
ABSTRACT

DUTTA, PRERONA. Metric Entropy and Nonlinear Partial Differential Equations. (Under
the direction of Tien Khai Nguyen.)

The metric entropy (or ε-entropy) has been studied extensively in a variety of literature

and disciplines. This notion was introduced by Kolmogorov and Tikhomirov in 1959 as

the minimum number of bits needed to represent a point in a given subset K of a metric

space (E ,ρ), up to an accuracy ε with respect to the metric ρ. Recently, the ε-entropy has

also been used to measure the set of solutions of various nonlinear partial differential

equations (PDEs). In this context, it provides a measure of the order of “resolution” and the

“complexity” of a numerical scheme.

This dissertation is motivated by the above points of view and demonstrates techniques

emerging from the field of nonlinear analysis, that are used to estimate the metric entropy

for different classes of bounded variation (BV) functions. Since Helly’s theorem states that

a set of uniformly bounded total variation functions is compact in L1-space, a natural

question arises on how to quantify the degree of compactness and we answer this using

the concept of ε-entropy. Subsequently, we apply the obtained results to measure solution

sets of conservation laws and Hamilton-Jacobi equations.

In the first half of this thesis, we elucidate the foundational principles involved in our

work and show that the minimal number of functions needed to represent a bounded total

variation function in L1([0, L ]d ,R) up to an error ε with respect to L1-distance, is of the order

ε−d . We use this outcome to examine the metric entropy for sets of viscosity solutions to

the Hamilton-Jacobi equation. Earlier works on this topic considered a uniformly convex

Hamiltonian. We extend the analysis to the case when the Hamiltonian H ∈C 1(Rd ) is strictly

convex, coercive and a uniformly directionally convex function. Under these assumptions,

we establish sharp estimates on the ε-entropy for sets of viscosity solutions to the Hamilton-

Jacobi equation with respect to W1,1-distance in multi-dimensional cases.

The second half of the thesis focuses on finding sharp estimates for the metric entropy

of a class of bounded total generalized variation functions taking values in a general totally

bounded metric space (E ,ρ) upto an accuracy of ε with respect to the L1–distance. We rely

on the ideas of covering and packing in (E ,ρ) to derive such bounds and utilize them to

study a scalar conservation law in one-dimensional space, which yields an upper bound on

the ε-entropy of a set of entropy admissible weak solutions to it, in case of weakly genuinely

nonlinear fluxes, i.e., for fluxes with no affine parts. In particular, for fluxes admitting finitely

many inflection points with a polynomial degeneracy, this estimate is sharp.
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CHAPTER

1

INTRODUCTION

The metric entropy (or ε-entropy) has been studied extensively in a variety of literature

and disciplines. It plays a central role in various areas of information theory and statistics,

including nonparametric function estimation, density information, empirical processes

and machine learning ([14, 29, 45]). This concept was first introduced by Kolmogorov and

Tikhomirov in [33] and defined as follows.

Definition. Let (E ,ρ) be a metric space and K be a totally bounded subset of E . For ε > 0, let

Nε(K
�

�E ) be the minimal number of sets in an ε-covering of K , i.e., a covering of K by balls

in E with radius no greater than ε. Then the ε-entropy of K is defined as

Hε(K |E ) = log2Nε(K |E ).

A classical topic in the field of probability is to investigate the metric covering numbers

for general classes of real-valued functionsF defined on a space E under the family of

L1(d P )where P is a probability distribution on E . Upper bounds in terms of the Vapnik-

Chervonenkis dimension and pseudo-dimension of the function class were established in

[25] and then improved in [29, 30, 45]. Several results on lower bounds were also studied

in [35]. Eventually, upper and lower estimates of the ε-entropy ofF in L1(d P ) in terms of
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a scale-sensitive dimension of the function class were provided in [35, 40] and applied to

machine learning.

According to Helly’s theorem, a set of uniformly bounded variation functions is compact

in L1-space. This raises the logical question of how to quantify the degree of compactness

of such sets and attempts were made to do so by using the ε-entropy. In [35], the authors

showed that the ε-entropy of any set of uniformly bounded total variation real-valued func-

tions in L1 is of the order
1

ε
in the scalar case. Related works have been done in the context

of density estimation where attention has been given to the problem of finding covering

numbers for the classes of densities that are unimodal or non-decreasing in [14, 27]. In

multi-dimensional cases, the covering numbers of convex and uniformly bounded func-

tions were studied in [28]. It was shown that the ε-entropy of a class of convex functions

with uniform bound in L1 is of the order
1

ε
d
2

where d is the dimension of the state variable.

The result was previously studied for scalar state variables in [24] and for convex functions

that are uniformly bounded and uniformly Lipschitz with a known Lipschitz constant in

[17]. These results have direct implications in the study of rates of convergence of empirical

minimization procedures (see in [15, 47]) as well as optimal convergence rates in convexity

constrained function estimation problems (see in [13, 39, 48]).

Recently, the ε-entropy has been used to measure the set of solutions of certain nonlinear

partial differential equations. In this setting, it could provide a measure of the order of

“resolution” and “complexity” of a numerical scheme, as suggested in [37, 38]. Roughly

speaking, the order of magnitude of the ε-entropy indicates the minimum number of

operations that one should perform in order to obtain an approximate solution with a

precision of order ε with respect to the considered topology. A starting point for the research

on this topic is a result which was obtained in [23] for a scalar conservation law in one

dimensional space

ut (t , x ) + f (u (t , x ))x = 0, (1.0.1)

with uniformly convex flux f . It was shown that the upper bound of the minimum number

of functions needed to represent an entropy solution u of (1.0.1) at any time t > 0 up

to an accuracy of ε with respect to L1-distance is of the order
1

ε
. In [5] a lower bound on

such an ε-entropy was established, which is of the same order as the upper bound in

[23]. More generally, the authors in [5] also obtained the same estimate for a system of

hyperbolic conservation laws in [6, 7]. In the scalar case, it is well-known that the integral

form of an entropy solution of (1.0.1) is a viscosity solution of the related Hamilton-Jacobi
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equation. Therefore, it is natural to study the ε-entropy for the set of viscosity solutions to

the Hamilton-Jacobi equation

ut (t , x ) +H
�

∇x u (t , x )
�

= 0 , (1.0.2)

with respect to W1,1-distance in multi-dimensional cases. Most recently, it has been proved

in [3] that the minimal number of functions needed to represent a viscosity solution of

(1.0.2) up to an accuracy of ε with respect to the W1,1-distance is of the order
1

εd
, provided

that the Hamiltonian H is uniformly convex. Here, d is the dimension of the state variable.

The same result for when H depends on the state variable x has also been obtained by the

same authors in [4]. Interestingly, the authors in [3] also established an upper bound on the

ε-entropy for the class of monotone functions in L1-space. As a consequence of Poincaré-

type inequalities, it was possible to obtain the ε-entropy for a class of semi-convex/concave

functions in Sobolev W1,1-space. This result extended the ones in [17, 24, 28] to a stronger

norm, namely the W1,1-norm, instead of L1-norm.

Motivated by the results in [3, 17, 24, 28, 35] and considering a possible application to

Hamilton-Jacobi equations with non-strictly convex Hamiltonian, in Section 3.1 we pro-

vide upper and lower estimates of the ε-entropy for a class of uniformly bounded total

variation functions in L1-space in multi-dimensional cases. This is a joint work with Khai T.

Nguyen and has been published in Journal of Mathematical Analysis and Applications ([26]).

Looking back at [4], we observe that the main idea here involved providing controllability

results for Hamilton-Jacobi equations and a compactness result for a class of semiconcave

functions. However, such a gain of BV regularity does not hold for (1.0.2) with general

strictly convex Hamiltonian functions and the previous approach to finding the ε-entropy

of the solution set as in [3, 4] cannot be applied. In this case, a study of the fine regularity

properties of viscosity solutions is still lacking and quantitative estimates on the ε-entropy

of viscosity solution sets are not available yet.

Therefore, in Section 3.2, we further the research in this direction by using our results from

Section 3.1 to extend the analysis of the metric entropy for sets of viscosity solutions to

(1.0.2) when the Hamiltonian H ∈C 1
�

Rd
�

is strictly convex, coercive and in the form of a

uniformly directionally convex function. This work has been done in collaboration with

Stefano Bianchini and Khai T. Nguyen ([12]), where we establish a BV bound on the slope of

backward characteristics D H (u (t , ·)) starting at a positive time t > 0 and relying on this BV

3



bound, we quantify the metric entropy in W1,1
loc(R

d ) for the map St that associates to every

given initial data u0 ∈ Lip
�

Rd
�

, the corresponding solution St u0.

From our review of the existing literature, we note that previous works on metric entropy

for nonlinear partial differential equations which lead to our results in Chapter 3 strongly

rely on the BV regularity properties of solutions. Thereafter, the results in [5, 23] have been

extended to scalar conservation laws with a smooth flux function f that is either strictly

(but not necessarily uniformly) convex or has a single inflection point with a polynomial

degeneracy [8]where entropy admissible weak solutions could be having unbounded total

variation. In this case, the sharp estimate on the ε-entropy for sets of entropy admissible

weak solutions have been provided by exploiting the BV bound of the characteristic speed

f ′(u ) at any positive time [20]. On the other hand, it was shown in [11, Example 7.2] that, in

general, for fluxes having one inflection point where all derivatives vanish, the composition

of the derivative of the flux with the solution of (1.0.1) fails in general to belong to the BV

space and the analysis in [8] is not applicable here. However, for weakly genuinely nonlinear

fluxes, that is, for fluxes with no affine parts, equibounded sets of entropy solutions to

(1.0.1) at positive time are still relatively compact in L1 ([46, Theorem 26]). Therefore, for

fluxes of such classes that do not fulfill the assumptions in [8], it remains an open problem

to provide a sharp estimate on the ε-entropy for the solution set of (1.0.1) and a different

approach must be pursued when studying (1.0.1) with weakly genuinely nonlinear fluxes,

perhaps exploiting the uniform bound on total generalized variation of entropy admissible

weak solutions studied in [41, Theorem 1].

The above points of view elicited our study of the ε-entropy for classes of uniformly bounded

total generalized variation functions taking values in a general totally bounded metric space

(E ,ρ). This work illustrated in Chapter 4 has been done jointly with Rossana Capuani and

Khai T. Nguyen and published in SIAM Journal on Mathematical Analysis ([19]). For deriving

sharp estimates explicitly, we use the notions of doubling and packing dimensions of (E ,ρ),

denoted by d(E ) and p(E ) respectively, which were first introduced by Assouad in [9]. More

precisely, we consider F Ψ[L ,V ] to be a set of functions g : [0, L ]→ E such that the Ψ-total

variation of g over the interval [0, L ] is bounded by V where Ψ is a convex function and

Ψ : [0,+∞)→ [0,+∞) satisfies Ψ(0) = 0 and Ψ(s )> 0 for all s > 0. In Section 4.1, we prove

that for every ε > 0 sufficiently small, the sharp bounds onHε

�

F Ψ[L ,V ]

�

�

�L1([0, L ], E )
�

can be

approximated in terms of p(E ), d(E ) and Ψ.

We conclude this study on the notion of metric entropy and its application to nonlinear

4



partial differential equations, by applying the above result in Section 4.2 to provide an

upper estimate on the ε-entropy of a set of entropy admissible weak solutions to scalar

conservation laws (1.0.1) with general weakly genuinely nonlinear fluxes in Theorem 62,

which partially extends the recent developments made in [8]. The estimate is sharp in the

case of fluxes having finite inflection points with a polynomial degeneracy. Hereafter, a

natural question arises about establishing similar sharp estimates for the ε-entropy of such

solution sets to (1.0.1) with general weakly genuinely nonlinear fluxes, however this topic

remains open to further research.
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CHAPTER

2

PRELIMINARIES

2.1 Notation

Let d be a given positive integer andΩ⊆Rd be a measurable set. Also, let E be a metric space

with distance ρ and I be an interval in R. Throughout this thesis we adopt the following

notation.

• | · |, the Euclidean norm in Rd and for any R > 0

Bd (x , R ) = {y ∈Rd : |x − y |<R }, �R = (−R , R )d ;

• 〈·, ·〉, the Euclidean inner product in Rd ;

• int(Ω), the interior of Ω;

• ∂ Ω, the boundary of Ω;

• [x , y ], the segment joining two points x , y ∈Rd ;

• Bρ(z , r ), the open ball of radius r and center z , with respect to the metric ρ on E , i.e.,

Bρ(z , r ) =
�

y ∈ E | ρ(z , y )< r
	

;
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• diam(F ) = supx ,y ∈F ρ(x , y ), the diameter of the set F in (E ,ρ);

• Vol(Ω), the Lebesgue measure of a measurable set Ω⊂Rd ;

• ωd :=Vol(Bd (0, 1)), the Lebesgue measure of the unit ball in Rd ;

• C 1(Ω), the space of continuously differentiable functions on Ω;

• C 1
c (Ω,Rd ), withΩ⊂Rd an open set, the set of all continuously differentiable functions

from Ω to Rd with a compact support in Ω;

• C∞(R,R), the space of smooth functions having derivatives of all orders;

• B (I , [0,+∞)), a set of bounded functions from I to [0,+∞);

• L1(Ω), the Lebesgue space of all (equivalence classes of) summable real-valued func-

tions on Ω, equipped with the usual norm ‖ · ‖L1(Ω) (the same symbol will be used for

the case when u is vector-valued);

• L1(I , E ), the Lebesgue metric space of all (equivalence classes of) summable functions

f : I → E , equipped with the usual L1-metric distance, i.e.,

ρL1( f , g ) :=

∫

I

ρ( f (t ), g (t ))d t < +∞

for every f , g ∈ L1(I , E );

• BL1(I ,E )(ϕ, r ), the open ball of radius r and center ϕ in L1(I , E ), with respect to the

metric ρL1 on L1(I , E ), i.e.,

BL1(I ,E )(ϕ, r ) =
�

g ∈ L1(I , E )
�

� ρL1(ϕ, g )< r
	

;

• L1(R), the Lebesgue space of all (equivalence classes of) summable functions on R,

equipped with the usual norm ‖ · ‖L1 ;

• L∞(Ω), the space of all essentially bounded real-valued functions on Ω and ‖u‖L∞(Ω)

is the essential supremum of a function u ∈ L∞(Ω) (the same symbol will be used for

the case when u is vector-valued);

• L∞(R), the space of all essentially bounded functions on R, equipped with the usual

norm ‖ · ‖L∞ ;

• Supp(u ), the essential support of a function u ∈ L∞(R);

7



• W1,1
�

Ω), the Sobolev space of functions with summable first order distributional

derivatives and ‖ · ‖W1,1(Ω) is its norm;

• BV (Ω,Rm ), the space of all vector-valued functions F : Ω→ Rm of bounded varia-

tion (i.e., all F ∈ L1(Ω,Rm ) such that the first partial derivatives of F in the sense of

distributions are measures with finite total variation in Ω);

• T V (g , I ), total variation of g over the interval I ;

• T V Ψ(g , I ), Ψ-total variation of g over the interval I ;

• T V
1
γ (g , I ), γ-total variation of g over the interval I , i.e., Ψ-total variation of g with Ψ

defined by Ψ(s ) = |s |γ;

• Lip(Ω), the space of all Lipschitz functions f : Ω → R and Lip[ f ] is the Lipschitz

seminorm of f ;

• H k (E ), the k -dimensional Hausdorff measure of E ⊂Rd ;

• L d , the Lebesgue outer measure on Rd ;

• For any function f , the function føΩ is the restriction of f on Ω;

• Id , the identity matrix of size d ;

• ba c :=max{z ∈Z : z ≤ a }, the integer part a ;

• χΩ(x ) =

¨

1 if x ∈Ω ,

0 if x ∈Rd \Ω
the characteristic function of a subset Ω of Rd .

• 1, N , the set of natural numbers from 1 to N ;

•

�

n

k

�

=
n !

k !(n −k )!
, number of ways in which k objects can be chosen from among n

objects.

2.2 Metric entropy

The notion of metric entropy (or ε-entropy) introduced in [33] is defined as follows.

Definition 1. Let (E ,ρ) be a metric space and K be a totally bounded subset of E . For ε > 0,

letNε(K
�

�E ) be the minimal number of sets in an ε-covering of K , i.e., a covering of K by

balls in E with radius no greater than ε.

8



Figure 2.1 A covering of K in E

Then the ε-entropy of K is defined as

Hε(K |E ) = log2Nε(K |E ).

In other words, it is the minimum number of bits needed to represent a point in a given set

K in the space E with an accuracy of ε with respect to the metric ρ.

Some well-known examples of metric entropy estimates are as follows.

• E =R, K = [0, L ]

Figure 2.2 A covering of [0, L ] in R

Nε([0, L ]|R)≈
L

2ε
andHε([0, L ]|R)≈− log2(ε)

• E =R2, K = [0, L ]× [0, L ]

Figure 2.3 A covering of
[0, L ]× [0, L ] in R2

Nε([0, L ]2|R2)≈
2L 2

ε2
andHε([0, L ]2|R2)≈− 2log2(ε)

• E =Rd , ρ(x , y ) = ‖x − y ‖ and K = Bd (0, r ) for some r > 0

d · log2

� r

ε

�

≤ Hε

�

Bd (0, r )
�

�

�Rd
�

≤ d · log2

�

2r

ε
+1

�

.
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• n-dimensional Lipschitz functions: Let Fn be the set of L-Lipschitz functions (with

respect to ‖ · ‖∞) from [0, 1]n to [0, 1]. Then from [17],

Hε(Fn |L1([0, 1]n , [0, 1])) ≈
�

L

ε

�n

.

• 1-dimensional BV functions: Given L , V > 0, let F[L ,V ] be a set of functions from

[0, L ] to [−V
2 , V

2 ]with T V ( f , [0, L ]) ≤ V . Then from [10],

Hε(F[L ,V ] | L1([0, L ],R)) ≤
12LV

ε
,

for all ε ≤ LV /12.

2.3 Covering and Packing

This section deals with the concepts of covering number and packing number in a totally

bounded metric space (E ,ρ) and provides useful results to be utilized in Chapter 4. For any

K ⊆ E and ε > 0, we say that

• the setA = {a1, a2, . . . , an} ⊆ E is an ε-covering of K if K ⊆
⋃n

i=1 Bρ(ai ,ε), or equiva-

lently, for every x ∈ K , there exists i ∈ 1, n such that ρ(x , ai ) < ε; Card(A ) is called

the size of this ε-covering;

• the setB = {b1, b2, . . . , bm} ⊆ K is an ε-packing of K if ρ(bi , b j )> ε for all i 6= j ∈ 1, m ,

or equivalently, {Bρ(bi ,ε/2)}mi=1 is a finite set of disjoint balls; Card(B ) is called the

size of this ε-packing.

Figure 2.4 An ε-covering and an ε-packing of a set

Definition 2. The ε-covering and ε-packing numbers of K in (E ,ρ) are defined by

Nε(K |E ) = min
�

n ∈N | ∃ ε−covering of K having size n
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and

Mε(K |E ) = max
�

m ∈N | ∃ ε−packing of K having size m
	

,

respectively.

Since E is totally bounded, Nε(K |E ) is finite for every ε > 0. Moreover, the maps ε 7→
Nε(K |E )and ε 7→Mε(K |E )are non-increasing. The relation betweenNε(K |E )andMε(K |E )
is described by the following double inequality which was proved in [33].

Lemma 3. For any ε > 0, it holds that

M2ε(K |E ) ≤ Nε(K |E ) ≤ Mε(K |E ).

Let us now introduce a commonly used notion of dimension for a metric space (E ,ρ) as

proposed in [9, §4].

Definition 4. The doubling and packing dimensions of (E ,ρ) are respectively defined by

• d(E ) is the minimum natural number n such that for every x ∈ E and ε > 0, the ball

Bρ(x , 2ε) can be covered by 2n balls of radius ε;

• p(E ) is the maximum natural number m such that for every x ∈ E and ε > 0, the ball

Bρ(x , 2ε) contains an ε-packing of sizeMε(Bρ(x , 2ε)|E )which satisfies the inequality

2m ≤ Mε(Bρ(x , 2ε)|E ) < 2m+1.

We conclude this section with a result from [19], relating ε-covering and ε-packing.

Lemma 5. Given R ≥ 2ε > 0, let k and m be natural numbers such that

2 ·7k ≤
R

ε
≤ 2m .

For all z ∈ E , the following hold:

Nε
�

Bρ(z , R )
�

�

� E
�

≤ 2md(E ) (2.3.1)

and

Mε

�

Bρ(z , R )
�

�

� E
�

≥ 2(k+1)p(E ) . (2.3.2)

Proof. 1. For every n ≥ 0, we first show that

Nε
�

Bρ(z , 2nε)
�

�

� E
�

≤ 2nd(E ) for all z ∈ E . (2.3.3)
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Assuming that (2.3.3) holds for n = i ≥ 0, for any given z0 ∈ E , from Definition 4, we have

N2i ε

�

Bρ(z0, 2i+1ε)
�

�

� E
�

≤ 2d(E ).

