
ABSTRACT

COLEBANK, MITCHEL JONATHAN. Computational Modeling of Patient Specific Pulmonary
Hemodynamics. (Under the direction of Mette S. Olufsen.)

Pulmonary hypertension (PH), defined by an elevated blood pressure in the vasculature within

the lungs, is a debilitating disease diagnosed months to years after onset. Under normotensive con-

ditions, the pulmonary vasculature is a system of compliant, deformable blood vessels, transporting

blood under a relatively low pressure magnitude. In PH, both the structure and function of the

pulmonary vasculature are compromised, causing network-level vascular remodeling. Diagnosis of

this disease requires both morphometric imaging and invasive heart catheterization; however, a

tool for integrating the two modalities is lacking.

Computational hemodynamics are emerging as a non-invasive tool for determining the pro-

gression of cardiovascular disease, but are underutilized in the pulmonary circulation. To address

this deficiency, this thesis develops a framework for integrating patient-specific imaging data with

a one-dimensional fluid dynamics model of the pulmonary arterial tree. A combination of image

segmentation and novel network extraction algorithms convert the vasculature into a labeled, ge-

ometric tree fully determined by vessel length and radii and a network connectivity matrix. This

is utilized as a pipeline for simulating patient-specific hemodynamics in expansive pulmonary

vascular trees.

In order to determine patient-specific physiomarkers, the model is inspecting using local and

global sensitivity analyses and uncertainty quantification. Hemodynamic data from the clinic are

sparse, making it crucial that an identifiable and influential parameter subset is first established.

These techniques are applied to normotensive and PH mice, and model parameters that paral-

lel clinical indicators of disease progression are inferred. In PH, parameters describing vascular

stiffness increase while those describing pulmonary artery compliance decrease, consistent with

physiological intuition.

Lastly, this study innovates on the existing 1D model to simulate hemodynamics in chronic

thromboembolic pulmonary hypertension (CTEPH). This PH subgroup is characterized by recurrent

pulmonary emboli that impede flow to the alveoli, and constitutes the only curable form of PH.

Successful treatment of the disease requires patient-dependent surgical intervention, and provides

an avenue for integrating image data with computational treatment planning. This work models two

distinctive types of CTEPH lesions, ring- and web-like lesions, to predict hemodynamics with disease

worsening. The model predicts wave propagation and wave reflections in the pulmonary arteries, and

constructs a new, quantitative index for perfusion heterogeneity in the lung. Finally, improvement

in hemodynamic predictions after simulated treatment by balloon pulmonary angioplasty are

presented, laying the foundation for a new computational treatment planning framework for CTEPH

patients.
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CHAPTER

1

INTRODUCTION

Cardiovascular disease is the leading cause of death in the western world, and is expected to account

for approximately 22.2 millions deaths by 2030 [247]. The total financial burden of cardiovascular

disease in the United States from 2014-15 is estimated at $351.2 billion [247]. This disease com-

promises the structure and function of the cardiovascular system, an intricate network of blood

vessels that transport blood and nutrients to all major organs. The interaction between the vascular

structure and function makes it critical that both are integrated in clinical diagnosis. Current med-

ical technologies analyze the two separately, leaving an opening for new synergistic approaches

including data assimilation and mathematical modeling.

Contributing to cardiovascular mortality is pulmonary hypertension (PH), a serious and pro-

gressive disease that affects the circulation within the lungs. The disease is underreported, with

increasing incidence rates especially for patients with PH due to heart or lung disease. Approximately

5-10% of individuals age 65 and older are suspected to suffer from PH [96]. High PH mortality rate is

linked to late diagnosis, with patients diagnosed around 14 months after disease onset [76]. The

disease has five subgroups, only one of which (chronic thromboembolic pulmonary hypertension,

CTEPH) is curable, but successful treatment requires patient-specific surgical planning [177]. The

common phenotype for all five groups is increased pulmonary vascular stiffness and resistance, and

decreased compliance. These metrics are approximated from hemodynamic data but cannot be

directly inferred in-vivo, encouraging new clinical measures to assess disease severity. In particu-

lar, the inability to link in-vivo biomarkers to hemodynamic observations encourages the use of

patient-specific, image-based, computational modeling.

Patient-specific modeling is an evolving technique for understanding cardiovascular disease.

One of the first patient-specific modeling approaches was by Taylor [236], who constructed a 3D
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finite element cardiovascular model, predicting systemic circulation hemodynamics. Since then,

several image-to-hemodynamics softwares have been developed. Taylor’s initial ideas developed

into HeartFlow© (Redwood City, CA), an FDA approved treatment planning tool for coronary artery

disease [207]. Similar software has been developed by Stanford University’s Alison Marsden (SimVas-

cular, [129]) as well as University of Michigan’s Alberto Figueroa (CRIMSON, [13]), which all integrate

patient-specific imaging data to construct hemodynamic predictions. However, only SimVascular

has used their platform to understand pulmonary vascular disease and PH [266], and none of these

platforms have attempted to model hemodynamic improvement in CTEPH patients post-surgery.

To address these deficiencies, this dissertation is broken into five main aims: (1) to develop an

image analysis pipeline that generates a labeled graph representing the pulmonary arterial tree; (2)

develop a 1D computational hemodynamics model that predicts large artery fluid dynamics in the

imaged geometry coupled to small vessels models that predict dynamics down to the arteriolar level;

(3) infer physiological parameter estimators and distributions using hemodynamic data measured

under normotensive and PH conditions; (4) determine model sensitivity and quantify uncertainty

in model parameters and the model output; and (5) advance the 1D framework to predict lesion-

induced energy losses and improvements in lung perfusion after simulated balloon pulmonary

angioplasty (BPA). The first two aims are imperative for patient-specific pulmonary hemodynamics

modeling, while aims (3) and (4) corroborate model parameters with clinical knowledge, testing the

model’s robustness to uncertainty. The final aim utilizes the prior results to construct a computa-

tional tool for treatment planning in CTEPH.

Results from this work have been published in eight manuscripts [35, 45, 46, 174, 175, 186, 190,

191], of which Colebank is the first author of two. Three other manuscripts have been submitted, on

which Colebank is a first author [47], joint first author manuscript [48], and contributing author [20].

This thesis includes three of the articles [45–47], constituting Chapters 7, 8, and 9. In addition, the

author has contributed to seven other published manuscripts, two submitted manuscripts, and has

one manuscript in preparation.

1.1 Summary of the dissertation

This dissertation consists of 10 chapters, outlining the relevant physiological, statistical, and mathe-

matical knowledge to address the aformentioned aims. The latter chapters constitute three manuscripts

(two published, and one submitted for review) using a 1D fluid dynamics model to understand PH.

The proceeding chapters are organized as follows:

• Chapter 2 describes the cardiovascular system, pulmonary circulation, pulmonary hyperten-

sion, and the available data.

• Chapter 3 introduces the image analysis techniques for building labeled graphs from vascular

images.

• Chapter 4 derives the 1D model fluid dynamic equations. Small vessel hemodynamics models,
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including the Windkessel and structured tree models, are described. The boundary conditions

for the large vessel network model and the numerical scheme for predicting large vessel

hemodynamics are detailed. Finally, a summary of methods for analyzing pulse wave intensity,

separating waves into incident and refelected is provided. New contributions include new

energy-loss models for vascular lesions and a radius-hematocrit viscosity model.

• Chapter 5 provides an overview of frequentist and Bayesian techniques for model analysis.

Sensitivity analyses and parameter identifiability are assessed using both local and global

techniques. A description of parameter inference and uncertainty quantification using both

frequentist and Bayesian techniques follows. Lastly, I give an example of a non-identifiable

1D model and provide a new, scaling factor approach for parameter inference.

• Chapter 6 overviews the simulations and physiological questions driving the proceeding three

chapters.

• Chapter 7 includes the published manuscript “Sensitivity analysis and uncertainty quantifi-

cation of 1-D models of pulmonary hemodynamics in mice under control and hypertensive

conditions" by Colebank, Qureshi, and Olufsen. The study performs local and global sen-

sitivity analyses on the 1D model in three networks of increasing complexity. Networks are

constructed from noromtensive and PH mice. Identifiable parameters are inferred in all three

networks using both noromtensive and PH hemodynamic data.

• Chapter 8 includes the published manuscript “Influence of image segmentation on one-

dimensional fluid dynamics predictions in the mouse pulmonary arteries" by Colebank, Paun,

Qureshi, Chesler, Husmeier, Olufsen, and Ellwein-Fix. The study investigates the uncertainty

in image segmentation using a single micro-CT image from a normotensive mouse. The

uncertainty in vascular geometry (length and radius) and network connectivity are quantified

from 25 semented geometries. These uncertainties are propagated to 1D hemodynamic

predictions.

• Chapter 9 includes the submitted manuscript “A multiscale model of vascular function in

chronic thromboembolic pulmonary hypertension," by Colebank, Qureshi, Rajagopal, Kra-

suski, and Olufsen. The study constructs a multiscale human model and simulates normoten-

sion and four CTEPH disease scenarios. Large vessel geometry is derived from a normotensive

CT image and small vessel hemodynamics are predicted in the structured tree. Two energy-

loss models are introduced in the large vessels and used to predict perfusion defects in the

lung tissue. Improvements in hemodynamics and lung perfusion after simulated balloon

pulmonary angioplasty are investigated.

• Chapter 10 summarizes the outcomes of the thesis and discusses future work.
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CHAPTER

2

CARDIOVASCULAR PHYSIOLOGY

This chapter gives an overview of pulmonary physiology and pathological changes due to pulmonary

hypertension. Section 2.1 gives a brief overview of the vasculature. Sections 2.2 and 2.3 give a detailed

description of the pulmonary circulation and the pulmonary vascular wall. Section 2.4 defines

pulmonary hypertension. Sections 2.5 and 2.6 describe diagnostic tools and treatment strategies for

pulmonary hypertension.

2.1 The vasculature

The cardiovascular system, depicted in Figure 2.1a, consists of the heart and the systemic and

pulmonary circulations. The systemic circulation transports oxygenated blood from the left heart to

the major organs, including the brain, kidneys, stomach, and heart tissue [101]. The systemic veins

transport deoxygenated blood from the organs back to the right heart, which ejects deoxygenated

blood into the pulmonary arteries. Deoxygenated blood flows to the capillaries at the lung alveoli,

exchanges carbon dioxide for oxygen, and flows to the pulmonary veins and left heart.

As shown in Figure 2.1b, both circulations begin at the heart, consisting of four chambers

including two atria and two ventricles. There are four heart vales: two atrioventricular(the tricuspid

and mitral valves) and two semi-lunar (the pulmonary and aortic valves). The atrioventricular valves

provide an interface between the atria and ventricles and the semi-lunar valves provide a boundary

between the right (RV) and left (LV) ventricles and the main pulmonary artery (MPA) and the aorta.

Flow through the valves is dictated by pressure gradients. Valves open when the proximal pressure

exceeds the distal pressure. This ensures that blood flows from the atria to the ventricles and from

the ventricles to the systemic and pulmonary arteries.
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Figure 2.1 (a) Diagram of the vascular system including the systemic circulation, the major organs, and
the pulmonary circulation. (b) Schematic of the four heart chambers, the four heart valves, and the large
arteries and veins directly connected to them. Reproduced and modified from [23]with permission.

The heart operates as a nearly periodic pump, as shown in Figure 2.2, beginning with atrial

contraction that forces blood into the ventricles. Pacemaker cells initiate ventricular isovolumic

contraction, shutting both sets of valves and elevating ventricular pressure. Once ventricular pres-

sure exceeds aortic and MPA pressure, the semi-lunar valves open and blood is ejected into the

vasculature. Systemic and pulmonary arterial pressure increase, eventually exceeding ventricular

pressure. Once ventricular pressure and the inertial forces outside the valve are overcome, the

semi-lunar valves shut. The brief period when both valves are shut but ventricular pressure de-

creases is called isovolumic relaxation. After ventricular pressure falls below the venous pressure,

the atrioventricular valves open, and passive ventricular filling begins. The ventricle continues to fill

until the pacemaker cells in the atrioventricular node initiate atrial contraction. The period between

subsequent ventricular contractions is called the cardiac cycle. The two components of the cycle are

systole, when the ventricles contract, and diastole, when the ventricles relax and fill with blood.

The left ventricle ejects blood through the aortic valve into the aorta and systemic arteries during

systole. The ascending aorta then branches into the subclavian and carotid arteries; the former

carries blood to the head, neck, shoulders, and arms while the latter carries blood to the cerebral

circulation in the brain. The aortic arch and thoracic aorta continue to the liver, stomach and

intestines, and lower extremities. Systemic arterial diameters range from 1-30 mm, and function

under a high pressure magnitude, with systolic and diastolic pressures on the order of 130-95 mmHg

and 85-75 mmHg, respectively [28].
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Figure 2.2 (A) Pressure and volume dynamics in the right heart. The right ventricle contracts after the right
atrium, leading to a systolic pressure of ≈ 30 mmHg and the opening of the pulmonary valve. Pulmonary
artery pressure rises and then decays to 10 mmHg. (B) Pressure and volume dynamics in the left heart. Left
ventricle systole raises pressure to ≈ 125 mmHg before the aortic valve opens. Aortic systolic and diastolic
pressures are on he order of 120 mmHg and 80 mmHg. Reproduced from [28].

At each arterial junction, individual vessel radii decrease but total cross-sectional area (the sum

of the daughter branches) increases. The aorta has the largest diameter (24 mm) while small arteries

and arterioles have diameters on the order 1 mm and 30µm. In contrast, the aggregated cross-

sectional area of the aorta is 4 cm2, while for the small arteries and arterioles it is 63 cm2 and 141 cm2

[28]. Arterioles are resistance vessels, providing the largest drop in mean systemic arterial pressure

from approximately 95 mmHg in the large arteries to 60 mmHg in the arterioles [28]. The arterioles

link systemic capillary beds within organs and tissues. In contrast to the tree-like branching of the

arteries and arterioles, the systemic capillaries form a mesh and provide an expansive interface

for gas and nutrient exchange in the tissues and organs. Capillaries empty into the systemic veins,

similar in morphometry to the arteries. Veins converge until reaching the superior and inferior vena

cava, which drain into the right atrium.
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Table 2.1 Typical values in the systemic and pulmonary vasculature. Combined from [28] and [157]. Pres-
sure values are listed as maximum/minimum/mean.

Vessel Pressure (mmHg) Volume (mL)

Systemic
Arteries 120/80/95 300

Arterioles −/− /65 400
Capillaries 35/15/25 300

Venules −/− /15 2300
Veins 15/3/7 900

Pulmonary
Arteries 25/8/15 130

Arterioles 18/8/11
Capillaries −/− /7 110

Venules −/− /5
Veins −/− /3 200

2.2 Pulmonary circulation

The pulmonary circulation is a rapidly branching system of vessels that function under a lower

pressure than the systemic arteries. The system emanates from the RV, which pumps blood into

the MPA and the left and right lung via the left and right pulmonary arteries (LPA and RPA). The

branching structure of the system promotes a match between alveolar blood flow and oxygen

ventilation [237]. De-oxygenated blood is delivered to the alveoli to be replenished with oxygen

before returning to the LA and the systemic circulation [177]. The pulmonary circulation provides an

expansive area where blood can pass by the alveoli. The high pulmonary artery compliance keeps

pulmonary vascular resistance (PVR) low, even with exercise. A comparison of the pressure and

volume values between the systemic and pulmonary circulations are given in Table 2.1.

2.2.1 Pulmonary arteries and arterioles

Morphometry. As noted above, the pulmonary circulation, depicted in Figure 2.3, begins at the MPA

(or “pulmonary trunk") immediately distal to the RV pulmonary valve. The MPA is relatively short,

and bifurcates into the LPA and RPA. Both branch into two lobar branches, followed by segmental

and subsegmental vessels which parallel the bronchi of the lung (see Figure 2.3) [113]. The lung

has a left and right lobe, which are further divided into ten and eight unique segments within the

lobes [113]. In humans, the right lung has three lobes (upper, middle, and lower) while the left lung

has two (upper and lower). Mice have a single lobe in the left lung and four lobes in the right lung,

due to their quadruped anatomy [209]. The pulmonary arteries travel from the heart to the distal

segments of the lung tissue, and branch along this principal pathway. The pulmonary arteries also

have supernumerary branches, which branch at 90deg angles off of the main arteries and do not

run parallel to the bronchial tree [33, 237]. The subsegmental arteries branch to the arterioles, which
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eventually terminate at the capillary beds. Capillary bed location is dictated by the lung shape,

hence arterioles can reach a pulmonary capillary bed immediately distal to a subsegmental artery or

can numerously branch before terminating at the capillary beds [73]. Note that a single pulmonary

arteriole can supply multiple alveoli; the pulmonary arterioles in cat lungs can supply an 24.5 alveoli

on average [73] (see Figure 2.5).
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Figure 2.3 Anatomical diagram of the pulmonary arteries. Note that the right lung is subdivided into three
main lobes, whereas the left lobe only contains two. Modified from [113]with permission.

A mathematical analysis of vascular branching was first done by Murrary [155] in 1926. Assuming

a laminar (i.e., fluid particles have a smooth path), Poiseuille flow and minimizing the work of the

fluid, Murray determined that the optimal radii at a junction satisfy

r 3
p =

ND
∑

i=1

r 3
di

, (2.1)

where rp and rdi
are the parent and daughter vessel radii, and ND is the number of daughter

vessels at a junction. Weibel [255] applied Murray’s principal to airways and the pulmonary arteries,

determining a similar radius scaling. Weibel introduced a “generation" labeling scheme describing

a branch’s location in the pulmonary tree [256]. Weibel labeled the generation Gi of a blood vessel

by incrementing the generation, i.e. Gi =Gi−1+1, at each new junction in a tree, depicted in Figure

2.4a. This approach works well for symmetric trees, but doesn’t account for vessels of different radii

branching off of the principal pathway. To remedy this limitation, the Horsfield et al. [98] proposed

a Strahler ordering scheme [227] to account for asymmetric branching. This method first assigns
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the terminal vessels an order of 1, and increments the order for each preceding junction by one

until reaching the parent vessel (see Figure 2.4b). However, this method ignores the caliber (e.g.,

diameter) of the daughter branches in a tree. Jiang et al. [110] address this by defining a diameter-

dependent Strahler ordering scheme, where the order of vessels depends on the change in diameter

∆D , as shown in Figure 2.4c. This gives a more data driven approach to Strahler ordering. In Jiang’s

approach, the smallest branches in the tree are order 1 branches, and subsequent branches are

labeled using

Gi =







Gi−1+1, Di >Di+1+∆D

Gi−1, else
. (2.2)

where Di is the diameter of the current branch, Di−1 is the diameter values distal to the junction, and

∆D is a specified diameter increment. The ordering moves backwards progressively until reaching

the largest branch (order N ).

The study by Singhal et al. [219] used Strahler ordering to analyze resin casts of pulmonary

arteries from humans. This study concluded that there are 17 orders in pulmonary arterial system,

with one order 17 vessel (the MPA) and approximately 3 × 108 order 1 vessels (the pulmonary

capillaries). The investigation by Jiang et al. [110] used casts from Sprague-Dawley rats to determine

pulmonary artery branching, devising a novel connectivity matrix for Strahler branching structures.

Huang et al. [102] used the diameter-defined Strahler ordering on two human lungs. In contrast to

Singhal, their results concluded that pulmonary arteries and veins have 15 generations. The results

of these studies have ultimately laid the foundation for constructing morphometric trees of the

pulmonary arteries and arterioles.

In addition to network structure, other works have focused on quantifying changes in radii and

length in the pulmonary vasculature. A survey of the pulmonary vasculature by Townsley [237]

concludes that human pulmonary arterial length and radius increase by 46% and 60% for each

order. A recent investigation by Chambers et al. [35] (including the author) deduced pulmonary

arterial length and radii scaling factors in normotensive and PH mice. Results showed that parent-to-

daughter radii scaling at junctions were unchanged between groups, but that the length-to-radius

ratio increased in PH, suggesting a decrease in radii due to PH.

Hemodynamics. Typical pulmonary artery pressures are detailed in Table 2.1. In general, pulmonary

artery pressure is much lower than systemic artery pressures. However, the pulmonary arteries

receive an equivalent CO as the system circulation, approximately 5 L/min [90]. The pressure

gradient from the MPA to the pulmonary arterioles is smaller than the systemic circulation. Mean

MPA pressure is approximately 15 mmHg, and drops to 12 mmHg at the beginning of the pulmonary

capillaries. It is hypothesized that the small pressure gradient is due to the smaller distance needed

to travel from the MPA to the alveoli compared to the left heart and major organs [28].

In humans, pulmonary arterial blood pressure is also subject to hydrostatic forces such as gravity.

In the upright human, pulmonary arterial pressure can vary by nearly 25 mmHg [90]; pulmonary

arterial pressure in the uppermost portion of the lung (the apex) is roughly 15 mmHg less than
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Figure 2.4 Depiction of the three main ordering schemes for pulmonary vessels. (a) The Weibel ordering
scheme [256] begins at the main root vessel and increments vessel generations at each junction. (b) The
Horsfield-Strahler scheme [98] labels all terminal vessels as order “1" and increments vessels after each
junction up to the root vessel. (c) The diameter defined Strahler ordering scheme from Jiang et al. [110].
All terminal vessels are labeled as order “1," and vessel orders are updated only if the diameter change is
significant enough.

the blood pressure at the level of the heart. The pulmonary arterial system is designed to adapt to

stress conditions, such as exercise. During upright exercise, cardiac output (CO) increases and RV

systolic pressures elevate to 50-70 mmHg [263]. In addition, the pulmonary vasculature increases

the number of pulmonary capillaries open for oxygen exchange, called vessel recruitment [28, 263].

2.2.2 Pulmonary capillaries

Morphometry. In contrast to systemic capillaries, which originate at the end of arterioles, the pul-

monary capillaries emanate from vessels of different caliber. Horsfield [99] showed that pulmonary

capillaries can originate both at the distal end of the arteriolar tree and at arterioles immediately

after a subsegmental artery. For instance, a small artery can abruptly end in a capillary network [237].

The pulmonary capillaries surround an alveolus, which is the smallest unit in the lung functioning

in gas exchange [73]. The wall between alveoli, the interalveolar septa, contains a single unit of

capillary blood vessels, typically 5µm in diameter [90].

The pulmonary capillaries encapsulating the alveoli are sheetlike in appearance, and blood

flows around “posts" within the sheet [72]. Fluid dynamics within the capillaries (not considered

in this dissertation) are different from large and small vessel hemodynamics, and depend on the

height of the sheet [72]. Figure 2.5 shows a link between pulmonary arterioles and venules with the

alveoli, idealized using a simplified geometry as proposed by Fung [72, 73].

Hemodynamics. The average pulmonary capillary pressure is 7 mmHg [90]. The effects of hydrostatic

pressure and gravity are significant for pulmonary capillary blood flow when humans are upright.

As shwon in Figure 2.6, capillary flow for humans in the upright position have three zones:
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Figure 2.5 Dynamics in the pulmonary capillaries. (a) Anatomical schematic showing pulmonary arteri-
oles distributing oxygen depleted blood to the pulmonary capillaries at the alveoli and pulmonary venules
returning blood to the atrium. Adapted from [28]. (b) A simplistic depiction of blood flowing through the
pulmonary alveoli originally proposed by Fung [73]. Note that a single arteriole distributes blood to more
than one set of alveoli. The capillaries, located within the rectangular regions, flow by the alveolar posts,
shown as circles.

• Zone 1: no flow. Local alveolar air pressure is consistently greater than the pulmonary capillary

blood pressure.

• Zone 2: intermittent blood flow. The capillary blood pressure only exceeds alveolar air pressure

during systole.

• Zone 3: continuous blood flow. The capillary blood pressure is consistently higher than alveolar

air pressure throughout the cardiac cycle.

Zone 2 and zone 3 flows are typical in normotensive humans, the former are located in the apex

in the lung and the latter regions are closer to the base of the lung [90]. Zone 2 flow occurs during

diastole in the apex of the lung. Zone 1 flow is only present when systolic blood pressures fall below

the average pulmonary capillary pressure ≈7 mmHg, [90].

Optimal blood-gas exchange requires that ventilation and perfusion are matched. Ventila-

tion refers to the movement of air from outside the lungs to the alveoli (e.g., inhalation), whereas

perfusion is the transport of blood carrying dissolved gasses to and from the lung [28]. Both of

these processes vary within each alveolar unit and lung zone, and can be quantified by the non-

dimensional ventilation-perfusion ratio, V /Q . Both perfusion and ventilation rates drop towards

the lung base. The former decreases more steeply, lowering V /Q . The average V /Q is 3.3 at the

apex of the lung and 0.6 at the base, giving a lung-average V /Q of 0.86 [28]. There are two unique

extremes of V /Q mismatches, as shown in Figure 2.7:
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𝑞 𝑡 = $𝑞, 𝑝! > 𝑝"
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𝑞 𝑡 ≈ 0

Zone 1: 𝑝# < 𝑝! < 𝑝"

Zone 2: 𝑝# < 𝑝" < 𝑝!, systole

Zone 3: 𝑝# < 𝑝" < 𝑝!

𝑝# < 𝑝! < 𝑝", diastole

Figure 2.6 Blood flow through the physiological zones of the lung. In Zone 1, the pulmonary arterial pres-
sure (pa ) is always smaller than alveolar pressure (pA) due to hydrostatic forces, causing the capillaries to
collapse and reduce flow to negligible values. In zone 2, pa > pA , causing blood to flow through the capillar-
ies depending on the pulmonary venous pressure (pv ). However, during diastole pa < pA , again leading to a
reduction in flow. Lastly, flow always occurs in zone 3, since pv < pA < pa which leads to a driving pressure
gradient.

1. V /Q =∞ =⇒ no flow (alveolar dead-space ventilation).

2. V /Q = 0 =⇒ no ventilation (shunt).

In the former, an alveolus does not receive blood flow. One example is a pulmonary emboli, which

obstructs blood from reaching a region of the lung. This leads to hyperperfusion in other unblocked

regions, lowering V /Q in these alveoli (see Section 2.4 for more detail). Alveolar dead-space ven-

tilation causes bronchiolar constriction, redistributing ventilation to better perfused areas of the

lung. In the latter extreme, perfusion is normal but ventilation has ceased, causing mild hypoxia.

This can arise when airways are blocked or in children with a right-to-left shunt congenital heart de-

fect. Hypoxia causes arteriolar vasoconstriction, leading to flow diversion to regions with adequate

ventilation [28]. Diagnosis of these deficiencies requires a V /Q scan, discussed in Section 2.5.

2.2.3 Pulmonary veins and venules

Morphometry. Oxygen rich blood flows out of the capillaries into the pulmonary venules and veins.

Similar to the arterioles, the pulmonary venules drain from multiple alveoli, on average 17.8 [73].

Though there are less venules and veins compared to the pulmonary arterioles and arteries, the
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Bronchiole
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(normal)
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(alveolar dead-space)
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Figure 2.7 Three major ventilation-perfusion (V /Q ) scenarios. (a) Normal V /Q . Vascular perfusion
matches ventilation by the respiratory system. (b) An extreme case of perfusion limited V /Q , e.g., due
to pulmonary emboli. The flow to the alveoli is nearly zero, leading to V /Q ≈∞ even with adequate ven-
tilation. (c) Ventilation limited V /Q , e.g., due to asthma or asphyxiation. A blockage or narrowing of the
bronchioles leads to negligible ventilation with normal perfusion, resulting in V /Q = 0.

length and diameter ratios are similar (1.50 versus 1.58) [237]. The pulmonary venules converge

rapidly from the posterior segments of the lung to the large veins connected to the left atrium.

Typically, four large veins connect to the left atrium. However, there are several anatomical variants

for the large pulmonary veins, which may include additional veins draining directly into the left

atrium [113]. The pulmonary veins have nearly half the diameter of the pulmonary arteries [28].

Hemodynamics. The mean pressure in the pulmonary venules and veins range from 3 and 5 mmHg.

One important difference between the systemic and pulmonary veins is their behavior under low or

negative pressures. Systemic veins are known to collapse when transmural pressure drops below a

certain threshold, giving them an irregular, elliptical shape [90]. In contrast, the pulmonary veins

are tethered to the interalveolar septa, stabilizing their vascular wall and keeping them circular [73].

2.3 The pulmonary vascular wall

The arterial wall, shown in Figure 2.8, is composed of three main layers separated by a thin elas-

tic lamina: (a) the intima, a thin monolayer of endothelial cells in direct contact with the blood;

(b) the media (the middle layer), composed of smooth muscle cells (SMCs) embedded within a

heterogeneous matrix of elastic and collagen fibers; and (c) the adventitia (the outermost layer),

primarily composed of elastic and collagen fibers [105]. Arteries are either elastic and muscular;

elastic arteries are larger in diameter, are located closer to the heart (e.g., the aorta and MPA), and

contain large amounts of elastin [237]. Muscular arteries are smaller in diameter, are located closer

to the lung, have a thinner wall, and contain a greater percentage of SMCs [105].

Elastic and collagen fibers are embedded in the arterial extracellular matrix. The elastic fibers

in an artery include elastin, a polymer, and microfibrils, composed of small glycoproteins. Elastin
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Figure 2.8 Illustration of the three layers of a healthy, elastic artery. The innermost layer, the intima, is
comprised of a thin layer of endothelial cells. Next is the media, which is separated from the intima by
a thin elastic lamina. The media contains predominately smooth muscle cells, which contribute the ac-
tive contraction of the wall in response to changes in shear- and circumferential-stress. The media also
contains collagen and elastic fibrils for structural support. The last layer, the adventitia, is composed of
helically bound collagen as well as some elastin. The outer layer provides structural support under large
deformations. Reproduced with permission from [97].

molecules are flexible and form an elastic fiber network, able to distend by more than 100% under

physiological conditions and still return to its reference configuration [28, 105]. Collagen fibers

serve as a structural foundation for the artery, and are less extensible (e.g., collagen can only be

stretched 3-4% under physiological conditions [28]). In contrast to elastin fibers, collagen undergoes

a viscoelastic response, with the strain varying with the history or time-course of the stress. Under

large deformations, these materials do not return to their original reference configuration [240].

However, the viscoelastic behavior of excised arteries reduces after cyclic loading and unloading

[74]. For this reason, arteries are modeled as pseudo-elastic and hyperelastic materials [74, 97, 105],

discussed in Chapter 4. There are several types of collagen, and the most abundant types in the

arterial wall are type I and III collagen. Collagen fibers are not typically under tension unless wall

distension is pronounced, in which case they provide structural support for the vascular wall.

Smooth muscle cells (SMCs) have both a passive and an active contribution to wall dynamics.

The passive features of SMCs are negligible compared to that of elastin and collagen fibers [97].

Nevertheless, SMCs do contribute to arterial wall stability under physiological conditions [105].

Active SMC dynamics are linked to changes in wall stress. SMCs sense both stresses on the intima

(e.g., wall shear stress on the endothelial cells), and within the media and adventitia (e.g., cyclic
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stretch). In response to these changes, the SMCs will induce either vasoconstriction or vasorelaxation

[250]. In the pulmonary arteries, endothelial cells release vasodilators (e.g., nitric oxide (NO)) into

the blood stream when wall shear stress increases. Vasodilators are absorbed through the wall and

signal to SMCs to vasodilate. Conversely, low wall shear stress causes endothelial cells to release

vasoconstrictive agents (e.g., endothelin-1 (ET-1)), leading to SMC contraction [77].

Arterial wall complexity limits an exact description of its stress-strain relationship. Several studies

have explicitly modeled the individual layers of the vascular wall [97, 241], but in this dissertation

the vascular wall is treated as a homogeneous, elastic cylinder, discussed further in Section 4.1.

The simplest descriptor of arterial wall properties is compliance, C , defined as the fractional

change in volume (or area) for a given change in pressure. Another common term is distensibility,

D , the compliance divided by the reference volume (or area) [252]. These are expressed as

C =
∆V

∆P
, D =

∆V

V ∆P
. (2.3)

Compliance is inversely related to stiffness, quantified by the Young’s modulus E . Experimental

evidence suggests that D is constant in the normotensive pulmonary arterial network [124], but

may be heterogeneous in the presence of pulmonary vascular diseases or PH [252].

2.4 Pulmonary hypertension (PH)

The 6th World Symposium on pulmonary hypertension (PH) defines the disease as a mPAP > 20

mmHg at rest (compared to the prior requirements of≥ 25 mmHg) measured by right heart catheter-

ization (RHC). PH is a relatively rare disease when compared to other cardiovascular ailments;

however, rates are on the rise and hospitalization rates for PH in those older than 85 nearly doubled

between 2001 and 2010 [247]. The disease is classified into five distinct subgroups, shown in Figure

2.9:

Group I: Pulmonary arterial hypertension (PAH)

Group II: Pulmonary hypertension secondary to left heart disease (PH-LHD)

Group III: Pulmonary hypertension due to lung disease

Group IV: Chronic thromboembolic pulmonary hypertension (CTEPH)

Group V: Pulmonary hypertension due to unknown causes

These subgroups are differentiated based on the whether they affect the pulmonary arterial system

alone (pre-capillary PH) or if they affect the pulmonary veins (post-capillary PH). Pre-capillary

PH is defined by a pulmonary arterial wedge pressure (PAWP) ≤ 15 mmHg, and isolated post-(or

combined pre- and post-) capillary PH, where PAWP>15 mmHg [218]. In general, PH decreases

compliance (increases stiffness) by altering the composition of the pulmonary vascular wall, typically
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Figure 2.9 Flow chart showing the locations in the vasculature that drive PH in the first four subgroups.
Group I, pulmonary arterial hypertension (PAH), initiates in the arterioles via uncontrolled vasoconstric-
tion and remodeling, and propagates to the large arteries. Group II initiates from left-sided heart disease
(LHD), affected the pulmonary veins and venules. Isolated post-capillary PH stops at the venules, though
combined pre- and post-capillary PH due to PHD eventually affects the capillaries and arterial side. Group
III includes PH due to lung-disease, initiating in the capillary beds and progressing the the arterioles and
venules. Group IV is chronic thromboembolic pulmonary hypertension (CTEPH), and begins with throm-
boemboli located in either the large or small arteries. This causes hypoperfusion distal to lesions and
hyperperfusion in unobstructed regions, causing subsequent vascular stiffening and remodeling. Figure
provided by M. Umar Qureshi.

by increasing relative amounts of collagen through fibroblats in the vascular wall. In contrast to

collagen, elastin content typically does not change over time [237].

2.4.1 Group I: pulmonary arterial hypertension (PAH)

PAH has an incidence of 1.1 adults per 7.6 million [247]. In addition to a mPAP> 20 mmHg at rest,

positive diagnosis of PAH requires a PVR ≥ 3 Wood units (≈240 g/cm/s2). PAH is divided into seven

subtypes, including idiopathic PAH (iPAH) and PAH due to congenital heart disease [141]. As of

2020, the five-survival rate for PAH patients ranges from 61.2% to 65.4% [247].

One of the distinguished features of PAH is the narrowing and muscularization of the pulmonary

arterioles. Decreased arteriolar diameter increases PVR by 4-5 times, elevating mPAP [202]. This can

lead to arteriolar occlusion, when the arteriolar wall thickens to a point where blood is completely

obstructed. Network remodeling in PAH is characterized by medial thickening, including an increase

in SMCs and collagen. Remodeling of the large arteries includes SMC hypertrophy (increased cell

size), while the small arteries and arterioles undergo SMC hyperplasia (increased cell density)

and adventitial collagen deposition [177]. These factors elevate PVR, mPAP, and RV afterload. The

initial onset of PAH is unknown, but is believed to initiate in the arterioles. It is hypothesized that

individuals with a mutation in the bone morphogenetic protein receptor 2 gene, responsible for

inhibiting proliferation of smooth muscle vascular tissue, are more susceptible to PAH. A defect in

this gene can lead to uncontrolled SMC growth and wall thickening [177]. To better understand the
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progression of PAH, animal models have been proposed. The most common animal PAH model is

in rat, where subcutaneously injections of monocrotaline cause an overwhelming inflammatory

response, leading to pulmonary vascular remodeling [80].

2.4.2 Group II: pulmonary hypertension secondary to left heart disease (PH-LHD)

PH is a common comorbidity of left-sided heart disease (PH-LHD), and is broken down into two

main subgroups: isolated post-capillary PH (IPC-PH), with a PAWP > 15 mmHg and av diastolic

pressure gradient < 7 mmHg or a PVR ≤ 3 Wood units; and combined post- and pre-capillary PH

(Cpc-PH), defined by an elevated PAWP > 15 mmHg and a diastolic pressure gradient ≥ 7 mmHg or

a PVR > 3 Wood units [239]. Moreover, PH-LHD can be classified as heart failure with (a) preserved

ejection fraction (the percent of blood ejected from the heart during systole) (HFpEF), (b) reduced

ejection fraction (HFrEF), or (c) valvular heart disease (VHD). All of these elevate left atrial pressure

and cause a passive increase in pulmonary venous pressure. This is hypothesized to cause pulmonary

arterial vasoconstriction, elevating mPAP [177].

The two typical causes of PH-LHD are mitral or aortic valve disease or myocardial diseases on the

left heart, e.g., myocardial infarction [177]. Elevated left atrial pressure propagates through the veins

to the alveoli, causing alveolar damage, fibrosis, and eventual remodeling of the small pulmonary

arteries [193]. Increased mPAP attempts to match the rise in left atrial pressure. If pulmonary

arterial pressure magnitude surpasses left atrial pressure, then the disease is termed CPC-PH. It is

hypothesized that the transition from IPC-PH to CPC-PH is determined by the pulmonary capillaries,

which remodel due to alveolar damage [193].

Animal models and experimental design for PH-LHD are still evolving. A recent study induced

PH-LHD by prescribing an left ventricle myocardial infarction [179]. This involves the ligation of the

coronary circulation, reducing the blood supply to the left ventricular wall and leading to cell death.

This mouse model induces PH-LHD by reducing RV function and impairing vascular-ventricular

interaction. A PH-LHD model in swine has also been developed, utilizing a pulmonary vein banding

technique that cuts off blood supply from one vein to the LA. This experimental setup increases

mPAP and elevates PVR, consistent with physiological understanding of the disease in humans [57].

2.4.3 Group III: pulmonary hypertension due to lung disease

PH due to chonic lung diseases, including hypoxia, chronic obstructive pulmonary disease (COPD),

and interstitial lung disease, is the second most common form of PH representing roughly 9% of

all PH cases [247]. Besides elevating mPAP > 20 mmHg, group III PH is uniquely driven for each

subgroup and respiratory disease.

Hypoxia, decreased oxygen saturation in the blood, is common for people living in high ele-

vations. This leads to an initial increase in CO followed by vasoconstriction and muscularization

of the arterioles. The exact mechanisms of hypoxia-induced vasoconstriction are not well known.

It is known that hypoxic environments promote the release of the vasoconstrictor ET-1 from the

pulmonary arterial wall, inducing vasoconstriction [28]. This is opposite to the systemic circulation,
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where a hypoxic environment induces vasodilation. Pulmonary vascular hypoxic vasoconstriction

is strictly a local phenomenon, and is not regulated by the nervous or endocrine system. To better

understand the pulmonary vascular response to hypoxia, experimental mouse models are used.

Mice are placed in a hypobaric chamber and exposed to several weeks of low oxygen content to

induce hypoxia. This model results in vascular remodeling and collagen accumulation, elevating

mPAP above 20 mmHg [232, 245] (as shown in this dissertation).

The most prominent feature of PH due COPD is the enlargement of the intimal layer of the

smaller, muscular arteries. This is due to hyperplasia of SMCs, requiring new layers of elastic lamina

that thicken the intima. COPD induced PH was originally thought to be driven by hypoxia, yet recent

evidence has shown that vascular remodeling can occur in patients with mild COPD that do not

suffer from hypoxemia. Instead, damage to the endothelium due to harmful agents (e.g., cigarette

smoke) are suspected to initiates a cascade of inflammatory behavior [177].

2.4.4 Group IV: chronic thromboembolic pulmonary hypertension (CTEPH)

Chronic thromboembolic pulmonary hypertension (CTEPH) is the only curable form of PH. CTEPH

is typically preceded by an acute pulmonary embolism or deep venous thrombosis, though it can

also be found in patients without preexposure to either [177]. This form of PH is more rare than

Groups II and III, but is likely underdiagnosed. Prospective studies show that CTEPH develops in

anywhere between 0.4% to 6.2% of patients with acute pulmonary embolism [218]. A recent study

in northern France found that of 107 patients with coronavirus disease 2019 (COVID-19), 22% had

pulmonary emboli, and 22% of the emboli were located in the distal, segmental branches [181].

The possible correlation between pulmonary emboli and COVID-19 motivates investigations into

recurrent pulmonary emboli, CTEPH, and disease management.

Symptoms of CTEPH include dyspnea (trouble breathing) and exercise intolerance, making

diagnosis of CTEPH versus other diseases difficult. Screening by echocardiography can reveal

elevated RV pressure, after which patients undergo V /Q scanning. Patients presenting a unilateral

perfusion defect on V /Q proceed to an expert PH center for RHC and structural imaging, with

definitive diagnosis by a mPAP > 20 mmHg, a PAWP < 15 mmHg, and PVR ≥ 3 Woods units [218].

The disease is typically initiated by a blockage or obstruction in the large or medium diameter

pulmonary arteries [217]. Recent studies using optical coherence tomography have classified CTEPH

lesions as into five main categories: (1) ring-like lesions, (2) web-like lesions, (3) subtotal occlusions,

(4) total occlusions, and (5) tortuous lesions [108]. Of these, subtotal occlusions, ring-like, and web-

like lesions are the most common and have the lowest probability of complication in response to

BPA intervention. Ring-like lesions, shown in Figure 2.10, are short, abrupt narrowings in the vessel

lumen, typically occurring at junction points, that are similar in appearance to systemic circulation

stenoses. Web-like lesions consist of fibrous bands of material that more often obstruct the entirety

of the vessel lumen, as shown in Figure 2.10, and appear “mesh-like" on imaging scans. Subtotal

occlusions induce vessel tapering that leads to a decrease in blood velocity distal to the lesion. Total

occlusions are the most severe type, blocking flow from any downstream vessels. Lastly, tortuous
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lesions are located in vessels smaller than subsegmental arteries, and appear twisted and tortuous

in shape [115]. The fractional flow reserve (FFR), defined as the ratio of pressures proximal-to and

distal-to a lesion, is the only current metric for specifying lesion severity [108].

Figure 2.10 Optical coherence tomography (OCT) imaging of lesions in CTEPH. Fractional flow reserve
(FFR) measures the pressure drop across the lesions. (A) OCT imaging of a vascular segment before and
after percutaneous pulmonary angioplasty (PTPA, synonymous with BPA). FFR is improved, but does
not reach a normotensive value near 1. (B) Web like lesion that leads to an FFR of 0.38. Note the non-
symmetric, banded appearance of the lesion. (C) OCT imaging and FFR of a lesion after PTPA, with dras-
tically improved FFR values. (D) Web-like lesion that extended throughout a vessel segment. Reproduced
with permission from [108].

Large pulmonary artery occlusions induce resistance to flow, increasing mPAP and RV afterload.

Current hypotheses suggest that lesion-induced flow redistribution leads to (a) decreased vascular

stretch and shear stress distal to lesions and (b) elevated flow and shear stress in unobstructed

pathways. These hemodynamic changes induce arteriolar muscularization and luminal narrowing,

causing secondary pulmonary arteriopathy [133]. Muscularization and narrowing of small vessels

are associated with an increased PVR. Narrowing of the small pulmonary arteries and arterioles

increases mPAP, elevating the stress on the MPA. In severe cases of CTEPH, large, proximal arteries

near the heart will dilate in response to chronic pressure overload [50].

Swine experiments can replicate the phenotypes of CTEPH using polyethylene microspheres.

These microspheres are inserted into the pulmonary arteries via a catheter and occlude the distal
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vasculature. Though emboli are not constrained to a specific lung region, the experiment does

induce mechanical obstructions in the distal vasculature common in CTEPH. Results from this

animal model are consistent with knowledge of the disease, namely that small pulmonary vessels

narrow in CTEPH and cause endothelial dysfunction (e.g., imbalances in ET-1/NO) [224].

𝑷𝒑
𝑷𝒅𝟏𝑸𝒅𝟏

𝑸𝒑 𝑷𝒅𝟐𝑸𝒅𝟐

𝑷#𝒑 > 𝑷𝒑

𝑸#𝒅𝟏 ≪ 𝑸𝒅𝟏

𝑸#𝒑 = 𝑸𝒑 𝑷#𝒅𝟐 ≫ 𝑷𝒅𝟐𝑸#𝒅𝟐 ≫ 𝑸𝒅𝟐

𝑷#𝒅𝟏 ≪ 𝑷𝒅𝟏

(a) Normotensive (b) CTEPH

Figure 2.11 Flow and pressure changes in CTEPH. (a) Flow is distributed from a parent vessel to its two
daughter vessels based on relative size of the two vessels. Pressure is relatively constant across the junction.
(b) The addition of a lesion in CTEPH (in branch d1) increases the resistance to flow, elevating the parent
pressure. Pressure downstream from the lesion drops drastically due to the mechanical obstruction of the
lesion. In contrast, the unobstructed vessel (branch d2) receives a higher flow rate, increasing the pressure
in this branch. P̂ and Q̂ represent the pressure and flow in CTEPH.

2.4.5 Group V: pulmonary hypertension due to unknown causes

PH due to unclear or multifactorial mechanisms are lumped into group 5. Diseases include sickle

cell disease, malaria, and cardiopulmonary bypass procedures [177]. Causes of group 5 disease

are divided into four disorder groups: hematologic, systemic , metabolic, or other [254]. Sickle cell

disease has the unique feature that it causes similar remodeling to PAH, but has distinct differences

in the appearance of narrowing lesions observed in histological studies. It is hypothesized that the

driving mechanism in group 5 is increased cardiac output due to anemia, fistulas, or ateriovenous

shunts, causing endothelial dysfunction and/or left-sided heart impairment [254].

2.5 Disease diagnostics

PH diagnosis requires two main types of data: morphometric data and hemodynamic data. Mor-

phometric data assesses the structural integrity of the pulmonary circulation. Hemodynamic data

quantifies in-vivo blood pressure and blood flow. Morphometric data can only be obtained from

noninvasive imaging. Hemodynamic data can be obtained from either invasive or non-invasive

measurements, and clinical measures are derived from these. Invasive measurements are more

accurate, but have run a higher risk of injury, whereas the noninvasive are easier and more cost

efficient but come with a higher measurement uncertainty. A summary of the morphometric and
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hemodynamic data available is provided in Table 2.2.

2.5.1 Morphometry

Medical imaging is the most reliable technology for assessing the structure of the heart, lung,

and vasculature. The main imaging modalities include echocardioraphy, computed tomography,

magnetic resonance, and ventilation-perfusion imaging.

Echocardioraphy utilizes sound waves and their reflections off of the heart to provide time-dependent

heart dynamics. This is the least invasive form of imaging and is usually the first step in screening

those showing typical symptoms of dyspnea or difficulty exercising for PH. Outputs from echocar-

diography include atrial and ventricular volume, septal deformation, valve dynamics, and systolic

and diastolic function [177]. Though echocardiography is the least expensive modality, it has the

largest uncertainty.

Computed tomography (CT) imaging provides a three-dimensional (3D) reconstruction of the chest,

with x-y plane images measured at incremental sub-millimeter thickness apart. CT imaging typically

injects a contrast medium into a vein, flowing to the right atrium and pulmonary circulation. [177].

The quality of the CT image is correlated with the timing of injection; if the CT is not time-gated

with an electrocardiogram (ECG), contrast may not be ejected precisely when imaging is being done.

The output from CT imaging can be used to assess the size of the MPA, an independent biomarker

of mortality, as well as any downstream thromboembolic material common in CTEPH (see Figure

2.12). CT imaging can provide information about the entire pulmonary tree, including vessels as

small as 1 mm2 in area [50]. For small animals, micro-CT imaging can be used, providing an image

resolution of 30-40 µm [245]. CT imaging is the most prominent imaging modality for assessing the

state of the pulmonary vasculature.

Magnetic resonance imaging (MRI) characterizes the structure of both the heart and vasculature. MRI

can generate 3D reconstructions of the heart chambers, quantify time-dependent heart contractility,

and calculate area changes and flow velocity in the MPA. MRI myocardial tagging can quantify the

strain in each heart chamber, crucial for understanding the progression of PH to RV dysfunction

[177]. Magnetic resonance angiography (MRA) is another form of MR imaging that can be used to

better identify the location of downstream lesions, reducing the uncertainty in lesion location. MRA

can also capture the pulmonary arterial and venous vascular trees.

Ventilation-perfusion (V/Q) scans are separated into two separate tests: (1) the inhalation of a

radio-nucleotide gas, providing insight into alveolar ventilation and any underlying bronchiole

disease; and (2) the injection of radioactive albumin into a vein, illuminating perfused regions of

the pulmonary capillaries. In the case of CTEPH, multiple thromboemboli lead to a redirection in

blood flow. Underperfusion presents itself in V/Q scans and provides insight into regions of the lung

suspected of emboli, as shown in Figure 2.13. V/Q scans have the highest sensitivity in detecting

CTEPH, and are regularly used to determine if RHC is appropriate.
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Table 2.2 Murine and human data collected over the course of this dissertation. 1Provided by Dr. Naomi
Chesler, previously at the University of Wisconsin, Madison and currently at University of California, Irvine.
2Provided from Dr. Sudar Rajagopal at Duke University Hospital’s Center for Pulmonary Vascular Disease.
3Provided by Dr. Martin Johnson from Golden Jubilee Hostpital’s Scottish Pulmonary Vascular Unit.

Utilized in
Data Description this dissertation

Morphometric imaging data
Mouse

Normotensive (n = 3) High resolution micro-CT Yes
images of pulmonary arterial

tree from excised lungs1

Hypertensive (HPH, n = 3) High resolution micro-CT Yes
images of pulmonary arterial

tree from excised lungs1

Human
Normotensive (n = 1) Normotensive, female chest CT Yes

image obtained from OSMSC [261]

Hypertensive (CTEPH, n = 7) Chest CT images from No
Duke University Hospital2

Hypertensive (CTEPH, n = 7) V /Q scans from No
Duke University Hospital2

Pressure data
Mouse

Normotensive (n = 7) Dynamic MPA pressure Yes
data obtained using

a pressure-tip catheter1

Hypertensive (HPH, n = 5) Dynamic MPA pressure Yes
data obtained using

a pressure-tip catheter1

Human
Hypertensive (CTEPH, n = 7) RHC reports from No

Duke University Hospital2

Hypertensive (CTEPH, n = 1, RHC reports from No
PAH n = 2) Golden Jubilee Hospital3

Flow data
Mouse

Normotensive (n = 7) Dynamic MPA flow obtained Yes
from ultrasound1

Hypertensive (HPH, n = 5) Dynamic MPA flow obtained Yes
from ultrasound1

Human
Hypertensive (CTEPH, n = 7) Static CO measured by thermodilution No

from Duke University Hospital2

Hypertensive (CTEPH, n = 1, Dynamic MPA flow MRI No
PAH n = 2) flow from Golden Jubilee Hospital3
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Figure 2.12 Multiplane view of a CT image from a patient with CTEPH. The red arrow indicates a region of
the pulmonary arteries obstructed by a thromboembolism. Data provided by Duke University.

Mouse morphometric data. In this dissertation, retrospective data from normotensive and hypoxia-

induced PH (HPH, group III) mice, made available by Dr. Naomi Chesler while at the University of

Wisconsin, Madison [232], are used. All mice were 10- to 12-week old male C57BL6/J mice (Jackson

Laboratory, Bar Harbor, ME). The HPH mice were placed in a hypobaric chamber and exposed to

hypoxia by reducing the partial pressure of oxygen by half. These mice were exposed to hypoxic

conditions for a total of 21 days. Normotensive mice were placed in a normoxia environment for

the same duration of time. Morphometric data is provied for both normotensive and HPH mice via

high resolution micro-CT scans, with a resolution of 30-40 µm.

