

∑

σ

t swap(σ),

as needed.

We conclude this section with an equidistribution result that follows as a corollary of Theorem

5.3.1.
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Corollary 5.4.5. Letω be a natural labeling ofZn . Then

∑

σ∈An

t swap(σ) =
∑

σ∈L (Zn ,ω)

t des(σ).
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