Equivalently, there exist x1, x2, . . . , x2d(E ) ∈ E such that

Bρ(z0, 2i+1ε) ⊆
2d(E )
⋃

j=1

Bρ(x j , 2iε)

and

Nε
�

Bρ(z0, 2i+1ε)
�

�

� E
�

≤
2d(E )
∑

j=1

Nε
�

Bρ(x j , 2iε)
�

�

� E
�

≤ 2d(E ) ·2i d(E ) = 2(i+1)d(E ).

Thus, (2.3.3) holds for n = i +1 and the method of induction yields (2.3.3) for all n ≥ 0. In

particular, the non-decreasing property of the map r 7→Nε
�

Bρ(z , r )
�

�

� E
�

implies that

Nε
�

Bρ(z , R )
�

�

� E
�

≤ Nε
�

Bρ(z , 2mε)
�

�

� E
�

≤ 2md(E ).

2. To achieve the inequality in (2.3.2), we prove that

Mε

�

Bρ(z , 2 ·7nε)
�

�

� E
�

≥ 2(n+1)p(E ) for all z ∈ E . (2.3.4)

It is clear from Definition 4 that (2.3.4) holds for n = 0. Assuming that (2.3.4) holds for

n = i ≥ 1, for any given z0 ∈ E , from Definition 4, we have

M6·7i ε

�

Bρ(z0, 12 ·7iε)
�

�

� E
�

≥ 2p(E ).

Equivalently, there exist x1, x2, . . . , x2p(E ) ∈ Bρ(z0, 12 ·7iε) such that

ρ(x j1
, x j2
) > 6 ·7iε ≥ 4 ·7iε+2ε for all j1 6= j2 ∈ {1, 2, . . . , 2p(E )}.

In particular, for every j1 6= j2 ∈ {1, 2, . . . , 2p(E )}, it holds that

ρ(z1, z2) > 2ε for all z1 ∈ Bρ(x j1
, 2 ·7iε), z2 ∈ Bρ(x j2

, 2 ·7iε).

Since Bρ(x j , 2 ·7iε)⊆ Bρ(z0, 2 ·7i+1ε) for all j ∈ {1, 2, . . . , 2p(E )},

Mε

�

Bρ(z0, 2 ·7i+1ε)
�

�

� E
�

≥
2p(E )
∑

j=1

Mε

�

Bρ(x j , 2 ·7iε)
�

�

� E
�

≥ 2p(E ) ·2(i+1)p(E ) = 2(i+2)p(E ) .
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Thus, by the method of induction, (2.3.4) holds for all n ≥ 0. In particular, the non-decreasing

property of the map r 7→Mε

�

Bρ(z , r )
�

�

� E
�

implies that

Mε

�

Bρ(z , R )
�

�

� E
�

≥ Mε

�

Bρ(z , 2 ·7kε)
�

�

� E
�

≥ 2(k+1)p(E ).

�
As a consequence of Lemma 3 and Lemma 5, we obtain

�

R

4ε

�log7(2)·p(E )

≤ Nε
�

Bρ(z , R )
�

�

� E
�

≤
�

2R

ε

�d(E )

(2.3.5)

and
�

R

2ε

�log7(2)·p(E )

≤ Mε

�

Bρ(z , R )
�

�

� E
�

≤
�

4R

ε

�d(E )

. (2.3.6)

2.4 Semiconcave functions

In this section we state some basic definitions and properties of semiconcave (semiconvex)

functions in Rd . We refer to [18] for a general introduction to the respective theories.

Definition 6. A continuous function u : Ω→ Rd is semiconcave if there exists a nonde-

creasing continuous functionω : [0,∞)→ [0,∞)with lim
s→0+

ω(s ) = 0 such that

u (x +h ) +u (x −h )−2u (x ) ≤ ω(|h |) · |h |

for all x , h ∈Rd such that [x −h , x +h ]⊂Ω. We say that

- u is semiconcave inΩwith a semiconcavity constant K ifω(s ) = K s for all s ∈ [0,+∞);

- u is semiconvex (with constant -K ) if −u is semiconcave (with constant K);

- u is locally semiconcave (semiconvex) if u is semiconcave (semiconvex) in every

compact set A ⊂Ω.

For every x ∈Ωwith Ω⊆Rd open, the sets

D +u (x ) :=

�

p ∈Rd : lim sup
y→x

u (y )−u (x )−〈p , y − x 〉
|y − x |

≤ 0

�

and

D −u (x ) :=
§

p ∈Rd : lim inf
y→x

u (y )−u (x )−〈p , y − x 〉
|y − x |

≥ 0
ª
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are called the superdifferential and the subdifferential of u at x respectively. It is clear that

D ±u (x ) is convex and

D −u (x ) = −D +(−u )(x ) for all x ∈Ω.

The superdifferential of a semiconcave function possesses the following properties as

proved in [18, Proposition 3.3.4, Proposition 3.3.10].

Proposition 7. Let u :Ω→R be locally semiconcave with Ω⊆Rd open, convex. Then:

(i) The superdifferential D +u (x ) is a compact, convex, nonempty set for all x ∈Ω. Moreover,

the set-valued map x 7→D +u (x ) is upper semicontinuous;

(ii) D +u (x ) is a singleton if and only if u is differentiable at x ;

(iii) If D +u (x ) is a singleton for all x ∈Ω, then u ∈C 1(Ω);

(iv) For every x , y ∈Ω, it holds that

〈py −px , y − x 〉 ≤ ω(|x − y |) · |y − x |

for all px ∈D +u (x ) and py ∈D +u (y ).

As a consequence of (ii)-(iii) if u is both locally semiconcave and locally semiconvex then

u is in C 1(Ω). This is crucial to prove further regularity results for viscosity solutions of

Hamilton-Jacobi equations, to be dealt with in Section 2.7. From (iv), we get

Corollary 8. If u : Ω→R is semiconvex with constant −K then for every x , y ∈ Ω, it holds

that

〈py −px , y − x 〉 ≥ −K · |y − x |2

for all px ∈D −u (x ) and py ∈D −u (y ).

For any given constants r, K > 0, we define

S C [r,K ] :=
�

v ∈ Lip(Rd ) : Lip[v ]≤ r and v is semiconcave with constant K
	

. (2.4.1)

From the proof of [3, Proposition 10], we obtain a lower bound on the ε-entropy for the

set
n

D vø�R
: v ∈S C [r,K ]

o

in L1 (�R ), which will be used to establish a lower estimate on the

ε-entropy of a set of viscosity solutions in Section 3.2.
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Corollary 9. Given any r, R , K > 0, for every

0 < ε ≤ min{r, K } ·
ωd ·R d

(d +1)2d+8
,

there exists a subset G R
[r,K ] of S C [r,K ] such that

Card
�

G R
[r,K ]

�

≥ 2β[R ,K ]·ε−d
with β[R ,K ] =

1

3d 2d 2+4d+3 ln 2
·
�

Kωd R d+1

(d +1)

�d

and







D vø�R
−D wø�R










L1(�R )
≥ 2ε for all v 6=w ∈G R

[r,K ] .

2.5 Bounded variation functions

This section introduces the concept of functions with uniformly bounded total variation

and then we extend this notion to investigate classes of functions having bounded total

generalized variation. We refer to [2] for a comprehensive analysis of this topic.

2.5.1 Functions of bounded total variation

Definition 10. The function u ∈ L1(Ω) taking values inRm is a function of bounded variation

on Ω⊆Rd , that is, u ∈ BV (Ω,Rm ), if the distributional derivative of u , denoted by D u , is

an m ×d matrix of finite measures Di uα in Ω satisfying

m
∑

α=1

∫

Ω

uαdiv ϕα d x = −
m
∑

α=1

d
∑

i=1

∫

Ω

ϕαi d Di uα for all ϕ ∈
�

C 1
c (Ω,Rd )

�m
, i ∈ {1, . . . , d }.

We denote by |D u | the total variation of D u , i.e.,

|D u |(Ω) = sup

� m
∑

α=1

∫

Ω

uαdivαϕ
�

�

� ϕ ∈
�

C 1
c (Ω,Rd )

�m
,‖ϕ‖L∞(Ω) ≤ 1

�

.

In particular, for real-valued functions, the above definition may be rewritten as follows.

Definition 11. The function u ∈ L1(Ω) is a function of bounded variation on Ω, that is,

u ∈ BV (Ω,R)), if the distributional derivative of u is representable by a finite Radon measure

in Ω, i.e., if

∫

Ω

u ·
∂ ϕ

∂ xi
d x = −

∫

Ω

ϕd Di u for all ϕ ∈C 1
c (Ω,R), i ∈ {1, 2, ..., n}
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for some Radon measure D u = (D1u , D2u , ..., Dn u ). We denote the total variation of the

vector measure D u by |D u |, i.e.,

|D u |(Ω) = sup

�∫

Ω

u (x )div (ϕ)
�

�

� ϕ ∈C 1
c (Ω,Rn ),‖ϕ‖L∞(Ω) ≤ 1

�

.

Let us state Helly’s theorem ([31]) on compactness of functions having bounded total

variation, which motivates us to find metric entropy estimates for such function classes.

Theorem 12. (Helly’s selection principle) Every sequence of uniformly bounded variation

functions has a convergent subsequence, i.e., BV (Ω,Rm ) is sequentially compact in L1(Ω).

We recall a Poincaré-type inequality for bounded total variation functions on a convex

domain. This result is based on [1, Theorem 3.2] and on [2, Proposition 3.2.1, Theorem 3.44]

and is essential for our work in Section 3.1.

Theorem 13. (Poincaré inequality) Let Ω ⊂ Rd be an open, bounded, convex set with a

Lipschitz boundary. For any u ∈ BV (Ω,R), it holds that

∫

Ω

�

�u (x )−uΩ
�

� d x ≤
diam(Ω)

2
· |D u |(Ω)

where uΩ =
1

Vol(Ω) ·
∫

Ω
u (x ) d x is the mean value of u over Ω.

Now we put forward some remarks on functions of bounded variation proved in [2], which

are useful for our proofs in Section 3.2.

Remark 14. LetΩ⊂R2 be an open, bounded set and let us assume that there exist pairwise

disjoint open sets {Ωi }1≤i≤n with piecewiseC 1 boundary such that

n
⋃

i=1

Ωi ⊂Ω⊂
n
⋃

i=1

Ωi .

If we have functions ui ∈C 1(Ωi ), we can construct a piecewise defined function u :Ω→R
which is equal to ui on each Ωi and defined arbitrarily on the remaining set of measure

zero denoted by Σ. Applying Gauss-Green theorem to every Ωi , for i = 1, · · · , p , it holds that

∫

Ωi

udiv ϕ d x = −
∫

Ωi

〈∇u ,ϕ〉d x −
∫

∂ Ωi

ui 〈ϕ,νi 〉dH 1 for all ϕ ∈ [C 1(Ωi )]
2

where νi is the inner unit normal to Ωi . Summing over i yields u ∈ BV (Ω,R)with D u given
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by

∇uL 2+
p
∑

i=1

uiνiH 1
ø(Ω ∩ ∂ Ωi )

.

Definition 15. Let A be anL d -measurable subset ofRd . For any open subset Ω⊂Rd , the

perimeter of A in Ω, denoted by P (A,Ω), is the total variation of χA in Ω, i.e.,

P (A,Ω) := sup

�∫

A

div ϕd x
�

�

� ϕ ∈ [C 1
c (Ω,Rd ]d ,‖ϕ‖L∞(Ω) ≤ 1

�

. (2.5.1)

We say that A is a set of finite perimeter in Ω if P (A,Ω) < ∞ .

Remark 16. The class of sets of finite perimeter in Ω includes all sets A withC 1 boundary

inside Ω such thatH d−1 (Ω ∩ ∂ Ω) < ∞. Indeed, by Gauss-Green theorem, for every set A,

it holds that

∫

A

div ϕd x = −
∫

Ω ∩ ∂ Ω
〈νA,ϕ〉 dH d−1 for all ϕ ∈ [C 1

c (Ω,Rd ]d (2.5.2)

where νA is the inner unit normal to E . Using 2.5.2 in 2.5.1 yields P (A,Ω) =H d−1 (Ω ∩ ∂ Ω) .

Finally, let us state an important theorem ([2, Theorem 3.9]) which characterizes bounded

variation functions.

Theorem 17. Let u ∈ [L1(Ω)]m . Then u ∈ [BV (Ω,Rm )]m if and only if there exists a sequence

(un )n≥1 ⊂ [C∞ (Ω,Rm )]m which converges to u in [L1(Ω)]m and satisfies

L := lim
n→∞

∫

Ω

|∇un |d x < ∞ . (2.5.3)

Moreover, the least constant L in 2.5.3 is |D u | (Ω).

2.5.2 Functions of bounded total generalized variation

In this subsection, we explain the meaning of total generalized variation of a function

g : [a , b ]→ E which was well-studied in [42] for the case E =R.

Consider a convex function Ψ : [0,+∞)→ [0,+∞) such that

Ψ(0) = 0 and Ψ(s ) > 0 for all s > 0 . (2.5.4)

Definition 18. The Ψ-total variation of g over [a , b ] is defined as

T V Ψ
�

g , [a , b ]
�

= sup
n∈N,a=x0<x1<...<xn=b

n−1
∑

i=0

Ψ
�

ρ(g (xi ), g (xi+1))
�

. (2.5.5)
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If the supremum is finite then we say that g has bounded Ψ-total variation and denote it

by g ∈ BV Ψ([a , b ], E ). In the case of Ψ(x ) = |x |γ for some γ≥ 1, we denote by

BV
1
γ ([a , b ], E ) := BV Ψ([a , b ]), T V

1
γ
�

g , [a , b ]
�

:= T V Ψ
�

g , [a , b ]
�

the fractional BV space on [a , b ] and the γ-total variation of g , respectively.

For any function g ∈ BV Ψ([a , b ], E ), by a contradiction argument we infer that g is a regu-

lated function, i.e., the left and right hand side limits of g at x0 ∈ [a , b ] always exist and are

denoted by

g (x0−) := lim
x→x0−

g (x ) and g (x0+) := lim
x→x0+

g (x ) .

Moreover, the set of discontinuities of g

Dg :=
�

x ∈ [a , b ]
�

� g (x+) = g (x ) = g (x−) does not hold
	

is at most countable. In particular, we have the following:

Lemma 19. For any function g ∈ BV Ψ([a , b ], E ), the following function

g̃ (b ) = g (b ), g̃ (x ) := g (x+) for all x ∈ [a , b )

is a continuous function from the right on the interval [a , b ) and belongs to BV Ψ([a , b ], E )

with

ρL1(g̃ , g ) = 0 and T V Ψ
�

g̃ , [a , b ]
�

≤ T V Ψ
�

g , [a , b ]
�

. (2.5.6)

Proof. SinceDg is at most countable, it holds that

ρL1(g̃ , g ) =

∫

[a ,b ]\Dg

ρ(g̃ (x ), g (x ))d x = 0 .

On the other hand, for any partition {a = x0 < x1 < · · ·< xn = b } of [a , b ],

n−1
∑

i=0

Ψ(ρ(g̃ (xi+1), g̃ (xi ))) = Ψ(ρ(g (b ), g (xn−1+)))+
n−2
∑

i=0

Ψ(ρ(g (xi+1+), g (xi+)))

≤ T V Ψ(g , [a , b ])

and this yields the second inequality in (2.5.6).

�
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The following remark is used in the proof of the upper estimate in Section 4.1.

Remark 20. Under the assumption (2.5.4), the function Ψ is strictly increasing on [0,+∞)
and

Ψ(s ) ≤
s

t
·Ψ(t ) for all 0≤ s < t . (2.5.7)

Moreover, its inverse Ψ−1 is also strictly increasing, concave and the map s 7−→
Ψ−1(s )

s
is

strictly decreasing on [0,+∞).

Proof. By the convexity of Ψ and (2.5.4),

Ψ(s ) ≤
t − s

t
·Ψ(0) +

s

t
·Ψ(t ) =

s

t
·Ψ(t ) < Ψ(t )

for all 0≤ s < t . Thus, Ψ is strictly increasing and convex in [0,+∞) and this implies that its

inverse Ψ−1 exists, is strictly increasing and concave. In particular,

Ψ−1(s )
s

=
Ψ−1(s )−Ψ−1(0)

s
>
Ψ−1(r )

r
for all 0< s < r

and this yields the decreasing property of the map s 7−→
Ψ−1(s )

s
.

�

We conclude this subsection by stating Helly’s extracting theorem ([42, Theorem 1.3]), which

extends Helly’s selection principle to the case of bounded generalized variation functions.

Theorem 21. (Helly’s extracting theorem) Every sequence
�

fn

�

n≥1
⊂ BV Ψ([a , b ], E ) has a

subsequence which converges to a function f ∈ BV Ψ([a , b ], E ) pointwise on [a , b ].

2.6 Conservation laws

A scalar conservation law in one-dimensional space is a first-order partial differential

equation of the form

ut (t , x ) + f (u (t , x ))x = 0 (t , x ) ∈ [0,∞)×R (2.6.1)

where u : [0,∞)×R→R is called the conserved quantity and f :R→R is the flux.

Here we introduce the fundamentals of this topic and refer to [16] for the related theories.

A basic feature of nonlinear systems of the above form is that, even for smooth initial data,

the solution of the Cauchy problem may develop discontinuities in finite time. In order
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to prolong the solution to 2.6.1 after the formation of a discontinuity, we need to adopt

the concept of a weak solution in the distributional sense, which will allow the presence of

discontinuities in the solution or in its space derivatives.

Definition 22. A function u ∈ L∞ ((0, T )×R) is said to be a weak solution of 2.6.1 if for every

ϕ ∈C 1
c ((0, T )×R,R), it holds that

∫ ∫

(0,T )×R
[u (t , x )ϕt (t , x ) + f (u (t , x ))ϕx (t , x )] d t d x = 0 .

Remark 23. A function u ∈C 1 ((0, T )×R) is a classical solution of 2.6.1 if and only if u is a

weak solution of 2.6.1.

Lemma 24. (Closure of set of weak solutions in L1
loc) Let (un )n≥1 be a sequence of weak

solutions of 2.6.1 such that

un → u and f (un )→ f (u ) in L1
loc . (2.6.2)

Then u is also a weak solution of 2.6.1.

Let us now define a weak solution of a Cauchy problem















ut (t , x ) + f (u (t , x ))x = 0

u (0, ·) = u0(·) for a given u0 ∈ L1
loc(R) .

(2.6.3)

Definition 25. A function u : [0, T ]×R→R is a weak solution of 2.6.3 if u is a weak solution

of 2.6.1 on the strip (0, T )×R and the map t 7→ u (t , ·) is continuous with values in L1
loc for

t ∈ [0, T ]with u (0, ·) = u0(·).

In this case, the following lemma from [16] holds.

Lemma 26. If u : [0, T ]×R→R is a weak solution of 2.6.3, then u is also a solution of 2.6.3

in the distributional sense, i.e., for every ϕ ∈C 1
C ((−1, T )×R), it holds that

∫ ∫

(0,T )×R
[u (t , x )ϕt (t , x ) + f (u (t , x ))ϕx (t , x )] d t d x +

∫ ∞

−∞
u0(x )ϕ(0, x )d x = 0 .

Now we state a necessary condition derived in [16] for the piecewise constant function U

as defined below, to be a weak solution of 2.6.1. The function U is given by
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U (t , x ) =







u+ if x >λ · t

u− if x <λ · t
(2.6.4)

for some u±,λ ∈R.

Lemma 27. (Rankine-Hugoniot condition) The function U in 2.6.4 is a weak solution of

2.6.1 if and only if it holds that

λ =
f (u+)− f (u−)

u+−u−
. (2.6.5)

Figure 2.5 Deriving the Rankine-Hugoniot condition

Towards deriving condition 2.6.5 for general weak solutions of 2.6.1, we define the following.

Definition 28. (Approximate jump) A real-valued function u ∈ L1
loc has an approximate

jump discontinuity at a point (t̃ , x̃ ) if there exist u±,λ ∈ R such that upon setting U as

defined in 2.6.4, it holds that

lim
r→0+

1

r 2

∫ ∫

[−r,r ]2

�

�u (t̃ + t , x̃ + x −U (t , x )
�

� d x d t = 0 . (2.6.6)

In this case, u− amd u+ are the left and right approximate limits of u at (t̃ , x̃ ) and λ is the

jump speed.

The next proposition follows from this definition.

Proposition 29. Let u be a bounded weak solution of 2.6.1 having an approximate jump

discontinuity at a point (t̃ , x̃ ), i.e., 2.6.6 holds for some u±,λ ∈R. Then the Rankine-Hugoniot

condition 2.6.5 holds.
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The concept of weak solution is not sufficient to find a unique solution whenever a strong

discontinuity appears in the solution. Therefore we additionally provide the following

admissibility conditions that can be present in a weak solution, to achieve uniqueness of

solutions and continuous dependence on the initial data.

• Vanishing viscosity: We say that a weak solution u :Ω→R of 2.6.1 is admissible in the

vanishing viscosity sense if there exists a sequence of smooth solutions of the viscous

parabolic approximation

u εt + f ′(u ε) ·u εx = εu εx x (2.6.7)

so that u ε converges to u in L1
loc as ε→ 0+.