Before imaging the mice, the MPA and trachea are cannulated [245]. The MPA cannula outer

and inner diameter are 1.27 and 0.86 mm, respectively, which are visible in the images and used

to scale the arterial network dimensions. The heart is subsequently dissected away and the lungs

are ventilated. The cannulas are then clamped at their end-inspiratory volume, and a solution of

perfluorooctyle bromide contrast agent is injected into the lungs. The lungs are then subjected

to cyclic loading from 0 to 25 mmHg. Then, arterial pressure is fixed to one of four pressures (6.3,

7.4, 13.0, and 17.2 mmHg). While pressure is held constant, the lungs are rotated at 1◦ increments

while under an microfocal X-ray CT system. Each planar project image is a result of averaging seven

frames, reducing noise and maximizing contrast. An example image can be found in Figure 2.14. For
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Figure 2.13 Ventilation-perfusion scan. (A) Perfusion scan from a typical, healthy individual. (B) Perfusion
scan from an individual with a high probability of pulmonary embolism (PE). The patchy regions suggest
flow heterogeneity, and provide insight into where lesions may be located. (C) A ventilation scan from a
typical, healthy individual. Reproduced from [8]with permission.

the mouse micro-CT data, image intensities run from 0 to 255, corresponding to a typical grey scale.

Human morphometric data. For the study in Chapter 9, a normotensive CT image was obtained

from SimVascular and the Open Source Medical Software Corporation’s (OSMSC) database [261].

The image comes from a 67 year old female with no known health complications. The CT image

consists of a 512×512×198 stack of planar images, with a (0.5859, 0.5859, 1.25)mm voxel spacing.

The image intensities in the CT scan are in dimensionless Houndsfield units (HU), with values

between -1000 (air), 2000 (dense tissue like bone), and 3000 (for nonphysiological objects, such as

metal).

Additional human data includes CT images and V /Q scans from seven patients with CTEPH,

obtained from Dr. Sudar Rajagopal at Duke University Hospital.

24



MPA 
cannula

Figure 2.14 Micro-CT image from a perfused mouse lung. Note that the cannula provides an obvious, rigid
shape at the MPA (shown in red) and is used to calibrate the dimensions of the vasculature.

2.5.2 Blood pressure

Echocardiography can estimate the pressure in each heart chamber. To do this, echocardiogra-

phy records tricuspid regurgitant jet velocity (vT RV ), the velocity of blood entering the RV, using

continuous-wave Doppler. The resulting maximum signal velocity is calculated with a simplified

Bernoulli equation:

pRV ,s y s = 4 · v 2
T RV +pR A . (2.4)

The above equation depends on estimated right atrial pressure, pR A , constructed from dimensions

of the inferior vena cava [177]. Estimating pR A in this way introduces large uncertainty, however,

this non-invasive measurement is typically the first step in screening for RHC and PH.

Right heart catheterization (RHC) is required to definitively diagnose PH. The first RHC was per-

formed in 1929 by Werner Forssmann in Germany [177], who advanced a thin catheter from his own

cubital vein to his right atrium, and provided him (and two others) the Nobel Prize in Physiology

or Medicine in 1956. Since then, several advacements in RHC have led to the development of the

standard Swan-Ganz catheter used to diagnose PH [177].

The procedure is done under local anesthesia, and requires the insertion of a catheter into the

right atrium and RV (typically though the right jugular vein) while patients are supine. Once the

catheter is advanced past the superior vena cava, dynamic and static pressure measurements are

recorded in the right atrium, RV, MPA, and, in some instances, other lobar arteries, as shown in Figure

2.15. In addition to the large artery pressure measurements, catheters are equipped with a balloon

that can be inflated and lodged into a lobar or segmental artery. Measured pressure downstream
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from the balloon, PAWP, represents the pressure attributed to the pulmonary capillaries and veins,

and is often used as a surrogate for left atrial pressure [177]. One important indicator of PH severity

is PVR, which represents the entire resistance of the pulmonary circuit. This is immeasurable, but is

approximated as (mPAP-PAWP)/CO (CO measurements discussed below).
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Right atrial pressure
0-8 mmHg

Right ventricular 
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Figure 2.15 Progression of catheter placement during RHC and measured blood pressure. (a) Catheter
is inserted through the superior vena cava and enters the right atrium (RA). (b) The catheter is ad-
vanced through the tricuspid valuve into the RV. (c) The catheter is advanced through the pulmonary
valve to record MPA pressure. (d) The balloon tip of the catheter is inserted into a smaller artery and in-
flated, recording the pulmonary artery wedge pressure. Reproduced and modified with permission from
https://www.pcipedia.org/images/6/64/RightHeart_Waveforms_Fig1.svg.

2.5.3 Blood flow

Echocardiography can estimate RV ejection velocity and MPA area, and be converted to a flow

estimate. Stoke volume of the heart can also be assessed using echocariography, and Doppler

measurements can construct estimates of flow velocity in the MPA.

Magnetic resonance imaging (MRI) can measure detailed pulmonary artery flow waveforms. This

technique is rarely used in the US for PH assessment, but several clinics use velocity-encoded cine

MR images to construct proximal pulmonary artery flow profiles. A benefit of these flow waveforms is

their use in characterizing pulmonary arterio-ventricular coupling [177]. In addition, flow waveforms,

typically computed as the product of area and velocity measurements, provide information about

wave reflections [229], significant in vascular remodeling due to PH.
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Thermodilution) requires the injection of cold saline, via a catheter, into the right atrium, and

estimates CO. The change in fluid temperature within the MPA is measured by heat sensors in the

catheter. The change in temperature between the two sites over time provides an estimate of the CO,

typically averaged over three successive saline injections. Thermodilution measurement is subject

to uncertainty, as bolus temperature, regularity of injection velocity, and volume of injection can

vary the measured output [151].

Fick’s method). Another method for estimating CO is from Fick’s equation:

CO=
VO2

C a
O2
−C v

O2

(2.5)

where VO2
is the oxygen consumption of the lungs and C a

O2
and C v

O2
are the oxygen concentrations

in the pulmonary arteries and veins, respectively. Fick’s equation can be applied either directly or

indirectly. The direct Fick method measures VO2
using a spirometer, and calculates the concentration

difference using blood samples. Its widely acknowledged that direct Fick provides a reasonable esti-

mate of CO [177]. Indirect Fick uses textbook formulas to relate body mass and oxygen consumption,

and are highly subject to uncertainty [159].

Mouse hemodynamic data. This dissertation utilizes pulsatile pressure-flow data from 7 normoten-

sive and 5 HPH mice [232], made available by Dr. Naomi Chesler while at the University of Wisconsin,

Madison. Similar to the imaging data, HPH was induced using a hypobaric chamber with a reduced

partial pressure of oxygen over 21 days. To obtain in-vivo hemodynamic measurements, mice were

anesthetized with an urethane solution injected intraperitoneally. Mice were then intubated and

placed on a ventilator, and the rest of the body was dissected to reveal the RV and lungs. A pressure-

tip catheter was inserted into the apex of the RV for RHC and then advanced to the MPA just proximal

to LPA and RPA. Pressure tracings were recorded at 5 kHz on a hemodynamic workstation (Cardio-

vascular Engineering, Noarwood, MA). The pressure waveforms were signal-averaged after aligning

the waveforms’ ECG signals.

Pulsatile flow was measured by ultrasound during RHC. A 30 MHz probe was used to record

velocity just distal to the pulmonary valve, and the probe was angled such that the velocity measured

was maximized. The flow velocity, a digitized broadband Doppler audio signal, was averaged using

a spectral analysis. In addition, the MPA inner diameter was measured from leading edge to leading

edge in B-mode of the Doppler imaging. The combination of flow velocity and MPA cross-sectional

area was used to calculate of flow. Both pressure and flow waveforms are shown in Figure 2.16.

Human hemodynamic data. This dissertation uses a publicly available MPA flow waveform from

Simvascular and the OSMSC [261]. The flow waveform was digitized using GraphClick1. The flow

waveform reaches a peak flow of approximately 300 ml/s, and has a CO of approximately 5 L/min.

Hemodynamic data available for future studies include three RHC reports from PH patients

1http://www.arizona-software.ch/graphclick/
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Figure 2.16 Pressure (top) and flow (bottom) data from both normotensive and hypertensive (HPH) mice.
There are 7 control animals and 5 HPH.

(2 PAH and 1 CTEPH) at the Golden Jubilee Hospital System in Scotland, provided by Dr. Martin

Johnson, as well as MRI flow waveforms. An additional 7 RHC reports from CTEPH patients are

available from Dr. Sudar Rajagopal at Duke University Hospital. These include measures of CO by

thermodilution, but do not include MRI flow waveforms.

2.6 Pulmonary hypertension treatments

PH treatment reduces mPAP and improves cardiac function, making the disease more managable

but not curing PH. For CTEPH patients, surgical intervention is also used and can cure PH. All
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Figure 2.17 A digitzed, human flow waveform in the MPA from Simvascular and the OSMSC [261].
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five groups can be treated using vasodilators, which decrease PVR. For CTEPH, either pulmonary

endarterectomy (PEA) or balloon pulmonary angioplasty (BPA) are used to remove or disrupt

pulmonary emboli.

2.6.1 Vasodilators

Vasodilators to induce vasorelaxation in the small arteries and arterioles. Pharmaceutical drugs

can do this through enhancement or inhibition of several biochemical pathways. The main target

of pharmaceutical interventions is the pulmonary endothelium, which provides a mechnotrans-

duction pathway between blood flowing in the lumen and the vascular wall. Increased wall shear

stress promotes the release of ET-1, a potent vasoconstriction, which promotes SMC proliferation

and collagen turnover. ET-1 acts through two main pathways on the endothelium, namely ETA

receptors on SMCs located in the media and ETB receptors on both SMCs and the endothelium itself.

When ETA receptors are bound by ET-1, they promote malicious pulmonary vascular remodeling.

In the healthy pulmonary vasculature, ETB receptors promote the release of endothelial nitric oxide

synthase (eNOS), which is converted to NO to induce relaxation. NO directly promotes cyclic guano-

sine monophophase (cGMP) in SMCs, inhibiting proliferation and wall thickening. ETB receptors

also promote clearance of ET-1, reducing the amount circulating in the blood. It is hypothesized

that endothelial dysfunction and a inability to rebalance the ET-1-to-NO ratio promotes the rapid

remodeling seen in PAH (see Figure 2.18), making it the ideal target for drug therapy [75, 177].

Prostacyclin is another target for vasodilator drugs, which inhibits platelet aggregation and di-

lates blood vessels [28]. Prostanoids are potent vasodilators that promote the release of prostacyclin.

For patients with severe PAH, intravenous injection of the prostanoid epoprostenol is recommended

[177]. Iloprost is an inhaled prostanoid that induces pulmonary and systemic vasodilation. A recent

investigation by Wang et al. [251] showed that short term use of iloprost is beneficial for those with

group III PH due to COPD.

Phosphodieterase-5 (PDE5) inhibitors can counteract an elevated ET-1/NO seen in PH. PDE5

inhibitors, including sildenafil and tadalafil, block PDE5, which degrades and inactivates cGMP.

By reducing the circulating PDE5, the endothelium produces greater amounts of NO to induce

vasodilation. While tadalafil is FDA approved, it can have negative systemic side-effects if mixed

with other hypertensive drugs, such as systemic vasodilators [94].

Endothelin receptor agonists (ERAs) are another intervention successful in reducing vascular

remodeling and mPAP. These drugs include Bosentan and macitentan, which block the binding

sites for ET-1. Bosentan, which is the most commonly used PAH medication, blocks both ETA and

ETB receptors. They also inhibit the positive vasodilatory effects of ETB receptors [51]. These drugs

also have potential side effects, including peripheral edema and anemia.

The last class of vasodilators are approved for both PAH and CTEPH: soluble guanylate cylcase

stimulators [82]. The only FDA approved class of this type for both PH subgroups is riociguat, which

stimulate soluble guanylate cyclase (a membrane protein that is a receptor for NO)[28]. Riociguat

elevates the level of cGMP, again leading to vasorelaxation in SMCs and inhibiting proliferation.
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Figure 2.18 Hypothesized promoter-inhibitor relationship for NO and ET-1 in the progression of pul-
monary vascular remodeling. CS: cyclic stretch; WSS: wall shear stress; NO: nitric oxide; ET-1: endothelin-
1.

2.6.2 Pulmonary endarterectomy (PEA)

Since CTEPH is onset by the presence of thromboembolic material, management of the disease

typically requires surgical intervention. The gold-standard CTEPH treatment is pulmonary en-

darterectomy (PEA) or thromboendarterectomy (PTE), an invasive procedure with a low morbidity

when performed at an expert center [56]. Patients deemed “operable" for PTE are hemodynamically

stable and have lesions proximal enough for intervention. The procedure involves cardiopulmonary

bypass, during which the patient is put into circulatory arrest via deep hypothermia for a maximum

of 20 minutes and attached to a heart-lung machine. The cardiovascular surgeon then inserts several

catheters into the patient, and makes an incision into the RPA. Any loose thrombus nearby are

removed, and, if necessary, the procedure is repeated in the LPA and its proximal vessels. Several pos-

sible complications include reperfusion injury (i.e., high flow areas that undergo too great of stress)

after surgery and arterial rupture. Overall mortality rate is low for the procedure at approximately

2-3% [177], and the 5-year survival rate estimates after PTE are approximately 75% [234].

2.6.3 Balloon pulmonary angioplasty (BPA)

Though PTE is highly effective, between 12% to 60% of patients are inoperable due to distal lesions

[115], located in the segmental and subsegmental arteries. Lesions may also be inaccessible due to

other comorbidities, such as coronary artery disease or left heart failure [55]. The optimal alternative

treatment for these patients is balloon pulmonary angioplasty (BPA) therapy, a minimally invasive
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procedure that uses a balloon catheter to mechanically disrupt the thrombi. BPA is distinct from

PEA in that occlusive lesions are not removed but altered to decrease lumen obstruction. Complete

BPA therapy requires multiple interventions in various segments over several sessions [130]. BPA is a

relatively novel approach, with its first two documented uses in CTEPH done in 1988 and 2001 [177].

The procedure requires inserting a guide catheter through the jugular or right femoral vein. Two

operators are required for BPA: one is in charge of traversing through the arteries with a guidewire

while the other manipulates the guide catheter. Pulmonary angiography assesses the hemodynamic

state proximal to and distal to the catheter location. The wire and catheter are transversed past

any lesion, and a balloon on the end of the catheter is inflated. This disrupts the thromboembolic

material, increasing the unobstructed lumenal area [130, 177]. Studies suggest a 90% 5-year survival

rate for patients undergoing BPA [215, 234].

Recent studies have utilized the FFR to assess the severity of the lesions [115]. FFR values vary

depending on lesion severity and location, as shown in Figure 2.10. In general, 2-4 segements of the

lung are treated at each BPA session. Targets and area for treatment are decided by the surgeon’s

experience, and the lesion type and location within the vasculature. One approach is to prioritize

the lesions in the lower lobe since these typically perfuse the largest parts of the lung. However,

it is unclear using current diagnosis techniques which lesions should be treated for maximum

hemodynamic improvement.

31



CHAPTER

3

IMAGE ANALYSIS

This chapter describes the imaging analysis used to construct pulmonary vascular networks. Prior

studies have integrated imaging data with cardiovascular modeling, yet the methods described

here are the first to generate large pulmonary arterial networks for 1D hemodynamic simulations.

These methods construct a novel pipeline that converts patient imaging data to individual vascular

segments. The final aspect of this pipeline is constructing a labeled, geometric tree and connectivity

matrix that are readily passed to the 1D hemodynamics model, enabling patient specific simulations

from imaging data.

Section 3.1 provides an overview of medical imaging data and prior image analysis studies.

Section 3.2 provides an overview of image segmentation and Section 3.3 provides details on how

the segmentation is reduced to a network of centerlines. Lastly, methods that convert the centerline

network to a connected, labeled graph for the hemodynamics model are described in Section 3.4.

3.1 Medical imaging analysis

Imaging and hemodynamic data are required to diagnose PH, but there are no tools for integrating

both data modalities. The structure and function of the pulmonary circulation are highly coupled,

hence a tool integrating both data modalities will provide information on their coupling in nor-

motensive and hypertensive scenarios. This approach has been utilized understanding systemic

artery disease [13, 129, 207], but not for PH.

We present an image analysis pipeline involving the three main steps: (1) image segmentation, (2)

centerline extraction, and (3) network labeling. Figure 3.1 depicts the necessary steps for converting

a set of imaging data to a labeled, directed network.
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Figure 3.1 Workflow for generating connected, labeled vascular networks from imaging data. First,
the imaging data must be analyzed and manually labeled as arteries or veins. Then, manual and semi-
automated segmentation methods are used to reconstruct the 3D geometry. After segmenting the arteries
(and veins), the resulting 3D geometry is passed into a skeletonization or centerline software (e.g., VMTK).
Lastly, algorithms presented in Section 3.4 separate the individual vessel components, determine their ra-
dius and length, and define the connectivity matrix for the entire vascular network. Note that the greyscale
color coding in the constructed network represent different vessels in the network.

3.2 Image segmentation

Image segmentation is the process of dividing an image into unique regions of interest. Image

segmentation can be done using manual, semi-automatic, or fully automatic tools.

Manual segmentation includes painting regions of interest and is accurate to the level of the operator

(e.g., a radiologist). These methods take substantial time especially if the goal is to obtain the

pulmonary vasculature. However, manual methods are the gold-standard for validating semi- and

fully automated methods [38, 203]. The review of pulmonary segmentation methods by Van Rikxoort

[242] notes that all state of the art segmentation methods first require a validation dataset generated

from manual segementation.

Semi-automated segmentation requires some user input in initializing and correcting of the segmen-

tation, but use algorithms to segment a majority of the tissue. These methods speed up segmentation

by using seed- and region-growing algorithms [10, 273]. Random Forest classification is another

semi-automated method readily avilable in the open source software ITK-SNAP [273]. Deformabale,

active-contour (or “snake") algorithm are also available in ITK-SNAP [273]. These algorithms begin

with a set of user painted initial seeds, and evolve a contour over the image domain by updating
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the contour at each time step. The time evolution of the contour depends on both the gradient

of the image intensity and the voxel intensity probability map [242, 273]. The cut-off time for the

evolution problem is determined by the user, and induces operator uncertainty (investigated here).

Semi-automated methods also include local and global thresholding (presented in detail later).

Fully-automated segmentation perform segmentation without user interaction. Some of the first

work on automated vascular segmentation include the “vesselness" filter introuduced by Frani

[69]. This method convolves the hessian of a Gaussian kernel with an image using various standard

deviations, and enhances tubular structures such as vascular segments. These filters can be used in

combination with shape analysis to automatically segment the lung lobes and nearby tissue [242].

Convolutional neural networks are the state-of-the-art methods for image segmentation. U-net

(2D images) [203] and 3D U-Net [38] consist of multiple up- and down-convolutions that integrate

whole image information with finer details obtained from convolved neural network layers.

In this work, we utilize a combination of manual and semi-automatic segmentation methods. For

the mouse, the vasculature is excised from the lung, heart, and other tissue before imaging. This

enables the use of global-thresholding, defined as

I (w ) =







1, wlower ≤w ≤wupper

0, else
(3.1)

where w is the image intensity at a given voxel location. This methodology can be used to restrict

intensity limits for other segmentation methods or segment all voxels in the image within these

bounds. In contrast to this discrete thresholding framework, continuous methods for thresholding

can also be used, as shown in Figure 3.2. ITK-SNAP has its own sigmoidal thresholding function,

and maps voxel intensities to a probability map. The sigmoidal functions available, shown in Figure

3.2, are

I (w ) =















































1

1+ e −γ(w−wlower)
, lower threshold

1

1− e −γ(w−wupper)
, lower threshold

1

1+ e −γ(w−wupper)
−

1

1+ e −γ(w−wlower)
, lower & upper threshold

(3.2)

where wlower and wupper are lower and upper thresholding limits and γ is a smoothness parameter.

The mice images are segmented using the contour evolution algorithms in ITK-SNAP. Three

representative segmentations performed using the software ITK-SNAP [273] are shown in Figure

3.3 using the same segmentation method but with different lower thresholding and smoothing

parameter values.

For the human image, segmentation is carried out by first manually segmenting the pulmonary
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Figure 3.2 Thresholding functions used in ITK-SNAP. A histogram of image intensities (left y label) are
plotting along with the thresholding functions (right y label) with a smoothing parameter value of
γ = 0.1,0.5, and 8.0. (a) A lower threshold sigmoidal function with wlower = 30. (b) An upper threshold
sigmoidal function with wupper = 30. (c) A combined upper and lower threshold function with wlower = 0
and wupper = 30.

γ= 6.0wlower= 28 γ= 6.1wlower= 31 γ= 5.1wlower= 33

Figure 3.3 Three segmentations of the same mouse image using ITK-SNAP. Each segmentation utilizes
the same number of active-contour evolutions, but has different lower threshold limits and smoothness
parameters. Notice the the right pulmonary arteries (left on the page) vary in connectivity and length for
differernt segmentation parameters.

arteries and veins in 3D Slicer [121]. Though the veins are not used in the computational model

here, they run parallel to the large arteries and must be quantified reduce vessel misclassification,

as shown in Figure 3.4. After the initial manual segmentation, a region growing operation captures

the distal vasculature. Manual editing is used to add or remove any vessels not captured.

3.3 Centerline extraction

The computational domain for the mathematical model requires that 3D segmentations are trans-

lated to a labeled, geometric tree. To do this, a centerline network is first extracted. This dissertation
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Figure 3.4 Example of a segmented human image. (a) Segmentation of the pulmonary arteries and veins
shown in the axial perspective. (b) 3D rendeding of segmented pulmonary arteries and veins. Images
viewed in 3D Slicer.

uses the Vascular Modeling Toolkit (VMTK) to reduce the 3D geometries to a centerline network [9,

10]. Centerlines are extracted from the segmentation surface meshes using native VMTK scripts and

stored in files containing (x , y , z ) coordinates. In brief, centerlines are determined as the shortest

weighted paths traced between an inlet and outlet point. These paths are constrained based on the

Voronoi diagram of the mesh, which is the set of 3D space closest to each individual point in the

mesh [10]. One of the main drawbacks of VMTK is that the user is tasked with determining the inlet

point (e.g., the MPA) as well as the outlet points (e.g., all the terminal vessels in a network). For the

pulmonary circulation, this task becomes manually cumbersome. Other methods, such as those

pursued in [35], use automated algorithms for mapping the centerlines of the network, and have

their own error-handling methods. An example centerline network constructed from the mouse

arterial tree using VMTK is presented in Figure 3.5.

3.4 Labeled, geometric tree

The last stage in the image analysis pipeline is to construct a labeled, geometric tree. To do this,

two main steps are required; the first is separating the centerlines into separate arcs connected by

junction nodes, and the second is labeling those arcs with a radius and length.

Arcs and nodes. The centerlines from VMTK start at each terminal vessel and end at the inlet of the

MPA; hence centerline data is duplicated in regions where two vessels merge. To determine the arcs

and nodes representing vessels, a connectivity matrix must be generated. No current software exists

for separating the data files from VMTK, hence custom, novel algorithms were developed. Unique

centerline coordinates are determined by finding intersection points at each bifurcation, labeled as

network junctions. All points between two junctions are labeled as vessels, or arcs, and saved as

separate data structures (see Algorithm 1). The points connected two arcs are labeled as junction

points, or nodes.
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Figure 3.5 Representative segmentation of the mouse vasculature (blue) overlaid with the centerlines
produced by VMTK (black). The segmentation was conducted using a deformable snake algorithm in
ITK-SNAP.

Unique data points are determined using MATLAB’s unique function. Every pathway is tracked

until it reaches a point that is shared by another full pathway, and labeled as an intersection node.

Arcs are determined as sets of points that align between any two nodes. The fact that any n number

of nodes in a network are guaranteed to have exactly (n−1) arcs between the nodes themselves limits

any double counting of arcs and allows for memory pre-allocation. This methodology is described

in Algorithm 2.

Labeling arcs. Both length and radii are determined for each vessel. The length is calculated as the

sum of euclidean distances between coordinate points in R3. For the radius, VMTK provides its

own estimates using maximally inscribed spheres [9]. In short, a sphere is maximally inscribed if no

other neighboring spheres contain it, and is directly related to the Voronoi diagram of the mesh.

However, non-smoothness of the segmentation or rapdily branching structures (e.g., pulmonary

arteries) induce uncertainty in the radii measurements. Moreover, radii estimates can be affected by

the regions immediately before or after a junction, denoted as the “ostium" region. In this work,

radii are calculated as the average value over the center 50% of points, avoiding estimates within the

ostium regions. A representative example of radii estimates and the calculated mean radius from

the human images is shown in Figure 3.6.
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Algorithm 1: Find shared and unique points
DefineC,r,U , l, and N , whereC is the matrix of centerline points (x , y , z ), r is the vector of radii

values, l is the vector of length values,U is the matrix of full pathways, and N is the size of the
centerline file

Initialize M = 0,K = 1.
for k = 1, 2, . . . , N −1 do

dC =
Æ

(C(k )−C(k +1))2

dR =R (k ) +R (k +1)
if dC > dR then

AppendC(K : k ) toU
M =M +1
K = k +1

Initialize γ= 106, v = 0, and V structure of individual vessel arcs
for k = 1, 2, . . . , M do

for j = k +1, . . . , M do
ifU (k )∩U ( j ) 6= ; then

γ=min
�

γ, Size
�

U (k )∩U ( j )
��

V (v ) =U (k )(0 : γ)
v = v +1

Algorithm 2: Determine network connectivity
Initialize g = 0 vessel generation, np to the inlet node,E ∈RN×3 the vector of coordinates for each

terminal outlet node, V the previously determine structure of vessel arcs, Vo l d =V the arcs that
have not yet been structured in the network,C the empty connectivity matrix, and k = 0 the vessel
number used for storage.

Inputs Vo l d , k ,C
Begin Recursive:
if np /∈V then

Mark vessel k as terminal inC and set Vo l d =Vo l d \V (k )
RETURNC

else
Find daughter nodes nd = np ∩V and set number of daughters found Nd = |nd |
for i = 1, . . . Nd do

CALL RECURSIVE with k = k +1, g = g +1, and np = nd (i )

RETURNC
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Figure 3.6 (a) Segmentation of human pulmonary arteries along with centerlines generated by VMTK. (b)
Zoom in of a vessel in the right upper lobe. (c) Radius values calculated by VMTK (blue circles) along with
25% and 75% cutoffs used to calculate the mean radius (red dashed line) used in the network model.
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CHAPTER

4

ONE-DIMENSIONAL FLUID DYNAMICS

This chapter provides an overview of the 1D computational hemodynamics. The core of the deriva-

tions are adapted from [166, 189]. Innovations in this thesis include a new energy loss model based

on the Darcy-Forchheiemer equation, integrating a radius-hematocrit dependent viscosity model

in the small vessels, multiscale hemodynamic predictions using the structured tree model, and

an algorithm for preserving total resistance in Windkessel boundary conditions for networks of

different sizes.

Section 4.1 describes the large vessel fluid dynamics equations solved in each vessel and Section

4.2 describes energy loss lesion models. Section 4.3 describes the small vessel models, and Section

4.4 discusses the boundary conditions for each vessel. Section 4.5 details the numerical scheme for

solving the 1D network model. Finally, Section 4.6 describes wave intensity analysis (WIA).

4.1 Large vessel hemodynamics

Fluid dynamics in the large pulmonary arteries are driven by the flow ejected from the RV. The force

exerted on the fluid is converted to a pulse-wave and propagated from the large arteries to the

capillary beds. Fluid dynamics in each vessel are modeled using the Navier-Stokes equations

∂ ρ

∂ t
+∇·

�

ρu
�

= 0 (4.1)

ρ

�

∂ u

∂ t
+u ·∇u

�

= ∇·σ+ρf (4.2)
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where ρ is the fluid density, u is the fluid velocity vector in Cartesian coordinates, σ is the stress-

tensor including both normal and shear stresses being exerted on the fluid, and f are the body

forces acting on the fluid (e.g., the force of gravity, f = −ρg zez , where ez is a unit vector in the

z direction). Assuming that the fluid is incompressible (i.e., constant density ρ), body forces are

negligible (e.g., in supine position), and that blood in the large arteries is Newtonian and viscous,

we get

∇·u = 0 (4.3)

ρ

�

∂ u

∂ t
+u ·∇u

�

= −∇p+µ∇2u. (4.4)

3D simulations of hemodynamics provide intricate flow and shear stress predictions [61, 129]. The

study by Spazzapan et al. [222] predicted pulmonary artery shear stress pre- and post-surgery for

CTEPH patients using a 3D fluid dynamics model, confirming an increase in shear stress after surgery.

Yang et al. [266] coupled a heart model to a 3D fluid dynamics model of the pulmonary artery and

predicted low shear stress in PAH patients relative to control. These detailed flow predictions, but

computations are too expensive for patient-specific analyses in the clinic. An alternative to detailed

3D models are 1D models, which can predict pulse wave propagation throughout a vascular tree

at a significantly lower computational cost. Several studies have validated 1D models against 3D

models, concluding that flow and pressure waveform predictions are comparable to the 3D models

[25, 268]. Another advantage of 1D models is that their reduced computational cost enables efficient

parameter estimation and uncertainty quantification (detailed in Chapter 5), necessary for in-clinic

models. For this reason, a 1D fluid dynamics model is considered here.

4.1.1 Governing equations

We assume that blood vessels are straight, cylindrical, and impermeable tubes (depicted in Figure

4.1), encouraging the use of cylindrical coordinates (r,θ , x ) with u = [ur , uθ , ux ]. Assuming that

the flow is irrotational and axysymmetric with no swirl, the fluid velocity is independent of the

circumferential component, i.e., u= [ur (r, x , t ),0, ux (r, x , t )]. Nondimensional analyses, derived

in Appendix A, show that the radial velocity is negligible relative to the axial velocity, i.e. ur � ux .

Thus, pressure only depends on the axial location and time, p ≡ p (x , t ). Under these assumptions,

the 1D mass conservation and momentum balance equations are

∂ (r ur )
∂ r

+
∂ ux

∂ x
= 0 (4.5)

∂ ux

∂ t
+ur

∂ ux

∂ r
+ux

∂ ux

∂ x
= −

1

ρ

∂ p

∂ x
+ν

�

1

r

∂

∂ r

�

r
∂ ux

∂ r

��

(4.6)

where ν=µ/ρ is the kinematic viscosity.

To predict volumetric blood flow, we integrate the system over the cross-sectional area. Beginning
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Figure 4.1 Schematic of a cylindrical blood vessel. Notice that the cross sectional area A(x , t ) = πR 2(x , t )
across the vessel length L can change in both space and time.

with (4.5),

2π

∫ R

0

�

∂ ux

∂ x
+
∂ (r ur )
∂ r

�

r d r = 0, (4.7)

where R =R (x , t ) is the outer radius of the blood vessel at location x and time t . Applying Leibniz

rule to the first term gives

2π

∫ R

0

�

∂ ux

∂ x
+
∂ (r ur )
∂ r

�

r d r = 2π
∂

∂ x

∫ R

0

ux r d r −2π
�

∂ R

∂ x
ux r

�

r=R
+2π [r ur ]r=R . (4.8)

Enforcing a no-slip condition at the boundary r =R (x , t ), where the fluid velocity is equal to the

velocity of the wall, i.e. ux

�

�

r=R
= 0 and ur

�

�

r=R
= ∂ R
∂ t , gives

2π
∂

∂ x

∫ R

0

ux r d r −2π
�

∂ R

∂ x
ux r

�

r=R
+2π [r ur ]r=R = 2π

∂

∂ x

∫ R

0

ux r d r +2πR
∂ R

∂ t
. (4.9)

We define the volumetric flow rate over the cross-section and the time derivative of the area as

q (x , t ) = 2π

∫ R

0

ux r d x , 2πR
∂ R

∂ t
=
∂ A

∂ t
(4.10)

Inserting Eq. (4.10) in Eq. (4.9) gives
∂ q

∂ x
+
∂ A

∂ t
= 0. (4.11)

Similarly, integrating Eq. (4.6) over the cross section gives

2π

∫ R

0

�

∂ ux

∂ t
+ur

∂ ux

∂ r
+ux

∂ ux

∂ x

�

r d r = 2π

∫ R

0

�

−
1

ρ

∂ p

∂ x
+ν

�

1

r

∂

∂ r

�

r
∂ ux

∂ r

���

r d r. (4.12)

42



The first term is simplified as

2π

∫ R

0

∂ ux

∂ t
r d r =

∂

∂ t
2π

∫ R

0

ux r d r −2π
�

ux
∂ R

∂ t

�

R

=
∂ q

∂ t
(4.13)

where the nonslip condition ux

�

�

R
= 0 and the definition of q (x , t ) are used. Integrating the next

momentum term by parts and applying the no-slip condition gives

2π

∫ R

0

ur
∂ ux

∂ r
r d r = 2π

�

[r ur ux ]
R
0 −

∫ R

0

ux
∂

∂ r
(r ur )d r

�

=−2π

∫ R

0

ux
∂

∂ r
(r ur )d r. (4.14)

Using the mass balance relation, we get

−2π

∫ R

0

ux
∂

∂ r
(r ur )d r = 2π

∫ R

0

ux
∂ ux

∂ x
. (4.15)

Combining Eq. (4.15) with the third term in Eq. (4.12) results in

2π

∫ R

0

ux
∂ ux

∂ x
r d r +2π

∫ R

0

ux
∂ ux

∂ x
r d r = 2π

∫ R

0

∂ u 2
x

∂ x
r d r. (4.16)

The pressure gradient can be integrated directly, giving

2π

∫ R

0

1

ρ

∂ p

∂ x
r d r =

1

ρ

∂ p

∂ x
2π

∫ R

0

r d r =
A

ρ

∂ p

∂ x
. (4.17)

Finally, integrating the viscous shear force on the right hand side of the momentum equation gives

2π

∫ R

0

ν

�

1

r

∂

∂ r

�

r
∂ ux

∂ r

��

r d r = 2πν

∫ R

0

�

∂

∂ r

�

r
∂ ux

∂ r

��

d r

= 2πν
�

r
∂ ux

∂ r

�

R
. (4.18)

In summary, equations (4.13), (4.16), (4.17), and (4.18) give the 1D momentum balance equation

∂ q

∂ t
+2π

∫ R

0

∂ u 2
x

∂ x
r d r +

A

ρ

∂ p

∂ x
= 2πν

�

r
∂ ux

∂ r

�

R
. (4.19)
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4.1.2 Velocity Profile

To write the momentum equation as a function of q , we need to specify a velocity profile over the

cross-section [249]. For a fully developed, parabolic flow, we have

ux = 2ūx

�

1−
r 2

R 2

�

, 0≤ r ≤R , (4.20)

which is a Poiseuille profile, where ūx is the mean velocity. The maximum velocity is 2ūx at r = 0,

and ūx = 0 at r =R , satisfying the no slip condition. This velocity profile holds for an infinite pipe

without side branches. However, the branching of the vasculature inhibits a strictly Poiseuille profile

[248]. Instead, most 1D models [4, 41, 223, 268] use a more general, power-law profile

ux =
χ +2

χ
ūx

�

1−
� r

R

�χ�

(4.21)

where χ = 2 gives the Poiseuille profile and χ = 9. Numerous authors [4, 41, 223] use χ = 9, which

appears more flat (see Figure 4.2).

An alternative profile resembling the in-vivo, plug-like velocity [137, 166] is the Stokes-boundary

layer profile

ux =







ūx , r ∈ [0, R −δ)

ūx
R − r

δ
, r ∈ [R −δ, R ]

(4.22)

where δ (cm) is the boundary layer thickness. Lighthill [137] concluded that the boundary layer can

be approximated by δ =
p

T ν/2π, where T (s) is the cardiac cycle length. Within this boundary

layer, the velocity decreases from the mean value to zero (satisfying the no-slip condition).

Finally, a number of recent studies (e.g., [16, 22, 198]) have used Womersley theory to predict a

profile that varies with the cardiac cycle. However, the review by van de Vosse and Stergiopolus [249]

has shown that adding this component does not change flow predictions significantly. Therefore, in

this study we chose the simpler Stokes boundary layer.

Using the Stokes-boundary layer profile, the right hand side of (4.19) evaluated at r =R is

2πν
�

r
∂ ux

∂ r

�

R
=−

2πνR ūx

δ
=−

2πνR

δ

q

A
. (4.23)

Using Liebniz rule, the second term in Eq. (4.19) can be written as

∫ R

0

∂ u 2
x

∂ x
r d r =

∂

∂ x

∫ R

0

u 2
x r d r −

�

u 2
x r
∂ R

∂ x

�

r=R

=
∂

∂ x

∫ R

0

u 2
x r d r (4.24)
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Figure 4.2 The Poiseuille, power-law, and Stokes boundary layer velocity profiles as described in equations
(4.20), (4.21), and (4.22).

which holds because of the no-slip condition. Using Eq. (4.22) gives

2π
∂

∂ x

�

∫ R

0

u 2
x r d r

�

= 2π
∂

∂ x

�

∫ R−δ

0

u 2
x r d r +

∫ R

R−δ
u 2

x r d r

�

= 2π
∂

∂ x

�

∫ R−δ

0

(ūx )
2r d r +

∫ R

R−δ

�

ūx
R − r

δ

�2

r d r

�

= 2π
∂

∂ x

�

ū 2
x

�

1

2
R 2−

2

3
δR +

1

4
δ2
��

=
∂

∂ x

�

ū 2
x

�

πR 2−
4

3
δπR +

1

2
πδ2

��

. (4.25)

Assuming that the boundary layer is much smaller than the radius, δ/R � 1, and using πR 2 = A and

q = u A, we get

∂

∂ x

�

ū 2
x

�

πR 2−
4

3
δπR +

1

2
πδ2

��

=
∂

∂ x

�

ū 2
x A

�

1−
4δ

3R
+
δ2

R 2

��

≈
∂

∂ x

�

ū 2
x A
�

=
∂

∂ x

�

q 2

A

�

(4.26)

Thus, the final mass-momentum system is

∂ q

∂ x
+
∂ A

∂ t
= 0 (4.27)

∂ q

∂ t
+
∂

∂ x

�

q 2

A

�

+
A

ρ

∂ p

∂ x
= −

2πνR

δ

q

A
. (4.28)
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4.1.3 Constitutive law

The 1D equations above contain three unknowns: volumetric flow q , cross-sectional area A, and

pressure p . To close the system, a constitutive model, i.e., a stress-strain relationship, for the blood

vessel is needed. The stress, σ is the force per unit volume acting on the material, and the strain, ε,

is a dimensionless measure of relative displacement from some reference point.

Assuming that the vessel is a cylinder made of a linear, elastic, homogeneous, and isotropic

material, stress-strain relation is

σr r = E εr r +κ (σθθ +σx x ) (4.29)

σθθ = E εθθ +κ (σr r +σx x ) (4.30)

σx x = E εx x +κ (σr r +σθθ ) . (4.31)

where εi i and σi i are the normal strain and normal stress in the i th direction, E is the Young’s

modulus, and the κ is the Poisson’s ratio.

For a pressurized vessel with no external force,σr r

�

�

�

R
=−p andσr r

�

�

�

R+h
= 0, where p is the blood

pressure in the lumen. If the wall thickness h is non-negligible relative to the lumen radius, then

the radial stressσr r is significant and varies from r =R to r =R +h (see Figure 4.3). If the wall is

thin compared to the vessel radius (h �R ), thenσθθ is approximately constant across the wall. As

noted by Humphrey [104], the thin wall assumption allows us to approximate the mean radial stress

as σ̄r r ≈−p/2.

The force exerted by the vessel wall must balance with the fluid pressure (shown below in Figure

4.3) at the outer radius of the lumen R in the loaded configuration. The pressure acting on the

lumen is uniform over the area, i.e. p ≡ p sin(θ ). This balances the circumferential stress acting in

the normal direction over both half-sections of the tube shown in Figure 4.3, giving

∫ L

0

∫ π

0

p sin(θ )Rdθd x −2

∫ L

0

∫ R+h

R

σθθd r d x = 0

=⇒
∫ L

0

∫ π

0

p sin(θ )Rdθd x = 2

∫ L

0

∫ R+h

R

σθθd r d x . (4.32)

Since the forces are applied uniformly, we can write

p R

∫ L

0

∫ π

0

sin(θ )dθd x = 2σθθ

∫ L

0

∫ R+h

R

d r d x

=⇒ 2p R L = 2σθθ L

=⇒ σθθ =
p R

h
. (4.33)

Note that this equation holds for the loaded configuration [104]. Since h �R ,
p

2
�

R

h
p , and hence

σr r � σθθ . Assuming that the vessel is tethered in the longitudinal direction (along the x axis),

46



𝒑

𝒉

𝝈𝜽𝜽

𝝈𝒛𝒛

𝝈𝒓𝒓

𝝈𝜽𝜽

𝒑

𝒉

𝝈𝜽𝜽

𝝈𝒓𝒓 𝑅

𝝈𝜽𝜽

𝑳

𝑟 = 𝑅

𝑟 = 𝑅 + ℎ𝝈𝒓𝒓 𝑅 + ℎ𝑟

𝑥

Figure 4.3 Stress exerted on a thin (left) and thick (right) walled pressurized cylinder.

εx x � 1. Then, the stress-strain relationship for the axial direction is

σx x = E εx x +κ (σr r +σθθ )≈ κσθθ . (4.34)

Usingσx x in the circumferential stress gives

σθθ = E εθθ +κσx x = E εθθ +κ
2σθθ

=⇒ εθθ =
(1−κ2)

E
σθθ . (4.35)

The Lagrangian strain in the circumferential direction of the vessel wall due to blood pressure is

εθθ =
2πR −2πr0

2πr0
=

R − r0

r0
(4.36)

where r0 is the reference radius and R is the current radius. Combining the results from Eq. (4.33)

and (4.36), we can rewrite Eq. (4.35) as

εθθ =
(1−κ2)

E
σθθ

=⇒
R − r0

r0
=
(1−κ2)

E

R

h
p

=⇒ p =
E h

(1−κ2)r0

�

R − r0

R

�

(4.37)

=
E h

(1−κ2)r0

�

1−

√

√A0

A

�

. (4.38)
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Lastly, assuming that the vessel wall is incompressible, corresponding to κ= 1
2 , gives

p (x , t ) = p0+
E h

(1−κ2)r0

�

1−

√

√A0

A

�

, (4.39)

=
4

3
βw (r0)

�

1−

√

√A0

A

�

(4.40)

where p0 is the reference pressure (in the unloaded, stressed configuration), and βw (r0) = E h/r0.

Note that if the wall displacements are small, then

R − r0

R
≈

R − r0

r0
(4.41)

which is the Eulerian strain. This change in the denominator in the strain to r0 instead of R , giving

an alternative constitutive equation

p (x , t ) = p0+
4

3
βw (r0)

�
√

√ A

A0
−1

�

. (4.42)

Eq. (4.39) and (4.42) are approximately equivalent under the small strain assumption. As detailed in

Section 2.3, the pulmonary vascular wall is heterogenous and varies with vessel caliber. To account

for changes in wall composition and stiffening, vascular stiffness (shown in Figure 4.5) is modeled

as [166]
E h

r0
= k1e −k2r0 +k3, (4.43)

where k1 (g/cm/s2), k2 (s) , and k3 (g/cm/s2) are parameters describing the rate at which vessels

stiffen with decreasing radius. The two constitutive models listed above have been used in numerous

1D blood flow studies [3, 4, 16, 166, 168]. Some studies advocate the use of Eq. (4.39) over Eq. (4.42),

as in the limit of high strains, Eq. (4.39) is bounded where as Eq. (4.42) blows up (see Figure 4.4).

However, as discussed in Section 2.3, the vessel wall consists of collagen, elastin, and smooth

muscle cells, which deform in a nonlinear and viscoelastic fashion. Several 1D studies, mostly study-

ing flow in the systemic circulation, e.g. [21, 240], have used more advanced wall models to account

for this behavior. The pulmonary arteries operate under lower pressure, but only a few studies have

examined the deformation of these. Examples include the study by Qureshi et al. [191], who investi-

gated a non-linear elastic model represented by a tangent function, and showed that the nonlinear

wall model provides a better fit to normotensive hemodynamics while the linear-wall model is

comparable in disease when the pulmonary walls have thickened and stiffened. Previous studies

have utilized viscoelastic constitutive laws in the 1D setting [21, 225], achieving similar pressure-area

relationships seen during ex-vivo testing. Conditioned materials, i.e. those cyclically loaded and

unloaded until the constitutive law is strain-rate independent, can be modeled as pseudoelastic

materials [74]. In this framework loading and unloading of the material are modeled as separate

elastic materials with a specific pseudo-strain energy function. Strain-energy density functions,
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2

4

6

8

10

12 105

0

Eh
/r 0

(g
/c

m
/s

2 )

r0

0.80.60.40.20
(cm)

Figure 4.5 Stiffness function as described by Eq. (4.43) and originally derived in [166]. Note that smaller
vessels have a greater stiffness. Plot is generated with k1 = 106, k2 = 22, and k3 = 8×104.

which relate material properties to the material deformation, can also account for wall heterogenity

and the interaction of elastin, collagen, and SMCs. These are studied as hyperelastic models [97,

104]. Hyperelastic models describe an elastic material that can undergo large deformations [97].

These have more recently been integrated into the 1D modeling framework for systemic vessels [44],

and are an active research area.
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4.1.4 Summary

Based on the above derivations, the final system of equations is

∂ q

∂ x
+
∂ A

∂ t
= 0 (4.44)

∂ q

∂ t
+
∂

∂ x

�

q 2

A

�

+
A

ρ

∂ p

∂ x
= −

2πνR

δ

q

A
(4.45)

p (x , t ) = F (A, A0,βw ), (4.46)

whereF is the constitutive law, dependent on the material parameters βw .

4.2 Stenosis models

Vascular stenoses are a fatal vascular wall abnormality that obstructs the vascular lumen. Modeling

this abnormality is especially important when simulating emboli in the large pulmonary arteries

due to CTEPH. The physics of flow through a constriction parallel ideas for gas flow through a nozzle

[125]. Flow approaching the stenosis increases in velocity as the area of the vessel decreases. The

sudden increase in area distal to the stenosis decreases the fluid velocity and induces a pressure

(head) loss. This increases the resistance to flow, causing flow redistribution in the network, and

flow separation, decreasing the wall shear stress. This is one physiological mechanism responsible

for plaque rupture in most heart attacks and stroke [125].

One of the first models compared to experimental data was developed by Young and Tsai [269,

270]. Using polyester resin tubes with specified area reductions, the authors ran several experiments

with both axisymmetric and nonsymmetric obstructions using steady and pulsatile flow. Young and

Tsai concluded that pressure drop across the tube stenosis can be modeled by

∆pr i ng =
µKv

2rp
u +

ρKt

2

�Ap

As
−1

�2

|u |u +ρKu , L
∂ u

∂ t
(4.47)

or written in terms of q/Ap

∆pr i ng =
µKv

2π(rp )3
q +

ρKt

2(Ap )2

�Ap

As
−1

�2

|q |q +
ρKu L s

Ap

∂ q

∂ t
. (4.48)

Here, Ap = πr 2
p is the area prior to the stenosis, and L s is the length of the stenosis. The above

equation has three main components: (1) losses due to viscous forces (Kv ), (2) losses due to turbulent

forces due to the constriction and expansion of the tube (Kt ), and (3) losses due to inertial effects

(Ku ). Kv is strongly dependent on the geometry of the stenosis, and can be approximated as [268],

Kv = 16
L s

rp

�

A2
p

A2
s

�

, (4.49)

whereas Kt = 1.52 and Ku = 1.2 are assumed to be geometry independent.
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This model has been used to study the effects of stenoses on systemic artery [22, 136] and

coronary artery disease [25]. Studies by Bezerra et al. [25] and Yin et al. [268] both showed that

3D fluid dynamic predictions across systemic stenoses can be captured using Eq. (4.48) in a 1D

hemodynamic model. Only one previous study by Spilker et al. [223] has considered a similar

pressure loss model in the pulmonary circuit. A detailed description of how these loss coefficients

affect 1D model predictions can be found in [22].

Equation (4.48) is valid for ring-like, concentric lesions, but pulmonary lesions common in

CTEPH take several different forms. Web-like lesions are the most common type, and have fibrous,

heterogenous bands that impede flow (see Figure 2.10). As illustrated in Figure 4.6, these lesions can

be paralleled to a loosely packed porous media. Noting that the flow through these lesions provide a

non-negligible Reynolds number, we propose a pressure loss based on the Darcy-Forchhemeier

equation

∆pweb = Lw

�

µ

Kperm

q

A
+ρKw

�q

A

�2
�

, (4.50)

where Lw (cm) is the length of the obstructed area, Kp e r m (cm2) is the permeability of the web-like

lesion, and Kw (dimensionless) is the pressure loss coefficient due to inertial effects. As discussed in

[126], one can approximate Kw =G /
Æ

Kp e r m , used here as well.

Both Eq. (4.48) and Eq. (4.50) are enforced by solving a root-finding problem. The Jacobian is

derived analytically, and provided in Appendix B.4.

𝐿!

𝐴" 𝐴!

𝐿#
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(b)

𝐾"$%&

Figure 4.6 Depiction of how ring- and web-like lesions are modeled. (a) Ring-like lesions are modeled as
concentric, short lesions are characterized by their unobstructed area, Ap , obstructed area As , and length
L s . (b) Heterogenous strands of fibrous material characterize web-like lesions. The degree of obstruction is
determined by the length of the lesion, Lw , and the permeability of the web, Kp e r m .
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4.3 Small vessel hemodynamics

Imaging data can provide structural information about the large vessels in the network. Since image

resolution is limited, a model of the small vessels and microvasculature is required at the end of the

large vessels. Systemic capillary models utilize steady, viscous dominate Stokes’ flow, and account

for the size of red blood cells as they transverse the capillary beds [212]. These models can account

for the diffusion of substances across the capillary-tissue barrier. A simpler approach is to model

the capillaries as a single, porous media, as done by Coccarelli et al. [43]. Their work lumped the

capillaries into a single poro-elastic tube and attached this porous media model to a 1D network.

Pulmonary capillary models following Fung’s “sheet" model approach [71, 73] and have also been

coupled to large vessel 1D models [40].

In this dissertation, two modeling approaches are pursued. The first is the most common

approach [4, 5, 21, 58], and models the distal vasculature as an electrical circuit. Otto Frank [170]

compared the elastic nature of the aorta to a German fire engine, called a “Windkessel," and is now

synonymous with the electrical circuit analogy that consists of a resistor in series and a resistor and

capacitor in parallel.

The other small vessel model considered her is the structured tree model, developed by Olufsen

[166]. The structured tree represents the downstream vasculature as a self-similar fractal tree. The

fluid dynamics in the small vessels are viscous dominant, leading to analytical pressure and flow

solutions in the frequency domain. This approach models the vessels up to the capillaries, and

allows for small vessel predictions in the absence of imaging data.