• Entropy conditions: Motivated by the second principle of thermodynamics, as kinetic

energy is dissipated when a shock appears, we introduce the following concept of

entropy which characterizes irreversible processes.

Definition 30. (Entropy-Entropy flux) We say that a pair ofC 1 functions (η, q ) :R→R
is an entropy-entropy flux pair for 2.6.1 if

q ′(u ) = η′(u ) · f ′(u ) (2.6.8)

at every u where η, q and f are differentiable.

Remark 31. If u is a classical solution of 2.6.1, then u solves the equation

[η(u )]t + [q (u )]x = 0 .

In this case, η(u ) is conserved. However it is not conserved in general, when u is

discontinuous, as shown in [16].

Let us now formulate the notion of an entropy admissible weak solution. Let u ε be the

smooth solution of 2.6.7. We also see that it is a solution of the equation

[η(u ε)]t + [q (u
ε)]x = ε ·

�

[η(u ε)]x x −η′′(u ε) · [u εx ]
2
�

.

In particular, if η is convex and smooth, we have

[η(u ε)]t + [q (u
ε)]x ≤ ε · [η(u ε)]x x .

Thus for every non-negative test function ϕ ∈C 1
C (R), it holds that

∫ ∫

Ω

[η(u ε)ϕt +q (u ε)ϕx ] d t d x ≥ − ε
∫ ∫

Ω

η(u ε)ϕx x d t d x .
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If u ε converges to u in L1
loc then as ε→ 0+, we get

∫ ∫

Ω

[η(u )ϕt +q (u )ϕx ] d t d x ≥ 0 . (2.6.9)

This yields the following entropy admissible condition.

Definition 32. A weak solution u of 2.6.1 is entropy admissible if it satisfies the inequality

[η(u )]t + [q (u )]x ≤ 0

in the distributional sense for every pair of convex entropy-entropy flux (η, q ), i.e., 2.6.9

holds for every non-negative test function ϕ ∈C 1
C (R).

In order to establish some stability conditions, we recall U as in 2.6.4 and consider a slightly

perturbed solution where the original shock joining two states u± is split into two separated

smaller shocks that join u+ and u− with an intermediate state

uα =αu++ (1−α)u− for some α ∈ (0, 1).

To ensure that the L1-distance between the original solution and the perturbed one does

not increase in time, we must have [speed of jump behind] ≥ [speed of jump ahead].

By 2.6.5 this implies,

f (uα)− f (u−)
uα−u−

≥
f (u+)− f (uα)

u+−uα
. (2.6.10)

This is equivalent to















f (αu++ (1−α)u−) ≥ α f (u+) + (1−α) f (u−) if u− < u+

f (αu++ (1−α)u−) ≤ α f (u+) + (1−α) f (u−) if u− > u+ .

(2.6.11)

Proposition 33. The function U is an entropy admissible solution of 2.6.1 if and only if the

condition 2.6.11 holds.

Another type of admissibility condition may be defined as follows.

Definition 34. We say that a weak solution of 2.6.1 is admissible in the sense of Lax if at

every point (t̃ , x̃ ) of approximate jump discontinuity with the left and right states u−,u+
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and speed λ, the Lax condition holds, i.e.,

f ′(u ) ≥ λ =
f (u+)− f (u−)

u+−u−
≥ f ′(u+) . (2.6.12)

In the case of convex flux f ′′(u )≥ 0, the stability condition 2.6.11 and Lax condition 2.6.12

are equivalent. Moreover, if f ′′(u )> 0 then the Lax condition is equivalent to the condition

u− > u+ .

In the case of general flux, the Lax condition does not imply the stability condition.

We conclude this section with the following theorem from [16].

Theorem 35. Let f :R→R be locally Lipschitz continuous. Then there exists a continuous

semigroup S : [0,∞)× L1(R)→ L1(R) such that for each u ∈ L1(R)
⋂

L∞(R), the trajectory

t 7→ St u yields a unique bounded, entropy admissible weak solution of 2.6.1 with u (0, ·) = u.

Moreover, the following properties hold.

(i) (Semigroup property) S0u = u , Ss St u = Ss+t u .

(ii) ‖St u −St v ‖L1(R) ≤ ‖u − v ‖L1(R) .

(iii) If u ≤ v for all x ∈R then

St u (x )≤ St v (x ) for all (t , x ) ∈ [0,∞)×R.

2.7 Hamilton-Jacobi equations

Let us consider a first-order Hamilton-Jacobi equation

ut (t , x ) +H
�

Dx u (t , x )
�

= 0 for all (t , x ) ∈ (0,∞)×Rd (2.7.1)

where u : [0,+∞)×Rd →Rd , Dx u = (ux1
, . . . , uxd

) and H :Rd →R is a Hamiltonian. Due to

the nonlinear dependence of the characteristic speeds on the gradient of the solution, in

general a classical solution u will develop singularities and the gradient D u will become

discontinuous in finite time. To cope with this difficulty, the concept of viscosity solution

was introduced by Crandall and Lions in [21] to guarantee global existence, uniqueness

and stability of the Cauchy problem. Under standard assumptions of the convexity and the

coercivity on Hamiltonian H , (2.7.1) generates a Hopf-Lax semigroup of viscosity solutions

(St )t≥0 : Lip(Rd )→ Lip(Rd ). More precisely, for every Lipschitz initial data u0 ∈ Lip(Rd ), the

24



corresponding unique viscosity solution of equation (2.7.1) with u (0, x ) = u0(x ) is computed

by the Hopf-Lax representation formula

u (t , x ) = St (u0)(x ) = min
y ∈Rd

n

u0(y ) + t · L
� x − y

t

�o

(2.7.2)

where L is the Legendre transform of H . In addition, if H is strongly convex, i.e., there exists

a constant λ> 0 such that

D 2H (p ) ¾ λ · Id for all p ∈Rd ,

then the map x → u (t , x )−
1

2λt
·‖x‖2 is concave for every t > 0. In particular, u (t , ·) is twice

differentiable almost everywhere and Dx u (t , ·) has locally bounded total variation.

We consider (2.7.1) with a coercive and strictly convex Hamiltonian H ∈ C 1(Rd ), i.e.,

lim
|p |→∞

H (p )
|p |

= +∞ and H (t p + (1− t )q ) < t ·H (p ) + (1− t )H (q ) for all t ∈ (0,1) and

p , q ∈Rd and satisfying the additional condition of uniformly directional convexity, i.e.,

for every constant R > 0 it holds that

inf
p 6=q∈B (0,R )

­

D H (p )−D H (q )
|D H (p )−D H (q )|

,
p −q

|p −q |

·

:= λR > 0. (2.7.3)

Moreover, without loss of generality, we assume that H satisfies further conditions

H (0) = 0 and D H (0) = 0, (2.7.4)

otherwise the transformations x 7→ x + t D H (0), u (t , ·) 7→ u (t , x ) + t ·H (0) and H (p ) 7→
H (p )−〈D H (0), p 〉 reduce the general case to this one.

Remark 36. If H ∈C 2(Rd ) satisfies

D 2H (p ) = |D 2H (p )| ·A(p ) with A(p ) ≥ λ · Id (2.7.5)

for some λ> 0 then H satisfies (2.7.3).

Proof. For any p 6= q ∈Rd , by mean value theorem, it holds that

D H (p )−D H (q ) =

∫ 1

0

D 2H (t p + (1− t )q ) · (p −q )d t

=
�

∫ 1

0

A(t p + (1− t )q )
�

�D 2H (t p + (1− t )q )
�

�d t
�

· (p −q )
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and

|D H (p )−D H (q )| ≤ |p −q | ·
∫ 1

0

|D 2H (t p + (1− t )q )|d t .

Thus, using (2.7.5), we estimate

〈D H (p )−D H (q ), p −q 〉=
∫ 1

0

�

(p −q )T A(t p + (1− t )q )(p −q )
�

·
�

�D 2H (t p + (1− t )q )
�

�d t

≥ λ · |p −q |2
∫ 1

0

�

�D 2H (t p + (1− t )q )
�

�d t

≥ λ · |D H (p )−D H (q )| · |p −q |

and this implies (2.7.3).

�

It is well-known that in general, classical smooth solutions of (2.7.1) break down and the

Lipschitz continuous functions that satisfy (2.7.1) almost everywhere together with a given

initial condition are not unique. To deal with this problem, the concept of a generalized

solution was introduced in [21] to guarantee global existence and uniqueness results.

Definition 37. (Viscosity solution) We say that a continuous function u : [0, T ]×Rd is a

viscosity solution of (2.7.1) if:

(1) u is a viscosity subsolution of (2.7.1), i.e., for every point (t0, x0) ∈ (0, T ) ×Rd and test

function v ∈C 1
�

(0,+∞)×Rd
�

such that u−v has a local maximum at (t0, x0), it holds

that

vt (t0, x0) +H
�

Dx v (t0, x0)
�

¶ 0 .

Figure 2.6 Viscosity subsolution
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(2) u is a viscosity supersolution of (2.7.1), i.e., for every point (t0, x0) ∈ (0, T ) ×Rd and

test function v ∈C 1
�

(0,+∞)×Rd
�

such that u − v has a local minimum at (t0, x0), it

holds that

vt (t0, x0) +H
�

Dx v (t0, x0)
�

¾ 0 .

Figure 2.7 Viscosity supersolution

By the alternative equivalent definition of viscosity solution expressed in terms of the

subdifferential and superdifferential of the function (see [21]) and from Proposition 7 we

observe that everyC 1 solution of (2.7.1) is also a viscosity solution of (2.7.1). On the other

hand, if u is a viscosity solution of (2.7.1) then u satisfies the equation at every point

of differentiability. Let us state a result on further regularity for viscosity solutions ([3,

Proposition 3]) which says that smoothness in the pair (t , x ) follows from smoothness in

the second variable.

Proposition 38. Let u be a viscosity solution of (2.7.1) in [0, T ]×Rd . If u (t , ·) is both locally

semiconcave and semiconvex in Rd for all t ∈ (0, T ] then u is a C 1 solution of (2.7.1) in

(0, T ]×R.

The viscosity solution of the Hamilton-Jacobi equation (2.7.1) with initial data u (0, ·) =
u0 ∈ Lip(Rd ) can be represented as the value function of a classical problem in calculus of

variations, which admits the Hopf-Lax representation formula

u (t , x ) =min
y ∈Rd

§

t · L
� x − y

t

�

+u0(y )
ª

t > 0, x ∈Rd , (2.7.6)

where L ∈C 1(Rd ) denotes the Legendre transform of H , defined by

L (q ) :=max
p∈Rd

�

p ·q −H (p )
	

q ∈Rd . (2.7.7)
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The main properties of viscosity solutions defined by the Hopf-Lax formula, which will be

used in Section 3.2, are listed below ([18, Section 1.1, Section 6.4]).

Figure 2.8 Hopf-Lax representation formula

Proposition 39. Let u be the viscosity solution of (2.7.1) on [0,+∞) ×Rd , with continuous

initial data u0, defined by (2.7.6). Then the following hold true.

(i ) Functional identity: For all x ∈Rd and 0¶ s < t , it holds that

u (t , x ) =min
y ∈Rd

¦

u (s , y ) + (t − s ) · L
� x − y

t − s

�©

.

(i i ) Differentiability of u and uniqueness: (2.7.6) admits a unique minimizer yx if and

only if u (t , ·) is differentiable at x . In this case we have

yx = x − t ·D H
�

Dx u (t , x )
�

and Dx u (t , x ) ∈ D −u0(yx ).

(i i i ) Dynamic programming principle: Let t > s > 0, x ∈ Rd . Let us assume that y is a

minimizer for (2.7.6) and define z =
s

t
x +

�

1−
s

t

�

y . Then y is the unique minimizer

over Rd of

w 7→ s · L
�z −w

s

�

+u0(w ) for all w ∈Rd .

As a consequence, the family of nonlinear operators

St : Lip(Rd )→ Lip(Rd ), u0 7→ St u0, t ¾ 0,
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defined by















St u0(x ) := miny ∈Rd

¦

t · L
� x − y

t

�

+u0(y )
©

t > 0 , x ∈Rd

S0u0(x ) := u (x ) x ∈Rd

(2.7.8)

possesses the following properties as proved in [3]:

(i) For every u0 ∈ Lip(Rd ), u (t , x ) := St u0(x ) provides the unique viscosity solution of the

Cauchy problem (2.7.1) with initial data u (0, ·) = u0.

(ii) (Semigroup property)

St+s u0 = St Ss u0 , for all t , s ≥ 0 , for all u0 ∈ Lip(Rd ).

(iii) (Translation) For every constant c ∈Rwe have that

St (u0+ c ) = St u0+ c , for all u0 ∈ Lip(Rd ) , for all t ¾ 0 . (2.7.9)

(iv) The map St is continuous on sets of functions with uniform Lipschitz constant with

respect to W1,1
loc-topology, i.e., for every un ∈ Lip(Rd )with a Lipschitz constant M such

that

un −→ u in W1,1
loc(R

d ) ,

we have that St (un ) also converges to St (u ) in W1,1
loc(R

d ) .
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CHAPTER

3

METRIC ENTROPY FOR

HAMILTON-JACOBI EQUATIONS

This chapter is an in-depth study on how to find metric entropy estimates for the set of

viscosity solutions to the Hamilton-Jacobi equation with a coercive and uniformly direc-

tionally convex Hamiltonian. Section 3.1 illustrates how to find upper and lower bounds on

the minimal number of functions needed to represent a BV function with an accuracy of ε

with respect to L1–distance. These bounds are then utilized in Section 3.2 to analyze the

BV-type regularity for viscosity solutions of the Hamilton-Jacobi equation and derive our

desired estimates.

3.1 Metric entropy for BV functions

An approach towards quantifying the compactness of BV functions in L1-space was ini-

tialized in [35]which dealt this problem in the scalar case and proved that the ε-entropy

of a class of real-valued BV functions in L1 is of the order
1

ε
. In this section we refine this

conclusion further and provide estimates of the ε-entropy for a class of uniformly bounded

total variation functions in L1-space in multi-dimensional cases. In particular, we show

that the minimal number of functions needed to represent a BV function with an error up
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to ε with respect to L1-distance is of the order 1
εd , where d is the dimension of the space

under consideration.

We begin by stating a result on the ε-entropy for a class of bounded total variation functions

in the scalar case and prove it using a method similar to that in [10]. Given L , V , M > 0, we

denote

B[L ,M ,V ] =
n

f ∈ L1([0, L ], [0, M ])
�

�

� |D f |((0, L ))≤V
o

. (3.1.1)

Lemma 40. For all 0< ε < L (M+V )
6 , it holds that

Hε

�

B[L ,M ,V ]

�

� L1([0, L ])
�

≤ 8 ·
�

L (M +V )
ε

�

. (3.1.2)

Proof. For any f ∈B[L ,M ,V ], let Vf (x ) be the total variation of f over [0, x ]. We decompose f

as

f (x ) = f +(x )− f −(x ) for all x ∈ [0, L ]

where f − = Vf − f
2 + M

2 is a nondecreasing function from [0, L ] to
�

0, L+M
2

�

and f + = Vf + f
2 + M

2

is a nondecreasing function from [0, L ] to
�

M
2 , L+2M

2

�

. Defining

I :=
§

g : [0, L ]→
�

0,
V +M

2

�
�

�

� g is nondecreasing
ª

,

we have

B[L ,M ,V ] ⊆
�

I +
M

2

�

−I :=
§

g −h
�

�

� g ∈I +
M

2
and h ∈I

ª

. (3.1.3)

For any ε > 0, it holds that

Nε
�

B[L ,M ,V ] | L1([0, L ])
�

≤
�

N ε
2
(I | L1([0, L ]))

�2
.

Indeed, from Definition 1, there exists a set G ε
2

ofN ε
2
(I | L1([0, L ])) subsets of L1([0, L ]) such

that

I ⊆
⋃

E∈G ε
2

E and diam(E ) = sup
h1,h2∈E

‖h1−h2‖L1([0,L]) ≤ ε .

Thus, (3.1.3) implies

B[L ,M ,V ] ⊆
⋃

(E1,E2)∈G ε
2
×G ε

2

��

E1+
M

2

�

−E2

�

.
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For any two functions

fi = g i −hi ∈
�

E1+
M

2

�

−E2 for i = 1, 2 ,

we have
‖ f1− f2‖L1([0,L ]) ≤ ‖g1− g2‖L1([0,L ])+ ‖h1−h2‖L1([0,L ])

≤ diam
�

E1+
M

2

�

+diam(E2) ≤ ε+ ε = 2ε

and this implies that

diam
��

E1+
M

2

�

−E2

�

≤ 2ε .

By Definition 1, we have

Nε
�

B[L ,M ,V ]

�

�

� L1([0, L ])
�

≤
�

N ε
2
(I | L1([0, L ]))

�2

and thus

Hε

�

B[L ,M ,V ]

�

�

� L1([0, L ])
�

≤ 2 ·H ε
2

�

I
�

�

� L1([0, L ])
�

. (3.1.4)

Finally applying [23, Lemma 3.1] in the case of I , for 0< ε < L (M+V )
6 , it holds that

H ε
2

�

I
�

� L1([0, L ])
�

≤ 4 ·
�

L (M +V )
ε

�

and then (3.1.4) yields (3.1.2). �
Now we proceed to establish upper and lower estimates of the ε-entropy for a class of

uniformly bounded total variation functions,

F[L ,M ,V ] =
n

u ∈ L1([0, L ]d ,R)
�

�

� ‖u‖L∞([0,L ]d ) ≤M , |D u |((0, L )d )≤V
o

, (3.1.5)

in the L1([0, L ]d ,R)-space. Our main result in this section is stated as follows.

Theorem 41. Given L , M , V > 0, for every 0< ε < M L d

8 , it holds that

log2(e )
8

·
�

V L

2d+2ε

�d

≤ Hε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

≤ Γ[d ,L ,M ,V ] ·
1

εd
(3.1.6)

where the constant Γ[d ,L ,M ,V ] is computed as

Γ[d ,L ,M ,V ] =
8
p

d

�

4
p

n LV
�d
+

�

2d+7V

M
+8

�

·
�

M L d

8

�d

.
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Proof. (Upper estimate) Let us first prove the upper-estimate ofHε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

.

This proof is divided into several steps.

1. For any N ∈N, we divide the square [0, L ]d into N d small squares �ι for ι = (ι1, ι2, ..., ιd ) ∈
{0, 1, ..., N −1}d such that

�ι =
ιL

N
+

�

�

0,
L

N

�

×
�

0,
L

N

�

× ...×
�

0,
L

N

�

�

and
⋃

ι∈{0,1,2,...,N−1}d
�ι = [0, L ]d .

For any u ∈F[L ,M ,V ], let uι defined as

−M ≤ uι =
1

Vol(�ι)

∫

�ι

u (x ) d x ≤ M

denote the average value of u in �ι for every ι ∈ {0,1,2, ..., N − 1}d . Let ũ be a piecewise

constant function on [0, L ]d such that

ũ (x ) =







uι for all x ∈ int
�

�ι
�

0 for all x ∈
⋃

ι∈{1,2,...,N−1}d
∂ �ι

.

Figure 3.1 Construction of ũ

uι =
1

Vol(�ι )

∫

�ι

u (x ) d x

By the Poincaré inequality, we have
∫

�ι
|u (x ) − uι | d x ≤ diam(�ι )

2 · |D u |(int(�ι)) for all

ι ∈ {0, 1, 2, ..., N −1}d . Hence, the L1-distance between u and ũ can be estimated as

‖u − ũ‖L1([0,L ]d ) =

∫

[0,L ]d
|u (x )− ũ (x )| d x =

∑

ι∈{0,1,2,...,N−1}d

∫

�ι
|u (x )−uι | d x

≤
∑

ι∈{0,1,2,...,N−1}d

�

diam(int(�ι))
2

· |D u |(int(�ι))
�

≤
L
p

d

N

∑

ι∈{0,1,2,...,N−1}d
|D u |(int(�ι))

=
L
p

d

N
|D u |((0, L )d ) ≤

L
p

d

N
·V . (3.1.7)
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2. Let e1, e2, ..., ed be the standard basis ofRd where ei denotes the vector with a 1 in the i -th

coordinate and 0’s elsewhere. For any ι ∈ {0, 1, 2, ..., N −1}d and j ∈ {1, 2, ..., d }, we estimate
�

�uι+e j
−uι

�

� in the following way.

|uι+e j
−uι | =

�

�

�

�

�

1

Vol
�

�ι+e j

�

∫

�ι+e j

u (x ) d x −
1

Vol (�ι)

∫

�ι

u (x ) d x

�

�

�

�

�

=
1

Vol (�ι)
·

�

�

�

�

�

∫

�ι

u
�

x +
L

N
· e j

�

−u (x ) d x

�

�

�

�

�

=
1

Vol (�ι)
·

�

�

�

�

�

∫

�ι

∫
L
N

0

D u (x + s e j )(e j ) d s d x

�

�

�

�

�

≤
1

Vol (�ι)
·
∫

L
N

0

�

�

�

�

�

∫

�ι

D u (x + s e j )(e j ) d x

�

�

�

�

�

d s ≤
�

N

L

�d−1

· |D u |(int(�ι ∪�ι+e j
)) . (3.1.8)

Let us rearrange the index set

{0, 1, 2, . . . , N −1}d =
¦

κ1,κ2, . . . ,κN d
©

in a manner such that for all j ∈ {1, ..., N d −1},

κ j+1 = κ j + ek for some k ∈ {1, 2, ..., d } .

From (3.1.8) and (3.1.5), we have

N d−1
∑

j=1

|uκ j+1 −uκ j | ≤
�

N

L

�d−1

·
N d−1
∑

j=1

|D u |(int(�κ j ∪�κ j+1))

≤ 2
�

N

L

�d−1

· |D u |((0, L )d ) ≤ 2V
�

N

L

�d−1

. (3.1.9)

To conclude this step, we define the function fu ,N : [0, LN d−1]→ [−M , M ] associated with u

such that

fu ,N (x ) = uκi+1 for all x ∈
�

i · L
N

,
(i +1) · L

N

�

, i ∈
�

0, 1, ..., N d −1
	

.

Then recalling (3.1.9), we have

|D fu ,N |((0, LN d−1)) ≤ 2V
�

N

L

�d−1

. (3.1.10)

3. Let us denote

LN := L ·N d−1 , βN := 2V
�

N

L

�d−1

. (3.1.11)
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We introduce the set

F̃N =
¦

f : [0, LN ]→ [−M , M ]
�

� |D f |((0, LN )) ≤ βN and

f (x ) = f
�

i · L
N

�

for all x ∈
�

i · L
N

,
(i +1) · L

N

�

, i ∈ {0, 1, 2, ..., N d −1}
©

.

(3.1.10) implies

fu ,N ∈ F̃N for all u ∈F[L ,M ,V ] .

On the other hand, recalling that

B[LN ,2M ,βN ] =
n

f ∈ L1([0, LN ], [0, 2M ])
�

�

� |D f |((0, LN ))≤βN

o

,

we have

F̃N ⊂ B[LN ,2M ,βN ]−M .

From Lemma 40, for every 0< ε′ < LN ·(βN +2M )
6 , it holds that

Hε′

�

B[LN ,2M ,βN ]

�

�

� L1([0, LN ])
�

≤ 8 ·
�

LN (βN +2M )
ε′

�

,

which yields

Hε′

�

F̃N

�

�

� L1([0, LN ])
�

≤ 8 ·
�

LN (βN +2M )
ε′

�

.

By Definition 1, there exists a set of ΓN ,ε′ = 28·
�

LN (βN +2M )
ε′

�

functions in F̃N ,

GN ,ε′ =
�

g1, g2, . . . , gΓN ,ε′

	

⊂ F̃N ,

such that

F̃N ⊂
ΓN ,ε′
⋃

i=1

B (g i , 2ε′) .

So for every u ∈F[L ,M ,V ], for its corresponding fu ,N , there exists g ju
∈GN ,ε′ such that

‖ fu ,N − g ju
‖L1([0,LN ]) ≤ 2ε′ .

LetUN ,ε′ be a set of ΓN ,ε′ functions u †
j : [0, L ]N → [−M , M ] defined as follows.

u †
j =







0 if x ∈
⋃

ι∈{1,2,...,N }d
∂ �ι

g j

� (i−1)·L
N

�

if x ∈ int (�κi ) , i ∈ {1, 2, . . . , N d }
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for j ∈ {1,2, . . . , d N }. Then corresponding to every u ∈F[L ,M ,V ], there exists u †
ju
∈UN ,ε′ for

some ju ∈ {1, 2, . . . ,ΓN ,ε} such that





ũ −u †
ju







L1([0,L ]d ) =
N d
∑

i=1

�

�

�

�

uκi − g ju

� (i −1) · L
N

�

�

�

�

�

·Vol (�κi )

=
N d
∑

i=1

�

�

�

�

fu ,N

� (i −1) · L
N

�

− g ju

� (i −1) · L
N

�

�

�

�

�

·
L

N
·

L d−1

N d−1

=
L d−1

N d−1
· ‖ fu ,N − g ju

‖L1([0,LN ]) ≤ 2ε′ ·
L d−1

N d−1
.

Combining this with (3.1.7), we obtain





u −u †
ju







L1([0,L ]d ) ≤




u − ũ






L1([0,L ]d )+




ũ −ug ju







L1([0,L ]d ) ≤ 2ε′ ·
L d−1

N d−1
+

L
p

d

N
·V . (3.1.12)

4. For any ε > 0, we choose

N =

�

2
p

d LV

ε

�

+1 and ε′ =
N d−1 · ε
4L d−1

(3.1.13)

such that




u −u †






L1([0,L ]d ) ≤ 2ε′ ·
L d−1

N d−1
+

L
p

d

N
·V ≤

ε

2
+
ε

2
= ε

for all u ∈F[L ,M ,V ] and for some u † ∈UN ,ε′ . From the previous step, it holds that

F[L ,M ,V ] ⊆
⋃

u †∈UN ,ε′

B (u †,ε)

provided we have

ε′ =
N d−1ε

4L d−1
≤

LN · (βN +2M )
6

=
N d−1(V N d−1+M L d−1)

3L d−2
. (3.1.14)

This condition is equivalent to

ε ≤
4

3
·
�

LV N d−1+M L d
�

.

(3.1.13) implies that the condition (3.1.14) holds if

ε ≤
4

3
·
�

2d−1d
d−1

2 L d V d

εd−1
+M L d

�

. (3.1.15)
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Assuming 0 < ε < 2M L d

3 +d
d−1
2d LV , we claim that (3.1.14) holds. Indeed, if 2M L d

3 > d
d−1
2d LV

then

ε <
2M L d

3
+d

d−1
2d LV ≤

4M L d

3
,

which results in (3.1.15). Otherwise, we have that ε < 2M L d

3 +d
d−1
2d LV ≤ 2d

d−1
2d LV . Thus

4

3
·
�

2d−1d
d−1

2 L d V d

εd−1
+M L d

�

≥
4

3
·

2d−1d
d−1

2 L d V d

2d−1d
(d−1)2

2d L d−1V d−1
+

4

3
M L d

=
4

3
·d

d−1
2d LV +

4

3
M L d .

and this implies (3.1.15).

To complete the proof, recalling (3.1.11) and (3.1.13), we estimate that

Card(UN ,ε′) = ΓN ,ε′ = 28·
�

LN (βN +2M )
ε′

�

= 28·b 8
ε ·(LV N d−1+M L d )c

≤ 2
64
ε ·
�

LV
��

2
p

d LV
ε

�

+1
�d−1

+M L d
�

.

Therefore,

Hε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

≤
64

ε
·

�

LV

��

2
p

d LV

ε

�

+1

�d−1

+M L d

�

≤
64

ε
·
�

LV

�

22d−3d
d−1

2 L d−1V d−1

εd−1
+2d−2

�

+M L d

�

=
22d+3d

d−1
2 L d V d

εd
+

2d+4LV +M L d

ε
. (3.1.16)

In particular, if 0< ε < M L d

8 then

Hε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

≤

�

22d+3d
d−1

2 L d V d +
�

2d+4LV +M L d
�

·
�

M L d

8

�d−1�

·
1

εd

and this yields the right hand side of (3.2.27).

(Lower estimate) We are now going to prove the lower estimate ofHε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

.

1. Again given any N ∈N, we divide the square [0, L ]d into N d small squares �ι, for

ι = (ι1, ι2, ..., ιd ) ∈ {0, 1, ..., N −1}d such that
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�ι =
ιL

N
+

�

�

0,
L

N

�

×
�

0,
L

N

�

× ...×
�

0,
L

N

�

�

and
⋃

ι∈{0,1,2,...,N−1}d
�ι = [0, L ]d .

Consider the set of N d -tuples

∆N =
n

δ= (δι)ι∈{0,1,...,N−1}d

�

�

� δι ∈ {0, 1}
o

.

Given any h > 0, for any δ ∈∆N , we define the function uδ : [0, L ]d →{0, h} such that

uδ(x ) =
∑

ι∈{0,1,...,N−1}d
hδι ·χint(�ι )(x ) for all x ∈ [0, L ]d .

Figure 3.2 Example of uδ

This directly implies uδ ∈ BV ((0, L )d ,Rd ) and

|D uδ| ((0, L )d ) ≤
∑

ι∈{0,1,...,N−1}d
|D uδ|(�ι) ≤ 2d−1

�

L

N

�d−1

N n h = (2L )d−1N h .

Assuming that

0 < h ≤ min
§

M ,
V

2d−1L d−1N

ª

, (3.1.17)

we have

|D uδ| ((0, L )d ) ≤ (2L )d−1N ·
V

2d−1L d−1N
= V for all δ ∈∆N

and this implies

Gh ,N := {uδ | δ ∈∆N } ⊂F[L ,M ,V ] for all N ∈N .

Hence,

Nε
�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

≥ Nε
�

Gh ,N

�

�

� L1([0, L ]d )
�

for all ε > 0 . (3.1.18)
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Towards an estimate of the covering numberNε
�

Gh ,N

�

�

� L1([0, L ]d )
�

, for a fixed δ̃ ∈∆N , we

can define

Iδ̃,N (2ε) =
n

δ ∈∆N

�

�

� ‖uδ−uδ̃‖L1([0,L ]d ) ≤ 2ε
o

and CN (2ε) = Card(Iδ̃,N (2ε))

(3.1.19)

since the cardinality of the set Iδ̃,N (ε) is independent of the choice of δ̃ ∈ ∆N . We ob-

serve that an ε-cover of Gh ,N in L1 contains at most CN (2ε) elements. Since Card(Gh ,N ) =

Card(∆N ) = 2N d
, it holds that

Nε
�

Gh ,N

�

�

� L1([0, L ]d )
�

≥
2N d

CN (2ε)
. (3.1.20)

2. Now we need to provide an upper bound on CN (2ε). For any given pair δ, δ̃ ∈∆N ,

‖uδ−uδ̃‖L1([0,L ]d ) =
∑

ι∈{0,1,...,N }d
‖uδ−uδ̃‖L1(�ι ) = η(δ, δ̃) ·

h L n

N n

where η(δ, δ̃) := Card
�

{ι ∈ {0, 1, . . . , N −1}d | δι 6= δ̃ι}
�

. From (3.1.19), we obtain

Iδ̃,N (2ε) =

�

δ ∈∆N

�

�

� η(δ, δ̃) ≤
2εN d

h L d

�

and it yields

CN (2ε) = Card
�

Iδ̃,N (2ε)
�

≤

j

2εN d

h Ld

k

∑

r=0

�

N d

r

�

.

To estimate the last term in the above inequality, let us consider N d independent random

variables with uniform Bernoulli distribution X1, X2, . . . , XN d , i.e.,

P(X i = 1) = P(X i = 0) =
1

2
for all i ∈ {1, 2, . . . , N d } .

Setting SN d := X1+X2+ · · ·+XN d , we note that for any k ≤N d ,

k
∑

r=1

�

N d

r

�

= 2N d
·P (SN d ≤ k ) .

By Hoeffding’s inequality from [32, Theorem 2], for all µ≤ N d

2 ,

P
�

SN d ≤E[SN d ]−µ
�

= P
�

SN d ≤
N d

2
−µ

�

≤ e
�

− 2µ2

N d

�
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where E[SN d ] is the expectation of SN d . Hence, for every 0< ε ≤ h L d

8 , it holds that 2εN d

h L d ≤ N d

2

and 4ε
h L d ≤ 1

2 . Thus we have

CN (2ε) ≤

j

2εN d

h Ld

k

∑

r=0

�

N d

r

�

= 2N d
·P
�

SN d ≤
�

2εN d

h L d

��

≤ 2N d
· e






−

2

�

N d
2 −

�

2εN d

h Ld

��2

N d







≤ 2N d
· e






−

�

N d − 4εN d

h Ld

�2

2N d







= 2N d
· e

 

−N d ·

�

1− 4ε
h Ld

�2

2

!

≤ 2N d
· e −N d /8 .

From (3.1.20) and (3.1.17),

Nε
�

Gh ,N

�

�

� L1([0, L ]d )
�

≥
2N d

CN (2ε)
≥ e

N d
8

provided

0 < h ≤ min
§

M ,
V

2d−1L d−1N

ª

and 0< ε ≤
h L d

8
. (3.1.21)

Therefore, for every 0< ε < M L d

8 , by choosing

h = min
§

M ,
V

2d−1L d−1N

ª

and N :=
�

V L

2d+2ε

�

such that (3.1.21) holds, we obtain that

Nε
�

Gh ,N

�

�

� L1([0, L ]d )
�

≥ e

�

1
8 ·
�

V L
2d+2ε

�d
�

.

Finally recalling (3.1.18), we have

Nε
�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

≥ e

�

1
8 ·
�

V L
2d+2ε

�d
�

and this implies the first inequality in (3.2.27). �

Remark 42. The upper estimate ofHε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

can be improved. Indeed, from

(3.1.16), for every 0< ε < 4
3 ·
�

2d−1d
d−1

2 L d V d

εd−1 +M L d

�

, it holds that

Hε

�

F[L ,M ,V ]

�

�

� L1([0, L ]d )
�

≤
22d+3d

d−1
2 L d V d

εd
+

2d+4LV +M L d

ε
.
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3.2 Application to Hamilton-Jacobi equation

Let us consider a first-order Hamilton-Jacobi equation

ut (t , x ) +H
�

Dx u (t , x )
�

= 0 for all (t , x ) ∈ (0,∞)×Rd (3.2.1)

where u : [0,+∞)×Rd →Rd , Dx u = (ux1
, . . . , uxd

) and H :Rd →R is a Hamiltonian. Under

standard assumptions of convexity and coercivity on the Hamiltonian H , for every Lipschitz

initial data u0 ∈ Lip(Rd ), the corresponding unique viscosity solution of equation (3.2.1)

with u (0, x ) = u0(x ) is computed by the Hopf-Lax representation formula

u (t , x ) = St (u0)(x ) = min
y ∈Rd

n

u0(y ) + t · L
� x − y

t

�o

(3.2.2)

where L is the Legendre transform of H . In addition, if H is strongly convex, i.e., there exists

a constant λ> 0 such that

D 2H (p ) ¾ λ · Id for all p ∈Rd ,

then the map x → u (t , x )−
1

2λt
·‖x‖2 is concave for every t > 0. In particular, u (t , ·) is twice

differentiable almost everywhere and Dx u (t , ·) has locally bounded total variation.

The first results on the ε-entropy for sets of viscosity solutions of (3.2.1) were obtained in

[3]. The authors proved that the minimal number of bits needed to represent a viscosity

solution of (3.2.1) up to an accuracy ε with respect to the W1,1-distance is of the order ε−d

under the strongly convex condition on Hamiltonian H . A similar result was also proved

in [4] by the same authors, for the case when H depends on the state variable x . There

the main idea was to provide controllability results for Hamilton-Jacobi equations and

a compactness result for a class of semiconcave functions. However, such a gain of BV

regularity does not hold for (3.2.1) with general strictly convex Hamiltonian functions and

the previous approach in [3, 4] to finding the ε-entropy of the solution set cannot be applied.

Presently, we have extended the analysis of the metric entropy for sets of viscosity solutions

to (3.2.1) when the Hamiltonian H ∈C 1
�

Rd
�

is strictly convex, coercive and in the form of

a uniformly directionally convex function, i.e., for every constant R > 0 it holds that

inf
p 6=q∈B (0,R )

­

D H (p )−D H (q )
|D H (p )−D H (q )|

,
p −q

|p −q |

·

:= λR > 0. (3.2.3)

By the Hopf-Lax representation formula (3.2.2), it is well-known from [18] that the set of
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slopes of backward optimal rays through (t , x ), denoted by

b(t , x ) =
n x − y

t
: u (t , x ) = u0(y ) + t · L

� x − y

T

�o

, (3.2.4)

reduces to a singleton b(t , x ) =D H (Dx u (t , x )) for almost every (t , x ) ∈R+×Rd . Moreover,

if M is a Lipschitz constant of u0 then for all t > 0, b(t , ·) can be viewed as an element in

L∞(Rd )with

‖b(t , ·)‖L∞(Rd ) ≤ ΛM := max{|q | : L (q )≤M |q |}. (3.2.5)

Towards the sharp estimate on ε-entropy of the semigroup St for all t > 0, we first establish

a BV bound on b(t , ·).

Theorem 43. Assume that H ∈C 1
�

Rd
�

is strictly convex, coercive and satisfies (3.2.3). For

every t > 0 and u0 ∈ Lip(Rd ) with a Lipschitz constant M , the function b(t , ·) has locally

bounded variation and for every open and bounded set Ω⊂Rd of finite perimeter

|D b(t , ·)|(Ω) ≤
1

γM
·
�

ΛM +
diam(Ω)

t

�

·H d−1(∂ Ω) +

p
d

t
· |Ω| (3.2.6)

with γM :=λ(max|q |≤ΛM |D L (q )|).

3.2.1 BV bound on b(t , ·)

In this subsection, we shall establish a BV bound on b(t , ·) as stated in Theorem 43 for a

given t > 0. Here, we recall (3.2.4) and note that u0 is a Lipschitz function with a Lipschitz

constant M . For any n ≥ 1, setting

Zn =
2−n+1

p
d
·Zd = {y1, y2, . . . , yk , . . .},

we approximate the solution u by a monotone decreasing sequence of continuous functions

un : (0,+∞)×Rd →R defined by

un (t , x ) := min
y ∈Zn

n

(1− εn ) ·u0(y ) + t · L
� x − y

t

�o

(3.2.7)

with

εn =
1

M ·ΛM
· max
|q |≤ 2−n

t

�

M |q |+ L (q )
�

and ΛM = max{|q | : L (q )≤M |q |}. (3.2.8)

Let C n
t ,x be the set of optimal points y ∈Zn such that (3.2.7) holds, i.e.,

C n
t ,x := argminy ∈Zn

n

(1− εn ) ·u0(y ) + t · L
� x − y

t

�o

.
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We define the multivalued-function bn : (0,∞)×Rd →Rd by

bn (t , x ) =
n x − y

t
: y ∈C n

t ,x

o

for all (t , x ) ∈ (0,∞)×Rd . (3.2.9)

1. For any x ∈Rd and y n
x ∈C n

t ,x , it holds that

un (t , x ′)−un (t , x ) ≤ t ·
�

L

�

x ′− y n
x

t

�

− L
� x − y n

x

t

�

�

≤ D L
� x − y n

x

t

�

· (x ′− x ) +O (|x ′− x |)

for all x ′ ∈Rd . In particular, we have

bn (t , x ) ⊆ D H (D +un (t , x ))

and the set of points where bn (t , ·) is not singleton,

Σn
t = {x |Card ({bn (t , x )})≥ 2},

isH n−1-rectifiable. Moreover, {bn (t , ·)}n≥1 is a bounded sequence in [L∞(Rd )]d .

Indeed, for any given (x , y n
x ) ∈ R

d ×C n
t ,x , let x̄ ∈ Zn be the closest point to x such that

|x − x̄ | ≤ 2−n . Using the Lipschitz estimate on u0, we obtain

L
� x − y n

x

t

�

≤
1− εn

t
·
�

u0(x̄ )−u0(y
n

x )
�

+ L
�

x − x̄

t

�

≤
(1− εn ) ·M

t
·
�

|x − y n
x |+2−n

�

+ L
�

x − x̄

t

�

≤ (1− εn ) ·M ·
�

�

�

�

x − y n
x

t

�

�

�

�

+ max
|q |≤ 2−n

t

�

M |q |+ L (q )
�

.

Thus, (3.2.8) implies that

L (bn (t , x ))−M · |bn (t , x )| ≤ εn ·M · (ΛM − |bn (t , x )|)

and this yields

‖bn‖L∞(Rd ) ≤ ΛM for all n ≥ 1. (3.2.10)

On the other hand, let zx ∈ Zn be the closest point to yx ∈ Ct ,x such that |zx − yx | ≤ 2−n .
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Since |x − yx |/t ≤ΛM , we estimate

|un (t , x )−u (t , x )| = min
y ∈Zn

n

(1− εn ) ·u0(y ) + t · L
� x − y

t

�o

−u0(yx )− t · L
� x − yx

t

�

≤ (1− εn ) ·u0(zx )−u0(yx ) + t ·
h

L
� x − zx

t

�

− L
� x − yx

t

�i

≤

 

(1− εn ) ·M + sup
|q |≤ΛM+

2−n
t

|D L (q )|

!

·2−n + εn · |u0(yx )|

≤

 

M + sup
|q |≤ΛM+

2−n
t

|D L (q )|

!

·2−n + (|u0(0)|+M |x |+MΛM t ) · εn .

In particular, un (t , ·) converges uniformly to u (t , ·) in any compact subset of Rd .