4.3.1 Windkessel model

The Windkessel model parallels the vascular tree to an electrical circuit, where pressure is analogous

to voltage, flow to the current, vascular resistance to electrical resistance, and compliance to ca-

pacitance [259]. The 3 element Windkessel model stems from the idea that blood leaving the heart

overcomes a proximal resistance Rp (mmHg s/ml) (sometimes called characteristic impedance, Zc )

and then traverses the vasculature downstream which has some total compliance CT (ml/mmHg)

and distal resistance Rd (mmHg s/ml), as depicted in Figure 4.7. This is modeled by an electrical

R-C-R circuit, with a resistor in series and then a resistance and capacitor in parallel. The Windkessel

model is represented by the ordinary differential equation

d p

d t
=Rp

�

d q

d t

�

+q

�

Rp +Rd

Rp Rd

�

−
p

Rd CT
. (4.51)

Since the pumping of the heart is nearly periodic, we can rewrite the variables q , and p as periodic
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functions using the discrete, Fourier transform:

q (x , t ) =
∞
∑

k=−∞
Q (x ,ωk )e

iωk t , (4.52)

p (x , t ) =
∞
∑

k=−∞
P (x ,ωk )e

iωk t , (4.53)

whereωk = 2πk/T is the angular frequency. The frequency domain quantities can also be expressed

in terms of their time-domain equivalent

Q (x ,ω) =
1

T

∫ T /2

−T /2

q (x , t )e −iωk t d t (4.54)

P (x ,ω) =
1

T

∫ T /2

−T /2

p (x , t )e −iωk t d t , (4.55)

In the frequency domain, the Windkessel model is

iωP e iωt = iωRpQ e iωt +Q e iωt

�

Rp +Rd

Rp Rd

�

−P e iωt 1

Rd CT

=⇒ P
�

iω+
1

Rd CT

�

=Q

�

iωRp +
Rp +Rd

Rp Rd

�

=⇒
P

Q
≡ Z =

Rp +Rd + iωCT Rp Rd

1+ iωCT Rd
(4.56)

where Z (mmHg s/ml) is the impedance.

𝑄
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𝑄
(a) (b)

Figure 4.7 (a) Physiological depiction of the 3 element Windkessel. Blood ejected out of the heart must
overcome some proximal resistance, Rp , and then flows through an artery with total compliance CT and
distal resistance Rd . (b) Electrical circuit analog for the Windkessel model. The circuit consists of a resistor
in series with a resistor and capacitor in parallel.
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Figure 4.8 Schematic of the structured tree. At each bifurcation, daughter vessels are scaled from the par-
ent vessel radius by the radius scaling factors α and β , 0 < β ≤ α < 1. The “α" pathway (denoted in red) is
the longest path in the network, whereas the “β" pathway (denoted in blue) is the shortest pathway.

4.3.2 Structured tree

Rather than lump the entire downstream vasculature into an electrical circuit, the structured tree

model assumes that vessels distal to the large arteries are represented by fractal, self-similar trees,

shown in Figure 4.8. Each daughter vessel is related to its parent via the radius scaling factors α

and β , and a length to radius ratio L r r . The dimensions of any vessel in the structured tree can

be expressed in terms of the terminal large artery radius rt e r m proximal to the beginning of the

structured tree

rn ,m = rt e r mα
nβm , Ln ,m = L r r rn ,m . (4.57)

The network is truncated once reaching a terminal radius rmi n .

These scaling factors require either ex-vivo measurements (e.g., lungs taken out of the body) or

super-high resolution imaging. Olufsen [166] determined scaling factors for the systemic circulation

using literature data. As mentioned in Section 2.2, the pulmonary vasculature branches rapidly,

therefore this factors are not valid for the pulmonary arterial tree. Qureshi et al. [189]used pulmonary

artery literature data from multiple studies, deducing a length to radius ratio of

L r r =







15.75r 1.10 r ≥ 0.005

1.79r 0.47 r ≤ 0.005
. (4.58)

The study determined α= 0.846 and β = 0.698, similar to [166]. A recent study in mice by Chambers

et al. [35] estimated these parameters from high-resolution imaging data from noromotensive and

HPH mice. They also found that α= 0.88 and β = 0.67 in normotensive mice, whereas α= 0.86 and

β = 0.66 in HPH, similar to the findings of Qureshi et al. [189]. However, since mice are smaller than
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humans, the length to radius ratio was determined as

L r r =







13.4e 0.00771r0 , normotensive

10.9e 0.00797r0 , hypertensive.
(4.59)

Similar to the large vessels, hemodynamics are computed in the structured tree. However, fluid

flow in the small arteries and arterioles is viscous dominant, hence the nonlinear inertial terms

in Eq. (4.46) can be disregarding. A detailed derivation of this is provided by Olufsen [166], and is

summarized here. Rewriting the momentum equation without the nonlinear inertial term gives

∂ ux

∂ t
+

1

ρ

∂ p

∂ x
=
ν

r

∂

∂ r

�

r
∂ ux

∂ r

�

. (4.60)

Assuming that Q , P are periodic as before, and defining

ux (x , t ) =
∞
∑

k=−∞
U (x ,ωk )e

iωk t , (4.61)

U (x ,ω) =
1

T

∫ T /2

−T /2

ux (x , t )e −iωk t d t , (4.62)

(4.63)

we can write Eq. (4.60) as

iωkU e iωk t +
1

ρ

∂ P

∂ x
e iωk t =

ν

r

∂

∂ r

�

r
∂U

∂ r

�

e iωk t (4.64)

=⇒ ν
∂ 2U

∂ r 2
+
ν

r

∂U

∂ r
− iωkU =

1

ρ

∂ P

∂ x
. (4.65)

Eq. (4.65) is a second-order, linear, nonhomogenous differential equation, whose analytical solution

is

U =
1

ρ

∂ P

∂ x

�

1−
J0(r w0/r0)

J0(w0)

�

, w0 =
p

i 3w2 =

√

√ i 3r 2
0ω

ν
, (4.66)

where w (nondimensional) is the Womersley number and J0(x ) is the zeroth order Bessel function

of the first kind. The flow Q is determined by integrating over the cross-section

Q = 2π

∫ r0

0

U r d r =
2π

iωρ

∂ P

∂ x

∫ r0

0

�

1−
J0(r w0/r0)

J0(w0)

�

r d r, (4.67)

=
2π

iωρ

∂ P

∂ x

�

1− FJ

�

, (4.68)

55



where FJ is the ratio of first and zeroth order Bessel functions, i.e.

FJ =
2J1(w0)

w0 J0(w0)
. (4.69)

Note that using the linear pressure-area relation in Eq. (4.39) can be rewritten as

p = p0+
4

3
βw

�

1−

√

√A0

A

�

=⇒ A =
�

1−
3

4

(p −p0)
βw

�−2

A0(x ). (4.70)

Expanding ∂ A
∂ t in terms of p and linearizing gives

∂ A

∂ t
=
∂ A

∂ p

∂ p

∂ t

=
3

2βw
A0

�

1−
p −p0

βw

�−3 ∂ p

∂ t
. (4.71)

Under the assumption that vessels are sufficiently small and stiff, i.e. E h � r0p and p/βw ≈ 0, we

can approximate the compliance C = ∂ A
∂ p above as

C =
3

2βw
A0

�

1−
p −p0

βw

�−3

(4.72)

≈
3

2βw
A0 (4.73)

giving
∂ A

∂ t
=C

∂ p

∂ t
. (4.74)

A similar approach using Eq. (4.42) gives

A =
�

1+
(p −p0)
βw

�2

A0(x ), (4.75)

C =
3

2βw
A0

�

1+
(p −p0)
βw

�

(4.76)

≈
3

2βw
A0, (4.77)

hence, the constitutive laws given by equations (4.39) and (4.42) give the same compliance.

The mass conservation equation in the frequency domain is

∂ A

∂ t
+
∂ q

∂ x
= 0 (4.78)

=⇒ iωC P +
∂Q

∂ x
= 0. (4.79)
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Analytical solutions to the two equations are obtained by first differentiating Eq. (4.79) with respect

to x and solving for P , giving
∂ P

∂ x
=
−1

iωC

∂ 2Q

∂ x 2
. (4.80)

Using this in the momentum balance, Eq. (4.68), gives

iωQ =
A0

iωCρ

∂ 2Q

∂ x 2

�

1− FJ

�

=⇒
∂ 2Q

∂ x 2
+

ω2Cρ

A0

�

1− Fj

�Q = 0

=⇒
∂ 2Q

∂ x 2
+
ω2

c 2
Q = 0, (4.81)

where c =
p

A0(1− FJ )/ρC . The analytical solutions for both Q and P are written as

Q (x ,ω) = a cos
�ω

c
x
�

+ b sin
�ω

c
x
�

(4.82)

P (x ,ω) =
i

gω

�

b cos
�ω

c
x
�

+a sin
�ω

c
x
��

, (4.83)

gω =

√

√C A0(1− FJ )
ρ

, (4.84)

where a and b are unknown integration constants. The above solutions hold ∀ωk 6= 0. For the zeroth

frequency, we revisit Eq. (4.65) and setωk = 0

1

ρ

∂ P

∂ x
=
ν

r

∂

∂ r

�

r
∂U

∂ r

�

=⇒
∂ P

∂ x

r

µ
=
∂

∂ r

�

r
∂U

∂ r

�

.

Integrating a with respect to r twice gives

∂ P

∂ x

r 2

4µ
=U +C1 ln (r )+C2. (4.85)

The fluid velocity must be bounded at r = 0, hence C1 = 0. Enforcing the no-slip condition U (r0) = 0

then gives

U =
∂ P

∂ x

r 2− r 2
0

4µ
(4.86)

=⇒ Q = 2π

∫ r0

0

U r d r =−
πr 4

0

8µ

∂ P

∂ x
, (4.87)

which is a Poiseuille flow.

To propagate the solution throughout the structured tree, we relate P (x ,ω) and Q (x ,ω) using
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the impedance, Z (x ,ω) = P (x ,ω)/Q (x ,ω). Using Eq. (4.82) and (4.83) in the impedance relation

gives

Z (x ,ω) =
P (x ,ω)
Q (x ,ω)

=
i (b cos(ωx/c )−a sin(ωx/c ))
g (a cos(ωx/c ) + b sin(ωx/c ))

. (4.88)

Then impedance at x = 0 and x = L are

Z (0,ω) =
i

g

b

a
,

Z (L ,ω) =
i (b cos(ωL/c )−a sin(ωL/c ))
g (a cos(ωL/c ) + b sin(ωL/c ))

. (4.89)

Combining these equations gives the impedance at x = 0

Z (0,ω) =
i g −1 sin(ωL/c ) +Z (L ,ω)cos(ωL/c )

cos(ωL/c ) + i g Z (L ,ω)sin(ωL/c )
. (4.90)

The zero-frequency value, Z (0,0), analogous to the DC component in electrical circuit theory, is

given by

lim
ω→0

Z (0,ω) =
8µl

πr 4
0

+Z (L , 0), (4.91)

which is the same as a Poiseuille resistance.

We assume continuity of pressure and conservation of flow at each junction in the small vessels

of the structured tree. Under these assumptions, the impedance at a junction mimics resistors in

parallel, i.e.

Zp (L ,ω) =

�

1

Zd1
(0,ω)

+
1

Zd2
(0,ω)

�−1

. (4.92)

At the terminal end of the structured tree, where r < rmi n , a constant terminal impedance Z (L , 0) =

Zt r m is prescribed. Previous studies assume that Zt r m is negligible [53, 168, 169]. However, the

thousands of vessels in the structured tree lead to Q values on the order of 10−5 − 10−8 (ml/s) at

the terminal ends. For this reason, the capillary pressure, Pt r m = Zt r m ·Qt r m is only non-negligible

when Zt r m ∈ [104, 109].

Once large vessel hemodynamics are determined, the resulting waveforms can be propagated

through the structured tree. The impedance and pressure at x = 0 are determined by

P (L ,ω) = P (0,ω)cos (ωL/c )−Q (0,ω)
i

gω
sin (ωL/c ) , (4.93)

Z (L ,ω) =
i g −1
ω sin(ωL/c )−Z (0,ω)cos(ωL/c )

gω cos(ωL/c )Z (0,ω)− cos(ωL/c )
, (4.94)

forω 6= 0. The flow is calculated from the impedance relation, i.e. Q (L ,ω) = P (L ,ω)/Z (L ,ω). For the
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Figure 4.9 Nonlinear viscosity function originally proposed in [185] that depends on both vessel diameter
and the hematocrit, Hct. Note that viscosity becomes more influential for smaller vessels and that viscosity
magnitude is greater for greater Hct.

zeroth frequency, the solution is

P (L , 0) = P (0, 0)−Q (0, 0)
8µL

πr 4
, (4.95)

Z (L , 0) = Z (0, 0)−
8µL

πr 4
(4.96)

This enables pressure and flow predictions in any daughter vessel provided the pressure and flow of

the parent are known [169]. To determine the impedance at the end of the larger arteries, Zt r m is

used to calculate the inlet impedance Z (0,ω) at each terminal branch of the structured tree. Then,

vessels are combined using Eq. (4.92). In this manner, the impedance of the entire tree is calculated

recursively starting from the terminal end, giving the total impedance.

Prior studies assumed a constant viscosity in the terminal vessels [169, 189]. However, the non-

Newtonian effects of blood viscosity µ (and hence kinematic viscosity ν) become more influential

as the vessel radii decreases, requiring a radius dependent viscosity. The investigation by Pries et al.

[185] suggested

µ∗(r0) =
�

1+ (µ0.45−1)

�

(1−Hct)C −1

(1−0.45)C −1

�

D
�

D, (4.97)

µ0.45(r0) = 6e −0.17r0 +3.2−2.44e −0.12r 0.645
0 , (4.98)

whereD = (2r0/ (2r0−1.1))2 andµ0.45(r0) is the relative viscosity at an average hematocrit level of 0.45.

Figure 4.9 shows the viscosity five different Hct values. The addition elevates the viscous resistance

in the smallest arterioles, improving the physiological relevance of the modeling framework.
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4.4 Network model

The 1D equations (4.27) and (4.28) are hyperbolic PDEs, with characteristics pointing in the opposite

direction. The system has three state variables p , q , and A, but only require a numerical solution for

q and A, since p ≡ p (A). Hence, a boundary condition at x = 0 and x = L is only required for one of

the states. The other state can be determined from the characteristic system [166].

4.4.1 Inflow condition

The network inlet can be coupled to a heart model or supplied an inflow waveform. In this work, a

measured flow waveform is prescribed (see Figures 2.16 and 2.17 for mouse and human data).

4.4.2 Junction conditions

At a junction with n daughters, each vessel requires a boundary condition at the inlet and outlet. To

link hemodynamics at junctions, continuity of flow is enforced:

qp (L , t ) =
nv
∑

i=1

qdi
(0, t ) ∀t ∈ [0, T ], i = 1, 2, . . . , n (4.99)

where nv is the number of daughter vessels at a junction. In addition, continuity of static pressure is

also assumed

pp (L , t ) = pdi
(0, t ), ∀t ∈ [0, T ], i = 1, 2, . . . , n . (4.100)

Note that another common junction condition is continuity of total pressure derived from a Bernoulli

principle [158],

pp (L , t ) +
1

2
ρ
�

up (L , t )
�2
= pdi

(0, t ) +
1

2
ρ
�

udi
(0, t )

�2
+Kloss

1

2
ρ
�

up (L , t )
�2

(4.101)

where Kloss is a loss term that may arise due to the geometry of the junction (e.g., when junctions

have large changes in angles or stenoses).

These junction conditions are enforced by solving a root-finding problem using a Newton-

Raphson routine. Whereas prior work considered bifurcating junctions only [168, 189], this work

derives the junction conditions for trifurcations, ensuring that patient specific geometries can be

used. The analytical Jacobian for bifurcations and trifurcations are provided in Appendix B.3.

4.4.3 Outflow condition

At the terminal vessels, a Windkessel model or structured tree are attached. Both are coupled to the

large vessel equations using the impedance relation, either Eq. (4.56) for the Windkessel model or

Eq. (4.88) for the structured tree. To couple the time-domain large vessel equations to the frequency

domain boundary conditions, the impedance is converted to the time domain using the discrete
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inverse Fourier transform. The flow is then related to the pressure and inverse impedance (called

“admittance") via the convolution integral

q (L , t ) =

∫ t

0

p (L ,τ)Z −1(t −τ)dτ. (4.102)

This is numerically approximated by

q (L , n∆t ) =∆t
n
∑

j=1

p
�

L , (n − j )∆t
�

Z −1
�

j
�

. (4.103)

4.5 Numerical Solution

The system of equations Eq. (4.27) and Eq. (4.28) is solved using the Ritchmeyer two-step Lax-

Wendroff scheme. This requires that the system be written in conservation form

∂

∂ t
U +

∂

∂ x
R=S. (4.104)

The pressure gradient can be expanded as

∂ p

∂ x
=
∂ p

∂ A

∂ A

∂ x
+
∂ p

∂ A0

∂ A0

∂ r0

d r0

d x
+
∂ p

∂ βw

dβw

d r0

d r0

d x
,

=
∂ p

∂ A

∂ A

∂ x
+2πr0

∂ p

∂ r0

d r0

d x
+
∂ p

∂ βw

∂ βw

∂ x
(4.105)

where we utilize

∂ A0

∂ x
=
∂ A0

∂ r0

d r0

d x
= 2πr0

d r0

d x
. (4.106)

To capture all partial derivatives with respect to x , we define

B =
1

ρ

∫ A

A0

A′
∂ p

∂ A′
d A′. (4.107)

For the tube law given in Eq. (4.39), we get

B =
1

ρ

∫ A

A0

A′
�

1

2
βw

√

√ A0

A′3

�

d A′

=
βw

ρ

�p

AA0−A0

�

. (4.108)

61



The second constitutive equation, Eq. (4.42), gives

B =
1

ρ

∫ A

A0

A′
�

1

2βw

1
p

A′A0

�

d A′

=
βw

3ρ

�√

√A3

A0
−A0

�

. (4.109)

Defining B allows us to write

A

ρ

∂ p

∂ x
=

∂ B

∂ x
+2πr0

∂ p

∂ r0

d r0

d x
+
∂ p

∂ βw

∂ βw

∂ x
(4.110)

=
∂ B

∂ x
−BR H S . (4.111)

Using B and BR H S in Eq. (4.104) gives

U =

�

A

q

�

, R=





0
q 2

A
+B



 (4.112)

S =





0
−2πνR

δ

q

A
+BR H S



 . (4.113)

The two-step Ritchmeyer Lax-Wendroff scheme is second order accurate in space and time [166].

The numerical solution at the new time point n +1, as illustrated in Figure 4.10, is determined by

Un+1
m =Un

m −
∆t

∆x

�

Rn+1/2
m+1/2−R

n+1/2
m−1/2

�

+
∆t

2

�

Sn+1/2
m+1/2+S

n+1/2
m−1/2

�

(4.114)

where n is the current time step and m is the spatial step. The alf-spatial step values at M +1/2 and

M −1/2 are determined using

Un+1/2
m+1/2 =

1

2

�

Un
m+1+U

n
m

�

−
∆t

2∆x

�

Rn
m+1−R

n
m

�

+
∆t

4

�

Sn
m+1−S

n
m

�

(4.115)

Un+1/2
m−1/2 =

1

2

�

Un
m +U

n
m−1

�

−
∆t

2∆x

�

Rn
m −R

n
m−1

�

+
∆t

4

�

Sn
m −S

n
m−1

�

. (4.116)

In this dissertation, the equations are solved in non-dimensional form, as described in Appendix

A. Boundary conditions utilizing this scheme require “ghost points," which are explained in the

Appendix B.1 and Appendix B.2.

4.6 Wave intensity analysis

The ejection of blood out of the ventricles leads to wave propagation, where both flow and pressure

energies are transmitted down the vascular tree. Waves reaching junction points propagate backward
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Figure 4.10 Depiction of the Lax-Wendroff method for interior points. The previous time point n (denoted
in red) are used with the half-time steps (in blue) to predict the next time point at n +1 (black).

as reflections. In normotensive physiology, backward, reflected waves are minimal, and nearly all

waves are transmitted to the periphery. When arteries stiffen, wave propagation speed increases

and causes amplified reflections. If backward traveling reflected waves meet oncoming forward

waves, there can be wave augmentation, elevating blood pressure (see Figure 4.11). PH is known to

cause mismatches in vascular properties, leading to pulmonary arterial wave reflections [244]. PH

induces wall stiffening, leading to an increased pulse wave velocity, wave augmentation, and RV

afterload [252].

One way to study the impact of disease is by decomposing pulse wave propagation into the

transmitted and reflected parts, called wave-intensity analysis (WIA). This method quantifies both

forward and backward propagating waves and their effects on proximal hemodynamics using a

linearized version of Eq. (4.27) and Eq. (4.28) in the absence of viscous forces [188]. The pressure and

velocity wavefronts d p and d u , are determined from a hyperbolic system using Riemann’s method

of characteristics [171]. The characteristic paths are

u ± c , c 2 =
A

ρ

∂ p

∂ A
(4.117)

where c is the pulse wave velocity. Using Eq. (4.39) or Eq. (4.42) gives

c =

√

√2βw

3ρ

�

A

A0

�1/4

, or c =

√

√2βw

3ρ

�

A0

A

�1/4

. (4.118)
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Systolic pressure 
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Pressure 
augmentation

Backward reflected wave

Figure 4.11 Schematic of increased wave reflections in disease. (A) A normotensive pressure waveform
is composed of a forward traveling wave that propagates before the backward, reflected wave arrives. (B)
Stiffer arteries increase the speed of wave propagation and cause a backward wave to occur during forward
propagation, augmenting the pressure wave. Reproduced and modified from [243]with permission.

Under the assumption that u = 0 at diastole, the Riemann invariants R± are

R± = u ±
∫ A

A0

c (A′)
A′

d A′

= u ±
∫ A

A0

�

A′

ρc

∂ p

∂ A′

�

1

A′
d A′

= u ±
∫ p

p0

1

ρc
d p ′, (4.119)

using Eq. (4.117). WIA represents pressure, flow, and velocity waveforms as successive wavefronts,

and decomposes the waveform into unique wave types [172]. Using R±, the pressure and velocity

wavefronts are

d R± = d u ±
d p

ρc

=⇒ d p± =
1

2

�

d p ±ρc d u
�

(4.120)

d u± =
1

2

�

d u ±
d p

ρc

�

. (4.121)
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The discrete forward and backward pressure and velocity waves can then be calculated as

p± = p (t0) +
tN
∑

t1

d p± (4.122)

u± = u (t0) +
tN
∑

t1

d u± (4.123)

where t0 = 0 is at the end of diastole.

The sign of these wave elements are used to classify them as accelerating (d u > 0) or decelerating

(d u < 0) waves and compression (d p > 0) or expansion (d p < 0) waves. The product WI= d ud p is

the wave intensity, and has units of energy flux per unit area corresponding to acoustic intensity

[171]. To account for signal discretization, the time-normalized wave intensities [188]

WI± =
δp±

δt

δu±

δt
, (4.124)

are used, where δp and δu are the discretized pressure and velocity wavefronts, WI+ is the forward

wave intensity, and WI− is the backward wave intensity. A summary of the wave types are provided

in Table 4.1. Figure 4.12 shows decomposed wavefronts, pressure and velocity waveforms, and

WIA results for one of the normotensive mice from Section 2.5. It is imperative to note that the

assumptions of WIA are a limitation, as arterial flow is not strictly inviscid [188].

Table 4.1 Classification of wave fronts and wave types.

du wave type dp wavefront dI wave type

+ accelerating + compression + forward compression waves (FCW)
− decelerating + compression − backward compression waves (BCW)
+ accelerating − expansion − forward decompression waves (FEW)
− decelerating − expansion + backward expansion waves (BEW)
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Figure 4.12 Wave intensity analysis for a normotensive control mouse. (a) Separation of the pressure (top
row) and velocity (bottom row) waveforms into their wavefronts (left column) and the forward and back-
ward running composite signals (right column). (b) Wave intensity results, showing forward compression
(FCW) and expansion (FEW) waves as well as backward compression (BCW) and expansion (BEW) waves.
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CHAPTER

5

PARAMETER INFERENCE AND

UNCERTAINTY QUANTIFICATION

This chapter introduces mathematical and statistical aspects of inverse problems. Both frequen-

tist and Bayesian parameter estimation methods are described and utilized in this work. The 1D

hemodynamics model includes (1) parameters specifying the large artery geometry, (2) parame-

ters describing properties of the blood and vascular wal, and (3) boundary condition parameters.

Calibrating the model to measured data requires parameter inference, and some parameters are

unidentifiable given the specific model and available data. This chapter gives an overview of model

analysis and uncertainty quantification techniques.

Section 5.1 gives an overview of inverse problems and the general statistical theory for these

problems. Section 5.2 covers the mathematical formulation of local and global sensitivity analyses.

Section 5.3 discusses techniques for parameter identifiability, and Section 5.4 summarizes inference

techniques. Lastly, Section 5.5 provides an overview of the methodologies for forward and inverse

uncertainty quantification.

5.1 Inverse problems

Consider some measured data y ∈RN , and a mathematical model f (t , x ;θ) that depends on time

t , space x , and a set of physically relevant parameters θ ∈RP . The goal of an inverse problem is

to ascertain information about the parameters θ contributing to the data generating process. The

inverse problem requires (1) observed data, (2) a mathematical model of the physical system, and
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(3) statistical model for the measurement noise. There are two statistical frameworks for addressing

the inverse problem.

In frequentist statistics, the measured data are realizations from a random process, and the parame-

ters are fixed but unknown. The goal is to minimize the expected loss, (the mismatch between the

model and y) over all possible data, called the risk. In practice, the expectation is approximated

using estimators, e.g., the maximum likelihood estimator, and then minimized. The uncertainty

in the frequentist parameter estimate is determined by the sampling distribution of the estimator

[154].

In Bayesian statistics, θ is modeled as a random variable and has a distribution, determined using

the fixed, known data. This idea stems from Bayes’ rule; suppose the joint distribution of the model

f is

p (θ,y) =π0 (θ)π
�

y
�

�θ
�

, (5.1)

where π0 (θ) is the prior knowledge (i.e., density) for θ, and π
�

y
�

�θ
�

is the sampling distribution of

the data. Bayes’ rule states that the posterior density π
�

θ
�

�y
�

of the parameters conditioned on the

data is

π
�

θ
�

�y
�

=
π
�

y
�

�θ
�

π0(θ)

π(y)
=

π
�

y
�

�θ
�

π0(θ)
∫

RP π
�

y
�

�θ
�

π0(θ)dθ
. (5.2)

This expression depends on the likelihood of the observed data given the parameters,π
�

y
�

�θ
�

, and the

marginal density of the data π(y), also called the normalization constant. The goal of the Bayesian

inverse problem is still to minimize the expected mismatch between the model and y, but by

constructing the posterior distribution π
�

θ
�

�y
�

. The normalization factor, π(y ), is approximated by

integrating over all possible joint densities. Samples from the posterior can be generated numerically

using techniques like Markov chain Monte Carlo (MCMC), sequential Monte Carlo, expectation

propagation, or the Laplace approximation [78, 112].

A common statistical model is

yi = f (ti , x ;θ) +εi , i = 1, 2, . . . , N . (5.3)

The above formulation assumes that the measurement errors, εi , are independent and identically

distributed (iid). The errors are additive and assumed to be normally distributed with zero mean

and varianceσ2
ε, or εi ∼N (0,σ2

ε).

Herein, we define the residual, the difference between the observed data and the mathematical

model, and the scalar valued cost functional as

ri (θ) = yi − f (ti , x ;θ), for i = 1, 2, . . . , N , (5.4)

J (θ) = r (θ)>r (θ) . (5.5)

Cardiovascular inverse problems using 3D [63, 143, 144], 1D [173, 186, 191], and 0D models [49,
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80, 165] have been previously pursued. The computational complexity of 3D hemodynamics models

requires innovative, cost efficient multi-fidelity or surrogate methods for inference. The study by

Marsden et al. [144] determined optimal cardiovascular geometries for 3D flow simulations using

a derivative free, surrogate mangement framework to overcome computational costs of explicit

optimization. Moghadam and colleagues [63] determine optimal shunt placement for congenital

heart disease Norwood surgery. Using 3D finite element model of the aorta and pulmonary arteries

coupled to a 0D model of the heart and rest of the circulatory system, the authors determined the

optimal shunt angle and diameter for the Norwood procedure. The reduced computational cost of

1D and 0D models makes direct gradient based optimization feasible for subject-specific parameter

inference. Qureshi et al. [191] inferred 1D model parameters in normotensive and hypertensive mice.

The study by Gerringer et al. [80] estimated Windkessel parameters in rats during PAH progression,

correlating increased vascular resistance with disease progression. MCMC methods capturing

parameter posteriors have also been used [46, 173, 175, 186], which naturally provide measures of

uncertainty in the parameter and output space. It is important to note that the above formulations

do not consider model discrepancy, which accounts for missing physics in the modeling framework

[117]. This topic is addressed by Paun et al. [175] in the context of the 1D model from Section 4.1,

and show that parameter posteriors are biased and that output uncertainty is underestimated when

disregarding model discrepancy. The reader is referred to [117, 221] for more details regarding model

discrepancy.

5.2 Sensitivity analyses

Sensitivity analysis quantifies the parameter influence with respect to a quantity of interest, and

are divided into two categories. Local sensitivity analysis approximates model sensitivity to the

parameters in a small neighborhood around a nominal value. Local sensitivity analyses vary param-

eters one at a time. In contrast, global sensitivity analyses estimate model sensitivity throughout the

admissible parameter space, varying multiple factors at a time [221]. This study uses both analyses

to deduce influential, identifiable hemodynamic parameters.

5.2.1 Local sensitivity

Derivative-based sensitivity analysis approximates the partial derivative of the quantity of interest

with respect to the parameters. Assume that f (t , x ;θ) is the quantity of interest. The sensitivity

Si (t j , x ;θ)with respect to θi is defined as

Si (t j ;θ) =
∂ f (t j , x ;θ)

∂ θi
, i = 1, . . . ,P , j = 1, . . . , N , (5.6)

where t j is the j -th time point. The sensitivity matrix S (t ;θ) is constructed by appending all the

N × 1 sensitivity vectors Si (t ;θ). For inverse problems, a similar approach can be applied to the

residual r(θ) or cost functional J (θ). The two methods for computing local sensitivities are adjoint
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methods and forward sensitivity methods [60, 88, 163].

Adjoint method. Let J (u (θ), t , x ;θ) be the cost functional that depends on the model states u , time,

space, and the parameters. DefineN (u (θ), t , x ;θ) = 0 as the set of governing equations (either ODEs

or PDEs). The Jacobian of the cost is

∇J =
∂ J

∂ θ
+
∂ J

∂ u

d u

dθ
(5.7)

where d u
dθ is the sensitivity of the model states with respect to the parameters. Note

dN

dθ
=
∂N

∂ θ
+
∂N

∂ u

d u

dθ
= 0. (5.8)

If ∂N∂ u is invertible, then
d u

dθ
=
�

∂N

∂ u

�−1 �

−
∂N

∂ θ

�

, (5.9)

hence

∇J =
∂ J

∂ θ
−
∂ J

∂ u

�

∂N

∂ u

�−1 �∂N

∂ θ

�

. (5.10)

Define the vector p

p> =−
∂ J

∂ u

�

∂N

∂ u

�−1

=⇒ p>
∂N

∂ u
=−

∂ J

∂ u
, (5.11)

which simplifies the gradient equation to

∇J =
∂ J

∂ θ
+p>

�

∂N

∂ θ

�

. (5.12)

Equation 5.11 is the adjoint equation and can be used to determine the gradient as follows:

1. Solve the system of equationsN (u (θ), t , x ;θ) = 0 for the states u (θ).

2. Solve the adjoint problem in Eq. (5.11) for p.

3. Calculate the gradient in Eq. (5.12).

Using this approach, one model evaluation and one adjoint solve determine the gradient of J . The

adjoint method is beneficial for expensive models, requiring only one solution of the state equation

in contrast to finite difference methods requiring multiple forward solves. Adjoint equations are

typically simpler than the state equations, e.g. nonlinear PDE systems have linear adjoints [178].

Adjoints are derived analytically and arise from rewriting the constrained optimization problem as a

Lagrange multiplier problem [88]. This approach has been utilized in cardiovascular hemodynamics.

The study by Ismail et al. [109] determine Windkessel parameters coupled to a 3D-FSI model using

an adjoint approach, showing improved parameter convergence. Melani [147] derived adjoint

equations for 1D fluid dynamic equations, and inferred the stiffness parameter for single vessels

and a network model.
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Forward sensitivity methods. When adjoint solvers are not available, forward sensitivity methods

can be used. Equation 5.9 is the forward sensitivity equation, and for simpler models can be derived

analytically. If not, the sensitivity of the model output can be approximated using either automatic

differentiation or finite difference methods. Automatic differentiation utilizes ideas from calculus,

namely the chain rule, to decompose the derivative into forward or backward accumulations of

simpler derivatives known. These algorithms are exact and do not incur floating-point arithmetic

errors from approximations. A detailed summary of these methods for MATLAB is provided by

Neidinger [160]. This is a fundamental technique in machine learning, where back propagation

enables efficient gradient computation [78].

This work utilizes finite difference approximations for derivative based sensitivity. The centered

finite difference method

∂ f

∂ θi
≈

f (t , x ;θ+eee iψ)− f (t , x ;θ−eee iψ)
2ψ

, (5.13)

is used, whereψ=
p

h [60, 106], h step-size of the ODE or PDE numerical discretization, and eieiei is a

unit vector in the i -th direction.

Parameters of different orders of magnitude can skew the interpretation of which parameters are

more influential. To make sensitivities of similar magnitude, the log-scaled parameters θ̃ = log(θ)

(or − log(|θ|) for negative parameters) can be used

S̃i (t ;θ) =
∂ f (t , x ;θ)

∂ θ̃i

=
∂ f (t , x ;θ)
∂ θi

θi , i = 1, . . . ,P . (5.14)

The advantage of log-scaling is that sensitivities retain the original units of f . If the quantity of

interest has multiple outputs, it may be advantageous to scale the sensitivity by f ,

∂ f̃ (t , x ;θ)

∂ θ̃i

=
�

θi

f (t , x ;θ)

�

∂ f

∂ θi
. (5.15)

To rank parameters from most- to least-infleutnail for parameter fixing, the 2-norm of the

sensitivity is used

Si = ||S̃i ||2. (5.16)

Parameters corresponding to a value of S i less than some threshold are considered non-influential

and can be fixed. Alternatively, non-influential parameters can be used to simplify or reduce the

model [194].

5.2.2 Global sensitivity

Global sensitivity analyses quantify output uncertainty by sampling parameters throughout the

feasible parameter space. Two common approaches are Morris screening [153], which provide a

coarse approximation of the model sensitivity, and Sobol’ indices [205], a variance based global

sensitivity approach.
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5.2.2.1 Morris screening

Morris’ screening involves the computation of “elementary effects", the relative change of the model

output with respect to a change in parameter value. The effects of θi on the output quantity are

classified as a) negligible overall, b) linear and additive, or c) having nonlinear effects or higher

order interactions with other parameters. To perform this analysis, parameters are mapped from

their bounded parameter space ΩP to the unit hypercube [0,1]P , where P denotes number of

parameters analyzed. Using a uniform, bounded prior distribution restricts the model analysis to a

physiologically relevant parameter subspace without invoking a bias. The elementary effects are

computed as

di (t ;θ ) =
f (t ;θ +eee i∆)− f (t ;θ )

∆
. (5.17)

The step size ∆ is chosen from the set ∆ ∈ {1/(M − 1),2/(M − 1) . . . , (M − 2)/(M − 1)}, whereM
denotes the number of parameter perturbations used in the screening method, i.e., the number of

possible perturbation sizes. To preserve symmetry of the parameter distributions,M should be

even [221]. The elementary effects are computed by sampling K values from a uniform distribution

for the parameter θ
j

i . To compare elementary effects for vector outputs, the 2-norm elementary

effects, d̃
j

i (θ ) = ||d
j

i (t ;θ )||2, is used.

The elementary effects’ mean and variance are obtained by integrating the outcomes from

multiple iterations. The modified Morris’ indices are calculated as

µ∗i =
1

K

K
∑

j=1

|d̃ j
i |, σ2

i =
1

K −1

K
∑

j=1

�

d̃
j

i −µ
∗
i

�2
, (5.18)

where µ∗ quantifies the individual effect of the input on the output, i.e., the sensitivity of the model

with respect to the parameters, while the variance estimate σ2 describes the variability in the

model sensitivity due to parameter interactions or nonlinearity. Parameters with a large µ∗ and

σ2 have nonlinear or drastic effects on the model output. Similar inference can be made for other

combinations of µ∗ and σ2. Wenthworth et al. [258] proposed a combination of the two metrics,

ranking parameter influence using
p

µ∗2+σ2. The randomized Morris algorithm is an efficient

algorithm for computing elementary effects and scales the step size∆ by the parameter magnitude

(see Algorithm 2 in [165]).

5.2.2.2 Sobol’ indices

Variance based methods like Sobol’ indices decompose the variance of a quantity of interest into

the variances attributed to single parameters and their higher order interactions. Consider the

parameters θ with density π(θ), where each parameter i lies within the physiologically admissible

parameter space Γi . The parameter domain is then θ ∈
P
⋃

i=1

Γi = Ω
P ⊂ RP (note that we drop the
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dependence on x and t for clarity hereon). The expectation and variance of f are defined as

E
�

f (θ)
�

=

∫

ΩP
f (θ)π(θ)dθ, (5.19)

V
�

f (θ)
�

=

∫

ΩP

�

f (θ)−E
�

f (θ)
��2
π(θ)dθ = E

�

f (θ)2
�

−E
�

f (θ)
�2

. (5.20)

We are interested in computing the conditional expectation and variance of the quantity interest

when a single parameter θi is known. Define the operators

Eθ∼i

�

f (θ|θi )
�

=

∫

ΩP −1

f (θ|θi )π(θ)dθ, ΩP −1 =ΩP \ Γi , (5.21)

which does not include θi , and the partial variances

Vθi
=V

�

Eθ∼i
( f |θi )

�

. (5.22)

The above expression measures the variance of the expected value of the quantity of interest,

conditioned on the fixed, known parameter θi . From this we define the first order sensitivity measure

Si =
Vθi

V ( f )
. (5.23)

The total effect index is

STi
=

Eθ∼i

�

Vθi
( f |θ∼i )

�

V ( f )
= 1−

Vθ∼i

�

Eθi
( f |θ∼i )

�

V ( f )
. (5.24)

The first order effects describe the influence of a single parameter on the variance of the quantity of

interest. By definition,
∑

i Si ≤ 1, hence the difference 1−
∑

i Si describes the variance of the output

attributed to higher order parameter interactions. The difference STi
−Si for θi quantifies the higher

order effects attributed to that parameter, and Si = STi
implies only first-order effects.

The majority of prior work with time-dependent output have averaged the Sobol’ indices over

the time interval [221]. However, more recent work has focused on developing Sobol’ indices for

time-dependent output. Alexanderian et al. [7] define a generalized Sobol’ index that accounts for

the time history of evolutionary processes. Randall et al. [194] constructed a limited memory Sobol’

index, which computes variance estimates within a fixed window of time based on the physical

system’s traits. These approaches are an active area of research and seek to mitigate averaging or

point-wise computation effects that misconstrue model sensitivity.
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5.3 Parameter identifiability

Determining whether a parameter is influential on the model output or quantity of interest is a

component of parameter identifiability. As detailed by Miao [150], unidentifiability is separated into

two types:

1. Structural unidentifiablility. The parameters θ are structurally unidentifiable if the mapping

from the model framework to the quantity of interestχ,C : f (t, x ;θ)→χ, is non-injective, i.e.

C
�

f (t, x ;θ1)
�

=C
�

f (t, x ;θ2)
�

6=⇒ θ1 = θ2.

2. Practical unidentifiablility. The parameters θ are practically unidentifiable if the mapping

from the model to a finite measured quantity of interest y, is non-unique or non-injective.

The former characterizes the model-to-output mapping, independent of data or measurement error.

The latter include stems from insufficient data or large measurement error [196]. These definitions

are directly related to the quantity of interest and change ifC is altered.

Parameter unidentifiability leads to non-unique minima during parameter estimation [167, 182].

Unidentifiable parameters can also cause gradient based optimization to fail when the parameter

Jacobian is singular [60]. Unidentifiable or correlated parameters also affect Bayesian inference

methods. Correlated parameters sampling inefficiencies, requiring more realizations to construct

the true posterior [78]. The goal of patient-specific modeling is to identify informative physiomarkers

of disease. This goal is only achieved if the model parameters corresponding to the physiomarkers

are identifiable[191]. Parameter unidentifiability is addressed using local or global analyses. The

former include asymptotic-linear analyses and profile-likelihood approaches, whereas the latter

include global sensitivity approaches or posterior analyses.

Asymptotic-linear analyses. Asymptotic analyses use local sensitivities to construct the Fisher infor-

mation matrix, F =S>S [39]. In this framework, the error variance estimator s 2 is

s 2 =
1

N −P
r>r. (5.25)

An asymptotic covariance matrix,C, of the parameter sampling distribution, and correlation matrix

c is then determined by

C = s 2F −1, ci j =
Ci j

Æ

Ci iC j j

(5.26)

where −1≤ ci j ≤ 1 for i , j = 1, . . . ,P . As in previous studies [60, 142, 182], the correlation matrix pro-

vides information about the pairwise relationships between parameters; the higher the correlation

(e.g.,
�

�ci j

�

�→ 1) the more difficult it is to estimate parameters i and j simultaneously. For this reason,

a parameter cutoff, |c |<γ, is used to fix parameters so that others can be estimated. This technique

can lead to several parameter subsets, the best of which can be chosen using information criteria

[48].
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Note that F must be invertible to use this analysis, and a large condition number for the matrix

suggests that parameters are not independent in their effects. Other local subset selection methods

include the SVD-QR [167], orthogonal sensitivities [165], and eigenvalue-eigenvector subset selection

[150, 221]. The review by Miao et al. [150] provides additional local-based, identifiability methods.

Profile likelihood. A robust but computationally expensive technique for identifiability analysis

is profile-likelihood calculations [196]. The methods “profiles" a single parameter θi by fixing the

parameter at a given value while inferring all other parameters θ∼i . The resulting vector of cost (or

likelihood) values can be used to construct so-called “likelihood-based" confidence intervals

CIPL

�

θ̂i

�

=
�

θi

�

�J ∗− J (θ̂i ;θ∼i )<∆α
	

(5.27)

where J ∗ is the minimum cost (or maximum likelihood) found during the procedure and∆α is the

α−quantile from a χ2 distribution withP degrees of freedom (θ ∈Rp ). Raue et al. [196] showed that

profile-likelihood reveals structural unidentifiabilities not captured by local sensitivity approaches.

Global sensitivity approach. Sobol’ indicies can also be used to determine which parameters are

identifiable. Note that by definition if STi
= 0, then

=⇒ 1=
Vθ∼i

�

Eθi
( f |θ∼i )

�

V ( f )

=⇒ Vθ∼i

�

Eθi
( f |θ∼i )

�

=V ( f ). (5.28)

Hence, STi
≈ 0 means that parameter i does not affect the variance of the quantity of interest and

can be fixed before performing parameter estimation [59, 231].

Posterior density. The posterior density obtained from MCMC can detect parameter unidentifiability

[175, 214]. In particular, a uniform posterior distribution with no (or infinite) modality suggests that

a parameter is non-influential on the likelihood, and is therefore not uniquely identifiable given

the data. The study by Siekmann et al. [214] used convergence plots from MCMC to determine

unidentifiable parameters in a stochastic model of ion channels. Pairwise plots of the parameter

posteriors may also show linear or non-linear interactions between parameter pairs, as shown at

the end of this chapter and in Chapter 7 [46]. Pairwise posteriors that show a functional depenence

between two parameters may conclude practical non-identifiability.

5.4 Parameter inference

Patient-specific parameters can be determined by minimizing a cost-functional, such as the residual

sum of squares

J (θ) =
1

2
r (θ)>r (θ) (5.29)
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with r defined in Eq. (5.4). If the goal is to match multiple outputs to data, the weighted or relative

cost can be used

J̃ (θ) = r>Wr, (5.30)

whereW = diag
�

y−2
�

is a matrix of squared reciprocal data [48, 49, 194].

Alternatively, one could maximize a likelihood function, e.g., in the case of additive, iid errors,

εi ∼N
�

0,σ2
ε

�

, the likelihood function is given by

L
�

θ,σ2
ε

�

=
�

2πσ2
ε

�−n/2
e −J (θ)/σ2

ε . (5.31)

Since most optimization packages perform minimization, it is common to use the negative log-

likelihood. For Eq. (5.31) this gives

− log (L ) =
n

2
log (2π)+

n

2
log

�

σ2
ε

�

+
1

σ2
ε

J (θ ). (5.32)

5.4.1 Optimization

Optimization frameworks are split into global and local methods. Global optimization tries to de-

termine the global minimizer of an objective function by searching throughout the admissible

parameter space. These include simulated annealing, particle swarm methods, genetic algorithms,

and Bayesian optimization [274]. Local optimization methods search for minima on a more con-

cise, closed parameter space. These methods are broken into gradient and gradient-free methods.

Gradient-free methods, including interpolation (e.g., nearest neighbors) and direct search methods

(e.g., the Nelder-Meade or Hooke-Jeeves algorithm), search within a local neighborhood of a cur-

rent parameter iterate by testing for improvements in J (θ) [116]. In this work, gradient-based local

optimization methods are used.

Gradient based methods include first- and second-order methods; the former only utilize the

gradient, whereas the latter utilize information about the curvature of the objective function. In

the absence of analytical gradients, finite difference methods are used. For this reason, problems

with large parameter dimensionality (such as neural networks in machine learning) utilize first-

order methods. Second order methods determine the curvature of the objective function using

the Hessian matrix. Newton’s method constructs the Hessian explicitly, requiring more model

solves to approximate but can converge quadratically close to the optimum. The approximate

Hessian can also be determined using quasi-Newton methods, such as Broyden’s method or Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm. If the the dimensionality of the system is too

large to store the Hessian, matrix free methods, such as the conjugate gradient method, can be used

to conjugate the Newton search direction [162]. Below is a more detailed description of line-search

methods.
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For first order methods, the gradient g (θ) of the cost function J (θ)with respect to the parameters is

g(θ) =−
�

∇θ f
�> �
y− f (t, x ;θ)

�

=−S>r (θ) , (5.33)

whereS is the sensitivity vector. In the case of gradient descent, each parameter iterate is computed

as

θk+1 = θk −λ∇θ J
�

θk
�

, (5.34)

where λ is the step length. Gradient based methods are sensitive to the initial guess θ0. When initial

θ0 are far from the optimum, the residual can become large and lead to over-stepping when λ is not

controlled.

Line-search methods overcome this issue. A backtracking-line search that satisfies the Armijo

(sufficient decrease) conditions

J (θk +λg)≤ J (θk ) + c g(θk )
�

θk+1−θk
�

, (5.35)

where c ∈ (0, 1) is one line-search method. Typically, c ≈ 10−4. In a backtracking line search, we start

with λ0 = 1 and try a full Newton step. If Eq. (5.35) is not satisfied, set λ=λ0 ·ξ, where ξ ∈ (0, 1). The

routine continues with λ=λ ·ξ until the Eq. (5.35) is satisfied. Safeguarding and polynomial based

step-length control can be used to ensure λ is not too small (see Appendix B.4 for details in regard

to web-like lesions). A basic Armijo-backtracking linesearch algorithm is provided in Algorithm 3.

This is utilized for the root-finding problems related to the structured tree boundary conditions and

web-like lesions (see Appendix B.2) [47].

Algorithm 3: General gradient descent with Armijo line search.
Input: J ,θk , pk =−g(θk ),λ0, and∇ f
Initialize λ=λ0,ξ ∈ (0, 1), c ∈ (0, 1).
Compute J (θk ), J (θk +λpk ) and g =∇J (θk )
while J (xk +λpk )> J (θk ) + cλgT (θk )pk do

λ=λ ·ξ
Compute J (θk +λpk )

end
θk+1 = θk +λpk

Output: New iterate θk+1

5.4.2 Marko chain Monte Carlo (MCMC)

For Bayesian inference, both sampling methods, including MCMC, or analytical methods, such as

the Laplace approximation or variational Bayesian inference [78, 112]. In this work, MCMC is used.
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A Markov chain is a sequence of random variables that satisfy the Markov property

P
�

θi+1
�

�θi ,θi−1, . . . ,θ1

�

= P
�

θi+1
�

�θi

�

, (5.36)

i.e., the probability of θi+1 conditioned on the prior iterate history only depends on the current

iterate θi . The most popular MCMC algorithms include the Gibbs sampler, the Metropolis-Hastings

algorithm, and the Adaptive Metropolis algorithm. This work utilizes the delayed rejection adaptive

Metropolis (DRAM) algorithm, summarized below and discussed in detail in [186, 221]. The full

DRAM algorithm is detailed in Algorithm 4 and utilized in MATLAB [89, 127].

The traditional Metropolis algorithm incorporates an acceptance probability α for the candidate

parameter θcand conditioned on the (k −1)-th accepted parameter

α
�

θcand

�

�θk−1
�

=min

�

1,
π
�

θcand

�

�pdata

�

π
�

θk−1
�

�pdata

�

�

=min
�

1, e −(J (θcand)−J (θk−1))/2(s k−1)2
�

, (5.37)

where the proposal distribution for the new parameter value is assumed to be a multivariate, normal

distribution with covarianceC, and (s k−1)2 is the estimated sample variance drawn from an inverse

gamma distribution.

The delayed rejection (DR) component of the DRAM algorithm considers a second candidate

parameter θDR if the first candidate parameter θcand is not accepted. The second parameter is

accepted using the second acceptance probability

αDR

�

θDR

�

�θcand,θk−1
�

=min

�

1,
π(θDR

�

�pdata)J (θcand

�

�θDR)J (θk−1
�

�θDR,θcand)

π(θk−1
�

�pdata)J (θcand

�

�θk−1)J (θDR

�

�θk−1,θcand)
·

1−α
�

θcand

�

�θDR

�

1−α
�

θcand

�

�θk−1
�

�

=min

�

1,
π(θDR

�

�pdata)J (θcand

�

�θDR)

π(θk−1
�

�pdata)J (θcand

�

�θk−1)
·

1−α
�

θcand

�

�θDR

�

1−α
�

θcand

�

�θk−1
�

�

. (5.38)

The second line of the above equation utilizes the symmetry of the multivariate normal proposal

distribution to simplify the original fraction [221].

Lastly, the adaptive Metropolis (AM) component of the algorithm minimizes the random walk

behavior by updating the parameter covariance according to a multivariate, normal distribution.

The covariance is adapted after some adaptation length k0

V k =







V k−1 if k < k0

sP Cov
�

θ0,θ1, . . . ,θk−1
�

+ζIP if k = k0,
(5.39)

where sP is a design parameter that depends on the dimension of the parameter vector, IP is the

P ×P identity matrix, and ζ ≥ 0 is a small perturbation parameter to ensure thatCk is positive

definite. A common choice is sP = 2.382P .

78



5.5 Uncertainty quantification

As detailed by Smith [221], there are two main types of uncertainty:

1. Aleatoric uncertainty is due to random fluctuations in the physical process, and cannot be

reduced by additional physics or experimental insight.

2. Epistemic uncertainty is induced by simplifying model assumptions, missing physics in the

modeling framework, or numerical errors (e.g., assumptions regarding a simplified mechanis-

tic model).

There are two common approaches for handling uncertainty quantification. Inverse uncertainty

quantification describes the uncertainty attributed to the inputs (e.g., parameters) given a model and

observed data, and forward uncertainty quantification measures how uncertainties in input space

affect the uncertainties in output space. Each of these can be addressed by methods in frequentist or

Bayesian statistics. The frequentist framework constructs parameter estimator confidence intervals

and model confidence and predictions intervals using an asymptotic analysis. Bayesian inverse

uncertainty quantification utilizes the estimated posterior distribution, while forward propagation

constructs credible intervals based on draws from the posterior [221].