2. Fixing n ∈Z+, for any i 6= j ≥ 1, the set

O t
i , j =

§

x ∈Rd : (1− εn )u0(yi ) + t · L
� x − yi

t

�

< (1− εn )u0(yj ) + t · L
� x − yj

t

�ª

is an open subset of Rd withC 1-boundary

Γ t
i , j :

§

x ∈Rd : (1− εn )u0(yi ) + t · L
� x − yi

t

�

= (1− εn )u0(yj ) + t · L
� x − yj

t

�ª

.

Set V t
i :=

⋃

j 6=i O t
i , j . From (3.2.7) and (3.2.9), it holds that

bn (t , x ) =
x − yi

t
for all x ∈V t

i . (3.2.11)

In particular, bn (t , ·) is in BVl o c (Rd )with

D bn (t , ·) =
Id

t
·L d +

p (Ω)
∑

i=1

bn (t , ·)⊗νiH d−1
øΩ⋂∂ V t

i

and

div bn (t , ·) =
d

t
·L d +

p (Ω)
∑

i=1

〈bn (t , ·),νi 〉H d−1
øΩ⋂∂ V t

i

where νi is the inner normal vector to V t
i .

Proposition 44. For every t > 0 and for every open and bounded set Ω⊂Rd of finite perimeter,

setting γM :=λ(max|q |≤ΛM |D L (q )|), it holds that

|D bn (t , ·)| (Ω) ≤
1

γM
·
�

‖bn (t , ·)‖L∞(Rd )+
diam(Ω)

t

�

·H d−1(∂ Ω) +

p
d

t
· |Ω| . (3.2.12)
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Proof. The proof is divided in to the following steps.

1. First we rewrite

D bn (t , ·) =
Id

t
·H d +

1

2t
·

∑

i 6= j∈{1,··· ,p (Ω)}

(yj − yi )⊗νiH d−1
øΩ⋂∂ V t

i
⋂

∂ V t
j

and

div bn (t , ·) =
d

t
·H d +

1

2t
·

∑

i 6= j∈{1,··· ,p (Ω)}




yj − yi ,νi

�

H d−1
øΩ⋂∂ V t

i
⋂

∂ V t
j

(3.2.13)

with

νi (x ) =
D L

� x−yj

t

�

−D L
� x−yi

t

�

�

�D L
� x−yj

t

�

−D L
� x−yi

t

��

�

forH d−1 a .e . x ∈Ω
⋂

∂ V t
i

⋂

∂ V t
j .

In particular, this implies

�

�

�

�

D bn (t , ·)−
Id

t

�

�

�

�

(Ω) ≤
1

2t

∑

i 6= j∈{1,··· ,p (Ω)}

|yj − yi | ·H d−1(Ω
⋂

∂ V t
i

⋂

∂ V t
j ). (3.2.14)

For a fixed x ∈Ω
⋂

∂ V t
i

⋂

∂ V t
j , setting pi :=D L

� x−yi
t

�

and pj :=D L
� x−yj

t

�

, we have

νi (x ) =
pj −pi

|pj −pi |
and yj − yi = D H (pi )−D H (pj ).

From (3.2.10), it holds that |pi | ≤max|q |≤ΛM
|D L (q )|. Thus, the assumptions (3.2.3) and (3.2.5)

yield

|yi − yj | ≤ −
1

γM
·



yj − yi ,νi (x )
�

. (3.2.15)

Recalling (3.2.13) and (3.2.14), we get

�

�

�

�

D bn (t , ·)−
Id

t

�

�

�

�

(Ω) ≤
1

γM
·
�

�

�

�

div bn (t , ·)−
d

t

�

�

�

�

(Ω). (3.2.16)

2. Let us now provide a bound on

�

�

�

�

div bn (t , ·)−
d

t

�

�

�

�

(Ω). Pick a point x0 ∈ Ω. From (3.2.11),

(3.2.13) and (3.2.15), the function dn (t , x ) :=
x − x0

t
−bn (t , x ) is in BVloc

�

Rd
�

and

div dn (t , ·) =
1

2t
·

∑

i 6= j∈{1,··· ,p (Ω)}




yi − yj ,νi

�

H d−1
øΩ⋂∂ V t

i
⋂

∂ V t
i
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is a positive Radon measure. In particular, this implies that

|div dn (t , ·)|(Ω) =
∫

Ω

div dn (t , ·).

Let ρε ∈C∞c (R
d ) be a family of modifiers, i.e., ρε(x ) = ε

−dρ
� x

ε

�

for ρ ∈C∞c (R
d ) satisfying

ρ(x ) ≥ 0, ρ(x ) = ρ(−x ), supp(ρ) ⊂ Bd (0,1) and

∫

Rd

ρ(x )d x = 1. For every test function

ϕε =χΩ ∗ρε, it holds that

∫

Rd

ϕεdiv dn (t , ·) = −
∫

Rd

dn (t , x ) ·∇ϕε(x )d x ≤ ‖dn (t , ·)‖L∞(Rd ) ·
∫

Rd

|∇ϕε(x )|d x .

Thus, taking ε→ 0+, we get
∫

Ω
div dn (t , ·) ≤ ‖dn (t , ·)‖L∞(Rd ) ·H d−1(∂ Ω) and (3.2.16) yields

|D bn (t , ·)|(Ω) ≤
1

γM
·
�

‖bn (t , ·)‖L∞(Rd )+
diam(Ω)

t

�

·H d−1(∂ Ω) +

p
d

t
· |Ω|.

This completes the proof. �

Using Proposition 44, we can easily prove Theorem 43.

Proof of Theorem 43. We first claim that bn (t , ·) converges to b(t , ·) in L1
loc. Since the se-

quence bn (t , ·) is bounded in [L∞(Rd )]d and the set
�⋃

n≥1Σ
n
t

⋃

Σt

�

has zero Lebesgue mea-

sure, it is sufficient to show that

lim
n→∞

bn (t , x ) = b(t , x ) for all x ∈Rd \
�

⋃

n≥1

Σn
t

⋃

Σt

�

.

Assume by a contradiction that there exists a subsequence bnk
(t , x ) converging to some

w 6= b(t , x ). Since un (t , ·) converges uniformly to u (t , ·) in any compact subset of Rd , we

have

u (t , x ) = lim
nk→∞

unk
(t , x ) = lim

nk→∞
u0(x − t bnk

(t , x ))+ t · L (bnk
(t , x ))

= u0(x − t w ) + t · L (w ) = u0(x − t w ) + t · L
�

x − (x − t w )
t

�

.

Thus, b(t , x ) is not a singleton and this yields a contradiction. Finally, from (3.2.12) and [2,

Proposition 3.13], the function bn (t , ·) converges weakly to b(t , ·) in BV (Ω,Rd ). In particular,
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b(t , ·) has locally bounded variation and we obtain

|D b(t , ·)|(Ω) ≤ lim inf
n→∞

|D bn (t , ·)|(Ω)

≤
1

γM
·
�

lim inf
n→+∞

‖bn (t , ·)‖L∞(Rd )+
diam(Ω)

t

�

·H d−1(∂ Ω) +

p
d

t
· |Ω|.

To conclude the proof, we recall (3.2.10), which yields (3.2.6).

As a consequence of Theorem 43, the following holds.

Corollary 45. Under the same assumptions as in Theorem 43, the set

ST

�

U[m ,M ]

�

=
�

ST (ū ) : ū ∈U[m ,M ]

	

with

U[m ,M ] :=
�

ū ∈ Lip
�

Rd
�

: |ū (0)| ≤m ,Lip[ū ]≤M
	

(3.2.17)

is compact in W1,1
loc(R

d ) for every T > 0.

Proof. Let (ūn )n≥1 ⊆U[m ,M ] be a sequence of initial data. Setting

vn (x ) := ST (ūn )(x ) for all x ∈Rd , n ≥ 1,

we have

‖D H (D vn )‖L∞ ≤ ΛM and |vn (0)| ≤ m +M T ΛM .

Moreover, for any given R > 0, Theorem 43 implies that

|D (D H (D vn ))| (Bd (0, R )) ≤ CR for some constant CR > 0.

From Helly’s theorem, we infer that there exist a subsequence (vnk
)k≥1 and w ∈ BVloc(Rd ,Rd )

such that

• vnk
(0) converges to some v̄0 ∈R;

• D H (D vnk
) converges to w point-wise and

lim
k→∞

‖D H (D vnk
)−w ‖L1(Bd (0,R )) = 0.
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This implies that D vnk
=D L (D H (D vnk

)) converges to D L (w ) point-wise and

lim
nk→+∞

‖D vnk
−D L (w )‖L1(Bd (0,R )) = 0 .

Thus, denoting by

v̄ R
nk

:=
1

|Bd (0, R )|
·
∫

Bd (0,R )

vnk
(x )d x

the average value of vnk
in Bd (0, R ), we have

lim
nk→∞

�

v̄ R
nk
− vnk

(0)
�

= lim
nk→∞

1

|Bd (0, R )|
·
∫ 1

0

∫

Bd (0,R )

D vnk
(s x )(x ) d x d s

=
1

|Bd (0, R )|
·
∫ 1

0

∫

Bd (0,R )

D L (w (s x ))(x )d x d s := v̄ R

and this yields limnk→∞ v̄ R
nk
= v̄0+ v̄ R . On the other hand, by Poincaré inequality, it holds

that
�









�

vnk
− v̄ R

nk

�

−
�

vn ′k
− v̄ R

n ′k

�










L1(Bd (0,R ))

�

≤ R ·







D vnk
−D vn ′k










L1(Bd (0,R ))
.

Therefore, the sequence
�

vnk

�

k≥1
is a Cauchy sequence in W1,1(Bd (0, R )) for every R > 0 and

converges to v̄ in W1,1
loc

�

Rd
�

. �

3.2.2 Metric entropy in W1,1 for ST

Assuming that H is inC 2(Rd ), we shall establish upper and lower estimates for the metric

entropy of

S R
T (U[m ,M ]) :=

¦

vø�R
: v ∈ ST

�

U[m ,M ]

�

©

in W1,1(�R ) for given constants T , R , m , M > 0. In order to do so, let us introduce the following

continuous functions:

• ΨM : [0, M ]→ [0,∞)with Ψ(0) = 0 and

ΨM (s ) = s · min
|p−q |≥s ;p ,q∈B d (0,M )

|D H (p )−D H (q )|
|p −q |

for all s ∈ (0, M ]; (3.2.18)

• ΦM : [0, M ]→ [0,∞)with Φ(0) = 0 and

ΦM (s ) = s · min
p∈B d (0,M− s

2 )

�

max
q∈B d (p , s

2 )





D 2H (q )






∞

�

for all s ∈ (0, M ] (3.2.19)
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with




D 2H (q )






∞ :=max
|v |≤1

�

�D 2H (q )(v )
�

�.

Notice that both maps s 7→ ΨM (s ) and s 7→ ΦM (s ) are strictly increasing and the strictly

convex property of H implies that

0 < ΨM (s ) ≤ ΦM (s ) < M · max
p∈B d (0,M )





D 2H (p )






∞ for all s ∈ (0, M ].

From Theorem 43, for any v ∈ S R
T (U[m ,M ]), it holds that

|D H (D v )| (�R ) ≤ VT and ‖v ‖L∞(Rd ) ≤ mT (3.2.20)

with






















VT :=
d 2d R d−1

γM
·
�

ΛM +
2
p

d R

T

�

+

p
d 2d R d

T

mT := m +
p

d M R +T · sup
|q |≤ΛM

L
�

q
�

.

Our main result is stated as follows.

Theorem 46. Assume that H ∈C 2
�

Rd
�

is strictly convex, coercive and satisfies (3.2.3). Then,

for every

0< ε <min

�

R+Ψ−1
M

�

min

�

12RV 2
T

3VT +2ΛM
, 4VT

�

RVT

ΛM

�1/d
��

, R− ·Φ−1
M

�

λM

2T

�

�

,

it holds that

log2

��

β−

ε

��

+ Γ − ·
�

ΦM

� ε

R−

��−d

≤ Hε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

≤ log2

�

β+

ε

�

+ Γ + ·
�

ΨM

� ε

R+

��−d

(3.2.21)

where the constants β±, R± and Γ ± are explicitly computed to be

β− = 2d R d m , β+ =
�

2d+1R d +2
�

(3+
p

d R )mT , R− =
ωd ·R d

(d +1)2d+9

R+ =
�

2d R d +1
�

(3+
p

d R ), Γ − =
1

8 ln 2
·
�

8RλM

3T

�d

, Γ + = 48
p

d ·
�

12d
p

d RVT

�d
.

Before proving Theorem 46, we present some cases where (3.2.21) gives sharp estimates.
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Remark 47. The Hamiltonian H (p ) = |p |2k for some postive integer k ≥ 2 is not uniformly

convex but satisfies all assumptions in Theorem 43. Moreover, a direct computation yields

α1s 2k−1 ≤ ΨM (s ) ≤ ΦM (s ) ≤ α2s 2k−1 for all s ∈ [0, M ]

for some constants α1,α2 > 0 depending on k and

Hε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

≈ ε−(2k−1)d .

Remark 48. If H ∈ C 2(Rd ) is uniformly convex ,then α1s < ΨM (s ) ≤ ΦM (s ) < α2s for

some 0<α1 <α2 and (3.2.21) yields the same result in [3] that

Hε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

≈ ε−d .

Remark 49. For the one-dimensional case (d = 1), every strictly convex H ∈C 2(R) satisfies

(3.2.3). In addition, assume that H has polynomial degeneracy, i.e., the set IH = {ω ∈R :

H ′′(ω) = 0} 6=∅ is finite and for each w ∈ IH , there exists a natural number pω ≥ 2 such that

H (pω+1)(ω) 6= 0 and H ( j )(ω) = 0 for all j ∈ {2, . . . , pω}.

The polynomial degeneracy of H is defined by

pH := pωH
= max

ω∈IH

pω for someωH ∈ IH .

For every M >ωH , there exist 0<α1 <α2 such that α1 · s pH < ΨM (s ) ≤ ΦM (s ) < α2 · s pH

and (3.2.21) implies that

Hε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

≈ ε−pH .

3.2.2.1 Upper estimate

Towards the upper estimate ofHε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

in (3.2.21), we first provide a bound

on the L1-distance between elements D u1 and D u2 in terms of the L1-distance between

D H (D u1) and D H (D u2) for every u1, u2 ∈ S R
T (U[m ,M ]) by using the function Ψ defined in

(3.2.18). Observing that the map s 7→
ΨM (s )

s
is monotone increasing and

ΨM (|p −q |) ≤ |D H (p )−D H (q )| for all p , q ∈ B d (0, M ), (3.2.22)

we prove the following lemma.
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Lemma 50. For any u1, u2 ∈ S R
T (U[m ,M ], it holds that

‖D u1−D u2‖L1(�R ) ≤
�

2d R d +1
�

·Ψ−1
M

�

‖b1−b2‖L1(�R )

�

(3.2.23)

with b1 :=D H (D u1) and b2 :=D H (D u2).

Proof. For simplicity, setting β := Ψ−1
M

�

‖b1−b2‖L1(�R )

�

, we claim that

|D u1(x )−D u2(x )| ≤ β ·max

�

1,
|b1(x )−b2(x )|
‖b1−b2‖L1(�R )

�

for a .e . x ∈�R . (3.2.24)

Indeed, assume that |D u1(x )−D u2(x )|>β . From (3.2.22), it holds that

|D u1(x )−D u2(x )| =
|D u1(x )−D u2(x )|

|D H (D u1(x ))−D H (D u2(x ))|
· |b1(x )−b2(x )|

≤
|D u1(x )−D u2(x )|

ΨM (|D u1(x )−D u2(x )|)
· |b1(x )−b2(x )|.

By the monotone increasing property of the map s 7−→
ΨM (s )

s
, one has

|D u1(x )−D u2(x )| ≤
β

|ΨM (β )|
· |b1(x )−b2(x )| = β ·

|b1(x )−b2(x )|
‖b1−b2‖L1(�R )

and this implies (3.2.24). Therefore, the L1-distance between D u1 and D u2 is bounded by

‖D u1−D u2‖L1(�R ) =

∫

�R

|D u1−D u2(x )|d x

≤ β ·
∫

�R

�

1+
|b1(x )−b2(x )|
‖b1−b2‖L1(�R )

�

d x = (2d R d +1)β

=
�

2d R d +1
�

·Ψ−1
M

�

‖b1−b2‖L1(�R )

�

(3.2.25)

and this yields (3.2.23). �

Now we recall a result from Section 3.1 before proceeding to find the upper estimate of

Hε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

. For any given constants R , M , V > 0, we consider a class of

uniformly bounded total variation functions on �R denoted by

F[R ,M ,V ] =
§

f :�R →Rd
�

�

� ‖ f ‖
L∞
�

�R

� ≤M , |D f |
�

�R )≤V
ª

. (3.2.26)
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By a slight modification in the proof of Theorem 41, we obtain the following upper bound

on the ε-entropy ofF[R ,M ,V ] in L1 (�R ).

Corollary 51. For every 0< ε <min
n

6RV 2

3V +2M , 2V
�

RV
M

�
1
d

o

, it holds that

Hε

�

F[R ,M ,V ]

�

�

� L1(�R )
�

≤ 48
p

d ·
�

6d
p

d RV

ε

�d

. (3.2.27)

Proof. By the definition of ε-entropy, we have

Hε

�

F[R ,M ,V ]

�

�

� L1(�R )
�

≤ d ·H ε
d

�

F 1
[R ,M ,V ]

�

�

� L1(�R )
�

(3.2.28)

with

F 1
[R ,M ,V ] =

n

f :�R →R
�

�

� ‖ f ‖L∞(�R ) ≤M , |D f |
�

�R )≤V
o

.

Considering a class of bounded total variation real-valued functions

B[R ,M ,V ] =
�

g : [0, R ]→ [0, M ]
�

� |D g |([0, R ])≤V
	

,

from [26, Lemma 2.3], for every 0< ε < RV
3 , we have

Nε
�

B[R , 9
8 V ,V ]

�

�

�L1([0, R ])
�

≤ 2
17RV
ε

and this implies that

Nε
�

B[R ,M ,V ]

�

�

�L1([0, R ])
�

≤
8M

V
·Nε

�

B[R , 9
8 V ,V ]

�

�

�L1([0, R ])
�

≤
8M

V
·2

17RV
ε .

In particular, for every 0< ε <
RV 2

3V +M
such that

8M

V
≤ 2

RV
ε , it holds that

Hε

�

B[R ,M ,V ]

�

�

�L1([0, R ])
�

= log2

�

Nε
�

B[R ,M ,V ]

�

�

�L1([0, R ])
��

≤
18RV

ε
.

Using the above estimate, one can follow the same argument in the proof of [26, Theorem

3.1] to obtain that for every 0< ε <min
n

6RV 2

3V +2M , 2V
�

RV
M

�
1
d

o

, it holds that

Hε

�

F 1
[R ,M ,V ]

�

�

� L1(�R )
�

≤
48
p

d
·
�

6
p

d RV

ε

�d

and (3.1.5) yields (3.2.27).

�
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Proof of the upper estimate ofHε

�

S R
T (U[m ,M ])

�

�W1,1
�

�R

��

in Theorem 46 :

1. Recalling the second inequality in (3.2.20), we have

v̄ R :=
1

Vol
�

�R

� ·
∫

�R

v (x ) d x ∈ [−mT , mT ] for all v ∈ S R
T

�

U[m ,M ]

�

.

For any ε′ > 0, we cover [−mT , mT ] by Kε′ =

�

mT

Ψ−1
M (ε′)

�

+1 small intervals with length 2Ψ−1
M (ε

′),

i.e.,

[−mT , mT ] ⊆
Kε′
⋃

i=1

B
�

ai ,Ψ−1
M (ε

′)
�

for some ai ∈ [−mT , mT ]

and then decompose the set S R
T

�

U[m ,M ]

�

into Kε′ subsets as

S R
T

�

U[m ,M ]

�

⊆
Kε′
⋃

i=1

S R ,i
T

�

U[m ,M ]

�

where

S R ,i
T (U[m ,M ]) :=

�

v ∈ S R ,i
T

�

U[m ,M ]

�

: v̄ R ∈ B
�

ai ,Ψ−1
M (ε

′)
�	

.

Thus, for all ε > 0, it holds that

Nε
�

S R
T

�

U[m ,M ]

�

�

�

�W1,1
�

�R

�

�

≤
Kε′
∑

i=1

Nε
�

S R ,i
T

�

U[m ,M ]

�

�

�

�W1,1
�

�R

�

�

. (3.2.29)

2. Given i ∈ {1, 2, . . . , Kε′}, we shall provide an upper bound on the covering number

Nε
�

S R ,i
T

�

U[m ,M ]

�

�

�

�W1,1
�

�R

�

�

by introducing the set

BR ,i
T

�

U[m ,M ]

�

=
�

D H (D v ) : v ∈ S R ,i
T (U[m ,M ])

	

.

From (3.2.28) and (3.2.20),

BR ,i
T

�

U[m ,M ]

�

⊆ F[R ,ΛM ,VT ]

and Corollary 51 yields

Hε′/2

�

BR ,i
T

�

U[m ,M ]

�

�

�

�L1 (�R )
�

≤ 48
p

d ·
�

12d
p

d RVT

ε′

�d

= Γ + · (ε′)−d (3.2.30)
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for all 0 < ε′ < min
¦

12RV 2
T

3VT +2ΛM
, 4VT

�

RVT
ΛM

�1/d©

. Hence, there exists a set of initial data U ε′

[m ,M ]

with its image under the map ST defined by

Si
ε′ :=

¦

v1, . . . , vβ ε′1

©

⊂ S R ,i
T

�

U[m ,M ]

�

where β ε
′

1 := Card
�

U ε′

[m ,M ]

�

≤ 2Γ
+·(ε′)−d

such that the following inclusion holds

BR ,i
T

�

U[m ,M ]

�

⊆
β ε
′

1
⋃

j=1

BL1(b j ,ε′) with b j := D H (D v j ).

In particular, for any given v ∈ S R
T

�

U[m ,M ]

�

, it holds that

‖D H (D v )−b j0
‖L1(�R ) < ε

′ for some j0 ∈ 1,β ε′1 .

Recalling Lemma 50, we obtain

‖D v −D v j0
‖L1(�R ) ≤

�

2d R d +1
�

·Ψ−1
M

�

‖D H (D v )−b j0
‖L1(�R )

�

≤
�

2d R d +1
�

·Ψ−1
M (ε

′)

and Poincaré inequality yields










�

v − v̄ R
�

−
�

v j0
− v̄R

j0

�










L1(�R )
≤
p

d R · ‖D v −D v j0
‖L1(�R ) ≤

p

d R
�

2d R d +1
�

·Ψ−1
M (ε

′).

On the other hand, since v, vi0
∈ S R ,i

T

�

U[m ,M ]

�

, we have

�

�v̄ R − v̄R
j0

�

� ≤
�

�v̄ R −ai

�

�+
�

�v̄R
j0
−ai

�

� ≤ 2Ψ−1
M (ε

′).

The W1,1-distance between v and v j0
can be estimated by

‖v −v j0
‖W1,1(�R ) ≤ ‖D v −D v j0

‖L1(�R )+









�

v − v̄ R
�

−
�

v j0
− v̄R

j0

�










L1(�R )

+
�

�v̄ R − v̄R
j0

�

� ·
�

��R

�

� ≤
�

2d R d +1
�

(3+
p

d R ) ·Ψ−1
M (ε

′) = R+ ·Ψ−1
M (ε

′).

Thus, for any 0< ε <R+Ψ−1
M

�

min

�

12RV 2
T

3VT +2ΛM
, 4VT

�

RVT

ΛM

�1/d
��

, if we choose ε′ =ΨM

� ε

R+

�

such that

0< ε′ <min

�

12RV 2
T

3VT +2ΛM
, 4VT

�

RVT

ΛM

�1/d
�

then the set S R ,i
T

�

U[m ,M ]

�

is covered by β ε
′

1 open balls in W1,1
�

�R

�

centered at vi of radius ε,
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i.e.

S R ,i
T (U[m ,M ]) ⊆

β ε
′

1
⋃

i=1

BW1,1(vi ,ε)

and thus

Nε
�

S R ,i
T (U[m ,M ]

�

�

�W1,1
�

�R

�

�

≤ β ε
′

1 = 2
Γ + ·

�

ΨM

� ε

R+

��−d

.

Finally, recalling (3.2.29), we get

Nε
�

S R
T (U[m ,M ]

�

�

�W1,1
�

�R

�

�

≤

�

2d+1R d +2
�

(3+
p

d R )mT

ε
·2
Γ + ·

�

ΨM

� ε

R+

��−d

=
β+

ε
·2
Γ + ·

�

ΨM

� ε

R+

��−d

and this yields the second inequality in (3.2.21).

Remark 52. To obtain the upper bound ofHε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

in (3.2.21), we only

require that H belongs toC 1(Rd ).

3.2.2.2 Lower estimate

We will now prove the first inequality in (3.2.21). In order to do so, for any given p ∈Rd , let

Φ(·, p ) : [0,∞)→ [0,∞) be the strictly increasing continuous function defined by Φ(0, p ) = 0

and

Φ(s , p ) = s ·
�

max
p ′∈B d (p , s

2 )





D 2H (p ′)






∞

�

for all s > 0.

From the definition of ΦM in (3.2.19), it holds that

ΦM (s ) = min
p∈B d (0,M− s

2 )
Φ(s , p ) for all s ∈ [0, M ]. (3.2.31)

The following proposition shows that a solution to (3.2.1) with a semiconvex initial condition

preserves the semiconvexity on a given time interval, provided the semiconvexity constant

of the initial data is sufficiently small in absolute value.

Proposition 53. Given T , M , r > 0 and p̄ ∈ B d

�

0, M − r
2

�

, let ū be a semiconvex function

with semiconvexity constant −K such that

D −ū (Rd )⊆ B d

�

p̄ ,
r

2

�

and K ≤
λM

4T
·

r

Φ(r, p̄ )
(3.2.32)
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with λM as defined in (3.2.3). Then, the map (t , x ) 7→ St (ū )(x ) is a classical solution for

0< t ≤ T and

D St (ū )(x ) ∈ B d

�

p̄ ,
r

2

�

for all (t , x ) ∈ (0, T ]×Rd .

Proof. For simplicity, we set u (t , x ) := St (ū )(x ) for all (t , x ) ∈ [0,∞)×Rd . It is well-known

from [18, Theorem 5.3.8] that u (t , ·) is locally semiconcave for every t > 0. Thus, by Propo-

sition 38, it is sufficient to show that u (t , ·) is semiconvex with a semiconvexity constant

−C < 0 for all t ∈ [0, T ], i.e., for any fixed (t , x ) ∈ [0, T )×Rd , it holds that

u (t , x +h ) +u (t , x −h )−2u (t , x ) ≥ −C · |h |2 for all h ∈Rd . (3.2.33)

By the Lipschitz continuity of u (t , ·), we can assume that u (t , ·) is differentiable at x ±h . In

this case, b(t , x ±h ) reduce to a single value denoted by b± =D H (p±)with p± =D u (t , x ±h )

and satisfy the relations















p± ∈ D −ū (x ±h − t b±) ⊆ B d

�

p̄ ,
r

2

�

⊆ B d (0, M ),

u (t , x ±h ) = ū (x ±h − t b±) + t · L (b±).

(3.2.34)

Since ū is semiconvex with semiconvexity constant−K , denoting x± := x ±h , one has from

Corollary 8 that



p+−p−, x+− x−− t (b+−b−)
�

≥ −K · |2h − t (b+−b−)|2 and




p+−p−, b+−b−
�

≤
K

t
·
�

�2h − t
�

b+−b−
��

�

2
+

2|h |
t
· |p+−p−|

≤ 2K t |b+−b−|2+
8K |h |2

t
+

2|h |
t
· |p+−p−|

≤ 2K T |D H (p+)−D H (p−)|2+
8K |h |2

t
+

2|h |
t
· |p+−p−|.

Since p± ∈ B d (p̄ , r
2 ), it holds that

|D H (p+)−D H (p−)| ≤
Φ(r, p̄ )

r
· |p+−p−|.

Thus, recalling (3.2.32) and (3.2.34), we estimate

2K T |D H (p+)−D H (p−)|2 ≤ 2K T ·
Φ(r, p̄ )

r
· |D H (p+)−D H (p−)| · |p+−p−|

≤
λM

2
· |D H (p+)−D H (p−)| · |p+−p−| =

λM

2
· |b+−b−| · |p+−p−|
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and




p+−p−, b+−b−
�

≤
λM

2
· |b+−b−| · |p+−p−|+

8K |h |2

t
+

2|h |
t
· |p+−p−|. (3.2.35)

On the other hand, from (3.2.3) we deduce that




p+−p−, b+−b−
�

=



p+−p−, D H (p+)−D H (p−)
�

≥ λM · |D H (p+)−D H (p−)| · |p+−p−|

= λM · |b+−b−| · |p+−p−|

and (3.2.35) yields

λM

2
· |t (b+−b−)| · |p+−p−| ≤ 8K |h |2+2|h | · |p+−p−|. (3.2.36)

We consider the following two cases.

• If |p+−p−| ≤ K |h | then

|b+−b−| = |D H (p+)−D H (p−)| ≤
Φ(r, p̄ )

r
· |p+−p−| ≤

K Φ(r, p̄ )
r

· |h |.

• Otherwise, (3.2.36) implies that λM
2 · |t (b+−b−)| ≤ 10|h |.

Hence,

|t (b+−b−)| ≤
�

K T Φ(r, p̄ )
r

+
20

λM

�

· |h |. (3.2.37)

By Hopf-Lax representation formula, we have u (t , x ±h ) = ū (x ±h − t b±) + t · L (b±) and

u (t , x ) ≤ 2ū
�

x − t ·
b++b−

2

�

+ t · L
�

b++b−

2

�

.

Using the convexity of L and semiconvexity of ū , we estimate

u (t , x +h ) +u (t , x −h )−2u (t , x ) ≥ t ·
�

L (b+) + L (b−)−2L
�

b++b−

2

��

+ ū (x +h − t b+) + ū (x −h − t b−)−2ū
�

x − t ·
b++b−

2

�

≥ −K ·
�

�2h − t
�

b+−b−
��

�

2 ≥ −8K |h |2−2K |t (b+−b−)|2

≥ −2K ·
�

4+
�

K T Φ(r, p̄ )
r

+
20

λM

�2�

· |h |2

and this yields (3.2.33). �
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Relying on the above Proposition and Lemma 9, we prove the first inequality in (3.2.21).

Proof of the lower estimate ofHε

�

S R
T (U[m ,M ])

�

�W1,1
�

�R

��

in Theorem 46:

1. For any given r > 0 and p ∈Rd , we denote by

S C p
r :=

�

ϕ = v + 〈p , ·〉 : v ∈ SC [ r
2 ,Kr ]

	

with Kr =
λM

4T
·

r

ΦM (r )

where SC [ r
2 ,Kr ] is defined in (2.4.1). From (3.2.31), there exists pr ∈ B d (0, M − r

2 ) satisfying

Φ(r, pr ) = ΦM (r ) = min
p∈B(0,M− r

2 )
Φ(r, p ).

Consider the operator T :S C pr
r → Lip

�

Rd
�

defined by

T (ϕ) = ϕ+ST (ϕ−)(0) with ϕ−(x ) =−ϕ(−x ) for all ϕ ∈ SC pr
r . (3.2.38)

We show that

T
�

S C pr
r

�

⊆ ST

�

U[0,M ]

�

with U[0,M ] as defined in (3.2.17). (3.2.39)

In order to find an initial data for a given function ϕ ∈S C pr
r , we only need to reverse the

equation. Since

∅ 6= D +ϕ(x ) ⊂ B d

�

0,
r

2

�

for all x ∈Rd ,

the following function

w0(·) := −T (ϕ)(−·) = ϕ−(·)−ST (ϕ−)(0)

is semiconvex with a semiconvexity constant −Kr and

D −w0(x ) = pr +D +ϕ(−x ) ⊆ B d

�

pr ,
r

2

�

for all x ∈Rd .

Let w (t , x ) = St (w0)(x ) be the unique viscosity solution of (3.2.1) with initial datum w0.

Recalling Proposition 53 and property (ii) in Proposition 39, we have that w is aC 1 classical

solution of (3.2.1) in (0, T ]×Rd and

Dx w (T , x ) ⊆ B d

�

pr ,
r

2

�

⊆ B d (0, M ) for all x ∈Rd .
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Moreover, the translation property (iii) of the semigroup St (as defined by 2.7.9) implies

that

w (T , 0) = ST (w0)(0) = ST

�

ϕ−−ST (ϕ−)(0)
�

(0) = 0.

Thus, the continuous function u : [0, T ]×Rd →R, defined by

u (t , x ) = −w (T − t ,−x ) for all (t , x ) ∈ [0, T ]×Rd ,

is also aC 1 classical solution of (3.2.1) in (0, T )×Rd with

u (T , ·) ≡ T (ϕ)(·) and u (0, ·) = −w (T ,−·) ∈ U[0,M ].

In particular, u (t , x ) is a viscosity solution of (3.2.1) in [0, T ]×Rd , so that by the uniqueness

property of the semigroup map St , we get

ST (u0)(·) ≡ T (ϕ)(·), u0(·) ≡ −w (T ,−·)

and this implies T (ϕ)(·) ∈ ST

�

U[0,M ]

�

.

2. For every ε > 0, we select a finite subset Aε ⊆ [−m , m ] such that

Card (Aε) =

�

2d R d m

ε

�

and |ai −a j | ≥
2ε

2d R d
for all ai 6= a j ∈ Aε. (3.2.40)

From the translation property (iii) of the semigroup St , it holds that

ST

�

U[m ,M ]

�

⊇
⋃

a∈Aε

ST

�

a +U[0,M ]

�

= Aε +ST

�

U[0,M ]

�

and (3.2.39) implies that

ST

�

U[m ,M ]

�

⊇ Aε +T
�

S C pr
r

�

. (3.2.41)

By Lemma 9, there exists a subset G R
r ofS C pr

r such that

Card
�

G R
r

�

≥ 2β[R ,r ] · ε−d
with β[R ,r ] =

1

3d 2d 2+4d+3 ln 2
·
�

ωd R d+1Kr

(d +1)

�d

and







Dϕø�R
−Dφø�R










L1(�R )
≥ 2ε for all ϕ 6=φ ∈G R

r

provided that

0 < ε ≤min
n r

2
, Kr

o

·
ωd ·R d

(d +1)2d+8
. (3.2.42)
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Since DT (ϕ)(x ) =Dϕ(x ) for all x ∈Rd , we get








DT (ϕ)ø�R
−DT (φ)ø�R










W1,1(�R )
≥ 2ε for all ϕ 6=φ ∈G R

r .

Recalling (3.2.40), we have







 fø�R
− gø�R










W1,1(�R )
≥ 2ε for all f 6= g ∈ Aε +T

�

S C pr
r

�

and

Hε

�

S R
T (U[m ,M ]

�

�

�W1,1
�

�R

�

�

≥ log2

�

Card (Aε) ·Card
�

G R
r

��

= log2

��

2d R d m

ε

��

+
β[R ,r ]

εd
.

Finally, by choosing r =
ε

R−
with R− =

ωd ·R d

(d +1)2d+9
, we compute that

Kr =
λM

4T R−
·

ε

ΦM

�

ε
R−

� and β[R ,r ] =
1

8 ln 2
·
�

8RλM

3T

�d

·

�

ε

ΦM

�

ε
R−

�

�d

.

Thus, for every 0< ε ≤R− ·Φ−1
M

�

λM
2T

�

such that (3.2.42) holds, we obtain

Hε

�

S R
T

�

U[0,M ]

�

�

�

�W1,1
�

�R

�

�

≥
1

8 ln 2
·
�

8RλM

3T

�d

·
�

ΦM

� ε

R−

��−d

+ log2

��

2d R d m

ε

��

and this yields the first inequality in (3.2.21).

Remark 54. With the same argument, the lower bound of Hε

�

S R
T (U[m ,M ])

�

� W1,1
�

�R

��

in

(3.2.21) can be obtained for H ∈C 1,1(Rd ) by defining

ΦM (s ) = s · inf
p∈B d (0,M− s

2 )

�

sup
p1 6=p2∈B d (p , s

2 )

|D H (p1)−D H (p2)|
|p1−p2|

�

for all s > 0.

3.2.3 A counter-example

In this subsection, we show that if the strictly convex and coercive Hamiltonian H ∈C 2(R2)

does not satisfy the uniform directional convexity condition (3.2.3) then Theorem 43 fails

in general. Indeed, let us consider the following Hamiltonian

H (p ) =
33

44
·p 4

1 +p 2
2 for all p = (p1, p2) ∈R2.

The associated Lagrangian L of H is computed by L (q ) = |q1|
4
3 +q 2

2 for all q = (q1, q2) ∈R2.
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For any given q̄ = (q̄1, q̄2) ∈R2, we have

L (q ) = L (q − q̄ ) ⇐⇒ |q1|4/3+q 2
2 = |q1− q̄1|4/3+ (q2− q̄2)

2

⇐⇒ q2 =
|q1− q̄1|4/3− |q1|4/3

2q̄2
+

q̄2

2
.

Let γq̄ :R→R be such that

γq̄ (s ) =
|s − q̄1|4/3− |s |4/3

2q̄2
+

q̄2

2
for all s ∈R.

In particular, assuming that q̄2 = |q̄1|2/3 with |q̄1|=δ for some δ > 0, it holds that

γq̄ (0) = q̄2, γq̄ (q̄1) = 0

and the following curve which connects two points (0, q̄2) and (q̄1, 0)

Γq̄ =















{(s ,γq̄ (s )) : s ∈ [0,δ]} ⊂ [0,δ]× [0,δ2/3] if q̄1 =δ > 0

{(s ,γq̄ (s )) : s ∈ [−δ, 0]} ⊂ [−δ, 0]× [0,δ2/3] if q̄1 =−δ < 0

(3.2.43)

has length >δ2/3. From this observation, we shall construct a uniformly Lipschitz initial

datum ū such that both D u (1, ·) and b(1, ·) = D H (D u (1, ·)) do not have locally bounded

variation where u = St (ū ) is the solution of (3.2.1) with u (0, ·) ≡ ū . Our construction is

divided into two main steps.

1. Given 0< `< 1, first we construct a uniformly Lipschitz function ū :R2→ [0,∞)with a

Lipschitz constant which does not depend on ` such that

supp(ū ) ⊂ [−2`, 2`] and |b(1, ·)|([−`,`]2), |D u (1, ·)|([−`,`]2) ≥ 1 (3.2.44)

where

u (t , ·) = St (ū ) for all t ≥ 0.

For every 0<δ< `, we consider the periodic lattice

yι =
�

ι1δ, ι2δ
2/3
�

with ι ∈Z2 :=
�

(ι′1, ι′2) ∈Z
2 : ι′1+ ι

′
2 ∈ 2Z

	

61



and the corresponding regions

Ωι = {x ∈R2 : L (x − yι)< L (x − yι′) for all ι′ 6= ι}

= yι +
�

q ∈R2 : L (q )< L (q + yι − yι′) for all ι′ 6= ι
	

⊆ yι + [−δ,δ]× [−δ2/3,δ−2/3]

with ∂ Ωι =
�

yι + (Γq̄+ ∪ Γq̄−)
�⋃�

yι−(1,1)+ Γq̄+
�⋃�

yι−(−1,1)+ Γq̄−
�

, q̄± = (±δ,δ2/3).

This corresponds to the function

g1(x ) = L (x − yι) for all x ∈Ωι, ι ∈Z2.

The dual solution is

g0(y ) = max
x∈R2

�

g1(x )− L (x − y )
	

for all y ∈R2 .

By the definition of Ωι, both g0 and g1 are Lipschitz with a Lipschitz constant

Mδ = sup
q∈[−δ,δ]×[−δ2/3,δ−2/3]

|D L (q )| = O (δ1/3).

For δ > 0 sufficiently small, we can construct a Lipschitz initial datum ū with a Lipschitz

constant Mδ and

supp(ū ) ⊂ [−2`, 2`], ū (y ) = g0(y ) for all y ∈
�

−
3`

2
,

3`

2

�2

.

Let u (t , ·) = St (ū ) be the solution. At time t = 1, we have

u (1, x ) = min
y ∈R2

�

ū (y ) + L (x − y )
	

= ū (yx ) + L (x − yx )

for some yx ∈ B (x ,ΛMδ
)with ΛMδ

=max{|q | : L (q )≤Mδ · |q |}=O (δ1/3) being the maximal

characteristic speed. Thus, if Mδ ≤ `
2 then for all x ∈ [−`,`]2 ∩Ωι, ι ∈Z2,

u (1, x ) = min
y ∈[− 3`

2 , 3`
2 ]

2

�

ū (y ) + L (x − y )
	

= min
y ∈[− 3`

2 , 3`
2 ]

2

�

g0(y ) + L (x − y )
	

= min
y ∈R2

�

g0(y ) + L (x − y )
	

= g1(x ) = L (x − yι)
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and the slope of backward optimal rays through (1, x ) is

b(1, x ) = D H (D u (1, x )) = x − yι.

For any two adjacent yι, yι′ with Ωι,Ωι′ ⊂ [−`,`]2 and x ∈ ∂ Ωι ∩ ∂ Ωι′ , we compute that



















D u (1, x ) = [D L (x − yι)−D L (x − yι′)]⊗n(x )H 1
ø∂ Ωι∩∂ Ωι′

D b(1, x ) = (yι − yι′)⊗n(x )H 1
ø∂ Ωι∩∂ Ωι′

and this implies

|D b(1, ·)|(Ωι ∪Ωι′), |D u (1, ·)|(Ωι ∪Ωι′) ≥ δ2/3 ·H 1(∂ Ωι ∩ ∂ Ωι′) ≥ δ4/3.

Since the number of open regions Ωι ⊂ [−`,`]2 is of the order
`2

δ5/2
, we have

|D b(1, ·)|([−`,`]2), |D (u (1, ·))|([−`,`]2) ≥ C ·
`2

δ5/2
·δ4/3 = C ·

`2

δ1/3

for some constant C > 0. Thus, choosing δ > 0 sufficiently small, we obtain (3.2.44).