5.5.1 Inverse uncertainty quantification

Frequentist methods. Confidence intervals for the model parameter estimators are constructed using

an asymptotic analysis. Let θ̂ be the estimator that minimizes the cost function J , with the associated

local sensitivity Ŝ and error variance estimator ŝ 2 from Eq. (5.25). For sufficiently large data and

iid Gaussian measurement errors εi ∼N (0,σ2
ε), an asymptotic analysis can be used to construct

parameter estimator sampling distributions [19]. Specifically, as the number of data N →∞, the

sampling distribution for θ is a multivariate normal

θ ∼MVN (θ∗,C∗) , C∗ =σ2
εF
−1 (5.40)

where θ∗ andC∗ are the true but unknown parameters and covariance matrix. As in Eq. (5.26),C∗

is approximated as the inverse of the Fisher information matrix ŝ 2F̂ −1 = ŝ 2
�

Ŝ>Ŝ
�−1
[19, 154]. The

parameter confidence intervals are calculated using the

θ C I
i ≡

�

θ̂i − t 1−α/2
N−P

p

Ci i , θ̂i + t 1−α/2
N−P

p

Ci i

�

, (5.41)

where t 1−α/2
N−P denotes a two-sided t -statistic with N −P degrees of freedom and a 1−α/2 confidence

level, N is the number of data points, andP is the number of parameters.

When there is not sufficient data for the asymptotic approach (i.e., N small), one can instead

utilize residual bootstrapping. This approach starts by estimating θ̂ from the entire data set, saving

the residual ri at each data point. Since r are realizations from a random variable, new synthetic
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Figure 5.1 Kernel density estimation (KDE) with different bandwidths. Realizations from x ∼N
�

−1, 0.502
�

and realizations from x ∼N
�

1.5, 0.252
�

are shown as crosses, and the true distribution is shown in black.
Note that a smaller bandwidth provides a more narrow kernel at each data point, whereas a large band-
width tends to oversmooth the PDF.

data realizations can be constructed by

y
synth
j = yj + rm (5.42)

where rm is a random draw (with replacement) from r. This can be iterated on multiple times to

construct bootstrap estimates of the mean, covariance and standard error [18].

Confidence intervals in the frequentist framework are interpreted as follows: given numerous

experiments, we expect that the true parameter values θ will fall within 1−α/2% of the constructed

the confidence intervals.

Bayesian methods. Parameter uncertainty can be directly assessed from the posterior distribution.

As mentioned, algorithms including MCMC, sequential Monte Carlo, and expectation propagation

can approximate the posterior density. To construct a density given the iterates of θ, the continuous

version of histogram analysis called kernel density estimation (KDE) [216] is used

π (x ) =
1

nH

n
∑

i=1

K
� x − xi

H

�

, (5.43)

where xi is the i -th data point, n is the number of samples used for the density estimate, H is the

bandwidth parameter (controlling the smoothness of the densities), and K is the kernel function.

The most common kernel function (used here) is the Gaussian kernel. The bandwith H can be

determined using various methods, which are detailed in Chapter 8 [45]. Figure 5.1 shows an example

problem with a bimodal distribution, and shows how a small bandwidth undersmooths the PDF

while a large bandwidth misses the bimodal structure.

Parameter uncertainty is linked to the posterior variance. It is important to note that parameter
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posteriors typically parallel the model sensitivity; parameters with relatively wide posteriors are

typically less influential than parameters with narrow posteriors and smaller variances. The credible

interval of a posterior distribution from the Bayesian perspective is more easily interpreted: the

1−α/2% parameter credible interval contains 1−α/2% of the realizations of said parameter.

5.5.2 Forward uncertainty propagation

Frequentist methods. The confidence interval for the vector quantity of interest, f C I (t ), from a

nonlinear model can be computed in a similar fashion to Eq. (7.20). The confidence interval for the

mean estimate at time point ti is

f C I (ti )≡
�

f (ti ; θ̂)− t 1−α/2
N−P ŝ

p

Γi , f (ti ; θ̂) + t 1−α/2
N−P ŝ

p

Γi
�

, (5.44)

where Γi =G T
i F

−1Gi and

G T
i =

�

∂ f (ti ; θ̂)

∂ eθ1

, . . . ,
∂ f (ti ; θ̂)

∂ eθP

�

.

Lastly, the prediction intervals for the model response are calculated as

f P I (ti )≡
�

f (ti ; θ̂)− t 1−α/2
N−P ŝ

p

1+ Γi , f (ti ; θ̂ ) + t 1−α/2
N−P ŝ

p

1+ Γi
�

. (5.45)

Bayesian methods. Sampling from the posterior using MCMC can propagate parameter uncertainties

to the model output. Since the posterior distribution is typically estimated using non-parametric

techniques, one cannot directly sample from the posterior using a parametric distribution. Instead,

inverse transform sampling is often used, which utilizes the cumulative distribution function (CDF)

and inverse CDF (iCDF). Given a random variable X and PDF fX (x ), the CDF FX (x ) is

FX (x ) =

∫ x

−∞
fX (x

′)d x ′. (5.46)

The iCDF is then F −1
X (FX (x )) = x . Note that FX (x ) ∈ [0, 1], and both the CDF and iCDF are monotoni-

cally increasing functions. The inverse transform sampling procedure is then

1. Generate a draw from the uniform distribution: u ∼U (0, 1).

2. Compute x = F −1
X (u ).

In this manner, non-parametric posterior densities can be sampled from by mapping a uniform

random variable realization to the constructed posterior density. This also emphasizes the impor-

tance of the bandwidth parameter in KDE, since uncertainty in the posterior is directly linked to the

uncertainty in output space.

It is important that parameters are sufficiently sampled so that the output uncertainty has

converged. In this study, we perform forward uncertainty propagation using the explicit model.

For more expensive models (e.g., 3D fluid dynamics models), this is infeasible, and other strategies
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need to be used. Stochastic spectral methods, including stochastic Galerkin, collocation, or discrete

projection methods, can speed up uncertainty propagation by representing the quantity of interest

as a polynomial expansion [221]. The review by Eck et al. [59] examines these methods in the context

of cardiovascular modeling.

5.6 Example: unidentifiability for Windkessel boundary conditions

An example of parameter unidentifiability for Windkessel parameters is presented here. Consider a

fluid dynamics model with three vessels and Windkessel boundary conditions, shown in Figure 5.3.

Using the radius dependent stiffness from Eq. (4.43), full parameter set is

θ1 =
�

k1, k2, k3, Rp ,1, Rp ,2, Rd ,1, Rd ,2, CT ,1, CT ,2

�

. (5.47)

Given a single pressure profile in the MPA, the goal is to uniquely identify all the parameters given

the model and available data. However, it is known that resistors and capacitors in parallel are not

identifiable [6], and is likely the case for a 1D model coupled to Windkessel boundary conditions.
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Figure 5.2 Posterior density results when estimating the full parameter set and individual Windkessel
parameters. Note that some parameters have distinct modes and narrow tails, whereas others have long
tails or appear nearly uniform, suggesting unidentifiability.

In this example, we use DRAM to illustrate that θ is at least practically unidentifiable. Results

shown in Figure 5.2 illustrate that all nine parameters are not identifiable. It should also be noted

that the Fisher information matrix, computed using a centered-finite difference method, is singular,

confirming unidentifiability. Rather than cycling through possible parameter subsets that include

only parts of the vasculature, we introduce the scaling factors rp , rd , and c , which scale the nominal

Windkessel estimates (discussed and used in detail in Chapter 7 [46]). This reduces the parameter

82



dimensionality to

θ2 =
�

k1, k2, k3, rp , rd , c
�

. (5.48)

Again, DRAM is used to infer the reduced parameter set. There is still some unidentifiability in the

exponential stiffness model as shown in Figure 5.3. This confirms the findings by Paun et al. [175],

who also determined that k1 and k2 were unidentifiable. As a last step, we fix the exponential terms

in the stiffness model, giving the reduced parameter set

θ2 =
�

k3, rp , rd , c
�

. (5.49)

Posterior densities for θ2 in Figure 5.4 have a, unimodal posterior distribution with finite tails. This

reduced parameter subset is now identifiable given a single pressure measurement in the MPA.
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Figure 5.3 Posterior density results when estimating the individual stiffness parameters and the Wind-
kessel scaling parameters rp , rd , and c . Windkessel scaling factors have a unimodal shape, as well as k3 in
the stiffness model. In contrast, k1 and k2 are relatively uniform, suggesting unidentifiability.
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Figure 5.4 Posterior density results when estimating a single stiffness parameter and the Windkessel scal-
ing parameters rp , rd , and c . Note that the posteriors are unimodal, with finite tails.
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CHAPTER

6

SIMULATIONS AND INVESTIGATIONS

If left untreated, PH is a deadly disease with a high mortality rate. Diagnosis and treatment of this

disease has advanced in the last several years, with image analysis and hemodynamic measurements

revealing changes in vascular morphometry and function during PH. However, more work is needed

to provide a synergistic tool for assessing the interactions between the structure and function of

the pulmonary circulation in normotensive and PH conditions. Such a tool, as developed here,

should combine imaging data with hemodynamic measurements for holistic assessment of the

pulmonary circuit. Cardiovascular inverse problems provides a natural tool for clinical decision

making and disease assessment. Hemodynamics models have been sucessfully used for planning

coronary artery disease intervention [26]. Parameter inference and uncertainty quantification are

understudied in computational pulmonary hemodynamics, yet this type analysis is necessary for

using models in-clinic. Results in this dissertation provide a computational tool that can assess

pulmonary arterial structure and function simultaneously. The next three chapters report published

and submitted results focusing on cardiovascular inverse problems.

Chapter 7 includes the published study “Sensitivity analysis and uncertainty quantification of 1-

D models of pulmonary hemodynamics in mice under control and hypertensive conditions," by

Colebank, Qureshi, and Olufsen. The pulmonary arterial tree includes hundreds to thousands of

vessels, though it is unclear how many vessels are necessary to match model predictions to data

in the MPA. This study utilizes and compares three different networks with one, three, and 21

vessels under both normotensive and PH conditions. Using both frequentist and Bayesian methods,

Windkessel scaling parameters and vessel stiffness are estimated for each network. Local derivative

based sensitivity analysis and Morris Screening quantify model sensitivity, showing that network size
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dictates model sensitivity. Using the three network models, the following questions are addressed:

1. Given imaging and hemodynamic data, which model parameters are identifiable and influen-

tial?

2. Do the model parameters reflect physiological knowledge of the pulmonary arteries both

normotensive and HPH conditions?

3. Does model sensitivity change with respect to large vessel network size or disease status?

4. Does the model sensitivity agree with physiological knowledge of HPH progression?

The novelty of this study includes performing sensitivity analyses, inferring parameter estimators

and distributions, and quantifying uncertainty on different sized networks.

Chapter 8 includes the published manuscript “Influence of image segmentation on one-dimensional

fluid dynamics predictions in the mouse pulmonary arteries" by Colebank, Paun, Qureshi, Chesler,

Husmeier, Olufsen, and Ellwein-Fix. Image based modeling requires constructing a model domain,

yet this domain is subject to uncertainties in the image segmentation pipeline. The study investigates

these uncertainties in image segmentation by constructing 25 segmentations of the same micro-CT

image from a normotensive mouse. Statistical properties of the network, including uncertainty in

vessel geometry and uncertainty in the network connectivity, are determined. These uncertainties

are then propagated through the model, revealing that network connectivity is more influential on

model predictions than vessel geometry. In particular, this study examines:

1. What are the uncertainties associated with image segmentation, and how do they affect

network reconstruction?

2. How are network-level, morphometric parameters affected by variability in segmentation

methods?

3. Are uncertainties in individual vessel characteristics (e.g., raidus and length) more or less

influential than uncertainties in network size and connectivity?

This study is the first to integrate measured uncertainty due to segmentation into an expansive 1D

network model. Uncertainties in pressure, flow, and wave intensity are propagated by constructing

density estimates for radius and length across 25 segmentations. Another novelty is the separa-

tion of uncertainty into that attributed to vessel length and radii, and uncertainty due to network

connectivity.

Chapter 9 includes the submitted manuscript “A multiscale model of vascular function in chronic

thromboembolic pulmonary hypertension," by Colebank, Qureshi, Rajagopal, Krasuski, and Olufsen.

This study, done in collaboration with clinicians Rajagopal and Krasuski at Duke University, proposes

a multiscale model framework for group 4 PH, CTEPH. The disease is curable, but an optimal

intervention strategy is not currently available. Utilizing a human image and flow data, the study
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integrates pressure-loss lesion models with the 1D model coupled to a structured tree to address this

issue. Normotension and four CTEPH disease cases are simulated and compared to physiological

knowledge of the disease. The framework is used to simulate BPA in CTEPH patients, illustrating a

possible tool in determining optimal surgical intervetions. This study asks:

1. Can 1D fluid dynamics models predict in-clinic energy-losses seen in CTEPH?

2. Can large-and-small vessel disease hypotheses be observed in a hemodynamics model of

CTEPH?

3. Can the model determine optimal surgical intervention be deduced?

Results from this study show that 1D model predictions can be mapped to the 3D lung tissue,

providing a new quantitative metric of flow heterogeneity. The study is the first to use a combination

of large and small vessel hemodynamics, and large vessel lesion models to predict improvements

from simulated surgery.

The three papers are provided verbatim and may overlap with methods discussed in previous

chapters.
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CHAPTER

7

SENSITIVITY ANALYSIS AND

UNCERTAINTY QUANTIFICATION OF 1D

PULMONARY HEMODYNAMICS IN MICE

UNDER CONTROL AND HYPERTENSIVE

CONDITIONS

The study “Sensitivity analysis and uncertainty quantification of 1-D models of pulmonary hemo-

dynamics in mice under control and hypertensive conditions" was published in a special issue

article in the International Journal for Numerical Methods in Biomedical Engineering, e3242 in 2019.

Contributions included determining the vascular geometry from micro-CT imaging, setting up the

three network models, performing all sensitivity analyses, parameter inference, and uncertainty

quantification, and writing a majority of the manuscript.

7.1 Abstract

Pulmonary hypertension (PH), defined as an elevated mean blood pressure in the main pulmonary

artery (MPA) at rest, is associated with vascular remodeling of both large and small arteries. PH has

several sub-types that are all linked to high mortality rates. In this study, we use a one-dimensional

(1D) fluid dynamics model driven by in-vivo measurements of MPA flow to understand how model
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parameters and network size influence MPA pressure predictions in the presence of PH. We compare

model predictions against in-vivo MPA pressure data from a control and a hypertensive mouse and

analyze model predictions in three networks of increasing complexity, extracted from micro-CT im-

ages. We introduce global scaling factors for boundary condition parameters and perform local and

global sensitivity analysis to calculate parameter influence on model predictions of MPA pressure,

and correlation analysis to determine a subset of identifiable parameters. These are inferred using

frequentist optimization and Bayesian inference via the Delayed Rejection Adaptive Metropolis

(DRAM) algorithm. Frequentist and Bayesian uncertainty is computed for model parameters and

MPA pressure predictions. Results show that model predictions of MPA pressure are most sensitive

to distal vascular resistance, and that parameter influence changes with increasing network com-

plexity. Our outcomes suggest that PH leads to increased vascular stiffness and decreased peripheral

compliance, congruent with clinical observations.

7.2 Introduction

Pulmonary hypertension (PH) is defined as a mean pulmonary arterial blood pressure ≥25 mmHg

at rest and encompasses 5 main etiologies, all of which lead to right heart failure if untreated [220].

These patients experience vascular remodeling in both large and small vessels, leading to increased

pulmonary arterial blood pressure and an elevated ventricular afterload, the external stress that

the heart must overcome to eject blood into the aorta and main pulmonary artery (MPA). These

changes ultimately alter the type, magnitude, speed, and arrival time of local pressure and flow

waves [188, 249]. PH has no cure and is only diagnosed after an initial screening by echocardiogram

and invasive measurement of pulmonary arterial blood pressure via right heart catheterization,

resulting in delayed diagnosis of the disease and limited treatment options [220]. In this study, we

develop a one-dimensional (1D) fluid dynamics model to understand how changes in network

complexity and vessel stiffness impact predictions of MPA blood pressure, as this model type has

potential to describe how pathology impacts the vascular structure (e.g. wall stiffness and network

morphology) and function (e.g. blood pressure and flow propagation) of the pulmonary circulation.

This is vital for developing better clinical tools for disease detection and monitoring progression [27,

143].

1D fluid dynamics models requires specification of four components, including 1) the geometry

of the vascular network, 2) a 1D approximation of the Navier-Stokes equations, satisfying conserva-

tion of mass and balance of axial momentum, 3) a constitutive equation relating transmural pressure

and vessel cross-sectional area, and 4) inlet, outlet, and junction conditions. Numerous studies have

used 1D models to investigate wave propagation in the systemic circulation [4, 21, 168, 198, 226,

249] and to study how changes in vascular wall mechanics impact systemic hemodynamics [192,

225, 240]. While a majority of studies are carried out in the systemic circulation, several recent works

have analyzed dynamics in the pulmonary circulation [135, 169, 189, 190]. For example, Qureshi et

al. [189] developed a 1D model connecting pulmonary arteries and veins, while Lee et al. [135] and
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Qureshi et al. [190] studied nonlinearity of the pulmonary arterial wall deformation. The 1D model

can describe hemodynamics in both the systemic and pulmonary systems, though the systems differ

significantly. The systemic network distributes blood via long vessels, forming a specialized network

reaching all organs in the body, except the lungs, under a high mean pressure gradient changing

from about 92 mmHg in the aorta to approximately 2 mmHg in the capillaries [146]. In contrast, the

pulmonary system transports blood from the right ventricle to the left atrium, covering a relatively

short distance via a rapidly branching network of highly compliant vessels, see Figure 7.1. The

pulmonary system transports blood under a lower mean pressure gradient, from about 15 mmHg in

the MPA to approximately 4 mmHg in the pulmonary veins [146]. These fundamental differences

between the structure and function of the two systems significantly impact the parameter ranges

and model behavior needed for hemodynamic predictions; a question not addressed in previous

studies. A better understanding of how the model parameters impact hemodynamic predictions, i.e.

the model sensitivity to parameters, is important for understanding the rapid progression of PH and

eventual right heart failure. In this study, we use sensitivity analysis and uncertainty quantification

to addresses key questions related to these aspects.

Sensitivity analysis quantifies the effects of model parameters on simulated quantities of in-

terest by systematically perturbing parameters and quantifying their effects. This analysis can be

conducted using either local [59, 60] or global [153, 205, 221]methods, providing parameter rank-

ings [60, 165] and time-varying sensitivities [7, 148, 265]. Local sensitivity metrics are computed

from explicit sensitivity equations [60] or approximated using finite differences [106, 221], automatic

differentiation [60, 84], or complex step methods [17, 221]. Local methods are computationally

inexpensive but are only guaranteed to be valid at a given parameter value if the model is linear

and additive [205]. In contrast, global methods approximate the model sensitivity throughout a

specified parameter space [34, 205, 221, 258], albeit at a much higher computational cost. Global

sensitivity analysis can be conducted using variance-based methods, such as Sobol’ indices [205,

258], or Morris’ Screening [153]. Sobol’ indices provide a more robust, finer measure of parameter in-

fluence, whereas Morris’ Screening provides a coarse approximation of the global sensitivities. While

the Sobol’ methods perform a more extensive analysis over the entire parameter space, screening

methods are less computationally expensive and are in good agreement with total indices obtained

from Sobol’ indices [34].

A thorough sensitivity analysis is of particular importance for network models, as the extent

of the network used affects both the number of parameters in the system and their respective

influence on model predictions [62, 114, 135, 152]. The effects of changing parameters in large

models of the vasculature are nonlinear and complex, largely due to the complex physics of the

system [58, 59]. Moreover, the physiological range for each parameter depends on both the network

topology and the disease state. To address this problem, it is important to understand how the model

sensitivity changes with network size and if it is possible to infer parameters given the available data.

Several recent studies [12, 31, 59] have conducted sensitivity analyses and examined uncertainties

in predictions for a range of cardiovascular models [37, 87, 148, 206, 264, 265]. Two studies [68,
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148] have quantified how parameter influence changes with network size and complexity, and one

study [37] has examined time-varying changes in model sensitivities. To our knowledge, no previous

studies have examined the sensitivity of model predictions to parameters in pulmonary arterial

networks, which may shed more light on differences between the systemic and pulmonary systems

and assist in understanding differences between the more prevalent essential systemic hypertension

and the relatively rare, yet less understood, PH.

MPA blood pressure, a signature of pulmonary hemodynamics, is vital for PH diagnosis, making

it an ideal quantity of interest for sensitivity analysis. Changes in MPA pressure are attributed to prox-

imal and distal vascular resistance and pulmonary vascular compliance [190, 220], which can serve

as biomarkers for disease progression. Ideally, parameter inference would identify biomarkers using

the model and available data; however, limited PH patient data leads to a naturally ill-posed inverse

problem. To make the problem more well-posed, we introduce global scaling factors [186, 190] that

simultaneously adjust nominal parameter estimates and reduce the parameter space by removing

correlated parameters [60, 142, 165]. Once the parameter set is reduced, parameter inference is done

using both frequentist and Bayesian methods. The former methods treat parameters as fixed and

are less computationally expensive, while the latter treat parameters as random variables, allowing

for calculation of parameter posterior distributions using numerous Monte Carlo samples [186,

221]. Once parameters are inferred, frequentist and Bayesian uncertainty quantification methods

are used for both the parameters and model output, providing a measure of model robustness to

natural variation in parameters and measurement error.

Our objective in this study is to analyze the sensitivity and uncertainty of MPA pressure predic-

tions from 1D fluid dynamics models in networks of varying complexity. We perform our analysis

using data from two different mice under control and hypoxic environments, the latter inducing

PH. We hypothesize that it is essential to include several vessels in the network to obtain suffi-

ciently accurate physiological information. To test our hypothesis, we compare predictions in three

different networks: a single vessel model containing the MPA, a slightly more complex 3 vessel

network, and a more realistic network with 21 vessels. The latter is chosen as it is the largest number

of vessels that can be uniquely identified in both the control and hypoxic mouse. We introduce a

reduced parameter subset using a scaling factor approach [190] and conduct sensitivity analyses to

quantify the parameters’ influence on pressure predictions in the MPA. We compute sensitivities

using local, derivative-based [60, 142] and global screening methods [153], and investigate how sen-

sitivity metrics change over the cardiac cycle and with network size. We use correlation analysis and

posterior parameter pairwise plots from Markov Chain Monte Carlo (MCMC) sampling to determine

identifiable parameters, which are inferred by minimizing the least squares error between measured

and computed MPA pressure. Finally, we quantify uncertainty of the estimated parameters using

asymptotic, frequentist analysis and the Delayed Rejection Adaptive Metropolis (DRAM) algorithm,

and propagate this uncertainty forward to compute confidence, credible, and prediction intervals

for simulated waveforms [30, 142]. The workflow for this process is shown in Figure 7.2.
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Figure 7.1 Physiological diagram illustrating (a) the systemic arterial circulation in humans compared to
(b) the pulmonary circulation in the lung. The pulmonary circulation begins with the main pulmonary
artery (MPA) and bifurcates into the left and right pulmonary arteries, quickly bifurcating afterwards
throughout the lung.

Figure 7.2 General workflow of the data analysis process. Abbreviations: MCMC: Markov Chain Monte
Carlo; SQP: Sequential Quadratic Programming; DRAM: Delayed Rejection Adaptive Metropolis; UQ:
Uncertainty Quantification.
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7.3 Methods

7.3.1 Data

This study uses in-vivo hemodynamic and micro-computed tomography (micro-CT) imaging data

from control and hypoxic mice. Detailed experimental protocols describing this data can be found

in [232, 245]. All experimental procedures are approved by the University of Wisconsin Institutional

Animal Care and Use Committee. Below is a brief summary of the experimental protocol and the

methods for network construction.

7.3.1.1 Hemodynamic and Imaging Data

The hemodynamic data include cycle-averaged MPA pressure and flow waveforms gated to the

electrocardiogram (ECG) fiducial point [232]. Blood pressure is measured at a rate of 5KHz using a

1.0F pressure-tip catheter (Millar Instruments, Houston, TX) and the flow, measured with ultrasound,

is sampled at 30MHz. We examine data from one control and one hypoxic male C57BL6/J mouse

(12-13 weeks, weight 24 g), selected from groups of 7 control and 5 hypoxic mice. The latter specimen

is subject to a hypoxic environment for 21 days, thus creating hypoxia-induced PH in the mouse. For

each group (control and hypoxia), the mice with hemodynamics closest to the group average are

used for analysis in this study. The flow waveform is recorded precisely at the inlet of the MPA, while

MPA pressure is recorded proximal to the first bifurcation in the network. For sake of simplicity, we

assume that the pressure data corresponds to the midpoint of the MPA.

The imaging data include stacked planar X-ray micro-CT images of pulmonary arterial trees

from two male C57BL6/J mice, selected from groups of 4 control and 4 hypoxic mice (10-12 weeks,

weight 24 g). The hypoxic mice used for the imaging study were subject to a hypoxic environment for

10 days. The pulmonary arterial trees are imaged under a static filling pressure of 6.3 mmHg while

rotating the lungs in an X-ray beam at 1◦ increments to obtain 360 planar images. The Feldkamp

cone-beam algorithm [66] is used to render the isometric 3D volumetric dataset (497×497×497

pixels) by reconstructing and converting the 360 planer images into DICOM 3.0. See Vanderpool et

al. [245] for more details on animal preparation, handling, and experimental setup, and Karau et al.

[114] for details on the micro-CT image acquisition.

7.3.1.2 Network Geometry

Similar to our previous studies [186, 190], networks are extracted from DICOM images. We use

ITK-SNAP [273] to segment the images and render 3D structures and Paraview (Kitware; Clifton Park,

NY) to convert segmentations to Visualization ToolKit Polygonal (vtp) files. Lastly, the 3D networks

are converted to data structures containing centerline coordinates, vessel radii, and orientation

using the Vascular Modeling ToolKit (VMTK) [9, 11].

We use a custom MATLAB (Mathworks; Natick, MA) algorithm to construct a 1D graph rep-

resentation of the network, described by a connectivity matrix linking edges (vessels) and nodes
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(junctions). Each edge is associated with a series of x y z -coordinates denoting points along the

centerline and their corresponding radii. The radius for each edge is calculated by averaging the

center 80% of the vessel radii [190] and the length L is calculated as the sum of the distances between

x y z -coordinates (xi )

r0 =
1

Nv

Nv
∑

i=1

ri , L =
N
∑

i=1

li , where li = ‖xi+1−xi ‖, (7.1)

where N is the number of points along the vessel centerline, and Nv is the center 80% of the points.

Junction points (nodes) corresponding to vessel bifurcations are identified as the intersection

between two centerlines and embedded in a connectivity matrix.

Hemodynamic data is only available from the MPA, hence the simplest fluid dynamics model

includes a single vessel (SV model, left panel of Figure 7.3) emanating at the root of the pulmonary

vasculature and terminating at the first pulmonary junction. We compare results in the SV model

with the second smallest network containing three vessels, the MPA and the left and right pulmonary

arteries, (center panel in Figure 7.3). We refer to this model as the "single bifurcation" (SB) model.

The advantage of the SB model is that it can predict perfusion to the left and the right lobes of the

lung, enabling us to compare results with previous studies [27, 189]. Lastly, we compare results from

the SV and SB networks with a more realistic network containing 21 vessels (right panel of Figure 7.3).

We include 21 vessels as it is the largest number of vessels that can be identified in both the control

and hypoxic mouse. This allows for comparison between disease states without the considering the

influence of connectivity, as these models use the same connectivity. The vessel radii and lengths

vary between the control and hypoxic mice, as shown in Table 7.1. Given that the three models

are of various order, we can account for the effects of model-induced wave reflections, which are

prominent in larger network models [265]. Moreover, the 21 vessel model allows us to analyze the

role attributed to changes in distal vessel segments on PH progression [120, 135, 169, 220]. Ideally,

we should gradually increase the network from 3 to 21 vessels; however, the computational cost

associated with parameter inference and UQ is expensive and require several thousands of forward

simulations for each model and disease type, hence, we limit our analysis to the three networks,

shown in Figure 7.3: (a) a single vessel (SV - zero bifurcation) model, (b) a three vessel (SB - single

bifurcation) model, and (c) a 21 vessel (FN - full network- ten bifurcations) model.

7.3.2 Modeling

Similar to previous studies [169, 189, 190], the 1D fluid dynamics model is derived from the continuity

and Navier-Stokes equations combined with a constitutive equation relating pressure and vessel

area. A measured flow waveform is prescribed at the inlet of the MPA, and outlet boundary conditions

are specified by three-element Windkessel models, with nominal parameter values calculated using

the hemodynamic data and network geometry.
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Table 7.1 Vessel dimensions and connectivities for SV, SB, and FN networks for the control and hypoxic
mice.

Control Hypoxic

Vessel Connectivity r0×10−1 L ×10−1 r0×10−1 L ×10−1

Index (Daughters) (cm) (cm) (cm) (cm)

1∗† (2,3) 0.47 4.10 0.51 3.58

2† (4,5) 0.26 4.45 0.26 4.03

3† (6,7) 0.37 3.72 0.37 3.08

4 (8,9) 0.24 2.41 0.25 2.92

5 – 0.13 0.52 0.17 0.65

6 (14,15) 0.32 2.02 0.28 1.60

7 – 0.17 2.12 0.19 0.93

8 (10,11) 0.23 3.11 0.24 2.06

9 – 0.17 1.77 0.17 0.51

10 (12,13) 0.20 2.62 0.22 2.37

11 – 0.16 0.69 0.17 0.88

12 – 0.15 1.40 0.19 1.27

13 – 0.14 0.62 0.15 0.51

14 (16,17) 0.26 0.81 0.27 1.20

15 – 0.19 1.84 0.19 1.55

16 (18,19) 0.25 0.83 0.26 0.71

17 – 0.15 3.02 0.18 1.68

18 (20,21) 0.24 4.69 0.24 3.55

19 – 0.15 1.77 0.18 1.86

20 – 0.22 1.78 0.23 2.24

21 – 0.18 0.55 0.19 1.07

∗Dimensions for the single vessel (SV) model, † the single bifurcation (SB) model, and the 21 vessel full network model

(FN) model. For each connectivity pair (i , j ), i refer to the left and j to the right daughter. Vessels marked with – are

terminal.
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Figure 7.3 Pulmonary arterial networks constructed from micro-CT images of a control mouse. Three
models are analyzed: (a) a single vessel model (SV), (b) a single bifurcation model (SB), and (c) a 21 vessel
full network model (FN). The 1D model (d) is constructed by extracting centerlines from an isometric 3D
volumetric surface rendered from the segmented images. The networks are represented by a connectivity
matrix with nodes, edges, vessel radii, lengths, and orientation. A flow waveform obtained from data is
attached at the network inlet, and at the outlets we attach three-element Windkessel models, relating flow
and pressure. Pressure data is measured at the midpoint of the MPA and used for parameter inference.

7.3.2.1 1D fluid dynamics equations

The 1D model is derived under the assumptions that the vessels are cylindrical, that blood is

incompressible, that flow is Newtonian, laminar, and axisymmetric (with no swirl), and that the

arterial walls are impermeable. The equations for mass conservation and momentum balance are

written as [168, 169, 189, 190]

∂ A

∂ t
+
∂ q

∂ x
= 0,

∂ q

∂ t
+
∂

∂ x

�

q 2

A

�

+
A

ρ

∂ p

∂ x
=−

2πνR

δ

q

A
, (7.2)

where x (cm) and t (s) denote the axial and temporal coordinates, p (x , t ) (mmHg) denotes the

transmural blood pressure, q (x , t ) (ml/s) the volumetric flow rate, and A(x , t ) =πr (x , t )2 (cm2) the

cross-sectional area, where r (x , t ) (cm) is the vessel radius. The blood density ρ (g/ml), kinematic

viscosity ν (cm2/s), and boundary layer thickness δ (cm) are assumed constant. The momentum

equation is derived under the no-slip condition, satisfied by imposing a flat velocity profile over

the lumen area [168]with a thin boundary layer that decreases linearly in the vicinity of the walls,

where the transition to no-slip takes place. In order to maintain consistent units in the system of

equations (7.2), we convert the pressure from mmHg to units of (g/(cm s2)) using the conversion

factor 1 mmHg =1333.22 (g/(cm s2)).

To close the system of equations, we adopt a constitutive equation relating pressure and cross-
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sectional area via a linear wall model [204]. The wall model is derived under the assumptions that

the vessels are cylindrical and that the walls are thin (h/r0 � 1), incompressible, homogeneous,

and orthotropic [14]. We assume that the loading and deformation are axisymmetric and that the

vessels are tethered in the longitudinal direction so that longitudinal strain is negligible. Under these

conditions, the external force reduces to stress in the circumferential direction, yielding a linear

stress-strain relation

p =β

�
√

√ A

A0
−1

�

, β =
E h

(1−κ2)r0
, (7.3)

where β (mmHg) denotes the vessel stiffness. E (mmHg) denotes the circumferential Young’s

modulus, κ= 0.5 (dimensionless) the Poisson ratio, h (cm) the wall thickness, and A0 =πr 2
0 (cm2)

refers to the reference cross-sectional area [168, 204] at p = p0 = 0.

7.3.2.2 Boundary conditions

The system of equations (7.2)-(7.3) is hyperbolic with characteristics that propagate in opposite

directions [2], i.e. to be well-posed each vessel needs an inlet and outlet boundary conditions. We

enforce this by specifying the flow at the network inlet (Figure 7.3) and conservation of flow and

continuity of pressure at each junction, given by

pp (L , t ) = pdi
(0, t ) and qp (L , t ) =

∑

i

qi (0, t ), (7.4)

where the subscripts p and di (i = 1, 2) refer to the parent and daughter vessels, respectively. Outlet

boundary conditions for each terminal vessel are described by three-element Windkessel models

(an RCR circuit) relating peripheral pressure p (L , t ) and flow q (L , t ) as

d p (L , t )
d t

−Rp
d q (L , t )

d t
= q (L , t )

�Rp +Rd

Rd C

�

−
p (L , t )
Rd C

, (7.5)

where RT =Rp +Rd (mmHg s/ml) is the total peripheral resistance, Rp is the proximal resistance, Rd

is the distal resistance, and C (ml/mmHg) is the total compliance of the vascular region perfused by

the terminal vessel (see Figure 7.3). The system of equations (7.2)-(7.5) are solved numerically in

C++ using the two-step Lax-Wendroff method, described in detail in [168].

7.3.2.3 Nominal parameter values

The 1D model has three types of parameters, shown in Table 7.2, specifying the network geometry,

the fluid and vascular properties, and the in- and outlet boundary conditions. Some of these can

be measured or found in literature, while others must be estimated. Here, we describe how to

compute nominal parameter values before performing model reduction and parameter inference

using frequentist and Bayesian techniques.

Network geometry: Vessel length, radius, and connectivity are extracted from imaging data as
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described in Sec. 7.3.1. While these quantities carry uncertainty, we assume that all geometric

properties are constant and known. The dimensions and connectivity of the different models are

given in Table 7.1.

Fluid and vascular properties: The blood density ρ = 1.057 (g/ml) [199], the kinematic viscosity

ν = 0.0462 (cm2/s), measured at a shear rate of 94 (s−1) [262], and the boundary layer thickness

δ≈
p

νT /2π [249] are assumed constant. Here, T (s) denotes the length of the cardiac cycle, which

is 0.112 and 0.107 (s) for the control mouse and hypoxic mouse, respectively. This difference was

statistically insignificant [190] and had a negligible effect on model predictions, hence we use T =

0.11 for all simulations. The nominal value for the wall stiffness in the MPA (βMPA) is approximated

as

βMPA =
2(A0Zc )2

ρ
, (7.6)

where the characteristic impedance Zc is estimated from the slope of the pressure-flow loop includ-

ing 95% of the flow during ejection phase [191].

Inflow and outlet conditions: We specify a control and hypoxic flow waveform at the inlet of the MPA,

repeated for each cardiac cycle (T = 1/HR (s)), for each mouse. At the outlet of each terminal vessel,

we specify a three-element Windkessel model (equation (7.5)). This model has 3 parameters, two

resistors and a capacitor, given by θw k = {Rp , Rd , C }. For each terminal vessel, the total peripheral

resistance is RT =Rp +Rd = p/q , where p and q denote the mean pressure and mean flow over over

the cardiac cycle from the data. Similar to previous studies [21, 146]we assume that the nominal

proximal resistance is Rp = 0.2RT and that the distal resistance is Rd = RT −Rp . As suggested by

Stergiopulos et al. [226], the peripheral compliance is calculated as C = τ/RT , where the time-

constant τ is estimated by fitting the diastolic pressure decay pd (t ) to an exponential function [190,

191]

pd (t ) = p (td )e
(− (t − td )/τ), (7.7)

where td denotes the onset of diastole.

For models with more than one vessel (i.e. the SB and FN models), θw k are estimated by dis-

tributing RT to each terminal vessel j as

RT j =
p

q j
, and C j =

τ

RT j
, (7.8)

where q j is the mean flow to vessel j , determined by applying Poiseuille’s law recursively at each

junction. This relation gives

q di
=

Fdi
∑

i Fdi

q p , where Fdi
=

�

πr 4
0

8µL

�

di

for i = 1, 2. (7.9)

Here q di
and q p denote the mean flow in the daughter vessel i and parent vessel p , respectively,

with viscosity µ. Similar to the SV model, the total resistance is distributed as Rp j = 0.2RT j and
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Rd j =RT j −Rp j . Each outlet j requires specification of 3 parameters (Rp j , Rd j , C j ), i.e. the SV model

has 3 outlet parameters, the SB model has 6 outlet parameters, and the FN model has 33 outlet

parameters.

Table 7.2 List of parameter values and how they are calculated.

Parameter Units Control Value Hypoxic Value Reference

r0 [cm] † † [190]

L [cm] † † [190]

ρ [g/ml] 1.057 1.057 [199]

ν [cm2/s] 0.0462 0.0462 [262]

δ [cm] 0.03 0.03 [249]

κ dimensionless 0.5 0.5 [190]

Zc [mmHg s /ml] 26.0 150.6 [191]

T [s] 0.11 0.11 [190]

τ [s] 0.14 0.09 [190]

RT [mmHg s /ml] Eq. (7.8) Eq. (7.8) [190]

C [ml /mmHg] Eq. (7.8) Eq. (7.8) [190]

β = E h/r0 [mmHg] ∗ ∗ -

rp dimensionless ∗ ∗ -

rd dimensionless ∗ ∗ -

c dimensionless ∗ ∗ -

† - parameters based on imaging data; ∗ - parameters estimated

7.3.3 Parameter Reduction

Assuming that the network geometry is fixed, the model parameters can be grouped into two

categories: parameters in the 1D model equations, θ i
1D = {T ,ν,ρ,δ,βi } for i = 1, . . . , Nv e s , where

Nv e s is the number of vessels, and parameters needed to specify the outlet boundary conditions,

θ
j

w k = {Rp j , Rd j , C j } for j = 1, . . . , Nt e r m , where Nt e r m is the number of terminal vessels. The models

studied here have 8, 13, and 58 parameters for the SV, SB, and FN models, respectively, yet data is

only available in the MPA. The lack of downstream data makes parameter inference ill-posed, as

multiple parameters are to be inferred using one time-series signal. To address this problem, we

introduce global scaling factors to reduce the number of inferred parameters.

As mentioned earlier, we assume that the cardiac cycle length T , the viscosity ν, the density ρ,

and the boundary layer thickness δ are constant and that the parameter stiffness β is constant for

all networks within each disease type [124, 135, 190]. As a result, only the Windkessel parameters

Rp , Rd , and C are vessel specific. From circuit theory, it is known that resistors and capacitors in
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parallel and series can be combined to compute the total resistance and capacitance for a circuit.

The presence of multiple resistors and capacitors, which could be combined, leads to identifiability

issues, i.e. estimated parameters may not be unique [107, 180, 182, 221]. To avoid this, we simplify

the parameter inference problem by introducing global scaling factors [186, 190] rp , rd , and c for

the Windkessel parameters at each terminal vessel j

eRp j = rp Rp j , eRd j = rd Rd j , eC j = c C j , (7.10)

where e(·) refer to the scaled Windkessel parameters.

In summary, we fix parameters {T ,ν,ρ,δ}as well as the nominal Windkessel parameters {Rp j , Rd j , C j }
for each terminal vessel j , leaving the reduced parameter set θ = {β , rp , rd , c } to be inferred.

7.3.4 Parameter Inference

Inferred parameters θ̂ = {β̂ , r̂p , r̂d , ĉ } are determined by minimizing

min
θ

J =min
θ

�

1

N
χ(t ;θ )Tχ(t ;θ )

�

, χ(t ;θ ) =







pm (L/2, t1)−pd a t a (t1)
...

pm (L/2, tN )−pd a t a (tN )






, (7.11)

where N is the number of data points, pd a t a (ti ) is the MPA pressure data measured at t = ti , and

pm (L/2, ti ) is the corresponding model prediction at the midpoint of the MPA for a given value of θ .

Throughout this paper, we use Ò(·) to denote quantities that are estimated using either the frequentist

or Bayesian techniques described in Section 3. Moreover, the scaling factors shown in equation

(7.10) always adjust the nominal parameter estimates Rp j , Rd j , and C j , which are calculated using

equation (7.9).

7.4 Model Analysis

To determine the influence of model parameters on the MPA pressure, we use local and global

sensitivity methods. We analyze parameter correlations and pairwise parameter distributions to

determine a subset of parameters that can be estimated given the model and available data. We use

both frequentist and Bayesian inference methods to infer point-estimates and posterior parameter

distributions by minimizing the least squares error between model predictions and MPA pressure

measurements. Subsequently, we use forward uncertainty propagation to quantify the uncertainty

of model predictions in the MPA and downstream vasculature.

7.4.1 Sensitivity Analysis

Sensitivity analysis characterizes the influence of parameters on the model output. This type of

analysis provides insight into future data collection methods and experimental designs, as parame-
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ters that are more influential should be prioritized for experimental measurement [91]. Conversely,

a lack of agreement between sensitivity analysis and physiological knowledge can imply missing

model physics or a need for different measurements. In this study, we use derivative-based local

sensitivity analysis [60] and Morris screening [231] (global) to quantify the parameter influence on

MPA pressure predictions; the quantity of interest. Local sensitivity analysis is computationally

efficient and valuable if accurate nominal parameter values are known, whereas global sensitivity

analysis provides a more robust analysis of the model at a much higher computational cost. Since

MPA pressure varies in time, we compute both the averaged and time-varying model sensitivities.

7.4.1.1 Local sensitivity analysis

Derivative-based sensitivity analysis computes the model sensitivity with respect to a single param-

eter value within a small neighborhood of the nominal estimate value [164, 165, 182]. For a given

quantity of interest f (t ;θ ), the sensitivity Si (t j ;θ ) is defined as

Si (t j ;θ ) =
∂ f (t j ;θ )

∂ θi
, i = 1, . . . , P, j = 1, . . . , N , (7.12)

where θi denotes the parameter of interest, P is the number of parameters in the model, t j is the

j -th time point, and N is the number of time steps in the model output. The sensitivity matrix

S (t ;θ ) is constructed by appending all the N ×1 sensitivity vectors Si (t ;θ ).

In this study, we approximate the model sensitivity using the centered finite difference method

∂ f

∂ θi
≈

f (t ;θ +eee iψ)− f (t ;θ −eee iψ)
2ψ

, (7.13)

whereψ is the step size and eieiei is a unit vector with a 1 in the i -th entry and 0’s elsewhere. Finite

difference methods for sensitivity equations are limited by the accuracy of the numerical solver for

the given system of ODE’s/PDE’s [106], but are more computationally efficient [17, 60, 84, 165]. We

choose a relatively larger number of time-steps per period, 8192 here, to ensure numerical stability

and satisfaction of the CFL condition in every vessel, makingψ=
p
∆t ≈ 10−3 for the second-order

accurate Lax-Wendroff scheme.

To make sensitivities of similar magnitude and prevent negative parameter values, we log scale

the parameters, θ̃ = log(θ ). The resulting log-scaled sensitivities are given by

S̃i (t ;θ ) =
∂ f (t ;θ )

∂ θ̃i

=
∂ f (t ;θ )
∂ θi

θi , i = 1, . . . , P. (7.14)

Local sensitivities are computed as functions of time over one cardiac cycle and ranked sensitivities

Si are computed by averaging sensitivities over one cardiac cycle using the 2-norm

Si = ||S̃i ||2. (7.15)
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It should be noted that sensitivity computations are done over one cardiac cycle after the system

has reached steady, oscillatory behavior, i.e. effects of initial conditions have dissipated.

7.4.1.2 Global sensitivity analysis

We use Morris’ screening [153] to compute global sensitivity metrics, which is of similar accuracy as

Sobol’ based total sensitivities computed using variance-based methods [34, 258]. Morris’ screening

involves the computation of “elementary effects", which determine the relative change of the model

output to a relative change in parameter values. The screening method quantifies the effects of

a parameter θi on the output quantity as a) negligible overall, b) linear and additive, or c) having

nonlinear effects or higher order interactions with other parameters. To perform this analysis,

parameters are mapped from their bounded parameter space Θ ∈RP to the unit hypercube [0, 1]P ,

where P denotes number of parameters analyzed. Using a uniform, bounded prior distribution

restricts the model analysis to a physiologically relevant parameter subspace without invoking a

bias. The elementary effects are computed as

di (t ;θ ) =
f (t ;θ +eee i∆)− f (t ;θ )

∆
, (7.16)

where eee i is the unit vector in the i -th direction, i = 1,2, . . . , P . The step size∆ is chosen from the

set ∆ ∈ {1/(M − 1),2/(M − 1) . . . , (M − 2)/(M − 1)}, whereM denotes the number of parameter

perturbation levels used in the screening method, i.e. the number of possible perturbation sizes.

To preserve symmetry of the parameter distributions, we chooseM to be even [34, 153, 221]. The

elementary effects are then computed by sampling K values from a uniform distribution for the

parameter θ
j

i . To compare elementary effects at different points in the parameter space, we compute

2-norm elementary effects, denoted by d̃
j

i (θ ) = ||d
j

i (t ;θ )||2. We employ the algorithm by Wenthworth

et al. [258] scaling the step size∆ by the parameter magnitude.

The elementary effects’ mean and variance are obtained by integrating the outcomes from

multiple iterations. The modified Morris’ indices are calculated as

µ∗i =
1

K

K
∑

j=1

|d̃ j
i |, σ2

i =
1

K −1

K
∑

j=1

�

d̃
j

i −µ
∗
i

�2
(7.17)

where µ∗ quantifies the individual effect of the input on the output, i.e. the sensitivity of the model

with respect to the parameter selected, while the variance estimateσ2 describes the variability in

the model sensitivity due to parameter interactions or nonlinearity. Parameters with a large µ∗ and

σ2 have large effects on the model output and are highly nonlinear in the model. Similar inference

can be made for other combinations of µ∗ andσ2. Following work by Wenthworth et al. [258], we

compute the metric
p

µ∗2+σ2 to rank the parameters, which takes into account the magnitude

and variability of the elementary effects.

For the randomized Morris’ algorithm, we set the number of samples K = 50, the number

of levels of the parameter spaceM = 20, and the step size ∆ = M
2(M−1) ≈ 0.526. The parameter
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bounds are βc o n t r o l ∈ [7.5,75] and βh y p o x i c ∈ [75,750]mmHg for the control and hypoxic mice,

and (rp , rd , c ) ∈ [0.05, 3]3 for both the control and hypoxic animals. These bounds ensure that model

predictions are within the physiological range for each disease type without invoking a strong bias

in the prior parameter distributions.

7.4.2 Correlation Analysis

To identify pairwise parameter correlations and find a reduced parameter subset, we analyze the

covariance matrix V , which for a constant observation variance s 2 can be approximated asymptoti-

cally [19] as

V = s 2
�

S̃ (t ;θ )T S̃ (t ;θ )
�−1

, s 2 =
1

N −P

�

χ(t ;θ )Tχ(t ;θ )
�

, (7.18)

whereχ(t ;θ ) is the residual defined in equation (7.11), S̃ is the sensitivity matrix defined in equation

7.12, and P is the number of parameters. We calculate correlations as

vi j =
Vi j

Æ

Vi i Vj j

, (7.19)

where vi j is a symmetric matrix with diagonal elements vi i = 1 and |vi j | ≤ 1. High pairwise parameter

correlations can cause optimization routines to fail finding a unique (local) minimum [68, 164, 165,

221]. Smaller parameter sets benefit from higher correlation cutoffs, whereas large parameter sets

can cause issues with parameter inference for lower correlation values. We consider a cutoff of 0.9,

which is within the normal cutoff range reported previously [30, 142, 167, 221].

7.4.3 Optimization

Identifiable model parameters are estimated using a sequential quadratic programming (SQP)

algorithm, minimizing (7.11) within specified parameter bounds [186]. The complexity of the 1D

fluids model introduces a need for parameter bounds, ensuring that the numerical solver converges

without violating the CFL condition. The physiological interpretation of parameter values also

provide bounds, which may be more restrictive than the numerical bounds.

The SQP algorithm is executed via the MATLAB function fmincon. For the control mouse, the

parameter bounds were set at β ∈ [7.5,75]mmHg and (rp , rd , c ) ∈ [0.05,3]3, and for the hypoxic

mouse we set β ∈ [75,750] mmHg and (rp , rd , c ) ∈ [0.05,3]3. For each optimization, eight initial

values are sampled from a uniform distribution spanning the intervals given above. Using eight

initial conditions ensured that the optimization converged to the same local minimum within

the parameter bounds. Optimization was run on an iMac (3.4 GHz Intel Core i7, 16GB RAM, OS

10.13.4). The algorithm is iterated until the least squares minimization problem has converged, i.e.

|JN − JN−1|< 10−8.
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7.4.4 Uncertainty Quantification

Given the limited data available from PH patients, it is important to understand how uncertainties

in model parameters propagate to model predictions. We use frequentist and Bayesian methods to

propagate uncertainty predictions through each model. Frequentist methods treat parameters as

fixed and unknown, encouraging traditional optimization-based parameter inference and model

confidence intervals as discussed in [221]. In contrast, the Bayesian framework treats parameters

as random variables and incorporates a priori knowledge, via prior parameter distributions, and a

likelihood function to construct posterior distributions that best explain the observed data. Sampling

from the posterior distributions can then propagate uncertainties forward and construct model

confidence and credible intervals. Bayesian methods provide more detailed uncertainty but are more

computationally expensive than frequentist method. However, frequentist parameter inference

can fail if parameters are non-identifiable or highly correlated, whereas the Bayesian methods can

expose these relationships while still providing information about parameter uncertainty. Below we

describe both methods, highlighting the advantages and disadvantages for each.

7.4.4.1 Frequentist analysis

In the frequentist framework, confidence and prediction intervals are constructed for both the

parameters and the model predictions where data is available. To compute the confidence intervals

for a given parameter, we consider estimated parameters θ̂ that minimize the cost function J defined

in equation (7.11) and the associated local sensitivity matrix Ŝ = S̃ (t ; θ̂ ). Using this framework and

the constant, estimated observation variance ŝ 2 from equation (7.18), the parameter confidence

intervals are calculated as

θ C I
i ≡

�

θ̂i − t 1−α/2
N−P ŝ

r

�

Ŝ T Ŝ
�−1

, θ̂i + t 1−α/2
N−P ŝ

r

�

Ŝ T Ŝ
�−1

�

, (7.20)

where t 1−α/2
N−P denotes a t -statistic with N −P degrees of freedom and a 1−α= 0.95 confidence level,

N is the number of data points, and P is the number of parameters. The confidence interval for the

model response, y C I (t ), can be computed in a similar fashion

y C I (ti )≡
�

y (ti ; θ̂ )− t 1−α/2
N−P ŝ

p

Γi , y (ti ; θ̂ ) + t 1−α/2
N−P ŝ

p

Γi
�

, (7.21)

where Γi =G T
i

�

Ŝ T Ŝ
�−1

Gi and

G T
i =

�

∂ y (ti ; θ̂ )

∂ eθ1

, . . . ,
∂ y (ti ; θ̂ )

∂ eθP

�

.

Lastly, the prediction intervals for the model response are calculated as

y P I (ti )≡
�

y (ti ; θ̂ )− t 1−α/2
N−P ŝ

p

1+ Γi , y (ti ; θ̂ ) + t 1−α/2
N−P ŝ

p

1+ Γi
�

. (7.22)
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It should be noted that since data is only collected at the inlet of the MPA, we cannot estimate

the variance ŝ 2 that would be needed to construct accurate confidence and prediction intervals in

other vessels of the network.

7.4.4.2 Bayesian analysis

In contrast to the frequentist framework, Bayesian credible and prediction intervals are computed

from the posterior distributions of the parameters in question. In this study, we employ the Delayed

Rejection Adaptive Metropolis (DRAM) algorithm [89, 127, 186] to determine posterior parameter

distributions and study pairwise parameter correlations (see Appendix C for more details on the

algorithm).

The parameter posterior, π
�

θ
�

�

�y
�

is computed using Bayes’ formula

π
�

θ
�

�

�y
�

=
π
�

y
�

�

�θ
�

π0(θ )

π(y )
=

π
�

y
�

�

�θ
�

π0(θ )
∫

RP π
�

y
�

�

�θ
�

π0(θ )dθ
(7.23)

for the data y , where π
�

y
�

�

�θ
�

is the likelihood function, π0(θ ) is the prior distribution, and
∫

RP π
�

y
�

�

�θ
�

π0(θ )dθ is a normalization factor. We assume that the prior distribution π0(θ ) is flat (i.e.

uniformly distributed) over the physiological bounds, and that the likelihood function π
�

y
�

�

�θ
�

in

(7.23) can be specified and reflects statistical properties of the data. We assume that the measurement

errors, εi , are normally distributed, independent and identically distributed (iid) random variables

with mean zero and constant varianceσ2
ε, i.e. εi ∼N (0,σ2

ε). Under these assumptions the likelihood

function is given as

L
�

θ ,σ2
ε

�

�

�y
�

=π
�

y
�

�

�θ
�

=
1

�

2πσ2
ε

�N /2
e −χ

T χ/2σ2
ε , (7.24)

where χ is the residual defined in equation (7.11).

For MCMC methods, convergence to the true posterior distribution is only guaranteed for an

infinite number of samples, i.e. M →∞. In practice, the number of samples should be large enough

to ensure that the chains have visibly converged. In this study, we use the Geweke test [81], which

determines convergence of a MCMC chain by comparing the first 10% and last 50% of the chain

for significant differences in the mean and computes a p-value from a Z-statistic. p-values close to

zero indicate that the null hypothesis of equal means between the two chains should be rejected,

suggesting non-convergence.

Subsequently, the posterior distribution π
�

θ
�

�

�y
�

is used to compute credible and prediction

intervals for the model response. To do so, we draw 2,000 samples from the posterior distribution

propagating uncertainties forward through the model computing both credible and prediction

intervals for the pressure in the MPA [89, 221].
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7.5 Results

7.5.1 Sensitivity Analysis

Figure 7.4 shows the sensitivity of MPA pressure predictions for the 4 parameters in the control

and hypoxic mouse. Normalized pressure and flow waveforms are plotted in the background to

help identify which sections of the cardiac cycle (e.g., systole from (b)-(d) or diastole from (a)-(b)

and (d)-(a)) are most sensitive to these parameters. Results indicate that rd is the most influential

parameter throughout the cycle for all networks in both mice. Analysis of the remaining parameters

show that the vessel stiffness β becomes more influential as more branches are added, while the

proximal resistance rp scaling factor becomes less influential, indicating that model sensitivity to

the proximal resistances Rp is reduced. The compliance scaling factor c hardly changes for the

control mouse whereas the hypoxic mouse shows a decrease in influence as more vessels are added.

Analysis of the sensitivities over the cardiac cycle reveals that model predictions are more sensitive

to rp than β during systole (between (b) and (d)) for the SV model, but switch in the FN model.

Moreover, rd has the greatest influence on the model prediction during diastole (from (a)-(b) and

(d)-(a)), i.e. the sensitivity value decreases with increasing flow and pressure. The model sensitivity

to the scaling factor c oscillates over the cardiac cycle, having the largest relative influence on model

predictions at the start and end of systole (from (b)-(c) and (d)-(a)). The sensitivity curves illustrate

a change in behavior over time for increasing network sizes, e.g. the peak of the β sensitivity curve

occurs later in the cardiac cycle in the FN model in comparison to the SV model.

Figure 7.5 shows the scaled average elementary effects compared to the standard deviation from

the global sensitivity analysis. Both the control and hypoxic models are plotted against each other

for the SV, SB, and FN networks. These results agree with the local analysis, as the global sensitivity

analysis shows that the rd scaling parameter has the largest influence (characterized by µ∗) and

the largest variability in influence (characterized by σ) regardless of the network size or disease.

The value of σ for c in the control mouse is consistently larger than the average influence of µ∗

regardless of model, yet the hypoxic mouse has a relative decrease inσ when moving from the SV

model to the SB and FN models. Results show that rd has the largest interaction and/or nonlinear

effect while rp has the smallestσ, regardless of the disease or model type.

In summary, the global analysis shows that the stiffness parameter β (for both control and

hypoxic mice) becomes more influential as more vessels are added, while the compliance scaling

factor c has a high variance across all three model types. These results indicate that the influence of

compliance on MPA pressure is highly dependent on the parameter space for β , rp , and rd . Overall,

the parameter rankings, shown in Figure 7.6, are consistent between the local and global methods

with the exception of the compliance scaling factor c , which is shown to be more influential when

doing global sensitivity analysis. The discrepancy between the two methods arises because the

global rankings account for the variability in the model influence, and c tends to have large values

ofσ.
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Figure 7.4 Normalized local sensitivities in the root of the MPA, pressure during the cardiac cycle for the
SV (blue), SB (red), and FN (yellow) models. Light and dark gray lines denote the normalized flow and
pressure predictions, respectively. Dashed vertical lines indicate (a) the start of systole, (b) the time of
maximum flow, (c) the time of maximum pressure, and (d) the start of diastole. Results show that rd is
the most influential parameter regardless of model or disease type and that vessel stiffness β increases in
influence as more vessels are added to the system.

7.5.2 Correlation Analysis

The local parameter sensitivities are used to compute the covariance (equation (7.18)) and correla-

tion matrices for each model. For the control model, no parameters are above the correlation cutoff

|vi j | ≤ 0.90. However, for all three hypoxic networks β and rp are correlated above 0.9. To explore

this correlation over a larger parameter space, we conducted a DRAM simulation on each model for

the control and hypoxic mouse and plotted pairwise parameter posterior distributions. Results for

the hypoxic FN model, shown in Figure 7.7a, agree with the local covariance analysis that β and rp

are correlated, providing a correlation value of 0.97 between the two parameters. While correlations

are the strongest for the hypoxic FN model, some correlation persisted in all networks (0.85< |vi j |).

We fixed β at its nominal value and repeated DRAM simulations, shown in Figure 7.7b, which
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reduced parameter correlations below our threshold 0.9. As a result of this analysis, we let β vary

between groups (control and hypoxic) but assume it is constant for all three networks. This is

advantageous, as it allows us to compare models where the large vessel stiffness is the same within

each disease type.
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rameter set θ = (β , rp , rd , c ); (b) Pairwise plots from DRAM when β was fixed at its nominal value. (a)
shows that the parameters β and rp are highly correlated, as was indicated by the structured correlation
results. By fixing β (panel (b)), the correlation between parameters, denoted by ν, decreases.

7.5.3 Frequentist analysis

As noted in Sec. 7.5.2, we estimate a single β value and individual scaling factors for each network,

i.e. we estimate a total of 10 parameters

Òθ0 = { bβ , r̂ SV
p , r̂ SV

d , ĉ SV , r̂ S B
p , r̂ S B

d , ĉ S B , r̂ F N
p , r̂ F N

d , ĉ F N }= { bβ , θ̂ SV , θ̂ S B , θ̂ F N } (7.25)

minimizing the least squares cost defined in (7.11) for the control and hypoxic mouse.

To ensure convergence, we propagate eight initial values sampled from a uniform parameter

distribution over the intervals given in Sec. 7.5.1. Nominal and optimal model predictions are

depicted in Figure 7.8 (panels (a),(b) and (c),(d), respectively) and the optimal parameter values

are given in Table 7.3. Results depicted in Figure 7.8 show that all models fit the data well after

optimization, significantly improving the costs, provided in Table 7.4, from the nominal parameter

fits. First, we note that all three models provide an equally good fit within disease type, as the least

squares error is of the same order of magnitude for each network. However, simulations do reveal

that the hypoxic model fits the data better than the control model, as the least squares error is an

order of magnitude smaller, 10−2 vs. 10−1.

Table 7.3 reports estimated vessel stiffness β , optimal values for the scaling factors rp , rd and c ,

the ratio of peripheral to total network resistance Rp/RT , the total peripheral resistance R W K
T , and

the peripheral compliance C W K for each network and each mouse pre and post optimization. The

latter is done using the optimized scaling factors in equation (7.10). The Rp/RT ratio decreases as

the number of vessels in the network is increased for both the control and hypoxic mouse. The total

resistance R W K
T was consistently higher in the hypoxic mouse, whereas the compliance C W K was

higher for the control mouse. For both the control and hypoxic mice, the total peripheral resistance
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R W K
T decreased as more vessels were added to the network. Confidence intervals (Table 7.5) for

the parameters are calculated around the optimized values θ̂ obtained from the SQP algorithms.

Results show that the intervals for the control model parameters are larger than those found for

the hypoxic parameters, a result of the larger residual obtained with the control models. For the

FN model, we calculated frequentist prediction intervals for MPA pressure using the optimized

parameter values and equation (7.21) (compared to Bayesian results in Figure 7.10).
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Figure 7.8 The MPA pressure data (black, solid curve) and predictions with the SV (dash-dot, blue line),
SB (dashed, red line), and FN (dotted, yellow line) models. MPA pressure waveforms for the control (left
column) and hypoxic (right column) models are plotted using the nominal parameters ((a) and (b)), the
optimized parameter values ((c) and (d)), and the maximum a posteriori parameters ((e) and (f)).
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Table 7.3 Nominal and optimized parameter values and the relative change to the nominal estimates after
optimization. The wall parameter β was the same for all three models in each mouse.

Control Hypoxic

Model Parameter Nominal Optimized Relative Nominal Optimized Relative

Estimate Value Change (%) Estimate Value Change (%)

- β 26.0 42.9 65 150.9 136.6 -10

SV rp 1 8.84×10−1 -12 1 8.86×10−1 -12

SV rd 1 1.02 2 1 1.02 2

SV c 1 1.44 44 1 1.21 21

SV Rp/RT 0.2 0.18 −11 0.2 0.18 −11

SV R W K
T 78.4 77.6 −1 147 146 −0.7

SV C W K 1.7×10−3 2.5×10−3 44 5.9×10−4 7.1×10−4 21

SB rp 1 8.00×10−1 -20 1 8.21×10−1 -18

SB rd 1 9.95×10−1 -0.5 1 1.00 0.3

SB c 1 1.34 34 1 1.14 14

SB Rp/RT 0.2 0.17 −17 0.2 0.17 −15

SB R W K
T 78.4 74.9 −4 147 142 −3

SB C W K 1.7×10−3 2.3×10−3 34 5.9×10−4 6.7×10−4 14

FN rp 1 1.34×10−1 -87 1 5.40×10−1 46

FN rd 1 8.82×10−1 -12 1 9.70×10−1 3

FN c 1 1.62 62 1 1.07 7

FN Rp/RT 0.2 0.04 −82 0.2 0.12 −39

FN R W K
T 78.4 57.4 −27 147 130 −12

FN C W K 1.7×10−3 2.8×10−3 62 5.9×10−4 6.3×10−4 7

Units: β (mmHg), R W K
T (mmHg s/ml), C W K (ml/mmHg), and rp , rd , c , Rp/RT (dimensionless)

7.5.4 Bayesian analysis

DRAM simulations were initialized using the estimated parameters from the SQP optimization. The

stiffness parameter was fixed at its optimal value β̂ , while the scaling parameters {rp , rd , c }were

allowed to vary. Each simulation used a 2,000 iteration burn-in period to initialize a 10,000 iteration

chain, which allowed for convergence to the posterior distribution. We prescribed a uniform prior

distribution spanning ±50% of the optimized value for each parameter, facilitating adequate explo-

ration of the parameter space. The posterior densities for all three models are shown in Figure 7.9,

with initial point-estimates (the optimized values from the SQP optimization, θ̂ ) marked with aster-

isks on the density curves. We used the Geweke test statistics for each DRAM chain to test that the

iteration chains had converged. All chains had a p -value ≥ 0.98 for all models and both animals

(control and hypoxic), suggesting convergence.

Results show that the maximum a posteriori (MAP) parameter value corresponding to the

maximum value of the posterior density aligns with the SQP optimization results and that the

posterior distributions are unimodal, indicating an agreement between frequentist and Bayesian

methodologies. This is also observed in Figure 7.8, as the frequentist and Bayesian parameter
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estimates (panels (c),(d) and (e),(f), respectively) produce nearly identical predictions of MPA

pressure. The width of the parameter posteriors, calculated from the variance of the distribution

σ2
θ , are larger for the control model than for the hypoxic model (shown in Table 7.5). This result

is similar to the frequentist analysis, as the larger residual in the control prediction leads to wider

parameter confidence intervals. These results also agree with the local sensitivity analysis; the width

of c is largest, indicating less impact on the model predictions within the physiological parameter

space, while rp and rd are more influential and hence have narrower distributions. The variance

estimates for each parameter are given in Table 7.5.
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Figure 7.9 Posterior densities obtained from 10,000 chain iterations of DRAM from the SV (dash-dot, blue
curve), SB (dashed, red curve), and FN (dotted, yellow curve) models for the control and hypoxic mice.
Graphs show results after discarding the 2,000 iteration burn-in period. The parameter values obtained
from the SQP optimization are plotted with asterisks on the density curves. Values on the abscissa denote
the parameter values for the respective scaling factors.

We draw 2,000 realizations from the parameter posterior densities to construct Bayesian credible
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Table 7.4 Least squares cost for all simulations using both frequentist and Bayesian methods.

Control Hypoxic

Model Jo p t JD R AM Jo p t JD R AM

SV 1.71×102 1.53×102 6.08×101 2.12×101

SB 1.79×102 1.76×102 5.28×101 5.16×101

FN 1.44×102 1.38×102 7.97×101 7.03×101

and prediction intervals for MPA pressure. The confidence, prediction, and credible intervals for

MPA pressure predictions are shown in Figure 7.10 using the FN model. Results shows that the

frequentist and Bayesian intervals agree and that the data lies within the confidence bounds. Similar

results are obtained for the SV and SB models, yet it should be noted that intervals are larger in the

control mouse than the hypoxic, indicating a greater uncertainty in MPA predictions.

Table 7.5 Frequentist confidence intervals for the optimized Windkessel parameters θ̂W K = {rp , rd , c } and
Bayesian posterior variances for the control and hypoxic models.

Control Hypoxic

Model Parameter Optimized Confidence Posterior Optimized Confidence Posterior

Value Interval σ2
θ Value Interval σ2

θ

SV rp 8.84×10−1 [8.76, 8.93]×10−1 7.93×10−5 8.85×10−1 [8.81, 8.88]×10−1 1.56×10−5

SV rd 1.02 [1.01, 1.02] 1.25×10−5 1.02 [1.02, 1.02] 2.54×10−6

SV c 1.44 [1.42, 1.46] 9.20×10−4 1.21 [1.21, 1.22] 3.98×10−5

SB rp 7.96×10−1 [7.85, 8.08]×10−1 1.06×10−4 8.21×10−1 [8.17, 8.24]×10−1 1.53×10−5

SB rd 9.95×10−1 [9.92, 9.98]×10−1 1.45×10−5 1.00 [1.00, 1.00] 1.57×10−6

SB c 1.34 [1.32, 1.36] 1.15×10−3 1.14 [1.14, 1.15] 4.05×10−5

FN rp 1.35×10−1 [0.75, 1.95]×10−1 2.76×10−4 5.40×10−1 [5.31, 5.49]×10−1 3.04×10−4

FN rd 8.82×10−1 [8.79, 8.86]×10−1 9.93×10−6 9.70×10−1 [9.68, 9.71]×10−1 1.04×10−5

FN c 1.62 [1.60, 1.64] 1.85×10−4 1.07 [1.07, 1.08] 1.16×10−4

7.5.5 Network Predictions

Figure 7.8 illustrates that all three models can predict nearly identical dynamics in the MPA. However,

due to the limited number of vessels, both the SV and SB models cannot predict pressure multiple

generations away from the MPA, while with the FN model we can predict pressure in all 21 vessels. We

used Bayesian uncertainty propagation to understand how parameter uncertainty affects pressure

predictions downstream. Figure 7.10 shows the pressure data in the MPA compared to frequentist

and Bayesian prediction intervals, along with uncertainty bounds for seven vessels in the FN model

for both the control and hypoxic mouse.

Model predictions in vessels immediately distal to the MPA retain a similar systolic and pulse
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pressure (the difference between the maximum and minimum pressure) as the MPA. In contrast, the

distal vessel predictions show a decreased pulse pressure, especially in the control mouse. The pulse

pressure decreased by 68% in the control vs. 28% in the hypoxic mouse, indicating larger pressure

dissipation in the control mouse.
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Figure 7.10 MPA pressure uncertainty in the proximal and downstream vasculature computed using fre-
quentist and Bayesian techniques. For each vessel blood, pressure predictions in the left column are for
the control mouse (denoted by a C) while the right column show pressure predictions in the hypoxic
mouse (denoted by an H). Panels (a) and (b) show a zoom in during systole, illustrating that the frequentist
analysis agrees with Bayesian estimates and that the data lies within the uncertainty bounds.These panels
show that the uncertainty bounds are wider for the control mouse than the hypoxic mouse agreeing with
observations that the hypoxic model fits the data better.

7.6 Discussion

This study investigates how the behavior of a 1D fluids model changes with network size and

pathology. We used local and global sensitivity analysis to determine parameter influence and

model sensitivity under different network sizes, and then used local correlation analysis and MCMC

pairwise plots to quantify parameter correlations. Subsequently, we used parameter inference and

uncertainty quantification to identify optimal parameter values and study the effects of inherent

parameter uncertainty. Overall, our results show that the peripheral vascular resistance rd is the

most influential parameter, and that the large vessel stiffness β increases in influence with network

size, while the model sensitivity to peripheral vascular compliance c and resistance rp decreases
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with network size.

Sensitivity Ranking

The three representative networks (SV, SB, FN) studied here contain different 1D to 0D model ratios.

Results shown in Figure 7.6 show that the vessel stiffness β becomes more influential in determining

model dynamics as more vessels are added to the network. As we add more vessels, we approximate

less of the downstream vasculature via Windkessel models, hence minimizing their influence on

MPA predictions. Specifically, the scaling factors rp and c become less influential, especially in the

hypoxic mouse, suggesting that inferring β is more important in large networks, while inferring rp

and c is less critical. The one exception to this is the compliance scaling factor c for the control

mouse, which is ranked more influential by the global analysis. The large nonlinear/interaction

effects that are attributed to compliance play a larger role in the control mouse because the large

vessels are less stiff (i.e. β is smaller), which likely makes the model predictions more sensitive to

changes in peripheral compliance. We recall that the parameter rp scales the proximal resistance

Rp , representing the characteristic peripheral impedance, and c scales the peripheral compliance

C . These results suggest that larger networks encompassing more of the pulmonary arteries may be

less sensitive to changes in proximal resistance, allowing for a fixed value of Rp at each terminal

vessel or a simpler boundary condition. This would substantially reduce the dimensionality of the

problem when doing parameter inference.

Quantifying the influence of the Windkessel parameters can assist in understanding which pa-

rameters provide more information for the optimization routine, especially when the dimensionality

of the network is large compared to the amount of data available. Similar to previous findings [37],

the high sensitivity of Rd suggests that more detailed modeling of the peripheral vasculature may

be beneficial. Moreover, we showed that the number of vessels in the model dictates how influential

Windkessel parameters are, which could ultimately lead to changes in estimates during parameter

inference. From a clinical perspective, this could change the interpretation of PH severity and could

alter hypothesized treatment strategies such as target pharmaceutical therapies [220] as regions

of high distal resistance (i.e. Rd ) might change with network size. Overall, the local and global

sensitivity methods give similar parameter rankings, as shown in Figure 7.6, suggesting that the

local sensitivity analysis, which is less computationally expensive, provides accurate information

about the model sensitivity.

Time-varying Sensitivities

As depicted in Figure 7.4, the parameter β has the largest effect on pressure predictions during

systole, where the volume changes are the largest, thereby increasing vessel strain and blood pressure.

These results are similar to the findings by Xiu et al. [265]who showed that pressure wave reflections

returning at peak systole are affected by vessel stiffness. The proximal resistance, R̂p = r̂p Rp , has a

maximum influence aligned with the maximum systolic pressure in the SV model, but achieves its

maximum influence towards the start of systole in the control FN model and the end of systole in the
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hypoxic FN model. This result suggests that both the large artery stiffness and proximal downstream

resistance have an immediate effect on the pressure for the SV model, but that their effect on larger

network pressure predictions is altered. This indicates that features of the larger network are shifting

the peak components of the sensitivity curves to other points in the cardiac cycle. Similarly, the

c sensitivity curves show a shift in where their maxima and minima occur when adding vessels

to the system. One possible explanation of this phenomenon is that adding more vessels to the

network introduces impedance mismatches at vessel junctions and at the boundary, introducing

wave reflections in the pulse-wave propagation. This would make the time-varying sensitivities shift

in time, since changes in model parameters now change the propagation of pressure downstream.

A more advanced global sensitivity metric for the variance of the time-varying sensitivities may

indicate how sensitivities are changing with network size and over the cardiac cycle [58].

The peripheral resistance R̂d = r̂d Rd has the largest influence on pressure during diastole and

shows decreased influence during systole, obtaining its largest values during periods of minimal

flow. Physiologically, we expect that distal vascular resistance should be the most influential param-

eter during diastole, as this would indicate a greater diastolic pressure maintained due to higher

resistance to flow downstream. This result agrees with the previous studies [37, 148] in the systemic

circulation which showed that the influence of boundary resistance was greatest during diastole.

The model sensitivity to compliance oscillates between systole and diastole, but decreases for an

increased number of vessels in the system, indicating a stronger dominance of model behavior from

1D model parameters (i.e. β ).

Parameter Inference

The 1D models presented here include at most 21 vessels with 11 terminal vessels (giving 21 stiffness

parameters β and 33 outlet boundary conditions). As discussed in the methods section, resistors

and capacitors in series and parallel can be unidentifiable and highly correlated, making it nearly

impossible to estimate individual outlet parameters without additional data [107, 165, 180, 182, 221].

We introduced scaling factors rp and rd for the proximal and distal resistance (Rp and Rd ) and c for

the total peripheral compliance (C ) to remedy this issue. We argue that this method of parameter

reduction is advantageous in comparison to traditional subset reduction techniques [60, 165, 182]

because it maintains the ability to draw inference about the entire pulmonary circulation, rather

than reducing the parameter space to a subset that is not characteristic of the entire vasculature. If

additional data are available downstream, e.g. in the left and right pulmonary artery, scaling factors

may be identified for each distal vascular bed.

Both the correlation analysis and the DRAM posteriors showed that the hypoxic parameter set

had significant correlations between β and rp (|vi j | > 0.95 vs. |vi j | > 0.85 for the control mouse).

We chose to fix β at a constant value for each disease type across all three models, i.e. we set up an

optimization scheme where we estimated a common value of β in each mouse along with estimates

of rp , rd , c for each network size. This favors previous pulmonary modeling studies [124, 169, 186,

191]which showed physiological results using a fixed, vessel-independent stiffness. The agreement
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between local and global correlation analysis reinforces the idea that the computationally cheaper

local analysis can assist in parameter reduction before performing any global, Bayesian analysis [142,

164, 182].

For the Bayesian parameter inference (DRAM) we kept β constant at the optimized value,

allowing for better construction of the scaling factor parameter posterior distributions. Results show

that the hypoxic mouse has a lower peripheral compliance than the control mouse [186, 190]. An

interesting observation is the ratio of proximal to total resistance (i.e. Rp/RT ) is nearly the same

between disease type in the SV and SB model, but the control FN model shows a drastic reduction

in the ratio (0.04, see Table 7.3). Moreover, the total resistance for all three models in each disease

type is well approximated by the nominal values, whereas the compliance estimates for the control

mouse are much larger than the nominal values. The increased value of c is likely due to an inability

to capture the exact dynamics of the control data, indicating more complex vascular wall mechanics

and inviting further investigation into complex constitutive equation [135, 190, 192, 225, 240].

The DRAM and uncertainty quantification results support the frequentist analysis results. The

overlap between the MAP estimates and the frequentist estimates, as well as the uni-modality of

the posterior distributions, indicates that no other local minima exist within the parameter bounds

sampled. Frequentist optimization takes significantly less computation time (on the order of hours

to days) compared to a Bayesian analysis like DRAM (on the order of weeks), which encourages the

use of the frequentist analysis. However, the parameter posteriors provided from DRAM can be used

to quantify uncertainty without performing asymptotic analysis, making it a more robust estimate of

parametric uncertainty. Likewise, the prediction intervals indicate that both the control and hypoxic

models have minimal uncertainty in MPA predictions, as the 95% prediction intervals reveal a ±1

mmHg band around the mean prediction. Further analysis of the parameter distributions showed

that the control mouse has wider bands of uncertainty due to the larger data-misfit.

Physiological Insight

The pulmonary circulation consists of an expansive network of blood vessels, which branch in rapid

succession from the MPA to the capillaries, encapsulating the alveoli. It is known that the distal

pulmonary vasculature is modulated by disease, both structurally by changing the network mor-

phometry [169, 220] and materially by changing vessel stiffness [120, 135, 245]. Current classification

of PH and its progression is based on assessing if the pathophysiology is located in the proximal or

peripheral vasculature. A model for a specific PH etiology may only require the proximal arteries

(e.g. for studying blood flow in the first pulmonary bifurcation [27]) or might require analysis of

dynamics in the entire network, e.g. modeling the influence of downstream thrombosis in chronic

thromboembolic PH (CTEPH) on MPA dynamics [119]. Our results indicate that models of different

complexity can provide similar predictions of pressure with different physiological parameters.

This provides insight into how to develop a multi-scale model that can distinguish characteristics

of proximal pulmonary arteries and those of downstream, distal segments. Optimization results

(shown in Table 7.4) show that parameters estimated in the hypoxic mouse provide a better fit to
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data than those estimated for the control mouse. We hypothesize that this is due to stiffer vessels in

the hypoxic model, leading to smaller and more linear area deformation. This makes the linear wall

model more appropriate for describing the vessel deformation. Conversely, the control model does

not provide as accurate of a fit, likely due to the high compliance in the pulmonary tissue, inducing

complex area dynamics. This agrees with previous findings [135, 225, 240] that arterial vessel de-

formation is nonlinear and viscoelastic in healthy controls. Finally, results from the optimization

indicate that the control FN model can better describe the dynamics in-vivo than the SV and SB

model. The addition of terminal vessels in the system allows for more accurate calibration of the

network compliance. However, the hypoxic model best fits the data when only using the SV model,

though the magnitude of the cost is of similar magnitude for the SB and FN models.

It is not obvious how to distinguish between “large" and “small" peripheral vessels making it

difficult to determine the cutoff between explicit and lumped representation of the vasculature.

Three previous studies [62, 68, 148] have examined how model predictions and parameter influence

may change when reducing the size of the vascular network in the systemic circulation, showing that

model predictions converge at a certain number of vessels. To our knowledge, no previous studies

have analyzed the pulmonary circulation in this manner. When using a model of this type for analyz-

ing clinical data, it may not always be advantageous to use the simplest possible model, especially

when disease progression initiates global network remodeling. For example, while the SV model is

able to match data in the MPA, it cannot characterize features along the pulmonary vasculature,

which are essential to study the effect of progressing PH. This point was discussed by Kheyfets et

al. [119], who highlighted the importance of network size by showing a change in predicted distal

wall shear stress due to a change in distal vascular geometry. Moreover, wave propagation cannot

be analyzed adequately without considering downstream sites for wave reflections [68, 189, 249]

encouraging the use of larger networks. In addition, the interpretation of downstream parameter

estimates changes with different network sizes. For example, Rd in the SV model describes the

distal resistance of the entire downstream vasculature, while Rd in larger network models describes

the lumped vascular resistance immediately distal to the terminal vessels, providing a more spe-

cific location for the downstream resistance. In summary, this study reveals that characteristics of

the model (i.e. model sensitivity to changes in parameter values) change in larger networks, and

encourages a network complexity that best answers the physiologically hypothesis in question.

Moreover, the incorporation of a 1D fluids model in clinical decision making must utilize the fact

that uncertainties arise when hemodynamic data and image resolution are limited.

Limitations

A limitation of this analysis is that we did not consider the variation in network dimensions within

disease type, nor did we account for the uncertainties in topology associated with inaccurate image

segmentation. Previous studies have shown that the uncertainty in dimensions can be significant [37,

148, 152, 206, 249], for instance, in the prediction of coronary dynamics around a blockage [61,

206]. However, this analysis has not been done in the case of the pulmonary circulation and invites
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similar studies. These results do not account for the uncertainty in measured inflow, which has

been addressed previously [31] and can be accounted for using techniques such as Karhunen-Lòeve

expansions, allowing for discrete representations of continuous random-fields. We hypothesize

that the inflow profile is highly influential in predictions of pressure in the pulmonary system;

however, this analysis is beyond the scope of the current study and invites future research. We

assumed a constant vessel stiffness throughout the network as has been done previously [124, 169,

189]. Stiffness of the proximal pulmonary arteries has been shown to be heterogeneous in control

mice [135], yet this change in stiffness has little effect on pressure predictions. In the case of PH,

vascular stiffness might be vessel dependent and could provide insight into which vessels are the

largest contributors to increased MPA pressure. In addition, the assumption of constant arterial

stiffness may very well breakdown if small arteries or arterioles are included in the model, and should

be addressed by having an adaptive, non-constant vessel stiffness [135, 168, 169, 225]. Performing a

sensitivity analysis on this function may provide a radius dependent model sensitivity to vascular

stiffness.

The assumption of iid errors is often made for simplicity when defining the likelihood function

(equation (7.24)) for MCMC routines, yet a plot of the residuals in Figure 7.11 shows that the residuals

are not independent, as indicated by the oscillatory behavior. In future studies, we propose to address

this, e.g. by employing a log-likelihood log (L ), defined as

log (L ) =−
1

2
log (det (2πΣ))−

1

2
χTΣ−1χ , (7.26)

where Σ is the covariance matrix between the data points of the time series.
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Figure 7.11 Residuals from the model predictions with the optimized parameters. The residual curves
indicate that errors are not independent, violating the simplifying assumptions often made about physical
models when performing parameter inference.

Results presented here depend on the model analyzed and data available for model validation.
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Another limitation in this work is the inability to verify downstream predictions, as data is only

measured in the MPA. If more data are available, which is typically the case in systemic cardiovascular

disease [4, 21, 27, 62, 68, 157], more parameters may be inferred. Moreover, physiological constraints,

such as assumptions of a non-negligible pressure drop, could be enforced to increase the number

of identifiable parameters. Larger networks encompassing arterioles could have variable viscosity

due to Fahraeus Lindqvist effect [lighthill1975mathematical], which could be addressed using the

method proposed in this study.

7.7 Conclusion

The objective of this study is to analyze the sensitivity and uncertainty of a coupled 1D-0D model

of pulse wave propagation in the pulmonary circulation using a new reduced parameter set. We

analyzed model sensitivity and parameter correlation, estimated identifiable model parameters,

determined uncertainty bounds in model predictions, and studied how changing network complex-

ity affects parameter influence. To fit the model to data, we estimated vessel stiffness and global

scaling parameters that adjust Windkessel parameters for a control and a hypoxic mouse in three

networks of varying complexity. Results showed that the hypoxic mouse has stiffer vessels, with

both proximal (parameterized by β ) and peripheral (parameterized by C ) vessels being stiffer. More-

over, we showed that distal resistance Rd has a larger influence on model predictions than other

parameters, and that the influence of vascular stiffness β increases as more vessels are added to the

network. The observation that the parameters’ effect on the model output (MPA pressure) varies

with network complexity is essential to account for when developing models that delineate proximal

vs. peripheral vascular disease. Future studies will investigate how these results play a role in human

models and whether a similar analysis can be used for full models of the pulmonary circulation,

including arterial and venous structures.
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CHAPTER

8

INFLUENCE OF IMAGE SEGMENTATION

ON 1D PULMONARY HEMODYNAMICS

The study “Influence of image segmentation on one-dimensional fluid dynamics predictions in

the mouse pulmonary arteries" was published in a the Journal of the Royal Society Interface, vol-

ume 16, issue 159, in 2019. Contributions included the image segmentation (done jointly with a

high school intern at NC State), creation of network analysis algorithms, design of an adaptive 1D

model framework, model simulations and uncertainty quantification, and writing a majority of

the manuscript. Second author Mihaela Paun contributed the results and text regarding Gaussian

process (GP) regression.

8.1 Abstract

Computational fluid dynamics (CFD) models are emerging tools for assisting in diagnostic assess-

ment of cardiovascular disease. Recent advances in image segmentation has made subject-specific

modelling of the cardiovascular system a feasible task, which is particularly important in the case of

pulmonary hypertension (PH), requiring a combination of invasive and non-invasive procedures

for diagnosis. Uncertainty in image segmentation propagate to CFD model predictions, making

quantification of segmentation induced uncertainty crucial for subject-specific models. This study

quantifies the variability of one-dimensional (1D) CFD predictions by propagating the uncertainty of

network geometry and connectivity to blood pressure and flow predictions. We analyse multiple seg-

mentations of a single, excised mouse lung using different pre-segmentation parameters. A custom

algorithm extracts vessel length, vessel radii, and network connectivity for each segmented pul-
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monary network. Probability density functions are computed for vessel radius and length and then

sampled to propagate uncertainties to hemodynamic predictions in a fixed network. In addition, we

compute the uncertainty of model predictions to changes in network size and connectivity. Results

show that variation in network connectivity is a larger contributor to hemodynamic uncertainty

than vessel radius and length.

8.2 Introduction

Definitive diagnosis of pulmonary hypertension (PH), defined as a mean pulmonary arterial blood

pressure≥ 25 mmHg, requires a series of medical tests including invasive right-heart catheterization

and non-invasive computed topography (CT) imaging of the heart and lungs [131]. Diagnostic

protocols interpret each data source independently to make an ultimate decision about disease

classification and severity [70], but recent studies [191, 235] have proposed assimilation of hemody-

namics and imaging data with CFD modelling, providing insight into the structure and function of

the pulmonary system.

Medical imaging and image segmentation have emerged as powerful non-invasive tools for

disease diagnostics [11, 54, 176], providing an abundance of data for analysing the structure and func-

tion of the cardiovascular system under physiological and pathological conditions [131]. Advances in

image segmentation include semi- and fully-automated algorithms for geometric reconstruction of

complex vascular regions [93, 242]. However, inherent uncertainty is present as most image segmen-

tation software require manual specification of the image intensity thresholds (pre-segmentation

parameters) between background and foreground. For example, van Horssen et. al [100] showed

that variation in image resolution affected the cumulative volume of a cast of the coronary arterial

tree after segmentation. Rempfler et. al [197] compared segmentation algorithms on retinal images,

showing that posterior probability estimates for foreground pixels varied with different segmenta-

tion techniques when compared to the true segmentation or so-called “ground-truth”. In contrast

to the aforementioned studies, in-vivo images are only captured up to a finite resolution, which

makes ground-truth rendering impossible. These two studies quantified variability in segmented

networks but did not investigate how this uncertainty affected pulsatile hemodynamics.

Hemodynamic predictions (e.g., cross-sectional averaged flow and pressure) [120] in the pul-

monary vasculature are often computed using either three-dimensional (3D) or one-dimensional

(1D) [191] CFD models. 3D models predict local flow patterns with more precision [235] but are

computationally expensive, making it difficult to perform multiple forward model evaluations for

uncertainty quantification, i.e. UQ [103]. For instance, Sankaran et al. [206] computed 3D CFD model

sensitivity to coronary stenosis diameters, using surrogate model approximations to combat high

computational cost. However, they did not account for possible changes in network connectivity

(i.e. location of bifurcations or trifurcations) nor for the uncertainty from the initial segmentations

of the vasculature. In contrast, 1D models are more computationally efficient, reducing the need

for surrogates and allowing for investigations into variability of network connectivity. Moreover, a
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recent study [5] of the coronary vasculature showed that 1D models attain similar hemodynamic pre-

dictions as 3D when using appropriate boundary conditions. Recent studies analysed 1D systemic

arterial models [100, 201] to understand how uncertainty in network structure impacts hemodynam-

ics. Fossan et al. [68] devised an optimisation strategy to determine the number of vessels needed to

match hemodynamic predictions in the coronary arteries, and Huberts et al. [103] used polynomial

chaos expansion to quantify the sensitivity of flow predictions to variations in vessel radius. In

contrast to the systemic circulation, the pulmonary vasculature is more compliant, branches more

rapidly, and operates at a much lower mean pressure, indicating that results from the systemic

circulation may not be valid for comparison.

The total uncertainty in the hemodynamic prediction is a combination of uncertainty in the

model parameters and uncertainty from the modelling framework. As noted above, several previous

studies have studied uncertainty with respect to prescribed hemodynamic parameters and the 1D

approximation, but to our knowledge this is the first known investigation of the impact of uncertain-

ties in network reconstruction on CFD simulations in the pulmonary vasculature. Specifically, in

this chapter it is examined how pre-segmentation parameters impact estimated vessel radius, vessel

length, and network connectivity, and this uncertainty is propagated to hemodynamic predictions

in the pulmonary circulation. To do so, multiple segmentations of a microcomputed tomography

(micro-CT) image from a mouse pulmonary arterial tree are analysed. The uncertainty resulting

from the multiple segmentations is propagated using a 1D CFD model by constructing the model

domain from each segmentation. Inverse UQ is performed by constructing probability density

functions (pdfs) for vessel radii and lengths from network segmentations, and then propagating

their uncertainty through to the model outputs, pulmonary blood flow and pressure (forward UQ)

via Monte Carlo sampling. Uncertainty in hemodynamic predictions is quantified by analysing three

sets of predictions (depicted in Figure 8.1 predictions using 25 segmented networks (total variation);

2) predictions from a representative network with fixed connectivity when drawing realisations of

length and radius perturbations (geometric parameter variation); and 3) predictions from the same

representative network when geometric parameters are fixed, but connectivity and network size are

varied (network variation). UQ is an essential component of the model analysis when computational

models are integrated into clinical protocols. The animal dataset used here [232, 245] serves as a

preliminary step in understanding disease progression and has potential for extrapolation to human

PH.

8.3 Materials and methods

8.3.1 Experimental data

This study uses existing micro-CT and hemodynamic data from two male C57BL6/J control mice

aged 10-12 weeks. A detailed description of experimental protocols for the imaging and hemody-

namic data can be found in [245] and [232], respectively. Briefly, hemodynamic data includes a

flow waveform ensembled over 20 cardiac cycles measured using an in-line flow meter (Transonic
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Statistical analysis
Quantify uncertainty bounds
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PDF estimation
Coefficient of variation mapping
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Blood flow
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25 segmented networks (SN)
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Forward uncertainty propagation

Total variation (SN)
Parameter variation (RN)
Network variation (RN)

Figure 8.1 Workflow for uncertainty quantification of hemodynamics. Multiple segmentations were per-
formed to construct the segmented networks (SNs), of which one network was selected as the representa-
tive network (RN). Inverse uncertainty quantification (UQ) was performed on the 25 SNs by constructing
probability density functions (pdfs) for vessel radius and length measurements. The 25 SNs were used in
model simulations to understand the total variation, while the pdfs for the vessel radii and lengths were
used to propagate uncertainty in the parameter variation study of a representative network. Lastly, the
structure of the representative network was changed to understand the variation induced by network
connectivity. Pressure and flow predictions are compared from the three sources of variation.

Systems, Ithaca, NY) in the main pulmonary artery (MPA). The imaging data is obtained after eu-

thanisation and inflation of the mouse lung at 17.2 mmHg. A cannula with outer diameter 0.127 cm

and inner diameter of 0.086 cm is attached to the MPA before 360-degree imaging and reconstruc-

tion to DICOM 3.0 files. Both procedures were approved by the University of Wisconsin-Madison

Institutional Animal Care and Use Committee.

8.3.2 Image analysis

8.3.2.1 Image segmentation

The micro-CT image is stored as a DICOM 3.0 file with voxel dimensions 497× 497× 497. The

gray-scale image (shown in Figure 8.4a) is transformed to a binary map identifying the vascular

(“foreground") and non-vascular (“background”) regions using global thresholding and image

segmentation in ITK-SNAP [272]. Global thresholding is a pre-segmentation technique requiring a
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priori selection of thresholds to specify the image intensity bounds of the foreground. Threshold

bounds are traditionally selected in an ad hoc manner to ensure that the foreground is captured

[61, 161, 191]. In addition, ITK-SNAP requires specification of a smoothing parameter to determine

the boundary between the foreground and background (see figure 8.3). Due to the experimental

protocol and use of perfused contrast, the image segmented in this study does not contain high

intensity voxels from other anatomical features (e.g., the veins or the heart) within the region of

interest. Therefore, only the lower threshold (θ1) and smoothing (θ2) pre-segmentation parameters

require specification.

Acceptable intervals for (θ1,θ2) are determined to preserve the foreground for the large vessels

across segmentations. To study segmentation induced uncertainty, we assume a uniform distri-

bution for the two parameters, with 20 ≤ θ1 ≤ 45 and 3 ≤ θ2 ≤ 8, and draw 25 realisations of

pre-segmentation parameter sets (θ1,θ2) (given in Table 8.1) using the rand function in MATLAB

(Mathworks, Natick, MA). As shown in Figure 8.3, the foreground for distal vascular segments

changes significantly when (θ1,θ2) are varied, but maintains features for the large, proximal vessels.

We use active contour evolution, a semi-automated segmentation algorithm available in ITK-

SNAP, to segment the micro-CT image. We consistently use 2000 iterations of the contour evolution,

ensuring that the largest arteries carrying the majority of the blood volume are captured. The

contour evolution algorithm used for the segmentation is initialized by placing seed points within

the region of interest. The algorithm iteratively updates a parametric contour representing the

boundary of the segmented image (see [273] for more detail). We place a seed point at the inlet of

the MPA for each segmentation and allow the active contour to evolve over 2000 iterations. The

active contour evolution equation contains several parameters that allow for tuning in the evolution

process. To best simulate the effects that might be captured by other researchers, we left these values

at their nominal values. Other methods of pre-segmentation are available in ITK-SNAP, such as tissue

classification, edge detection, and clustering. Global thresholding is the best fit for the one-tissue

class image used in this study, but also holds for most imaging obtained via contrast, making it

the ideal method for the present investigation. The use of 2000 iterations for the active contour

evolution ensured that the largest, proximal pulmonary arteries were kept across segmentations,

while smaller arteries captured varied based on the pre-segmentation parameters chosen. Since the

full structure of the pulmonary arterial tree in-vivo is unknown, this protocol captures the variability

in networks obtained from segmentation.
The imaging protocol described in [245] has a spatial resolution between 30−40µm, providing a

lower bound of 40µm for the measurement uncertainty diameter (20µm for radius).

8.3.2.2 Network reconstruction

Segmented geometries were exported as surface meshes and converted to VTK polygonal files using Paraview

[238] (Kitware, Clifton Park, NY, USA). Surface mesh VTK files were imported into VMTK 1 [11] to extract vessel

segment centrelines, lengths, and radii using native scripts. Custom Matlab algorithms, which can be found in

1(www.vmtk.org)
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Table 8.1 Summary of pre-segmentation parameters and network features.

pre-segmentation number of number of number of total volume
parameters (θ1,θ2) vessels generations terminal vessels (cm3)

(22, 5.0) 276 15 149 21.0871
(25, 6.0) 422 17 226 21.3407
(26, 4.7) 415 17 219 22.3524
(26, 4.8) 425 18 227 22.8591
(26, 5.1) 441 17 234 22.7031
(27, 5.8) 450 17 240 22.9599
(28, 6.0) 333 15 178 20.6542
(30, 4.6) 428 16 230 21.7283
(30, 5.7) 461 17 245 23.0039
(30, 6.5) 476 18 252 23.1922
(30, 8.0) 409 16 220 21.7642
(31, 5.6) 462 18 246 23.3346
(31, 6.1) 310 15 164 18.2311
(32, 4.1) 419 16 220 22.2851
(33, 4.2) 446 18 239 23.0664
(33, 5.1) 505 18 269 24.6089
(34, 3.3) 495 18 265 24.1804
(34, 3.4) 474 17 257 24.2923
(35, 3.6) 459 17 242 23.2488
(35, 4.8) 470 17 250 23.0868
(35, 6.8) 404 17 214 22.7536
(36, 4.0) 419 17 226 22.0391
(36, 4.1) 376 16 197 22.5833
(37, 3.9) 409 17 221 21.6596
(44, 7.6) 185 12 98 20.4368

https://github.com/mjcolebank/Segmentation_CFD were used to extract the network connectivity

from the extracted quantities and identify all the vessels in each network. Subsequently, a connectivity matrix

identifying the geometry of the tree was constructed and used in the 1D fluid-dynamics model. Figure 8.4

illustrates the workflow starting from the micro-CT image segmentation and ending with the connected

network representation.

Voxels are converted to cm using a scaling factor based on the known diameter of the cannula (0.086 cm).

The MPA radius is estimated using measurements distal to the cannula before the left (LPA) and right (RPA)

pulmonary arterial bifurcation. Figure 8.5 shows an example network with radii estimates at each point along

the network and within a single vessel. Measured values for radii vary within each vessel segment, limiting

our inference of tapering. To proceed with calculations, we fix the vessel radius to be the mean over the centre

80% of the individual estimates, which mitigates the impact of extreme diameters in the ostium regions at

either end of each segment.

We construct connected graphs using the centreline data and create a connectivity matrix linking vessels,

represented by their length and radius, and bifurcations. In addition, we capture global network features

including the number of vessels, the number of bifurcations (i.e. generations), and the total vascular volume.

The CFD model used for hemodynamics modelling assumes a binary structure, with each generation of the
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Figure 8.2 ITK-SNAP interface for prescribing pre-segmentation parameters (lower threshold, smooth-
ness). Voxel intensities (x-axis) are converted to probabilities via the threshold function (y-axis). Different
pre-segmentation parameters change the form of the red curve, based on which discrimination between
the foreground and background is done. Here, a lower threshold on image intensities was assumed, as
shown by the constant value of one in the threshold function for all values greater than the lower thresh-
old.

tree being formed by a new set of vessels. The resulting networks were found to have no loops within the

region of interest studied here. To characterize branching properties, we compute morphometric indices for

each network including structured tree scaling parameters (see Section 4.3), as well as an asymmetry and

area ratio, and Murray’s exponent. These latter three are defined as

γ= r 2
d2
/r 2

d1
, η=

�

r 2
d1
+ r 2

d1

�

r 2
p , r ζp = r ζd1

+ r ζd2
(8.1)

where the subscripts p , d1 and d2 represent the parent and daughter branches.

8.3.3 Mathematical model

Similar to previous studies [168, 169, 191], we use a 1D CFD model to predict time-varying flow, pressure,

and area in each vessel. The model is derived under the assumptions that vessels are cylindrical, blood is

incompressible, and flow is laminar, axisymmetric, and Newtonian. The model equations are obtained by

integrating over the cross-sectional area of the vessel, described in detail in [191]. Mass conservation and
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Figure 8.3 Qualitative differences in foreground (white) of distal vascular segments when changing the
lower threshold for the voxel intensities (θ1) and the smoothing parameter (θ2). Top: changes in fore-
ground with θ1; bottom: changes in foreground with θ2.

a b c d

Figure 8.4 Image to network workflow. a) The foreground visible in the image file; b) The 3D rendering of
the vascular foreground; c) Centrelines obtained using VMTK; d) A graph representation of the network
used in the 1D model with vessels (edges) and bifurcations (nodes) identified using custom MATLAB algo-
rithms, which can be found in https://github.com/mjcolebank/Segmentation_CFD (the different
colours are used to distinguish where the vessels begin and end).

momentum balance are then given by

∂ A

∂ t
+
∂Q

∂ x
= 0 (8.2)

∂Q

∂ t
+
∂

∂ x

�

Q 2

A

�

+
A

ρ

∂ P

∂ x
=
−2πνR

δ

Q

A
(8.3)
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a b

c d

80%

Figure 8.5 Components of an arterial tree. a) 3D segmentation of network; b) centerline representation of
a tree with the 32 vessel-subset (red and blue); c) magnification of the vessel in blue depicting radius esti-
mates; d) radius estimates along the vessel in blue, where the center 80% of points were used to calculate
the mean radius.

where x (cm) and t (s) denote the axial and temporal coordinates, A(x , t ) (cm2) denotes the cross-sectional

area, Q (x , t ) (cm3/s) the volumetric flow rate, P (x , t ) (mmHg) is the transmural blood pressure, and R (x , t )
(cm) the vessel radius. The blood densityρ = 1.057 (g/cm3) and the kinematic viscosity ν= 0.0462 (cm2/s) are

assumed constant [199, 262]. The right-hand side of Eq. (8.3) accounts for the frictional losses by assuming a

flat velocity profile

ux =







ūx , r ∈ [0, R −δ)

ūx
R − r

δ
, r ∈ [R −δ, R ]

(8.4)

with a linearly decreasing boundary layer with thickness δ=
p

νT /2π (cm), where T (s) is the length of the

cardiac cycle extracted from data [189, 191]. To close the system of equations, we consider a constitutive law

relating blood pressure and vessel cross-sectional area. We model vessels as thin walled, incompressible,

homogeneous, and isotropic cylinders tethered in the longitudinal direction. Under these conditions, the
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linear stress-strain relation [186, 191] is given by

P −P0 =
4

3
βw

�

1−

√

√A0

A

�

(8.5)

where βw = E h r0 = 37.5 mmHg describes the arterial stiffness, E (mmHg) is the Young’s modulus in the

circumferential direction, h (cm) the wall thickness, and A0 =πr 2
0 (cm2) is the reference area obtained at the

reference pressure P0 (mmHg).

The system (8.2) - (8.5) is solved using the two-step Lax-Wendroff finite difference scheme in C++ [166]
with a temporal resolution of 1.3×10−5 (s) and a spatial resolution of 0.025 (cm) ensuring that the Courant-

Fredrich-Lewy (CFL) condition is not violated. To ensure stability and convergence of the numerical scheme,

the lengths of any vessels shorter than the spatial resolution of the solver are artificially augmented to be the

size of two grid points.

8.3.3.1 Wave intensity analysis

Wave propagation in the pulmonary system can be characterized using wave intensity (WI) analysis [228].
Briefly, considering Q = AU , where U is the blood flow velocity (cm/s) in the vessel under the assumption of

negligible frictional losses, we define the forward and backward components of WI as

WI± =
�

δP±
δt

��

δU±
δt

�

(8.6)

Where ‘+’ and ‘-’ indicate the direction of the local waves, and δP± and δU± are the associated pressure and

velocity “wavefronts", [191, 228]. The wave separation depends on the local pule wave velocity

c (P ) =

√

√A

ρ

∂ P

∂ A
(8.7)

Local waves can either be compressive or decompressive. Wave reflections are current clinical indicators

for pulmonary vascular disease and PH progression, and can be attributed to impedance mismatch at both

proximal and distal vessel junctions [172, 228].