2. Let us consider a sequence of disjoint squares �n = cn + [0, 2−n ]× [0, 2−n ] such that

⋃

n≥1

�n ⊂ [0, 1]2 .

From the previous step, for any n ≥ 1 we can construct a sequence of Lipschitz functions

ūn :R2→ [0,∞) and supp(ūn )⊂�n such that the solution un of (3.2.1) with initial data ūn

satisfies

|D un (1, ·)|
�

cn +
1

2
· (�n − cn )

�

, |D H (D un (1, ·))|
�

cn +
1

2
· (�n − cn )

�

≥ 1

and

L (x − z ) ≥ min
y ∈�n

�

ūn (y ) + L (x − y )
	

for all x ∈
�

cn +
1

2
· (�n − cn )

�

, z ∈R2\�n .
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Let us set ū =
∞
∑

n=1

u0,n . The solution u of (3.2.1) with the initial datum ū satisfies

u (1, x ) = un (1, x ) for all x ∈
�

cn +
1

2
· (�n − cn )

�

and this implies

|D b(1, ·)|([0, 1]2) ≥
∞
∑

n=1

|D H (D un (1, ·))|(�n ) ≥
∞
∑

n=1

1 = +∞.

Similarly, we have that |D u (1, ·)|([0, 1]2) = +∞.
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CHAPTER

4

METRIC ENTROPY FOR CONSERVATION

LAWS

This chapter focuses on establishing sharp estimates in Section 4.1 for the metric entropy

of a class of bounded total generalized variation functions taking values in a general totally

bounded metric space (E ,ρ) up to an accuracy of ε with respect to the L1- distance, using

the notions of doubling and packing dimensions of (E ,ρ) introduced in Chapter 2. We also

demonstrate how to apply the obtained result in Section 4.2 and provide an upper bound

on the metric entropy for a set of entropy admissible weak solutions to scalar conservation

laws in one-dimensional space with weakly genuinely nonlinear fluxes.

The first results on ε-entropy in the context of conservation laws were obtained in [5, 23]

for the scalar conservation law in one-dimensional space

ut (t , x ) + f (u (t , x ))x = 0 (4.0.1)

with uniformly convex flux f (i.e. f ′′(u )≥ c > 0) and a similar estimate was obtained for

the system of hyperbolic conservation laws in [7, 6]. Thereafter, the results in [5, 23]were

extended to scalar conservation laws with a smooth flux function f that is either strictly
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(but not necessarily uniformly) convex or has a single inflection point with a polynomial

degeneracy [8]where entropy admissible weak solutions may have unbounded total varia-

tion. In [11, Example 7.2]) it was shown that for fluxes having one inflection point where

all derivatives vanish, the composition of the derivative of the flux with the solution of

(4.0.1) fails in general to belong to the BV space. However, for weakly genuinely nonlinear

fluxes, equibounded sets of entropy solutions of (4.0.1) at positive time are still relatively

compact in L1 ([46, Theorem 26]). Thus for fluxes of such classes, a new approach utilizing

the uniform bound on total generalized variation of entropy admissible weak solutions de-

rived in [41, Theorem 1], is required to study the ε-entropy for (4.0.1) with weakly genuinely

nonlinear fluxes.

Considering the above points of view, we embarked on the following study of ε-entropy

of classes of uniformly bounded total generalized variation functions taking values in a

general totally bounded metric space (E ,ρ).

4.1 Metric entropy for generalized BV functions

Throughout this section, the metric space (E ,ρ) is assumed to be totally bounded. For

convenience, we use the notation

Hε := log2 Nε and Kε := log2 Mε

where Nε := Nε(E |E ) and Mε :=Mε(E |E ) are the ε-covering and the ε-packing numbers

of E in (E ,ρ) and















d := d(E ) the doubling dimension of E ,

p := p(E ) the packing dimension of E .

Given two constants L , V > 0, we shall establish both upper and lower estimates on the

ε-entropy in L1([0, L ], E ) of a class of uniformly boundedΨ-total variation functions defined

on [0, L ] and taking values in (E ,ρ). We denote this class of functions by

F Ψ[L ,V ] :=
�

f ∈ BV Ψ ([0, L ], E )
�

� T V Ψ( f , [0, L ])≤V
	

. (4.1.1)

Our main theorem in this section is as stated below.
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Theorem 55. Assume that the function Ψ : [0,+∞)→ [0,+∞) is convex and satisfies the

condition (2.5.4). Then, for every 0< ε ≤ 2LΨ−1
�

V
4

�

, it holds that

pV

2 log2(7) ·Ψ
�

256ε
L

�+K 258ε
L
≤ Hε

�

F Ψ[L ,V ]

�

�

�L1([0, L ], E )
�

≤
�

3d+ log2(5e )
�

·
2V

Ψ
�

ε
2L

�+H ε
4L

. (4.1.2)

As a consequence, the minimal number of functions needed to represent a function in

F Ψ[L ,V ] up to an accuracy ε with respect to L1-distance is of the order
1

Ψ(O (ε))
. Indeed, from

(2.3.5) and (2.3.6), it holds that











Hε ≤ d · log2

�

diam(E ) ·
2

ε

�

Kε ≥ p · (log7 2) · log2

�

diam(E ) ·
1

2ε

� for all ε > 0,

and (4.1.2) implies

pV

2 log2(7) ·Ψ
�

256ε
L

� +p · log7

�

diam(E ) ·
L

516ε

�

≤ Hε

�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

≤
�

3d+ log2(5e )
� 2V

Ψ
�

ε
2L

� +d · log2

�

diam(E) ·
8L

ε

�

. (4.1.3)

On the other hand, as a direct implication of Theorem 55we can also obtain a sharp estimate

on the ε-entropy for a class of uniformly bounded γ-total variation functions, i.e.Ψ(x ) = |x |γ,

for all γ≥ 1. More precisely, let us denote this class by

F γ
[L ,V ] =

¦

f ∈ BV
1
γ ([0, L ], E )

�

� T V
1
γ ( f , [0, L ])≤V

©

. (4.1.4)

Corollary 56. For every 0< ε ≤ 2
γ−2
γ LV

1
γ ,

p

28γ+1 log2(7)
·

LγV

εγ
+p · log7

�

diam(E ) ·
L

516ε

�

≤ Hε

�

F γ
[L ,V ] | L

1([0, L ], E )
�

≤ 2γ+1 ·
�

3d+ log2(5e )
� LγV

εγ
+d · log2

�

diam(E) ·
8L

ε

�

. (4.1.5)

In particular, as ε tends to 0+, we have

p

28γ+1 log2(7)
≤ lim inf

ε→0+

�

εγ

LγV
·Hε

�

F γ
[L ,V ] | L

1([0, L ], E )
�

�

≤ lim sup
ε→0+

�

εγ

LγV
·Hε

�

F γ
[L ,V ] | L

1([0, L ], E )
�

�

≤ 2γ+1
�

3d+ log2(5e )
�

.
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Thus, the ε-entropy ofF γ
[L ,V ] in L1([0, L ], E ) is of the order ε−γ.

Finally, to facilitate the application our result in finding ε-entropy estimates for entropy

admissible weak solution sets to scalar conservation laws in one-dimensional space with

weakly genuinely nonlinear fluxes, we consider the case where the metric space (E ,ρ) is

generated by a finite dimensional normed space (Rd ,‖ · ‖), i.e.,

E = Rd and ρ(x , y ) = ‖x − y ‖ for all x , y ∈Rd .

Given an additional constant M > 0, the following provides upper and lower estimates for

the ε-entropy of a class of uniformly bounded Ψ-total variation functions

F Ψ[L ,M ,V ] :=
�

f ∈ BV Ψ
�

[0, L ], B d (0, M )
� �

� T V Ψ( f , [0, L ])≤V
	

, (4.1.6)

taking values within the open ball B d (0, M )⊂Rd in the normed space L1(Rd ).

Corollary 57. Under the same assumptions in Theorem 55, for every 0< ε ≤ 2LΨ−1
�

V
4

�

,

V d

2 log2(7) ·Ψ
�

256ε
L

� +d · log7

�

LM

258ε

�

≤ Hε

�

F Ψ[L ,M ,V ]

�

�

� L1([0, L ],Rd )
�

≤
�

3d log2 5+ log2(5e )
�

·
2V

Ψ
�

ε
2L

� +d · log2

�

8LM

ε
+1

�

. (4.1.7)

Proof. It is well-known (e.g in [33]) that for any ε > 0 and open ball B d (0, r )⊂Rd ,

d · log2

� r

ε

�

≤ Hε

�

B d (0, r )
�

�

�Rd
�

≤ d · log2

�

2r

ε
+1

�

.

In particular, recalling that Hε = log2Nε
�

B d (0, M )
�

�

�Rd
�

and Kε = log2Mε

�

B d (0, M )
�

�

�Rd
�

,

we have

Hε ≤ d · log2

�

2M

ε
+1

�

, Kε ≥ Hε ≥ d · log2

�

M

ε

�

and from Definition 4, it holds that

d ≤ p
�

Rd
�

≤ d
�

Rd
�

≤ d · log2 5.

Using the above estimates in (4.1.2), we obtain (4.1.7). �

In the next two subsections, we present the proof of Theorem 55.
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4.1.1 Upper estimate

Towards the proof of the upper bound onHε

�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

in Theorem 55, let us

extend a result on the ε-entropy for a class of bounded total variation real-valued functions

in the scalar case [10] or in [26, Lemma 2.3]. In order to obtain a sharp upper bound, we

need to utilize the doubling dimension of the metric space E and go beyond the particular

cases in [10, 26] to estimate the ε-entropy for a more general case in E . More precisely,

considering a set of bounded total variation functions taking values in E , denoted by

F[L ,V ] =
n

f ∈ BV ([0, L ], E )
�

�

� T V ( f , [0, L ])≤V
o

, (4.1.8)

the following holds.

Proposition 58. For every 0< ε ≤
LV

2
sufficiently small, it holds that

Hε

�

F[L ,V ]

�

�

� L1([0, L ], E )
�

≤
�

3d+ log2(5e )
�

·
2LV

ε
+H ε

2L
.

Proof. The proof is divided into four steps.

1. Given two constants N1 ∈Z+ and h2 > 0, let us

• divide [0, L ] into N1 small intervals Ii with length h1 :=
L

N1
such that IN1−1 = [(N1−1)h1, L ]

and Ii = [i h1, (i +1)h1

�

for all i ∈ 0, N1−2 ;

• pick an optimal h2-covering A =
¦

a1, a2, . . . , aNh2

©

of E , i.e., E ⊆
⋃Nh2

i=1 Bρ(ai , h2) ,

where Nh2
is the h2-covering number of E (see Definition 2).

A function f ∈F[L ,V ] can be approximated by a piecewise constant function f ] : [0, L ]→ A

defined as: f ](s ) = a f ,i for all s ∈ Ii , i ∈ 0, N1−1 for some a f ,i ∈ A chosen such that

f (ti ) ∈ Bρ(a f ,i , h2)with ti :=
2i +1

2
h1. It is to be noted that the choice of a f ,i is not unique.

Figure 4.1 h2-covering of E
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With this construction, the L1-distance between f and f ] can be bounded above by

ρL1( f , f ]) ≤
N1−1
∑

i=0

∫

Ii

ρ( f (s ), f ] (s ))d s =
N1−1
∑

i=0

∫

Ii

ρ( f (s ), a f ,i )d s

≤
N1−1
∑

i=0

∫

Ii

�

ρ( f (s ), f (ti ))+ρ( f (ti ), a f ,i )
�

d s <
N1−1
∑

i=0

∫

Ii

�

ρ( f (s ), f (ti ))+h2

�

d s

≤

�

N1−1
∑

i=0

|Ii |
2
·
�

T V ( f , [i h1, ti ])+T V ( f , [ti , (i +1)h1])
�

�

+ Lh2

=
h1

2
·T V ( f , [0, L ])+ Lh2 ≤

LV

2N1
+ Lh2

and the total variation of f ] over [0, L ] can be estimated by

T V
�

f ], [0, L ]
�

=
N1−2
∑

i=0

ρ(a f ,i , a f ,i+1)

≤
N1−2
∑

i=0

�

ρ(a f ,i+1, f (ti+1))+ρ( f (ti ), a f ,i ) +ρ
�

f (ti+1

�

, f (ti ))
�

≤
N1−2
∑

i=0

�

2h2+ρ( f (ti+1) , f (ti ))
�

≤ 2(N1−1) ·h2+V .

We consider the following set of piecewise constant functions

F ]
[N1,h2]

=
¦

ϕ : [0, L ]→ A
�

�

� ϕ(s ) =ϕ(ti ) for all s ∈ Ii , i ∈ 0, N1−1

and T V (ϕ, [0, L ])≤ 2(N1−1) ·h2+V
©

.

The setF[L ,V ] is covered by a finite collection of closed balls centered atϕ ∈F ]
[N1,h2]

of radius
LV
2N1
+ Lh2 in L1([0, L ], E ), i.e.,

F[L ,V ] ⊆
⋃

ϕ∈F ][N1,h2]

B L1([0,L ],E )

�

ϕ,
LV

2N1
+ Lh2

�

and Definition 1 yields

H�

LV
2N1
+Lh2

�

�

F[L ,V ]

�

�

� L1([0, L ], E )
�

≤ log2 Card
�

F ]
[N1,h2]

�

. (4.1.9)

2. In order to provide an upper bound on Card
�

F ]
[N1,h2]

�

, we introduce a discrete metric
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ρ] : A×A→N associated to ρ as follows:

ρ](x , y ) :=



















0 if x = y ,

q +1 if
ρ(x , y )

h2
∈
�

q , q +1] for some q ∈N ,

(4.1.10)

for every x , y ∈ A.

Since A is an optimal h2-covering of E ,

Card
�

A
⋂

Bρ(a , r )
�

≤ Nh2

�

Bρ(a , r +h2)
�

�E
�

for all a ∈ A, r > 0

and the second inequality in (2.3.5) yields

Card
�

A
⋂

Bρ(a , r )
�

≤
�

2 ·
�

r

h2
+1

��d

.

Hence, for every `≥ 1 and x ∈ A, it holds that

Card
�

Bρ](x ,`−1)
�

= Card
�

{y ∈ A | ρ](x , y )≤ `−1}
�

= Card
�

A
⋂

Bρ (x , (`−1)h2)
�

≤ (2`)d. (4.1.11)

For any given f ] ∈F ]
[N1,h2]

, the following increasing step function ϕ f ] : [0, L ]→N defined by

ϕ f ](s ) =























0 for all s ∈ I0

i−1
∑

`=0

ρ]
�

f ](t`), f ](t`+1)
�

+ i −1 for all s ∈ Ii , i ∈ 1, N1−1

(4.1.12)

measures the total of jumps of f ] up to time ti . From (4.1.10), we have

sup
t ∈[0,L ]

�

�ϕ f ](t )
�

� ≤
N1−2
∑

`=0

ρ]
�

f ](t`), f ](t`+1)
�

+N1−2

≤
N1−2
∑

`=0

�

ρ( f ](t`), f ](t`+1))
h2

+1

�

+N1−2 ≤
T V ( f ], [0, L ])

h2
+2N1−3

≤
1

h2
· (2(N1−1) ·h2+V )+2N1−3 = 4N1−5+

V

h2
. (4.1.13)
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In particular, upon setting Γ[N1,h2] := 4N1−4+
�

V

h2

�

, a constant depending on N1 and h2, the

function ϕ f ] in (4.1.12) satisfies

ϕ f ](s ) = ϕ f ](ti ) ∈
�

0, 1, 2, . . . ,Γ[N1,h2]−1
	

for all s ∈ Ii , i ∈ 0, N1−1 .

Thus, if we consider the map T :F ]
[N1,h2]

→B ([0, L ], [0,+∞)) such that

T ( f ]) = ϕ f ] for all f ] ∈F ]
[N1,h2]

,

then

T
�

F ]
[N1,h2]

�

=
n

ϕ f ]

�

�

� f ] ∈F ]
[N1,h2]

o

⊆ I[N1,h2] .

Here, I[N1,h2] is the set of increasing step functions φ : [0, L ]→
�

0, 1, 2, . . . ,Γ[N1,h2]−1
	

such

that

φ(0) = 0 and φ(s ) = φ(ti ) for all i ∈ 0, N1−1, s ∈ Ii .

Card
�

T
�

F ]
[N1,h2]

��

≤ Card(I[N1,h2]) =

�

Γ[N1,h2]

N1−1

�

. (4.1.14)

3. To complete the proof, we need to establish an upper estimate on the cardinality of

T −1(ϕ f ]), the set of functions inF ]
[N1,h2]

that have the same total length of jumps as that of

f ] at any time ti . In order to do so, for any given f ] ∈F ]
[N1,h2]

, we set

k ]i := ρ]
�

f ](ti ), f ](ti+1)
�

for all i ∈ 0, N1−2 .

As in (4.1.13), we have
∑N1−2

i=0 k ]i =
N1−2
∑

i=0

ρ]
�

f ](ti ), f ](ti+1)
�

≤ 3(N1−1) +
V

h2
and

T −1(ϕ f ]) =
n

g ∈F ]
[N1,h2]

�

�

� ρ]
�

g (ti+1), g (ti )
�

= k ]i for all i ∈ 0, N1−2
o

⊆
n

g ∈F ]
[N1,h2]

�

�

� g (ti+1) ∈ Bρ]
�

g (ti ), k ]i
�

for all i ∈ 0, N1−2
o

.

Figure 4.2 Estimation of Card
�

T −1(ϕ f ] )
�
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We observe from (4.1.11) that if g (ti ) is already chosen then there are at most (2k ]i )
d choices

for g (ti+1). Since there are Nh2
choices of the starting point g (0), the cardinality of T −1(ϕ f ])

can be estimated as follows

Card
�

T −1(ϕ f ])
�

≤ Nh2
·ΠN1−2

i=0 (2k ]i )
d ≤ Nh2

·

�
∑N1−2

i=0 2k ]i
N1−1

�d(N1−1)

≤ Nh2
·

�

2
�

3(N1−1) + V
h2

�

N1−1

�d(N1−1)

= Nh2
·
�

6+
2

N1−1
·

V

h2

�d(N1−1)

. (4.1.15)

Recalling (4.1.14)-(4.1.15) and the classical Stirling’s approximation

(N1−1)! ≥
p

2π(N1−1) ·
�

N1−1

e

�N1−1

,

we estimate

Card
�

F ]
[N1,h2]

�

≤ Nh2
·
�

6+
2

N1−1
·

V

h2

�d(N1−1)

·
�

Γ[N1,h2]

N1−1

�

= Nh2
·
�

6+
2

N1−1
·

V

h2

�d(N1−1)

·

�

Γ[N1,h2]−N1+2
�

. . .Γ[N1,h2]

(N1−1)!

≤
Nh2

p

2π(N1−1)
·
�

6+
2

N1−1
·

V

h2

�d(N1−1)

·
�

Γ[N1,h2]

N1−1

�N1−1

· e N1−1

≤ Nh2
·
�

6+
2

N1−1
·

V

h2

�d(N1−1)

·
�

4e +
V

h2
·

e

N1−1

�(N1−1)

.

Thus, (4.1.9) yields

H�

LV
2N1
+Lh2

�

�

F[L ,V ]

�

�

� L1([0, L ], E )
�

≤ d · (N1−1) · log2

�

6+
V

h2
·

2

N1−1

�

+ (N1−1) · log2

�

4e +
V

h2
·

e

N1−1

�

+Hh2
. (4.1.16)

4. For every 0< ε ≤
LV

2
, by choosing N1 ∈Z+ and h2 > 0 such that

3LV

2ε
< N1−1 =

�

3LV

2ε

�

+1 ≤
2LV

ε
, h2 =

V

N1−1
,

we have LV
2N1
+ Lh2 ≤ LV

2N1
+ LV

N1−1 ≤
3LV

2(N1−1) < ε and h2 ≥ ε
2L .
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Thus, (4.1.16) implies that

Hε

�

F[L ,V ]

�

�

� L1([0, L ], E )
�

≤
�

3d+ log2(5e )
�

·
2LV

ε
+H ε

2L

and this completes the proof. �

Using Proposition 58, we now proceed to provide a proof for the upper estimate of the

ε-entropy for the setF Ψ[L ,V ] in L1([0, L ], E ).

Proof of the upper estimate in Theorem 55. From Lemma 19, we have

Hε

�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

= Hε

�

F̃ Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

(4.1.17)

with F̃ Ψ[L ,V ] =
n

f ∈F Ψ[L ,V ]

�

�

� f is continuous from the right on the interval [0, L )
o

. Thus, it is

sufficient to prove the second inequality in (4.1.2) for F̃ Ψ[L ,V ] instead ofF Ψ[L ,V ].