8.3.4 Inflow and outflow boundary conditions

The 1D system is hyperbolic with characteristics pointing in opposite directions, thus two boundary con-

ditions are needed at each vessel inlet and outlet. At the network inlet (the MPA) we prescribe a measured

flow waveform from a single cardiac cycle. At network bifurcations we impose two conditions ensuring

conservation of flow and a continuity of pressure. Lastly, we impose a three element Windkessel model at the

outlet of terminal vessels to characterize the downstream vasculature, which relates pressure and flow via an

RCR circuit model
d P

d t
=Rp

�

dQ

d t

�

+Q

�

Rp +Rd

Rp Rd

�

−
P

Rd CT
. (8.8)

where Rp is the proximal resistance, Rd is the distal resistance, and CT is the total compliance [186, 198].
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8.3.4.1 Parameterization

The hemodynamics modelling parameters include those describing the vascular structure (radius, length,

and stiffness), the fluid dynamics (including ν, ρ, and δ), and the inflow and outflow boundary conditions.

We assume that inflow, ν, ρ, and βw are fixed and independent of the network geometry [124, 189, 191], while

parameters specifying the vessel radius, length, and Windkessel outflow boundary conditions (Rp , Rd , CT )
depend on the network structure [68, 191].

For each network, vessel radii and length are determined from the segmentation, while estimates are

needed for Windkessel parameters. Similar to our previous study [191], we assume that the total compliance

CT can be determined from the diastolic decay time constant τ = RT CT , where RT = Rp +Rd is the total

vascular resistance [191]. RT is computed as the ratio of mean pressure to mean flow, i.e. RT = P̄ /Q̄ , and as

discussed in our previous studies [46, 191], a priori resistance values for each terminal vessel can be calculated

using Poiseuille’s equation, relating mean pressure and flow via the vessel dimensions.

Define the inductance

Gi =
1

Ri
=
πr 4

i

8µL i
, (8.9)

which is the inverse of the Poiseuille resistance. For Poiseuille flow,∆Pi =Qi /Gi . Continuity of pressure at a

vessel junction can then be written as

Qp

Gp
=

Qd1

Gd1

=
Qd2

Gd2

(8.10)

=⇒ Qd1
=Qp

Gd1

Gp
and Qd2

=Qp

Gd2

Gp
. (8.11)

Conductance in a parallel circuit follow Gp =Gd1
+Gd2

. Then the flows to each daughter branch are

Qd1
=Qp

Gd1

Gd1
+Gd2

, and Qd2
=Qp

Gd2

Gd1
+Gd2

. (8.12)

Using the definition of resistance from Poiseuille’s law to gives

Qd1
=Qp

ξd1

ξd1
+ξd2

and Qd2
=Qp

ξd2

ξd1
+ξd2

, (8.13)

where ξi =πr 4
i L i . Finally, we set Rp = 0.2RT and Rd = 0.8RT [191].

8.3.5 Inverse uncertainty quantification

We employ inverse UQ to estimate vessel length and radius PDFs over the 25 segmented networks. To compare

measurements across segmentations, PDFs are computed for radius and length from a 32-vessel subset after

data standardization. Two estimation techniques, kernel density estimation (KDE) and Gaussian process (GP)

density estimation, are used to compare estimated PDFs. Weighted least squares regression and GP regression

are used to remedy the issues of non-constant variance, i.e. heteroscedasticity, in vessel dimensions.

8.3.5.1 Data standardisation

A subset of 32 pulmonary vessels of various calibre (see panel (b) of Figure 8.5) was selected from the 25

segmented networks. The 32 vessels were visible in all 25 networks and contained radius and length measure-
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ments that encompass the full range of measurements in the networks. Length and radius measurements

were standardised using

s ∗i , j =
si , j − s̄i

σsi

(8.14)

where si , j , s = r, l are the measured radii or lengths from the i -th vessel and j -th segmentation, and si and

σsi
are the mean and the standard deviations of the radii or lengths of the i -th vessel across the 25 networks.

8.3.5.2 Density estimation

Kernel density estimation (KDE) [216] is a non-parametric technique for estimating unknown probability

distributions. KDE constructs the PDF π for vessel length and radius using

π(s ∗) =
1

N H

N
∑

i=1

K
� s ∗− s ∗i

H

�

(8.15)

where s ∗i denotes the standardized measurement of the i -th vessel, N is the number of samples used for

the density estimate, H is the bandwidth parameter that controls the smoothness of π, and K is the kernel

function, assumed to be a Gaussian kernel.

Two approaches for finding the optimal KDE bandwidth were considered: Silverman’s rule-of-thumb [216]
and maximum likelihood leave-one-out cross-validation (MLCV) [86]. The former calculates the bandwidth

under the assumption that the underlying density being estimated is Gaussian, and uses the median absolute

deviation. This has been shown to minimize the integrated mean squared error of the density estimate. These

estimates were calculated using the ksdensity function from Matlab’s Statistics and Machine Learning

Toolbox. The latter (MLCV) leaves one point out at a time and computes the probability density estimate for

the point left out based on all the other points (see eq (8.16)). Leaving one point out affects the calculation of

the standardised quantities and requires re-calculation of the standardised measurements for each iteration.

π(s ∗ĩ ) =
1

(N −1)H MLCV

N
∑

j=1 j 6=i

K

�

s ∗j − s ∗
ĩ

H MLCV

�

(8.16)

where sĩ denotes the data point which was left out of the sample. The optimal bandwidth parameter H MLCV

that maximises the log-likelihood of the KDE:

H MLCV =max
H>0

�

1

N

N
∑

i=1

log

� N
∑

j=1 j 6=i

k

�

s ∗j − s ∗
ĩ

H

��

− log((N −1)H )

�

. (8.17)

8.3.5.3 Statistical models for length and radius variance

The PDFs constructed from the 32-vessel subset are representative of the overall variation in the length and

radius across all the segmented networks. However, the magnitude of σ(L i ) and σ(ri ) vary from vessel to

vessel and need to be modeled explicitly before forward UQ. We use the coefficient of variation,

φ(si ) = cv (si ) =
σsi

si
(8.18)

to compare these measurements’ variability.

The statistical modelφ(si ) relates the average measurements of radius and length across segmentations
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to their coefficient of variation. The variance of the measurements exhibits heteroscedasticity, as smaller

vessel segments are more sensitive to pre-segmentation parameters leading to non-constant variance. This

violates the assumptions of ordinary linear regression; hence we consider weighted least squares regression

and GP regression with input-dependent noise (contributed by Paun) [83]. Deterministic weighted least

squares regression iteratively fits regression models by updating weights for each data point. The optimal

weights (optimal in a maximum likelihood sense) are given by the inverse of the variance of the response

φ(si ) [92]. Since this variance is unknown, we approximate the weights as ε−2
i , the squared residual from

the unweighted regression model, reducing the impact of highly variable observations on the regression

prediction. We consider exponential, logarithmic, square root, and linear weighted least squares regression

models. For GP regression, Paun employed a GP for the response, c si
v , and for the latent variance of c si

v . In

addition, the Matérn covariance function [195]
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�2

`2
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(8.19)

with a smoothness parameter ν= 5/2 and a correlation length `k for each set of measurements.

8.3.6 Forward uncertainty quantification

Forward UQ propagates model and parameter uncertainties to simulated quantities of interest. To analyse

the variability in model predictions, three sets of simulations were set up that determine (i) the total variation

of hemodynamic predictions associated with segmentation, (ii) the variation to changes in vessel radius

and length (geometric parameters), and (iii) the variation to changes in network size and connectivity. The

first set of simulations (i) used the 25 segmented networks, whereas the last two (ii-iii) were conducted in a

representative network.

8.3.6.1 Total variation

We predict hemodynamics using each of the 25 segmented networks to quantify the total variation of flow

and pressure predictions in the MPA, LPA, and RPA. The observed variation is attributed to several sources of

uncertainty, including the parameters of the model and the size and connectivity of the network. Once the

total variation is calculated, we quantify the relative contributions from the parameter and network variation.

8.3.6.2 Representative network

A representative network is used to examine the variation in vessel radius and length and changes in network

size and connectivity. We first compute the MPA pressure waveform for each of the 25 segmented networks,

then we ensemble average these to determine a mean MPA pressure. The network with the smallest least

squares cost between its MPA pressure waveform and the ensemble averaged waveform is designated as the

representative network.

8.3.6.3 Geometric parameter variation

We assume that density, viscosity, and vessel stiffness are constant while parameters impacted by image

segmentation, including vessel length and radius, vary. The outflow boundary conditions are dependent on
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vessel length and radius; thereby, we analyze the variation in model predictions associated with changes in

vessel dimensions.

We compute inverse cumulative distribution functions (iCDFs) for the length and radius PDFs. The iCDF,

F −1
s (α), is a nondecreasing function defined on the interval [0, 1] that provides values from the original PDF,

allowing for inverse transform sampling for forward UQ [103]. Briefly, let u be a realization from a uniform

distribution, u ∼U (0, 1), and define the realization from the iCDF as F −1
s (u ). There exists a mapping from the

realization to the iCDF for the radius and the length via γr = F −1
r (u ) and γL = F −1

L (u ), hence we draw samples

from the iCDF to provide standardized measurements L ∗ and r ∗.

We define a mapping from the iCDF of s̄i in vessel i to the perturbed values ŝi (cm). Writing

F −1
s (u ) =

(ŝi − s̄i )
σsi

, σsi
=φ s̄i · si (8.20)

whereφ is the statistical model for the coefficient of variance, we get

ŝi =
�

1+ F −1
s (u ) ·φ(s̄i )

�

· s̄i (8.21)

for each average measurement s̄i in vessel i . The values ŝ are used as the dimensions for each vessel in the 1D

model when doing the forward UQ. We set s̄i = s rep
i , where s rep

i are the measurements from the representative

network. To ensure convergence of the posterior predictions [186], we draw M = 104 realizations using Monte

Carlo sampling. The pseudo algorithm for UQ propagation is as follows:

1. Draw u ∼U (0, 1).

2. Obtain the standardised measurements s ∗, thus the original measurements s as:

s ∗ = F −1
s ∗ (u ) =⇒ F −1

s ∗ (u ) =
s − s̄

σs
=

s − s̄

c s
v s̄

, (8.22)

=⇒ ŝ =
�

1+ F −1
s (u ) ·φ(s̄i )

�

· s̄i . (8.23)

3. Run 1D CFD model with new radius and length measurements ŝr and ŝL and new Windkessel parame-

ters (they depend on radius and length).

4. Repeat steps 1-3 M = 104 times.

8.3.6.4 Network variation

The effect of network variation (i.e. truncation) was simulated by iteratively eliminating terminal vessel pairs

from the representative network, i.e. starting at the smallest branches and moving towards the proximal

vasculature, vessels with the smallest volume (V =πr 2l ) were eliminated, while ensuring that Windkessel

boundary conditions were adjusted for each simulation.

8.4 Results

We analyse the total variation of flow and pressure predictions and identify the relative contributions from

variations in vessel parameters and in the network. Variation in model predictions is quantified by comparing

simulations in the MPA, LPA, and RPA.
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Figure 8.6 Morphometric features from the 25 segmentations marked by different colored lines. The
number of vessels (a) is consistent between segmentations until the 5th generation. The average cross-
sectional area (b) decreases rapidly after the 1st generation, while the total cross-sectional area (c) varies
significantly between segmentations. The segmentation parameters are plotted against each other in (d),
with a clear outlier present at (44,7.6) (in pink) indicating a set of pre-segmentation parameters that have
marked effects on the network structure. The outlier has lower number of vessels and total cross-sectional
area as depicted in the pink curve in panels (a) and (c).

Table 8.2 Estimated structured tree parameters

Parameter Definition Value Coefficient of variation

α Large daughter scaling 0.84±0.01 1%
β Small daughter scaling 0.66±0.02 3%
γ Asymmetry ratio 0.66±0.02 4%
η Area ratio 1.21±0.03 3%
ξ Radius exponent 2.92±0.01 0%

8.4.1 Network statistics

Figure 8.6 summarizes network characteristics obtained from the 25 segmented networks, including number

of vessels (panel a), average cross-sectional area (panel b) and total cross-sectional area (panel c) in each

generation. The average number of vessels across the networks is 437 with a standard deviation of 76 and the

mean number of generations across segmentations is approximately 17. The number of vessels and total

cross-sectional area of the networks are consistent across segmentations up until the 6th generation, after

which the results deviate. Most segmentations achieve a maximum number of vessels and cross-sectional

area between generations 8 and 14, while the average cross-sectional area rapidly decreases until the 5th

generation, and then remain fairly constant afterward. Analysis across all networks in panel d shows that one

network (corresponding to (θ1,θ2) = (44, 7.6)) is an outlier, having significantly fewer vessels and a lower total

cross-sectional area. Table 1 includes all pre-segmentation parameter sets used in the repeated segmentations

as well as network level features. Results of calculating morphometric indices show that the parent to daughter

area ratio is greater than 1 and that Murray’s exponent is approximately 3 (shown in Table 8.2), consistent

with literature findings [46, 102].
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8.4.2 Inverse uncertainty quantification

Figure 8.7 shows the length and radii KDE for the 32 representative vessels computed using Silverman’s

rule, maximum likelihood cross-validation, and GPs. Before density estimation, the standard deviation for

each of the 32 vessels is used to normalize the data. The maximum coefficient of variation is 21% for the

radius and 49% for the length estimate. The bandwidth estimates for Silverman’s rule are H S
L = 2.038×10−1

and H S
r = 1.573× 10−1, while for the maximum likelihood cross validation the estimated bandwidths are

H MLCV
L = 1.808 and H MLCV

r = 6.887×10−1 for the length and radius densities, respectively. Computations using

Silverman’s rule exhibit overfitting, while the maximum likelihood cross validation over-smooths the density

relative to the GP. In summary, the GP density estimation provides the most robust approximation for the

KDE, which is therefore chosen in the forward uncertainty propagation.

Weighted least squares with exponential, logarithmic, square root, and linear regression functions are

unable to resolve the heteroscedastic nature of the data (plots not shown). Instead, we use the GP regression

model with input dependent noise to estimate φ(s̄i ), resolving the issue of heteroscedasticity. Figure 8.8

panels (a) and (b) show the GP regression for c v (r̄i ) and c v (L̄ i ), respectively, while panels (c) and (d) depict

the latent variance. The coefficient of variation for vessel measurements across segmentations increases as

vessels get smaller. The mean variance for c L
v increases as the length decreases, yet the mean variance of c r

v

has a sharp decrease for the smallest vessels. Both GP models stay above the minimum variability of 20µm.

8.4.3 Forward uncertainty quantification

The MPA flow data is used as an inflow boundary condition, hence it does not change in any of the simulations.

The ensemble averaged pressure predictions in the MPA, LPA, and RPA along with ±2σ are shown in the first

column of figure 9. Mean, systolic, diastolic and pulse pressure and max flow, min flow, and total volume,

are given in Table 8.3. The flow distribution to the LPA is much larger than the RPA, a consequence of the

larger radius of the LPA that allows for greater fluid flow. This deviation in flow is apparent in the WI plots

in Figure 8.10, showing a more complex series of wave reflections in the RPA than the LPA and MPA. The

ensemble averaged pressure waveform calculated from the 25 networks identifies the network generated by

(θ1,θ2) = (33, 5.1) as the representative network.

For the parameter variation component of the study, we use the inverse sampling methodology to

propagate 104 realizations of perturbed radius and length values in the representative network. The second

column of Figure 8.9 shows the model predictions along with the mean±σ. The variation in the MPA, LPA,

and RPA systolic and pulse pressure is significantly larger than the mean and diastolic pressures (see Table

8.3). The flow predictions in the LPA and RPA have larger variability in mean and max flow in comparison

to the minimum flow. The variation attributed to network size and connectivity is calculated by fixing each

vessel’s radius and length in the representative network before reducing the full network iteratively. We reduce

the network starting at the smallest branches and moving towards the proximal vasculature while ensuring

that Windkessel boundary conditions are adjusted for each simulation (see Figure 8.9). Overall, reducing

the number of vessels from 219 in the largest network to 3 in smallest network introduces a discrepancy of

approximately 10 mmHg in the pressure predictions of all three pulmonary arteries.

WI analysis results in Figure 8.10 show that all vessels have two forward waves at the beginning and end

of systole. The MPA and LPA have a pronounced backward wave during peak flow and the MPA and RPA

have a secondary backward wave later in systole. The RPA also has an additional backward wave that occurs

towards the end of diastole. The connectivity study in the last column of Figure 8.10 shows that the MPA and

LPA achieve their largest forward and backward WI value for the smallest network, while the opposite is true
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Figure 8.7 Density estimates (a) and (b) and inverse cumulative distribution functions (c) and (d) for the
standardised radius and length values, respectively, measured in the 32-vessel subset. The bandwidth
parameters used for the length and radius KDEs were determined using Silverman’s rule (blue, dash dot)
and maximum likelihood cross-validation (MLCV, red, dashed). The Gaussian process (GP) mean and 95%
confidence interval are shown as a solid curve with grey bands. Standardised values are denoted by the
black tick marks in panels (a) and (b).

for the RPA. Time averaged PWV in the MPA was 4.83±0.0054 m/s for the total variation, 4.83±0.0037 m/s for

the parameter variation, and 4.84±0.0054 m/s for the network variation. The mean PWV was slightly larger

in the network variation study, but overall the three studies maintain the same magnitude with regard to the

mean and standard deviation in PWV.

8.5 Discussion

Recent advances in image segmentation have made subject-specific modelling of PH feasible, yet the mod-

elling process still comprises segmentation-induced uncertainty that propagates through to simulation results.

This is the first known study to explicitly quantify the variability of 1D CFD blood flow and pressure predictions

arising from uncertainty in pre-segmentation parameterisation. Three types of segmentation-induced varia-
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Figure 8.8 Gaussian Process (GP) regression using non-constant variance for the relationship between
length and radius and their coefficient of variation (cv ). The GP means and standard deviations were com-
puted from the cv data obtained from the 32-vessel subset (asterisks) and plotted against the analytical
bound of the image resolution (dash-dot curve), as given in [245]. The mean of the GPs and ± one and
two standard deviations (s.d.) from the mean are shown in (a) and (b) in black, dark grey, and light grey,
respectively. The variance of the GPs in (c) and (d) were predicted using an additional GP and provided a
mean (black) and variance (dashed curve) for the variance estimate. Both mean curves in (a) and (b) are
above the uncertainty bound of the imaging protocol.

tions were investigated: the total variation arising from changes in pre-segmentation parameters, variation

due to changes in vessel length and radius (geometric parameter variation), and variation with respect to

network connectivity and size (network variation). Results suggest that variation in network structure is

the greater contributor to uncertainty in hemodynamic predictions, consistent with what is known of the

pulmonary vascular physiology. Moreover, the methodology developed herein can be used to generate a 1D

model network for any vascular system.

8.5.1 Segmentation and construction of network graphs

Results show that pre-segmentation parameters drastically influence the number of vessels in the network,

while the number of generations attainable remains relatively consistent. It is apparent that the network

obtained from image segmentation is strongly linked to the range of image intensities considered in the

foreground via choice of (θ1,θ2). Most notably, the segmentation parameter set (31, 6.1) gives a volume that is

significantly smaller, suggesting that even slight changes in pre-segmentation parameters can reduce the

number and size of small vessels captured. The largest vascular tree used in this study contains 500 vessels, a

small fraction of the thousands of blood vessels that comprise the full pulmonary arterial system [93, 235].
We expect the trends seen in Figure 8.6 to continue if more vessels are obtained from the segmentation.
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Figure 8.9 Pressure and flow predictions in the first pulmonary bifurcation when studying total variation,
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ative values) waves are calculated for the total variation and parameter variation (grey lines) along with
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Table 8.3 Results from simulations. Values are expressed as means ± s.d. Pressure values are in units of
mmHg, flow values are in units of cm3 s−1 and volume values are in units of cm3.

Pressure

Mean pressure Systolic pressure Diastolic pressure Pulse pressure
Total variation

MPA 20.36±0.78 35.35±1.63 10.02±0.27 25.33±1.39
LPA 19.66±0.79 33.46±1.67 10.00±0.27 23.45±1.43
RPA 19.52±0.78 32.83±1.60 10.10±0.28 22.74±1.34

Parameter variation
MPA 20.38±0.54 35.37±1.03 10.04±0.23 25.33±0.82
LPA 19.68±0.53 33.46±0.99 10.02±0.23 23.43±0.78
RPA 19.56±0.50 33.46±0.90 10.11±0.24 22.80±0.69

Network variation
MPA 18.29±0.84 31.70±2.07 9.08±0.18 22.63±1.91
LPA 17.44±0.86 29.34±2.13 9.08±0.17 20.27±1.97
RPA 17.31±0.83 28.71±1.96 9.15±0.20 19.56±1.77

Flow

Mean flow Max flow Min flow Volume
Total variation

LPA 0.142±0.004 0.447±0.013 −0.000±0.000 0.016±0.000
RPA 0.027±0.004 0.113±0.009 −0.015±0.004 0.003±0.000

Parameter variation
LPA 0.140±0.001 0.439±0.006 0.000±0.015 0.015±0.000
RPA 0.029±0.001 0.119±0.007 −0.014±0.002 0.003±0.000

Network variation
LPA 0.141±0.001 0.447±0.009 −0.001±0.001 0.016±0.000
RPA 0.027±0.001 0.009±0.010 −0.014±0.004 0.003±0.000

Our techniques study uncertainty induced by global thresholding, but could be applied when other pre-

segmentation techniques are used, as global thresholding is commonly used [61, 161, 191] but is only one of

many segmentation methods.

The variability in the total number of vessels for a given network highlights the variation attributed to

segmentation. This would be expected in other networks that exhibit dispersive branching patterns, such as

the coronary arteries [100] or cerebral vasculature [198]. We employed a generation-based (Wiebel) ordering

scheme to describe the branching structure, where each bifurcation is considered a new generation of blood

vessels. In contrast, other authors have used other ordering systems, e.g., Strahler [102] schemes, to identify

structural properties of the pulmonary system, though these methods are not as compatible with CFD network

models.

8.5.2 Inverse uncertainty quantification

KDEs and GPs are commonly used techniques for density estimation [148, 200], but this study is the first to use

GPs in density estimation for vascular measurements. Typically, prior assumptions are forced on the unknown

parameter distributions by assuming a parametric parameter distribution. By estimating the density directly
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from repeated measurements, a non-parametric density was constructed, describing the uncertainty of the

measurements across segmentations without prior assumptions.

As shown in Figure 8.7, the three density estimates are similar in the mode of the distribution (approxi-

mately zero); however the GP density estimation allows for additional UQ in both the PDF and CDF estimates

[200]. The PDFs for radius and length were constructed independently, thus ignoring any correlation between

the radius and length measurements. A PDF estimation method that accounts for correlation between the

measurements of the two quantities should be investigated further, e.g. 2D GP density estimation [200].
The GP regression analysis of the coefficient of variation against the (standardised) measurements of

radius and length revealed that the coefficient of variation for the measurements increased as the measure-

ments decreased in value. This suggests that smaller vessels are subject to larger fluctuations in measurements

when varying pre-segmentation parameters, i.e. across different segmentations. Similar conclusions have

been made in simulations of coronary arteries [100], as the smaller regions of the vasculature were susceptible

to higher segmentation error.

8.5.3 Forward uncertainty quantification

KDEs and GPs are commonly used techniques [148, 200], but this study is the first to use GPs in density

estimation for vascular measurements. Forward UQ is typically carried out by assuming a parametric param-

eter distribution a priori, forcing prior assumptions on the unknown parameter distributions. By estimating

the density directly from repeated measurements, we construct a nonparametric, representative density

describing the uncertainty of the measurements across segmentations without prior assumptions.

The standardized measurements allow us to generalise the uncertainty of the 32-vessel subset to the

entire vascular network, increasing the robustness of the density estimate. As shown in Figure 8.7, the three

density estimates are similar in the mode of the distribution (approximately zero); however the GP density

estimation allows for additional UQ in both the density and CDF estimates [200]. We construct marginal

density estimates for the PDFs of radius and length, which assumes independence among the two quantities.

PDF estimation methods that account for correlation between radius and length measurements should be

investigated further.

GP regression is necessary for the data considered, as weighted least squares cannot correct the het-

eroscedastic variance. The coefficient of variation for the measurements increased as the measured di-

mensions decreased in value, suggesting that smaller vessels are subject to larger fluctuations in estimated

dimensions when varying pre-segmentation parameters. The gradual increase in coefficient of variation

indicates that the variance of the vessel dimensions across segmentations increases as vessels get smaller.

Similar conclusions have been made in simulations predicting the fractional flow reserve in coronary crowns

[100], as the smaller regions of the vasculature were susceptible to higher segmentation error. However, our

work is the first to consider estimated, nonparametric densities for UQ propagation, and does not require a

priori distribution assumptions.

8.5.4 Total variation of model simulations

The total network size obtained from the segmentation procedure has several effects on the model output.

As shown in Table 8.3, changes in network topology due to segmentation induced a variation in systolic

pressure that was nearly 6 times larger than the variation of diastolic pressure. Moreover, we observe that the

total variation for the systolic and pulse pressure is larger in comparison to the mean and diastolic pressure.

All four of these pressure metrics are typically used in diagnostic tools of diseases such as PH [70]. Though
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systolic pressure and pulse pressure have a small standard deviation (approximately 5% relative to the mean),

studies investigating coronary related mortality found that these pressure quantities were important for risk

assessment in patients with congenital heart disease [123]. This further indicates a need for UQ when using

these models for cardiovascular disease diagnostics and risk assessment.

8.5.5 Geometric parameter variation

The standard deviation of diastolic pressure resulting from parameter (radius and length) variation is greater

than that resulting from network (size and connectivity) variation. This suggests that changes in vessel

dimensions and nominal boundary conditions can ultimately raise the diastolic pressure of the system,

which is expected in the case of chronic vascular remodelling [70]. Parameter variation only accounted

for approximately 30% of the total variation in the pulse pressure and had less of an effect on all other

pressure and flow quantities when compared to the network variation. Larger networks encompassing the

entire pulmonary tree will increase the parameter uncertainty, as they correspond to more vessels and more

uncertain estimates of radius and length. This would in turn bias hemodynamic parameter estimates, since

network predictions would be based on the initial segmentation results [206].

8.5.6 Network variation

The largest effects on pressure and flow waveform predictions in the network are attributed to changes in

network connectivity and size, as seen in Figures 8.9 and 8.10. Quantitative metrics provided in Table 8.3 also

show that network variation produces larger standard deviations in systolic and pulse pressures vs parameter

variation, suggesting that the configuration of vessels in the pulmonary system plays an important role

in hemodynamic predictions. It is known that the highly compliant pulmonary system utilizes its rapidly

branching structure to perfuse the lung under a low-pressure gradient and varying cardiac outputs, and

that network remodeling is common with pulmonary vascular disease [70, 235]. For example, Rol et. al [202]
concluded that changes in vessel diameter with PH cannot solely explain the increase in vascular resistance,

and further hypothesized that network rarefaction may be a larger contributor to increased pulmonary arterial

pressure. Olufsen et. al [169] investigated this computationally by altering structured tree boundary conditions,

effectively reducing the size of the microvasculature and increasing pulmonary artery pressure. Our model

analysis agrees with clinical hypotheses that vascular rarefaction and associated changes in network size and

connectivity contribute more to changes in pulmonary arterial pressure than vessel narrowing.

The Poiseuille relation used to distribute network resistance introduces an impedance mismatch at each

terminal vessel. Reflected pressure waves due to this mismatch become more prevalent as successive vessels

are added to the system, leading to an increased pressure [201, 253]. While other studies have considered

non-reflective boundary conditions [5, 62], it is hypothesised that wave reflections occur in the pulmonary

system when PH is present [228], illustrating the appropriateness of reflective boundary conditions in the

model.

Our results show three instances where reducing part of the network causes a larger change in pressure,

which agree with a previous investigation by Epstein et al. [62] that showed a critical threshold in the number

of vessels that lead to larger discrepancy in hemodynamic predictions. It is often the case that hemodynamic

data is only available in select locations of the vascular system [46, 186, 191]. Changes in network size will

lead to changes in optimal parameter values during parameter inference, making the problem ill-posed as

estimated parameters describing stiffness, compliance, and vascular resistance will depend on the size of the

network used in CFD simulations. This further indicates that uncertainty in the network structure must be
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taken into account when using 1D CFD models for clinical decision making [46].

8.5.7 Limitations and future work

Several potential limitations of this study can be addressed in future investigations. First, we assume negligible

tapering in each vessel, which could play a role in proximal artery dynamics. Second, our model assumptions

ignore radius dependent stiffness and the effects of wall-viscoelasticity, which may be important in pulmonary

arteries [253]and could change the model sensitivity to network size and vessel dimensions. However, the focus

of this study was to quantify how changes in the model domain attributed to pre-segmentation parameters

impact hemodynamic predictions for fixed material parameters. Similar to previous studies [46, 186, 191],
nominal parameters are calculated under the assumption of steady flow and that pressure does not drop in

the large vessels. However, in the 1D domain we solve non-linear equations, which account for inertial and

viscous losses resulting in a pressure drop along the vessels. Similar to the systemic circulation, we assume

a negligible pressure drop along the large pulmonary vessels. Yet no experimental studies have measured

pressure beyond the first few generations, hence validation of this assumption in the pulmonary circulation

is difficult

Additional limitations involved model construction and quantified results. The length of the smallest

vessels was augmented during simulations to ensure the CFL condition is not violated. The CFL condition

could also be met by either increasing the number of time-steps, which increases computational cost, or

devising a numerical scheme using adaptive time-stepping, extending the scope of the study. We also provided

conventional mean and standard deviation calculations as familiar metrics for comparison. An alternative

approach is to perform formal global sensitivity analysis. State-of-the-art methods are based on Sobol indices

defined via conditional variances of different order [46, 103, 148, 206]; however, their computation via Monte

Carlo or quasi-Monte Carlo simulations is computationally expensive. This computational complexity is

aggravated by the fact that the image segmentation includes manual inspection and the parameter space

can therefore only be sampled at a coarse level. A potential way to alleviate this problem is to use statistical

emulation, e.g. using GPs, to compute first order and total effects indices. This can, in principle, follow

the method described in [148], by adapting and extending existing approaches and software tools; see

https://github.com/samcoveney/maGPy. However, this exploration is beyond the scope of the present

study and provides an interesting direction for future research.

We consider the frequently-used three-element Windkessel model as the boundary condition for the

1D model, yet this model greatly simplifies the physiological resistance beyond the segmented vessels. In

contrast, structured tree boundary conditions [168, 169, 189] can provide an additional level of complexity

for approximating downstream resistance and attempt to capture network structure beyond the limits of

image segmentation. In addition, the experimental protocol inhibited the same mouse from being used for

both the hemodynamic and imaging data. While this is a limitation for possible parameter inference, our

methodology still captures variability in model predictions due to uncertainty in the vessel dimensions and

network structure. Future human-based studies could incorporate non-invasive flow and imaging data from

the same patient in the model. Finally, future subject-specific models of the pulmonary vasculature would be

enhanced by allowing for trifurcations (done in Chapter 9) and considering branching angles in the vascular

tree, thus accounting for more of the physiological traits of the network.
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8.6 Conclusions

Uncertainty of model predictions must be accounted for in the absence of ground truth. We have presented

the first known investigation of the impact of uncertainties in imaging-based network reconstruction on

CFD simulations in the pulmonary vasculature. This work identifies the uncertainties pertaining to image

pre-segmentation parameters by explicitly measuring the variation in radius and length measurements of a

subset of vascular segments. Another novelty of this work is in estimating densities of radius and length from

data obtained using state-of-the-art nonparametric techniques, rather than assuming a fixed and potentially

biased functional form of the distribution a priori. Moreover, our study is the first to perform UQ on the

dimensions and network topology of a 1D CFD model in an expansive pulmonary vascular network. Our

results show that the network variation has the most influence on predictions of blood pressure and flow

while changes in vessel length and radius have less impact on hemodynamic predictions.
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CHAPTER

9

A MULTISCALE MODEL OF CTEPH PRE-

AND POST-SURGERY

The study “A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension"

has been submitted to American Journal of Physiology - Heart and Circulatory Physiology. Contributions

include segmenting the human image, developing new web-like lesion energy loss models, all simulations in

the large and small pulmonary arteries, and writing a majority of the paper.

9.1 Abstract

Chronic thromboembolic pulmonary hypertension (CTEPH) is caused by recurrent or unresolved pulmonary

thromboemboli, leading to perfusion defects and increased arterial wave reflections. CTEPH treatment

aims to reduce pulmonary arterial pressure and reestablish adequate lung perfusion, yet patients with

distal lesions are inoperable by standard surgical intervention. Instead, these patients undergo balloon

pulmonary angioplasty (BPA), a multi-session, minimally invasive surgery that disrupts the thromboembolic

material within the vessel lumen using a catheter balloon. However, there still lacks an integrative, holistic

tool for identifying optimal target lesions for treatment. To address this insufficiency, we simulate CTEPH

hemodynamics and BPA therapy using a multiscale fluid dynamics model. The large pulmonary arterial

geometry is derived from a computed tomography (CT) image, whereas a fractal tree represents the small

vessels. We model ring- and web-like lesions, common in CTEPH, and simulate normotensive conditions

and four CTEPH disease scenarios; the latter includes both large artery lesions and vascular remodeling. BPA

therapy is simulated by simultaneously reducing lesion severity in three locations. Our predictions mimic

severe CTEPH, manifested by an increase in mean proximal pulmonary arterial pressure above 20 mmHg

and prominent wave reflections. Both flow and pressure decrease in vessels distal to the lesions and increase

in unobstructed vascular regions. We use the main pulmonary artery (MPA) pressure, a wave reflection index,
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and a measure of flow heterogeneity to select optimal target lesions for BPA. In summary, this study provides

a multiscale, image-to-hemodynamics pipeline for BPA therapy planning for inoperable CTEPH patients.

9.2 Introduction

Pulmonary hypertension (PH), defined as a mean pulmonary arterial pressure (mPAP) > 20 mmHg at rest

[218], degrades pulmonary vascular function. The disease is associated with vascular wall thickening and

decreased vessel compliance, elevating pulmonary arterial pressure. If untreated, PH progressively leads to

vascular-ventricular decoupling and right ventricular dysfunction [252]. PH encompasses five etiologies: (1)

pulmonary arterial hypertension (PAH); (2) PH due to left heart disease; (3) PH due to lung disease, including

hypoxia and chronic obstructive pulmonary disease; (4) chronic thromboembolic pulmonary hypertension

(CTEPH); and (5), PH due to unclear or multifactorial mechanisms [218]. Though vasodilator therapy can

be used to treat several PH subclasses, only CTEPH (group 4) is curable via surgical intervention [115, 145].
Recently, a less invasive approach has emerged, known as balloon pulmonary angioplasty (BPA), that opens

the blood vessels using cardiac catheterization [130]. However, it is unclear if this more novel treatment has

the same hemodynamic improvements as the gold-standard surgical methods. To this extent, this study

develops a multi-scale, computational fluid dynamics (CFD) model to predict hemodynamics in CTEPH and

simulate the impact of balloon pulmonary angioplasty (BPA) treatment.

CTEPH affects 3–30 people per million worldwide [132]. However, its prevalence is likely underestimated

due to the diagnostic complexity and generic nature of its two vital symptoms: dyspnea and fatigue [149].
CTEPH etiology involves recurrent obstruction of the pulmonary arteries, leading to perfusion deficits and

pulmonary vascular remodeling. In addition to elevated mPAP, clinical manifestations of CTEPH include

increased flow heterogeneity and elevated right ventricular afterload [65, 208]. Diagnosis requires a combi-

nation of medical imaging (e.g., chest computed tomography (CT) or magnetic resonance imaging (MRI)),

ventilation-perfusion (V/Q) scanning, and invasive right heart catheterization. CT images provide informa-

tion regarding pulmonary vascular structure, while V/Q scans display blood flow and oxygen delivery to the

alveoli. Right heart catheterization measures dynamic pulmonary arterial blood pressure in the main, left,

and right pulmonary arteries (MPA, LPA, and RPA, respectively). Catheterization also estimates left atrial

pressure by calculating pulmonary arterial wedge pressure (PAWP), which is≤ 15 mmHg for CTEPH and other

pre-capillary PH [218]. Cardiac output is measured during catheterization via thermodilution or Fick’s method.

CTEPH diagnosis requires a pulmonary vascular resistance (PVR) ≥ 3 Woods units [218] (1 Wood unit = 0.06

mmHg s/ml), approximated using mPAP, PAWP, and cardiac output. Also, positive diagnosis requires at least

one large uni- or bilateral perfusion defect, identified on a V/Q scan or CT image [145, 260]. Recent studies

using optical coherence tomography [108, 115] sub-classified CTEPH lesions as (1) ring-like, (2) web-like, (3)

subtotal occlusions, (4) total occlusions, and (5) tortuous lesions. Of these, subtotal occlusions, ring-like, and

web-like lesions are the most common and have the lowest probability of complication in response to BPA

intervention [115].
CTEPH is a rare, progressive disease that is typically preceded by an acute pulmonary embolism. Disease

advancement begins with vascular remodeling of the arterioles but ultimately affects the proximal pulmonary

arteries [50]. Current hypotheses suggest that lesion-induced flow redistribution leads to (a) decreased vascu-

lar stretch and shear stress in obstructed pathways and (b) increased flow and shear stress in unobstructed

pathways. These hemodynamic changes induce arteriolar muscularization and luminal narrowing, causing

secondary pulmonary arteriopathy [55, 118, 130]. Muscularization and narrowing of small vessels are associ-

ated with increased PVR, causing pronounced wave reflections and increased mPAP [213, 244]. This narrowing
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of the small pulmonary arteries and arterioles is typically linked to the dilation of the large, proximal arteries

[50, 257]. These features typically emanate after months to years of elevated PVR, hence early diagnosis and

proper treatment are crucial for preventing the progression to irreversible CTEPH. However, current data

analyses and treatment selection protocols lack quantifiable metrics for holistic analysis and interpretation

of imaging and hemodynamic data.

Surgical interventions for CTEPH aim to reduce mPAP and increase lung perfusion [67]. Pulmonary

thromboendarterectomy (PTE) is the gold standard therapeutic intervention with a five-year survival rate

>83%[187]. Though PTE is highly effective, between 12% to 60% of patients are inoperable due to distal lesions

[115], located in the segmental and subsegmental arteries [113]. The optimal alternative treatment for these

patients is BPA therapy, a minimally invasive procedure that uses a balloon catheter to mechanically disrupt

the thrombi [67]. However, complete BPA therapy requires multiple interventions in various segments over

several sessions [130, 260]. The variability in lesion morphology, severity, and location makes the selection of

lesions challenging for the interventionalist. Hence there is a need for a patient-specific procedural planning

tool. Though the location and morphology of lesions are known to influence BPA outcome [139], the only

quantifiable metric for assessing these lesions’ significance is the fractional flow reserve (FFR) [115]. This

necessitates additional physiomarkers for quantifying lesion severity. The incidence of CTEPH is expected

to grow in the coming decade; therefore, predictive tools integrating multi-modality data will be crucial to

improve the safety, efficacy, and efficiency of BPA.

CTEPH affects both the proximal and distal vasculature [111, 224]. The geometry of the large pulmonary

arteries can be analyzed and reconstructed from CT images or MRI, yet image resolution makes it impossible

to extract a patient-specific geometry of the small arteries and arterioles. However, the structure and function

of the small pulmonary arteries and arterioles are imperative in understanding CTEPH and its treatment. For

instance, clinical studies demonstrate a negative correlation between long-term survival rates and elevated

PVR post-PTE [79]. The study by Jujo et al. [111] concludes that severe arteriopathy in pulmonary arterioles is

linked to recurrent CTEPH after PTE. Imaging limitations encourage developing new tools for assessing small

vessel function and its link to proximal artery hemodynamics. Computational modeling, used here, is one

such tool that can fuse idealistic small vessel structure with image-driven large artery geometries to predict

cardiovascular dynamics.

Numerous computational studies use image-based CFD modeling to predict hemodynamics in proximal

vessels (e.g., [222, 266, 268]). Spazzapan et al. [222] combine patient-specific CT pulmonary angiography

images with a three-dimensional (3D) CFD model to predict pulmonary hemodynamics before and after PTE.

They predict low wall shear stress (WSS) distal to stenoses in the LPA and RPA, but show that WSS increases in

post-PTE simulations. They also document a relatively homogeneous, bilateral flow distribution to both lungs

after simulated PTE. These findings agree with the patient-specific 3D CFD study by Yang et al. [266], which

predicts WSS in the proximal pulmonary arteries of pediatric patients with no PH, moderate PH, and severe

PH. They describe a negative correlation between PH severity and WSS magnitude in the MPA, LPA, and RPA.

While 3D CFD models provide significant insight into WSS in PH, they are computationally intensive, making

it challenging to integrate them into clinical practice.

In contrast to 3D models, several studies use one-dimensional (1D) CFD models to predict wave propa-

gation and wave reflections in the large vessels at a fraction of the computational cost. Most of these studies

use 1D subject-specific models predict systemic hemodynamics. The study by Yin et al. [268] use a 1D model

to predict energy losses due to stenoses in the coronary arteries. They compare 1D and 3D computations of

coronary FFR in the same geometry, finding a maximum error of 3% between the two model types. Likewise,

Bezerra et al. [25] predict nearly identical FFR from 3D and 1D models for multiple coronary artery patient
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geometries. These studies suggest that 1D models provide nearly identical results to higher fidelity 3D models

in both normotensive and hypertensive scenarios.

The models referenced above lump small vessel hemodynamics into boundary conditions. Most use the

so-called Windkessel boundary condition [222, 268], a circuit analog that lumps the resistance and compliance

of the microvasculature. Though this is adequate for examining large vessel dynamics, it is essential to utilize

a multiscale approach including the large and small vessels. Several studies address this using a morphology-

based, fractal-tree model and simplified fluid dynamic equations for the distal vasculature [42, 223]. Spilker

et al. [223] use this boundary condition with a 1D CFD model to predict pulmonary hemodynamics in a

porcine and a human model. Their approach utilizes the Strahler ordering scheme [102] to generate distal

vascular beds and an impedance boundary condition, showing that the computed impedance is similar to

the measured impedance spectra. Clipp and Steele [42] use the structured-tree boundary condition, originally

developed by Olufsen [166], to predict pulmonary hemodynamics during inspiration and expiration in lambs.

Their results show that the zero-frequency component of the impedance (Z ) can be adjusted and matched to

pressure data during respiration. While these studies account for the distal vascular structure to determine

impedance boundary conditions, they do not predict hemodynamics within the distal vasculature itself.

Several studies predict multiscale hemodynamics, imperative for understanding the interactions between

the large and small vessels during PH [35, 40, 169, 266]. Yang et al. [266]use the impedance boundary condition

previously implemented by Spilker et al. [223] in a 3D pulmonary circulation model. They predict mean

WSS in a Strahler-based distal vascular structure, and illustate that severe PAH increases mean WSS in

the smallest arteriolar branches. Clark and Tawhai [40] use a wave-transmission model of the pulmonary

arterial and venous trees and couple it to a capillary sheet model to predict hemodynamics throughout the

pulmonary circulation. They use imaging to obtain arteries and veins to the subsegmental level, whereas the

arterioles and venules are generated using a space-filling algorithm. Their multiscale study also provides

qualitative predictions of lung perfusion, showing increased flow heterogeneity with reduced pulmonary

vascular compliance. The study by Olufsen et al. [169] solves nonlinear, inertia-driven 1D flow equations in

the large pulmonary arteries and a linearized wave-equation in the arterioles of the structured tree model.

The authors use the model framework to investigate pulmonary microvascular rarefaction and show that

reducing the number of arterioles increases mPAP. A similar modeling approach is used in Chambers et al.[35],
which compares control and hypertensive (PH induced by hypoxia - PH group 3) mice. Their study uses large

artery geometry from micro-CT imaging, whereas the small arterial and arteriolar networks are constructed

from fractal trees with scaling parameters extracted from high-resolution imaging data.

To our knowledge, no previous studies incorporate pressure loss models to study the effect of lesions

in CTEPH, nor do they attempt to predict large and small vessel fluid dynamics in CTEPH. To address this

critical gap in the literature, we propose a novel multiscale approach that predicts large and small vessel

hemodynamics. We conduct the former simulations in a patient-specific geometry extracted from CT images,

whereas the latter simulations are done in asymmetric, structured trees. We combine this computational

model with two energy loss models for ring- and web-like thromboembolic lesions to predict pressure,

flow, and area in normotensive and CTEPH scenarios. To understand how lesions and pulmonary vascular

remodeling affect pulmonary hemodynamics, we compute mPAP, FFR, and a wave reflection index, as well as

lung perfusion. We compute these quantities under normotensive and four physiologically-driven CTEPH

conditions. The flow distribution within the lung is converted to a quantitative flow heterogeneity index

utilizing the Kullback-Leibler (KL) divergence [24]. Finally, we simulate “virtual BPA" by modulating lesion

severity in multiple vessels and identify the most significant set of lesions for percutaneous intervention. This

study develops a proof-of-concept modeling tool, which can assist the interdisciplinary team of cardiologists,
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pulmonologists, and radiologists in determining the optimal intervention strategy for BPA therapy.

9.3 Materials and Methods

9.3.1 Network geometry

In this study, the pulmonary arterial geometry consists of an image-based large artery network generated

from a CT image and a self-similar, fractal-tree representing the small arteries and arterioles.

9.3.1.1 Large vessel geometry

We generate a network of large pulmonary arteries from a publicly available chest CT scan (from Simvascular1).

The CT image is from a healthy, 67-year-old female volunteer, captured using Omnipaque 350 contrast agent.

Similar to our previous study [35], we segment and reconstruct the pulmonary arterial network and lung

cavity using the open-source segmentation software 3DSlicer2 [64]. When segmenting the geometry, we

first identify the MPA, LPA, and RPA, and then manually segment all lobar, segmental, and subsegmental

vessels. We generate the 1D network by reducing the 3D vessel geometry to centerlines using the Vascular

Modeling ToolKit (VMTK)[11] and use our network extraction algorithm to generate a directed graph from

the centerlines [45]. This algorithm converts the network to a series of arcs (vessels) and nodes (junctions),

encoded by a connectivity matrix. For non-terminal arteries, each vessel’s outlet is connected to either two or

three vessel inlets, deemed the parent and daughter vessels, respectively. Terminal vessels are prescribed a

structured tree model at their outlet, as defined below. Each vessel has a constant radius and a length. Radii

are computed as the mean within the center 80% of the vessel, and the lengths are computed as the Euclidean

distance between each point in the vessel. Figure 9.1 illustrates this process showing three planes in the CT

image, the segmented network and lung cavity, and the 1D network.

9.3.1.2 Small vessel geometry

It is difficult to obtain high-fidelity measurements of the small arteries and arterioles from CT images. To

circumvent this, we represent the small vessels with fractal, self-similar structured trees [166, 169]. We assume

that each daughter vessel is related to its parent via the radius scaling factors α and β , and a length to radius

ratio L r r . The dimensions of any vessel in the structured tree can be expressed in terms of the terminal large

artery radius rt e r m proximal to the beginning of the structured tree

rn ,m = rt e r mα
nβm , Ln ,m = L r r rn ,m . (9.1)

Following [189], who use a combination of pulmonary artery literature data, the length to radius ratio used in

this study is

L r r =

(

15.75r 1.10 r ≥ 0.005

1.79r 0.47 r ≤ 0.005
. (9.2)

The structured tree is terminated after a specified minimal radius, rmi n , has been reached. We use parameter

values from a previous investigation from high-resolution micro-CT scans of control and hypertensive

1http://simvascular.github.io/
2http://www.slicer.org
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mice [35], and set α= 0.88 and β = 0.68. The terminal radius of the structured tree is based on anatomical

literature and set to 7.5µm [237].

Vessel and lung
 segmentation

Skeletonization and 
model construction

Image analysis

Lesions

Model of arterioles

Figure 9.1 Schematic of model development, starting from image analysis and image segmentation and
ending in construction of the skeletonized network and computational domain.

9.3.2 Fluid dynamics

The 1D model consists of the large pulmonary arteries segmented from the CT image, and the small pul-

monary arteries and arterioles represented by structured trees. In the large arteries, we predict inertia-driven

hemodynamics using a system of nonlinear partial differential equations (PDEs), while fluid dynamics in the

network of small vessels are predicted by solving a linearized wave equation.

9.3.2.1 Large vessel hemodynamics

Similar to previous studies [46, 189, 191], we compute flow q (x , t ) (mL/s), pressure p (x , t ) (mmHg), and

cross-sectional area A(x , t ) (cm2) in each large vessel by enforcing conservation of volume

∂ A

∂ t
+
∂ q

∂ x
= 0, (9.3)

and the balance of momentum

∂ q

∂ t
+
∂

∂ x

�

q 2

A

�

+
A

ρ

∂ p

∂ x
=−

2πνR

δ

q

A
, (9.4)

where ρ = 1.055 (g/mL) is the blood density and ν (cm2/s) is the kinematic viscosity. The right hand side of

equation (9.4) is derived under the assumption that the fluid velocity profile, ux (r, x , t ) = q/A (cm/s), has a
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linearly decreasing boundary layer thickness δ (cm), i.e.,

ux =

(

ūx , 0≤ r ≤R −δ

ūx /(R −δ), R −δ≤ r ≤R .
(9.5)

The boundary layer δ is approximated by
p

νT /2π, where T (s) is the cardiac cycle length [137]. Under this

assumption, the shear stress in the large vessels is

τ(x , t ) =−µ
∂ ux

∂ r

�

�

�

r=R
=µ

ūx

δ
. (9.6)

To close the system of equations, we impose a pressure-area relation governing the interaction between the

vascular wall and the blood. Under the assumption that vessels are thin-walled, linearly elastic, homogenous,

and isotropic [166, 268], we get

p (x , t ) = p0+
4

3

E h

r0

�
√

√ A

A0
−1

�

, (9.7)

where p0 (mmHg) is the reference pressure at which A = A0 = πr 2
0 , E (mmHg) is Young’s modulus in the

circumferential direction, and h (cm) is the wall thickness. For clarity, simulations are conducted in cgs units

but the results are provided in mmHg using the conversion 1mmHg = 1333.22 g/cm/s2.

Previous investigations [128] suggest that pulmonary vascular wall properties, e.g., Young’s modulus (E )

and wall thickness (h), change with vessel caliber. To account for these varying wall properties, we assume

that the wall-stiffness E h/r0 can be represented by

E h

r0
= k l a

1 e r0k l a
2 +k l a

3 (9.8)

as described by Olufsen [166]. Here k l a
1 (mmHg), k l a

2 (cm−1), and k l a
3 (mmHg) are stiffness parameters for

the large arteries. Normotensive values of k l a
1 = 2.5× 106, k l a

2 = −15, and k l a
3 = 6.4× 104 are based on our

previous investigation [189, 191].
The nonlinear system of PDEs is hyperbolic with characteristics pointing in the opposite direction; thus,

we require boundary conditions at each vessel inlet and outlet (x = 0 and x = L , respectively). We digitize an

average control flow waveform, available from Simvascular, using GraphClick3 to provide an inflow boundary

condition at the inlet of the MPA. The cardiac output is scaled to match the flow values used in [169]. At

non-stenotic vessel junctions, we prescribe continuity of static pressure and conservation of flow

pp (Lp , t ) = pd1
(0, t ) = pd1

(0, t ), (9.9)

qp (Lp , t ) = qd1
(0, t ) +qd2

(0, t ) (9.10)

which holds ∀t ∈ [0, T ]. Lastly, we couple the terminal large arteries to the structured tree model, as described

later.