1. For a fixed constant h > 0 and f ∈ F̃ Ψ[L ,V ], let A f ,h =
�

x0, x1, x2, ..., xNf ,h

	

be a partition of

[0, L ]which is defined by induction as follows:

x0 = 0, xi+1 = sup
�

x ∈ (xi , L )
�

� ρ( f (y ), f (xi )) ∈ [0, h ] for all y ∈ (xi , x ]
	

(4.1.18)

for all i ∈ 0, Nf ,h −1. Since f is continuous from the right on [0, L ), it holds that

ρ( f (xi ), f (xi+1)) ≥ h for all i ∈ 0, Nf ,h −2.

Thus, the increasing property of Ψ implies that

V ≥ T V Ψ( f , [0, L ]) ≥
Nf ,h−2
∑

i=0

Ψ
�

ρ( f (xi ), f (xi+1))
�

≥ (Nf ,h −1) ·Ψ(h )

and this yields

Nf ,h −1 ≤
T V Ψ( f , [0, L ])

Ψ(h )
≤

V

Ψ(h )
< +∞ . (4.1.19)

2. We introduce a piecewise constant function fh : [0, L ]→ E such that

fh (x ) =















f (xi ) for all x ∈ [xi , xi+1) , i ∈ 0, Nf ,h −2

f
�

xNf ,h−1

�

for all x ∈
�

xNf ,h−1, L ] .
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From (4.1.18), the L1-distance between fh and f is bounded by

ρL1( fh , f ) =

∫

[0,L ]

ρ( fh (x ), f (x ))d x =
Nf ,h−1
∑

i=0

∫

[xi ,xi+1)

ρ( f (xi ), f (x ))d x

≤ h ·
Nf ,h−1
∑

i=0

(xi+1− xi ) = Lh . (4.1.20)

On the other hand, by the convexity of Ψ we have

V ≥
Nf ,h−2
∑

i=0

Ψ
�

ρ( f (xi ), f (xi+1))
�

≥
�

Nf ,h −1
�

·Ψ

 

1

Nf ,h −1
·

Nf ,h−2
∑

i=0

ρ( f (xi ), f (xi+1))

!

=
�

Nf ,h −1
�

·Ψ
�

T V ( fh , [0, L ))
Nf ,h −1

�

and the strictly increasing property of Ψ−1 implies

T V ( fh , [0, L )) ≤ (Nf ,h −1) ·Ψ−1

�

V

Nf ,h −1

�

.

From Remark 20 and (4.1.19), it holds that

Ψ−1

�

V

Nf ,h −1

�

·
Nf ,h −1

V
≤ Ψ−1 (Ψ(h )) ·

1

Ψ(h )
=

h

Ψ(h )

and this yields

T V ( fh , [0, L ]) ≤
h

Ψ(h )
·V =: Vh .

From (4.1.20) and (4.1.8), the set F̃ Ψ[L ,V ] is covered by a collection of closed balls centered at

g ∈F[L ,Vh ] of radius Lh in L1([0, L ], E ), i.e.,

F̃ Ψ[L ,V ] ⊆
⋃

g∈F[L ,Vh ]

B L1([0,L ],E )(g , Lh ) .

Figure 4.3 Lh-covering of F̃Ψ[L ,V ] with balls centered at g ∈F[L ,Vh ]
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In particular, for every ε > 0, choosing h = ε
2L we have

V ε
2L
=

εV

2L ·Ψ
�

ε
2L

� and F̃ Ψ[L ,V ] ⊆
⋃

g∈F�

L ,V ε
2L

�

B L1([0,L ],E )

�

g ,
ε

2

�

and this implies

Hε

�

F̃ Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

≤ H ε
2

�

Fh

L ,V ε
2L

i

�

�

� L1([0, L ], E )
�

. (4.1.21)

If 0< ε ≤ 2LΨ−1
�

V

4

�

then ε ≤ ε · V

4·Ψ
� ε

2L

� = L
2 ·

εV

2L ·Ψ
� ε

2L

� = L
2 ·V ε

2L
.

In this case, we can apply Proposition 58 to get

H ε
2

�

Fh

L ,V ε
2L

i

�

�

� L1([0, L ], E )
�

≤
�

3d+ log2(5e )
�

·
4LV ε

2L

ε
+H ε

4L

=
�

3d+ log2(5e )
�

·
2V

Ψ
�

ε
2L

� +H ε
4L

and thereafter, we use (4.1.17), (4.1.21) to obtain the second inequality in (4.1.2). �

4.1.2 Lower estimate

To prove the first inequality in Theorem 55, let us provide a lower estimate on the ε-entropy

in L1([0, L ], E ) to

G Ψ[L ,V ,h ,x ] :=
n

g : [0, L ]→ Bρ(x , h )
�

�

� T V Ψ(g , [0, L ])≤V
o

, (4.1.22)

a class of bounded Ψ-total variation functions over [0, L ] taking values in the ball centered

at a point x ∈ E of radius h > 0.

Lemma 59. Assume that p≥ 1. For every ε > 0, it holds that

Mε

�

G Ψ[L ,V ,2(4+2/p)· εL ,x ]

�

�

� L1([0, L ], E )
�

≥ 2
pV

2Ψ(2(4+2/p) · 2εL ) (4.1.23)

where p= log7(2) ·p.

Proof. The proof is divided into two steps.
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1. First we recall from (2.3.6) that

M2−(2+2/p)·h (Bρ(x , h )|E ) ≥
�

h

2 ·2−(2+2/p) ·h

�p

= 2p+2 for all h > 0 .

Given two constants h > 0 and N1 ∈Z+, let us

• divide [0, L ] into N1 small mutually disjoint intervals Ii with length h1 =
L

N1
as in

Proposition 58;

• take a
�

2−(2+2/p) ·h
�

−packing Ah = {a1, a2, . . . , a2p+2} of Bρ(x , h ), i.e.,

Ah ⊆ Bρ(x , h ) and ρ(ai , a j ) > 2−(2+2/p) ·h

for all ai 6= a j ∈ Ah .

Considering the set of indices

∆h ,N1
=
¦

δ= (δi )i∈{0,1, ··· , N1−1}

�

�

� δi ∈ Ah

©

we define a class of piecewise constant functions on [0, L ] as

Gh ,N1
=

¨

gδ =
N1−1
∑

i=0

δi ·χIi

�

�

� δ ∈∆h ,N1

«

.

For anyδ ∈∆h ,N1
, theΨ-total variation of gδ is bounded by T V Ψ (gδ, [0, L ]) ≤ (N1−1)·Ψ(2h ) .

Hence, under the following condition on h and V given by

(N1−1) ·Ψ(2h ) ≤ V , (4.1.24)

the definition of G Ψ[L ,V ,h ,x ] in (4.1.22) implies that gδ ∈G Ψ[L ,V ,h ,x ] for every δ ∈∆h ,N1
and thus

Gh ,N1
⊆ G Ψ[L ,V ,h ,x ] .

In particular, we get

Mε

�

G Ψ[L ,V ,h ,x ]

�

� L1([0, L ], E )
�

≥ Mε

�

Gh ,N1

�

� L1([0, L ], E )
�

for all ε > 0 . (4.1.25)

2. Let us provide a lower bound on the ε-packing numberMε

�

Gh ,N1

�

� L1([0, L ], E )
�

. For any

77



given δ, δ̃ ∈∆h ,N1
and ε > 0, we define

Iδ̃(2ε) =
¦

δ ∈∆h ,N1

�

�

� ρL1(gδ, g δ̃)≤ 2ε
©

, η(δ, δ̃) = Card
��

i ∈ 0, N1−1
�

� δi 6= δ̃i

	�

.

The L1-distance between gδ and g δ̃ is bounded below by

ρL1(gδ, g δ̃) =
N1−1
∑

i=0

∫

Ii

ρ(gδ(t ), g δ̃(t ))d t =
N1−1
∑

i=0

ρ(δi , δ̃i ) · |Ii |

=
L

N1
·

N1−1
∑

i=0

ρ(δi , δ̃i ) > 2−(2+2/p) ·
Lh

N1
·η(δ, δ̃)

and this implies the inclusion

Iδ̃(2ε) ⊆
�

δ ∈∆h ,N1

�

�

� η(δ, δ̃)<
23+2/pN1ε

Lh

�

. (4.1.26)

On the other hand, for every r ∈ 0, N1−1, we compute

Card
�
¦

δ ∈∆h ,N1

�

�

� η(δ, δ̃) = r
©
�

=

�

N1

r

�

·
�

2p+2−1
�r

.

Thus, (4.1.26) implies that

Card (Iδ̃(2ε)) ≤ Card

�

¦

δ ∈∆h ,N1

�

�

� η(δ, δ̃)<
23+2/pN1ε

Lh

©

�

≤

�

23+2/pN1ε
Lh

�

∑

r=0

�

N1

r

�

·
�

2p+2−1
�r

.

In particular, for every 0< ε ≤ 2−(4+2/p)Lh , we have

Card (Iδ̃(2ε)) ≤

�

N1
2

�

∑

r=0

�

N1

r

�

·
�

2p+2−1
�r ≤

�

2p+2−1
�

N1
2 ·

�

N1
2

�

∑

r=0

�

N1

r

�

≤ 2(p+2)N1
2 ·2N1 = 2N1(2+p/2) . (4.1.27)

Recalling Definition 2, we then obtain

Mε

�

Gh ,N1

�

� L1([0, L ], E )
�

≥
Card

�

Gh ,N1

�

Card (Iδ̃(2ε))
≥

2N1(p+2)

2N1(2+p/2)
= 2N1p/2 .

Finally, by choosing h = 2(4+2/p) ·
ε

L
and N1 =

�

V

Ψ(2(4+2/p) · 2ε
L )

�

+1 such that (4.1.24) holds, we
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derive

Mε

�

G2(4+2/p)· εL ,N1

�

� L1([0, L ], E )
�

≥ 2
pV

2Ψ(2(4+2/p) · 2εL )

and thereafter, (4.1.25) yields (4.1.23). �

We conclude this section by proving the first inequality in (4.1.2).

Proof of the lower bound in Theorem 55. For any 0 < 2h < h2, let {x1, x2, . . . , xMh2
} ⊆ E

be an h2-packing of E with size Mh2
, i.e.,

Bρ

�

xi ,
h2

2

�

⋂

Bρ

�

x j ,
h2

2

�

= ; for all i 6= j ∈ 1, Mh2
.

Recalling the definition of G Ψ[L ,V ,h ,x ] in (4.1.22), we have

ρL1( fi , f j ) ≥
∫

[0,L ]

�

ρ(xi , x j )−ρ(xi , fi (s ))−ρ(x j , f j (s ))
�

d s ≥ L · (h2−2h ) =: Lh ,h2

for any fi ∈G Ψ[L ,V ,h ,xi ]
and f j ∈G Ψ[L ,V ,h ,x j ]

with i 6= j ∈ 1, Mh2
.

Figure 4.4 h2-packing of E

Thus, Lemma 3 implies that

N Lh ,h2
2

�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

≥ MLh ,h2

�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

≥ MLh ,h2

�Mh2
⋃

i=1

G Ψ[L ,V ,h ,xi ]

�

�

� L1([0, L ], E )

�

=
Mh2
∑

i=1

MLh ,h2

�

G Ψ[L ,V ,h ,xi ]

�

�

� L1([0, L ], E )
�

.

We consider the following two cases.
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• If p= 0 then by choosing h =
ε

L
and h2 =

4ε

L
such that Lh ,h2

= 2ε, we have

Nε
�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

≥ M 4ε
L

and this particularly implies the first inequality in (4.1.2).

• Otherwise if p≥ 1, then for any ε > 0, choosing h = 2(5+2/p) ·
ε

L
and h2 =

�

2+2(6+2/p)
�

·
ε

L
with p= log7(2) ·p such that Lh ,h2

= 2ε, we can apply (4.1.23) to G Ψ[L ,V ,h ,xi ]
for every i ∈ 1, Mh2

to obtain

Nε
�

F Ψ[L ,V ]

�

�

� L1([0, L ], E )
�

≥

M(2+2(6+2/p))· εL
∑

i=1

M2ε

�

G Ψ[L ,V ,2(4+2/p)· 2εL ,xi ]

�

�

� L1([0, L ], E )
�

≥ M(2+2(6+2/p))· εL ·2
pV

2Ψ(2(6+2/p) · εL ) ≥ M 258ε
L
·2

pV

2Ψ( 256ε
L )

and this yields the first inequality in (4.1.2).

�

4.2 Application to scalar conservation law

In this section, we use Theorem 55 and [41, Theorem 1] to establish an upper bound on

the ε-entropy of a set of entropy admissible weak solutions for a scalar conservation law in

one-dimensional space

ut (t , x ) + f (u (t , x ))x = 0 for all (t , x ) ∈ (0,+∞)×R (4.2.1)

with weakly genuinely nonlinear flux f ∈C 2(R), i.e., which is not affine on any open interval

such that the set

{u ∈R | f ′′(u ) 6= 0} is dense in R. (4.2.2)

We recall that the equation (4.2.1) does not possess classical solutions since discontinuities

arise in finite time even if the initial data are smooth. Hence, it is natural to consider weak

solutions in the sense of distributions that, for the sake of uniqueness, satisfy an entropy

admissibility criterion ([22, 34]) equivalent to the celebrated Oleinik E-condition ([44])

which generalizes the classical stability conditions mentioned in Section 2.6 that were

introduced by Lax ([36]). This condition is stated as follows.

Oleinik E-condition: A shock discontinuity located at x and connecting a left state
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u L := u (t , x−)with a right state u R := u (t , x+) is entropy admissible if and only if it holds that

f (u L )− f (u )
u L −u

≥
f (u R )− f (u )

u R −u

for every u between u L and u R , where u (t , x±) denote the one-sided limits of u (t , ·) at x .

It is well-known that the equation (4.2.1) generates an L1-contractive semigroup of solutions

(St )t≥0 that associates, to every given initial data u0 ∈ L1(R)∩L∞(R), the unique entropy

admissible weak solution St u0 := u (t , ·) of the corresponding Cauchy problem (cfr. [22, 34]).

For any given T , L , M > 0, we provide an upper bound forHε

�

ST (U[L ,M ])
�

�L1(R)
�

with

U[L ,M ] :=
¦

u0 ∈ L∞(R)
�

� Supp (u0)⊂ [−L , L ] , ‖u0‖L∞(R) ≤M
©

,

the set of bounded, compactly supported initial data.

By monotonicity of the solution operator St and recalling that St u0 can be obtained as a

limit of piecewise constant front tracking approximations ([16, Chapter 6]), it was shown in

[8, Lemma 2.2] that

Lemma 60. For every L , M , T > 0 and u0 ∈U[L ,M ], it holds that





ST u0







L∞(R) ≤ M and Supp(ST u0) ⊆
�

− `[L ,M ,T ], `[L ,M ,T ]

�

where `[L ,M ,T ] := L +T · f ′M and f ′M := sup|v |≤M | f ′(v )| .

Let us introduce the function d : [0,+∞)→ [0,+∞) such that

d(h ) = min
a∈[−M ,M−h ]

�

inf
g∈A[a ,a+h ]

‖ f − g ‖L∞([a ,a+h ])

�

withA[a ,a+h ] being the set of affine functions defined on [a , a +h ]. The convex envelop Φ

of d is defined by

Φ = sup
ϕ∈G
ϕ with G := {ϕ : [0,+∞)→ [0,+∞) | ϕ is convex, ϕ(0) = 0, ϕ ≤ d}.

The following function

Ψ(x ) :=Φ(x/2) · x for all x ∈ [0+∞)

is convex and satisfies the condition (2.5.4). As a consequence of [41, Theorem 1], the

following holds.
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Lemma 61. For any u0 ∈U[L ,M ], the function ST u0 has bounded Ψ-total variation on R and

T V Ψ(ST u0,R) ≤ γ[L ,M ,T ] := γ[L ,M ]

�

1+
1

T

�

where γ[L ,M ] is a constant depending only on L , M and f .

Recalling Corollary 57 for d = 1 that for every 0< ε ≤ 2LΨ−1
�

V

4

�

Hε

�

F Ψ[L ,M ,V ]

�

�

� L1([0, L ],R)
�

≤
�

3 log2 5+ log2(5e )
�

·
2V

Ψ
�

ε
2L

� + log2

�

8LM

ε
+1

�

, (4.2.3)

we prove the following.

Theorem 62. Assume that f ∈C 2(R) satisfies (4.2.2). Then, for any constants L , M , T > 0,

Hε

�

ST (U[L ,M ])
�

�

�L1(R)
�

≤ log2

�

16M (L +T · f ′M )
ε

+1

�

+2
�

3 log2 5+ log2(5e )
�

·
γ[L ,M ]

�

1+ 1
T

�

Ψ
�

ε
4L+4T · f ′M

�

for every ε > 0 sufficiently small.

Proof. Let us define the following set

S̃T (U[L ,M ]) :=
¦

v :
�

0, 2`[L ,M ,T ]

�

→ [−M , M ]
�

�

� ∃ u0 ∈U[L ,M ] such that

v (x ) = ST u0

�

x − `[L ,M ,T ]

�

for all x ∈
�

0, 2`[L ,M ,T ]

�

©

.

From Lemma 60 and Lemma 61, it holds that

Hε

�

ST (U[L ,M ])
�

�

� L1(R)
�

= Hε

�

S̃T (U[L ,M ])
�

�

� L1
��

0, 2`[L ,M ,T ]

�

, R
�

�

(4.2.4)

and

S̃T (U[L ,M ]) ⊆ F Ψ[2`[L ,M ,T ],M ,γ[L ,M ,T ]]

where

F Ψ[2`[L ,M ,T ],M ,γ[L ,M ,T ]] =
¦

g ∈ BV Ψ
�

�

0, 2`[L ,M ,T ]

�

, [−M , M ]
�
�

� T V Ψ(g , [0, 2`[L ,M ,T ]])≤ γ[L ,M ,T ]

©
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is defined as in Corollary 57. By (4.2.3) and (4.2.4), we obtain

Hε

�

ST (U[L ,M ])
�

�

� L1(R)
�

=Hε

�

S̃T (U[L ,M ])
�

�

� L1
��

0, 2`[L ,M ,T ]

�

,R
�

�

≤ Hε

�

F Ψ[2`[L ,M ,T ],M ,γ[L ,M ,T ]]

�

�

� L1
��

0, 2`[L ,M ,T ]

�

,R
�

�

≤
�

3 log2 5+ log2(5e )
�

·
2γ[L ,M ,T ]

Ψ
�

ε
4`[L ,M ,T ]

� + log2

�

16M `[L ,M ,T ]

ε
+1

�

.

This completes the proof.

�

Remark 63. In general, the upper estimate ofHε

�

ST (U[L ,M ])
�

�

� L1(R)
�

in Theorem 62 is not

optimal.

To complete our work on the topic explored this section, let us consider (4.2.1) with a

smooth flux f having polynomial degeneracy, i.e., the set I f = {u ∈R | f ′′(u ) = 0} is finite

and for each w ∈ I f , there exists a natural number p ≥ 2 such that

f ( j )(w ) = 0 for all j ∈ 2, p and f (p+1)(w ) 6= 0.

For every w ∈ I f , let pw be the minimal p ≥ 2 such that f (p+1)(w ) 6= 0. The polynomial

degeneracy of f is defined by

pf := max
w∈I f

pw .

Recalling [41, Theorem 3], we have that ST u0 ∈ BV
1

pf (R,R) and

T V
1

pf (ST u0,R) ≤ γ̃[L ,M ]

�

1+
1

T

�

= γ̃[L ,M ,T ]

for a constant γ̃[L ,M ] depending only on L , M and f . This yields

S̃T (U[L ,M ]) ⊆ F
pf

[2`[L ,M ,T ],M ,γ̃[L ,M ,T ]] ,

where the set

F pf

[2`[L ,M ,T ],M ,γ̃[L ,M ,T ]] =
n

g ∈ BV
1

pf
��

0, 2`[L ,M ,T ]

�

, [−M , M ]
�

�

�

� T V
1

pf (g , [0, L ])≤ γ̃[L ,M ,T ]

o

is defined as in (4.1.4). Using (4.2.3) we directly obtain an extended result on the upper esti-

mate of the ε-entropy of solutions in [8, Theorem 1.5] for general fluxes having polynomial

degeneracy.
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Proposition 64. Assume that f is smooth, having polynomial degeneracy pf . Then, given

the constants L , M , T > 0, for every ε > 0 sufficiently small, it holds that

Hε

�

ST (U[L ,M ])
�

�

� L1(R)
�

≤
Γ[T ,L ,M , f ]

εpf
+ log2

�

16(L +T f ′M )M
ε

+1

�

,

where

Γ[T ,L ,M , f ] = 22pf +1
�

3 log2 5+ log2(5e )
�

γ̃[L ,M ]

�

L +T · f ′M
�pf

�

1+
1

T

�

.

Remark 65. The above estimate is sharp in this special case. Indeed, we may exactly follow

the same argument as in the proof of [8, Theorem 1.5] to show that

Hε

�

ST (U[L ,M ])
�

�

� L1(R)
�

≥ ΛT ,L ,M , f ·
1

εpf
,

where ΛT ,L ,M , f > 0 is a constant depending on L , M , T and f . Hence,Hε

�

ST (U[L ,M ])
�

�

� L1(R)
�

is of the order 1
ε

pf .
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