9.3.2.2 Stenosis models

As discussed earlier, CTEPH progression is attributed to multiple emboli and vascular proliferation, which are

grouped into five types [115]: ring-like, web-like, subtotal occlusion, total occlusive, and tortuous lesions. In

3http://www.arizona-software.ch/graphclick/
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this work, we model ring-like lesions (accounting for approximately 30% of all lesions) and web-like lesions

(accounting for approximately 64% of all lesions) [115].
We model the former lesion type using the pressure loss term derived from Young and Tsai’s work [271]

∆pring =
µKv

2π(rp )3
q +

ρKt

2(Ap )2

�Ap

As
−1

�2

|q |q +
ρKu L s

Ap

∂ q

∂ t
, (9.11)

where Kv , Kt , and Ku (dimensionless) are the loss coefficients due to viscous, turbulent, and inertial forces,

respectively. Moreover, rp (cm) and Ap (cm2) denote the unobstructed radius and area proximal to the lesion,

and L s is the length of the ring-like lesion. This stenosis model has been implemented in 1D models and

validated against 3D models in the systemic circulation [25, 183, 268]. The viscous loss Kv , related to the

stenosis geometry, is given by [268]

Kv = 16
L s

rp

�Ap

As

�2

. (9.12)

Ring-like lesions are typically located proximal to vascular junctions [115], hence we prescribe these lesions

and their energy loss proximal to vessel junctions.

We model web-like occlusions as semi-porous structures, which only partially occlude the vascular lumen

[108]. The pressure drop in web-like lesions is modeled as

∆pweb = Lw

�

µ

Kperm

q

A
+ρKw

�q

A

�2
�

, (9.13)

where Lw (cm) is the length of the obstructed area, Kp e r m (cm2) is the permeability of the web-like lesion,

and Kw (dimensionless) is the pressure drop due to inertial effects. Equation (9.13),the Darcy-Forchheimer

equation, is used for fluid flow through porous media at moderate Reynold’s numbers (i.e. > 10) [275].
Previous work [126, 275] assumes that Kw ≈G /K 1/2

p e r m , where G (cm) depends on the material in question.

Since material properties are unknown, we assume G = 0.10 for all simulations involving web-like lesion and

place them at the vessel midpoint as these lesions can extend throughout a single vessel [108].
We compute the FFR for each lesion to quantify the pressure-losses due to lesion type and severity. As

done in prior coronary studies [26], the FFR is calculated as

FFR=
p̄dist

p̄prox
(9.14)

where p̄prox and p̄dist are the mean pressure proximal to and distal to the lesion, respectively.

9.3.3 Small vessel hemodynamics

While inertial effects dominate large vessel hemodynamics, blood flow in the small arteries and arterioles is

dominated by viscous forces. For this reason, we solve linearized forms of equations 9.3 and 9.4. The linearized

equations are converted to a discrete, frequency domain Fourier series, resulting in a wave-equation with

analytical pressure and flow solutions, P (x ,ω) and Q (x ,ω), for each frequencyω. These are related via the

impedance, Z (x ,ω) = P (x ,ω)/Q (x ,ω). The input impedance at x = 0 can then be written as

Z (0,ω) =
i g −1 sin(ωL/c ) +Z (L ,ω)cos(ωL/c )

cos(ωL/c ) + i g Z (L ,ω)sin(ωL/c )
(9.15)
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for any frequency ω 6= 0, whereas the zero frequency value, Z (0,0), analogous to the DC component in

electrical circuit theory, is given by

lim
ω→0

Z (0,ω) =
8µ`r r

πr 3
0

+Z (L , 0). (9.16)

The above equations depend on the frequency domain quantities gω and c , which are defined in Section 4.3.

These terms depend on E h/r0, which has the same form as equation 9.8, but with parameters k s a
1 , k s a

2 , and

k s a
3 .

Noting that Q (L ,ω) = P (L ,ω)/Z (L ,ω) for each frequency, we can predict impedance, pressure, and flow

using

P (L ,ω) = P (0,ω)cos (ωL/c )−Q (0,ω)
i

gω
sin (ωL/c ) , (9.17)

Z (L ,ω) =
i g −1
ω sin(ωL/c )−Z (0,ω)cos(ωL/c )

gω cos(ωL/c )Z (0,ω)− cos(ωL/c )
, (9.18)

forω 6= 0. For the zeroth frequency, the solution is

P (L , 0) = P (0, 0)−Q (0, 0)
8µL

πr 4
, (9.19)

Z (L , 0) = Z (0, 0)−
8µL

πr 4
(9.20)

This enables us to predict pressure and flow in any daughter vessel provided the pressure and flow of the

parent are known [169].
The non-Newtonian effects of blood viscosityµ (and hence kinematic viscosityν) become more influential

as the vessel radii decrease towards the arterioles. Following [184], and our previous study [35], we model the

viscosity in the small arteries and arterioles by a nonlinear radius dependent function of the form

µ∗(r0) =
�

1+ (µ0.45−1)D
�

D, (9.21)

µ0.45(r0) = 6e −0.17r0 +3.2−2.44e −0.12r 0.645
0 , (9.22)

whereD = (2r0/ (2r0−1.1))2 and µ0.45(r0) is the relative viscosity at an average hematocrit level of 0.45 [184].
We assume a typical healthy blood hematocrit of 0.45.

We assume continuity of pressure and conservation of flow at each junction in the small vessels of the

structured tree. Under these assumptions, the impedance at a junction parallels resistors in parallel, i.e.

Z −1
p = Z −1

d1
+Z −1

d2
. At the terminating end of the structured tree (i.e., Z (L , 0) at the last generation branches), the

terminal impedance Zt r m =constant is prescribed. Since the structured tree results in thousands of vessels,

the flow at the end of the structured tree’s are on the order of 10−5−10−8. For this reason, the capillary pressure,

Pt r m = Zt r m ·Qt r m , requires the magnitude of Zt r m to be on the order of 105−109 to achieve non-negligible

pressure values. Once we reach the terminal structured tree branch, all proximal impedance values in the

tree are computed. Knowing the impedance at the root of the tree provides an interface between the large

and small vessels. The large artery predictions are then used to simulate structured tree hemodynamics using

the impedance relations above.
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9.3.4 Numerical solution

Large vessel hemodynamics (equations (9.3, 9.4, B.95)) are solved using the Ritchmeyer two-step Lax-Wendroff

scheme [166], which is second order accurate in space and time. At non-stenotic junctions, pressure continuity

and flow conservation are enforced via a Newton-Raphson root finding routine. Pressure losses due to ring-like

lesions, located proximal to bifurcations, are also solved using a Newton-Raphson routine. For web-like lesions,

located at vessels’ midpoint, we minimize residual equations using gradient-descent with a backtracking line

search algorithm [116]. To increase numerical accuracy at the junctions and lesion locations, we derive and

utilize the analytical Jacobian of the residuals.

To couple the large vessels to the structured tree, the frequency impedance is convolved with the pressure

at the end of the large arteries. This is numerically approximated as

q n
L =∆t

n
∑

k=1

p n−k
L

�

Z k
�−1

, (9.23)

where q n
L and p n−k

L are the numerical solutions of flow and pressure at the end of the large terminal arteries,

and Z k is the vascular impedance of the whole structured tree calculated using equation (9.15).

9.3.5 Wave intensity analysis

Wave intensity analysis (WIA) is a time-domain decomposition of forward and backward waves and is utilized

in understanding the progression of cardiovascular disease [189, 191, 230]. The so-called pressure and velocity

‘wavefronts’ [172] δp± and δu± are calculated as

δp± =
δp ±ρc (p )δui

2
, δu± =

1

2

�

δu ±
δp

ρc (p )

�

, (9.24)

where the notation ± indicates the forward (‘+’) or backward (‘-’) running wave components, and δp and δu

are the incremental changes in pressure and velocity, respectively. The wave speed c (p ) is calculated from

the pressure-area relation

c (p ) =

√

√A

ρ

∂ p

∂ A
=

√

√E h

r0

1

2ρ

�

A

A0

�1/4

. (9.25)

Both forward and backward waves are classified as compression (δp± > 0) or decompression (δp± < 0) waves.

Forward compression waves (FCW) originate from the right ventricle, increasing pressure and accelerating

flow as blood travels towards the periphery. Forward expansion waves (FEW) also originate in the proximal

arteries but decrease the pressure and flow velocity. In contrast, backward compression waves (BCW) and

expansion waves (BEW) propagate from the periphery, the former increasing pressure while decelerating

flow, while the latter does the opposite. The wave intensity WI± is calculated as a product of the velocity

and pressure wavefronts. Since wavefronts are not continuous but discrete approximations, we use the

time-normalized wave intensity

WI± =
δp±

δt

δu±

δt
. (9.26)

After determining the type and nature of the waves, a wave reflection coefficient,R , can be calculated. In this

study, we use

R =
∆p−
∆p+

, (9.27)

where∆p+ and∆p− are the sums of the backward and forward compression waves, respectively [156].
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9.3.6 Lung perfusion and heterogeneity

We map flow predictions from the large arteries to the 3D geometry [35] to predict lung perfusion. To do so,

we first determine which vessels are closest to the lung tissue using a nearest-neighbor algorithm in MATLAB

(Mathworks, Natick, MA). Then, we project the 1D flow predictions onto the lung tissue and generate a lung

perfusion map. These predictions are converted to a probability distribution function (PDF) using kernel

density estimation; we use the ksdensity function in MATLAB. To quantify flow heterogeneity in control,

CTEPH, and post-surgical intervention simulations, we compute the KL divergence, a measure of relative

entropy between two probability distributions [24], for the flow PDFs.

The KL divergence is a probabilistic measure between two distributions [24]. LetA andB be discrete

probability distributions defined on some probability spaceW , whereA is our reference or target distribution.

Then, the KL-divergence is defined as

DK L

�

A
�

�

�B
�

=
∑

w∈W
A (w ) log

�A (w )
B (w )

�

, (9.28)

where DK L → 0 indicates identical distributions, while increasing values of DK L indicates a bigger mismatch

between the two distributions.

In summary, we compute the perfusion map and quantify flow heterogeneity as follows:

(1) project the 1D flow predictions to the centerline network in 3D;

(2) determine the terminal vessels closest to the segmented lung tissue via a nearest-neighbor algorithm;

(3) prescribe the flow to the entire portion of tissue;

(4) construct the flow PDF,B , via kernel density estimation; and

(5) compute DK L

�

A
�

�

�B
�

.

9.3.7 Chronic thromboembolic pulmonary hypertension (CTEPH)

To simulate CTEPH, we add ring-like (concentric stenosis) and web-like (longitudinal narrowing within a

vessel) [115] lesions to the proximal pulmonary arteries. We also introduce arterial vasoconstriction and

progressive remodeling of the distal vasculature [50]. The former is done by decreasing the radii of vessels

segmented from the CT image, while the latter is done by increasing terminal PVR (Zt r m ) and vessel stiffness

in the structured trees. We set up a normotensive simulation and four disease cases and examine changes

in hemodynamic predictions. These disease cases are summarized in Table 9.1 and parameter values are

given in Table 9.2. To simulate the effects of BPA, we reduce both stenosis and downstream vasoconstriction

severity in three lesions and quantify improvements in hemodynamics after BPA.

9.3.7.1 Disease cases

9.3.7.1.1 Case a: Lesions only

This scenario represents a CTEPH patient without pulmonary vascular remodeling, illustrating the sole effects

of arterial obstructions (ring- and web-like lesions). We add a total of 20 lesions in the network: 9 ring-like

and 11 web-like. Ring-like lesions have an area reduction of 90% and spread over 25% of the original vessel.

These lesions are placed proximal to vessel junctions [115]. Web-like lesions have a permeability parameter
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Kp e r m = 0.009 and a lesion length parameter, which is 50% of the vessel’s length [115]. Vessels that contain

either lesion type are ten fold stiffer to account for wall stiffening due to thromboembolic material.

9.3.7.1.2 Case b: Lesions with local remodeling

In this scenario, the disease has progressed downstream to the lesions. Remodeling narrows the vascular

lumen and moderately thickens the vascular walls, decreasing vessel compliance. Parameters k1, k2, and

k3 are increased in all vessels (both large and small) distal to the lesion while reducing the reference vessel

radius r0 by 40%. We also increase pulmonary vascular resistance by increasing Zt r m in terminal vessels that

are narrowed.

9.3.7.1.3 Case c: Lesions with small vessel arteriopathy

Prolonged exposure to CTEPH is associated with secondary arteriopathy throughout the pulmonary vas-

culature, affecting vessels with cross-sectional areas ≤ 5mm [50, 130]. In particular, long-term elevation in

flow and shear stress in non-obstructed vessels leads to endothelial dysfunction and increased PVR [217]. We

model this by inducing global small vessel remodeling, i.e., reducing the reference radius r0 in all vessels with

a cross-sectional area < 5mm2 by 40% and increasing vessel stiffness. We also increase Zt r m in the structured

trees.

9.3.7.1.4 Case d: Lesions with proximal dilation and global small vessel arteriopathy

In the most severe cases of CTEPH, small vessel arteriopathy causes large artery dilation and stiffening

[115, 130]. This scenario includes the global small vessel remodeling described in case c, with dilation and

thickening of arteries with cross-sectional areas ≥ 10mm2 by 10%, as documented previously [50]. We further

increase stiffness and raise PVR in all terminal vessels.

9.3.7.2 BPA therapy

Inoperable CTEPH patients with inaccessible distal lesions for PTE are ideal candidates for BPA. We simulate

BPA intervention by decreasing lesion severity simultaneously in three locations at a time. BPA does not

completely remove the lesions; hence, we still include them in the model but reduce their severity. Specifically,

we reduce the stenosed area As and lesion length L s from 90% to 50% for ring-like lesions and increase Kp e r m

(equation (9.13)) from 0.009 to 0.05 for web-like lesions. We also return vessel reference radii, r0, to 90% of their

original value in the obstructed pathways, mimicking decreased vasoconstriction due to lung reperfusion.

Since multiple interventions must be performed to improve hemodynamic function, the most severe

lesions are prioritized for treatment to optimize increases in lung perfusion and decreases in mPAP, PVR, and

wave reflections. This study uses simulations to select the “optimal" interventional option by quantifying flow

heterogeneity, MPA pressure, wave reflection coefficients, along with post-BPA perfusion maps. We perform

all virtual procedures in disease case (d), and compare hemodynamic indices pre- and post-BPA.

9.4 Results

The large pulmonary arterial network includes 226 vessels including the MPA, LPA, and RPA, and all visible

segmental and subsegmental branches. Centerlines constructed by VMTK are processed and implemented

in the 1D model. With the exception of one trifurcation, all network junctions are bifurcations. Vessels with a
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Table 9.1 Summary of disease scenarios simulated in this study.

Disease scenario Description Modeling approach

Control Typical pulmonary vasculature - Low stiffness
- Minimal PVR

(a) Lesions only Mechanical obstructions due to - 90% area reduction
ring- and web-like lesions in 9 ring-like lesions

-0.009 permeability in
11 web-like occlusions

(b) Lesions with local Increased vascular stiffness, -Increased stiffness in
remodeling narrowing of vessels distal vessels distal to lesions

to lesions, and increased PVR - 40% reduction in radius
in vessels distal to lesions
-Increased PVR in terminal
vessels distal to lesions

(c) Lesions with global small Narrowing, stiffening, and - 40% reduction in radius
vessel arteriopathy increased resistance of all in vessels with A0 < 5mm2

small vessels - Increased stiffness in
narrowed vessels
- Increased PVR in
affected terminal vessels

(d) Lesions with proximal Narrowing and stiffening of - Small vessel remodeling from (c)
remodeling and small small vessels, dilation and - Dilation of proximal arteries
vessel arteriopathy stiffening of large proximal with A0 ≥ 10mm2

vessels, and increased PVR - Increased network stiffness
- Increased PVR in all terminal vessels

length ≤ 1.25 mm (3 of the 226 vessels) are elongated to match the spatial resolution of the fluid dynamics

solver.

We simulate normotensive hemodynamics and four disease cases with increasing CTEPH severity (cases

a-d). CTEPH is induced by including 20 lesions in the segmental and subsegmental vessels and by increasing

the stiffness of the large and small arteries. We compare large and small vessel hemodynamics, network

perfusion, and wave intensities for all simulations. Using case (d) as our baseline for BPA, we perform virtual

treatments by reducing lesion severity and stenosis induced vasoconstriction in three lesions at a time. We

select an optimal procedure based on improvements in flow heterogeneity, MPA pressure, and the wave

reflection coefficient.

9.4.1 Effects of lesion severity

To understand how lesions affect pulmonary hemodynamics, we increase the stenosis area of ring-like lesions

and reduce the permeability of the web-like lesions. We increase the relative stenosis area, As /Ap , from 0% to

90%, and decrease Kperm from 1.5 to 0.003. Figure 9.2 shows changes in mean MPA pressure along with FFR
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Table 9.2 Parameter values for simulating the five different disease scenarios described in section 9.3.7. k3

and Zt r m values are listed for vessels both in unobstructed and obstructed paths (in parentheses).

Disease case

Parameter Normotensive a b c d

k l a
1 (g/(cm s2)) 2.5×106 2.5×106 2.5×106 2.5×106 1.0×107

k l a
2 (1/cm) −15 −15 −20 −20 −10

k l a
3 (g/(cm s2)) 6.4×104 6.4×104 8.0×104 8.0×104 2.0×105

− −
�

1.6×105
� �

1.6×105
� �

4.0×105
�

k s a
1 (g/(cm s2)) 2.5×107 2.5×107 5.0×107 5.0×107 5.0×107

k s a
2 (1/cm) −15 −15 −20 −20 −20

k s a
3 (g/(cm s2)) 8.0×105 8.0×105 1.6×106 1.6×106 1.6×106

− −
�

1.6×107
� �

1.6×107
� �

1.6×107
�

k lesion (g/(cm s2)) − 6.4×105 8.0×105 8.0×105 2.0×106

Zt r m (g/(cm4s) 1.0×105 1.0×105 1.0×106 1.0×107 1.0×108

− −
�

1.0×108
� �

1.0×108
� �

1.0×108
�

Table 9.3 Parameters describing ring- and web-like lesions and their values.

Stenosis parameters Description Value

Kt (ND) Turbulent pressure loss coefficient 1.52

Ku (ND) Inertial pressure loss coefficient 1.2

L s (cm) Ring-like lesion length L i /4

Kp e r m (cm2) Darcy loss coefficient for web-like lesion permeability 0.009

G (cm) Inertial loss coefficient for web-like lesions 0.10

Lw (cm) Length of web-like lesion L i /2

estimates at all lesion locations. Overall, increase ring-like lesion severity increases the mean MPA pressure

from 12 to ∼18 mmHg. Decreasing the permeability of web-like lesions is less influentail on MPA pressure,

raising it by approximately 0.5 mmHg. The minimum FFR for ring-like lesions is 0.16 when the area reduction

is 90%, while the minimum FFR in web-like lesions is 0.66 for Kp e r m = 0.003. The average FFR for ring-like

lesions at 90% area reduction is 0.25, whereas the average FFR is only 0.86 for the most web-like lesions whne

Kperm = 0.003.

We also map flow predictions from the 1D model to the segmented lung tissue. Figure 9.3 shows changes

in perfusion when ring-like lesions’ area reduction rise from 0% to 90%. Flow heterogeneity, quantified by

the KL-divergence, increases with lesion severity. Results show larger perfusion deficits in the lower and
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upper lobes than other regions of the lung. Changing Kperm in web-like lesions alone does not alter perfusion

predictions substantially (results not shown). The flow PDF’s for each simulation are shown in Figure 9.3.

These PDFs are constructed using kernel density estimation with a bandwidth of 0.009 and a reflection

boundary correction.
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Figure 9.2 Predictions of mean MPA pressure (top), and fractional flow reserve (FFR, bottom) when in-
creasing lesion severity in ring-like (left) or web-like (right) lesions. FFR predictions correspond to 9 ring-
like lesions and 11 web-like lesions. Overall, ring-like lesions have a greater effect on MPA pressure and
FFR than web-like lesions.

9.4.2 Large vessel hemodynamics

Normotensive and CTEPH predictions of pressure, flow, and shear stress at the midpoint of the MPA, LPA,

and RPA are displayed in Figure 9.4. Simulations from case (a) (normotensive parameters with lesions only)

result in a mean MPA pressure of 22.5 mmHg. The downstream stiffening and narrowing in case (b) have a

negligible effect on pressure from case (a). Including global small vessel stiffening in case (c) elevates systolic

and diastolic pressures slightly. In contrast, severe CTEPH, case (d), raises the pulse pressure (the difference

between systolic and diastolic values), with systolic pressures ≈ 45 mmHg and diastolic pressures ≈ 5 mmHg.

Flow predictions are oscillatory during diastole in normotension and case (a), while increased vessel

stiffness, cases (b)-(d), dampens the oscillations. All simulations have a larger flow distribution to the RPA

than the LPA; normotensive predictions have a 43/57 flow split to the LPA/RPA, while in severe CTEPH, case

(d), the ratio is 22/78. MPA and LPA Shear stress magnitude is greater in normotension than in any of the

CTEPH simulations, while RPA shear stress is largest in case (d).

Figure 9.5 shows pressure predictions throughout the large pulmonary arteries in normotension, case (a),

and case (d) at different times within the cardiac cycle. Yellow vessel segments denote lesion locations. Results

show a dramatic rise in pressure proximal to lesions for cases (a) and (d), while pressure drops downstream

to the lesions. For case (a), the average FFR is 0.33 (range [0.16 0.95]) for ring-like lesions and 0.95 (range

[0.88 0.94]) for web-like lesions. In case (d), the average FFR is 0.37 (range [0.19 0.95]) for ring-like lesions

and 0.94 (range [0.81 0.99]) for web-like lesions. Note that the pressure magnitude in vessels downstream

to the lesions in case (d) are similar to normotension. Finally, we observe that peak systolic pressure trails
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maximal MPA flow in all three simulations.

Figure 9.6 shows pressure and flow predictions along two pathways: one obstructed by lesions and

one unobstructed. Pressure and flow results are reduced significantly in vessels distal to the lesion in the

obstructed pathway. For case (d), stiffening and narrowing of the small vessels causes a pressure increase

downstream to the lesion, yet the pressure has a smaller magnitude compared to normotensive simulations.

Besides, the flow is significantly reduced in all CTEPH cases once lesions are included, though the flow does

increase slightly in the terminal vessel when moving to case (d).

In contrast, all CTEPH simulations illustrate elevated pressurethe unobstructed pathway. The flow to

the terminal vessel increases when lesions are added in case (a), but decreases in cases (c) and (d). Terminal

vessel systolic pressure in case (d) is ∼45 mmHg in vessels in the unobstructed path, whereas the terminal

systolic pressure is 10 mmHg in the obstructed pathway.

9.4.3 Small vessel hemodynamics

The structured tree model predicts pressure and flow in the smaller arteries and arterioles. Figure 9.7 shows

normotensive predictions as well as CTEPH simulations in six large terminal arteries: three that are down-

stream to a lesion and three that are not. Mean pressure and flow are shown along the α and β pathways, the

longest and shortest pathways in the structured tree.

In the obstructed pathway, we see a significant drop in mean pressure and mean flow in case (a). This is

consistent in both the α and β pathways. In contrast, flow redistribution to the unobstructed vessels cause an

increase in pressure and flow. Vasoconstriction of the terminal arteries and stiffening of the microvasculature

in case (d) increases pressure, yet flow in this pathway does not increase. Moreover, the mean pressure
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Figure 9.4 Pressure, flow, and shear stress in the main, left, and right pulmonary arteries in each disease
scenario.

magnitudes in the unobstructed pathway are similar in both case (a) and case (d), though the systolic

pressures (not shown) increase from 30 mmHg to 40 mmHg.

9.4.4 Wave intensity analysis (WIA)

Figure 9.8 presents wave intensity profiles in the MPA, LPA, and RPA for the normotensive and four disease

cases. The wave reflection coefficient for each case is reported in Table 9.4. Normotensive simulations have a

predominant FCW in all three branches, followed by a minor BCW. Overall, normotensive expansion waves

are negligible. The wave reflection coefficient in the MPA is 0.47, smaller than the LPA and RPA (0.76 and

0.89). Adding lesions in case (a) leads to a prominent second FCW in the MPA and LPA, while RPA forward

and backward compression waves have a bimodal profile that occur consecutively. Case (a) also produces

a distinct bimodal BCW in both the MPA and LPA. In all three branches, both the forward and backward

expansion waves are more oscillatory. The wave reflection coefficient increases in case (a) in the MPA and

LPA, but decreases in the RPA.

Small vessel stiffening in case (b) dampens expansion wave oscillations. The wave intensity profile is

similar to case (a) but shows an elevated FCW across the three branches. A diminished BCW magnitude

decreases the MPA and RPA reflection coefficients; the LPA reflection coefficient is the same in case (a) and (b).

Downstream narrowing in case (c) has a negligible effect on the wave intensities, but slightly intensifies BCW

magnitudes, increasing the reflection coefficient in all three vessels. For case (d), the most severe CTEPH, the

peak wave intensity increases for all four wave types and the bimodal FCW and BEW are gone. Though the

compression wave peak increases, the wave reflection coefficient decreases in all three vessels, suggesting a
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Figure 9.5 Pressure predictions in normotension and disease cases (a) and (d) throughout the network at
different time points. Yellow segments indicate regions where lesions are present.

greater increase in magnitude for the FCWs than the BCWs.

9.4.5 BPA therapy

BPA therapy for inoperable CTEPH typically addresses 3-5 lesions per session; therefore, we target 3 lesions

for the virtual BPA. This provides 20C3 = 1140 possible lesion combinations, which are all analyzed. We choose
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ture, along with predictions of pressure and flow for the normotensive and four CTEPH disease scenarios.
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consistent with other pathways in the network.

Table 9.4 Wave reflection coefficient in the main, left, and right pulmonary arteries (MPA, LPA, and RPA) in
each disease case. The coefficient is calculated using equation 9.27.

Wave reflection coefficient
Disease case MPA LPA RPA

normotensive 0.47 0.76 0.89
case (a) 0.74 0.88 0.86
case (b) 0.68 0.88 0.83
case (c) 0.74 0.90 0.86
case (d) 0.49 0.83 0.67

the optimal BPA using a combination of MPA pressure, WIA results and flow heterogeneity (KL-divergence),

and want to minimize all three quantities. These three metrics are shown in Figure 9.9 for both the pre- (case

(d)) and post-BPA simulations. Results show that the optimal treatment targets three ring-like lesions: two in

the right lower lobe and one in the left upper lobe (here, anatomical left and right are opposite to the left and

right sides of the figure). Lung tissue perfusion maps show reperfusion to both regions, and the flow PDF shifts

leftward towards a more uniform network flow. The KL-divergence decreases from 3.05 to 2.95, signifying a

smaller distance between the control and post-BPA flow PDF. Systolic MPA pressure decreases from 45 to

42 mmHg after BPA, and mean pressure decreases from 22 mmHg to 19 mmHg, below the diagnostic PH

cutoff. Lastly, wave intensity results illustrate a decrease in BCWs and an increase in FEWs post-BPA. The

wave reflection index is reduced in all three proximal arteries after BPA, changing from 0.49, 0.83, and 0.67 to
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Figure 9.7 Hemodynamic predictions in the α and β pathways of the structured tree in the normotensive
case and CTEPH cases (a) and (d). (a) Large vessel network with terminal vessels in obstructed (T1-T3, red)
and unobstructed (T4-T6, blue) pathways. (b) Schematic of the structured tree (grey branches) and the α
and β pathways (red and blue paths, respectively. (c) Mean pressure and flow predictions in the α and β
pathways in terminal vessels T1-T3 as a function of radius. (d) Mean pressure and flow predictions in the α
and β pathways in terminal vessels T4-T6 as a function of radius.

0.48, 0.76, and 0.61 in the MPA, LPA, and RPA, respectively. The pre-BPA FFR in these lesions are 0.44, 0.32,

and 0.30, which improve to 0.88, 0.76, and 0.59, respectively, post-BPA.

9.5 Discussion

Computational hemodynamics is emerging as a useful clinical tool for cardiovascular disease. While several

previous studies employ modeling to quantify treatment strategies for systemic artery disease [26, 268],
less attention has been given to pulmonary vascular disease. In this study, we solve a patient-specific, 1D

hemodynamics model in the large pulmonary arteries constructed from a CT image. The large vessels are

165



-5

0

5

10
104

-5

0

5

10
104

-5

0

5

10
104

0 0.2 0.4 0.6 0.8
-5

0

5

10
104

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

control

case (a)

case (b)

scenario (c)

case (d)

MPA LPA RPA

FCW BEWFEW BCW

W
av

e 
in

te
ns

ity
 (W

 m
   

s 
  )

-2
-2

Time (s)

-5

0

5

10
104

case (c)

Figure 9.8 Wave intensity analysis (WIA) at the midpoint of the main, left, and right pulmonary arteries
(MPA, LPA, and RPA, respectively). Foward and backward running compression waves (FCW, BCW) are
distinguished from forward and backward running expansion waves (FEW, BEW).

coupled to a fractal-based small vessel model, enabling hemodynamic predictions at multiple scales. Our

previous studies utilize a similar approach [35, 45, 46], yet this study is the first to utilize these methods with

pressure loss models to generate perfusion maps and study CTEPH and BPA treatment strategies.

166



Percent of cardiac output

0 0.2 0.4 0.6 0.8
-5

0

5

10
104

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

MPA

pre-BPA post-BPA

RPA

0 0.2 0.4 0.6 0.8

10

20

30

40

50

0

(a)

(b) (c)

(d)

control
pre-BPA
post-BPA

FCW

BEW

FEW
BCW

W
av

e 
in

te
ns

ity
 (W

 m
   

s 
  )

-2
-2

Fl
ow

 P
D

F

Percent of cardiac output

Pr
es

su
re

 (m
m

H
g)

Time (s)

Time (s)

0.3
0.2
0.1
0.05

0.005

0.0005

LPA

0

10

20

30

40

0 0.1 0.2 0.3

Figure 9.9 Pre and post-BPA metrics used to select the most effective treatment strategies. A total of 1140
interventions are considered. (a) Network of vessels with untreated lesions (cyan) and lesions treated in
the best BPA simulation (red) along with pre and post-BPA perfusion maps. The region of the tissue most
affected by BPA is identified within the black, dash-dot boxes. (b) Flow probability distribution functions
(PDFs) for the normotensive (black), pre-BPA (red), and post-BPA (blue). (c) Pressure in the MPA pre-BPA
(red) and post-BPA (black). (d) Wave intensities in the MPA, LPA, and RPA, pre-BPA (solid line) and post-
BPA (dotted line).

9.5.1 Large artery hemodynamics

We consider five scenarios, ranging from normotensive to severe CTEPH. Figure 9.4 shows that lesions alone,

case (a), elevate pressures above 20 mmHg and into the PH range. This agrees with results reported by

Burrowes et al. [32], who use a steady flow, Poiseuille flow model to predict hemodynamics with and without

pulmonary emboli. They argue that pulmonary vasoconstriction and stiffening are necessary to elevate mean

arterial pressures above 25 mmHg. We observe similar trends in cases (b) and (c), which introduce narrowing

and stiffening of the small vessels. Though cases (a)-(c) increase the mean MPA pressure, typical CTEPH

patients have a systolic MPA pressure > 55 mmHg [230]. We approach this in case (d), which also dilates and

stiffens the large pulmonary arteries. In addition to elevated pressure, our results show that the LPA/RPA flow

imbalance increases with disease severity. This parallels results by Spazzapan et al. [222], which compare

simulations between stenosed and non-stenosed geometries.
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WSS in the MPA and LPA decreases in case (a), while the RPA shear stress increases. An elevated pressure

without a change in wall stiffness leads to a larger area deformation, decreasing the flow velocity and WSS

in the MPA. Case (a) leads to a larger flow and WSS in the RPA but reduces the WSS in the LPA. Shear stress

does not increase significantly in case (d), a result of the proximal artery dilation which increases area (in the

denominator of equation (9.6). Results by Yang et al. [266] show a reduced time-averaged wall shear stress in

pediatric patients with severe PH, congruent with our findings. Another study by Tang et al. [233] shows that

proximal and distal WSS magnitude is smaller in PAH when compared to normotensive measurements, a

consequence of MPA, LPA, and RPA dilation, also shown in this study. Though the mechanisms of PAH and

CTEPH are different, both lead to proximal artery dilation [50, 266] and distal vascular narrowing [50, 145],
hence a comparison of our results with PAH and CTEPH is appropriate.

A benefit of our model is the ability to project 1D network predictions onto surrounding lung tissue. Figure

9.3 shows a conversion of 1D model simulations to a 3D flow map, providing a meaningful and qualitative

tool for physicians studying the effects of CTEPH. A recent study by Clark et al. [40] use a transmission line

model to simulate large vessel hemodynamics and subsequently construct a lung perfusion map, similar

to our work. However, their study did not account for perfusion deficits due to pulmonary lesions nor did

it quantify flow heterogeneity, both of which are done here. Our model couples nonlinear, large arterial

hemodynamics to both a linearized small vessel fluid dynamics model and a pressure loss term, capturing the

complex relationship between pulmonary lesions and pulmonary hemodynamics. Figure 9.3 demonstrates

the capability of our methodology in predicting large perfusion deficits in obstructed regions, as seen in vivo

[108].
Our ring-like lesion model is based on the work by Young and Tsai [271] utilized in prior studies. The

studies by Bezerra et al. [25] and Yin et al. [268] show that the combination of 1D CFD modeling with the

aforementioned energy loss model is nearly identical to 3D stenosis model predictions in the coronary

circulation. Only one prior pulmonary study (Spilker et al. [223]) utilized this energy loss model with a 1D

framework in pigs; their results show that RPA stenosis leads to a drastic reduction of flow to the right lung

and 25 mmHg increase in systolic pressure. However, none of these studies consider the effects of multiple

distal lesions in an expansive pulmonary tree. In addition, we introduce a novel web-like lesion pressure loss

term based on the Darcy-Forchheimer equation [267], which is a significant contribution to modeling CTEPH.

These lesion types have not been modeled before, but are characteristic of a majority of CTEPH lesions [115].
Hemodynamics simulations throughout the pulmonary vasculature are feasible using our 1D CFD model

framework. Figure (9.5) shows the mean pressure in each large pulmonary artery in both normotension and

CTEPH, cases (a) and (d), during the cardiac cycle. While control simulations shows a relatively consistent

pressure throughout the vasculature at each time point, cases (a) and (d) illustrate a significant pressure drop

downstream to lesions. This pressure drop, quantified by the FFR, is measured in CTEPH patients in two

previous studies [108, 246] using optical coherence tomography. These studies report FFR values ranging from

0.22 to 0.90, similar to the FFR magnitudes provided here. Our results in Figure 9.2 show that ring like lesions

have a larger pressure drop than web-like lesions, but that both lesion types have varied effects on MPA

pressure. Pressure drops across different types of pulmonary lesions have only recently been documented

[108, 115], and these studies suggest that web-like lesions are more common and easier to treat with BPA than

other lesion types. These studies also show that the changes in pressure and flow downstream of web-like

lesions are more volatile than other lesion types. To date, the properties of web-like lesions have not been

investigated, but more information regarding the structure and composition of web-like lesions may be used

to inform our loss model. Overall, our model shows that both lesion types contribute to a decrease in pressure

downstream, with ring-like lesions playing a larger role.
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Current hypotheses suggest that secondary arteriopathy is a determining factor in CTEPH recovery

[55, 130, 145]. As shown in Figure 9.6, model predictions in both obstructed and unobstructed pathways

are affected in the different disease cases. Clearly, blood pressure drops downstream from the lesion while

resistance to flow increases, leading to underperfusion in these vessels. Conversely, flow and pressure both

increase in the unobstructed pathways. The study by Lang et al. [133] claims that decreased flow, and hence

decreased shear stress, promotes pulmonary arterial remodeling downstream to a lesion. The authors also

argue that increased flow and shear stress in unobstructed pathways leads to flow vasculopathy and, conse-

quentially, pulmonary vascular remodeling. This remodeling of both obstructed and unobstructed arterial

pathways explains why all small arterial vessels, i.e. with an area ≤ 5mm2, narrow in CTEPH [50, 130]. Our

results agree with these hypotheses and illustrate underperfusion in obstructed pathways and hyperperfusion

in unobstructed pathways. Predictions in the obstructed pathdo not return to their original normotensive

values, but they gradually approach these values as we introduce stiffening and narrowing in cases (b) through

(d). Simulations from case (d) are consistent with the physiological conclusions that stiffening and narrowing

of the pulmonary tree partially corrects pressure and flow imbalances due to CTEPH lesions [133].

9.5.2 Small vessel hemodynamics

Our multiscale approach utilizes the structured tree model to simulate arteriolar hemodynamics distal to the

large subsegmental arteries. In CTEPH, lesions in segmental and subsegmental arteries decrease flow to the

microvasculature, leading to small vessel remodeling [111, 130]. We simulate this in cases (b), (c), and (d)

by decreasing the area of the terminal vessels and, consequently, the radii and number of branches in the

structured tree. Results in Figure 9.6 show hemodynamic predictions in three structured trees in an obstructed

path (T1, T2, and T3) and three structured trees in an unobstructed path (T4, T5, and T6). As expected, flow

and pressure decrease substantially in the obstructed pathway with the addition of vascular lesions in case

(a), whereas flow redistribution leads to an increase in flow and pressure in unobstructed terminal vessels

and their arteriolar beds. Flow within the obstructed pathways does not increase when stiffness and PVR

(Zt e r m ) are increased, though flow in the unobstructed pathway decreases as a result of stiffening. These

results and methods agree with previous physiological studies. For example, the study by Stam et al. [224]
induced CTEPH in swine, showing that animals with pulmonary lesions have increased wall-thickness and

decreased microvascular luminal area compared to control. We model both these phenotypes of CTEPH in

cases (b), (c), and (d), increasing MPA pressure. The review by Lang et. al [130] also supports the idea that

an increase in flow in unobstructed pathways leads to secondary arteriopathy and wall thickening in the

pulmonary arterioles.

Decreasing the radii of terminal arteries leads to a smaller arteriolar tree, shown in Figure 9.7 for case (d),

as rmi n is held constant. A reduced microvascular density, also called microvascular rarefaction, is a known

consequence of both CTEPH and PAH [36]. An imaging study by Come et al. [50] concludes that CTEPH

patients have a reduced volume distribution of small arteries when compared to control, and suggests pruning

of the pulmonary arterioles. This phenomenon is modeled by Olufsen et al. [169]who simulate rarefaction

of the pulmonary microvasculature and consequently predict increased mean and diastolic pressure in the

MPA. The study by Yang et al. [266] uses a 3D-0D coupled model of the proximal and distal vasculature and

predicts increased right ventricular pressure and distal WSS as a consequence of the pruned pulmonary

microvasculature. However, these distal vascular predictions, as well as our own here, are hypothetical, as

current imaging technologies cannot capture dynamics in vessels of this magnitude. This model type can test

large and small vessel disease hypotheses, and can be validated if measurements are available in both the

large and small pulmonary arterial vessels.
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9.5.3 Wave intensity analysis

WIA is increasingly recognized as a measure of pulmonary vascular function [213, 230]. Results in Figure

9.8 show how the addition of lesions and vascular stiffening affects forward and backward traveling waves.

Results from the normotensive simulations show a large FCW in the MPA during systole followed by a smaller

magnitude BCW and FEW, which rapidly decay in magnitude during diastole, and that the BEW is relatively

negligible. In contrast, wave intensity magnitudes in scenario (d) nearly double in all four wave types. This

agrees with the study by Su et al. [230], who measure area-velocity signals in both normotensive and PH

patients, and show that wave intensity magnitudes nearly double in PH. Similarly, they show that FCWs in PH

are approximately twice the magnitude of FEWs and BCWs, and that BEWs do not dissipate as quickly as in the

normotensive patients. A similar conclusion is drawn in the study by Lau et al. [134]; PAH patients in the study

have a much larger BCW than control subjects, ultimately leading to an increased wave reflection coefficient.

In this study, we define the wave reflection coefficient as the sum of forward and backward compression

waves in the time domain. However, the wave reflection coefficient can be calculated using other methods

[156, 230], including impedance analysis, either in the frequency or time domain [190].
Our results suggest that wave reflection coefficients increase with disease severity. However, dilating

proximal vessels leads to a decreased reflection coefficient in the MPA, LPA, and RPA, as shown in Table 9.4.

Though the reflection index is decreased in case (d), BCW magnitude increases significantly. This is shown

to correlate with right ventricular dysfunction in the study by Schafer et al. [210]. The authors’ of this study

also argue that BCWs are more indicative of increased proximal stiffening, agreeing with our results in case

(d) after stiffening the large proximal arteries. The alignment between our disease scenarios and previously

published in-vivo WIA suggest that this model framework is suitable for addressing wave-propagation in PH

and, more specifically, CTEPH. It is reported that proximal arteries both stiffen and dilate in long term PH [50],
which is accounted for in case (d) in this study. Our simulations show that this physiological phenomenon

decreases the wave reflection coefficient. This suggests that dilation of the MPA attempts to reduce the load

on the heart by minimizing the mismatch between right ventricular ejection and reflected waves from the

arterial periphery.

9.5.4 Computational treatment planning

For inoperable CTEPH patients, a combination of drug therapy and BPA is the best alternative for improving

vascular function. BPA is a physician dependent strategy and varies with both lesion location and severity of

the disease [260]. One common treatment strategy is to target the lobe with the largest perfusion deficit [140],
yet there may be multiple lesions within each lobe. For this reason, an integrated mathematical model of

CTEPH hemodynamics with patient-specific imaging can rank lesion importance in procedural planning.

Image-based computational hemodynamics modeling is already recognized as a useful tool in surgical

planning for coronary artery disease [26, 268], and this study is a first step in utilizing the same framework for

understanding CTEPH and hemodynamic improvement after BPA intervention.

We utilize three indices to determine the best treatment strategy: the mean MPA pressure, the wave

reflection coefficient in the MPA, and the KL-divergence of the flow field. The former two quantify how BPA

affects vascular-ventricular coupling and ventricular afterload, while the latter quantifies improvements in

perfusion. Our results show that a combination of all three indices leads to a best treatment for improving

proximal hemodynamics and lung perfusion. Within our treatment framework, we reduce stenosis severity

through As for ring-like lesions or Kp e r m for web-like lesions, but do not remove lesions. This is important

to consider, as BPA does not remove the lesions completely [108, 130]. In addition to targeting the lesions
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directly, we also decrease the degree of vasoconstriction in vessels downstream from a lesion, returning their

radii to 90% of their original value. This is supported by the study by Boulate et al. [29]who show that distal

artery thickness in pigs can regress to typical values seen in shams after removing lesions. Their study also

analyzes arterial thickness 6 weeks after reperfusing the obstructed lung tissue, demonstrating that surgical

removal of clots reestablishes a normal lumen area after surgery.

Results shown in Figure 9.9 illustrate that the combination of pressure predictions, WIA, and flow het-

erogeneity lead to an optimal BPA treatment. The optimal treatment here reperfuses the right lower lobe

and restores some flow to the periphery in the right middle lobe and left upper lobe. Though physicians

typically target the lobes of the lung with the largest perfusion deficit seen on V/Q scans [130], advances in

new imaging technologies (such as optical coherence tomography) also assist in determining which lesions

will best improve hemodynamics [115, 118]. Our virtual BPA targets a region that is underperfused, but does

not identify the most flow deficient region (the left lower lobe) as the optimal location. There are several

lesions located in this lobe, hence addressing only 3 lesions has little effect on redistributing the flow. Our

optimal BPA treatment also identifies proximal lesions rather than distal lesions, consistent with clinical

practice [130]. Panel (b) in Figure 9.9 displays the relative cardiac output PDF for the normotensive control

and pre- and post-BPA simulations, which are used to compute the KL-divergence. The control PDF has a

bimodal structure, signifying two levels of perfused tissue as seen in Figure 9.3. Both pre- and post-BPA have

a similar trend, but show a small area of lung that is hyperperfused relative to normotensive simulations.

Our simulation results show that both MPA pressure and wave intensities change only minutely in

response to the single BPA treatment. However, improvements in hemodynamics post-BPA are typically

reported over the course of months or years and after multiple sessions [130, 138]. Improvements immediately

after BPA have only been reported in terms of FFR improvement [108, 140]. Our optimal BPA treatment

increased FFR from 0.44, 0.32, and 0.30 to 0.88, 0.76, and 0.59, respectively. These improvements are similar

to recordings from the study by Ishiguro et al. [108], which discover an improved FFR after BPA. Their study

shows that FFR increases from 0.22 to 0.59 and 0.34 to 0.86 in two different lesions, similar in magnitude

to our results. The long-term effects of BPA likely include decreased vasoconstriction in small arteries and

normalized wall thickness [29], but only in the case of reversible PH. Recent investigations into success rates

in CTEPH treatment find that the severity of small vessel disease correlates negatively with successful surgical

outcomes, suggesting that the degree of small vessel arteriopathy dictates whether PH is persistent after

intervention [79]. Histological data on arterioles after BPA would provide insight into the remodeling process

after surgery, and could be reflected in our simulations of post-BPA hemodynamics.

9.5.5 Limitations and future work

We acknowledge several limitation in this study. We compute the wave reflection coefficient as the ratio of the

cumulative forward and backward compression pressure waves. This is only one possible way of computing

the wave-reflection coefficient in the time-domain [156], and can also be calculated in the frequency domain

[190]. It is unclear which index best captures features of the vasculature, yet all these metrics would support

our conclusion that large vessel stiffening and the presence of pulmonary lesions increase BCWs and wave

reflections.

This study implements a novel web-like lesion energy loss model; however, it is unclear if this model

captures proximal and distal hemodynamic features in human web-like lesions. Future studies will be devoted

to validating this model type by obtaining catheter measurements prior to and after web-like lesions [115].
Moreover, we plan to investigate the sensitivity of model outputs, such as the wave reflection coefficient,

mean MPA pressure, and flow heterogeneity index, to lesion and boundary condition parameters. In this
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manner, we will determine which parameters influence outputs after BPA and use this to guide parameter

inference in patient-specific modeling studies for patients with CTEPH.

Though we provide hemodynamic predictions immediately after BPA and hypothesize some degree of

vasodilation after an intervention, it is unclear what the immediate effects of a single BPA session are. Data

collection immediately after single BPA procedures may provide more insight into the immediate remodeling

process. To this point, we do not attempt to predict the long term remodeling of the pulmonary vasculature

after intervention, which will be investigated in future studies via a growth and remodeling framework [241].
Lastly, this proof-of-concept study models CTEPH in a control geometry by placing lesions in the segmental

and subsegmental branches. Future studies will integrate CTEPH images, including lesion location, type, and

severity.

9.5.6 Conclusion

This study provides a framework that integrates patient-specific CT imaging with both large and small vessel

fluid dynamics to predict multiscale hemodynamics in CTEPH. We model normotensive hemodynamics

and four CTEPH disease cases, the latter driven by physiological hypotheses including large and small vessel

remodeling. We utilize two lesion models representing ring-like and web-like lesions, common in CTEPH and

imperative for simulation studies. Our results show that combining thromboembolic lesions with pulmonary

vascular remodeling increases pulmonary pressures to the CTEPH range and mimics clinical observations.

We predict perfusion in the lung tissue and provide a novel, quantitative metric for measuring perfusion

heterogenity, which is essential in understanding the link between flow deficits in the lung and disease severity.

WIA results from the model framework are akin to prior measurements of wave intensities in CTEPH patients.

Small vessel predictions are in agreement with clinical knowledge of CTEPH progression, and illustrate that

lesions lead to downstream underperfusion as well as hyperperfusion in unobstructed territories. We propose

a combination of indices predicted by the model, and utilize these in priortizing lesions for BPA therapy. Our

modeling framework shows improvements in hemodynamics post-BPA, laying the foundation for future

patient-specific investigations and validation studies using CTEPH data.
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CHAPTER

10

DISCUSSION

This dissertation develops a framework integrating pulmonary artery imaging data with a 1D computational

fluid dynamics model. The image-to-model pipeline consists of image segmentation, centerline extraction,

and graph labeling, accomplished using novel algorithms. The reconstructed networks representing the

large pulmonary arteries are used as the domain for nonlinear, intertially driven hemodynamic simulations

performed under normotensive and PH conditions. Predictive variability due to uncertainty in the model

parameters and large vessel geometry is determined. Parameter estimators and distributions constituting

vessel stiffness, downstream resistance, and vascular compliance are inferred using hemodynamic data

from normotensive and PH mice. Hemodynamics in CTEPH are determined by integrating a novel web-like

lesion model with previously utilized ring-like lesion energy loss models. Improvements in CTEPH model

predictions after BPA are calculated using a new quantitative metric for lung perfusion.

Image-based modeling

Image-based modeling is an emerging tool in the diagnosis and management of cardiovascular disease. The

image analysis pipeline presented here uses open-source image segmentation software to reconstruct the

pulmonary vasculature and VMTK [11] for centerline construction. Novel algorithms developed in this work

decompose the centerline network into a labeled graph, consisting of length, radii, and network connectivity.

These components are essential in describing the domain for the 1D fluid dynamics model. The methods

were used to analyze both mouse micro-CT images and human CT images.

A limitation to the above framework is determining the vessel radii. The algorithms in VMTK provide

robust estimates of radii throughout a segmentation. However, VMTK requires manual identification of

all terminal branches (or leaves) in the network. Alternative automatic tools for constructing skeletonized

networks include thinning algorithms provided in 3DSlicer [35, 95], but these require equispaced imaging

data not common in human imaging. Both algorithms have uncertainty associated with radius estimates at
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branch points near junctions. This limitation makes it difficult to determine if vessels taper along their length,

as the proximal pulmonary arteries are known to mildly taper [248]. A recent 1D fluid dynamics investigation

by Abdullateef et al. [1] showed that tapering in the aorta plays a substantial role in the waverform shape

and should be including in large vessel geometries. An investigation by Paun et. al [186] (in collaboration

with the author) estimated pulmonary arterial tapering in normotensive and PH conditions, revealing that

inferring a taper factor improves normotensive predictions to data, but not for PH predictions. A possible

remedy for this issue may include using change-point algorithms [122] to determine inlet and outlet radii or

by performing hypothesis testing for different tapering models based on measured data.

Fluid dynamics model

The 1D fluid dynamics model used here has been utilized in several other studies [168, 169, 189]. However, this

work is the first to consider an expansive network of blood vessels based on imaging data. Both Windkessel

and structured tree boundary conditions are considered. For the Windkessel model, a novel, total resistance

preserving algorithm for distributing resistance parameters is presented and used to study the effects of

network uncertainty. A radius and hematocrit dependent viscosity function is implemented in the structured

tree model. The structured tree model enables predictions beyond the image segmentation domain down

to the precapillary level. Previous studies by Cousins [52] and Yang et al. [266] include a radius dependent

viscosity, but this study includes the hematocrit term as this changes with disease [211].
The 1D model uses an MPA inflow profile to drive hemodynamics, yet PH alters right heart function

and CO. The large arteries should be coupled to a heart model to understand changes in flow, CO, and

arterio-ventricular coupling during PH progression [3, 198]. PH also induces arterial remodeling, especially

in PAH, group III PH, and CTEPH. This can be captured by vasoconstricting and stiffening the vessels in

the structured tree. However, the pulmonary capillaries surrounding the alveoli likely remodel in response

to elevated pulmonary artery pressure in PH [177]. The structured tree could be coupled to a pulmonary

capillary sheet model [40, 73] and used to understand the interaction between the arterioles and capillaries.

In this work the arterial walls are treated as a linear, elastic material, but could also be modeled using a

nonlinear constitutive model, similar to Quershi et al. [191] (in collaboration with the author). Viscoelastic

[21] and hyperelastic [44] wall models have been used in modeling 1D systemic hemodynamics, but not

pulmonary hemodynamics. These topics should be further investigated.

Parameter inference and uncertainty quantification

A major component of patient-specific modeling is inferring parameter estimators or posterior distributions

that are surrogates for non-measurable, in-vivo properties of the circulation. Most models have many pa-

rameters and sparse data; therefore, it is typically impossible to infer all unknown parameters. One way to

determine what parameters are influential or identifiable is to use sensitivity analysis. This work shows that

standard Windkessel parameters are unidentifiable given a single pressure profile. To overcome this, a set of

Windkessel scaling factors is introduced, which are both influential and identifiable on model predictions of

pressure. These parameters are inferred in Chapter 7. Concurring with physiological knowledge [177], results

show that pulmonary arteries stiffen, distal resistance increases, and pulmonary compliance decreases in PH

relative to normotensive values. Both local and global sensitivity analyses reveal that large vessel parame-

ters (stiffness) become more influential with increasing network size, and that distal vascular resistance is

consistently the most influential parameter on model predictions.
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Uncertainty in hemodynamic predictions linked to uncertainties in model and network parameters

are investigated in Chapters 7 and 8. Using MCMC, posterior densities for vessel stiffness and Windkessel

scaling factors are constructed, and agree with similar pulmonary studies [175, 186]. This work is the first to

study uncertainty in arterial network segmentation by using multiple segmentations of the same image. The

separation of output uncertainty (i.e., the total variation) into network variation and geometric variation is

novel, and this work carries out uncertainty propagation by sampling from density estimates based on data

from multiple segmentations.

Uncertainty related to structured tree parameters was not investigated here and hasn’t yet been pursued.

The study by Chambers et al. [35] (in collaboration with the author) is the only one to quantify effects of these

parameters, and concluded that uncertainty in L r r is less influential than α or β on mPAP. This dissertation

did not investigate model discrepancy, though recent results by Paun et al. [175] show that incorporating

model-design uncertainty leads to a larger uncertainty band in pressure predictions. The larger uncertainty

bounds in the study agree with the typical variability in pressure due to the respiratory cycle. It should be

noted that segmentation uncertainty would directly affect ring-like lesion severity, as determined by Yin et al.

[268]. These authors concluded that uncertainty related to lesion segmentation has significant effects on 1D

hemodynamic simulations in the coronary arteries. This necessitates a similar study using both of the ring-

and web-like lesions presented here.

The parameter inference results in Chapter 7 used a multi-start optimization procedure to determine

optimal point estimates for MCMC. The results of MCMC are dependent on the prior distributions and

initial estimates, and may be biased towards the optimization results. A way to circumvent this is to use

multiple initializations of the DRAM algorithm, and could be used to test for multimodlity in the posterior. The

methods presented in the chapter compare asymptotic frequentist methods and non-asymptotic Bayesian

inference techniques. However, there are non-asymptotic frequentist techniques, such as bootstrapping,

that can be used to construct confidence and prediction intervals. Similarly, Bayesian asymptotic methods,

such as the Laplace approximation [78] could also be used in place of non-asymptotic methods. Lastly, the

results from Chapter 7 [46] show that the iid assumption for the residuals is violated. To circumvent this, the

covariance matrix of the residuals can be determined, though this would increase the number of parameters

to be estimated. Instead, one could use a Gaussian process, as done by Paun et al. [175], to estimate the

covariance structure of the residuals.

Hemodynamics in CTEPH

Another innovative result in this dissertation is a 1D hemodynamics model of CTEPH. The disease is char-

acterized by five lesion types, including ring- and web-like, integrated in the model. The ring-like lesion

model was derived by Young and Tsai [269, 270], whereas the web-like lesion pressure loss model follows the

Darcy-Forchheiemer equation [267], a new addition. Both lesion models are integrated into a segmented,

normotensive, large artery geometry. Combining both lesion types with vascular stiffening and vasocon-

striction produces elevated mPAP and increased wave reflections consistent with clinical data [229]. Small

artery predictions in the structured tree are consistent with the clinical hypotheses of (1) underperfusion in

obstructed vasculature and (2) overperfusion in unobstructed territories [133, 224]. To construct meaningful

indices for clinicians, this work produced a novel flow-heterogeneity index utilizing the KL-divergence. By

combining mPAP, the flow-heterogeneity index, and a wave reflection index, an optimal BPA surgery was

determined. This is the first study to construct an expansive, multiscale 1D model that produces common

CTEPH phenotypes and predicts optimal intervention strategies. This proof-of-concept investigation was
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done using a CT image from a normotensive human. A current study by the author is expanding the methods

in this dissertation to use imaging and hemodynamic data from CTEPH patients at Duke.

10.1 Future work

RV dysfunction is the most common cause for PH mortality. RV adaptation been studied in isolation [15,

179], but simulating hemodynamics during RV deterioration has not been investigated. This motivates

the development of a closed loop model of the circulation, where the pulmonary circulation is explicitly

represented by a two-sided structured tree model of the arteries and veins [189], and the heart and other

circulations are represented by a 0D circuit analogy [157, 198]. A more detailed model of the pulmonary

capillaries, using Fung’s sheet model [40, 73], would provide insight into the coupling between the large

arteries, arterioles, and capillaries in disease.

Only one study by Guan et al. [85] has formally investigated the difference between structured tree and

Windkessel boundary conditions in the systemic circulation. This study concluded that proximal hemo-

dynamic conditions are comparable between the two boundary conditions, but discrepancies in distal

hemodynamics are evident between the two. Olufsen [166] showed that the impedance amplitude and phase

between structured tree and Windkessel boundary conditions differ for larger frequencies, and that higher

frequency impedance values from the structured tree better agree with physiological measurements. However,

a formal statistical mapping from one set of boundary conditions to the other has not been determined. More-

over, a future study using different sized networks, as done in Chapter 7, but with structured tree boundary

conditions is warranted.

The effects of different network size are compared qualitatively using optimal parameter estimates, poste-

rior distributions, and sensitivity analyses. A more rigorous approach to this would be to treat networks with

more vessels as higher fidelity models and those with less as lower fidelity models. This could be investigated

using multi-fidelity Bayesian optimization, where higher fidelity models (more vessels) are replaced by a

lower fidelity model (less vessels) with an learned correction factor, e.g., a Gaussian process [268]. This would

overcome two main obstacles encountered in this work: (1) the computation time for running network model

with numerous vessels, and (2) the physical time required to segment an expansive network.

For the CTEPH model, a sensitivity analysis and parameter identifiability study on the model to determine

which parameters are uniquely determined by RHC data is the next step. The study in Chapter 9 places lesions

in the segmental and sub-segmental arteries based on the literature. Patient-specific, CTEPH CT images will

require lesion detection and estimates of lesion severity. This could be determined by segmenting the visible

vasculature and then analyzing radius estimates throughout the tree, flagging vessels that have an abnormal

drop in radius as lesion sites. Also, the lesion models used here have not been validated in the pulmonary

circulation. Recent advances in catheter technology allow physicians to measure pulmonary arterial pressure

during BPA [108, 115], and data proximal and distal to the lesion site providing pressure estimates could

validate the two lesion models. BPA treatment requires multiple sessions before patient mPAP decreases

below 20 mmHg. However, improvements after a single BPA session are not typically reported. A future study

with clinicians at Duke University is planned, where RHC data from each BPA session will be recorded. This

will give snapshots of hemodynamics post-BPA and give insight into recovery after BPA.
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APPENDIX

A

NONDIMENSIONAL ANALYSIS

The full Navier-stokes equations in cylindrical coordinates are given by
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Under the assumptions that the flow is irrotational with no swirl (uθ = 0) and that the flow is axisymmetric so

that the velocity of the fluid is independent of the circumferential component (i.e.u= [ur (r, x , t ), 0, ux (r, x , t )]),

the system is
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A.1 Nondimensional analysis of momentum balance

To show that the transmural blood pressure changes predominately in the axial direction, consider the mo-

mentum balance in the r direction given by equation (A.6). Define the following non-dimensional quantities:

ux =Ux ũx , ur =Ur ũr , x = L x̃ ,

r =R r̃ , p = P p̃ = (ρU 2
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We require the same time scale for ux and ur , hence we can use equality between the two forms of T above.

The momentum equation in the r direction is then
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∂ x̃ 2

�

. (A.11)

Factoring out common terms on the right hand side gives

=⇒
∂ p̃

∂ r̃
=−

R

Ux

Ur

Ux

�

1

T

∂ ũr

∂ t̃
+

Ur ũr

R

∂ ũr

∂ r̃
+

Ux ũx

L

∂ ũr

∂ x̃

�
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µR

ρUx

Ur

Ux

�

1

R 2

∂ 2ũr

∂ r̃ 2
+

1

R 2 r̃

∂ ũr

∂ r̃
−

ũr

R 2 r̃ 2
+

1

L 2

∂ 2ũr

∂ x̃ 2

�

. (A.12)

Assuming that the axial velocity is dominant, i.e. Ur /Ux � 1, we get

∂ p̃

∂ r̃
≈ 0 =⇒ p = p (x , t ). (A.13)
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A similar analysis on the axial momentum equation using the same non-dimensional variables gives

ρ

�

∂ ux

∂ t
+ur

∂ ux

∂ r
+ux

∂ ux

∂ x

�

=−
∂ p

∂ x
+µ

�

∂ 2ux

∂ r 2
+

1

r

∂ ux

∂ r
+
∂ 2ux

∂ x 2

�

=⇒ ρ

�

Ux

T

∂ ũx

∂ t̃
+

Ux Ur ũr

R

∂ ũx

∂ r̃
+

U 2
x ũx

L

∂ ũx

∂ x̃

�

=−
ρU 2

x

L

∂ p̃

∂ x̃
+µ

�

U 2
x

R 2

∂ 2ũx

∂ r̃ 2
+

Ux

R 2 r̃

∂ ũx

∂ r̃
+

Ux

L 2

∂ 2ũx

∂ x̃ 2

�

(A.14)

Using T = L/Ux =R/Ur , we can write

ρ

�

Ux

T

∂ ũx

∂ t̃
+

Ux Ur ũr

R

∂ ũx

∂ r̃
+

U 2
x ũx

L

∂ ũx

∂ x̃

�

= −
ρU 2

x

L

∂ p̃

∂ x̃
+µ

�

Ux

R 2

∂ 2ũx

∂ r̃ 2
+

Ux

R 2 r̃

∂ ũx

∂ r̃
+

Ux
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∂ 2ũx

∂ x̃ 2

�

=⇒ ρ
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U 2
x

L

∂ ũx

∂ t̃
+

U 2
x ũr

L

∂ ũx

∂ r̃
+

U 2
x ũx

L

∂ ũx

∂ x̃

�

= −
ρU 2

x

L

∂ p̃

∂ x̃
+µ

�

Ux

R 2

∂ 2ũx

∂ r̃ 2
+

Ux

R 2 r̃

∂ ũx

∂ r̃
+

Ux

L 2

∂ 2ũx

∂ x̃ 2

�

=⇒
∂ ũx

∂ t̃
+ ũr

∂ ũx

∂ r̃
+ ũx

∂ ũx

∂ x̃
= −

∂ p̃

∂ x̃
+
µL

ρU 2
x

�

Ux

R 2

∂ 2ũx

∂ r̃ 2
+

Ux

R 2 r̃

∂ ũx

∂ r̃
+

Ux

L 2

∂ 2ũx

∂ x̃ 2

�

.

(A.15)

Again utilizing Ur /Ux = ε� 1, we get

−
∂ p̃

∂ x̃
+
νL

R 2Ux

�

∂ 2ũx

∂ r̃ 2
+

1

r̃

∂ ũx

∂ r̃

�

+
ν

Ux L

∂ 2ũx

∂ x̃ 2

= −
∂ p̃

∂ x̃
+
ν

RUx

�

L

R

∂ 2ũx

∂ r̃ 2
+

L

R

�

1

r̃

∂ ũx

∂ r̃

�

+
R

L

∂ 2ũx

∂ x̃ 2

�

= −
∂ p̃

∂ x̃
+
ν

RUx

�

1

ε

∂ 2ũx

∂ r̃ 2
+

1

ε

�

1

r̃

∂ ũx

∂ r̃

�

+ε
∂ 2ũx

∂ x̃ 2

�

. (A.16)

The above expression shows that the diffusive term p d e r 2ux x 2 can be disregarded. Our momentum

equation in dimensional form is then

∂ ux

∂ t
+ur

∂ ux

∂ r
+ux

∂ ux

∂ x
=−

1

ρ

∂ p

∂ x
+ν

�

1

r

∂

∂ r

�

r
∂ ux

∂ r

��

. (A.17)

A.2 Nondimensional PDE solution

To numerically solve the equations, the system of PDE’s is first nondimensionalized. Define the following:

q = qc q̃ , x = Lc x̃ , R = Lc R̃ ,

t =
L 3

c

qc
t̃ , δ= Lc δ̃, p =ρg Lc p̃ ,

A = L 2
c Ã, A0 = L 2

c Ã0, h = Lc h̃ ,

E =ρg Lc Ẽ . (A.18)

The non-dimensional mass balance equation is

qc L 2
c

L 3
c

∂ Ã

∂ t̃
+

q 2
c

L 3
c

∂ q̃

∂ x̃
=
∂ Ã

∂ t̃
+
∂ q̃

∂ x̃
= 0. (A.19)
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For the momentum equation, the nondimensionalization is the same for either consistutive law. Note that

the units of B are the same as A
ρ
∂ p
∂ x , hence

B =
�

g L 3
c

�

B̃ . (A.20)

Since BR H S stems from ∂ B
∂ x , the units are

BRHS =
�

g L 2
c

�

B̃RHS (A.21)

Using this to rewrite our momentum equation in nondimensional form, we have

∂ q

∂ t
+
∂

∂ x

�

q 2

A
+B

�

= −
2πµR

ρδ

q

A
+BRHS

=⇒
q 2

c

L 3
c

∂ q̃

∂ t̃
+

1

Lc

∂

∂ x̃

�

q 2
c

L 2
c

q̃ 2

Ã
+ (g L 3

c )B̃

�

=
µqc

ρL 2
c

−2πR̃

δ̃

q̃

Ã
+
�

g L 2
c

�

B̃RHS (A.22)

Multiplying through by q 2
c /L 3

c gives

∂ q̃

∂ t̃
+
∂

∂ x̃

�

q̃ 2

Ã
+

g L 5
c

q 2
c

B̃

�

=
µLc

ρqc

�

−2πR̃

δ̃

�

q̃

Ã
+

g L 5
c

q 2
c

B̃RHS (A.23)

Define the Reynolds number and squared Froude’s number (both non-dimensional) as

R =
qcρ

Lcµ
, Fr2 =

u 2

g Lc
=

q 2
c

g L 5
c

. (A.24)

Using the above, our final nondimensional system is

∂ q̃

∂ t̃
+
∂

∂ x̃

�

q̃ 2

Ã
+

1

Fr2 B̃

�

=
1

R

�

−2πR̃

δ̃

�

q̃

Ã
+

1

Fr2 B̃RHS (A.25)

This is the system of equations solved numerically by the Ritchmeyer two-step Lax-Wendroff method.
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APPENDIX

B

ROOT FINDING AND BOUNDARY

CONDITIONS

Throughout this appendix, we define η=∆t /∆x and γ=∆t /2 where∆t and∆x are the numerical step size

in time and space.

B.1 Inflow

The inflow profile is assumed periodic, and can be used to determine the area A at the inlet of the network.

To determine the point q n+1/2
−1/2 , the average flow at the half time step is

q n+1/2
0 =

1

2

�

q n+1/2
−1/2 +q n+1/2

1/2

�

(B.1)

=⇒ q n+1/2
−1/2 = 2q n+1/2

0 −q n+1/2
1/2 . (B.2)

We can then use this in the Lax-Wendroff equation

An+1
0 = An

0 −η
�

(R1)
n+1/2
1/2 − (R1)

n+1/2
−1/2

�

+γ
�

(S1)
n+1/2
1/2 + (S1)

n+1/2
−1/2

�

(B.3)

where (R1)
n+1/2
−1/2 = q n+1/2

1/2 and (S1)
n+1/2
−1/2 = 0 (see Figure B.1).
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𝑥

𝑡
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Figure B.1 Schematic of left boundary calculated using the two-step Lax-Wendroff scheme. All red points
in the interior domain are known. To determine the ghost point (shown as a blue open circle), the bound-
ary condition is applied at x = 0 and t = n +1/2 (shown in black). Once q is determined, A is solved using
the Lax-Wendroff method.

B.2 Outflow boundary condition

The discretized convolution integral is

q n
M =∆t

�

p (An
M )y

0
M +

N−1
∑

k=1

p<n−k>N
M y k

M

�

. (B.4)

where < n −k >N is the modulus of the integer (mod N ). Again, we require that our boundary conditions are

consistent with our numerical solution via tha Lax-Wendroff scheme. We can write

An+1
M = An

M −η
�

(R1)
n+1/2
M+1/2− (R1)

n+1/2
M−1/2

�

(B.5)

q n+1
M = q n

M −η
�

(R2)
n+1/2
M+1/2− (R2)

n+1/2
M−1/2

�

+γ
�

(S2)
n+1/2
M+1/2+ (S2)

n+1/2
M−1/2

�

(B.6)

where the components of theR and S are used. Since we require values at the point M +1/2 (beyond the

boundary, see Figure B.2) and the next time point, our unknowns from the above system are

An+1
M , q n+1

M (B.7)

(R1)
n+1/2
M+1/2 , (R2)

n+1/2
M+1/2 , (S2)

n+1/2
M+1/2 . (B.8)

201



𝑥

𝑡

𝑀
−
1

2

𝑀

𝑀
+
1

2

M
−
1

𝑛

𝑛 +
1
2

𝑛 + 1

Figure B.2 Right boundary condition. All variables with a black circle are known. To determine the flow
and area at x =M and t = n +1, a ghost point (blue circle) at x =M +1/2 and t = n +1/2 is introduced. The
point is determined by averaging from the known values at x =M −1/2 and x =M (red circles).

In addition, we can compute the half spatial step in q and A using the average (as done in the inflow):

An+1/2
M =

1

2

�

An+1/2
M−1/2+An+1/2

M+1/2

�

(B.9)

q n+1/2
M =

1

2

�

q n+1/2
M−1/2+q n+1/2

M+1/2

�

. (B.10)

This adds two more unknowns to our system, which can be determined by the discretized convolution

integral

q n+1/2
M =∆t

�

p (An+1/2
M )y 0

M +
N−1
∑

k=1

p<n+1/2−k>N
M y k

M

�

(B.11)

q n+1
M =∆t

�

p (An+1
M )y 0

M +
N−1
∑

k=1

p<n+1−k>N
M y k

M

�

. (B.12)

To reduce the number of equations and unknowns, note that Eq. (B.11) can be written as

1

2

�

q n+1/2
M−1/2+q n+1/2

M+1/2

�

=∆t

 

p

 

�

An+1/2
M−1/2+An+1/2

M+1/2

�

2

!

y 0
M +

N−1
∑

k=1

p<n+1/2−k>N
M y k

M

!

. (B.13)

In summary, our final set of unknown variables are

x1 = q n+1/2
M+1/2, x2 = An+1/2

M+1/2 (B.14)

x3 = q n+1
M , x4 = An+1

M (B.15)
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with the corresponding equations to be solved

An+1
M = An

M −η
�

(R1)
n+1/2
M+1/2− (R1)

n+1/2
M−1/2

�

q n+1
M = q n

M −η
�

(R2)
n+1/2
M+1/2− (R2)

n+1/2
M−1/2

�

+γ
�

(S2)
n+1/2
M+1/2+ (S2)

n+1/2
M−1/2

�

q n+1
M =∆t

�

p (An+1
M )y 0

M +
N−1
∑

k=1

p<n+1−k>N
M y k

M

�

1

2

�

q n+1/2
M−1/2+q n+1/2

M+1/2

�

=∆t

 

p

 

�

An+1/2
M−1/2+An+1/2

M+1/2

�

2

!

y 0
M +

N−1
∑

k=1

p<n+1/2−k>N
M y k

M

!

. (B.16)

The residual equations are

( fr )1 = p

 

An+1/2
M−1/2+ x2

2

!

y 0
M∆t +

N−1
∑

k=1

p<n+1/2−k>N
M y k

M −
q n+1/2

M−1/2+ x1

2
(B.17)

( fr )2 = p (x4)y
0

M∆t +
N−1
∑

k=1

p<n+1−k>N
M y k

M − x3 (B.18)

( fr )3 = An
M −η

�

x1− (R1)
n+1/2
M−1/2

�

− x4 (B.19)

( fr )4 =−x3+q n
M −η

�

x 2
1

x2
+BM+1/2(x2)− (R2)

n+1/2
M−1/2

�

+γ
�

FM+1/2 (x1, x2) +
d

d x2
BM+1/2(x2) + (S2)

n+1/2
M−1/2

�

(B.20)

These equations are solved numerically using a Newton-Raphson routine

xk+1 =xk − (∇f (xk ))
−1f (xk ) (B.21)

where f (xk ) is the residual of the above equations and∇f (xk ) is the Jacobian matrix of the residuals. The

Jacobian for this system is

∇fr =











−1/2 ξ1 0 0

0 0 −1 ξ2

−η 0 0 −1

ξ3 ξ4 −1 0











(B.22)

where

ξ1 = y 0
M∆t

d

d x2
p

 

An+1/2
M−1/2+ x2

2

!

(B.23)

ξ2 = y 0
M∆t

d

d x4
p (x4) (B.24)

ξ3 =η
2x1

x2
+γ

d

d x1
F (x1, x2)M+1/2 (B.25)

ξ4 =η

�

x 2
1

x2

2

+
d

d x2
B (x2)M+1/2

�

+γ
�

d

d x2
F (x1, x2)M+1/2+

d

d x2
BRHS(x2)M+1/2

�

. (B.26)
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B.3 Junction conditions

B.3.1 Bifurcation condition

To numerically solve for conservation of flow and pressure at a diverging junction, we minimize a residual

based on our numerical solver and our junction conditions. The following is derived for a general bifurcation

(i.e. one parent and two daughters), but can be extended to mono-, tri-, and quad-furcations.

The unknowns in at a junction are the q and A values at the n+1 time steps, and the half time/half spatial

values. This constitutes 18 unknown variables:

x=
�

(q p )n+1
M (q p )n+1/2

M (q p )n+1/2
M+1/2

(q d1 )n+1
0 (q d1 )n+1/2

0 (q d1 )n+1/2
−1/2

(q d2 )n+1
0 (q d2 )n+1/2

0 (q d2 )n+1/2
−1/2

(Ap )n+1
M (Ap )n+1/2

M (Ap )n+1/2
M+1/2

(Ad1 )n+1
0 (Ad1 )n+1/2

0 (Ad1 )n+1/2
−1/2

(Ad2 )n+1
0 (Ad2 )n+1/2

0 (Ad2 )n+1/2
−1/2

�

.

To solve for these unknowns, we require a system of 18 equations. They are

�

q p
�n+1

M
=
�

q p
�n

M
−η

�

�

R p
2

�n+1/2

M+1/2
−
�

R p
2

�n+1/2

M−1/2

�

+γ
�

�

S p
2

�n+1/2

M+1/2
+
�

S p
2

�n+1/2

M−1/2

�

(B.27)

�

q d1
�n+1

0
=
�

q d1
�n

0
−η

�
�

R d1
2

�n+1/2

1/2
−
�

R d1
2

�n+1/2

−1/2

�

+γ
�
�

S d1
2

�n+1/2

1/2
+
�

S d1
2

�n+1/2

−1/2

�

(B.28)

�

q d2
�n+1

0
=
�

q d2
�n

0
−η

�
�

R d2
2

�n+1/2

1/2
−
�

R d2
2

�n+1/2

−1/2

�

+γ
�
�

S d2
2

�n+1/2

1/2
+
�

S d2
2

�n+1/2

−1/2

�

(B.29)

(Ap )n+1
M = (Ap )nM −η

�

�

R p
1

�n+1/2

M+1/2
−
�

R p
1

�n+1/2

M−1/2

�

(B.30)
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�

Ad1
�n+1

0
=
�

Ad1
�n

0
−η

�
�

R d1
1

�n+1/2

1/2
−
�

R d1
1

�n+1/2

−1/2

�

(B.31)

�

Ad2
�n+1

0
=
�

Ad2
�n

0
−η

�
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R d2
1

�n+1/2

1/2
−
�

R d2
1

�n+1/2

−1/2

�

(B.32)

�

q p
�n+1/2

M
=

1

2

�

(q p )n+1/2
M−1/2+ (q

p )n+1/2
M+1/2

�

(B.33)

�

q d1
�n+1/2

0
=

1

2

�

(q d1 )n+1/2
−1/2 + (q

d1 )n+1/2
1/2

�

(B.34)

�

q d2
�n+1/2

0
=

1

2

�

(q d2 )n+1/2
−1/2 + (q

d2 )n+1/2
1/2

�

(B.35)

(Ap )n+1/2
M =

1

2

�

(Ap )n+1/2
M−1/2+ (A

p )n+1/2
M+1/2

�

(B.36)

�

Ad1
�n+1/2

0
=

1

2

�

(Ad1 )n+1/2
−1/2 + (A

d1 )n+1/2
1/2

�

(B.37)

�

Ad2
�n+1/2

0
=

1

2

�

(Ad2 )n+1/2
−1/2 + (A

d2 )n+1/2
1/2

�

(B.38)

�

q p
�n

M
=
�

q d1
�n

0
+
�

q d2
�n

0
(B.39)

�

q p
�n+1/2

M
=
�

q d1
�n+1/2

0
+
�

q d2
�n+1/2

0
(B.40)

p (Ap
0 , Ap ,β )n+1/2 = p (Ad1

0 , Ad1 ,β )n+1/2 (B.41)

p (Ap
0 , Ap ,β )n+1/2 = p (Ad2

0 , Ad2 ,β )n+1/2 (B.42)
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p (Ap
0 , Ap ,β )n+1 = p (Ad1

0 , Ad1 ,β )n+1 (B.43)

p (Ap
0 , Ap ,β )n+1 = p (Ad2

0 , Ad2 ,β )n+1 (B.44)

Note that from here, we will let p (A) =F (A).

The residual vectors for the above equations are as follows.

( fr )1 =−x1+ (q
p )nM −η

�

x 2
3

x12
+B (x12)M+1/2− (R

p
2 )

n+1/2
M−1/2

�

+γ
�

F (x3, x12)M+1/2+BRHS(x12)M+1/2+ (S
p
2 )

n+1/2
M−1/2

�

(B.45)

( fr )2 =−x4+ (q
d1 )n0 −η

�

(R d1
2 )

n+1/2
1/2 −

x 2
6

x15
−B (x15)−1/2

�

+γ
�

(S d1
2 )

n+1/2
1/2 + F (x6, x15)−1/2+BRHS(x15)−1/2

�

(B.46)

( fr )3 =−x7+ (q
d2 )n0 −η

�

(R d2
2 )

n+1/2
1/2 −

x 2
9

x18
−B (x18)−1/2

�

+γ
�

(S d2
2 )

n+1/2
1/2 + F (x9, x18)−1/2+BRHS(x18)−1/2

�

(B.47)

( fr )4 =−x10−ηx3+ (A
p )nM +η(R

p
1 )

n+1/2
M−1/2 (B.48)

( fr )5 =−x13+ηx6+ (A
d1 )n0 −η(R

d1
1 )

n+1/2
1/2 (B.49)

( fr )6 =−x16+ηx9+ (A
d2 )n0 −η(R

d2
1 )

n+1/2
1/2 (B.50)

( fr )7 =−x2+
1

2
x3+

1

2
(q p )n+1/2

M−1/2 (B.51)

( fr )8 =−x5+
1

2
x6+

1

2
(q d1 )n+1/2

1/2 (B.52)
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( fr )9 =−x8+
1

2
x9+

1

2
(q d2 )n+1/2

1/2 (B.53)

( fr )10 =−x11+
1

2
x12+

1

2
(Ap )n+1/2

M−1/2 (B.54)

( fr )11 =−x14+
1

2
x15+

1

2
(Ad1 )n+1/2

1/2 (B.55)

( fr )12 =−x17+
1

2
x18+

1

2
(Ad2 )n+1/2

1/2 (B.56)

( fr )13 =−x2+ x5+ x8 (B.57)

( fr )14 =−x1+ x4+ x7 (B.58)

( fr )15 =−F (x11)
n+1/2
M +F (x14)

n+1/2
0 (B.59)

( fr )16 =−F (x11)
n+1/2
M +F (x17)

n+1/2
0 (B.60)

( fr )17 =−F (x10)
n+1
M +F (x13)

n+1
0 (B.61)

( fr )18 =−F (x10)
n+1
M +F (x16)

n+1
0 (B.62)
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The Jacobian matrix, defined as the derivative in the residuals with respect to the states, can be written as

∇fr =











































































−1 0 χ1 0 0 0 0 0 0 0 0 χ2 0 0 0 0 0 0

0 0 0 −1 0 χ3 0 0 0 0 0 0 0 0 χ4 0 0 0

0 0 0 0 0 0 −1 0 χ5 0 0 0 0 0 0 0 0 χ6

0 0 −η 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 η 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 η 0 0 0 0 0 0 0 −1 0

0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2

0 −1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 χ7 0 0 χ8 0 0 0 0

0 0 0 0 0 0 0 0 0 0 χ7 0 0 0 0 0 χ9 0

0 0 0 0 0 0 0 0 0 χ10 0 0 χ11 0 0 0 0 0

0 0 0 0 0 0 0 0 0 χ10 0 0 0 0 0 χ12 0 0











































































The χ terms in the Jacobian are
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χ1 =−2η
x3

x12
+γ

d

d x3
F (x3, x12)M+1/2 (B.63)

χ2 =η

�

x 2
3

x 2
12

−
d

d x12
B (x12)M+1/2

�

+γ
�

d

d x12
F (x3, x12) +

d

d x12
BRHS(x12)M+1/2

�

(B.64)

χ3 = 2η
x6

x15
+γ

d

d x6
F (x6, x15)−1/2 (B.65)

χ4 =η

�

−
x 2

6

x 2
15

+
d

d x15
B (x15)−1/2

�

+γ
�

d

d x15
F (x6, x15) +

d

d x15
BRHS(x15)−1/2

�

(B.66)

χ5 = 2η
x9

x18
+γ

d

d x9
F (x9, x18)−1/2 (B.67)

χ6 =η

�

−
x 2

9

x 2
18

+
d

d x18
B (x18)−1/2

�

+γ
�

d

d x18
F (x9, x18) +

d

d x18
BRHS(x18)−1/2

�

(B.68)

χ7 =−
d

d x11
F (x11) (B.69)

χ8 =
d

d x14
F (x14) (B.70)

χ9 =
d

d x17
F (x17) (B.71)

χ10 =−
d

d x10
F (x10) (B.72)

χ11 =
d

d x13
F (x13) (B.73)

χ12 =
d

d x16
F (x16) (B.74)

(B.75)

B.3.2 Trifurcation condition

For the trifucation conditions, additional equations are added to the bifurcation conditions. For any additional

daughter branch di , the new states include

xi =
�

(q di )n+1
0 (q di )n+1/2

0 (q di )n+1/2
−1/2 (A

di )n+1
0 (Adi )n+1/2

0 (Adi )n+1/2
−1/2

�

(B.76)

for each branch. Additional residual equations correspond to the Lax-Wendroff solution and half time steps

(one for q and one for A in each), and pressure-continuity at the daughter branch at the n +1/2 and n time

steps; hence, each daughter branch adds 6 additional equations and unknowns. For a trifurcation,
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x=
�

(q p )n+1
M (q p )n+1/2

M (q p )n+1/2
M+1/2

(q d1 )n+1
0 (q d1 )n+1/2

0 (q d1 )n+1/2
−1/2

(q d2 )n+1
0 (q d2 )n+1/2

0 (q d2 )n+1/2
−1/2

(q d3 )n+1
0 (q d3 )n+1/2

0 (q d3 )n+1/2
−1/2

(Ap )n+1
M (Ap )n+1/2

M (Ap )n+1/2
M+1/2

(Ad1 )n+1
0 (Ad1 )n+1/2

0 (Ad1 )n+1/2
−1/2

(Ad2 )n+1
0 (Ad2 )n+1/2

0 (Ad2 )n+1/2
−1/2

(Ad3 )n+1
0 (Ad3 )n+1/2

0 (Ad3 )n+1/2
−1/2

�

.

The Jacobian for the trifurcation is then given in Eq. (B.77)
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∇fr =







































































































−1 0 χ1 0 0 0 0 0 0 0 0 0 0 0 χ2 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 χ3 0 0 0 0 0 0 0 0 0 0 0 χ4 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 χ5 0 0 0 0 0 0 0 0 0 0 0 χ6 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 χ7 0 0 0 0 0 0 0 0 0 0 0 χ8

0 0 −η 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 η 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 η 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 η 0 0 0 0 0 0 0 0 0 −1 0 0

0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2

0 −1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 χ9 0 0 χ10 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 χ9 0 0 0 0 0 χ11 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 χ9 0 0 0 0 0 0 0 0 χ12 0

0 0 0 0 0 0 0 0 0 0 0 0 χ13 0 0 χ14 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 χ13 0 0 0 0 0 χ15 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 χ13 0 0 0 0 0 0 0 0 χ16 0 0







































































































(B.77)
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The χ terms in the Jacobian are

χ1 =−2η
x3

x15
+γ

d

d x3
F (x3, x15)M+1/2 (B.78)

χ2 =η

�

x 2
3

x 2
15

−
d

d x15
B (x15)M+1/2

�

+γ
�

d

d x15
F (x3, x15) +

d

d x15
BRHS(x15)M+1/2

�

(B.79)

χ3 = 2η
x6

x18
+γ

d

d x6
F (x6, x18)−1/2 (B.80)

χ4 =η

�

−
x 2

6

x 2
18

+
d

d x18
B (x18)−1/2

�

+γ
�

d

d x18
F (x6, x18) +

d

d x18
BRHS(x18)−1/2

�

(B.81)

χ5 = 2η
x9

x21
+γ

d

d x9
F (x9, x21)−1/2 (B.82)

χ6 =η

�

−
x 2

9

x 2
21

+
d

d x21
B (x21)−1/2

�

+γ
�

d

d x21
F (x9, x21) +

d

d x21
BRHS(x21)−1/2

�

(B.83)

χ7 = 2η
x12

x24
+γ

d

d x12
F (x12, x24)−1/2 (B.84)

χ8 =η

�

−
x 2

12

x 2
24

+
d

d x24
B (x24)−1/2

�

+γ
�

d

d x24
F (x12, x24) +

d

d x24
BRHS(x24)−1/2

�

(B.85)

χ9 =−
d

d x14
F (x14) (B.86)

χ10 =
d

d x17
F (x17) (B.87)

χ11 =
d

d x20
F (x20) (B.88)

χ12 =
d

d x23
F (x23) (B.89)

χ13 =−
d

d x13
F (x13) (B.90)

χ14 =
d

d x16
F (x16) (B.91)

χ15 =
d

d x19
F (x19) (B.92)

χ16 =
d

d x22
F (x22) (B.93)

B.4 Ring like lesions

Physiologically, it is more common to have a ring-like stenosis at a bifurcation, meaning that the pressure loss

term will influence our typical bi- and tri-furcation conditions. The pressure loss term should be applied in

conjunction with the typical pressure bifurcation conditions. Recall that the loss at a stenosis can be written

as
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pp (L , t ) = pd (0, t ) +
µKv

2π(r p )3
q +

ρKt

2(Ap )2

�

Ap

As
−1

�2

|q |q +
ρKu L s

Ap

∂ q

∂ t

= pd (0, t ) +
8µL sπ

(Ap )2C
q +

ρKt

2(Ap )2

�

1

C
−1

�2

|q |q +
ρKu L s

Ap

∂ q

∂ t

whereC is the stenosis severity, As /Ap . The time derivative of the flow is approximated as

∂ q

∂ t
=

q n+1−q n

∆t
=

q n+1−q n

2γ
. (B.94)

Then the states we need to solve for are

x=
�

(q p )n+1
M (q p )n+1/2

M (q p )n+1/2
M+1/2

(q d1 )n+1
0 (q d1 )n+1/2

0 (q d1 )n+1/2
1/2

(q d2 )n+1
0 (q d2 )n+1/2

0 (q d2 )n+1/2
1/2

(Ap )n+1
M (Ap )n+1/2

M (Ap )n+1/2
M+1/2

(Ad1 )n+1
0 (Ad1 )n+1/2

0 (Ad1 )1/2M+1/2

(Ad2 )n+1
0 (Ad2 )n+1/2

0 (Ad2 )1/2M+1/2

�

.

The equations that need to be solved for a bifurcation are

�

q p
�n+1

M
=
�

q p
�n

M
−η

�

�

R p
2

�n+1/2

M+1/2
−
�

R p
2

�n+1/2

M−1/2

�

+γ
�

�

S p
2

�n+1/2

K +1/2
+
�

S p
2

�n+1/2

K −1/2

�

(B.95)

�

q d1
�n+1

0
=
�

q d1
�n

0
−η

�
�

R d1
2

�n+1/2

1/2
−
�

R d1
2

�n+1/2

−1/2

�

+γ
�
�

S d1
2

�n+1/2

1/2
+
�

S d1
2

�n+1/2

−1/2

�

(B.96)

�

q d2
�n+1

0
=
�

q d2
�n

0
−η

�
�

R d2
2

�n+1/2

1/2
−
�

R d2
2

�n+1/2

−1/2

�

+γ
�
�

S d2
2

�n+1/2

1/2
+
�

S d2
2

�n+1/2

−1/2

�

(B.97)

(Ap )n+1
M = (Ap )nM −η

�

�

R p
1

�n+1/2

M+1/2
−
�

R p
1

�n+1/2

M−1/2

�

(B.98)

�

Ad1
�n+1

0
=
�

Ad1
�n

0
−η

�
�

R d1
1

�n+1/2

1/2
−
�

R d1
1

�n+1/2

−1/2

�

(B.99)
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�

Ad2
�n+1

0
=
�

Ad2
�n

0
−η

�
�

R d2
1

�n+1/2

1/2
−
�

R d2
1

�n+1/2

−1/2

�

(B.100)

�

q p
�n+1/2

M
=

1

2

�

(q p )n+1/2
M−1/2+ (q

p )n+1/2
M+1/2

�

(B.101)

�

q d1
�n+1/2

0
=

1

2

�

(q d1 )n+1/2
−1/2 + (q

d1 )n+1/2
1/2

�

(B.102)

�

q d2
�n+1/2

0
=

1

2

�

(q d2 )n+1/2
−1/2 + (q

d2 )n+1/2
1/2

�

(B.103)

(Ap )n+1/2
M =

1

2

�

(Ap )n+1/2
M−1/2+ (A

p )n+1/2
M+1/2

�

(B.104)

�

Ad1
�n+1/2

0
=

1

2

�

(Ad1 )n+1/2
−1/2 + (A

d1 )n+1/2
1/2

�

(B.105)

�

Ad2
�n+1/2

0
=

1

2

�

(Ad2 )n+1/2
−1/2 + (A

d2 )n+1/2
1/2

�

(B.106)

�

q p
�n

M
=
�

q d1
�n

0
+
�

q d2
�n

0
(B.107)

�

q p
�n+1/2

M
=
�

q d1
�n+1/2

0
+
�

q d2
�n+1/2

0
(B.108)

p (Ap
0 , Ap ,β )n+1/2 = p (Ad1

0 , Ad1 ,β )n+1/2+ζ1
(q p )n+1/2

0

((Ap )n+1/2
0 )2

+ζ2

�

(Ap )n+1/2
0

�−2
�

(Ap )n+1/2
0

As
−1

�2

|(q p )n+1/2
0 |(q p )n+1/2

0

+ζ3
1

(Ap )n+1/2
0

�

(q p )n+1/2
0 − (q p )n0

2γ

�

(B.109)

p (Ap
0 , Ap ,β )n+1/2 = p (Ad2

0 , Ad2 ,β )n+1/2+ζ1
(q p )n+1/2

0

((Ap )n+1/2
0 )2

+ζ2

�

(Ap )n+1/2
0

�−2
�

(Ap )n+1/2
0

As
−1

�2

|(q p )n+1/2
0 |(q p )n+1/2

0

+ζ3
1

(Ap )n+1/2
0

�

(q p )n+1/2
0 − (q p )n0

2γ

�

(B.110)
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p (Ap
0 , Ap ,β )n+1 = p (Ad1

0 , Ad1 ,β )n+1+ζ1

(q p )n+1
0

((Ap )n+1
0 )2

+ζ2

�

(Ap )n+1
0

�−2
�

(Ap )n+1
0

As
−1

�2

|(q p )n+1
0 |(q p )n+1

0

+ζ3
1

(Ap )n+1
0

�

(q p )n+1
0 − (q p )n0

2γ

�

(B.111)

p (Ap
0 , Ap ,β )n+1 = p (Ad2

0 , Ad2 ,β )n+1+ζ1

(q p )n+1
0

((Ap )n+1
0 )2

+ζ2

�

(Ap )n+1
0

�−2
�

(Ap )n+1
0

As
−1

�2

|(q p )n+1
0 |(q p )n+1/2

0

+ζ3
1

(Ap )n+1
0

�

(q p )n+1
0 − (q p )n0

2γ

�

(B.112)

We define p (A) =F (A) as the tube law, and G (q , A) as the pressure loss due to ring-like lesions. Also define

the following constants for the pressure loss term:

ζ1 =
8πµL s

C
(B.113)

ζ2 =
ρKt

2

�

1

C
−1

�2

(B.114)

ζ3 =ρKu L s . (B.115)

Note that we treatC as a constant, i.e., even though the area of the parent vessel does change, we assume

that the stenosis expands by a proportional amount. The residual vectors for the above equations are as

follows.

( fr )1 =−x1+ (q
p )nM −η

�

x 2
3

x12
+B (x12)M+1/2− (R

p
2 )

n+1/2
M−1/2

�

+γ
�

F (x3, x12)M+1/2+BRHS(x12)M+1/2+ (S
p
2 )

n+1/2
M−1/2

�

(B.116)

( fr )2 =−x4+ (q
d1 )n0 −η

�

(R d1
2 )

n+1/2
1/2 −

x 2
6

x15
−B (x15)−1/2

�

+γ
�

(S d1
2 )

n+1/2
1/2 + F (x6, x15)−1/2+BRHS(x15)−1/2

�

(B.117)

( fr )3 =−x7+ (q
d2 )n0 −η

�

(R d2
2 )

n+1/2
1/2 −

x 2
9

x18
−B (x18)−1/2

�

+γ
�

(S d2
2 )

n+1/2
1/2 + F (x9, x18)−1/2+BRHS(x18)−1/2

�

(B.118)
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( fr )4 =−x10−ηx3+ (A
p )nM +η(R

p
1 )

n+1/2
M−1/2 (B.119)

( fr )5 =−x13+ηx6+ (A
d1 )n0 −η(R

d1
1 )

n+1/2
1/2 (B.120)

( fr )6 =−x16+ηx9+ (A
d2 )n0 −η(R

d2
1 )

n+1/2
1/2 (B.121)

( fr )7 =−x2+
1

2
x3+

1

2
(q p )n+1/2

M−1/2 (B.122)

( fr )8 =−x5+
1

2
x6+

1

2
(q d1 )n+1/2

1/2 (B.123)

( fr )9 =−x8+
1

2
x9+

1

2
(q d2 )n+1/2

1/2 (B.124)

( fr )10 =−x11+
1

2
x12+

1

2
(Ap )n+1/2

M−1/2 (B.125)

( fr )11 =−x14+
1

2
x15+

1

2
(Ad1 )n+1/2

1/2 (B.126)

( fr )12 =−x17+
1

2
x18+

1

2
(Ad2 )n+1/2

1/2 (B.127)

( fr )13 =−x2+ x5+ x8 (B.128)

( fr )14 =−x1+ x4+ x7 (B.129)
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( fr )15 =−F (x11)
n+1/2
M +F (x14)

n+1/2
0 +G (x2, x11) (B.130)

( fr )16 =−F (x11)
n+1/2
M +F (x17)

n+1/2
0 +G (x2, x11) (B.131)

( fr )17 =−F (x10)
n+1
M +F (x13)

n+1
0 +G (x1, x10) (B.132)

( fr )18 =−F (x10)
n+1
M +F (x16)

n+1
0 +G (x1, x10) (B.133)

The Jacobian for the system of equations is

∇fr =











































































−1 0 χ1 0 0 0 0 0 0 0 0 χ2 0 0 0 0 0 0

0 0 0 −1 0 χ3 0 0 0 0 0 0 0 0 χ4 0 0 0

0 0 0 0 0 0 −1 0 χ5 0 0 0 0 0 0 0 0 χ6

0 0 −η 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 η 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 η 0 0 0 0 0 0 0 −1 0

0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
2

0 −1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 χ7 0 0 0 0 0 0 0 0 χ8 0 0 χ9 0 0 0 0

0 χ7 0 0 0 0 0 0 0 0 χ8 0 0 0 0 0 χ10 0

χ11 0 0 0 0 0 0 0 0 χ12 0 0 χ13 0 0 0 0 0

χ11 0 0 0 0 0 0 0 0 χ12 0 0 0 0 0 χ14 0 0











































































The χ terms in the Jacobian are
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χ1 = −2η
x3

x12
+γ

d

d x3
F (x3, x12)M+1/2 (B.134)

χ2 = η

�

x 2
3

x 2
12

−
d

d x12
B (x12)M+1/2

�

+γ
�

d

d x12
F (x3, x12) +

d

d x12
BRHS(x12)M+1/2

�

(B.135)

χ3 = 2η
x6

x15
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d

d x6
F (x6, x15)−1/2 (B.136)
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−
x 2

6

x 2
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x9
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d
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F (x9, x18)−1/2 (B.138)
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χ9 =
d

d x14
F (x14) (B.142)
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F (x17) (B.143)
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χ13 =
d

d x13
F (x13) (B.146)

χ14 =
d

d x16
F (x16) (B.147)

B.5 Web-like lesions

Web-like lesions are placed at the center of vessel segments and are modeled as monofurcations, i.e. a vessel

with one daughter branch. The pressure loss at the web is

Y ≡∆pweb = Lw

�

µ

Kperm

q

A
+
ρGw

K 1/2
perm

�q

A

�2
�

. (B.148)

The states are The residual vectors for the states are

( fr )1 =−x1+ (q
p )nM −η

�

x 2
3

x9
+B (x9)M+1/2− (R

p
2 )
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(B.149)
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( fr )2 =−x4+ (q
d )n0 −η

�

(R d
2 )

n+1/2
1/2 −

x 2
6

x12
−B (x12)−1/2
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+γ
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(S d
2 )
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(B.150)

( fr )3 =−x7−ηx3+ (A
p )nM +η(R

p
1 )

n+1/2
M−1/2 (B.151)

( fr )4 =−x10+ηx6+ (A
d )n0 −η(R

d
1 )

n+1/2
1/2 (B.152)

( fr )5 =−x2+
1

2
x3+

1

2
(q p )n+1/2

M−1/2 (B.153)

( fr )6 =−x5+
1

2
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1
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(q d )n+1/2

1/2 (B.154)

( fr )7 =−x8+
1
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M−1/2 (B.155)

( fr )8 =−x11+
1

2
x12+

1

2
(Ad )n+1/2

1/2 (B.156)

( fr )9 =−x2+ x5 (B.157)

( fr )10 =−x1+ x4 (B.158)

( fr )11 =−F (x8)
n+1/2
M +F (x11)

n+1/2
0 +Y (x2, x8) (B.159)

( fr )12 =−F (x7)
n+1
M +F (x10)

n+1
0 +Y (x1, x7) (B.160)
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The Jacobian for the system of equations can then be written as

∇fr =















































−1 0 χ1 0 0 0 0 0 χ2 0 0 0

0 0 0 −1 0 χ3 0 0 0 0 0 χ4

0 0 −η 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 η 0 0 0 −1 0 0

0 −1 1
2 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 1
2 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1
2 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1
2

0 −1 0 0 1 0 0 0 0 0 0 0

−1 0 0 1 0 0 0 0 0 0 0 0

0 χ5 0 0 0 0 0 χ6 0 0 χ7 0

χ8 0 0 0 0 0 χ9 0 0 χ10 0 0
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The χ terms in the Jacobian are

χ1 = −2η
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x9
+γ

d

d x3
F (x3, x9)M+1/2 (B.161)

χ2 = η

�

x 2
3

x 2
9

−
d

d x9
B (x9)M+1/2

�

+γ
�

d

d x9
F (x3, x9) +

d

d x9
BRHS(x9)M+1/2

�

(B.162)

χ3 = 2η
x6

x12
+γ

d

d x6
F (x6, x12)−1/2 (B.163)

χ4 = η

�

−
x 2

6

x 2
12

+
d

d x12
B (x12)−1/2

�

+γ
�

d

d x12
F (x6, x12) +

d

d x12
BRHS(x12)−1/2

�

(B.164)

χ5 = Lw

�

µ

x8Kperm
+

2ρGw

K 1/2
perm

x2

x 2
8

�

(B.165)
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F (x11) (B.167)
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χ10 =
d

d x10
F (x10) (B.170)

(B.171)
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APPENDIX

C

DRAM ALGORITHM

The delayed rejection adaptive Metropolis (DRAM) algorithm is outlined in Algorithm 4. This Markov chain

Monte Carlo (MCMC) technique combines the traditional Metropolis algorithm with (1) a second proposal

point (the delayed rejection component), and (2) an updating step where the covariance of the parameter

distribution is updated (the adaptive component). As noted by Paun et al. [186], DRAM is superior in conver-

gence to Metropolis-Hastings or adaptive Metropolis when inferring parameters for the 1D hemodynamics

model, increasing convergence rates by utilizing both the rejection and adaptation steps.
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Algorithm 4: Delayed rejection adaptive Metropolis (DRAM) algorithm

1. Define the DRAM design parameters: the number of observations encoded in the prior ns (= 1);
the mean squared error of the observationsσ2

s ; the length of the adaptation interval before
updating the covariance k0(= 100 steps); the number of chain iterations before terminating M

2. Compute θ0 = arg min
θ

J (θ), where J = rT r is the sum of squared residuals.

3. Set SS0 = J (θ0) and initial variance estimate as s 2
0 =

SS0
N−P

4. Determine initial covariance estimateC = s 2
0

�

S T (θ0)S (θ0)
�−1

and the Cholesky factorization
R=Chol(C)

5. for i = 1, 2, . . . , M

(a) Draw a sample ξk ∼N (0, 1) and compute candidate parameter θcand = θk−1+Rξk

(b) Draw a uniform random sample uα ∼U(0, 1)

(c) Set SScand = J (θcand)r(θcand)

(d) Calculate the acceptance probability α
�

θcand

�

�θk−1

�

=min
�

1, e −(SScand−SSk−1)/2s 2
k−1

�

(e) if uα <α

i. Set θk = θcand and SSk = SScand

else (Delayed Rejection)

i. Set γ2 =
1
5 and sample ξk ∼N (0, 1)

ii. Construct second-state candidate θDR = θk−1+γ2Rξk and draw the sample
uDR ∼U(0, 1)

iii. Compute SSDR = J (θDR) and acceptance probability αDR

�

θDR

�

�θcand,θk−1

�

defined
in equation (5.38)

iv. if uDR <αDR

Set θk = θDR and SSk = SSDR

v. else

Set θk = θk−1 and SSk = SSk−1

end if

(f) Update the error variance s 2
k according to an inverse-gamma distribution, i.e.

s 2
k ∼ Inv-Gamma(a , b )where a = 1

2 (ns +N ) and b = 1
2 (nsσ

2
s +SSk )

(g) if mod(k , k0) = 1 (Adaptive Metropolis)

Update the covarianceCk = sP Cov (θ0,θ1, . . . ,θk−1)+εIP
(h) else

Ck =Ck−1

(i) end if

(j) ComputeR=Chol (Ck )

end for
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